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Abstract
Whole Brain Emulation (WBE) represents one of the most am-
bitious objectives in contemporary computational neuroscience,
aiming to replicate human brain activity within a computational
model. This study investigates the role of measurement errors
during the data acquisition phase and their subsequent impact
on neural simulations, focusing on the Kuramoto and Izhike-
vich models. Both models were employed to simulate the dy-
namics of different brain regions, particularly focusing on the
introduction of noise that mimics errors originating from brain
imaging techniques.
Our analysis begins with the observation of how noise af-
fects neural dynamics by segmenting the simulations into three
phases: (1) the control phase before noise introduction, repre-
senting a brain’s natural state; (2) the branching point, where
noise is introduced as a representation of data acquisition errors
in WBE; and (3) the simulation of both control data (undisturbed
brain function) and noisy data (the behavior of a brain replica
impacted by measurement errors).
A key finding of this work is the clear correlation between noise
levels and the total error in both models, confirming that higher
noise results in greater error. This underscores the critical im-
portance of using precise measurement techniques during the
data acquisition phase and suggests the need for developing
error-correction mechanisms to mitigate the impact of noise. We
also investigated the impact of connectivity strength in specific
brain regions, revealing distinct differences between the models.
In the Kuramoto model, regions with higher connectivity con-
tributed more to the final error, while in the Izhikevich model,
these same regions tended to reduce error as their connectivity
increased.
These findings are significant because they highlight the need
for further investigation into measurement error in WBE, in ad-
dition to ongoing work on computational and hardware aspects
of brain emulation. As demonstrated, noise introduced by data
acquisition has a profound impact on neural simulation accu-
racy, and addressing this challenge is essential for achieving re-
liable WBE. Additionally, while the models employed in this
study lack certain biological realism, including synaptic plastic-
ity and adaptive behavior, they still offer valuable insights into
how noise and learning mechanisms may influence neural dy-
namics in computational models. This work lays the foundation
for future research aimed at improving both the fidelity of neu-
ral simulations and the accuracy of data acquisition techniques.
Keywords: Whole Brain Emulation, Measurement Error, Neural Simulation, Connectome
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Chapter 1

Introduction

Chapter 1. Introduction

1.1 Background

The brain, often described as the human black-box, due to its
opacity and complexity, is responsible for myriad cognitive and
survival processes, and therefore, has been the focus of exten-
sive research for many years. Computational neuroscience, lever-
ages the methods and benefits of computers, to describe how
the brain uses electrical and chemical signals to represent and
interpret both external and internal information [1]. This ob-
jective has remained unchanged through the years. Moreover,
advancements in neuroimaging techniques and the increased
availability of computing power, nowadays, allow realistic sim-
ulations of neural systems, enabling modelling large numbers
of neurons with greater accuracy.
Studying long-term brain activity is crucial for advancing our
knowledge in neuroscience, developing treatments for neuro-
logical disorders and achieving the ultimate ambitious goal of
brain emulation.
Whole Brain Emulation (WBE) is a concept which includes a
computational model to replicate the functions and conscious-
ness of the human brain [2]. This is achieved through thorough
scanning and mapping an actual biological brain’s structure and
connectivity, followed by simulating this complex configuration
on a high powered computer system. The feasibility of WBE is
based on the theory of Computationalism in the philosophy of mind,
which proposes that each mental state corresponds to a compu-
tational state [3]. Therefore, a clear credence to the possibility
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of recreating human cognitive processes through computation
is created. This process involves several steps:

1. Brain Scanning: High detailed imaging of the brain’s struc-
ture, down to the level of individual neurons and their con-
nections (synapses).

2. Data processing: Converting the scanned data into a for-
mat that a computer can understand and manipulate, ef-
fectively creating a connectome, which is a comprehensive
map of neural connections [4].

3. Simulation: Running the processed data on a computer to
emulate the brain’s function, thereby recreating the indi-
vidual’s cognitive processes, including memory, personal-
ity and consciousness.

4. Validation & Testing: Once the simulation is complete, it is
vital to assess the model’s accuracy and sufficiency in repli-
cating the brain’s functionalities. Thus, multiple compar-
isons between responses of the emulated brain to that of
the biological brain under identical conditions takes place,
through rigorous testing of either known cognitive func-
tions, such as memory recall or problem solving abilities
(direct testing), or evaluations of the model’s ability to sim-
ulate brain-pattern activities, such as neural oscillations (in-
direct testing) [5].

1.2 Motivation of this Study

While WBE opens up new prospects on achieving human-level
artificial intelligence potentially expanding human conscious-
ness into digital realms, several powerful obstacles have yet to
be overcome. WBE begins with the critical step of brain scan-
ning. This process involves capturing highly detailed images
of the brain’s structure, including individual neurons and their
intricate connections. Despite the advancements in the field of
medical imaging, a persistent challenge of this domain is the
presence of noise generated during data acquisition. These so-
called measurement errors can arise from various sources such



1.3. Research Questions 15

as limitations in imaging resolution, variability in imaging con-
ditions, and technical imperfections in the equipment used.
Given that brain scanning serves as the foundation for subse-
quent data processing, modelling and simulation, any errors in-
troduced at this stage can propagate through the entire work-
flow, potentially compromising the accuracy and validity of the
brain models. Therefore, shedding light to the way these initial
measurement errors impact the overall fidelity of brain simu-
lations, is imperative. By examining the effects of these errors,
this project aims to assess the robustness and reliability of cur-
rent brain modelling techniques.
Accurate brain emulation has the potential to revolutionize var-
ious fields, including neuroscience and artificial intelligence, by
providing more thorough insights into brain function and dys-
function. It could aid in the development of new therapies for
neurological disorders, improve brain-computer interfaces (BCIs),
and even contribute to advancements in cognitive augmentation
and enhancement technologies. The ripple effects of improving
brain model accuracy extend far beyond academic research, in-
fluencing practical applications that can significantly impact hu-
man health and technological progress.
The motivation behind this study, is not only to quantify the im-
pact of measurement errors but also provide insights that could
lead to more robust brain modelling practices. By doing so, we
aim to contribute to the ongoing efforts in neuroscience to cre-
ate accurate and functional simulations of the human brain, ul-
timately moving closer to the goal of WBE.

1.3 Research Questions

This study aims to address several questions regarding the reli-
ability and validity of brain modelling techniques and the influ-
ence of measurement errors during the brain scanning process.
Since WBE relies heavily on neural connection mapping, even
small errors captured during the imaging process, via resolution
limitations and technical imperfections, can result in incorrect
data representation. Understanding how these measurement in-
accuracies propagate through the modelling process is vital for
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evaluating these models’ reliability.
Furthermore, a key aspect of this project is examining whether
the brain’s inherent neural properties, such as learning and plas-
ticity, could help in minimizing or even restoring the effects of
the initial measurement errors. Neural plasticity, the capacity of
the nervous system to modify itself, either functionally or struc-
turally [6], could potentially compensate for inaccuracies in the
emulated model. Our study investigates the extent to which
these properties can assist in restoring already lost or distorted
information and maintain functional accuracy in brain emula-
tion.
Another side-focus is the spatial contribution of different brain
regions to the overall impact of measurement errors. The brain
operates as an intricate network of differently inter-connected
regions, each one playing a distinct role in perception, memory
and other cognitive functions. Therefore, errors in imaging spe-
cific areas may have different impacts on the overall model, de-
pending on the importance of the regions’ role. Moreover, there
could also be a linkage between their connectivity and the extent
of their contribution to error propagation. Our study explores
how errors coming from different regions affect the emulation
reliability.
By answering to these questions, we aim to develop a frame-
work for quantifying the impact of measurement errors on brain
emulation. This, could help establishing thresholds and lev-
els, where errors become critical and concurrently, provide a
methodology of accuracy-improvements even after acquiring im-
perfect data.

1.4 Thesis Structure

This dissertation is organized into 7 chapters, each focusing on
a key aspect of the research process, from the theoretical back-
ground to experimental methods, the results and, finally, the in-
terpretation and significance of findings.
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Starting from the broader context of the research, the introduc-
tion aims to discuss the relevance of studying neural connectiv-
ity and dynamical models in neuroscience. The study’s key ob-
jectives and hypotheses are presented, along with an overview
of the main challenges that we aim to address.
We then review the relevant literature on brain network mod-
elling, tracing its development from early, basic models to the
more sophisticated approaches used today. Additionally, we
discuss the models that are favored for long-term modelling and
highlight previous studies that emphasize the importance of fur-
ther investigating measurement errors in brain modelling.
Next, the methodology chapter outlines the design and imple-
mentation of the selected models used for the neural simula-
tion. It describes the process of building the connectivity adja-
cency matrices, introduces the models, and explains how noise
and learning are incorporated into the simulations. Finally, the
methods used for hyperparameter tuning and evaluating model
performance are also covered.
The Results chapter presents the outcome of the simulation ex-
periments, exploring the effect of different, scaled, noise levels,
learning rates, and timepoint variations on neural dynamics.
Both qualitative and quantitative analyses are provided, includ-
ing error evaluations, visualizations and curve-fitting statistical
results.
In the following Discussion chapter, the findings are interpreted
in the theorectical context of brain network modelling and neu-
roscience. Limitations of the models are critically assessed, and
potential improvements and future directions are suggested.
The final chapter summarizes the major contributions of the the-
sis, revisiting the research objectives and how they were met.
The implications of the findings for future work in neural net-
work simulations and computational neuroscience are discussed,
and final thoughts on the overall impact of the research are pro-
vided.
The appendices contain references to the literature cited through-
out this dissertation. These citations serve to support the claims
made in each chapter and provide context for further explo-
ration of the relevant studies that inform this research.
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Chapter 2

Literature Review

2.1 Overview of Brain Modelling

Chapter 2. Overview of brain modelling Brain modelling is an in-
terdisciplinary field that combines neuroscience, computational
science and engineering aiming to create comprehensive simu-
lations of the brain’s structure and function [7]. Towards the
ultimate goal of understanding the processes, predicting the be-
havior and potentially emulating digitally the brain, computa-
tional and mathematical modelling of neural populations has
been a focal point of computational neuroscience research.
The field has evolved significantly in recent decades, driven by
advances in biology, computer science and technology. The ground-
work for more sophisticated models aiming to capture complex-
ity of brain functions came from the pioneering work of Mc-
Culloch and Pitts (1943), who developed a logical calculus of the
ideas immanent in nervous activity [8]. Moreover, a significant
milestone of the domain was the development of the Hodgkin-
Huxley model (1952), which provided a more detailed, mathe-
matical description of the electrical properties that excitable cells
such as neurons, present [9]. This model was pivotal in unravel-
ing how neurons communicate through electrical impulses, and
laid the foundation for subsequent single-neuron-level models.

In recent-years, progresses in computing power have led to
the prominence of large-scale brain models that aim to simulate
entire brain regions, or even the whole brain. One of the most
ambitious projects is the Blue Brain Project, initiated by Markram
et al. (2006), which focuses on creating a digital reconstruction
of the rodent brain at a cellular level [10]. BBP simulates neural
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FIGURE 2.1: (a) McCulloch-Pitts neuron model, representing
a simplified artificial neuron functioning as a binary threshold
unit. (b) Biological neuron, illustrating complex structures like
dendrites, axon, and synapses involved in signal transmission.

microcircuits via numerous supercomputers, thus, providing in-
sights into brain function and pathology.
Another significant contribution is, undoubtedly, the Human Brain
Project, a large-scale European research initiative, aimed at build-
ing a comprehensive model of the human brain [11]. For this
goal, data from a plethora of projects get integrated to create
a unified model, robust enough for both research and clinical
applications. The Human Brain Project emphasizes the impor-
tance of collaboration across disciplines and the use of high-
performance computing to manage and analyze large datasets.
Despite the aforementioned scientific and technological advance-
ments, brain modelling faces several challenges. One of the pri-
mary obstacles is the accurate representation of the brain’s vast
complexity. Containing over 86 billion neurons, each holding
its individuality with cellular traits such as excitability, while si-
multaneously being connected by synapses creating super-complex
networks, the brain is very challenging to model because cap-
turing this level of detail in a digital form, requires immense
computational power and sophisticated algorithms.
In addition, measurement errors during data acquisition intro-
duce variability and noise, complicating the process of creat-
ing accurate models. Techniques such as the Magnetic Reso-
nance Imaging (MRI) and Diffusion Tensor Imaging (DTI) are
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commonly used to capture the structure, but come with limi-
tations in terms of noise and resolution constraints. Galasser et
al. (2016) in the Human Connectome Project highlights these chal-
lenges and underscores the need for improved imaging tech-
niques and data processing methods[12].
The future of brain modelling lies in the integration of multi-
scale data from bio-molecular to behavioral levels, and the con-
tinuous improvement of imaging and computational techniques.
Advancements in AI and Machine Learning may hold promise
for the enhancement of models’ accuracy and efficiency. Collab-
orative efforts, open data initiatives and interdisciplinary efforts
will be vital for overcoming current limitations assisting in the
development of this dynamic, rapidly evolving field, ultimately
contributing to the goal of WBE.

FIGURE 2.2: a) NEURON software flowchart, illustrating the
computational modelling process used for simulating neurons
and networks. (b) Blue Brain Project logo, representing a pio-
neering initiative to digitally reconstruct and simulate the brain
at a cellular level. (c) Human Brain Project logo, symbolizing
the broader effort to advance brain research through large-scale

simulation and data-driven neuroscience.
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2.2 Types of brain models used in long-term activ-
ity studies

Long-term brain activity studies focus on elucidating the way
brain functions, processes and structures evolve over extended
periods, ranging from minutes to hours or even longer. These
studies play a crucial role in diving further into chronic neuro-
logical conditions, cognitive aging, learning processes and the
long-term effects of therapeutic interventions. A plethora of
models can be used for such cause, and can be categorized based
on their scale, purpose, and the methodologies employed. [13]

• Neural Mass Models: Models that simplify larger popula-
tions of neurons into average activity patterns. These mod-
els are useful for studying large-scale brain dynamics and
long-term oscillatory behavior

• Network Models: Models that simulate the interactions be-
tween different brain regions or within specific neural cir-
cuits. May vary in complexity, from simple network rep-
resentations to highly detailed simulations involving thou-
sands of interconnected neurons.

• Biophysical Models: Models that aim to represent the thor-
ough properties of neurons and synapses. The aforemen-
tioned Hodgkin-Huxley model (1952) is a foundational bio-
physical model that describes the ionic mechanisms under-
lying action potentials in neurons. These models are essen-
tial for studies that require precise simulations of neuronal
behavior and plasticity mechanisms.

• Large-Scale Brain Simulations: These models integrate data
from multiple levels of organization, including molecular,
cellular, and network scales. Both the Blue Brain Project
and the Human Brain Project aim to create such compre-
hensive models of entire brain regions or the whole brain.
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These simulations are particularly valuable for exploring
long-term changes in brain function and structure, such as
those resulting form chronic conditions or lifelong learning.

Long-term brain activity research provides valuable informa-
tion about the stability and plasticity of brain networks and,
therefore, help to uncover the mechanisms underlying chronic
conditions and long term cognitive processes. By leveraging
numerous types of brain models, researchers study the intricate
dynamics of the brain activity and ultimately contribute to ad-
vancements in neuroscience and targeted interventions for neu-
rological disorders.

2.3 Previous studies on measurement errors in brain
activity

Measurement errors in brain activity studies are a significant
concern as they can lead to inaccurate models and misinterpre-
tations of neural processes. These errors can arise from various
sources including limitations in imaging technologies, inconsis-
tencies in data acquisition, and noise introduced during mea-
surement process. In this section previous studies that have in-
vestigated the impact of measurement errors on brain activity,
data and modelling are being reviewed.

• Impact of Measurement errors in fMRI: Functional Mag-
netic Resonance Imaging (fMRI) is one of the most extensively
used techniques of measuring brain function, and is per-
formed by recording changes in blood flow. However, it
is susceptible to many noises sources such as physiological
(e.g. heartbeat and respiration), thermal noise and scanner-
related artifacts. There have been many studies demon-
strating that these noise sources can significantly affect the
reliability and reproducibility of fMRI results. For exam-
ple, Friedman and Glover (2006) highlighted the influence of
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physiological noise on fMRI signal variability and the im-
portance of correction methods to improve data accuracy.
Their work underscores the need for advanced preprocess-
ing techniques to mitigate the impact of measurement er-
rors on fMRI studies [14].

• EEG & MEG Measurement Errors: Electroencephalography
(EEG) and Magnetoencephalography (MEG) are techniques that
measure the electrical and magnetic activity of the brain, re-
spectively. These methods are susceptible to noise arising
from inconsistent electrode placement, signal artifacts, and
environmental interference. Research has shown that noise
can significantly impact the quality of EEG recordings. For
instance, a study exploring various noise sources indicates
that signal quality can be improved through careful data
cleaning and denoising techniques (Sharma & Singh, 2022;
Wu et al., 2021). These findings underscore the importance
of implementing robust preprocessing methods to enhance
the accuracy of EEG measurements, ultimately contribut-
ing to more reliable brain function assessments [15] [16].

• Diffusion Tensor Imaging (DTI) and Measurement Vari-
ability: Diffusion Tensor Imaging DTI is an MRI form that
maps the diffusion of water molecules in brain tissue, re-
vealing the structure of white matter. Noise in DTI can be
caused either by motion artifacts, inaccuracies in tensor es-
timation or often by factors like low signal-to-noise ratio
(SNR). Jones and Cercignani (2010) reviewed the sources of
variability in DTI measurements and discussed methods to
improve the robustness of diffusion metrics. Their work
highlights the challenges of obtaining reliable DTI data and
the importance of addressing measurement errors for accu-
rate white matter analysis [17].

• Quantitative Assessments of Measurement Error Impact:
There are several studies that have quantitatively evaluated
the effect of measurement errors on brain activity data. For
example, Gorgolewski et al. (2013) completed a large-scale
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review of fMRI data from several studies to assess the re-
producibility of brain activity patterns. They discovered
that measurement noise and preprocessing decisions had a
substantial impact on the consistency of results, highlight-
ing the need of uniform data collection and analysis pro-
cesses [18].

In summary, measurement errors show significant challenges in
brain activity studies, affect the accuracy and reliability of the
data and subsequent models. Previous research has identified
various sources of these errors and proposed methods to miti-
gate their impact.
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Chapter 3

Methodology

Chapter 3. Methodology

3.1 Description of the selected brain models

3.1.1 Kuramoto model

Oscillators are systems that exhibit periodic behavior. The rhyth-
mical activity of each component can be described as a physical
variable that evolves regularly in time and when reaching a spe-
cific threshold, emits a pulse (action potential in the case of neu-
rons) that propagates through the oscillator’s respective neigh-
borhood. The effect of an emitted pulse alters the current state
of neighbors by modifying their periods. This disturbance de-
pends on the state of each oscillator receiving the external pulse,
and can be studied in terms of a phase-shift
The Kuramoto model is a mathematical framework used to de-
scribe synchronization phenomena in a system of coupled os-
cillators [19]. The system consists of N coupled phase oscilla-
tors θi(t) having natural frequencies ωi, distributed with a given
probability density g(ω), and whose dynamics are governed by:

θi = ωi +
N

∑
j=1

Ki j sin(θj − θi), i = 1, ..., N and 0 ≤ θi ≤ 2π

• Natural frequency ωi : The rate at which oscillator i would
rotate if it was isolated.

• Coupling term: The sine of the phase difference between
oscillators i and j modulated by the coupling strength K,
captures how the phase of one oscillator affects the phase
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of others.

Therefore, although each oscillator runs independently, with
its own frequency, the coupling tends to synchronize it to the
rest. In the case of sufficiently weak coupling, the oscillators
run incoherently, whereas beyond a certain threshold point, col-
lective synchronization emerges spontaneously. For a system of
N oscillators, the natural frequency ωi, representing the rate at
which oscillator moves through its cycle without external influ-
ence, is drawn from a distribution, reflecting the heterogeneity
in the system.
The degree of synchronization within the system is quantified
using an order parameter r , defined as:

reiψ =
1
N

N

∑
j=1

eiθ j, 0 ≤ r ≤ 1

Where r ranges from 0 (complete desynchronization) to 1 (com-
plete synchronization). The coupling strength K is a control
parameter that dictates the strength of the oscillators’ interac-
tion. When K = 0, the oscillators run independently at their
natural frequencies. As K increases, the influence of coupling
term grows, driving the oscillators toward synchronized behav-
ior. The transition from incoherence to synchronization is a type
of bifurcation where, beyond a critical coupling strength Kc, the
oscillators begin to synchronize.

The Kuramoto model has a plethora of applications, includ-
ing biological systems, like neuronal networks, where synchro-
nization can elucidate rhythmic activities. However, while it
provides significant insights into the mechanisms of synchro-
nization, it is essential to recognize its limitations, especially in
simplifying more complex interactions [20].
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3.1.2 Izhikevich Model

The Izhikevich model, introduced by E.M. Izhikevich (2004), is a
mathematical framework used to describe the dynamics of spik-
ing and bursting in neurons. It was firstly brought as an alterna-
tive to the prior Hodgkin-Huxley model, which despite its bio-
logical realism appears to be sufficiently more computationally
intensive. The Izhikevich model balances these aforementioned
aspects, thereby making it one of the most renowned neural-
dynamics models, as even its small number of parameters, can
realize a variety of neural-firing patterns. The equation is de-
scribed as follows:

υ̇ = 0.04υ2 + 5υ + 140− u + I = f0,
u̇ = a(bυ− u) = g0

Furthermore, Spiking conditions are written as follows:

I f υ ≥ 30 [mV], then : u← { c , u + dotherwise.

Where, the state variables υ and u correspond to the mem-
brane potential of the neuron and membrane recovery variable,
respectively. The parameters are a, b, c, d and I. Here, a, b and
I represent the time-scale of the recovery variable u, the sensi-
tivity of the recovery variable u to υ and the synaptic current re-
spectively, while c and d are reset values. After the spike reaches
its apex, the state variables υ and u are reset according to the
equation above.
In theory, the first equation part was obtained by fitting the spike
initiation dynamics of a cortical neuron, so that the membrane
potential υ has mV scale and the time has ms scale. The resting
potential in the model is between -70 and 60 mV depending on
the value of b [21]. More specifically:

• The parameter a describes the timescale of the recovery vari-
able u. Smaller values result in slower recovery. A typical
value is a=0.02.

• The parameter b describes the sensitivity of the recovery
variable u to the subthreshold fluctuations of the membrane
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potential υ. Greater values couple υ and u more strongly
resulting in possible subthreshold oscillations and low-threshold
spiking dynamics. A typical value is b = 0.2. The case
b < a(b > a) corresponds to saddle node (Andronov-Hopf)
bifurcation of the resting state.

• The parameter c describes the after-spike value of the mem-
brane potential υ caused by the fast high-threshold K+ con-
ductance. A typical value is c = -65 mV.

• The parameter d describes after-spike reset of the recovery
variable u caused by slow high-threshold Na+ and K+ con-
ductance. A typical value is d=2.

Hebbian Learning

Hebbian Learning is a foundational concept in neuroscience
that explores how neurons can adapt and change based on ex-
perience. The theory was first introduced by Canadian psy-
chologist Donald Hebb in 1949and is often summed up by the
phrase “cells that fire together, wire together”. This idea indi-
cates the notion that when two neurons repeatedly activated at
the same time, the connection between them becomes stronger.
Over time, this process enhances the efficiency of communica-
tion between neurons, leading to changes in behavior, learning,
or memory.
The core principle of Hebbian learning lies in synaptic plasticity.
When one neuron (the presynaptic neuron) consistently triggers
the activation of another (the postsynaptic neuron), the synaptic
connection between the two is strengthened. This change at the
synapse is a biological mechanism that underpins learning and
memory formation in the brain. This idea was a significant leap
in understanding how the brain works, marking a shift from ear-
lier theories that thought of the brain as a static organ. Hebb’s
theory highlighted that the brain is highly dynamic, with neural
circuits continually adjusting based on experience.
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Hebbian learning has also had a significant influence on the de-
velopment of artificial intelligence. Early models of artificial
neural networks (ANNs) borrowed heavily from Hebbian prin-
ciples . Although these early models were relatively simple,
they laid the groundwork for more sophisticated learning algo-
rithms used in today’s AI systems.
In summary, Hebbian learning is a vital principle that has influ-
enced both neuroscience and artificial intelligence. It explains
how repeated experience can shape the brain, strengthening the
connections between neurons and facilitating learning and mem-
ory. [6]

3.2 Data Collection Methods

We utilized imaging data from the Human Connectome Project
(HCP), from Van Essen et al. 2012 [22], specifically the S1200
release, which includes structural, diffusion, and resting-state
functional MRI data. HCP comprised brain activity from 280 pa-
tients and all data were acquired using a Siemens Skyra 3T MRI
scanner equipped with a customized SC72 gradient insert.
For the structural data, T1-weighted 3D MPRAGE scans were col-
lected with a repetition time (TR) of 2400 milliseconds and echo
time (TE) of 2.14 milliseconds. The inversion time (TI) was set
to 1000 milliseconds, with a flip angle of 8 degrees and a field of
view (FOV) of 224x224 millimeters. These scans provided high-
resolution images with 0.7 millimeter isotropic voxels. Addi-
tional parameters included a bandwidth of 210 Hz/pixel, iPAT
of 2, and a total acquisition time of 7 minutes and 40 seconds.
Diffusion-weighted imaging (DWI) was performed using spin-
echo EPI sequences with multiple b-values (0, 1000, 2000, and
3000 s/mm2) in approximately 90 gradient directions. The scans
were acquired with a TR of 5520 milliseconds and a TE of 89.5
milliseconds, with a flip angle of 78 degrees and a matrix size
of 168x144. The voxel size was 1.25 millimeters isotropic, and
111 slices were obtained for each scan. A multiband factor of 3
was used to reduce acquisition time, and echo spacing was set
at 0.78 milliseconds.
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Resting-state functional MRI (fMRI) data were collected using a
gradient-echo EPI sequence, with a TR of 720 milliseconds and
a TE of 33.1 milliseconds. The field of view for these scans
was 208x180 millimeters, and images were captured with 2.0
millimeter isotropic voxels across 72 slices. Resting-state ses-
sions consisted of 1200 frames over a duration of 14 minutes
and 33 seconds. Participants were instructed to keep their eyes
open and fixate on a projected cross-hair. The resting-state fMRI
data were denoised using ICA-FIX (Independent Component Anal-
ysis with FSL FIX), ensuring spurious correlations were removed
(Smith et al., 2013) [23].
The structural and diffusion imaging data were preprocessed
as part of the HCP pipeline. For the T1-weighted MRI scans,
preprocessed images were downloaded directly from the HCP
dataset. Diffusion imaging data underwent additional prepro-
cessing, including a bias field correction using FSL’s fast tool. A
nodif brain mask, provided as part of the diffusion imaging data,
was applied to the mean b0 image for each subject. Freesurfer’s
parcellated brain regions (based on the Desikan atlas) were then
registered to the b0 image using the boundary-based registra-
tion tool bbregister.
These registered regions (82 in total, 34 cortical and 7 subcorti-
cal regions per hemisphere) were used as input for determinis-
tic fiber tracking in DSI-Studio Yeh, Wedeen, & Tseng, 2010. To
reconstruct the diffusion images, generalized q-sampling imaging
(GQI) was employed with a diffusion sampling length ratio of
1.25 (Gangolli et al., 2017) [24]. Fiber tracking was initialized with
sub-voxel seeding, generating 1 million streamlines per subject.
Streamlines with lengths shorter than 10 millimeters or longer
than 300 millimeters were discarded to ensure realistic connec-
tions. Additionally, topology-informed pruning was applied to
further refine the connectivity results (Yeh et al., 2019) . The final
output was a symmetric connectivity matrix for each subject, de-
tailing the number of streamlines connecting each pair of brain
regions.
For resting-state fMRI data, preprocessed BOLD signal data were
obtained from the HCP’s FIX-denoised release, which consisted
of 1200 time points of BOLD activity for each subject. Freesurfer’s
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parcellated regions were registered to MNI space using FSL’s
fnirt tool. For each brain region, the BOLD signal was extracted
using FSL’s fslmeants tool, and time-series data were obtained
for all cortical and subcortical regions. A bandpass filter was ap-
plied to each region’s BOLD signal to retain frequencies between
0.01 Hz and 0.2 Hz, which is typical for functional connectivity
analyses. Functional connectivity (FC) matrices were then gen-
erated by calculating Pearson correlation coefficients between
time-series from different brain regions.

3.3 Data Visualization

A generalization of the analysis was implemented, with matri-
ces from all patients (n=280) being averaged, ensuring the cap-
ture of the general connectivity patterns across the population,
rather than individual variations.
Since raw connectivity values can sometimes include outliers,
we also applied a winsorization process to the averaged matrix,
to limit the impact of such extreme values. Specifically, values
below the 10th percentile and above the 90th percentile were
capped. The matrix was then normalized to a [0, 1] range for
consistency in further computations and better visualization.
To better understand the underlying network structure and the
connectivity between the 82 regions of interest (ROIs), the adja-
cency matrix was visualized using two primary methods: heatmaps
and 3D brain network plots.
Heatmaps were used in order to provide a clear and immediate
visual representation of the connectivity strength between brain
regions. The adjacency matrix, which represents the number of
streamlines connecting each pair of regions, was displayed as a
color-coded grid. Each entry in the matrix corresponds to the
connection strength between two ROIs with color intensity in-
dicating the number of connections (or number of streamlines).
This visualization helped to identify key connectivity patterns,
such as strongly or sparsely connected areas, and provided an
overview of the global structure of brain networks before the
noise introduction. [25]
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Moreover, to provide a more intuitive, realistic, and spatially-
aware visualization of the brain’s connectivity network, Brain-
Net Viewer (Xia, Wang & He, 2013) [26] was employed. This tool
allowed the representation of the adjacency matrix in a 3D brain
model, with nodes representing the ROIs and edges represent-
ing the connections between them. The strength of connections
was represented by the thickness or colors of the edges in the 3D
plot, offering insights into which regions of the brain were most
influential on the overall network.

FIGURE 3.1: BrainNet Viewer: A Tool for Visualizing Brain Net-
work Data

3.3.1 Introduction of noise

To achieve the goal of assessing the robustness and accuracy of
brain models in the presence of measurement errors, noise was
introduced into the original adjacency matrix. The adjacency
matrix represents the “perfect” connectivity between different
ROIs in the brain, and noise was added to simulate real-world
imperfections in data collection, such as sensor inaccuracies, en-
vironmental interference, or signal processing errors.
The original connectivity matrix was generated by the averag-
ing the connection weights across multiple participants from the
Human Connectome Project. This matrix served as the baseline
for comparison, representing the “control” or error-free brain
network. Noise was introduced into the matrix using a con-
trolled approach, where a random Gaussian noise matrix was
generated and added to the original matrix. The amount of
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noise added was controlled by a noise factor g which scaled
the noise magnitude. A specific generating seed was also imple-
mented to ensure the reproducibility of the results.
Mathematically, the noisy connectivity matrix noisy was gener-
ated as:

Wnoisy = Woriginal + gxN

Where Woriginal is the control adjacency matrix, g is the noise
factor, and N is a matrix of random values sampled from a Gaus-
sian distribution with mean zero and unit variance. To evalu-
ate the effect of increasing measurement errors, noise was intro-
duced at different levels, ranging from 0.1 to 1.0 in steps of 0.1.
This allowed for a systematic exploration of how varying de-
grees of noise affect the connectivity matrix and, subsequently,
the brain models used in the study. At each level of noise, a
new matrix was generated, resulting in a series of matrices with
progressively higher levels of error. The impact of noise was
first visualized using boxplots, showing how the distribution of
connection weights changed as the noise factor increased. This
helped in identifying the general trends in connectivity varia-
tions as errors were introduced. Additionally, the mean abso-
lute difference between the control (error-free) connectivity ma-
trix and the noisy matrices was calculated and plotted. This al-
lowed for a quantitative assessment of the magnitude of change
in connectivity due to noise, providing insights into the extent
of disruption caused by increasing noise levels.

3.3.2 Model Simulations

We employed two widely recognized models for simulating brain
activity, aiming to assess their robustness in the presence of mea-
surement errors. These models were:

• Kuramoto Model: Each brain region was treated as a sin-
gle neuron, an oscillator, with its phase evolving over time.
Each ROI was assigned random initial conditions, phases
θ ∈ [−π, π] drawn from uniform distributions ensuring an
even spread of phases at the start of the simulation. Ran-
dom natural frequencies ω ∼ N (0, 1) were sampled from
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a normal distribution with mean µ = 0 and σ = 1, which
ensured that the oscillators had different intrinsic dynam-
ics, simulating variability in neural activity between brain
regions. Coupling strength K was set to 0.5.

• Izhikevich Model: Each brain region was treated as a sin-
gle neuron, and its activity evolved according to predefined
neuronal firing rules. The external input current Iext is a
combination of a baseline current of 3 units, an oscillatory
input with a frequency of 2 Hz, contributing to the modula-
tion of neuronal activity, and noise added to each neuron’s
input current, simulating random fluctuations that impact
the neural dynamics. In addition, the synaptic input Isyn

represents the influence of other neurons in the network
that are spiking. At each timepoint, neurons that have spiked
at the previous timestep contribute to the current synaptic
input. This means that for each neuron, the synaptic in-
put is calculated by summing the contributions from other
neurons that spiked previously, weighted by their respec-
tive connection strengths in the weight matrix W. If it’s the
first time step (i.e., t = 1), no neurons have spiked yet, so
the synaptic input is set to zero.

The simulations were divided into three phases. First, the
system ran up to the branching point k without noise, allowing
it to evolve naturally. Once it reached k, which represents the
second phase, noise was introduced to the system based on dif-
ferent error factors, and each simulation was continued to the
third phase, until the end of the simulation time.
For our main simulation type, we used a total simulation time
of 30 seconds (30,000 ms), and an individual time-step of 1ms.
At an initial timestep k=5000 ms, noise was introduced into the
connectivity matrix in the aforementioned way, allowing for an
analysis of the models’ pre- and post- noise behaviors.
Hebbian learning was implemented based on the weight up-
dating rule, which reflects that the coupling between two neu-
rons increases when their phases or activities are more closely
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aligned respectively. A learning rate n controlled the size of new
weights-adjustment indicating the pace of the system’s plastic-
ity.
Both learning rate, which controlled the effect of Hebbian Learn-
ing and k, the time-point when noise got introduced to the sys-
tem, were later explored for all models to assess the adaptability
of the system in the presence of noise.

3.3.3 Analysis of Errors over Time

For each noise level, the difference between the noisy and noise-
free simulations was calculated over time. The sum of absolute
differences across all regions (ROIs) at each time point provided
a measure of how the noise altered the model’s behavior re-
gardless the respective ROI. The plot of total errors across time-
points, for each noise level (from 0.1 to 1.0), showed how the
simulations diverged from the control conditions as time pro-
gressed and with increasing noise. This gave insight into the cu-
mulative impact of noise on the synchronization or firing rates
of the brain regions.

3.3.4 Noise-introduction timepoint, Hyperparameter tuning

Different values of k were tested, ranging from 1 ms to 30,000
ms. To ensure consistency and fairness in comparing the ef-
fects of noise introduced across various k timepoint scenarios,
the post branching point simulation continued for a fixed ad-
ditional time period of 10,000 ms in all instances. This fixed
post-noise simulation time is crucial because, without it, larger k
values would inherently lead to smaller errors, creating invalid
impressions.
Furthermore, the error measurement was carefully handled by
focusing only on the time period after the noise got introduced.
For each k, the error was computed by taking the mean of the
sum of absolute differences between the noisy system and the
original system (without noise) from time k onwards. This en-
sures that the error reflects only the system’s behavior after noise
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is applied, preventing any bias in the results due to longer pre-
noise periods. By maintaining a consistent post-noise time for
all k values and calculating the error in this focused period, the
simulation ensures a fair and meaningful comparison of how
noise affects the system at different points in time.
In addition to the computational modelling of the Kuramoto
system, we employed statistical methods to assess the signifi-
cance of the observed fluctuations in mean error across different
k-timepoints. Specifically, we conducted linear regression anal-
yses to evaluate the relationship between k and the correspond-
ing mean error.
The regression model was formulated as follows:

MeanError = β0 + β1 · k + ϵ

Where β0 represents the intercept, β1 denotes the slope, and
ϵ is the error term.

After fitting the model, we examined the p-value associated
with the slope to determine whether there was a statistically sig-
nificant relationship between k and mean error. A p-value less
than the threshold of 0.05 would indicate a significant relation-
ship, allowing us to reject the null hypothesis that there is no ef-
fect of noise introduction timing on the error progression, within
95% level of significance.

3.3.5 Learning-Rate, Hyperparameter tuning

To explore the best adaptation strategy in the presence of noise,
the learning rate of the models was varied logarithmically across
a range of values (from 0.1 to 1). By calculating the mean of
the differences between the noisy and control conditions across
different learning rates, the optimal learning rate for minimizing
error was identified.
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3.3.6 Spatial contribution to final Error

The error contribution of each brain region (ROI) to the total er-
ror was analyzed across different noise levels. For each noise
level, the sum of absolute differences for each ROI was calcu-
lated, providing a measure of how each region contributed to
the error. Moreover, to understand the relative importance of
each ROI, the error contributions were normalized and aver-
aged across all noise levels. Spearman’s coefficient was calcu-
lated between both models’ error-contribution rates and their
relative connection strengths. This allowed for identifying which
regions were most sensitive to noise and contributed most to
the overall error. The final plot of ROI-wise error contributions
showed the spatial distribution of the noise effects and high-
lighted the regions’ most vulnerable to measurement errors.
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4.1 Presentation of findings

4.1.1 Data Visualization

The starting point for the simulations is the structural connectiv-
ity matrix representing the average functional connectivity be-
tween N= 82 Regions of Interest (ROIs) in the brain. This adja-
cency matrix is constructed from the HCP dataset by averaging
the connectivity weight across all subjects, yielding a matrix that
forms the basis for simulating the neural dynamics.
The adjacency matrix, is a symmetric matrix where each ele-
ment, W(i,j) represents the connection strength between two ROIs,
i and j. This matrix is winsorized and normalized to cap extreme
values and rescaled between 0 and 1, ensuring numerical stabil-
ity and interpretability. Rows and columns are ordered accord-
ing to anatomical criteria, such that all left hemisphere regions
are listed first, followed by all right hemisphere regions.

Within each hemisphere, the ordering of the regions is the
same, so that the first-listed left hemisphere region and first listed
right hemisphere region correspond to homologous areas. With
this ordering, we see two clear blocks of increased connectiv-
ity: one in the upper-left quadrant and one in the lower-right
quadrant. These two blocks represent the intrahemispheric con-
nectivity of the left (upper left quadrant) and right (lower right
quadrant) hemispheres. Interhemispheric connectivity is depicted
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FIGURE 4.1: Left: Adjacency matrix illustrating the connections
between brain regions. Right: 3D visualization of the brain’s

connectivity structure generated using BrainNet Viewer.

in the upper right and lower left quadrants. The box in Fig-
ure 4.1 highlight subdiagonal elements of the matrix that en-
code connectivity between homologous regions in the left and
right hemispheres. From this anatomically informed matrix-
representation, we see that intrahemispheric connectivity is stronger
than interhemispheric connectivity, and that there is a tendency
for homologous regions in opposite hemispheres to be connected
with each other.
Finally, by projecting the adjacency matrix into the brain’s anatom-
ical space, the connectivity patterns seen and explained earlier
in the matrix become visually aligned with the brain’s physical
regions. This approach validates the observed connectivity by
showing that the abstract graph-based patterns correspond to
plausible real-world anatomical relationships. In this way, the
anatomical projection graph reaffirms the meaningfulness of the
connectivity patterns in a biologically realistic context.

4.1.2 Noise Introduction & Weight Divergence

To investigate the robustness of the network’s structural con-
nectivity to noise, we introduced varying levels of noise into the
control adjacency matrix and compared the resulting weights
to the original ones. Noise levels were incrementally increased,
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based on error-factors varying from 0.1 to 1, simulating progres-
sively larger disturbances in the connectivity data.

Figure 4.2 (a) presents a boxplot showing the distribution of
weights for each noise factor. As the noise factor increases, the
spread of the weight distribution becomes wider, indicating an
increased divergence in the connectivity patterns. This widen-
ing of the distribution reflects how higher noise levels introduce
more variability and uncertainty into the network’s connectiv-
ity.

FIGURE 4.2: (a) Boxplot showing the distribution of weights
for each noise factor. (b) Mean absolute difference between the
control weights and the noisy weights across different error fac-

tors.

In addition, Figure 4.2 (b) plots the mean absolute difference
between the control weights and the noisy weights across differ-
ent error factors. The plot shows a clear upward trend, demon-
strating that as the noise factor increases, the average difference
between the noisy and control weights grows steadily. This il-
lustrates that higher noise levels cause a significant deviation
from the original structural connectivity, affecting the network’s
overall coherence.
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4.1.3 Kuramoto model

The Kuramoto model was used to simulate the impact of noise
on the synchronization dynamics of the network. In this model,
various error factors were introduced to observe their effect on
the network’s behavior over time.
Figure 4.3 demonstrated that, in the case with no Hebbian Learn-
ing, as simulation time progresses, the mean error between noisy
and control conditions steadily increases. This suggests that the
cumulative impact of noise leads to a growing divergence in the
network’s dynamic behavior compared to the control case.

FIGURE 4.3: The Kuramoto model simulation of network syn-
chronization dynamics under noise influence without Hebbian
learning. The figure shows that as the simulation progresses

(k = 5000 ms and learning rate = 0)

Furthermore, a clear correlation can be observed between the
magnitude of the error factor and the resulting noise. The larger
the error factor introduced into the system, the more significant
the divergence from the control scenario. These results high-
light the sensitivity of the network’s synchronization dynam-
ics to noise and suggest that even small perturbations can lead
to considerable disruptions over time, especially when accumu-
lated.
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FIGURE 4.4: Kuramoto model: The impact of noise introduc-
tion timepoint k on network dynamics. (a) The error progres-
sion over time for two different instances of k, k = 5000ms and
k = 10000ms with learningrate = 0 (b) The mean error as a

function of the k hyperparameter.

In addition to analyzing the effect of different noise levels,
the timepoint k – when noise was introduced into the system –
was also varied to investigate its impact on the network’s dy-
namics. The results showed that while some minor fluctua-
tions were observed when adjusting the timepoint k, the overall
trend remained largely unaffected. Figure 4.4 illustrates that for
multiple values of k, the error progression over time follows a
relatively consistent trajectory, with only minimal disturbances
along the curve. This suggests that the exact moment when
noise is introduced into the system has limited influence on the
network’s long-term behavior. Statistical analysis through lin-
ear regression revealed a significant p-value of 0.012207 for the
slope, indicating that the fluctuations in error are statistically
significant at a 95% level of significance. However, despite this
significance, there is no discernible trend of increase or decrease
in the mean error as a function of k. Therefore, while the timing
of noise introduction affects the mean error, the relationship ap-
pears complex and does not point to a straightforward pattern.
In the case of Hebbian learning, Figure 4.5 which is depicting the
relationship between mean error and timepoints illustrates that,
as time progresses, a more intricate and complex relationship
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emerges between error factors and errors. Unlike the scenario
without learning, where the errors displayed a more consistent
trajectory, the introduction of a learning rate introduces notable
fluctuations in the error progression over time. Specifically, the
errors do not exhibit a steady slope, indicating that they are sig-
nificantly more variable when learning is incorporated into the
system.
Additionally, the analysis of mean error as a function of differ-
ent learning rates suggests that higher learning rates may lead
to smaller mean errors; however, this reduction in error comes at
the cost of increased fluctuations. To evaluate the significance of
this observation quantitatively, further statistical testing should
be conducted.

FIGURE 4.5: Kuramoto model: (a) Simulation errors over time
for four instances of learning rate (lr = 0.01, lr = 0.1, lr = 0.5,
and lr = 1), showing the impact of different learning rates on
error progression under the Hebbian learning model- The in-
troduction of learning increases variability compared to the sce-
nario without learning. (b) Tuning the learning rate: illustrates
how adjusting the learning rate impacts the overall network’s

behavior and error progression over time.

4.1.4 Izhikevich model

In this next part, we employed the Izhikevich model to simulate
the neuronal dynamics focusing on the response of individual
neurons to varying input currents.
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Each region of interest (ROI) was modeled as a single neuron, al-
lowing for detailed analysis of both the input current and mem-
brane potential. Figure 4.1.4 (a) illustrates the input current and
membrane potential over time. The membrane potential varied
between approximately −65 mV and +30 mV, reflecting the dy-
namic nature of neuronal activity in response to the oscillatory
input. The oscillatory input significantly influenced the mem-
brane potential, with clear peaks corresponding to the oscilla-
tion frequency. The neuron demonstrated the expected spiking
behavior, as indicated by the rapid excursions of the membrane
potential toward +30 mV.

FIGURE 4.6: Dynamic behavior of the Izhikevich model illus-
trated across three panels: (a) The input current to neuron (ROI)
1, showcasing the oscillatory nature of the input that drives
neuronal activity; (b) The membrane potential of ROI1 under
control conditions, illustrating fluctuations in membrane po-
tential as the neuron responds to the input current; (c) A 3D
representation of error over time for different noise levels, with
parameters set to k = 5000 ms and learning rate lr = 0, high-
lighting the impact of varying noise levels on the network’s per-

formance.

Figure 4.1.4 (c) shows the sum of errors Σ∆θ across time for
different noise levels. As illustrated, there was a notable in-
crease in error as noise levels increased. The sum of errors dis-
played a clear positive correlation with noise levels, suggesting
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that higher noise levels lead to increased deviations in the neu-
ron’s output. Notably, the error for a noise level of 0.1 was sig-
nificantly lower than that for a noise level of 1, indicating that
noise has a detrimental effect on neuronal performance. With
the introduction of even low noise levels (e.g., Noise 0.2 or Noise
0.4), errors begin to accumulate, especially in the later stages of
the simulation, indicating sensitivity to noise perturbations. The
error growth becomes more pronounced at higher noise levels
(e.g., Noise 0.8, Noise 1), where spikes in error occur earlier in
time, showing a strong disruption of the system’s regularity.
The 3D representation highlighted distinct patterns in error across
time and noise levels. The increase in error with rising noise
levels was apparent, with certain timepoints showing sharper
increases in error rates.
In the case of k hyperparameter tuning, Figure 4.7 shows the
mean error as a function of different k. The mean error fluc-
tuates within a range of approximately 4.2 to 5.4. This varia-
tion suggests that the timing of noise introduction has a signifi-
cant impact on the system’s performance. However, despite this
increased variability in error as k progresses, the overall trend
does not show a clear upward or downward bias, indicating
that the sensitivity to noise may not have a linear relationship
with the timepoint but may instead depend on the interaction
of noise with specific internal dynamics at different phases.

However, when investigating the influence of different learn-
ing rates on error behavior under varying noise conditions, as
modeled in the Izhikevich system, it was observed that as the
learning rate decreases (from lr = 1 to lr = 0.1), the overall
sum of errors tends to increase significantly. At lr = 1 ( 4.8
top right plot), the error remains relatively low across noise lev-
els. While noise does cause fluctuations, the system exhibits ro-
bust performance even under higher noise levels. In contrast,
at lower learning rates (e.g., lr = 0.01, 4.8 bottom left plot),
the error grows considerably for all noise levels, with the sys-
tem accumulating errors rapidly, particularly at higher noise
levels (e.g., Noise 0.9, Noise 1.0). The transition from lr = 0.5
to lr = 0.01 demonstrates that higher learning rates allow the
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FIGURE 4.7: izhikevich Model: The impact of noise introduc-
tion timepoint k on network dynamics. (a) The error progres-
sion over time for two different instances of k, k = 5000ms and
k = 10000ms with learningrate = 0 (b) The mean error as a

function of the k hyperparameter.

system to adapt more effectively to noise perturbations, result-
ing in lower and more stable error values. Meanwhile, lower
learning rates exacerbate the system’s error accumulation over
time, especially under high-noise conditions.
The plot on the rightside of 4.8 shows the mean error as a func-
tion of different learning rates. The mean error decreases sharply
as the learning rate increases from 0 to 0.2, indicating that the
system becomes significantly more accurate at higher learning
rates. Beyond a learning rate of approximately 0.2, the mean
error stabilizes at a very low value, suggesting that the system
reaches an optimal learning rate range where further increases
no longer contribute significantly to reducing the error. The
system demonstrates its optimal performance at learning rates
around 0.2, where the error is minimized and remains low de-
spite variations in the noise levels.

We explored the influence of varying learning rates on the
Izhikevich model’s performance and its effect on the system’s
error. Notably, as the learning rate increased, the overall error
between the noisy and control simulations steadily decreased,
even reaching near-zero levels at the highest learning rates. This
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FIGURE 4.8: IZhikevich Model: (a) Simulation errors over time
for four instances of learning rate (lr = 0.01, lr = 0.1, lr = 0.5,
and lr = 1), showing the impact of different learning rates on
error progression under the Hebbian learning model. (b) Tun-
ing the learning rate: illustrates how adjusting the learning rate
impacts the overall network’s behavior and error progression

over time.

behavior raised the concern that the system might be saturating,
causing artificially low errors.
To investigate this further, we analyzed the activity of an indi-
vidual neuron (neuron 1) for the largest learning rate. The mem-
brane potential of neuron 1 was plotted over time to check for
signs of saturation, such as constant spiking or flatlining of the
potential. The plot revealed that neuron 1 maintained normal
firing dynamics, with no indications of saturation (i.e., no un-
characteristic or constant behavior in the membrane potential).
This finding suggests that the reduction in error is likely due
to effective learning rather than an artifact of system satura-
tion. The neurons continued to exhibit realistic spiking behav-
ior, indicating that the learning process was functioning cor-
rectly, even at higher learning rates. Therefore, the results, show-
ing a reduction in noise-induced errors, appear to be valid and
reflective of actual system improvements.
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4.2 Analysis of ROI contributions

The analysis of the contributions of ROIs revealed significant
differences in how connectivity strength impacts the final error
across the two simulation models, Kuramoto and Izhikevich.
The correlation coefficients obtained indicate the relationships
between the connectivity strengths of the regions of interest (ROIs)
and the final errors. The Kuramoto model exhibited a moder-
ate positive relationship with a Spearman’s coefficient of 0.3138.
This suggests that, in this model, ROIs with higher connectiv-
ity strength tend to contribute slightly more to the final error.
For example, ROIs such as ROI 11 (lh.lateral_occipital) and ROI
12 (lh.lingual) demonstrated higher strengths 4.9, which were
associated with increased final error contributions. This obser-
vation indicates that these regions play a more significant role
in the error dynamics of the Kuramoto model, reflecting a po-
tential sensitivity to connectivity variations.
Conversely, the Izhikevich model demonstrated a strong neg-
ative relationship, as evidenced by a Spearman’s coefficient of
−0.7704. This indicates that in the Izhikevich framework, ROIs
with higher connectivity strength actually contribute less to the
errors. For instance, ROI 35 (rh.thalamus), exemplified this trend
by showing one of the strongest negative contributions to the fi-
nal error, indicating that as its connectivity strength increased,
the associated error decreased significantly. Additionally, re-
gions like ROI 36 (rh.caudate) further supported this relationship
by contributing less to errors as their connectivity increased.
Then, in order to gain a more comprehensive understanding
of the contributions of different brain regions to the noise in
the neural simulations, we clustered the ROIs based on their
anatomical lobes. This clustering allowed us to analyze the spa-
tial contributions of each lobe in both the Kuramoto and Izhike-
vich models.
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FIGURE 4.9: ROI contribution for Kuramoto model and Izhike-
vich model

In the Kuramoto model, as shown at Figure 4.10, the Frontal
lobe emerged as the most influential, contributing approximately
29% to the overall noise. This dominance suggests that the Frontal
lobe plays a critical role in the dynamics of the Kuramoto frame-
work, may lead to greater fluctuations and, hence, more sub-
stantial contributions to the final error. The Subcortical areas
followed closely, contributing about 20%, highlighting its signif-
icant involvement in the error dynamics. The Parietal lobe and
Temporal lobe contributed 18% and 16%, respectively, indicat-
ing that even regions with lower connectivity can have notable
effects on the overall error. The Insular Cortex, while smaller in
total strength, still contributed about 6% and the Occipital Lobe
indicated a total error contribution of 11%.
In contrast, the Izhikevich model demonstrated different dy-
namics. The Frontal lobe continued to be the leading contrib-
utor, accounting for 32% of the total noise, reaffirming its criti-
cal role across both models. However, the relative contributions
of the other lobes shifted, with the Temporal lobe contributing
26%, and the Subcortical areas contributing 19%. The Occipi-
tal lobe showed a notable contribution of 8%, the Parietal 14%,
while the Insular lobe had the smallest share at 2%. These shifts
in contributions indicate that the error dynamics in the Izhike-
vich model might be influenced differently by each lobe, with
higher contributions from the Subcortical regions compared to
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the Kuramoto model.

FIGURE 4.10: Spatial Contribution, clustered for each anatomi-
cal brain-area
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Chapter 5. Discussion

5.1 Interpretation of results

5.1.1 Simulation of Results

The simulations in this study were divided into three distinct
phases to effectively mimic the process of whole-brain emula-
tion (WBE) and analyze the effects of noise on neural dynamics.
The first phase represents the period prior to the introduction
of noise, simulating the normal operation of a functioning brain
in real-time. This phase serves as a baseline, reflecting how an
individual’s brain processes information under ideal, noise-free
conditions.
The second phase marks the branching point where noise is in-
troduced. This stage simulates the data acquisition process in
the WBE scenario, where neural data is collected through imag-
ing techniques. It is at this point that measurement errors, and
the inherent noise-levels they introduce, become a factor. This
phase essentially captures the transition from an error-free rep-
resentation to one where inaccuracies begin to affect the data
and the transition from the biological brain to the computational
brain.
Finally, the third phase involves running two separate sets of
simulations. The first set, based on the control data, represents
how the computational brain-simulation would behave under
ideal circumstances, where the imaging techniques produced no
errors on the acquired data. The second set, using the noisy
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data, simulates how the brain would operate in the computer-
generated replica, with varying levels of noise that more realis-
tically emerge from the experimental imaging procedures. This
final phase allows for the direct comparison of brain activity un-
der ideal conditions with the altered activity that results from
the presence of noise, providing key insights into the impact of
data acquisition errors on the fidelity of WBE simulations.

5.1.2 Model Performance

In both the Kuramoto and the Izhikevich models, a clear and
consistent relationship was observed between the level of noise
introduced into the system and the overall error in the model’s
output. The results suggest that the presence of noise during
data collection is not merely a minor inconvenience but rather a
key factor that substantially affects the accuracy of subsequent
neural simulations.
As noise levels increase, their influence on the system’s error
also grows, ultimately impairing the model’s ability to faith-
fully replicate neural behavior. This reinforces a central point:
in brain emulation and computational neuroscience, controlling
for and minimizing noise during data acquisition is absolutely
essential. Even relatively small amounts of noise can have far-
reaching effects, potentially distorting the later stages of the sim-
ulation and resulting in less accurate predictions or insights.
The linkage between noise and total error observed in both mod-
els highlights the inherent sensitivity of simulations to initial
data conditions. These findings underscore not only the impor-
tance of using precise and highly accurate measurement tools
during the data acquisition phase, but also the need to explore
additional strategies for mitigating or correcting these errors dur-
ing the simulation process itself.

5.1.3 k Hyperparameter Tuning

Regarding the tuning of the hyperparameter k, our investigation
aimed to explore the influence of varying k values across time,
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particularly examining whether extending the pre-branching time
period (before noise introduction) would help stabilize the sys-
tem. The hypothesis was that a longer pre-branching period
might condition the system, leading to more stable simulations
afterward. This, in turn, could potentially influence the degree
of difference observed between the control simulations and those
based on noisy data.
However, the results showed irregular patterns in both the Ku-
ramoto and Izhikevich models. There was no clear or consistent
relationship between the value of k and the stability of the later
simulations. In other words, increasing the pre-branching time
did not consistently lead to better alignment between the con-
trol data and the noisy data, nor did it provide a clear indication
that a longer pre-noise period would enhance the simulation’s
performance.
Interpreting this biologically, it is indeed plausible that these ir-
regular patterns reflect the inherent complexity of brain func-
tion. In a biological brain, the ongoing processes are dynamic
and ever-changing as the brain continuously integrates new in-
formation, adapts to its environment, and modifies its neural
pathways based on experience and learning. This continuous
flux could mean that no specific pre-conditioning period can
fully stabilize brain activity, as the brain itself is constantly evolv-
ing and adjusting in real time. Even during a period, like our
simulations, where external factors are controlled, the brain re-
mains susceptible to internal fluctuations and novel stimuli may
disrupt or change its activity.
Thus, the lack of a clear relationship between k and the sim-
ulation’s stability may be a reflection of this biological reality.
The brain is not a static system; it is highly adaptive and un-
predictable, so any artificial pre-conditioning period is unlikely
to "prepare" the brain in a way that leads to consistently better
simulation outcomes. Instead, the results might suggest that the
brain’s intrinsic variability cannot be captured or stabilized sim-
ply by adjusting the time span before noise introduction. The
simulations, like the brain, are inherently sensitive to new in-
formation and environmental changes, and this variability is a
fundamental feature of neural dynamics.
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5.1.4 Learning rate tuning

In the context of learning rate (lr) tuning, the differences be-
tween the Kuramoto and Izhikevich models offer intriguing in-
sights. While the Kuramoto model showed no clear relationship
between learning rate and noise, exhibiting an unpredictable
and inconsistent pattern, the Izhikevich model displayed a steady
reduction in noise as the learning rate increased. At a certain
learning rate value, the noise levels even approached zero. This
finding suggests that learning mechanisms, especially in more
biologically detailed models like Izhikevich, may play a critical
role in compensating for initial measurement errors. This ob-
servation is particularly significant for whole-brain emulation
(WBE) efforts, where errors stemming from imperfect data ac-
quisition could be rectified through learning dynamics embed-
ded within the model itself.
However, it’s important to acknowledge that large learning rates,
although effective at reducing noise in this case, could also lead
to system saturation or oversimplification of brain dynamics,
where the model’s flexibility to adapt to new or more complex
environments is compromised. Such oversimplification would
limit the model’s ability to faithfully replicate real neural behav-
ior, especially in the context of lifelong learning and adaptation,
critical elements of brain function.
Thus, while the results from the Izhikevich model offer hope
for reducing noise and correcting measurement errors, more re-
search is needed to fully explore how learning rates affect sys-
tem behavior over time. Particularly, biologically realistic mod-
els may offer the most promise, as internal brain mechanisms
like synaptic plasticity are likely to naturally mitigate errors over
time. This insight opens up the possibility that incorporating
adaptive learning mechanisms into simulations could help over-
come one of the key barriers holding back WBE: the issue of
noise introduced during data acquisition.
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5.1.5 Spatial Contribution

In the Kuramoto model, the differences in the relationships be-
tween connectivity strength and error in the two models, ap-
peared to be moderate positive. ROIs with higher connectivity
contributed more to the final error. This suggests that the Ku-
ramoto model may be more sensitive to variations in connectiv-
ity, meaning that regions with stronger connections introduce
greater fluctuations, increasing the overall error.
In practical terms, this implies that errors from data acquisition,
particularly in regions of high connectivity strength, are am-
plified during simulation. Therefore, improving the precision
of data acquisition in highly connected cortical areas—such as
those identified in the analysis—could reduce error in Kuramoto-
based simulations. Conversely, in the Izhikevich model, the
strong negative correlation between connectivity and error sug-
gests that higher connectivity regions reduce the error contribu-
tion. This pattern indicates that the Izhikevich model benefits
from higher connectivity in certain areas, stabilizing the system
and reducing noise. This model seems to capture a more nu-
anced biological behavior, where highly connected regions may
play a stabilizing role in brain dynamics, decreasing error. This
finding could be especially important for improving imaging se-
tups, as it suggests that accurately capturing the connectivity of
more weakly connected areas, might be crucial for reducing er-
ror in more biologically accurate models like Izhikevich.

5.2 Significance of findings

The results of this study provide critical insights into the dynam-
ics of noise and error propagation in brain simulations, specif-
ically within the Kuramoto and Izhikevich models, and high-
light the importance of accurate data acquisition for whole-brain
emulation (WBE). The findings emphasize that the impact of
measurement error on simulation performance is significant and
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cannot be overlooked in WBE research. While much of the ex-
isting work in the field focuses on the computational infrastruc-
ture required to host a brain model—such as processing power,
memory capacity, and parallelization techniques—our study un-
derscores the equally crucial role of addressing measurement er-
ror in the data acquisition phase.
This research highlights that the introduction of noise during the
acquisition of neural data, such as through imaging techniques
like fMRI or DTI, can profoundly affect the accuracy of simula-
tions. Both models demonstrated a clear relationship between
the level of noise and the resulting error, with certain brain re-
gions or lobes contributing more significantly to error propaga-
tion. These results suggest that improving the resolution, preci-
sion, and consistency of imaging technologies is just as impor-
tant as refining the computational algorithms or hardware that
host these simulations. Without addressing the inaccuracies at
the data acquisition stage, even the most advanced and biolog-
ically realistic models will be prone to significant error, limiting
the potential of WBE.

5.3 Data Model limitations

While this study provides valuable insights into the effects of
noise on whole-brain simulations, there are several limitations
in both the data and the models employed that must be ac-
knowledged. One of the key limitations is the relatively sim-
plified nature of the models used—Kuramoto and Izhikevich.
These models, while effective for certain types of neural sim-
ulation, do not fully capture the biological complexity of ac-
tual brain function. Both models abstract away many details
of neural activity, such as the intricate interplay between differ-
ent types of neurons (excitatory and inhibitory) and the various
neurotransmitters and signaling pathways that regulate brain
activity. This limitation stems partly from the computational re-
sources available for this research, which constrained us to mod-
els that could run efficiently on more limited hardware. More
biologically realistic models, like spiking neuron networks with
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detailed synaptic plasticity, could have provided deeper insights
but require far greater computational power.
Another limitation relates to the granularity of the regions of
interest (ROIs). Each ROI represents a large and heterogeneous
collection of neurons, encompassing potentially hundreds of thou-
sands of different types of cells with unique firing patterns and
functions. By reducing these vast regions to single units in the
models, we are inherently oversimplifying the actual neural dy-
namics at play. This aggregation of neurons makes it impos-
sible to capture the full diversity of neural responses to noise
and could mask important sub-regional variations in how er-
rors propagate through the brain. This limitation highlights the
need for more refined, high-resolution models that can account
for the differences within and between brain regions.
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Chapter 6. Conclusions and future work

6.1 Summary of key findings

This study explored the impact of noise on brain simulations us-
ing both the Kuramoto and Izhikevich models, focusing on how
measurement error affects WBE. A clear link between noise and
the total error emerged, highlighting that even small inaccura-
cies in data acquisition can significantly impact neural simula-
tions. Specifically, higher noise levels correlated with greater
errors, affirming that precision in data gathering is crucial for
accurate WBE.

Our analysis of the Regions of Interest (ROIs) showed that
connectivity strength has varying effects depending on the model.
In the Kuramoto model, stronger connectivity in ROIs was as-
sociated with greater error contributions, while the Izhikevich
model exhibited an inverse relationship, suggesting a more com-
plex dynamic between connectivity and error in more biologi-
cally realistic simulations. The clustering of ROIs into anatom-
ical lobes further revealed the Frontal lobe as a critical region,
influencing noise contributions in both models, though differed
for the rest of the anatomical regions.

Additionally, parameter tuning for the learning rate in the
Izhikevich model revealed a trend where increasing the learn-
ing rate reduced the noise and brought it close to zero at higher
values. This finding suggests the potential to correct measure-
ment errors through learning mechanisms, in biologically accu-
rate models, offering a promising direction for mitigating in-
accuracies in future WBE implementations. However, caution
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must be exercised as higher learning rates may lead to system
saturation, requiring further investigation.

These findings underscore the complexity of simulating brain
activity and the importance of precise data acquisition methods
to ensure reliable outcomes in WBE, while also opening up fu-
ture avenues for improving the biological realism of such simu-
lations.

6.2 Recommendations for future research

Future research in Whole Brain Emulation (WBE) should place
greater emphasis on improving both data acquisition methods
and simulation accuracy. Enhancements are needed not only in
the hardware and imaging tools to capture more precise data
but also in the preprocessing techniques to better handle and
reduce measurement errors and also during the actual simu-
lations. Current research tends to prioritize computational as-
pects, which are undoubtedly important, but the integrity of the
input data remains equally critical. By refining both ends —data
collection and model accuracy— WBE simulations can become
far more reliable.

Additionally, there is a need for models that better capture
the biological complexity of the brain. In our work, we have
initiated efforts to simulate ROIs with 200 neurons, incorpo-
rating both excitatory and inhibitory activity. These advance-
ments move us closer to accurate neural simulations and show
promise for further reducing measurement error. This approach
highlights how the biological realism of models can complement
computational power in producing more faithful emulations.

The potential of WBE, especially in fields like artificial intel-
ligence, neuroscience, and medicine, makes this an area of im-
mense future relevance. Striking the right balance between com-
putational power and data quality will be essential to achieving
meaningful progress in brain emulation efforts.
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