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Hepidnyn

H taxeia ipdodog tng texvntrig vonpoouvng £xet 0dnyroet otnv eupeia ulobétnon g Pa-
S1ag pabnong oe ocuyypoveg epappoyes. H opaon urodoylotov £xetl enapednOdel 1draitepa pe
£CAPETIKA ATIOTEAECPATIKA POVIEAA VA XPIOIIOIIOI0UVIAL MTAEOV O EPAUPHOYES TTPAYHATIKOU
Xpovou. Mia aro autég tig epappoyEg ival 11 ONnNPactoAOY1KY) KATATHNOoT Yid TV autovoun
odnynon, n oroia emIPENel ota AUTOVORA OXHHATA VA AIOKTNO0UV AEMTIONEPT] KATAVONOT)
TOU TIEP1BAAAOVIOG, ETHTPETOVIAG TA va AapBAVOUV TEKPNPIOHEVEG ATIOPACELS O€ TIPAYHATIKO
xpovo. Ta t€toeg epappoyeg, eival {RTkng onpaciag ta poviéda va Siatnpouv uyndo
ertinedo axkpiBelag oe mokiAeg eEP1BAAAOVIIKEG OUVONKEG KAl va AETTOUPYOUV OE TIPAYHATIKO
Xpovo. Tia va apBAuvoupe autd ta ripoBAnpata Xprnoipornolovpie ouvletika dedopéva, mote
va Semepaocouie 1o eprddio g ouddoyng 6edopévev Katl tou oxoAtaopou. H xprion ayoyov
YEVIKEUONS TOPERDV KAl 10XUPROV HETACYXNHATIOTOV EVIOYXUEL TNV AKPiBEld T®V POVIEADV OE
Srapopa mepBarAovia. TEAOG, XPNOIOIIOIOUHE €vay eEA1PETKA AroS0TIKO ATTOKOS1KOITION-
Nt oUVEANG Yla va eVioXUOOULE TV taxUtnta e§ay®yng CUNIEPACHIATOV TOU POVIEAOU, OF
OUYKP10T] Pe AAAEG APXITEKTOVIKEG Yevikeuong. Me ) S1e§aywyr] £vog MelpApatog YEVIKEUonG
napouotddoupe Otl o1 BeATiopéveg Suvatotnieg 0e MPAYHATIKO XPOVo Oev €pyovial X®pig
Yuoia onv akpiBela kat tovi{oupe TNV AvAyKn EPATEP® PEI®ONG TG UTIOAOY1OTIKAG TTOAU-
TMAOKOTNTAG TOV POVIEAQV PETAOYHATIOIOV, QOTE VA KATAoToUV Blowotyn Auor ya ) onpa-

O010AOY1KI] KATATPI 0N O MPAYHATIKO XPOVO OV autovourn odnynor).

Aggerg RAe181a

Neuvpovika Aiktua, Babia Mdabnorn, Katatpnon Ewkovag, T'evikeuorn Ilediou, Autovopa

Oxfpata, Znpaotodoyikn Tpnpatoroinon [Hpaypatikou Xpovou






Abstract

Rapid advances in artificial intelligence have led to the widespread adoption of deep
learning in modern applications. Computer vision has particularly benefited from highly
efficient models that are now being used in real-time applications. One such application
is semantic segmentation for autonomous driving, which allows autonomous vehicles to
gain a detailed understanding of their environment, enabling them to make informed de-
cisions in real time. For such applications, it is vital that models maintain a high level
of accuracy in a variety of environmental conditions and operate in real-time. However,
there are several problems that prevent the creation of models that meet the above con-
ditions. These problems relate to the number and variety of training data, the complexity
of real-world conditions, and the computational requirements of the architectures being
exploited. To mitigate these problems we use synthetic data, to overcome the barrier of
data-collection and annotation. The use of domain generalization pipelines and robust
transformers enhances the models’ accuracy across environments. Finally, we use a
highly efficient convolutional decoder to enhance the model’s inference speed, when com-
pared to other generalization architectures. By conducting a generalization experiment we
showcase that the improved real time capabilities come with no sacrifice to accuracy and
emphasize the need to further reduce the computational complexity of transformer mod-
els, to make them a viable solution for real time semantic segmentation in autonomous

driving.

Keywords

Neural Networks, Deep Learning, Image Segmentation, Field Generalization, Autonomous

Vehicles, Real-Time Semantic Segmentation
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Chapter “

Extetapévn [epiAnyn ota EAAnvika

Ta autdévopa oxrpata, €§omAlopéva e KAPEPES UWNANG avdduong, HPIopouv va ag-
10O 00UV HOVIEAQ PNXAVIKAG PAONoNg yla AEItopepr] ONpacioAOy1KY THUATonoinor,
ETUITPETIOVTAG TOUG Va £VIOITIOUV KAl va KATYOP10IIo1ouV pe akpiBela aviikeipeva Kat ototxeia
Tou §popou. Autd ta povigda eival ikavd va ocUAAapBavouv TTOAUTAOKEG XWPIKEG OXEOELS,
Kabiotdvrag ta moAvTipa gpyaldeia yia v Katavonon kat avilAnyn tou repiBaiioviog.
axwopiloviag oxnpata, medoug, onpata Kuklogopiag, Awpideg kat adda kpiowya otoikeia
TOU §pOPoU, Ta POVIEAd EATIOVOUV TNV 1KAVOTNTA TOU OXHIATOG va MmAonyeital pe acpaleiq,
va oxediader €Atioteg Sradpopiég kat va AapBdavel anmodPAoelg o€ TIPAYHATIKO XPOVo. AUt
ouvelodEpel otV akpiBela Kat aoPpdAela TV oUCTNHATEV autovoung odrynong. Ilap’ oAa
autd, 1600 otV anokinon v 6edopévev eknaideuong 000 KAl OV EKMAIdEUOT AUTOV T@V
PoVIEA®V ITapouotadovidl ONLAavIiKES IIPOKATOEIS.

Ta poviéda pnxavikng pabnong mou mpoopidovial yla autdévopa oxrpata MPEMel va
eivatl e§loou arodoukd kat akpBry. o ouykekpipéva, Xperadetal va PUrmopouv va Tyn-
patorolotv §ekadeg Kapé ava GeutepOAerTto, ®ote T0 OXNpa va AapBdvel ouvexwg véa de-
dopéva yia 1o repiBaArdov tou. EmumAéov, npérnet va eivatl oxediaopéva yia va Aettoupyouv oe
EVOOPATOPEVA OUCTHATA, KATL TTOU ONpaivel 0Tt mMPEMEeL va £ivatl OXETIKA P1IKpA o PeEyebog.
Tautoxpova, opweg, mpEnel va dSiatnpouv UYPnAr akpibela wote 10 oxnua va avuldapBavetat
pe ocagnvela T oupBaivel oto 6popo. H exkmaidsuon autov tov poviedov anattel peydia
ouvola 6edopévav. Qotdoo, 1000 11 oUAAOYT] 000 KAl 1] EMICIIAVOT AUTOV TV dedopévav
artoteAouv pia 1dlaitepa anmattnuiky dadikacia ano mAeupdg MOpPwv.

IMa v emiteudn POVIEA®V IOV aviaroKpivovial ota Iaparnave, £XouV rpotabei apkretég
TEXVIKEG KAl APXITEKTOVIKEG 1€ OTOXO Tr| MEIWOT] NG MOAUTTAOKOTNTAG TOV HPOVIEA®V KAl TOU
ap1BpoU TV APAPETPOV TOUG. AUTEG O1 TEXVIKEG EMITPEMOUV 1) dnpioupyia anodotkotepev
povigEdev xwpig va uoldaetal n akpiBela. Ta v avupetomon g EAAewyng Sebopévav,
Xpnotpornoteital acbevag ermortteuoievn) padnor, orou ta fedopéva dev eival AN PG ermonpet-
OPEVA, HPEIWVOVIAG €101 TG ATIATNOES 0 TOpoug. Mia dAAn mpoogyyilon €ivat n Xpron
EIKOVIKQOV dedopévav katd v eknaidsuor), kabog autd ta Sedopéva eivat eukoAo va dnpiou
ynbouv kat va smonpavéouv. Qotdoo, 1 XPron KOVIKGV dedopévav dnpoupyet pia véa
nipoxkAnon. Ta poviéda unobetouv ot ta dedopéva eknaidbeuong kat ta dedopéva epappoyng
TIPOEPXOVIAL aro v 1d1a Katavoprn Kat €ival eudAeta otg “petatoniosig nediou”, dndadr)
ot1g aAAayég Petady TV Katavouav.

Ot "petatorntioetg rediou” amoteAoyv coBapo eprodio Katd v eKnaideuon Kat 1oV oxe-



Chapter 1. Extetapévn [epiAnyn ota EAAnvika

610016 avbeKTIK®V PoviEA®V. AKOPA KAl OF TIEPUTIMOELS, OOU ta Hedopéva epappoyng Kat
eknaibeuong drapépouv £0tw Kal oe abpod Pn-rmapatnEoto arno 10 avOpdOIIvVo PdATL, 1] ATo-
6001 £vog poviedou propet va uropepet. Auto eivat anotédeopa tng aduvapiag 1@v PoviEA@V
VA YEVIKEUOUV KAl va pabaivouv avarnapaotdoelg aviKEPEVROV TIOU £1val aveaptnieg ard
10 miebio. Ta v avupetwmon av)g g aduvapiag vriapxouv SU0 KUPlEG MPOOEYYIOE: 1)

YEVIKEUOT) KAl 1] Tpooappoyr) rediou.

H yevikeuon arookortel otv eKPdObnon avanapactdoemv rmou eivat ave§dptnteg aro 1o
niedio, VA 1 TPOTIOTIOINOT) TEHIOU ETUKEVIPMOVETAL OTNV TIPOCAPIOYT] EVOG IIPOEKTIAIOEUPEVOU
HOVIEAOU O€ J1a KATtavopr] otoXo. Amo 1 pia, Katd v npooappoyr] rediou, site ta de-
dopéva eite o1 avarnapaoctdoeslg TOUG IIPOCAPIIOLOVTAL OTI§ AVATTAPACTACELS TToU £Xel {8r) bet
10 poviedo. Me dAda Aoyua, eite ta ewoepxopeva dedopéva mpooappodovial oto nedio v
b6edopévav eknaideuong, €ite 01 AvVATIAPACTACELS TOV AVIIKEIPEVAOV TAUTI{OVIAL PE AUTEG TOU
niediou exmaideuong. Amo v dAArn, av KAl 1 YEVIKEUOT) €ivat o SUOKO0ATD, EMTPENEL O Eva
povtédo va erutuyxavel Kadr arnodoon akoun kat oe Sedopéva nou dev €xel Eavadei. 'Eva
Hoviédo Tou €xel urootel mpooappoyn nediov anattei enaveknaidsvon yia kaOe véo ouvoAo

b6edopevav Srapopetikou nediou.

H napouoa 61atpiBn) iepeuvd 11g 1TEXVOAOYIEG TTOU XP1O1OTIOI0UVIAL Y1d ONACI0AOY KD
Tunpatornoinon kat 16iwg yia epappoyeg MPAyHatikoU Xpovou, onwg eival 1 autdévopn
o0dnynorn. Me pia apxikr) 1BA10ypadiKy avaoKoIor, avarntuooovial KATIOEG ATto Tig AUCELG
IOV TIPOCHEPOVTIAL V1A TNV AVIHEIMINON TV IIPOKANCE®V ITOU avadEPOoVIal MAPANIAvVe. X
OUVEXELA, PEAET®VIAL OUVOITTIKA KATIOlEG 51ade60EVEG APXITEKTOVIKEG TIOU XP1|O1LOTIOI0UV-
Tal yua autdév 1ov oKomod, Kabmg Kal karowa ouvhn ouvoda dedopévav. IIpoxwpoviag,
e€etddetal pia and ug rmo ouyypoveg pebodoug yla yevikeuvorn mnediou, pe v xprion g
oroiag exkraidevovial Kat a§lodoyouvial KAMowa ard ta PHoviéAd, rmou £€X0UvV mapouotatel.
TéAog, ta povieda auvta doxkipadovial oe véa nedila yvoong Kal ouykekpipéva oe dedopéva

IOV TIPOEPXOVTAL AItd Un eravlp@UéEva oKAPH KAl O 1atpkda 6edopéva.

1.1 ZInpaclodoylkn TPnpatomnoinon pe acdevi) eniBAeyn

H &nuoupyia poviédev tpnpatonoinong pe Baon o ‘NN aviipetonidel pia onpaviikn
MPOKANON, KAOwg 1 exknaibeuor arnattel cuvrHO®S OXO0AIAOEVEG EIKOVEG OF ETTITNESO E1KOVOO-
toixeiou, pa Swadikaocia éviaong nopev. H andkinon mAfpeg ermBAeniopeveov Sedopévav
etvat daravnpn kat xpovoBoépa. Katda ouvénela, ot epeuvniég katapsuyouv ouxvd oe adu-
Vapoug oxXoAlaopoug Kat mpoteivouv pebodoug yia onpacioAoyikn THNPATonoinon pe ao-
Oevry eniBAeywr), petpradoviag v e€dptnon anod mirpeg oxoAtacpéva dedopéva. O1 aduvapot
oxoAlaopol, onwg Ta oxoAlaopéva miaiola oplobEINong, Ol ETKETEG O emminedo ewkOvag, ot
oxoAlaopot pe poutoUpeg Kat Ol ONHEIaKol oXoAtaopoi, anodeikvuovidl o ePKIo va ouy-
Kevipbouv og GUYKP101] € ToUG AETTtopepeig oX0Alaopoug oe eminedo eikovootoixeiou. Ot
aKOAOUBEG €pyacieg KATNYOP1OIO0UVIAl HE BAOT TOUG MPROTAPXIKOUG TUTIOUS ETIKETI®V HE

acBevn) enortieia.
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Original image FCN [5] Segmentation

--'D

Levels of supervision

person

Full Image-level Point-level Objectness prior

Image 1.1: Types of weakly supervised training [1]

1.2 IIpocappoy1n] TOpEa OTI GNIACLOAOY1KI] THNHATONOiN 0T

Ta MAN)P®OG CUVEAIKTIKA HOVIEAA £X0UV ETITUXEL O€ EPYACIEG ONLACIOAOY KIS KATATHINOTG.
Autd ta poviéda amodibouv kadda oe €va mepifaldov pe emifAewrn, addd n anodoor) toug
propet va pelwdei Hpactikd o PETATOITIOEIS TOPE®V TTOU PITOPEL va @aivovial 1Iieg os Evav
avdpormvo napatnpnt. I'a napadeypa, €dv éva poviédo eknailbeutel o€ pia MOAN Kat
Soxripaotel oe pia AAAn mOAn o€ S1aQOPETIKY] YEDYPAPIKL] TTEPLOXY] 11/ KA1 KAIPIKEG OUVINKES,
n arodoorn tou poviédou uropel va vnofadpiotel onpaviika Adye g HETATOoNng tng
Katavoprg oe erninedo ekovoototxeiou. H mpooappoyr) topéa eival pia €181k nepintoorn
Ba9nong petagpopdg, 1 oroia xpnotpornotet eruonpacpéva Sedopiéva oe Evav 1) EPIO0OTEPOUS

ouvaQelg Topelg TIPOEAEUONG Y1a TNV EKTEAEOT) VE®V £PYACIOV OTOV TOPEA-0TOXO [28].

1.3 Aywyog yevikeuong topea

Ye aut v evotnta, Slepguvoulie Tov aywyo yevikeuong topéa (DG) mou eworiyayav
ol Hoyer et al. ownv gpyacia HRDA [29]. Auto 10 mpetonoplako miaioio Stadpapartidet
Ka90p1otkG pOAo oV avartudn 10XUPOV POVIEA®V IKavev va xepifoviat addayég nediou,
Pla Kowr mpokAnorn oe osvdpla auvtdovopung odnynong. O aywydg amotedeitat aro tpia

Baowkd otoeia:

¢ Ilpo-Exnaideupévor Kodironowntég: Ta povieda aflornolovv rpo-eKnatbeupéveg
PaXOKOKAAEG ard to ouvolo dedopévav ImageNet-1K [30]. H yvoon mou arnok-
mOnKe Katd Vv npo-exkrnaidevon Pondd otnv ekPdadnon XAPAKTINPIOTIKOV APETABA-
NIOV ®G IIPOG ToV Topéa, subuypappidoviag tig Aavbdvouosg avarnapactdoelg aro 1o
ouvOeTIkO ouvolo Sedopéveov GTAD pe ekeiveg ou pabaivovratl and to ImageNet-1K,

Od1leukoAUvovIag TNV KaAutepn YEVIKEUOT o H1APOPOUG TOEIG.

e AswypatoAnyia Enaviewv KAdoewv:I'a 1ov PETPLaoio g avioopportiag 1oV KAACE®V
Xprnowporoteitat n detypatoAnyia onaviov KAAcEmv. AUt 1] TIPOCEYY10T] IIPOCAPHOLEL
) oTPATYKY) detypatoAnyiag wote va divetal peyadutepn Aot Ol UTTOEKITPOO®-

roupeveg KAdoelg (r.x. medoi, mvakideg kuklodopiag) Tou eivat AyOTEPO CUXVEG O
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OUYKP101) HE TIG TTI0 Kuplapxeg KAdoelg (r1.X. Spopot, ktipta). Eotialoviag os autég Tig
Oravieg KAAOEIG KATd Vv eKmaideuon, 1o poviédo BeAdtiwvel tnv anodoon oe oevapla

orou spgavidovial autég ot KAAOELG.

e Style-HAllucinated Dual consistEncy learning (SHADE) [31]: H 1¢S06og SHADE
etvatl éva maiolo mou €xel oxedlaotel yia tyv evioyuorn g YeVIKEUONG TOPEDV e TV
AVIPETIOITON NG IIPOKANOTG TOV PETATOITIOE®V TOPE®DV, 01 OTT0iEG TTPOKUITIOUV OTaV T
poviéda mou exkmnaidsvovial oe éva neptBadlov duokodevovial o€ éva AAA0 AOY® TV
Sragopororjoenmv tou ortikou otul. To SHADE siodyetl ouvOetikd otul topéwmv pe 61-
ATAPAXES OTOUG XAPTES XAPAKINPIOTIK®OV KaTd 1) S1apKeld TG EKMAideuong, EMIPETIOV-
Tag OTO POVIEAO va TIpooappodetal o éva eupu @dopa otul. To mAaiolo Siaopadilet
OoUVOoXI] HETAdU NG apX1KAG £10080U KAl TG AVIIOTOXNG ITOU £XEl TportorotnBei pe to

otUd, powboviag otabepég poBAewelg KAl BeATidvoviag T YEVIKEUOT).

1.4 FarSeeFormer

Ta v tapovoa StatpiBr), ermAeé§ape va XProHONOI|OUHE 11a APXITEKTOVIKY] ITTOU av-
TAOKPIVETAL OTIG AIAITHOE1S Yia UPNAL akpifeta, avOetkikotTa Katl arnodoor), Xprotonotwyv-
1ag éva keodikorount transformer padi pe éva e§alpetikd ArodoTKO CUVEAIKTIKO ATTOK-
wowkoront]. O kwdkomoung arotedeital and vav Epapyiko transformer, o omoiog
augdvel TNV avBEKTIKOTTA TOU HOVIEAOU OE OXE0T] HE OUVEAIKTIKEG APXITETKOVIKEG. O arok-
wdkorountg aroteAeital ano to FarSee-Net, pia ouveAKTIKY apXITEKTOVIKI] MTPAYHATIKOU
xpovou. Xpnoworotei diayxwpiopeg katd Padog ouvedi§elg yia peinorn) tou Xpovog e5aywoyns

Kat ouvedielg umo-pixel yia auinon g avaluong TV ArOTEAEOPATOV.

SR
-i'h F-ASPP == F-ASPP

Iy !
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Image 1.2: FarseeFormer



1.5 Tlapouoiaon kat AvaAuor 1oV ATIOTEAEOPATOV

1.5 Ilapouociaon xKat AvaAuorn TV ANOTEAEOHATROV

1.5.1 AmnoteAéopata

|2
I3
=)
-0
s}
Q
=
g
%) = g
g 15 9 o 8
3 1 3 ©w = = <
19) & . ~ S w» 1% 2 o 5] g =1
£ ¢ 2 ¢ £ g 3 %8 € %2 8§ ¢ofofoe ot g
3 5 a S ] Q g g =1 © 3 g 14 > S s
2 ¥ 5 § &€ s 53 2 2 & 2 & 5 5 § § & 3 8
Movtéda g = X &= ] = ] Al M = o < < < © < = = E |mloU
TTA5 — Tupogarieg
FarSee-Net 73.3 26.5 75.8 20.1 2.38 22.3 12.7 3.28 79.0 30.1 81.4 31.9 10.3 60.9 11.5 13.6 0.47 891 5.78] 30.0
Segformer 87.7 33.0 84.8 34.1 27.4 35.2 47.4 20.5 87.8 42.2 86.9 65.2 35.0 88.7 45.4 46.0 21.8 29.6 30.2| 49.9
DAFormer 90.0 45.0 85.4 36.4 26.4 37.7 44.7 23.0 87.5 42.7 88.0 68.5 39.0 89.0 45.1 42.5 29.5 27.7 28.3|51.4
FarSee-Net2 88.7 34.9 85.6 36.1 26.5 32.4 43.2 20.9 87.1 39.0 88.5 65.8 39.6 87.3 46.4 49.7 36.7 26.7 27.8| 50.7

Table 1.1. ZuUykpion poviélov otmu katevduvon g yevikevong tousa. Ta poviéila ek-
nawdbevmnrav yia 416. 100 enavainyelg, xpnowonowviag cuvdetika debopusva amno 1o ouvojlo
oedopévwv I'TAS kat afiofloyndnkav oto ovvofo debousvwv ityocansg. O mivakag TeplExet
70 IoY mov emiteUxdnke ano Kade uovtéAo yia kade karnyopia.

MovtéAdo Mvnun (IB)
FarSee-Net 3.8
Segformer 19.22
DAFormer 20.0
FarSee-Net2 17.4

Table 1.2. Anaitrjogig pvnung ano kdde UOVTEAD Katd T eknaibeuon.

1.5.2 AvdAuonq

H exknaibeuon xkat afloAoynorn tov PovieA®v d1rjpKeoe Tepirou mévie npépes yia ta
HOVIEAQ HETAOXNHATIOTOV, €V® TO OUVEAIKTIKO HOVIEAO arattouos repirou SUo nuEpes.
ZNHAVIIKA, TO OUVEAMKTIKO HOVIEAo £€6e1e onuavikda Xapnlotepn XPron Uvipng Katd tn
Otdpkela tng ekmaidsuong, KAVOVIAG TO AlyOTEPO AMANNTIKO Of IOpoug. Qotdco, auty
anodotukotta £ixe £va KOOTOG: 1] Ar0d0O0T) TOU UCTEPOUOE OE OXEOT] HE TA POVIEAA PETATKT)-
patotev, ta onoia napouciacav ocuykpiolpeg tpeg péocou Atatoprg (ploY). ‘'OAeg ot katn-
yopieg apouoiacav pia atodntr) meorn otnv akpibela, 18iaitepa otig o ordvieg Katyopieg

OGS TO TPEVO, TO MOSHAAto Kat o avaBatng.

1.6 Zupnepaopata kat MeAdovtikn Epyaocia

1.6.1 Zupnepdopata

Znv apouoa S1atpibr|, mPaypatorno|0nKe avaiuor) g ITPOKANONG TG ONLACI0AOY KNG
TUNUATONOiNoNgG yia tv autévour 0d1ynor, kaurtoviag S1agopeg rrtuxég. Estaoctmkav ot
unapyouoeg Auoelg ot PBAloypadia Kal mapouoidotnKav ONHAvilKa PoviEAd Kal oUvoAd

6edopévav. H mpoogyylon oe autr v epyacia mAaioimbnke péoca amod TV OMIKY NG
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Tevikevong Topéa, pe v TeEAIKY U00£IN01 TS MPOTOMOPIAKLG POorS epyaoiag Fevikeuong
Topéa mmou avartuxOnke ota £pya tov [29], [32].

Anogaocioape va cuykpivoupe t€ooepa poviéda : dapXee-Net, Zeypoppep, AADopuep Kat
®apZee-Net2. To PapZee-Net eival éva arod ta KAAUTEPA CUVEAIKTIKA HPOVIEAQ TTOU XP1NOl-
HOITo10UVIal Yid ON1Ac10A0YIKY THNHATONOIN o1 08 TPayRatiko Xpovo. To AAdoppiep ftav to
HOVIEAO IOV IMAPOUCIACTNKE otd £pya tev [29], [32], eved 10 Zeypopuep ftav o Tpdyovog Tou,
nou elonyaye tov kedikoroint) MiT-B5 [20]. To ®apZee-Net2 eival pia véa apXlIEKTOVIKY)
oU Xprnotpornotel v uvnodopn MiT-B5 padl pe 1ov amodotiko Kal UTTOAOYIoTIKA eAappy
arnokadikoroint) PapZee-Net. Avarttuge yia autr) ) S1atpiBr) rpoxkepa€évou va ermreuxbouv
TAXUTEPOL XPOVOL MAPAY®YNS Kal ermtaibeuong.

Ta 4 povtéda eknadevinkav kat dokpaomrav ota idia ouvoda dedopévav (ITAS —
{tpoganeg), kabwg kat ota 161a ouvoda debopévav ou apopouv véoug topeig yvoong (YA”
Kat 1atpiky) anewkovion). Ta arotedéopata £6ei§av ot ta poviéda PetaoXnpatotev anodi-
douv oAU KaAUTEpa Og EPAPHOYEG TOU IIPAYHATIKOU KOOUOU, XApn Otn poBuctigity Kat
Vv rpoocappootikotntd toug. H efaipeon frav ta atpikd debopéva, Orou 10 OUVEAKTIKO
HOVIEAO MAPEPEIVE AVIAYWVIOTIKO, UTIOBETOVIAG AOY® TG PETATOINONG TOPEA PETAy TV Se-
dopévav exnaidevong kat aloddynong va pnv eivat 16oo éviovn. To PapXee-Netr2 urepébn
ta aAda poviéda oto ouvodo Sedopévev YA" Kal ta mrye ouyKpiowa pe ta KaAutepa Hov-
1éAa oe kabéva ano ta dAAa 2 nepdpata. To mAsovexktnpa tou PapXee-Net2 Bpioketal otn

HIKPOTEPT] UMMOAOYIOTIKI] AMAitnor Katd tnv avartudn yua Sokipég kat exknaidsuon.

1.6.2 MeAAovuiky Epyaocia

Eve ot petacynpatiotég eival poBuot Kal avOeKTIKOl 0€ PETATOINIOE1S TOPEA, ATIEXOUV
MOAU aro 10 va givatl Biooian Avon o KaBrKovia MPAyRATiKOU XpOVoU. XZinVv MEPINT®on
Hag, XPNOoIoIdVIAS £VAV ATOSOTIKO ATTOKMOOIKOITOU T, KATAPEPAE VA ETTITAXUVOUHE TV
TaXUta mapayeyng Xopig va Suotacoupe v akpiBeia. Qotooco, autn) n edappd peioon
otov XpOvo Tapaywyng dev eival apkew] ylua va emteuxBel tpnpatonoinon npaypatikou
XPOVOU 1] TaXUTNTEG OUYKPIOIEG PE EKEIVEG TV OUVEAIKTIK®V Poviedwv. Ilpoteivoupe va
KataBAnOei mpoomndbeia yia va peimbei 10 urmoAoyiotiko Bdpog rmou ermBalAouv ta povieda
petaoxnuatoteov, kKabog gaivetatl va eivat n KUptla mnyr| tg avinong tov Xpovev mapayoyns

0€ OUYKP101] 1€ TIG§ OUVEAIKTIKEG APXITEKTOVIKEG.
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Introduction

In recent years, artificial intelligence (Al) has experienced remarkable growth, trans-
forming a wide range of scientific disciplines. This rapid progress is largely driven by
advances in computational power and the availability of vast amounts of data for training
Al models. Among the key outcomes of these advancements is the rise of deep learning,
a fundamental technology in modern Al applications.

One of the fields most profoundly impacted by deep learning is Computer Vision. With
Al’s evolving capabilities, deep learning models have become highly effective at analyzing
complex data with remarkable precision. These models are now integral to a variety of
real-time applications, including one of the most critical in the domain of autonomous
driving: semantic segmentation. Semantic segmentation enables autonomous vehicles
to gain a detailed, pixel-level understanding of their environment, allowing them to make
informed decisions based on real-time data from high-resolution cameras.

For such applications, ensuring that Al models operate in real time with high accu-
racy is essential. Significant strides have been made in developing efficient architectures
capable of processing multiple high-resolution frames while maintaining robust perfor-
mance. However, one of the major challenges in this field is ensuring that these models
are resilient to varying environmental conditions, which requires access to diverse and
abundant data. Unfortunately, obtaining such data is not always feasible, and model
performance can degrade when faced with conditions that differ from the training data.

Today, numerous datasets for autonomous driving exist, many of which offer diverse
data—including adverse scenarios—that can support the development of more resilient
models. These datasets can be either real-world or virtual, and selecting the right dataset
is crucial for training deep learning models that can generalize effectively to real-world
applications. However, if the data distribution in the training set does not align with
the real-world conditions in which the model is deployed, the model may struggle to
generalize, resulting in poor performance.

This challenge has given rise to research in domain adaptation and domain general-
ization. In domain adaptation, a pre-trained model is fine-tuned to better align with the
target domain, either by adjusting the data distribution or by refining object represen-
tations across domains. In contrast, domain generalization aims to develop models that
perform well in a target domain without requiring further training on that domain’s data.

These approaches are particularly relevant in the context of semantic segmentation for
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autonomous driving, where models must adapt to a wide variety of environments.

In conclusion, while significant progress has been made in addressing the challenges
of semantic segmentation for autonomous vehicles, there is still much to explore. Under-
standing and improving the generalization capabilities of these models remains a key area
of ongoing research, offering exciting potential for future advancements in autonomous

driving technology.

2.1 Objective of the Thesis

The primary objective of this thesis is to explore the datasets and techniques employed
in addressing the task of semantic segmentation within the context of autonomous driv-
ing. Additionally, it will review several state-of-the-art models currently used in semantic
segmentation. A domain generalization approach will be applied to test and compare
the performance of these models. Finally, the models will be extended beyond the au-
tonomous driving domain, with experiments conducted on datasets from other fields of

knowledge.

2.2 Thesis Organization

This thesis is organized into seven chapters. Chapter 1 provides an introduction to the
thesis, outlining its scope and objectives. Chapter 2 presents the theoretical background,
starting with an overview of the fundamental architectures used in image processing,
and concluding with a discussion of the challenges of domain generalization. Chapter 3
reviews weakly supervised training approaches and relevant work on domain adaptation.
In Chapter 4, methods for accelerating semantic segmentation are discussed, along with
a review of some state-of-the-art architectures. Chapter 5 presents some of the most com-
mon datasets used in semantic segmentation for autonomous driving. Chapter 6 details
the datasets and training pipeline employed in the experiments. Chapter 7 presents the
experimental results and analysis. Finally, Chapter 8 summarizes the contributions of

this thesis and suggests potential directions for future research.
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Theoretical Background

In this chapter, the theoretical background necessary for understanding this work will
be presented. Section 2.1 explores the history of deep neural networks and the evo-
lution of architectures used for image segmentation over the years. Section 2.2 provides
an overview of the different types of image segmentation, while Section 2.3 discusses the
domain generalization challenges encountered in semantic segmentation for autonomous

driving.

3.1 Deep Neural Networks

In order to better understand the concepts and work presented, it is important to
have a grasp of Neural Networks and Deep Learning Models. Therefore, it is appropriate
to provide an overview of the main theory behind Neural Networks, as well as some

information on the primary architectures used for image processing.

3.1.1 Neural Networks

Neural networks are computational models inspired by the structure and function
of the human brain. They are made up of interconnected nodes called "neurons," that
process input data and learn patterns through training. Each neuron receives inputs,
applies weights, sums them, and passes the result through an activation function to
produce an output. These networks are mainly used for tasks such as classification,
regression, and pattern recognition [33].

Neural networks have been around since the 1940s, with the Perceptron being one of
the first models. However, they only became popular in the 1980s with the development
of backpropagation. In the 2010s, advancements in hardware and the availability of large
datasets led to breakthroughs in deep learning, sparking a renewed interest in neural

networks.

3.1.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) were created to handle the growing complexity
of computer vision tasks. They are the foundational architecture for computer vision mod-

els and are specialized deep neural networks designed primarily for processing structured
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grid data, such as images. Unlike networks that relied on densely connected layers, which
became unwieldy due to their excessive connectivity, CNNs share parameters across the
spatial dimensions of the input, reducing the number of parameters compared to fully
connected networks. Additionally, CNNs automatically learn hierarchical features, start-
ing from low-level features (like edges) in early layers to high-level features (like shapes
and objects) in deeper layers. Along with their local receptive fields, they recognize pat-
terns regardless of their position in the input image, providing robustness against spatial
translations.

The main components of CNNs are:

Convolutional Layers

Pooling Layers

e Classification Fully Connected Layers

The Output Layer

fc_3 fc_4
Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 RelU activation
Convolution Convolution \ /—M
(5 x5) kernel Max-Pooling (5 x5) kernel Max-Pooling (with
valid padding 2x2) valid padding (2x2) ,«,‘@

/& dropout)

hiExT bl shanhels nl channels n2 channels n2 channels ||

(28 x 28 x 1) (24 x24 xnl) (12x12 xn1) (8 x8xn2) (4x4xn2) | ,/ —

n3 units

Image 3.1: An example of CNN architecture [2]

The most important and unique parts of a CNN are the Convolution Layers and the Pooling

Layers. The functionality and usage of those types of layers are analyzed below.

Convolution Layer (or Kernel)

The Convolutional Layers contain convolutional filters that execute the following algo-
rithm. Each kernel slides over the input image in a process called convolution, performing
an element-wise multiplication between the kernel and a subset of the input (often re-
ferred to as the receptive field). The results of these multiplications are then summed to
produce a single value. This operation is repeated as the kernel moves across the im-

age, generating a feature map or activation map that represents the presence of specific
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patterns in different regions of the input. Some spatial information might be lost in the
process, but a lot of new information is derived.

The convolution operation for an input image I and a kernel K is defined as:

(I*K)(x,y):ZZI(x+ m,y+n)- K(m,n)

where I(x, y) represents the pixel value of the input image at position (x, y), and K(m, n)
is the value of the kernel at position (m,n). The summation is carried out over the
dimensions of the kernel.

Two important hyperparameters that control the behavior of the convolution operation
are stride and padding. The stride defines the step size of the kernel as it moves across
the input image. A stride of 1 means the kernel shifts by one pixel at a time, while a larger
stride results in downsampling, reducing the spatial resolution of the output feature map.
Padding refers to adding extra pixels (usually zeros) around the border of the input image.
It allows the kernel to process edge pixels more effectively and helps control the size of the
output feature maps. Finally, in some cases, convolutional layers have more than one
filter in parallel. The number of filters in parallel should match the number of channels

of the input. Image 3.2 presents an example of the aforementioned convolution.

olofoloe|loflo|.][of[oa]o]lo]elo]- o|lo|o|e|o]|oe
o 156 | 155 | 156 | 158 | 158 - o 167 | 166 | 167 | 169 | 169 - 163 | 165 | 185
o |153 [ 138 | 157 [ 159 | 139 | .. o | 168|165 168 | 170 | 170 | _ 164 | 166 | 186
o | 149 251 | 155 [ 158 | 159 | .. o | 150|162 | 166 | 169 | 270 | . 162 | 165 | 186
[ ] 146 | 146 | 149 | 153 | 158 - (] 156 | 156 | 159 | 163 | 168 o 155 | 155 | 158 | 162 | 167 -
o | 245 243 | 203 | 208 | 158 | .. o | 255|153 | 158 | 258 | 268 | .. o | 154 | as2 |52 | 257 | 167
Input Channel #1 (Red) Input Channel #2 (Green) Input Channel #3 (Blue)
e S 1 0 0
o[ = 1]-1f-1]
o) 12 [ 1o
Kernel Channel #1 Kernel Channe| #2 Kernel Channel #3
: Output
H J»| 1 25 | 466 | a66 | a73
298 + —491 + 487 +1=295 |[zs
I
Bia_s =1

Image 3.2: An example of a convolution operation [3]

Pooling Layer

Pooling layers work in a way similar to convolution layers. A filter is sliding across the
grid of the input, but instead of applying a convolution between the input data and the
kernel, the values of the window are replaced with a number. Specifically, there are two

types of pooling-layers:

e Max Pooling returns the maximum value of the elements in each sub-matrix.
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e Average Pooling returns the average value of the elements in each sub-matrix.

A pooling layer serves the function of progressively reducing the spatial dimensions of the
feature maps produced by convolutional layers. This downsampling process preserves
important features while reducing computational complexity, memory usage, and the
likelihood of overfitting. Pooling layers introduce an element of spatial invariance, allowing
the network to maintain robustness to small translations, rotations, or distortions in the

input data.

max pooling

112

12(20| 30| O

34701 37| 4 average pooling

112100| 25| 12

Image 3.3: An example of a Pooling Layer operation [3]

Fully Convolutional Neural Networks

Fully Convolutional Neural Networks (FCNNs) are a type of neural network designed
for tasks that involve pixel-wise predictions, such as semantic segmentation. In semantic
segmentation, each pixel of an input image is assigned a class label. Unlike traditional
Convolutional Neural Networks (CNNs) that use fully connected layers for classification
tasks, FCNNs consist entirely of convolutional layers and do not have any fully connected
layers. This structure allows FCNNs to take input images of any size and produce spa-
tially consistent predictions, making them well-suited for dense prediction tasks. Some
key characteristics of FCNNs are the absence of fully connected layers and their input
flexibility.

In traditional CNNs, fully connected layers are typically used after convolutional layers
to perform high-level reasoning and final classification. In FCNNs, these fully connected

layers are replaced by convolutional layers, enabling the network to produce spatial maps
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instead of single-class predictions. This feature allows FCNNSs to retain spatial information
throughout the network, which is crucial for tasks like image segmentation.

FCNNs can handle inputs of varying sizes because their convolutional layers do not
require a fixed input size. In contrast, fully connected layers in traditional CNNs demand
a fixed input size. The absence of these layers in FCNNs allows for flexibility in handling
inputs of different dimensions, making the architecture highly adaptable for real-world
applications.

FCNNs are widely used and effective, but they do have some limitations. One key
issue is that they cannot process images in real time, which can be a problem for tasks
requiring immediate results. Additionally, FCNs struggle to capture all the necessary
information from an image, especially the broader context that aids in accurate segmen-
tation. Moreover, they are challenging to implement on three-dimensional images, which

limits their usefulness in certain situations.
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Image 3.4: An example of a Fully Convolutional Neural Networlk [3]

3.1.3 Encode-Decoder Architectures

Encode-decoder models are models designed to handle tasks that require transform-
ing one type of data into another, often used in areas like image segmentation, machine
translation, and speech recognition. The architecture consists of two primary compo-
nents: an encoder that compresses the input data into a compact representation, and a
decoder that reconstructs the output from this representation.

The encoder processes input data and extracts important features. It usually includes
a series of layers, such as convolutional layers for computer vision or recurrent layers
for sequence-based tasks. These layers progressively downsample and compress the
input into a lower-dimensional representation, often referred to as the latent space or
bottleneck. The output of the encoder is a concise feature map or vector containing the

essential information of the input data in a more abstract form.
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The decoder takes the encoded representation and tries to reconstruct the output in
a specific format, such as a segmented image in computer vision or a translated sentence
in natural language processing. The decoder typically follows the structure of the encoder
but in reverse, using techniques like upsampling or transposed convolutions to restore
the original resolution or structure of the data.

Encoder-Decoder architectures are a powerful framework for solving tasks that involve
transforming input data into structured outputs. These models work by compressing in-
put data into a latent representation and then reconstructing it in the desired format.
They have proven to be highly effective in fields like image segmentation, machine trans-
lation, and speech recognition. Their ability to handle variable input and output lengths,
as well as maintain spatial details through skip connections, makes them well-suited for

complex tasks requiring high-level abstraction and detailed reconstruction.
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Image 3.5: An example of the basic architecture of an Encoder Decoder Network [4]

3.1.4 Vision Transformers

Convolutional networks, such as CNNS or FCNS, are commonly used for semantic seg-
mentation, but they have limitations. For instance, the final output segmentation image
of the feature map has low resolution and they are not effective at capturing long-range
dependencies of the feature maps. The emergence of Vision Transformer (ViT), inspired
by transformer-based architectures in NLP, has shown promising results in addressing
these limitations.

A Transformer in machine learning is a deep learning model that utilizes self-attention
mechanisms. Self-attention allows the model to weigh the importance of different parts
of the input during processing, enabling it to capture dependencies between parts more
flexibly than Convolutional Neural Networks. However, applying self-attention in images
is computationally expensive due to the quadratic cost resulting from each pixel attending

to every other pixel.
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Dosovitskiy et al. [5] proposed a novel approach for handling images by dividing them
into patches and treating them as tokens, similar to NLP. Instead of pixel-wise attention,
they implemented patch-wise attention, reducing computational complexity compared to
applying self-attention to convolutional architecture. To account for transformers lacking
the inherent inductive bias of CNNs for capturing spatial relationships, they added po-
sition embeddings to the patch embeddings, maintaining information about the relative
positions of patches in the image.

The core of the Vision Transformer [5] is a stack of transformer encoder blocks, each
consisting of multi-head self-attention and feed-forward layers. The self-attention mech-
anism allows the model to learn relationships between different patches, capturing both
local and global dependencies across the entire image. A special token called the classi-
fication token (CLS) is added to the input sequence of patch embeddings. After passing
through the transformer layers, this token accumulates information from the entire im-
age, and its final representation is used for classification.

The final layers of Vision Transformers differ based on the model’s task. For classifi-
cation models, the final layer can be a Multi-Layer Perceptron Head. This layer takes the
final vector representation of the input image and outputs the probability of each class.
For segmentation-oriented models, the final part of the model is a Decoder, similar to
Encoder-Decoder architectures. This decoder outputs a matrix with the probabilities of

each class for each pixel of the original input image.
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Image 3.6: Architectur of VIT [5]

3.2 Domain Generalization and the Out-of-Distribution Prob-

lem

Machine learning models, including those used for semantic segmentation in au-
tonomous driving, aim to learn patterns from training data to make predictions on unseen
data. However, real-world applications often expose models to environments with statis-

tical characteristics vastly different from their training data. This mismatch, referred to
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as the Out-of-Distribution (OOD) Problem, occurs when models encounter unseen data

that does not align with the training distribution, severely impacting performance.

3.2.1 Domain Shift

Domain shift is a major cause of the OOD problem. It refers to changes in the distri-
bution of data between the training (source) and testing (target) domains. Domain shift

manifests in various ways in autonomous driving:

e Environmental Changes: Variations in weather (fog, rain, snow), lighting condi-
tions (day vs. night), and seasons (winter vs. summer) can drastically alter the

appearance of the scene.

e Geographical Differences: Models trained in one geographic location (e.g., urban
city) may struggle to generalize to others (e.g., rural areas) due to differences in road

layouts, vegetation, or infrastructure.

e Sensor Variability: Autonomous vehicles may use different cameras, LiDARs, or
radar sensors, each with distinct resolutions and noise patterns, leading to a dis-

tribution mismatch if the model wasn'’t trained on data from those specific sensors.

3.2.2 Dataset Bias and Overfitting

Another contributor to the OOD problem is dataset bias—when the training data
fails to capture the full diversity of real-world scenarios. If the training data is overly
specific to a certain environment (e.g., clear weather, daytime), the model will likely fail
when exposed to unseen conditions. Additionally, overfitting occurs when a model learns
spurious correlations in the training data. These correlations, while effective during

training, do not hold in different or novel contexts, exacerbating the OOD problem.

3.2.3 Domain Generalization (DG)

Domain Generalization is an approach that aims to mitigate the OOD problem by
training models capable of generalizing to new, unseen domains. In DG, models learn
domain-invariant features, focusing on patterns that are robust to changes in environ-
mental factors and sensor variations. For autonomous driving, this is essential for en-
suring consistent performance across various weather conditions, geographic locations,
and camera configurations.

Challenges in domain generalization include:

e Complexity of Real-World Variations: The wide range of potential domain shifts
(weather, lighting, urban vs. rural) makes it difficult for models to generalize across

all possible environments.

e Lack of Target Domain Data: Unlike domain adaptation, which assumes access
to some data from the target domain, domain generalization requires robustness

without prior exposure to target domain samples.
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By addressing these challenges, models for semantic segmentation in autonomous
driving can improve robustness, ensuring safe and reliable operation even in diverse and

unseen environments.






Chapter ﬂ

Weakly-supervised semantic segmentation and

Domain Adaptation

In this chapter we are going to present some methods used for weakly-supervised
semantic segmentation and domain adaptation. In section 4.3 we will showcase the

domain generalization pipeline that will be used in the experiments of chapter 7.

4.1 Weakly-supervised semantic segmentation

Building CNN-based segmentation models faces a significant challenge where train-
ing typically necessitates pixel-level annotated images, a resource-intensive process. The
acquisition of fully supervised data is both costly and time-consuming. Consequently,
researchers often resort to weak annotations and propose methods for weakly supervised
semantic segmentation, mitigating the reliance on fully annotated data. Weak annota-
tions, such as annotated bounding boxes, image-level labels, scribble annotations, and
point annotations, prove more feasible to gather compared to detailed pixel-level an-
notations. The following papers are categorized based on the primary types of weakly

supervised labels.

Original image FCN [5] Segmentation
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Image 4.1: Types of weakly supervised training [1]
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4.1.1 Segmentation algorithm based on image-level labels

The main paradigm of using image-level labels to do semantic segmentation tasks is
first generating the score map or heat map from the pretext task, such as the standard
classification task, as the original rough mask. Then the researchers apply some clus-
tering algorithms to refine and improve the generating mask iteratively until getting a
satisfactory result. The last procedure is to feed the mask produced from the previous
step as the fully annotated label to some pre-defined models that do standard supervised
segmentation tasks. The annotator only needs to say whether or not a particular object
class appears in an image, not how many of them there are.

Extensive research has been conducted on image-level labels. The focus is to improve
the use of these labels to enhance class activation maps, which are crucial in obtain-
ing accurate rough masks [6], [34], [35]. Some methods use the image-level label as
a constraint to the network, which encourages the output to follow a latent probability

distribution in the constraint manifold [36].
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Image 4.2: An example of utilizing image-level labels [6]
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4.1.2 Segmentation algorithm based on bounding-box

These methods generate rough segmentation maps of the target using bounding-box
labels and then optimize the model iteratively. However, it relies on image annotation
quality compared to the image-level label method. The research conducted using this
kind of annotation, uses the bounding boxes as a basis, to try and acquire the information
regarding the shape of the object placed inside the box and then try to improve the

segmentation mask produced through iterative training [7], [37], [38].
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4.1.3 Segmentation algorithm based on point

Referring to an object by pointing is the most natural way for humans, as in "That cat
over there" or "What is that over there?". The technique has been proven to be useful in
various fields, including robotics and human-computer interaction. However, it has not
been widely used in semantic segmentation. Recently, some researchers have proposed
new point-based semantic segmentation methods that incorporate point supervision into
the training loss function. These methods assign only one label point to each class.

In certain research, annotated points are utilized to exploit semantic relationships.
This is achieved by promoting consistency in feature representations of intra- and inter-
category points. Essentially, points within the same category should have more similar
feature representations than those from different categories, even across different training
images [39]. Other methods use point labels and generic priors to assign probabilities of

pixel classification for object separation [1].

4.2 Domain adaptation in semantic segmentation

Fully convolutional models have been successful for semantic segmentation tasks.
These models perform well in a supervised setting, but their performance can drastically
reduce under domain shifts that may appear mild to a human observer. For instance, if
a model is trained on one city and tested on another city in a different geographic region
and/or weather condition, the model’s performance may degrade significantly due to the
pixel-level distribution shift. Domain adaptation is a specific case of transfer learning,
which utilizes labeled data in one or more related source domains to perform new tasks

in the target domain [28].
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4.2.1 Input-level domain adaptation

Many computer vision tasks require the translation of images while maintaining the
class-related features of the original images. Style transfer methods are often used for
this purpose, but the quality of the generated images can be an issue. Even minor issues
at the pixel level can significantly affect the accuracy of semantic segmentation models.
To overcome this, several studies have focused on ensuring semantic consistency during
the image translation process. This can enhance the quality of the generated images. In
this section, we will categorize these methods into two groups: GAN-based (generative
adversarial network) methods and style transfer methods that use various techniques to
translate images.

GAN-based methods utilize generative models to perform the style transfer of the
original photos to the target domain and enable the segmentation model to perform the
task. The two steps are set in a bidirectional closed-loop learning framework for domain
adaptation of image semantic segmentation [8]. One such work is showcased in image
4.4.
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Image 4.4: Bidirectional Learning for Domain Adaptation of Semantic Segmentation [8].

In contrast to GAN-based methods, which are computationally intensive, style transfer
methods utilize traditional neural style transfer techniques to achieve similar results.
Yang et al. [40] have proposed a spectral transfer method based on the Fourier Transform
that does not require any training. This method swaps the low-frequency component of
the source images’ spectrum with that of the target images. This way, the translated
image is mapped to the target style without any change in semantic content. Wu et
al. [41] employed an image generator to align the distributions of mean and variance of
feature maps between the source and target domains at the pixel level. This is because
these statistics are easy to optimize and provide sufficient information for achieving good

stylization.

4.2.2 Feature-level domain adaptation

Possible solutions to address domain shifts involve aligning the distributions of fea-
ture latent embeddings. One way to achieve this is by modifying the feature extractor
to generate domain-invariant features. By changing the distribution of latent represen-
tations between source and target domains, the network classifier can learn to segment
both representations from the same latent space. This can be achieved by relying solely
on the supervision from source data [42].

Some research has achieved domain invariance by using a conservative loss, enabling

the network to learn discriminative features that are invariant to domain changes through
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gradient ascent [43]. Other methods add extra networks and losses to regularize the
features extracted by the backbone encoder network [44]. Finally, some approaches align
the distributions of activations of intermediate layers, rather than only matching the

output distributions of the source and target domains [45].

4.2.3 Output-level domain adaptation

Output-level domain adaptation involves modifying a model’s predictions to better
match the target domain. This method is particularly useful when input features are
similar between the source and target domains but there are differences in the output
distribution, such as labels or predictions. The goal of domain adaptation is to make the
model’s output consistent with the characteristics of the target domain. Some researchers
use adversarial learning techniques to force the segmentation output to be in the target
domain [46], [47], [48], [49]. Others use loss functions that prevent the training process

from being dominated by easy-to-transfer samples in the target domain [50].

4.3 Domain Generalization Pipeline

In this section, we explore the domain generalization (DG) pipeline introduced by
Hoyer et al. in the HRDA paper [29]. This cutting-edge framework plays a pivotal role
in developing robust models capable of handling domain shifts, a common challenge in

autonomous driving scenarios. The pipeline consists of three essential components:

e Pre-trained backbones: The models leverage pre-trained backbones from the Im-
ageNet1K dataset [30]. The knowledge acquired during pretraining aids in learn-
ing domaininvariant features by aligning latent representations from the synthetic
GTAS dataset with those learned from ImageNet- 1K, facilitating better generalization

across domains.

e Rare Class Sampling: To mitigate class imbalance, rare class sampling is em-
ployed. This approach adjusts the sampling strategy to give more prominence to
underrepresented classes (e.g., pedestrians, traffic signs) which are less frequent
compared to more dominant classes (e.g., roads, buildings). By focusing on these
rare classes during training, the model improves performance in scenarios where

these classes occur.

e Style-HAllucinated Dual consistEncy learning (SHADE) [31]: SHADE is a frame-
work designed to enhance domain generalization by tackling the challenge of domain
shifts, which arise when models trained in one environment struggle in another due
to visual style variations. SHADE introduces synthetic domain styles by perturb-
ing feature maps during training, allowing the model to adapt to a diverse range of
styles. The framework ensures consistency between the original input and its style-

altered counterpart, promoting stable predictions and improving generalization.
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Real-time semantic segmentation

Semantic segmentation models based on deep learning have achieved impressive
accuracy in recent years. However, for applications such as autonomous driving,
efficiency and reduced inference time are crucial. In this section, we will present all
the existing approaches that can be used in deep neural network architecture design to

achieve faster response times in semantic image segmentation models.

5.1 Convolution Factorization—Depthwise Separable

Convolutions

Convolutional layers are a crucial part of most deep-learning models. Therefore, mak-
ing the convolutional operations performed in the network’s layers more computationally

efficient can significantly improve the model’s speed performance.

One popular design choice for improving convolutions is the use of depthwise sep-
arable convolutions, which is a type of factorized/decomposed convolutions [51]. The
depthwise separable convolution method divides the computation process into two dis-
tinct steps. First, a single convolutional filter is applied per each input channel (depthwise
convolution), and then a linear combination of the output of the depthwise convolution is

considered through a pointwise convolution.

The equation gives the ratio of computational complexity between depthwise separable

convolutions and standard convolutions: Ratio = 1/N + 1/D?, where N is the number of

filters of size DxD.
E— =
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Image 5.1: (a) Standard convolution. (b) Depthwise separable convolution [9]
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5.2 Channel Shuffling

In standard group convolution, each input channel is associated with only one output
channel. However, in the case of channel shufiling, a group convolution takes data from
different input groups, and every input channel will correlate with every output channel.
To achieve this, we can divide the channels in each group into several subgroups and
then feed each group in the next layer with different subgroups. This can be implemented

efficiently by a channel shuffle operation [10].

To illustrate, imagine a convolutional layer with g groups where the output has g X n
channels. We first reshape the output channel dimension into (g, n), transpose it, and
then flatten it back as the input of the next layer. The channel shuflle operation is
differentiable, meaning that it can be embedded into network structures for end-to-end

training.
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Image 5.2: Showcase of channel shuffle (adapted from [10])

5.3 Early Downsampling

Processing large input frames can be very expensive. One solution to this is to down-
sample the frames in the early stages of the network, using only a small set of feature
maps. The initial network layers should focus on feature extraction and preprocessing of
the input data for the following parts of the architecture, rather than contributing to the
classification stage. This approach is used by the ENet model architecture [52] to prevent

spatial information loss due to downsampling.

ENet’s model architecture is based on the SegNet [11] approach, which saves indices
of elements chosen in max-pooling layers, and uses them to produce sparse upsampled
maps in the decoder. This approach reduces memory requirements while recovering spa-
tial information. However, it is not recommended for applications where the initial image
contains fine image details that have the potential to disappear after the corresponding

max-pooling operation.
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Image 5.3: SegNet decoder uses the max-pooling indices to upsample the feature maps [11]

5.4 The Use of Small Size Decoders

To simplify the architecture of an encoder-decoder model and reduce computational
costs, one can reduce the size of the decoder [52]. This approach is based on the idea that
the encoder should process input data with a smaller image resolution. Meanwhile, the
role of the decoder is solely to perfect the details of the output image by upsampling the
encoder’s output. Therefore, reducing the size of the decoder is a cost-effective solution.
This method is generally effective as the reduction in the decoder’s size doesn’t usually

impact its effectiveness.

5.5 Efficient Reduction of the Feature Maps’ Grid Size

To reduce the size of feature maps, pooling operations are commonly applied. How-
ever, these operations can create representational bottlenecks in the network filters. This
can be avoided by increasing the activation dimension of the filters, which leads to in-
creased computational costs. To address this issue, Szegedy et al. [53] suggested a
pooling operation that involves performing a convolution of stride 2 in parallel, followed
by concatenation of the resulting filter banks. Many such approaches exist that have been
shown to reduce feature map size and improve efficiency, while achieving state-of-the-art

effectiveness [54].

5.6 Increasing Network Depth While Decreasing Kernel Size

Using small (3x3) convolutional filters has been shown to improve the standard con-
figurations of CNNs. With smaller filters, the network can be made deeper by adding more
convolutional layers while reducing the number of parameters. This technique not only

reduces computational cost but also increases the accuracy of the network [55], [56].
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5.7 Two-Branch Networks

Two-branch networks have been developed to address the trade-off between accuracy
and inference time. One branch is responsible for capturing spatial details and gener-
ating a high-resolution feature representation, while the other branch obtains high-level
semantic context. These networks achieve a beneficial balance between speed and accu-
racy by using one pathway as a lightweight encoder of sufficient depth, and the other as
a shallow, yet wide branch consisting of only a few convolutions. As a result, two-branch
networks preserve partial information that is often lost after downsampling operations
[57], [12], [58].
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Image 5.4: Illustration of different backbone architectures. a is the dilation backbone
network. b is the encoder-decoder backbone network. c bilateral segmentation backbone
network. (adapted from [12])

5.8 Block-Based Processing with Convolutional Neural Networks

To reduce inference time, block-based processing is another effective technique. In
this method, the image is divided into blocks and based on the importance of each block,
its resolution is downscaled, leading to a reduction in computational costs and memory

usage. For instance, Segblocks [59] employs this technique for image segmentation.

5.9 Pruning

In order to produce faster, more accurate, and more memory-efficient models, pruning
can be utilized. Pruning is a method where the network tries to create more efficient
representations thus reducing the number of connections and nodes used. The idea
stems from the fact that visual information is highly spatially redundant, and thus can
be compressed into a more efficient representation. There are two types of pruning: weight
pruning and channel pruning.

Weight pruning is a method that removes unnecessary connections (parameters) in
a neural network, resulting in a sparse model that still retains the high-dimensional

features of the original network. Researchers [13] proposed a three-step method for
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weight pruning: (1) training the network to identify important connections, (2) pruning
unessential connections, and (3) fine-tuning remaining connections.

Filter pruning is a method that reduces computation costs by removing filters and their
corresponding feature maps that have little effect on accuracy [60]. He et al. [61] proposed
a channel-pruning approach that improves inference time while preserving accuracy.
However, this approach sacrifices spatial and functional information, resulting in reduced

effectiveness.
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Image 5.5: Synapses and neurons before and after pruning. (adapted from [13])

5.10 Quantization

Using 32 bits to represent network weights can adversely affect network efficiency
due to the high computational cost and memory requirements associated with 32-bit
operations. In a study by Takos et al. [62], it was shown that reducing the number of bits
used to represent each connection from 32 to 5 can significantly reduce computational
costs. Han et al. [63] proposed a quantization approach that achieves this by sharing the
same weights between multiple connections, effectively reducing the number of effective

weights. These weights are then fine-tuned to optimize performance.

5.11 State of the art Models

5.11.1 Convolutional models

SqueezeNet

SqueezeNet is a deep learning model that focuses on image classification tasks and
reduces the model size and computational requirements. It was designed to address the
challenges of deploying large neural networks on resource-constrained devices like mobile

phones or embedded systems. The model achieves compression by using a combination
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of innovative architecture, including network-in-network structures, to reduce the num-
ber of parameters, and the "fire module" design that efficiently captures and processes
features.

The primary goal of SqueezeNet is to balance model size and performance, making it
more suitable for real-time applications on devices with limited computational resources.
Despite its compact architecture, SqueezeNet has demonstrated competitive performance
compared to larger models on image classification benchmarks, thus showcasing its ef-

fectiveness in the realm of efficient deep learning.
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Image 5.6: SqueezeNet architecture [14]

FarSee-Net

FarSee-Net is a state-of-the-art approach to real-time semantic segmentation that
balances high accuracy with computational efficiency. Designed as an encoder-decoder
architecture, FarSee-Net introduces two key innovations: an advanced context aggrega-
tion module and a novel upsampling technique. By processing lower-resolution input
data, aggregating context effectively, and restoring the high-resolution output, the net-
work achieves an optimal trade-off between performance and resource utilization.

Zhang et al. [15] introduced the Factorized Atrous Spatial Pyramid Pooling (FASPP)
module, which extends the widely adopted Atrous Spatial Pyramid Pooling (ASPP) by Chen
et al. [64]. The FASPP module utilizes atrous convolutions to increase the receptive field
of the filters without adding computational complexity or increasing parameters. This
is accomplished by inserting r-1 zeros between adjacent kernel elements, where r is the
atrous rate. While the ASPP is effective for capturing contextual information, it operates
on high-dimensional feature maps, leading to increased computational cost.

To mitigate this overhead, FASPP factorizes the 3x3 atrous convolution into two stages:
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o Point-wise convolution (1x1): This layer linearly combines the input channels,
reducing the output dimensionality and allowing for efficient channel-wise interac-

tion.

o Depth-wise atrous convolution (3x3): This layer preserves spatial context aggre-
gation with the same kernel size and atrous rate as the original ASPP but reduces

the computational burden.

By factorizing the convolutions, FarSee-Net reduces the complexity of the ASPP module,
achieving faster and more efficient segmentation without compromising accuracy. To
further enhance multiscale context aggregation, the network employs a cascaded version
of the FASPP module, referred to as Cascaded Factorized Atrous Spatial Pyramid Pooling
(CF-ASPP), which involves applying two factorized ASPP modules in sequence.
Additionally, FarSee-Net addresses the challenge of upsampling low-resolution fea-
ture maps by framing it as a super-resolution task in the feature space. Instead of
conventional bilinear interpolation, which often struggles to recover fine-grained de-
tails, FarSee-Net adopts sub-pixel convolution—a technique popularized in image super-
resolution tasks. During training, the network receives downsampled input images while
the high-resolution label maps serve as ground truth. In the decoder, sub-pixel con-
volution gradually upscales the feature maps by rearranging their elements through a
periodic shuffling operation, significantly improving the network’s ability to recover high-
resolution details. Compared to traditional deconvolution, this approach offers superior

representation power and enhances the quality of the segmentation output.

Low-resolution RGB Image High-resolution Class Label

Image 5.7: FarSee-Net architecture [15]

5.11.2 Vision Transformer models
Segmentation Transformer (SETR)

Semantic segmentation typically involves using FCNs in an encoder-decoder architec-

ture. The encoder is responsible for learning feature representations, while the decoder
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performs pixel-level classification of these features. However, Zheng et al. [16] have
proposed a new approach using a pure transformer in place of the computationally ex-
pensive stacked convolution layers-based encoder. This results in a new segmentation
model called SETR.

The SETR method follows a unique approach for processing input images. It divides
the image into fixed-sized patches, which are then represented using learned embeddings.
These embeddings are transformed using global self-attention modeling, which helps
in learning discriminative feature representations. To achieve this, a linear embedding
layer is applied to the flattened pixel vectors of each patch, which results in a sequence
of feature embedding vectors. These vectors are then fed as input to a transformer.
The encoder transformer learns the features that are subsequently used by a decoder to
reconstruct the original image resolution. Crucially, there is no downsampling in spatial
resolution, but global context modeling occurs at every layer of the encoder transformer.
This approach offers a completely new perspective to the semantic segmentation problem.

STETR is classified into a few variants. depending on the decoder of the model: SETR-
PUP (5.8b) which has a progressive up-sampling design and the SETR-MLA (5.8c) which

has a multi-level feature aggregation.
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Image 5.8: SETR architecture and its variants. (a) SETR consists of a standard Transformer.
(b) SETR-PUP with a progressive up-sampling design. (c) SETR-MLA with a multi-level
feature aggregation [16].

Swin transformer

The Swin Transformer [17] is a hierarchical vision transformer model designed for
dense prediction tasks such as image segmentation and object detection. Unlike tradi-
tional transformers that process the entire image at once, the Swin Transformer intro-
duces a "shifted window mechanism" to enable more efficient computation and capture
fine-grained details.

The architecture can be summarized as follows:

e Patch Splitting and Embedding: The input image is split into non-overlapping
patches, where each patch is treated as a token. These tokens are linearly embedded

to form the initial sequence of embeddings.
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e Hierarchical Structure: The Swin Transformer operates in a hierarchical man-
ner, where the resolution of feature maps is progressively reduced as the network
deepens. This structure enables multi-scale representation learning, improving the

model’s ability to capture both local and global information.

e Shifted Window Attention: In each stage, the image is partitioned into fixed-
size windows, and a "window-based multi-head self-attention" (W-MSA) mechanism
is applied within each window. To enhance connections between windows, the
"shifted window mechanism" shifts the window partitioning by a predefined number
of pixels in alternating layers, enabling cross-window interactions without excessive

computation.

e Patch Merging: As the network deepens, "patch merging" layers are used to reduce
the number of tokens, effectively downsampling the feature maps while increasing

the channel dimensions.

e Efficient Attention: Swin Transformer efficiently computes attention within local
windows, significantly reducing the quadratic complexity of traditional attention

mechanisms to linear complexity with respect to image size.

segmentation
classification  detection ...
4

Layer | Layer 1+1

A local window to
perform self-attention
—
A patch

EEEE

LB
L A

L S Z
o/ A
(a) Swin Transformer (b) Shifted Window (¢) Two Successive Swin Transformer Blocks
"y % x2C

'

1

HxWx3 ,

1

Images

Patch Partition
Patch Merging

(d) Architecture

Image 5.9: An overview of the Swin Transformer. (a) Hierarchical feature maps for reducing
computational complexity. (b) Shifted window approach which was used when calculating
self-attention. (c) Two successive Swin Transformer Blocks which presented at each stage.
(d) The core architecture of the Swin. [17]

Segmenter

Segmenter [18] is a transformer-based architecture designed for semantic segmenta-
tion, leveraging the strengths of self-attention mechanisms to capture long-range depen-
dencies in image data. Unlike traditional CNN-based architectures, Segmenter employs
Vision Transformers (ViT) as the backbone for feature extraction. The input image is
first divided into fixed-size patches, which are then linearly embedded into a sequence of

tokens.
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The architecture consists of two main components:

e Encoder: The Vision Transformer (ViT) encoder processes the sequence of tokens
through multiple transformer layers, allowing for global context modeling at each
stage. Self-attention mechanisms enable the model to capture both local and global

relationships between pixels.

e Decoder: The decoder is responsible for transforming the tokenized output of the
encoder back into a high-resolution segmentation map. Segmenter uses a mask-
based approach where the class tokens output from the transformer are decoded
into segmentation masks. This process efficiently recovers spatial details while

preserving the contextual information learned by the transformer.
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Image 5.10: Segmenter architecture. It basically has a ViT backbone with a mask trans-
former as the decoder. [18]

Masked-attention mask transformer (Mask2Former)

Mask2Former [19] is a cutting-edge transformer-based architecture designed for vari-
ous segmentation tasks, including instance, panoptic, and semantic segmentation. It has
demonstrated superior performance compared to existing state-of-the-art architectures,
thanks to its innovative use of masked attention and a carefully designed transformer
decoder.

At the core of Mask2Former is its "transformer decoder with masked attention". In
contrast to traditional transformers, where attention is applied across the entire feature
map, Mask2Former employs a "masked attention" mechanism that restricts the cross-
attention to the predicted mask region. By limiting attention to the foreground region,
the model significantly improves its computational efficiency and focus, allowing more
precise predictions within the areas of interest.

The architecture is composed of three main components and is showcased in image
5.11:

e Backbone Feature Extractor: The backbone is responsible for generating multi-

scale feature maps from the input image. Mask2Former is flexible in its choice of
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backbone, supporting both convolutional neural networks (CNNs) and transformer-
based models. The flexibility in backbone selection allows the architecture to benefit
from different types of feature extraction techniques, depending on the specific use

case.

Pixel Decoder: The pixel decoder in Mask2Former builds on advancements over
its predecessor, MaskFormer [65]. Specifically, it incorporates a "multi-scale de-
formable attention Transformer" (MSDeformAttn) [66], which enables efficient multi-
scale feature aggregation. MSDeformAttn adaptively focuses on relevant regions
across different scales, improving the model’s ability to capture both fine details

and larger contextual information.

Transformer Decoder: The transformer decoder is enhanced with "masked atten-
tion", which plays a critical role in refining segmentation masks. This mechanism
applies attention only to the predicted mask regions, instead of the entire feature
map, thereby reducing redundant computations and focusing the model’s capacity
on refining mask boundaries. As a result, the model not only becomes more efficient

but also produces higher-quality segmentation outputs.
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Image 5.11: Mask2Former architecture. The model consists of a backbone feature extractor,
a pixel decoder, and a Transformer decoder [19].

Despite being a universal segmentation architecture, Mask2Former still requires task-

specific training. This limitation is common among universal models, which, despite their

flexibility across tasks, necessitate specialized training for each type of segmentation (e.g.,

instance, panoptic, or semantic).

SegFormer

Segformer [20] is a novel architecture designed for efficient semantic segmentation,

combining the strengths of both transformers and convolutional neural networks (CNNs).

It is characterized by its ability to deliver high performance while maintaining a lightweight

structure, making it suitable for real-time applications.

The Segformer architecture consists of two main components:
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e Backbone Network: Segformer employs a hierarchical transformer-based backbone
that effectively captures multi-scale features from the input image. This backbone
uses a Mixing Transformer (MiT) [20] structure that allows for efficient feature
extraction and representation across various scales. Each layer in the MiT struc-
ture integrates information from different spatial resolutions, enabling the model to

handle both fine details and broader contextual information.

o Segmentation Head: The segmentation head is designed to produce accurate se-
mantic segmentation maps from the feature representations generated by the back-
bone. It utilizes a lightweight and flexible decoder that aggregates features from
different levels of the backbone, ensuring rich contextual information is retained.
This design enables Segformer to achieve high-quality segmentation results without

excessive computational overhead.
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Image 5.12: SegFormer architecture. It has a hierarchical Transformer encoder for feature
extraction and a lightweight MLP decoder for predicting the final mask [20].

One of the key innovations of Segformer is its efficient transformer design, which min-
imizes the computational burden typically associated with traditional transformer archi-
tectures. By leveraging both global and local attention mechanisms, Segformer strikes a
balance between computational efficiency and performance, making it competitive with
existing state-of-the-art methods while being easier to deploy in resource-constrained

environments.

DAFormer

DAFormer [21] is a cutting-edge architecture specifically designed for semantic seg-
mentation tasks, emphasizing data efficiency and robust performance. It introduces
a unique approach that leverages the strengths of both convolutional neural networks
(CNNs) and transformers to effectively capture contextual information while maintaining
computational efficiency.

The key components of DAFormer are as follows:
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e Mix Transformers (MiT) as encoder : Since robustness is an important property
in order to achieve good domain adaptation performance as it fosters the learning
of domain-invariant features, transformers are a good choice for domain adaptation
as they fulfill these criteria. The encoder follows the design of MiTs [20], which are

tailored for semantic segmentation. (5.11.2)

o Context Aggregation Module (CAM): DAFormer employs a context aggregation
module that enhances the model’s ability to capture long-range dependencies and
contextual information. The decoder utilizes not only the context information of the
bottleneck features but the context across features from different encoder levels as
well. They provide valuable low-level concepts for semantic segmentation at a high

resolution, which can also provide important context information.

o Efficient Feature Fusion (lightweight design):

Before the feature fusion, the feature map of each level is embedded to the same
number of channels by a 1x1 convolution and then are bilinearly upsampled to the
size of F1, and concatenated. Multiple parallel 3x3 depthwise separable convolu-
tions with different dilation rates are used for the context-aware feature fusion in a
similar fashion to ASPP [64](5.11.1).
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Image 5.13: DAFormer network [21]
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Datasets

6.1 Autonomous Driving Datasets

In this section, we present some common datasets used for semantic segmentation
models. The choice of a suitable dataset is of great importance for the training and
evaluation of the created models. The challenging task of dataset selection is one of the
first major steps in research, especially for a difficult and demanding scientific field, such
as autonomous driving, in which the vehicle exposure environment can be complex and

varied. The datasets are divided into two categories: real and synthetic datasets.

6.1.1 Real Datasets
Cityscapes Dataset

The Cityscapes dataset [22] is a large-scale benchmark dataset specifically designed
for urban scene understanding, with a focus on semantic segmentation. It consists
of high-resolution images of street scenes collected from 50 cities across Germany and
neighboring countries, captured under various weather conditions, seasons, and times of
day.

The dataset contains:

e Images: A total of 5,000 finely annotated images, divided into 2,975 images for
training, 500 for validation, and 1,525 for testing. Additionally, there are 20,000

coarsely annotated images for further pre-training or training.

e Annotations: Each image is labeled with 30 visual classes, of which 19 are used for
semantic segmentation. These classes include road, sidewalk, building, vegetation,
car, person, bicycle, and more. The annotations focus on pixel-level precision to

provide high-quality labels.

¢ Resolution: The images have a resolution of 2048x1024 pixels, making Cityscapes

a high-resolution dataset suitable for detailed segmentation tasks.

e Tasks: The dataset supports a variety of tasks including pixel-level semantic seg-
mentation, instance segmentation, and panoptic segmentation, making it a versatile

benchmark for evaluating model performance on urban scene understanding.
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Cityscapes is widely used as a benchmark for semantic segmentation and other vision
tasks in complex urban environments. Its challenging, diverse set of scenes, high-quality
annotations, and high resolution have made it a standard in the field for evaluating the

performance of segmentation models.

Image 6.1: Cityscapes Dataset [22]

Mapillary Vistas Dataset

The Mapillary Vistas dataset [23] is a large-scale, richly annotated street-level im-
agery dataset designed for scene understanding tasks such as semantic segmentation.
Collected from diverse environments worldwide, it represents a broad variety of scenes,
weather conditions, and perspectives.

The key characteristics of the Mapillary Vistas dataset include:

e Images: The dataset consists of over 25,000 high-resolution images sourced from
cities and rural areas across different continents, ensuring a wide variety of envi-

ronments, lighting conditions, and camera perspectives.

e Annotations: The dataset offers detailed pixel-level annotations for 124 object cat-
egories. These categories cover a wide range of semantic classes, including roads,
buildings, vehicles, pedestrians, traffic signs, vegetation, and more. The precise

labeling of small objects and fine details ensures high-quality training data.

e Resolution: Images are high resolution, varying between 1920x1080 and 4000x6000
pixels, making it suitable for fine-grained segmentation and detailed scene under-

standing tasks.

e Tasks: Mapillary Vistas is designed primarily for pixel-level semantic segmentation,
with its detailed annotations supporting training and evaluation of models in com-
plex environments. It also provides potential for other scene understanding tasks

like instance and panoptic segmentation.
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Diversity: One of the dataset’s strengths is its diversity, featuring images from
urban and rural environments, captured under various weather and lighting con-
ditions. This diversity helps models generalize better across different domains and

real-world settings.

The Mapillary Vistas dataset is considered a robust and challenging benchmark for

modern segmentation models, offering comprehensive annotations across diverse envi-

ronments and a wide range of object classes.

Image 6.2: Mapillary Vistas Dataset [23]

Adverse Conditions Dataset with Correspondences

The Adverse Conditions Dataset with Correspondences (ACDC) [24] is a dataset specif-

ically designed for semantic segmentation in challenging visual conditions. It focuses on

scenes captured in adverse weather and lighting conditions, providing a robust bench-

mark for training and evaluating models that need to perform well in suboptimal environ-

ments.

Key characteristics of the ACDC dataset include:

Images: The dataset consists of 4,006 high-resolution images collected from urban

driving scenes in various European cities.

Adverse Conditions: The dataset is divided into four challenging conditions: Fog,
Night, Rain, and Snow, allowing researchers to evaluate model performance in vi-

sually difficult scenarios.

Annotations: ACDC provides pixel-level annotations for 19 semantic classes, which
are consistent with the Cityscapes label set, making it compatible with models
trained on other urban scene datasets. The annotations cover a wide range of
object categories, including roads, vehicles, pedestrians, buildings, vegetation, and

other urban elements.

Resolution: The images are high-resolution (1920x1080 pixels), suitable for cap-

turing fine details that are essential in difficult conditions like fog or low light.

Split: The dataset is divided into training, validation, and test sets. Each condition
contains a balanced number of images, ensuring fair evaluation across different

adverse weather scenarios.
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e Purpose: ACDC is designed to push the boundaries of current semantic segmenta-
tion models by testing their robustness in adverse conditions, where visual features
might be obscured by environmental factors like snow or darkness. This makes it a
valuable resource for developing autonomous driving systems that need to operate

reliably in all weather and lighting conditions.

The ACDC dataset is a valuable benchmark for improving the robustness of segmen-
tation models in real-world, challenging conditions, making it essential for advancing the

performance of autonomous driving systems.

(a) Input image I (b) Stage 1 annotation (draft) (c) Corresponding image I’ (d) Stage 2 annotation (GT) (e) Invalid mask .J

Image 6.3: ACDC Dataset [24]

6.1.2 Synthetic Datasets
Synthia Dataset

The Synthia dataset [25] is a synthetic dataset designed for training and evaluating
semantic segmentation models, particularly for autonomous driving tasks. It provides a
wide variety of urban scenarios with pixel-level annotations, offering a valuable resource
for both training and benchmarking in environments that mimic real-world conditions.

Key characteristics of the Synthia dataset include:

e Synthetic Data: Synthia is a fully synthetic dataset, generated using a realistic 3D
engine to simulate urban driving environments. This approach allows for the cre-
ation of diverse and highly controlled scenarios, which can be difficult or expensive

to collect in the real world.

e Scenarios: The dataset covers a range of driving scenarios, including different
weather conditions, seasons, lighting conditions (day/night), and various urban

layouts like highways, residential areas, and city centers.

e Annotations: Synthia provides dense pixel-level annotations for up to 13-16 classes
in most sequences, such as roads, sidewalks, pedestrians, vehicles, traffic signs,

and more. It also supports other tasks like depth estimation and optical flow.

¢ Resolution and Perspectives: The images are available in high resolution (960x720
pixels), and the dataset includes various camera perspectives (front, left, right,
rear) to simulate the full 360-degree view typically needed for autonomous driving

systems.

e Purpose: Due to its synthetic nature, Synthia is particularly useful for tasks like
domain adaptation, where models trained on synthetic data are later fine-tuned or

evaluated on real-world datasets like Cityscapes or Mapillary Vistas. The diversity of
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environmental conditions also helps in creating models that generalize well across

different driving situations.

e Split: The dataset is split into various sequences that simulate continuous driving

in different environments, offering over 200,000 annotated frames.

The Synthia dataset is a valuable resource for advancing research in semantic seg-
mentation, particularly for autonomous driving applications, as it offers controlled and

diverse data that complements real-world datasets.

Image 6.4: SYNTHIA Dataset [25]

GTAS Dataset

The GTA5 dataset [26] is a large-scale synthetic dataset widely used for semantic
segmentation, specifically for domain adaptation tasks. It is generated using the Grand
Theft Auto V video game engine and provides dense pixel-level annotations for urban
street scenes. The dataset is designed to resemble real-world driving scenarios, closely

matching datasets like Cityscapes in terms of scene layout and labeling structure.

e The dataset contains 24,966 images rendered at a resolution of 1914x1052 pixels,
covering a wide range of weather conditions, lighting variations, and urban environ-

ments.

e [t includes pixel-level annotations for 19 classes, which align with those in the
Cityscapes dataset, making it a popular choice for synthetic-to-real domain adap-

tation.

e Each image in the dataset is labeled with classes such as road, sidewalk, building,

traffic light, and pedestrian, simulating real-world urban driving conditions.

e The synthetic nature of the dataset allows for efficient data collection and anno-
tation, offering a cost-effective solution for training deep learning models in au-

tonomous driving and segmentation tasks.
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The GTAS5 dataset has been instrumental in advancing research on domain adaptation,

enabling models trained on synthetic data to generalize effectively to real-world scenarios.

Image 6.5: GTA5 Dataset [26]

6.2 Other fields of knowledge

This section explores the datasets, used for other fields of knowledge, that will be
utilized in the experiments of chapter 7. Three datasets will be examined: the UAVID
dataset [27], the Medical Decathlon Prostate dataset, and the ACDC cardiac segmentation
challenge dataset [67].

6.2.1 Uavid Dataset

The UAVID dataset is a large-scale dataset designed specifically for urban scene se-
mantic segmentation using aerial imagery captured by Unmanned Aerial Vehicles (UAVs).
It consists of high-resolution images (4096 x 2160 pixels) captured from various urban
scenes across multiple cities. The dataset includes 42 sequences with over 4200 la-
beled images, annotated with 8 different semantic categories such as buildings, roads,
trees, and cars. UAVID aims to advance research in aerial segmentation and improve the

robustness of models for urban scene understanding from a bird ’ s-eye view.



6.2.2 Medical Decathlon Prostate dataset

Image 6.6: Uavid Dataset [27]

6.2.2 Medical Decathlon Prostate dataset

The Medical Decathlon Prostate dataset includes a total of 148 patients and is com-

posed of the following sources:

e NCI-ISBI-2013: Two datasets from the 2013 NCI-ISBI competition, with images
acquired from both 1.5T and 3T MRI scanners from different institutions [68], [69],
[70]. These datasets are labeled as A and B in the results.

e I2CVB: A dataset from the Initiative for Collaborative Computer Vision Benchmark-
ing, acquired using a 3T Siemens MRI scanner with multiple imaging techniques
(T2-W, DCE, DWI, MRSI) [68], [69], [71]. It is labeled as C in the results.

e PROMISE12: Three datasets from the PROMISE12 competition, collected from dif-
ferent medical centers with varying acquisition methods [68], [69], [72]. These are
labeled as D, E, and F.

o Medical Decathlon Dataset: A new dataset provided by the Medical Decathlon
Challenge, used for training and validation in within-distribution experiments [73].
It is labeled as G.

6.2.3 ACDC cardiac segmentation challenge dataset

The ACDC cardiac segmentation challenge dataset [67] is a dataset from the cardiac
segmentation challenge. This dataset consists of 100 MRI scans, with annotations for
the left ventricle, myocardium, and right ventricle. The slices used correspond to end-
diastole and end-systole periods. We evaluate the following types of corruption created
by the TorchlO software [74]:

e Motion: Simulates random motion artifacts caused by physiological organ move-

ment during MRI acquisition.

o Spike: Generates random spike artifacts, also known as Herringbone artifacts,

causing stripes across the image due to electromagnetic field spikes.

e Ghosting: Introduces random ghosting artifacts, usually caused by cardiac or pa-

tient motion during the scan or blood flow.
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e Bias Field: Simulates random intensity fluctuations due to MRI field inhomo-

geneities.
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Experimental Implementation

n this chapter, the experiments will be presented and analyzed. The datasets and the
metrics will be showcased as well. Finally, we will list the models that will be tested

and we will showcase the setup used for the experiments.

7.1 Evaluation Metrics

Mean Intersection over Union (mlIoU)

The mean Intersection over Union (mloU) is a widely used evaluation metric in se-
mantic segmentation tasks. It measures the overlap between predicted and ground truth
segmentation masks, making it a robust indicator of the model’s performance across
different classes.

The mloU metric is computed by taking the average Intersection over Union (IoU)
across all classes. The IoU for a single class is defined as the ratio between the intersection
and the union of the predicted segmentation and the ground truth segmentation for that

class. For a given class c, the IoU is calculated as:

Where P, is the set of pixels predicted to belong to class c, G, is the set of ground
truth pixels for class ¢, |P. U G| is the total number of pixels that are predicted or ground
truth for class c, including true positives, false positives, and false negatives. Thus, the
IoU for a given class quantifies the overlap between the predicted and actual regions for
that class, normalized by the total region. The mloU is the mean of the IoUs over all C

classes and is computed as:

7.2 Experiments

We will conduct three experiments. The first experiment will be performed using the

domain generalization pipeline (presented in section 4.3) presented in the work of [29].
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The source dataset will be the GTAS5 dataset(6.1.2) and the target dataset will be the
Cityscapes Dataset(6.1.1). The rest of the experiments will examine how this models
perform in other fields of knowledge. In particular, in the second experiment, we will
train and test these models on the Uavid dataset [27], a dataset used for training models
to be deployed on unmanned aerial vehicles. In the final experiments, we will be using
two medical datasets: the Medical Decathlon Prostate dataset [73], and the ACDC dataset

from the cardiac segmentation challenge [67]

7.2.1 Experiment 1
Configuration Details

In this experiment, we utilize the domain generalization pipeline showcased in section
4.3. The models are trained on the GTA5 dataset and evaluated on the Cityscapes dataset.
The data input images are cropped to 512x512 pixel resolution for both the training and
evaluation phases. The models were trained for 416.100 iterations. The metric used for
the evaluation will be the mloU metric and the optimizer used will be the Adam optimizer
[75]. A batch size of 3 was used for this experiment. The setup used for this experiment
consisted of an NVIDIA RTX 4000 Ada Generation Graphics Card with 20GB of video

memory.

7.2.2 Experiment 2
Configuration Details

In the second experiment, the models will be trained and tested on the Uavid dataset
[27]. The optimizer used will be the Adam optimizer again, the metric used will be the
mloU metric. The data input images are cropped to 1024x1024 pixel resolution for both
the training and evaluation phases. The models were trained for 50 epochs. The setup
used for this experiment consisted of an NVIDIA RTX 4000 Ada Generation Graphics Card
with 20GB of video memory. Due to memory limitations, gradient accumulation was used

in order to achieve a virtual batch size of 16 images.

7.2.3 Experiment 3
Configuration Details

In the final experiment, the models will be trained and tested on the Medical Decathlon
Prostate dataset and the ACDC dataset from the cardiac segmentation challenge. The
optimizer used will be the Adam optimizer again, the metric used will be the mloU metric.
The data input images are cropped to 224x224 pixel resolution for both the training and
evaluation phases. The models were trained for 20 epochs. The setup used for this
experiment consisted of an NVIDIA RTX 3070 Graphics Card with 8GB of video memory.

Finally, this experiment’s batch size will be 8 images.
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7.3 Models

The models trained and evaluated are listed below:

Backbone Decoder Model Size(GB) Model FLOPs
Params(M) (GFLOPs)
ResNet 18 [76] FarSee-Net [15] 0.063 16.6 13.09
MiT-B5 [20] Segformer [20] 0.325 85.1 110.02
MiT-B5 [20] DaFormer [21] 0.326 85.6 126.51
MiT-B5 [20] FarSee-Net [15] 0.328 86.2 83.51

Table 7.1. The models tested and their sizes in terms of parameters(M) and GB.

To assess the real-time segmentation capabilities of these models, we performed a

speed test using the code available in this repository [77]. The code generates random

images with a resolution of 512x512 and inputs them into the network. Subsequently,

it calculates the frames per second (fps) at which the model can perform segmentation.

Below are the results:

Model FPS
FarSee-Net 347.8
Segformer 21.66
DaFormer 19.5
FarSee-Net2 24.5

Table 7.2. Frames segmented per second by every model.

The FarSee-Net model is the only one capable of achieving real-time segmentation,

thanks to its lightweight encoder and decoder.

Among the three transformer-based

models, only FarSee-Net2, which uses the lightweight FarSee-Net decoder, is capable

of achieving close to real-time speeds.
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Presentation and Analysis of the Results

In this chapter, the results from the experiments will be presented and analyzed.

8.1 Experiment 1

8.1.1 Results

=
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GTA5 — Cityscapes
FarSee-Net 73.3 26.5 75.8 20.1 2.38 22.3 12.7 3.28 79.0 30.1 81.4 31.9 10.3 60.9 11.5 13.6 0.47 8.91 5.78] 30.0
Segformer 87.7 33.0 84.8 34.1 27.4 35.2 47.4 20.5 87.8 42.2 86.9 65.2 35.0 88.7 45.4 46.0 21.8 29.6 30.2| 49.9
DAFormer 90.0 45.0 85.4 36.4 26.4 37.7 44.7 23.0 87.5 42.7 88.0 68.5 39.0 89.0 45.1 42.5 29.5 27.7 28.3| 51.4
FarSee-Net2 88.7 34.9 85.6 36.1 26.5 32.4 43.2 20.9 87.1 39.0 88.5 65.8 39.6 87.3 46.4 49.7 36.7 26.7 27.8| 50.7

Table 8.1. Comparison of models on domain generalization pipeline. The models were
trained for 416.100 iterations, using synthetic data from the GTA5 dataset and evaluated
on the Cityscapes dataset. The table contains the IoU achieved by each model for each
class.

Model Memory(GB)
FarSee-Net 3.8
Segformer 19.22
DaFormer 20.0
FarSee-Net2 17.4

Table 8.2. Memory demand by every model during training.

8.1.2 Analysis

The training and evaluation of the models spanned approximately five days for the
transformer models, while the convolutional model required around two days. Notably,
the convolutional model demonstrated significantly lower memory usage during training,
making it less resource-intensive. However, this efficiency came at a cost: its performance
lagged behind that of the transformer models, which exhibited comparable mean Inter-
section over Union (mloU) scores. All classes experienced a noticeable drop in accuracy,
particularly in the rarer categories such as train, bike, and rider, where the decline was

especially pronounced.
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8.2 Experiment 2

8.2.1 Results

Models ‘ Building ‘ Road ‘ Tree ‘ LowVeg ‘ Moving Car ‘ Static Car | Human | Clutter | mIoU
Uavid

FarSee-Net 87.24 67.36 | 71.19 | 57.31 57.18 57.26 31.1 53.97 | 60.33

Segformer 92.67 77.44 | 78.32 70.6 72.88 69.04 43.42 6491 | 71.16

DAFormer 92.41 78.87 | 78.34 | 71.19 72.32 68.69 45.98 | 66.08 | 71.73

FarSee-Net2 | 92.55 | 79.88 | 79.24 | 71.19 71.51 68.11 45.27 | 67.23 | 71.87

Table 8.3. Comparison of models on Uavid Dataset. The models were trained for 50
epochs. The table contains the IoU achieved by each model for each class.

Model Memory(GB)
FarSee-Net 1.3
Segformer 14.7
DaFormer 15.5
FarSee-Net2 13.3

Table 8.4. Memory demand by every model during training.

8.2.2 Analysis

In this experiment, the transformer models exhibited similar performance levels, while
the convolutional model showed a slight decline in accuracy—although this drop was
less pronounced compared to previous findings. This outcome aligns with expectations,
given the absence of significant domain shifts in this dataset. Notably, the memory
consumption during training was consistent across the transformer models, highlighting

their comparable efficiency in resource utilization.
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8.3 Experiment 3

8.3.1 Results

Corruptions RandBias RandSpike RandMotion RandGhosting
LV MYO RV mloU| LV MYO RV mloU| LV MYO RV mloU| LV MYO RV mloU
FarSee-Net | 92.0 81.8 86.0 86.6 | 61.3 298 454 455 |93.6 84.6 87.8 88.7 | 925 81.6 87.1 87.1
Segformer | 92.3 82.2 85.7 86.7 | 61.4 449 475 5127|932 831 874 879 |92.6 812 86.3 86.7
DAFormer | 91.4 819 86.1 86.5 | 65.6 49.6 56.1 57.1 |93.6 84.1 88.3 88.7 | 92.6 81.3 86.7 86.9
FarSee-Net2 | 89.6 80.1 83.6 84.4 | 61.2 44.6 502 52.0 | 926 828 87.1 875 |91.7 80.6 852 858

Table 8.5. Comparison table of models’ evaluation on cardiac data. The results for each
class for every corruption are listed in columns.

Models G A B C D E F mloU
FarSee-Net | 98.9 | 77.1 | 58.1 | 65.1 | 69.7 | 52.9 | 64.4 | 64.55
Segformer 98.2 | 73.3 | 568.8 | 60.7 | 59.6 | 52.8 | 61.1 | 61.05
DAFormer | 98.6 | 79.9 | 65.6 | 63.1 | 68.2 | 50.6 | 58.9 | 64.4

FarSee-Net2 | 98.0 | 79.1 | 61.3 | 64.2 | 67.5 | 51.7 | 69.3 | 65.5

Table 8.6. Comparison table of models’ evaluation on the prostate data. The models are

trained on the G dataset and are evaluated separately on the A-F datasets.

Model Memory(GB)
FarSee-Net 1.1
Segformer 7.8
DaFormer 8.4
FarSee-Net2 6.5

Table 8.7. Memory demand by every model during training.

8.3.2 Analysis

In this experiment, the transformer and convolutional models demonstrate compara-

ble performance, with the convolutional model often achieving the best results or coming

in a close second in several cases. Notably, the convolutional model is the clear winner in

terms of memory efficiency during training, requiring significantly less memory bandwidth

compared to its transformer counterparts.
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Chapter E

Conclusions and Future Work

9.1 Conclusions

In this thesis, an analysis of the semantic segmentation challenge for autonomous
driving was conducted, encompassing various aspects. Existing solutions in the literature
were examined, and prominent models and datasets were presented. The approach to this
task was framed through the lens of Domain Generalization, with the ultimate adoption
of the state-of-the-art Domain Generalization pipeline developed in the works of [29], [32].

We decided to compare four models: FarSee-Net, Segformer, DAFormer, and FarSee-
Net2. FarSee-Net is one of the best convolutional models used for real-time semantic
segmentation. DAFormer was the model introduced in the works of [29], [32], while
Segformer was its predecessor which introduced the MiT-B5 encoder [20]. FarSee-Net2
is a new architecture that uses the MiT-B5 backbone along with the efficient and com-
putationally light FarSee-Net decoder. It was developed for this thesis to achieve faster
inference and training times.

The 4 models were trained and tested on the same datasets (GTA5 — Cityscapes), as
well as the same datasets regarding new fields of knowledge (UAV and medical imaging).
The results showcased that the transformer models perform far better in real-world appli-
cations, thanks to their robustness and adaptability. The exception was the medical data,
where the convolutional model remained competitive, assuming due to the domain shift
between the training and testing data not being as prominent. FarSee-Net2 outperformed
the other models on the UAV dataset and did comparably well to the best models in each
of the other 2 experiments. The advantage of FarSee-Net2 lies in its lesser computational

demand during deployment for testing and training.

9.2 Future Work

While transformers are robust and insusceptible to domain shifts, they are far from
being a viable solution in real-time tasks. In our case, by using an efficient decoder we
managed to speed up inference speed without sacrificing accuracy. However, this slight
decrease in inference time is not enough to achieve real-time segmentation or speeds
comparable to those of convolutional models. We suggest that an effort should be made

to reduce the computational burden inflicted by transformer models, as it seems to be the
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primary source of the spike in inference times when compared to convolutional architec-

tures.



Bibliography

[1] Amy Bearman, Olga Russakovsky, Vittorio Ferrari kat Li Fei-Fei. What’s the point:

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

Semantic segmentation with point supervision. European conference on computer vi-
sion, ogAideg 549-565. Springer, 2016.

Sumit Saha. A comprehensive guide to convolutional neural networks—the ELI5 way.
Towards data science, 15:15, 2018.

Introduction to Convolutional Neural Networks CNNs.

Ahmadsabry. A Perfect guide to Understand Encoder Decoders in Depth with Visuals.
2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly kat others. An image is worth 16x16 words: Transformers for image

recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

Pedro O Pinheiro kat Ronan Collobert. From image-level to pixel-level labeling with
convolutional networks. Proceedings of the IEEE conference on computer vision and
pattern recognition, oeAibeg 1713-1721, 2015.

Jifeng Dai, Kaiming He xat Jian Sun. Boxsup: Exploiting bounding boxes to su-
pervise convolutional networls for semantic segmentation. Proceedings of the IEEE

international conference on computer vision, oeAideg 1635-1643, 2015.

Yunsheng Li, Lu Yuan kat Nuno Vasconcelos. Bidirectional learning for domain adap-
tation of semantic segmentation. Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, ceAideg 6936-6945, 2019.

Yunhui Guo, Yandong Li, Rogério Schmidt Feris, Ligiang Wang kat Tajana Simunic.
Depthwise Convolution is All You Need for Learning Multiple Visual Domains. ArXiv,
abs/1902.00927, 2019.

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin kat Jian Sun. ShuffleNet: An Extremely
Efficient Convolutional Neural Networl for Mobile Devices. 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, oeAideg 6848-6856, 2017.

Vijay Badrinarayanan, Alex Kendall kat Roberto Cipolla. SegNet: A Deep Convolu-
tional Encoder-Decoder Architecture for Image Segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 39:2481-2495, 2015.



BIBLIOGRAPHY

(12]

(13]

(14]

[15]

(16]

(17]

(18]

[19]

[20]

(21]

(22]

Changgian Yu, Changxin Gao, Jingbo Wang, Gang Yu, Chunhua Shen xkat Nong
Sang. BiSeNet V2: Bilateral Networlk with Guided Aggregation for Real-Time Semantic
Segmentation. International Journal of Computer Vision, 129:3051 - 3068, 2020.

Song Han, Jeff Pool, John Tran kat William J. Dally. Learning both Weights and
Connections for Efficient Neural Network. Neural Information Processing Systems,
2015.

Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally
kat Kurt Keutzer. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters
and< 0.5 MB model size. arXiv preprint arXiv:1602.07360, 2016.

Zhanpeng Zhang xkat Kaipeng Zhang. Farsee-net: Real-time semantic segmentation
by efficient multi-scale context aggregation and feature space super-resolution. 2020
IEEE International Conference on Robotics and Automation (ICRA), oeAibeg 8411-8417.
IEEE, 2020.

Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu, Zekun Luo, Yabiao Wang,
Yanwei Fu, Jianfeng Feng, Tao Xiang, Philip HS Torr kat others. Rethinking semantic
segmentation from a sequence-to-sequence perspective with transformers. Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, oeAibsg 6881-
6890, 2021.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin
kat Baining Guo. Swin transformer: Hierarchical vision transformer using shifted
windows. Proceedings of the IEEE/CVF international conference on computer vision,
oeAibeg 10012-10022, 2021.

Robin Strudel, Ricardo Garcia, Ivan Laptev kat Cordelia Schmid. Segmenter: Trans-
Jformer for semantic segmentation. Proceedings of the IEEE/CVF international confer-

ence on computer vision, oeAideg 7262-7272, 2021.

Bowen Cheng, Ishan Misra, Alexander G Schwing, Alexander Kirillov xat Rohit Gird-
har. Masked-attention mask transformer for universal image segmentation. Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition, oeAibeg
1290-1299, 2022.

Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M Alvarez kat Ping
Luo. SegFormer: Simple and efficient design for semantic segmentation with trans-

Jormers. Advances in Neural Information Processing Systems, 34:12077-12090, 2021.

Lukas Hoyer, Dengxin Dai kat Luc Van Gool. Daformer: Improving networlk architec-
tures and training strategies_for domain-adaptive semantic segmentation. Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, oeAidsg 9924~
9935, 2022.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus En-

zweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth xkai Bernt Schiele. The



BIBLIOGRAPHY

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

cityscapes dataset for semantic urban scene understanding. Proceedings of the IEEE

conference on computer vision and pattern recognition, oeAideg 3213-3223, 2016.

Gerhard Neuhold, Tobias Ollmann, Samuel Rota Bulo kat Peter Kontschieder. The
mapillary vistas dataset for semantic understanding of street scenes. Proceedings of

the IEEE international conference on computer vision, oeAideg 4990-4999, 2017.

Christos Sakaridis, Dengxin Dai kat Luc Van Gool. ACDC: The Adverse Conditions
Dataset With Correspondences for Semantic Driving Scene Understanding. Proceed-
ings of the IEEE/CVF International Conference on Computer Vision (ICCV), oeAibeg
10765-10775, 2021.

German Ros, Laura Sellart, Joanna Materzynska, David Vazquez kait Antonio M.
Lopez. The SYNTHIA Dataset: A Large Collection of Synthetic Images for Semantic
Segmentation of Urban Scenes. 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), oeAideg 3234-3243, 2016.

Stephan R. Richter, Vibhav Vineet, Stefan Roth kat Vladlen Koltun. Playing for
Data: Ground Truth from Computer Games. European Conference on Computer Vision
(ECCV)Bastian Leibe, Jiri Matas, Nicu Sebe kat Max Welling, ermpeAntég, topog 9906
oto LNCS, ogAibeg 102-118. Springer International Publishing, 2016.

Ye Lyu, George Vosselman, Gui Song Xia, Alper Yilmaz ka1t Michael Ying Yang. UAVid:
A semantic segmentation dataset for UAV imagery. ISPRS journal of photogrammetry
and remote sensing, 165:108-119, 2020.

Yujian Mo, Yan Wu, Xinneng Yang, Feilin Liu kat Yujun Liao. Review the state-of-the-
art technologies of semantic segmentation based on deep learning. Neurocompuiting,
493:626-646, 2022.

Lukas Hoyer, Dengxin Dai kat Luc Van Gool. Hrda: Context-aware high-resolution
domain-adaptive semantic segmentation. European conference on computer vision,
oeAideg 372-391. Springer, 2022.

Jia Deng, Wei Dong, Richard Socher, Li Jia Li, Kai Li xat Li Fei-Fei. ImageNet: A
large-scale hierarchical image database. 2009 IEEE Conference on Computer Vision
and Pattern Recognition, oeAideg 248-255, 2009.

Yuyang Zhao, Zhun Zhong, Na Zhao, Nicu Sebe kat Gim Hee Lee. Style-hallucinated
dual consistency learning for domain generalized semantic segmentation. European

conference on computer vision, oeAideg 535-552. Springer, 2022.

Lhoyer. GitHub - lhoyer/HRDA: [ECCV22] Official Implementation of HRDA: Context-

Aware High-Resolution Domain-Adaptive Semantic Segmentation.

Yann LeCun, Yoshua Bengio kat Geoffrey Hinton. Deep learning. nature,
521(7553):436-444, 2015.



BIBLIOGRAPHY

(34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Junsong Fan, Zhaoxiang Zhang, Chunfeng Song kat Tieniu Tan. Learning integral
objects with intra-class discriminator for weakly-supervised semantic segmentation.
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
oeAibeg 4283-4292, 2020.

Yu Ting Chang, Qiaosong Wang, Wei Chih Hung, Robinson Piramuthu, Yi Hsuan Tsai
rat Ming Hsuan Yang. Weakly-supervised semantic segmentation via sub-category
exploration. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, oeAideg 8991-9000, 2020.

Deepak Pathak, Philipp Krahenbuhl kat Trevor Darrell. Constrained convolutional
neural networks for weakly supervised segmentation. Proceedings of the IEEE inter-

national conference on computer vision, oeAideg 1796-1804, 2015.

Anna Khoreva, Rodrigo Benenson, Jan Hosang, Matthias Hein xkat Bernt Schiele.
Simple does it: Weakly supervised instance and semantic segmentation. Proceedings
of the IEEE conference on computer vision and pattern recognition, oeAibeg 876-885,
2017.

Wei Xia, Csaba Domokos, Jian Dong, Loong Fah Cheong kat Shuicheng Yan. Seman-
tic segmentation without annotating segments. Proceedings of the IEEE international

conference on computer vision, oeAibeg 2176-2183, 2013.

Rui Qian, Yunchao Wei, Honghui Shi, Jiachen Li, Jiaying Liu xat Thomas Huang.
Weakly supervised scene parsing with point-based distance metric learning. Proceed-
ings of the AAAI Conference on Artificial Intelligence, topog 33, ogAideg 8843-8850,
2019.

Yanchao Yang kat Stefano Soatto. Fda: Fourier domain adaptation for semantic
segmentation. Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, oeAibeg 4085-4095, 2020.

Zuxuan Wu, Xintong Han, Yen Liang Lin, Mustafa Gokhan Uzunbas, Tom Goldstein,
Ser Nam Lim xat Larry S Davis. Dcan: Dual channel-wise alignment networks for
unsupervised scene adaptation. Proceedings of the European Conference on Computer
Vision (ECCV), oe)Aibeg 518-534, 2018.

Marco Toldo, Andrea Maracani, Umberto Michieli kat Pietro Zanuttigh. Unsupervised

domain adaptation in semantic segmentation: a review. Technologies, 8(2):35, 2020.

Xinge Zhu, Hui Zhou, Ceyuan Yang, Jianping Shi kat Dahua Lin. Penalizing top
performers: Conservative loss for semantic segmentation adaptation. Proceedings of
the European Conference on Computer Vision (ECCV), oeAideg 568-583, 2018.

Zak Murez, Soheil Kolouri, David Kriegman, Ravi Ramamoorthi xat Kyungnam Kim.
Image to image translation for domain adaptation. Proceedings of the IEEE conference

on computer vision and pattern recognition, oeAibeg 4500-4509, 2018.



BIBLIOGRAPHY

[45]

[46]

[47]

(48]

[49]

(50]

(51]

(52]

(53]

[54]

[55]

(56]

Haoshuo Huang, Qixing Huang kat Philipp Krahenbuhl. Domain transfer through
deep activation matching. Proceedings of the European Conference on Computer Vision
(ECCV), oe)ibeg 590-605, 2018.

Yi Hsuan Tsai, Wei Chih Hung, Samuel Schulter, Kihyuk Sohn, Ming Hsuan Yang
xat Manmohan Chandraker. Learning to adapt structured output space for semantic
segmentation. Proceedings of the IEEE conference on computer vision and pattern
recognition, oeAibeg 7472-7481, 2018.

Matteo Biasetton, Umberto Michieli, Gianluca Agresti kat Pietro Zanuttigh. Unsu-
pervised domain adaptation for semantic segmentation of urban scenes. Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops,
oelideg 0-0, 2019.

Kuniaki Saito, Yoshitaka Ushiku, Tatsuya Harada xkat Kate Saenko. Adversarial

dropout regularization. arXiv preprint arXiv:1711.01575, 2017.

Teo Spadotto, Marco Toldo, Umberto Michieli kat Pietro Zanuttigh. Unsupervised
domain adaptation with multiple domain discriminators and adaptive self-training.
2020 25th International Conference on Pattern Recognition (ICPR), oeAibeg 2845-2852.
IEEE, 2021.

Minghao Chen, Hongyang Xue kat Deng Cai. Domain adaptation for semantic seg-
mentation with maximum squares loss. Proceedings of the IEEE/CVF International
Conference on Computer Vision, oeAideg 2090-2099, 2019.

Min Wang, Baoyuan Liu kat Hassan Foroosh. Factorized Convolutional Neural Net-
works. 2017 IEEE International Conference on Computer Vision Workshops (ICCVW),
oelideg 545-553, 2016.

Adam Paszke, Abhishek Chaurasia, Sangpil Kim kat Eugenio Culurciello. ENet:
A Deep Neural Networlk Architecture for Real-Time Semantic Segmentation. ArXiv,
abs/1606.02147, 2016.

Christian Szegedy, Vincent Vanhoucke, Sergey loffe, Jonathon Shlens kat Zbigniew
Wojna. Rethinking the Inception Architecture for Computer Vision. 2016 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), oeAibeg 2818-2826, 2015.

Mingyuan Fan, Shengqi Lai, Junshi Huang, Xiaoming Wei, Zhenhua Chai, Junfeng
Luo ka1 Xiaolin Wei. Rethinking BiSeNet For Real-time Semantic Segmentation. 2021
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), oe)ideg
9711-9720, 2021.

Karen Simonyan kat Andrew Zisserman. Very Deep Convolutional Networlks for Large-
Scale Image Recognition. CoRR, abs/1409.1556, 2014.

Vladimir Nekrasov, Chunhua Shen kat Ian D. Reid. Template-Based Automatic
Search of Compact Semantic Segmentation Architectures. 2020 IEEE Winter Con-
ference on Applications of Computer Vision (WACV), oeAideg 1969-1978, 2019.



BIBLIOGRAPHY

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Changgian Yu, Jingbo Wang, Chao Peng, Changxin Gao, Gang Yu kat Nong Sang.
BiSeNet: Bilateral Segmentation Networlk for Real-time Semantic Segmentation. ArXiv,
abs/1808.00897, 2018.

Yuanduo Hong, Huihui Pan, Weichao Sun kat Yisong Jia. Deep Dual-resolution
Networks for Real-time and Accurate Semantic Segmentation of Road Scenes. ArXiv,
abs/2101.06085, 2021.

Thomas Verelst kat Tinne Tuytelaars. SegBlocks: Block-Based Dynamic Resolution
Networks for Real-Time Segmentation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 45:2400-2411, 2020.

Determine FiltersTmportance. Pruning Filters for Efficient ConvNets.

Yihui He, Xiangyu Zhang kat Jian Sun. Channel pruning for accelerating very deep
neural networks. Proceedings of the IEEE international conference on computer vision,
oeAibeg 1389-1397, 2017.

Georgios Takos. A Survey on Deep Learning Methods for Semantic Image Segmentation
in Real-Time. ArXiv, abs/2009.12942, 2020.

Song Han, Huizi Mao kat William J. Dally. Deep Compression: Compressing Deep
Neural Networlk with Pruning, Trained Quantization and Huffman Coding. arXiv: Com-

puter Vision and Pattern Recognition, 2015.

Liang Chieh Chen, George Papandreou, lasonas Kokkinos, Kevin Murphy kat Alan
L Yuille. Deeplab: Semantic image segmentation with deep convolutional nets, atrous
convolution, and fully connected crfs. IEEE transactions on pattern analysis and
machine intelligence, 40(4):834-848, 2017.

Bowen Cheng, Alex Schwing kat Alexander Kirillov. Per-pixel classification is not
all you need for semantic segmentation. Advances in Neural Information Processing
Systems, 34:17864-17875, 2021.

Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang kat Jifeng Dai. De-
formable detr: Deformable transformers for end-to-end object detection. arXiv preprint
arXiv:2010.04159, 2020.

Olivier Bernard, Alain Lalande, Clement Zotti, Frederick Cervenansky, Xin Yang,
Pheng Ann Heng, Irem Cetin, Karim Lekadir, Oscar Camara, Miguel Angel Gonzalez
Ballester kat others. Deep learning techniques for automatic MRI cardiac multi-
structures segmentation and diagnosis: is the problem solved? IEEE transactions
on medical imaging, 37(11):2514-2525, 2018.

Nassir Navab, Joachim Hornegger, William M Wells kat Alejandro Frangi. Medical
Image Computing and Computer-Assisted Intervention-MICCAI 2015: 18th Interna-
tional Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III, to6110g
9351. Springer, 2015.



BIBLIOGRAPHY

[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

(77]

Quande Liu, Qi Dou, Lequan Yu kat Pheng Ann Heng. MS-Net: multi-site networl _for
improving prostate segmentation with heterogeneous MRI data. IEEE transactions on
medical imaging, 39(9):2713-2724, 2020.

Nicholas Bloch, Anant Madabhushi, Henkjan Huisman, John Freymann, Justin
Kirby, Michael Grauer, Andinet Enquobahrie, Carl Jaffe, Larry Clarke kait Keyvan
Farahani. NCI-ISBI 2013 challenge: automated segmentation of prostate structures.

The Cancer Imaging Archive, 2015.

Guillaume Lemaitre, Robert Marti, Jordi Freixenet, Joan C Vilanova, Paul M Walker
kat Fabrice Meriaudeau. Computer-aided detection and diagnosis for prostate can-
cer based on mono and multi-parametric MRI: a review. Computers in biology and
medicine, 60:8-31, 2015.

PROMISE12 Challenge Organizers. Prostate MR Image Segmentation 2012 Challenge,
2012. Accessed: 2024-09-25.

Michela Antonelli, Annika Reinke, Spyridon Bakas, Keyvan Farahani, Annette Kopp-
Schneider, Bennett A Landman, Geert Litjens, Bjoern Menze, Olaf Ronneberger,
Ronald M Summers kat others. The medical segmentation decathlon. Nature com-
munications, 13(1):4128, 2022.

Fernando Pérez-Garcia, Rachel Sparks kat Sébastien Ourselin. TorchlO: a Python
library for efficient loading, preprocessing, augmentation and patch-based sampling
of medical images in deep learning. Computer methods and programs in biomedicine,
208:106236, 2021.

P Kingma Diederik. Adam: A method for stochastic optimization. (No Title), 2014.

Kaiming He, Xiangyu Zhang, Shaoqing Ren kat Jian Sun. Deep residual learning for
image recognition. Proceedings of the IEEE conference on computer vision and pattern
recognition (CVPR), ogAibeg 770-778, 2016.

Zh. GitHub - zh320/realtime-semantic-segmentation-pytorch: PyTorch implementation
of over 30 realtime semantic segmentations models, e.g. BiSeNetv1, BiSeNetv2, CGNet,
ContextNet, DABNet, DDRNet, EDANet, ENet, ERFNet, ESPNet, ESPNetv2, FastSCNN,
ICNet, LEDNet, LinkNet, PP-LiteSeg, SegNet, ShelfNet, STDC, SwiftNet, and support

knowledge distillation, distributed training etc.



	Abstract
	Acknowledgements
	Eksetameni Perilipsi sta Ellinika
	Semasiologiki Tmimatopoiisi me Astheni Epivlepsi
	Prosarmogi Tomea sti Simasiologiki Tmimatopoiisi
	Agogos Genikefsis Tomea
	FarSeeFormer
	Parousiasi kai Analysi ton Apotelesmaton
	Apotelesmata
	Analysi

	Symperasmata kai Mellontiki Ergasia
	Symperasmata
	Mellontiki Ergasia


	Introduction
	Objective of the Thesis 
	Thesis Organization

	I Theory
	Theoretical Background
	Deep Neural Networks
	Neural Networks
	Convolutional Neural Networks
	Encode-Decoder Architectures
	Vision Transformers

	Domain Generalization and the Out-of-Distribution Problem
	Domain Shift
	Dataset Bias and Overfitting
	Domain Generalization (DG)


	Weakly-supervised semantic segmentation and Domain Adaptation
	Weakly-supervised semantic segmentation
	Segmentation algorithm based on image-level labels
	Segmentation algorithm based on bounding-box
	Segmentation algorithm based on point

	Domain adaptation in semantic segmentation
	Input-level domain adaptation
	Feature-level domain adaptation
	Output-level domain adaptation

	Domain Generalization Pipeline

	Real-time semantic segmentation
	Convolution Factorization—Depthwise Separable Convolutions
	Channel Shuffling
	Early Downsampling
	The Use of Small Size Decoders
	Efficient Reduction of the Feature Maps’ Grid Size
	Increasing Network Depth While Decreasing Kernel Size
	Two-Branch Networks
	Block-Based Processing with Convolutional Neural Networks
	Pruning
	Quantization
	State of the art Models
	Convolutional models
	Vision Transformer models


	Datasets 
	Autonomous Driving Datasets
	Real Datasets
	Synthetic Datasets

	Other fields of knowledge
	Uavid Dataset
	Medical Decathlon Prostate dataset
	 ACDC cardiac segmentation challenge dataset



	II Experiments
	Experimental Implementation
	Evaluation Metrics
	Experiments
	Experiment 1
	Experiment 2
	Experiment 3

	Models

	Presentation and Analysis of the Results
	Experiment 1
	Results
	Analysis

	Experiment 2
	Results
	Analysis

	Experiment 3
	Results
	Analysis



	III Epilogue
	Conclusions and Future Work
	Conclusions
	Future Work


	Bibliography

