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Πεϱίληψη

Η ταχεία πϱόοδος της τεχνητής νοηµοσύνης έχει οδηγήσει στην ευρεία υιοθέτηση της ϐα-

ϑιάς µάθησης σε σύγχϱονες εφαρµογές. Η όϱαση υπολογιστών έχει επωφεληθεί ιδιαίτερα µε

εξαιρετικά αποτελεσµατικά µοντέλα να χρησιµοποιούνται πλέον σε εφαρµογές πραγµατικού

χρόνου. Μία από αυτές τις εφαρµογές είναι η σηµασιολογική κατάτµηση για την αυτόνοµη

οδήγηση, η οποία επιτϱέπει στα αυτόνοµα οχήµατα να αποκτήσουν λεπτοµερή κατανόηση

του περιβάλλοντός, επιτρέποντάς τα να λαµβάνουν τεκµηριωµένες αποφάσεις σε πραγµατικό

χϱόνο. Για τέτοιες εφαρµογές, είναι Ϲωτικής σηµασίας τα µοντέλα να διατηϱούν υψηλό

επίπεδο ακϱίβειας σε ποικίλες περιβαλλοντικές συνθήκες και να λειτουργούν σε πραγµατικό

χϱόνο. Για να αµβλύνουµε αυτά τα προβλήµατα χρησιµοποιούµε συνθετικά δεδοµένα, ώστε

να ξεπεράσουµε το εµπόδιο της συλλογής δεδοµένων και του σχολιασµού. Η χϱήση αγωγών

γενίκευσης τοµέων και ισχυϱών µετασχηµατιστών ενισχύει την ακϱίβεια των µοντέλων σε

διάφορα περιβάλλοντα. Τέλος, χρησιµοποιούµε έναν εξαιρετικά αποδοτικό αποκωδικοποι-

ητή συνέλιξης για να ενισχύσουµε την ταχύτητα εξαγωγής συµπερασµάτων του µοντέλου, σε

σύγκριση µε άλλες αρχιτεκτονικές γενίκευσης. Με τη διεξαγωγή ενός πειράµατος γενίκευσης

παρουσιάζουµε ότι οι ϐελτιωµένες δυνατότητες σε πραγµατικό χϱόνο δεν έρχονται χωϱίς

ϑυσία στην ακϱίβεια και τονίζουµε την ανάγκη πεϱαιτέϱω µείωσης της υπολογιστικής πολυ-

πλοκότητας των µοντέλων µετασχηµατιστών, ώστε να καταστούν ϐιώσιµη λύση για τη σηµα-

σιολογική κατάτµηση σε πραγµατικό χϱόνο στην αυτόνοµη οδήγηση.

Λέξεις κλειδιά

Νευϱωνικά ∆ίκτυα, Βαθιά Μάθηση, Κατάτµηση Εικόνας, Γενίκευση Πεδίου, Αυτόνοµα

Οχήµατα, Σηµασιολογική Τµηµατοποίηση Πϱαγµατικού Χϱόνου

1





Abstract

Rapid advances in artificial intelligence have led to the widespread adoption of deep

learning in modern applications. Computer vision has particularly benefited from highly

efficient models that are now being used in real-time applications. One such application

is semantic segmentation for autonomous driving, which allows autonomous vehicles to

gain a detailed understanding of their environment, enabling them to make informed de-

cisions in real time. For such applications, it is vital that models maintain a high level

of accuracy in a variety of environmental conditions and operate in real-time. However,

there are several problems that prevent the creation of models that meet the above con-

ditions. These problems relate to the number and variety of training data, the complexity

of real-world conditions, and the computational requirements of the architectures being

exploited. To mitigate these problems we use synthetic data, to overcome the barrier of

data-collection and annotation. The use of domain generalization pipelines and robust

transformers enhances the models’ accuracy across environments. Finally, we use a

highly efficient convolutional decoder to enhance the model’s inference speed, when com-

pared to other generalization architectures. By conducting a generalization experiment we

showcase that the improved real time capabilities come with no sacrifice to accuracy and

emphasize the need to further reduce the computational complexity of transformer mod-

els, to make them a viable solution for real time semantic segmentation in autonomous

driving.

Keywords

Neural Networks, Deep Learning, Image Segmentation, Field Generalization, Autonomous

Vehicles, Real-Time Semantic Segmentation
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Chapter 1

Εκτεταµένη Πεϱίληψη στα Ελληνικά

Τα αυτόνοµα οχήµατα, εξοπλισµένα µε κάµεϱες υψηλής ανάλυσης, µποϱούν να αξ-

ιοποιήσουν µοντέλα µηχανικής µάθησης για λεπτοµερή σηµασιολογική τµηµατοποίηση,

επιτρέποντάς τους να εντοπίζουν και να κατηγοριοποιούν µε ακϱίβεια αντικείµενα και στοιχεία

του δρόµου. Αυτά τα µοντέλα είναι ικανά να συλλαµβάνουν πολύπλοκες χωϱικές σχέσεις,

καθιστώντας τα πολύτιµα εργαλεία για την κατανόηση και αντίληψη του περιβάλλοντος.

ιαχωρίζοντας οχήµατα, πεζούς, σήµατα κυκλοφορίας, λωϱίδες και άλλα κϱίσιµα στοιχεία

του δρόµου, τα µοντέλα ελτιώνουν την ικανότητα του οχήµατος να πλοηγείται µε ασφάλεια,

να σχεδιάζει έλτιστες διαδροµές και να λαµβάνει αποφάσεις σε πραγµατικό χϱόνο. Αυτό

συνεισφέρει στην ακϱίβεια και ασφάλεια των συστηµάτων αυτόνοµης οδήγησης. Παϱ΄ όλα

αυτά, τόσο στην απόκτηση των δεδοµένων εκπαίδευσης όσο και στην εκπαίδευση αυτών των

µοντέλων παρουσιάζονται σηµαντικές προκλήσεις.

Τα µοντέλα µηχανικής µάθησης που προορίζονται για αυτόνοµα οχήµατα πϱέπει να

είναι εξίσου αποδοτικά και ακϱιβή. Πιο συγκεκριµένα, χρειάζεται να µποϱούν να τµη-

µατοποιούν δεκάδες καϱέ ανά δευτεϱόλεπτο, ώστε το όχηµα να λαµβάνει συνεχώς νέα δε-

δοµένα για το περιβάλλον του. Επιπλέον, πϱέπει να είναι σχεδιασµένα για να λειτουργούν σε

ενσωµατωµένα συστήµατα, κάτι που σηµαίνει ότι πϱέπει να είναι σχετικά µικϱά σε µέγεθος.

Ταυτόχϱονα, όµως, πϱέπει να διατηϱούν υψηλή ακϱίβεια ώστε το όχηµα να αντιλαµβάνεται

µε σαφήνεια τι συµβαίνει στο δϱόµο. Η εκπαίδευση αυτών των µοντέλων απαιτεί µεγάλα

σύνολα δεδοµένων. Ωστόσο, τόσο η συλλογή όσο και η επισήµανση αυτών των δεδοµένων

αποτελούν µια ιδιαίτερα απαιτητική διαδικασία από πλευϱάς πόϱων.

Για την επίτευξη µοντέλων που ανταποκρίνονται στα παραπάνω, έχουν προταθεί αρκετές

τεχνικές και αρχιτεκτονικές µε στόχο τη µείωση της πολυπλοκότητας των µοντέλων και του

αριθµού των παϱαµέτϱων τους. Αυτές οι τεχνικές επιτρέπουν τη δηµιουϱγία αποδοτικότεϱων

µοντέλων χωϱίς να υσιάζεται η ακϱίβεια. Για την αντιµετώπιση της έλλειψης δεδοµένων,

χρησιµοποιείται ασθενώς εποπτευόµενη µάθηση, όπου τα δεδοµένα δεν είναι πλήϱως επισηµει-

ωµένα, µειώνοντας έτσι τις απαιτήσεις σε πόϱους. Μια άλλη προσέγγιση είναι η χϱήση

εικονικών δεδοµένων κατά την εκπαίδευση, καθώς αυτά τα δεδοµένα είναι εύκολο να δηµιου

γηθούν και να επισηµανθούν. Ωστόσο, η χϱήση εικονικών δεδοµένων δηµιουϱγεί µια νέα

πϱόκληση. Τα µοντέλα υποθέτουν ότι τα δεδοµένα εκπαίδευσης και τα δεδοµένα εφαρµογής

προέρχονται από την ίδια κατανοµή και είναι ευάλωτα στις ¨µετατοπίσεις πεδίου¨, δηλαδή

στις αλλαγές µεταξύ των κατανοµών.

Οι ¨µετατοπίσεις πεδίου¨ αποτελούν σοβαρό εµπόδιο κατά την εκπαίδευση και τον σχε-
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διασµό ανθεκτικών µοντέλων. Ακόµα και σε περιπτώσεις, όπου τα δεδοµένα εφαρµογής και

εκπαίδευσης διαφέρουν έστω και σε αθµό µη-παϱατηϱήσιµο από το ανθρώπινο µάτι, η από-

δοση ενός µοντέλου µποϱεί να υποφέρει. Αυτό είναι αποτέλεσµα της αδυναµίας των µοντέλων

να γενικεύουν και να µαθαίνουν αναπαραστάσεις αντικειµένων που είναι ανεξάϱτητες από

το πεδίο. Για την αντιµετώπιση αυτής της αδυναµίας υπάρχουν δύο κύϱιες προσεγγίσεις : η

γενίκευση και η προσαρµογή πεδίου.

Η γενίκευση αποσκοπεί στην εκµάθηση αναπαραστάσεων που είναι ανεξάϱτητες από το

πεδίο, ενώ η τϱοποποίηση πεδίου επικεντρώνεται στην προσαρµογή ενός προεκπαιδευµένου

µοντέλου σε µια κατανοµή στόχο. Από τη µία, κατά την προσαρµογή πεδίου, είτε τα δε-

δοµένα είτε οι αναπαραστάσεις τους προσαρµόζονται στις αναπαραστάσεις που έχει ήδη δει

το µοντέλο. Με άλλα λόγια, είτε τα εισερχόµενα δεδοµένα προσαρµόζονται στο πεδίο των

δεδοµένων εκπαίδευσης, είτε οι αναπαραστάσεις των αντικειµένων ταυτίζονται µε αυτές του

πεδίου εκπαίδευσης. Από την άλλη, αν και η γενίκευση είναι πιο δύσκολη, επιτϱέπει σε ένα

µοντέλο να επιτυγχάνει καλή απόδοση ακόµη και σε δεδοµένα που δεν έχει ξαναδεί. ΄Ενα

µοντέλο που έχει υποστεί προσαρµογή πεδίου απαιτεί επανεκπαίδευση για κάθε νέο σύνολο

δεδοµένων διαφορετικού πεδίου.

Η παϱούσα διατριβή διερευνά τις τεχνολογίες που χρησιµοποιούνται για σηµασιολογική

τµηµατοποίηση και ιδίως για εφαρµογές πραγµατικού χρόνου, όπως είναι η αυτόνοµη

οδήγηση. Με µία αρχική ιβλιογραφική ανασκόπηση, αναπτύσσονται κάποιες από τις λύσεις

που προσφέρονται για την αντιµετώπιση των πϱοκλήσεων που αναφέϱονται παραπάνω. Στη

συνέχεια, µελετώνται συνοπτικά κάποιες διαδεδοµένες αρχιτεκτονικές που χρησιµοποιούν-

ται για αυτόν τον σκοπό, καθώς και κάποια συνήθη σύνολα δεδοµένων. Προχωρώντας,

εξετάζεται µία από τις πιο σύγχϱονες µεθόδους για γενίκευση πεδίου, µε την χϱήση της

οποίας εκπαιδεύονται και αξιολογούνται κάποια από τα µοντέλα, που έχουν παρουσιατεί.

Τέλος, τα µοντέλα αυτά δοκιµάζονται σε νέα πεδία γνώσης και συγκεκριµένα σε δεδοµένα

που προέρχονται από µη επανδρωµένα σκάφη και σε ιατρικά δεδοµένα.

1.1 Σηµασιολογική τµηµατοποίηση µε ασθενή επίβλεψη

Η δηµιουϱγία µοντέλων τµηµατοποίησης µε ϐάση το ῝ΝΝ αντιµετωπίζει µια σηµαντική

πϱόκληση, καθώς η εκπαίδευση απαιτεί συνήθως σχολιασµένες εικόνες σε επίπεδο εικονοσ-

τοιχείου, µια διαδικασία έντασης πόϱων. Η απόκτηση πλήϱως επιβλεπόµενων δεδοµένων

είναι δαπανηρή και χϱονοβόϱα. Κατά συνέπεια, οι ερευνητές καταφεύγουν συχνά σε αδύ-

ναµους σχολιασµούς και προτείνουν µεθόδους για σηµασιολογική τµηµατοποίηση µε ασ-

ϑενή επίβλεψη, µετριάζοντας την εξάϱτηση από πλήϱως σχολιασµένα δεδοµένα. Οι αδύναµοι

σχολιασµοί, όπως τα σχολιασµένα πλαίσια οριοθέτησης, οι ετικέτες σε επίπεδο εικόνας, οι

σχολιασµοί µε µουτζούρες και οι σηµειακοί σχολιασµοί, αποδεικνύονται πιο εφικτό να συγ-

κεντρωθούν σε σύγκριση µε τους λεπτοµερείς σχολιασµούς σε επίπεδο εικονοστοιχείου. Οι

ακόλουθες εργασίες κατηγοριοποιούνται µε ϐάση τους πρωταρχικούς τύπους ετικετών µε

ασθενή εποπτεία.
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Image 1.1: Types of weakly supervised training [1]

1.2 Πϱοσαϱµογή τοµέα στη σηµασιολογική τµηµατοποίηση

Τα πλήϱως συνελικτικά µοντέλα έχουν επιτύχει σε εϱγασίες σηµασιολογικής κατάτµησης.

Αυτά τα µοντέλα αποδίδουν καλά σε ένα πεϱιϐάλλον µε επίϐλεψη, αλλά η απόδοσή τους

µποϱεί να µειωϑεί δϱαστικά σε µετατοπίσεις τοµέων που µποϱεί να ϕαίνονται ήπιες σε έναν

ανϑϱώπινο παϱατηϱητή. Για παϱάδειγµα, εάν ένα µοντέλο εκπαιδευτεί σε µια πόλη και

δοκιµαστεί σε µια άλλη πόλη σε διαϕοϱετική γεωγϱαϕική πεϱιοχή ή/και καιϱικές συνϑήκες,

η απόδοση του µοντέλου µποϱεί να υποϐαϑµιστεί σηµαντικά λόγω της µετατόπισης της

κατανοµής σε επίπεδο εικονοστοιχείου. Η πϱοσαϱµογή τοµέα είναι µια ειδική πεϱίπτωση

µάϑησης µεταϕοϱάς, η οποία χϱησιµοποιεί επισηµασµένα δεδοµένα σε έναν ή πεϱισσότεϱους

συναϕείς τοµείς πϱοέλευσης για την εκτέλεση νέων εϱγασιών στον τοµέα-στόχο [28].

1.3 Αγωγός γενίκευσης τοµέα

Σε αυτή την ενότητα, διεϱευνούµε τον αγωγό γενίκευσης τοµέα (DG) που εισήγαγαν

οι Hoyer et al. στην εϱγασία HRDA [29]. Αυτό το πϱωτοποϱιακό πλαίσιο διαδϱαµατίϹει

καϑοϱιστικό ϱόλο στην ανάπτυξη ισχυϱών µοντέλων ικανών να χειϱίϹονται αλλαγές πεδίου,

µια κοινή πϱόκληση σε σενάϱια αυτόνοµης οδήγησης. Ο αγωγός αποτελείται από τϱία

ϐασικά στοιχεία:

• Πϱο-Εκπαιδευµένοι Κωδικοποιητές: Τα µοντέλα αξιοποιούν πϱο-εκπαιδευµένες

ϱαχοκοκαλιές από το σύνολο δεδοµένων ImageNet-1K [30]. Η γνώση που αποκ-

τήθηκε κατά την πϱο-εκπαίδευση ϐοηθά στην εκµάθηση χαρακτηριστικών αµετάβλ-

ητων ως πϱος τον τοµέα, ευθυγραµµίζοντας τις λανθάνουσες αναπαραστάσεις από το

συνθετικό σύνολο δεδοµένων GTA5 µε εκείνες που µαθαίνονται από το ImageNet-1K,

διευκολύνοντας την καλύτεϱη γενίκευση σε διάφορους τοµείς.

• ∆ειγµατοληψία Σπάνιων Κλάσεων:Για τον µετριασµό της ανισορροπίας των κλάσεων

χρησιµοποιείται η δειγµατοληψία σπάνιων κλάσεων. Αυτή η προσέγγιση προσαρµόζει

τη στϱατηγική δειγµατοληψίας ώστε να δίνεται µεγαλύτεϱη έµφαση στις υποεκπροσω-

πούµενες κλάσεις (π.χ. πεζοί, πινακίδες κυκλοφορίας) που είναι λιγότεϱο συχνές σε
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σύγκριση µε τις πιο κυρίαρχες κλάσεις (π.χ. δρόµοι, κτίϱια). Εστιάζοντας σε αυτές τις

σπάνιες κλάσεις κατά την εκπαίδευση, το µοντέλο ϐελτιώνει την απόδοση σε σενάϱια

όπου εµφανίζονται αυτές οι κλάσεις.

• Style-HAllucinated Dual consistEncy learning (SHADE) [31]: Η µέϑοδος SHADE

είναι ένα πλαίσιο που έχει σχεδιαστεί για την ενίσχυση της γενίκευσης τοµέων µε την

αντιµετώπιση της πϱόκλησης των µετατοπίσεων τοµέων, οι οποίες προκύπτουν όταν τα

µοντέλα που εκπαιδεύονται σε ένα περιβάλλον δυσκολεύονται σε ένα άλλο λόγω των

διαφοροποιήσεων του οπτικού στυλ. Το SHADE εισάγει συνθετικά στυλ τοµέων µε δι-

αταραχές στους χάϱτες χαρακτηριστικών κατά τη διάϱκεια της εκπαίδευσης, επιτρέπον-

τας στο µοντέλο να προσαρµόζεται σε ένα ευϱύ ϕάσµα στυλ. Το πλαίσιο διασφαλίζει τη

συνοχή µεταξύ της αρχικής εισόδου και της αντίστοιχης που έχει τροποποιηθεί µε το

στυλ, προωθώντας σταθερές προβλέψεις και ϐελτιώνοντας τη γενίκευση.

1.4 FarSeeFormer

Για την παϱούσα διατριβή, επιλέξαµε να χρησιµοποιήσυµε µια αρχιτεκτονική που αν-

ταποκρίνεται στις απαιτήσεις για υψηλή ακϱίϐεια, ανθετκικότητα και απόδοση, χρησιµοποιών-

τας ένα κωδικοποιητή transformer µαϹί µε ένα εξαιρετικά αποδοτικό συνελικτικό αποκ-

ωδικοποιητή. Ο κωδικοποιητής αποτελείται από έναν ιεραρχικό transformer, ο οποίος

αυξάνει την ανθεκτικότητα του µοντέλου σε σχέση µε συνελικτικές αρχιτετκονικές. Ο αποκ-

ωδικοποιητής αποτελείται από το FarSee-Net, µια συνελικτική αρχιτεκτονική πραγµατικού

χρόνου. Χρησιµοποιεί διαχωρίσιµες κατά ϐάϑος συνελίξεις για µείωση του χϱόνος εξαγωγής

και συνελίξεις υπο-pixel για αύξηση της ανάλυσης των αποτελεσµάτων.

Image 1.2: FarseeFormer
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1.5 Παϱουσίαση και Ανάλυση των Αποτελεσµάτων
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mIoU

ΓΤΑ5→ ἳτψσςαπες

FarSee-Net 73.3 26.5 75.8 20.1 2.38 22.3 12.7 3.28 79.0 30.1 81.4 31.9 10.3 60.9 11.5 13.6 0.47 8.91 5.78 30.0

Segformer 87.7 33.0 84.8 34.1 27.4 35.2 47.4 20.5 87.8 42.2 86.9 65.2 35.0 88.7 45.4 46.0 21.8 29.6 30.2 49.9

DAFormer 90.0 45.0 85.4 36.4 26.4 37.7 44.7 23.0 87.5 42.7 88.0 68.5 39.0 89.0 45.1 42.5 29.5 27.7 28.3 51.4

FarSee-Net2 88.7 34.9 85.6 36.1 26.5 32.4 43.2 20.9 87.1 39.0 88.5 65.8 39.6 87.3 46.4 49.7 36.7 26.7 27.8 50.7

Table 1.1. Σύγκριση µοντέλων στην κατεύθυνση της γενίκευσης τοµέα. Τα µοντέλα εκ-
παιδεύτηκαν για 416.100 επαναλήψεις, χρησιµοποιώντας συνθετικά δεδοµένα από το σύνολο
δεδοµένων ΓΤΑ5 και αξιολογήθηκαν στο σύνολο δεδοµένων ἳτψσςαπες. Ο πίνακας περιέχει
το ΙοΥ που επιτεύχθηκε από κάθε µοντέλο για κάθε κατηγορία.

Μοντέλο Μνήµη (ΓΒ)

FarSee-Net 3.8

Segformer 19.22

DAFormer 20.0

FarSee-Net2 17.4

Table 1.2. Απαιτήσεις µνήµης από κάθε µοντέλο κατά την εκπαίδευση.

1.5.2 Ανάλυση

Η εκπαίδευση και αξιολόγηση των µοντέλων διήϱκεσε πεϱίπου πέντε ηµέϱες για τα

µοντέλα µετασχηµατιστών, ενώ το συνελικτικό µοντέλο απαιτούσε πεϱίπου δύο ηµέϱες.

Σηµαντικά, το συνελικτικό µοντέλο έδειξε σηµαντικά χαµηλότερη χϱήση µνήµης κατά τη

διάϱκεια της εκπαίδευσης, κάνοντάς το λιγότεϱο απαιτητικό σε πόϱους. Ωστόσο, αυτή η

αποδοτικότητα είχε ένα κόστος : η απόδοσή του υστερούσε σε σχέση µε τα µοντέλα µετασχη-

µατιστών, τα οποία παϱουσίασαν συγκρίσιµες τιµές µέσου ∆ιατοµής (µΙοΥ). ΄Ολες οι κατη-

γορίες παϱουσίασαν µια αισθητή πτώση στην ακϱίβεια, ιδιαίτερα στις πιο σπάνιες κατηγορίες

όπως το τϱένο, το ποδήλατο και ο αναβάτης.

1.6 Συµπεϱάσµατα και Μελλοντική Εϱγασία

1.6.1 Συµπεϱάσµατα

Στην παϱούσα διατριβή, πραγµατοποιήθηκε ανάλυση της πϱόκλησης της σηµασιολογικής

τµηµατοποίησης για την αυτόνοµη οδήγηση, καλύπτοντας διάφορες πτυχές. Εξετάστηκαν οι

υπάρχουσες λύσεις στη ϐιβλιογραφία και παϱουσιάστηκαν σηµαντικά µοντέλα και σύνολα

δεδοµένων. Η προσέγγιση σε αυτή την εργασία πλαισιώθηκε µέσα από την οπτική της
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Γενίκευσης Τοµέα, µε την τελική υιοθέτηση της πρωτοποριακής ϱοής εργασίας Γενίκευσης

Τοµέα που αναπτύχθηκε στα έϱγα των [29], [32].

Αποφασίσαµε να συγκρίνουµε τέσσεϱα µοντέλα: ΦαρΣεε-Νετ, Σεγφορµερ, ∆ΑΦορµερ και

ΦαρΣεε-Νετ2. Το ΦαρΣεε-Νετ είναι ένα από τα καλύτεϱα συνελικτικά µοντέλα που χρησι-

µοποιούνται για σηµασιολογική τµηµατοποίηση σε πραγµατικό χϱόνο. Το ∆ΑΦορµερ ήταν το

µοντέλο που παϱουσιάστηκε στα έϱγα των [29], [32], ενώ το Σεγφορµερ ήταν ο πρόγονος του,

που εισήγαγε τον κωδικοποιητή ΜιΤ-Β5 [20]. Το ΦαρΣεε-Νετ2 είναι µια νέα αρχιτεκτονική

που χρησιµοποιεί την υποδοµή ΜιΤ-Β5 µαζί µε τον αποδοτικό και υπολογιστικά ελαφϱύ

αποκωδικοποιητή ΦαρΣεε-Νετ. Ανάπτυξε για αυτή τη διατριβή προκειµένου να επιτευχθούν

ταχύτεϱοι χϱόνοι παραγωγής και εκπαίδευσης.

Τα 4 µοντέλα εκπαιδεύτηκαν και δοκιµάστηκαν στα ίδια σύνολα δεδοµένων (ΓΤΑ5 →

ἳτψσςαπες), καθώς και στα ίδια σύνολα δεδοµένων που αφοϱούν νέους τοµείς γνώσης (ΥΑ῞

και ιατρική απεικόνιση). Τα αποτελέσµατα έδειξαν ότι τα µοντέλα µετασχηµατιστών αποδί-

δουν πολύ καλύτεϱα σε εφαρµογές του πραγµατικού κόσµου, χάϱη στη ϱοβυστιςιτψ και

την προσαρµοστικότητά τους. Η εξαίρεση ήταν τα ιατρικά δεδοµένα, όπου το συνελικτικό

µοντέλο παϱέµεινε ανταγωνιστικό, υποθέτοντας λόγω της µετατόπισης τοµέα µεταξύ των δε-

δοµένων εκπαίδευσης και αξιολόγησης να µην είναι τόσο έντονη. Το ΦαρΣεε-Νετ2 υπερέβη

τα άλλα µοντέλα στο σύνολο δεδοµένων ΥΑ῞ και τα πήγε συγκρίσιµα µε τα καλύτεϱα µον-

τέλα σε καθένα από τα άλλα 2 πειράµατα. Το πλεονέκτηµα του ΦαρΣεε-Νετ2 ϐρίσκεται στη

µικϱότεϱη υπολογιστική απαίτηση κατά την ανάπτυξη για δοκιµές και εκπαίδευση.

1.6.2 Μελλοντική Εϱγασία

Ενώ οι µετασχηµατιστές είναι ϱοβυστ και ανθεκτικοί σε µετατοπίσεις τοµέα, απέχουν

πολύ από το να είναι ϐιώσιµη λύση σε καθήκοντα πϱαγµατικού χϱόνου. Στην πεϱίπτωση

µας, χϱησιµοποιώντας έναν αποδοτικό αποκωδικοποιητή, καταφέϱαµε να επιταχύνουµε την

ταχύτητα παϱαγωγής χωϱίς να ϑυσιάσουµε την ακϱίβεια. Ωστόσο, αυτή η ελαφϱά µείωση

στον χϱόνο παϱαγωγής δεν είναι αϱκετή για να επιτευχθεί τµηµατοποίηση πϱαγµατικού

χϱόνου ή ταχύτητες συγκϱίσιµες µε εκείνες των συνελικτικών µοντέλων. Πϱοτείνουµε να

καταβληθεί πϱοσπάθεια για να µειωθεί το υπολογιστικό ϐάϱος που επιβάλλουν τα µοντέλα

µετασχηµατιστών, καθώς ϕαίνεται να είναι η κύϱια πηγή της αύξησης των χϱόνων παϱαγωγής

σε σύγκϱιση µε τις συνελικτικές αϱχιτεκτονικές.
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Chapter 2

Introduction

I
n recent years, artificial intelligence (AI) has experienced remarkable growth, trans-

forming a wide range of scientific disciplines. This rapid progress is largely driven by

advances in computational power and the availability of vast amounts of data for training

AI models. Among the key outcomes of these advancements is the rise of deep learning,

a fundamental technology in modern AI applications.

One of the fields most profoundly impacted by deep learning is Computer Vision. With

AI’s evolving capabilities, deep learning models have become highly effective at analyzing

complex data with remarkable precision. These models are now integral to a variety of

real-time applications, including one of the most critical in the domain of autonomous

driving: semantic segmentation. Semantic segmentation enables autonomous vehicles

to gain a detailed, pixel-level understanding of their environment, allowing them to make

informed decisions based on real-time data from high-resolution cameras.

For such applications, ensuring that AI models operate in real time with high accu-

racy is essential. Significant strides have been made in developing efficient architectures

capable of processing multiple high-resolution frames while maintaining robust perfor-

mance. However, one of the major challenges in this field is ensuring that these models

are resilient to varying environmental conditions, which requires access to diverse and

abundant data. Unfortunately, obtaining such data is not always feasible, and model

performance can degrade when faced with conditions that differ from the training data.

Today, numerous datasets for autonomous driving exist, many of which offer diverse

data—including adverse scenarios—that can support the development of more resilient

models. These datasets can be either real-world or virtual, and selecting the right dataset

is crucial for training deep learning models that can generalize effectively to real-world

applications. However, if the data distribution in the training set does not align with

the real-world conditions in which the model is deployed, the model may struggle to

generalize, resulting in poor performance.

This challenge has given rise to research in domain adaptation and domain general-

ization. In domain adaptation, a pre-trained model is fine-tuned to better align with the

target domain, either by adjusting the data distribution or by refining object represen-

tations across domains. In contrast, domain generalization aims to develop models that

perform well in a target domain without requiring further training on that domain’s data.

These approaches are particularly relevant in the context of semantic segmentation for
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autonomous driving, where models must adapt to a wide variety of environments.

In conclusion, while significant progress has been made in addressing the challenges

of semantic segmentation for autonomous vehicles, there is still much to explore. Under-

standing and improving the generalization capabilities of these models remains a key area

of ongoing research, offering exciting potential for future advancements in autonomous

driving technology.

2.1 Objective of the Thesis

The primary objective of this thesis is to explore the datasets and techniques employed

in addressing the task of semantic segmentation within the context of autonomous driv-

ing. Additionally, it will review several state-of-the-art models currently used in semantic

segmentation. A domain generalization approach will be applied to test and compare

the performance of these models. Finally, the models will be extended beyond the au-

tonomous driving domain, with experiments conducted on datasets from other fields of

knowledge.

2.2 Thesis Organization

This thesis is organized into seven chapters. Chapter 1 provides an introduction to the

thesis, outlining its scope and objectives. Chapter 2 presents the theoretical background,

starting with an overview of the fundamental architectures used in image processing,

and concluding with a discussion of the challenges of domain generalization. Chapter 3

reviews weakly supervised training approaches and relevant work on domain adaptation.

In Chapter 4, methods for accelerating semantic segmentation are discussed, along with

a review of some state-of-the-art architectures. Chapter 5 presents some of the most com-

mon datasets used in semantic segmentation for autonomous driving. Chapter 6 details

the datasets and training pipeline employed in the experiments. Chapter 7 presents the

experimental results and analysis. Finally, Chapter 8 summarizes the contributions of

this thesis and suggests potential directions for future research.
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Theory
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Chapter 3

Theoretical Background

I
n this chapter, the theoretical background necessary for understanding this work will

be presented. Section 2.1 explores the history of deep neural networks and the evo-

lution of architectures used for image segmentation over the years. Section 2.2 provides

an overview of the different types of image segmentation, while Section 2.3 discusses the

domain generalization challenges encountered in semantic segmentation for autonomous

driving.

3.1 Deep Neural Networks

In order to better understand the concepts and work presented, it is important to

have a grasp of Neural Networks and Deep Learning Models. Therefore, it is appropriate

to provide an overview of the main theory behind Neural Networks, as well as some

information on the primary architectures used for image processing.

3.1.1 Neural Networks

Neural networks are computational models inspired by the structure and function

of the human brain. They are made up of interconnected nodes called "neurons," that

process input data and learn patterns through training. Each neuron receives inputs,

applies weights, sums them, and passes the result through an activation function to

produce an output. These networks are mainly used for tasks such as classification,

regression, and pattern recognition [33].

Neural networks have been around since the 1940s, with the Perceptron being one of

the first models. However, they only became popular in the 1980s with the development

of backpropagation. In the 2010s, advancements in hardware and the availability of large

datasets led to breakthroughs in deep learning, sparking a renewed interest in neural

networks.

3.1.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) were created to handle the growing complexity

of computer vision tasks. They are the foundational architecture for computer vision mod-

els and are specialized deep neural networks designed primarily for processing structured
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grid data, such as images. Unlike networks that relied on densely connected layers, which

became unwieldy due to their excessive connectivity, CNNs share parameters across the

spatial dimensions of the input, reducing the number of parameters compared to fully

connected networks. Additionally, CNNs automatically learn hierarchical features, start-

ing from low-level features (like edges) in early layers to high-level features (like shapes

and objects) in deeper layers. Along with their local receptive fields, they recognize pat-

terns regardless of their position in the input image, providing robustness against spatial

translations.

The main components of CNNs are:

• Convolutional Layers

• Pooling Layers

• Classification Fully Connected Layers

• The Output Layer

Image 3.1: An example of CNN architecture [2]

The most important and unique parts of a CNN are the Convolution Layers and the Pooling

Layers. The functionality and usage of those types of layers are analyzed below.

Convolution Layer (or Kernel)

The Convolutional Layers contain convolutional filters that execute the following algo-

rithm. Each kernel slides over the input image in a process called convolution, performing

an element-wise multiplication between the kernel and a subset of the input (often re-

ferred to as the receptive field). The results of these multiplications are then summed to

produce a single value. This operation is repeated as the kernel moves across the im-

age, generating a feature map or activation map that represents the presence of specific
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patterns in different regions of the input. Some spatial information might be lost in the

process, but a lot of new information is derived.

The convolution operation for an input image I and a kernel K is defined as:

(I ∗ K)(x, y) =
∑
m

∑
n

I(x +m, y + n) · K(m, n)

where I(x, y) represents the pixel value of the input image at position (x, y), and K(m, n)
is the value of the kernel at position (m, n). The summation is carried out over the

dimensions of the kernel.

Two important hyperparameters that control the behavior of the convolution operation

are stride and padding. The stride defines the step size of the kernel as it moves across

the input image. A stride of 1 means the kernel shifts by one pixel at a time, while a larger

stride results in downsampling, reducing the spatial resolution of the output feature map.

Padding refers to adding extra pixels (usually zeros) around the border of the input image.

It allows the kernel to process edge pixels more effectively and helps control the size of the

output feature maps. Finally, in some cases, convolutional layers have more than one

filter in parallel. The number of filters in parallel should match the number of channels

of the input. Image 3.2 presents an example of the aforementioned convolution.

Image 3.2: An example of a convolution operation [3]

Pooling Layer

Pooling layers work in a way similar to convolution layers. A filter is sliding across the

grid of the input, but instead of applying a convolution between the input data and the

kernel, the values of the window are replaced with a number. Specifically, there are two

types of pooling-layers:

• Max Pooling returns the maximum value of the elements in each sub-matrix.
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• Average Pooling returns the average value of the elements in each sub-matrix.

A pooling layer serves the function of progressively reducing the spatial dimensions of the

feature maps produced by convolutional layers. This downsampling process preserves

important features while reducing computational complexity, memory usage, and the

likelihood of overfitting. Pooling layers introduce an element of spatial invariance, allowing

the network to maintain robustness to small translations, rotations, or distortions in the

input data.

Image 3.3: An example of a Pooling Layer operation [3]

Fully Convolutional Neural Networks

Fully Convolutional Neural Networks (FCNNs) are a type of neural network designed

for tasks that involve pixel-wise predictions, such as semantic segmentation. In semantic

segmentation, each pixel of an input image is assigned a class label. Unlike traditional

Convolutional Neural Networks (CNNs) that use fully connected layers for classification

tasks, FCNNs consist entirely of convolutional layers and do not have any fully connected

layers. This structure allows FCNNs to take input images of any size and produce spa-

tially consistent predictions, making them well-suited for dense prediction tasks. Some

key characteristics of FCNNs are the absence of fully connected layers and their input

flexibility.

In traditional CNNs, fully connected layers are typically used after convolutional layers

to perform high-level reasoning and final classification. In FCNNs, these fully connected

layers are replaced by convolutional layers, enabling the network to produce spatial maps
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instead of single-class predictions. This feature allows FCNNs to retain spatial information

throughout the network, which is crucial for tasks like image segmentation.

FCNNs can handle inputs of varying sizes because their convolutional layers do not

require a fixed input size. In contrast, fully connected layers in traditional CNNs demand

a fixed input size. The absence of these layers in FCNNs allows for flexibility in handling

inputs of different dimensions, making the architecture highly adaptable for real-world

applications.

FCNNs are widely used and effective, but they do have some limitations. One key

issue is that they cannot process images in real time, which can be a problem for tasks

requiring immediate results. Additionally, FCNs struggle to capture all the necessary

information from an image, especially the broader context that aids in accurate segmen-

tation. Moreover, they are challenging to implement on three-dimensional images, which

limits their usefulness in certain situations.

Image 3.4: An example of a Fully Convolutional Neural Network [3]

3.1.3 Encode-Decoder Architectures

Encode-decoder models are models designed to handle tasks that require transform-

ing one type of data into another, often used in areas like image segmentation, machine

translation, and speech recognition. The architecture consists of two primary compo-

nents: an encoder that compresses the input data into a compact representation, and a

decoder that reconstructs the output from this representation.

The encoder processes input data and extracts important features. It usually includes

a series of layers, such as convolutional layers for computer vision or recurrent layers

for sequence-based tasks. These layers progressively downsample and compress the

input into a lower-dimensional representation, often referred to as the latent space or

bottleneck. The output of the encoder is a concise feature map or vector containing the

essential information of the input data in a more abstract form.
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The decoder takes the encoded representation and tries to reconstruct the output in

a specific format, such as a segmented image in computer vision or a translated sentence

in natural language processing. The decoder typically follows the structure of the encoder

but in reverse, using techniques like upsampling or transposed convolutions to restore

the original resolution or structure of the data.

Encoder-Decoder architectures are a powerful framework for solving tasks that involve

transforming input data into structured outputs. These models work by compressing in-

put data into a latent representation and then reconstructing it in the desired format.

They have proven to be highly effective in fields like image segmentation, machine trans-

lation, and speech recognition. Their ability to handle variable input and output lengths,

as well as maintain spatial details through skip connections, makes them well-suited for

complex tasks requiring high-level abstraction and detailed reconstruction.

Image 3.5: An example of the basic architecture of an Encoder Decoder Network [4]

3.1.4 Vision Transformers

Convolutional networks, such as CNNS or FCNS, are commonly used for semantic seg-

mentation, but they have limitations. For instance, the final output segmentation image

of the feature map has low resolution and they are not effective at capturing long-range

dependencies of the feature maps. The emergence of Vision Transformer (ViT), inspired

by transformer-based architectures in NLP, has shown promising results in addressing

these limitations.

A Transformer in machine learning is a deep learning model that utilizes self-attention

mechanisms. Self-attention allows the model to weigh the importance of different parts

of the input during processing, enabling it to capture dependencies between parts more

flexibly than Convolutional Neural Networks. However, applying self-attention in images

is computationally expensive due to the quadratic cost resulting from each pixel attending

to every other pixel.
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Dosovitskiy et al. [5] proposed a novel approach for handling images by dividing them

into patches and treating them as tokens, similar to NLP. Instead of pixel-wise attention,

they implemented patch-wise attention, reducing computational complexity compared to

applying self-attention to convolutional architecture. To account for transformers lacking

the inherent inductive bias of CNNs for capturing spatial relationships, they added po-

sition embeddings to the patch embeddings, maintaining information about the relative

positions of patches in the image.

The core of the Vision Transformer [5] is a stack of transformer encoder blocks, each

consisting of multi-head self-attention and feed-forward layers. The self-attention mech-

anism allows the model to learn relationships between different patches, capturing both

local and global dependencies across the entire image. A special token called the classi-

fication token (CLS) is added to the input sequence of patch embeddings. After passing

through the transformer layers, this token accumulates information from the entire im-

age, and its final representation is used for classification.

The final layers of Vision Transformers differ based on the model’s task. For classifi-

cation models, the final layer can be a Multi-Layer Perceptron Head. This layer takes the

final vector representation of the input image and outputs the probability of each class.

For segmentation-oriented models, the final part of the model is a Decoder, similar to

Encoder-Decoder architectures. This decoder outputs a matrix with the probabilities of

each class for each pixel of the original input image.

Image 3.6: Architectur of VIT [5]

3.2 Domain Generalization and the Out-of-Distribution Prob-

lem

Machine learning models, including those used for semantic segmentation in au-

tonomous driving, aim to learn patterns from training data to make predictions on unseen

data. However, real-world applications often expose models to environments with statis-

tical characteristics vastly different from their training data. This mismatch, referred to
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as the Out-of-Distribution (OOD) Problem, occurs when models encounter unseen data

that does not align with the training distribution, severely impacting performance.

3.2.1 Domain Shift

Domain shift is a major cause of the OOD problem. It refers to changes in the distri-

bution of data between the training (source) and testing (target) domains. Domain shift

manifests in various ways in autonomous driving:

• Environmental Changes: Variations in weather (fog, rain, snow), lighting condi-

tions (day vs. night), and seasons (winter vs. summer) can drastically alter the

appearance of the scene.

• Geographical Differences: Models trained in one geographic location (e.g., urban

city) may struggle to generalize to others (e.g., rural areas) due to differences in road

layouts, vegetation, or infrastructure.

• Sensor Variability: Autonomous vehicles may use different cameras, LiDARs, or

radar sensors, each with distinct resolutions and noise patterns, leading to a dis-

tribution mismatch if the model wasn’t trained on data from those specific sensors.

3.2.2 Dataset Bias and Overfitting

Another contributor to the OOD problem is dataset bias—when the training data

fails to capture the full diversity of real-world scenarios. If the training data is overly

specific to a certain environment (e.g., clear weather, daytime), the model will likely fail

when exposed to unseen conditions. Additionally, overfitting occurs when a model learns

spurious correlations in the training data. These correlations, while effective during

training, do not hold in different or novel contexts, exacerbating the OOD problem.

3.2.3 Domain Generalization (DG)

Domain Generalization is an approach that aims to mitigate the OOD problem by

training models capable of generalizing to new, unseen domains. In DG, models learn

domain-invariant features, focusing on patterns that are robust to changes in environ-

mental factors and sensor variations. For autonomous driving, this is essential for en-

suring consistent performance across various weather conditions, geographic locations,

and camera configurations.

Challenges in domain generalization include:

• Complexity of Real-World Variations: The wide range of potential domain shifts

(weather, lighting, urban vs. rural) makes it difficult for models to generalize across

all possible environments.

• Lack of Target Domain Data: Unlike domain adaptation, which assumes access

to some data from the target domain, domain generalization requires robustness

without prior exposure to target domain samples.
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By addressing these challenges, models for semantic segmentation in autonomous

driving can improve robustness, ensuring safe and reliable operation even in diverse and

unseen environments.
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Chapter 4

Weakly-supervised semantic segmentation and

Domain Adaptation

I
n this chapter we are going to present some methods used for weakly-supervised

semantic segmentation and domain adaptation. In section 4.3 we will showcase the

domain generalization pipeline that will be used in the experiments of chapter 7.

4.1 Weakly-supervised semantic segmentation

Building CNN-based segmentation models faces a significant challenge where train-

ing typically necessitates pixel-level annotated images, a resource-intensive process. The

acquisition of fully supervised data is both costly and time-consuming. Consequently,

researchers often resort to weak annotations and propose methods for weakly supervised

semantic segmentation, mitigating the reliance on fully annotated data. Weak annota-

tions, such as annotated bounding boxes, image-level labels, scribble annotations, and

point annotations, prove more feasible to gather compared to detailed pixel-level an-

notations. The following papers are categorized based on the primary types of weakly

supervised labels.

Image 4.1: Types of weakly supervised training [1]
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4.1.1 Segmentation algorithm based on image-level labels

The main paradigm of using image-level labels to do semantic segmentation tasks is

first generating the score map or heat map from the pretext task, such as the standard

classification task, as the original rough mask. Then the researchers apply some clus-

tering algorithms to refine and improve the generating mask iteratively until getting a

satisfactory result. The last procedure is to feed the mask produced from the previous

step as the fully annotated label to some pre-defined models that do standard supervised

segmentation tasks. The annotator only needs to say whether or not a particular object

class appears in an image, not how many of them there are.

Extensive research has been conducted on image-level labels. The focus is to improve

the use of these labels to enhance class activation maps, which are crucial in obtain-

ing accurate rough masks [6], [34], [35]. Some methods use the image-level label as

a constraint to the network, which encourages the output to follow a latent probability

distribution in the constraint manifold [36].

Image 4.2: An example of utilizing image-level labels [6]
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4.1.2 Segmentation algorithm based on bounding-box

These methods generate rough segmentation maps of the target using bounding-box

labels and then optimize the model iteratively. However, it relies on image annotation

quality compared to the image-level label method. The research conducted using this

kind of annotation, uses the bounding boxes as a basis, to try and acquire the information

regarding the shape of the object placed inside the box and then try to improve the

segmentation mask produced through iterative training [7], [37], [38].

Image 4.3: The BoxSup model. [7]

4.1.3 Segmentation algorithm based on point

Referring to an object by pointing is the most natural way for humans, as in "That cat

over there" or "What is that over there?". The technique has been proven to be useful in

various fields, including robotics and human-computer interaction. However, it has not

been widely used in semantic segmentation. Recently, some researchers have proposed

new point-based semantic segmentation methods that incorporate point supervision into

the training loss function. These methods assign only one label point to each class.

In certain research, annotated points are utilized to exploit semantic relationships.

This is achieved by promoting consistency in feature representations of intra- and inter-

category points. Essentially, points within the same category should have more similar

feature representations than those from different categories, even across different training

images [39]. Other methods use point labels and generic priors to assign probabilities of

pixel classification for object separation [1].

4.2 Domain adaptation in semantic segmentation

Fully convolutional models have been successful for semantic segmentation tasks.

These models perform well in a supervised setting, but their performance can drastically

reduce under domain shifts that may appear mild to a human observer. For instance, if

a model is trained on one city and tested on another city in a different geographic region

and/or weather condition, the model’s performance may degrade significantly due to the

pixel-level distribution shift. Domain adaptation is a specific case of transfer learning,

which utilizes labeled data in one or more related source domains to perform new tasks

in the target domain [28].
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4.2.1 Input-level domain adaptation

Many computer vision tasks require the translation of images while maintaining the

class-related features of the original images. Style transfer methods are often used for

this purpose, but the quality of the generated images can be an issue. Even minor issues

at the pixel level can significantly affect the accuracy of semantic segmentation models.

To overcome this, several studies have focused on ensuring semantic consistency during

the image translation process. This can enhance the quality of the generated images. In

this section, we will categorize these methods into two groups: GAN-based (generative

adversarial network) methods and style transfer methods that use various techniques to

translate images.

GAN-based methods utilize generative models to perform the style transfer of the

original photos to the target domain and enable the segmentation model to perform the

task. The two steps are set in a bidirectional closed-loop learning framework for domain

adaptation of image semantic segmentation [8]. One such work is showcased in image

4.4.

Image 4.4: Bidirectional Learning for Domain Adaptation of Semantic Segmentation [8].

In contrast to GAN-based methods, which are computationally intensive, style transfer

methods utilize traditional neural style transfer techniques to achieve similar results.

Yang et al. [40] have proposed a spectral transfer method based on the Fourier Transform

that does not require any training. This method swaps the low-frequency component of

the source images’ spectrum with that of the target images. This way, the translated

image is mapped to the target style without any change in semantic content. Wu et

al. [41] employed an image generator to align the distributions of mean and variance of

feature maps between the source and target domains at the pixel level. This is because

these statistics are easy to optimize and provide sufficient information for achieving good

stylization.

4.2.2 Feature-level domain adaptation

Possible solutions to address domain shifts involve aligning the distributions of fea-

ture latent embeddings. One way to achieve this is by modifying the feature extractor

to generate domain-invariant features. By changing the distribution of latent represen-

tations between source and target domains, the network classifier can learn to segment

both representations from the same latent space. This can be achieved by relying solely

on the supervision from source data [42].

Some research has achieved domain invariance by using a conservative loss, enabling

the network to learn discriminative features that are invariant to domain changes through
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gradient ascent [43]. Other methods add extra networks and losses to regularize the

features extracted by the backbone encoder network [44]. Finally, some approaches align

the distributions of activations of intermediate layers, rather than only matching the

output distributions of the source and target domains [45].

4.2.3 Output-level domain adaptation

Output-level domain adaptation involves modifying a model’s predictions to better

match the target domain. This method is particularly useful when input features are

similar between the source and target domains but there are differences in the output

distribution, such as labels or predictions. The goal of domain adaptation is to make the

model’s output consistent with the characteristics of the target domain. Some researchers

use adversarial learning techniques to force the segmentation output to be in the target

domain [46], [47], [48], [49]. Others use loss functions that prevent the training process

from being dominated by easy-to-transfer samples in the target domain [50].

4.3 Domain Generalization Pipeline

In this section, we explore the domain generalization (DG) pipeline introduced by

Hoyer et al. in the HRDA paper [29]. This cutting-edge framework plays a pivotal role

in developing robust models capable of handling domain shifts, a common challenge in

autonomous driving scenarios. The pipeline consists of three essential components:

• Pre-trained backbones: The models leverage pre-trained backbones from the Im-

ageNet1K dataset [30]. The knowledge acquired during pretraining aids in learn-

ing domaininvariant features by aligning latent representations from the synthetic

GTA5 dataset with those learned from ImageNet-1K, facilitating better generalization

across domains.

• Rare Class Sampling: To mitigate class imbalance, rare class sampling is em-

ployed. This approach adjusts the sampling strategy to give more prominence to

underrepresented classes (e.g., pedestrians, traffic signs) which are less frequent

compared to more dominant classes (e.g., roads, buildings). By focusing on these

rare classes during training, the model improves performance in scenarios where

these classes occur.

• Style-HAllucinated Dual consistEncy learning (SHADE) [31]: SHADE is a frame-

work designed to enhance domain generalization by tackling the challenge of domain

shifts, which arise when models trained in one environment struggle in another due

to visual style variations. SHADE introduces synthetic domain styles by perturb-

ing feature maps during training, allowing the model to adapt to a diverse range of

styles. The framework ensures consistency between the original input and its style-

altered counterpart, promoting stable predictions and improving generalization.
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Real-time semantic segmentation

S
emantic segmentation models based on deep learning have achieved impressive

accuracy in recent years. However, for applications such as autonomous driving,

efficiency and reduced inference time are crucial. In this section, we will present all

the existing approaches that can be used in deep neural network architecture design to

achieve faster response times in semantic image segmentation models.

5.1 Convolution Factorization—Depthwise Separable

Convolutions

Convolutional layers are a crucial part of most deep-learning models. Therefore, mak-

ing the convolutional operations performed in the network’s layers more computationally

efficient can significantly improve the model’s speed performance.

One popular design choice for improving convolutions is the use of depthwise sep-

arable convolutions, which is a type of factorized/decomposed convolutions [51]. The

depthwise separable convolution method divides the computation process into two dis-

tinct steps. First, a single convolutional filter is applied per each input channel (depthwise

convolution), and then a linear combination of the output of the depthwise convolution is

considered through a pointwise convolution.

The equation gives the ratio of computational complexity between depthwise separable

convolutions and standard convolutions: Ratio = 1/N + 1/D2
, where N is the number of

filters of size D×D.

Image 5.1: (a) Standard convolution. (b) Depthwise separable convolution [9]
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5.2 Channel Shuffling

In standard group convolution, each input channel is associated with only one output

channel. However, in the case of channel shuffling, a group convolution takes data from

different input groups, and every input channel will correlate with every output channel.

To achieve this, we can divide the channels in each group into several subgroups and

then feed each group in the next layer with different subgroups. This can be implemented

efficiently by a channel shuffle operation [10].

To illustrate, imagine a convolutional layer with g groups where the output has g × n

channels. We first reshape the output channel dimension into (g, n), transpose it, and

then flatten it back as the input of the next layer. The channel shuffle operation is

differentiable, meaning that it can be embedded into network structures for end-to-end

training.

Image 5.2: Showcase of channel shuffle (adapted from [10])

5.3 Early Downsampling

Processing large input frames can be very expensive. One solution to this is to down-

sample the frames in the early stages of the network, using only a small set of feature

maps. The initial network layers should focus on feature extraction and preprocessing of

the input data for the following parts of the architecture, rather than contributing to the

classification stage. This approach is used by the ENet model architecture [52] to prevent

spatial information loss due to downsampling.

ENet’s model architecture is based on the SegNet [11] approach, which saves indices

of elements chosen in max-pooling layers, and uses them to produce sparse upsampled

maps in the decoder. This approach reduces memory requirements while recovering spa-

tial information. However, it is not recommended for applications where the initial image

contains fine image details that have the potential to disappear after the corresponding

max-pooling operation.
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Image 5.3: SegNet decoder uses the max-pooling indices to upsample the feature maps [11]

5.4 The Use of Small Size Decoders

To simplify the architecture of an encoder-decoder model and reduce computational

costs, one can reduce the size of the decoder [52]. This approach is based on the idea that

the encoder should process input data with a smaller image resolution. Meanwhile, the

role of the decoder is solely to perfect the details of the output image by upsampling the

encoder’s output. Therefore, reducing the size of the decoder is a cost-effective solution.

This method is generally effective as the reduction in the decoder’s size doesn’t usually

impact its effectiveness.

5.5 Efficient Reduction of the Feature Maps’ Grid Size

To reduce the size of feature maps, pooling operations are commonly applied. How-

ever, these operations can create representational bottlenecks in the network filters. This

can be avoided by increasing the activation dimension of the filters, which leads to in-

creased computational costs. To address this issue, Szegedy et al. [53] suggested a

pooling operation that involves performing a convolution of stride 2 in parallel, followed

by concatenation of the resulting filter banks. Many such approaches exist that have been

shown to reduce feature map size and improve efficiency, while achieving state-of-the-art

effectiveness [54].

5.6 Increasing Network Depth While Decreasing Kernel Size

Using small (3x3) convolutional filters has been shown to improve the standard con-

figurations of CNNs. With smaller filters, the network can be made deeper by adding more

convolutional layers while reducing the number of parameters. This technique not only

reduces computational cost but also increases the accuracy of the network [55], [56].
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5.7 Two-Branch Networks

Two-branch networks have been developed to address the trade-off between accuracy

and inference time. One branch is responsible for capturing spatial details and gener-

ating a high-resolution feature representation, while the other branch obtains high-level

semantic context. These networks achieve a beneficial balance between speed and accu-

racy by using one pathway as a lightweight encoder of sufficient depth, and the other as

a shallow, yet wide branch consisting of only a few convolutions. As a result, two-branch

networks preserve partial information that is often lost after downsampling operations

[57], [12], [58].

Image 5.4: Illustration of different backbone architectures. a is the dilation backbone
network. b is the encoder-decoder backbone network. c bilateral segmentation backbone
network. (adapted from [12])

5.8 Block-Based Processing with Convolutional Neural Networks

To reduce inference time, block-based processing is another effective technique. In

this method, the image is divided into blocks and based on the importance of each block,

its resolution is downscaled, leading to a reduction in computational costs and memory

usage. For instance, Segblocks [59] employs this technique for image segmentation.

5.9 Pruning

In order to produce faster, more accurate, and more memory-efficient models, pruning

can be utilized. Pruning is a method where the network tries to create more efficient

representations thus reducing the number of connections and nodes used. The idea

stems from the fact that visual information is highly spatially redundant, and thus can

be compressed into a more efficient representation. There are two types of pruning: weight

pruning and channel pruning.

Weight pruning is a method that removes unnecessary connections (parameters) in

a neural network, resulting in a sparse model that still retains the high-dimensional

features of the original network. Researchers [13] proposed a three-step method for
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weight pruning: (1) training the network to identify important connections, (2) pruning

unessential connections, and (3) fine-tuning remaining connections.

Filter pruning is a method that reduces computation costs by removing filters and their

corresponding feature maps that have little effect on accuracy [60]. He et al. [61] proposed

a channel-pruning approach that improves inference time while preserving accuracy.

However, this approach sacrifices spatial and functional information, resulting in reduced

effectiveness.

Image 5.5: Synapses and neurons before and after pruning. (adapted from [13])

5.10 Quantization

Using 32 bits to represent network weights can adversely affect network efficiency

due to the high computational cost and memory requirements associated with 32-bit

operations. In a study by Takos et al. [62], it was shown that reducing the number of bits

used to represent each connection from 32 to 5 can significantly reduce computational

costs. Han et al. [63] proposed a quantization approach that achieves this by sharing the

same weights between multiple connections, effectively reducing the number of effective

weights. These weights are then fine-tuned to optimize performance.

5.11 State of the art Models

5.11.1 Convolutional models

SqueezeNet

SqueezeNet is a deep learning model that focuses on image classification tasks and

reduces the model size and computational requirements. It was designed to address the

challenges of deploying large neural networks on resource-constrained devices like mobile

phones or embedded systems. The model achieves compression by using a combination
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of innovative architecture, including network-in-network structures, to reduce the num-

ber of parameters, and the "fire module" design that efficiently captures and processes

features.

The primary goal of SqueezeNet is to balance model size and performance, making it

more suitable for real-time applications on devices with limited computational resources.

Despite its compact architecture, SqueezeNet has demonstrated competitive performance

compared to larger models on image classification benchmarks, thus showcasing its ef-

fectiveness in the realm of efficient deep learning.

Image 5.6: SqueezeNet architecture [14]

FarSee-Net

FarSee-Net is a state-of-the-art approach to real-time semantic segmentation that

balances high accuracy with computational efficiency. Designed as an encoder-decoder

architecture, FarSee-Net introduces two key innovations: an advanced context aggrega-

tion module and a novel upsampling technique. By processing lower-resolution input

data, aggregating context effectively, and restoring the high-resolution output, the net-

work achieves an optimal trade-off between performance and resource utilization.

Zhang et al. [15] introduced the Factorized Atrous Spatial Pyramid Pooling (FASPP)

module, which extends the widely adopted Atrous Spatial Pyramid Pooling (ASPP) by Chen

et al. [64]. The FASPP module utilizes atrous convolutions to increase the receptive field

of the filters without adding computational complexity or increasing parameters. This

is accomplished by inserting r-1 zeros between adjacent kernel elements, where r is the

atrous rate. While the ASPP is effective for capturing contextual information, it operates

on high-dimensional feature maps, leading to increased computational cost.

To mitigate this overhead, FASPP factorizes the 3x3 atrous convolution into two stages:
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• Point-wise convolution (1x1): This layer linearly combines the input channels,

reducing the output dimensionality and allowing for efficient channel-wise interac-

tion.

• Depth-wise atrous convolution (3x3): This layer preserves spatial context aggre-

gation with the same kernel size and atrous rate as the original ASPP but reduces

the computational burden.

By factorizing the convolutions, FarSee-Net reduces the complexity of the ASPP module,

achieving faster and more efficient segmentation without compromising accuracy. To

further enhance multiscale context aggregation, the network employs a cascaded version

of the FASPP module, referred to as Cascaded Factorized Atrous Spatial Pyramid Pooling

(CF-ASPP), which involves applying two factorized ASPP modules in sequence.

Additionally, FarSee-Net addresses the challenge of upsampling low-resolution fea-

ture maps by framing it as a super-resolution task in the feature space. Instead of

conventional bilinear interpolation, which often struggles to recover fine-grained de-

tails, FarSee-Net adopts sub-pixel convolution—a technique popularized in image super-

resolution tasks. During training, the network receives downsampled input images while

the high-resolution label maps serve as ground truth. In the decoder, sub-pixel con-

volution gradually upscales the feature maps by rearranging their elements through a

periodic shuffling operation, significantly improving the network’s ability to recover high-

resolution details. Compared to traditional deconvolution, this approach offers superior

representation power and enhances the quality of the segmentation output.

Image 5.7: FarSee-Net architecture [15]

5.11.2 Vision Transformer models

Segmentation Transformer (SETR)

Semantic segmentation typically involves using FCNs in an encoder-decoder architec-

ture. The encoder is responsible for learning feature representations, while the decoder
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performs pixel-level classification of these features. However, Zheng et al. [16] have

proposed a new approach using a pure transformer in place of the computationally ex-

pensive stacked convolution layers-based encoder. This results in a new segmentation

model called SETR.

The SETR method follows a unique approach for processing input images. It divides

the image into fixed-sized patches, which are then represented using learned embeddings.

These embeddings are transformed using global self-attention modeling, which helps

in learning discriminative feature representations. To achieve this, a linear embedding

layer is applied to the flattened pixel vectors of each patch, which results in a sequence

of feature embedding vectors. These vectors are then fed as input to a transformer.

The encoder transformer learns the features that are subsequently used by a decoder to

reconstruct the original image resolution. Crucially, there is no downsampling in spatial

resolution, but global context modeling occurs at every layer of the encoder transformer.

This approach offers a completely new perspective to the semantic segmentation problem.

STETR is classified into a few variants. depending on the decoder of the model: SETR-

PUP (5.8b) which has a progressive up-sampling design and the SETR-MLA (5.8c) which

has a multi-level feature aggregation.

Image 5.8: SETR architecture and its variants. (a) SETR consists of a standard Transformer.
(b) SETR-PUP with a progressive up-sampling design. (c) SETR-MLA with a multi-level
feature aggregation [16].

Swin transformer

The Swin Transformer [17] is a hierarchical vision transformer model designed for

dense prediction tasks such as image segmentation and object detection. Unlike tradi-

tional transformers that process the entire image at once, the Swin Transformer intro-

duces a "shifted window mechanism" to enable more efficient computation and capture

fine-grained details.

The architecture can be summarized as follows:

• Patch Splitting and Embedding: The input image is split into non-overlapping

patches, where each patch is treated as a token. These tokens are linearly embedded

to form the initial sequence of embeddings.
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• Hierarchical Structure: The Swin Transformer operates in a hierarchical man-

ner, where the resolution of feature maps is progressively reduced as the network

deepens. This structure enables multi-scale representation learning, improving the

model’s ability to capture both local and global information.

• Shifted Window Attention: In each stage, the image is partitioned into fixed-

size windows, and a "window-based multi-head self-attention" (W-MSA) mechanism

is applied within each window. To enhance connections between windows, the

"shifted window mechanism" shifts the window partitioning by a predefined number

of pixels in alternating layers, enabling cross-window interactions without excessive

computation.

• Patch Merging: As the network deepens, "patch merging" layers are used to reduce

the number of tokens, effectively downsampling the feature maps while increasing

the channel dimensions.

• Efficient Attention: Swin Transformer efficiently computes attention within local

windows, significantly reducing the quadratic complexity of traditional attention

mechanisms to linear complexity with respect to image size.

Image 5.9: An overview of the Swin Transformer. (a) Hierarchical feature maps for reducing
computational complexity. (b) Shifted window approach which was used when calculating
self-attention. (c) Two successive Swin Transformer Blocks which presented at each stage.
(d) The core architecture of the Swin. [17]

Segmenter

Segmenter [18] is a transformer-based architecture designed for semantic segmenta-

tion, leveraging the strengths of self-attention mechanisms to capture long-range depen-

dencies in image data. Unlike traditional CNN-based architectures, Segmenter employs

Vision Transformers (ViT) as the backbone for feature extraction. The input image is

first divided into fixed-size patches, which are then linearly embedded into a sequence of

tokens.
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The architecture consists of two main components:

• Encoder: The Vision Transformer (ViT) encoder processes the sequence of tokens

through multiple transformer layers, allowing for global context modeling at each

stage. Self-attention mechanisms enable the model to capture both local and global

relationships between pixels.

• Decoder: The decoder is responsible for transforming the tokenized output of the

encoder back into a high-resolution segmentation map. Segmenter uses a mask-

based approach where the class tokens output from the transformer are decoded

into segmentation masks. This process efficiently recovers spatial details while

preserving the contextual information learned by the transformer.

Image 5.10: Segmenter architecture. It basically has a ViT backbone with a mask trans-
former as the decoder. [18]

Masked-attention mask transformer (Mask2Former)

Mask2Former [19] is a cutting-edge transformer-based architecture designed for vari-

ous segmentation tasks, including instance, panoptic, and semantic segmentation. It has

demonstrated superior performance compared to existing state-of-the-art architectures,

thanks to its innovative use of masked attention and a carefully designed transformer

decoder.

At the core of Mask2Former is its "transformer decoder with masked attention". In

contrast to traditional transformers, where attention is applied across the entire feature

map, Mask2Former employs a "masked attention" mechanism that restricts the cross-

attention to the predicted mask region. By limiting attention to the foreground region,

the model significantly improves its computational efficiency and focus, allowing more

precise predictions within the areas of interest.

The architecture is composed of three main components and is showcased in image

5.11:

• Backbone Feature Extractor: The backbone is responsible for generating multi-

scale feature maps from the input image. Mask2Former is flexible in its choice of
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backbone, supporting both convolutional neural networks (CNNs) and transformer-

based models. The flexibility in backbone selection allows the architecture to benefit

from different types of feature extraction techniques, depending on the specific use

case.

• Pixel Decoder: The pixel decoder in Mask2Former builds on advancements over

its predecessor, MaskFormer [65]. Specifically, it incorporates a "multi-scale de-

formable attention Transformer" (MSDeformAttn) [66], which enables efficient multi-

scale feature aggregation. MSDeformAttn adaptively focuses on relevant regions

across different scales, improving the model’s ability to capture both fine details

and larger contextual information.

• Transformer Decoder: The transformer decoder is enhanced with "masked atten-

tion", which plays a critical role in refining segmentation masks. This mechanism

applies attention only to the predicted mask regions, instead of the entire feature

map, thereby reducing redundant computations and focusing the model’s capacity

on refining mask boundaries. As a result, the model not only becomes more efficient

but also produces higher-quality segmentation outputs.

Image 5.11: Mask2Former architecture. The model consists of a backbone feature extractor,
a pixel decoder, and a Transformer decoder [19].

Despite being a universal segmentation architecture, Mask2Former still requires task-

specific training. This limitation is common among universal models, which, despite their

flexibility across tasks, necessitate specialized training for each type of segmentation (e.g.,

instance, panoptic, or semantic).

SegFormer

Segformer [20] is a novel architecture designed for efficient semantic segmentation,

combining the strengths of both transformers and convolutional neural networks (CNNs).

It is characterized by its ability to deliver high performance while maintaining a lightweight

structure, making it suitable for real-time applications.

The Segformer architecture consists of two main components:
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• Backbone Network: Segformer employs a hierarchical transformer-based backbone

that effectively captures multi-scale features from the input image. This backbone

uses a Mixing Transformer (MiT) [20] structure that allows for efficient feature

extraction and representation across various scales. Each layer in the MiT struc-

ture integrates information from different spatial resolutions, enabling the model to

handle both fine details and broader contextual information.

• Segmentation Head: The segmentation head is designed to produce accurate se-

mantic segmentation maps from the feature representations generated by the back-

bone. It utilizes a lightweight and flexible decoder that aggregates features from

different levels of the backbone, ensuring rich contextual information is retained.

This design enables Segformer to achieve high-quality segmentation results without

excessive computational overhead.

Image 5.12: SegFormer architecture. It has a hierarchical Transformer encoder for feature
extraction and a lightweight MLP decoder for predicting the final mask [20].

One of the key innovations of Segformer is its efficient transformer design, which min-

imizes the computational burden typically associated with traditional transformer archi-

tectures. By leveraging both global and local attention mechanisms, Segformer strikes a

balance between computational efficiency and performance, making it competitive with

existing state-of-the-art methods while being easier to deploy in resource-constrained

environments.

DAFormer

DAFormer [21] is a cutting-edge architecture specifically designed for semantic seg-

mentation tasks, emphasizing data efficiency and robust performance. It introduces

a unique approach that leverages the strengths of both convolutional neural networks

(CNNs) and transformers to effectively capture contextual information while maintaining

computational efficiency.

The key components of DAFormer are as follows:
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• Mix Transformers (MiT) as encoder : Since robustness is an important property

in order to achieve good domain adaptation performance as it fosters the learning

of domain-invariant features, transformers are a good choice for domain adaptation

as they fulfill these criteria. The encoder follows the design of MiTs [20], which are

tailored for semantic segmentation. (5.11.2)

• Context Aggregation Module (CAM): DAFormer employs a context aggregation

module that enhances the model’s ability to capture long-range dependencies and

contextual information. The decoder utilizes not only the context information of the

bottleneck features but the context across features from different encoder levels as

well. They provide valuable low-level concepts for semantic segmentation at a high

resolution, which can also provide important context information.

• Efficient Feature Fusion (lightweight design):

Before the feature fusion, the feature map of each level is embedded to the same

number of channels by a 1×1 convolution and then are bilinearly upsampled to the

size of F1, and concatenated. Multiple parallel 3×3 depthwise separable convolu-

tions with different dilation rates are used for the context-aware feature fusion in a

similar fashion to ASPP [64](5.11.1).

Image 5.13: DAFormer network [21]
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Datasets

6.1 Autonomous Driving Datasets

In this section, we present some common datasets used for semantic segmentation

models. The choice of a suitable dataset is of great importance for the training and

evaluation of the created models. The challenging task of dataset selection is one of the

first major steps in research, especially for a difficult and demanding scientific field, such

as autonomous driving, in which the vehicle exposure environment can be complex and

varied. The datasets are divided into two categories: real and synthetic datasets.

6.1.1 Real Datasets

Cityscapes Dataset

The Cityscapes dataset [22] is a large-scale benchmark dataset specifically designed

for urban scene understanding, with a focus on semantic segmentation. It consists

of high-resolution images of street scenes collected from 50 cities across Germany and

neighboring countries, captured under various weather conditions, seasons, and times of

day.

The dataset contains:

• Images: A total of 5,000 finely annotated images, divided into 2,975 images for

training, 500 for validation, and 1,525 for testing. Additionally, there are 20,000

coarsely annotated images for further pre-training or training.

• Annotations: Each image is labeled with 30 visual classes, of which 19 are used for

semantic segmentation. These classes include road, sidewalk, building, vegetation,

car, person, bicycle, and more. The annotations focus on pixel-level precision to

provide high-quality labels.

• Resolution: The images have a resolution of 2048x1024 pixels, making Cityscapes

a high-resolution dataset suitable for detailed segmentation tasks.

• Tasks: The dataset supports a variety of tasks including pixel-level semantic seg-

mentation, instance segmentation, and panoptic segmentation, making it a versatile

benchmark for evaluating model performance on urban scene understanding.
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Cityscapes is widely used as a benchmark for semantic segmentation and other vision

tasks in complex urban environments. Its challenging, diverse set of scenes, high-quality

annotations, and high resolution have made it a standard in the field for evaluating the

performance of segmentation models.

Image 6.1: Cityscapes Dataset [22]

Mapillary Vistas Dataset

The Mapillary Vistas dataset [23] is a large-scale, richly annotated street-level im-

agery dataset designed for scene understanding tasks such as semantic segmentation.

Collected from diverse environments worldwide, it represents a broad variety of scenes,

weather conditions, and perspectives.

The key characteristics of the Mapillary Vistas dataset include:

• Images: The dataset consists of over 25,000 high-resolution images sourced from

cities and rural areas across different continents, ensuring a wide variety of envi-

ronments, lighting conditions, and camera perspectives.

• Annotations: The dataset offers detailed pixel-level annotations for 124 object cat-

egories. These categories cover a wide range of semantic classes, including roads,

buildings, vehicles, pedestrians, traffic signs, vegetation, and more. The precise

labeling of small objects and fine details ensures high-quality training data.

• Resolution: Images are high resolution, varying between 1920x1080 and 4000x6000

pixels, making it suitable for fine-grained segmentation and detailed scene under-

standing tasks.

• Tasks: Mapillary Vistas is designed primarily for pixel-level semantic segmentation,

with its detailed annotations supporting training and evaluation of models in com-

plex environments. It also provides potential for other scene understanding tasks

like instance and panoptic segmentation.
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• Diversity: One of the dataset’s strengths is its diversity, featuring images from

urban and rural environments, captured under various weather and lighting con-

ditions. This diversity helps models generalize better across different domains and

real-world settings.

The Mapillary Vistas dataset is considered a robust and challenging benchmark for

modern segmentation models, offering comprehensive annotations across diverse envi-

ronments and a wide range of object classes.

Image 6.2: Mapillary Vistas Dataset [23]

Adverse Conditions Dataset with Correspondences

The Adverse Conditions Dataset with Correspondences (ACDC) [24] is a dataset specif-

ically designed for semantic segmentation in challenging visual conditions. It focuses on

scenes captured in adverse weather and lighting conditions, providing a robust bench-

mark for training and evaluating models that need to perform well in suboptimal environ-

ments.

Key characteristics of the ACDC dataset include:

• Images: The dataset consists of 4,006 high-resolution images collected from urban

driving scenes in various European cities.

• Adverse Conditions: The dataset is divided into four challenging conditions: Fog,

Night, Rain, and Snow, allowing researchers to evaluate model performance in vi-

sually difficult scenarios.

• Annotations: ACDC provides pixel-level annotations for 19 semantic classes, which

are consistent with the Cityscapes label set, making it compatible with models

trained on other urban scene datasets. The annotations cover a wide range of

object categories, including roads, vehicles, pedestrians, buildings, vegetation, and

other urban elements.

• Resolution: The images are high-resolution (1920x1080 pixels), suitable for cap-

turing fine details that are essential in difficult conditions like fog or low light.

• Split: The dataset is divided into training, validation, and test sets. Each condition

contains a balanced number of images, ensuring fair evaluation across different

adverse weather scenarios.
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• Purpose: ACDC is designed to push the boundaries of current semantic segmenta-

tion models by testing their robustness in adverse conditions, where visual features

might be obscured by environmental factors like snow or darkness. This makes it a

valuable resource for developing autonomous driving systems that need to operate

reliably in all weather and lighting conditions.

The ACDC dataset is a valuable benchmark for improving the robustness of segmen-

tation models in real-world, challenging conditions, making it essential for advancing the

performance of autonomous driving systems.

Image 6.3: ACDC Dataset [24]

6.1.2 Synthetic Datasets

Synthia Dataset

The Synthia dataset [25] is a synthetic dataset designed for training and evaluating

semantic segmentation models, particularly for autonomous driving tasks. It provides a

wide variety of urban scenarios with pixel-level annotations, offering a valuable resource

for both training and benchmarking in environments that mimic real-world conditions.

Key characteristics of the Synthia dataset include:

• Synthetic Data: Synthia is a fully synthetic dataset, generated using a realistic 3D

engine to simulate urban driving environments. This approach allows for the cre-

ation of diverse and highly controlled scenarios, which can be difficult or expensive

to collect in the real world.

• Scenarios: The dataset covers a range of driving scenarios, including different

weather conditions, seasons, lighting conditions (day/night), and various urban

layouts like highways, residential areas, and city centers.

• Annotations: Synthia provides dense pixel-level annotations for up to 13-16 classes

in most sequences, such as roads, sidewalks, pedestrians, vehicles, traffic signs,

and more. It also supports other tasks like depth estimation and optical flow.

• Resolution and Perspectives: The images are available in high resolution (960x720

pixels), and the dataset includes various camera perspectives (front, left, right,

rear) to simulate the full 360-degree view typically needed for autonomous driving

systems.

• Purpose: Due to its synthetic nature, Synthia is particularly useful for tasks like

domain adaptation, where models trained on synthetic data are later fine-tuned or

evaluated on real-world datasets like Cityscapes or Mapillary Vistas. The diversity of
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environmental conditions also helps in creating models that generalize well across

different driving situations.

• Split: The dataset is split into various sequences that simulate continuous driving

in different environments, offering over 200,000 annotated frames.

The Synthia dataset is a valuable resource for advancing research in semantic seg-

mentation, particularly for autonomous driving applications, as it offers controlled and

diverse data that complements real-world datasets.

Image 6.4: SYNTHIA Dataset [25]

GTA5 Dataset

The GTA5 dataset [26] is a large-scale synthetic dataset widely used for semantic

segmentation, specifically for domain adaptation tasks. It is generated using the Grand

Theft Auto V video game engine and provides dense pixel-level annotations for urban

street scenes. The dataset is designed to resemble real-world driving scenarios, closely

matching datasets like Cityscapes in terms of scene layout and labeling structure.

• The dataset contains 24,966 images rendered at a resolution of 1914x1052 pixels,

covering a wide range of weather conditions, lighting variations, and urban environ-

ments.

• It includes pixel-level annotations for 19 classes, which align with those in the

Cityscapes dataset, making it a popular choice for synthetic-to-real domain adap-

tation.

• Each image in the dataset is labeled with classes such as road, sidewalk, building,

traffic light, and pedestrian, simulating real-world urban driving conditions.

• The synthetic nature of the dataset allows for efficient data collection and anno-

tation, offering a cost-effective solution for training deep learning models in au-

tonomous driving and segmentation tasks.
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The GTA5 dataset has been instrumental in advancing research on domain adaptation,

enabling models trained on synthetic data to generalize effectively to real-world scenarios.

Image 6.5: GTA5 Dataset [26]

6.2 Other fields of knowledge

This section explores the datasets, used for other fields of knowledge, that will be

utilized in the experiments of chapter 7. Three datasets will be examined: the UAVID

dataset [27], the Medical Decathlon Prostate dataset, and the ACDC cardiac segmentation

challenge dataset [67].

6.2.1 Uavid Dataset

The UAVID dataset is a large-scale dataset designed specifically for urban scene se-

mantic segmentation using aerial imagery captured by Unmanned Aerial Vehicles (UAVs).

It consists of high-resolution images (4096 × 2160 pixels) captured from various urban

scenes across multiple cities. The dataset includes 42 sequences with over 4200 la-

beled images, annotated with 8 different semantic categories such as buildings, roads,

trees, and cars. UAVID aims to advance research in aerial segmentation and improve the

robustness of models for urban scene understanding from a bird ’ s-eye view.

62



6.2.2 Medical Decathlon Prostate dataset

Image 6.6: Uavid Dataset [27]

6.2.2 Medical Decathlon Prostate dataset

The Medical Decathlon Prostate dataset includes a total of 148 patients and is com-

posed of the following sources:

• NCI-ISBI-2013: Two datasets from the 2013 NCI-ISBI competition, with images

acquired from both 1.5T and 3T MRI scanners from different institutions [68], [69],

[70]. These datasets are labeled as A and B in the results.

• I2CVB: A dataset from the Initiative for Collaborative Computer Vision Benchmark-

ing, acquired using a 3T Siemens MRI scanner with multiple imaging techniques

(T2-W, DCE, DWI, MRSI) [68], [69], [71]. It is labeled as C in the results.

• PROMISE12: Three datasets from the PROMISE12 competition, collected from dif-

ferent medical centers with varying acquisition methods [68], [69], [72]. These are

labeled as D, E, and F.

• Medical Decathlon Dataset: A new dataset provided by the Medical Decathlon

Challenge, used for training and validation in within-distribution experiments [73].

It is labeled as G.

6.2.3 ACDC cardiac segmentation challenge dataset

The ACDC cardiac segmentation challenge dataset [67] is a dataset from the cardiac

segmentation challenge. This dataset consists of 100 MRI scans, with annotations for

the left ventricle, myocardium, and right ventricle. The slices used correspond to end-

diastole and end-systole periods. We evaluate the following types of corruption created

by the TorchIO software [74]:

• Motion: Simulates random motion artifacts caused by physiological organ move-

ment during MRI acquisition.

• Spike: Generates random spike artifacts, also known as Herringbone artifacts,

causing stripes across the image due to electromagnetic field spikes.

• Ghosting: Introduces random ghosting artifacts, usually caused by cardiac or pa-

tient motion during the scan or blood flow.

63



Chapter 6. Datasets

• Bias Field: Simulates random intensity fluctuations due to MRI field inhomo-

geneities.
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Chapter 7

Experimental Implementation

I
n this chapter, the experiments will be presented and analyzed. The datasets and the

metrics will be showcased as well. Finally, we will list the models that will be tested

and we will showcase the setup used for the experiments.

7.1 Evaluation Metrics

Mean Intersection over Union (mIoU)

The mean Intersection over Union (mIoU) is a widely used evaluation metric in se-

mantic segmentation tasks. It measures the overlap between predicted and ground truth

segmentation masks, making it a robust indicator of the model’s performance across

different classes.

The mIoU metric is computed by taking the average Intersection over Union (IoU)

across all classes. The IoU for a single class is defined as the ratio between the intersection

and the union of the predicted segmentation and the ground truth segmentation for that

class. For a given class c, the IoU is calculated as:

IoUc =
|Pc ∩ Gc |

|Pc ∪ Gc |

Where Pc is the set of pixels predicted to belong to class c, Gc is the set of ground

truth pixels for class c, |Pc ∪Gc | is the total number of pixels that are predicted or ground

truth for class c, including true positives, false positives, and false negatives. Thus, the

IoU for a given class quantifies the overlap between the predicted and actual regions for

that class, normalized by the total region. The mIoU is the mean of the IoUs over all C

classes and is computed as:

mIoU =
1

C

C∑
c=1

IoUc =
1

C

C∑
c=1

|Pc ∩ Gc |

|Pc ∪ Gc |

7.2 Experiments

We will conduct three experiments. The first experiment will be performed using the

domain generalization pipeline (presented in section 4.3) presented in the work of [29].
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The source dataset will be the GTA5 dataset(6.1.2) and the target dataset will be the

Cityscapes Dataset(6.1.1). The rest of the experiments will examine how this models

perform in other fields of knowledge. In particular, in the second experiment, we will

train and test these models on the Uavid dataset [27], a dataset used for training models

to be deployed on unmanned aerial vehicles. In the final experiments, we will be using

two medical datasets: the Medical Decathlon Prostate dataset [73], and the ACDC dataset

from the cardiac segmentation challenge [67]

7.2.1 Experiment 1

Configuration Details

In this experiment, we utilize the domain generalization pipeline showcased in section

4.3. The models are trained on the GTA5 dataset and evaluated on the Cityscapes dataset.

The data input images are cropped to 512x512 pixel resolution for both the training and

evaluation phases. The models were trained for 416.100 iterations. The metric used for

the evaluation will be the mIoU metric and the optimizer used will be the Adam optimizer

[75]. A batch size of 3 was used for this experiment. The setup used for this experiment

consisted of an NVIDIA RTX 4000 Ada Generation Graphics Card with 20GB of video

memory.

7.2.2 Experiment 2

Configuration Details

In the second experiment, the models will be trained and tested on the Uavid dataset

[27]. The optimizer used will be the Adam optimizer again, the metric used will be the

mIoU metric. The data input images are cropped to 1024x1024 pixel resolution for both

the training and evaluation phases. The models were trained for 50 epochs. The setup

used for this experiment consisted of an NVIDIA RTX 4000 Ada Generation Graphics Card

with 20GB of video memory. Due to memory limitations, gradient accumulation was used

in order to achieve a virtual batch size of 16 images.

7.2.3 Experiment 3

Configuration Details

In the final experiment, the models will be trained and tested on the Medical Decathlon

Prostate dataset and the ACDC dataset from the cardiac segmentation challenge. The

optimizer used will be the Adam optimizer again, the metric used will be the mIoU metric.

The data input images are cropped to 224x224 pixel resolution for both the training and

evaluation phases. The models were trained for 20 epochs. The setup used for this

experiment consisted of an NVIDIA RTX 3070 Graphics Card with 8GB of video memory.

Finally, this experiment’s batch size will be 8 images.
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7.3 Models

The models trained and evaluated are listed below:

Backbone Decoder Model Size(GB) Model

Params(M)

FLOPs

(GFLOPs)

ResNet 18 [76] FarSee-Net [15] 0.063 16.6 13.09

MiT-B5 [20] Segformer [20] 0.325 85.1 110.02

MiT-B5 [20] DaFormer [21] 0.326 85.6 126.51

MiT-B5 [20] FarSee-Net [15] 0.328 86.2 83.51

Table 7.1. The models tested and their sizes in terms of parameters(M) and GB.

To assess the real-time segmentation capabilities of these models, we performed a

speed test using the code available in this repository [77]. The code generates random

images with a resolution of 512x512 and inputs them into the network. Subsequently,

it calculates the frames per second (fps) at which the model can perform segmentation.

Below are the results:

Model FPS

FarSee-Net 347.8

Segformer 21.66

DaFormer 19.5

FarSee-Net2 24.5

Table 7.2. Frames segmented per second by every model.

The FarSee-Net model is the only one capable of achieving real-time segmentation,

thanks to its lightweight encoder and decoder. Among the three transformer-based

models, only FarSee-Net2, which uses the lightweight FarSee-Net decoder, is capable

of achieving close to real-time speeds.
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Chapter 8

Presentation and Analysis of the Results

I
n this chapter, the results from the experiments will be presented and analyzed.

8.1 Experiment 1

8.1.1 Results
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mIoU

GTA5→ Cityscapes

FarSee-Net 73.3 26.5 75.8 20.1 2.38 22.3 12.7 3.28 79.0 30.1 81.4 31.9 10.3 60.9 11.5 13.6 0.47 8.91 5.78 30.0

Segformer 87.7 33.0 84.8 34.1 27.4 35.2 47.4 20.5 87.8 42.2 86.9 65.2 35.0 88.7 45.4 46.0 21.8 29.6 30.2 49.9

DAFormer 90.0 45.0 85.4 36.4 26.4 37.7 44.7 23.0 87.5 42.7 88.0 68.5 39.0 89.0 45.1 42.5 29.5 27.7 28.3 51.4

FarSee-Net2 88.7 34.9 85.6 36.1 26.5 32.4 43.2 20.9 87.1 39.0 88.5 65.8 39.6 87.3 46.4 49.7 36.7 26.7 27.8 50.7

Table 8.1. Comparison of models on domain generalization pipeline. The models were
trained for 416.100 iterations, using synthetic data from the GTA5 dataset and evaluated
on the Cityscapes dataset. The table contains the IoU achieved by each model for each
class.

Model Memory(GB)

FarSee-Net 3.8

Segformer 19.22

DaFormer 20.0

FarSee-Net2 17.4

Table 8.2. Memory demand by every model during training.

8.1.2 Analysis

The training and evaluation of the models spanned approximately five days for the

transformer models, while the convolutional model required around two days. Notably,

the convolutional model demonstrated significantly lower memory usage during training,

making it less resource-intensive. However, this efficiency came at a cost: its performance

lagged behind that of the transformer models, which exhibited comparable mean Inter-

section over Union (mIoU) scores. All classes experienced a noticeable drop in accuracy,

particularly in the rarer categories such as train, bike, and rider, where the decline was

especially pronounced.
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8.2 Experiment 2

8.2.1 Results

Models Building Road Tree LowVeg Moving Car Static Car Human Clutter mIoU

Uavid

FarSee-Net 87.24 67.36 71.19 57.31 57.18 57.26 31.1 53.97 60.33

Segformer 92.67 77.44 78.32 70.6 72.88 69.04 43.42 64.91 71.16

DAFormer 92.41 78.87 78.34 71.19 72.32 68.69 45.98 66.08 71.73

FarSee-Net2 92.55 79.88 79.24 71.19 71.51 68.11 45.27 67.23 71.87

Table 8.3. Comparison of models on Uavid Dataset. The models were trained for 50
epochs. The table contains the IoU achieved by each model for each class.

Model Memory(GB)

FarSee-Net 1.3

Segformer 14.7

DaFormer 15.5

FarSee-Net2 13.3

Table 8.4. Memory demand by every model during training.

8.2.2 Analysis

In this experiment, the transformer models exhibited similar performance levels, while

the convolutional model showed a slight decline in accuracy—although this drop was

less pronounced compared to previous findings. This outcome aligns with expectations,

given the absence of significant domain shifts in this dataset. Notably, the memory

consumption during training was consistent across the transformer models, highlighting

their comparable efficiency in resource utilization.
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8.3 Experiment 3

8.3.1 Results

Corruptions RandBias RandSpike RandMotion RandGhosting

LV MYO RV mIoU LV MYO RV mIoU LV MYO RV mIoU LV MYO RV mIoU

FarSee-Net 92.0 81.8 86.0 86.6 61.3 29.8 45.4 45.5 93.6 84.6 87.8 88.7 92.5 81.6 87.1 87.1

Segformer 92.3 82.2 85.7 86.7 61.4 44.9 47.5 51.27 93.2 83.1 87.4 87.9 92.6 81.2 86.3 86.7

DAFormer 91.4 81.9 86.1 86.5 65.6 49.6 56.1 57.1 93.6 84.1 88.3 88.7 92.6 81.3 86.7 86.9

FarSee-Net2 89.6 80.1 83.6 84.4 61.2 44.6 50.2 52.0 92.6 82.8 87.1 87.5 91.7 80.6 85.2 85.8

Table 8.5. Comparison table of models’ evaluation on cardiac data. The results for each
class for every corruption are listed in columns.

Models G A B C D E F mIoU

FarSee-Net 98.9 77.1 58.1 65.1 69.7 52.9 64.4 64.55

Segformer 98.2 73.3 58.8 60.7 59.6 52.8 61.1 61.05

DAFormer 98.6 79.9 65.6 63.1 68.2 50.6 58.9 64.4

FarSee-Net2 98.0 79.1 61.3 64.2 67.5 51.7 69.3 65.5

Table 8.6. Comparison table of models’ evaluation on the prostate data. The models are
trained on the G dataset and are evaluated separately on the A-F datasets.

Model Memory(GB)

FarSee-Net 1.1

Segformer 7.8

DaFormer 8.4

FarSee-Net2 6.5

Table 8.7. Memory demand by every model during training.

8.3.2 Analysis

In this experiment, the transformer and convolutional models demonstrate compara-

ble performance, with the convolutional model often achieving the best results or coming

in a close second in several cases. Notably, the convolutional model is the clear winner in

terms of memory efficiency during training, requiring significantly less memory bandwidth

compared to its transformer counterparts.

73





Part III

Epilogue

75





Chapter 9

Conclusions and Future Work

9.1 Conclusions

In this thesis, an analysis of the semantic segmentation challenge for autonomous

driving was conducted, encompassing various aspects. Existing solutions in the literature

were examined, and prominent models and datasets were presented. The approach to this

task was framed through the lens of Domain Generalization, with the ultimate adoption

of the state-of-the-art Domain Generalization pipeline developed in the works of [29], [32].

We decided to compare four models: FarSee-Net, Segformer, DAFormer, and FarSee-

Net2. FarSee-Net is one of the best convolutional models used for real-time semantic

segmentation. DAFormer was the model introduced in the works of [29], [32], while

Segformer was its predecessor which introduced the MiT-B5 encoder [20]. FarSee-Net2

is a new architecture that uses the MiT-B5 backbone along with the efficient and com-

putationally light FarSee-Net decoder. It was developed for this thesis to achieve faster

inference and training times.

The 4 models were trained and tested on the same datasets (GTA5 → Cityscapes), as

well as the same datasets regarding new fields of knowledge (UAV and medical imaging).

The results showcased that the transformer models perform far better in real-world appli-

cations, thanks to their robustness and adaptability. The exception was the medical data,

where the convolutional model remained competitive, assuming due to the domain shift

between the training and testing data not being as prominent. FarSee-Net2 outperformed

the other models on the UAV dataset and did comparably well to the best models in each

of the other 2 experiments. The advantage of FarSee-Net2 lies in its lesser computational

demand during deployment for testing and training.

9.2 Future Work

While transformers are robust and insusceptible to domain shifts, they are far from

being a viable solution in real-time tasks. In our case, by using an efficient decoder we

managed to speed up inference speed without sacrificing accuracy. However, this slight

decrease in inference time is not enough to achieve real-time segmentation or speeds

comparable to those of convolutional models. We suggest that an effort should be made

to reduce the computational burden inflicted by transformer models, as it seems to be the
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primary source of the spike in inference times when compared to convolutional architec-

tures.
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