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Abstract 

Diabetes Mellitus (DM) is a chronic condition with a rising global prevalence and severe 

complications. The International Diabetes Federation projects that the number of individuals 

with diabetes will reach 643 million by 2030. To enhance glycemic control and mitigate the risk 

of serious physical and emotional complications related to hypoglycemia, this thesis presents the 

design, development, and evaluation of an interpretable model for predicting the risk of 

nocturnal hypoglycemic episodes in individuals with Type 1 Diabetes (T1DM). The proposed 

model employs a hybrid approach, integrating compartmental models with machine learning 

techniques. The OhioT1DM dataset, which includes real data from the eight-week monitoring 

period of 12 patients, was utilized for both development and evaluation purposes. Input data for 

the model consisted of glucose measurements, insulin doses, and meal information from the 

previous 24 hours. Mathematical models for simulating (i) the physiological mechanisms of 

insulin absorption from the subcutaneous tissue into the bloodstream, (ii) the activation of the 

insulin signaling pathway, and (iii) the absorption of glucose from the intestine were combined 

with Long Short-Term Memory Neural Networks (LSTMs). A custom attention layer was 

integrated to enhance the model’s performance and provide insights into the model’s reasoning 

behind its predictions. The model was assessed in terms of its ability to correctly predict 

nocturnal hypoglycemic events within a twelve-hour prediction window. Moreover, the Monte 

Carlo Dropout method was applied to quantify the uncertainty of the model's predictions. The 

model was also evaluated on an external dataset from the ten-day monitoring period of 12 T1DM 

patients, which was granted from the Diabetes Center, First Department of Pediatrics, P. & A. 

Kyriakou Children’s Hospital, Athens, within the framework of the SMARTDIAB project. 

 

Keywords: Type 1 Diabetes, Machine Learning, Deep Learning, Compartment Models, Hybrid 

Model, Compartment Models,  Risk Prediction Model, Explainable Artificial Intelligence, XAI, 

Attention, Monte Carlo Dropout 
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1. Introduction 

1.1. Research Problem 

Diabetes Mellitus is a chronic condition characterized by excessively high blood glucose levels, 

either due to limited secretion of the hormone insulin, reduced action of insulin, or a combination 

of these two factors. The disease is directly associated with long-term damage, dysfunction, and 

eventual failure of various vital organs such as the eyes, kidneys, nerves, heart, and blood vessels. 

According to the World Health Organization, in recent decades, diabetes has taken on epidemic 

proportions, with cases rising from 108 million in 1980 to 422 million in 2014. There is a globally 

agreed target to halt the rise in diabetes and obesity by 2025. 

To manage this condition, beyond adopting a balanced diet and engaging in physical exercise, 

regulating blood glucose through regular monitoring and insulin administration is also of crucial 

importance. However, glycemic control is a demanding and complex process, as glucose levels 

are influenced by numerous factors, making it ultimately empirical and prone to errors. In recent 

years, the application of machine learning models has contributed to the development of more 

accurate methods of glycemic control that take into greater account the individual peculiarities 

of each case, leading to more efficient and personalized treatment. The further advancement of 

such artificial intelligence techniques raises hopes for mitigating the complications of the 

condition and improving the overall quality of life for patients. 

One significant challenge in managing diabetes is nocturnal hypoglycemia, which occurs when 

blood glucose levels drop dangerously low during sleep. This condition can cause symptoms such 

as sweating, trembling, confusion, and even seizures. If not promptly addressed, nocturnal 

hypoglycemia can lead to severe health problems, including brain damage and death. The 

development of continuous glucose monitoring systems and advanced insulin pumps, often 

integrated with machine learning algorithms, aims to predict and prevent hypoglycemic 

episodes, offering a safer and more stable management of diabetes, particularly during the night. 

This technological advancement is essential for reducing the risk of nocturnal hypoglycemia and 

enhancing the safety and quality of life for individuals with diabetes.  

1.2 Objective of the Thesis 

The objective of this study is to develop an interpretable model for predicting the risk of 

nocturnal hypoglycemic episodes using machine learning techniques. This prediction involves 

estimating the likelihood of a nocturnal hypoglycemic episode occurring within a certain future 

timeframe during the night, rather than directly forecasting future glucose levels. Furthermore, 

it is deemed essential to incorporate interpretability techniques into the final system to achieve 
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a deeper understanding of its operation and result extraction process. Interpretability is 

increasingly sought after for many modern machine learning models, particularly when applied 

in healthcare settings to aid medical decision-making. Providing explanations for a model's 

outputs enhances its reliability, serves as a means of verifying its correct functioning, and 

facilitates the easier identification of errors that may arise during its application in real-world, 

non-experimental conditions. 

1.3 Structure of the Thesis 

This thesis is organized into seven chapters. The initial chapters aim to provide the theoretical 

foundation for the work by offering a deeper understanding of the nature of diabetes and the 

mechanisms underlying artificial neural networks. The second part focuses primarily on the 

experimental process followed. It details the methods developed, the resulting outcomes, and 

the final conclusions and observations. More specifically:  

• Chapter 1 serves as a brief introduction, clarifying the research problem and the 

motivation behind the study, as well as presenting the overall structure of the thesis. 

• Chapter 2 provides a general overview of diabetes, covering the most common types of 

the disease, its causes and symptoms, and both short-term and long-term complications. 

It also addresses methods of diagnosis and effective management.  

• Chapter 3 introduces key concepts of artificial neural networks, with an emphasis on 

recurrent neural networks, which are often used in applications like the one under study. 

It also discusses major training and evaluation methods for machine learning models, 

many of which are applied in the experimental section.  

• Chapter 4 aims to deepen the understanding of the research problem by reviewing recent 

related literature. It focuses on modern models for predicting glucose levels and 

hypoglycemic episodes using machine learning.  

• Chapter 5 outlines the techniques used for processing the available data and for the 

development and evaluation of the machine learning model applied in this thesis.  

• Chapter 6 presents and discusses the experimental results from the application of the 

proposed model. 

• Chapter 8 summarizes the conclusions of the thesis and offers suggestions for future 

research directions. 

  



 

3 
 

2. Diabetes Mellitus 

2.1 Glucose Metabolism and Regulation 

2.1.1 Glucose Metabolism: Sources and Pathways 

Glucose stands as the foremost monosaccharide, serving as a vital energy source for both plants 

and animals. In human physiology, glucose is acquired through dietary intake or synthesized via 

metabolic pathways such as glycogenolysis and gluconeogenesis. When considering food intake, 

carbohydrates represent the primary external source of glucose. These carbohydrates, 

polysaccharides found abundantly in various foods, predominantly reside in the starch of plant-

derived sources like grains, potatoes, and rice.  

Shortly after carbohydrate ingestion, a hydrolysis process commences, breaking down these 

complex molecules into simpler monosaccharides, primarily glucose. This hydrolysis begins in the 

stomach and continues within the small intestine. Post-absorption in the small intestine, the 

resultant glucose enters the hepatic portal vein, promptly absorbed by the liver. Here, a fraction 

of glucose serves hepatic functions, while the majority enters circulation, destined for 

distribution across tissues like the brain and muscles.  

Facilitated by membrane transporter proteins, known as GLUTs, glucose travels through cell 

membranes, entering cells' interiors. Once inside, most glucose undergoes immediate utilization 

for adenosine triphosphate (ATP) synthesis, the organic molecule powering cellular activities. Any 

excess glucose not utilized for energy production is stored for later use, either as glycogen or fat. 

Glycogen, a complex polysaccharide comprised of numerous glucose molecules arranged in a 

branching pattern, serves as a major reservoir for stored glucose. When required, glycogen is 

enzymatically broken down into glucose units, a process termed glycogenolysis. Predominantly, 

glycogen stores reside in the liver, with significant concentrations also found in skeletal muscles. 

While carbohydrates primarily fuel glucose production, alternative substrates such as amino 

acids from proteins and glycerol from triglycerides can also contribute. Particularly in instances 

of low carbohydrate intake, amino acids can be converted into glucose through gluconeogenesis. 

Moreover, during fasting periods, glycerol derived from triglycerides can be utilized for glucose 

synthesis [1, 2]. 

2.1.2 Regulation of Blood Glucose 

The aforementioned points highlight the complexity of glucose homeostasis, given that glucose 

participates in various reactions involving multiple tissues and organs. It is crucial to maintain 

blood glucose levels within a narrow range because, under normal conditions, glucose serves as 
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the primary energy source for most tissues and is the sole nutrient the brain can metabolize. In 

healthy individuals, blood glucose levels are closely regulated to stay within a specific range, 

regardless of the meals consumed throughout the day. This regulation is managed by hormones, 

primarily insulin and glucagon, with additional related hormones identified in recent decades [1, 

2]. 

 

Figure 1: Regulation of blood glucose levels from insulin and glucagon [3]. 

2.1.2.1 Insulin 

Insulin is a typical peptide hormone, consisting of 51 amino acids arranged in two polypeptide 

chains. It was first isolated by Frederick Banting in 1921. This hormone is produced by the β-cells 

in the pancreas, one of the four distinct cell types found in the islets of Langerhans. These islets 

are small cell clusters within the pancreas that are responsible for the secretion of essential 

hormones. Although they represent less than 2% of the pancreas, β-cells constitute about 75% 

of the islets. The main function of insulin is to lower blood glucose levels following meals and 

restore them to their normal state. Insulin also enhances the cellular uptake and storage of 

glucose, activates enzymes responsible for glycogen, protein, and fat synthesis, and inhibits the 

production of new glucose via processes such as gluconeogenesis. 

The nutrient absorption following a meal increases the plasma concentrations of glucose and 

amino acids, activating the glucose-sensitive β-cells. Once activated, these cells secrete insulin, 
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which targets liver cells, brain cells, and cells in adipose and muscle tissues. When insulin binds 

to the membrane receptors of these target cells, it initiates a cascade of protein phosphorylations 

inside the cells, leading to the activation of GLUT4 transporters (insulin sensitive). These 

transporters move from the cytoplasmic vesicles to the cell membrane, allowing substantial 

amounts of glucose to enter the cells via facilitated diffusion. Consequently, blood glucose levels 

are reduced and gradually return to their normal range [4, 5]. 

2.1.2.2 Glucagon 

Glucagon, a vital peptide hormone in regulating blood sugar, was first identified in 1922. 

Comprising 29 amino acids, it is produced by the α-cells in the pancreatic islets of Langerhans. 

Functioning in opposition to insulin, glucagon is released when blood glucose levels drop, 

promoting glucose production through glycogenolysis and gluconeogenesis. During the initial 8-

12 hours of fasting, glycogen breakdown in the liver serves as the main glucose source. Beyond 

this period, hepatic gluconeogenesis, utilizing amino acids, becomes a significant glucose 

production pathway [6]. 

2.1.2.3 Insulin–Glucagon Balance in Blood Glucose Regulation 

The balance between insulin and glucagon is crucial in determining which hormone will dominate 

and how blood glucose levels will be managed. During fasting periods, the body prevents 

hypoglycemia by secreting glucagon. When glucagon is predominant, the liver primarily utilizes 

glycogen to release glucose into the bloodstream. In individuals with normal metabolic function, 

fasting plasma glucose levels are maintained around 90 mg/dL, with low insulin secretion and 

relatively high glucagon levels. Following a meal, the increase in plasma glucose inhibits glucagon 

release and stimulates insulin secretion. This insulin boost facilitates glucose uptake into cells, 

leading to a rapid return of plasma glucose levels to their fasting state [5]. 

In cases of diabetes mellitus, the aforementioned metabolic processes are disrupted in one or 

more ways, resulting in the organism's inability to effectively regulate blood sugar levels. 

Specifically, in type 1 diabetes mellitus, there is a continuous destruction of pancreatic β-cells by 

the organism itself, leading to partial or total deficiencies in insulin. As a consequence, 

postprandial glucose levels increase due to inadequate glucose removal from the blood, poorly 

regulated hepatic glucose production, and accelerated gastric emptying. In type 2 diabetes 

mellitus, β-cell function is also impaired, while peripheral tissues exhibit resistance to insulin 

action, resulting once again in inadequate glycemic control. Finally, disturbances in glucagon 

production are observed in all types of diabetes mellitus [1, 5]. In the subsequent section, the 

different types of diabetes mellitus are going to be presented. 
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2.2 Diabetes Overview and Types 

Diabetes Mellitus (DM) is a chronic syndrome with global distribution and serious complications 

for those affected. According to the International Diabetes Federation, in 2021, the total cases of 

adults with DM were 537 million, while related deaths reached 6.7 million. It's worth noting that 

the total number of affected individuals is expected to rise to 643 million by 2030. Three out of 

four adults with diabetes live in low or middle-income countries, and half of them remain 

undiagnosed. In all its forms, DM is characterized by disturbances in the metabolism of 

carbohydrates, fats, and proteins, resulting in elevated blood glucose levels. It is distinguished 

into Type 1 Diabetes, Type 2 Diabetes, Gestational Diabetes, and other specialized, rarer types 

[7]. 

 

Figure 2: Types of diabetes [8]. 

2.2.1 Type 1 Diabetes 

Type 1 Diabetes accounts for approximately 5%-10% of all diabetes cases. In this type, the 

patient's own body gradually destroys the pancreatic cells that produce insulin through an 

autoimmune mechanism. Without this hormone, regulating blood glucose levels is not possible, 

thus daily insulin administration is necessary from the onset of the disease. Type 1 Diabetes 

typically appears in children, adolescents, and young adults, but it can also occur in older ages, 

although this is rarer. The exact causes of its onset are not known, but a family history of 

autoimmune diseases is a known risk factor. Weight and physical condition are not directly 

related to its onset, but healthy habits such as regular exercise and adopting a balanced diet are 

crucial in managing it [9]. 
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2.2.2 Type 2 Diabetes 

Type 2 Diabetes constitutes the majority of diabetes cases worldwide (90% - 95%) and is caused 

by increased resistance of the body to insulin action. Insulin secretion levels may be normal, or 

even higher in the initial stages of the disease, however, they become insufficient as the disease 

progresses. In this later phase, insulin production levels decline, necessitating external 

administration. The most common clinical characteristics of patients with Type 2 Diabetes include 

obesity, middle or advanced age, a family history of the disease, and gradually increasing 

hyperglycemia, often with mild or no symptoms. Sedentary lifestyle and unhealthy dietary habits, 

prevalent in many countries, contribute significantly to the increasing prevalence of Type 2 

Diabetes, even among younger age groups. Despite these common clinical features, patients with 

Type 2 Diabetes exhibit significant heterogeneity: the disease can occur in children, adolescents, 

or older adults, in overweight or normal-weight individuals, and the severity can range from 

asymptomatic to life-threatening. This diversity complicates diabetes management for 

healthcare professionals and patients alike, highlighting the need for further personalization [9]. 

2.2.3 Gestational Diabetes Mellitus 

Gestational Diabetes Mellitus (GDM) is a type of diabetes that occurs only during pregnancy. This 

form of diabetes affects 3% - 9% of pregnant women and is associated with hormonal changes 

that occur during pregnancy, especially during the second and third trimesters. Additional factors 

such as excess weight and heredity also contribute to the risk. Although hyperglycemic symptoms 

cease after delivery, a significant portion of women who develop GDM later develop Type 2 

Diabetes. Therefore, prevention and systematic monitoring are crucial for the years to come. It 

is also worth noting that if the condition is not effectively treated during pregnancy, there is an 

increased risk of preterm birth or giving birth to an overweight baby, while the child itself is at 

risk of developing obesity or Type 2 Diabetes later in life [9]. 

2.3 Diabetes Symptoms and Complications 

2.3.1 Symptoms 

One of the primary symptoms of Diabetes is frequent urination, medically known as polyuria. 

This occurs when elevated levels of glucose in the bloodstream prompt the kidneys to filter and 

expel the excess sugar, resulting in increased urine production. Alongside polyuria, individuals 

with diabetes often experience heightened thirst, termed polydipsia, as the body attempts to 

offset fluid loss caused by frequent urination. Despite a potentially increased appetite and food 

intake, unexplained weight loss is another common symptom of diabetes. This weight loss can 

occur due to the body's inability to efficiently utilize glucose for energy, leading to the breakdown 
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of muscle and fat tissues. Persistent fatigue and weakness are also prevalent among those with 

diabetes. The inadequate utilization of glucose deprives cells of essential energy, contributing to 

feelings of tiredness even after ample rest. 

Elevated blood sugar levels in diabetes can lead to changes in the shape of the eye's lens, 

resulting in blurred vision or difficulty focusing. Moreover, these high glucose levels impair 

circulation and compromise the immune system, slowing down the body's natural healing 

processes for wounds and injuries. Individuals with diabetes are also at an increased risk of 

infections, particularly in the urinary tract, skin, and gums, due to the weakened immune 

response associated with the condition. Despite regular meals, persistent hunger, or polyphagia, 

may be experienced by individuals with diabetes. This hunger persists as the body struggles to 

properly utilize glucose for energy, despite sufficient food intake [10]. 

2.3.2 Acute Complications 

Diabetes complications refer to additional health issues that arise as a result of unregulated blood 

sugar levels in individuals with diabetes. These complications can be categorized into two main 

types: acute and chronic. Acute complications are rapid-onset health issues commonly seen in 

diabetes, such as diabetic ketoacidosis, hyperglycemic hyperosmolar state, hypoglycemia [11]. 

2.3.2.1 Diabetic Ketoacidosis (DKA) 

Diabetic ketoacidosis (DKA) is a severe complication of diabetes resulting from critically low 

insulin levels, predominantly seen in Type 1 Diabetes but also occurring in Type 2 Diabetes. 

Insufficient insulin leads to a cascade of metabolic disturbances, primarily driven by the release 

of counter-regulatory hormones like glucagon. This hormonal response triggers the excessive 

production of free fatty acids (FFAs) from adipose tissue. The liver subsequently converts these 

FFAs into ketone bodies through ketogenesis. The accumulation of ketone bodies in the 

bloodstream leads to a condition known as ketonemia, characterized by elevated levels of 

ketones in the blood. This metabolic state contributes to a decrease in blood pH, leading to 

acidosis, a hallmark feature of DKA. Concurrently, the lack of insulin results in uncontrolled 

hyperglycemia, as gluconeogenesis and glycogenolysis proceed unabated, while glucose uptake 

by peripheral tissues is impaired. The combination of hyperglycemia and ketosis results in 

osmotic diuresis, characterized by the excessive excretion of glucose and ketones in the urine, 

leading to dehydration and electrolyte imbalances. 

Symptoms of DKA usually develop swiftly and encompass increased urination (polyuria), 

excessive thirst (polydipsia), loss of weight, weakness, as well as feelings of nausea and vomiting. 

Left untreated, DKA can progress to severe dehydration, electrolyte abnormalities, hypotension, 

shock, and even coma or death. Management of DKA involves addressing the underlying causes, 

including dehydration, acidosis, and hyperglycemia, through fluid resuscitation, insulin therapy, 
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and correction of electrolyte imbalances. Prevention strategies focus on vigilant monitoring of 

blood glucose and ketone levels, prompt insulin adjustments during illness, and patient education 

on recognizing symptoms and seeking timely medical intervention [11, 12]. 

2.3.2.2 Hyperglycemia Hyperosmolar State (HHS) 

Hyperglycemia hyperosmolar state (HHS) is an acute complication seen more frequently in 

individuals with Type 2 Diabetes, contrasting with DKA, which is more common in Type 1 

Diabetes. HHS shares several symptoms with DKA. It carries a significantly higher mortality rate, 

approximately ten times greater than that observed in DKA. Both DKA and HHS occur due to 

decreased insulin effectiveness, either from a shortage of insulin secretion (as in DKA) or 

insufficient insulin action (as in HHS). Extremely high blood glucose levels lead to osmotic 

diuresis, causing water to be drawn out of cells into the blood, resulting in increased blood 

osmolarity and dehydration if not promptly replaced. Electrolyte imbalances further exacerbate 

the condition.  

Unlike DKA, HHS does not typically result in significant ketosis and acidosis due to the minimal 

presence of insulin suppressing counterregulatory hormones and limiting ketone production. 

Various factors can trigger HHS, including infection, myocardial infarction, trauma, and certain 

medications. Urgent medical treatment is necessary, usually beginning with fluid volume 

replacement. Overall, HHS is characterized by hyperglycemia, hyperosmolarity, dehydration, and 

mild or no ketosis, constituting a medical emergency requiring immediate attention and 

intervention [11, 12]. 

2.3.2.3 Hypoglycemia 

Hypoglycemia is a frequent and acute complication of diabetes, particularly affecting those who 

receive insulin externally. It is defined by blood glucose levels dropping below 70mg/dl, 

presenting with symptoms like discomfort, weakness, sweating, hunger, confusion, irritability, 

rapid heart rate, and headaches. In serious cases, the patient needs help from others to manage 

the condition. Critical complications can include cardiac arrhythmias, seizures, coma, and rarely, 

death. Asymptomatic episodes, known as hypoglycemia unawareness, can also occur. Common 

causes include excessive doses of antidiabetic drugs, skipping meals, unexpected physical 

activity, and alcohol consumption while fasting. Treatment involves administering glucose either 

directly or through food. Preventing hypoglycemia requires constant monitoring and consistent 

management of blood glucose levels [12]. 

2.3.2.4 Nocturnal Hypoglycemia 

Nocturnal hypoglycemia is a prevalent and perilous complication in patients with diabetes, 

particularly those with Type 1 Diabetes undergoing insulin therapy. This condition is 
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characterized by abnormally low blood glucose levels during sleep, often going unnoticed by 

patients due to the natural suppression of hypoglycemia awareness during sleep. The 

consequences of nocturnal hypoglycemia are severe, ranging from minor disruptions such as 

nightmares and morning headaches to major health risks including seizures, cardiac arrhythmias, 

and the potentially fatal "dead-in-bed" syndrome. 

One of the primary dangers of nocturnal hypoglycemia is its tendency to occur without waking 

the patient. This lack of awareness is particularly concerning as it can lead to prolonged periods 

of hypoglycemia, exacerbating the risk of severe outcomes. Studies have shown that up to 50% 

of severe hypoglycemic episodes occur during the night, emphasizing the high vulnerability 

during sleep. The immediate effects of such episodes can include convulsions, which not only 

pose a direct physical risk but also contribute to heightened fear and anxiety surrounding 

hypoglycemia for both patients and their families. Furthermore, nocturnal hypoglycemia has 

long-term implications on cognitive function. Recurrent episodes can diminish the body's 

counterregulatory responses to hypoglycemia, leading to impaired awareness and increased risk 

of future episodes. This condition, known as hypoglycemia unawareness, creates a vicious cycle 

that complicates diabetes management and endangers patients. 

Preventive strategies are crucial in managing nocturnal hypoglycemia. Regular blood glucose 

monitoring, particularly at bedtime and during the night, can help identify at-risk periods. 

Adjusting insulin regimens to minimize nocturnal hyperinsulinemia, alongside consuming long-

acting carbohydrates before sleep, can stabilize blood glucose levels overnight. The use of 

continuous glucose monitoring systems has also shown promise in providing real-time alerts and 

preventing severe nocturnal hypoglycemia. 

In summary, nocturnal hypoglycemia poses significant challenges due to its subtle presentation, 

severe potential outcomes, and the difficulty in detection and prevention. Comprehensive 

management strategies, including regular monitoring and tailored insulin regimens, are essential 

to mitigate these risks and improve the safety and quality of life for patients with diabetes [13, 

14]. 

2.3.3 Long-Term Complications 

Chronic complications are the leading cause of death among people with diabetes mellitus. 

However, with diligent management and a healthy lifestyle, these complications can often be 

prevented or slowed. The discussion here highlights issues affecting the heart and major blood 

vessels, kidneys, eyes, and peripheral limbs. Additionally, diabetes can lead to a range of other 

problems, including digestive, urological, sexual, and mental health disorders [15]. 
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Figure 3: Chronic diabetes complications [16]. 

2.3.3.1 Diabetic Retinopathy 

Diabetic retinopathy is a serious eye condition that can lead to vision loss and blindness among 

individuals with diabetes. It primarily affects the blood vessels in the retina, the light-sensitive 

tissue at the back of the eye responsible for detecting light and transmitting signals to the brain 

via the optic nerve. The underlying mechanism of diabetic retinopathy involves high blood sugar 

levels damaging the blood vessels in the retina. This damage results in poor blood flow, leading 

to blocked vessels that leak fluid or bleed. In response, the eye attempts to grow new blood 

vessels, but these are often abnormal and prone to leaking or bleeding, exacerbating the 

condition. 

In the early stages of diabetic retinopathy, individuals often do not experience any symptoms. 

Some may notice intermittent changes in their vision, such as difficulty reading or seeing distant 

objects, but these changes can fluctuate. As the disease progresses, the blood vessels in the 

retina begin to leak or bleed into the vitreous, the gel-like substance filling the eye. This bleeding 

can cause the appearance of dark, floating spots or cobweb-like streaks in one's vision. These 

spots may temporarily clear, but without timely treatment, scarring can occur, further damaging 

the retina and potentially leading to more severe bleeding. 

Diabetic retinopathy can lead to several other serious eye conditions. One such condition is 

diabetic macular edema (DME), which affects approximately 1 in 15 people with diabetes. DME 

occurs when blood vessels leak fluid into the macula, the part of the retina responsible for sharp 

central vision, causing blurry vision. Another complication is neovascular glaucoma, where 

abnormal blood vessels grow out of the retina and block the eye's drainage system, leading to 

increased eye pressure and potential vision loss. Additionally, retinal detachment can occur when 
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scar tissue caused by diabetic retinopathy pulls the retina away from the back of the eye, a 

condition known as tractional retinal detachment. 

Effective management of diabetic retinopathy focuses on controlling blood sugar levels to 

prevent or slow the progression of the disease. This includes regular physical activity, a healthy 

diet, and adherence to prescribed insulin or other diabetes medications. Early detection and 

timely treatment are crucial, as they can prevent significant vision loss and improve the quality 

of life for individuals with diabetes. Treatments for advanced stages may include laser therapy, 

vitrectomy, or injections to reduce swelling and inhibit the growth of abnormal blood vessels [15, 

17]. 

2.3.3.2 Diabetic Nephropathy 

Diabetic nephropathy, also known as diabetic kidney disease, is a serious complication of 

diabetes that affects the kidneys' ability to filter waste from the blood. This condition develops 

in approximately 30-50% of patients with diabetes, particularly those with Type 1 and Type 2 

Diabetes. The primary cause is the prolonged high blood glucose levels that damage the tiny 

blood vessels in the kidneys, impairing their filtering capability. 

Early symptoms of diabetic nephropathy are often subtle and include the presence of the protein 

albumin in the urine, known as albuminuria. As the condition progresses, patients may 

experience more pronounced symptoms such as edema in the legs and ankles, weight gain, 

increased frequency of urination, elevated blood pressure, fatigue, and nausea. If left untreated, 

diabetic nephropathy can lead to kidney failure, necessitating dialysis or a kidney transplant. The 

pathophysiology of diabetic nephropathy involves complex interactions between hemodynamic 

changes, metabolic dysregulation, and inflammatory processes.  

Controlling blood pressure and blood glucose levels is the main goal for controlling diabetic 

nephropathy in order to delay the disease's progression. Regular monitoring of kidney function 

through blood tests and urine analysis is crucial for early detection and management of diabetic 

nephropathy. Alongside pharmacological treatments, lifestyle modifications such as maintaining 

a healthy diet, regular physical activity, and avoiding smoking are essential to managing diabetic 

nephropathy [15, 18]. 

2.3.3.3 Diabetic Cardiovascular Disease 

Diabetic cardiovascular disease (CVD) represents a significant complication for individuals with 

diabetes, contributing to a high risk of mortality and morbidity. This condition encompasses a 

range of cardiovascular disorders, including coronary artery disease, heart failure, stroke, and 

peripheral arterial disease. The pathophysiology of diabetic CVD involves multiple interrelated 

processes. Chronic hyperglycemia leads to the formation of advanced glycation end-products 
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(AGEs), which damage the endothelium and promote oxidative stress. This endothelial damage 

impairs vasodilation and contributes to the development of atherosclerotic plaques. Additionally, 

diabetes-induced dyslipidemia (characterized by high levels of LDL cholesterol and low levels of 

HDL cholesterol) exacerbates plaque formation. Hypertension, common in diabetic patients, 

further strains the cardiovascular system by increasing arterial stiffness and promoting left 

ventricular hypertrophy. 

Diabetic CVD often manifests as chest pain, shortness of breath, fatigue, and in severe cases, 

heart attack or stroke. Peripheral arterial disease presents with symptoms such as leg pain during 

walking (claudication) and, in advanced stages, can lead to gangrene and amputation. Heart 

failure symptoms include persistent coughing or wheezing, swelling in the legs, ankles, and feet, 

and rapid or irregular heartbeat. 

Managing diabetic CVD involves a multifaceted approach focused on controlling blood glucose 

and blood pressure, as well as addressing lipid abnormalities. Pharmacological treatments 

include antihypertensive medications, cholesterol management drugs, and antiplatelet agents to 

prevent clot formation. Lifestyle modifications are equally crucial; these include adopting a 

healthy diet, engaging in regular physical activity and maintaining a healthy weight [15, 19]. 

2.3.3.4 Diabetic Neuropathy 

Diabetic neuropathy is a common complication of diabetes that affects the nerves due to chronic 

high blood sugar levels. It encompasses a range of nerve disorders that vary in severity and can 

significantly impact the quality of life for individuals with diabetes. The symptoms of diabetic 

neuropathy depend on the type and nerves affected. Peripheral neuropathy, the most common 

form, typically presents pain, tingling, or numbness in the extremities, especially the feet and 

legs. Autonomic neuropathy affects involuntary bodily functions, leading to issues such as 

digestive problems, urinary difficulties, and cardiovascular abnormalities. Proximal neuropathy 

causes pain in the thighs, hips, or buttocks and can lead to weakness in the legs. Lastly, focal 

neuropathy results in sudden weakness of one nerve or a group of nerves, causing muscle 

weakness or pain. 

The pathogenesis of diabetic neuropathy involves multiple factors. Chronic hyperglycemia leads 

to metabolic and vascular changes that damage nerves. High blood sugar causes AGEs to 

accumulate, oxidative stress, and inflammation, all contributing to nerve damage. Additionally, 

poor blood flow to nerves due to damaged blood vessels exacerbates this injury, impairing the 

nerves' ability to transmit signals. Diabetic neuropathy can lead to severe complications if not 

properly managed. Peripheral neuropathy increases the risk of foot ulcers and infections, 

potentially leading to amputations due to poor healing. Autonomic neuropathy can cause a range 

of issues, from gastrointestinal symptoms like gastroparesis to cardiovascular problems like 
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orthostatic hypotension, which can increase the risk of falls and fractures. Additionally, 

neuropathy-related pain can significantly impact sleep and daily activities, reducing overall 

quality of life. 

Managing diabetic neuropathy focuses on controlling blood sugar levels to prevent further nerve 

damage. This can be achieved through lifestyle modifications such as a healthy diet, regular 

exercise, and adherence to prescribed diabetes medications. Blood pressure and cholesterol 

management are also crucial, as hypertension and dyslipidemia can worsen neuropathy [15, 20]. 

2.4 Diabetes Diagnosis 

The appearance of symptoms or certain complications often leads to the diagnosis of diabetes 

mellitus in an individual. Nonetheless, confirming this diagnosis requires a diagnostic test. These 

clinical diagnostic assessments vary and should always be performed by a specialist. The primary 

tests used to diagnose diabetes in practice are outlined below. It is important to note that, in 

most cases, a definitive diagnosis requires the potential patient to undergo multiple tests, spaced 

a few days apart [21, 22]. 

2.4.1 Hemoglobin A1C (HbA1c) Test 

The HbA1c test measures the percentage of glycated hemoglobin in venous blood. Hemoglobin, 

found in red blood cells, is responsible for carrying oxygen to tissues, and when it bonds 

chemically with glucose, it forms glycated hemoglobin (HbA1c). The HbA1c level reflects average 

blood sugar levels over the past 120 days, thus it can be used to determine the average blood 

glucose level for the previous three months. An HbA1c level of 6.5% or higher indicates diabetes 

mellitus, while levels between 5.7% and 6.4% signify prediabetes, a condition that increases the 

risk of developing diabetes [21, 22]. 

2.4.2 Fasting Plasma Glucose (FPG) Test 

The FPG test measures blood glucose levels after an individual has fasted for at least 8 hours. This 

test is straightforward, cost-effective, and precise for diagnosing the metabolic imbalance linked 

to diabetes mellitus. Normal glucose levels are below 100 mg/dl, levels from 100 mg/dl to 125 

mg/dl indicate prediabetes, and levels above 126 mg/dl are diagnostic of diabetes mellitus [21, 

22]. 

2.4.3 Glucose Tolerance Test (GTT) 

This test measures plasma glucose levels before and after consuming a glucose solution, aiming 

to evaluate glucose tolerance in an individual. Like the FPG test, it requires an 8-hour fast prior 

to the assessment. According to the American Diabetes Association, postprandial plasma glucose 
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levels below 140mg/dl are considered normal, levels between 140mg/dl and 199mg/dl indicate 

prediabetes, and levels exceeding 200mg/dl suggest diabetes mellitus [21, 22]. 

2.5 Diabetes Management 

Managing diabetes mellitus is a multifaceted and continuous endeavor, demanding vigilant 

observation of the illness's advancement from both the patient and a healthcare professional. As 

mentioned earlier, the disease's progression is daily influenced by numerous factors, including 

the patient's lifestyle, dietary habits, medication adherence, psychological stress levels, 

comorbidities, and environmental factors. Nonetheless, consistent and informed diabetes 

management can uphold a decent quality of life and mitigate the emergence of acute and chronic 

complications [23, 24]. 

2.5.1 Blood Glucose Monitoring 

Regularly monitoring blood glucose levels is crucial for individuals with diabetes and is an 

essential aspect of their daily lives. This practice offers numerous advantages, including better 

control over meal timing and medication administration, as well as reducing the risk of severe 

blood sugar fluctuations. Analyzing blood glucose data over time provides valuable insights into 

disease progression and helps healthcare providers make informed decisions about necessary 

lifestyle adjustments.  

The traditional method of glucose monitoring involves obtaining a small blood sample, typically 

from the patient's fingers, multiple times throughout the day using specialized devices. 

Monitoring frequency varies depending on diabetes type, individual factors, and treatment 

regimen. For instance, those with Type 1 Diabetes may need to check their levels 4-10 times daily, 

emphasizing the importance of measurements before meals and bedtime. Normal blood glucose 

levels for someone with diabetes are typically below 180mg/dl after meals and within the range 

of 80mg/dl – 130mg/dl during fasting periods [25]. 

Recent advancements have introduced Continuous Glucose Monitoring (CGM) devices, which 

automatically record glucose levels, enhancing the quality of glycemic control, as supported by 

recent research. These devices utilize sensors typically attached to the arm or abdomen, 

measuring glucose levels in the interstitial fluid between cells every few minutes. Although these 

readings may differ slightly from traditional blood glucose measurements, they accurately 

represent blood glucose levels and their fluctuations. These sensors usually require replacement 

every few days, are largely waterproof, and often do not need calibration. The effectiveness of 

these CGM devices is primarily assessed using the Mean Absolute Relative Difference (MARD) 

metric, with devices showing MARD values close to 10% considered reliable and suitable for 

practical use. 
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One significant benefit of CGM technologies is their capacity to continuously track users' glucose 

levels overnight, a capability lacking in traditional monitoring methods. Moreover, many sensors 

offer audible alerts to patients in case their glucose levels surpass preset high or low thresholds. 

Users can customize these thresholds based on guidance from their healthcare provider, 

enhancing the individualization of their treatment approach. Additionally, storing measurements 

over time enables data analysis to derive valuable insights and facilitates the development of 

prediction systems, similar to the one under investigation in this study [26]. 

CGM sensors are classified into two main categories: rtCGM (real-time CGM) and isCGM 

(intermittently scanned CGM) based on whether the recorded values are shown in real-time on 

the device or only upon user request, possibly on a mobile phone. Examples of rtCGM models 

include Dexcom G6, Dexcom G5, Medtrum Touch Care Nano, and Medtronic Guardian 3/4 

sensors, while FreeStyle Libre and FreeStyle Libre 2 models exemplify isCGM devices. Unlike 

rtCGM models, isCGM devices do not display real-time data unless the user scans the sensor, 

usually using a mobile phone [27]. 

2.5.2 Insulin and Antidiabetic Drugs 

Administering insulin externally is vital for managing diabetes mellitus. For Type 1 Diabetes, 

external insulin is essential from the start, due to the complete absence of insulin. For Type 2 

Diabetes, initial treatment usually involves oral antidiabetic drugs, with insulin being introduced 

only when these drugs no longer suffice and the body’s insulin production decreases. One way 

to administer insulin is through Multiple Daily Injection (MDI) therapy, which involves injecting 

insulin into the abdomen, legs, or arms several times daily using a syringe or an insulin pen. The 

pen's needles are very small, making injections almost painless. The specific treatment plan is 

tailored by a doctor according to the type of diabetes and the patient's daily routine. Typically, 

long-acting insulin is taken before sleeping, and rapid-acting insulin is taken before each 

meal.[28] 

Alternatively, an insulin pump can be used for diabetes management. This device provides a 

continuous and gradual supply of rapid-acting insulin in small doses throughout the day, 

mimicking the function of a healthy pancreas. The user can program the basal rate of insulin 

delivery. The insulin pump system includes a small subcutaneous catheter connected to the 

pump via a tube, or in the case of "patch pumps," the catheter and insulin reservoir are attached 

directly to the skin without tubing, programmed wirelessly via a remote device. 

For managing meals or high glucose levels, insulin pumps allow for additional doses, known as 

insulin boluses. These pumps can calculate the necessary dose based on current glucose levels, 

the amount of carbohydrates to be consumed, and the insulin already present in the body from 

previous doses. The patient can then use this calculated dose or adjust it as needed. When paired 
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with a CGM device, some pumps can automatically stop insulin delivery to prevent hypoglycemia. 

Advanced systems aim to automate insulin delivery based on rtCGM data, aspiring to create an 

“artificial pancreas” [28, 29]. 

2.5.3 Nutrition and Exercise 

Proper diet and physical activity are essential for managing diabetes. A well-planned diet helps 

in adjusting medication effectively to maintain optimal blood sugar levels after meals, thereby 

improving overall glycemic control. Modern guidelines suggest that people with diabetes can 

enjoy a variety of foods as part of a healthy diet, which is also recommended for everyone. The 

American Diabetes Association advises that people with diabetes should eat fruits and vegetables 

daily, consume legumes and cereals regularly, and include fish in their diet weekly. Red meat 

should be limited to once a week. It's also crucial to avoid simple carbohydrates like sugar, white 

bread, and pasta, and instead, consume high-fiber carbohydrates. These foods slow digestion 

and help maintain a sense of fullness. For precise insulin or antidiabetic medication dosing, 

patients are often required to count the carbohydrate content of their meals beforehand [30]. 

Engaging in physical activity is highly beneficial for managing diabetes. Weight loss is particularly 

effective for overweight or obese individuals with diabetes, aiding in better disease management 

and even prevention in Type 2 Diabetes. Along with a balanced diet, it is recommended that 

people perform moderate to intense aerobic exercise for at least 30 minutes daily, either 

continuously or in intervals, at least five days a week. Those with diabetes should minimize 

sedentary habits and take regular breaks if prolonged sitting is necessary for work. Exercise 

should be approached carefully, especially for those with Type 1 Diabetes, and avoided if blood 

glucose levels are too high or too low. Planned exercise requires reducing the insulin dose 

beforehand, and consuming carbohydrates during extended exercise sessions is advisable [31]. 
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3. Artificial Neural Networks 

3.1 Emulating Brain Function for Machine Learning 

The brain's functioning has inspired the creation of artificial neural networks (ANNs), a vital part 

of machine learning. ANNs are made up of small computational units called artificial neurons. 

Essentially, ANNs are designed to replicate how the brain performs tasks. They operate as 

distributed systems with high parallelism, capable of storing and using knowledge gained 

empirically. ANNs emulate the brain by learning from the environment, storing knowledge in 

weights that define connections between neurons (synaptic weights). Training an ANN involves 

adjusting these weights until they achieve the desired outcomes, using specific algorithms. 

ANNs derive their computational power from their parallel and distributed operations, and their 

ability to generalize allows them to provide reasonable solutions to problems they haven't 

encountered before. They are used extensively in diverse applications such as facial recognition, 

predicting data like stock prices or weather, filtering spam emails, aiding medical decisions, 

detecting fake news on social media, and automating drug discovery. ANNs are integral in fields 

like computer vision, natural language processing, and speech recognition, highlighting their 

effectiveness and broad integration into everyday life [32]. 

3.2 Perceptron 

3.2.1 Origin and Function 

The perceptron, pivotal in the historical evolution of neural networks, marked the first 

algorithmically defined model. Invented by psychologist Rosenblatt, its introduction spurred 

interdisciplinary research across engineering, physics, and mathematics throughout the 1960s 

and 1970s. Functionally, the perceptron serves as a basic neural network for classifying linearly 

separable patterns, employing a single neuron with adjustable synaptic weights and bias. 

Rosenblatt's algorithm for adjusting these parameters demonstrated the perceptron's ability to 

converge when training patterns are linearly separable, positioning a hyperplane decision surface 

between classes. This convergence proof, known as the perceptron convergence theorem, 

validated its utility. Initially limited to binary classification, expanding the perceptron's output 

layer allows for multiclass classification by incorporating additional neurons [33]. 
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3.2.2 Fundamentals of the Perceptron 

The perceptron serves as the central building block of an ANNs, laying the foundation for the 

development of more sophisticated and expansive systems that are explored thereafter. Below 

is the model that outlines the structure of a perceptron: 

 

Figure 4: Model of a Perceptron [33]. 

The perceptron described above is characterized by 𝑚 connections (or synapses), each 

associated with a specific weight 𝑤𝑖. Every input signal undergoes multiplication by its respective 

weight 𝑤𝑖, and these weighted inputs are subsequently summed to produce the value 𝜐: 

 
𝜐 =∑𝑤𝑖 ∙ 𝑥𝑖

𝑚

𝑖=1

 (1) 

 

Additionally, the model incorporates an externally adjustable variable known as bias 𝑏, which 

adjusts the output 𝜐, to increase or decrease based on whether it is positive or negative. Lastly, 

the activation function 𝜑(∙) restricts the perceptron’s output, thereby determining the final 

result: 

 𝑦 = 𝜑(𝜐 + 𝑏) (2) 

 

The ANNs composed of a single perceptron are called Perceptrons. Perceptrons are capable of 

classifying patterns that can be separated by a straight line into two categories. In binary 

classification, if the sum 𝜐 = ∑ 𝑤𝑖 ∙ 𝑥𝑖
𝑚
𝑖=1  is positive, the perceptron output is +1, if negative, it 

outputs -1. Therefore, based on whether the perceptron outputs +1 or -1, the point defined by 

inputs 𝑥1, 𝑥2, … , 𝑥𝑚 is classified into class 𝐶1 or 𝐶2, respectively. 
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The synaptic weights 𝑤1, 𝑤2, … , 𝑤𝑚 are adjusted iteratively until they satisfy the condition         

𝑤𝑇 ∙ 𝑥 > 0 or all input vectors 𝑥 belonging to class 𝐶1, and 𝑤𝑇 ∙ 𝑥 < 0 for all input vectors 𝑥 

belonging to class 𝐶2. The weights are updated according to the following rule: 

 𝑤(𝑛 + 1) = 𝑤(𝑛) + 𝜂 ∙ (𝑑(𝑛) − 𝑦(𝑛)) ∙ 𝑥(𝑛) (3) 

 

Here, 𝑛 represents the current iteration number, 𝜂 (where 𝜂 ∈ (0, 1)) denotes the learning 

rate, 𝑦(𝑛) = 𝜑(𝑤𝑇(𝑛) ∙ 𝑥(𝑛)) indicates the perceptron’s output for the iteration 𝑛, and 𝑑(𝑛) 

represents the desired output, specifically: 

 
𝑑(𝑛) = {

+1, 𝑥(𝑛) ∈ 𝐶1
−1, 𝑥(𝑛) ∈ 𝐶2

 (4) 

 

It has been demonstrated that when classes 𝐶1 and 𝐶2 are linearly separable by a hyperplane, 

the described process converges. This convergence enables the computation of the sought-after 

vector 𝑤 after a finite number of iterations. [33] 

The next section proceeds to outline several frequently utilized types of activation functions. The 

activation function 𝜑(∙) plays a critical role in determining the neuron's ultimate output. 

3.2.3 Activation Functions 

3.2.3.1 Threshold Function 

The threshold function (also known as binary step function)  is the most basic type of activation 

function. According to this function, if the input is negative, the neuron does not activate and 

outputs zero [33, 34]. 

 𝜑(𝜐) = {
1, 𝜐 ≥ 0
0, 𝜐 < 0

 (5) 

 

3.2.3.2 Linear Function 

When the linear function is used as an activation function, a neuron's output varies directly with 

its input. However, similar to the threshold function, the linear function is not commonly 

employed because of its straightforward nature [33, 34]. 

 𝜑(𝜐) = 𝜐 (6) 
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3.2.3.3 Sigmoid Function 

The sigmoid function is widely used as an activation function because of its non-linear nature and 

ability to be differentiated. It outputs values within the range of (0, 1), and its curve resembles 

the shape of the Latin letter S [33, 34]. 

 
𝜑(𝜐) =

1

1 + 𝑒−𝜐
 (7) 

 

3.2.3.4 Hyperbolic Tangent (tanh) Function 

The tanh function is both continuous and differentiable, producing outputs that span from -1 to 

1. Its symmetric properties around the origin often make it a preferred choice compared to the 

sigmoid function [33, 34]. 

 
𝜑(𝜐) = 𝑡𝑎ℎ𝑛(𝜐) =

2

1 + 𝑒−2𝜐
− 1 (8) 

 

3.2.3.5 Rectified Linear Unit (ReLU) function 

Using the ReLU function, a neuron becomes active only when its input is positive, leading to a 

linear output. One of the major benefits of ReLU is its ability to activate neurons in an artificial 

neural network asynchronously. It's important to highlight that a refined version of ReLU, known 

as Leaky ReLU, sets a value of 0.01𝜐 for 𝜐 ≤ 0 and 𝜐 for 𝜐 > 0. This adjustment effectively 

prevents the issue of too many neurons becoming inactive [33, 34]. 

 𝜑(𝜐) = max⁡(0, 𝜐) (9) 

 

3.2.3.6 Softmax Function 

The softmax activation function is formed by integrating several sigmoid functions and is ideal 

for multi-class classification tasks. It is often used as the last activation function of a neural 

network to normalize the output of a network to a probability distribution over predicted output 

class. Considering that each sigmoid function's output falls within the range (0, 1), it represents 

the probability that the input belongs to its associated category [33, 34]. 

 
𝜑(𝜐)𝑖 =

𝑒𝜐𝑖

∑ 𝑒𝜐𝑘𝑘
𝑘=1

 (10) 

 

Here, 𝑘 represents the total number of classes to classify, and 𝑖 ranges inclusively from 1 to 𝑘. 
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3.3 Multilayer Perceptrons  

To solve more complex issues, particularly those involving the classification of non-linearly 

separable classes, layers of perceptrons, known as Multilayer Perceptrons (MLPs), are used. 

These models feature intermediate (hidden) layers of neurons, which are not directly visible from 

the network's input and output. Typically, each neuron in a layer receives inputs from the outputs 

of neurons in the previous layer, and its output serves as the input for neurons in the next layer. 

Because of this structure, MLPs are termed fully connected neural networks. As information 

travels from input to output, these networks are also referred to as feedforward networks. 

Additionally, MLPs employ non-linear activation functions to represent both linear and non-linear 

relationships between inputs and outputs. It has been demonstrated that a simple multilayer 

feedforward network can approximate any mathematical function to the desired accuracy if it 

has a sufficient number of hidden layers [33, 35]. 

 

Figure 5: Fully connected feedforward neural network (MLP)  with two hidden layers [33]. 

The distributed non-linearity and high connectivity of MLPs make training them significantly 

more complex than training simple perceptrons. The most frequently used training method for 

these networks is the backpropagation algorithm. This algorithm involves two phases: the 

forward phase and the backward phase. In the forward phase, the synaptic weights are kept 

constant while information flows through the layers from the input to the output. The network's 

output is determined by the activation function and the initial input. In the backward phase, an 

error signal, defined as the difference between the calculated output and the actual output, is 

propagated back through the network from the output to the input. During this phase, the 

weights are adjusted layer by layer to minimize this error. Training with the backpropagation 

algorithm requires knowing the desired output 𝑑(𝑛) for each input 𝑥(𝑛) beforehand. Specifically, 

the aim is to calculate the values 𝛥𝑤𝑗𝑖(𝑛), which are proportional to the partial derivatives 
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𝜕𝐸(𝑛)/𝜕𝑤𝑖𝑗(𝑛), for each input 𝑥(𝑛). These derivatives show the necessary adjustments to the 

synaptic weights 𝑤𝑖𝑗(𝑛) to minimize 𝐸(𝑛), the total error of the network [33, 35]. 

We define: 

 
𝐸(𝑛) =

1

2
∑𝑒𝑗

2(𝑛)

𝑗∈𝐶

 (11) 

 

where 𝑒𝑗(𝑛) = 𝑑𝑗(𝑛) − 𝑦𝑖(𝑛) represents the error signal for neuron 𝑗, and 𝐶 denotes the set 

containing all the neurons in the output layer. To calculate each quantity 𝜕𝐸(𝑛)/𝜕𝑤𝑖𝑗(𝑛), the 

chain rule can be used: 

 𝜕𝐸(𝑛)

𝜕𝑤𝑖𝑗(𝑛)
=
𝜕𝐸(𝑛)

𝜕𝑒𝑗(𝑛)
∙
𝜕𝑒𝑗(𝑛)

𝜕𝑦𝑗(𝑛)
∙
𝜕𝑦𝑗(𝑛)

𝜕𝜐𝑗(𝑛)
∙
𝜕𝜐𝑗(𝑛)

𝜕𝑤𝑖𝑗(𝑛)
 (12) 

 

Considering that 𝜐𝑗(𝑛) = ∑ 𝑤𝑖𝑗(𝑛) ∙ 𝑥𝑖(𝑛)
𝑚
𝑖=0  and 𝑦𝑗(𝑛) = 𝜑𝑗(𝜐𝑗(𝑛)), and since the activation 

function 𝜑(∙) is differentiable, we derive the following relationship: 

 𝜕𝐸(𝑛)

𝜕𝑤𝑖𝑗(𝑛)
= −𝑒𝑗(𝑛) ∙ 𝜑𝑗(𝜐𝑗(𝑛)) ∙ 𝑦𝑗(𝑛) (13) 

 

The adjustment 𝛥𝑤𝑗𝑖(𝑛) made to the weight 𝑤𝑗𝑖(𝑛) is governed by the delta rule: 

 
𝛥𝑤𝑖𝑗(𝑛) = −𝜂 ∙

𝜕𝐸(𝑛)

𝜕𝑤𝑖𝑗(𝑛)
 (14) 

 

where 𝜂 represents the learning rate in the backpropagation algorithm. The negative sign in the 

above equation is due to the need to adjust the synaptic weight in a way that decreases 𝐸(𝑛), as 

per the gradient descent method. Therefore, we obtain: 

 𝛥𝑤𝑖𝑗(𝑛) = 𝜂 ∙ 𝛿𝑗(𝑛) ∙ 𝑦𝑗(𝑛) (15) 

 

where 𝛿𝑗(𝑛) = −𝑒𝑗 ∙ 𝜑
′
𝑗(𝜐𝑗(𝑛)). 

Thus, the remaining task is to compute 𝑒𝑗(𝑛), and we need to consider different cases. In the 

simplest scenario, where 𝑗 is an output layer neuron, the value of 𝑒𝑗(𝑛) is known and given by 

𝑒𝑗(𝑛) = 𝑑𝑗(𝑛) − 𝑦𝑖(𝑛)). However, in the more complex scenario where 𝑗 is a hidden layer 

neuron, the following recursive relationship is valid: 

 𝛿𝑗(𝑛) = 𝜑′
𝑗(𝜐𝑗(𝑛)) ∙∑ 𝛿𝑘(𝑛) ∙ 𝑤𝑘𝑗(𝑛)⁡

𝑘∈𝐶

 (16) 
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where 𝐶 represents the set of neurons in the next layer that are connected to the hidden neuron 

𝑗 [33]. 

3.4 Recurrent Neural Networks 

Recurrent Neural Networks (RNNs) are a class of artificial neural networks designed for 

processing sequential data by maintaining a hidden state that captures information from 

previous inputs. Unlike traditional feedforward networks, RNNs have connections that form 

directed cycles, allowing them to process data sequences where context and order are crucial, 

such as in language modeling, speech recognition, and time series prediction. The core of an RNN 

involves recursively feeding back the outputs from previous time steps as inputs for the current 

time step, using a hidden state that evolves over time based on new input data. This recurrent 

structure enables RNNs to capture temporal dependencies, making them particularly effective 

for sequence learning tasks. 

RNNs have found success in various applications due to their ability to model sequential data 

effectively. In natural language processing (NLP), RNNs are used for tasks such as language 

modeling, machine translation, and text generation. In speech recognition, RNNs transcribe 

spoken language into text, leveraging their ability to handle variable-length inputs and maintain 

temporal context. They are also used in time series prediction in financial markets and weather 

forecasting, where their recurrent structure allows them to learn and extrapolate patterns over 

time. 

 

Figure 6: A RNN with one input unit, one recurrent hidden unit and one output unit [36]. 

The fundamental structure of an RNN consists of an input layer, a hidden layer, and an output 

layer. At each time step 𝑡, t, the hidden state ℎ𝑡 is updated based on the current input 𝑥𝑡 and the 

previous hidden state ℎ𝑡−1. This process can be mathematically described by the equation: 

 ℎ𝑡 = 𝑓(𝑊ℎℎ ∙ ℎ𝑡−1 +𝑊𝑥ℎ ∙ 𝑥𝑡 + 𝑏ℎ) (17) 
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where 𝑊ℎℎ and 𝑊𝑥ℎ are weight matrices, 𝑏ℎ is a bias vector, and 𝑓 is a non-linear activation 

function, typically a tanh or ReLU. The hidden state then influences the output 𝑦𝑡, which is 

computed as: 

 𝑦𝑡 = 𝑔(𝑊ℎ𝑦 ∙ ℎ𝑡 + 𝑏𝑦) (18) 

 

where 𝑊ℎ𝑦 is the output weight matrix and 𝑏𝑦 is the output bias vector and 𝑔 is often a softmax 

function for classification tasks. 

 

Figure 7: Unraveled form of a RNN [36]. 

However, training RNNs can be challenging due to issues such as vanishing and exploding 

gradients, which occur during the backpropagation through time process. These problems can 

hinder the network's ability to learn long-range dependencies, limiting its effectiveness on longer 

sequences. To address these issues, more advanced variants of RNNs have been developed, such 

as Long Short-Term Memory networks and Gated Recurrent Units [36]. 

3.4.1 Long – Short Term Memory Networks 

In 1997, Long Short-Term Memory (LSTM) networks were introduced to handle long-term 

dependencies and the vanishing gradients problem. While LSTMs retain the chain structure 

typical of all recurrent neural networks, they offer a more intricate method of building the 

recurrent units (cells) that form this chain [37]. 
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Figure 8: The architecture of a LSTM unit [38]. 

A core aspect of LSTM networks is the cell state, denoted as 𝐶𝑡 for a given cell 𝑡. The cell state 

enables the preservation and direct transfer of past information, requiring only minimal linear 

adjustments. 

 

Figure 9: The cell state of a LSTM unit [38]. 

The 𝐶𝑡 in an LSTM network is influenced by the gates 𝑓𝑡 (forget gate), 𝑖𝑡 (input gate), and 𝑜𝑡 

(output gate). The initial step in an LSTM involves determining which information will be 

discarded from the cell state. This decision is facilitated by a sigmoid layer known as the "forget 

gate layer" (𝑓𝑡). This layer examines ℎ𝑡−1   and 𝑥𝑡, and produces an output ranging between 0 

and 1 for each number in the previous cell state 𝐶𝑡−1 [38]. 

 

Figure 10: The forget gate layer of a LSTM unit [38]. 

 

 𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (19) 

 

where 𝜎 is the sigmoid function, 𝑊𝑓 is a weight matrix and 𝑏𝑓 is a bias vector. 
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The subsequent step involves deciding what new information will be stored in the cell state. This 

process comprises two parts. Initially, a sigmoid layer termed the "input gate layer" (𝑖𝑡) 

determines which values will be updated. Following this, a tanh layer generates a vector of new 

candidate values, 𝐶̃𝑡, that could potentially be added to the state. In the next step, these two 

elements will be combined to produce an update to the cell state [38]. 

 

Figure 11: The input gate layer of a LSTM unit [38]. 

 

 𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) 

 
(20) 

 𝐶̃𝑡 = tanh⁡(𝑊𝐶 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (21) 

 

where 𝜎 is the sigmoid function, 𝑊𝑖 and 𝑊𝐶  are weight matrices and 𝑏𝑖 and 𝑏𝑐 are bias vectors. 

Next, the task is to update the old cell state 𝐶𝑡−1 to the new cell state 𝐶𝑡. The old state is 

multiplied by 𝑓𝑡, thereby forgetting the information that was previously determined to be 

unnecessary. Subsequently, 𝑖𝑡 ∙ 𝐶̃𝑡  is added. This represents the new candidate values, scaled 

according to the extent to which each state value is updated [38]. 

 

Figure 12: Update of the cell state in a LSTM unit [38]. 

 𝐶𝑡 = 𝑓𝑡 ∙ 𝐶𝑡−1 + 𝑖𝑡 ∙ 𝐶̃𝑡 (22) 

 

Finally, the output needs to be determined. This output will be based on the cell state but will 

represent a filtered version. Initially, a sigmoid layer is used to decide which parts of the cell state 

will be output. Then, the cell state is passed through a tanh function (to constrain the values 
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between -1 and 1) and multiplied by the output of the sigmoid gate, ensuring that only the 

selected parts are output [38]. 

 

Figure 13: The output gate of a LSTM unit [38]. 

 𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜 

 
(23) 

 ℎ𝑡 = 𝑜𝑡 ∙ tanh⁡(𝐶𝑡) (24) 

 

where 𝑊𝑜 is a weight matrix and 𝑏𝑜 is a bias vector. 

3.5 Machine Learning Types 

Generally, the learning processes of neural networks can be categorized into two main types: 

learning with a teacher (supervised learning) and learning without a teacher. Learning without a 

teacher can be further divided into unsupervised learning and reinforcement learning [33]. 

 

Figure 14: A visual representation of machine learning types [39]. 

3.5.1 Supervised learning 

Supervised learning involves training a model with labeled data. This form of learning is 

analogous to a teacher-student dynamic, where the teacher (the training data) provides the 

correct answers, and the student (the machine learning model) learns from these examples to 

make accurate predictions or decisions. In supervised learning, we start with a set of input-output 

pairs, known as the training set. Each pair consists of an input vector and the corresponding 
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desired output. The learning process involves adjusting the model's parameters so that its 

predictions closely match the desired outputs for the training examples. This adjustment is driven 

by an error signal, which quantifies the difference between the predicted and actual outputs. The 

model iteratively updates its parameters to minimize this error, gradually improving its 

performance [33, 39]. 

 

Figure 15: A visual representation of supervised learning [39]. 

The error-correction mechanism is at the heart of supervised learning. It works by iteratively 

adjusting the model parameters based on the error signal until the model's output aligns closely 

with the desired output. This process can be visualized as navigating an error surface, where the 

goal is to find the point of minimum error. Techniques such as gradient descent are commonly 

used to navigate this error surface efficiently, ensuring the model converges to an optimal or 

near-optimal solution. 

Supervised learning is frequently applied in classification tasks, where new data inputs are 

assigned to predefined, distinct categories based on patterns learned by the model during 

training. Classification can be binary, with two possible output classes, or multi-class, with inputs 

categorized into one of several classes. In scenarios where inputs can belong to multiple 

categories, it is known as multi-label classification. Common classifiers used in these tasks include 

ANNs, decision trees, Support Vector Machines (SVMs), as well as algorithms like Naïve Bayes 

and k-Nearest Neighbors (k-NN). 

In cases where the network's desired output is a continuous numerical value, regression, a 

statistical method, is frequently used for prediction. This approach aims to understand the 

relationship between multiple independent variables and dependent variables. In machine 

learning, the independent variables are the input data features, and they influence the network's 

final output, which acts as the dependent variable [33, 39]. 
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The effectiveness of supervised learning hinges on the quality and quantity of the labeled training 

data. Additionally, the model's performance can be impacted by the presence of noise in the data 

or the complexity of the underlying patterns. Overfitting, where the model learns the training 

data too well but fails to generalize to new data, is a common challenge that must be addressed 

through techniques like cross-validation and regularization. 

Supervised learning has a wide range of applications across various domains. In healthcare, it can 

be used to predict patient outcomes based on medical history and diagnostic data. In finance, it 

can help detect fraudulent transactions. In marketing, it can improve customer segmentation and 

targeted advertising. The versatility and effectiveness of supervised learning make it a 

cornerstone of modern machine learning practices [33]. 

3.5.2 Unsupervised Learning 

Unsupervised learning is a type of machine learning that operates without the supervision of a 

teacher. In this learning paradigm, the system is not provided with labeled inputs and 

corresponding outputs. Instead, it must find structure and patterns from the input data on its 

own. This form of learning is particularly useful for discovering hidden patterns or intrinsic 

structures within the data, making it valuable for tasks such as clustering, association, and 

dimensionality reduction. Unsupervised learning can be understood from two perspectives: 

bottom-up and top-down approaches. 

The bottom-up approach is inspired by principles of self-organization such as self-amplification, 

competition, and cooperation. These principles help in forming a model of the learning process 

where local interactions among elements lead to the emergence of global patterns. Examples of 

unsupervised neural networks employing this approach include Hebbian learning algorithms, 

where the learning rule adjusts the weights based on the correlation of inputs. 

In contrast, the top-down view involves tuning the adjustable parameters of the model 

analytically. Given a set of unlabeled examples, the aim is to minimize a cost function subject to 

constraints imposed on the learning process. This view leverages analytical tools from statistical 

learning theory. A prominent example of this approach is the kernel Principal Component 

Analysis (PCA), which is used for extracting higher-order statistics from the input data [33, 39]. 

Unsupervised learning is extensively applied in several areas, including clustering, association, 

and dimensionality reduction. Clustering involves grouping similar data points, which is crucial 

for tasks such as customer segmentation, image compression, and bioinformatics. Association 

involves finding significant relationships between variables in large datasets, often used in 

market basket analysis. Dimensionality reduction reduces the number of random variables, 

aiding in model simplification and data visualization. Techniques like PCA are used to convert 
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high-dimensional data into a lower-dimensional format while retaining as much information as 

possible [33]. 

 

Figure 16: A visual representation of unsupervised learning [39]. 

3.5.3 Reinforcement Learning 

Reinforcement learning is a type of machine learning distinct from supervised and unsupervised 

learning, focused on how agents should take actions in an environment to maximize some notion 

of cumulative reward. This method of learning is particularly useful in situations where making 

decisions is a continuous process, and the agent must learn from the outcomes of its actions 

without the benefit of a teacher providing explicit feedback at every step. 

In reinforcement learning, an agent interacts with its environment through a series of actions 

and observations. Each action taken by the agent can lead to different states in the environment, 

which in turn provide feedback in the form of rewards or penalties. The goal of the agent is to 

learn a policy that maximizes the cumulative reward over time [33, 39]. 

Reinforcement learning has wide applications, including robotics, game playing, and autonomous 

systems, where it enables agents to learn complex behaviors through trial and error, adapting to 

dynamic environments and improving their performance over time. This method of learning is 

appealing because it allows systems to develop behaviors that are not explicitly programmed but 

rather learned through interaction with their environment, mirroring the way humans learn from 

experience and adjust their actions to achieve desired outcomes [33]. 
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Figure 17: A visual representation of reinforcement learning [39]. 

3.6 Development of ANNs for Supervised Learning tasks 

This study uses supervised learning for classification, and the following sections detail common 

techniques for training and evaluating machine learning models with labeled data. 

3.6.1 Data Preprocessing 

Collecting and preprocessing training data is crucial in machine learning applications. The amount 

and quality of available data heavily influences the final results, so considerable effort is 

dedicated to extracting and refining them. Preprocessing typically involves tasks like cleaning 

data (dealing with invalid entries), normalization, reducing features (through extraction or 

selection), and creating new features based on existing ones. This stage is essential for optimizing 

the data before feeding it into machine learning models to ensure accurate and efficient learning 

and prediction. 

3.6.1.1 Missing Data Handling 

Handling missing data is a critical component of data preprocessing. Missing data can arise from 

a variety of sources, such as errors in data entry, equipment malfunctions, or non-responses in 

surveys. The presence of missing data can significantly distort the results of analyses, leading to 

biased estimates and incorrect conclusions. Therefore, it is essential to employ effective 

strategies for handling and imputing missing data to ensure the integrity of the dataset and the 

validity of the analyses performed. 

Deletion methods are one of the simplest ways to handle missing data. Listwise deletion removes 

entire records that contain any missing values, which can be effective when the amount of 

missing data is small. However, this method can lead to significant information loss and potential 

bias if the missing data is not randomly distributed. Pairwise deletion, on the other hand, only 
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uses available data for each specific analysis, thereby retaining more data but complicating the 

analysis process. 

Imputation methods involve filling in missing values with substituted ones. Simple imputation 

techniques include replacing missing values with the mean, median, or mode of the observed 

data. While these methods are easy to implement, they can reduce data variability and introduce 

bias, particularly if the data distribution is skewed. More sophisticated imputation techniques, 

such as hot deck imputation, replace missing values with values from similar records within the 

dataset, maintaining data variability and relationships [40]. 

Regression imputation utilizes regression models to predict and fill in missing values based on 

other observed data. This method leverages the relationships between variables to provide more 

accurate imputations but assumes that these relationships are correctly specified. Another 

effective method is the K-Nearest Neighbors (KNN) imputation, which identifies 'k' similar 

instances (neighbors) and uses their values to impute the missing ones. This technique can handle 

complex relationships within the data but can be computationally intensive for large datasets. 

Additionally, machine learning models such as decision trees or random forests can predict 

missing values by learning from the observed data, capturing complex patterns but requiring 

significant computational resources and expertise [41]. 

3.6.1.2 Data Normalization 

Normalization is widely adopted in applications involving ANNs due to its proven ability to 

improve performance and speed up training. By constraining input data to a predefined range, 

normalization reduces the impact of random outliers—values that don't represent typical data 

points in the training set and might result from measurement errors. This approach ensures that 

outlier values have minimal influence on the final outcomes. Moreover, normalization is crucial 

when input features vary widely in scale. By transforming these features, normalization ensures 

that all features contribute equally during the weight adjustment process from the start of 

training, preventing larger numerical values from overshadowing smaller ones. 

Normalization techniques vary in their approach, but two widely used methods are Z-score 

normalization and Min-Max normalization. These methods are crucial for preparing data in 

machine learning, ensuring consistency and reducing the impact of varying scales across different 

features, thus optimizing model training and performance.  

Z-score normalization adjusts data based on the mean and standard deviation of each feature, 

ensuring that values are standardized relative to the feature's distribution: 

 𝑥𝑖,𝑛
′ =

𝑥𝑖,𝑛 − 𝜇𝑖
𝜎𝑖

 (25) 
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where 𝜎𝑖  and 𝜇𝑖 represent the average and standard deviation for the 𝑖 input characteristic, 

respectively. Additionally, 𝑥𝑖,𝑛 and 𝑥𝑖,𝑛
′  denote the initial and the final values of the 𝑛 entry of the 

𝑖 feauture. 

On the other hand, Min-Max normalization scales data to a specified range, usually [0, +1] or [-1, 

+1], by mapping the original values between the minimum and maximum observed within each 

feature: 

 
𝑥𝑖,𝑛
′ =

𝑥𝑖,𝑛 −min(𝑥𝑖)

max(𝑥𝑖) − min(𝑥𝑖)
∙ (𝑛𝑀𝑎𝑥 − 𝑛𝑀𝑖𝑛) + 𝑛𝑀𝑖𝑛 (26) 

 

here, min(𝑥𝑖) and max(𝑥𝑖) indicate the smallest and largest values of the 𝑖 feature. 𝑛𝑀𝑖𝑛 and 

𝑛𝑀𝑎𝑥 refer to the lower and upper limits of the range that all the data will fall within after the 

normalization [42]. 

3.6.2 Training of the Model 

The simplest training method involves splitting the available dataset into two distinct parts: the 

training set and the test set. This approach is known as the hold-out method. Only the training 

set is used to adjust the model's weights, while the test set (typically 20%-30% of the total 

dataset) is reserved for model evaluation based on selected metrics after training. This technique 

is popular due to its computational ease and relatively reliable results, especially with large 

datasets. However, with smaller datasets, it's often preferable to use all the data for training to 

ensure the model accounts for all possible scenarios. A downside of the hold-out method is its 

heavy dependence on how the data is split, which can impact reliability. 

 

Figure 18: k-fold cross-validation for k = 10 [43]. 
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To overcome these limitations, a widely-used alternative is cross-validation, specifically k-fold 

cross-validation (k-fold CV). This technique divides the data into k equal (or nearly equal) parts, 

or folds, and applies the hold-out method k times. Each time, a different fold is used as the test 

set, while the remaining k-1 folds form the training set. The model's error is averaged over the k 

iterations. This method trains and evaluates the model on k different sets, reducing the chance 

of performance variations due to data splitting. Additionally, it utilizes the entire dataset for 

weight adjustment, which is crucial for small datasets. However, k-fold CV requires more 

computational effort due to the increased number of repetitions [41]. 

Leave-one-out cross-validation  is an extreme form of k-fold cross-validation where k equals the 

total number of samples (N). In leave-one-out cross-validation, the model is trained N times, each 

time with a training set of size N – 1 and evaluated on a single sample. The main advantage of 

this type of CV is its nearly complete use of the original dataset each time, though it requires 

significant time and computational resources. Another important variant is stratified k-fold cross-

validation, which ensures that each subset accurately represents the original dataset by 

reorganizing data to match class distributions before splitting into k folds. This method is 

especially beneficial for datasets with imbalanced class distributions [44]. 

3.6.3 Evaluation of the Model 

Once an ANN has completed training, evaluating its performance using specific metrics becomes 

essential. The choice of metrics depends on whether the application is focused on classification 

or regression tasks. For the scenario involving binary classification, where one category is 

designated as positive and the other as negative, key terms such as true positive (TP), true 

negative (TN), false positive (FP), and false negative (FN) are utilized. 

TP indicates instances where the model correctly predicts a positive outcome, aligning with the 

actual positive values in the dataset, thereby ensuring accurate classification. TN describes 

instances where the model correctly predicts a negative outcome, aligning with the actual 

negative values, thus also ensuring accurate classification. FP occurs when the model incorrectly 

predicts a positive outcome for samples that actually belong to the negative class, leading to 

misclassification. Conversely, FN refers to instances where the model incorrectly predicts a 

negative outcome for samples that actually belong to the positive class, also resulting in 

misclassification. These terms underpin the following metrics tailored for binary classification: 

• Accuracy measures the overall correctness of predictions by the model, calculated as the 

ratio of correct predictions (TP + TN) to the total number of samples: 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (27) 
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• Precision quantifies the precision of the model's positive predictions, calculated as the 

ratio of true positive predictions (TP) to all positive predictions made by the model: 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (28) 

 

• Recall (or sensitivity) gauges the model's ability to correctly identify all actual positive 

samples, calculated as the ratio of true positive predictions (TP) to all actual positive 

samples: 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (29) 

 

• Specificity measures the model's ability to correctly identify all actual negative samples, 

calculated as the ratio of true negative predictions (TN) to all actual negative samples: 

 
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (30) 

 

• F1-score balances precision and recall into a single metric, calculated as the harmonic 

mean of precision and recall: 

 
𝐹1_𝑠𝑐𝑜𝑟𝑒 = 2 ∙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (31) 

 

• Area Under the Curve (AUC) from the ROC (Receiver Operating Characteristic) curve 

evaluates the classifier's ability to distinguish between classes. The ROC curve plots the 

true positive rate (Recall) against the false positive rate (FPR) for various classification 

thresholds. A higher AUC value signifies better classification performance, with 1 

indicating perfect prediction and values above 0.5 showing that the model achieves more 

TP and TN than FP and FN [45]. 

 

Figure 19: ROC curve and AUC [46]. 
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• Youden's J statistic aids in finding the optimal classification threshold by maximizing the 

difference between true positive and false positive rates across thresholds: 

 𝐽 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 − 1 (32) 

 

This statistic provides a unified metric for assessing overall classifier performance. 

Maximizing Youden's J helps determine the optimal operating point on the ROC curve, 

ensuring the classifier achieves a balanced trade-off between sensitivity and specificity 

for the given task [47]. 
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4. Related Work 

A study of the existing related literature was conducted to achieve a deeper understanding and 

familiarity with the research problem being addressed. The rapid development of computational 

methods and the greater availability of relevant data, combined with the rapid spread of diabetes 

and the complexity of the disease, have attracted the interest of many researchers to this field. 

Consequently, the relevant literature has become rich and multidimensional. In this review, 

recent studies that utilize machine learning techniques, rather than other classical statistical 

methods, were concentrated on. As the focus was on assessing the risk of nocturnal 

hypoglycemia episodes, emphasis was placed on machine learning models that predict blood 

glucose levels and related events (hypoglycemia/hyperglycemia). Additionally, special attention 

was given to physiological system simulation models that can be integrated into prediction 

systems. 

4.1 Physiological Prediction Models 

Over the past few decades, numerous studies have introduced models of insulin action and 

glucose kinetics, utilizing experimental data to measure glucose production, glucose utilization, 

and the absorption of insulin and meals. Predominantly, these models are compartmental 

models used for the dynamic analysis of substance kinetics in physiological systems. Among the 

most renowned models for simulating insulin and glucose kinetics are the Dalla Man model, the 

Hovorka model, and the Bergman model. These systems enable the computation of various 

parameters, including subcutaneous insulin absorption, gastric emptying rate, carbohydrate 

digestion and absorption, insulin kinetics, and glucose metabolism [48]. 

Specifically, the Dalla Man model comprises a glucose subsystem and an insulin subsystem that 

are interconnected by the regulation of insulin on glucose utilization and endogenous 

production. On the other hand, the Bergman model utilizes a three-compartment model to 

represent the concentrations of plasma insulin, exogenous insulin, and plasma glucose. The 

Hovorka model, in contrast, employs a two-compartment model to describe the absorption of 

subcutaneous insulin and the absorption of glucose from the intestine [49-51]. 

Additionally, to evaluate glucose absorption at the cellular level, the activation process of the 

intracellular insulin signaling pathway can be simulated. A widely recognized simulation system 

for this purpose is the model by Sedaghat. This model, based on insulin concentration and 

utilizing a system of 20 differential equations, estimates the proportion of GLUT4 transporters 

on the cell membrane. Additionally, this model has been expanded and enhanced through more 

recent related research [52, 53]. 
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4.2 Machine Learning Models for Predicting Blood Glucose Levels 

The 2015 study by Zarkogianni et al. focuses on evaluating machine learning models for 

predicting future glucose levels in individuals with T1D. The research utilized data from 10 real 

T1D patients (7 males and 3 females), incorporating CGM data and physical activity data as inputs. 

Two sets of input data were used: the first included the most recent glucose measurement and 

CGM-derived glucose change, while the second integrated these with physical activity data. Four 

machine learning models were tested: Feedforward Neural Network (FNN), Self-Organizing Map 

(SOM), Wavelet-Transformed Feedforward Neural Network (WFNN), and Linear Regression 

Model (LRM). These models aimed to predict future glucose values at 30, 60, and 120-minute 

horizons with updates every 5 minutes, using a personalized training approach for each patient. 

Evaluation employed a 10-fold cross-validation method, assessing model performance through 

metrics such as root-mean-square error (RMSE), correlation coefficient (CC), mean absolute 

relative difference (MARD), and continuous glucose-error grid analysis (CG-EGA). The study 

highlighted that while all models performed well within the euglycemic range, the SOM-based 

model excelled in predicting hypoglycemic and hyperglycemic events. It achieved superior RMSE, 

CC, and MARD values for both sets of input data, underscoring its efficacy in glucose prediction 

for individuals with T1D [54]. 

Published in 2020, the study by Cappon et al. utilized data from 6 real patients sourced from the 

second version of the OhioT1DM dataset, focusing on integrating various input features including 

CGM measurements, injected insulin, reported meals, physical activity, and correction boluses. 

The research employed a bidirectional LSTM neural network architecture designed to predict 

future blood glucose levels at 30-minute and 60-minute horizons for each patient, reflecting a 

personalized approach where individual models were trained for different subjects. 

Model performance was evaluated using metrics such as RMSE, mean absolute error (MAE), and 

time gained (TG). The study emphasized the interpretability of its findings, noting that high CGM 

values predicted correspondingly high blood glucose levels, while elevated insulin levels 

negatively influenced blood glucose dynamics, mirroring actual clinical scenarios. Additionally, 

the model effectively captured the impact of meal intake on blood glucose levels, demonstrating 

its capability to adjust predictions based on real-time physiological responses. Despite its 

achievements, the study acknowledged limitations, including the absence of comparator models 

for benchmarking bidirectional LSTM performance and the relatively small dataset size [55]. 

In 2022, Mosquera-Lopez et al. conducted a study using data from 250 real patients with Type 1 

Diabetes sourced from the Tidepool Big Data Donation Dataset. Their research focused on 

enhancing predictive modeling by integrating comprehensive measures of glucose variability. 

They employed a hybrid approach combining an equation for estimating insulin on board (IOB) 

with LSTM neural networks. This model was specifically tailored to incorporate CGM readings 

and scaled IOB data from the preceding 3 hours, addressing crucial mid- and short-term 
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dependencies affecting glucose levels. The study rigorously compared the performance of the 

hybrid LSTM model against various benchmarks, including naive approaches, Ridge linear 

regression, and Random Forest models. Notably, the LSTM model exhibited superior predictive 

accuracy, particularly in scenarios tailored to different insulin therapies reflecting real-world 

treatment variability among Type 1 Diabetes patients. 

Evaluation utilized a hold-out testing dataset and encompassed a comprehensive set of 

performance metrics, including traditional measures like RMSE and MAE, as well as novel indices 

like the Glucose Variability Impact Index (GVII) and Glucose Prediction Consistency Index (GPCI). 

Key findings underscored the LSTM model's robust performance in accurately forecasting glucose 

values across diverse insulin therapy contexts. However, the study also identified challenges, 

such as the model's tendency to overestimate hypoglycemia and underestimate hyperglycemia 

events, highlighting ongoing complexities in accurately predicting extreme glucose fluctuations. 

Moreover, the research emphasized the significant influence of glucose data variability on 

prediction outcomes, emphasizing the critical need for model refinements to effectively manage 

these variations and improve overall predictive accuracy in Type 1 Diabetes management [56]. 

Published in 2023, the study by Toffanin et al. delves into the development of an Enhanced 

Personalized LSTM (EP-LSTM) model aimed at predicting blood glucose levels and preventing 

hypoglycemia and hyperglycemia in Type 1 Diabetes patients. Using data from 100 in silico adult 

patients from the UVA/Padova dataset, the research incorporates inputs such as insulin injected 

through a pump, patient-reported meal intake, and past CGM values from 40 minutes prior to 

the prediction horizon. 

The EP-LSTM model's performance was assessed using a range of metrics, including RMSE, index 

of fitting (FIT), downward delay (DD), upward delay (UD), true positive rate, positive predictive 

value (PPV), and F1 score. The study reported an RMSE of 6.45 and a FIT of 79.40%, with an 

average delay of approximately 9 minutes. For hypoglycemia detection, the alarm system 

achieved a TPR of 76.92%, PPV of 83.33%, and an F1 score of 78.79%. In hyperglycemia detection, 

it reached a TPR of 89.13%, PPV of 85.29%, and an F1 score of 83.87%. These results indicate that 

the EP-LSTM model performs effectively in predicting and preventing extreme glucose events, 

underscoring its potential utility in personalized diabetes management [57]. 

4.3 Machine Learning Models for Predicting Nocturnal Hypoglycemia 

In the aforementioned studies, glucose prediction is treated as a regression problem, where the 

objective is to predict continuous numerical values. By focusing specifically on hypoglycemia, the 

problem can be transformed into a classification problem aimed at predicting hypoglycemic 

episodes. The following examines some research that explores this specific approach. 

Published in 2020, the study by Jensen et al. investigates the use of a linear discriminant analysis 

(LDA) classifier to predict nocturnal hypoglycemia in individuals with Type 1 Diabetes. The 
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research utilizes data from 463 real patients from the Onset 5 trial by Novo Nordisk A/S, 

integrating CGM data, meal intake, and bolus insulin data after feature extraction. The LDA 

classifier is personalized, trained on the previous three days of patient recordings to predict 

nocturnal hypoglycemia effectively. 

The model's performance is evaluated using metrics such as ROC-AUC, specificity, and sensitivity, 

achieving a ROC-AUC of 0.79, a sensitivity of 75%, and a specificity of 70%. The average prediction 

horizon is approximately three hours and 15 minutes before a hypoglycemic event, typically 

occurring around 3:15 am, with warnings issued at midnight. Despite the promising results, the 

study acknowledges significant limitations, including the absence of basal insulin data and 

physical activity measures, which are known contributors to nocturnal hypoglycemia. 

Furthermore, the paper lacks detailed technical information, highlighting areas for future 

research improvement [58]. 

In 2020, Mosquera-Lopez et. al conducted a study that explores the use of support vector 

regression (SVR) models to predict and prevent nocturnal hypoglycemia in individuals with Type 

1 Diabetes. The research utilizes data from both real and in silico patients, including 124 real 

insulin pump users from the Tidepool Big Data Donation Dataset, along with additional datasets 

for algorithm validation. Thirteen features were extracted from CGM, insulin, and meal data. The 

SVR model is optimized using decision theory to maximize the benefit of accurate hypoglycemia 

prediction while minimizing the cost of inaccurate predictions. This decision support tool helps 

patients make optimal decisions about whether to consume carbohydrates at bedtime to prevent 

nocturnal hypoglycemia. The SVR model was compared against a simple bedtime glucose 

heuristic, which advises patients to consume carbohydrates if their bedtime glucose is below 8.28 

mmol/L. 

The model's performance was evaluated with metrics including AUC, sensitivity, specificity, 

Pearson correlation, and RMSE between actual and predicted minimum glucose levels during the 

night. The SVR model outperformed the simple bedtime glucose heuristic in terms of specificity 

for the same sensitivity value. Recommendations based on SVR predictions could potentially 

result in 2.5 overtreated cases per month but applying the SVR algorithm earlier or later in the 

night yielded lower accuracy. The study found that a variable carbohydrate intervention based 

on SVR predictions could reduce nocturnal hypoglycemia by up to 77% without affecting overall 

time in the target glucose range. This indicates that the SVR algorithm enhances the specificity 

of predictions and increases time in the target glucose range, demonstrating its potential to 

effectively manage nocturnal hypoglycemia in Type 1 Diabetes patients [59]. 

Published in 2022, the study by Parcerisas et al. leverages data from both real and in silico 

patients, including 10 real patients from a clinical trial dataset (Hospital Clinic de Barcelona 

NCT03711656) and in silico patients from a modified version of the UVA Padova simulator. The 
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research extracts 17 features from CGM readings and activity tracker data, employing bolus on 

board, carbohydrate on board, and activity on board models for feature extraction. Various 

machine learning algorithms were tested, including ANNs, multinomial naive Bayes, AdaBoost, 

support vector machines (SVM), LDA, and LSTM networks, with SVM demonstrating the best 

performance. The model's objective is to predict the risk of nocturnal hypoglycemic events, 

utilizing both population-based and personalized approaches.  

Performance evaluation involved metrics such as AUC-ROC, sensitivity, specificity, Matthews’ 

correlation coefficient (MCC), F1 score, and geometric mean (Gmean). The results showed 

minimal differences between population and personalized models in terms of median sensitivity 

and specificity. However, the population model exhibited superior F1 scores and Gmean metrics. 

The introduction of rescue carbohydrates significantly reduced the number of nocturnal 

hypoglycemic events, with 30 grams identified as the optimal amount for prevention. The study 

concludes that the population model's performance is on par with individual models, 

underscoring its potential effectiveness in minimizing nocturnal hypoglycemia in Type 1 Diabetes 

patients [60]. 

In 2022, Berikov et al. conducted a study using a dataset of 406 real adult patients undergoing 

basal bolus insulin therapy, which presented an imbalance in data distribution. The study's input 

variables included CGM readings and 23 clinical and laboratory parameters such as age, sex, BMI, 

diabetes duration, insulin regimen details, and various health conditions. The models employed 

encompassed Random Forest with 500 trees, Logistic Linear Regression with Lasso regularization 

(LogRLasso), and ANNs optimized using the Levenberg–Marquardt algorithm. These models were 

developed with the goal of predicting hypoglycemia risk through a personalized approach. 

Evaluation of model performance focused on metrics like ROC-AUC, sensitivity, and specificity. 

Notably, LogRLasso models using only CGM data achieved the highest AUC values. Random 

Forest demonstrated superior accuracy when integrating CGM with clinical data, while ANNs 

slightly underperformed when trained on CGM alone or in combination with clinical variables. 

Clinical insights from the study highlighted positive correlations between insulin dose, diabetes 

duration, and proteinuria with hypoglycemia risk, while HbA1c, estimated glomerular filtration 

rate (eGFR), and BMI showed negative associations. These findings underscore the potential of 

machine learning to enhance the prediction and management of nocturnal hypoglycemia among 

hospitalized patients with Type 1 Diabetes [61]. 
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5. Development of attention-based LSTM models for the 

prediction of nocturnal hypoglycemia events in T1DM 

The preceding sections aimed to provide the foundational theoretical background into the tools 

applied in this study's practical implementation. Following this introduction is the experimental 

phase, which centers on a classification task using glucose levels and other variables to forecast 

the likelihood of imminent nocturnal hypoglycemic events. This chapter includes a description of 

available data, and the methodologies used for their processing, and an outline of the model and 

methodologies utilized for predictions and result interpretation. Notably, Python version 3.10.12 

was the implementation platform, leveraging essential libraries such as Keras, scikit-learn, 

NumPy, pandas, Matplotlib and GEKKO for assembling training datasets and refining the model 

through development and evaluation phases. 

5.1 Dataset and Data Preparation 

5.1.1 OhioT1DM Dataset 

The model was developed and evaluated using data derived from actual patients diagnosed with 

Type 1 Diabetes, sourced from the OhioT1DM Dataset. This dataset serves as a pivotal resource 

aimed at fostering advancements in the prediction of blood glucose levels. Over an eight-week 

period, it captured a comprehensive array of continuous CGM data, insulin administration 

records, physiological sensor readings, and self-reported life events for 12 individuals diagnosed 

with type 1 diabetes.  

Initially launched in 2018 for the first Blood Glucose Level Prediction Challenge with data from 

six participants, the dataset has since expanded to include an additional six individuals for the 

2020 challenge. Each participant in the OhioT1DM Dataset was assigned a randomly generated 

ID to safeguard anonymity. Throughout the data collection period, all contributors utilized insulin 

pump therapy alongside CGM devices from Medtronic (models 530G or 630G). They also 

reported life-event data via a bespoke smartphone application and provided physiological 

metrics from either Basis Peak or Empatica Embrace fitness bands. Key dataset features included 

CGM readings every five minutes, periodic self-monitored blood glucose values, detailed logs of 

insulin doses (both basal and bolus), self-reported mealtimes with carbohydrate estimates, and 

timestamps for activities such as exercise, sleep, work, stress, and illness. Participants that were 

using the Basis Peak band contributed additional data points every five minutes on heart rate, 

galvanic skin response (GSR), skin temperature, air temperature, and step count, while those that 

were using the Empatica Embrace band provided GSR, skin temperature, and minute-by-minute 

acceleration data. Sleep patterns and subjective sleep quality assessments were also logged 

where applicable. 
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ID BGLP Challenge Gender Age Training Testing 

540 2020 Male 20-40 11947 2884 

544 2020 Male 40-60 10623 2704 

552 2020 Male 20-40 9080 2352 

567 2020 Female 20-40 10858 2377 

584 2020 Male  40-60 12150 2653 

596 2020 Male 60-80 10877 2731 

559 2018 Female 40-60 10796 2514 

563 2018 Male 40-60 12124 2570 

570 2018 Male 40-60 10982 2745 

575 2018 Female 40-60 11866 2590 

588 2018 Female 40-60 12640 2791 

591 2018 Female 40-60 10847 2760 
 

Table 1: Cohort, gender, age group, training data and testing data entries for each contributor of the OhioT1DM dataset [62]. 

To facilitate comprehensive research and analysis, the dataset was meticulously organized into 

XML files for each participant, distinguishing between training and testing datasets. This 

structured approach allows researchers to develop and refine predictive models for blood 

glucose levels, ensuring robustness and applicability in clinical settings [62]. 

Here, to develop this model, CGM, basal insulin, temporary basal insulin, bolus insulin, and meal 

data for each patient were utilized. As mentioned above (sections 2.1 and 2.5), blood glucose 

levels and the overall progression of diabetes are greatly influenced by diet and insulin 

administration. 

5.1.2 Data Preparation 

The objective of this study was to predict nocturnal hypoglycemia events. However, numerous 

gaps in self-reported sleep event data posed a significant challenge. To address this issue, a fixed 

sleep window from 20:00 to 08:00 the next morning was hypothesized, establishing a 12-hour 

prediction horizon.  

The aim was then to identify nocturnal hypoglycemia events for each patient. A hypoglycemic 

event was defined as a CGM measurement below 70 mg/dL. If such an event occurred within the 

designated sleep window, the night was labeled as a nocturnal hypoglycemia night (label = 1); 

otherwise, it was labeled as a non-hypoglycemia night (label = 0). The data analysis yielded the 

following results: 
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ID BGLP 
Data 
Split 

Data 
Entries 

CGM 
Missing 
Values 

Basal 
Values 

Temp_basal 
Values 

Bolus 
Values 

Meal 
Values 

Noc 
Hypos 

559 2018 
train 11808 1300 163 34 152 150 17 

test 2592 362 32 6 36 29 3 

563 2018 
train 12960 1008 87 2 347 129 12 

test 2304 121 12 0 89 27 0 

570 2018 
train 11520 826 118 3 326 136 8 

test 2592 135 29 0 84 33 1 

575 2018 
train 12960 1238 126 12 187 243 21 

test 2304 128 22 1 36 45 4 

588 2018 
train 12960 608 74 34 182 221 11 

test 2592 89 8 3 40 37 1 

591 2018 
train 12672 2113 113 33 261 212 21 

test 2592 87 29 5 51 41 4 

540 2020 
train 12960 1302 24 232 309 73 26 

test 2592 170 8 55 87 27 5 

544 2020 
train 12384 2049 103 43 134 159 11 

test 2880 420 32 12 39 38 0 

552 2020 
train 10944 2152 45 16 336 78 9 

test 3456 1586 18 7 102 21 2 

567 2020 
train 13248 2678 135 45 313 32 14 

test 2592 482 14 9 54 0 3 

584 2020 
train 12960 1098 27 12 268 95 7 

test 2592 330 20 0 54 23 2 

596 2020 
train 14112 3412 23 7 208 265 15 

test 2592 260 31 1 38 54 1 
Table 2: Mapping of the OhioT1DM dataset. 

Initially, the development of personalized models for each of the 12 patients was considered. 

However, the extensive input space combined with the limited training data resulted in models 

with poor learning performance, indicating an inability to effectively train on the available data. 

Consequently, a population-based model was developed instead. 

Given the prevalence of missing CGM values and the potential bias introduced by interpolating 

these gaps, days with more than 24 consecutive missing CGM values were excluded from the 

analysis. The initial training and testing datasets comprised 526 and 110 days of data, 

respectively, with nocturnal hypoglycemia rates of 0.327 and 0.236, respectively. After 

exclusions, the final training and testing datasets were reduced to 352 and 77 days, with 

nocturnal hypoglycemia rates of 0.321 and 0.195, respectively. 
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Data 
Split 

Data 
Entries 

Data 
Days 

Noc 
Hypos 

Noc 
Hypos 
Rate 

Initial Train 151,488 526 172 0.327 

Final Train 101,376 352 113 0.321 

Initial Test 31,680 110 26 0.236 

Final Test 22,176 77 15 0.195 
Table 3: Global datasets with the combined data for each patient. 

To create time series data for the model, 24-hour sequences of CGM readings, carbohydrate 

meals, and insulin doses were compiled, starting from 20:00 (𝑡𝑠𝑡𝑎𝑟𝑡) on the first day and ending 

at 20:00 (𝑡𝑒𝑛𝑑) the following day, resulting in time series of [𝑡𝑠𝑡𝑎𝑟𝑡, 𝑡𝑒𝑛𝑑]. Since CGM recordings 

occurred every 5 minutes, each 24-hour sequence consisted of 288 values (24 hours x 12 

measurements per hour). This data was then used to predict the probability of nocturnal 

hypoglycemia within the sleep window from 20:00 (𝑡𝑒𝑛𝑑) to 08:00 (𝑡𝑒𝑛𝑑 + 12ℎ) the next morning. 

5.2 Architecture of Hybrid Predictive Model 

To predict the risk of nocturnal hypoglycemic events, a hybrid approach combining physiological 

system simulation models and machine learning techniques was employed. This method aimed 

to accurately model the (i) absorption of glucose from meals into the bloodstream, (ii) insulin 

absorption from subcutaneous tissue to bloodstream, and (iii) insulin signaling activation within 

cells. The outputs from these simulation models, along with CGM time series data, were 

integrated using an LSTM-based neural network for predictive analysis. 

 
Figure 20: Diagrammatic representation of the hybrid model for predicting nocturnal hypoglycemic events. 

Central to the methodology were compartmental models, which are crucial for studying 

substance kinetics within physiological systems. These models accommodate both exogenous 

substances (such as drugs) and endogenous ones (such as hormones), detailing processes like 
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production, distribution, transport, and utilization of these substances. Each compartment within 

these models represents a quantity of substance that behaves as if it is uniformly mixed and 

kinetically homogeneous, with interconnected pathways defining substance flow between 

compartments [63] 

5.2.1 Intestinal Glucose Absorption Compartment Model 

For more precise utilization of available carbohydrate information, the Dalla Man compartmental 

model was used. This model illustrates the glucose flow in the stomach and intestine and is 

composed of three compartments: two for the stomach and one for the intestine [50]. The 

associated system of differential equations is provided below: 

 𝑄𝑠𝑡𝑜(𝑡) = 𝑄𝑠𝑡𝑜1(𝑡) + 𝑄𝑠𝑡𝑜2(𝑡) (33) 

 

 𝑄𝑠𝑡𝑜(0) = 0 (34) 

 

 𝑄𝑠𝑡𝑜1(𝑡)̇ = −𝑘𝑔𝑟𝑖 ∙ 𝑄𝑠𝑡𝑜1(𝑡) + 𝐷 ∙ 𝛿(𝑡) (35) 

 

 𝑄𝑠𝑡𝑜1(0) = 0 (36) 

 

 𝑄𝑠𝑡𝑜2(𝑡)̇ = −𝑘𝑒𝑚𝑝𝑡 ∙ 𝑄𝑠𝑡𝑜2(𝑡) + 𝑘𝑔𝑟𝑖 ∙ 𝑄𝑠𝑡𝑜1(𝑡) (37) 

 

 𝑄𝑠𝑡𝑜2(0) = 0 (38) 

 

 𝑄𝑔𝑢𝑡(𝑡)̇ = −𝑘𝑎𝑏𝑠 ∙ 𝑄𝑔𝑢𝑡(𝑡) + 𝑘𝑒𝑚𝑝𝑡 ∙ 𝑄𝑠𝑡𝑜2(𝑡) (39) 

 

 𝑄𝑔𝑢𝑡(0) = 0 (40) 

 

 
𝑅𝑎𝑔(𝑡) =

𝑓 ∙ 𝑘𝑎𝑏𝑠 ∙ 𝑄𝑔𝑢𝑡(𝑡)

𝐵𝑊
⁡ (41) 

 

 𝑅𝑎𝑔(0) = 0 (42) 

 

 
𝑘𝑒𝑚𝑝𝑡(𝑄𝑠𝑡𝑜) = 𝑘min +

𝑘max − 𝑘min

2
∙ (tanh(𝑎 ∙ (𝑄𝑠𝑡𝑜 − 𝑏 ∙ 𝐷)) + 1) (43) 

 

 
𝑎 =

5

2 ∙ 𝐷 ∙ (1 − 𝑏)
 (44) 

 

where: 
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• 𝑄𝑠𝑡𝑜 (𝑚𝑔) was the total amount of glucose in the stomach, 

• 𝑄𝑠𝑡𝑜1 (𝑚𝑔) was the amount of glucose in solid form in the stomach, 

• 𝑘𝑔𝑟𝑖 (𝑚𝑖𝑛
−1) was the grinding rate of glucose, 

• 𝐷 (𝑚𝑔) was the amount of carbohydrates ingested, 

• 𝛿(𝑡) was the Dirac delta function, 

• 𝑄𝑠𝑡𝑜2 (𝑚𝑔) was the amount of glucose in liquid form in the stomach, 

• 𝑘𝑒𝑚𝑝𝑡 (𝑚𝑖𝑛
−1) was the rate of gastric emptying, 

• 𝑄𝑔𝑢𝑡 (𝑚𝑔) was the amount of glucose in the intestine 

• 𝑘𝑎𝑏𝑠 (𝑚𝑖𝑛−1) was the absorption rate of glucose from the intestine 

• 𝑅𝑎𝑔 (𝑚𝑔/𝑘𝑔/𝑚𝑖𝑛) was the rate of appearance of glucose in the blood, 

• 𝑓 was the fraction of the intestinal absorption which actually appeared in the plasma, and 

• 𝐵𝑊 (𝑘𝑔) was the weight of the individual. 

The constants 𝑘𝑔𝑟𝑖, 𝑘𝑎𝑏𝑠, 𝑓, 𝑏, 𝑘min, and 𝑘max were defined values found in the literature [64]. 

Thus, with a given quantity of carbohydrates 𝐷, the rate at which glucose appears in the blood 

was estimated. This information is clinically significant and can help improve the accuracy of 

predictions. 

 
Figure 21: Computation of the values for 𝑄𝑠𝑡𝑜, 𝑄𝑠𝑡𝑜1, 𝑄𝑠𝑡𝑜2, 𝑄𝑔𝑢𝑡, 𝑅𝑎𝑔 and 𝑘𝑒𝑚𝑝𝑡  over a 120-minutes  period, given a carbohydrate 

intake of 30 grams and a body weight of 85 kilograms, utilizing the Intestinal Glucose Absorption CM. 
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It was observed that the curve of the rate of glucose appearance in the blood, 𝑅𝑎𝑔(𝑡), was shaped 

by the total intake of meals consumed recently, depending on the amount of carbohydrates 

ingested and the timing of each meal. Hence, it was concluded that 𝑅𝑎𝑔(𝑡) represented a more 

substantial and accurate depiction of the overall glucose absorption process, and thus, it was 

used as an input feature for improved predictions. 

Here, given a glucose time series that outlined a patient's glycemic profile within the 24-hour 

period [𝑡𝑠𝑡𝑎𝑟𝑡, 𝑡𝑒𝑛𝑑], the recorded carbohydrate intakes within this time interval were considered. 

Using this data, 𝑅𝑎𝑔(𝑡) was calculated for 𝑡 ∈ [𝑡𝑠𝑡𝑎𝑟𝑡, 𝑡𝑒𝑛𝑑 + 12ℎ] by applying the Intestinal 

Glucose Absorption CM and superimposing the curves generated by the model for each specific 

carbohydrate intake.  

The simulation was conducted over a 36-hour period: 24 hours corresponding to the recorded 

carbohydrate intakes, followed by an additional 12 hours to predict nocturnal glucose absorption 

rate. Although 𝑅𝑎𝑔(𝑡) was computed for the entire simulation period, only the last 12 hours were 

retained as input features for the prediction of the nocturnal hypoglycemia probability.  The 

𝑅𝑎𝑔(𝑡) values were aggregated every 5 minutes to maintain synchronization with the CGM data. 

Therefore, the input features for the LSTM-based model included the 𝑅𝑎𝑔(𝑡) time series vector, 

which contained 144 values (12 hours x 5 measurement per hour). 

 
Figure 22: Computation of the values for 𝑄𝑠𝑡𝑜, 𝑄𝑠𝑡𝑜1, 𝑄𝑠𝑡𝑜2, 𝑄𝑔𝑢𝑡, 𝑅𝑎𝑔 and 𝑘𝑒𝑚𝑝𝑡  for three different carbohydrate intakes of 25g, 

10g and 17g over a 360-minutes period.  The calculation was conducted using the Intestinal Glucose Absorption CM and by 
superimposing the corresponding output curves. 
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5.2.2 Blood Insulin Absorption Compartment Model 

To represent the complex processes associated with the absorption of administered insulin from 

the subcutaneous space into the bloodstream, the following compartmental model of 

subcutaneous insulin kinetics was utilized [65]: 

 𝐼𝑠𝑐1(𝑡)̇ = −(𝑘𝑑 + 𝑘𝑎1) ∙ 𝐼𝑠𝑐1(𝑡) + 𝑢(𝑡) (45) 

 

 𝐼𝑠𝑐2(𝑡)̇ = 𝑘𝑑 ∙ 𝐼𝑠𝑐1(𝑡) − 𝑘𝑎2 ∙ 𝐼𝑠𝑐2(𝑡) (46) 

 

 𝑅𝑎𝑖(𝑡) = 𝑘𝑎1 ∙ 𝐼𝑠𝑐1(𝑡) + 𝑘𝑎2 ∙ 𝐼𝑠𝑐2(𝑡) (47) 

 

 𝐼𝑠𝑐1(0) = 𝐼𝑠𝑐1𝑠𝑠 (48) 

 

 𝐼𝑠𝑐2(0) = 𝐼𝑠𝑐2𝑠𝑠 (49) 

 

where: 

• 𝐼𝑠𝑐1 (𝑝𝑚𝑜𝑙/𝑘𝑔) represented the amount of non-monomeric insulin in the subcutaneous 

space, 

• 𝐼𝑠𝑐2 (𝑝𝑚𝑜𝑙/𝑘𝑔) denoted the amount of monomeric insulin in the same area, 

• the rate of exogenous insulin infusion was indicated by 𝑢(𝑡) (𝑝𝑚𝑜𝑙/𝑘𝑔/𝑚𝑖𝑛), 

• the constant rate of insulin degradation was given by 𝑘𝑑 (𝑚𝑖𝑛−1), and 

• 𝑘𝑎1 (𝑚𝑖𝑛−1) and 𝑘𝑎2 (𝑚𝑖𝑛−1) were the absorption rates for non-monomeric and 

monomeric insulin, respectively, 

• 𝑅𝑎𝑖  (𝑝𝑚𝑜𝑙/𝑘𝑔/𝑚𝑖𝑛) described the rate of insulin appearance in the blood plasma. 

The constants 𝐼𝑠𝑐1𝑠𝑠 and 𝐼𝑠𝑐2𝑠𝑠 were defined values found in the literature [65]. Overall, the 

described relationships outlined the diffusion process of administered insulin from the 

subcutaneous space into the blood plasma. It is important to note that insulin is typically 

administered in its more stable, polymeric form, which is then broken down into monomeric 

insulin that is absorbed more rapidly by the body. 

Similarly to the case of Intestinal Glucose Absorption CM, given a glucose time series that 

outlined the glycemic profile over a 24-hour period [𝑡𝑠𝑡𝑎𝑟𝑡, 𝑡𝑒𝑛𝑑], the insulin doses administered 

during this interval, both bolus and basal, were considered. Additionally, the basal insulin doses 

recorded during the fixed 12-hour sleep window [𝑡𝑒𝑛𝑑, 𝑡𝑒𝑛𝑑 + 12ℎ] were included, as basal 
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insulin continued to be administered during sleep. Using this data, the rate of insulin appearance 

in the blood, 𝑅𝑎𝑖(𝑡), was calculated over the entire period 𝑡 ∈ [𝑡𝑠𝑡𝑎𝑟𝑡, 𝑡𝑒𝑛𝑑 + 12ℎ]. 

 

Figure 23: Computation of the quantities 𝐼𝑠𝑐1, 𝐼𝑠𝑐2 and 𝑅𝑎𝑖 for three different insulin doses of 2.5, 10 and 6.5 units over a 720-
minute period and a body weight of 75 kg, using the Blood Insulin Absorption CM. 

The simulation for the 𝑅𝑎𝑖(𝑡) was conducted over a 36-hour period , with only the last 12 hours 

retained as input features for prediction. To ensure synchronization with CGM data, the  𝑅𝑎𝑖(𝑡) 

values were aggregated every 5 minutes. This results in a 𝑅𝑎𝑖(𝑡) time series vector that contained 

144 values, which was used as input in the LSTM-based model. 

5.2.3 Insulin Kinetics Compartment Model 

To examine the process of insulin absorption at the cellular level, two additional simulation 

models were used. The first model employed compartmental modeling, consisted of two 

compartments, liver and blood plasma, and aimed to calculate the insulin concentration in the 

plasma 𝐼, given the corresponding rate of appearance 𝑅𝑎𝑖  [50]: 

 𝐼𝑃(𝑡)̇ = −(𝑚2 +𝑚4) ∙ 𝐼𝑃(𝑡) + 𝑚1 ∙ 𝐼𝐿(𝑡) + 𝑅𝑎𝑖(𝑡) (50) 
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 𝐼𝐿(𝑡)̇ = −(𝑚1 +𝑚3) ∙ 𝐼𝐿(𝑡) + 𝑚2 ∙ 𝐼𝑃(𝑡) (51) 

 

 𝐼(𝑡) = 𝐼𝑃(𝑡)/𝑉𝐼 (52) 

 

 𝐼𝐿(0) = 𝐼𝐿𝑏 (53) 
 

 𝐼𝑃(0) = 𝐼𝑃𝑏 (54) 

 

where: 

• 𝐼𝑃 (𝑝𝑚𝑜𝑙/𝑘𝑔) and 𝐼𝐿 (𝑝𝑚𝑜𝑙/𝑘𝑔) represented the amounts of insulin in the plasma and 

liver, respectively, 

• 𝐼 (𝑝𝑚𝑜𝑙/𝐿) denoted the insulin concentration in the plasma, 

• 𝑅𝑎𝑖  (𝑝𝑚𝑜𝑙/𝑘𝑔/𝑚𝑖𝑛) was the rate of insulin appearance in the plasma, 

• 𝑉𝐼 (𝐿/𝑘𝑔) denoted the volume of insulin distribution 

• the constants 𝑚1 (𝑚𝑖𝑛⁻¹), 𝑚2 (𝑚𝑖𝑛⁻¹), 𝑚3 (𝑚𝑖𝑛⁻¹), and 𝑚4 (𝑚𝑖𝑛⁻¹) described the 

processes of insulin removal from the liver and peripheral tissues, 

• 𝐼𝐿𝑏 and 𝐼𝑃𝑏 were the basal state values of 𝐼𝐿 and 𝐼𝑃, respectively. These basal state values 

were found in the literature [50]. 

 
Figure 24: Computation of insulin plasma concentration 𝐼(t)  for three different insulin doses of 2.5, 10 and 6.5 units over a 720-
minute period and a body weight of 75 kg, using the Insulin Kinetics CM and Blood Insulin Absorption CM (for 𝑅𝑎𝑖(𝑡)). 
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In this approach,  the rate of insulin appearance 𝑅𝑎𝑖  was derived from the Blood Insulin 

Absorption CM, based on the rate of exogenous infusion of insulin. 

5.2.4 Insulin Signaling Pathway Model 

The mathematical model applied for simulating the activation of the intracellular insulin signaling 

pathway was the Sedaghat et al. model [52]. This model aimed to simulate key aspects of the 

PI3K/AKT insulin signaling pathway. The PI3K/AKT pathway is activated within a cell when insulin 

binds to its respective transmembrane receptors, initiating a cascade of protein phosphorylation. 

These intracellular protein interactions enable the signal to propagate from the receptor in 

various directions, ultimately causing the migration of vesicles containing the GLUT4 glucose 

transporters from the intracellular reservoir to the cell's plasma membrane. Any disruption in 

this signaling pathway can result in insulin resistance and decreased glucose uptake by cells. 

The Sedaghat model used for this simulation involved 21 variables (𝑥1, 𝑥2, ..., 𝑥21) derived from 

a system of 20 differential equations. The input 𝑥1 represented the concentration of insulin in 

the interstitial fluid, while the variable 𝑥21 indicated the proportion of GLUT4 that reached the 

cell membrane. To estimate the concentration of insulin in the interstitial fluid, the plasma insulin 

concentration from the Insulin Kinetics CM was used, and it was assumed that the interstitial 

fluid insulin concentration was approximately 40% lower than in the plasma, as was reported in 

related studies [66]. 

 

Figure 25: Estimation of the percentage of cell surface GLUT4 transporters using the Sedaghat simulation model, following the 
administration of insulin at a constant concentration of 10⁻⁵ M, over the time interval from t = 0 to t = 15 minutes. 
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In summary, to incorporate information related to the proportion of GLUT4 on the cell membrane 

(𝑥21) following insulin administrations, the Blood Insulin Absorption CM, the Insulin Kinetics CM 

and the Sedaghat model were utilized. Specifically, with a given glucose time series within the 

24-hour interval [𝑡𝑠𝑡𝑎𝑟𝑡, 𝑡𝑒𝑛𝑑], the basal and bolus insulin doses administered by the patient 

during this period, along with only the basal doses for the period [𝑡𝑒𝑛𝑑, 𝑡𝑒𝑛𝑑 ⁡+ ⁡12ℎ] were 

considered.  

The rate of insulin appearance 𝑅𝑎𝑖  was calculated for the period [𝑡𝑠𝑡𝑎𝑟𝑡, 𝑡𝑒𝑛𝑑 ⁡+ ⁡12ℎ] using the 

Blood Insulin Absorption CM. This rate was then used as input to estimate the insulin 

concentration 𝐼 over the same period, employing the Insulin Kinetics CM. Finally, the percentage 

of GLUT4 receptors on the cell membrane (𝑥21) for the period [𝑡𝑒𝑛𝑑, 𝑡𝑒𝑛𝑑 ⁡+ ⁡12ℎ] was calculated 

using the Sedaghat model, with the insulin concentration 𝐼 from this period as input. Thus, the 

estimated 𝑥21 was influenced by the insulin administrations during the preceding [𝑡𝑒𝑛𝑑 ⁡− ⁡24ℎ, 

𝑡𝑒𝑛𝑑]  period. To ensure synchronization with CGM data, the 𝑥21 values were aggregated every 5 

minutes. This results in a 𝑥21 time series vector that contained 144 values, which was used as 

input in the LSTM-based model. 

5.2.5 Long Short Memory Neural Networks 

To address the binary classification problem, a RNN was developed, consisting of four LSTM 

layers, a custom attention mechanism, a concatenation layer, a dropout layer, and a dense 

output layer. Each input vector—𝐶𝐺𝑀, 𝑅𝑎𝑔, 𝑅𝑎𝑖, and 𝐺𝑙𝑢𝑡4—was processed by its corresponding 

LSTM layer. The outputs from these LSTM layers were then passed through custom attention 

layers. The attention–augmented outputs were concatenated, followed by dropout 

regularization, and finally fed into a dense layer for the final binary classification. 

 

Figure 26: LSTM-based Model Architecture. 
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The custom attention mechanism was designed to enhance the performance of the LSTM layers 

by dynamically emphasizing the most relevant aspects of the input sequences. This mechanism 

begun with a dense layer containing a single neuron and a tanh activation function, which 

computed raw attention scores for each timestep of the LSTM output. These scores were then 

flattened and normalized using a softmax activation function, resulting in attention weights. 

These weights were reshaped and applied via element–wise multiplication to the LSTM outputs, 

producing weighted outputs. Finally, a summation operation aggregated these weighted outputs 

across timesteps, creating a context vector that encapsulated the most relevant information from 

the input sequence. This attention mechanism, inspired by the work of Raffel et al. [67], allowed 

the network to focus on crucial aspects of the input, thereby improving predictive performance. 

 
Figure 27: Custom attention mechanism structure. 

The four input vectors were fed into their respective LSTM layers in a three-dimensional format: 

(𝑠𝑎𝑚𝑝𝑙𝑒𝑠, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠), where 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 referred to the total number of time series 

samples, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠 denoted the number of timesteps per time series, and 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 

represented the number of features per timestep. For the CGM vector, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠 was set to 

288, while for the  𝑅𝑎𝑔, 𝑅𝑎𝑖  and 𝐺𝑙𝑢𝑡4 vectors, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠 was set to 144. In all cases, the number 

of features was set to 1. 

The output of each LSTM layer retained the three-dimensional format of (𝑠𝑎𝑚𝑝𝑙𝑒𝑠, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠, 

𝑢𝑛𝑖𝑡𝑠), where units corresponded to the number of LSTM units in each layer. This output was fed 

into the custom attention mechanism, which produced a two-dimensional output (𝑠𝑎𝑚𝑝𝑙𝑒𝑠, 

𝑢𝑛𝑖𝑡𝑠). The outputs from the four attention layers were then concatenated, resulting in a 

combined output of shape (𝑠𝑎𝑚𝑝𝑙𝑒𝑠, 𝑢𝑛𝑖𝑡𝑠𝑐), where 𝑢𝑛𝑖𝑡𝑠𝑐 represented the sum of the units 

across the LSTM layers. The concatenated output was passed through a dropout layer to prevent 

overfitting, maintaining the same dimensions (𝑠𝑎𝑚𝑝𝑙𝑒𝑠, 𝑢𝑛𝑖𝑡𝑠𝑐). Finally, the output was fed into 

the final dense layer to perform the binary classification. 
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5.3 Model Training and Evaluation 

5.3.1 Handling Missing Data and Normalizing Features 

To address the issue of missing values in the CGM time series data, the KNNImputer from the 

scikit-learn library was utilized. This imputation method leveraged the k-nearest neighbors’ 

algorithm to estimate and fill in missing values. Specifically, it identified the 'k' nearest samples 

based on the available data points and used the average of these neighbors to impute the missing 

values (subsection 3.6.1.1). 

Various settings for the number of nearest neighbors (n_neighbors) were tested, including values 

of 3, 5, 7, and 10. After evaluating the results, the configuration with 3 nearest neighbors was 

chosen. This setting was selected because it best preserved the variance in the imputed data, 

ensuring that the imputed values closely matched the inherent variability of the original dataset. 

n_neighbors Variance Mean 

3 3488.346 159.372 

5 3483.159 159.344 

7 3480.818 159.347 

10 3477.908 159.342 
Table 4: Mean and variance statistics of the CGM vectors, following the imputation of missing values using the KNNImputer with 
n_neighbors values of 3, 5, 7, and 10. 

Given that the features within each input vector operated on different scales, normalization was 

a crucial step to ensure that features with higher numerical values did not disproportionately 

influence the model compared to features with lower values. To address this issue, Z-score 

normalization was employed, using the StandardScaler from the scikit-learn library. The 

StandardScaler applied this transformation as outlined in subsection 3.6.1.2. 

This method standardized each feature by transforming it according to its mean value and 

variance. This process resulted in features that had a mean of zero and a standard deviation of 

one, effectively scaling all features to have equal weight in the learning process. This 

normalization technique helped to balance the influence of all features, which led to a more 

effective and unbiased training process. 

5.3.2 Hyperparameters’ tuning 

Throughout the network, the tanh activation function, the default in Keras, was used for the 

LSTM layers, and a sigmoid activation function was applied in the final dense layer to classify the 

samples into two categories. For training, binary cross-entropy loss function and the Adam 
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optimizer were used. To further optimize the network, Keras' RandomSearch was employed to 

experiment with different hyperparameter configurations. 

Hyperparameter Search space 

Number of LSTM units 32, 64, 128 

L2 Regularization factor 0.00001, 0.001, 0.1 

Dropout rate 0.4, 0.6, 0.8 

Learning rate 0.001, 0.01, 0.1 

LSTM layer weight initializer RandomNormal, GlorotNormal, HeNormal 

Training epochs 20, 50, 100 

Batch size of samples 16, 32, 64 
Table 5: Parameter values checked for hyperparameter optimization. 

As shown in Table 3, the OhioT1DM dataset was imbalanced, with nocturnal hypoglycemic events 

occurring at rates of approximately 0.33 in the training set and 0.19 in the testing set. To address 

this class imbalance during model training, the stratified cross-validation method was used, 

specifically employing the StratifiedKFold function from the scikit-learn library. Stratified k-fold 

cross-validation is a technique that ensures each fold has approximately the same proportion of 

samples from each class, making it particularly useful for imbalanced datasets. 

 

Figure 28: Example of StratifiedKFold with k=5 on an imbalanced dataset with two classes [68]. 

For this model, a 5-fold StratifiedKFold approach was used. This method divided the dataset into 

five distinct folds, each maintaining the original class distribution. In each iteration, four of the 

folds were combined to create the training set, while the remaining fold was used as the 
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validation set. This process was repeated five times, with each fold serving as the validation set 

exactly once. The use of StratifiedKFold ensured that the model was trained and validated on 

different subsets of the data, which helped in the creation of a more robust and generalizable 

model by preserving class balance across all folds. 

5.3.3 Performance Assessment of the Model 

The evaluation of the prediction model was conducted through a set of metrics designed for 

assessing the discrimination ability of machine learning models in binary classification tasks. A 

confusion matrix was used to summarize the performance, while accuracy, precision, recall, and 

specificity provided insights into different aspects of the model’s classification abilities. 

Additionally, the AUC and ROC curves were utilized to assess the model's overall discriminative 

power. 

5.3.3.1 Binary Classification Threshold Optimization 

To determine the most appropriate binary classification threshold, predictions were initially 

generated using the training dataset. These predictions served as the basis for calculating the 

optimal threshold, which was identified through Youden's J statistic—a method that maximized 

the difference between true positive rate and false positive rate (subsection 3.6.3). Following 

this, the testing dataset was used for prediction, and the established threshold was applied to 

convert the probabilistic outputs into binary classifications. This approach ensured that the 

threshold was both data-driven and tailored to the specific characteristics of the model. 

5.3.3.2 Prediction Uncertainty Estimation 

To estimate the uncertainty of predictions, the Monte Carlo (MC) dropout technique was 

employed. This approach involved applying dropout during both training and inference, enabling 

the model to produce a distribution of predictions rather than a single output. By sampling 

multiple predictions for each input, the technique provided an estimate of the uncertainty 

associated with each prediction, which was crucial for understanding the confidence in the 

model's outputs [69]. 

5.3.3.3 External Evaluation of the Model 

Finally, the proposed model underwent external evaluation using data from a ten-day monitoring 

period which involved 11 patients with Type 1 Diabetes, including 6 males and 5 females. These 

patients, who were undergoing insulin pump therapy with continuous glucose monitoring, were 

recruited from the Diabetes Center at the First Department of Pediatrics, P. & A. Kyriakou 

Children’s Hospital in Athens, as part of the SMARTDIAB project. During the monitoring period, 

comprehensive data were collected every five minutes, including CGM readings, basal insulin 

levels, insulin boluses, and the amount of carbohydrates consumed in each meal [70]. 
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Patient Age Gender T1DM Duration BMI % HbA1c 

1 3 Male 2 18.9 6.3 

2 3 Male 1 16.7 8 

3 9 Female 5 16.5 6.6 

4 13 Female 12 24.3 7.5 

5 18 Female 12 18.3 7.2 

6 18 Male 10 18.6 5.7 

7 18 Male 16 19.8 7.8 

8 20 Female 10 24.4 6.2 

9 25 Female 17 29.2 8.3 

10 35 Male 22 19.8 5.7 

11 38 Male 19 27.4 6 
Table 6: Age in years, gender, T1DM duration in years, BMI in kg/m2 and percentage of HbA1c for each patient in SMARTDIAB 

dataset. 

Similar to the OhioT1DM study, a fixed sleep window from 8:00 PM to 8:00 AM the following 

morning was established, creating a 12-hour nocturnal prediction horizon. If a CGM reading 

dropped below 70 mg/dL during this period, the night was classified as a nocturnal hypoglycemia 

event (label = 1); otherwise, it was labeled as a non-hypoglycemia night (label = 0). Days with 

more than 24 consecutive missing CGM readings were excluded from the analysis. After these 

exclusions, 90 days of data remained, with a nocturnal hypoglycemia rate of 0.44. 

Patient 
Data 

Entries 

Data 

Days 

Noc 

Hypos 

Noc 

Hypos 

Rate 

1 2016 7 4 0.57 

2 2592 9 2 0.22 

3 2304 8 0 0 

4 1728 6 3 0.5 

5 2592 9 9 1 

6 2304 8 6 0.75 

7 2592 9 3 0.33 

8 2592 9 3 0.33 

9 2592 9 3 0.33 

10 2304 8 2 0.25 

11 2304 8 5 0.63 
Table 7: Descriptive statistics of the SMARTDIAB data. 

As outlined in the subsections 5.1 and 5.2, the same procedure was applied to the SMARTDIAB 

dataset in order to construct the four input vectors—𝐶𝐺𝑀, 𝑅𝑎𝑔, 𝑅𝑎𝑖, and 𝐺𝑙𝑢𝑡4—required for 
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the machine learning model. These vectors were then used to assess the generalization ability of 

the proposed hybrid model. 
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6. Results and Discussion 

In this chapter, the results of the proposed model are presented. The uncertainty of the model's 

predictions was analyzed to assess their reliability. Additionally, the performance of the 

developed model was compared with simpler models that used fewer input vectors. Attention 

weights were also employed to enhance the explainability of the model's predictions. Finally, the 

model trained on the OhioT1DM dataset was evaluated using the SMARTDIAB dataset to assess 

the model’s generalization capability. 

6.1 Discrimination Performance 

 

Figure 29: Evaluation results of the proposed model. 

The developed model demonstrated strong performance in predicting nocturnal hypoglycemia 

events, achieving an accuracy of 87.01% by correctly identifying 67 out of 77 test cases. This 

underscored the model's overall reliability. With a precision of 60.87%, 14 out of 23 predicted 

nocturnal hypoglycemia events were true positives, indicating a moderate presence of false 

positives. The model's specificity of 85.49% highlighted its effectiveness in correctly identifying 

non-hypoglycemia events, reducing the likelihood of missed cases. 

A recall of 93.33% showcased the model's high sensitivity, accurately detecting true nocturnal 

hypoglycemia events. The F1-score of 73.68% reflected a well-balanced performance between 
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precision and recall. Additionally, the ROC AUC score of 92.15% further confirmed the model's 

ability to effectively distinguish between nocturnal hypoglycemia and non-hypoglycemia events. 

6.2 Comparison of different input space compositions 

To assess the impact of the four input vectors on the model’s performance, three simpler models 

were developed. The first model used only the 𝐶𝐺𝑀 vector, the second combined the 𝐶𝐺𝑀 and 

𝑅𝑎𝑖  vectors, and the third incorporated 𝐶𝐺𝑀, 𝑅𝑎𝑖, and 𝑅𝑎𝑔 vectors. The obtained performance 

of these models was then compared to that of the proposed model, which utilized all four input 

vectors (𝐶𝐺𝑀, 𝑅𝑎𝑔, 𝑅𝑎𝑖, and 𝐺𝑙𝑢𝑡4). The comparison results are summarized in the table below. 

Inputs Accuracy Precision Specificity Recall F1-score 
ROC 

AUC 

𝑪𝑮𝑴 0.8312 0.5417 0.8226 0.8667 0.6667 0.9065 

𝑪𝑮𝑴, 𝑹𝒂𝒊 0.8571 0.5909 0.8548 0.8667 0.7027 0.943 

𝑪𝑮𝑴, 𝑹𝒂𝒊, 𝑹𝒂𝒈 0.8312 0.5385 0.8065 0.9333 0.6829 0.9355 

𝑪𝑮𝑴, 𝑹𝒂𝒊, 𝑹𝒂𝒈, 𝑮𝒍𝒖𝒕𝟒 0.8701 0.6087 0.8548 0.9333 0.7368 0.9215 

Table 8: Evaluation results of the machine learning models with the different number of input vectors. 

The proposed model, using all four input vectors, achieved the highest accuracy at 87.01%, 

outperforming the simpler models: the 𝐶𝐺𝑀-only 𝑎𝑛𝑑⁡𝐶𝐺𝑀⁡ +⁡𝑅𝑎𝑖 ⁡+ ⁡𝑅𝑎𝑔 models achieved an 

accuracy score of 83.12%, while the 𝐶𝐺𝑀⁡ +⁡𝑅𝑎𝑖  model reached 85.71%. Precision improved as 

more vectors were added, with the full model reaching 60.87%, indicating better identification 

of positive cases and fewer false positives. Specificity remained high (85.48%) in models that 

included 𝑅𝑎𝑖⁡and 𝐺𝑙𝑢𝑡4, suggesting these vectors enhance the accurate detection of negative 

cases. Models with fewer vectors showed a slight drop in specificity. 

Recall was highest (93.33%) for models with three or more vectors, including the proposed 

model, reflecting strong sensitivity in detecting true positive cases. The F1-score was also highest 

for the four-vector model at 73.68%. Interestingly, the ROC AUC score was highest (94.30%) for 

the 𝐶𝐺𝑀⁡ +⁡𝑅𝑎𝑖 model, indicating superior discriminative ability for this specific configuration. 

The proposed model had a slightly lower ROC AUC of 92.15%, suggesting that while the additional 

vectors improved accuracy, precision, and F1-score, they slightly impacted the model's ability to 

distinguish between classes. 

Overall, the addition of more input vectors generally improved accuracy, precision, and the F1-

score, with the proposed four-vector model delivering the best overall performance, despite a 

small reduction in ROC AUC. 
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6.3 Estimation of Model’s Prediction Uncertainty 

To quantify uncertainty, the MC dropout technique was applied, which involved running the 

model through 500 stochastic passes on the test dataset. The mean probabilities from these 

passes were calculated to represent the predictions, while the standard deviations were used as 

measures of uncertainty. A lower standard deviation indicated higher confidence in the 

prediction, while a higher standard deviation signaled greater uncertainty. 

 

Figure 30: Distribution of Prediction Uncertainties. 

The histogram above illustrates the distribution of prediction uncertainties across the OhioT1DM 

test dataset. Uncertainty values ranged from very low to approximately 0.2, with most 

predictions clustering around the lower end. This suggested that the majority of the model’s 

predictions were made with high confidence, though a few instances showed higher uncertainty. 

 

Figure 31: Uncertainty across the mean predicted probability values. 

A scatter plot was generated to further explore the relationship between prediction confidence 

and uncertainty. It plots the average predicted probability against its corresponding uncertainty 
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across the 500 stochastic passes. The scatter plot shows that predictions with mean probabilities 

close to 1 or 0 generally have lower uncertainties, indicating strong confidence. In contrast, 

predictions with probabilities near the decision threshold exhibit higher uncertainties, reflecting 

less confidence. 

 

Figure 32: Overlayed histogram of mean probabilities for both correct and incorrect predictions. 

To analyze the connection between confidence and accuracy, an overlaid histogram was created, 

comparing the mean probabilities of correct and incorrect predictions. The results reveal that 

correct predictions are typically associated with both high and low mean probabilities, indicating 

the model's strong confidence in these decisions. Incorrect predictions, however, tend to be 

linked with intermediate probability values, suggesting that the model was less certain and more 

prone to errors in these cases. 

In summary, the MC dropout analysis highlights that the model's uncertainty tends to be low for 

predictions near the extremes, while uncertainty increases near the decision threshold, 

correlating with a higher likelihood of incorrect predictions. 

6.4 Interpretation of Predictions Using Attention Weights 

To enhance the understanding of the model's interpretability and focus across different input 

features, heatmaps of attention weights were generated for each input vector (𝐶𝐺𝑀, 𝑅𝑎𝑔, 𝑅𝑎𝑖, 

and 𝐺𝑙𝑢𝑡4) at each time step for all samples. Additionally, line plots were created to summarize 

the total attention weights across all samples for each time step. 

The heatmap for the 𝐶𝐺𝑀 input vector showed high attention scores concentrated at specific 

time steps across various samples, indicating that the model focused on particular periods for 

making predictions. The attention pattern varied across samples, suggesting that the model 

tailored its focus based on individual sample characteristics. The line plot revealed a decreasing 

trend in attention over time, with peak attention at the beginning of the previous night’s sleep 
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and a notable increase towards the end of the previous sleep period (around the 144th time 

step). This pattern suggested that early glucose readings are crucial for identifying trends, while 

glucose levels at the end of the previous sleep period also played a significant role. 

 
Figure 33: Visualization of attention weights for the 𝐶𝐺𝑀 input vectors. The heatmap (left) shows attention distribution across 
samples and time steps, while the line plot (right) summarizes the total attention at each time step. Timestep “t” refers to the 
initiation of the sleep period. 

The heatmap for the 𝑅𝑎𝑔 input vector indicated that attention is concentrated at specific, isolated 

time steps, rather than uniformly across the entire timeline. This suggested that 𝑅𝑎𝑔 had a critical 

impact at particular moments and samples. This observation might also be linked to missing meal 

information in the OhioT1DM dataset. The line plot showed a sharp increase in attention towards 

later time steps, especially after time step 120, reflecting the importance of glucose appearance 

in the bloodstream during the later sleep phases and as the awakening of the patient approaches. 

Early time steps d relatively low attention, highlighting that the rate of glucose appearance 

became more influential as time progresses. 

 
Figure 34: Visualization of attention weights for the 𝑅𝑎𝑔 input vectors. The heatmap (left) shows attention distribution across 

samples and time steps, while the line plot (right) summarizes the total attention at each time step. Timestep “t” refers to the 
initiation of the sleep period. 

The heatmap for the 𝑅𝑎𝑖  input vector revealed a dispersed attention pattern, with high attention 

scores scattered across various time steps. This indicated that the model intermittently relied on 

the rate of insulin appearance throughout the timeline. The line plot demonstrated that attention 
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scores were initially high, drop quickly, and then rise again, peaking around the middle of the 

time series (around time step 50). This suggested that while the initial rate of insulin appearance 

was important, the model placed increasing emphasis on the middle period, likely corresponding 

to key metabolic changes during the sleep period (Dawn phenomenon, Somogyi effect) [71]. 

Attention remained relatively high in the latter part of the series, indicating its continued 

importance in refining predictions. 

 
Figure 35: Visualization of attention weights for the 𝑅𝑎𝑖 input vectors. The heatmap (left) shows attention distribution across 
samples and time steps, while the line plot (right) summarizes the total attention at each time step. Timestep “t” refers to the 
initiation of the sleep period. 

The heatmap for the 𝐺𝑙𝑢𝑡4 input vector showed a varied distribution of attention, with certain 

time steps consistently receiving higher attention across samples. This indicated that specific 

moments were crucial for the model’s predictions. The line plot revealed a significant peak in 

attention during the early time steps, suggesting that 𝐺𝑙𝑢𝑡4 levels at the beginning of sleep were 

critical for predicting glucose fluctuations. Attention decreased gradually in later time steps, 

reflecting the reduced impact of 𝐺𝑙𝑢𝑡4 levels as the time sequence progresses. 

 
Figure 36: Visualization of attention weights for the 𝐺𝑙𝑢𝑡4 input vectors. The heatmap (left) shows attention distribution across 
samples and time steps, while the line plot (right) summarizes the total attention at each time step. Timestep “t” refers to the 
initiation of the sleep period. 

The analysis of attention weights across the four input vectors—𝐶𝐺𝑀, 𝑅𝑎𝑔, 𝑅𝑎𝑖, and 𝐺𝑙𝑢𝑡4—

revealed how the model dynamically prioritized different aspects of the input data over time. 
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The 𝐶𝐺𝑀 input vector highlighted the importance of early and middle glucose readings. The 𝑅𝑎𝑔 

vector showed that glucose appearance became more critical as the sleep period window neared. 

The 𝑅𝑎𝑖  vector's dispersed attention indicated intermittent reliance on insulin appearance, with 

significant focus during key metabolic periods. Finally, the 𝐺𝑙𝑢𝑡4 vector emphasized the 

significance of early insulin-sensitive glucose receptor levels. 

Overall, the model demonstrated a sophisticated mechanism for assigning varying levels of 

importance to different temporal features, which allowed for tailored predictions based on the 

most relevant information at critical moments. This detailed understanding of attention patterns 

not only enhanced model interpretability but also provided valuable insights into the 

physiological processes deemed significant for accurate hypoglycemia prediction. 

6.4.1 Attention Scores Visualization for Characteristic Predictions 

The attention weights of the four input vectors—𝐶𝐺𝑀, 𝑅𝑎𝑔, 𝑅𝑎𝑖, and 𝐺𝑙𝑢𝑡4—were also analyzed 

in relation to four key prediction outcomes: true positive (TP), true negative (TN), false positive 

(FP), and false negative (FN). This analysis was intended to uncover how attention mechanisms 

vary across these prediction scenarios, providing insights into the factors contributing to both 

accurate and erroneous predictions. 

6.4.1.1 True Positive Prediction 

 
Figure 37: Attention of the four input vectors for a TP prediction. Timestep “t” refers to the initiation of the sleep period. 
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The attention weight for the 𝐶𝐺𝑀 input vector initially started high during the early stages of the 

previous night's sleep, peaking early before experiencing a sharp decline. It remained low with 

minor fluctuations before showing a slight increase as the sleep period end approached. This 

pattern suggested that 𝐶𝐺𝑀 values were most influential at the beginning of the previous night’s 

sleep period, with its importance quickly diminishing and then partially recovering as the sleep 

period neared. 

In contrast, the 𝑅𝑎𝑔 input vector begun with low attention but gradually increased, stabilizing 

before spiking sharply towards the end of the sleep period. This trend indicated that 𝑅𝑎𝑔⁡ 

significance grew over time, reaching its peak towards the conclusion of the sleep period and 

highlighting its crucial role in the later stages of the sleep for this specific sample. 

The 𝑅𝑎𝑖  input vector demonstrated rising attention from the start, maintaining relatively high 

values until experiencing a sharp decline towards the end of the sleep period, followed by a slight 

recovery. This pattern suggested that 𝑅𝑎𝑖  was highly influential in the early stages of the sleep 

period but became less significant as sleep time progresses, while retaining some relevance 

towards the end for this particular case. 

For the 𝐺𝑙𝑢𝑡4 input vector, attention started high, dropped significantly to a low point midway 

through the sleep period, and then gradually increased again. This indicated that 𝐺𝑙𝑢𝑡4 was 

initially important, lost significance in the middle, and regained relevance towards the end of 

sleep period, reflecting its varying impact at different stages of the night for this sample. 

Overall, 𝐶𝐺𝑀 and 𝑅𝑎𝑖  were prominent during the early stages of the time series vectors, while 

𝐺𝑙𝑢𝑡4 influence declined markedly in the middle. 𝑅𝑎𝑔 became increasingly important towards 

the end, with 𝐺𝑙𝑢𝑡4 partially recovered its influence and 𝐶𝐺𝑀 showed a minor uptick. This 

analysis underscored the dynamic role of each input vector throughout the timeline, highlighting 

their varying contributions at different stages for this TP prediction. 

6.4.1.2 True Negative Prediction 

In the TN prediction case, the 𝐶𝐺𝑀 input vector exhibited sharp attention peaks early on, 

particularly within the first 150-time steps, which corresponded to the previous night sleep 

period, followed by a significant drop and consistently low attention for the remainder of the 

period. This indicated that CGM played a critical role early in the prediction process, but its 

influence diminished as time progresses. 

The 𝑅𝑎𝑔 input started with low attention, gradually increased, and peaked near the end of the 

sleep period before sharply declining. This pattern suggested that 𝑅𝑎𝑔 became increasingly 

important as the end of the sleep period approached, particularly in the later stages. The 𝑅𝑎𝑖  

input showed high attention initially, which remained elevated for the first quarter of the sleep 
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period before sharply declining, with a slight increase toward the end. This suggested that 𝑅𝑎𝑖  

was influential early in the first stages of sleep but became less significant over time. 𝐺𝑙𝑢𝑡4 begun 

with low attention, peaked early, and then gradually decreased, with some fluctuations, 

maintaining a more consistent role throughout the night compared to 𝑅𝑎𝑖. 

 

Figure 38: Attention of the four input vectors for a TN prediction. Timestep “t” refers to the initiation of the sleep period. 

In summary, 𝐶𝐺𝑀 and 𝑅𝑎𝑖  were pivotal in the early stages of TN prediction, while 𝑅𝑎𝑔 gained 

importance toward the end, and 𝐺𝑙𝑢𝑡4 maintained a steadier influence. Compared to the TP 

prediction, which demonstrated a gradual shift in attention, TN prediction showed more abrupt 

changes, especially in the 𝐶𝐺𝑀 vector. The sharp early spikes in 𝐶𝐺𝑀 and the late rise in 𝑅𝑎𝑔 

attention suggested that these inputs were key in distinguishing true negatives. 

6.4.1.3 False Positive Prediction 

In the FP prediction, the attention weight for the 𝐶𝐺𝑀 input vector showed sharp spikes at the 

beginning, indicating that the model heavily prioritized early glucose readings of the previous 

night’s sleep period. After these initial peaks, attention dropped sharply and remained low for 

the rest of the sequence, suggesting that 𝐶𝐺𝑀 influence was concentrated in the sleep period of 

the previous night. Conversely, the 𝑅𝑎𝑔 input vector gradually increased in attention, with a slight 

dip mid-sequence before peaking toward the end. This pattern indicated that 𝑅𝑎𝑔 became 
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increasingly important as the end of sleep period approached, reflecting the model's focus on 

the rate of glucose appearance in the bloodstream as the awakening approached. 

For the 𝑅𝑎𝑖  input vector, attention remained low initially but rose sharply around time step 60, 

maintaining high levels for the remainder of the period. This suggested that 𝑅𝑎𝑖  became a key 

factor midway through the sequence and played a critical role in this FP prediction. In contrast, 

the 𝐺𝑙𝑢𝑡4 input vector peaked early, followed by a gradual decline, indicating that 𝐺𝑙𝑢𝑡4 was 

initially significant but diminished in importance as the sleep progressed. 

 

Figure 39: Attention of the four input vectors for a FP prediction. Timestep “t” refers to the initiation of the sleep period. 

Overall, in this FP scenario, 𝐶𝐺𝑀 played a strong role at the beginning, while 𝑅𝑎𝑔 and 𝑅𝑎𝑖  gained 

prominence later in the sequence. 𝐺𝑙𝑢𝑡4 exerted strong early influence but gradually faded. 

While 𝑅𝑎𝑔 and 𝑅𝑎𝑖  also became more influential later in TP and TN predictions, this shift was 

more pronounced in FP scenarios, suggesting that the model might overemphasized late-stage 

dynamics (𝑅𝑎𝑔 and 𝑅𝑎𝑖) in false positives. This could led to an overestimation of glucose 

appearance and insulin activity, resulting in incorrect predictions. 

6.4.1.4 False Negative Prediction 

In the FN prediction, the attention weights for the 𝐶𝐺𝑀 input vector exhibited sharp early peaks 

and significant fluctuations until time step 200, indicating intermittent focus on glucose readings. 



 

71 
 

Afterward, 𝐶𝐺𝑀 attention decreased and remained low, reflecting reduced influence in later 

stages. 𝑅𝑎𝑔, on the other hand, steadily increased in attention, peaking toward the end, 

indicating its growing importance as the awakening neared. 

𝑅𝑎𝑖  started with high attention but dropped sharply after time step 60, losing relevance in later 

stages. This decline suggested the model initially valued insulin-related signals but failed to 

account for their ongoing impact, which might led to missed cues in the prediction. 𝐺𝑙𝑢𝑡4, in 

contrast, begun with low attention but gradually rose, becoming more influential toward the end 

of the sequence. This increase indicated the model's growing reliance on glucose regulation 

factors, though this late-stage focus on 𝐺𝑙𝑢𝑡4 might not fully counterbalanced the early decline 

in 𝑅𝑎𝑖, contributing to the false negative prediction. 

 

Figure 40: Attention of the four input vectors for a FN prediction. Timestep “t” refers to the initiation of the sleep period. 

In this FN prediction, attention patterns—particularly for 𝐶𝐺𝑀—showed more variability and 

inconsistency compared to the stable patterns seen in TP and TN predictions. The erratic focus 

on 𝐶𝐺𝑀 and the sharp early decline in 𝑅𝑎𝑖  importance suggested that critical information was 

overlooked, leading to the prediction error. While 𝑅𝑎𝑔 and 𝐺𝑙𝑢𝑡4 exhibited steady increases, 

similar to their roles in TP and TN predictions, the inconsistent weighting of 𝐶𝐺𝑀 and the early 

drop in 𝑅𝑎𝑖  relevance likely played a major role in the model's failure to accurately predict the 

outcome. 



 

72 
 

6.5 Evaluation of the Model on the SMARTDIAB dataset 

6.5.1 Discrimination Performance 

 

Figure 41: Evaluation results of the machine learning model in the SMARTDIAB dataset. 

The model was evaluated on the SMARTDIAB dataset, yielding an accuracy of 81.11%. This 

indicated that it correctly predicted 73 out of 90 samples, a slightly lower rate than in the 

OhioT1DM test dataset (Table 8), but still demonstrating strong overall performance. The 

precision of 92.59% showed a significant improvement, with 25 out of 27 predicted nocturnal 

hypoglycemia events being true positives, suggesting that the model had effectively reduced the 

occurrence of false positives in this dataset’s predictions. 

The model's specificity of 96.00% was particularly notable, as it demonstrated a heightened 

ability to correctly identify non-hypoglycemia cases. However, the recall dropped to 62.50%, 

indicating that while the model remained highly precise, it missed some true hypoglycemia cases. 

The F1-score of 74.63% reflected a strong balance between precision and recall. Despite this, the 

ROC AUC score of 91.45% underscored the model's continued performance in distinguishing 
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between nocturnal hypoglycemia and non-hypoglycemia events, confirming its robustness across 

different datasets. 

In summary, the model continued to perform effectively in predicting nocturnal hypoglycemia, 

with a marked improvement in precision and specificity, though it faced some challenges in 

maintaining high recall. 

6.5.2 Estimation of Model’s Prediction Uncertainty 

The uncertainty in the model's predictions on the new dataset was evaluated using the same MC 

dropout technique as applied in the original analysis. The model was run over 500 stochastic 

passes, and the mean probabilities of these passes were calculated to assess prediction 

confidence, while the corresponding standard deviations were used as a measure of uncertainty. 

As in the previous evaluation, a lower standard deviation reflected greater prediction confidence, 

while a higher standard deviation suggested higher uncertainty. 

 

Figure 42: Visualization of predictions’ uncertainty in the SMARTDIAB dataset. Top left: Overlayed histogram of mean probabilities 
for both correct and incorrect predictions. Bottom left: Uncertainty across the mean predicted probability values. Right: 
Distribution of Prediction Uncertainties 

The uncertainty histogram for the SMARTDIAB dataset closely mirrored that of the previous 

evaluation, with most uncertainty values concentrated at the lower end, signifying that the 

majority of predictions were made with high confidence. A small number of predictions, 

however, showed higher uncertainty, with values reaching around 0.175, indicating less certainty 

in some cases. 
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The scatter plot mapping averaged probabilities against their uncertainties revealed a pattern 

similar to that seen in the OhioT1DM dataset. Predictions with mean probabilities near 1 or 0 had 

lower associated uncertainties, reflecting the model's confidence in these cases. In contrast, 

predictions around the decision threshold exhibited higher uncertainty, highlighting the model’s 

uncertainty in these borderline instances. 

The overlayed histogram comparing correct and incorrect predictions showed a similar pattern. 

Correct predictions tended to cluster near the extremes, close to 0 or 1, reflecting high 

confidence. Incorrect predictions, by contrast, were more frequently associated with 

intermediate probability values, where the model showed lower confidence and higher 

uncertainty. 

6.5.3 Interpretation of Predictions Using Attention Weights 

 
Figure 43: Heatmaps of the attention weights of the four input vectors of the SMARTDIAB dataset. Timestep “t” refers to the 
initiation of the sleep period. 

The 𝐶𝐺𝑀 input vector's heatmap showed that the model concentrated on specific time points, 

though the attention was more diffuse than in the OhioT1DM dataset. This suggested that in the 

SMARTDIAB dataset, the model spread its reliance on 𝐶𝐺𝑀 data across the timeline, likely due 

to variability in glucose patterns among the samples. For the 𝑅𝑎𝑔 input vector, the heatmap 

indicated that the model selectively focused on a few critical moments in the sequence, reflecting 

the importance of glucose appearance at particular time points. 
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The 𝑅𝑎𝑖  heatmap showed a more dispersed and sporadic attention pattern, signaling variable 

insulin dynamics across samples, with certain periods attracting more attention depending on 

sample-specific factors. The 𝐺𝑙𝑢𝑡4 heatmap similarly revealed variability across samples and time 

steps, with certain moments consistently drawing more focus, while much of the sequence 

showed lower attention. This suggested a more intermittent influence of 𝐺𝑙𝑢𝑡4 on the model's 

predictions in this dataset. 

 
Figure 44: Line plots of the averaged attention weights of the four input vectors of the SMARTDIAB dataset. Timestep “t” refers to 
the initiation of the sleep period. 

In the line plot for 𝐶𝐺𝑀, a clear trend emerged: the model allocated higher attention early in the 

time sequence, which gradually decreased as time progresses. This highlighted the importance 

of early glucose readings from the previous night’s sleep period in identifying trends. Lower 

attention in later time steps suggested that the model relied less on these later glucose readings 

compared to the previous dataset. The 𝑅𝑎𝑔 line plot showed a significant increase in attention 

toward the middle and later time steps, emphasizing the role of glucose appearance after fasting 

in shaping glucose levels during the sleep period. This shifting attention aligned with the 

physiological importance of glucose dynamics during these periods, as the end of sleep period 

approached. 

For the 𝑅𝑎𝑖  input vector, attention rose during the middle time steps, although less sharply than 

in the previous dataset. Higher attention early and midway through the timeline indicated the 

model's continued reliance on insulin appearance during early and middle sleep periods. This 
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pattern underscored the role of insulin data in refining predictions. Finally, the 𝐺𝑙𝑢𝑡4 line plot 

showed a prominent early peak, indicating the model prioritized initial 𝐺𝑙𝑢𝑡4 levels. This reflected 

the critical role of insulin-sensitive glucose receptors at the start of the night, though attention 

declined toward later time steps, suggesting early 𝐺𝑙𝑢𝑡4 levels were more pivotal in this dataset. 

Overall, the SMARTDIAB dataset analysis revealed that the model continued to prioritize 

different features dynamically across time. Early glucose readings remained crucial, while 𝑅𝑎𝑔 

became more important in later time steps, reflecting the physiological significance of glucose 

appearance during fasting sleeping periods. The 𝑅𝑎𝑖  vector showed intermittent attention, 

particularly in the middle of the sequence, highlighting its role in insulin dynamics. 𝐺𝑙𝑢𝑡4 

remained influential in the early stages, reinforcing its impact on shaping glucose trends at the 

beginning of the night. 

6.6 Comparison with the State of the Art 

Study Dataset Model AUC-ROC Specificity Recall 

Berikov et al. [61] 
406 T1D patients 

(clinic database) 
RF 0.94 0.87 0.90 

Jensen et al. [58] 
463 T1D patients 

(Onset 5 trial by Novo 
Nordisk) 

LDA 0.79 0.70 0.75 

Parcerisas et al. [60] 
10 T1D patients 
(clinic database) 

SVM 0.81 0.75 0.95 

Mosquera-Lopez et al. [59] 
124 T1D patients 
(Tidepool Big Data 
Donation Dataset) 

SVR 0.86 0.94 0.72 

Guemes et al. [72] 
6 T1D patients 

(OhioT1DM dataset) 
SVM 0.78 0.72 0.68 

Afentakis et al. [73] 
37 T1D patients 
(clinic database) 

SVM 0.79 0.72 0.72 

Proposed model 
12 T1D patients 

(OhioT1DM dataset) 
LSTM 0.92 0.85 0.93 

Table 9: Comparison of model performance metrics in T1D nocturnal hypoglycemia prediction studies. RF: Random Forest, LDA: 
Linear Discrimination Analysis, SVM: Support Vector Machine, SVR: Support Vector Regression. 

In comparison to existing studies, the developed model demonstrated competitive performance 

across several key metrics. With an AUC-ROC of 0.9215, it performed similarly to Berikov’s model 

and outperformed other models like Jensen’s  and Parcerisas’. Additionally, the developed 

model’s specificity (0.8548) was close to top performers like Mosquera-Lopez’s model, indicating 

strong ability to correctly identify negative cases. 

Despite the lower precision, the proposed model yielded a recall score of 0.9333, which 

surpassed most compared models, ensuring that the majority of positive cases were accurately 
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identified. Overall, the proposed model demonstrated satisfying discrimination performance, 

with particularly strong recall and AUC-ROC values. 
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7. Conclusions and Future Work 

In this study, an interpretable model was developed to estimate the risk of nocturnal 

hypoglycemia in patients with Type 1 Diabetes. The model was trained and evaluated using real 

patient data from the OhioT1DM dataset, which included CGM, insulin administration, and 

carbohydrate intake. To capture the complex physiological processes of insulin absorption and 

glucose metabolism, simulation models were applied to transform the input data. These models 

calculated physiological parameters such as the rates of glucose and insulin appearance in the 

blood and the percentage of GLUT4 transporters on cell membranes during sleep. 

The predictions were generated using an RNN architecture that incorporated one LSTM layer and 

an Attention layer for each input vector. A Concatenate layer, Dropout layer, and Dense layer 

followed to complete the model architecture. Hyperparameter tuning was performed using 

stratified cross-validation, and the binary classification threshold was determined by Youden’s J 

Statistic. Importantly, the model's interpretability was enhanced by visualizing the Attention 

layer weights for each input vector. 

The model exhibited strong performance, achieving an accuracy of 87.01% and a recall of 93.33%, 

demonstrating its ability to detect nocturnal hypoglycemia events effectively. The F1-score of 

73.68% and precision of 60.87% suggested solid overall performance, albeit with moderate false-

positive rates. A ROC AUC of 92.15% underscored the model’s effectiveness in distinguishing 

between nocturnal hypoglycemia and non-hypoglycemia events. 

Analysis of the attention weights provided key insights into the model’s decision-making process. 

The model dynamically prioritized input vectors such as blood glucose levels (𝐶𝐺𝑀), rates of 

glucose and insulin appearance (𝑅𝑎𝑔 and 𝑅𝑎𝑖), and GLUT4 levels (𝐺𝑙𝑢𝑡4) based on the time steps 

and physiological changes during sleep. 𝐶𝐺𝑀 data from the previous night’s sleep period and 

𝐺𝑙𝑢𝑡4 percentage on the cell surface at sleep onset were more influential. As the sleep 

progressed, 𝑅𝑎𝑔 gain importance, particularly near the “wake-up time”, while 𝑅𝑎𝑖  showed 

intermittent relevance, reflecting how the model adapts to metabolic shifts during the fasting 

state of sleep. Furthermore, MC dropout analysis revealed that predictions with probabilities 

near the extremes had low uncertainty, while those close to the decision threshold exhibited 

higher uncertainty, often correlating with prediction errors. This indicated the model’s 

confidence in its predictions and highlighted areas for improvement in handling borderline cases. 

The model's robustness was further tested on the SMARTDIAB dataset, where it maintained high 

specificity (96%) and improved precision (92.59%). However, recall (62.50%) dropped, indicating 

the model occasionally missed true hypoglycemia cases. This suggested that while the model 

performs well in identifying positive cases, it may struggle with certain patterns in different 

datasets. 
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Several potential future improvements can be outlined here. First, the parameterization of the 

simulation models could be adjusted by incorporating real data on sleep onset and duration, 

rather than relying on hypothesized sleep windows. Additionally, the fixed 12-hour sleep horizon 

could be reconsidered. Since the model is global, incorporating patient-specific data such as age, 

weight, and gender might enhance personalization. With sufficient data, fully individualized 

models could be developed. 

In terms of model architecture, experimenting with alternative designs could yield better results. 

Although this study only explored one architecture, refining the decision threshold, enhancing 

the attention mechanism, or employing post-processing techniques could reduce false positives 

and negatives. The decline in recall on the SMARTDIAB dataset underscores the need to improve 

recall without compromising precision, perhaps through ensemble methods or dataset-specific 

feature engineering [74, 75]. 

Further improvements might come from incorporating additional physiological or behavioral 

inputs such as physical activity, illness, or sleep quality, which could enhance the model’s 

accuracy. Exploring physiological biomarkers beyond 𝐶𝐺𝑀, 𝑅𝑎𝑔, 𝑅𝑎𝑖, and 𝐺𝑙𝑢𝑡4 could provide a 

more holistic understanding of nocturnal hypoglycemia patterns. Moreover, addressing 

prediction uncertainty through methods like uncertainty-aware learning or confidence 

calibration could improve the reliability of borderline predictions [76]. 

Finally, interpretability could be enhanced through techniques such as attention maps, SHAP 

SHapley Additive exPlanations (SHAP), or Local Interpretable Model-agnostic Explanations 

(LIME), making the model more transparent and trustworthy in clinical applications [77, 78]. 

Further investigation into attention mechanisms might also offer deeper insights into the 

physiological factors driving hypoglycemia during sleep. 
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