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Περίληψη

Οι διαταραχές του εγκεφάλου αποτελούν μία από τις μεγαλύτερες προκλήσεις για την

υγεία. Υπολογίζεται ότι περίπου 165 εκατομμύρια άνθρωποι πάσχουν από εγκεφαλική διατα-

ραχή στην Ευρώπη, ενώ 1 στους 3 ανθρώπους θα υποφέρει από εγκεφαλική διαταραχή κάποια

στιγμή στη ζωή του. Μερικοί τύποι εγκεφαλικών διαταραχών είναι οι ακόλουθοι: Νόσος

Αλτσχάιμερ, διάφοροι τύποι άνοιας, επιληψία, νόσος Πάρκινσον, ψυχικές διαταραχές, κ.ά.

Αυτές οι διαταραχές επηρεάζουν τον τρόπο με τον οποίο οι άνθρωποι σκέφτονται, αισθάνο-

νται ή εκτελούν καθημερινές δραστηριότητες. Ωστόσο, εάν αυτές οι διαταραχές διαγνωστούν

έγκαιρα και το άτομο λάβει την κατάλληλη φαρμακευτική αγωγή, η εξέλιξή τους μπορεί να

καθυστερήσει σημαντικά. Για το λόγο αυτό, η έγκαιρη διάγνωση είναι καθοριστική. Η Τε-

χνητή Νοημοσύνη (ΤΝ) μετασχηματίζει τον τρόπο με τον οποίο αντιμετωπίζουμε κοινωνικά

ζητήματα ενισχύοντας την ευημερία τόσο των ατόμων όσο και των κοινοτήτων. Ο όρος “ΤΝ

για το Κοινωνικό Καλό”, επίσης γνωστός ως “ΤΝ για το Κοινωνικό Αντίκτυπο”, είναι ένα

νέο πεδίο έρευνας που στοχεύει στην αντιμετώπιση μερικών από τα πιο σημαντικά κοινωνικά,

περιβαλλοντικά και δημόσια υγειονομικά προβλήματα που υπάρχουν σήμερα. Η παρούσα διδα-

κτορική διατριβή έχει ως στόχο να συμβάλει σε αυτό το νέο πεδίο με την ανάπτυξη σύγχρονων

μεθόδων μηχανικής μάθησης, για την αναγνώριση τριών μείζονων διαταραχών του εγκεφάλου,

συμπεριλαμβανομένης της κατάθλιψης, άνοιας της νόσου Αλτσχάιμερ και επιληψίας.

Η κατάθλιψη συνεπάγεται μεγάλο αριθμό συμπτωμάτων, όπως απώλεια ενδιαφέροντος,

θυμό, απαισιοδοξία, αλλαγές στο βάρος, αισθήματα ανικανότητας, σκέψεις αυτοκτονίας και

πολλά άλλα. Τα μέσα κοινωνικής δικτύωσης χρησιμοποιούνται σε καθημερινή βάση από αν-

θρώπους, οι οποίοι εκφράζουν τις σκέψεις και τα συναισθήματά τους συζητώντας με άλλους

χρήστες. Οι υπάρχουσες εργασίες χρησιμοποιούν δεδομένα από τα μέσα κοινωνικής δικτύω-

σης με σκοπό τον εντοπισμό καταθλιπτικών δημοσιεύσεων. Οι εργασίες αυτές χρησιμοποιούν

μοντέλα που βασίζονται σε μετασχηματιστές (transformers). Ωστόσο, αυτά τα μοντέλα συ-

χνά δεν μπορούν να συλλάβουν πλούσια τεκμηριωμένη γνώση. Επίσης, η ομιλία είναι ένας

αξιόπιστος βιοδείκτης για τη διάγνωση της κατάθλιψης, καθώς οι άνθρωποι με κατάθλιψη

παρουσιάζουν μειωμένη παραγωγικότητα λεκτικής δραστηριότητας και “άψυχο”ήχο ομιλίας.

Ωστόσο, οι υπάρχουσες μέθοδοι χρησιμοποιούν μονοτροπικά μοντέλα, εφαρμόζουν στρατηγι-

κές early, intermediate, και late fusion για τη συγχώνευση των διαφορετικών τροπικοτήτων,

βασίζονται στην εξαγωγή χαρακτηριστικών και εκτελούν τις προσεγγίσεις τους μόνο στην

αγγλική γλώσσα. Η άνοια στη νόσο Αλτσχάιμερ χαρακτηρίζεται από απώλεια μνήμης, ενώ

επηρεάζει τη γλώσσα και την ομιλία. Προηγούμενες εργασίες χρησιμοποιούν την ομιλία και
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8 Περίληψη

απομαγνητοφωνήσεις για την αναγνώριση της άνοιας. Ωστόσο, οι προηγούμενες εργασίες

επικεντρώνονται απλώς στη βελτίωση της απόδοσης των προτεινόμενων μοντέλων, βασίζονται

στην εξαγωγή χαρακτηριστικών, ενώ οι στρατηγικές early και late fusion χρησιμοποιούνται

όσον αφορά τις πολυτροπικές προσεγγίσεις, δηλαδή προσεγγίσεις που χρησιμοποιούν τόσο την

ομιλία όσο και το απομαγνητοφωνημένο κείμενο. Οι επιληπτικές κρίσεις συνεπάγονται κοι-

νωνικό στίγμα. Οι υπάρχουσες εργασίες βασίζονται στην εξαγωγή χαρακτηριστικών από το

ηλεκτροεγκεφαλογράφημα (ΗΕΓ) ή στη διαίρεση των σημάτων ΗΕΓ σε πολλαπλά υποσήματα

και στην χρησιμοποίηση τεχνικών majority vote στη συνέχεια.

Αυτή η διδακτορική διατριβή είναι η πρώτη που διερευνά συστηματικά διάφορες μεθόδους

για τον εντοπισμό (i) της κατάθλιψης χρησιμοποιώντας αναρτήσεις στα μέσα κοινωνικής δι-

κτύωσης και ομιλία, (ii) ασθενών με άνοια της νόσου Αλτσχάιμερ και πρόβλεψης των βαθ-

μολογιών τους μέσω μίας σύντομης εξέτασης της νοητικής κατάστασης - Βραχεία Κλίμακα

Εκτίμησης των Νοητικών Λειτουργιών (Mini Mental State Examination) με χρήση αυθόρμη-

του λόγου, (iii) επιληψίας μέσω σημάτων ΗΕΓ μονού καναλιού. Οι βασικές συνεισφορές της

διατριβής είναι οι εξής: Αρχικά, εισάγονται δύο μέθοδοι για την αναγνώριση της κατάθλιψης.

΄Οσον αφορά την πρώτη μέθοδο, εισάγεται η εργασία της διάγνωσης της κατάθλιψης στα μέσα

κοινωνικής δικτύωσης και προτείνεται μια μέθοδος για την ενσωμάτωση εξωτερικών γλωσ-

σικών πληροφοριών σε προεκπαιδευμένα γλωσσικά μοντέλα (π.χ. BERT, MentalBERT).

Αναδεικνύεται, έτσι, ότι η ενσωμάτωση γλωσσικών χαρακτηριστικών είναι ευεργετική για την

αναγνώριση της κατάθλιψης. ΄Οσον αφορά τη δεύτερη μέθοδο, εισάγεται μία προσέγγιση, η

οποία βασίζεται στη χρήση ομιλίας και παραγόμενων από μηχανή (automatic) απομαγνητο-

φωνημένων κειμένων. Για τον εντοπισμό της άνοιας, βελτιστοποιούνται τα γλωσσικά μοντέλα

που βασίζονται σε μετασχηματιστές (transformers) και παρουσιάζονται προσεγγίσεις επεξη-

γησιμότητας (explainability) και γλωσσικές αναλύσεις για τη διερεύνηση των διαφορών στη

γλώσσα μεταξύ υγιών ατόμων και ασθενών με άνοια. Επίσης, εισάγονται μέθοδοι για τη

συγχώνευση των διαφορετικών τροπικοτήτων (ομιλία, κείμενο), το καλιμπράρισμα (calibra-

tion) των προτεινόμενων μοντέλων με στόχο την αποφυγή δημιουργίας υπερβολικά σίγουρων

μοντέλων, την ενίσχυση – βελτίωση των δικτύων αυτοπροσοχής (self – attention) με πληροφο-

ρίες σχετικές με τα συμφραζόμενα και την αυτόματη δημιουργία αρχιτεκτονικών Συνελικτικών

Νευρωνικών Δικτύων με χρήση τεχνικών αυτόματης αναζήτησης αρχιτεκτονικών νευρωνικού

δικτύου. Τέλος, παρουσιάζεται μια πολυτροπική προσέγγιση για την ανίχνευση της επιληψίας

αξιοποιώντας μονοκάναλα σήματα ΗΕΓ. ΄Ολα τα πειράματα διεξάγονται σε δημοσίως διαθέσιμα

σύνολα δεδομένων.

Αυτή η διδακτορική διατριβή αποτελεί ένα πρώτο, θεμελιώδες βήμα μεταξύ άλλων πρόσφα-

των προσπαθειών, προς τη βελτίωση της απόδοσης των αυτόματων συστημάτων που στοχε-

ύουν στην αναγνώριση διαφόρων διαταραχών του εγκεφάλου με τη χρήση σύγχρονων τεχνικών

βαθιάς μάθησης, προωθεί περαιτέρω την εφαρμογή των νέων τεχνολογιών και ρίχνει φως στα

αναδυόμενα πεδία της επεξεργασίας κειμένου, ομιλίας, εικόνας και σήματος.

Λέξεις Κλειδιά

΄Ανοια της νόσου Αλτσχάιμερ, Επιληψία, Κατάθλιψη, Μέσα Κοινωνικής Δικτύωσης, Ομι-

λία, Απομαγνητοφωνημένο Κείμενο, Ηλεκτροεγκεφαλογράφημα, Μηχανική Μάθηση



Abstract

Brain disorders represent a significant health challenge. It is estimated that approx-

imately 165 million people suffer from a brain disorder in Europe, while 1 in 3 people

will experience such a disorder during their lifetime. Some types of the brain disorders

are the following: Alzheimer’s disease, dementias, epilepsy, Parkinson’s disease, Mental

disorders, and more. These disorders affect the way people think, feel, or perform daily

activities. However, if these disorders are diagnosed early and the person receives suitable

medication, their progression may be delayed. For this reason, early diagnosis is crucial.

Artificial Intelligence (AI) holds the promise of transforming how we tackle societal issues

and enhancing the welfare of both individuals and communities. “AI for Social Good”,

also known as “AI for Social Impact” is a new research field aiming to tackle some of

the most important social, environmental, and public health challenges that exist today.

Another main aim of the “AI for Social Good” is to address the United Nations Sustain-

able Development Goals (UNSDGs). This PhD thesis aims to contribute to this new field

by developing modern machine learning methods, with a particular focus on three major

categories (Depression, Alzheimer’s Dementia and Epilepsy).

Depression entails a great number of symptoms, including loss of interest, anger, pes-

simism, changes in weight, feelings of worthlessness, thoughts of suicide, and many more.

Social media are used on a daily basis by people, who express their thoughts, feelings by

discussing with other users. Prior work employs transformer-based models. However, these

models often cannot capture rich factual knowledge. Also, speech is a reliable biomarker

for diagnosing depression, since depressed people present decreased verbal activity pro-

ductivity and “lifeless” sounding speech. However, existing methods employ unimodal

models, use early, intermediate, or late fusion strategies to fuse the different modalities,

rely on feature extraction, and perform their approaches only in the English language.

Alzheimer’s dementia is characterized by loss of memory, while it affects language and

speech. Previous work utilizes speech and transcripts for recognizing dementia. How-

ever, prior work focuses on just improving the performance of proposed models, relies on

feature extraction, while early and late fusion strategies are employed in terms of multi-

modal approaches, i.e., approaches employing both speech and transcripts. Epilepsy and

seizures entail social stigma. Existing works rely on extraction of handcrafted features

from electroencephalography (EEG) or dividing the EEG signals into multiple sub-signals

and exploiting majority vote approaches.
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10 Abstract

This PhD thesis is the first to systematically investigate various methods for identi-

fying (i) depression by utilizing posts in social media and spontaneous speech, (ii) AD

patients and predicting their Mini Mental State Examination scores through spontaneous

speech, (iii) epilepsy through single-channel EEG signals. The key contributions of our

work are the following: First, we introduce two methods for identifying depression. Re-

garding the first approach, we present the task of predicting depression in social media

and propose a method for injecting external linguistic information into novel pretrained

neural language models (e.g. BERT). We show that incorporating linguistic features is

beneficial to depression recognition task. In terms of the second approach, we introduce a

method which identifies depression based on speech and automatic transcripts. Secondly,

for identifying dementia, we fine-tune language models based on transformers and present

explainable approaches and linguistic analyses to investigate differences in language be-

tween healthy and AD patients. Thirdly, we introduce methods for fusing the different

modalities (speech, text), calibrating the proposed models, enhancing the self-attention

networks with contextual information, and automatically generating Convolutional Neural

Network architectures (Neural Architecture Search). Finally, we present a multimodal ap-

proach for detecting epilepsy by exploiting single – channel EEG signals. All experiments

are conducted on publicly available datasets.

This PhD thesis represents a first, fundamental step among other recent efforts towards

improving the performance of automatic systems aiming at recognizing various brain disor-

ders using modern deep learning techniques. This thesis further advances the application

of new technologies and sheds light on the emerging fields of text, speech, image and signal

processing.

Keywords

Alzheimer’s dementia, Depression, Epilepsy, Social Media, spontaneous speech, Elec-

troencephalogram, deep learning, transformers, explainability, interpretability, multi-task

learning, multimodal
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Εκτεταμένη Περίληψη

1.1 Εισαγωγή

Οι διαταραχές του εγκεφάλου αποτελούν μία από τις μεγαλύτερες προκλήσεις για την

υγεία. Υπολογίζεται ότι περίπου 165 εκατομμύρια άνθρωποι πάσχουν από εγκεφαλική διατα-

ραχή στην Ευρώπη, ενώ 1 στους 3 ανθρώπους θα υποφέρει από εγκεφαλική διαταραχή κάποια

στιγμή στη ζωή του. Μερικοί τύποι εγκεφαλικών διαταραχών είναι οι ακόλουθοι: Νόσος Αλ-

τσχάιμερ, διάφοροι τύποι άνοιας, επιληψία, Νόσος Πάρκινσον, Ψυχικές διαταραχές και άλλα.

Αυτές οι διαταραχές επηρεάζουν τον τρόπο με τον οποίο οι άνθρωποι σκέφτονται, αισθάνο-

νται ή εκτελούν καθημερινές δραστηριότητες. Ωστόσο, εάν αυτές οι διαταραχές διαγνωστούν

έγκαιρα και το άτομο λάβει την κατάλληλη φαρμακευτική αγωγή, η εξέλιξή τους μπορεί να

καθυστερήσει. Για το λόγο αυτό, η έγκαιρη διάγνωση είναι καθοριστική.

Η Τεχνητή Νοημοσύνη (ΤΝ) μετασχηματίζει τον τρόπο με τον οποίο αντιμετωπίζουμε

κοινωνικά ζητήματα ενισχύοντας την ευημερία τόσο των ατόμων όσο και των κοινοτήτων. Ο

όρος “ΤΝ για το Κοινωνικό Καλό”, επίσης γνωστός ως “ΤΝ για το Κοινωνικό Αντίκτυπο”,

είναι ένα νέο πεδίο έρευνας που στοχεύει στην αντιμετώπιση μερικών από τα πιο σημαντικά

κοινωνικά, περιβαλλοντικά και δημόσια υγειονομικά προβλήματα που υπάρχουν σήμερα. Η

παρούσα διδακτορική διατριβή έχει ως στόχο να συμβάλει σε αυτό το νέο πεδίο με την ανάπτυξη

σύγχρονων μεθόδων μηχανικής μάθησης, με ιδιαίτερη έμφαση σε τρεις μεγάλες κατηγορίες

(Κατάθλιψη, ΄Ανοια της νόσου Αλτσχάιμερ και Επιληψία).

Η κατάθλιψη συνεπάγεται μεγάλο αριθμό συμπτωμάτων, όπως απώλεια ενδιαφέροντος,

θυμό, απαισιοδοξία, αλλαγές στο βάρος, αισθήματα ανικανότητας, σκέψεις αυτοκτονίας και

πολλά άλλα. Η άνοια στη νόσο Αλτσχάιμερ χαρακτηρίζεται από απώλεια μνήμης, ενώ επηρεάζει

τη γλώσσα και την ομιλία. Οι επιληπτικές κρίσεις συνεπάγονται κοινωνικό στίγμα.

1.1.1 Στόχος Διδακτορικής Διατριβής & Συνεισφορές αυτής

Με βάση το περιεχόμενο της έρευνας και τις κλινικές ανάγκες όπως περιγράφονται παρα-

πάνω, ο συνολικός στόχος αυτής της διδακτορικής διατριβής είναι η βελτίωση της ανίχνευσης

των διαταραχών του εγκεφάλου χρησιμοποιώντας προηγμένες τεχνικές μηχανικής μάθησης.

Ειδικότερα, αυτή η διατριβή παρουσιάζει αυτόματα συστήματα για την αναγνώριση τριών με-

ίζονων διαταραχών του εγκεφάλου, συμπεριλαμβανομένης της κατάθλιψης, της άνοιας της

νόσου του Αλτσχάιμερ και της επιληψίας.

΄Οσον αφορά την κατάθλιψη, η διατριβή εξετάζει δύο μεθόδους αναγνώρισής της μέσω

13
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των δημοσιεύσεων στα μέσα κοινωνικής δικτύωσης και της ομιλίας. ΄Οσον αφορά την πρώτη

μέθοδο, χρησιμοποιούνται δεδομένα μέσων κοινωνικής δικτύωσης και δημιουργούνται εργαλεία

βασισμένα στην επεξεργασία φυσικής γλώσσας για την ανίχνευση καταθλιπτικών αναρτήσεων.

Επιπλέον, αυτή η διατριβή αναζητά να βρει διαφορές στη γλώσσα μεταξύ καταθλιπτικών α-

τόμων και μη-καταθλιπτικών μέσω μιας λεπτομερούς γλωσσολογικής ανάλυσης. ΄Οσον αφορά

τη δεύτερη μέθοδο, προτείνεται ένα βαθύ νευρωνικό δίκτυο βασισμένο στα δίκτυα μετασχη-

ματιστών και τις πολυτροπικές μεθόδους συγχώνευσης και εξετάζεται εάν η πρόβλεψη της

ηλικίας, του φύλου και του επιπέδου εκπαίδευσης συμβάλλουν στην αύξηση της απόδοσης της

αναγνώρισης της κατάθλιψης.

΄Οσον αφορά την άνοια της νόσου Αλτσχάιμερ, ενθαρρυνόμενοι από το γεγονός ότι άτομα

με άνοια παρουσιάζουν ελλείμματα στη γλώσσα και την ομιλία, αυτή η διατριβή χρησιμο-

ποιεί ηχογραφήσεις της αυθόρμητης ομιλίας και δημιουργεί αυτόματα συστήματα βασισμένα

στην επεξεργασία φυσικής γλώσσας και την επεξεργασία ήχου. Συγκεκριμένα, προσαρμόζου-

με μοντέλα βασισμένα σε μετασχηματιστές, εκμεταλλευόμαστε τεχνικές επεξηγησιμότητας

και γλωσσολογικές αναλύσεις και εξερευνούμε ορισμένα γλωσσικά χαρακτηριστικά που είναι

χρήσιμα για την ανίχνευση της μείωσης των γνωστικών ικανοτήτων. Αυτή η διατριβή ανα-

ζητά, επίσης, να χρησιμοποιήσει πολυτροπικά μοντέλα εκμεταλλευόμενα και την ομιλία και τα

απομαγνητοφωνημένα κείμενα αντί να επικεντρωθεί μόνο στα λεκτικά, ακουστικά ή οπτικά

χαρακτηριστικά.

΄Οσον αφορά την επιληψία, ενθαρρυνόμενοι από το γεγονός ότι η παρακολούθηση σημάτων

Ηλεκτροεγκεφαλογραφήματος (ΗΕΓ) από νευρολόγους είναι μια κουραστική και ευάλωτη σε

λάθη εργασία, παρουσιάζουμε ένα νέο αυτόματο σύστημα βασισμένο σε πολυτροπική μέθοδο

για τη διάγνωση της επιληψίας.

Συνολικά, οι κύριες συνεισφορές αυτής της διατριβής είναι οι εξής:

• Προτείνεται μια επεξηγήσιμη προσέγγιση και μια μελέτη γλωσσολογικής ανάλυσης διε-
ρευνώντας τα γλωσσικά χαρακτηριστικά των ασθενών με άνοια. Σε αντίθεση με προη-

γούμενες εργασίες, οι οποίες απλώς εκπαιδεύουν αλγόριθμους μηχανικής μάθησης για

την ανίχνευση ασθενών με άνοια, αυτή η διατριβή χρησιμοποιεί μια επεξηγήσιμη προσέγ-

γιση και εισάγει μια γλωσσολογική ανάλυση. Και οι δύο προσεγγίσεις αποκαλύπτουν

διαφορές στο λεξιλόγιο μεταξύ υγιών ατόμων και ασθενών με άνοια. Χρησιμοποιούμε

την ίδια μελέτη γλωσσολογικής ανάλυσης σε ένα σύνολο δεδομένων που περιέχει κατα-

θλιπτικά κείμενα και βρίσκουμε διαφορές στη γλώσσα μεταξύ υγιών και ανθρώπων με

κατάθλιψη.

• Εισάγονται πολυτροπικά μοντέλα. Σε αντίθεση με τις υπάρχουσες ερευνητικές πρωτο-
βουλίες, οι οποίες χρησιμοποιούν στρατηγικές early, intermediate, late fusion, αυτή η

διατριβή εισάγει νέες μεθόδους, προκειμένου να συγχωνεύσει τις διαφορετικές τροπι-

κότητες. Συγκεκριμένα, αυτή η διατριβή επεκτείνει τις προηγούμενες εργασίες αξιοποι-

ώντας μεθόδους, όπως Gated Multimodal Unit, Cross-Modal Attention Layer, Cross-

Attention Layer with Gated Self-Attention, Optimal Transport Domain Adaptation

methods, κ.ά. Αυτές οι πολυτροπικές προσεγγίσεις υιοθετούνται σε μία σειρά πειρα-
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μάτων, όπως ανίχνευση κατάθλιψης μέσω αναρτήσεων στα μέσα κοινωνικής δικτύωσης

και αυθόρμητου λόγου, αναγνώριση άνοιας μέσω ομιλίας και απομαγνητοφωνημένου

κειμένου, ανίχνευση επιληψίας μέσω ενός καναλιού Ηλεκτροεγκεφαλογραφήματος, και

στοχεύουν στην αύξηση της απόδοσης που επιτυγχάνουν τα μονοτροπικά μοντέλα.

• Παρουσίαση μεθόδων βαθμονόμησης (calibration) βαθέων νευρωνικών δικτύων. Προη-

γούμενες εργασίες αξιολογούν τα βαθιά νευρωνικά δίκτυα με βάση μόνο την απόδοση

(performance). Αυτή η διατριβή επεκτείνει τις προηγούμενες εργασίες με αξιοποίηση

μεθόδων για τη βαθμονόμηση των μοντέλων και την αξιολόγηση αυτών των μοντέλων

αξιοποιώντας μετρήσεις απόδοσης και βαθμονόμησης. Η βαθμονόμηση έχει ως στόχο

την αποφυγή δημιουργίας υπερβολικά σίγουρων μοντέλων. Αυτές οι προσεγγίσεις διε-

ξάγονται σε σύνολα δεδομένων που σχετίζονται με την κατάθλιψη και την άνοια.

• Ενσωμάτωση μεθόδου αυτόματης αναζήτησης αρχιτεκτονικής νευρωνικού δικτύου (Neu-

ral Architecture Search) σε προτεινόμενα μοντέλα. Σε αντίθεση με προηγούμενες ερ-

γασίες, που χρησιμοποιούν σταθερές (fixed) αρχιτεκτονικές, αυτή η διατριβή ενσωμα-

τώνει μια προσέγγιση αυτόματης αναζήτησης αρχιτεκτονικής νευρωνικού δικτύου, που

ονομάζεται DARTS, σε ένα βαθύ νευρωνικό δίκτυο για την αυτόματη δημιουργία μιας

αρχιτεκτονικής συνελικτικών νευρωνικών δικτύων (Convolutional Neural Networks).

Με τον τρόπο αυτό, βρίσκουμε τη βέλτιστη αρχιτεκτονική CNN στο δικό μας task.

• Εισάγονται βαθιά νευρωνικά δίκτυα, τα οποία μπορούν να εκπαιδευτούν με τρόπο end-

to-end, εξαλείφοντας τη χρονοβόρα διαδικασία εξαγωγής χαρακτηριστικών. Αντίθετα

με προηγούμενες ερευνητικές εργασίες που εξάγουν μεγάλο αριθμό χαρακτηριστικών,

αξιοποιούν τεχνικές επιλογής χαρακτηριστικών ή μείωσης διαστάσεων και εκπαιδεύουν

παραδοσιακούς αλγόριθμους μηχανικής μάθησης, η παρούσα διατριβή στοχεύει στην

εξάλειψη της ανάγκης για εξαγωγή χαρακτηριστικών, προτείνοντας βαθιά νευρωνικά

δίκτυα και μοντέλα βασισμένα σε μετασχηματιστές.

• Ενίσχυση των δικτύων αυτοπροσοχής με πληροφορίες σχετικές με τα συμφραζόμενα.
Αυτή η διατριβή στοχεύει να ενισχύσει το επίπεδο αυτοπροσοχής προσθέτοντας πληρο-

φορίες σχετικές με τα συμφραζόμενα. Συγκεκριμένα, η παρούσα διατριβή παρουσιάζει

τρεις στρατηγικές για την κατασκευή ενός διανύσματος, που λαμβάνει υπόψη το περιε-

χόμενο της πρότασης, σε ένα εκπαιδεύσιμο από άκρο σε άκρο βαθύ νευρωνικό δίκτυο.

Αυτή η προσέγγιση πραγματοποιείται σε σύνολα δεδομένων που σχετίζονται με το task

της άνοιας Alzheimer.

• Εισάγονται μοντέλα μάθησης πολλαπλών εργασιών. Αυτή η διατριβή προτείνει αρχι-
τεκτονικές μάθησης πολλαπλών εργασιών για την αναγνώριση της κατάθλιψης και της

άνοιας Alzheimer. Αρχικά, η παρούσα διατριβή παρουσιάζει μια προσέγγιση μάθησης

πολλαπλών εργασιών για την ταυτόχρονη μοντελοποίηση των εργασιών αναγνώρισης

της κατάθλιψης, του επιπέδου εκπαίδευσης, της ηλικίας και του φύλου. Στη συνέχεια,

η παρούσα διατριβή εισάγει αρχιτεκτονικές μάθησης πολλαπλών εργασιών με στόχο την

πρόβλεψη των εργασιών ανίχνευσης AD και πρόβλεψης MMSE.
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1.2 Διάγνωση Κατάθλιψης

Η κατάθλιψη είναι μια σοβαρή διαταραχή της διάθεσης, η οποία επηρεάζει τον τρόπο που

οι άνθρωποι αισθάνονται και εκτελούν καθημερινές δραστηριότητες. Οι άνθρωποι χρησιμο-

ποιούν τα μέσα κοινωνικής δικτύωσης για να εκφράσουν τις σκέψεις και τα συναισθήματά

τους μέσω αναρτήσεων. Επομένως, τα μέσα κοινωνικής δικτύωσης παρέχουν βοήθεια για

την έγκαιρη ανίχνευση ψυχικών καταστάσεων. Εκτός από την αναγνώριση της κατάθλιψης

μέσω αναρτήσεων στα μέσα κοινωνικής δικτύωσης, η ομιλία είναι ένας αξιόπιστος βιοδείκτης

για τη διάγνωση της κατάθλιψης, καθώς οι καταθλιπτικοί άνθρωποι παρουσιάζουν μειωμένη

παραγωγικότητα λεκτικής δραστηριότητας και ομιλία που ακούγεται ¨άψυχη¨.

Σε αυτό το κεφάλαιο, παρουσιάζουμε δύο προσεγγίσεις για την αναγνώριση της κατάθλι-

ψης. Συγκεκριμένα, στην Ενότητα 1.2.1 παρουσιάζουμε μια προσέγγιση για την αναγνώριση

της κατάθλιψης μέσω αναρτήσεων στα μέσα κοινωνικής δικτύωσης, ενώ η Ενότητα 1.2.2 πα-

ρουσιάζει μια μέθοδο για την αναγνώριση της κατάθλιψης χρησιμοποιώντας αυθόρμητη ομιλία.

1.2.1 Διάγνωση Κατάθλιψης στα Μέσα Κοινωνικής Δικτύωσης

1.2.1.1 Κίνητρο

Η κατάθλιψη
1
συνεπάγεται μεγάλο αριθμό συμπτωμάτων, όπως απώλεια ενδιαφέροντος,

θυμός, απαισιοδοξία, αλλαγές στο βάρος, συναισθήματα ανικανότητας, σκέψεις αυτοκτονίας

και πολλά άλλα. Σύμφωνα με στον Παγκόσμιο Οργανισμό Υγείας (ΠΟΥ)
2
, περίπου 280

εκατομμύρια άνθρωποι στον κόσμο έχουν κατάθλιψη. Κίνα, Ινδία, Ηνωμένες Πολιτείες, Ρωσία,

Ινδονησία, και η Νιγηρία είναι μερικές από τις χώρες που παρουσιάζουν τα υψηλότερα ποσοστά

κατάθλιψης
3
. Τα άτομα με άγχος και κατάθλιψη χρησιμοποιούν πλατφόρμες μέσων κοινωνικής

δικτύωσης, συμπεριλαμβανομένων των X/Twitter και Reddit, και μοιράζονται τις σκέψεις και

τα συναισθήματά τους μέσω αναρτήσεων ή σχολίων με άλλους χρήστες. Επομένως, τα μέσα

κοινωνικής δικτύωσης αποτελούν μια πολύτιμη πηγή πληροφοριών.

Οι υπάρχουσες ερευνητικές εργασίες χρησιμοποιούν τα δεδομένα των μέσων κοινωνικής

δικτύωσης, για να αναγνωρίσουν καταθλιπτικές και αγχωτικές δημοσιεύσεις. Η πλειονότη-

τα αυτών των ερευνητικών εργασιών χρησιμοποιεί εξαγωγή χαρακτηριστικών και εκπαιδεύει

ρηχούς αλγόριθμους μηχανικής μάθησης [1, 2]. Η εξαγωγή χαρακτηριστικών αποτελεί μια

χρονοβόρα διαδικασία και απαιτεί εξειδίκευση στον τομέα, καθώς οι ερευνητές ενδέχεται να

μη βρουν το βέλτιστο σύνολο χαρακτηριστικών για το συγκεκριμένο πρόβλημα. Για την α-

ντιμετώπιση αυτών των περιορισμών, άλλες προσεγγίσεις [3] χρησιμοποιούν βαθιά νευρωνικά

δίκτυα, συμπεριλαμβανομένων των συνελικτικών νευρωνικών δικτύων (CNN), BiLSTM, και

ούτω καθεξής, ή μοντέλα βασισμένα σε μετασχηματιστές (transformers). Επιπλέον, υπάρ-

χουν ερευνητικές μελέτες που χρησιμοποιούν στρατηγικές late fusion [4]. Ωστόσο, αυτές

οι προσεγγίσεις αυξάνουν ουσιαστικά τον χρόνο εκπαίδευσης, αφού πολλά μοντέλα πρέπει

1https://www.who.int/news/item/02-03-2022-covid-19-pandemic-triggers-25-increase-in-prevalence-of-

anxiety-and-depression-worldwide
2https://www.who.int/news-room/fact-sheets/detail/depression
3https://pulsetms.com/resources/around-world/
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να εκπαιδεύονται χωριστά. Επιπλέον, πρόσφατα έγιναν μελέτες που δείχνουν ότι τα μοντέλα

που βασίζονται σε μετασχηματιστές δυσκολεύονται ή αποτυγχάνουν να συλλάβουν πλούσια

γνώση [5, 6]. Για τον λόγο αυτό, έχουν προταθεί μέθοδοι [7, 8, 9, 10] για τη βελτίωση αυτών

των μοντέλων με εξωτερικές πληροφορίες ή πρόσθετες λεπτομέρειες. Επιπλέον, η αξιοπιστία

της εμπιστοσύνης ενός μοντέλου ML στις προβλέψεις του, που δηλώνεται ως βαθμονόμηση

[11, 12], είναι κρίσιμης σημασίας για εφαρμογές υψηλού κινδύνου, όπως η απόφαση για το αν

θα εμπιστευτεί ο γιατρός μια ιατρική διάγνωση - πρόβλεψη μέσω ενός αλγορίθμου μηχανικής

μάθησης.

1.2.1.2 Δεδομένα

Depression Mixed. Χρησιμοποιούμε το σύνολο δεδομένων που παρουσιάστηκε στο [13].

Αυτό το σύνολο δεδομένων αποτελείται από 2822 αναρτήσεις. Περιλαμβάνει αναρτήσεις τόσο

από το Reddit όσο και από αγγλόφωνα φόρουμ κατάθλιψης [14]. ΄Οσον αφορά τα αγγλόφωνα

φόρουμ κατάθλιψης [14], οι συγγραφείς αντλούν δεδομένα από την ομάδα καρκίνου του μαστού.

Συγκεκριμένα, συλλέγουν μία μόνο ανάρτηση από ένα όνομα χρήστη, για να αποφευχθούν

πολλαπλές εισαγωγές από έναν μόνο χρήστη. Επιπλέον, οι συγγραφείς επιβεβαιώνουν ότι

ο συγγραφέας κάθε ανάρτησης ήταν γυναίκα, ενώ απορρίπτουν αναρτήσεις που αναφέρουν

ρητά ότι ο συγγραφέας αντιμετωπίζει κατάθλιψη. Για τη δημιουργία συνόλου δεδομένων με

κατάθλιπτικές αναρτήσεις, οι συγγραφείς στο [13] υιοθετούν ένα πρωτόκολλο παρόμοιο με

αυτό του [15, 16] και αναζητούν εκφράσεις όπως ¨Μόλις μου διαγνώστηκε κατάθλιψη’ στο

subreddit της κατάθλιψης. ΄Οσον αφορά τις μη-καταθλιπτικές αναρτήσεις, οι συγγραφείς

συλλέγουν σύνολα αναρτήσεων που ανήκουν στο subreddit συζητήσεων για τον καρκίνο του

μαστού, οικογενειακές συμβουλές και φιλίες στο Reddit.

Depression Severity. Αυτό το σύνολο δεδομένων περιλαμβάνει αναρτήσεις στο Reddit

[17] και αναθέτει σε κάθε ανάρτηση ένα επίπεδο σοβαρότητας της κατάθλιψης, δηλαδή ελάχι-

στο (2587 αναρτήσεις), ελαφρύ (290 αναρτήσεις), μέτριο (394 αναρτήσεις) και σοβαρό είδος

κατάθλιψης (282 αναρτήσεις).

1.2.1.3 Προτεινόμενη Μεθοδολογία

Σε αυτή την ενότητα, περιγράφουμε την προτεινόμενη προσέγγισή μας για τον εντοπισμό

καταθλιπτικών αναρτήσεων στα μέσα κοινωνικής δικτύωσης. Η προτεινόμενη μέθοδος μας

βασίζεται στην εργασία που εισήχθη από τους Rahman et al. [18] και Jin and Aletras

[19]. Αντί για διατροπικές αλληλεπιδράσεις, εισάγουμε επιπλέον γλωσσικές πληροφορίες ως

εναλλακτικές απόψεις των δεδομένων σε προεκπαιδευμένα γλωσσικά μοντέλα. Η προτεινόμενη

αρχιτεκτονική μας απεικονίζεται στο Σχ. 1.1.

• NRC. Το NRC Emotion Lexicon είναι μια λίστα αγγλικών λέξεων και οι συσχετίσεις

τους με οκτώ βασικά συναισθήματα (θυμός, φόβος, προσμονή, εμπιστοσύνη, έκπληξη,

λύπη, χαρά και αηδία) και δύο συναισθήματα (αρνητικό και θετικό) [20]. Κάθε κείμενο

αναπαρίσταται ως ένα διάνυσμα 10 διαστάσεων, όπου κάθε στοιχείο είναι η αναλογία των

διακριτικών που ανήκουν σε κάθε κατηγορία.
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Σχήμα 1.1: Προτεινόμενη Αρχιτεκτονική για Διάγνωση Κατάθλιψης στα Μέσα Κοινωνικής Δι-

κτύωσης

• LIWC. Το LIWC είναι μια προσέγγιση βασισμένη σε λεξικό για την καταμέτρηση

λέξεων σε γλωσσικές, ψυχολογικές και τοπικές κατηγορίες [21]. Χρησιμοποιούμε το

LIWC 2022 [22] για να αναπαραστήσουμε κάθε κείμενο ως διάνυσμα 117 διαστάσεων.

• LDA topics. Πριν εκπαιδεύσουμε το μοντέλο LDA, αφαιρούμε τα stop-words και τα

σημεία στίξης. Εκμεταλλευόμαστε το LDA (με 25 θέματα) και εξάγουμε 25 πιθανότητες

θεμάτων ανά κείμενο [23]. Αυτές οι πιθανότητες περιγράφουν τα θέματα ενδιαφέροντος

κάθε κειμένου. Εμπνευσμένοι από τους Liu et al. [24], χρησιμοποιούμε το ακόλουθο

διάνυσμα χαρακτηριστικών:

– Global Outlier Standard Score (GOSS): Για να αξιολογήσουμε το ενδια-

φέρον του κειμένου ith σε ένα συγκεκριμένο topic k, σε σύγκριση με τα υπόλοιπα

κείμενα, χρησιμοποιούμε το GOSS χαρακτηριστικό:

µ(xk) =

∑n
i=1 xik
n

(1.1)

GOSS(xik) =
xik − µ(xk)√∑
i (xik − µ (xk))2

(1.2)

Επομένως, κάθε κείμενο αναπαρίσταται ως ένα διάνυσμα 25 διαστάσεων.

• Top2Vec: Top2Vec [25] είναι ένας αλγόριθμος για τη μοντελοποίηση θεμάτων, ο ο-

ποίος εντοπίζει αυτόματα θέματα που υπάρχουν στο κείμενο και δημιουργεί από κοινού

ενσωματωμένα διανύσματα θεμάτων, εγγράφων και λέξεων. Μετά την εκπαίδευση του

Top2Vec με την εκμετάλλευση του Universal Sentence Encoder, κάθε κείμενο αναπα-

ρίσταται ως διάνυσμα 512-d.

Χρησιμοποιούμε τα εξής προεκπαιδευμένα μοντέλα: BERT [26] και MentalBERT [27].

Αρχικά, δίνουμε ως είσοδο το κείμενο στα προαναφερθέντα μοντέλα. ΄Εστω C ∈ RN×d

είναι η έξοδος του μοντέλου, όπου N δηλώνει το μήκος του κειμένου, ενώ d δηλώνει τη

διάσταση των μοντέλων. Για χάρη απλότητας έχουμε παραλείψει τη διάσταση που αναφέρεται

στο batch size.

Στη συνέχεια, προβάλλουμε τα διανύσματα χαρακτηριστικών σε διαστάσεις ίσες με 128.

Επαναλαμβάνουμε το διάνυσμα χαρακτηριστικών N φορές, έτσι ώστε να διασφαλίσουμε ότι
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το διάνυσμα χαρακτηριστικών και η έξοδος των μοντέλων που βασίζονται σε μετασχηματιστή

μπορούν να συνδεθούν κατά γραμμές. Δεδομένης της αναπαράστασης λέξεων e(i), συνε-

νώνουμε το e(i) με διανύσματα χαρακτηριστικών, δηλ. h
(i)
v .

w(i)
v = σ

(
Whv[e(i);h(i)v ] + bv

)
(1.3)

όπου το σ υποδηλώνει τη συνάρτηση ενεργοποίησης σιγμοειδούς, το Whv είναι ένας πίνα-

κας βάρους και το w
(i)
v αντιστοιχεί στην πύλη. Το bv είναι scalar bias.

Στη συνέχεια, υπολογίζουμε ένα διάνυσμα μετατόπισης h
(i)
m πολλαπλασιάζοντας τις δια-

νύσματα (embeddings) με την πύλη (gate).

h(i)m = w(i)
v ·

(
Wvh

(i)
v

)
+ b(i)m (1.4)

όπου Wv είναι ένας πίνακας βαρών ανδ b
(i)
m είναι bias vector.

Στη συνέχεια, εφαρμόζουμε το στοιχείο Multimodal Shifting με στόχο να μετατοπίσουμε

δυναμικά τις αναπαραστάσεις των λέξεων ενσωματώνοντας το διάνυσμα μετατόπισης h
(i)
m στην

αρχικό διάνυσμα λέξης.

e(i)m = e(i) + αh(i)m (1.5)

α = min

(
||e(i)||2
||h(i)m ||2

β, 1

)
(1.6)

, όπου β είναι μια υπερπαράμετρος. Στη συνέχεια, εφαρμόζουμε ένα layer normalization [28]

και ένα dropout layer [29] στο e
(i)
m . Στη συνέχεια, τα συνδυασμένα διανύσματα (embeddings

τροφοδοτούνται σε ένα μοντέλο BERT/MentalBERT.

Παίρνουμε την έξοδο του μοντέλου (classification token) [CLS] και το περνάμε μέσα από

ένα dense layer που αποτελείται από 128 μονάδες με συνάρτηση ενεργοποίησης ReLU. Τέλος,

χρησιμοποιούμε ένα dense layer που αποτελείται είτε από δύο μονάδες (binary classification

task) είτε από τέσσερις μονάδες (multiclass classification task).

Ονομάζουμε τα προτεινόμενα μοντέλα μας ως Multimodal BERT (M-BERT) και Mul-

timodal MentalBERT (M-MentalBERT) ακολουθούμενα από τα γλωσσικά χαρακτηριστικά

που είναι ενσωματωμένα σε αυτά. Για παράδειγμα, η έγχυση χαρακτηριστικών LIWC σε ένα

μοντέλο BERT συμβολίζεται ως M-BERT (LIWC).

1.2.1.4 Model Calibration

Προκειμένου να αποφύγουμε τη δημιουργία υπερβολικά σίγουρων μοντέλων, χρησιμοποιο-

ύμε label smoothing [30, 31]. Συγκεκριμένα, η μέθοδος label smoothing βαθμονομεί τα

μαθημένα μοντέλα έτσι ώστε η εμπιστοσύνη των προβλέψεών τους να ευθυγραμμίζεται περισ-

σότερο με την ακρίβεια των προβλέψεών τους.

Για ένα δίκτυο εκπαιδευμένο με σκληρούς στόχους, το cross-entropy loss ελαχιστοποιείται

μεταξύ των πραγματικών στόχων yk και των εξόδων του δικτύου pk, όπως στο H(y, p) =
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∑K
k=1−yklog(pk), όπου yk είναι ¨1’ για τη σωστή κλάση και ¨0’ για την άλλη. Για ένα δίκτυο

εκπαιδευμένο με εξομάλυνση ετικετών, ελαχιστοποιούμε το cross-entropy loss μεταξύ των

τροποποιημένων στόχων yLSu
k και των εξόδων του δικτύου pk.

yLSu
k = yk · (1 − α) +

α

K
(1.7)

H(y, p) =
K∑
k=1

−yLSu
k · log (pk) (1.8)

, όπου α είναι μία παράμετρος εξομάλυνσης και K είναι ο αριθμός των κλάσεων.

1.2.1.5 Αποτελέσματα

Τα αποτελέσματα της προτεινόμενης μας προσέγγισης αναφέρονται στους Πίνακες 1.1 και

1.2. Ειδικότερα, ο Πίνακας 1.1 παρουσιάζει τις επιδόσεις των προτεινόμενων προσεγγίσεων

μας στο σύνολο δεδομένων Depression Mixed, ενώ ο Πίνακας 1.2 αναφέρει τα αποτελέσματα

στο σύνολο δεδομένων Depression Severity.

Πίνακας 1.1: Performance comparison among proposed models and baselines using the DE-

PRESSION MIXED dataset.

Depression Mixed

Μοντέλο Prec. Rec. F1-score Acc. ECE ACE

Baselines

BERT 91.40 91.40 91.40 - - -

MentalBERT 89.27 93.14 91.17 91.15 - -

Baselines - Proposed Approaches (without label smoothing)

M-BERT (NRC) 90.56 91.84 91.20 91.15 0.072 0.081

M-BERT (LIWC) 90.98 92.02 91.49 92.04 0.054 0.055

M-BERT (LDA topics) 88.07 95.80 91.77 92.04 0.071 0.071

M-BERT (top2vec) 90.97 92.99 91.97 92.21 0.057 0.069

M-MentalBERT (NRC) 90.65 92.65 91.64 91.86 0.031 0.054

M-MentalBERT (LIWC) 93.49 87.78 90.55 91.50 0.057 0.056

M-MentalBERT (LDA topics) 87.97 93.09 90.46 90.44 0.089 0.086

M-MentalBERT (top2vec) 91.63 93.77 92.69 93.27 0.058 0.054

Proposed Approaches (with label smoothing)

M-BERT (NRC) 89.82 94.81 92.25 92.39 0.059 0.065

M-BERT (LIWC) 93.06 91.78 92.41 92.21 0.034 0.044

M-BERT (LDA topics) 90.16 92.71 91.42 92.39 0.063 0.067

M-BERT (top2vec) 90.34 94.93 92.58 92.57 0.049 0.056

M-MentalBERT (NRC) 91.44 92.52 91.98 92.74 0.042 0.057

M-MentalBERT (LIWC) 94.96 89.42 92.11 92.57 0.055 0.057

M-MentalBERT (LDA topics) 94.81 90.78 92.75 92.92 0.047 0.049

M-MentalBERT (top2vec) 96.12 90.18 93.06 93.45 0.033 0.043

Σχετικά με το σύνολο δεδομένων Depression Mixed, συγκρίνουμε αρχικά τις προτεινόμε-

νες προσεγγίσεις μας χωρίς εξομάλυνση ετικέτας με τα μοντέλα BERT και MentalBERT.

Παρατηρούμε ότι η ενσωμάτωση γλωσσικών χαρακτηριστικών, εκτός από τα χαρακτηριστικά

NRC, στο μοντέλο BERT βελτιώνει το F1-score. Ειδικότερα, παρατηρούμε ότι η ενσωμάτω-

ση χαρακτηριστικών top2vec οδηγεί στο υψηλότερο F1-score και ακρίβεια που ανέρχονται σε

91.97% και 92.21% αντίστοιχα, υπερβαίνοντας την απόδοση του μοντέλου BERT στο F1-

score κατά 0.57%. Υποθέτουμε ότι η ενσωμάτωση χαρακτηριστικών top2vec επιτυγχάνει

καλύτερη απόδοση από την ενσωμάτωση χαρακτηριστικών που προέρχονται από τα θέματα
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Πίνακας 1.2: Performance comparison among proposed models and baselines using the DE-

PRESSION SEVERITY dataset.

Μοντέλο W. Prec. W. Rec. W. F1-score ECE ACE

Baselines

BERT 72.99 71.97 71.00 - -

MentalBERT 73.35 70.81 71.67 - -

Baselines - Proposed Approaches (without label smoothing)

M-BERT (NRC) 74.48 70.08 69.96 0.107 0.076

M-BERT (LIWC) 73.77 71.74 72.13 0.110 0.078

M-BERT (LDA topics) 74.25 71.80 71.28 0.114 0.079

M-BERT (top2vec) 72.93 71.97 71.00 0.086 0.071

M-MentalBERT (NRC) 74.43 72.58 69.96 0.097 0.069

M-MentalBERT (LIWC) 72.39 72.53 71.95 0.112 0.075

M-MentalBERT (LDA topics) 73.83 72.58 72.58 0.118 0.078

M-MentalBERT (top2vec) 74.63 72.39 72.06 0.103 0.075

Proposed Approaches (with label smoothing)

M-BERT (NRC) 74.04 72.84 72.81 0.102 0.074

M-BERT (LIWC) 73.68 72.16 72.37 0.094 0.069

M-BERT (LDA topics) 73.24 71.46 71.42 0.112 0.078

M-BERT (top2vec) 73.36 72.64 72.30 0.113 0.074

M-MentalBERT (NRC) 73.03 71.23 71.46 0.112 0.079

M-MentalBERT (LIWC) 73.21 73.15 72.43 0.099 0.071

M-MentalBERT (LDA topics) 73.74 73.23 73.16 0.111 0.075

M-MentalBERT (top2vec) 73.68 72.70 72.67 0.094 0.071

LDA, δηλαδή τα χαρακτηριστικά GOSS, καθώς το αλγόριθμος top2vec είναι ικανός να ανα-

γνωρίζει αυτόματα τον αριθμό των θεμάτων. ΄Οσον αφορά στο MentalBERT, παρατηρούμε

ότι η ενσωμάτωση χαρακτηριστικών top2vec οδηγεί σε F1-score του 92.69%, υπερβαίνοντας

το MentalBERT κατά 1.52%. Παρατηρούμε ότι η ολοκλήρωση των χαρακτηριστικών NRC

και top2vec βελτιώνει την απόδοση που προκύπτει από το MentalBERT. ΄Οσον αφορά στις

προτεινόμενες προσεγγίσεις με εξομάλυνση ετικέτας, παρατηρούμε ότι αυτά τα μοντέλα επιτυγ-

χάνουν καλύτερες επιδόσεις σε σχέση με τα μοντέλα χωρίς εξομάλυνση ετικέτας. Ειδικότερα,

παρατηρούμε ότι το M-BERT (top2vec) με εξομάλυνση ετικέτας υπερτερεί στο F1-score και

την ακρίβεια από το αντίστοιχο μοντέλο χωρίς εξομάλυνση ετικέτας κατά 0.61% και 0.36%

αντίστοιχα. Επίσης, το M-MentalBERT (top2vec) με εξομάλυνση ετικέτας επιτυγχάνει το

υψηλότερο F1-score και ακρίβεια ανέρχοντας σε 93.06% και 93.45% αντίστοιχα. Αυτό το μο-

ντέλο υπερτερεί στο F1-score και την ακρίβεια από το αντίστοιχο μοντέλο χωρίς εξομάλυνση

ετικέτας κατά 0.37% και 0.18% αντίστοιχα. Εκτός από τη βελτίωση των μετρήσεων απόδο-

σης, δηλαδή της ακρίβειας, της ανάκλησης, του F1-score και της ακρίβειας, παρατηρούμε ότι

τα μοντέλα με εξομάλυνση ετικέτας επιτυγχάνουν καλύτερα αποτελέσματα όσον αφορά τις

μετρήσεις βαθμονόμησης, δηλαδή τις μετρήσεις ECE και ACE, σε σύγκριση με τις μετρήσεις

που προκύπτουν από τα μοντέλα χωρίς εξομάλυνση ετικέτας. Για παράδειγμα, παρατηρούμε

ότι το M-BERT (top2vec) με εξομάλυνση ετικέτας βελτιώνει τις μετρήσεις ECE και ACE

που προκύπτουν από το M-BERT (top2vec) χωρίς εξομάλυνση ετικέτας κατά 0.008 και 0.013

αντίστοιχα. Επίσης, το M-MentalBERT (LDA topics) με εξομάλυνση ετικέτας βελτιώνει

τις μετρήσεις ECE και ACE που προκύπτουν από το M-MentalBERT (LDA topics) χωρίς

εξομάλυνση ετικέτας κατά 0.042 και 0.043 αντίστοιχα.

΄Οσον αφορά το σύνολο δεδομένων Depression Severity, συγκρίνουμε αρχικά τις προτει-

νόμενες προσεγγίσεις μας χωρίς εξομάλυνση ετικέτας με τα μοντέλα BERT καιMentalBERT.
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Παρατηρούμε ότι η ενσωμάτωση χαρακτηριστικών LIWC και χαρακτηριστικών που εξάγονται

με τη μεθοδολογία θέματος LDA, δηλαδή τα χαρακτηριστικά GOSS, στο μοντέλο BERT ο-

δηγεί σε άνοδο της απόδοσης σε σύγκριση με το μοντέλο BERT. Ειδικότερα, το M-BERT

(LIWC) υπερτερεί στον αποκριματισμένο F1-score κατά 1.13%. Ταυτόχρονα, η ενσωμάτω-

ση όλων των χαρακτηριστικών, εκτός από τα NRC, σε ένα μοντέλο MentalBERT οδηγεί

σε βελτίωση της απόδοσης σε σύγκριση με το μοντέλο MentalBERT. Ειδικότερα, το M-

MentalBERT (LDA topics) επιτυγχάνει τον υψηλότερο αποκριματισμένο F1-score που ανέρ-

χεται σε 72.58%, υπερβαίνοντας τοMentalBERT κατά 0.91%. ΄Οσον αφορά στα προτεινόμενα

μοντέλα με εξομάλυνση ετικέτας, παρατηρούμε μια βελτίωση τόσο στις μετρήσεις απόδοσης

όσο και στις μετρήσεις βαθμονόμησης. Ειδικότερα, η ενσωμάτωση χαρακτηριστικών NRC σε

ένα μοντέλο BERT επιτυγχάνει έναν αποκριματισμένο F1-score του 72.81%, υπερβαίνοντας

το BERT κατά 1.81%, το M-BERT (NRC) χωρίς εξομάλυνση ετικέτας κατά 2.85% και το

M-BERT (LIWC) χωρίς εξομάλυνση ετικέτας κατά 0.68%. Επιπλέον, το M-MentalBERT

(LDA topics) με εξομάλυνση ετικέτας επιτυγχάνει το υψηλότερο F1-score που ανέρχεται σε

73.16%, υπερβαίνοντας το MentalBERT κατά 1.49% και το M-MentalBERT (LDA topics)

χωρίς εξομάλυνση ετικέτας κατά 0.58%. ΄Οσον αφορά στις μετρήσεις βαθμονόμησης, παρα-

τηρούμε ότι και οι δύο μετρήσεις ECE και ACE βελτιώνονται όταν εφαρμόζουμε εξομάλυνση

ετικέτας. Για παράδειγμα, το M-BERT (LIWC) με εξομάλυνση ετικέτας επιτυγχάνει μια βαθ-

μονομούμενη βαθμολογία ECE της τάξης του 0.094 και μια βαθμονομούμενη βαθμολογία ACE

της τάξης του 0.069, οι οποίες βελτιώνονται κατά 0.016 και 0.009 αντίστοιχα σε σύγκριση με

το αντίστοιχο μοντέλο χωρίς εξομάλυνση ετικέτας.

1.2.2 Διάγνωση Κατάθλιψης με Χρήση Ομιλίας

1.2.2.1 Κίνητρο

Οι υπάρχουσες ερευνητικές εργασίες βασίζονται στην εξαγωγή χαρακτηριστικών και την

εκπαίδευση παραδοσιακών ταξινομητών μηχανικής μάθησης ή προσεγγίσεων βαθιάς μάθησης

[32, 33, 34]. Ωστόσο, η εξαγωγή χαρακτηριστικών είναι μια χρονοβόρα διαδικασία που απαιτεί

εξειδίκευση στο συγκεκριμένο θέμα. Επιπλέον, η πλειοψηφία των ερευνητικών μελετών χρησι-

μοποιεί μονοτροπικά μοντέλα για την πρόβλεψη της κατάθλιψης, χρησιμοποιώντας κυρίως την

ομιλία [35]. Αν και υπάρχουν μελέτες που χρησιμοποιούν πολυτροπικά μοντέλα, αυτές οι με-

λέτες εφαρμόζουν στρατηγικές early [36, 37], intermediate [38, 39] ή late fusion [40, 41]. Στη

στρατηγική early fusion, οι διανυσματικές αναπαραστάσεις των τροπικοτήτων συνδυάζονται

στο επίπεδο εισόδου, ενώ στην intermediate συγχώνευση, οι διανυσματικές αναπαραστάσεις

συνδυάζονται κατά την εκπαίδευση, δίνοντας ίση σημασία στις τροπικότητες. Στη στρατηγική

late fusion, τα μονοτροπικά μοντέλα εκπαιδεύονται ανεξάρτητα και εφαρμόζεται απόφαση ψη-

φοφορίας, δηλαδή ψηφοφορία πλειοψηφίας. Επιπλέον, η πλειοψηφία των ερευνητικών εργασιών

έχει δοκιμάσει τις προσεγγίσεις τους μόνο στην αγγλική γλώσσα, οπότε το ακουστικό και

φωνητικό περιεχόμενο των δεδομένων μπορεί να διαφέρει σε άλλες γλώσσες. Τέλος, καμία

υπάρχουσα μελέτη δεν έχει πειραματιστεί με την πρόβλεψη της κατάθλιψης, της ηλικίας, του

επιπέδου εκπαίδευσης και του φύλου ταυτόχρονα.
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1.2.2.2 Δεδομένα

Χρησιμοποιούμε το Androids corpus [42], το οποίο αποτελείται από δύο εργασίες, συ-

γκεκριμένα την εργασία ανάγνωσης και την εργασία συνέντευξης. Συγκεκριμένα, η εργασία

συνέντευξης αποτελείται από 116 δείγματα αυθόρμητης ομιλίας. ΄Ολα τα πειράματα είναι α-

νεξάρτητα από το άτομο. Τα αρχεία ήχου είναι στην ιταλική γλώσσα. Αυτό το σύνολο

δεδομένων περιλαμβάνει πληροφορίες για το φύλο, την ηλικία και το επίπεδο εκπαίδευσης των

ατόμων. Οι πληθυσμοί των καταθλιπτικών και μη καταθλιπτικών συμμετεχόντων έχουν την

ίδια κατανομή όσον αφορά την ηλικία, το φύλο και το επίπεδο εκπαίδευσης. Χρησιμοποιούμε

το whisper large-v3 [43], για να εξάγουμε απομαγνητοφωνήσεις κειμένου παραγόμενες από

μηχανή (automatic), καθώς δεν παρέχονται απομαγνητοφωνήσεις κειμένου παραγόμενες από

άνθρωπο (manual).

1.2.2.3 Προτεινόμενη Μεθοδολογία

• Single-Task Learning. Σκοπός είναι η πρόβλεψη της κατάθλιψης.

• Multi-Task Learning. Σκοπός είναι η πρόβλεψη της κατάθλιψης, του επιπέδου εκπα-

ίδευσης, της ηλικίας και του φύλου.

Σχήμα 1.2: Προτεινόμενη Αρχιτεκτονική για Διάγνωση Κατάθλιψης με Χρήση Ομιλίας και Απο-

μαγνητοφωνημένου Κειμένου

Επεξεργασία Κειμένου: Χρησιμοποιούμε το Italian BERT4. Εξάγουμε το [CLS token]

με αναπαράσταση f t ∈ R1×d
, όπου d = 768.

Επεξεργασία Ομιλίας: Μετατρέπουμε το αρχείο ήχου σε εικόνα τριών καναλιών, log-Mel

spectrogram, delta, delta-delta. Περνάμε την κάθε εικόνα σε ένα προεκπαιδευμένο AlexNet

[44] μοντέλο. ΄Εστω fv ∈ R1×d
, όπου d = 768 η έξοδος του μοντέλου.

Επίπεδο Διασταυρούμενης Προσοχής: Με κίνητρο από [45], σχεδιάζουμε ένα επίπε-

δο διασταυρούμενης προσοχής (cross-attention), το οποίο επιστρέφει ένα ζεύγος βαθμωτών,

4https://github.com/dbmdz/berts
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ένα για κάθε τροπικότητα. Αυτό το ζεύγος βαθμωτών επιτρέπει την κλιμάκωση των δύο

τροπικοτήτων.

΄Οσον αφορά την τροπικότητα του κειμένου, ορίζουμε Qi = FCt
q (fv), Kt = FCt

k

(
f t
)

και Vt = FCt
v

(
f t
)
. Η τιμή κλίμακας, η οποία αναπαρίσταται ως St, μπορεί να υπολογιστεί ως

εξής:

St = sigmoid

(
Qi ·KT

t√
d

)
΄Οσον αφορά την τροπικότητα της εικόνας, ορίζουμε Qt = FCi

q

(
f t
)
, Ki = FCi

k (fv) και

Vi = FCi
v (fv). Η τιμή κλίμακας, η οποία αναπαρίσταται ως Si, μπορεί να υπολογιστεί ως

εξής:

Si = sigmoid

(
Qt ·KT

i√
d

)
. Οι έξοδοι του μηχανισμού προσοχής μπορούν να υπολογιστούν ως St × Vt και Si × Vi. Ο-

ρίζουμε FCt
q, FCt

k, FCt
v, FCi

q, FCi
k, FCi

v ∈ Rd×d
. Παρόμοια με [46], χρησιμοποιούμε residual

connections ακολουθούμενες από κανονικοποίηση επιπέδου, όπως περιγράφεται στις παρακάτω

εξισώσεις:

Êt = LayerNorm
(
St × Vt + f t

)
,

Êi = LayerNorm (Si × Vi + fv)

.

Στη συνέχεια, περνάμε τα Êt και Êi μέσω δύο κοινών πλήρως συνδεδεμένων δικτύων με

συνάρτηση ενεργοποίησης ReLU, ως εξής:

Êt
′
= LayerNorm

(
FCn

m

(
ReLU

(
FCq

p

(
Êt

))))
,

Êi
′
= LayerNorm

(
FCn

m

(
ReLU

(
FCq

p

(
Êi

))))
, όπου FCq

p ∈ Rd×4d
, FCn

m ∈ R4d×d
.

Στη συνέχεια, συνενώνουμε τα Êt και Êt
′
(ομοίως τα Êi και Êi

′
) σε ένα ενιαίο διάνυσμα,

δηλαδή

Êt
′′

= [Êt, Êt
′
]

,

Êi
′′

= [Êi, Êi
′
]

, όπου Êt
′′
, Êi

′′ ∈ R2d
.

Μέθοδοι Συγχώνευσης (Fusion Methods)

• Concatenation

• Gated Multimodal Unit (GMU)

• MUTAN Decomposition
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• Multimodal Low-rank Bilinear (MLB) pooling

• MFB

• MFH

• BLOCK

Επίπεδο Εξόδου. Τέλος, ορίζουμε το επίπεδο εξόδου.

1.2.2.4 Αποτελέσματα

Για τον έλεγχο σημαντικότητας, χρησιμοποιούμε το Almost Stochastic Order (ASO)

test [47, 48] όπως υλοποιήθηκε από [49]. Συγκεκριμένα, το τεστ ASO καθορίζει αν υπάρχει

στοχαστική τάξη [50] μεταξύ δύο μοντέλων, δηλαδή του A και του B. Υπολογίζεται μια

βαθμολογία (ϵmin) που αντιπροσωπεύει πόσο μακριά είναι το πρώτο από το να είναι σημαντικά

καλύτερο από το δεύτερο. ΄Οταν ϵmin = 0, τότε το A είναι πραγματικά στοχαστικά κυρίαρχο

επί του B. ΄Οταν ϵmin < 0.5, το A είναι σχεδόν στοχαστικά κυρίαρχο επί του B. Για

ϵmin = 0.5, δεν μπορεί να καθοριστεί τάξη.

Τα αποτελέσματα παρουσιάζονται στον Πίνακα 1.3. Παρατηρούμε ότι η χρήση του BLOCK

ως μέθοδος συγχώνευσης οδηγεί στο καλύτερο μοντέλο, ξεπερνώντας τις υπόλοιπες προσεγ-

γίσεις στην Ακρίβεια και στο F1-score κατά 1.21-21.99% και 1.32-22.23% αντίστοιχα. Τα

πολυτροπικά μοντέλα αποδίδουν καλύτερα από τα μονοτροπικά, επαληθεύοντας την αρχική

μας υπόθεση ότι η χρήση πολλαπλών τροπικοτήτων βελτιώνει την απόδοση των αλγορίθμων.

Ο μηχανισμός συνένωσης (concatenation) επιτυγχάνει τα χειρότερα αποτελέσματα σε σύγκρι-

ση με τις άλλες μεθόδους συγχώνευσης, καθώς αποδίδει ίση σημασία σε κάθε τροπικότητα.

Πιστεύουμε ότι το MFB υπερτερεί του MFH, καθώς η μέθοδος MFH αποτελείται από τη

σύνδεση δύο MFB μπλοκ, και έτσι φαίνεται να είναι περίπλοκη για το περιορισμένο σύνολο

δεδομένων, που χρησιμοποιούμε.

Υποθέτουμε ότι το GMU επιτυγχάνει χαμηλή απόδοση, καθώς ελέγχει τη ροή πληροφορι-

ών χωρίς να καταγράφει τόσο αποτελεσματικά τις αλληλεπιδράσεις μεταξύ των τροπικοτήτων.

Παρατηρούμε ότι οι αρχιτεκτονικές single-task learning αποδίδουν καλύτερα από τις αρχιτε-

κτονικές multi-task learning. Αυτό μπορεί να δικαιολογηθεί από το γεγονός ότι η κατάθλιψη

είναι μια ψυχική διαταραχή που μπορεί να συμβεί σε οποιονδήποτε. Υπάρχουν πολλοί λόγοι

για την κατάθλιψη, π.χ. αγχωτικά γεγονότα, προσωπικότητα, προβλήματα υγείας (καρκίνος),

μοναξιά, κ.λπ. Σύμφωνα με στατιστικό έλεγχο, το καλύτερο μοντέλο μας είναι σχεδόν στο-

χαστικά κυρίαρχο όσον αφορά την ακρίβεια σε σχέση με όλες τις προσεγγίσεις, εκτός από το

Only speech signal, όπου ϵmin = 0.
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Πίνακας 1.3: Συγκριτικός Πίνακας Αξιολόγησης. (∗) σημαίνει ότι ϵmin < 0.1, † σημαίνει ότι
ϵmin < 0.2, ‡ σημαίνει ότι ϵmin < 0.3, ∗∗ σημαίνει ότι ϵmin < 0.4 και †† σημαίνει ότι ϵmin < 0.5.

Δεν είμαστε σε θέση να πραγματοποιήσουμε στατιστικό έλεγχο με τα αποτελέσματα της μελέτης [42],

διότι οι συγγραφείς δεν παρέχουν τα αποτελέσματα που προέκυψαν από τα επιμέρους υποσύνολα.

Μετρικές Αξιολόγησης

Αρχιτεκτονική Precision Recall F1-score Accuracy Specificity

Μονοτροπικές Προσεγγίσεις

Only transcript 94.72
‡

91.78
∗∗

93.04
†

92.49
‡

93.51
∗∗

±5.38 ±5.77 ±3.77 ±3.97 ±6.96
Only Speech signal 80.73

∗
85.70

∗
82.49

∗
80.52

∗
74.21

∗

±12.12 ±9.57 ±8.51 ±8.97 ±16.87
eGeMAPSv02 79.05

∗
85.46

∗
81.67

∗
80.29

∗
76.64

∗

±13.50 ±7.92 ±9.69 ±10.11 ±15.26
ComParE 2016 86.03

∗
92.29 88.82

∗
87.97

∗
84.92

†

±8.92 ±3.96 ±5.31 ±4.93 ±9.49

Αποτελέσματα Μεθόδων [42]

BS1 73.50 74.50 73.60 73.30 –

±16.10 ±13.20 ±13.60 ±10.60 –

BS2 85.80 86.10 84.70 83.90 –

±3.10 ±2.70 ±0.90 ±1.30 –

Single - Task Learning

Concatenation 91.51
∗

93.35 92.11
†

91.46
†

90.91
†

±8.74 ±5.99 ±5.54 ±6.05 ±10.48
GMU 94.10

∗∗
93.41 93.38

∗∗
92.34

‡
92.33

∗∗

±9.51 ±6.61 ±6.25 ±7.22 ±11.91
MLB 95.95 91.82

∗∗
93.57

∗∗
92.96

∗∗
95.33

±7.69 ±6.31 ±5.37 ±5.94 ±9.71
MUTAN 93.75

‡
94.46 93.82

∗∗
92.75

∗∗
90.78

∗∗

±8.76 ±5.57 ±5.71 ±6.79 ±13.07
MFH 95.04

∗∗
92.79

††
93.75

∗∗
92.94

‡
91.28

∗∗

±6.62 ±5.01 ±4.46 ±5.56 ±17.76
MFB 94.68

∗∗
93.63 93.95

∗∗
93.18

∗∗
92.53

∗∗

±8.19 ±4.63 ±5.32 ±6.13 ±10.66
BLOCK 97.30 94.52 95.83 95.29 96.42

±4.43 ±4.52 ±3.81 ±4.23 ±6.04

Multi-Task Learning

Φύλο, Εκπαίδευση, Ηλικία 96.14 93.24 94.38
††

94.08
††

96.31

±5.02 ±6.95 ±3.65 ±3.45 ±4.86
Φύλο, Εκπαίδευση 97.22 92.28

††
94.51

††
94.07

††
95.95

±5.14 ±6.82 ±4.65 ±5.03 ±9.35
Εκπαίδευση, Ηλικία 94.41

∗∗
93.63 93.74

∗∗
93.62

††
93.56

††

±7.24 ±5.97 ±4.52 ±4.48 ±8.05
Φύλο, Ηλικία 96.55 92.51

††
94.30

††
93.84

††
94.53

±4.87 ±6.09 ±3.72 ±4.25 ±13.05
Φύλο 94.61

∗∗
93.29 93.61

∗∗
93.20

∗∗
93.68

††

±9.28 ±7.18 ±6.51 ±6.81 ±10.63
Εκπαίδευση 94.22

∗∗
93.04 93.44

‡
93.00

∗∗
92.03

∗∗

±9.16 ±7.27 ±7.34 ±7.31 ±12.41
Ηλικία 94.99

∗
92.32

††
93.34

‡
92.56

‡
93.42

††

±7.46 ±6.72 ±5.09 ±5.85 ±10.79
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1.3 Διάγνωση ΄Ανοιας

1.3.1 Κίνητρο

Η νόσος Alzheimer (AD) είναι μια νευρολογική διαταραχή, που εξελίσσεται με την πάροδο

του χρόνου, και αποτελεί την πιο κοινή αιτία άνοιας. Σύμφωνα με τον ΠΟΥ, περίπου 55

εκατομμύρια άνθρωποι έχουν άνοια παγκοσμίως με πάνω από το 60% να ζει σε χώρες χαμηλού

και μεσαίου εισοδήματος [51]. Επιπλέον, η άνοια επηρεάζει την ικανότητα ενός ατόμου να

επικοινωνεί. Πιο συγκεκριμένα, τα άτομα με άνοια μπορεί να μην είναι σε θέση να βρουν

τις σωστές λέξεις ή να μην μπορούν να βρουν καμία λέξη. Ταυτόχρονα, δεν μπορούν να

παραμείνουν συγκεντρωμένοι σε μια συζήτηση και τείνουν να χρησιμοποιούν λέξεις χωρίς

νόημα, με αποτέλεσμα να μην μπορούν να επικοινωνήσουν με άλλους ανθρώπους. Σημάδια

άνοιας περιλαμβάνουν μεταξύ άλλων: προβλήματα με τη βραχυπρόθεσμη μνήμη, πληρωμή

λογαριασμών, προγραμματισμός και προετοιμασία γευμάτων, ραντεβού ή ταξίδια [52]. Αυτό

το γεγονός συνεπάγεται σωματικές, ψυχολογικές, κοινωνικές και οικονομικές επιπτώσεις όχι

μόνο για τα άτομα που ζουν με άνοια, αλλά και για τους φροντιστές τους, τις οικογένειές τους

και την κοινωνία γενικότερα. Λόγω του γεγονότος ότι η άνοια χειροτερεύει με την πάροδο

του χρόνου, είναι σημαντικό να διαγνωστεί έγκαιρα.

1.3.2 Δεδομένα

ADReSS Challenge Dataset. Χρησιμοποιούμε το σύνολο δεδομένων ADReSS Chal-

lenge [53] για τη διεξαγωγή των πειραμάτων μας. Τα δεδομένα αντιστοιχούν σε προφορικές

περιγραφές εικόνων (Σχήμα 1.3) που προέρχονται από τους συμμετέχοντες μέσω της εικόνας

κλοπής cookies από την εξέταση αφασίας της Βοστώνης [54]. Επιλέγουμε το συγκεκριμένο

σύνολο δεδομένων, καθώς ελαχιστοποιεί πολλά είδη προκαταλήψεων, που θα μπορούσαν να

επηρεάσουν την εγκυρότητα των προτεινόμενων προσεγγίσεων κατά τη διαδικασία εκπαίδευ-

σης και αξιολόγησης. Συγκεκριμένα, σε αντίθεση με άλλα σύνολα δεδομένων, το σύνολο

δεδομένων ADReSS Challenge αντιστοιχεί στο φύλο και την ηλικία. Επιπλέον, είναι ισορρο-

πημένο, αφού περιλαμβάνει 78 ασθενείς με άνοια και 78 υγιή άτομα. Αυτό που αξίζει επίσης

να σημειωθεί είναι το γεγονός ότι το σύνολο δεδομένων ADReSS Challenge έχει επιλεγεί

προσεκτικά έτσι ώστε να μετριάζονται κοινές προκαταλήψεις που συχνά παραβλέπονται στις

αξιολογήσεις μεθόδων ανίχνευσης άνοιας, συμπεριλαμβανομένων των επαναλαμβανόμενων εμ-

φανίσεων ομιλίας από τον ίδιο συμμετέχοντα και προβλημάτων σε ποιότητα ήχου. Για να

είμαστε πιο ακριβείς, οι εγγραφές έχουν βελτιωθεί ακουστικά με σταθερή αφαίρεση θορύβου

και έχει εφαρμοστεί κανονικοποίηση της έντασης του ήχου σε όλα τα τμήματα ομιλίας. Το

σύνολο δεδομένων έχει χωριστεί από τους διοργανωτές σε ένα σύνολο εκπαίδευσης (train

set) και ένα σύνολο δοκιμής (test set). Το train set αποτελείται από 54 ασθενείς με άνοια

και 54 υγιείς, ενώ το test set περιλαμβάνει 24 ασθενείς με άνοια και 24 υγιείς.
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Σχήμα 1.3: The Cookie Theft picture
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1.3.3 Διάγνωση ΄Ανοιας με Χρήση Απομαγνητοφωνημένου Κειμένου

Βελτιστοποιούμε (fine-tune) μοντέλα βασισμένα σε μετασχηματιστές (transformers. Συ-

γκεκριμένα, βελτιστοποιούμε τα εξής μοντέλα: BERT [26], BioBERT [55], BioClinicalBERT

[56], ConvBERT [57], RoBERTa [58], ALBERT [59], και XLNet [60].

1.3.3.1 Αποτελέσματα

Τα αποτελέσματα των προτεινόμενων μοντέλων που αναφέρονται παραπάνω αναφέρονται

στον Πίνακα 1.4. Επίσης, ο Πίνακας 1.4 παρέχει μια σύγκριση των προτεινόμενων μοντέλων

μας με υπάρχουσες ερευνητικές πρωτοβουλίες.

Πίνακας 1.4: Σύγκριση της απόδοσης των προτεινόμενων μοντέλων και εργασιών της βιβλιογρα-

φίας στο ADReSS Challenge test set. Οι τιμές αναπαρίστανται ως: μέσος όρος ± τυπική απόκλιση.
Παίρνουμε τον μέσο όρο σε 5 τρεξίματα του μοντέλου.

Μετρικές Αξιολόγησης

Αρχιτεκτονική Prec. Rec. F1-score Acc. Spec.

Σύγκριση με μεθόδους της βιβλιογραφίας

[61] - 87.50 - 89.58 91.67

[62] 81.82 75.00 78.26 79.17 83.33

[63] - - 85.40 85.20 -

[64] - - - 85.00 -

[65] 86.00 79.00 83.00 83.33 88.00

[66] - - - 85.42 -

[67] 94.12 66.67 78.05 81.25 95.83

Προτεινόμενα Μοντέλα

BERT 87.19 81.66 86.73 87.50 93.33

±3.25 ±5.00 ±4.53 ±4.37 ±5.65
BioBERT 86.87 78.33 82.11 82.92 87.50

±6.09 ±4.86 ±2.83 ±3.06 ±6.97
BioClinicalBERT 95.03 76.66 84.72 86.25 95.83

±3.03 ±4.99 ±2.74 ±2.12 ±2.64
ConvBERT 83.51 79.99 81.65 82.08 84.16

±1.23 ±4.08 ±2.06 ±1.66 ±1.66
RoBERTa 90.24 76.66 82.81 84.16 91.66

±2.81 ±4.99 ±3.52 ±2.83 ±2.64
ALBERT 79.15 78.33 78.45 78.33 78.33

±7.89 ±3.11 ±3.12 ±3.86 ±8.89
XLNet 85.58 68.33 75.75 78.33 88.33

±2.77 ±6.77 ±4.05 ±2.82 ±3.12
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΄Οσον αφορά τα προτεινόμενα μοντέλα που βασίζονται σε μετασχηματιστές, κάποιος μπο-

ρεί εύκολα να παρατηρήσει ότι το BERT επιτυγχάνει την υψηλότερη Ανάκληση, F1-score και

Ακρίβεια, με τις μετρικές αυτές να ανέρχονται στο 81.66%, 86.73% και 87.50% αντίστοιχα.

Συγκεκριμένα, το BERT υπερτερεί σε σύγκριση με τα άλλα προτεινόμενα μοντέλα που βασίζο-

νται σε μετασχηματιστές στην Ανάκληση κατά 1.67-13.33%, στο F1-score κατά 2.01-10.98%,

και στην Ακρίβεια κατά 1.25-9.17%. Το BioClinicalBERT επιτυγχάνει τη δεύτερη υψηλότερη

Ακρίβεια και F1-score, με τις μετρικές αυτές να ανέρχονται σε 86.25% και 84.72% αντίστοιχα.

Επίσης, το BioClinicalBERT επιτυγχάνει την υψηλότερη Ακρίβεια, που είναι ίση με 95.03%,

υπερβαίνοντας τα άλλα μοντέλα που βασίζονται σε μετασχηματιστές κατά 4.79-15.88%. Το

RoBERTa επιτυγχάνει παρόμοια αποτελέσματα με το BERT και το BioClinicalBERT με Α-

κρίβεια και F1-score ίσα με 84.16% και 82.81% αντίστοιχα. Επιπλέον, το BioBERT και το

ConvBERT δείχνουν μικρές διαφορές στην Ακρίβεια και το F1-score, με το BioBERT να

υπερβαίνει το ConvBERT και στις δύο μετρικές. Συγκεκριμένα, το BioBERT υπερτερεί στο

F1-score κατά 0.46% και στην Ακρίβεια κατά 0.84%. Επιπλέον, παρατηρούμε ότι το ALBERT

και το XLNet επιτυγχάνουν σκορ Ακρίβειας ίσο με 78.33%, με το ALBERT να υπερτερεί στο

F1-score κατά 2.70%.

Σε σύγκριση με τις προηγμένες προσεγγίσεις, κάποιος μπορεί να παρατηρήσει ότι τα προ-

τεινόμενα μοντέλα μας επιτυγχάνουν παρόμοια ή ακόμα και υπερτερούν των προηγούμενων

μελετών. Ειδικότερα, το BERT υπερτερεί σε σύγκριση με όλα τα έργα έρευνας, εκτός από το

[61], ως προς την Ακρίβεια κατά 2.08-8.33%, το F1-score κατά 1.33-8.68%, και την Ανάκληση

κατά 2.66-14.99%.

1.3.3.2 Γλωσσολογική Ανάλυση

Ο κύριος στόχος αυτής της ενότητας είναι να φωτίσει ποια μονογράμματα (unigrams) και

μορφές λόγου (pos-tags) συσχετίζονται κυρίως με κάθε κατηγορία ξεχωριστά [68]. Για να

διευκολυνθεί αυτό, υπολογίζουμε την συσχέτιση point-biserial μεταξύ κάθε χαρακτηριστικού

(μονόγραμμα και μορφή λόγου) σε όλες τις απομαγνητοφωνήσεις κειμένου και της ετικέτας

εξόδου - label (0 για τον ομάδα ελέγχου και 1 για την ομάδα άνοιας). Πριν υπολογίσουμε

τη συσχέτιση, κανονικοποιούμε τα χαρακτηριστικά έτσι ώστε να αθροίζουν στο 1 σε κάθε

κείμενο. Χρησιμοποιούμε τη συσχέτιση point-biserial, αφού αυτή είναι μια συσχέτιση μεταξύ

συνεχών και δυαδικών μεταβλητών. Επιστρέφει μια τιμή μεταξύ -1 και 1. Δεδομένου ότι

ενδιαφερόμαστε μόνο για τη δύναμη της συσχέτισης, υπολογίζουμε την απόλυτη τιμή, όπου

αρνητικές συσχετίσεις αναφέρονται στην ομάδα ελέγχου (ετικέτα 0) και θετικές συσχετίσεις

αναφέρονται στην ομάδα άνοιας (ετικέτα 1). Αναφέρουμε τα ευρήματά μας στον Πίνακα 1.5,

όπου όλες οι συσχετίσεις είναι σημαντικές στο p < 0, 05, με διόρθωση Benjamini-Hochberg

[69] για πολλαπλές συγκρίσεις.

΄Οπως εύκολα μπορεί να παρατηρήσει κανείς, τα μέρη του λόγου (pos-tags) που συσχε-

τίζονται με την ομάδα της άνοιας είναι τα ακόλουθα: RB (επιρρήματα), PRP (προσωπική α-

ντωνυμία), VBD (ρήμα σε παρελθόντα χρόνο), και UH (interjection). Από την άλλη πλευρά,

οι άνθρωποι στην ομάδα ελέγχου τείνουν να χρησιμοποιούν VBG (ρήμα, γερούνδιο ή μετοχή
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Πίνακας 1.5: Χαρακτηριστικά που σχετίζονται με υγιή άτομα και άτομα με άνοια, ταξινομημένα

βάσει της συσχέτισης point-biserial. ΄Ολες οι συσχετίσεις είναι σημαντικές στο p < 0.05 μετά από

διόρθωση Benjamini-Hochberg.

Υγιή ΄Ατομα ΄Ανοια

Unigrams corr. Unigrams corr.

is 0.364 here 0.310

curtains 0.361 - -

window 0.301 - -

are 0.300 - -

POS corr. POS corr.

VBG 0.285 RB 0.388

DT 0.216 PRP 0.354

NN 0.210 VBD 0.275

- - UH 0.242

ενεστώτα), DT (προσδιοριστή), και NN (ουσιαστικό). Αυτά τα ευρήματα μπορούν να δικαιο-

λογηθούν στον Πίνακα 1.6, όπου παρουσιάζουμε τρία παραδείγματα απομαγνητοφωνημένων

κειμένων που ανήκουν στην ομάδα ελέγχου και τρία παραδείγματα απομαγνητοφωνημένων

κειμένων που ανήκουν στην ομάδα της άνοιας. Συγκεκριμένα, έχουμε αναθέσει χρώματα σε

διαφορετικά μέρη του λόγου, έτσι ώστε να γίνουν εύκολα κατανοητές οι διαφορές στα γλωσ-

σικά πρότυπα που χρησιμοποιούνται από κάθε ομάδα στον αναγνώστη. Για να είμαστε πιο

ακριβείς, το κόκκινο χρώμα υποδεικνύει το pos-tag VBG, το κίτρινο αναφέρεται στο pos-tag

DT, το φούξια στο pos-tag RB, το βερικοκί στο pos-tag PRP, το μπλε στο pos-tag VBD,

και το πράσινο στο pos-tag UH.

Παρατηρούμε ότι οι άνθρωποι στην ομάδα της άνοιας τείνουν να χρησιμοποιούν προσω-

πικές αντωνυμίες (αυτός, αυτή, εγώ, εκείνοι κλπ.) πολύ συχνά, καθώς είναι ανίκανοι να

θυμηθούν τους συγκεκριμένους όρους (μαμά, αγόρι κλπ.). Αυτό το εύρημα συμφωνεί με

την έρευνα που διεξήχθη από τους [70], όπου οι συγγραφείς αναφέρουν ότι οι προσωπικές

αντωνυμίες παρουσιάζουν υψηλή συχνότητα στην ομιλία των ασθενών με Αλτσχάιμερ, καθώς

αυτοί οι άνθρωποι δεν μπορούν να βρουν την επιθυμητή λέξη. Για να είμαστε πιο ακριβείς,

σε μια συνομιλία οι άνθρωποι πρέπει να θυμούνται τι είπαν κατά τη διάρκεια ολόκληρης της

συνομιλίας. Ωστόσο, αυτό δεν είναι εφικτό στους ασθενείς με Αλτσχάιμερ, οι οποίοι παρου-

σιάζουν ελλείμματα στην εργασιακή μνήμη και έτσι τείνουν να παράγουν άδεια ομιλία (χρήση

προσωπικών αντωνυμιών). Από την άλλη πλευρά, οι άνθρωποι στην ομάδα ελέγχου τείνουν

να χρησιμοποιούν περισσότερα ουσιαστικά αντί για προσωπικές αντωνυμίες, καθώς είναι σε

θέση να διατηρούν διάφορα είδη πληροφοριών.

Επιπλέον, οι ασθενείς με Αλτσχάιμερ τείνουν να χρησιμοποιούν ρήματα στο παρελθόν

(ήταν, ξέχασα, έκανα, άρχισαν) αντίθετα με τους ανθρώπους που δεν πάσχουν από άνοια, οι

οποίοι χρησιμοποιούν ρήματα στον ενεστώτα. ΄Ενα χαρακτηριστικό παράδειγμα που μπορεί

να επισημανθεί στο πέμπτο κείμενο στον Πίνακα 1.6, δηλαδή, ”oh have you heard of that
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new game that they started to play after christmas ? did you ?”. Ο ασθενής με Αλτσχάι-

μερ ίσως θυμάται μια προσωπική ιστορία από το παρελθόν που θέλει να διηγηθεί, αντί για

την εργασία που του έχει ανατεθεί να εκτελέσει. Συνεπώς, ο ασθενής δεν είναι σε θέση να

παραμείνει εστιασμένος στην περιγραφή της εικόνας. Αυτό το εύρημα είναι συμβατό με τις

εργασίες [71, 72], όπου οι συγγραφείς αναφέρουν ότι οι ασθενείς με Αλτσχάιμερ παρουσιάζουν

δυσκολία στη διατήρηση και τη συνέχιση της ανάπτυξης ενός θέματος και έτσι επιδεικνύουν

απρόσμενες αλλαγές θέματος. Επίσης, αυτό το εύρημα αποκαλύπτει διαφορά στη γλώσσα

που χρησιμοποιούν οι ασθενείς με Αλτσχάιμερ και οι αφασικοί με αγραμματική άνοια. Συ-

γκεκριμένα, οι ασθενείς με αφασική άνοια τυπικά έχουν προβλήματα στη χρήση του χρόνου

παρελθόντος και αντ΄ αυτού βασίζονται σε ρήματα σε παρόντα χρόνο [73].

Επιπλέον, οι ασθενείς με Αλτσχάιμερ τείνουν να χρησιμοποιούν τα pos-tags UH (αχ,

ναι, καλά) και RB (ίσως, πιθανώς), καθώς δεν είναι σίγουροι για αυτό που περιγράφουν

λόγω της πνευματικής ανασφάλειας. Ταυτόχρονα, το pos-tag UH αποτελεί ένα παράδειγμα

άδειας ομιλίας. Συγκεκριμένα, αυτό το pos-tag χρησιμοποιείται ως γέμισμα στην αρχή κάθε

εκφώνησης, καθώς οι ασθενείς με Αλτσχάιμερ σκέφτονται τι να πουν.

Πίνακας 1.6: Παραδείγματα απομαγνητοφωνημένων κειμένων με τις ετικέτες τους. Το κόκκινο

χρώμα υποδηλώνει το μέρος του λόγου VBG, το κίτρινο αναφέρεται στο μέρος του λόγου DT, το

φούξια στο μέρος του λόγου RB, το βερικοκκύ στο μέρος του λόγου PRP, το σκούρο μπλε στο μέρος

του λόγου VBD και το πράσινο στο μέρος του λόγου UH.

Απομαγνητοφωνημένο Κείμενο Ετικέτα

” well the girl is watching the boy go into the cookie jar . he has a cookie

in his hand . he’s on the stool . the stool is falling . the mother is drying

dishes . has a plate in her hand . sink is overflowing . there’s water on the

floor . she’s stepping in the water . something that’s going on you said ?

the little girl looks like she’s motioning to the boy to be quiet . and I don’t

know what else . the woman’s looking out the window . the window’s open

. ”

Υγιές

΄Ατο-

μο

” action . alright . a lady’s drying dishes . the boy was standing on a stool

but the action is that the stool has slipped and he is falling . and the girl

has her hand raised reaching for a cookie . and there’s a lot of action in

the sink here . the water is flowing out . she is apparently so daydreaming

that she doesn’t realize that the sink is overflowing . any more action ? or

is that enough action ? ”

Υγιές

΄Ατο-

μο

” touching lip . raising arm . is that what you mean ? reaching for cookie

. handing cookie down . slipping from stool . stool falling over . wiping

dishes . water running . water overflowing . breeze . I don’t know if that’s

action . stepping out from water . I guess that’s it . ”

Υγιές

΄Ατο-

μο

συνεχίζει στην επόμενη σελίδα
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Πίνακας 1.6

Απομαγνητοφωνημένο Κείμενο Ετικέτα

” alright . I see the little boy stealing cookies from the cookie jar . and he

gave some to the little girl and she’s eating some of the cookies . and I guess

this is mama and she’s washing the dishes . and she dropped a dish . no she

didn’t drop a dish . the water that she’s washing the dishes with she let run

. and it’s overflown . that doesn’t sound right . did it ? we forgot to turn

off the spigot . and so the water is running off onto the floor here . and

mom apparently is washing the dishes . and here’s this little boy stealing the

cookies . he’s gonna fall because the four legged stool is gonna fall over with

him and the cookie jar . and mama’s drying the dishes as usual for mamas

if they don’t have a husband that dries them or washes them or whatever .

let’s see now . I guess there’s more things I’m sposta see . let’s see here

now . oh and the water is flowing out of the sink they forgot to turn off

whoever’s doing the dishwashing . mom apparently here , she forgot to turn

off the water and the water is spilling out onto the kitchen floor . and the

little girl has pushed over the stool with the boy that was reaching up to get

the cookies . either she pushed it over or he fell over with it . you know it

excuse me but you know I was ... ”

΄Ανοια

” mhm . oh I see a part of the whole kitchen . is that all the kitchen or isn’t

it ? oh I can’t read ... a lady a mother were in her kitchen . in her kitchen

doing some work I suppose . and there’s another woman there sharing their

pleasures or whatever . oh have you heard of that new game that they started

to play after christmas ? did you ? is a . well it looks like ... I’d say this is

... well let’s see . it looks like ... oh ... . my wife will beat me by a couple

rows of this . that’s like the washing machine ? or let me see . I can’t ...

oh that’s the son come from school maybe or something . that’s a youngster

there . well that’s just as though they getting ready to go to school or they’re

just coming out from school . and right there he’s same as back there except

for down there in the bottom I think it’s ... that’s a little . ”

΄Ανοια

συνεχίζει στην επόμενη σελίδα
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Πίνακας 1.6

Απομαγνητοφωνημένο Κείμενο Ετικέτα

” yes . the water ? well let’s see . there’s something hasta be where the

water goes down over . there’s probably something that’s ... or they don’t

have it open or something might have. I don’t know . what ..? when the

water goes down what do you call that ? this here . right here . this . what

do you call that ? what is that ? what is that ? I don’t know ! that’s what

I’m saying . I don’t know what that is . the what ? a pipe . oh water pipe

! oh yeah . okay . well then maybe the water pipe is not broke but there

must be things in there . that the water will not go down . I don’t know .

huh ? what’s happening to the water ? well the water is going down in the

... I don’t know . what would you call this ? floor ! yeah okay . yeah . well

down on this side of the picture . well this thing here is turning over . yeah

. no , uhuh . I don’t know what’s going on . well he’s probably getting ...

what’s this here ? cocoa jar ? what’s this cocoa ? c o o k i e . I don’t know

. I don’t know what ..? huh ? cookie , oh a cookie . oh ! oh okay . mhm

. well he’s getting it out . and he’s gonna give it to the girl /. down here

. mhm . going on in the picture ? well the boy is giving her the girl the

cookie . this probably is broke . so the water will not go down in and it’s

coming up and going in here huh . well it looks like she was gonna wash .

what they eat with , all that . what do you call that ? what do you call this

? a plate ? oh yeah . what you eat on . is that what you call them a plate

? oh this is a cup ? oh maybe , I don’t know . mhm . okay . ”

΄Ανοια

1.3.3.3 Επεξηγησιμότητα

Σε αυτή την ενότητα, χρησιμοποιούμε το LIME [74] (χρησιμοποιώντας 5000 δείγματα) για

να εξηγήσουμε τις προβλέψεις που κάνει το καλύτερο μοντέλο μας, δηλαδή το BERT, και να

διερευνήσουμε περισσότερο τις διαφορές στη γλώσσα μεταξύ των ασθενών με Αλτσχάιμερ και

των μη ασθενών. Πιο συγκεκριμένα, το LIME δημιουργεί τοπικές εξηγήσεις για οποιονδήποτε

ταξινομητή μηχανικής μάθησης εισάγοντας ένα ερμηνεύσιμο μοντέλο, το οποίο εκπαιδεύεται

σε δεδομένα που παράγονται μέσω της παρατήρησης διαφορών στην απόδοση ταξινόμησης

όταν αφαιρούνται λέξεις από το αρχικό κείμενο.

Παραδείγματα εξηγήσεων που δημιουργούνται από το LIME παρουσιάζονται στα Σχήματα

1.4-1.7. Πιο συγκεκριμένα, το Σχήμα 1.4 απεικονίζει δύο απομαγνητοφωνημένα κείμενα, τα

οποία αντιστοιχούν σε άνοια. Ωστόσο, το μοντέλο μας τα προβλέπει ως υγιή. Το Σχήμα 1.5

αφορά απομαγνητοφωνημένα κείμενα, τα οποία έχουν προβλεφθεί σωστά από το μοντέλο μας

ότι ανήκουν σε ασθενείς με άνοια. Στο Σχήμα 1.6, παρουσιάζονται δύο κείμενα, η πρόβλεψη

των οποίων είναι υγιούς ατόμου και η πραγματική ετικέτα είναι επίσης υγιές άτομο. Τέλος,

το Σχήμα 1.7 απεικονίζει κείμενα που ταξινομούνται λανθασμένα. Τα απομαγνητοφωνημένα

αυτά κείμενα αντιστοιχούν σε υγιή άτομα, ενώ η πρόβλεψη είναι άνοια. Επιπλέον, όπως μπορεί
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κανείς να παρατηρήσει, κάθε σε κάθε λέξη έχει ανατεθεί ένα χρώμα, είτε μπλε είτε πορτοκαλί.

Για να είμαστε πιο ακριβείς, το μπλε χρώμα υποδεικνύει ποιες λέξεις είναι ενδεικτικές της

ομάδας ελέγχου, ενώ το πορτοκαλί χρώμα υποδεικνύει λέξεις που χρησιμοποιούνται κυρίως

από ασθενείς με άνοια. ΄Οσο πιο έντονα είναι τα χρώματα, τόσο πιο σημαντικές είναι αυτές οι

λέξεις προς την τελική ταξινόμηση του απομαγνητοφωνημένου κειμένου.

΄Οπως είναι εύκολο να παρατηρήσει κανείς στο Σχήμα 1.5, οι λέξεις που ανήκουν στο pos-

tag UH, όπως το yeah και το oh, αναγνωρίζονται ως σημαντικές από το μοντέλο μας για την

άνοια. Επιπλέον, οι προσωπικές αντωνυμίες (she, they) και τα ρήματα στον παρελθόν (got,

had) είναι επίσης ενδεικτικά της νόσου. Επίσης, το μοντέλο μας θεωρεί σημαντική τη λέξη

”here,”, η οποία αντιστοιχεί στο pos-tag RB, ενδεικτικό της κατηγορίας της νόσου. Αυτά τα

ευρήματα είναι συμβατά με αυτά που παρουσιάστηκαν στην Ενότητα 1.3.3.2, όπου έχουμε βρει

ότι τα μέρη του λόγου PRP, VBD, UH, καθώς και η λέξη ”here” συσχετίζονται σημαντικά με

την κατηγορία της νόσου. Επιπλέον, το μοντέλο μας αναγνωρίζει την επανάληψη της λέξης

”and” ως σημαντική για την κατηγορία της νόσου.

Σχετικά με το Σχήμα 1.6, κάποιος μπορεί εύκολα να παρατηρήσει ότι το μοντέλο μας

αναγνωρίζει τις λέξεις που ανήκουν στα μέρη του λόγου VBG (putting, drying, blowing,

standing, κλπ.), DT (the, a), και NN (cookie, action, stool, κλπ.) ως σημαντικά για την

κατηγορία ελέγχου. Ταυτόχρονα, συμφωνώντας με τα ευρήματα της Ενότητας 1.3.3.2, οι

λέξεις ”curtain” και ”window” χρησιμοποιούνται κυρίως από υγιείς.

΄Οσον αφορά στα Σχήματα 1.4 και 1.7, το μοντέλο μας δεν είναι σε θέση να ταξινομήσει

σωστά αυτά τα κείμενα. ΄Ενας πιθανός λόγος για τέτοιες λανθασμένες ταξινομήσεις σχε-

τίζεται με το γεγονός ότι αυτά τα κείμενα περιλαμβάνουν pos-tags που είναι ενδεικτικά τόσο

της ομάδας ελέγχου όσο και της ομάδας της νόσου. Πιο συγκεκριμένα, στο Σχήμα 1.4, η

πλειοψηφία των λέξεων σε κάθε κείμενο ανήκουν στα μέρη του λόγου VBG, NN, και DT,

τα οποία αναγνωρίζονται σωστά από το μοντέλο μας ως σημαντικά για την ομάδα ελέγχου.

Λέξεις, όπως ”and”, ”him,” και ”well” χρησιμοποιούνται σε χαμηλή συχνότητα. Παρόμοια με

το Σχήμα 1.4, στο Σχήμα 1.7, η πλειοψηφία των λέξεων σε κάθε κείμενο ανήκει στα pos-tags

που συσχετίζονται σημαντικά με την κατηγορία της νόσου. Αυτό μπορεί να αποδειχθεί στο

Σχήμα 1.7γʹ, όπου παρατηρούμε τη χρήση λέξεων όπως ”and”, ”yeah,” ”well,” και ”got”.

(αʹ)

(βʹ)

Σχήμα 1.4: Label: Dementia, Prediction: Control
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(αʹ)

(βʹ)

(γʹ)

Σχήμα 1.5: Label: Dementia, Prediction: Dementia

(αʹ)

(βʹ)

Σχήμα 1.6: Label: Control, Prediction: Control

(αʹ)

(βʹ)

(γʹ)

Σχήμα 1.7: Label: Control, Prediction: Dementia
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1.3.4 Πολυτροπικά Μοντέλα για Διάγνωση ΄Ανοιας με χρήση Ομι-

λίας και Απομαγνητοφωνημένου Κειμένου

Στην προηγούμενη ενότητα, χρησιμοποιήσαμε μόνο το απομαγνητοφωνημένο κείμενο για

τη διάγνωση της άνοιας. Στην ενότητα αυτή, θα χρησιμοποιήσουμε και το απομαγνητοφωνη-

μένο κείμενο και τον ήχο.

Σε αντίθεση με υπάρχουσες εργασίες, που χρησιμοποιούν στρατηγικές early και late fu-

sion αμελώντας έτσι τις αλληλεπιδράσεις διαφορετικών τροπικοτήτων μεταξύ τους, η διατριβή

αυτή προτείνει μεθόδους αποτελεσματικού συνδυασμού των διαφορετικών τροπικοτήτων.

Στις Εικόνες 1.8 - 1.14, παρουσιάζουμε τις προτεινόμενες μεθόδους συγχώνευσης των

διαφορετικών τροπικοτήτων.

Ως είσοδο σε όλα τα νευρωνικά δίνεται το απομαγνητοφωνημένο κείμενο, ενώ το αρχείο

ήχου μετατρέπεται σε εικόνα 3 καναλιών, log-Mel spectrogram, delta, delta-delta. Στη

συνέχεια, χρησιμοποιούμε πολυτροπικές μεθόδους, οι οποίες περιγράφονται παρακάτω:

BERT + ViT + Gated Multimodal Unit Η προτεινόμενη αρχιτεκτονική απεικονίζεται

στην Εικόνα 1.8. Χρησιμοποιούμε ως μέθοδο συγχώνευσης των διαφορετικών τροπικοτήτων

το Gated Multimodal Unit [75], προκειμένου να ελέγξουμε τη συνεισφορά της κάθε τροπι-

κότητας ως προς την τελική έξοδο/ταξινόμηση.

Σχήμα 1.8: BERT + ViT + Gated Multimodal Unit

BERT + ViT + Crossmodal Attention Η προτεινόμενη αρχιτεκτονική απεικονίζε-

ται στην Εικόνα 1.9. Χρησιμοποιούμε ως μέθοδο συγχώνευσης των διαφορετικών τροπικο-

τήτων το crossmodal attention [76, 77, 78]. Συγκεκριμένα, ο μηχανισμός cross-attention

διακρίνεται σε δύο επίπεδα προσοχής, ένα από τα κείμενα Xβ προς τα οπτικά χαρακτηρι-
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στικά Xα και ένα από τα οπτικά προς τα κειμενικά χαρακτηριστικά. Στη συνέχεια, υπολο-

γίζουμε το scaled dot attention, όπως προτάθηκε στο [46] και δίνεται από την εξίσωση:

(α = softmax(QKT /
√

dproj)V ) με την αναπαράσταση του κειμένου ως query (Q), και την

αναπαράσταση της εικόνας ως key (K) και value (V ), και αντίστροφα.

Σχήμα 1.9: BERT + ViT + Crossmodal Attention

BERT + ViT + Co-Attention Η προτεινόμενη αρχιτεκτονική απεικονίζεται στην Ει-

κόνα 1.10. Ως μέθοδος συγχώνευσης των γλωσσικών και ακουστικών αναπαραστάσεων χρη-

σιμοποιείται ο μηχανισμός co-attention [79, 80]. Ο μηχανισμός αυτός χρησιμοποιείται στις

αναπαραστάσεις του κειμένου και της εικόνας και βοηθάει στη μάθηση των βαρών προσοχής

των απομαγνητοφωνημένων κειμένων και τμημάτων της εικόνας ταυτόχρονα.

Multimodal BERT Η προτεινόμενη αρχιτεκτονική απεικονίζεται στην Εικόνα 1.11. Χρη-

σιμοποιούμε μία μέθοδο, η οποία εισάγει ακουστική και οπτική πληροφορία στο γλωσσικό

μοντέλο BERT [18, 81, 19, 82].

BERT + ViT + Gated Self-Attention Η προτεινόμενη αρχιτεκτονική απεικονίζεται

στην Εικόνα 1.12. Ως μέθοδος συγχώνευσης των διαφορετικών τροπικοτήτων χρησιμοποιείται

το Gated Self-Attention [83]. Συγκεκριμένα, συνενώνουμε κατά γραμμές τις αναπαραστάσεις

του κειμένου και της εικόνας και χρησιμοποιούμε έναν μηχανισμό αυτο-προσοχής, που περιέχει

ένα μοντέλο πύλης gated model.
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Σχήμα 1.10: BERT + ViT + Co-Attention

Σχήμα 1.11: Multimodal BERT - eGeMAPS + ViT
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Σχήμα 1.12: BERT + ViT + Gated Self-Attention

1.3.4.1 Καλιμπράρισμα (Calibration)

Υιοθετούμε τη μέθοδο που αναφέρθηκε στην Ενότητα 1.2.1.4. Η προτεινόμενη αρχιτεκτο-

νική απεικονίζεται στην Εικόνα 1.13. Συγκεκριμένα, αφού έχουμε λάβει τις αναπαραστάσεις

του κειμένου και της εικόνας, ακολουθούμε την ακόλουθη διαδικασία:

• Βέλτιστος Πυρήνας Μεταφοράς (Optimal Transport Kernel): Για να εξασφαλίσουμε

ότι το μήκος της ακολουθίας των διανυσμάτων που προκύπτουν από το BERT και το

DeiT είναι το ίδιο, εκμεταλλευόμαστε έναν Βέλτιστο Πυρήνα Μεταφοράς (ΟΤΚ).

• Αναπαράσταση κειμένου: Περνάμε την κειμενική αναπαράσταση μέσω ενός ενισχυμένου
επιπέδου αυτο-προσοχής με πληροφορίες περιεχομένου. Εκμεταλλευόμαστε τρεις κύριες

μεθόδους για την παροχή πλαισίου (contextualization), συμπεριλαμβανομένου του κα-

θολικού περιεχομένου (global context), του βαθέος περιεχομένου (deep context) και

του βαθέος-καθολικού περιεχομένου.

• Αναπαράσταση Εικόνας: Περνάμε την εικονική αναπαράσταση μέσω ενός μηχανισμού
αυτο-προσοχής με ένα νέο μοντέλο πύλης για τη μοντελοποίηση των εσωτερικών ενδο-

τροπικών αλληλεπιδράσεων.

• Βέλτιστη Μεταφορά (Optimal Transport): Χρησιμοποιούμε μεθόδους βέλτιστης μετα-

φοράς για την καταγραφή των δια-τροπικών αλληλεπιδράσεων.

• Πολυτροπικές Μέθοδοι: Στη συνέχεια, προτείνουμε δύο μεθόδους βασισμένες σε μη-
χανισμό προσοχής για τη συγχώνευση των χαρακτηριστικών αυτο-προσοχής και συν-

προσοχής.
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• Καλιμπράρισμα: Τέλος, για την αποτροπή δημιουργίας μοντέλων με υπερβολική αυτο-
πεποίθηση, χρησιμοποιούμε label smoothing.

(αʹ) Συν-Προσοχή. Το σκιασμένο πλαίσιο αντιστοιχεί στον μηχανισμό συν-προσοχής. Αυτή η μέθοδος

προσέχει τις διαφορετικές αναπαραστάσεις ταυτόχρονα.

(βʹ) Το σκιασμένο πλαίσιο δείχνει τη μέθοδο συγχώνευσης. Αυτή η μέθοδος χρησιμοποιεί δύο ανεξάρτητα

μοντέλα προσοχής. Τα χαρακτηριστικά συγχωνεύονται μέσω μιας λειτουργίας πρόσθεσης, ενώ το layer

normalization χρησιμοποιείται για τη σταθεροποίηση της εκπαίδευσης.

Σχήμα 1.13: Προτεινόμενες Αρχιτεκτονικές - Optimal Transport - Calibration

1.3.4.2 Αυτόματη Αναζήτηση Αρχιτεκτονικής Νευρωνικού Δικτύου

Η προτεινόμενη αρχιτεκτονική απεικονίζεται στην Εικόνα 1.14. Αποτελείται από τα παρα-

κάτω τμήματα:

• Απομαγνητοφωνημένο Κείμενο: BERT

• Αναζήτηση Ομιλίας-Νευρωνικής Αρχιτεκτονικής χρησιμοποιώντας τη μέθοδο DARTS

[84]. .

– Πολυτροπικές Μέθοδοι.

– Tucker Decomposition [85]

– Multimodal Factorized Bilinear Pooling (MFB) [86]

– Multimodal Factorized High-order pooling (MFH) [86]

– BLOCK [87]

– Συνένωση (Concatenation)
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BERT

Fusion Methods:
(i) Tucker
(ii) MFB
(iii) MFH
(iv) BLOCK
(v) Concatenation

CLS token

Dense Layer

(2 units)

AD patient

non - AD
patient

Dense Layer 

(64 units)

well the poor mother's doing
dishes . there's a boy on a
stool . cookie jar . and a girl
down below . is that all you

wanted to know ? okay .
there's a cookie jar . the little
boy is standing on a stool. 

Text Input

Image Input

DARTS
sep_conv_3x3

skip_connect
max_pool_3x3

3

1

0

2

Σχήμα 1.14: Μοντέλο που χρησιμοποιεί αυτόματη αναζήτηση αρχιτεκτονικής νευρωνικού δικτύου

και πολυτροπικές μεθόδους.

1.3.5 Αποτελέσματα

Στον Πίνακα 1.7 παρατηρούμε τα αποτελέσματα των προτεινόμενων αρχιτεκτονικών. Ε-

πίσης, πραγματοποιείται σύγκριση των αρχιτεκτονικών αυτών με υπάρχουσες μεθόδους της

βιβλιογραφίας.

΄Οσον αφορά τα προτεινόμενα μοντέλα, παρατηρούμε ότι το DARTS + BERT + BLOCK

είναι το καλύτερο μοντέλο σε απόδοση πετυχαίνοντας ποσοστά Accuracy και F1-score ίσα με

92.08% και 91.94% αντίστοιχα. Πιστεύουμε ότι το μοντέλο αυτό είναι το καλύτερο, επειδή

περιέχει μηχανισμό αυτόματης αναζήτησης αρχιτεκτονικής νευρωνικού δικτύου. Συγχρόνως,

χρησιμοποιείται ως μέθοδος συγχώνευσης το BLOCK. Το δεύτερο σε απόδοση μοντέλο είναι

το Attention-based fusion - Optimal Transport, το οποίο εξασφαλίζει απόδοση σε Accu-

racy ίση με 91.25%. Ο μηχανισμός calibration, που συμπεριλαμβάνεται σε αυτό το μοντέλο,

συμβάλλει στην απόδοση αυτή. Στην απόδοση αυτή συμβάλλουν επίσης και οι μέθοδοι συγ-

χώνευσης των τροπικοτήτων. Το μοντέλο BERT + ViT + Gated Self-Attention πετυχαίνει

την τρίτη μεγαλύτερη απόδοση σε Accuracy, καθώς η μέθοδος αυτή ¨πιάνει’ όλες τις αλλη-

λεπιδράσεις μεταξύ κειμένου και ήχου. Παρατηρούμε ότι το μοντέλο BERT + ViT + Gated

Multimodal Unit πετυχαίνει τη δεύτερη χειρότερη απόδοση. Πιστεύουμε ότι αυτό οφείλεται

στο γεγονός ότι η μέθοδος Gated Multimodal Unit ελέγχει τη ροή πληροφορίας προς την

έξοδο καθορίζοντας ποια τροπικότητα είναι περισσότερη σημαντική χωρίς να ¨πιάνει’ τις αλλη-

λεπιδράσεις μεταξύ των διαφορετικών τροπικοτήτων. Η χειρότερη απόδοση σε Accuracy με

ποσοστό ίσο με 80.83%

΄Οσον αφορά τη σύγκριση των μοντέλων μας με υπάρχουσες μεθόδους της βιβλιογραφίας,

παρατηρούμε τα εξής:

• Συγκριτικά με τις πολυτροπικές μεθόδους, παρατηρούμε ότι το καλύτερο μοντέλο μας,
δηλαδή το DARTS + BERT + BLOCK, τις ξεπερνά σε Accuracy κατά 2.50 - 17.08%.

Αυτό συμβαίνει, επειδή οι εργασίες αυτές χρησιμοποιούν μεθόδους early & late fusion

ή συγχωνεύουν τις αναπαραστάσεις διαφορετικών τροπικοτήτων κατά τη διάρκεια της

εκπαίδευσης. Επομένως, δεν ¨πιάνουν’ τις αλληλεπιδράσεις των διαφορετικών τροπικο-
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τήτων.

• Συγκριτικά με τις μεθόδους, που χρησιμοποιούν ως είσοδο μόνο μία τροπικότητα (κε-
ίμενο ή ήχο), παρατηρούμε ότι το μοντέλο μας πετυχαίνει καλύτερη απόδοση.

– ΄Οσον αφορά τις μεθόδους που χρησιμοποιούν μόνο το απομαγνητοφωνημένο κε-

ίμενο (BERT), το μοντέλο μας πετυχαίνει καλύτερη απόδοση σε Accuracy και

F1-score κατά 4.58% και 5.21% αντίστοιχα.

– ΄Οσον αφορά τις πολυτροπικές μεθόδους, η αρχιτεκτονική μας υπερβαίνει τις εργα-

σίες αυτές ως προς το Accuracy κατά 2.5 - 17.08%.

Πίνακας 1.7: Σύγκριση απόδοσης μεταξύ των προτεινόμενων μοντέλων και των υπάρχουσων

μεθόδων στο σύνολο δεδομένων του ADReSS Challenge. Οι αναφερόμενες τιμές είναι ο μέσος

όρος ± η τυπική απόκλιση. Τα αποτελέσματα είναι μέσος όρος από πέντε εκτελέσεις. Τα καλύτερα
αποτελέσματα ανά μετρική αξιολόγησης παρουσιάζονται με έντονα γράμματα.

Μετρικές Αξιολόγησης

Αρχιτεκτονική Precision Recall F1-score Accuracy Specificity

Unimodal state-of-the-art approaches (only transcripts)

BERT 87.19 ±3.25 81.66 ±5.00 86.73 ±4.53 87.50 ±4.37 93.33 ±5.65

Unimodal state-of-the-art approaches (only Speech)

DARTS 70.04 ±3.84 89.99 ±2.04 76.09 ±0.87 72.92 ±2.28 62.3 ±7.05
AT-LSTM (x-vector) [88] 66.00 69.00 67.00 67.00 -

ECAPA-TDNN [89] - - - 66.70 -

SiameseNet [63] - - 70.80 70.80 -

x-vectors SRE [67] 54.17 54.17 54.17 54.17 54.17

Acoustic+Silence [90] 70.00 58.00 63.00 66.70 75.00

YAMNet [91] 64.40±3.93 73.40±8.82 68.60±4.84 66.20±4.79 59.20±7.73
Majority vote (Acoustic) [64] - - - 65.00 -

Audio (Fusion) [92] - 83.33 - 81.25 79.17

DemCNN [93] 62.50 62.50 62.50 62.50 62.50

CNN-LSTM (MFCC) [94] 82.00 38.00 51.00 64.58 92.00

Multimodal state-of-the-art approaches (speech and transcripts)

Audio + Text (Fusion) [92] - 87.50 - 89.58 91.67

Fusion Maj. (3-best) [63] - - 85.40 85.20 -

Fusion of system [67] 94.12 66.67 78.05 81.25 95.83

GFI,NUW,Duration,Character 4-grams,

Suffixes,POS tag,UD [95]
- - - 77.08 -

Acoustic & Transcript [90] 70.00 88.00 78.00 75.00 83.00

Dual BERT [91] 83.04 ±3.97 83.33 ±5.89 82.92 ±1.86 82.92 ±1.56 82.50 ±5.53
Majority vote (NLP + Acoustic) [64] - - - 83.00 -

Προτεινόμενες Αρχιτεκτονικές

BERT + ViT + Gated Multimodal Unit 80.92 91.67 85.92 85.00 78.33

BERT + ViT + Crossmodal Attention 86.13 91.67 88.69 88.33 85.00

Multimodal BERT 76.57 89.17 82.28 80.83 72.50

BERT + ViT + Co-Attention 92.83 81.67 86.81 87.50 93.33

BERT + ViT + Gated Self-Attention 90.87 89.17 89.94 90.00 90.83

BERT + ViT + Gated Multimodal Unit 89.16 85.00 86.73 87.08 89.16

Co-Attention – Optimal Transport 93.57 84.16 88.53 89.16 94.16

Attention - based fusion – Optimal Transport 93.08 89.17 91.06 91.25 93.33

DARTS+BERT+Tucker Decomposition 89.16 85.00 86.73 87.08 89.16

DARTS+BERT+MFB 91.29 88.29 89.80 89.58 91.66

DARTS+BERT+MFH 94.46 86.66 88.31 88.74 94.16

DARTS+BERT+BLOCK 94.09 91.66 91.94 92.08 94.16

DARTS+BERT+Concatenation 86.68 90.83 88.65 88.33 85.83
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1.4 Διάγνωση Επιληψίας

1.4.1 Κίνητρο

Η επιληψία είναι μια νευρολογική νόσος, η οποία επηρεάζει άτομα όλων των ηλικιών. Σύμ-

φωνα με τον Παγκόσμιο Οργανισμό Υγείας (ΠΟΥ), περίπου 50 εκατομμύρια άνθρωποι έχουν

επιληψία παγκοσμίως, γεγονός που την καθιστά μια από τις περισσότερο κοινές νευρολογικές

παθήσεις [96]. Η επιληψία έχει αρνητικό αντίκτυπο στην καθημερινή ζωή των ανθρώπων κυ-

ρίως λόγω των διακρίσεων και του στίγματος που περιβάλλει την ίδια την ασθένεια. Ωστόσο,

ο ΠΟΥ αναφέρει ότι έως και το 70% των ανθρώπων που ζουν με επιληψία θα μπορούσαν

να ζήσουν χωρίς επιληπτικές κρίσεις, εάν οι άνθρωποι διαγνωστούν έγκαιρα και λάβουν την

κατάλληλη θεραπεία. Επομένως, η έγκαιρη διάγνωση της επιληψίας είναι σημαντική για την

παροχή καλύτερης ποιότητας ζωής στους επιληπτικούς ασθενείς.

Υπάρχει ένας σημαντικός αριθμός μελετών που προτείνουν μεθόδους για την ανίχνευση

επιληπτικών κρίσεων. Η πλειοψηφία αυτών των μελετών εξάγει χαρακτηριστικά τόσο του

τομέα χρόνου όσο και του τομέα συχνότητας από το ηλεκτροεγκεφαλογράφημα (ΗΕΓ). Για

παράδειγμα, οι συγγραφείς εφαρμόζουν το Discrete Wavelet Transform (DWT) [97, 98] για

την αποσύνθεση των σημάτων ΗΕΓ σε υποζώνες και στη συνέχεια την εξαγωγή χαρακτη-

ριστικών από κάθε υποζώνη. Αφού εξάγουν μεγάλο αριθμό χαρακτηριστικών, οι συγγρα-

φείς συνήθως εκμεταλλεύονται την επιλογή χαρακτηριστικών feature selection ή τεχνικές

μείωσης διαστάσεων (dimensionality reduction techniques) για την εύρεση του καλύτερου

υποσυνόλου χαρακτηριστικών ή τη μείωση της διάστασης του διανύσματος χαρακτηριστικών

αντίστοιχα. Το τελευταίο βήμα από τις προτεινόμενες μεθόδους περιλαμβάνει το σύνολο των

παραδοσιακών ταξινομητών μηχανικής μάθησης, π.χ. Logistic Regression (LR), Support Vec-

tor Machines (SVMs), Random Forests (RF), Decision Trees, κ.λπ. Αυτές οι μέθοδοι είναι

χρονοβόρες, καθώς απαιτούν κάποιο επίπεδο τεχνογνωσίας για την εξαγωγή των καλύτερων

αντιπροσωπευτικών χαρακτηριστικών. Μόνο μερικές μελέτες [99, 100, 101, 102] έχουν εκμε-

ταλλευτεί βαθιά νευρωνικά δίκτυα, δηλ. CNNs, LSTMs ή BiLSTMs για την ανίχνευση και

πρόβλεψη της επιληψίας. Ωστόσο, οι περισσότερες από αυτές τις μεθόδους εξακολουθούν να

βασίζονται στην εξαγωγή χαρακτηριστικών [100, 101, 99]. ΄Ενας άλλος περιορισμός είναι το

γεγονός ότι οι υπάρχουσες εργασίες χωρίζουν τα σήματα ΗΕΓ σε τμήματα και προτείνουν ma-

jority vote προσεγγίσεις [102]. ΄Ετσι, πρέπει να εκπαιδεύονται πολλαπλά μοντέλα αυξάνοντας

σημαντικά τον υπολογιστικό χρόνο. Ταυτόχρονα, τα περισσότερα μοντέλα CNN δεν είναι

σε θέση να μοντελοποιήσουν αποτελεσματικά τις χρονικές εξαρτήσεις μεταξύ των δεδομένων

ΗΕΓ. Αν και τα LSTM και τα BiLSTM μπορούν να συλλάβουν τις χρονικές εξαρτήσεις στα

δεδομένα ΗΕΓ, συνήθως έχουν υψηλή πολυπλοκότητα μοντέλου.

1.4.2 Δεδομένα

EEG Database of the University of Bonn. Αυτό το σύνολο δεδομένων [103] αποτε-

λείται από πέντε υποσύνολα, τα οποία συμβολίζονται ως A, B, C, D και E. Κάθε υποσύνολο

περιέχει 100 τμήματα ΗΕΓ ενός καναλιού διάρκειας 23,6 δευτερολέπτων. Η συχνότητα δειγ-
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ματοληψίας είναι ίση με 173,61 Hz. ΄Ετσι, κάθε τμήμα ΗΕΓ αποτελείται από 4097 δείγματα.

Τα σετ Α και Β έχουν συλλεχθεί από πέντε υγιείς εθελοντές με τα μάτια τους ανοιχτά και

κλειστά αντίστοιχα. Τα σετ C και D έχουν συλλεχθεί κατά τη διάρκεια της ενδιάμεσης κα-

τάστασης (διάστημα χωρίς επιληπτικές κρίσεις). Συγκεκριμένα, τμήματα στο σύνολο D έχουν

καταγραφεί από τον σχηματισμό του ιππόκαμπου που προσδιορίζεται ως επιληπτογόνος ζώνη,

ενώ τα σήματα στο σύνολο δεδομένων C έχουν καταγραφεί από τον ιππόκαμπο σχηματισμό

του αντίθετου ημισφαιρίου του εγκεφάλου. Το σύνολο δεδομένων Ε περιέχει τμήματα από

δραστηριότητα επιληπτικής κρίσης. Εφαρμόστηκε ένα ζωνοπερατό φίλτρο στα σήματα ΗΕΓ

με χαμηλές και υψηλές συχνότητες αποκοπής 0,53 Hz και 40 Hz αντίστοιχα. ΄Ολα αυτά τα

τμήματα έχουν επιθεωρηθεί χειροκίνητα από έναν ειδικό λόγω της μυϊκής δραστηριότητας και

των κινήσεων των ματιών.

Παρακάτω, θα πραγματοποιήσουμε τα πειράματά μας χρησιμοποιώντας την εξής κατηγο-

ριοποίηση: AB (υγιή άτομα) - CD (interictal) - E (ictal).

1.4.3 Μεθοδολογία

Σε αυτήν την ενότητα, περιγράφουμε την αρχιτεκτονική που εισαγάγαμε για την ανίχνευση

της επιληψίας χρησιμοποιώντας σήματα ΗΕΓ και φασματογράμματα STFT. Η προτεινόμενη

αρχιτεκτονική απεικονίζεται στην Εικόνα 1.15.

• Σήμα ΗΕΓ: ΄Οπως φαίνεται στο Σχ. 1.15, υλοποιούμε δύο κλάδους CNN με διαφο-

ρετικά μεγέθη πυρήνα για την επεξεργασία των σημάτων ΗΕΓ. Η επιλογή αυτών των

δύο κλάδων CNN με μικρά και μεγάλα μεγέθη φίλτρου είναι εμπνευσμένα από τους

[104, 105], όπου οι συγγραφείς αναφέρουν ότι το μικρό φίλτρο είναι σε θέση καταγράφει

χρονικές πληροφορίες, ενώ το μεγαλύτερο φίλτρο είναι ικανό για τη σύλληψη πληρο-

φοριών συχνότητας. Κάθε κλάδος αποτελείται από τρία συνελικτικά στρώματα και δύο

στρώματα max-pooling, όπου κάθε συνελικτικό στρώμα περιλαμβάνει ένα επίπεδο κα-

νονικοποίησης [106] και μια συνάρτηση ενεργοποίησης ReLU. ΄Οπως μπορεί κανείς να

παρατηρήσει από το Σχ. 1.15, το πρώτο συνελικτικό μπλοκ κάθε κλάδου δείχνει το

μέγεθος του φίλτρου, τον αριθμό των φίλτρων και το μέγεθος του διασκελισμού (stride

size). Τα επόμενα δύο συνελικτικά μπλοκ του κάθε κλάδου δείχνουν το μέγεθος του

φίλτρου και τον αριθμό των φίλτρων. Το μέγεθος του διασκελισμού είναι ίσο με 1.

Κάθε μπλοκ max-pooling δείχνει το μέγεθός του και το μέγεθος του διασκελισμού. Για

τη μείωση της υπερπροσαρμογής, εφαρμόζουμε dropout layer με συντελεστή 0,5 μετά

το πρώτο μπλοκ max-pool κάθε κλάδου και μετά τη συνένωση και των δύο κλάδων.

Τέλος, χρησιμοποιούμε ένα flatten layer, οπότε η έξοδος έχει διάσταση 1d. ΄Εστω το

αποτέλεσμα αυτού του τμήματος της αρχιτεκτονικής: f t
.

• Αναπαράσταση εικόνας: Εφαρμόζουμε τον μετασχηματισμό Fourier μικρού χρόνου (STFT)

στα ακατέργαστα σήματα ΕΕΓ. Μετά τον υπολογισμό των απόλυτων τιμών του φασμα-

τογράμματος STFT (μέτρο STFT), υπολογίζουμε το φασματογράμμα σε κλίμακα db, το

δέλτα και το δέλτα-δέλτα. ΄Ετσι, κατασκευάζουμε μια εικόνα που αποτελείται από τρία
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Πίνακας 1.8: Απόδοση του προτεινόμενου μοντέλου μέσω της μεθόδου cross-validation (AB -

CD - E). Τα αποτελέσματα είναι στη μορφή: μέσος όρος ± τυπική απόκλιση.

Μετρικές Αξιολόγησης

Μοντέλο Precision Recall F1-score Accuracy

AB CD E AB CD E AB CD E

Προτεινόμενο Μοντέλο 97.14 97.16 97.18 97.99 96.49 96.00 97.52 96.77 96.41 97.00

±3.10 ±3.75 ±4.31 ±2.45 ±2.29 ±6.63 ±1.91 ±1.88 ±4.09 ±1.84

κανάλια, δηλαδή φασματογράμμα σε κλίμακα db, δέλτα και δέλτα-δέλτα. Κάθε εικόνα

κλιμακώνεται σε [0,1]. Κάθε εικόνα μετασχηματίζεται σε 224 × 224 pixels. Οι τιμές

των εικόνων όλων κανονικοποιούνται.

΄Οπως φαίνεται στο Σχήμα 1.15, κάθε εικόνα δίνεται σε ένα προεκπαιδευμένο μοντέλο

EfficientNet-B7, ακολουθούμενο από ένα επίπεδο απόρριψης με ποσοστό 0,5. Επίσης,

αφαιρούμε το τελευταίο επίπεδο του EfficientNet που χρησιμοποιείται για την κατηγο-

ριοποίηση. ΄Ετσι, το προεκπαιδευμένο μοντέλο EfficientNet-B7 ενεργεί ως εξαγωγέας

χαρακτηριστικών. ΄Εστω η έξοδος είναι: fv
.

• Gated Multimodal Unit: Εφαρμόζουμε το Gated Multimodal Unit [75], προκειμένου

να αναθέσουμε περισσότερη σημασία στη σχετική τροπικότητα αγνοώντας τις μη σχε-

τικές πληροφορίες. Δεδομένων των f t
και fv

όπως υπολογίστηκαν παραπάνω, υπολο-

γίζουμε την έξοδο αυτής της πολυτροπικής μεθόδου h.

• Επίπεδο εξόδου: Μεταβιβάζεται η πολυτροπική αναπαράσταση h σε ένα dropout layer

με ρυθμό 0,5 ακολουθούμενο από ένα πυκνό στρώμα, που δίνει το τελικό αποτέλεσμα. Ο

αριθμός των μονάδων στο πυκνό στρώμα εξαρτάται από κάθε περίπτωση που εξετάζεται

για ταξινόμηση και μπορεί να είναι είτε δύο (δυαδική ταξινόμηση) είτε τρεις μονάδες

(multiclass classification).

1.4.4 Αποτελέσματα

΄Οσον αφορά την περίπτωση (AB–CD–E), όπως παρατηρείται στον Πίνακα 1.8, το μοντέλο

μας επιτυγχάνει ένα βαθμό ακρίβειας που ανέρχεται στο 97.00%. F1-score που ισούνται με

97.52%, 96.77% και 96.41% επιτυγχάνονται για τις κλάσεις AB (healthy), CD (interictal)

και E (ictal) αντίστοιχα.

Μπορεί κανείς να παρατηρήσει από τον Πίνακα 1.9 ότι το μοντέλο μας υπερτερεί 15 ερευ-

νητικών πρωτοβουλιών σε ακρίβεια κατά 0.50-17.00%.

1.4.5 Ablation Study

Σε αυτήν την ενότητα, εκτελούμε μια σειρά από πειράματα, για να εξετάσουμε την απο-

τελεσματικότητα και την ευρωστία της προτεινόμενης αρχιτεκτονικής που περιγράφεται στην
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Σχήμα 1.15: Προτεινόμενη Αρχιτεκτονική - Επιληψία
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Πίνακας 1.9: Σύγκριση απόδοσης μεταξύ του προτεινόμενου πολυτροπικού μοντέλου και υπάρ-

χουσων εργασιών (AB - CD - E). Οι καταγεγραμμένες τιμές είναι ο μέσος όρος ± η τυπική απόκλιση.
Τα καλύτερα αποτελέσματα εμφανίζονται με έντονους χαρακτήρες.

Μετρική Αξιολόγησης

Αρχιτεκτονική Accuracy

State-of-the-art approaches

Novel RF [107] 96.70

EMD, higher order moments, ANN [108] 80.00

BiLSTM [99] 88.00

DWT + Kmeans + MLPNN [98] 95.60

CNN [109] 96.97

Random Forest [110] 87.00

Matrix Determinant and MLP [111] 96.50

EMD and SVM [112] 93.00

dual-tree complex wavelet

transform domain [113]
96.28

statistical dual-tree complex

wavelet transform domain [114]
83.50

ANN, hierarchical multi-class SVM

with new kernel [115]
95.00

Random Forest, wavelets [116] 95.84

CNN [117] 88.67

OPF [118] 89.20

Symlets wavelets, statistical mean

energy std and PCA, GBM-GSO, RF, SVM [119]
96.50

Προτεινόμενη Αρχιτεκτονική

97.00

±1.84

Ενότητα 1.4.3. Τα αποτελέσματα των πειραμάτων αναφέρονται στον Πίνακα 1.10.

Πρώτα, εξετάζουμε την αποτελεσματικότητα της πολυτροπικής μεθόδου - GMU. Συγκε-

κριμένα, αφαιρούμε τη GMU και συνενώνουμε (Concatenation) τις αναπαραστάσεις ht και

hv. Το παραγόμενο διάνυσμα περνάει σε ένα dropout layer με ποσοστό 0.5, ακολουθούμενο

από ένα dense layer (με δύο ή τρεις μονάδες), το οποίο δίνει την τελική πρόβλεψη. ΄Οσον

αφορά την Περίπτωση (AB - CD - E), μπορεί κάποιος να παρατηρήσει από τους Πίνακες 1.10

και 1.8 ότι η αφαίρεση της GMU οδηγεί σε μείωση της Ακρίβειας κατά 0.80%.

Στη συνέχεια, εξετάζουμε τα αποτελέσματα του μέρους της αρχιτεκτονικής που αντιστοιχεί

στην εικόνα. Αφαιρούμε τόσο το μέρος αναπαράστασης της εικόνας όσο και την πολυτροπική

μέθοδο GMU και πειραματιζόμαστε με τον εντοπισμό επιληπτικών κρίσεων χρησιμοποιώντας
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μόνο τους δύο κλάδους του CNN. ΄Οσον αφορά την Περίπτωση (AB - CD - E), μπορεί κανείς

να παρατηρήσει από τους Πίνακες 1.10 και 1.8 μια μείωση της Ακρίβειας κατά 1.80%.

Στη συνέχεια, εξετάζουμε την αποτελεσματικότητα του κλάδου της αρχιτεκτονικής CNN

με το μικρό φίλτρο. Για να το κάνουμε αυτό, αφαιρούμε αυτόν τον κλάδο και το σήμα του ΗΕΓ

διέρχεται μόνο μέσω του κλάδου με το μεγαλύτερο φίλτρο. Κάποιος μπορεί να παρατηρήσει

από τους Πίνακες 1.10 και 1.8 μια μείωση της Ακρίβειας κατά 2.20%.

Τέλος, εξετάζουμε την αποτελεσματικότητα του κλάδου της αρχιτεκτονικής CNN με το

μεγάλο φίλτρο. Για να το πετύχουμε, αφαιρούμε αυτόν τον κλάδο και το σήμα ΗΕΓ διέρχεται

μόνο μέσω του κλάδου με το μικρό φίλτρο. Παρατηρώντας τους Πίνακες 1.10 και 1.8, βλέπουμε

μια μείωση της Ακρίβειας κατά 2.00%.
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1.5 Επίλογος και Μελλοντικές Επεκτάσεις

Σε αυτή τη διδακτορική διατριβή ερευνήσαμε τις πιο πρόσφατες μεθόδους μηχανικής μάθη-

σης για (i) την αναγνώριση της κατάθλιψης με χρήση αναρτήσεων στα κοινωνικά μέσα δικτύω-

σης και τον αυθόρμητο λόγο, (ii) την ανίχνευση ασθενών με άνοια της νόσου Αλτσχάιμερ και

την πρόβλεψη των σκορ MMSE μέσω αυθόρμητης ομιλίας, και (iii) την αναγνώριση επιληπτι-

κών ασθενών μέσω σημάτων ΗΕΓ ενός καναλιού.

Παρακάτω, παρουσιάζονται ιδέες για μελλοντική επέκταση:

• Ερμηνεύσιμα πολυτροπικά μοντέλα βαθιάς μάθησης. Ο γιατρός πρέπει
να ενημερώνεται γιατί ο αλγόριθμος μηχανικής μάθησης έφτασε σε μια συγκεκριμένη

απόφαση. Συγκεκριμένα, οι μέθοδοι GRAD-CAM και Integrated Gradients είναι δύο

τεχνικές ερμηνευσιμότητας που μπορούν να εφαρμοστούν για την εξήγηση των αποτε-

λεσμάτων οποιουδήποτε αλγορίθμου μηχανικής μάθησης.

• ΄Ελλειψη ετικετών (labels). Η συλλογή μεγάλων συνόλων δεδομένων που συ-
νοδεύονται με ετικέτες για την εκπαίδευση των αλγορίθμων τεχνητής νοημοσύνης /

μηχανικής μάθησης είναι κρίσιμης σημασίας. Για αυτό το λόγο, σχεδιάζουμε να ε-

φαρμόσουμε προσεγγίσεις αυτο-επιβλεπόμενης μάθησης (self-supervised learning) στο

μέλλον για να αντιμετωπίσουμε την ανάγκη απόκτησης μεγάλων συνόλων δεδομένων.

• Ανίχνευση της Mild Cognitive Impairement κατάστασης. Στο μέλλον,

στοχεύουμε στην εφαρμογή των προτεινόμενων προσεγγίσεων στο σύνολο δεδομένων

VAS που προτάθηκε στο [120, 121]. Αυτό το σύνολο δεδομένων περιλαμβάνει ασθενείς

με Αλτσχάιμερ, μη-Αλτσχάιμερ και άτομα με ήπια προσβολή της γνώσης (MCI). Η

ανίχνευση των ατόμων μεMCI αποτελεί πρόκληση και έχει αποδειχθεί ότι είναι κρίσιμης

σημασίας. Συγκεκριμένα, η πρόοδος της νόσου μπορεί να καθυστερήσει σημαντικά με

την έγκαιρη ανίχνευση των ατόμων σε κατάσταση MCI.

• Προβλήματα απορρήτου - Ομοσπονδιακή Μάθηση (Federated Learn-

ing). Η επεξεργασία δεδομένων υγείας συνεπάγεται προβλήματα απορρήτου. Για να

είμαστε πιο ακριβείς, η πλειονότητα των υπαρχουσών προσεγγίσεων βασίζεται σε κε-

ντρικές ρυθμίσεις, όπου τα δεδομένα συγκεντρώνονται σε έναν κεντρικό εξυπηρετητή.

Αντίθετα, η ομοσπονδιακή μάθηση αντιμετωπίζει αυτό το πρόβλημα διανέμοντας τη δια-

δικασία εκπαίδευσης σε συσκευές των τελικών χρηστών.

• Επαύξηση Δεδομένων. Τα παραγωγικά αντιπαλικά δίκτυα (Generative Adver-

sarial Networks) μπορούν επίσης να αξιοποιηθούν για τη δημιουργία σημάτων, δηλαδή

ομιλίας, ΗΕΓ, κ.ά. Συγκεκριμένα, τα βαθιά νευρωνικά δίκτυα μπορούν να εκπαιδευτούν

με δεδομένα που έχουν δημιουργηθεί τεχνητά, ενώ η απόδοσή τους μπορεί να δοκιμαστεί

σε πραγματικά δεδομένα.

• Εφαρμογή των μεθόδων μας σε άλλες διαταραχές του εγκεφάλου. Οι
προσεγγίσεις που προτείναμε μπορούν να εφαρμοστούν και σε άλλες νόσους. Για πα-
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ράδειγμα, η έρευνα έχει δείξει ότι η νόσος του Πάρκινσον επηρεάζει την ομιλία, επομένως

η νόσος του Πάρκινσον μπορεί να ανιχνευθεί μέσω της ομιλίας και των απομαγνητοφω-

νημένων κειμένων.

• Χρήση πολυκαναλικών δεδομένων ΗΕΓ. Στο μέλλον σκοπεύουμε να χρησι-
μοποιήσουμε πολυκάναλα σήματα ΗΕΓ [122, 123].

• Πολυγλωσσικές προσεγγίσεις. Σχεδιάζουμε να εφαρμόσουμε τις προσεγγίσεις
που προτείναμε σε ένα πολυγλωσσικό πλαίσιο. Συγκεκριμένα, στοχεύουμε στην εκπα-

ίδευση των μοντέλων μας σε μία γλώσσα και στην αξιολόγηση της απόδοσής τους σε

μια άλλη γλώσσα. Για παράδειγμα, κάποιος μπορεί να εκμεταλλευτεί το σύνολο δεδο-

μένων MADReSS Challenge [124]. Μπορούν να εκπαιδευτούν μοντέλα βασισμένα σε

δεδομένα ομιλίας στα αγγλικά και να αξιολογηθεί η απόδοσή τους σε δεδομένα ομιλίας

στα ελληνικά.

• Απόσταξη Γνώσης (Knowledge Distillation). Για να αντιμετωπίσουμε την

ανάγκη δημιουργίας μεγάλων μοντέλων, τα οποία συνεπάγονται προβλήματα υπολο-

γιστικής φύσεως, στοχεύουμε στην εκμετάλλευση προσεγγίσεων Απόσταξης Γνώσης

[125, 126]. Με αυτόν τον τρόπο, ένα μεγάλο νευρωνικό δίκτυο συμπιέζεται σε ένα

μικρότερο και πιο απλό, χωρίς να μειώνεται η απόδοσή του.

• Προσαρμογείς (Adapters). Σε αυτή τη διατριβή, βελτιστοποιήσαμε μερικά προεκ-

παιδευμένα μοντέλα βασισμένα σε μετασχηματιστές. Ωστόσο, κατά τη βελτιστοποίηση

χάνεται κάποια πληροφορία, αφού χρησιμοποιούνται μόνο δεδομένα που είναι συγκεκρι-

μένα στην εκάστοτε εργασία για την ενημέρωση των παραμέτρων των μοντέλων. Αυτό

το φαινόμενο είναι γνωστό ως catastrophic forgetting [127]. Επομένως, στο μέλλον,

σχεδιάζουμε να χρησιμοποιήσουμε προσαρμογείς [128, 129].

• Παρακολούθηση της Εξέλιξης των Διαταραχών του Εγκεφάλου με
την Πάροδο του Χρόνου. Επειδή η κατάθλιψη και η άνοια τύπου Αλτσχάιμερ

εξελίσσονται με την πάροδο του χρόνου, είναι σημαντικό να διαγνωστούν έγκαιρα. Η

παρακολούθηση της πορείας της νόσου κατά μήκος του χρόνου έχει μεγάλη σημασία

στις μέρες μας. Για παράδειγμα, ένα από τα tasks στο πλαίσιο του συνόλου δεδομένων

ADReSSo είναι η πρόβλεψη εξέλιξης της νόσου, όπου μπορεί κανείς να δημιουργήσει

ένα μοντέλο για να προβλέψει τις αλλαγές στην γνωστική κατάσταση με την πάροδο του

χρόνου.
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Chapter 2

Introduction

2.1 Brain Disorders - Artificial Intelligence for Social Good

Brain disorders are one of the greatest challenges to health. It is estimated that

approximately 165 million people suffer from a brain disorder in Europe, while 1 in 3

people will suffer from a brain disorder at some point in their lives. Some types of brain

disorders include Alzheimer’s disease, various types of dementia, epilepsy, Parkinson’s

disease, mental disorders, and others. These disorders affect the way people think, feel,

or perform everyday activities. However, if these disorders are diagnosed early and the

individual receives appropriate medication, their progression can be delayed. For this

reason, timely diagnosis is crucial.

Artificial Intelligence (AI) is transforming the way we address social issues by enhancing

the well-being of both individuals and communities. The term ”AI for Social Good,” also

known as ”AI for Social Impact,” is a new field of research aimed at addressing some of the

most significant social, environmental, and public health problems existing today. This

doctoral dissertation aims to contribute to this new field by developing modern machine

learning methods for improving the recognition of brain disorders, with particular emphasis

on three major categories (Depression, Alzheimer’s Dementia, and Epilepsy).

Depression involves a large number of symptoms, such as loss of interest, anger, pes-

simism, changes in weight, feelings of helplessness, suicidal thoughts, and many others.

Alzheimer’s dementia is characterized by memory loss and affects language and speech.

Epileptic seizures involve social stigma.

2.2 Depression

Depression rates have presented a surge due to the covid-19 pandemic1. Depression

entails a great number of symptoms, including loss of interest, anger, pessimism, changes

in weight, feelings of worthlessness, thoughts of suicide, and many more. According to

1https://www.who.int/news/item/02-03-2022-covid-19-pandemic-triggers-25-increase-in-prevalence-of-

anxiety-and-depression-worldwide
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the World Health Organization (WHO)2, around 280 million people in the world have

depression. Recent surveys3 indicate that global rates of depression are rising. China,

India, the United States, Russia, Indonesia, Nigeria are some of the countries presenting

the highest rates of depression.

People with depression use social media platforms, including X/Twitter and Reddit,

and share their thoughts, emotions, feelings, etc. through posts or comments with other

users. Therefore, social media constitute a valuable form of information, where linguistic

patterns of depressed people can be investigated.

Research has shown that speech constitutes a reliable biomarker for detecting depres-

sion [130]. Specifically, people with depression present anomalities in speech, including

lower speech rates, less pitch variability and more self-referential speech. Depression af-

fects language also [131]. For instance, depressed people use first-person singular pronouns,

negative thinking, and self-focus. Therefore, employing both speech and transcripts in a

multimodal setting is a hot research topic nowadays.

2.2.1 Cognitive Tools

Below, we mention one cognitive tool, which is used for recognizing depression.

2.2.1.1 Patient Health Questionnaire-9 (PHQ-9)

The Patient Health Questionnaire-94 is a multipurpose instrument for screening, di-

agnosing, monitoring and measuring the severity of depression. It consists of 9 questions.

Each participant is asked to answer to a variety of questions pertinent to sleep problems,

tiredness, little energy, limited concentration, poor appetite or overeating, and more. A

score is computed based on the answers given by the participant. A score lower than 5

indicates minimal depression, a score lower than 10 denotes mild depression, a score lower

than 15 denotes moderate depression, a score lower than 20 means moderately severe de-

pression, and a score ranging from 20 to 27 denotes severe depression. Findings of the

study introduced in [132] state that PHQ-9 is useful in clinics specializing in psychiatry.

2.3 Dementia

Alzheimer’s disease is the most common form of dementia and may contribute to

60-70% of cases. According to the WHO, approximately 55 million people suffer from

dementia nowadays, while this number is going to present a surge in the upcoming years

reaching up to 78 million and 139 million people in 2030 and 2050 respectively [51]. Due to

the fact that Alzheimer’s disease is a neurodegenerative disease, meaning that the symp-

toms become worse over time, the early diagnosis seems to be imperative for promoting

2https://www.who.int/news-room/fact-sheets/detail/depression
3https://pulsetms.com/resources/around-world/
4https://www.hiv.uw.edu/page/mental-health-screening/phq-9
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early and optimal management. In addition, dementia is inextricably linked with diffi-

culties in speech, since dementia affects how a person can use language and communicate

[133, 134, 135]. For this reason, current research works have moved their interest towards

Alzheimer’s dementia (AD) identification from spontaneous speech, in order to save money

and time.

2.3.1 Stages of Dementia

As mentioned above, dementia is progressive meaning that the symptoms become

worse with time, usually over several years. There are three stages of dementia, which

are clinically identified, namely the early stage, the middle stage, and the late stage [136].

These stages are described in detail below.

Early Stage. This stage is also known as mild stage, since the symptoms are relatively

mild and not always easy to notice. The early stage of dementia has a duration of ap-

proximately two years, where the person suffers from daily problems, including memory

problems, difficulty in planning or making complex decisions, difficulties in language and

communication, changes in mood or emotion, visual-perceptual difficulties, and poor ori-

entation [137].

Middle Stage. This stage of dementia is also known as moderate stage, since the symp-

toms become more noticeable [138]. Memory and thinking skills, communication abilities,

problem with the orientation, and symptoms of apathy, depression, and anxiety will get

worse in this stage. At the same time, patients may suffer from delusions [139] and hallu-

cinations. In terms of the behavioural changes during this stage, AD patients experience

symptoms, including screaming or shouting, disturbed sleep patterns, repetitive behaviour,

losing inhibitions, and many more.

Later Stage. This stage of dementia is also known as severe stage, since the person

will need full-time care and support with daily living and personal care [140]. In this

stage, the language difficulties will become severe, where the person’s spoken language

may eventually be reduced to only a few words or lost altogether. In addition, people

with dementia often think they are at an earlier period of their life, widely known as time

shifting.

2.3.2 Cognitive Tools

Each cognitive tool is used to screen for dementia. The participant performs several

tasks and based on the answers to each task, a score is calculated at the end of the test.

Then, the examiner compares this score with the cut-off values recommended by each test

and decides the degree of cognitive impairement of the person. Below we describe some

cognitive tools.
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2.3.2.1 Mini Mental State Examination

The Mini-Mental State Examination score is a 30-point questionnaire, which was pro-

posed by Folstein et al. [141]. It is used to screen for dementia. Administration of the

test takes between 5 and 10 minutes. The maximum score for the MMSE is 30 points.

According to [62], there are four groups of cognitive severity: healthy (MMSE score ≥ 25),

mild dementia (MMSE score of 21–24), moderate dementia (MMSE score of 10–20), and

severe dementia (MMSE score ≤ 9). However, the MMSE entails some drawbacks, includ-

ing its sensitivity to progressive changes occuring with severe Alzheimer’s disease and its

inability to distinguish patients with mild Alzheimer’s disease from healthy patients. In

addition, according to [142] the MMSE should not be used clinically unless the person has

at least a grade-eight education and is fluent in English.

2.3.2.2 Montreal Cognitive Assessment

The Montreal Cognitive Assessment (MoCA) is used for predicting dementia in people

with mild cognitive impairment [143]. The MoCA checks different types of cognitive or

thinking abilities, including orientation, short-term memory, language, abstraction, animal

naming, attention, and many more. Similar to MMSE, the scores on the MoCA range from

0 to 30, where a score of 26 and higher is considered normal. Also, compared to MMSE,

MoCA is better at detecting mild disease. However, the most appropriate cut-off point is

not clearly agreed [144].

2.3.2.3 Addenbrooke’s Cognitive Examination

The Addenbrooke’s Cognitive Examination (ACE) [145] and its subsequent versions

(Addenbrooke’s Cognitive Examination-Revised, ACE-R [146] and Addenbrooke’s Cogni-

tive Examination III, ACE-III [147]) are neuropsychological tests used to identify cognitive

impairment in conditions such as dementia. This test was developed for improving the

screening performance of the MMSE. It is scored out of 100, with a higher score denoting

better cognitive function and with the recommended cut-off scores accounting for 88 and

83. Regarding the current version of the test, i.e., ACE-R, it consists of 19 activities

which test five cognitive domains: attention, memory, fluency, language and visuospatial

processing.

2.3.2.4 Boston Naming Test

The Boston Naming Test (BNT) was introduced by [148] and is a widely used neu-

ropsychological assessment tool to measure confrontational word retrieval in individuals

with aphasia or other language disturbance caused by stroke, Alzheimer’s disease, or other

dementing disorder. This test comprises 60 pictures which are presented to the patient

one at a time and the patient is asked to name each picture. In case of an error response,

there are two types of cues, namely the stimulus cue and the phonemic cue. A stimulus
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cue is presented when the subject clearly misperceives the picture or indicates a lack of

recognition of the picture. A phonemic cue is presented after each error response, includ-

ing following a stimulus cue. The BNT is recommended as a supplement to the Boston

Diagnostic Aphasia Examination [149].

2.3.2.5 Wechsler Adult Intelligence Scale

The Wechsler Adult Intelligence Scale (WAIS) was introduced by [150] and is the most

common intelligence quotient (IQ) test, measuring intelligence and cognitive abilities in

adults. The current version of the test is the WAIS-IV, which is composed of 10 core

subtests and five supplemental subtests. There are four index scores representing major

components of intelligence, namely the Verbal Comprehension Index (VCI), Perceptual

Reasoning Index (PRI), Working Memory Index (WMI), and Processing Speed Index

(PSI).

2.3.2.6 Wechsler Memory Scale

The Wechsler Memory Scale (WMS) is a neuropsychological test developed to measure

different memory functions [151]. Anyone ages 16 to 90 is eligible to take this test. The

current version is the fourth edition (WMS-IV) and was designed to be used with the

WAIS-IV. A person’s performance is reported as five Index Scores: Auditory Memory,

Visual Memory, Visual Working Memory, Immediate Memory, and Delayed Memory.

2.3.2.7 Alzheimer’s Disease Assessment Scale (ADAS)

The Alzheimer’s Disease Assessment Scale (ADAS) was developed to evaluate cognitive

and behavioral dysfunctions characteristic of Alzheimer’s disease [152]. It consists of

cognitive (ADAS-Cog [153]) and noncognitive (ADAS-Noncog). The ADAS-Cog consists

of 11 parts and takes approximately 30 minutes to administer. The original version of

ADAS-Cog consists of 11 items, including Word Recall task, naming omjects and fingers,

following commands, orientation, spoken language, etc. Scores of the ADAS-Cog range

from 0 to 70, where a score of 70 represents the most severe impairment and 0 represents

the least impairment. The greater the dysfunction, the greater the score.

2.3.2.8 General Practitioner assessment of Cognition (GPCOG)

The GPCOG is a screening instrument rather than a diagnostic test [154, 155]. The

participant has to perform some tasks, including: remember a name and address and recall

it in a few minutes, state today’s date, make a clock drawing with all of the numbers drawn

correctly on the face of the clock, describe something specific that has happened in the

news in the last week, etc. Scores of the GPCOG range from 0 to 9, where a score of 9

indicates no significant impairement. A score between 5 and 8 indicates that informant

interview must be conducted, while a score less than 4 indicates cognitive impairement.
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During the informant interview, the test administrator asks a caregiver or family member

if the patient has more difficulty than they used to five to ten years ago with some tasks.

This test is free, brief, and the education has little to no effect on the accuracy.

2.4 Epilepsy

Epilepsy is a neurological disease, which affects people of all ages. According to the

World Health Organization (WHO), approximately 50 million people have epilepsy world-

wide, rendering it one of the most common neurological diseases [96]. Epilepsy has a

negative impact in peoples’ everyday life mainly due to the discrimination and stigma

surrounding the disease itself. However, the WHO states that up to 70% of people living

with epilepsy could live seizure-free, if people are diagnosed early and receive the proper

treatment. Therefore, the early diagnosis of the epilepsy is important for providing a

better quality of life to epileptic patients. Electroencephalogram (EEG) is used by neurol-

ogists for diagnosing epilepsy. However, manually reviewing and analyzing EEG signals

by neurologists is a task requiring significant amount of time, while it is prone to errors

as well. Thus, the need for an automatic system is crucial.

2.5 Motivation and Research Questions

2.5.1 Motivation

Depression. Existing research initiatives exploit social media data for identifying de-

pressive posts. The majority of these research works [1, 2] employ feature extraction

approaches and train shallow Machine Learning (ML) algorithms. Employing feature ex-

traction approaches constitutes a tedious procedure and demands domain expertise, since

the authors may not find the optimal feature set for the specific problem. At the same

time, the train of shallow ML algorithms does not yield optimal performance and does

not generalize well to new data. For addressing these limitations, other approaches [3]

use deep neural networks, including Convolutional Neural Networks (CNNs), bidirectional

long short-term memory (BiLSTM), and so on, or transformer-based networks. In addi-

tion, there are researches employing ensemble strategies [4]. However, these approaches

increase substantially the training time, since multiple models must be trained separately.

In addition, recently there have been studies [5, 6] showing that transformer-based mod-

els struggle or fail to capture rich knowledge. For this reason, there have been proposed

methods for enhancing these models with external information or additional modalities

[7, 8, 9, 10]. However, existing research initiatives in the task of depression detection

through social media have not exploited any of these approaches yet. In addition, the re-

liability of a machine learning model’s confidence in its predictions, denoted as calibration

[11, 12], is critical for high risk applications, such as deciding whether to trust a medical

diagnosis prediction [156, 157, 158]. Although methods regarding the confidence of mod-
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els’ predictions have been introduced in many studies, including suicide risk assessment

[159], sleep stage classification [160], and so on, no prior work for depression detection

has taken into account the level of confidence of models’ predictions, creating in this way

overconfident models.

Existing research works use spontaneous speech and rely on the extraction of hand-

crafted features and the train of traditional machine learning classifiers or deep learning

approaches [32, 33, 34]. However, extracting features is a timely procedure requiring ex-

pertise on the specific topic. Additionally, the majority of research studies uses unimodal

approaches for predicting depression using mainly speech [35]. Although there are studies

employing multimodal models, these studies employ early [36, 37], intermediate [38, 39],

or late fusion [40, 41] strategies. In the early fusion strategy, representation vectors of

the modalities are concatenated at the input level, while in the intermediate fusion, the

representation vectors are concatenated during training, thus equal importance is assigned

to the modalities. In the late fusion strategy, unimodal models are trained independently

and decision voting is applied, i.e., majority voting. The inter-modal interactions cannot

be captured through these approaches. In addition, the majority of research works have

tested their approaches only in English language, thus the acoustic and phonetic content

of data might differ in other languages. Finally, to the best of our knowledge, no study

has experimented with predicting depression, age, education level, and gender at the same

time.

Alzheimer’s Dementia. Several research works have been conducted with regard to the

identification of AD patients using speech and transcripts. The majority of them have

employed feature extraction techniques [161, 162, 163, 164, 165], in order to train tra-

ditional Machine Learning (ML) algorithms, such as Logistic Regression, k-NN, Random

Forest, etc. However, feature extraction constitutes a time-consuming procedure achieving

poor classification results and often demands some level of domain expertise. Recently,

researchers introduce deep learning architectures [166, 167], such as CNNs and BiLSTMs,

so as to improve the classification results. Despite the success of transformer-based models

in several domains, their potential has not been investigated to a high degree in the task of

dementia identification from transcripts, where research works [61] having proposed them,

use their outputs as features to train shallow machine learning algorithms. Concurrently,

all research works except one [91], train machine learning models, in order to distinguish

AD patients from non-AD patients, without taking into account the severity of dementia

via Mini-Mental State Exam (MMSE) scores. At the same time, to the best of our knowl-

edge, the research works that have proposed deep learning models based on transformer

networks have focused their interest only on improving the classification results obtained

by CNNs, BiLSTMs etc. instead of exploring possible explainability techniques. Specifi-

cally, due to the fact that deep learning models are considered black boxes, it is important

to propose ways of making them interpretable, since it is imperative for a clinician to be

informed why the specific deep neural network classified a person as AD patient or not.

To the best of our knowledge, only one work [168] has experimented with interpreting
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its proposed deep learning model (CNN-LSTM model) in the field of dementia detection

using transcripts. In terms of the proposed multimodal approaches, the majority of them

have introduced label fusion and majority-voting or average approaches [169, 170, 61].

Specifically, regarding the AD classification task they train several textual and acoustic

models and they make the final prediction of the given transcript based on the class, which

received the most votes by the individual models. With regards to the MMSE regression

task, they simply average the predictions of the individual models. Concurrently, they

extract a large number of features corresponding to the textual and acoustic modalities

and some of them train traditional machine learning algorithms, such as Logistic Re-

gression, XGBoost, etc. Thus, it is evident that these approaches are not time-efficient,

since a lot of models must be trained and tested separately. At the same time, these

approaches do not exploit the interaction between the two modalities. Moreover, research

initiatives introducing multimodal models use the add and concatenation operation treat-

ing in this way equally the two modalities [91]. Another limitation of this approach has

to do with the fact that one modality may override the other one with a negative impact

on the classification performance. In terms of the textual modality recent studies have

shown that Self-Attention layers treat the input sequence as a bag-of-word tokens and

each token individually performs attention over the bag-of-word tokens. Consequently,

the contextual information is not taken into account in the calculation of dependencies

between elements. In addition, the reliability of a machine learning model’s confidence in

its predictions, denoted as calibration [11, 12], is critical for high risk applications, such as

deciding whether to trust a medical diagnosis prediction [156, 157, 158]. However, no prior

work has taken into account the calibration of the models, creating in this way overcon-

fident models. According to [171], modern neural networks are not well-calibrated, while

they are overconfident at the same time.

Epilepsy. There have been a number of studies proposing methods for detecting epileptic

seizures. The majority of these studies first extract both time-domain and frequency

domain features from the electroencephalogram (EEG) signals. For instance, the authors

apply the Discrete Wavelet Transform (DWT) [97, 98] for decomposing the EEG signals

into sub-bands and then extract features from each sub-band. After having extracted a

large number of features, the authors usually exploit feature selection or dimensionality

reduction techniques for finding the best subset of features or reducing the dimension of

the feature vector respectively. The last step of the proposed methods includes the train

of traditional machine learning classifiers, i.e., Logistic Regression (LR), Support Vector

Machines (SVMs), Random Forests (RF), Decision Trees, etc. However, these methods

are time-consuming, since they demand some level of domain expertise for extracting

the best representative features. Only a few number of studies [99, 100, 101, 102] have

exploited deep neural networks, i.e., CNNs, LSTMs, or BiLSTMs in the task of epilepsy

detection and prediction. However, most of these methods still rely on handcrafted features

[100, 101, 99]. Another limitation is the fact that existing research works split the EEG

signals into segments and propose majority-voting approaches [102]. Thus, they have
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to train multiple models separately increasing substantially the computation time. At

the same time, most of the CNN models are not able to model effectively the temporal

dependencies among the EEG data. Although LSTMs and BiLSTMs can capture the

temporal dependencies in EEG data, they usually have high model complexity.

2.5.2 Research Questions

Considering the aforementioned limitations and the adaptation of deep learning models

in the Natural Language Processing (NLP), Speech Processing, Signal Processing, and

Computer Vision (CV) domains, this thesis seeks to answer seven main research questions:

• RQ1: Do transformer-based networks, i.e., BERT, ALBERT, etc. achieve better

performance than traditional techniques, i.e., LSTMs, CNNs, etc.?

• RQ2: Can we provide explanations, which will show how our models reach their

decisions? Especially in health-related tasks, it is very important for a clinician to

be informed why the deep neural network classified a person as an AD patient or a

non-AD one. At the same time, according to the European Union General Data Pro-

tection Regulation (GDPR) [172] each person has the right to the explanation. Also,

can we propose interpretable models, which will achieve comparable performance to

existing research initiatives?

• RQ3: Can we propose multi-task learning models, consisting of primary and aux-

iliary tasks, to explore if the axiliary tasks help the primary one in improving its

performance?

• RQ4: How can we combine the representation vectors of the different modalities

(multimodal approaches) effectively?

• RQ5: Instead of creating fixed deep neural networks, can we create automatically

architectures which will perform best for our specific task?

• RQ6: How can we improve self-attention networks through capturing the richness

of context?

• RQ7: How can we prevent deep learning models from becoming too overconfident?

2.6 Thesis Contributions

Based on the research context and clinical need as detailed above, the overall, high-level

aim of this Ph.D. thesis is to improve the detection and monitoring of brain disorders by ex-

ploiting advanced machine learning techniques. Specifically, this thesis presents automatic

systems for recognizing three major brain disorders, including depression, Alzheimer’s de-

mentia, and epilepsy.
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In terms of depression, we present to approaches. In terms of the first approach, we

utilize social media data and create tools based on natural language processing to detect

depressive posts. Additionally, this thesis seeks to find differences in language between

depressed people and non-depressed ones through a detailed linguistic analysis. In terms

of the second approach, we utilize spontaneous speech and create tools based on both

natural language processing and speech processing to detect depression.

Regarding Alzheimer’s dementia, motivated by the fact that people with Alzheimer’s

dementia present deficits in language and speech, this thesis utilizes recordings of spon-

taneous speech and creates automatic systems based on natural language processing and

speech processing. Specifically, we fine-tune transformer-based models, exploit explain-

ability techniques and linguistic analyses and explore some linguistic features which are

useful for detecting cognitive decline. This thesis seeks also to use multimodal models ex-

ploiting both speech and transcripts instead of just focusing on lexical, acoustic, or visual

features alone.

With regards with Epilepsy, motivated by the fact that the manual review of EEG

signals by neurologists is a laborious task, we present a new automatic system based on a

multimodal method for diagnosing epilepsy.

Overall, the main contributions of this thesis are the following:

• Introducing deep neural networks, which can be trained in an end-to-end

trainable manner eliminating the timely procedure of feature extraction.

Contrary to prior research works extracting a large number of features, exploiting

feature selection or dimensionality reduction techniques, and training shallow ma-

chine learning algorithms, this thesis aims to eliminate the need of feature extraction

by proposing deep neural networks and transformer-based models.

• An explainable approach and a linguistic analysis study is proposed. Con-

trary to prior works, which simply train ML algorithms for detecting AD patients,

this thesis extends prior work by employing an explainable approach and introduc-

ing a linguistic analysis. Both approaches reveal the linguistic patterns used by AD

patients, i.e., pos-tags. Differences in language between AD patients and non-AD

ones are also revealed. We use the same linguistic analysis on a depression dataset

and reveal differences in language between depressed people and non-depressed ones.

• Introducing multi-task learning models. This thesis proposes multi-task learn-

ing architectures for identifying depression and Alzheimer’s dementia. Firstly, this

thesis presents a multi-task learning approach for jointly modelling the depression,

education level, age, and gender identification tasks. Secondly, this thesis introduces

multi-task learning architectures aiming to predict the AD detection and MMSE

recognition tasks.

• Multimodal Fusion methods are introduced for capturing the inter- and

intra-modal interactions. Contrary to existing research initiatives, which exploit
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early, intermediate, and late fusion strategies, this thesis introduces new methods for

fusing the different modalities. These methods aim to capture the inter- and intra-

modal interactions, while increasing the performance at the same time. Therefore,

this thesis extends prior work by exploiting fusion methods, including Gated Mul-

timodal Unit, Cross-Modal Attention Layer, Cross-Attention Layer incorporating a

gating model, Cross - Attention Scaling Layer, Multimodal Shifting Gate, Optimal

Transport Domain Adaptation, and many more. These multimodal approaches are

adopted in a series of experiments, i.e., depression detection through social media

posts and spontaneous speech, dementia identification through speech and tran-

scripts, epilepsy detection via single-channel EEG signals, and aim to increase the

performance achieved by the unimodal ones.

• Incorporating a Neural Architecture Search approach into a deep neural

network. In contrast with prior work, which exploit fixed architectures, this thesis

incorporates a NAS approach, called DARTS, into a deep neural network for gen-

erating automatically a CNN architecture. This CNN architecture fits best for this

specific task.

• Enhancing self-attention networks with contextual information. This thesis

aims to enhance the self-attention layer by adding contextual information. Specifi-

cally, this thesis presents three strategies for constructing a contextual vector into an

end-to-end trainable deep neural network. This approach is conducted on datasets

related to the Alzheimer’s dementia task.

• Presenting methods for calibrating deep neural networks. Prior works eval-

uate deep neural networks based only on the performance by reporting accuracy,

precision, recall, and more metrics. This thesis extends prior work by exploiting

methods for calibrating the introduced models and evaluating these models by ex-

ploiting both performance and calibration metrics. These approaches are conducted

on datasets related to depression and alzheimer’s dementia.

2.7 Thesis Outline

The rest of this thesis is organized as follows:

Chapter 3: Literature Review. Review of the literature for studies that proposed

systems (i) for identifying depressive posts in social media and recognizing depression via

spontaneous speech, (ii) either for classifying people into AD patients and non-AD ones

or for predicting the Mini-Mental State Exam scores. Specifically, the approaches have

been divided into unimodal, i.e., approaches which use either only speech or transcripts,

and multimodal, i.e., approaches which exploit both speech and transcripts, and (iii) for

detecting epileptic patients using EEG recordings. Also, we provide a list of datasets for

each case.
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Chapter 4: Methods for Recognizing Depression through Social Media

posts and Spontaneous Speech. In this chapter, we present two methods aiming to

recognize depression. The first approach injects linguistic information into transformer-

based models for identifying depressive posts in social media. The proposed approach

is evaluated based on both the performance and the calibration. The second approach

utilizes both speech and automatic transcripts into a multimodal deep neural network.

Chapter 5: Explainable Identification of Dementia from Transcripts using

Transformer Networks. In this chapter, we propose models in both single-task and

multi-task learning settings by utilizing only transcripts for detecting AD patients. Also,

we perform a detailed linguistic analysis and explainability techniques, which shed light

on the main differences in language between AD patients and Healthy Control group.

Chapter 6: Detecting Dementia from Speech and Transcripts Using Trans-

formers. In this chapter, we introduce two methods for fusing the two modalities (speech

and transcripts).

Chapter 7: Multimodal Deep Learning Models for Detecting Dementia

and Predicting Mini-Mental State Examination scores from Speech and Tran-

scripts. This chapter presents three deep neural networks, which exploit both speech and

transcripts. The proposed models are trained both for the AD Classification task and the

MMSE Regression task.

Chapter 8: Context-Aware Attention Layers coupled with Optimal Trans-

port Domain Adaptation and Multimodal Fusion methods for recognizing de-

mentia. In this chapter, we present approaches for enhancing the self-attention mecha-

nisms with contextual information, calibrating the proposed models, and fusing the dif-

ferent modalities. Both manual and automatic transcripts are exploited.

Chapter 9: Neural Architecture Search with Multimodal Fusion Methods

for Recognizing Dementia. In this chapter, we present a deep neural network, which

incorporates a Neural Architecture Search method for generating automatically a CNN

architecture and multimodal fusion methods.

Chapter 10: Multimodal Detection of Epilepsy with Deep Neural Networks.

This chapter introduces a multimodal deep neural network for detecting epilepsy through

single-channel EEG signals.

Chapter 11: Conclusions and Future Work. This chapter concludes the work

proposed in this thesis, presents some limitations of this thesis, and provides some sugges-

tions for future research directions.

2.8 Supporting Publications

All the materials presented in this thesis are built on the publications considered by

various international conferences and journals, as follows:

• L. Ilias, S. Mouzakitis and D. Askounis, “Calibration of Transformer-Based Models

for Identifying Stress and Depression in Social Media,” in IEEE Transactions on
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• L. Ilias and D. Askounis, “Explainable Identification of Dementia From Transcripts

Using Transformer Networks,” in IEEE Journal of Biomedical and Health Informat-

ics, vol. 26, no. 8, pp. 4153-4164, Aug. 2022 [175] (Chapter 5).

• L. Ilias, D. Askounis, and J. Psarras,“Detecting dementia from speech and tran-

scripts using transformers,” Computer Speech & Language, vol. 79, p. 101485, 2023

[176] (Chapter 6).

• L. Ilias and D. Askounis, “Multimodal deep learning models for detecting dementia
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(Chapter 7).
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Chapter 3

Literature Review

3.1 State-of-the-art analysis of Machine Learning Methods

used for the recognition of Depression in Social Media

Some studies have focused on the extraction of features and then the train of shallow

machine learning classifiers. For instance, Tadesse et al. [1] extracted n-grams via the

tf-idf approach, LIWC features, and LDA topics. Then, they trained LR, SVM, Ran-

dom Forest (RF), AdaBoost, and Multilayer Perceptron (MLP). Results showed that the

bigram features trained on an SVM classifier achieved 80.00% accuracy, while the best

accuracy accounting for 91.00% was achieved by exploiting the MLP classifier with all

the features, i.e., LIWC, LDA, and bigrams. Liu and Shi [181] extracted a set of textual

features, namely part-of-speech, emotional words, personal pronouns, polarity, and so on,

and a set of features indicating the posting behaviour of the user, i.e., posting habits

and time. Next, feature selection techniques were applied, including recursive elimina-

tion, mutual information, extreme random tree. Finally, naive bayes, k-nearest neighbor,

regularized logistic regression, and support vector machine were used as base learners,

and a simple logistic regression algorithm was used as a combination strategy to build a

stacking model. Nguyen et al. [182] extracted a set of features, including LDA topics,

LIWC features, affective features by using the affective norms for english words (ANEW)

lexicon, and mood labels. The authors trained a LASSO regression classifier for detecting

depressive posts and analyzing the importance of each feature. The authors applied also

statistical tests and found significant differences between depressive and non-depressive

posts. Tsugawa et al. [183] extracted features and trained an SVM classifier to detect

depression in Twitter. Specifically, the authors extracted the frequency of words used in

tweets, ratio of tweet topics found by LDA, ratio of positive and negative words, and many

more. Pirina and Çöltekin [13] collected several corpora and trained an SVM classifier

using character and word n-grams. Doc2vec and tf-idf features were extracted and given

as input to AdaBoost, LR, RF, and SVM for identifying the severity of depression.

Recently, deep learning approaches have introduced, since they obtain better perfor-

mance than the traditional ML algorithms and do not often require the tedious procedure

81
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of feature extraction. For example, Wani et al. [184] represented words as word2vec and

tf-idf approach and trained a deep neural network consisting of CNNs and LSTMs. Kim

et al. [185] collected a dataset consisting of posts written by people, who suffer from

mental disorders, including depression, anxiety, bipolar, borderline personality disorder,

schizophrenia, and autism. This study developed six binary classification models for de-

tecting mental disorders, i.e., depression vs. non-depression, and so on. Specifically, the

authors utilized the tf-idf approach and trained an XGBoost classifier. Next, the authors

used the word2vec and trained a CNN model. Naseem et al. [17] reformulated depression

identification as an ordinal classification problem, where they used four depression severity

levels. The authors introduced a deep neural network consisting of Text Graph Convo-

lutional Network, BiLSTM, and Attention layer. A similar approach was proposed by

Ghosh and Anwar [186], where the authors extracted features and trained LSTMs for es-

timating the depression intensity levels. A hybrid deep neural network consisting of CNN

and BiLSTM was introduced by Kour and Gupta [187]. Zogan et al. [188] introduced the

first dataset including posts from users with and without depression during COVID-19

and presented a new hierarchical convolutional neural network. An emotion-based atten-

tion network model was proposed by Ren et al. [189], where the authors extracted the

positive and negative words and passed through two separate BiLSTM layers followed by

Attention layers.

Ensemble strategies have also been explored in the literature. This means that mul-

tiple models are trained separately and the final decision is taken usually by a majority

voting approach. For instance, an ensemble strategy was introduced by Ansari et al. [4].

Firstly, the authors exploited some sentiment lexicons, including AFINN, NRC, Sentic-

Net, and multi-perspective question answering (MPQA), extracted features, and applied

Principal Component Analysis for reducing the dimensionality of the feature set. A Lo-

gistic Regression classifier was trained using the respective feature set. Next, the authors

trained an LSTM neural network coupled with an attention mechanism. Finally, the au-

thors combined the predictions of these two approaches via an ensemble method. Also,

an ensemble approach was proposed by Trotzek et al. [190]. Firstly, the authors trained

a Logistic Regression classifier using as input user-level linguistic metadata. Specifically,

the authors extracted LIWC features, length of the text, four readability scores, and so

on. Next, the authors trained a CNN model. Finally, the authors combined the outputs

of these approaches via a late fusion strategy, i.e., by averaging the predictions of the

classifiers. Figuerêdo et al. [3] designed a CNN along with early and late fusion strategies.

Specifically, the authors exploited fastText and GloVe embeddings. In the early fusion ap-

proach, multiple word embeddings were concatenated and passed to the CNN model. In

the late fusion strategy, a majority-vote approach was performed based on the predictions

of multiple CNN models. The CNN model comprised a simple convolution layer, max-

pooling, fully connected layers, and Concatenated Rectified Linear Units as the activation

function.

Explainable approaches have also been introduced. Souza et al. [191] introduced a
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stacking ensemble neural network, which addresses a multilabel classification task. Specif-

ically, the proposed architecture consists of two levels. In the first level, binary base clas-

sifiers were trained with two distinct roles, i.e, expert and differentiating. The expert base

classifiers were used for differentiating between users belonging to the control group and

those diagnosed with anxiety, depression, or comorbidity. The differentiating base models

aimed at distinguishing between two target conditions, e.g., anxiety vs. depression. In the

second level, a meta-classifier uses the base models’ outputs to learn a mapping function

that manages the multi-label problem of assigning control or diagnosed labels. The au-

thors used LSTMs and CNNs. Finally, this study explored Shapley additive explanations

(SHAP) metrics for identifying the influential classification features. Zogan et al. [192]

proposed also an explainable approach, where textual, behavioural, temporal, and seman-

tic aspect features from social media were exploited. An hierarchical attention network

was used in terms of explainable purposes. An hierarchical attention network was also

used by Uban et al. [193], where the authors extracted a feature set consisting of content,

style, LIWC, and emotions/sentiment features. An interpretable approach was proposed

by Song et al. [194], where the authors introduced the Feature Attention Network. The

Feature Attention Network consists of four feature networks, each of which analyzes posts

based on an established theory related to depression and a post-level attention on top of

the networks. However, this method did not attain satisfactory results.

Recently, transformer-based models have been applied in the task of depression detec-

tion in social media. Specifically, Boinepelli et al. [195] introduced a method for finding

the subset of posts that would be a good representation of all the posts made by the user.

Firstly, they employed BERT and computed the embeddings for all posts made by the

user. Next, they used a clustering and ranking algorithm. After finding the representa-

tive posts per user, the authors added domain specific elements by exploiting RoBERTa.

Finally, the authors experimented with two ways for diagnosing depression, i.e., by either

employing a majority-vote approach or training a hierarchical attention network. Anan-

tharaman et al. [196] fine-tuned a BERT model for classifying the signs of depression into

three labels namely “not depressed”, “moderately depressed”, and “severely depressed”.

Similarly, Nilsson and Kovács [197] exploited a BERT model and used abstractive sum-

marization techniques for data augmentation. Zogan et al. [198] presented an abstractive-

extractive automatic text summarization model based on BERT, k-Means clustering, and

bidirectional auto-regressive transformers (BART). Then, they proposed a deep learning

framework, which combines user behaviour and user post history or user activity.

Multimodal approaches combining both text and images have also been proposed. For

instance, a multimodal approach was introduced by Ghosh et al. [199] for detecting de-

pression in Twitter. Specifically, the authors utilized the user’s description and profile

image. The authors used the IBM Watson NaturalLanguageUnderstanding tool and ex-

tracted sentiment and emotion information for all user descriptions along with the possible

categories (at most 3) that the description may belong to. Next, the authors designed a

neural network consisting of BiGRU, Attention layers, Convolution layers, and dense lay-
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ers. The authors used GloVe embeddings. The proposed architecture can predict whether

the user suffers from depression or not as well as predict the sadness, joy, fear, disgust,

and anger score. Li et al. [200] exploited text, pictures, and auxiliary information (post

time, dictionary, social information) and used attention mechanism within and between

the modalities at the same time. The authors exploited TextCNN, ResNet-18, and fully

connected layers for extracting representation vectors of text, images, and auxiliary in-

formation respectively. A multimodal approach was proposed by Cheng and Chen [201],

where the authors exploited texts, images, posting time, and the time interval between

the posts in Instagram. Shen et al. [202] collected multimodal datasets and extracted six

depression-oriented feature groups, namely social network, user profile, visual, emotional,

topic-level, and domain-specific features. Gui et al. [203] combined texts and images and

proposed a new cooperative multi-agent reinforcement learning method.

Multitask approaches have been introduced. A multitask approach was introduced by

Zhou et al. [204]. Specifically, the authors proposed a hierarchical attention network con-

sisting of BiGRU layers and integrated LDA topics. The main task was the identification

of depression, i.e., binary classification task, while the auxiliary task was the prediction

of the domain category of the post, i.e., multiclass classification task. Both multitask and

multimodal approaches were introduced by Wang et al. [205]. The authors extracted a

total of ten features from text, social behaviour, and pictures. XLNet, BiGRU coupled

with Attention layers, and Dense layers were used. The authors in [206] presented two ap-

proaches based on a multi-task learning framework. Depression detection corresponded to

the primary task, while stress detection corresponded to the auxiliary task. Experiments

showed that the proposed approach improved single-task learning and transfer learning

strategies.

3.1.1 Literature Review Findings

Existing research initiatives rely on the feature extraction process and the train of

shallow machine classifiers targeting at diagnosing mental disorders in social media. This

fact demands domain expertise and does not generalize well to new data. Other existing

approaches train CNNs, BiLSTMs, or employ hybrid models and ensemble strategies. Re-

cently, transformer-based models have been used also. Only few works have experimented

with injecting linguistic, including emotion, features into deep neural networks. These

approaches employ multi-task learning models, fine-tuning, or multimodal approaches.

All these approaches employing transformer-based models usually fine-tune these models.

None of these approaches have used modifications of BERT aiming to enhance its perfor-

mance by injecting into it external knowledge. Also, no prior work has taken into account

model calibration creating in this way overconfident models.



3.1.2 Datasets 85

3.1.2 Datasets

3.1.2.1 Depression Mixed

This dataset [13] consists of 1482 non-depressive posts and 1340 depressive posts.

These posts have been written by users in Reddit and English depression forums.

3.1.2.2 Depression Severity

This dataset includes posts in Reddit [17] and assigns each post to a severity level,

i.e., minimal (2587 posts), mild (290 posts), moderate (394 posts), and severe form of

depression (282 posts).

3.2 State-of-the-art analysis of Machine Learning Methods

used for the recognition of Depression through Sponta-

neous Speech

3.2.1 Early Fusion

The study in [37] constructs a graph based on question-answering pairs. Specifically,

a Graph Attention Network is trained. In terms of the multimodal fusion, the authors

employ an early fusion approach. A multitask learning framework is adopted, which

predicts the level of depression severity (regression) and classifies the subject as depressive

or non-depressive. A similar approach is introduced by [36], where the authors employ

an early fusion approach and concatenate the representation vectors of audio, visual, and

textual modalities. A multi-task learning framework is trained for classifying the level of

disorder and predicting the disorder score.

3.2.2 Intermediate Fusion

The study in [207] converts speech signals into spectrogram and uses a VGG16 pre-

trained model followed by Gated Convolutional Neural Networks and one LSTM layer.

The authors pass the BERT embeddings into CNN layers followed by LSTM layers. The

representation vectors of the two modalities are concatenated for predicting the Patient

Health Questionnaire (PHQ) score. In [32], the authors use articulatory coordination

features (ACFs) derived from vocal tract variables. A staircase regression approach is

used, where an ensemble of models is trained on multiple partitions of the same training

data set. A hierarchical attention network (HAN) is used for extracting textual repre-

sentation. Additional features representing the prosodic information are extracted. The

abovementioned feature representations are concatenated for estimating the depression

severity score. In [38], speech signals are represented as log-Mel spectrograms and fed

into temporal CNNs, while text is passed through the encoder part of the transformer.

Representation vectors of these two modalities are concatenated for predicting whether



86 Chapter 3. Literature Review

the individual has depression or not. Ref. [39] adopts a similar approach. DeepSpectrum

features are obtained from speech signals and fed into Temporal Convolutional Networks

(TCNs) followed by Attention and Dense Layers. The authors feed the word2vec embed-

dings into a transformer encoder. Finally, the audio and textual vectors are concatenated

into a single vector. Ref. [208] proposes a multimodal neural network consisting of two

branches of LSTMs for extracting textual and acoustic representations. These two rep-

resentations are concatenated in one single vector. The authors in [209] concatenate the

audio and transcript representations during training. The authors in [210] pass the MFCC

features through CNN layers, while the visual and textual modalities are passed through

dense layers. The two representations are concatenated into one feature vector.

3.2.3 Late Fusion

The authors in [41] use audio, videos, and transcripts and combine the respective

representations via a late fusion approach, namely adaptive nonlinear judge classifier. A

majority vote approach is adopted by [40].

3.2.4 Other approaches

In [211], the authors use sentence embeddings, log-Mel spectrograms, and facial ex-

pressions and employ ConvBiLSTMs. They fuse the representation vectors by using an

attention layer and state that the proposed approach outperforms late fusion strategies.

A different approach is proposed by [212], where feed-forward highway layers with gating

units are used for controlling the information flow of the different modalities. This ap-

proach is compared with early and late fusion strategies. Results suggest that the proposed

approach yields the highest results.

3.2.5 Literature Review Findings

Existing research works rely on the feature extraction approach, which is a time-

consuming procedure, demands a level of domain expertise and does not generalize well

to new data. In terms of multimodal approaches, early, intermediate, and late fusion

strategies are employed, which cannot capture the inter-modal interactions. Additionally,

the majority of studies are performing their experiments on the english language, thus

limiting the generalization to other languages. Finally, no study has experimented with

multi-task learning approaches for exploring if the education level, age, and gender aid in

the depression detection task.

3.2.6 Datasets

3.2.6.1 Androids Corpus

The Androids corpus [42] consists of two tasks, namely the reading and interview

task. Specifically, the interview task consists of 116 spontaneous speech samples. All
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experiments are person independent. Audio files are in Italian language. This dataset

includes information about the gender, age, and education level of the individuals. The

populations of depressed and non-depressed participants have the same distribution in

terms of age, gender, and education. Manual transcripts are not provided.

3.2.6.2 Distress Analysis Interview Corpus - Wizard of Oz (DAIC-WOZ)

This database includes clinical interviews for supporting the diagnosis of psychological

distress conditions such as anxiety, depression, and post-traumatic stress disorder [213].

189 clinical interviews are included. PHQ-9 is used for annotating depressed patients.

3.2.6.3 Emotional Audio-Textual Depression Corpus (EATD-Corpus)

The emotional audio-textual depression corpus [214] includes audio recordings and

transcripts of 162 chinese student volunteers. Specifically, this dataset includes 30 de-

pressed volunteers and 132 non-depressed volunteers. Each volunteer is asked to complete

an SDS questionnaire.

3.2.6.4 Depression and Anxiety Crowdsourced Corpus (DEPAC)

The depression and anxiety crowdsourced corpus [215] includes 2,674 audio samples

collected from 571 subjects. Firstly, each participant is asked to provide some demographic

information, i.e., age, gender, education level. Then, each participant is asked to perform

five speech tasks, phoneme pronunciation, phonemic fluency test, picture description, se-

mantic fluency test and prompted narrative task. Each participant is asked to complete

two assessment tools, including Patient Health Questionnaire (PHQ-9) and Generalized

Anxiety Disorder - 7 (GAD-7).

3.2.6.5 Multimodal Open Dataset for Mental-Disorder Analysis (MODMA)

The multimodal open dataset for mental-disorder analysis [216] consists of audio

recordings, EEG signals, and questionnaires. It includes 24 depressed patients and 29

healthy controls. In terms of the questionnaires, all the participants have completed

depression assessment questionnaires, including PHQ-9 and GAD-7 (generalized anxiety

disorder-7), and a psychiatric evaluation. Each participant is asked to perform an inter-

view, reading, and picture description task.

3.3 State-of-the-art analysis of Machine Learning Methods

used in dementia from spontaneous speech

3.3.1 Unimodal Approaches

Meghanani et al. [94] used the ADReSS Challenge Dataset and proposed three deep

learning models to detect AD patients using only speech data. Firstly, they converted
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the audio files into Log-Mel spectrograms and MFCCs along with their delta and delta-

delta, in order to create an image consisting of three channels. Next, they divided the

images into non-overlapping segments of 224 frames and passed each frame through five

convolution layers followed by LSTM layers. In the second proposed model, they replaced

the five convolution layers with a pretrained ResNet18 model. Finally, they trained a model

consisting of BiLSTMs and CNN layers. Results showed that Log-Mel spectrograms and

MFCCs are effective for the AD detection problem. One limitation of this study is that

the authors employed only one image-based pretrained model, i.e., ResNet18.

Gauder et al. [217] used the ADReSSo Challenge Dataset and extracted a set of

features from speech, namely eGeMAPS [218], trill [219], allosaurus [220], and wav2vec2

[221], where each feature vector was fed into two convolution layers. Then, the outputs

of the convolution layers were concatenated and were passed through a global average

pooling layer followed by a dense layer, in order to get the final output. Results from an

ablation study showed that trill and wav2vec2 constituted the best features. The main

limitations of this study are the feature extraction process and the concatenation of the

feature representations.

Balagopalan and Novikova [222] used the ADReSSo Challenge Dataset and introduced

three approaches to differentiate AD from non-AD patients by extracting 168 acoustic

features from the speech audio files, computing the embeddings of the audio files using

wav2vec2, and finally combining the aforementioned approaches by simply concatenating

the two representations. Results showed that a Support Vector Machine trained on the

acoustic features yielded the highest precision, whereas the SVM classifier trained on the

concatenation of the embeddings achieved the highest accuracy, recall, and F1-score. The

limitation of this study lies on the feature extraction process, the train of traditional

machine learning classifiers, and the usage of the concatenation operation, where the same

importance is assigned to the features.

Ref. [93] used the ADReSS Challenge Dataset and introduced two approaches target-

ing at diagnosing dementia only from speech. Firstly, after employing VGGish [223], they

used the features extracted via VGGish and trained shallow machine learning algorithms

to detect AD patients. Next, they proposed a convolutional neural network for speech

classification, namely DemCNN, and claimed that DemCNN outperformed the other ap-

proaches. The main limitation of this research work is the train of shallow machine learning

classifiers using the VGGish features, which increase the training time.

The authors in [224] proposed a feature extraction approach. Specifically, they ex-

tracted 54 acoustic features, including duration, intensity, shimmer, MFCCs, etc. Finally,

they trained the LIBSVM with a radial basis kernel function. The limitation of this study

lies on the feature extraction process and the train of only one traditional machine learn-

ing classifier. In addition, the authors have not applied feature selection or dimensionality

reduction techniques.

Research works [225, 226] used the DementiaBank Dataset and exploited a set of

acoustic features along with shallow machine learning classifiers. More specifically in
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[225], the authors extracted a set of 121 features, including the fundamental frequency,

the frequency alteration from cycle to cycle, the F0 amplitude variability, features assessing

the voice quality, spectral features, etc. The authors expanded this feature set with some

statistical sub-features, i.e., min, max, mean, etc. and thus increased the number of

features to 811. After employing feature selection techniques, the authors applied two

classification algorithms, namely SVM and Stochastic Gradient Descent for classifying

subjects into AD, non-AD patients, and Mild Cognitive Impairment (MCI) groups in a

cross-visit framework. In [226], the authors extracted a set of features, including the

emobase, ComParE [227], eGeMAPS, and MRCG functionals [228] and performed three

experiments, namely segment level classification, majority vote classification, and active

data representation. The authors exploited many classifiers, including Decision Trees, k-

Nearest Neighbours, Linear Discriminant Analysis (LDA), Random Forests, and Support

Vector Machines. The limitations of these studies lie on the tedious procedure of feature

extraction, which demands domain expertise. Also, both studies train shallow machine

learning classifiers.

Bertini et al. [229] used the DementiaBank Dataset and employed an autoencoder

used in the audio data domain called auDeep [230] and passed the encoded representation

(latent vector) to a multilayer perceptron, in order to detect AD patients. Results showed

significant improvements over state-of-the-art approaches. The main limitation of this

study is the way the speech signal is represented as image. Specifically, the speech signal

is converted to a log-Mel spectrogram. On the contrary, the addition of delta and delta-

delta features as channels of the image adds more information, since these features add

dynamic information to the static cepstral features.

The authors in [231] introduced the Open Voice Brain Model (OVBM), which uses 16

biomarkers. Audio files were converted into MFCCs. The ResNet has been used by eight

biomarkers for feature representation. Finally, the authors have applied Graph Neural

Networks (GNNs) and have extracted a personalized subject saliency map. The limitation

of this study lies on the way the speech signal is represented as an image. Specifically,

the authors convert the speech signal only to MFCCs. On the contrary, the addition of

delta and delta-delta features as channels of the image adds more information, since these

features add dynamic information to the static cepstral features. In addition, the authors

train multiple models increasing in this way both the training time and computational

resources.

Li et al. [89] extracted a set of acoustic and a set of linguistic features for catego-

rizing people into AD patients and non-AD ones. Regarding the acoustic features, they

extracted the ComParE feature set and x-vectors. In terms of the linguistic features, they

exploited CLAN [232] for extracting the Linguistic feature set. They also extracted tf-idf

and BERT features. Next, they employed feature selection, i.e., Pearson’s Correlation,

and dimensionality reduction, i.e., Principal Component Analysis (PCA), techniques. Fi-

nally, they trained three classifiers, namely Linear Discriminant Analysis, Support Vector

Machine, and LSTM coupled with an attention mechanism. They used both manual and
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automatic transcripts. Findings revealed that linguistic features achieved better perfor-

mance than the acoustic ones. Also, the authors stated that linguistic features extracted

from automatic transcripts achieved similar performance with the one obtained by using

manual transcripts.

Pan et al. [233] introduced Sinc-CLA, which consists of SincNet [234], Convolutional

Layers, Long Short-Term Memory layers, and an attention layer. They used this archi-

tecture as a task-driven feature extractor, where they passed the outpits of the attention

layer and the dense layer in LR and SVM classifiers. The authors extracted also ComParE

and IS10 feature sets and trained LR and SVM classifiers. They conducted their exper-

iments both at chunk and recording-level. Results showed that the task-driven features

yielded superior performance compared with IS10 and ComParE. Moreover, the authors

performed an analysis of the learned SincNet filters and stated that low-frequency informa-

tion is critical for classifying Mild Cognitive Impairement (MCI) and Neurodegenerative

Disorders (ND) from Healthy Control (HC).

Ref. [235] used only transcripts and introduced three deep neural networks. Firstly,

the authors trained a Convolutional Neural Network. Secondly, the authors trained an

architecture consisting of CNN and Bidirectional LSTM layers. Finally, the authors intro-

duced an architecture, namely SDDNN, where they passed the representation vectors of

the transcripts through: (a) CNN, (b) CNN + BiLSTM, and (c) BiLSTM coupled with an

attention mechanism, and concatenated the obtained representation vectors. The authors

experimented with both GloVe embeddings and randomly initialized embeddings. Find-

ings showed that SDDNN using GloVe embeddings achieved the best evaluation results.

Wankerl et al. [236] combined two perplexity estimates, namely one from a model

trained on transcripts of speech produced by healthy controls and the other from a model

trained on transcripts from patients with dementia. An AUC score of 0.83 was achieved

by using n-gram Language Models (LMs) in a participant-level leave-one-out-cross valida-

tion (LOOCV) evaluation across the DementiaBank dataset. Fritsch et al. [237] further

improved performance of this approach by substituting a neural LM (a LSTM model) for

the n-gram LM, and report an improved AUC of 0.92. However, it is currently unclear

as to whether this level of accuracy is due to dementia-specific linguistic markers, or a

result of markers of other significant differences between the case and control group such

as age (x̄ = 71.4 vs. 63) and years of education (x̄ = 12.1 vs. 14.3) [54]. The work pro-

posed by [238] investigated why these approaches are effective by interrogating neural LMs

trained on participants with and without dementia using synthetic narratives previously

developed to simulate progressive semantic dementia by manipulating lexical frequency.

Findings suggested that the “two perplexities” approach is successful at distinguishing

between cases and controls in the DementiaBank corpus because of its ability to capture

specifically linguistic manifestations of the disease.

Reference [239] exploited only transcripts and employed a feature extraction process.

Specifically, the authors extracted n-gram and lexicosyntactic features, including stop-

words ratio, word count, quantity of expressed propositions to the total spoken words, etc.
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Next, the authors proposed feature selection techniques, including the student’s t-test and

the Kolmogorov-Smirnov test. For dealing with the imbalanced dataset, a subsampling

technique was adopted, where the authors performed a random selection of a subset of the

majority with a matching size to that of the minority. Several machine learning algorithms

were trained, including Gaussian Naive Bayes, SVM, and Multilayer Perceptron Neural

Networks. The authors evaluated their proposed approaches on five classification tasks,

namely AD vs. HC, MCI vs. HC, MCI vs. AD, HC vs. Possible AD (PoAD), and AD vs.

PoAD. Results showed that early stages of dementia can be efficiently diagnosed through

linguistic patterns and deficits. In addition, the authors stated the superiority of their

approaches over state-of-the-art ones.

In [240], the authors introduced a stacked fusion model. Firstly, the authors extracted

lexicosyntactics and character n-gram features. Next, they applied feature selection tech-

niques, namely Pearson’s correlation and mutual information. After that, they trained

and evaluated several classifiers, including Random Forest, Extreme Gradient Boosting,

Linear discriminant analysis, Support Vector Machine, Gaussian Näıve Bayes, Logistic Re-

gression, and Multi-layer Perceptron, where they returned the best n classifiers. Finally,

the predictions of the best n classifiers were used as input to a Meta-Classifier. Findings

suggested the effectiveness of ensemble methods for AD diagnosis.

The authors in [241] used the DementiaBank dataset and translated the transcripts

into the Nepali language. Next, the authors used CountVectorizer, tf-idf, Word2Vec, and

fastText. They trained both shallow and deep learning classifiers. Regarding the shallow

machine learning algorithms, they used Decision Trees, k-Nearest Neighbours, Support

Vector Machines, Naive Bayes, Random Forests, AdaBoost, and XGBoost. In terms of

the deep learning models, they experimented with CNNs, BiLSTMs, Attention Layers,

and their combinations. Findings showed that the deep learning models performed better

than the traditional machine learning classifiers.

Nasreen et al. [164] extracted two feature sets, namely disfluency and interactional

features, and performed an in-depth statistical analysis in an attempt to investigate the

differences between AD and non-AD subjects in terms of these features. Findings show

that these two groups of people present significant differences. Then, they exploited shal-

low machine learning algorithms using the aforementioned feature sets to distinguish AD

from non-AD patients and obtained an accuracy of 0.90 when providing both feature sets

as input to the SVM classifier.

Al-Hameed et al. [242] used a longitudinal dataset to study the natural deterioration

of AD patients across three visits. More specifically, they used only acoustic features

and employed feature selection techniques to predict MMSE scores and distinguish people

with AD from people with Mild Cognitive Impairment (MCI) and healthy control (HC).

A similar approach was proposed by [165], who extracted features only from transcripts in

order to detect AD patients. Findings suggest that word entropy, phone entropy, and rate

of pauses in utterances achieve competitive performance when they are given as input to a

Decision Tree classifier. Haider et al. [243] introduced three approaches, namely segment-
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level, majority-voting on segments, and the novel active data representation (ADR), for

identifying AD patients using only acoustic features. They claimed that ADR outper-

formed the other two approaches due to its ability to encode acoustic information of a full

audio recording into a single feature vector for model training.

The authors in [65] introduced some approaches to detect AD patients and predict the

MMSE scores using only text data. Specifically, the authors proposed a Convolutional

Neural Network (CNN) and fastText-based classifiers. Regarding the AD classification

task, they fitted 21 models and the outputs were combined by a majority voting scheme for

final classification. In terms of the MMSE regression task, the outputs of these bootstrap

models were averaged for calculating the final MMSE score.

Research works [244, 245] employed a hierarchical attention neural network to detect

AD patients. More specifically, the authors in [244] evaluated their proposed model in both

manual and automatic transcripts and found that a hierarchical neural network achieves

an improvement in F1-score in comparison to other deep learning models. In [245], the

authors tried to interpret the decisions made by the proposed model by visualizing words

and sentences and performing statistical analyses. However, they were not able to explain

why their model pays attention to some specific words more than others.

Authors in [246] proposed a multi-task learning framework (Sinc-CLA), so as to predict

age and MMSE scores (both considered as regression tasks) and used only speech as input

for their proposed network. Concurrently, they introduced shallow networks with input

i-vectors and x-vectors both in single and multi-task learning frameworks. They claimed

that using x-vectors in a multi-task learning framework yields the best results in terms of

the estimation of both age and MMSE scores.

The research work proposed by [247] employed unimodal approaches by using only

either speech or text to classify subjects into AD patients or non-AD ones. For the

text modality, the authors extracted embeddings by using fastText, BERT, LIWC, and

CLAN. For the acoustic modality, the authors extracted i-vectors and x-vectors. For

both modalities, they employed dimensionality reduction techniques and trained shallow

machine learning classifiers and neural networks (CNNs and LSTMs). The authors claimed

that the Support Vector Machine and the Random Forest Classifiers trained on BERT

embeddings achieved the highest accuracy. One limitation of this study is the fact that

the authors used BERT embeddings as features for training additional algorithms. They

did not experiment with extracting the [CLS] token and passing it to a dense layer for

performing the classification.

Karlekar et al. [168] applied three deep neural networks based on CNNs, LSTM-

RNNs, and their conjunction to distinguish AD patients from non-AD ones utilizing only

transcripts. Next, they proposed explainability techniques by applying automatic cluster

pattern analysis and first derivative saliency heat maps, in order to uncover differences in

language between AD patients and healthy control groups. The main limitation of this

paper is the fact that the authors did not experiment with language models based on

transformers, i.e., BERT, RoBERTa, and so on.
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Similarly, the work proposed by [248] extracted seventeen features from transcripts

for detecting AD patients. Specifically, the authors extracted the rate of pauses in ut-

terances, filler sounds, number of no answers, part-of-speech tags, intelligibility of speech,

diversity and complexity of the words, and many more. Next, they trained Support Vector

Machines, Linear Discriminant Analysis, and Decision Trees. Results indicated that 90%

prediction accuracy can be obtained using only phone entropy, silence rate per utterance,

and word entropy with a Decision Tree classifier. The limitation of this paper lies on the

feature extraction process, which is a time-consuming and tedious procedure. Addition-

ally, the optimal feature set may not be found, since some level of domain expertise is

required.

An augmented adversarial self - supervised learning method was proposed by [249].

Specifically, the introduced approach was based on contrastive predictive encoding. For

dealing with the imbalanced dataset, i.e., limited number of speech samples corresponding

to AD patients, the authors applied three augmentation schemes, including speed based

augmentation, tempo based augmentation, and tremolo based augmentation. Findings

indicated that the proposed methods improved the performance for AD detection to a

large margin compared to other models.

3.3.2 Multimodal Approaches

Several approaches have been introduced which fuse the representation vectors or fea-

tures of the different modalities at the input level. This strategy is known as an early

fusion approach and does not capture effectively the inter-modal interactions. Edwards

et al. [250] proposed a multimodal (audio and text) and multiscale (word and phoneme

levels) approach. For the acoustic modality, the authors extracted features using the

OpenSMILE toolkit, applied feature selection techniques, and trained shallow machine

learning classifiers, including SVM, latent discriminant analysis (LDA), and LR. In terms

of the language models, the authors trained a Random Forest Classifier on Word2Vec

and GloVe embeddings. Also, they trained a FastText classifier from scratch. In ad-

dition, pretrained embeddings obtained by Sent2Vec, RoBERTa, ELECTRA, and so on

were fine-tuned with the FastText classifier. The authors transcribed the segmented text

into phoneme written pronunciation using CMUDict and stated that the FastText classi-

fier was the best performing model trained on the phoneme representation. Results also

showed that the combination of phonemes and audio yielded to the highest accuracy ac-

counting for 79.17%. Martinc and Pollak [95] proposed also an early fusion approach. The

authors extracted a large number of features corresponding to the textual and acoustic

modality. They fused the feature sets via an early fusion method. Finally, they trained

four machine learning classifiers, namely XGBoost, Random Forest, SVM, and Logistic

Regression. Findings showed that the logistic regression and SVMs were proved to be

better than XGBoost and Random Forest. Also, the authors stated that the readability

features led to a surge in the classification performance. In terms of the audio features,
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the duration was the best performing one. Pompili et al. [67] proposed an early fusion

approach for fusing the modalities of speech and transcript. Specifically, for the text

modality, the authors employed the BERT model first and then trained three deep neural

models on top of the BERT embeddings, namely (i) a Global Maximum pooling, (ii) a

bidirectional LSTM-RNNs provided with an attention module, and (iii) the second model

augmented with part-of-speech (POS) embeddings. For the audio modality, the authors

extracted the x-vectors. Finally, the authors merged the feature sets corresponding to the

two different modalities and trained a Support Vector Machine classifier. Results showed

that the fusion of the two modalities increased the performance obtained by unimodal ap-

proaches exploiting only speech or text. Ref. [251] extracted three sets of features, namely

lexicosyntactic, acoustic, and semantic features. In terms of the lexicosyntactic features,

the authors extracted the proportion of POS-tags, average sentiment valence of all words

in a transcript, and many more. Regarding the acoustic features, MFCCs, fundamental

frequency, statistics related to zero-crossing rate, etc. were exploited. With regards to the

semantic features, the authors extracted proportions of various information content units

used in the picture. Next, they performed feature selection by using the ANOVA and

trained four machine learning classifiers, including SVM, neural network, RF, and NB.

Results showed that SVM outperformed the other approaches in the multimodal frame-

work. The limitation of this study lies on the way the features from different modalities

are combined. More specifically, the authors apply an early fusion strategy, where they

fuse the features at the input level. This approach does not capture the inter- and intra-

modal interactions. In addition, another limitation is the feature extraction procedure. In

[252], an early fusion approach was proposed. Specifically, the authors extracted a set of

acoustic features, i.e., articulation, prosody, i-vectors, and x-vectors, and a set of linguistic

features, including word2vec, BERT, and BERT-Base trained with the Spanish Unanno-

tated Corpora (BETO) embeddings. The authors concatenated these sets of features and

trained a Radial Basis Function-Support Vector Machine. The main limitation of this

paper is the early-fusion approach. [253] compared the performance of traditional ma-

chine learning classifiers with the performance obtained by pre-trained transformer mod-

els, namely BERT. More specifically, the authors extracted a large number of features, i.e.,

lexicosyntactic, semantic, and acoustic features and applied feature selection by choosing

top-k number of features, based on ANOVA F-value between label and features. Four

conventional machine learning models, namely Support Vector Machine, Neural Network,

Random Forest, and Naive Bayes, were trained with the respective sets of features. Next,

the authors trained a BERT model and stated that BERT outperformed the feature-based

approaches in terms of all the evaluation metrics. [254] introduced some approaches to

predict MMSE scores using textual and acoustic features. More specifically, the authors

extracted lexicosyntactic features weighted via tf-idf, psycholinguistic features, discourse-

based features, and acoustic features (MFCCs). The authors trained a Support Vector

Regressor for predicting the MMSE scores. Results indicated that a selection of verbal

and non-verbal cues achieved the lowest RMSE score. The authors in [247, 64] introduced
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approaches based on multimodal data (both linguistic and acoustic features) to detect

AD patients (binary classification task) and predict MMSE score (regression task). More

specifically, the authors in [247] exploited dimensionality reduction techniques followed

by machine learning classifiers and stated that Logistic Regression (LR) with language

features was their best performing model in terms of classifying AD and non-AD patients.

With regards to estimating the MMSE score, they claimed that a Random Forest classi-

fier with language features achieves the lowest RMSE and R2 scores. The combination of

linguistic and acoustic features did not perform well on both tasks. In [64], the authors

trained both shallow and deep learning models (LSTM and CNN) on a feature set con-

sisting of acoustic features (i-vectors, x-vectors) and text features (word vectors, BERT

embeddings, LIWC features, and CLAN features) to detect AD patients. They found that

the top-performing classification models were the Support Vector Machine (SVM) and

Random Forest classifiers trained on BERT embeddings, which both achieved an accuracy

of 85.4% on the test set. Regarding the regression task, they claimed that the gradient

boosting regression model using BERT embeddings outperformed all the other introduced

architectures.

Other approaches employ late-fusion strategies. This means that multiple models, i.e.,

acoustic and language, are trained separately and the final result/prediction is often taken

after a majority vote approach. In this way, the inter-modal interactions are not captured.

The authors in [92] proposed a majority-level approach for classifying AD patients using

the audio and textual modalities. In terms of the textual modality, the authors extracted

handcrafted textual features and deep textual embeddings of transcripts. For the extrac-

tion of deep textual embeddings, they used BERT, RoBERTa, and distilled versions of

BERT and RoBERTa. Next, they exploited feature aggregation techniques and classified

the subject as AD or non-AD patient by training either a Logistic Regression (LR) or a

Support Vector Machine (SVM) classifier. In terms of the audio modality, the authors ex-

tracted handcrafted acoustic features, i.e., ComParE, COVAREP, etc. and deep acoustic

embeddings, i.e., YAMNet, VGGish, etc. Similarly to the textual modality, they used fea-

ture aggregation techniques and trained a LR and SVM classifier. Results indicated that

the majority-level approach of text models yielded the highest evaluation results, while

the fusion of textual and acoustic modalities led to a degredation in performance. Shah

et al. [64] introduced a weighted majority-vote ensemble meta-algorithm for classification

utilizing the modalities of speech and transcripts. For the textual modality, the authors

extracted language and fluency features, including the type-token ratio, the number of

verbs per utterance, etc. and n-gram features. For the acoustic modality, the authors

extracted four feature sets using the OpenSMILE v2.1 toolkit. After that, the authors ap-

plied dimensionality reduction techniques, i.e., Principal Component Analysis, and feature

selection techniques, i.e., ANOVA F-values. Finally, shallow machine learning classifiers

were trained. Best results were obtained by using only the textual modality, while the

majority vote approach by combining textual and acoustic modalities led to a decrease in

the classification performance. Sarawgi et al. [170] trained acoustic and language models
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separately and proposed three kinds of ensemble modules for classification. Specifically,

the authors experimented with hard ensemble, meaning that a majority vote was taken

between the predictions of the three individual models. A soft ensemble was also pro-

posed, where a weighted sum of the class probabilities was computed for final decision, in

order to leverage the confidence of the predictions. Also, a learnt ensemble was exploited,

where a logistic regression classifier was trained using class probabilities as inputs. Results

showed that the hard ensemble approach yielded the best results. Mittal et al. [255] pro-

posed a late fusion strategy using the modalities of speech and transcripts. Firstly, they

trained separately acoustic and language models. For the acoustic modality, the authors

trained a VGGish model with log-mel spectrograms. For the textual modality, the authors

concatenated the representation obtained by BERT, Sentence-BERT, and fastText-CNN.

Finally, the probabilities calculated by the audio and text-based model were combined in a

weighted manner, and a threshold was fixed for classifying the persons into AD and healthy

control. Pappagari et al. [256] trained acoustic and language models separately and used

the output scores as inputs to a Logistic Regression classifier for obtaining the final predic-

tion. For the language models, the authors used automatic speech recognition models for

transcribing the recordings and employed a BERT model. For the acoustic modality, the

authors used x-vectors for classifying subjects into AD patients and non-AD ones. Also,

they extracted eGeMAPS, VGGish, prosody features, etc. and trained Logistic Regression

and XGBoost classifiers. The authors stated that the combination of the different models

and the BERT model trained on automatic transcripts achieved equal accuracy on the test

set. Similarly, the authors in [90] trained also acoustic and language models separately. In

terms of the acoustic models, the authors extracted the x-vectors and trained a Probabilis-

tic Linear Discriminant Analysis classifier. For the textual modality, the authors employed

a BERT model. For fusing the two modalities, the authors employed the scores from the

whole training subset to train a final fusion GBR model that was used to perform the

fusion of scores coming from the acoustic and transcript-based models for the challenge

evaluation. Results showed that the proposed approach was the best performing one. The

authors in [257] introduced three speech-based systems and two text-based systems for di-

agnosing dementia from spontaneous speech. Also, they proposed methods for fusing the

different modalities. In terms of the speech based systems, the authors extracted i-vectors,

x-vectors, and rhythmic features and trained an SVM and a Linear Discriminant Analysis

(LDA) classifier. Regarding the text-based models, the authors fine-tuned a BERT model

and trained an SVM classifier using linguistic features. Finally, the authors exploited

three fusion strategies based on late fusion approach. Therefore, the main limitation of

this study is the late fusion approach for fusing the different modalities. Ref. [63] used

the ADReSS Challenge Dataset and introduced neural network architectures which use

language and acoustic features. Regarding the multimodal approach, the authors fuse the

predictions of the three best performing models using a majority vote approach and show

that label fusion outperforms the neural networks using either only speech or transcripts.

The limitation of this study lies on the usage of a late fusion strategy, i.e., majority vote
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approach. In this way, multiple models must be trained separately increasing the train-

ing time. Also, the inter-modal interactions cannot be captured. [61] proposed several

acoustic and language individual models. Specifically, they extracted both handcrafted

features and embeddings via BERT, RoBERTa, VGGish, YAMNet, etc. After applying

feature aggregation techniques, they trained and tested a Logistic Regression and Support

Vector Machine classifier for differentiating AD from non-AD patients. For fusing the two

modalities, the authors applied a majority voting based label fusion strategy, where each

model made a decision on whether it considered the subject to be healthy or suffering

from Alzheimer’s dementia. Results showed that the multimodal fusion did not achieve

better performance than the unimodal models. Regarding the MMSE regression task, the

authors used SVR and PLSR and fused the two modalities by applying average-based

fusion. A similar approach was conducted by [66], where the authors extracted a set of

acoustic features, i.e., Prosody, Voice Quality, ComParE, IS10-Paling, etc., and a set of lin-

guistic features using transformer-based networks, including BERT, RoBERTa, and their

distilled versions. They categorized people into AD patients or not by training a Support

Vector Machine (SVM) and a Logistic Regression (LR) classifier. The authors used label

fusion from the top performing models and stated that the label fusion of the 10 best

performing textual models achieved an accuracy of 85.42%. For predicting the MMSE

scores, the authors used support vector machines based regression (SVR) and a partial

least squares regressor (PLSR). They achieved a Root Mean Squared Error (RMSE) score

equal to 4.30 by averaging the predictions of the MMSE scores from the top-10 performing

models. Research works [169] extracted a set of acoustic and linguistic features using the

ADReSSo Challenge Dataset. Next, they concatenated these sets of features and trained

a Logistic Regression classifier. They also proposed three label fusion approaches, namely

majority voting, average fusion, and weighted average fusion, based on the predictions of

several neural networks. The limitations of this study are related to the early and late

fusion strategies introduced for detecting AD patients. In [258], the authors introduced

an approach, which accounts for temporal aspects of both linguistic and acoustic features.

In terms of the acoustic features, the authors exploited the eGeMAPS feature set, while

they used GloVE embeddings with regards to the language features. Next, the Active

Data Representation [226] with some modifications was employed. The authors used a

Random Forest Classifier for performing their experiments. The authors performed a se-

ries of experiments and stated that the majority vote approach yielded the best result.

The method for fusing the two modalities, i.e., late fusion strategy, constitutes the main

limitation of this study.

There are also approaches, which add or concatenate the representation vectors of

different modalities during training. However, in this way, the inherent correlations be-

tween the different modalities are not captured. On the contrary, equal importance is

assigned to the different modalities. Research work [259] employed also a bi-modal model

consisting of Dense, GRU, CNN, BiLSTM, and attention layers. The authors fused the

two modalities by concatenating their respective representations. Results on the ADReSS
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Challenge Dataset showed an improvement of evaluation results of the multimodal ap-

proach over unimodal architectures. The usage of the concatenation operation for fusing

the two modalities constitutes a limitation of this study. Also, the feature extraction pro-

cess proposed by the authors, constitutes another limitation. Zhu et al. [91] proposed both

unimodal and multimodal approaches. Regarding unimodal models, they employed first

MobileNet and YamnNet to discriminate between AD patients and non-AD ones. They

converted audio files into MFCC features, duplicated the MFCC feature map twice and

made the MFCC feature map as a (p, t, 3)-matrix, in order to match with the module

input of the proposed architectures. They used also BERT and Speech BERT. In terms of

the multimodal models, the authors exploited Speech BERT, YamnNet, Longformer, and

BERT. After extracting the representations of audio and transcripts, they used the add

and concatenation operation to fuse these two modalities. Results on the ADReSS Chal-

lenge Dataset showed that the concatenation operation of the representations extracted

via BERT and Speech BERT outperformed the unimodal models. The limitations of this

study are the following: (i) the way the speech signal is represented as an image. More

specifically, this study duplicates the MFCC feature map twice and makes the MFCC

feature map as a (p, t, 3)-matrix. On the contrary, the delta and delta-delta features can

be used for adding more information [260, 261]. (ii) In terms of the multimodal models,

the authors fuse the different modalities via an add and concatenation operation. These

methods do not capture the inherent correlations between the two modalities. The au-

thors in [262] proposed both unimodal and multimodal approaches. Regarding unimodal

approaches using speech data, the authors extracted acoustic features and trained four

shallow machine learning classifiers. For the language modality, the authors trained a

BERT model. In terms of the multimodal approach, the authors simply concatenated the

representations obtained by BERT and acoustic modality. Results on the test set indi-

cated that the fusion approach achieved lower performance than the unimodal one using

the textual modality. Koo et al. [263] used the ADReSS Challenge Dataset and proposed

a deep learning model consisting of BiLSTMs, CNNs, and self-attention mechanism and

exploited both textual, i.e., transformer-based models, psycholinguistic, repetitiveness,

and lexical complexity features, and acoustic features, i.e., openSMILE and VGGish fea-

tures. Specifically, they passed each modality through a self attention layer, where key,

value, and query corresponded to one single modality. However, the authors concatenated

the outputs of the attention layer, which correspond to the two different modalities, and

passed them through a CNN layer. The main limitations of this study are pertinent to

the feature extraction process and the concatenation of the representation vectors of the

two modalities into one vector.

A different approach was proposed by [62]. More specifically, the authors extracted

textual and acoustic features and passed them through two different branches of BiLSTM

layers. A gating mechanism consisting of highway networks was proposed for fusing the

two modalities. However, the authors did not experiment with replacing the proposed

fusion method with a concatenation operation via an ablation study. Thus, this fusion
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method cannot guarantee performance improvement. Similarly, [264] used BERT instead

of BiLSTM for extracting the text representation and stated that the BiLSTM performed

better than BERT due to the fewer parameters used.

3.3.3 Other Multimodal Tasks

Villegas et al. [265] introduced multimodal approaches for inferring the political ide-

ology of an ad sponsor and identifying whether the sponsor is an official political party

of a third-party organization. The authors employed BERT and EfficientNet [266] for

extracting textual and visual representations respectively. They concatenated these two

representations and passed the resulting vector to an output layer for binary classifica-

tion. Results suggested that the combination of both modalities led to a surge in the

classification performance.

Villegas and Aletras [77] proposed multimodal approaches for the task of point-of-

interest type prediction. Specifically, the authors exploited BERT and Xception [267] for

extracting text and visual representations respectively. Next, they introduced three differ-

ent architectures for fusing the two modalities. First, they exploited the Gated Multimodal

Unit introduced by [75]. Secondly, inspired by [76], they proposed a model for modeling

the cross-modal interactions. Finally, the authors introduced an architecture, which in-

cludes the gated multimodal mechanism and the cross-attention layers on the top of the

gated multimodal mechanism. Findings suggested that the proposed architecture yielded

new state-of-the-art results outperforming significantly the previous text-only models.

Gu et al. [268] presented a deep multimodal network with both feature attention and

modality attention to classify utterance-level speech data. The authors used the modalities

of audio signal and text data as input to the deep neural network. In terms of the modality

fusion approach proposed, it consisted of three main parts, namely the modality attention

module, the weighted operation, and the decision making module. Findings showed that

the multimodal system achieved state-of-the-art performance and was tolerant to noisy

data indicating in this way its generalizability.

Pan et al. [269] proposed a multimodal architecture for detecting sarcasm in Twitter.

More specifically, the authors exploited the ResNet-152 model and obtained a visual rep-

resentation. Regarding the textual modality, they used a pretrained BERT model. After

obtaining embeddings for the input sequence and the hashtags included in the sequence,

the authors passed the corresponding embeddings through encoders of the transformer.

For modeling the cross-modal interactions, an additional encoder was used, where the vi-

sual representation corresponded to the key and value, while the sequence representation

corresponded to the query. In addition, an intra-modality attention approach was used,

which gets as input the sequence and the hashtag representations. The outputs obtained

were concatenated and passed to an output layer for the final prediction. Findings stated

that the proposed architecture achieved state-of-the-art results.

Inspired by the transformer model in machine translation [46], the authors in [270]
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presented some multimodal approaches for the task of visual question answering. More

specifically, the authors employed a self-attention and a guided-attention unit for captur-

ing the intra- and inter-modal interactions respectively. Next, they obtained a Modular

Co-Attention layer, which constitutes the modular composition of the self-attention and

guided-attention units. Finally, the authors proposed a deep Modular Co-Attention Net-

work consisting of cascaded Modular Co-Attention layers. Results indicated that the

introduced approach surpassed the existing co-attention models.

Zadeh et al. [271] introduced a novel model, termed Tensor Fusion Network, for the

task of multimodal sentiment analysis. The authors used visual, language, and acous-

tic modalities. For capturing the intra-modal interactions, the authors proposed three

Modality Embedding Subnetworks. For capturing the inter-modal interactions, the Ten-

sor Fusion layer has been used. Finally, the authors employed the Sentiment Inference

Subnetwork, which is conditioned on the output of the Tensor Fusion layer and performs

sentiment inference. Results indicated a surge in performance in comparison with existing

research initiatives.

Cai et al. [272] presented a multimodal approach for sarcasm detection in Twitter.

The authors used the modalities of text features, image features, and image attributes. Af-

ter extracting image features and attributes, the authors leveraged attribute features and

BiLSTM layers for extracting the text features. Next, the authors employed a representa-

tion fusion approach for reconstructing the features of the three modalities. Finally, they

proposed a modality fusion approach motivated by [268]. Results showed the effectiveness

of the proposed architecture and the usefulness of the three modalities.

A different approach was proposed by [273], where the authors utilized optimal trans-

port for capturing the cross-modal interactions and self attention mechanisms for captur-

ing the intra-modal correspondence. Specifically, they exploited three different modalities,

namely visual, language, and acoustic modalities. After utilizing self-attention and op-

timal transport methods, they used the multimodal attention fusion method introduced

by [268]. Experiments conducted towards the sarcasm and humor detection tasks demon-

strated valuable advantages over existing research initiatives.

Yu et al. [83] introduced an approach for capturing both the inter- and intra-modal

interactions for the visual question answering and the visual grounding tasks using the

modalities of text and image. Specifically, after obtaining text and visual representations,

they passed these two representations through a unified attention block. The authors

proposed also a variation of the self-attention mechanism by introducing a novel gating

model. Findings showed the effectiveness of the proposed approach on five datasets.

3.3.4 Literature Review Findings

From the aforementioned research works, it is evident that despite the negative conse-

quences dementia has in people’s everyday life, little work has been done so far towards its

identification. More specifically, most researchers introduce feature extraction approaches
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from audio and transcripts and train ML algorithms, such as SVM, LR, etc. Because

of the fact that feature extraction constitutes a time-consuming procedure and does not

generalize well to new AD patients, researchers have started exploiting deep learning

methods, such as CNNs and LSTMs, which obtain low performances. However, despite

the fact that pretrained transformer models achieve new state-of-the-art results in several

domains, including the biomedical one, their potential has been mainly used as embed-

dings for training shallow ML algorithms, such as SVM or LR. Concurrently, little has

been done regarding the interpretability of the proposed deep learning models as well as

the main differences observed in the language between AD patients and non-AD patients.

In terms of the architectures using only speech data, it is evident that current research

works [224, 217, 222, 93, 225, 226, 247] have been focused mainly on acoustic feature

extraction and then the usage of shallow machine learning algorithms, i.e., SVM, LR, RF

etc., or CNNs and BiLSTMs. The study in [94], which has converted audio files into images

of three channels, namely log-Mel spectrograms (and MFCCs), their delta, and delta-delta,

has exploited only one pretrained model of the domain of computer vision, i.e., ResNet18.

In addition, the study introduced in [91] has converted the audio files into MFCC features,

has duplicated the MFCC feature map twice and has made the MFCC feature map as a

(p, t, 3)-matrix. Next, this study has employed YAMNet, MobileNet, and Speech BERT.

However, the limitation of this study lies on the way images are created. On the contrary,

delta and delta-delta coefficients are used for recognizing speech better, since the dynamics

of the power spectrum, i.e., trajectories of MFCCs over time, are understood better.

Regarding the multimodal models, the majority of the research works have either

concatenated or added the representations corresponding to the two different modalities

[91, 262, 259, 263]. However, the concatenation operation assigns equal importance to

each modality and it neglects the inter- and intra-modal interactions. Other research

works have trained several language and acoustic models separately and then use majority

voting for the final classification of the people as AD patients or non-AD patients [63,

170, 92, 258, 169]. Late fusion approaches have been also proposed including [257, 256,

90, 64, 255, 66, 169]. However, these approaches increase substantially the computation

time, while the inter-modal interactions are not captured. In addition, there are studies

[252, 251, 169, 67, 95, 250] proposing early fusion approaches, meaning that the features

corresponding to the different modalities are concatenated at the input level. None of

these works capture the inter- and intra-modal interactions.

3.3.5 Datasets

3.3.5.1 DementiaBank Pitt Corpus

The DementiaBank English Pitt Corpus [54] consists of participants with probable and

possible Alzheimer’s Disease, people with other dementia diagnoses, and healthy people.

Regarding the study eligibility criteria, the age of the participant must be over 44 years

old, while the person must have at least seven years of education. Also, the person should
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be able to read and write english fluently before dementia onset, should not have history

of major nervous system disorders, such as cerebral trauma, stroke, etc. In addition,

the person must not receive any neuroleptic or other medication affecting central nervous

system functions, must have an initial MMSE score greater than 10, must be able to give

informed consent, and have an informant (for patients only). Subjects in this study made

up to five visits. This dataset includes four tasks, which are described below:

• Cookie: Description of the Cookie Theft picture, which is illustrated in Fig. 3.1.

• Fluency: Responses to the Word Fluency task for the dementia group only.

• Recall: Responses to the Story Recall task for the Dementia group only.

• Sentence: Responses to the Sentence Construction task for the dementia group only.

Figure 3.1: The Cookie Theft picture

3.3.5.2 ADReSS Challenge Dataset

In contrast to other datasets, the ADReSS Challenge dataset [53] is matched for gender

and age, so as to minimize the risk of bias in the prediction tasks. Moreover, it has been

selected in such a way so as to mitigate biases often overlooked in evaluations of AD

detection methods, including repeated occurrences of speech from the same participant
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(common in longitudinal datasets) and variations in audio quality. It consists of speech

recordings along with their associative transcripts and includes 78 non-AD and 78 AD

subjects. In addition, the dataset includes the MMSE scores for each subject except

one. We report the mean and standard deviation of the MMSE scores for the two main

groups, i.e., AD patients and non-AD ones, in Table 3.1. Each participant (PAR) has been

assigned by the interviewer (INV) to describe the Cookie Theft picture from the Boston

Diagnostic Aphasia Exam [54]. Due to the fact that the transcripts are annotated using

the CHAT coding system [274], the python library PyLangAcq [275] is used for having

access to the dataset. The ADReSS Challenge dataset has been divided into a train and

a test set. The train set consists of 54 AD patients and 54 non-AD ones, while the test

set consists of 24 AD patients and 24 non-AD ones.

Table 3.1: Mean and standard deviation of the MMSE scores for the two main groups (AD and

non-AD patients).

MMSE

mean standard deviation

AD 17.79 5.48

non-AD 29.01 1.17

3.3.5.3 ADReSSo Challenge Dataset

The ADReSSo Challenge Dataset [276] includes two datasets described below:

• a dataset consisting of speech recordings of Alzheimer’s patients performing a cate-

gory (semantic) fluency task [277] at their baseline visit, for prediction of cognitive

decline over a two year period, and

• a dataset consisting of healthy people and AD patients describing the Cookie Theft

picture.

Similarly to the ADReSS Challenge dataset, the ADReSSo Challenge dataset has been

carefully selected to mitigate several kinds of biases. However, it does not include manual

transcripts. It includes only speech recordings.

3.3.5.4 B-SHARP Dataset

B-SHARP dataset [278] includes 185 normal controls and 141 MCI patients. Each

subject has been examined with multiple cognitive tests, including the Montreal Cognitive

Assessment and the Boston Naming Test. In addition, each person speaks about three

topics, which are described below:

• Q1: daily activity
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• Q2: room environment

• Q3: Description of the Circus Procession picture, which is illustrated in Fig. 3.2.

Figure 3.2: The Circus Procession picture

The B-SHARP study is still growing and is not publicly available yet.

3.3.5.5 Longitudinal Multimodal Dataset

This dataset includes data from three 4-week phases [279]. Each subject is examined

with multiple cognitive tools at the start and end of each phase, including the Mini Mental

State Examination score and the Addenbrooke’s Cognitive Examination-III. This dataset

is still growing. Until now, the dataset includes 22 people, 14 people with dementia or

MCI and 8 age matched controls. Each person is given a tablet application, which shows

four pictures every day, each one of them representing a topic from the 50’s, 60’s, and 70’s.

Also, three questions are shown to the person, in order to help him/her perform the task.

Then, each person can choose one picture and is able to record the conversation, type or

write the thoughts.

Regarding the eligibility criteria, the age of the participants ranges from 65 to 80 years

at the time of consent. They need to have lived in the United Kingdom during the 50’s,

60’s, or 70’s, and they must be able to use the provided tablet application. Also they need

to be in contact with a carer or a family member.

This dataset is not publicly available yet.
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3.3.5.6 Carolinas Conversations Collection

The Carolinas Conversations Collection [280] includes a digital archive of transcribed

audio and video recordings of people over 65 years of age in natural conversations about

health and is supported by the National Libraries of Medicine.

The Carolinas Conversations Collections consists of two cohorts. Specifically, Cohort

1 includes over 200 consented conversations with 125 older men and women of multiple

ethnicities, with any of 12 chronic medical conditions recorded twice a year. Cohort 2

includes over 400 naturally occurring conversations with 125 persons with Alzheimer’s

disease in a longitudinal set of persons.

3.3.5.7 Intelligent Virtual Agent (IVA)

The IVA dataset was collected at the University of Sheffield’s Department of Neurology

at the Royal Hallamshire Hospital in the UK in a real clinical setting [281, 282]. The IVA

acts as a neurologist, i.e., virtual doctor, who asks several questions similar to those asked

in real assessment situations. The IVA runs in a laptop, where two cameras are also

used for capturing the participants’ movements. The participants are asked a total of 10

conversational questions and encouraged to take part in two 1-minute verbal fluency tests.

The participants are grouped into four categories, namely functional memory disorder

(FMD), neurodegenerative disorder (ND), MCI, and HC.

3.4 State-of-the-art analysis of Machine Learning Methods

used in epilepsy detection/prediction from EEG signals

In the research work proposed by [116], the authors applied a five-level Discrete Wavelet

Transform (DWT) to the EEG signals for decomposing them into sub-bands. Then, the

authors extracted features from each sub-band, namely the energy and entropy of the

coefficients, as well as the standard deviation, variance, and mean of the absolute values

of the coefficients. The resulting feature vector was used for training a Random Forest

Classifier. Results showed the robustness of the proposed method.

A different approach was proposed by [283], where the authors exploited a novel feature

called successive decomposition index (SDI) for the automated seizure detection task.

They trained a Support Vector Machine (SVM) classifier and stated that experiments

on three EEG databases demonstrated the robustness of this approach. Also, findings

suggested that the successive decomposition index was computationally more efficient in

comparison to methods proposing wavelet decomposition and feature extraction from each

sub-band.

Ref. [284] trained a convolutional neural network (CNN) to distinguish ictal, preictal,

and interictal segments for epileptic seizure detection. As input to the CNN, the authors

experimented with raw EEG data in the time domain and data in the frequency domain by

applying Fast Fourier Transform to the EEG signals. Results suggested that the frequency
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domain signals achieved higher evaluation results than the ones achieved by the time

domain signals.

In [285], the authors proposed an approach to optimize the parameters of the SVM

classifier by using the Genetic Algorithm (GA) and the particle swarm optimization (PSO).

Firstly, the authors applied discrete wavelet transform (DWT) to decompose the EEG

signal into sub-bands and extracted a set of statistical features. Next, they used these

features for training the SVM classifier along with GA and PSO. Findings stated that the

PSO-based approach outperformed the GA.

The authors in [286] introduced an approach, where the deep neural network is hy-

bridized with a novel Adaptive Haar Wavelet-based Binary version of Grasshopper Opti-

mization (AHW-BGOA). This method can be used both for hyperparameter optimization

and the selection of the most informative features, which are capable of enhancing the

classification performance. Regarding the process of feature extraction, the authors de-

composed the signal into sub-bands via the DWT and extracted a set of features, including

non-linear features, hurst exponent, and entropy-based features.

A straightforward approach was introduced by [287], where the authors trained a

neural network consisting of BiLSTM layers and stated that this model can predict seizure

episodes reaching F1-score up to 88.00%.

A similar approach was proposed by [288], where the authors trained a neural net-

work consisting of two LSTM layers and stated that the proposed model can attain high

evaluation results. A similar approach was conducted by [289], where the authors trained

an architecture consisting of two BiLSTM layers for detecting and predicting epileptic

seizures.

Reference [290] adopted a deep convolutional neural network consisting of 23 layers

including the input layer. The proposed deep neural network is able to detect abnormal

EEG signals with an accuracy of 79.34% without requiring the tedious procedure of feature

extraction.

Similarly, the authors in [117] adopted a deep convolutional neural network consisting

of 13 layers for detecting normal, preictal, and seizure classes.

In [291], the authors proposed a long short-term memory (LSTM) network for classi-

fying epileptic EEG signals. First, the authors applied DWT for decomposing the EEG

signal into sub-bands and extracted a set of statistical features from each sub-band. Next,

for reducing the number of features, the authors exploited feature selection and dimension-

ality reduction techniques. Regarding the feature selection, they employed the correlation

coefficient and the P-value analysis. In terms with the dimensionality reduction, they

exploited the principal component analysis (PCA). Finally, they trained the LSTM neu-

ral network and found that three features were sufficient for building an effective model

for epilepsy. Concurrently, results suggested that the proposed approach outperformed

traditional machine learning algorithms, including SVM, Logistic Regression (LR), etc.

Research work [102] proposed an ensemble approach to detect abnormal EEG sig-

nals. More specifically, the authors split the EEG signal into sub-signals using fixed-size
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overlapping windows and passed them through a deep neural network consisting of three

convolutional layers followed by two fully-connected layers. Finally, the authors classi-

fied the EEG signal via a majority-voting approach of the prediction of each sub-signal.

Results indicated that the proposed approach outperformed state-of-the-art systems.

Reference [292] adopted a convolutional neural network (CNN), which is capable of

extracting spectral, spatial, and temporal features from EEG data and predicting abnormal

EEG signals. Also, the authors exploited visualization techniques, where the clinician can

see what the CNN learns. Results suggested the robustness of the introduced approach

both for patient-specific and cross-patient tasks.

A different approach was proposed by [293], where the authors exploited autoencoders

for predicting seizures. More specifically, the authors trained an autoencoder, where both

the encoder and decoder consist of convolutional neural networks. The latent vector was

passed either through a multilayer perceptron (MLP) or a BiLSTM neural network for

classifying the given EEG signal into ictal or interictal. Results indicated the superiority

of the BiLSTM over the MLP.

In [294], the authors introduced a deep learning approach for epilepsy detection. First,

they used a five level DWT for decomposing the EEG signal into sub-bands, and eliminated

the D1 and D2 coefficients. The rest of the available coefficients were used as input to a

CNN for classification. Results stated that the proposed approach is comparable to the

current state-of-the-art.

An interpretable approach was introduced by [295]. More specifically, the authors ex-

ploited the tiny visual geometry group CNN architecture [296] for epilepsy detection from

EEG signals. In addition, the authors exploited the Gradient-weighted Class Activation

Mapping method for interpreting the decisions made by the proposed network and stated

that the model was able to learn sensible features associated with well-known epilepsy

markers.

In [101], the authors introduced a deep learning approach to detect epileptic seizures.

More specifically, the authors, applied Discrete Cosine Transform (DCT) to the EEG

signals and extracted the hurst exponent and ARMA features. Finally, they trained an

LSTM network and claimed that the proposed approach improved the binary classification

accuracy by 2% in comparison with the previous SVM classifier.

The work proposed by [100] extracted a set of features from segments of EEG signals,

including time and frequency domain features, between EEG channels cross-correlation,

and graph theoretical features. Then, the authors trained an LSTM neural network and

stated that the introduced approach presents a surge in the performance compared to

the one obtained by traditional machine learning algorithms and convolutional neural

networks.

A different approach was adopted by [297]. Firstly, the authors applied some pre-

processing steps for the noise removal, including the empirical mode decomposition and

the bandpass filter. For dealing with the imbalanced dataset, they exploited Generative

Adversarial Neural Networks generating in this way synthetic EEG segments of preictal
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states. Next, they extracted a set of handcrafted features from Intrinsic Mode Functions

(IMFs) and a set of automated features. Regarding the automated features, they converted

the EEG signals to STFT spectrograms and used them as input to a CNN architecture.

Then, they concatenated the set of handcrafted and automated features and applied fea-

ture selection techniques including Pearson Correlation Coefficient and Particle Swarm

Optimization (PSO). Finally, the resulting feature set was used for training an ensemble

classifier, which combines the output of SVM, CNN, and LSTM using Model-Agnostic

Meta-Learning (MAML). Findings suggested that the proposed approach performs better

than existing research works in terms of sensitivity, specificity, and average anticipation

time.

In [298], a stacking ensemble approach based model was introduced for predicting

epileptic seizures. Findings stated that the stacking ensemble approach achieved higher

evaluation results than the ones achieved by the base Deep Neural Network (DNN).

A deep learning approach was also proposed by [299]. More specifically, the authors

proposed a deep neural network consisting of an attention mechanism, a BiLSTM layer,

a time-distributed fully connected layer, a pooling layer, a fully connected layer, and a

softmax layer. According to the authors, the attention mechanism is able to capture

the spatial features, while the BiLSTM layer is capable of extracting the discriminating

temporal features. Results indicated that the introduced approach performed well against

current state-of-the-art methods.

3.4.1 Literature Review Findings

From the aforementioned research works, it is evident that the majority of the research

works have employed feature extraction techniques for training shallow machine learning

classifiers or deep neural networks. Specifically, most of them apply the DWT to decom-

pose the EEG signal into multiple sub-bands. However, the limitation of DWT is that one

should select carefully the number of levels of decomposition and the mother wavelet, in-

creasing in this way the computational time [283]. Another limitation of feature extraction

is the fact that it demands some level of domain expertise rendering it a time-consuming

procedure.

3.4.2 Datasets

3.4.2.1 EEG Database of the University of Bonn

This dataset [103] consists of five subsets, denoted as A, B, C, D, and E. Each subset

contains 100 single channel EEG segments of 23.6 second duration. The sampling fre-

quency is equal to 173.61 Hz. Thus, each EEG segment consists of 4097 samples. Sets A

and B have been collected from five healthy volunteers having their eyes open and closed

respectively. Sets C and D have been collected during interictal state (seizure-free inter-

val). Specifically, segments in set D have been recorded from the hippocampal formation

identified as epileptogenic zone, while the signals in dataset C have been recorded from
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hippocampal formation of opposite hemisphere of the brain. The dataset E contains seg-

ments from seizure activity (ictal state). A band-pass filter was applied to the EEG signals

with 0.53 Hz and 40 Hz low and high cutoff frequencies respectively. All these segments

have been manually inspected by an expert due to the muscle activity and eye movements.

3.4.2.2 Temple University EEG corpus

It includes a variety of corpora, which are publicly available [300]. Specifically, the

TUH Abnormal EEG Corpus is available, where EEGs have been annotated as normal or

abnormal. The TUH EEG Artifact Corpus includes annotations of 5 different artifacts,

while the TUH EEG Epilepsy Corpus contains subjects with and without epilepsy. The

TUH EEG Events Corpus contains annotations of EEG segments belonging into 6 classes,

including artifacts, spikes and sharp waves, and more. The TUH EEG Seizure Corpus is

also available, which provides information about the start and stop time of seizures as well

as the seizure type. Finally, the TUH EEG Slowing Corpus is provided, which includes

annotations of slowing events.

3.4.2.3 CHB-MIT Scalp EEG Database

This database includes 22 pediatric subjects [301, 302]. Specifically, 5 males of ages

3-22 and 17 females of ages 1.5-19 are included. There are 9-42 .edf files per subject, while

each .edf file contains 23-26 channels. All signals have a sampling frequency of 256Hz.

3.4.2.4 Siena Scalp EEG Database

This database includes 14 epileptic patients (9 males and 5 females) [303]. A sampling

frequency of 512 Hz has been used. The start and end time of seizures is provided, while

three types of seizures are annotated, i.e., focal onset with and without impaired awareness,

and focal to bilateral tonic-clonic (FBTC). This dataset can be used for the task of seizure

prediction.

3.4.2.5 A dataset of neonatal EEG recordings with seizures annotations

This dataset comprises multi-channel EEG recordings from 79 neonates, where 39 of

them have been diagnosed with neonatal seizures [304]. A sampling rate of 256 Hz has

been used. Butterworth high-pass filtering has also been applied. This dataset can be

used for the task of seizure detection.





Chapter 4

Methods for Recognizing

Depression through Social Media

posts and Spontaneous Speech

4.1 Introduction

As mentioned in Section 2.2, depression is a serious mood disorder, which affects the

way people feel and perform daily activities. People use social media for expressing their

thoughts and feelings through posts. Therefore, social media provide assistance for the

early detection of mental health conditions. Apart from recognizing depression via social

media posts, speech is a reliable biomarker for diagnosing depression, since depressed

people present decreased verbal activity productivity and “lifeless” sounding speech.

In this chapter, we present two approaches for recognizing depression. Specifically, in

Section 4.2 we present an approach for identifying depression through social media posts,

while Section 4.3 introduces a method for recognizing depression by using spontaneous

speech.

4.2 Calibration of Transformer-based Models for Identify-

ing Depression in Social Media

Existing research initiatives exploit social media data for identifying depressive posts.

The majority of these research works [1] employ feature extraction approaches and train

shallow Machine Learning (ML) algorithms. Employing feature extraction approaches

constitutes a tedious procedure and demands domain expertise, since the authors may

not find the optimal feature set for the specific problem. At the same time, the train of

shallow ML algorithms does not yield optimal performance and does not generalize well to

new data. For addressing these limitations, other approaches [3] use deep neural networks,

including Convolutional Neural Networks (CNNs), bidirectional long short-term memory

111
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(BiLSTM), and so on, or transformer-based networks. In addition, there are researches

employing ensemble strategies [4]. However, these approaches increase substantially the

training time, since multiple models must be trained separately. In addition, recently

there have been studies [5, 6] showing that transformer-based models struggle or fail to

capture rich knowledge. For this reason, there have been proposed methods for enhancing

these models with external information or additional modalities [7, 8, 9, 10]. However,

existing research initiatives in the task of depression detection through social media have

not exploited any of these approaches yet. In addition, the reliability of a machine learn-

ing model’s confidence in its predictions, denoted as calibration [11, 12], is critical for

high risk applications, such as deciding whether to trust a medical diagnosis prediction

[156, 157, 158]. Although methods regarding the confidence of models’ predictions have

been introduced in many studies, including suicide risk assessment [159], sleep stage clas-

sification [160], and so on, no prior work for depression detection has taken into account

the level of confidence of models’ predictions, creating in this way overconfident models.

To tackle the aforementioned limitations, in this section, we propose a method, which

injects extra linguistic information into transformer-based models, namely BERT and

MentalBERT. Firstly, we extract various linguistic features, including NRC Sentiment

Lexicon, features derived by Latent Dirichlet Allocation (LDA) topics, Top2vec, and Lin-

guistic Inquiry and Word Count (LIWC) features. Regarding the LDA topic-based fea-

tures, this is the first study in terms of the task of depression detection via social media

texts utilizing the Global Outlier Standard Score (GOSS) [24], which captures the text’s

interest on a specific topic in comparison with other texts. After passing each text through

a transformer-based model, we project the linguistic information to the same dimensional-

ity with the outputs of the transformer models. Next, we concatenate the representations

obtained by BERT (or MentalBERT) and linguistic information and apply a Multimodal

Adaptation Gate [18], where an attention gating mechanism is used for controlling the

importance of each representation. Similarly to [19], we modify M-BERT [18] by replac-

ing the multimodal information with linguistic information. Finally, a shifting component

is exploited for calculating the new combined embeddings. The new combined embed-

dings are passed through a BERT (or MentalBERT) model, where the classification [CLS]

token is fed to Dense layers for getting the final prediction. In addition, for preventing

models becoming too overconfident, we use label smoothing. According to Müller et al.

[31], label smoothing has been used successfully to improve the accuracy of deep learning

models across a range of tasks, while at the same time it implicitly calibrates learned

models so that the confidences of their predictions are more aligned with the accuracies of

their predictions. We use metrics for assessing both the performance and the calibration

of our model. We also demonstrate the efficiency of label smoothing in both calibrating

and enhancing the performance of our model. We test our proposed approaches on three

publicly available datasets, which differentiate (i) depressive from non-depressive posts,

and (ii) posts indicating the severity of depression, namely minimal, mild, moderate, and

severe. We demonstrate the robustness of our model and advantages over state-of-the-art
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approaches. Finally, we conduct an extensive linguistic analysis and show differences in

linguistic patterns between depressive posts and non-depressive ones.

The contributions of this section can be summarized as follows:

• We introduce a method, which injects linguistic features into transformer-based neu-

ral models.

• We perform model calibration by using label smoothing. We evaluate the calibration

of our approaches by using two metrics. To the best of our knowledge, this is the

first study exploiting label smoothing and utilizing calibration metrics.

• We contribute to the existing literature by performing a detailed linguistic analy-

sis, which reveals significant differences in language between depressive and non-

depressive posts.

4.2.1 Methodology

4.2.1.1 Architecture

In this section, we describe our proposed approach for detecting depressive posts in

social media. Our proposed method is based on the work introduced by Rahman et

al. [18], and Jin and Aletras [19]. Instead of cross-modal interactions, we inject extra

linguistic information as alternative views of the data into pretrained language models.

Our proposed architecture is illustrated in Fig. 4.1.

Figure 4.1: Our Proposed Architecture

Specifically, we use the following feature vectors:

• NRC. The NRC Emotion Lexicon is a list of English words and their associations

with eight basic emotions (anger, fear, anticipation, trust, surprise, sadness, joy, and

disgust) and two sentiments (negative and positive) [20]. Each text is represented

as a 10-d vector, where each element is the proportion of tokens belonging to each

category.

• LIWC. LIWC is a dictionary-based approach to count words in linguistic, psycho-

logical, and topical categories [21]. We use LIWC 2022 [22] to represent each text

as a 117-d vector.
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• LDA topics. Before training the LDA model, we remove stop words and punctu-

ation. We exploit LDA (with 25 topics) and extract 25 topic probabilities per text

[23]. These probabilities describe the topics of interest of each text. Inspired by Liu

et al. [24], we use the following feature vector:

– Global Outlier Standard Score (GOSS): For evaluating the ith text’s in-

terest on a certain topic k, compared to the rest of the texts, we use the GOSS

feature:

µ(xk) =

∑n
i=1 xik
n

(4.1)

GOSS(xik) =
xik − µ(xk)√∑
i (xik − µ (xk))2

(4.2)

Therefore, each text is represented as a 25-d vector.

• Top2Vec: Top2Vec [25] is an algorithm for topic modelling, which automatically

detects topics present in text and generates jointly embedded topic, document and

word vectors. After training Top2Vec by exploiting the Universal Sentence Encoder,

each text is represented as a 512-d vector.

We experiment with the following pretrained models: BERT [26] and MentalBERT

[27].

First, we pass each text through the aforementioned transformer-based models. Let

C ∈ RN×d be the output of the transformer-based models, where N denotes the sequence

length, while d denotes the dimensionality of the models. We have omitted the dimension

corresponding to the batch size for the sake of simplicity.

Then, we project the feature vectors to dimensionality equal to 128. We repeat the

feature vector N times, so as to ensure that the feature vector and the output of the

transformer-based models can be concatenated. Given the word representation e(i), we

concatenate e(i) with feature vectors, i.e., h
(i)
v .

w(i)
v = σ

(
Whv[e(i);h(i)v ] + bv

)
(4.3)

where σ denotes the sigmoid activation function, Whv is a weight matrix, and w
(i)
v

corresponds to the gate. bv is the scalar bias.

Next, we calculate a shift vector h
(i)
m by multiplying the embeddings with the gate.

h(i)m = w(i)
v ·

(
Wvh

(i)
v

)
+ b(i)m (4.4)

where Wv is a weight matrix and b
(i)
m is the bias vector.

Next, we apply the Multimodal Shifting component aiming to dynamically shift the

word representations by integrating the shift vector h
(i)
m into the original word embedding.

e(i)m = e(i) + αh(i)m (4.5)
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α = min

(
||e(i)||2
||h(i)m ||2

β, 1

)
(4.6)

, where β is a hyperparameter. Then, we apply a layer normalization [28] and dropout

layer [29] to e
(i)
m . Next, the combined embeddings are fed to a BERT/MentalBERT model.

We get the classification [CLS] token of this model and pass it through a Dense layer

consisting of 128 units with a ReLU activation function. Finally, we use a dense layer con-

sisting of either two units (binary classification task) or four units (multiclass classification

task).

We denote our proposed models as Multimodal BERT (M-BERT) and Multimodal

MentalBERT (M-MentalBERT) followed by the linguistic features which are integrated

into them. For example, the injection of LIWC features into a BERT model is denoted as

M-BERT (LIWC).

4.2.1.2 Model Calibration

To prevent the model becoming too overconfident, we use label smoothing [30, 31].

Specifically, label smoothing calibrates learned models so that the confidences of their

predictions are more aligned with the accuracies of their predictions.

For a network trained with hard targets, the cross-entropy loss is minimized between

the true targets yk and the network’s outputs pk, as in H(y, p) =
∑K

k=1−yklog(pk), where

yk is ”1” for the correct class and ”0” for the other. For a network trained with label

smoothing, we minimize instead the cross-entropy between the modified targets yLSu
k and

the network’s outputs pk.

yLSu
k = yk · (1 − α) +

α

K
(4.7)

H(y, p) =

K∑
k=1

−yLSu
k · log (pk) (4.8)

, where α is the smoothing parameter and K is the number of classes.

4.2.2 Experiments

4.2.2.1 Datasets

Depression Mixed. We use the dataset described in Section 3.1.2.1.

Depression Severity. We use the dataset described in Section 3.1.2.2.

4.2.2.2 Experimental Setup

We use the Adam optimizer with a learning rate of 0.001. We apply StepLR with a step

size of 5 and a gamma of 0.1. We use batch size of 8. With regards to Depression Mixed

dataset, we split the dataset into a train and a test set (80% − 20%) similar to Ansari et
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al. [4]. Regarding Depression Severity dataset, we use 5-fold stratified cross-validation,

since the study [17] has also exploited cross-validation. All train sets are divided into a

train and a validation set. Regarding Depression Severity dataset, we apply EarlyStopping

with a patience of 7 epochs based on the validation loss. In terms of the Depression Mixed

dataset, we train our introduced model for a maximum of 30 epochs, choose the epoch

with the smallest validation loss, and test the model on the test set. We set β of Eq. 4.6

equal to 0.0001.1 We choose α of Eq. 4.7 equal to 0.001. We use the Python library,

namely Transformers [305], for BERT and MentalBERT. Specifically, we use the BERT

base uncased version and the MentalBERT base uncased version. We use PyTorch [306]

for performing our experiments. All experiments are trained on a single Tesla P100-PCIE-

16GB GPU.

4.2.2.3 Evaluation Metrics

Performance In terms of the binary classification task, i.e., 0 for non-depressive and

1 for depressive texts, we use Precision, Recall, F1-score, and Accuracy to evaluate the

performance of our proposed approach. We use these metrics similar to Wani et al. [184].

Regarding multiclass classification task reported on Depression Severity dataset, we

use Weighted Precision, Weighted Recall, and Weighted F1-score. We use these metrics

similar to Mishra et al. [307].

Calibration We evaluate the calibration of our model using the metrics proposed by

relevant literature [308, 309, 171]. Specifically, we use the metrics mentioned below:

• Expected Calibration Error (ECE). The calibration error is the difference be-

tween the fraction of predictions in the bin that are correct (accuracy) and the mean

of the probabilities in the bin (confidence). First, we divide the predictions into M

equally spaced bins (size 1/M).

acc(Bm) =
1

|Bm|
∑
i∈Bm

1(ŷi = yi) (4.1)

conf(Bm) =
1

|Bm|
∑
i∈Bm

p̂i (4.2)

, where yi and ŷi are the true and predicted labels for the sample i and p̂i is the

confidence (predicted probability value) for sample i.

ECE =

M∑
m=1

|Bm|
N

|acc(Bm) − conf(Bm)| (4.3)

1We experimented with values of β, including 0.01 and 0.001, but setting β equal to 0.0001 yielded the

best results.



4.2.3 Results 117

, where N is the total number of data points and Bm is the group of samples whose

predicted probability values falls into the interval Im =
(
m−1
M , m

M

]
.

Perfectly calibrated models have an ECE of 0.

• Adaptive Calibration Error (ACE). Adaptive Calibration Error uses an adap-

tive scheme which spaces the bin intervals so that each contains an equal number of

predictions.

ACE =
1

KR

K∑
k=1

R∑
r=1

|acc(r, k) − conf(r, k)| (4.4)

, where acc(r, k) and conf(r, k) are the accuracy and confidence of adaptive calibra-

tion range r for class label k, respectively; and N is the total number of data points.

Calibration range r is defined by the [N/R]th index of the sorted and thresholded

predictions.

4.2.2.4 Baselines

We use the following baselines as comparisons with our proposed approaches:

• BERT, MentalBERT: We fine-tune these pretrained language models in order to

explore whether our method of injecting linguistic information to pretrained models

leads to performance improvement.

In terms of Depression Mixed dataset, we report the performance of BERT obtained

by Yang et al. [310]. We finetune MentalBERT and report its performance on this

dataset.

Regarding Depression Severity dataset, we finetune BERT and MentalBERT and

report their performances.

We do not report calibration metrics for these models, since our goal in this case is

to compare only the performances of these models with our proposed approaches.

• Proposed Approaches (without label smoothing): We train the proposed

models introduced in Section 4.2.1 without label smoothing. We explore whether

label smoothing leads to performance improvement and better calibration of our

models.

4.2.3 Results

The results of our proposed approach are reported in Tables 4.1 and 4.2. Specifically,

Table 4.1 reports the performances of our proposed approaches on the Depression Mixed

dataset, while Table 4.2 reports the results on the Depression Severity dataset.

Regarding the Depression Mixed dataset, we first compare our proposed approaches

without label smoothing with the BERT and MentalBERT models. We observe that the
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Table 4.1: Performance comparison among proposed models and baselines using the DEPRES-

SION MIXED dataset

Model Prec. Rec. F1-score Acc. ECE ACE

Baselines

BERT 91.40 91.40 91.40 - - -

MentalBERT 89.27 93.14 91.17 91.15 - -

Baselines - Proposed Approaches (without label smoothing)

M-BERT (NRC) 90.56 91.84 91.20 91.15 0.072 0.081

M-BERT (LIWC) 90.98 92.02 91.49 92.04 0.054 0.055

M-BERT (LDA topics) 88.07 95.80 91.77 92.04 0.071 0.071

M-BERT (top2vec) 90.97 92.99 91.97 92.21 0.057 0.069

M-MentalBERT (NRC) 90.65 92.65 91.64 91.86 0.031 0.054

M-MentalBERT (LIWC) 93.49 87.78 90.55 91.50 0.057 0.056

M-MentalBERT (LDA topics) 87.97 93.09 90.46 90.44 0.089 0.086

M-MentalBERT (top2vec) 91.63 93.77 92.69 93.27 0.058 0.054

Proposed Approaches (with label smoothing)

M-BERT (NRC) 89.82 94.81 92.25 92.39 0.059 0.065

M-BERT (LIWC) 93.06 91.78 92.41 92.21 0.034 0.044

M-BERT (LDA topics) 90.16 92.71 91.42 92.39 0.063 0.067

M-BERT (top2vec) 90.34 94.93 92.58 92.57 0.049 0.056

M-MentalBERT (NRC) 91.44 92.52 91.98 92.74 0.042 0.057

M-MentalBERT (LIWC) 94.96 89.42 92.11 92.57 0.055 0.057

M-MentalBERT (LDA topics) 94.81 90.78 92.75 92.92 0.047 0.049

M-MentalBERT (top2vec) 96.12 90.18 93.06 93.45 0.033 0.043

Table 4.2: Performance comparison among proposed models and baselines using the DEPRES-

SION SEVERITY dataset.

Model W. Prec. W. Rec. W. F1-score ECE ACE

Baselines

BERT 72.99 71.97 71.00 - -

MentalBERT 73.35 70.81 71.67 - -

Baselines - Proposed Approaches (without label smoothing)

M-BERT (NRC) 74.48 70.08 69.96 0.107 0.076

M-BERT (LIWC) 73.77 71.74 72.13 0.110 0.078

M-BERT (LDA topics) 74.25 71.80 71.28 0.114 0.079

M-BERT (top2vec) 72.93 71.97 71.00 0.086 0.071

M-MentalBERT (NRC) 74.43 72.58 69.96 0.097 0.069

M-MentalBERT (LIWC) 72.39 72.53 71.95 0.112 0.075

M-MentalBERT (LDA topics) 73.83 72.58 72.58 0.118 0.078

M-MentalBERT (top2vec) 74.63 72.39 72.06 0.103 0.075

Proposed Approaches (with label smoothing)

M-BERT (NRC) 74.04 72.84 72.81 0.102 0.074

M-BERT (LIWC) 73.68 72.16 72.37 0.094 0.069

M-BERT (LDA topics) 73.24 71.46 71.42 0.112 0.078

M-BERT (top2vec) 73.36 72.64 72.30 0.113 0.074

M-MentalBERT (NRC) 73.03 71.23 71.46 0.112 0.079

M-MentalBERT (LIWC) 73.21 73.15 72.43 0.099 0.071

M-MentalBERT (LDA topics) 73.74 73.23 73.16 0.111 0.075

M-MentalBERT (top2vec) 73.68 72.70 72.67 0.094 0.071

injection of linguistic features, except for NRC features, into the BERT model improves

the F1-score. Specifically, we observe that the injection of top2vec features yields the

highest F1-score and Accuracy accounting for 91.97% and 92.21% respectively, surpass-

ing the performance of the BERT model in F1-score by 0.57%. We speculate that the

injection of top2vec features obtains better performance than the injection of features

derived by LDA topics, i.e., GOSS features, since the top2vec algorithm is capable of

identifying the number of topics automatically. In terms of MentalBERT, we observe that

the injection of top2vec features obtains an F1-score of 92.69% surpassing MentalBERT

by 1.52%. We observe that the integration of NRC and top2vec features improves the
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performance obtained by MentalBERT. Regarding the proposed approaches with label

smoothing, we observe that these models attain better performances than the ones ob-

tained by the models without label smoothing. Specifically, we observe that M-BERT

(top2vec) with label smoothing surpasses the respective model without label smoothing

in F1-score and Accuracy by 0.61% and 0.36% respectively. Similarly, M-MentalBERT

(top2vec) with label smoothing obtains the highest F1-score and Accuracy accounting for

93.06% and 93.45% respectively. This model surpasses the respective model without label

smoothing in F1-score and Accuracy by 0.37% and 0.18%. Except for the improvement of

the performance metrics, i.e., Precision, Recall, F1-score, and Accuracy, we observe that

the models with label smoothing obtain better results in terms of the calibration metrics,

i.e., ECE and ACE, than the ones obtained by the models without label smoothing. For

example, we observe that M-BERT (top2vec) with label smoothing improves the ECE and

ACE scores obtained by M-BERT (top2vec) without label smoothing by 0.008 and 0.013

respectively. Similarly, M-MentalBERT (LDA topics) with label smoothing improves the

ECE and ACE scores obtained by M-MentalBERT (LDA topics) without label smoothing

by 0.042 and 0.043 respectively.

With regards with the Depression Severity dataset, we first compare our proposed ap-

proaches without label smoothing with the BERT and MentalBERT models. We observe

that the integration of LIWC features and features extracted by LDA topic modelling,

i.e., GOSS features, into the BERT model leads to a performance surge in comparison

with the BERT model. Specifically, M-BERT (LIWC) outperforms BERT in weighted

F1-score by 1.13%. At the same time, the integration of all the features, except NRC, to a

MentalBERT model yields to a performance improvement compared to the MentalBERT

model. Specifically, M-MentalBERT (LDA topics) attains the highest weighted F1-score

accounting for 72.58% surpassing MentalBERT by 0.91%. When it comes to proposed

models with label smoothing, we observe an improvement in both the performance met-

rics and calibration ones. More specifically, the integration of NRC features to a BERT

model obtains a weighted F1-score of 72.81% outpeforming BERT by 1.81%, M-BERT

(NRC) without label smoothing by 2.85%, and M-BERT (LIWC) without label smooth-

ing by 0.68%. In addition, M-MentalBERT (LDA topics) with label smoothing obtains

the highest F1-score accounting for 73.16% surpassing MentalBERT by 1.49% and M-

MentalBERT (LDA topics) without label smoothing by 0.58%. In terms of the calibration

metrics, we observe that both ECE and ACE scores are improved when we apply label

smoothing. For example, M-BERT (LIWC) with label smoothing obtains an ECE score

of 0.094 and an ACE score of 0.069, which are improved by 0.016 and 0.009 respectively

compared to the respective model without label smoothing.

4.2.4 Linguistic Analysis

We finally perform an analysis on the Depression Mixed dataset to uncover the pe-

culiarities of depression. Specifically, we seek to find the correlations of LIWC features
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Table 4.3: LIWC Features associated with depressive and non-depressive posts, sorted by point-

biserial correlation. All correlations are significant at p < 0.05 after Benjamini-Hochberg correc-

tion.

Depression Mixed

Non-Depressive Depressive

LIWC corr. LIWC corr.

Tone 0.3156 health 0.4108

Clout 0.3022 mental health 0.3674

Social referents 0.2914 physical 0.3603

shehe 0.2634 emo sad 0.3506

we 0.2415 tone neg 0.3274

social 0.2401 1st person singular 0.2974

male references 0.2199 Authentic 0.2961

affiliation 0.1960 cognition 0.2957

female references 0.1923 emo neg 0.2843

conversation 0.1794 cognitive processes 0.2601

netspeak 0.1741 feeling 0.2507

culture 0.1732 focuspresent 0.2139

allpunc 0.1667 insight 0.2138

family 0.1589 emotion 0.2120

technology 0.1524 negations 0.2116

exclam 0.1519 verb 0.2076

analytic 0.1507 linguistic 0.1893

period 0.1458 death 0.1842

drives 0.1168 function 0.1834

OtherP 0.1156 all-or-none 0.1748

number 0.1075 dic 0.1708

assent 0.1013 affect 0.1609

tone pos 0.0998 adverb 0.1588

leisure 0.0980 illness 0.1584

Social behavior 0.0937 emo anx 0.1458

communication 0.0920 auxverb 0.1442

lifestyle 0.0917 discrepancy 0.1373

friend 0.0812 apostro 0.1256

curiosity 0.0792 want 0.1146

you 0.0774 achieve 0.1136

determiners 0.0758 pronoun 0.1092

politic 0.0751 lack 0.1054

relig 0.0673 differ 0.1004

focusfuture 0.0666 prepositions 0.0951

visual 0.0660 risk 0.0928

motion 0.0647 allure 0.0923

money 0.0626 causation 0.0916

ethnicity 0.0591 tentative 0.0880

article 0.0493 time 0.0811

emo pos 0.0480 personal pronouns 0.0801

home 0.0420 impersonal pronoun 0.0789

food 0.0401 perception 0.0747

words per sentence (WPS) 0.0391 swear 0.0697

Nonfluencies 0.0385 substances 0.0686

- - memory 0.0673

- - BigWords 0.0588

- - adj 0.0575

- - certitude 0.0547

- - wellness 0.0457

- - moral 0.0433

- - conflict 0.0411

- - acquire 0.0394

- - QMark 0.0384

with depressive and non-depressive texts. First, we normalize LIWC features, so as to

ensure that they sum up to 1 across each post. Next, we use the point-biserial correlation

between each LIWC category and the label of the post. The output of the point-biserial

correlation is a number ranging from -1 to 1. Positive correlations mean that the specific

LIWC category is correlated with the depressive class (label 1), while negative correlations

mean that the specific LIWC category is correlated with the non-depressive class (label
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0). We consider the absolute values of the correlations. Results are reported in Table 4.3.

All the correlations are significant at p < 0.05 with Benjamini-Hochberg correction [69]

for multiple comparisons.

In terms of the Depression Mixed dataset, we observe that the control group tends

to use words with positive tone and emotion, i.e., good, well, happy, hope, and so on.

In addition, healthy control group discusses topics of the everyday life, including lifestyle

(work, home, school), culture (car, phone), politics (govern, congress), family, and friends

(boyfriend, girlfriend, dude). Also, these people make plans for the future, thus use words

indicating focus on the future (correlation equal to 0.0666). However, it must be noted

that this is a very weak correlation. On the other hand, people with depression focus on

the present and do not make plans for the future. They discuss about negative topics,

including death, illnesses, mental health, and substances. This can be justified by the

fact that people with depression often have tendencies to suicide and believe that they

cannot achieve anything. In addition, they use swear words, i.e., shit, fuck, damn, since

they think that everything goes wrong in their life. Also, their posts are full of sadness,

anxiety, and negative tone.

4.2.5 Discussion

Our study contributes to the literature by introducing the first approach of integrat-

ing extra linguistic information into pretrained language models based on transformers,

namely BERT and MentalBERT. Specifically, we adapt M-BERT [18] by replacing mul-

timodal information with linguistic information. To be more precise, we extract NRC,

LIWC, features derived by LDA topics, and top2vec features. We apply a Multimodal

Adaptation Gate and exploit also a Shifting component for creating new combined em-

beddings which are given as input to BERT (and MentalBERT) models. In addition,

motivated by the fact that in real-world decision making systems, classification networks

must not only be accurate, but also should indicate when they are likely to be incor-

rect, we apply label smoothing and evaluate our proposed approaches both in terms of

classification and calibration.

Therefore, our study is different from the state-of-the-art approaches described in

Section 3.1, since:

• Prior works having proposed multimodal, multitask, ensemble strategies in conjunc-

tion with transformer-based models, have just fine-tuned these pretrained transformer-

based models instead of using some modifications of them. Thus, this study is the

first attempt to inject extra knowledge into BERT (and MentalBERT), in order to

enhance its performance.

• All the prior works evaluate only the classification performance of their approaches

neglecting the confidence of the prediction. To tackle this, this is the first study in

the task of depression detection through social media posts utilizing label smoothing

and evaluating both the classification performance and the calibration of the models.
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• Finally, this is the first study utilizing features derived by LDA topics, namely the

Global Outlier Standard Score, which captures the text’s interest compared to other

texts.

From the results of this study, we found that:

• Finding 1: The integration of linguistic features into transformer-based models yields

to an increase in the classification performance. However, it is worth noting that

in some cases this improvement is limited. For instance, the integration of LIWC

features into the MentalBERT model with label smoothing obtains better perfor-

mance than MentalBERT in F1-score by 3.36% and better performance than M-

MentalBERT (LIWC) without label smoothing in F1-score by 0.63%. However, we

believe that even a small improvement can make a difference.

• Finding 2: Label smoothing improves both the performance and the calibration of

the proposed approaches. The calibration of the proposed approaches is measured

via two metrics, namely Expected Calibration Error and Adaptive Calibration Error.

• Finding 3: Findings from a linguistic analysis reveal that people in depressive condi-

tions use words belonging to specific LIWC categories more frequently than others.

There are several limitations related to this study.

• Hyperparameter Tuning: Due to limited access to GPU resources, we were not able

to perform hyperparameter tuning. On the contrary, we tried some combinations

of parameters. We believe that the adoption of the hyperparameter tuning proce-

dure through the access to GPU resources would increase further the classification

performance.

• Explainability: The present study is not accompanied with explainability techniques,

i.e., Integrated Gradients [311], and so on. Therefore, we aim to apply explainability

techniques in the future.

• Due to limited access to GPU resources and similarly to prior work [184, 4, 186], we

were not able to perform multiple runs for testing for statistical significance.

4.3 A Cross-Attention Layer coupled with Multimodal Fu-

sion Methods for Recognizing Depression from Sponta-

neous Speech

Existing research works rely on the extraction of handcrafted features and the train

of traditional machine learning classifiers or deep learning approaches [32, 33, 34]. How-

ever, extracting features is a timely procedure requiring expertise on the specific topic.

Additionally, the majority of research studies uses unimodal approaches for predicting
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depression using mainly speech [35]. Although there are studies employing multimodal

models, these studies employ early [36, 37], intermediate [38, 39], or late fusion [40, 41]

strategies. In the early fusion strategy, representation vectors of the modalities are con-

catenated at the input level, while in the intermediate fusion, the representation vectors

are concatenated during training, thus equal importance is assigned to the modalities. In

the late fusion strategy, unimodal models are trained independently and decision voting

is applied, i.e., majority voting. The inter-modal interactions cannot be captured through

these approaches. In addition, the majority of research works have tested their approaches

only in English language, thus the acoustic and phonetic content of data might differ in

other languages. Finally, to the best of our knowledge, no study has experimented with

predicting depression, age, education level, and gender at the same time.

To tackle these limitations, we present a new method for detecting depression from

spontaneous speech in the Italian language. Specifically, we feed each transcript into

a pretrained Italian BERT model. Each speech signal is transformed into an image of

three channels, namely log-Mel spectrogram, delta, and delta-delta. Each image is passed

through a pretrained AlexNet [44] model. Next, the textual and image representations are

passed through a cross-attention scaling layer. Finally, we employ and compare a variety

of multimodal fusion methods, including Multimodal Factorized Bilinear Pooling (MFB),

Multimodal Factorized High-order pooling (MFH) [86], and more, for fusing the outputs

of the cross-attention scaling layer and predicting depression. Additionally, we introduce

multi-task learning (MTL) architectures to explore if gender, age, and education level as

auxiliary tasks help the primary task (depression recognition). Results demonstrate the

effectiveness of the proposed approach via an extensive ablation study, as well as multiple

advantages over state-of-the-art approaches.

The main contributions of this section can be summarized as follows:

• We introduce a method which includes a cross-attention layer and multimodal fusion

approaches.

• We perform multi-task learning experiments to explore whether the prediction of

gender, age, and education level lead towards the increase of depression detection’s

performance.

• We compare our approaches with competitive baselines, including shallow machine

learning classifiers and deep learning.

• We perform an extensive ablation study to verify the effectiveness of the proposed

approach.

4.3.1 Proposed Methodology

In this section, we describe our proposed methodology for recognizing depression from

spontaneous speech. Fig. 4.2 illustrates our proposed architecture.
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Figure 4.2: Our Proposed Methodology

4.3.1.1 Single - Task Learning

Text Processing: Since data are in Italian language, we employ Italian BERT2. Firstly,

each transcript is passed through the Italian BERT tokenizer, where input ids and atten-

tion mask are returned. Transcripts are padded to a maximum length of 512 tokens, while

transcripts with number of tokens greater than 512 are truncated. Next, the input ids and

attention mask are fed to the Italian BERT model. Let f t ∈ R1×d, corresponding to the

[CLS] token, be the transcript representation, where d = 768.

Speech Processing: We use the Python library librosa [312] for converting the speech

signals into images consisting of three channels, namely log-Mel spectrogram, delta, and

delta-delta. We use 224 Mel bands, hop length equal to 512, and a Hanning window. Each

image is resized to (224 × 224) pixels. We pass each image through a pretrained AlexNet

[44] model. Let fv ∈ R1×d be the image representation, where d = 768.

Cross-Attention Layer: Motivated by [45], we design a cross-attention layer, which

returns a pair of scalars, one for each modality. This pair of scalars allows for scaling

the two modalities with respect to each other. One modality is used as a query for the

attention of the other.

In terms of the textual modality, let Qi = FCt
q (fv), Kt = FCt

k

(
f t
)
, and Vt =

FCt
v

(
f t
)
. The scaling value, denoted as St can be calculated as follows:

St = sigmoid

(
Qi ·KT

t√
d

)
. In terms of the image modality, let Qt = FCi

q

(
f t
)
, Ki = FCi

k (fv), and Vi = FCi
v (fv).

The scaling value, denoted as Si can be calculated as follows:

Si = sigmoid

(
Qt ·KT

i√
d

)
. The outputs of the attention mechanism can be calculated as St × Vt and Si × Vi. Note

that FCt
q, FCt

k, FCt
v, FCi

q, FCi
k, FCi

v ∈ Rd×d.

2https://github.com/dbmdz/berts
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Similar to [46], we use residual connections followed by layer normalization, as de-

scribed via the equations below:

Êt = LayerNorm
(
St × Vt + f t

)
,

Êi = LayerNorm (Si × Vi + fv)

.

Next, we pass Êt and Êi through two shared fully connected feed-forward networks

with a ReLU activation function in between, as follows:

Êt
′
= LayerNorm

(
FCn

m

(
ReLU

(
FCq

p

(
Êt

))))
,

Êi
′
= LayerNorm

(
FCn

m

(
ReLU

(
FCq

p

(
Êi

))))
, where FCq

p ∈ Rd×4d, FCn
m ∈ R4d×d.

Next, we concatenate Êt and Êt
′

(similarly Êi and Êi
′
) into one single vector, i.e.,

Êt
′′

= [Êt, Êt
′
]

,

Êi
′′

= [Êi, Êi
′
]

, where Êt
′′
, Êi

′′ ∈ R2d.

Fusion Methods: Next, we employ a variety of fusion methods, which are described in

detail below, so as to fuse Êt
′′

and Êi
′′

in one single vector:

• Concatenation: We concatenate Êt
′′

and Êi
′′

into one single vector, i.e., z ∈ R4d.

We use a dropout layer with a rate of 0.4. We use a dense layer of 128 units.

• Gated Multimodal Unit (GMU): We adopt the method introduced in [75], which con-

trols the information flow of the two modalities towards the final classification. The

equations govering the GMU are described as follows: ht = tanh (W tÊt
′′

+ bt), hv =

tanh (W vÊi
′′

+ bv), z = σ(W z[Êt
′′
; Êi

′′
] + bz), h = z ∗ ht + (1 − z) ∗ hv , where

W t,W v,W z ∈ R128 denote the learnable parameters, and [.;.] the concatenation

operation. h is the output of the GMU.

• MUTAN decomposition [85]

• Multimodal Low-rank Bilinear (MLB) pooling [313]

• MFB [86]

• MFH [86]: It is based on cascading two MFB blocks.
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• BLOCK [87]: This method is based on the block-term tensor decomposition [314]

and combines the strengths of the Candecomp/PARAFAC (CP) [315] and Tucker

decompositions.

The output of the aforementioned fusion methods corresponds to a vector with dimen-

sionality accounting for 128.

Output Layer: Finally, we use a dense layer consisting of two units, which gives the final

prediction. The cross-entropy loss function is minimized.

4.3.1.2 Multi - Task Learning

According to research, gender [316], age3, and education level [317] are linked with

depression. In this section, we design a multi-task learning framework consisting of

a primary task, i.e., depression detection (binary classification), and auxiliary tasks,

i.e., gender recognition (binary classification), estimation of education level (multiclass

classification), and age prediction (multiclass classification). In this approach, we ex-

plore if the auxiliary tasks help the primary task in increasing its performance. As

illustrated in Fig. 4.2, in terms of gender recognition, we add a dense layer consist-

ing of two units. In terms of education level recognition, we add a dense layer con-

sisting of four units. Regarding the age prediction, we define the following age groups:

[19,25],[26,32],[33,39],[40,46],[47,53],[54,60],[61,67],[68,71]. Thus, we add a dense layer con-

sisting of 8 units.

All the tasks are learnt simultaneously and updated by the following loss function:

L = (1 − α− β − γ) · Ldepression + α · Lgender + β · Leducation + γ · Lage

, where Ldepression, Lgender, Leducation, and Lage correspond to the cross-entropy loss func-

tion. α, β, γ are hyperparameters denoting the importance we place to each task.

4.3.2 Experiments

4.3.2.1 Dataset

We use the Androids corpus, which is described in Section 3.2.6.1, for performing our

experiments. We use data of the interview task. Due to the fact that manual transcripts

are not provided, we use whisper large-v3 [43], in order to produce automatic transcripts.

4.3.2.2 Baselines.

We compare our approaches with the following baselines:

• Only transcript: We use a pretrained Italian BERT model and a learning rate of

1e-5.

3https://www.nhs.uk/mental-health/conditions/depression-in-adults/causes
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• Only Speech signal: Each speech signal is represented as an image and fed into a

pretrained AlexNet model. A learning rate of 1e-5 is employed.

• BS1 [42]: This approach segments the audio signal into analysis windows of 25ms

length and extracts features per window. SVM classifier is trained.

• BS2 [42]: After calculating the feature sets per analysis windows as above, this

approach segments the speech signal into frames of length equal to 128 and passes

each frame through an LSTM layer. A majority vote approach is adopted.

• eGeMAPSv02 features (functional): This method trains a SVM classifier. We use

the openSMILE Python toolkit [318].

• ComParE 2016 features (functional): This method trains a SVM classifier. We use

the openSMILE Python toolkit [318].

4.3.2.3 Experimental Setup

In [42], the split of the participants into subsets to be used for a 5-fold setup is provided.

In our study, we repeat the experiments four times and report the average and standard

deviation over four runs. For Italian BERT and AlexNet, the learning rate is set to 1e-5,

while for the rest layers, the learning rate is set to 1e-4. We train our models for 40

epochs with a batch size of 4. In terms of the MTL setting, we set α = β = γ = 0.1.

We use PyTorch for performing our experiments. All experiments are performed on a

single Tesla P100-PCIE-16GB GPU with the running time ranging from 1 hour to 1.5

hours. For significance testing, we use the Almost Stochastic Order (ASO) test [47, 48]

as implemented by [49]. Specifically, the ASO test determines whether a stochastic order

[50] exists between two models, i.e., A and B. A score (ϵmin) is calculated representing

how far the first is from being significantly better than the second. When ϵmin = 0, then

A is truly stochastically dominant over B. When ϵmin < 0.5, A is almost stochastically

dominant over B. For ϵmin = 0.5, no order can be determined.

Evaluation Metrics. Precision, Recall, F1-score, Accuracy, and Specificity are used to

evaluate the performance of the introduced approaches.

4.3.3 Results

Results are reported in Table 4.4. We observe that the usage of BLOCK as fusion

method leads to the best performing model outperforming the rest approaches in Accuracy

and F1-score by 1.21-21.99% and 1.32-22.23% respectively. Multimodal models perform

better than unimodal ones verifying our initial hypothesis that the usage of multiple

modalities improves detection performance. The concatenation mechanism achieves the

worst results compared with the other fusion methods, since it assigns equal importance

to each individual modality. We believe that MFB outperforms MFH, since the MFH
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method is developed by cascading two MFB blocks, thus appears to be complex for our

limited dataset. We hypothesize that GMU achieves a poor performance, since it controls

Table 4.4: Performance comparison among proposed models and baselines. Reported values are

mean ± standard deviation. Results are averaged across four runs (5-fold setting). (∗) means that

ϵmin < 0.1, † means that ϵmin < 0.2, ‡ means that ϵmin < 0.3, ∗∗ means that ϵmin < 0.4, and

†† means that ϵmin < 0.5. We are not able to perform statistical test regarding baselines in [42],

since the authors have not provided the results obtained over individual folds.

Evaluation metrics

Architecture Precision Recall F1-score Accuracy Specificity

Unimodal approaches

Only transcript 94.72‡ 91.78∗∗ 93.04† 92.49‡ 93.51∗∗

±5.38 ±5.77 ±3.77 ±3.97 ±6.96

Only Speech signal 80.73∗ 85.70∗ 82.49∗ 80.52∗ 74.21∗

±12.12 ±9.57 ±8.51 ±8.97 ±16.87

eGeMAPSv02 79.05∗ 85.46∗ 81.67∗ 80.29∗ 76.64∗

±13.50 ±7.92 ±9.69 ±10.11 ±15.26

ComParE 2016 86.03∗ 92.29 88.82∗ 87.97∗ 84.92†

±8.92 ±3.96 ±5.31 ±4.93 ±9.49

Baselines reported in [42]

BS1 73.50 74.50 73.60 73.30 –

±16.10 ±13.20 ±13.60 ±10.60 –

BS2 85.80 86.10 84.70 83.90 –

±3.10 ±2.70 ±0.90 ±1.30 –

Single - Task Learning

Concatenation 91.51∗ 93.35 92.11† 91.46† 90.91†

±8.74 ±5.99 ±5.54 ±6.05 ±10.48

GMU 94.10∗∗ 93.41 93.38∗∗ 92.34‡ 92.33∗∗

±9.51 ±6.61 ±6.25 ±7.22 ±11.91

MLB 95.95 91.82∗∗ 93.57∗∗ 92.96∗∗ 95.33

±7.69 ±6.31 ±5.37 ±5.94 ±9.71

MUTAN 93.75‡ 94.46 93.82∗∗ 92.75∗∗ 90.78∗∗

±8.76 ±5.57 ±5.71 ±6.79 ±13.07

MFH 95.04∗∗ 92.79†† 93.75∗∗ 92.94‡ 91.28∗∗

±6.62 ±5.01 ±4.46 ±5.56 ±17.76

MFB 94.68∗∗ 93.63 93.95∗∗ 93.18∗∗ 92.53∗∗

±8.19 ±4.63 ±5.32 ±6.13 ±10.66

BLOCK 97.30 94.52 95.83 95.29 96.42

±4.43 ±4.52 ±3.81 ±4.23 ±6.04

Multi-Task Learning

Gender, Education, Age 96.14 93.24 94.38†† 94.08†† 96.31

±5.02 ±6.95 ±3.65 ±3.45 ±4.86

Gender, Education 97.22 92.28†† 94.51†† 94.07†† 95.95

±5.14 ±6.82 ±4.65 ±5.03 ±9.35

Education, Age 94.41∗∗ 93.63 93.74∗∗ 93.62†† 93.56††

±7.24 ±5.97 ±4.52 ±4.48 ±8.05

Gender, Age 96.55 92.51†† 94.30†† 93.84†† 94.53

±4.87 ±6.09 ±3.72 ±4.25 ±13.05

Gender 94.61∗∗ 93.29 93.61∗∗ 93.20∗∗ 93.68††

±9.28 ±7.18 ±6.51 ±6.81 ±10.63

Education 94.22∗∗ 93.04 93.44‡ 93.00∗∗ 92.03∗∗

±9.16 ±7.27 ±7.34 ±7.31 ±12.41

Age 94.99∗ 92.32†† 93.34‡ 92.56‡ 93.42††

±7.46 ±6.72 ±5.09 ±5.85 ±10.79

the information flow without capturing so effectively the cross-modal interactions. We

observe that single-task learning settings perform better than multi-task learning ones.

This can be justified by the fact that depression is a mental disorder, which can happen

to anyone. There are many causes of depression, e.g. stressful events, personality, health

issues (cancer), loneliness, etc. According to statistical test, our best performing model

is almost stochastically dominant in terms of accuracy over all the approaches, except for

Only speech signal, where ϵmin = 0. We are not able to perform statistical tests with [42],
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since the results obtained over individual folds are not available.

4.3.4 Ablation Study

In this section, we perform a series of ablation experiments to explore the effectiveness

of the best performing architecture. Results are reported in Table 4.5. Firstly, we experi-

ment with removing both the cross-attention layer and the fusion methods. Results show

that a decrease of Accuracy (ϵmin = 0.25) and F1-score by 3.14% and 2.59% (ϵmin = 0.27)

respectively. Secondly, we remove the cross-attention layer and pass the outputs of Italian

BERT and AlexNet through the fusion methods. Findings suggest that Accuracy and

F1-score drop by 3.19% (ϵmin = 0.16) and 3.01% (ϵmin = 0.16). Thirdly, we replace the

shared layer with two non-shared ones and observe that Accuracy presents a decrease

accounting for 2.36% (ϵmin = 0.31), while F1-score is decreased by 2.26% (ϵmin = 0.26).

Next, we remove the concatenation mechanisms in the cross-attention layer and pass the

outputs of LayerNorm through the fusion methods. Findings suggest that Accuracy and

F1-score are decreased by 1.68% (ϵmin = 0.45) and 1.69% (ϵmin = 0.38) respectively. Fi-

Table 4.5: Ablation Study. (∗) means that ϵmin < 0.1, † means that ϵmin < 0.2, ‡ means that

ϵmin < 0.3, ∗∗ means that ϵmin < 0.4, and †† means that ϵmin < 0.5 .

Evaluation metrics

Architecture Precision Recall F1-score Accuracy Specificity

– Cross-Attention and

Fusion Methods
92.77‡ 94.66 93.24‡ 92.15‡ 90.35‡

±11.29 ±5.41 ±6.87 ±8.15 ±15.75

– Cross-Attention 92.99† 93.16 92.82† 92.10† 92.08‡

±8.22 ±5.68 ±5.19 ±5.47 ±9.44

Not shared 96.21 91.66∗∗ 93.57‡ 92.93‡ 94.69

±5.51 ±8.01 ±4.80 ±5.56 ±7.75

– Concatenation in

Cross-Attention Layer
95.49∗∗ 93.33 94.14∗∗ 93.61†† 95.03

±7.73 ±5.39 ±4.72 ±5.19 ±8.88

– Shared feed forward

and LayerNorm
94.36∗∗ 95.52 94.60 94.00†† 92.29∗∗

±8.21 ±4.88 ±4.45 ±5.04 ±11.01

Proposed Approach 97.30 94.52 95.83 95.29 96.42

±4.43 ±4.52 ±3.81 ±4.23 ±6.04

nally, we remove the shared layer followed by LayerNorm and thus pass the outputs of

Add & LayerNorm directly through fusion methods. Results show that Accuracy drops

by 1.29% (ϵmin = 0.45).

4.4 Summary

In this chapter, we presented two methods for detecting depression by utilizing social

media posts and spontaneous speech.

Firstly, we introduced a method for identifying depression in social media text by in-

jecting linguistic information into transformer-based models. Also, it is the first study

exploiting label smoothing, in order to ensure that our model is calibrated. We evaluated

our proposed methods on two publicly available datasets, which include two depression de-
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tection datasets (binary classification and multiclass classification - severity of depression).

Findings suggested that transformer-based networks combined with linguistic information

lead to performance improvement in comparison with transformer-based networks. Also,

applying label smoothing yielded both to the performance improvement and better cali-

bration of the proposed models. Specifically, in terms of the Depression Mixed dataset,

we found that the injection of top2vec features into BERT and MentalBERT models

along with label smoothing obtained the highest F1-score and Accuracy. With regards

to the Depression Severity dataset, findings showed that the injection of NRC features

into the BERT model and the integration of features derived by LDA topics, namely

GOSS features, into the MentalBERT model yielded the highest weighted F1-scores. We

also conducted a linguistic analysis and showed that depressive posts are full of sadness,

anxiety, and negative tone.

Secondly, we presented the first study utilizing a cross-attention scaling layer and

multimodal fusion methods in a single neural network for detecting depression from spon-

taneous speech in the Italian language through speech and automatic transcripts. This is

also the first study experimenting with a multi-task learning setting to investigate if the

prediction of gender, age, and education level as auxiliary tasks aid the depression detec-

tion task (primary task) in increasing its performance. Results showed that our introduced

approach improves competitive baselines in Accuracy by 1.21-21.99% and in F1-score by

1.32-22.23%. Results also showed that the introduced single-task learning model out-

performs the multitask learning ones. Finally, we performed an ablation study, where we

removed several parts of the proposed architecture and observe differences in performance.

Findings showed degradation in performance in terms of Accuracy by 1.29-3.19%.



Chapter 5

Explainable Identification of

Dementia from Transcripts using

Transformer Networks

5.1 Introduction

Several research works have been conducted with regard to the identification of AD

patients using speech and transcripts. The majority of them have employed feature ex-

traction techniques [161, 162, 163, 164, 165], in order to train traditional Machine Learn-

ing (ML) algorithms, such as Logistic Regression, k-NN, Random Forest, etc. However,

feature extraction constitutes a time-consuming procedure achieving poor classification

results and often demands some level of domain expertise. Recently, researchers introduce

deep learning architectures [166, 167], such as CNNs and BiLSTMs, so as to improve the

classification results. Despite the success of transformer-based models in several domains,

their potential has not been investigated to a high degree in the task of dementia identifi-

cation from transcripts, where research works [61] having proposed them, use their outputs

as features to train shallow machine learning algorithms. Concurrently, all research works

except one [91], train machine learning models, in order to distinguish AD patients from

non-AD patients, without taking into account the severity of dementia via Mini-Mental

State Exam (MMSE) scores. Motivated by this limitation, in this chapter, we propose

two multi-task learning models minimizing the loss of both dementia identification and its

severity.

At the same time, to the best of our knowledge, the research works that have proposed

deep learning models based on transformer networks have focused their interest only on

improving the classification results obtained by CNNs, BiLSTMs etc. instead of exploring

possible explainability techniques. Specifically, due to the fact that deep learning models

are considered black boxes, it is important to propose ways of making them interpretable,

since it is imperative for a clinician to be informed why the specific deep neural network

classified a person as AD patient or not. To the best of our knowledge, only one work [168]

131
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has experimented with interpreting its proposed deep learning model (CNN-LSTM model)

in the field of dementia detection using transcripts. In order to tackle this limitation, our

contribution is twofold. First, we propose an interpretable neural network architecture.

Next, we extend prior work and employ LIME [74], a model agnostic framework for in-

terpretability, aiming to explain the predictions made by our best performing model.

Concurrently, we propose an in-depth analysis of the language patterns used between AD

and non-AD patients aiming to shed more light on the main differences observed in the

vocabulary that may distinguish people suffering from dementia from healthy people.

The contributions of this chapter can be summarized as follows:

• We employ several transformer-based models, pretrained in biomedical and general

corpora, and compare their performances.

• We propose an interpretable method based on the siamese neural networks along

with a co-attention mechanism, so as to detect AD patients.

• We introduce two models in a multi-task learning framework, where the one task is

the identification of dementia and the second one is the detection of MMSE score

(severity of dementia). We model the MMSE detection task as a multiclass classifi-

cation task instead of a regression task.

• We perform a thorough linguistic analysis regarding the differences in language be-

tween control and dementia groups.

• We employ LIME, in order to explain the predictions of our best performing model.

5.2 Dataset

We use the ADReSS Challenge Dataset described in Section 3.3.5.2 for conducting our

experiments.

5.3 Problem Statement

In this section, the problem statement used in this chapter is presented. More specifi-

cally, it can be divided into two problems, namely the Single-Task Learning (STL) Problem

and the Multi-Task Learning (MTL) Problem, which are presented in detail in Sections

5.3.1 and 5.3.2 respectively.
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5.3.1 Single-Task Learning Problem

Let a dataset Sn×2 =


s1, label1

s2, label2
...

sn, labeln

 consist of a set of transcriptions belonging to the

dementia group, d ⊂ S, and a set of transcriptions belonging to the control group, c ⊂ S.

Furthermore, labeli ∈ {0, 1}, 1 ≤ i ≤ n, where 0 denotes that si ∈ c, while 1 denotes that

si ∈ d. The task is to identify if a transcription si ∈ S, belongs to a person suffering from

dementia, i.e., si ∈ d, or not, i.e., si ∈ c.

5.3.2 Multi-Task Learning Problem

Let a dataset Sn×3 =


s1, label1,mmse1

s2, label2,mmse2
...

sn, labeln,mmsen

 consist of a set of transcriptions belonging

to the dementia group, d ⊂ S, and a set of transcriptions belonging to the control group,

c ⊂ S. Furthermore, labeli ∈ {0, 1}, 1 ≤ i ≤ n, where 0 denotes that si ∈ c, while 1

denotes that si ∈ d. Moreover, mmsei indicates the MMSE scores. The tasks here are

to identify (i) if a transcription si ∈ S, belongs to a person suffering from dementia, i.e.,

si ∈ d, or not, i.e., si ∈ c, as well as (ii) to identify the MMSE scores of each person.

5.4 Predictive Models

In this section, we describe the models used for detecting AD patients. Specifically,

Section 5.4.1 refers to the models employed in the single-task learning setting, whereas in

Section 5.4.2 we refer to the models used for jointly learning to identify AD patients and

detect the severity of dementia.

5.4.1 Single-Task Learning

5.4.1.1 Transformer-based models

We exploit the following transformer-based networks in our experiments: BERT [26],

BioBERT [55], BioClinicalBERT [56], ConvBERT [57], RoBERTa [58], ALBERT

[59], and XLNet [60].

Regarding our experiments, we pass each transcription through each pretrained model

mentioned above. The output of each model is passed through a Global Average Pooling

layer followed by two dense layers. The first dense layer consists of 128 units with a ReLU

activation function and the second one has one unit with a sigmoid activation function to

give the final output.
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5.4.1.2 Transformer-based models with Co-Attention Mechanism

In this section, we present an interpretable method to differentiate AD from non-AD

patients. First, we split each transcription s in the dataset into two statements of equal

length (s1 & s2). In this way, we have to categorize a pair of statements (s1 & s2)

into dementia or control group. To do this, we pass s1 and s2 through the transformer-

based models mentioned in Section 5.4.1.1, i.e., BERT, BioBERT, BioClinicalBERT, Con-

vBERT, RoBERTa, ALBERT, and XLNet. These models can be considered as siamese

in our experiments, since we make them share the same weights. Then, we implement

a co-attention mechanism introduced by [319] and adopted in several studies, including

[320, 321], over the two embeddings of the two statements (outputs of the transformer-

based models), in order to render the entire architecture interpretable.

Formally, let C ∈ Rd×N and S ∈ Rd×T be the outputs of each model mentioned above,

i.e., BERT, BioBERT, BioClinicalBERT, ConvBERT, RoBERTa, ALBERT, and XLNet,

where d denotes the hidden size of the model. We have omitted the first dimension, which

corresponds to the batch size. Following the methodology proposed by [319], the affinity

matrix F ∈ RN×T is calculated using the equation presented below:

F = tanh
(
CTWlS

)
(5.1)

where Wl ∈ Rd×d is a matrix of learnable parameters. Next, this affinity matrix is consid-

ered as a feature and we learn to predict the attention maps for both statements via the

following,

Hs = tanh (WsS + (WcC)F ) (5.2)

Hc = tanh
(
WcC + (WsS)F T

)
(5.3)

where Ws,Wc ∈ Rk×d are matrices of learnable parameters. The attention probabilities

for each word in both statements are calculated through the softmax function as follows,

as = softmax
(
wT
hsH

s
)

(5.4)

ac = softmax
(
wT
hcH

c
)

(5.5)

where as ∈ R1×T and ac ∈ R1×N . Whs,Whc ∈ Rk×1 are the weight parameters. Based

on the above attention weights, the attention vectors for each statement are obtained by

calculating the weighted sum of the features from each statement. Formally,

ŝ =
T∑
i=1

asis
i, ĉ =

N∑
j=1

acjc
j (5.6)

where ŝ ∈ R1×d and ĉ ∈ R1×d.

Finally, these two vectors are concatenated, i.e.,

p = [ŝ, ĉ] (5.7)
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where p ∈ R1×2d and we pass the vector p to a dense layer with 128 units and a ReLU ac-

tivation function followed by a dense layer consisting of one unit with a sigmoid activation

function.

5.4.2 Multi-Task Learning

In this section we propose two architectures based on multi-task learning [322] and

adopt the methodology followed by [323] & [82]. To be more precise, we employ a multi-

task learning framework consisting of a primary and an auxiliary task. The identification of

dementia constitutes the primary task, while the prediction of the MMSE score constitutes

the auxiliary one. Our main objective is to explore whether the MMSE score helps in

classifying groups into dementia or control. The introduced architectures are trained on

the two tasks and updated at the same time with a joint loss:

L = (1 − α)Ldementia + αLMMSE (5.1)

,where Ldementia and LMMSE are the losses of dementia identification and MMSE predic-

tion tasks respectively. α is a hyperparameter that controls the importance we place on

each task. We mention below the MTL architectures developed.

MTL-BERT (Multiclass) We pass each transcription through a BERT model (which

constitutes our best performing STL model). The output of the BERT model is passed

through two separate dense layers, so as to identify dementia and predict the MMSE

score. For identifying dementia, we use a dense layer with 2 units and a softmax activation

function and minimize the cross-entropy loss function. Regarding the estimation of the

MMSE score, in contrast with previous research works, we convert the MMSE regression

task into a multiclass classification task. More specifically, according to [62], we can create

4 groups of cognitive severity: healthy (MMSE score ≥ 25), mild dementia (MMSE

score of 21–24), moderate dementia (MMSE score of 10–20), and severe dementia

(MMSE score ≤ 9). Thus, for classifying transcriptions into one of these 4 groups, we use

a dense layer of 4 units with a softmax activation function and minimize the cross-entropy

loss function.

MTL-BERT-DE (Multiclass) Similarly to [82], we pass each transcription into a

BERT model. The output of the BERT model is passed through two separate BERT

encoders, i.e, double encoders, which are followed by dense layers so as to identify dementia

and classify MMSE score into one of the four classes mentioned above. For identifying

dementia, we use a dense layer with 2 units and a softmax activation function and minimize

the cross-entropy loss function. For classifying the MMSE score, we use a dense layer with

4 units and a softmax activation function and minimize the cross-entropy loss function.
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5.5 Experiments

All experiments are conducted on a single Tesla P100-PCIE-16GB GPU.

5.5.1 Single-Task Learning

Comparison with state-of-the-art approaches We compare our introduced models

with the following research works, since these research works propose single-task learning

models and test their proposed approaches on the ADReSS Challenge test set: (1) Text

[61], (2) LSTM with Gating (Acoustic + Lexical + Dis) [62], (3) Fusion Maj. (3-best)

[63], (4) Logistic Regression (NLP) [64], (5) fastText, bi + trigram [65], (6) Attempt 5

[66], and (7) Fusion of system [67].

Experimental Setup Firstly, we divide the train set provided by the Challenge into

a train and a validation set (65%-35%). Next, we train the proposed architectures five

times and test them using the test set provided by the Challenge. Specifically, we freeze

the weights of each pretrained model (BERT, BioBERT, BioClinicalBERT, ConvBERT,

RoBERTa, ALBERT, and XLNet) and update the weights of the rest layers. In this way,

these pretrained models act as fixed feature extractors. We train the proposed architec-

tures using Adam optimizer with a learning rate of 1e-4. We apply EarlyStopping and

stop training, if the validation loss has stopped decreasing for 9 consecutive epochs. We

also apply ReduceLROnPlateau, where we reduce the learning rate by a factor of 0.2, if

the validation loss has stopped decreasing for 3 consecutive epochs. When this training

procedure stops, we unfreeze the weights of the pretrained models and train the entire

deep learning architectures using Adam optimizer with a learning rate of 1e-5. We ap-

ply EarlyStopping with a patience of 3 based on the validation loss. In terms of models

with a co-attention mechanism, we start training the proposed architectures using Adam

optimizer with a learning rate of 1e-3 and follow the same methodology. We also apply

dropout after the co-attention mechanism with a rate of 0.4. For BERT, we have used

the base-uncased model, for BioBERT we have used BioBERT v1.1 (+PubMed), for

ConvBERT we have used the base model, for RoBERTa we have employed the base

model, for ALBERT we have used the base-v1 model, and for XLNet we have used the

base model. For these pretrained models, we have used the Transformers library [305].1

Evaluation Metrics We evaluate our results using Accuracy, Precision, Recall, F1-

score, and Specificity. All these metrics have been calculated using the dementia class as

the positive one.

1For BioClinicalBERT we have used the model in: https://huggingface.co/emilyalsentzer/

Bio_ClinicalBERT

https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT
https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT
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5.5.2 Multi-Task Learning

Comparison with state-of-the-art approaches For the primary task (AD Classifi-

cation task), we compare our introduced models with BERT base [91], since this research

work proposes a multi-task learning model and tests its proposed approach on the ADReSS

Challenge test set.

Experimental Setup Firstly, we divide the train set provided by the Challenge into

a train and a validation set (65%-35%). Next, we train the proposed architectures five

times and test them using the test set provided by the Challenge. We use the Adam

optimizer with a learning rate of 1e-6. We apply EarlyStopping and stop training, if the

validation loss has stopped decreasing for 8 consecutive epochs. Regarding MTL-BERT-

DE (Multiclass), we freeze the weights of the shared BERT model. Moreover, because of

the class imbalance of the MMSE categories, we apply balanced class weights to the loss

function (LMMSE). We set α of (5.1) equal to 0.1. 2

Evaluation Metrics For the primary task (AD Classification task), we evaluate our

results using Accuracy, Precision, Recall, F1-score, and Specificity. All these metrics have

been calculated using the dementia class as the positive one.

For the auxiliary task (MMSE Classification task), we evaluate our results using the

average weighted Precision, average weighted Recall, and average weighted F1-score.

5.6 Results

5.6.1 Single-Task Learning Experiments

The results of the proposed models mentioned in Section 5.4.1 are reported in Table

5.1. Also, Table 5.1 provides a comparison of our introduced models with existing research

initiatives.

Regarding our proposed transformer-based models, one can easily observe that BERT

obtains the highest Recall, F1-score, and Accuracy accounting for 81.66%, 86.73%, and

87.50% respectively. Specifically, BERT outperforms the other introduced transformer-

based models in Recall by 1.67-13.33%, in F1-score by 2.01-10.98%, and in Accuracy

by 1.25-9.17%. BioClinicalBERT achieves the second highest Accuracy and F1-score ac-

counting for 86.25% and 84.72% respectively. Also, BioClinicalBERT obtains the highest

Precision score equal to 95.03% surpassing the other transformer-based models by 4.79-

15.88%. RoBERTa achieves comparable results to BERT and BioClinicalBERT yielding

an Accuracy and F1-score of 84.16% and 82.81% respectively. In addition, BioBERT

and ConvBERT demonstrate slight differences in Accuracy and F1-score, with BioBERT

surpassing ConvBERT in both metrics. Specifically, BioBERT surpasses ConvBERT in

F1-score by 0.46% and in Accuracy by 0.84%. Moreover, we observe that ALBERT and

2We used also the experimental setup of Section 5.5.1. However, lower evaluation results were achieved.
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XLNet achieve Accuracy scores equal to 78.33%, with ALBERT surpassing XLNet in

F1-score by 2.70%.

Regarding our proposed transformer-based models with a co-attention mechanism,

they achieve lower performance than the proposed transformer-based models except for

ConvBERT + Co-Attention, ALBERT + Co-Attention, and XLNet + Co-Attention. More

specifically, ConvBERT + Co-Attention presents a slight surge of 0.42% in Accuracy

in comparison with ConvBERT, ALBERT+Co-Attention presents an increase in Accu-

racy by 1.67% in comparison with ALBERT, and XLNet + Co-Attention demonstrates

a slight increase of 0.42% in Accuracy in comparison with XLNet. BERT+Co-Attention

attains the highest F1-score and Accuracy accounting for 83.85% and 83.75% respectively.

BERT+Co-Attention outperforms the other models in terms of F1-score by 1.42-7.43%,

and in terms of Accuracy by 1.25-5.00%. ConvBERT + Co-Attention and BioClinical-

BERT + Co-Attention demonstrate slight differences in F1-score and Accuracy, with Con-

vBERT + Co-Attention surpassing BioClinicalBERT + Co-Attention in F1-score by 0.44%

and in Accuracy by 0.42%. BioBERT + Co-Attention and ALBERT + Co-Attention

achieve almost equal F1-score results, with BioBERT + Co-Attention attaining a higher

Accuracy score than ALBERT + Co-Attention by 1.66%. RoBERTa + Co-Attention and

XLNet + Co-Attention demonstrate low performances attaining an Accuracy of 79.16%

and 78.75% respectively.

Overall, BERT constitutes our best performing model, since it outperforms all the other

introduced models in F1-score and Accuracy. Although there are models surpassing BERT

in Precision and Recall, BERT outperforms all of them in F1-score, which constitutes the

weighted average of Precision and Recall. In addition, there are models that outperform

BERT in Specificity. However, high specificity and low recall means that the model cannot

diagnose the AD patients pretty well and consequently AD patients are misdiagnosed as

non-AD ones.

In comparison with the state-of-the-art approaches, one can observe that our proposed

models achieve comparable performance to or outperform previous studies. More specif-

ically, BERT outperforms all the research works, except [61], in terms of Accuracy by

2.08-8.33%, in F1-score by 1.33-8.68%, and in Recall by 2.66-14.99%. Moreover, BERT

+ Co-Attention surpasses [62, 65, 67] in Accuracy by 2.50%, 0.42%, and 4.58% respec-

tively. Also, it surpasses [62, 65, 67] in Recall by 17.49%, 5.16%, and 9.16% respectively.

BERT+Co-Attention outperforms [62, 65, 67] in F1-score by 5.80%, 0.85%, and 5.59%

respectively.
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Table 5.1: Performance comparison among proposed STL models and state-of-the-art approaches

on the ADReSS Challenge test set. Reported values are mean ± standard deviation. Results are

averaged across five runs.

Evaluation metrics

Architecture Prec. Rec. F1-score Acc. Spec.

Comparison with state-of-the-art approaches

[61] - 87.50 - 89.58 91.67

[62] 81.82 75.00 78.26 79.17 83.33

[63] - - 85.40 85.20 -

[64] - - - 85.00 -

[65] 86.00 79.00 83.00 83.33 88.00

[66] - - - 85.42 -

[67] 94.12 66.67 78.05 81.25 95.83

Proposed Transformer-based models

BERT 87.19 81.66 86.73 87.50 93.33

±3.25 ±5.00 ±4.53 ±4.37 ±5.65

BioBERT 86.87 78.33 82.11 82.92 87.50

±6.09 ±4.86 ±2.83 ±3.06 ±6.97

BioClinicalBERT 95.03 76.66 84.72 86.25 95.83

±3.03 ±4.99 ±2.74 ±2.12 ±2.64

ConvBERT 83.51 79.99 81.65 82.08 84.16

±1.23 ±4.08 ±2.06 ±1.66 ±1.66

RoBERTa 90.24 76.66 82.81 84.16 91.66

±2.81 ±4.99 ±3.52 ±2.83 ±2.64

ALBERT 79.15 78.33 78.45 78.33 78.33

±7.89 ±3.11 ±3.12 ±3.86 ±8.89

XLNet 85.58 68.33 75.75 78.33 88.33

±2.77 ±6.77 ±4.05 ±2.82 ±3.12

Proposed Transformer-based models with co-attention mechanism

BERT 83.67 84.16 83.85 83.75 83.33

Co-Attention ±3.36 ±1.66 ±1.09 ±1.56 ±4.56

BioBERT 85.41 76.66 80.72 81.66 86.66

Co-Attention ±4.91 ±3.33 ±3.16 ±3.06 ±4.86

BioClinicalBERT 82.60 81.66 81.99 82.08 82.50

Co-Attention ±3.60 ±4.25 ±2.11 ±2.12 ±4.86

ConvBERT 83.78 81.66 82.43 82.50 83.33

Co-Attention ±6.13 ±4.24 ±2.37 ±3.12 ±8.74

RoBERTa 79.39 79.16 79.06 79.16 79.16

Co-Attention ±2.26 ±6.45 ±2.15 ±1.32 ±4.56
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ALBERT 77.94 84.16 80.77 80.00 75.83

Co-Attention ±3.20 ±4.86 ±1.68 ±1.66 ±5.53

XLNet 85.63 69.16 76.42 78.75 88.33

Co-Attention ±3.45 ±5.00 ±3.75 ±3.06 ±3.12

5.6.2 Multi-Task Learning Experiments

5.6.2.1 Primary Task

The results of the introduced models described in Section 5.4.2 are reported in Table

5.2. Also, Table 5.2 provides a comparison of our introduced approaches with state-of-

the-art approaches.

With regards to our introduced models, one can easily observe that MTL-BERT (Mul-

ticlass) outperforms MTL-BERT-DE (Multiclass) in terms of all the evaluation metrics ex-

cept Recall. Specifically, MTL-BERT (Multiclass) surpasses MTL-BERT-DE (Multiclass)

in Precision by 3.40%, in F1-score by 0.88%, in Accuracy by 1.25%, and in Specificity by

4.16%. Although MTL-BERT-DE (Multiclass) surpasses MTL-BERT (Multiclass) in Re-

call by 1.67%, MTL-BERT (Multiclass) obtains a higher F1-score, which constitutes the

weighted average of Precision and Recall. Therefore, MTL-BERT (Multiclass) constitutes

our best performing model in the MTL framework.

In comparison to the research work [91], as one can easily observe, both our introduced

models attain a higher Accuracy score. To be more precise, MTL-BERT (Multiclass) out-

performs BERT base [91] in Accuracy by 5.42%. In addition, MTL-BERT-DE (Multiclass)

surpasses the research work [91] in Accuracy by 4.17%. These differences in performance

are attributable to the fact that we adopt a different training procedure than the one

adopted by [91], we consider the MMSE task as a multiclass classification task instead of

a regression task, as well as to the different architectures proposed.

5.6.2.2 Auxiliary Task

The results of the introduced models mentioned in Section 5.4.2 for the auxiliary task

(MMSE Classification task) are reported in Table 5.3.

As one can easily observe, MTL-BERT (Multiclass) obtains an average weighted Preci-

sion of 73.62% surpassing MTL-BERT-DE (Multiclass) by 3.12%. However, MTL-BERT-

DE (Multiclass) outperforms MTL-BERT (Multiclass) in average weighted Recall and

average weighted F1-score by 1.26% and 3.82% respectively.
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Table 5.2: Performance comparison among proposed MTL models and state-of-the-art approaches

on the ADReSS Challenge test set for the primary task (AD Classification Task). Reported values

are mean ± standard deviation. Results are averaged across five runs.

Evaluation metrics

Architecture Prec. Rec. F1-score Acc. Spec.

Comparison with state-of-the-art approaches

[91] - - - 80.83 -

- - - ±1.56 -

Proposed Multi-task learning models

MTL-BERT 88.59 83.33 85.84 86.25 89.16

(Multiclass) ±3.05 ±2.64 ±2.12 ±2.13 ±3.33

MTL-BERT-DE 85.19 85.00 84.96 85.00 85.00

(Multiclass) ±3.46 ±5.00 ±2.60 ±2.43 ±4.25

Table 5.3: Results of the proposed MTL models on the ADReSS Challenge test set for the

auxiliary task (MMSE Classification Task). Reported values are mean ± standard deviation.

Results are averaged across five runs.

Evaluation metrics

Architecture Avg. W. Prec. Avg. W. Rec. Avg. W. F1-score

Proposed Multi-task learning models

MTL-BERT 73.62 69.16 64.75

(Multiclass) ±2.95 ±4.04 ±3.50

MTL-BERT-DE 70.50 70.42 68.57

(Multiclass) ±5.59 ±3.06 ±2.04

5.7 Analysis of the Language used in Control and Dementia

groups

We finally perform an extensive analysis to uncover some unique characteristics, which

discriminate the AD patients from the non-AD ones, and understand the predictions made

by our best performing model as well as its limits.

5.7.1 Text Statistics

We first extract some statistics, namely the syllable count, the lexicon count, the

difficult words, and the sentence count, using the TEXTSTAT library in Python, in order to

understand better the differences in language used between control and dementia groups.

More specifically, the syllable count refers to the number of syllables, the lexicon count to

the number of words, and the sentence count to the number of sentences present in the
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given text. With regards to the difficult words, they refer to the number of polysyllabic

words with a Syllable Count > 2 that are not included in the list of words of common usage

in English [324]. After extracting these statistics per transcript, we calculate the mean

and standard deviation for both control and dementia groups. We test for statistical

significance using an independent t-test for each metric between control and dementia

groups and adjust the p-values using Benjamini-Hochberg correction [69]. As one can

easily observe in Table 5.4, the control group presents a significantly higher number of

syllables, lexicon, and difficult words than the dementia group.

Table 5.4: mean ± standard deviation metrics per transcript. † indicates statistical significance

between transcripts of control and dementia groups. All differences are significant at p < 0.05 after

Benjamini-Hochberg correction.

Transcript

Metric Control Dementia

Syllable Count† 151.63 ± 79.98 119.95 ± 71.18

Lexicon Count† 107.49 ± 62.02 86.08 ± 54.10

Difficult Words† 10.58 ± 3.64 6.38 ± 3.53

Sentence Count 1.67 ± 1.03 1.92 ± 1.62

5.7.2 Vocabulary Uniqueness

In order to understand the vocabulary similarities and differences between control and

dementia groups, we adopt the methodology proposed by [325]. Formally, let P and C be

the sets of unique words included in the control group and dementia group respectively.

Next, we calculate the Jaccard’s index given by (5.1), in order to measure the similarity

between finite sample sets. More specifically, the Jaccard’s index is a number between 0

and 1, where 1 indicates that the two sets, namely P and C, have the same elements, while

0 indicates that the two sets are completely different.

J(P,C) = |P ∩ C|/|P ∪ C| (5.1)

As observed in Table 5.5, the Jaccard’s index between the control and dementia groups

is equal to 0.4049, which indicates that people with dementia tend to use a different

vocabulary than those in the control group.

Table 5.5: Jaccard’s Index between transcripts of control and dementia group

Jaccard’s Index between transcripts Result

J (P= control, C=dementia) 0.4049
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5.7.3 Word Usage

Apart from finding the vocabulary similarities and differences, it is imperative that

patterns of word usage be investigated. Thus, following the methodology introduced in

[325], the main objective of this section is to explore the differences between the two

classes (control and dementia) with regard to the probability of using specific words more

than others. Formally, let D1 and D2 be two documents, where D1 includes all the

transcriptions of the control group, whereas D2 consists of transcriptions of the dementia

group. Moreover, we define S as the entire corpus consisting of D1 and D2. Now we can

define the probability of a word wi in the document D1 in a collection of documents S

given by (5.1):

P (wi|D1, S) = (1 − αD)P (wi|D1) + αDP (wi|S) (5.1)

Similarly, we can define the probability of a word wi in the document D2 in a collection

of documents S given by (5.2):

P (wi|D2, S) = (1 − αD)P (wi|D2) + αDP (wi|S) (5.2)

We employ the Jelinek-Mercer smoothing method and consider that αD ∈ [0, 1]. More

specifically, αD is a parameter that controls the probability of words included only in one

document (D1 or D2). In our experiments, we set αD equal to 0.2.

Moreover, we define P (wi|S) =
swi
|S| , where swi denotes the number of times a word wi

is included in the collection, whereas |S| is the total number of words occurrences in the

collection. Similarly, P (wi|D1) =
dwi
|D1| , where dwi denotes the number of times a word wi

is presented in the document D1, whereas |D1| is the total number of words occurrences in

the document D1. The same methodology has been adopted for calculating the P (wi|D2).

After having calculated the two distributions, i.e., P (wi|D1, S) and P (wi|D2, S), we

exploit the Kullback-Leibler (KL) divergence, in order to measure the difference of these

two distributions. KL-divergence is always greater than zero and is given by (5.3). The

larger it gets, the more different the two distributions are.

KL(P ||C) =
∑
x

P (x)log
P (x)

C(x)
(5.3)

As one can easily observe in Table 5.6, the KL divergence between control and dementia

groups is high indicating that these two groups present differences regarding the probability

of using some words more than others. Our findings agree with the ones in [325], where

the authors state that there are clear differences in terms of language use between positive

(depression and self-harm) and control group, where the values of KL-divergence range

from 0.18 to 0.21.
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Table 5.6: Kullback-Leibler divergence

KL divergence Result

KL(Control || Dementia) 0.2047

KL(Dementia || Control) 0.2161

5.7.4 Linguistic Feature Analysis

Following the method introduced by [68], the main objective of this section is to shed

light on which unigrams and pos-tags are mostly correlated with each class separately. To

facilitate this, we compute the point-biserial correlation between each feature (unigram

and pos-tag) across all the transcriptions and a binary label (0 for the control and 1 for

the dementia group). Before computing the correlation, we normalize features so that

they sum up to 1 across each transcription. We use the point-biserial correlation, since it

is a correlation used between continuous and binary variables. It returns a value between

-1 and 1. Since we are only interested in the strength of the correlation, we compute the

absolute value, where negative correlations refer to the control group (label 0) and positive

correlations refer to the dementia one (label 1). We report our findings in Table 5.7, where

all correlations are significant at p < 0.05, with Benjamini-Hochberg correction [69] for

multiple comparisons.

As one can easily observe, the pos-tags associated with the dementia group are the

following: RB (adverbs), PRP (personal pronoun), VBD (verb in past tense), and UH

(interjection). On the other hand, people in the control group tend to use VBG (verb,

gerund, or present participle), DT (determiner), and NN (noun). These findings can be

justified in Table 5.8, where we present three examples of transcripts belonging to the

control group and three examples of transcripts belonging to the dementia one. More

specifically, we have assigned colours to different pos-tags, so as to render the differences

in the language patterns used by each group easily understandable to the reader. To

be more precise, red colour indicates the VBG pos-tag, yellow refers to the DT pos-tag,

fuchsia to the RB pos-tag, apricot to the PRP pos-tag, navy blue to the VBD pos-tag,

and the pine green to the UH pos-tag.

We observe that people in the dementia group tend to use personal pronouns (he, she,

I, them etc.) very often, since they are unable to remember the specific terms (mom,

boy, etc.). This finding agrees with the research conducted by [70], where the authors

state that personal pronouns present a high frequency in the speech of AD patients, since

these people cannot find the target word. To be more precise, in a conversation people

have to remember what they have said during the entire conversation. However, this is

not possible in AD patients, who present working memory impairment and thus tend to

produce empty conversational speech (use of personal pronouns). On the other hand,

people in the control group tend to use more nouns instead of personal pronouns, since

they are able to maintain various kinds of information.
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Moreover, AD patients tend to use verbs in the past tense (were, forgot, did, started)

in contrast to people who are not suffering from dementia and use verbs in the present

participle. One typical example that can illustrate this difference can be seen in the fifth

transcription in Table 5.8, i.e., ”oh have you heard of that new game that they started to

play after christmas ? did you”. The AD patient perhaps remembers a personal story

from the past that wants to narrate, instead of the task he has been assigned to conduct.

Therefore, the patient is not able to stay focused on describing the picture. This finding

is consistent with [71, 72], where the authors state that AD patients present difficulty in

maintaining and continuing the development of a topic and thus demonstrate unexpected

topic shifts. Also, this finding reveals a difference in language used by the AD patients

and the agrammatic aphasics. Specifically, patients with agrammatic aphasia typically

have problems using past tense inflection and instead rely on infinitive or present tense

verb forms [73].

In addition, AD patients tend to use the UH (oh, yeah, well) and the RB (maybe,

probably) pos-tags, since they are not certain of what they are describing due to the

cognitive impairment. Concurrently, the UH pos-tag constitutes an example of empty

speech. More specifically, this pos-tag is used as filler at the beginning of each utterance,

since AD patients are thinking of what to say.

Table 5.7: Features associated with control and dementia subjects, sorted by point-biserial cor-

relation. All correlations are significant at p < 0.05 after Benjamini-Hochberg correction.

Control Dementia

Unigrams corr. Unigrams corr.

is 0.364 here 0.310

curtains 0.361 - -

window 0.301 - -

are 0.300 - -

POS corr. POS corr.

VBG 0.285 RB 0.388

DT 0.216 PRP 0.354

NN 0.210 VBD 0.275

- - UH 0.242
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Table 5.8: Examples of transcripts along with their labels. red colour indicates the VBG pos-tag,

yellow refers to the DT pos-tag, fuchsia to the RB pos-tag, apricot to the PRP pos-tag, navy blue

to the VBD pos-tag, and the pine green to the UH pos-tag.

Transcript Label

” well the girl is watching the boy go into the cookie jar . he has a cookie in

his hand . he’s on the stool . the stool is falling . the mother is drying dishes

. has a plate in her hand . sink is overflowing . there’s water on the floor .

she’s stepping in the water . something that’s going on you said ? the little

girl looks like she’s motioning to the boy to be quiet . and I don’t know what

else . the woman’s looking out the window . the window’s open . ”

Control

” action . alright . a lady’s drying dishes . the boy was standing on a stool but

the action is that the stool has slipped and he is falling . and the girl has her

hand raised reaching for a cookie . and there’s a lot of action in the sink here

. the water is flowing out . she is apparently so daydreaming that she doesn’t

realize that the sink is overflowing . any more action ? or is that enough action

? ”

Control

” touching lip . raising arm . is that what you mean ? reaching for cookie .

handing cookie down . slipping from stool . stool falling over . wiping dishes

. water running . water overflowing . breeze . I don’t know if that’s action .

stepping out from water . I guess that’s it . ”

Control

” alright . I see the little boy stealing cookies from the cookie jar . and he gave

some to the little girl and she’s eating some of the cookies . and I guess this is

mama and she’s washing the dishes . and she dropped a dish . no she didn’t

drop a dish . the water that she’s washing the dishes with she let run . and it’s

overflown . that doesn’t sound right . did it ? we forgot to turn off the spigot

. and so the water is running off onto the floor here . and mom apparently is

washing the dishes . and here’s this little boy stealing the cookies . he’s gonna

fall because the four legged stool is gonna fall over with him and the cookie jar .

and mama’s drying the dishes as usual for mamas if they don’t have a husband

that dries them or washes them or whatever . let’s see now . I guess there’s

more things I’m sposta see . let’s see here now . oh and the water is flowing

out of the sink they forgot to turn off whoever’s doing the dishwashing . mom

apparently here , she forgot to turn off the water and the water is spilling out

onto the kitchen floor . and the little girl has pushed over the stool with the boy

that was reaching up to get the cookies . either she pushed it over or he fell

over with it . you know it excuse me but you know I was ... ”

Dementia

Continued on next page
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Table 5.8 – continued from previous page

Transcript Label

” mhm . oh I see a part of the whole kitchen . is that all the kitchen or isn’t

it ? oh I can’t read ... a lady a mother were in her kitchen . in her kitchen

doing some work I suppose . and there’s another woman there sharing their

pleasures or whatever . oh have you heard of that new game that they started

to play after christmas ? did you ? is a . well it looks like ... I’d say this is ...

well let’s see . it looks like ... oh ... . my wife will beat me by a couple rows

of this . that’s like the washing machine ? or let me see . I can’t ... oh that’s

the son come from school maybe or something . that’s a youngster there . well

that’s just as though they getting ready to go to school or they’re just coming

out from school . and right there he’s same as back there except for down there

in the bottom I think it’s ... that’s a little . ”

Dementia

” yes . the water ? well let’s see . there’s something hasta be where the water

goes down over . there’s probably something that’s ... or they don’t have it

open or something might have. I don’t know . what ..? when the water goes

down what do you call that ? this here . right here . this . what do you call

that ? what is that ? what is that ? I don’t know ! that’s what I’m saying . I

don’t know what that is . the what ? a pipe . oh water pipe ! oh yeah . okay

. well then maybe the water pipe is not broke but there must be things in there

. that the water will not go down . I don’t know . huh ? what’s happening to

the water ? well the water is going down in the ... I don’t know . what would

you call this ? floor ! yeah okay . yeah . well down on this side of the picture

. well this thing here is turning over . yeah . no , uhuh . I don’t know what’s

going on . well he’s probably getting ... what’s this here ? cocoa jar ? what’s

this cocoa ? c o o k i e . I don’t know . I don’t know what ..? huh ? cookie ,

oh a cookie . oh ! oh okay . mhm . well he’s getting it out . and he’s gonna

give it to the girl /. down here . mhm . going on in the picture ? well the boy

is giving her the girl the cookie . this probably is broke . so the water will not

go down in and it’s coming up and going in here huh . well it looks like she

was gonna wash . what they eat with , all that . what do you call that ? what

do you call this ? a plate ? oh yeah . what you eat on . is that what you call

them a plate ? oh this is a cup ? oh maybe , I don’t know . mhm . okay . ”

Dementia

5.7.5 Explainability - Error Analysis

In this section, we employ LIME [74] (using 5000 samples) to explain the predictions

made by our best performing model, namely BERT, and shed more light regarding the

differences in language between AD and non-AD patients. More specifically, LIME gener-

ates local explanations for any machine learning classifier by introducing an interpretable
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model, which is trained on data generated through observing differences in the classifica-

tion performance when removing tokens from the input string.

Examples of explanations generated by LIME are illustrated in Figs. 5.1-5.4. More

specifically, Fig. 5.1 illustrates two transcripts, whose ground-truth label is dementia,

while our model predicts them as belonging to non-AD patients. Fig. 5.2 refers to tran-

scripts with both ground-truth label and prediction corresponding to dementia. In Fig.

5.3, two transcripts are presented, whose prediction is control and true label is control

too. Finally, Fig. 5.4 illustrates transcripts, which are misclassified. The ground-truth

is control, whereas the prediction is dementia. Moreover, as one can observe, each token

has been assigned a colour, either blue or orange. To be more precise, the blue colour

indicates which tokens are indicative of the control group, whilst the orange colour indi-

cates tokens, which are used mainly by AD patients. The more intense the colours are,

the more important these tokens are towards the final classification of the transcript.

(a)

(b)

Figure 5.1: Label: Dementia, Prediction: Control

(a)

(b)

(c)

Figure 5.2: Label: Dementia, Prediction: Dementia

As one can easily observe in Fig. 5.2, tokens belonging to the UH pos-tag, such as yeah

and oh, are identified as important for the dementia class by our best performing model.

Moreover, personal pronouns (she, they) and verbs in the past tense (got, had) are also

indicative of dementia. Also, our model considers the token ”here”, which corresponds

to the RB pos-tag, indicative of the dementia class. These findings are consistent with
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(a)

(b)

Figure 5.3: Label: Control, Prediction: Control

(a)

(b)

(c)

Figure 5.4: Label: Control, Prediction: Dementia

the ones in Section 5.7.4, where we have found that PRP, VBD, UH pos-tags as well as

the unigram ”here” are significantly correlated with the dementia class. In addition, our

model identifies the repetition of token ”and” as important for the dementia class. This

finding agrees with previous research works [168], where the word ”and” indicates a short

answer and burst of speech.

Regarding Fig. 5.3, one can easily observe that our model identifies tokens belonging to

the VBG (putting, drying, blowing, standing, etc.), DT (the, a), and NN (cookie, action,

stool, etc.) pos-tags as significant for the control class. Concurrently, in consistence with

the findings in Section 5.7.4, the unigrams ”curtain” and ”window” are used mainly by

non-AD patients.

With regards to Figs. 5.1 and 5.4, our model is not able to classify these transcripts

correctly. One possible reason for such misclassifications has to do with the fact that these

transcripts include pos-tags which are indicative of both the control and the dementia class.

To be more precise, in Fig. 5.1, the majority of tokens in both transcripts belong to the

VBG, NN, and DT pos-tags, which are correctly identified by our model as significant
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for the control group. Words, like ”and”, ”him”, and ”well” are used in a low frequency.

Similarly to Fig. 5.1, in Fig. 5.4, the majority of tokens in each transcript belong to the

pos-tags which are significantly correlated with the dementia class. This can be illustrated

in Fig. 5.4c, where we observe the usage of words, like ”and”, ”yeah”, ”well” & ”got”.

5.8 Summary

In this chapter, we introduced both single-task and multi-task learning models. Re-

garding single-task learning models, we employed several transformer-based networks and

compared their performances. Results showed that BERT achieved the highest classifi-

cation performance with accuracy accounting for 87.50%. Concurrently, we introduced

siamese networks coupled with a co-attention mechanism which can detect AD patients

with an accuracy up to 83.75%. In terms of the multi-task learning setting, it consisted

of two tasks, the primary and the auxiliary one. The primary task was the identification

of dementia (binary classification), whereas the auxiliary task was the categorization of

the severity of dementia into one of the four categories -healthy, mild/moderate/severe

dementia- (multiclass classification). Specifically, we proposed two multi-task learning

models. Results showed that our model achieves competitive results in the MTL frame-

work reaching accuracy up to 86.25% on the detection of AD patients. Next, we performed

an in-depth linguistic analysis, in order to understand better the differences in language

between AD and non-AD patients. Finally, we employed LIME, in order to shed light on

how our best performing model works. Findings suggest that AD patients tend to use

personal pronouns, interjection, adverbs, verbs in the past tense, and the token ”and” at

the beginning of utterances in a high frequency. On the contrary, healthy people use verbs

in present participle or gerund, nouns as well as determiners.

In this chapter, we concentrated on the usage of linguistic information, i.e., transcripts,

for recognizing Alzheimer’s dementia, thus neglecting the acoustic modality. Moving for-

ward to the next chapter, we will introduce unimodal (acoustic) and multimodal (linguistic

and acoustic) methods for identifying AD patients.



Chapter 6

Detecting Dementia from Speech

and Transcripts Using

Transformers

6.1 Introduction

In Chapter 5, we utilized only transcripts and used transformer-based models along

with explainable approaches for identifying AD patients. However, speech contains valu-

able information. Existing research works using audio data to categorize people into

AD and non-AD patients use mainly acoustic features extracted from speech, such as

eGeMAPS [218], duration of speech etc. After having extracted the respective feature

sets, they train traditional machine learning classifiers, such as Support Vector Ma-

chines (SVM), Decision Trees (DT) etc. However, feature extraction constitutes a time-

consuming procedure, does not generalize well to data from new patients, and often de-

mands some level of domain expertise. Log-Mel Spectrograms and Mel-frequency cepstral

coefficients (MFCCs) are being used extensively in heart sound classification [326], emotion

recognition [327], depression detection [328], etc. In addition, pretrained models on the

domain of computer vision, including AlexNet, MnasNet, EfficientNet, VGG, etc., have

been exploited extensively in many tasks, including Alzheimer’s disease detection through

MRIs [329], detection of epileptic seizures using EEG signals [330, 331], facial emotion

recognition [332], analysis of online political advertisements [265], heart sound classifica-

tion [326], voice pathology diagnosis [333], etc. Thus, the representation of speech signal

as an image constitutes a motivation for exploiting image-based models. However, limited

research has considered speech in such a way [94, 91, 231]. Therefore, in this chapter,

we convert each audio file into an image consisting of three channels, namely log-Mel

spectrograms (and MFCCs), their delta, and delta-delta. Contrary to [91, 231], we use

the delta and delta-delta features for adding more information [260, 261]. Next, we em-

ploy many pretrained models, including AlexNet, VGG16, DenseNet, EfficientNet, Vision

Transformer, etc. and compare their performances. Our main motivation is to find the

151
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best model for extracting acoustic features and exploiting it in the multimodal setting.

Moreover, another limitation of the existing research works lies in the usage of multi-

modal models. To be more precise, research works train first acoustic and language models

separately and then use the majority voting approach for classifying people into AD and

non-AD patients [63, 170, 92]. This fact increases substantially the training time and does

not take into account the inter- and intra-modal interactions. Other research works add

or concatenate acoustic and language representations during training [91, 262, 259]. This

approach may decrease the performance of the multimodal models in comparison with

the unimodal ones, since the different modalities are treated equally. In addition, there

are studies, which concatenate the features from different modalities at the input level

(early fusion approaches) [169, 67, 95]. Little work has been done in terms of exploiting

techniques to control the influence of each modality towards the final classification and

capturing the inter- and intra-modal interactions. Specifically, the authors in [62, 264]

used feed-forward highway layers with a gating mechanism. However, the authors did

not experiment with replacing the gating mechanism with a simple concatenation opera-

tion. Thus, the addition of the introduced gating mechanism cannot guarantee increase

in the performance. To tackle this limitation, in this chapter, we propose new methods,

which can be trained in an end-to-end trainable way, to combine the representations of

the different modalities. Firstly, we convert each audio file into an image consisting of

three channels, namely log-Mel spectrograms (and MFCCs), their delta, and delta-delta.

We pass these images through a Vision Transformer, which is the best performing model

among the proposed pretrained models, i.e., AlexNet, VGG16, DenseNet, EfficientNet,

etc. Each transcript is passed through a BERT model. Next, we propose a Gated Mul-

timodal Unit in order to assign more importance to the most relevant modality while

suppressing irrelevant information. In addition, we introduce crossmodal attention so as

to model crossmodal interactions.

The contributions of this chapter can be summarized as follows:

• We propose multimodal deep learning models to detect AD patients from speech

and transcripts. We also introduce a multimodal gate mechanism, so as to control

the influence of each modality towards the final classification.

• We introduce the crossmodal attention and show that crossmodal models outperform

the multimodal ones.

6.2 Dataset

We use the ADReSS Challenge Dataset described in Section 3.3.5.2 for conducting our

experiments.
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6.3 Proposed Predictive Models using only Speech

In this section, we describe the models used for detecting AD patients using only

speech. Our main motivation of exploiting these pretrained models is to find the best

performing one and exploit it in the multimodal setting, which will be discussed in detail

in Section 6.4. Firstly, we use the Python library librosa [334] for converting the audio

files into Log-Mel spectrograms (and MFCCs), their delta, and delta-delta. We extract

Log-Mel spectrograms with 224 Mel bands, window length equal to 2048, hop length

equal to 1024, and a Hanning window. For extracting MFCCs, we use 40 MFCCs, a

Hanning window, window length equal to 2048, and a hop length of 512. We employ

the following pretrained models: GoogLeNet (Inception v1) [335], ResNet50 [336],

WideResNet-50-2 [337], AlexNet [44], SqueezeNet1 0 [338], DenseNet-201 [339],

MobileNetV2[340], MnasNet1 0 [341], ResNeXt-50 32×4d [342], VGG16 [343],

EfficientNet-B21 [344], and Vision Transformer [345].

For all the models, we add a classification layer with two units at the top of the models.

Regarding the Vision Transformer, the output of the Vision Transformer (zL0 ) serving as

the image representation is passed through a dense layer with two units in order to get

the final output.

6.3.1 Experiments

All experiments are conducted on a single Tesla P100-PCIE-16GB GPU.

Experimental Setup Firstly, we divide the train set provided by the Challenge into a

train and a validation set (65-35%). All models have been trained with an Adam optimizer

and a learning rate of 1e-5. We train the proposed architectures five times. We apply

ReduceLROnPlateau, where we reduce the learning rate by a factor of 0.1, if the validation

loss has stopped decreasing for three consecutive epochs. Also, we apply EarlyStopping

and stop training if the validation loss has stopped decreasing for six consecutive epochs.

We minimize the cross-entropy loss function. We test the proposed models using the

ADReSS Challenge test set. We average the results obtained by the five repetitions. All

models have been created using the PyTorch library [346]. We have used the Transformers

library [305] for exploiting the Vision Transformer2,3.

Evaluation Metrics Accuracy, Precision, Recall, F1-Score, and Specificity have been

used for evaluating the results of the introduced architectures. These metrics have been

computed by regarding the dementia class as the positive one.

1We experimented with EfficientNet-B0 to B7, but EfficientNet-B2 was the best performing model.
2google/vit-base-patch16-224-in21k
3We also use the ViTFeatureExtractor.
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6.3.2 Results

The results of the proposed models mentioned in Section 6.3, which receive as input

either log-Mel Spectrograms or MFCCs, are reported in Table 6.1.

In terms of the proposed models with log-Mel Spectrograms as input, as one can easily

observe, the Vision Transformer constitutes our best performing model outperforming the

other pretrained models in terms of all the evaluation metrics except specificity. To be

more precise, Vision Transformer surpasses the other models in accuracy by 2.08-14.58%,

in precision by 1.64-11.22%, in recall by 5.00-39.17%, and in F1-score by 2.85-21.85%.

The second best performing model is the AlexNet achieving accuracy and F1-score equal

to 62.92% and 66.91% respectively. VGG16 constitutes the third best model achieving

F1-score and Accuracy equal to 65.55% and 61.25% respectively. The other pretrained

models achieve almost equal accuracy results ranging from 53.33% to 59.16% except for

DenseNet-201, which performs very poorly with the accuracy accounting for 50.42%.

In terms of the proposed models with MFCCs as input, we observe that the Vision

Transformer constitutes the best performing model attaining an Accuracy score of 63.33%

and an F1-score of 60.30%. Specifically, it surpasses the other models in Accuracy by 0.41-

9.17%, in F1-score by 0.10-6.24%, and in Precision by 0.13-12.85%. AlexNet is the second

best performing model achieving an Accuracy of 62.92%, while it surpasses the other

models in Accuracy by 2.93-8.76%. MnasNet1 0, GoogleNet, and VGG16 achieve almost

equal accuracy scores ranging from 59.17% to 59.99% with the MnasNet1 0 achieving

the highest Accuracy score. Next, SqueezeNet1 0 and DenseNet-201 yield equal accuracy

scores accounting for 58.75%, with SqueezeNet1 0 outperforming DenseNet-201 in F1-score

by 0.72%. MobileNetV2 achieves an Accuracy score of 57.92% followed by EfficientNet-

B2, whose accuracy accounts for 57.08. EfficientNet-B2 yields the highest Recall equal

to 65.00%, surpassing the other models by 5.00-10.84%. ResNeXt-50 32×4d achieves the

worst accuracy score accounting for 54.16%.

In both cases, i.e., log-Mel spectrograms and MFCCs, we observe that Vision Trans-

former constitutes our best performing model. This can be justified by the fact that all

the other pretrained models are based on Convolutional Neural Networks (CNNs). On the

contrary, the Vision Transformer does not imply any convolution layer. Specifically, the

image is split in patches and is fed to the Vision Transformer network, which exploits the

concept of the self-attention mechanism introduced in [347]. Therefore, we believe that

the difference in performance is attributable to the transformer encoder, which consists of

multi-head self-attention and is implemented in the Vision Transformer.

Table 6.1: Performance comparison among proposed models (using only speech) on the ADReSS

Challenge test set. Reported values are mean ± standard deviation. Results are averaged across

five runs. Best results per evaluation metric and method are in bold.

Evaluation metrics

Architecture Precision Recall F1-score Accuracy Specificity



6.3.2 Results 155

log-Mel Spectrogram

GoogLeNet (Inception v1) 57.01 70.00 60.92 57.08 44.17

±4.70 ±19.08 ±7.43 ±4.86 ±24.80

ResNet50 58.93 41.66 47.91 55.00 68.33

±9.31 ±6.97 ±3.61 ±4.86 ±14.58

WideResNet-50-2 52.99 64.16 57.70 53.75 43.33

±1.95 ±10.74 ±5.39 ±2.43 ±8.58

AlexNet 60.07 75.83 66.91 62.92 50.00

±2.60 ±9.28 ±5.35 ±4.04 ±2.64

SqueezeNet1 0 57.13 74.16 64.52 59.16 44.16

±2.61 ±1.66 ±2.18 ±3.12 ±4.99

DenseNet-201 50.49 70.00 58.46 50.42 30.83

±3.58 ±7.64 ±3.81 ±4.82 ±10.74

MobileNetV2 54.92 73.33 62.69 56.66 40.00

±1.51 ±7.73 ±3.70 ±2.43 ±4.25

MnasNet1 0 56.66 70.00 59.84 55.83 41.66

±6.08 ±22.88 ±7.42 ±4.45 ±28.99

ResNeXt-50 32 × 4d 53.69 64.16 58.09 53.75 43.33

±3.99 ±6.24 ±2.06 ±4.45 ±13.59

VGG16 58.89 74.16 65.55 61.25 48.33

±1.18 ±6.66 ±3.27 ±2.12 ±3.33

EfficientNet-B2 54.16 58.33 55.46 53.33 48.33

±6.44 ±7.91 ±3.48 ±5.53 ±15.72

Vision Transformer (ViT) 61.71 80.83 69.76 65.00 49.16

±2.93 ±6.24 ±1.61 ±2.76 ±10.34

MFCCs

GoogLeNet (Inception v1) 60.77 55.00 57.49 59.58 64.17

±3.84 ±6.66 ±4.19 ±3.39 ±6.77

ResNet50 56.38 59.16 57.30 56.25 53.33

±3.83 ±8.50 ±3.45 ±3.49 ±12.47

WideResNet-50-2 55.87 54.16 54.06 55.00 55.83

±3.86 ±11.79 ±4.51 ±2.12 ±14.34

AlexNet 65.88 55.00 59.53 62.92 70.83

±5.94 ±7.64 ±5.13 ±4.04 ±8.33

SqueezeNet1 0 58.82 59.16 58.55 58.75 58.33

±2.89 ±9.65 ±5.13 ±2.76 ±8.33

DenseNet-201 59.40 56.66 57.83 58.75 60.83

±3.31 ±4.25 ±2.22 ±2.43 ±6.77

MobileNetV2 57.76 57.50 57.22 57.92 58.33

±2.44 ±11.61 ±6.38 ±3.58 ±5.89
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MnasNet1 0 63.42 56.66 57.63 59.99 63.33

±10.27 ±14.81 ±9.56 ±6.77 ±17.95

ResNeXt-50 32 × 4d 53.16 60.00 55.88 54.16 48.33

±3.19 ±14.09 ±8.32 ±3.73 ±6.77

VGG16 59.20 60.00 59.49 59.17 58.33

±2.75 ±3.33 ±1.61 ±2.12 ±5.89

EfficientNet-B2 56.40 65.00 60.20 57.08 49.16

±5.89 ±7.26 ±5.51 ±5.98 ±10.34

Vision Transformer (ViT) 66.01 55.83 60.30 63.33 70.83

±3.36 ±4.25 ±1.89 ±1.66 ±5.89

6.4 Proposed Predictive Models using Speech and Tran-

scripts

In this section, we describe the models used for detecting AD patients using transcripts

along with their audio files. We have exploited the python library PyLangAcq [275] for

having access to the manual transcripts, since the dataset has been created using the CHAT

[274] coding system. For processing the audio files, we use the same procedure mentioned

in Section 6.3. We mention below the proposed models used in our experiments.

BERT + ViT In this model we pass each transcription through a pretrained BERT

model [347, 26] and get the output of the BERT model (CLS token). Regarding the audio

files, we convert them into Log-Mel spectrograms (and MFCCs), their delta, and delta-

delta for constructing an image consisting of three channels and pass the image through

the ViT. We exploit the Vision Transformer, since it constitutes the best performing model

as discussed in Section 6.3.2. The output of the ViT (zL0 ) is concatenated with the output

of the BERT and then the resulting vector is passed through a dense layer with 512 units

and a ReLU activation function followed by a dense layer consisting of two units to get

the final output. The proposed model is illustrated in Fig. 6.1.

BERT + ViT + Gated Multimodal Unit In this model we pass each transcription

through a pretrained BERT model and get the output of the BERT model (CLS token).

Regarding the audio files, we convert them into Log-Mel spectrograms (and MFCCs), their

delta, and delta-delta for constructing an image consisting of three channels and pass the

image through the ViT. We exploit the Vision Transformer, since it constitutes the best

performing model as discussed in Section 6.3.2. We get the output of the ViT (zL0 ). Next,

we employ the Gated Multimodal Unit (GMU) introduced by [75], in order to control the

contribution of each modality towards the final classification. The equations governing

the GMU are described below:
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Figure 6.1: BERT + ViT

ht = tanh (W tf t + bt) (6.1)

hv = tanh (W vfv + bv) (6.2)

z = σ(W z[f t; fv] + bz) (6.3)

h = z ∗ ht + (1 − z) ∗ hv (6.4)

Θ = {W t,W v,W z} (6.5)

where f t and fv denote the text and image representations respectively, Θ the param-

eters to be learned, and [.;.] the concatenation operation. Specifically, W t ∈ R128,W v ∈
R128,W z ∈ R128.

The output h of the gated multimodal unit is passed through a dense layer consisting

of two units.

The proposed model is illustrated in Fig. 6.2.

BERT + ViT + Crossmodal Attention Similar to the previous models, we pass each

transcription through a BERT model, and each image through a ViT model. We exploit

the Vision Transformer, since it constitutes the best performing model as discussed in

Section 6.3.2. The image representation can be denoted as Xα ∈ RB,Tα,dα , while the text

representation can be represented as Xβ ∈ RB,Tβ ,dα , where B constitutes the batch size,

T(.) the sequence length, and dα the feature dimension. Next, we employ the crossmodal

attention [76, 77, 78]. Specifically, we employ two crossmodal attentions, one from text to

image representations and another one from image to text representations. Formally, the

crossmodal attention from text to image representation is given by the equations below.

Specifically, we define the queries, keys, and values as:
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Figure 6.2: BERT + ViT + Gated Multimodal Unit

Qα = XαWQα ,Kβ = XβWKβ
, Vβ = XβWVβ

(6.6)

, where WQα ∈ Rdα×dk ,WKβ
∈ Rdα×dk , and WVβ

∈ Rdα×dv are learnable parameters.

Therefore,

Qα ∈ RB×Tα×dk ,Kβ ∈ RB×Tβ×dk , Vβ ∈ RB×Tβ×dv (6.7)

The latent adaptation from β to α is presented as the crossmodal attention, given by

the equations below:

Yα = CMβ→α(Xα, Xβ)

= softmax

(
QαK

T
β√

dk

)
Vβ

= softmax

(
XαWQαW

T
Kβ

XT
β√

dk

)
XβWVβ

(6.8)

The scaled (by
√
dk) softmax is a score matrix, where the (i, j)-th entry measures the

attention given by the i-th time step of modality α to the j-th time step of modality β.

The i-th time step of Yα is a weighted summary of Vβ, with the weight determined by i-th

row in softmax(·).
Similarly, the crossmodal attention from image to text representation is given by the

equations below:

Qβ = XβWQβ
,Kα = XαWKα , Vα = XαWVα (6.9)
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Qβ ∈ RB×Tβ×dk ,Kα ∈ RB×Tα×dk , Vα ∈ RB×Tα×dv (6.10)

Yβ = CMα→β(Xβ, Xα)

= softmax

(
QβK

T
α√

dk

)
Vα

= softmax

(
XβWQβ

W T
Kα

XT
α√

dk

)
XαWVα

(6.11)

The outputs of the crossmodal attention layers, i.e., Yα and Yβ, are concatenated and

passed through a global average pooling layer followed by a dense layer with two units.

The proposed model is illustrated in Fig. 6.3.

Figure 6.3: BERT + ViT + Crossmodal Attention

6.4.1 Experiments

All experiments are conducted on a single Tesla P100-PCIE-16GB GPU.

Comparison with state-of-the-art approaches

1. Unimodal state-of-the-art approaches (only transcripts)

• BERT (Chapter 5): This method trains a BERT model using transcripts.

2. Multimodal state-of-the-art approaches (speech and transcripts)
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• top-3 late fusion [258]: This method proposes a late fusion approach of the

three best feature configurations, namely Temporal + char4grams, New +

char4grams, and char4grams. The authors train a Random Forest Classifier.

• Audio + Text (Fusion) [92]: The authors introduce three models for detecting

AD patients using only speech data and three models for detecting AD patients

using only text data. Finally, they use a majority level approach, where the

final prediction corresponds to the class getting the most votes from the six

aforementioned models.

• SVM [251]: This method extracts lexicosyntactic, semantic, and acoustic fea-

tures, performs feature selection using ANOVA, and finally trains a Support

Vector Machine Classifier.

• Fusion Maj. (3-best) [63]: This method uses a majority vote of three ap-

proaches, namely Bag-of-Audio-Words, zero-frequency filtered (ZFF) signals,

and BiLSTM-Attention network.

• LSTM with Gating (Acoustic + Lexical + Dis) [62]: This research work ex-

tracts a set of features from speech and transcripts, passes the respective sets of

features through two branches of BiLSTMs, one branch for each modality. Next

the authors introduce feed-forward highway layers with a gating mechanism.

• System 3: Phonemes and Audio [250]: This method transcribes the segment

text into phoneme written pronunciation using CMUDict and combines this

representation of features with features extracted via the audio.

• Fusion of system [67]: This method merges features extracted via speech and

transcripts and trains a Support Vector Machine Classifier. Features of speech

constitute the x-vectors. In terms of the language features, (i) a Global Max-

imum pooling, (ii) a bidirectional LSTM-RNNs provided with an attention

module, and (iii) the second model augmented with part-of-speech (POS) em-

beddings are trained on the top of a pretrained BERT model.

• Bimodal Network (Ensembled Output) [263]: In this research work, the outputs

of the top 5 bimodal networks with high validation results are ensembled and

used as the final submission.

• GFI, NUW, Duration, Character 4-grams, Suffixes, POS tag, UD [95]: This

method exploits the gunning fog index, number of unique words, duration of

the audio file, character 4-grams, suffixes, pos-tags, and Universal dependency

features in a tf-idf setting. Logistic Regression is trained with the corresponding

feature sets.

• Acoustic & Transcript [90]: This method employs the scores from the whole

training subset to train a final fusion GBR model that is used to perform the

fusion of scores coming from the acoustic and transcript-based models for the

challenge evaluation.
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• Dual BERT [91]: This method employs a Speech BERT and a Text BERT and

concatenates their representations.

• Model C [259]: This method extracts features from segmented audio and passes

them through GRU layers. Regarding the transcripts, this method extracts pos-

tags and passes both the transcripts and pos-tags through two separate CNN

layers. Then the outputs of the CNN layers are passed through a BiLSTM layer

coupled with an Attention Layer. The authors also extract a different set of

features from both transcripts and audio files and pass them to a dense layer.

The respective outputs are concatenated and passed to a dense layer, which

gives the final output.

• Majority vote (NLP + Acoustic) [64]: This method obtains firstly the best-

performing acoustic and language-based models. Next, it computes a weighted

majority-vote ensemble meta-algorithm for classification. The authors choose

the three best-performing acoustic models along with the best-performing lan-

guage model, and compute a final prediction by taking a linear weighted com-

bination of the individual model predictions.

Experimental Setup Firstly, we divide the train set provided by the Challenge into a

train and a validation set (65-35%). Next, we train the proposed architectures five times

with an Adam optimizer and a learning rate of 1e-5. We apply ReduceLROnPlateau,

where we reduce the learning rate by a factor of 0.1, if the validation loss has stopped

decreasing for three consecutive epochs. Also, we apply EarlyStopping and stop training

if the validation loss has stopped decreasing for six consecutive epochs. We minimize the

cross-entropy loss function. All models have been created using the PyTorch library [346].

We use the BERT base uncased version. We test the proposed models using the test set

provided by the Challenge. We average the results obtained by the five repetitions.

Evaluation Metrics Accuracy, Precision, Recall, F1-Score, and Specificity have been

used for evaluating the results of the introduced architectures. These metrics have been

computed by regarding the dementia class as the positive one.

6.4.2 Results

The results of the proposed models mentioned in Section 6.4 are reported in Table 6.2.

Also this table presents a comparison of our introduced models with both unimodal and

multimodal state-of-the-art approaches.

Regarding our proposed transformer-based models with log-Mel spectrogram as in-

put, one can observe that BERT+ViT+Crossmodal Attention constitutes our best per-

forming model surpassing the other introduced models in F1-score and Accuracy, while

it achieves equal Recall score with BERT+ViT+Gated Multimodal Unit. More specifi-

cally, BERT+ViT+Crossmodal Attention outperforms BERT+ViT in recall by a margin
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of 10.84%, in F1-score by 3.22%, and in accuracy by 2.08%, confirming that the cross-

modal attention improves the performance of the multimodal models. Also, it outperforms

BERT+ViT+Gated Multimodal Unit in F1-score by 2.77% and in Accuracy by 3.33%.

In addition, BERT+ViT+Gated Multimodal Unit surpasses BERT+ViT in Recall and

F1-score by 10.84% and 0.45% respectively. Although BERT+ViT surpasses the other

proposed models in Specificity by 6.67-13.34%, it must be noted that F1-score is a more

important metric than Specificity in health-related tasks, since high Specificity and low

F1-score means that AD patients are misdiagnosed as non-AD ones.

As one can easily observe, our best performing model, namely BERT+ViT+Crossmodal

Attention, surpasses the performance of the multimodal state-of-the-art models, except

[258, 92], in Accuracy by 3.13-15.41%, while it outperforms the research works in Recall by

3.67-29.17% and in F1-score by 3.29-18.93%. At the same time, BERT+ViT+Crossmodal

Attention obtains a higher accuracy score than BERT (Chapter 5) outperforming it by

0.83%. BERT+ViT+Crossmodal Attention outperforms BERT in F1-score by 1.96%. At

the same time, the standard deviations of BERT+ViT+Crossmodal Attention in both

F1-score and Accuracy are lower than the standard deviations of BERT (Chapter 5).

This fact indicates the superiority of our introduced model and shows that it can cap-

ture effectively the interactions between the two modalities. Regarding BERT+ViT, we

can observe that it surpasses the multimodal state-of-the-art models, except [258, 92], in

Accuracy and F1-score by 1.05-13.33% and 0.07-15.71% respectively. Thus, the combi-

nation of transformer networks, i.e., BERT and ViT, outperforms or obtains comparable

performance to the multimodal state-of-the-art approaches. Although BERT+ViT sur-

passes Fusion Maj. (3-best) [63] in F1-score by a small margin of 0.07%, it must be noted

that our proposed model is more computationally and time effective, since the method

in [63] trains three different models in order to enhance the classification performance.

We observe also that BERT+ViT performs worse than BERT (Chapter 5). We speculate

that this difference of 1.25% in Accuracy is attributable to the concatenation operation.

In terms of BERT+ViT+Gated Multimodal Unit, it also outperforms the state-of-the-art

approaches in F1-score and Accuracy except for [63, 258, 92]. Although BERT (Chapter 5)

outperforms BERT+ViT+Gated Multimodal Unit in terms of F1-score and Accuracy, the

results show that BERT+ViT+Gated Multimodal Unit can better capture the relevant

information of the two modalities on the test set in comparison to the performances of the

existing research initiatives proposing multimodal models.

Regarding our proposed transformer-based models with MFCCs as input, one can ob-

serve that BERT + ViT + Crossmodal Attention constitutes our best performing model

attaining an Accuracy score of 87.92% and an F1-score of 87.99%. Specifically, it out-

performs the introduced models in Accuracy by 2.50-3.76%, in F1-score by 1.92-3.65%,

and in Recall by 3.33-10.00%. Similarly to the proposed transformer-based models with

log-Mel spectrogram, we observe that the crossmodal attention yields better results than

the concatenation operation and the gated multimodal unit. In addition, we observe that

the BERT+ViT+Gated Multimodal Unit surpasses BERT+ViT in Accuracy by 1.26%.



6.5 Discussion 163

However, BERT+ViT outperforms BERT+ViT+Gated Multimodal Unit in F1-score by

1.73%.

In comparison with the existing research initiatives, we observe that BERT + ViT +

Crossmodal Attention improves the performance obtained by BERT (Chapter 5). Specifi-

cally, Accuracy is improved by 0.42%, F1-score sees an improvement of 1.26%, and Recall

is improved by 7.50%. On the contrary, BERT+ViT and BERT+ViT+Gated Multimodal

Unit obtain worse performance than BERT (Chapter 5). Compared with the multimodal

state-of-the-art approaches, BERT+ViT+Crossmodal Attention surpasses the research

works, except [258, 92], in Accuracy by 2.72-15.00%, in F1-score by 2.59-18.23%, and in

Recall by 1.16-26.66%. BERT+ViT+Gated Multimodal Unit outperforms the research

works, except [258, 92], in Accuracy by 0.22-12.50%. Finally, BERT+ViT surpasses the

research works, except [258, 92, 63], in Accuracy by 1.16-11.24%, while it outperforms the

research work [63] in F1-score by 0.67%.

6.5 Discussion

The identification of dementia from spontaneous speech constitutes a hot topic in re-

cent years due to the fact that it is time and cost-efficient. Although several research

works have been proposed towards diagnosing dementia from speech, there are still limi-

tations. For example, most methods extract features from speech or transcripts and train

traditional Machine Learning classifiers. Another significant limitation has to do with the

way the different modalities, e.g., speech and transcripts, are combined in a single neural

network. Specifically, research works train separately speech-based and text-based net-

works and then use majority voting approaches, thus increasing significantly the training

time. Other research works add or concatenate the text and image representations, thus

treating equally the two modalities and obtaining suboptimal performance. Furthermore,

although transformers have achieved state-of-the-art results in many domains, their po-

tential has not been fully exploited in the task of dementia detection using speech data.

To the best of our knowledge, this is the first study employing the Vision Transformer

for detecting dementia only from speech. This study aims also to fill gaps with regards

to the usage of multimodal models by introducing the Gated Multimodal Unit and the

crossmodal attention layers, which have not been applied before in the task of dementia

identification from spontaneous speech. From the results obtained in this study, we found

that:

• Finding 1: The Vision Transformer (receiving as input images consisting of log-Mel

spectrogram, delta, and delta-delta) outperformed the other pretrained models, i.e.,

ResNet50, WideResNet-50-2, AlexNet, etc., in all the evaluation metrics except for

Specificity. Similarly, the Vision Transformer (receiving as input images consisting

of MFCCs, delta, and delta-delta) obtained higher scores by the other models in

Accuracy, F1-score, and Precision. We believe that the Vision Transformer consti-
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Table 6.2: Performance comparison among proposed models (using both speech and transcripts)

and state-of-the-art approaches on the ADReSS Challenge test set. Reported values are mean ±
standard deviation. Results are averaged across five runs.

Evaluation metrics

Architecture Precision Recall F1-score Accuracy Specificity

Unimodal state-of-the-art approaches (only transcripts)

BERT (Chapter 5) 87.19 81.66 86.73 87.50 93.33

±3.25 ±5.00 ±4.53 ±4.37 ±5.65

Multimodal state-of-the-art approaches (speech and transcripts)

top-3 late fusion [258] - - - 93.75 -

Audio + Text (Fusion) [92] - 87.50 - 89.58 91.67

SVM [251] 80.00 83.00 82.00 81.30 79.00

Fusion Maj. (3-best) [63] - - 85.40 85.20 -

LSTM with Gating (Acoustic + Lexical + Dis) [62] 81.82 75.00 78.26 79.17 83.33

System 3: Phonemes and Audio [250] 81.82 75.00 78.26 79.17 83.33

Fusion of system [67] 94.12 66.67 78.05 81.25 95.83

Bimodal Network (Ensembled Output) [263] 89.47 70.83 79.07 81.25 91.67

GFI,NUW,Duration,Character 4-grams,Suffixes,

POS tag,UD [95]
- - - 77.08 -

Acoustic & Transcript [90] 70.00 88.00 78.00 75.00 83.00

Dual BERT [91] 83.04 83.33 82.92 82.92 82.50

±3.97 ±5.89 ±1.86 ±1.56 ±5.53

Model C [259] 78.94 62.50 69.76 72.92 83.33

Majority vote (NLP + Acoustic) [64] - - - 83.00 -

Proposed Transformer-based models (log-Mel Spectrogram)

BERT+ViT 90.73 80.83 85.47 86.25 91.67

±2.74 ±2.04 ±1.70 ±1.67 ±2.64

BERT+ViT+Gated Multimodal Unit 80.92 91.67 85.92 85.00 78.33

±2.30 ±3.73 ±2.37 ±2.43 ±3.12

BERT+ViT+Crossmodal Attention 86.13 91.67 88.69 88.33 85.00

±3.26 ±4.56 ±2.12 ±2.12 ±4.25

Proposed Transformer-based models (MFCCs)

BERT+ViT 86.72 85.83 86.07 84.16 86.66

±2.05 ±6.77 ±2.69 ±1.02 ±3.12

BERT+ViT+Gated Multimodal Unit 90.57 79.16 84.34 85.42 91.66

±2.80 ±5.89 ±3.53 ±2.95 ±2.64

BERT+ViT+Crossmodal Attention 87.09 89.16 87.99 87.92 86.66

±2.40 ±5.65 ±2.79 ±2.43 ±3.12

tutes our best performing model due to the transformer encoder and the multi-head

self-attention. On the contrary, all the other pretrained models are based on convo-

lutional neural networks.

• Finding 2: We compared the performance achieved between BERT and BERT+ViT

and showed that BERT+ViT achieved slightly worse results. We speculated that this

difference may be attributable to the usage of a simple concatenation of the text and

image representations. A simple concatenation operation assigns equal importance

to the different modalities. In addition, we compared the performance of BERT+ViT

on the test set with 13 research works and showed that BERT+ViT outperformed
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most of the research works in F1-score and Accuracy. Thus, transformers achieve

comparable performance to state-of-the-art approaches.

• Finding 3: Results on the ADReSS Challenge test set showed that BERT + ViT

+ Gated Multimodal Unit (with log-Mel spectrogram) yielded a higher F1-score

than BERT + ViT (with log-Mel spectrogram), while BERT +ViT + Gated Multi-

modal Unit (with MFCCs) yielded a higher Accuracy score than BERT+ViT (with

MFCCs). In addition, we compared the performance of BERT+ViT+Gated Mul-

timodal Unit on the test set with 13 multimodal research works and showed that

BERT+ViT+Gated Multimodal Unit achieved comparable performance.

• Finding 4: We presented a new method to detect AD patients consisting of BERT,

ViT, and crossmodal attention layers and showed that crossmodal interactions out-

perform the competitive multimodal models. We compared our best performing

model (BERT+ViT+Crossmodal Attention with log-Mel spectrogram as input) with

13 research works on the ADReSS Challenge test set and showed that our introduced

model outperformed 11 of these strong baselines in Accuracy and F1-score by a large

margin of 3.13-15.41% and 3.29-18.93% respectively. Moreover, the incorporation of

the crossmodal attention enhanced the performance obtained by BERT by 0.83% in

Accuracy and by 1.96% in F1-score. In terms of BERT+ViT+Crossmodal Attention

(with MFCCs), we observed that it outperformed 11 of 13 strong baselines in Ac-

curacy and F1-score by a large margin of 2.72-15.00% and 2.59-18.23% respectively,

while it achieved better performance than BERT. Also, we observed that the vari-

ances of BERT + ViT + Crossmodal Attention by using either log-Mel Spectrogram

or MFCCs are lower than BERT (Chapter 5).

Also, we observed that BERT + ViT + Crossmodal Attention outperforms both

BERT+ViT and BERT + ViT + Gated Multimodal Unit. Specifically, BERT +

ViT + Crossmodal Attention performs better than BERT+ViT, since BERT+ViT

fuses the features of different modalities through a concatenation operation. The

concatenation operation ignores inherent correlations between different modalities.

In addition, BERT + ViT + Crossmodal Attention outperforms BERT+ViT+Gated

Multimodal Unit. This can be justified by the fact that the Gated Multimodal

Unit is inspired by the flow control in recurrent architectures, such as GRU or

LSTM. Specifically, the Gated Multimodal Unit controls only the information flow

from each modality and does not capture interactions between text and image. On

the contrary, the usage of the crossmodal attention layers captures the crossmodal

interactions, enabling one modality for receiving information from another modality.

More specifically, we pass textual information to speech and speech information to

text. Therefore, we observe that controlling the flow of information from the two

modalities is not sufficient. On the contrary, learning crossmodal interactions is more

important.

In addition, we observed that our best performing model, i.e., BERT + ViT +
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Crossmodal Attention, outperforms most of the strong baselines. This fact justifies

our initial hypothesis that early and late fusion strategies and the usage of concate-

nation or add operation introduced by other studies do not capture effectively the

inter-modal interactions of different modalities, thus obtain in this way suboptimal

performance.

One limitation of the current research work has to do with the limited number of

samples in the ADReSS Challenge dataset, i.e., 78 AD and 78 non-AD patients. However,

as mentioned in Section 3.3.5.2, one cannot overlook that this dataset is matched for gender

and age, so as to mitigate bias in the prediction task. Concurrently, in contrast to other

datasets, it has been carefully selected so as to mitigate common biases often overlooked

in evaluations of AD detection methods, including repeated occurrences of speech from

the same participant and variations in audio quality. Moreover, it is balanced, since it

includes 78 AD and 78 non-AD patients. It is also used widely by a lot of research works

dealing with the task of dementia identification from speech.

6.6 Summary

In this chapter, we proposed methods to differentiate AD from non-AD patients using

either only speech or both speech and transcripts. Regarding the models using only speech,

we exploited several pretrained models used extensively in the computer vision domain,

with the Vision Transformer achieving the highest F1-score and accuracy accounting for

69.76% and 65.00% respectively. Next, we employed three neural network models in which

we combined speech and transcripts. We exploited the Gated Multimodal Unit, in order

to control the influence of each modality towards the final classification. In addition,

we experimented with crossmodal interactions, where we used the crossmodal attention.

Results showed that crossmodal attention can enhance the performance of competitive

multimodal approaches and surpass state-of-the-art approaches. More specifically, models

incorporating the crossmodal attention yielded accuracy equal to 88.83% on the ADReSS

Challenge test set.

In Chapters 5 and 6, we concentrated our experiments on detecting AD patients, i.e.,

binary classification task. In Chapter 5, we divided the MMSE scores into four groups

depending on the severity of dementia and performed a multitask learning framework,

where the identification of the severity of dementia constituted the auxiliary task, i.e.,

multiclass classification task. However, the exact estimation of MMSE score is crucial.

Therefore, in the next chapter, we will continue with proposing advanced fusion methods

and will perform our experiments on both detecting the AD patients and predicting their

MMSE scores.



Chapter 7

Multimodal Deep Learning

Models for Detecting Dementia

and Predicting Mini-Mental State

Examination scores from Speech

and Transcripts

7.1 Introduction

In the previous chapters, we introduced unimodal models exploiting either speech or

transcripts for detecting AD patients. Multimodal models were also proposed. The main

task was the classification of a single subject as AD patient or non-AD one. Therefore, in

this chapter, we will proceed with experimenting with fusion methods and will extend our

experiments on predicting the MMSE scores, i.e., regression task. Several research works

have been proposed aiming to predict the Mini-Mental State Examination (MMSE) scores

using the modalities of both speech and transcripts. However, the majority of them have

introduced averaging approaches [169, 170, 61]. Specifically, they train several textual and

acoustic models and they make the final prediction by simply averaging the predictions of

the individual models.

In order to tackle the aforementioned limitations, in this chapter, we employ transformer-

based networks, which can capture effectively the interaction between the different modal-

ities and control the importance of each modality towards the final prediction. Compared

with recent deep ensemble learning methods, which need to train models individually and

then fuse the results of the classifiers, the proposed neural networks in this chapter can

be trained in an end-to-end trainable manner. Similar to Chapter 6, we extract Log-Mel

spectrograms, their delta, and delta-delta (acceleration values) and construct an image

per audio file consisting of three channels. Next, we introduce a neural network consisting

167
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of BERT and Vision Transformer (ViT) for extracting textual and visual embeddings re-

spectively, and add a co-attention mechanism over the respective embeddings, which can

attend at the different modalities at the same time. In addition, we introduce an archi-

tecture, which integrates multimodal information into a BERT model via an Attention

Gate called Multimodal Shifting Gate. To be more precise, we propose three variations

of this architecture, where we inject (a) textual and visual, (b) textual and acoustic, and

(c) textual, visual, and acoustic information into the BERT model. Finally, we propose

an architecture, which can learn both the inter- and intra-modal interactions, i.e., image-

image, text-text, text-image, and image-text, and show that it achieves state-of-the art

results. Contrary to Chapter 6, in this chapter, we propose a self-attention layer which

includes a gating mechanism. Compared with prior works, our methods provide impor-

tant advantages, since they can learn more representative features regarding the different

modalities and require also less time for training.

The contributions of this chapter can be summarized as follows:

• We conduct extensive experiments for detecting AD patients (AD classification task)

and predicting the MMSE scores (MMSE regression task).

• We propose a multimodal model consisting of BERT, ViT, and a Co-Attention mech-

anism.

• We introduce an architecture, which incorporates a Multimodal Shifting Gate aim-

ing to control the importance of text, acoustic, and visual representations. The

conjunction of the textual, acoustic, and visual embeddings is fed to a BERT model.

• We propose an architecture aiming to model the inter- and intra-modal interactions

of multimodal data.

• We achieve competitive results with state-of-the-art approaches on the ADReSS

Challenge dataset both in the AD classification and MMSE regression task.

• Our best performing model achieves a new state-of-the-art result in the MMSE

regression task.

7.2 Dataset

We use the ADReSS Challenge Dataset described in Section 3.3.5.2 for conducting our

experiments.

7.3 Problem Statement

7.3.1 AD Classification Task

Let a labeled dataset consist of transcripts and their corresponding audio files belonging

to AD patients and non-AD ones. Transcripts belonging to AD subjects are given the label
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1, while transcripts belonging to the non-AD patients are given the label 0. The task is to

identify, if a transcript along with its audio file belongs to a person suffering from dementia,

or to a person belonging to the healthy control group (binary classification problem).

7.3.2 MMSE Regression Task

Let a dataset consist of transcripts and their corresponding audio files belonging to AD

patients and non-AD ones. Each transcript along with the audio file has been assigned

with a MMSE score ranging from 0 to 30, where a MMSE score of 25-30 is considered

as normal, a MMSE score of 21-24 as mild, a MMSE score of 10-20 as moderate, and a

MMSE score less than 10 as severe impairment [62]. Given the transcript and the audio

file, the task is to predict the MMSE score (regression problem).

7.4 Predictive Models

In this section, we present the proposed predictive models for detecting dementia using

speech and transcripts. We use the python library PyLangAcq [275] for having access to

the manual transcripts, since the dataset has been created using the CHAT [348] coding

system. Moreover, we employ the Python library librosa [334] for converting the audio files

to Log-Mel spectrograms, their delta, and delta-delta (acceleration values). For all the

experiments conducted, we use 224 Mel bands, hop length equal to 1024, and a Hanning

window. Each image is resized to (224 × 224) pixels.

7.4.1 BERT + ViT + Co-Attention

We pass the transcripts through a BERT model [347, 26] and the corresponding images

through a ViT model [349]. Then, we use a co-attention mechanism [79, 80] over the

outputs of the aforementioned models, since it can help learn the attention weights of

transcripts and image patches concurrently.

Formally, let C ∈ Rd×N and S ∈ Rd×T be the outputs of the BERT and ViT pretrained

models respectively. Following the methodology proposed by [79], given the output of the

BERT
(
C ∈ Rd×N

)
and the output of the ViT

(
S ∈ Rd×T

)
, where d denotes the hidden

size of the model, N and T the sequence length of the transcripts and image patches

respectively, the affinity matrix F ∈ RN×T is calculated using the equation presented

below:

F = tanh
(
CTWlS

)
(7.1)

where Wl ∈ Rd×d is a matrix of learnable parameters. Next, this affinity matrix is consid-

ered as a feature and we learn to predict the transcript and image attention maps via the

following,

Hs = tanh (WsS + (WcC)F ) (7.2)
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Figure 7.1: BERT + ViT + Co-Attention

Hc = tanh
(
WcC + (WsS)F T

)
(7.3)

where Ws,Wc ∈ Rk×d are matrices of learnable parameters. The attention probabilities

for each word in the transcripts and each image patch are calculated through the softmax

function as follows,

as = softmax
(
wT
hsH

s
)

(7.4)

ac = softmax
(
wT
hcH

c
)

(7.5)

where as ∈ R1×T and ac ∈ R1×N . whs, whc ∈ Rk×1 are the weight parameters. Based on

the above attention weights, the attention vectors for text and image representations are

obtained via the following equations:

ŝ =
T∑
i=1

asis
i, ĉ =

N∑
j=1

acjc
j (7.6)

where ŝ ∈ R1×d and ĉ ∈ R1×d.

Finally, these two vectors are concatenated.

Regarding the AD detection problem described in Section 7.3.1, the resulting vector(
p ∈ R1×2d

)
is passed to a dense layer with 128 units and a ReLU activation function

followed by a dense layer consisting of two units.

Regarding the MMSE prediction problem described in Section 7.3.2, the resulting

vector
(
p ∈ R1×2d

)
is passed to a dense layer with 128 units and a ReLU activation function

followed by a dense layer consisting of one unit with a ReLU activation function.

The proposed architecture is illustrated in Fig. 7.1.



7.4.2 Multimodal BERT 171

7.4.2 Multimodal BERT

In this section, we exploit the method proposed in Chapter 4. First, we pass each

transcript through a BERT model obtaining a text representation X ∈ RN×d. Similarly,

we pass each image through a ViT model and get the output of the ViT model (zL0 ∈ R1×d).

Then, we repeat the vector zL0 N times, in order that the text and image representation

matrices have the same size. Regarding the acoustic modality, we use the Python library

openSMILE [318] for extracting the eGeMAPSv02 feature set per audio file. We obtain a

vector of 88d per audio file, where we project the respective vector to a 256d vector and

repeat it N times. Let e(i), h
(i)
α , and h

(i)
v denote word, acoustic, and image representation

for the i -th word in a sequence. Next, we concatenate the representations (text-image and

text-audio) using two attention gating mechanisms as described via the equations below:

w(i)
v = σ

(
Whv[h(i)v ; e(i)] + bv

)
(7.1)

w(i)
α = σ

(
Whα[h(i)α ; e(i)] + bα

)
(7.2)

where σ denotes the sigmoid activation function, Whv,Whα are two weight matrices, and

w
(i)
v , w

(i)
α correspond to the visual and acoustic gates respectively. bv and bα are the scalar

biases.

Next, we calculate a nonverbal shift vector h
(i)
m by multiplying the visual embeddings

with the visual gate and the acoustic embeddings with the acoustic gate.

h(i)m = w(i)
v ·

(
Wvh

(i)
v

)
+ w(i)

α ·
(
Wαh

(i)
α

)
+ b(i)m (7.3)

where Wa and Wv are weight matrices for acoustic and visual information respectively.

b
(i)
m is the bias vector.

Next, we apply the Multimodal Shifting component aiming to dynamically shift the

word representations by integrating the nonverbal shift vector h
(i)
m into the original word

embedding.

e(i)m = e(i) + αh(i)m (7.4)

α = min

(
||e(i)||2
||h(i)m ||2

β, 1

)
(7.5)

, where β is a hyperparameter. Then, we apply a layer normalization [28] and dropout

layer [350] to e
(i)
m . Finally, the combined embeddings are fed to a BERT model.

Regarding the AD detection problem described in Section 7.3.1, the CLS token

constituting the output of the BERT model is passed through a dense layer with 128 units

and a ReLU activation function followed by a dense layer with two units, which gives the

final output.
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Regarding the MMSE prediction problem described in Section 7.3.2, the CLS

token constituting the output of the BERT model is passed through a dense layer with

128 units and a ReLU activation function followed by a dense layer with one unit and a

ReLU activation function.

We experiment with injecting acoustic information (Multimodal BERT - eGeMAPS),

visual information (Multimodal BERT - ViT), and both acoustic and visual informa-

tion (Multimodal BERT - eGeMAPS + ViT).

The architecture (Multimodal BERT - eGeMAPS + ViT) is illustrated in Fig.

7.2.

7.4.3 BERT + ViT + Gated Self-Attention

Similar to the aforementioned introduced models, we pass each transcript through a

BERT model and each image through a ViT model. Let X ∈ RN×d and Y ∈ RT×d be

the outputs of the BERT and ViT pretrained models respectively. In this section, our

main aim is to model the intra-modal and inter-modal interactions at the same time (i.e.,

X → X, Y → Y , and X ↔ Y ). Thus, we adopt the methodology introduced by [83].

After having obtained X ∈ RN×d and Y ∈ RT×d, which correspond to the text and

image representations respectively, we concatenate these two representations as follows:

Z = [X;Y ] (7.1)

Next, Z ∈ Rm×d, where m = N + T , is considered the query Q, key K, and value V ,

as follows:

Q = Z,K = Z, V = Z (7.2)

Next, we adopt the gating model introduced by [83] as follows:

M = σ
(
FCg

(
FCg

q (Q) ⊙ FCg
k (K)

))
(7.3)

where FCg
q , FCg

k ∈ Rd×dg , FCg ∈ Rdg×2 are three fully-connected layers, and dg denotes

the dimensionality of the projected space. ⊙ denotes the element-wise product function

and σ the sigmoid function. In addition, M ∈ Rm×2 corresponds to the two masks

Mq ∈ Rm and Mk ∈ Rm for the features Q and V respectively.

Next, the two masks M and K are tiled to M̃q, M̃k ∈ Rm×d and then used for computing

the attention map as following:

Ag = softmax


(
Q⊙ M̃q

)(
K ⊙ M̃k

)T
√
d

 (7.4)

H = AgV (7.5)
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Figure 7.2: Multimodal BERT - eGeMAPS + ViT



174
Chapter 7. Multimodal Deep Learning Models for Detecting Dementia and Predicting

Mini-Mental State Examination scores from Speech and Transcripts

Figure 7.3: BERT + ViT + Gated Self-Attention

Then, the output H is passed through a global average pooling layer followed by a

dense layer with 128 units and a ReLU activation function.

Regarding the AD detection problem described in Section 7.3.1, we use a dense

layer with two units, which gives the final output.

Regarding the MMSE prediction problem described in Section 7.3.2, we use a

dense layer with one unit and a ReLU activation function.

The proposed architecture is illustrated in Fig. 7.3.

7.5 Experiments

7.5.1 Comparison with state-of-the-art approaches

We compare our introduced models with research works proposing either unimodal

or multimodal approaches. These research works have been selected due to the fact that

they conduct their experiments on the ADReSS Challenge test set. These research works

are reported in Tables 7.1, 7.2, and 7.3. More specifically, Table 7.1 refers to research

works using multimodal approaches, Table 7.2 refers to research works proposing unimodal

approaches using only text, and Table 7.3 refers to research works proposing unimodal

approaches using only speech.
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Table 7.1: Overview of the multimodal state-of-the-art approaches, which are later compared

with our work.

Reference Architecture Features/Methodology Task

[351] Fusion Maj./W-

avg (3-best)

Bag-of-Audio-Words, zero-frequency fil-

tered (ZFF) signals, and BiLSTM-

Attention network

AD/MMSE

[62] LSTM with Gat-

ing (Acoustic +

Lexical + Dis)

Acoustic, Linguistic Features, Bi-LSTM,

gating mechanism

AD/MMSE

[250] System 3:

Phonemes and

Audio

phoneme written pronunciation using

CMUDict + acoustic features

AD

[67] Fusion of System fusion of x-vectors with linguistic fea-

tures, train SVM

AD

[263] Bimodal Net-

work (Ensembled

Output)

Ensemble (top-5 bimodal networks) AD/MMSE

[95] GFI, NUW, Du-

ration, Charac-

ter 4-grams, Suf-

fixes, POS tag,

UD

feature extraction, Logistic Regression

Classifier

AD

[90] Acoustic & Tran-

script

fusion of the acoustic (x-vectors) and

transcript (BERT) model scores

AD

[90] Acoustic+silence

& Transcript

Average the scores from the different

models, four silence features

MMSE

[91] Dual BERT concatenation of the representations ob-

tained by BERT and Speech BERT

AD

[259] Model C Neural network consisting of CNN, BiL-

STM, Attention, GRU, and Dense layers

AD

[64] Majority vote

(NLP + Acous-

tic)

final prediction by taking a linear

weighted combination of the individual

model predictions

AD

[64] Random Forest

(NLP) + gra-

dient boosting

(acoustic)

language/fluency/n-gram features,

MFCC and delta coefficients, Dimension-

ality Reduction Techniques

MMSE

Continued on next page
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Table 7.1 – continued from previous page

Reference Architecture Features/Methodology Task

[61] Audio + Text majority level approach of six models,

averaging-based fusion

AD/MMSE

[170] Ensemble Majority voting approach, average the

predictions

AD/MMSE

[66] Attempt 4 label fusion from the top-5 performing

models from audio and text modalities

(top-5 from each modality), average value

of predictions of individual models

AD/MMSE

[254] SELECTED-

FEATURE

For selecting the features, a Random For-

est regression model was trained. The au-

thors retained only features having mean

decrease impurity (MDI) values exceeding

a predefined threshold

MMSE

Table 7.2: Overview of the unimodal state-of-the-art approaches using only text, which are later

compared with our work.

Reference Architecture Features/Methodology Task

[351] bi-LSTM-Att GloVe 100d as pretrained weights, maxi-

mum word number for each transcript is

200, Bi-LSTM with attention

AD/MMSE

[62] LSTM (Lexical

+ Dis)

GloVe features of 100d, disfluency mark-

ers (self-repair), Bi-LSTM

AD/MMSE

[250] System 2:

Phonemes

The authors transcribed the segment text

into phoneme written pronunciation using

CMUDict. FastText was trained on the

phoneme representation

AD

[67] Sentence Embed-

ding

sentence embeddings are computed by av-

eraging the second to twelfth hidden lay-

ers of each word., train SVM

AD

[263] Transformer-XL The authors extracted textual features

using Transformer-XL and trained a neu-

ral network consisting of CNN, Attention,

Bi-LSTM, and Dense Layers.

AD/MMSE

[90] Transcript The authors train a BERT model. AD/MMSE

[91] Longformer Training of Longformer AD

Continued on next page
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Table 7.2 – continued from previous page

Reference Architecture Features/Methodology Task

[259] Model A0 Neural network consisting of CNN,

LSTM, and Dense layers

AD

[64] Logistic Regres-

sion (NLP)

language and fluency features, n-gram

features, Dimensionality Reduction Tech-

niques

AD

[64] Random Forest

(NLP)

language and fluency features, n-gram

features, Dimensionality Reduction Tech-

niques

MMSE

[61] Text (fusion) fusion of top-3 performing models from

the textual modality

AD/MMSE

[66] Attempt 5 label fusion from the top-10 performing

models from text modalities, average of

MMSE score predictions from the top-10

performing models

AD/MMSE

[253] BERT Training of BERT model AD

[254] n-gram All lexicosyntactic features, SVR training MMSE

[65] fastText,

bi+trigram

The authors fit 21 models and the out-

puts are combined by a majority voting

scheme for final classification. In the re-

gression task, the outputs of these boot-

strap models are averaged to arrive at the

final MMSE score

AD/MMSE

Table 7.3: Overview of the unimodal state-of-the-art approaches using only speech, which are

later compared with our work.

Reference Architecture Features/Methodology Task

[351] SiameseNet a deep Siamese neural network consisting of

convolutional layers. As an input, the model

used either 8-second or 16-second segments.

AD

[351] BoAW fusion

(3-best)

MelFrequency Cepstral Coefficient (MFCC),

log-Mel, and the COMPARE acoustic fea-

ture set

MMSE

[62] LSTM (Acous-

tic)

higher-order statistics of COVAREP fea-

tures. Bi-LSTM training

AD/MMSE

Continued on next page
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Table 7.3 – continued from previous page

Reference Architecture Features/Methodology Task

[250] System 1: Au-

dio

LDA posterior probabilities of Com-

ParE2016 features

AD

[67] x-vectors SRE The authors use both the SRE and the Vox-

celeb models for the x-vectors framework.

train SVM

AD

[263] VGGish The authors used VGGish features and

trained a neural network consisting of At-

tention Layer, CNN, Bi-LSTM, and Dense

Layers.

AD/MMSE

[90] Acoustic + Si-

lence

silency features, x-vector PCA-transformed

coefficients, Probabilistic Linear Discrimi-

nant Analysis (PLDA) for detection and

Support Vector Regression (SVR) for MMSE

prediction

AD/MMSE

[91] YAMNet The input of YAMNet is the Mel spectro-

gram from audio data with dimensions of (p,

t, 1)

AD

[259] Model B0

(emobase)

GRU taking in audio segment features and fi-

nally combining the features from the speech

segments into a common vector

AD

[64] Majority vote

(Acoustic)

acoustic feature extraction across all speech

segments, weighted majority vote classifica-

tion on segments

AD

[64] Gradient

Boosting

(Acoustic)

MFCC 1–16 features and their delta coeffi-

cients from 26 Mel-bands

MMSE

[61] Audio (fusion) majority level approach of three acoustic

models, averaging-based fusion

AD/MMSE

[93] DemCNN convolutional neural network for speech clas-

sification using the raw waveform

AD

[352] CNN - LSTM

(MFCC)

21 models are fitted using the above 21 boot-

strap samples and the outputs are combined

by a majority voting scheme for final classi-

fication.

AD

[352] pBLSTM-

CNN (log-

Mel)

bagging of 21 models by averaging the out-

puts.

MMSE

Continued on next page
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Table 7.3 – continued from previous page

Reference Architecture Features/Methodology Task

[254] acoustic-all Mel Frequency Cepstral Coefficients

(MFCCs), mean value, variance, etc.

MMSE

[66] Attempt 3 label fusion from the top-5 performing mod-

els from the audio modality, prediction from

the BERT base uncased RangePool

AD/MMSE

7.5.2 Experimental Setup

7.5.2.1 Training and Evaluation - Implementation Details

In terms of the MMSE regression task, the ADReSS Challenge train set includes

the MMSE scores for all the people except one. Thus, we remove this person from the

train set in the MMSE regression task.

We follow a similar training strategy to the one adopted by [91]. Firstly, we divide the

train set provided by the Challenge into a train and a validation set (65%-35%). Next, we

train the proposed architectures five times with an Adam optimizer and a learning rate of

1e-5. Regarding the AD detection problem described in Section 7.3.1, we minimize the

cross-entropy loss function, whereas with regards to the MMSE prediction problem

described in Section 7.3.2, we minimize the RMSE. We apply ReduceLROnPlateau, where

we reduce the learning rate by a factor of 0.1, if the validation loss has stopped decreasing

for three consecutive epochs. Also, we apply EarlyStopping and stop training, if the

validation loss has stopped decreasing for six consecutive epochs. We test the proposed

models using the test set provided by the Challenge. We average the results obtained by

the five repetitions. All models have been created using the PyTorch library [353]. We

have used the Vision Transformer (with fixed-size patches of resolution 16 × 16) and the

BERT base uncased version from the Transformers library [305]. The input to the BERT

and ViT model is the output of the BERT tokenizer and ViT feature extractor respectively

as defined by the Transformers library. All experiments are conducted on a single Tesla

P100-PCIE-16GB GPU.

7.5.2.2 Hyperparameters

Regarding BERT+ViT+Co-Attention, we set k equal to 40. We use dropout after

the output of the co-attention layer with a rate of 0.4, and a dropout layer after the

dense layer consisting of 128 units with a rate of 0.2. Regarding (Multimodal BERT -

eGeMAPS), we set β = 0.01. In terms of (Multimodal BERT - ViT), we set β =

0.001. Regarding (Multimodal BERT - eGeMAPS + ViT), we set β = 0.01. With

regards to the following models: (Multimodal BERT - eGeMAPS), (Multimodal

BERT - ViT), and (Multimodal BERT - eGeMAPS + ViT), we apply dropout

with a rate of 0.4 at the output of (7.4) and freeze the weights of the first BERT model.
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Also, we use a dropout layer after the output of the second BERT model with a rate of

0.2. With regards to BERT+ViT+Gated Self-Attention, we set dg = 64. We use

dropout after the global average pooling layer with a rate of 0.3. For all the experiments

conducted, the hidden size of BERT and ViT denoted by d is equal to 768. Moreover,

N = 512, since we pad each transcript to a maximum number of 512 tokens. T is equal

to 197. Thus, m is equal to 709.

7.5.3 Evaluation Metrics

Regarding the AD detection problem described in Section 7.3.1, Accuracy, Pre-

cision, Recall, F1-Score, and Specificity have been used for evaluating the results of the

introduced architectures. These metrics have been computed by regarding the dementia

class as the positive one. We report the average and standard deviation of these metrics

over five runs.

With regards to the MMSE prediction problem described in Section 7.3.2, the

RMSE has been used for evaluating the results of the introduced architectures. We report

the average and standard deviation of the RMSE scores across five runs. The RMSE is

the metric used in the baseline paper provided by the ADReSS challenge.

7.6 Results

7.6.1 AD Classification Task

The results of the proposed models mentioned in Section 7.4 for the AD classification

task are reported in Table 7.4. In addition, in this table we compare the results of our in-

troduced models with research works proposing multimodal approaches, unimodal models

using only text data, and unimodal approaches using only speech data.

Regarding our proposed models, one can observe from Table 7.4 that BERT + ViT +

Gated Self-Attention outperforms all the introduced models in Accuracy and F1-score by a

large margin of 2.50-11.25% and 3.13-9.59% respectively. This can be justified by the fact

that the Gated Self-Attention aims to capture both the intra- and inter-modal interactions.

Specifically, BERT+ViT+Gated Self-Attention outperforms BERT+ViT+Co-Attention

in accuracy by 2.50%, in Recall by 7.5%, and in F1-score by 3.13%. Despite the fact that

BERT+ViT+Co-Attention obtains a high specificity score accounting for 93.33% outper-

forming BERT+ViT+Gated Self-Attention by 2.5%, BERT+ViT+Co-Attention attains a

low F1-score accounting for 86.81%. On the contrary, BERT+ViT+Gated Self-Attention

yields an F1-score of 89.94% outperforming BERT+ViT+Co-Attention by 3.13%. This

means that BERT+ViT+Gated Self-Attention can detect better the AD patients than

BERT+ViT+Co-Attention, where AD patients are misdiagnosed as non-AD ones. In

addition, although BERT+ViT+Gated Self-Attention obtains lower results in Precision

and Recall by other introduced models, it surpasses them in F1-score, which constitutes

the weighted average of recall and precision. Regarding the Multimodal BERT models,
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one can observe that Multimodal BERT-ViT outperforms Multimodal BERT-eGeMAPS

in accuracy by 0.83%, in recall by 4.17%, and in F1-score by 1.44%. We speculate that

Multimodal BERT-ViT performs better than Multimodal BERT-eGeMAPS due to the

usage of the Vision Transformer. Thus, the visual modality obtained via ViT seems to

perform slightly better than the acoustic modality. In addition, we observe that the injec-

tion of both the acoustic and visual information enhances the performance of the models

having just one modality, be it either the acoustic modality or the visual one. More

specifically, Multimodal BERT-eGeMAPS+ViT surpasses Multimodal BERT-eGeMAPS

and Multimodal BERT-ViT in accuracy by 2.08% and 1.25% respectively. In comparison

to the Multimodal BERT-eGeMAPS+ViT, BERT+ViT+Gated Self-Attention surpasses

its performance in accuracy by 9.17%, in Precision by 14.30%, in F1-score by 7.66%,

and in Specificity by 18.33%. Overall, BERT+ViT+Gated Self-Attention constitutes our

best performing model, since it surpasses all the other introduced models in F1-score and

Accuracy.

In comparison to the multimodal approaches, as one can easily observe from Table 7.4,

BERT+ViT+Gated Self-Attention surpasses the state-of-the-art multimodal approaches

in Recall by 1.17-26.67%, in F1-Score by 4.54-20.18%, and in Accuracy by 0.42-17.08%.

These findings confirm our initial hypothesis that inter- and intra-modal interactions en-

hance the classification results obtained by approaches, which predict AD patients either

by using majority voting on predictions of several individual models or adding/concatenat-

ing the text and image representations. In addition, although our best performing model

outperforms Audio+Text [61] by a small margin of 0.42% in Accuracy and by a larger

margin of 1.67% in Recall, it is worth mentioning that our proposed approach is more

computational and time-efficient, since the method proposed by [61] employs six models

and eventually uses a majority vote approach. In terms of BERT+ViT+Co-Attention, it

outperforms all the research works, except Audio+Text [61], in Accuracy by 2.30-14.58%.

Also, it surpasses all the research works, except Fusion of System [67] in Precision by

3.36-22.83%. Also, it surpasses all the research works in F1-score results by 1.41-17.05%.

It outperforms four research works out of the eight ones, which report Recall results by

6.67-19.17%. Thus, the co-attention mechanism can yield better performance than the

results obtained by the research initiatives, since it can attend to transcripts and images

simultaneously. Finally, with regards to the proposed Multimodal BERT models, it seems

that they are rather complex for our limited dataset. However, results suggest that Multi-

modal BERT - eGeMAPS+ViT surpasses six research works in Accuracy by 1.63-7.91%,

five research works in F1-score by 3.21-12.52%, all the research works in the Recall score

by 1.17-26.67%, and one research work in the Precision score by 6.57%.

In comparison to the unimodal approaches using only text data, as one can easily

observe from Table 7.4, the approach proposed by [61] outperforms our best performing

model in terms of accuracy, recall, and specificity by 1.67%, 2.50%, and 0.84% respectively.

However, our best performing model outperforms all the other approaches in accuracy by

4.58-17.10%, in Recall by 5.84-35.01%, in Precision by 2.73-21.87%, in F1-score by 6.67-
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26.53%, and in Specificity by 2.83-7.50%.

In comparison to the unimodal approaches using only speech data, as one can easily

observe from Table 7.4, BERT+ViT+Gated Self-Attention outperforms the research ini-

tiatives in terms of Precision, Recall, F1-score, and Accuracy. More specifically, BERT +

ViT + Gated Self-Attention surpasses the research works in Precision by 8.87-36.70%, in

Recall by 5.84-51.17%, in F1-score by 19.14-38.94%, and in Accuracy by 8.75-35.83%. In

addition, BERT+ViT+Co-Attention surpasses the research works in Precision by 10.83-

38.66%, in F1-score by 16.01-35.81%, and in Accuracy by 6.25-33.33%. Additionaly, Mul-

timodal BERT - eGeMAPS, Multimodal BERT - ViT, and Multimodal BERT - eGeMAPS

+ ViT outperform all the research initiatives except [61] in terms of the accuracy score by

a margin of 5.83-24.58%, 6.66-25.41%, and 7.91-26.66% respectively.

It is obvious that the unimodal approaches exploiting only speech data achieve low

evaluation results in comparison with unimodal approaches employing text data or mul-

timodal models.

Table 7.4: AD Classification Task: Performance comparison among proposed models and state-

of-the-art approaches on the ADReSS Challenge test set. Reported values are mean ± standard

deviation. Results are averaged across five runs. Best results per evaluation metric are in bold.

Architecture P. R. F1-score Acc. Spec.

State-of-the-art approaches (Multimodal)

Fusion Maj (3-best) [351] - - 85.40 85.20 -

LSTM with Gating (Acoustic

+ Lexical + Dis) [62]
81.82 75.00 78.26 79.17 83.33

System 3: Phonemes and Audio [250] 81.82 75.00 78.26 79.17 83.33

Fusion of System [67] 94.12 66.67 78.05 81.25 95.83

Bimodal Network

(Ensembled Output) [263]
89.47 70.83 79.07 81.25 91.67

GFI, NUW, Duration,

Character 4-grams, Suffixes,

POS tag, UD [95]

- - - 77.08 -

Acoustic & Transcript [90] 70.00 88.00 78.00 75.00 63.00

Dual BERT [91] 83.04±3.97 83.33±5.89 82.92±1.86 82.92±1.56 82.50 ± 5.53

Model C [259] 78.94 62.50 69.76 72.92 83.33

Majority vote

(NLP + Acoustic) [64]
- - - 83.00 -

Audio + Text [61] - 87.50 - 89.58 91.67

Ensemble [170] 83.00 83.00 83.00 83.00 -

Attempt 4 [66] - - - 79.17 -

State-of-the-art approaches (only Text)

bi-LSTM-Att [351] - - 81.20 81.30 -

LSTM (Lexical + Dis) [62] 76.19 66.67 71.11 72.92 79.10
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System 2: Phonemes [250] 80.95 70.83 75.56 77.08 83.33

Sentence Embedding [67] 82.35 58.33 68.29 72.92 87.50

Transformer-XL [263] 80.00 83.33 81.63 81.25 79.17

Transcript [90] 69.00 83.00 75.00 72.92 63.00

Longformer [91] 88.14±2.09 74.17±5.53 80.44±3.55 82.08±2.83 90.00 ± 2.04

Model A0 [259] 76.47 54.16 63.41 68.75 83.33

Logistic Regression (NLP) [64] - - - 85.00 -

Text (fusion) [61] - 91.67 - 91.67 91.67

Attempt 5 [66] - - - 85.42 -

BERT [253] 83.89 83.33 83.27 83.32 83.33

fastText, bi+trigram [65] 86.00 79.00 83.00 83.33 88.00

State-of-the-art approaches (only Speech)

SiameseNet [351] - - 70.80 70.80 -

LSTM (Acoustic) [62] - - - 66.60 -

System 1: Audio [250] 58.62 70.83 64.15 60.42 50.00

x-vectors SRE [67] 54.17 54.17 54.17 54.17 54.17

VGGish [263] 78.95 62.50 69.77 72.92 83.33

Acoustic + Silence [90] 70.00 58.00 63.00 66.70 75.00

YAMNet [91] 64.40±3.93 73.40±8.82 68.60±4.84 66.20±4.79 59.20 ± 7.73

Model B0 (emobase) [259] 65.21 62.50 63.82 64.58 66.67

Majority vote (Acoustic) [64] - - - 65.00 -

Audio (fusion) [61] - 83.33 - 81.25 79.17

DemCNN [93] 62.50 62.50 62.50 62.50 62.50

CNN - LSTM (MFCC) [352] 82.00 38.00 51.00 64.58 92.00

Attempt 3 [66] - - - 64.58 -

Proposed Transformer-based models

BERT+ViT+Co-Attention 92.83±6.39 81.67±2.04 86.81±3.37 87.50±3.49 93.33±6.24

Multimodal BERT - eGeMAPS 74.51±1.01 87.50±6.45 80.35±2.77 78.75±2.04 70.00±3.12

Multimodal BERT - ViT 73.91±2.40 91.67±2.64 81.79±1.72 79.58±2.04 67.50±4.08

Multimodal BERT - eGeMAPS+ViT 76.57±3.74 89.17±5.65 82.28±3.49 80.83±3.58 72.50±5.65

BERT+ViT+Gated Self-Attention 90.87±3.50 89.17±2.04 89.94±1.36 90.00±1.56 90.83±4.08

7.6.2 MMSE Regression Task

The results of the proposed models mentioned in Section 7.4 for the MMSE regression

task are reported in Table 7.5. In addition, in this table we compare the results of our in-

troduced models with research works proposing multimodal approaches, unimodal models

using only text data, and unimodal approaches using only speech data.

Regarding our proposed models, one can observe from Table 7.5 that BERT + ViT +
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Gated Self-Attention obtains the lowest RMSE score accounting for 3.61 followed by BERT

+ ViT + Co-Attention, whose RMSE score is equal to 4.20. Regarding Multimodal BERT

- eGeMAPS, Multimodal BERT - ViT, and Multimodal BERT - eGeMAPS + ViT, it is

obvious that these neural networks are complex for the MMSE regression task achieving

RMSE scores equal to 5.64, 5.50, and 5.62 respectively.

In comparison to the multimodal approaches, as one can easily observe from Table

7.5, BERT + ViT + Gated Self-Attention, which constitutes our best performing model,

improves the RMSE score obtained by the multimodal state-of-the-art approaches by

0.15-2.40. Regarding BERT + ViT + Co-Attention, it improves the RMSE scores of all

the existing research initiatives, except Bimodal Network (Ensembled Output) [263], by

0.14-1.41. In terms of the Multimodal BERT - eGeMAPS, Multimodal BERT - ViT,

and Multimodal BERT - eGeMAPS + ViT, it seems that these architectures are rather

complex for the MMSE regression task improving the RMSE score of only one research

work [64].

In comparison with the unimodal approaches exploiting only text data, one can easily

observe from Table 7.5 that BERT + ViT + Gated Self-Attention performs better than

the existing research initiatives improving the current RMSE score by 0.13-2.25. In addi-

tion, BERT + ViT + Co-Attention achieves comparable performance to existing research

works outperforming all the existing research works, except Transformer-XL [263] and

Text (fusion) [61], by 0.10-1.66. Finally, Multimodal BERT - ViT obtains lower RMSE

score than the one obtained by [90, 64].

In comparison with the unimodal approaches using only speech data, one can observe

from Table 7.5 that BERT + ViT + Gated Self-Attention outperforms all the research

initiatives by a large margin of 1.47-3.06. Similarly, BERT + ViT + Co-Attention obtains

lower RMSE score than the scores achieved by all the research works. Specifically, the

performance gain ranges from 0.48 to 2.47. Finally, Multimodal BERT - eGeMAPS,

Multimodal BERT - ViT, and Multimodal BERT - eGeMAPS + ViT outperform all the

state-of-the-art approaches, except Attempt 3 [66] and VGGish [263], improving the RMSE

score by 0.22-1.03, 0.36-1.17, and 0.24-1.05 respectively.

It is obvious that the research works exploiting only speech data obtain higher RMSE

scores than the ones exploiting text data or the combination of text and speech data.

Table 7.5: MMSE Regression Task: Performance comparison among proposed models and state-

of-the-art approaches on the ADReSS Challenge test set. Reported values are mean ± standard

deviation. Results are averaged across five runs. Best results are in bold.

Architecture RMSE

State-of-the-art approaches (Multimodal)

Fusion Wavg (3-best) [351] 4.65

LSTM with Gating (Acoustic + Lexical + Dis) [62] 4.54

Bimodal Network (Ensembled Output) [263] 3.77
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Acoustic+silence & Transcript [90] 5.32

Random Forest (NLP) + gradient boosting (acoustic) [64] 6.01

Audio + Text [61] 4.47

Ensemble [95] 5.06

Attempt 4 [66] 4.91

SELECTED FEATURE [254] 4.34

State-of-the-art approaches (only Text)

bi-LSTM-Att [351] 4.66

LSTM (Lexical + Dis) [62] 4.88

Transformer-XL [263] 4.02

Transcript [90] 5.86

Random Forest (NLP) [64] 5.62

Text (fusion) [61] 3.74

Attempt 5 [66] 4.30

n-gram [254] 4.61

fastText, bi+trigram [65] 4.87

State-of-the-art approaches (only Speech)

BoAW fusion (3-best) [351] 6.45

LSTM (Acoustic) [62] 5.93

VGGish [263] 5.08

Acoustic + Silence [90] 5.97

Gradient Boosting (Acoustic) [64] 6.67

Audio (fusion) [61] 5.86

pBLSTMCNN (log-Mel) [352] 5.90

acoustic-all [254] 6.42

Attempt 3 [66] 5.18

Proposed Transformer-based models

BERT+ViT+Co-Attention 4.20 ±0.47

Multimodal BERT - eGeMAPS 5.64 ±0.11

Multimodal BERT - ViT 5.50 ±0.30

Multimodal BERT - eGeMAPS+ViT 5.62 ±0.12

BERT+ViT+Gated Self-Attention 3.61 ±0.48

7.7 Discussion

The detection of dementia from spontaneous speech has emerged into a hot topic

throughout the years due to the fact that it constitutes a time-effective procedure. Al-

though dementia detection from speech is a hot topic and item of interest from several
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researchers around the world, there are still significant limitations that need to be ad-

dressed. The main limitation is pertinent to the way the different modalities, i.e., acoustic,

visual, and textual, are combined in a single neural network. Research works having pro-

posed multimodal methods tend to train separately acoustic, language, and visual models

and then apply majority vote or average-based approaches for the AD classification and

MMSE regression task respectively. In addition, they tend to add or concatenate the

representations obtained by the different modalities, thus treating equally each modality.

Therefore, in this study, we aim to tackle the aforementioned limitations and propose three

novel architectures, which combine the different modalities effectively achieving competi-

tive performance to existing research initiatives.

From the results obtained in this study for the AD classification task, we found that:

• Finding 1: The incorporation of a co-attention mechanism, which can learn the

attention weights for words and image patches simultaneously, outperforms the mul-

timodal research initiatives except one in terms of the Accuracy score.

• Finding 2: We propose a method to inject visual and acoustic modalities along

with the textual one into a BERT model via a Multimodal Shifting Gate. We

experiment with injecting only visual information, only acoustic information, and

their combination. Findings state that the injection of both modalities performs

better than the injection of single modalities.

• Finding 3: We introduce an approach aiming to model both the inter- and intra-

modal interactions at the same time and show that this approach is the best per-

forming one among the introduced approaches.

From the results obtained in this study for the MMSE regression task, we found that:

• Finding 4: The incorporation of the co-attention mechanism at the top of the

pretrained models, i.e., BERT and ViT, obtains low RMSE improving all the state-

of-the-art approaches except [263, 61].

• Finding 5: Multimodal BERT models do not perform well to the MMSE regression

task. These architectures are rather complex for the limited dataset used in this

study.

• Finding 6: BERT+ViT+Gated Self-Attention improves the RMSE score in the

MMSE regression task by 0.13-3.06 obtaining a new state-of-the-art result. The

ability of this architecture to perform well both in the AD classification task and

in the MMSE regression task establishes the usefulness of this architecture for the

dementia detection problem and indicates that both the inter- and intra-modal in-

teractions are important.

Although the unimodal approach proposed by [61] outperforms our best performing

model in the AD classification task, our best performing model obtains better results in the
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MMSE regression task. In addition, our introduced model is more computationally and

time-effective, since the approach by [61] extracts embeddings by employing transformer

networks, applies feature aggregation techniques, trains traditional machine learning al-

gorithms, and finally applies a majority voting approach of the top-3 performing models.

Regarding the multimodal approach proposed by [61], it achieves lower evaluation re-

sults than the unimodal approach. We speculate that this degradation in performance is

attributable to the fact that the majority-vote approach does not take the interactions

between the different modalities into consideration.

7.8 Summary

In this chapter, we introduced three novel multimodal neural networks for detecting

dementia (AD classification task) and predicting the MMSE scores (MMSE regression

task) from spontaneous speech. First, we proposed a model consisting of BERT, ViT,

and a co-attention mechanism at the top of the proposed architecture, which is capable

of attending to both the words and the image patches simultaneously. Results indicated

that the proposed model achieved an accuracy of 87.50% in the AD classification task

outperforming all the research works proposing multimodal approaches except one. Re-

garding the MMSE regression task, our proposed architecture achieved an RMSE score

equal to 4.20. Secondly, we introduced a deep learning architecture, where we injected in-

formation from the visual and acoustic modalities along with the textual one into a BERT

model and used an attention gate mechanism to control the importance of each modality.

Results for the AD classification task suggested that the injection of both the acoustic

and visual modalities enhanced the performance of the models achieved when using only

either the acoustic or the visual modality along with the textual one. Finally, we intro-

duced a transformer-based network, where we concatenated the representations obtained

via BERT and ViT and passed the representation through a self-attention mechanism

incorporating a novel gating mechanism. Findings showed that this introduced model

was the best performing one on the ADReSS Challenge test set reaching Accuracy and

F1-score up to 90.00% and 89.94% respectively. In terms of the MMSE regression task,

our best performing model obtained an RMSE score of 3.61 improving the state-of-the-art

RMSE scores for the regression task of the ADReSS Challenge by 0.13-3.06.

In Chapters 5-7, we utilized manual transcripts for conducting our experiments. How-

ever, manual transcripts are not always available. Therefore, in the next chapter, we will

continue with experimenting with multimodal fusion methods by utilizing both manual

and automatic transcripts.





Chapter 8

Context-Aware Attention Layers

coupled with Optimal Transport

Domain Adaptation and

Multimodal Fusion methods for

recognizing dementia

8.1 Introduction

In the previous chapters, we introduced methods for fusing the different modalities

utilizing manual transcripts. However, some limitations still exist. Specifically, manual

transcripts are not available in clinical settings. Additionally, in Chapter 7, we proposed a

method, which concatenates the representation vectors of the two modalities and exploits a

self-attention layer incorporating a gated model. However, in terms of the textual modality

recent studies have shown that Self-Attention layers treat the input sequence as a bag-of-

word tokens and each token individually performs attention over the bag-of-word tokens.

Consequently, the contextual information is not taken into account in the calculation of

dependencies between elements. There have been proposed a number of studies enhancing

the self-attention layers with contextual information [354, 355, 356, 357].

In addition, the reliability of a machine learning model’s confidence in its predictions,

denoted as calibration [11, 12], is critical for high risk applications, such as deciding

whether to trust a medical diagnosis prediction [156, 157, 158]. However, no prior work

has taken into account the calibration of the models, creating in this way overconfident

models. According to [171], modern neural networks are not well-calibrated, while they

are overconfident at the same time.

In order to tackle the aforementioned limitations, in this chapter, we introduce deep

neural networks, which are trained in an end-to-end trainable manner and capture both

189
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the inter- and intra-modal interactions. Similar to the previous chapters, we convert the

audio files into images consisting of three channels, namely log-Mel spectrograms, their

delta, and delta-delta. Next, each transcript and image are passed through BERT [26] and

DeiT [358] models respectively. In order to ensure that the sequence length of the vectors

obtained by BERT and DeiT is the same, we exploit an Optimal Transport Kernel (OTK)

Embedding. We pass the textual representation through an enhanced self-attention layer

with contextual information. We exploit three main methods for the contextualization,

including the global context, deep context, and deep-global context [359, 360]. Next, we

pass the image representation through a self-attention mechanism with a novel gating

model proposed by [83] to model the intra-modal interactions. Motivated by the study of

[273], we use optimal transport based domain adaptation [361] methods for capturing the

inter-modal interactions. Then, we propose two attention-based methods for fusing the self

and cross-attention features. Finally, for preventing models becoming too overconfident,

we use label smoothing. We use metrics for assessing both the performance and the

calibration of our model. We verify the effectiveness of our approaches by conducting

experiments on two publicly available datasets, namely ADReSS and ADReSSo Challenge

datasets, and using both manual and automatically generated transcripts. We show that

our introduced approaches obtain multiple advantages over the state-of-the-art approaches.

The contributions of this chapter can be summarized as follows:

• To the best of our knowledge, this is the first study utilizing DeiT, optimal transport

kernel, and optimal transport domain adaptation methods in the task of dementia

detection from spontaneous speech.

• This is the first study in the task of dementia detection from spontaneous speech

exploiting label smoothing for preventing the models become too overconfident. We

also evaluate our proposed models in terms of both the performance and the cali-

bration.

• This is the first study in the task of dementia detection from speech data exploiting

context-aware self-attention mechanisms and comparing two different approaches for

fusing the self- and cross-attention features.

• We conduct a series of ablation experiments to demonstrate the effectiveness of the

introduced approach. We evaluate our approaches on the ADReSS and ADReSSo

Challenge datasets and show that they achieve competitive results to the existing

research initiatives.

8.2 Data & Task

8.2.1 ADReSS Challenge Dataset

We use the ADReSS Challenge Dataset described in Section 3.3.5.2 for conducting our

experiments.
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8.2.2 ADReSSo Challenge Dataset

To further verify the effectiveness of our proposed approaches, we use the ADReSSo

Challenge Dataset described in Section 3.3.5.3 for conducting our experiments. This

dataset includes only audio files. No transcripts are provided. Therefore, one should

convert the speech into text automatically via Automatic Speech Recognition (ASR) meth-

ods. Specifically, we use whisper1 [362] and get the automatically generated transcripts

per audio file.

8.2.3 Task

Let a labeled dataset consist of audio files and their corresponding transcripts. Each

transcript along with its audio file belongs to an AD patient or non-AD patient. The task

is to identify if a specific transcript along with its audio file corresponds to an AD patient

or to a person belonging to the healthy control group (binary classification problem).

8.3 Predictive Models

8.3.1 Architecture

In this section, we describe our proposed deep learning architectures for detecting AD

patients. The proposed architectures are illustrated in Fig. 8.4. Due to the fact that

the manual transcripts have been annotated using the CHAT coding system [348], we use

the PyLangAcq library [275] for having access to these transcripts. In addition, we use

the Python library, called librosa [363, 312], and convert each audio file into a log-Mel

spectrogram, its delta, and delta-delta. In this way, we create an image consisting of three

channels. For all the experiments conducted, we use 224 Mel bands, hop length equal to

1024, and a Hanning window. Each image is resized to (224 × 224) pixels.

Firstly, we pass each transcript through a BERT [26] model and the corresponding

image through a DeiT [358] model. Formally, let X ∈ Rn×D and Y ∈ RT×D be the

outputs of the BERT and DeiT pretrained models respectively. Next, we pass Y through

an Optimal Transport Kernel introduced by [364], in order to ensure that the sequence

length of Y is equal to the sequence length of X, i.e., T = n. Let S ∈ RT×D, where T = n,

denote the output representation of the Optimal Transport Kernel.

Context-Aware Self Attention for the textual modality: Fig. 8.2a illustrates the

conventional self-attention mechanism, which individually calculates the attention weight

of two items, i.e., ”the” and ”tomorrow”, ignoring the contextual information. In this

study, we aim to enhance the self-attention layer by adding contextual information. There-

fore, we exploit the context-based self-attention layer [359], which is illustrated in Fig. 8.1.

We observe that this layer receives as input the input sequence denoted by X and the

contextual information vector denoted by C.

1https://github.com/openai/whisper
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We transform the input sequence X into a query, key, and value matrix, as described

via the Equation 8.1:

Q = XWq,K = XWk, V = X (8.1)

, where Wq ∈ RD×Dq ,Wk ∈ RD×Dk are learnable weight matrices.

As described in Equations 8.2 and 8.3, the context vector C ∈ Rn×Dc is transformed

to a contextual query matrix Qc ∈ Rn×Dq and a contextual key matrix Kc ∈ Rn×Dk :

Qc = CW c
q (8.2)

, where W c
q ∈ RDc×Dq is a learnable weight matrix.

Kc = CW c
k (8.3)

, where W c
k ∈ RDc×Dk is a learnable weight matrix.

Next, we exploit gated sum, as illustrated in Fig. 8.1b, for quantifying the contribution

of the input sequence X and the contextual vector C to the attention weight prediction.

Finally, we get new query and key matrices denoted by Q ∈ Rn×Dq and K ∈ Rn×Dk

respectively. We describe the equations governing the gated sum below:

gq = σ
(
QWQ

g + QcW
Qc
g

)
(8.4)

, where WQ
g ,WQc

g ∈ RDq×1 are learnable parameters.

gk = σ
(
KWK

g + KcW
Kc
g

)
(8.5)

where WK
g ,WKc

g ∈ RDk×1 are learnable parameters.

qq and gk indicate the weight of the importance of the contextual information.

Q = (1 − gq)Q + gqQc (8.6)

K = (1 − gk)K + gkKc (8.7)

Therefore, we obtain new query and key matrices. Finally, we calculate the self-attention

via the equation mentioned below:

Attention(Q,K, V ) = softmax

(
Q · K

T

√
Dk

)
V (8.8)

Next, we describe three methods, namely Global Context, Deep Context, and Deep-

Global Context, for calculating the contextual vector C. Specifically, we follow [359, 360]

to represent the context vector (C), which is composed of internal representation.
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• Global Context: Fig. 8.2b illustrates the global context strategy. More specifically,

the global context indicates the mean operation over the input sequence for sum-

marizing the input representation. Let X = [x1, x2, ..., xn] ∈ Rn×D. We calculate

the context representation C as defined in Eq. 8.9. Note that the output of Eq. 8.9

is a vector, i.e., C ∈ RD, instead of a matrix. To facilitate subsequent calculation

operations, we use Eq. 8.10, where we obtain the contextual matrix C ∈ Rn×D.

C = X = Avgpool(X) =
1

n

n∑
1

xi (8.9)

C = stack (C,C, ..., C) (8.10)

• Deep Context: By deeply stacking self-attention layers, the model captures only

high-level syntactic and semantic information neglecting the lower-level information.

Therefore, as shown in Fig. 8.2c, the deep context strategy enables the layer to fuse

different types of syntactic and semantic information captured by different layers.

Formally, taking X = [x1, x2, ..., xn] ∈ Rn×D as the initial input sequence X0, and

the output of the Lth layer is X l = [xl1, x
l
2, ..., x

l
n] ∈ Rn×D, the deep context matrix

C ∈ Rn×D can be represented as follows:

C = X̂W 0
c (8.11)

X̂ = concat(X0, X1, ..., X l−1) ∈ Rn×lD (8.12)

, where W 0
c ∈ RlD×D is a learnable parameter matrix. concat(.) denotes join

operation.

• Deep-Global Context: The deep-global context strategy combines the strategies

of global context and deep context as described before. The deep-global context

strategy is illustrated in Fig. 8.2d and is described via the equations below:

C = CW 0
C

(8.13)

C = concat(C0, C1, ..., C l−1) (8.14)

, where Cj = Avgpool(Xj), Cj ∈ RD. Therefore, C ∈ RlD. In addition, W 0
C

∈
RlD×D. Thus, we obtain C of Eq. 8.13, as C ∈ RD.

As mentioned before, to facilitate subsequent calculation operations, matrix C ∈
Rn×D is obtained through the stack operation, as follows: C = stack(C,C, ..., C).

Let F be the output of the context-based self-attention mechanism corresponding to

the textual modality denoted by X.

Gated Self-Attention for the image modality: Motivated by the work of [83], we

pass S through a self-attention mechanism, which incorporates a novel gating model, for
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(a) Context-based Self-Attention. This method

is different from the conventional self-attention

mechanism, since it exploits a contextual infor-

mation vector C.

(b) Gated sum. This unit is used for quantifying

the contribution of the original representationX

and the context vector C to the attention weight

prediction.

Figure 8.1: Context-based Self-Attention

(a) Conventional Self-Attention. This method

calculates the attention weight of two items ig-

noring the contextual information.

(b) Global Context. This method captures the

summary representation of the input sentence

through an average operation.

(c) Deep Context. This method captures both

the low- and high-level syntactic and semantic

information.

(d) Deep-Global Context. This method com-

bines the concepts of global and deep context.

Figure 8.2: Self-Attention based on different context-vectors

capturing the intra-modal interactions. This gated self-attention mechanism is illustrated

in Fig. 8.3. The self-attention mechanism including the gating model is described via the
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equations below:

Q = S,K = S, V = S (8.15)

M = σ
(
FCg

(
FCg

q (Q) ⊙ FCg
k (K)

))
(8.16)

where FCg
q , FCg

k ∈ RD×dg , FCg ∈ Rdg×2 are three fully-connected layers, and dg denotes

the dimensionality of the projected space and is equal to 64 units. ⊙ denotes the element-

wise product function and σ the sigmoid function. In addition, M ∈ RT×2 corresponds to

the two masks Mq ∈ RT and Mk ∈ RT for the features Q and K respectively.

Next, the two masks M and K are tiled to M̃q, M̃k ∈ RT×D and then used for com-

puting the attention map as following:

Ag = softmax


(
Q⊙ M̃q

)(
K ⊙ M̃k

)T
√
D

 (8.17)

H = AgV (8.18)

Let H be the output of the self-attention mechanism corresponding to the visual modal-

ity denoted by S.

Figure 8.3: Gated Dot-product. This gating model is incorporated in the conventional self-

attention mechanism for improving the quality of the learned attention. This method is based on

low-rank bilinear pooling.

Optimal Transport: Next, we use optimal transport-based domain adaptation methods

[361, 365, 366], i.e., Earth Mover’s Distance (EMD) Transport, for transporting between

each pair of modalities, which can be interpreted as domain adaptation across two modal-

ities. Formally:

X ′ = OT (S → X) (8.19)

S′ = OT (X → S) (8.20)
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Concatenation: After that, we concatenate transported and self-attended features as

follows:

C = [F,X ′] (8.21)

S = [H,S′] (8.22)

Fusion: Next, we describe two methods for fusing C and S:

• (i) Co-Attention Mechanism: We exploit the fusion method proposed by [79]

and implemented in Chapter 7. Specifically, given
(
C ∈ Rd′×n

)
and

(
S ∈ Rd′×T

)
,

where d′ = 2 · D, the affinity matrix F ∈ Rn×T is calculated using the equation

presented below:

F = tanh
(
CTWlS

)
(8.23)

where Wl ∈ Rd′×d′ is a matrix of learnable parameters. By treating the affinity

matrix as a feature, we learn to predict the attention maps via the following,

Hs = tanh (WsS + (WcC)F ) (8.24)

Hc = tanh
(
WcC + (WsS)F T

)
(8.25)

where Ws,Wc ∈ Rk×d′ are matrices of learnable parameters. We set k equal to 40.

Then, we generate the attention weights through the softmax function as follows,

as = softmax
(
wT
hsH

s
)

(8.26)

ac = softmax
(
wT
hcH

c
)

(8.27)

where as ∈ R1×T and ac ∈ R1×n. whs, whc ∈ Rk×1 are the weight parameters. Based

on the above attention weights, the attention vectors are obtained via the following

equations:

ŝ =

T∑
i=1

asis
i, ĉ =

n∑
j=1

acjc
j (8.28)

where ŝ ∈ R1×d′ and ĉ ∈ R1×d′ .

Finally, these vectors are concatenated p = [ĉ, ŝ]. We apply a dropout layer with a

rate of 0.5. Then, this vector is passed through a Dense Layer consisting of 128 units

with a ReLU activation function. We apply also a dropout layer with a rate of 0.2.

Finally, we use a dense layer consisting of two units, which gives the final output.

The proposed architecture is illustrated in Fig. 8.4a.
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• (ii) Attention-based fusion: Motivated by the work of [270], we design an at-

tentional reduction model for C, as defined in Equation 8.21 (or S, as defined in

Equation 8.22), for obtaining its attended feature c̃ (or s̃). To the best of our

knowledge, this is the first study utilizing this fusion method in the task of demen-

tia detection from spontaneous speech. Taking C as an example, we describe the

attention reduction model used in this study via the equations presented below:

αc = softmax (MLP (C)) (8.29)

, where αc refers to the learned attention weights and MLP is given by the equation

below:

MLP = FC(128) −ReLU −Dropout(0.1) − FC(1) (8.30)

c̃ =
n∑

i=1

αc
ici (8.31)

, where we obtain the attended feature c̃ for C.

We obtain the attended feature s̃ using an independent attention reduction model

in the same way. Having computed c̃ and s̃, we design the linear multimodal fusion

function as follows:

z = LayerNorm
(
W T

c c̃ + W T
s s̃
)

(8.32)

, where Wc,Ws ∈ Rd′×dz are two linear projection matrices, dz is the common

dimensionality of the fused feature and is equal to 128, and LayerNorm [28] is used

for stabilizing the training. Finally, we pass z to a dense layer consisting of two

units, which gives the final prediction.

The proposed architecture is illustrated in Fig. 8.4b.

8.3.2 Model Calibration

To prevent the model becoming too overconfident, we use label smoothing [30, 31], as

described in Chapter 4. Specifically, label smoothing calibrates learned models so that the

confidences of their predictions are more aligned with the accuracies of their predictions.

For a network trained with hard targets, the cross-entropy loss is minimized between

the true targets yk and the network’s outputs pk, as in H(y, p) =
∑K

k=1−yklog(pk), where

yk is ”1” for the correct class and ”0” for the other. For a network trained with label

smoothing, we modify the true targets yk to yLSu
k as shown in Eq. 8.1:

yLSu
k = yk · (1 − α) +

α

K
(8.1)

, where α is the smoothing parameter and K is the number of classes.

Finally, we minimize the cross-entropy between the modified targets yLSu
k and the

network’s outputs pk, as shown in Eq. 8.2:
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(a) Co-Attention. The shaded box corresponds to the co-attention mechanism. This method attends to

the different representations simultaneously.

(b) Attention-based Fusion. The shaded box shows this fusion method. This method exploits two in-

dependent attentional reduction models. Features are fused through an add operation, while a layer

normalization is used for stabilizing training.

Figure 8.4: Illustration of our Proposed Architectures. For the textual modality, we use BERT,

while for the image modality, we use DeiT and exploit an Optimal Transport Kernel. Next, we use

optimal transport domain adaptation methods for transporting between each pair of modalities.

Also, we pass the textual representation through context-based self-attention layers, while the

image representation is passed through a gated self-attention layer. Finally, methods for fusing the

self- and cross-attention features are presented, namely Co-Attention and Attention-based Fusion.

Each shaded box shows the fusion method used, namely Co-Attention and Attention-based Fusion.

H(y, p) =
K∑
k=1

−yLSu
k · log (pk) (8.2)

8.4 Experiments

8.4.1 Baselines

Table 8.1: Baselines (ADReSS Challenge Dataset).

Reference/Architecture Features/Methodology

Baselines - Unimodal state-of-the-art approaches (only transcripts)

BERT (Chapter 5) Fine-tune a BERT model
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Baselines - Multimodal state-of-the-art approaches

Fusion Maj. (3-best) [351] Majority Vote of the BoAW-MFCC-C125, ZFF, and bi-

LSTM-Att

System 3: Phonemes and

Audio [250]

Acoustic features (emobase, eGeMAPS, ComParE2016)

along with feature selection techniques, transcription of

the segmented text into phoneme written pronunciation

using CMUDict

Fusion of System [67] merged the x-vectors features set with the combination

of linguistic feature sets (GMax/LSTM-RNNs/LSTM-

RNNs-Pos) and trained a SVM classifier

Bimodal Network (Ensem-

bled Output) [263]

For the acoustic modality, the authors use VGGish, while

for the textual modality, the authors exploit GloVe,

Transformer-XL, POS and HC features. Finally, the au-

thors combine the results of the models via an ensemble

approach.

GFI, NUW, Duration,

Character 4-grams, Suf-

fixes, POS tag, UD [95]

feature extraction, early fusion approach, train a Logistic

Regression Classifier

Acoustic & Transcript [90] For transcripts, the authors exploited BERT, while for

speech, the authors used x-vector PCA-transformed coef-

ficients.

Dual BERT [91] concatenation of the representations obtained by BERT

and Speech BERT

Model C [259] The authors extracted emobase, eGeMAPS, ComParE

features. For the text modality, the used GloVe embed-

dings and pos-tags. Finally, they trained a Neural net-

work consisting of CNN, BiLSTM, Attention, GRU, and

Dense layers.

Majority vote (NLP +

Acoustic) [64]

The authors extracted a set of acoustic and linguistic

features. After training shallow machine learning classi-

fiers, they chose the three best-performing acoustic mod-

els along with the best-performing language model, and

computed a final prediction by taking a linear weighted

combination of the individual model predictions.

Audio + Text [92] majority level approach of six models

LSTM with Gating

(Acoustic + Lexical +

Dis) [62]

Acoustic, Linguistic Features, Bi-LSTM, feed-forward

highway layers with gating units
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Ensemble [170] A majority vote was taken between the predictions of

the three individual models. Specifically, the authors ex-

tracted three sets of features, namely disfluency, acoustic,

and interventions, and trained three deep neural networks.

BERT+ViT (log-Mel spec-

trogram) (Chapter 6)

coversion of an audio file into an image of three channels,

BERT for the text representation, Vision Transformer for

the image representation, concatenation

BERT+ViT+Gated Multi-

modal Unit (log-Mel spec-

trogram) (Chapter 6)

Gated Multimodal Unit to control the information flow of

the different modalities.

BERT+ViT+Crossmodal

Attention (log-Mel spec-

trogram) (Chapter 6)

Similar to [76], the authors exploited a cross-attention

mechanism.

BERT+ViT+Co-

Attention (Chapter 7)

The authors used a co-attention mechanism to fuse the

representation matrices of the two modalities.

Multimodal BERT -

eGeMAPS (Chapter 7)

The authors injected acoustic information (eGeMAPS)

into a BERT model.

Multimodal BERT - ViT

(Chapter 7)

The authors injected image information (via ViT) into a

BERT model.

Multimodal BERT -

eGeMAPS+ViT (Chap-

ter 7)

The authors injected both acoustic information

(eGeMAPS) and image information (via ViT) into

a BERT model.

BERT+ViT+Gated Self-

Attention (Chapter 7)

The authors concatenated the outputs of BERT and ViT

and passed the resulting matrix through a self-attention

layer incorporating a gate model for capturing the inter-

and intra-modal interactions.

Transcript+Image+Acoustic

[367]

The authors used a Tensor Fusion Layer for fusing the

different modalities.

Introduced Approaches without Label Smoothing

Our proposed approaches described in Section 8.3 without

label smoothing.

Table 8.2: Baselines (ADReSSo Challenge Dataset).

Reference/Architecture Features/Methodology

Baselines - Unimodal state-of-the-art approaches (only transcripts)

BERT We exploit a BERT model, get the [CLS] token, and pass

it through two dense layers consisting of 128 and 2 units

respectively.
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Model C: LR[Comp] +

LR[DisFl] + Ernie

+ Bert (stacking) [368]

The authors employed model stacking to combine two

logistic regression models (LR) using complexity and

(dis)fluency features respectively, and the two pretrained

language models, i.e. BERT and ERNIE.

Model 5: [262] The authors concatenate the last three states of the BERT

sequence classifier with the confidence score input. The

confidence score input is generated by the ASR system.

Label Fusion selected mod-

els [369]

The authors extracted a set of handcrafted features,

namely syntactic, readability, and lexical diversity, and

a set of deep textual embeddings, including BERT and so

on. Finally, the authors trained Logistic Regression and

SVM classifiers.

Mp1 [370] The authors add sentence-level pauses to ASR transcripts

and exploit a BERT model.

Baselines - Multimodal state-of-the-art approaches

LSTM w/ Gating (Words

+ Acoustic + Disf + Pse

+ WP) [264]

extraction of acoustic and language features, feed-forward

highway layers with gating units

Global Fusion [256] fusion of BERT (ASR) and acoustic models, namely x-

vectors, x-vectors with 250ms frame-length, and encoder-

decoder ASR embeddings (SB Enc/Dec).

Top-10 Avg. [169] Average fusion of predicted class probabilities of the 10

best performing models

Attempt 1: [371] The authors used acoustic features, linguistic features,

and embedding features. For each type of feature, they

exploited a deep neural network consisting of multihead

attention layers, convolutional layers, and dilated convo-

lutional layers. They used an attention layer for fusing

the outputs of the different branches.

Introduced Approaches without Label Smoothing

Our proposed approaches described in Section 8.3 without

label smoothing.

We compare our introduced approaches with the following research works reported

in Tables 8.1 and 8.2, since these research works have conducted their experiments on

the ADReSS and ADReSSo test set. Specifically, Table 8.1 describes the baselines used in

terms of the ADReSS Challenge dataset, while Table 8.2 reports the baselines used regard-

ing the ADReSSo Challenge dataset. Regarding Table 8.1, we are using existing published

results for all the baselines except for Introduced Approaches without Label Smoothing. In
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terms of Table 8.2, we are using existing published results for all the baselines except for:

(i) BERT, and (ii) Introduced Approaches without Label Smoothing.

8.4.2 Experimental Setup

We divide the ADReSS Challenge train set into a train and a validation set (65%-

35%). We use a batch size of 4. We train the introduced architectures five times and

report the results on the ADReSS Challenge test set via mean ± standard deviation.

Similarly, we divide the ADReSSo Challenge train set into a train and a validation set

(65%-35%). We train the introduced architectures five times and report the results on the

ADReSSo Challenge test set via mean ± standard deviation. We use EarlyStopping, where

we stop training if the validation loss has stopped decreasing for eight consecutive epochs.

Also, we apply StepLR with a step size of 4 and a gamma of 0.1. We set α of Eq. 8.1

equal to 0.001. We set D = Dc = 768. We set Dk = Dq = 64. Regarding the global

context strategy, we use one layer of the contextual self-attention mechanism. In terms of

the deep-context strategy, we use three layers of the contextual self-attention mechanism.

With regards to the deep-global context strategy, we use two layers of the contextual self-

attention mechanism. We use the BERT base uncased version and the DeiT2 model from

the Transformers library [305]. For the optimal transport methods, we use the Python

library Optimal Transport [372]. All the models have been created using the PyTorch

library [346]. All experiments are conducted on a single Tesla P100-PCIE-16GB GPU.

8.4.3 Evaluation Metrics

8.4.3.1 Performance Metrics

Accuracy (Acc.), Precision (Prec.), Recall (Rec.), F1-Score, and Specificity (Spec.)

have been used for evaluating the results of the introduced architectures. These metrics

have been computed by regarding the dementia class as the positive one. We report the

average and standard deviation of these metrics over five runs.

8.4.3.2 Calibration Metrics

We evaluate the calibration of our model using the metrics proposed by [308, 309, 171].

Specifically, we use the metrics mentioned below:

• Expected Calibration Error (ECE). The calibration error is the difference be-

tween the fraction of predictions in the bin that are correct (accuracy) and the mean

of the probabilities in the bin (confidence). First, we divide the predictions into M

equally spaced bins (size 1/M).

acc(Bm) =
1

|Bm|
∑
i∈Bm

1(ŷi = yi) (8.1)

2facebook/deit-base-distilled-patch16-224
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conf(Bm) =
1

|Bm|
∑
i∈Bm

p̂i (8.2)

, where yi and ŷi are the true and predicted labels for the sample i and p̂i is the

confidence (predicted probability value) for sample i.

ECE =
M∑

m=1

|Bm|
N

|acc (Bm) − conf (Bm)| (8.3)

, where N is the total number of data points and Bm is the group of samples whose

predicted probability values falls into the interval Im =
(
m−1
M , m

M

]
.

Perfectly calibrated models have an ECE of 0.

• Adaptive Calibration Error (ACE). Adaptive Calibration Error uses an adap-

tive scheme which spaces the bin intervals so that each contains an equal number of

predictions.

ACE =
1

KR

K∑
k=1

R∑
r=1

|acc(r, k) − conf(r, k)| (8.4)

, where acc(r, k) and conf(r, k) are the accuracy and confidence of adaptive calibra-

tion range r for class label k, respectively; and N is the total number of data points.

Calibration range r defined by the [N/R]th index of the sorted and thresholded

predictions.

8.5 Results

The results of our introduced models are reported in Tables 8.3 and 8.4. Specifically,

Table 8.3 reports the results on the ADReSS Challenge dataset, while Table 8.4 reports

the results on the ADReSSo Challenge dataset. Also, these tables present a comparison of

our introduced approaches with existing research initiatives, which have proposed either

unimodal or multimodal approaches. In order to compare models, we use the Almost

Stochastic Order (ASO) test [47, 48] of statistical significance implemented by [49]. We

use confidence level = 0.95 and num comparisons = 50. Generally, the ASO test de-

termines whether a stochastic order [50] exists between two models or algorithms, i.e., A

and B. This method computes a score (ϵmin) which represents how far the first is from

being significantly better in respect to the second. When ϵmin = 0, then one can claim

that A is truly stochastically dominant over B. When ϵmin < 0.5, one can claim that A

is almost stochastically dominant over B. For ϵmin = 0.5, no order can be determined.

(†) means that Attention-based Fusion (Deep Context) with label smoothing is stochasti-

cally dominant over the respective models. Similarly, in terms of the ADReSSo Challenge

dataset, (†) means that Co-Attention (Deep Context) with label smoothing is stochas-

tically dominant over the respective models. (⋆) denotes almost stochastic dominance
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of the Attention-based Fusion (Deep Context) with label smoothing over the respective

approaches. Similarly, in terms of the ADReSSo Challenge dataset, (⋆) means that Co-

Attention (Deep Context) with label smoothing is almost stochastically dominant over the

respective models. Note that we cannot compare our approaches with all the existing re-

search initiatives, since we do not have access to the multiple runs or the other approaches

have not used multiple runs. In terms of the ECE and ACE calibration metrics, we

use ASO for comparing our best performing model, namely Attention-based Fusion (Deep

Context) or Co-Attention (Deep Context) with label smoothing, with the respective model

without label smoothing.
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Table 8.3: Performance comparison among proposed models and state-of-the-art approaches

on the ADReSS Challenge test set. Reported values are mean ± standard deviation. Results

are averaged across five runs. (†) means that Attention-based Fusion (Deep Context) with label

smoothing is stochastically dominant over the respective models. (⋆) denotes almost stochastic

dominance of the Attention-based Fusion (Deep Context) with label smoothing over the respective

approaches.

Architecture P. (%) R. (%) F1 (%) Acc. (%) Spec. (%) ECE ACE

Baselines - Unimodal state-of-the-art approaches (only transcripts)

BERT (Chapter 5) 87.19 81.66 86.73† 87.50† 93.33

±3.25 ±5.00 ±4.53 ±4.37 ±5.65

Baselines - Multimodal state-of-the-art approaches

Fusion Maj. (3-best) [351] - - 85.40 85.20 -

System 3: Phonemes and Audio [250] 81.82 75.00 78.26 79.17 83.33

Fusion of system [67] 94.12 66.67 78.05 81.25 95.83

Bimodal Network (Ensembled Output) [263] 89.47 70.83 79.07 81.25 91.67

GFI, NUW, Duration, Character 4-grams,

Suffixes, POS tag, UD [95]
- - - 77.08 -

Acoustic & Transcript [90] 70.00 88.00 78.00 75.00 63.00

Dual BERT [91] 83.04 83.33 82.92 82.92 82.50

±3.97 ±5.89 ±1.86 ±1.56 ±5.53

Model C [259] 78.94 62.50 69.76 72.92 83.33

Majority vote (NLP+Acoustic) [64] - - - 83.00 -

Audio + Text [92] - 87.50 - 89.58 91.67

LSTM with Gating (Acoustic + Lexical + Dis) [62] 81.82 75.00 78.26 79.17 83.33

Ensemble [170] 83.00 83.00 83.00 83.00 -

BERT+ViT (Chapter 6) 90.73 80.83 85.47† 86.25† 91.67

(log-Mel spectrogram) ±2.74 ±2.04 ±1.70 ±1.67 ±2.64

BERT+ViT+Gated Multimodal Unit (Chapter 6) 80.92 91.67 85.92† 85.00† 78.33

(log-Mel spectrogram) ±2.30 ±3.73 ±2.37 ±2.43 ±3.12

BERT+ViT+Crossmodal Attention (Chapter 6) 86.13 91.67 88.69⋆ 88.33⋆ 85.00

(log-Mel spectrogram) ±3.26 ±4.56 ±2.12 ±2.12 ±4.25

BERT+ViT+Co-Attention (Chapter 7) 92.83 81.67 86.81⋆ 87.50⋆ 93.33

±6.39 ±2.04 ±3.37 ±3.49 ±6.24

Multimodal BERT - eGeMAPS (Chapter 7) 74.51 87.50 80.35† 78.75† 70.00

±1.01 ±6.45 ±2.77 ±2.04 ±3.12

Multimodal BERT - ViT (Chapter 7) 73.91 91.67 81.79† 79.58† 67.50

±2.40 ±2.64 ±1.72 ±2.04 ±4.08

Multimodal BERT - eGeMAPS+ViT (Chapter 7) 76.57 89.17 82.28† 80.83† 72.50

±3.74 ±5.65 ±3.49 ±3.58 ±5.65

BERT+ViT+Gated Self-Attention (Chapter 7) 90.87 89.17 89.94⋆ 90.00⋆ 90.83

±3.50 ±2.04 ±1.36 ±1.56 ±4.08

Transcript+Image+Acoustic [367] 90.88 80.83 85.48† 86.25† 91.66

±3.60 ±2.04 ±0.76 ±1.02 ±3.73

Baselines - Introduced models (without label smoothing)

Co-Attention 89.62 85.83 87.63† 87.92† 90.00 0.1208 0.1660

(Global Context) ±1.75 ±3.33 ±1.80 ±1.56 ±2.04 ±0.2296 ±0.0335

Co-Attention 88.25 87.50 87.85⋆ 87.92† 88.33 0.1384 0.1532

(Deep Context) ±1.56 ±2.64 ±1.66 ±1.56 ±1.66 ±0.0109 ±0.0110

Co-Attention 90.26 85.00 87.51⋆ 87.92⋆ 90.83 0.1355 0.1648

(Deep-Global Context) ±1.70 ±4.25 ±2.69 ±2.43 ±1.66 ±0.0183 ±0.0119

Attention-based Fusion 89.55 85.83 87.32⋆ 87.50⋆ 89.16 0.1256 0.1279

(Global Context) ±7.31 ±6.24 ±4.35 ±4.37 ±8.58 ±0.0291 ±0.0277

Attention-based Fusion 91.06 89.16 89.95⋆ 90.00⋆ 90.83 0.0975⋆ 0.1046⋆

(Deep Context) ±5.04 ±3.33 ±1.91 ±2.04 ±5.53 ±0.0188 ±0.0173

Attention-based Fusion 90.45 85.83 88.04⋆ 88.33⋆ 90.83 0.1173 0.1065

(Deep-Global Context) ±2.93 ±2.04 ±1.65 ±1.66 ±3.12 ±0.0134 ±0.0153

Introduced models (with label smoothing)

Co-Attention 88.65 88.33 88.39⋆ 88.33⋆ 88.33 0.1075 0.1710

(Global Context) ±4.63 ±1.66 ±1.76 ±2.12 ±5.53 ±0.0198 ±0.0281

Co-Attention 93.57 84.16 88.53⋆ 89.16⋆ 94.16 0.1082 0.1316

(Deep Context) ±2.08 ±4.86 ±2.79 ±2.43 ±2.04 ±0.0184 ±0.0296

Co-Attention 87.88 87.50 87.39⋆ 87.50† 87.50 0.1176 0.1568

(Deep-Global Context) ±3.73 ±6.97 ±2.45 ±1.86 ±4.56 ±0.0167 ±0.0306

Attention-based Fusion 90.51 85.00 87.53† 87.92† 90.83 0.1094 0.1168

(Global Context) ±3.40 ±4.25 ±1.75 ±1.56 ±4.08 ±0.0086 ±0.0099

Attention-based Fusion 93.08 89.17 91.06 91.25 93.33 0.0859 0.0830

(Deep Context) ±2.03 ±2.04 ±1.60 ±1.56 ±2.04 ±0.0130 ±0.0158

Attention-based Fusion 89.87 83.33 86.20† 86.66† 90.00 0.1397 0.1508

(Deep-Global Context) ±5.52 ±4.56 ±0.90 ±1.02 ±5.65 ±0.0102 ±0.0123
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Table 8.4: Performance comparison among proposed models and state-of-the-art approaches on

the ADReSSo Challenge test set. Reported values are mean ± standard deviation. Results are

averaged across five runs. (†) means that Co-Attention (Deep Context) with label smoothing is

stochastically dominant over the respective models. (⋆) denotes almost stochastic dominance of

the Co-Attention (Deep Context) with label smoothing over the respective approaches.

Architecture P. (%) R. (%) F1 (%) Acc. (%) Spec. (%) ECE ACE

Baselines - Unimodal state-of-the-art approaches (only transcripts)

BERT 83.35 74.29 78.53† 80.00† 85.55 - -

±0.86 ±2.55 ±1.43 ±1.05 ±1.11 - -

Model C: [368] 85.00 80.00 82.00 83.00 86.00 - -

Model 5: [262] 81.58 88.57 84.93 84.51 80.56 - -

Label Fusion selected models [369] - - - 84.51 - - -

Mp1 [370] 87.10 77.14 81.82 83.10 88.89 - -

Baselines - Multimodal state-of-the-art approaches

LSTM w/ Gating (Words

+Acoustic+Disf+Pse+WP) [264]
- - - 84.00 - - -

Global Fusion [256] 92.00 74.00 83.00 84.51 94.00 - -

Top-10 Avg. [169] - - 88.89 81.69 80.00 - -

Attempt 1: [371] 75.00 91.67 82.50 80.28 68.57 - -

Baselines - Introduced models (without label smoothing)

Co-Attention 83.77 81.13 81.85⋆ 82.54⋆ 83.88 0.1536 0.2017

(Global Context) ±4.59 ±9.13 ±3.01 ±1.69 ±6.66 ±0.0311 ±0.0214

Co-Attention 82.22 84.00 83.01⋆ 83.10⋆ 82.22 0.1349⋆ 0.1845

(Deep Context) ±1.79 ±4.28 ±1.63 ±1.26 ±2.83 ±0.0135 ±0.0169

Co-Attention 83.03 80.57 81.73⋆ 82.25† 83.88 0.1414 0.1948

(Deep-Global Context) ±2.07 ±2.79 ±1.23 ±1.13 ±2.72 ±0.0091 ±0.0265

Attention-based Fusion 83.44 74.86 78.90† 80.28† 85.56 0.1633 0.1825

(Global Context) ±1.16 ±2.14 ±1.51 ±1.26 ±1.11 ±0.0207 ±0.0140

Attention-based Fusion 81.52 81.14 81.08† 81.41† 81.66 0.1442 0.1737

(Deep Context) ±3.47 ±5.59 ±1.58 ±1.05 ±5.44 ±0.0284 ±0.0089

Attention-based Fusion 79.58 85.71 82.38⋆ 81.97† 78.33 0.1671 0.1820

(Deep-Global Context) ±2.69 ±4.78 ±1.59 ±1.38 ±4.78 ±0.0201 ±0.0193

Introduced models (with label smoothing)

Co-Attention 84.77 81.71 83.12⋆ 83.66⋆ 85.55 0.1282 0.1630

(Global Context) ±2.39 ±3.43 ±0.95 ±0.69 ±3.24 ±0.0053 ±0.0179

Co-Attention 84.43 86.29 85.27 85.35 84.43 0.1178 0.1800

(Deep Context) ±1.59 ±4.19 ±1.78 ±1.44 ±2.19 ±0.0209 ±0.0213

Co-Attention 82.45 82.86 82.55⋆ 82.82⋆ 82.77 0.1443 0.1749

(Deep-Global Context) ±0.99 ±4.78 ±2.03 ±1.38 ±2.08 ±0.0046 ±0.0082

Attention-based Fusion 80.44 81.71 80.95† 81.13† 80.55 0.1540 0.1920

(Global Context) ±1.65 ±4.98 ±2.04 ±1.44 ±3.04 ±0.0195 ±0.0215

Attention-based Fusion 85.10 81.71 83.35⋆ 83.94⋆ 86.11 0.1336 0.1660

(Deep Context) ±0.53 ±3.43 ±2.04 ±1.69 ±0.04 ±0.0190 ±0.0144

Attention-based Fusion 81.45 85.14 83.18⋆ 83.10⋆ 81.11 0.1690 0.1938

(Deep-Global Context) ±1.32 ±4.92 ±2.42 ±1.99 ±2.08 ±0.0245 ±0.0112

8.5.1 ADReSS Challenge Dataset

Regarding our proposed models, one can observe that Attention-based Fusion (Deep

Context) constitutes our best performing model outperforming all the other introduced
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models in all the evaluation metrics except Precision and Specificity. Specifically, Attention-

based Fusion (Deep Context) outperforms the other introduced models with label smooth-

ing in Accuracy by 2.09-4.59%, in Recall by 0.84-5.84%, and in F1-score by 2.53-4.86%.

Despite the fact that Attention-based Fusion (Deep Context) obtains a lower Precision

score by other introduced models, it surpasses them in F1-score, which constitutes the

weighted average of Precision and Recall. Although it achieves lower specificity scores by

Co-Attention (Deep Context), it must be noted that in health related studies, F1-score

is more important than Specificity, since high F1-score means that the model can detect

better the AD patients, while high Specificity and low F1-score means that AD patients

are misdiagnosed as non-AD ones. In addition, Co-Attention (Deep Context) consti-

tutes our second best performing model attaining an Accuracy of 89.16%. It achieves the

highest precision and specificity scores accounting for 93.57% and 94.16% respectively,

while it achieves an F1-score of 88.53%. It outperforms all the introduced models, except

Attention-based Fusion (Deep Context), in Accuracy by 0.83-2.50% and in F1-score by

0.14-2.33%. It outperforms all the models in Precision and Specificity by 0.49-5.69% and

0.83-6.66% respectively.

Next, we compare our introduced approaches with label smoothing with the ones with-

out applying label smoothing. As one can easily observe, label smoothing leads to both

performance improvement and better calibration of the proposed approaches. Specifically,

we observe that Attention-based Fusion (Deep Context) with label smoothing obtains

a higher Accuracy score than the one obtained by the respective model without label

smoothing by 1.25%, Attention-based Fusion (Global Context) with label smoothing sur-

passes Attention-based Fusion (Global Context) without label smoothing in Accuracy by

0.42%, etc. In terms of the calibration metrics, namely ECE and ACE, one can observe

that label smoothing leads to better calibrated models. For instance, Attention-based

Fusion (Deep Context) with label smoothing obtains an ECE of 0.0859 and an ACE of

0.0830, which are significantly better than the ones obtained by Attention-based Fusion

(Deep Context) without label smoothing by 0.0116 and 0.0216 respectively.

In comparison with the unimodal and multimodal state-of-the-art approaches, one can

observe that our best performing model, namely Attention-based Fusion (Deep Context)

with label smoothing, outperforms the research works in Accuracy by 1.25-18.33% and

in F1-score by 1.12-21.30%. These differences in performance are attributable to the

fact that our best performing model captures both the inter- and intra-modal interac-

tions through the self-attention mechanisms and optimal transport domain adaptation

methods, enhances the self-attention mechanism with contextual information, and applies

label smoothing in contrast to the research initiatives. In addition, Co-Attention (Deep

Context) outperforms the research works, except [177, 92], in Accuracy by 0.83-16.24%.
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8.5.2 ADReSSo Challenge Dataset

As one can easily observe in Table 8.4, Co-Attention (Deep Context) with label smooth-

ing constitutes our best performing model attaining an Accuracy of 85.35%, a Recall of

86.29%, and a F1-score of 85.27%. It surpasses the other introduced models (with label

smoothing) in Accuracy by 1.41-4.22%, in Recall by 1.15-4.58%, and in F1-score by 1.92-

4.32%. In addition, we observe that Co-Attention (Deep Context) with label smoothing

achieves better performance than the one obtained by the respective model without label

smoothing. Specifically, the Accuracy is improved by 2.25%, the Recall is improved by

2.29%, the F1-score presents a surge of 2.26%, the Precision is increased by 2.21%, and

the Specificity is improved by 2.21%. In terms of the calibration metrics, we observe that

the ECE is improved by 0.0171 (ASO test indicates almost stochastic dominance).

Comparing our introduced models with label smoothing with the ones without label

smoothing, we observe that in most cases label smoothing contributes to both the perfor-

mance improvement and better calibration. For instance, Co-Attention (Global Context)

with label smoothing improves Accuracy by 1.12% compared with the respective model

without label smoothing, while ECE and ACE are also improved by 0.0254 and 0.0387

respectively. Similarly, Attention-based Fusion (Deep Context) with label smoothing out-

performs the respective model without label smoothing in F1-score and Accuracy by 2.27%

and 2.53% respectively, while the ECE and ACE also present a decline of 0.0106 and 0.0077

respectively.

In comparison with the unimodal and multimodal baselines, we observe that our best

performing model, namely Co-Attention (Deep Context) with label smoothing, outper-

forms these baselines in Accuracy by 0.84-5.35%. Also, it outperforms all the research

works, except for [169], in F1-score by 0.34-6.74%. We observe that our best performing

model attains a better performance than BERT (ASO test indicates stochastic dominance),

verifying our initial hypothesis that both modalities, i.e., transcripts and audio files, con-

tribute to a better performance. In addition, we observe that our second best performing

model, namely Attention-based Fusion (Deep Context) outperforms some research works,

except for [262, 369, 264, 256], in Accuracy by 0.84-3.94%.

8.6 Ablation Study

In this section, we run a series of ablation experiments using the ADReSS Challenge

dataset to explore the effectiveness of the introduced architecture described in Section 8.3.

We report the results of the ablation study in Tables 8.5 and 8.6.

First, we explore the effectiveness of the context-based self-attention. To do this, we

remove the contextual information and exploit the conventional self-attention mechanism

introduced by [46]. We observe that the Accuracy score drops from 91.25% to 87.08%,

while the F1-score presents a decline of 4.60%. Also, we observe that the removal of

contextual information yields to higher standard deviations of the performance metrics.
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Table 8.5: Ablation Study. Reported values are mean ± standard deviation. Results are averaged

across five runs.

Architecture Prec. (%) Rec. (%) F1-score (%) Acc. (%) Spec. (%)

without contextual vector in self-attention 91.34 83.33 86.46 87.08 90.83

±7.35 ±9.50 ±4.64 ±4.04 ±10.00

self-attention without gate model 92.99 84.16 88.22 88.75 93.33

±4.28 ±3.12 ±0.88 ±1.02 ±4.25

without optimal transport and OTK 87.60 87.50 87.47 87.50 87.50

±2.02 ±3.73 ±1.52 ±1.32 ±2.64

repeat vector instead of OTK 86.08 91.66 88.73 88.33 85.00

±3.37 ±2.64 ±1.97 ±2.12 ±4.25

Concatenation - Without fusion 87.23 88.33 87.65 87.50 86.66

±4.99 ±3.12 ±2.64 ±2.95 ±6.12

Proposed Framework 93.08 89.17 91.06 91.25 93.33

±2.03 ±2.04 ±1.60 ±1.56 ±2.04

Table 8.6: Ablation Study. Reported values are mean ± standard deviation. Results are averaged

across five runs.

Layers Prec. (%) Rec. (%) F1-score (%) Acc. (%) Spec. (%)

1 90.37 83.33 86.52 87.08 90.83

±3.33 ±5.27 ±1.94 ±1.56 ±4.08

2 88.09 91.66 89.77 89.58 87.50

±1.96 ±3.73 ±1.45 ±1.32 ±2.64

3 93.08 89.17 91.06 91.25 93.33

(Our best performing model) ±2.03 ±2.04 ±1.60 ±1.56 ±2.04

4 92.05 76.66 83.55 85.00 93.33

±3.70 ±5.65 ±4.28 ±3.58 ±3.33

5 88.67 83.33 85.84 86.25 89.16

±4.20 ±3.73 ±2.86 ±2.83 ±4.25

Next, we investigate the efficacy of the gate model, which is incorporated into the self-

attention mechanism. To do this, we remove the gate model and exploit the conventional

self-attention mechanism. We observe that Accuracy and F1-score present a decline of

2.50% and 2.84% respectively.

Moreover, we explore the effectiveness of the optimal transport domain adaptation

method and the Optimal Transport Kernel. To do this, we remove these components

from the introduced architecture. We observe that the Accuracy score is equal to 87.50%,

which is lower by 3.75% than the one obtained by our best performing model. Also, this

approach yields an F1-score accounting for 87.47%, which is lower by 3.59% than the one

achieved by Attention-based Fusion (Deep Context).

Next, we explore the effectiveness of the Optimal Transport Kernel. To do this, we

remove this component, exploit the average operation over the sequence length, and finally

repeat the vector n times, so as to ensure that both the textual and image modalities have

the same sequence length. As one can observe, this method presents a decline in Accuracy

score by 2.92%, while the F1-score is also reduced by 2.33%.
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In addition, we explore the effectiveness of the fusion method. To prove this, we

remove the fusion method, apply the average operation over C (Eq. 8.21) and S (Eq. 8.22)

and concatenate these two representation vectors. We observe that the concatenation

of features yields an Accuracy and F1-score of 87.50% and 87.65% respectively. This

difference in performance can be justified by the fact that the concatenation operation

does not capture the inherent correlations between the modalities.

Finally, we vary the layers of the context-based self-attention mechanism. The results

of this ablation study are reported in Table 8.6. As the number of layers increases from

1 to 3, we observe that both the Accuracy and F1-score also increase. This justifies our

initial hypothesis that stacking attention layers and fusing the outputs of different layers

into one context vector, yields to better evaluation results, since the model captures both

high-level and low-level syntactic and semantic information. However, we observe that the

performance of our approach starts to present a decline by stacking four or five layers of

context-based self-attention by applying the deep-context strategy. We assume that this

decline in performance is attributable to the limited dataset used and consequently to the

problem of overfitting.

8.7 Discussion

From the results obtained in this study, we found that:

• Finding 1: We proposed a context-based self-attention mechanism and exploited

three approaches of adding contextual information to self-attention layers. Results

on the ADReSS and ADReSSo Challenge datasets showed that the fusion of the

outputs (low-level syntactic and semantic information) of different layers as a deep

context vector yielded the highest evaluation results.

• Finding 2: We compared our proposed approaches with and without label smooth-

ing. Findings suggested that label smoothing contributes to both the performance

improvement and improvements in terms of the calibration metrics.

• Finding 3: We exploited two methods for fusing the self and cross-attention fea-

tures. Findings of the experiments conducted on the ADReSS Challenge dataset

suggested that the usage of two independent attentional reduction models, the add

operation, and the layer normalization achieved better performance than the usage

of a co-attention mechanism. On the other hand, results on the ADReSSo Challenge

dataset showed that the co-attention mechanism as a fusion method achieved the

best evaluation results.

• Finding 4: Findings from a series of ablation studies showed the effectiveness of

the introduced architecture.

• Finding 5: Our proposed models yielded competitive performances to the existing

state-of-the-art approaches. We also used the Almost Stochastic Order test to test
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for statistical significance. This test does not make any assumptions about the

distributions of the scores.

• Finding 6: We observed that in most cases the performance of the multi-modal

models (baselines) was inferior to the transcript only BERT baseline. We hypoth-

esize that this difference in performance is attributable to the fact that the multi-

modal approaches propose early and late fusion strategies or add / concatenate the

representation vectors of different modalities during training. In this way, the inter-

modal interactions cannot be captured effectively. This difference in performance

justifies our initial motivation that more effective fusion methods must be explored

for capturing the inter-modal interactions.

Our approaches entail some limitations, which are described below:

• Hyperparameter Tuning: In this study, we did not perform hyperparameter tuning

due to the limited access to GPU resources. Hyperparameter tuning yields to an

increase of the classification performance.

• Explainability: In this study, we did not apply explainability techniques, namely

LIME, Integrated Gradients, and so on, for explaining the predictions of our intro-

duced approaches.

• Self-Supervised Learning: Contrary to self-supervised learning methods, our ap-

proach relies heavily on plenty of training data.

8.8 Summary

In this chapter, we introduced some new approaches to detect AD patients from speech

and transcripts, which capture the inter- and intra-modal interactions, enhance the con-

ventional self-attention mechanism with contextual information, and deal with the problem

of creating overconfident models by applying label smoothing. Our proposed architectures

consist of BERT, DeiT, self-attention mechanism incorporating a gating model, context-

based self-attention, optimal transport domain adaptation methods, and one new method

for fusing the self and cross-attention features in the task of dementia detection from

speech data. Furthermore, we designed extensive ablation experiments to explore the

effectiveness of the components of the proposed architecture. Extensive experiments con-

ducted on the ADReSS and ADReSSo Challenge datasets demonstrate the efficacy of the

proposed architectures reaching Accuracy up to 91.25% and 83.94% respectively. Also,

findings suggested that label smoothing contributes to both the performance improvement

and calibration of our model.

In Chapters 5-8, we designed fixed deep neural networks for identifying AD patients.

Moving forward to the next chapter, we aim to incorporate the power of Neural Archi-

tecture Search (NAS) methods into our deep neural network for finding automatically the

best performing architecture for our specific task.





Chapter 9

Neural Architecture Search with

Multimodal Fusion Methods for

Recognizing Dementia

9.1 Introduction

In the previous chapters, we designed fixed deep neural networks. In this chapter, we

will introduce a method for generating automatically a deep neural network.

Several research works have been introduced, which employ Convolutional Neural Net-

works (CNNs) for classifying subjects into AD patients and non-AD ones. Specifically,

some of them use as input to CNNs embeddings of transcript data, i.e., GloVE, word2vec,

etc. [65]. Other approaches use as input the raw audio signal [63, 93], while others trans-

form the speech signal to log-Mel spectrograms and Mel-frequency Cepstral Coefficients

(MFCCs) [63, 91, 94].However, constructing high-performance deep learning models re-

quires extensive engineering and domain knowledge. Neural Architecture Search (NAS)

has emerged as class of approaches that automate the generation of state-of-the-art neural

network architectures, thus limiting the human effort [373, 374, 375]. A powerful NAS

method, namely DARTS [84], has achieved great discovered high-performance convolu-

tional architectures for image classification problems. DARTS uses a continuous relaxation

of the architecture representation and then applies gradient descent to discover the best

architecture. In this chapter, we present the first study that incorporates DARTS into a

neural network for diagnosing dementia from spontaneous speech.

In this chapter, we propose a multimodal neural network, where we pass each transcript

through a BERT model [26] and obtain a text representation. Next, we convert audio files

into images consisting of log-Mel spectrograms, delta, and delta-delta. We pass each

image through the DARTS model. Finally, we exploit a variety of fusion methods for

modelling the inter-modal interactions, including Tucker decomposition, a method based

on the block-superdiagonal tensor decomposition, etc. To the best of our knowledge, this is

the first study to propose such a framework, which combines a NAS approach, a language

213



214
Chapter 9. Neural Architecture Search with Multimodal Fusion Methods for

Recognizing Dementia

model, and fusion methods in an end-to-end neural network.

The contributions of this chapter can be summarized as follows:

• We employ a neural architecture search approach, namely DARTS, to automatically

generate the best CNN architecture.

• We introduce several fusion methods for combining the representations of the CNN

and the BERT model effectively.

• We perform extensive ablation studies to study the impact of the depth of the CNN

architecture.

• We perform a series of experiments and show that our introduced architecture yields

comparable performance to state-of-the-art approaches.

9.2 Task and Data

Given a labelled dataset consisting of AD and non-AD patients, the task is to identify

if an audio file along with its transcript belongs to an AD patient or to a non-AD one.

We use the ADReSS Challenge dataset described in Section 3.3.5.2 for conducting our

experiments.

9.3 Predictive Models

In this section, we describe the functionality of the modules, which constitute our

introduced architecture. First, we introduce the basic notation and describe the data

preprocessing steps. Next, we present the neural architecture search algorithm, namely

DARTS [84] that automatically finds the best CNN architecture to process the input

speech. Then, we describe the module that process the text modality, using the BERT

language model. Finally, we present the multimodal fusion methods, that combine the two

modalities and make the final prediction. The whole architecture is end-to-end trainable

and is illustrated in Figure 9.1.

Preliminaries. Each input sample consists of a speech signal, a text description of the

speech, and the label that indicates if the subject is an AD patient or a non-AD one.

We use librosa [312] and convert the audio files into images consisting of three channels,

namely log-Mel spectrogram, delta, and delta-delta. We use 224 Mel bands, hop length

accounting for 1024, and a Hanning window. Each image is resized to 224 × 224 pixels.

We denote each image i as XIi ∈ R224×224×3.

We exploit the python library called PyLangAcq [275] for reading the manual tran-

scripts. We use the BertTokenizer and pad each transcript to a maximum length of 512

tokens, while transcripts with number of tokens greater than 512 are truncated. Bert-

Tokenizer returns the attention mask and the input ids per transcript. We denote each
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attention mask and input ids of a transcript i as Xαi ∈ R512 and XTi
∈ R512 respec-

tively. We further denote the binary label of each sample i as yi ∈ {0, 1}. Therefore each

sample i is represented as the tuple (XIi,Xαi,XTi
, yi). Our goal is to learn a function

f(XIi,Xαi,XTi
), that takes as input the speech and text sample, and predicts the label

of the subject.

Speech-Neural Architecture Search. CNNs have achieved great performance in image

classification tasks, but require extensive architecture engineering. Therefore, in our work

we aim to automatically learn the optimal CNN architecture using the DARTS model [84].

Following previous works [84, 376], since the final CNN architecture can have many layers,

to reduce the computation complexity of the model, we search for a computational cell

and then we stack this cell many times to construct the CNN architecture.

Each cell can be represented as a directed acyclic graph (DAG), with 7 nodes. Every

node xi denotes a feature map, and every edge (i, j) transforms xi based on the operation

of the edge o(i,j). Since the cell is a DAG, there exists a topological ordering of the nodes.

Therefore, we can compute the feature map of each node, based on all the predecessors

nodes, using the following equations:

xj =
∑
i<j

o(i,j)(xi) (9.1)

The goal of the NAS algorithm then is to learn the operations on the edges. In our settings,

we search operations in the following set O: {3 × 3 and 5 × 5 separable convolutions, 3

× 3 and 5 × 5 dilated separable convolutions, 3 × 3 max pooling, 3 × 3 average pooling,

identity, and zero, which indicates no connection}.

However, gradient-based optimization is not directly applicable in a discrete search

space. Therefore, we apply a continuous relaxation in the search space, by learning a set

of weights a for each edge operation. The discrete choice of each operation is transformed

to a softmax over all operations:

ô(i,j) =
∑
o∈O

exp(ao(i,j))∑
ô∈O exp(aô(i,j))

o(x) (9.2)

To obtain the final CNN architecture, we replace each operation ô(i,j) with the operation

with the largest weight oi,j = argmaxo∈O ao(i,j) .

Text-Language Models. Bidirectional Encoder Representations from Transformers

(BERT) is a multi-layer bidirectional Transformer encoder. It is trained on masked lan-

guage modeling, where some percentage of the input tokens are masked at random aiming

to predict those masked tokens based on the context only. We pass to the BERT model

the attention mask and the input ids denoted by Xαi ∈ R512 and XTi
∈ R512 respectively.

We extract the classification token denoted by [CLS], where its dimensionality is equal to

768. Finally, we project its dimensionality to d = 64.

Multimodal Methods. Let zt ∈ R64 denote the representation vector of the textual

modality. Let zv ∈ R64 denote the representation vector of the acoustic modality, ex-
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tracted by the output of the CNN. We fuse the two modalities, i.e., textual and acoustic,

denoted by the vectors zt and zv by employing the following fusion methods:

• Tucker decomposition [85]: a bilinear interaction where the tensor is expressed as a

Tucker decomposition.

• Multimodal Factorized Bilinear pooling (MFB) [86]: This approach enjoys the dual

benefits of compact output features of Multimodal Lowrank Bilinear (MLB) pooling

and robust expressive capacity of Multimodal Compact Bilinear (MCB) pooling.

• Multimodal Factorized High-order pooling (MFH) [86]: The MFH approach is de-

veloped by cascading multiple MFB blocks.

• BLOCK [87]: Block Superdiagonal Fusion framework for multimodal representation

based on the block-term tensor decomposition [314]. It combines the strengths of

the Candecomp/PARAFAC (CP) [315] and Tucker decompositions.

• Concatenation: We concatenate zt and zv, as p = [zt, zv], where p ∈ R128. We pass

p through a dense layer consisting of 16 units with a ReLU activation function.

Finally, we obtain the fused vector, denoted by zf ∈ R16, and we pass it through a

dense layer with two units, which makes the final prediction. We optimize the model using

gradient descent by minimizing the cross-entropy loss.

BERT

Fusion Methods:
(i) Tucker
(ii) MFB
(iii) MFH
(iv) BLOCK
(v) Concatenation

CLS token

Dense Layer

(2 units)

AD patient

non - AD
patient

Dense Layer 

(64 units)

well the poor mother's doing
dishes . there's a boy on a
stool . cookie jar . and a girl
down below . is that all you

wanted to know ? okay .
there's a cookie jar . the little
boy is standing on a stool. 

Text Input

Image Input

DARTS
sep_conv_3x3

skip_connect
max_pool_3x3

3

1

0

2

Figure 9.1: Illustration of our introduced architecture. For the text modality, we use a BERT

language model to obtain the textual representation. In terms of the acoustic modality, we use the

DARTS algorithm for obtaining the optimal CNN architecture and the acoustic representation.

We fuse the two representations with fusion methods and pass the fused vector to a dense layer,

which makes the prediction.

9.4 Experiments

9.4.1 Comparison with state-of-the-art approaches

We compare our approach with (i) unimodal approaches employing only the textual

modality, i.e., BERT (Chapter 5), (ii) unimodal approaches employing only the acous-
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tic modality, i.e., DARTS, AT-LSTM (x-vector) [88], ECAPA-TDNN [89], SiameseNet

[63], x-vectors SRE[67], Acoustic+Silence [90], YAMNet [91], Majority vote (Acoustic)

[64], Audio (Fusion) [92], DemCNN [93], CNN-LSTM (MFCC) [94], and (iii) Multi-

modal approaches employing both the textual and acoustic modality, i.e., Audio + Text

(Fusion)[92], Fusion Maj. (3-best) [63], Fusion of system [67], GFI, NUW, Duration,

Character 4-grams, Suffixes, POS tag, UD [95], Acoustic & Transcript [90], Dual BERT

(Concat/Joint, BERT large) [91], Majority vote (NLP + Acoustic) [64], Attention-based

Fusion (Deep Context) of Chapter 8.

9.4.2 Experimental Setup

We minimize the cross-entropy loss function. We use a batch size of 8. We train the

models on the ADReSS Challenge train set and report their performance on the test set.

We divide the train set into a train and a validation set. We train the model for 50 epochs.

We choose the epoch with the smallest validation loss and evaluate the performance of

the model on the test set. We repeat the experiments five times and report the mean

and standard deviation. We use Weights & Biases [377] for tuning the hyperparame-

ters. Specifically, we perform a random search to optimize the following hyperparameters:

number of CNN layers, learning rate for CNN, learning for alpha parameters of DARTS,

learning rate for BERT, weight decay, fusion hidden dimension. We use the BERT base

uncased version provided via the Transformers library [305]. All models are created using

the PyTorch library and trained in a single NVIDIA RTX A6000 48GB GPU.

9.4.3 Evaluation Metrics

Accuracy, Precision, Recall, F1-Score, and Specificity have been used for evaluating the

results of the introduced architectures. These metrics have been computed by regarding

the dementia class as the positive one. We report the average and standard deviation of

these metrics over five runs.

9.5 Results

The results are reported in Table 9.1.

Regarding our proposed multimodal models, we observe that DARTS + BERT +

BLOCK is our best performing model reaching Accuracy and F1-score up to 92.08% and

91.94% respectively. It surpasses the introduced multimodal models in Recall by 0.83-

6.66%, in F1-score by 2.14-5.21%, and in Accuracy by 2.50-5.00%. DARTS + BERT

+ MFB constitutes our second best performing model achieving an Accuracy of 89.58%

and an F1-score of 89.80%. It outperforms the introduced models, except for DARTS

+ BERT + BLOCK, in F1-score by 1.15-3.07% and in Accuracy by 0.84-2.50%. In ad-

dition, DARTS + BERT + MFH and DARTS + BERT + Concatenation yield almost

equal Accuracy results, with DARTS + BERT + MFH surpassing DARTS + BERT +
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Table 9.1: Performance comparison among proposed models and state-of-the-art approaches on

the ADReSS Challenge test set. Reported values are mean ± standard deviation. Results are

averaged across five runs. Best results per evaluation metric are in bold.

Evaluation metrics

Architecture Precision Recall F1-score Accuracy Specificity

Unimodal state-of-the-art approaches (only transcripts)

BERT (Chapter 5) 87.19 ±3.25 81.66 ±5.00 86.73 ±4.53 87.50 ±4.37 93.33 ±5.65

Unimodal state-of-the-art approaches (only Speech)

DARTS 70.04 ±3.84 89.99 ±2.04 76.09 ±0.87 72.92 ±2.28 62.3 ±7.05

AT-LSTM (x-vector) [88] 66.00 69.00 67.00 67.00 -

ECAPA-TDNN [89] - - - 66.70 -

SiameseNet [63] - - 70.80 70.80 -

x-vectors SRE [67] 54.17 54.17 54.17 54.17 54.17

Acoustic+Silence [90] 70.00 58.00 63.00 66.70 75.00

YAMNet [91] 64.40±3.93 73.40±8.82 68.60±4.84 66.20±4.79 59.20±7.73

Majority vote (Acoustic) [64] - - - 65.00 -

Audio (Fusion) [92] - 83.33 - 81.25 79.17

DemCNN [93] 62.50 62.50 62.50 62.50 62.50

CNN-LSTM (MFCC) [94] 82.00 38.00 51.00 64.58 92.00

Multimodal state-of-the-art approaches (speech and transcripts)

Audio + Text (Fusion) [92] - 87.50 - 89.58 91.67

Fusion Maj. (3-best) [63] - - 85.40 85.20 -

Fusion of system [67] 94.12 66.67 78.05 81.25 95.83

GFI,NUW,Duration,Character 4-grams,

Suffixes,POS tag,UD [95]
- - - 77.08 -

Acoustic & Transcript [90] 70.00 88.00 78.00 75.00 83.00

Dual BERT [91] 83.04 ±3.97 83.33 ±5.89 82.92 ±1.86 82.92 ±1.56 82.50 ±5.53

Majority vote (NLP + Acoustic) [64] - - - 83.00 -

Attention-based Fusion (Deep Context) (Chapter 8) 93.08 ±2.03 89.17 ±2.04 91.06 ±1.60 91.25 ±1.56 93.33 ±2.04

Our Proposed Architecture

DARTS+BERT+Tucker Decomposition 89.16 ± 3.96 85.00 ± 6.24 86.73 ± 1.57 87.08 ± 0.83 89.16 ± 5.00

DARTS+BERT+MFB 91.29 ±0.34 88.29 ±3.13 89.80 ±1.76 89.58 ±1.86 91.66 ±1.26

DARTS+BERT+MFH 94.46 ± 3.38 86.66 ± 3.11 88.31 ± 0.71 88.74 ± 1.02 94.16 ± 3.34

DARTS+BERT+BLOCK 94.09 ±2.61 91.66 ±6.97 91.94 ±1.98 92.08 ±1.56 94.16 ±3.33

DARTS+BERT+Concatenation 86.68 ±3.35 90.83 ±1.66 88.65 ±1.36 88.33 ±1.66 85.83 ±4.25

Concatenation in Accuracy by 0.41%. On the contrary, DARTS + BERT + Concatena-

tion outperforms DARTS + BERT + MFH in F1-score by a small margin of 0.34%. We

speculate that DARTS + BERT + MFB performs better than DARTS + BERT + MFH,

since the MFH approach is developed by cascading multiple MFB blocks, thus is more

complex for our limited dataset. In addition, we observe that the fusion method of Tucker

decomposition yields the worst results reaching Accuracy and F1-score up to 87.08% and

86.73% respectively.

Compared with unimodal approaches (employing only text), we observe that our in-

troduced approaches, except for DARTS + BERT + Tucker Decomposition, outperform

BERT (Chapter 5). Specifically, DARTS + BERT + BLOCK improves the performance

obtained by BERT (Chapter 5) in Precision by 6.90%, in Recall by 10.00%, in F1-score by

5.21%, in Accuracy by 4.58%, and in Specificity by 0.83%. At the same time, we observe

that the standard deviations over five runs are lower than BERT in all the evaluation

metrics, except Recall.

Compared with unimodal approaches (employing only speech), we observe that DARTS

+ BERT + BLOCK surpasses these approaches in Precision by 12.09-39.92%, in Recall by

1.67-53.66%, in F1-score by 15.85-40.94%, in Accuracy by 10.83-37.91%, and in Specificity

by 2.16-39.99%. We also compare our best performing model with DARTS and show



9.5 Results 219

Epoch 1

c_{k-2}

0

dil_conv_5x5

3

sep_conv_5x5

c_{k-1}

sep_conv_5x5

1
dil_conv_5x5

2

dil_conv_5x5

sep_conv_3x3

sep_conv_5x5

c_{k}

dil_conv_3x3

(a) Normal Cell extracted from first epoch

Epoch 13

c_{k-2}

0

sep_conv_5x5

1
dil_conv_5x5

2dil_conv_5x5

3dil_conv_3x3

c_{k-1}
dil_conv_5x5

dil_conv_5x5

c_{k}dil_conv_3x3

dil_conv_3x3

(b) Best performing normal cell

Epoch 1

c_{k-2} 0
sep_conv_5x5

1
skip_connect

2sep_conv_5x5

3
sep_conv_5x5

c_{k-1}

sep_conv_3x3

sep_conv_5x5

sep_conv_5x5

skip_connect

c_{k}

(c) Reduce cell extracted from first epoch

Epoch 13

c_{k-2}

0

max_pool_3x3
1

skip_connect

c_{k-1}
skip_connect

dil_conv_3x3

2dil_conv_3x3
max_pool_3x3

c_{k}

3

sep_conv_5x5

dil_conv_5x5

(d) Best performing reduce cell

Figure 9.2: We visualize the initial normal and reduce cells and the best performing cells obtained

from DARTS. These cells are stacked to create the convolutional neural network architecture.

that our best performing model outperforms DARTS in Precision by 24.05%, in Recall by

1.67%, in F1-score by 15.85%, in Accuracy by 19.16%, and in Specificity by 31.86%. Next,

we compare our approach, i.e., DARTS, with the existing research initiatives employing

only speech. We observe that DARTS outperforms all the research works, except for Audio

(Fusion) [92], in Accuracy by 2.12-18.75%. DARTS attains a Recall score accounting for

89.99% and outperforms the state-of-the-art approaches, including Audio (Fusion), in

Recall by 6.66-51.99%. DARTS outperforms also the existing research initiatives in terms

of F1-score by 5.29-25.09%.

In comparison with multimodal state-of-the-art approaches, we observe that our best

performing model outperforms the existing research initiatives in Recall by 3.66-24.99%,

in F1-score by 0.88-13.94%, and in Accuracy by 0.83-17.08%. Although Fusion of system

[67] obtains a better Specificity score by our best performing model, our best performing

model surpasses this approach in Recall, F1-score, and Accuracy. It is worth noting that

Recall is a more important metric than Specificity, since high Specificity and low Recall

means that AD patients are misdiagnosed as non-AD ones. We observe that DARTS +

BERT + BLOCK outperforms the approach proposed in Chapter 8, namely Attention-

based Fusion (Deep Context), in terms of all the evaluation metrics, verifying our initial

hypothesis that automatically learning an optimal CNN architecture during training yields

improvements in the performance.

We further visualize the initialized and the best performing CNN architecture obtained

by DARTS, in Figure 9.2. We observe that the best performing cell has different operations

and different structure than the initial one, showing how the neural architecture search

algorithm converges to an optimal cell, by altering the operations and the connections in

the convolutional architecture.
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Figure 9.3: Test accuracy of our proposed model with respect to the number of CNN layers

generated from DARTS.

9.6 Ablation Study

We perform a series of ablation experiments, where we vary the layers of the CNN

architecture, obtained by DARTS. Specifically, we set the number of CNN layers to 4,

8, 12, 16, 20, 24, 28, and 30. We report the accuracy obtained via these experiments in

Fig. 9.3. We observe that the best accuracy accounting for 91.66% is obtained by using

8 layers. As the number of layers increases, the accuracy decreases. Specifically, the

worst accuracy score is equal to 83.33% and is obtained, when we use 30 CNN layers. We

speculate that architectures with many layers are so complex for the dataset, and therefore

the model overfits.

9.7 Summary

We presented the first study, which exploits Neural Architecture Search methods and

fusion methods based on Tucker Decomposition, Factorized Bilinear Pooling, and block-

term tensor decomposition, in the task of dementia detection. Specifically, we proposed an

end-to-end trainable multimodal model, which combines an automatically discovered CNN

architecture obtained from the NAS algorithm as well as a language model for processing

the text information. We integrate the two modalities using a variety of fusion methods.

Our approach exhibited comparable performance with the state-of-the-art baselines.



Chapter 10

Multimodal Detection of Epilepsy

with Deep Neural Networks

10.1 Introduction

There have been a number of studies proposing methods for detecting epileptic seizures.

The majority of these studies first extract both time-domain and frequency domain fea-

tures from the electroencephalogram (EEG) signals. For instance, the authors apply the

Discrete Wavelet Transform (DWT) [97, 98] for decomposing the EEG signals into sub-

bands and then extract features from each sub-band. After having extracted a large

number of features, the authors usually exploit feature selection or dimensionality reduc-

tion techniques for finding the best subset of features or reducing the dimension of the

feature vector respectively. The last step of the proposed methods includes the train of

traditional machine learning classifiers, i.e., Logistic Regression (LR), Support Vector Ma-

chines (SVMs), Random Forests (RF), Decision Trees, etc. However, these methods are

time-consuming, since they demand some level of domain expertise for extracting the best

representative features. Only a few number of studies [99, 100, 101, 102] have exploited

deep neural networks, i.e., CNNs, LSTMs, or BiLSTMs in the task of epilepsy detec-

tion and prediction. However, most of these methods still rely on handcrafted features

[100, 101, 99]. Another limitation is the fact that existing research works split the EEG

signals into segments and propose majority-voting approaches [102]. Thus, they have to

train multiple models separately increasing substantially the computation time. At the

same time, most of the CNN models are not able to model effectively the temporal depen-

dencies among the EEG data. Although LSTMs and BiLSTMs can capture the temporal

dependencies in EEG data, they usually have high model complexity.

In order to tackle these limitations, we propose two new methods to distinguish healthy,

interictal, and ictal cases. Firstly, we introduce a unimodal approach, where we apply the

short-time fourier transform (STFT) to the EEG signal and we construct an image consist-

ing of three channels, namely the db-scaled (after having computed the absolute values)

STFT spectrogram, its delta, and delta-delta. Next, we employ several pretrained mod-

221
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els of the domain of computer vision, including AlexNet, VGG16, EfficientNet, etc. and

compare their performances. Secondly, we introduce a deep neural network, which dis-

tinguishes healthy, interictal, and ictal cases in an end-to-end trainable manner without

requiring the exhaustive and tedious procedure of feature extraction. We aim through this

neural network to automate the process of the feature extraction by exploiting the capa-

bilities of deep learning. Specifically, each EEG signal is passed through two branches of

convolutional neural networks (CNNs) with different filter sizes, in order to capture both

the temporal and the frequency information. Next, we apply the short-time fourier trans-

form (STFT) to the EEG signal and we construct an image consisting of three channels,

namely the db-scaled (after having computed the absolute values) STFT spectrogram, its

delta, and delta-delta. Each image is passed through a pretrained EfficientNet-B7 model.

Finally, the EEG representation vector and the image vector are passed through a Gated

Multimodal Unit for suppressing the irrelevant information. We perform extensive experi-

ments (and ablation studies) on a publicly available dataset, namely the EEG database of

the University of Bonn, and experimental results demonstrate that our introduced model

can achieve valuable advantages over existing research initiatives.

The contributions of this chapter can be summarized as follows:

• We propose a unimodal approach for detecting healthy, interictal, and ictal cases.

Specifically, we apply the STFT algorithm to the single-channel EEG signals. We

construct an image consisting of the db-scaled (after having computed the absolute

values) spectrogram, the delta, and delta-delta. Each image is passed through pre-

trained models used extensively in the computer vision domain, such as AlexNet,

VGG16, EfficientNet, etc. We compare the performance of the pretrained models.

To the best of our knowledge, there is no prior work creating images in this way

towards the epileptic seizures detection task.

• We propose a multimodal neural network, which employs (i) two branches of CNNs

with different kernel sizes for processing EEG signals, (ii) an EfficientNet-B7 model

for obtaining a visual representation vector from an image consisting of the db-scaled

(after having computed the absolute values) spectrogram, the delta, and delta-delta,

and (iii) a gated multimodal unit, which controls the importance of each modality

towards the final prediction. To the best of our knowledge, this is the first study

proposing a multimodal deep neural network with these components.

• We conduct our experiments on a publicly available dataset and consider five cases

for classification.

• We run a series of ablation experiments to explore the effectiveness of the components

of our introduced deep learning architecture.

• Our introduced model obtains comparable performance to the state-of-the-art ap-

proaches.
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Table 10.1: Description of cases considered for classification

Case Classes Description

I AB, CD, E healthy, interictal, ictal

II A, E healthy, seizure

III AB, CD healthy, interictal

IV AB, CDE healthy, epileptic

V A, C, E healthy, interictal, ictal

10.2 Dataset

We use the publicly available EEG dataset of University of Bonn for conducting our

experiments [103].

In this paper, we have considered five different cases for conducting our experiments,

all of which are presented below and reported in Table 10.1.

• Case I (AB - CD - E)

• Case II (A - E)

• Case III (AB - CD)

• Case IV (AB - CDE)

• Case V (A - C - E)

10.3 Predictive Unimodal Models

In this section, we present our unimodal approaches using only image data. First,

we apply the short-time fourier transform (STFT) with a Hanning window to the raw

EEG signals. After calculating the absolute values of the STFT spectrogram (STFT’s

magnitude), we compute the db-scaled spectrogram, the delta, and delta-delta. Thus, we

construct an image consisting of three channels, i.e., db-scaled spectrogram, delta, and

delta-delta. We scale each image to [0, 1]. Each image is resized to (224×224) pixels. The

pixel values of all images are normalized.

Next, we pass each image through the following pre-trained models: ResNet50 &

ResNet18 [336], WideResNet-50-2 [337], AlexNet [44], SqueeezeNet 1.1 [338], DenseNet-

201 [339], ResNeXt-50 (32 × 4d) [342], VGG16 [343], and EfficientNet B71 [344].

We modify the output layer of the aforementioned models. Specifically, for cases II,

III, and IV, the output layer consists of two units. For cases I and V, the output layer

consists of three units.

1We experimented also with EfficientNet-B0 to B6, but EfficientNet-B7 was the best performing model.
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10.3.1 Experiments

10.3.1.1 Experimental Setup

We use a 10-fold stratified cross-validation procedure to train and test the proposed

models. In each iteration of this procedure, we split the train set into a train and a

validation set. All models have been trained with an Adam optimizer and a learning rate

of 1e-5. We apply ReduceLROnPlateau, where we reduce the learning rate by a factor of

0.1, if the validation loss has stopped decreasing for three consecutive epochs. Also, we

apply EarlyStopping and stop training, if the validation loss has stopped decreasing for

eight consecutive epochs. We minimize the cross-entropy loss function. All models have

been created using the PyTorch library [306]. All experiments are conducted on a single

Tesla P100-PCIE-16GB GPU with a running time of approximately one hour.

10.3.1.2 Evaluation Metrics

Accuracy, Precision, Recall, and F1-Score have been used for evaluating the results of

the introduced models.

Regarding the binary classification task (Cases II, III, and IV), these metrics have been

computed by regarding the seizure/interictal/epilepsy class as the positive one.

Regarding the multiclass classification task (Cases I and V), we report the precision,

recall, and F1-score for each class separately.

For all the cases, results are presented via mean ± standard deviation (over 10 folds).

10.3.2 Results

The results of the proposed models mentioned before are reported in Tables 10.2-10.6.

More specifically, in Table 10.2 we report the results for case I (AB - CD - E), in Table

10.3 we report the results for case II (A - E), in Table 10.4 we report the results for case

III (AB - CD), in Table 10.5 we report the results for case IV (AB - CDE), and in Table

10.6 we report the results for case V (A - C - E).

Regarding case I (AB - CD - E), as one can easily observe from Table 10.2, EfficientNet-

B7 constitutes our best performing model achieving an accuracy score equal to 95.20%

surpassing the other models by 1.21-11.40%. In terms of F1-score, which constitutes

the weighted average of precision and recall, our best performing model achieves the

highest score for all the classes except CD in comparison to the other models. F1-scores

accounting for 96.57% and 90.71% are obtained for the AB (healthy volunteers) and E

(ictal state) classes respectively. EfficientNet-B7 improves the F1-score by 2.00-12.80%

and 0.10-17.76% for AB and E class respectively. The highest F1-score accounting for

96.28% for the CD class is obtained by the VGG16 model. AlexNet is the second best

performing model attaining an accuracy score equal to 93.99%. ResNet50 achieves the

worst performance among the introduced unimodal models with accuracy accounting for

83.80%.
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In terms of case II (A - E), one can easily observe from Table 10.3 that EfficientNet-B7

outperforms the other pretrained models in terms of Accuracy, Recall, and F1-score by

2.00-8.00%, 4.00-14.00%, and 2.43-9.71% respectively. This fact renders EfficientNet-B7

the best performing model for case II (A - E). The highest precision score is obtained by

WideResNet-50-2 and is equal to 99.00%. Similarly to case I (AB - CD - E), ResNet50

obtains the worst classification results with accuracy accounting for 87.50%. The accuracy

achieved by the pretrained models, except EfficientNet-B7 and ResNet50, ranges from

90.00% to 93.50%, with AlexNet being the second best performing model in terms of

accuracy and F1-score.

With regards to case III (AB - CD), looking at Table 10.4, one can observe that

EfficientNet-B7 attains the highest accuracy and F1-score accounting for 97.50% and

97.45% respectively. Specifically, EfficientNet-B7 surpasses the other models in terms

of Accuracy and F1-score by a margin of 0.25-4.50% and 0.22-4.97% respectively. It is

worth noting that although EfficientNet-B7 achieves lower precision and recall scores by

other models, it surpasses them in F1-score, which constitutes the weighted average of

precision and recall. In addition, VGG16 and DenseNet201 obtain equal accuracy scores

accounting for 97.25%, with VGG16 surpassing DenseNet201 in terms of F1-score by a

small margin of 0.08%. ResNet18 achieves the lowest classification results with accuracy

reaching up to 93.00%.

In terms of case IV (AB - CDE), one can observe in Table 10.5 that EfficientNet-B7

constitutes the best performing model surpassing the other models in accuracy by 0.40-

10.00%, in precision by 1.62-10.45%, and in F1-score by 0.26-8.39%. In addition, AlexNet

is the second best performing model obtaining an accuracy score accounting for 96.00%

and the highest recall score equal to 97.00%. DenseNet201 achieves the worst performance

in this case reaching accuracy up to 86.40%.

Finally, looking at Table 10.6 for the case V (A - C - E), one can observe that

EfficientNet-B7 yields the highest accuracy accounting for 93.00% surpassing the other

models’ performance by 3.00-13.00%. With regards to the F1-score, EfficientNet-B7 ob-

tains the highest scores for all the classes, i.e., A, C, and E. Specifically, scores accounting

for 91.99%, 93.79%, and 93.02% are obtained for the classes A, C, and E respectively. The

second best accuracy score is obtained by VGG16 and is equal to 90.00%. The other mod-

els obtain an accuracy score, which ranges from 80.00% to 89.33% with DenseNet201 and

ResNet50 obtaining the lower accuracy results equal to 80.00% and 80.33% respectively.

Overall, EfficientNet-B7 constitutes the best performing model in terms of the accuracy

for all the cases considered for classification.

10.4 Proposed Multimodal Model

In this section, we describe our introduced architecture for detecting epilepsy using

EEG signals and STFT spectrograms. The proposed architecture is illustrated in Fig.

10.1.
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Table 10.2: Performance comparison among unimodal proposed models via cross-validation (AB

- CD - E). Reported values are mean ± standard deviation. Best results per evaluation metric are

in bold.

Evaluation metrics

Model Precision Recall F1-score Accuracy

AB CD E AB CD E AB CD E

ResNet50 85.94 86.94 80.11 82.99 91.49 70.00 83.77 88.55 72.95 83.80

±7.28 ±9.41 ±14.15 ±11.45 ±7.09 ±14.14 ±6.29 ±4.39 ±9.63 ±4.77

ResNet18 85.42 95.87 87.86 92.50 90.49 77.00 88.20 92.97 79.59 88.60

±10.75 ±3.85 ±11.02 ±6.80 ±6.49 ±20.52 ±5.86 ±4.24 ±13.94 ±5.14

WideResNet 83.73 97.33 81.36 92.50 90.00 74.00 87.73 93.45 76.37 87.80

50-2 ±5.05 ±2.67 ±13.59 ±4.03 ±4.99 ±14.97 ±2.82 ±3.27 ±11.05 ±3.28

AlexNet 94.27 95.02 93.77 94.99 95.50 89.00 94.57 94.98 90.61 93.99

±4.54 ±4.78 ±8.66 ±2.24 ±6.49 ±11.36 ±2.59 ±2.84 ±7.62 ±3.22

SqueezeNet 86.22 92.18 81.18 89.49 92.99 72.00 87.58 92.55 75.58 87.40

1.1 ±8.15 ±3.62 ±9.31 ±7.23 ±3.32 ±15.36 ±6.07 ±2.88 ±10.90 ±4.48

DenseNet 89.02 89.68 77.91 82.50 89.49 82.00 84.73 88.98 78.80 85.20

201 ±12.07 ±7.39 ±13.05 ±9.29 ±8.79 ±13.27 ±6.65 ±3.84 ±8.95 ±5.46

ResNeXt-50 88.93 91.36 84.56 86.00 93.49 84.00 86.93 92.18 83.96 88.59

(32 × 4d) ±6.11 ±6.40 ±7.20 ±9.17 ±5.50 ±13.56 ±4.53 ±3.89 ±10.19 ±4.00

VGG16 90.49 96.30 90.58 94.50 96.50 80.00 92.25 96.28 84.20 92.40

±6.40 ±5.43 ±7.97 ±5.22 ±5.02 ±13.42 ±3.98 ±4.17 ±8.63 ±3.88

EfficientNet 96.42 96.11 93.03 97.00 96.00 90.00 96.57 95.97 90.71 95.20

B7 ±5.09 ±4.19 ±9.08 ±3.32 ±5.39 ±11.83 ±2.40 ±3.98 ±7.73 ±3.25
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Table 10.3: Performance comparison among unimodal proposed models via cross-validation (A

- E). Reported values are mean ± standard deviation. Best results per evaluation metric are in

bold.

Evaluation metrics

Architecture Precision Recall F1-score Accuracy

ResNet50 93.92 81.00 85.79 87.50

±8.46 ±17.00 ±11.27 ±9.01

ResNet18 96.35 83.00 88.92 90.00

±5.64 ±11.00 ±8.26 ±7.07

WideResNet 99.00 87.00 92.32 93.00

50-2 ±2.99 ±9.00 ±5.25 ±4.58

AlexNet 96.98 90.00 93.07 93.50

±4.64 ±8.94 ±5.61 ±5.02

SqueezeNet 92.89 88.00 89.97 90.50

1.1 ±6.89 ±11.66 ±7.57 ±6.87

DenseNet 97.75 86.00 91.27 92.00

201 ±4.53 ±9.17 ±6.37 ±5.57

ResNeXt-50 97.89 85.00 90.74 91.50

(32 × 4d) ±4.23 ±8.06 ±5.07 ±4.50

VGG16 94.82 91.00 92.67 93.00

±5.26 ±9.43 ±6.59 ±6.00

EfficientNet 96.42 95.00 95.50 95.50

B7 ±5.77 ±4.99 ±3.38 ±3.50

• EEG signal: As illustrated in Fig. 10.1, we implement two branches of CNNs

with different kernel sizes to process the raw EEG signals. The choice of these two

branches of CNNs with small and large filter sizes is inspired by [104, 105], where

the authors state that the small filter is able to capture temporal information, while

the larger filter is capable of capturing frequency information.

Each branch consists of three convolutional layers and two max-pooling layers, where

each convolutional layer includes a batch normalization layer [106] and a ReLU

activation function. As one can observe from Fig. 10.1, the first convolutional block

of each branch shows the filter size, the number of filters, and the stride size. The

next two convolutional blocks of each branch show the filter size and the number of

filters. The stride size is equal to 1. Each max-pool block shows the pooling size

and the stride size. For reducing overfitting, we apply dropout with a rate of 0.5

after the first max-pool block of each branch and after the concatenation of both

branches. Finally, we flatten the matrix to a 1d vector.

Let the output of this part of the architecture be f t.
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Table 10.4: Performance comparison among unimodal proposed models via cross-validation (AB

- CD). Reported values are mean ± standard deviation. Best results per evaluation metric are in

bold.

Evaluation metrics

Architecture Precision Recall F1-score Accuracy

ResNet50 93.89 95.00 94.08 94.00

±6.85 ±7.07 ±4.31 ±4.50

ResNet18 97.18 89.00 92.48 93.00

±3.69 ±9.17 ±4.09 ±3.32

WideResNet 98.47 92.50 95.31 95.50

50-2 ±2.33 ±4.61 ±2.57 ±2.45

AlexNet 95.25 98.50 96.80 96.75

±2.88 ±3.20 ±2.26 ±2.25

SqueezeNet 95.99 94.00 94.95 95.00

1.1 ±2.93 ±2.99 ±2.32 ±2.24

DenseNet 99.02 95.50 97.15 97.25

201 ±1.95 ±4.72 ±2.51 ±2.36

ResNeXt-50 93.98 93.50 93.49 93.50

(32 × 4d) ±4.81 ±5.02 ±1.22 ±1.22

VGG16 97.55 97.00 97.23 97.25

±2.46 ±3.32 ±2.12 ±2.08

EfficientNet 98.55 96.50 97.45 97.50

B7 ±2.22 ±3.91 ±3.91 ±1.94

• Image representation: We apply the short-time fourier transform (STFT) to the

raw EEG signals. After calculating the absolute values of the STFT spectrogram

(STFT’s magnitude), we compute the db-scaled spectrogram, the delta, and delta-

delta. Thus, we construct an image consisting of three channels, i.e., db-scaled

spectrogram, delta, and delta-delta. We scale each image to [0, 1]. Each image is

resized to (224 × 224) pixels. The pixel values of all images are normalized.

As shown in Fig. 10.1, each image is fed to a pretrained EfficientNet-B7 model

followed by a dropout layer with a rate of 0.5. We choose the EfficientNet-B7, since

it is the best performing model as shown in Section 10.3.2. We also remove the last

layer of EfficientNet used for classification. Thus, the pretrained EfficientNet-B7

model acts as a feature extractor.

Let the output of this part of the architecture be fv.

• Gated Multimodal Unit: We apply the Gated Multimodal Unit introduced by

[75] and implemented in Chapter 6, in order to assign more importance to the rele-

vant modality suppressing the irrelevant information. Given f t and fv as computed
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Table 10.5: Performance comparison among unimodal proposed models via cross-validation (AB

- CDE). Reported values are mean ± standard deviation. Best results per evaluation metric are

in bold.

Evaluation metrics

Architecture Precision Recall F1-score Accuracy

ResNet50 93.71 92.00 92.77 91.40

±3.31 ±3.71 ±2.37 ±2.84

ResNet18 88.20 87.67 89.81 88.20

±5.77 ±7.75 ±5.03 ±5.55

WideResNet 94.85 89.00 91.79 90.40

50-2 ±4.87 ±2.99 ±3.39 ±4.08

AlexNet 96.42 97.00 96.67 96.00

±2.54 ±3.14 ±2.13 ±2.53

SqueezeNet 92.32 88.67 90.32 88.60

1.1 ±4.56 ±4.76 ±3.10 ±3.69

DenseNet 90.44 87.33 88.54 86.40

201 ±6.27 ±5.54 ±2.69 ±3.56

ResNeXt-50 91.42 90.33 90.40 88.60

(32 × 4d) ±6.25 ±7.81 ±3.12 ±3.35

VGG16 97.03 94.67 95.75 95.00

±2.24 ±4.27 ±1.99 ±2.24

EfficientNet B7 98.65 95.33 96.93 96.40

±1.65 ±3.06 ±1.69 ±1.96

above, we calculate the multimodal representation h, as follows:

ht = tanh (W tf t + bt) (10.1)

hv = tanh (W vfv + bv) (10.2)

z = σ(W z
[
fv; f t

]
+ bz) (10.3)

h = z ∗ hv + (1 − z) ∗ ht (10.4)

Θ = {W t,W v,W z} (10.5)

where Θ denote the parameters to be learned, and [.;.] the concatenation operation.

We project the f t, fv, and the concatenated vector [fv; f t] to obtain the same

dimensionality (dproj = 256).

• Output Layer: The multimodal representation h is passed to a dropout layer with

a rate of 0.5 followed by a dense layer, which gives the final output. The number of

units in the dense layer depends on each case considered for classification and can

be either two (binary classification) or three units (multiclass classification).
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Table 10.6: Performance comparison among unimodal proposed models via cross-validation (A -

C - E). Reported values are mean ± standard deviation. Best results per evaluation metric are in

bold.

Evaluation metrics

Model Precision Recall F1-score Accuracy

A C E A C E A C E

ResNet50 84.31 75.29 86.98 61.00 92.00 88.00 70.31 82.19 86.67 80.33

±6.81 ±11.64 ±9.68 ±13.00 ±7.48 ±11.66 ±10.70 ±7.58 ±7.19 ±6.23

ResNet18 76.53 83.86 89.47 76.00 87.99 84.00 75.43 85.34 86.07 82.66

±10.48 ±10.02 ±8.21 ±19.08 ±11.66 ±9.17 ±13.61 ±8.41 ±5.28 ±6.63

WideResNet 81.42 87.49 90.55 83.00 85.00 82.99 79.42 84.37 85.63 83.66

50-2 ±11.94 ±12.10 ±9.66 ±19.52 ±14.32 ±13.45 ±12.45 ±7.38 ±8.16 ±6.57

AlexNet 84.46 89.77 95.05 89.00 87.99 90.99 86.46 88.71 92.83 89.33

±10.69 ±10.45 ±6.44 ±10.44 ±12.49 ±6.99 ±9.55 ±11.04 ±5.68 ±3.22

SqueezeNet 78.23 86.16 86.77 84.00 87.99 75.00 80.28 86.56 79.74 82.33

1.1 ±8.31 ±12.15 ±9.76 ±15.62 ±8.72 ±10.25 ±9.91 ±8.53 ±7.23 ±7.31

DenseNet 79.92 76.18 89.82 67.00 89.00 84.00 71.79 80.98 86.23 80.00

201 ±10.41 ±11.35 ±7.93 ±11.87 ±11.36 ±12.81 ±6.93 ±7.16 ±9.06 ±5.37

ResNeXt-50 80.78 76.39 95.58 73.00 89.00 85.00 75.47 81.77 89.44 82.33

(32 × 4d) ±13.41 ±6.62 ±7.49 ±13.45 ±12.21 ±8.06 ±9.98 ±7.61 ±4.11 ±5.59

VGG16 84.72 96.08 92.46 94.00 90.99 85.00 88.52 93.18 88.33 90.00

±10.94 ±6.17 ±8.57 ±7.99 ±9.43 ±11.18 ±6.92 ±6.46 ±9.09 ±6.99

EfficientNet 89.68 96.52 94.55 95.00 92.00 92.00 91.99 93.79 93.02 93.00

B7 ±8.12 ±6.98 ±9.27 ±12.04 ±8.72 ±7.48 ±9.29 ±5.69 ±7.17 ±6.74
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Figure 10.1: Proposed Architecture
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10.5 Experiments

10.5.1 Comparison with state-of-the-art approaches

• Case I (AB - CD - E)

– Novel RF [107]: This method applies a short-time Fourier transform (STFT)

and extracts the mean energy, standard deviation, and high amplitude gamma

frequency of signals. The dimensionality of the respective feature set is reduced

via the Principal Component Analysis (PCA) and then is fed to a Random

Forest Classifier. A grid search optimization technique has also been exploited.

– EMD, higher order moments, ANN [108]: This method extracts the variance,

kurtosis, and skewness from the intrinsic mode function (IMF) obtained by

the empirical mode decomposition (EMD) of the EEG signal. These features

are fed to an artificial neural network (ANN) for the classification of the EEG

signals.

– BiLSTM [99]: This work extracts the instantaneous frequency and the spectral

entropy of the EEG signals and trains a Bi-LSTM neural network.

– DWT + Kmeans + Multilayer perceptron neural network (MLPNN) [98]: This

method applies DWT for decomposing the EEG signal into a set of sub-bands.

K-means clustering for the wavelet coefficients in each sub-band is then used.

Finally, the probability of belonging of wavelet coefficients to a cluster for each

sub-band is fed to a MLPNN.

– CNN [109]: This method proposes a deep neural network consisting of three

convolutional blocks followed by three fully connected layers to classify EEG

signals.

– Random Forest [110]: This method applies the STFT to the EEG signals and

extracts the alpha band. Then, the mean, variance, skewness, and kurtosis of

the alpha band are used as features for training traditional machine learning

classifiers with the Random Forest achieving the highest classification results.

– Matrix Determinant and MLP [111]: This research work proposes the arrange-

ment of the EEG time series in square matrix form of order 13, 16, 23, and 32

and then introduces the matrix determinant as a significant feature.

– EMD and SVM [112]: This method applies empirical mode decomposition of

the EEG signals for getting the intrinsic mode function (IMF). The authors

select the first three IMFs for further preprocessing. Next, they calculate the

temporal and spectral characteristics of the IMFs creating in this way a feature

set, which is fed to a Support Vector Machine Classifier.

– dual-tree complex wavelet transform domain [113]: This method decomposes

the EEG signal into sub-bands using the dual-tree complex wavelet transform
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(DT-CWT). Then, the parameters of a normal inverse Gaussian (NIG) proba-

bility density function (pdf) are estimated from the various sub-bands and are

used as features for training a Support Vector Machine Classifier.

– statistical dual-tree complex wavelet transform domain [114]: This paper ap-

plies a dual-tree complex wavelet transform to decompose the EEG signal into

sub-bands. Variances calculated from the EEG signals and the sub-bands are

used as features and fed to ANN and SVM.

– ANN, hierarchical multi-class SVM with new kernel [115]: This work first de-

composes the EEG signal into six sub-bands using the wavelet transform. Next,

the authors extract six features from each sub-band, namely the approximate

entropy, largest Lyapounox exponent, minimum, maximum, mean, and stan-

dard deviation. Finally, they introduce a hierarchical multiclass SVM with

extreme learning machine (ELM) as kernel for the classification.

– Random Forest, wavelets [116]: This method applies a five level decomposition

of the EEG signal using the Discrete Wavelet Transform. After extracting five

features per sub-band, the authors train a Random Forest Classifier.

– CNN [117]: This method introduces a 13-layer deep convolutional neural net-

work to classify EEG signals into normal, pre-ictal, and seizure classes.

– OPF [118]: This method applies the DWT to the EEG signals, extracts sta-

tistical features from each sub-band, and applies feature selection techniques,

including Relief, InfoGain, and correlation-based feature subset selection. Fi-

nally, the authors employ the optimum path forest (OPF) classifier.

– Symlets wavelets, statistical mean energy std and PCA, GBM-GSO, RF, SVM

[119]: This method adopts fourth-order Symlet wavelets for decomposing the

EEG data into five frequencies sub-bands. Next, statistical features are com-

puted and used as classification features.

• Case II (A - E)

– Relative Wavelet Energy [378]: This method applies DWT for decomposing the

EEG signal into sub-bands, extracts the relative wavelet energy, and trains an

ANN.

– Permutation entropy, SVM [379]: This method applies wavelet decomposition,

extracts the permutation entropy, and trains a Probabilistic Neural Network.

– stacked sparse autoencoders [380]: This method trains a stacked sparse autoen-

coder with a softmax classifier.

– Cross-correlation aided SVM classifier [381]: This method extracts cross-correlation

and trains an SVM classifier.

– Permutation entropy - SVM classifier [382]: This method extracts Permutation

entropy and trains an SVM classifier.
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– ME [97]: This method decomposes the EEG signal into sub-bands via DWT

and trains a Mixture of Experts (ME) model consisting of a gating network and

several expert networks, where a double-loop Expectation-Maximization (EM)

algorithm has been introduced.

– multiwavelet transform based approximate entropy and ANN [383]: This method

uses approximate entropy features derived via multiwavelet transform for train-

ing an artificial neural network.

• Case III (AB - CD)

– ATFFWT and FD, LS-SVM [384]: This method employs analytic time-frequency

flexible wavelet transform (ATFFWT) for decomposing the EEG signals into

sub-bands. Next, the authors calculate the fractal dimension for each sub-band,

and use the fractal dimensions as features for training a least-square support

vector machine classifier.

– Novel RF [107]

– Random Forest [110]

– novel signal modeling [385]: This method introduces a new 3-level multirate

filterbank structure based on DCT, and a new statistical modeling of brain

rhythms. Finally, the authors use the hurst exponent values and ARMA pa-

rameters as features for training an SVM classifier.

– Symlets wavelets, statistical mean energy std and PCA, GBM-GSO, RF, SVM

[119]

– MFDFA features + SVM [386]: This approach exploits multifractal detrended

fluctuation analysis, extracts a set of 14 features, and trains an SVM classifier.

• Case IV (AB - CDE)

– Random Forest [110]

– APN [387]: This research work decomposes the EEG signal into sub-bands by

applying a discrete wavelet transform, exploits the minimize entropy principle

approach, and finally constructs an associative Petri net model.

– Alpha band (Blackman window) [388]: This method applies STFT to the EEG

signals exploiting the Blackman window, extracts the alpha band from the t-f

plane, extracts statistical features from the alpha band of the tf-plane, and

trains a Random Forest classifier.

• Case V (A - C - E)

– LSTM [101]: This method applies a multi-rate DCT filter which divides each

EEG signal into five sub-bands of different bandwidths. Next, Hurst and

ARMA features are extracted for each sub-band, which generate a total of 20

features for an EEG signal. Finally, the authors train an LSTM architecture.
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– Matrix Determinant and MLP [111]

– DWT and neural network [389]: This method utilizes DWT to decompose the

EEG signal into sub-bands and then extracts statistical features per sub-band,

namely maximum, minimum, mean, and standard deviation. These features

are fed to a NN for the classification.

– DWT and ensemble classifier [390]: This method utilizes DWT to decompose

the EEG signal into sub-bands and then extracts statistical features per sub-

band. Finally, it proposes an ensemble classifier combining four classification

algorithms, namely ANN, Bayes, k-NN, and SVM.

– CNN [391]: This method employs a convolutional neural network.

10.5.2 Experimental Setup

We use a 10-fold stratified cross-validation procedure to train and test the proposed

model. In each iteration of this procedure, we split the train set into a train and a validation

set. The proposed model has been trained with an Adam optimizer and a learning rate

of 1e-4. We apply ReduceLROnPlateau, where we reduce the learning rate by a factor

of 0.1, if the validation loss has stopped decreasing for three consecutive epochs. Also,

we apply EarlyStopping and stop training, if the validation loss has stopped decreasing

for eight consecutive epochs. We minimize the cross-entropy loss function. We use the

PyTorch library [306]. All experiments are conducted on a single Tesla P100-PCIE-16GB

GPU with a running time of approximately two hours.

10.5.3 Evaluation Metrics

Accuracy, Precision, Recall, and F1-Score have been used for evaluating the results of

the introduced architecture.

Regarding the binary classification task (Cases II, III, and IV), these metrics have been

computed by regarding the seizure/interictal/epilepsy class as the positive one.

Regarding the multiclass classification task (Cases I and V), we report the precision,

recall, and F1-score for each class separately. Also, we report the macro metrics.

For all the cases, results are presented via mean ± standard deviation (over 10 folds).

10.6 Results

The results for all the cases considered for classification of our introduced multimodal

model described in Section 10.4 are reported in Tables 10.7-10.12. Tables 10.7 and 10.11

present the results of the proposed model for cases I and V respectively and report the

precision, recall, and F1-score for each class separately. In Table 10.12, we report the

macro results (precision, recall, and F1-score) for cases I and V. Tables 10.8, 10.9, and

10.10 present the results of the introduced approach for cases II, III, and IV respectively.
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In addition, Tables 10.13-10.17 present a comparison of the results between our proposed

model and state-of-the-art approaches in terms of the accuracy score. Specifically, Table

10.13 presents the comparison for case I. In Table 10.14, we compare the results of our

proposed model on case II with existing research initiatives. Similarly, Tables 10.15 and

10.16 show the comparison of the proposed multimodal model for cases III and IV respec-

tively with state-of-the-art approaches. Finally, Table 10.17 compares the results of our

approach with research works on case V.

For case I (AB - CD - E), as observed in Table 10.7, our model achieves an accuracy

score accounting for 97.00%. F1-scores equal to 97.52%, 96.77%, and 96.41% are obtained

for the AB (healthy), CD (interictal), and E (ictal) classes respectively. Our model obtains

also a macro F1-score accounting for 96.90% as shown in Table 10.12. In terms of case II, as

one can observe from Table 10.8, our model attains an Accuracy and F1-score accounting

for 96.50% and 96.31% respectively. This case is pertinent to epilepsy diagnosis based on

the presence of seizure activity only. In case III, 98.75% accuracy and 98.77% F1-score

are obtained as shown in Table 10.9, indicating that the proposed multimodal model can

discriminate healthy and interictal cases very well. With regards to case IV, our model

attains 97.20% accuracy and 97.65% F1-score as seen in Table 10.10. In case V, looking at

Table 10.11, our model attains an accuracy score equal to 95.33%. F1-scores accounting

for 94.05%, 94.78%, and 97.31% are obtained for the classes A, C, and E respectively.

Also, one can observe from Table 10.12 that a macro F1-score accounting for 95.38% is

achieved by our model.

One can observe from Table 10.13 that our model outperforms 15 research initiatives

in accuracy by 0.50-17.00% for case I. For case II, as one can observe from Table 10.14,

our model surpasses state-of-the-art approaches by a margin of 0.50-3.00% in accuracy.

Table 10.15 provides the results for case III and shows that our introduced model improves

the accuracy score by 1.05-12.75%. Results reported in Table 10.16 for case IV indicate

that the proposed model surpasses the state-of-the-art approaches by 3.40-8.80% in terms

of accuracy. Finally, with regards to case V, one can observe from Table 10.17 that the

introduced architecture presents a surge in accuracy outperforming existing research works

by a margin of 0.33-5.33%. Overall, our introduced approach yields a better accuracy in

all the cases compared to the other methods proposed.

10.7 Ablation Study

In this section, we run a series of ablation experiments to explore the effectiveness and

robustness of the introduced architecture described in Section 10.4. Regarding the cases

II, III, and IV, the results of the ablation studies are reported in Table 10.19. Regarding

case I and case V, the results of the ablation studies are reported in Tables 10.18 and

10.20 respectively.

First, we explore the effectiveness of the gated multimodal unit. Specifically, we remove

the gated multimodal unit and concatenate the representations ht and hv. The resulting
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Table 10.7: Performance of the proposed multimodal model via cross-validation (AB - CD - E).

Reported values are mean ± standard deviation.

Evaluation metrics

Model Precision Recall F1-score Accuracy

AB CD E AB CD E AB CD E

Case I (AB - CD - E)

Proposed Model 97.14 97.16 97.18 97.99 96.49 96.00 97.52 96.77 96.41 97.00

±3.10 ±3.75 ±4.31 ±2.45 ±2.29 ±6.63 ±1.91 ±1.88 ±4.09 ±1.84

Table 10.8: Performance of the proposed multimodal model via cross-validation (A - E). Reported

values are mean ± standard deviation.

Evaluation metrics

Architecture Precision Recall F1-score Accuracy

Case II (A - E)

Proposed 99.00 94.00 96.31 96.50

Model ±2.99 ±6.63 ±4.13 ±3.91

Table 10.9: Performance of the proposed multimodal model via cross-validation (AB - CD).

Reported values are mean ± standard deviation.

Evaluation metrics

Architecture Precision Recall F1-score Accuracy

Case III (AB - CD)

Proposed 98.57 99.00 98.77 98.75

Model ±3.05 ±2.00 ±2.26 ±2.30

Table 10.10: Performance of the proposed multimodal model via cross-validation (AB - CDE).

Reported values are mean ± standard deviation.

Evaluation metrics

Architecture Precision Recall F1-score Accuracy

Case IV (AB - CDE)

Proposed 98.03 97.33 97.65 97.20

Model ±2.13 ±2.91 ±1.88 ±2.22
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Table 10.11: Performance of the proposed multimodal model via cross-validation (A - C - E).

Reported values are mean ± standard deviation.

Evaluation metrics

Model Precision Recall F1-score Accuracy

A C E A C E A C E

Case V (A - C - E)

Proposed Model 89.99 98.00 1.00 99.00 92.00 95.00 94.05 94.78 97.31 95.33

±8.30 ±3.99 ±0.00 ±2.99 ±5.99 ±6.71 ±4.87 ±4.03 ±3.66 ±3.71

Table 10.12: Macro Precision, Recall, and F1-score for Cases I (AB - CD - E) and V (A - C - E)

obtained by the proposed multimodal model. Reported values are mean ± standard deviation.

Evaluation metrics

Model M. Precision M. Recall M. F1-score

Case I (AB - CD - E)

Proposed 97.16 96.83 96.90

Model ±1.73 ±2.52 ±2.13

Case V (A - C - E)

Proposed 95.99 95.33 95.38

Model ±3.04 ±3.71 ±3.65
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Table 10.13: Performance comparison among proposed multimodal model and state-of-the-art

approaches (AB - CD - E). Reported values are mean ± standard deviation. Best results are in

bold.

Evaluation metric

Architecture Accuracy

State-of-the-art approaches

Novel RF [107] 96.70

EMD, higher order moments, ANN [108] 80.00

BiLSTM [99] 88.00

DWT + Kmeans + MLPNN [98] 95.60

CNN [109] 96.97

Random Forest [110] 87.00

Matrix Determinant and MLP [111] 96.50

EMD and SVM [112] 93.00

dual-tree complex wavelet

transform domain [113]
96.28

statistical dual-tree complex

wavelet transform domain [114]
83.50

ANN, hierarchical multi-class SVM

with new kernel [115]
95.00

Random Forest, wavelets [116] 95.84

CNN [117] 88.67

OPF [118] 89.20

Symlets wavelets, statistical mean

energy std and PCA, GBM-GSO, RF, SVM [119]
96.50

Proposed Architecture

97.00

±1.84

concatenated vector is passed to a dropout layer with a rate of 0.5 followed by a dense

layer (with either two or three units), which gives the final prediction. In terms of the

Case I (AB - CD - E), one can observe from Tables 10.18 and 10.7 that the removal of

the gated multimodal unit leads to a decrease of the accuracy score by 0.80%. In terms

of the Case II (A - E), one can observe from Tables 10.19 and 10.8 that the removal of

the gated multimodal unit leads to a decrease of the accuracy and F1-score by 1.50% and

1.82% respectively. With regards to the Case III (AB - CD), one can observe from Tables

10.19 and 10.9 a decrease in F1-score and Accuracy by 1.38% and 1.25% respectively.

With regards to the Case IV (AB - CDE), one can observe from Tables 10.19 and 10.10 a

decrease in F1-score and Accuracy by 1.69% and 1.80% respectively. With regards to the



240 Chapter 10. Multimodal Detection of Epilepsy with Deep Neural Networks

Table 10.14: Performance comparison among proposed multimodal model and state-of-the-art

approaches (A - E). Reported values are mean ± standard deviation. Best results are in bold.

Evaluation metric

Architecture Accuracy

State-of-the-art approaches

Relative Wavelet Energy [378] 95.20

Permutation entropy, SVM [379] 93.50

stacked sparse autoencoders [380] 95.50

Cross-correlation aided SVM classifier [381] 95.96

Permutation entropy - SVM classifier [382] 93.55

ME [97] 94.50

multiwavelet transform based approximate

entropy and ANN [383]
96.00

Proposed Architecture

96.50

±3.91

Table 10.15: Performance comparison among proposed multimodal model and state-of-the-art

approaches (AB - CD). Reported values are mean ± standard deviation. Best results are in bold.

Evaluation metric

Architecture Accuracy

State-of-the-art approaches

ATFFWT and FD, LS-SVM [384] 92.50

Novel RF [107] 93.20

Random Forest [110] 86.00

novel signal modeling [385] 97.70

Symlets wavelets, statistical mean

energy std and PCA, GBM-GSO,

RF, SVM [119]

93.20

MFDFA features + SVM [386] 96.25

Proposed Architecture

98.75

±2.30

Case V (A - C - E), one can observe from Tables 10.20 and 10.11 a decrease in Accuracy

by 4.00%.

Next, we conduct the ablation studies to explore the effects of the part of the ar-

chitecture corresponding to the image modality. To facilitate this, we remove both the
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Table 10.16: Performance comparison among proposed multimodal model and state-of-the-art

approaches (AB - CDE). Reported values are mean ± standard deviation. Best results are in bold.

Evaluation metric

Architecture Accuracy

State-of-the-art approaches

Random Forest [110] 88.40

APN [387] 93.80

Alpha band (Blackman window) [388] 92.00

Proposed Architecture

97.20

±2.22

Table 10.17: Performance comparison among proposed multimodal model and state-of-the-art

approaches (A - C - E). Reported values are mean ± standard deviation. Best results are in bold.

Evaluation metric

Architecture Accuracy

State-of-the-art approaches

LSTM [101] 94.81

Matrix Determinant and MLP [111] 94.75

DWT and neural network [389] 95.00

DWT and ensemble classifier [390] 90.00

CNN [391] 90.10

Proposed Architecture

95.33

±3.71

image representation part and the gated multimodal unit and experiment with detecting

epileptic seizures by using only the two branches of the CNN layers. In terms of the Case

I (AB - CD - E), one can observe from Tables 10.18 and 10.7 a decrease of the accuracy

score by 1.80%. In terms of the Case II (A - E), one can observe from Tables 10.19 and

10.8 a decrease of the accuracy score and F1-score by 1.01% and 1.29% respectively. With

regards to the Case III (AB - CD), one can observe from Tables 10.19 and 10.9 a decrease

in F1-score and Accuracy by 2.76% and 2.50% respectively. With regards to the case IV

(AB - CDE), one can observe from Tables 10.19 and 10.10 a decrease in F1-score and

Accuracy by 3.48% and 3.60% respectively. With regards to the case V (A - C - E), one

can observe from Tables 10.20 and 10.11 a decrease in Accuracy by 2.00%.

Then, we investigate the efficacy of the branch of the CNN architecture with the small

filter. To do this, we remove this branch and the EEG signal is passed only through the
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branch having the larger kernel size. In terms of the Case I (AB - CD - E), one can observe

from Tables 10.18 and 10.7 a decrease of the accuracy score by 2.20%. In terms of the

Case II (A - E), one can observe from Tables 10.19 and 10.8 a decrease of the accuracy and

F1-score by 1.50% and 1.94% respectively. With regards to the case III (AB - CD), one

can observe from Tables 10.19 and 10.9 a decrease in F1-score and Accuracy by 1.85% and

1.75% respectively. With regards to the Case IV (AB - CDE), one can observe from Tables

10.19 and 10.10 a decrease in F1-score and Accuracy by 0.42% and 0.40% respectively.

With regards to the case V (A - C - E), one can observe from Tables 10.20 and 10.11 a

decrease in Accuracy by 3.00%.

Finally, we explore the effectiveness of the branch of the CNN architecture with the

large filter. To do this, we remove this branch and the EEG signal is passed only through

the branch having the small kernel size. In terms of the Case I (AB - CD - E), one

can observe from Tables 10.18 and 10.7 a decrease of the accuracy score by 2.00%. In

terms of the case II (A - E), one can observe from Tables 10.19 and 10.8 a decrease of

the accuracy and F1-score by 1.01% and 1.22% respectively. With regards to the Case

III (AB - CD), one can observe from Tables 10.19 and 10.9 a decrease in F1-score and

accuracy by 2.41% and 2.26% respectively. With regards to the Case IV (AB - CDE), one

can observe from Tables 10.19 and 10.10 a decrease in F1-score and Accuracy by 2.08%

and 2.40% respectively. With regards to the Case V (A - C - E), one can observe from

Tables 10.20 and 10.11 a decrease in Accuracy by 1.33%.

10.8 Discussion

The early diagnosis of epilepsy is very important, since people receiving treatment are

able to live seizure-free for their entire life. Although several research works have been

proposed for detecting and predicting epilepsy, there are still significant limitations that

need to be addressed. The main limitation is pertinent to the exhaustive and tedious

procedure of feature extraction. Specifically, most research works extract features from

EEG signals both from time and frequency domain and train shallow machine learning

classifiers. Due to the fact that the feature extraction demands a lot of expertise, there

is a probability that someone will not extract the most representative set of features for

each dataset. Motivated by this limitation, in this paper we aim to automate the process

of feature extraction by utilizing two branches of CNNs with different kernel sizes. Con-

currently, we employ pretrained models on the computer vision domain to extract vector

representations from db-scaled (after having computed the absolute values) spectrograms,

their delta, and delta-delta. Finally, we propose a gated multimodal unit receiving as

input the two different modalities and trying to suppress the irrelevant information. From

the results obtained in this study, we found that:

• Finding 1: We applied STFT to the raw EEG signals and constructed an image

consisting of three channels, i.e., db-scaled (after having computed the absolute val-
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Table 10.19: Ablation Study. Cases II, III & IV. Reported values are mean ± standard deviation.

Evaluation metrics

Architecture Precision Recall F1-score Accuracy

Case II (A - E)

Concatenation 1.00 90.00 94.49 95.00

±0.00 ±8.94 ±5.20 ±4.47

Predicting from EEG signals 1.00 90.99 95.02 95.49

±0.00 ±9.43 ±5.45 ±4.72

Predicting without the left branch of CNNs 1.00 90.00 94.37 95.00

±0.00 ±10.95 ±6.45 ±5.48

Predicting without the right branch of CNNs 1.00 90.99 95.09 95.49

±0.00 ±8.31 ±4.61 ±4.15

Case III (AB - CD)

Concatenation 99.52 95.50 97.39 97.50

±1.43 ±4.72 ±2.40 ±2.24

Predicting from EEG signals 97.74 95.00 96.01 96.25

±4.06 ±8.94 ±5.04 ±4.37

Predicting without the left branch of CNNs 98.47 95.50 96.92 97.00

±2.33 ±4.15 ±2.76 ±2.69

Predicting without the right branch of CNNs 97.99 95.00 96.36 96.49

±2.46 ±5.92 ±3.46 ±3.20

Case IV (AB - CDE)

Concatenation 99.38 93.00 95.96 95.40

±1.88 ±5.67 ±2.90 ±3.10

Predicting from EEG signals 99.01 90.33 94.17 93.60

±2.12 ±9.24 ±5.20 ±5.35

Predicting without the left branch of CNNs 99.66 95.00 97.23 96.80

±0.99 ±3.73 ±1.97 ±2.23

Predicting without the right branch of CNNs 98.01 93.33 95.57 94.80

±2.98 ±2.58 ±1.84 ±2.23

ues) spectrogram, delta, and delta-delta. Several pretrained models were exploited,

including ResNet18, ResNet50, AlexNet, VGG16, DenseNet201, EfficientNet, etc.

Results showed that EfficientNet-B7 was the best performing model for the five

cases considered for classification.

• Finding 2: We introduced a multimodal deep neural network. Results indicated

that the proposed approach achieved comparable performance to the existing re-

search initiatives without the exhaustive procedure of feature extraction.
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• Finding 3: We ran a series of ablation experiments and explored the effectiveness

of each component included in the proposed architecture. Results suggested that

the removal of some components of the proposed model led to a decrease in the

evaluation results.

10.9 Summary

In this paper, we introduced both unimodal and multimodal approaches for classify-

ing healthy, interictal, and ictal cases. Regarding the unimodal approaches, we applied

the STFT to the EEG data and created an image for each EEG signal consisting of db-

scaled (after having computed the absolute values) spectrogram, delta, and delta-delta.

We passed each image through pretrained models and showed that EfficientNet-B7 out-

performed all the models for all the cases considered for classification achieving accuracy

scores ranging from 93.00% to 97.50%. Next, we introduced a multimodal deep neural

network. First, each EEG signal was passed through two branches of CNNs with different

kernel sizes, i.e., large and small, aiming to automate the process of feature extraction

and capture both the temporal (i.e., when certain of EEG patterns appear) and frequency

information (i.e., frequency components). Similarly to the unimodal approach, we cre-

ated an image and passed it through the EfficientNet-B7 pretrained model. Finally, a

gated multimodal unit was incorporated in the top of the architecture for controlling the

importance of each modality towards the final classification. Extensive experiments con-

ducted on the dataset provided by the University of Bonn indicated that the introduced

architecture obtained comparable performance to the existing research initiatives with an

accuracy ranging from 95.33% to 98.75% for the five different cases considered for the

classification.



Chapter 11

Conclusions and Future Work

11.1 Conclusions

We investigated the latest machine learning methods for (i) identifying depression

through posts in social media and spontaneous speech, (ii) detecting AD patients and

predicting their MMSE scores from spontaneous speech, and (iii) identifying epileptic

patients through single-channel EEG signals. This thesis attempted to find answers to a

number of research questions which were listed in Chapter 2.

• Do transformer-based networks, i.e., BERT, ALBERT, etc. achieve bet-

ter performance than traditional techniques, i.e., LSTMs, CNNs, etc.?

In terms of this research question, we exploited and fine-tuned transformer-based

networks, including BERT, BioBERT, BioClinicalBERT, ConvBERT, RoBERTa,

ALBERT, and XLNet (Chapter 5.4.1.1).

• Can we provide explanations, which will show how our models reach their

decisions? Especially in health-related tasks, it is very important for a

clinician to be informed why the deep neural network classified a per-

son as an AD patient or a non-AD one. At the same time, according to

the European Union General Data Protection Regulation (GDPR) [172]

each person has the right to the explanation. Also, can we propose inter-

pretable models, which will achieve comparable performance to existing

research initiatives? Considering this research question, we introduced an in-

terpretable deep neural network, which incorporates a co-attention mechanism for

detecting AD patients (Chapter 5.4.1.2). Also, we exploited LIME to explain the

predictions made by our best performing model and showed which pos-tags are used

by AD patients mainly (Chapter 5.7.5).

• Can we propose multi-task learning models, consisting of primary and

auxiliary tasks, to explore if the axiliary tasks help the primary one in

improving its performance? With respect to this research question, we pre-

sented two approaches. Specifically, we presented a method which investigates if

247
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the estimation of age, gender, and education level helps the depression identification

task (Chapter 4.3). We also introduced two deep neural networks, which detect AD

patients and predict the MMSE scores at the same time (Chapter 5.4.2).

• How can we combine the representation vectors of the different modalities

(multimodal approaches) effectively? Regarding this research question, we

introduced several methods for (i) combining effectively the modalities of speech

and transcripts without losing information, and (ii) in terms of the task of epilepsy

(Chapter 4, 6-9).

• Instead of creating fixed deep neural networks, can we create automati-

cally architectures which will perform best for our specific task? In terms of

this research question, we incorporated a NAS approach, called DARTS, into a deep

neural network, which is capable of generating a CNN architecture automatically.

This CNN architecture receives as input an image of log-Mel spectrogram (of the

input speech signal), its delta, and delta-delta, and extracts a visual representation.

This research question is answered in Chapter 9.

• How can we improve self-attention networks through capturing the rich-

ness of context? We exploit several strategies for contextualization, including

global context, deep context, and deep-global context. This research question is

addressed in Chapter 8.

• How can we prevent deep learning models from becoming too overconfi-

dent? In terms of this research question, we used label smoothing and evaluated our

proposed deep learning models in terms of both the performance and the calibration

metrics. This research question is answered in Chapters 4,8.

In the following paragraphs, we present our detailed conclusions per chapter.

In Chapter 4, we presented two methods for detecting depression by utilizing social

media posts and spontaneous speech. Firstly, we introduced a method for identifying

depression in social media text by injecting linguistic information into transformer-based

models. Also, it is the first study exploiting label smoothing, in order to ensure that

our model is calibrated. We evaluated our proposed methods on two publicly available

datasets, which include two depression detection datasets (binary classification and mul-

ticlass classification - severity of depression). Findings suggested that transformer-based

networks combined with linguistic information lead to performance improvement in com-

parison with transformer-based networks. Also, applying label smoothing yielded both to

the performance improvement and better calibration of the proposed models. Specifically,

in terms of the Depression Mixed dataset, we found that the injection of top2vec features

into BERT and MentalBERT models along with label smoothing obtained the highest F1-

score and Accuracy. With regards to the Depression Severity dataset, findings showed that

the injection of NRC features into the BERT model and the integration of features derived
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by LDA topics, namely GOSS features, into the MentalBERT model yielded the highest

weighted F1-scores. We also conducted a linguistic analysis and showed that depressive

posts are full of sadness, anxiety, and negative tone. Secondly, we presented the first study

utilizing a cross-attention scaling layer and multimodal fusion methods in a single neural

network for detecting depression from spontaneous speech in the Italian language through

speech and automatic transcripts. This is also the first study experimenting with a multi-

task learning setting to investigate if the prediction of gender, age, and education level as

auxiliary tasks aid the depression detection task (primary task) in increasing its perfor-

mance. Results showed that our introduced approach improves competitive baselines in

Accuracy by 1.21-21.99% and in F1-score by 1.32-22.23%. Results also showed that the

introduced single-task learning model outperforms the multitask learning ones. Finally, we

performed an ablation study, where we removed several parts of the proposed architecture

and observe differences in performance. Findings showed degradation in performance in

terms of Accuracy by 1.29-3.19%.

In Chapter 5, we introduced both single-task and multi-task learning models. Re-

garding single-task learning models, we employed several transformer-based networks and

compared their performances. Results showed that BERT achieved the highest classifi-

cation performance with accuracy accounting for 87.50%. Concurrently, we introduced

siamese networks coupled with a co-attention mechanism which can detect AD patients

with an accuracy up to 83.75%. In terms of the multi-task learning setting, it consisted

of two tasks, the primary and the auxiliary one. The primary task was the identification

of dementia (binary classification), whereas the auxiliary task was the categorization of

the severity of dementia into one of the four categories -healthy, mild/moderate/severe

dementia- (multiclass classification). Specifically, we proposed two multi-task learning

models. Results showed that our model achieves competitive results in the MTL frame-

work reaching accuracy up to 86.25% on the detection of AD patients. Next, we performed

an in-depth linguistic analysis, in order to understand better the differences in language

between AD and non-AD patients. Finally, we employed LIME, in order to shed light on

how our best performing model works. Findings suggest that AD patients tend to use

personal pronouns, interjection, adverbs, verbs in the past tense, and the token ”and” at

the beginning of utterances in a high frequency. On the contrary, healthy people use verbs

in present participle or gerund, nouns as well as determiners.

In Chapter 6, we proposed methods to differentiate AD from non-AD patients using

either only speech or both speech and transcripts. Regarding the models using only speech,

we exploited several pretrained models used extensively in the computer vision domain,

with the Vision Transformer achieving the highest F1-score and accuracy accounting for

69.76% and 65.00% respectively. Next, we employed three neural network models in which

we combined speech and transcripts. We exploited the Gated Multimodal Unit, in order

to control the influence of each modality towards the final classification. In addition,

we experimented with crossmodal interactions, where we used the crossmodal attention.

Results showed that crossmodal attention can enhance the performance of competitive
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multimodal approaches and surpass state-of-the-art approaches. More specifically, models

incorporating the crossmodal attention yielded accuracy equal to 88.83% on the ADReSS

Challenge test set.

In Chapter 7, we introduced three novel multimodal neural networks for detecting

dementia (AD classification task) and predicting the MMSE scores (MMSE regression

task) from spontaneous speech. First, we proposed a model consisting of BERT, ViT,

and a co-attention mechanism at the top of the proposed architecture, which is capable

of attending to both the words and the image patches simultaneously. Results indicated

that the proposed model achieved an accuracy of 87.50% in the AD classification task

outperforming all the research works proposing multimodal approaches except one. Re-

garding the MMSE regression task, our proposed architecture achieved an RMSE score

equal to 4.20. Secondly, we introduced a deep learning architecture, where we injected in-

formation from the visual and acoustic modalities along with the textual one into a BERT

model and used an attention gate mechanism to control the importance of each modality.

Results for the AD classification task suggested that the injection of both the acoustic

and visual modalities enhanced the performance of the models achieved when using only

either the acoustic or the visual modality along with the textual one. Finally, we intro-

duced a transformer-based network, where we concatenated the representations obtained

via BERT and ViT and passed the representation through a self-attention mechanism

incorporating a novel gating mechanism. Findings showed that this introduced model

was the best performing one on the ADReSS Challenge test set reaching Accuracy and

F1-score up to 90.00% and 89.94% respectively. In terms of the MMSE regression task,

our best performing model obtained an RMSE score of 3.61 improving the state-of-the-art

RMSE scores for the regression task of the ADReSS Challenge by 0.13-3.06.

In Chapter 8, we introduced some new approaches to detect AD patients from speech

and transcripts, which capture the inter- and intra-modal interactions, enhance the con-

ventional self-attention mechanism with contextual information, and deal with the problem

of creating overconfident models by applying label smoothing. Our proposed architectures

consist of BERT, DeiT, self-attention mechanism incorporating a gating model, context-

based self-attention, optimal transport domain adaptation methods, and one new method

for fusing the self and cross-attention features in the task of dementia detection from speech

data. Furthermore, we designed extensive ablation experiments to explore the effective-

ness of the components of the proposed architecture. Extensive experiments conducted on

the ADReSS and ADReSSo Challenge datasets demonstrate the efficacy of the proposed

architectures reaching Accuracy up to 91.25% and 83.94% respectively. Also, findings

suggested that the label smoothing contributes to both the performance improvement and

calibration of our model.

In Chapter 9, we presented the first study, which exploits Neural Architecture Search

methods and fusion methods based on Tucker Decomposition, Factorized Bilinear Pooling,

and block-term tensor decomposition, in the task of dementia detection. Specifically, we

proposed an end-to-end trainable multimodal model, which combines an automatically
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discovered CNN architecture obtained from the NAS algorithm as well as a language

model for processing the text information. We integrated the two modalities using a

variety of fusion methods. Our approach exhibited comparable performance with the

state-of-the-art baselines.

In Chapter 10, we introduced both unimodal and multimodal approaches for classify-

ing healthy, interictal, and ictal cases. Regarding the unimodal approaches, we applied

the STFT to the EEG data and created an image for each EEG signal consisting of db-

scaled (after having computed the absolute values) spectrogram, delta, and delta-delta.

We passed each image through pretrained models and showed that EfficientNet-B7 out-

performed all the models for all the cases considered for classification achieving accuracy

scores ranging from 93.00% to 97.50%. Next, we introduced a multimodal deep neural

network. First, each EEG signal was passed through two branches of CNNs with different

kernel sizes, i.e., large and small, aiming to automate the process of feature extraction

and capture both the temporal (i.e., when certain of EEG patterns appear) and frequency

information (i.e., frequency components). Similarly to the unimodal approach, we cre-

ated an image and passed it through the EfficientNet-B7 pretrained model. Finally, a

gated multimodal unit was incorporated in the top of the architecture for controlling the

importance of each modality towards the final classification. Extensive experiments con-

ducted on the dataset provided by the University of Bonn indicated that the introduced

architecture obtained comparable performance to the existing research initiatives with an

accuracy ranging from 95.33% to 98.75% for the five different cases considered for the

classification.

11.2 Limitations

The studies in this thesis include the following list of limitations:

• Lack of Explainability Methods in terms of the Multimodal Approaches.

The multimodal approaches are not accompanied with explainable AI algorithms.

Therefore, the user is not capable of understanding the reasons of correct and incor-

rect predictions.

• Lack of Longitudinal Tracking. The datasets used for the detection of depression

and Alzheimer’s dementia do not allow for investigating how these brain disorders

progress over time, since each participant is recorded only once.

• Hyperparameter Tuning. The studies in this thesis do not include a hyperpa-

rameter tuning procedure due to limited access to GPU resources. It is known that

hyperparameter tuning leads to a performance improvement.

• Need for Labelled Data. The studies in this thesis require access to labelled

datasets. However, collecting labelled datasets in the healthcare domain is often
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a difficult task due to privacy reasons. On the contrary, self-supervised learning

approaches have been developed, which address the need of labels’ scarcity.

11.3 Future Work

• Interpretable multimodal deep learning models. The clinician must be in-

formed why the ML algorithm reached a specific decision. For this reason, we aim

to apply post-hoc explainability techniques for rendering the proposed multimodal

approaches explainable. Specifically, GRAD-CAM and Integrated Gradients are two

explainability techniques which can be applied for explaining the results of any ML

algorithm.

• Labels’ Scarcity. Collecting large labelled datasets for training AI/ML algorithms

is crucial. For this reason, we plan to apply self-supervised learning approaches in

the future to address the need of large labelled datasets.

• Detection of MCI. In the future, we aim to apply our introduced approaches in

the VAS dataset proposed in [120, 121]. This dataset, includes AD patients, non-

AD ones, and Mild Cognitive Impairment (MCI) subjects. Detecting MCI subjects

is challenging and has been proved to be crucial. Specifically, the progression of

the disease can be delayed substantially by detecting timely subjects in the MCI

condition.

• Privacy Issues - Federated Learning. Processing healthcare data entails privacy

issues. To be more precise, the majority of existing approaches rely on centralized

settings, where data are gathered on a central server. On the contrary, federated

learning [392] addresses this issue by distributing the training process to end-user

devices.

• Data Augmentation. Generative Adversarial Networks (GANs) can also be ex-

ploited for creating signals, i.e., speech signals, EEG, and more. Specifically, the

deep neural networks can be trained with artificially generated data, while their

performance can be tested on real data.

• Apply our methods in other brain disorders. Our introduced approaches can

be applied to other diseases as well. For instance, research has showed that Parkin-

son’s disease affects speech, thus Parkinson’s disease might be detected through

speech and transcripts.

• Use of multi-channel EEG data. In the future, we aim to use multichannel EEG

signals [122, 123].

• Multilingual Approaches. We plan to apply our introduced approaches in a

multilingual framework. Specifically, we aim to train our models in one language
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and evaluate the performance of the models in another language. For instance, one

could exploit the MADReSS Challenge dataset [124]. One can train models based

on English speech data and assess the models’ performance on spoken Greek data.

• Knowledge Distillation. For addressing the need of creating large models, which

entail computational issues, we aim to exploit Knowledge Distillation approaches

[125, 126]. In this way, a large neural network is compressed into a smaller and

simpler one without sacrificing its performance.

• Adapters. In this thesis, we fine-tuned some pretrained models based on trans-

formers. For example, see Chapter 5. However, some information is lost during

fine-tuning, since only task-specific data are used for updating the models’ parame-

ters. This phenomenon is known as catastrophic forgetting [127]. Therefore, in the

future, we plan to use adapters [128, 129].

• Longitudinal Applications. Since depression and Alzheimer’s dementia evolves

over time, it is important to be diagnosed early. Longitudinal disease tracking is of

great importance nowadays. For instance, one of the tasks in terms of the ADReSSo

Challenge is the cognitive decline (disease progression) inference task, where one can

create a model to predict changes in cognitive status over time.
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SGD Stochastic Gradient Descent

STFT Short-time Fourier Transform

STL Single-task learning

SVM Support Vector Machine

SVR Support Vector Regression

VCI Verbal Comprehension Index

ViT Vision Transformer

WAIS Wechsler Adult Intelligence Scale

WHO World Health Organization

WMI Working Memory Index

WMS Wechsler Memory Scale
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