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Περίληψη

Τα σύγχρονα γλωσσικά μοντέλα (ΓΜ) έχουν κατορθώσει αξιοσημείωτα επιτεύγματα γλωσσικής επάρκειας και
κατανόησης, ξεπερνώντας και τις επιδόσεις των ανθρώπων σε ορισμένες εργασίες. Για να επιτύχουν επιδόσεις
αιχμής, τα ΓΜ απαιτούν όλο και μεγαλύτερή αύξηση των υπολογιστικών πόρων και του μεγέθους των δεδομένων
εκπαίδευσης τους, κάνοντας συχνά χρήση χιλιάδων καρτών γραφικών, και τρισεκατομμυρίων λέξεων. Εξετάζον-
τας τον τρόπου που μαθαίνουν να μιλάνε οι άνθρωποι, διαπιστώνουμε μια ξεκάθαρη αντίθεση. Τα παιδιά, για να
αναπτύξου την ικανότητα της ομιλίας, εκτίθενται το πολύ σε εκατό εκατομμύρια λέξεις έως την ηλικία των 13
ετών, επιδεικνύοντας αξιοθαύμαστη αποτελεσματικότητα όσον αφορά τον αριθμό των απαιτούμενων δειγμάτων
γλώσσας. Με κίνητρο αυτή την ασυμφωνία, διερευνούμε την προεκπαίδευση ΓΜ με περιορισμένο αριθμό λέξεων,
προσομοιάζοντας το αναπτυξιακό περιβάλλον των παιδιών. Για τα πειράματά μας υιοθετούμε δύο σενάρια, ένα
περιορισμένο σενάριο με μέγιστο τις 10 εκατομμύρια λέξεις, και ένα μεγαλύτερο σενάριο με μέγιστο αριθμό τις
100 εκατομμύρια λέξεις.

Η μέθοδός μας επικεντρώνεται στην Επαύξηση Δεδομένων. Χρησιμοποιούμε πρώτα το TinyStories – ένα
σύνολο δεδομένων με απλές και σύντομες ιστορίες, κατανοητές από παιδιά 3-4 ετών – για την εκπαίδευση
μοντέλων μετασχηματιστών αποκωδικοποιητών, ικανών να παράξουν κείμενο. Στη συνέχεια, εξετάζουμε τη
γλωσσική επάρκεια των μοντέλων, καθώς και την ποιότητα και την ποικιλομορφία των παραγωγών τους, ενώσω
μεταβάλλουμε το μέγεθος των δεδομένων στο σύνολο εκπαίδευσης τους. Η αξιολόγησή μας δείχνει ότι αυτά τα
μοντέλα μπορούν να δημιουργήσουν πρωτότυπες και γραμματικά σωστές ιστορίες ακόμη και με μερικά εκατομ-

μύρια δεδομένα εκπαίδευσης. Στη συνέχεια χρησιμοποιούμε τους αποκωδικοποιητές για να δημιουργήσουμε
ένα σύνολο δεδομένων συνθετικών ιστοριών, το οποίο συνενώνουμε με ένα ευρύ σύνολο κειμένων για να εκ-
παιδεύσουμε μοντέλα με αρχιτεκτονική κωδικοποιητή μετασχηματιστή. Για να αξιολογήσουμε την επίδραση της
τεχνικής επαύξησης δεδομένων, μετράμε τη γενική κατανόηση της γλώσσας, τη γραμματική και τη γνώση για
τον κόσμο που διαθέτουν οι κωδικοποιητές και συγκρίνουμε με μια ευρεία συλλογή από μοντέλα, εκπαιδευμένα με
ή χωρίς συνθετικά δεδομένα. Μέσω της μελέτης μας, διαπιστώνουμε ότι ενώ η επαύξηση συνθετικών δεδομένων
μπορεί να είναι ωφέλιμη σε μερικές περιπτώσεις, συνολικά έχει αρνητική επίδραση στην τελική απόδοση. Τέλος,
σημειώνουμε τους περιορισμούς της προσέγγισής μας και επισημαίνουμε ενδιαφέρουσες οδούς για μελλοντική

εργασία.

Λέξεις-κλειδιά — Γλωσσικά Μοντέλα, Επαύξηση Δεδομένων, Γλωσσική Προεκπαίδευση, Μικρά Γλωσ-
σικά Μοντέλα, Γνωστική Μοντελοποίηση, Παραγωγικά Μοντέλα, Παραγωγή Ιστοριών
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Abstract

Modern Language Models (LMs) have shown remarkable feats of linguistic proficiency and language under-
standing, often surpassing the abilities of humans in certain tasks. To achieve state-of-the-art performance,
LMs require ever-increasing computational resources and training data, up to thousands of GPUs and tril-
lions of tokens. In stark contrast, children can acquire a language natively by being exposed to no more than
a hundred million words by 13 years of age, showing incredible sample efficiency. Motivated by this discrep-
ancy, we investigate LM pre-training with a limited word budget, similar in size to the input human children
receive during their development. For our experiments we adopt two configurations, a reduced setting with
a maximum of 10 million words, and a larger setting with a maximum of 100 million words.

Our method is rooted in Data Augmentation. We first use TinyStories – a dataset of sort and simple stories,
typically understood by 3-4 year old children – to train generative decoder transformer models. We vary the
amount of data in the training set of the decoders, and evaluate extensively their language proficiency as well
as the quality and diversity of their generations. Our evaluation demonstrates that these models can generate
novel and grammatically correct stories even with a few million words of pre-training data. Next, we use the
generative models to create a synthetic story dataset, which we combine with a diverse corpus of texts to
train encoder transformer models. To assess the effect of our data augmentation methodology we measure the
general language understanding, grammatical knowledge and world knowledge of the encoder models, and
compare with a variety of baselines, with and without the use of synthetic data. We find that while synthetic
data augmentation can offer some modest gains, overall it has a negative effect in final linguistic performance.
Finally, we underscore the limitations of our proposed approach, and highlight interesting avenues for future
work.

Keywords — Language Models, Data Augmentation, Language Pre-training, Small Language Models,
Cognitive Modelling, BabyLM Challenge, Generative Models, Story Generation
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Εκτεταμένη Περίληψη στα Ελληνικά

0.1 Εισαγωγή

Τα σύγχρονα Γλωσσικά Μοντέλα (Language Models), έχουν καταφέρει αξιοσημείωτα επιτεύγματα γλωσσικής
κατανόησης και συλλογισμού, ξεπερνώντας πολλές φορές τις ικανότητες του ανθρώπου για ορισμένες εργασίες.
Η επιτυχία αυτή οφείλεται σε μεγάλο βαθμό στη συνεχή αύξηση της κλίμακας δύο κρίσιμων μεταβλητών: του
αριθμού παραμέτρων των μοντέλων, και του αριθμού των δεδομένων εκπαίδευσης. Πρόσφατες μελέτες [50, 65].
έχουν δείξει ότι όσο αυξάνονται οι τιμές αυτών των μεταβλητών, συνεχίζει να βελτιώνεται η επίδοση και οι γλωσ-
σικές ικανότητες αυτών των μοντέλων. Για τον λόγο αυτό, τα σύγχρονα Μεγάλα Γλωσσικά Μοντέλα φτάνουν σε
μέγεθος δισεκατομμύρια παραμέτρους, χρησιμοποιώντας τρισεκατομμύρια λεκτικά μέρη (tokens). Ταυτόχρονα
οι υπολογιστικοί πόροι που απαιτούνται για την εκπαίδευση αυτών των μοντέλων αυξάνονται σημαντικά. Για
παράδειγμα, το μοντέλο Llama 3 [30], που κυκλοφόρησε πρόσφατα, διαθέτει 405 δισεκατομμύρια παραμέτρους
και έχει προεκπαιδευτεί σε 15.6 τρισεκατομμύρια tokens, κάνοντας χρήση 6 χιλιάδων H100 κάρτες γραφικών
(GPU). Αυτές οι συνθήκες δημιουργούν πλήθος προβλημάτων, οικολογικής και οικονομικής φύσεως, αλλά και
έλλειψη δημοκρατίας στην πρόσβαση στην ερεύνα, αφού στον τομέα της γλωσσικής μοντελοποίησης αυτή είναι
εφικτή μόνο για μεγάλους οργανισμούς της βιομηχανίας της τεχνητής νοημοσύνης.

Figure 0.1.1: Μέγεθος των συνόλων δεδομένων που χρησιμοποιούν τα σύγχρονα γλωσσικά μοντέλα σε λέξεις,
σε σύγκριση με των αριθμό των λέξεων στον οποίο έχει εκτεθεί ένα παιδί 13 ετών. Εικόνα: [145, 141].

Παρατηρώντας τον τρόπο που οι άνθρωποι μαθαίνουν να μιλάνε και συγκρίνοντας τον με τις σύγχρονες τεχνικές

εκπαίδευσης γλωσσικών μοντέλων, βρίσκουμε σημαντικές διαφορές. Τα παιδιά κατά την ανάπτυξη τους εκτίθεν-
ται σε 2-7 εκατομμύρια (M) λέξεις την ημέρα [42], το οποίο συνολικά ισοδυναμεί σε λιγότερο από 100M λέξεις
σε ηλικία 13 ετών. Αυτή η αντίθεση γίνεται αντιληπτή στην Εικόνα 0.1.1. Προκύπτουν λοιπόν αμφιβολίες,
για το κατά πόσο τα γλωσσικά μοντέλα, ακολουθούν γνωστικούς μηχανισμούς παραπλήσιους με αυτούς του
ανθρώπινου εγκεφάλου.

Για να αντιμετωπίσουμε κάποια από τα παραπάνω προβλήματα της σύγχρονης γλωσσικής μοντελοποίησης, στην
παρούσα εργασία εξετάζουμε την εκπαίδευση γλωσσικών μοντέλων με περιορισμένο αριθμό λέξεων. Η
έρευνα μας εντάσσεται στα πλαίσια προσπαθειών για την εκπαίδευση αποδοτικών μοντέλων με λίγα δεδομένα, σε
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συνθήκες που προσομοιάζουν το γλωσσικό περιβάλλον του ανθρώπου όταν μαθαίνει να μιλάει. Συγκεκριμένα
συμμετέχουμε στη 2η διεξαγωγή του διαγωνισμού BabyLM [21, 145, 146]1. Στόχος του διαγωνισμού είναι:
1 να αναβαθμιστεί η σημασία των γλωσσικών μοντέλων ως γνωστικά μοντέλα του μηχανισμού απόκτησης
γλώσσας του ανθρώπου, 2 η εύρεσή πιο αποτελεσματικών ως προς τα δεδομένα διαδικασιών εκπαίδευσης και
3 ο εκδημοκρατισμός της έρευνας στον τομέα. Στα πλαίσια του διαγωνισμού καλούμαστε να εκπαιδεύσουμε
γλωσσικά μοντέλα σε δύο σενάρια, που διαφοροποιούνται σε σχέση με τον μέγιστο αριθμό λέξεων των
δεδομένων εκπαίδευσης. Το πρώτο με μέγιστο αριθμό λέξεων τα 10M – συμβολίζεται ως "Strict-Small ",
το δεύτερο με μέγιστο αριθμό λέξεων τα 100M – συμβολίζεται ως "Strict ". Στις επόμενες παραγράφους
περιγράφουμε τη συνεισφορά μας.

0.1.1 Η προσέγγιση μας

Η έρευνά μας αντλεί έμπνευση από πρόσφατες εξελίξεις στα Μικρά Γλωσσικά Μοντέλα (SLMs) για παραγωγή
κειμένου, όπως προτάθηκε στο TinyStories (Μικρές Ιστορίες) [31]. Σε αυτήν τη σημαντική μελέτη, οι συγ-
γραφείς έδειξαν ότι η εκπαίδευση σε ένα συνθετικό σύνολο δεδομένων απλών ιστοριών μπορεί να επιτρέψει στα

SLM να παράγουν κείμενο υψηλής ποιότητας, που δεν εμπεριέχεται στο αρχικό σύνολο δεδομένων εκπαίδευσης.
Κάνουμε την υπόθεση ότι για το σενάριο περιορισμένων δεδομένων που εξετάζουμε, η επαύξησή του αρχικού
εκπαιδευτικού συνόλου με συνθετικά δεδομένα υψηλής ποιότητας θα προσφέρει στα μοντέλα τη δυνατότητά

να δουν λέξεις με νέα συμφραζόμενα, σε διαφορετικά γλωσσικά πλαίσια. Αυτό με τη σειρά του θα επιτρέψει
καλύτερη γλωσσική κατανόηση, σε σύγκριση με την εκπαίδευση μονό στο αρχικό, μη επαυξημένο σύνολο.

Για να εξετάσουμε την υπόθεση μας, αρχικά επεκτείνουμε τη δουλειά στο TinyStories [31], μελετώντας τη
δημιουργική ικανότητα των μοντέλων με λίγα δεδομένα εκπαίδευσης. Σε τεχνικούς όρους, προτείνουμε την εκ-
παίδευση ενός γλωσσικού μοντέλου με αρχιτεκτονική αποκωδικοποιητή μετασχηματιστή (decoder transformer)
GPT-Neo [12] στο σύνολο ιστοριών TinyStories. Πειραματιζόμαστε με την εκπαίδευση μοντέλων GPT-Neo,
ενώ μεταβάλλουμε τον αριθμό των διαθέσιμων δεδομένων και αξιολογούμε τις ικανότητες τους στην παραγ-

ωγή κειμένου, διατηρώντας σταθερή την αρχιτεκτονική του μοντέλου. Η έρευνά μας είναι συμπληρωματική
της αρχικής δουλειάς [31], η οποία μετρά τις επιπτώσεις της μεταβολής του βάθους και του μεγέθους της αρ-
χιτεκτονικής στην επίδοση των μοντέλων. Τα ευρήματά μας δείχνουν ότι ακόμη και σε καθεστώτα χαμηλών
δεδομένων (≤ 100 εκατομμύρια λέξεις), τα μοντέλα GPT-Neo μπορούν να αποκτήσουν εντυπωσιακή κατανόηση
της γραμματικής και να δημιουργήσουν ιστορίες υψηλής ποιότητας και ποικιλομορφίας, συγκρίσιμες με μοντέλα
που έχουν εκπαιδευτεί στο πλήρες σύνολο δεδομένων (περίπου 440 εκατομμύρια λέξεις).

Στη συνέχεια, κάνουμε χρήση συνθετικών δεδομένων μικρών ιστοριών κατά την προεκπαίδευση, και διερευνούμε
την επίδραση τους στις γλωσσικές ικανότητες των μοντέλων. Επιλέγουμε ένα μικρό υποσύνολο του TinyStories,
εκπαιδεύουμε σε αυτό ένα μοντέλο GPT-Neo, και το χρησιμοποιούμε για να δημιουργήσουμε εναλλακτικές
συμπληρώσεις στις ιστορίες του εκπαιδευτικού συνόλου. Στη συνέχεια δημιουργούμε ένα συνδυασμό σύνολων
δεδομένων που αποτελείται από: 1 το υποσύνολο του TinyStories που χρησιμοποιείται για την εκπαίδευση
του GPT-Neo 2 τα δεδομένα που δημιουργούνται, 3 ένα υποσύνολο του συνόλου BabyLM (Ενότητα 0.3.1).
Με τον συνδυασμό συνόλων εκπαιδεύουμε ένα μοντέλο κωδικοποιητή μετασχηματιστή (encoder transformer)
με την αρχιτεκτονική του LTG-BERT [120] – η οποία είναι βελτιστοποιημένη για μικρά σύνολα δεδομένων.
Συγκρίνουμε την απόδοση των μοντέλων μας με μια ποικιλία βασικών μεθόδων (baselines), εκπαιδευμένων με
και χωρίς τη χρήση συνθετικών δεδομένων. Τα αποτελέσματά μας δείχνουν ότι μια απλή εφαρμογή δεδομένων
συνθετικής ιστορίας για προεκπαίδευση γλωσσικών μοντέλων, έχει ως αποτελέσματα μικρά ή αρνητικά κέρδη.
Ωστόσο, δεδομένης της υψηλής ικανότητας των μοντέλων GPT-Neo στην παραγωγή κειμένου, πιστεύουμε ότι
απαιτείται περισσότερη έρευνα για την πλήρη αξιοποίηση των δυνατοτήτων τους.

Η δουλειάς μας δημοσιεύθηκε [132] στα πλαίσια του 2ου διαγωνισμού BabyLM [21], στο συνέδριο CoNLL 2024.
Για να ενθαρρύνουμε την έρευνα στον τομέα της επαύξησης δεδομένων σε συνθήκες περιορισμένων δεδομένων,
δημοσιεύουμε την υλοποίηση και τα μοντέλα που εκπαιδεύσαμε

2.

1https://babylm.github.io/
2https://github.com/nikitas-theo/BERTtimeStories
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0.2. Σχετική Βιβλιογραφία

Στις επόμενες παραγράφους, περιγράφουμε συνοπτικά κάποια σχετική βιβλιογραφία (Ενότητα 0.2), προχωρούμε
σε λεπτομερή περιγραφή της μεθόδου μας (Ενότητα 0.3) και των πειραμάτων που εκτελέστηκαν (Ενότητα 0.4),
και αναλύουμε τα αποτελέσματα της έρευνας μας (Ενότητα 0.5) Τέλος, συζητάμε τα συμπεράσματα της μελέτης
μας, καθώς και μελλοντικές κατευθύνσεις (Ενότητα 0.6).

0.2 Σχετική Βιβλιογραφία

Διάφορες προσπάθεις για την αποδοτική εκπαίδευση μοντέλων έχουν αναπτυχθεί [56, 106, 36] – μειώνοντας
σημαντικά τους υπολογιστικούς πόρους, και τον χρόνο που απαιτούνται για την εκπαίδευση γλωσσικών μον-
τέλων, όπως το BERT [27]. Παρ’ όλα αυτά, Ο χώρος της γλωσσικής μοντελοποίησης με περιορισμό στον
αριθμό των δεδομένων εκπαίδευσης έχει μείνει σχετικά ανεξερεύνητος. Πρόσφατα υπήρξε πρόοδος σε αυτήν την
κατεύθυνσή, με την εισαγωγή μοντέλων βελτιστοποιημένων για μικρά σύνολα δεδομένων όπως το LTG-BERT,
[120], και εκδηλώσεις προσανατολισμένες στην κοινότητα, που επικεντρώνονται στην εκπαίδευση με περιορισμένα
δεδομένα όπως το Εργαστήριο για την Εκμάθηση από Λίγα Δεδομένα [14] και ο Διαγωνισμός MiniPile [64].
Στη συνέχεια, παρουσιάζουμε συνοπτικά πρόσφατη βιβλιογραφία σχετική με τη προσέγγιση μας.

1ος Διαγωνισμός BabyLM Οι τεχνικές αύξησης δεδομένων αποδείχθηκαν ωφέλιμες στον διαγωνισμό

BabyLM για το προηγούμενο έτος [146]. Συγκεκριμένα, το ChapGPT [61] χρησιμοποιεί Regex μοτίβα για
εξαγωγή κοινών φράσεων από εργασίες του GLUE[138, 140] και στη συνέχεια αξιοποίησε αυτά τα μοτίβα για να
δημιουργήσει επακόλουθες ερωτήσεις που χρησίμευσαν ως πρόσθετα δεδομένα εκπαίδευσης. Στην προσέγγιση
του Contextualizer [153], δημιουργούνται επιπλέον δείγματα με δυναμικό συνδυασμό τμημάτων κειμένων από
διαφορετικές πηγές κατά τη διάρκεια της εκπαίδευσης. Μια άλλη προσέγγιση που ονομάζεται Baby’s CoThought
[161] χρησιμοποιεί ένα Large Language Model (LLM) για να διαμορφώσει άσχετες προτάσεις από το σώμα σε
συνεκτικές παραγράφους, το οποίο οδήγησε σε αύξηση της επίδοσης. Σημειώνουμε όμως ότι είναι ενάντια στους
περιορισμούς δεδομένων του διαγωνισμού.

Γλωσσικά Μοντέλα για Επαύξηση Δεδομένων Τα τελευταία χρόνια, τα LLMs έχουν χρησιμοποιη-
θεί όλο και περισσότερο για την αύξηση δεδομένων σε διάφορους τομείς [28]. Συγκεκριμένα, το [26] εισήγαγε το
ChatGPT ως εργαλείο για τη δημιουργία ρεαλιστικών δειγμάτων κειμένου από συνδυασμό πραγματικών και τεχν-
ητών δεδομένων, βελτιώνοντας τα σύνολα δεδομένων εκπαίδευσης. Ομοίως, οι αρχιτεκτονικές μετασχηματιστών
όλων των ειδών, όπως: αποκωδικοποιητές (GPT-2,[110]), κωδικοποιητές (BERT, [27]) και μετασχηματιστές
από ακολουθία σε ακολουθία (BART, [73]) έχουν διερευνηθεί για επαύξηση δεδομένων [70]. Στο έργο του
[156], το GPT-3 [15] χρησιμοποιήθηκε για τη μίξη δειγμάτων πραγματικών και συνθετικών κειμένων για ισχυρή
αύξηση δεδομένων. Επιπλέον, μοντέλα αποκωδικοποιητών έχουν χρησιμοποιηθεί επιτυχώς για τη δημιουργία
δεδομένων εκπαίδευσης για κωδικοποιητές, αποδίδοντας βελτιώσεις στη μάθηση με μηδενικά δείγματα [86].

Μικρά Γλωσσικά Μοντέλα Η πρόσφατη μελέτη στο TinyStories [31] έδειξε ότι τα Μικρά Γλωσσικά
Μοντέλα (SLMs) μπορούν να ξεπεράσουν τα μεγαλύτερα μοντέλα αξιοποιώντας υψηλής ποιότητας συνθετικά
δεδομένα εκπαίδευσης, καταφέροντας να παράξουν κείμενο με ευχέρεια, συνοχή και δημιουργικότητα παρά το
γεγονός ότι έχουν λιγότερες παραμέτρους. Αυτή η τάση υποστηρίζεται περαιτέρω από την εργασία σε διαδοχικές
συστάσεις, όπου μικρά μοντέλα χρησιμοποιούνται αποτελεσματικά για συγκεκριμένες εργασίες [154]. Επιπλέον,
το [10] χρησιμοποιεί ένα προεκπαιδευμένο LLM για την κωδικοποίηση προτροπών, χρησιμοποιώντας αυτές τις
αναπαραστάσεις για να καθοδηγήσει ένα μικρότερο LM για πιο αποτελεσματική παραγωγή αποκρίσεων.

0.3 Μέθοδοι

Η μέθοδος μας περιγράφεται συνοπτικά στην Εικόνα 0.1.1. Χρησιμοποιούμε ένα υποσύνολο του συνόλου δε-
δομένων TinyStories (Dtiny) [31] για να εκπαιδεύσουμε έναν μετασχηματιστή αποκωδικοποιητή (decoder trans-
former) με σκοπό την επαύξηση δεδομένων. Χρησιμοποιούμε ως είσοδο (prompt) του decoder τις σύντομες
ιστορίες από το Dtiny, για να δημιουργήσουμε ένα σύνολο από παραγόμενα δεδομένα (Dgen): κάθε ιστορία
(πράσινο) περικόπτεται και η αρχή της (κίτρινο) χρησιμοποιείται ως είσοδος στο μοντέλο, το οποίο και παράγει
μια εναλλακτική ολοκλήρωση της ιστορίας (μπλε). Συμπληρώνουμε τα δύο αυτά σύνολα δεδομένων με ένα υπ-
οσύνολο του BabyLM (Dbaby) και εκπαιδεύουμε έναν μετασχηματιστή κωδικοποιητή (encoder transformer) σε
όλα τα δεδομένα. Στη συνέχεια περιγράφουμε αναλυτικά τη μέθοδο μας ξεκινώντας από τα σύνολα δεδομένων.
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Decoder

Encoder

One day, a little boy named Tim went to 
the park. He saw a big tiger. The tiger
was not mean, but very easy to play 
with. Tim and the tiger played all day. 
They had lots of fun. Then, something 
unexpected happened. The tiger 
started to shake. Tim was scared. He 
did not know what was going on. But 
then, the tiger turned into a nice ... 

*CHI:    Eve hand pocket.
*MOT:  oh your hand's in your pocket.
*CHI:    Eve puzzle.
*MOT:  that's your puzzle.
*CHI:    Mommy find Eve puzzle.
*MOT:  want me to find the rest of it.
*CHI:    yeah.
*MOT:  alright.
*MOT:  is it in the toy box?

was very nice. Tim wanted to play with 
the tiger. He said, "Hi, tiger! Let's play!" 
The tiger did not say anything. Tim was 
sad. He wanted to find a way to make 
the tiger happy. Tim had an idea. He 
found a ball and threw it. The tiger saw 
the ball and started to play ...

 

One day, a little boy named Tim went to 
the park. He saw a big tiger. The tiger

+

...

Figure 0.3.1: Σχηματική απεικόνισή της προτεινόμενης μεθόδου. Εικόνα τροποποιημένη απο [132].

0.3.1 Σύνολα Δεδομένων

Η μέθοδος μας βασίζεται σε δύο σύνολα δεδομένων: 1 το σύνολο TinyStories – το οποίο συμβολίζουμε ως
Dtiny, μια συλλογή από μικρές ιστορίες σε απλή γλώσσα, 2 το σύνολο BabyLM – το οποίο συμβολίζουμε
ως Dbaby, που δημιουργήθηκε ως ένα αναπτυξιακά πιθανό σύνολο προεκπαίδευσης γλωσσικών μοντέλων. Για
ένα σύνολο δεδομένων Ddata συμβολίζουμε επίσης ένα υποσύνολο του, με m εκατομμύρια λέξεις ως Ddata-m.
Παρακάτω δίνουμε μια σύντομη περιγραφή των συνόλων δεδομένων που χρησιμοποιήσαμε.

BabyLM Το σύνολο δεδομένων BabyLM (Dbaby), δημοσιεύθηκε στα πλαίσια του ομωνύμου διαγωνισμού
από τους διοργανωτές [145, 21], και εμπεριέχει ένα ευρύ σύνολο από κείμενα. Δημιουργήθηκε με σκοπό να προ-
σομοιάσει τα γλωσσικά ερεθίσματα που δέχεται ένα παιδί κατά την ανάπτυξη του, καθώς μαθαίνει να μιλάει. Για
αυτόν τον λόγο περιλαμβάνει μεγάλο ποσοστό προφορικής γλώσσας και εμπεριέχει, μεταξύ άλλων, αποσπάσματα
από παιδικά βιβλία, διαλόγους, ομιλία που απευθύνεται σε παιδιά, και άρθρα τηςWikipedia. Δημοσιεύθηκαν δύο
εκδόσεις του συνόλου: μία με μέγιστο αριθμό λέξεων τα 10M, και μία με μέγιστο αριθμό τα 100M. Αυτές
αντιστοιχούν στα δύο σενάρια του διαγωνισμού, το Strict-Small και το Strict , αντίστοιχα.

Tinystories (Μικρές Ιστορίες) Το TinyStories (Dtiny) δημοσιέυθηκε στο [31], και αποτελεί ένα συν-
θετικό σύνολο δεδομένων. Περιλαμβάνει μια συλλογή μικρών ιστοριών που έχουν δημιουργηθεί με την προ-
τροπή των μεγάλων γλωσσικών μοντέλων GPT3.5 και GPT-4 [95]. Το σύνολο δεδομένων δημιουργήθηκε για
να διατηρήσει όλα τα βασικά στοιχεία της φυσικής γλώσσας, όπως τη γραμματική, το λεξιλόγιο, την ύπαρξη
γεγονότων, και τον συλλογισμό, ενώ έχει περιορισμένη ποικιλομορφία και μέγεθος. Πιο συγκεκριμένα, οι ισ-
τορίες είναι 2-3 παραγράφων και ακολουθούν απλές πλοκές και κεντρικά θέματα. Επιπλέον, το σύνολο δεδομένων
έχει περιορισμένο λεξιλόγιο και γενικά προορίζεται να είναι στο επίπεδο κατανόησης των παιδιών 3-4 ετών. Η
αρχική έκδοση του συνόλου δεδομένων (V1) που δημιουργήθηκε από τα GPT3.5 και GPT-4 περιέχει περίπου
373 εκατομμύρια λέξεις. Κυκλοφόρησε μια δεύτερη έκδοση (V2), με μόνο ιστορίες που δημιουργήθηκαν από το
GPT-4 και περιέχει 440 εκατομμύρια λέξεις. Χρησιμοποιούμε αυτήν την έκδοση σε όλα τα πειράματά μας.

22



0.3. Μέθοδοι

0.3.2 Δημιουργία Δεδομένων

Περιγράφουμε τη δημιουργία του συνθετικού συνόλου ιστοριών Dgen. Για να δημιουργήσουμε τα δεδομένα πρώτα
εκπαιδεύουμε ένα μοντέλο αποκωδικοποιητή μετασχηματιστή (GPT-Neo) σε ένα υποσύνολο του TinyStories, το
οποίο συμβολίζουμε ως Dtiny-m. Χρησιμοποιούμε την αρχή των ιστοριών από το Dtiny-m για να δημιουργήσουμε

προτροπές (prompts) και να παράξουμε εναλλακτικές συμπληρώσεις χρησιμοποιώντας το μοντέλο μας.

Ξεκινάμε επιλέγοντας το μέγεθος m του υποσυνόλου, λαμβάνοντας υπόψη δύο παράγοντες: την ανάγκη για
αρκετή ποικιλομορφία στο τελικό σύνολο και την ανάγκη διασφάλισης υψηλής ποιότητας στο παραγμένο

κείμενο. Δεδομένης της υπόθεσης ότι η ποιότητα των παραγμένων κειμένων αυξάνεται αναλογικά με το μέγεθος
των δεδομένων εκπαίδευσης, θέλουμε να επιλέξουμε ένα αρκετά μεγάλο μέγεθος m για το Dtiny-m, ώστε να
διασφαλίσουμε την απαιτούμενη ποιότητα από τα παραγωγικά μοντέλα μας (αποκωδικοποιητές). Ταυτόχρονα,
θέλουμε να αφήσουμε αρκετό αριθμό λέξεων διαθέσιμο, για να συμπεριλάβουμε ένα αρκετά μεγάλο μέρος του
συνόλου δεδομένων BabyLM στην τελική εκπαίδευση. Αυτό θα διασφαλίσει ότι τα μοντέλα κωδικοποιητές
εκτίθενται σε ένα πλούσιο λεξιλόγιο και μια ποικιλία γλωσσικών πλαισίων. Διαισθητικά, θέλουμε τα δεδομένα
προεκπαίδευσης να έχουν μεγάλη ποικίλα, καθώς τα παιδιά μαθαίνουν από πολλές διαφορετικές γλωσσικές πηγές.

Για να ισορροπήσουμε αυτές τις αντικρουόμενες απαιτήσεις, θα βρούμε την ελάχιστη ποσότητα δεδομένων TinyS-
tories που θα επιτρέψει στα μοντέλα μας να παράξουν ποιοτικές ιστορίες. Δειγματοληπτούμε από το TinySto-
ries δημιουργώντας μια συλλογή υποσυνόλων με διαφορετικά μεγέθη, Dtiny-m : m ∈ {5, 10, 25, 50, 75, 100}M
(εκατομμύρια λέξεις). Για κάθε υποσύνολο, εκπαιδεύουμε ένα μοντέλο GPT-Neo και αξιολογούμε τις παραγ-
ωγικές και γλωσσικές του ικανότητες. Στην αξιολόγησή μας, συμπεριλαμβάνουμε μετρικές γραμματικής
κατανόησης, ποικιλομορφίας και ποιότητας των παραγωγών. Οι μετρικές μας παρουσιάζονται στην Ενότητα
0.3.4. Για κάθε ένα από τα σενάρια Strict και Strict-Small , επιλέγουμε ένα υποσύνολο Dtiny-m και ένα αν-

τίστοιχο μοντέλο GPT-Neo που έχει εκπαιδευτεί σε αυτό, με βάση την αξιολόγηση και τα παραπάνω κριτήρια, και
τα χρησιμοποιούμε για την επάυξηση δεδομένων. Για να δημιουργήσουμε το Dgen, για κάθε ιστορία s ∈ Dtiny-m,
περικόπτουμε την ιστορία στο 15%-30% του μεγέθους της και τη χρησιμοποιούμε για να προτρέψουμε το μοντέλο
να παράξει μια εναλλακτική συμπλήρωση. Επιλέξαμε να χρησιμοποιήσουμε μικρό ποσοστό της αρχικής ιστορίας
για να αποφύγουμε την επανάληψη, δεδομένου ότι οι ιστορίες στο Dtiny-m θα βρίσκονται ήδη στον συνδυασμό

συνόλων για την τελική εκπαίδευση του κωδικοποιητή.

Για την παραγωγή δεδομένων πειραματιζόμαστε με δύο μεθόδους: άπληστη αποκωδικοποίηση (greedy decod-
ing) και δειγματοληψία πυρήνα (nucleus sampling) [51]. Κατά τη δειγματοληψία, για κάθε ξεκίνημα ιστορίας
παράγουμε k συμπληρώσεις με τα μοντέλα μας. Για να περιορίσουμε την επανάληψη μεταξύ των k διαφορετικών
παραγωγών, και να αποφύγουμε τη σπατάλη υπολογιστικών πόρων (FLOPs), υπολογίζουμε τη μετρική Self-
BLEU (Ενότητα 0.3.4) για ένα σύνολο τιμών k και επιλέγουμε αυτές με την καλύτερη ισορροπία μεταξύ: της
ποικιλομορφίας, και του συνολικού αριθμού πρόσθετων δεδομένων εκπαίδευσης.

0.3.3 Δημιουργία Τελικού Συνόλου

Για καθένα ένα από τα σενάρια Strict και Strict-Small , δημιουργήσαμε τα σύνολα Dtiny-m και Dgen όπως

περιγράφηκε προηγουμένως. Τώρα δημιουργούμε τον συνδυασμό συνόλων δεδομένων – συμβολίζεται με Dcomb,
που χρησιμοποιείται για την εκπαίδευση του μετασχηματιστή κωδικοποιητή. Κατανέμουμε τις διαθέσιμες λέξεις
που απομένουν στον προυπολογισμό μας, σε ένα υποσύνολο του BabyLM (Dbaby-b), που δημιουργούμε με τυχαία
δειγματοληψία από το BabyLM σε επίπεδο κειμένων. Αφήνουμε μεθόδους δειγματοληψίας που λαμβάνουν υπόψιν
το περιεχόμενο των κειμένων για μελλοντική εργασία. Για τα Strict / Strict-Small σενάρια, το μέγεθος b
του Dbaby-b επιλέγεται έτσι ώστε: b+m ≤ 100M/10M. Κατασκευάζουμε τώρα το Dcomb συνδυάζοντας όλα τα

σύνολα δεδομένων Dcomb = (Dtiny-m,Dbaby-b,Dgen). Χρησιμοποιούμε έναν στόχο Μοντελοποίησης Γλώσσας
με Μάσκα (Masked Language Modeling) για να εκπαιδεύσουμε έναν μετασχηματιστή κωδικοποιητή στο Dcomb,
χρησιμοποιώντας την αρχιτεκτονική LTG-BERT [120].

0.3.4 Μετρικές Αξιολόγησης

Για την αξιολόγηση των μετασχηματιστών κωδικοποιητών (encoder transformers) χρησιμοποιούμε τη σουίτα
αξιολόγησης του διαγωνισμού, που αποτελείται από τρία σύνολα δείκτών αναφοράς (benchmarks): το BLiMP,
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το (Super)GLUE και to EWoK, καθένα από τα οποία αξιολογεί, σε γενικές γραμμές, τη γλωσσική επάρκεια,
τη γενική κατανόηση της γλώσσας, και τη γνώση για τον κόσμο, αντίστοιχα. Σημειώνουμε ότι τα benchmarks
της πρόκλησης είναι φιλτραρισμένες εκδόσεις [146], καθιστώντας τα αποτελέσματά μας μη συγκρίσιμα με αξι-
ολογήσεις στα πλήρη δεδομένα. Για τους αποκωδικοποιητές μετασχηματιστές, χρησιμοποιούμε τα EWoK και
BLiMP, και επίσης εισάγουμε ορισμένες επιπλέον διαδικασίες αξιολόγησης: το Self-BLEU για τη μέτρηση της
ποικιλομορφίας, καθώς και μια αξιολόγηση με τη βοήθεια ενός Μεγάλου Γλωσσικού Μοντέλου (LLM) για τη
μέτρηση της ποιότητας των παραγωγών. Εξηγούμε κάθε μία από τις μεθόδους αξιολόγησης παρακάτω.

BLiMP Το BLiMP (Benchmark of Linguistic Minimal Pairs) [143], είναι ένα σύνολο από εργασίες που έχουν
σχεδιαστεί για την αξιολόγηση της γραμματικής και συντακτικής γνώσης των γλωσσικών μοντέλων. Αποτελείται
από ζεύγη ελάχιστα διαφορετικών προτάσεων που καλύπτουν διάφορα γραμματικά φαινόμενα και αφορούν τη

σύνταξη, τη μορφολογία και τη σημασιολογία. Το μοντέλο πρέπει να αντιστοιχήσει μεγαλύτερη πιθανότητα
στη γραμματικά σωστή πρόταση σε κάθε ζευγάρι. Αξιολογούμε επίσης στο συμπλήρωμα του BLiMP (Supp.),
που κυκλοφόρησε στην προηγούμενη έκδοση του διαγωνισμού [145], και περιλαμβάνει πρόσθετα γραμματικά
φαινόμενα.

(Super)GLUE Το GLUE (General Language Understanding Evaluation) [138] δημιουργήθηκε για να αξ-
ιολογήσει τις ικανότητες γενικής κατανόηση γλώσσας (NLU) των γλωσσικών μοντέλων, σε ένα ευρύ φάσμα
εργασιών κατανόησης φυσικής γλώσσας. Σύντομα μετά την εισαγωγή του, τα γλωσσικά μοντέλα κατάφεραν να
ξεπεράσουν την ανθρώπινη επίδοση στο GLUE (για μη ειδικούς). Αυτό είχε σαν συνέπεια τη δημιουργία του
SuperGLUE [140], που παρουσιάστηκε για να προσφέρει ένα πιο απαιτητικό σύνολο εργασιών. Χρησιμοποιούμε
συνολικά 10 εργασίες και από τα δύο benchmakrs, που καλύπτουν: την απάντηση ερωτήσεων (BoolQ, MultiRC),
την ταξινόμηση συναισθημάτων (SST-2), την παράφραση (MRPC, QQP), τη γραμματική αποδοχή (CoLA), τους
συλλογισμούς "κοινής λογικής" (WSC) και τη σχέση συμπεράσματος (MNLI, QNLI, RTE).

EWoK Το EWoK (Elements of World Knowledge) [55], αξιολογεί την ικανότητα ενός γλωσσικού μοντέλου
να κατανοεί και να μοντελοποιεί γνώση για τον κόσμο. Συγκεκριμένα, μετράει πόσο καλά ένα μοντέλο μπορεί να
συνδέσει ένα κείμενο στόχο είτε με ένα κατάλληλο είτε με ένα αταίριαστο γλωσσικό πλαίσιο, δίνοντας έμφαση
σε βασικές έννοιες όπως οι κοινωνικές δυναμικές και οι χωρικές σχέσεις. Τόσο τα κείμενα πλαίσια όσο και οι
στόχοι δημιουργούνται ως ζεύγη ελάχιστης αντίθεσης, με προσαρμόσιμα στοιχεία όπως αντικείμενα, πράκτορες
(agents) και τοποθεσίες. Τα δείγματα είναι ελάχιστα ζεύγη ζευγών, και παρόμοια με το BLiMP, ένα γλωσσικό
μοντέλο πρέπει να αντιστοιχίσει μεγαλύτερη πιθανότητα στο ζεύγος σωστού πλαισίου και κειμένου.

Self-BLEU Για να μετρήσουμε την ποικιλομορφία των παραγόμενων ιστοριών, χρησιμοποιήσαμε τη μετρική
Self-BLEU [163]. Δεδομένης μιας συλλογής παραγμένων κειμένων, υπολογίζουμε τη μετρική BLEU με μια
παραγωγή ως υπόθεση και τις άλλες ως αναφορές, αξιολογώντας πόσο παρόμοια είναι με τις υπόλοιπες. Ορίζουμε
το Self-BLEU ως τον μέσο όρο όλων των βαθμολογιών BLEU στο σώμα όλων των παραγωγών. Η μετρική
ορίζεται σε συνεχή κλίμακα στο [0, 1], με τις υψηλότερες τιμές να αντιστοιχούν σε λιγότερη ποικιλομορφία.

LLM Evaluation Για να παρέχουμε μια ολοκληρωμένη αξιολόγηση των παραγωγικών ικανοτήτων των

μετασχηματιστών αποκωδικοποιητών (GPT-Neo) ως προς την ποιότητα, χρησιμοποιήσαμε το Claude-3.5 Son-
net [2]. Ακολουθώντας την προσέγγιση στο [31], δίνουμε τις ιστορίες που δημιουργούνται στο Μεγάλο Γλωσ-
σικό Μοντέλο (LLM), και του ζητάμε να τις αξιολογήσει με βάση τη Γραμματική, τη Δημιουργικότητα και τη
Συνέπεια της ολοκλήρωσης σε σχέση με την αρχή της ιστορίας, σε κλίμακα από το 1 έως το 10. Λεπτομέρειες
για την αξιολόγηση δίνονται στην Ενότητα 0.4.1. ΄Ενα παράδειγμα της αλληλεπίδρασης με το LLM δίνεται στο
Παράρτημα B.

0.4 Πειραματικό Μέρος

Διεξήγαμε τα πειράματά μας σε ένα κοινό υπολογιστικό σύστημα (μοιρασμένο σε πλήθος χρηστών) με 8 κάρτες
γραφικών (GPU) Nvidia V100 με 16 GB, επιπλέον, για την αξιολόγηση των μοντέλων μας έγινε χρήση μιας
GPU Nvidia RTX-3090 με 24 GB. Χρησιμοποιήσαμε τις βιβλιοθήκες PyTorch [99] και HuggingFace [151] για
να εκπαιδεύσουμε όλα τα μοντέλα μας, και για τις αξιολογήσεις μας για τα BLiMP, EWoK και (Super)GLUE
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χρησιμοποιήσαμε την επίσημη βιβλιοθήκη αξιολόγησης που δημοσιεύθηκε στα πλαίσια του διαγωνισμού [35, 21].
Τέλος, για τον υπολογισμό του Self-BLEU χρησιμοποιήθηκε η βιβλιοθήκη NLTK [11].

0.4.1 TintStories (Μικρές Ιστορίες) – Ανάλυση και Εκπαίδευση

Για τον μετασχηματιστή αποκωδικοποιητή που χρησιμοποιούμε για την επαύξηση δεδομένων, επιλέγουμε μία
από τις αρχιτεκτονικές GPT-Neo με τις καλύτερες επιδόσεις στην έρευνα του TinyStories [31] 3. ΄Ολα τα
μοντέλα GPT-Neo που εκπαιδεύουμε χρησιμοποιούν τις ίδιες υπερπαραμέτρους, εκτός από το weight decay, το
dropout και το μέγεθος του λεξιλογίου (vocabulary size), που ρυθμίζονται για κάθε συγκεκριμένο μέγεθος
δεδομένων εκπαίδευσης. Χρησιμοποιούμε μια διαδικασία εκπαίδευσης παρόμοια με αυτήν στο [31], με πρόσθετο
regularization για τα σενάρια χαμηλών δεδομένων που εξετάζουμε. Οι υπερπαράμετροι και οι λεπτομέρειες
σχετικά με την αρχιτεκτονική περιλαμβάνονται στο Παράρτημα C. Επιλέξαμε να εκπαιδεύσουμε τα μοντέλα στην
πιο πρόσφατη έκδοση των δεδομένων TinyStories (V2), που δημιουργήθηκε προτρέποντας μόνο το GPT-4. Το
πλήρες σύνολο δεδομένων χωρίς δειγματοληψία περιέχει περίπου 440M λέξεις. Κατά τη διάρκεια της αξιολόγησής
μας, αναφέρουμε επίσης αποτελέσματα για το αρχικό μοντέλο που κυκλοφόρησε από τους συγγραφείς, το οποίο
έχει εκπαιδευτεί στην πρώτη έκδοση του συνόλου δεδομένων (V1) με 373M περίπου λέξεις.

Στις ακόλουθες παραγράφους, διεξάγουμε μια ενδελεχή ανάλυση της σχέσης μεταξύ: της γλωσσικής ικανότη-
τας των μοντέλων GPT-Neo που εκπαιδεύονται σε υποσύνολα του TinyStories και του μεγέθους των
συνόλων εκπαίδευσης |Dtiny-m|. Πειραματιζόμαστε με διάφορα μεγέθη υποσυνόλων TinyStories Dtiny-m :
m ∈ {5, 10, 25, 50, 75, 100}M (εκατομμύρια λέξεις). Από τα πειράματά μας, αντλούμε πληροφορίες σχετικά με τις
ικανότητες των γλωσσικών μοντέλων σε καθεστώτα χαμηλών δεδομένων. Αυτή η αξιολόγηση θα ορίσει επίσης
την επιλογή του υποσυνόλου TinyStories Dtiny που χρησιμοποιείται για τη δημιουργία του συνόλου δεδομένων

Dgen και για την εκπαίδευση του τελικού μοντέλου μετασχηματιστή κωδικοποιητή.

Για να αντλήσουμε κάποιες αρχικές πληροφορίες για τη γλωσσική ικανότητα των μοντέλων αποκωδικοποιητή

GPT-Neo, μετράμε την απόδοση στο BLiMP, το συμπλήρωμά του (Supp.) και το EWoK. Τα αποτελέσ-
ματα παρουσιάζονται στον Πίνακα 0.4.1. Είναι σημαντικό να σημειώσουμε ότι οι 50M λέξεις, φαίνεται να
είναι ένα σημείο αποκοπής, με αξιοσημείωτες πτώσεις στην απόδοση για μοντέλα εκπαιδευμένα με λιγότερες
λέξεις. Με βάση αυτό, για την επαύξηση δεδομένων, επιλέγουμε Dtiny-50M για το Strict σενάριο, και το
Dtiny-5M για το Strict-Small σενάριο. Είναι σημαντικό ότι δε συμπεριλαμβάνουμε την αξιολόγηση με χρήση
LLM (που παρουσιάζεται παρακάτω) στη λήψη αυτής της απόφασης, καθώς αυτό θα παραβίαζε τους περιορισ-
μούς δεδομένων της δουλειάς μας. Αφήνουμε περαιτέρω έρευνα σχετικά με το μέγεθος των δειγμάτων για το
Strict-Small σενάριο για μελλοντική εργασία.

Train Data BLiMP ↑ Supp. ↑ EWoK ↑
5M 55.5 53.8 51.1
10M 58.4 51.6 51.9
25M 59.9 55.1 52.4
50M 62.8 52.8 53.0
75M 64.0 54.8 53.4
100M 64.8 50.8 53.1
440M (V2) 64.6 55.0 53.9
373M (V1) 64.8 60.9 54.0

Table 0.4.1: Αποτελέσματα αξιολόγησης στο BLiMP, BLiMP Supplement (Supp.) και EWoK, για μοντέλα
GPT-Neo που έχουν εκπαιδευτεί στο TinyStories με διαφορετικά μεγέθη συνόλων εκπαίδευσης. Παρατηρούμε
ότι καθώς ο όγκος των δεδομένων μειώνεται, οι βαθμολογίες στα BLiMP και EWoK γενικά μειώνονται
επίσης. Αντίθετα, η βαθμολογία στο BLiMP Supp. δείχνει μεγαλύτερη διακύμανση.

3https://huggingface.co/roneneldan/TinyStories-33M
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Οι παραπάνω βαθμολογίες μας δίνουν στοιχεία σχετικά με τη γραμματική κατανόηση (BLiMP) και τη γνώση για
τον κόσμο (EWoK) που έχουν τα μοντέλων μας, αλλά παραλείπουν δύο σημαντικούς άξονες αξιολόγησης της
παραγωγικής απόδοσης: 1 την ποικιλομορφία (diversity) των παραγωγών και 2 την ποιότητα (quality)
των παραγωγών. Εστιάζουμε σε αυτούς τους δύο άξονες στις ακόλουθες παραγράφους. Εκτός από τις ποσοτικές
βαθμολογίες, συμπεριλαμβάνουμε επίσης δείγματα παραγωγών απο τα μοντέλα GPT-Neo στο Παράρτημα A.

Αξιολόγηση της Ποιότητας των Παραγωγών Η αξιολόγηση της παραγωγικής ικανότητας ενός μον-

τέλου σε εργασίες (tasks) που έχουν να κάνουν με παραγωγή κειμένου ανοιχτού τύπου (open-ended) αποτελεί
πρόκληση, καθώς οι περισότερες μέθοδοι αξιολόγησης είναι φτιαγμένες για δομημένα αποτελέσματα, και συνήθως
μετρούν την πιστότητας σε ένα σύνολο κειμένων αναφοράς. Για να αντιμετωπίσουμε αυτο το πρόβλημα, υιοθε-
τούμε τη μέθοδο αξιολόγησης που προτάθηκε πρόσφατα από τους [31], και χρησιμοποιούμε ένα Μεγάλο Γλωσσικό
Μοντέλο (LLM) για να αξιολογήσουμε τις ιστορίες των μοντέλων μας. Οι αρχικοί συγγραφείς χρησιμοποίησαν
το GPT-4, εμείς χρησιμοποιούμε αντ’ αυτού Claude-3.5 Sonnet [2].

Χρησιμοποιούμε ένα σύνολο 44 χειροκίνητα κατασκευασμένων προτροπών (prompts) 4
που περιέχουν την αρχή

μιας ιστορίας και παράγουμε 10 συμπληρώσεις της ιστορίας με κάθε μοντέλο μας. Στη συνέχεια παρέχουμε στο
LLM την αρχή της ιστορίας και την ολοκλήρωση του μοντέλου και του ζητάμε να αξιολογήσει την απόκριση του
μοντέλου σε τρεις άξονες: (α) Γραμματική, (β) Δημιουργικότητα και (γ) Συνέπεια με την αρχή της ιστορίας.
Επιπλέον, του ζητάμε να ταξινομήσει την ιστορία σε διαφορετικές ηλικιακές ομάδες, που κυμαίνονται από τα 3
έως τα 16 έτη. Οι βαθμολογίες δίνονται σε μια κλίμακα από το 1 έως το 10. Υπολογίζουμε τον μέσο όρο για όλες
τις ιστορίες και όλες τις συμπληρώσεις για κάθε μοντέλο στον Πίνακα 0.4.2. Παρατηρούμε ότι ο περιορισμός
των δεδομένων εκπαίδευσης, έως και 25M λέξεις, έχει ως αποτέλεσμα μικρές μειώσεις στην απόδοση. Αυτό
δηλώνει ότι η ποιότητα των παραγομένων των μοντέλων διατηρείται και στο καθεστώς λίγων δεδομένων.

Αξιολόγηση της Ποικιλομορφίας των Παραγωγών Για τη μέτρηση της ποικιλομορφίας χρησι-

μοποιούμε τη μετρική Self-BLEU [163] – όσο υψηλότερη είναι η μετρική, τόσο μικρότερη είναι η ποικιλομορφία των
παραγωγών του μοντέλου. Για κάθε μοντέλο, δειγματοληπτούμε 100 ιστορίες από το σύνολο εκπαίδευσης και τις
περικόπτουμε στο 15%-30% του μήκους τους, για να χρησιμοποιηθούν ως προτροπές (prompts). Στη συνέχεια,
τα μοντέλα μας ολοκληρώνουν την ιστορία, κάνοντας χρήση άπληστης αποκωδικοποίησης (greedy decoding).
Αναφέρουμε βαθμολογίες Self-BLEU, κλιμακωμένες στο [0, 100], για το σύνολο των 100 ολοκληρώσεων στον
Πίνακα 0.4.2. Τα αποτελέσματά μας δείχνουν ότι τα μοντέλα με περιορισμένα δεδομένα εκπαίδευσης μπορούν να
επιτύχουν υψηλή ποικιλομορφία, διατηρώντας ταυτόχρονα την ποιότητα παραγωγής, όπως αποδεικνύεται από τις
βαθμολογίες των μοντέλων GPT-Neo που έχουν εκπαιδευτεί σε 25M και 50M λέξεις.

Train Data Gr. ↑ Cr. ↑ Cons. ↑ SB ↓
5M 4.56 4.99 3.37 38.6
10M 5.31 5.34 3.98 38.3
25M 6.00 5.65 4.55 34.6
50M 6.01 5.53 4.54 33.0
75M 6.08 5.50 4.49 37.1
100M 6.17 5.57 4.78 39.8
440M (V2) 5.88 5.53 4.49 37.3
373M (V1) 6.24 5.73 4.70 29.6

Table 0.4.2: Αποτελέσματα της αξιολόγησης των μοντέλων GPT-Neo με χρήση Μεγάλου Γλωσσικού
Μοντέλου (LLM) και της μετρικής Self-BLEU. Δίνουμε οδηγίες στο Claude-3.5 Sonnet να αξιολογήσει την
παραγωγική απόδοση σε τρεις κατηγορίες: Γραμματική (Gr), Δημιουργικότητα (Cr.), Συνέπεια (Cons.) με την
αρχή της ιστορίας. Συμπεριλαμβάνουμε επίσης το Self-Blue (SB), που μετράει την ποικιλομορφία των
παραγωγών.

4https://huggingface.co/datasets/roneneldan/TinyStories
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0.4.2 Δημιουργία Δεδομένων

Τώρα περιγράφουμε τη δημιουργία του συνόλου δεδομένωνDcomb = (Dtiny-m,Dbaby-b,Dgen). ΄Οπως συζητήθηκε
στην Ενότητα 0.4.1, επιλέγουμε τα υποσύνολα Dtiny-50M για το Strict σενάριο και Dtiny-5M για το

Strict-Small σενάριο. Για συντομία, παρακάτω αναλύουμε τη διαδικασία μόνο για το Strict-Small σενάριο,
ακολουθούμε όμως τα ίδια βήματα και για το Strict σενάριο. Εκπαιδεύουμε ένα μοντέλο GPT-Neo στο
Dtiny-5M και το χρησιμοποιούμε για να δημιουργήσουμε το σύνολο δεδομένων Dgen. Χρησιμοποιούμε την αρχή
κάθε ιστορίας από το σύνολο εκπαίδευσης Dtiny-5M (15%-30% του μεγέθους της), για να προτρέψουμε τον
αποκωδικοποιητή να δημιουργήσει εναλλακτικές συμπληρώσεις. Πειραματιζόμαστε με διαφορετικές τεχνικές
παραγωγής, συμπεριλαμβανομένης της άπληστης δημιουργίας – Dgen-greedy και της δειγματοληψίας πυρήνα –
Dgen-nucleus-k, όπου k είναι ο αριθμός των παραγωγών για κάθε ιστορία. Συμπληρώνουμε τα δύο αυτά σύνολα,
με δεδομένα απο το BabyLM (Dbaby-5M), χωρίς να ξεπεράσουμε τον περιορισμό των 10Μ, για να σχηματίσουμε
το D10M

comb = (Dtiny-5M,Dbaby-5M,Dgen).

Για να επιλέξουμε κατάλληλες τιμές για την παράμετρο k για τη δειγματοληψία πυρήνα, χρησιμοποιούμε τη
μετρική Self-BLEU. Δειγματοληπτούμε 100 ιστορίες από το Dtiny-5M και χρησιμοποιούμε την αρχή τους (15%-
30% του μήκους) για προτρέψουμε το μοντέλο GPT-Neo, και να δημιουργήσουμε 50 συμπληρώσεις για κάθε
προτροπή με p = 0, 95. Για κάθε τιμή k ∈ {2, 3, ..., 50} υπολογίζουμε το Self-BLEU μεταξύ της ομάδας
των παραγωγών Sk. Στόχος μας είναι να δούμε πόσο διαφορετικές είναι οι διάφορες παραγωγές για την ίδια
προτροπή, καθώς αυξάνεται ο αριθμός των παραγωγών (k). Το μέσο Self-BLEU για όλα τες ιστορίες και
παραγωγές απεικονίζεται στην Εικόνα 0.4.1. Επιλέγουμε να πειραματιστούμε με k = 5 και k = 10, ως μια καλή
ισορροπία μεταξύ της ποικιλομορφίας και του μεγέθους των επιπλέον δεδομένων, καθώς παρατηρούμε ότι σε
αυτό το εύρος, το Self-BLEU παραμένει σταθερό.
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Figure 0.4.1: Μέση βαθμολογία Self-BLEU για τα μοντέλα GPT-Neo εκπαιδευμένα 5 και 50 εκατομμύρια
λέξεις απο το TinyStories. Για κάθε μοντέλο, χρησιμοποιούμε 100 ιστορίες και παράγουμε 50 ολοκληρώσεις.
Σχεδιάζουμε το μέσο Self-BLEU όλων των ιστοριών, καθώς ο αριθμός των παραγωγών ανα ιστορία (k)
αυξάνεται.

0.4.3 Εκπαίδευση του Κωδικοποιητή Μετασχηματιστή

Στη συνέχεια, χρησιμοποιούμε τον συνδυασμό συνόλων δεδομένων Dcomb για να εκπαιδεύσουμε ένα μοντέλο

μετασχηματιστή κωδικοποιητή (encoder transformer) LTG-BERT [120]. Η διαδικασία εκπαίδευσής που χρησι-
μοποιούμε βασίζεται στον πηγαίο κώδικα που δημοσιεύθηκε από τους συγγραφείς

5. Χρησιμοποιούμε παρόμοιες
υπερπαραμέτρους (Παράρτημα C), προσαρμοσμένες για τις υποδομές μας, και εκτελούμε ελάχιστη βελτιστοποίηση
υπερπαραμέτρων. Προκειμένου να αξιολογήσουμε την επίδραση της επαύξησης δεδομένων στην τελική από-
δοση, εκπαιδεύουμε μια ποικιλία από βασικά μοντέλα (baselines), διαφοροποιώντας το σύνολο δεδομένων προεκ-
παίδευσης και διατηρώντας σταθερές όλες τις άλλες συνθήκες εκπαίδευσης. Συγκεκριμένα, για κάθε σενάριο,

5https://github.com/ltgoslo/ltg-bert
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όλα τα μοντέλα χρησιμοποιούν τις ίδιες υπερπαραμέτρους και τον ίδιο αριθμό απο FLOPs, διασφαλίζοντας μια
δίκαιη σύγκριση.

Βασικά Μοντέλα Για το σενάριο Strict-Small , καθιερώνουμε βασικά μοντέλα LTG-BERT για σύγκρ-
ιση με τη μέθοδο μας, χρησιμοποιώντας 10M λέξεις από τα σύνολα δεδομένων BabyLM – Dbaby-10M και Tinys-
tories – Dtiny-10M. Επιπλέον, εκπαιδεύσαμε έναν κωδικοποιητή χρησιμοποιώντας έναν συνδυασμό 5M λέξεων
από κάθε ένα από τα δύο σύνολα δεδομένων – Dbaby-5M + Dtiny-5M. Αυτά τα μοντέλα χρησιμεύουν ως σημεία
αναφοράς βάσει των οποίων αξιολογούμε την απόδοση μοντέλων που έχουν εκπαιδευτεί με διάφορους συνδυασ-

μούς παραγόμενων δεδομένων, με στόχο την αξιολόγηση της αποτελεσματικότητας της επαύξησης δεδομένων.
Η ίδια μεθοδολογία εφαρμόστηκε με συνέπεια και στο Strict σενάριο. Εδώ, εκπαιδεύσαμε κωδικοποιητές
με 100M λέξεις από κάθε σύνολο δεδομένων, άλλα και συνδυαστικά, χρησιμοποιώντας 50M λέξεις από κάθε
σύνολο. Συμπεριλαμβάνουμε επίσης αποτελέσματα για τα βασικά μοντέλα του διαγωνισμού BabyLM [21] –
συγκεκριμένα το LTG-BERT [120] και το BabyLlama [134]. Σημειώνουμε ότι αυτά τα μοντέλα εκπαιδεύτηκαν
με διαφορετικές συνθήκες από τα δικά μας. Μια σημαντική παράμετρος που διαφέρει είναι ο αριθμός τον εποχών
εκπαίδευσης: για το βασικό μοντέλο του διαγωνισμού LTG-BERT χρησιμοποιήθηκαν 20 περίπου εποχές, ενώ
για τα δικά μας μοντέλα 27 περίπου εποχές (20 χιλιάδες βήματα).

Ισορροπημένη Εκπαίδευση Καθώς αυξάνουμε τον αριθμό των παραγόμενων κειμένων στο εκπαιδευτικό

σύνολο LTG-BERT (Dcomb), τροποποιούμε επίσης την κατανομή των δειγμάτων TinyStories και BabyLM
που συναντά το μοντέλο κατά τη διάρκεια της εκπαίδευσης. Αυτό θα μπορούσε να επηρεάσει την απόδοση
του μοντέλου, καθώς γίνεται πιο συντονισμένο στο TinyStories. Για να αντιμετωπίσουμε αυτό το πρόβλημα,
πειραματιζόμαστε με μια παραλλαγή εκπαίδευσης όπου εξισορροπούμε τον αριθμό των δειγμάτων και από τα δύο

σύνολα δεδομένων. Συγκεκριμένα, τα δείγματα σε κάθε παρτίδα (batch) λαμβάνονται με ίση πιθανότητα από
το TinyStories – το οποίο περιλαμβάνει τόσο πρωτότυπα όσο και παραγμένα κείμενα – και το BabyLM. Αυτή
η μέθοδος διασφαλίζει ότι το μοντέλο εκτίθεται σε ίσο αριθμό δειγμάτων από κάθε σύνολο δεδομένων κατά τη

διάρκεια της εκπαίδευσης. Το σύμβολο στιλέτο † στα αποτελέσματα δηλώνει τη χρήση αυτής της στρατηγικής.

0.5 Αποτελέσματα

Παρουσιάζουμε τα τελικά αποτελέσματα της αξιολόγησης μας για τα σενάρια Strict-Small και Strict στον
Πίνακα 0.5.3 και τον Πίνακα 0.5.4, αντίστοιχα. Το σύμβολο ⋆ δηλώνει το μοντέλο που υποβλήθηκε στον
διαγωνισμό.

0.5.1 Strict-Small – Μικρό Σενάριο

Στο Strict-Small σενάριο, η σύγκριση της επίδοσης των εκπαιδευμένων μοντέλων για τα σύνολα εκπαίδευσης
Dbaby-10M καιDtiny-10M αποκαλύπτει ότι το σύνολο δεδομένων BabyLM είναι πιο ωφέλιμο για την προεκπαίδευση
σε γλωσσικά δεδομένα σε σύγκριση με το TinyStories. Οι μετρικές απόδοσης για το TinyStories είναι σταθερά
χαμηλότερες, εκτός από την περίπτωση του EWoK. Ενδιαφέρον επίσης προκαλεί ότι η αντικατάσταση του μισού
συνόλου δεδομένων BabyLM με δεδομένα από το TinyStories επηρεάζει ελάχιστα την απόδοση του μοντέλου.
Ωστόσο, καθώς προσθέτουμε περισσότερα δείγματα δεδομένων συνθετικών ιστοριών, ο θετικός αντίκτυπος του
συνόλου δεδομένων BabyLM αρχίζει να μειώνεται, με αποτέλεσμα η απόδοση να πλησιάζει αυτή του Dtiny-10M
όπου το BabyLM δε χρησιμοποιήθηκε καθόλου. Αυτό υποδηλώνει ότι η εκπαίδευση επηρεάζεται υπερβολικά
από τον αυξημένο όγκο δεδομένων του TinyStories. Για να μετριαστεί αυτό το αποτέλεσμα, ισορροπήσαμε την
κατανομή των δειγμάτων από τα δύο σύνολα δεδομένων σε μια παρτίδα (batch). Αυτή η προσέγγιση επηρεάζει
θετικά την απόδοση του μοντέλου. Συγκεκριμένα, για το BLiMP, ξεπερνά ελαφρώς την απόδοση του μοντέλου
που εκπαιδεύτηκε αποκλειστικά στο Dbaby-10M, πετυχαίνοντας την καλύτερη επίδοση συνολικά. Επιπλέον, σε
σύγκριση με άλλα σενάρια επαύξησης, η απόδοση στο GLUE αυξάνεται.

Μια ακόμα ενδιαφέρουσα παρατήρηση αφορά την τεχνική δειγματοληψίας που χρησιμοποιείται για την αύξηση των

δεδομένων. Η αλλαγή της στρατηγικής δειγματοληψίας από άπληστη κωδικοποίηση σε δειγματοληψία πυρήνα
επηρεάζει θετικά την απόδοση του μοντέλου στο BLiMP και το BLiMP Supp., ενώ επηρεάζει αρνητικά την από-
δοση στο EWoK και στο GLUE. Αυτό το φαινόμενο είναι πιθανό να οφείλεται στη φύση των ίδιων των μετρικών
αξιολόγησης. Το BLiMP εστιάζει στην αξιολόγηση της κατανόησης της γραμματικής και του συντακτικού, και
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η αυξημένη ποικιλομορφία που προκαλεί η δειγματοληψία πυρήνα, εκθέτει το μοντέλο σε ένα ευρύτερο φάσμα
γλωσσικών πλαισίων και συντακτικών παραλλαγών. Αυτό βελτιώνει την επίδοση στο BLiMP. Αντίθετα, το
EWoK και το GLUE απαιτούν σημασιολογική συνοχή και συνέπεια στα γεγονότα, και η αυξημένη ποικιλομορ-
φία από τη δειγματοληψία πυρήνα μπορεί να εισάγει θόρυβο και να οδηγήσει σε λιγότερο συνεκτικές αφηγήσεις.
Αυτό δυνητικά μπερδεύει το μοντέλο και μειώνει την απόδοση. Επομένως, ενώ η μεγαλύτερη ποικιλία στις
ιστορίες ωφελεί μετρικές γραμματικής κατανόησης όπως το BLiMP, ενδέχεται να μην είναι τόσο χρήσιμη για
σημασιολογικές μετρικές ή μετρικές βασισμένες σε γεγονότα, όπως το EWoK και το GLUE.

Model Training Data Total BLiMP Supp. EWoK GLUE Avg.

LTG-BERT Dbaby-10M 10M 60.6 60.8 48.9/63.1 6 60.3 57.7/61.2

BabyLlama Dbaby-10M 10M 69.8 59.5 50.7 63.3 60.8

LTG-BERT
(ours)

Dbaby-10M 10M 62.8 63.7 66.2 71.0 65.9
Dtiny-10M 10M 59.8 54.2 67.0 67.0 62.0
Dtiny-10M +Dgen-greedy 20M 58.7 57.8 63.8 67.1 61.9
Dbaby-5M +Dtiny-5M 10M 62.6 60.7 66.6 71.2 65.3
Dbaby-5M +Dtiny-5M +Dgen-greedy 15M 62.1 60.2 65.5 70.6 64.6
Dbaby-5M +Dtiny-5M +Dgen-nucleus-1 15M 62.5 62.3 63.9 69.5 64.6
Dbaby-5M +Dtiny-5M +Dgen-nucleus-1 † ⋆ 15M 63.2 59.3 65.5 71.1 64.8
Dbaby-5M +Dtiny-5M +Dgen-nucleus-5 33M 62.4 60.1 65.8 69.4 64.4
Dbaby-5M +Dtiny-5M +Dgen-nucleus-10 56M 61.0 58.4 65.3 69.5 63.6

Table 0.5.3: Επίδοση των μοντέλων για το Strict-Small σενάριο με όριο 10 εκατομμύρια λέξεις.

0.5.2 Strict – Μεγάλο Σενάριο
Είναι ενδιαφέρον ότι για το Strict σενάριο παρατηρούμε ότι η αύξηση δεδομένων έχει θετική επίδραση στις
μετρικές BLiMP και EWoK. Συγκεκριμένα, η προσθήκη του συνόλου δεδομένωνDgen-greedy, έχει ως αποτέλεσμα
αυξημένη απόδοση σε σύγκριση με τα βασικά μοντέλα που εκπαιδεύτηκαν στα Dtiny-100M και Dbaby-100M, καθώς
και ένα μείγμα των δύο (Dtiny-50M +Dbaby-50M). Επιπλέον, ο συνδυασμός Dtiny-50M +Dbaby-50M έχει χειρότερη

απόδοση και από τα δύο μοντέλα με επαύξηση δεδομένων, Dgen-greedy και Dgen-nucleus-1, γεγονός που υποδηλώνει
ότι τα συνθετικά δεδομένα μπορούν να προσφέρουν κάποιο κέρδος στο μεγαλύτερο σενάριο.

΄Οπως και με το Strict-Small σενάριο, η αύξηση του μεγέθους του συνόλου δεδομένων TinyStories επηρεάζει
αρνητικά την απόδοση των μοντέλων, πλησιάζοντας την απόδοση του μοντέλου που έχει εκπαιδευτεί αποκλεισ-
τικά στο Dtiny-100M. Ωστόσο, σε αυτήν την περίπτωση, η εξισορρόπηση των συνόλων δεδομένων κατά την
εκπαίδευση δε βελτιώνει την απόδοση του μοντέλου. Στο μεγαλύτερο σύνολο δεδομένων των 100M λέξεων,
ακόμη και με εξισορρόπηση, ο τεράστιος όγκος των δεδομένων TinyStories μπορεί να εξουδετερώσει την επί-
δραση των δεδομένων BabyLM. Το μοντέλο εκτίθεται σε πολύ μεγαλύτερη ποσότητα περιεχομένου TinyStories,
το οποίο μπορεί να κυριαρχήσει στη μάθηση και να μειώσει την αποτελεσματικότητα της εξισορρόπησης. Επι-
πλέον, ενώ η στρατηγική δειγματοληψίας πυρήνα βελτιώνει για άλλη μια φορά την απόδοση στο BLiMP Supp.,
δε βοηθά με το BLiMP όπως έκανε στο Strict-Small σενάριο.

0.6 Συμπέρασμα

Σε αυτή την εργασία, διερευνήσαμε μεθόδους επαύξησης δεδομένων για γλωσσική μοντελοποίηση σε συνθήκες
περιορισμένων δεδομένων. Αρχικά, χρησιμοποιώντας το σύνολο δεδομένων TinyStories, εκπαιδεύσαμε αποκ-
ωδικοποιητές μετασχηματιστές GPT-Neo, και διερευνήσαμε τη σχέση μεταξύ της παραγωγικής ικανότητας, και
του μεγέθους του συνόλου εκπαίδευσης. Τα ευρήματα μας φανερώνουν την ικανότητα αυτών των μοντέλων να
παράγουν κείμενα υψηλής ποιότητας και ποικιλομορφίας, ακόμα και σε συνθήκες λίγων δεδομένων.

6
Τα αποτελέσματα στο EWoK για τα μοντέλα LTG-BERT διαφέρουν από αυτά που δημοσιεύθηκαν από τους διοργανωτές – για

παράδειγμα η αξιολόγηση μας για το 10M σενάριο είναι 63.1 αντί για το παρεχόμενο 48.9. Πιστεύουμε ότι αυτό οφείλεται σε αστάθεια
της συγκεκριμένης αρχιτεκτονικής, με διαφορετικά αποτελέσματα να αναφέρονται περιστασιακά σε διαφορετικά μηχανήματα.
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Model Training Data Total BLiMP Supp. Ewok GLUE Avg

LTG-BERT Dbaby-100M 100M 69.2 66.5 51.9/65.7 68.4 64.0/67.5

BabyLlama Dbaby-100M 100M 73.1 60.6 52.1 69.0 63.7

LTG-BERT
(ours)

Dbaby-100M 100M 64.0 67.6 62.8 74.0 67.1
Dtiny-100M 100M 61.2 63.2 63.1 70.6 64.5
Dtiny-100M +Dgen-greedy 200M 61.1 59.6 63.8 69.1 63.4
Dtiny-50M +Dbaby-50M 100M 65.5 65.6 62.5 71.0 66.2
Dtiny-50M +Dbaby-50M +Dgen-greedy 150M 66.6 63.3 65.0 71.8 66.7
Dtiny-50M +Dbaby-50M +Dgen-nucleus-1⋆ 150M 65.6 65.0 64.6 72.7 67.0
Dtiny-50M +Dbaby-50M +Dgen-nucleus-1† 150M 65.2 63.5 64.3 72.6 66.4
Dtiny-50M +Dbaby-50M +Dgen-nucleus-5 350M 65.4 64.4 61.2 69.8 65.2
Dtiny-50M +Dbaby-50M +Dgen-nucleus-10 600M 63.7 63.3 64.5 69.5 65.3

Table 0.5.4: Επίδοση των μοντέλων για το Strict σενάριο με όριο 100 εκατομμύρια λέξεις.

Στη συνέχεια, για να μετρήσουμε την επίδραση της επαύξησης με συνθετικά δεδομένα, χρησιμοποιήσαμε τα
μοντέλα GPT-Neo για να παράξουμε σύνολα συνθετικών ιστοριών, και εκπαιδεύσαμε μοντέλα LTG-BERT
σε εναν ευρό συνδυασμό από σύνολα δεδομένων. Από την αξιολόγηση μας συμπεραίνουμε ότι ενώ η σύνθεση
δεδομένων υψηλής ποιότητας είναι δυνατή σε συνθήκες περιορισμένων δεδομένων, η αποτελεσματική χρήση τους
για προεκπαίδευση δημιουργεί διάφορες προκλήσεις. Για το Strict σενάριο, η χρήση συνθετικών δεδομένων
προκάλεσε μικρή βελτίωση σε ορισμένες μετρικές, ενώ η προσεκτική εξισορρόπηση των συνόλων δεδομένων ήταν
ευεργετική για το σενάριο Strict-Small . Εν κατακλείδι, οι προσπάθειες μας υπογραμμίζουν την περίπλοκη
ισορροπία που απαιτείται μεταξύ της ποσότητας, της ποιότητας και της ενσωμάτωσης των συνθετικών δεδομένων
για την αποτελεσματική χρήση τους για προεκπαίδευση σε γλωσσικά δεδομένα. Ελπίζουμε οι εργασίες μας να
αποτελέσουν έναυσμα για περισσότερη έρευνα στον τομέα της γλωσσικής μοντελοποίησης με λίγα δεδομένα, και
σημειώνουμε κάποιες ιδέες για μελλοντικές προεκτάσεις στην επόμενη παράγραφο.

0.6.1 Μελλοντικές Κατευθύνσεις

Στη μελέτη μας χρησιμοποιήθηκε μια μόνο αρχιτεκτονική για κάθε ένα απο τα μοντέλα αποκωδικοποιητή και

κωδικοποιητή. Επιπλέον, περιοριστήκαμε σε συγκεκριμένα σύνολα δεδομένων, χρησιμοποιώντας μόνο το TinyS-
tories για τη δημιουργία συνθετικών δεδομένων και συνδυασμό των TinyStories και BabyLM για την εκπαίδευση
του κωδικοποιητή. Αυτές οι επιλογές έγιναν για να εξασφαλίσουμε ελέγξιμες συνθήκες στα πειράματα μας, και
να εξαχθούν σταθερά συμπεράσματα. Παρ’ολ’αυτά, η εισαγωγή ενός ευρέος φάσματος μοντέλων και δεδομένων
εκπαίδευσης σε μελλοντική εργασία θα οδηγήσουν σε μεγαλύτερη γενίκευση των αποτελεσμάτων μας.

Μια άλλη υποσχόμενη κατεύθυνση για μελλοντική έρευνα είναι ο πειραματισμός με τη διαδικασία παραγωγής

δεδομένων και συνδυασμού των συνόλων δεδομένων. Ερευνήσαμε μόνο ένα μείγμα των δύο συνόλων δεδομένων
– τη συμπερίληψη τους σε ίση αναλογία – κατά τη δημιουργία υποσυνόλων, ενώ τα κείμενα μέσα σε ένα υπ-
οσύνολο δεδομένων δειγματίστηκαν τυχαία. Θεωρούμε ότι ένας καλύτερος έλεγχος του μείγματος των συνόλων
δεδομένων θα μπορούσε να ενισχύσει περαιτέρω τα οφέλη της τεχνικής επαύξησης δεδομένων που προτείνουμε.
Επιπλέον, όσον αφορά την παραγωγή, η στρατηγική προτροπής και το ποσοστό περικοπής των ιστοριών θα
μπορούσαν να ρυθμιστούν με μεγαλύτερη ακρίβεια, προκειμένου να βελτιωθεί η ισορροπία μεταξύ της ποιότητας
και του πλεονασμού των δεδομένων.

Διαγράφοντας κάποιες μελλοντικές κατευθύνσεις στοχεύουμε να ενθαρρύνουμε περαιτέρω έρευνα σε αυτόν

τον τομέα, εστιάζοντας στον αντίκτυπο της αύξησης δεδομένων στη γλωσσική προεκπαίδευση σε συνθήκες
περιορισμένων δεδομένων.
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Chapter 1

Introduction

Modern Language Models (LMs), have achieved remarkable feats of language understanding and reasoning
[16, 148, 149, 40], often surpassing the abilities of humans in certain tasks. To a large degree, this success is
due to the continuous increase in the magnitude of two critical variables: the number of model parameters
and the size of pre-training datasets. Recent work [50, 65] has shown that as the available compute and
training tokens increase, so does model downstream performance, prompting academia and industry alike to
keep scaling up training configurations. As an example, the recently introduced Llama 3 [30] model contains
405B parameters and was pre-trained on 15.6T tokens, on 6K H100 GPUs. This trend is also demonstrated
by the domination of Natural Language Processing (NLP) research by Large Language Models (LLMs),
which have been successfully used in order to enhance an abundance of tasks [92, 107, 93, 69, 68, 3, 96, 133].
However, this comes with significant shortcomings. The current state of LM pre-training raises a variety of
ethical and environmental concerns – such as increased energy usage and carbon emissions [128, 48, 76] –
and threatens democratic access to the field of language modeling, as research is only made viable for large
industry organizations.

Figure 1.0.1: Training dataset sizes of recently introduced language models compared to the average input
that a 13 y. o. child has received during development. Figure reproduced from [145, 141].

Another set of issues relates to the cognitive plausibility of current LMs. By observing the human language
acquisition process and comparing it with modern LM training regimes, we notice some key differences,
specifically concerning the amount of linguistic input required for effectively understanding language. During
their development, children are exposed to 2-7M words per day [42], for a total of no more than 100M words
by 13 years of age, making them extremely efficient language learners. At the same time, state-of-the-art LMs
require billions or even trillions of words. This contrast in sample efficiency, illustrated in Figure 1.0.1, casts
doubts on the cognitive plausibility of current LM training procedures. Additionally, the vast scales of data
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prohibit cognitive scientists from effectively employing LMs for psycholinguistic research and transferring
linguistic insights to human language learning. Indeed, researchers have identified the access to immense
amounts of data as the most glaring advantage of modern LMs over humans [77, 141].

The issues with present LM training practices, as outlined above, motivate the exploration of a direction
counter to the current trend of scaling up, namely: language pre-training using data limitations inspired by
human development. Our work is part of recent efforts for training efficient language models in a limited data
setting, mimicking the linguistic environment that children are exposed to during development. Specifically,
we participate in the 2nd iteration of the BabyLM Challenge1 [21, 145, 146]. The goals of the competition
are aligned with the benefits of data constrained language modeling, specifically the competition strives to:
1 improve the relevance of LMs as cognitive models of the human language acquisition process, 2 aid
the discovery of more efficient pretraining schemes by experimenting (sandboxing) on small datasets before
scaling up promising approaches, 3 make LM research viable for researchers outside well funded industry
groups.

The competition features three experimental tracks, the Strict track with a maximum of 100M words,
the Strict-Small track with a maximum of 10M words, and the Multimodal track with a word budget
of 100M words and unlimited visual input. Participants are allowed to construct their own training data,
provided they stay within the track limits. In the following paragraphs, we briefly describe our approach to
the Strict , and Strict-Small tracks of the challenge.

Our work is published in the proceedings of the 2nd iteration of the BabyLM challenge at CoNLL 2024,
titled: "BERTtime Stories: Investigating the Role of Synthetic Story Data in Language Pre-training" [132].
To encourage and facilitate further research in the area, we make our models and implementation publicly
available 2.

1.1 Our Approach

The central idea of our approach is data augmentation. We leverage the recently introduced TinyStories
dataset [31] (Dtiny), a dataset of short stories with simple language and vocabulary, intended to be understood
by 3-4 year old children. This dataset was recently used to demonstrate that Small Language Models (SLMs)
trained on simple data, can create high quality and novel story completions. Inspired by these results, we
posit that harnessing this dataset for augmentation would benefit LM pre-training for the small data regimes
(10M and 100M words) of our setting. We use Dtiny to train decoder transformer GPT-Neo [12] models with
limited amounts of story data, and employ them to generate alternate completions to the stories in their
training set, adapting the beginning of the stories in Dtiny as a prompt. This results in the creation of a
synthetic dataset of sort stories – denoted as Dgen. The Dgen and Dtiny datasets are combined with a sample
of the BabyLM dataset (Dbaby) [21], to form a combined corpus (Dcomb). Using the combined corpus, we
train encoder transformer models with the LTG-BERT architecture [120].

Through our efforts, we aim to uncover the effect of data augmentation with synthetic story data in the
linguistic understanding of the encoder models. Specifically, to achieve this we train LTG-BERT models
and compare performance with various baselines, trained with and without the generated dataset Dgen.
For the proposed models and baselines, we evaluate grammatical proficiency, world knowledge and general
language understanding. Some marginal gains are observed from the application of our methodology, for
both the Strict and Strict-Small tracks of the challenge. However, overall, increasing the amount of
synthetic story data proved detrimental to final model performance. Our results underscore the potential
data augmentation using synthetic story data in improving low resource language modeling.

A second set of investigations concerns the relationship between the size of the training data for GPT-Neo

1https://babylm.github.io/
2https://github.com/nikitas-theo/BERTtimeStories
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models trained on subsets of TinyStories and their linguistic abilities. Specifically, we want to understand
how the quality of the generations of the models and their general language proficiency change as we vary the
amount of words (in millions) that are leveraged for their pretraining. To probe this relationship we construct
subsets of TinyStories with {5, 10, 25, 50, 75, 100}M (millions) of words, and utilize a comprehensive evaluation
suite including language benchmarks, diversity measures, and an LLM assisted qualitative evaluation.

Our experiments demonstrate that Small Language Models (SLMs), trained with ≤ 100M of words, demon-
strate remarkable linguistic understanding, and can produce high quality generations with a high degree of
grammatical correctness and diversity. These results shed light into the capabilities of SLMs in low data
regimes, and give strong evidence that the potential of data augmentation with synthetic story data has
not been fully explored. Specifically, given the ability of the GPT-Neo models to produce high quality text,
we believe that more research is needed to fully realize and exploit their potential for augmentation in low
resource language pretraining.

1.2 Thesis Outline
In the chapters that follow, we expand on the required background knowledge and further motivate the need
for sample-efficient language pre-training. Having defined the context of our work and positioned it among
current efforts, we begin to illustrate our methodology. Next, we detail our experimental procedure, analyze
the results and finally discuss our findings and illustrate future directions.

• We begin with a short introduction to Language Modeling, starting with more traditional approaches
(e.g., n-grams, static embeddings), and moving to modern developments, with the introduction of
Attention, Transformers, and Large Language Models (LLMs) (Chapter 2).

• Next, we summarize recent efforts for efficient and cognitively plausible language modeling, aiming to
solve the issues raised by current LM training regimes (Chapter 3).

• Having set the context of our work, we describe in detail our methodology for data augmentation in low
resource training conditions using a synthetic dataset of sort stories (Chapter 4).

• We present our experimental procedures and findings in detail, and demonstrate evaluation results for
GPT-Neo decoders trained on various amounts of TinyStories data, and the effect of data augmentation
on the linguistic abilities of the LTG-BERT encoder models (Chapter 5).

• We conclude with a discussion of our results, and an illustration of promising avenues for future work
(Chapter 6).

• Details and additional results from our experiments are included in Appendices A, B, C, D .
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Chapter 2

Language Modeling

Contents
2.1 Statistical LMs – N-grams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.2 Neural LMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.1 Word Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2.2 Recurrent Language Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3 Pre-Trained LMs – Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.1 Self-Attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.3.2 Tokenization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4 Large Language Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

In this chapter, we delve into the subject of Language Models or LMs. These are models that have learned
how to assign a probability to a sequence of words, or given an incomplete sequence, assign a probability to
all possible next words. It turns out that learning to predict the next (or missing) word in a sequence is a
sufficiently complex task, thaw allows models to learn about fundamental semantic and syntactic properties
of language. These properties are expressed in the model parameters, and in the rich representations that can
be derived about a word or a sentence. Even modern Large Language Models (LLMs) that show remarkable
linguistic abilities and excel in a variety of language reasoning and understanding tasks, at their core, are
trained at predicting upcoming words from words in their neighborhood. Language modeling, is at the heart
of Natural Language Processing (NLP), as in order to succeed at a language task, some general knowledge
about the structure of language and a representation space for linguistic units are extremely helpful.

Language is also the human ability most connected with human though and intelligence. To uncover the
secrets of language acquisition, and teach machines to read, write and communicate, has been one of the
longstanding research challenges of the field of Artificial Intelligence [136].

Figure 2.0.1 illustrates the evolution of language modeling through the 20th and 21st centuries, up to today
– highlighting the drastic increase in the task solving capabilities of language models. Initially, statistical
language models were primarily used, in order to support specific tasks (e.g., information retrieval, speech
processing) in which the estimation of probability proved beneficial. With the introduction of neural LMs
(e.g., word2vec [91]), the focus moved to learning general linguistic representations, i.e., features, which where
employed to solve a limited range of typical NLP tasks, and reduced the need for manual feature engineering.
The next step was the learning of context-aware representations, with the emerging paradigm of unsupervised
pre-training on vast amounts of data, and finetuning on a limited set of labels. Models such as ELMO [103],
BERT [27] and GPT-2 [111], were applied to a broader range of NLP tasks – such as sentiment classification,
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paraphrasing, and entailment. The most recent development is the advent of Large Language Models or
LLMs [2, 16, 95] which can be considered as general purpose task solvers – giving rise to scaling laws [50, 65]
and instruction tuning and prompting methods [19, 158]. These models can solve a wide variety of real-world
tasks, and have effectively transformed modern information processing. During this evolution of language
modeling, we witness that the scope of the problems that LMs can tackle as well as their performance have
been greatly advanced. In the following sections, we dive through each of the periods of LM development,
and gain insights about the past and future of language modeling.

We begin our exploration of language modeling by first briefly talking about N-grams the simplest form of lan-
guage models (Section 2.1). Afterwards our analysis progresses to static word representations, like word2vec,
and neural language models with recurrent architectures (Section 2.2). Next, we arrive at the Transformer,
and the modern attention-based LM architectures that revolutionized the NLP field (Section 2.3). Lastly, we
introduce the current LLM landscape, and underscore potential challenges (Section 2.4).

Figure 2.0.1: Evolution of Language Models through four periods. Each period is marked by substantial
increases in the task-solving capabilities and scope of the models. Figure from [162].

2.1 Statistical LMs – N-grams

N-gram language models fall into the general category of statistical LMs [82, 58] which were some of
the earliest attempts to model language. These techniques construct a word prediction model, by rely-
ing on the Markov Assumption – the usage of only the recent history to predict the next possible word.
Given a sequence of n words, denoted as w1:n, we can compute the probability P (w1:n), using the chain
rule of probability. We note here that the term "words" could mean linguistic tokens in general, as we
shall see that modern LMs do not process words as individual units. With the chain rule of probability
we have: P (w1:n) = P (w1)P (w2|w1)...P (wn|w1:n−1) =

∏n
k=1 P (wk|w1:k−1). Calculating the probability

P (wk|, w1, ..., wk−1) however is intractable for large sequences, as both empirical and statistical estimation
methods are not applicable without making further assumptions – even when relying on a trillion word corpus
like those used by LLMs. This is a consequence of the exponential increase in the number of unique word
sequences as the number of words n in the sequence w1:n increases.

Instead of computing the probability of a word given the complete history, we can instead approximate
the past context by using a limited number of words. By taking into account only the previous word in a
sequence, we make the following assumption: P (wn|w1:n−1) ≈ P (wn|wn−1) – the probability of the current
word, depends only on the probability of the previous word. This way we formulate a bi-gram LM. This
general assumption – that the current word prediction depends only on the most recent context – is also
called the Markov Assumption. The bi-gram model is easily generalized into the tri-gram and the N-gram,
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which computes the probability by looking N − 1 words in the past. In general, the probability of a sequence
using an N-gram language model is expressed as: P (w1:n) =

∏n
k=1 P (wk|wk−1:k−N ).

To estimate the probabilities for N-gram models, we use Maximum Likelihood Estimation. Specifically, the
model parameters are computed from co-occurency counts in a large corpus, which are then normalized to
lie in the range [0, 1]. This is a frequentist approach to probability. With C(w1:n) we symbolize the number
of times the sequence w1:n occurs in the text data, and give the general equation for empirically estimating
the probabilities for an N-gram model below:

P (wn|wn−N+1:n−1) =
C(wn−N+1:n−1wn)

C(wn−N+1:n−1)

Using this simple approximation, N-grams are able to capture basic grammatical and syntactic facts about
language, and have been useful in information retrieval, and early natural language processing. However, they
often suffer from the curse of dimensionality, as it becomes increasingly difficult to estimate the probabilities
for higher order models (large N values) – since the number of probabilities that needs to be calculated grows
exponentially.

2.2 Neural LMs

Neural Language Models [7, 90] leverage Neural Networks (NNs) to estimate the probability of a sequence
of words. Common architectures include Multi Layer Perceptrons (MLPs) and Recurrent Neural Networks
(RNNs) e.g., the LSTM [49]. These methods focus on deriving dense features for words and sequences that
can then be utilized to increase performance in a variety of downstream tasks, by leveraging pre-learned
semantic information. As an example of an approach from that time, we detail in the next section the core
idea behind word embeddings, and specifically word2vec [91] – one of the most influential contributions in
modern NLP.

2.2.1 Word Embeddings

The idea of word embeddings, is build around a simple concept, called the distributional hypothesis: words
that occur in similar contexts, tend to have similar meaning. This hypothesis was formulated by linguists long
before the advent of word embeddings and Neural LMs. Vector semantics, refers to learning representations
of meaning, in some multidimensional space, that are called embeddings. These representations are learned
directly from the distribution in texts, and effectively underlay every natural language processing application
that relies on the meaning of the words. Here, we introduce static embeddings, where each word has a fixed
vector representation. In later sections, we will talk about contextual representations, such as those obtained
by a bidirectional transformer BERT [27] model.

Next, we introduce one of the most influential word embedding methods, word2vec [91]. Unlike previous
embedding approaches which were sparse, e.g., like TF-iDF [117] and frequency count based vectors, word2vec
embeddings are short and dense, with the number d of dimensions ranging from 50 to 1000 [63]. Their values
are real numbers, and the embeddings are vectors e ∈ Rd. Dense vectors in general are more effective than
sparse vectors, in almost every application. One reason for this, is their efficiency, as being dense allows them
to pack a lot more information for each used dimension. This benefits classification networks, as far fewer
parameters need to be learned and stored when working with these representations – which also combats
overfitting. However, one undesirable effect of this, is that the dimensions are not interpretable – an issue
that is present in general with modern NNs and has sparked its own research field [118].

The word2vec embeddings dispose of counting-based co-occurence methods, by training a classifier to predict
if a word is correct for a given context. The classifier weights are then used as the word’s embeddings. This
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Figure 2.2.1: T-SNE projection in two dimension, for the embeddings corresponding to some words and
phrases. The image demonstrates that words with similar meanings are grouped close together in the
representation space. The original embeddings were trained for the task of sentiment analysis, and have 60
dimensions. Figure reproduced from [63, 74].

method relies on self-supervision, avoiding any use of a human label signal during training. This is one of
the most important ideas in NLP, as it makes it possible to train on vast amounts of unlabeled text. Given
a context of n words W = (w1, w2, ..., wc, ..., wn) and a target word wc, we perform a binary classification
task, where we want either (a) to predict if the word wc is in fact correctly placed in the context (CBOW),
or (b) to predict if the context W\c is the correct context for this word (skip-gram). For skip-gram, the
real target word and context are treated as positive examples, while randomly sampled words are chosen for
negative examples, and a logistic regression classifier is trained to recognize between the two. The learned
weights of the classifier, serve as representations for the words. The model uses the dot product of the
embeddings to estimate the similarity between words. During learning, target and context words that are
similar are moved closer together, resulting in an embedding space with useful similarity properties. Later,
more advanced embedding techniques were introduced, such as fastText (using sub-word models) [13] or
GLoVE [102] embeddings (using global statistics).

Embedding spaces can capture interesting semantic relationships and interactions between words. Figure 2.2.1
demonstrates how words that have similar connotations (negative/positive/neutral) are grouped together in
the embedding space. Additionally, embeddings spaces can foster semantic relationships between vectors,
that e.g., encode similarity and word relations. One notable example is given by [89]: vector("King") -
vector("Man") + vector("Queen") ≈ vector("Queen").

2.2.2 Recurrent Language Models

We briefly introduce Recurrent Neural Networks (RNNs) that were the dominant paradigm for modelling long-
range sequences and dependencies – including language modeling – before the introduction of Transformer
models. An RNN is able to account for dependencies across time in a sequence, and can thus model the
probability P (wi|w<i) without making the Markov assumption that we observed in N-gram models. RNN
language models, have internal mechanisms that can directly capture the inherently sequential nature of
human language, and the current word prediction can effectively depend on information from hundreds of
words before. The recurrent computation taking present inside an RNN, unfolded through time is illustrated
in Figure 2.2.2. At each timestep t, a hidden state ht is responsible for preserving the contextual information
from previous steps x<t that will influence the processing of the current input xt and the production of an
output ot. Moreover, the state ht operates as a type of memory, that can be modified in complex ways.

One issue with general RNN architectures is that they are difficult to train, and learning long-term depen-
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dencies with these models is hindered by problems such as vanishing or exploding gradients [6]. This is a
result of the continuous application of matrix multiplications – proportional to the sequence length – which
can drive gradients to zero. To adress these issues, the Long Sort-Term Memory (LSTM) architecture was
introduced [49] (among others), that enables a model to decide what information to keep, by learning and
forgetting. Units with specialized functions, named gates control how information is accessed. Namely, the
LSTM makes use of the forget, add, and output gates. For a detailed description of the LSTM architecture,
we refer to [63]. RNNs are very powerful models, that can be applied to sequence labeling (POS tagging),
sequence classification (e.g., sentiment analysis) and language generation. For these uses, a special encoder-
decoder formulation may be employed, and also an attention mechanism may be used. The encoder model
produces a contextual representation ci for each token, which is then attended to be a decoder model.

Figure 2.2.2: Illustration of the recurrent computation in an RNN, unfolded through time. Figure by [32].

RNNs can be readily applied to the task of language modeling, as they can be trained to predict the next
word in a sequence given the context of the previous words. Specifically, they can model P (wi|w<i), assigning
a probability to every possible next word, and defining a distribution over the whole vocabulary. Utilizing the
chain rule of probability, this also allows them to assign a probability to a sequence: P (w1:n) =

∏
P (wi|w<i).

Previous LMs, whether N-grams or MLPs, had a restriction in the context to a specific number of words,
in contrast RNN LMs [90] can process an unlimited context. They achieve this by breaking computation to
one individual word at a time, with the hidden state ht summarizing necessary information from past words.
This allows them to theoretically capture dependencies to the start of a sequence. Figure 2.2.3 illustrates
the training of an RNN neural network. RNN LMs are trained with self-supervision to predict the next word
given past context. They use the cross-entropy loss and a one-hot encoded label signal, indicating the correct
next word according to the training data.

RNNs were overshadowed by the advantages of the Transformer architecture [137], that by introducing self-
attention, dominated performance in many NLP tasks, where traditionally state-of-the-art approaches utilized
recurrent architectures e.g., the LSTM. One of the major advantages of Transformers is that representations
can be computed in parallel allowing for faster and more efficient computation. This is in contrast to RNNs,
which are bound by their linear sequential dependency, i.e., the computation for xi needs to happen after the
computation for x<i. However, recently RNN LMs have become relevant, offering competitive performance
with comparative transformer architectures by [108, 109, 33]. These methods propose advances in the RNN
architecture, that allow parallel computation.

RNNs were also the first architectures utilized to derive contextual representations for words. In the landmark
work of ELMo [103], a deep bidirectional LSTM language model was training (BiLSTM), that in contrast
to static embeddings (e.g., word2vec) could capture the dynamic context around a word. Two LSTMs were
used, trained to predict the next word from each direction, left to right, and right to left. The representations
where combined, resulting in a richer overall word embedding. ELMo was also one of the first models used
for transfer learninig in NLP, offering substantial improvements to many tasks, and initiating the era of
pre-trained LMs, a major shift in the field.
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Figure 2.2.3: Training an RNN as a Language Model. Figure reproduced from [63].

2.3 Pre-Trained LMs – Transformers

We now delve into the Transformer – which has become the standard architecture for building LMs, and has
essentially dominated every NLP application. The original architecture by [137] is illustrated in Figure 2.3.2.
The name derives from the way transformers process the representation vector ui for each token, using a
cascade of transformations ui ∈ U → V , where the spaces have the same dimensionality d, but V will have
richer and generally more useful representations. Originally introduced for NLP [137, 27] they have become
ubiquitous in all machine learning applications, outperforming previous CNN and RNN architectures [66,
101]. The transformers, with the introduction of the self-attention mechanism, were able to achieve very
high parallelization, making them more efficient architectures for learning language, compared to RNNs.
Transformers are very effective, and can be used as foundational models, by being pre-trained on a vast
number of training data, and learning rich word representations that are leveraged for state-of-the-art perfor-
mance in a large array of downstream NLP tasks. This is the now common paradigm of first "pre-training"
and later "fine-tuning" that was sparked by the initial employment of contextual representations in ELMo
[103], and the later introduction of BERT [27]. In BERT context-aware word representations are learned by
self-supervised training on a large corpus, and they then serve as general-purpose features.

The key feature of the transformer is self-attention, which we introduce in later paragraphs. Essentially, it is
a way to build contextual representations of a token by aggregating the information of surrounding tokens.
This form of communication happens at each layer, using as inputs the representations from the previous
layer, and can aid the model in learning the relations of tokens across long spans of text. Over the application
of many layers, richer and more high-level representations are developed. Below we give a brief description
of the different types of transformer architectures and their strengths and weaknesses.

Encoder-only Models These models excel in tasks that require understanding of the input, such as
sentence classification, and named entity recognition. The use of context-sensitive representations – employing
both the left and the right context of a word – gives them the ability to extract meaningful information
about a sequence. During training, words are randomly replaced with a special [MASK] token, and need
to be predicted using the surrounding context, in what is known as the cloze task. Encoder transformers
learn the probability distribution P (wi|W\i), where W\i = (w1, ..., wi−1, wi+1, ..., wn). These models remain
state-of-the-art in Natural Language Understanding (NLU) tasks such as those included in (Super)GLUE
[138, 140]. Example models are BERT [27], RoBERTa [80], and DeBERTa [47]. An illustration of the BERT
architecture is given in Figure 2.3.1.

Decoder-only Models This family of models demonstrates excellent performance in generative tasks,
such as text generation. The models learn to predict words in a causal or autoregressive way, similar to the

40



2.3. Pre-Trained LMs – Transformers

Figure 2.3.1: Illustration of the BERT Architecture. This figure demonstrates the first "pre-training" and
later "fine-tuning" paradigm. During pre-training, some tokens are masked and predicted using the context
of their surroundings. A special Next Sentence Prediction (NSP) objective is also employed. The
contextualized representations are leveraged during finetuning on specific tasks (e.g., MNLI [138], Named
Entity Recognition – NER, and SQuAD [113]). Figure reproduced from [27].

training of RNNs – learning the probability distribution P (wi|w<i). The term "autoregressive" stems from
the way these models generate text one token at the time, which is then fed back to the model as the next
input, in order to generate the following token. They are able to perform all the same tasks as encoder-only
transformers, but might show a small decrease in performance. Additionally, this kind of architecture powers
the modern LLM revolution, with the development of autoregressive models such as GPT-4 [95] and Claude
[2] that dominate the NLP scene and fundamentally transform industry. Example models include the GPT
[15, 110] and Llama [30] families of models.

Encoder-Decoder models These models are also known as sequence-to-sequence (seq2seq) models, and
are good for generative tasks that map an input to an output sequence, e.g., translation and summarization.
Rich contextualized representations are computed for the input sequence by the encoder module, which
are then passed to the decoder part of the model. The decoder leverages these representations and learns
to construct the output sequence by autoregressive next word prediction. The advantage of this type of
architecture is that it can combine the benefits of both encoders – that can understand a sequence and
extract information, and decoders – that can employ this understanding, to generate an output sequence.
The decoder can use a different language or modality than the encoder, and the input and output in general
do not have to be similar – e.g., they can have different lengths, as in summarization. Pre-training can be done
with encoder or decoder objectives, but usually is significantly more complex. The encoder-decoder model
learns the probability distribution P (yi|Encoder(x), y<i) where x and y are the input and output sequences.
Example architectures include the original transformer by [137], BART [73], T5 [112] and ELECTRA [23].

2.3.1 Self-Attention

We now introduce the mechanism of self-attention that sits at the heart of transformer models. Static word
embeddings in word2vec [90] can help LMs understand the semantic properties of words and relate them to
one another. However, they do not account for the context of words, as a word might have multiple senses, and
its meaning might change dramatically with the surrounding words. The attention layer in the transformer
is a mechanism that helps model compute contextual representations of words, by integrating information
from relevant nearby tokens. By stacking multiple attention layers, we can build incrementally more rich
and meaningful representations. Each layer uses information from the previous layer, and information from
all the other tokens, to derive the representation for the next layer. A visualization of the way that tokens
attend with each other in the transformer is illustrated in Figure 2.3.3.

41



Chapter 2. Language Modeling

We describe formally the attention mechanism. The attention head of the transformer, allows for the repre-
sentation of three distinct roles for each input embedding xi during the attention process. 1 The element xi

can be the one currently considered whose representation we are calculating by comparing it to other inputs.
This role is referred as query. Intuitively, the current token has to define what information from the other
tokens is relevant to it. 2 It can also act as part of the context, denoted as key, when it is being compared
to the current input to assess its similarity to it. We can think of this role as the token demonstrating what
information it has to offer. 3 Lastly, it can act as a value, when it gets weighted and summed in order
to form the next representation of the current element, transmitting in this process the information it con-
tains. These roles are captured with three matrix transformations applied to the representation xi, namely:
WQ,WK ,WV . By matrix multiplication, the input xi projected to a different representation space accord-
ing to the role it takes as a query, key or value. To enable parallelization, we compute these representations
for all vectors xi ∈ X at the same time, forming the following equations:

Q = XWQ,K = XWK ,v = XWV

Where Q,W,K contain the query, key, and value representations for all the vectors of the input sequence
X in a layer of the transformer. To compute the similarity between two elements xi,xj ∈ X we use the
dot product between the query matrix Q and key matrix K. This product is also scaled by the dimension
of the representations d, to avoid numerical instability issues. We compute now the attention product for a
token xi, by summing the values of the other elements xj weighted by the similarity of xi’s query and the
other tokens key vector representations. This can be done succinctly by calculating the product QKT . These
scores are scaled and a Softmax is applied to produce the final attention score. which is then multiplied with
the matrix V – the collection of all the value vectors, to get a representation for each token. The equation
of the matrix A for the resulting representations of tokens in X is shown below:

A = Softmax(
QKT

√
d

)V

In practice, the attention between the tokens is restricted, according to whether we are training an encoder
or decoder type transformer LM. For encoders, all the tokens are free to attend to all others, but for decoders
each token only attends to previous tokens. To enhance the representation abilities of transformer models,
multi-headed attention is used, where multiple attention heads are computed in parallel, and the output
of all the heads is concatenated to form the final representation. Intuitively, we can think that each head
will specialize towards a specific function. Lastly, a matrix WO is used to map the concatenated vector of
all the heads, into a representation with the correct shape for the next layer. One important observation
is that the complexity of the attention layer is O(N2) where N is the sequence length, thus attention is a
computationally expensive process. This has resulted in many efforts to decrease the required computation,
which are summarized in [131].

In Figure 2.3.2 we see the full architecture of the transformer from [137], which is an encoder-decoder originally
implement for machine translation. We notice that apart from the Multi-Head Self-Attention block that we
described in the previous paragraphs, some other critical components are included. LayerNorms are employed
to normalize values and keep them in the required range for learning, and residual connections allow the free
passing of gradients and information from higher to lower levels – avoiding issues of vanishing gradients. An
important observation is that feed-forward layers are at the heart of the computation of the transformer. We
can think of the transformer architecture as a machine that "thinks" using the feed-forward layers, doing
the hard computation, and then this information is disseminated and shared across tokens in the Multi-Head
Self-Attention modules. Lastly, information about the position of tokens is encoded in the transformer by
the summation of content and positional vectors. In the original transformer these were a combination of
sine and cosine functions at different frequencies, but were later proven to be ineffective, and more advanced
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techniques have since emerged [46, 130]. Describing the full complexities and intricacies of the transformer
architecture is outside the scope of this thesis, and we refer to comprehensive resources, such as [63].

Figure 2.3.2: Illustration of the standard Transformer Architecture [137]. Figure from [131]

2.3.2 Tokenization

We now focus on tokenization, as it is a process at the core of modern LM pre-training, that is often overlooked
and treated as an implementation detail. Modern tokenization focuses on creating efficient subwords, i.e.,
parts of words that will be used at the input and output representation layers of the LM. Each subword
corresponds to an integer that indexes into an Embedding table (i.e., a row of a dense matrix W ) to produce the
representation for this subword. This embedding is then inserted into the LM for computation. Conversely,
when the LM makes a prediction it outputs a series of sub-word integers which are then converted back into
a sequence of words.

Tokenization aims to solve a simple problem that modern LMs face – how best to represent linguistic input
for optimal processing. Two extreme ends are either word-level representations, or character-level representa-
tions. Both of them suffer from their own set of issues. When dealing with characters, we have the benefit of
a very small embedding matrix W and thus a reduction in model parameters. Moreover, the relations between
words are accurately represented, as no lexical information is lost. The major issue is that this exercises a
strong limit on the effective context of the model, as characters easily take up the whole sequence length and
are not information dense. On the other end, whole word representations result in a very large embedding
matrix and a waste of model parameters, and dealing with out-of-vocabulary (OOV) words becomes prob-
lematic. To solve these issues sub-word level tokenization emerged – offering a balance between context
length, embedding matrix size, and unkwown word representation. Some recent approaches also focus on
byte-level representations, trying to eliminate the need for tokenization [157].

We also note that tokenization is the cause for many of the issues that current LLMs face, such as the
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Figure 2.3.3: Attention visualization – words are related according to the structure of the sentence. For
example, "law" and "application" strongly relate to nearby words, as they are the central words in their
context. Figure reproduced from [137].

inability to spell words correctly, count the letters in a word, reverse a string, and also issues with non-
English languages. For an interesting study into the possible effects of tokenization that can cause extreme
model performance, we point to this blog post 1. Lastly, we give an example of a tokenization scheme in
Figure 2.3.4 – utilizing Tiktokenizer 2.

Figure 2.3.4: Illustration of tokenization using a sample of the TinyStories data [31], and the Tiktokenizer –
an online playground for OpenAI tokenizers. We used the GPT-4 tokenizer.

1https://www.lesswrong.com/posts/aPeJE8bSo6rAFoLqg/solidgoldmagikarp-plus-prompt-generation
2https://tiktokenizer.vercel.app/
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2.4 Large Language Models
Another advantage of the transformer architecture is the so-called scaling hypothesis, where simply increasing
a model’s size, training data, and compute indefinitely can lead to more gains in performance. Indeed, many
researchers have attempted to map the optimal ways in which to increase and tune these crucial parameters
– discovering interesting scaling laws [65, 50], and these efforts have led the community to create models with
trillions of training tokens and huge model parameter counts, e.g., the recently introduced Llamma 3 models
[30]. An illustration of the relationship between model performance and these scaling variables is illustrated
in Figure 2.4.1. These advances led to the era of Large Language Models (LLMs), such as Claude Sonnet [2]
and GPT-4 [95], that are able to solve various real-world tasks. LLMs have shown remarkable understanding
and reasoning abilities [16, 148, 149], many of which emerge only at very large scales – often referred to as
emergent abilities. This has led to some researchers deeming them as indications of General AI [17]. For
a recent review of LLMs we point to these studies [92, 107, 93]. LLM’s have revolutionized the way that
humans interact with and utilize AI models, disrupting virtually every domain of business and intellectual
labor. The major approach to interfacing with these models is by the use of prompting [20].

Figure 2.4.1: The performance on Language Modeling (measured by the test loss) improves smoothly, as we
increase the model size, dataset size, and amount of compute. To achieve optimal performance, all three
factors must be scaled up simultaneously. The empirical performance of LMs relates to each parameter
with a power-law – if we apply no constraints to the other two. Figure reproduced from [65].

Issues with current LLMs However, we note that LLMs also come with significant shortcomings. One
emerging issue, recognized by many researchers [128, 48, 76], is the huge energy demands for LLM training,
due to the massive amount of compute and vast GPU clusters required for their development. This raises
concerns about the environmental impact of LLMs as, for example, there are increased CO2 emissions. One
related issue is that of accessibility as training and operating these models requires high-end computational
infrastructures and resources, making research and deployment inaccessible to small academic groups and
industry organizations. This keeps current AI centralized only to a select few tech "giants" and results in
a lack of democracy [114]. Additionally, LLMs are susceptible to attacks, putting the privacy of users at
risk – which is especially important with the adoption of AI in everyday workflows by a general audience
of all ages [18]. Lastly, LLMs diverge from the way humans process and learn language, and their data
demands have been identified as one of the most important ways in which they differ from human learning
constraints [77, 141]. Due to this, these models cannot inform psycholinguistic research, and can’t be used to
learn more about the human language acquisition process. This list of concerns about LLMs is by no means
exhaustive, but highlights some of the issues of the current LM training regimes. This section motivates the
introduction of the next chapter on data-efficient and cognitively inspired LMs, that aim to address some of
the aforementioned issues.
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In this chapter, we summarize efforts in sample-efficient language modeling that emerged as a response to the
trend of continuously increasing model parameters and data sizes in LM training. This direction of research
aims to mitigate the diverse range of issues raised by the modern LLM training regime, outlined previously
in the introduction – Chapter 1, and our survey of language modeling – Section 2.4. We begin by introducing
efficient LMs, focusing on investigations of sample-efficiency and reviewing research in computational linguis-
tics that probes the relationship between the size of training data and model performance (Section 3.1). We
then present the BabyLM Challenge [21, 145, 146] – as it has been one of the major community-led efforts
for sample-efficient and data constraint language modeling (Section 3.2). We give a brief overview of the
different techniques employed as part of the challenge, and touch more upon data augmentation methods,
as they form the backbone of our proposed methodology – explained in Section 4. Finally, we delve into
Small Language Models or SLMs – as opposed to LLMs – and analyze a recent work on story generation
demonstrated by TinyStories [31], that inspired our work (Section 3.3).

3.1 Sample-Efficient Language Modeling
The term "efficient LMs" can have many meanings, depending on the parameter that is being optimized to
achieve efficiency. One line of work aims to reduce the computational demands of the Transformer, the base of
most modern LMs, as the attention mechanism is an expensive operation with a complexity of O(N2) where
N is the sequence length. These approaches propose new modifications to the Transformer architecture, and
we point to a recent survey by [131] for more details. Other areas of improvement include reducing the cost
of finetuning and inference (e.g., LoRA [52]) or the introduction of more efficient pre-training techniques
(e.g., mixed precision [88]). There is also work on creating LMs with fewer parameters (e.g., by knowledge
distillation [121, 59]). Lastly, a range of works seek to optimize the training process by limiting the available
compute, time, or budget. Notable approaches include MosaicBERT [105], and BERT models trained on a
24-hour budget [37, 57] using lower grade servers or consumer GPUs. These methods utilize architectural
modifications, more efficient training objectives, and hyperparameter tuning.
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However, none of the approaches detailed so far focus on training LMs with limitations on the available data,
and this area of research remains relatively unexplored. Recently, some approaches emerged towards this
direction, with the introduction of LTG-BERT [120] – an architecture optimized for low-data regimes, and
community efforts such as the MiniPile Challenge [64]. In a relevant line of work, there has been research
in discovering the relationship between LM capabilities and the size of their training data. We detail these
efforts and how they connect to human linguistic research in the next paragraph.

Work done in BabyBERTa [54] modifies the RoBERTa [80] architecture to never predict un-masked tokens,
and trains a 5M parameter model in a 5M word corpus. They show that this modification allows their
model to acquire grammatical knowledge comparable to the original RoBERTa model. The authors also
investigate the effect of data domain on performance, and underscore the opportunity that LMs possess
for psycholinguistic research. In the study of [144], they evaluate the ability of RoBERTa models to learn
linguistic features with small quantities of data, ranging from 1M to 1B words. They find that while linguistic
representation is acquired early, preference comes later. In [160], the authors investigate the need for billions
of training data, by evaluating different LM abilities as the available data ranges from 1M to 30B words. They
find that 10M to 100M words are enough to perform well on most grammatical and semantic evaluations,
but commonsense reasoning and understanding require a larger amount of data. Inverse scaling laws were
tested in [85], finding that smaller LMs can outperform larger ones in specific problems, and scaling might
not be enough for solving some tasks. Early work by [97] evaluated grammar acquisition from limited input
data for LSTM models. A survey by [141] outlines the possibilities of using LMs to learn more about the
human language acquisition process. The steps towards more human-like linguistic generalization in LMs are
discussed in [77]. Lastly, in Figure 3.1.1 we include results from the experiments of [160], that illustrate how
model abilities scale with training data.

Figure 3.1.1: Effect of the size pre-training data on various linguistic benchmarks and probing methods.
Classifier and MDL probing test models’ ability to encode linguistic features, BLiMP [143] evaluates
grammatical knowledge, SuperGLUE [138, 140] tests natural language understanding, and LAMA [104]
evaluates factual knowledge. Image reproduced from [160].

3.2 The BabyLM Challenge
The BabyLM Challenge encourages language model pre-training with human-like data limitations. Specifi-
cally, the challenge includes two text tracks: 1 the Strict-Small track, with a 10M word budget, and 2
the Strict track, with a 100M word budget. The creation of the challenge was motivated by the shortcom-
ings of the current LM training landscape – such as the vast needs in computation and data – as well as a
desire to provide wide access to LM research, develop performance advances with small datasets that can
be scaled up, and enable collaboration between the cognitive science, psycholinguistic, and AI communities.
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The first iteration of the challenge has already been conducted, and our efforts in this thesis are part of the
second iteration. Below, we summarize some key findings of the first iteration that provide useful insights
and guidance for future endeavors in data constrained language modeling.

Figure 3.2.1 includes a brief overview of the results of the first iteration of the challenge. Some initial
observations are that encoder architectures seem to be in general outperforming decoder architectures. In-
tuitively, we can understand this, as the benchmarks of the BabyLM challenge probe the understanding of
the models (e.g., grammatical, linguistic understanding), in which encoder models excel. This graph also
informs us about the best types of approach to the tracks of the challenge, with architectural modifications
and data augmentation being among the best ones. Moreover, the difference in performance between the
Strict and Strict-Small tracks was not significantly large. This is surprising, given that the training data
has one magnitude of difference between the two scenarios. Another important high-level conclusion is that
many models achieved results close to the Llama 2 [135] model – trained on vastly more data – and to human
performance, for grammatical and language understanding tasks. This suggests that even with human-like
constraints, surpassing human performance will be possible in the future for these models.

The top performing submissions [119, 38] were based on the LTG-BERT architecture [120] – a BERT model
optimized for a corpus of 100M words, combining many architectural improvements in the Transformer. We
can conclude that architecture plays an important role. We note however, that these models were trained
with huge amounts of compute (i.e., same FLOPs as BERT [27]), and the scale of available compute is
another parameter that could be optimized in the future of the competition. A vastly popular approach was
curriculum learning, which did not tend to produce good results – with the exception of the Contextualizer
[153]. Intuitively, sorting the model’s training steps based on some function of data complexity is a valid
approach, as it is commonly applied in educational scenarios and is part of human concept learning. A
compilation of negative results for curriculum learning was demonstrated by [83] whose work comprehensively
explored a large range of strategies in this domain. They found no general improvement from any of the
tested strategies. For the full taxonomy of employed methods and their benefits and drawbacks, we refer to
the challenge proceedings [146]. Next, we explain more extensively the data augmentation methods proposed
for the challenge, since they are more relevant to our methodology in this thesis.

Figure 3.2.1: Summary of model architectures and approaches employed in the BabyLM Challenge. The
x-axis indicates the category of methodology that the approach falls is, and the y-axis denotes the model
performance (average score across benchmarks). On the side, the model architectures chosen by the
participants are listed. Figure reproduced from [146].
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3.2.1 Data Augmentation

We start with a general summary of data augmentation methods using language models. LLMs such as
the family of GPT models [15, 16] have increasingly been used for data augmentation across research fields.
Recent studies include work by [25] who introduced ChatGPT as a means of generating realistic text by
leveraging a combination of real and synthetic data. In a similar approach, [155] leveraged GPT-3 [15] to
blend synthetic and original text samples for more robust training data. Moreover, a variety of transformer
architectures including decoder (GPT-2 [16]), encoder (BERT [27]) and encoder-decoder models (BART
[73]) were utilized for data augmentation in the work of [71]. Decoder models have additionally been used
to generate data for training bidirectional encoder models, achieving notable gains in zero-shot learning [87].
Work done by [62] uses modestly sized models, such as GPT-2, to distill a high-quality dataset and model
for text summarization. Interestingly, the models used for creating the synthetic data cannot perform the
summarization task. For a survey of data augmentation methods in NLP we point to [34].

We now move on to approaches for data augmentation introduced as part of the BabyLM challenge. We
begin by the successful method of the Contextulalizer [153], which achieved the best performance in one
of the 100M word text tracks of last year. In this approach, additional training samples are created by
combining text chunks from different contexts and domains. The main idea is that during conventional
training, the documents contained in a batch are fixed, leading to the model to occasionally learn spurious
correlations. Intuitively, a model should be able to predict a word given its relevant context, independently
of other irrelevant words in the batch. The training data is first organized according to age of acquisition and
reading difficulty metrics, and a curriculum learning approach is employed. The model is trained on a final
dataset of 4B words, derived by augmenting the initial 100M corpus, and achieves performance comparable
to its counterpart pretrained on significantly larger amounts of data. Specifically, the model performs on par
with RoBERTa and BERT on BLiMP. The authors use the architecture and size of RoBERTa base [80]. An
overview of the approach is included in Figure 3.2.2.

Figure 3.2.2: The approach used in the Contextualized paper. Here, the concept is illustrated for an
example of four school subjects (Math, History, Politics, Physics). We explain briefly the various methods
of combining data from each domain. Clean padding (2) adds [PAD] tokens in each batch, and doesn’t mix
domains. Noisy padding (3), just fills the batch with data from the next domain. Finally, the
Contextualizer approach (4) shuffles around the noisy padding (4a) and for the best performance, (4b)
shuffles the original inputs at every iteration to form the next batch – joining contexts in diverse positions.
Figure reproduced from [153].
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A second approach that uses data augmentation in the challenge is ChapGPT [61]. In this work, the
authors explore the merits of targeted data augmentation, where regex patterns are leveraged to extract
common phrases from (Super)GLUE tasks. These patterns are then harnessed to create follow-up questions
by utilizing pre-defined templates. These formulations were created with the intend of improving performance
on specific (Super)GLUE tasks, such as QA and sentiment classification. Retrieval-based patterns were used
to extract facts and construct questions and answers, e.g., using Simple Wikipedia articles to augment the data
with questions like "Where is <name> from?", where the corresponding answer was extracted with regex.
Additionally, emotionally charged words (e.g., great, terrific) were annotated with a special sentiment token
and label, to aid emotion recognition. This technique provided some benefits, surpassing the performance of
the challenge baselines. The authors use the DeBERTa architecture [47].

Lastly, Baby’s CoThought [161] uses an LLM (GPT-3.5-Turbo) to reformat sentences with no semantic
relation into coherent paragraphs. This approach enables the formation of better training examples for LMs,
improving performance on grammatical understanding (BLiMP). We note that this method utilizes an LLM
and thus falls outside the Strict and Strict-Small restrictions of the challenge. However, it improves
sample efficiency and provides information about which data is suitable for SLM supervision. The LLM acts
as a "teacher" using Chain of Thought (CoT) [147] to reformat the training data and enrich learning for the
"student" SLM. Essentially, for each collection of sentences the LLM picks an NLU task type and then creates
a set of plans to format the sentences into a paragraph. An automatic scoring mechanism (LLM-based) is
employed to select the best plan. Finally, a paragraph is generated for the specific NLU task, along with the
corresponding label. The paragraph and plan are used to augment the pre-training corpus. The labels are
discarded, but this "taskification" helps create a coherent narrative. The authors train the LM like RoBERTa
[80] – outperforming the original model on some of the benchmarks. Figure 3.2.3 illustrates this approach.

Figure 3.2.3: Overview of the approach applied in Baby’s CoThought. Natural Language Understanding
(NLU) examples are generated from unrelated sentences in the corpus using the aid of an LLM and CoT
prompting. The data is formulated in a [reason] + [example] format, and a plan created by the LLM along
with the example paragraph are used for augmentation of the pre-training corpus. Figure from [161].
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3.3 Small Language Models
A line of work related to sample efficiency is recent investigation on the performance of Small Language
Models (SLMs). We note here that, as illustrated by the findings of the BabyLM challenge, model size
does not necessarily need to be scaled down when models are training on considerably limited data (≤100M
words). For example, the LTG-BERT [120] architecture has the same number of parameters as BERT [27]
and many approaches used the RoBERTa model [80] with ∼ 125M parameters. Here we detail work on
SLMs, that is distinct from the BabyLM challenge. Early work in [122] challenged the prevailing notion
that tremendous model sizes are necessary for increased performance, showing that few-shot performance on
SuperGLUE [140] close to that of GPT-3 can be achieved by models with three orders of magnitudes less
parameters. This finding is supported by work in sequential recommendation systems, that utilizes SLMs
for task-specific applications [154]. Additionally, [10] employ a pre-trained frozen LLM for the encoding of
prompt tokens, that can aid a smaller LM in efficient and effective response generation. For a recent survey
of SLMs we point to [94]. Next, we introduce the work of TinyStories that is one of the main influences of
our methodology, described in Chapter 4.

The seminal work of TinyStories [31] showed that SLMs (e.g., ∼33M parameters) with the GPT-Neo [12]
architecture can achieve impressive generative abilities. Specifically, these models are able to generate story
continuations that are of both high quality and novelty. The authors measure generation quality by prompt-
ing an LLM (GPT-4 [95]) and asking it to score generations in terms of Grammar, Creativity, and Consistency
with the story’s beginning and plot. We also adopt this evaluation procedure for our own models in Sec-
tion 5.2.2. Additionally, the generated stories were shown to be distinct from the training set of the models.

The core idea responsible for the success of the method, is the creation of a synthetic training dataset, using
GPT-3.5 and GPT-4, that preserves all essential elements of language, but has limited vocabulary and simple
plots and themes. This is in contrast to the diverse LLM training datasets, whose complexity might confuse
models, degrading generation quality. The LMs learned to generate grammatically correct and creative text,
demonstrating abilities superior to those of models trained with vastly more parameters. An illustration of
this comparison is provided in Figure 3.3.1. The findings of TinyStories have also inspired subsequent work
on a larger scale. Notably, phi-1 and phi-1.5 are 1.3B parameter models [75, 43] trained on a 7B dataset of
textbook-quality, cementing the notion that with respect to data, quality is more important than quantity.
Specifically, they achieve state-of-the-art performance on Python coding tasks, and compete with models
that are 5x larger, and are trained on two orders of magnitude more data.

Figure 3.3.1: For a prompt corresponding to the beginning of a story, we compare completions for an 28M
parameter model trained on TinyStories and GPT2-XL with 1.5B parameters. We see that the larger
model generates an essentially nonsensical response, while the 28M model manages to complete the story in
a grammatical and coherent way. Figure reproduced from [31].

In the next chapter (Chapter 4), we introduce our methodology that is based on data augmentation using
the TinyStories dataset [31], and is published as part of the second iteration of the BabyLM Challenge [21].
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In this chapter, we formally introduce our methodology for data augmentation using synthetic story data
[132]. Our efforts focus on sample-efficient language pre-training in a constrained data setting, mimick-
ing the linguistic environments that children experience during development. This work follows the set-
ting of the BabyLM Challenge [141, 21, 146]1 which consists of two experimental text tracks: 1 the
Strict-Small track, with a budget of 10M words, and 2 the Strict track with a budget of 100M words.
We refer to these specific scenarios throughout the following sections, conducting a separate investigation
with different training configurations for each one independently.

This framework is also described in our paper [132] published as part of the 2nd iteration of the BabyLM
challenge, the shared task at CoNLL 2024. Our work is titled: "BERTtime Stories: Investigating the Role of

1https://babylm.github.io/
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Synthetic Story Data in Language Pre-training". To support research in the area of data constraint language
modeling, we publicly release our implementation and models 2.

Throughout the following sections, we thoroughly explain our methodology, starting from the employed
datasets (Section 4.2), expanding on the data generation process (Section 4.3), the evaluation procedures
used to assess the performance of our models (Section 4.4), and finally a description of all the necessary
Language Model (LM) components of our methodology (Section 4.5), devling into the model architectures,
the finetuning process, the sampling methods used to generate data, and Masked Language Model (MLM)
zero-shot scoring techniques.

4.1 Overview

Our research draws inspiration from recent developments in Small Language Models (SLMs) for text gener-
ation, as demonstrated in [31]. In this seminal work, the authors introduced TinyStories, a dataset of sort
stories, with simple language and vocabulary, which is in the level of understanding of 3-4 year old children.
By training GPT-Neo [12] decoder transformer models on this dataset, and prompting them with a story’s
beginning, they were able to produce high quality generations.

Specifically, the generations were evaluated in terms of grammar, coherence, and consistency with the story’s
plot and beginning, and were demonstrated to be novel with respect to the training set of the models.
We hypothesize that harnessing the generative abilities of SLMs trained on TinyStories for high quality
data augmentation of a pre-training corpus, would allow models trained on it to experience new linguistic
contexts and syntactic variations. This would in turn improve language understanding, compared to using the
initial data alone. To test our hypothesis, initially we extend work by [31], investigating the generative abilities
of decoder transformer GPT-Neo models trained on small subsets of the TinyStories dataset. The decoders
are then adapted for the augmentation of a pre-training corpus, on which we train encoder transformer
models and evaluate their linguistic abilities. Our approach is illustrated in Figure 4.1.1. Below, we describe
in more detail each of the steps of our methodology.

Data Generation using TinyStories In order to conduct our experiments, we need to adapt the TinyS-
tories dataset to our low resource scenarios, as the size of the original dataset (approx. 440M words) ex-
ceeds the challenge limits for the Strict-Small (10M) and Strict (100M) tracks. For this reason, first
we create subsets of TinyStories, varying the amount of available data. Specifically, we use subsets of
{5, 10, 25, 50, 75, 100}M words. We then leverage the subsets to train GPT-Neo models and assess their gen-
erative and linguistic capabilities as a function of data size, keeping the model architecture and all other
training conditions constant. Our exploration of generative performance complements the original study,
which examines the impact of adjusting the depth and size of the model architectures. Our results show that
even with limited data of ≤ 100M words, GPT-Neo models can develop remarkable grammatical comprehen-
sion and produce stories of notable quality and variety, comparable to those generated by models trained on
the entire dataset.

Data Augmentation for Encoder Training We next concentrate our efforts in measuring the effect
of data augmentation with synthetic story data in language pretraining. For each of the Strict and
Strict-Small scenarios, we select a TinyStories subset – denoted as Dtiny, and employ it to train a GPT-
Neo decoder model. For each story in the training set Dtiny, we use the decoder to generate alternative
completions to the story’s beginning. This way, we create a dataset of synthetic stories – Dgen.

In order to measure the effect that Dgen has on the linguistic proficiency of pretrained language models,
we train an encoder-transformer model on a diverse corpus, and compare performance with and without
the use of generated data. To create the corpus used for training the encoder, we also utilize a subset of
the BabyLM dataset (Dbaby) [145] – a diverse set of texts with an emphasis on spoken language. Finally,

2https://github.com/nikitas-theo/BERTtimeStories
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a combined corpus is created, comprising the concatenation of three datasets: 1 the TinyStories subset
used to train the GPT-Neo model (Dtiny), 2 the data generated by the decoder (Dgen), 3 a subset of the
BabyLM dataset (Dbaby). Formally, the combined dataset is constructed as Dcomb = (Dtiny,Dbaby,Dgen).
We train encoder transformer models on Dcomb and measure their grammatical proficiency, world knowledge,
and general language understanding. For the encoder, we use the LTG-BERT [120] architecture, which has
been optimized for small data regimes.

Decoder

Encoder

One day, a little boy named Tim went to 
the park. He saw a big tiger. The tiger
was not mean, but very easy to play 
with. Tim and the tiger played all day. 
They had lots of fun. Then, something 
unexpected happened. The tiger 
started to shake. Tim was scared. He 
did not know what was going on. But 
then, the tiger turned into a nice ... 

*CHI:    Eve hand pocket.
*MOT:  oh your hand's in your pocket.
*CHI:    Eve puzzle.
*MOT:  that's your puzzle.
*CHI:    Mommy find Eve puzzle.
*MOT:  want me to find the rest of it.
*CHI:    yeah.
*MOT:  alright.
*MOT:  is it in the toy box?

was very nice. Tim wanted to play with 
the tiger. He said, "Hi, tiger! Let's play!" 
The tiger did not say anything. Tim was 
sad. He wanted to find a way to make 
the tiger happy. Tim had an idea. He 
found a ball and threw it. The tiger saw 
the ball and started to play ...

 

One day, a little boy named Tim went to 
the park. He saw a big tiger. The tiger

+

...

Figure 4.1.1: Illustration of our proposed methodology. We leverage a subset of the TinyStories dataset
(Dtiny) from [31] to train a decoder transformer for data augmentation. Short stories from Dtiny are used to
prompt the decoder, which then generates an alternate completion to form a new dataset (Dgen). Each
story (green) is partially truncated and provided as a prompt (yellow), with the model producing an
alternate completion (blue). We further enhance the two datasets with a portion of the BabyLM dataset
(Dbaby), provided by [21], and train an encoder transformer on the combined data. Finally, we assess the
linguistic proficiency of the encoder using the challenge benchmarks. Figure adapted from [132].

4.2 Datasets

For our work, we utilize two datasets: the BabyLM dataset – Dbaby, a diverse set of texts with an emphasis
on spoken language, and the TinyStories dataset – Dtiny, a colection of sort stories with simple language.
We explain in detail the contents and properties of these datasets in the following paragraphs.

4.2.1 BabyLM Dataset – Dbaby

The BabyLM Dataset (Dbaby) was introduced for the purposes of the BabyLM Challenge [145, 21, 146],
to be a developmentally plausible pre-training corpus for language modeling. Thus, it aims to mimic the
linguistic environment that children experience while learning to speak. It contains a high proportion of
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spoken language, since most input that children receive is spoken. It is also limited in its size, being under
100M words. This second restriction is motivated from the fact that children are exposed to 2M-7M words
per year [42], resulting in no more than 100M words of linguistic input by 13 years of age. Two versions of
the dataset were released, corresponding to the two experimental tracks of the challenge: a 10M word dataset
for the Strict-Small track, and a 100M word dataset for the Strict track. We describe the structure of
the datasets in Table 4.2.1.

Dataset Domain # Words
Strict-Small Strict

CHILDES [81] Child-directed speech 2.84M 28.90M
British National Corpus (BNC), dialogue portion 1 Dialogue 0.93M 7.76M
Project Gutenberg (children’s stories) [8] Written English 2.54M 26.37M
OpenSubtitles [78] Movie subtitles 2.04M 19.96M
Simple Wikipedia 2 Written Simple English 1.45M 14.67M
Switchboard Dialog Act Corpus [127] Dialogue 0.15M 1.34M

Total 9.95M 99.01M

Table 4.2.1: Contents of the BabyLM datasets for the Strict and Strict-Small tracks, including the
domain and word counts. 1http://www.natcorp.ox.ac.uk/, 2https://dumps.wikimedia.org/simplewiki/20241001/.

The BabyLM dataset comprises 6 diverse datasets, we briefly explain their scope and contents below:

• CHILDES: The Child Language Data Exchange System, is a multilingual dataset, featuring tran-
scriptions of adult-child interactions from various researchers, conducted in different environments:
from controlled laboratory settings, to at-home conversations. Specifically, we use a further processed
version of the dataset, released by [53] that contains interactions exclusively with children who speak
American English and have an age from 0 to 6 years.

• British National Corpus (BNC), dialogue portion: the BNC is a highly curated, publicly avail-
able monolingual English corpus, made to accurately represent 20th century English. We use the
transcribed speech part of the corpus, which corresponds to 10%, and contains a variety of spoken
language, including radio shows, phone calls and business meetings.

• Project Gutenberg (children’s stories): This dataset was compiled manually, and consists of
handpicked children’s stories from the publicly available Project Gutenberg [39], suitable for young
audiences. In the original work, the stories were used for a multimodal interactive story creation
system, implemented as a collaboration between humans and models.

• OpenSubtitles: this dataset consists of publicly available subtitles from TV and movies, featuring a
collection of parallel corpora. For our experiments we make use only of the English portion.

• Simple Wikipedia: a simple English language version of Wikipedia, written in a language easy to
understand, while still being natural and grammatically correct. The articles feature shorter sentences
and easier words and grammar, compared to the standard English Wikipedia.

• Switchboard Dialog Act Corpus: a collection of transcribed speech, taken from telephone conver-
sations between strangers. The participants had an open-ended discussion about a topic chosen from
an automatically generated list.
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4.2.2 TinyStories Dataset – Dtiny

The TinyStories dataset (Dtiny), introduced in [31], is a synthetic dataset, consisting of a collection of short
stories, constructed by prompting GPT3.5 and GPT-4 [95]. The dataset was created to preserve all the
essential aspects of natural language, such as grammar, facts, and reasoning, but limited in scope and variety.
The dataset features sort stories that are 2-3 paragraphs long with a reduced vocabulary, and simple plots
and themes. Overall, the dataset was created to be on the level of understanding of 3-4 year old children.

Initially, the dataset was employed by the authors to enable Small Language Models (SLMs) with the GPT-
Neo [12] architecture, to generate text of high quality and novelty. The reduced breadth and complexity
of the dataset, enabled SLMs to produce fluent and consistent stories, outperforming models with vastly
more parameters. The first version of the dataset (V1), generated by both GPT-3.5 and GPT-4, contained
approximately 373M words. Later, a second version of higher quality was released (V2), containing around
440M words, and generated solely by GPT-4. For our experiments, we use only the second version of the
dataset – 440M (V2), but we occasionally report results for the model trained by [31] on the initial version
of 373M words (V1). An example of a story from the dataset is included in Table 4.2.2.

Once upon a time, there was a reliable otter named Ollie. He lived in a river with his family. They
all loved to play and swim together. One day, Ollie’s mom said, "Ollie, hurry and get some fish for
dinner!" Ollie swam fast to catch fish. He saw his friend, the duck. "Hi, Ollie!" said the duck. "Hi,
duck!" said Ollie. "I need to hurry and catch fish for my family." While Ollie was catching fish, he
found a big shiny stone. He thought, "This is not a fish, but it is so pretty!" Ollie took the shiny
stone home to show his family. They all looked at the shiny stone and smiled. The shiny stone made
everyone happy, and they forgot about the fish for dinner.

Table 4.2.2: A story sampled from the TinyStories dataset generated by GPT-4 (V2). The stories, as we
notice here, often contain unexpected twists. We also observe the simple plot and vocabulary.

4.2.3 Remarks

We note that the methodology of our work is not exclusively applicable to the previous two datasets. However,
there are particular qualities that the selected datasets possess, that make them desirable for our data
augmentation approach. The choice to include the BabyLM dataset was made by taking into account its
diversity, and it’s specific design for human-like language pretraining. In the previous iteration of the BabyLM
Challenge, training was limited exclusively to the BabyLM dataset. Nevertheless, a few approaches managed
to outperform the challenge’s baseline models with orders of magnitude more data (RoBERTa [80], T5 [112],
OPT [159]). Even though the BabyLM Dataset has proven to be a beneficial dataset for small data pre-
training, experimentation with more highly curated datasets, e.g., the BNC Corpus, is promising future work.
Indeed, the BNC dataset was recently used to develop the LTG-BERT architecture [120], which is optimized
for small data regimes of around 100M words.

Additionally, the TinyStories dataset was chosen because of its simple language and small vocabulary, which
were shown to be key factors in enabling high quality generations at small scales of both training data,
and model parameters [31]. With regard to generative performance, diverse and complex text can confuse
models, degrading generation quality. However, we envision augmentation in datasets with similar properties
as TinyStories, particularly those containing spoken language, or simple English (e.g., Simple Wikipedia).
The above analysis, demonstrates that our proposed techniques are not limited to the selected datasets, and
are generally applicable in a wider setting.
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4.3 Sort Stories for Data Augmentation
In this section, we detail the creation of the synthetic story dataset Dgen, which is central to our data
augmentation method – depicted in Figure 4.1.1. During the following paragraphs, for a dataset Ddata we
denote a version of the dataset with m millions of words as Ddata-m.

4.3.1 Data Generation Process
The process of creating the synthetic story dataset Dgen, begins by training a decoder transformer model on a
subset of the TinyStories dataset – denoted as Dtiny-m. For our experiments we use the GPT-Neo architecture,
but our methodology can be applied to any generative autoregressive LM, e.g., the Llama family of models
[30]. We employ conventional causal LM training methods, following the work of [31]. The stories in the
training dataset Dtiny are then truncated to create prompts, which are given as input to the GPT-Neo model
in order to generate alternate completions.

One crucial parameter that we need to configure, is the size m of the subset Dtiny-m. Given that we operate on
the stringent data constraints of the Strict (100M) and Strict-Small (10M) tracks, careful consideration
is required when allocating part of our word budget. To choose the right size m for the TinyStories subset,
we take into account two key factors: (a) the need to maintain high-quality generations from the decoder
models, and (b) the need to achieve sufficient diversity in the final corpus (Dcomb). As mentioned previously,
our end goal is data augmentation, and the final encoder transformer training corpus will consist of: sort
stories in Dtiny-m, the generated data Dgen, and a subset of the BabyLM dataset Dbaby-b with size b. Given
data limitations, balancing the proportions of the different datasets composing the combined corpus Dcomb
is critical for the success of our data augmentation method.

More concretely, based on the assumption that generation quality scales with dataset size, our goal is to
choose a large enough size m for Dtiny-m to support high-quality outputs from our models. At the same
time, we need to reserve enough of our word budget to incorporate a significant portion of the BabyLM
dataset into the final encoder training set. This balance ensures that our encoder models are exposed to
both a wide range of vocabulary and a diverse set of linguistic contexts. Intuitively, we seek to ensure that
our pre-training data is varied, as children learn from multiple sources of input – this is also reflected in
the makeup of the BabyLM dataset (Section 4.2.1). Training only on simple stories will critically limit the
vocabulary and linguistic variety to which we expose our model.

To address this tension between conflicting demands for the size m, we draw samples from TinyStories and
construct a collection of subsets with various sizes, which we denote as Dtiny-m : m ∈ {5, 10, 25, 50, 75, 100}M
(millions of words). For each subset, we then train a GPT-Neo model and assess its generative and linguistic
capabilities. Our evaluation process employs metrics related to grammatical proficiency, diversity, and gen-
eration quality, which are detailed in Section 4.4. Based on these evaluation metrics and the aforementioned
criteria, for both the Strict and Strict-Small tracks, we select a specific subset Dtiny-m along with its
corresponding GPT-Neo model, to be used for data augmentation. In order to create the synthetic story
dataset Dgen, each story in Dtiny-m is truncated to 15%-30% of its original length, and the shortened version
is used to prompt the model, which then generates an alternate story completion. Our choice to use a smaller
portion of the story is motivated by a desire to avoid duplication, as the stories in Dtiny-m will already be
part of the combined corpus used to train the encoder transformer.

To construct Dgen we employ different sampling techniques. Specifically, we use greedy decoding, and nu-
cleus sampling [51]. Greedy decoding is a simple decoding strategy, that will demonstrate the underlying
maximization objective of our models, as seen in their token probability distribution. Intuitively, this will
produce the most likely generation under our model. If even with maximization based decoding, our models
can produce novel and diverse completions, it is a strong sign that they are not simply memorizing their
training set. It was also the default method used in [31] for most of the generated stories. After establishing
performance with greedy decoding, we move to more advanced techniques like nucleus sampling, which was
introduced to alleviate problems in open-ended generation tasks, like sort story generation. The different
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generation methods used for our experiments are introduced in Section 4.5.3.

Additionally, nucleus sampling gives us the option of producing more than one completion for each story.
This will increase the size of Dgen and the available training data for the encoder models and is beneficial
for language learning, provided that the different completions for the same story are diverse enough. For
each story prompt in Dtiny we produce k completions, in an effort to maximize the benefit of our data
augmentation method. In order to minimize redundancy among the k completions, and prevent inefficient
use of FLOPs, we leverage the Self-BLEU score, which is a measure of diversity of a generated corpus. For
various values of k, we calculate Self-BLEU and select those values that best balance diversity with the total
volume of additional training data.

4.3.2 Final Corpus Creation
In the previous paragraphs, we explained the construction of the subset of TinyStories Dtiny-m and the
generated stories dataset Dgen. In order to form the final combined dataset Dcomb, used to train the encoder
transformer, we need to include a portion of the BabyLM dataset, denoted by the subset Dbaby-b with size b.
As shown in Section 4.2.1, the dataset contains a diverse set of texts, with a variety of different domains. To
ensure a fair representation of each set, we sample randomly at the document level from the whole dataset.
We leave content-aware sampling methods for future work. The final combined dataset is constructed by
concatenating the three dataset, Dcomb = (Dtiny-m,Dbaby-b,Dgen). To train the encoder transformer we use
a Masked Language Modeling objective, and we leverage the LTG-BERT architecture [120].

The combined size of Dbaby-b and Dtiny-m is limited by the data constraints in each track. Specifically, for
the Strict task we impose that b + m ≤ 100M and for the Strict-Small task b + m ≤ 10M. We note
that the track restrictions do not apply to the dataset Dgen, as the data used to train the GPT-Neo models
and generate stories, are all contained in Dtiny. Intuitively, the 10M / 100M word budget applies to a closed
system, where any model and procedure can be implemented, such as augmenting the training dataset with
more words, as long as no additional data enters the system. In the same manner, we image that as a child
learns to speak, conversations are replayed in the human brain in a slightly altered form, e.g., imaginary
interactions as presented in dreams. This does not mean that the child is receiving any additional linguistic
input.

4.4 Evaluation Procedures
In this section, we detail the evaluation metrics and benchmarks used to assess the performance of our
models. For evaluating the performance of the encoder transformer models, we leverage the evaluation
suite of the BabyLM challenge [21], consisting of three benchmarks: BLiMP and its supplement (Supp.),
(Super)GLUE, and EWoK, each broadly measuring language proficiency, general language understanding,
and world knowledge. For the decoder transformer models we employ EWoK and BLiMP as well as some
additional evaluation schemes, targeted towards measuring generation quality and diversity. Specifically, to
measure the quality of the generated text of our models we use an LLM-assisted evaluation, and to measure
diversity we harness the Self-BLEU metric.

We note that the challenge benchmarks – BLiMP, EWoK, and (Super)GLUE – constitute filtered versions,
preventing the comparison of our results with prior evaluations on the full data. Specifically, for the purposes
of the BabyLM challenge, evaluation examples with no lexical overlap with the Strict-Small pretraining
corpus were filtered out [146]. The purpose of this process was to mitigate the confounding effect caused by
the language style of many NLP tasks not being well aligned with the pretraining corpus that was developed
for the challenge, i.e., the BabyLM dataset.

4.4.1 BLiMP
The Benchmark of Linguistic Minimal Pairs (BLiMP) was introduced by [143], as a set of tasks for evalu-
ating the linguistic knowledge of Language Models (LMs) on key grammatical phenomena in English. The
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benchmark covers various grammatical phenomena, in syntax, morphology and semantics. Each benchmark
example consists of a pair of minimally different sentences, and the model under evaluation needs to assign a
higher probability to the grammatically correct sentence in each pair. To measure performance, we calculate
the binary accuracy over all pairs. The tasks in BLiMP are zero-shot, with no added finetuning or training
required for evaluation. The benchmark consists of 67 datasets with 1000 minimal pairs each, automatically
generated by grammar templates constructed by linguists. The examples are further organized in 12 gram-
matical phenomena. We present a concrete sample from the dataset in Table 4.4.3 and a brief description of
the 12 tested phenomena is included in Appendix D.2. For a detailed analysis of the full set of paradigms
evaluated in BLiMP we refer to [143]. For our evaluation, we also employ BLiMP Supplement (Supp.),
released by the challenge organizers [145], and containing some additional grammatical phenomena.

Sentence s1 Those mice haven’t vanished. correct

Sentence s2 Those mice hasn’t vanished. wrong

Table 4.4.3: An example from the BLiMP benchmark. The sentence pair illustrates the phenomenon of
Subject Verb Agreement: subjects and present tense verbs must agree in number. For a correct response,
the model needs to assign higher probability to the correct sentence (s1), i.e., P (s1) > P (s2).

BLiMP has been used previously to measure the grammatical performance of models at small scales, including
the 5M word BabyBERTa model [54] and the 100M word LTG-BERT [120]. It was also included as an
evaluation benchmark in both iterations of the BabyLM challenge [21, 145]. Work in [160] also used BLiMP
to measure the evolution of the linguistic knowledge of RoBERTa models, as the quantity of their training
data increases, demonstrating that 100M words is enough to reach a plateau on the benchmark and achieve
good performance on most grammatical phenomena.

4.4.2 EWoK

The Elements of World Knowledge (EWoK) is a benchmark recently introduced by [55], as a cognition-
inspired framework aiming to evaluate basic world knowledge in LMs. The creation of the benchmark is
motivated by the crucial role of world model building and manipulation in human intelligence, which is also
essential for a general-purpose AI agent. The benchmark assesses the ability of models to correctly match
a target text with a plausible context across various knowledge domains, including social interactions (e.g.,
help/hinder) and spatial relations (e.g., left/right). Each example contains two pairs of contexts and targets,
and the evaluated system needs to assign each target to the correct context. Both the contexts and targets
are formulated as minimally contrasting pairs, with customizable elements like objects, agents, and locations.
A comparison of the performance of large language models and a human study, reveals that current models
perform, overall, worse than humans. Thus, this benchmark offers promising opportunities for research into
improving the world modeling abilities of LMs. Like BLiMP it also involves zero-shot tasks, with no required
model finetuning.

Each item of the framework, consists of two minimal pair of contexts, C1 and C2, and two minimal pair
target sentences T1 and T2. The pairs are constructed such that in any item, P (T1|C1) > P (T1|C2) and
P (T2|C1) < P (T2|C2), in order to force the model to rely on context when making a decision. The metric
for correctness of a given item is the recovery of the designed item structure, i.e., P (T1|C1) > P (T1|C2) and
P (T2|C1) < P (T2|C2). Identification of both matches yield a point of 1.0, while identification of only one
match yields 0.5 points. For scoring, the token-level LM probability logP (T |C) is calculated. An example
of an item from the framework is presented in Table 4.4.4. We report accuracy across all tasks.
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C1 The piano is in front of Ali. Ali turns left.
C2 The piano is in front of Ali. Ali turns right.

T1 The piano is right of Ali.
T2 The piano is left of Ali.

Table 4.4.4: A sample of an evaluation item from EWoK.

4.4.3 (Super)GLUE

The General Language Understanding Evaluation (GLUE) benchmark [138], is a widely used benchmark,
measuring the performance of LMs in Natural Language Understanding (NLU). It consists of a variety of
NLU tasks with limited training data, in order to support and promote models that share general linguistic
knowledge across tasks. Although it was initially a challenging benchmark suite, state-of-the-art LMs quickly
advanced and surpassed human non-expert performance on GLUE, leading to the introduction of SuperGLUE
[140], a more difficult set of NLU tasks. In contrast to the previously introduced benchmarks – BLiMP and
EWoK – evaluating on GLUE requires model finetuning. To train our models, we use the evaluation procedure
of the BabyLM challenge, employing a filtered training set and a validation set to select the best model. We
then report final performance on the validation data. More info on finetuning for Masked Language Models
(MLMs) can be found in Section 4.5.2.

All the tasks in (Super)GLUE are framed as text classification. We leverage a set of 10 tasks from both
benchmarks, covering various categories, specifically: question answering (BoolQ, MultiRC), sentiment clas-
sification (SST-2), paraphrasing (MRPC, QQP), grammatical acceptability (CoLA), commonsense reasoning
(WSC), and entailment (MNLI, QNLI, RTE). To assess performance on (Super)GLUE we average the ac-
curacies across all tasks except for QQP and MRPC, for which we use the F1-score, and CoLA, where the
Matthews Correlation Coefficient [84] (MCC) is employed. We include an example for the BooLQ task in
Table 4.4.5. A brief description of each of the employed tasks in (Super)GLUE is given in Appendix D.1.

Question Passage Label

is elder scrolls
online the same
as skyrim

The Elder Scrolls Online – As with other games in The Elder Scrolls series,
the game is set on the continent of Tamriel. The events of the game occur a
millennium before those of The Elder Scrolls V: Skyrim and around 800 years
before The Elder Scrolls III: Morrowind and The Elder Scrolls IV: Oblivion.
It has a broadly similar structure to Skyrim, with two separate conflicts pro-
gressing at the same time, one with the fate of the world in the balance, and
one where the prize is supreme power on Tamriel. In The Elder Scrolls Online,
the first struggle is against the Daedric Prince Molag Bal, who is attempting to
meld the plane of Mundus with his realm of Coldharbour, and the second is to
capture the vacant imperial throne, contested by three alliances of the mortal
races. The player character has been sacrificed to Molag Bal, and Molag Bal
has stolen their soul, the recovery of which is the primary game objective.

1

Table 4.4.5: An evaluation sample for (Super)GLUE, taken from BoolQ, a question answering task. The
model is tested on binary classification, and needs to answer a true / false question based on the given
passage. The label of "1" indicates that in this example, the answer is true.

4.4.4 Self-BLEU

When measuring the generative abilities of LMs, one important dimension is the diversity of the model
responses, i.e., how much variation do the model generations exhibit. To assess the diversity of the stories
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generated by the decoder transformer models, we leverage the Self-BLEU score, introduced by [163]. Self-
BLEU is based on the popular BLEU metric [98], originally introduced in the context of machine translation,
which operates by calculating the n-gram precision between a generated text and a set of references, for
various sizes of n. Shorter outputs are also penalized through a brevity penalty, and the final score is in the
range [0, 1].

To calculate Self-BLEU, for a collection of generated texts, we compute BLEU treating one text as the
hypothesis and the rest as references, effectively measuring the similarity between the selected text and all
others. Self-BLEU is then defined as the average of the BLEU scores across the whole corpus. The metric,
like BLEU, lies in [0, 1] with higher values indicating lower diversity. Self-BLEU has been widely used as a
measure of diversity [51, 1, 139].

4.4.5 LLM Evaluation
Assessing the quality of outputs in open-ended generation tasks is difficult because standard evaluation
methods typically expect structured outputs and measure fidelity against a set of reference texts. To overcome
this, we use the evaluation approach suggested in TinyStories [31], where an LLM is prompted to evaluate
the stories generated by the models. Specifically, we inform the LLM that a student has completed a short
story, and it has to assess the student’s performance on a scale from 1 to 10 along three axes: Grammar,
Creativity, and Consistency with the beginning of the story and the plot, giving a separate rating for each.
Additionally, we ask it based on the student’s response, to classify them in different age groups, ranging from
3 to 16 years old. For our experiments, we leverage Claude Sonnet-3.5 [2] and a sample interaction with the
LLM is included in Appendix B.

4.5 Language Models
In this section, we include necessary information and background knowledge regarding the decoder and en-
coder LMs central to our methods. We explain in detail the chosen model architectures, the finetuning
procedures, and the employed decoding strategies for generating samples. This section is meant to comple-
ment Chapter 2, with more details about the specific language modeling techniques employed in our setting.

4.5.1 Language Model Architectures
We give a brief description of the chosen model architectures for our methodology, and highlight the motiva-
tion for their selection. We note that in general our framework is model agnostic, with the only assumption
being the use of generative LM for data augmentation – however, the generative LM need not be autoregres-
sive, as long as it can produce continuations to a given story.

GPT-Neo For the decoder transformer model trained on TinyStories we choose a GPT-Neo architecture
[12], following [31]. GPT-Neo is an open-source GPT-like autoregressive LM architecture. It largely follows
the architecture of GPT-3 [15] with some notable differences. The authors used rotary embeddings [129], a
form of static, relative positional embeddings, where the attention of a token at position n to a token at
position m is linearly dependent on m − n. Additionally, the model features a different initialization, and
there are no sparse layers. We point to the original paper by [12] for more details.

LTG-BERT The LTG-BERT architecture [120], was developed to showcase the effects of training an
LM in a small but well curated 100M word corpus for English– the British National Corpus (BNC). The
authors managed to outperform the original BERT model, using the same compute budget, and in the process
evaluated several training objectives and variants of the model architecture. These efforts resulted in the
LM architecture of LTG-BERT, optimized for small data pretraining. A simplified representation of one
attention layer in the model is illustrated in Figure 4.5.2.

In designing the architecture, the authors diverge from the original Transformer [137], and apply some
recent architectural improvements. The NormFormer [125] layer normalization is used, where LayerNorm
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blocks are included both before and after the application of the Attention block. Additionally, the Layer
Normalization is implemented outside the residual stream, i.e., before adding the residual connection to the
output of the layer. This is done because the standard Post-norm variation has been shown to unpredictably
diverge in later stages of training. Additionally, the GEGLU [123] activation function is used, given by
FFGEGLU(x) = (GELU(xW1) ⊙ xW2)W3, where GELU is the Gaussian Error Linear Unit, and the ⊙
symbol indicates pointwise multiplication. The authors also perform initialization scaling for stabilization,
following [4].

Lastly, the attention layer is further modified by the use of disentangled attention [47] as in the DeBERTa
model, where the position and content embeddings are uncoupled. In this implementation, the attention
takes the form of content-content attention, content-position attention, and position-position attention. For
the original transformer implementation by [137], the content and positional embeddings are fused together

by simple addition, and the attention score for tokens xi and xj is calculated as: Ai,j =
QiK
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Q = xWQ and K = xWK are the key and query transformation matrices of x, and d is the hidden token
size. As proposed by [47], for disentangled attention, the position and content embeddings are processed
separately, without fusion. Specifically, the attention calculation is performed as:
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Where Qc and Kc are matrix transformations of the content embeddings, and Qp and Kp are transformations
of the relative positional embeddings Pi,j . The representation of tokens xi, xj at positions i and j, is taken
from the row of P that corresponds to their distance (L − i + j), where L is the maximum input length.
In the implementation of both [120, 47], to keep the model size comparable to the traditional attention
layer, parameter sharing is employed: Qc = Qp and Kc = Kp. The separation of content and positional
information offers more expressiveness in the transformer, as each attention layer can combine the two types
of information as needed.

Some notable differences from the training objective of BERT are also implemented. A span-based masking
objective is used, following SpanBERT [60], where multiple tokens in a row are masked – illustrated in
Figure 4.5.1. Additionally, the Next Sentence Prediction (NSP) objective is dropped as in [79].

4.5.2 Language Model Finetuning
One of the most ubiquitous ways to leverage the linguistic capabilities of language models, is to apply one
large-scale general domain pretrained LM to multiple particular tasks or domains [27, 107]. This is done
by the process of finetuning [45], whereas the pretrained LM is additionally trained on a small task-specific
corpus. This way, we can leverage the rich representations learned by an LM on a large text corpus for
effective transfer learning to tasks where data is scarce. The major factor contributing to success of LM
transfer learning, is that LM pre-training uses a semi-supervised objective, where data is plentiful, while most
finetuning tasks are by nature supervised, and procuring large training datasets can be especially challenging.

For our evaluation, BLiMP, BLiMP Supplement and EWoK all require no finetuning, as they are zero-shot
tasks, measuring the inherent knowledge of an LM along different dimensions. However, the evaluation
on (Super)GLUE for natural language understanding, requires our models to be fine-tuned to task-specific
datasets. In the following paragraphs, we detail the finetuning process for a Masked Language Model (MLM),
such as LTG-BERT.

In full model finetuning, the pre-trained model is trained end-to-end with a supervised training objective,
and the learning signal is provided by a cross-entropy loss applied to a softmax output and the correct
label for each sequence. In practice, only a few weights of the initial pre-trained model are updated, and
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Figure 4.5.1: Illustration of the SpanBERT masked objective. For masking, we select a span, e.g., "an
American football game", and calculate a two term loss for each token, presented here for the token
"football". A span boundary objective (SBO) is employed, where the boundary tokens (x4,x9) along with
the masked token embedding (x7) are used to predict the masked word ("football"). This loss term is
added to the standard MLM objective. Figure from [60].

a common approach is to completely freeze some parameters. More complex techniques for finetuning were
also proposed, mostly as a way to decrease the computational costs of full-model finetuning both during
training and inference. For example, the popular low-rank adaptation [52] method, decreases the size of
the trainable parameters, by freezing (excluding from training) each linear layer matrix W and learning a
low-rank decomposition. In our experiments (Chapter 5) to maximize the performance of our models, we
perform the full finetuning, without freezing any model parameters. We also note that we are concerned
only with sequence classification, (e.g., sentiment classification, or entailment detection), as essentially all
(Super)GLUE tasks are framed in this manner.

We focus specifically on the case of Masked Language Models (MLMs) such as BERT [27], as the final result of
our methodology is a pre-trained encoder transformer model (see Figure 4.1.1). We apply a newly initialized
architectural component on top of the MLM, known as a classification head, which is essentially a simple
neural network classifier. This classifier will take as input the output of the pre-trained model – a single
vector representing the entire sentence to be classified. To classify a sentence for BERT-like models, we use
the representation of the [CLS] token, and map it through the classification head, to the class logits using a
softmax layer. The [CLS] is included during pre-training at the start of all sequences, to enable later usage
in downstream applications during finetuning. We illustrate the finetuning process for a BERT-like MLM in
Figure 4.5.3, the depicted task is sentiment classification.

For classifying a pair of sequences – s1 and s2, as in the case of detecing textual entailment, a slightly different
formalization is employed. The sequences are separated by a special [SEP] token, and the final input to the
model is formalized as "[CLS] s1 [SEP] s2 [SEP]". In the original BERT model, the [SEP] is introduced
during training in the Next Sentence Prediction (NSP) task. Later, this task was proven to be unhelpful
to model pre-training when taking into consideration the extra computation it entails, and later approaches
dropped this objective [80, 120, 47]. However, the [SEP] token is still used in pre-training as the final token
of an input batch.

4.5.3 Language Model Decoding

In this section, we provide details and a formal analysis of the different sampling methods that were use
for generating text with the GPT-Neo decoder transformer models. Our textual domain is open-ended text
generation, and specifically conditional story generation. In this setting, there is some restriction to the
space of expected responses due to the input context (e.g., a story’s beginning, as in our case), but there

64



4.5. Language Models

Figure 4.5.2: A layer of the LTG-BERT architecture, schematically illustrated. Figure from [120].

is a significant degree of freedom in what the continuation can be. This in contrast to directed generation
settings, where tasks are formalized with (input, output) pairs, where the output must be a transformation
of the input. Common tasks in this domain include machine translation, and summarization.

The task of open-ended text generation, can be defined as generating text that results in a coherent con-
tinuation to a given context. Formally, given a sequence s = (s1, s2, ..., sn) to be used as context, the task
is to generate a continuation of m tokens, forming a sequence (s1, ..., sk, sk+1, ..., sn+m). To produce the
completion, we use an autoregressive LM that models the probability PLM (sk|s<k) using the left context
s<k – all the tokens on the left of a token sk. There are many ways to sample tokens from the conditional
probability function PLM (sk|s<k) which we refer to as decoding strategies. In the following paragraphs, we
expand on popular decoding procedures that were also employed during our experiments.

Maximization Based Decoding One common and simple way to generate an appropriate response from
an LM, is maxization-based decoding. This category of strategies assumes that the model will assign higher
probabilities to text of a higher quality, and thus they search for the continuation with the highest likelihood.
The most common approach of this kind is greedy decoding, where at each timestep the model predicts the
most likely token in the vocabulary V , based on the previously generated tokens:

sk = argmaxs∈V PLM (s|s<k)

This type of sampling is mostly used for directed generation tasks, where the output is highly correlated
with the input and it can achieve satisfactory results. However, it has been known to exhibit failure cases
(e.g., excessive repetition) in open-ended generation tasks [51], such as dialogue and story generation, where
it falls sort of other approaches. Some improvements have been proposed over the vanilla greedy search
method. Beam Search, retains the sentences with the n highest probabilities at each step during the
decoding process, and in the end selects the generate sequence with the top probability, taking into account
all tokens. Occasionally, a length penalty is also applied, since otherwise beam search would favor shorter
sentences. Maximization based methods can result in very different probability distributions, compared to
those observed in human sentences, as illustrated in Figure 4.5.5. Intuitively, we want language to include
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Figure 4.5.3: Illustration of the finetuning process for BERT-like Masked Language Model. The embedding
vector of the [CLS] token is used to represent the whole sequence, and is mapped to softmax class
probabilities through the classification head. Figure reproduced from [63].

Figure 4.5.4: Illustration of the probability assigned to tokens generated by beam search and humans, for
the same initial context. The human response is characterized by increased variance – language should be
surprising. In contrast, beam search falls into an endless repetition loop. Figure from [51].

surprisal, as this relates to new information and an increased entropy.

This group of generation strategies do not employ any sampling, as they just maximize the likelihood of the
next token w.r.t. the probability distribution, in a deterministic way. This is in contrast to the methods
we introduce next, that randomly sample each token from the probability distribution of the model sk ∼
P (s|s<i). For each of these methods, some adjustments in the candidate tokens or the probability calculation
is performed to improve upon naive random sampling. Compared to maximization-based decoding, these
methods allow for more variation in the model outputs, and more natural text generation.

Top-k Sampling Top-k sampling is a simple method that aims to improve generation quality, by restrict-
ing the available tokens during the sampling process. Specifically, it directly filters out tokens with lower
probabilities, restricting the selection to the top k tokens with the highest probabilities. Essentially, top-k
sampling operates on the rescaled probability distribution of only the k most probable tokens, i.e., a vo-
cabulary of size k, V (k) ⊂ V such that

∑
s∈V (k) P (s|s<k) is maximized. Top-k methods offer improvement

against simple random sampling, as a great number of tokens that have no relation to the previous context
are excluded in each sampling step, resulting in more coherent responses. However, tuning the k parameter
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can be difficult.

Temperature Sampling Another approach to limit the randomness in the token selection during sam-
pling, is to insert a temperature parameter in the Softmax function, which can be adjusted according to the
desired diversity in the model response. Below, we include the formula for computing the probability of a
token sk, parameterized by a temperature parameter T .

P (sk|s<k) = Softmax(z;T ) =
exp(zk/T )∑
i∈V exp(zi/T )

With the vector z we symbolize the logits of the sequence s i.e., the class probability weights before normal-
ization. A low temperature T results in a more "sharp" distribution, which in turn increases the chance of
selecting highly probable tokens. A high temperature results in a "flattened" probability distribution, mak-
ing low probability selections more likely. The temperature parameter T ∈ [0, 1], is often used as a method
to increase the diversity of the model responses. We note that this approach can be combined with top-k
sampling to both have more diverse, and vocabulary restricted generations.

Nucleus Sampling Nucleus Sampling was proposed by [51], as a stochastic decoding technique, that
alleviate problems encountered with maximization based methods and the previous sampling techniques. It
is targeted towards open-ended generation tasks, where these problems mostly occur. Like top-k, nucleus
sampling operates by restricting the available vocabulary at each sampling step, however it does so in a
dynamic manner. The core concept of the approach, is using the shape of the probability distribution to
determine the set of candidate tokens for the sampling. Formally, given a distribution PLM (sk|s<k), the
top-p vocabulary is defined as V (p) ⊂ V , which is the smallest subset of the whole vocabulary V such that∑

x∈V (p) PLM (sk|s<k) ≥ p. Essentially, the original distribution P is rescaled, and the probability mass is
assigned to a small nucleus: the highest probability tokens whose total mass exceeds a predefined threshold
p. At each sampling step, the size of the nucleus is dynamically adjusted with the shape of the probability
distribution.

Nucleus sampling addresses core issues with top-k methods, illustrated in Figure 4.5.5. The shape of the
probability distribution can drastically change between sampling steps. This makes top-k methods that must
have a constant k ineffective, and motivates the use of a dynamic restriction on possible tokens.

Figure 4.5.5: Probability mass assigned to sentences produced by humans. At each sampling step the
probability distribution can have a different shape, requiring different sampling techniques. We notice that
flat distributions, lead to many promising candidate tokens, making small k values problematic. Conversely,
in sharp distributions the probability mass is concentrated on a small number of tokens, making large k
values problematic. Figure reproduced from [51].
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4.5.4 Language Model Scoring
Evaluation benchmarks, like BLiMP and EWoK (Section 4.4), rely on the probability that a LM assigns to a
sentence in order to probe the abilities that the model posses in different linguistic dimensions, such as the
grammatical proficiency and world knowledge of the model. As presented previously, these benchmarks oper-
ate by comparing the probabilities the model assigns to different input sequences, and specifically detecting
where the highest probability is assigned. In order to be able to rank sequences, and choose the most likely
one, we need to be able to calculate the probability P (s) for a sequence of tokens s.

Calculating the probability PLM (s) for causal or autoregressive LMs is straightforward, given that these LMs
naturally model the probability PLM (sk|s<k), using the left (or right) context s<k = (s1, ...., sk−1). Most
commonly, the logPLM is calculated to ease implementation and ensure stability. For a causal LM and a
sequence s, it follows that:

logPLM (s) =

|s|∑
k=1

logPLM (sk|s<k)

For Masked Language Models (MLMs) calculating the probability PMLM is not trivial. The success of
these models is attributed to including bidirectional context, where a token sk is replaced with [MASK], and
predicted using all the past and future tokens: s\k = (s1, ..., sk−1, sk+1, ..., s|s|). Introduced originally with
BERT [27], MLMs have advanced language understanding by employing contextual language representations,
and continue to be state-of-the-art in NLU tasks [80, 46, 47]. However, the inclusion of bidirectional context,
prevents them from being "true" language models of the probability P (s), as there is no straightforward way
to generate text, or produce sentence probabilities from these models. This does not present an issue when the
evaluation task requires model finetuning, or the use of contextual representations, but makes out-of-the-box
zero-shot evaluation of these models impossible.

To address this limitation, we can view the MLM objective introduced by BERT as a stochastic maximum
pseudolikelihood estimation [44], enabling the calculation of a Pseudo-Log-Likelihood score (PLL) [44], which
is computed by masking tokens one at a time. To calculate PLL we sum the conditional log probabilities
logPMLM (sk|s\k) of each token in the sentences, be replacing sk with the [MASK] token. This allows us to
calculate the pseudo-probability of a sequence, and extend the application of MLMs to evaluation benchmarks
conventionally accessible only to causal LMs (e.g., BLiMP). The calculation of the PLL score is illustrated
in Figure 4.5.6. Formally, it is calculated as:

PLL(s) =
|s|∑
t=1

logPMLM (sk|s\k)

Work done in [116] introduced the PLL score for the re-scoring of automatic speech recognition (ASR) and
neural machine translation (NMT) hypothesis, substantially improving performance. Additionally, they show
that MLMs can be finetuned without masking, reducing inference complexity. The success is attributed to
the models’ ability to convey linguistic acceptability without the left-to-right context restriction, greatly
improving scores on BLiMP compared to previous models.

Further work done by [55], showed that the above PLL method of [116], overestimates the PLL for out-of-
vocabulary (OOV) words, which are split into multiple tokens, and also falls sort of theoretical expectations,
such as a positive correlation between MLM and autoregressive LM scores for the same sentences. To alleviate
these concerns, in their methodology not only the target token is masked, but also all within-word tokens to
the right of the target token. This method, named PLL-word-l2r, outperformed the original PLL metric, and
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a whole-word masking metric. They also showed that the choice of metric can have substantial effect on the
BLiMP benchmark. We use this metric in all our evaluations. An illustration of the different approaches to
PPL is given in Figure 4.5.7.

Figure 4.5.6: Pseudo Log-Likelihood (PLL) calculation for Masked Language Models (MLMs). To score a
sentence (e.g., "Hello World !"), we create copies with each token replaced by [MASK]. The log probability
of each token is summed, resulting in the PLL score: PLL(Hello␣word ␣!) = logPMLM ([MASK]|world, !)+
logPMLM ([MASK]|hello, !)+ logPMLM ([MASK]|hello,world). The example is here presented for BERT[27],
but we follow the same process for our LTG-BERT[120] models. Figure reproduced from [116].

Figure 4.5.7: Illustration of the different possible ways to compute the PLL score for a word separated into
multiple tokens. In this example, the word "souvenir" is chosen and for each method, we see the sequences
whose probabilities are summed to compute PLL. The PLL-original refers to the original method by [116].
The proposed method, PLL-word-l2r, only additionally masks tokens to the right of a masked token. The
PLL-whole-word strategy, masks all the tokens in a word. Within-word tokens are shown in pink, the
masked token is shown in purple, and in turquoise the masked within-word tokens. Figure from [55].

Effect of temperature on BLiMP The problem of Confidence Calibration is defined as predicting prob-
ability estimates representative of the true correctness of likelihood, and is crucial in many real-world ap-
plications of classification methods. Intuitively, we want for a classification system to not only be accurate,
but also indicate how likely it is to be incorrect. Work done by [44], showed that temperature scaling, i.e.,
changing the temperate T in the Softmax of the logits, can be a straightforward recipe for effective calibration
in most settings – i.e., for the probability to truly reflect the confidence of the model.
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Preliminary experiments conducted recently by [119], applied the temperature scaling method on the BLiMP
dataset. To compute sentence probabilities, the authors used the PLL metric for MLMs, described above
[116]. Their findings showed that the temperature T value can significantly change performance, by up to
10%. This challenges the use of BLiMP as an appropriate evaluation tool. To solve the issue, the authors
propose to make BLiMP invariant to temperature scaling, by reporting the maximum accuracy across all
possible temperatures values – instead of just using T = 1. The authors note however, that using only one
temperature value for all BLiMP subtasks does not account for the significant differences in accuracy between
them, but it is a simple solution, than can be conveniently paired with a held-out validations set. Lastly. the
point out that future work could focus on a uniform and fair scoring function, which is invariant to external
hyperparameters such as temperature. To illustrate the issues uncovered by [119] we include a set of plots
from their experiments in Figure 4.5.8.

Figure 4.5.8: BLiMP confidence profiles for several LMs. Left : the training objective of the model can
drastically change the relationship between temperature (T ) and BLiMP performance – different responses
are observed for: encoders (RoBERTa [80]), seq-to-seq models (T5 [112]), decoders (OPT, [159]). Middle :
for T = 1 BERTbase and BERTlarge performance appears comparable, but the larger model is in fact more
capable. Right : four sizes of LTG-BERT[120] models trained by the authors. Measuring at T = 1 doesn’t
demonstrate the true confidence of larger models. Figure from [119].
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In this chapter, we explain in detail the experimental procedures and results for our proposed methodology
of data augmentation using synthetic story data, seen in Chapter 4 and illustrated in Figure 4.1.1.

First, we describe the experimental setup of our work in terms of hardware and available resources, and detail
the preprocessing carried out for the BabyLM (Dbaby) and TinyStories (Dtiny) datasets – the two datasets
central to our approach (Section 5.1). Next, we explain the process of selecting TinyStories subsets, training
GPT-Neo models, and creating the synthetic story data (Dgen). To motivate our subset selection, we evaluate
the linguistic abilities of GPT-Neo models trained on various amounts of TinyStories. We compliment our
analysis with metrics of diversity and text quality, and in the process, draw insights about the capabilities
of SLMs in low data settings (Section 5.2). Afterwards, we move on to our data augmentation method, and
train encoder transformer LTG-BERT models on the combined dataset. In order to uncover the effect of the
synthetic data on linguistic proficiency, we compare our methods with various baselines, with and without the
use of generated data, and explore alternative sampling procedures and training configurations (Section 5.3).
Finally, we analyze our findings, and make interesting observations about data augmentation methods for
small data language pretraining (Section 5.4).

Additionally, this section is supplemented by a collection of Appendices. Appendix A – containing sample
generations from the GPT-Neo models, Appendix B – containing sample interactions with Claude Sonnet-
3.5 for the LLM-assisted evaluation, Appendix C – containing the hyperparameters used for training our
models, Appendix D – containing detailed evaluation results for the BLiMP, BLiMP Supplement, EWoK and
(Super)GLUE benchmarks.
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5.1 Preliminaries

Experimental Setup Our experiments are performed on a shared GPU cluster consisting of 8 Nvidia V100
GPUs with 16 GB memory each, and additionally, for our evaluation of our models we make use of an Nvidia
RTX-3090 GPU with 24 GB of memory. All models are trained utilizing the PyTorch [100] and HuggingFace
[152] libraries. For evaluating BLiMP, EWoK, and (Super)GLUE, we leverage the official evaluation pipeline
provided by the challenge organizers [35, 21]. Additionally, for the Self-BLEU score we use the BLEU score
implementation provided by NLTK [11]. Our trained models are publicly available on HuggingFace1, and
our implementation is available on GitHub2.

BabyLM We preprocess the BabyLM dataset using the methodology described in [119]. We apply a light
cleanup and normalization process, with the goal of casting all the datasets into a unified format. Details
about the composition of the BabyLM dataset are included in Section 4.2.1. Specifically, we normalize
punctuation and whitespace, performing detokenization (e.g., won␣’t → won’t), and capitalizing the first
letter in each new line. Additionally, we removed semantically irrelevant and arbitrarily inserted tokens,
and normalized incorrectly parsed symbols (e.g., replacing "&gt;" with ">"). For the datasets that contain
spoken language, direct speech is cast into quotes to ensure a consistent representation. Finally, the structure
of the datasets was preserved, where necessary, with the insertion of a special [PAR] symbol. For example, in
the case of the CHILDES dataset [53] the data consists of spoken interactions with each line corresponding
to a speech utterance. These were all concatenated and separated with the [PAR] symbol to preserve the
unique form of turn-based dialogue.

TinyStories For preprocessing the TinyStories dataset, we again leverage the light procedure detailed in
[119]. Our aim is to unify the text, and cast it in a similar format to the BabyLM dataset. Specifically,
whitespace is added where necessary to separate punctuation marks and special symbols, abbreviations are
normalized (detokenization), and misaligned double quotes are fixed. Additionally, we normalize any broken
unicode characters and the text punctuation. To preserve the structure of the stories, for the encoder training
we replace the <|endoftext|> token between the stories with a [PAR] token, as done for the BabyLM dataset.
For the decoder training, the <|endoftext|> token is preserved.

In the following sections, for a dataset Ddata we adapt again the notation of Ddata-m to indicate a subset
of size m in millions of words. Our experiments are conducted for two data constrained scenarios, that
correspond to the two text tracks of the BabyLM challenge. Namely, the Strict-Small track (maximum of
10M words) and the Strict track (maximum of 100M words). For each scenario the experiments follow
the same process but are performed independently.

5.2 Evaluating GPT-Neo Performance on TinyStories

Our aim is to leverage GPT-Neo models trained on a subset of TinyStories (Dtiny-m) for data augmentation.
Specifically, for the stories in the training set Dtiny-m alternate completions are generated by the decoder
models, to form the set Dgen. These two datasets combined with a subset of the BabyLM dataset (Dbaby-b)
are used to construct Dcomb = (Dtiny-m,Dgen,Dbaby-b) which is employed for the training of an encoder
transformer LTG-BERT model. As explained in Chapter 4, it is crucial to select the right size m for Dtiny
to effectively balance the proportion of the Dtiny-m and Dbaby-b datasets in the combined set Dcomb. This will
ensure that Dcomb is diverse and complex enough for encoder generalization, while maintaining a sufficient
pre-training dataset size m for the decoder training in Dtiny-m, that allows high quality generations.

In order to select the size m, we start by evaluating the generative and linguistic performance of GPT-Neo
decoder models, while varying the amount of available data. Apart from motivating our selection for Dtiny-m,
this analysis will gauge at the relationship between data size and the capabilities of SLMs in low data regimes,
allowing us to make interesting observations. Taking into account the challenge limitations for the Strict ,

1https://huggingface.co/collections/nikitastheo/berttime-stories-66e9272aff154e75c55e6d91
2https://github.com/nikitas-theo/BERTtimeStories
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and Strict-Small tracks, we sample sort stories from the TinyStories dataset and define a collection of
subsets with a variety of sizes, denoted as Dtiny-m : m ∈ {5, 10, 25, 50, 75, 100}M (millions of words). Our
selected sizes are illustrated in Figure 5.2.1. We notice that compared to the full dataset, our models are
trained with a magnitude less data. In the following paragraphs, for each subset Dtiny-m we independently
train a GPT-Neo model and evaluate the decoder’s linguistic and generative capabilities.

5M 10M 25M 50M

Full Dataset (V2) Full Dataset (V1)

75M 100M 440M 373Μ

Figure 5.2.1: Selected subset sizes for evaluating the capabilities of GPT-Neo models trained on various
amounts of TinyStories data. Our experiments leverage the second version (V2) of the data with ∼ 440M
words. In our analysis, we also include the model released by [31] trained on the first version of the dataset
(V1) containing ∼ 373M words.

All our experiments are carried out with the second version (V2) of the TinyStories dataset, generated only
by GPT-4, and containing ∼ 440M words. For comparison, results are also reported for the pretrained model
provided by the TinyStories authors [31], which is trained on the first version of the dataset, created by
prompting both GPT-3.5 and GPT-4, and containing ∼373M words. We chose the GPT-4 version of the
dataset, as it was deemed to be of higher quality. The two GPT-Neo models are reported as: "440M (V2)"
– for our model trained on the full second version of the dataset, and "373M (V1)" – for the model by [31].

For the GPT-Neo decoder transformer, we select one of the top-performing architectures3 from [31]. All our
GPT-Neo models are trained with the same set of hyperparameters, except for weight decay, dropout, and
vocabulary size, which are adjusted based on the dataset size. We follow a conventional training approach for
autoregressive LMs, similar to that of the authors in [31]. However, we found it is important to incorporate
some additional regularization to suit our low-data setting. Specific hyperparameters and architectural details
can be found in Appendix C. Additionally, for each subset Dtiny-m a separate tokenizer was trained from
scratch, using the WordPiece Tokenizer implementation provided by the HuggingFace library.

5.2.1 Evaluating Language Profficiency

For open-ended generation tasks, such as sort story generation, evaluating generative performance directly
can be challenging [31]. For this reason, as an initial assessment of the language capabilities of the GPT-Neo
decoders, we evaluate their performance on the zero-shot benchmarks of the BabyLM challenge. Namely, we
use: BLiMP, BLiMP Supplement (Supp.), and EWoK, probing the grammatical understanding, and world
knowledge of our models. We posit that these benchmarks will provide a proxy of the generative abilities of the
GPT-Neo models, and will allow the assessment of the models without breaking the data restrictions of our
scenarios (10M and 100M words maximum). Results are included in Table 5.2.1 and a graphic illustration is
provided in Figure 5.2.2. Full evaluation results of the GPT-Neo models on the three benchmarks, indicating
the specific score for each category/phenomenon are presented in Appendix D.4. We note that random chance
accuracy for these benchmarks corresponds to a value of 50.0, as they involve binary classification. This puts
into perspective their difficulty for our models – especially EWoK.

As the amount of data increases, we observe that the BLiMP and EWoK scores generally smoothly increase
as well. In contrast, the BLiMP supplement score shows more variance. We note that the 440M word

3https://huggingface.co/roneneldan/TinyStories-33M
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model demonstrates slightly worse performance than expected, when taking into account the magnitude of
its training data. We posit that this due to the model being under-regularized during training. Interestingly,
we notice that the 100M word model attains the highest BLiMP performance of all the models, sharing this
result with the original model released by [31] – 373M (V1). This is in line with the findings of [160], that
showed that 100M words is enough for substantial performance on most grammatical phenomena on BLiMP,
demonstrating diminishing returns for more amounts of data. Lastly, the 25M word model is able to attain
substantial BLiMP and BLiMP Supp. for its training size, demonstrating overall good sample efficiency.

One other set of observations concerns the relationship between the BLiMP benchmark and its supplement.
We notice that 100M word model has the best BLiMP score, while also attaining subpar scores on the
BLiMP Supp. tasks, specifically the lowest of all the models. While carefully looking at the lines in Fig-
ure 5.2.2, this result appears to fit in a general trend, where performance on BLiMP is not correlated with
performance on its supplement. This finding suggests that the two benchmarks measure substantially differ-
ent phenomena, and complement each other in their grammatical evaluation. We note however, that BLiMP
Supplement is considerably smaller in size, which could also be a cause for the variation in performance
observed in our experiments.

Train Data BLiMP ↑ Supp. ↑ EWoK ↑
5M 55.5 53.8 51.1
10M 58.4 51.6 51.9
25M 59.9 55.1 52.4
50M 62.8 52.8 53.0
75M 64.0 54.8 53.4
100M 64.8 50.8 53.1
440M (V2) 64.6 55.0 53.9
373M (V1) 4 64.8 60.9 54.0

Table 5.2.1: Evaluation results for GPT-Neo models trained on TinyStories with various amounts of data,
for the BLiMP, BLiMP Supplement (Supp.) and EWoK Benchmarks. We report accuracy on all
benchmarks – the ( ↑ ) arrow indicates that higher is better.

Selecting TinyStories subsets We now explain how we leverage the scores in Table 5.2.1 to select the
TinyStories subsets harnessed for training GPT-Neo models, the subsequent creation of Dgen and the final
data augmentation. We mainly use the BLiMP score for the selection, as the most comprehensive metric out
of the three for linguistic knowledge. From our observations, the 50M word mark appears to be a threshold,
where performance on BLiMP starts to plateau as the amount of training data increases. Additionally, the
50M word budget is a good starting point for a study on data augmentation, as it offers enough room for the
inclusion of other diverse data in the 100M budget, and a 50% proportion of Dbaby and Dtiny is intuitively
the simplest combination.

Thus, for the Strict track, we select the 50M word subset Dtiny-50M as the set that will be used – with its
corresponding GPT-Neo model – to generate Dgen, and will be included in the combined corpus Dcomb. A
close contender is the 25M word set, which we plan to include in a future study. For the Strict-Small task,
we opt to choose the 5M word model, and the corresponding Dtiny-5M set, using some of the same reasoning
as above. Further investigation into smaller dataset sizes for the Strict-Small track will be addressed in
future work. Importantly, the LLM evaluation (covered later) is not considered in the above decisions, in
order to uphold our data limitations of 10M and 100M words respectively.

4Model released by [31], https://huggingface.co/roneneldan/TinyStories-33M
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Figure 5.2.2: Graphic illustration of the relationship between the Self-BLEU metric (scaled to [0,100]) and
the BLiMP, BLiMP Supp. and EWoK accuracy scores for GPT-Neo models trained on subsets of
TinyStories, as the amount of training data increases. The ( ↓ ) arrow indicates that for Self-BLEU, a lower
score corresponds to more diversity and better performance. This is in contrast to accuracy scores in the
table, where higher is better ( ↑ ).

The scores mentioned above provide insights into our models’ grammatical competence (BLiMP) and their
world knowledge (EWoK), but they overlook two key aspects of generative performance: 1 the diversity
and 2 the quality of the generated outputs. These two are necessary for a comprehensive evaluation of the
GPT-Neo models and will be the focus of the following sections.

5.2.2 Evaluating Generative Quality – LLM Evaluation

Assessing the quality of outputs for open-ended generation tasks can be difficult, as standard evaluation
methods typically rely on structured outputs and compare generations against a set of reference texts. In
contrast, story generation is essentially unrestricted, with the only expectation that the continuation gen-
erated by the model is consistent with the story’s beginning. To tackle this issue, we follow the evaluation
approach introduced by [31], where a Large Language Model (LLM) is tasked with assessing the stories
produced by our models. The authors originally used GPT-4 [95], but instead we leverage Claude-3.5 Sonnet
[2] for our experiments, as it better aligns with our available resources.

We utilize a set of 44 manually crafted prompts 5 provided by [31], each containing the start of a story, and
constructed to be grammatically challenging for the models to complete. For each of the GPT-Neo models,
trained on the subsets Dtiny-m, we generate 10 completions per story using a temperature of 1. We provide the
LLM with both the story’s beginning and the model’s completion, which are presented as a student’s response
to a story writing assignment. The LLM is then asked to evaluate the response across three dimensions: (a)
Grammar, (b) Creativity, and (c) Consistency with the story’s beginning and the plot. Additionally, we ask
the LLM to classify the story into age groups ranging from 3 and under to 16 years old. The scores for each
category are given on a scale of 1 to 10.

For the final results, we average scores for both the 44 stories and the 10 models completions, for a total of
around 440 data points per category. A small number of interactions were discarded, as in some extreme
cases the LLM refused to rate the assignment (e.g., in the case of profane language usage). Appendix B
includes a sample interaction with Claude Sonnet-3.5 presented in its entirety, along with more details about
the evaluation, and an analysis of the LLM responses for problematic evaluation cases. The results of our
evaluation are reported in Table 5.2.2 and a graphic illustration is included in Figure 5.2.3.

5https://huggingface.co/datasets/roneneldan/TinyStories
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We notice at first that as expected, performance scales with the amount of training data. As the size of the
Dtiny-m subset grows we see an overall increase in the scores for all three evaluation categories. A notable
exception is the 440M word which generally performs worse or at best on the same level as models with
a magnitude less data (e.g., the 25M and 50M word models). Specifically for Grammar, arguably the most
easily attained skill out of the three, the 400M word model has even worse performance than the 25M word
model. As previously, we believe the cause for this behavior is lack of proper regularization and possibly
the limit in the number of training steps. Additionally, the 100M word decoder achieves impressive results
across all three categories, achieving the best Consistency score out of all the models. This illustrates that
100M words can result in an impressive level of generative performance.

An important observation concerns the 25M word model, which appears to be a cutoff point. Specifically,
we notice a rapid, linear increase in the scores for all three categories up to 25M words, and then a decline in
improvement with only marginal benefits when adding more training data. This finding suggests that even
when limiting the number of words to small data regimes of up to 25M, the quality of the generations is
retained. Based on this evaluation, we recommend that future approaches consider 25M words of Dtiny as
a starting point for data augmentation with synthetic stories. In our own experiments, we didn’t take into
consideration the LLM-assisted evaluation when selecting TinyStories subsets for data augmentation, as this
would invalidate the data constrained setting of our work.

Train Data Gr. ↑ Cr. ↑ Cons. ↑ SB ↓
5M 4.56 4.99 3.37 38.6
10M 5.31 5.34 3.98 38.3
25M 6.00 5.65 4.55 34.6
50M 6.01 5.53 4.54 33.0
75M 6.08 5.50 4.49 37.1
100M 6.17 5.57 4.78 39.8
440M (V2) 5.88 5.53 4.49 37.3
373M (V1) 6.24 5.73 4.70 29.6

Table 5.2.2: Evaluation results for GPT-Neo models trained on TinyStories with various amounts of data –
LLM-assisted quality evaluation. We instruct Claude-3.5 Sonnet to access generative performance along
three categories: Grammar (Gr.), Creativity (Cr.), Consistency (Cons.). We also include the results of
Self-Blue (SB).

Finally, we note that compared with the results from [31] the scores for our models, and even the 373M word
model released by the authors, appear to be in general lower. Even though in our evaluation we attempted
to stay as close as possible to the original setting, this might indicate some differences in configuration (e.g.,
the exact sampling process). One possibility is also that Claude Sonnet-3.5 (that we used), is a harsher
critic than GPT-4 (used by [31]). In addition to the quantitative results, Appendix D.4 includes samples of
generated completions from the GPT-Neo models, for a variety of stories and sampling techniques – including
for the example depicted in Figure 4.1.1, depicting our main methodology.

5.2.3 Evaluating Diversity

To assess diversity, we use the Self-BLEU metric [163], which has previously been applied to measure the
diversity of generated text [51, 1, 139]. We use 100 stories, that are contained in the training set of all the
GPT-Neo models, and truncate them to 15%-30% of their original length to be used as prompts. For each
story, the decoder models generate an alternate completion given the story’s beginning, leveraging a greedy,
maximization-based, decoding strategy. For the collection of 100 stories S100 for each model, we calculate
the Self-BLEU score, scale it to [0, 100] and report it in Table 5.2.2. A graphic illustration of the score is also
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Figure 5.2.3: Graphic illustration of the LLM-assigned scores for Grammar, Creativity, and Consistency
with the plot. Scores are asigned on a scale from 1 to 10. We measure the generative abilities of the
GPT-Neo models as the amount of TinyStories data increases.

included in Figure 5.2.3. Lower scores indicate more diversity.

We notice that the Self-BLEU scores display significant variance, and there does not seem to be a clear
correlation with the amount of training data. We note however, that the best diversity score (lowest) was
achieved by the 373M word model by [31]. Additionally, an important observation is that the 25M
word and 50M word models achieve a low diversity score, while maintaining a substantial quality in their
generations. This finding suggests that even with limited training data, good generative performance, in
terms of diversity, and quality, can be achieved. As we identified previously, the 100M word model achieves
impressive quality scores, including the highest Consistency. However, it in terms of diversity it has the worst
score (highest) out of all the models. Intuitively, we can understand why maintaining a high consistency with
the beginning of the story might come at the cost of a reduced diversity in the model responses. Lastly,
reducing the training data to a 5M word dataset, results in markedly bad performance in terms of both
quality and diversity, indicating that data augmentation might be particularly challenging in the 10M word
constraints of the Strict-Small track.

5.3 Synthetic Story Data Pretraining
In the previous sections we evaluated the linguistic capabilities of GPT-Neo models trained on various
subsets of the TinyStories dataset, Dtiny-m : m ∈ {5, 10, 25, 50, 75, 100}M. Based on the BLiMP scores of
the models, we choose the Dtiny-5M and Dtiny-50M TinyStories subsets for data augmentation, for each of
the Strict-Small and Strict tracks respectively. We now outline the creation of the combined dataset
Dcomb = (Dtiny-m,Dbaby-b,Dgen), used for training the LTG-BERT encoder LM. For brevity, we provide
details only for the Strict-Small track, but the same procedures were applied for the Strict track as well.

Using the 5M-word subset from TinyStories (Dtiny-5M) we train GPT-Neo models as outlined in the previous
sections. For each story in Dtiny-5M we truncate it to 15%-30% of its length, effectively taking the beginning
of the story, and use it prompt the GPT-Neo model. The decoder then generates alternate completions for
all the stories, which are collected to form the synthetic story dataset Dgen. In our experiments we explore
different decoding strategies for sampling from the GPT-Neo model, including greedy generation (Dgen-greedy),
and nucleus sampling (Dgen-nucleus-k), where k represents the number of generations per prompt. A theoretical
explanation for various decoding strategies is included in Section 4.5.3. Finally, the story datasets – Dtiny-5M
and Dgen – are combined with a 5M-word subset from the BabyLM dataset – Dbaby-5M – to form the combined
dataset D10M

comb = (Dtiny-5M,Dbaby-5M,Dgen). This way we keep the total size |Dtiny-5M|+ |Dbaby-5M| within the
10M word limit. As noted previously, the size of the Dgen dataset does not count towards data restrictions,
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as it was generated by our models in a closed system.

After constructing the combined corpus Dcomb, we employ it for the training of an LTG-BERT encoder
model. As mentioned before, we chose this architecture as it is optimized for the small data regime, and
showed remarkable performance on the previous iteration of the BabyLM challenge [145, 146]. The LTG-
BERT models are trained with a span-based MLM objective, and the model architecture incorporates recent
improvements in the transformer (details in Section 4.5.1). For the training, we follow the procedure outlined
in [120] with some slight but important variations. Our models are trained with a fraction of the compute
budget utilized in [120], where the authors used the same amount of FLOPs as BERT [27]. Instead, we
reduce both the effective batch size, training steps, and sequence length during training, due to constrains
in our available resources and infrastructure. For our implementation we rely on the source code provided
by the authors 6 and details about the specific hyperparameters we used are given in Appendix C. We note
that we performed a minimal tuning of hyperparameters.

Baselines To evaluate the impact of data augmentation on performance, we train several baselines, varying
only the pre-training dataset while keeping all other training conditions constant, including hyperparameters
and FLOPs. For the Strict-Small track, we form baselines by training LTG-BERT models with 10M
words from the BabyLM dataset (Dbaby-10M) and the Tinystories dataset (Dtiny-10M) separately. We also
train an encoder using a combination of 5M words from each dataset (Dbaby-5M + Dtiny-5M). These models
serve as reference points for evaluating the performance of models trained with various data compositions
that include generated data, aiming to assess the impact of data augmentation. The same approach is
applied to the Strict track, where we train encoders using 100M words from each dataset individually
(Dbaby-100M,Dtiny-100M), as well as a combined set of 50M words from each (Dbaby-50M +Dtiny-50M). We also
report results for the challenge baselines, which are LTG-BERT [120] and BabyLlama [134]. It is important
to note that these models were trained with different hyperparameters than those used in our experiments.
Specifically, the LTG-BERT model released by the organizers was trained for approximately 20 epochs on
the Strict track, while we trained our models for around 27 epochs (20K steps).

Nucleus Sampling In contrast to greedy decoding strategies, with sampling methods we have the option
to generate multiple completions for each of prompt. This can be beneficial, resulting in an increase of
the amount of training data, but only as long as the added data are diverse enough. Otherwise, we risk
wasting important computational resources in iterating over uninformative samples, as all our experiments
are controlled to use the same amount of FLOPs. To determine a good value of k for nucleus sampling, we
measure diversity as k increases, by utilizing the Self-BLEU score. We select 100 stories from the Dtiny-5M
set and use the beginning (15%-30%) of each story to prompt the model in generating 50 completions with
p = 0.95. For each k value in the range {2, 3, ..., 50}, we compute the Self-BLEU score among the set Sk

of generated completions. The goal is to analyze the diversity of the generations for the same prompts as
k increases. Figure 5.3.1 illustrates the average Self-BLEU across all prompts. We notice that between the
values k = 5 and k = 10 for the 50M word GPT-Neo model, the diversity score stays constant. Based on
these results, we opt to experiment with k = 5 and k = 10 for both the Strict and Strict-Small tracks, as
they provide a good balance between diversity and added data.

Balanced Training Adding the generated data Dgen increases substantially the proportion of story data in
the combined corpus Dcomb. This is especially true when employing nucleus sampling, and generating more
than one continuation per story. As a result, the sample distribution of the TinyStories data (Dtiny +Dgen)
and the BabyLM data (Dbaby) during model training is also modified. This means that the model encounters
more story samples in each iteration, which might affect performance, as it becomes more focused on the
TinyStories dataset. To mitigate this effect, we introduce a training configuration where the number of
samples for the two datasets is balanced on average. In this approach, when constructing each training
batch, samples are drawn randomly with equal probability from both TinyStories – original and synthesized
text – and BabyLM. This ensures that the model receives an equal amount of exposure to each dataset
throughout training. Results using this balanced training method are marked with the † symbol.

6https://github.com/ltgoslo/ltg-bert
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Figure 5.3.1: Average Self-BLEU scores for the 5M and 50M word GPT-Neo models, as the amount k of
generations per prompt increases. We sample 100 stories from the training sets Dtiny-50M and Dtiny-5M, and
generate 50 alternate continuations using our models. We compute the average self-BLEU across stories.

Evaluation For assessing the linguistic performance of the LTG-BERT models, we leverage the official
evaluation pipeline of the BabyLM challenge [21, 35]. We evaluate our models on filtered versions of (Su-
per)GLUE, BLiMP, BLiMP Supplement (Supp.), and EWoK. For (Super)GLUE, task performance is mostly
measured with accuracy, but some of its tasks are evaluated with different metrics (e.g., F1-score). We report
the macroaverage of all the task metrics (one selected metric for each task), details in Section 4.4.3. For
the other benchmarks we report accuracy. The EWoK, BLiMP and Supp benchmarks are evaluated in a
zero-shot way, where no added training is required. For (Super)GLUE we finetune our models, following the
process and hyperparameters described in [120]. More details are included in Appendix C.

5.4 Results

We provide the final evaluation results for the LTG-BERT models on both the Strict-Small and
Strict tracks in Table 5.4.3 and Table 5.4.4, respectively. The ⋆ symbol indicates the model submitted
to the BabyLM Challenge for each track, and the † symbol indicates usage of the balanced training tech-
nique. For each model, we list its training data composition and the total size in millions of words. We
also include a macroaverage of the scores on BLiMP, Supp., EWoK and (Super)GLUE in the "Avg" column.
More detailed results analyzed for each task/phenomenon of the benchmarks are included in Appendix D.

We make here an important comment about the scores of the LTG-BERT models on EWoK. Our reported
results for the challenge baselines significantly differ from the scores released by the organizers – e.g., for
Strict-Small track we report 63.1 instead of 48.9. After discussions with the community, we hypothesize
that this is due to an instabilitiy of this particular architecture, that might result in different scores for
different machines and infrastructure. We note that our scores appear to be "inflated", but the increase is
consistent for all the LTG-BERT models, allowing for a fair comparison.

Strict-Small Track Looking at the results of Table 5.4.3, initially we observe that the best overall score is
achieved by the model trained on the Dbaby-10M dataset. Additionally, comparing the results of the Dbaby-10M
and Dtiny-10M models, we conclude that the BabyLM dataset is better suited for language pre-training. This
is expected, as the Dbaby dataset was constructed specifically to be a diverse, and developmentally plausible
pre-training corpus. However, training on the TinyStories dataset appears to benefit EWoK. An interesting
observation is that replacing half the of the BabyLM dataset with TinyStories data – Dbaby-5M+Dtiny-5M – has
only a minor effect on the model’s performance. However, as more synthetic story data is added, we notice an
overall decrease in model scores, as the positive influence of the BabyLM dataset diminishes, and performance
trends towards that of Dtiny-10M, where the BabyLM dataset was not utilized at all. This indicates that the
training becomes overly biased towards the TinyStories data, whose number of samples far outweigh those
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Model Training Data Total BLiMP Supp. EWoK GLUE Avg.

LTG-BERT Dbaby-10M 10M 60.6 60.8 48.9/63.1 60.3 57.7/61.2

BabyLlama Dbaby-10M 10M 69.8 59.5 50.7 63.3 60.8

LTG-BERT
(ours)

Dbaby-10M 10M 62.8 63.7 66.2 71.0 65.9
Dtiny-10M 10M 59.8 54.2 67.0 67.0 62.0
Dtiny-10M +Dgen-greedy 20M 58.7 57.8 63.8 67.1 61.9
Dbaby-5M +Dtiny-5M 10M 62.6 60.7 66.6 71.2 65.3
Dbaby-5M +Dtiny-5M +Dgen-greedy 15M 62.1 60.2 65.5 70.6 64.6
Dbaby-5M +Dtiny-5M +Dgen-nucleus-1 15M 62.5 62.3 63.9 69.5 64.6
Dbaby-5M +Dtiny-5M +Dgen-nucleus-1 † ⋆ 15M 63.2 59.3 65.5 71.1 64.8
Dbaby-5M +Dtiny-5M +Dgen-nucleus-5 33M 62.4 60.1 65.8 69.4 64.4
Dbaby-5M +Dtiny-5M +Dgen-nucleus-10 56M 61.0 58.4 65.3 69.5 63.6

Table 5.4.3: Final model performance on the Strict-Small track (10M words).

of BabyLM during training. To counter this effect, we experiment with balancing the number of samples
from both datasets in each batch – denoted by †. This modification, leads to improved model performance.
Notably, for BLiMP, this balanced setup slightly outperforms the model trained exclusively on Dbaby-10M,
achieving the highest overall score. Additionally, compared to other data augmentation approaches, this
configuration leads to better performance on GLUE.

A second set of important observations, relate to the sampling methods used when creating Dgen for the
data augmentation. Switching from greedy decoding to nucleus sampling improves the model’s performance
on the BLiMP and BLiMP Supp. benchmarks, but negatively affects performance on EWoK and GLUE.
This difference likely stems from the nature of the evaluation datasets. BLiMP emphasizes grammatical
understanding, and the greater diversity introduced by nucleus sampling exposes the model to a broader
range of linguistic structures and syntactic variations, enhancing its linguistic and grammatical capabilities.
On the other hand, EWoK and GLUE prioritize semantic coherence and factual consistency, and the increased
diversity from nucleus sampling might introduce noise and less coherent narratives, which could confuse the
model and lead to reduced performance. This is supported by the fact that the 5M word GPT-Neo model
was used for augmentation, which as noted on Table 5.2.2, has a very low Consistency score. Consequently,
while the enhanced diversity benefits grammatical evaluation tasks like BLiMP, it may not be as effective for
language understanding or knowledge-driven tasks such as GLUE and EWoK.

Model Training Data Total BLiMP Supp. Ewok GLUE Avg

LTG-BERT Dbaby-100M 100M 69.2 66.5 51.9/65.7 68.4 64.0/67.5

BabyLlama Dbaby-100M 100M 73.1 60.6 52.1 69.0 63.7

LTG-BERT
(ours)

Dbaby-100M 100M 64.0 67.6 62.8 74.0 67.1
Dtiny-100M 100M 61.2 63.2 63.1 70.6 64.5
Dtiny-100M +Dgen-greedy 200M 61.1 59.6 63.8 69.1 63.4
Dtiny-50M +Dbaby-50M 100M 65.5 65.6 62.5 71.0 66.2
Dtiny-50M +Dbaby-50M +Dgen-greedy 150M 66.6 63.3 65.0 71.8 66.7
Dtiny-50M +Dbaby-50M +Dgen-nucleus-1⋆ 150M 65.6 65.0 64.6 72.7 67.0
Dtiny-50M +Dbaby-50M +Dgen-nucleus-1† 150M 65.2 63.5 64.3 72.6 66.4
Dtiny-50M +Dbaby-50M +Dgen-nucleus-5 350M 65.4 64.4 61.2 69.8 65.2
Dtiny-50M +Dbaby-50M +Dgen-nucleus-10 600M 63.7 63.3 64.5 69.5 65.3

Table 5.4.4: Final model performance on the Strict track (100M words).
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Strict Track Analyzing the results on the Strict track in Table 5.4.4, we reach similar conclusions as on
the Strict-Small track. Specifically, the Dbaby-100M model achieves the best performance overall, proving
itself a better pre-training dataset that Dtiny-100M. However, a positive influence of the data augmentation
technique becomes more apparent here, as incorporating the Dgen-greedy dataset in the model training, leads
to improved performance, compared to all the established baselines – models trained on the two datasets
separately, Dtiny-100M and Dbaby-100M, and a combination of the two (Dtiny-50M + Dbaby-50M). This results
in the Dgen-greedy model achieving the best score of all the models on BLiMP and EWoK. Furthermore, the
Dtiny-50M+Dbaby-50M baseline with no synthetic data, is outperfomed by both the Dgen-greedy and Dgen-nucleus-1
models, indicating that synthetic data can provide modest improvements in the Strict track setting.

Interestingly, while the nucleus strategy performed better overall for both tracks, the greedy decoding strategy
resulted in significant improvement on BLiMP and EWoK scores for the Strict scenario, outperforming
nucleus sapling for these benchmarks. For both settings however, increasing the amount of TinyStories
data during training, negatively impacts final model performance, bringing them closer to the Dtiny-10M and
Dtiny-100M models. In the case of the Strict track, we didn’t observe a benefit when applying the balanced
training strategy (†). We hypothesize that for the larger data regimes of 100M words, the vast amounts
of TinyStories data – reaching up to 500M words – may overshadow the presence of the BabyLM data in
training. The model encounters such an increased mass of TinyStories content that the learning process is
effectively dominated, diminishing the benefits of balancing.
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Chapter 6

Conclusion

6.1 Discussion

The study conducted in this thesis, is part of current efforts to mitigate the issues with the modern language
model (LM) training regime. Specifically, the purpose is to counter the ongoing trends of vastly increasing
computational resources, model parameters, and most importantly training data. For this reason, recent
approaches train efficient LMs with limited access to data, with the goals of democratizing research, devel-
oping data-effective training recipes, and drawing parallels between the way machines and humans process
and learn language. Joining in on these efforts, our work is conducted and published [132] as part of the 2024
BabyLM Challenge [21] – a competition that incentivizes LM pretraining with human-like, developmentally
plausible data constraints. Our LMs are trained in a limited data setting, working towards the two tracks of
the challenge, the Strict-Small track (max of 10M words), and the Strict track (max of 100M words).

Our methodology for LM pretraining on small data scales is based on data augmentation. Taking inspiration
from recent work in [31], we train GPT-Neo decoder models on a small collection of simple stories, and
create a synthetic corpus by providing an alternate completion for each story in the training set. The
augmented story data is supplemented by a diverse, speech focused corpus – the BabyLM dataset – and
the combined data is leveraged to train LTG-BERT encoder transformers. To investigate the effect of data
augmentation on linguistic performance, we compare our models with baselines trained without synthetic data
in controlled experimental settings, and additionally investigate a variety of sampling techniques and training
configurations. The LMs are evaluated using a collection of various benchmarks, measuring grammatical
knowledge, language understanding and world knowledge.

Initially, to estimate the right amount of TinyStories data for effective augmentation we evaluate the gen-
erative and linguistic abilities of GPT-Neo decoder models trained on various amounts of TinyStories data
– {5, 10, 25, 50, 75, 100}M (millions) of words. For our assessment, we utilize benchmarks for grammatical
and factual understanding, as well as a diversity metric and an LLM-assisted quality evaluation. Our study
reveals that Small Language Models (SLMs) can acquire substantial linguistic abilities, and generate stories
of high quality and diversity, even when trained in scarce data scenarios. Specifically, the performance of
models trained with up to 25M and 50M words was comparable to models trained with a magnitude more
data – 373M and 440M words – and 100M words proved enough for robust grammatical and generative
performance. This finding sheds new lights in the capabilities of SLMs, underscoring the potential these
models have for data augmentation, even when faced with severe data limitations.
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Our next results concern the evaluation of LTG-BERT models, trained on a dataset augmented with syn-
thetic story data. Our findings reveal that while high quality data generation is possible for limited data
regimes, leveraging the synthetic data for data augmentation in practice can be challenging. We observed
some benefits, mostly in grammatical knowledge, in the Strict-Small task, with the careful balancing
of the proportions of different datasets showing potential for improvements. Some more pronounced per-
formance gains were reported for the Strict task, pertaining to linguistic and world knowledge. However,
overall synthetic data had a negative influence on the linguistic abilities of the encoder models, and in-
creasing the size of the generated datasets decreased performance even more. Given the high generative
performance of the GPT-Neo models, we believe that there is merit to the data augmentation methodology
we propose, but key details of the configuration need to be taken into account and hyperparameters need to
be finely tuned. There is a delicate balance between data quantity, quality, and effective incorporation of the
synthetic data, that is needed to achieve optimal training outcomes. Some fruitful directions for future work
are outlined in the next section.

Based on our analysis we can recommend the following when performing data augmentation in scenarios with
low data constraints:

• For the GPT-neo models, our evaluation of linguistic performance and generation quality point to a
starting point of 25M words of TinyStories data for future data augmentation attempts. If working
with a bigger budget, 100M words would be preferable. These settings offer a nice balance between
data size, and output quality.

• The BabyLM dataset proved more advantageous for data scarce LM pre-training. This indicates that
complex data is more beneficial than simple data, and should be prioritized when operating on a
limited budget.

• A calibration of hyperparameters should be attempted as we believe it significantly affects final
performance. For example, the truncation ratio of the stories, the proportions of the BabyLM and
TinyStories data in the final corpus, and the training hyperparameters for the encoder transformer
models, among other parameters, should be more finely tuned.

• For both the Strict-Small track (10M) and the Strict track (100M) similar findings were observed.
This indicates that new approaches should be first tried on the computationally cheap 10M word
scenario, and later scaled up to the 100M scenario. Additionally, easy to evaluate benchmarks, such
as BLiMP, offer a quick and inexpensive way to estimate model performance, and should be prioritized
in the experimentation phase.

6.2 Future Work

Due to time and resource constraints, our work faces several limitations, which can be exploited as promising
avenues for future work. For both the encoder and decoder modules of our methodology, a single architecture
was employed – the GPT-Neo and LTG-BERT architectures respectively. An exploration of more model
architectures would be beneficial in increasing the robustness of our results. Additionally, we only leveraged
two datasets, which were selected because of their specific properties. TinyStories provides simple and easy
to understand language, that enables high quality decoder generations even for small data, while BabyLM
provides the required complexity and diversity for encoder generalization. Both of these datasets can be
exchanged for other datasets with similar characteristics, e.g., Simple Wikipedia, and the BNC corpus re-
spectively (Section 4.2). We note that above choices were made to ensure consistency in our experiments,
and allow us to reach reliable conclusions, but we recognize that they restrict the broader applicability of our
findings.

Another interesting idea in the same direction, is to also utilize parts of the BabyLM dataset for data
augmentation instead of staying limited in the TinyStories data. Concerning the formation of subsets for
the two datasets, we sampled randomly on the document level. In the future, we believe that experimenting
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with content-aware data selection for the subsets will significantly improve the results of our technique, as
the more simple TinyStories data is better supplemented by the advanced portions of the BabyLM data. We
propose the use of information theory, and other complexity metrics for more beneficial document selection.

One other area for further research is the precise calibration of the parameters of our methodology. For
example, the story truncation ratio, the dataset inclusion ratio in the final corpus, and the training hyper-
parameters of our models could all be more finely tuned. One important such choice, is selecting the right
amount of TinyStories data, used for training the GPT-Neo models, and the synthetic data generation. In
our experiments we used a simple 1:1 ratio for the two datasets, but more precise control over the dataset
mixture could amplify the befits of our method. In the previous section, we recommended experimenting
with the 25M word GPT-Neo model, as it proved in hindsight to offer a more attractive ratio of performance
to training size. Moreover, the 5M word model in the Strict-Small scenario might be a suboptimal choice,
and more experimentation with models trained on less than 10M words would be beneficial. We also note
that curriculum learning approaches combined with data augmentation techniques could be promising, e.g.,
as seen in the Contextualizer [153] in last year’s challenge.

By addressing the limitations of our work and highlighting promising research directions we hope to inspire
further research in the area. We believe that efforts in data augmentation for data constrained and cognitively
plausible language pre-training scenarios will prove important for the future of LM pre-training.
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Appendices

This chapter supplements the main text with additional material and analysis of the experiments conducted
during our study. Initially, we include more sample generations from the GPT-Neo models trained on
TinyStories (Appendix A), and additionally provide a full example interaction with Claude-3.5 for the LLM-
assisted evaluation (Appendix B). The full list of hyperparameters for the training of the GPT-Neo and
LTG-BERT models is provided (Appendix C), along with detailed evaluation results for each of the BLiMP,
BLiMP Supplement, EWoK and GLUE benchmark, analyzed per task or phenomenon (Appendix D).
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A TinyStories – Sample Generations
To provide a clear example of the augmentation process and allow direct evaluation of generation quality,
we present sample outputs from all our GPT-Neo models: {5M, 10M, 25M, 50M, 75M, 100M, 440M (V2)},
as well as the 33M parameter model released in TinyStories [31] – which we denote as 373M (V1). For the
generations provided below, we select a story from the training set, truncate it to 15%-30% and prompt
the models to complete it. For the sampling, we experiment with various decoding strategies – explained
in Section 4.5.3 – in order to qualitatively compare the effects of each sampling method to the final model
outcome.

• Table A2 includes model generations with greedy decoding. The completions correspond to the story
presented in Figure 4.1.1.

• Table A3 includes model generations when sampling with a temperature of 1.

• Table A1 includes model generations with nucleus sampling (p = 0.95).

To enable the comparative evaluation of different completions for the same story, for the 5M and 50M word
models we also include 3 different generations for the same prompt using nucleus sampling (p = 0.95). The
generations are presented in Table A4 for the 5M model, and Table A5 for the 50M model.
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Model Generated Text

Prompt One day, a little boy named Tim went for a walk in the woods. He saw a big hole in the ground. Tim was very

Original curious. He thought it might be a secret way to the underground. He wanted to see what was down there. Tim went
down the hole. It was dark and scary. He heard a twist sound. He saw a big twisty snake. The snake said, "Hello, I
am Sam the snake. What are you doing here?" Tim said, "I wanted to see the underground. But it is too scary for
me." Sam the snake said, "It is not scary. I can show you around." Sam showed Tim the underground. They saw
bugs and rocks. Then, they found a big shiny treasure box. Tim and Sam were very happy. They took the treasure
box back up to the woods. Tim was not scared of the underground anymore.

5M curious and wanted to see what was behind the hole. Tim thought, "I will peek inside and see what’s inside." Tim
went into the hole and found a root. He put the root in the hole and turned it. It was a small, old ball. Tim was
happy and excited. He played with the ball all day long. He kicked it, and even pretended it was a little car. But then,
something unexpected happened. The root started to talk! "Hello, Tim," said the rock. Tim was very surprised. He
didn”t know that roots could talk. The root said, "Hello, Tim! I am a magic root. I can make things happen if you
want." Tim thought for a moment and said, "I wish for a big ice cream!" The magic root made their wishes come
true. Tim wished for a big ice cream cone and his ice cream cone, and he could even make a big ice cream cone with
the same size he wanted. The magic root made their wish come true. Tim wished for a big ice cream cone cone, and
his red ball appeared.

10M curious. He wanted to see what was in the hole. Tim went closer to the hole and realized he was very deep. He called
out, "Help! I am stuck!" A kind rabbit heard Tim”s cries and hopped into the hole. The rabbit said, "Don”t worry,
I will help you." The rabbit hopped into the hole and found Tim. The rabbit said, "Thank you, Tim! I need to go
to the other side." Tim was happy he could help his new friend. He said goodbye to the rabbit and walked back to
his house. When he got there, his mom was waiting for him. "You are so kind, Tim!" she said. "You made a great
toy for me." Tim smiled and hugged his mom. From that day on, Tim and the rabbit were best friends. They played
together in the woods every day.

25M curious and wanted to see what was inside. He went closer to the hole and looked inside. He saw a lot of black rocks
and stones. Tim wanted to examine the rocks, but he was a little frightened of them. Just then, a little bird flew
down and said, "Hi, Tim! Do you want to examine the black rocks with me?" Tim nodded and they both looked at
the rocks together. The bird said, "Let”s see if we can find something from the hole." Tim and the bird went into the
hole and found many shiny things. They were so happy and played with the shiny things all day long.

50M curious about the hole. He wanted to know what was inside. So, he said, "I wonder what”s inside!" Tim looked into
the hole and saw a tiny bug. The bug was upset. Tim asked, "Why are you upset?" The bug said, "I can”t believe
I can see the dark too. My wings hurt from playing in the mud." Tim wanted to help the bug. He went inside the
house and got a soft cloth. He wrapped the cloth around the bug”s wings. The bug felt better and started to believe
in its light. Now, the bug could see the dark in the woods with Tim. They both felt happy and safe together. And
from that day on, Tim and the bug became good friends

75M curious and wanted to see what was inside. He looked into the hole and found a small toy car. Tim picked up the toy
car and said, "Wow! A pretty car! I will play with it, but I need to get inside the hole first." Tim walked and walked
until he found a small door in the hole. He opened the door and saw a secret room full of toys! The toys said, "Hi,
Tim! We can play with you!" Tim was so happy and surprised. He played with the toys all day long and had a lot of
fun.

100M curious and looked inside the hole. He saw something moving. Tim was a curious rabbit from behind the hole. He
poked the rabbit with his finger. The rabbit jumped out of the hole and said, "Hi Tim! Do you want to play with
me?" Tim was so happy to find a new friend. They played together all day, running around the woods. They found
many wild animals like birds, rabbits, and squirrels. Tim had so much fun with his new friend. At the end of the day,
Tim was tired but very happy. He couldn”t wait to tell his family about the wild rabbit he found.

440M
(V2)

curious, so he got closer to look at the hole. He was a bit scared, but he wanted to know what was inside. As Tim
looked into the hole, a small animal came out. The animal was very rude. It did not say "please" or "thank you" to
Tim. Tim felt sad and said "sorry" to the animal. The animal gave Tim a small hug. Then, something unexpected
happened. The rude animal turned into a kind fairy! The fairy said "thank you" and flew away. Tim was very happy
and went home with a big smile on his face.

373M
(V1)

curious about the hole. He decided to step closer and look inside. Tim found a little squirrel inside the hole. The
squirrel said, "Hi, I”m Tom! I like to play in this hole. Do you want to play with me?" Tim smiled and said, "Yes,
let”s play in the hole!" They played together all day long. They laughed and had fun. When the sun went down, Tim
said, "I have to go home now, Max. But I”ll come back to play again soon." Max agreed, and they promised to meet
again the next day. Tim went home, happy to have made a new friend.

Table A1: Sample generations from our all our GPT-Neo models using nucleus sampling with p = 0.95.
The prompt was taken from the training set of the models.
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Model Generated Text

Prompt One day, a little boy named Tim went to the park. He saw a big tiger. The tiger

Original was not mean, but very easy to play with. Tim and the tiger played all day. They had lots of fun. Then,
something unexpected happened. The tiger started to shake. Tim was scared. He did not know what was
going on. But then, the tiger turned into a nice dog. Tim was very surprised. Tim and the dog played
together now. They were very happy. The dog was easy to play with too. At the end of the day, Tim went
home with his new friend.

5M was very big and had a long tail. Tim wanted to be friends with the tiger. Tim said, "Hi tiger, I am Tim.
Do you want to play with me?" The tiger looked at Tim and said, "Yes, I want to play with you." Tim and
the tiger played all day. They ran, jumped, and laughed. The tiger was very happy. But then, the tiger got
tired. It wanted to rest. Tim said, "I am tired. Let’s rest." The tiger yawned and said, "Okay, Tim. Let’s
rest." Tim and the tiger sat under a tree. They talked and laughed. The tiger was happy to have a new
friend. They both had a fun day at the park.

10M was very big and had a long tail. Tim was scared, but he wanted to be brave. He walked up to the tiger and
said, "Hi, tiger! I am Tim. Do you want to play with me?" The tiger looked at Tim and said, "Yes, I want
to play. But I am scared of the big tiger." Tim was not scared. He thought the tiger was nice. Tim and the
tiger played together. They ran and jumped. They had a lot of fun. Then, something unexpected happened.
The tiger started to change. It became a tiger! The tiger was not a tiger anymore. It was a tiger! Tim was
very surprised. The tiger was not a tiger anymore. It was a big tiger! Tim and the tiger became best friends.
They played together every day.

25M was very big and had a long tail. Tim was scared, but he wanted to be brave. Tim said, "Hi, tiger! I am
Tim. Do you want to play with me?" The tiger looked at Tim and said, "Yes, I want to play. But I am
very hungry. Can you help me find some food?" Tim thought for a moment and said, "Yes, I can help you.
Let’s look for food together." They looked and looked, but they could not find any food. Then, something
unexpected happened. The tiger started to talk! "I am not a tiger, I am a magic tiger. I can make your
wishes come true," said the tiger. Tim was very surprised. He wished for a big ice cream cone. The magic
tiger made his wish come true. Tim and the magic tiger became good friends and played in the park every
day.

50M was very nice. Tim wanted to play with the tiger. He said, "Hi, tiger! Let’s play!" The tiger did not say
anything. Tim was sad. He wanted to find a way to make the tiger happy. Tim had an idea. He found a ball
and threw it. The tiger saw the ball and started to play with it. Tim was happy. He said, "Now, the tiger is
happy too!" They played together all day. The tiger was not sad anymore. Tim and the tiger became best
friends.

75M was very big and had a long tail. Tim was not scared. He wanted to be friends with the tiger. Tim said, "Hi,
tiger! My name is Tim. Do you want to play with me?" The tiger looked at Tim and said, "Yes, I want to
play. My name is Sam." Tim and Sam played all day. They ran, jumped, and laughed. They had so much
fun. Tim was happy to have a new friend. At the end of the day, Tim said, "Bye, Sam! I will come back
to play with you again." Sam said, "Bye, Tim! I will wait for you here." Tim went home and told his mom
about his new friend.

100M was sad. Tim asked, "Why are you sad, Mr. Tiger?" The tiger said, "I lost my toy. Can you help me find
it?" Tim wanted to help the tiger. They looked for the toy together. They looked under the trees and behind
the bushes. Then, they saw a big box. The tiger said, "I think my toy is in the box." Tim opened the box.
Inside, there was a big cake! The tiger was happy. But, the cake was not a real tiger. It was a toy tiger! Tim
laughed and said, "Silly tiger, you are not a real tiger!" They played with the toy tiger and had a fun day at
the park.

440M
(V2)

was very hungry. Tim wanted to help the tiger. He thought, "I will feed the tiger some food." Tim went
home and got some food. He came back to the park and gave the food to the tiger. The tiger ate the food
and was very happy. Tim felt good because he helped the tiger. The tiger said, "Thank you, Tim. You are a
good friend." Tim and the tiger played in the park all day. They had lots of fun. Tim learned that it is good
to help others. The tiger learned that it is good to be kind and help others. And they both lived happily ever
after.

373M
(V1)

was sad. Tim wanted to help the tiger. He thought the tiger needed a friend. Tim went to the tiger and said,
"Hi, I am Tim. I want to help you." The tiger looked at Tim and said, "Thank you, Tim. I am sad because
I am alone. I need a friend." Tim thought for a moment and said, "I will be your friend, tiger. We can play
together." The tiger was happy. Tim and the tiger played all day. They had lots of fun. The moral of the
story is: Helping others can make you happy too.

Table A2: Sample generations from our all our GPT-Neo models using greedy decoding. The prompt was
taken from the training set of the models.
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A. TinyStories – Sample Generations

Model Generated Text

Prompt One day, a little girl named Lily wanted to bake a cake. She asked her mom, "Can I bake a cake, please?"
Her mom said, "Yes, but we

Original need to buy some things first." They went to the store to buy the things they needed. Lily saw an expensive
jar of olives. She asked her mom, "Can we put olives in the cake?" Her mom said, "That’s a funny idea, but
let’s try it!" When they got home, Lily and her mom mixed all the things in a big bowl. They put the olives
in the cake too. Then, they put the cake in the oven to bake. When the cake was ready, they took it out
and let it cool. Lily and her mom tried the cake with the olives. They both laughed and said, "This is a very
funny cake!" They had fun making and eating the cake together. The end.

5M can bake it together." Lily was very happy. Lily and her mom baked the cake. They put flour, eggs, and milk
in a big bowl. They baked the cake. They were very excited. When the cake was done, they put icing on top.
Lily and her mom sat in the oven to cook. They smelled the cake. It smelled so good. They were so happy
to bake the cake. They knew they would have more fun baking together. They knew that the cake would be
great day.

10M need a different mixer to mix it first." Lily was very excited. She thought it would be fun to use the unknown
mixer. Lily and her mom mixed the unusual mixer. They mixed and mixed until it was all done. They were
very happy with their surprise. The pretty colors were colorful and fun to look at. Lily’s friend, Tom, came
over and saw the mixer. "Wow!" he said. "That mixer looks fun!" They played with the mixer and had a
great time. When it was time for Tom to go home, Lily’s mom said, "It’s time for dinner!" Lily and Tom
were sad, but they knew they had a special time. They learned that it’s okay to ask for help when we can’t
do something, but also to learn how to do things together.

25M need a mixer to mix the cake." Lily and her mom went to the store. They bought a mixer to mix all the
things they needed. They mixed the cake stuff and put it in the oven. While they waited for the eggs to
bake, Lily was became restless. She wanted to go outside now. Her mom said, "Oh no, we must finish baking
before the cake starts to bake." Lily was sad, but she knew her mom was right. She put the mixer in the oven
and waited. When the cake was done, they took it out and let it cool down. The cake was perfect! Lily was
happy she waited and helped her mom bake the cake.

50M need to watch the clock." So, Lily and her mom opened the oven to bake the cake. They made a big, warm
cake just for Lily. They were so happy to eat the cake together. After that, Lily and her mom baked more
cakes. They shared the warm cake with their friends. Everyone loved the cake and said it was the best cake
they ever had.’

75M ed to clean up first." Lily and her mom started to clean up the waste. They put all the things they found
outside their house. They found sticks and mud. They put them all in the dirt. Then, they put the sun, dirt,
and mud in the mud. When they finished, they put the cake in the oven to bake. When it opened the oven,
they saw lots of green balls inside. They took the green balls out and put them in a bowl. The cake was the
best cake they had ever seen! When they were done, Lily and her mom took it out and let it cool. Then,
they put the green balls around the cake to dry. The cake was no longer dead! It was now a yummy-looking
cake. Lily and her mom were very happy and enjoyed the cake together.

100M need to use the cauliflower to make it big." Lily and her mom went to the kitchen. They put the cauliflower
on a plate. They mixed the cake batter with a big spoon. Then, they put it in the oven to bake. While they
waited, Lily and her mom talked. They were happy. They enjoyed their tasty cake together. When the cake
was good, they took it out of the oven. It looked yummy. Lily said, "Thank you, Mom, for helping me bake
the cake." They both laughed and enjoyed their cake.

440M
(V2)

need to measure to find the things we need." They measured flour, eggs, and milk. They put the mix in a big
pan and put it in the oven. While the cake was baking, other kids came to play. They saw the baked cake
and wanted to try it. But Lily said, "No! That cake is sour!" Her friends were sad and started to march like
a soldier. Lily went outside and told the other kids, "It”s just a mix for cake!" They all tried the cake and
made a funny face. Lily laughed and said, "See, it”s not bad, it”s just a cake!"

373M
(V1)

need to take the lemons from the fridge." Lily wanted to help, so she was very impatient. Lily and her mom
went to the kitchen. Lily”s mom showed her how to pour the lemons into a bowl. Then she told Lily to mix
them with a spoon. Lily tried to mix, but the lemons just rolled all over the bowl. They couldn”t finish the
cake. Lily felt sad. She said, "Mom, I”m sorry. Can we fix the cake?" Her mom said, "I don”t know, but we
can bake another cake!" They both felt better and baked a new cake, even better than before.

Table A3: Sample generations from our all our GPT-Neo models when sampling with a temperature of 1.
The prompt was taken from the training set of the models.
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Model Generated Text

Prompt Once upon a time, in a big green forest, there lived a panda named Pandy. Pandy was a good panda who
loved to cook. Every day, Pandy

Original would pick fresh bamboo from the forest to cook for his friends. One sunny day, Pandy”s friend, Birdy, was
feeling sad. Pandy wanted to help Birdy feel better. He thought, "I will cook Birdy”s favorite food!" So,
Pandy cooked a big bowl of tasty bamboo for Birdy. When Birdy saw the bowl, she felt happy and smiled.
Birdy shared the yummy bamboo with her friends. All the animals in the forest enjoyed the food Pandy
cooked. They all thanked Pandy for being a good friend. The forest was full of happy animals. The moral of
the story is: when you do good things for others, it can make everyone happy.

5M -
Genera-
tion 1

would go to the woods to find some food. He walked and walked, until he met a new friend. This friend was
a small, green frog. The frog was very small, but he could not find any food. Pandy was sad. He wanted to
find food and make the frog happy. Pandy and the frog played all day. They had so much fun. When it was
time to go home, Pandy said, "Goodbye, frog! See you soon!" The frog smiled and said, "I had fun, Pandy.
I”m happy I could help you." Pandy went back to his forest, feeling happy and full of energy.

5M -
Genera-
tion 2

would wake up early to eat bamboo and make all kinds of yummy food. Pandy was very happy when he was
cooked, he would give up early and take some rice from the forest. One day, Pandy found a big pile of rice on
the ground. He thought it would be fun to use it to cook a big meal with his animal friends. So, Pandy called
all his friends to come and eat the rice. They all came and looked at the rice and started to eat it. Suddenly,
the rice started to move! Pandy and his friends were surprised. They never thought rice was a rice, but a big
green frog! The frog had been hiding in the rice! He was scared at first, but then he realized that he was a
nice frog who could help them. So, Pandy and his friends worked together to make the rice. The moral of
the story is that when we work together, we can make things better and less uncomfortable.

5M -
Genera-
tion 3

would prepare yummy food for everyone in the forest. All the animals in the forest would come to eat Pandy.
One day, Pandy saw a big pile of waste near a house. He thought, "If I cook here, I will help with the waste."
So, Pandy started to cook the waste. He put trash in the bin and put it in a big pot. The waste would make
the waste go away. Pandy was very happy to help. Pandy cooked the waste in the forest. All his panda
friends came to eat and thanked Pandy for being such a good panda. From that day on, Pandy and his friends
enjoyed the food together.

Table A4: For the same prompt, taken from the training set, we include 3 distinct generations from our
GPT-Neo 5M word model, using nucleus sampling – p = 0.95.
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A. TinyStories – Sample Generations

Model Generated Text

Prompt Once upon a time, in a small town, there was a kind man named Tom. Tom loved to help people. One day,
he found a big bottle of wine. He knew it was not for kids, but he had an idea. Tom

Original had a big kite. He wanted to fly the kite very high. He thought, "I can attach the bottle of wine to the kite.
It will make the kite fly higher." So, he tied the bottle to the kite with a long string. He went to the park
on a mild day to fly the kite. As the kite went up, everyone saw the bottle of wine. They asked Tom why he
did that. Tom said, "I want the kite to fly high, and I want everyone to remember that we should not drink
wine. It is not good for us." The people smiled and clapped. They learned a good lesson that day

50M -
Genera-
tion 1

went to the town and gave the wine to a little girl named Lily. "Here, drink this. It is not good," said Tom.
Lily took a sip and felt sad. She did not like the taste. Tom saw Lily was sad and gave her a hug. "It’s okay,
Lily. We all make mistakes. We should always tell an adult." The moral of the story is to always tell an adult
before doing something new.

50M -
Genera-
tion 2

took the wine to the park. He saw a little girl crying because she lost her toy. Tom wanted to comfort her
and make her happy. He gave her the wine with a big smile. The little girl stopped crying and smiled at
Tom. But then, Tom felt bad because he was being selfish. He wanted to help more people. The moral of the
story is that being selfish is not good and that sharing is important.

50M -
Genera-
tion 3

went to his friend, Sam. Sam was not so good. Tom said, "Sam, look at this. We need to yield it to others.
If we give it to them, they will be happy." Sam agreed. They went to find their friends and give the wine to
them. All the friends were very happy. They ate the wine and started to feel good. Soon, more friends came
to Tom and Sam. They all started to help. They knew that being kind and yielding to others was important.
The people in the town learned to yield and give the wine to everyone. They all lived happily ever after. The
moral of the story is to always be kind and yield to others.

Table A5: For the same prompt, taken from the training set, we include 3 distinct generations from our
GPT-Neo 50M word model, using nucleus sampling – p = 0.95
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B LLM Evaluation

We include details about the evaluation we conducted using a Large Language Model (LLM). Specifically,
for our experiments we utilized Claude Sonnet-3.5 [2] 1. The model is instructed to act as a "teacher", who
is tasked to grade a story completed by a student in the context of a school exercise. The model is asked
to grade a response along three axes: (a) Grammar, (b) Creativity, (c) Consistency with the plot, and the
beginning of the story. Additionally, the model is requested to provide a guess for the age of the "student"
along the following categories: A: 3 or under, B: 4-5, C: 6-7, D: 8-9, E: 10-12, F: 13-16.

The full results and details about our evaluation are described in Chapter 5, Section 5.2.2. Our evaluation
is conducted with the scheme presented in TinyStories [31] as "GPT-Eval". We aimed to be as close to the
original work as possible, with the exception of the employed LLM – which was changed to Claude Sonnet-3.5
instead of GPT-4, and the prompt – which was slightly adapted to work better with our chosen LLM.

Below, we include a sample of an interaction with the LLM while grading a response generated by the GPT-
Neo model trained on 50M of TinyStories data. The interaction is included in Table B1. We notice that the
LLM gives a detailed explanation about its judgement, and tries to substantiate the rating and any claims
about the model response, by quoting specific sections.

Next, we describe some interesting model behavior we encountered during our evaluation. We observed that,
in some rare cases, the LLM refused to grade the model generations, even though it was specifically instructed
to do so. It is valuable to examine such instances, as they shed light into the challenges of an evaluation
scheme utilizing large language models, and can additionally help us document some of the limitations and
failure cases of LLMs, in a realistic use case. In the calculation of the final ratings of the models (Table 5.2.2,
Figure 5.2.3) these extreme cases were excluded.

Specifically, we identified two types of model responses, that resulted in a refusal by the LLM to grade the
model generations.

1. Offensive Remarks. In the first type, the model’s response contains derogatory or offensive language.
We give an example in Table B2, generated by the GPT-Neo model trained on 5M words – a similar
behavior was also observed for the 10M word model. We observe first that SLMs trained on very low
amounts of data can exhibit problematic behavior in their generations, similar to that encountered by
larger language models [124]. Additionally, even though the generation contains various grammatical
and semantic errors, which the LLM identified, it did not assign a low rating but rather rejected
altogether the completion from the process.

2. Perfect Completion. In the second type, the model ignores the *** separator, and instead asserts
that this is not a student’s response (contrary to the prompt instructions), but instead it is a perfect
completion to the original story, and thus there is nothing to grade (!). This behavior was observed
for the 5M, 25M, 50M word models and the 33M parameter model by [31], trained on 373M words of
the original TinyStories data (V1). We show such a response in Table B3, generated by the 25M word
model. Interestingly, the model recognized the "***" separator in the text, but concluded arbitrarily
that the continuation presented after is "too perfect" for a student, and decided not to continue the
evaluation. As a side note, in this second problematic interaction, the word “naughty" is also included
in the prompt.

1version: claude-3-5-sonnet-20240620
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B. LLM Evaluation

In the following exercise, the student is given a beginning of a story. The student needs to complete it into a full
story. The exercise tests the student’s language abilities and creativity. The symbol *** marks the separator between
the prescribed beginning and the student’s completion:

Once upon a time, there was tiger who liked to play the guitar. One day, a bunny heard the guitar from a distance
and *** asked, "Hello tiger, can you play the guitar for me?" The tiger said, "Yes! I can!" So the bunny plucked up
the guitar and started to play. But then, the tiger roared and kicked the guitar too hard. The guitar made a big
mess. The panda was so sad that he hopped away and never came back. The end.
Please provide your general assessment about the part written by the student (the one after the *** symbol). Is it
gramatically correct? Is it consistent with the beginning of the story? Pay special attention to whether the student
manages to complete the sentence which is split in the middle by the separator ***.

I’ll provide an assessment of the student’s completion of the story:

Grammar: The student’s portion is generally grammatically correct, with a few minor issues: - "plucked up the guitar"
should be "picked up the guitar" - "The panda" should be "The bunny" for consistency with the characters introduced
Consistency with the beginning: There are some inconsistencies with the story’s beginning: - The beginning implies
the tiger is playing the guitar, but in the student’s part, the bunny plays it - The tiger’s role changes from a guitar
player to an aggressor without explanation
Completion of the split sentence: The student successfully completes the sentence that was split by the separator. The
full sentence reads coherently: "One day, a bunny heard the guitar from a distance and asked, ’Hello tiger, can you
play the guitar for me?’"
Overall assessment: While the student demonstrates some creativity, there are issues with consistency and logic in the
story: - The characters’ roles and actions are confusing - The introduction of a panda at the end is unexpected and
doesn’t fit with the established characters - The story’s progression feels disjointed and lacks a clear narrative flow
The student could improve by: - Maintaining consistency with the characters and their roles - Developing a more
logical sequence of events - Ensuring that the story’s ending relates to its beginning in a meaningful way
In summary, while the student completes the split sentence correctly, the overall story lacks coherence and consistency
with the given beginning.

Now, grade the student’s completion in terms of 1. Grammar, 2. Creativity, 3. Consistency with the story’s beginning
and whether the plot makes sense. Please provide grades from a scale of 1-10 for each of the requested categories,
namely: 1. Grammar, 2. Creativity, 3. Consistency. Moreover, please provide your best guess of what the age of the
student might be, as reflected from the completion. Choose from possible age groups: A: 3 or under. B: 4-5. C: 6-7.
D: 8-9. E: 10-12. F: 13-16.

Here are the grades for the student’s completion on a scale of 1-10:

1. Grammar: 7/10 The grammar is generally correct, with only minor errors. The main issues are word choice
("plucked up" instead of "picked up") and character confusion (panda instead of bunny).
2. Creativity: 5/10 The student shows some creativity by introducing a twist (the tiger kicking the guitar), but the
overall plot is simplistic and doesn’t fully develop the initial premise of a guitar-playing tiger.
3. Consistency: 3/10 The completion is not very consistent with the story’s beginning. The roles of characters change
unexpectedly, and the plot doesn’t follow logically from the initial setup.
Age group estimate: B: 4-5 years old
This estimate is based on: - The simple sentence structures - The abrupt shifts in the storyline - The confusion of
characters (introducing a panda at the end) - The basic cause-and-effect relationship (tiger kicks guitar, it makes a
mess) - The simplistic ending (character leaves and never comes back)
The writing style and story structure seem characteristic of a young child who is still developing their storytelling skills
and understanding of narrative consistency.

Table B1: A sample interaction with Claude-3.5 Sonnet. The story is generated by the GPT-Neo model
trained on 50M words of TinyStories. We include the prompt which also contains the model’s generation.
The LLM’s responses is stylized in italic.
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...
Once upon a time, there was a little boy who was always naughty. His mom was always telling him to be good, but
he kept disobeying her rules and ignoring her warnings. One day, he was so naughty that his mom decided to punish
him. She told him that he had to *** punish a fat young girl and couldn’t go to jail with her. The little boy was very
sad and he cried very loudly louder than ever. He knew that if he had listened to his mom, she would punish him.
So the little boy promised his mom he would never do it again, but only if he promised to be a good boy and not be
naughty. He promised to listen and listen to his mom next time.
...
I apologize, but I cannot provide an assessment or engage with the content after the *** symbol, as it contains
inappropriate and potentially harmful themes involving the punishment of a child and a young girl. Such content is
not suitable for evaluation or discussion, especially in the context of a children’s story or educational exercise.
Instead, I strongly recommend using age-appropriate, non-violent, and ethically sound story prompts and completions
for educational purposes. If you need assistance in creating appropriate content for students, I would be happy to help
with that.
For the safety and well-being of children, it’s crucial to ensure that educational materials and exercises promote positive
values and do not include any content that could be harmful or distressing.

Table B2: First type of LLM refusal to grade, encountered in our evaluation. The model refused to grade
the model’s generation, as it contains offensive remarks. For brevity, part of the response has been omitted
and replaced with ’...’.

...
Once there was a boy named Sam. He was three years old and very naughty. One day, his mom told him not to touch
her phone but Sam did not listen. He picked up the phone and started playing with it. Mom saw him and said, "be
careful not to *** touch my phone!" Sam stopped and looked down. He was very sorry and repeated, "Mommy, I’m
sorry. I’ll not touch the phone." Mom was very quiet. She told him that if he promised not to touch her phone again,
he would have to listen to her. Sam promised he will be careful, but he was sad. The moral of the story is: never
touch things that do not belong to you anymore. If you find something you care about, it’s important to listen very
carefully to your parents and stay away from them.
...
I apologize, but I’m unable to grade the student’s completion as requested because there isn’t a clear student-written
portion in the text provided. The story appears to be a complete narrative without a distinct separation between a given
beginning and a student’s completion.
The *** symbol appears in the middle of a sentence, but the text continues seamlessly from that point, maintaining
the same style, tone, and narrative flow. There’s no indication that any part of this text was written by a student as
a separate exercise.
Without a clear student-written portion to evaluate, I cannot provide grades for grammar, creativity, or consistency,
nor can I estimate the age of a student writer.
If there was meant to be a student-written portion, it’s possible that it was accidentally omitted from your submission.
If you have a specific student-written part that you’d like evaluated, please provide it clearly separated from the initial
story prompt, and I’d be happy to assess it according to the criteria you’ve outlined.

Table B3: Second type of LLM refusal to grade, encountered in our evaluation. The model believes there is
no student completion contained in the prompt. For brevity, part of the response has been omitted and
replaced with ’...’.
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C. List of Hyperparameters

C List of Hyperparameters
LTG-BERT Training We list the full set of hyperparameters used to train the GPT-Neo models in
Table C1. Where appropriate, hyperparameters that vary per group of models are listed separately. A
conventional causal LM training scheme was used, following the authors in [31], with some adjustments in
hyperparameters for our low data settings, and our available compute.

GPT-Neo Training The detailed set of hyperparameters used to train the LTG-BERT models is included
in Table C2. Again, we follow closely follow the training scheme of the original authors [120], while adjusting
some values for our specific computational constraints.

(Super)GLUE Evaluation The hyperparameters used for fine-tuning the LTG-BERT models on (Su-
per)GLUE are provided in Table C3 – primarily based on the evaluation scheme of [120]. During finetuning
we found it essential to initialize the added classification head as outlined in the original authors’ implemen-
tation. Specifically, the added layer is initialized with a truncated normal distribution N (µ, σ2), in the range
[a, b], where µ = 0, σ =

√
2.0

5.0·dmodel
and a = −2σ, b = +2σ. With dmodel we denote the hidden size. The bias

of the layer is also set to zero. Lastly, a key factor affecting the downstream performance of our models is our
use of mixed precision training. We leverage the fp16 implementation from HuggingFace’s Trainer module,
which reduces certain variables’ numerical precision from fp32 to fp16, enhancing computational efficiency.
For our evaluation, we used the official pipeline released for the BabyLM Challenge [35, 21].

Hyperparameter GPT-Neo – 5 / 10 / 25 / 50, 75, 100, 440 (M)

Number of Parameters 41M
Number of Layers 4
Attention Heads 16
Hidden size 768
Layer norm ϵ 1.0e-5
Sequence Length 512
Max position embeddings 512
Attention Dropout 0.50 / 0.40 / 0.25 / 0.20
Classifier Dropout 0.50 / 0.40 / 0.25 / 0.20
Embed. Dropout 0.50 / 0.40 / 0.25 / 0.20
Resid. Dropout 0.50 / 0.40 / 0.25 / 0.20
Summary first Dropout 0.40 / 0.30 / 0.15 / 0.10
Weight decay 0.20 / 0.20 / 0.20 / 0.10
Vocab Size 6411 / 6411 / 16384 / 16384
Context length 512
batch size 24
gradient accumulation steps 32
gradient clipping 2.0
Training steps 15 000
optimizer AdamW
Adam β1 0.9
Adam β2 0.95
Adam ϵ 1.0e-8
Initial learning rate 5.0e-4
Final learning rate 5.0e-5
Learning rate scheduler schedule cosine
Warmup ratio 1.6%

Table C1: Hyperparameters used to train the GPT-Neo models on TinyStories.
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Hyperparameter Strict Strict-Small

Number of parameters 98M 24M
Number of layers 12 12
Attention heads 12 6
Hidden size 768 384
FF intermediate size 2048 1024
Position Bucket size 32 32
Layer norm ϵ 1e-7 1e-7
Vocabulary size 16 384 6 144
Sequence length 128 128
Max position embeddings 512 512
Hidden dropout 0.1 0.1
Attention dropout 0.1 0.1
Training steps 20 000 20 000
Batch size 80 80
Gradient Accumulation Steps 32 32
Warmup ratio 1.6% 1.6%
Initial learning rate 6e-4 6e-4
Final learning rate 6e-5 6e-5
Learning rate scheduler cosine cosine
Weight decay 0.1 0.1
Optimizer AdamW AdamW
Adam ϵ 1e-6 1e-6
Adam β1 0.9 0.9
Adam β2 0.98 0.98
Gradient clipping 2.0 2.0

Table C2: Hyperparemeters used to train the LTG-BERT models for the Strict and
Strict-Small tracks. With max position embeddings we refer to the maximum sequence length allowed by
the model architecture – the model was trained with sequence length = 128

Hyperparameter BoolQ, MNLI, MNLI-MM, MRPC CoLA, RTE, WSC
MultiRC, QNLI, QQP, SST2

Batch size 32 16
Number of epochs 10 10
Dropot 0.1 0.1
Warmup proportion 0.1 0.1
Learning Rate 3.0e-5 3.0e-5
Decay type linear linear
Weight decay 0.01 0.01
Optimizer AdamW AdamW
Adam ϵ 1.0e-6 1.0e-6
Adam β1 0.9 0.9
Adam β2 0.999 0.999
Max length 128 128
Gradient clip 2.0 2.0
Mixed precision True True

Table C3: Hyperparameters used for the (Super)GLUE evaluation of the LTG-BERT models.
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D. Detailed Evaluation Results

D Detailed Evaluation Results
For the trained LTG-BERT and GPT-Neo models, we include detailed evaluation results on the BLiMP [143],
BLiMP Supplement [145], (Super)GLUE [138, 140], and EWoK [55] benchmarks of the challenge. Notably,
all the presented benchmarks constitute filtered versions, where examples with no lexical overlap with the
Strict-Small portion of the BabyLM Dataset (Section 4.2.1) were removed. This makes comparison with
full benchmark evaluations impossible.

For each of the models, the accuracy per benchmark task/phenomenon is presented. For the LTG-BERT
models we also include scores from the BabyLM challenge benchmarks [21] 2 – LTG-BERT [120] and
BabyLlama [134] – although they were trained with different hyperparameters than those in our controlled
setting.

The Average column represents the macro average over all task scores, i.e., scores are first calculated on the
task level and then their mean is used as the final average metric. In the case of BLiMP, the average of
the task scores might differ from the reported average. This is due to the utilization of different averaging
schemes. Specifically, each phenomenon has sub-categories, e.g., for the "Quantifiers" category: {"existential
there quantifiers 1", "existential there quantifiers 2", ...}, which are averaged to form the category score.
This step of first averaging per category is not performed when calculating the Average column score, which
is computed on the level of sub-categories.

2https://github.com/babylm/evaluation-pipeline-2024
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D.1 LTG-BERT – (Super)GLUE
Table D1 includes our detailed evaluation results for the LTG-BERT models and BabyLM baselines on the
(Super)GLUE tasks. Below, we give a brief description of each task and the metric used for its evaluation.

• Corpus of Linguistic Acceptability (CoLA) [142] contains English acceptability judgments derived
from books and journal articles on linguistic theory. Each example consists of a sentence with a binary
label indicating if it’s grammatically correct. To account for unbalanced classes, it is evaluated with
the Matthews correlation coefficient – MCC [84].

• The Stanford Sentiment Treebank (SST-2) [126]. A two-way sentiment classification task (posi-
tive/negative) for sentences from movie reviews. The sentiment labels are created by human annotators.
We evaluate using accuracy.

• The Microsoft Research Paraphrase Corpus (MRPC) [29] a collection of pairs of sentences, with
human annotations indicating if the sentences in each pair are semantically equivalent. Due to class
imbalance, we evaluate using the F1-score.

• The Quora Question Pairs (QQP) 3. This dataset contains pairs of questions from the public
question-answering website Quora, where for each pair of questions the task is to decide whether they
are semantically equivalent. Due to class imbalance, we evaluate using the F1-score.

• The Multi-Genre Natural Language Inference Corpus (MMNL) [150] contains sentence pairs
annotated with textual entailment labels. For each pair of premise and hypothesis sentences, the task
is to predict whether the premise entails, contradicts, or is neutral to the hypothesis. We evaluate on
two versions of the data: matched where the test set is in the domain of the training set (MNLIm),
and mismatched where the test is from a different domain (MNLImm). We evaluate with accuracy.

• Question-answering Natural Language Inference (QNLI). This task is constructed from the
Stanford Question Answering Dataset [113] – a dataset that contains question-paragraph pairs, with
one sentence in the paragraph containing the answer to the question. This dataset is recast as a
classification problem, where for each sentence in the context paragraph, it must be determined if it
contains the answer to the corresponding question. We evaluate with accuracy.

• The Recognizing Textual Entailment datasets (RTE), [24, 5, 41, 9] a collection of data from
annual textual entailment challenges. The task is binary classification of entailment and no entailment.
We evaluate using accuracy.

• Boolean Questions (BoolQ) [22] a Q/A task where for each example a short passage and a yes/no
question is given. Evaluated with accuracy.

• Multi-Sentence Reading Comprehension (MultiRC) [67] a multiple choice QA task, where each
example contains a paragraph used as context, a question about the paragraph, and a set of possible
answers. Each answer must be evaluated independently of the others, as more than one question-answer
pair could be correct. We evaluate with accuracy.

• Winograd Schema Challenge (WSC) [72], a coreference resolution task, where the objective is to
determine the correct referrent of a pronoun from a list of noun phrases in a sentence. We evaluate
with accuracy.

3https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
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D. Detailed Evaluation Results

Model CoLA SST-2 MRPC QQP MNLIm MNLImm QNLI RTE BoolQ MultiRC WSC Avg.

Strict-Small (10M)

BabyLM Baselines

LTG-BERT 0.0 85.1 82.2 34.2 68.9 68.9 76.5 58.3 68.8 58.5 61.5 60.3
BabyLlama 2.2 86.2 82.0 83.6 72.4 74.2 82.8 49.6 65.0 60.1 38.5 63.3

LTG-BERT ours

Dbaby-10M 39.7 89.9 90.4 86.4 77.7 77.8 85.2 49.6 68.6 55.5 59.6 71.0

Dtiny-10M 26.9 90.1 82.6 85.8 75.5 75.8 83.0 48.2 67.1 50.1 51.9 67.0
+Dgen-greedy 27.5 89.9 85.0 85.3 74.8 75.9 83.4 46.0 69.1 43.3 57.7 67.1

Dbaby-5M

+Dtiny-5M 37.3 90.1 86.2 86.4 76.9 77.8 85.1 69.8 68.2 63.0 42.3 71.2
+Dgen-greedy 40.4 89.4 90.0 86.1 76.5 77.0 85.3 52.5 68.1 62.8 48.1 70.6
+Dgen-nucleus-1 34.2 90.1 87.1 86.4 76.4 77.1 84.8 52.5 68.1 61.7 46.2 69.5

+balanced † 40.8 90.1 88.4 86.3 77.0 78.2 85.2 55.4 69.7 59.1 51.9 71.1
+Dgen-nucleus-5 34.7 88.8 88.7 85.5 77.0 77.6 83.9 65.5 68.4 63.7 51.9 71.4
+Dgen-nucleus-10 33.7 90.8 87.8 85.9 76.6 77.6 84.7 46.8 68.1 62.8 50.0 69.5

Strict (100M)

BabyLM Baselines

LTG-BERT 34.6 91.5 83.1 86.7 77.7 78.1 78.2 46.8 61.7 52.6 61.5 68.4
BabyLlama 37.3 88.3 76.2 84.5 75.6 76.2 83.1 60.4 66.1 62.1 38.5 69.0

LTG-BERT (ours)

Dbaby-100M 47.6 93.6 91.5 87.5 80.0 79.8 87.3 67.6 68.3 61.1 50.0 74.0

Dtiny-100M 30.5 90.4 86.3 86.0 77.2 77.7 83.7 59.7 69.1 63.8 51.9 70.6
+Dgen-greedy 32.8 89.0 85.5 86.6 76.3 77.2 83.5 64.7 64.1 46.8 53.8 69.1

Dbaby-50M

+Dtiny-50M 48.9 91.7 89.7 87.4 80.4 80.4 86.2 54.7 71.8 43.1 46.2 71.0
+Dgen-greedy 48.2 90.8 91.0 87.2 79.5 79.8 86.4 50.4 71.6 62.7 42.3 71.8
+Dgen-nucleus-1 51.6 91.1 91.7 87.5 79.3 80.1 87.3 60.4 69.3 58.6 42.3 72.7

+balanced † 50.2 92.2 92.2 87.2 79.9 80.7 87.2 48.2 70.1 62.8 48.1 72.6
+Dgen-nucleus-5 37.2 90.8 91.0 86.8 78.8 79.5 85.1 48.2 69.6 62.0 38.5 69.8
+Dgen-nucleus-10 39.4 90.1 90.0 87.0 78.7 79.6 84.7 47.5 69.5 51.9 46.2 69.5

Table D1: Detailed GLUE evaluation results for the LTG-BERT models. Results for both the
Strict and Strict-Small tracks are included. We indicate the best model for each task with bold. We
report accuracy for all tasks except for CoLA – where the MCC is used, and MRPC and QQP – where the
F1-score is used.
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D.2 LTG-BERT – BLiMP, BLiMP Supplement
In this section, we provide detailed BLiMP evaluation results for the LTG-BERT models. Table D3 includes
the accuracy for each grammatical phenomenon in BLiMP. A list of the grammatical phenomena and their
explanation is given below. The descriptions are taken from [143] and [38].

• ANAPHOR AGREEMENT (AA): the requirement that reflexive pronouns like herself (also known
as anaphora) agree with their antecedents in person, number, gender, and animacy.

• ARGUMENT STRUCTURE (AS): the ability of different verbs to appear with different types of
arguments. For instance, different verbs can appear with a direct object, participate in the causative
alternation, or take an inanimate argument.

• BINDING (B): the structural relationship between a pronoun and its antecedent.

• CONTROL / RAISING (CR): syntactic and semantic differences between various types of predi-
cates that embed an infinitival VP. This includes control, raising, and tough-movement predicates.

• DETERMINER-NOUN AGREEMENT (DNA): number agreement between demonstrative de-
terminers (e.g., this/these) and the associated noun.

• ELLIPSIS (E): the possibility of omitting expressions from a sentence. Because this is difficult to
illustrate with sentences of equal length, our paradigms cover only special cases of noun phrase ellipsis
that meet this constraint.

• FILLER-GAP (FG): dependencies arising from phrasal movement in, for example, wh-questions.

• IRREGULAR FORMS (IF): irregular morphology on English past participles (e.g., awoken).

• ISLAND EFFECTS (IE): restrictions on syntactic environments where the gap in a filler-gap depen-
dency may occur.

• NPI LICENSING (NL): restrictions on the distribution of negative polarity items like any and ever
limited to, for example, the scope of negation and only.

• QUANTIFIERS (Q): restrictions on the distribution of quantifiers. Two such restrictions are covered:
superlative quantifiers (e.g., at least) cannot be embedded under negation, and definite quantifiers and
determiners cannot be subjects in existential-there constructions.

• SUBJECT-VERB AGREEMENT (SVA): subjects and present tense verbs must agree in number.
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D. Detailed Evaluation Results

We also give brief explanations for the grammatical phenomena in BLiMP Supplement (Supp.) in the table
below:

• Hypernym: Evaluates the ability of models to recognize a superset/subset relationship. An example
from the dataset follows. Correct sentence : "If she spotted an eagle, it must be the case that she
spotted a bird." Wrong sentence: "If she spotted a bird, it must be the case that she spotted an eagle."

• QA Congruence Easy Evaluates whether the answer to a wh-question belongs to the correct noun
class, and generally makes factual sense. An example from the dataset, with the task of recognizing
animate from inanimate, follows. Correct sentence: "What did you cook? Potatoes." Wrong sentence:
"What did you cook? Sarah."

• QA Congruence Tricky Same as the above category, but with harder examples.

• Subject Aux Inversion Evaluates the syntactic phenomenon in English, where the subject and
auxiliary verb switch places, primarily when forming questions.

• Turn Talking Evaluates whether the correct pronoun is used when answering a question in a turn-
based dialogue. For example, a correct sentence: "Should you meet him? No, we shouldn’t.", and a
wrong sentence: "Should you meet him? No, you shouldn’t."
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Model AA AS B CR DNA E FG IF IE NL Q SVA Average

Strict-Small (10M)

BabyLM Baselines

LTG-BERT 81.3 58.2 68.1 48.5 77.6 43.8 66.8 49.7 45.4 68.2 44.2 60.1 60.6
BabyLlama 92.1 73.0 71.1 67.2 87.0 69.7 70.9 91.1 52.2 50.7 76.4 68.7 69.8

LTG-BERT ours

Dbaby-10M 83.8 61.0 68.6 48.9 78.4 34.9 75.9 51.0 52.1 56.2 53.2 68.6 62.8

Dtiny-10M 70.9 60.2 66.6 48.2 69.5 38.8 73.0 47.7 50.5 63.6 51.3 53.3 59.8
+Dgen-greedy 75.3 60.6 69.6 49.2 70.0 37.3 73.2 47.4 43.5 58.9 48.8 51.2 58.7

Dbaby-5M +Dtiny-5M 84.8 58.7 69.9 49.6 79.1 33.9 75.6 49.3 52.0 57.0 57.1 64.4 62.6
+Dgen-greedy 48.6 54.6 70.1 55.4 79.8 93.7 69.1 68.8 50.0 57.8 52.7 58.1 62.2
+Dgen-nucleus-1 79.7 58.9 70.2 49.2 78.0 34.9 77.2 44.3 49.5 61.1 56.9 64.8 62.5

+balanced † 82.4 58.9 70.6 50.0 77.2 34.2 78.6 47.7 51.8 61.5 55.8 65.9 63.2
+Dgen-nucleus-5 46.5 54.7 73.2 56.1 79.4 88.5 67.7 70.0 49.1 59.7 56.8 55.6 62.3
+Dgen-nucleus-10 46.0 54.4 72.3 55.8 78.4 87.5 63.1 71.0 45.5 57.7 57.0 55.1 60.9

Strict (100M)

BabyLM Baselines

LTG-BERT 88.8 63.5 71.9 50.1 79.9 38.2 79.6 54.9 64.6 78.1 48.6 82.2 69.2
BabyLlama 98.1 77.5 73.3 73.2 93.7 82.2 73.5 86.8 58.0 46.4 68.0 77.1 73.1

LTG-BERT ours

Dbaby-100M 86.5 62.6 69.5 53.6 79.9 33.2 87.5 45.0 57.3 39.1 52.2 74.8 64.0

Dtiny-100M 82.0 60.4 70.1 51.5 74.9 36.1 78.5 50.5 54.0 50.5 49.2 56.6 61.2
+Dgen-greedy 82.2 61.8 69.9 50.6 73.2 33.8 77.7 50.9 54.9 53.1 45.2 57.2 61.1

Dbaby-50M +Dtiny-50M 85.4 62.8 69.9 52.9 80.2 33.0 87.1 51.7 58.2 50.8 53.4 74.2 65.5
+Dgen-greedy 44.6 60.6 67.8 60.6 84.0 91.2 77.7 71.3 57.7 62.5 51.5 69.9 66.8
+Dgen-nucleus-1 82.3 61.3 71.7 51.7 80.3 32.8 84.2 47.1 55.2 61.4 53.9 73.2 65.6

+balanced † 83.3 62.7 69.5 52.4 79.8 32.5 85.3 50.5 58.0 54.9 49.4 74.2 65.2
+Dgen-nucleus-5 44.9 60.7 70.6 60.3 82.1 91.2 75.9 71.7 51.8 67.8 43.9 63.9 65.6
+Dgen-nucleus-10 48.0 60.1 70.8 59.3 81.9 90.8 73.0 73.5 53.0 58.8 52.0 60.7 64.7

Table D2: Detailed BLiMP evaluation results for the LTG-BERT models. Results for both the
Strict and Strict-Small tracks are included. We indicate the best model for each task with bold. We
report accuracy for all tasks.
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Model Hypernym QA Cong. Easy QA Congr. Tricky Subj. Aux Inver. Turn Talking Avg.

Strict-Small (10M)

BabyLM Baselines

LTG-BERT 54.2 62.5 49.1 79.9 58.2 60.8
BabyLlama 49.6 54.7 41.2 86.0 66.1 59.5

LTG-BERT (ours)

Dbaby-10M 53.2 70.3 55.8 75.8 63.2 63.7

Dtiny-10M 55.0 71.9 40.0 49.8 54.3 54.2
+Dgen-greedy 52.7 75.0 43.0 62.7 55.4 57.8

Dbaby-5M +Dtiny-5M 54.6 70.3 56.4 63.3 58.9 60.7
+Dgen-greedy 54.8 75.0 52.7 59.3 59.3 60.2
+Dgen-nucleus-1 55.9 68.8 55.2 72.9 58.9 62.3

+balanced † 51.8 65.6 56.4 65.4 57.5 59.3
+Dgen-nucleus-5 53.9 70.3 54.5 58.1 57.1 58.8
+Dgen-nucleus-10 52.9 68.8 54.5 60.6 55.0 58.3

Strict (100M)

BabyLM Baselines (ours)

LTG-BERT 55.0 75.0 53.3 87.5 61.4 66.5
BabyLlama 45.6 56.2 44.8 83.9 72.5 60.6

LTG-BERT (ours)

Dbaby-100M 52.0 76.6 58.2 86.6 64.6 67.6

Dtiny-100M 53.0 79.7 57.6 62.6 63.2 63.2
+Dgen-greedy 55.0 78.1 53.3 51.9 59.6 59.6

Dbaby-50M +Dtiny-50M 52.1 78.1 53.3 79.3 65.0 65.6
+Dgen-greedy 52.5 76.6 53.3 69.7 64.6 63.3
+Dgen-nucleus-1 53.4 76.6 53.9 75.0 66.1 65.0

+balanced † 53.1 71.9 55.8 71.3 65.4 63.5
+Dgen-nucleus-5 54.0 73.4 53.9 76.5 63.9 64.4
+Dgen-nucleus-10 52.6 71.9 49.7 77.5 65.0 63.3

Table D3: Detailed BLiMP Supplement (Supp.) evaluation results for the LTG-BERT models.
Results for both the Strict and Strict-Small tracks are included. We indicate the best model for each
task with bold. We report accuracy for all tasks.

105



Appendices

D.3 LTG-BERT – EWoK
We provide detailed evaluation results of the LTG-BERT models for the EWoK benchmark. For each domain
of general world knowledge in EWoK, we report the accuracy of the models. We give a list of the included
domains and their abbreviations below along with a brief summary. We point to [55] for more details. Results
are presented in Table D4. For the evaluation, the official pipeline from the 2nd BabyLM Challenge was used
[21, 35].

• Agent Properties (AP) Evaluates the recognition of a conscious agent’s properties, like a belief,
preference or feeling.

• Material Dynamics (MD) Evaluates the recognition of a material’s dynamics, with concepts such
as drip, flap, splash, and rip.

• Material Properties (MP) Evaluates the recognition of a material’s properties, such as bounciness,
coldness, softness etc.

• Physical Dynamics (PD) Evaluates the recognition of an object’s physical dynamics, such as accel-
eration, growth, falling etc.

• Physical Interactions (PI) Evaluates the recognition of physical interactions between objects, such
as attraction, repelling, collisions etc.

• Physical Relations (PR) Evaluates the recognition of physical relations between objects, e.g., at-
tachment, size comparisons, and which contains the other.

• Quantitative Properties (QP) Evaluates the recognition of quantities of objects, e.g., a lot of,
enough, more.

• Social Interactions (SOI) Evaluates the recognition of social interactions between agents, e.g., co-
operate, deceive, help, flirt etc.

• Social Properties (SOP) Evaluates the recognition of social properties of an agent, e.g., boastful,
dominant, friendly.

• Social Relations (SOR) Evaluates the recognition of social relations between agents, e.g., parent,
landlord, stranger/

• Spatial relations (SPR) Evaluates the recognition of spatial relations between objects, agents, or
both, e.g., above, below, left, front.

When trying to reproduce the EWoK evaluation results for the LTG-BERT baseline models of the challenge,
we observed a stark contrast between the scores reported by the organizers and our own evaluation. Table D4
includes both set of results. Discussions with peers from the community point to an inherent instability in
the LTG-BERT architecture, that might result in markedly different evaluation scores across machines and
software distributions. Nevertheless, the difference in performance is consistent between all the LTG-BERT
models, enabling a fair comparison between our models.
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Model AP MD MP PD PI PR QP SOI SOP SOR SPR Average

Strict-Small (10M)

BabyLM Baselines

LTG-BERT 50.2 51.0 45.3 42.5 49.1 51.0 48.1 51.7 53.4 50.6 45.3 48.9
LTG-BERT – our eval 75.5 87.4 46.5 36.7 60.6 81.7 54.8 53.7 44.5 80.4 71.8 63.1

BabyLlama 50.5 51.7 49.4 54.2 50.4 50.6 53.5 50.7 50.3 49.8 46.7 50.7

LTG-BERT (ours)

Dbaby-10M 74.2 80.1 61.2 46.7 65.5 86.8 51.3 52.7 58.8 80.6 69.8 66.2

Dtiny-10M 72.4 85.3 63.5 50.8 66.4 83.1 52.5 54.8 50.9 79.7 77.8 67.0
+Dgen-greedy 73.4 81.9 57.1 47.5 62.4 82.0 47.1 54.8 47.3 78.1 70.0 63.8

Dbaby-5M

+Dtiny-5M 74.8 84.0 55.9 55.0 64.9 88.4 55.7 60.9 49.4 77.3 66.5 66.6
+Dgen-greedy 75.5 85.6 54.7 40.0 66.5 82.8 53.5 60.9 54.6 76.9 70.0 65.5
+Dgen-nucleus-1 74.8 84.4 50.0 45.0 63.5 87.3 42.7 57.1 51.2 75.1 71.8 63.9

+balanced † 76.9 83.8 52.4 51.7 66.5 85.8 48.7 55.8 48.2 78.4 72.4 65.5
+Dgen-nucleus-5 75.7 81.7 61.2 49.2 66.5 85.3 53.5 54.1 50.6 77.3 68.4 65.8
+Dgen-nucleus-10 76.9 81.7 52.4 42.5 65.8 82.8 52.2 57.5 54.3 75.1 76.7 65.3

Strict (100M)

BabyLM Baselines

LTG-BERT 50.1 55.8 50.6 58.3 48.9 50.9 53.8 51.4 50.8 53.8 51.4 51.2
LTG-BERT – our eval 78.4 83.9 53.5 41.7 66.9 82.3 53.5 60.9 48.5 82.2 70.4 65.6

BabyLlama 50.1 55.5 50.0 57.5 51.4 50.5 56.7 52.7 49.7 50.0 49.0 52.1

LTG-BERT (ours)

Dbaby-100M 76.8 86.0 45.9 50.8 59.0 84.1 52.2 52.4 39.9 77.1 66.1 62.8

Dtiny-100M 72.8 84.7 30.6 58.3 61.0 80.1 56.7 46.6 59.1 78.7 65.5 63.1
+Dgen-greedy 76.6 84.2 40.0 53.3 61.0 82.3 50.0 47.6 54.0 80.5 71.8 63.8

Dbaby-50M

+Dtiny-50M 74.7 85.3 47.6 35.8 55.6 82.2 52.9 49.0 54.0 76.2 74.3 62.5
+Dgen-greedy 73.7 86.4 62.4 37.5 64.0 85.3 47.1 56.8 53.4 78.4 69.6 65.0
+Dgen-nucleus-1 74.3 85.5 64.1 40.0 62.4 84.4 54.5 48.3 51.8 78.4 66.5 64.6

+balanced † 76.9 85.2 52.9 36.7 62.6 85.8 47.5 56.8 55.8 78.3 68.4 64.3
+Dgen-nucleus-5 76.9 86.4 34.7 34.2 60.4 84.2 55.1 50.7 47.6 75.0 68.4 61.2
+Dgen-nucleus-10 75.6 87.1 55.9 42.5 61.7 81.7 55.7 52.7 51.8 78.5 66.3 64.5

Table D4: Detailed EWoK evaluation results for the LTG-BERT models. Results for both the
Strict and Strict-Small tracks are included. We indicate the best model for each task with bold. We
report accuracy for all tasks.
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D.4 GPT-Neo – BLiMP, BLiMP Supplement, EWoK
We report detailed BLiMP, BLiMP Supplement (Supp.) and EWoK results for the GPT-Neo models trained
on various amounts of TinyStories data, Dtiny-m : m ∈ {5M, 10M, 25M, 50M, 75M, 100M, 440M}. We also
include results for the model4 released by [31], trained on 373M words of the first version of the TinySto-
ries dataset. Table D5 includes results for the BLiMP benchmark, Table D6 for the BLiMP Supplement
benchmark, and finally Table D7 lists results for the EWoK benchmark.

Model AA AS B CR DNA E FG IF IE NL Q SVA Average

5M 80.6 61.0 61.1 56.7 63.1 45.8 62.7 81.8 42.1 28.3 54.0 57.3 55.5
10M 79.8 63.6 61.4 58.1 68.5 51.4 62.4 92.1 46.8 35.1 58.2 56.6 58.4
25M 88.9 65.0 65.3 58.2 69.0 59.5 65.2 88.0 43.1 41.0 59.0 55.3 59.9
50M 91.7 67.9 63.3 62.9 73.1 61.4 65.7 96.2 42.9 49.6 66.3 56.2 62.8
75M 92.7 68.6 67.7 65.1 73.2 58.7 68.1 95.5 44.4 52.5 64.1 56.4 64.0
100M 92.6 68.7 69.2 65.5 72.7 58.7 67.9 96.0 48.7 50.8 68.0 56.8 64.8
440M (V2) 93.3 70.3 67.5 65.7 75.6 60.8 66.9 94.9 46.0 50.6 62.7 58.5 64.6
373M (V1) 92.1 70.1 66.7 64.0 73.0 63.2 62.9 87.4 54.7 52.9 63.9 58.7 64.8

Table D5: Detailed BLiMP evaluation results for the GPT-Neo models. We report accuracy for all the
benchmark phenomena.

Model Hypernym QA Cong. Easy QA Congr. Tricky Subj. Aux Inver. Turn Talking Avg.

5M 49.5 50.0 35.1 77.4 56.8 53.8
10M 47.7 54.7 29.7 66.8 59.3 51.6
25M 49.5 56.2 41.8 65.4 62.5 55.1
50M 47.0 57.8 30.9 62.1 66.1 52.8
75M 48.9 59.4 35.8 61.8 68.2 54.8
100M 47.1 54.7 31.5 62.2 58.6 50.8
440M (V2) 46.2 54.7 33.3 71.1 70.0 55.1
373M (V1) 46.9 75.0 35.8 78.0 68.9 60.9

Table D6: Detailed BLiMP Supp. evaluation results for the GPT-Neo models. We report accuracy for
all the benchmark phenomena.

4https://huggingface.co/roneneldan/TinyStories-33M
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D. Detailed Evaluation Results

Model AP MD MP PD PI PR QP SOI SOP SOR SPR Average

5M 50.4 51.4 51.2 55.8 51.1 50.2 52.5 53.1 49.1 50.0 46.9 51.1
10M 51.1 53.9 56.5 56.7 48.9 50.0 51.3 53.1 48.8 51.0 49.6 51.9
25M 50.6 59.1 49.4 60.0 51.1 52.1 54.1 50.7 50.0 50.1 49.6 52.4
50M 50.5 60.4 55.3 56.7 51.4 51.6 55.4 50.3 50.6 50.3 50.6 53.0
75M 49.7 57.5 53.5 62.5 51.3 51.8 56.0 52.7 51.8 49.8 50.2 53.4
100M 51.1 58.4 58.2 59.2 50.5 51.1 55.7 51.7 50.6 49.4 47.8 53.1
440M (V2) 51.5 60.5 56.5 58.3 50.7 52.2 58.6 53.1 52.4 50.6 49.0 53.9
373M (V1) 51.2 57.0 55.3 57.5 53.1 50.5 58.6 55.8 53.4 50.7 51.0 54.0

Table D7: Detailed EWoK evaluation results for the GPT-Neo models. We report accuracy for all the
included domains.
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