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ITepiindn

Y1oy0¢ NG mopoloog OIMAWUATIXAC Epyactag ATay 1) exmaldeucT) evog UovTéAou
UNYOVIXAC HAONOTS Yo TNV VoY VOPRLOY) YELPOVOULOY XATA T1) OLIEXELN POUTOTIXGY
YEQOLEY WY  ETEULUCEWY  OF  TEAYHATIXO  YEOVO. H o&oldynon éyive
xenotwonowvtag to dataset JIGSAWS, 1o omnolo mephapfdver Sedouévor and
xenomn tou yewpoupyol poutot Da Vinci. YNuyxexpwéva allomorioaue to dedouéva
and TG Soxéc ouppapnc. Xtdyog frav N eniteudn LUPMANC anddoong WG TEOS TNV
ETUTUYY) OVAYVOPIOT, YEWROVOULOY, ouyxplown ue Ti¢ PBértiotee trng Oiedvouic
BiBhoypagloug, utd Tic axdhovdes cuviixec umd Tic axbdhoudec ouvidrixes: o) ToO
HovTéNO Vo umopel va AEITOUPYEL OE TEAYUATIXO YPOVO UECK EVOC GUPOUEVOU
nopadipou pe péyiotn xoduotépnon 1 deuteporéntou, xar B) 7n exnaidevon twv
povTEAWY Vo Boctotel povo oe avnuotixd O0edopéva, yweic Onhady T yeron
OTTIXOV  (EVB0OXOTIXWY)  BEBOUEVLV. To Poaowd  vevpwvixd  dixtuo  ToOU
yenowonopdnxe frav to LSTM. Emycipriooue vo BeATidcovye Ty anddoon tou
MOVTENOU UE OUdPOpES TEYVIXEG OTWS [PEATIOTOTOMOY UTERTUPUUETEWY, TEOWEN
olaxonn, eloaywyr drop out, xavovixonoinorn L2, xau stratification.

Ye xde Priua, €yive mpoondlela OTTIXOTOINCNEC TWV ATOTEAEOUATWY UE BLdpopol
Yeapruota onwe confusion matrix, transition matrix xou axplBeta avd xAdom yio v
aflohoynoouue Tig mepoyég mou yeewdlovton Peitiwon. Ilepopatiotixoue pe
YPHoM BLoPOPETIXMY UTOCUVORWY TwV dladéotuwy yapoxtnplouxmy (features), xou
TopdAAnAa €ytve plo tpoonddeio feature engineering, cuvdudlovtag Ti¢ Ywvieg Twv
0Vo gripper oc pla VEo HETOBANTY TECCERMY THIOVOY XUTACTACEWY TOU OVOUICUUE
Joint Gripper State.

o v mepantépn  Bedtiwon tng amddoong TOU CUGTAUNTOSC  OVOYVWPELONS
YELPOVOULWY OF TRAYUATIXO YeOVOo, TpoTtelvovtal ot afloAoyolvTal oTNnY Topolod
Oimhwpatixy gpyacio 500 LBEWXES TEOCEYYIOE TNG BACAC JPYLTEXTOVIXAS EVOQ
povtéhou LSTM. Xtnv mpwtn mpooéyyiorn, codyeton €va emmAéov  emimedo
Attention, to omolo emAéyOnxe YeTd ombO oLUYXEITIXY OLLOAOYNOT BLPOELY
OlotdEewy. XTn BelTEEN TEOGEYYIOT), €yive TpooTdiela exUETIMeVOTE TNE apatolg
xaTovoURc Tou transition matrix yenowonowdvtog évo CRE to onolo Aopfdver wg
eloodo Tic mpoPAéderc tou LSTM oc ouvduooud Ue UEQOC TWV  XLVNUOTIXDY
OEDOUEVWV. Béktiotn onddoon ue  axpifeir 81.56% emctelydn  teEAXC
xenowwonowwvtag  éva UPpdixd  povtého LSTM-Self Attention, BeAitidvovtog
avtioTolyeg emdOoEC oL avapépovTal oty Sledvr| BiBAloypaplo, Bedouévewy TV 6LO
AUCTNEWY TEQLOPLOUWY OV ETEVTCUV.

AéZeic KAeoud

Avayvopion Pounotixav Xewpovpyixav Kivioewv, Pounotiny Xewovpyw,
LSTM, Kwnuotixd Aedoyéva, Mnyavixy Mdinor, Attention Mechanism, CRF



Abstract

This diploma thesis focuses on training a machine learning model to recognize
gestures during robot-assisted surgical procedures in real-time, using exclusively
kinematic data from the patient-side manipulators. The JIGSAWS dataset,
specifically the suturing tasks, serves as the evaluation benchmark. Our goal was
to achieve state-of-the-art performance, ensuring the model operates in real-time
with a maximum delay of 1 second and is trained solely on kinematic data.

We experimented with various neural network architectures, using an LSTM
architecture as foundation, in order to effectively capture temporal dependencies
within the data sequences. Visualization tools like graphs, confusion matrices,
and transition matrices were employed to identify areas for improvement.

Challenges arising from imbalanced data led to difficulties in recognizing
underrepresented classes. We expanded the feature set, creating a new feature
based on gripper angles. To further enhance performance, we implemented two
hybrid approaches: one integrating an attention layer and another combining an
LSTM with a Conditional Random Field (CRF) to leverage the sparse transition
matrix. Our efforts culminated in a hybrid LSTM - Self Attention model,
achieving an accuracy of 81.56%, demonstrating improvements and meeting the
constraints set for real-time operation and exclusive use of kinematic data.

Keywords
Surgical Gesture Recognition, Robotic Surgery, JIGSAWS, LSTM, Kinematic
Data, Real-time, Machine Learning, Hybrid Model, Attention Mechanism, Self
Attention, CRF



Euyapiotieg

Oa Helo vo evyoeloTHoW Tov emBArénovta xadnyntn, x. Kwvotaviivo Tlagpéota
yioe TNV xododHyNoN Xou Yot TNV EUTOTOCOVY) Tou Uou EBelle xod)’ OAN T Oidpxeta
g ouvepyaotag pag. Ernlong, tov Ap. 'ewdpyio Moloten yia Tic cupfBouiéc xon tnv
TohUTn Bordeld Tou oe Gheg T BUOKOALES.

Télog, ogelle Eva ueydho euyoEloTH 6TOUS Yovelg wou, Adavdcto xou Xpuodvi,
xadwe xou ot aOluyd wou Mapldvva yiol THY XaTovonan ot Ty UTooTAplen ot xdie

Pripo.
Anunteladne AréCavdpog

Noéuferoc 2024
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Extetopévn EAAnvixn Tlepiindn

Fiooywy™

Tic teheutaleg B0 Bexactieg, €youpe Oel ONUOVTXY TEOOBO TNV AVATTUEN
teyvixwy  Teyvntic Nonuoolvng xan Mnyavixic Mddnone ue eviunwoloxd
OmOTEAECUOTA X0 EQUPUOYES ot Bidpopoug Touelc. H tayelo e€éMEn tng emotAung
0e00oPEVLY o TNG Bordidig uddinong Bev €yel Tepdoel amupaTiENTn And TOV XAAB0 NG
LTEXAC, OTOU UTdEYEL OhOEva xou PEYaAUTEPN emtduplor Ylol EVOWUATWONS NG
TEYVOlOYlOG UE OTOYO TNV EVIoYUOT TNE PeoVTdAC TwV acvevhy, TN BehtioTonolnon
TOV POV epyociag xatl TNV alénomn TNe cLVOAXYC anoteleouatixotntac. Mia amd
g mavée eqapuoyég elvan 1 poumotix yewpovpywr).  H ypron yeipoupydy
poundT Tapéyel TOADOTIIO OEGOUEVAL TOU UTopoLV Vo aflomtotdoly ombd HOVTEAX
Bardidc uddinong xan vor GUUPBAAAOUY TNV XATAVONCY) TWV YELROURYIXMOY DLEQYICLLY,
TV a€loAOYNOoN TG EXTEAEONC aUTWY, TNV Topoyt Bordelag xotd Tn didpxela Tng
Olodixaoiog xou yevxd anotelel €va oNuavTixG Brua TEOg TOV OUTOUOTIOUS TNg
xetpovpywrc.  Iddutepa xplowo BrAua mpog auth v xatedduvorn, amotehel o
Ol WELOUOC TWV YELQOURYIXWY EQYOOLWV OF ATOULXES YELPOVOUIES XaL 1 IXAVOTNTA
VLY VOPLOHS  TOUG. Av xou n xhvixyy viodétnon g aUTOVOUNG EOUTOTIXAC
YELROURYXNG QPaivETOL 0XOUOL HoxELVY|, UTdpyel TAolaota BiBAloypapior oyeTnd e tnv
OVAYVOPLOT] YELOVOULMY, UE ONUOVTIXG euphuota.  AuTh 1 SimAwpatixy epyaocto,
TopdAAnA . pe TNV Peitinon Tng amddoong TV UOVIEA®Y TOU  YENOWOTOoLY
XvnuoTxd  0edouéva, oToyelel emlong v Olepeuvroel Padltepa Tig eyyevelg
TEOXACES Ol TOUG TEPLOPIOHOUS TWV TEEXOVIWV UOVTEA®Y, Olegdyovtac Wi
AVIAUGCT] TV UTOXELUEVMY ABLVAULGY XAVE TEOGEYYLOTG.

Yixetxr BiBAloypaplio

H BiBhoypapia mepiéyet moludprdueg epyaoieg mou mapovoldlouy pla oelpd
TPOCEYYIoEWY Yoo TNV Togvounon yewovopny.  Ilopatnpodue 611 madoudtepeg
epyooieg  emxevipwinxay Of  XVNUATIXE  OEOOUEVAL  xoL  TEOCTIAUNCUY Vo
QVTIHETOTICOLY TO TEOBANUA YENOWOTOWOVTAS THAVOROYIXE YEUPIXE LOVTEND, OTKC
Hidden Markov Models (HMM) ([21], [29] xou [26]) # Conditional Random Fields
(CRFs) ([27], [13]). Mio emoxdénnon autodv 1oV TpoceyYIGE®Y amoxoAOTTEL EVoy
Baowo meptoploud: meptopilovton ot poviehonolnomn wovo PeTaBdoEwY XopE TEOg
xopé 1) TuAUe Teog TuAua.  Avtideta, mpdopatec mpoomdilelec €youv emBLOEEL Vo
EEMEPAOOLY QUTOV TOV TEPLOPIOUO Y EMNOOToIWVTaS TeYVIXES Bathde pdinone mou
€YOUV TNV IXAVOTNTA VoL XOToyedpouy mepimhoxes poxponpddeoues eapThoEC O
axohouthoxd dedopéva. To Avadpourd Nevpwvixd Aixtuo (RNN) elvon yvowotd yio
TNV IXAVOTNTA TOUG VO XATHYRdpouV poxponpodeoues e€apThHOELS, YEYOVOC TOU
Ouxanohoyel Tn BLdG0oT TNG YPEHONS TOUS OE OLAPORES EPUPUOYES. MTIC TEPLOCOTERES
TEPLTTOOELS, 1 TEOTWOUEVN Tapodhoryr) RNN etvan tor Aixtuo Maxpdg-Bpoyuypdviag



MvAunc (LSTM) [6], n onola €yer amoderyVel Buaitepo amoTENEOPOTIXA YioL TNV
enelepyooio axoloutoxmy xivnuatixwy dedopévwy. Erlong, oplopéveg dnpoactedoelg
€youv mapouctdoet dixtua dimhfc xatedduvone (BILSTM, BiGRU) [5], ta omnoia
€Y 0LV UEXETA XY ATOBOGT), GAAS UE TOV ONUAVTIXO TEQLOPLOUS OTL BEV UTOPOUY Vi
o&tonomndoly oe TEAYUATIXO YEOVO, XAUOC 1) JEYLTEXTOVIXT] TOUG, ETBAAEL VoL €Y OUVY
mpooPacn oe Oha Tar dedouéva g axoroudlaug, xdTL mou Oev ebvar eQxTé oF
Tpaypotixd yeovo.  Télog, €youv TOPOUCLACTEL OPLOUEVES OPYLTEXTOVIXEC TOU
enelepydlovion  TO0O  vnuaTixd  0cdouéva 6co  xou  omtixd.  To  Bedtepa
tpoodotolvtan  ouvidwe oe éva Xpovixd Buvehxtixd Aixtvo (TCN) [20].
[poogdtwe, éyouv yenowwonoiniel pnyaviopol mpocoyfc (Attention mechanisms)
xou N TEyVix) TNg eCoyWYNS  YORAXTNRIOTIXOY  TOU  AVTITROOKTEDOLY  TIG
AANAETOPAOELS PETAZD TOV YELPOLEYIXAOY EpYOAElwY [31].

2luVELGYOopEA

Avtp n OGmhwpotiny  gpyooio  mopouctdlel Wi TEOOTAUE  EQUPUOYTS
opyLTEXTOVIXGY Borhde pddnong yia TV avoryVopLom YELROVOULOY YENOWOTOUDVTAS
XOTAYPOUPES OO TNV EXTENEDT YELPOLRYIXWY EPYAOLWY cuppapic (suturing) tou
cuvohou dedopévwv JIGSAWS.

e Ot mpooeyyioeic pog unaxoLouy ce BLO TEPLOPLOUONC:

1. 1 exmaideuon Twv wovtéhwy va Bactleton WOVO o€ XVNUATIXG OEBOUEVQ,
yweic dSnhadh ™ yeron onTxdy (EVO0oXOTUXMY) BESOUEVWLY.

2. 10 yovtého pmopel vo Aettouvpyel o TEAYHATIXO YEOVO WPECW EVOC
CLEOUEVOLU  ToEoUPOL,  EMOMEVWS  OTOXAEOUME TNV EXPETAAEUOT
UEAAOVTIXWY  OEOOUEVWY  xou  EMITEETMOUUE  xaduoTépnom Ewg  Eval
OEUTEPOAETTO.

H npocéyyiot pog mepiehdufBave Ty exmaldeuon evog dixtiou Bactouévou ot
LSTM, to omnoto Yo Aettovpynoel wg Yeuéhto.

o Ilpoteivovtan 0Vo emextdoelg o LBEWIXG oyYAUaTa TOU  TEPLAUUPAVOLY
Conditional Random Fields (CRF) xau unyaviopolc mpocoyfc (attention
mechanisms) avtioTouyo.

o Ilpaypatomouinxay cuyxeloelq UETAE)D TWV OLOUPOPETIXWY TEOTEVOUEVWY
OPYITEXTOVIXMY X0 OTTLXOTIO(ON) TWV ATOTEAECUITWY.

e Eotlaocaue oTic eyyevelc duoxolleg Tou mpoPAfuatog xau TNy emidpacn TwV
TOEUUETEWY TOU LOVTEAOU.

o Enetelydn Bektlwon twv xopugolwy omoteheoudtwy omd  Tn  diedv
BBhoypapla TNEOLUEVLY TV TEPLOPLOUWY TOU VECUE.



OcwpenTtind voBadpo

Mnyovixry Madnon

H Mnyovix, Médnon (Machine Learning) amotehel xhéddo tne Teywntic
NonuootUvne (AI) xou meprypdper évo oOvoho olyopluwy mou podoivouv and
oedopéva avtl va axohoudoly entéc odnylec. Autol or olyoprduot eivon ixavol va
OVOADOLY  CTOTICTXG Tar OEdOpéva Yo Vol €vIomioouv PoTiBa xar Vo xdvouv
meoPrédeic N va malpvouv amogdoelg.  To povtéla unyavixnc uddnone uadaivouv
TEOCUPUOLOVTOS  ETUVOANTTIXG TS EOWTEPIXEC  TOUC TOPAUUETEOUS, YLl Val
ehayloTonolioouy To opdipa. O otdyog elvon va ypnoworowmdel n eumeipla Tou
amoxTHUNXE xotd TNV exnaideuoT, oe vEo BEGOUEVA, Ta oTola TO YOVTEAO OeEV EYEL
enelepyaotel oTo mopeAIOV. O ohyoprduot unyovixhc uddnone avtiolv éumveuon
oam6d TNV ovlp®Tv YVwo T Sladixacio xon Yl auté To AOYO, UTEEEYOLV OE
epYaolec TOU  AmOAUTOUY  ovaYVOELOT TEOTOTMWY  xot  ARDYN  amogdoswy, oLy vd
repthoBdvovtog dpenTeg, dlnoUnTixé dlepyaole.

Teyvnta Nevpwvixd Alxtua

Tumxd, ot apyttextovixég Podide pddnong mepyouv o lEpopyxr Sout
OTEWUATWY Tou Tepéyouy vevpwves. Kdde otphuo mapdyel pa ogpnenuévn
OVOTORAC TAGT, TV OEBOUEVWV ELGOBOV, TEEVWVTAS To HECA OmO U1 YEOUULXOUS
HETAO Y NUATIOUOVE. Ta  younhdtepa oTEGUATE  GUANUBAVOUY  amAOVCTEROUS
CUCYETIOMOUG, OL OTIOlOL OTY) CUVEYELXL YENOULOTOOVVTAL AT T AVOTERO G TROUNTA
yioo Voo OMuioupyHoouy  oTodloxd Wl TOAOTAOXY)  AVAOQEAGC TIOT). Suvridog
amoTeloUVTL omd €vol CTRWWA EL0O80V, éva oTpwpa £E680U xau dEXETd
XELPA CTEPOUATA aviuecsd toug. ‘Otav xdde VELPWVIC EVOC GTEOUATOS Elval
oLVBEBEUEVOC e %Al xOUBO TOU EMOUEVOU GTEOUINTOS, UTO ovoudleton TANEWS
CUVOEBEUEVO OTPMUO X0 XATE GUVETELX EVOL VEURWVIXO BiXTUO Tou oTtolou OAa Ta
oTpwuata elvor TAHEwE cUVOESEUEVY, ovoudleTon avTioTolyd TANpwS CUVBEBEUEVO
VELPWVIXO BiXTUO.

Ta dedouéva €l06B0L amoTtehoUVTUL amtd EVa GUVORO HETPACW®V OOTATOY TOU
ovoudlovToL  YoRUXTNEIOTIXd, EVW To Ocdouéva €EO00U  TOPAYOVIOL OF  UOp®M
Stavoopatog  TavOTATOVY. [o v exnaidevon TV VEUPOVIXWY  OXTUGY
XenotuonoloUue EmoNUELOUEVA dedowéva. Kdde otolyeio el06dou cuvodeletol
om6 pio etxétor n omolor mephouPdver v emduunth €€odo.  H Supopd twv
TeoPBrédewy and Tic emduuntéc e€66ouc oplleTton W x6oTOG XA uoloyileTan and
N ouvdetnoyn x6cTovg. To anoTeAéopaTo TG CLUVAETNONS XOCTOUC Yla Xdle
€€odo tou BxtUou ollomololvTon xotd TN dtadxacia Tou backpropagation, mou
nepthofBdver TN OLddoon Tou cPdAYaToC amd TNV €£000 TEOC TNV E€lCO00 TOUL
owtOou. Kotd tn dudpxeior authc g SLadixaciog, oL ToedymyYol TS ouvdpTnomng
x60710U¢ UTohoYiCovTon Yl xde [Bdpog xaL YENCLOTOVVTAL Yol TNV EVNUERKON
TV Bapdy Ye o%0OT6 TN UElTT TOU GUVOMXOU GYANIATOC.

Trdpyouv 800 €ldn TeXVATOV VEUROVIXOY BXTUmY, Ta Nevpwvixd Alxtua Euvdeiog
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Figure 1: Apyttextovinn evog xuttdpou uviung, oxtiov LSTM

Teopoddtnone (FNN) xou ta Avadpouxd Nevpwvind Aixtuo (RNN). H Swgpopd
petald Twv 800 E€yxeltan otn poY Twv TAnpogopldy. Xto FNN xdlde vevpwvog
umopel vor Aopfdver Oedouévar UOVO OmO  TOUG VEUPWVESC TWV  TEONYOUUEVKY
oTpwdTwY, eve Too RNN emitpénouy xuxhinéc cuvdéoeic mou ovoudlovtar Bedy ol
AVATEOPOdOTNOYS.

Aixtuo Moaxpdg Bpayuvyedviag Mvrung

O PBpodyoc avatpopoddtnone mou mepthaufdvouv ta RNN, toug emtpémer va
Statneoly wiar "uviun” TeonyoUUEVLY ELGOdWY, 1) OTold OVTITPOCWTEVETAL ANd TNV
XEUPT XATAC TACT), XUHNOTOVTAS TOL IXUVA VO XOTAYPAPOLY YPOVIXEC EEUPTHTELS EVTOC
TV dedopévey. (2otéco, T RNN ndoyouv and ta mpofAfuata eZapdviong
xou €xpning xAlong, Ta onolo UmoEoLY Vo TUPEUTOSTOLY TNV IXAVOTNTE TOUC Va
padabvouy  paxponpddeoueg eopthoeic.  Ta Aixtua Moxponpddeoune MvAung
(LSTM) oyeddotnxoy Ue oOTOY0 TNV  OVIWETOTMON TWY  CUYXEXPUEVOU
npofAfuatoc. Ta LSTM yenowonololy ylar Tepimhoxn dpylTEXTOVIXT UE TEELS TUAES:
v TOAN €10680v, TV TUAN ARONG xou TV TOAN €€660u. Autéc ol mhheg
EAEYYOLY TN EOY| TWV TANPOYORLOY XL TNV XATACTACY) UVAUNG, EMTEENOVINS OTA
LSTM vo fugolvton emAextixd 1 vo Eeyvolv mhnpo@oplec ue tnv mdpodo Tou
YEOVOUL.

To wOttopa pvAune twv LSTM 8éyovtan mAnpogopiec amd Teelg mnyég: Ny
Tpéyouoa elcodo (z¢), 1 omola amoteheiton amd Tor dedopévo Tou Elodyovial GTO
%x0TTOPO XoTd To TEEYOV Ypovixd Prua, TNV meonyoluevn xpupy xatdotaor (hi—1)
X0 TNV XATEOTAGT), UVAUNG TOU XUTTAPOU GTO TponyoUUevo ypeovixd BAua (Ci—1) , n
omola armodnxedel poxponpdieoucs TAnpogopiec. O TAnpogopiec autéc nepvolv and
TeelC TOAES:

o IIVAn Minc: Anogacilel molo Yépog TNE MEONYOUUEVNS XATACTUONG UVAUNG
Tpénel vo EeyaoTel.



o II0An eo6bou: Amnogooilelr mow véa mAnpogopio mpénel va mpootelel oTtny
AATACTUOT UVAUNS.

o IIUAn e€6dou: Anogacilel molo U€pog TG TEEYOLOUS XATACTACTS UVAUNG TIEETEL
va. yenotonoiniel wg éZodoc.

Me autév tov tpomo, 1o LSTM unopolv va Bioatneotv xon vo eneepydlovton
TAnpogoplec Yot PEYSAX  YEeOoVixd  SlooTApaTe,  xohoTOVTOC  Tol  LlaiTepal
AMOTEAEGUOTIXG Yo TNV eneéepyacio axolouthoxmy Sedouévmy.

YtatioTtixd Movtéla

‘Eva 01atioTind Hovtélo €lvor 0UCLAGTIXG €VOL GUVOAO XATovOU®Y TiavoTnTag
otov  yweo Oerypotohnlog mou  meptypdgel Ty mavOTNnTo  OLUPOPETIXWY
ATOTEAECUATWY EVIOC EVOG GUVOAOL Oebopévwy.  Moviehonowwvtag Tov Tpémo Ue
Tov omolo To OEBOUEVA XAUTAVEUOVTOL GTO EXACTOTE TAXICLO, UTOPOVUE VA XAVOUUE
TeoPBrédeic yior peAhovTind delypota evtog Tou (Blou Thoualiou.

INocapixd Movtéra ITvdavotntog

To Fpopixd Movtéda Mdavotntoe (PGMs) yenotponotolv dopés ypopnudtey
YL VoL OATEXOVIGOUY TOAUTAOXOUS GUCYETIONOUS PETAED YeTofAnTdv. O x6ufol tou
YEAUPAUATOS AVTIOTOLYOUV GE TUYALEC HETABANTES %O OL OXUES AVTITPOCWTEVOUY TIG
TavoTIXEC e€aPTAHOELS UETOEY TV UETABANTWY TOU GUVBEOUV.

Markov Random Fields

Toa Markov Random Fields eivon pn xatevduvouevo ypopxd povtélo xou oL
%xOUfoL TOUC AVTITPOOWTEVOLY TUYALEC UETUPANTEC TOU IXAVOTOLOLY TNV LOOTNTA
Markov. H 6tnta Markov dnAdvel 0Tl 1) ETMOUEVH XATACTACY TNC CTOYOC TXNG
oadixaoiog eaptdton LOVO amd TNV TEEYOUCA XATACTACT, Xol O}l And OTMOLONTOTE

TEONYOUUEVT).

Conditional Random Fields (CRFs)

Ta Conditional Random Fields eivar éva eldoc un xoteutuvopevou ypagpixol
povtélou mou Paclletow oty apyrtextovxry twv Markov Random Fields.
Xenowornowolvtoar cuVAlwe ot Ynyovixy udinon xou ewdixd Yo epyacieg émou ol
YELTOVIXES XATAC TAOELS efvon xplotuec.

To CRF povtelonololv tny mbovotnta oG ¥AAcNS OE ULol GUYXEXPLUEVT] XOPUGT|
TOU YRUPHUATOS, AVAAOY O UE TIC XAUCELS TV YELTOVIXMY XOPUPKY ol TNV elcodo X.



Figure 2: Aclypa evéc ypdgpou CRF

Mnyavicuol Ilpocoyng

Ov pnyaviopol mpocoyfc elvon uior TeEYvx pnyovixic pddnong mou odivel ot
HOVTEAA T1) BUVITOTNTA VoL EGTIALOVY OE GUYXEXQUIEVO UERT] TOV DEBOUEVLV ELGOBOV,
oUTE oL VEWPOVVTAL TLO ETUOPUCTIXG Yiot TNV EXAOCTOTE EPYAUGIA, XAl VO OYVOOUV Ta
péen mou Yewpolvian Atyotepo yerowo. Autd cuoyeTI(ETUL UE TNV XAVOTNTO TOU
oVPWTILVOU EYXEPIAOL VO PLATEAEEL ETUAEXTIXG TOV TERBAAAOVTIXG VOpUPBOo xaL Toug
TEQIOTAOUOUC, MOTE VO OMOPOVOVEL ouYxexpléva epediopata. ¢ ex TolTOUL,
yivovtar 6o xau o dnuogieic yio epyasieg 6w N enegepyasio QUOAC YAWOOAC,
1 OVOYVELOT) EXOVAC XaL 1) Unyovixr) petdgpaor. e avtiveon pe ta RNNs, ta
omola yewllovtar Ta dedopéva oelptaxd, ol unyaviouol mpocoync encéepydlovian
OhOXANEN TNV oxohoudia TAUTOYPOVA, EMITEETOVTAS TOV TURIAANAOUS UTOAOYLOUOUC.
Avuty) 1 Tpocéyyion emToyUVEL ONUAVTIXG TN Slodixacia eEXTaldeuoNE Xat AUEAVEL TNV
ATOTEAEGUATIXOTN T

Avzo-Ilpocoy” (Self-Attention)

H Avuto-Ilpocoyy etvon yior Geuehddne napahhoyr) TOU Unyoviolol Teocoyhc
Tou oToyEVEL OGNV ovoxdAum xon POVTENOTIOMNOY OYECEWY UETOEY BLOPORETIXDY
TUNUATOY (g HEROVOUEVTS axoloudiog ewcéoou.  Xenowonololy €vay povadixo
TEOTO XWBXOTOIMONG TANPOPOPLOY YENOWOTOUWVTAS TEELS dlaviouaTa:

o Epdmua (Query): Ileprypdgper moto eldog minpogopiag avalntd outd to
ototyeio amd dhha oTotyelo TNg axoloudlog.

e Kiedt (Key): Avtnpoownelel tn cuvdgela autol tou otouyelou ye évo
OEBOUEVO EQOTNUOL.

o Ty (Value): Ilepiéyer tor mporypotind Sedopéva mov xotéyel To oTotyeo.

To mpdto BAua Yy TNV exmaideuon evog UOVTEAOU UE QUTO-TPOCOYY| Elval o
UTIOAOYLOUOSC QUTOV TWV TEWWY OLvuoUdTwy Yo xdde otowyelo tng axoroudiog
€lo6dou. X1 ouvéyela, vrnoloyilouue eniong wa PBaduoroyio mpocoyhc Yo xdie



Cebyog otoyelwv ewoddov.  Auth 1 T avunpoownedel 1o Padud cucyétiong
peTald Twv 800 oTolyElwy.

Mnyavicuol Ilpocoyrc IToaharAody  Kegpoaiwv
(Multihead Attention Mechanisms)

H mopodhoryr) autr) emextelvel Tnv €vvola TN aUTO-Teocoy g EQapUolovTag Tov
UNYOVLOUO TPOCOY S ToaUTOYPOoVH Ot TOAMTAES Tepnt@oelg. Avti vo padolvel €va
HOVO GUVOAO UETACYNUATIOU®Y, 1) TEOCOY Y| TOAATADY XEQUAWY EYEL TN BUVATOTNTA
VoL oavamTOOGEL aveEHPTNTEC OUBDES UETATYNUATIOUWY ToL ovoudlovton xeqgorég. H
W0€a iow amd auTAY TNV eQaproYn lvon 6Tl xdle xe@ahy| umopel vo emxevTpwlel oe
CLYXEXEWEVA LOT{Bor X Vo XATAYEAPEL SLaPORETIXOVS TOTOUC CUCYETIOUMY UeTOED
TV OTOLYElWY €10000V. AUTEC oL EEYWEIOTEC AVATAUPAUO TAOELS GUVOUALOVTAL Yiol VoL
oynuaticouy Ty Ay €€odo.

Kdde xeporn éxel 1o dwd tng obvoho Svuoudtwy Query, Key xou Value xou
eopUolel Toug BIxolg TN Yeopxolg UeTaoynuatiogols o autd. Enedy) avtol ol
petaoynuotiopol podolvovton Eexwetotd, xde xe@ahy) umopel, £VOEYOUEVWLS, Vo
exnaudeuTel Vo e0TLALEL OF BlopopETIXG TRy UATOL.

Medoooroyio
>O0volo dedopevwy JIGSAWS

[Na v exnaideuor xou a€lOAOYNOY TOU TEOTEWOUEVOL UOVTEAOL ALY VMELONC
YELROVOUL®Y, Yenotworotiinxe to civolo dedouévwy JIGSAWS. To JIGSAWS éyet
ovomtuy Vel Ue TN YeHOT POUTOTIXODY YELROURYLXMY CUCTNUATWY, X0l YPNOWOTOLETA
%VEIKC YL TN UEAETN TNS OVOLY VWPLOTS YELPOURYIXMY EVERYELMY Xl TNS oIOAOY oG
oclotitwy.  H épeuva emxevipdvetow oty epyacia Tng ouppaphc, 1 omold
TEPLAUBAVEL Uiot OELRE EVERYELDY OIS TO TUAOWO Ui BEAOVAC, 1) ELCAYOYN TNG
OTOV DEQUATIXO LOTO XU TO TEABNYHUA TOU PAUUTOS.

H ocuppagr| exteheltan and 8 yproteg, yepoupyols pe mouxila eminedo eumelplog
OTN YENON YEWROLEYIXWY EOUTOT, xadévag and Toug omoloug €xel ohoxANnEGoEeL 5
ooxwéc.  To dedopéva and €va doxyacTxd Tou yenotn H dev elvon dardéoiua,
EMOUEVWS, TO GUVOAO BedouEvwy Tepthopdvel cuvolxd 39 Soxwéc. To JIGSAWS
amoTEAELTAL Ao HUVNUATIXG BEBOUEVA TOU GuvodelovTaL amd Bivico, To omolo ot
oauth TV epyaocio 6 Yo ypnowonowmdel. To xivnuotind dedouévo mepiaufdvouy
TAnpogopleg oyeTixd pe TN VEom, TNV TAYOTNTA XL TOV TPOCAVAUTOMOUO TGV
QOUTIOTIXWY  EQYUAEIWV. Apywd, allomoijooue povo éva umoclvoro 14
YAEOXTNEIO TIXWY, 0AAE 0T cuvEyela Ta aurooue ot 21. Kdde ypovixh otiyur, ota
OEDOUEVOL CUVOEETOL ULl ETIXETOL TTOU OVTLTPOOWTEVEL Lol CUYXEXPUIEVT] YELROURYIXN
xewpovopio. To olvoho dedouévwv JIGSAWS opilet 15 yewpovouleg, and tig omoleg
ot 10 elvon oyeTixéc pe TNV gpyasia TNG cLEEAPNS.



ITeosnelepyaocia

ITpwv amd TNV €LoaymY TWV XVAPATIXOV OEBOPEVWY GE €Vl LOVTEAO UNYAVIXAC
uddnong, ocuvAdwe cbvan ampaltnto éva emmiéov PBruo mou  mEpthouBdver T
UETATEOTY] TWV UXATEQYUCTWY OEDOUEVWY OE UOPPY| XATIAANAT, COUPOVA PE TNV
QEYLTEXTOVIXY] TOU UOVTEAOLU WOTE Vo umopel v a&tontoinlel o amoTeAeoUATIXG oo
oawtd. Baowd xoppdtt autric tng Swdixactiog elvar 1 xavovixoroinor, 1 onola
TEOGoUPUOLEL To UEYEDT TV YURUXTNRIC TIXWOY O Wiat XOLvi| xAluaxa, dlacpokilovtag
ot elvar  ouyxploua. [Swdtepar onuavtixd  pépog tng  Owdxoctag  elvon 1
xavovixornolnon, 1 onolo mporypatomotinxe unoloyilovTag TN WECT TLLNH Xou TNV
TUTLXY) AmOXALom Yyio To Bedopéva xdde Boxnc, Eexwetotd. To clvolo Twy
oedopévey ywelletoun o Ttelo uéen: To training set, to omolo yenowonoieitoa yio
v exnofdevon, to validation set, to omolo yenowomnoweiton v TV empépoug
ollohoynon xato Tn Odxaoio Tne exmaldeuone, xon to test set, 1o omolo
oflomote(ton uévo agol €yel ohoxAnewiel 1 exnoldeuon tou dxtlov, Ue oxOTd TNV
Tehxn) alohdynon tne enidoorc Tou xou TG wavotnrag yevixevone.  H tehu
emxOpwon e axpifelag Tou poviéhou Va yivelr ye v teywixry Leave-one-out,
omou xde Qopd OAEC OL BOXWES EVOC YEHOTN Yenowonolobvtal o¢ test set, xou 1)
oradixactor emovolopfdvetar N gopég, omou N elvon o aprdude twv yenotwv. To
TEAXO ATOTEAEOUN TPOXVUTTEL WS UECOC 6POC TWVY ETUUEPOUC.

Apyitextovixry LSTM

To 6ixtvo LSTM onoteléiton amd Vo 0TpMUA BAoOXAC TO 0Tolo eCoUpEl TIC THIES
padding (-1), dVo otpwpotoe LSTM e 256 xou 32 veupdveg avtiotorya. Kdde
otpopa LSTM nepihaufdver xavovixonoinon L2, n omola npociétel €vav dpo mowvic
Yoo Ty amoguyy unepmpocopuoyrc (overfitting), Siutnpdvroc To Bdpn uxed.
Enlong, xdde otpwua LSTM axohouvdeitan and éva otpoue drop out, to omoio
OTOUOXEUVEL TUY O HEPLXOUS VEVPWVES XATE TNV EXTALBEVCT) uE oXOTd Xou TEAL TNV
amopuyY, overfitting. Emié€oue T ocuvdptnon Categorical Cross Entropy g
CUVAETNOT AMWAELIG, OE CUVOUAOUO PE TNV evepyoroinon softmax. O olydprduog
Behtiotonoinone AdamW, i napadhhay?) tou Adamptive Movement Estimation
(Adam), evowpatdvel TR opu xat Ty arnocivieon Bapoug Yot xohUTEPT oUYXAOT.

10
L=— Z tilog(p;)
i=1

Metd tnv e€€taom TN XATOVOUNS TWV ETXETOV GTO GUVOLO BeBOUEVLY, Borxaue
otL elvan évtovar avicoPoapnc.  Avadétovtog éva Bdpog avdhoyo ue To
aVTIoTEOPO TNG AXATAVOUNG TWV XAACEWY 0t xdUe XAJOT XAl TEQVMVTOG
éval A€ix6 TV ev Moy Popwv oTn cuvdptnon exnaideuong, dtaopoiilovue OTL 1
UTIOEXTIPOCWTOVUEVT] XAGOT) BEV oy VOELTOL.



[Teotewdbueva povtéda evicyvong touv LSTM

Feature engineering: 7 Swdwocio dnuiovpylac VO VEOU YapaxTNELGTIXOU
HECW TNG PETATEOTNG EVOS UTOGUVOROL TV BIECUwY UETABANTOV ELGOO0L OE Eval
TLO AMOTEAECHATING GUVOAO E1GOBwY. Tlpoonadricaue vo cuvdudcouue 500 UTdEYOVTA
YAEOXTNELOTIXG, TIC YWVIEC TWV aploTepndy xou 0eglmv AuBiBwv, o wio ueToBANTY ue
TECOEQPLS BUVOTEG XATAOTACELS TOU UToEOLY Va Teplypapoly we " Koy xatdotaon
AoBidwv”:

e Kou ot 800 xhelotéc
o Apiotepn avoiy Tt - Aedid xheloTh)
o Aptotepn) xheloty| - Aedid avoly T
e Koau ot 600 avouytég

YBewdwxd povtého LSTM - CRF: Metd v e&étaon tou mivoxa
METABAONG TWV TEUYUATIXWY ETIXETWY TOU GUVOAOU DEBOUEVMV XL TNV ETLCHUOVOT
ot mopouctaleTton WOLUTERR opodS, TEOOTAINCUUE VO EVOWUATWOOUUE OTO BIXTLO
pag éva povtého mou Yo umopoloe va emwperniel amd Tig meploptopéveg miavoTnTES
peTdBaong Tou cuvolou Sedopévwy. Acdopévou 6Tl To LSTM éyer oyediootel yia
VO XOTAYQAPEL  UAXEOYEOVIEG  €COOTACELS  OLTNE®VTOG  UVAUN €V avohDeL
oxohoutiaxd dedopéva, xatohfloue o évav cuvovaoud ue éva CRF, avouévovtag
OTL UTOREl VU ECTIACEL GE BLOPORETIXEC TTUYES TV OEOOUEVKDY Xou Vo el potiBa
cuunAnewuatixd teog To LSTM nou unopodv vo aZlomolicouy Tr Slaxplth xortavou
TavoTATOY YETdBaonc. TNV TEOTEWOUEVY] OEYITEXTOVIXY Yac, Tomo¥eTtolue To
CRF petd to Boaoixd pépog twv 2 otpwudtwy LSTM. H neéPiedn tou LSTM vy
TNV TEONYOUUEVY XUTACTAOT) CUVOLALETAL PE TNV opyLxY| elcodo xal Tpogodoteitol
oto CRF. T v emdoyn tng telxic e€6dou eqopudoope évay TOh)D omhoé
unyovioud anodgoaone mou v €€odo tou CRE we evahhaxtin Aoor, 6tav eninedo
oBefoudtnrag tou LSTM Eenepvdet €var xato@AL.

Yuvdvaocwoég LSTM pe pnyavicwd mnpocoyns (Attention
Mechanism): Mio axéya mpooéyyion mou efetdotnxe yi ) Peltioon tng
ouvohXfc amodoong Ttou povtéhou LSTM, mepidufove tnv evowpdtwon evog
unyoviouo MultiHead Attention, mou unopel var 8¢doel 6T0 HOVTENO TNV IXAVOTNTOL
vo eoTidlel oe BlapopeTixd péen e axohouvdiog dedouévov. Ilewpopatiotixoue e
OLOPOPETIXEC BLATAEELC TOU Bouxol umhox autod TOU UOVTENOL X [Bprixaue Lo
OTOTEAECUOTIXY TNV TOTOVETNOY TOU UNYOVIOHOU TEOocOoY NG UE 4 XEQUNES ovauETH
ota 000 entnedo LSTM. H axoloudia eicd6dou enelepydleton and to mpmto eninedo
LSTM, 1o omolo xatorypdgel TG Yeovixéc elopTAoelc xou e€Ayel pio oxoloudia
XEUPOY XATACTACEWY, TAvw otny omolo Aettoupyel to MultiHead Attention,
TEOOPIOUEVO Vo xatarypdper mo  obvieteg  eopTroeiC. H ©w  oxoloudio
Yenotonoleltar we query xou value vector, odnyovtag oe Self Attention.



Xopaxtnetotixd AxpiBewr (%) | F1 score
LSTM pe 14 yopaxt. 78.82 0.597
LSTM pe 20 yopoxt. 79.47.5 0.6
LSTM pe 20 yoapoxt. + Kowy| xatdotaor AaBidwmy 80.58 0.606

Table 1: Yuyxptuxdg mivaxog emhoyrg petaintov yia to LSTM. Yto 14
YopoxtnploTixd tepthapBdvovton uetoAnTtéc V€ong, YRoUUXAS ToyUTNTAS ol
yowviag Aafidac. Xta 20 ntpootilevton xar oL YwViaxE TayUTNTES

Iewpapatixd owco-ce:)\éop.oc'coc

Apywd mopadétoupe €var ouyxELTixd Tivaxo Twv amotekeopdtwy e LSTM
QEYLTEXTOVIXNG OTIOU ToEOLGIALOVTOL TA OMOTEAECUOTA UE TN YENON OLUPOPETIXGDY
UTOCUVOAWY TV OLrd€CIUmY XVNUOTIXOY UETABANTOV ohAd xou Tng e€ayOUEVNC
ueToBANTrc mou ovopdooue " Kowvr xatdotacn Aafidwy”.

BXénoupe 6TL 1 Tpoc I xn TV YOVIOXGY TAYUTATOY Xt TG UETUBANTAC XOVAC
XATAG TAONC EVIOYVOLY TNV €NBOCT TOL BXTUOU.

[oe vor amoxtioouye xahOTERN XATAVONGT) TWV TEOXANCEMY GTNY AVAYVOPLOT
YELROVOUL®Y, avohOooue TepanTépw xdle doxaun. Me uio mpdtn yotid, eivon moid
capéc 6Tl To povTéNo Bev umopel var yevixeloel e€lcou xaAd YLl xdmotoug yeNoTES
oe oUyxplon e Ghhouc.  Mmopolue Vo GUUTERAVOUUE OTL oV 1) CUVTPLTTIXN
Thelodngior TwV BerYUdTLY U XAEoNG vl CUYXEVTEOUEVN HETAEY AlywV 80XIU®Y,
1 XOVOTNTO TOU UOVTENOU VoL YEVIXEDEL XAl VoL oavory Vwpllel TIC TEPITTMOELS AUTAS TNG
xhdone ennpedleton. Yuyxplvovtag dueco Ty oxplBelo avd xAdom ue tov aptdud Twv
TEQIMTWOEWY oVl xAdoT, umopolpe vo emPBefoumdoovye 0Tl GTIC TEQIGOOTERES
TEPLTTWOELS UTAPYEL LoYLEY) CUCYETION UETOEY TNG AVTITPOCWTEUCTC TNS XAAOTG ol
TOU 060G TOL avaryvaptone te. Ebvan mo eygavéc otic xhdoeic G9 (7 Xprion deiod
yeplol o BoRdewa ot olopln edupatoc”), G10 (" Xahdpwon pdupatoc”) xou G11
("Téhoc ouppaphc xau petdPuon oe Tehxd onueta”).

H swoaywyr tou CRF, oe yeuovwuéva onueio xotopepvel vo dopdnoel to
havioouéva  anoteréopata tou  LSTM, wotéco 6c Peitiwoe to cuvohixd
amoteAéopata, evey o xdmot onueta g elddou tou CRFE  moapoatnpeeiton
unepTunuotiouos. Iopdha autd, 1 e€étaon Tou ATOTEAEGUUTOS 0VE BOXWAC TIXG, HOG
odnyel 6T0 CUUTEPUCUN OTL 1) AVATTUEY Wlag LEVOBOL GTRATNYIXAC CLYYOVEUCTC TWY
000 €€060wWV E€yel TNV TEOOTTIXT| VoL TaEAEEL XM TERO AMOTEAECUATOL.

Téhog, 1o eninedo mpocoyNc xUTdPeRE Var BEATIOCEL TNV IXAVOTNTA YEVIXEUOTC
TOU UOVTEAOU, axOud XoL OE OOXWES Tou TEQIAAUPBAVOUV XAJCES UE ULXPOTER
eEXTEOCOTNGCT. AUTH 1) dEYLTEXTOVIXT] EPERE ToL XAADTEPA ATOTEAEGUATA ATO OAES TLC
npoceyyioee mouv doxpdooue pe uéon axplfer 81.56%, Behtudvoviag, pdhiota,
avtioTolyeg emdooel; mou avagépovton otr Oledvh BiBAoypapia, OSedouévwY TwV
TEPLOPLOUMY Tou ETEUNCAY, OTWS palveton 6ToV Thvoxa 2.
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Figure 3: Endvew: Axpifea ovd etixéta.  Kdtw:  Apduog epgovioewy
avd etw€ta.  To amotéheoyo avrtiotoryoly oto poviého LSTM uye 20
yapoxtneo Txd + Ko xotdotaorn haBidwy



Médodoc Axpifeo (%) | Xpowid
Skip-Chain CRF [13] 80.29 2015
Forward LSTM [0] 80.5 2016
Movtéha mou napouctdlovtal 0T BIMAGUATIXY EpYacia
LSTM e 14 yapoxt. 78.82 2024
LSTM pe 20 yopoxt. 79.47 2024
LSTM pe 20 yapaxt. + Kowr xatdotaorn haBidwy 80.58 2024
TBRewwo wovtého LSTM pe Self-Attention 81.56 2024

Table 2: Yuyxpluxd omoTeAEOUATO OLUPOPETIXWDY TEOCEYYICEWY omd 11|
oimhwpotiny| gpyacta xou T dledvy| BiBAoypapio, yia to dataset JIGSAWS,
UE TN YEHON XAVNUATIXOV OEBOUEVKY O HOVTEAX TTOU UTopoLy va adlomolnloly
O TEAYUOTIXO YPOVO.
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Chapter 1

Introduction

1.1 Motivation

During the last two decades, we have seen remarkable progress in the
development of Artificial Intelligence and Machine Learning techniques that
managed to revolutionize various fields. The fast-paced evolution of data science
techniques and Deep Learning, hasn’t gone unnoticed by the healthcare industry.
Medical professionals increasingly recognize the potential of technology
integration to enhance patient care, streamline workflows, and improve overall
efficiency [18]. One of the most promising applications that can harness these
technological advancements to refine medical procedures is robotic surgery. The
usage of surgical robots can provide valuable data, which can be utilized by deep
learning models and contribute to our understanding of the surgical tasks, assess
the execution, provide assistance during the procedure and generally advance
towards the automation of surgery. These data have been leveraged to construct
datasets like JIGSAWS [8], thereby facilitating a more systematic evaluation of
diverse methodologies. An integral part of this process is the segmentation of
surgical tasks in atomic gestures and the ability to recognize them.

Automated surgical gesture recognition aims at automatically
identifying meaningful action units within surgical tasks that constitute a
surgical intervention [28]. Although the clinical adoption of autonomous robotic
surgery still seems distant, a significant body of research has been published on
gesture recognition, presenting substantial findings. The majority of this work
primarily focuses on improving accuracy metrics for gesture recognition, which is
categorized as a ”classification” task. This thesis, alongside the improvements of
the performance of kinematic data models also aims to delve deeper into the
inherent challenges and limitation of current models by conducting an analysis of
the underlying weaknesses of each approach.



1.2 Related work

The literature contains numerous works presenting a range of approaches to
gesture classification. We notice that earlier works focused on kinematic data
and tried to tackle the problem using probabilistic graphical models, like Hidden
Markov Models (HMM) ( [21], [29] and [26] ) or Conditional Random Fields
(CRFs) ([27], [13]). Lin et. al [L7] used a Bayes Classifier for gesture
classification and they also presented a feature-processing technique, aiming to
reduce the dimensionality of the data and extract relevant features for the task.
Chen et. al [3] after processing raw motion data and extracting relevant features
that can be used to distinguish between different gestures, they employed
Support Vector Machine (SVM) algorithm for hand gesture recognition. The
used a database of dynamic hand gestures including 3D motion trajectories of the
numbers and the alphabet. Their system aims to recognize the gesture as early as
possible in the motion sequence, improving the responsiveness of the interaction.

A review of these approaches reveals a key limitation: they are restricted to
modeling only frame-to-frame or segment-to-segment transitions [28]. In
contrast, recent efforts have sought to overcome this constraint by utilizing deep
learning techniques that have the ability to capture complex long-term
dependencies in sequential data. Recurrent Neural Networks (RNNs) are known
for their ability to learn temporal characteristics, facilitating their widespread
use. In most cases, the preferred RNN variant is the Long Short Term Memory
(LSTM) network. DiPietro et. al [0] trained a Forward LSTM for recognizing not
only gestures, but also maneuvers, which they defined as longer, higher-level
activities that consist of multiple gestures. They assessed the effectiveness of
their method on two benchmark datasets: JIGSAWS for gesture recognition and
MISTIC-SL for maneuver recognition.

In some cases bidirectional variants of LSTM and Gated Recurrent Unit
(GRU) ([5] ) were used. These models have the ability to processes data
sequences both ways, but at a cost of a constraint, this method cannot be used in
real time because their predictions are based on both past and future
information. The study found that a single set of hyperparameters can lead to
strong performance across both gesture and maneuver recognition tasks.

Finally, some multimodal architectures have been presented that utilize a
combination of vision and kinematics. The visual data are typically fed to a
Temporal Convolutional Network (TCN). The unified model Fusion-KV [20]
demonstrates robustness in complex and realistic surgical scenarios, including
dry-lab, cadaveric, and in-vivo experiments. Keshara Weerasinghe et. al [31]
presented various architectures, which not only utilized the video data through
Temporal Convolutional Networks (TCN) but also extracted features that



represent the interactions between surgical instruments by applying a tool
segmentation mask on video data. Their approach also uses a Mulithead
attention encoder.

1.3 Contribution

This thesis attempts to present a deep learning framework for real-time
Gesture Recognition tailored for surgical procedures. All the presented models
are trained and evaluated using the suturing task trials of the JIGSAWS dataset,
which contains a variety of kinematic variable captures.

e We train and analyze different architectures under two constraints:

— We utilize kinematic data only, as input.

— We propose networks that can be used online, meaning that they
should be able to process data in a streaming fashion, using a sliding
window, with a maximum one-second delay.

o We begin by establishing a strong baseline using a Long Short-Term Memory
(LSTM) network, a well-suited architecture for sequential data, given its
ability to capture long-term relationships.

e To further improve performance, two hybrid extensions were proposed,
incorporating Conditional Random Fields (CRFs) and attention
mechanisms, respectively.

e Through rigorous experiments, we compare the performance of different
architectures by using metrics such as accuracy and recall, along with
visualizations of model predictions compared to ground truth, attempting
to gain insights into their strengths and weaknesses.

e We delve into the inherent complexities of the problem and explore the
impact of various model parameters on performance.

e Our proposed methods improve the state-of-the-art results on the JIGSAWS
dataset, given imposed constraints.



Chapter 2

Theoretical foundation

In this chapter, machine learning concepts relevant to gesture recognition are
discussed, focusing on techniques suitable for processing sequential data that are
integral to our considered approaches, such as Long Short-Term Memory (LSTM)
networks, Conditional Random Fields (CRFs), and attention mechanisms.

2.1 Machine Learning

Machine Learning belongs to the field of Artificial Intelligence (AI) and

describes a set of algorithms that learn from data rather than following explicit
instructions. These algorithms are able to statistically analyze data to identify
patterns and make predictions or decisions. Machine learning models learn by
iteratively adjusting their internal parameters to minimize error, based on the
patterns observed in training data. [I0]. The purpose is to use the experience
gained from training to generalize to new, unseen data.
Machine learning algorithms draw inspiration from the human cognitive process.
Akin to human learning, machine learning algorithms excel at tasks that require
pattern recognition and decision-making, often involving implicit, intuitive
processes. These tasks, such as natural language understanding or motor control,
are challenging to formalize into explicit rules.

2.1.1 Deep Learning

Deep learning is a subfield of Machine learning that leverages the power of
artificial neural networks. Typically, deep learning architectures contain a
hierarchical structure of stacked layers. Each layer generates an abstract
representation of the given data, by passing them through nonlinear
transformations. The layers at the bottom capture simpler, more primitive
information, which are then used by the layers built on top of them to gradually
create a complex representation. They often consist of an input layer, an output



layer, and several hidden layers between them. There is no standard method for
deciding the exact number of hidden states to use in a neural network, but
generally it is dictated by the complexity of the task at hand.

There are two kinds of artificial neural networks, feedforward neural
networks(FNN) and recurrent neural networks (RNNs) The difference
between the two lies in the flow of information. In FFNs each neuron can only
receive data from the neurons of the previous layers, while RNNs allow cyclical
connections called feedback loops. When each neuron of a layer is connected to
every node of the next layer, it is called a fully connected layer and a neural
network consisting of fully connected layers is called a fully connected neural
network [2]

Input Hidden Output
Layer Layers Layer

Figure 2.1: Example of a fully connected FFN with two hidden layers

2.1.2 Swupervised Learning

Regularly, the input data consist of a set of measurable properties called
features. Supervised machine learning is a common training technique that uses
labeled data. The features are paired with the desired output, and then fed to
the model as input. During the training process, the model, given the input
features, generates an output in the form of a probability vector. This output is
then compared to the target output, and the model’s parameters are iteratively
adjusted to minimize the discrepancy between them. [2].
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2.2 Gradient-Based Optimization

Optimization is a critical part of deep learning algorithms, involving the
process of searching for an objective function’s f(x) optimal value (maximum or
minimum) [10]. Our goal is to train the model, so that for an input (x), it makes
a prediction as close to the ground truth (y) as possible, so we usually express
this problem as the optimization task of finding the minimum of a function f(x)
that depicts the difference between the predicted and the true label. This
function is often called loss function, cost function or error function

x* = argminf(z)

A widely used optimization algorithm is gradient descent (GD). Given a function
y = f(x) we first calculate it’s derivative f'(z) = % which represents the slope of
f(x) at point x. By following the negative derivative of using a small step size e,

we decrease y.

Tpe1 = Tn—ef(xn), (2.1)

flan) = flent)

If we repeat this process until we reach a point where f(z)" = 0 meaning that
small steps cannot improve (minimize) y any further. This point is known as local
minimum. The optimal value of f(x) is the global minimum, but locating it
using GD can be challenging, especially when there are many local mimima, so
when finding one, we have to decide whether it is sufficiently good or if a more
exhaustive search for the global minimum is necessary [2].

However, deep learning models mostly involve functions with multiple
variables, and since derivative only works for functions with single variables we
have to extend the same concept to multi-dimensional space by using the
gradient of the function.

%(1’1,1‘2, cee ,:En)
Fay (L1, 22, .., Tn)

Vf(xl,mg,...,xn) = . (2.3)

%({Z‘l,xQ, e 7xn)

ap+1 = ap —€eVF(ay), (2.4)
F(a,) > Fl(aps1) (2.5)

2.2.1 Weights and Biases

Each neuron of a neural network receives data from all the other neurons it is
connected to, as stated in 2.1.1. These incoming data signals are not passed to

11



Figure 2.2: Gradient descent depiction in a 2-dimensional space

next neurons unaltered, instead, at each neuron they are weighted and biased.
The weight W;; and the bias b; together form the preactivation z; of a neuron:

n
Z,(ZIZ’) =b; + Z Wijxj (2.6)

j=1
Weights and biases form the adjustable properties of the model, and they
are iteratively modified in order to improve the model’s overall performance. [/]
The weights determine the strength of the connection between the neurons and
the impact of the received data, so they can adjust the importance of specific
information. Biases, on the other hand, add an extra layer of flexibility to the
network and act as a threshold, allowing the neuron to activate even when the

weighted sum of the inputs is not enough to activate it on its own.

2.2.2 Activation function

The preactivation result is then fed into a scalar-valued function called
activation function. This function produces the final output of the neuron and
decides whether it should be activated. The activation function plays a crucial
role in shaping the model’s ability to learn complex relations by introducing
non-linearity. Some of the most commonly used activation functions are the
following:

1. Sigmoid: continuous function with output range of [0,1]. For x near zero, it
is very steep and almost linear, but as the input moves away from zero the
output approaches 0 (for negative values) and 1 (for positive values).

1

)= e
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Figure 2.3: Sigmoid function

2. Tanh: Hyperbolic tangent, output range of [-1,1]. It is a shifted and scaled
version of the sigmoid function.

e — 1

tanh(x)

Figure 2.4: Tanh function

3. ReLU: Rectified Linear Unit. It is very widely used in the hidden layers of
deep neural networks. It’s output ranges in [0, c0] . Scale-invariant

ReLU(xz) = max(0, z)

4. Softmax: Ideal for creating probability distribution, since the sum of it’s
output values equals 1. Mainly used in the output layer.

softmax(x;) = Z;Zexi (2.7)
j=1
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ReLU Function Plot

-100 -75 -50 -25 00 25 50 75 100
x

Figure 2.5: ReLLU function

Figure 2.6: Softmax function

2.2.3 Backpropagation

In chapter 2.2.1 we analyzed the trainable parameters of the model. Usually,
the weights and biases are initialized randomly. Subsequently, an iterative
algorithm known as backpropagation is employed to determine which weights
and biases should be adjusted and by what magnitude. This algorithm
iteratively updates the model parameters to optimize performance.

After propagating the input data through every layer, with each neuron
applying its weights and biases and passing the result through an activation
function, a final output is shaped. This procedure is called forward pass. After
a forward pass is completed, the loss function quantifies the error between the
predicted and actual outputs. This error is transmitted backwards layer by layer
and by calculating the gradient of the loss function with respect to the weights,
we determine how to adjust these parameters in order to minimize the error.
Biases are updated too, in a similar manner. Backpropagation algorithm takes
advantage of the chain rule of derivatives that allows us to find the derivative of

14



a composite function f(g(x)) [15]:

Ag = %Am (2.8)

Af = g;Ag (2.9)
df(g(x)) _ Ofdyg

50 = 900s (2.10)

(2.11)

In the context of backpropagation, firstly we compute the derivatives of the
loss function L with respect to the output y, and then we apply the chain rule to
find the gradient of the loss with respect to the preactivation function z (as given
in equation 2.12).

oL 0L
0z Oy
Ultimately, we compute the gradient of the loss with respect to the parameters,
weight W and bias b and using the computed gradients, we update the parameters.

(2.12)

oL oL 0z oL
aw o aw - o (2.13)
oL oL 0Oz oL
(2.15)

2.2.4 Training parameters

Before training a Neural Network, we must adjust a few crucial parameters
that determine the model’s performance, it’s ability to generalize to unseen data,
and also affect its computational requirements. These are also referred to as
hyperparameters. Each hyperparameter affects the model differently, and it is
important to find a good balance between accuracy and efficiency.

e Optimizer : it is essentially an algorithm that uses as input the gradients
calculated by backpropagation and decides how to adjust the network’s
weights and biases at each training step, in order to reduce loss. The most
widely used optimizers are Stochastic Gradient Descent (SGD) and
Adaptive Movement Estimation (Adam).

e Learning rate: this hyperparameter controls the magnitude of weight
adjustments during training. Selecting a large learning rate can expedite
the model’s convergence, but it carries the risk of overshooting the optimal
solution. Conversely, when the learning rate is too small, the model may
become trapped in a local minimum, hindering its ability to find the global
optimum.

15



e Number of epoch: an epoch represents a complete pass through the entire
training dataset. The optimal number of epochs depends on the dataset’s
size and complexity. Making too many passes on a relatively small dataset
can lead to overfitting, which means that the model starts to increase its
accuracy by directly correlating the input values to the desired output, so
instead of learning the task it just memorizes the dataset. On the other
hand, a number of epochs can stop the training prematurely, preventing the
model from reaching its full learning potential. This is called underfitting.

e Batch size: the number of input elements utilized in each forward pass. The
batch size influences the accuracy of gradient estimation and the convergence
speed of the model.
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2.3 Long Short Term Memory

2.3.1 Recurrent neural network

As discussed in 2.1.1, what sets apart RNNs from FFNs is the flow of
information within the network, which contains feedback loops (cyclical
connections). These directed cycles enable the model to incorporate information
from past states into the calculation of the current output. This creates a form of
memory, allowing the RNN to learn and utilize temporal dependencies within the
data. The hidden state of the RNN is often referred to as the Memory State
for this reason.

While the recurrent nature of RNNs makes them very efficient in tasks that
involve sequential data, they are also computationally expensive compared to
traditional machine learning models.

2.3.2 Basic Architecture

The fundamental unit of an RNN is called Recurrent Unit. It is designed to
handle sequential data by propagating data from earlier time steps to the current
processing step [24]. At each time step, the recurrent units update their hidden
state based on the current input and the previous hidden state, which allows them
to capture sequential dependencies.

Figure 2.7: RNN example

Figure 2.7 shows the anatomy of a basic RNN, where X is the input, U, W and
V are the parameters of the networks which are shared across timesteps. h is the
hidden state that is part of the feedback loop in order to retain the memory of the
network, and Y is the output.
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Figure 2.8: RNN unfolded example

By unfolding the RNN blueprint (fig.2.8) we can get a better understanding of
it’s underlying architecture and it’s sequential nature.

2.3.3 Vanishing Gradient Problem

As explained in section 2.2 Gradient Descent is a very common optimization
algorithm in neural networks. Although it is effective at finding the local
minimum of a cost function, it is also susceptible to a problem called the
Vanishing Gradient Problem. During backpropagation the derivative of the
activation function is used for calculating the weight updates for the previous
layer, but as this process continues through the layers, the gradients are getting
progressively smaller. If multiple layers are involved, the gradient can completely
vanish, impeding the learning process. Conversely, the Exploding Gradient
Problem occurs when gradients grow exponentially, leading to unstable training
and potential divergence.

The unique architecture of the RNNs, makes them particularly prone to those
two issues, and since they are more prevalent when the number of layers is large,
the network’s ability to learn longer dependencies can be limited [24].

The vanishing and exploding gradient problems are often attributed to the
saturation regions of activation functions like sigmoid and hyperbolic tangent.
When inputs to these functions become very large or very small, the output
approaches a constant value, resulting in small derivatives and consequently
small gradients during backpropagation.

2.3.4 LSTM Architecture

Long Short Term Memory is an RNN variant, first introduced in 1997 by
Hochreiter & Schmidhuber [9], designed to mitigate the vanishing gradient issue
[23]. This goal was achieved by implementing a unique architecture that contains

18



three separate gates, each with a distinct task, in the networks fundamental unit
called memory cell. Instead of maintaining and propagating through the network
a single hidden state, LSTMs use the three gate, input, forget and output, as
illustrated in Fig.2.9 in order to decide what information is added and removed
from the cell and which part of it will form it’s output. These adjustments to the
memory state allow the network to retain longer and meaningful relationships [24].

e ™
Cr1 ® G
F
heq i — by
\ [ J

Figure 2.9: LSTM memory cell architecture

Each memory cell receives data from three sources:
e Input z;_;

e Hidden State h;_1

e Memory c;

Afterward, they pass through the gates so the new memory and output will
be produced.

Forget Gate: This gate is responsible for deciding which part of the memory
is no longer useful and should be forgotten.
Its value arises from the previous hidden state h;—; and the input x;, which are
concatenated and put through a sigmoid /sigma activation function:

Ft = O'(Wf[ht_l, xt] + bf)
e W;: Forget weight matrix

e by: Forget weight bias
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o [hi—1, 2] : Concatenation of the previous hidden state and the current input

Input Gate and Candidate Memory: Those two elements are responsible for
deciding what new information is going to be added to the memory. They act as
a filter, allowing only the useful parts of the input to pass. The input gate,
similar to the forget gate, uses the previous hidden state h;—1 and the input x;
and a sigmoid function /sigma. The Candidate Memory Gate, C, on the other
hand, employs tanh as the activation function. Each gate has its own weight and
bias

It = o(Wilhs—1, 2¢] + b;)
Cy = tanh(We[hs_1, x¢] + be)

After calculating all the necessary gate results, the previous memory state is
multiplied by the forget gate value F}, while the candidate memory C; is multiplied
by the Input gate value I;. The sum of these two products is then passed through
a sigmoid function, forming the updated memory state.

C; = o(I,Cy + F,Cy_1)

Output Gate: Finally, the output gate’s task is to decide which part of the
current state will make up the output of the cell. Similarly to the forget and input
gates:

O = U(Wo[ht—h xt] + b,

Using the gate’s result, we calculate the new hidden state.

ht = Ot tanh(Ct)

2.4 Conditional Random Fields

2.4.1 Statistical Models

A statistical model is essentially a set of probability distributions on the
sample space that describes the probability of different outcomes within a dataset
[7]. By modeling the way the data are distributed in the context of the sample
source, we can make predictions for future samples within the same context.

e Sample space S : a set of all the possible outcomes of the examined task.

e Probability Distribution : a function that outputs the probability of
every possible outcome of the dataset.

e Parameter Set © : a collection of variables that define the specific
characteristics of the statistical model. It is the part of the model that can
be adjusted in order to improve its performance for the specific task.
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e Parameterized Statistical Model: it is defined by the parameter set @
and the probability distribution function P : © — PS, which assigns a
probability distribution Py on the sample space S. Once the parameters
are estimated, the model can be used to make predictions about unseen
observations.

2.4.2 Probabilistic Graphical Models

Probabilistic Graphical Models (PGMs) use graph structures in order to
represent complex probabilistic relationships between variables. The nodes of the
graph correspond to random variables, and the edges represent the probabilistic
dependencies between the variables they connect [I]. They are often used for
tasks like computer vision, natural language processing and classification.

A key feature of PGMs is the usage of conditional independence among
their variables, which allows the joint distribution of numerous variables to remain
compact and efficient [25]. The core concept of conditional independence is that
assuming we have three random variables X, Y and Z, if the probability distribution
of X given Y and Z is the same as the probability distribution of X given Z, then
X and Y are conditionally independent given Z:

P(X,Y|Z)=P(X|Z)= X LLY|Z

PGMs are divided in two main categories: Bayesian Networks and Markov
Networks.

2.4.3 Bayesian Network

Bayesian Networks are structured as Directed Acyclic Graphs (DAGs),
where the nodes represent random variables and the directed edges signify the
conditional dependencies between these variables.

P

®

:

Figure 2.10: An example of a Directed Acyclic Graph

The joint probability distribution of a DAG is factorized into a product of
the conditional probabilities of each variable given it’s parents in the network.
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n
P(X1,Xy,..., X,) = [ [ P(Xi | Parents(X;))
=1

2.4.4 Markov Random Fields

Markov Random Fields, on the other hand, are undirected graphical
models and their nodes represent random variables that satisfy the Markov
property. The Markov property asserts that the next state of a stochastic
process depends solely on the current state, not on any prior states.
Consequently, the probability of an event occurring in the future is determined
by the present conditions, rather than by historical events.

—®
®\®/

|

®

Figure 2.11: An example of a Markov Random Fields network

It can be formally described as:
P(Xi11| Xy, Xi—1, .., Xo) = P(X41] X4)

To make the model more compact and computationally efficient in expressing
the joint probability distribution, a product of simpler, local distributions is
employed.These subsets, known as cliques, are parts of the graph where each
node is directly connected to every other node within that subset.

The joint probability of MRFs over cliques is the following:

1
P(XlaXQa .- aXn) — E H QzZ)C(XC)
CeC(G)

where C(G) is the set of all cliques in the graph G and ¢ are non-negative
potential functions over cliques. Z is the partition function :

Z= > ][ veXe)

X1,X2,..,.X, CeC
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Figure 2.12: Undirected graph example, with its cliques highlighted. Both are
maximal cliques, meaning they cannot be expanded to contain more nodes.
The left clique can also form several non-maximal cliques if any trio of nodes
is selected. Additionally, the left clique is characterized as maximum, as it
is the clique with the most nodes in the network.

2.4.5 Conditional Random Field Model

Conditional Random field is a type of discriminative undirected graph model
that is built upon the Markov Random Field architecture. They are commonly
used in machine learning and especially for tasks where neighboring states are
critical. Discriminative models are a broad category of statistical models
focused on modeling the conditional probability of the output given the input,
P(y|z), in contrast to generative models whose aim is to model the joint
probability distribution of the input and output variables, P(z,y). They are
primarily concerned with predicting the correct output category for a given
input, rather than modeling the underlying probability distribution of the data.

Given X, a random variable over a data sequence, and Y, a random variable
over the corresponding label sequences. For y; € Y,y; has a value range inside
a finite class dictionary. The random variables X and Y are jointly distributed,
but in a discriminative framework we construct a conditional model p(Y—X) from
paired observation and label sequences, and do not explicitly model the marginal
p(X).

A CRF is a model where the probability of a label at a particular vertex in the
graph depends only on the labels of its neighboring vertices and the global input
X. This means that the label at a vertex is conditionally independent of the labels
at non-neighboring vertices, given the labels of its neighbors and the global input.
This can be formally described with the following definition:
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In a graph G = (V, E) where Y = (Y,),ecv) so that Y is indexed by vertices of
G, (X,Y) is a CRF if, when conditioned on X, the random variables Y}, obey the
Markov property with respect to the graph:

PY)|X, Yy : w # v}) = P(Y,| X, {Yi : w ~ v})

where w ~ v means that w and v are neighbors [12].

Y, Y o

X1 X X1

Figure 2.13: An example of a Conditional Random Fields graph

The conditional probability of the output sequence given the input sequence is
described by the following equation:

Plyla) = 22 (Zizlfi{’@,x))

where:
e X,y : input and output sequences

e fi(y,x) : feature functions that compute the contribution of each feature to
the overall score of the output sequence

e w; : the weights associated with feature functions.
e Z(X) : normalization factor

During training, in order to find the optimal parameters, CRFs use maximum
likelihood estimation, which involves adjusting the parameters of the model to
maximize the probability of the correct output sequence given the input features.
Similar to deep learning models, iterative algorithms like gradient descent are used.
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2.5 Attention

2.5.1 Attention mechanisms

Attention mechanisms are a machine learning technique that aims to give
models the ability to focus on specific parts of the input data, those that are
considered more influential for the given task, and ignore the parts that are
deemed less useful. This ability is akin to the human brain’s capacity to
selectively filter out background noise and distractions, such as in a noisy
environment, and isolate specific stimuli. By prioritizing the most informative
features, attention mechanisms not only enhance their performance but also
reduce the computational resources required by excluding input-output mappings
that contribute less significantly. Consequently, they are becoming increasingly
popular for tasks like natural language processing, image recognition, and
machine translation [30].

Unlike RNNs, which handle data sequentially, self-attention processes the
entire sequence simultaneously, enabling parallel computation. This approach
speeds up the learning process and enhances its efficiency, especially when
working with extensive sequential data. ”Nevertheless, attention mechanisms can
still effectively cooperate with RNNs.

2.5.2 Self-Attention

Self-Attention is a fundamental attention mechanism variant that attempts to
discover and model relationships between different parts of a single input sequence.
Self attention mechanisms are essential elements of transformers. They use a
unique way of encoding information By using three vectors:

e Query(Q) : Describes what kind of information this element is seeking to
acquire from other elements of the sequence.

e Key(K) : Represents the relevance of this element to a given query.

e Value(V) : Contains the actual data that the element holds.

The first step for training a model with self-attention is calculating these
three vectors for every element of the input sequence. Next, we also evaluate an
attention score for each pair of input items. This value represents the strength
of the association between the two elements. The attention score is often
calculated as a dot product, and sometimes it is scaled by the square root of the
dimension dj in order to prevent numerical instability.

score(i, j) = Q; * KJT
score(i, j) (2.16)
(dr)

scaled_score(i, j)
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The scaled scores are then passed through a softmax function to normalize
them into probabilities:

attention(i, j) = softmax(scaled_score(%, j)) (2.17)
Finally, the attention weights are multiplied by the value vectors.

context_vector; = Z attention(i, ) - V; (2.18)
J

This weighted sum creates a context vector for each element, that contains an
aggregation of the actual information the element holds based on their influence
as it was estimated by the attention mechanism.

In matrix form, the entire self-attention operation can be represented as:

attention(Q, K, V') = softma (QKT) Vv (2.19)
ntion(Q, K, V') = softmax : .
Vi

2.5.3 Multi-head attention

Multi-head attention extends the concept of self attention by applying the
attention mechanism concurrently in multiple instances. Instead of learning a
single set of transformations, multi-head attention has the ability to learn
multiple, independent groups of transformations called heads. The idea behind
this implementation is that each head can focus on specific patterns and capture
different kinds of relationships between data items. These separate
representations are combined in order to form the final output.

Each head independently learns its own linear transformations to project input
embeddings into distinct query, key, and value subspaces. This allows each head
to specialize in different aspects of the input data.

Qi=Wy X
Ki=Wj-X (2.20)
Vi=Wi - X

where Wé, W}Q, W", are projection matrices for the iy, head. For each head,
the attention mechanism is applied as described in the standard self-attention

. Q; - KT
attention;(Q;, K;,V;) = softmax | —=—=- | - V; (2.21)
Vg

The attention outputs from all heads are concatenated:

concat_heads = [attentiony (Q1, K1, V1), ..., attentiony(Qn, Kp, V1,)] (2.22)
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The concatenated heads are projected back to the original dimension:
multi_head(Q, K,V) = Wo - concat_heads (2.23)

where Wy is the final projection matrix. In matrix form, the entire multi-head
attention operation can be represented as:

multi_head(Q, K,V) = Wo - concat(head,(Q, K, V), ..., head,(Q, K,V)) (2.24)

where head;(Q, K, V) is the output of the i'* attention head.

27



Chapter 3

Methodology

This chapter presents the used dataset’s structure, the types of kinematic
data used, the preprocessing steps employed, and the challenges encountered in
transforming raw kinematic data into a suitable format for training and testing
machine learning models. We delve into the architecture and configuration of
various models, including LSTM and hybrid models, that combine multiple
techniques to effectively handle complex gesture transitions.

3.1 Dataset

3.1.1 General Information

The JHU-IST Gesture and Skill Assessment Working Set (JIGSAWS) is a
renowned dataset in the realm of robotic surgery, extensively utilized for research
in robotics, computer vision, and machine learning. This dataset is pivotal for
analyzing surgical activities, treating them as dexterous human motions, with
the ultimate goal of enhancing the effectiveness and safety of surgical procedures.
JIGSAWS is primarily focused on two critical areas of study: surgical activity
recognition and skill assessment.

3.1.2 Surgical Tasks

JIGSAWS dataset contains captures from three basic surgical tasks performed
by humans with varying robotic surgical experience. For our evaluation, we focus
on the suturing task due to its diverse range of gestures and its widespread use
as a benchmark in similar research. This allows us to present comparative results
effectively. During each suturing trial, a soft, fiber-like material is used, with the
incision line and the needle entry and exit points clearly marked on its surface.
The user begins by picking up the needle and orienting it towards the first entry
point on the right side of the incision line. They then insert the needle using the
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left tool tip, guiding it through the material and exiting at the designated point
across the incision line. Subsequently, the needle is passed back to the right tool
tip, and this sequence is repeated until all marked points have been sutured.

Figure 3.1: Suturing task footage from JIGSAWS

The task is performed by 8 users, indexed by letters
2 B?? ” C?’ 2 D?? ” E?’ 7 F?? ” G?’ 2 H”

and each of them repeats the task 5 times. Since the second trial of user H is
missing, we have 39 trials in total to work with.

3.1.3 Data Description

The dataset includes synchronized kinematic and video data, but this thesis
focuses solely on the use of kinematic data. The tasks are performed using
the Da Vinci Robotic Surgical System and the kinematic data are captured at
30Hz. This data encompasses kinematic variables from both the Master Tool
Manipulators (MTMs) and Patient Side Manipulators (PSMs), though only the
latter are pertinent to our task. For each manipulator, we have 19 variables,
including Cartesian positions, linear and angular velocities, rotation matrix and
gripper angle. Initially, we experimented with using only linear data (positions
and velocities) and gripper angle, totaling 14 features (7 for each tooltip). Later,
we increased them to 21 by adding angular velocities.

3.1.4 Labels

Each time step of the captures is associated with a label, which represents
an atomic surgical activity segment that is concurrently being executed. These
segments are also referred to as gestures or surgemes. Though there is no
standardized method for defining gestures, and they can vary depending on the
context, generally gestures are fundamental actions that are performed deliberately
and have a meaningful outcome. For example, in the context of robotic surgery, the
action of passing the needle from one end effector to the other is a distinguishable,
intentional movement that has a specific purpose and can’t be broken down any
further without getting confused for other movements, thus it can form a gesture.
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Label | Gesture Description
G1 | Reaching for needle with right hand
G2 | Positioning needle
G3 | Pushing needle through tissue
G4 | Transferring needle from left to right
G5 | Moving to center with needle in grip
G6 | Pulling suture with left hand
G7 | Pulling suture with right hand
G8 | Orienting needle
G9 | Using right hand to help tighten suture
G10 | Loosening more suture
G11 | Dropping suture at the end and moving to end points

Table 3.1: Suturing task gestures

JIGSAWS dataset defines a vocabulary of 15 gestures. Table 3.1 contains 10 of
those, that are used during the suturing task.

JIGSAWS dataset is human annotated with the help of a surgeon. The
annotations were reviewed in the paper ”Multi-Task Recurrent Neural Network
for Surgical Gesture Recognition and Progress Prediction”, [28] where 12 mistakes
were identified and corrected. Consequently, we will be utilizing these revised
annotations in our study.

3.2 Data Preprocessing

Before feeding the kinematic data to a machine learning model, we usually take
an extra step that involves transforming the raw data in a format that is suitable
according to the model architecture and can be more effectively utilized by it.

A fundamental part of this process is normalization. Normalization adjusts
the features to a common scale, ensuring that they have comparable magnitudes.
Having all features scaled to a common range can help gradient-based
optimization algorithms 2.2 like gradient descent converge faster and more
effectively. We standardized each trial separately by calculating the mean value
and the standard deviation of each column. The normalized value is given by
subtracting the mean and dividing by the standard deviation:

Another important step when feeding categorical data to an RNN model, like
the gesture labels in our case, is one-hot encoding. Essentially, after assigning
an index to each label, we convert it to a binary vector with the same size as the
number of label values.
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Finally, since the data are sequential and each trial has a different duration, we
cannot feed them directly to the model. Thus, we implement a sliding window
approach by creating a subrange of fixed width that moves across the dataset,
using a fixed step. The way the window moves from the start of the sequence
towards the end simulates the way new data would arrive and fill a buffer in real
time, and when the buffer is full, older data would be discarded. Since we wouldn’t
start with a buffer full of data, the first window contains only the first element of
the sequence, as its last value, and the rest are filled with a padding value (-1).
Similarly, padding would be used at the begging of the window until we reach
seqwindowsize] element. The padding value will be masked out by the model.

3.3 Model Description

In this section, we describe our approach for online gesture recognition. Since
we use sequential kinematic data, we decided to use an RNN, specifically an
LSTM network. The LSTM model is the core component of our approach,
providing a solid foundation for sequential data processing. Then we tried to
further enhance the model’s performance, by integrating other methods. One of
them is multihead attention, which applies the attention mechanism in parallel
across heads, capturing different aspects of the data. The other was the use of
Conditional Random Fields (CRFs). The models are implemented using Google’s
tensorfow library and Keras framework.

3.3.1 Input

After completing all the preprocessing steps we discussed in 3.2, the kinematic
data are in a suitable format for the LSTM model. Before starting the training,
the dataset must be split in three parts: training data, validation data and
test data.

Initially, we select the test data, which must be entirely excluded during the
training process to ensure an unbiased evaluation. These are the unseen data on
which the model is tested after it is fully trained, to estimate its generalization
capability. Since the JIGSAWS dataset is already divided by user, it simplifies the
implementation of the leave one out (LOO) evaluation technique, as we can easily
use one user’s trials as test data.

Next, we divide the remaining data into two parts. The training data, which
constitutes the majority at 85%, is used in the actual training process of the
network. The validation set, on the other hand, is used to assess the model’s
performance during training and aids in hyperparameter tuning or implementing
early stopping.

The LSTM model expects two input vectors:
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e X Train: containing the kinematic data of shape (windows_count,
window _size, number_of_feature)

e Y _Train: containing the corresponding one-hot encoded labels of shape
(windows_count, number_of labels)

3.3.2 Output

In a multi-class classification task, the output is an array with a length equal
to the number of classes. This array represents the probability distribution across
all classes, with each element indicating the likelihood that the model assigns to
each respective class being the correct one. The output layer uses the softmax
activation function 2.7 to ensure that all the output probabilities sum to 1.

3.3.3 LSTM architecture

This is the architecture of the core part of our proposed gesture recognition
network. It’s main components are two LSTM layers. Here is a breakdown of
some of it’s key characteristics.

e Masking layer : Uses masking value of -1. It is important to exclude from
the training calculations, the padding values we inserted when sampling the
sequence using the sliding window (section 3.2).

e L2 regularization : It is a technique commonly used in machine learning in
order to prevent over-fitting. L2 regularization, also called ridge regression,
adds a penalty term that is equal to the squared sum of coefficients as
shown in eq. 3.1. Here we apply kernel regularization, which means that
the penalty is applied to each LSTM layer’s weights. The purpose of this
penalty term is to keep the weights relatively small so it can generalize more
accurately, since very big weights tend to make the model fit to the noise in
the training data.

n
L2,reg =A Z w? (31)
=1

e Dropout Layer: During each iteration, a dropout layer will randomly
select some neurons and temporarily remove them from the network. This
also aims to prevent over-fitting.

We employed Hyperband [16] to optimize crucial hyperparameters for our
LSTM model, including the number of units, L2 regularization, and dropout
rate. Hyperband is an advanced hyperparameter optimization technique designed
to efficiently allocate computational resources. It leverages the principles of
random search and successive halving, dynamically distributing resources and
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rapidly identifying the most promising configurations. Hyperband initiates by
evaluating numerous configurations with minimal resources and progressively
increases the resources for the best-performing ones, discarding less effective
configurations early on. This approach effectively balances exploration and
exploitation, accelerating the discovery of optimal hyperparameters while
minimizing computational costs.

3.3.4 Training

As the loss function of the network, we chose Categorical Cross-Entropy,
which is usually combined with Softmax output activation function. This loss
function estimates the variation between the predicted probability distribution
and ground truth’s probability distribution. The loss for each class is calculated
separately and then summed to determine the total loss:

10
L=- Z tilog(pi)
=1

where:
e i is an iterator over the classes
e t; is the ground truth and
e p; is the probability distribution produced by the softmax

The optimization algorithm of the network is a variant of the Adaptive
Moment Estimation (Adam) algorithm, called AdamW. Adam is an adaptive
learning rate optimization algorithm based upon stochastic gradient descent (SGD)
and Root Mean Square Propagation (RMSProp) [10]. It incorporates momentum
as an estimate of the average of the gradients in order to accelerate convergence.
The momentum term is typically calculated as an exponentially weighted moving
average of past gradients. This means that the optimizer gives more weight to
recent gradients but still considers the history of past gradients: RMSpop keeps
a moving average of the squared gradients over time and uses it for adjusting the
learning rate for each parameter according to its changing pace, in order to avoid
overshooting without slowing down the convergence too much. Adam incorporates
elements from both approaches. The key difference between Adam and AdamW,
is that the latter decouples weight decay from the gradient update by applying it
directly to the parameters instead of the gradients:

me

Or1 =0 — UW — A,

where:

e 0, are the parameters at step t.
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e 7 is the learning rate.

e My and Uy are the bias-corrected first and second moment estimates.
e ¢ is a small constant to prevent division by zero.

e ) is the weight decay coefficient.

After examining the labels’ distribution in the dataset, we found that it is
heavily imbalanced. As it is evident from Fig.3.3 that shows how many times
each gesture is executed in the dataset, some gestures, especially G10 (Loosening
more suture) are underrepresented. During the train-validation split, we use a
technique called stratification that ensures the proportions of class labels are the
same in both subsets. Furthermore, by assigning a weight proportional to the
inverse of the class distribution to each class and passing a dictionary of said
weights to the training function, we make sure that the underrepresented class is
not ignored during the training process. Tensorflow uses these class weights to
internally modify the textbfloss function so the loss is multiplied by the weight
associated with the example’s class. This increases the penalty for misclassifying
examples from underrepresented classes.

We calculate each class’s weight using the following formula:

W, = i « 21'121 Ci
C; 2
where:
e C; : count of i label occurrences
. 2}21 ci: total timesteps

Another technique we employed to mitigate overfitting is Early stopping. It
involves monitoring the model’s performance on the validation set during training
and halting the training process once the performance no longer improves. This
helps to ensure that the model does not learn noise or random fluctuations in the
training data, which can lead to poor generalization on new, unseen data.

3.3.5 Considered approaches

Building on the foundation provided by the LSTM network, we sought to
further enhance our model’s performance by integrating additional techniques.
These enhancements aim to capture more intricate patterns and dependencies
within the sequential data.
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Feature engineering : This is the process of creating a new feature by
transforming a subset of the available input variables into a more effective set of
inputs. As mentioned in section 1.2, Keshara Weerasinghe et. al [31] use the
video data to extract a state vector representing the interactions between
surgical instruments (e.g., graspers, scissors) and objects (e.g., needle, thread) in
the surgical scene. We also tried to generate a state variable using kinematic
data only. Specifically, we tried to combine two existing features, the left and
right gripper angles, into a categorical context variable with four possible states
that can be described as ”Joint gripper state”:

1. Both closed

2. Left open - Right closed
3. Left closed - Right open
4. Both open

The plot in figure 3.4 showcases the transformation of the two analog signals
into a discrete state feature.

Hybrid LSTM - CRF In various domains of machine learning, particularly in
natural language processing, we often see efforts to enhance the capabilities of an
RNN by combining it with statistical models. We have seen related approaches
that combine LSTM with Hidden Markov Models (HMM) in [11] and [22] or with
other models like CRFs in [32] and Support Vector Machines (SVM) in [19].

After reviewing the transition matrix of the real labels of the dataset and
noticing how sparse it is, we tried to integrate in our network, a model that could
potentially take advantage of the limited transition probabilities of the dataset.
As shown in Fig. 3.5 most pairs of states have a transition probability of zero,
meaning transitions between these states are not permitted. Among the few
allowed transitions, many have a heavily weighted transition that has
significantly higher probability compared to others.

Since the LSTM is designed to capture long term dependencies by maintaining
a memory while parsing sequential data we resorted to a combination with a CRF,
expecting that it can focus on different aspects of the data, and learn patterns
complementary to the LSTM that can utilize the distinctive transition probability
distribution.

In our proposed architecture, we place the CRF after the basic 2 LSTM layer
part we described in section 3.3.3. The LSTM network’s prediction for the previous
gesture is concatenated to the original input and fed to the CRF with the intention
of the CRF to refine and improve the LSTM’s performance.In order to refine the
LSTM output without compromising its reliability, we implemented a very simple
decision mechanism that employs the CRF only when the LSTM prediction has
a high level of uncertainty. We set a max probability threshold (we found 77%
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to be effective) for using the LSTM output or falling back to CRF. The whole
architecture is illustrated in Fig. 3.6.

The CRF model uses both L1 and L2 regularization, with coefficient set to
0.1 for both. The optimization algorithm used is called Limited-memory BFGS
(L-BFGS) which provides an efficient way of minimizing a differentiable scalar
function f(x) over a real vector x. It uses an approximation of the inverse Hessian
matrix of the objective function to find the search direction. The max iterations
of the CRF model are 100.

Hybrid LSTM - Attention One more approach was considered for
enhancing the overall performance of the LSTM model, that involved the
integration of a MultiHead attention mechanism that can give the model the
unique ability to focus on different parts of the data sequence simultaneously and
model an estimation of the importance of each part of it.

We experimented with various configurations of the model’s building blocks and
found that placing the 4-head attention mechanism between the two LSTM layers
was the most effective. The input sequence is processed by the first LSTM layer,
which captures temporal dependencies and outputs a sequence of hidden states,
on which the multihead attention operates intended to capture more complex
dependencies. The same sequence is used as query and value vector, resulting
in Self Attention. The produced output is concatenated with the output of
the LSTM, and afterward it is being fed into the second LSTM layer for further
processing.
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Figure 3.2: The architecture of the gesture recognition network, consisting
of two LSTM layers and dropout layers between them.
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joint state’s transitions throughout a single trial. Label transitions are also
included.
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Source

Gl
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G3

G5

G6

67

G8

G9

Transition matrix

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
0.00% 0.00% 0.00% 98.18% 0.00% 0.00% 0.61% 0.00% 1.21% 0.00% 0.00% 0.00%
0.00% 0.00% 0.60% 0.00% 0.00% 0.00% 0.00% 6.02% 0.00% 0.00% 0.00%
0.00% 0.00% 0.00% 0.00% 0.00% 2.48% 0.00% 3.31% 2.48% 2.48% 0.00%
0.00% 0.00% 21.62% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
0.00% 0.00% 1.23% 0.00% 63.80% 0.00% 0.00% 0.00% 0.00% 12.88% 0.61% 21.47%
0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
0.00% 0.00% 8.51% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
0.00% 0.00% 4.17% 0.00% 70.83% 0.00% 8.33% 0.00% 0.00% 0.00% 0.00% 16.67%
0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
- Gl G2 G3 G4 G5 G6 67 G8 <) Glo Gl1
Target

Figure 3.5: Transition probability matrix of the ground truth.
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Figure 3.6: Hybrid LSTM - CRF architecture
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Figure 3.7: LSTM with MultiHead attention layer
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Chapter 4

Results

This chapter presents and analyzes the results of our proposed approaches.
We compare different model architectures, examine the results in detail, and gain
insights into the gesture classification task. Finally, we evaluate our models using
standard metrics and compare them to state-of-the-art methods in the field.

4.1 Leave One Out

As we mentioned in 3.3.1 we reserved a portion of the dataset that will
remain unseen from the model during the training process and will be used for
cross validation. Leave-One-Out Cross Validation (LOOCV) is the standard
cross validation technique for the JIGSAWS dataset since the trials are already
divided by user and there are eight users in total, enough for an unbiased
estimation of the model performance and not too many to require multiple
training-evaluation cycles. Furthermore, the fact that it is widely used gives us
the chance to objectively compare our results to related work. LOOCYV is a type
of k-fold cross-validation where the number of folds equals the number of users.
It requires training the model separately each time with one user’s trial left out,
which is then used to calculate the desired metrics of the model’s. The process is
repeated until every user has been left out once, and the final metrics are
calculated as the average of all iterations.

4.2 LSTM Parameters

4.2.1 Feature Selection

As we explained in section 3.1, we trained our LSTM network using
exclusively kinematic data of the patient side manipulators. The dataset offers
various kinematic variables. We started using 14 of them, 7 for each one of the
two tool tips:
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Features Accuracy (%) | F1 score
LSTM with 14 features 78.82 0.597
LSTM with 20 features 79.47.5 0.6
LSTM with 20 features + Joint Gripper State 80.58 0.606

Table 4.1: Feature selection ablation study

e linear position (x, y, z)
e linear velocity (x', y’, z’)
e gripper angle (0)

Later we added 6 more variables, 3 for each tool tip:

e rotational velocity (o, 5,7)

Finally, we added one more variable, which this time does not come from the
dataset raw data, but is one we constructed by combining the two gripper angles,
as we explained in detail in chapter 3.3.5. We named this state variable Joint
Gripper State. In table 4.1 we present an ablation study of the different choices
in features to include. The metrics used for comparison are accuracy and F1
score and are both calculated on the evaluation data, with Leave One Out cross-
validation (section 4.1).

We can see that the inclusion of angular velocities and Joint Gripper State
played a role in boosting the model’s performance. As we can see in the model’s
summary in Fig. (4.1), it has 965984 parameters.

Layer (type) Output Shape Param # | Connected to |

input_layer_8 ( , 128, 21) 2] ]

(InputLayer)

not_equal_8 (NotEqual) ( , 128, 21) @ | input_layer_8[@8][0] )

masking_8 (Masking) ( , 128, 21) @ | input_layer_8[8][0] )

any_24 (Any) ( , 128) @ | not_equal_8[@][@] )

1stm 16 (LSTM) ( , 128, 256) 284,672 | masking 8[@][0], ]
any_24[e][e]

dropout_16 (Dropout) ( , 128, 256) 0 [ lstm_1e[e][e] )

1stm_17 (LSTM) (None, 32) 36,992 | dropout_16[@][e], ]
any_24[6][a]

dropout_17 (Dropout) ( , 32) [} 1stm_17[@][@] )

dense_8 (Dense) ( , 1@) 330 | dropout_17[@][@] )

Total params: 965,984 (3.68 MB)
Trainable params: 321,994 (1.23 MB)
Non-trainable params: @ (9.00 B)
Optimizer params: 643,998 (2.46 MB)

Figure 4.1: Summary of the LSTM model with 21 features
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Sliding Window Size | Accuracy (%) | F1 score
3.2 sec 76.7 0.5855
6.4 sec 77.12 0.5891
12.8 sec 79.26 0.588
25.6 sec 75.99 0.5337

Table 4.2: Sliding window size ablation study. Results obtained from LSTM
model on JIGSAWS dataset

4.2.2 Sliding window size

Here we present an ablation study about the effect of varying sliding window
sized on the model’s accuracy and F1 score. The sliding window approach
segments the continuous stream of input data into fixed-size chunks for
processing. By experimenting with different window sizes, we aimed to identify
the optimal value for capturing sufficient contextual information and maintaining
real-time performance. As the data in Table 4.2 show, initially, as the window
size increases, the model gains more contextual information, leading to more
accurate predictions. The added context helps the model better understand the
sequence of gestures. But after a certain point this relation changes. For larger
values, the window may include too much data, introducing noise and irrelevant
information. This excessive information can overwhelm the model, making it
harder to isolate the relevant features for each gesture.

4.2.3 Delay

This ablation study is focused on the delay parameter, which represents the
time lag allowed between the occurrence of a gesture and its recognition by the
model. This parameter is crucial for online applications where timely responses
are essential. In Table 4.3 we investigated how different delay values influenced
the model’s ability to correctly classify gestures in a timely manner. A smaller
delay enhances the real-time capabilities of the model but may reduce accuracy
due to rushed decision-making. Conversely, a larger delay might improve accuracy
by allowing more thorough analysis but at the cost of responsiveness. We chose
to permit a delay of up to 1 second to ensure that the model remains viable for
real-time applications.
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Delay | Accuracy (%) | F1 score
0 sec 74.96 0.5697
0.2 sec 74.5 0.5738
0.5 sec 76.49 0.5867
1 sec 79.26 0.588

Table 4.3: Delay ablation study. Results obtained from LSTM model on
JIGSAWS dataset

4.3 LSTM output analysis

4.3.1 Individual trials examination

To gain a deeper understanding of the challenges in online gesture recognition,
we conducted a detailed analysis of each trial. We began by plotting the predicted
labels and the ground truth for each trial. Additionally, since the output of the
LSTM network is generated using a softmax activation function, we also plotted
the maximum probability of each output as a measure of the model’s confidence
in its predictions. Each user’s trials were evaluated using the iteration in which
they were excluded from the training set.

Upon initial inspection, it becomes evident that the model does not generalize
equally well across different users. For instance, examining the best and worst
results reveals an average accuracy of 88.6%for user F, while for user D, the average
accuracy is constrained to 68.5%. Analyzing each trial for user B reveals a recurring
pattern: a single gesture is getting regularly mislabeled.This gesture, G9,
corresponds to ”Using right hand to help tighten the suture.” User B frequently
utilizes this gesture, whereas it is almost absent in other users’ trials. In fact, G9
does not appear even once in any trial of user F.

So we can infer that if the vast majority of a class samples are concentrated
in a few trials, the model’s ability to generalize and accurately recognize
instances from this class is affected. Especially when these trials happen to be in
the same evaluation fold, this class is severely underrepresented in the remaining
data, leaving too little information for the network to learn patterns and
relations regarding this gesture. We also notice a sharp decline in the network’s
confidence while this gesture is executed. The results for this user are even worse
when using fewer features. Specifically, with 14 features, the average accuracy
drops to 55.47%.

4.3.2 Accuracy per class

By directly comparing the accuracy per class to the number of instances per
class in Fig.(4.4) we can confirm that in most cases there is a strong correlation
between the representation of the class and its recognition rate. It is more apparent
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Figure 4.2: User out: B to E. On top of each subplot we see the predicted
labels, and directly below, the ground truth. The bottom chart shows the
confidence of the network for each output. Results obtained from LSTM

model on JIGSAWS dataset
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Figure 4.3: User out: F to G. On top of each subplot we see the predicted
labels, and directly below, the ground truth. The bottom chart shows the
confidence of the network for each output. Results obtained from LSTM

model on JIGSAWS dataset
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in classes G9 (”Using right hand to help tighten suture”), G10 (”Loosening more
suture”) and G11 (”Dropping suture at end and moving to end points”). Though
there are exceptions like G1 (”"Reaching for needle with right hand”) that can
possibly be explained by the fact that G1 is always the starting gesture, which is
characteristic that the network could potentially manage to pick up, or it simply
contains some more distinctive and recognizable patterns.

Accuracy per class

& & @ & & & & & & &

Number of each label's instances

& & & ¢ & & & & & &

Figure 4.4: Top: Accuracy per label. Bottom: The number of instances per
label. Results obtained from LSTM model on JIGSAWS dataset

4.3.3 Confusion matrix

Another plot that provides helpful intuition about the network is the confusion
matrix that is presented in Fig. 4.5. Here we don’t see any pair of gestures
getting regularly confused for each other both ways. The only one where it is
noticeable is G2 (" Positioning needle” )- G3 (” Pushing needle through tissue”) with
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G2 mislabeled for G3 at 12.4% percentage and G2 for G3 at 8.4%. This shows that
the network, in most cases, can sufficiently detect distinguishable patterns for each
gesture. When examining the results for G9, G10, and G11, we observe that the
false predictions are dispersed across nearly all classes. This indicates that
the network misclassifies the minority classes as almost any other class, suggesting
it struggles to establish clear decision boundaries, resulting in outputs that appear
almost random.

Normalized Confusion Matrix
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Figure 4.5: Confusion matrix. Results obtained from LSTM model on

JIGSAWS dataset
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4.4 LSTM with CRF

As we mentioned in 3.3.5 the intention of the choice to combine the LSTM using
a CRF model was to take advantage of the concentrated transition probabilities
that are presented in the model’s transition matrix. For most of the classes, there
are only two or three possible next states, and in many cases, there is one transition
with a very high probability.

Transition matrix
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Figure 4.6: Transition matrix. Results obtained from LSTM model on
JIGSAWS dataset

By comparing the transition probabilities of the ground truth ((Fig. 3.5)) to
those of our LSTM network (Fig. 4.6) we see that the predicted output contains
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a few illegal transitions. We trained a CRF model that takes the LSTM output
as input, aiming to correct some of the LSTMs misclassifications by utilizing the
transition probabilities.

We tried to find an adequate way to combine the two outputs by using a
threshold in LSTM network’s confidence in order to decide whether to keep its
prediction or use the one by the CRF. Although we weren’t able to improve the
overall accuracy, we will still examine some outputs of this approach.

Fig. 4.7 contains the output of the hybrid model for user B, in a format similar
to Fig.4.2 and 4.3. Both the individual and the combined models’ results. We have
also highlighted the parts where the CRF output was used and provided a correct
or incorrect result. The CRF model, on its own, performs poorly and in some cases
like trial 1 it leads to over-segmentation. Nevertheless, in trials 2 and 3 we can see
that if it is strategically employed it can slightly improve the output of the LSTM.
Perhaps the simple decision mechanism of a universal threshold is not enough, and
more sophisticated voting mechanisms can provide better performance.

4.5 LSTM with attention

Our final attempt at enhancing the model included the addition of an attention
layer. After experimenting with various layouts, we got the best results by placing
a 4 Head attention layer that uses the 1st dropout layer’s output as both query
and value vector, essentially acting as a self attention layer.

The attention layer managed to improve the generalization ability of the model,
even at trials that include minority gestures (user B accuracy increased from 68.52
to 74.58). This architecture brought the best results out of all the approaches we
tried with an average accuracy of 81.56%

It is notable from both the accuracy per class chart and the confusion matrix
(Fig.4.9) that this hybrid model provides more balanced and less biased
predictions.

4.6 Comparison with state of the art

Numerous approaches have been published in the field of gesture recognition,
with many evaluated on the suturing task of the JIGSAWS dataset. However,
not all of these approaches meet the criteria established for this thesis, using
only kinematic data and suggesting an architecture that can be used online
When comparing only to work that adheres to these limitations, our network has
surpassed the state of the art, achieving an accuracy of 81.56%, as shown in
(Table 4.4).

For the sake of completeness, we also present the best results achieved by
bidirectional models, which are not suitable for online use (Table 4.6).
Bidirectional models, in order to make a prediction for a given time step, need to
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Method Accuracy (%) | year
Skip-Chain CRF [13] 80.29 2015
Forward LSTM [(] 80.5 2016
Our work
Forward LSTM - 14 Features 78.82 2024
Forward LSTM - 20 Features 79.47 2024
Forward LSTM - 20 Features 4+ Gripper State 80.58 2024
LSTM with self attention 81.56 2024

Table 4.4: Results on JIGSAWS with kinematic data that can be used in
real time

Method Accuracy (%) | year
LC-SC-CRF [1] 835 2016
C + Vspatiar [31] 844 2024
Fusion-KV [20] 86.3 2020
Kis+ C + Vspatiar 1] 87.1 2024

Table 4.5: Results on JIGSAWS with both kinematic and visual data

have access to the entire sequence, making them impossible to function
effectively in real-time application.

Additionally, we include the top results obtained using visual data too (Table
4.5), which encompass the overall state-of-the-art performance on the JIGSAWS
dataset, as reported in the paper ”Multimodal Transformers for Real-Time Surgical
Activity Prediction” [31].

Method Accuracy (%) | year
Bidir LSTM [0] 83.3 2016
Bidir MIST [] 817 2019
Bidir LSTM [)] 847 2019
Bidir GRU [J] 84.8 2019

Table 4.6: Results on JIGSAWS with kinematic data that can’t be used in
real time
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Figure 4.7: Results of user B using the Hybrid LSTM - CRF model. Each
subplot contains from top to bottom: LSTM output, CRF output, Hybrid
LSMT-CRF, output, ground truth - confidence curve.
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Model: "model 5"
Layer (type) Output Shape

input_6 (InputlLayer) [{None, 128, 21)]

masking 5 (Masking) (None, 128, 21) B ['input_s6[8][6]"]

1stm_1@ (LSTM) (None, 128, 6) [ ‘masking_5[@][e]"]
dropout_18 (Dropout) (None, 128, B ['1stm_18[8][8]"]

multi_head_attention_5 (Mu (None, 128, 6 263168 [ 'dropout_1e[e][e]",
1t ttention) ‘dropout_1e[e][e]"]

concatenate 5 (Concatenate (None, 128, 512) B [ 'dropout_1@[e][e]’,

) ‘multi_head_attention_5[@][@]
']

lstm_11 (LSTM) (None, 60768 ['concatenate_5[@][@]"]
dropout 11 (Dropout) (None, ) 2 ['1stm _11[e@][e]"]
dense 5 (Dense) (None, 1@) 330 [ 'dropout_11[8][e]"]

Total params:
Trainable param

Figure 4.8: LSTM with self attention model summary
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Figure 4.9: Hybrid LSTM - Self Attention on JIGSAWS. Left: Accuracy per
class chart. Right: Confusion matrix
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Chapter 5

Conclusion and Future work

Our objective was to train a machine learning model to recognize gestures
during surgical procedures in real-time. Evaluation was done using the JIGSAWS
dataset, specifically with the suturing tasks. Our goal was to achieve state-of-the-
art performance under the following conditions: the model to be used must be able
to operate in real-time through a sliding window with a maximum delay of 1 second
and be trained only with kinematic data. The basic neural network used was the
LSTM. Initially, we experimented with using one and two LSTM layers and then
attempted to improve the model’s performance with various trivial techniques such
as hyperparameter tuning, early stopping, introduction of dropout layers, L1 and
L2 regularization, validation split. At each step, we tried to visualize the results
with various graphs, confusion matrix, transition matrix, etc. to evaluate the areas
that needed improvement. After observing a weakness in recognizing classes with
the smallest representation in the dataset, we applied stratification to the training-
validation data split, as well as a larger penalty for misclassification of these classes.
Subsequently, we tried to increase the number of features by adding angle velocities
and performing feature engineering by creating a new feature with 4 discrete states
based on the values of the gripper angles (left close-right open, both open, etc.).
Finally, to further improve performance, we tried 2 hybrid approaches of the LSTM
model. In the first, we compared the results of introducing a multihead attention
layer at different points in the architecture. In the second, we tried to exploit the
sparse transition matrix of the data by using a CRF which receives as input the
LSTM predictions in combination with part of the kinematic data. We managed
to improve the state-of-the-art performance given the two constraints we set with
an accuracy of 81.56% with a hybrid LSTM - Self Attention model.

Based on the work that was presented in this thesis, many suggestions for future
work can be made. Although we explored the idea of combining LSTM with CRF
there is definitely room for improvement, in the way the two model outputs are
merged. A potential solution could be a more complex voting mechanism with
separate class weights, based on the success rate for each class prediction by each
model. This idea could be expanded in other hybrid models that might further
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enhance the LSTM abilities, such as Transformers. Our model based solely on
kinematic data, but future research could build upon it by utilizing visual data
too, which opens up a wide variety of machine learning models to try and evaluate.
Additionally, the performance of the examined models can be assessed in more
publicly available surgical datasets. A detailed list can be found in [18].

Lastly, the gesture recognition network could be a part of a bigger system
that aims to monitor the procedure and even assist the surgeon in executing the
desired task. Such a system could contain a library of movement primitives for each
gesture, and after recognizing the currently executed gesture, help the operator
make safe, efficient and precise movements by providing haptic feedback.
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