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ITepiindmn

Ot dnuompacieg anoteholy YeUEMMOOELS UNYAVICHONE TOU YETOULOTIOLOUVTAL EUPEWS GE TOA-
AoUg Toyelc, amd TNV TEYVN XU TIC AYOPES NAEXTEIXNG EVEPYELAS, HEYEL TO NAEXTEOWLXO
eumopto xan T dapruor. Oloeg xplowa epyaleia Yior TNV XATUVOUT TOEWY XAl T CUCCH-
pEVaN €668WYV, €xouv uehetniel exTtevic 1600 61N Vewpla 660 xa oty Tedén. lotopwd,
oL dnuonpacieg delTeEng TWNG €Y0UY XUpLaEYNoEL, AOYw TNg UTopdng xuplapyne oTeaTnyL-
XS YO TOUC EVOLAPEROUEVOLG ayopaoTES. (20TOC0, Ta TEAEUTALO YEOVLO TUEAUTNEEITOL Lot
a&loonuelwTn otpopr otn Plounyavio TEog TG ETAVUAUBAVOUEVES BNUOTRACIES TEWTNG
Tiwhc. H nopodoa Simhwuatiny diepeuvd tnyv avdiuon ec6dwyv oe autd To TAalolo, eaTidlo-
VTUC OE OVEEHPTNTOUG XAl TUVOUOLOTUTIOL XATAVEUNUEVOUS OlYOPAUC TEG TIOU TTROCOUOLIVOVTAL
and alyopltduoug dueong pddnonc.

H dimhwpotiny e€etdlel tplar faoixnd epwTAUATO: TEWTOV, BLEPEUVE TNV OMOTEAECUATL-
xOTNTA EVOS “TEYVNTON” AYORUCTY—0 OTOl0C GUUUETEYEL GTY) ONUOTEUCI UE GTOYO TNV
adgnon g TWAC TOANONE TOU AVTIXEWWEVOU—WE UTOXATACTATO UIdG TApadoctaxnic eAd-
ytotne Twng. Aedtepoy, availel Tic mavéc Slapopéc oTo €000a METAED AYOpACTMOY TOU
yenotpomotoly no-regret xou no-swap regret aiyopldupouc. Téhog, e€etdlel tn oyéon yeta-
&0 TWV TEOXUTTOVIWY ECOOWY and ENAVORAUPAVOUEVES dNUOTIRACIES TEMTNG TYWNG Xl TWV
AVOUEVOUEVKY £0O0WY amd dnuonpacieg dedtepne TWhg und Tig Bleg Mnebliavég cuvin-
xec. Ta nelpapotind wog evprjuota xaTadexviouy OTL eVe 1 cuunepiAndr evog “teyvntol”
ayopao T auidvel ta €00da, 1N enidpact) Tou TNV aLinor auTh elvan UElwUEVn o oyéor
ue TNV enidpoaon piag BEATIOTNG eAdytotne Twhc. Enl npoo¥étwe, dev mapatnesiton onua-
VTIXO TAEOVEXTNUA, OGOV apopd oTa €500, UETAED TG YeYone no-regret €vovti no-swap
regret alyoplduwv 1 to avtictpogo. Télog, 1 clyxplon TwWV €060WY UeTOE) ONUOTEA-
OLWY TEMOTNE Xl BEVTERNE TG OEV 00NYEl OE CUPES CUUTEPAUOUA, XUV TA ATOTEAECUATOL
OLAPOPOTIOLOVVTAL AVEL TERITTWON).

Agleigc KAslou&

Kuplapyn Etpatnyw, Enavohaufavouevee Anuponpaciec, Anuonpaocieg Ipdtnge Tuwrc,
Alyoprduor "Ayeong Mdinone, No-Regret Ahyoprduol, Erdyiotn T






Abstract

Auctions are fundamental mechanisms widely used across various domains, from art
and electricity markets to e-commerce and advertising. As critical tools for resource
allocation and revenue generation, they have been extensively studied in both theory
and practice. Historically, second-price auctions have been favored for their ease of
comprehension and control, owing to the existence of a dominant strategy for bidders.
However, in recent years, there has been a notable industry shift towards repeated
first-price auctions. This thesis investigates revenue generation within this framework,
focusing on independent and identically distributed (i.i.d.) bidders simulated by online
learning algorithms.

The study addresses three main questions: first, it explores the efficacy of a “fake”
bidder—an artificial agent inserted into the auction by the seller to raise prices—as
a substitute for a traditional reserve price. Second, it analyzes potential differences
in revenue between no-regret and no-swap regret bidders. Finally, it examines the
relationship between the revenue generated from repeated first-price auctions with the
expected revenue from second-price auctions under the same Bayesian conditions. Our
experimental findings indicate that while including a “fake” bidder enhances revenue,
its impact does not fully replicate that of an optimal reserve price. Furthermore,
no significant revenue advantage is observed between no-regret and no-swap regret
algorithms. Lastly, the comparison of revenue between first-price and second-price
auctions does not lead to a definitive conclusion, as the results remain scenario-dependent.

Keywords

Dominant Strategy, Repeated Auctions, First-price auctions, Online Learning Algorithms,
No-Regret Algorithms, Reserve Price






Euyapiotieg

H ohoxifpworn tne dimhwuotixic opilel T0 Tého¢ evog Ueydhou xegohaiou: NG mOAL-
etoUg goltnong otnv oyolr) Hiextpohdywv Mnyovixwv xow Mrnyovixov Tmohoyio v
(HMMY). Ynuotodotel ©voT1660 %o Ty opyf evoc véou ueydhou xegadaiov, e Lwig
HETS To MpomTUytaxs-peTanTUYLoxs. TIoAkéc ol oxédeic xou o cuvacVHUATO TTOU XATOXAD-
Couv 10 HUAAS pou oe auTy TN PeTdBoo... Aev €yw anogaacicel molo Vo elvon TO ENOUEVO
uou Bruc, woTt6co &fpw UYE OLYoupld OTL OTA QOLTNTIXA MO YEOVIL UTREEAY dToUo TOU
anotéAecay éumveuon yia uéva xou €Bahay to Adopdxt TOUG OTO Vo YONTEUTE Omd TOV
TOMEN TV BLAXELTOV HOUNUATIXGY, TwY aAyoplluwy, Tng YewenTixhc TAnpopopixhg: exel
Tou Ta pardnuoTixd Tadouy va elvon apneNUéva xou EVapUovIoVToL UE TO QUOLXO XOCUO KoL
N Aoyn. XLvenme, a&ilel TOUAYLOTOV ULol XY AVOPOEE OE QUTE T GTOUA.

Oo Riela mewTioTwe Vo euyoEloTHoK Tov XadnyNTh Anurten Pwtdxr, oyl uévo v
v eniBAedn Tng SimhwUaTiXAC Hou, TN oTHELEN xou TNV ETAUCT] OAWY TWV ATOPLOY UOU—
mou Oev elvon xadOAou aeANTEL—OAAG XOUL VLot XATL AXOUT] THO CTUOVTIXO YLot UEVA: TNV
aydmn Tou Ylol Tov Tougd TNS VewenTXNS TANROQOpLXC, Wlo aydmn i €va tddog mou To
potpdletan, to peTadidel otoug padntéc tou. Nowlw 6Tl N emoTAUY, avelopTHTwS TouEa,
xpUPeL éva eldog payelog Yéoa g, xoL To OAO VONUA EYXELTOL TNV AVOXIALYN AUTAC TN
uayetoc. O xdprog Pwtdnng dlvel auth TNy guxatplot GTOUE YOLTNTES Xa YU oWTO TOV AOYO
elvan xou o ayamnuevog wou xadnynthc. Elvon peydin pou yopd mou éxave Ty SITAWUATLIXY
pou yoali Tou.

Em npociétne, Yo Hieho vo euyaplothow Tov LTtpath Xx0oUAdxn, o onoloc Eexivnoe
vor ETBAETEL TNV OLTAGUATIXY MOV w¢ UeTadldoxTopxdg epeuvnthc oto EPFL, otn Awld-
V1), xou ohoxAfpwoe TNy eniBredn wg enlxovpog xodnyntic oto Aarhus University! O
Ytpatrg mpdTeve To Véua TNG BmAwUaTIXnS, €xovToag Padeld Yvmon Tou Topéa xa OVTog
VoS VoL amavToeL ontoloudnnote eldoug amopia wou dnuoupyolvtay. H ouufoly| tou
ATy TOAOTIUY %o Y€K TWV TAXTIXDV SLUBXTUOX®Y cUVAVTHoEWY Tou elya pall Tou xou
ue tov xOplo Pwtdnn fuodor TOANG mpdypato xou EedidAuva onuovTixd cpwtiuata. To
TNyolo EVOLAPEROV TOU LTEATY| VIO EMOTNUOVIXA EPWTHUATA TOU TEOEXUTTAV Ve Xoupolg
ME EXAVE VO GUVELDNTOTOLOW AXOUT] TEPLOCOTERO TO TOGO OUOEYPY| Xol ONULoLEYWXY elval 1|
EVAUOYOANOT UE TNV EQELVAL.

Télog, o fideha Vo ELYAPLOTACL TO OXOYEVELOXO XL PLAXO UOL TERLBEAAOY, TO oTolo
mavto ue oThetle xan ue otneilel oe xdde pou Brua, 6, xt av emAééw. Auth n utoothplen
elvan TOAOTIN- elpon TOAD TuyEEY| TOU €xw aUTONE Toug aviproug ot LwY Hou.
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Extetopevn EAAnvixn Ilepiindn

Ou dnuonpaociec anotehody oavandOTAGTO XOPUATL TOU avIpMOTLVOU TOATIONOD and TNV op-
youotnTa €¢ ofuepa. O TpMTEC XUTAYEYPUUUEVES BNuoTpacies avdyovtal tepinou oo 500
. X. ot Bauhdva [1]. 3Etn popoixy enoyr, oL oTpatitdtes dieRyoyoy dnuonpacies xop-
POVOVTIS £VOL BOPL GTO £00POC YLOL VO CTUATOOOTACOUV TNV TWANOT| TOAEUIXWDY AdPORWY—
wlat Teax T Yoo T w¢ «sub hastay, mou onuaiver «<xdtew and ™ Aoyymy [1], [2]. Xy
Kiva, 1otopixd apyelo xatadewxviouy 6Tt Hon and tov 70 awva @.X. TeayUATOTOL00VToY
dnuompaoies vt TNV TOANOT TEpovoldy amoYavdvieny Boudlotdv yovayohy (3. Hopdro
mou To avTixelyeva mou thdevton oe dnuompacior €youv dANEEEL YE TNV TEEOBO TOu YpOo-
VOU, 0 pOAOG XoU 1) ONUACIA TV ONUOTEACLOV Ol UOVO TOQUUEVOLY OXEQULOL, AANS €YOUV
enextadel OUCLIC TUXA.

Ou olyypoveg dnuomnpacicc Aettovpyolv oe €val eupl QAoUN TAUCIWY, XAVOVWY XoL
oLadLxaoLdy. AveCapTATRS TS LopYNE TOUS, amoTENOLY ONuavTixd Hépog Tng oLYYEOoVNgG
xowwviog. Ilopd to yeyovog 6T 1) TAELoVOTHTO TV avIpWTWY BEV CUUUETEYEL O ONUOTEA-
olec oe xadnuepvy| Bdom, ol teheutaieg aoxolv Badd emppor| oe didgpopoug touelc udioTtng
owovouxng onuaciog. Ou dnuonpacieg ennpedlouy éva eupd PAcUA BEACTNEIOTATWY, o-
6 Tic ayopéc nhextpwhc evépyewac 4], [B], [6] xou v wéxvn [7], éwc Tic wuBepvnTixée
xou mohtixée dodixaociec (8], [9]. Anuompaociec ypnowonowolvar enione oe AydTepo o-
VOEVOUEVOUC TOUElS, OTwe ol Bladixaoies ntdyevone [L0], n diayelpion e ouppdenong
ota agpodpoma [L1], n ndAnon cUAReEXTIX®Y Ypaupotoohuwy [12], odld xou 1 eunopio
xpaotol [13]. H dvoSoc tou dladixtiou €xel evioyloel Tepautépw TNV ETEEOY| TWYV dNUo-
TEACLOY, ETUTEENOVTOG TY) CUMUETOYT O ToryxOouia xA{paxa yior évar eupl @doua oryorddv
xan unneectdy. To nhextpovind eundplo €yel Qépel ENAVACTAOT GTOV TEOTO dledoywYNg
v dnuonpacundy [14], [15], [16]. Mdiwota, n ddwtuaxy| Swphuion, n onola otnpiletan
oe ueydho Badud oe unyovionols BNUoTEact®Y, anotehel xploWWo TapdyYovTa 66OV apopd
OTN UEYLOTOTONGCT €0OBWY, TOGO YL TIC OLAOIXTLUXES TAATPOPUES, OGO XoL YLol TOUC O1-
woupyolc epeyopévou [L7], [18], [19], [20], [21]. Oha ta topandve xotadexviouy Tov
ONUAVTIXO OLXOVOULXO aVTIXTUTIO TOU EYouV oL Bruonpacicc cTov clYyeovo xoéopo. TE-
hog, o&iler va onuewwidel 6tL o William Vickrey tiurddnxe to 1996 pe to Bpafelo Noured
Owovouxwy Emotnuov yia v xadopto i) cuufolr| Tou 61 Yewplo Twv dNUOTEACLOY,
YEYOVOC TIOU aVUBELXVUEL TN OTacior Tou TEdlou auToU.

O 6poc «dnuompacioy mpopyetar amd TN AaTiixh AEEN «auctusy, 1 omola amoteAel
METOYY) Tou pAUOTOC «augedy, mou onuaivel «auldvwy. O dnpompaciec Asttoupyoly g
unyoaviouol 6mou ayadd 1 utneeoieg TWAOUVTAL OTOV TAELO00TY UECW OVTOY VLG TIXWV
Tpocpopwy. Me v ndpodo Tou yedvou, €youv avadelydel BLAPOPES UOPPES BNUOTEA-
oy, xdde ula ye ) ) e Eexwpeto T Soun xan TG SIXEC TNG OTEUTNYIXES ETUTTWOELS.
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Ye pa dnuponpaoio, xdle cuUUETEYWY XaTéxeL Wi LT atotiunon (private valuation)
TOU avTIXEWWEVoU Tou dnuonpateital, 1 omold aVTITEOCWTEVEL TO UEYIOTO TOGO TOU ElVOL
olateveévog va Thnpwaoel. O Boaoxdc oTdY0g TV EVOLUPEROUEVWY AYOPUC TMV Efvor Vol
anoxTHoouy To avixeluevo oty yauniotepn duvaty . Iho gopuaiioTind, xdide mda-
VO oyOpuo THC EMBLXEL VOl UEYLOTOTOAOEL TO 69eldS Tou (utility), To onolo optleton we
1 Slopopd YeTal TNS WIWTXNAG TOU ANOTUNONS ot TNG TWHS TOL TANEMVEL av xepdioel: o
OLAPOPETIXT) TEPITTWOT), TO OPYENOSC TOU LGOUTAL UE UNDEV.

‘Evac and toug mo dladedopévous TOToUG dnHompactley elval 1) oy YAixr onuonpaocia,
oTNV omola oL EVOLAPEPOUEVOL aYopaoTEG avTarywviovTtar awdvovtag oTadlaxd T Tpo-
opopéc toug. H dodixacia cuveyiletou éwg 6tou xaveic dev eivar dotedelpévog va unepBel
TNV TEEYOUCA TEOCHPOEA XL O EVOLUPEPOUEVOS AYOPUCTHS UE TNV LPNAGTERN TPOGPoEd
xepdilel To avtixeiyevo. Auth 1 poppn yenowonotelton cuyvd, UeTal) dAAWY, O BNUOTEA-
olec épyov téyvne, nwhfoec {dwv @dppoc xou prhavipwnixés exdnhwoei [22], (23], [24].
Avtideta, Touels 6MmC 1) SLaBIXTUOXY) SLUPTULCT] XAk TO NAEXTEOVIXO EUTORLO Y PTOULOTIOLOUY
ouyvd dnuonpaocies pe oppaylopéves tpooopéc (sealed-bid), clppwva pe Tic onoleg oL ev-
BlapepdUEVOL UTOBIANOLY TIC TEOGPORES TOUC OLWTIXE X0l TUTOYpoVa, Ywelc Vo Yvwellouv
TIC TPOCPOPES TWV AVTAYWVISTAOY Toug [25], [26].

Y& oplopéva TERBAANOVTO ONUOTRACLOY, BNUOTEATOVVTOL TAUTOY POV TOMAS AVTLXE(UE-
VoI YLt TORABELY UL, O TN SLodixTuony| SlopriuioT), urmopel vo dotidevton SLdpopeS SLopmuLo TL-
xéc Véoeig oe uia oehida avalhtnone. 2e auTéC TIC TEPLTTAOOELS, 0 TAEL00OTNG e€acpoilel
NV To xepdo@opa V€om ot oeRlda, EVE 0 EVOLAPEROUEVOC 0ry0pao TS UE TNV dedTepn LM-
NOTERT TPOGPORE AmoXTd TNV péows EnoPeVN xolUTepn Oéon, x.0.x. 25|, [26], [27]. Qoté-
00, T0 amhoVoTEPO ceVdplo anotelel 1 dnponpacior evoc povadinol avtixeyévou (single-
item), xotd v onola dnuonpateiton éva (adlodpeto) avtixelpevo. Me auth v nepintwon
acyoleiton 1 Topovoa Simhwuotixy. Mot GAY onuavTixy Sudxplon YeTol Twv TUTWY O1-
HOTIRACLOV Apoed OTNV TWY| TOANCNE TOU AVTLXEWWEVOL, dNAAdY| GTO TOGO TOU TANEMVEL
o vomtic. Xt dnuornpacio npwtne Twwhc (first-price), o mhelod6tng TAnpdvel To axpl-
Béc mood NG TEOCYoRdS Tou. AuTH 1 dour| TEOTEETEL TOUG EVOLUPEPOUEVOUS VO EVERYOUY
OTEATNYIXA, TEOCPEPOVTAC TOCH EAAPEESG ULXPOTEPO Ao TNV LOWWTIXY TOUG amoTiunoT),
mpoxewwévou va awéroouy to mavé toug xépdoc (28], [29]. Avtideta, otn dnuompoocio
delTeEENC TWNC, 0 TAEODBOTNS TANPGYVEL TN deUTepn LPNAGTEEPT TPooOoEd. Auth 1 uédodog
olvel xlvnTeo GTOUC EVOLUPEPOUEVOUC VoL TPOGPEROLY OGO (00 UE TIC WOWTIXES TOUC ATO-
TWAOELS, XS 1) TANEWUY Toug dev e€opTdTal and TN O TOUG TEOCYOEd, OAAA ATd TNV
Tpoopopd Tou deltepou LPNAGTEPOL evdlagepbuevou ayopaoth [29]. Il goppahioTixd,
oc pa dnpompacia SeLTEENS TWNS, 1 UTOBOAY Teoo@opds (ong Ue TNV WLWTiXY anotiunocy
anotehel xuplopyn oteatnyxy| yio xdlde mdoavo ayopasth. Lot tnv xaAdtepn xotovon-
on aUTHS TNG opoAoylag, OTWS XAl Tou EVPVTEEOL TANUGCIOU TWV BNUOTEUCLWY ATO LA TILO
QOPUOALC TLXY|, HaINUATIXY OXOTILE, Elvol amaEodTnTn 1 HEAETY) OPLOUEVWV EVVOLWY TN Ye-
welag mouyviwy, n omola tpoo@épel €va Lo TNES ot padnuaTtixd Thaiolo yio TNV avdhuor
CTEATNYIXWY AAANAETUOPACEWY, OTWE AUTES TOU TUQATNEOVUVTAL CGTLC ONUOTEACLES.
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0.1 Oewpia maryviwv

Ou dnuonpacicc unopolv va Yewpnidoly €vag CUYXEXPLIEVOS TUTOC GTEATNYLX0) Taryviov,
670 0Tolo *AVE CUUPETEYWY ETUOLXEL VAL UEYLOTOTIOLACEL TO OQENGS Tou. Katd cuvénela,
o Touéac tng Yewplag manyviwy, o onolog avahbel podnUaTixd Tar Toly Viot Xol TS EVVOLES TNG
looppoTiog, cuvdéetan pe TN VYewplol BNUOTPUCLOY TEOCPEREOVTIS TOADTIN ATOTEAECUATOL.
H wwoppotio o éva malyvio avtimpoomnelel tia xotdo Toon 6mou xdie modxtng €yl emtl-
YEL TO PEYIOTO BUVATO OPEAOG, DEDOUEVMV TWV EVERYELWY TWV SAAWY TanxTtwv. Ilapéxxhion
and TNV ETAEYUEVN eVEpYELX OV Vo 0ONYOUCE GE TEQAUTERL XEEON Yol XUVEVAY TodXTY),
YEYOVOC TOU UTOONAWVEL OTL XovéEvag TadxTNng Oev unopel va emw@erndel and v oahhoyy
NG OTEATNYIXNAS TOU, EQOCOV Ol CTRATNYIXES TWV GAAWY TOUXTWV Topouévouy otadepéc. H
otpatnyxh xdde molxtn avagépetar oty emAeYUEVN evépyela/dpdon tou and éva GUvolo
dovidv eVepyeldv/dpdoewy. Mia xuplapyn otpatnyin TeoxOnTel dTay Evag TaixTng da-
VETEL WO CUYHEXPLUEVY] EVERYELD TOU EYYUATOL TO XUADTEQO BUVATO ATOTEAECUA YL QUTOV,
aveEopTATOC TWV EVERPYELDY TwV SAhwv mouxtwv [30]. Xtnv neplntwon wog dnponpaciog
0e0TERNG TWAG, 1 TROCPORA TNS WOLWTIXNG ATOTIUNCTE TOU X T avadEVOETAL WG xLEloE-
XN oTeaTnYWr Yo xde ol T, XS OTOLABATOTE TUPEXKALOT AT AUTY| TN CTEATNYIXT
dev auidvel To O6QeAOE Tou. Mia mAnpéotepn enelNynon OpLOUEVKY EVVOLWY LGoREOTIAS
nopouoiéleton oto Kepdhao 2, o onolo mepihoyufdver emione éva evdeitind mopdderyo.
Emoteégovtac otic dnponpacies, elvan ououwdoug onuaciog vo avoyvwpeloTel 1 onuocto
TOUG WG OTETIYIXS Tk ViDLl UE CNUOVTIXES OLXOVOULXES ETUTTWOELS.

0.2 Anuornpacicg and TNV TAELEA TOU TWANTNA

Onwg €yer avagepiel mpwiioTepa, LTdEyYOUV BLdPOoPEOL TUTOL BNUOTEACLWY, XAEvag amd
Toug omnoloug SlrdéTel Yovadxd yapaxtnelotxd. Mio xplown ntuyh OAWV TWV HOPPOY
Onuompactwy eival 1) TopaywYr €06dwv. Evd ol evilopepduevol oyopaoTéG EMBLOKOUY Vol
MEYLOTOTOLAGOUY TO OPENOS TOUG, O TWANTAG ETUOLOAEL VAL TWANCEL TO AVTLXEUEVO GTNY UE-
yiotn duvaty T, H emdoy? tneg popyric dnuonpaciag dvaton vo ennpedoetl To Ohog Twv
€000WV YL TOUG TWANTES, xod(¢ To TVE XEEDT| DLUUORPPWVOVTAL ATt TIC O TEATNYIXES TTOU
ETAEYOLY OL eVOLAPEROUEVOL ayopao TG, O dnuonpacie dedtepng TS TEVOLY VoL amopeé-
pouv o TEoPBAEYLua €c00a, xS oL EVBLUPEPOUEVOL LTOBAAAOUY ElhXpLvelc Tpoopopec,
ONAadY TEOCPEPOLUY TOGA (OO UE TIC TEAYUATIXES WOLWTIXEC Toug amoThoelc. lotopixd,
auTég oL dnuonpacieg €youv mpotuniel, xadwg 0dNYoLV ot AVAUEVOUEVL EGODA, XA CTUAL-
VT épeuva €xeL agplepwiel oe autdv Tov ToTo dnuonpacioc [B1], [32], (3], [34]. Avtideta,
ol dnpornpaciec mpdNe TS elvon Aydtepo mpoPAéduues we mpog ta mdavd x€pdn (35
‘Evog emnAéov mapdyovTtac mTou neocPETEL TOAUTAOXOTNTA GTNY AVIAUCT) TWV dNUOTE0-
oLV efvon To YEYOVOS OTL aUTEC OEV OLEEdyovTaL TAVTOL GE €Val VIETEQUILO TIXO TEPLBaA-
Aov, 6mou xdlde evilapepduevog dlordétel wa otodepn WIwTy anotiunoy. Xe oplouéveg
TEPLTTWOELS, Ol dnpompaciec Aettovpyolv oe éva Mnrebliavo mhaioto, dnou ot TS a-
TOTWHOELS TWV EVOLAPEPOUEVLY TROEPYOVTAL amd Lot xatavour] mavothtwy. Mio xowy
Tapadoy ) elvar 6TL aUTH 1) xoTovouT| eival YVWo T TOC0 GTOV TWANTH 6C0 X GTOUG GAAOUG
EVOLAUPEPOUEVOLS aYopaoTES. AloUNnTixd, auTH 1 YVWOTH XOTOVOUY| AVTITPOCKOTEVEL TG
TANEOYORIEC TOU XATEYEL O TWANTAG OYETIXA PE TIC THAVEC ATMOTIUNOELS TOU OVTIXEWUEVOU
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Tou dnuompateiTaL.

Aedopévne g UPLoTNG OXOVOUIXNG ONUAGINS TV SNUOTEACLAY, 1 XATaVONoT Tou TEd-
TOU UE TOV OTOL0 Ol TWANTES UToPoUY Vo BEATIO TOTOLACOLY TIC LOPPES dNUOTEACS TOUE,
(OCTE VA UEYIOTOTOWOOLY To xE€EDY Toug, €xel pehetniel extevig. Ou gpeuvntéc €xouv
xatohnger oty Umoapsn wwoduvauiag, doov agopd ot €00da, UETAHED BNUOTEUCLLY TEM-
e xou devTERNS Tiwhc—oe Bayes-Nash woopponio—6tav ou npocwmixés anotiufoelc twy
EVOLUPEQOUEVWV AYOPUCTOV elvall aVEESPTNTEC X0 TOUVOUOLOTUTIOL XOTAVEUNUEVES TUYLES
uetaBantéc [36], dnhadr) oty mepintwon nou xdie evdiagpepduevos emhéyel TRy amotiunot
ToU ave&deTNTo Amd TOUC GANOUC ayOpAOTES, ARG amtd TNV (Blal XOWVT| XoTAVOU.

Mo dAAn onuovTixy évvola mou oyetileton Ye TN PEYICTOTOMON TwV E0OBWY elval 1
ehdloTn T,  Xe TOANEC poppéc dnpompoct®y, ol twAntés xadopilouvv o ehdylon
TW—€Vva EAAYLO TO Oplo xdTw amd To onolo To avTixelyevo dev dlatileTton Tpog TWANGCT. 2XTO
Thalolo Twv dnuonpactey delTERNE TWNG, 0 XO0PLOUOS UG EASYLIOTNG TWHS CUVETAYETOL
OTL GV POVO €vag Tdavog ayopao TS UTOPBAAEL Tpocpopd mou unepPalvel auTd To EAAYLOTO
0pL0, Vot TANPWOEL YLaL VO AYORJCEL TO AVTLXEUEVO OGO (00 PE TNV EASYLO T TWN, avTi Tng
delTeEENC LPNAOTEENC TEOGPOEAS, OTIWS G TNV Xhaowx)| tepintwor. Epeuvee €youv anodeiel
ot yerion Béltione eNdytotne e uropel vor avérioet To écoda tou twinty [37], B8]

Me tnv npdodo tne teyvoroylag xon TNV avanTUEY TNG BLAdLXTLOXAC DLIPTULIONS, O TO-
U TRV ETAUVOUAAUBAVOUEVLY DNUOTIPACLWY EYEL AMOXTACEL UEYIAT onuacio. e autd To
mhadoto, dnuonpaciec vy To Blo avtixeipyevo (m.y. wa ouyxexpwévn dapnuo Ty Yéon
oe évay LloT6ToTo) Biegdyovtar TOAMES QOpES, EMTEENOVTUS TNV eNAVUAUUBUVOUEVY GUY-
HETOYY) TwV Blwv Tavody ayopaotody. Auth 1 enovohaufavouevr ohAniemidpoacr divel
TN SUVITOTNTA GTOUG AYOPUCTES VO TAUEAXOAOVYOUY TY CUUTERLPORE TWVY OVTUY VIO TV
TOUG, TIC TMTPOMNYOUUEVES TPOCGPORES TOUC Xl VO TEOCUPUOLOUY TIC OIXEC TOUC TPOGPORES
avohOY WS, UETATEETOVTOG TN Onuonpacia ot yia cuveEYY| oTeaTNYXr ahAnienidpaot. Tou-
TOYPOVA, ToPATNEEITOL Wiat aElooNUelwTn YeTatoOnoN and Tic dnponpaciec dedtepne TN
OTIC ONUOTEAsIES TEOTNG TWNS oTYN OtadxTuoxy| dlapruor. H tdon autr onuatodoty-
Unxe Wwdtepa and TN petdBaon tou Google Ad Exchange and tig dnponpaciec deltepng
TN oTIC dnuonpaciec mpwtng Twnig To 2019, unoypopuilovtag wo eupltepn xivnon otov
x\&do [39], [35], [40], [41].

Trdpyel extevic épeuva oTov Topéa Twv emavolauBavéuevey dnuonpactov [42], [43],
[44], [45]. IIcde bdpwe avolbouv ot epeuvnTéc Tic dladxaoies UaUnong xou To ATOTEAEGUATO
TWV ETAVAAUBOVOUEVWY BNUOTIPUCL)V; LUY VAL YETOULOTOLOUY TEOCOUOUICELS YLOL VO LOVTE-
AOTIOLACOUY TOV TEOTO UE TOV OTOLO OL EVOLAPEROUEVOL aYOpaoTéG pardalvouy ol mpooap-
©6Couv TIC TPOGPORES TOUC UE TNV TEPOB0 TOU YPOVOU. XTIC TEPLOCOTERES TEPLTTWOELS, OL
mavol ayopactég avanaplotavton and no-regret alyoplduoug. o var xatavoriel tAfpwg
N onuacto xou enldpacn auTAg TnS TEoaéyYlong, elvon anopaltnto va e&epeuvniel 1 évvola
TV ahyoplduwy dueong udinone.

0.3 AAyoewrOpor Apeong Mdadnong
‘Onwe avagpépdnxe mponyouuEvne, Ol EVOLUPECOUEVOL AYORACTEG GUY VA TEOCOUOL)VOVTAL

and UTOAOYLOTEG oL omolol yenowonoly alyoplduoug dueong uddnonc. Mo xevtpixy
évvolal 0Tov ¥AE00 TV ohyopliuwy autdv eivon 1 «uétavotay (regret). H évvoia tng
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(ewtepinfc) yetdvolog (external regret) avagpépeton ot dlapopd YeTald TOU XAAVTEPOU
duvatol ogéhoug Tou Vo umopolaE va €yel EMTOYEL EVaS oyopao TG EMAEYOVTAS OE Xde
YUpo oTadepd Uiat CUYXEXPWEVY] EVERYELX—TNY XOADTERT DUVATY EVERYELX, oy YVOPLLE €X
TWV TEOTEPWYV TIC OTRATNYLXES TWV AVIAYWVIGTWY TOU Ylol OAOUC TOUC YUEOUG—XOL TOU
Tpayuotixol ogéloug mou €hafe. H petdvola petpd ovotactind tov Badud ctov onolo é-
VoG OYOROo TAG KUETAVLOVEL oL Oev enéhee TN BEATIOTN oTpatnY and tnv apyy. ‘Evag
oahybpripoc ywelc (eEwtepiny|) petdvola (no-regret) otoyelel otny ehayloTononon aUThHS
NG SLPOEAS UE TNV TdPODBO TOU YEGVOU, YEYOVOS oL oNuolvel OTL, xodadg emavahouBdveTon
1 OnuoTnpacia, oL EXACTOTE EVEQYELEC TOU AYORACTH amodidouy oyeddv 16c0 XaAd 660 1|
Bértiotn otadepr| evépyela. Me dAha AoyLa, pe Toug akyopliduoug ywelc uetdvola, n uéon
T NG UETAVOLOG TElVEL 6TO UNBEV xadde augdveTtal o aptiuds TV YOpwY NG dnuonea-
olag, LTOdEVDOVTAS OTL TO OPENOG TOU ayopao T TEOooeYYILEL To dpeloC TNG XahUTERNS
otadephc otpatnyixic [46].

Avuth 1 évvoia ebvan Cotinic onpaociog oe oevdpla dueone uddnong, 6mou oL GUUUE-
T€Y0VTEC TPOCUPUOloLY TIC OTEATNYES Toug e Bdon mapeAtovTixd dedouéva (GTE Vo
AoBdvouv Ao xaL O XEEBOPOPES ATOPAOELS UE TNV THEOBO TOU YEOVOU. TNV ToEOoU-
o0l OLTAWUATIXY AVOADOVTOL OAYOELUUOL TOU EAXYIC TOTIOLOUY T1) HETAVOLOL X0l OLEQEUVATAL 1|
EMPEOT] TOUC OO0V aPopd GTa €0000 Tou TWANTH. Ilio cuyxexpléva, yenoyomoloivToL
1600 ahyobprdpol no-external petdvolag, 6oo xou ahydpripol no-swap petdvolac (no-swap
regret), xou mopotneeiton 1 dlaopd uetald touc. H no-swap yetdvola anotehel évov elo-
PEOS DLUPOPETIXO XAl LOYVEOTERO 0PLOUO TNG HETAVOLUG, OTWS auTY| 00UnNxe mpwlLcTEpa:

xou ot 600 TUTOL ahyoplluwy avolbovton tepattépw oTto Kepdhao 4.

0.4 EvovovToc Tic TEAsiec

H Yewplo dnpompaciiv cuvdeetar oTeVE pe TN Yewplo maryviwy, xooe ol dnuonpacies lvon
ouclao TS €va el60¢ oTEATNYIXOU Ty Viou %o, XUTd CUVETELY, Ol EVVOLEG TNG LoopPoTiaC,
TIOU XUELIEYOUV GTOV XOOUO TwV TatyVviwy, Ti¢ diénouv. H eugdviorn enavoraufavouevemy
ONUOTEACLWOY TPOCVETEL £val EMTAE0V ETUNEDO TOAUTAOXOTNTOS, OONYOVTAG OTNY YENOoT dA-
Yoplduwy dueong udinone Yo TNV TEOCOUOIKOY) TNC CUUTERLPORAS TV EVOLUPEROUEVLV
ayopaot@v. H mapodoa dimhwpatixr e€etdlet ntuyés tne Yewplog mouyviwy, Twv unyovi-
OUOV dNUOTEACLOY Xot TwV aAyopliuwy dueone udinong, ectdloviog GTov TPOTO UE TOV
onolo autd ta otolyeio aAAnAemdpoly xou enneedlouy ta mdavd €écoda ot mepBdihovTa
enovohauBavouevwy dnuonpactody tedtne Twhe. 1o ouyxexpwéva, 1 napodoa dimAwua-
T anooxomel oty eNTELEN TV axdAoVIWY OTOYWV: TEMOTOV, TNV BLEEELVNCT TOU XATd
TOG0 €Vog “TeEXYNTOC” ayOopas TAC—0 OTOlOC GUUUETEYEL O TY ONUOTEAsia Yot AOYURLIACHUO
TOU TWANTH— UTOEEl Vo ASLTOUPYNOEL AMOTEAECUATIXG WG PEATIO TN ENSYLO TN TIUY|, ONAadY|
xatd oo dUvoTa var aENCEL ToL €6080 TOU TWANTYH HE TEOTO CLYXEICIIO UE WLoL ToEa-
doatoxy) EAGYLo TN T BEUTEPOY, TNV TUPATHENON TV Blaop®y HETUEY TWV ECOBWY
TOU ToEAYOVTOL XATE TNV EQoEUOYY| no-regret xou no-swap regret odyoplduwv- T€hog, TV
OlEEELYNOT] TNG DLAPORAS TWV ECODWY TOU TUEAYOVTAL ATd ONUOTEAGIES TEMTNG THAS Xo
TWV AVAUEVOUEVKY EGODWY ATO ONUOTEACIES DEVTEENE TWNG, OEBOUEVOL OTL XaL oL VO TOTOL
dnuompact®y Aettovpyolv utd Ti¢ Bleg Mrebliavée cuvivixes, 600V apopd GTIC LW TIXES
ATOTIUNAOELS TWV EVOLUPEQOUEVV OYORAUC THV.
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Me v xohiépworn auT®V TV VEUEAWOOY EVVOLDY XL T OXLAYRAPNOT] TV TEWTIUR-
YOV CTOYWV TNG TAE0oVOUS BITAWUATIXNAG, UTOPOUUE TAEOV Vo TpoPolue oe Wwa cuvo
TV anoteheoudtwy. lleputéow eufdiuvon oe xdde cuctatixd otoyelo Tng mapovoUg
otmAwpatixc—oewpia mawyviwy, Yewplo dnuompacioyv, alyopiduoug dueong wddnone—
%3 ®oU VALY TOV TELPUUITIXWY EVENUATWY Topouctdlovion ev cUVeyEld, o€ XElUEVO
YEOUUEVO TNV ay YA YAWOGOA.

0.5 Ilsipopotind AToTeEAECUATH

Tao nelpauotind anoteAéouato TS ToEOVoUS BITAWUATIXAS TUEOLCLELOVTOL AVUAUTIXE GTO

Kegpdhowo § oty ayyAxy YAdcoa. §26T600, GTO TOEOV XEQIANO YIVETOL ULl GUVOTTLXY
neplhndm autdv ool EAANVIXAL.

0.5.1 H Emippon evog “Teyxvntod”’ Avyopact

Kiplog 61t6)0¢ Tne mopolcog tepauatini|c WEAETNS efvor 1) BLEpEUVNON TOU XUTA TOCO €Vag
“teyvntog” ayopao g Yo umopoloe Vo CUUBAAAEL OTY UEYLOTOTONGT TWV €000WY, AEL-
ToLEYOVTAC WS BEATIOTN eAdyto Ty T, O cuyxexpévog ayopao T cuvepYdleTal UE TOV
TWANTYH Xt oxond¢ Tou elvar var wdioel Toug utdloiroug Tavoic ayopas TéC va aUERCOoUY
TIC TPOCYOREC TOUC: BEV €yel TpoddeoT va ayopdoel To avTixelyevo. ' Tov unoloyioud
Tou ogéloug (utility) tou “teyvnTol” cuuuetéyovta oTn dnuonpacio, EQUPUOGTNXAY O
e€ic 800 mpooeyyloeiw:

Anlds ayopaotic: Ye oautd TO GEVHRLO, EAV O “TEYVNTOC” ayopaoTHG XEEBIOEL T1) ONuO-
Tpaoio, To 6gerdg Tou elvon undevixd. Avtideta, edv 6ev xepdioel To avtixeluevo—onhady
xdmolog dAhog evdlapepduevog €yel xatadécoel (on 1 uPnAdTERT TPOCPOoEd—T0 dPENOS TOU
loo0ToL UE TO TOCO TNG VIXNTHELIS Teooopds. Auty 1 npocéyyion odnyel tov “teyvntd”
ayopao TH Vol ETAEYEL TWES oL SUVATWS “Ydvouv”, UTOBIAAOVTOC UE AUTO TOV TEOTO TOAY
Youniéc npoopopéc. Katd ouvéneia, eV XATAPEQVEL VAL TUROXLVYOEL APXETE ATOTEAECUATL-
XA TOUC GANOUG GUUUETEYOVTEC DO TE VoL AWENCOUV TIC BIXEC TOUC TPOGPORES.

‘ESvmvog ayopaotng: e auTy| TNV TEOCEYYIOT), O “TEXVNTOC oYyOpAC TG Xal TAAL E)EL
undevixd bpehog edv xepdioel TN dnuonpacio, xadde 0 6ToY0g Tou deV efvar awtd. Av duwg
dev xepdloel To avTxelpevo, To 6QENOS To LlooUTAL UE TO TOCH NG TEOCPOoEdS Tou. Autd
10 oevdplo eCooporilel 6Tl oL UPNAOTEPEC—ORAG U1 VIXNTHPIEC—TPOCPORES ATOPECOUV
HEYOADTERO OPENOC O’ O,TL OL YOUNAOTEREC.

2UVOTTIXEL, TO EVPNUATY LG XATADELXYVOLY OTL 1) GUUHETOY Y| EVOS “TeyVNTOU” oy 0paG TH),
au&dvel To €600 TOL TWANTY, ahAd Oyt oTov (Blo Padud ue v BEATIOTN EAGYIO TN TN,

0.5.2 No-Regret 'Evavti No-Swap Regret

'Eneito omo yiar oelpd TpOGOUOLWOENY ETAUVAUAUBOVOUEVLY BNUOTEACIOY TEWTNG TWNS, OTIC
omoleg oL ayopao TéC LovTENOTOLAUNXAY 0Py iXd UE no-Tegret xol GT1 CUVEYELN UE NO-SWaP
regret alyoplduoug, dev Tpoéxue xAmoOL0 TAEOVEXTNUO antd T YEHOT TwV no-regret ahyo-
elduwy Evavtt Ty no-swap regret ¥ 1o avtioTpo@o, 6GOV aPoEd GTO TUPAYOUEVO ELGOBNUAL.
Tao anoteréopota dlopoponololvToL ovd TERITTWON.
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0.5.3 3Xy€onm llapayouevou Eiwcodruatog Metalh Enavalap-
Bavopeveoyv Anuornpaciov Ilepwing xouw Asdtepng Tr-
whe

To tekevutaio xVplo epOTNUA TNG TOEOVCOS BITAWUATIXNAG APOPA TO XATA TOCO TO TUPAYO-

UEVO ELCOONUA O TIG ENUVOUAIUBAVOUEVES ONUOTIRUCIES TEWTNG TUUHS, OOV Ol EVOLUPEPOUEVOL

oY OPUC TEC LOVTENOTIOLOVVTOL PE NO-swap regret (1 no-regret) olyopidpoug, elvat loodvauo

UE TO GVOUEVOUEVO ELCODNUA TWV AVTIOTOLY WY ONUOTEaoLGY 0elTepng TWNS. To melpapa-

TIXG AMOTEAEOUATA XATADEWVOOLY OTL 1) oyéon auth| Bev elvon Eexddapn, xaddg avdroya

HE TG TWUAVES WO TIXES ATOTUUAOELS TWV AYORIC TV, TO AVUUEVOUEVO ELCOBNUI ATO TL ON-

uompacieg 6edTeEENE TWNG Umopel var uTepPBalvel TO TaEAYOUEVO ELGOBNU TWV ONUOTRACLOY

TEWTNG TWNC, O JAAEC TEQLTTWOELS TO AVTIOTEOYO, EVE) OE OPLOUEVES TEQLTTWOOELS Tal 800

anoTeEAEoUATA CUYXAIVOUY.
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Chapter 1

Introduction

Auctions have been a part of human civilization from ancient times to the present day.
The earliest recorded auctions date back to around 500 BC in Babylon [L]. Roman
soldiers also conducted auctions, driving a spear into the ground to signify that spoils of
war were being sold, a practice known as “sub hasta”, meaning “under the spear” [1], [2].
In China, records suggest that as early as the 7th century AD, auctions were held to
sell the possessions of deceased Buddhist monks [3]. Although the items auctioned have
changed over time, the role and significance of auctions not only persist but have also
expanded considerably.

Modern auctions are built on a wide range of frameworks, rules, and procedures.
Despite the different formats, auctions are integral to contemporary society. Even though
most people may not directly engage with auctions on a daily basis, they have a profound
influence across diverse sectors with substantial economic importance. Auctions impact
everything from electricity markets [4], [b], [6] and art [7], to governmental [§] and
political processes [9]. Interestingly, auctions are also used in unexpected areas such as
bankruptcy proceedings [L0], airport congestion management [11], the sale of collectible
postage stamps [12], and even wine trading [13]. The rise of the internet has amplified
the influence of auctions, enabling global participation across a broad range of goods
and services. E-commerce has revolutionized how auctions are conducted [14], [15], [16].
Online display advertising, which is predominantly driven by auction mechanisms, plays
a pivotal role in generating revenue for online platforms and content creators [L17], [18],
[19], [20], [21]. This underscores the significant economic impact auctions have in today’s
world. To further emphasize their importance, it is worth mentioning that William
Vickrey, a leading figure in auction theory, was awarded the 1996 Nobel Memorial Prize
in Economic Sciences for his research in the field.

The term “auction” traces its roots to the Latin word “auctus”, the past participle
of the latin verb “augeo”, which means “to increase”. Auctions are mechanisms where
goods or services are sold to the highest bidder through competitive offers. Over time,
various auction formats have emerged, each with its own distinct structure and strategic
implications. In any auction setting, each participant holds a private valuation of the
item being auctioned, representing the maximum amount they are willing to pay. The
primary objective for bidders is to acquire the item at the lowest possible price. Math-
ematically, a bidder seeks to maximize their utility, defined as the difference between
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their private valuation and the price they pay if they win; otherwise, their utility is zero.

One of the most well-known types of auctions is the English auction, in which
bidders openly compete by gradually raising their bids. The process continues until no
one is willing to outbid the current offer, and the highest bidder wins the item. This
format is frequently used in art auctions, livestock sales, and charity events, among
other areas [22], [23], [24]. In contrast, sectors such as online display advertising and e-
commerce often utilize sealed-bid auctions, where bidders submit their offers privately
and simultaneously, without knowing the bids of their competitors [25], [26].

In some auction contexts, multiple items are sold simultaneously; for instance, in
online display advertising, various slots may be available. In such cases, the highest
bidder might secure the most valuable slot, while the second-highest bidder may obtain
the next best slot, and so on [25], [26], [27]. However, the simplest scenario is the single-
item auction, where only one, undivided item is auctioned. This is the specific case that
we address in this thesis. Another key distinction relates to the the price the winner pays.
In a first-price auction, the highest bidder wins and pays the exact amount of their bid.
This structure encourages bidders to act strategically, often lowering their bids slightly
below their private valuation to enhance their potential profit [28], [29]. In contrast, a
second-price auction allows the highest bidder to win, while only paying the second-
highest bid. This approach incentivizes bidders to reveal their private true valuations,
as their final payment is based on the next highest offer rather than their own bid [29].
More formally, in a second-price auction, bidding one’s private valuation constitutes
a dominant strategy for each bidder. To understand this terminology, as well as the
overall auction landscape from a mathematical perspective, it is essential to explore
certain aspects of the world of game theory, which provides a formal and mathematical
framework for analyzing strategic interactions, including auction scenarios.

1.1 Game Theory

Auctions can be conceptualized as a specific type of strategic game in which each player
strives to maximize their utility. Consequently, the field of game theory, which math-
ematically examines games and equilibrium concepts, intersects with auction theory to
yield insightful results. An equilibrium in a game represents a state where each player
has achieved the maximum utility possible, given the actions of other players. Deviating
from their chosen strategy would not result in further utility gains for any player, mean-
ing that no player can benefit from changing their strategy, while keeping the strategies
of others constant. Each player’s strategy refers to their selected action from a set of
possible actions. A dominant strategy occurs when a player possesses a particular
action that guarantees the best possible outcome, regardless of the actions of other play-
ers [30]. Thus, in a second-price auction, bidding one’s private valuation emerges as a
dominant strategy, as any deviation from this strategy will not increase a player’s utility.
A deeper understanding of key equilibrium concepts is presented in , which
also provides an illustrative example. Returning to auctions, it is essential to recognize
their significance as strategic games with substantial economic implications.
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1.2 Revenue in Auctions

As previously discussed, there are multiple auction types, each with unique characteris-
tics. A vital aspect of all auction formats is revenue generation. While bidders seek to
maximize their utility, the seller—who owns the item for sale—must also be considered.
The choice of auction format significantly influences revenue outcomes for sellers, as
each format carries distinct implications for potential earnings, shaped by the strategies
employed by bidders. Second-price auctions tend to yield more predictable revenue, as
bidders bid truthfully by submitting their actual private valuations. Historically, these
auctions were favored for their ability to provide controlled revenue outcomes, and sub-
stantial research has been dedicated to this auction type [31], [32], [33], [34]. In contrast,
first-price auctions are less predictable [35].

Another factor that adds complexity to auction analysis is that auctions are not
always conducted in a deterministic setting, where each bidder has a fixed private val-
uation. In some instances, auctions operate under a Bayesian setting, where bidders’
private valuations are drawn from a probability distribution. A common assumption is
that this distribution is known to both the seller and other bidders. Intuitively, this
known distribution represents the information the seller has about the potential valua-
tions for the item being auctioned.

Given the paramount importance of revenue, significant research has focused on un-
derstanding how sellers can optimize their auction formats. Researchers have concluded
that in a Bayes-Nash equilibrium, when bidders’ valuations are independently and iden-
tically distributed (i.i.d.) random variables—meaning each bidder draws their valuation
from the same distribution—the revenue generated from a first-price auction with the
optimal reserve price equals that of a second-price auction with the optimal reserve
price [36].

Another important concept related to revenue maximization is the reserve price.
In numerous auction formats, sellers establish a reserve price—a minimum threshold
below which the item will not be sold. In the context of second-price auctions, setting a
reserve price implies that if only one bidder submits a bid exceeding this minimum, they
will pay the reserve price instead of the second-highest bid. Research has demonstrated
that using a reserve price can enhance the seller’s revenue [37], [3§].

With advancements in technology and the growth of online advertising, the field of
repeated auctions has gained prominence. In this context, auctions for the same item
(e.g., a specific advertising slot on a website) occur multiple times, allowing repeated par-
ticipation from the same bidders. This repeated interaction enables bidders to observe
the behavior of their competitors through time and adjust their bids accordingly, trans-
forming the auction into an ongoing strategic interaction rather than a one-time event.
Concurrently, there has been a notable shift from second-price to first-price auctions in
online advertising. This trend was particularly marked by Google Ad Exchange’s tran-
sition from second-price to first-price auctions in 2019, signaling a broader move within
the industry [39], [35], [40], [41].

A wealth of research exists in the area of repeated auctions [42|, [43], [44], [45]. How
do researchers analyze the learning processes and outcomes of repeated auctions? They
often employ simulations to model how bidders learn and adapt over time. In most
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of the cases, bidders are represented by regret-minimizing agents. To fully grasp the
implications of this approach, it is essential to explore the concept of online learning
algorithms.

1.3 Online Learning Software Agents

As previously mentioned, bidders are often simulated by computers using online learning
algorithms. In instances where the same auction occurs multiple times per day, these
computer simulations reflect real-world dynamics, as actual bidders may not always be
directly involved. A central concept in this context is “regret”. In online learning, the
notion of (external) regret refers to the difference between the best possible utility a
bidder could have achieved from the best fixed action in hindsight—had they known the
strategies of their competitors in advance—and the actual utility obtained. Regret mea-
sures how much a bidder “regrets” not choosing the optimal strategy from the beginning.
A no-(external) regret algorithm aims to minimize this regret over time, meaning that
as the auction is repeated, the chosen actions by the bidder perform nearly as well as
the optimal fixed action. In other words, with no-regret algorithms, the average regret
tends to zero as the number of auction rounds increases, indicating that the bidder’s
performance approaches that of the best fixed strategy in hindsight [46].

This concept is crucial in online learning scenarios, where agents aim to adapt their
strategies based on past experiences to improve their decision-making over time. In
this thesis, we analyze regret-minimizing algorithms and explore their implications for
revenue outcomes. More precisely, both no-external regret and no-swap regret al-
gorithms are used and the difference between them is measured. No-swap regret is a
slightly different and stronger definition of regret than external regret, which is analyzed

in Chapter 4.

1.4 Putting Everything Together

Auction theory is inherently linked to game theory, as auctions represent strategic games,
allowing for the application of equilibrium concepts common to game theory. The emer-
gence of repeated auctions adds another layer of complexity, wherein online learning
algorithms are employed to simulate bidders’ behavior over time. This thesis examines
the intersection of game theory, auction mechanisms, and online learning algorithms,
focusing on how these elements interact to influence outcomes in repeated first-price
auction environments.

More specifically, this thesis aims to achieve the following objectives: first, to inves-
tigate whether a “fake” bidder—essentially an agent acting on behalf of the seller—can
function effectively as a reserve price, thereby maximizing the seller’s revenue in a man-
ner comparable to a traditional reserve price. Second, to assess potential differences
in revenue generated when applying no-regret algorithms in contrast to no-swap regret
algorithms. Finally, to explore whether the revenue produced by first-price auctions
aligns with the expected revenue of second-price auctions, given that both types oper-
ate under the same Bayesian conditions regarding bidders’ valuations. In light of the
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previously mentioned revenue equivalence, this inquiry can be reframed as examining
whether repeated first-price auctions converge to a Bayes-Nash Equilibrium.

With these foundational concepts established and the primary objectives of this thesis
outlined, we can now delve deeper into each component—game theory, auction theory,
online learning algorithms—as well as analyze our findings.
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Chapter 2

Game Theory and Equilibrium
Concepts

2.1 Introduction to Game Theory

We have all played games during our lives; from a very young age, we engage in such
interactions. The word “game” is familiar to us and often evokes feelings of joy. Games
are meant to be entertaining, but they are also competitive, offering rewards to winners.
Some games require cooperation between players, while others do not. However, a
common denominator exists in every game: each player wants to win, i.e., to maximize
their profit.

While luck may influence some games, most involve strategic thought. This means
that if a player chooses specific combinations of actions from a set of possible actions,
their probability of winning increases. This thought process can be simple or complex,
but it is always worth exploring. The fascinating field which studies these strategic
interactions from a formal and mathematical perspective is called Game Theory. We
focus on simultaneous move games, in which all players make their decisions at the same
time. A more formal description of this type of game is presented below.

A simultaneous move game is a formal model of an interactive situation involving
a finite number K of decision-makers, referred to as players. Each player i € [K]| has
their own finite set of possible actions, also called strategies, denoted by S;. At each
round, every player i selects and plays a strategy s; € .5;, doing so simultaneously with
the other players. The strategies chosen by all players at a given round are represented
by the vector s = (s1,...,S;), where s is an element of the set S, with S being the
cartesian product S; x --- x Si. The vector s is referred to as the strategy profile or
outcome of this round. Based on the strategy profile, each player receives a value, which
can either be a cost (in cost-minimization games) or a utility (in utility-maximization
games). For each player i, the cost function ¢; and the utility function u; are defined as
¢S — R and u; : S — R respectively. It follows that in a cost-minimization game, each
player aims to minimize their cost, while in a utility-maximization game, each player
seeks to maximize their utility.

Every cost-minimization game has a corresponding utility-maximization counterpart,
as the cost and utility functions can be interchanged by considering u;(s) = —¢;(s). In
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this formulation, the utility function becomes the negative of the cost function, effectively
transforming the minimization problem into a maximization one. The cost or utility of
each player is determined by the strategies chosen by all players in the game, not just
by the individual player’s own strategy.

This raises a fundamental question: is there a strategy profile where all players reach
an equilibrium, a state in which each player is satisfied with their utility (or cost) given
the strategies of the others, and thus has no incentive to deviate from their current
strategy? In other words, is there a strategy profile where no player can improve their
utility (or reduce their cost) by unilaterally changing their own strategy? This consti-
tutes the conceptually simplest and strictest form of equilibrium—the Nash Equilibrium.
Nevertheless, there are various types of equilibria, ranging from more stringent ones like
Nash Equilibria to more flexible ones such as Correlated Equilibria. In the following sec-
tions, we will define and examine four different types of equilibria [47] to gain a deeper
understanding of these concepts.

2.2 Equilibria in Games

We begin by introducing the concept of a player’s dominant strategy. A player’s strategy
is considered dominant if it is at least as good as all other strategies, regardless of the
strategies chosen by other players.

Definition 2.1. In a utility-maximization game, a player ¢ has a dominant strategy if
following this strategy maximizes their payoff, irrespective of the strategies chosen by
other players.

If all players in every game possessed dominant strategies, the analysis of equilibria
would be straightforward—perhaps to the point where further exploration would hardly
be necessary. However, whether we desire it or not, it is relatively rare to find games
where players have dominant strategies.

Having introduced the concept of dominant strategies, we will now delve into cer-
tain equilibrium concepts. The equilibria we examine are within the context of utility-
maximization games, where each player seeks to maximize their individual payoff. For
cost-minimization games, these equilibrium concepts can be adapted by simply reversing
the inequalities employed in the utility-maximization framework.

2.2.1 Pure Nash Equilibrium (PNE)

The strictest equilibrium concept in Game Theory, as mentioned in the previous section,
is the Pure Nash Equilibrium (PNE). In a Pure Nash Equilibrium, no player can
increase their profit by unilaterally deviating from the chosen strategy profile. A formal
definition of a PNE is provided below:

Definition 2.2. A strategy profile s of a utility-maximization game is a pure Nash
equilibrium (PNE) if for every player i € {1,2,...,k} and every unilateral deviation
S; € S,

UZ(S) > UZ‘(SQ,S_Z‘).
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PNE are easy to understand and interpret but, unfortunately, do not exist in all
games [48] [49].

2.2.2 Mixed Nash Equilibrium (MNE)

As mentioned earlier, the Pure Nash Equilibrium is straightforward and strict, but
many games, such as the well-known Rock-Paper-Scissors, lack a pure strategy profile.
However, according to Nash’s Theorem, given a finite number of players and strategies,
an equilibrium can always be achieved if players adopt a mixed strategy, meaning they
randomize independently over their possible strategies [50]. This type of equilibrium is
known as a Mixed Nash Equilibrium (MNE).

Before proceeding with the formal definition of a MNE, it is important to explain
the symbol s_;, as it will be used frequently in the following discussions. Given a

finite number of K players and a strategy profile s = (s1,82,...,58i,...,8k), we de-
note by s_; the strategy profile of all players except for player i. Specifically, s_; =
(81,892, ...,8i-1,8i+11,--.,Sk). After having clarified that, we can proceed with a formal

definition of a MNE:

Definition 2.3. Distributions o1,...,0, over strateqy sets Sy, ..., Sk of a wutility-
mazimization game constitute a mixed Nash equilibrium (MNE) if for every player
i€ {1,2,...,k} and every unilateral deviation s, € S;,

ESNO[UAS)} Z ]ESNU[UZ'(S;’ S—i)]v (2'1)
where o denotes the product distribution o1 X -+ X 0.

In a MNE, each player’s strategy is represented by a probability distribution over
their possible actions, and these distributions are independent of one another. As a
result, the overall strategy profile—the combination of all players’ strategies—forms
a product distribution. A product distribution means that the joint distribution of
players’ strategies can be expressed as the product of their individual distributions. It
is important to note that this definition of a MNE considers pure-strategy unilateral
deviations. However, allowing mixed-strategy unilateral deviations does not alter the
definition.

As inferred from the previous definitions, every PNE is a special case of a MNE,
where each player plays deterministically—assigning a probability of zero to all but one
action, which has a probability of one. Finding a MNE, even in a two-player game, is
often computationally intractable. Consequently, two more permissive equilibrium con-
cepts have been proposed: the Correlated Equilibrium and the Coarse Correlated
Equilibrium, both of which are computationally tractable.

2.2.3 Correlated Equilibrium (CE)

In the two Nash equilibria previously discussed, the players act independently, with no
cooperation between them; their actions are not correlated. We will now introduce two
equilibrium concepts that incorporate the notion of cooperation. First, we will provide
a formal definition of a Correlated Equilibrium (CE), before explaining it further.
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Definition 2.4. A distribution o on the set S; X --- X Sy of outcomes of a utility-
mazimization game constitutes a Correlated equilibrium (CE) if for every player
i€{1,2,... k}, strategy s; € S; and every deviation s, € S;,

Esvo [Ui(8) | 8i] > B [Ui(s},8-4) | s (2.2)

A correlated equilibrium can be conceptualized as involving a trusted third party
who participates in the game. This third party has access to the distribution o over the
possible outcomes, which is known to all players. The role of this third party is to sample
an outcome s according to o and privately suggest the strategy s; to each player i, where
i € {1,2,...,k}. Each player can then decide whether to follow the suggested action
or not. At the time of decision-making, a player i is aware of both the distribution o
and the suggested strategy s;, and thus, forms a posterior distribution on the suggested
strategies of other players. This posterior distribution refers to the player’s updated
belief about the strategies of the other players, after receiving the recommendation. In
a CE, each player maximizes their expected payoff by following their suggested strategy.
The expectation is conditioned on the information available to player i — ¢ and s; —
and assumes that the other players will follow their own recommended strategies s_;.

It is important to note that the distribution ¢ in a CE does not have to be a product
distribution. In other words, the strategies selected by the players are not independent;
they are, in fact, correlated. The joint distribution in a CE reflects the correlation
between players’ choices, which results from the recommendations made by the trusted
third party. These recommendations are based on a joint probability distribution that
cannot necessarily be decomposed into the product of individual distributions.

It follows that every MNE is a special case of a CE, where the distribution o is
a product distribution. Since a MNE exists in every game within our framework, it
follows that every such game has also a CE. Fortunately, finding a CE in a game is
computationally tractable.

An alternative but equivalent definition of a correlated equilibrium in a utility-
maximization game is as follows:

Definition 2.5. A distribution o on the set Sy X --- x Sy of outcomes of a utility-
maximization game constitutes a Correlated equilibrium (CE) if for every player
i€{1,2,...,k}, strategy s; € S; and every switching function § : S; — S;,

Eoo [Ui(8)] 2 B [Ui(0(s:),8-4)] (2.3)

This formulation will be particularly useful in the upcoming chapters, where we
will merge the concept of correlated equilibria with a specific class of online learning
algorithms known as no-swap regret algorithms.

We acknowledge that this definition may seem somewhat stringent, so an example is
provided to clarify the meaning of the § function, or at least offer some intuition behind
it. Consider the Rock-Paper-Scissors game, where the set of actions is represented as
{R, P,S}. According to the definition, a CE is reached if, for every player 7, their utility
cannot be increased if, every time they chose a specific action—whether R, P, or S—they
had instead consistently chosen a different specific action, given that the other players

32



stuck to their strategies. For instance, if every time player 7 selected R, they had chosen
P instead, and /or if every time player i selected S, they had switched to P instead, their
utility would not improve.

2.2.4 Coarse Correlated Equilibrium (CCE)

While CE already offers computational tractability, an ‘even more tractable’ concept
has been proposed, known as the Coarse Correlated Equilibrium (CCE). Like CE,
CCE relies on the cooperation between players’ strategies. A formal definition of a CCE
is given below:

Definition 2.6. A distribution o on the set S; X --- X Sy of outcomes of a utility-
maximization game constitutes a Coarse Correlated equilibrium (CCE) if for every
player i € {1,2,... k} and every unilateral deviation s; € S;,

Eswo[Ui(s)] = Eswo[Ui(s;, 5-1)] (2.4)

In a CCE, each player i is aware only of the overall distribution ¢ and not of the
specific component s; from the realization. In this setting, no player can improve their
payoff by unilaterally deviating. This means that if a player i were to deviate, by
consistently choosing a single action instead of following the distribution, their utility
would not increase. Every CE is a special case of CCE; therefore, every game within
our framework has a CCE as well.

2.2.5 Understanding equilibria with an example

We have now provided formal definitions of these four types of equilibria. However, these
definitions may be difficult to grasp at first. To facilitate understanding, we will present
an example that illustrates these concepts.

Consider the following game involving a network with a common source vertex s, a
common sink vertex t and 6 parallel edges between s and ¢t denoted by E = {0,1,2,3,4,5}.
Each edge represents a route from s to ¢t. There are 4 players A = {1,2, 3,4}, each start-
ing from s and aiming to reach t, while maximizing their points. Points are awarded
based on the travel time each player takes to reach t. Specifically, each player earns
10 — m points, where m is the time in minutes it took them to reach ¢. The time m
for a route is determined by the number of players choosing that route. For example, if
players 1 and 2 choose route 1, player 3 chooses route 4 and player 4 chooses route 5,
then players 1 and 2 will each take 2 minutes to reach ¢ and therefore earn 10 — 2 = 8
points each. Players 3 and 4, who take 1 minute, will earn 10 — 1 = 9 points each. The
goal of each player is to maximize their points, which corresponds to minimizing their
travel time.

This scenario illustrates a utility-maximization game in which each player aims to
maximize their points by minimizing their travel time, highlighting the principle that
every utility-maximization game has an equivalent cost-minimization counterpart.
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Figure 2.1: Game’s Graph

Let’s examine the four types of equilibria previously discussed:

PNE: In this game, the pure Nash equilibrium occurs when each route is chosen by at
most one player. To determine the number of such equilibria, we consider the following:
there are (i) x 4! = 15 x 24 = 360 such possible combinations, since there are (2) ways
to choose 4 out of the 6 available routes and for each combination of 4 routes, there
are 4! ways to assign them to the 4 players. In each of these equilibria, every player
chooses a different route, thus takes exactly 1 minute to reach the destination ¢ and
earns 10 — 1 = 9 points. This is the maximum possible number of points a player can
achieve, given the time constraints.

In each of these 360 combinations no player can increase their points by deviating to
a different route, since all players are already earning the maximum possible points (9);
therefore, each of those combinations consists of a pure Nash equilibrium.

Furthermore, there are no other PNE in this setup, because any other combination
of strategies implies that at least two players choose the same route, experiencing a
longer travel time (2 minutes or more) and as a consequence, earning less than 9 points.
Therefore, each player would prefer to deviate to a route that is currently unchosen,
which always exists as there are more routes than players.

MNE: A mixed Nash equilibrium in this game occurs when each player independently
selects a route uniformly at random. In other words, in this MNE, every player chooses
each of the 6 available routes with a probability of é. Under this strategy, the expected
payoff for each player is 10 — % = 1—27, since the expected time to reach the destination is
%. This can be calculated as follows:

Since there are 6 possible routes and 4 players, the total number of ways to assign
the players to the routes is 6* = 1296. These 1296 configurations can be categorized in

the following cases:

e Case (1-1-1-1): Each player chooses a different route.

e Case (2-1-1): Two players choose the same route and the other two choose different
routes.
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e Case (2-2): Two players choose one route and two others choose a different route.

e Case (3-1): Three players choose the same route, while the remaining one selects
a different one.

e Case (4): All players choose the same route.

Now, we calculate the expected time for player i to reach the destination by analyzing
each case:

e (1-1-1-1): As explained in the PNE analysis, there are 360 ways in which each
player chooses a different route. In all these cases, player ¢ takes 1 minute to reach
the destination, as no player shares their route.

e (2-1-1): There are (;1) X 6 X (‘;’) x 2! = 720 possible configurations for this setup.
This is because there are (3) ways to select 2 players out of 4, and for each selected
pair, there are 6 available routes to choose from. From the remaining 5 routes,
there are (;) ways to select 2, and for those 2 selected routes, there are 2! ways
to assign the remaining 2 players. In half of these configurations (360 out of 720),
player ¢ shares a route with another player, taking 2 minutes. This is because there
are (;l) = 6 ways to select 2 players from 4 to take the same route, and in 3 out
of those 6 cases, player i is one of the selected players. In the other half, player ¢
takes a unique route and reaches the destination in 1 minute.

e (2-2): In this case, there are (g) X (3) = 15 x 6 = 90 ways, as there are (g) =15
ways to choose 2 routes of out 6, and for each of these configurations, there are
(;1) = 6 ways to assign 2 players to each route. In all 90 configurations, player ¢
takes 2 minutes to reach the destination.

e (3-1): There are (g) x 4 x 2 =15 x 8 = 120 configurations in this case; there

are (S) = 15 ways to select 2 out of 6 routes, for each of these ways, there are
(g) = 4 ways to assign 3 players to one route (with the remaining player on the
other route) and for each of those configurations, there are 2 available routes that
the 3 players can select from. In % x 120 = 90 of these configurations, player ¢
shares a route with 2 others, taking 3 minutes. In the remaining 30 configurations,
player ¢ is alone on their route and takes 1 minute. This is because, as mentioned
earlier, there are 4 possible ways to select 3 player from 4, and in only 1 of those

4 cases, player 7 is not selected to be part of the group of 3.

e (4): There are 6 ways for this setup, since there are 6 possible routes. In these 6
configurations, player i takes 4 minutes to reach the destination.

We have analyzed all possible cases. Next, we will calculate the probability associated
with each possible travel time for player i:

e 1 minute: There are 360 configurations from [1-1-1-1], 360 from [2-1-1], and

30 from [3-1], giving a total of 360 + 360 + 30 = 750 configurations. Thus, the

probability of a 1-minute travel time is %.
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e 2 minutes: There are 360 configurations from [2-1-1] and 90 from [2-2], for a total

of 360 4+ 90 = 450 configurations. So, the probability of a 2-minute travel time is
450
1296

e 3 minutes: There are 90 configurations from [3-1], so the probability of a 3-minute

. . 90
travel time is 1506

e 4 minutes: There are 6 configurations from [4], therefore, the probability of a

4-minute travel time is 12%.

Bringing everything together, the expected travel time for player i can be calculated as:

[ ]:ﬂxl—i—Zlﬂ><2—|—ﬂ><3+i><4:%:§
1296 1296 1295 1296 1296 2
To verify that this scenario describes a MNE, we need to assess whether a player
who unilaterally deviates ends up with a lower expected travel time (and thus a higher
payoff). Suppose player i decides to deviate and chooses route j. We will analyze the
travel time for each of the previously discussed cases.

e (1-1-1-1): There are (2) = 15 ways to select 4 out of 6 routes. Out of these, in 5 of
the ways, route j is not chosen. Thus, there are 5 x 4! = 120 configurations where
route j is empty, meaning player ¢ can deviate to route j and incur a travel time
of 1 minute. In the 10 x 4! = 240 ways where route j is one of the 4 routes, there
are 10 x 6 = 60 configurations where player ¢ is already assigned to route j. This
is because for each combination of 4 routes (including route j), there are 3! = 6
ways to assign player ¢ to route 5 and allocate the remaining 3 players to the other
3 routes. In this scenario, the travel time remains 1 minute. In the remaining
10 x (4! —3!) = 10 x 18 = 180 configurations, route j is occupied by another player,
and player ¢ deviating to route j, would result in a travel time of 2 minutes.

e (2-1-1): Out of the (g) = 20 ways to select 3 out of 6 routes, in half of them route
7 is not included. So, in 10 x 36 = 360 configurations, player ¢, by deviating to
route j, is alone on the route and incurs a travel time of 1 minute. In the other 360
out of 720 configurations, route j is selected; in half of those cases, as previously
explained, player ¢ shares the route with another player. If player ¢ shares route j,
the travel time remains 2 minutes. If player ¢ shares another route, then deviating
to route j results again in a travel time of 2 minutes, since route j is already
occupied by another player. So, in 180 configurations, the travel time for player i
is 2 minutes. For the remaining 180 configurations, route j is included and player
1 does not share the route that they are assigned to with any other player. In
that scenario, in 60 configurations, player ¢ is already assigned to route j, so the
travel time remains 1 minute; in another 60 configurations, player i is assigned
to another route and a single player is assigned to route j, so, deviating to route
j would result in a travel time of 2 minutes; in the remaining 60 configurations,
player 7 is assigned to another route and 2 other players are assigned to route j.
In that case, if player ¢ deviates, the travel time increases to 3 minutes.
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e (2-2): Out of (g) = 15 ways to select 2 routes, in Z x 15 = 10 of them route j
is not chosen. So, in these 10 x 6 = 60 configurations of the (2-2) case, player i
can deviate to route j and travel alone, resulting in a 1-minute travel time. In the
remaining 5 X 6 = 30 configurations, route j is selected. Half of the time, player ¢
is already assigned to route j with another player, thus the travel time remains 2
minutes. In the other half (so, in other 15 configurations), player 7 is assigned to
the other route, meaning that deviating to route j, which is occupied by 2 other
players, increases the time travel for player i to 3 minutes.

e (3-1): Similarly with the previous case, in % x 120 = 80 configurations, route j
is not part of the selected pair of routes. Thus, player ¢ incurs a travel time of
1 minute by deviating. In the remaining 40 configurations, route j is included.
Of these 40 ways, in é x 40 = 5 configurations, player i is alone on route j, thus
the travel time remains 1 minute. In % x 40 = 5 configurations, ¢ is alone on the
other route, and deviating to route j increases the travel time to 4 minutes. In
2 x 40 = 15 configurations, player i is assigned to route 5 with 2 other players, so
the travel time remains 3 minutes. In the last x 40 = 15 configurations, player ¢
is assigned to the other route with 2 other players and deviating to route j (with

only 1 player already on it) reduces the travel time to 2 minutes.

e (4): In 1 configuration, player i is already assigned to route j along with every
other player, so the travel time remains 4 minutes. In the other 5 configurations,
all players are assigned to a different route, (not route j). Therefore, if player i
deviates to route 7, their travel time decreases to 1 minute.

Now, we can calculate the probability of each possible travel time for player i, if they
deviate to route j:

e 1 minute: There are 120460 configurations from [1-1-1-1], 360460 from [2-1-1], 60
from [2-2], 80+5 from [3-1] and 5 from [4], giving a total of 180+420+85+5 = 750

configurations. So, the probability of a 1-minute travel time is 1725906

e 2 minutes: There are 180 configurations from [1-1-1-1], 180 + 60 from [2-1-1],
15 from [2-2] and 15 from [3-1], resulting in a total of 180 + 240 + 15 + 15 = 450

configurations. Thus, the probability of a 2-minute travel time is 14259%

e 3 minutes: There are 60 configurations from [2-1-1-1], 15 from [2-2] and 15 from
[3-1], for a total of 60 4+ 15+ 15 = 90 configurations. Therefore, the probability of

a 3-minute travel time is 1386

e 4 minutes: There are 5 configurations from [2-2] and 1 from [4], resulting in a

total of 5+ 1 = 6 configurations. So, the probability of a 4-minute travel time is
_6_
1296 °

Thus, the expected travel time for player ¢, after deviating, is still:

750 450 90 6 1944 3
- %1 7 x4 = hd
E[T] 1296 * 1T 1206 1296 X2+ 1295 X3t 1296 1296 2
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Since the expected travel time remains unchanged, unilateral deviation does not
reduce the expected travel time for player ¢, and as a consequence, it does not increase
their payoff. In addition, since both player i and route j were chosen arbitrarily, a
unilateral deviation by any player to any route would yield the same outcome. This
confirms that the strategy in which each player selects each route with a probability of
% is indeed a MNE.

It is clear that this MNE is not a PNE, as the players are randomizing over the set
of possible actions rather than choosing a specific strategy deterministically.

CE: The uniform distribution over all outcomes where 1 route has 2 players and 2 other
routes have 1 player each constitutes a (non-product) correlated equilibrium. There are
720 possible configurations for this setup, as explained in the MNE analysis—case (2-1-
1). Hence, in this CE, each of these configurations is selected with a probability of ﬁ.
Now, consider the expected profit for a player ¢ given that they are suggested to take
route j. There are (;1) = 20 ways to select 3 routes out of 6, with 10 of these selections
including route j, since the probability that route j (where j € {1,2,...,6}) is among
the 3 chosen routes is % For each combination of 3 routes, there are (;l) x 3 x 2! =36
ways to assign the players, as there are (;1) ways to choose 2 players out of 4, and for
each choice, there are 3 possible routes to assign to those 2 players.The remaining 2
routes are then assigned to the remaining 2 players in 2! ways. Therefore, when player
1 is advised to take route j, they understand that the other players have been given
suggestions based on one of the 10 x 36 = 360 possible combinations that include route
j.

In the scenario with 4 players and 3 routes, the likelihood that a player 7 is assigned
to an empty route is the same as the likelihood of being assigned to a route with another
player; both of which have a probability of % This is analogous to the probability for a
given item to be chosen if we have to choose 2 items out of 4 (let’s assume that the chosen
ones will be assigned to the same route). Given that the 360 possible combinations are
equally likely and that, for each of these 360 triplets, player i is assigned to an empty
route half of the time and to an occupied route the other half, the expected time for
player i to reach their destination by following the recommended route j is:

1 1 3
7] 2 + 2 2
As a result, the expected payoff is 10 — % = % To verify that this scenario describes

a CE, we need to examine whether a player who deviates from the suggested route
ends up with a lower expected time (and thus higher payoff) compared to following the
suggestion. Assume player i is suggested to take route j. This means that the trusted
third party has selected one of the 360 possible combinations where route j is included.
Now, suppose player i ignores the suggestion and chooses another route j'; we need to
calculate the expected time and consequently, the expected payoff in this case. There are
10 triplets that include route j, each with 36 possible ways of assigning the 4 players to
the corresponding 3 routes. The probability that route j’ is also included in the selected
triplet is %, since there are 5 remaining routes and we need to choose 2 more routes for
3

the triplet. Thus, with a probability of 1 — % = £, player ¢ will choose an empty route,
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resulting in a travel time of 1 minute. With a probability of %, route j' is included in

the triplet chosen by the trusted third party, meaning that route j’ is already occupied
by 1 or 2 other players. To determine the probability of route j' being occupied by 2
other players, consider the following: suppose the triplet consists of routes j, 7' and [.
The remaining 3 players are assigned to these routes. There are 3! = 6 possible ways
where each of those 3 players is assigned to a different route. There are 3 different ways
where 2 of the 3 remaining 3 players take route j* and the last player takes route [.
Similarly, there are 3 different ways where 2 of the remaining 3 players take route [ and
the last player takes route j'. Thus, there are 6 + 3 + 3 = 12 possible ways to assign
the 3 players, with only 3 of these ways resulting in route j’ being occupied by 2 other
players. Therefore, the probability that route j’ is occupied by 2 other players is % = }L.
Putting them all together:

e If route j’ is empty, which occurs with probability %, the time is 1 minute.

e If route ;' is occupied by 1 or 2 other players, which occurs with probability %
then:

e With probability }L, route j' has already 2 players, resulting in a time of 3
minutes.

e With probability %, route 7' has already 1 player, resulting in a time of 2
minutes.

Therefore, the expected time for player ¢ to reach the destination, if they deviate to
route j', is:

3 2 1 3 3

E[T]—gxl—l—gx (ZX3+ZX2)_§
Since the expected time when deviating is the same as the time when following the
suggesting route, the player’s payoff does not improve by deviating. Since player ¢, route
j and route j' were chosen arbitrarily, a unilateral deviation by any player to any route
would yield the same outcome. Hence, no player can increase their profit by unilater-
ally deviating from the suggested route. Therefore, this scenario indeed constitutes a
correlated equilibrium (CE). It is clear that this is not a MNE, as there is a correlation
between players’ actions rather than each player choosing their strategy independently.

CCE: The uniform distribution over the subset of these outcomes in which the set of
chosen routes is either {0,2,4} or {1,3,5} constitutes a coarse correlated equilibrium.
As previously stated, there are 36 distinct ways to assign 4 players to a triplet of routes,
resulting in a total of 36 + 36 = 72 possible outcomes under this distribution. Each of
the two triplets is chosen with equal probability of % Given that 3 routes are selected,
it means that one route is assigned to 2 players and the other 2 routes are assigned to
1 player each. As previously explained, for each triplet, the probability that a player ¢
will be assigned to a non-empty route is % Therefore, the expected time for a player is:

1 1 1 1 1 1
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9 . 3 _ 17 . . . . .
Thus, each player’s expected profit is 10 — 5§ = 5. To verify if this scenario describes

a CCE, we need to ensure that a player cannot increase their profit by unilaterally
deviating.

Assume player ¢ decides to deviate chooses route j. Given the distribution, we know
that each route is included in exactly one of the two possible triplets. Thus, there is
a % probability that the chosen triplet does not include route j, which means route j
will be empty. In this case, the travel time for player ¢ would be 1 minute. However,
with a probability of %, route j is included in the chosen triplet. Out of the 36 possible
combinations for assigning the 4 players to the triplet of routes, the following scenarios
occur:

e In 6 combinations, player i is alone on route j, resulting in a 1-minute travel time.

e In 6 combinations, player ¢ shares route j with one other player, resulting in a
travel time of 2 minutes.

e In 6 combinations, route j is occupied by 2 other players and thus, the travel time
for player i increases to 3 minutes.

e In 18 combinations, route j has one other player, resulting in a travel time of 2
minutes.

Thus, the overall expected time when deviating is:

1 1 1 1 1 3 3

Hence, the expected payoff for player ¢ after deviating remains 10 — g = %. Since
the expected payoff does not increase with deviation, and both player ¢ and route j were
chosen arbitrarily, a unilateral deviation by any player to any route would yield the same
outcome. This confirms that the given distribution is indeed a CCE.

Another, more conceptual way to assess whether this scenario represents a CCE is
to consider the probabilities associated with being assigned to different routes. The
probability of being assigned to a route with 2 other players is the same for any route,
and similarly, the probability of being alone on a route is consistent across routes. Since
the chances of being in a route with 2 other players or being alone are equal for all
routes, players have no incentive to deviate and choose one specific route. Deviating
would not improve their expected outcome, because the distribution ensures that the
expected payoff is the same regardless of the route chosen.

It is important to note that this distribution does not qualify as a CE. The reason
is that if player i is suggested to follow route j, they can deduce the triplet of routes
that has been chosen. By selecting a route j’ that is not part of that triplet, player ¢
can ensure their route remains unoccupied, reducing their expected travel time to the
minimum of 1 minute, and consequently, increasing their payoff to 9. In contrast, if
player i follows the suggested route, there is a % probability that they will share the
route with another player, resulting in an expected travel time greater than 1 minute
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and a payoff of less than 9. Therefore, by deviating, player ¢ can improve their payoff,
whihc implies that the case does not satisfy the conditions for a CE.

In this example, we observe that the mixed Nash equilibrium (MNE) is not a pure
Nash equilibrium (PNE), the correlated equilibrium (CE) is not a mixed Nash equilib-
rium (MNE) and the coarse correlated equilibrium (CCE) is not a correlated equilibrium
(CE). This demonstrates that the inclusions among these equilibrium concepts are strict,
with each equilibrium type being a broader or more general concept than the previous
one.
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Chapter 3

Auctions: A Bidding Game

3.1 Auctions as Games — The Setting

So far, we have developed a basic understanding of games from a mathematical perspec-
tive, along with certain equilibrium concepts. It is now time to introduce a specific type
of game—the auction game [29]—which is a primary focus of this thesis. When we hear
the word “auction”, most of us—or at least [-——imagine a large room filled with wealthy
individuals raising their paddles to bid higher, driving up the price of the item being
auctioned. This type of auction is known as the English auction. However this is not
the only type; there are numerous kinds and categories of auctions, enough to fill more
than a book. Some of these will be discussed in this thesis. But before delving into
specific types, let’s first establish some broader definitions and a common setting.

An auction can be defined as a market mechanism in which goods or services are
sold to the highest bidder. A bidder is a potential buyer who places bids: offers of a
price they are willing to pay to acquire the good or service being auctioned. The seller
or auctioneer is the owner of the good or service—referred to hereafter as the item—
and aims to sell it at the highest possible price. Each bidder is interested in acquiring
the item, but seeks to do so at the lowest possible price. Each bidder ¢ has a private
valuation v;, representing the maximum amount they are willing to pay for the item.
If the price of the item exceeds a bidder’s valuation, that bidder is no longer interested
in purchasing it. Each bidder’s valuation is private, meaning it is unknown to the other
bidders and the seller. To determine the profitability of the auction outcome for bidder
1—given their bid and valuation—we use the concept of utility. In this thesis, we apply
the quasilinear utility model, where a bidder ¢’s utility is defined as follows: if they lose
the auction, their utility is O; if they win the auction at a price p, their utility is v; — p.
More formally:

_ Jvi —p, if bidder i is the winner;
i 0, otherwise

As we can see, an auction is essentially a utility-maximization game. From the seller’s

perspective, the goal is to sell the item at the highest possible price. From the bidders’

perspective, the goal is to obtain the item at the lowest possible price—provided this
price is below their private valuation—thereby maximizing their utility.
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As mentioned before, apart from the well-known English auction format—where
bidders openly raise their bids until no one is willing to go higher, and the highest bidder
wins the item—there are other formats that, while less familiar to the general public, are
quite significant and widely used. One such format is the sealed-bid auction, which is
the main focus of this thesis. More precisely, we focus exclusively on sealed-bid single-
item auctions. Single-item auctions are those in which only one, undivided item is
available for sale. The term “sealed-bid” refers to the manner in which the bidding process
is conducted. In this format, all bidders privately submit their bids to the auctioneer—
without knowing the bids of others. The bids are then opened simultaneously and
the result of the auction is revealed. In every auction, the auctioneer determines the
allocation rule, which dictates who wins the item (if anyone), and the payment rule,
which specifies the price at which the item is sold. Bidders are informed in advance
about the seller’s strategy (i.e., the allocation and payment rules) and adjust their bids
accordingly.

Even though formalization can make the text somewhat rigid and impersonal, it is
essential for establishing a common understanding and ensuring clear communication.
Therefore, more formal definitions of some previously mentioned terms are provided
below.

Consider there are n bidders, each with a corresponding bid: b = (by,...,b,) and a
feasible set X, where each element of X is an n-vector (z1, xs,...,x,), with z; represent-
ing the amount of items given to bidder i. In the single-item auction we are analyzing, X
is the set of 0 —1 vectors that have at most one 1, i.e., > 1  ; < 1. When the auctioneer
selects a feasible allocation, they actually select a x(b) € X C R" as a function of the
bids (allocation rule). Regarding the payments, we have p(b) € R", as a function of
the bids (payment rule). Thus, in an auction with allocation and payment rules x and
p, respectively, bidder i, given the bid profile (i.e., bid vector) b, has utility:

u;(b) = v; - 7;(b) — pi(b)

So far, we have outlined the basic components of an auction. However, one crucial
question remains: how much does that winner pay to acquire the item? This question
is of outmost importance to all participants in the auction, both bidders and the seller.
Depending on the price the winner pays, there are different types of auctions; the most
common are the first-price auction and the second-price auction.

Even though the natural assumption might be that the winner of an auction should
pay their own bid, auctions where this happens—called first-price auctions—are ac-
tually quite unpredictable and thus complex to analyze. In game theory terms, in a
first-price auction, there is no straightforward strategy that leads all players to an equi-
librium. The unpredictability of first-price auctions makes them challenging, yet also
intriguing to study, which is why they are a focus in this thesis. However, before diving
into the complexities of these auctions, it seems wiser to first explain an easier-to-digest
type of auction to set the foundation for our discussion. This auction, which is widely
used, is known as the second-price auction.
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3.2 Second-Price Auction

In a second-price auction, the highest bidder wins the item but pays the amount of the
second-highest bid (plus a small increment). At first glance, this might seem counter-
intuitive, doesn’t it? However, as we will demonstrate shortly, this type of auction has
certain qualities that make it easier to manage for both the seller and the bidders.

Proposition 3.1. In a second-price auction, bidding truthfully—i.e., setting one’s bid
equal to their private valuation—is a dominant strategy for all bidders.

Proof. Let v; denote the private valuation of bidder ¢ and let B = max,;.;b; represent
the highest bid of the competition. We will demonstrate that bidding v; is the optimal
strategy by comparing the utility of bidding b (where b # v;) with the utility of bidding
the private valuation v;.

Consider two possible cases:

¢ Bidding more than the private valuation (b > v;):
The only situation where the bidder i’s utility changes (compared to bidding v;) is
when v; < B < b. In this case, by bidding b, bidder ¢ wins the auction, but their
utility becomes negative, since v; — B < 0.

e Bidding less than the private valuation (b < v;):
The only situation where the bidder i’s utility changes (compared to bidding v;)
is when v; > B > b. By bidding b, bidder 7 loses the auction and misses out on a
positive utility, that would have been obtained by bidding their private valuation.

Hence, bidder i has no incentive to deviate from truthful bidding. ]
Another, straightforward proposition is as follows:

Proposition 3.2. In a second-price auction, every truth-telling bidder is guaranteed
non-negative utility.

Proof. If a bidder ¢ does not win the auction, their utility is 0. If bidder ¢« does win
the auction, their utility is given by v; — p, where p is the second-highest bid. Since all
bidders bid their true valuations and bidder ¢ is the highest bidder—since this bidder is
the winner—it follows that p < v; and hence v; — p > 0. Therefore, in every case, the
utility of each bidder remains non-negative. Il

With those two propositions, we can now form the following theorem:

Theorem 3.1. Every second-price auction is DSIC (Dominant Strategy Incentive
Compatible), meaning that the two previous propositions hold.

A DSIC auction is considered highly desirable for two main reasons. From the bid-
ders’ perspective, it simplifies decision-making: they have a straightforward strategy—
bidding their private valuation—that leads to optimal results (it maximizes their util-
ity). This simplicity ensures that bidders can achieve the best possible outcome without
needing to anticipate the strategies of others. From the seller’s perspective, the DSIC
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property enhances predictability. Since bidders reveal their private valuations, the seller
can more easily forecast the auction’s outcome. This predictability helps advertisers
and market analysts to better understand market dynamics and make more informed
decisions.

3.3 The Vickrey Auction

Although this thesis mainly addresses first-price auctions, Vickrey auctions have played a
significant role in the history of auction theory. First introduced academically by William
Vickrey, a professor at Columbia University, in 1961, they are considered a foundation
milestone, paving the way for further research in this field [51], [62]. Therefore, dedicating
a brief section to them is the least we could do. A Vickrey auction refers to any
sealed-bid, second-price auction. In other words, Vickrey auctions are a specific subset
within the broader category of second-price auctions. This type of auction is particularly
noteworthy because it combines three different and desirable properties:

e It is DSIC, encouraging truthful bidding, which helps to maintain control over
the outcome.

e Assuming that bidders report truthfully, this auction maximizes social surplus
by ensuring that the item is awarded to the bidder who values it the most. The
social surplus can be expressed as:

n
§ VT,
=1

where z; is 1 if bidder ¢ wins and 0 if bidder 7 loses. This is, of course, subject
to the feasibility constraint Y ;" , z; < 1,, which ensures that at most one item is
awarded—meaning only one bidder can win in the case of single-item auctions.

e The auction can be implemented in polynomial time, specifically linear time.

A remark on surplus maximization that should not go unnoticed: although bidders’
valuations are private, a priori unknown to the seller, this auction mechanism effectively
identifies the bidder with the highest valuation, ensuring that the item goes to the one
who desires it the most.

Given these three undeniably desirable properties, the Vickrey auction is a remark-
able and elegant auction.

3.4 Allocation Rule: Implementable and Monotone

Having defined what constitutes a DSIC auction, we can now introduce two important
definitions. In this thesis, these definitions are limited to the context of single-item
auctions; however, they can be extended to broader settings with slight modifications.
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Definition 3.1. An allocation rule x for a single-item auction is implementable if
there is a payment rule p such that the sealed-bid auction (x,p) is DSIC.

Definition 3.2. An allocation rule x for a single-item auction is monotone if, for
every bidder i and bids b_; from the other bidders, the allocation x;(z, b_;) to bidder i is
non decreasing in their bid z.

After presenting the preceding two definitions, we can now articulate Myerson’s
Lemma in the context of single-item auctions.

Lemma 3.1. For every single-item auction:
e (a) An allocation rule x is implementable if and only if it is monotone.

e (b) If x is monotone, then there is a unique payment rule such that the sealed-bid
mechanism (x, p) is DSIC (assuming that b; = 0 implies p;(b) = 0).

e (c¢) The payment rule in (b) is given by the formula: p;(b;, b_;) = fo (z,b_;)dz

This lemma is crucial and the payment formula will be addressed again in the upcoming
sections.

3.5 Bayesian Setting

Up to this point, we have discussed auctions where each bidder ¢ has a private and
deterministic valuation v;. We now broaden this setting by introducing non-deterministic
valuations for the bidders. In this context, each bidder 2 does not have a fixed valuation,
but instead draws their valuation from a value distribution. A common assumption,
that we also adopt in this thesis, is that these value distributions are known to all
bidders, as well as the seller. We represent the value distribution of each bidder i by
F;, which refers to the cumulative distribution function (CDF) of the bidder’s valuation.
The corresponding probability density function (PDF), if it exists, is denoted by f;. For
simplicity, we often use F; to refer to both the distribution and its CDF. An important
assumption throughout our discussion is that the values z; are drawn independently for
each bidder 7, meaning that these values are statistically independent random variables.
The joint distribution of these values, represented as F' = F; X - - - X F},, is thus a product
distribution of the individual distributions.

While auctions under the deterministic setting are treated as games described in
the first chapter—with the equilibrium concepts applied accordingly—auctions in the
Bayesian setting introduce an additional element of uncertainty, as the players’ valua-
tions are no longer deterministic. Consequently, these auctions are associated with a
different equilibrium concept which incorporates this uncertainty, known as the Bayes-
Nash Equilibrium. In Game Theory terminology, this unknown information is referred
to as a player’s type. The type profile of the n players is denoted by t = (t1,...,t,). A
strategy in this case is defined as a function mapping a player’s type to one of the player’s
possible actions in the game (or to a distribution over actions in the case of mixed strate-
gies). The strategy of player i is denoted by b;() and a strategy profile by b = (bq, ..., b,).
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Thus, in the Bayesian auction setting, ¢; corresponds to v;. For instance, in a second-price
auction, the strategy for each player i could be b;(v;) = {bid truthfully: b, = v;}.

In this setting, with the added uncertainty, the definition of a dominant strategy is
slightly modified, though it retains a clear correspondence with the dominant strategy
defined in the first chapter, where players did not have multiple types.

Definition 3.3. A player i’s strategy b; is a dominant strategy if, for all t; and b_;
(where b_; refers to the actions of all players except i), player i’s utility is mazximized by
following strategy b;(t;).

3.6 Bayes-Nash Equilibrium

In our setting, as mentioned before, we assume that the distribution from which each
player draws their type is common knowledge and that the distribution of types is
independent. The equilibrium concept related to this type of game is the Bayes-Nash
equilibrium, which is defined as follows:

Definition 3.4. In a game with a known joint probability distribution over type profiles
denoted as F', a Bayes-Nash equilibrium (BNE) is a strategy profile b such that, for
all i and t;, bi(t;) is a best response when the other players play b_;(t_;) where t_; ~ F_;.

To better understand this concept, consider the case of a single-item first-price auc-
tion with two bidders, where each bidder’s valuation is drawn uniformly from [0,1]. We
will prove that a BNE of this game is given by the strategies bi(z) = 5,b2(x) = 5. Con-
sider player 1 with valuation v; and bid b;. Player 1’s probability of winning the item,
by biding b, is:

Pr[Playerl wins with bid bl] = Pr[bQ S bl] = PI‘[% S bl] = PI’[’UQ S 2b1] = F(2bl) = 2b1
Thus, player 1’s expected utility can be calculated as follows:

E[Ul] = (Ul — bl) . PI‘[l wins with bid bl] = (’01 — bl) . 2b1 = 2Ulb1 — 2[)?

The function f(z) = 2ax — 22* achieves its maximum at x = %. Therefore, the

expected utility for bidder 1 is maximized at b = 4. A similar analysis applies to
player 2, yielding the same result, as both players have identical strategies. Since the
expected utility for both players is maximized by bidding half of their valuation, given
that the other player does the same, this strategy profile constitutes a BNE.

In this thesis, we mostly consider non-deterministic valuations for each player and

we also examine bidders within a symmetric setting, defined as follows:

Definition 3.5. A symmetric setting refers to an auction environment where all
bidders have the same value distribution.
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3.7 Revenue Maximization

So far, we have explored various types of auctions that operate within both deterministic
and Bayesian frameworks. Some auctions, such as the Vickrey auction, offer significant
advantages, as their ability to accurately identify the bidder with the highest private
valuation and thereby maximize the social surplus. However, other types of auctions may
not have these desirable features. Regardless of an auction’s properties, an important
question remains to be addressed: what about the seller’s perspective? How can auction
design be optimized to ensure that the seller maximizes their profit? This consideration
falls under the category of revenue maximization, which focuses on how the seller
can achieve the highest possible profit. A significant portion of auction theory literature
focuses on this objective, which is not surprising, given that auctioneers have control
over the allocation and payment rules, as previously discussed. Consequently, they can
design auction mechanisms with the goal of maximizing their revenue. To determine the
optimal revenue-maximizing auction, we assume that the seller has prior knowledge of
the value distribution F; for each bidder’s valuation. These value distributions quantify
the information that the seller has on each bidder. One notable strategy for increasing
or optimizing the seller’s revenue in traditional auctions is the use of a reserve price.

Definition 3.6. The reserve price is the minimum amount a bidder must offer to
purchase an item.

The reserve price is considered anonymous when it is set at the same level for all
bidders, and personalized if it varies among bidders. In this thesis, we focus exclusively
on cases where the reserve price is anonymous. In the following discussion, we deal with
single-item, DSIC auctions. In the case of a single bidder, the expected revenue from a
posted price r (a take-it-or-leave-it offer) is r(1 — F'(r)), where 1 — F(r) represents the
probability of a sale, as F'(r) denotes the probability that the bidder’s valuation is less
than or equal to the price of the item. Solving for the optimal r—meaning the r which
maximizes the expected revenue—known as the monopoly price, is usually a simple
process given a distribution F'. For example, if F is uniform on [0, 1], the monopoly price
is %, yielding an expected revenue of %. However, with two bidders, the situation becomes
more complex as the range of DSIC (Dominant Strategy Incentive Compatible) auctions
expands. Consider an auction with two bidders whose valuations are independently
drawn from a uniform distribution on [0, 1]. The Vickrey auction in this case generates
revenue equal to the expected value of the lower bid, % Adding a reserve price, similar
to an eBay auction’s opening bid, modifies this. In a Vickrey auction with a reserve price
r, the item is awarded to the highest bidder unless all bids fall below r. The winner’s
payment is the higher of the second-highest bid or r. Introducing a reserve price can
both increase and decrease revenue—higher prices lead to more revenue when only one
bid exceeds r, but no sale occurs if both bids fall short. In this setting, a reserve price
of % increases expected revenue from % to %

This raises the question: can an even higher revenue be achieved with a different
reserve price or auction format? Despite the extensive variety of DSIC auctions, Myerson
provided a comprehensive solution to this problem.
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3.7.1 Expected Revenue Equals Expected Virtual Welfare

Our objective is to characterize the optimal (regarding revenue) DSIC auction for any
single-item environment and any distributions F7, ..., F,,. Having assumed truthful bid-
ding (b = v), the expected revenue of such an auction (x, p) is:

ZPi(V)] )

where the expectation is taken over the distribution F; x - -- x F}, of bidders’ valuations.
However, maximizing this expression directly over all DSIC mechanisms seems complex.
Instead, we derive an alternative revenue formula that depends only on the allocation
rule x, which simplifies the maximization process. Myerson’s formula for the expected
payment of bidder 7, as mentioned in El] is:

E,

b;
pi(bi,b_;) = / z- (2, by)dz,
0

which holds for any monotone allocation function z;(z,b_;). This shows that the pay-
ments are fully determined by the allocation rule, allowing to express expected revenue
in terms of its allocation rule alone. By fixing i and v_;, the expected payment for bidder
¢ can be written as:

Bl = [ [ 2 wl(ev-ids filw)do
0 0

Reversing the order of integration simplifies this to:
Eynr [pi(V)] = / ( 4 fi(vi)dvi) czemh(z,v)dz =
0 z
— [T FE) s v
0
Applying integration by parts to further simplify the expression:

Vmax

Buer, i¥)] = (1= Fi2) 2 aiCerv| = [ aeived) - (L= B(e) = 2 =

0

_ /0 (Z _ %};)@) 2z v ) fi(2)de

We define the virtual valuation ¢;(v;) for bidder i with valuation v; drawn from F; as:

o) = v L= B

fi('Ui)

This transforms the expected payment of bidder 7 into:
Evinr; [Pi(V)] = Eyinr, [pi(v:) - 2:(V)]
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Taking the expectation over all bidders’ valuations, we obtain:

Ey [pi(v)] = E, [pi(vi) - 2:(v)]

Using linearity of expectation, we conclude that:

Zm(v)] = ZEV [pi(v)] =
Z wi(vi) - l’i(V)]

Thus, the expected revenue of an auction is equal to its expected virtual welfare—
the virtual welfare of an auction on the valuation profile v is defined as Y ;" | @i (v;)-z;(v).
Therefore, maximizing expected revenue in DSIC auctions is equivalent to maximizing
expected virtual welfare. Before presenting an important result, we must introduce one
more definition.

Ey

n

= ZEV [pi(vi) - 2:(v)] = Ey

i=1

Definition 3.7. A distribution F is called regular if the corresponding virtual valuation
function p(v) = v — 1}€()v) is strictly increasing.

Taking all these points into account, we can now state the following result: in a
single-item auction with i.i.d. bidders, where the valuation distribution is regular, the
maximum expected revenue is equivalent to the revenue obtained from a Vickrey auction
with a reserve price of »~1(0). In fact, this simple format—a Vickrey auction with a
reserve price—is sufficient to provide the seller with the maximum possible revenue.
There is no need for more complex mechanisms or designs, as no better results, regarding
revenue, can be achieved.

The question of which auction format generates higher revenue has been a major
focus of research. One significant result related to revenue equivalence is the following:
in a Bayes-Nash equilibrium, when bidders’ valuations are independent and identically
distributed random variables (i.i.d.), the revenue generated from a first-price auction
with the optimal reserve price equals that of a second-price auction with the optimal
reserve price [36].

With these key points on revenue established, we now turn to the final significant
aspect of auctions for this thesis: repeated auctions.

3.7.2 Repeated Auctions

Up to this point, the auction setting has been treated as a one-time game. However, there
is increasing interest in repeated auctions, where the same item is auctioned multiple
times. At first glance, the concept of repeated auctions may seem counterintuitive,
especially when thinking of items like artwork, which are typically sold only once, or at
most, infrequently. Nevertheless, repeated auctions are prevalent in various contexts.
A prominent example is the auctioning of advertising slots on platforms like Google
[39]. Every day, companies (bidders) compete for prime advertising positions, which
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are crucial to their revenue generation. In the digital era, with the rapid growth of
technology, online advertising—such as the aforementioned Google ads—has become
a significant factor in a company’s visibility and profitability, making it strategically
important. Thus, repeated auctions are quite common.

What makes repeated auctions particularly interesting is the fact that bidders can
learn from past experiences and adapt their bidding strategies over time. By observing
how other bidders behave, they can adjust their own bids accordingly. In this dynamic
environment, modeling bidder behavior requires a structured approach. To address this,
we borrow terminology and concepts from the field of online learning algorithms. Under-
standing these algorithms and their role in repeated auctions is essential for simulating
bidder behavior in a meaningful way and for presenting the results of this thesis.
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Chapter 4

Online Learning Algorithms

4.1 Notation and Setting

As outlined in the previous chapter, auctions are a form of strategic game, where bidders
aim to maximize their utility and the seller seeks to maximize revenue. We have already
examined equilibrium concepts, focusing on one-time auctions. However, repeated auc-
tions introduce new dynamics. Do strategic players converge to an equilibrium, and if so,
how quickly does this occur? To investigate these questions, we rely on online learning
algorithms to simulate how players evolve their strategies and adapt their behavior over
time.

In computer science, an online algorithm is an algorithm that processes its input
incrementally, handling data as it is received, without having access to the entire input
upfront. In our framework, we deal with online learning algorithms, which adapt
and learn from new data as it becomes available, offering continual updates to the
predictive model [46]. Our setting can be viewed as a structured repeated game. In this
framework, a decision-maker repeatedly makes choices without knowing the outcomes
in advance. Each choice incurs a certain loss. These losses, unknown beforehand, may
even be adversarially chosen, depending on the player’s actions. However, it is crucial
to assume that losses are bounded; otherwise, an adversary could gradually decrease the
scale of the loss at each step, preventing the algorithm from recovering after incurring
an initial large loss, and, in that case, the framework would not be really meaningful.
The total number of iterations (or game rounds) is represented by 7', the decision set
(i.e. the possible actions a player can take) by K, and the losses (or costs) by bounded
convex functions over this set. The setup is as follows.

At each iteration ¢, the player selects a mixed strategy p;, i.e., a probability distri-
bution over the actions in K. After making this choice, the adversary reveals a convex
cost function f; € F : K — R, chosen from F, a bounded set of possible functions. An
action k; € K is then chosen according to the distribution p; and the corresponding cost
fi(k¢) is incurred, representing the value of the function at the chosen action k;. After
this iteration, the player learns the entire cost vector f;, not just the realized cost f;(k;).

To illustrate this setup, consider the following example: the decision set K represents
the possible routes a driver can take to travel from point A to point B, and the cost
function represents the travel time. This function is unknown to the driver in advance,
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as it depends on the traffic conditions on a given day. Each day, the driver must choose
a route. After making their choice, the driver learns the travel time for that route,
as well as what the travel times would have been for the other routes. Based on this
information, the driver may adjust their strategy by assigning different probabilities to
each route the next day. Although there is no adversary actively trying to increase
the driver’s travel time, this scenario—hopefully—gives a clear intuition for how certain
real-world problems can be modeled as online decision-making problems. In the auction
framework, the decision set represents a player’s strategy set, and the cost function is
determined by the strategies chosen by all other players.

After understanding the setting, a natural question arises: how can we determine if
an algorithm performs well in online decision-making problems? There should be some
performance metric to evaluate it. Initially, this setup might seem unfair—the adversary
has the flexibility to select the cost function after the decision-maker has committed to a
strategy. For that reason, it is unrealistic to expect an online decision-making algorithm
to match the performance of the best possible sequence of actions in hindsight. This
hindsight benchmark, denoted by Zthl mingcx f;(k), is too stringent.

Consider a simple example to illustrate this: suppose a player is using an algorithm to
select between two actions: heads (H) and tails (T)—so the decision set is K = {H,T}.
The adversary can manipulate the cost function as follows: if the player selects heads
with a probability of at least 1, then f,(H) =1 and f,(T) = 0. Otherwise, f;(H) =0
and f;(T) = 1. This strategy guarantees that the algorithm’s expected cost is at least
%, while the optimal action sequence in hindsight would incur a total cost of 0.

As seen in this example, comparing the expected cost of an online decision-making
algorithm with that of the best action sequence in hindsight does not yield meaningful
results because the latter is too powerful. To address this, experts in the field introduced
an alternative performance metric known as “regret”. In this thesis, we focus on two types
of regret: external regret and swap regret.

4.2 The Notion of External Regret

One method to evaluate the performance of an online algorithm is by comparing it to
the best fixed action in hindsight. This comparison is measured using a metric known
as external regret, which is formally defined below:

Definition 4.1. The time-averaged external regret of an action sequence ki, ks, ... kr
relative to a fixed action k is defined as:

R = % (Z ft(kft) - th(@)

t=1 t=1

From this point onward, the term regret will refer to the time-averaged external
regret as defined above. An algorithm is considered no-regret, and therefore effective,
when its performance is almost as good as the best fixed strategy in hindsight. This can
be formally expressed as follows:
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Definition 4.2. An online decision-making algorithm is a no-(external) regret algo-
rithm if, for any € > 0 there exists a sufficiently large time horizon T = T (€) such that,
for any possible adversary, the expected regret (@ ), with respect to any action k € K,
15 at most €.

Typically, when we talk about regret, we consider scenarios where minimizing cost
is the goal. In the context of utility-maximization, however, regret can be defined by
switching the terms: rather than comparing our cost to the cost of the best fixed action
in hindsight, we instead compare our utility to the utility of the best fixed action. Instead
of subtracting from our cost, we subtract our utility from that of the best.

We previously mentioned that, in our framework, players choose a probability distri-
bution over their decision set. The following example highlights why this is important.
If a player were to choose actions deterministically, the adversary, by selecting the cost
function after observing the player’s choice, would always be able to exploit this and
prevent no-regret performance. Consider a case with K > 2 possible actions, where the
player uses a deterministic algorithm. At each time step ¢, the algorithm commits to
a specific action k;. The adversary’s optimal response—assuming costs lie in the range
[0, 1]—is to assign a cost of 1 to the chosen action k; and a cost of 0 to all other actions.
Under this setup, the algorithm incurs a total cost of 1", while the best fixed action in
hindsight incurs a cost of at most 7'/n. Therefore, the regret of the deterministic algo-
rithm remains constant as 7" — oo, with respect to some action k. This demonstrates
that no algorithm can be both deterministic and no-regret.

Even for non-deterministic algorithms, there is an upper bound on their performance
in terms of regret that, unfortunately, cannot be surpassed:

Theorem 4.1. For every (randomized) algorithm, the expected regret cannot decrease
faster than ©(\/(In K)/T), where K denotes the number of possible actions and T the

number of iterations.

The following example, where the decision set consists of only two actions (K =
2), demonstrates that no randomized algorithm can achieve an expected regret that
decreases faster than ©(1/v/T). A similar reasoning shows that for K actions, the
theorem (@) holds. Consider an adversary who, at each round 7', randomly selects
between two cost vectors, (1,0) and (0, 1), with equal probability. This means that at
each round, the adversary assigns a cost of 1 to one action and 0 to the other, or vice
versa. No matter how sophisticated or simple an online decision-making algorithm is,
its cumulative expected cost after T' rounds will be 7'/2. However, when looking in
hindsight, one of the two fixed actions will have a cumulative cost of /2 —©(+/T). This
is analogous to flipping a fair coin 7" times: the expected number of heads is 7'/2, but
the standard deviation is ©(v/T). Thus, there exists a distribution of 27 adversarial
strategies such that any algorithm will have an expected regret of at least Q(1/ \/T),
where the expectation is over both the algorithm’s random choices and the adversary’s
strategy. Consequently, for every algorithm, there is an adversary that ensures the
algorithm’s expected regret cannot be better than Q(1/v/T).

Hence, deterministic no-regret algorithms do not exist and for randomized ones, there
are established upper bounds on their performance. However, an important question
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remains: how can we be confident that a no-regret randomized algorithm actually exists?
Fortunately, this has been proven.

Theorem 4.2. There exist simple no-regret algorithms with expected regret O (, / %)

with respect to every fixzed action, where K represents the number of possible actions and
T the number of iterations.

A direct consequence of this result is that a relatively small number of iterations,
growing logarithmically with K, is enough to reduce the expected regret to a low constant
value.

Corollary 4.1. There exists an online decision-making algorithm that, for every e > 0,

has expected regret at most € with respect to every fized action after O (h;—QK) iterations.

The task of designing a no-regret algorithm is often referred to as “combining expert
advice.” This analogy arises because each action can be viewed as an “expert” offering
recommendations, and a no-regret algorithm performs asymptotically as well as the best
expert. While this equivalence may not be immediately intuitive, it becomes clearer
by considering what no-regret entails. In essence, no-regret means that, given a set
of recommendations/actions/experts, the algorithm can quickly identify which option
leads to the best outcome if followed consistently over time. Thus, the question “can the
algorithm perform as well as the best fixed action in hindsight?” can be reframed as “can
the algorithm perform as well as the best expert in hindsight?”

There are some simple no-regret algorithms. They are based on the following key idea:
past performance of action guides which action is selected at present. The probability
of choosing an action should be decreasing in its cumulative cost. ‘Bad’ actions should
be punished, meaning that their probability of being played in the next round should
be decreased. Two of the most famous no-regret algorithms are the Randomized
Weighted Majority (RWM) algorithm and the Hedge algorithm. They both reserve
the main key idea but have slight differences. We will analyze both of them in the
following subsections and prove the theorem (1.9). However, first, we will discuss the
deterministic algorithm Weighted Majority (WM), since it serves as the foundation
for the Randomized Weighted Majority algorithm.

4.2.1 Weighted Majority (WM)

The Weighted Majority (WM) algorithm can be described as follows: each expert
i is assigned a weight W;(i) at each time step ¢. Initially, every expert is given equal
weight, Wi (:) = 1 for all i € [N]. For each time step ¢ € [T], let S;(A) and S;(B) C [NV]
represent the groups of experts that select action A and B, respectively, at time ¢. The
weights for the actions are then computed as follows:

Wi(A) = > Wili), Wi(B)= > Wi
i€St(A) 1€S¢(B)
The algorithm predicts the action at time ¢ by selecting;:
. {A, if W,(A) > W,(B)
t =

B, otherwise
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After making the prediction, the weights are updated based on the correctness of the
expert’s prediction. The update rule for the weights is as follows:

Wi (i)

, if expert ¢ was correct
Wi(i)(1 —¢), if expert i was wrong

Wit (2) = {

The parameter ¢ influences the performance of the algorithm. Intuitively, when ¢ is
very small, the probability distribution p; moves closer to a uniform distribution. This
means that smaller values of £ promote more exploratory behavior. On the other hand,
as ¢ increases toward 1, the distribution p, shifts towards concentrating all of its weight
on the action with the lowest accumulated cost up to that point. So, larger values of
drive more exploitative behavior. Hence, € serves as a tuning parameter that balances
exploration and exploitation. Typically, € is chosen to be between 0 and %

Now we move on to bound the number of mistakes the algorithm makes. Let N
represent the number of experts, My the total number of mistakes made by the algorithm
up to time 7', and Mr(i) the number of mistakes made by expert ¢ up to time 7. We
will show that for any expert i € [IV], the following holds:

2In N

Mr < 2(14 e)M7(3) + :

Let Ty = 32, W, (i) for all t € [T], with I} = N. Since the WM algorithm decreases
weights over time, we have:
Pyt <1y

In the rounds that the algorithm makes a mistake, at least half of the total weight is
associated with experts who were wrong. Therefore,

1 1 3
Ft+1 < §Ft(1 — 8) + ift = Ft (1 — 5)

So, we conclude that:

M M
rt§r1<1—f) T:N(1—5> !
2 2

By definition, for any expert i, we have:
Wy (i) = (1 — )@

Since Wr(i) <Tpr < N (1 - %)MT, we can take the logarithm of both sides to get:

Mr(i)In(l —¢) <InN + Mrln <1 — g)

Recall the Taylor series expansion for In(1 — x) is given by:

To upper bound In(1 — ¢), we discard all the higher-order (negative) terms except the
first one, which gives us —e. Similarly, we can lower bound In(1 — ¢) by retaining only
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the first two terms and doubling the second term for a tighter bound (assuming ¢ < %),
resulting in —e — &?. Therefore, for ¢ € (0, 3], we can simplify the expression:

—Myp(i)(e + %) <InN — MTg

Thus, diving by €, we conclude that:

2In N
€

This completes the proof.

4.2.2 Randomized Weighted Majority (RWM)

The randomized version of the Weighted Majority (WM) algorithm, called Randomized
Weighted Majority (RWM), is similar to the WM, with the difference that at each

iteration t, we choose expert ¢ with probability p,(i) = ZNW’S—E,%(])
j=1

Let M, represent the number of errors made by the RWM algorithm up to iteration
t. As before, let T, = SN W, (i) for all t € [T], noting that T'; = N. Define the indicator
variable m; = M; — M,;_1, which equals one if the RWM algorithm makes an error at
iteration ¢ and zero otherwise. Respectively, let m;(:) be an indicator equal to one if
expert ¢ makes an error at time ¢ and zero otherwise.

By summing over the weights, we obtain:

Ly = ZWt(z)(l —emy(1)) =T} (1 - €Zpt(i)mt(i)) )

Wi(i)
> W)

where p,(i) =

This simplifies to: ~
Ft+1 = Ft(l - €E[mt]) S Fte_sE[md

The last inequality holds, since 1 4+ x < ex. For any expert i, we have by definition:
Wir(i) = (1 — )Mr®
Since Wr(i) is always less than the total weight I'r, we conclude:
(1 —e)Mr® = Wy (i) < I'p < Ne <EMr]
Taking the logarithm of both sides gives:

MT(Z) ln(l — 8) S InN — €E[MT]

Using the same approximation as before, for ¢ € (0, %], we obtain:

—Mr(i)(e + €*) < In N — cE[My)]
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By dividing by e, we get:

E[Mr] < T 4 Mr(i)(1+ )

Therefore, for any expert i € [IV], the expected number of mistakes is bounded by:

In N In N
E[{Mr] < (1+&)Mr(i) + —— < My(i) + T+ —

We can optimize € to minimize the above bound. The right-hand side of the bound
takes the form f(z) = az + %, which reaches its minimum at z = \/g Therefore, the

bound is minimized at:
N [In N
¥ =\ —
T

By using this optimal value of €, we obtain for the best expert i*:

My < Myp(i*) + 2 (m)

So, the cumulative expected cost is at most 2v/7T Inn more than the cumulative cost of
the best expert (best fixed action in hindsight); dividing both sides by 7" shows that the

time-averaged regret, as defined in is at most 24/ % This completes the proof of

theorem ([£.9).

4.2.3 Hedge

The Hedge algorithm closely resembles the Randomized Weighted Majority (RWM)
algorithm, with one key distinction: instead of counting discrete mistakes, it assesses
the performance of each expert using a non-negative real value ¢;(i), which represents
the loss of expert i at time step t. Like RWM, Hedge guarantees that a decision maker
following its strategy will experience an average expected loss that approaches the loss
of the best expert in hindsight.

Initially, all weights are set to 1. During each round ¢, an action (expert) i, is selected
based on the current weight distribution, where the probability of selecting expert i, =i

is z4(1) = Z‘:/‘t/lg?(j)' The loss for the chosen action is ¢;(i;). In the Hedge algorithm, the

weights are updated after each round according to the rule:
Wt+1 (7/) = Wt(i)eidt(i)

The expected loss of the algorithm is denoted in vector notation as:

N

E[ty(i)] = > 2(i)(i) = 2[4,

i=1

where x,(i) is the probability of selecting expert ¢ at time step ¢, and ¢,(7) is the loss of
expert ¢ at time t.
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Let ¢? denote the N-dimensional vector of squared losses, i.e., £2(i) = £;(i)?, and let
e > 0. Assuming all losses are non-negative, the Hedge algorithm satisfies the following
bound for any expert i* € [N]:

d T In N
> b <> 4 +5§ x] 02+
t=1 t=1

As in previous analyses, let I'; = ZzN:1 Wy (i) for all ¢t € [T], noting that I'y = N.
Analyzing the sum of weights at each iteration, the total weight at time ¢ 4+ 1 is given
by:

Lepr = ZW et

This can be rewritten as:

—EZ
Ft+1 I'y E fEt t

Wi (i) .
S W)

Using the approximation e™* < 1 — x + 22 for > 0, we obtain:

where z,(i) =

N

Ft+1§FtZ ()(1_5€t()+5£t(>)

=1

This simplifies to:
'y <TIy (1 —&x, Y0, + &% Tﬁf) ,

where z/ ¢; represents the expected loss of the algorithm at time ¢, and z,¢? is the
expected squared loss. Using 1 + x < e*, we further bound the sum of weights by:

Tpp1 < Dye oo T l+e3a] 62
For fixed expert ¢*, we have:
Wi (i*) = G
Since Wr(i*) is always less than the sum of all weights I'r, we have:

WT+1( )< FT+1 < Ne~ el ale+e? S

Taking the logarithm of both sides gives:

—52& <1nN—gij£t+a Z:Jzz?
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Thus, by rearranging, we conclude that:

a a In N
t=1 t=1

If the losses are bounded between [0, 1], we get:

T T
PSP ACY +—+azxﬂ2 <Z€t +—+5T
t=1 t=1

In N

For ¢ = 7

, we obtain:

me < Zet )+ 2VTIn N

If the losses are bounded between [0, G}, where G is a real, positive number, we have:

d a In N
il <Y (i) + —— + TGP

In N

Toz» We obtain:

For ¢ =

T T
> alt <Y 4(*) +2GVTIn N
t=1 t=1

lnN

Thus, in all cases, the time-averaged regret is O < . Therefore, the Hedge algorithm

is also classified as a no-regret algorithm, as it Satlsﬁes the conditions of Theorem (@)

4.3 The Notion of Swap Regret

In this section, we introduce a concept that is slightly different from, and more powerful
than external regret, known as swap regret. Similar to the notion of external regret,
the time-averaged swap regret of an online decision-making algorithm (referred to as
swap regret) is defined as follows:

Definition 4.3. The time-averaged swap regret of an action sequence ky, ko, ks, ..., kr,
with respect to every switching function 6 : K — K, where K denotes the number of
possible actions, is defined as:

SwapR = % (Z fe(ke) — Z ft(5(kt))>

An online learning algorithm is said to have no-swap regret if, for every adversary, the
expected swap regret is o(1) as T — oo. Since fixed actions are a special case of constant
switching functions, any algorithm with no-swap regret also exhibits no-external regret.
Although formulated differently, this definition parallels that of no-external regret, with
the key difference being that here we are dealing with a switching function ¢ rather than
a constant action k.
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4.3.1 Reduction from Swap Regret to External Regret

Instead of describing from scratch a no-swap regret algorithm, as was done for the no-
regret algorithm, we will convert a no-regret algorithm into a no-swap regret one. This
reduction preserves computational efficiency. For instance, plugging the Hedge algorithm
into this reduction yields a polynomial time no-swap regret algorithm.

Theorem 4.3. If there is a no-external regret algorithm, then there is also a no-swap
regret one.

Proof. Let n denote the total number of actions (K = [n]|) and let My, Ms, ..., M, rep-
resent no-regret algorithms, such as RWM, Hedge or other similar algorithms. These
algorithms may be different instances of the same algorithm. Each of these no-regret
algorithms corresponds to one action. The proposed no-swap regret algorithm integrates
these individual no-regret algorithms as follows.

At each time step t = 1,2,...,T, the algorithm:

Receives the distributions ¢t, ¢&, . . ., ¢, over actions from the algorithms My, M, ..., M,

Computes the “consensus” distribution p

Receives the cost vector ¢! from the adversary and incur the appropriate costs

Provides M; with the cost vector p’(j) - ¢!, meaning it “deceives” M; by scaling the
true cost vector by p(j)

The time-averaged expected cost of this algorithm is:

T n
1 Nty
23S ) )
t=1 i=1
Consider a switching function ¢ : K — K. If the algorithm follows the switching function
0, the time-averaged expected cost can be expressed as:

T n
1 . .
=300 6() (1)
t=1 i=1
To demonstrate that this algorithm achieves no-swap regret, we need to establish that
the difference between (/) and (I7) is asymptotically small, specifically o(1), for every
switching function 4.
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Figure 4.1: Reduction from swap regret to external regret

Now, adopt the perspective of the algorithm M;. Since M; is a no-regret algorithm,
it exhibits no-regret with respect to d(j). However, this regret applies to the perceived
cost vectors, not the actual ones. More formally, this can be expressed as:

T n T
1 . N £/ 1 . .
=22 GO 6 E) — = D PG (0()) < Ry,
t=1 i=1 t=1
where the first term represents M;’s perceived cost, the second term reflects the per-
ceived cost in hindsight of always playing action §(j) and R, denotes the regret which
approaches zero as T — o0.
Summing this inequality over all j € [n], we get:

1 T n n 1 T n
= IO OEE=S S SAOEICEN D FH
t=1 i=1 j=1 t=1 j=1 j=1
The term ) 7 | R; goes to 0 as T — oo (we think of n as fixed as " — c0). Notice
that the second term on the left-hand side corresponds to expression (/). Therefore,
the remaining objective is to show that the first term matches expression (/). In other
words, we need to establish that:

1 T oo L I
2.0 GG =5 D> P ()0,
=1 i=1 j=1 =1 i=1
n
which holds by defining p’, for all ¢ and i, as: p'(i) = Z (' (4)-

j=1
Although it might seem odd to define p’ in terms of itself, this can be achieved by defining
a Markov chain with states K = [n] and transition probabilities ¢}(i) from state j to
state 7. Since ¢} is a valid probability distribution ( i.e., > i, ¢}(i) = 1), a stationary
distribution for this Markov chain always exists. This stationary distribution will satisfy
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the last equation, as it is essentially the definition of such a distribution. This completes
the proof of the theorem ({.3). O

Figure 4.2: Markov Chain

4.4 Linking Regret Minimization with Equilibrium
Concepts

So far, we have focused on no-external regret and no-swap regret algorithms from the per-
spective of a single player. Now, we extend this analysis to multi-player scenarios within
the framework of utility-maximization games. During each time step t = 1,2,...,T,
in no-regret (or no-swap regret) dynamics, each player i independently selects a mixed
strategy p! using a no-regret (or no-swap regret) algorithm, concurrently with the other
players. Afterwards, each player i receives a utility vector u!, where ul(s;) represents the
expected utility of strategy s;, assuming the other players are following their respective
mixed strategies. Specifically:

uf(sl) = EsfiNo-fi [Ui(sia S—i)]a

where o_; = H 0j.
J#i

It is important to highlight that each player can utilize any no-regret (or no-swap
regret) algorithm, provided that all players use the same type of algorithm—either all
employ no-regret algorithms or all use no-swap regret algorithms.

No-regret dynamics can be implemented efficiently. For instance, if every player
applies the Randomized Weighted Majority (RWM) or the Hedge algorithm, then in
each round, each player performs a straightforward update of one weight per strategy.
After O (hz—QK) iterations, every player achieves an expected regret of at most e for all
strategies, where N is the maximum size of a player’s strategy set.

The time-averaged play history of joint play under no-regret dynamics converges to a
coarse correlated equilibrium. This reveals a key connection between static equilibrium
concepts and outcomes generated by natural learning processes.
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Proposition 4.1. Suppose that after T iterations of no-regret dynamics, each player in
a utility-mazimization game experiences a regret of at most € for each of their strategies.
Let ot = [, p! represent the outcome distribution at time t, and let o = %ZtT:l o
represent the time-averaged history of these distributions. Then, o is an e-approximate
coarse correlated equilibrium, meaning that:

ESNJ[Ui<S)] Z ESNJ[Ui(Sga s—i)] — €,
for every player i and any unilateral deviation s,.

Proof. By definition, for each player i:

Eees[Ui(8)] = 75 O Baver [Ui(9)],

where the right-hand side of this equation represents the time-averaged expected cost
for player ¢ when following the no-regret algorithm. In addition,

T
1
EavolUi(s}y5-0] = 7 > Bavot[Ui(sf5-0)],
t=1

where the right-hand side of this equation represents the time-averaged expected cost
for player ¢ when playing the fixed action s} in each iteration. Since the regret for each
player is at most ¢, and we are dealing with a utility-maximization game, the second
expression is at most € larger than the first:

]ESNO—[UZ‘(S;, S—i)] S ESNU[Ui(S)] +¢€

This confirms the condition for an approximate coarse correlated equilibrium within the
framework of utility-maximization games. [

Respectively, the time-averaged play history of joint play under no-swap regret dy-
namics converges to a correlated equilibrium.

Proposition 4.2. Suppose that after T iterations of no-swap-regret dynamics, each
player in a utility-maximization game experiences a swap regret of at most € for each
of its switching functions. Let o' = Hlepﬁ denote the outcome distribution at time

t and 0 = %Zle o the time-averaged history of these distributions. Then o is an
e-approximate correlated equilibrium, in the sense that:

Esvo[Ui(8)] > Esuo[Ui(6(si), 5-4)] — ¢,

for every player i and any switching function 6 : S; — S;.
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Chapter 5

Our Contribution

In this thesis, we investigate revenue in repeated sealed-bid first-price auctions, mostly
within a Bayesian framework involving two or three bidders, simulated by software
agents using no-regret and no-swap regret algorithms. In this setting, bidders acquire
information about the actions of others over time and adjust their strategies accordingly.
More specifically, we examine cases where bidders’ valuations are independent and iden-
tically distributed (i.i.d.) random variables. This implies that each bidder draws their
valuation from the same probability distribution, with no correlation between individual
bidders’ choices; instead, their valuations are mutually independent. Our objective is to
deepen the understanding of how this framework functions, with a focus on addressing
three open questions, to the best of our knowledge.

First, we aim to explore whether a “fake” bidder—essentially an agent working on
behalf of the seller—could effectively function as a reserve price. Specifically, we wish to
examine whether the inclusion of such a bidder would maximize the seller’s revenue to
the same extent as a conventional reserve price. Second, we seek to determine if there is
any significant difference in revenue when utilizing no-regret algorithms as compared to
no-swap regret algorithms. Finally, we aim to investigate whether the revenue generated
by a first-price auction is equivalent to the expected revenue in a second-price auction,
assuming both auctions operate under the same Bayesian conditions regarding bidders’
valuations. Before delving into the details of our work, it is important to first explore
the existing literature and how it relates to and informs our research.

5.1 Existing Literature

The study of auctions has been a longstanding topic in academic literature. As discussed
in the earlier chapter on auctions, second-price auctions are generally simpler to under-
stand and provide more predictable outcomes. However, there has been a noticeable shift
from second-price to first-price auctions, particularly in the context of repeated auctions
for online advertising [40]. Recent research has increasingly focused on the dynamics of
first-price repeated auctions, especially in the context of online learning agents [44], [45].
Among the various works, we will primarily examine the findings of [43]|, not only be-
cause of its relevance to our research but also due to the foundational and extensive
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insights it provides in the field.

In [43], the authors examine the interaction of software agents, designed as regret-
minimizing algorithms, in repeated first-price and second-price auctions on behalf of
their users. The study demonstrates that, in second-price auctions with two bidders
having different valuations and with Hedge agents that engage in a repeated second-
price auction on their behalf with discrete bid levels, the higher-valued bidder’s bids
converge to a uniform distribution between the lower bidder’s valuation and their own,
while the lower bidder’s to one that spans the entire range from zero to their private
valuation. The higher bidder always wins, as expected, but pays strictly less than
the second-highest price, which contradicts the traditional dominant-strategy outcome.
The paper contrasts this with results from [42], which shows that when starting with
a long pure-exploration phase, dominant strategies do emerge in second-price auctions.
According to the authors, the failure to converge to dominant strategies can be explained
by the existence of alternative Nash equilibria. In these, the first player arbitrarily bids
well above the second price while the second player underbids arbitrarily. Since regret
dynamics do not always favor dominant strategies, they often lead to outcomes associated
with ‘low-revenue’ equilibria. This lower average price compared to the second price
allows users with values between these points to benefit from inflating their reported
value. For example, a player with 0.4 bidding truthfully against a player with 0.5 will
always lose, but by exaggerating their value to 1, they can consistently win and secure
strictly positive utility on average.

In repeated first-price auctions between two regret-minimizing agents, with valua-
tions v > w, the expectation is that the dynamics converge to an equilibrium. The only
pure Nash equilibrium occurs when the lower bidder bids close to their valuation and
the higher bidder bids slightly more, leading to the higher bidder consistently winning
at near the second price. Both mixed and correlated Nash equilibria in such auctions
typically yield this outcome [53]. However, regret-minimizing dynamics do not neces-
sarily converge to a Nash or correlated equilibrium. Instead, they may reach coarse
correlated equilibria (CCE) [53|, where the revenue can fall below the second price, and
occasionally the lower bidder may even win. This phenomenon persists even when bid
levels are discretized. For every CCE, there exist regret-minimizing algorithms that con-
verge to it [b4]. Agents can be designed to follow a pre-set schedule that converges to the
desired CCE, and in case of any agent’s deviation, they could revert to a standard regret-
minimization strategy. Thus, regret-minimizing algorithms may not always lead to the
second-price outcome. Nevertheless, algorithms in the “mean-based” class (as defined
in prior work [55], consisting of algorithms which assign minimal probability to actions
that previously performed poorly), may converge only to the second-price result. In
this setting, it has been proven that in repeated first-price auctions with discrete e-grid
bidding levels, if the dynamics converge to any single distribution, the higher-valued
player will almost always win and pay close to the second price. Unlike second-price
auctions where initial exploration phases influence convergence to dominant strategies,
first-price auctions reach similar outcomes without requiring this additional exploration
phase. Consequently, for human users interacting with regret-minimizing agents, the ob-
served auction dynamics resemble a second-price auction, which is incentive-compatible.
This removes any long-term incentive for users to misreport their values to their agents.
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5.2 Experimental Research

As seen in the previously discussed research, significant findings have been made regard-
ing both first- and second-price auctions in deterministic settings, through the applica-
tion of no-regret algorithms. However, further exploration is required in the Bayesian
setting and also in the context of no-swap regret algorithms. Additionally, the use of
software agents acting on behalf of bidders in repeated auctions is an established con-
cept. However, the idea of misreporting valuations, which falls under the broader theme
of deception, introduces new avenues for exploration. In our work, we adopt this core
idea of deception but apply it in a different context. Here, there is no deception between
bidders and their software agents; instead, the deception comes from a “fake” bidder, who
manipulates the other bidders. With the foundation of existing research now established,
we turn to our contributions.

To address our primary research questions, we conducted experimental investiga-
tions through computer simulations. Specifically, we used Python to model the re-
peated auction interactions, modeling each software agent—representing a bidder and
their behavior—using object-oriented programming. The Hedge algorithm was employed

for the simulations, with the tuning parameter set to ¢ = 1/1“:,,1( , where K represents

the total number of possible bids (each bid corresponding to an action), and T the
number of iterations in the repeated auction. The utility was constrained between zero
and one. When we refer to revenue, we are discussing the average revenue per auction.
Importantly, bidders did not overbid (i.e., they never bid more than their actual valua-
tion, which was capped at 1), and all bids were non-negative. As a result, revenue was
bounded between 0 and 1.

We employed both no-regret and no-swap regret algorithms (using the reduction dis-
cussed in the chapter on online learning algorithms) to simulate how each player learns
and adapts their strategies over time. In terms of the possible bids for each player,
we experimented with various levels of discretization. The simplest discretization we
used involved bids drawn from the set {0, 0.2, 0.4, 0.6, 0.8, 1}. We also examined
cases where bids were drawn from the set {0, 0.1, 0.2, ..., 0.9, 1}, as well as finer dis-
cretizations, such as {0, 0.01, 0.02, ..., 0.98, 0.99, 1} and {0, 0.001, 0.002, ..., 0.999, 1}.
Additionally, we considered scenarios where bidders had deterministic valuations and
cases where their valuations were i.i.d. random variables. Throughout these simula-
tions, our primary objective was to analyze the bid dynamics and evaluate the seller’s
revenue. The Python code for all the simulations can be accessed at the following link:
https://github.com/ntua-e118046/IntegratedMasterThesis.

The following principles apply to all experiments presented in this thesis:
e Utility = actual value — bid
e Loss = — utility

The step-by-step process of the Hedge Algorithm under the utility framework is described
below:
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Algorithm 1 Hedge Algorithm

1: Initialize: Vi € [K],W;(i) =1

2: fort=1to T do

3. Pick i, ~ W,, i.c., i, = i with probability z,(i) = EWT“(J)
4: Receive utility (i)

5: Update weights Wy (i) = W, (i)e()

6: end for

In first-price auctions, taking into consideration both the maximum bid of the opponents
and the player’s true valuation, the utility for each possible bid ¢ € K is computed as
follows:

actualValue — bid|i] if bid[i] > opponentBid
utility (i) = { 1 (actualValue — bid[i]) if bid[i] = opponentBid
0 otherwise

In second-price auctions, considering both the maximum bid of the opponents and the
player’s true valuation, the utility for each possible bid ¢ € K is computed as follows:

actualValue — opponentBid if bid[i] > opponentBid
utility (i) = < 1(actualValue — opponentBid) if bid[i] = opponentBid

0 otherwise

5.2.1 Deterministic Valuations in First- and Second-Price Auc-
tions - Reproduction of Results

At the initial phase of our experimental research, we replicated the graphs depicting the
bid dynamics in both first- and second-price repeated auctions with two bidders holding
deterministic valuations, which were presented in the previously discussed paper [43]. In
our configuration, we used the Hedge algorithm, K = 100 potential bids (ranging from
0 to 1 in increments of 0.01) and repeated the auction 7" = 10,000 times, employing a
sliding window of size 100.

We implemented Python code to reproduce the results of [43]| for two key purposes:
first, to verify the findings of the aforementioned paper, and second, to ensure that our
code functions as expected. Our results were entirely consistent with theirs:

e In the second-price repeated auction with two bidders where valuations are w < v,

the high player bids uniformly in (w, v], so the average bidding is around w + (U;w),

while the low player bids with full support on [0, w], so their average bid level is

5. The price paid by the higher bidder is strictly less than the valuation of the
lower bidder.

e In the first-price repeated auction, the higher bidder almost always bids and pays
approximately as much as the valuation of the low bidder.
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Second Price Auction - Bidding over time
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Figure 5.2: First-Price Repeated Auctions

5.2.2 “Fake” Bidder as a Reserved Price

Following our examination of the two-bidder scenario in a deterministic setting, we
proceeded to analyze the inclusion of a “fake” bidder, considering both deterministic and
Bayesian contexts. We aimed to determine whether a “fake” bidder could contribute to
maximizing revenue by serving as a reserve price in first-price auctions. This bidder
is affiliated with the seller’s team and aims to make other bidders to raise their bids.
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Notably, this bidder does not intend to purchase the item, as it is already in their
possession. To determine how the utility of the “fake” bidder is calculated, we employed
two different approaches: one simpler and one more complex.

Simple bidder: In this scenario, if the “fake” bidder wins the auction, their utility
is zero. Conversely, if they do not win the item—meaning another bidder has placed a
higher or equal bid—their utility corresponds to the amount of the winning bid. This
setup leads to a tendency for the “fake” bidder to select values that consistently lose,
typically resulting in very low bids. Consequently, the “fake” bidder does not effectively
encourage higher bids from the other players.

Smart Bidder: In this approach, the “fake” bidder again has a utility of zero if they
win the auction, as their objective is not to win. Conversely, if they do not win the
item—indicating that another bidder has submitted a higher or equal bid—their utility
is equal to the amount of their bid. This structure ensures that higher non-winning bids
yield greater utility than lower ones.

In all of our experiments involving a “fake” bidder, we measured the revenue generated
in repeated first-price auctions, where each bidder is modeled by an instance of the Hedge
algorithm. We initially applied the concept of a “fake bidder” in a deterministic setting
concerning the valuations. The results are presented below.
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Figure 5.3: Simple Fake Bidder in a Deterministic Setting
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As observed, there are no significant differences in the deterministic setting; the “fake
bidder contributes negligibly to revenue enhancement. In contrast, the situation in the
Bayesian setting is somewhat different. We will present our findings mostly through
graphical representations. Our analysis included scenarios with two bidders or three
bidders, each having two possible valuations. Firstly we present the case of two bidders
and a “fake” bidder.
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Bayesian First Price Auction - Bidding over time
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Figure 5.4: Bayesian First-Price Auctions
vl =1, v2 = 0 with probability % each

As observed in the graphs, when each bidder has a valuation of 1 with a probability
of % and a valuation of 0 with a probability of %, the revenue notably increases with the
presence of a “fake” bidder. This increase is even more pronounced in the case of the
smart “fake” bidder, as anticipated. We ran the experiment for 7" = 1,000,000 and the
increase is even more prominent for both the simple and the smart “fake” bidder.
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Bayesian First Price Auction - Bidding over time
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Figure 5.5: Bayesian First-Price Auctions
vl =1, v2 = 0.5 with probability 1 each

In this scenario, where each bidder has a valuation of 1 with a probability of % and
a valuation of 0.5 with a probability of %, the introduction of a “fake” bidder does not
significantly enhance revenue. Surprisingly, the smart “fake” bidder does not yield as
much revenue as the simpler version. This outcome is likely attributed to the limited
time frame of our experiment. To test this assumption, we repeated the experiment
for T'= 1,000,000 times; the revenue generated by the smart “fake” bidder eventually

surpassed that of the other two cases.

However, the difference in revenue is not as

pronounced as in the previous scenario, where the lower possible valuation was 0.
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Figure 5.6: Bayesian First-Price Auction
vl = 0.8, v2 = 0.2 with probabﬂlty each

In this case, where each bidder has a valuation of 0.8 with a probability of % and
a valuation of 0.2 with a probability of %, the inclusion of a “fake” bidder does lead to
an increase in revenue. However, the difference in revenue between auctions with and
without a “fake” bidder is not as significant as in the scenario where one valuation was
0 and the other was 1. Instead, the difference is more pronounced compared to the case
where one value was 0.5 and the other was 1.
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Figure 5.7: Bayesian First-Price Auction
vl =1, v2 = 0 with probability 1 each

In the scenario involving three bidders, where each bidder has an equal probability of
a valuation of either 1 or 0, the presence of a “fake” bidder enhances revenue. However,
the increase in revenue is less pronounced than in the corresponding case with two
bidders. Nonetheless, the absolute revenue figures in this three-bidder scenario are higher
compared to those observed with two bidders.
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Figure 5.8: Bayesian First-Price Auction
vl =1, v2 = 0.5 with probability % each

In the scenario with three bidders, where each bidder has an equal probability of a
valuation of either 1 or 0.5, the inclusion of a “fake” bidder does not lead to an increase
in revenue, similar to the outcome observed with two bidders. To test our hypothesis
that the smart “fake” bidder, given sufficient time, would yield higher revenue compared
to the simple “fake” bidder (and also compared to the auction without any “fake” bid-
der), we extended the simulation to 7' = 1,000, 000 repetitions. The results confirm our
assumption. It is also worth noting that in the two-bidder case, the revenue is lower
compared to the three-bidder scenario, which comes as no surprise.

Let’s now consider a Vickrey auction with a reserve price r» and two i.i.d. bidders,
each having one of two possible valuations, v1 and v2, where 0 < v2 < vl < 1, with each
valuation occurring with a probability of % The expected revenue, as a function of r,
can be computed as follows:
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e For 0 <r <02: E[Revenue]:%w—l—i-vl.

e For v2 <r <wvl: E[Revenue] =1-0+1.r+1-vl. In that case, we easily observe
that the revenue is maximized when r» = v1 and is equal to % -wvl.

e For vl <r <1: E[Revenue] = 0.

Thus, the optimal reserve price is equal to v1 when:

3 1 3 3
T v2 + 1 vl < 1 vl, which holds when v1 > 51}2.

Otherwise, the optimal reserve price can be any value in [0, v2].

We will now calculate the revenue in detail for the case where vl = 1 and v2 = 0.5, to
further clarify this method:

e For 0 <r <0.5: E[Revenue] =305+ ;-1=2.

e For 0.5 < r < 1: E[Revenue] }l -0+ % cr 4+ i - 1. The expected revenue in this
case is maximized for r = 1, where it is equal to % = 0.75.

Thus, since g < %, the optimal reserve price is equal to 1 and the corresponding expected
revenue equal to 0.75. This comes as no surprise, since 1 > % -0.5=0.75.

Following the same procedure, we calculated the optimal reserve prices and their corre-
sponding expected revenues in the case of two i.i.d. bidders with valuations vl = 1 and
v2 = 0, as well as vl = 0.8 and v2 = 0.2, with equal probability each. The previous
computational procedure can be easily extended in the case of three bidders, with same
valuation distributions as in the case of two bidders. The results of our calculations in
comparison with the results from the simulations with the “fake” bidder are presented
below:

Valuations Optimal Reserved Price | Expected Revenue | Simple Fake Bidder | Smart Fake Bidder
vli=1and v2=0 1 0.75 0.403 0.501
vl =1and v2 = 0.5 1 0.75 0.532 0.502
vl = 0.8 and v2 = 0.2 0.8 0.6 0.326 0.388

Table 5.1: Two IID bidders - T" = 10, 000

Valuations

Optimal Reserved Price

Expected Revenue

Simple Fake Bidder

Smart Fake Bidder

vli=0and v2 =1

1

0.875

0.596

0.656

vli=05and v2 =1

1

0.875

0.675

0.664

Table 5.2: Three IID bidders - T = 10, 000

Based on our results, the following assumptions appear to hold:

e The higher valuation influences the upper limit of the revenue; specifically, as the
valuation increases, the potential revenue also increases.
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e The disparity between the higher and lower valuations impacts the revenue differ-
ence between scenarios with and without a “fake” bidder; the greater the difference
between the two valuations, the more pronounced the effect of the “fake” bidder
on revenue.

e The introduction of a “fake” bidder does not yield revenue as high as that generated
by the optimal reserve price.

5.2.3 Revenue Evolution within the Bayesian Setting

In this section, we visually analyze the evolution of revenue in a Bayesian context. In
this scenario, each bidder has two possible valuations, with each valuation occurring
with equal probability % The analysis encompasses 7" = 1,000,000 repeated auctions
and utilizes a sliding window of 1,000. The results are displayed below.

Revenue over time ’
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0.40 7 0.650

0.35 7 0.625 -

0.600 -

e

N

¥
L

0575+

e

N

o
L

0.550 4

Revenue per transaction

o

-

7]
L

0.525 4

Revenue per transaction

o

-

o
L

0.500

=4
o
5]

0.475 4

T T T T T T
0.‘0 0.‘2 0.‘4 0:6 0.‘3 l.‘O 0.0 0.2 0.4 0.6 0.8 10
Time (number of auctions) le6 Time (number of auctions) le6

(a) vl=1and v2=0 (b) v1 =1 and v2=0.5
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Figure 5.9: Revenue of Bayesian First-Price Auction over time
As observed, the revenue fluctuates, with the periods of oscillation growing longer

over time. Nevertheless, the average expected revenue remains relatively stable, showing
no significant variation as time progresses.

5.2.4 No-Regret Versus No-Swap Regret

In this section we aim to compare the differences in the revenue between bidders that use
no-regret algorithms and bidders that use no-swap regret algorithms to simulate their
learning process and decision-making regarding upcoming biddings. The auction was
repeated T" = 100, 000 times.
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Figure 5.11: No-Regret and No-Swap Regret
vl =1, v2 = 0.5 with probability % each

As observed, the revenue outcomes are not conclusive. Specifically, when both val-
uations are equally possible at 1 and 0, the no-swap regret scenario generates higher
revenue. Conversely, with equally possible valuations of 1 and 0.5, the no-regret sce-
nario yields greater revenue.
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5.2.5 Revenue of Bayesian First-Price Auctions vs Expected
Second-Price

Our final, yet pivotal question explores whether revenue in a symmetric Bayesian setting
aligns with the expected second price, when bidders are simulated by no-swap regret (or
no-regret) software agents. As mentioned in the theory chapters, in a Bayes-Nash equi-
librium, there is revenue equivalence between first- and second-price auctions. Therefore,
this final question could be reframed as “exploring whether our framework converges to a
Bayes-Nash equilibrium”. However, it is important to note that while the revenue could
be equivalent, this does not necessarily indicate convergence to such an equilibrium.

The tables below summarize the revenue generated by both no-regret and no-swap regret
algorithms across various scenarios, incorporating the expected second price for direct
comparison.

Valuations Expected Second Price | No-regret | No-Swap Regret
vli=1and v2 =0 0.25 0.261 0.401
vl =1 and v2 = 0.5 0.625 0.517 0.514
vl = 0.8 and v2 = 0.2 0.35 0.311 0.364

Table 5.3: Two IID bidders - T" = 10, 000

Valuations Expected Second Price | No-regret | No-Swap Regret
vli=1and v2 =0 0.25 0.239 0.365
vl =1and v2 = 0.5 0.625 0.543 0.511
vl = 0.8 and v2 = 0.2 0.35 0.317 0.35

Table 5.4: Two IID bidders - 7" = 100, 000

Valuations Expected Second Price | No-regret | No-Swap Regret
vli=1and v2 =0 0.5 0.498 0.522
vl =1and v2 = 0.5 0.75 0.673 0.606

Table 5.5: Three IID bidders - T = 10, 000

Valuations Expected Second Price | No-regret | No-Swap Regret
vli=1and v2 =0 0.5 0.473 0.502
vl =1and v2 =0.5 0.75 0.704 0.609

Table 5.6: Three IID bidders - 7" = 100, 000
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As observed, the results are not definite. More specifically:

e In the scenario where each bidder’s valuation is either 1 or 0, no-swap regret
algorithms appear to generate higher revenue than both no-regret algorithms and
the corresponding second-price auction. However, the revenue produced by no-
swap regret algorithms tends to decline as the number of iterations increases,
preventing any definitive conclusion.

e When each bidder’s valuation is either 1 or 0.5, no-swap regret algorithms seem
to generate the lowest revenue. Additionally, both first-price auctions involving
regret-minimizing agents yield less revenue than the corresponding second-price
auction.

e In the case where each bidder’s valuation is either 0.8 or 0.2, it appears that, as the
number of iterations increases, the revenue generated by no-swap regret algorithms
converges to the expected revenue of the corresponding second-price auction.

5.2.6 Summary of Our Experimental Results

In conclusion, our findings indicate that while a “fake” bidder does contribute to increased
revenue, it does not generate as much revenue as the optimal reserve price. Furthermore,
there is no clear advantage in terms of revenue when using no-regret algorithms over
no-swap regret algorithms, or vice versa, as the results vary across different scenarios.
Finally, the relationship between the revenue in a Bayesian setting of repeated first-price
auctions, where bidders are simulated using no-swap regret (or no-regret) agents, and
the expected revenue in the corresponding second-price auction is not straightforward,
with varying outcomes observed depending on the case.
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