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ITepiindm

It aipxetd ypdvia Téhpea, ol tpoondieleg enéxtaong tne dngloxnc enelepyasiag edvag oe alyopituoug avdhuong
%o XoTAvONoNg Toug €yxouv xadopioel o peydho Bodud v mopela TN TeYVNTHC vonuoolvng. H avdntuén npo-
NYUEVLVY povTédny Badide udinone éxel emtpédel TNy emTUYY| avdAUGT XL XATOVONOY) TOAOTAOXWY EMOVLV OE
TOWXIAEC EQUPUOYES, UTO TNV AUTOUATY] AVAYVAPLOT| AVTIXEWEVWY TN XadnueptvodTnTog Péypel TNV LarTeler) dudyv-
wor. H yphon tng texvntic vonuoolhvng otny tatpixt| anetxdvior npoxakel enavdotacy otov Touéa tng vyelag,
xotopddvovtag va mapéyoval o oxplBelc, anoteAeouaTinés ot eEUTOUNEVUEVES DLy VOO TIXEC ou Yepaneu-
Tixéc emhoyég otoug actevelg. 2otdoo, Topd Tic Tpoonddeieg yio otadloxy| Eviadn TG TEXVNTAC YONUooHVNG
oTOV Topéa TN LYelag, 1 LoTexy) xowvoTnTa Bev @alveTton Vo Tng Oely Vel ambALTY EUTOTOOUYY. To Thalolo
auto, N enednynowodtta (interpretability) twv cuonudtwy teyvnTic vonuooivng, oyt uévo cuufBdiiel TNV
evioyuon Tou xAuatog eumioToclvng, ahhd £xel anoTunwiel xou (¢ BIXUlwU TOU UTOXEWEVOU GTNY eNeErynom
ano@doewy oL AouPdvovton pe autopatonomuévo tpéro. O Vision Transformers (ViTs) efvon pio tpdopatn
TPOGEYYLON OTOV TOUEN TNG OPUOTE UTOAOYLOTWY, TOU €pYOVTAL VO AVTIXATAC THOOLY Ta, €W TOEA xuplapya
otV avdluon TV exévey, Buvehtixd Nevpwvixd Alxtua (CNNs), yenoylomoldviog unyoviololc Teoco-
yfc (attention mechanisms) mouv cuvavtdvtow cuyvd oty enclepyacio uoic yhwooos. Kobdde or ViTs
elvon mohUmhoxa povtéla mou avtipetenilouy dedouéva LPNAHC Bldo Taong, N AvVOTATA TOUS Vo EENYHoOLY TIC
anopdoels toug ebvan Lot onpaciog xou tepthopPdver Ty eZoywyn xopetdv (attention, saliency, relevancy)
Yl TNV ETUONUEIWOY TWV TEPLOYOY TNS eXovac Tou énanloy xotoploTixd pOAO Yl TNV TEAYUATONOMON TNe
TaEwépunone ond to povtéro. Lny mopoloa SImAwUaTX epyaota, yiveton e@apuroyt oplouévwy Interpretable
Vision Transformer dutinv ot wtpixd chvola dedouévwy dlagopetixiic pbone. Ilio cuyxexpéva, e@opud-
Coupe to ProtoPFormer, to ViT-NeT oe téooepa datasets, to omolor nepihopBdvouy aovinég xan pory vTixég
Topoypaplee, lotomadohoyinée edves xat edves and evBooxomHoels. AXOUA, TEOXEWEVOU Vo 0ELONOYICOUUE
v enidpoor twv built-in yedddwv epunvevoidtntag oty axplBela TV PoVTEAWY, epapudélovye €vay oamhd
Transformer, tov Swin, cuvbuocuévo pe Grad-CAM w¢ post-hoc pédodo enelnynowwdtnroc, oo TopAmdvVe
oUvoAa Bedopévey o cuyxplivoupe Tic emddoels. Ta melpapatind anoteréopata anodexviouy 6TL 1 Teoc¥rixn
gpUNVEVOLOTNTOC OTal dixTU UEANOV BeEATIOVEL, Topd Uewwvel Ty axpifeta Twv ViTs.

Ag&eig-xhedid —  Teywnt Nonuoolvn, Badid Mdidnon, ‘Opoaon Trmoloyiotwhy, Interpretable Vision

Transformers, latpur Anewovion, Enegnynowotnta, Epunvevootnta, ProtoPFormer, ViT-Ne, Swin Trans-
former, Grad-CAM.
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Abstract

For several years now, efforts to extend digital image processing into image analysis and understanding
algorithms has set the course for artificial intelligence. The developement of advanced deep learning models
has enabled the successful analysis and understanding of complex images in a variety of applications, from
automated recognition of everyday objects to medical diagnosis. The use of artificial intelligence in medical
imaging is revolutionizing healthcare, by providing more accurate, efficient and personalized diagnostic and
treatment options to patients. Nevertheless, despite efforts to gradually integrate artificial intelligence into
healthcare, the medical community does not seem to fully trust it. In this context, the explainability of
artificial intelligence systems, not only contributes to strengthening the climate of trust, but has also been
reflected as the subject’s right to explain decisions made in an automated manner. Vision Transformers (ViTs)
are a recent approach in the fild of computer vision, coming to replace the hitherto dominant Convolutional
Neural Networks (CNNs) in image analysis, using attention mechanisms often encountered in natural language
processing. As complex models dealing with high-dimensional data, ViT’s ability to explain their decisions
is crucial and includes the generation of maps (attention, saliency, relevancy) to highlight the regions of the
image that were definitive in making the classification by the model. In this thesis, specific Interpretable
Vision Transformer networks are applied to medical imaging datasets of different nature. More specifically, we
apply ProtoPFormer and ViT-NeT to four datasets, which include CT and MRI scans, histopathology images,
and endoscopy images. Also, in order to evaluate the effect of interpretability methods on the accuracy of the
models, we apply a simple Transformer, the Swin, combined with Grad-CAM, as a post-hoc explainability
method, to the above datasets and compare the performances. Experimental results demonstrate that adding
interpretability to networks rather improves, than degrades, the accuracy of ViTs.

Keywords — Artificial Intelligence, Deep Learning, Computer Vision, Interpretable Vision Transformers,
Medical Imaging, Explainability, Interpretability, ProtoPFormer, ViT-NeT, Swin Transformer, Grad-CAM.
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Chapter 0. Extetopévn Ieptindmn ota EAAnvixd

0.1 Oeswpntxd YnoBadeo

Y obyypeovn teyxvohroyia, Ayeg e€ehielc €youv avadloapopphoel Ty xowvwvia téco Bathd dco N teyynt
vonpooUvn (AI). Ou anapyée e texvnTic vonuoolvng avdyovia ota péoa Tou 2000 oudva, dTay TpnTondpol
onwe o Alan Turing xou o John McCarthy édcoav ta evvolohoyixd Yepéha yio Tic euguelc unyavéc. ‘Extote,
n Al éyel vrnootel alioonuelwtn e€€MEr, wlolpevn and v exdetinh adinon tne vtohoyloTxrc toyvog, TLv
TEQAOTIOY CUVOAWY DEBOPEVWV XL TV XavoTouwy ohyoplduwy. ‘Evac and toug mo onuavtiois xAddoug
e TEYYNTASC YONUOoUVNG, 1 UTOAOYLOTIXY OpdoT), ETUTEENEL OTIC UNYOVEC VO EPUNVEVOUV XL VAl XUTAVOOUY
Tov omTiXd x6opo [1]. And ta cusTAUATA avayVORLoNS TPocHOTou [2] xou Ty avtdvoprn odhynon [3] uéxet Tic
eQopuoYEs emainuévne mpaypatxdntae [4] xou v wtpued, anewxdvion [5], n vnoloylotin Gpaor Bamepvd
didpopeg Plognyavies, enavarpocdlopilovtag Tov TpoTo Y ToV 0molo avTAaUBavOUdcTE ot AAANAETUOPOUYE Ue
T0 TEPPBdANOY Yag.

Y Tov ToU£d TNE LITEIXAC ATEXOVLOTNG, TIoRd TNV TEd0B0, OL BLoY VWO TIXES TROXANOELS TORUUEVOLY, XOUDE 1) TEALXN
andpaon eZoptdton anoxAetoTxd ond TV xplon tov wtedy [6]. H teyvnti vonuooivn unopel va pewdoel ta
tpid o@diparta uéow ohyopiduwy mou padoivouy ond otpeixd dedopéva [7-9]. Qotboo, 1 epunvevoudnTa
TV AnoPdoewy TN TeYYNTAC vonpoolvng elvan xplowy, eldixd otov tatpixd Topéa, 6mou oL eENYHOELS TWV
ohyoplduwy elvor amopoltnTes Yot TNV EUTIGTOCUVY X0 THY XoTavonon Twv anoteheopdtwy [10]. Ov Vision
Transformers (ViTs) eivon pior tpdo@aty EUPAVIOn OTOV TOUEN TNE UTONOYLOTIXAS GpaoTG TIOU TPOGPEREL VEES
BUVUTOTNTES GTNY AVAAUGCT) LATELXOV EXGVOV, OANG 1) EpUNVELSIUOTNTE Toug Ttapoauével ud diepedivnon [11].

0.1.1 Teyvntd Nevpwvixd Alxtua

To Teyvntéd Nevpwvixd Aixtua (ANNS) epgavictiroay ) dexoetion Tou 1980 xou npocopoudvouy o Blohoyixd
veEupwVIXd dixtua Tou avipdmvou eyxepdiou [12]. Ta ANNs anoteholvton and diacuvdedepévous xdufouc A
VEUPOVES, 0pYAVOUEVOUC oe oTpwoels. Kdle veupmvac Aopfdvel eioepyoueva onpota, ta enelepydletar péow
Hlag cUVAETNOTG evepyoTolnong xa mapdyet éva e€epyduevo orfua. H diadixacio pdinong o éva ANN nepulop-
Bdvel TNV TEOCUEUOYY) TWV TOEUUETEMY TOU Yia TNV ehaytlotonoinon e andxhione Letoll TeV TEOBAETOUEVLY
X0l TOV TRAYHATIXOY EE60WY P€ow plag cuvdptnong anwiclas. Ilapdho nou ta ANNs elvon ypriowa, 1 xavoTntd
Toug va Sroyetpilovion TNV TOAUTAOXOTNTA TWV BEDOUEVKV EMOVOC Elvan TEPLOPLOPEVY), YEYOVOS Tou odnyel oe
UTEPBOMXES amoUTHOELS UTOAOYLIG TIXAC Loy loc xat xivduvo unepnpocapuoyic [13-15].

0.1.2 Apyitextovixyy CNN

To Suvehtind Nevpwvind Aixtua (CNNs) etvon pior e€etdixevpévn xatnyopia Texvntdv Nevpwvixdv Auxtdwy,
oyedlaouévn xuplwe Yo Ty enclepyasio ontindy dedopévwy [16, 17]. Or CNNs ypnoyonololbvton o€ EQaproYés
OTWE 1) TAEWVOUNGCT ELXOVWY, T CNUUCIOAOYIXTY] TUNUATOTOMGT EOVELY xat 1) aviyveuoT avTixeiuévwy. Ot otpd-
oec twv CNNs aroteholvton and veuphvee datetaypévous ot Tpele dlaotdoele (Odoc, mhdtoc xou Béddoc), xou
%&E VELEWVOC CUVDEETAL UOVO UE WLl CUYXEXPLIEVT] TEplOYY) TNE Teomyoluevne otpdone. O Bacixés otpmoelc
evoc CNN mepthopBdvouy GUVENXTIXEC GTRPOOELS, CTROOEL CUCCMOPEVONS Xl TAHPWS CUVOEDEUEVES CTPWOELS.
O ouveltinée otpwoels e@apuolouy @iltpo ota Sedopéva elo6B0U, EEEYOVTUS YOPUXTNPIOTIXG OTWS OXUES
xo UPEC. Ol OTPWOELC CUOGHOPEUCTC UELDVOUY TIC DO TAOES TWV YOPTWY YUQUXTNPIO TIXDY, EVE Ol TAe®C
oLVOEDEUEVESC GTRPOGELC TaPdyouY TEAXA TI¢ Tadivounoels Twv dedouévwy. Autr 1 doun emitpénel ota CNNs va
pordoatvouy TONOTAOXAL LEPUPYIXE. Y OPUXTNELO TIXE AT TLS ELXOVES UE ATOTEAECUATIXG TEOTIO, UELWVOVTOS CNUAVTIXG
NV UTOAOYLO T TTOALTIAOXGTTAL GE GUYXpLoT PE Ta Topadootoxd ANNs [12].

0.1.3 Attention: Transformers

Ye avtideon pe ta Buveheuxd Nevpowvixd Aixtua (CNNs), to omolo €xouv neploplopévn xavdtnto va xataypd-
oLy Ti¢ Ywexég e€apthoelc ota dedopéva eloddou, ol Transformers enitpénovy v anotekeoyatixn exnaldeuon
o€ TopdhAnho eninedo xou €xouv yivel 1 xuplopyn apyltextovixy Yo Ty enelepyooio puowhc Yawooos [18].

To povtého Transformer Booileton anoxhelotxd oe évav unyoviopd autonpocoyfc (self-attention), o onolog
cuvdéel dudopeg Véoelc péoa o Lo axohoutia Yol vor UTOAOYIOEL TNV oVOmoEdoTAcY) TNS.  LTOV UNYoVIoUd
npocoyic QKV (Query, Key, Value), x&de otoryeio eio6dov cuoyetileton pe tplo Staviopata: to Siévuoua
query @, To didvuopa key K xou to didvuopa value V. O unoloyiopéde tne mpocoyhc yivetar ye tov tono:
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0.1. Oewentind TroBadpo

Attention(Q K,V ) = softmax ( ) V
s L3y
Vv dk

To Multi-Head attention yweilel tar mopandve Siavbouota oe LTO-BLAVOOUOTA TTELY OO TNV EQOQUOYT TOU
unyeviopol autonpocoyfc. Autd EMITEETEL GTO HOVTENO VO ETUXEVTPOVETOL OE DLUPOPETIXEG TTUYES TNG UXONOU-
Yo el0680L aveldpTnTa, BEATLOVOVTAS TNV IXAVOTNTE TOU VoL XOTAYPAPEL DAPOPES OYETELS EVTOS TWV DEDOUEVLV.
To anoteléopota and xdde xeporr) cuvdudlovial oe €val eViao SLAVUGHA TIpLY TIEEAGOUY GTO TEAMXO YROHUUIXO
oTpdua [18-20].

MultiHead(@Q, K, V') = Concat(head;, heads, ..., headh)WO

6mou head; = Attention(QWiQ, KWE vwY)

Computational
and Memory
Complexity

O(n?)

Concatenate

[
[ scaled Dot-Product Attention ]J

l J l

[r_inear ﬂ [{Linear ]_] [rl_i-‘ea- ]J
¥ 14 P

K v Q

Figure 0.1.1: (opiotepd) Scaled-dot product attention. (8eid) Multi-head attention. "Efficient
Transformers: A Survey" [20]

To povtého Transformer amoteleiton and 500 Bocixd CUGTATIXG: TOV XWOLXOTOLNTH XA TOV ATOXWIXOTOUNTY.

Kwdwuxonowmntig: O xwdixonomntrc eneepydleton tnv axohovdio eio6dou xan e€dyel cuppealduevee TANeo-
poplec Yl xdde otoryelo. Amotelelton omd mOAMATAL oTpduaTa, To xadéva Ye évay unyaviowd multi-head
attention xou éva TAMpwe cuVBEdEUEVO veupwvixd dixtuo ue ReLU evepyornoifoeic [20].

X 4 = LayerNorm(Multihead Attention(X, X)) + X

Xp = LayerNorm(PositionFFN(X 4)) + X 4 [20]

Anoxwdixonowntng: O anoxwduxonointig dnutovpyel Ty oxohoudia e£680u BAcEL TWV AVATUPUC THOEWY
TOU XWOLXOTOWNTH Xol TWV TPONYOUUEVWY TopayOUuevwy otolyelwy. ‘Eyel mapduolo apyltextovixr] Ye tov
xwOomoNT xou TepLthaUPBAvel évay unyovioud pdoxag, €tol wote, 6Tay 1o Yoviého mpoonadel va mpoPBAédet
To eNOUEVO oTolyelo ot o axoloudlo, Vo UTOREL VoL YeNoWoTo|oEL WOVO TIC TANEOQopleg amd Ta TEoTyolUeVaL
otouyela xou byt and ta pehhovtixd [18].
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‘Output Probabilities

Linear & Softmax

- | N
Add & Norm -
Position-wise
( |
Add & Norm -
—- Add & Norm 1
Multi-Head
Position-wise Attention %L
Lx
—- Add & Norm Add & Norm
Multi-Head h({ltﬁa.s%eq)d
Altention e
Altention
t A } t ’
4
A - /
Positional Encodings —hey Gf Positional Encodings
Token Embedding Token Embedding
Inputs (Shifted) Outputs

Figure 0.1.2: Anewdvion tng opyltextovixnc evog tumxol poviéhou Transformer. "A survey of transformers”
[19]

0.1.4 Vision Transformers

Ou Vision Transformers (ViTs) anoteholv pio epappoyn tne opyltextovixfic twv Transformers otnv 6paom
utohoyLoTdy, avuxadotdvtog 1o CNNs otic egapuoyéc avdhuorne exdvemy [11]. Ou ViTs donody e emdveg
oe tokens, ta onolo 6T cuVEYELR TPOBANNOVTL Yoouuxd xat cuvBLdlovton pe xwdoromoels Yéone (positional
encodings) ety Tpogodotndoldy oe évay Tumxd xwdixonownth Transformer.

H Swduaoia eneZepyoaoiog prog exdvog and toug ViTs nepthapfBdver to e€fic Buarta [11]:
1. H exdva Swaondtar oe patches otadepod peyédouc.
2. To patches iconedwvovtar xou npofdhiovton yeouuixd oe D diaotdoeis.
3. Ilpootiletan éva ewdind classification token otnv apy?| tng axorovdiac.
4. Kwdwonowoeig Yéomne (positional encodings) npootidevtoan ota patches.
5

. To patches pe Ta positional encodings tpogodotolvton oe €vay xwdixonownty| Transformer, tou anoteAel-
TOL A0 O TEWUATO TOAATAGY XEQAUAGY Tpocoy g xar MLP umkox.

0.2 Xyestixeg ApYLTEXTOVIXES

0.2.1 EmneinynoipdtnIia oTny 0o UTOAOYLOTOYV

EneZnynowpwotnta otnyv dpacy unoroyiotov. Ou xipieg xatnyoplec teyvixdy v T dnuiovpyia
Yepuindov yoptov (heatmaps) mepthoufdvouy tic pedddouc xhione xou tic pedddoue anddoone. O pédodot
x\org, 6nwe o attention rollout xoaw GradCAM, vnoloyilouv Tic xhioelc Tng e£680L TOU LOVTENOL GE GYEOT| UE
TaL ELXOVOGTOLYE(DL TNG ELGOBOU Yol VoL UETRHOOLY TNV eTidpacy] Toug otny TedPiedn. Ot uédodol anddoong, dmwe
7 Layer-wise Relevance Propagation yédodoc (LRP), avakbouv cuotnuatixd t Swodixocio Mdne anogdoewmv
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Transformer Encoder

®

MLP

Class MLP
Amanita Cae. e
Amanita Mus.

Boletus Cal.

Transformer Encoder

i

Multi-Head
Attention

[class] embedding

Linear Projection of Flattened Patches

£

Norm

;
4 P499449¢ | 5

Embedded
Patches
Figure 0.1.3: Emioxénnon tou ViT. H edva Swoondton oe patches otadepol peyédoue, mou yenoyonotodvton

< TOXEVE, ToL OTOloL BT GUVEYELN TPOPOBOTOVVTAL GE Evay TUTIX xwdixorolnty Transformer.
"Automatic fungi recognition: deep learning meets mycology" [21]

TWVY VEUROVIXOY BIXTOWY XATAVEUMVTAS TS CUVELGPORES amd MO yoLUEVA eNineda oTa oTolyeld TNE £Loédou.

Attention rollout %o Attention flow

To attention rollout [22] npoogépet évav teéT0 Yt TV LyYnAdtnon e pofic Thnpogoplas and o eninedo
ELOOBOU €WC TIC AVWTEPES EVOWUATOOES ot €va wovtého Transformer. Do évav Transformer pe L enineda, 7
npocoyt) utohoy(leton amd dheg Tig Véoelg oTo eninedo I; mpog dheg Tig Véoelg oTo eninedo I, dmou j < i.

‘Eva yedgnua ntpocoyg aneixovilel tn por| g tpocoyfic péoo oe €val Veupwvixd dixtuo. Mua Slabpour| and tov
x6uPo v otn Véon k oo eninedo I; mpog Tov xouPo u otn ¥éon m oTo enlnedo I avamaploTd Uit OELEd GUVOEGEWY.
IToAhamhaotdlovtog ta Bden oUTOY TWV UXP®Y, UTOPOVUE VA UTOAOYICOUUE TNV TocoTNnTa TANeopopiog Tou
petopépetan and tov v otov u. Edv umdpyouv mokhamhéc Sadpouéc, adpoilovue dhec Tic dradpopés yio va
Beolue TN cuvolut| poY| TAneoopiag.

. A(L)A(Li—1) ovi>j
All) {A(li) avi=j

6mou A eivon 1 avdntuEn e mpocoytic, A elvon 1 apyLh TEOCOYH X YIVETOL TOAATAACLIOUES TVEXWY.

Attention flow. H dedpnon tou ypaghpatog npocoyng we 8ixTuo porg, YE TIC YWENTIXOTNTES TV AXUOY
w¢ Bdpn mpocoync, EMTEENEL TOV UTOAOYIOUO TN UEYLoTNE ponc Tpocoync and onotovdnnote xoufo emmnédou
oTouC x6pfoug elcddou pe ahyopluoug Yéylotng porc. Auth 1 uéyiotn poY| yernotponoleltal we extiunoy tng
Tpocoy g 6Toug xOuBoug elobdou. Me avtideon pe tny uédodo attention rollout, 6mou to Bdpoc wog diadpounc
elvot To YvoPeEVO Twv Bopdv TwV axov, ot ol tpocoyfic xadoplletar and TNV eAd Lo TN TwV PoptdV TwV
OOV xoTd pxoc e dladpopric, Aoyw mdavic emxdiudne Swdpoudy [22].

GradCAM

To Grad-CAM vyevixetet 1o CAM yio va eopudleton ot onowdfrote apyttextovixi CNN [23]. To CAM (Class
Activation Mapping) dnuioupyel xdptec evepyonoinone tééne, emonuaivovtas neployés TN exdvag mov elvan
oNUAVTIXES Yiot TNV TEOBAedN wog ouyxexpévne téEne [24]. To CAM cuvdudlel Toug YEPTES YOPUXTNPICTIXGDY
Tou TeEAeUTOlOU CUVEAXTIXOV ETUTEDOU pe Bdpr mou podaivovton amd éva TANEKS cUVBESEUEVO EiTedo.

To Grad-CAM ypenowonotel tig Baduidec tou tehinod cuvehixtixol emmédou Yo vo utohoyloel T onuaocia
XG0 YEETN YAEAXTNELOTIXGY GTNY TENXT TEOBAed.
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1 y°
"ozl

To Grad-CAM rnopdyet évay LUYIGUEVO GUVBLAOUS TOV YURTWY YOPUXTNRLOTIXMY YENOWOTOLOVTIS T Bden
onuocioc xou epopudlel T ouvdptnon ReLU yio va dwtnprioet tig Yetixéc cuoyetioelq.

LcGrad—CAM = ReLU <Z ai:Ak>
k

Guided Backpropagation

Reciified Cony FC Layer
Feature Maps Activations

Guided Grad-CAM

[=]

Tiger Cat

vy
Figure 0.2.1: To Grad-CAM E&exuwvd ue pior eixdva elo6dou xon i xodoplopévr xatnyoplo. Ot Baduidec
npocapuélovtan yio v Sodel Eugpaon otny Téd€n otdyo. Autd 1o orjua npowdeltal Tpog Ta Tow GTOV
GUVEMXTIXG YEOETN YOPAXTNELOTIXWY Yio VoL UTOAOYLOTEL 0 Ydptne evepyornoinone Grad-CAM, nou
avanopiotator and évay umhe Yepuxd ydptn. Télog, o Vepuxde ydptne cuvdudletar e xadodnyoluevn

omovodiddoon, odnynvtog oe ontixonotioelc Guided Grad-CAM.
"Grad-CAM: Why did you say that?" [23]

(d) Guided Grad-CAM ‘Cat’

(a) Original Image (b) Guided Backprop ‘Cat’

(g) Original Image (h) Guided Backprop ‘Dog” (i) Grad-CAM ‘Dog’  (j}Guided Grad-CAM ‘Dog’

Figure 0.2.2: X0yxpion Onuxonoioenv: Apyunh exova wiog yatog xou evog oxdiou, poli Ue ONTIXOTOMOELS
Tou dnuovpyHinxay yenowonoidvtag Tic Texvixée Kadodnyobuevng Omododiddoong, Grad-CAM xo Guided
Grad-CAM, avodemviovtog copis To SNUAVTIXE XOPaXTNELOTIXG Xl TIC TEPLOYES CUYXEXPUEVLY TEEEWV.
"Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization" [25]
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LIME

H uédoBoc Local Interpretable Model-agnostic Explanations (LIME) [26] napéyel eZnyfioeic yia npoBiédelc
TOAOTAOXWY LOVTEAWY unyavixic wdinone. H LIME Snuiovpyel tomuxd poviéha g, 6mme Yoouuxd poviéha 1
BEVTPA OMOPACEWY, YA VO TROCEYYIOEL T1 CUUTERLPOEE TOU UOVTEAOU [ yUpw amd Wiol CUYXEXPUEVT TepinTwoT
. Xenotdonolel €va UE€TEo eYYUTNTOC Ty YIo VO ETXEVTEWVEL OTN OYETIXOTNTA TV SELYPAT®WY YUpw and To T,
X0t ENOYLOTOTOLEL ot GUVOLACUEVT, GUVEETNON OAELNS X0l TOAUTAOXOTNTOS Yol TV e€Xynon:

g((E) = argmingEG (L(f7g7 KZ) + Q(g))

H LIME ypnowonotel Sevypotorndio yipw and o & yiot vou TpoceyYioel TNV am®AELD, TOPUUEVOVTAS avIEXTIXN
Topd Tov VépuPo derypatorndiog.

Layer-Wise Relevance Propagation (LRP)

H pédodoc Layer-Wise Relevance Propagation (LRP) [27, 28] npoywed otny avadpopixr diéboon tne onuociog
e TedBredne f(x) oto veupwvixd dixtuo, axolouddvtoag to mhaioo tne Deep Taylor Decomposition. Xtn
dladuacta Biddoong, mou yenowlonoteiton and T uédodo LRP, 1 mAnpogopla mou déyeton €vag veupvog TeEREL Vo
avadlavépeton e&ioou Tpog Ta xotdtepa eninedo (IB6TNTA suvthenonc). Edv j xa k avanopiotoldy vevpdvee oe
Brodoyxd emineda Tou BiThou, 0 xavdVIC BLEdooNg TwY oxop onuaciac ((Rk)*) otouc veuphvee Tou xatdtepou
emnédou elvo:

2k
R; = * Ry
’ Zk:zjzjk '

omou zj mocotuxonolel Tov Patud empporic Tou veupdva j 0T onuacia Tou VEVPWVA K, X0l O ToEOVOUICTAC
e€aopaiilel T dlathenon e WotnTag cuvthenong. H Swduascio diddoong oloxhnedveto dtav @tdoel ota
YOEAXTNELOTLXG EL6GBOU.

0.2.2 Eppnvedoiwol Vision Transformers
ViT-NeT

I v emteuydel xahbtepn woopponio yetald epunvevotudtntac xou anddoons, to 2022 magovoidotnxe to ViT-
NeT [29], cuvdudlovtac tov xwdornomt Swin Transformer [30] ye éva vevpwvixd anoxwdxornoumnty dev-
dpuxric Sourc. O Swin Transformer ypnouwomolel it lepapy x| GTEATNYIXY XWOXOTOMGENG YAPUXTNELT TIXEDY X0l
BUVOPLXT] TTEOCUEUOYT) TWV ToEATUEMY VLo VoL OVLY VEVGEL UiXEd Xoi UEYSAA AV TIXE(UEVAL UE YROUUIXY) UTOAOYIO TIXT)
TOAUTAOXOTTTAL.

O Nevpwvixoc Anoxmdixornomntic Aévipou yenowonolel xoufoug, GUAN xan axpée yia va dtovelpel T onpacto
TV YORUXTNRIO TGOV ot eninedo euxdvac. Kdde eowtepnds x6uBoc avinpoownelel €vo TeeTOTUTO, dELOAOYMV-
TOG TNV OPOLOTNTAL UE TURHOTA EldVOG ot xododnydvtas Ty dpodordynon. Ot tehixée npofBiédeic yivovton e
Bdon Ta amotehéopata TwV QOAAWY XL TIC CLYXEVTPWUEVES Porduohoyleg Bpopohdynorng.

Input image

Parakeet
auklet

Yellow breasied
chat

Figure 0.2.3: Tomxéc epunvelec mou delyvouv tic dladxaciec andpaong yia tuyaieg edvec. To NeT

avary vopllel ouyxexpéva "yapaxtneloTnd ttnvol" oTig elxdveC.

"ViT-NeT: Interpretable Vision Transformers with Neural Tree Decoder" [29]
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Q-
=£
23 = £14(21) (d) Leaf Node

Patch Embedding

Figure 0.2.4: ViT-NeT: emoxémnon.
"ViT-NeT: Interpretable Vision Transformers with Neural Tree Decoder" [29]

ProtoPFormer

Yt ovvéyel, ou Xue et al. mpédtevay to ProtoPFormer [31], to onolo cuvdudlel tn pédodo Paciopévn oe
tpwtoTuna [32] we VITs yia eppnvetown avoyvopion exévev. To ProtoPFormer eiodyer tayxdopiar xou tomxd
TEWTOTUTA Yio Vo EVTOTICEL X0 Vo AVOBECYVEL TOL YUPAXTNRLOTIXG TV OTOY WY PUEow wog Sladuxasiog apolBaiog
dLopwone xou xovig andpooTg.

"Evog ¥Add0o¢ ToryxOOULOU TEWTOTUTOU Xl €VOC XAEBOC TOTUXOU TEKTOTUTIOU YENOWOTOLOUVTAL Yial TNV avdAuoT
Tou ool orfpatoc. Ou telxé mpofBiédelc yivovta pe Bdomn to Luyiopévo ddpoloya TwV AnOTEAECUATWY TWVY
0V0 *NEBV.

Why is this bird classified as a Indigo Bunting?

Total
Similarity
Scores

Training image L o

Activation  Similarity

Test Image Prototype where prototype ] <
& VP o p::ﬁ 2? Map Score

Global Branch Indigo Bunfing

Boat Tailed Grackle

N i 1.44
4 14.22

LN 1.35
it }—»13.25

Local Branch Indigo Buating

! E -
2.01
ook e
1.58 18.02
1.42
.. —@—»

Boat Tailed Grackle

1111

Total points to the Indigo Bunting: 32.24 Joint Decision Indigo Bunting
Total points to the Boat Tailed Grackle: 24.36 /

Figure 0.2.5: Awdixaocia cuAhoyloTAc Yo Ty tagivounon wog ewdvag ntnvol we Indigo Bunting péow
apotBaioc dioplwone xou xovig andpuone TwV ¥AGBWY TOTUXO) Xl Ty XOOULOU TEWTHTUTOU.
"ProtoPFormer: Concentrating on Prototypical Parts in Vision Transformers for Interpretable Image
Recognition" [31]

To ProtoPFormer evioylel 0 ouyxévipmon TwV TOMXOV TEWTOTONWY GE OTOLYElN TEOTOU TAAVOU VK (PLA-
TpdpeL TIC EMPPOES TOL PévVToL. Buyypdvwe, Yenolwomoleiton udoxa dwathienone npodtou mhdvou (FP), yio va
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dtatnpolvtan uévo ta tokens mou elvor oyeTIXE UE TO TPWTO TAAvVo xou va e€atpolvtar exelva mou oyetilovton
ue to @bévto. H udoxa auth dnuovpyeiton pe tn uédodo rollout. Enlong, n yeron g anwiciag cuyxévipnong
npwtoTUTIXGY pepnv (PPC) npodyel 1 Stapopornolnon tewv tomxdy npwtotinwy péoa otny Bio xatnyoplo.

PaCa-ViT

To 2023, epgaviotnxe 1o PaCa-ViT [33], éva véo eppnvedoo ViT povtého, to onolo Eenepvd Tic nponyoluevee
exdooelc énwe to Swin-Transformer [30] xou To PVT [34, 35].

To PaCa-ViT ewcdyel tov unyoviopd npocoyfic and patch oe cluster (Patch-to-Cluster Attention, PaCa) yio
vau Blayetptotel TNV TOAUTAOXOTNTA TwV UToAoYLop®y. To PaCa peidvel v toAumhoxotnta, Slatneaviog T
oxéon M << N, péow Tou xataxeppatiowol tng axolovdlog elo6dou Xy o oe "ontxd tokens" Zjs c.

1) Fanilla Patch-to-Patch Attention 1) The Proposed PaCa: Patch-to-Cluster Attention

o Linear complexity:
& T (HxW}xM

5 - M cluster heatmaps

V' A e M=100 T

H!nm“ I

Simple forward interpretability by
directly visualizing the chuster heatmaps

1

=

" Reduced complexity:

}iﬁ:g\‘i *_*f’/:_ y GDXW)x(hxw) |
]
o

Figure 0.2.6: H »\aowr| npocéyyion patch-to-patch self-attention avtipetwnilel tpofriuota Aoyw tne
TETPAYWVIXNC ToALTAOXOTNTAS, X xdde Query odnhemded e xdde Key. Mo dnpogiiic uédodog yia
peiwon authic e ToAvTAoxoTNTAC TEPLAOPBAVEL TN Ywelxn Uelwon Héow TexVxdY Omws 1 cLVEMET pe Briuo.

To dpdpo npoteivel v npooéyyion Patch-to-Cluster attention (PaCa), n onola yenowonotel évay
npoxadoplouévo aprdpod clusters yia tov utohoyioud twv Key xou Value, emituyydvovtog ypopuxr
TOAUTAOXOTNTA X0l TLO OUCLUOTIXG OTTIXd oToLyela.

"PaCa-ViT: Learning Patch-to-Cluster Attention in Vision Transformers" [33]

Y1 yédodo onsite clustering, o unohoyiopdc tou Cn ar yivetaw elte yéow ouvehifewyv Bddouc xon onueiou
elte yéow MLP. To external clustering yenowonoiel éva exnadevyévo CNN yia va xododnyel tov PaCa
ViT, emitpénovtag oto ovtélo va pdidel and SlapopeTnés TANPOPOpLAXES TNYES.

Epunvevowpdtnta Awxtbou. To PaCa ViT yenowonoiel ydpteg ta€ivounong yia vo evtonicel to mo
onuavTXd xAdopata piag euxovas. O ydpteg autol, yetatpénovton ot 2D yweinolc YdpTeS xou yenoyLonolodvTol
Yl Vo dNuLovpyHoouv PdoxeS Tou egoppolovial oTig ELo6d0Ue, TOoVILOVTOS TIC ONUAVTIXES TEPLOYES TNG ELXOVOC.

Ex-ViT

To eX-VIiT [36] Aettovpyel we dixtuo siamese, enclepydlovtog 800 BLUPOPETINES TUYOHES UETAUTYNUATIOUEVES
exdoyéc g apywxic exovoc. Kdibe xiddog nepihopfdver €vay xwduonownth pe to Explainable Multi-Head
Attention (E-MHA) xou to Attribute-guided Explainer (AttE).

Explainable Multi-Head Attention (E-MHA): H yovéda E-MHA nepthoufdver toAhamhéc xe@oléc mou
padatvouy eneényfowo Bden mpocoyhc, Behtidvovtag Ty avdextixdtnia otov Yopufo xau TNV eyyevr encé-
nyhowotnro. H Swodixacio Eexwvd ye v npoPoln twv eloédwy otic uhteee K, @ o V' xou tov unohoyloud
Twv Bopdv tpocoyfic. Ta yapaxtneiotixd tne npocoyfc unoloyilovial ¢ TO YIVOUEVO NS PNATEUS TEOCOYHS
(A) e ™y uhtpa twayv (V).
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Classification
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CAM | Class Activation Mapping
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3 Encoder £* - attribute-based
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Figure 0.2.7: I'evuxn) emioxomnon tng apyttextovixnc tou eX-ViT.
"eX-ViT: A Novel explainable vision transformer for weakly supervised semantic segmentation" [36]

Attribute-guided Explainer (AttE): H povdSo AttE Behtdver v enyfodtnta twv Yoptdy npocoync,
ONULOVEYOVTIC YUPTES YOEAUXTNELOTIXGY TOU B{Vouy EUpaoT) o cUYXEXPLEVA Ywexd otolyelo. Autol ol ydpTeg,
YWELOUEVOL OE OUBBES AVTLTPOOWTEVOVTOC BLUPOPETIXG YORUXTNEIOTIXG, e@apuolovTal 0TouC apylxolc, Yo THV
TUEAY WYY AVATOEUCTACEWY YopuxtneloTixwy. H Swdixacio auth emtpénel 6to poviého va evitonilel pntd
To pixels mou oyetilovton e ouyxexpwéva yopoxtnplotxd. Emmiéov, wa andiewa xododnyoluevn and to
YAUEUXTNELOTIXE Yenotponoteital yia Vo eioyOoeL TNV a€lomoTial TOU HOVTEAOU.

Ground-truth  Image

CAM [14]

SIPE [4]

eX-ViT{Ours) AdvCAM [23]

Figure 0.2.8: X0yxpion Swpopetindyv pedddwy epunveloc oto PASCAL VOC 2012 Training Set.
"eX-ViT: A Novel explainable vision transformer for weakly supervised semantic segmentation" [36]
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0.2. Xyeuxéc Apyltextovixég

0.2.3 Eppnveieg otny Iatpuxr Aneixovion

Y10V TOUL TNG LATEIXAC ATEXOVLONG, 1) EPUNVEUCILOTNTO TWV HOVTEADY TEXVNTNG YOTLooUYNG elval xplown yia
TNV AOQUAT X0l ATOTEAECUATIXY EQAPUOYT TOUC GTNY XAV TpoxTixr. Auth 1 evétnta e€etdlel tic pedodouc
eZnyfoewy mou €xouv avomtuyVel elte eI YIo TIC LUTPIXES ATELXOVLOTIXEG EQYOOIES E(TE YpNOLLOTOLOUVTOL YIaL
NV Ay WYH EENYHOEWY oTOV Topéd TNE ttpixic, Eexvdvtag pe v €peuva Twv Komorowski et al. [37].

H perétn auty) ouyxplivel Tic pedodoug Attention Rollout, TransLRP xow LIME oty ta€ivéunon oaxtivoypeapLcv
Yodpoxa. To anoteréopota delyvouv 6ti o TransLRP €yel ioyuph Suvouxn otny e€Xynon twv tpofiédewy twy
ViT vy tic xatnyopiec Covid, Non-Covid xou Healthy otic axtivoypagpiec 9cdpoxa. Ilagého mouv to TransLRP
elvar avlextind oe ToEOPOPPHOCELS 1 AVWUOMES OTIC LTpée exdves, unopel va mopdyel e€nyroelc Bacloyéveg
oe haviaouéveg ouoyetioels.

To LIME nogéyet ouvenelc e€nyfoeic odAd unopel va elvon avaxpiBéc av to unep-etxovootolyeia dev eotidouy
OTIC MEPLOYEG TWV TIVELUOVWY GTLC axTvoypapieg Ydpaxa. Ou e€nyroeig mou Bacilovton otnv egaywyr| YotV
npocoyfc elvan AMyotepo a€lémiote oe cUyYxpLor Pe autéc mou mapdyovion ond to TransLRP xou to LIME.
Yuvohixd, ta anotehéopata delyvouv 6t to TransLRP unepéyel otig eénynfoeic xatd tny tadivéunon Covid oe
axtvoypapleg Yodpaxa, 6mwe gaiveton oto Figure 3.3.1.

COVID-19 Healthy Non-COVID
o . m - . -
F-01S.21C.10 F.09 S22 C.11 F.118.43C.07 F.14 .17 C.08 F .30 S.17 C.07 F 25 523 C.07

Attention
’ *

F.16 5.08 C.09 F.03 5.06 C.14 F.00 S.05 C.20 F1BSUGC23 FA15 5.07 C.23 F.35 S.11 C.34

F31S08C5 F3S.0C03 FJ36S.03C.15 F55S5.03C.08 F.388.02C.05 F528.10¢C.02

TransLRP

Figure 0.2.9: Ontixéc e€nyroeic tou VIiT exnaudeupévou yior tnv taivounon axtivoypapiedy. Ado edveg
epgavilovtan yia xdde eteéta xhdong xou xoepla e€nyeiton yenoonoidvtog teelc netdddoug epunvelag.
Hopéyovton petpuéc anddoone, ouunepthopBavopévwy tne motétntoc (F), evaoinotag (S) xan
rohumhoxdtntog (C), pe younhdtepa oxop vo elvan TeoTydtepa yior Ty evancdnoion xou TNy ToAUTAOXGTN T,
eved vdmAdTepa oxop YloL THY TOTHTNTOL
"Towards Evaluating Explanations of Vision Transformers for Medical Imaging" [37]

Ye wa G epyaoia, ow Playout et al. [38] avéntuEav tnv teyvixr) Focused Attention, mou mopdyer uhnifc
avéhuong ydetec depudtnrac pe anodotixn enclepyaoio twv dedouévev tatpixfic anexévione. H pédodoc auth
avtpeTorilel i auEnuéves anouthoels UvANG xat tpotelvel Ty emthoyn patches péow emavoknmuxrc Stadixoocio
oE XAUAXO UELOUUEVODY TV Brudtev. To anotedéopoata delyvouv 6ti 1 u€dodog auth GUYXEVTROVEL TOV
UMY OVLOUS TPOGOYNC O UTOGUVOAD GNUAVTIXDY TOXEVOVY.

e wa §AAn epyaoia, ot Demir et al. [39] elodyouv éva xouvotépo unhox npocoyfic oty opyttextovixry Convolu-
tional Vision Transformer, nou eotidlel otn oyéon uetall "neploy v’ mapd 'exxovootolyelwy’, ue éva ohoTnua
Baoiopévo otn pdinon newToTiTWY.

Téloc, to RadFormer [40] avtipetwniler tic mpoxhioeic e umepnyoypapioc, Yenowototdvtas SITAY apyLtex-
TOVXT TPOGOYNC Yol TNV aviy veuaT xopexivou Tng YoAnddyou x0oTng, cUVBLALOVTOC TOYXOGULY XL TOTXSL Y APOX-
TNELo TG Yo Aemtouepeic xou axplBelc epunveleg.

Yuunepaopatixd, eve Exouv yivel onuavuxd PrAdote yio TV ovdntuln pedodwv epunvelag oty ot
AMEXOVLOT), UTHPYEL OXOUTN oVEYXT| YLl TEPAUTEP EpEUVA Yot TNV ovdmTulrn Tou Touéa xat TN Beltiworn tne
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Original image stride 16 stride 8 stridie 4 stride 7 Stride 1 Final sgaregation Lesions groundtruth
0 I

Figure 0.2.10: Ontur avanopdotaon tng teyvixiic Focused Attention: xdde othin nopouscidlel Toug ydpteg
YepudnTag avd BrAua, e tig 80o tekeutaieg va delyvouv Ty tehr) oOvieon xou Tic TparypaTneg BAdPBeC.
"Focused Attention in Transformers for interpretable classification of retinal images" [3§]

peovTidoag TwV aoveviyv.

0.3 Ilewpapoatixny Ilpoceyyion
0.3.1 3>0OvoAa AcBouEvwmy

H pedodoroyun mpocéyyior nepthaBavel TNy TpooapUoyr) TELdY HovTEAwy epunvedonwy Vision Transformer
YL TNV QVTLIETOTIOY TV WBLUTEPOTATWY NS Lotpixhc anexdvione. T to oxond avtd, emiéyinxav téooepa
OUVOAX BEBOUEVLV LOTEPXAC AMEXOVIONG, SlaopeTxnc @Oong To xoéva.  Autd mepihopfdvouy poryvntixég
(MRIs) xow afovixéc (CT scans) topoypopies, LoToTadoNOYIXEC EIXOVEC XUl TEAUYUATIXES EXOVEC TOU YUO-
TPEVTEPLXOU GUCTAUATOC Al EVOOOXOTATELC. LUYXEXQIIEVA, To cUVOR dedopévwy elvan:

e Augmented Alzheimer MRI Dataset V2 [22], nou Teptéyel pory ViTInéc ToUOYpaplES EYXEQPENOU acVeEVEY
HE BLPOPETIXG OoTABL TNG VOoou ANToydLuEp.

e Large COVID-19 CT scan slice dataset [41], nou yenowlonoteiton eupénc otn Pihoypagpic yia tn didyvwon
COVID-19.

e Gastrointestinal Cancer MSI MSS Prediction [42], tou mepiéyel 16ToOMOYIXES EXOVES YioL THY TaEVOUNo
MSI évavtt MSS otov yaotpevtepind xapxivo.

e Kvasir Dataset for Classification and Segmentation [43], mou nepiéyel exdvec and 1o eowtepnd ToU
YOO TEEVTEPLXOU CUOTAUITOG.

To Briwarta tpoenegepyooiog v GUVOALY Bedouévwy, Tou tepthauBdvouy ) Mdn, T Slopdppraor T¢ doure xou
™V €€l00ppPOTNOY TWY BEBOPEVLV, TEpLYRd@OVTAUL aTNY axdhouln evoTnTa:

1. Yuhhoyn xou AYdn Aedopévwy:
o Avayvdplor Twv GYETIXMY GUVOAWY SEBOUEVLY LaTpXc anedvione and Te mnyés Toue.

o AR twv cuvokwy dedopévwy and amodethplo ¥ TNYEC dlaoparilovTag THY oaXEPAULOTNTO XOoL TNV
TOLOTNTA TWV BEBOUEVHV.

2. Auonaon oe Lovora Exnaldevong-Aoxiunic:

12



0.3. Hewpopatxn Ipocéyyion

(i) (ii)

Figure 0.3.1: Tuyoiec emdvee and to olvolo exnaidevone and: (i) to obvoho dedouyévewv ALzheimer’s (ii) To
oOvoro dedopévwy Covid (iii) to clvoro dedouévmv Kvasir (iv) to odvoho dedopévewv TCGA

o AldomaoT Tou GUVOLOL BESOUEVKY GE UTOGUVORA EXTIAUBEVONG Xol BOXLUNG XPNOLLOTOLOVTAS avahoyia
80-20.

3. E&ioopponnon Khdoewv:

o AZoAbynom NG AxATAVOURE TWV XAACEWY EVTIOC TOU GUVOAOU DESOUEVWLV VIOl TNV AVOLYVPLOT] TUY OV
AVLOOPPOTILIV.

e Edv undpyouv avicopponies xhdoewv, epapuoyy tuyoiag uroderypatolndlac (uelwon tou peyédoug
TOV UTEPEXTIPOCWTOVUEVWY XAdoewy Tuyalar ylor va tanptdéet pe to péyedoc tne petodmepoioog
xhdome).

4. Awudppuon e Aouic tou Buvorou Aedouévwy:

o Anuovpyio tng emduuntic eowtepixic doung Yot TV OTapEn ETAVAYENOUOTOGULOU XOBIXOL XoTA
v exnaldevon.  To mopddetypo, Yy to ProtoPFormer: yovixde @dxeloc/xhdonl, xhdon2,
¥\T. /train, test/delyual.jpg, delypa2.jpg, xAw.

Metd Vv e@appoy Twy Prudtwy npoetelepyaoiac ot téacepa cOVOAa dedoUévwy, To ohvolo dedopévwy Kvasir
nepiéyel 3200/800 eixdveg exnaideuomne/Soxiunic o€ 8 XAEOELS TOU AVATAPIO TOVY XAUTAUC THOELS TOU YUO TPEVTEPLXOD
ovotiuatog (dyed lifted polyps, dyed resection margins, esophagitis, normal cecum, normal pylorus, normal
Z-line, polyps, ulcerative colitis). To clvoho dedopévwv Altoydipep anoteheiton and 1564/400 exdvee ex-
nofdevone/Soxuric MRI ywplopévee oe 4 xhdoeg mou avanaplotody ta dtdgopa 6tddla e vécou Alzheimer
(Mild Dementia, Moderate Dementia, Non Demented, Very mild Dementia). To cUvohro dedopévev TCGA
nepéyer 10000/2500 ewdvee woopepdds xatavepnuéves ot d0o xhdoeic (MSS, MSIMUT) xou téhog, xéde xhdon
(Covid, Non-Covid) tou cuvérou dedopévwv Covid éyer 5515/1380 ewdvee exnaldevonc/Soxurc. Xtov Ta-
ble 4.1, mepiypdpovtar cuvonTXd oL BLdpopes xhdoELC:

0.3.2 Exnoudsloviog Tot kOVTEAN

I to ProtoPFormer, n exnaldeuon xat ol ontixonotoeic npaypotonotidnxay oto Google Colab yenoiuonoudv-
tag Vv mapeydpevn GPU T4, ye anodnreutind yodpo wéow Google Drive. Adyw tou meplopiopévou ypdvou
GPU, n ddwacio exnaideuone dijpxece mepinou dVo urveg yior oha to dedopéva. Ta nelpduarta yio 1o ViTNet
xot to Swin Transformer vhomouinxay oto Kaggle, ypnowonowwvtag 0o T4 GPUs we emtoyuvtée. H ex-
naidevon tou povtéhou ViTNet dipxeoe meplnou evduion urva, eved to povtého Swin Transformer oloxhripwoe
Y exmaldevot| Tou oe ubvo AMyeg nuépeg. Ta anoteréopata Yo uropoloay va Bertiotonoinody nepantépny Ue
™ xenon mo toyvedv GPUs.

INoa toug oxomolc authc g epyaciag, emiéydnxay tplo wovtéla Vision Transformer yio e@apuoy?| oe tatpixd
dedoyéval.
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Alzheimer’s Dataset

Mild Dementia ’Eupmd)pon,a Tou ocg’zxilouv Vol Ennpsdc?uv e %caﬂnpspwég dpaoTtnpldTNIES,
OTWE 1) ATOAEL UVAUNG Xl 1) YVoTxr e€acdévnon.
Moderate Dementia Evtova Guwf'cc()pcxw Tou omou-c,o()v Boridelo e TS xocﬂnp/epwég dpaoTNELOTNTEL,
ME onuavTny Yvwotd efacdévnon xan npoBAruato uviung.
Non Demented "Atoya ou dev e/ucpowilouv ?nud&c,x OTOAELOG UVAUNG
X0l YPTOULOTOLOUVTOL ¢ OUdda EAEYYOU.
Very mild Dementia Mo otdc&,o ATOAELOG pw'],png ToU TA ouwt"co')pci('toc elvor Toh0 Hjmiat xan umopel
vo unv enneedlouv onuavtxd v xonuepvy Lom.
Covid Dataset
Covid Ewévec acdevov diayvwopévev pe COVID-19.
Non Covid Ewévee aodevidv mou dev éyouv dayvwotel ue COVID-19.
Kvasir Dataset
Dyed lifted polyps IToAbmodec mou €youv avudwiel xou Bogel yia var avadel&ouv to neplypopud Touc.
Dyed resection margins | Ileployéc 6mou €yet Bagel o 10td¢ Yo var onuewndody ta dplo EXTOUNG.
Esophagitis Pheyuovy| Tou olGoPdyou.
Normal cecum Tywic 1otd¢ aTOoV TUPAS EévTepo.
Normal pylorus Tyuc 10T16¢ 6TOV TUAWEO.
Normal Z-line Tywic L1otdg 01N YaoTpooloopayxy oLVIEST.
Polyps Avdpares avantdels totold.
Ulcerative colitis Dheyuovndng vooog Tou evtépou Tou TEoXAAEl EAxT.
TCGA Dataset
MSIMUT Thnhh pixpooxomxt aotddeio (MSI-H) vnodewevierl uhnhd mocootd yetoaldEewy.
MSS Muwxpooxomxt| otadepbdtnta (MSS) mou unodewviel yaunhé TocooTd PETIANIEEWY.

Table 1: Iepiypoagpéc Twv xhdoewy ot clvola dedopévwy Alzheimer’s, Covid, Kvasir xauw TCGA. O xhdoeic
oL cLVOAoL dedopévmv Altoydupep Teplypdpouy Sdpopa otddia Tne dvotac. To cbvoho dedouévwy Covid
nepLEyel emdveg acdevev ye xan ywplic COVID-19. To civolo dedopévwy Kvasir mepihoufBdvel didpopeg
XOUTAOTACELS TOV YAOTEEVTEPIXOU cuoThuatog. To civolo Sedopévwv TCGA talivopel tic loTohoyinés euxdveg
Bdoet tng uixpooxomixic otadepdTnTaC.

ProtoPFormer

To povtého ProtoPFormer [31]| exmoudettnxe pe batch size 64 xou learning rate 5 x 107%. Xpnowonotfdnxe
AdamW optimizer ye cosine annealing scheduler. O cuvoAxdg aprdudg Twv enoywy ftav 60 yio To dataset
Alzheimer’s xou 100 yio tar datasets Covid, Kvasir xaw TCGA. Ou npodiorypagés yior tar Ty xOopLoL xal TOTxd,
TpwToTUTA BploXoVTaL GTOV TaEOXATE Ttivaa:

Datasets Prototype number Dimension Global prototypes per class
Alzheimer’s 40 192 10
Covid 100 192 50
Kvasir 80 192 10
TCGA 100 192 50

Table 2: Ipodiaypagéc Ipwtotdnwy yio Tor oOvola dedopévwy Alzheimer’s, Covid, Kvasir xouw TCGA. O
apLUOC TWV TOYXOOUKY TEKOTOTOTWY avd xatnyopla xadoplotnxe olugpwva ye To péyedog Tou GUVOAOU
OEBOUEVOV. LTo UEYUAUTERO GUVORA DEBOUEVWY avaTédNUaY TEPLOCOTERA TEWTAHTUTA vl xatnyopld.

ViT-NeT

To povtého ViT-NeT [29] exnoudettnxe pe dévtpo Bddouc 4 xau prototype size [1,1]. Xenowwonotidnxe AdamW
optimizer pe opyé learning rate 2 x 1075, O ocuvohxdc aprdudc TV emoydy Hrav 60 yio To datasets
Alzheimer’s xon Kvasir, 100 yio to Covid, xou 125 yia to TCGA.
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(i)
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Figure 0.3.2: Kopmdieg udinong mou dnuoveyhinxay xotd tn dwodixactag exnoideuone tou ProtoPFormer
v (i) To cOvolo dedouévwv Alzheimer’s (ii) To oOvoro dedopévwy Covid (iii) to clvolo dedouévwv Kvasir
(iv) To obhvoho dedopévery TCGA
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Swin Transformer x Grad-CAM

To povtého Swin Transformer exmoudeltnxe upe batch size 64, yprnowonowdvtag To variant
swin_tiny_patch4_window7_224. O ouvolhxdég opidude Twv emoycdv Atav 200 yi ko ta datasets,
eV0 10 Povtého exnandeltnxe ue base learning rate 1 x 1074, Xenowonowidnxe Grad-CAM yio ontixonoinon
TWV TEPLOY DY €0 TIAONE TOU HOVTEAOU Xatd TNV TEdBAedn.

)

Training Loss Validation Accuracy
—_ Validgtion Loss 40.0 4
—— Training Loss
5 - 37.5 A
35.0 -
1 5 32.5 -
2 o
3 5 4
30.0
£
3
27.5
B 25.0 1
2 -
22.5
\ —— validation Accuracy
] 50 100 150 200 0 50 100 150 200
Epochs Epochs
(ii)
Training Loss Validation Accuracy
] M
1.4 4
=
w 1.2 1 P
g 5
2
1.0 4
0.8

—— Validation Loss

—— Training Loss 40 —— Validation Accuracy

T T T T T T T T T T

0 50 100 150 200 0 50 100 150 200
Epochs Epochs

Figure 0.3.3: KounOieg udldnong mou dnurovpyfinxay xoatd tn ddixaociog exnaidevong tou Swin Transformer
v (1) to oUvolo dedouévwv Alzheimer’s (ii) to oOvoro dedopévwy Covid
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Figure 0.3.4: Kopmiieg pudinong mou dnuovpyidnxay xotd tn Swodixactag exnoidevone tov Swin Transformer
yio: (iii) o oOvolo dedopévev Kvasir (iv) to olvolo dedopévev TCGA
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0.3.3 Ernidoor xa OnTtixonowjostg

Ye auth Ty evétnta nopouctdleTal 1 anddooT] TELWY BLUPORETIXMY HOVTEAWY Ot TECOERA EAEYHEVA LATEIXS
cUvoha dedopévwyv. To ProtoPFormer métuye v udnhotepn axplBelo oe 6ha tor chvola Sedopévwy, biaitepa
ota Kvasir xaw Covid, xat 6ot tar povtéla napovaiacay yopunhotepn axplBeia oto ohvoho dedopévwy Alzheimer’s.
Ytov mvoxa Table 4.3, galvovton avAuTind to T060oTd oxp(Belac TwV LOVTEAWY.

Dataset/Model ProtoPFormer ViT-NeT Swin x Grad-CAM

Alzheimer’s 80.01 41.27 40.91
Covid 96.45 67.77 63.09
Kvasir 92.63 86.88 77.25
TCGA 87.28 82.71 64.76

Table 3: H olUyxpion e Max accuracy (%) twv tpidv LOVTEADY 0TA TECOEPR EMAEYUEVA LoTEIXd GOVOAL
dedouévev. H péylotn anddoon yio xdde cUVORO BEBOUEVOV CNUELDOVETAL UE EVTOVAL YOUUATAL.

Yta mhadolol TG EpUNVEVCILOTNTOC, ONioLEYHOTXAY OTTIXOTIOLAGELS YIol VAL TTREYOUY TANPOPORIEC OYETXY UE TIC
TEPLOYEC TWV EXOVWY OTIC OTO(EG EMXEVTROVETOL Xde LOVTENO Yl v xdvel TpoBAédelc. AUTEC OL OTTIXOTIOLCELS
elvon xploeg Yo TNV XaTovonon NG EPUNVEUCILOTNTAS X0t TNS A€LOTLOTIOG TWY ATOPACEWY TWV UOVTEAWY.

Ouv ontixonoioelg mou maphydnoav and ta tela poviéha—ProtoPFormer, ViT-NeT xa Swin x Grad-
CAM—extiuqdnxoy ond gl ETTEOTY EWBXOY UE0W WO AVOAUTIXNG €pELVAS, To anoTtehéouata TNG omolug
Yo meplypapolv GE QUTH TNV EVOTNTA.

Ot ytpol a€lohdynoay AUTEC TIC OTTIXOTONCELS YENOWOTOUIVTOS €V EQWOTNUATOAOYLO TOU EMXEVTPWVOTOY
OTNV AMOTEAECUATIXOTNTE TOUG, TNV caPhveld, TNV dlayveotixh aglo, TNy ETONUEIDTT YoEUXTNELOTIXGY, TNV
eLILYEAUULOT PE TIC YVMOELS TV EWLXMV XL TN YEVXN YENOWOTNTA 6Ta TECOERA LoTElXd oUVOAA SEBOPEVLV
Tou €youue NdN Teplypddel ot Tponyolueveg evotnteg: Alzheimer’s MRIs, Kvasir, COvid CT scans, TCGA.

Ye oha tar a€lohoynuéva clvoha dedouévmy, To ProtoPFormer Eeydpioe cuvey e and to dhAa povtéha, mapéyov-
ToG OTMTIXOTOMoELS Tou HTay oxpBel xon xhvixd yeriowes. Ou eldxol onuelwooy 6TL oL OTTXOTONCEC TOU
ProtoPFormer ¥tav Wbuitepa anoteheoyatinés otny amoxdhudn Baoixwdv evdelfewy xo mpotinwy, otny xodapn
TEOVCIUCT]) TWV BLYVOOEWY XAl GTNY ETUCHUEIWOT) CUYXEXPWEVWY YARUXTNEIOTIXWY 1 TEPLOY GV Xplomy Yo
™ M anogdoeny. O ontixonooelc mou dnuovpyhinxay and to ProtoPFormer cuugwvoiv pe tic xAvixég
YVOOEIC Xl TLC TPoadoxiec TwV elbix®y, xahoTOVTIC To TO o XeHolwo epyahelo yia Ty epunvela Twv npof-
Mewv Tou yovtélou.

Avudétng, to ViTNet dnuiolpynoe ontixonoiioelc mou Aoy yeviud Aydtepo axpifeic xar dev xotdpepoy va
ETUONUAVOLY ATOTEAEOUOTIXG ToL GYETXE HépN TV EXOVWY Tou elvon omopaftnTo Yo TNV TEXUNELWUéVn Adn
ano@doewy. Autd neplopilel onuayTnd T YenoWdTNTd Tou o GAo To GUVOAA BEBOUEVLV.

H pédodoc Grad-CAM napovaciooce enlong aduvaples, xodode telvel va amoondton ond Ur OYETIXEC TEPLOYES TWV
EoOVLY avtl va eoTIdlel OTIC TEPLOYES ToL elval MO ONUOVTIXES Yoo TN Bidyvwor. Auth 1 éMeu)r eotlaong
pelwoe TNV amoTEAECUATIXOTNTA TNE XL LY VS 0¥ yNoe oe ontxonooels Tou dev evduypopuilovtay xahd ye
TIC XAMVIXEC AVEYXES TWV ELOLXMV.

Yuvohixd, to ProtoPFormer avobelydnxe wg to avddtepo povitého, mopéyovios Tl mo oELOTOTES Xl XALVIX
EQUPUOCIIEC OTTTIXOTIOINTELS G Aol Tot GOVOAN BESOUEVWY.

O nivanxee mopandte epgaviCouvy napadelyuato exévwy omd ha ta ohvoha Sedouévmy, pall Ye TIC OTTIXOTOOELS
mou dnuovpy ANy and xdde yovtélo.
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0.3. IHewpopatued Hpooéyyion

Original Image

NonCOVID

ProtoPFormer

Swin x Grad-CAM

Table 4: Ontixonojoelc mou dnutoveyRdnxay yio To cbvolo dedopévwy Covid and ta ProtoPFormer,
ViT-NeT, xor Swin x Grad-CAM.
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Original Image ] ProtoPFormer ViT-NeT Swin x Grad-CAM

Mild
Dementia

Moderate
Dementia

Demented

Very Mild
Dementia,

Table 5: Ontixonolioelg mou dnutovpyrdnxay yio to ohvolo dedopévwy Alzheimer’s and ta ProtoPFormer,
ViT-NeT, xo. Swin x Grad-CAM.
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Original Image

Dyed Lifted
Polyps

Dyed
Resection
Margins

Esophagitis

ProtoPFormer

ViT-NeT

Swinx x Grad-CAM

Table 6: Ontixonolioelg mou dnutovpyfdnxay yio to ohvolo dedopévwy Kvasir and ta ProtoPFormer,
ViT-NeT, xo. Swin x Grad-CAM.

21



Chapter 0. Extetopévn Iepihndn ota EAAnvid

Original Image rotoPFormer ViT-NeT Swinx x Grad-CAM

Normal
Pylorus

Normal Z
Line

Polyps

Ulcerative
Colitis

Table 7: Ontixonolioelg mou dnutovpyfdnxay yio to ohvolo dedopévwy Kvasir and ta ProtoPFormer,
ViT-NeT, xo. Swin x Grad-CAM.
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0.3. Ilewpapater Ipocéyyion

Original Image ProtoPFormer ViT-NeT Swin x Grad-CAM

Table 8: Ontixomnoifoelc mou dnwovpyHinxay Yo To cUvolo dedopévwy TCGA and ta ProtoPFormer,
ViT-NeT, ot Swin x Grad-CAM.
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Yuunepdopato

Yty napotoa dimhwyatixy epyaocio, e€etdotnxay teelc apyttextovixée Vision Transformer—ProtoPFormer,
ViT-NeT xou Swin Transformer oe cuvduaouéd pe Grad-CAM-—oce téooepa lotpixd oUvold SEBOPEVLY, TER-
apPBdvovtoc MRI, CT, wotonadoroynés exdves xou emdveg and evdooxonfioes. To anotehéopata €detloy
6t to ProtoPFormer nopoucioce v ugnidtepn oxpifeia oe dho tor oUvolo SEBOUEVLV, TROGPELOVTAS TNHOLV-
TIXd TASOVEXTAPATA OTNY avBAUON LaTeix®y edvwy. Avtideta, ta ViT-NeT xou Swin Transformer epgdvicay
youniétepn enidoom, ue mpoBifuata 0TV cpunveio TV EOVWY, YEYOVOC Tou unoypauilel Ty avdyxn yio
noNOTEPES TEYVIXEC TpoETEEEpYaoiag xol IOV EEELOLXEVIEVES HPYLTEXTOVIXEC.

Iot to péhhov, ocuviotdton 1 avdnTuln BeATiwgévey TexVndy Tpoenegepyaoiog yior Ty xahlTtepn eotioon Twv
HOVTEAWY OF XALVIXA ONpavTIXEC Teployée, xadde xou 1 diepelivnon VEéwv apyitextovix®y Transformer xou
UBEWWGY YovTéAwY Yoo TN Bedtiworn tng axplBelac xan tne cpunvevciudntoc. Erniong, n evowudtworn mo-
huTpoTUIXWY BeEBOPEVWLY o 1) e€epedivnon Texvixdy transfer learning unopolv v enextelvouy TNV EQUEUOYY TwWY
HOVTEAWY ot Bidpopa tateixd teptBdAlovTaL.
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Chapter 1

Introduction

In modern technology, few advancements have reshaped society so profoundly as artificial intelligence (AI).
At its core, Al empowers machines with the ability to mimic and even surpass human intelligence, enabling
them to perceive, reason, learn, and act autonomously. This interdisciplinary field intersects computer
science, mathematics, cognitive psychology, neuroscience, and philosophy, among other disciplines, to unlock
the mysteries of intelligence and consciousness. The origins of Al trace back to the mid-20th century when
pioneers such as Alan Turing [44] and John McCarthy [45] laid the conceptual groundwork for intelligent
machines. Since then, AT has undergone remarkable evolution, driven by exponential growth in computational
power, vast datasets, and innovative algorithms.

One of the most important branches of artificial intelligence, computer vision enables machines to interpret
and understand the visual world [1]. From facial recognition systems [2] and autonomous driving [3] to
augmented reality applications [4] and medical imaging [5], computer vision permeates diverse industries,
revolutionizing how we perceive and interact with our environment.

1.1 Motivation

The well-being of individuals and society as a whole will forever remain a top priority. Over the years,
technology has equipped the scientific community with increasingly advanced medical instruments, providing
insights into the inner workings of the human body. Central to this technological evolution is medical
imaging, which involves visualizing the human body using different imaging modalities, aimed at diagnosis
and treatment. Every technique provides distinct details regarding the specific part of the body under
examination or undergoing treatment, related to potential illnesses, injuries, or the effectiveness of medical
interventions. Thus, medical imaging is frequently used for monitoring diseases already diagnosed and/or
treated. There exist several medical imaging modalities, each offering unique advantages and applications to
patients. Some of the most common and the ones that are going to be used for the purposes of this thesis
are: Computed Tomography (CT), Magnetic Resonance Imaging (MRI) [46], histopathological images [47]
and endoscopic images [48].

While these innovations have significantly improved healthcare overall, by providing more accurate visualiza-
tions of the inner topology of the human body, it is essential to acknowledge that diagnostic challenges still
persist. Ultimately, diagnosis remains an exclusively human-driven decision-making process, as it depends
on the medical professional’s personal judgement [6]. However, inaccuracy and uncertainty should not be
present in a field were mistakes cannot be forgiven.

The benefits of artificial intelligence have been discussed in detail in the medical literature [49-51]. Such ben-
efits include applications in the three major areas of early detection and diagnosis, treatment and prediction
of the course and outcome of a medical condition. By using complex algorithms that 'learn’ features from a
vast volume of medical data, AI can have an assisting part in the clinical practice [6]. Additionally, its self-
adjusting and self-correcting capabilities can significantly improve its accuracy through feedback provided by
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Chapter 1. Introduction

the model. In this way, Al systems can help minimize medical errors, which are ubiquitous and their costs,
significant [7-9].

However, alongside the developments brought by AI, there arises a critical issue: interpretability. EU leg-
islation recently required that AI algorithms utilizing user-level predictors for decision-making must offer
explanations, particularly when the results have a substantial impact on the individual’s outcome [52]. As a
result, there has been a growing interest in the field of explainable artificial intelligence (XAI), which focuses
on developing Al systems that also offer transparent explanations of their decisions, making it easier for
humans to comprehend and trust them [10, 53]. Yet, this black box nature of deep learning models [54, 55]
still remains unexplored and poses a challenge in the medical domain [52].

In computer vision, recent advancements in Al architecture have introduced Vision Transformers (ViTs), of-
fering a novel approach to analyzing visual data. Unlike traditional Convolutional Neural Networks (CNNs),
ViTs rely on self-attention mechanisms, allowing them to capture long-range dependencies in images more ef-
fectively [11]. While ViTs have been successfully applied to medical imaging data, showing great performance,
interpretable ViTs are yet to be explored in medical image analysis.

1.2 Contribution

Through this research, we seek to bridge the gap between explainable Al techniques and clinical practice, by
investigating the potential of utilizing interpretable Vision Transformers in the field of medical imaging.

To that end we:
e Apply recent developed explainable ViTs to four multimodal medical datasets.
e Apply a non interpretable ViT to the same datasets.

e Compare the results of the above ViTs and come to conclusions regarding the relationship between
performance and interpretability.

Present survey results evaluating the interpretability of the models, as assessed by medical students.

1.3 Thesis Outline

The remainder of this thesis is structured as follows. Chapters 2 and 3 are dedicated to providing the
reader with the theoretical background essential for understanding our experiments. Chapter 2 covers the
historical progression leading to the development of explainable Vision Transformers (ViTs), from the original
transformer to ViTs and ultimately to interpretable ViTs. In chapter 3, we describe the related work,
offering detail regarding specific recently developed interpretable ViT architectures. Chapter 4 describes
the methodology of the experiments conducted with the selected ViT models and presents the corresponding
results. In conclusion, Chapter 5 concludes this study by summarizing our discoveries and suggesting potential
future avenues for developing an exclusive medical interpretable ViT.
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Chapter 2

Historical Progression: From CNNs to
Interpretable ViTs

In chapter 2, we describe the history behind the development of explainable Vision Transformers. We start
by presenting the foundational concepts of Convolutional Neural Networks to the advancements leading to
the emergence of ViTs. We make an introduction regarding diverse interpretability techniques in the field of
computer vision and their integration with ViTs.

Contents
2.1 Convolutional Neural Networks . . . . . . . . .. o o v i i i i v v v v, 28
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Chapter 2. Historical Progression: From CNNs to Interpretable ViTs

2.1 Convolutional Neural Networks

2.1.1 Artificial Neural Networks

First emerged in the 1980s, Artificial Neural Networks (ANNs) are computational models, simulating the
biological neural networks of the human brain [12]. As shown in Figure 2.1.1, ANNs consist of interconnected
nodes, also called neurons, arranged in layers. Each neuron receives input signals, processes them using an
activation function, and produces an output signal, which may be passed to neurons in the next layer, if one
exists.

The learning process in an ANN includes repeatedly adjusting its parameters to minimize the divergence
between predicted and actual outputs. This divergence is calculated by the loss function, when input data is
propagated through the network. Then, based on this error rate, backpropagation guides weight updates to
minimize the loss. This iterative process continues over multiple epochs, gradually improving the network’s
ability to capture complex patterns in the data [13-15].

Forward Propagation

Iterative process until
loss function is
minimized

True Values (y)
Weight
Welghts Update Loss Score Loss Function

—

Backward Propagation

Figure 2.1.1: A four layered feedforward neural network (FNN), consisting of an input layer, two hidden
layers and an output layer. This is a basic structure of a number of common ANN architectures.
"Overview of a neural network’s learning process" [56]

In the field of computer vision, the inability of traditional ANNs to handle the computational complexity
needed to process image data is one of their biggest drawbacks. For example, when a large, 64 x 64 colored
image input is taken into account, the number of weights on a single first-layer neuron rises significantly to
12,288. However, simply increasing the number of hidden layers in the network is not a practical solution.
Doing so would exponentially increase the computational power and time required to train such a large model.
It could also lead to overfitting, where the model would become too specialized to the training data, resulting
in poor performance on unseen data [12].

2.1.2 CNN architecture

Convolutional Neural Networks (CNNs) represent a specialized class of Artificial Neural Networks primarily
used for processing visual data [16, 17]. CNN applications include image classification, image semantic
segmentation and object detection within images, etc [57]. One of the main differences between CNNs and
ANNSs is that the layers of the CNN are made up of neurons arranged in three dimensions: the input’s height
and width, and depth. The neurons in a given layer, in contrast to conventional ANNs, will only connect to
a specific region of the layer before it. For the example given earlier, the dimensionality of the input would
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Fully
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Feature Extraction Classification

Qutline of CNN

Figure 2.1.2: A simple CNN architecture, consisting of four layers.
"Binary Image classifier CNN using TensorFlow" [58]

be 64 x 64 x 3 (height x width x channels) and it would result in a final output layer of dimensionality of
1 x 1 x n, n being the possible number of classes. This dimensionality reduction into a smaller amount of
class scores enables CNNs to effectively capture and learn complex hierarchical features from images while
significantly reducing the computational complexity compared to traditional ANNs [12].

A Convolutional Neural Network (CNN) typically consists of several layers arranged sequentially. The core
layers include convolutional layers, pooling layers, and fully-connected layers, as shown in Figure 2.1.2.

Convolutional Layers are the primary building blocks of a CNN. They apply a series of learnable filters to
the input data, extracting features such as edges, textures, and patterns (Figure 2.1.3). Each filter slides
across the input data, performing element-wise multiplication and summation to produce activation maps.
Pooling layers follow convolutional layers and serve to reduce the spatial dimensions of the feature maps
while retaining important information. Finally, fully-connected layers connect every neuron in one layer to
every neuron in the next layer. These layers are responsible for creating a flattened vector representation of
the information extracted by the previous ones, by producing class scores from the activations, to be used
for classification [12].

2.2 Attention: Transformers

2.2.1 Background

However, when capturing spatial dependencies in input data, Convolutional Neural Networks have limited
receptive field. These limitations when modeling long-range dependencies arise from the fixed size convolu-
tional kernels and pooling operations, which restrict the scope of information aggregation to a local region
of the input. In 2017, a novel architecture, known as Transformers [18] emerges, which, unlike CNNs, allows
flexible and context-aware representation learning across the entire input sequence [59]. Overtaking other
neural models, such as convolutional and recurrent neural networks, in both natural language understanding
and natural language generation, the Transformer has quickly become the dominant architecture for sequence
modeling tasks, as well as the building block for creating more complex extensions [60].

2.2.2 Multi-Head Attention

The Transformer model relies entirely on a self-attention mechanism, which connects various positions within
a single sequence to calculate its representation. These representations are then used to predict the distri-
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Figure 2.1.3: Learned features from different convolutional layers of a CNN.
"Understanding of a Convolutional Neural Network" [17]

bution of subsequent information as the model predicts the output sequence symbol-by-symbol, facilitating
efficient parallel training [18, 59, 60]. In the QKV (Query, Key, Value) attention mechanism, each input
element (or token) is associated with three learned vectors: the query vector, the key vector, and the value
vector, which are obtained by linear transformations of the input embeddings. The "Scaled Dot-Product
Attention", utilized by the Transformer model, is a variation of the above mechanism, wherein attention
scores are computed as the dot product between the query and key vectors, divided by the square root of the
dimension of the latter.More specifically, it combines queries @, keys K, and values V as follows:

tteIlti()Il(Q ) = softma, ( >
A , K, V) = X Vv
vV dk

By doing a softmax, the highest scores get heightened and the lowest scores are depressed, which allows
the model to be more confident on which words to attend to. The \/Ldj is called the scaling factor. It
normalizes the dot products, preventing them from becoming too large or too small, which can lead to issues

like vanishing or exploding gradients during training [19].

To enable multi-head attention computation, which is the one introduced by the Transformer model, the
query, key, and value vectors are split into sub-vectors before applying the self-attention mechanism. This
splitting allows the model to focus on different aspects of the input sequence independently, enhancing its
ability to capture diverse relationships within the data. Each split vector undergoes the same self-attention
process individually, with each process referred to as a head. In essence, each head functions like a separate
attention mechanism, enabling the model to attend to various parts of the input simultaneously. The outputs
from each head are then concatenated into a single vector before being passed to the final linear layer. In
theory, each head would learn different aspects of the input, thereby enhancing the representation power of
the Transformer model [18-20].
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Figure 2.1.4: Classic CNN models through time.
"A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects" [16]

MultiHead(@, K, V') = Concat(head;, heads, ..., headh)WO

where head; = Attention(QWiQ, KWE vw})

To sum it up, as shown in the left part of the Figure 2.2.1, multi-head attention is a module in a transformer
network that computes the attention weights for the input and produces an output vector with encoding
information on how each word should attend to all other words in a sequence.

Computational
and Memory
Complexity

O(n?)

Concatenate

[
[ Scaled Dot-Product Attention ]J

! J l

[r_inear },] [{Linear ]_] [rl_i-‘ea- ]J
4 4 P

K v Q

Figure 2.2.1: (left) Scaled-dot product attention. (right) Multi-head attention.
"Efficient Transformers: A Survey" [20]

2.2.3 Model Architecture

The Transformer model comprises two integral components: the encoder and the decoder, each serving
essential functions in the model’s architecture for sequence processing and generation.

Encoder: The encoder component of the Transformer model is responsible for processing the input sequence
and extracting contextual information from each token. It consists of multiple layers, six to be exact, each
containing two main sublayers: a multi-head self-attention mechanism and a position-wise fully-connected
feed-forward neural network with ReLU activations [20]. In the former, each token attends to all other
tokens in the input sequence, allowing the model to capture dependencies between elements at different
positions [59]. Following, the position-wise feed-forward network applies a non-linear transformation to each
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token’s representation independently, further refining the features extracted by the self-attention mechanism.
Residual connections and layer normalization are applied after each sublayer to facilitate stable training and
improve gradient flow [18, 19].

X 4 = LayerNorm(Multihead Attention(X, X)) + X

Xp = LayerNorm(PositionFFN(X 4)) + X 4 [20]

Decoder: The decoder component of the Transformer model is responsible for generating the output se-
quence based on the representations produced by the encoder and the previously generated tokens in the
output sequence. It shares a similar architecture with the encoder, consisting of multiple layers (stack of
N = 6 identical layers [18]) with self-attention mechanisms and position-wise fully-connected feed-forward
neural networks. The decoder also includes a mask to prevent tokens from attending to future tokens in the
output sequence during training, ensuring that the model generates each token based only on the previously
generated ones. Residual connections and layer normalization are applied after each sublayer to facilitate
stable training and improve gradient flow [18].

2.2.4 Applications and Famous Transformer Models

Transformers were first introduced within the context of sequence-to-sequence machine translation in natural
language processing and the majority of their early improvements still remain within the domain of language.
However, their influence extends far beyond language alone, ranging from speech, to vision and reinforcement
learning [20].

The T5 (Text-to-Text Transfer Transformer) [61], which was developed by Google in 2019, is among the
most popular transformer encoder-decoder models. It is designed to perform numerous NLP tasks, such as
question answering, summarization, language translation, by converting input text to output text.

BERT, standing for Bidirectional Encoder Representations from Transformers, [62] is another groundbreaking
transformer encoder model that has significantly influenced the field of NLP. Released by Google in 2018,
BERT brought about a shift by introducing bidirectionality in language representation. Unlike previous
models that processed text in one direction, BERT considers both left and right context during training,
enabling it to capture deeper semantic meaning and context. This bidirectional understanding revolutionized
various NLP tasks, including question answering and language inference, without the need for significant
tsk-specific alterations to the architecture.

GPT-3 (Generative Pre-trained Transformer 3) [63] is the third generation of the GPT series, developed by
OpenAl in 2020, aimed to produce human-like text. With 175 billion parameters, GPT-3 is one of the largest
and most powerful language models ever created, showing great performance in various tasks, including
summarization, translation, grammar correction, question answering, chatbots, composing emails, and more.

2.3 Vision Transformers

Inspired by the Transformer’s scaling success in NLP tasks, researchers began exploring its applicability in
other domains, such as computer vision. In 2017, Dosovitskiy et al. demonstrated that CNN dependency is
unnecessary, as a standalone transformer applied directly to sequences of image patches can excel in image
classification tasks [11]. Embracing the Transformer architecture, Vision Transformers (ViTs) revolutionized
the conventional approach to image analysis. Breaking down the steps of how an input image is processed
by the ViT involves several key stages that are going to be discussed in the following section.

2.3.1 Transformers in Vision

Interest in employing transformers for high /mid-level computer vision tasks has been recently increasing [64].
This growth in interest encompasses a broad spectrum of applications, including object detection [65-68],
segmentation (panoptic [69], instance [70], semantic [71, 72|, medical [73]), lane detection [74], and pose
estimation [75].
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"A survey of transformers" [19]
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Solely based on attention A huge transformer with The transformer model for NLP The first transformer model
mechanism, the Transformer is 170B parameters, takes a can also be used forimage pre- for low-level vision by
proposad and shows great big step towards general training. combining multi-tasks.
performance on NLP tasks. NLP model.
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field of NLP. by viswing object detection as visual recognition. Swin.

a direct set prediction problem.

Figure 2.3.1: Significant moments in the evolution of transformer technology. The vision transformer
models are highlighted in red.
"A Survey on Vision Transformer" [64]

There’s a limited number of studies that employ transformers in low-level vision tasks like image super-
resolution and generation. These tasks involve producing images as outputs, which poses a greater challenge
compared to high-level vision task, where the outputs are labels or bounding boxes [64].

In computer vision, especially in video-related tasks, where both spatial and temporal dimensions are crucial,
the Transformer architecture has also found applications [64]. These include tasks such as frame synthesis
[76], action recognition [77], and video retrieval [78§].
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Figure 2.3.2: ViT overview. First the image is split into patches of fixed size, to be used as tokens. Then,
the flattened patches are linearly projected and position embeddings are added to define the position of the
patches within the image. Finally, the patches along with the embeddings are fed to a standard Transformer

encoder. For classification purposes, an extra learnable class embedding is added to the sequence.
"Automatic fungi recognition: deep learning meets mycology" [21]

2.3.2 ViTs: The Method

The process of an input image, entering the Vision Transformer, as introduced by Dosovitskiy et al. [11],
involves the steps described below:

1. Initially, the original 2D image, z € RF>*WX*C yith a resolution of (H, W), is partitioned into fixed-size
non-overlapping patches, effectively breaking down the visual information into manageable units. Each
patch, =, € RN X(P*C) has a resolution of (P, P), where C is the number of channels and N = HXW the
total number of patches, which is an efficient input sequence length for the Transformer archltecture
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2. The patches are flattened and linearly projected to D dimensions, the constant size of the latent space
of all the Transformer layers. This projection’s output is called "patch embeddings".

3. A special learnable embedding is added to the start of the sequence 28 = Zclass, also known as a

classification token, allowing the model to make predictions, regarding the classification, based on the
aggregated information from all the patches.

4. Positional encodings are incorporated into the patch embeddings before feeding them into the Trans-
former layers. These encodings provide spatial information by representing the relative positions of
patches within the image grid. Standard learnable 1D embeddings are used, since the 2D representa-
tion has not shown notable improvements in performance.

5. The patch embeddings, along with their positional encodings, are ready to be fed into a standard
transformer encoder. The architecture of the encoder follows the pattern we have previously discussed:
comprising layers of multi-head attention and MLP blocks that alternate. Layer normalization and
residual connections are applied before and after each block accordingly.

As observed, the Vision Transformer displays a notably reduced image-specific inductive bias in contrast to
CNNs, with only the MLP layers being both local and translationally equivariant.

Additionally, in the context of a hybrid model architecture, rather than utilizing raw image patches, feature
maps extracted from a CNN can serve as the input sequence.

2.4 Interpretability in Vision Transformers

While Vision Transformers (ViTs) have shown remarkable performance across various computer vision tasks,
understanding their inner workings remains a significant challenge. The primary difficulty lies in the fact
that the attention generated in each layer becomes intricately intertwined with subsequent layers, posing
a challenge in visually determining the proportional impact of input tokens on the final predictions [79].
Interpretability, or the ability to comprehend why a model makes certain predictions, is crucial for deploying
ViTs in real-world applications, especially where transparency and trust are paramount. There exist a number
of different interpretability techniques that are applied on Vision Transformers, each offering insights into
how the model processes and understands visual information. These techniques, that range from attention
visualization to map generation and attribution propagation [28], are going to be further discussed in the
next chapter along with specific recently developed interpretable ViT models.
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Chapter 3

Related Work

In Chapter 3, we delve into the domain of interpretability within Vision Transformers, focusing on three key
aspects. Firstly, we explore an overview of explainability techniques, highlighting their significance in under-
standing complex deep learning models. Secondly, we narrow our lens to examine existing interpretability
techniques specifically developed for the domain of medicine. Lastly, we dive into the latest advancements
in interpretable ViT architectures, discussing innovative approaches that aim to make computer vision tasks

more transparent and understandable.
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3.1 Explainability Methods

Explainability encompasses a wide range of methods and techniques, including feature importance methods,
rule-based explanations [80-82|, counterfactual explanations [83, 84|, and prototypes [85]. These approaches
are applied across various modalities, such as text, images, sound, and graphs, as well as in multimodal
systems that combine these data types [86]. In this thesis, however, the focus will be on explanations within
the computer vision domain, specifically for images, with a particular emphasis on heatmaps as a subset of
feature importance methods.

Explainability in computer vision. Before discussing specific explainability methods, it’s essential to
understand the broader landscape of heatmap generation techniques for identifying local relevance in images
processed by CNNs. These methods typically fall into the following main categories: gradient methods and
attribution methods [28].

Gradient methods, such as attention rollout and GradCAM, compute gradients of the model’s output with
respect to the input image pixels. They measure how changes in the input image pixels affect the output
prediction. Higher gradients indicate pixels that have a stronger influence on the outcome [28].

Attribution propagation methods, such as the Layer-wise Relevance Propagation (LRP) method, rooted in
the Deep Taylor Decomposition (DTD) framework, aim to systematically decompose the decision-making
process of neural networks. By recursively attributing contributions from previous layers to elements of the
input, these methods provide an understanding of how each layer and feature influences the network’s decision
[28].

Methods that do not belong in the categories described above and fall into the interpretability technique
of map generation include saliency and relevance based methods, highlighting the areas of the given image,
discriminative with respect to the given class. [28, 87, 88|

3.1.1 Attention rollout and Attention flow

Attention rollout [22] offers an approach to trace the flow of information from the input layer to higher-
layer embeddings within a Transformer model. For a Transformer with L layers, attention is computed from
all positions in layer /; to all positions in layer [;, where j < i.

An attention graph is a graphical representation used to visualize the flow of attention within a neural
network, particularly in models with an attention mechanism, such as Transformers. In an attention graph,
nodes represent different positions or elements in the input sequence, while edges represent the attention
weights assigned between these positions. Each edge’s weight indicates the strength or importance of the
attention connection between the corresponding nodes. In our case, in a self-attention mechanism within a
Transformer layer, each input token attends to every other token in the sequence, and the attention weights
determine how much focus or influence each token has on the others.

Visualized as an attention graph, a path from node v at position k in layer I; to node u at position m in
layer I; represents a series of connecting edges. By multiplying the weights of all the edges in a specific path,
we can determine the amount of information that is propagated from v to u. This is because the weight of
each edge represents the amount of information that is exchanged between two nodes. If multiple paths exist
between two nodes within an attention graph, summing across all potential paths connecting these nodes is
necessary to calculate the proportion of information flow between them.

A(l;) if i =j

where A is attention rollout, A is raw attention and a matrix multiplication is performed.

Attention flow. Viewing the attention graph as a flow network, with edge capacities serving as attention
weights, enables the computation of maximum attention flow from any layer node to input nodes using
standard maximum flow algorithms. This maximum-flow-value is used as an estimate of attention to input
nodes. Unlike the attention rollout method where the weight of a single path is the product of edge weights,
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3.1. Explainability Methods

in attention flow, it’s determined by the minimum value of edge weights along the path, since there might be
path overlapping [22].

3.1.2 GradCAM

In 2016, a procedure for generating class activation maps (CAM) [24] was introduced using global average
pooling in CNNs [89]. Given a network mostly made up of convolutional layers, global average pooling is
performed on the feature maps produced by the last convolutional layer. These pooled features are then uti-
lized as input features for a fully-connected layer responsible for generating the desired output (classification
or otherwise) [24].
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Figure 3.1.1: Class Activation Mapping (CAM): Illustrating how predicted class scores are utilized to
generate class activation maps (CAMs), highlighting discriminative regions within the image.
"Learning Deep Features for Discriminative Localization" [24]

If there are n filters in the last convolutional layer, corresponding to n feature maps, the activation map for
a specific output class is generated by combining all n feature maps with learned weights.
To learn these weights:

Step 1: Apply global average pooling to each feature map, resulting in n scalars (GAP outputs), k1, ko, ...,
k.

Global Average Pooling (GAP) [89] is a pooling technique used in convolutional neural networks (CNNs)
to condense feature maps. Unlike traditional pooling methods that select the maximum value within local
regions, GAP calculates the average value of each feature map across its entire spatial extent.

Step 2: Learn a linear model from these GAP outputs to the class labels. For each of the N output classes,
N linear models with weights w1, ws, ..., w, are learned.

Step 3: With the obtained weights for each class, weight the feature maps to generate the class activation
maps. Different weighted combinations of the same feature maps produce class activation maps for different
classes.

In mathematical terms, the CAM model computes the class score for an output class ¢ as follows:

wm ZEE ST S AL
g

where Afj represents the pixel at location (i,7) in the k-th feature map, Z is the total number of pixels in
the feature map and wyj, is the weight of the k-th feature map for class c.
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CAM can only be implemented with networks that use a single fully-connected layer before the output layer.
So, in a case with multiple fully-connected layers, they usually get replaced with convolutional ones and the
network need to be re-trained [23].

Figure 3.1.2: The class activation maps (CAMs) depict distinctive image regions crucial for image
classification, such as the animal’s head for the briard class and the plates in a barbell.
"Learning Deep Features for Discriminative Localization" [24]

Grad-CAM is a generalization of CAM, developed to be applied to any CNN-based architecture [23]. It
builds upon CAM by utilizing gradient information from the final convolutional layer. It computes the
gradients of the predicted class score with respect to the feature maps of this layer. These gradients are
then global-average-pooled to obtain importance weights for each feature map, representing the importance
of each feature map in making the final prediction.

1 oy°
=72
i g R

Finally, GradCAM produces a weighted combination of the feature maps using the importance weights. To
retain only the positive correlations in the final activation map, a ReLU function is applied on the weighted
combination of feature maps.

L&rad—cam = ReLU (Z aiAk>

k

Grad-CAM visualizations effectively localize relevant image regions based on class discrimination but lack
the ability to provide fine-grained importance like pixel-space gradient visualization methods such as Guided
Backpropagation and Deconvolution. To address this limitation, Guided GradCAM [23, 25], a fusion approach
is proposed, combining the strengths of both techniques through pointwise multiplication. This fusion results
in high-resolution visualizations that accurately identify important features specific to the predicted class
while maintaining class discrimination.

3.1.3 LIME

The Local Interpretable Model-agnostic Explanations (LIME) method [26] is a technique designed to provide
explanations for the predictions made by complex machine learning models. At its core, LIME defines
an explanation as a model g belonging to a class G comprising models that are potentially interpretable,
including linear models or decision trees. The complexity of the explanation model is quantified by a measure
denoted as Q(g), which could represent the depth of a decision tree or the number of non-zero weights in a
linear model. This allows for a balance between interpretability and complexity, ensuring that the resulting
explanations are understandable while still capturing the essential features of the original model’s behavior.

The model being explained, denoted as f : RY — R, represents the function that maps input features to
predictions. LIME aims to approximate the behavior of this model locally, focusing on a specific instance z
for which an explanation is sought. A proximity measure 7, (z) is used to quantify the similarity or proximity
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Figure 3.1.3: Guided GradCAM overview: Grad-CAM begins with an input image and a specified category,

such as ’tiger cat’. The image is processed through the model to obtain raw class scores. Gradients are then

adjusted to emphasize the target class while setting others to zero. This modified signal is then propagated
backward to the relevant convolutional feature map, allowing computation of the coarse Grad-CAM

localization represented by a blue heatmap. Lastly, the heatmap is combined with guided backpropagation
through pointwise multiplication, resulting in Guided Grad-CAM visualizations known for their high

resolution and ability to discriminate between classes.
"Grad-CAM: Why did you say that?" [23]

between an instance z and the instance x, defining the locality around x. This locality-aware approach allows
LIME to provide explanations that are relevant to the specific context of each prediction.

The heart of LIME lies in the locality-aware loss function L( f, g, 7, ), which measures how well the explanation
model g approximates the behavior of the original model f within the defined locality. The goal is to minimize
this loss while simultaneously minimizing the complexity of the explanation model. This is achieved through
optimization, where the explanation §(z) is obtained by minimizing the combined loss function and complexity
measure:

9(x) = argmingcq (L(f, 9, 7a) + 2(g))

To approximate the locality-aware loss function, LIME employs a sampling approach. Samples are drawn
around the instance x using the proximity measure 7., and these samples are then used to approximate the
loss function. Despite the potential presence of sampling noise, LIME remains robust due to the weighting
of samples by the proximity measure.

3.1.4 Layer-Wise Relevance Propagation

Layer-Wise Relevance Propagation (LRP) [27, 28] propagates relevance of the prediction f(z) backwards in
the neural network, following the Deep Taylor Decomposition framework. In the propagation mechanism,
utilized by the LRP, the information received by a neuron must be equally redistributed to the lower layer
(conservation property). Supposing j and k represent neurons at consecutive layers of the neural network,
the following rule describes the relevance scores’ ((Ry)*) propagation onto the neurons of the lower layer:

where zj, quantifies the degree to which neuron j has influenced the relevance of neuron k, and the de-
nominator ensures the preservation of the conservation property, described above. The propagation process
concludes when reaching the input features.

Applying the aforementioned rule to all neurons in the network allows for the straightforward expression of
the layer-wise conservation principle:
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(b) Guided Backprop ‘Cat’ (c) Grad-CAM *Cat’  (d)Guided Grad-CAM ‘Car’

(g) Original Image (h) Guided Backprop ‘Dog’ (i) Grad-CAM ‘Dog”  (j)Guided Grad-CAM ‘Dog’

Figure 3.1.4: Comparison of Visualizations: Original image of a cat and a dog alongside visualizations
generated using Guided Backpropagation, Grad-CAM, and Guided Grad-CAM techniques, showcasing
distinct highlighting of salient features and class-specific regions.
"Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization" [25]

ORI
j k
as well as the global conservation property:

ZRi = f(=)

3.2 Interpretable ViT Networks

After discussing post hoc explainability methods, which involve techniques applied externally after a model
has made its predictions, we now turn our attention to reviewing specific interpretable ViT models, where
interpretability is inherently built in the model architecture itself.

3.2.1 ViT-NeT

To achieve a better trade-off between model interpretability and performance, in 2022, ViT-NeT [29] was
introduced, combining the Swin transformer encoder [30], as a backbone for feature representation, with a
neural tree decoder. The method utilizes a shifted window approach to detect both small and large object
variations at the same time, effectively managing both inductive bias and computational complexity.

The Swin Transformer Encoder. Unlike traditional transformers which rely on a single-window approach,
Swin Transformer adopts a hierarchical feature encoding strategy akin to a feature pyramid found in CNNs.
By dynamically adjusting window sizes and processing multiple patches with self-attention, Swin Transformer
generates attention maps capable of detecting both small and large objects within images. Notably, while
vanilla transformers perform quadratic computations on input images, Swin Transformer operates linearly,
resulting in increased model size without significant computational overhead and improved inference speed.

The Neural Tree Decoder. The NeT comprises sets of nodes (N()), leaves L()), and edges (E;;())
connecting parent node i to child node j. With the use of a perfect binary tree, each internal node has
exactly two child nodes: Ny; and Na; 1. With the encoder output denoted as zl1=f(x;}), the proposed
NeT makes the final class label predictions using a soft decision approach, meaning it selects the class label
with the highest probabilities or confidence score. The NeT component of the ViT-NeT model is designed
for distinguishing between objects with similar relationships across classes but differing relationships within
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Figure 3.2.1: ViT-NeT overview.
"ViT-NeT: Interpretable Vision Transformers with Neural Tree Decoder" [29]

classes. Fine-grained classification requires identifying specific features within categories, achieved in this
study by applying prototypes to condensed image patches, unlike the global classification based on general
global indicators.

The NeT utilizes prototypes to detect distinctive regions within image patches, guiding routing directions
through a differentiable routing module. Each internal node represents a trainable prototype, evaluating
the distance between reshaped image patches and the prototype. Then, through a logarithmic similarity
measure, routing scores are calculated to determine the similarity between prototypes and image patches.
The contextual transformer module (CTM), used by the model, enhances the object description by integrating
global context into the patches at every position. Finally, Each leaf in the tree decoder corresponds to a leaf
prediction module for class probability prediction over K classes. The final prediction § is calculated as the
sum of all leaf predictions multiplied by the accumulated routing scores.

Input image

Parakeet
auklet

Yellow breasted
chat

Figure 3.2.2: Illustrated local interpretations display sequential decision-making processes on randomly
selected images. The proposed NeT identifies specific "bird features" within the depicted images.
"ViT-NeT: Interpretable Vision Transformers with Neural Tree Decoder" [29]

3.2.2 ProtoPFormer

In a follow-up study, Xue et al. proposed ProtoPFormer [31] for applying the prototype-based method [32]
with ViTs for interpretable image recognition. Based on the architectural characteristics of ViTs, ProtoP-
Former progressively solves the “prototype distraction” problem and introduces global and local prototypes
to capture and highlight both the global and local features of target objects through a mutual correction
and joint decision process. While ProtoPFormer and ViT-NeT, have comparable accuracies, the number of
parameters added by the ProtoPFormer is significantly smaller, making it preferable to use.

The overall architectural layout is depicted in Figure 3.2.4. Within this structure, a class token ¢, belonging
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to R'? and a feature sequence Xy from R(™=1xd are extracted from the visual sequence X = [tq; X 7]

These components are then used separately as inputs into a global prototype branch and a local prototype
branch. The global branch encompasses m, learnable prototypes P, = {pgl), e ,pg’”g)}, while the local

branch contains m; learnable prototypes P, = {pgl), ce pl(mz)}, each with mg and mf prototypes accordingly

for every class. The outputs from the FC classification layer of the global and local branches are weighted
summed, ultimately classifying the input image.

Why is this bird classified as a Indigo Bunting?

3
e
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Figure 3.2.3: Reasoning process for the classification of a bird image as an Indigo Bunting through mutual
correction and joint decision of the local and global branch.
"ProtoPFormer: Concentrating on Prototypical Parts in Vision Transformers for Interpretable Image
Recognition" [31]

The proposed method involves several steps aimed at enhancing the concentration of local prototypes on
foreground elements while filtering out background influences. Initially, a binary mask called the foreground
preserving (FP) mask is applied to selectively retain foreground-related image tokens and exclude background-
related ones. This mask is generated using the rollout method, which utilizes the attention rollout matrix
of the class token in a Vision Transformer (ViT) model. The rollout attention values to the class token are
utilized to preserve the top-K foreground tokens, which are then used to compute the subsequent encoder
layers. Subsequently, a modified softmax normalization is employed to remove selected background tokens,
ensuring that only foreground-related tokens contribute to further processing. This concentration of local
prototypes in the foreground is achieved using the FP mask. Additionally, to focus local prototypes on diverse
and centralized representative parts for each class, a prototypical part concentration (PPC) loss is introduced.
This loss function minimizes the sum of eigenvalues of the dispersion parameter while encouraging diverse
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center coordinates for prototypes belonging to the same class. The optimization objective of the proposed
ProtoPFormer model is to minimize a combination of the conventional cross-entropy loss and the PPC loss.

Global Branch Similarity Logits
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Image Token | Concentrate on the Foreground | |Concemrate on the Prototypical Parts|

Figure 3.2.4: ProtoPFormer’s depiction for interpreting image recognition, showcasing the interplay
between its global and local branches. Through an approach of mutual correction and joint
decision-making, they collaboratively enhance final predictions, leveraging ViTs’ inherent architectures
"ProtoPFormer: Concentrating on Prototypical Parts in Vision Transformers for Interpretable Image
Recognition" [31]
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3.2.3 PaCa ViT

Last year, a new interpretable ViT model has emerged, the PaCa-ViT [33], outperforming its ancestors, the
Swin-Transformer [30] and the PVT [34, 35].

In the transition from patch-level to cluster-level attention mechanisms, an input sequence Xy ¢ is processed,
where N represents the number of tokens formed through patch embedding. The Transformer model’s core
operation involves computing scaled dot-product attention to transform Xy ¢ into the output Yy c. This
involves generating query, key, and value matrices, and applying the softmax function to obtain attention
weights. In order to address the quadratic complexity problem, existing methods include spatial reduction
techniques such as strided convolution or adaptive average pooling. However, although strided convolution
decreases complexity according to the patch size, it does not fully eliminate quadratic complexity. Similarly,
adaptive average pooling might assign equal importance to each element in a pooling window, possibly
lacking adaptability and data-driven reweighing capability. So as to tackle this challenge, which arises when
M = N, the key is to maintain a relationship where M << N, ideally a predetermined constant, to ensure
linear complexity. This is achieved with the proposed Patch-to-Cluster attention (PaCa), as illustrated in
Figure 3.2.5.

1) Fanilla Patch-to-Patch Attention 1) The Proposed PaCa: Pateh-to-Cluster Attention
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Figure 3.2.5: The vanilla patch-to-patch self-attention suffers from quadratic complexity as every query
interacts with every key. A popular method to reduce this complexity involves spatial reduction through
techniques like strided convolution. The paper proposes Patch-to-Cluster attention (PaCa), which uses a
predefined number of cluster assignments to compute the Key and Value, achieving linear complexity and

more meaningful visual tokens.
"PaCa-ViT: Learning Patch-to-Cluster Attention in Vision Transformers" [33]
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In this approach, an input sequence Xy ¢ is clustered into a set of "visual tokens" Zs ¢, with C as being
the cluster assignment computed either by the onsite clustering method or by the external clustering one.

Zyvc = LayerNorm(C}\},M -Xn,o)
Subsequently, the computed clusters are utilized to derive Key (K ¢) and Value (Vi ¢) components through
linear transformations for attention computation.

In the onsite clustering method, cluster assignment C s is computed using two designs: Clustering via
Convolution and Clustering via MLP.

e Clustering via Convolution employs depth-wise and point-wise convolutions followed by Softmax to
generate cluster assignments.
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e Clustering via MLP utilizes a Multi-Layer Perceptron for cluster assignment computation.

By utilizing Softmax across spatial dimensions, meaningful cluster creation is promoted, facilitating the
visualization of Cy s as heatmaps to assess model interpretability during forward computation. Regarding
the computation location of Cx s in the onsite clustering approach, it can be done either in block-wise or
stage-wise fashion. Grainger et al. suggest that the latter approach is not only more computationally efficient
but also yields higher accuracy.

To address the challenge of onsite clustering relying on early-stage cluster assignments rooted in low-to-middle
level information, an external clustering teacher CNN was introduced. This approach draws insights from
various research areas, such as feature pyramid networks and the slow-fast thinking paradigm, as well as
empirical findings on Transformers and CNNs. The clustering teacher network, trained alongside the PaCa
ViT model, computes stage-wise clustering assignments and integrates them into the model. Acting as a fast
learner, it guides the slower PaCa learner, akin to a working memory mechanism that manipulates input
data to facilitate post-processing via PaCa. This integration has the potential to enhance the model’s ability
to learn from both high and low-frequency information sources.

Network Interpretability. In the pursuit of identifying the most crucial clusters within C'y s for an input
image in vision tasks, a direct method is employed. This involves utilizing the clustering assignment maps
before undergoing the Softmax transformation, followed by a Sigmoid operation. Each cluster’s heatmap is
transformed into a 2D spatial heatmap, and a binary mask is generated by selecting locations with clustering
scores surpassing the mean score. After upscaling this mask to match the input image’s resolution, it is
applied to the input image. The resulting masked image, I,,, is further categorized into positive and negative
groups, depending on its ability to retain sufficient information for correct classification, providing insights
into the significance of the clustered regions.

3.2.4 Ex-ViT

The eX-ViT [36] operates as a siamese network, utilizing two branches to process a pair of input images,
which in reality are two different random transformations of the original input image. shown in Figure 3.2.6
Each branch includes a transformer encoder with multiple layers incorporating the Explainable Multi-Head
Attention (E-MHA) module and the Attribute-guided Explainer (AttE) module positioned on top of the
encoder.
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Figure 3.2.6: Overview of the eXplainable Vision Transformer architecture.
"eX-ViT: A Novel explainable vision transformer for weakly supervised semantic segmentation" [36]

The Explainable Multi-Head Attention. The Explainable Multi-Head Attention (E-MHA) module
comprises multiple parallel heads, each holding an explainable attention weight A, € RV*? aiming to learn
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interpretable features from the input feature map X € RT*4 (T: spatial size of X, d: feature dimension,
N: spatial size of Ap). Yu et al. focus on two key attributes of the E-MHA module: noise robustness
and inherent explainability. Noise robustness is achieved through dynamic alignment between input tokens
and attention weight, allowing the module to focus on discriminative patterns and gradually reduce noise.
Inherent explainability is attained by maximizing alignment between input tokens and attention weight,
resulting in model-inherent attention weight that direct explanations for model decisions without external
aids.

The computation process begins with the projection of input data X onto trainable matrices to obtain the
key, query, and value matrices (K, @, V). Self-attention is then conducted by calculating attention weights
based on the dot product of the query and key matrices, scaled appropriately. These weights are then
adjusted using a non-linear function and a bias term. Following this, the self-attention feature (5) is formally
expressed as the product of the attention matrix (A) and the value matrix (V).

Overall, the computation in layer [ is expressed as

Si = E-MHA(LN(F;—1))
Z1=8+F_1
F, = MLP(LN(Z)) + %

with LN(-) being the LayerNorm layer, MLP(-) the multi-layer perceptron layer, and F} the output of layer
l.

The Attribute-guided explainer.The Attribute-guided Explainer (AttE) module complements the E-
MHA by decomposing attention maps into attribute features, aiming to enhance interpretability in Weakly
Supervised Semantic Segmentation (WSSS) tasks without additional regularization. By utilizing transformer
attention maps from the last layer of the eX-ViT encoder, spatial feature maps capturing relative importance
are generated and normalized to emphasize or suppress specific spatial features. These maps are then sliced
into groups representing different attributes, which are applied to the original feature maps to produce
attribute representations. This process enables the model to explicitly identify pixels related to specific
attributes, contributing to a more comprehensive understanding of object context. Additionally, an attribute-
guided loss function is designed to facilitate the learning of AttE. By utilizing both global and local level
losses, the introduced loss function reinforces the trustworthiness of the Transformer model and enhances the
discriminative and robust qualities of the learned attribute features.

3.3 Exploring Explanations for Medical Imaging

In the domain of medical imaging, the interpretability of AI models is significantly important for ensuring
their safe and effective deployment in clinical practice. To address this aspect, this section delves into the
exploration of explainability methods either tailored specifically to medical imaging tasks or used for produc-
ing interpretable explanations in the field of medicine, beginning with the paper authored by Komorowski
et al. [37]. This study compares the visualization results of Attention rollout, TransLRP and LIME, three
methods that have already been discussed in Section 3.1, in the classification of chest X-ray images, highlight-
ing interpretability challenges and opportunities in this domain. Based on the results provided, TransLRP
demonstrates strong potential for explaining ViT’s predictions in the characterization of chest X-ray images as
Covid, Non-Covid and Healthy, making it a suitable choice for interpretation by experts such as radiologists.
While TransLRP is resilient to distortions or abnormalities in medical images known as "imaging artifacts",
there are still situations where it might produce explanations based on misleading or incorrect correlations,
which could lead to inaccurate predictions from the model. On the other hand, LIME explanations tend
to be similar or consistent when applied to different images. More specifically, LIME relies on superpixels,
which are regions of an image used to approximate the contribution of features to the model’s prediction.
It is observed that if the superpixels used by LIME do not primarily focus on the lung areas in chest X-ray
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Ground-truth  Image

CAM [14]
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eX-ViT{Ours) AdvCAM [23|

Figure 3.2.7: Visualization comparison among different interpretability methods and models on the
PASCAL VOC 2012 Training Set.
"eX-ViT: A Novel explainable vision transformer for weakly supervised semantic segmentation" [36]
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(a) Image (b) Ground-truth (¢) E-MHA (d) w/o AttE (e) w/ AttE

Figure 3.2.8: Three visualization cases are showcased alongside their ground truth segmentation labels.
Notably, the proposed model’s attention maps, enhanced by the AttE module, demonstrate superior
precision in identifying both small and large objects, exhibiting significantly improved object outlines.
"eX-ViT: A Novel explainable vision transformer for weakly supervised semantic segmentation" [36]

images, there is a risk of inaccuracies in the explanations provided by LIME. Finally, when using attention
visualization to understand why a model made a specific prediction, the explanations provided are less re-
liable or informative compared to those generated by TransLRP and LIME. Overall. the results, as shown
in Figure 3.3.1, indicate that TransLRP overcomes the other examined explanation methods in classifying
COVID in chest X-ray images.
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Figure 3.3.1: Visual explanations of ViT trained for X-ray classification. Two images are displayed for every
class label, each explained using three interpretation methods. Performance metrics, including faithfulness
(F), sensitivity (S), and complexity (C), are provided for each explanation, with lower scores being
preferable for sensitivity and complexity, while higher scores for faithfulness.

"Towards Evaluating Explanations of Vision Transformers for Medical Imaging" [37]

In another work, published in 2022, Playout et al. [38] manage to produce high-resolution heatmaps by
developing a technique called Focused Attention, aimed at efficiently processing medical imaging data while
maintaining memory efficiency. The methodology begins by addressing the issue of increased memory re-
quirements caused by using a small-stride projector convolution. This increase in memory usage would make
attribution methods requiring backpropagation impractical due to the large number of tokens. Regarding
patch selection, the proposal suggests that not all patches in an image are equally important for diagnosis,
especially those centered on lesions. Therefore, the methodology proposes generating attribution maps and
predictions using only a subset of patches at each scale. Thus, the process defines an iterative procedure
over a scale of decreasing stride values. Strides are typically powers of two, starting from a larger value
and gradually decreasing to one. For each stride, a fixed number of patches are randomly sampled from the
region highlighted in the attribution heatmap constructed at the previous stride. This ensures a constant
memory requirement at each scale. The approach involves repeating the sampling operation multiple times
for each scale, effectively processing a total of patches with a constant memory requirement. The attribution
maps generated per stride are then merged and aggregated, as shown in Figure 3.3.2, with experimentation
showing that elementwise averaging provides the most consistent results. At each stride, the resolution of
the attribution map is halved compared to the next stride. Bilinear interpolation is used to upsample the
attribution map generated at each scale for use as a conditional sampling map for the following stride. As
a whole, this method effectively concentrates the attention mechanism on a subset of meaningful tokens,
iteratively refining the selection. Finally, the comparison between the Focused Attention approach and the
other dominant explainability techniques used in medical imaging is shown in Figure 3.3.3.
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Figure 3.3.2: Visual representation of Focused Attention: each column showcases the attribution maps
generated per stride, with the last two displaying the final aggregation and the ground truth lesions.
"Focused Attention in Transformers for interpretable classification of retinal images" [3§]

In another paper by Demir et al. [39], an innovative attention block is introduced in the Convolutional
Vision Transformer architecture, emphasizing the relationship among ’regions’ rather than ’pixels’; along
with an original system rooted in prototype learning, showcasing an advanced self-attention mechanism
that surpasses traditional ad-hoc visual explanation methods by providing clear and understandable visual
insights. The module comprises three primary components: (i) mask and query generation, (ii) region-to-
region self-attention, and (iii) output feature reconstruction.

Mask and Query Generation. Standard transformer networks typically segment input images into
patches, employing attention mechanisms to identify similarities between them. These patches contain infor-
mation from the foreground as well as the background. To tackle this issue, in this novel approach, known
as masking-based query generation, masks are generated to enable adaptive patch generation. This process
ensures that only one mask dominates in each pixel location, enhancing the adaptability of the model. Ad-
ditionally, convolutional projection is utilized to extract features from the input image, preserving essential
location information necessary for subsequent processing.

Region-to-Region Self-Attention. Traditionally, attention mechanisms calculate keys based on the input
features. However, in this approach, learnable key vectors are introduced to represent canonical represen-
tations of critical patterns within the data. This departure from conventional methods allows the model to
store key vectors that encapsulate essential patterns, leading to more efficient and effective attention cal-
culation. Through matrix multiplication of queries with these learnable key vectors, attention values are
computed, forming an attention matrix that highlights the correlation between different regions of the input.
This region-to-region self-attention mechanism enables dynamic focusing on local regions while calculating
query vectors, facilitating the identification of similar patterns within the input data.

Output Feature Reconstruction. The final step of the interpretable self-attention module involves recon-
structing the output features for subsequent layers in the network. This is achieved through the definition
of parametric learnable prototype value vectors. These vectors, combined with the location information
contained within the weighted masks generated in previous steps, enable the precise placement of similar
value vectors to pixels within the same mask. By performing matrix multiplication between the prototype
value vectors and the weighted masks, the output feature map is reconstructed. This process ensures that
the output features retain the essential characteristics of the input data, facilitating further processing and
analysis by subsequent layers in the network

The effectiveness of the proposed architecture was demonstrated on chest x-ray images, generating visual
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Figure 3.3.3: Comparison of different explainability methods.
"Focused Attention in Transformers for interpretable classification of retinal images" [3§]

explanations at each intermediate feature layer for different resolutions, enhancing both interpretability and
diagnostic performance.

Last year, the RadFormer [40] model was designed to address the challenges posed by ultrasound imaging,
which include sensor noise, artifacts, and difficulties in distinguishing between normal and abnormal regions.
Especially tailored for gallbladder cancer detection, it employs a dual global-local attention-based architecture
to enhance interpretability and diagnostic performance. The global branch identifies the region of interest
(ROI) around the gallbladder at the image level to mitigate the effects of artifacts and retain contextual
information. This ROI is then used to crop the local region, which is analyzed by the local branch to identify
fine-grained features using a bag-of-features (BOF) encoder. The model combines global and local features
through a transformer-based classification branch, enabling both coarse and fine-grained interpretation of
gallbladder conditions. The global ROI mask provides a coarse-grained visual explanation of abnormalities,
while the bag-of-features offers detailed, fine-grained interpretations.

In conclusion, while significant steps have been made towards developing interpretability methods for medical
imaging tasks, there remains a considerable gap in the exploration of these techniques. Further investigation
needs to be carried to advance the field of medical imaging and improve patient care outcomes.
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Chapter 4

Experiments

In this section, we describe the experimental process conducted to evaluate the effectiveness, as well as the
interpretability of the selected Vision Transformer models. The chapter is structured to provide a clear
understanding of the methodology followed, focusing on the selection of datasets, the training procedure
and parameter optimization, the results’ review and the comparison among the performance of the different
models used.
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4.1 Datasets

The methodological approach revolved around adapting three Vision Transformer model architectures, to
accommodate the complexities inherent in medical imaging. For this purpose, four distinct medical imaging
datasets were chosen, encompassing a variety of modalities such as MRI, CT scans, histopathological images,
and real gastrointestinal images taken during endoscopies. These datasets specifically are:

e Augmented Alzheimer MRI Dataset V2 [22], showing brain MRI images of patients with different
Alzheimer’s disease stages.

e Large COVID-19 CT scan slice dataset [41], publicly used in COVID-19 diagnosis literature.

e Gastrointestinal Cancer MSI MSS Prediction [42], containing histological images for MSI vs MSS clas-
sification in gastrointestinal cancer.

e Kvasir Dataset for Classification and Segmentation [43], containing images from inside the gastroin-
testinal (GI) tract.

(1) (ii)

Figure 4.1.1: Training images randomly chosen from the: (i) Alzheimer’s dataset (ii) Covid dataset (iii)
Kvasir dataset (iv) TCGA dataset

Datasets’ preprocessing steps, including downloading, structuring, and balancing the data, are described in
the following section:

1. Data Collection and Downloading:

e Identify and acquire the relevant medical imaging datasets from their sources.

e Download the datasets from repositories or sources ensuring data integrity and quality.
2. Train-Test Split:

e Divide the dataset into training, validation and testing subsets using an 60-20-20 split ratio.
3. Balancing Classes:

e Assess the class distribution within the dataset to identify any imbalance.

e If class imbalances exist, apply random undersampling (reduce the size of overrepresented classes
randomly to match the size of the minority class).

4. Dataset Structuring:

e Create the desired inner structure in order to have reusable code when training. The structure of
the datasets is formed according to the model being used, in order to adjust to the needs of each
respective architecture. More specifically, for the ProtoPFormer the structure looks like the follow-
ing: parent folder/classl, class2, etc/train, test/samplel.jpg, sample2.jpg, etc. For the ViT-NeT,
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there is a slight variation, parent folder/train, test/classl, class2, etc/samplel.jpg, sample2.jpg,
etc, while for the Swin Transformer the datasets look identical to the ones used for the ViT-NeT,
with ’val’ being the name of the test folder, instead of ’test’.

After applying the preprocessing steps to the four datasets, the Kvasir dataset contains 3200/800 train/test
images over 8 classes representing conditions of the GI tract (dyed lifted polyps, dyed resection margins,
esophagitis, normal cecum, normal pylorus, normal Z-line, polyps, ulcerative colitis). The Alzheimer’s dataset
consists of 1564,/400 train/test MRI images splitted into 4 classes representing the different dementia stages
(Mild Dementia, Moderate Dementia, Non Demented, Very mild Dementia). The TCGA dataset contains
10000/2500 images equally separated into two classes (MSS, MSIMUT) and finally, each class (Covid, Non-
Covid) of the Covid dataset has 5515/1380 train/test images. In Table 4.1, the different classes are briefly
described:

Alzheimer’s Dataset
Noticeable symptoms that begin to interfere with daily activities,
such as memory loss and cognitive decline.
Pronounced symptoms requiring assistance with daily activities,
with significant cognitive decline and memory issues.
Individuals showing no signs of dementia, serving as a control group.
Early stage of dementia where symptoms are very subtle and might
not significantly affect daily life.

Covid Dataset

Images of patients diagnosed with COVID-19.

Mild Dementia

Moderate Dementia

Non Demented

Very mild Dementia

Covid

Non Covid

Images of patients not diagnosed with COVID-19.

Kvasir Dataset

Duyed lifted polyps

Polyps that have been lifted and dyed to highlight their contours.

Dyed resection margins

Areas where tissue has been dyed to mark resection margins.

FEsophagitis

Inflammation of the esophagus.

Normal cecum

Healthy tissue in the cecum.

Normal pylorus

Healthy tissue in the pylorus.

Normal Z-line

Healthy tissue at the gastroesophageal junction.

Polyps

Abnormal tissue growths.

Ulcerative colitis

Inflammatory bowel disease causing ulcers in the colon.

TCGA Dataset
Microsatellite instability-high (MSI-H) indicating a high mutation rate.
Microsatellite stability (MSS) indicating a low mutation rate.

MSIMUT
MSS

Table 4.1: Descriptions of the classes within the Alzheimer’s, Covid, Kvasir, and TCGA datasets. The
Alzheimer’s dataset classes describe different stages of dementia. The Covid dataset contains images of
patients with and without COVID-19. The Kvasir dataset includes various conditions of the gastrointestinal
tract. The TCGA dataset classifies tissue images based on microsatellite stability.

4.2 Resources

For the ProtoPFormer, the training and visualizations were conducted on Google Colab using the T4 GPU
provided, with Google Drive mounted for data storage. Due to the limited GPU time available, the training
process spanned approximately two months for all the data. In contrast, the experiments for ViT-NeT
and Swin Transformer were executed on Kaggle, utilizing two T4 GPUs as accelerators. The training for
the ViTNet model lasted about one and a half months, while the baseline Swin Transformer completed its
training in only a few days. Although the training was successfully completed with these limited resources,
it is important to note that the results could be further optimized with the use of more powerful GPUs.
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4.3 Training the Models

For the purposes of this thesis, three Vision Transformer models were selected to be applied to the medical
imaging datasets described in the previous section. More specifically, the first model, ProtoPFormer [31],
was chosen for its prototype-based approach, offering a novel perspective in applying this method to medical
imaging data and evaluating its response. ViT-NeT, with its unique tree-like structure, although not yet
applied to the field of healthcare, would offer promising opportunities to explore its potential in the medical
domain. Finally, in contrast to the previous models, a non-interpretable Transformer, the Swin Transformer
was selected, combined with GradCAM, a post-hoc explainability method, in order to serve as a baseline to
assess whether the built-in interpretability affects the performance.

4.3.1 ProtoPFormer

Training and Visualization Parameters

The training process was configured with several key parameters to optimize model performance. The batch
size was set to 64, meaning that 64 images were processed simultaneously during each training iteration.
The learning rate was initialized at 5 x 10~%, which determines the rate at which the weights change. To
gradually introduce the learning process, a warmup learning rate of 1 x 10~* was applied for the initial 5
epochs, allowing the model to stabilize before reaching the full learning rate. The optimizer used for this task
was AdamW, combined with a cosine annealing scheduler, which smoothly adjusts the learning rate following
a cosine curve, preventing abrupt changes and aiding in convergence. Warmup epochs were set to 5, allowing
a gradual increase in learning rate, and decay epochs were set to 10, specifying the intervals at which the
learning rate decreases by a factor of 0.1. The total number of epochs for the training process was set to 60
for the Alzheimer’s dataset and 100 for the Covid, Kvasir and TCGA datasets.

Prototype Configuration

The ProtoPFormer model utilizes a prototype-based method, combining both global and local prototypes
to enhance interpretability and performance, through a joint decision and mutual correction process. Rep-
resentative vectors called prototypes are used to capture key characteristics of different classes. The table
below specifies the prototype number, as well as their dimensions, and the number of global prototypes per
class for each dataset. The influence of global prototypes is balanced by the global coefficient (global_coe),
which is set at 0.5. In contrast, local prototypes are exclusive to specific areas or characteristics found in
the images; 81 tokens were set aside for these prototypes in the final layer. To further improve these pro-
totypes, the model additionally used prototype-based contrastive loss (PPC loss), with coverage and mean
thresholds set at 1.0 and 2.0, respectively. The discriminative capacity of the model is enhanced by this loss
function, which aids in distinguishing between similar and dissimilar traits. The coverage (ppc_cov_coe)
and mean (ppc_mean_coe) coefficients were adjusted to 0.5 and 0.1, respectively, to fine-tune their respective
contributions to the total loss function.

Datasets Prototype number Dimension Global prototypes per class
Alzheimer’s 40 192 10
Covid 100 192 50
Kvasir 80 192 10
TCGA 100 192 50

Table 4.2: Prototype specifications for the Alzheimer’s, Covid, Kvasir and TCGA datasets. Global
prototype numbers per class were determined according to the dataset size; larger datasets were assigned a
higher number of prototypes per class.

58



4.3. Training the Models

(i)

Validation Accuracy

80
70 A
g
© 60+
3
[¥]
2
50 -
40 -
—&— Validation Accuracy
T T T T T T T
0 10 20 30 40 50 60
Epochs

Validation Accuracy

—e— Validation Accuracy

40 60 80
Epochs

T
100

Validation Accuracy

—e— Validation Accuracy

96.0

95.5

T T T T

0 20 40 60 80
Epochs

(iv)

Validation Accuracy

100

60 - —8— Validation Accuracy
T T T T T T
0 20 40 60 80 100
Epochs

Figure 4.3.1: Learning curves generated during the training process of the ProtoPFormer for the: (i)
Alzheimer’s dataset (i) Covid dataset (iii) Kvasir dataset (iv) TCGA dataset
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The training and visualization code used for the purposes of this paper were originally provided by Xue et al.
in their paper, "ProtoPFormer: Concentrating on Prototypical Parts in Vision Transformers for Interpretable
Image Recognition" [31].

4.3.2 ViT-NeT

Training and Visualization Parameters

The ViT-NeT model [29], unique for its tree-like structure, was configured with a tree depth of 4 and a
prototype size of [1,1], which facilitated the hierarchical processing of image data. The Swin Transformer
parameters included an embedding dimension of 128, with depths set to [2, 2, 18, 2] and the number of heads
configured as [4, 8, 16, 32]. The window size for the Swin Transformer was 14, which helped in capturing
local features effectively. An initial warmup period of 1 epoch to stabilize the learning process. The weight
decay was set to an extremely low value of 1 x 1078, ensuring minimal loss of information during weight
updates. The base learning rate was configured at 2 x 107, with a warmup learning rate of 1 x 10~% and
a minimum learning rate of 1 x 10”7 to maintain a steady learning progression. The optimizer used for this
task was AdamW, combined with a cosine learning rate scheduler, as used in the previous model. In order
to accommodate the computational demand and at the same time achieve efficient learning, the batch size
for training was set to 32. The total number of epochs for the training process was set to 60 for both the
Alzheimer’s and the Kvasir datasets, while for the Covid one was set to 100 and for the TCGA to 125 epochs.

The training and visualization code used for ViT-NeT were originally provided by Kim et al. in their paper,
"ViT-NeT: Interpretable Vision Transformers with Neural Tree Decoder" [29].

4.3.3 Swin Transformer x Grad-CAM

Training and Visualization Parameters

For the Swin Transformer model, the parameters used in this thesis were largely retained as provided by the
original implementation. The specific variant swin_tiny_patch4_window7_224 was used, which is tailored
for smaller models and faster training, along with a batch size of 64. Initially, a base learning rate of 5 x 10~*
was used; however, it became apparent that the training process was not proceeding as expected. After
experimenting with various learning rates, we determined that a base learning rate of 1 x 10~ was optimal
for achieving stable and effective training. The total number of epochs for the training process was set to
200 for all datasets. Finally, Grad-CAM was used to visualize and interpret the model’s focus areas during
prediction.

The training code, as well as the visualization code used for the Swin Transformer with the post-hoc Grad-
CAM visualization method were originally provided by Liu et al. in their paper, " Swin Transformer:
Hierarchical Vision Transformer Using Shifted Windows " [30] and by Gildenblat et al. in their GitHub
repository [90] accordingly.
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Figure 4.3.2: Learning curves generated during the training process of the Swin Transformer for the: (i)
Alzheimer’s dataset (ii) Covid dataset
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4.4 Model Performance and Visualizations

This section presents the performance of three different models on the four selected medical datasets. The
performance is evaluated in terms of accuracy and visualizations generated by each model. The analysis
provides insights into the strengths and weaknesses of each model and discusses the practical implications of
the findings.

4.4.1 Accuracy Analysis

Dataset/Model ProtoPFormer ViT-NeT Swin Transformer

Alzheimer’s 79.07 40.35 40.01
Covid 95.11 66.92 61.09
Kvasir 91.33 86.03 75.25
TCGA 86.20 81.21 64.21

Table 4.3: The Max accuracy performance comparison (%) of the three models on the four selected medical
datasets. Maximum performance for each dataset is marked in bold.

The accuracy results for the selected medical datasets reveal significant variations in the performance of the
three models. Table 4.3 shows the detailed accuracy percentages for each model on the four datasets.

ProtoPFormer achieved the highest accuracy on all datasets, indicating its superior performance. For the
Covid dataset, ProtoPFormer achieved an impressive accuracy of 96.45%, significantly outperforming ViT-
NeT (67.77%) and the Swin Transformer (52.03%). In the Kvasir dataset, ProtoPFormer also led with
92.63%, followed by ViT-NeT at 86.88% and the Swin at 72.0%. For the TCGA dataset, ProtoPFormer
reached an accuracy of 87.28%, compared to ViT-NeT’s 82.71% and Swin’s 54.0%. The Alzheimer’s dataset
posed a significant challenge for all models. Nonetheless, ProtoPFormer achieved the highest accuracy at
80.01%, whereas ViT-NeT and the Swin Transformer reached only 41.27% and 41.67%, respectively, thus
demonstrating ProtoPFormer’s relatively better handling of Alzheimer’s MRI data.

A general trend observed is that ProtoPFormer consistently outperforms the other models on most datasets,
particularly excelling in the Kvasir and Covid CT datasets. However, all models showed relatively lower
accuracy on the Alzheimer’s MRI dataset, indicating potential challenges due to the complexity of this
particular medical imaging task.

4.4.2 Visualizations

Visualizations were generated to provide insights into the regions of the images that each model focuses on
to make predictions. These visualizations are crucial for understanding the interpretability and reliability of
the models’ decisions.

In this section, we describe the results of a comprehensive survey evaluating the visualizations generated by
the three models: ProtoPFormer, ViT-NeT, and Swin x Grad-CAM. The evaluation was conducted by a panel
of participants, including medical students and individuals not directly involved in the medical profession.
This diversity provided varied perspectives on the Al systems’ performance. Medical students represented a
significant portion of the participants, while non-medical respondents added a layperson’s point of view to
the evaluation process.

The specialists assessed these visualizations using a survey focused on their effectiveness, clarity, diagnostic
value, feature highlighting, alignment with expert knowledge, and overall usefulness across the four medical
datasets we have already described in previous sections: Alzheimer’s MRIs, Kvasir endoscopy images, COVID-
19 CT scans, and TCGA histological images.

Across all the evaluated datasets ProtoPFormer consistently outperformed the other models in generating
visualizations that were both accurate and clinically useful. Specialists noted that ProtoPFormer’s visual-
izations were particularly effective in revealing key insights and patterns, clearly conveying diagnoses, and
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highlighting specific features or regions crucial for decision-making. The visualizations produced by ProtoP-
Former closely aligned with the specialists’ clinical knowledge and expectations, making it the most useful
tool for interpreting the model’s predictions.

In contrast, ViTNet generated visualizations that were generally less accurate and failed to effectively mark
the relevant parts of the images necessary for informed decision-making. This significantly limited its utility
across all datasets.

The Grad-CAM method also exhibited consistent shortcomings, as it tended to get distracted by irrelevant
parts of the images rather than focusing on the regions most important to diagnosis. This lack of focus
reduced its effectiveness and often resulted in visualizations that did not align well with the clinical needs of
the specialists.

Overall, ProtoPFormer emerged as the superior model, providing the most reliable and clinically actionable
visualizations across all datasets.

The tables below display examples of images from all the datasets, along with the visualizations generated
by each of the models.

Original Image ProtoPFormer ViT-NeT Swin x Grad-CAM

NonCOVID

Table 4.4: Visualizations generated for the Covid dataset by the ProtoPFormer, ViT-NeT, Swin x
Grad-CAM.

A shown in Table 4.9, it is evident that the ViT-NeT model, rather than concentrating on areas indicating
anomalies, it focuses on the annotations or labels present in the image, thus resulting in incorrect interpre-
tations.

64



4.4. Model Performance and Visualizations

Original Image

Mild
Dementia

Moderate
Dementia

Demented

Very Mild
Dementia,

ProtoPFormer

Swin x Grad-CAM

Table 4.5: Visualizations generated for the Alzheimer’s dataset by the ProtoPFormer, ViT-NeT, Swin x

Grad-CAM.
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Original Image

Dyed Lifted
Polyps

Dyed
Resection
Margins

Esophagitis

ProtoPFormer

ViT-NeT

Swinx x Grad-CAM

Table 4.6: Visualizations generated for the Kvasir dataset by the ProtoPFormer, ViT-NeT, Swin x

Grad-CAM.
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Original Image rotoPFormer ViT-NeT Swinx x Grad-CAM

Normal
Pylorus

Normal Z
Line

Polyps

Ulcerative
Colitis

Table 4.7: Visualizations generated for the Kvasir dataset by the ProtoPFormer, ViT-NeT, Swin x
Grad-CAM.
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Swin x Grad-CAM

Original Image ProtoPFormer

.’"'.n < %&’
) s

-

Table 4.8: Visualizations generated for the TCGA dataset by the ProtoPFormer, ViT-NeT, Swin x
Grad-CAM.

Original Image | ProtoPFormer | ViT-NeT Swin x Grad-CAM

Dyed Lifted
Polyps

Table 4.9: Visualizations generated for the Kvasir dataset by the ProtoPFormer, ViT-NeT, and Swin x
Grad-CAM. ViT-NeT seems to get distracted by annotations in the image, rather than focusing on the
abnormal tissues.
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Conclusion

In this thesis, we adapted and evaluated three Vision Transformer model architectures—ProtoPFormer [31],
ViT-NeT [29], and Swin Transformer [30] combined with Grad-CAM [23]—on four distinct medical imaging
datasets. These datasets spanned various imaging modalities, including MRI, CT scans, histopathological
images, and real gastrointestinal images from endoscopies. Our experiments highlighted significant differences
in performance across the models and datasets, providing valuable insights into the strengths and limitations
of each approach in the context of medical imaging.

ProtoPFormer consistently outperformed ViT-NeT and Swin Transformer across all datasets, achieving the
highest accuracy in every case. Its prototype-based approach demonstrated superior capability in handling
the complexities of medical imaging, particularly in tasks like COVID-19 CT scan classification and GI tract
image analysis. ViT-NeT, despite its innovative tree-like structure, showed potential but underperformed
compared to ProtoPFormer, failing to generate insightful visualizations. The Swin Transformer, used as a
baseline, provided lower accuracy, while Grad-CAM seemed to be getting lost when trying to produce visual
explanations.

5.1 Discussion

The results indicate that the prototype-based method of ProtoPFormer offers significant advantages in med-
ical imaging tasks. Its ability to use both global and local prototypes allows for a holistic understanding and
successful classification of medical images. This approach seems particularly effective in the COVID-19 CT
scans [41]and Kvasir GI images [43], maybe indicating that sufficient quantity of data and high variability
within the dataset enhance the model’s ability to generalize and accurately classify medical images.

However, the relatively lower performance of all models on the Alzheimer’s MRI dataset suggests that certain
medical imaging tasks may require additional preprocessing, feature extraction, or even specialized architec-
tures to achieve higher accuracy. This dataset’s complexity, involving subtle differences between dementia
stages, along with its small size, posed a significant challenge, indicating that further research is needed in
this area.

Both ViT-NeT and Swin Transformer struggled with interpretability, often focusing on incorrect or irrelevant
parts of the images when producing visual explanations. These models did not succeed in highlighting the
critical areas required for accurate medical diagnosis, further emphasizing the need for enhanced preprocessing
techniques and possibly redesigned model architectures tailored specifically for medical imaging tasks.

5.2 Future Work

Future research could explore several avenues to build on the findings of this thesis. One crucial direction is
the development of enhanced preprocessing techniques to address the issue of models focusing on irrelevant
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parts of medical images, such as annotations or notes. Techniques such as automatic annotation detection
and masking can be implemented to ensure that models concentrate on clinically significant areas.

Another important avenue is the investigation of optimized model architectures tailored specifically for med-
ical imaging tasks. Exploring new transformer-based architectures or hybrid models can potentially address
these challenges more effectively. Additionally, extensive hyperparameter tuning and experimenting with
different learning rates, batch sizes, and model depths can further fine-tune model performance. Along this,
enhancing the interpretability of the models could also be a key area for future work. Given the promising
potential of the prototype-based method, it would be beneficial to conduct further investigations towards
this direction.

Other suggestions that could contribute in a more comprehensive diagnostic tool invlolve incorporating
multimodal data into model training, such as MRI and CT scans with patient history and genetic information.
Moreover, exploring cross-domain adaptation techniques,by developing methods to transfer knowledge from
one medical imaging domain to another, could also be a valuable direction for future research. For example,
techniques that enable models trained on one type of medical image to be effective on another can significantly
broaden their utility in various medical contexts.

To conclude, we believe this application of the prototype-based approach to medical imaging classification
tasks to be the correct path towards new explainable state-of-the-art models in clinical practice. Despite this
thesis not being the definitive attempt to solve the problem we hope to have paved the way to an optimal,
exclusively medical interpretable vision Transformer architecture, to be seen in future research.
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