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MepiAnyn

O oKoIog aUTyg NS SIMAEPATIKAG epyaoiag sivatl n digpeuvnon g PeAtioong g arnoteAeopatt-
KOTNTAG TV AUTIKEUEVOKEVTOIKOU KOSUKOTIOMNTMV EKOVAG HE TEXVIKEG EVOOPATOONG TTANpodopiag
eotiaopévng oe pacetg. [Mpotov, orkialoupe Pia aviKETPEVOKEVIPIKY 10060 yia v andotain
IOV avanapactacenv evog npo-exknaideupévou Video Masked Auto-encoder (Video MAE) otig ava-
napaotdoeig dvo state-of-the-art kwdikonotwv ekévag. H a§loddynon yivetal ndve oto ripoBAn-
Ha Karyopomoinon mpoopepdusvav dvvatomniov avtukeyévaov (affordance categorization). Xinv
a&lodoynon yivetat xprorn evog ouvodou Sedopévav, pikpng KAlpakag, rmou dnpioupyrOnke yia ta
nelpdpata g SIMAGUATIKAG AUTHG, XPNOIHOonoOviag ©¢ fdon to ouvolo dedopévav Something-
Something v2 (SSV2). Ta anoteAéopata deixvouv ot ot avartapaotdoelg tou Video MAE, miepiéxouv
XpHopun mAnpodopia yla toug KOdIKOmontég e1kovag Kat Sokipadoupe pepikeg pebodoug yla va e-
HIMAOUTIOOUE TIS avaAIapaoTAoElS TRV KOO IKOIo eV e1kovag. Ot pnébodot mapouoiacav pia pikpr)
BeAtioon aAAd 100G XpelaoTtoUv IPOoaPIoYEG 1) HeyaAUtepa ouvola 5e6o11€évav yia Ty KaAutepn a-
glomoinon autev tov avarnapactace®v. ErumAéov, pedetoupe pia pé6odo Baciopévn oty avtikelue-
vokevtpkn nEBodo expabrnong avanapactacewv Slot Attention. H anotedeopatikotta g pebodou
aglodoyeitat emiong oto mPOBANA TS KATYOP10II0iNong MpooPePOPIEVOV SUVATOTHTOV KAl IApoU-
014del AVIAy®VIOTIKA AMTOTEAEOATA, EVE ETTUYXAVEL EITIONG AUTOPATY] THNLATOION) 01 T@V EIKOVAV
Kal ONPAviiKL PEl®on tou peyeboug g avarapdotaong ava avikeipevo. TéAog, mpoteivoupe
Pla péBodo yia va ouvEudoouie AVIIKEPEVOKEVIPIKEG AVATIAPACTACELS Ao £va POVIEAO Baoiopévo
ot pébodo slot attention yia va mapaydyoupe pia 0UVOAIKY) avarapdotact) aro pia ekova, pe
otOX0 TV €KPAONON ONTkOKWNIKOV ToAuttkodv. Autr) 1) péBodog aflodoyeitat oe pla mpooouoiwon
POUTOTIKOU XEIPIOPOU KAl OTd IEPAPAta Mou IIPpaypatonou)fnkav mapouotdadel KaAutepa amnote-
Aéopata oe oUYKP1on pe AAAEG avarapaotdoelg. Anpoupymviag cUoXeTioelg pAaong-aviikeévou
OTIG avarnapactdoel§ TOV KOSIKOMOUIOV e1KOVAGg, autr 1 SmAepatikr ermdiokrel va cupBaiet otnv
AVATTTIUET 1O ATIOTEAEOPATIKOV CUCTHHAT®V OpACHS Yid POUIIOT KAl TEXVNTOUG ITPAKIOPES, EITL-
TPETIOVTIAG TOUG va KATAvoouv KaAutepa tn onpaciodoyia kat ) Suvapikn g adAnAemidpaong
MPAKTIOPA-AVTIIKEIHIEVOU.

Ag%e1g KAe181a: Avuikepevokevipikry) Expabnon Avanapactdoeov, Vision Transformer, Masked
Auto-encoder, Slot Attention, Katnyopionoinon Ilpoogpepopevav Auvatot)tov Avuikeipévey, Ilpo-
oopoiwon Poprmotikou Xeipiopou.



Abstract

This thesis aims to study the possible improvement of object-centric image encoders by enhanc-
ing them with action-centric representations derived from videos of actions. Firstly, we study a
method to distill the representations of a pre-trained Video Masked Auto-encoder (Video MAE)
to the representations of two state-of-the-art image encoders in an object-centric manner. This
method is evaluated in the task of affordance categorization using a small-scale dataset that we
created using the Something-Something v2 (SSV2) dataset. Experiments show that the repre-
sentations of the Video MAE contain information that could be useful to the image encoders,
and we test some methods to enrich them with this information. The experiments show that the
methods produce a marginal yet consistent enhancement. Further experimentation with larger
scale model implementations and datasets could potentially unlock additional improvements.
Furthermore, we propose and study a method based on the Slot Attention object-centric repre-
sentation learning framework. The effectiveness of the method is also evaluated in the task of
affordance categorization and it presents competitive results while also achieving automatic seg-
mentation of the images and a substantial reduction in per-object representation size. Finally,
we propose a method to combine object-centric representations from a slot-attention-based
model to produce a flat representation vector for an image with the aim of learning visuomo-
tor policies. This method is evaluated in a robotic simulation task and presents better results
compared to other out-of-domain representations. We also show that the slot representations’
performance in the simulated robotic manipulation can be improved when fine-tuning the model
with videos of actions from the SSV2 dataset. By creating action-object associations in the rep-
resentations of object-centric image encoders, this study seeks to contribute to the development
of more effective vision perception systems for robots and artificial agents, enabling them to
better understand the semantics and dynamics of agent-object interaction.

Keywords: Object-centric Representation Learning, Vision Transformer, Masked Auto-encoder,
Slot Attention, Affordance Categorization, Robotic Perception, Robotics Simulation



Euyxapioticg

Apxikd, erbupe va eKPPAcK TI§ euxapiotieg 1ou otov Kabnynt k. IIétpo Mapaykd, o ortoiog
UL PSE ONPAVIIKT] TNV YVOOTG, EUITVEUOTNG Kat KaBodrynong, tooo Katd ) §1dpKeid tov oroudov
pou, 600 kat katd ) Sadikaocia ekmovnong g rnapovoag drmlepatkig epyaociag. Ermiong, 1
ETUTUXNG OAOKANPW®ON TG £PYAOCIAG AUTHS OPEIAETAl Ot OUVEXY] UTMOOTHPIEN KAl OV MOAUTIN
nieipa tou ouv-eruBAénovia Ap. Twpyou Petowvd, tov onoio suxapilot®d Jeppd yia tov Xpovo Kat tnv
evépyela rmou pou 81€0eoe oe autr) v nipoortddeia. TéAog, Sa 1Beda va aPplep®om v epyaocia auvtr,
ot ouvipodo pou Iaopiv Kat oty O1KOYEVELD POU Yia T OUVEXT] UTootr|pi&n Kat evBdppuvor) o
0An 1 §1apKela AUTOV TRV ETWV.
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1 Extetapévy epidnywn ota EAAnvika

1.1 Kivntpo

'Evag Baoikog otdxog ToU To1€d g 0paong UMTOAOYIoTOV eival 1 Snpioupyia Xprotpev avarnapa-
OTACE®V KAl ] AVATTTUSH TEXVIKAOV Y1d TNV AMMOTEAEOPATIKY e§ay®yr) toug. To medio tng poprmotkng,
€Xel IOAAG avolKTd mpoBAnjpata mou PeALTdvIal auty) ) ouypy [6, , 2, 22, 23]. Tha apketa
aro avtd ta npoBAnpata, n e§aymyr] OrtKOV avanapaotdoeny PEom Pebodav rnpo-exknaideuong e
orttikd dedopéva (Zxnpa 1) eivar moAdd vrooxopevr, eneldr) PEIDVEL TOV XPOvo ekmaideuong rat
BeAtidvel TNV amodoon KAt v IKAVOTNTA YEVIKEUONG, 08 CUYKPLOon Pe 1e0060uUg nou ekrtaidevouv
0AOKANPO TO POVIEAO AIO TNV apXr] Kat and akpo oe akpo [52, 61, 95, ]. Autég ol avara-
paoctaocelg Sa mpEMel va PIopouv va eival Xprolpeg o pia noikidia ano epyaocieg kat davika va
anattouv eddaxyiotn snaveknaideuvon [95, 70].

Visual Pre-training

Pre-training Dataset Model Architecture Pre-training Objective

1
1
Pixel Observation [ Model Architecture [ Policy Network [ Behavior Cloning :
1
1
1

Robot Manipulation

Ixfpa 1: Oruikn mpo-eKkmnaibeuor) ylia pourotikda cvuotipata. Inyr: [52]

Mia owkoyévela pefodmv OmMTIKIG MPOo-eKTIAISEUONG TTOU TIAPOUCLIALEL APKETO eVOlAPEPOV TA TE-
Aeutaia xpovia eival 11 aviikeuevokevpky ekpuadnon avarnapaotacewv. O o1dx0g 1wV Pebodav
auteVv eivail 11 avanapactact) ouvOeT®v oKNVOV 51aX®@pifovidg teg 08 ONIAOI0AOYIKEG EVOTITEG ITOU
ovopadovtat avukeipeva. Autég ot 1€06odot, eival cupBatég pe Tov TPOIO IMOU 01 AvOPRIIOoL EIte-
Eepyddovial ta omuKda oHPAta 0pyavevovidg ta o avtukeipeva [77] kat mapouotadouv mpoorttiKy
BeATi®oNg TRV 1KAVOTATOV YEVIKEUONG, €§Nynoottag Kal arnodotkomtag og mpog ta deiypata
Katd Vv eknaidevon v poviedwyv [67, 8, 3].

H avuke1evoKevipiKr] eKPAON 0T avanapactaoe®y UIToPel va aviAroel EUITVEUCT) ATIO TOV TOEQ
g Yuxoloyiag, Ormou €Xel UMAPEEL EKTEVI|G MEAET YA TO MG Ol avBperiol padaivouv va addn-
Aermdpouv pe 10 mepBaddov toug, ouoxetidoviag Spaoceilg kat Aggelg pe avukeipeva. Ilepdpata
oV avartu§lakr] yuyxodoyia deixvouv ot ta Bpiégpn npota soudlouv otg ocuoyetioslg dpaong-
AVTIKEIPEVOU, EV® O1 OUOXETIOEIS AEEE@V-AVIIKEIIEVOU YivOVIal ONHAvKES apyoTepa OV AVATTIULH
toug [24]. Ot meplopilopol 0ToUg UMOAOY10TIKOUG TOPOUG, ota oUvoda Sedopévav kat otig pebo-
b6oAoyieg texvnng exkpddnong eprnodidouv ta ouotrpata TEXVNTNG VONooUvng va akoAoubrjcouv
motd ta otadua g avlporvng avarrtudng. Qotdoo, Ot TOHEIG AUTOl PITOPOUV va AIOTEALCOUV
€UITVEUOT) Via aAyoplOpoug mou emdIOKOUV va IIPO-EKMIAGEU00UV TeEXVNTA ouotipata avilAnyng
unodeikvuoviag v Kateubuvorn yla padnon tornou curriculum learning [5, ], n oroia apyka
€0TIACEL 0NV £§AYOYT] AVAIAPACTACE®V artd §PACELS KAl otr) ouvéxela otr pdbnorn Bactopévn oty
vAoooa. H dabikaoia auty) mpoxepd amno v eKpabnorn avanapaotaoe®v Xapniou emmnedou mpog
avanapaotacslg uyndou srmredou, eotiadoviag otadlakd oe mo ouvOetn KAl apnpnpevn mAnpo-
popia. Ermiong, n ekpdbnorn aut] KAVEL MTPOTA XP1ON AUTO-SMMBAENIOPEVOV TEXVIKOV O GUVOAQ
6edopévav ou eival 1o Poottd, OMKG U EMmMonPeldpéva ouvoda Bivieo Katl ot ouvexela yivetat
XPYO1) EMONPEOPEVOV OUVOA®V Sedopévav, Ta omoia Teivouv va gival HeyaAutepou KOOTOUG.
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Autr) 1 SIMAEPATIKY ETUKEVIPAOVETAL O TPOIOUG HE TOUG Oroioug ot §pdoelg Propouv va ou-
oxetotouv pe aviikeipeva. H mpoorndBela autr) Baociletat oe Setikd anotedéopata pebodwv mpo-
exknaidevong nou eotiadouv otr poviedonoinon dpacsokevipikng rAnpodopiag [87, 54, 61, 73, 69]
XpPnotornotmviag ocUvold 5e6011€vav MOV KATAypdpouV TOV TPOI0 H1E TOV OI0io 01 AvOpmITtol Spouv
Kat aAAnAermbpouv pe avuxkeipeva [36, 17]. Autd ta oUvola dedopévav propouv va XPnotionotn-
Youv yia va eknaidevoouv 1a cuctipata 6pacng Kat va 80oouv 0Toug MPAKIopeg £va rpoBadiopa
OTNV KATavonon tov aAAnAermbpdcenmv Pe aviKeilEva OTov IIPAYHATIKO KOGHO.

Bdoet tov napandve, o KUPLog 0ToxX0g aUTrg g Simlepatikrg eivat va e§epeuvrioet pefodoug
ITOU PITOPOoUV va BEATIOO0UV TOUG AVIIKEIPIEVOKEVIPIKOUG KOSIKOIIOUTEG E1KOVAG, NEC® HOVIEAO-
noinong ouvoAev 8edopévav ou eotiddouv otig 8pdoelg Katl otov Tporo aAAnAenidpaong tov av-
Yponewv pe avukeipeva. H mpotn gpyacia mou ypnotporoteitatl yia v aloAdoynon thg arote-
AeOPATIKOTNTAG AUTOV TOV AVATIAPACTACE®V £ival 1) Katnyopiomoinon mpooYepOUsVOL dSUVatoTiTOU
avukepévav (affordance categorization). H avayvepion npoopepopevev Suvatotieov propet va
Bonbnoet ta ouotpata va mpoBAEWouv Kat va oxedldoouv, mapexoviag rinpodopieg ya mba-
vég adAnAerudpdoeig pe avukeipeva Kat pe 1o repiBdddov. Ermréov, n anotedeopatkotnia tov
aAvVarnapaotace®v aglodoyeital HE€o® 11ag IPOCOUOIOUEVHS EPYACIAS POUITOTIKOU XEIPIOHOU.

1.2 XZuvelogopEg
Ot cuveloQopeg g SmMlepatikng ivat ot e§Ag:

1. Something’s Affordances: oculAoyr £vog ouvolou Sedopévev pikprg KAipakag yla
T0 nMpdoBAnpa Katnyoplonoinong Suvatotirwv avurepévev. To Something’s Affor-
dances eival éva pikpng kKAipakag ouvodo 6edopévav mou erekteivel 10 oUvolo Sedopévav
Something-Something v2 (SSV2) [35]kat eotiddetl otV KATNyop10Ioinorn rpoopepopevey du-
VATOTAT®V AVIIKENEVOV. ATIO T0 apX1KO 0UVOAO debopévav, eTAEXONKE Eva NKPO UTTOOUVOAO
Katnyoplav Spacenmv pe Bdaon v kavotnta toug va doxkiypdoouv tig pebodoug ekpabnong
avarnapaotdoerv. Ol UKEEG TTPOOPEPOREVOV Suvatot oV e§nxbnoav and g otatiouKeg
tou ouvodou Sedopévav. To ouvolo autd mpoodEpet Eva mePBAAAOV SOKIP®V PIKPNG KATpa-
KAG Y1a artAég UAOTIOW)0e1S OPLoPEVRV P1EBOdmV, (G IP®To Prjia Py arnd Vv KATUAKOOT) O
ouvolda 6edopévav e PeEYaAUtepeg UTIOAOYIOTIKEG ATIALTIOELG.

2. AvTrelpevoreveplkog Kwdikonoutng IIpoocavatoAiopévog otn Apaor. Awe§dyoupe
EKTEVI TIEIPAPATIONO e pia pébodo andotaing 6pdong-rpog-avukeipevo mou npoorabel va
PetadEpel TG yvaoelg evog nipo-exknatdeupévou Video Masked auto-encoder oe koaSikomontég
ewovag. Autn n péBodog ermyelpel va kedikorooet g dpdoeig péoa and o Video MAE
KAl va 11§ oUvOECEL € TNV ATIEIKOVIOT TRV AVIIKEIPIEVROV TTOU £1val OTO ETIKEVIPO TRV SpACE®V
avtov. Ta anotedéopata deixvouv 6t o1 avarnapactacelg tou Video MAE miepiExouv Xprjotieg
nAnpogopieg Kat Sokipaloupe pepikeg pebodoug yla va ePmAouticoupe TI§ avarapaotaoelg
1OV KOSIKOMIOUTOV €1KOVEOV pe autég. Ot pébodotl mapouoiacav pla pikpn PeAtioon adda
100G XPE1AOTOUV MPOCAPPOYEG 1) peyadutepa ouvola Sedopévav yia tnv kaAutepn aglomnoinon
AUTOV TOV AVaIrtapaoTdoE®y.

3. Slot Attention avanapaotdoelg yla Katnyoptonoinon duvatotntev [3] . Afodoyoupe
TG AVATIAPACTACELS AVUKEIPEVOV XPNOIHOIIOIOVIAS £va POVIEAO TIOU a§loTotel v apyite-
Ktovikr) Slot Attention. Ao éva poviédo rou éxet eknaideubet o dedopéva Bivieo e§ayoupe
OVTIKEPIEVOKEVIPIKEG AVATIAPAOTACELG OTATIKGV AVIIKEUEVOV KAl Ipoteivoupe piia péebodo yia
TOV EPITAOUTIONO T®V H1aVUOUATOV avartapdotaong TV AVIIKEIPEVEV Pe EMITAEOV 6paoeoKe-
vipiky rAnpogopia. To 110vieAo Tapouotadel aviay®vioTiky eriboon og 0XE0T 1 ta UrdAourta
poviéda rmou SokpdotnKav oe auty ) SIMAGUATIKY, EVE EMMITUYXAVEL EMTIONG AUTOPATH TUN-
HaTornoinor) IOV IKOVEOV Katl ONIAvVIKYA Peioon oto peyefog avarapaotaocng avd avilkeipevo.
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ErumA£ov, 1 tkavotnta T0U POVIEAOU va aViXVEUEL KAl va KATYOP1ortotel ToAAanAd avukeipe-
va 0€ Pla OKNvr), Iapd 1o YEYovog 0Tt £xel ekmtatdeutel pe etkéteg Kat dpdoeig mou eotiafouv
oe éva aviikeipevo ava napdderypa, avadeikvuet ) Suvatdottd ToU yia YeViKeuor).

4. Slot Attention avanapaotdoetlg yta popnotiko éAeyxo. [Tapouoidloue pa pébodo mou
ouvbudlel Tig Xwp1keG slot avanapaotacenmv tou poviedou SOLV [3] yia ) Snpioupyia avara-
PAcTACE®V E1IKOVROV Y1a XPHon O¢ H1d IIPOCOM0In0T POUIIOTIKOU XE1ptopoU. ASloAoyoupe tnv
arnodoorn autoy 10U KOSIKOIIOUTY E1KOVAG O avirtapdfeon pe AAAoug Ipo-eKnaldeupevoug
rodikoroutég. Ta anotedéopata, pag deixvouv ot 1) ripotevopevn PEO0S0G Oe YEVIKESG Ypall-
pég, erutuyxavel KaAutepn arodoon oe autd 1o neplBaidov, augdvoviag O1eg TV UoAoy1-
OTIKI] TTOAUTIAOKOTITA.

1.3 Ozwpntiro Ynobabpo

H evounta Oswpniicd Yro6adpo arookoriet va 9oet 11 Sempntikég BAcelg autng g SUTAOPATIKYG
epyaoiag rnapgyxoviag to anapaitto rmiaiolo rmov adopd tig rpotevopeveg peBodoug Kat relpapa-
ta. To vAko mou mapouotadetat avidel MAnpogopieg ano Siapopeg Tnyeg, aAdd Kupieg aro ta
MAPAKAT® ©

e Christopher M. Bishop - Pattern Recognition and Machine Learning [7]
Ian Goodfellow, Yoshua Bengio, Aaron Courville - Deep Learning [32]
Marco Gori’s Machine Learning: A Constraint-Based Approach [33]
Peter Norvig, Stuart J. Russell - Artificial Intelligence: A Modern Approach [93]
Sergios Theodoridis - Machine Learning: A Bayesian and Optimization Perspective [ |
Shai Shalev-Shwartz, Shai Ben-David - Understanding Machine Learning: From Theory to
Algorithms [98]

1.3.1 Mpnxavikn Maénon

H Mnxavikr) Mabnor ivat o eruotnpovikdg topéag rmou ermKevipevetatl oty avarrtudn pebodoloyt-
@V ITOU EITITPETIOUV OTA UITOAOYIOTIKA CUCTHIIATA va eKTEAOUV epyaocieg pabaivoviag amnod dedopéva,
avti va akoAdouBouv pntég odnyieg. H ikavotnta tov adyopibpev pnxavikng pabnong va padaivouv
aro 6edopéva £xel arnodetyBel e§a1petKA AMOTEAEOPATIKT) O TOHEIG OTIRG I AVAYVOP10T] E1KOVAG KAl
1 enedepyaoia QUOIKNG YAONOOAG, OIToU 01 AvOP®ITOl KAl YEVIKA 01 B10A0Y1KO1 0pyavIioHol PItopouv
va eKteAoUv oUvOeteg epyaoieg, adAd sivatl SUokoAo va ekppactouv ta Pripata mou ePIAEKOVIAL O
autég oe popdr) aiyopidpou. Erumdéov, n pnxaviky pabnon €xel meTUXel og epyacieg mou eivat
duokoldo 1 aduvato yla otoug avBpIoug va Ti§ EKTEAECOUV, OIKG 1) AVAAUOH HEYAA®V ITOCOTHT®OV
6edopévav.

H &iakpion avapeoa os oupBolAikr) kat uro-ocupBoAikn Texvnt) Nonpoouvn [49, 33] avadet-
KVUEL TOUG TOHEIG TTOU 1] PNXAVIKI] PAOnorn £€X€1 TapOoUo1acel onpavilkd srmteuypata. H oupBoAike)
TEXVIT] VONII00UVI] EITIKEVIPOVETAL Ot XPprjon pebodoloyiov rmou efaptmvial amo v eneiepyaocia
oupBoAmv, TpooTrtafaviag va mpooeyyioet ta mpoBAfjjiata poypapuatioviag UrtoAoy1oTeéG va -
pouvtat Vv avlporvn Aoyikn. AUTEG ot 1€00801 £X0UV TO TTAEOVEKTINPA TNG EPUNVEUCIIOTNTAG,
KaBmg 10 PeyaAUtepo KOppdt v dadikaociev eival Katavornt) arno 1toug avoporoug. Qotdco,
eneldn ta oupBoAka cuoThpAta XP1OI0IIo0UV oUPBoAa KAl avarnapaotdcelg Upndou ermredou,
ouXVAd ATattovv oNUAvilky avlporivy cuppetoxr kat Suokodsvovial oe Suvapka nepiBaiiovia
mou dlakatexoviat amo acagdela kat JopuBndn Sebopéva.

Ano v dAAn, o top€ag g 0pacng UMOAOY1otOVv acXoAeital pe npoBAnpata rou eivatl Kuping
UIo-oUPBOAKYG PUONG, ereldn ta debopéva oe popdr) pixel Sev £xouv cupBoAKr) onuacia Kat ot
oupBoAikoi kavoveg dev propouv va edpapplootouv eUKoAd. H umno-ocupBoAiky) texvntr) vonuoouvr,
1 oroia replAapBavel TG EPIOCOTEPES OUYXPOVES TIPOCEYYIOEIS PNXAVIKYG PAONnong, Xp1notonotet
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1eb0doug OMwG 1 OTATIOTIKY] EKTIPNON KAt 1] pabnpatikn PeAtiotornoinon ya va dnpioupyrnoet po-
vieda arno Sedopéva. Autd ta PoviEAdda PIopouv va eEKGPAOTOUV KOG MAPAPEIPIKEG CUVAPTIOELS Kal
n 6adikaoia exkpabnong reptdapBavet ) BeAtiotonoinon 1V MApaPEIp@V Xpnotpornotoviag dedo-
péva. Autég ot pébodot 6ev xapaxtnpidovial and myv eppunveUoOTIa TV P1eB6dmv cunBoAKEG
TEXVITAG VONOoUVNG KAl autr) 1) adtapavela £xel 0dnynoet 0oV XapaKtpiopd Toug 0§ pavpa Kou-
nida. I'a tov Adyo autod éxel avarttuxbei o topéag g enefnyrnowuns pnxavikng pdénong, o onoiog
ETUKEVIPWVETAL OF TEXVIKEG IMTOU TAPEXOUV EENYNOELS YVia 11§ dladikaoieg Kal ta anotedéopata tewv
poviédev pnxavikng pabnong [71].

H mapayoyrn poviédev pnxavikng pabnong ouxvda anattel peyado apibpd mapapérpov, ot
OITO1EG ATTAITOUV PEYAAO OYKO 5e60EVROV KA1 UTTOAOY10TIK®V MTOP®V yia va ekratdsubouv. Ta tedeu-
taia xpovia, ot teXvodoyikeg e§edifelg oto hardware, oriwg o1t GPUs kat ot TPUs kat ) S1aBeopotnta
peyddev ouvodev Sedopévav £xouv Bonbriost oty unépBaon avtev TV eprodiov, odnyoviag oe
OoNUavikeg mpoddoug kat nmpowboviag v épeuva otov Topéa. Emiong, ta tedeutaia xpovia, u-
apxet evdlapépov yia uBpidikég mpooeyyioelg mou ouvéudadouv 1600 TV UIMO-OUNB0AIKI) 600 Kat
1 OUPBOAIKNY TEXVITY] VONooUvr), peAetwviag pebddoug rou Sev eival povo arotedeopatikeég aAdda
Kl 1o EPUINVEUOTHES.

Tafwopnon & IMaAwdpopnon. Ta mpoBAnpata ot pnxaviky pdbnon katataoooviat oe U0
KUpleg opadeg. Edav n ermmbupntr €5060g eival pia ouveyng petaBAntr, 1o npoBAnpa avagépe-
Tal wg npoBAnpa madwdpounong. ‘Otav n £§060g eival €vag nernepacpévog aplOpog Katnyopiov,
10 TIPOBANpa ovopaletal afwounon. H ta§ivounon oe 6Uo katnyopieg eival yveot) og dvadikn
tawounon. H tadvopnorn oe tpeig 1 MeEPLOoOTEPES KATNYOPIES avadEépetal wg moAUKatnyopukn
Ta&wounon. 'Otav o otoxXog eivatl kaBe detypa va ermonpatverat pe moAAAIAEG, 11 ATOKAEIOTIKEG &-
TIKETEG, 1] epyaocia ovopaletat [ToAvetketkr (multi-label) Ta&wounon. 'Eva napadetypa multi-label
ta§vopnong eivat n Karnyoplonoinon mPooPepOUevOL Suvatotiov avtkeuévov. Ta aut)v v
epyaoia, kabe deiypa eivat éva aviikeipievo Kat o otoxog eivat va rpoBAe@OoUV ot 1) AOKAEIOTIKESG
PoodePOPEVEG SUVATOTNTEG TOU (LY. H1a PItdda PIopet va eivatl KUAOPEVT KAl CUPITECTT).

TUvoAa Aedopévav. To ouvodo Sedopévav ou eival 61abBéopo yia éva mpoéBAnpa ouvhfng Xo-
pidetatl oe 1pla Sexwplota uroouvoda: train set, validation set, test set. KaBéva and autda ta
urnioouvoda ektedel Evav ouyKekplpévo podo otig pebodoug pnyavikng pabnong. To train set
Xpnowporoteital yia ) feAtotonoinon tev napapétpev tou poviédou. To validation set xpnowo-
rotettal ywa eniBAewn katd I Siapkela mg eKnaideuong yia 1o nog arnodidet 1o p1oviedo os ayvoota
6ebopéva. H emiBAewn auty) xprjoworoteital yia v MmPooappoyn TV Iapapélpev g dtadika-
olag exkmnaidsuong, oU avapEPovial WG UTEPTTAPAUETPOL, X®PIS VA EMNPeAletal apvnTiKA 1) TEAKI)
a&loddynon. To test set xpnoworoteitatl yia v tedikr) a§loddynor, apéXoviag pia EKTIPNon g
anodoong tou poviedou oe dyvoota dedopeva.

Ynepnpooappoyr & Yrnonpooappoyr). O KUplog 0tdx0g Tov pefdduv pnyxavikng pabnong sivat
va napdyouv poviéda nou arodibouv kadd oe dayveota dedopéva mou mpoépyxoviat and my ida
Katavopn dedopévav. AuTr) 1 IKAvVOTNTA £1val YOOt Kal ®§ Kavotnta yevikevong. H yevikeuon
aglodoyeital pe v ekmnaibeuon evog poviédou, Bdoetl PeTpIKGOV anddoong mnou uroAoyidovial oto
train set, aAAd a§lodoyoviag 1o oto test set. Erurmdéov, n 1Kavotnta yYeEVIKEUONG £vOG LOVIEAOU -
ninpeadetal ano ) ywenukomia tou (capacity), n oroia eivat n IKavotntd T0U va IPOcAPPOLeETal o
nmoAUTAoKa oUvoAa dedopévav rpooeyyidoviag moAundokeg ouvaptnoelg. H peydAn xepnukotta
Hropet va @aivetat apX1ka g mieovektnua, adda auvty ) uedi§ia propet va odnyroet oe éva @at-
VOJEVO TI0U OVOPALETal UTEPTPOTAPUOY], OTIOU TO POVIEAO TTPOCAPHOLeETal UTIEPBOAIKA OTO GUVOAO
exknaidevuong, pewwvoviag v anodoot| tou ot ayvwota dsdopéva. H unonpooappoyry oupBaivet
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Otav povieda XapnAng X@pnukotntag £€Xouv xapunAn anodoor), rnetdr) n moAuniokotnta g Epya-
olag anattel peyadutepn Kavouta avarnapdotacng. Xe opltopéva povieda Mnyavikng Mabnong,
OI®G Ta VeEUP®VIKA diktua, o Babpiog unepripooapployng ennpeddetal Emiong amnod UIePIapapéTrpoug
exnaidevong onwg n didpkela exnaidevong, o pubuog pabnong kA [32].

Mé£Bodor Mnyavikng Maénong. Ot napakdte pébodotl pnyavikig pabnong kabopidoviat amo
T0UG S1aPOPETIKOUG TUTIOUG eTTIBAEWNG OTOUG OTT0i0Ug £X0UV IpooBaoct) ta poviéda Katd ) diapkela
g eknaideuong:

o Embiemousvn Madnon. Xe autd Tov TUMO PNXAvikng pdadnong, ot pébodot xpnotponolouv
avadpaon umo 1 popdr etkeOv. 'Eva ermonpeiopiévo ouvolo dedopévav nieptdapbavel pia
eukeéta ya kabe detypa, X = {(x1, y1), - - .. Gav, yn)}-

o Mn EmiBisnousvn Madnon. Zin Mn EmuBAeniopevn Mdbnor, dev undpxet apeon avatpogo-
b6otnon nou va kaBodnyel i Hradikaoia eknaidbevong. Ta poviéda rpoortabovv va evioriicouv
potiBa ota ouvoda Sedopévav X®pig Tt XPL01 ETKET®V.

o Autd-emibAcmopucvn Madnon. Autr 1 MPOoEyylon UNXavikng pabnong, yevika Sswpeitat u-
mokatnyopia g pn ermBAenopevng pabnong, Kat 10 POVIEAO Tapdyel 1) 61k tou emiBAsyn
ano ta Sedopéva. AuUTH) 1) TEXVIKL XPIOIHOIIOEITAl OUXVA Yld TNV MPO-eKNAISEUOT POVIEAGV
KOSIKOTIOUTOV IOV 0TI OUVEXELWD BEATIOTOO0UVIAL XPIOIPOo)VIag ermBAenopevy nadn-
on. Ot auto-ermBAeriopeveg 11€60601 TTOU XPIO1IOITOI0UV POVIEAQ KOOTIKOITOUT®V VEUPRDVIKOV
S1KTUGV avikouv oto TAaiolo evBiapEpoviog autrg tng SmMe®patikng Kat egetadovial pe re-
P1O0OTEPT] AETTTOPEPELA OTI] OUVEXELA.

e Euioyvukrn Madnon. v evioXUTikr pdénor, ta poviéda padaivouv aAAnAemdpmviag pe €va
riepBaAAov Kal 1 avatpopodotnor maipvel ) popdn Piag ouvaptnong aviapodrg. Autdg o
TUITOG PNXAVIKLG Pabnong eivatl epnveuopévog aro Tov TPOITo ou ol avlpwrtot padaivouv Kat
aAAnAeribpouv pie ta reP1BAAAOVIA TOUG Kat £XEl TTIOAAEG EPAPIIOYEG OTOV TOLEA THG POMITOTL-
kng. H evioxutikr) pdbnon napouciddetal pe meplocotepr) AETTOPEPELT O ETTOPEVO KEPAAAILO.

Métpa Anddoong rat Zuvaptiosig Kootoug. Ta ugroa anddoong eival cuvaptr)oeilg rmou rnoco-
TIKOITO10UV TV artdd001) T0U POVIEAOU KAl AroTeEAOUV ONIIAVIIKO PEPOG TG Yewpiag Kat tov nebddav
Mnyxavikrig Mabnorng. Ta epyaocieg uadikng ta§ivounong, orou kabe deiypa propet eite va avrket
(y; = 1), eite ox1 (y; = 0), o pia poévo KATnyopia, OPIOPEVES A0 AUTEG TI§ oUVaPTroelg Pacidoviat
otoug akoAouboug apibpouvg:

e True Positives (TP): O ap®pog tov detypdtev yia ta oroia y; = 1 xkat hy(x) =1

e True Negatives(TN): O apiOpog tev detypdtev yia ta oroia y; = 0 xat he(x;) = 0

e False Positives (FP): O api9pog v deiypdtov yia ta oroia y; = 1 kat hy(x;) = 0

e False Negatives (FN): O ap1Opog tov detypdtev yua ta oroia y; = 0 kat hy(x) =1

Me Bdon autd, Propouv va UIoAoyiotouv §1adopa PETpa anodoong, Oneg:

TP + TN

Accuracy = X 100% (1)
TP + TN + FP + FN
TP
Recall = ——— X 100% 2)
TP + FN
TP

Precision = ——— X 100% 3)

TP + FP
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Precision - Recall
=2 — 4)
Precision + Recall

Ot ouvapt)oelg KOOTOUS €ival HPid UMMOKATHYOPId TRV PEIPOV artodoong rmou agloAoyouv rmoco
AEYX0UV 01 IIPOBAEYPELG TOU HOVIEAOU AT TIG MIPAYHATIKEG ETKETEG KAl £ival ouvrBwg Srapopioeg
®G TIPOG TI§ IIAPAPETIPOUS TOV POVIEA®V. L& amdd YPaUPKA POVIEAd, EIMITPEIIOUV TNV EKTIINOT
1OV APAPETPROV, XPNOTHONOIOVIAS AvaAUTiKL 8iadopion KAl AUoelg KAE0TG POopPrg. e ITo
MTOAUTIAOKA JI YPAPHIKA HOVIEAd, EMUTPEMOUV TNV epappoyr] pebodav PeAtiotornoinong onwg ot
enavaAnmukoi aAyopiOpot g owkoyévelag Gradient Descent .

1.3.2 Ba6ia Maénonq

H Babia pdbnon eivar évag kAadog tng pnxavikng pabnong rnou nmapouotadel oAAEG srutuyieg ta
tedeutaia xpovia oe Topelg O®g 1 OPAOoH UMOAOYIOT®V KAl 1] enegepyacia @uolkng yAoooag. 'Eva
anod ta Kupla MAEOVEKINHA TRV TEXVIKOV Pabidag pabnong eival n ikavotntda toug va pabaivouv
auvtopata avarnapaoctdoeig aro ta Sedopéva.

H Babia pabnon Baoiletatl otoug alyopBpoug exkiddnong vevpovikov diktvwv. Ta veupevikd
biktua amotedovvrat ano noAAarAa enineda. Kabe eminedo xpnotpornoiel pn ypappiikoug Letaoyn-
patopoug yua va ene§epyaotei v 10066 tou kat apdyet pia €§060 mou petadibetatl oto emopevo
entintedo. To mpd1o Kat 1o tedeutaio eminedo avadépovial og emineda ew0odov kat e§odou avtiotorxa,
eve ta eviidpeoa enineda ovopddoviatl kpuga enineda. To Sddog Tou Veup®VIKOU S1KTUOU givat o
ap1B16g TV emedmv IoU MEPLEXEL KAl TO TT/1drog Tou eival 1o péyefog T@v Kpudpev ermIedmv tou.
H augnorn tou rmAatoug kat tou BABoUg evOg VEUPGVIKOU HIKTUOU YEVIKA EVIOXUEL TNV 1KAVOTITA TOU
va 1pooeyyidel o MOAUTTAOKEG ouvaptroelg. Q0to000, autd Arattel emiong replocotepa dedopéva
Kal UTIOAOY10TIKOUG TTOPOUS Y1d 11 BEATIOTONOINOoT TV TApapPETp®V.

Stochastic Gradient Descent. O aAyopiBpog autdg Kat ot rmapaddayeg tou eivatl ot Imo eu-
PEWG Xpnotponotoupevol adyopiOpot BeAtiotoroinong oty Badid pabnon. Ta Bapn Tou poviédou
EVINHEPOVOVIAL EMTAVAANIITIKA, XPIOTHOTIOIMVIAG KAIOEIG TG OUVAPTNONG KOOTOUS GG P0G TIS ITa-
papetpoug. O UOAOY1010¢ TIPAYHATOITOEITAl 08 PIKPA Tuxaia urocuvola 6edopévav mou ovo-
padoviat mini-batches. H kAior), kaBag eivatl éva 6iavuopa rou deixvel pog v Kateubuvorn g
TaXUTEPNS avodou TG CUVAPTNONG AMIOAEIAG, XPIOTHOIIOEITAl Y1a TV EVIIHEPRDOT] T®V ITAPAPETPROV
ToU S1KTUOoU.

Vision Transformer. Xt aut ) Sutdeopatks), divetal kupia épgaon ota povieda rou Bacidoviat
otV apXlIeKtoviky tou Transformer | ]. O kxwbwkorowntrg Vision Transformer (ViT) epappodet
Vv apXliektoviky) transformer oe €10080ug o€ popPn e1kovag 1) Bivieo. To KUPLO MAEOVEKTNIA TG
APXITIEKTOVIKI|G AUTIG £lval n ikavotntd g va ene§epyadetat 1ig akoAoubicg Sedopévov napaddnia,
X0pig va Bacietal mave oe SoPKEG UTTOBECELS Yia T POP®I) TNG E10060U OIS AAAEG EMMIKPATOUOES
apxttektovikeg, oav to Convolutional Neural Network . Auto srutpénet ota transformer poviéda va
exratdevovial os Tieplocotepa Hedopéva og AyoTePo XPOVOo, va KATHAKGOVOVIAL O TIOAU peyaiutepa
Peyedn Kat va ekpetaddevovial KaAUtepa T PAKPIEG 6apTHoetg ota dedopéva.

Me Baon v apXIEKIOVIKY] AUTr), 1] €1KOva Xwpidetal oe tpnpata (patches) otaBepov peyéboug
Kat kaBe tprpa arotedel éva token. O VIT ene§epyddetat 1o ouvolo tov tokens Xpnotornomviag
v texviky tou self-attention. H £§o6og tou ViT armoteleitat ano davuopata avarnapdotaong,
KABe éva apykornoupévo pe Baon éva token. To kdBe 1ed1ko Siavuopa avarnapaoctace®v SuvnTka
epmnepiexel minpogopia amnod urodoira tokens tng ewkovag. Ot Transformers propouv va eknaldeu-
TOUV XP1OP0IIoI)VIAg ermonpelnpeva ouvola dedopévav os éva mhaiolo srmBAenopevng pabnong,
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aAAd xprnowonolouvial €rmiong os mAaiola auvto-ermBAenopevng padnong avartapactdoswy. Ta me-
P1o0OTEPA POVIEAA TIOU OXeTidovial pe autr 1) Sumlepatiky akoAoubouv v tedsutaia IPooEyylon
Kat, Mo OUYKeKkppéva, t) pébodo tng avto-kwbikomoinong érnou o kwdikonomntrc tou transformer
axkolouBeitatl amno évav anokwdikomomn Ty ou MPooItadel va avakataokeudoet v ei00do.

1.3.3 Exrpaénon Avanapactacswv

H expdbnon avanapaoctdoewmv ival o topéag mou otoXeVel oty avarugn pebodev pe tig oroieg
Ta poviéda €§Ayouv autopata XpHolpeg avanapaotdoelg and ta dedopéva e106dou. L Baba
pdabnon, o1 péBodotl ekpAaOnong aAvanapacTaoE®V CUXVA XPNOTHOII00UV auto-ermBAeniopevn padn-
o1, eKnAdevoviag KOSIKOTIONTEG O MPOKATaApKTKES pyaoieg (pretext tasks) mou dev amattovv
emMonpe@pPEVa ouvoAa dedopévmv.

Avto-r8ikonoutig. H auto-kedikoroinon eival pia anod tg eruxkpatéotepeg PeOodoug ex-
pdabnong avanapactace®v pe XpPron auto-ermBAenopevng pabnong. evika, n pabnon avana-
PACTACE®V OTOXEVEL OtV eKmaideuon evog kadikoromt) e : D — Z nou arnekovidel dedopéva
€100dou, x € D, oe xpriowa davuopata avanapaotaong, z € Z. LI0U§ aUTO-KESIKOIONTEG, 1)
€10060¢ avakataokeuadetatl amnd pia povdda rmou ovopddetal anokmoukomomTyg, 1 onoia propet va
eRQPaotel ©g ouvaptnon g : Z — D. Mia cuvnOiopévn ouvaptnon aneAelag yla v eknaibeuon
AUTO-K®JIKOIIONTOV £ival 1 anwisla avarkaraokeurg, ou ouvnong opiletatl og n Stadpopd petady
g €10080U Kal g avakataokevaopevng e5odou (E§iowon 5).

1 N
L= Zl lIx; — gleGa)ll, 5)

O1 110 EUPEDG XPTO1HOTIOI0UHEVOL AUTO-KM@S1KOTIONTESG £ival autol rou ovopadovial UroTAnpElg
(undercomplete) ot oroiot €rmxelPOUV va AVAKATACKEUACOUV TV £10060 adou Vv HETAPEPOUV
MPATA OE £vaV XOPO AvaIrapdotacng onpavilka Hikpotepng diaotaong. a va obrjcouv ta poviéda
va €§Ayouv XPr|olHES avanapactdacelg, £Xouv rpotabel H1APpopeg TPOIOMOOELS TOU UIIOITAT)POUG
auto-rkwdkoroutr). Avo adloonpeiotot tumnot sivat ot Arodopubomnointucoi (Denoising) kat ot auto-
kodikorontég pebddou arokpuyng (Masked Auto-encoders).

Ot Anodopubonomtukoil Auto-kwducoromtes (Denoising Autoencoders) pabaivouv amno 6edopéva
mou €xouv adlowbel arnd S6puBo. Mia SopuBrdng ekdoyxn ng e106dou, X, Tpopodoteitatl otov
KOS1KOMoI1r), KAl 10 POVIEAO KAAEitdl va avakAtaoKeUAoel Vv apyikn €ioodo, x. H anwAeia
AVAKATAOKEUNG OE aUTH TV MePInteorn eivat:

1 & 3
L= Zl lIx; — gle()Il, )

Ot avto-kwdikomomntés uedobov andkpuvyne (Masked Auto-encoders) ermixelpouv va avakata-
okeudoouv pwa eicodo, X, g oroiag KAmola PEpn £€Xouv Kpudtel. Lty 0paoct UMOAOY1loT®V, Ta
poviéda autd eivatl dlaitepa arotedeopatikd 1000 Oty KOS1KOIoinon ekovag, 6oo kat Bivieo
Kat aroteAovv Ta KUPld POVIEAA TTOU XPNOTHoTolouvial o autr] 1 Sumdepatkr. Ilepioodtepeg
AETITOPEPEIEG KA1 OUYKEKPIHEVEG TEXVIKEG TIAPOUOC1ALOVIAL OF EMTOPEVO KEPAAALO.

AVTIREIIEVOKEVIPLKEG AVANAPACTACELS. H AVIKEPEVOKEVIPIKY] €KPAONOT AvVATIAPACTACEDY
eivat évag avantuoodpevog Top€ag otV 0pact) UITOAOY10T®V, OIT0U 0 0TOX0G £ival 1] TUnpatonoinon
OIMUIK®OV £1008wV ot aviikeipeva Kat n e§ayoyr] avanapactdoenv pe Bdon autd. Ot pebodot autég
elvat oupBatég pe 1g apyeg opadomnoinong anod v Puxoloyia, ot oroieg e§nyouv nog ot avBpwriot
ene§epyddoviatl OItiKA OfPatd OPyaveovovidg Ta s avikeipeva [77].
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H avuikeipevokevipikn ekpddnon avanapactdoemv PEATIOVEL TV IKAVOTNTA YEVIKEUONG KAl TNV
arodoTKOINTIA T®V POVIEA®V ®G TIPOg ta detypata eknaideuong Kat PEATIOVEL TNV EPUNVEUOTIOTY)-
ta. X10 tapeABov 0pwg, autég ot teXVikeg Baaoiloviav oto poviedo g ermBAenopevng pabnong kat
rieplopidoviav ano ) SuokoAia Kat 10 KOOTOG TG EMONIAvong ouvodev dedopévav. Ta tedeutaia
XPOV1d, ApXITEKTOVIKEG OTIwG To Slot Attention, ot oroieg eivatl auto-ermBAemOpeveS KAl e§alpett-
KA RAPAKOOTHIEG, £X0UV EMMTAXUVEL TG e6eAI§EIS 08 AUTOV TOV XMOPO EKPETAAAEUOHEVEG PEYAAA 1N
ermonpewpéva ouvoia dedopévmv eikovav kat Bivieo [67, 8, 3].

ExpdObnon avanapactdos®Vv Oty PORMOTIKY XTOV TOHREA TG POUITOTIKYG, Ta tedeutaia xpovia
€xel eviabetl to evdlapépov oe mpooeyyioelg faotopéveg oe 1eBodoug pnxavikng kat Babidag pabn-
ong. H petapopd yvooemv amod v emtuxnpévn epappoyr] g eKpPdadnong avanapaotdce®y otny
eneepyaoia QUOIKAG YA®Ooag KAt v 0pact] UMTOAOY10T®OV Tailel KEVIPIKO POAO O AUTEG TG TIPO-
oraBeteg.

Ot avanapaoctacetlg e1kovag nai¢ouv Kabopilotiko poAo ota rPoBAATa POPITOTIK®V XEPIOH®Y,
OITOU 1] KATAVONon Tou IepBAAAoviog tou pournodt eivat kabopiotikrn. Eibikodtepa, pe v mpoodo
mg Babag pabnong, n Opacr UMOAOYIOIOV eVIOXUONKE HE AOTEAEOPATIKEG TEXVIKEG £§Ay®YNG
avartapactacemv. Ot TEXVIKEG aUTEG eivat 1 BAoT yia KATOEG AITO TI§ ITI0 EMMITUXNEVEG 11EBOB0UG
€EKNAONO0NG OITTIKOKIVITIK®V MOAMTIKGOV (Zxnua 2) [64, 106, 61, 95, 128]. O dpog OmTikoKIVNTULOS
emonpaivel 6t 1o diavuopa katdotaong rnou Sivetat g £10060g 0to POVIEAO TTOATTIKAG cuviudadet
avarapaotacelg e1kovag pe éva diavuopa nou rneptdapBavel mAnpodopieg yla v KAtdaotaort) tou
pPOUIOT, Onwg 1) 9€on 1) 01 TaXUTNTIEg T®V apBpdos®v Tou.

encoder | decoder

*

masked image

SEFEE
EENTRDOE

IZxfpa 2: Expabnon avanapaotdoemv e auto-kedikorontr] pe pébodo andkpuyng ekovag yia
tov €deyxo poprnot. Inyn: [87].

Ot TeXVIKEG AUTO-ETIBAETIONEVNG 1AONONG £1vat TTOAU ONPIAVIIKEG 0TIV EKPAON 01 avarnapaotaoe-
®V Y1d POUITOT, KABOG EMTPENOUV TV A§looinor PEYAA®V 1) EMNONPEIOPEVEV OUVOA®V Sebopévav.
'‘Eva evielkuiko mmapadetypa €ivat 1 emuuyia 1oV auto-KOSIKOIIOUTOV E1IKOVAS OF TIPOCOOIOHEVES
[87] kat mpaypatikoy kKOéopou [88] poprnotkeg epyaocieg. Xt @Aorn Mpo-eKnaideuong, o1 K@d1Ko-
TONTEG EKITAISEUOVTIAL XPIO0IIOIVIAG EIKOVEG A0 IIPOOKITOKEVIPIKA (egocentric) ouvola debo-
pévav, onwg 1o Ego4D[36] kat to EPIC-Kitchens[17], kaBmg kat cUvola 6e6011€vav ermKevVIipoIEVA
oe dpaoetg, onwg 1o Something-Something [35]. Ztn ouvéxela, ot TAPAPETPOL TOV KOGIKOIIOUT®OV
pévouv otabepég Kat 01 avartapaocTaoelg TOUG XPNOII0IIO0UVIAL Yid TV €KI1AON01 OITTIKOK IV TIK®V
TTOATTIK®OV €AEYXOU.

1.4 Anootain I'voong ano Apaorn oe Avtikeipevo

Y& auto 1o pépog, mpoteivoupe Kat relpapatigopaocte pe pia Siadikaocia anooradng yveoong (knowl-
edge distillation) 6pdon-oe-avikeijievo IOV PETAPEPEL Tr) YVOOI) Ao évav Kedikorowntr) Video MAE
oe évav redikomouty| ewkovag. To amotédeopa tng dabikaciag authg sival évag AVUKEIPNEVOKE-
vipkog Kodikorowutg Ipooavatodiopévog ot Apdon (Object Action-centric Encoder -OAcE). O
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1.4 Anootadn I'voong and Apdaon oe Avukeipevo

ot0x0g tou OACE eival va PovieAoTo)oel ToV X@WPO avarnapactdoemV Bivieo mou neptEXouv dpdoeig
MAve 0¢ avilkeipeva, mou eival apXikd npooBdaoipog povo aro to poviedo Video MAE. Xpnotpo-
nowovtag Satporukr andotadn yvoong (cross-modal distillation), otoxevoupe va Kavoupe auteg
TS avanapaotdoelg rPooBaotieg PEO® OTATIKOV EIKOVOV AVIIKEIIEVOV.

O OACE aroteleitat aro §uo kupla pépn:

¢ 'Evav Kedikonounty Ewkévag rou petaoynpatidet pia e1kova arno tov Xopo tev pixel os évav
ITUKVO XOPO avanapaoctaong ewkovag, I € Zimg. Zta napakdte rnepapata, Xprnoponolovviat
600 Glagopetika mpo-exknaideupéva poviéda g Kodikornoutég Ewkovag, o CLIP[S86] kat o
Image MAE[45].

e 'Eva Movtédo AvTioToiX1ong, T0 OMOi0 avIloTolKidel TOV X®WPO avarnapdotaong e1Kovag otov
8paceoKrevIpiKO XOpo avarnapdactaong PBivteo, R € Zac.

AaoOnuika, auvtr) n pébodog eival mpoornabela KS1KOIOINONG TV eUNeEPlOv dpaong Kat ou-
OXETI0T|G TOUG, PE0® NG XPHONS Arnootagng yvoorng, e TV arelkovior) TV avIKEIPEVEV TToU gival
10 emikevipo TV Spacerv autdv. Mia peddovukr kateubuvon da prnopouce va rnepldapBavel 1
OUCYETION TV EPIEIPLOV TOV 1610V TOV MTPAKTIOP®V HE TA AVIIKEIPIEVA.

— — — Action-centric Encoder

~ — = Transformer encoder wit cross attention

f o0—¢ (1t)

-—=

- Object/context detector ~ - Policy network

Exfipa 3: [Mapadetypa tou OACE kodikorout) ©g PEPOG POVIEAOU eKPAONOTG MTOATIKOV.

O1 OACE avarntapaotdoeig 9a ftav duvnukd xpnoipeg og Prjpa npo-eknaideuong oe pia aviket-
Hevokevipikn PE€Bodo ekpadnong moAttik®v, Onwg oto Lxnua 3. Mia dAAn rmbavr xpnopotmta mg
EVOOPATOONG OpaCEOKEVIPIKNG TTANpodopiag Sa prmopouos va eivat 1 apoxr PEIP®V 0010t TAS
oe éva rep1BaAAov avdakinong rnapadetypdrav, onwg oty dwadikrtuakn Bdon dedopévav popnotikov
XEP1op@V ou rpotddnke oto [117]. Tédog, karmola rapdpola 16¢a 9a priopovoe va epappootel o
epappoyeg Enauinpévng r Ewovikng [paypaukdtntag, 6rou ot eikovikoi Bonboi Sa propovoav
va mapéXouv Urmootrpi§n, KAl i0wg va Xpelaotel va avakiroouv Kat va napéxouv napadeiypata
6pdaoceswv [83].

O KUpP10g 0TOX0G AUTHS TNG IEPANATIKNAG evotntag eivat va diepeuvrioet av o OAcE propet va ou-
YKp19el Kat Suvnuikd va BeATIOoEL, 0PIOPEVOUG ATTO TOUG CUYXPOVOUS KOSIKOTIOUTEG e1kOvag. [Tpwv
aro IV napouociacn Ing Melpapatikng pefodoAoyiag KAl 1@V AnOTEAEOPAT®V, 1] EMOPEVI EVOTTA
napouotadet 1o YepnTKO UNGBadPO OV eVErMVEUOE AUTH T HEALTN, padl pe ta npo-eknaldeupéva
HoVIéAa oU XPno10Iolouvidal.
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1.4.1 Amndotafn I'voong

H anootan yvoong (Knowledge Distillation - KD) [34, 53, 90] eivat pia pébodog ouprtieong veu-
POVIK®V S1KTUGV, otnv ortoia éva poviedo pabnirg (student model) eknaibevetat va avarapayayet
) Aettoupyia evog peyadutepou Katl o ouvOetou poviédou daokadou (teacher model). Avt 1
1€B060g mpotddnke, 1adl pe adAeg TeXVIKES Heiwong Poviedwv onwg to Network Pruning [14, 91,

I, yia va xkadvyet v avaykr yia poviéda mou sivat e§ioou arotedeopatkd pe ta peydda Baba
poviéda, aAAd AeToupyouUV 0€ OUOKEUEG € TIEPLOPIOPEVOUG UTTOAOY10TIKOUG TIOPOUG, OMKG Kvhtd
mAéPpwva 1 avtokivita. To poviédo pabniig dev pabaivel povo anod to ouvoro Sedopévav, aAda
KAl ArOTUTIOVEL TV 1KAVOTTa YeVikeuong tou daokaldou [48].

Ta tedeutaia xpovia, £xouv mpotabel apketég apaddayég g anootaing yveong [34, 53]. Ot
Katnyopieg rmou oxetidoviatl pe ta nelpdpata avtrg g Sumlepatikig eivat ot e§Ag:

e Feature-Based Anootagn: e autn) v katnyopia aiyopibpev KD, n petagpepdpevn yvoon
etvat oe upnAotepo ertinedo oe ouykplon pe 1§ Response-Based knowledge methods, orou to
povtédo pabntrg otoxevet Tig mbavotnteg tagivounong tou poviédou daockdalou. H Feature-
Based pé6odog éxet 6eifel evBappuviikd arnotedéopata wg pébodog expdbnong avarnapdota-

ong [112, 26, 28].

e Awatporuky) Anootafn (cross-modal distillation): Autd onpaivel 6t n eioodog tou da-
OKAAOU eival S1apopeTKAG Popdng and autr) Tou pabntr). Zinv mpootyylor) pag, o §aokalog
k@dkornotei Bivieo kat o padng poornabei va arootdet g mAnpopopieg mou oxetioviat
e ) §pdor og £1KOVEG TV AVIIKEIIEVOV. AUTO EPITITIEL OV KATNyopia tng anootadng Bivieo
oe e1KOVaA 1] petagpopdag yvoong [92, 80, 65].

e Ixsolaky) (Relational) Andotafn: Aut) n napaddayr eotddel ot PETAPOPd TRV OXECEDV
petady Selypdtov oTov X®POo avarapdaotacng tou poviédou dackddou. H oxéon twv dety-
patev nocotikoroleital ouvnOwg p€om §Uo TUNEV cuvaptnong anoislag [79]: anwieia Pdost
anootaong (distance-wise loss) kat anwAsia Bdaoet yoviag (angle-wise loss). Ziv aneieia
Bdoetl ardotaong, ot EukAeibeieg arootaoeig petagu euyov derypdtwv urodoyidoviat, evbap-
puvovtiag tov padntr va Satnpel oxE€0e1g ArooTACE®V MTAPOHUOIES PE AUTEG TOU SAOKAAOU.
H anoAeia Pdosl yoviag €MmiXelpel pia mo AEMTOPEPT] METAPOPA OXECIAKNG TAnpodopiag,
@O vtag Tov padntr) va datnproet 1ig ywvieg mou oxnpatioviat ano 1piddeg mapadetypatov.

1.4.2 Kodikomnountég e1rkévag

CLIP. To povtéda CLIP [86] eival amd toug ITo EmtuXnNpPEVOUg KOSIKOIONTEG e1KOvVAG , 000V
agopd ) yevikeuon, v guedi§ia kat mv arodoukotnta. Ta poviéda autd ekmnaibevovial oe
€va ouvolo Hebopévmv ou anotedeital amo ermonpepéveg eikoveg. H exknaibevon Baoiletat otn
1€6odo avubetikng pabnong (contrastive learning framework). To poviéda CLIP arotedouviat
ano éva ¢euydpt (Transformer encoders), érou o évag Kadikornotel e1kdveg Kat o dAAog Keipevo.
Ol avanapaoctdoelg KAtaAnyouv oe €vav KOwo X®PO OTOV OIT0i0 1 eKIAideUst) OTOXEUEL va QEPEL
1a 0®otd {gUydpla o KOVId, £Ve TaUToXpova va anopakpuvel ta AdBog {euydpia, ta oroia ivat
tuxaiol cuvbuaopoi kepévou-eikovag. ‘Eva mpo-eknaidsupévo poviedo CLIP emudéxOnke wg €évag
anod 10Ug Kd1KomonEg e1kovag oto OACE, Aoym tng anodedeiypévng Tou anoteAeopatikoTag.

Image Masked Auto-encoder. H xodikornountg eikovag Image Masked Auto-encoder (MAE)[45]
Baoiletal otv auto-kmdikonoinon pe ) pebodo anokpuyng (masked auto-encoding). H Baowkr
16¢a miow aro ) pébodo autr) eival 0Tt av éva POVIEAO PIMOPEL va avakataoKeudoel €va dslypa
He oplopéva armo ta PEPT TOU KPUHPHEVA, TOTE 0 KOSIKOMOUTG Tou Uropel va e§ayayet vywning
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rnowotntag avanapaotdoelg. H pébodog exnaidbeuong tou Image MAE Baocietal otnv apylteKTOVIKL
Kod koot -Artok®d1kornontr], ornou kat ta dUo poviéda €xouv apxitektovikr ViT. O kwbiko-
nownrg emnedepyddetal v eAAr] €i0080 Kal mapdyel avarapaotdaoelg Iou £X0UV EVORHATOOEL
mAnpogopia yia oAOKANen v ewkova. O anoKmdIKOMoNTG MPooItadel va avakataoKeUAoet TV
APXIKI) €1KOVA KAl 1] OUVAPTNOT) AnwAelag ival 1o péco Tetpdywmvo odpadpa petadl tov avakata-
OKEUAOPEVOV KAl TOV ApXIKOV TIHOV TV pixel ota token mou £€xouv arnokpugOei.

1.4.3 Kodwkonountyg pivico

Video Masked Auto-encoder. To poviédo Video MAE rou Xprotpornoleital o€ autd ta repdpata
MAPOUCIACTNKE OTO [ ]. H pébodog mou mpoteivetal avilpeI®rtidel T1§ IPOKANOE1S TIOU TTAPOUOT-
alouv ta 6edopéva oe popdr) Bivieo, oe oUYKPLON P TIS POPPEG KEEVOU Kat ekovag. H mpwoin
pOKAnon eivatl n aunpévr moAunAokotnta mouv e10dyetal amno 1) Sidotaon tou Xpovou. H devtepn
MPOKANOT) eival OT1, OTIG IEPLOCOTEPES MEPUTINOELS, TO XPIOHI0 Onpia €ivat povo €va HKpoO Iooo-
01O NG OUVOAIKAG €10060U. TEAog, OTav ArOKPUITIOVIAT KOPHATIA TOU PBivieo, 1] UYPNAr XPOVIKI)
ouoxétion petadu twv frame propel va odnyrjoet oe Siappor| mAnpopopiag o pépn tou Pivieo e
TMIEPLOPIOPEVT] Kivnorn. Ta va aviipet®Iotouv autég ol IIPOKANOELS, Ol CUYYPAQEIS TTPOTEIVOUV 1)
XPHOn plag TeEXVIKNG o@Anvoeldoug anokpuyng (tube masking), 6rou ot xpovikoi yeitoveg evog
token eivat emiong kpuppévol. EmrmAéov, yia va avaykdoouv to Poviedo va £0Tldoel OT0 XPr|ot-
10 1€POG TOU OIaTog KAl va artoduyouv tig Peudeilg ouoyetioelg, anokpurtetal 1o 90-95% tov
ouvoAikwv token .

Ta povtéda mou sknaldevutnkav pe auvty) ) peébodo nmapayouv state-of-the-art amoteAéopata
otv downstream epyaocia avayvopiong Spaong. 'Eva and ta ouvola debopévav mou xpnotpo-
rolovvial yia tmyv aglodoynorn v Video MAEs eivatl to ouvolo dedopéveov Something-Something
v.2. AuUto 10 oUvolo Sedopévav erAEXOnKe g PAoT yid TO0 KUP0 PEPOG TV MEPAPATOV AUTOU TOU
Pépoug, kabag eivat eEAappu Kat rapéxet Pivieo ermkevipopéva oe dpaocelg. 'Eva Video MAE rmipo-
ekrta1deupévo oe autod 1o oUVoAo 8edopévav Xprnotponoieital ®g poviedo daokadou ot Stadikaocia
anootagng.

1.4.4 TIpoogpepopeveg Auvatotnteg AVILRELPEVOV

210 TTAQ1010 TV OITTIKOV AVATAPACTACE®YV, 1] £VVOld TOV IIPOCPEPOPEVOV SUVATOTHTOV AVIIKEIIEVOV
(affordances), n oroia ouvdéet TNV aviiAnyn 1@V avikePévev pe 11§ duvatdtnteg §pdong, mapexet
H1a oAU oMKy yia g pebodoug ekpabnong avarapaoctdoemv, Kabng katalapBavel Tov X®po
petady autou rmou £ival AVUKEPIEVIKA MAPATNPLO0 (XAPAKTINPIOTIKA AVUKEIPEVOV) KAl AUTou
rou Bivetatl unokepevika (avarnapaoctaoeig) [76, 13]. O James J. Gibson urnootrjpige 6t yia toug
avBporoug Kat ta {wa, ta avikeipeva dev yivoviat anmdog avilAniid ©§ cUVOECELS TV XAPAKTNPL-
OTIKOV T0Ug (oXfpa, Xpwuda, udrn), addd og ouvbeoelg tov duvatotriov dpdong rmou napgxouv [30,
I.

Ta Baoikd npoBArpata mou oxetidovial pe autr ) SmAe®patiky opidovial mapakdat®.

e Katnyopioroinon rnpoodpepdpevev duvatot)tov: Autt) rieptdapBavet ) multi-label ta§ivoun-
On TRV EIKOVOV Og £€va 0UVoAo dlaBionnv ipoopepopevav duvatotrtav. Autr) 1) epyaocia sivat
ouvrBwg Baon yila rmo ouvoeteg pyacieg avayvmplong IpoodepOPEVAOV dUVATOTHTROV.

® AViXVEUOT IIPOOPEPOIEVOV SUVATOTNTOV: LTV £pYAcia autr) Ta POVIEAA MIPETIEL VA EVTOTTIOOUV
Kdl va KAt YOP10Itotjoouy Ta avikeipeva pe BAorn ug rnpoodpepdpeveg Suvatotnieg toug.

H xatnyop1omoinon mpoo@epopevav Suvatottev eivat évag KaAog urownelog yia tyv a§loAoyn-
0N aAvarnapaocTdoe®V AVIIKEIPEVOV TTOU IIpoopidovial yla pOPIotiky). AUutd opeiAetal 0To yEyovog 0Tt
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0 evVIoronog duvnuikwv Spacenv oe €va meplBadAov propet va Bonbrioet 1o poprot va oxedidoest
Katl va ouvepyaotei pe avBporoug 1) adda popror [13, 42].

1.4.5 ZuUvoldo Acdopévov

Ta Something’s Affordances etvat éva pikprg KAtpakag ouvolo Sedopévav rou Bacietatl oto ouvo-
Ao dedopévev Something-Something v.2 [35] xpnoponowwviag karoteg anod tg bounding box e-
rmonpewwoelg tou ouvodou Something-Else [72]. Ot katnyopieg §paong oto Something-Something
v.2 €xouv dnpoupynOet pe otoxo va Bonbrijoouv ta povieAa, va epBabuvouv v Katavonor) 1oug yia
TOV UOIKO KOOPO KAl va avarttuiouv pa popdr) kowrg Aoywkrg. Ot avanapaoctdoelg tou Video-
MAE arodiSouv kaAd og autd 1o oUvolo §ebopévav Kal OUVENRG, eival mbavo va £X0UV artoTUTIOOEL
Ha uynAng nowotntag SpaceoKeEVIPIKI AN podopid.

To Something’s Affordances eotiddet oto PodBANIa TNG KATNYOPLOIIOiN oY) Ipoopepdevey du-
vatot)tev. ['a mv adlodoynon tov pebodev uno egétaon ermA€xOnKe £va PIKPO UTIOCUVOAO KATNYO-
pv dpdong. Ot KAInyopieg AUTEG KAl Ol AVIIOTOIXEG TIPOOPePOIEVES Suvatotnteg apouotadoviat
OTOV TAPAKATR TTVAKA.

Affordance Something-Something action labels # video samples
Foldable Folding something, Unfolding something 1620
Rollable Rolling something on a flat surface, Letting something 2918

roll up a slanted surface, so it rolls back down, Letting
something roll down a slanted surface, Letting

something roll along a flat surface

Squeezable Squeezing something 2202

Containment | Pouring something out of something, Pouring something| 2289

into something until it overflows, Pretending to pour

something out of something, but something is empty,
Showing that something is empty

Tearable Tearing something just a little bit 1620

Table 1: Ot katnyopieg dpdong tou Something’s Affordances kat ot avtiotoixeg PooPepOIEVES
duvatotnteg.

"Evag amno toug rmepilopiopioug oty esaywyn bounding box avukepéveov amno éva ouvolo debo-
pévav Bivteo eival 6t moAAa deiypata repiexouv napepBolég amno xépa 1) dAda avukeipeva. Ta
va ghayiotoriownOei auto to {Atnua, o1 €1KOVEG avIKEPEVRVY e§rxOnoav amno ta npota 10 frame
v Bivieo, Orou ta avikeipeva ouvhOwg epgavidovial pova toug. EmumAéov, Adye tng Kivnong
NG KAPEPAS 1] TOV XEPIWV, KATola aro ta bounding box rmepiéXouv PEPOG TOU AVIIKEIIEVOU 1) E|I-
pavidouv motion blur. Autd épxetatl oe avtiBeon pe dAda ouvola Sedopévav Katnyoploroinong
MPOOPEPOPEVAV HUVATOTTOV, OIS T0 [55], TToU meptEXouV Kabapég E1KOVEG AVIIKEIPEV@Y. AV KAl
auto PIopel apXika va @aivetal @g éva PEOVEKT A, AUTEG 01 AAAO1OOEIS PITOPOUV va ITIPOCOOL-
(OOUV TA AITOTEAECPATA TEXVIKOV AUSNONg £1KOVAG, Ol OIOieg XPIOTHIOIIoouvIal TEXVITA yia va
BeATi®OoOUV NV 1KAVOTNTA YEVIKEUOTG TV POVIEA®V [ 1.

Iapopoieg pe 1o ouvoAo dedopévav Something-Else [72], opidoupe to unoouvolo frequent ob-
Jjects , 10 omoio aroteAeital anod ta avukeipeva rmou spgavidoviatl rieptoodtepeg and 20 popeg ota
Bivieo. Auto yivetal yla va Staocpadiotel ot ta aviikeipeva spgavidovial oe apketa napadeiypata,
wote va propei va e§axfel mAnpopopia PooPepOPEVOV SUVATOTTOV AITO TA OTATIOTIKA TOU 0UVOAOU
dedopévav. Zuvolikd, 1o oUvoAo dedopévev anotedeitat ano 11, 235 Bivieo, and ta onoia e§ayovrat
123, 434 bounding boxes avukeipévev. 'a kdOe aviikeipievo oto ouvolo frequent objects urolo-
yioupe v Katavour] ouxvottag twv 6pdcewy. Ao AUTHV TNV KATAVOUT] OUXVOTNTag, £§Ayoune
11g multi-label poopepopeveg Suvatotnieg yla Kabe avikeipevo, epappodoviag Eva Kat®dAl otig
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oUXVOTNTEG HE TPOIMO MOOTE va ArodeUyovidl Td AVIIKEIPEVA TOU XPnotpornolovvial He aouvnot-
oto 1poro. T'a mapdadeypa, n katavour) cuyvotntag Spaong kat ot multi-label mpoopepdpeveg
duvatotnteg yia 1o aviikeipevo bottle mapouoiadovial oTov MApAKATE® ivaka :

foldable | rollable | squeezable | containment | tearable
frequency distribution 2 575 156 178 1
affordance 0] 1 1 1 0]

Table 2: H xatavour ouyvotntag dpdong kat ot multi-label mpoodpepopeveg duvatdtnteg yia to
avtikeipevo bottle.

To ouvodo Sedopévav xwpiletal pe duo tpomoug:

1. Auwaipeson Baost Bivreo (SA-vb): To ouvoro Sebopévav xwpiletat oe tpia ouvolda train, vali-
dation, test eSaopaliovtag ot o1 e1kOVEG Ao 1o 1610 Bivieo avrkouv oto 1810 ouvolo.

2. Auwaipeon Baost avurelpévav (SA-ob): Autr n) Siaipeon oToXeUel Ot OUVOETIKT] YEVIKEUOT)
compositional generalization [72] , Siapwvtag ta aviikeipeva oe U0 ouvola, 1o Set A kat
10 Set B. To Set A xpnowonolieital ya v eknaibeuor), evo 10 Set B Xprolpornoleital ota
ouvola validation kat test .

Ta axkodouBa nepdpata anotedovvial ard §Uo otadla. L1o apXko otddlo, 0 KOSIKOIOUTNG
OACE exnaidetetal Xpnotloroimviag EIKOVES AVIIKEIEVOV OGS E10060UG KAl avarnapactdoelg Bivieo
and tov Video MAE wg otoxoug. Ta va ermtayxuvOei auvtn n Siadikaocia, ot avarntapactdoeilg 1660
tou Kedikorountt] Eikovag 600 kat tou Kedikorountr| Bivieo, e§dyoviatl ek v mpotépmv, Kabog
pévo 1o Moviédo Avtiotoixiong unoBaAAetatl os exkraibeuon. 1o Sevtepo otadio, 0 eKmaldeupévog
kodkornontg Sokpddetal otV Katnyoplomnoinon npoopepOPevav SUVATOTTOV XP1OTHOTIOIOVIAS
toug multi-label otoxoug rmou neptypadpnKav mapandive.

1.4.6 TIIsipapatiriy péGodog

H apyuektovikn kat 1 pébodog exraibeuong tou OACE amewkovidetar oto Zxfapa 4. O OAcE
AapBavetl wg £10060, £1KOVEG AVIIKEIPEVRV, Ta orola e§ayoviat xproponowviag ta bounding boxes
a6 1o ouvolo dedopévav Something-Else. Ta Bivieo twv dpdoswv aviikouv oto Something’s
Affordance. T'a kaBe eikova avukepévou, o OACE eknaidevetal yia va apdyet pia avanapaotaon
OTOV 8PACEOKEVIPIKO XHPO avariapdotaong .

Kwbdikonoinon anod tov 8aokaldo. To poviedo Saokadog sivat to ripo-ekniaibeupévo ViT-S Video
MAE aro 1o | ]. ®swpoupe ta Pivieo oto ouvodo dHedopévav Something’s Affordances wg
X i € [1..N], xkaBéva ané ta orota anoteAeitat and T frames (ESiowon 7). Ta frames £xouv
otaBepo vyog 224 pixels kat petaBAnto mAatog. Ilpv anod v ewoaywyr) oto Video MAE, petaoyn-
patidovtat o otabepr] avaduon 224 X 224 (H = W = 224). EmumAéov, ta Bivteo urtoBaiAovial oe
XPOVIKY urodetypatoAeyia, katadryoviag oe video clip pe 16 frame (E€iowon 8). To Video MAE
enefepyadetat ta video clip kat ot avarnapactaoceig P mpoépyovtatl and 1o average pooling tov
tokens tou ViT . To péyebog autov tov Stavuopdiev avanapdotaong eivat dy = 384.

Videos: Xgi) ={X1,...,X70} € RTOXHXWx3 @
Video Clips: Vt(i) ={Vy,...,Vig} € RIGHXWx3 ®)
Teacher representations: 7 (i) = ¢temcher(vt(i)) e R% )
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Zxnpa 4: Object Action-Centric Encoder: apyitektovikr) kat péfodog exraibeuong

Kwdromnoinon e1kovag. AU0 mpoeKnal§eupévol KOSIKOIOUTEG £1KOVAG XPNotpono|onkav oe
auty mv neEpapatik) evotnta, évag CLIP [86] kat évag Image MAE [45]. O Image MAE exkniaiSeutnke
EMITAL0V OTIG £1KOVEG TOU ouvolou dedopévav Something’s Affordances yia 100 eroxég.

'Onwg avadepbnke MPONyoupevag, yid va PEIOOULIE TNV OITIKY ITapePBoAr), ta arokoppeva
avtikeipeva, Ct (E€iowon 10), e€dyovtat amné ta mipota 10 frame tov Bivieo, xpnoponowoviag ta
boudning boxes aro to ouvolo Sedopévev Something-Else. Ta anokoppéva avikeipeva unoBal-
Aovtal ot OUVEXELA OF EMMESEPYAOIA A0 TOV TPO-ETesepyaott] KAbe kwdikorountr) ewkovag. Kat ot
600 kwdomonteg HExovial eikoveg oxnuatog H X W x 3, onou H = W = 224. O redkomong
£1KOVAG eMegepyadetal Ta AroKOPHEVA AVIIKEEVA Yl va TTapAyayel 1§ avanapaotaoelg eKOvVag
It9, Kat otig 800 mepimtéoets, 1o P£ye0og Tov S1avuoPdIey avanapdotaong eikovag sivat d; = 512.

Object crops: C\ = {C(li), e, Cg)} € RIOXHXWX3 (10)

Image representations: IE") = (pimagefencode,(c(ti)) € R% (11)

Avtiotoiy1on 0ToVv §paccokevIpIkO XWpo avanapaoctaong. H avtotoixion ano tg avarnapa-
otdoelg e1kovag, 19, ot avarapaotdoeilg OACE, RY, napayetat aro éva MLP (Elowon 12) rmou
aroteldeital and ta akoAouba orpopata, ouvdedepéva os oelpd :

1. 'Eva ypappiko erinedo pe péyebog e1068ou 512 kat péyebog e€06ou 512

2. 'Eva eninebo evepyortoinong ReLU

3. 'Eva eninebo (dropout)

4. 'Eva ypappiko erminedo pe péyebog e106dou 512 kat péyebog e§66ou 384

OACE representations: Rﬁi) = Qmapper(d (ti)) e R% (12)
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Anoxrwdikonoinon ot eninedo avanapaoctacewv. I'a tnv eknaibevorn tou OACE, ot avartapa-
OTAC0ELS ATTOKMOSIKOIIOI0UVIAL Yid Va avakataokeudoouv g avanapaotdoelg Video MAE (E§iowon
13) ka1 1§ avartapaoctaceslg Ewwovag (E§iowon 14). H avakataokeun Kat t@v 500 avanapaotacemv
odrjynoe oe Afyo kaAutepa arotedéopata aro 1o va €xet 0 OACE oG 0TtdX0 116V0 Ta XApaAKTIPIOTIKA
tou Video MAE.

Teacher representation (TR) reconstructions: 7:}(0 = <pTR_dewder(R§i)) e R% (13)

Image representation (IR) reconstructions: Tfi) = ¢1R_decoder(REi)) e R% (14)

Zuvaptiosig AntwAstag. To Movtédo Avtiotoixiong Kat ot 5Uo anokedikornonég Bedtioronolovviat
XPOHOIOIROVIAG TPELG S1APOPETIKEG OUVAPTHOLEIS ATIMALLNG

1. AndAsla AvaRKATACKEUNG Avanapactdoswv dackddou: Autr sival n Artwdsia Méoou Te-
TPAYOVIKOU ZpdApatog (MSE) mou urtoAoyidetal petady tov otoX0V avarnapaotdoemy ard 1o
Video MAE yla kdfe Bivieo Kal T®V AVAKATACKEUAOPEVOV AVATTAPACTACE®V TOV AVIIOTOIX®V
avukepévav oto 1610 Bivieo. Ta éva batch B pe N Setypata Bivieo:

1
N - d;

N 10
Lie = D Luse(F O F) (15)
=1

t=1

L

2. ANMAE10 AVARKATACKEUNG AVANIAPACTACE®V £1KOVAG: Auth) eivat  MSE mou uroloyidetat
PeETady TV avanapaotaoemv ekovag arnod tov Kedikoront) Eikovag Kat t1ov avaKataoKeua-
OPEVOV avarapaotace®y e1kovag. I'a éva batch B pe N Selypata avukeipévey:

N 10

1 i) 5

Lie= o D D Luse (. 1) (16)
521 =1

3. AnwoAsla oxeolwakng anootaong: Autr eivail ) Angle-wise Relational Knowledge Distilla-
tion Loss (RKD-A) oniwg ripotddnke oto [79]. Tha pia tprada detypdtov, n 0Xeolaky Suvapikey
ywviag rmoootikornotel ) ywvia rmou dnpioupyeitat anod ta pia detypata os éva Xopo avara-
PACTACERV :

wa(R;, Rj, Ri) = cos LRRiRy. = (e, €jg)
ti— ¢ e — t (17)

where e; = ———, €= —"——.
Pl =tlle” Y it — gl

H anwdeia RKD-A petpd ) §iagopd otr 0XeO1aKr] Suvapikr yoviag petagy tov avanapa-
otaocewv 1ou OACE Katl 1oV avanapaotdoemv 10U §aokAalou:

1
PrRAA = [ ] Z Lyse(pa(Ri, Rj, Rio), wa(Fi, 7. Fi)) (18)

(Ci,Cj,Cr)eC?

Ta va replopiotei 1) avinon tng UTTOAOY10TIKTG TTIOAUTTAOKOTITAG ITOU £10AYEL AUTH ] AMIOALLA,
10 C? givat éva ouvodo 50 tp1adwv, mou emAéyoviat Tuxaia anéd xabe batch .
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Awadikaocia Exnaidsuong. 'Ola ta poviéda exknaibevinkav yia 20 emox£g XPNOTHOIIOImvIag
learning rate scheduler kat tov Adam optimizer[56]. O learning rate scheduler mepidapBdvet
b6uo gaoceig [3]: pla apxikr ypappiky ipobéppavon péxpt Ir = 0.001, akoAouBoupevr anod ekOett-
KI) Pei@won Tou Ir. Autr| 1) IIPOCEYY10T OTOXEVUEL va BEATIMOEL T) OUYKALION KaAtd TNV eknaidsuon.

1.4.7 A¥§oAdéynon

H a§ioddynon nipaypatorow)bnke xprowponowwviag dvo pebodoug: (i) linear probing kat (ii) ex-
naidevon plag kepadrg ta§vopnong MLP mdve and tg nayopéveg avarnapaotdoelg OAcCE . O
OTOX0G NG TMEPANATIKAG a§loAdynong eivat va doxkipdoet eav o kwdikonoun)g OACE propei va
evioyuoetl §Uo kadikonontég eikovag: CLIP kat Image MAE. Eival onpaviiko va onpelodest ot ot
avartapaotacelg CLIP §ev éxouv exkntabeutel ot Bdon edopévav rmou xpnowponor)fnke yia aglo-
Adynon, eve oto Image MAE éxet mpaypatorniownOei fine-tuning oe avt) ) Pdaon Sedopévav. Ot
aglodoynpéveg péBodot eivat ot eEng:
1. GT: To ground truth anotéAeopa npoérkue eknatdevoviag Toug Tagvopuntég otTig avarapa-
otaoelg tou daokddou. Eivat ocav ta poviéda va €xouv nipooBaon otg “téAeleg” avapvhoetg
TV EVEPYELOV ITOU oxetilovtal pe Kabe aviikeipevo. Auto avadelkviel 10 Xprolo onpa otig
avarnapaotacelg 10U HoviéAou tou Saokdalou.
2. OACE ot CLIP: Exrnaideuon ta§ivopntov otg avartapaotdacelg OAcE |, pe to CLIP wg Kobt1-
KOTTOUTI] £1KOVAG.
3. CLIP: Exnaideuon tavountov oug avarapactdoeig CLIP .
4. OACcE oz IMAE: Exrnaibeuon ta§ivountov otug avarnapactacsig OACE |, pe to Image MAE wg
KOO1KOTIOUT] £1KOVAG.
IMAE: Exrnaibevor ta§vournov oug avarapactacelg Image MAE .
6. OAcCE + IMAE: Exnaidsuon taivopuntov otlg OUYyX®@VEULEVES avarapaotacslg tou Image
MAE xat tou OAcE.

o

Linear probing. To linear probing £xet xpnotporiomnfei ®g npwtdékoAdo a§lodoynong avarapa-
otacenVv oe d1adopeg pedéteg, ouvpnepdapbavopévav tov [86, 45]. TleptdapBavetl tnyv eknaidsuon
€vOG YPAPHIKOU Tagvopntr) mdve aro 1§ avanapaotdoeslg. o nAaiolo tou ouvolou Sebopévav
Something’s Affordance, n multi-label ta§ivopnon arnattet v eknaidsuor névie Suadikov ypap-
KOV tadvountov - évav yla kabe ratnyopia mpoodepopevng duvatotnrag. O tadivopntrg rou
eMAEXONKe yla autd 10 MEPAPAtKo tunpa nrav n Aoylotky MaAwdpounorn, n omnoia givat éva
VEVIKEUPEVO YPAPHIKO poviédo. Ta anotedéopata rtapouctadoviat otoug I[Mivakeg 3 kat 4.

Configuration | Recall | Precision | F1 Score | Accuracy
GT 0.7508 0.9444 0.8349 0.8774
OAcE on CLIP | 0.7275 | 0.9224 0.8116 0.8610
CLIP 0.7217 0.9147 0.8050 0.8561
OACcE on IMAE | 0.6514 0.8986 0.7512 0.8256
IMAE 0.6863 0.8942 0.7740 0.8364
OACcE + IMAE 0.6964 0.8973 0.7821 0.8411

Table 3: Linear Probing petpikég anodoong yla tov daxoplopod Bdoet Bivieo tou ouvodou debo-
péveov Something’s Affordance

Kegpadn Ta§ivopnong MLP. To linear probing sivat éva xprjoipo ripatékoddo afoddynong, Sev
propel va ekpetadAeutel pun ypappikeg avanapaotacelg. Mia pikpng kKAipaka kepadr) MLP exkmat-
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Configuration | Recall | Precision | F1 Score | Accuracy

GT 0.6256 0.6240 0.5543 0.6845
OACcE on CLIP | 0.6360 0.6404 0.5707 0.6980
CLIP 0.6256 0.6240 0.5543 0.6845

OACE on IMAE | 0.5575 0.5853 0.4821 0.6341
OAcE + IMAE 0.5994 0.5931 0.5341 0.6722
IMAE 0.5984 0.5907 0.5301 0.6681

Table 4: Linear Probing petpikég anddoong yia 1ov d1axoptopd BAcet avilKePEVOU TOU OUVOAOU
6edopévav Something’s Affordance

Sevtnke ya mv a§loddynon nipog auvtr) v kateubuvor. H apyitektovike g KepaAng ta§ivopnong
eivat n e§ng:

e Ipappko otpopa (e106dou dy = 384, e€66ou = 1024)

e Ttpopa evepyoroinong PeAu

e Fpapuiko orpopa (e1o6dou: di = 1024, £§66ou = 5)

e Tiypoednig Evepyoroinon oe kaBe €§060

H exnaideuon 10U veup®vikoU §1KTUOU aKOAOUONOoe Pl mapopold MPOCEYY1on HE T0 HOVIEAO
OAcE Mapper, xpnowpomnoioviag tov alyopidpo Adam [56] kat évav learning rate scheduler e
péylot taxvinta pabnong 0,001. Twa v tedkr) ta§vopnon, spappdletal Xprorn KatwgAiou
(thresholding) otig £§660Ug tOU TeAeUTAIOU OTPOHATOG TOU TASIVOUN T, Ol oroieg Bpiokoviat eviog
tou Saotpatog [0, 1] Adye g oypoetdoug evepyoroinong. To katwpAt pubpidetat oto validation
set, og KAOe P11 A6 TG MEVIE KEPAAEG EEXMP1O0TA, Y1a va peylotornoirjoet 1o okop F1 tou tadvournt).
Ta neypapatika anotedéopata napouvotadoviat otoug Iivakeg 5 kat 6.

Configuration | Recall | Precision | F1 Score | Accuracy
GT 0.8265 0.9380 0.8776 0.9045
OAcE on CLIP | 0.8467 | 0.8782 0.8611 0.8878
CLIP 0.8195 0.8858 0.8505 0.8817
OACcE on IMAE | 0.8138 0.8173 0.8145 0.8493
AcE + IMAE 0.8051 0.8331 0.8174 0.8538
IMAE 0.7785 0.8359 0.8046 0.8458

Table 5: Metpikég anodoong g MLP ta§ivopnong yia tov dtaxopiopo Bacet Bivieo tou cuvolou
6edopévav Something’s Affordance

Configuration | Recall | Precision | F1 Score | Accuracy

GT 0.7508 0.9444 0.8349 0.8774
OACE on CLIP | 0.6870 0.6834 0.6723 0.7820
CLIP 0.6840 0.6742 0.6598 0.7720

AcE on IMAE 0.5271 0.6574 0.5656 0.7136
AcE + IMAE 0.5501 0.6656 0.5838 0.7218
IMAE 0.5410 0.6633 0.5763 0.7186

Table 6: Merpikég arodoong g MLP tadivopnong yia tov Siaxwptopd BAoet avilkepéveoy tou
ouvolou dedopévav Something’s Affordance
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1.4.8 Zupnepaopata Kat pEAAOVTIREG KATEUOUVOELG

Tevika, ot avanapaoctdoelg tou Video MAE napouciadouv KaAutepr) anodoor o oUyKPLon e ToUg
KOSIKOTIOTEG €1KOVAG. Auth 1) BeAtioon 9a propouoe va opeldetal oto 0Tl 01 KOSIKOTIOUTEG €1-
KoOvag eknaidevoviatl oe dedopéva ektog tou nediou, eve 1o Video MAE €xet ekntaibeubel oto ouvoAro
6edopévav SSv2. TMa va 1o digpeuvriooupe autd npaypatoriolovpe fine-tuning tou Image MAE oe
£1KOVEG ard 1o ouvodo Sebopévav. Qotooo, ota nepapata o kedwkornounig CLIP e§akoAloubel va
unieptepel Tou Image MAE kat éva 1o opilotikd anotédeopa Sa arartovoe kat 1o fine-tuning evog
poviédou CLIP, xpnowponowwviag 1o ouvodo Sedopévav SSv2.

Qotooo, Sewpoupe 10 yeyovog ot ot avarnapaoctaocelg Video MAE mapouoiadouv kadutepn a-
o600r ©g £vBelln OTL UTAPYXEL XPTOO ONHA OTIG AVATIAPAOTACELS AUTEG KAl Td TEPAPRATA Pag
rapouotddouv pia npoortadela va to adlorowrjooupe. Ot Video MAE avartapaoctacelg @atvetat va
€XOUV ONUAVIIKA HI YPAPHPIKA XOPAKINPLOTIKG, KaB(g 1 anddoor) toug BeATidvetal onpaviika
otV ta§vopnor pe xpriorn) MLP. Tevikd, 1 nipotewvopevn) peébodog OACE mapéxet pia pikpn Bedtio-
01 OTOUG KOS1KOTONTEG E1KOVAG. AUTr) 1) BeATinon eival o epgavr)g oTov S1aX@P100 TOU GUVOAOU
6edopévav pe Bdaon ta avuxkeipeva. Autdg o Staxwpilopog pe PAaorn ta avikeipeva mapouotadetl pla
peyadutepn mPOKANon yla ta povieda, kKabwng eloayel dyvoota avikeipeva test set.

ZuvoAikd, 1o OACE pe CLIP mapouotadel kaAutepr anddoor), minoiadoviag tig Video MAE. Zinv
niepimmtwon tou Image MAE, to OACE 6gv mapeixe rmavia feAtimoeig amno povo tou. Zuvoyidoviag, ot
pebodot ou HokpAcTnNKaAv apouctalouv pia mePLoPIoPEVI) ATTOTEAEOIATIKOTTA, @OTO00 EVOEXETAL
va xpeladoviatl Iporonotroelg otg pefodoug 1) peyadutepa ouvola Sedopévav yia va mpaypatornot-
nOei xprjon petapopd rminpodopiag aro t §paoct oto aviKeipevo.

IIepropropoi tng peBodou afoddynong. H tpéxouca afloddynorn repiopiletat oe éva pikpod
ouvolo 6edopévav pe Alyeg katnyopieg 6pacenmv. e NeAAOVIIKEG EPEUVEG, TIEPIOCOTEPEG KATNYOPiES
Sduvatou)tev 9a propovoav va e§axbouv ard autd to ouvoro Sedopévav. Mia o oAoKANP@REVH
a&lodoynon da nepieddpBave ) xprion peyalutepev ouvodev Sebopévav dnwg to EgodD [36] kat
10 EPIC-Kitchens[17]. Qotooo, pia onpavuky nipokAnon Sa nrav n ekrnaidsuorn tou Video MAE
ViT, 1] evog evaAAaKTIKOU poviéAou §aoKAAou og autd ta peyaAutepa ouvola 6edopévav, Aoy® Tov
HEYAA®V XPOVIKGOV S1apKEIDV Kal TG UPNAOTEPNS avaAuong tev Bivieo.

ErurmAéov, oniwg onpetwbnKe mponyoupévag, ota elpdpatd pag o kadikonounmg eikovag CLIP
unieptepel tou Image MAE, napodo nou o kodworoung CLIP exnaidevetal povo oe debopéva
€K10g tou rediou (out-of-domain). T'a va evioxubel 10 emxeipnpa ya ) pébodo avanapaotaong
dpdong-oe-avrikeipevo, eival anapaitnto va npaypatoroinbouv mepdpata kat pe kanowo CLIP
poviédo eknatbeupévo oe e1kOveg amnod 1o 1610 ouvoro. Qotdoo, Sedopévou ot dev eival Siabeotpiog
0 erionpog KOd1kag yia v exknaibevon tou CLIP , ) 6tadikaocia autr) avaBadAetal yia PeAAOVIIKY)
biepeuvnon.

IIeploplopoi tng apXIteRTOVIKNG povtédou. 'Evag amo toug mepilopiopousg tou OACE eival n
egapnon tou ard éva poviédo aviyxveuong avukelpévev (. YOLO [89], SAM [57], EgoHOS
[ ], Mask R-CNN [44]) yia v e€aywyn tov avukepévoy ano ta Bivieo. a ta nepdpata auvtou
ToU pépoug anodaoiotnke va xprnotpornowbouv ta bounding boxes tou ouvodou Something-Else
KAl ot ouvexewa va Siepeuvndei pia pébodog ekpadnong avarapaotacemv mou e§ayetl autopata
AVTIKEIPEVA KAl avarnapactdaoelg amnod pia oknvr). Autn n pébodog eivat to Slot Attention, kat to -
TIOPEVO KEPAAA10 KATAYPAPEL P1d TTPOOTIABe1a KATAvOnong TV KUPL®V 18@V TG Katl va a§loAoyroet
TIS AVATIAPAOTACELG ITOU TIPOKUITIOUV.
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1.5 Avanapaotaocsig Slot Attention
1.5.1 Oswpntuko Ynodabpo

Slot Attention. AuTO 10 KEPAAAI0 EMTIKEVIPOVETAL OV AVIIKEIPIEVOKEVTIPIKT) 1EB0do Slot Atten-
tion mou propet va Swaxwpiost autdopata pa ewkova 1 €va Pivieo oe avikeipeva. Ze autd 1o
neipapia, ol avarnapaotdoel§ AVIKEIPHEVAV IIPOEPYOVTAL arto to poviedo SOLV [3]. Autd to poviédo
ETTITUYXAVEL ETNTUXAOG TOV S1aX®P10H0 TTOAAAMAGV AVIIKETPEVRVY O Bivieo §Ayoviag avanapaotaoelg
yia Kafe éva aro ta avikeipeva. Xpnoponowwviag to ouvolo dedopévov Something’s Affordances
pe tov Saxwplopd pe Baon PBivieo, otoxevoupe va a§loAoyrjCoUE AUTEG TIG AVATIAPACTACELS OtV
epyaocia g Katnyoplomnoinong rnpoodepopevev duvatotrjiov. IIpwv amno v napovoiaon g pedo-
60Aoyilag Katl 1@V MEPAPATIKOV AoTeEAEoPATOV, TTapouotadovial oplopéva armod Td I ONPAvVIKA
otoyeia tou povtédou.

H pébobog Slot Attention[67], sival pia apyitektovikr Baciopévn ot péBodo attention. O
OTOX0G NG €ival va ouvdéoel aviikeipleva amnd pia ortky €10080 oe éva oUvodo ard urodoxEg
(slots). ITwo ouykekpipéva, n peBodog autn déxetal pia ewkova e1008ou mou £xel Sraipebel kat
KodkornonOei oe N Siavuopata XapaKinplotKkev Pe Kodikornoinon 9€ong Kat ta ernegepyddetal ya
va apayet K dtavuopata vniodoxwv. Ta Siaviopata urnodoxov propet va apyxikorolouviatl tuxaia
1) va elvat mapAapeTpot mpog ekpadnorn, oneg oto SOLV. Autr) n n1é0odog ermtpernet oe KAOe unodoyxn
va e§e1dikevietal oe £vav OUYKEKPIIEVO YEVIKEUHREVO TUITO AVIIKEIHEVOU.

H 1p£606og autr| ouvrBmg Xpno1oroleital o€ UTIOTIANPES AUTO-KOSIKOTIOTEG KAl Ta Sravuopa-
1a urtodoxov tpododotouvial oe évav and-kadikonont) Spatial Broadcast Decoder [113], 6rtou
avakataokeudadel v ap)ikr eioodo, eite oe eminedo pixel, eite oe eninedo avanapaoctacenv. 'Etot,
N exnaibeuon yivetatl pe Xpron g arnoAeiag avakataokeung (reconstruction loss).

Invariant Slot Attention. H apyxitektovikr] Invariant Slot Attention (ISM)[8] erubiwoketl tnv e-
Megepyaoia Tou OmuKoU OHATog e TPOT0 TIoU S1axwpilel TV eRdAVIOT TOU AVIIKEIHEVOU artd T
otaor (pose) tou aviikelpévou (9¢or, mpooavatodiopog kat kAipaka). H ISM epappoler kodiko-
noinon 9€ong ota diavuopata Xapakinplotkev 1oV tokens pe BAorn 1o oXetko miaiolo avapopdg
KA0e vrodoyxrg. H 1éBodog ISA propei va ouvduadet apetaBAntotnta g 1mpog tig tpetg 1810TnTeg g
OTAONG EVOG AVIIKEIPEVOU : PETATOINOTN), KATpaKa Kat replotpodr]. Ta kaAutepa anotedéoparta -
TUYXAVEL TO POVIEAO TTOU £104YEe TNV apetaBAntotnta og rpog t 9€on kat v KAipaka : Translation
and Scaling Invariant Slot Attention (ISA-TS) kat auto xpnowponoteitat oto SOLV.

Self-supervised Object-centric Learning for Videos (SOLV)[3] . O ot6xog autou tou poviéAou
etval va dayxwepiderl Bivieo tou mpaypatikoy koopou oe avukeipeva. H péBodog SOLV (Ewkdva
5) 1o ermtuyxdavel auto spappodoviag X@po-Xpovikn) (spatial-temporal) Slot Attention. Apxikd,
KaGBe frame mepvael and Xwpko Slot Attention turou ISM, o6mou urnodoyidovial ta avukeipeva
KAt Ol avanapaotdacelg ToUg. Xin OUVEXEld, KAaOe urodoyr) evioxUetal Pe XPOVIKI) TAnpodopia
6ivovtag mpoooyr otig avtiotoixeg urtodoxég oe yertovika frame. To poviedo ekmaibevetal wg
AUTO-KOOIKOITONTHG PE amOKPUYI], avaouvOEtoviag 1o Keviplko frame tou Bivieo oe eminedo xa-
PAKINPIOTIKGOV, TIPOEPXOHUEVO artd tov Kwdikorowntr) DINOv2 [75].

O kedwkorou g DINOV2 [75]eivat to ripdto urtoouotnpa oty aduoida eneepyaoiag tou SOLV.
AapBavel g eicodo éva Bivieo pe 2n + 1 frame, xwpilet kdPe frame oe N = HW/P? jn emxkalu-
ritopeva token peyéboug P (ESiowon 71), epappodlel andokpuyn os Karola arod ta token katd
duapkela g eknaidevong) kat kwdkorotei kabe token. To endpevo unocuotnpa eivat to Spatial
Binder, 1o oroio epappodet ISA-TS oe kabe frame ave§aptta. Autd napayet 2n+ 1 X K Sitavuopata
Urodoxmv.

Ta apxwkd daviopata urnodoxwv eival mapdpeIpot pog ekpadnor. Asdopévou o1l Ta Yeito-
vikd frame £xouv mapopola oKy MANPoQopia Kat ta aneikovigopeva avikeipeva 6ev aAdalouv
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Spaotikd arnod 10 €va oto enOPEVO, Je@POUNE OTL OTIG TIEPLOCOTEPES TEPIUTIVOELS Ol UTTOS0XES 11E TOV
1610 Seiktn 9a ouvdéovial pe ta 1da aviikeipeva oe 6Aa ta frame. 'Etot 1o untoouotnpa Temporal
Binder rmou axkoAoubel eivatl évag kedikorontng poporg transformer, o omnoiog evioyuel tig ava-
apaotdoelg TV Urodoxmv pe mAnpogopia amod tg urodoxég and ta unddouta frame . I'a xkdbe
unodoyr), n povada Self-attention enefepyddetal ta 2n + 1 Savuopata unodoxov, mapayoviag
€va TeEAIKO dlavuopa urodoxng Iou MEPLEXEL XPOVIKN TTANpodopia. Ita diaviopata urnodoxwv tou
kaBe frame £xe1 mpootebel kwSikomoinon xpovikng 9€ong (temporal positional encoding), yia va
a&lornoinBei 1o ofjIa XPOVIKAG attotntag rmou eivat diabeopo ota dedopéva Bivieo.

Tt ouvéxela, To urniocuotnua Slot Merger urtoAoyidet Suvapikd tov BéAtioto apibo urodoxmv
yla kdbe ekova kat opadorotel ta Siaviopata Xpnoyionotwviag v alyopibpo Agglomerative
Clustering (AC). T¢Aog, évag Spatial Broadcast Decoder [113] AapBavet tov peltwpévo apbuo dia-
VUOHAT®V KAl AVAOKATAOKEUASEL Ta XAPAKINPIOTIKA TOU KeviplkoU frame, pe fdaorn to oroio urtolo-
yidetal n anwAsia avakataokevrg (reconstruction loss).

ZuvoAikd, to SOLV £€ayet avarnapaotdoelg aviKEPEVEOV AVAKATAOKEUALovIag T0 KeVIpko frame
o€ erinebo avanapaotaoenmVv, Ve XPnotpornolel mAnpopopieg and oAokAnpo 1o Bivieo. Evdiapépov
TIaPOoUO1Aadel T0 YEYOVOG OTL Ol NAOKeG THNnpatonoinong (segmentation masks) avikeipévev mpo-
KUITIOUV ®G UTIOMPOIovV autng tng auto-ermBAendopevng dadikaociag. Xe auty Vv MEPAPATIKI
evotnta Soxkypddoupe éva addo urornpoidv avtng g dtadikaociag — Tig avarnapaotdoelg TV UIo-
doxdV — Kat ) Xpnowotd T0Ug yid TNV KATyOPLOTIoinor TV IIPOCPEPOHEVOV SUVATOTTOV TV
AVTUIKEIPEVQV.

£, 1 Invariant |
I

b T Slot >
."'Aﬂemmn' i

Masks &
Reconstructions

Agglomerative Clustering

merge

Exfpa 5: H apyitektovikr) tou poviédou SOLV . IInyn: [3]

1.5.2 TIIsipapatiry M£0odog

LV MEPAPATIKL eVOTNTa autr), a§lodoyoupe 11§ avanapactaoelg urodoyxov tou SOLV oty ka-
TNYOP10TIOiNon TRV IPOCPEPOPEVRV SUVATOTHIOV TOV AVIIKEIEVROV, XPIOTHOIOIOVIAS TO GUVOAO
bebopévav Something’s Affordances. Ze avtifeon pe ta melpdpata pe TG AVAIIAPAOTACELS TOU
Video MAE o61ou o keodwkonounig OACE Sexotav wg €icobo pia eikdva avikeipevou, 10 POVIEAO
SOLV givat wkavo va ere§epyadetatl 0AOKANEr T OKNVE KAl va v THORATornotel autopatd.
Apxikd, mipaypatoroi)fnke fine-tuning tou poviédou SOLV pe Bivieo amd to train set ing
diaipeong Paoet Pivieo tou Something’s Affordances yia 100 eroxég. O kwdikag exnaidevong na-
PEXETAL ATTO TO CUPMANP®PATIKO UAKO ToU [3]. Adym g MOAUMAOKOTNTAg AUTHg NG eKnaibeuong,
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1# OAcE

o
wt bind (—»l—> Slot Vector Reconstruction Loss
—>O—>

IZxApa 6: H exnaidevon tou OAcCE oto Spatial-temporal Binder tou poviédou SOLV. Ilpooap-
poonKe amo: [3]

EMTIKEVIP®VONAOTE AMOKAEI0TIKA Otr) dlaipeon Pdaoet Bivieo, SA-vb, tou ocuvodou debopévev Kat 1)
peA€tn otn Sraipeon Pdaoet avukeévev petatibetal oe PeEAAOVIIKY €peuva.

O apbpwtog oxedlaopog (modular design) tou poviédou SOLV ermtpériet tnyv e§aymyn avanapa-
OTAOE®V HE AVIIKEIEVOKEVIPIKY IIPOOEYYIOoT og dtadopa erineda porg g minpogpopiag. Ta duo
onpeia £0Tiaong TV MEPAPATRV ivat ot Stavuopatikég €060t tov Spatial Binder kat tou Tempo-
ral Binder. Eivat onpavuko va onueiwbel 6t1, mapott o Spatial Binder ermkevipovetal ota X@piKAa
Xapaxkinpilotika oe eminedo frame, £xel eknaideutel @G PEPOG EVOG GUVOAIKOU GUOTHIATOG TTOU €-
nieSepyddetal Bivieo. Ta Savuopata tou Spatial Binder BeAtiotorolovvial yia va rapakoAoubouv
péow attention Siaviopata tewv yertovikev frame kat emopéveg Priopouv va Sewpnbouv pépog g
€upUTeEPNS Katnyopiag pefodmv petagpopdg yvoong aro Pivieo (video-to-image knowledge distilla-
tion) oe ewkdva KAt ano dpAcn oe AVIIKEIPEVO .

[Mapopoing pe v MPOOEYY1on TOU MPONYOUHEVOU KePadaiou, €MIXEPOUPE VA OUOXETIOOUNE
KArola mAnpogopia OXETKY e T 6pdoeig pe ta Siaviopata avanapdotaonsg IOV aVIKEIEVOV.
Auto yivetat pe ) xpnon evog MLP, 1o oroio AapBavet ta Siaviopata Unodoxomv aro 10 KEVIPIKO
frame evog Bivieo kal eknadevetal va mpoBAénetl ta davyopata mou dnpioupyouvial aro 10 a-
notéAeopa tou Temporal Binder, oniwg @aivetal oto Zxnpa 6. Auto to MLP eknaidevstatl os éva
ouvoldo b6edopévav amno Bivieo dpdoewv kat ovopadetalt OAcEsoLy. To poviédo OAcEsoLy €XEl TV
AKOAOUON ApPXITEKTIOVIKY) :

Linear Layer 1: Linear (Dgy, 4 X Dgpor)
ReLU Activation: ReLU (inplace=True)
Linear Layer 2: Linear (4 X Dgpt, Dsiot)
Dropout: nn.Dropout (p=0.1)

Residual Connection: output += input

To train set tou ouvodou Sebopévav arotedeital and 62,330 Bivieo. Aoye g audnuévng
TMTOAUTTAOKOTITAG TOU HOVIEAOU aUToU, ot KAOe eroxr) AapBavetal éva PKPOTePO TUXaio UItoouvoAo
peyéBoug 306 Bivieo, xwpig eravatorobéton. H exknaideuon tou OAcEsory 6ie§ayetat yua 10
€MOYEG, Ypnotporiowwviag batches peyéboug 18 kat learning rate scheduling mou meptlapBavet
pila apXkn ypappikn mpobéppavon pexpt va @tacet Ir = 0.0004, akoAouBouUpevn anod eKOETIKY)
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peiwon. H ouvdptnon anoAeiag mou napouociacs ta Kaiutepa arotedéoparta frav n Smooth L1
Loss .

1.5.3 A%woAoynon

Ta va aglodoyrjcoupe g avanapaoctdacelg tv urodoxov tou SOLV, tg eknaidevoupe oto eruon-
pewwpévo ouvolo 6edopévav SA-vb, xpnotpomnowpviag ta bounding boxes tng Baong Sedopévav
Something-Else. H kepaAn] katnyoploroinong npoopepopevev duvatotriov, (Affordance Catego-
rization Module -ACM), eivat éva MLP pe v akoAoubrn apXItEKTOVIKT) :

e Batch Normalization Layer [50]: BatchNormld (Dg)

Linear Layer 1: Linear (Dgo, 1024)
RelLU Activation: ReLU (in place=True)
Linear Layer 2: Linear (1024, 5)
Dropout: Dropout (p=0.1)

e Sigmoid Activation: Sigmoid ()

O aldyopBpog exraibeuong tou ACM (AAyopiBpog 3) §exkva pe v enedepyaoia v eKOVOV
10U OoUVvOAoU Sebopévev péow tou SOLV kat Tov UMOAOYIOHO TRV avarapaotdoe®V Urtodoxmv Kat
1oV avtiotoxwv attention maps. It ouvéxela, autég riepvouv péow Slot Merger Module to oroio
ouvbuddel oplopiéveg UTIO00XEG e BAOT TV OPOOTTA TOUG.

Ot attention maps ypnowpornolovvial yia v mapayeyr] Packov tpanpatonoinong (segmenta-
tion masks), avaBétoviag 1o kabe pixel otnv unodoxr) pe 1o peyadutepo attention nmave tou. Zin
ouvéyxela evrorti¢etat 1 vrodoyr| otnv ornoia £xouv avatebei ta replooodtepa pixel eviog tou bound-
ing box tou avukeévou. Ta Siaviopata avarnapaotdoe®V TV UodoX®mv autev aviiototXiloviat
€ TS ETKETEG ITPOOPePOREVOV SUVATOTHT®V, VO pia tuXaia ermAeypévn unodoxn and tg uroAot-
TIEG AVTIOTO1XI{ETAL O ETIKETA APVITIKIG KATHYOP10IIOINoNg O OAEG TIG IIPOOPEPOPEVEG dUuVATOTITES.
Tt ouvéxela, 1o ACM exniaidevetal Xprolonoloviag autd ta {guyn £10060U-eT1KETAG.

H exnaibeuon tou ACM nepidapBavet exkrnaideuon yua 20 emoxég, xpnoporowwviag batches
peyéboug 18 xkat learning rate scheduling mou meptdapBavel apyiKy) yPappiKy avgnon HeEXPt to
Ir = 0.001, akoAlouBoupevn and exkBetikn) peiwon. IIAAL nf cuvapinon aneiAslag mMou napouociace
Ta KaAutepa anoteAéopata nrav 1 Smooth L1 Loss. [Toootukda aroteAéopata napouotadovial otov
IMivaka 23 kat molotika arotedéopata ota Lxnpata 44 kat 45. Ita MoloTKA arnotedéopatd, ot
BAOKEG TUNPATOIIOINONG T®V UToS0X®V ameikovidovtal pe S1aPpopetikd Xp®HPATA KAl Ol ETIKETEG
KATNyoploIoinong torofstouvial oto KEVIPo PApoug g PAoKag THNHATONOoiNong Kabe unodoxrg.

Configuration | Recall | Precision | F1 Score | Accuracy
GT 0.7570 0.9407 0.8378 0.8793
OAcEsoLy 0.7109 0.9470 0.8103 0.8631
SOLV Spatial 0.7065 0.9476 0.8076 0.8614

Table 7: H anodoon tewv avanapactdoemv urtodoxav tou SOLV oto ouvoldo dedopiévov SA — Vb

1.5.4 Ilapatnprosig

ApX1Kd, 01 avarapaotdoelg @V Urodox®v rapouotddouv ouyKpiolpa arnoteAéopata He Tig avarna-
PAOTACELS T®V POVIEA®V TOU IIPONyouUlEVoU Kepaldaiou. Auto cupBaivel rmapd To Yeyovog Ot eivat
PKpOtepes ot 1EYe00G (DoacE, ysory = 128, Doace = 384) Katl MPAyHatonolovy autdpaty THnpato-
rnoinor), 1 omoia eloayetl kanowo Yopubo ot dadikaoia.
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Ta anotedéopata Seixvouv 0Tl 01 AvanapacTAcelg oU Tpoépxoviatl aro tov Temporal Binder
tou SOLV, propet va meplEXouv KAT010 XPo0 ONpad Iou §ev UTIAPXEL OTIS AVAIIAPAOTAOELS TOU
Spatial Binder. To poviédo OAcEsoLy mpoortaBel va exkpetadAeutel autd 10 Xprjotpo onpa Kat
€XEl @G amotédeopa pa pikpn Bedtioon. IMapatnpoupe Ot n petpikn precision Sev BeAtimdverat
otg avartapaotdoelg GT kat OAcEsory. Autd mbavotata ocupBaivet ereldr) 1o ouvolo debopévav
TMIEPIEXEL ONPAVIIKA TIEPIOCOTEPES APVITIKEG ETIKETEG A0 JeTIKEG, KAO10TOVIAG TIPOTIIATEPO Yia Ta
poviéda va eivat ouvinpnuka otig poBAéyetg toug. Qg anotédeopa, n petpikn F1 mpoopépet pa
o XPHOon €1KOva tng arodoong Tou PoVIEAOU.

TéAog, 1a roloTikaA anotedéopata deixvouv ot rapodo 1ou 1 dadikaoia ekraidsuong rneptdap-
Bavetl éva aviikeipevo avd oKnvr), T0 POVIEAO UITOPEl va AVIXVEUEL KAl vd KATNYOPIOTIOlEl omota
moAAarAd avukeipeva avd oknvr). Emm\éov, oe oplopéveg MEPUIIOOELS, €va HPOVO AVIIKEIPIEVO
propet va avatiBetatl oe oAAég UTI060XEG. AUTH 1) IO AETTTOPEPT|G TUNHATONOINOT PITopet va givat
embupntn oe oplopéva oevapild, aAdd 0x1 oe dAAd. ZTiG IEPLO0OTEPES ITEPUTIOOELS, OAEG O1 UTTOSOXEG
TIOU aVTIOTOLX0UV OT0 1610 aviKelPEVO KATIYOP10ITO10UVIaL OOOTA.

1.5.5 Zupnepaopata Kat pEAAOVTIREG KATEUOUVOELG

Ze aut Vv evotnta peldetroape §1agopa POVIEAd MOU XPHOIPoIolouy v apXltektoviky Slot
Attention kat doxkipdocape 1§ avartapaoctdoeslg tou poviedou SOLV oto ouvodo Hebopévov SA —
Vb. To poviédo SOLV eivatl uypnldou eviiadp£poviog yia 1) SUMA®PATIKL autr) A0Yy® Tou apbpetou
0Xe610010U TOU, TOU EIMTPETIEL TV ECAYDOYE] AVIIKEIPIEVOKEVIPIKGOV AVAIAPAOTACEDYV A0 E1KOVEG
Kat Bivteo.

Me 11 Xprjon tev uroouotnpatev Spatial kat Temporal Binder, to poviédo SOLV éxet ) du-
vatotnta va erne§epyaotei OAOKANPES OKNVEG, TTAPEXOVIAS AVIIKEIPIEVOKEVIPIKEG AVATIAPAOTACELS.
Agixvoupe ot ot avarapaoctdoeslg Bivieo aro to Temporal Binder €xouv éva pmikpd MAEOVEKTN-
pa otnv Katnyoptornoinon Suvatoti®v oe CUYKPLon HE TIS OTATIKEG AVAIIaPUOTACELS EIKOVQOV a-
o to Spatial Binder. Ileipapatiomkape pe pa apaddayr) tou Object Action-centric encoder,
OACEsoLy, TIOU €MIXElpel va ouvdéoel kamoleg mAnpogopieg tou Temporal Binder pe tig avanapa-
otaoelg tou Spatial Binder. Ot avanapaoctdoetg 1ou OAcEsoLy, EMITUYXAVOUV Hid PiKpr| BeAtioon.
Erméov, mpokurtouv detikég evbeilelg yia v ikavotnta 1ou PoviéAou yila yevikeuon kKabwg to
Hoviédo katnyoplorolel TOAAAAG aVIIKEIPeVa O 1d OKNVI), Ve eKTAISEUTNKE 08 OKNVEG HE €va
ETUONHUEI®IEVO AVIIKEIPEVO.

IIeploplopoi Tou ouvoAou Sedopévav. Mia o odorAnpeuévn alodoynon 9a nepldapBave
XP1on peyadutepmv ouvodev dedopévav, onwg to Ego4D [36] kat to EPIC-Kitchens [17]. ErmumAéov,
9a nrav evélagpépov va diepeuvnBel n EVOOPAT®ON AUTOV TOV AVATIAPACTACE®V OE APXITEKTOVIKEG
IOV OTOXEUOUV otV ertiduon npoBAnpatev, onwg n [IpoBAswn Apaong (Action Anticipation)[127].

Avanapaotaoceig yia tov €Aeyxo. To rpoBAnpia g Katyoplonoinong tev rmpoodepopevay Su-
VaTott®v pPIopet va eivatl moAu Xprjotpo O POUITOTIKA OUCTIHATA Yld OXE61a0P0 PEAAOVIIKOV
Spdoewv. I6avika, ot idieg avanapaoctdoeig da mpémnet va eivat Xprioljleg Ot EPYATIEG POUITOTIKOU
eAéyxou. Ilapdda autd, pla avanapdotaon mou arodidel kadd oe mpoBAfjpata avayveptong dev
arnodidel anapaitnia kadd oug epyaocieg eAéyxou [78]. Zto emopevo kepalrato, doxipaloupe TG
avarapaotdoetg tou SOLV og éva ando rmpoBAnpia mpocoPoliOEVOU POPITOTIKOU XE1P10110U.

1.6 Avanapaotacelg Slot Attention yia popnotiko £éAeyxo

Y€ auto 1o pEPog, pedetdpe pia pébodo yia va cuvbudooupe Ti§ AvaAIapaoTtAoElg UTIOS0X®V TOU
poviédou SOLV, yia ) dnpioupyia avanapactdoemv IKOVRV yid éva IpoBAnpia mpocopoiOIEVOU
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POUITOTIKOU XEIPIOPOU. LUYKEKPIREVA, auty 1 pébodog epappodetal o pia IIPOCOUOIOHEVT] PO-
priotikn epyaocia arnd to Train Offline, Test Online (TOTO) benchmark [128]. Zuykpivoupe v
arnodoor 10U KEHIKOIoNTr) £1kovag rou Baociletatl oto SOLV oe pe AAAoUg Ipo-eKIASEUPEVOUG K®-
dikomontég e1kovag. Ta amotedéopatd deixvouv 61t 1o SOLV yevikd eMmtuyxavel KaAutepn anédoon
o€ auto 1o mepBaddov. IlapoAa autd, ta anotedéopata £ival o€ €va IIPOCOROIOHEVO TtEPIBAAAOV
TTOU UITOPEL va PNV PETapEPOVIal oTov MPAYHATIKO KOOHO KAl auto artotedel pia anod tg Paocikeg
TIPOKATNOELS OTNV £peuva g pourotkng [128]. 'Opwg, n a§loddynon otnv npocopol®pév epyaocia
POOPEPEL €va TTP®TO Pripa otn dokpur) g pebodou pag mpv and ) petabaon o MePAPATa otovV
npaypatké kéopo (real-world testing).

Zxfipa 7: H nipocopowwpévn epyacia poprotikng xeipiopou tou TOTO[128]

1.6.1 Oswpntiko Ynodabpo

Evioxutiky] Malnon. Zupgwva pe toug Russell kat Norvig [93], évag mpaktopag eivatl pia o-
viduta rou aAAndermbpd pe eva e§RTEPIKO TePlBAAAOV e OKOMO TV €miteudn evog otdoxou. Ot
adyopiBpot Evioxutukng Mabnorng (Reinforcement Learning - RL) otoxeuouv otnv avarugn npa-
KIOpwv 1ou adAnAermdpouv pe éva e§oteptko neptBadAov pe €010 TPOIo MOTE VA HEYIOTOII00UV
TO AVAPEVOHEVO Onpla aviapoBrg rmou AapBdavouv arod auto 1o riepiBaAdov [104]. Aut n aAAnle-
niibpaon ouvnBwg poviedomnoteital xpnotponowwviag Mapko6iavég Aiadukaoieg Amopaoewv (Markov
Decision Process - MDPs): O mpaxtopag aAAnlermdpd pe to repiBaddov o pia oe1pd Slakpiiev
XPOVIKOV BNpdtev, 6neg @aivetal oto LxHpa 8.

state reward action
S, R, A,

Ri
_S.. | Environment

Exfipa 8: Mapxobiavég Atadikaoieg Artopdoewv. TInyn: [104]

\

Ye kabe xpoviko Brjpa, o mpaxktopag AapBavel MANPodopieg OXETIKA [E TV KATAOTAOY TOU
niepBdaAdoviog, s; € S, kat ermAéyel pa dpaon, a; € A. Autr) ) Spdor, e ) oepd g, ennpedlet
) petdBaon oe pPia véa KATAotaon, Sy € S, Kabhg Kat ) ANy Karolag aviapodng, r+i € R.
O1 petaBdoelg TV KATAOTACEMV £6APTOVIAL ATIO T SUVANIKY TOU CUCTHHATOS KAl Ti§ mBavotnteg
HetdaBaong mou cupBoAilovial wg P : (S x A2 — [0,1]. Ot mbavointes petdBaong P(s’, rls, a)
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ekppadouv Vv aBeBaidtta g AfYng tng avtapoBrg r Kat tng petabaong oty katdaotaon s aro
TV Kataotaorn s otav ektedeital n §pdon a. H otpatnyikn tou mpdkiopa yla v ermoyn Spacenv
ekPpadetal HEO® TG OUVAPTNONG MOATIKAG T ¢ S — A, 1) oroia avtiotolyidel kataotaoelg os dpdoelg

[104].

Ma6non péow Mipnong (Imitation Learning). Xe avtiBeon pe tnv evioXutkr padnon orou o
npaktopag pabaivel adAnAerudpwviag pe to repiBaddov, ot pabnorn peow pipnong, n eKpabnon
yivetat péo® KAmolou 8aokAalou, mou o mpdaktopag rpooradel va pipnbel. Me ) pébodo autr)
Sev xpetdletat eepevivnion tou mep1BAAAOVIOG KAl Auto eivatl TIOAU XPrOHO OF TEPIUTINOEIS TIOU TO
KOOTOG Kdl 0 Kivouvog melpapdiev eivat uriepBoAikd Uynid, oniewg otrv autdévourn 0d1ynon Kat ot
popurotikny [29].

update 6

Training for IL agents

v ar,
e

D)
A,

IZxfpa 9: Mdbnon péon Mipnong. Ilnyr: [29]

'Onwg Kat oty eVIOXUTIKY pdabnorn, 1 moAttkny eival pia mapapeTtponoupévy) ouvaptnor) mou
avtiotolyidel kataotaoelg oe 6pAoelg:

my:S— A (19)

H Swadikaoia expdabnong pa moAttikng peéon pipnong napouvoiadetat oto Txnpa 9. Mia mo-
Atkn €xel TapapErpoug §, Ol OT0ieg AVIUTPOOMITEVOUV TG NETABANTEG TIOU TIPOCcaAPPOLoVIal Katd
) Sidpkela g padnong. XTig MEPLOOOTEPES MEPUTIAOELS, 0 aAyoplBuog Sev propetl va £xel apeon
npooBaoct oty MOATIKY] T0U 8a0KAAOU Ty, eMeldr) anattel yvaorn INg E0RTEPIKIG TOU KATAotaong,
Kat €101 1 eEKPAdnon yivetatl pe Xpriorn napadetypatmyv.

Behavioral Cloning. H péfobog tou Behavior Cloning eivat évag aro toug p®toug Kat ariou-
otepoug aAyopifpoug pndbnong péow pipnong [29, 9]. Xpnowomnotet Vv TEXVIKY TG EMBAETIOPEVNS
Bdabnong yla va eKnatbevuoet TV TOATIK) Ty TipoBAEToviag v o rmbavr) evépyela debopévng pag
kataotaong, dnAadr) arg max P(als), xpnoponowviag os £€va eronpPel®EVo oUVoAo Sebopévav rou
dnuoupynOnke amnod tov Saokado.

'Eva peovéktnpa tou Behavior Cloning eivat 6t oe moAundoka 1poBAnpata, ot MOALTIKEG TOU
duokoAevovial va yevikeuoouv. Autd cupBaivetl emeldr) 1 MOATIKY) Ty TElVEL va ATTOTUYXAVEL OTaV
ouvavia kataotdoelg mou dev undpxouv ota napadetypata tou daokddou. Qotdoo, 1 TEXVIKN
auTr) XP1NOUOIIOoLEiTtal amoteAeoPaTIKA yid NV EKKivNon TG eKnaideuong evog mpdKropa mpw v
epappoyn puag pebodou Evioxutikng Mdabnong [29, 9].

Ze auty) ) Sutdepatkr), epappodoupe Behavior Cloning o piia amin popnotiky) pocopoinon
yia v a§lodoynon pebodmv ekpddnong ortKkOV avarnapaotioemyV.
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1.6.2 XZuUvolo Ssdopévav

TOTO. To TOTO [128] eivat éva poumnotikdo benchmark mou avrkel oe pia nmpoondBela mmou
ylvetat otov topéa g POUITOTIKIG VA AVIIHETRIOTEL 1] €AAe1Yn) TUITOIIOINO0NG AVAPEDd OTd EPEU-
vnuka kévipa. To TOTO mapgxel mpooBacn oe pouriotko efordiopd kat dedopéva yua offline
exknaibevorn. To cuvodo Sebopévav arotedeital Ao POPIOTIKEG TPOXIEG TIOU CUAAEXONKAV PEO®
TNAEXEIPIOPOU TOU POUTIOT, EUMAOUTIONEVEG pe 9opuBo kat diadpopég mou SnpioupynOnkav aro
paktopeg eknadeuvpévoug péom Behavioral Cloning (BC). To benchmark srmukevipovetat og §uo
epyaoieg xelplopou: 1o adetaopa UVAKoU anod doxeio oe doxeio (pouring) Kat tn Xprion KoutaAlou
(scooping).

To TOTO mpoodepet €va MPAOTOKOAAO yia v a§loAdynorn 000 TV OITIKOV avarapactdoenmV,
000 Kal TOV peBodev ekpdabnong moAttkng. Xe& autn TV £pyacid, EIMKEVIPOVOUAOTE AITOKAEL-
OTIKA otV aSloAdynon TV OIMIKOV avarnapactace®v, doxkipdlovidg teg pe ) pébodo ekpdbnong
noAttikr|g BC, 1 omoia eivat pia pébodog Madnong uéow Miunong (Imitation Learning).

IIpooopoiwor. To TOTO meptdapBavel éva reptBAAAOV IPOCOUOIMOERV Y1a TNV £pyacia éKXuong
Kat éva ouvolo debopévav pe 108 mopeieg tnAexeiplopou. AUty 1] IIPOCOU0IKOT] XPNOIOIo|OnKe
ya va agodoynBei n pébodog autrg tng evotnrag. H mpooopoinon mpoopiletal yia tig apXikeg
Sokpég otig peBodoug peBodoug toug Kal Sev arotedei PEPOG TOU EMMIONPOU MPXTOKOAAOU aflo-
Aoynong TOTO. 'Onwg avapepbnke vopitepd, Ta AroTeAéopata g IPOCcooi®ong PItopel va givat
MAPAAAVNTIKA KAt 1] UMEPIIPOCAPIOYT] OT0 MPOCOPOIOHIEVO TEP1BAAAOV Prmopel va eprmodioet 1)
YEVIKEUOT] 0T MPAYHATIKEG ouvOrkeg. [Tapoda autd, n Xpron tng IIPOCOUOIRONG aroteAel Eva
IOAUTIHO apX1KO Brjpa mpwv and ) §1e§ayeyr) MepapdieVv oTov IIPAYHATIKO KOOO.

H nmpooopoinon xpnotpornotei 1o Aoylopiko rpocopoinong MudoCo [108]. O npocopoipiévog
pournotikog Bpayxiovag eivat eivat tonou Franka Emika Panda [4 1] pe 7 BaBuoug edeubepiag, pie
KGOe apBpworn va meplopiletal 08 CUYKEKPIIEVO €Upog 9éoemv. O MEPLOPIOPOG AUTOG AMAOIOLET
Atyo 10 TIpoBANpa, CUPPIKVAOVOVIAG TOV XOPO €AéyXou, aAdd yivetat kat yia Adyoug aopaleiag oe
MPAYHATIKEG EPAPHOYEG.

'Onwg @aivetal oto Lxfjpa 7, o pOUIotikog Bpayiovag Sexvast kpatmviag éva 5oxeio yepdto pe
12 pikpég opaipeg. O otdx0g eival va adetaoel 600 10 duvatdv Teploodtepeg opaipeg o €va aAdo
boxeio. Ot apxikég Seoelg tov apbBpnoewv Kat 1 tornobecia ToU oTOXOU MOTNPL0U APXIKOIIO10UVIAL
tTuxaia yia kabe nieipapa. Mia Soxkipr) ewpeitat erutuxig av touddyiotov pia opaipa KataArietl oto
boxeio otoxog. H petpikn aviapoBrig eival 1o Ioocootod 1oV odpalp®y IoU £X0UV KATatebel emtuyxmng
oto doxeio otd)0G.

To ouvolo exkmnaibeuong aroteAeital ano 1g 82 tpoxiég movu eivat ermtuyeig. IIpwv and v ex-
naibeuor), OAeg Ol E1KOVEG TOU OUVOAOU €KMAISEUONS KOSIKOTIO0UVIAL PIE TOV OIIKO KOOTKOIIONTY)
yvia va a§lodoynBouv. Ermeidr] o onukog KedKomomnAg eival mayewpévog Katd t 81dpKrela wmg
BC exknaibeuong, auto ermtaxuvel v eknaideuorn, kabwg Siapopstikd ol e1koveg Ja Empere va
KoS1koronOouv avd yia kabe enoxr).

Kata ) dapkela g ekmnaidesvong, o adyopiBpog BC ekmaidsvel éva veupoviko Hiktuo rmou
Aertoupyel @G 1 mOAtKI tou npdktopa. To &iktuo moAwtikng AapBavel og eicodo 1o Sraviopa
OITTIKI)G avaItapdotacng 0 ouvduaopo HE TG TPEXOUOES YRViEG T®V apOpRoE®V TOU POUIOT KAl
IaPAyel TOUG OTOX0UG Yla TS Y®vieg tov apbpioswv. AUTEG otn ouvéxela tpododotouvial otov
edeyktr) MudoCo, o omnoiog Kivel tov Bpayiova tou popnot. H Sidotaon €w0obou eival inp_dim =
R _dim + 7, értou R_dim eivat n Sidotaon tou Siavuopatog avartapdotaong ewkovag. H diaotaon
e€obou eivat out_dim = 7 X h, érou h eivat o opidoviag 1oV evepyelmv mou mpéEret va rpoBAsnoviat
KGBe @opd. Lta endpeva nielpapata, h = 10. H apxitektovikr) 1ou S1KtUou nmoAtikg ivat i e8ng:
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e Normalization (Input):
Input - inp_mean

norm_output = -
inp_std
Linear Layer 1: Linear (inp_dim, hidden_dim)
ReLU Activation: ReLU (inplace=True)

Dropout: nn.Dropout (p=0.1)

Linear Layer 2: Linear (hidden_dim, hidden_dim)
ReLU Activation: ReLU (inplace=True)

Dropout: nn.Dropout (p=0.1)

Final Linear Layer: Linear (hidden_dim, out_dim)
Rescale Output:

actions = out_mean + out_std X final_layer_output

Ot mapapetpot inp_mean, inp_std, out_mean, and out_std urtoAoyidovtat aroé to ouvoldo exmai-
S6euong katl armoBnkevovial o POoOPIVEG PETABANTEG EVIOG ToU poviedou. H kavovikoroinon autr)
KAvel o 6ikain ) oUyKplon §1adopetikeOV KOSIKOTIOUTOV TTOU IAPEXOUV £10080U¢ o Hlradopeg
popoég. ErumAéov, avii va mapayetl apeoa to Siavuopa §pdong, 10 §1ktuo rmpoBAEnel TIOOEG TUTTIKEG
artorAioeig eivat ) £§060g ard tov PEco 0po TV SPAce®v. AUTH 1 IIPOCEYY10T] PHEIMVEL Tr) dlakupavon
Katd v eknaidevon.

1.6.3 TIIsipapatiriy péGodog

slot_1_where
- slot_1_what
ie slot 2 where

i slot_ 2 what

- slot 3 where

- slot 3 what

slot_ 4 where

i — = slot_ 4 what

Zxnpa 10: O kodwkorontg OcEsory .

e aut Vv evotnta, £10ayoupe pia péfodo yia tov ouviuaopod TRV AVIIKEIPIEVOKEVIPIKGOV ava-
napactdos®v Tou poviedou SOLYV, yia ) dnpioupyia avanapaotdoe®v EIKOVOV yia Ty eknaidsuon
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OITTIKOKIVITIK®OV TOATIK®V. H mpotewvopevn pébodog eivarl mapspdepng pe nebodoug mou xpnot-
HOITO10UV AVIIKEIPEVOKEVIPIKEG AVATIAPAOTACELS Y1id EKPAONOT OMUKOKIVITIK®V TTOATTIK®V OTIOG TO
VIOLA (Visuomotor Imitation via Object-centric LeArning) | Jxat to POCR (Pre-Trained Object-
centric Representations) [99].

H POCR nipwta unoAoyidet 1o «rtou» BpioKovial Ta AavilKeipeva. Lt ouvexela epappodet Eva po-
VIEAO TUNPATOMOINONG TG £1KOVAS Yld TNV £§AYOYT HAOKGOV yia Ta avilkeipeva. Ot ouvietaypéveg
AUtV TV PAOK®V AITOTEAOUV TO «ITOU» TOU AVIIKEIPEVOKEVIPIKOU S1avUopatog avanapdotaong.
Y1 ouvéyxela urodoyidetal n avanapdotact mou adopd 10 «T1 TV AVIIKEEVOV. Ta kabe paoka
AVIIKEIEVOU, UTTOAOYILETAl I AVATIAPACTAOT] TOU AVIIKELPEVOU HE £vaV ITPO-EKMMASEUPEVO KOSIKO-
o) e1kovag. Xuvdudadoviag ta diavuopata «rmov» Kat «t yla Kabe aviikeipevo, n pébodog autr)
Snpoupyel avuKeEIEVOKEVIPIKA §lavuopata avanapdotaong, Td Oroia oty GUVEXELD XP1O110ITo10-
Uvtatl otV eKPAdnon MoAttKIG.

Me mapdpolo TPOIo, XPNOI0oloUpe 10 mpo-eknatdeupévo poviedo SOLV [3], to omoio €yive
fine-tune ota Bivteo dpdoswv tou Something Something, yia va mapayayoupe évav K@dikomontr
eKoOvev, TIou ovopadoupe OcEsory. To mAcovéktnpa tou SOLV eival 6t propet va rmapdayet tauv-
1o)pova 1000 Saviopata «t» 600 Kal «ItoU» PEOR® TOU UTIOAOY10110U TV S1aVUOIAT®V TV UIT0S0XOV.
2t 61k pag nepimwor, 1 eknaidevon tou TOTO anattet éva eminedo Sidvuopa yia kabe eikova
kat Sev meprapBavet évav kodikoroutr) transformer kavo va enedepyaotei noddardda Siaviopa-
1a avukepévav. Ta va dnpioupyrooupe éva eninedo diavuopa avanapdotaong yia Kabe ekova,
eSayoupe évav otabepo ap1Bud uroboxwv ava ekdva, apdyoupe ta S1avuopatd «t» Kat «rou» yia
kaBe avukeipevo kat ta ouvdualoupe oe pia eviaia avanapdotaon.

'Oniwg oulnTHONKe OTO MPONYOUHEVO Kedalaio, 1 ap)itektoviky) SOLV nieptdapBavet pia povada
Slot Merger rmou ouyX®VveUel UTIO80XEG 11e BAon v opoldTnTd Toug. e auty v evotnta, dtapop-
povoupe tov adyopiOpo Agglomerative Clustering yla va ouyxoveUoet Tig apX1keg 8 untoboxeg oe
4.

Ta 4 davuopata vnodoxav, pe didotaon Dynae = 128, avunpoownevouv ta diavuopata «tw.
'Onwg avapépObnke mponyoupéveg, av kat 1o SOLV ypnoworotei Invariant Slot Attention, ta &wa-
vuopata urodoxov e§akoAoubouv va repl€xouv Karnota rinpodopia 9€ong Adyw tng Kd1Koroinong
9¢ong tou kwdkoront) DIVOv2.

BeAtidvoupe v anodoon 10U KOSIKOIOWTY £1KOVAG PTAOUTICOVIAg TI§ ITANPOPOPIieg yia v
9¢on v avukepévav pEon tou attention tng kabe unodoxrg. To attention mask kdBes unoboxng
EXEL ApXIKA OXNPA hgtt X War = 24 X 36. Mewdvoupie 1o péyebog g oe hl, X w,, = 10 X 10 xpn-
owonowwviag bilinear interpolation. Zin cuvéyela, epappodoupie ouvaptnorn softmax otig pdokeg
POocoX1|S pewwpévou peyebous. Ta Siavuopata S€ong rmou nmpoxuntouy, pe 61a0tac Dygepe = 100,
ouvduddovtarl pe ta Stavuopata urodoxwv yia va rapaxfet pia eminedn avarnapdaotaon yia 0AOKAnN-
p1 TV eKOva e péyebog D = 4 X (128 + 100) = 912.

1.6.4 AfoAoynon

Ye autn Vv evotnta, exknaidevoape npaxktopeg pe ) pébodo BC xpnotpomnowwviag 61adpopoug
ouyxpovoug Kedikorountég ewovag: (i) BYOL [38], (ii) CLIP [86], (iii) DINOv2 [75], MoCo [46],
Resnet50 [43] . ErurmAéov, afloloyrjoape Tig avanapaotdocelg ToU IMpo-eKMAIGEUREVOU POVIEAOU
SOLV rou rapéxetat arno [3], 1o oroio ekraidsvtnke oto ouvodo PBivieo Youtube-VIS 2019 | 1.
Autr) 11 a§loddynorn eixe wg otdXo va eAéysoupe £av 1o fine-tuning tou poviédou SOLV pe Bivieo
arnd 1o Something Something £xet 9stukry) enidpaorn. O kwdikomnoung rmou Paocidetal oto mPOTo
poviédo epgavidetat ota anoteAéopata rou akoAoubouv wg OcEsory yr.

KdaBe npaxtopag exkrnaibevetat yia 80 eroxég. a va dwooupe pia rmo §exkabaprn) e1kova, ekmat-
Sevoupe 5 mPAKTOPeS yia KABe KodKomou ) ekovag Kat aglodoyoupe kabe évav oe 100 tuyxaia
APXIKOTIOUEVES TPOXEG TG POUIIOTIKNG epyaociag. Ta amotedéopata napouvoiaovrat otov Iivaka
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1.6 Avanapaotaoeig Slot Attention yia poprnotuko édeyxo

8.
Representation size | Success Rate | Mean Reward

BYOL 512 0.46 +0.05 17.48 +2.40
CLIP 512 0.49 +0.06 18.61 +4.09
DINOv2 768 0.55 +0.04 18.72 +1.78
OCESOLV?SS 912 0.61 -0.04 25.25 295
OCESOLV_YT 912 0.46 = 0.06 15.07 +2.24
MoCo 2048 0.31 +0.04 9.4 +2.16

ResNet50 2048 0.56 +0.11 21.15 +5.60

IIivarag 8: ZUYKPLON OV [IPO-EKIMABEUPEVOV AVATIAPACTACE®Y OTOV POUITOTIKO XEIPIOUO TOU
TOTO [ l.

Kdarnoieg napatnpr)oeig yia 1a mapandve aroteAéopatd :

e To povidedo OcEspLy Tapdyel KaAd aroteAéopatd, rmapoida autd Kat dAAol KOSIKOTIoUTEG
onwg DINOvV2 kat Resnet50, mapayouv npdktopeg pie KaAég ermdooeg.

e 'Eva pelovéktpa g npotevopevng pebodou eivatl ot €xel au§npévr) UMoAOy10TIKY [TOAU-
rmokotnta kabeg Paociletatl oe moAAd emineda mou Baociloviatl oty péBodo attention .

e To finetuning tou poviédou SOLV oe Bivieo tou ouvodou Sedopévav Something Something
€xel 9etikn) emidpaon oTg avanapactacelg.

e Yta arotedéopard MEPAPAT®V IIPAYHATIKOU KOOH0U ITOU ITaPOUCIaotnKay oto [ ], ot k®-
dikorointég ewkovag MoCo kat BYOL spgdavicav xkadutepn arnodoorn. Auto unoypappiet
WV AOUVEEW PETadU TRV AMOTEAEOPAT®V TG IPOCOHO0IRNOTG KAl TOV IPAYHATIK@V AroTeEAE-
opdtov.

1.6.5 Zupnepaopata Kat PEAAOVTIREG KATEUOUVOELG

Zinv evotnta auty, napouotadoupe pa péBodo ouvduaopol @V avanapactdoE®V TV Urtodoxov
tou poviédou SOLV yia v napayeyr) avarnapaotdoe®v e1KOvVag yid TV eKPpAadnorn OrmtkoKivntl-
KoV oAttikov. H mpotewvopevn 11€6060g epappodetal oe pia TPOCOPOIOHIEVT) EPYACIA POUITOTIKOU
Xepiopou. Ta nelpapatika arotedéopata Seixvouv ot 0 Kedikoront|g OACEsoLy €MITUYXAVEL Ka-
Ad anoteAdéopata kat ot 1 dadikaoia finetuning oe Bivico Hpdoenv PeAtidvel TIg avaniapaotAoels.
ZUPMEPAOHATIKA, 1] ITpotetvopevn péBodog eppavidel evBappuviika anotedéopata yla Sokiprn oe
10 OUVOETEG POPITOTIKEG EPYAOIEG KAl OUVONKEG MPAYHATIKOU KOGHOU.

Zto péAdov 9a nrav evdiapépov va ertektabel n peAdétn o rmo MOAUITAOKEG EPYACIEG ITOU AITATTOUV
oxedlaopo oe rep1BaAdovia TOAAATTIAGV AVUKETPEVRV, OTIMG AUTA TTIOU IapEXovidl ota repiBailovia
Franka Kitchen [39]kat Meta-world [ 1.

O kedwomoNg e1KOvag mave otov onoio Paociletat to SOLV eivatr o DINOv2[75]. Mua ev-
Sapépouca peAlovukn kateuBuvorn Sa propouoe va rieplAapBavet ) PeAET Pag ApXITEKTOVIKIG
napopolag pe o SOLV rou va e§dyetl avanapaotdoelg urodoxev aro OITtikeg avanapaotaoetg 181
KA EKTTABEUPEVEG V1A POUITOTIKOUG XEIP10110UG, ortwg ta R3M [73] kat LIV [69], oy ekntatbeutnkav
oe peydla ouvolda dedopévav, onwg 1o Ego4D [36] kat 1o EpicKitchen [17].
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Extetapévn [epiAnyn ota EAAnvika

1.7 Zupnepdaopata Kat peAAOVIIREG RATeuOUvoelg

O KUplog 0T0X0G authg g Sumdepatikng epyaciag ntav n Siepevvnorn pebodav yla tn BeAtinon
TOV AVIIKEIPEVOKEVIPIKAOV KASIKOTIOUTOV £1KOVAG, eotiadoviag oe peBodoug mou dnpoupyouv ou-
oxetioelg avukelpevov-dpaoceav, Paocel dedopévev mou mpogpyoviat aro Pivieo dpdaocewv. Autoi
Ol KOOIKOTIOINTEG €1KOVAG, TTOU avartuxbnkav PEow® OIMTIKNG MPo-eKmaideuong, mpoopidoviatl ya
XP1|OM Otd CUCTHHATA AVIANYNG POUITOT KAl TEXVITOV MIPAKTIOP®V.

TV P MEPAPATIKY evotnta diepeuvnoape pia PEB0do mou otoxeUel otV KOSIKOIONon
1OV PEP1Rv dpdong, xpnotpornolmviag Evav rpo-sknadeupévo Masked Auto-encoder yua Bivieo,
KAl T OUOXETon toug, péoe Arootaing I'viong, pe v arelkovion OV OXETIKOV AVIIKEIHLEVOV.
[TpoortaBrioape va evioyuooupe U0 mpo-ekradeupévoug kodikononteg eikovag: (1) CLIP [86] kat
() Image MAE [45]. Autég ot avanapaoctdoelg aglodoyr|fnkav oty epyacia g Karyoplonoinong
TPOOPEPOUEVOV SUVATOTNTOV AVTIKEUEVDUV, XPTNOIOIOIOVIAS Eva oUvoAo Sedopévav pmikpng Kipa-
Kag, IMoU Snpioupynoape Xpnoponotoviag To ouvoldo dedopévav Something-Something v2 [35].
Ta nepapata deixvouv ot ot pébodotl mapayouv pia pikpr) adda otabeprn Pedtioon. To kuplo
HEOVEKTIA AUTAG g pwtng 1ebddou sivat n e§Aptnorn g ano £va ouotna avixveuong avit-
KEWPEVOV. LUVETIOG, 0T SeUTEPT) MEIPAPATIKY] EVOTNTA EMKEVIPOONKAPE 08 €va PoVIEAO Baociopévo
otn pébodo Slot Attention [67] ou e§dyet autdpata ta avukeipeva.

Z1n 6eltepn MEPAPATIKY] £VOTNTA, Ol AVATIAPACTACELS AVIIKEIPNEVROV AVIANONKAV A0 TO POVIEAO
SOLV[3], 10 011010 ermtuyxavel tnv TRNHATOIOIN0T KAl EAy®YT Avarapaotdoe®y MOAAAAGY avTt-
relpévav oe Bivieo. To poviedo SOLV eival uyndou evdiadépoviog yia ) SUA@NAtiKy auvtr], Aoye
T0U apBPETOU 0XeS1AOPOU TOU, TIOU ETUTPETIEL TV EEAYOYT] AVIIKEIPIEVOKEVIPIKGOV AVATIAPACTACERDV
aro ewkoveg kat Bivieo. Xpnowponowjoapie ralt o 1610 ouvoldo dedopévev karnyopioroinong dvvato-
MTOL ya v alodoynon v pefodeov pag. H pébodog nmapouoidlel aviaywviotkd anotedéopata,
EVE ETMTUYXAVEL EITIONG AUTOPATI TUNHIATOIIOIN0N TV £IKOVAOV KAl ONHAVIIKY] Peiwon oto péyebog
NG avarnapaotaong ava avikeipevo. ErmmAéov, npoékuyav JeTKEG evOei§elg yia v 1IKavottd 10U
poviédou yla yevikeuor, KaBmg 1o Poviedo Katnyoplornotei moAAamid avukeipeva oe pia oknva),
EVR eKTAISEUTNKE O€ OKINVEG HE £va EMONPEI®PIEVO AVTIIKEIPEVO.

v Tpitn MEPAPATIKY evotnta, pedetrjoape pia pebodo yla va ouvdudocoupe g avaria-
paoctaocelg urodoxmv tou poviedou SOLV, yua ) Snpioupyia avanapactdoe®y £1KOV@V yla éva
POBANA [TPOCOPOIMHIEVOU POUITOTIKOU XE1P1opoU. A§lodoyoupe v anddoon autol 10U KSIKO-
IO TI] E1KOVAG £VAVTL AAA®V ITPO-EKITAIOEUPEVROV KOOTKOITOUT®V £1KOVAG KAl TA ATOTEAEOPATA P1ag
delxvouv ot n néB0dAG pag emtuyyavetl yevika kaAutepr anodoor. H mpotewvopevn pébodog -
pavidel evBappuvtika arnotedéopata yia SOK1r) O o CUVOETEG POUTTOTIKEG EPYAOIEG KAl OUVOTKEG
MPAYHATIKOU KOCHOU.

Anpoupymviag ouoxetioslg 6pdong-avilkelPHéVoU OTIG AVATTAPAOTACELS TRV KOSIKOIIOUTOV £1-
KOvag, auty n Sulepatkr ermbidrel va cupBalel otnv avarntudn Mo ArnoteAeoPATIKOV GUOTn-
PAteVv 0paong yid poUIdt Kat TEXVNTOUS IPAKIOPES, EIMITPENOVIAG TOUG vVa KATAVOOUV KaAutepa
) onpactodoyia Kat ) duvapikn g aAAnAenidpaong mpaxkropa-avikelpévou. Qg HeAAOVUIKY
Kateubuvon, pia rmo 0AOKANPOHEVT aSloA0YNnon aut®v tov Pefodav 9a propovoe va rieptdapBavet
peyadutepa ouvola Sedopévav orwg 1o Ego4D [36] kat to EPIC-Kitchens[17], kaBahg kat nepat-
TEPW® TEPAPATIONO PE §1adOopPeTkoUg TPOIOUG PovieAoroinong g XPHnotpng minpogpopiag mou
nepiExetal oe avtd. EmmAéov, o1 pébodot ormtikng mpo-ekmnaidevong yia ) poprnotiki 9a mpéret
va MmapEXoUV avarapaotdoelg Imou va eival Xprotpeg o Pia MOoKAia arno epyaocieg. TUvenaog, Sa
ATav XPHOHO Ol AVIIKEIPMEVOKETPIKEG AVATIAPACTACELS va agloAoynOouv oe 81APopeg epyaaieg Xeipt-
opou, oxedlaopou kat avayvoplong. Télog, Sa nrav eviiapépov va pedetnOouv apopoteg pebodot
oto mAaiolo g Zuveyoug (Continual) kat Ataxpovikng (Lifelong) Mdbnong, kat va e§epeuvnBouv
TEXVIKEG ITOU EIMMTPEITOUV OTOUG IMTPAKTIOPESG VA KOOIKOITO10UV Kat va dnpioupyouv ouoyetioelg faoet
TOV H1KOV TOUG EVEPYELDV KAl EPTIEIPIDV.
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2 Introduction

2.1 Motivation

A key objective of computer vision is to develop techniques that extract meaningful visual rep-
resentations of the world. Robotics manipulation [6], planning [ ], as well as human-robot
interaction [2, 22, 23], are areas with many open problems being studied at the moment. The
extraction of visual representations through visual pre-training methods (Figure 11) is promis-
ing because it reduces training time and improves performance and generalization, compared
to end-to-end learning methods[52, R s ]. These representations should be able to be
utilized in a variety of downstream tasks and require minimal retraining [95, 70].

Visual Pre-training

Pre-training Dataset Model Architecture Pre-training Objective

Pixel Observation [~ Model Architecture — Policy Network [ Behavior Cloning

Robot Manipulation

Figure 11: Visual Pre-Training for Robotics. Source: [52]

An emerging framework within visual pre-training methods is object-centric representation
learning, where the goal is to represent complex environments in terms of objects, rather than
treating the entire scene as a single entity. These methods are compatible with the way humans
process visual signals by organizing them into objects [77] and show the potential to improve
the generalization capabilities, explainability and sample efficiency of models [67, 8, 3].

Object-centric learning could draw inspiration from the field of psychology, where there has
been extensive study in the way humans learn to interact with their environment by associat-
ing actions and words to objects. Experiments in developmental psychology show that infants
first learn action-object associations, with word associations becoming more important later in
development [24]. Developing robotic agents would potentially struggle to exactly follow human
development due to limits in computational resources, datasets, or experimental constraints.
However, this can inspire algorithms that seek to pre-train robotic perception systems through
a form of curriculum learning [5, ] to first focus on extracting representations from ob-
served actions and then transition to learning from language-based supervision. This approach
transitions from utilizing self-supervised learning on more easily accessible datasets, such as
unlabeled videos, to the use of datasets that are annotated, which tend to be more costly. Addi-
tionally, it progresses from learning lower-order representations to higher-order representations.

Thesis Objective. This thesis focuses on ways that actions can be associated with objects,
following the positive results of visual pre-training methods that focus on modeling action-centric
information. Examples of this approach apply visual pre-training methods [87, 54, 61, 73, 69]
using datasets that capture the way humans interact with objects [36, 17]. These datasets can
be used to train the vision systems of agents and give them a head start in understanding the
agent-object interaction dynamics of the real world.
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2 Introduction

Based on the above, the primary aim of this thesis is to explore methods for improving object-
centric image encoders by focusing on methods that generate action-object associations based
on knowledge sourced from videos of actions. The first task used to evaluate the effectiveness
of these enhanced representations is affordance categorization, which is an appropriate assess-
ment of action-centric representations. In the fields of Computer Vision, Robotics and Artificial
Intelligence recognizing affordance can help systems anticipate and plan by providing informa-
tion on possible interactions with objects and the environment. In addition, the effectiveness of
these representations is assessed through a basic simulated robotic manipulation task.
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2.2 Contributions

2.2 Contributions

This thesis offers the following contributions.

1. Something’s Affordances: Curating a Small-Scale Affordance Categorization Dataset.
Something’s Affordances is a small-scale dataset that extends the Something-Else dataset
and focuses on affordance categorization. Its goal is to provide a proof of concept for
the proposed methods which are aimed at enhancing image representations through the
distillation of knowledge present in videos of actions. From the original dataset a small
subset of action categories was selected based on their ability to test the representations.
The multi-label affordance targets were extracted from the statistics of the dataset. The
dataset offers a small-scale testing environment for simple versions of some of the methods,
as a first step before scaling to bigger datasets with larger computational requirements.

2. The Object Action-centric Encoder. We have experimented with an action-to-object
distillation process that transfers the knowledge of a pre-trained Video MAE to an image
encoder. This framework attempts to encode (Video MAE) action experiences and associate
them with the depiction of the interacting objects present in those experiences. Experi-
ments show that the representations of Video MAE contain useful information that could
be useful to the image encoders, and we test some methods to enrich them with this in-
formation. The methods tested show some limited capability but may need adjustments
or larger datasets to effectively capture this information.

3. SOLV [3] representations for affordance categorization. We evaluate the image repre-
sentations of objects using a model that utilizes the Slot Attention architecture. We utilize
the model’s modular design to extract image object-centric representations from images
and we propose a method that attempts to associate some extra information about the ac-
tions with the object representation vectors. The model presents competitive results while
also achieving automatic segmentation of the images and a substantial reduction in the
per-object representation size. Furthermore, the model’s ability to detect and categorize
multiple objects in a scene, despite being trained with one object per scene, highlights its
robustness and potential for generalization.

4. SOLV [3] representations for control. We introduce a method to combine the spatial
slot representations of the SOLV model to generate image representations for a simulated
robot manipulation task. We evaluate the performance of this SOLV-based image en-
coder against other pre-trained image encoders that were trained on out-of-domain data.
Our results demonstrate that SOLV generally achieves better performance in this setting,
although it comes at the cost of increased computational complexity.
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3 Theoretical Background

3 Theoretical Background

This Theoretical Background section aims to present the theoretical foundations of this thesis by
providing the necessary context and focusing on key topics relevant to the proposed methods and
experiments. It draws insights from various sources, but mainly from:

e Christopher M. Bishop’s Pattern Recognition and Machine Learning [7]
Ian Goodfellow, Yoshua Bengio, and Aaron Courville’s Deep Learning [32]
Marco Gori’s Machine Learning: A Constraint-Based Approach [33]
Peter Norvig and Stuart J. Russell’s Artificial Intelligence: A Modern Approach [93]
Sergios Theodoridis’ Machine Learning: A Bayesian and Optimization Perspective [107]
Shai Shalev-Shwartz and Shai Ben-David’s Understanding Machine Learning: From Theory
to Algorithms [98]

This thesis
Robotics
ifici i Machine Learnin |
Artificial Intelligence g Robotic
Perception

Deep Learning

¢ jiépresenta'gl Learning

Figure 12: A Venn diagram illustrating the relationships between different fields relevant to this
thesis.

3.1 Machine Learning

Machine Learning (ML) is a field of study focused on developing methodologies that enable com-
puter programs to perform tasks by learning from data, instead of following explicit instructions.
The ability of ML algorithms to learn from data without predefined instructions has proven highly
effective in fields like computer vision and natural language processing, where humans and bi-
ological systems can perform complex tasks, but it is difficult to articulate the steps involved in
accomplishing them. Furthermore, ML has seen success in tasks that are difficult or impossible
for humans to perform, such as analyzing large amounts of data or making predictions based
on complex patterns.

A concept that highlights the tasks in which ML excels at, is the symbolic vs. sub-symbolic
dichotomy within the field of Artificial Intelligence (Al) [49, 33]. Symbolic Al is the branch of Al
that focuses on methodologies that are highly dependent on the manipulation of symbols and
attempt to approach tasks by programming computers to emulate human-like reasoning. These
methods have the advantage of interpretability, as most of the reasoning process is transparent
and understandable by humans. However, because symbolic systems use human-designed
high-level representations, they often require significant human involvement and struggle in
tasks that involve ambiguity, noisy data, or dynamic environments.
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3.1 Machine Learning

Notation Description
D Domain set (set of all possible inputs)
KXirain Training set
XNoal Validation set
Ntest Test set
Z Latent or internal representation space
T Target/decision space
o Final output space
e:D->Z Encoder function (maps domain inputs to latent space)
f:Z-7 Decision function (maps latent space to target space)
g:7 -0 Post-processing function (maps decisions to final output)
hs =gofoe | Complete ML model
1e] Parameters of the ML model
H Hypothesis space
p:0x0 — R | Performance measure

Table 9: Machine Learning (ML) Notations

Computer vision tasks are mostly of sub-symbolic nature, because inputs at the pixel level
have no semantic meaning and symbolic rules cannot easily be applied. Sub-symbolic Al, which
includes most modern ML approaches, uses methods such as statistical learning and mathemat-
ical optimization to generate models from data. These models can be expressed as parameterized
functions, and the learning process involves optimizing the functions’ parameters using data.
These methods do not have the interpretability of symbolic Al methods and this opaqueness has
led to their characterization as black box models. This has led to the development of explainable
ML, which focuses on techniques that provide explanations of the processes and results of ML
models [71].

Producing useful ML models often requires a large number of parameters, which requires
a large amount of data and computational resources for training. However, technological ad-
vances in hardware, such as GPUs and TPUs, and the availability of large datasets have helped
overcome these bottlenecks, leading to significant advancements and furthering research in ML
algorithms. Furthermore, in recent years, there is growing interest in hybrid approaches that
combine both sub-symbolic and symbolic Al, that study methods that are not only effective but
also more interpretable.

Formalizing Machine Learning Tasks and Models. Let us define a formalism for a generic
ML task, model and learning, as presented in [33, 98]. The domain set , D, represents the set
of elements that an ML model, hy, is designed to process, producing outputs that belong to the
output space, 0. For example, in the task of object classification, the domain set D consists of
images of objects that we aim to classify into a predefined set of categories, O, such as "cup",
"chair", and others

An ML model can be formalized as a composition of three functions: hy = go f o e. Many
ML models require a simpler formulation, in which some of the functions g, f, e are the identity
functions. The encoder function e : Y — Z, maps the domain inputs to the latent space, also
known as the internal representation space. The field that focuses on training such encoders
is called representation learning. This topic will be explored further in a next chapter, as it
constitutes a primary focus of this thesis. For example, the encoder can take images of objects,
where each image i € D = REXWX3 (with height H, width W and 3 color channels) and encode
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3 Theoretical Background

them into representation vectors z = e(i) € Z. The internal representation vectors aim to
reduce the input size and transform the input into a useful form, preserving the most important
information.

The function f : Z — 7 expresses the process that takes the internal representation z € Z,
and produces a decision, t = f(z) € 7, in the target space of the task. Finally, the post-
processing function, g : 7 — O, expresses the mapping of the decision to the final output,
o = ¢g(t) € O in the space of the final task-specific output by applying activation functions,
thresholding, or scaling.

In line with the previous example of the object classification task, the decision space can
include vectors of assigned probabilities to each class. These probability vectors represent the
model’s confidence that the input belongs to each class. The post-processing function g could
then apply transformations such as selecting the class with the highest probability or applying
a threshold to produce a final result.

The class of models and the function, hy, is chosen from the set of all possible models H.
‘H is called the hypothesis space, as this choice represents the designer’s hypothesis and prior
knowledge about the task and domain set, which introduces certain restrictions to the learning
process. These restrictions are known as inductive bias [98, 93].

Classification & Regression. If the target output is a continuous variable, the ML task is
referred to as a Regression task. When the output is a finite number of categories, the task is
called a Classification task. Classification into two categories is known as Binary Classification.
Classification into three or more categories is refereed to as Multi-class Classification. When
the goal is for each sample to be labeled with multiple, nonexclusive labels, the task is termed
Multi-label Classification. An example of multi-label classification is Affordance categorization, a
task that is within the scope of this thesis. For this task, each sample is an object, and the goal
is to predict its nonexclusive affordances (e.g. a ball can be rollable and squeezable).

Datasets. In most of the tasks in which ML methods are used, the domain sets are infinite or
finite but vast. For example, if D represents all RGB images of size 10 X 10, then a sample i € D
would be an element in [0, 255]'9%19%3  where each pixel has 3 color channels (red, green, blue)
and intensity in the range [0,255]. The cardinality of this domain set is |D| = 256%%° !. It is
clear that in most cases we cannot realistically train or test an ML model on the entire domain
set, nor can we attempt to label every possible element.

ML methodologies are applied to subset datasets that are sampled from the domain set.
The challenge is to develop models that learn from these datasets but can generalize to unseen
data. This highlights the importance of sampling methods and the quality of the dataset. In
many theoretical frameworks for ML, like probably approximately correct (PAC) learning [98],
the assumption is that the sampling from the domain set takes place in an independently and
identically distributed (i.i.d.) manner. However, this i.i.d. assumption is often not strictly true in
practice. Understanding how this assumption is violated in real-world applications is important
for developing effective ML models [ 1.

The datasets sampled from the domain set are usually split into three separate datasets: the
train validation and the test set. Each of these sets performs a specific role in ML methods. The
train set is used to optimize the parameters of the ML model according to the learning algorithm.
The validation set is used to provide feedback during the training on how the model performs
on unseen data. This feedback is used to adjust the training process’ parameters, referred to as

!For comparison, recent studies have estimated the age of Universe is approximately 8 x 10'7 seconds [40]
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hyperparameters, without compromising the final evaluation. The test set is used for the final
evaluation, providing an assessment of the model’s performance on unseen data.

Overfitting & Underfitting. The main aim of ML methods is to produce models that perform
well on unseen data drawn from the same domain set (or distribution), what is known as gen-
eralisability. Generalisability is measured by training a model based on performance metrics
computed on the training set but evaluating it on the test set. In this context, the i.i.d assump-
tion on the data generating process is important , as it allows statistical learning theory through
the concept of Empirical Risk Minimization [98] to draw some conclusions on how the model’s
performance on the train set will affect its performance on the test set. [32].

Furthermore, a model’s generalizability is affected by its capacity, which is its ability to fit
complex datasets by approximating complex functions[32]. At first glance, the improved capacity
may seem as an advantage, but this flexibility can lead to a phenomenon called overfitting,
where the model fits the training set too tightly, diminishing its performance on unseen data.
Underfitting is when low-capacity models underperform because the complexity of the task
requires a greater amount of expressive power (Figure 13). In some ML models, like neural
networks, the amount of overfitting is also affected by training hyperparameters like training
duration, learning rate, etc. In recent years, there has been extensive research in finding
methods that optimize the model’s capacity and training methods to avoid over/underfitting
and improve generalization.

Underfitting Appropriate capacity Overfitting

— - Training error
Underfitting zone | Overfitting zone .
—— Generalization error

= /< - =

Error

0 Optimal Capacity

To To To Capacity

Figure 13: Model capacity, overfitting and underfitting. Source: [32]

Machine Learning Protocols. There are three main ML protocols that are determined by the
different types of feedback that the models have access to during training.

e Supervised Learning. In this type of ML, the methods uses feedback in the form of labels.
A labeled dataset includes a label for every sample, X = {(x1,y1),...,(%n, Yn)}, Where
x; € D and y; € O. The performance of the model is quantified using a performance
measure function p : O X O — R that is used to compare the model predictions with the
ground truth labels. During training a performance measure function is used to optimize
the model parameters using the train set, Xyqn. In the evaluation phase, performance
measure functions are used on the labels of the test set, X, and these functions can be
different from the ones used in training.

e Unsupervised Learning. In Unsupervised Learning, there is no explicit feedback that in-
forms the training process, and models attempt to discover patterns in datasets. Density
estimation, clustering, and dimensionality reduction algorithms fall into this category.

e Self-supervised Learning. This ML approach, generally considered a subcategory of unsu-
pervised learning, where the model generates its own supervision feedback from the data.
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This technique is commonly used to pre-train encoder models that are then fine-tuned
using supervised learning. Self-supervised methods using neural network encoder models
fall within the scope of this thesis and are discussed in more detail in the next chapters.

e Reinforcement Learning. In Reinforcement Learning the models learn by interacting with
an environment, and the feedback takes the form of a reward function. This type of ML
is inspired by the way that humans learn and interact with their environments and has
many applications in the field of robotics. RL is presented in greater detail in a following
chapter.

Probabilistic methods. Probability theory is a common theoretical framework on which many
ML methodologies are based on. It models the uncertainty and variability of the domain set, data
generating process and model parametrization and provides a systematic approach handling
noisy and incomplete data, incorporating prior knowledge to the learning process and updating
the models using new information [ s , 32].

Using the probabilistic framework, the uncertainty in the datasets is quantified using prob-
ability distributions. Supervised learning can be seen as an attempt to estimate the conditional
distribution p(y|x) using parameterised functions by observing random variables x, y. This leads
to two approaches for using the feedback of labels y: generative and discriminative learning. In
discriminative learning the conditional distribution p(y|x) is modeled directly, learning a map-
ping between input x and output y and focusing on the boundaries of the classes. On the other
hand generative learning models the joint distribution p(x, y) and uses the product rule of prob-
ability to make predictions (Equation 20). Generative models acquire a deeper understanding
of the underlying distributions but usually require more complex parameterized functions and
learning methods to achieve this.

ply.x) _ _py.x)
p) Xy py.x)

In the context of probabilistic models, Maximum Likelihood Estimation (MLE) and Maximum
A Posteriori (MAP) are two common methods for estimating the model parameters. MLE assumes
that the parameters 8 are fixed but unknown and attempts to find the parameter values that
maximize the likelihood of the observed data without incorporating any prior beliefs about the
parameters. MAP estimation extends MLE by incorporating prior knowledge of the parameters
through a prior distribution p(8).

P(ylx) = (20)

Performance Measures. Permanence measures are functions that quantify the model’s perfor-
mance and are an important part of ML theory and methods. For binary classification tasks,
where each can either belong (y; = 1), or not (y; = 0), to a single category, some of these functions
are based on the following numbers:

e True Positives (TP): The number of samples for which y; = 1 and hy(x;) = 1

e True Negatives(TN): The number of samples for which y; = 0 and hy(x;) = 0

e False Positives (FP): The number of samples for which y; = 1 and hs(x;) = 0

e False Negatives (FN): The number of samples for which y; = 0 and hy(x;) = 1

Some common performance measures for the supervised learning tasks will be examined
next.

Accuracy (Equation 21) is the percentage of correct predictions by the model. It provides an
assessment of the general performance of the model and the same formula can be generalized
for multi-class classification tasks with the numerator being the sum of the samples classified
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correctly. In multi-label classification tasks there exists an accuracy variant know as Subset
Accuracy, which is the percentage of samples that had all their labels predicted correctly. A
disadvantage of this metric is that it might be misleading in imbalanced datasets. For example,
if 90% of the samples in a dataset have labels y = 0, then a models that predicts always hs(x) = O
will have Accuracy = 90%.
TP + TN
Accuracy = X 100% 21
TP + TN + FP + FN

Recall (Equation 22) is the percentage of accurate positive predictions to the total samples
with ground-truth positive labels.

TP
Recall = ——— X 100% (22)
TP + FN
Precision (Equation 23) is the percentage of the model’s accurate positive predictions to the
total samples predicted as positive.

TP
Precision = ——— X 100% (23)
TP + FP

In a multi-class setting, recall and precision are computed individually for each class. If the
recall is 100%, the model has predicted all samples belonging to this class correctly (FN = 0).
This might be misleading, as the model might be too aggressive and assign many other classes
incorrectly. However, if the cost of FP is small and cost of FN is high, this behavior may
be preferable. For example, when designing smoke alarms, it is preferable to have increased
sensitivity (in the literature, sensitivity is another term for recall), even if that increases the
number of false alarms.

On the other hand, if the precision is 100%, when the model assigns this class to a sample,
its always correct (FP = 0).This might be misleading, as the model might be very cautious
with respect to this class and only assign only the obvious samples. In certain scenarios, this
cautious approach may be preferable, particularly in applications such as diagnosis of medical
conditions.

Taking the above into account, there is a clear need for a performance measure that combines
recall and precision. FI-score (Equation 24) is a function that meets this requirement and is
widely used. This metric is the harmonic mean of recall and precision and is equal to 100%
when both metrics are 100% and 0% if either of them is 0%.

Precision - Recall
=2 — (24)
Precision + Recall

In multi-class and multi-label settings, the above per-class metrics are averaged to produce
a total performance measure for the model. The averaging can be performed in many ways, the
most widely used are macro, micro and weighted averaging [82, 97]. Macro-averaging computes
the per-class metrics and then calculates their unweighted mean. This handles each class
equally, regardless of their samples. Weighted-averaging uses the number of samples of each
class as weights to calculate the weighted mean of the per-class metrics. Finally, micro-averaging
computes the global TP, FP, FN and combines them into a global metric using the previously
described equations.

Loss functions. Loss or cost functions are a subcategory of performance measure functions
that assess how far the model’s predictions are to the ground truth labels and are usually differ-
entiable with respect to the parameters 8. In simple linear models, they allow for estimation of

51



3 Theoretical Background

the parameters using analytical differentiation and closed form solutions. In more complex non-
linear models they allow for the application optimization methods like the iterative algorithms
in the Gradient Descent family. Some common loss functions are presented next.

Cross Entropy Loss (CEL) (Equation 25) is a loss function mostly used in classification tasks
and can be theoretically derived from the MLE principle. Suppose that hs is a the model function
that assigns class probabilities to the samples of the dataset. Then CEL measures the difference
between a predicted class probabilities, fla(xi), and the ground truth labels.

1 & .
CEL = N ; yi log(hs(x:)) (29)

Mean Squared Error (MSE) (Equation 26) is a loss function mostly used in regression tasks
that measures the squared difference between the predicted values and ground truth values.
The squaring of the error penalises larger errors more and MSE is often referred to as the L,
loss function because it uses the L, norm of the error vector. Interestingly, in some cases, MSE
can be used for MLE when we assume that the dataset is i.i.d. and the distribution p(y|x) is
Gaussian distribution[32].

_1N 2
ME—N;@P%W» 26)

Mean Absolute Error (MAE) (Equation 27) is a loss function mostly used in regression tasks
that measures the absolute difference between the predicted values and ground truth values.
MAE linearly handles all errors and therefore larger errors are not disproportionately more
costly. As a result, training with MAE is less sensitive to outliers and dataset noise. MAE is
often referred to as the L, loss function because it uses the L; norm of the error vector.

1 N
wm=ﬁgwﬁ%mn 27)

Smooth L, Loss (SL;) is a function that combines the MSE and MAE using the parameter 8.
It produces squared error if the absolute element-wise error falls below beta and an absolute
error otherwise. Its outlier sensitivity falls between the MSE and MAE losses.

S . \)2
. 05U, £ y: — ho()l < B
l ly; — hs(x;)| — 0.58, otherwise
(28)
5)
SLI = — li
N =

Regularization. As seen above loss functions main goal is to guide the learning process to
statistically estimate the parameters to produce predictions that are close to the ground truth
labels. To minimize the capacity of the model and thus avoid overfitting, some penalty terms
can be added to the loss function. This technique is known as regularization. The penalty
terms create a competitive optimization problem that prevents the model from fully optimizing
the objective of the original cost function [32]. Two common regularization methods are L1 and
L2 (Equations 29 and 30).

m
Lregularization term : A Z 18] (29)
=1
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m
Lyregularization term : 7 Z For (30)

i=1

With j being the parameter that controls regularization strength and 8; the model parame-
ters.

Logistic Regression. Goodfellow et al. [32] make the observation that in most cases machine
learning frameworks require four components: a dataset, a loss function, an optimization algo-
rithm and a model. Choosing the instantiation of each component requires careful consideration
of the task at hand and experimentation. In this section, we will focus on Logistic Regression, a
fundamental ML algorithm. This algorithm is within the scope of this thesis because it is used
as a evaluation approach for the proposed representation learning methods.

In order to provide context for the experiments that follow, suppose that we have two encoder
models e; and ey, and we want to compare their performance on a classification dataset X =
{(x1,41),...,(xn,yn)}. The output vectors of the encoders z; = e(X;) are of size D,. The Logistic
Regression model will take the weighted sum of the representation vectors z; as described in
Equation 31. The weights w and the bias term b are the parameters of the model. t; is called
the logit and is transformed into the probability that this sample belongs to the class using the
Sigmoid function (Equation 32). In order to make the final classification, a threshold must be
set, usually at 0.5 over which the sample is classified as belonging to the class [18].

DZ
t[ = [Z LUJ'ZiJ] +b (31)
Jj=1

1
1+ et

p(ylx) = o(ty) = (32)

In the multi-class variant of Logistic Regression, t; is a vector of logits, one for every class.
The logits are transformed into class probabilities using the Softmax function (Equation 33).

elic

K
j=1

P(Yelx;) = softmax(t;) = (33)

eti,c

During model training, the cross-entropy loss is minimized by estimating the parameters
using Maximum Likelihood Estimation (MLE). As logistic regression is a generalized linear model
(with logits originating from a linear function), the loss function is convex, ensuring the presence
of at most one global minimum. The optimal parameters that achieve this global minimum
can be found using optimization algorithms. Gradient descent iteratively changes the weights
in the direction that minimizes the loss function using the gradient of the loss with respect
to the weights. Alternatively, the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)
algorithm [1 1] approximates the inverse Hessian matrix to achieve faster convergence, especially
in high-dimensional problems.

After training and evaluating the performance of the two classifiers, we can draw some
conclusions about the representation vectors produced by the two encoders. Methods that
use linear models (such as classifiers or regressors) on top of frozen encoders to evaluate their
representations are termed linear probing [86, 45].
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3.2 Deep Learning

Deep learning is a branch of ML that has achieved many successes in recent years in fields such
as computer vision and natural language processing, and tasks such as image and speech recog-
nition, autonomous driving, and healthcare. In the deep learning framework, models can take
various forms, including feedforward neural networks (Figure 14), recurrent neural networks
(RNNs) for sequential data, and convolutional neural networks (CNNs) for image processing.
Each architecture is designed to approximate functions in different domains and introduce dif-
ferent inductive biases. Their main advantage of deep learning techniques compared to other
ML methods is their ability to automatically learn representations from raw data, eliminating
the requirement for hand-crafted representations [62].

Neural networks are made up of multiple layers. Each layer uses non-linear transformations
to process its input and produces an output that is transmitted to the next layer. The first and
last layers are referred to as input and output layers respectively and the intermediate layers are
called the hidden layers. The depth of the neural network is the number of layers it contains
and its width is the size of its hidden layers. Increasing the width and depth of a neural network
will generally enhance its capacity and ability to approximate more complex functions. However,
this also requires more data and computational resources to optimize the parameters.
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Figure 14: The architecture of a feedfor-
ward neural network with two hidden and Figure 15: The backward differentiation
the equations of the forward pass that de- flow and equations of the backward pass
scribe how the values are computed at each of the backpropagation algorithm. Source:
layer to produce the model’s prediction. [62]
Source: [62]

As shown in Figure 14, the layers of a feedforward neural network are made up of neurons.
Each neuron in a layer is connected to neurons in the next layer through weighted connections
w;. The input to each neuron is a weighted sum of the outputs of the previous layer H,
represented by z; = 3y wiy; + b (the bias term b is omitted from the figure for simplicity).
This sum is then passed through an non-linear activation function f(z;) to produce the neuron’s
output. This non-linearity allows the neural network to learn complex patterns [32, 62]. Some
common activation functions are the following.

e The Sigmoid: function maps inputs to values between O and 1,

Sf(2) = (34)

l1+e2
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e The Hyperbolic Tangent (tanh) that maps inputs to values between -1 and 1.

zZ_ o7Z

e

Z)= ———— 35

J@&=Z— (35)

e The Rectified Linear Unit (ReLU) is a computationally simple and widely used activation
function.

J(2) = max(0, 2) (36)

In deep learning, optimizers are mainly iterative gradient-based algorithms. This is because
the non-linear nature of neural networks results in non-convex loss functions. As a result,
there is no guarantee that the training process will converge to a global minimum. One of the
most common loss functions in deep learning is the cross-entropy loss, with the output of the
output layer being conditional probabilities p(y|x) with the use of sigmoid or softmax activation
functions.

Stochastic Gradient Descent. Stochastic Gradient Descent (Algorithm 1) and its variants are
the most widely used optimization algorithms in deep learning. The algorithms iteratively update
the weights of the model using gradients, §, computed on small random subsets of data called
mini-batches. This estimates the gradient that would result from the whole dataset and as a
result can display some variability, making the optimization process noisy. This provides SGD
with its stochastic nature that can help avoid convergence to local minima. The gradient g,
being vector that points in the direction of the most rapid ascent of the loss function, is used to
update the network’s parameters with the rule presented in line 5 of Algorithm 1, where e is
the learning rate at iteration k. This learning rate may vary according to a schedule to ensure
stable convergence. Various extensions of SGD, such as momentum SGD, AdaGrad, and Adam,
have been developed to address issues like slow convergence and oscillations near local optima

[32].

Algorithm 1 Stochastic gradient descent (SGD). Adjusted from: [32]

Require: Learning rate schedule €}, ¢, . ..
Require: Initial parameters &

1: k1

2: while stopping criterion not met do
Sample a mini-batch of m examples, B = {(x1, Y1), - - . . (Xin, Ym)} from the training set X qin
4 Compute gradient estimate: § « -V, 3, L(f(x?;8), y?)
5: Apply update: 8 « 8 — €§
6
7

@

k—k+1
: end while

Backpropagation (Figure 15) is one of the most important building blocks of neural network
training as it allows for an efficient computation of the gradient, g, of the loss function with
respect to each weight in the network. The algorithm consists of two stages: the forward pass
and the backward pass. In the forward pass, input data is passed through the network to
produce the model’s predictions. During this pass the computation graph of the network is used
to track the flow of data and compute intermediate values for each operation. The loss is then
computed with the use of the ground truth labels and the loss functions. In the backward pass,
the algorithm calculates the gradient of the loss with respect to each weight using the chain rule
of differentiation. The gradients are propagated backwards through the network’s computation
graph, quantifying how each parameter contributes to the final loss [18, 32, 62].
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Regularization for Deep Learning. As discussed in the previous chapter, regularization tech-
niques aim to improve the model’s generalizability by introducing some constrains or penalties
in the learning process. Regularization is important for neural networks to prevent overfit-
ting caused by their flexibility and their ability to model complex functions. Some of the most
important regularization techniques for deep learning are presented next.

e Parameter Norm Penalties include penalty terms introduced to the loss function, like the L,
and L, regularizers that were previously discussed. Both methods introduce a preference
for simpler models. L, regularization works well for most models and L; regularization
is useful in cases that require sparse models, as the optimization objective it introduces
tends to push some parameters to zero.

e Dataset Augmentation includes methods that increase the size of the training dataset by
modifying the existing data. Methods that fall into this category have been proven par-
ticularly successful in image classification, object detection and segmentation. Common
image augmentations include random rotations, flips, translations, scaling, adding noise
to the original images or combining images from different categories. For the tasks of
object detection and segmentation some techniques combine different backgrounds with
objects. Building upon these concepts, certain techniques use generative models to pro-
duce synthetic data that mimic the original dataset’s statistical properties.

e Multitask Learning involves training a model on multiple tasks simultaneously. As a result
the model learns representations that are useful for all the tasks, which makes it less
likely to overfit to any one particular task.

e Early Stopping is a method that utilizes the validation loss to stop the training before
overfitting occurs. In general, training and validation loss decrease during training until a
certain point at which the validation loss begins to increase again. This is a strong indica-
tion that the model has started to overfit by learning the noise and spurious correlations
of the training set and the model’s ability to generalize will not improve further.

e Parameter Sharing is a form of regularization that forces a set of neurons to share weights.
This reduces the amount of learnable parameters and is a way to introduce a preference
for simpler models and domain knowledge into the frameworks. In computer vision, Con-
volutional Neural Networks (CNNs) are an architecture that successfully exemplifies this
method by applying the same convolutions filters across an image, taking advantage of
the translation invariance of this domain.

e Dropout [ | is a simple but effective regularization technique. During training, at each
iteration, each neuron and its connections are retained with probability p. During testing,
all the neurons are on, with their weights scaled by p. This allows the network produce
the same expected output in both cases and reduce overfitting by preventing its heavy
reliance on a small set of neurons.

Convolutional Neural Networks. Convolutional Neural Networks (CNNs) were one of the first
deep learning architectures to demonstrate the potential of deep learning. In the field of com-
puter vision, CNNs have long been the predominant neural network architecture, accomplishing
numerous breakthroughs and pushing the boundaries of what was previously thought possible
in the field. Their ability to automatically learn hierarchical features from raw image data has
transformed tasks such as image classification, object detection, and segmentation.

56



3.2 Deep Learning

As discussed previously, this architecture utilizes the parameter sharing technique that
makes the model and its representations equivariant to translation. This allows CNNs to recog-
nize patterns regardless of their position in the image, as shifting the input equivalently shifts
the output. This is a characteristic successful example of the use of inductive bias to improve
computational efficiency [32].

However, in recent years, self-attention based architectures such as the transformer have
been gaining popularity in computer vision, showcasing that large-scale training with minimal
inductive bias outperforms inductive bias [21]. This aligns with Sutton’s observation in Al
research [103], which highlights that models leveraging scalable computation tend to eventually
outperform those relying heavily on human-engineered features or domain-specific knowledge.
In recent years, hybrid CNN-Transformer methods have emerged, such as [ , 66], especially
when large datasets are unavailable. In this thesis, the primary emphasis is placed on models
based on the transformer architecture. As a result, the next section will introduce the main
transformer tool for computer vision, the Vision Transformer.

Vision Transformer. The Transformer [ ] is a neural network architecture that was origi-
nally proposed for the task of machine translation. Recurrent neural networks (RNNs), such as
long short-term memory (LSTM), were previously considered the state-of-the-art in processing
sequential data for natural language tasks. The transformer architecture’s main difference to
these models is its ability to process the sequences in parallel. This allows transformers to
be trained on more data in less time, scale to much larger sizes and better exploit long-range
dependencies in the data.

Vision Transformer (ViT) Transformer Encoder
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Transformer Encoder ’
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Figure 16: The Vision Transformer and Transformer Encoder architectures. Source: [21]

The Vision Transformer (ViT) applies the transformer encoder architecture to image inputs 2.
The key idea is to split an image into patches of fixed size. Each patch is a token, and the entire
set of tokens is processed using self-attention, like words in a sentence.

More formally, given an input image x € RF*WXC where H and W are the height and width of
the image, and C is the number of color channels, the image is divided into N = HW/P? patches,
X, of size P2C. Each patch, x?, is transformed into a patch embedding, z?, by being flattened
and projected into a D dimensional space using a learnable linear projection, E. A vector of
learnable parameters, termed positional embedding, E,s. is added to the transformed patches

2ViTs for video inputs are discussed in subsequent sections of the thesis.
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to provide information about the spatial structure of the image. Finally, [class], a special D
dimensional vector of learnable parameters, is prepared as part of the input to model’s the next
processing stage. [class] serves as the initialization of a vector that at the end of the model’s
computation provides a representation for the whole image. It is beneficial to conceptualize all
the patch embeddings as being combined into a matrix z € RV*1*P,

720 = x,E+ Eps €RP, VieN (37)

Subsequently, L identical layers process the patch embeddings. Each layer consists of the
following components:
e Layer Normalization [63]: x = LN(z)
Multi-Head Attention: MHA(X)
Residual Connection: X = X + MHA(X)
Layer Normalization: X = LN(X)
Multi-Layer Perceptron: MLP(X) = Wy - f(Wy - X + by) + by where W; and W, are weight
matrices, b; and b, are biases, and f is the activation function.
e Residual Connection: X = X + MLP(X)
In all steps x € RN*1XD,

Multihead self-attention, which is the core module of the transformer architecture. Given the
patch embedding matrix z, the self-attention mechanism at the head h computes the attention
scores for each token using the query matrix q; € R¥*Y*d the key matrix k;, € RV*D*Pr and
the value matrix v, € RV+DXPn,

qh = qu'h, kh = sz’h, Vh = ZWU,h (38)

Where Wy, Wich, Wy n € RP*Pr are learned projection matrices, and Dy, is the dimension of the
key and query vectors which typically is D, = D/H, in a multi-head attention module with H
heads. The attention matrix for every head is computed in the following way:

A (q Kk, v ) = S()ItIIIaX( ) (39)
B , \/ 9

h\Yh, Bh, Yh ,—h h
SAh = Apvn (40)

The attention weights A;; symbolize the importance that token i allocates to the patch em-
bedding of token j when computing its representation. In multi-head attention, each head is set
to capture different relationships in the input data. The outputs from each attention head are
concatenated and projected back into the D-dimensional space.

MHA = [SA;;...;SAg]Wo (41)

Where W, € RFXPWXD jg 3 learned projection matrix.

The output of the ViT model consists of N + 1 context-aware representation vectors, X;.
Here, Xo corresponds to the representation vector of the [class] token, which can be used as
a representation of the entire image. Transformers can be trained using labeled datasets in a
classification setting but are also in self-supervised representation learning settings. Most of
the models relevant to this thesis employ the latter approach and, most specifically, the method
of Auto-encoding where the transformer encoder is followed by a decoder module that attempts
to reconstruct the input. The next section provides an analysis of the auto-encoder framework
and other representation learning techniques.
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3.3 Representation Learning

Representation learning is the field that aims to develop methods by which models automatically
extract useful representations from raw input data. These learned representations are then
used for downstream tasks. Outside of ML, Al methods are based on hand-crafted features and
algorithms, which is known as feature engineering. In traditional computer vision, this includes
methods such as edge detection, color histograms, or descriptors such as SIFT (Scale-Invariant
Feature Transform) [68] and HOG (Histogram of Oriented Gradients) [16]. These methods relied
on domain expertise and the process was often time-consuming and inflexible [74].

In contrast, representation learning in ML, especially after the latest advances in neural
network methods, automates this process by allowing models to learn representations directly
from the data. This end-to-end learning process reduces the need for human intervention and
often leads to better generalization and performance. In deep learning, representation learning
methods often utilize self-supervised learning, training encoders in pretext tasks that do not
require labeled datasets.

The success of deep learning is often attributed to the ability of neural networks to learn
the non-linear manifolds in the data distributions. These advancements have given rise to
the manifold hypothesis, which suggests that high-dimensional data, such as images, audio,
or text, are concentrated in regions with fewer dimensions. In the ML literature, the term
manifold ® loosely refers to a lower-dimensional space within a higher-dimensional space, where
a connected set of points can be approximated using fewer degrees of freedom than the higher-
dimensional space. [4, 32]

Auto-encoders. One deep learning method that takes advantage of the ideas outlined by the
manifold hypothesis is the auto-encoder (AE). The AE framework falls into the self-supervised
learning paradigm as it attempts to reconstruct the input. In general, representation learning
aims to train an encoder e : D — Z that maps raw input data, x € D, to representation vectors,
z € Z. In AEs, the reconstruction of the input is created by a module called the decoder, that
can be formalized as a function g : Z — 9. A common loss function for training AE is the
reconstruction loss, typically defined as the difference between the input and the reconstructed
output (Equation 42).

1 N
L= Zl lIx; — g(eG)ll, (42)

The most widely used AEs are those termed undercomplete (Figure ??), which attempt to
reconstruct the input after mapping it to a representation space of significantly smaller di-
mensionality. To push models to extract useful representations, various modifications of the
undercomplete AE have been proposed. Two notable types are the Denoising AEs and Masked
AEs | I.

Denoising Auto-encoders (DAEs) [32] learn from data that has been corrupted by noise. A
noisy version of the input, X, is fed into the encoder, and the model is tasked with reconstructing
the original input, x:

N
1 N

L= le lIx; = gle()II. (43)

Masked Auto-encoders (MAESs) [ ] attempt to reconstruct an input, X, that has some parts

hidden. In computer vision, MAEs are particularly effective both in image and video processing

3A more rigorous definition of the concept of a manifold can be found in the mathematical Topology literature.
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and are some of the main modules of the models used in this thesis. More details and specific
techniques are discussed in Chapter 4.

Object-centric representation learning. Object-centric representation learning is a develop-
ing paradigm in ML, where the goal is to represent complex environments in terms of objects,
rather than treating the entire scene as a single entity and extracting a single representation.
This paradigm is compatible with the proposed "principles of grouping" (Figure 17) from psychol-
ogy and cognitive science, which account for how humans process visual signals by organizing
them into objects [77].

Object-centric representation learning has shown the potential to improve the generaliza-
tion capabilities and sample efficiency of models as well improve interpretability. However, in
the past, these techniques were hindered by the difficulty and cost of dataset annotation when
learning in a supervised manner. In recent years, this potential has been unlocked by archi-
tectures like Slot Attention that are self-supervised and highly scalable. As a result, they can
use large unlabeled image and video datasets [67, 8, 3]. The Slot Attention architecture is a key
focus of this thesis and is discussed further in chapter 5.
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Figure 17: Principles of grouping (or Gestalt laws of grouping): some of the factors that govern
which visual elements are perceived by humans as going together. Source: [77]

Human-aligned representations and saliency methods The growth and success of deep
learning in recent decades have increased interest in explainability and its alignment with hu-
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3.3 Representation Learning

man preferences. Useful techniques interpret the model’s decisions by highlighting which parts
of the input were most influential [37, 47]. In robotics, being able to predict and align with
where humans pay attention is critical to improving human-robot interaction and collaboration.

Attention and saliency are two terms that are useful in this context. In general, attention is
a top-down process that incorporates expectations and preconceived knowledge to process the
sensory signal by highlighting areas of importance. On the other hand, saliency is mainly a
bottom-up process that uses low-level characteristics of the input to identify regions of potential
importance [25, 131, 59, 58].

Deep learning supervised methods have proven to be highly successful in predicting human
generated saliency maps using multi-modal data [60, 110, 20]. Recently, self-supervised ap-
proaches utilizing video data have demonstrated the ability to align with human saliency and
produce human-aligned representations without requiring ground truth maps for training [80].
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Figure 18: Image masked auto-encoder representation learning for robot control. Source: [87].

Representation learning for robot perception. In the field of robotics, recent years have
witnessed an increased focus on data-driven approaches derived from ML for problems such as
manipulation and planning, shifting away from analytical methods due to their generalization
disadvantages [51]. The transfer of insights from the successful application of representation
learning in natural language processing and computer vision plays a central role in these efforts.

Image representations play a crucial role in robotic manipulation tasks, where understanding
of the environment is key to success. In particular, after the deep learning revolution, computer
vision was equipped with effective representation extraction techniques that drove the paradigm
of visuomotor policy learning (Figure 51) to produce many significant results [64, 106, 61, 95,
128]. The term visuomotor emphasizes that the flat state vector input to the policy model
combines image representations with a vector that includes information about the robot’s state,
such as its pose or joint speeds.

Self-supervised learning techniques have gained traction in robotics representation learning,
as they allow robots to leverage large amounts of unlabeled data. An indicative example is the
success of Image Masked AEs in simulated[87] and real-world robotic tasks [88]. In the pre-
training phase encoders were trained using images from egocentric datasets such as Ego4D [36]
and EPIC-Kitchens [17] and Hand-object Interaction and action-centric datasets like Something-
Something dataset [35]. The encoders are then frozen and used to learn control policies in
various tasks (Figure 18).
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4 Action to Object Knowledge Distillation

4 Action to Object Knowledge Distillation

4.1 Introduction

Based on the positive results of visual pre-training methods that focus on modeling action-
centric information, this thesis focuses on ways that modeling of datasets that capture the way
humans interact with objects [36, 17, 35] can be incorporated in object-centric representations
[67]. In this section we explore a method that aims to encode action experiences and associate
them, through the use of video(of action)-to-image(of object) KD, with the depiction of the objects
present in those experiences. In the following experiments the action experiences are in the
form of videos of human actions from the Something Something v2 dataset [35], however similar
techniques could be used to encode and create associations using the agents’ own interactions
with the objects.

These representations, can potentially be useful as a pre-training step in an object-centric
modular learning framework such as that in Figure 19, where the individual object representa-
tions are becoming context-aware through a transformer module.

T Action-centric Encoder

\

~ — = Transformer encoder wit cross attention

\
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Figure 19: Example of AcE as part of a robotics modular learning framework.

Another potential usefulness of action-centric encoding could be to provide similarity met-
rics in an example retrieval setting, such as in the cloud database for advanced manipulation
intelligence (Figure 20) proposed in [117]. The aim of such a database is to provide examples
and information about certain tasks, with the examples being performed by humans or robots.
When a robot is assigned a new task, it can retrieve examples from the database and also post
information after completing a task. Object, representations can be used to retrieve useful ex-
amples. A similar idea could be applied to Augmented or Virtual Reality applications, where
virtual assistants could provide affordance information and support, and might need to retrieve
and provide action demonstrations [S3].

The action-to-object distillation process transfers the knowledge of Video MAE to an image
encoder, named the Object Action-centric Encoder (OAcE). The objective of OACE is to model the
representation space of videos featuring human actions on objects, originally accessible only by
the Video MAE model. Using cross-modal distillation, we aim to make these representations
accessible through a different modality, static images of objects (object crops).

The OACE consists of two main modules:
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Figure 20: Cloud database for advanced manipulation intelligence. Source: [117]

e An Image Encoder, that transforms an image input from pixel space, to a dense image
representation space, I € Zi,y. In the following experiments, two different pre-trained
models are used as Image Encoders, CLIP [S86] and Image MAE [45].

e A Mapping Module that maps from the image representation space to the action-centric
video representation space, R € .

The primary goal of this experimental section is to explore if the OAcE can be compared
with, and potentially enhance some of the state of the art static image encoders. The different
methods are evaluated based on their performance in the task of affordance categorization.
Before discussing the experimental methodology and results, the following section presents the
theoretical background that inspired this study, along with the pre-trained models used as
modules in the proposed framework.

4.2 Theoretical Background
4.2.1 Knowledge Distillation

Knowledge distillation (KD) [34, 53, 90] is a method of neural network compression in which
a student model is trained to replicate the performance of a larger and more complex teacher
model (Figure 21). This method was introduced, along with other model-reduction techniques
like Network Pruning [14, 91, 31] to meet the need for models that are as effective as large deep
models but run on devices with limited computational resources, such as mobile phones or
autonomous cars. The effectiveness of the student model arises from the fact that it not only
learns from the dataset, but also captures the ways that the teacher model generalizes. The
implicit knowledge transferred is usually referred to as dark knowledge. This knowledge is
usually acquired as a side effect of the training process and is not immediately obvious in the
standard evaluation metrics, such as accuracy and recall. It can be observed in the way the
model assigns (log) probabilities to the classes and includes nuance patterns in the training data
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4 Action to Object Knowledge Distillation

that help the model’s decision making and generalization abilities, which cannot be acquired by
simply training the smaller model on the dataset directly [48].

Teacher Model

Knowledge Transfer Student Model

Data
s

Figure 21: The generic teacher-student framework for knowledge distillation. Source: [34]

In recent years, several variations of KD were proposed, and extensive studies have explored
the strengths and limitations of these frameworks [34, 53]. The KD categories that are relevant
to the OACE experiments are the following:

e Feature-Based KD: In this category of KD algorithms, the transferred knowledge is at
a higher level compared to the Response-Based knowledge methods, where the student
model targets the class probabilities of the teacher model. Feature-Based KD has shown
promising results as a representation learning method [ , 26, 28]. Given its potential
to capture and transfer the intricacies and transformation invariant aspects of the object
and action recognition tasks as well as the action-object dynamics, it was considered a
promising method to explore in this thesis.

e Offline Distillation: This means that the teacher is pre-trained prior to the distillation.
This is the case with the Object Action-centric Encoder training procedure being attempted
in this thesis, as the teacher is a pre-trained VideoMAE. However, since the training of the
VideoMAE is self-supervised, potentially the same system could be applied in an online
distillation manner, where the teacher and student learn simultaneously.

e Cross-Modal distillation: This means that the teacher’s input is of a different modality
than the student’s. In our framework we attempt cross-modal distillation as the teacher
encodes videos and the student attempts to distill the action-centric information into
images of the objects. This falls in the category of video to image distillation or knowledge
transfer [92, 80, 65].

e Relational Knowledge Distillation: This KD variant focuses on transferring the mutual
relationships between data examples, as these relationships emerge in the representation
space of the teacher model. The relationship of the samples is usually quantified through
two types of loss function [79]: distance-wise loss and angle-wise loss. In distance-based
loss, the Euclidean distances between pairs of samples are calculated in the output space,
promoting the student to preserve distance relationships similar to those of the teacher.
In angle-based loss, the angles formed by triplets of examples are considered, allowing a
more detailed transfer of relational information.
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Figure 22: Cross-Modal Distillation. [34]

4.2.2 Image Encoders

The architectures and training methods of the image encoders used in these experiments are
presented in the following sections.

CLIP [86]
The CLIP models presented by Radford et al. in "Learning transferable visual models from nat-
ural language supervision" [86] and this section presents some key elements from this study.

CLIP models are among the most successful image encoders, in terms of generalization, flexibil-
ity, and efficiency. They are trained on a dataset that consists of captioned images and use the
natural language’s expressive ability to enrich a contrastive learning framework. The CLIP model
is a pair of Transformer encoders fiyg, fixt (Figure 23), one for each modality. Both inputs are
first encoded in separate representation vectors zimg € R%, 2, € R%mw and then transformed to
the multi-modal representation vectors, I, T € R%m, using the learnable transformation matrices
Wing € RbmmXdimg Wy € R%m*dut and L, Normalization as described in Equations 44.

I = Ly Normalize(Wing * fimg(1)) (44)
T = LyNormalize(Wy - fixi(t))

During training, for each batch, all images are combined with all text captions, generating
N X N data points, of which N are positive N> — N negative examples. The main goal of the
training process is to bring the correct pairs closer while simultaneously pushing the incorrect
pairs apart. This is achieved by computing the dot product * of all possible pairs of images and
text, and minimizing a symmetric contrastive loss [ | between the similarities and the labels.
The symmetry between the two modalities is achieved by computing two losses, the image-to-
text contrastive loss (Equation 45) and the text-to-image contrastive loss (Equation 46), both
using the Softmax Cross-Entropy Loss [85].

N
I,-T;
bimg = ) ~log _expdeT) (45)
i=1 Zj:l exp(I; - T))

4This computes the cosine similarity because the multi-modal representations are unit vectors due to the L, normal-
ization in Equations 44.
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N

exp(I; - Ty)
Lot = —log ——m——— 46
- ; ® jlil exp(l; - T)) (46)

As depicted in Figure 23 the positive examples are in the diagonal of similarity matrix, where
i =j. The loss minimized during training is the mean of these two losses:

Leup = (Bimg + lixt) /2 (47)

A pre-trained CLIP model was chosen as one of the Image Encoder modules in OAcE due to
its proven efficiency and task-agnostic characteristics. Another important takeaway from this
paper is the detailed discussion on the evaluation of the representations. The authors make
a strong case for zero-shot classification and linear probing (the fitting of a linear classifier on
top of the representations) as evaluation metrics on the robustness and generalizability of the
representations. The main advantage of these methods is that they are less likely to exploit
spurious correlations, compared to other methods used to test representations on downstream
tasks like the end-to-end fine-tuning of models. Linear probing is used as one of the evaluation
methods of the OACE representations.
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Figure 23: The CLIP contrastive framework. Source: [S6]

Image Masked Auto-encoding [45]

The Image Masked Auto-encoder (MAE) that is used in the following experiments was proposed
in the paper "Masked Autoencoders Are Scalable Vision Learners" [45] and this section presents
some key elements from this study. Masked auto-encoding, is a self-supervised learning method
that has been very successfully in the domain of natural language processing, shaping the
training process of models like BERT [19]. The Image MAE aims to apply the method in the
(static) image modality.

The key idea behind the MAE framework is that if a model can reconstruct a sample with
some of its parts masked, then its encoder is likely to have learned high-quality representations.
However, there are some important differences between language and vision that He et al.[45]
address. Specifically, language, being a human-generated signal, is more information dense
and as a result allows low masking ratios (15 %) to suffice in producing useful representations.
In contrast, images have high information redundancy, requiring higher masking ratios (75
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%) for the MAE to perform successfully. Furthermore, unlike BERT style models, where the
decoder of the MAE is relatively simple, the Image MAE decoder is more complex and plays a
more significant role in determining the quality of the learned representations, as it needs to
reconstruct the input at pixel space, which is at a lower semantic level.

The Image MAE framework is based on the Encoder-Decoder Framework (Figure 24) with
both modules adopting a ViT architecture. The encoder processes the tokens by linearly trans-
forming them at first, then adding positional encoding, and finally passing them through several
Transformer blocks. Unlike classical auto-encoder frameworks, the encoder only processes the
unmasked tokens of the image input. This approach allows for efficient training by minimizing
the data processed by the encoder.

— decoder

target

Figure 24: The image MAE framework. Source: [45]

The decoder, on the other hand, is designed to reconstruct the original image from both
the encoded visible tokens and the masked tokens, which are added back after the encoding
process. Each masked token is the same learnable vector that represents a patch that needs
to be predicted. The decoder takes the encoded tokens, appends the mask tokens, applies
positional encoding to all of them, and then processes this full set through its own series of
Transformer blocks. The decoder is rarely needed after the self-supervised training process, and
as a result its implemented as a smaller ViT model compared with the encoder. The encoder is
the primary focus of the process and is designed to take up > 90% of the computation load per
token.

The loss function in the Image Masked Auto-encoder (MAE) is the mean squared error (MSE)
between the reconstructed and original pixel values®, calculated only on masked patches. This
approach is similar to the method used in BERT [19], where the loss is calculated only on the
masked tokens. Focusing the loss calculation on the masked patches encourages the model to
learn meaningful representations by reconstructing the missing parts, leading to better perfor-
mance compared to using a loss function that includes all tokens.

The MAE framework has demonstrated strong transfer performance in downstream tasks
such as object detection and segmentation. The encoder extracts image features either through
the token class [21] or by averaging the token representations, with both approaches being
equivalently effective.

5In recent years, some methods have proposed MAE frameworks that incorporate reconstruction of the input at
feature level, through feature distillation. An example is MR-MAE (Mimic before Construct Masked Auto-encoder) [28],
which adds a mimic loss that pushes the MAE to reconstruct the CLIP and DINO representations of the unmasked
features. These methods not only improve encoder performance in downstream tasks, but also improve training speed
by learning high-level and low-level semantics simultaneously.
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4.2.3 Video Encoders

Video Masked Auto-encoding

The Video MAE model used in these experiments was introduced by Tong et al. at "VideoMAE:
Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training" [ 1
and this section presents some key elements from this study.. This paper presents a tech-
nique for extracting representations from videos using the self-supervised masked representa-
tion learning method. The authors address the challenges presented by the video modality,
compared to the text and image modalities. The first challenge is the increased complexity in-
troduced by the time dimension. The second challenge is that, in most cases, the useful signal
is only a small percentage of the total input. Finally, when masking the tokens, the high tem-
poral correlation between frames can lead to information leakage in parts of the video with little
motion. To address these challenges, the authors recommend the use of a tubular masking
technique (Figure 25) where the temporal neighbors of a token are also hidden. Additionally,
to force the model to focus on the useful portion of signal and avoid spurious correlations they
mask 90-95% of the total tokens.
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Figure 25: Video MAE. Source: [ |

The models trained with this method produce state-of-the-art results in the downstream
task of action recognition. One of the datasets used for evaluating the Video MAEs is the
Something-Something v.2 dataset. This dataset was chosen as the basis for the main part of
the experimentation of this project, as it is lightweight and provides fine-grained action-centric
information. A more in-depth discussion of the Something Something dataset can be found in
corresponding section of this report. As a result, a Video MAE pre-trained on this dataset is
used as a teacher model in the distillation process.

Masked Video Distillation [ |
In [ ] Wang et al. introduce a multi-teacher KD technique to further improve the repre-
sentations of the Video MAE. The authors propose a two-stage self-supervised representation
extraction technique (Figure 26):

e Stage 1: Training two Masked Auto-Encoder teacher models
e Stage 2: Distill the representations of the teacher models to a student model

As teacher models, two different MAEs are used: one that produces image representations
(MIM: Masked Image Modeling) and one that produces video representations (MVM: Masked
Video Modeling). The paper presents experiments showing that the distillation of the MIM
teacher improves the performance of the student model on problems where spatial information
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Figure 26: An overview of Masked Video Distillation framework. Source: [ ]

is important (Kinetics 400) and the distillation of the MVM teacher improves the performance
on problems where significant information is needed in the temporal dimension (Something-
Something v2). The results are better when the KD process includes both teachers. This
approach is reminiscent of results in the Action Recognition literature, inspired by biological
studies, that demonstrate the benefits of a two-stream design: one stream focusing on spatial
information and the other on temporal information. The first stream applies sparse temporal
sampling with high resolution, while the second uses low resolution with denser sampling [27].

One of the main takeaways from this paper for this project was the effectiveness of feature-
based knowledge transfer at the representation level. Additionally, a variant of the multi-teacher
paradigm is used in the training of OAcE.

4.2.4 Affordance Categorization & Understanding

In the context of action-centric visual representations, the concept of affordances, which links
object perception and action possibilities, provides a valuable perspective and inspiration for
representation learning methods, as it occupies the space between what is objectively observable
(object characteristics) and what is subjectively experienced (representations)[76, 13].

James J. Gibson suggested that for humans and animals, objects are not simply perceived
as compositions of their qualities (shape, color, texture), but more crucially their affordances
[30, ]. The term affordance was coined by J.J.Gibson in 1977 and since then it has been
used among researchers and students in many fields including psychology and neuroscience.
According to Gibson [30]: "The affordances of the environment are what it offers the animal, what
it provides or furnishes, either for good or ill. The word affordance implies the complementarity
of the animal and the environment." Another important formalization of the term came from
Sahin et al. [94], in which the authors aimed emphasise the fact that affordances can be viewed
from different perspectives: the agent’s, the observer’s, and the environment’s. According to
them, all three must be taken into account when attempting to develop autonomous robotic
agents.

The key terms relevant to this thesis are defined below.

e Affordance Categorization: This involves the multi-label classification of input images
into a set of available affordances. This task usually acts as the foundation for more
complex affordance recognition tasks.
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e Affordance detection: The task of localizing and classifying objects based on the affor-
dances. For n bounding boxes X = {xj, X2, ..., X,}, the learning process should produce
the function: f : X — Y, where Y = {yi, yo. ..., Yy} and y; = (13, ;) with r; representing the
location of the bounding box and [; the affordance label or a set of affordance labels.

Affordance categorization is a suitable candidate for evaluating object representations in-
tended for robotics. This is due to the fact that identifying potential actions in an enviroment
can help the agent plan and collaborate with humans or other robots [13, 42].

4.3 Datasets
4.3.1 Something-something v2

The Something-Something v.2 dataset [35] presents a fine-grained approach to the Action Recog-
nition task. It consists of 220, 847 videos that belong to 174 categories of actions. The dataset
creation protocol allowed the people creating the videos to choose an action label and then per-
form it on an object of their choice, resulting in a diverse range of scenarios and action-object
pairs. In the process of dividing the dataset into training and test sets, videos created by an
individual are included either entirely in the training set or in the test set.

(a) A sample from the Something Something dataset with the action label: "Letting
something roll along a flat surface".

(b) A sample from the Something Something dataset with the action label: "Squeezing
something".

Figure 27: Samples from the Something-Something dataset [35]

The action categories are curated with the aim of pushing the models to deepen their un-
derstanding of the physical world and develop a form of "common sense". To perform well in
this data set, the models need to distinguish between genuine and fake actions. For example,
the models are required to learn to distinguish between "Putting something behind something"
and "Pretending to put something behind something (but not actually leaving it there). Video
representations that perform well in this dataset are likely to have captured a high-quality
action-centric signal from the videos. The state-of-the-art performance of VideoMAE [109] and
MVD [112] in this dataset is presented in Table 10. These models were considered to be good
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candidates for the role of Teacher Models in the process of video-to-image knowledge distillation.
From the models shown in Table 10, only the ViT-S and ViT-B versions of the VideoMAE frame-
work were accessible as pre-trained models from the authors. Ultimately, the ViT-S variant
was deemed sufficient for the proof-of-concept experiments of this thesis, as the performance
improvement of the larger ViT was only marginal.

Method Backbone | Top-1 | Top-5
MVD ViT-S 70.7 92.6
MVD ViT-S 70.9 92.8
MVD ViT-B 72.5 93.6
MVD ViT-B 73.7 94.0
MVD ViT-L 76.1 95.4
MVD ViT-L 76.7 95.5
MVD ViT-H 77.3 95.7

VideoMAE ViT-S 66.8 90.3
VideoMAE ViT-B 70.8 92.4
VideoMAE ViT-L 74.3 94.6
VideoMAE ViT-L 75.4 95.2

Table 10: Performance comparison of MVD and VideoMAE models with different backbones and
configurations on the Something Something dataset. Sources: [ , ]

The initial experiments were conducted using a small subset of the dataset, which was
manually annotated using the Supervisely Computer Vision Platform [ |. During this phase,
a small subset of videos was selected, and bounding boxes were annotated around the interacting
objects. During the main phase of the experiments, the bounding boxes and annotations from
the Something-Else [72] dataset were used, which is an extension of the Something-something
dataset.

4.3.2 Something-Else

The Something-Else [72] dataset is an extension of the Something-Something dataset that in-
troduces new annotations (Figure 28) and data splits. This extension provides bounding boxes
of the hands and objects involved in the action, which was essential in assessing the OAcE
model. The main goal of the dataset is to test models on the task of compositional action recog-
nition, that enhances the action recognition task by focusing on compositional generalization.
The compositional generalization ability of a model is its ability to adapt and recompose knowl-
edge acquired in the past to novel and unfamiliar contexts [72, ]. In the context of action
recognition that means that the dataset challenges models to recognize actions with unseen
combinations of verbs and nouns.

To achieve this, the category of frequent objects (the objects that appear more than 100 times
in the dataset) is split into two disjoint groups A and B, and action categories are divided into
groups 1 and 2. The training set combines action group 1 with object group A, and action group
2 with object group B (1A+2B), while the validation set flips this (1B+2A). For example, in the
training set, the model might learn actions such as "Pick up Cup" and "Place Book" (Group 1 with
Group A), as well as "Open Phone" and "Close Pen" (Group 2 with Group B), while the test set
challenges the model with new combinations like "Pick up Phone" and "Place Pen" (Group 1 with
Group B), along with "Open Cup" and "Close Book" (Group 2 with Group A). Drawing inspiration
from this concept, one of the splits of the dataset presented in the following section attempts to
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test the models generalization ability in predicting the affordance of unseen categories of objects.

Moving |something| and |something| Pushing |something | off
away from each other of [something]
(marker, marker) (apple, chair)

)
|

(cup, glass) (domina, folder)

Figure 28: Something-Else annotations. Source: [72]

4.3.3 Something’s Affordances: Curating a Small-Scale Affordance Categorization Dataset

Something’s Affordances is a small-scale dataset that extends the Something-Else dataset and
focuses on affordance categorization. To provide a proof of concept for the proposed meth-
ods, which are aimed at enhancing image representations through the distillation of knowledge
present in videos of actions, a small subset of action categories was selected based on their
ability to test the representations. For instance, the action ’Putting something on a surface’
translates into affordances like ‘graspable’ or ‘movable,” which are applicable to almost all ob-
jects in the dataset. Conversely, actions like rolling an object on a flat surface’ are more useful
for demonstrating whether the model has learned specific characteristics that make an object
rollable.” The selected action categories and the corresponding affordances are presented in
Table 11.

Affordance Something-Something action labels # video samples
Foldable Folding something, Unfolding something 1620
Rollable Rolling something on a flat surface, Letting something 2913

roll up a slanted surface, so it rolls back down, Letting
something roll down a slanted surface, Letting

something roll along a flat surface

Squeezable Squeezing something 2202

Containment | Pouring something out of something, Pouring something 2289

into something until it overflows, Pretending to pour

something out of something, but something is empty,
Showing that something is empty

Tearable Tearing something just a little bit 1620

Table 11: Something’s Affordances labels and the corresponding action labels from the
Something-Something dataset.

One of the limitations of extracting object crops from a video dataset is that many samples
contain interference from hands or other objects To minimize this issue, object crops were
extracted from the first 10 frames of the videos, where the objects typically appear on their own.
Furthermore, due to camera or hand-object movement, some of the object crops only depict part
of the object or exhibit motion blur (Figure). This is in contrast to other affordance categorization
datasets, such as [55], which contain clear, unobstructed images of objects. Although this may
initially seem like a drawback, it can actually be beneficial. These variations can simulate the
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effects of image augmentation techniques, which are used to artificially make trained models
more robust [116].

In line with the Something-Else dataset [72], we define the frequent objects subset, witch
consists of the objects that appear more that 20 times in the videos. This is to ensure that the
objects appear in enough examples that affordance information can be extracted from the dataset
statistics. In total the dataset consists of 11, 235 videos, out of which 123, 434 object crops are
extracted. For every object in frequent objects set we calculate the frequency distribution of
the actions. From this frequency distribution, we extract the multi-label affordance targets for
each object, by thresholding the frequencies in a way to avoid objects that are utilized in an
uncommon manner (outlier scenarios). For example, the action frequency distribution and the
multi-label affordance targets for the object "bottle" are presented in Table 12.

The dataset is split in two ways: Video-based split and Object-based split.

1. Video-based split: In this split, the dataset is divided into three sets (train, validation,
test), ensuring that images from the same video belong to the same split.

2. Object-based split: This split targets (compositional) generalization by dividing the objects
into two sets, Set A and Set B. Set A is used for training, while Set B is used in the
validation and test splits.

foldable | rollable | squeezable | containment | tearable
frequency distribution 2 575 156 178 1
affordance 0] 1 1 1 0]

Table 12: Example of the action frequency distribution and multi-label affordance targets for
the object "bottle".

The objects belonging to each affordance and their division into the two sets are presented in
Table 13.

Affordance Set A Set B
’paper’, ‘mat’, ’book’, 'bag’, ’sock’, "cloth’, 'napkin’,
Foldable ’blanket’, ’handkerchief’, ’kerchief’, ’envelope’,
‘'wallet’, letter’, towel’ ‘newspaper’, ’shirt’

marble’, *tube’, tape’,

‘bottle’, ‘tumbler’, i,
’battery’, tomato’, lemon’, ote, tumbler, penct

. cap’, jar’, ‘marker’,
Rollable ’crayon’, ‘ballpen’, ’plastic ’b,ox ,C?p Ja.r I,n?r e:’
. s ms L, can’, ‘container’, pen
container’, lipstick

’sponge’, ’paper’, plastic

bag’, 'bag’, ‘tube’, ’ball’, ‘tissue’, ‘bottle’, *pillow’,
Squeezable lemon’, ’something’, ‘'wallet’, ’plastic’

‘toothpaste’

‘bowl’, 'mug’, 'glass’, 'bag’, bottle’ bler’. 'box’
‘basket’, ‘wallet’, ottle’, ‘tumbler’, box’,

Containment . ‘vessel’, ‘cap’, jar’, ‘can’,
’something’, ‘pot’, *plate’, ) p i J )
container

’plastic container’, ’cup’

’envelope’, ‘tissue’,

Tearable letter’, ‘paper ‘newspaper’, leaf’

Table 13: The objects belonging to each affordance and their division into Sets A and B.

The following experiments consist of two stages. In the initial stage, the OAcE encoder is
trained using object crops as inputs and video representations from Video MAE as targets. To
accelerate this process, both the Image Encoder and the Video Encoder modules’ representations
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4 Action to Object Knowledge Distillation

are pre-extracted, as only the Mapping Module undergoes training. In the second stage, the
trained encoder is tested in affordance categorization using the multi-label affordance targets
outlined above.

In the next section, we present a simple method to test whether the video representations
extracted from the Video MAE encoder can enhance the affordance categorization performance
of an image encoder. In Chapter 5, we use this dataset to evaluate the representations extracted
by a Slot Attention model [67], which processes images in an object-centric manner and does
not require the object bounding boxes provided by the Something-Else dataset.

4.4 Proposed Method
4.4.1 Object Action-centric Encoder

The architecture and training method of the the Object Action-centric Encoder (OAcE) is depicted
in Figure 29. The OACE takes as input object crops, which are extracted using the bounding box
annotations from the Something-Else dataset. The videos of actions belong to the Something’s
Affordance subset. For every object crop input, the OAcE is trained to produce a representation
vector in the action-centric enhanced representation space.

Model Patch Size | Embed Dim | Depth | Num Heads | Pretrained Source
Video MAE ViT-S 16 384 12 6 [ 1

CLIP ViT-B 32 512 12 8 [86]

Image MAE ViT-B 32 512 12 8 [45]

Table 14: Pre-trained model specifications for Video MAE, CLIP, and Image MAE.

Teacher encoding. The teacher model is the pre-trained ViT-S Video MAE, provided by [ 1.
The model specifications are presented in Table 14. Let us denote the N videos in the Something’s
Affordances dataset as X\, i € [1..N], each one consisting of T frames (Equation 48). The
frames have a fixed height of 224 pixels, but variable width. Before the frames are introduced to
the Video MAE, they are pre-processed to a fixed 224 X 224 shape (H = W = 224). In addition,
the videos are temporally downsampled to a length of 16 frames, which we refer to as video clips
(Equation 49). The Video MAE processes the video clips, and the action-centric representations
F @, are obtained by average pooling the encoder’s token representations. The size of these
representation vectors is d; = 384.

Videos: X?) ={X1,....Xq0} € RTOXHXWx3 (48)
Video Clips: V) = {vi,...,vg} € RI&HXWx3 (49)
Teacher representations: 7 (i) = (pteacher(Vt(i)) e R% (50)

Image Encoding. Two pre-trained image encoders were used in this experimental section, a
CLIP [86] and an Image MAE [45] (Table 14). The Image MAE was fine-tuned in the images of
the Something’s Affordances dataset for 100 epochs.

As mentioned previously, to reduce interference, the object crops, C'(ti) (Equation 51), are
extracted from the first 10 frames of the videos, using the bounding boxes from the Something-
Else dataset’s annotations. The object crops are then processed with the specified pre-processor
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Figure 29: Object Action-Centric Encoder: Knowledge Distillation process and architecture

of each image encoder. Both encoders accept images of shape H X W x 3, where H = W = 224.
The image encoder processes the object crops to produce the image representations Iil). In both
cases, the size of the image representation vectors is d; = 512.

Object crops: C\ = {C(li), e Cg)} € RIOHXWx3 (51)

Image representations: It(i) = tpimage_enwder(C(ti)) e R% (52)

Mapping to the Action-centric Representation Space. The mapping from the image repre-
sentations, It(i), to the OACE representations, RY is produced by an MLP (Equation 53) consisting
of the following modules, connected sequentially:

1. A linear layer with input size 512 and output size 384

2. A ReLU activation layer

3. A dropout layer

4. Alinear layer with input size 384 and output size 384

OACE representations: REi) = @Qmapper(L (ti)) e R% (53)

Tests involving MLPs with additional layers were carried out, and the outcomes are detailed in
the ablation section.
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4 Action to Object Knowledge Distillation

Feature level decoding. To train the OAcE the action-cetric representations are decoded to
reconstruct the Video MAE representations (Equation 54)and the Image representations (Equa-
tion 55). Targeting both features helped enhance the Image Encoder’s capabilities and led to
better results than having the OACE target only the features of the Video MAE.

Teacher representation (TR) reconstructions: TAt(i) = ¢TR_dewde,(R§i)) e R% (54)
Image representation (IR) reconstructions: ft(i) = szRfdemder(Rgi)) e R% (55)

Losses. The Mapper Module and the two decoder are optimized using three distinct loss func-
tions:

1. Teacher representations reconstruction loss: This is the Mean Squared Error (MSE)
Loss calculated between the target representations from the Video MAE for each video and
the reconstructed representations of the corresponding object’s crops in the same video.
For a batch B with N video samples:

10

N
1 N
= > Luse(F O, £ 56
Ltr N 242 mse(F 7, F¢ ) (56)

U

2. Image representations reconstruction loss: This is the Mean Squared Error (MSE) Loss
calculated between the image representations from the Image Encoder and the recon-
structed image representations. For a batch B with N object crop samples:

N 10

1 o
Lig = = > ) Luse (1. 1) (57)
S =

3. Relational KD loss: This is the Angle-wise Relational Knowledge Distillation Loss (RKD-A)
as proposed in [79]. This loss is complementary to the previous feature-based losses and
improves the model’s performance by focusing on inter-sample relationships. For a triplet
of samples, the angle-wise relational potential quantifies the angle created by the three
samples in a feature space:

l//A(Ri, IQJ-, Rk) = COS ZRiIQij = (ey', ekj)
t -t te— 4 (58)

where ej;= ———, e€g3= ————.
lIt; - gll2 lltic — tllo

The RKD-A loss measures the difference in angle-wise potential between the OACE repre-
sentations and the teacher representations:
1
RKD-A = Ic3| Z Lyse(Wa(Ri. Rj, Rio), wa(Fi. Fj. Fic) (59)

(C:.C;.Cr)eC®

To restrict the increase in computational complexity that this loss introduces, C® is a set
of 50 triplets, randomly selected from each batch.
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4.4 Proposed Method

The total loss is the sum of the above losses:

L= LTR + LIR + RKD-A (60)

Ablation tests and experiments with the individual losses being combined in different ways
are presented in the loss function ablation section.

Training. All models were trained for 20 epochs with the use learning rate scheduler and the
Adam optimizer [56]. The learning rate scheduling involved a two-phase approach [3]: an initial
linear warm-up until Ir = 0.001 that lasts for 5% of the total training steps, followed by expo-
nential decay. This approach aimed to stabilize the training process and improve convergence.

4.4.2 Evaluation of representations

The evaluation was carried out using two methods, both tested on the multi-label affordance
targets of the Something’s Affordances dataset: (i) linear probing and (ii) training an MLP classi-
fication head on top of the frozen OACE representations. The aim of the experimental evaluation
is to test whether the OACE encoder can enhance two state-of-the-art image representations:
CLIP and Image MAE. It is important to note that the CLIP representations have not been trained
on the dataset used for evaluation, whereas the Image MAE has been fine-tuned on this dataset.

All the performance metrics were macro-averaged, treating all the affordances equally re-
gardless of the number of samples present in them.

The evaluated representations are as follows:

1. GT: Ground truth was created by training classifiers on the target teacher data, as if the
model had access to "perfect” memories of the actions associated with each object. This
highlights the valuable signal in the teacher model’s representations.

2. OACE on CLIP: Training classifiers on the OAcE representations, with CLIP as the image
encoder.

3. CLIP: Training classifiers on the CLIP representations.

4. OACE on IMAE: Training classifiers on the OAcE representations, with Image MAE as the
image encoder.

5. IMAE: Training classifiers on Image MAE representations.

6. OAcE + IMAE: Training classifiers on concatenated representations of Image MAE and
OACcE (on IMAE).

Linear Probing. Linear probing has been used as a representation evaluation protocol in a
variety of studies, including [86, 45]. It involves training a linear classifier on top of the rep-
resentations. In the context of the Somethig’s Affordance dataset, multi-label classification
requires the training of five binary linear classifiers - one for each affordance. The classifier cho-
sen for this experimental section was Logistic Regression, which is a generalized linear model.
The Scikit-learn [82] implementation of the L-BFGS-B [1 1] large-scale bound-constrained opti-
mization algorithm was used to train the classifiers on the data. The results presented in Tables
15 and 16.
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Configuration | Recall | Precision | F1 Score | Accuracy
GT 0.7508 0.9444 0.8349 0.8774
OAcE on CLIP | 0.7275 | 0.9224 0.8116 0.8610
CLIP 0.7217 0.9147 0.8050 0.8561
OACcE on IMAE | 0.6514 0.8986 0.7512 0.8256
IMAE 0.6863 0.8942 0.7740 0.8364
OACcE + IMAE 0.6964 0.8973 0.7821 0.8411

Table 15: Linear Probing performance metrics for Video-based split of the Something’s Affor-
dance dataset

Configuration | Recall | Precision | F1 Score | Accuracy

GT 0.6256 0.6240 0.5543 0.6845
OACcE on CLIP | 0.6360 0.6404 0.5707 0.6980
CLIP 0.6256 0.6240 0.5543 0.6845

OACcE on IMAE | 0.5575 0.5853 0.4821 0.6341
OAcE + IMAE 0.5994 0.5931 0.5341 0.6722
IMAE 0.5984 0.5907 0.5301 0.6681

Table 16: Linear Probing performance metrics for Object-based split of the Something’s Affor-
dance datase

MLP Classification Head. Linear probing, is a useful evaluation protocol, but it misses the
opportunity to learn from strong but nonlinear representation spaces. To further test the OAcE
representations in that respect, a small-scale MLP head was evaluated on the same task. The
classifications head architecture is the following:

Linear layer (input d; = 384,output = 1024)
Relu activation layer

Linear laye (input: d; = 1024, output = 5)
Sigmoid activation on each output

N

The neural network training followed a similar approach to the OAcE Mapper module, using the
Adam optimizer [56] and a learning rate scheduler with a maximum learning rate of 0.001. To
classify the results, thresholding is applied to the outputs of the classifier’s last layer, which fall
within the [0, 1] range due to the sigmoid activation. The thresholding is tuned on the validation
set, on each one of the five heads separately, to maximize the F1 score of the classifier. The
experimental results are presented in Tables 17 and 18. Additionally, the Figures 30 and 31
show the F1 score different affordance labels.
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Configuration | Recall | Precision | F1 Score | Accuracy
GT 0.8265 0.9380 0.8776 0.9045
OAcE on CLIP | 0.8467 | 0.8782 0.8611 0.8878
CLIP 0.8195 0.8858 0.8505 0.8817
OACcE on IMAE | 0.8138 0.8173 0.8145 0.8493
AcE + IMAE 0.8051 0.8331 0.8174 0.8538
IMAE 0.7785 0.8359 0.8046 0.8458

Table 17: MLP Classification performance metrics for the Video-based split of the Something’s

Affordances dataset

Configuration | Recall | Precision | F1 Score | Accuracy
GT 0.6900 0.7737 0.7080 0.8058
OAcE on CLIP | 0.6209 | 0.7191 0.6562 0.7688
CLIP 0.6154 0.6912 0.6304 0.7472
AcE on IMAE 0.5271 0.6574 0.5656 0.7136
AcE + IMAE 0.5501 0.6656 0.5838 0.7218
IMAE 0.5410 0.6633 0.5763 0.7186

Table 18: MLP Classification performance metrics for the Object-based split of the Something’s

Affordances dataset
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Figure 30: F1 score for the different affor-
dance labels when tested on the Video-based
split.

MLP Depth Ablations.
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Figure 31: F1 score for the different affor-
dance labels when tested on the Object-based
split.

We tested for the impact of varying MLP depths on the performance

metrics. The top performance metrics were achieved using a two-layer MLP, as presented earlier
and the performance degrades with the increase of depth as seen in Figures 32 and 33 where

the width of the layers is presented in Table 19.
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# Layers Layers # Learnable Parameters
2 [512, 384] 804,608
3 [1024, 512, 384] 1,592,064
4 [2048, 1024, 512, 384] 4,215,552
5 [1024, 2048, 1024, 512, 384] 5,789,440
6 [512, 1024, 2048, 1024, 512, 384] 6,052,096

Table 19: MLP Architectures and Learnable Parameters

Accuracy | Precision | Recall | F1 Score
All Losses 0.8868 0.8834 0.8370 0.8586
Lgr + RKD-A | 0.8878 0.8782 | 0.8467 | 0.8611
Lir 0.8850 0.8801 0.8355 0.8567
Ligr + Lig 0.8875 0.8845 | 0.8371 | 0.8597
RKD-A 0.8759 0.8644 0.8289 0.8454

Table 20: Loss functions ablation results for the OAcE on CLIP configuration tested on the
Video-based split.
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Figure 32: Performance Metrics for different  Figure 33: Performance Metrics for different
MLP depths tested on the Video-based split. MLP depths tested on the Object-based split.

Loss function Ablations. Tables 20 and 21 show the results of the ablation study on the three
previously discussed loss functions. In the Video-Based split the difference is negligible between
the different losses. In the Object-based split the relative loss, RKD-A, produces good results
alone, while the incrorporation of the other two losses marginally increases the performance.
We further tested all the losses computing the L; and Smooth_L1 loss (in place of the MSE).
These degraded the performance of the representations.

Qualitative Results. Figure 34 presents a collection of successful examples from the test set
of the object-based split, using the OAcCE on CLIP model. One important observation is the
models ability to classify objects from blurry, obstructed or incomplete crops. We hypothesize
that this capability can be credited to the fact that the training set is derived from real-world
videos. Figure 35.
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Accuracy | Precision | Recall | F1 Score
All Losses 0.7688 0.7191 0.6209 | 0.6562
Lir + RKD-A | 0.7658 0.7097 | 0.6189 | 0.6508
L 0.7462 0.6825 | 0.6050 | 0.6240
Lir + Lig 0.7553 0.6985 | 0.6167 | 0.6411
RKD-A 0.7652 0.7190 | 0.6082 | 0.6461

Table 21: Loss functions ablation results for the OAcE on CLIP configuration tested on the
Object-based split.

object: vessel object: paper i
:g“f;l:': 5'6%0 foldable: 1.00

squeezable: 0,00 rollable: 0.00 object: marker
containment: 1.00 [ squeezable: 0.74 foldable: 0.01
tearable: 0.00 containment: 0.0 rgjlable: 1.00

tearable: 0.54

squeezable: 0.00
containment: 0.01
tearable: 0.01

object: bottle
foldable: 0.12

. object: bottle object: cloth
rollable: 0.65 foldable: 0.01 foldable: 1.00
squeezable: 0.51 rollable: 0.00 rollable: 0.00

containment: 0.38
tearable: 0.03

squeezable: 0.02
containment: 0.01
tearable: 0.00

squeezable: 0.04
containment: 1.00
tearable: 0.01

|| object: jar
foldable: 0.00 object: glass
) object: cap foldable: 0.00
rollable: 0.44 .
foldable: 1.00 rollable: 0.01

squeezable: 0.01
containment: 1.00
tearable: 0.00

rollable: 0.00
squeezable: 0.00
containment: 0.01
tearable: 0.00

squeezable: 0.00
containment: 1,00
tearable: 0.00

Figure 34: Affordance Categorization examples using the OAcE on CLIP model, on the test set
of the object-based split.

4.5 Observations

The results in Tables 15-18 indicate that in general the ground truth Video MAE representations
demonstrate better performance compared to the image encoders . This improvement could be
attributed to the fact that the image encoders are trained on out-of-domain data while the Video
MAE has had some training on the SSv2 dataset. To address this we fine-tune the Image MAE
to images from the dataset. However, the CLIP encoder still outperforms the Image MAE and a
more conclusive result would require the fine-tuning of a CLIP model using the SSv2 dataset.

However, we consider the fact that Video MAE representations demonstrate better perfor-
mance an indication that there is useful signal in the Video MAE representations and these
experiments showcase our attempt to utilize it. These ground truth representations appear to
have significant non-linear components, as their performance improves significantly in the MLP
classification.

The results presented in Figures 30 and 31 show that when evaluating using the Video-based
split all the affordance labels present the same difficulty for the models. On the other hand, when
using the Object-based split the affordance squeezable demonstrates the worst scores. Notably,
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object: box
object: box foldable: 0.00
foldable: 0.78 rollable: 0.77 ‘
rollable: 0.01 squeezable: 0.00 foctl’i!efl:.\: oomsi
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object: box
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Figure 35: Unsuccessful Affordance Categorization examples using the OAcE on CLIP model,
on the test set of the object-based split.

it is the only instance where the Video MAE GT representations perform worse compared to the
others. This is likely due to the different characteristics of the objects in Set A and Set B (Table
13) that lead to more challenging generalization.

Overall the OACE proposed method provides a marginal improvement to the image encoders.
This improvement is more noticeable in the object-based split of the dataset. This object-based
split presents a bigger challenge to the models, as it introduces unseen objects in the test set,
requiring the models to perform compositional generalization. In total, the OAcE on CLIP shows
better performance, closely approaching the model trained on ground-truth representations.
In the case of Image MAE, OAcE did not always provide improvements on its own in some
experiments. However, concatenating the OAcE representations with the image representations
(OACE + IMAE) resulted in improvements.

4.6 Limitations and future directions

Evaluation Method Limitations. The current evaluation is limited by a small dataset with few
categories. In future work, more affordance categories could be extracted from this dataset. A
more comprehensive evaluation would involve using larger datasets like Ego4D [36] and EPIC-
Kitchens [17], which include object annotations. However, a significant challenge would be the
training of the Video MAE ViT, or an alternative teacher model, from scratch on these larger
datasets, given their extended video durations and higher quality.

Additionally, as noted before, in our experiments the CLIP image encoder outperforms the
Image MAE, even though the CLIP encoder is only trained on out-of-domain data. To strengthen
the case for the action-to-object representation method, particularly for CLIP, it is necessary
to compare it with a fine-tuned model. However, since no official code has been released for
CLIP training, its fine-tuning on the SSV2 dataset based on the details provided in the paper is
postponed for later research.

Architecture limitations. One limitation of the OACE is its dependence on an object detection
or segmentation module (e.g. YOLO [89], SAM [57], EgoHOS [123], Mask R-CNN [44]) to extract
the object crops from the videos and supply the encoder.

During the initial experimentation phase, an automated visual extractor was developed and
tested. This visual extractor used pre-trained hand-object segmentation models from [123]. The

82



4.7 Conclusion

authors propose a Hand-Object Segmentation procedure that uses three segmentation models
sequentially. The first one segments the hands, the second one takes the hand mask and
the image and produces the mask of the hand-object contact boundary, and the third one
takes the contact boundary and the image and produces the masks of the interacting objects.
The masks from the last stage were used to produce the bounding boxes for the interacting
objects. However, in the Something-Something v.2 dataset, the extracted crops were mostly
unsuccessful. We assume this is because the model was trained on egocentric data while
Something-Something v.2 videos have varying perspectives.

As aresult, it was decided to use the hand-crafted annotations of the Something-Else dataset
for this chapter’s proof-of-concept and then focus on a representation learning framework that
automatically extracts the objects, and object-centric representations from a scene. This frame-
work is Slot Attention, and the next chapter documents an attempt to understand the basic
principles and evaluate the model’s representations in a novel setting.

4.7 Conclusion

In this section, we experimented with an action-to-object distillation process that attempts to
transfer the knowledge of a Video MAE that models the videos of actions of the Something
Something dataset to object-centric image encoders. The representations of the method were
evaluated using two approaches, both tested on the multi-label affordance targets of the Some-
thing’s Affordances dataset: (i) linear probing and (ii) training an MLP classification head on top
of the frozen representations. The experiments show that the methods produce a marginal yet
consistent enhancement to the representations.

An interesting future direction could include larger scale model implementations and datasets.
Additionally, a promising future direction could include associating the agents’ own experiences
with the objects, possibly with an online KD framework. Overall, these methods show promise
in developing vision systems that provide agents with a head start in understanding the agent-
object interactions of the real world.
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5 Slot Attention Representations

5.1 Introduction

One limitation of the previous encoder was its dependence on an object detection or segmentation
module (e.g. YOLO [89], SAM [57], EgoHOS [123]) to supply the encoder with object image crops
from a scene. This experiment focuses on a technique that can address that limitation by
achieving automatic segmentation of an image or video to objects®. This technique is centered
on the Slot Attention [67] architecture and falls into the category of object-centric representation
learning.

In this experiment, the object representations are drawn from the SOLV model, which was
presented in the paper "Self-supervised Object-Centric Learning for Videos" [3].This model suc-
cessfully achieves multi-object segmentation in real-world videos (Figure 36), and in the process
extracts representations for each of the objects in the input. Using the Something’s Affordance
dataset, we aim to evaluate these representations in the task of affordance categorization. Before
discussing the experimental methodology and results, some of the most important elements of
the SOLV model are presented in the following sections.

First Frame Middle Frame Last Frame

Figure 36: SOLV: Instance segmentation results of first, middle, and last frames of videos on
the Youtube-VIS-2019 dataset. Source: [3]

5.2 Theoretical Background
5.2.1 Slot Attention

This section presents key aspects of the Slot Attention module, introduced by Locatello et al. in
their paper "Object-Centric Learning with Slot Attention" [67]. Slot Attention is a differentiable
interface, based on iterative dot product attention, that can be used to bind objects from a
visual input to a set of variables known as slots. As a result, it allows for a more structured
representation of the input scene. To better understand the Slot Attention module, let us
consider an image input that has been encoded into N feature vectors with positional encoding,
each of size Dy The module processes these feature vectors to produce K slots, each of size
Dgots- For each iteration, the input and slot vectors are first transformed to keys and queries,
using the learnable linear projections k, g. The attention matrix is computed as follows:

M
attng; 1= —%

1
where M;; := —k(inputs)~q(slots)T eRME  ie{1,...,N}, je{l,...,K}
=1 VD

(61)

eMi,l

SThe term "object” in this setting takes a more general meaning, referring to a semantic component of a visual input
(image or video).
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5.2 Theoretical Background

It is important to note that the softmax operation is applied across the slot axis. This allows
for information exchange between the slots which compete for attending to each feature vector.
Subsequently, the value vectors are produced through the learnable v linear projection, and
the slot update vectors are computed by taking the weighted mean ” of the inputs, using the
attention vectors of each slot as weights:

attn ij

KxD
R N—.
2.0 attny;

updates := wT. v(inputs) € where W;;:= (62)
The updates are then used to update the slots values through a Gated Recurrent Unit (GRU)
[15]. Using these new slot values, the process is repeated T times, as described in the pseudo-

code of Algorithm 2.

Algorithm 2 Slot Attention Module. Source: [67]

1: Input: inputs € RVPmeut | glots ~ N (u, diag(o)) € RE*Dsioss

2: Layer params: K, ¢, v: linear projections for attention; GRU; MLP; LayerNorm (x3)
3: inputs = LayerNorm(inputs)

4: fort=0...T do

5: slots_prev = slots

6: slots = LayerNorm(slots)

7:  attn = Softmax(%), axis=slots’ # norm. over slots

8: updates = WeightedMean(weights=attn + ¢, values=v(inputs)) # aggregate
9: slots = GRU(states=slots_prev, inputs=updates) # GRU update (per slot)
10: slots += MLP(LayerNorm(slots)) # optional residual MLP (per slot)
11: end for
12: return slots

k, v ATTENTION:

SLOTS COMPETE
FOR INPUT KEYS

FEATURE MAPS
+ POSITION EMB.

Figure 37: Slot Attention module. Source:[67]

Locatello et al. [67] use a shared set of Gaussian mean and variance parameters to initialize
all slots. This can improve the generalization capabilities of the model, as any slot can bind

"Locatello et al. [67] have empirically shown that taking the weighted mean, rather than the weighted sum, improves
training stability.
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to any object in the input. However, as discussed in their paper, this approach can also de-
grade the performance of the model in some tasks. In contrast, the model used in the following
experiments, SOLV, uses per-slot parameterization. This method allows each slot to specialize
in a specific type of object, and such initialization enables the application of attention to the
instances of each object through time (temporal binding). Per-slot parameterization and initial-
ization can also be reminiscent of the mixture-of-experts (MoE) [12] paradigm, by encouraging
each slot to specialize on specific characteristics and promote inter-slot collaboration to extract
useful representations about a scene.

The Slot Attention module is followed by a Spatial Broadcast Decoder as described by Watters
etal.[113]. This decoder processes each slot individually producing K outputs of shape HXW x4.
The first three dimensions correspond to the RGB color channels, while the last dimension
represents an alpha mask. In computer graphics, the alpha layer is used to represent the
transparency of an image [34]. In this case, the alpha masks are normalized using the softmax
operation over the slots, and then used as weights to combine the slots to the reconstructed
image. This reconstructed image can then be used to compute the reconstruction loss used to
train the model. This is another point in the model’s pipeline where slots exchange information
through the simulated competition induced by the softmax function - slots achieve a higher
alpha score at the parts of the image that they can reconstruct better.

In general, Slot Attention is characterized by the following two very important properties:

e Permutation invariance with respect to the input: The output is independent of permuta-
tions applied to the input.

e Permutation equivariance with respect to the order of the slots: When permuting the slots,
output permutes correspondingly.

More formally, let m;, ms be the permutation matrices that represent the permutation of the
inputs and the slots, respectively. Then:

SlotAttention(rw; - inputs, 7 - slots) = g - SlotAttention(inputs, slots)

In the setting of object and multi-object recognition, these invariances are crucial as they pro-
duce more coherent representations. Specifically, the permutation invariance property ensures
that similar slot representations are computed from a scene when the objects are rearranged.
Any difference in slot representations will only be due to the different positional embeddings.
The next section discusses an enhancement to the Slot Attention architecture that establishes
object pose invariance.

5.2.2 Invariant Slot Attention

This section presents key aspects of the Invariant Slot Attention (ISM) architecture (Figure 38),
which was introduced by Biza et al. in the paper "Invariant Slot Attention: Object Discovery
with Slot-Centric Reference Frames" [8]. This architecture aims at processing the visual signal
in a way that disentangles object appearance from object pose (position, orientation, and scale).
Inspired by the evidence that the brain processes objects by computing both egocentric and
allocentric ® reference frames and representations [10], ISM applies positional encoding to the
input vectors based on each slot’s relative reference frame.

The authors of the ISA paper [8] tested the performance of the framework by isolating and
combining the three pose invariances: translation, scale, and rotation. They found that the

8Allocentric: independent of the subject’s point of view.
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Figure 38: Ivariant Slot Attention. Source: [8]

framework that consistently delivered the best results was the Translation and Scaling Invari-
ant Slot Attention (ISA-TS). The ISA-TS algorithm computes the absolute and relative reference
frames using position encoding. In this implementation, the position encodings are 2D grids
scaled to [—1, 1], with each grid cell corresponding to an image token. The relative grid is com-
puted from by shifting and scaling the absolute grid using each slot’s attention weights (Figure
39 and Equation 63).

—
pys)

B, 8)

-

Ip, s)
1. Slot attends to an 2. Compute slot position and 3. Create relative
encoded image. scale from attention masks.  coordinate grids.

Figure 39: Computation of the relative coordinate grids by the Translation and Scaling Invariant
Slot Attention (ISA-TS) module. Source: [8]

abs_grid — Sﬁ,k)
s

]

rel_grid;g, .o = (63)

The slot positions, S are calculated as the center mass of the attention weights for each

slot (Equation 64). The slot scales, S(Sk), are the weighted standard deviation from the slot
positions, using the attention weights (Equation 65).

SN attn « abs_grid,,

() _
% = >V attn® 4
n= n
< SN (attn®® + ¢)  (abs_grid,, — Si)2 ©5)
° I,Y:l(attnglk) +¢€)
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5 Slot Attention Representations

Finally, keys and values are computed from the input vectors as follows:

keys(k) =f (K(inputs) + g(relative _grid(k))) (66)
values™® = f (V(inputs) + g(relative_grid<k))) (67)

That means that during the slot computation, in each iteration, the algorithm computes N X K
keys and values, and K queries. This method results in a small increase in computational
complexity as in plain Slot Attention, keys and values are N and are computed using the image’s
absolute grid.

In order to incorporate rotation invariance into the above framework (ISA-TSR), the object’s
orientation is estimated by applying Principal Component Analysis [ ] to the absolute grid
weighted by the attention mask of each slot. This computes the axes with the highest variation
for the object that each slot is attending to (Equation 68).

v(lk), U(Zk) = PCA(w_abs_grid®), where w_abs_grid® = attn™ © abs_grid (68)

The axes are further processed (5;®, 5,®) in order to avoid mirroring the grids and rotating
more than 45°. The relative grids are then computed as described in Equation 69.

|
-1
rel_grid{§) ;o = (S\°)  (abs_grid - 59) /S, where S{” =|5;® 5® 69)
| |

In [8], the ISA-TSR framework produced mixed results compared to ISA-TS. The latter is
integrated into the SOLV model, which is presented in the next section.

5.2.3 Self-supervised Object-Centric Learning for Videos (SOLV)

This section presents key aspects of the SOLV model [3] that is the main focus of this experimen-
tal part. This model was introduced by Aydemir et al. in "Self-supervised object-centric learning
for videos’. The goal of this model is to discover, track and segment objects from video inputs
of complex real-world scenes. The SOLV framework (Figure 40) achieves this by implementing
spatial-temporal slot attention. At first, each frame is passed through the ISM bottleneck, where
the semantic components and their representations are computed. Subsequently, each slot is
enhanced with temporal information by attending to the corresponding slots in neighboring
frames. The model is trained as a masked autoencoder, reconstructing the central frame of the
input video clip at the dense feature space level, provided by the DINOv2 feature extractor [75].
The following paragraphs present further details about the SOLV architecture’s modules.

The Visual Encoder is the first module in the SOLV’s pipeline. It takes as input a video clip
of 2n + 1 frames (Equation 70), divide each frame to N = HW/P? non-overlapping patches of
size P (Equation 71), applies token drop (during the training phase) (Equation 72), and encodes
each token using the frozen DINOv2 pre-trained ViT [75] (Equation 73). It is important to note
that while the SOLV model utilizes ISA, the DINOv2 tokens contain positional information, as
the ViT encoder adds positional embeddings to the patches.

Video Clip: X; = {X;_n..... X, ... X¢in) € REFDXHXWXS (70)

Tokenized Video Clip: V, = {Vi_n, ..., Vi,. .., Visn) € RETFDXNXEP) (71)
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Figure 40: The SOLV architecture. Source: [3]

Tokenized Video Clip after Dropout: V) = {drop(V;_p), . .., drop(vy,)} € R@DXNXEP Y N <N
(72)

Feature extraction: Tt = {(pDINO(V’t—n)’ ey ‘pDINO(V/t), e (pDINO(V,H—n)} € R(2H+I)XN/XD (73)

The subsequent module is the Spatial Binder, which implements ISA-TS to each frame in-
dependently, as presented in the previous section. The encoded tokens are first reduced in
dimension, and then are passed to an ISA-TS module that computes the following for each
frame:

e Slot vectors: z® € Dy
e Slot positions: S](Dk) e R?
e Slot scales: S € R2

In contrast to the original slot attention framework, which uses random slot initialization, in
this implementation the initial slot vectors are deterministic static learnable parameters. These
parameters are shared across frames, laying the groundwork for the Temporal Binder module.
Given that neighboring frames have similar visual information and that the depicted objects do
not change drastically from one frame to the next, it is reasonable to assume that in most cases
slots with the same index will bind to the same objects across frames.

The Temporal Binder is a transformer encoder, which enhances the slot representations by
computing their affinities over time. For each slot, the self-attention module processes the 2n+1
slot vectors, producing a single slot vector that contains temporal information. Additionally,
learnable temporal positional encoding is applied to these vectors to utilize the temporal causality

signal available in the video data. As a result, the output of this module is a set of slot vectors

KXD,
Ctemp € R stot |
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5 Slot Attention Representations

The next module is a Slot Merger that dynamically computes the optimal number of slots for
each scene and groups the slots (Figure 41) using the Agglomerative Clustering (AC) algorithm
[130, 96]. The AC is a bottom-up hierarchical clustering algorithm that begins with each obser-
vation (each slot) in a different group and at every iteration merges the two most similar groups
according to a chosen distance metric. The distance measure between two vectors used in this
implementation is the cosine distance, as described in Equation 74.

ab”
[lall |bl|

Additionally, to compute the distance between two groups the Complete Linkage (CL) clustering
method is applied. This method, also known as the furthest-neighbor technique, defines the
dissimilarity between two groups A and B as the maximum pairwise distance between two
vectors a € A, b € B (Equation 75).

deos(a, b) := 1 —cos(qp) =1 (74)

dci(A, B) = max deos(a. b) (75)
beB

Finally, the AC implementation used in SOLV applies a distance threshold above which slot
groups are not merged. It is important to note here that there is an inherent difficulty in
evaluating models in the task of object segmentation, as the optimal amount of segmentation
granularity might vary for different settings. Methods like this one have the potential to lead to
dynamic segmentation and object grouping that might be useful in developing agents that can
plan and reason.

Figure 41: SOLV segmentation results before (right) and after (left) the Slot Merger module.
Source: [3]

The last module of the SOLV model is a Spatial Broadcast Decoder [113] that takes in the
reduced number of slot vectors from the merger and reconstructs the central frame’s features, y,
in a similar was as the one described in the section for the SA framework. The loss function that
is minimized during training is the MSE loss of this reconstruction with the DINOv2 features of
the central frame of each video clip (Equation 76).

Lsorv = llgpmo(ve) = yII? (76)

In total, the SOLV framework extracts object-centric representations by reconstructing the
dense features of a frame while utilizing information from an entire video clip. Interestingly,
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object segmentation masks emerge as a by-product of this self-supervised process. In the next
section, we test for another by-product of this process — the slot representations — and their
utility for the downstream task of affordance categorization.

5.3 Proposed Method

1# OAcE

I‘/) ; {—»l—> Slot Vector Reconstruction Loss
t-bind

ws—bind I

Figure 42: The OACE training on the spatio-temporal binding module of the SOLV model.
Adapted from:[3]

In this experimental section, we evaluate the slot representations of SOLV in the affordance
categorization task, using the Something’s Affordances (SA) dataset. Unlike the experiments
with the Video MAE representations where the OAcE encoder received an object crop as input,
the SOLV model is able to process an image of an entire scene and automatically segment it.

As the first step of the representation learning part of the experiment, the SOLV model was
fine-tuned on videos of the video-based split of Something’s Affordances (SA-Vb) for 100 epochs.
The training code was provided by the supplementary material of [3] and the characteristics of
the pre-trained SOLV model are presented in Table 22. Due to the complexity of the training in
this section, we focus solely on the video-based split of this data set. The object-based split and
compositional generalization evaluation are reserved for future work.

The modular design of the SOLV model allows the extraction of object-centric representations
and representation learning at various locations in the model pipeline. The two points of focus
are the slot vector outputs of the Spatial Binder and the Temporal Binder. It is important to note
here that even though the Spatial Binder focuses on the spatial characteristics in a per-frame
manner, it has been trained in an overall system that processes temporal information. These
spatial slot vectors are optimized to attend to inter-frame slots and thus can be though to include,
and be educated by temporal signal. In the following experiments where we compare the video
clip informed slot representations from the Temporal Binder with the image slot representations
from the Spatial Binder.

Additionally, similarly to the approach taken in the previous chapter, we attempt to associate
some information about the actions with the object representation vectors. This is done using
an MLP, which receives the Spatial Binder’s slot vectors from the central frame of a video clip
and is trained to predict the slots generated by the Temporal Binder’s output, as shown in
Figure 42. This MLP is trained on a dataset of action videos and is referred to as OAcEsoLv
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Component

Specifications

Feature Extractor (¢pmo)

ViT-B/ 14 architecture with DINOv2 pretraining
Output: Last block without CLS token
Positional embeddings added to patches

Spatial Binding

Projection to slot dimension Dgo¢ = 128

2-layer MLP, layer normalization

Invariant Slot Attention (ISA) with GRU cell update
Residual MLP with hidden size 4 X Dgot

Projection layers (q, k, v) size: Dgjot

Binding operation repeated 3 times

Temporal Binding

Transformer encoder with 3 layers, 8 heads
Hidden dimension: 4 X Dgjot
Temporal positional embedding with normal distribution

Slot Merging

Agglomerative Clustering with complete linkage

Decoder Mapper

5 linear layers with ReLU activations
Hidden size: 1024
Final layer maps to dimension of ViT-B tokens + a (768 + 1)

Table 22:

Pre-trained SOLV[3] model Specifications.

(Object Action-centric Encoder) in the following section. The OAcEsoLy model has the following

architecture:
e Linear Layer 1: Linear (Dgy, 4 X Dgpt)
e ReLU Activation: ReLU (inplace=True)
e Linear Layer 2: Linear (4 X Dgpt;, Dsiot)
e Dropout: nn.Dropout (p=0.1)
e Residual Connection: output += input

The train split of the SA-Vb dataset contains 62,330 videos. Due to the increased complexity
of this training method, a smaller random subset of 306 videos is taken on each epoch, without

replacement, using PyTorch’s [

] Subset Random Sampler [ ]. Training OAcEsoLy involves

training for 10 epochs, using batches of size 18 and a learning rate scheduling approach that
involves an initial linear warm-up until Ir = 0.0004, followed by exponential decay. The Smooth
L1 Loss function is used to improve robustness.

5.3.1 Evaluation

To evaluate the SOLV representations, we train them in the affordance categorization task on
the SA-Vb dataset, using the bounding box annotations of the Somethin-Else dataset. The
Affordance Categorization Module (ACM) is an MLP with the following architecture:

Dropout: Dropout (p=0

Batch Normalization Layer [50]: BatchNorm1d (Dgp)
Linear Layer 1: Linear (Dge, 1024)

RelLU Activation: ReLU (inplace=True)

Linear Layer 2: Linear (1024, 5)

.1)

Sigmoid Activation: Sigmoid ()
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The symbols and variables of the training algorithm for one epoch (Algorithm 3) are explained
in the list below:

e B: The batch size.

e H and W: The height and width of the images, respectively.

e K: The number of slots used in the SOLV module.

e Dy.,: The dimension of the slot vectors.

e N: N = 864 The number of tokens extracted by the Dino Visual Encoder.

e slots_of _obj: The slots that correspond to interacting objects in the images, identified by
matching segmentation masks with bounding boxes.
slot_nums: The number of slots that remain in each input after the Slot Merger Module.
The slots[i] = 0 for i > slot_nums
find_slots_of _obj(): Function that finds which slot attends the most to the interacting
object of the scene.
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The training algorithm for one epoch is the following:

Algorithm 3 Affordance Categorization Module (ACM) - Train One Epoch

1: Input: Dataloader, SOLV, OACEsoLy, ACM, representation_type
2: # images: BX HX W X 3

3: # bounding_boxes : B X 4

4: # affordance_labels : B X 5

5: for (images, bounding_boxes, affordance_labels) in Dataloader do

6 slots, attention = SOLV.Spatial(images) # slots : BX K X Dy, attention : BX K X N

7: slots, attention, slot_nums = SOLV.Slot_Merger(slots, attention) # slots : B X K X Dg,

8: #attention : BX KX N, slot_ nums: BX 1

9: OACE_slots = OACEsory(slots) # OAcE_slots : B X K X Dy,

10: masks = attention.view(B, K, H/ /patch_size, W/ /patch_size)

11: masks = interpolate(masks, size = (H, W), mode = "bilinear”) # masks : BX KX HX W
12: seg_masks = argmax(masks, dim = 1) # seg_masks : BX HX W

13: slots_of _obj = find_slots_of _obj(bounding_boxes, seg_masks) # seg_masks : BX HX W
14: Ifrepresentation_type == "OAcE™’

15: representations = OAcE_slots

16: elif representation_type == ”"SOLV_Spatial”
17: representations = slots

18: inputs = []

19: labels = []

20: for i in range(B) do

21: non_interacting_selected = False

22: for j in range(slot_numsli]) do

23: If slots_of _ohj ==j:

24: inputs.append(representationsli][j])
25: labels.append(affordance_labels[i])
26: Else:

27: If non_interacting_selected == False:
28: inputs.append(representations|i][j])
29: labels.append([0, 0, 0, 0, 0])

30: non_interacting_selected = True
31: end for

32: end for

33: predictions = ACM(inputs)

34: loss = criterion(predictions, labels)

35: loss.backward()

36: optimizer.step()

37: end for

The training algorithm begins by processing the images of the dataset through the SOLV
module to obtain the slot representations and the corresponding attention maps. These are
then passed through the Slot Merger Module which combines some of the slots based on their
similarity, as described previously. This evaluation aims to compare the slot representations of
the Spatial Binder of SOLV to the representations of the OAcEsory (line 9). Lines 14-17 specify
which representations are chosen for each training.

The attention masks are interpolated to match the images’ original shape and size and are
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then used to generate segmentation masks by assigning each pixel to the slot that attends to
it the most (lines 10-12). For each image, the function find_slots_of_obj() finds the slot that
claimed the most pixels within the bounding box of the interacting object (line 13). The vectors
of these identified slots are then associated with the multi-label affordance targets from the
SA-Vb dataset, while one randomly selected slot corresponding to a non-interacting object in
each image is assigned a zero vector to avoid data skew (lines 20-32). Subsequently, the ACM
is trained using these input-target pairs (lines 33-36).

Training ACM involves training for 20 epochs, using batches of size 18 and a learning rate
scheduling approach that involves an initial linear warm-up until Ir = 0.001, followed by expo-
nential decay. The Smooth L1 Loss function is again used to improve robustness. Quantitative
results are presented in Table 23 and qualitative results in Figures 44 and 45. In the qualitative
results, the slot segmentation masks are visualized using different colors and the affordance
categorization labels are positioned at the center of mass of each slot’s segmentation mask.

Configuration | Recall | Precision | F1 Score | Accuracy
GT 0.7570 0.9407 0.8378 0.8793
OAcEsoLy 0.7109 0.9470 0.8103 0.8631
SOLV Spatial 0.7065 0.9476 0.8076 0.8614

Table 23: SOLV representations comparison on the SA — Vb dataset

5.3.2 Model Ablations

Slot Binding Iterations. In this ablation experiment (Figure 43) we test how the slot binding
iterations of the Spatial Binder module affect the extracted representations. The results indicate
that increasing the number of slot binding iterations consistently leads to improved performance
across all configurations. However, as discussed above, the increase in slot binding iterations
increases the complexity of the algorithm.

Accuracy Across Configurations and Slot Iterations F1 Score Across Configurations and Slot Iterations
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Figure 43: Accuracy and F1 score Across Configurations and Slot Iterations

5.4 Observations

To begin with, the slot representations present comparable results to the representations of
the previous chapter. This is despite being smaller in size (Doackg,,, = 128, Doace = 384) and
achieving automatic segmentation, which introduces some noise into the process.
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The ground truth (GT) representations come from the Temporal Binder module SOLV. It pro-
vides access to the encoding of a "perfect memory" involving a video clip with the interacting
object. Similar to the SA-vb testing of previous chapter, the results show that these represen-
tations might contain some useful signal not present in the representations from the Spatial
Binder. The OAcEsoLy tries to capture some of that useful signal, and while the results hint that
it might achieve this, the improvement appears to be minimal.

An important observation is that the precision metric does not improve in the GT and
OAcEsoLy representations. This is likely because the dataset contains significantly more nega-
tive labels than positive ones, making it preferable for the models to be conservative with their
predictions. As a result, the F1 score becomes a more insightful metric, as it balances both
precision and recall, offering a clearer picture of the model’s performance.

Finally, the qualitative results show that even though the training process involved one
object per scene, the object-centric paradigm allows the model to detect and categorize correctly
multiple objects in the scene. Additionally, in some cases, a single object may be attended
to by multiple slots, leading to a finer segmentation where the object is divided into several
parts rather than being treated as a whole. This increased segmentation granularity can be
desirable in certain scenarios but not in others. In most cases, all the slots corresponding to
the same object are correctly categorized, ensuring that the object is recognized as a coherent
entity despite being segmented into smaller parts.

5.5 Limitations and future directions

Dataset Limitations. Similarly to the previous chapter, a more comprehensive evaluation
would involve the use of larger datasets such as Ego4D [36] and EPIC-Kitchens [17]. Additionally,
it would be interesting to explore the incorporation of these representations in architectures that
aim to tackle tasks like Action Anticipation [ 1.

Representations for control Good performance on the Affordance Categorization task can
be very beneficial in the field of robot planning. Ideally, the same representation should also
be useful for robots for their control tasks. However, a representation that performs well in a
recognition task does not necessarily perform well in control tasks [78]. In the next chapter, we
test the SOLV representations using a simple control benchmark.

5.6 Conclusion

In this experimental section, we studied different models that utilize the Slot Attention archi-
tecture and tested the slot representations of the SOLV model in the affordance categorization
task using the SA — Vb dataset. The SOLV model is a compelling candidate for central themes of
this thesis because its modular design allows for the extraction of object-centric representations
from both image and video data.

By utilizing its Spatial and Temporal Binder modules, the SOLV model demonstrates the
ability to process entire scenes and video clips and automatically segment them, providing
object-centric representations that can then be used in downstream tasks. We show that the
video representations from the Temporal Binder have a small advantage in the affordance cate-
gorization task compared to the static image Spatial Binder representations. We experimented
with a variant of the Object Action-centric encoder, OAcEsoLy, which attempts to link some of the
Temporal Binder information to the Spatial Binder representations. The OAcEsoLy representation
achieves a modest increase. Furthermore, the model’s ability to detect and categorize multiple
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objects in a scene, despite being trained with one object per scene, highlights its potential for
generalization.

97



5 Slot Attention Representations

rollable ®

i rollable
- - E -
¥ .~ rollable =

rollable

3

foldable, squeezable, tearable

rollable «

~

foldable, tearable

Figure 44: Qualitative examples of the ACM on the OAcEsoLy representations, Part 1
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6 Slot Attention Representations for Control

6.1 Introduction

Visual pre-training methods should provide representations that can be utilized in a variety
of downstream tasks and require minimal retraining [95, 70]. The task that was studied in
the previous sections falls in the category of recognition tasks. However, representations that
perform well in a recognition tasks do not necessarily perform well in control tasks [78]. In this
chapter, we test the SOLV representations using a simple control benchmark.

We introduce a method to combine the spatial slot representations of the SOLV model to gen-
erate image representations for a simulated robot manipulation task. Specifically, this method is
applied to a simulated pouring task (Figure 46) provided by the Train Offline, Test Online (TOTO)
benchmark [128]. We evaluate the performance of this SOLV-based image encoder against other
pre-trained image encoders that were trained on out-of-domain data. Our results demonstrate
that SOLV generally achieves better performance in this setting, even in a task where an object-
centric paradigm might not initially appear to provide an additional advantage. The simulated
task, despite its limitations, offers a valuable first step in testing and refining our method before
transitioning to real-world evaluations.

However, these results are on a simulated environment that may not transfer to real-world
scenarios, which is a common issue in robotics research [128].

Figure 46: The TOTO [128] simulated robotic pouring task.

6.2 Theoretical Background
6.2.1 Reinforcement Learning

According to Russell and Norvig [93], an agent is an entity that interacts within an external
environment trying to achieve an objective. Reinforcement Learning (RL) algorithms aim to
develop agents that interact with an external environment in a way that maximizes the expected
reward signal received from this environment [104]. This interaction is typically modeled using
the Markov Decision Process framework (MDPs): The agent interacts with the environment
across a series of discrete time steps, as shown in Figure 47.

During each time-step, the agent receives a signal containing information about the envi-
ronment’s state, s; € S, and selects an action, a; € A. This action, in turn, influences the
transition to a new state, s;;; € S and the reward, ri,; € R, received from the environment.
The state transitions are governed by the dynamics of the system, which are represented by the
transition probabilities denoted as P : (S X A)?2 — [0, 1]. The transition probabilities P(s’, r|s, a),

100



6.2 Theoretical Background

Notation | Description

S State space
A Action space
St€S State at time step t
a €A Action at time step t
rr€R Reward at time step t
T An ordered list of state-action pairs: t = [(s;,a;),(s2,az2),...,(sh, ay)]

P(s’,r|s,a) | Transition probability: the probability of getting reward r and transitioning to
state s’ from state s when action a is taken.

n(als) Stochastic policy: the probability of choosing action a when s is the current
state.
V(s) State Value function: the expected future return when the agent is initially at
state s
Q(s,a) Action-State Value function: the expected future return when the agent is ini-

tially at state s and action a is taken.

Table 24: Reinforcement Learning and Imitation Learning Notations

’J Agent ||
state reward action
S R, A
. Rr+l (

;SM Environment ]4—
\_

Figure 47: The the Markov Decision Process framework. Source: [104]

are connected with the uncertainty of receiving the reward r and transitioning to the state s’
from the state s when action a is taken. The agent’s strategy for selecting actions is expressed
through the policy function n : S — A that maps states to actions [104].

RL can be categorized into several branches, each with unique techniques and applications
(Figure ??) [ , 1]. The primary distinction is between model-based and model-free methods.
Model-based RL involves learning a model of the environment’s dynamics on which the policy is
developed. Model-free RL relies on trial and error to learn policies directly without direct mod-
eling of the environment. Further distinctions include value-based and policy-based methods.
Value-based approaches aim to estimate the value of states or state-action pairs, as quantified
by the State Value function, V(s) or the Action-State Value function, Q(s, a). These algorithms
utilize these functions to develop optimal policies, as in the case of Q-learning. Policy-based
methods, on the other hand, directly optimize the policy, often using gradient ascent/decent
techniques, as in policy gradient methods. In addition, hybrid approaches, such as actor-critic
methods, combine elements of both value and policy-based methods to combine their respective
strengths. RL can also be classified into on-policy and off-policy methods. On-policy methods
learn policies based on actions taken by the current policy, while off-policy methods can learn
from actions taken by different policies, offering greater flexibility and data efficiency.
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6 Slot Attention Representations for Control

6.2.2 Imitation Learning

Although reinforcement learning focuses on learning through interaction with the environment,
imitation learning (IL) takes a different approach by learning from expert demonstrations. In IL,
the agent attempts to replicate the actions of an expert (also known as a teacher in the literature),
avoiding the need for extensive exploration during learning. This can be particularly beneficial
in scenarios where exploration is dangerous or expensive, such as in autonomous driving or

robotic manipulation [29]. The following paragraph presents the mathematical notation of IL,
as described in [29] and [ 1.
o update 6
Training for IL agents [

a
Agent mp e
Teacher Ty
Ay

Figure 48: Training of imitation learning agents. Source: [29]

Si

A policy is a function © that maps states to actions:
T:S—> A (77)

where S is the set of possible states, and A is the set of possible actions. A policy has internal
parameters 8, which represent the variables adjusted during learning. The set of all possible
policies is defined as Il = {m, my, ..., 7,}. An agent my is a specific realization of II. Given an
environment state s € S, the agent selects an action a € A according to its learned parameters 8.
An expert m, is a special case of an agent, with parameters y, whose behavior the IL algorithm
aims to approximate.

In most cases, the IL algorithm cannot directly access the expert’s policy m,, because it
requires knowledge of the teacher’s internal state. For example, when the expert is a human,
accessing their internal state is impossible. Therefore, IL uses demonstrations to learn a policy
Ty that imitates the teacher’s policy m,.

A trajectory is an ordered sequence of state-action pairs:

T= [(Sl’a1)7(525a2)!' . ’(sn’an)]’ (78)

where n > 1, and the agent transitions to state s;;; from state s; after taking action a; for all
t=1,2,...,n—1.
A demonstration, d € (S, A), is a state-action pair taken from a teacher’s trajectory.

Behavior Cloning. (BC) is one of the earliest and simplest imitation learning (IL) algorithms
[29, 9]. It applies supervised learning techniques to train a policy ms that predicts the most likely
action given a state, i.e., arg max P(als), based on a dataset generated by the expert. More for-
mally, given a training set £ generated by the expert, which may consist of trajectories (ordered
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sequences) 7 = 11, To, . . . , Tj or a set of unordered demonstrations D = [(s, a;), ..., (Sn, ay)], the
goal of the agent’s policy 7y is to mimic the expert’s policy m,. The BC process can be formulated
as minimizing the loss function £, computed on the expert’s actions m,(s) and the agent’s actions
my(s), as follows:

arg min Z Z 0, (s), Ta(s)). (79)

1€l s€t

One disadvantage of Behavior Cloning (BC) is that in complex problems, BC-trained policies
often struggle to generalize effectively. This is because the learned policy msy tends to perform
poorly when encountering states not present in the expert’s demonstrations, and in larger state
spaces, it is unlikely that the demonstrations will uniformly cover all possible states. This
difference in state distributions between expert demonstrations and the actions of the learned
policy leads to compounding errors. However, BC is usually used effectively to bootstrap® the
training of an agent before applying an RL method [29, 9].

In this thesis, in Chapter 6, we apply BC in a simple robotic simulation to evaluate visual
representation learning methods for manipulation.

6.3 Robotic Manipulation Task & Dataset

TOTO Benchmark. The Train Offline, Test Online (TOTO) [ ] benchmark is a robotics bench-
mark that aims to address the lack of standardization across research centers. TOTO provided
remote research teams with access to shared robotic hardware and an open-source dataset of
these tasks for offline training. The TOTO dataset consists of trajectories collected through
robot teleoperation, augmented with noise, and trajectories generated by BC trained agents.
The benchmark focuses on two manipulation tasks: pouring and scooping. While these tasks
are commonplace for humans, variations in initial conditions and the objects used make them
challenging for robots, offering valuable insights into the methods being tested.

The TOTO benchmark provides a protocol to evaluate both visual representations and policy
learning methods. In this thesis, we focus solely on the evaluation of visual representations,
testing them on one policy-learning method: the Behavior Cloning (BC) algorithm. As discussed
in a previous section, BC is a straightforward imitation learning framework. However, as shown
in the results presented by TOTO [128], BC produces the best results and is therefore used to
evaluate the representations.

Simulation. The TOTO software package includes a simulation environment for the pouring
task and a dataset of 108 teleoperated trajectories. This simulation was used to evaluate the
method in this section. While the simulation is intended for research teams to initially test
their methods and is not part of the official TOTO evaluation protocol, it allows us to assess our
approach in a controlled setting before transitioning to real-world testing. As mentioned earlier,
simulation results might be misleading, and overfitting to the simulated environment may hinder
generalization to real-world conditions. Despite these challenges, using the simulated TOTO
benchmark serves as a valuable preliminary step before conducting real-world experiments.
The simulation uses the MuJoCo physics simulation engine [ ]. MudoCo is an open
source physics engine designed for model-based optimization and complex dynamical systems
in contact-rich settings. The simulated robot arm is a Franka Emika Panda robot arm [4 1] with
7 degrees of freedom. Each joint is constrained within a specified range of positions, a practice

9Bootstrapping in this context refers to initializing a policy using expert demonstrations before applying a reinforce-
ment learning (RL) further improve the policy through exploration.
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that simplifies the problem by shrinking the control space but is also done for safety reasons in
real-life applications.

As shown in Figure 49, the robot arm is initialized holding a cup filled with 12 small spheres.
The goal is to pour as many spheres as possible into another cup. The initial joint positions
and location of the target cup are randomly initialized for each experiment. A manipulation
is considered successful if at least one sphere is deposited into the cup and the reward is the
percentage of spheres successfully deposited in the cup.

Figure 49: An example of a successful pouring sequence using the encoder proposed in this
section with a reward of 75%.

The training set consists of 82 out of the 103 trajectories that are successful. Before training,
all images of the training set are encoded with the visual encoder to be evaluated. Because the
visual encoder is frozen during the Behavioral Cloning (BC) training, this makes the training
faster, as the images would otherwise have needed to be encoded for each epoch of the policy-
learning algorithm.

During training, the BC algorithm trains a neural network that acts as the agent’s policy. The
policy network takes as input the representation vector concatenated with the robot’s current
joint angles and outputs joint angle targets, which are then fed to the Mujoco controller, which
moves the simulated robot arm. The input dimension is inp_dim = R_dim + 7, where R_dim is
the dimension of the image representation vector. The output dimension is out_dim = 7 X h,
where h is the horizon of actions to predict each time. In the following experiments h = 10. The
architecture of the policy network is the following:

e Normalization (Input):
Input - inp_mean

norm_output = -
inp_std
Linear Layer 1: Linear (inp_dim, hidden_dim)
ReLU Activation: ReLU (inplace=True)
Dropout: nn.Dropout (p=0.1)
Linear Layer 2: Linear (hidden_dim, hidden_dim)
ReLU Activation: ReLU (inplace=True)
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e Dropout: nn.Dropout (p=0.1)
o Final Linear Layer: Linear (hidden_dim, out_dim)
o Rescale Output:

actions = out_mean + out_std X final_layer_output

The inp_mean, inp_std, out_mean, and out_std are calculated from the training dataset and
stored in buffers within the model. The input normalization step helps to fairly compare different
encoders that provide inputs in various formats. Furthermore, instead of directly outputting the
action vector, the network predicts how many standard deviations the output is from the action
mean. This approach allows for more stable training.

6.4 Proposed Method

= slot_1_where
- slot 1 what
e slot 2 where
- slot_ 2 what
. slot_ 3 where

- slot 3 what

-+ slot_ 4 _where

i
oo IEr slot_ 4 what

Figure 50: The OAcEsoLy encoder.

In this section, we introduce a method to combine the spatial slot object-centric representa-
tions of the SOLV model to generate image representations for the simulated visuomotor (Figure
51) policy training described earlier (Figure 50). The proposed is in the family of methods that
use Object-Centric representations for visuomotor learning like VIOLA (Visuomotor Imitation via
Object-centric LeArning) [ ] and POCR (Pre-Trained Object-Centric Representations) [99].

VIOLA extracts features from object proposal regions in the input image. These features
are then processed by a Transformer encoder to generate object-centric representations. The
Transformer encoder allows VIOLA to capture the relationships and interactions between the
detected objects.

The POCR first computes the "where" of the objects. This is achieved with the use of reference
images of the robot’s workspace to identify and remove background regions. Then it applies a
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Figure 51: The visuomotor policy architecture. Source: [ I.

segmentation model to the input image to extract object masks. The coordinates of these masks
are the "where" part of the object-centric representation vector. Then POCR computes the "what"
vector of the objects. For each object mask, POCR encodes each object using a pre-trained image
encoder. By combining the "where" and "what" vectors for each slot, POCR generates object-
centric representation vectors, which is then used in visuomotor policy learning.

In a similar fashion, we use the pre-trained SOLV model [3], which we fine-tuned in the
previous section on the Something Something Action Videos, to produce an object-centric en-
coder, named OAcEsory. The advantage of SOLV is that it can produce both "what" and "where"
vectors at the same time through the iterative slot binding process. However, in our case, the
TOTO training pipeline requires a flat vector for each image and does not include a transformer
encoder capable of processing multiple object vectors. To create a flat representation vector for
each image, we extract a fixed number of slots per image, generate both a "what" vector and a
"where" vector for each slot, and combine them into a single representation.

As discussed in chapter 4.3, the SOLV architecture includes a Slot Merger module that
merges slots based on similarity. In this section, we configure the Agglomerative Clustering
algorithm to merge the initial 8 slots to 4 final slots instead of the default dynamic clustering
based on a distance threshold. We also evaluate the representations resulting from different
numbers of slots, and present the findings in the ablation experiments.

The four slot vectors, with a dimension of Dy, = 128, produced by iterative slot binding,
represent the "what" vectors. As mentioned previously, although SOLV implements Invariant
Slot Attention, the slot vectors still contain some localization information due to the positional
encoding of the DIVOv2 tokens.

We improve the performance of the image encoder by enriching the localization information
through the attention mask of each slot. We achieve this by processing the attention mask,
originally of shape hqt X Wwar = 24 X 36, reducing its size to h/,, X w/, = 10 X 10 using bilinear
interpolation. Subsequently, a scaled softmax activation function is applied to the scaled down
attention masks that increases the winner-takes-all competition amongst the tokens, which
has been found to improve the results. The resulting "where" vectors, with a dimension of
Dyhere = 100, are combined with the "what" vectors to produce a flat representation for the
whole image of shape D = 4 X (128 + 100) = 912.

6.5 Experimental Evaluation

In this section, we trained BC agents with various state-of-the-art image encoders: (i) BYOL

[38], (i) CLIP [86], (iii) DINOv2 [75], MoCo [46], Resnet50 [43]. Furthermore, we evaluated
the representations of the pre-trained SOLV model provided by [3], which was trained on the
Youtube-VIS 2019 real-world video dataset | ]. This evaluation aimed to determine whether
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fine-tuning the SOLV model with action videos from the Something Something v2 dataset has a
positive impact. The encoder based on the unfinetuned model appears in the results that follow
as OcEsoLy (Object-centric Encoder).

Each BC agent is trained for 80 epochs with a learning rate Ir = 0.001. To provide a clearer
picture, we train 5 BC agents on each image encoder and evaluate each one on 100 randomly

initialized trajectories. The results are presented in Table 25.

Representation size | Success Rate | Mean Reward

BYOL 512 0.46 +0.05 17.48 +2.40
CLIP 512 0.49 +0.06 18.61 +4.09
DINOv2 768 0.55 :0.04 18.72 +1.78
OCESOLV_SS 912 0.61 :0.04 25.25 - 2.95
OcEsorv _yr 912 0.46 +0.06 15.07 +2.24
MoCo 2048 0.31 +0.04 9.4 +2.16

ResNet50 2048 0.56 +0.11 21.15 + 560

Table 25: Comparison of Pre-trained Visual Representation Models in Training Behavior Cloning
Agents for the TOTO Benchmark Simulated Pouring Task [ ]. For the SOLV model, the
representation size consists of 4 slots ("what") with representations of size 128, along with the
corresponding scaled-down attention ("where") of size 100 each (total size 912).

6.5.1 Model Ablations

Number of slots. In Figure 52 we show the effect of configuring the AC clustering algorithm
to find a specific number of slots instead of the default dynamic clustering based on a distance
threshold. The results are better and more stable when the clustering algorithm is configured
to find 4 slots. We hypothesize that this is due to the simplicity of environment, with only a few
objects present, leading to over-segmentation when slots are 6 or 8—as seen in Figure 53.

Success Rates Rewards
0.65 28
26
«» 0.60
% 0.55 0 24
< - 22
n ©
] 0.50 2
o 220
5 0.45
0 18
0.40 16
0.35 14
4 slots 6 slots 8 slots 4 slots 6 slots 8 slots

Figure 52: Mean rewards and success rates comparing different number of slots for TOTO pour-
ing simulation. Each configuration was trained five times and evaluated accros 100 trajectories.

Contribution of the "where" vectors. As previously mentioned, the "what" vectors contain
some localization information. Considering that this task requires the agent to have spatial
awareness of itself and its environment, we tested the contribution of the "where" vectors by
training BC agents using only the "what" representations. The results clearly demonstrate the
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Figure 53: Simulation frames from the TOTO pouring task, segmented by the Slot Attention
masks of the SOLV model, with the Slot Merger module outputting 4, 6, and 8 slots.

positive contribution of the localization information derived from the processed slot attention
masks, as presented in the diagrams of Figure 54.

6.6 Observations

Key observations about the above results:

e The OAcEsoLy module consistently produces better results, however, other encoders like
DINOv2 and Resnet50 produce high-performing agents.

e The fine-tuning of the SOLV model to videos of actions has a positive impact on the
representations on this control task.

o In the real-world results presented by [128], the MoCo and BYOL image encoders produced
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Success Rates Rewards
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Figure 54: Mean rewards and success rates comparing "what" and complete "what" + "where"
representaions. Each configuration was trained five times and evaluated across 100 trajectories.

the best performance. This highlights the inconsistency between simulation and real-world
outcomes. Unfortunately, simulation results were not available for comparison.

6.7 Limitations and future directions

Evaluation. In this evaluation, we assessed the frozen image encoders by comparing their
performance within a static policy learning framework. For future work, it would be interest-
ing to expand the study by testing additional policy learning frameworks, adopting different
training strategies, and performing hyperparameter tuning tailored to each image encoder. This
approach could help build a better understanding of the limitations and strengths of the repre-
sentation spaces provided by each representation learning method.

Simulation to Real-world. As mentioned previously, this simulated task provides a valuable
first step in testing and refining this method before transitioning to real-world robot environ-
ments. In future work, it would be interesting to test this and other object-centric frameworks
to explore their performance across a variety of robot manipulation and planning tasks.

Task complexity. The simulated pouring task used in this section is a simple manipulation
task. It would be interesting to extend the study to more complex tasks that require planning in
multi-object environments, like those provided in the Franka Kitchen [39] and Meta-world [ ]
environments.

Token encoder. The object-centric image encoder uses DINOv2 as the initial visual encoding
step to provide dense representation vectors for the tokenized images. An interesting future
research direction could involve studying an architecture similar to SOLV that extracts object-
centric representations on top of visual representations specifically trained for robot manipula-
tion. Examples include R3M [73] and LIV [69], which were trained on large egocentric human
datasets, such as Ego4D [36] and EpicKitchen [17]

6.8 Conclusion

In this section, we present a method for combining the slot representations of the SOLV model
to generate image representations for visuomotor learning. The proposed method is applied
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to a simulated pouring task. The SOLV-based image encoder is evaluated against other out-
of-domain pre-trained image encoders. The experimental results indicate that the OAcEsoLy
module achieves positive results and that the action-centric fine-tuning process improves the
representations. In conclusion, the proposed method shows promise for testing in real-world
conditions.
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7 Conclusion

The primary aim of this thesis was to explore methods for improving object-centric image en-
coders by focusing on methods that generate action-object associations based on knowledge
sourced from videos of actions. These enhanced image encoders, developed through visual
pre-training, are intended for use in the perception systems of robots and artificial agents.

In the first experimental section we explored a method that aims to encode action experi-
ences, using a pre-trained Video Masked Auto-encoder, and associate them, through the use
of Knowledge Distillation, with the depiction of the objects present in those experiences. We

attempted to enhance two state-of-the-art pre-trained image encoders: (i) CLIP [86] and (ii) Im-
age MAE [45]. These representations were evaluated in the task of affordance categorization
using a small-scale dataset that we created using the Something-Something v2[35] dataset and

the experiments show that the methods produce a marginal yet consistent improvement. The
main disadvantage of this first method is its dependence on an object detection or segmentation
module to provide the objects from a scene. As a result, in the second experimental section we
focused on a model based on the Slot Attention [67] framework that automatically extracts the
objects, and object-centric representations from a scene.

In the second experimental section, the object representations were drawn from the SOLV
model [3] that achieves multi-object segmentation in real-world videos and in the process ex-
tracts representations for each of the objects in the input. The SOLV model was a compelling
candidate for central themes of this thesis because its modular design allows for the extraction
of object-centric representations from both image and video data. We again used the same
affordance categorization dataset, curated from Something-Something v2[35] to evaluate are
methods. The method presents competitive results while also achieving automatic segmenta-
tion of the images and a substantial reduction in per-object representation size. Furthermore,
the model showcased the ability to detect and categorize multiple objects in a scene, despite
being trained with one object per scene.

In the third experimental section, we tested the object-centric Slot Attention representations
using a robotic control benchmark. We proposed a method to combine the spatial slot represen-
tations of the SOLV[3] model to generate image representations for visuomotor policy learning.
We evaluate the performance of this image encoder against other pre-trained image encoders
that were trained on out-of-domain data. Our results demonstrate that our method generally
achieves better performance in this setting and the fine-tuning of the object-centric encoder us-
ing videos of actions has a positive impact on the representations. The simulated task, despite
its limitations, offers a valuable first step in testing and refining our method before transitioning
to real-world evaluations.

By creating action-object associations in the representations of object-centric image en-
coders, this study seeks to contribute to the development of more effective vision perception
systems for robots and artificial agents, enabling them to better understand agent-object in-
teraction semantics and dynamics. In future work, a more comprehensive evaluation of these
methods could incorporate larger datasets like Ego4D [36] and EPIC-Kitchens [17] and further
experimentation with different ways of modeling the useful content in them. Additionally, vi-
sual pre-training methods for robotics should provide representations that can be utilized in
a variety of downstream tasks. As a result, it would be worthwhile to evaluate object-centric
representations in a variety of manipulation, planning and recognition tasks. Finally, it would
be interesting to study similar methods in the context of Continual and Lifelong Learning, and
explore techniques that enable agents to encode and create associations based on their own
actions and experiences.
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