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Me empiioaln TovToC SIXOUMUATOS.

Anayopeletan 1 avTrypopy|, amotixeusT) xat Slavour| Tng topovoag epyaociaug, €€ olo-
XAAEOL 1 TUAUATOC AUTAS, Yio EuTopixd oxomod. Emtpéneton 1) avatdnwor), anodfxsuon
X0 BLVOUY| YLoL OXOTO 1) XEEOOOXOTINO, EXTOUOELTIXAC 1} EEELVNTIXNC PUOTC, UTO TNV
TEOUTOVEDT] VoL AVOPERETOL 1) TNYT) TEOEAEUCTC XAl VoL OLoTNEEiToL TO TTaPOY W VUL
EpwtAuata mou agopolv 11 yenon e epyasiag yio xEpB0OX0TIXG OXOTO TEETEL Vol
ameudivovtor Tpog Tov ouyypoapéo. Ol amdelc xon To CUUTEPACUOTA TOU TEPLEYO-
VTOL OE QUTO TO €YYPUPO EXPEAlOLY TO GUYYPUPEN Xou OEV TEETEL Vo epunveLdel 6Tt
AVTITEOOWTEVOLY TS entlonueg Véoelg Tou Edvixod Metodfiou Hohuteyvelou.



HeptAngm

Ou Bratopoyéc Tou eYXEPIAOL AmOTEAOUY Wla amd TIC MEYUAUTEQEC TEOXANCELS Yid TNV
vyeta. Troloyileton 6Tt mepimou 165 exatouudela dvipmTol TUCYOLY ATO EYXEPUAXT] OloTa-
ey otnv Eupdmn, eved 1 otoug 3 avipdroug Yo unogépel and eyxepaixt| dtatopayy| xdmola
otiyur) oty (o tou. Mepixol timoL eyxepolixmy Sotopoywy eivon ol axdloudol: Ndocog
Altoyduep, Bidgopol tonol dvolag, emindla, vocog Idpxivoov, duyinés Swotapayés, x.d.
Avtéc ol duatapayéc enneedlouy Tov TEOTO PE TOV OTolo oL AvipmTol oxépTovTal, acVdvo-
VTl 1} EXTEAOLY X NUEELVES Bpao TNELOTNTES. 201660, QY AUTEC OL BLaTapay €S DLy Vo To0V
€YXOUEOL XL TO GTOUO AJBEL TNV XATIAANAT QOOUOXELTIXT orywYY), 1 e€ENEY Toug umopel va
xaduoteproel onuovtixd. o 1o Aoyo autd, 1 €yxouen Sudyvwon etvar xadopiotixr). H Te-
yvnt Nonuooivn (TN) petaoynuatiler tov 1pom0 pe ToV 0Tolo avTUETOTLOUUE XOWVWVIXS
{ntripata evioybovtag TNy eunuepiot TOGO WV ATOUWY 6G0 Xl TwY xowothtwy. O dooc “TN
v 10 Kowwvind Kord”, enlone yvwotoc we “TN yia to Kowwvixd Avtixtuno”, elvan éva
VEO TEG(O EPEUVOC TTIOL GTOYEUEL GTNV OVTHIETWTLOT UERPLXMY OO TA TILO CNUAVTIXG XOWOVIXSL,
TEPBUAAOVTING xan BNuosLa LYELOVOULXS TEOPBAUaTa Tou UTdpyouy ofjucpa. H moapodoo dida-
xTopY) BLaTEPn €xEl W 6TOYO Vo GUUPEAEL GE aUTO TO VEO TEDLO PE TNV AVATTUEY GUY Y POVWY
HEBOBWY unyovixig Lddnong, yiot TNV ovary vopelon TeLwy UElovey BLaTapayhV TOU EYXEPIAOU,
ouumepthoBavouévng tne xatdiduhng, dvolag tne voécou Ahtoydiuep xat emandlog.

H xotddrdn ocuvendyeton peydho oprdud CUUTTOUATWY, OTKOC ATWAELL EVOLUPELOVTOC,
Yupo, amouctodolia, odlayéc ato Bdpog, aoiuaTo avixavoTntag, oxEPelc aUTOXTOVING XoL
TOMG dAla. To péoa xowvwvinfc dTLmong yYenowonooLvtal ot xalnuepvn Bdon and ov-
Ypodoug, ot onolot expedlouv Ti¢ oxédelc xar o cuVUGVAUUTA Toug CLULNTWVTAS UE GANOUC
yeroteg. Ou umdpyouoeg epyacieg yenolonotoly dedouéva and To UECH XOWVWVIXTG OXTUM-
O™NG UE OXOTO TOV EVIOTIOUO XTI MTTIX®Y Onuocteloeny. Ol gpyasie autég yenotuonoloiy
povtéha mou Baoctlovton oe yetooynuotiotés (transformers). Qotéc0, autd Tor povTéra Gu-
Y V& 6EV UTopoUV Vo GUAAABOUY ThoUota TEXUNELWUEVT YVoon. Eriong, n outhio etvan évag
ofomotog Blodelxtng yia T ddyvworn tng xatddidng, xodog or dvipwmnor pe xotddiudn
ToEOVGIALOUY UEIWUEVT TOROYWYIXOTNTA AeXTiXNG dpao TnetdTnTag xou “dduyo” fyo ouihlag.
{61600, oL uTdpEyoLCES UEVOBOL YENOWOTOUY UOVOTEOTLXA LOVTENA, £QUEUOLOUY CTEATN YL
xéc early, intermediate, xou late fusion yio Tn cLUYYOVELOT TWV BLAPORETIXWY TEOTUXOTATWY,
BaoiCovton otnv e€aymYT YARAXTNELOTIXWOY Xl EXTEAOVY TIC TEOCEYYIOES TOUC UOVO GTNY
oayy ) Yhwooa. H dvolr ot véoo Ahtoyduuep yopaxtnelleton and anmdAEld UVAUNG, €V
emnpedlel TN YAwooao xat Ty ouhia. Ilponyoluevee epyaoiec yenoylomooly Ty outhior xou



8 Iepidngm

ATOUOYYNTOPWVACELS YL TNV avayVopRLor tng dvolag. 2oTéc0o, oL TponyoLUEvES epyaoieg
EMUXEVTPOVOVTOL ATADS 0T BeEATiwon TNE anddoonE TV TEOTEWVOUEVWY UOVTEAWY, BacilovTton
oTNY €YWYY YORUXTNEIC XY, EVGL oL oTpatnyxés early xau late fusion yenowonowodvton
OGOV APORA. TIC TOAUTROTIXESG TPOCEYYIOELS, ONAadT TpooeYYioE TOU YENOYOTO0Y TGO TNV
outhlor 600 %o TO amopAYVNTOPVNUEVO xeluevo. Ot emAnmTinég xploelg ocuvendyovTol oL
vovixd otiyuo. Ot undpyovoeg epyaoiec Boaoilovtar oty e€oymYn YaeaxTnElo TIXOY oand To
nhextpoeyxepahoypdgpnua (HET') ¥ otn Swipeon twv onudtwv HEL oe modoamid vrooruata
X0l OTNV YENOHOTOINCT TEYVIXWY majority vote otn cuvéyeLa.

Autr 1 SBaxTopr) SlaTEBY) Elval 1) TEMTN TOL BLEPELVE GUC TNUATIXG Bidpope PedEBoUG
Yoo Tov evionioud (1) e xatddMne yenotLonotdVIaC avapTAOELS OTO UECA XOVWIXAS Ot
xtowone xou opthla, (i) acdevdv pe dvowr e véoou Altoyduuep xon tedBhedne twv Pad-
HOAOYIOY Toug Uéow uiog abvtoung egétaong e vontixig xatdotoong - Beayelon Kiipoa
Extiunone twv Nontxodv Aettoupyudy (Mini Mental State Examination) pe ypron audopun-
Tou Adyou, (iii) emhnioc péow onudtwy HEL povod xoavahiod. O Baoixéc cuvelo@opéc e
dlatelPnc etvan ot e€Xc: Apyxd, elodyovtan 800 pédodol yior T avary vodplan Tng xotddidng.
‘Ocov agopd tnv mpdn uédodo, elodyeton 1 epyacio Tng Sdyvwong g xatddiudng oto yéoo
XOWWVIXNG BIXTOWOoNG XL TROTEVETOL ol UEY0BOE VLol TNV EVOWUATWOT) eEOTERXOY YAWO-
OOV TANPOYOPLOV OE TPOEXTUOELUEVE Yhwoowd povtéha (t.y. BERT, MentalBERT).
AvadewvieTal, €101, OTL 1) EVOOUITWOT YAWCOIXOY YARUXTNELO TIXWY EVAL EVERYETIXY Yol TNV
avaryvoplon e xatddine. ‘Ocov agopd tn debtepn pédodo, eiodyetan plo Tpocéyyion, 1
omolo Baotletar ot yeron ouhiog xau Tapayduevey and unyovi| (automatic) amoporyvnto-
POVNUEVOLY XeWEVLY. ['iot Tov eviomioud g dvolag, BEATIOTOTOLOUVTAL To YAWCOIXA LOVTENA
mou Pacilovton oe yetaoynuoatiotée (transformers) xou nopoucidlovioan npooeyyioels enedn-
ynowoétnroe (explainability) xou yAwoowée avolloel yia ) Slepelivnon Twv dlapopty ot
YAOOGO UETOEY LYWV ATOPWY xan ac¥evy ue dvolr. Eniong, ewodyovton pédodol yia 1
OLYYWVEUOT] TV SLAPOPETIXMY TROTXOTATWY (outhia, xeluevo), to xohumpdploupa (calibra-
tion) twv TEOTEWOUEV®DV HOVTEAWY UE GTOYO TNV amopuY T dnuoupyiouc utepBolixd olyoupwy
HoVTENWY, TNV evioyuon — Bektinon twv dixtiny autonpocoy e (self — attention) pe mAnpogo-
oleg oyeTinég pe Tar GUPPEAUCOUEVO X0l TNV AUTOUOTY) BNULOLEYIN EYITEXTOVIXWY LUVENXTIXDY
Neuvpovixwy Axtiwy pe Yprion TexVix)y auTolatne avalATNONS AEYLTEXTOVIXDY VEURKOVLXOU
ductoou. Télog, mopouctdleton plar TOAUTEOTIXY TEOGEYYION Yo TNV aviyveuon tng emAndiog
aglomoldvtog povoxdvoha orjuato HEL. ‘Oha ta tewpdpota diegdyovton oe dnuooing diodéotua
GUVOAQL DEQOUEVMY.

Avuty| 1) SdacTopixy| Slatelf3n) anotelel €va TEKTO, VeUehddES Brido ueTalh GAAWY TEOCPa-
TwV TEOoTAIELDY, TEOS T BEATIWOT TNG AmOBOONE TWV AUTOUATLY CUCTNUATWY TOU GTOYE-
DOLY GTNV AVALY VOELOT) BLAPORWY BLATARAY Y TOU EYXEPIAOU UE TN YEYOT) CUYYPOVKY TEYVIXWY
Bordidg pdinong, meowdel mepartépw TNV EQUPUOYT TWV VEWY TEYVOAOYLOY ot plyVEL PwS oTo

avodLopeva TEdlo NG eMegepyaotag XEWEVOU, oUhlog, EOVIC Xl CHUATOC.

AéEeic KAeoud

‘Avowo tng véoou Altoydupep, Emindio, Kotddiupn, Méoa Kowvwvixie Axtbwong, Out-
Mo, Anoporyvnrogwvnuévo Keluevo, Hhextpoeyxepoloypdpnua, Mnyovixy) Mdidnon



Abstract

Brain disorders represent a significant health challenge. It is estimated that approx-
imately 165 million people suffer from a brain disorder in Europe, while 1 in 3 people
will experience such a disorder during their lifetime. Some types of the brain disorders
are the following: Alzheimer’s disease, dementias, epilepsy, Parkinson’s disease, Mental
disorders, and more. These disorders affect the way people think, feel, or perform daily
activities. However, if these disorders are diagnosed early and the person receives suitable
medication, their progression may be delayed. For this reason, early diagnosis is crucial.
Artificial Intelligence (AI) holds the promise of transforming how we tackle societal issues
and enhancing the welfare of both individuals and communities. “Al for Social Good”,
also known as “Al for Social Impact” is a new research field aiming to tackle some of
the most important social, environmental, and public health challenges that exist today.
Another main aim of the “Al for Social Good” is to address the United Nations Sustain-
able Development Goals (UNSDGs). This PhD thesis aims to contribute to this new field
by developing modern machine learning methods, with a particular focus on three major
categories (Depression, Alzheimer’s Dementia and Epilepsy).

Depression entails a great number of symptoms, including loss of interest, anger, pes-
simism, changes in weight, feelings of worthlessness, thoughts of suicide, and many more.
Social media are used on a daily basis by people, who express their thoughts, feelings by
discussing with other users. Prior work employs transformer-based models. However, these
models often cannot capture rich factual knowledge. Also, speech is a reliable biomarker
for diagnosing depression, since depressed people present decreased verbal activity pro-
ductivity and “lifeless” sounding speech. However, existing methods employ unimodal
models, use early, intermediate, or late fusion strategies to fuse the different modalities,
rely on feature extraction, and perform their approaches only in the English language.
Alzheimer’s dementia is characterized by loss of memory, while it affects language and
speech. Previous work utilizes speech and transcripts for recognizing dementia. How-
ever, prior work focuses on just improving the performance of proposed models, relies on
feature extraction, while early and late fusion strategies are employed in terms of multi-
modal approaches, i.e., approaches employing both speech and transcripts. Epilepsy and
seizures entail social stigma. Existing works rely on extraction of handcrafted features
from electroencephalography (EEG) or dividing the EEG signals into multiple sub-signals

and exploiting majority vote approaches.
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This PhD thesis is the first to systematically investigate various methods for identi-
fying (i) depression by utilizing posts in social media and spontaneous speech, (ii) AD
patients and predicting their Mini Mental State Examination scores through spontaneous
speech, (iii) epilepsy through single-channel EEG signals. The key contributions of our
work are the following: First, we introduce two methods for identifying depression. Re-
garding the first approach, we present the task of predicting depression in social media
and propose a method for injecting external linguistic information into novel pretrained
neural language models (e.g. BERT). We show that incorporating linguistic features is
beneficial to depression recognition task. In terms of the second approach, we introduce a
method which identifies depression based on speech and automatic transcripts. Secondly,
for identifying dementia, we fine-tune language models based on transformers and present
explainable approaches and linguistic analyses to investigate differences in language be-
tween healthy and AD patients. Thirdly, we introduce methods for fusing the different
modalities (speech, text), calibrating the proposed models, enhancing the self-attention
networks with contextual information, and automatically generating Convolutional Neural
Network architectures (Neural Architecture Search). Finally, we present a multimodal ap-
proach for detecting epilepsy by exploiting single — channel EEG signals. All experiments
are conducted on publicly available datasets.

This PhD thesis represents a first, fundamental step among other recent efforts towards
improving the performance of automatic systems aiming at recognizing various brain disor-
ders using modern deep learning techniques. This thesis further advances the application
of new technologies and sheds light on the emerging fields of text, speech, image and signal

processing.

Keywords

Alzheimer’s dementia, Depression, Epilepsy, Social Media, spontaneous speech, Elec-
troencephalogram, deep learning, transformers, explainability, interpretability, multi-task

learning, multimodal
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Extetopevn Ilepiindmn

1.1 Ewaywyn

Ou Bratopoyéc Tou eYXEPIAOL AmOTEAOUY Ulal amd TIC UEYUAUTEQES TPOXANCELS Yidl TNV
vyeta. Troloyiletan 6Tl mepinou 165 exatouudplor dvipwmol Tdoy oLy and eYXEPaALXY) SloTa-
poy) otnyv Eupdnn, eved 1 otoug 3 avdpdroug Yo unogépel and eyxepalixt| diatopayr| xdmola
otyun otn Lot Tou. Mepixol TOTOL eyXePaAX®Y Sotapoay @V eivon ol axdhoutol: Nocog Al-
Toy e, didpopol Tumol dvotag, emandio, Nocog Ildpxivoov, Wuyixéc Sortapoyéc xon Gk
Autég oL datopayég emnpedlouy Tov TEOTO UE ToV omoio ol dvipwrol oxépTovial, oucddvo-
VTl 1} EXTENOLY xodNuEELVES Bpao TneldTNTeS. 201600, QY AUTEC OL dlortapay€c Bloy Vo ToOV
€YXOUEOL X0l TO ATOHO AJPBEL TNV XATIAANAY QapUoXELTIX aywYT, 1 eEEMEY Toug umopel va
xaduoteproel. o to Adyo autod, 1 €yxanprn Sdyvwor etvar xodoploTiny.

H Teyvnti Nonuooivn (TN) petaoynuatiler tov tpéno pe tov omolo avtyuetonilouye
OOV INTAUATE EVIGYVOVTOS TNV ELTUERLX TOGO TWV ATOUWY OGO XaL TWV XOWVOTHTWY. O
opo¢ “TN yia to Kowvwvind Kard”, eniong yvwotog we “TN yia to Kowwvixd Avtixtuno”,
elvon €val véo medlo €peuvag TOU GTOYEVEL GTNY AVTWETOTICT HEPLXMY OTO To TLO CNUAVTIXG
HOWVOVIXE, TEPUBOANOVTIXG Xa ONUOGCLYL LYELOVOULXS TeoBAuaTa Tou uTtdpyouy crucpa. H
Tapovca B TopXT BLATEBN €YEL WS 0TOYO Vo GUUPAAEL o€ aUTO TO VEO eSO YE TNV avamTUEn
oUYYEOVOY UEDOOWY Unyovixhc udinone, Ue WOWETERY EUPAoT) OE TEELS UEYIAES XUTNYOPiES
(Kotddhudm, Avowar tng véoou Aktoydupep xow Emindia).

H xatddhupn ouvendyeton peydho oprdud CUUTTOUATWY, OTKS OTOAEL EVOLUPEROVTOC,
Yupo, anoctodolio, arlayéc oto Bdpog, arofuota avixavotntog, oxéel; autoxToviag ot
TOMG dhha. H dvora ot voco Ahtoyduuep yopoxtnelleton and anmheia UVAUNS, eve ennpedlel

™ YAOooa xar Ty olhio. Ou emAnmuinég xploeic cuVETdYOVTAL XOWKVIXG oTiyua.

1.1.1 Xrtbyxog Awbaxtopixrs AwxteiBrg & Juvelcpopeg autnig

Me Bdon To TEpLEYOUEVO TNG EPEUVIC XL TIC XAVIXEC OVEYXES OTIWC TERLYPAPOVTAL TOEA-
TV, 0 GLYVOAXOS OTOYOC AUTHE TNG OLbuxTOoEAC dLateBnc elvan 1) Bedtiwon tne aviyveuong
TWV OLATURUY WY TOU EYXEPAAOU YPNOULOTOWVTAS TRONYUEVES TEYVXES UNYUVIXTS Uainong.
Ewuxotepa, auth 1 dlatpld) mopouctdlel auTOUOTa GUC TALATO YLOL TNV OVOY VWELOT) TELOV [E-
{lovwyv SLatapay®y Tou eYXEQIAOL, cuurept opfBavouévne g xotddiung, Tng dvolag tng
véoou tou Altoydiuep xou Tng emhndlag.

‘Ocov agopd v xatddiur, n Swtedr) egetdler 600 uetddous avayVoelohe TG UEow

13
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TWV ONUOCLENCGEWY GTO UEGU XOWWVIXTHE OXTOWENE xa NS optAlag. ‘Ocov agopd Ty TenmT
uédodo, yenotuomololvTal SEBOUEVH UETWLY XOWOVIXNE BIXTUMONS Xol dNULoLEYoLVTOL Epyoeia
Baolopéva oty enedepyaoia QUOXTE YAWCOAS YLoL TNV AV VEUGT) XATATATTIXGDY AVIRTHCEMY.
Emumiéoyv, auth n SwteBr) avalntd vo Beel Slopopéc otn YAWooo YeTald XATodATTIXGY o-
TOUWY XU PTFXATAIATTIXGDY UECK ULaG AETTOUEPOUS YAWGGOAOYIXNG avdiuoTg. ‘Ocov agopd
™ deltepn pédodo, mpoteiveton Eva Bodl veupwmvixd dixtuo Bactouévo ota SixTud PETACY T
HOTIOTOVY Xl TIC TOAUTEOTUXEG pedddoug cuyy@veuong xan e€etdleton edv 1 TeolAedn tng
nAxtag, Tou gUAOU xou Tou emEdoL exmaldevong cuUBdAlouY oY adénon Tne arddoang TNg
VALY VORLOTE TNG XATEVALPNC.

‘Ocov apopd tnv dvolo Tng vocou ARToydiuep, eVIappUVOUEVOL OTd TO YEYOVOS OTL dTOud
UE dvota Tapouctdlouy EANElUPATO 0T YAOOOA ot TNV odtAla, ouTyh 1) Slotelfn yenoiuo-
notel nyoypaphoels TN avdopuntng owiag xon SnuoupeYel auTéUaTH CLUCTHUUTA Baclouéva
otny enegepyaoio puoxnic YAOooug xou Ty eneepyacia Hyou. Suyxexpiuéva, Teocupuolou-
UE UOoVTEAX BOCIOUEVO GE PETACYNUATIOTES, EXUETOUAAEVOUACTE TEYVIXES ETEENYNOWOTNTAS
20l YAWOGONOYIXEG avOhDOELC Ko EEEQEUVOUUE OPIOUEVA YAWOOIXE YAPAUXTNELO TIXA TTIOU Elvan
Yerowa Yo TRV aviyveuoT Tng HEIONS TV YVOOTIXOY XavoThTov. Auth 1 SwteBy) avo-
{ntd, enlong, va xeNoWOTOOEL TOANUTEOTUXE HOVTEAN EXUETUAAEVOUEVOL XAl TNV OULALL XalL T
amouoyvnTopwvnuéva xetueva avti vo emxevtpmlel povo oTor AexTixd, oaxoucTIXd 1) OmTXd
YAEUATNELO TLXAL.

‘Ocov agopd tnv emindio, evioppuvouevol and To yeyovog Ot 1 TapoxohobinoTn onudtemy
Hhiextpoeyxepauroypapripatoc (HEL) and veupohdyoug eivor pior xoupaotixs xaL eudhwtn oe
A&dn epyacia, nopovotdlovpe Eva VEo autdpato clotnua Pactopévo o TohuTeomixy| uévodo
yioe T Sy veon tng emindlog.

YUVoAxd, ot X0PLEC CUVELSPORES auUTHS TNS dlatpBric elvan ol e€Xg:

o Ilpoteiveton yio eme€nyfodn TEOCEYYLON Xal Widt UEAETN YAWCGCOAOYXNAG avdhuong Ole-
PELVOVTOS TOL YAWOOLXA YUPAXTNELO TIXE TV AGVEVOY UE dvola. Xe avTiVeoT e TpoT-
YOUUEVES EPYAOIES, OL OTOLEG ATAWS EXTALOEVOLY AAYOELIUOUS UnNyavixg Udinong yia
Vv aviyveuon ac¥evay ue dvola, auth 1 dtateBn yenotdonotel o enednyNoydn Teocéy-
yion xou €lodyel gl YAwooohoywr) avéiuorn. Ko ol 800 mpooeyyloelc anoxahintouy
OLpOEEC 0TO AEEIANOYLO PETUEY UYLV ATOUMY Xal aoUeEVOY UE dvola. XpenoylonoloVue
NV Bl UEAETT YAWOGOAOYIXTG OVIAUGTIC OE €VOL GUVOAO BEDOUEVWV TIOU TERLEYEL XAUTO-
YMmTnd xelpevo xou Bploxouue Slopopéc ot YAOGOoH YETAE) UYLV Xot avIpOTOY UE
xatdiadm.

e Ewdyovtouw nolutpomxd povtéra. Xe avtileor Ue TIC UTHpYOUCES EQEUVITIXES TEWTO-
Bouliec, ol onoleg yenowonoloLy cTpatnyixéc early, intermediate, late fusion, auth 7
OLtEL3Y| €lodyel VEEC UEVOBOUS, TPOXEWEVOU VO CUYYWVEUCEL TIC OLOPORETIXES TEOTIL-
XOTNTEC. LUYXEXPUEVA, auUTH 1) SLoTel3Y) emexTelvel TI¢ Tpomyolueveg epyaoieg aflomol-
ovtog uedodoug, onwe Gated Multimodal Unit, Cross-Modal Attention Layer, Cross-
Attention Layer with Gated Self-Attention, Optimal Transport Domain Adaptation

methods, x.¢. Autéc ol mohutpomxég mpooeyyioeic viodetolvton oe pla oelpd nELpo-
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HTwY, OTwe aviyveuon xotddMgng u€ow avapTAOEWY GTA UEGO XOWVWVIXAS SIXTLWONG
XL qudoEUNTOU AOYOU, AVAYVOPELCT, GVOlIS PECW OWALNG oL ATOPAY VITOPOVNUEVOU
xeévou, aviyveuor emindlog péow evog xavahiol Hiextpoeyxepahoypapruatog, xou

otoyebouy oty adENom TNS AmdBOoNG TOU EMTUYYAVOLY TOL LOVOTEOTUXE LOVTEDL.

o Iopoucioon puedddwv Baduovéunone (calibration) Badéwy veupwvixdy dixtimy. Ipon-
yolueveg epyaoieg a&tohoyoly ta Badid vevpwvixd dixtua ue Bdon uévo Ty amnddoon
(performance). Auth n datpr) enexteivel Tic TponyoUUeveS epyaoiec pe altonoinom
pedodwy yior T Baduovounon Twv LoVvTEA®Y xal TNV oa&LOAOYNON QUTGY TWV LOVTEARY
aglomoldvtog PeTEhoelg anddoone xou Boduovounong. H Baduovounorn éyel wg atdyo
NV amouYY dnuovpyiag utegBolixd clyoupwy Lovtéhwy. Autéc ol mpooeyyloelg Ole-

/. /. /’ 7 14 /.
Edyovton o oOvoha Bedouévnv Tou oyetiCovton pe TV xatddAu)m xar Ty dvola.

o Evowpdtwon pedddou auvtdpoatng oavalAnong apyltextonxhc veupmvixol dixtoou (Neu-
ral Architecture Search) oe npotewdpeva povtéha. Xe avtideon ye nponyolueves ep-
Yaoieg, mou yenowonotoly otodepée (fixed) opyttextovinée, auth n dtelPr evonua-
TWVEL UId TROCEYYLON AUTOUATNG avallATNONG AEYLITEXTOVIXAC VELPWVIXOU BixTOOU, ToU
ovoudletoar DARTS, oe éva Bodl veupwvixd Bixtuo yior TNy autouatn dnuoupyio plog
OEYLTEXTOVIXAG GUVEMXTIXGDVY VELPWVIXGOY BixTtOmy (Convolutional Neural Networks).

Me tov tpémo autd, Beloxouue 1 BéATion apyttextovixry CNN oto 816 pog task.

e Ewdyovton Badhd vevpwvixd dixtua, tar onola unopodv vo exnatdeutody Ue Tpomo end-
to-end, e&akeipovtac 1N ypovoPopa dadixacio eCaywyNc yoeoxTeloTixwy. Avtieta
UE TPONYOUUEVES EPELVNTIXEC EpYaoieg TOU €E8YOUV UEYHAO 0PI YAUPUXTNRIGTIXY,
a&LoToL00V TEYVIXES ETUAOYTC YUQUXTNRIOTIXDY 1) UEWONE BLUGTAGEWY X EXTOUOEVOLY
ToEadoaLoxoUS ahyopLdous unyavixic pdidnong, n mopodoa dateldr otoyelel oTNY
e€dheuhn g avdyxng yior €YY YoEUXTNEIOTIXWY, TpoTeivovtag Padd vELPWVIXA

olxTua XL LoVTEAN BACLOUEVOL OF UETACY NUATIOTES.

e Evioyuon twv dixtinv autonpocoyfc e TANEOQORIES OYETHES YE Tl GUUPEAULOUEVAL.
Auth n Slater) otoyelel va evioyoEL To eNiTEdO AUTOTEOGOY NG TEOGVETOVTASC TANRO-
poplec oyeTéC Ye Ta ouUPEalOUEV. XUYXEXQWEVA, 1 Topoloa Blateld Tapouctdlel
TEEIC OTEATNYIXES YO TNV XUTAOXELY) VO BlavOoUaTog, Tou hoyfdvel untddn to Teple-
YOUEVO TN TEOTACTG, OE €V EXTTUOEUGLIO amd dxpo o€ dxpo Badl vevpwvixd 6ixTuo.
Auth n mpocéyyion mpaypatonoleitar o GUVOAA Se6oUEVKY Tou oyeti{ovTton Ye To task

¢ dvolag Alzheimer.

o Eiodyovtoan povtéda udinone molhamhwy epyactoyv. Auth n dwteldh npoteivel apyi-
TEXTOVXEG UAONONC TOMATADY ERYOCLOY YIOL TNV AVALY VORI TNG XATEUAPNS Xou TNg
dvotag Alzheimer. Apyuxd, n mopoloo dlatpd topoucidlel wio Tpocéyylon uddnong
TOMATAGDY EPYOCLMY YL TNV TOUTOYEOVY LOVIEAOTONGT TV EQYUCUOY AVAYVOPIONC
e xotddAng, Tou emnédou exmaldevong, e NAxiag xat Tou @UAOU. XTN CUVEYEL,
1 TaoLCA BLATELEY| ELGAYEL OEYLTEXTOVIXES UAUTNOTNG TOAATADY EQYAUCLOV UE OTOYO TNV

TeOPBAedn ToV epyaotwy aviyveuong AD xou medfBiedng MMSE.
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1.2 Audyvwon Katddidng

H xatddhudm etvon o ooPapr Siatapoyy| tne Sudeone, n onola ennpedlel Tov TpoOTO TOU
ol dvipwnot arcddvovton xou exterolV xadnueptvéc dpaotneotntec. Ot dvipwmol yenoiuo-
ToL0V Ta HEGU XOWOVIXTE DIXTOWONS Yot VO EXPEACOLY TIC oxEPElg xaL Tol cuvILcURUATd
Toug péow avapThoEwy. Enouévwg, o yéoa xovwvixrg dxtinong mapéyouv Bordeia yio
™V €yxanen aviyveuoT Puyxdy xaTacTdoEwY. Extog and v avoryveeton g xatddiudng
UECW AVUPTACEWY OTOL UEGO XOWOVIXNG OXTUWONG, 1) oWthio etvon évag alomoTtog Brodeixtng
yioe T Sudyveaon e xatddhdng, xodog ot xatadhinticol dvipnnol Tapouctdlouy UELWUEVT
TOEOY WYIXOTNTA AEXTIXAC ORC TNELOTNTOG Xou OULAlal Tou axolyeTan “duyr’.

Ye autd 10 xEPIAALO, TaEOUGIALOUUE BVO TEOCEYYIOELS Yot TNV OVaY VEPLOT| TNG XAUTEUAL-
dne. Buyxexpwéva, otny Evotnta 1.2.1 napouctdlouue Uiar TpocEY Yo YLl TNV ovary VepLoT
e xotdIMPNG HEow avVaPTACEWY GTA UEGO XOWVWVIXAS BXTUWONG, eved 1 Evotnta 1.2.2 na-

pouctdlel pLor u€dodo Yo T avory vaelom Tne xatddiume yenotuonolwvtag audopuntn outhio.

1.2.1 Awyvwon Katddidng ota Méoa Kowwvixre Awxtiwong
1.2.1.1 Kivnzeo

H xotddhdn! ouvendyetor peydho apriud oUUTTOUST®Y, OTWC AmMALL EVBLpEPOVTOC,
Yupog, anactodolio, ahhayéc oto Bdpog, cuvILcUAUNTA oviXxavoTNTaS, OXEPELC auToXTOVINC
xo TOAMG dhha. Dopgwve pe otov Hayxdowo Opyavioud Yyeloc (TIOT)?2, nepinou 280
exatoppdpla avdpnnol oTov x6ouo €youy xatddium. Kiva, Iveia, Hvwuéveg IToteleg, Poaoto,
Ivdovnaoia, xou n Nuynelo etvan pepinée amd Tic yweeg mou napouatdlouy to UPNAGTERH TOGOGT
nortddhdne3. To dropa e dyyog xow xotddhubn yenotuonolody TAATPORUES LECWY XOVOVIXAC
dixtbwone, ouprepthapuBavopévoy twv X/ Twitter xou Reddit, xou popdlovtan tic oxéderc xou
To CUVACUARATE TOUG PEGHL aVIRTHOEWY 1) oYOAwY pe dhhoug yeriotes. Emouévag, ta yéoa
HOWWVIXNG BIXTOWONE AMOTEAOUY plal TONOTIY YY) TANEOQPORLDY.

Or undipyouoeg epeLVNTIXES EPYACIEC YENOILOTOUY Tal BEBOUEVA TWV UECWY XOWOVIXAC
OXTOWOTNG, YLl Vo avary Vepioouy xaTadMTTIXES xou oy ywTixég dnuootedoelc. H mheiovotn-
TOL QUTWY TV EPEVVITIXMY EQYUCLWV YENOWOTOLEL E0yWYT| YOQUXTNELO TIXOY Xl EXTULOEVEL
enyole ahybprduoue unyavixhc pdidnone [1, 2]. H eZoywyr yopaxtnpiotixdy anotehel pa
YeovoPopa dradixaotior xou amoutel e€etdixevon otov Touéd, xadwe Ol EQEUVNTEG EVOEYETAUL VoL
un Beouv To BEATIOTO GUVOAO YOQUXTNPIOTIXMY VLol TO CUYXEXEWEVO TEOBANUe. [t Ty o-
VIWETOTION QUTOV TWV TEPLOPLOUAY, dhkes mpooeyyioelc [3] yenotwonotoly Bodid veupwmvixd
dixtua, cuUTEPAUUBAVOUEVGDY TOV CUVENXTIXGOV VELPKVIXGDY dTliwY (CNN), BILSTM, xou
oltw xoedhc, 1 povtéha Boaotouéva oe petaoynuatiotéc (transformers). Emmiéov, undp-
YOULV EPEUVITIXEC WEAETEC TOU Ypnotpomooly atpatnyixéc late fusion [4]. Qotboo, autéc

ol TpooeYYloelg aLEAVOUY OUCLUCTIXA TOV YEOVO EXTIAUBELOTNS, 0ol TOAAG UOVTENN TEETEL

"https://www.who.int /news/item/02-03-2022-covid-19-pandemic-triggers-25-increase-in-prevalence-of-
anxiety-and-depression-worldwide

*https:/ /www.who.int /news-room /fact-sheets/detail /depression

3https:/ /pulsetms.com/resources/around-world/
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Vo exmondevovToL YweioTd. Emimhéov, npdogota €yvay uehéteg mou delyvouv 6Tl Tol HoVTERX
mou Bootlovial o YETAOYNUATIOTEC SUOXOAEDOVTOL 1) ATOTUYYAVOLY Vo GUAAGBOUY Tholoia
yvoon [5, 6]. T tov Aoyo autd, éyouv npotadel uédodol 7, 8, 9, 10] yio ) Behtiwon autdyv
TV HOVTEAWY Ue e€wTepixéc TAnpogopieg 1) tpdoleteg hentouépetec. Emmiéov, n allomotia
e eumotoolvng evog povtéhou ML otic mpofiédeic tou, mou dnimveton we Poduovéunocn
[11, 12], eivon xpiowne onuooiog yio egappoyéc LPNAoD xVdOVOU, OTWS 1) ATdPIoT YIo TO oV
Yo eumoTEVTEL O YITEOC Lo LTEWXY L&Y VWwaT) - TeOPBAedn YEow evog alyoplduou unyovixhc
udinong.

1.2.1.2 Acdouéva

Depression_Mixed. Xpenowonotolue 10 6UVoho dedopévemv Tou Topoucldotnxe oto [13].
Autd 10 6Uvolo Bedopévwy amoterelton and 2822 avaptioelc. IlepthaufBdver avoaptioelg t600
ané to Reddit 600 xou and ayyhdpwva @bpoup xatddihne [14]. ‘Ocov agopd ta ayyhépwva
pbpouu xatddhupne [14], ot cuyypageic avtholy dedopéva amd TNy opdda xapxivou Tou HaoToU.
Yuyxexpuléva, cUAAEYoLY plo uévo avdptnon and €va ovoud YeNoTr), Yo Vo arnogeuyYoly
TOMATAEG ELCAYWOYES amd €vay Wovo yerotn. Emmiéov, ol cuyypageic emPBefouwvouy ot
0 CLYYPUPENS QVE AVAPTNONG NTAY YUVALXA, EVE OTOEEITTOUY AVIPTHOELS TOU AVAPELOUV
eNTd 6Tl 0 cuyypaéac avTueTLRICel xatddAupn. o n dnuovpyla GUVOAOU BEBOUEVKY UE
xotdMTTIXéS avopThHOELS, ol ouyypagelc oTo [13] utodeTolv évar TPWTOXOMO TAUPOUOLO UE
autd Tou [15, 16] xou avalnrolv exppdoeic 6mwe "Mohic pou dryvdotnxe xatddin’ oto
subreddit tng xatddiupng. ‘Ocov agopd T un-xatoadMnTIXES AVOPTHOELS, Ol CUYYQIPELC
OUAEYOULY GOVORA avapTACEWY Tou avrixouv oTto subreddit culntAcewy yia Tov xapxivo Tou
HaoToU, ooYeVeElaxéS ouUBouléc xau prhieg oto Reddit.

Depression_Severity. Autd to clvolo dedouévwv mepihopfBdvel avoptroelc oto Reddit
[17] xou avodéter oe xdde avdptnon éva eninedo cofupdtntac tne xatddne, dnhadnh endyt-
oto (2587 avapthoewc), ehappd (290 avopthoeis), uétpto (394 avaptrioeic) xar coPopd eldog
xotddhdne (282 avopthoes).

1.2.1.3 IIpotewodpevn Medodohoyia

Y auTH TNV EVOTNTA, TEQLYRAPOUPE TNV TREOTEWOUEVT TEOGEYYLOY| UG YIo TOV EVIOTIOUO
HATUIMTTIXWY AVORTACEWY OTA PECU XOvwVixhc dixtiwone. H mpotewduevn uédodog pac
Boaoiletow oty epyaoio mou ewofydn ané touc Rahman et al. [18] xou Jin and Aletras
[19]. Avti v Sratpominée ahhnhemdpdoels, elodyouue EMTAEOV YAWOOIXES TANPOYORIES 1C
EVOAOXTIXES amOPELS TeV BEBOUEVKY GE TPOEXTABEUPEVA YAwooxd wovTtéha. H mpotewvouevn

opyLTEXTOVIXY pHog ameovileton oto Xy. 1.1

e NRC. To NRC Emotion Lexicon etvor piot Aota oryyAuodv AEEewv xaL oL GUGYETIOELS
ToUC PE OXT PBootxd ouvauoHuata (Yuude, oBoc, Tpoouovy, eumtloTocivn, EXTANEY,
AOTn, yoed xou ondior) xou 8o cuvoncOiuata (apvntind xou Yetind) [20]. Kdde xelpevo
avamaplotaton wg €va didvucua 10 dlaotdoewy, 6mou xdde otolyelo elvon 1 avohoylo Tev

OLAXELTIXWY IOV AV X0LY O xdUe xotnyopia.
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Yynpo 1.1: Ilpotewopevn Apyttextoviny yio Adyvowon Katddhgng ota Méoa Kowwvinig A

%©tOwoNng

e LIWC. To LIWC eivar wa mpocéyyion Pacioyévn oe Ae€ixd yior TNV XATOUETENOM
MZewv oe yYAwoowée, Quyohoyixée xa Tomxéc xotnyopiec [21]. Xenowonotolue 1o

LIWC 2022 [22] vy vo avomopaoTHoouue x3Ve xeipevo we didvuopa 117 Slaotdoewmy.

e LDA topics. Ilpw exnadetooupe to povtého LDA, agopolue o stop-words xon o
onueio oti&ne. Expetodlevdpacte to LDA (ue 25 Yéuarta) xou e€dyouye 25 mdavotnteg
Vepdtwy avd xelpevo [23]. Autéc ot mdavdtntes neplypdpouy tor VEPaTo EVOLUPECOVTOC
x&le xewévou. Eurnvevopévol anéd toug Liu et al. [24], ypnotwwonowolye 1o axérouto

OLAVUOUAL YOEUXTNEIOTLXWYV:

— Global Outlier Standard Score (GOSS): I'a vo 0€l0AOYHOOLUE TO EVOLO-

th

(pE€pOV ToL XEWEVOL i oE Eva GLUYXEXPWEVO topic k, o olyxplon Ue To uTOAOLTTOL

xelyeva, yenowonolue 1o GOSS yopoxtnelo Tixo:

Z?:l Lik (1.1)

wlaw) = =

T — ()
Vi @i — (@)’

Z e 4 4 4 e e
Enouévue, xde xelyevo avamapiototar we éva didvucuo 25 SLaoTACEMY.

GOSS(zi) =

e Top2Vec: Top2Vec [25] elvau évag ahydprduog v T poviehonoinon Yepdtwv, o o-
nolog evtonilel autdpato Yéuota ToL UTdEYOLY OTO XelPEVO xat dnutovpYel amd xovou
EVOWUATOUEVO dloviopata YeUdtwy, eYYpdpwy xou Aéewy. Metd tnv exmaldeucr tou
Top2Vec pe tnv exuetdhhieuor tou Universal Sentence Encoder, xdie xelyevo avamo-

ploTatar wg ddvuoua 512-d.

Xenowponootye ta e€fc mpoexnadevpéva povtého: BERT [26] xou Mental BERT [27].

Apyixd, Sivoupe ¢ £icodo 1o xelpevo ota mpoavagepdévia povtéra. ‘Eotw C € RN*4
elvon 1 €€obog Tou povtélou, 6mou N BNAGOVEL TO PAXOC TOU XEWEVOUL, eVG d SNAGVEL TN
Otdotaon Twv povtéhwy. T yden amhotntac €youue mapakeidel T SLdoTACT TOU AVUPERETOL
oto batch size.

X1n ouvEyEl, TEOBIAAOUNE T BLAVOOUATOL YORUXTNEICTIXGMY OE Do Tdoelg (oeg pe 128.

Enavohoufdvoupe to didvuoua yapaxtnelo tixoy N Qopég, €101 WOTE VoL Blacpaiicoue 6T
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TO BLAVUCUA YOROXTNELO TIXWY Xou 1) €£000¢ TV UOVTEAWY Tou BactlovTol OE UETACY NUATIOTH

umopolv va cuvdedolv xotd yeuuuée. Aedouévne tne avamapdotaone héEewv el cuve-

vévoupe o e e Blaviouorta yopwTnele Ty, SN\ .

w? = o (Whv [e®; ] + bv> (1.3)

OTOU TO 0 UTOBNAWYVEL T1 GUVEETNOT EVEpYOTOINONG OLYHoedols, 10 Wi, elvar évag miva-
. (4) / / / .
xag Bdpouc xou to wy avTtiotoyel otny TOAN. To b, elvon scalar bias.

Y1 ouvéyela, utoloyiloupe €var Bidvuoua YeTaTOTIONG h,(f) ToMamhactdlovToc TIC Olo-
voopata (embeddings) pe tnv mOAn (gate).
PD = wd - (Woh{D) + ) (1.4)

m

(4)

onou W, ebvan évag mivoag Bapv ovd by, elvar bias vector.
Y1n ouvéyela, egopuolouye o ototyelo Multimodal Shifting ye otéyo va yetatonicouue
(4)

OUVAUIXGL. TIC AVATUPACTICELS TWV AEEEWY EVOWUATWVOVTAC TO BIAVUCHA UETATOTIONG Ny OTNV

oEy o SLdvuoua AEENC.

el = e 4 anl) (1.5)
(@)
a = min <||e(i)|!25’ 1) (1.6)
[’ ||2

, 61oL [3 elvon YLor UTEPTOEdUETPOS. 2T cLvEyELd, epapuolouye éva layer normalization [28]
xou éva dropout layer [29] oto eﬁ,?. Yn ouvéyela, ta ouvduaouéva dtavbouata (embeddings
Tpogodotolvton ot éva poviého BERT /Mental BERT.

Hadpvoupe v €080 tou povtéhou (classification token) [CLS] xou to nepvdye péoo amd
éva dense layer mou anoteeiton and 128 povddeg pe cuvdptnon evepyonoinong ReLU. Téhog,
yenotpomooUue éva dense layer mou amoteleiton eite and dUo povddec (binary classification
task) elte anéd téooepic povddec (multiclass classification task).

OvoudZouye ta mpotewvopeva poviéha poc oc Multimodal BERT (M-BERT) xouw Mul-
timodal MentalBERT (M-MentalBERT') oxohoutolueva amd ot YAwoowd yapoxtnelo Tixd
mou elvon evowuatouéva oe autd. o mopdderyua, 1 éyyuon yopuxtneotixey LIWC ot éva
novtého BERT cupforiletar wc M-BERT (LIWC).

1.2.1.4 Model Calibration

[Tpoxewévou vo amopiyouue T dnuoveYio UTEEBOAXA GlyOUEWY HOVTEAWY, YENOWOTOL0-
Ope label smoothing [30, 31]. Xuyxexpwéva, 1 pédodoc label smoothing Poduovouei ta
pordnuEvo HOVTERX ETOL OOTE 1) EUTIOTOCUVT TwV TEoPBAEYenY Toug Vo euduypoupiletal Tepio-
c6Tepo e TNV axplBela Twv Teofiédemy Touc.

[ éva 6ixTuo exmandeuuévo Ye oxhneols 6TéYoUS, To cross-entropy loss eAayloTonoleitan

METOED TWY TEAYUATIXMY OTOYWY Yk Xl TV €E60mV Tou dthou pi, otwe oto H(y,p) =
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ZkK:I —yrlog(pk), 6movL yi etvar 17 yia T owoth xhdon xon 07 yia Ty S, T éva Sixtuo

EXTIUOEVUEVO UE ECOUAAUVOT) ETIXETWY, EAUYLOTOTOOUUE TO cross-entropy loss petald twv

4 4 L 4 7
TPOTIOTIOLNUEVLY OTOY WY Yj; i yon v €68V ToL BTIOU Py

(07
v = (1= 0) + (L.7)
K
H(y,p) =Y _ —y log (pr) (1.8)
k=1

7 7 4 e 4 K 7. /ﬁ 7 4
, 6mou a ebvan o Tapdueteog e€oudhuvong xon K etvon o aprdude v xhdoewmy.

1.2.1.5 AmnoteAéocpata

Ta amoteAéouata TNG TEOTEWOUEVNE UoC TEoceyyiong avagpépovton otoug Ilivaxeg 1.1 xou
1.2. Ewwortepa, o Ilivaxag 1.1 nopouotdlet Ti¢ eMBOCELS TwV TROTEWOUEVKDY TEOCEYYIoEWY
uog 6To 6LVoAo dedouévwy Depression_Mixed, eved o ITivoxag 1.2 avagépet tor anoteAéouata

670 oOvolo dedouévwy Depression_Severity.

ITivaxoag 1.1: Performance comparison among proposed models and baselines using the DE-
PRESSION_MIXED dataset.

Depression_Mixed

Movzéro Prec. Rec. Fl-score Acc. ‘ ECE ACE

Baselines

BERT 91.40 91.40 91.40 - - -
MentalBERT 89.27 93.14 91.17 91.15 - -
Baselines - Proposed Approaches (without label smoothing)

M-BERT (NRC) 90.56 91.84 91.20 91.15 0.072 0.081
M-BERT (LIWC) 90.98 92.02 91.49 92.04 0.054 0.055
M-BERT (LDA topics) 88.07 95.80 91.77 92.04 0.071 0.071
M-BERT (top2vec) 90.97 92.99 91.97 92.21 0.057 0.069
M-Mental BERT (NRC) 90.65 92.65 91.64 91.86 0.031 0.054
M-MentalBERT (LIWC) 93.49 87.78 90.55 91.50 0.057 0.056
M-Mental BERT (LDA topics) 87.97 93.09 90.46 90.44 0.089 0.086
M-MentalBERT (top2vec) 91.63 93.77 92.69 93.27 0.058 0.054
Proposed Approaches (with label smoothing)

M-BERT (NRC) 89.82 94.81 92.25 92.39 0.059 0.065
M-BERT (LIWCQC) 93.06 91.78 92.41 92.21 0.034 0.044
M-BERT (LDA topics) 90.16 92.71 91.42 92.39 0.063 0.067
M-BERT (top2vec) 90.34 94.93 92.58 92.57 0.049 0.056
M-Mental BERT (NRC) 91.44 92.52 91.98 92.74 0.042 0.057
M-MentalBERT (LIWC) 94.96 89.42 92.11 92.57 0.055 0.057
M-Mental BERT (LDA topics) 94.81 90.78 92.75 92.92 0.047 0.049
M-MentalBERT (top2vec) 96.12 90.18 93.06 93.45 0.033 0.043

Yyeuxd pe o abvoho dedopévwy Depression-Mixed, cuyxpivouue apyixd Tic TpoTEVOUE-
veg mpooeyyloeic pog yweic eCopdiuvon etxétac ye to woviéda BERT xow Mental BERT.
Hapatneolue OTL 1) EVOOUATWOTN YAWCGIXWOY YAQUXTNELO TIXWY, EXTOC OO TA YORUXTNELC TIXA
NRC, oto povtého BERT Beitiwvel 1o Fl-score. Ewixdtepa, mapatneolue 6T 1 EVOWUdTo-
O™} YOEaxXTNELo XY top2vec odnyel oto uPniotepo Fl-score xou oxplBelar mou avépyovton ce
91.97% xou 92.21% avtiotouya, unepPaivovtac v anédoorn tou povtéhou BERT oto Fl1-
score xatd 0.57%. Tmnodétouye 6Tl 1 EVOOUITOON YoEAXTNEOTIXOY top2vec EmTuYYdvel

XAAVTERT ATOOOCT| ATd TNV EVOWHUATMOON YURUXTNELO TIXWY TOU TEOEEYOVTAL antd Tor Véuata
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ITivaxag 1.2: Performance comparison among proposed models and baselines using the DE-
PRESSION_SEVERITY dataset.

Movzéro W. Prec. W. Rec. W. Fl-score ‘ ECE ACE

Baselines
BERT 72.99 71.97 71.00 - -
MentalBERT 73.35 70.81 71.67 - -

Baselines - Proposed Approaches (without label smoothing)

M-BERT (NRC) 74.48 70.08 69.96 0.107 0.076
M-BERT (LIWC) 73.77 71.74 72.13 0.110 0.078
M-BERT (LDA topics) 74.25 71.80 71.28 0.114 0.079
M-BERT (top2vec) 72.93 71.97 71.00 0.086 0.071
M-MentalBERT (NRC) 74.43 72.58 69.96 0.097 0.069
M-MentalBERT (LIWC) 72.39 72.53 71.95 0.112 0.075
M-Mental BERT (LDA topics) 73.83 72.58 72.58 0.118 0.078
M-MentalBERT (top2vec) 74.63 72.39 72.06 0.103 0.075

Proposed Approaches (with label smoothing)

M-BERT (NRC) 74.04 72.84 72.81 0.102 0.074
M-BERT (LIWC) 73.68 72.16 72.37 0.094 0.069
M-BERT (LDA topics) 73.24 71.46 71.42 0.112 0.078
M-BERT (top2vec) 73.36 72.64 72.30 0.113 0.074
M-MentalBERT (NRC) 73.03 71.23 71.46 0.112 0.079
M-MentalBERT (LIWC) 73.21 73.15 72.43 0.099 0.071
M-MentalBERT (LDA topics) 73.74 73.23 73.16 0.111 0.075
M-MentalBERT (top2vec) 73.68 72.70 72.67 0.094 0.071

LDA, 8nhadn ta yopaxtneiotxd GOSS, xadode 1o ahyoprduog top2vec elvar ixavog vo ova-
yYvwellel autopata Tov aptdud twv Yeudtonv. ‘Ocov agopd oto Mental BERT, nopatneolue
OTL 1) EVOOUATOOT YopaXTELo Ty top2vec odnyel oe Fl-score tou 92.69%, unepPoivovtog
10 Mental BERT xatd 1.52%. Iopatnpolue 6ti 1 ohoxhipwon twy yapoxtneiotixdy NRC
xan top2vec BeATidVeEL TNV anodoot mou tpoxintel and To Mental BERT. ‘Ocov agopd oTic
TPOTEWVOUEVES TIROCEYYIoEIC Ue EEOUGAUVOT ETIXETAG, TTORUTNEOVUE OTL QUTA Tl LOVTENN ETULTUY-
Y3vouy xahOTEPES ETBOCELC OE OYEOM UE To LOVTEND Ywpelg e€opdhuvon eTixétog. Edidtepa,
napotneolue 6t 1o M-BERT (top2vec) ye e€opdhuvon etixétag uneptepel oto Fl-score xou
™y oxpifela and to avtiotoryo yovtélo yweic e€opdhuvon etinétac xotd 0.61% xon 0.36%
avtiotorya. Emlong, to M-Mental BERT (top2vec) pe eZopdhuvon etixétog emtuyydver to
umiétepo Fl-score xon axpifeta avépyovtac oe 93.06% xou 93.45% avtiotoryo. Autd to yo-
viélo uneptepel oto Fl-score xau tnv axpifelo and to avtioToryo poviého ywelc e€oudhuvon
etixétac xatd 0.37% xou 0.18% avtiotowyo. Extoc and tn Behtiwon twv petprioewy anddo-
ong, omAadt tng axpifetag, g avdxinong, Tou Fl-score xou tng axp{Belog, mapatneolue 6t
Tot HOVTEAA PE €EOUAAUVOT| ETIXETAS ETITUYYAVOLY XOADTEQY ATOTEAEOUAT OGOV aPORd TIG
petpnoelc Boduovounong, dnhadn Tic yeterioeic ECE xoau ACE, oe olyxpion pe Tic ueTeroelc
TOU TEOXUTITOLY amod Tol HOVTEAX yweic e€oudhuvor etétac. Ta mopdderypa, mapatnpolue
6t o M-BERT (top2vec) ye eZopdhuvon euxétog Behtdver tic petprioeic ECE xau ACE
mou mpoximtouy ond o M-BERT (top2vec) ywplc e€oudhuvon etinétag xatd 0.008 xon 0.013
avtiotowya. Erniong, to M-MentalBERT (LDA topics) ye eoudhuvon etixétoc Pehtidvel
¢ petprioeic ECE xou ACE mou mpoxUntouv and 1o M-Mental BERT (LDA topics) ywelc
e€opdhuvon etnétag xatd 0.042 xon 0.043 avtiotorya.

‘Ocov agopd to alvoro dedouévev Depression_Severity, cuyxplvouue apyxd Ti¢ TpoTeL-

VOUEVES TTpooEYYIoEIC pag ywelc eZoudhuvon etixétag e to povtéha BERT xow Mental BERT.
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Hapotnpolye 6Tt 1 evowudtnaon yapaxtneto Ty LIWC xa yapaxtneio tixdy mou e&dyovto
ue tn pevodoroylo Yéuatoc LDA, dnhadn ta yopaxtneiotxd GOSS, oto poviého BERT o-
onyetl o dvodo tne anddoone oe obyxplon Ue To poviého BERT. Ewwotepa, 1o M-BERT
(LIWC) vuneptepel otov anoxpyatiopévo Fl-score xatd 1.13%. Toutdypova, n evowudte-
o1 OAWV TWV YopoxTNEIo TGV, extog amd ta NRC, oe éva yovtého Mental BERT odnyel
oe Behtlwon tng anddoone oe cUyxpeton Ye to poviého MentalBERT. Ewwdtepa, to M-
MentalBERT (LDA topics) emtuyydver Tov upniétepo anoxpipotiopévo Fl-score mou avép-
xeton o€ 72.58%, vnepBaivovtac 1o Mental BERT xotd 0.91%. ‘Ocov agopd oo npotetvéueva
wovTtéla ue eEoudhuvor eTixéTog, Tapatneolue wo Bedtinvon 1600 0TI YeTeNoE ambdoaTg
600 xou oTIC YeTENoEl Boduovounoneg. Ewwdtepa, 1 evowudtwon yapoxtneotixwy NRC oe
éva yovtého BERT emtuyydver évay anoxpiuatiopévo Fl-score tou 72.81%, unepPaivovtog
o BERT xoté 1.81%, to M-BERT (NRC) ywpic eZoudhuvon euxétog xatd 2.85% xou to
M-BERT (LIWC) yweic e€opdhuvon euxétoc xatd 0.68%. Emniéov, to M-Mental BERT
(LDA topics) pe eZopdhuvon etixétac emtuyydvet 1o uhnidtepo Fl-score nov avépyetou o€
73.16%, vnepBaivovtac to Mental BERT xatd 1.49% xar to M-MentalBERT (LDA topics)
ywelc e€opdhuvon etixétac xotd 0.58%. ‘Ooov agopd otic petprioeg Paduovounone, mopo-
Tneovue 6Tt xou ot 800 yetprioeic ECE xou ACE Beitidvovton dtav epopuolovue eoudhuvon
etxétac. Do nopdderypa, o M-BERT (LIWC) pe eZopdhuvon etixétac emtuyydvet po Pod-
novouoLuevr Baduoroyio ECE tng té&ne tou 0.094 xou pa Barduovopotuevn Boduoroyia ACE
e té€ng tou 0.069, oL omoleg Behtidvovton xotd 0.016 xan 0.009 avtiotoiya oe clyxplon ue

70 avTioTolyo HoVTéLD Ywpic eEoudAuvon ETIXETOC.

1.2.2  Auwdyvewon Katddidne ue Xprjon Ouiiog
1.2.2.1 Kivnzeo

Ov undpyouoeg epeuvnuxéc epyaoiec Pooilovion 0TV e€aymYN YURUXTNEIO TIXMY XAl TNV
exnaideuoT) TapAdoctaX®Y TUEWVOUNTOVY Unyavixrg udinong 1 mpooeyylocwy Badide udinong
[32, 33, 34]. Qot600, N elaywYn YopoxTNEIo TIXMY Elvon PLot YpovoBopa Stadixacio Tou amattel
e€ewdixevon oto cuyxexpuévo Véua. Emmiéov, n mhetodmeio Twv EQEUVNTIXGDY HEAETMY YpNOL-
HoToLEl HOVOTEOTIXA LOVTERX Yiot TNV TEOBAEdYN TNG Xt dAYNG, YPNOHLOTOUBVTAS XURlwe TNV
oo [35]. Av xou uTdEYOUY UEAETEC TTOU YENOLUOTOLOUY TOAUTEOTUXE LOVTEAD, AUTES OL UE-
Néteg eqapuolouv otpatnyxéc early [36, 37], intermediate [38, 39] # late fusion [40, 41]. X
otpoatnyxn early fusion, ol SLAVUGUATIXES AVATORACTACELS TWY TEOTXOTHTOY GUVOUALOVTOL
070 €niNEdO ELGOB0V, eVG oTNy intermediate cuYY®VELGT), Ol BLAVUCUATIXES OVIUTOQUGC TAGELS
ouvdudlovton xatd TV exnaldevaon, divovtag fon onuacio oTIC TEOTXGTNTES. MTN GTEATNYIXY
late fusion, to povotpomxd povtéla exmouudedovtal avedpTnTa X eopuoleTon andpaon -
popoplag, dnhadt Ynpogopla thetodnpiog. Emimiéov, n mhetodnpla twy epeuvntindy epy ooty
€)EL DOXWIAOEL TIC TPOCEYYIOELS TOUG HOVO OTNV Y YA YAOCOWN, OTOTE TO AXOUCTIXO XL
POVNTIXO TEQIEYOUEVO TV OEBOUEVLY uTopel Vo dlapépel ot dAleg Yhwooes. Télog, xopuia
UTdEyoVo UEAETY BEV €YEl MEWUUATIOTEL ue TNV TEOPBAedm TN xatding, tne nhixiog, Tou

EMTEOOU EXTALBEVTTC XA TOU PUAOL TAUTOYEOVAL.
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1.2.2.2 Acdouéva

Xenowonotoye to Androids corpus [42], to onoio anotekeiton ond dvo epyooies, cu-
YHEXQWEVOL TNV EQYACTN VALY VWOTNE oL TNV EPYACol CUVEVTELENG. LUYXEXPEVA, 1) EpYasia
ouvévteung amoteleltan and 116 delypota avdopuntne owhioc. ‘Olo ta netpduata elvon o-
veldptnta and to dtoyo. Ta apycio fyou elvon otny ttakixy yAwoco. Autéd to GUVOAO
dedopévwy mepthauBdvel TAnpogoplec yia To QUAO, TNV NAxio xou To eninedo exnaideuoTC TWV
atopwy. Ou mAnduouol TV xaTadMTTIXGY Xot U1 XATAFATTIXOY CUPUETEYOVTWY EYOUV TNV
(Bl xoTavour) 660V apopd TNV Nhixia, To PUAO xou To eninedo exmaidevong. XeNoWOToVUE
to whisper large-v3 [43], yia vor eZ8yOUUE ATOPOYVITOPWYAGELS XEWEVOL ooy GUEVES amtd
unyovy (automatic), xadoc Sev ToPEYOVTAUL ATOUOY VITOPWVACELS XEWEVOL Tapoy OUEVES Ao

dvdpwno (manual).

1.2.2.3 IlIpotewoépevn Medodohoyia
o Single-Task Learning. Xxonog elvon 1 mpdBiedmn g xatddiune.
e Multi-Task Learning. ¥xondc ebvan n mpdfiedn tne xatddiupng, tou emmédou exmo-

{Bevong, g nhwdag xaw Tou QuAou.

Auxiliary Tasks

Cross — Attention Layer Education Level

Prediction Task
— Dense Layer
(4 units)

Fusion Methods

Concatenation

Add &
LayerNorm

Feed
Forward

O concatenation Age Prediction
a 6Mu Task

Sharee @ Ll Dense Layer
m a MFH (8 units)

O mFB

Scaling

Add &
LayerNorm

Feed
Forward

O BLOCK

Scaling

Concatenation Dense I.jyer
(2 units)
Dense Layer Gender Prediction
(2 units) Task

Depression
Detection Task

Primary Task

EyApa 1.2: Ilpotewouevn Apyitextovind| yioa Audyvoon Katddhdne ye Xeron Ouhiag xan Amo-
payvnrogpuvnuévou Kewévou

Eneepyacio Kewpévou: Xpnowonoolue to Italian BERT?. E&dyouue to [CLS token]
pe avamapdotaon fE e R1X4) 6mou d = 768.

EneZepyacia Outhiag: Metatpénoupe to apyeio you ot emxdva Tpumy xavahioy, log-Mel
spectrogram, delta, delta-delta. Ilepvdue tnv xdde ewdva oe éva npoexmaudevyévo AlexNet
[44] povtéro. Eotw fU € R4 émou d = 768 1 éZ0doc Tou povtéhou.

Eniredo Awactavpodpevrc Ilpocoyrc: Me xivitpo and [45], oyedidlouye éva enine-

8o dao tawpolpevne tpocoy e (cross-attention), to omolo emotpépet éva Lebyog Badumtdy,

“https://github.com/dbmdz/berts
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éva Yl xdde tpomudnTa. Autd To (ebyog PodumTodv eMTEENEL TNV XAUGKWOY TwV 500
TEOTUXOTHTWY.

‘Ocov agopd tnv tpomxdTnTa TOU Xewévou, opilovue Q; = FCL (fY), Ky = FC} (f*)
xou Vy = FCL (f'). H ) xhipoxag, n onota avomaplotaton wg Sy, unogel vor umohoytotet wg

e€nc:

KT
St = sigmoid <QZ Ky >

Vd
‘Ocov agopd Ty TeomxdTT TN Exovas, opllove Qr = FC} (f'), Ky = FC (fY) xou
V; = FC! (f?). H npn sddponcac, n omolo avamapiotaton o S;, unopel va utohoylotel we

e€ng:

KT
S; = sigmoid (Qt L >

Vd
. Ot €€oboL Tou pnyaviopol TEOcoY Mg Utoeoly Vo UTohOYLoTOLY we Sy X Vi xau §; x V. O-
elovpe FCL FCL, FCL FCL FC,,FCi € R4, Tlopbuora ye [46], ypnotponotoye residual
connections axoAoVYOVUEVES O XAVOVIXOTOINOT) ETUTEDOU, OTLG TEQLYPAPETAL OTIG TUPUXATC
eClooeic:

E, = Layer Norm (St X Vi + ft)

E; = LayerNorm (S; x V; + f)

Y1n ouvéyela, Tepvdpe o By xan By péow 800 xomyY TAEKS CUVOEDEUEVLY OIXTOWY UE

ouvdptnon evepyornoinone ReLU, wg e€ng:

E,' = LayerNorm (FCfn (ReLU (FC; (Et> )))

B = LayerNorm <FC;}1 (ReLU (FC]‘)J (E))))

, 6nou FOf € R¥x4d pCn ¢ Ridxd,
Z 7, ~ ~ , 7 - - / Z 4 e
Y ouvéyela, ouvevivoupe ta By xan By (opolne ta B xou E; ) oe éva eviado didvuoua,
onAaodt

~

Aoat
Ey = [Ey, By ]

~ 1 ~ ]

E; =[E;, E;]

, YN
,omov By | E; € R%,

Médodol Tuyywvevorns (Fusion Methods)

e Concatenation
e Gated Multimodal Unit (GMU)

e MUTAN Decomposition
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Multimodal Low-rank Bilinear (MLB) pooling
e MFB

e MFH

BLOCK

Eninedo EE660u. Téhog, opllouye to eninedo £660u.

1.2.2.4 Anoteléopata

[N tov éheyyo onuavtixétntog, yenotponowvye to Almost Stochastic Order (ASO)
test [47, 48] 6nwe viotoinxe and [49]. Luyxexpwéva, to teat ASO xadopilel av undpyet
otoyootxh) &N [50] petadd 8o povtéhwy, dniadh tou A xa tou B. Yrohoyileton puo
Borduohoyia (€min) TOL AVTLITEOCWTEVEL TOCO PaXELdL EIVOL TO TPADTO Od TO VoL EVOL TNUAVTIXG
%xaAUTEPO amd To deltEROD. ‘OTaY €y, = 0, TOTE T0 A elvon TporypaTind oToyaAoTIXd xUplapy o
enl Tou B. 'Oty € < 0.5, 10 A elvon oyeddv otoyootind xuplapyo enl tou B. T
€min = 0.5, dev unopel va xadoptotel T4En.

Tao amoteréopata Tapovaidlovton otov Hivaxa 1.3. Iopatnpolue oti 1 yerion tou BLOCK
¢ uédodog cuyyOVEUOTS 00NYEL 0TO XAA)TERO HOVTEND, EEMEPVOVTOC TIG UTOAOLTES TEOCEY-
yioew otnv Axp{Beta xan oto Fl-score xotd 1.21-21.99% xou 1.32-22.23% avtictowyo. Tao
TOAUTEOTUXE LOVTEAD amOBIBoUY XaAUTERY Amd To UOVOTEOTIXE, emahndebovTag TNV apylxn
pog undteon 6Tl 1 YpNon TOAATAGY TEOTUXOTHTWY BEATIOVEL TNV AmOS00T TwV ahyopldumY.
O pnyaviopde ouvévmong (concatenation) emtuyydver Ta YELROTEPR AMOTENEOUATA OE GUYXEL-
oM UE TIC dAAEC UEVOBOUG GUYYOVEUSTS, xow¢g amodidel (o onuacio o xdlde TpomixdTnTA.
IIioteoupe 61t 1o MFB uneptepel tou MFH, xaddc n yédodoc MFH anotekeiton and
ouvoeor 600 MFB unlox, xou €tol qatvetar vo eivon Tepimhoxr yiot T0 TEPLOPIOUEVO GUVOAO
OEDOUEVMV, IOV YPTNOUOTOLOVUE.

Trodétouue 6tL 10 GMU emtuyydver younhy| anddoor, xadng EAEYYEL TN pOT) TANEOPOEL-
OV YWEIg VoL XAty pdpeL TOGO AMOTEAECUATING TI OAANAETUORACELS PETAUED TWV TEOTUXOTATOV.
[Mopatnpolue 6t oL apyitextovixés single-task learning amodidouvv xallbtepa and TiC opyLTe-
xtovixég multi-task learning. Auté unopel va duconohoynidel and to yeyovog 6t 1 xatddiudn
elvo ptor puynr| Sotopory ) Tou unopel vor cuufel oe omotovdrnote. Tdpyouv moAlol Aéyol
yLor Ty ot Ty ayxoTnd Yeyovdta, tpocwmixdtnTa, Teoliiuata vyelac (xapxivoc),
HOVaELd, x.AT. XOUPWVOL UE CTATICTIXO EAEYYO, TO XUADTERO HOVTENO UoC Elvon oxedoV o To-
Yo TIXd xLplopyo OGOV apopd TNV axplBela o oyEom Ue OAES TG TEOOEYYIoELS, EXTOC amd TO

Only speech signal, 610L €min = 0.
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ITivaxag 1.3: Zuyxpruxdc IMivoxoe AZwohdynone. (*) onuodver 6Tt €min < 0.1, T onuaiver 6t
€min < 0.2, T onpalvel 6Tt €4, < 0.3, %% onuaivel 6T €4, < 0.4 xou 11 onpadvel 6T €4, < 0.5.
Aev elpooTte ot YEom VoL TEAYHATOTOACOVUE OTATIOTIXG EAEYYO UE To amoTeEAEoUATO TN UeEAETNCS [42],

80Tl oL GUYYPOPE(C BEV TUPEYOLY TA ATOTEAECUAUTO TOL TROEXLPAY Amtd To ETMUELOUSC UTOGUVORAL.

Mexpiuxés AELoAdynons

ApxiteExTOoViXng Precision Recall Fl-score Accuracy Specificity

Movotponixég I[Mpooeyvyioesig

Only transcript 94.72% 91.78** 93.04f 92.49% 93.51%*
+5.38 +5.77 +3.77 +3.97 +6.96
Only Speech signal 80.73* 85.70* 82.49* 80.52* 74.21*
+12.12 +9.57 +8.51 +8.97 +16.87
eGeMAPSv02 79.05* 85.46* 81.67* 80.29* 76.64*
+13.50 +7.92 +9.69 +10.11 +15.26
ComParE_2016 86.03* 92.29 88.82* 87.97* 84.92F
+8.92 +3.96 +5.31 +4.93 +9.49

Arnoteléopata Me9ddwy [42]

BS1 73.50 74.50 73.60 73.30 -
+16.10 +13.20 +13.60 +10.60 -
BS2 85.80 86.10 84.70 83.90 -
+3.10 +2.70 +0.90 +1.30 -
Single - Task Learning
Concatenation 91.51* 93.35 92.117 91.461 90.917
+8.74 +5.99 +5.54 +6.05 +10.48
GMU 94.10%* 93.41 93.38%* 92.34F 92.33%*
+9.51 +6.61 +6.25 +7.22 +11.91
MLB 95.95 91.82%* 93.57%* 92.96%* 95.33
+7.69 +6.31 +5.37 +5.94 +9.71
MUTAN 93.75% 94.46 93.82%* 92.75%* 90.78**
+8.76 +5.57 +5.71 +6.79 +13.07
MFH 95.04** 92.797T 93.75** 92.94F 91.28**
+6.62 +5.01 +4.46 +5.56 +17.76
MFB 94.68%* 93.63 93.95%* 93.18%* 92.53%*
+8.19 +4.63 +5.32 +6.13 +10.66
BLOCK 97.30 94.52 95.83 95.29 96.42
+4.43 +4.52 +3.81 +4.23 +6.04
Multi-Task Learning
$U\o, Exnaidevon, HAixia 96.14 93.24 94.38T1 94.08T1 96.31
+5.02 +6.95 +3.65 +3.45 +4.86
DUNo, Exnaidevon 97.22 92.28TT 94.517T 94.07TT 95.95
+5.14 +6.82 +4.65 +5.03 +9.35
Exraisevon, HAixla 04.41%* 93.63 03.74%* 03.627T 93.5611
+7.24 +5.97 +4.52 +4.48 +8.05
PUNo, HAirla 96.55 92.517T 94.307T 03.847T 94.53
+4.87 +6.09 +3.72 +4.25 +13.05
DiNo 94.61%* 93.29 93.61%* 93.20%* 93.687T
+9.28 +7.18 +6.51 +6.81 +10.63
Exnaidevon 94.22%* 93.04 93.447F 93.00** 92.03**
+9.16 +7.27 +7.34 +7.31 +12.41
Hixia 94.99* 92.32fT 93.34% 92.56F 93.4277

+7.46 +6.72 +5.09 +5.85 +10.79
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1.3 Awyvwon ‘Avolog

1.3.1 Kivntpo

H véooc Alzheimer (AD) eivon pa veupohoyixn Srotopay ), mou e€ehiooeton pe tnyv ndpodo
TOU YEOVOU, xaL AmOTEAEL TNV o xowr wutia dvotag. Lopgova pe tov IIOY, mepinou 55
EXATOUULOPLA EVDPOTOL £Y0LY GVOLY Ty XOOWIWS YE Tdvw antd to 60% va Let o€ yipeg yaunhol
xou peoaiou ewoodfpotog [51]. Emmiéov, n dvowr emnpedlel ty ixavotnta evOS atdUou va
emxovwvel. 1ho cuyxexpéva, To dtoya pe dvolo pmopel va unv ebvar oe Véorn vo Spouv
TIC owoTég AEEelc N Vo unv umopolv va Beouv xopio AéEn. Toutdypova, dev umopolyv va
TUEUUEIVOUY CUYXEVTEWUEVOL OE Uiat SLLHTNOY XU TEVOLY VoL YENOLWOTOUY AEEELC Y wplc
VOTUOL, UE OMOTEAECUO VO UMY UTOPOVY VAl ETUXOWVWVACOLY UE dAAOUC avlp®dToug. Mnuddia
Gvotag mepthauBavouy peTtallh GAAWY: TEoBAAuaTa ue TN Bpoyuneddeoun wviun, TANewUN
ANOYOPLICUOY, TEOYPAUUUATIOUOC XL TEOETOWOC( Yeupdtwy, pavteBol A talidu [52]. Autd
TO YEYOVOG GUVETAYETOL COUATIXES, PUYOROYIHES, XOWMVIXESC XOL OLXOVOUIXES EMITTMOOELS OYL
H6vo yio Tt dTopol Tou Louv UE GvoLa, oAAG Xou Yiol TOUS PROVTIGTES TOUG, TIC OXOYEVELES TOUG
XL TNV Xowwvio YEVIXOTERa. AdYw® TOU YEYOVOTOC OTL 1 dvola YEOTEPEVEL PE TNV THEOJO

TOU YPOVOUL, EVOL ONUOVTIXO VoL SOy VWO TEL €Y XaLaL.

1.3.2 Acdopéva

ADReSS Challenge Dataset. Xpernowonowolue 10 civoro dedouéveov ADReSS Chal-
lenge [53] yio T Sielorywyh twv Tepopdtov yoc. To Sedopéva avTioToLolY O TEOPORIXES
TEPLYPAPES EXOVOV (Eyfua 1.3) Tou mpoépyovton and TouC CUPHETEYOVTES UEOW TNG EXOVOC
xhomhc cookies and tnv eZétaon agaciac e Bootdvne [54]. Emléyouye to ouyxexpiuévo
cOVOLO BedOUEVLY, xomg eEAdyloToTolEL TOMAG €ldN TpoxaTakpewy, Tou Yo urnopoloay va
EMNEEGCOUY TNV EYXVEOTNTA TV TEOTEWOUEVKY TEOCEYYICEWY %aTd T dladixacio exmoldeu-
one xou aZloAdynong. Buyxexpyéva, oe avtideon ue dilo odvoha Bedouévemv, 10 oOVoho
oedopévev ADReSS Challenge avtiototyel 610 @UAO xou v nhixio. Emimiéov, eivon iooppo-
Tnuévo, agol mepthaufdver 78 aoclevelg ue dvolo xou 78 vy dtoua. Autd mou ailer eniong
vo onuetwdel elvar to yeyovog 6t o obvohro dedouévwy ADReSS Challenge €yel emheyel
TPOCEXTIXY £TOL OOTE Vo UETELALOVTAL XOWES TPOXATAAAPELL TOLU GUYVE ToEUBAETOVTAL OTIC
a&tohoynoel HEYOBWY oVl VEUCTIC AVOLAS, CUUTERLAUBAVOUEVLY TV ETUVOAIUBOVOUEVWY EU-
pavicewy opiiag and Tov Blo cuUUETEYOoVTA Xot TEOBANUdTWY ot mowotnTa fyou. o va
eluacte mo axpiBeic, ou eyypagéc €youv Bedtiwiel axouoTnd ue otadepy| agalpeom YoplBou
xaL EYEL EQPUPUOCTEL XAVOVIXOTIOMOT TNG €VTAOTG TOU HYou oe Oha To TURuata opAlac. To
o0OVOLO BeBOUEVLV Exel YwploTel amd Toug dlopyavmTéc ot éva olvoho exmaidevone (train
set) xou évor oOvolo Soxung (test set). To train set omoteheiton and 54 aodevelc ye dvola

xau 54 vytele, evd To test set meplhouPdver 24 acvevelc pe dvota xon 24 uyielc.
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Yxhua 1.3: The Cookie Theft picture
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1.3.3 AudyvwonAvoiag pe Xpron Anopayvnropwvnuévou Keipnévou

Beltiotonowotpe (fine-tune) povtéha Baoiouéva oe yetaoynuatiotée (transformers. Yu-
yxexpwéva, Bertiotonotolye ta e&fc wovtéha: BERT [26], BioBERT [55], BioClinical BERT
[56], ConvBERT [57], RoBERTa [58], ALBERT [59], xou XLNet [60].

1.3.3.1 Anoteléopata

To amOTEAEOUATA TWV TEOTEWOUEVKDY UOVTEAWY TIOU OVUPEQOVTAL TOROTAVG OVUPEROVTAL
otov Iivaxa 1.4. Eniong, o Iivoxag 1.4 mop€yel pio o0Y%ELoM TWV TEOTEWOUEVKY HOVTEAWY

MO UE UTERY OUOES ERELYNTIXES TEWTOPBOVALES.

ITivaxag 1.4: X0yxeion g anddoong Twy TROTEWOUEVKY LOVTEAWY Xl EpYactey TN BiBAloypo-
plac oto ADReSS Challenge test set. Ou téc avanaplotavtar w¢: Yéoog 6poc £ tumxy andxAom.

IMofpvouye tov péco 6po oe 5 teedipota TOU HOVTENOL.

Metpixéc AZoNoynong

Apyitextovixry Prec. Rec. Fl-score Acc. Spec.

YOyxplwon we wedoddoug tng PiBAoypapiog

[61] - 87.50 - 89.58  91.67
[62] 81.82  75.00 78.26 79.17  83.33
[63] - - 85.40 85.20 -
[64] - - - 85.00 -
[65] 86.00 79.00 83.00 83.33 88.00
[66] - - - 85.42 -
[67] 94.12  66.67 78.05 81.25  95.83
ITeotewopeva Moviéla
BERT 87.19  81.66 86.73 87.50  93.33
+£3.25 =£5.00 +4.53 +£4.37 +£5.65
BioBERT 86.87  78.33 82.11 82.92  87.50

+6.09 +4.86 +2.83 +3.06 +6.97
BioClinical BERT 95.03 76.66 84.72 86.25  95.83
+£3.03 =£4.99 +2.74 +£2.12 +2.64

ConvBERT 83.51  79.99 81.65 82.08 84.16
+1.23 +4.08 +2.06 +1.66 +1.66
RoBERTa 90.24  76.66 82.81 84.16  91.66
+2.81 £4.99 +3.52 +2.83 +2.64
ALBERT 79.15 78.33 78.45 78.33  78.33
+7.89 #£3.11 +3.12 +3.86 +8.89
XLNet 85.58  68.33 75.75 78.33  88.33

+2.77 £6.77 +4.05 +2.82 £3.12
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‘Ocov agopd o TeoTEWVOUEVY HOVTELN oL BactlovTol G UETACY NUATIOTES, XATOLOG UTO-
el ebxola va mapatnenoet 6t 1o BERT emtuyydver tnv udmidteen Avixinor, Fl-score xou
AxpPera, pe tic petpiéc autéc va avépyovton oto 81.66%, 86.73% xou 87.50% avtioTtouyo.
Yuyxexpweéva, 1o BERT uneptepel o olyxplon e to dhha mpotetvoyeva Lovtéha mou Pooilo-
VIOl O€ PETAOYNUATIO TéC oty Avdhnon xotd 1.67-13.33%, oto Fl-score xatd 2.01-10.98%,
xou oty Axpifeto xotd 1.25-9.17%. To BioClinical BERT emtuyydver ) detdtepn udmhdtepn
AxpiBeto xou Fl-score, pe tic petpinés autés va avépyovton o€ 86.25% xou 84.72% avtiotouyo.
Eniong, to BioClinical BERT emtuyydver tnv udmidteen AxpiBeta, mou eivan {on ye 95.03%,
unepBaivovtog tar dAhar povtéra mou Paoilovton oe petaoynuatiotég xatd 4.79-15.88%. To
RoBERTa emtuyydvel napouolo anoteréopata ye 10 BERT xou 1o BioClinical BERT pe A-
xpifewa xou Fl-score {oo pe 84.16% xou 82.81% avtiotoryo. Emmiéov, to BioBERT o 10
ConvBERT 6etyvouv upéc Swpopéc otnv Axpeifeio xan to Fl-score, ye to BioBERT va
urepPaivel o ConvBERT xou otic 600 petpués. Xuyxexpiéva, to BioBERT uneptepel oto
F1-score xatd 0.46% xou otnv Axpifeio xatd 0.84%. Emniéov, napatnpolue 6t to ALBERT
xou 1o XLNet emtuyydvouv oxop Axp{Betac (oo pe 78.33%, ue to ALBERT vo uneptepel oto
F1-score xotd 2.70%.

e olyxplom PE TIC TeoNYUEVES TpooeyYioelg, xdmolog umopel vo topatnenoet 6Tl o Tpo-
TEWVOUEVO LOVTEAA UOG ETUTUYYEVOUV THEOUOLYL 1) OXOUO Xl UTERTEQOUV TWV TEOTYOUUEVLY
ueretwyv. Ewwodtepa, o BERT uneptepel oe olyxpion pe Oha tar €pyoal €pEuvag, EXTOC amd TO
[61], we mpog TV Axp(Beto xotd 2.08-8.33%, to Fl-score xatd 1.33-8.68%, xou tnv Avdxinon
xotd 2.66-14.99%.

1.3.3.2 T'Awococoloyixhy Avdiuon

O xiploc 6toY0c auTAC NG EVOTNTAC Elvar Var PwTIoEL oL povoypduata (unigrams) xot
Hop@éc Aoyou (pos-tags) cuoyetilovton xuplng e xdbe xatnyopia Eeywetotd [68]. T va
oleuxoiuviel auto, unoloyilouye TNy cucyétion point-biserial uetal xdie yopaxTnEIGTIXOY
(novoypappa xat pop@) AGYOoU) O GAEC TIC ATOUAYVNTOPWVACELS XEWEVOU X0t TNS ETIXETAUC
e€6dou - label (0 yio Tov oudda ehéyyov xar 1 yia tnv oudda dvotag). Ilpw unoloyicouue
TN CUGYETION, XUVOVIXOTIOLOUUE TOL YUeaxTNeloTixd €tal hote va adpollouv oto 1 oe xde
xetpevo. Xpnowwonololue ) cuoyétion point-biserial, ool auth elvon wio cucyétion uetal
CLVEY WY Xo SLABXDY PeTABANTOY. Emotpépel uo Tiun petolt -1 xou 1. Aedopévou 6T
EVOLAPEQOUAOTE UOVO Yo T1) OOVIUT TNG CUCYETIONG, UTOAOYICOUNE TNV amdAUTH TWH|, OTOU
opvNTIXéS oUOYETIoELS avapépovTtal oTnV ouddo eréyyou (etxéto 0) xan Yetinée ouoyetioelc
avopépovTon oTny oudda dvotag (eTéta 1). Avagépouue ta evphuotd pog otov Ilivoxo 1.5,
omou Okeg oL cuoyeTtioelg lvor onuavtxég oto p < 0,05, ye Sibpdworn Benjamini-Hochberg
[69] v oA amAéC ouyxploeLc.

‘Onwe edxolo ymopel vo mopatneioel xavelc, to yéen tou Adyou (pos-tags) mou cuoye-
tilovton ye v opddo tne dvotag ebvar ta axdhouvda: RB (emppripotar), PRP (npoocwmxd o-
viovupia), VBD (pfua oe napehddvta ypdvo), xou UH (interjection). Amd tnv dhhn mhevpd,
ol avipwrol oty opdda eEAEyyou Telvouy va yenotponowoty VBG (pAua, yepodvdio A uetoyn
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ITivaxag 1.5: Xopoxtnelotixd mou oyetilovron e LYL) dTopo Xou dToUd UE AVOoLa, TOEWVOUNUEVL
Bdoel tng ouoyétiong point-biserial. ‘Oleg ou cuoyetioeic elvon onpovtinég oto p < 0.05 petd and

d6pdworn Benjamini-Hochberg.

Yy 'Atopa H ‘Avoia

Unigrams | corr. || Unigrams | corr.

is 0.364 here 0.310
curtains 0.361 - -
window 0.301 - -
are 0.300 - -

POS corr. POS corr.

VBG 0.285 RB 0.388
DT 0.216 PRP 0.354
NN 0.210 VBD 0.275

- - UH 0.242

eveatota), DT (mpocdiopioth), xaw NN (ovotastind). Autd to eupfjuarta unopoly vo. dixoto-
hoyniolv otov Iivaxa 1.6, 6mou napouctdlouye Tela TUPUBEYUATO ATOUNY VNTOPWVNUEVLY
AEWEVOY TIOL aviXOUY GTNY OUdda EAEYYOU xou TEld TUPUOELYUOTA ATOUOY VITOPWVNUEVLY
AEWEVOY TIOLU AVAXOUY GTNY OUADA TN AVOLIG. LUYXEXQUIEVA, €YOUNE avadEoEL YEWUAUTA GE
OLUPOPETLXG PEPT TOLU AOYOL, ETOL WOTE VAL YIVOUY EUXOAN XATAVONTES OL OLUPOPES OTAU YAWO-
OWd TEOTUTIOL TOU Y eNotwoTololvTaL and xdde oudda otov avayvohotrn. Ta vo elpacte mo
oaxpBelc, To xOxvo ypoua LTodexVUEL To pos-tag VBG, 1o xitpwvo avagépeton 6To pos-tag
DT, 1o gol&ia oto pos-tag RB, o Bepixoxi oto pos-tag PRP, 1o umke oto pos-tag VBD,
xou To Tpdowo oto pos-tag UH.

[opatnpolye 6Tl oL dvipwmol TNV oudda TN AVOLIS TEVOUV VoL YENOWOTOLOLY TEOGH-
Txéc avtovuples (autde, auth, eyd, exelvol xAT.) TOND cuyvd, xodwe ebvon avixovor va
Yuundolv Toug cuyxexpyévous dpoug (Uaud, ayodpt xhm.). Autd to elpnuo cup@ovel Ue
v €peuva Tou deEhydn and touc [70], dtou oL cuyypaelc aVaPEPOLY GTL OL TPOCWTIXES
AVTWVLULES Topoualdlouy UPNAY cuYVOTNTAL OTNY outhlol TwV aclevay Ye ANToyduuep, xoog
autol ot dvipwnot dev propovv vo Peouv v emuunth AéEn. Do va elyacte mo axpBele,
o€ e cuvouia oL dvipwrotl Teémel vor Yugolvtan T elmay xatd TN OLdpxEld OAOXANENG TNG
ouvopllag. 201600, autd dev elvar epxtd otoug aolevelc pe AAtoyduuep, oL omolol Tapou-
otdlouv elhelppota oty epyactaxy| wviun ot €Tot Teivouy va tapdyouy ddeta ophia (ypron
TPOCWTXWY AVTWYUULOY). And tnv dhkn mAevpd, ot dvipmrol otny ouddo eAéyyou teivouy
VO YPNOWOTIOOVY TEPLOGOTERO OUGLAG TIXE VL Yol TEOCKTUNES AVTWVUUIES, xodi elvan o€
Y€on va BlatneoLy didpopa 0T TANEOPOELOY.

Emmiéov, oi acvevelc ye AAtoyduuep TEVOUV Vol ¥eNOILOTOW0Y PHUNTA OTO ToReA)OV
(v, E€yaoa, éxava, dpyloay) avtileto ye toug avlpdroug Tou Bev Téoyouv and &vota, oL
omofoL yenotwomoly pAuaTa oTov evesT®TA. ‘Eva yapoxtnelotind mapdderyyo mou unopel

vo emtonpoviel oto méunto xeluevo otov Iivaxa 1.6, dnhadr, "oh have you heard of that
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new game that they started to play after christmas ? did you ?”. O acVevrc pe Altoydu-
uep towe Yuudton pior tpocwmixy Wotoplo and to mopehdov mou Héhel vo dinyniel, avtl yio
v epyaoio Tou Tou €yel avatedel vo exTEAECEL. LUVETWS, 0 ac¥evic dev elvon ot Véon va
TUPUUELIVEL ECTINOUEVOS OTNV TERLYpar| TNg eovag. Autd To edpnua etvor ouuPatd pe Tic
epyooieg [71, 72], bmou oL ouyypageic avapépouy Tt oL acdeveic ue Altoyduuep napouctdlouy
duoxohior 0T BlaTAENOT XU TN CLVEYLON TNG AVATTUENG EVOC VEUATOC XU ETOL ETUOEXYVVOUV
ampooueveg ahhayéc Vépatog. Ernlong, autd to edpnuo anoxaAlmtel Slopopd oTn YAMooo
TIOL YENOWOTOVY Ol AoVEVELS Ue AATOYGIUER 0L OL APUCIXOL UE OYPUUUATIXY dvola. -
YUEXQWEVDL, oL acVevelc e agaotxr| dvota TuTixd €Youy TEOBAAUATA 0T YEHOoT TOL YPOVOoU
rapeldovToc xou avt awtol Baocilovial oe phuota oe tapdvTa Yedvo [73].

Emnkéov, ou aolevelc ye Altoyduuep teivouv va yenotponotolv ta pos-tags UH (oy,
var, xohd) xar RB (lowe, mdavde), xadde dev elvon olyoupol yia autd mou meptypdpouy
AOYw TNg mvevpatixfc avaopdietag. Toutdypova, to pos-tag UH anoteiel éva mopddetyua
Gdelog outhiog. LUYXEXQUIEVD, AUTO TO POs-tag YENOWOTOLETOL WS YEUIOUR 0NV oYY xde

expwvnong, xadwg ol aoveveic ye AAToyduuep oxEQPTOVTAL TL VO TOUV.

ITivaxcag 1.6: Iopodelypoto omopory vNTOQOVNUEVDY XEWEVWY UE TIC ETXETES Tous. To xoxxwvo
Yewua uvrtodnhovel to pépog tou Aéyouv VBG, to avagépeton oto uépog tou Adyou DT, 1o
woLlla ato pépog Tou Adyou RB, to 070 pépoc tou Adyou PRP, 10 axolpo urhe oo yépog

Tou Adyou VBD xau 1o nedowvo oto pépog tou Aéyou UH.

Anopayvnropwvnuévo Keipevo Etuxéta
7 well girl is watching boy go into cookie jar . he has = cookie Yyiéc
in his hand . he’s on stool . stool is falling . mother is drying ‘Ato-
dishes . has = plate in her hand . sink is overflowing . there’s water on 1o
floor . she’s stepping in water . something that’s going on you said ?

little girl looks like she’s motioning to boy to be quiet . and I don’t

know what else . woman’s looking out window . window’s open

2

”»

action . alright .  lady’s drying dishes . boy was standing on = stool Yyiéc

but action is that stool has slipped and he is falling . and girl  "Avo-

has her hand raised reaching for — cookie . and there’s a lot of action in o
sink here . water is flowing out . she is apparently so daydreaming

that she doesn’t realize that sink is overflowing . any more action ? or

is that enough action ? 7

? touching lip . raising arm . is that what you mean ? reaching for cookie Yyiécg
handing cookie down . slipping from stool . stool falling over . wiping "Avo-
dishes . water running . water overflowing . breeze . I don’t know if that’s po

2

action . stepping out from water . I guess that’s it .

ouvey(lel oty emoUEVY GEABA
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ITivoeac 1.6

Arnopayvnrogpuvnuévo Keiuevo

Etuéta

” alright . | see the little boy stealing cookies from the cookie jar . and

gave some to the little girl and ’s eating some of the cookies . and | guess
this is mama and ’s washing the dishes . and dropped a dish . no
didn’t drop a dish . the water that ’s washing the dishes with let run
. and 1/’s overflown . that doesn’t sound right . did i ? forgot to turn
off the spigot . and so the water is running off onto the floor here . and
mom apparently is washing the dishes . and here’s this little boy stealing the
cookies . 10’s gonna fall because the four legged stool is gonna fall over with
and the cookie jar . and mama’s drying the dishes as usual for mamas
if don’t have a husband that dries or washes or whatever .
let’s see now . | guess there’s more things /'m sposta see . let’s see here
now . oh and the water is flowing out of the sink they forgot to turn off
whoever’s doing the dishwashing . mom apparently here , forgot to turn
off the water and the water is spilling out onto the kitchen floor . and the
little girl has pushed over the stool with the boy that was reaching up to get
the cookies . either pushed it over or o fell over with it . know it

excuse me but know | was ... ”

"Avola

7 mhm . oh | see a part of the whole kitchen . is that all the kitchen or isn’t
? oh | can’t read ... a lady a mother were in her kitchen . in her kitchen

doing some work | suppose . and there’s another woman there sharing their

pleasures or whatever . oh have heard of that new game that started
to play after christmas ? did ?is a . well 1/ looks like ... ’d say this is

. well let’s see . 1 looks like ... oh ... . my wife will beat by a couple
rows of this . that’s like the washing machine ? or let see . | can’t ...

oh that’s the son come from school maybe or something . that’s a youngster
there . well that’s just as though getting ready to go to school or re
just coming out from school . and right there /1©’s same as back there except

for down there in the bottom | think //’s ... that’s a little . ”

"Avola

7 7 7
ouveyilel otny enduevrn cehido
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Tlivaxac 1.6

Arnopayvnropuvnuévo Keipevo Etuxéta

7 yes . the water ? well let’s see . there’s something hasta be where the "Avow

water goes down over . there’s probably something that’s ... or don’t
have it open or something might have. | don’t know . what ..? when the
water goes down what do you call that ? this here . right here . this . what
do you call that ? what is that ¢ what is that ¢ | don’t know ! that’s what
‘m saying . | don’t know what that is . the what ? a pipe . oh water pipe
! oh yeah . okay . well then maybe the water pipe is not broke but there
must be things in there . that the water will not go down . | don’t know .
huh ? what’s happening to the water ? well the water is going down in the
don’t know . what would you call this ¢ floor | yeah okay . yeah . well
down on this side of the picture . well this thing here is turning over . yeah
. no , uhuh . | don’t know what’s going on . well /c’s probably getting ...
what’s this here ¢ cocoa jar ¢ what’s this cocoa ? c o o kie . | don’t know
don’t know what ..? huh ¢ cookie , oh a cookie . oh ! oh okay . mhm

. well 117s getting it out . and |~’s gonna give it to the girl /. down here
. mhm . going on in the picture ? well the boy is giving her the girl the

cookie . this probably is broke . so the water will not go down in and //’s

coming up and going in here huh . well ' looks like was gonna wash .
what eat with , all that . what do call that ? what do call this
¢ a plate ? oh yeah . what eat on . s that what call them a plate

? oh this is a cup ? oh maybe , | don’t know . mhm . okay . ”

1.3.3.3 Emnenynoipnotnta

e auth Ty evotnta, yenotwonotolue to LIME [74] (yenotwonowdvtag 5000 debyyara) yio
vo e€nyfioouue T TeofBAEYEIC Tou xAVEL TO XOAUTERO HoVTELO Uag, dnhadr To BERT, xou vo
OLEPEUVHCOUUE TERPLOCGOTERO TIC OLaPORES 0T YAWooA UETaZ) TwV aoVeviy Ye AAToydudep xou
Twv un acvevov. Iho cuyxexpwéva, to LIME dnuioupyel tomixée e€nynoeic yio onolovdfnote
TAEWVOUNTYH UNYAvXAC uddnong elodyovtog éva epunvelolo HOVTELD, TO OTolo EXTUOEVETAL
o€ OeBouéva TOU TaEdYOVToL PECK TN TORUTAENONG OLpop®Y TNV amddocT) Tagvounong
OTaY apotpoLYTOL AEEELC amd TO aEyixd XEUEVO.

[Mapadelypoata e&nynoewy mou dnuoveyolvtal ond to LIME napoucidlovton oo Xyfuota
1.4-1.7. Iho ouyxexpwéva, to Mynua 1.4 anewovilel 800 amoporyvnTtopwvnuéve xelpeva, to
omola avTIoTOLY 0LV GE dvola. 20T600, To HOVTENO pag To TEOPBAENEL we Ly, To XyAua 1.5
AUPOPAL ATOPAY VITOPOVNUEVA XEUEVA, To oTtolol Exouy TEOBAEPUEl CWOTA and TO HOVTENO HAC
OTL avipxouy o€ acVevelc pe dvola. 3Nto Uyfua 1.6, napovcidlovton 800 xelueva, 1 teoBhedn
Twv onolwv eivar uYOg atdpoL xou N TeayuaTxh eTéTa ebvan eniong uyiég dropo. Téhog,
0 Lyfua 1.7 amewxoviCel xelpeva mou tavopolvton Aaviaouéva. To anouayvnropovnuéva

Ié 7 7’ e 7. 7 7 e Z 7 7
auTd xetpeva avTIoToLy0UY Ot UYL dToua, eV 1) TEOBAeY elvon dvola. Emimiéov, 6mwe unopel
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xavelg va topatneroet, xdde ot xdlde AN €xer avatedel Eva yowua, eite umhe eite TopToXaAL.
INo va elpaote mo axpifeic, o umie ypwua UTOOEWVUEL TOlEC AEEELC elvon EVOEIXTIXES TN
OGBUC EAEYYOU, EVE TO TOPTOXAAL YEWUO UTOOEXVUEL AEEELC TTIOU YENOLOTOLOUVTOL XUELKS
am6 acVevelg pe dvola. ‘Oco o évtova eivar Tol Ye®UATE, TOCO THO CNUAVTIXES EIVOL QUTES OL
AEEeLC TPOg TNV TEAXY| TAEWVOUNOT] TOU ATTOUOLY VITOPWVNUEVOU XEWEVOU.

‘Onwg glvon €0x0Ao Vo Tapatnenoel xavelc oto Lyfua 1.5, ot AéEeg Tou avixouv GTo pos-
tag UH, 6nwe to yeah xou to oh, avayvopilovton w¢ onuovtixés and to WovTEAO UaC Yo TNV
dvota. Emmhéov, ou mpoowmixéc avtwvupies (she, they) xou to pAuata otov napedddy (got,
had) elvon enlong evdewtind tng vooou. Emilong, to povtého pog Yewpel onuovtixs tn Aédn
"here,”, n onolo avticTolyel oto pos-tag RB, evdeixtind tng xatnyoplac tng vocou. Autd o
evpruata eivon cUUPUTd Ue aUTd oL TaouctdcTNxay oty Evotnta 1.3.3.2, énou €youue Peel
oTL T pépn tou Aoyou PRP, VBD, UH, xoda¢ xan 1 Aé€n "here” cuoyetilovton onuovtind pe
Vv xatnyopio Tng vooou. Emmiéoyv, o yoviého pag avayvwpller Tnv emavaindn tng Aé&ng
"and” w¢ onpavTIX Yo TNV XaTnyopla TS vOcou.

Yyeuxd ye 1o Nyfua 1.6, xdnolog unopel eUXOAA VO TOQATNEHOEL OTL TO UOVTEAO WOG
avaryvepeilet Tic Aé€etg mou avixouy ota uéen tou Aoyou VBG (putting, drying, blowing,
standing, xArn.), DT (the, a), xav NN (cookie, action, stool, xAn.) wc onuavtixd yio T
xatnyoplor eAéyyou. Toutdypova, cuupuvevtac ye ta evpruata tne Evotntag 1.3.3.2, o
Aéeic "curtain” xou "window” ypnowonolobvTon xupleg and LyLelc.

‘Ocov agopd ota Xyruata 1.4 xou 1.7, 1o yovtého yag dev elvon oe Véon vor To€ivourioet
owoTtd oautd tor xelpeva. Evog mboavoc hoyog yio tétoleg Aavdaouéves TodVounoelS oye-
TileTon PE TO YEYOVOS OTL UTE Tor Xelueva Teptloufdvouy pos-tags mou elvar eVOEXTIXE TGO
TN opddag eAEYYOL GO xou NG ouddoc tng voocou. Ilio cuyxexpwéva, oto Nyfua 1.4, n
mhelodnpio Twv Aewv oe xdie xeluevo avixouv ota yéen tou Adyou VBG, NN, xa DT,
Tor omola vy vewpllovTiol 0moTd and TO HOVTEAD YO WS CNUOVTIXG YLol TNV ouddo eAEYyou.
A€Zeic, 6mwe "and”, "him,” xou "well” yenowonolobvton oe younir cuyvotnta. Iapduota ye
T0 Lyfua 1.4, oto Eyfua 1.7, n mhetodnpla twv AMgewv oe xdie xeluevo avixel ata pos-tags
mou cuoyetilovtal onuavTixd Ue TNV xatnyopla g vocou. Autéd unopel vo amodetydel oo
Eyfuo 1.7y, 6mou napatneolue ) yerorn Aélewyv omwe “and”, "yeah,” "well,” xou ”got”.

T see two kids up at the cookie jar , one on a taol the other standing on the floor , cuphoard door i opened . mother § washing the dishes . the water is overflawing the Sink . and there'} two cups and

a plate on the counter . and shef} holding a plate in her hand . curtains at the windows . the coake ja hs the lid off . thatf§ ahout it cupboards underneath the sink . cupboards undemeath the ather
cupboards . id falling off the ool . he girl laughing at him . cookes inthe cookie jar with the lid off . he has a cookie in his hand . and thatflit.

(o)
a litle boy § getiing himself some EGOKIE out of il o . and [ 51 § turning over on him that hef§ standing on . b § Neiding i litcle iiil some 00KieS [ERDH I jar . 1§ that it 7 well thatf in i

first one . i § aiding [ I girl CGOKIES ENGH M cookie jar . and he'f on a stoal and itf urning over . and he'} Rendig her some . and in [ second picture [ lite gil looks as though
sheff drying dishes . and i sink /§ running over on [ floor . she has [ spigots on. a nice view from [ window . [§ that it ? that i

®)

3xAwno 1.4: Label: Dementia, Prediction: Control
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§eal 1 see the woman'§ in a kitchen . and /. now it looks like shef . 1 Gt really pick it out but .. 8 and theref a litle gir here alking and a litl boy 1 BSSHEE on (s side here . and {hi i a stool
here or some kind of a chalr . and I don't know what i is here . T Gt see what that is . B there§ anather . did I talk about s girl up here ? shef. Gt e too plain what shef doing . B yes
think 0. where was e ? i girl ?1 really Gt see what she'§ doing . no I don't . e, hat § awfully hard for me to distinguish .

(o)
hm .. it alittle boy climbing up getting some cookies out of the cookie jar . 8 his itle Sister feaching for some . i the litle boy i standing on a stool . & hs big Sstet washing the dishes at
the sink . big Sistef washing the dishesﬁ then e g6 dishes siting on the sk . R | think §He's running water . 8 ! said Johnny he i up on the ladder geting Some cookies il th lte sister
feaching up after some . he's passing it down to her , 8 the stool about o turn over . the cups maybe 85 going to wash them & 5k g6t them sitting on the sink . &id maybe rumning water on the
sink iif §0e 6 a curtain to pull that §€ might get some light in there . since the dishes stacked up . they might be on the sink . no that be about all.

®)
all the efon ? okay ifs  boy &nd a girl and their mom . and well e e faling down in through here . and then this here when the Watet if should be going down in fhere but s going down on the
side here . s going allthe way down in there . & e getting something to et here . cookeear . and fi§re getting something to eat here . and thi i a nice place what @ have . but HRE§ put that
stuff around in thete . i looks nice . and then here when B had some stuff in through here . and . I like these things in through here too . yeh

()

3xAwo 1.5: Label: Dementia, Prediction: Dementia

1 e a litle boy on a stool almost falling over ,taking cookies BNGH the Cookie jar . and the litle gir is puting her finger to her mouth to keep it quiet . the mother s washing dishes . shef} g

the dishes and letzing the iater keep on running in the sink . and then watet s running over and she is standing in the water thar running over . theref] a window there she looking at , a the grass
and the flawers . and the curtains seem to be shaking from the wind and the air thar blowing in . the dishes that shef through Byl are siting on the sink top . and the litl girl{ raising her hands
for thelitle bay to hand her a cookie . and he has on Gookie in his hand and he'f going after another one . e ready to hand her a cookie . mother is holding a dish cloth that she| g the dishes
with. she has a platter that shef} g . I dan't see any other iction

(o)

welllet§ see . € gilis whispering to be quief because mother might find out hat i€ he i standing on a stool which i bending over . il he'§ reaching in  CG0Kiejor G he hes 2 Cookie . &
she§ grabbing fo e ane that he hasin his left hand , e sink s running over with wate for some reason or other while she#dryinga dish i looking out e window G stepping in a puddle
of watet . and the race horse is jumping through the windaw . no

®)

SxApno 1.6: Label: Control, Prediction: Control

the sink's running over . the water's going all over the floor . here the stepstool is tuming under his legs and he's stealing cookies out_of the cookie jar . and she's begging for cookies the girlis .
coming back to the sink lets see here . mama's stepping in the water . and | said the sink was running over . she's drying dishes . wait a minute , what the devil is ? there is something but I don't know
what it is written on the grass it seems . what s that ? and the curtains . that's a p p something there . hm let's see. I don't see anything else there . she's stepping in the water . the sink’s running over .
that spell something dovn there but I can' 5egit . so far . and he's on a stool thats [ fall over while they re stealing cookies . and theres a late and two cups on the sink and she's got a plate in
her hand .  don't see anything else

()
okay the kid on the bench who's got s hand in the cookie fer and he's falling off and his sister wants one. his mother s standing in a puddle of water because she didn't turm off the faucet and she's
dry  dish. she oughta cry hr feet instead, te window i apen . Rl the sink s overflowing, s obviously summer because the window as | said was apen . there'ssuppasedlyleaves on the trees
anything el that Im spasta pick up ? il he ki’ gonna fall o, and it the i i off the cookie jar . and e’ got one n his hand and handing i to his sister and ane and he's sneaking another e
.ot sneaking . the water is still unning inthe sink . and splashing on the floor

®)
okay . 80 in e first place e mother forgotto tum of e water and fhe watee's unning out e sink . and she'sstanding fhre . i’ faling on he flot . he child is 3 a stool and feaching up into
the cookie jar . and the stool is ipping over . and he's sort_of put down the plates . and she's reaching up to get it but I don'tsee anything wrong with her though. yeah that’ it . [ can’ see anything .

(v")

YxAua 1.7: Label: Control, Prediction: Dementia
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1.3.4 TIIoAutpomixd Moviéla yio Adyvworn ‘Avolag pe yerorn Out-
Aoag xouw Anopayvnropwvnuévou Kewpévou

LTV TEONYOVUEVY EVOTNTA, YPNOYLOTOCUUE LOVO TO UTOUNY VNTOPWVNUEVO XELUEVO Yo
N By Vo™ TS Gvolag. LTNY eVOTNTA oUTY, Vol YENOLOTOCOUUE XAl TO ATOUNY VITOPYT)-
HEVO XEUEVO XaL TOV TyO.

Ye avtileon ye undpyouoeg epyaoieg, Tou yenoLwonowly oTpatnyxés early xou late fu-
sion aueAOVTOC €TOL TIC AAANAETIORACELS SLUPORETIXDY TROTUXOTATWY PETAE) TOUg, 1) SLlaTEl3h
oUTY TROTEIVEL UEYOBOUC ATOTEAECUATIXOU GUVOUIGHUOV TWV SLPORETIXMDY TROTUXOTHTWY.

Yuc Ewodveg 1.8 - 1.14, mapouctdloude TIC TEOTEWVOUEVES UEVOB0US CLUYYWOVEUCTC TWV
OLUPOPETIXWY TEOTUXOTATOV.

Q¢ €loodo oe GA ToL VELPWVIXY BIVETOL TO ATOPAYVNTOPWOVNUEVO XElUEVO, EVE TO dpyEeio
AYOU UETATEEMETOL OE €OV 3 xavaAwy, log-Mel spectrogram, delta, delta-delta. Xt

CUVEYELNL, YPNOWOTOLOVUE TOAUTEOTUXES UEDOB0UC, Ol OTOIEC TEPLYPAPOVTAL TAURAUXATE):

BERT + ViT + Gated Multimodal Unit H npotewvouevn opyitextovixn omeixoviCetan
otnyv Ewoéva 1.8. Xpnowonowolue wg uédodo cLYYOVEUCC TWV DLUPORETIXMDY TROTUXOTHTWY
10 Gated Multimodal Unit [75], npoxewévou va eléyEoupe tn cUVEIOQORE TNE x&e TEOoTI-

#GTNTaC S TPOS TV TEAXT €2000/ TAEVOUNOT).

AD patient
Dense Layer patien
2 units)
non — AD patient

X[i’ € RBXd

X, € RBx4

Transcript

Yxhua 1.8: BERT + ViT 4 Gated Multimodal Unit

BERT + ViT + Crossmodal Attention H mpotewopevn apyttextovixt| anewovile-
Tar oty Ewova 1.9. Xenowonowolye we uédodo ouyymVEUoNS TwV BLUPORETIXWY TPOTLXO-
Ttwv Tto crossmodal attention [76, 77, 78]. Tuyxexpwévo, o unyaviopds cross-attention

olaxplveTon oe dVo enineda mpocoyrc, éva and ta xelyeva Xg mpog To OMTIXA YopoX TNl
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otwd Xo xou €vor amd ToL OTTIXG TPOG TOL XELEVIXE YORUXTNEIOTIXE. 2T1) CUVEYELN, UTOANO-
yiCoupe to scaled dot attention, 6mwe mpotdidnxe oto [46] xau Siveton ond v e&iowon:
(o = softmaz(QK™ /\/dpro;)V) ue tnv avamapdotoon Tou xeywévou oc query (Q), xou Ty
avamapdotact e exovas we key (K) xou value (V), xau avtiotpopa.

AD patient

Global Average Dense Layer
Pooling (2 units)

[« non-AD patient
Concatenation
T K,T
Y, = softmax QK Vg € REXTaxdy _ Y = softmax (QB—") Vo € REXTpxdv
Jdx Vi

|

Ve

R Y
cm,g,,,(x,,.x,g)\E CManp (g, X |

Vse REXTpxdy : QB € RBXTpxdic
joo ;

{
|
|
|
|

;Qu € RBXTaxdi K, € RBXTpxds K, € RB¥Taxdk V, € RBXTaxd
i
N LN .4 v ~
W,
Wo, Wiy Wy, % Wk, wy,

BXTqxdg X, € REXTpxda
X eR Vision Transformer (ViT) BERT "€

- L o
|

Yxhue 1.9: BERT + ViT + Crossmodal Attention

BERT + ViT + Co-Attention H npotewduevn apyitextovint| anewoviletar otny Ei-
x6va 1.10. Q¢ pédodog oLYYMVEUSTC TV YAWOGIXMY Xl 0XOUC TGV AVUTHRC TUOEWY YEN-
owonoteltar o pnyaviopds co-attention [79, 80]. O unyoviouds autde yenoyonoleitor oTic
AVOTOROC TAGELS TOU XEWEVOU Xal TN EOVaC xau Bonddel otn udinomn towv Papdv Tpocoyfic

TWV ATOUAY VITOPOVNUEVODY XEWEVOY XU TUNUATOV TNG EXOVISC TAUTOYEOVA.

Multimodal BERT H npotewvdpevr apyttextovixy| anewxovileton otnv Ewxova 1.11. Xen-
owwomololue uio uédodo, n omola ELOAYEL AXOLCTIXY XAl OTTIXTY TANEOYOE(N GTO YAWGGIXO
wovtého BERT [18, 81, 19, 82].

BERT + ViT 4 Gated Self-Attention H npotewvouevn opyttextovixy ancixovileton
oty Eudvo 1.12. Q¢ uédodog oLy ymveusng Twy SLUQORETIXMOY TROTIXOTHTWY YeNoLUoTolE ToL
to Gated Self-Attention [83]. Luyxexpéva, GUVEVOVOUUE XOTS YPOUUES TIC UVOTOPAUOTAGELS
TOU XEWEVOU X0l TNG EXOVOS XAl YPTOULOTIOLOUUE EVAV UNYAVIOUO AUTO-TIROCOY NS, TOU TEQLEYEL

éva povtéro mOAng gated model.
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Dense Layer

§: Product ¢:Product

AD Classification Task MMSE Regression Task

a®: Softmax a®: Softmax

HE:Sum HE:Sum

F:Product FT: Product

§ € RIXT
Vision Transformer (ViT)

Transcript

Yynhpo 1.10: BERT + ViT + Co-Attention

AD Classification Task

Dense Layer
128 units;
MMSE Regression Task

Shifting

Nonverbal

Shift

Repeat N
times

4e Rixd 1‘ X e RVxd y € RV

Vision Transformer 256 units|

i Transcript eGeMAPSV02 (88d)

YyxfApna 1.11: Multimodal BERT - eGeMAPS + ViT
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AD Classification Task MMSE Regression Task

(00 i)k O M)

Dense Layer Dense Layer [+ softmax (7\5 ) Gl
(2 units) (1 unit)
{ [}

e My % My L
Dense Layer
(128 units)
1Y Q@

- ‘ X € RVxd

Transcript

Ye RTXLl

Yynpo 1.12: BERT + ViT + Gated Self-Attention

1.3.4.1 Koahwpunpdpeiopo (Calibration)

Tio¥etolue N wédodo nou avagépinxe otnv Evotnta 1.2.1.4. H npotevopevn apyttexto-

vixt| amewxoviCetar oty Ewdva 1.13. Yuyxexpyéva, agod €youue ABeL TIC avanapao TAoELS

TOU XEWEVOU XAl TNG EXOVAS, axoloudolue TNy axdhovdr dladixacto:

Béhtotoc IMuprvac Metagopde (Optimal Transport Kernel): ' va eZaopolicovpe
6Tl To pnxog NG axohoudiog Twv Slavuoudtwy Tou tpoxdnTovy and to BERT xo to

DeiT eivor o {810, expetarhevduoote évav Béhtioto Iupriva Metagopdc (OTK).

Avamnapdotaon xewévou: Tlepviye TNV XeWWeVIXT avanapdo oo UECW EVOS EVIGYUUEVOL
EMNEDOL AUTO-TPOCOY NG UE TANEOYOpRiES TEpLEouévoL. Exuetodievdpacte Tpelc x0pleg
pedddoug yia Ty mopoyr) Thawoiou (contextualization), cuunepthauBovouévou Tou xo-
Yool mepieyouévou (global context), tou Badéoc nepleyouévou (deep context) xou

Tou Badéoc-xadohixol TEQIEYOUEVOL.

Avarnopdotaon Ewodvag: Iepvdue tnyv eixovixr) avanopdotact) HEcw eVOG Uy oviGUo
AUTO-TPOGOY NG UE EVA VEO LOVTENO TUANG YL T1) LOVIEAOTOMNOT TV ECWTERIXWY EVOO-

TEOTUXGY AAANAETULORACEMY.

Béktiotn Metagopd (Optimal Transport): Xenowonolotue petdddoug Bértiotne peta-

(QOPAC YOl TNV XATOYEAUPY) TWV BLO-TPOTUXWY AAANAETULOLACEWY.

ITohutpomixéc MéYodol: 3tn cuvéyela, mpotelvoupe 800 uedddouc Baclopéveg o un-
YAVIOUO TROCOY NG YO TN CUYYWOVEUCT] TWV YURUXTNELO TIXWY AUTO-TEOCOY NS XAl GUV-

TEOCOYTG.
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o Kohwmpdpiopa: Télog, yio tnv anotponr) dnuoupyiog LovTEAwY Ue uTepBolxr auTto-

renoldnon, yenowonotolye label smoothing.

(e}
> Context -
based Self-
Attention

Transcript————> BERT I
Optimal Transport

(Image — Transcript)

L > F": Product —> H®:Sum ——>a°: Softmaz —> é: Product

uopeusieauoy

non-AD

Dense Layer Dense Layer

[6,4] : Concatenation — 5e78e L&Y (2 units)

Self Attention

(gate model)

AD

I

—> F:Product —> H*:Sum —>a: Softmaz —» &: Product

]

uopeuaeauoy

Optimal
| Deil ——> Transport
Kernel (OTK)

(") Xuv-Tlpocoyn. To oxwacuévo mhaicio aviiotoyel otov unyavioud cuv-npocoyhic. Auth 1 uédodoc

¥
Optimal Transport J
(Transcript — Image)

TEOCEYEL TIC DLOUPOPETIXES AVATUPATTACELS TAUTOY POV

c
~—% Context- based
Self-Attention

Dense Layer

Denso Layer Dense Layer
ul it (128 units)

oty Tromm ——>a": Softmaz —— &: Product ———

uoneuaeouod

Transcript————————» BERT T

. Optimal Transport
(Image ~-» Transcript)

N Denso Layer

Layer
C Normaization (2 units)

Self Attention ‘
(gate model) > non-AD

Denso Layer
Optimal H
> DeiT > Transport H
Kernel (OTK) H
,  Optimal Transport I

(128 units)
(Transcript - Image)

. Dense Layor Dense Layor " Softman]——| 7+ Produc )
(128 units) (1 unit) ekt e

Joneuaieauoy

(B") To oxwouévo mhaicto delyvel tn uédodo cuyydveuone. Auth n uédodoc yenowponotel Vo aveldptnta
povtéha mpocoync. To yopaxtnelotixd cuyywvebovion Y€ow W Aettovpylog mpdoveons, eved to layer

normalization ypnowwornoteitan yia 0 otadeponoinon tne exnaidevong.

EyxApna 1.13: Ilpotewdpeves Apyitextovinée - Optimal Transport - Calibration

1.3.4.2 Avutépatn Avalninon Apyrttextovixric Nevpwvixod AwxtdOou

H npotewvouevn apyitextoviny| amewxoviletan otny Euxéva 1.14. Anotelelton and 1o mogo-

XATE TUAUATO
o Anopayvnrogovnuévo Kelyevo: BERT

o Avalrtnon Ouhlac-Nevpwvixrc Apyttextovixfc yenowwonoiwvtog tn uévodo DARTS
[84]. .
— ITohutpomuxéc Médodor.
— Tucker Decomposition [85]
Multimodal Factorized Bilinear Pooling (MFB) [86]
Multimodal Factorized High-order pooling (MFH) [86]
BLOCK [87]

— Yuvévworn (Concatenation)
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Text Input

well the poor mother's doing CLS tok Zt
f P oken I_I

dishes . rhe_re_s a boy on a Dense Layer I:I:I:D

stool . cookie jar . and a girl BERT (64 units)

down below . is that all you I—I

wanted to know ? okay .
there's a cookie jar . the little
boy is standing on a stool.
Fusion Methods: 2
P T - (i) Tucker AD patient
1 —> sep_conv_3x3 (ii) MFB Dense Layer
. DARTS 1 (iii) MFH (2 units)
' 1 (iv) BLOCK
1 —> max_pool_3x3 (v) Concatenation non - AD
Image Input f 1 patient

1 1
1 1
1 1
I 1
] L
I
! T
1
1
1
1
1
1

Sxhua 1.14: Movtého mou yenotdomolel autdpaty avalTnon deyLlTEXTOVIXTE VEUR®YIXOU dixT)OOoU

%ot ToAUTEOTIXES peEddBouC.

1.3.5 AmnoteAéocpata

Yov Hivoxa 1.7 mopatnpolye To anoTEAEGUATA TWY TEOTEWVOUEVWY ARYITEXTOVIXWY. E-
niong, mpaypatonoleltal GOYXELON TWV JPYLITEXTOVIXMY AUTKOY UE UTAEYouces Heodous TNng
BB oypapiag.

‘Ocov agopd ta tpotetvoueva Lovtéla, napatneolue 6t 1o DARTS + BERT + BLOCK
elvon 10 xoh0TERO YoVTELO OE ambdoon tetuyalvovtag tocootd Accuracy xon Fl-score (oo e
92.08% o 91.94% avtiotoya. Iliotedouye 6Tt T0 poviého autd eivon To xaAUTERO, ETEWN
TEPLEYEL UMNYAVIOUO QUTOUOTNG Vol HTNONG ORYLTEXTOVIXNG VELPGVIXOL BIXTOO0U. Xuyypoveng,
xenowonoteltar ¢ pédodog cuyywveuvone 1o BLOCK. To deltepo oe anddoon povtéro eivou
7o Attention-based fusion - Optimal Transport, To onolo eCacgorilel anddoon oe Accu-
racy (on pe 91.25%. O unyoavioude calibration, tou cupnepthoaufdveton o€ aUT6 TO LOVTENO,
GULUPAAAEL 6TNY a6t AUTY. LTV anddocT auty| cupBdAlouy eniong xou ot pédodol cuy-
xwveuong v tpomwottwv. To povtého BERT + ViT 4 Gated Self-Attention metuyoaivel
v Teltn peyaltepn anddoon oe Accuracy, xadog 1 pédodoc auTh mdvel OAEC TIC AAAT-
Aemdpdoeic YeTall xetwévou xau fiyou. Iupatneoldue étt to poviého BERT + ViT + Gated
Multimodal Unit metuyaivel tn dedtepn yeipdtepn anddoo. Iliotebouue dtL autd ogelheton
oT0 Yeyovog ot 1 pédodog Gated Multimodal Unit ehéyyel tn por|) mAnpogopioc mpoc tnv
££0060 xod0opllovTog ToL TPOTUXOTNTA EVOL TEQLOGOTERT) CNUAVTIXT Y WELS VoL TLdvVEL TIC AAAT-
Aemdpdoelc PeTadh TwV SlopopeTix®y Tpomxothtwy. H yewdtepn anddoon oe Accuracy ue
10600716 oo pe 80.83%

‘Ocov agpopd 0 cLYXELON TWV HOVTEAWY PaC PE UTdpyovaeS uetddoug tne Bitoypaplioc,
TapATNEOVUE Tol EEAC:

® JuYXEITXd UE TIC TOAUTEOTIXESG HEVODOOUS, TapATNEOVUE OTL TO XAADTERO UOVTEAD UG,
onhadh o DARTS + BERT + BLOCK, tic Eenepvd oe Accuracy xatd 2.50 - 17.08%.
Auto cupfaiver, emeldr| ol epyaocieg autég yenowdonooly uedodoug early & late fusion
1) CUYYWVEDOLY TIC AVATUPAUC TUCELS OLOPOPETIXMY TEOTUXOTATWY XAUTA T1 BLAPXEL TNG

exmaldeuone. Enopévng, dev "midvouy’ Tic ahAANAETLOPACELS TWV OLUPORETIXWY TEOTIXO-
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THTWV.

o Yuyxpltixd pe Tic uedbédoug, mou ypnotponooty og elcodo uévo uio tpomxdTnTa (xe-

fuevo 1) o), mopaTNEOUUE 6TL TO HOVTEND Pog TETUYAEVEL XahOTERY anddoaT).

— 'Ocov agopd Tic YedOdOUE TOU YENCLLOTOLOUY UOVO TO UTOUNY VITOPOVINUEVO XE-
{pevo (BERT), 1o povtého poc metuyaiver xahltepn anddoon oe Accuracy xou

Fl-score xotd 4.58% %o 5.21% ovtictouyo.

— 'Ocov agopd T Tohutpomixés uetddoug, 1 apyITEXTOVIXT Hog UTepBalvel Tig epyo-

olec autéc we mpog To Accuracy xotd 2.5 - 17.08%.

IMivaxag 1.7: Xiyxplon anddoone PeTolld TV TRPOTEWOUEVKDY UOVTEAMY Xo TWV UTHPYOUCWLY
pedbdwv oto clvoro dedouévwv tou ADReSS Challenge. Ou avagepdpeves tuée elvon o péoog
6po¢ £ 1 tumixh amdxhion. To anoteréopata elvon uéoog dpog and mévte exteréoelg. To xaldtepa

anoteAéopaTa oave UETEIXY) 0ELONOYNONE TopOoLGLELoVToL UE EVTOVA YEUUUTA.

Mezpuxéc AEoldynone
ApxitEXTOVIXN Precision Recall Fl-score Accuracy Specificity

Unimodal state-of-the-art approaches (only transcripts)
BERT 87.19 £3.25 81.66 £5.00 86.73 +4.53 87.50 £4.37 93.33 £5.65

Unimodal state-of-the-art approaches (only Speech)

DARTS 70.04 +3.84 89.99 +2.04 76.09 £0.87 72.92 £2.28 62.3 +7.05
AT-LSTM (z-vector) [88] 66.00 69.00 67.00 67.00 -
ECAPA-TDNN [89] - - - 66.70 -
SiameseNet [63] - - 70.80 70.80 -
z-vectors_.SRE [67] 54.17 54.17 54.17 54.17 54.17
Acoustic+Silence [90] 70.00 58.00 63.00 66.70 75.00
YAMNet [91] 64.40+3.93 73.40+8.82 68.60+4.84 66.20+£4.79 59.20£7.73
Majority vote (Acoustic) [64] - - - 65.00 -
Audio (Fusion) [92] - 83.33 - 81.25 79.17
DemCNN [93] 62.50 62.50 62.50 62.50 62.50
CNN-LSTM (MFCC) [94] 82.00 38.00 51.00 64.58 92.00
Multimodal state-of-the-art approaches (speech and transcripts)

Audio + Text (Fusion) [92] - 87.50 - 89.58 91.67
Fusion Maj. (8-best) [63] - - 85.40 85.20 -
Fusion of system [67] 94.12 66.67 78.05 81.25 95.83
GFI,NUW,Duration, Character 4-grams, } R R 77.08 R
Suffizes,POS tag, UD [95]

Acoustic € Transcript [90] 70.00 88.00 78.00 75.00 83.00
Dual BERT [91] 83.04 £3.97 83.33 £5.89 82.92 +1.86 82.92 +1.56 82.50 £5.53
Majority vote (NLP + Acoustic) [64] - - - 83.00 -
ITpotewdpueves ApXLTEXTOVIXES

BERT + ViT + Gated Multimodal Unit 80.92 91.67 85.92 85.00 78.33
BERT + ViT + Crossmodal Attention 86.13 91.67 88.69 88.33 85.00
Multimodal BERT 76.57 89.17 82.28 80.83 72.50
BERT + ViT + Co-Attention 92.83 81.67 86.81 87.50 93.33
BERT + ViT + Gated Self-Attention 90.87 89.17 89.94 90.00 90.83
BERT + ViT + Gated Multimodal Unit 89.16 85.00 86.73 87.08 89.16
Co-Attention — Optimal Transport 93.57 84.16 88.53 89.16 94.16
Attention - based fusion — Optimal Transport 93.08 89.17 91.06 91.25 93.33
DARTS+BERT+ Tucker Decomposition 89.16 85.00 86.73 87.08 89.16
DARTS+BERT+MFB 91.29 88.29 89.80 89.58 91.66
DARTS+BERT+MFH 94.46 86.66 88.31 88.74 94.16
DARTS+BERT+BLOCK 94.09 91.66 91.94 92.08 94.16

DARTS+BERT+ Concatenation 86.68 90.83 88.65 88.33 85.83
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1.4 Audyvwon Eniindilac

1.4.1 Kivntpo

H emhndlo ebvan par veupohoyiny| vocog, 1 onola enneedlet dTogo OAOY TV NAXLOY. SUU-
powva pe tov Hoayxdouo Opyovioud Tyeiog (IIOT), nepinou 50 exortoupipro dvdpwrol €youy
emndlo Ty xoouiwe, YEYovog mou Ty xahoTd it and TIC TEPLOGOTERO XOWVES VEUROROYIXES
nodoeig [96]. H emindia éyer apvnmind aviixtuno oty xadnuepvi Lwh twv ovdpdrwy xu-
plwg Aoyw Twv dlaxpioewy xou Tou oTlypatog mou TeEYBdAAeL TNV (Blor TNV acvévela. dotdoo,
o ITIOT avogéper 6Tl €mg xou 10 70% twv avdpdnwy mou Louv pe emindio Yo urmopovooy
va {Aoouv ywele emAnmTixéc xploelg, edv ot dvipwnol dlayvwo Tolv €yxaupa xou AdBouv tny
xatdAAnAn epaneio. Emopévae, n éyxaen didyvemon tne emdndlog elvar onuovtiey yior Tnv
Topoy Y| xahltepne ToldTnTag (WA OTOUE EMANTTINOVS ACVEVELS.

Trdpyet Evoac onuavtixdg aptiuog HEAETHY Tou TeoTtelvouy uedddoug yio TNV aviyveuon
emAnmTxeyv xploewyv. H mheodmoio autdv Twv YeAeTOV e€dyel YapaxTnELoTiXd TOCO TOU
Touéa ypOvou 660 xan Tou Topéa cuyvoTNTAG and To Nhextpoeyxeparoypdpnuo (HET). Ia
TopddeLypa, oL ouyypagelc epopuélouv to Discrete Wavelet Transform (DWT) [97, 98] yia
v anoclvieon twv onudtwy HED oe unolmveg xou otrn cuvéyelo Ty eZaywyr| YoeaxTn-
plo TV and xdde vnolavn. Agod €€dyouv UEYIAO aptiUd YOEUXTNEIC TIXGY, Ol CUYYEO-
pelc ouvlwe exyetaliedovtar TNV emAoyr yopoxtnelo Ty feature selection ¥ teyvixég
uelwone dlouotdoewy (dimensionality reduction techniques) yia tnv edpeor tou xohiTtepoU
UTIOGUVOAOU YOROXTNRLO TIXWY 1) TN UEWCT TNG BLEC TIONS TOL BlavOOUATOS YoROXTNELO TUXWY
avtiotoya. To tedeutalo Briua amd Tic mpotewoueveg uedddoug tepthau3dvel To GUVOLO TwV
TOPABOCLAXMY TUEVOUNTOVY Unyovixhc uddnone, t.y. Logistic Regression (LR), Support Vec-
tor Machines (SVMs), Random Forests (RF), Decision Trees, x.An. Autéc ot pédodot etvon
YeovoPopee, xodme AmotTolY Xdmolo ETUTESO TEYVOYVWOlag Yo TV e€aywyT| TV XoahOTEPWY
OVTLTPOCMTEVTINMY YApoXTNELo TV, Mdovo pepixée pehétec [99, 100, 101, 102] éyouv expe-
Tadheutel Bodid vevpwwixd oixtua, onh. CNNs, LSTMs ¥ BILSTMs yio tnv aviyvevon xou
TedPiedn tne emindioc. o160, oL teplocdTEPES amd auUTES TIg ued6doug eaxoroutoly va
Booilovtar otnyv e€aywyh yapaxtneotixody [100, 101, 99]. "Evoc dhhoc nepopioudc elvon to
YEYOVOS OTL oL UTdpyouoeg epyacieg ywetlouv ta ofjuata HEI oe tufpata xou mpoteivouy ma-
jority vote npoceyyioewc [102]. "Etor, mpénet vo exnoudedovtor TOMNATAG LovTERA auEdvVoVTag
ONUAVTIXA TOV UTOAOYLoTIXG Ypeovo. Tautdypova, to nepiocdtepa poviéha CNN dev elvon
o 0€om VoL HOVTENOTIOLACOUY AMOTEAECUATIXG TIC YPOVIXEC ECUPTNHOELS HETOEY TwV OEBOUEVWLV
HET'. Av xou tae LSTM o Tt BILSTM umopoty v culhdBouv Tic ypovixég e€upTtoeic oTa
oedopéva HETL, cuvidwe €youv ugnih ToAUTAOXSGTHTO LOVTENOL.

1.4.2 Acoouéva

EEG Database of the University of Bonn. Auté 1o olvoho dedopévmv [103] anote-
hetton and mévte unocUvola, ta omolo cuuBoailovtar wg A, B, C, D xa E. Kdlde unocivoro

nepéyet 100 turuota HEI evée xavahiol) didpxetag 23,6 devteporéntwy. H ouyvdtnta dety-
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potorndiog etvon {on pe 173,61 Hz. Etol, xdde tuqua HED arnoteheiton and 4097 delyporto.
Ta oet A xou B €youv culheydel and névte vyielc edehoviég Ye Tar YATIL TOUG avoLy T xa
xhetotd avtiotoya. Toa oet C xou D €youv culheydel xatd tn Bidpxelor Tng eVOLdUESNC XAt
tdotaong (Bidotnua ywelc emAnTTixés xploelg). Buyxexpyéva, Tuiuata 6to obvolo D éyouv
XAUTAYPOPEL ATO TOV CYNUATIONO TOU LTTOXUUTOU oL Teocdlopiletal k¢ eminmtoyovog Lovn,
EVO TOL CHUATA 0TO GUVOAO Bedouévwy C €youv xaToypagel and TOV ITTOXOUTO Y NUATIOUO
Tou avtidetou nuicgopiou tou eyxepdhou. To cOvoho Bedouévewv E mepiéyel tuuata and
dpaoc TnetoTnTa emAnmuxic xplonc. Egopudotnxe éva {ovonepatd gihteo oto ofjuato HED
ue yopuniés xou vdmiéc ouyvotnteg amoxonrg 0,53 Hz xan 40 Hz avtiotorya. ‘Ol autd tar
Tunparte €youy emdewpenidel yewpoxivnto and Evay ednd AOYw TNG YUIXTC Spao TNELOTNTAS XAl
TWV UVACEDY TWV LOTLOV.

oapoxdte, Yoo TEayUATOTOCOUUE T TELRAUATE Lo YENOWOTOLOVTAS TNV €EAC XATNYO-

conoinon: AB (vywh dtopa) - CD (interictal) - E (ictal).

1.4.3 Medodoloyia

Y auTAY TNV EVOTNTA, TEPLYPAPOLUE TNV URYLTEXTOVIXT] TTOU ELCAUYAYOUE YO TNV oviy VEUOT
e emindlag yenowonowviag ofuata HED xou gacuatoypdupata STFT. H mpotevouevn

opyLtextoviny amewxoviletan otny Ewdva 1.15.

o Yruo HEI: Onwe gatvetar oto Xy. 1.15, vhonowolue 800 xhddoug CNN ue dugpo-
eeTixd peyédn muprvar Yoo Ty enedepyoaoio Twv onudtoy HED. H emloyn autodv towv
0Vo xhadwv CNN e wxpd xon peydha ueyedrn @iktpou elvon eumveuouéva amd Toug
[104, 105], 6m0uL oL cuyypageic avapépouy 6Tt To UxEd PikTpo elvan ot Véon xatarypdepet
YEOVIXEC TANPOYOPIES, EVG TO PEYAAUTERO QIATEO elvon avd Yo Tn UAANYN TANEO-
poplnv ouyvotnrag. Kdlde xAddog arotehelton amd Tplor cUVEAXTING G TEWUATA Xou BUO
oTpouata max-pooling, 6nou xdie cuvehixTnd cTp®uUa TERAAUBdveL Eva eninedo xo-
vovixonoinong [106] xou pior cuvdptnon evepyonoinone ReLU. Onwe ynopel xaveic vo
TopaTNEhoel and to Xy. 1.15, To mp®To cuVEAXTIXG umAox xdde xAhddou Oelyvel To
péyedog tou pikteou, Tov opriud Twv PilTery xou to Yéyedog Tou dlaoxelouo (stride
size). To endpeva 500 cuveAxTixd umhox Tou xdde xhddou delyvouv 1o uéyedog Tou
@plhTeou xar Tov apliud Twv @iltewyv. To péyedog tou Swoxeiiopol eivan (oo ue 1.
Kérje ymhox max-pooling delyvel to uéyedoc tou xou 1o uéyedoc tou draoxeiiopol. a
™ pelwon tne unepmpocopuoYne, epapuolovue dropout layer ye cuvteheoty| 0,5 YeTd
TO TEWTO UTAOX Max-pool xde xAddou xou UETA Tr CUVEVLOT Xal TwV BU0 XAUOWY.
Téhog, yenowwonoolue éva flatten layer, ondte 1 é€odog €yel didotaon 1d. 'Eotw to

AmOTENECUA AUTOV TOL TRAKATOC TNS opyLtextovixAc: f*.

e Avanapdotaon exévoc: Egoapudélovye tov petaoynuatiopd Fourier yixpol ypdvou (STFT)
ot axatépyaota ofuata EEI. Metd Tov untoAoylond Tomv anmolutemy TWOY TOU QocUo-
toypdppatoc STET (uétpo STET), unohoyiloupe to gacuotoypdupo ot xhiyaxa db, to

OENTaL xou To O€ATa-OEATa. ‘Etol, xataoxeudlovue wia exdva mou amoteheitar amd tela
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ITivaxog 1.8: Anédoorn tou mEotevduevou Lovtélou péow tne pedddou cross-validation (AB -

CD - E). Ta aroteléopota eivar otn pop@h: HEcoc 6poc £ TUTUXY OTOXALOT.

Mertpwxég AZwoAoYNnong

MovTélo Precision Recall F1-score Accuracy
AB CD E AB CD E AB CD E
Ipotewidpevo Movtélo 97.14  97.16 97.18 97.99 96.49 96.00 97.52 96.77 96.41 97.00
+3.10 £3.75 +£4.31 +2.45 4£2.29 £6.63 +£1.91 +1.88 +4.09 +1.84

xavahia, Onhadh poaopatoyeduue oe xhipaxo db, 8éhta xon déATa-0éATo. Kdde euxdva
xhpaxdveton oe [0,1]. Kdéde exdva petaoynuatileton oe 224 x 224 pixels. Ou tpée

TWV EXOVODV OAWY XOVOVIXOTIOLOUVTAL.

‘Onwe gotveton oto Lyfua 1.15, xdie eixdvo diveton o€ €vol TEOEXTAUBEVUEVO LOVTEND
EfficientNet-B7, oxohoutoluevo and éva eninedo andpeidne ye mococtéd 0,5. Eniong,
aponpoLue to tereutaio eninedo tou EfficientNet mou yenowwomoleiton yia v xotnyo-
etonoinom. 'Etot, 1o mpoexnoudeuuévo povtého EfficientNet-B7 evepyel we e€aywyéog

YopoxtneloTixwy. ‘Eotw n é€odog etvan: fU.

e Gated Multimodal Unit: Egapuéloupe to Gated Multimodal Unit [75], npoxewuévou
VoL VOIEGOUUE TEPLOCGOTEQRT] ONUACIA 0T OYETIXY] TPOTUXOTNTA AYVOWVTAS TIC [U1) O)E-
Txéc TAnpogoplec. Aedopévev tov ff xon fU énee unoloyioTrnxay Topamdve, UToho-

yiCoupe Ty €€0b0 auThAC TNg ToAuTEoTIXY S UeVEdoUL h.

e Eninedo e€6dou: Metofi3aletan n moAutpomxr avomapdotaon h o éva dropout layer
e puIuo 0,5 oxohoutolueVo amd Eva TUXVO GTEMUL, TOU BiVEL TO TEAXO anoTéAeoua. O
oELIUOC TV HOVEBKY GTO TUXVH GTeMU e€opTdta amd xdde tepintwan nou e€etdleton
yioo tagvéunon xou uropel va etvan eite 800 (Suadixy| tadvounon) eite TpelC HOVEDES

(multiclass classification).

1.4.4 Amnoteréopata

‘Ocov agopd TV nepintwon (AB-CD-E), énwe nopatneeiton otov Hivoxa 1.8, to povtéro
o emTuyydver éva Bodud oxpifetac mou avépyetar oto 97.00%. Fl-score mou oobvton ye
97.52%, 96.77% xou 96.41% emtuyydvovton yio tic xhdoeic AB (healthy), CD (interictal)
xou E (ictal) avtiotouya.

Mropel xaveic va mapatneroel and tov Iivoxa 1.9 611 to povtého pag uneptepel 15 epeu-

VNGV TpwToPBovhiiy ot axplBeto xatd 0.50-17.00%.

1.4.5 Ablation Study

Ye auTAY TNV eVOTNTA, EXTEAOUUE ULl OELRS OO TELRAUATA, Yiol VO EEETUCOVUE TNV omo-

TEAEOUOTIXOTNTO X0 TNV EVEWO T TNG TEOTEWVOUEVNG UEYLTEXTOVIXNG TIOU TEQLYPAPETUL GTNY
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EEG signal

Y v
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\ 4 Y
8 max-pool, /8 4 max-pool, /4
oswmpon oswmpon
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8 cony, 128 5 cony, 128
\ 4 4
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4 max-pool, /4 2 max-pool, /2,

Image consisting of three channels, i.e.,
db-scaled STFT spectrogram, delta,
delta-delta

Y

Pretrained
EfficientNet-B7

padding = 1
A ) 4
0.5 dropout 0.5 dropout
> 0 €
\ 4 4
tanh tanh

/'X"\ /1 N\ 5
N N i

‘ 0.5 dropout H Dense Layer }——> Output

Yynpo 1.15: Ilpotewduevn Apyitextoviny - Emandio
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ITivaxag 1.9: X0yxplon anodoons UETOHEY TOU TEOTEWOUEVOU TOAUTEOTIXOU UOVTENOU Xal UTdip-
yovowyv epyootdy (AB - CD - E). Ou xatayeypoppéves Tiwéc elvon o yéoog 6poc £ 1 Tumr] oamdxhiom.
Ta xahOtepa amoteréopota eppavilovion Ye EVIOVouS YapaxTHpES.

Metpwx?r} AZohéynong

ApyrtexTovixm Accuracy

State-of-the-art approaches

Novel RF [107] 96.70
EMD, higher order moments, ANN [108] 80.00
BiLSTM [99] 88.00
DWT + Kmeans + MLPNN [98] 95.60
CNN [109] 96.97
Random Forest [110] 87.00
Matriz Determinant and MLP [111] 96.50
EMD and SVM [112] 93.00
dual-tree complex wavelet

96.28
transform domain [113]
statistical dual-tree complex

_ 83.50

wavelet transform domain [114]
ANN, hierarchical multi-class SVM 95.00
with new kernel [115]
Random Forest, wavelets [116] 95.84
CNN [117] 88.67
OPF [118] 89.20
Symlets wavelets, statistical mean 96.50
energy std and PCA, GBM-GSO, RF, SVM [119]
ITpotewopevn Apyltextovixm

97.00

+1.84

Evétnra 1.4.3. To anotehéopota Twv TelpoudTony avagépovtal otov [livaxa 1.10.

[Tpwro, e€etdlouUe TNV ATOTEAECUATIXOTNTA TNS ToAuTpoTXAG Uedodou - GMU. Xuyxe-
xpwéva, agotpolpe T GMU xa cuvevévoupe (Concatenation) Tic avamapactdoec hl xou
hY. To mapayduevo ddvuoua epvdet o éva dropout layer pe mococté 0.5, axohovdoluevo
oné évo dense layer (ue 500 ¥ Tpelg Yovddes), to omolo divel v tehixr mpdPiedr. ‘Ocov
agopd v Ilepintwon (AB - CD - E), unopel xdnotog vo mopatnerioet and toug Iivaxeg 1.10
xou 1.8 611 1 agaipeon tne GMU odnyel oe pelwon tne Axpifetoc xatd 0.80%.

Y1n ouvéyela, e€eTALOUKE To ATOTEAEGUOTA TOU UEQOUC TNG URYLITEXTOVIXAC TOU AVTIGTOLYEL
oTNV ExoVa. A@alpolue TG0 TO UEROS OVATUPAOTACNS TG EXOVAS OG0 oL TNV TOAUTEOTIXY

uédodo GMU xou melpauatillOUAOTE UE TOV EVIOTIOUO ETANTTIXWDY XPIOEWY Y ENOULOTOLWVTAS
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Lovo toug Bvo xhddoug Tou CNN. ‘Ocov agopd v Hepintwon (AB - CD - E), unopel xoveic
va topatneRoet omd toug Ilivaxee 1.10 xou 1.8 wior peiwon tne Axpifetoc xatd 1.80%.

YN ouvéyela, e€eTdlOUVUE TNV ATOTEAECUATIXOTNTA TOU xAdBou Tng apyttextovixric CNN
e o wxpod gikteo. I var To xdvouue autd, agaipolue auTOY Tov xAhddo xon To oriua Tou HET
OLEPYETAUL UOVO UECK TOL xAABOU PE To peYahUTEpo @iktpo. Kdmolog unopel va mapatnerost
ond toug Iivaxee 1.10 xou 1.8 pior peiwon e Axpifelac xatd 2.20%.

Téhog, €€etdloupe TNV AMOTEAECUATIXOTNTA TOU XAddou Tng apyttextovixic CNN pe to
ueydho gpihteo. I'a var To TETOYOUUE, aPaEOLUE VTGV ToV XAdd0 xou To ofjuc HEIL diépyeton
HOVO PEGK TOL XA&BOL pE To wxeod Gihteo. TTapatnewmvag Toug Ilivaxeg 1.10 xau 1.8, BAénouue
wa petwon tne Axpifetoc xatd 2.00%.
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1.5 Emrihoyvog xow MeAlovtixeg Enextdoeig

Y& auTy| TN SLdaxToEWXT| SLUTESY EPELVIOUUE TIC TO TEOCPATES UEVOBOUC Unyovixig Uddn-
one yia (1) TRV avoryvodplon e xotddAung Le yeron avapTACEDY oTa XOVmIXE UEoa B TOw-
ong xa Tov avdopunto Aoyo, (i) v aviyveuon actevdyv ye dvola Tng vocou ANToydupep xou
v edPBredn v oxop MMSE péow auvdopuntne owhiag, xou (iii) v avaryvodpton emhnmti-
%WV aoVevwy uéow onudtwy HEIL evog xavahiol.

4 4 Z 7 Z
[opaxdtew, nopovctdalovion WEES YLol UEANOVTIXT] ETEXTAOT:

o Epunveloipa moAutpomixd wovtéda PBadidg wadnonc. O yotpoc npénet
VOU EVNUEROVETAL YTl 0 aAYOELIUOC UnyovixAc UEUNone €QPTacE G Lol GUYXEXELWEVN
anogaon. Luyxexpwéva, ol uédodor GRAD-CAM xou Integrated Gradients etvon 800
TEYVIXEC EQUNVEUCLUOTNTOC TIOU UTOROVY VoL EQUOUOCTOLY Yiat TNV EENYNOTN TWV ATOTE-

AECUATOY OTOOLONTOTE AAYOopiUUOL Uy ovixAc Uainone.

o 'EXAewdr etixetdv (labels). H culoyn peyddov cuvorwv dedopévemv mou ou-
vodevovtal UE ETUXETES Yiot TNV exnaideuon tov akyoplduwy teyvntic vonuooivng /
unyevixne uddnong ebvan xplowng onuacioc. T auté t0 Aoyo, oyedidlouvye vo e-
papuodoovpe Tpooeyyioee auto-emBhenduevne udinone (self-supervised learning) oto

HEALOV VIO VOL AVTIIETWTICOUPE TNV AVEYXT ATOXTNONG UEYIAWY CUVOAWY OEOOUEVWLV.

e Aviyvevorn tng Mild Cognitive Impairement xatdotaong. Xt0 yéhhov,
GTOYEVOUYE OTNV EQUQUOYT] TWV TPOTEWOUEVKY TEOCEYYICEWY GTO GUVOAO BEBOUEVHY
VAS nou npotddnxe oto [120, 121]. Autd 1o olvolo dedouévmy tepthopfdver acdeveic
ue Adtoydupep, un-Altoyduuep xou dropa pe Ao mpooPoln tne yvoone (MCI). H
aviyveuon twv atouny pe MCI arotehel tpdxhnon xau €yl anodetydel 6Tt eivon xplowng
onuactac. LUyXeXpwéva, 1 TeG0d0og TNG VOOOU UTOREL Vo XoJUGTERHOEL OTUAVTIXG UE

™V €yxauer aviyveuon Twv atdpwy ot xatdotacr MCL

o ITpoBAApata aroppritouv - Opoonovdiaxy Mddnor (Federated Learn-
ing). H enelepyaoia dedopévwv uyeiog ouvendyetar mpoBifAuata anoperitou. T va
elpaote mo axpBeic, N TAELVOTNTA TV LTOEYOLCKY TpoceyYicewy Poactletou oe xe-
VTS pUUUIOELC, OTIOU Tal BEBOUEVI CUYXEVTPWOVOVTOL OE EVAY XEVTEXO ECUTNEETNTY.
Avtideta, n opoomovdioxn udidnon avtwetwniler autd to TEdPANU dtavéuovtag Tr dlo-

owaolor EXTUUOEUCTC OF GUOXEVES TWV TEAXWY YENOTWV.

o Enadinor Aedopévwv. To nopaymywd avtimahxd dixtua (Generative Adver-
sarial Networks) unopolv enione vo a&tonotndoly yia T dnutovpyio onudtwy, dnhadh
outhloc, HEI', %.d. Yuyxexpyéva, ta Podid veupmvixd dixtua umopoly va exToudeuToly
e Bedouéva Tou Exouy dnuoueyNIel TEYYNTA, EVEK 1) amdB00Y| TOUG UTOEEl VoL BOXLUAC TEL

O€ TEAYUITIXG DEDOUEVAL.

o Egoppoy? twv neddduwy pag os dAAeg diatapay€g Tou eyxepdiov. O

TPOCEYYIOEC TOU TROTEVOUE UTOPOLY VA EQUPUOCTOVUY X0t O dAAEG vocoug. T mo-
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edderyUa, 1 épeuva €yel Bellel 6TL 1 vooog tou Ildpxvoov ennpedlel Ty opthia, etouéveg
1 vooog tou [ldpxivoov unopel va oviyveudel YEow TNS OULALAC X0k TOV ATOUAY VITOPK-

VNUEVWV HEWEVWV.

Xpenorn moAuxavaiixwy dedouévewy HET. 1o uéhov oxonebouye vo ypnol-
pomotfoouue mohuxdvaha ofpata HED [122, 123].

ITohuvyAwoowxég npooeyyioeslg. YNyedldlouue Vo EPUPUOCOUNE TIC TROOEYYIOELS
TOU TEOTEIVAUE GE Vol TOAUYAWGOXO TAAIGLO. LUYXEXQWEVA, CTOYEDOUUE GTNY EXTO-
{Bevon Twv Yovtéhwy Yag ot ula YAOooo xou TNy o&loAdyNnon TS ambdocrc Toug ot
wo G yAwooa. T'a mopdderyya, xdmolog unopel va exyetaAleutel T0 ohvoho dedo-
uévoov MADReSS Challenge [124]. Mnopolv vo exnoudeutotv povtéha Bactouéva oe
oedopéva owthiog otar oy yAxd xan v aglohoyniel 1 anddooy| Toug oe dedouéva outhiog

oToL EANAVIXGL.

Arndotaln I'vdorne (Knowledge Distillation). I va avtetonicovye tnv
avdyxn dnuovpyiag PEYIAWY UOVTEAWY, To OTOl0 CUVETAYOVTOL TEOBAUATO UTOAO-
YIOTXNC PUOEWS, OTOYEVOUUE OGNV EXPETAAAEUCT] TpooeYYloewy Amoctaing I'vworng
[125, 126]. Me autév tov TpOTO, Vol UEYENO VELpWVIXG dixTuo cuuméletar oe éval

UXEOTERO X0 TO ATAO, YWEIS VoL UEWWVETAL 1) AmOBOGT TOU.

ITpoocappoveic (Adapters). Ye auth ) dtplPr, Behtio Tonoiooue YepiXd TEOEX-
ToudeuUéva ovTéha Bootouéva oe YeTaoynuatiotéc. 2oT600, xatd TN BehticTonoinon
YAVETOL XATOLOL TANEOPORLa, Aol YENCLOTOVVTAL LOVO BEGOUEV TTOU EVOL GUYXEXQL-
HEVAL GTNY EXACTOTE EPYUCIA VIOl TNV EVAUERWOT] TV TOROUETEWY TWV UOVTEAWY. AUTo
TO QUVOUEVO Elval YVwo 16 ¢ catastrophic forgetting [127]. Enopévoe, oto péhhov,

oyedLdloupe vo ypnoulonotioouue tpocopuoyeic [128, 129].

IMapaxohoVOnorn tng EZEMENg tov Alatapaywy tou Eyxegdiouv pe
tnv IIdpodo tou Xpodvou. Emnedn n xoatddiumn xar n dvolo tomou Altoyduuep
egeMooovTon Ye TNV Tdeodo Tou yedvou, eival oNUaVTIXG Vo dloryvewoToly €yxatpo. H
Tapaxoroinon tng mopelag TG VOGOU XuTd UAXOS TOU YEOVOUL €YEL UEYAAYN ornuacia
ot Uépeg Wog. o mopdderypa, €va and T tasks oo mhalclo Tou GuVOAOL BEBOPEVLY
ADReSSo etvor 1 npdfredm e€€MEng Tng vooou, OTou UTopel xavelc vor SnuLoupyHoEL
€vol LovTéAO Yol vor TeoPBREEL TIC 0ANXYES BTNV YVWOTIXH XUTAGTACT UE TNV Téeod0o TOL

YEOVOUL.



Contents

Abstract in Greek

Abstract

Acknowledgements

Brief Description of the Proposed Frameworks in Greek

Contents

List of Figures

List of Tables

2 Introduction

2.1
2.2

2.3

24
2.5

Brain Disorders - Artificial Intelligence for Social Good . . . . . . . . . . ..
Depression . . . . . . . .
2.2.1 Cognitive Tools . . . . . . . . ...
2.2.1.1 Patient Health Questionnaire-9 (PHQ-9) . . ... ... ..
Dementia . . . . . . . .
2.3.1 Stagesof Dementia . . . . . . . .. .o
2.3.2 Cognitive Tools . . . . . .. . ...
2.3.2.1 Mini Mental State Examination . . . .. .. ... ... ..
2.3.2.2 Montreal Cognitive Assessment . . . . . . . . .. ... ...
2.3.2.3  Addenbrooke’s Cognitive Examination . . . . . . .. .. ..
2.3.2.4 Boston Naming Test . . . . .. .. ... ... ... ... ...
2.3.2.5  Wechsler Adult Intelligence Scale. . . . . . ... ... ...
2.3.2.6  Wechsler Memory Scale . . . . . ... ... .........
2.3.2.7 Alzheimer’s Disease Assessment Scale (ADAS) . . . .. ..
2.3.2.8  General Practitioner assessment of Cognition (GPCOG) . .
Epilepsy . . . . . o o
Motivation and Research Questions . . . . . . . .. .. ... ... ... ...
2.5.1 Motivation . . . . ..o
2.5.2 Research Questions . . . . . .. . ... .. ... ... .. ... ...

11

13

53

61

63

67
67
67
68
68
68
69
69
70
70
70
70
71
71
71
71



54 Contents
2.6 Thesis Contributions . . . . . . . . . . . e 75
2.7 Thesis Outline . . . . . . . . . s 77
2.8 Supporting Publications . . . . . .. ... o L 78

3 Literature Review 81

3.1 State-of-the-art analysis of Machine Learning Methods used for the recog-

nition of Depression in Social Media . . . . . .. ... .. .. ... ..... 81
3.1.1 Literature Review Findings . . . . . . ... ... ... ... ..... 84
3.1.2 Datasets . . . . . ... e 85
3.1.2.1 Depression Mixed . . ... ... ... ... ... ... .. 85
3.1.2.2 Depression_Severity . . . . . ... ... L. 85

3.2 State-of-the-art analysis of Machine Learning Methods used for the recog-
nition of Depression through Spontaneous Speech . . . . . .. .. ... ... 85
3.2.1 Early Fusion . . ... .. . ... . ... 85
3.2.2 Intermediate Fusion . . . ... .. ... ... ... .. .. ... 85
3.23 LateFusion . . . .. . . . . ... 86
3.2.4 Other approaches . . . . . . . ... ... oL 86
3.2.5 Literature Review Findings . . . . . . .. . ... ... ... ..... 86
3.2.6 Datasets . . . . . . .. e e 86
3.2.6.1 Androids Corpus . . . . . . . .. . ... 86

3.2.6.2 Distress Analysis Interview Corpus - Wizard of Oz (DAIC-
WOZ) . . o 87

3.2.6.3 Emotional Audio-Textual Depression Corpus (EATD-Corpus) 87

3.2.6.4 Depression and Anxiety Crowdsourced Corpus (DEPAC) . 87

3.2.6.5 Multimodal Open Dataset for Mental-Disorder Analysis
(MODMA) .« © o o oo 87

3.3 State-of-the-art analysis of Machine Learning Methods used in dementia

from spontaneous speech . . . . . . ... Lo 87
3.3.1 Unimodal Approaches . . . . . . ... ... ... ... ... ... .. 87
3.3.2 Multimodal Approaches . . . . . . . .. .. ... ... ... 93
3.3.3  Other Multimodal Tasks . . . . . . ... ... ... ... ....... 99
3.3.4 Literature Review Findings . . . . . ... .. .. ... ... ..... 100
3.3.5 Datasets . . . . . .. 101
3.3.5.1 DementiaBank Pitt Corpus . . . . . . .. ... ... .... 101
3.3.5.2 ADReSS Challenge Dataset . . . . . . ... ... ... ... 102
3.3.5.3 ADReSSo Challenge Dataset . . . .. ... ... ...... 103
3.3.5.4 B-SHARP Dataset . . . . . ... ... ... ... ...... 103
3.3.5.5 Longitudinal Multimodal Dataset . . ... ... ... ... 104
3.3.5.6  Carolinas Conversations Collection . . . . . . .. ... ... 105

3.3.5.7 Intelligent Virtual Agent (IVA) . . . . ... ... ... ... 105



Contents 55

3.4 State-of-the-art analysis of Machine Learning Methods used in epilepsy de-

tection/prediction from EEG signals . . . . ... ... ... ... ... ... 105
3.4.1 Literature Review Findings . . . . . .. ... ... ... ... .... 108
3.4.2 Datasets . . . . . .. 108
3.4.2.1 EEG Database of the University of Bonn . . . . . ... .. 108
3.4.2.2 Temple University EEG corpus . . . . .. ... ... .... 109
3.4.2.3 CHB-MIT Scalp EEG Database . . . ... ......... 109
3.4.2.4 Siena Scalp EEG Database . . . . . ... ... ....... 109

3.4.2.5 A dataset of neonatal EEG recordings with seizures anno-
tations . . ... oL 109

4 Methods for Recognizing Depression through Social Media posts and

Spontaneous Speech 111
4.1 Introduction . . . . . . . . . . . e 111
4.2 Calibration of Transformer-based Models for Identifying Depression in So-
cial Media . . . . . . . Lo 111
4.2.1 Methodology . . . . . . . .. 113
4.2.1.1 Architecture . . . . .. .. .. ... 113
4.2.1.2 Model Calibration . . . . . .. ... ... ... ....... 115
4.2.2 Experiments . . . . . . ... 115
4.2.2.1 Datasets . . . . . ... 115
4.2.2.2 Experimental Setup . . . . .. ... ... L. 115
4.2.2.3 Evaluation Metrics . . . . . .. ... ... L oL 116
4.2.2.4 Baselines . . . . .. ..o 117
4.2.3 Results . . . . . . e 117
4.2.4 Linguistic Analysis . . . . . . . . . ... .. 119
425 Discussion . . . .. ... e 121
4.3 A Cross-Attention Layer coupled with Multimodal Fusion Methods for Rec-
ognizing Depression from Spontaneous Speech . . . . . . ... ... ... .. 122
4.3.1 Proposed Methodology . . . . . . .. .. ... ... .. ... ..... 123
4.3.1.1 Single - Task Learning . . . . . .. ... ... ... ..... 124
4.3.1.2 Multi - Task Learning . . . . . . .. ... ... ... .... 126
4.3.2 Experiments . . . . . . ..o 126
4.3.2.1 Dataset . . . . . . ... 126
4.3.2.2 Baselines. . . . . . ... L Lo 126
4.3.2.3 Experimental Setup . . . ... ... ... ... ... ... 127
4.3.3 Results . . . . . . e 127
4.3.4 Ablation Study . . . . . ... 129
4.4 SUMMATY . . . . o o e e e e e e e 129



56

Contents

5 Explainable Identification of Dementia from Transcripts using Trans-

former Networks 131
5.1 Introduction . . . . . . . . . .. L 131
5.2 Dataset . . . . . . 132
5.3 Problem Statement . . . . . . .. ..o Lo L 132
5.3.1 Single-Task Learning Problem . . . . . . .. ... ... ... ..... 133

5.3.2  Multi-Task Learning Problem . . . . . . . .. .. ... ... ..... 133

5.4 Predictive Models. . . . . . . .. 133
5.4.1 Single-Task Learning . . . . . . . . .. .. ... ... 133
5.4.1.1 Transformer-based models . . .. ... ... ... ..... 133

5.4.1.2 Transformer-based models with Co-Attention Mechanism . 134

5.4.2 Multi-Task Learning . . . . . . . . .. ... L. 135

5.0 Experiments. . . . . . . . L 136
5.5.1 Single-Task Learning . . . . . . . . ... ... ... ... ... 136
5.5.2  Multi-Task Learning . . . . . . . .. ... ... ... 137

56 Results. . . . . . . e 137
5.6.1 Single-Task Learning Experiments . . . . . .. ... .. ... .... 137

5.6.2 Multi-Task Learning Experiments . . . . . ... ... ... ..... 140
5.6.2.1 Primary Task. . . . . .. ... ... . 0oL 140

5.6.2.2 Auxiliary Task . . . . ... ... ... 140

5.7 Analysis of the Language used in Control and Dementia groups . . . . . . . 141
5.7.1 Text Statistics . . . . . . . . . . e 141
5.7.2  Vocabulary Uniqueness . . . . . .. ... ... ... ... ... .. 142
573 Word Usage . . . . . . . . . . e 143
5.7.4 Linguistic Feature Analysis . . . . . . ... ... ... ... ..... 144
5.7.5 Explainability - Error Analysis . . . . ... ... ... .. .. 147

5.8 Summary . . ... L 150
6 Detecting Dementia from Speech and Transcripts Using Transformers 151
6.1 Introduction . . . . . . . . .. e 151
6.2 Dataset . . . . . .. 152
6.3 Proposed Predictive Models using only Speech . . . . ... ... ... ... 153
6.3.1 Experiments . . . . . .. ... 153
6.3.2 Results . . . . .. e 154

6.4 Proposed Predictive Models using Speech and Transcripts . . . . . . . . .. 156
6.4.1 Experiments . . . . . .. ... e 159
6.4.2 Results . . . . . . . 161

6.5 Discussion . . . . . . . L L 163
6.6 Summary . . ... Lo 166



Contents 57

7 Multimodal Deep Learning Models for Detecting Dementia and Predict-

ing Mini-Mental State Examination scores from Speech and Transcripts167

7.1
7.2
7.3

74

7.5

7.6

7.7
7.8

Introduction . . . . . . . . . 167
Dataset . . . . . . e 168
Problem Statement . . . . . . . .. ... 168
7.3.1 AD Classification Task . . . . . . . . . . . ... ... ... ...... 168
7.3.2 MMSE Regression Task . . . ... ... ... ... ... ... .. 169
Predictive Models . . . . . . . . . . . . .. 169
7.4.1 BERT + ViT + Co-Attention . . . . . . . . ... ... ... ..... 169
7.4.2 Multimodal BERT . . . . .. .. .. ... ... ... ... 171
7.4.3 BERT + ViT + Gated Self-Attention . . . ... ... ... ..... 172
Experiments . . . . . . . . ..o 174
7.5.1 Comparison with state-of-the-art approaches . . .. .. ... .. .. 174
7.5.2 Experimental Setup . . . . . .. .. ... 179

7.5.2.1 Training and Evaluation - Implementation Details . . . . . 179

7.5.2.2 Hyperparameters. . . . . . . .. . ... ... 179
7.5.3 Evaluation Metrics . . . . . . . .. .o 180
Results. . . . . . . . e 180
7.6.1 AD Classification Task . . . . . . . . . . ... ... ... ....... 180
7.6.2 MMSE Regression Task . . . . . ... .. ... ... .. 183
Discussion . . . . . . . .. 185
SUmMmary . . . ... e e 187

8 Context-Aware Attention Layers coupled with Optimal Transport Do-

main Adaptation and Multimodal Fusion methods for recognizing de-

mentia 189
8.1 Imtroduction . . . . . . . . . . . . .. 189
8.2 Data& Task . . . . . . . . 190
8.2.1 ADReSS Challenge Dataset . . . . .. . ... ... ... ....... 190
8.2.2 ADReSSo Challenge Dataset . . . . . ... .. ... .. ....... 191
8.2.3 Task . . . . . . e 191

8.3 Predictive Models. . . . . . . . .. 191
8.3.1 Architecture . . . . . ... .. ... 191
8.3.2 Model Calibration . . . .. ... ... ... ... .. ... ...... 197

8.4 Experiments. . . . . . .. ... 198
8.4.1 Baselines . . . . . . . ... 198
8.4.2 Experimental Setup . . . . . .. .. .. 202
8.4.3 Ewvaluation Metrics . . . . . . . . . . . ... ... 202
8.4.3.1 Performance Metrics . . . . . . ... ... ... ....... 202

8.4.3.2 Calibration Metrics . . . . . . ... ... ... ....... 202

8.5

Results. . . . . . 203



58 Contents
8.5.1 ADReSS Challenge Dataset . . . . . . ... .. ... ... ...... 206

8.5.2 ADReSSo Challenge Dataset . . . . .. ... ... ... ....... 208

8.6 Ablation Study . . . . . . .. 208
8.7 Discussion . . . . . . . .. 210
8.8 Summary . . ... e 211

9 Neural Architecture Search with Multimodal Fusion Methods for Rec-

ognizing Dementia 213
9.1 Introduction. . . . . . . . . . . . e 213
9.2 Taskand Data . .. .. ... . . . . ... 214
9.3 Predictive Models. . . . . . . . ... 214
9.4 Experiments. . . . . . . . .. e 216
9.4.1 Comparison with state-of-the-art approaches . . . .. ... .. ... 216
9.4.2 Experimental Setup . . . . . .. .. ... oo 217
9.4.3 Evaluation Metrics . . . . . . . . . .. ... 217

9.5 Results. . . . . . . . e 217
9.6 Ablation Study . . . . . . ... 220
9.7 Summary . . . ... 220
10 Multimodal Detection of Epilepsy with Deep Neural Networks 221
10.1 Introduction . . . . . . . . . . . .. 221
10.2 Dataset . . . . . . . e 223
10.3 Predictive Unimodal Models . . . . . . . ... ... ... ... ... .... 223
10.3.1 Experiments . . . . . . . ... 224
10.3.1.1 Experimental Setup . . . . . . ... ... ... . 224

10.3.1.2 Ewvaluation Metrics . . . . . . .. . ... ... ... ..., 224

10.3.2 Results . . . . . . . . . e 224

10.4 Proposed Multimodal Model . . . . .. .. ... ... ... ......... 225
10.5 Experiments . . . . . . . . ..o Lo 232
10.5.1 Comparison with state-of-the-art approaches . . . . . .. .. .. .. 232
10.5.2 Experimental Setup . . . . . . . . .. ... o 235
10.5.3 Ewvaluation Metrics . . . . . . . . . .. .. ... o 235

10.6 Results. . . . . . . . . e 235
10.7 Ablation Study . . . . . . ... 236
10.8 Discussion . . . . . . . . o i e e e e e e 242
10.9 Summary . . . ..o e 246
11 Conclusions and Future Work 247
11.1 Conclusions . . . . . . . . . . . e e 247
11.2 Limitations . . . . . . . . . e 251

11.3

Future Work . . . . . . . e 252



Contents 59
Bibliography 255
Appendices 297
Appendix A List of Publications 299
Appendix B List of Abbreviations 303






List of Figures

3.1
3.2

4.1
4.2

5.1
5.2
5.3
5.4

6.1
6.2
6.3

7.1
7.2
7.3

8.1
8.2
8.3

8.4

The Cookie Theft picture . . . . . . .. .. .. . . ... ... 102
The Circus Procession picture . . . . . . . . .. .. .. .. L. 104
Our Proposed Architecture . . . . . .. . ... ... ... ... 113
Our Proposed Methodology . . . . . . . . .. ... ... .. 124
Label: Dementia, Prediction: Control . . . . .. ... ... ... ...... 148
Label: Dementia, Prediction: Dementia . . . . .. ... ... ... ..... 148
Label: Control, Prediction: Control . . . . . . . . . ... ... .. ...... 149
Label: Control, Prediction: Dementia . . . . ... ... ... ... ..... 149
BERT + ViT . . . . . 157
BERT + ViT + Gated Multimodal Unit . . . . . . ... ... ... ..... 158
BERT + ViT + Crossmodal Attention . . . . . . ... .. ... ....... 159
BERT + ViT + Co-Attention . . . . . . . . . .. . ... ... ... ..... 170
Multimodal BERT - eGeMAPS + ViT . . . . . .. .. .. .. ... ..... 173
BERT + ViT + Gated Self-Attention . . . . ... ... ... ........ 174
Context-based Self-Attention . . . . ... .. .. ... ... .. ....... 194
Self-Attention based on different context-vectors . . . ... ... ... ... 194

Gated Dot-product. This gating model is incorporated in the conventional
self-attention mechanism for improving the quality of the learned attention.
This method is based on low-rank bilinear pooling. . . . . . . ... ... .. 195
[lustration of our Proposed Architectures. For the textual modality, we
use BERT, while for the image modality, we use DeiT and exploit an Opti-
mal Transport Kernel. Next, we use optimal transport domain adaptation
methods for transporting between each pair of modalities. Also, we pass
the textual representation through context-based self-attention layers, while
the image representation is passed through a gated self-attention layer. Fi-
nally, methods for fusing the self- and cross-attention features are presented,
namely Co-Attention and Attention-based Fusion. Each shaded box shows

the fusion method used, namely Co-Attention and Attention-based Fusion. 198

61



62

List of Figures

9.1 Illustration of our introduced architecture. For the text modality, we use
a BERT language model to obtain the textual representation. In terms
of the acoustic modality, we use the DARTS algorithm for obtaining the
optimal CNN architecture and the acoustic representation. We fuse the
two representations with fusion methods and pass the fused vector to a
dense layer, which makes the prediction. . . . . . . . .. ... ... .. ...

9.2  We visualize the initial normal and reduce cells and the best performing cells
obtained from DARTS. These cells are stacked to create the convolutional
neural network architecture. . . . . . . ... ..o

9.3 Test accuracy of our proposed model with respect to the number of CNN
layers generated from DARTS. . . . . .. ... ... ... ... ... ... .

10.1 Proposed Architecture . . . . . . . . . . . ... ..



List of Tables

3.1

4.1

4.2

4.3

4.4

4.5

5.1

5.2

5.3

Mean and standard deviation of the MMSE scores for the two main groups
(AD and non-AD patients). . . . . . ... ... 103

Performance comparison among proposed models and baselines using the

DEPRESSION_MIXED dataset . . . . . .. .. ... ... ... ....... 118
Performance comparison among proposed models and baselines using the
DEPRESSION_SEVERITY dataset. . . .. ... ... ... ......... 118

LIWC Features associated with depressive and non-depressive posts, sorted
by point-biserial correlation. All correlations are significant at p < 0.05
after Benjamini-Hochberg correction. . . . . . . ... ... ... ... .... 120
Performance comparison among proposed models and baselines. Reported
values are mean + standard deviation. Results are averaged across four
runs (5-fold setting). (%) means that €, < 0.1,  means that €, < 0.2,
I means that €,;, < 0.3, *x means that €, < 0.4, and {1 means that
€min < 0.5. We are not able to perform statistical test regarding baselines in

[42], since the authors have not provided the results obtained over individual

Ablation Study. (%) means that €, < 0.1, T means that €, < 0.2,
I means that €,;, < 0.3, *x means that €, < 0.4, and {1 means that
Emin < 0.0 . . e e e e e e 129

Performance comparison among proposed STL models and state-of-the-art
approaches on the ADReSS Challenge test set. Reported values are mean
4 standard deviation. Results are averaged across five runs. . . . . . . . .. 139
Performance comparison among proposed MTL models and state-of-the-
art approaches on the ADReSS Challenge test set for the primary task
(AD Classification Task). Reported values are mean + standard deviation.
Results are averaged across fiveruns. . . . . .. .. ... 141
Results of the proposed MTL models on the ADReSS Challenge test set for
the auxiliary task (MMSE Classification Task). Reported values are mean

+ standard deviation. Results are averaged across five runs. . . . . . . . .. 141

63



64

List of Tables

5.4

5.5
5.6
5.7

5.8

6.1

6.2

7.1

7.2

7.3

7.4

7.5

8.1
8.2

mean + standard deviation metrics per transcript. T indicates statistical
significance between transcripts of control and dementia groups. All differ-
ences are significant at p < 0.05 after Benjamini-Hochberg correction. . . . 142
Jaccard’s Index between transcripts of control and dementia group . . . . . 142
Kullback-Leibler divergence . . . . . . . . ... ... ... ... ... .... 144
Features associated with control and dementia subjects, sorted by point-
biserial correlation. All correlations are significant at p < 0.05 after Benjamini-
Hochberg correction. . . . . . . . . ... L Lo 145
Examples of transcripts along with their labels. red colour indicates the
VBG pos-tag, refers to the DT pos-tag, fuchsia to the RB pos-tag,

to the PRP pos-tag, navy blue to the VBD pos-tag, and the pine
green to the UH pos-tag. . . . . . . . .. .. L o 146

Performance comparison among proposed models (using only speech) on
the ADReSS Challenge test set. Reported values are mean + standard
deviation. Results are averaged across five runs. Best results per evaluation
metric and method areinbold. . . . . . . .. ... o oL 154
Performance comparison among proposed models (using both speech and
transcripts) and state-of-the-art approaches on the ADReSS Challenge test
set. Reported values are mean + standard deviation. Results are averaged

across five Tuns. . . . . ... . e 164

Overview of the multimodal state-of-the-art approaches, which are later
compared with our work. . . . . . . ... ... ... o 175
Overview of the unimodal state-of-the-art approaches using only text, which
are later compared with our work. . . . . . . .. ... oo 176
Overview of the unimodal state-of-the-art approaches using only speech,
which are later compared with our work. . . . . . . . .. ... ... ... .. 177
AD Classification Task: Performance comparison among proposed models
and state-of-the-art approaches on the ADReSS Challenge test set. Re-
ported values are mean + standard deviation. Results are averaged across
five runs. Best results per evaluation metric are in bold. . . . . . . . .. .. 182
MMSE Regression Task: Performance comparison among proposed models
and state-of-the-art approaches on the ADReSS Challenge test set. Re-
ported values are mean + standard deviation. Results are averaged across

five runs. Best results are in bold. . . . . . . . ... ... ... 184

Baselines (ADReSS Challenge Dataset). . . . . .. ... ... ... ..... 198
Baselines (ADReSSo Challenge Dataset). . . . ... ... ... ... .... 200



List of Tables 65

8.3

8.4

8.5

8.6

9.1

10.1
10.2

10.3

10.4

10.5

10.6

10.7

Performance comparison among proposed models and state-of-the-art ap-
proaches on the ADReSS Challenge test set. Reported values are mean +
standard deviation. Results are averaged across five runs. (f) means that
Attention-based Fusion (Deep Context) with label smoothing is stochas-
tically dominant over the respective models. (%) denotes almost stochas-
tic dominance of the Attention-based Fusion (Deep Context) with label
smoothing over the respective approaches. . . . . . . . ... ... ... ... 205
Performance comparison among proposed models and state-of-the-art ap-
proaches on the ADReSSo Challenge test set. Reported values are mean
+ standard deviation. Results are averaged across five runs. (f) means
that Co-Attention (Deep Context) with label smoothing is stochastically
dominant over the respective models. (x) denotes almost stochastic dom-
inance of the Co-Attention (Deep Context) with label smoothing over the
respective approaches. . . . . . . . ... L 206
Ablation Study. Reported values are mean + standard deviation. Results
are averaged across fiveruns. . . .. ... Lo 209
Ablation Study. Reported values are mean + standard deviation. Results

are averaged across fiveruns. . . . . ... L L. 209

Performance comparison among proposed models and state-of-the-art ap-
proaches on the ADReSS Challenge test set. Reported values are mean +
standard deviation. Results are averaged across five runs. Best results per

evaluation metric are in bold. . . . . . . .. .. Lo 218

Description of cases considered for classification . . . . . .. ... ... ... 223
Performance comparison among unimodal proposed models via cross-validation
(AB- CD - E). Reported values are mean =+ standard deviation. Best results

per evaluation metric arein bold. . . . . . . . ... ... 226
Performance comparison among unimodal proposed models via cross-validation
(A - E). Reported values are mean £ standard deviation. Best results per
evaluation metric arein bold. . . . . .. ... Lo L Lo L 227
Performance comparison among unimodal proposed models via cross-validation
(AB - CD). Reported values are mean + standard deviation. Best results

per evaluation metric arein bold. . . . . . . ... oo 228
Performance comparison among unimodal proposed models via cross-validation
(AB - CDE). Reported values are mean + standard deviation. Best results

per evaluation metric are in bold. . . . . . . . ... ... L. 229
Performance comparison among unimodal proposed models via cross-validation
(A - C- E). Reported values are mean + standard deviation. Best results

per evaluation metric arein bold. . . . . . . . ... .. L. 230
Performance of the proposed multimodal model via cross-validation (AB -

CD - E). Reported values are mean + standard deviation. . . . . . ... .. 237



66

List of Tables

10.8 Performance of the proposed multimodal model via cross-validation (A -

E). Reported values are mean =+ standard deviation. . . . .. ... .. ... 237
10.9 Performance of the proposed multimodal model via cross-validation (AB -

CD). Reported values are mean =+ standard deviation. . . . . .. ... ... 237
10.10Performance of the proposed multimodal model via cross-validation (AB -

CDE). Reported values are mean + standard deviation. . . . ... ... .. 237
10.11Performance of the proposed multimodal model via cross-validation (A - C

- E). Reported values are mean £ standard deviation. . . .. ... ... .. 238
10.12Macro Precision, Recall, and F1-score for Cases I (AB - CD - E) and V (A

- C - E) obtained by the proposed multimodal model. Reported values are

mean =+ standard deviation. . . . . . .. ..o Lo Lo 238
10.13Performance comparison among proposed multimodal model and state-of-

the-art approaches (AB - CD - E). Reported values are mean + standard

deviation. Best results arein bold. . . . . . . ... .. oo 239
10.14Performance comparison among proposed multimodal model and state-of-

the-art approaches (A - E). Reported values are mean + standard deviation.

Best results are in bold. . . . . . ... L oo 240
10.15Performance comparison among proposed multimodal model and state-of-

the-art approaches (AB - CD). Reported values are mean + standard devi-

ation. Best results arein bold. . . . . . .. ... oo 240
10.16Performance comparison among proposed multimodal model and state-of-

the-art approaches (AB - CDE). Reported values are mean + standard

deviation. Best results arein bold. . . . . .. ... ... oo 241
10.17Performance comparison among proposed multimodal model and state-of-

the-art approaches (A - C - E). Reported values are mean + standard

deviation. Best results arein bold. . . . . . . ... ... ... ... ... .. 241
10.18Ablation Study (AB - CD - E). Reported values are mean + standard

deviation. . . . . . . . . .. 243
10.19Ablation Study. Cases II, III & IV. Reported values are mean + standard

deviation. . . . . . . . .. e 244

10.20Ablation Study (A - C - E). Reported values are mean + standard deviation.245



Chapter 2

Introduction

2.1 Brain Disorders - Artificial Intelligence for Social Good

Brain disorders are one of the greatest challenges to health. It is estimated that
approximately 165 million people suffer from a brain disorder in Europe, while 1 in 3
people will suffer from a brain disorder at some point in their lives. Some types of brain
disorders include Alzheimer’s disease, various types of dementia, epilepsy, Parkinson’s
disease, mental disorders, and others. These disorders affect the way people think, feel,
or perform everyday activities. However, if these disorders are diagnosed early and the
individual receives appropriate medication, their progression can be delayed. For this
reason, timely diagnosis is crucial.

Artificial Intelligence (Al) is transforming the way we address social issues by enhancing
the well-being of both individuals and communities. The term ” Al for Social Good,” also
known as ” AT for Social Impact,” is a new field of research aimed at addressing some of the
most significant social, environmental, and public health problems existing today. This
doctoral dissertation aims to contribute to this new field by developing modern machine
learning methods for improving the recognition of brain disorders, with particular emphasis
on three major categories (Depression, Alzheimer’s Dementia, and Epilepsy).

Depression involves a large number of symptoms, such as loss of interest, anger, pes-
simism, changes in weight, feelings of helplessness, suicidal thoughts, and many others.
Alzheimer’s dementia is characterized by memory loss and affects language and speech.

Epileptic seizures involve social stigma.

2.2 Depression

1. Depression

Depression rates have presented a surge due to the covid-19 pandemic
entails a great number of symptoms, including loss of interest, anger, pessimism, changes

in weight, feelings of worthlessness, thoughts of suicide, and many more. According to

"https:/ /www.who.int/news/item /02-03-2022-covid-19-pandemic-triggers-25-increase-in-prevalence-of-

anxiety-and-depression-worldwide
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the World Health Organization (WHO)?, around 280 million people in the world have
depression. Recent surveys? indicate that global rates of depression are rising. China,
India, the United States, Russia, Indonesia, Nigeria are some of the countries presenting
the highest rates of depression.

People with depression use social media platforms, including X/Twitter and Reddit,
and share their thoughts, emotions, feelings, etc. through posts or comments with other
users. Therefore, social media constitute a valuable form of information, where linguistic
patterns of depressed people can be investigated.

Research has shown that speech constitutes a reliable biomarker for detecting depres-
sion [130]. Specifically, people with depression present anomalities in speech, including
lower speech rates, less pitch variability and more self-referential speech. Depression af-
fects language also [131]. For instance, depressed people use first-person singular pronouns,
negative thinking, and self-focus. Therefore, employing both speech and transcripts in a

multimodal setting is a hot research topic nowadays.

2.2.1 Cognitive Tools

Below, we mention one cognitive tool, which is used for recognizing depression.

2.2.1.1 Patient Health Questionnaire-9 (PHQ-9)

The Patient Health Questionnaire-9% is a multipurpose instrument for screening, di-
agnosing, monitoring and measuring the severity of depression. It consists of 9 questions.
Each participant is asked to answer to a variety of questions pertinent to sleep problems,
tiredness, little energy, limited concentration, poor appetite or overeating, and more. A
score is computed based on the answers given by the participant. A score lower than 5
indicates minimal depression, a score lower than 10 denotes mild depression, a score lower
than 15 denotes moderate depression, a score lower than 20 means moderately severe de-
pression, and a score ranging from 20 to 27 denotes severe depression. Findings of the

study introduced in [132] state that PHQ-9 is useful in clinics specializing in psychiatry.

2.3 Dementia

Alzheimer’s disease is the most common form of dementia and may contribute to
60-70% of cases. According to the WHO, approximately 55 million people suffer from
dementia nowadays, while this number is going to present a surge in the upcoming years
reaching up to 78 million and 139 million people in 2030 and 2050 respectively [51]. Due to
the fact that Alzheimer’s disease is a neurodegenerative disease, meaning that the symp-

toms become worse over time, the early diagnosis seems to be imperative for promoting

*https://www.who.int /news-room /fact-sheets/detail /depression
3https://pulsetms.com/resources/around-world/
“https://www.hiv.uw.edu/page/mental-health-screening /phg-9
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early and optimal management. In addition, dementia is inextricably linked with diffi-
culties in speech, since dementia affects how a person can use language and communicate
[133, 134, 135]. For this reason, current research works have moved their interest towards
Alzheimer’s dementia (AD) identification from spontaneous speech, in order to save money

and time.

2.3.1 Stages of Dementia

As mentioned above, dementia is progressive meaning that the symptoms become
worse with time, usually over several years. There are three stages of dementia, which
are clinically identified, namely the early stage, the middle stage, and the late stage [136].
These stages are described in detail below.

Early Stage. This stage is also known as mild stage, since the symptoms are relatively
mild and not always easy to notice. The early stage of dementia has a duration of ap-
proximately two years, where the person suffers from daily problems, including memory
problems, difficulty in planning or making complex decisions, difficulties in language and
communication, changes in mood or emotion, visual-perceptual difficulties, and poor ori-
entation [137].

Middle Stage. This stage of dementia is also known as moderate stage, since the symp-
toms become more noticeable [138]. Memory and thinking skills, communication abilities,
problem with the orientation, and symptoms of apathy, depression, and anxiety will get
worse in this stage. At the same time, patients may suffer from delusions [139] and hallu-
cinations. In terms of the behavioural changes during this stage, AD patients experience
symptoms, including screaming or shouting, disturbed sleep patterns, repetitive behaviour,
losing inhibitions, and many more.

Later Stage. This stage of dementia is also known as severe stage, since the person
will need full-time care and support with daily living and personal care [140]. In this
stage, the language difficulties will become severe, where the person’s spoken language
may eventually be reduced to only a few words or lost altogether. In addition, people
with dementia often think they are at an earlier period of their life, widely known as time

shifting.

2.3.2 Cognitive Tools

Each cognitive tool is used to screen for dementia. The participant performs several
tasks and based on the answers to each task, a score is calculated at the end of the test.
Then, the examiner compares this score with the cut-off values recommended by each test
and decides the degree of cognitive impairement of the person. Below we describe some

cognitive tools.
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2.3.2.1 Mini Mental State Examination

The Mini-Mental State Examination score is a 30-point questionnaire, which was pro-
posed by Folstein et al. [141]. It is used to screen for dementia. Administration of the
test takes between 5 and 10 minutes. The maximum score for the MMSE is 30 points.
According to [62], there are four groups of cognitive severity: healthy (MMSE score > 25),
mild dementia (MMSE score of 21-24), moderate dementia (MMSE score of 10-20), and
severe dementia (MMSE score < 9). However, the MMSE entails some drawbacks, includ-
ing its sensitivity to progressive changes occuring with severe Alzheimer’s disease and its
inability to distinguish patients with mild Alzheimer’s disease from healthy patients. In
addition, according to [142] the MMSE should not be used clinically unless the person has

at least a grade-eight education and is fluent in English.

2.3.2.2 Montreal Cognitive Assessment

The Montreal Cognitive Assessment (MoCA) is used for predicting dementia in people
with mild cognitive impairment [143]. The MoCA checks different types of cognitive or
thinking abilities, including orientation, short-term memory, language, abstraction, animal
naming, attention, and many more. Similar to MMSE, the scores on the MoCA range from
0 to 30, where a score of 26 and higher is considered normal. Also, compared to MMSE,
MoCA is better at detecting mild disease. However, the most appropriate cut-off point is

not clearly agreed [144].

2.3.2.3 Addenbrooke’s Cognitive Examination

The Addenbrooke’s Cognitive Examination (ACE) [145] and its subsequent versions
(Addenbrooke’s Cognitive Examination-Revised, ACE-R [146] and Addenbrooke’s Cogni-
tive Examination III, ACE-III [147]) are neuropsychological tests used to identify cognitive
impairment in conditions such as dementia. This test was developed for improving the
screening performance of the MMSE. It is scored out of 100, with a higher score denoting
better cognitive function and with the recommended cut-off scores accounting for 88 and
83. Regarding the current version of the test, i.e., ACE-R, it consists of 19 activities
which test five cognitive domains: attention, memory, fluency, language and visuospatial

processing.

2.3.2.4 Boston Naming Test

The Boston Naming Test (BNT) was introduced by [148] and is a widely used neu-
ropsychological assessment tool to measure confrontational word retrieval in individuals
with aphasia or other language disturbance caused by stroke, Alzheimer’s disease, or other
dementing disorder. This test comprises 60 pictures which are presented to the patient
one at a time and the patient is asked to name each picture. In case of an error response,

there are two types of cues, namely the stimulus cue and the phonemic cue. A stimulus
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cue is presented when the subject clearly misperceives the picture or indicates a lack of
recognition of the picture. A phonemic cue is presented after each error response, includ-
ing following a stimulus cue. The BNT is recommended as a supplement to the Boston

Diagnostic Aphasia Examination [149].

2.3.2.5 Wechsler Adult Intelligence Scale

The Wechsler Adult Intelligence Scale (WAIS) was introduced by [150] and is the most
common intelligence quotient (IQ) test, measuring intelligence and cognitive abilities in
adults. The current version of the test is the WAIS-IV, which is composed of 10 core
subtests and five supplemental subtests. There are four index scores representing major
components of intelligence, namely the Verbal Comprehension Index (VCI), Perceptual
Reasoning Index (PRI), Working Memory Index (WMI), and Processing Speed Index
(PSI).

2.3.2.6 Wechsler Memory Scale

The Wechsler Memory Scale (WMS) is a neuropsychological test developed to measure
different memory functions [151]. Anyone ages 16 to 90 is eligible to take this test. The
current version is the fourth edition (WMS-IV) and was designed to be used with the
WAIS-IV. A person’s performance is reported as five Index Scores: Auditory Memory,
Visual Memory, Visual Working Memory, Immediate Memory, and Delayed Memory.

2.3.2.7 Alzheimer’s Disease Assessment Scale (ADAS)

The Alzheimer’s Disease Assessment Scale (ADAS) was developed to evaluate cognitive
and behavioral dysfunctions characteristic of Alzheimer’s disease [152]. It consists of
cognitive (ADAS-Cog [153]) and noncognitive (ADAS-Noncog). The ADAS-Cog consists
of 11 parts and takes approximately 30 minutes to administer. The original version of
ADAS-Cog consists of 11 items, including Word Recall task, naming omjects and fingers,
following commands, orientation, spoken language, etc. Scores of the ADAS-Cog range
from 0 to 70, where a score of 70 represents the most severe impairment and 0 represents

the least impairment. The greater the dysfunction, the greater the score.

2.3.2.8 General Practitioner assessment of Cognition (GPCOG)

The GPCOG is a screening instrument rather than a diagnostic test [154, 155]. The
participant has to perform some tasks, including: remember a name and address and recall
it in a few minutes, state today’s date, make a clock drawing with all of the numbers drawn
correctly on the face of the clock, describe something specific that has happened in the
news in the last week, etc. Scores of the GPCOG range from 0 to 9, where a score of 9
indicates no significant impairement. A score between 5 and 8 indicates that informant

interview must be conducted, while a score less than 4 indicates cognitive impairement.
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During the informant interview, the test administrator asks a caregiver or family member
if the patient has more difficulty than they used to five to ten years ago with some tasks.

This test is free, brief, and the education has little to no effect on the accuracy.

2.4 Epilepsy

Epilepsy is a neurological disease, which affects people of all ages. According to the
World Health Organization (WHO), approximately 50 million people have epilepsy world-
wide, rendering it one of the most common neurological diseases [96]. Epilepsy has a
negative impact in peoples’ everyday life mainly due to the discrimination and stigma
surrounding the disease itself. However, the WHO states that up to 70% of people living
with epilepsy could live seizure-free, if people are diagnosed early and receive the proper
treatment. Therefore, the early diagnosis of the epilepsy is important for providing a
better quality of life to epileptic patients. Electroencephalogram (EEG) is used by neurol-
ogists for diagnosing epilepsy. However, manually reviewing and analyzing EEG signals
by neurologists is a task requiring significant amount of time, while it is prone to errors

as well. Thus, the need for an automatic system is crucial.

2.5 Motivation and Research Questions

2.5.1 Motivation

Depression. Existing research initiatives exploit social media data for identifying de-
pressive posts. The majority of these research works [1, 2] employ feature extraction
approaches and train shallow Machine Learning (ML) algorithms. Employing feature ex-
traction approaches constitutes a tedious procedure and demands domain expertise, since
the authors may not find the optimal feature set for the specific problem. At the same
time, the train of shallow ML algorithms does not yield optimal performance and does
not generalize well to new data. For addressing these limitations, other approaches [3]
use deep neural networks, including Convolutional Neural Networks (CNNs), bidirectional
long short-term memory (BiLSTM), and so on, or transformer-based networks. In addi-
tion, there are researches employing ensemble strategies [4]. However, these approaches
increase substantially the training time, since multiple models must be trained separately.
In addition, recently there have been studies [5, 6] showing that transformer-based mod-
els struggle or fail to capture rich knowledge. For this reason, there have been proposed
methods for enhancing these models with external information or additional modalities
[7, 8, 9, 10]. However, existing research initiatives in the task of depression detection
through social media have not exploited any of these approaches yet. In addition, the re-
liability of a machine learning model’s confidence in its predictions, denoted as calibration
[11, 12], is critical for high risk applications, such as deciding whether to trust a medical

diagnosis prediction [156, 157, 158]. Although methods regarding the confidence of mod-
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els’ predictions have been introduced in many studies, including suicide risk assessment
[159], sleep stage classification [160], and so on, no prior work for depression detection
has taken into account the level of confidence of models’ predictions, creating in this way
overconfident models.

Existing research works use spontaneous speech and rely on the extraction of hand-
crafted features and the train of traditional machine learning classifiers or deep learning
approaches [32, 33, 34]. However, extracting features is a timely procedure requiring ex-
pertise on the specific topic. Additionally, the majority of research studies uses unimodal
approaches for predicting depression using mainly speech [35]. Although there are studies
employing multimodal models, these studies employ early [36, 37], intermediate [38, 39],
or late fusion [40, 41] strategies. In the early fusion strategy, representation vectors of
the modalities are concatenated at the input level, while in the intermediate fusion, the
representation vectors are concatenated during training, thus equal importance is assigned
to the modalities. In the late fusion strategy, unimodal models are trained independently
and decision voting is applied, i.e., majority voting. The inter-modal interactions cannot
be captured through these approaches. In addition, the majority of research works have
tested their approaches only in English language, thus the acoustic and phonetic content
of data might differ in other languages. Finally, to the best of our knowledge, no study
has experimented with predicting depression, age, education level, and gender at the same
time.

Alzheimer’s Dementia. Several research works have been conducted with regard to the
identification of AD patients using speech and transcripts. The majority of them have
employed feature extraction techniques [161, 162, 163, 164, 165], in order to train tra-
ditional Machine Learning (ML) algorithms, such as Logistic Regression, k-NN, Random
Forest, etc. However, feature extraction constitutes a time-consuming procedure achieving
poor classification results and often demands some level of domain expertise. Recently,
researchers introduce deep learning architectures [166, 167], such as CNNs and BiLL.STMs,
so as to improve the classification results. Despite the success of transformer-based models
in several domains, their potential has not been investigated to a high degree in the task of
dementia identification from transcripts, where research works [61] having proposed them,
use their outputs as features to train shallow machine learning algorithms. Concurrently,
all research works except one [91], train machine learning models, in order to distinguish
AD patients from non-AD patients, without taking into account the severity of dementia
via Mini-Mental State Exam (MMSE) scores. At the same time, to the best of our knowl-
edge, the research works that have proposed deep learning models based on transformer
networks have focused their interest only on improving the classification results obtained
by CNNs, BiLSTMs etc. instead of exploring possible explainability techniques. Specifi-
cally, due to the fact that deep learning models are considered black boxes, it is important
to propose ways of making them interpretable, since it is imperative for a clinician to be
informed why the specific deep neural network classified a person as AD patient or not.

To the best of our knowledge, only one work [168] has experimented with interpreting
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its proposed deep learning model (CNN-LSTM model) in the field of dementia detection
using transcripts. In terms of the proposed multimodal approaches, the majority of them
have introduced label fusion and majority-voting or average approaches [169, 170, 61].
Specifically, regarding the AD classification task they train several textual and acoustic
models and they make the final prediction of the given transcript based on the class, which
received the most votes by the individual models. With regards to the MMSE regression
task, they simply average the predictions of the individual models. Concurrently, they
extract a large number of features corresponding to the textual and acoustic modalities
and some of them train traditional machine learning algorithms, such as Logistic Re-
gression, XGBoost, etc. Thus, it is evident that these approaches are not time-efficient,
since a lot of models must be trained and tested separately. At the same time, these
approaches do not exploit the interaction between the two modalities. Moreover, research
initiatives introducing multimodal models use the add and concatenation operation treat-
ing in this way equally the two modalities [91]. Another limitation of this approach has
to do with the fact that one modality may override the other one with a negative impact
on the classification performance. In terms of the textual modality recent studies have
shown that Self-Attention layers treat the input sequence as a bag-of-word tokens and
each token individually performs attention over the bag-of-word tokens. Consequently,
the contextual information is not taken into account in the calculation of dependencies
between elements. In addition, the reliability of a machine learning model’s confidence in
its predictions, denoted as calibration [11, 12], is critical for high risk applications, such as
deciding whether to trust a medical diagnosis prediction [156, 157, 158]. However, no prior
work has taken into account the calibration of the models, creating in this way overcon-
fident models. According to [171], modern neural networks are not well-calibrated, while
they are overconfident at the same time.

Epilepsy. There have been a number of studies proposing methods for detecting epileptic
seizures. The majority of these studies first extract both time-domain and frequency
domain features from the electroencephalogram (EEG) signals. For instance, the authors
apply the Discrete Wavelet Transform (DWT) [97, 98] for decomposing the EEG signals
into sub-bands and then extract features from each sub-band. After having extracted a
large number of features, the authors usually exploit feature selection or dimensionality
reduction techniques for finding the best subset of features or reducing the dimension of
the feature vector respectively. The last step of the proposed methods includes the train
of traditional machine learning classifiers, i.e., Logistic Regression (LR), Support Vector
Machines (SVMs), Random Forests (RF), Decision Trees, etc. However, these methods
are time-consuming, since they demand some level of domain expertise for extracting
the best representative features. Only a few number of studies [99, 100, 101, 102] have
exploited deep neural networks, i.e., CNNs, LSTMs, or BiLSTMs in the task of epilepsy
detection and prediction. However, most of these methods still rely on handcrafted features
[100, 101, 99]. Another limitation is the fact that existing research works split the EEG

signals into segments and propose majority-voting approaches [102]. Thus, they have
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to train multiple models separately increasing substantially the computation time. At
the same time, most of the CNN models are not able to model effectively the temporal
dependencies among the EEG data. Although LSTMs and BiLSTMs can capture the
temporal dependencies in EEG data, they usually have high model complexity.

2.5.2 Research Questions

Considering the aforementioned limitations and the adaptation of deep learning models
in the Natural Language Processing (NLP), Speech Processing, Signal Processing, and

Computer Vision (CV) domains, this thesis seeks to answer seven main research questions:

e RQ1: Do transformer-based networks, i.e., BERT, ALBERT, etc. achieve better
performance than traditional techniques, i.e., LSTMs, CNNs, etc.?

e RQ2: Can we provide explanations, which will show how our models reach their
decisions? Especially in health-related tasks, it is very important for a clinician to
be informed why the deep neural network classified a person as an AD patient or a
non-AD one. At the same time, according to the European Union General Data Pro-
tection Regulation (GDPR) [172] each person has the right to the explanation. Also,
can we propose interpretable models, which will achieve comparable performance to

existing research initiatives?

¢ RQ3: Can we propose multi-task learning models, consisting of primary and aux-
iliary tasks, to explore if the axiliary tasks help the primary one in improving its

performance?

e RQ4: How can we combine the representation vectors of the different modalities

(multimodal approaches) effectively?

e RQ5: Instead of creating fixed deep neural networks, can we create automatically

architectures which will perform best for our specific task?

e RQ6: How can we improve self-attention networks through capturing the richness

of context?

e RQT7: How can we prevent deep learning models from becoming too overconfident?

2.6 Thesis Contributions

Based on the research context and clinical need as detailed above, the overall, high-level
aim of this Ph.D. thesis is to improve the detection and monitoring of brain disorders by ex-
ploiting advanced machine learning techniques. Specifically, this thesis presents automatic
systems for recognizing three major brain disorders, including depression, Alzheimer’s de-

mentia, and epilepsy.
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In terms of depression, we present to approaches. In terms of the first approach, we
utilize social media data and create tools based on natural language processing to detect
depressive posts. Additionally, this thesis seeks to find differences in language between
depressed people and non-depressed ones through a detailed linguistic analysis. In terms
of the second approach, we utilize spontaneous speech and create tools based on both
natural language processing and speech processing to detect depression.

Regarding Alzheimer’s dementia, motivated by the fact that people with Alzheimer’s
dementia present deficits in language and speech, this thesis utilizes recordings of spon-
taneous speech and creates automatic systems based on natural language processing and
speech processing. Specifically, we fine-tune transformer-based models, exploit explain-
ability techniques and linguistic analyses and explore some linguistic features which are
useful for detecting cognitive decline. This thesis seeks also to use multimodal models ex-
ploiting both speech and transcripts instead of just focusing on lexical, acoustic, or visual
features alone.

With regards with Epilepsy, motivated by the fact that the manual review of EEG
signals by neurologists is a laborious task, we present a new automatic system based on a
multimodal method for diagnosing epilepsy.

Overall, the main contributions of this thesis are the following:

e Introducing deep neural networks, which can be trained in an end-to-end
trainable manner eliminating the timely procedure of feature extraction.
Contrary to prior research works extracting a large number of features, exploiting
feature selection or dimensionality reduction techniques, and training shallow ma-
chine learning algorithms, this thesis aims to eliminate the need of feature extraction

by proposing deep neural networks and transformer-based models.

e An explainable approach and a linguistic analysis study is proposed. Con-
trary to prior works, which simply train ML algorithms for detecting AD patients,
this thesis extends prior work by employing an explainable approach and introduc-
ing a linguistic analysis. Both approaches reveal the linguistic patterns used by AD
patients, i.e., pos-tags. Differences in language between AD patients and non-AD
ones are also revealed. We use the same linguistic analysis on a depression dataset

and reveal differences in language between depressed people and non-depressed ones.

e Introducing multi-task learning models. This thesis proposes multi-task learn-
ing architectures for identifying depression and Alzheimer’s dementia. Firstly, this
thesis presents a multi-task learning approach for jointly modelling the depression,
education level, age, and gender identification tasks. Secondly, this thesis introduces
multi-task learning architectures aiming to predict the AD detection and MMSE

recognition tasks.

e Multimodal Fusion methods are introduced for capturing the inter- and

intra-modal interactions. Contrary to existing research initiatives, which exploit
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early, intermediate, and late fusion strategies, this thesis introduces new methods for
fusing the different modalities. These methods aim to capture the inter- and intra-
modal interactions, while increasing the performance at the same time. Therefore,
this thesis extends prior work by exploiting fusion methods, including Gated Mul-
timodal Unit, Cross-Modal Attention Layer, Cross-Attention Layer incorporating a
gating model, Cross - Attention Scaling Layer, Multimodal Shifting Gate, Optimal
Transport Domain Adaptation, and many more. These multimodal approaches are
adopted in a series of experiments, i.e., depression detection through social media
posts and spontaneous speech, dementia identification through speech and tran-
scripts, epilepsy detection via single-channel EEG signals, and aim to increase the

performance achieved by the unimodal ones.

e Incorporating a Neural Architecture Search approach into a deep neural
network. In contrast with prior work, which exploit fixed architectures, this thesis
incorporates a NAS approach, called DARTS, into a deep neural network for gen-
erating automatically a CNN architecture. This CNN architecture fits best for this
specific task.

¢ Enhancing self-attention networks with contextual information. This thesis
aims to enhance the self-attention layer by adding contextual information. Specifi-
cally, this thesis presents three strategies for constructing a contextual vector into an
end-to-end trainable deep neural network. This approach is conducted on datasets

related to the Alzheimer’s dementia task.

e Presenting methods for calibrating deep neural networks. Prior works eval-
uate deep neural networks based only on the performance by reporting accuracy,
precision, recall, and more metrics. This thesis extends prior work by exploiting
methods for calibrating the introduced models and evaluating these models by ex-
ploiting both performance and calibration metrics. These approaches are conducted

on datasets related to depression and alzheimer’s dementia.

2.7 Thesis Outline

The rest of this thesis is organized as follows:

Chapter 3: Literature Review. Review of the literature for studies that proposed
systems (i) for identifying depressive posts in social media and recognizing depression via
spontaneous speech, (7i) either for classifying people into AD patients and non-AD ones
or for predicting the Mini-Mental State Exam scores. Specifically, the approaches have
been divided into unimodal, i.e., approaches which use either only speech or transcripts,
and multimodal, i.e., approaches which exploit both speech and transcripts, and (i) for
detecting epileptic patients using EEG recordings. Also, we provide a list of datasets for

each case.
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Chapter 4: Methods for Recognizing Depression through Social Media
posts and Spontaneous Speech. In this chapter, we present two methods aiming to
recognize depression. The first approach injects linguistic information into transformer-
based models for identifying depressive posts in social media. The proposed approach
is evaluated based on both the performance and the calibration. The second approach
utilizes both speech and automatic transcripts into a multimodal deep neural network.

Chapter 5: Explainable Identification of Dementia from Transcripts using
Transformer Networks. In this chapter, we propose models in both single-task and
multi-task learning settings by utilizing only transcripts for detecting AD patients. Also,
we perform a detailed linguistic analysis and explainability techniques, which shed light
on the main differences in language between AD patients and Healthy Control group.

Chapter 6: Detecting Dementia from Speech and Transcripts Using Trans-
formers. In this chapter, we introduce two methods for fusing the two modalities (speech
and transcripts).

Chapter 7: Multimodal Deep Learning Models for Detecting Dementia
and Predicting Mini-Mental State Examination scores from Speech and Tran-
scripts. This chapter presents three deep neural networks, which exploit both speech and
transcripts. The proposed models are trained both for the AD Classification task and the
MMSE Regression task.

Chapter 8: Context-Aware Attention Layers coupled with Optimal Trans-
port Domain Adaptation and Multimodal Fusion methods for recognizing de-
mentia. In this chapter, we present approaches for enhancing the self-attention mecha-
nisms with contextual information, calibrating the proposed models, and fusing the dif-
ferent modalities. Both manual and automatic transcripts are exploited.

Chapter 9: Neural Architecture Search with Multimodal Fusion Methods
for Recognizing Dementia. In this chapter, we present a deep neural network, which
incorporates a Neural Architecture Search method for generating automatically a CNN
architecture and multimodal fusion methods.

Chapter 10: Multimodal Detection of Epilepsy with Deep Neural Networks.
This chapter introduces a multimodal deep neural network for detecting epilepsy through
single-channel EEG signals.

Chapter 11: Conclusions and Future Work. This chapter concludes the work
proposed in this thesis, presents some limitations of this thesis, and provides some sugges-

tions for future research directions.

2.8 Supporting Publications

All the materials presented in this thesis are built on the publications considered by

various international conferences and journals, as follows:

e L. Ilias, S. Mouzakitis and D. Askounis, “Calibration of Transformer-Based Models

for Identifying Stress and Depression in Social Media,” in IEEE Transactions on
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Computational Social Systems, vol. 11, no. 2, pp. 1979-1990, April 2024 [173]
(Chapter 4).

e L. Ilias and D. Askounis, “A Cross-Attention Layer coupled with Multimodal Fusion
Methods for Recognizing Depression from Spontaneous Speech,” Proc. Interspeech
2024, 2024, pp. 912-916 [174] (Chapter 4).

e L. Ilias and D. Askounis, “Explainable Identification of Dementia From Transcripts
Using Transformer Networks,” in IEEE Journal of Biomedical and Health Informat-
ics, vol. 26, no. 8, pp. 4153-4164, Aug. 2022 [175] (Chapter 5).

e L. Ilias, D. Askounis, and J. Psarras, “Detecting dementia from speech and tran-
scripts using transformers,” Computer Speech € Language, vol. 79, p. 101485, 2023
[176] (Chapter 6).

e L. Ilias and D. Askounis, “Multimodal deep learning models for detecting dementia
from speech and transcripts,” Frontiers in Aging Neuroscience, vol. 14, 2022 [177]
(Chapter 7).

e L. Tlias and D. Askounis, “Context-aware attention layers coupled with optimal
transport domain adaptation and multimodal fusion methods for recognizing de-
mentia from spontaneous speech,” Knowledge-Based Systems, vol. 277, p. 110834,
2023 [178] (Chapter 8).

e M. Chatzianastasis®, L. Ilias*, D. Askounis and M. Vazirgiannis, “Neural Architec-
ture Search with Multimodal Fusion Methods for Diagnosing Dementia,” ICASSP
2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), Rhodes Island, Greece, 2023, pp. 1-5 [179] (Chapter 9).

*The first two authors contributed equally.

e L. Ilias, D. Askounis and J. Psarras, “Multimodal detection of epilepsy with deep
neural networks,” Expert Systems With Applications, vol. 213, p. 119010, 2023 [180]
(Chapter 10).






Chapter 3

Literature Review

3.1 State-of-the-art analysis of Machine Learning Methods

used for the recognition of Depression in Social Media

Some studies have focused on the extraction of features and then the train of shallow
machine learning classifiers. For instance, Tadesse et al. [1] extracted n-grams via the
tf-idf approach, LIWC features, and LDA topics. Then, they trained LR, SVM, Ran-
dom Forest (RF), AdaBoost, and Multilayer Perceptron (MLP). Results showed that the
bigram features trained on an SVM classifier achieved 80.00% accuracy, while the best
accuracy accounting for 91.00% was achieved by exploiting the MLP classifier with all
the features, i.e., LIWC, LDA, and bigrams. Liu and Shi [181] extracted a set of textual
features, namely part-of-speech, emotional words, personal pronouns, polarity, and so on,
and a set of features indicating the posting behaviour of the user, i.e., posting habits
and time. Next, feature selection techniques were applied, including recursive elimina-
tion, mutual information, extreme random tree. Finally, naive bayes, k-nearest neighbor,
regularized logistic regression, and support vector machine were used as base learners,
and a simple logistic regression algorithm was used as a combination strategy to build a
stacking model. Nguyen et al. [182] extracted a set of features, including LDA topics,
LIWC features, affective features by using the affective norms for english words (ANEW)
lexicon, and mood labels. The authors trained a LASSO regression classifier for detecting
depressive posts and analyzing the importance of each feature. The authors applied also
statistical tests and found significant differences between depressive and non-depressive
posts. Tsugawa et al. [183] extracted features and trained an SVM classifier to detect
depression in Twitter. Specifically, the authors extracted the frequency of words used in
tweets, ratio of tweet topics found by LDA, ratio of positive and negative words, and many
more. Pirina and Coltekin [13] collected several corpora and trained an SVM classifier
using character and word n-grams. Doc2vec and tf-idf features were extracted and given
as input to AdaBoost, LR, RF, and SVM for identifying the severity of depression.

Recently, deep learning approaches have introduced, since they obtain better perfor-

mance than the traditional ML algorithms and do not often require the tedious procedure
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of feature extraction. For example, Wani et al. [184] represented words as word2vec and
tf-idf approach and trained a deep neural network consisting of CNNs and LSTMs. Kim
et al. [185] collected a dataset consisting of posts written by people, who suffer from
mental disorders, including depression, anxiety, bipolar, borderline personality disorder,
schizophrenia, and autism. This study developed six binary classification models for de-
tecting mental disorders, i.e., depression vs. non-depression, and so on. Specifically, the
authors utilized the tf-idf approach and trained an XGBoost classifier. Next, the authors
used the word2vec and trained a CNN model. Naseem et al. [17] reformulated depression
identification as an ordinal classification problem, where they used four depression severity
levels. The authors introduced a deep neural network consisting of Text Graph Convo-
lutional Network, BiLSTM, and Attention layer. A similar approach was proposed by
Ghosh and Anwar [186], where the authors extracted features and trained LSTMs for es-
timating the depression intensity levels. A hybrid deep neural network consisting of CNN
and BiLSTM was introduced by Kour and Gupta [187]. Zogan et al. [188] introduced the
first dataset including posts from users with and without depression during COVID-19
and presented a new hierarchical convolutional neural network. An emotion-based atten-
tion network model was proposed by Ren et al. [189], where the authors extracted the
positive and negative words and passed through two separate BiLSTM layers followed by
Attention layers.

Ensemble strategies have also been explored in the literature. This means that mul-
tiple models are trained separately and the final decision is taken usually by a majority
voting approach. For instance, an ensemble strategy was introduced by Ansari et al. [4].
Firstly, the authors exploited some sentiment lexicons, including AFINN, NRC, Sentic-
Net, and multi-perspective question answering (MPQA), extracted features, and applied
Principal Component Analysis for reducing the dimensionality of the feature set. A Lo-
gistic Regression classifier was trained using the respective feature set. Next, the authors
trained an LSTM neural network coupled with an attention mechanism. Finally, the au-
thors combined the predictions of these two approaches via an ensemble method. Also,
an ensemble approach was proposed by Trotzek et al. [190]. Firstly, the authors trained
a Logistic Regression classifier using as input user-level linguistic metadata. Specifically,
the authors extracted LIWC features, length of the text, four readability scores, and so
on. Next, the authors trained a CNN model. Finally, the authors combined the outputs
of these approaches via a late fusion strategy, i.e., by averaging the predictions of the
classifiers. Figuerédo et al. [3] designed a CNN along with early and late fusion strategies.
Specifically, the authors exploited fastText and GloVe embeddings. In the early fusion ap-
proach, multiple word embeddings were concatenated and passed to the CNN model. In
the late fusion strategy, a majority-vote approach was performed based on the predictions
of multiple CNN models. The CNN model comprised a simple convolution layer, max-
pooling, fully connected layers, and Concatenated Rectified Linear Units as the activation
function.

Explainable approaches have also been introduced. Souza et al. [191] introduced a
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stacking ensemble neural network, which addresses a multilabel classification task. Specif-
ically, the proposed architecture consists of two levels. In the first level, binary base clas-
sifiers were trained with two distinct roles, i.e, expert and differentiating. The expert base
classifiers were used for differentiating between users belonging to the control group and
those diagnosed with anxiety, depression, or comorbidity. The differentiating base models
aimed at distinguishing between two target conditions, e.g., anxiety vs. depression. In the
second level, a meta-classifier uses the base models’ outputs to learn a mapping function
that manages the multi-label problem of assigning control or diagnosed labels. The au-
thors used LSTMs and CNNs. Finally, this study explored Shapley additive explanations
(SHAP) metrics for identifying the influential classification features. Zogan et al. [192]
proposed also an explainable approach, where textual, behavioural, temporal, and seman-
tic aspect features from social media were exploited. An hierarchical attention network
was used in terms of explainable purposes. An hierarchical attention network was also
used by Uban et al. [193], where the authors extracted a feature set consisting of content,
style, LIWC, and emotions/sentiment features. An interpretable approach was proposed
by Song et al. [194], where the authors introduced the Feature Attention Network. The
Feature Attention Network consists of four feature networks, each of which analyzes posts
based on an established theory related to depression and a post-level attention on top of
the networks. However, this method did not attain satisfactory results.

Recently, transformer-based models have been applied in the task of depression detec-
tion in social media. Specifically, Boinepelli et al. [195] introduced a method for finding
the subset of posts that would be a good representation of all the posts made by the user.
Firstly, they employed BERT and computed the embeddings for all posts made by the
user. Next, they used a clustering and ranking algorithm. After finding the representa-
tive posts per user, the authors added domain specific elements by exploiting RoBERTa.
Finally, the authors experimented with two ways for diagnosing depression, i.e., by either
employing a majority-vote approach or training a hierarchical attention network. Anan-
tharaman et al. [196] fine-tuned a BERT model for classifying the signs of depression into
three labels namely “not depressed”, “moderately depressed”, and “severely depressed”.
Similarly, Nilsson and Kovacs [197] exploited a BERT model and used abstractive sum-
marization techniques for data augmentation. Zogan et al. [198] presented an abstractive-
extractive automatic text summarization model based on BERT, k-Means clustering, and
bidirectional auto-regressive transformers (BART'). Then, they proposed a deep learning
framework, which combines user behaviour and user post history or user activity.

Multimodal approaches combining both text and images have also been proposed. For
instance, a multimodal approach was introduced by Ghosh et al. [199] for detecting de-
pression in Twitter. Specifically, the authors utilized the user’s description and profile
image. The authors used the IBM Watson NaturalLLanguageUnderstanding tool and ex-
tracted sentiment and emotion information for all user descriptions along with the possible
categories (at most 3) that the description may belong to. Next, the authors designed a

neural network consisting of BiIGRU, Attention layers, Convolution layers, and dense lay-
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ers. The authors used GloVe embeddings. The proposed architecture can predict whether
the user suffers from depression or not as well as predict the sadness, joy, fear, disgust,
and anger score. Li et al. [200] exploited text, pictures, and auxiliary information (post
time, dictionary, social information) and used attention mechanism within and between
the modalities at the same time. The authors exploited TextCNN, ResNet-18, and fully
connected layers for extracting representation vectors of text, images, and auxiliary in-
formation respectively. A multimodal approach was proposed by Cheng and Chen [201],
where the authors exploited texts, images, posting time, and the time interval between
the posts in Instagram. Shen et al. [202] collected multimodal datasets and extracted six
depression-oriented feature groups, namely social network, user profile, visual, emotional,
topic-level, and domain-specific features. Gui et al. [203] combined texts and images and
proposed a new cooperative multi-agent reinforcement learning method.

Multitask approaches have been introduced. A multitask approach was introduced by
Zhou et al. [204]. Specifically, the authors proposed a hierarchical attention network con-
sisting of BiGRU layers and integrated LDA topics. The main task was the identification
of depression, i.e., binary classification task, while the auxiliary task was the prediction
of the domain category of the post, i.e., multiclass classification task. Both multitask and
multimodal approaches were introduced by Wang et al. [205]. The authors extracted a
total of ten features from text, social behaviour, and pictures. XLNet, BiGRU coupled
with Attention layers, and Dense layers were used. The authors in [206] presented two ap-
proaches based on a multi-task learning framework. Depression detection corresponded to
the primary task, while stress detection corresponded to the auxiliary task. Experiments
showed that the proposed approach improved single-task learning and transfer learning

strategies.

3.1.1 Literature Review Findings

Existing research initiatives rely on the feature extraction process and the train of
shallow machine classifiers targeting at diagnosing mental disorders in social media. This
fact demands domain expertise and does not generalize well to new data. Other existing
approaches train CNNs, BiLSTMs, or employ hybrid models and ensemble strategies. Re-
cently, transformer-based models have been used also. Only few works have experimented
with injecting linguistic, including emotion, features into deep neural networks. These
approaches employ multi-task learning models, fine-tuning, or multimodal approaches.
All these approaches employing transformer-based models usually fine-tune these models.
None of these approaches have used modifications of BERT aiming to enhance its perfor-
mance by injecting into it external knowledge. Also, no prior work has taken into account

model calibration creating in this way overconfident models.
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3.1.2 Datasets

3.1.2.1 Depression_Mixed

This dataset [13] consists of 1482 non-depressive posts and 1340 depressive posts.

These posts have been written by users in Reddit and English depression forums.

3.1.2.2 Depression_Severity

This dataset includes posts in Reddit [17] and assigns each post to a severity level,
i.e., minimal (2587 posts), mild (290 posts), moderate (394 posts), and severe form of
depression (282 posts).

3.2 State-of-the-art analysis of Machine Learning Methods
used for the recognition of Depression through Sponta-

neous Speech

3.2.1 Early Fusion

The study in [37] constructs a graph based on question-answering pairs. Specifically,
a Graph Attention Network is trained. In terms of the multimodal fusion, the authors
employ an early fusion approach. A multitask learning framework is adopted, which
predicts the level of depression severity (regression) and classifies the subject as depressive
or non-depressive. A similar approach is introduced by [36], where the authors employ
an early fusion approach and concatenate the representation vectors of audio, visual, and
textual modalities. A multi-task learning framework is trained for classifying the level of

disorder and predicting the disorder score.

3.2.2 Intermediate Fusion

The study in [207] converts speech signals into spectrogram and uses a VGG16 pre-
trained model followed by Gated Convolutional Neural Networks and one LSTM layer.
The authors pass the BERT embeddings into CNN layers followed by LSTM layers. The
representation vectors of the two modalities are concatenated for predicting the Patient
Health Questionnaire (PHQ) score. In [32], the authors use articulatory coordination
features (ACFs) derived from vocal tract variables. A staircase regression approach is
used, where an ensemble of models is trained on multiple partitions of the same training
data set. A hierarchical attention network (HAN) is used for extracting textual repre-
sentation. Additional features representing the prosodic information are extracted. The
abovementioned feature representations are concatenated for estimating the depression
severity score. In [38], speech signals are represented as log-Mel spectrograms and fed
into temporal CNNs, while text is passed through the encoder part of the transformer.

Representation vectors of these two modalities are concatenated for predicting whether
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the individual has depression or not. Ref. [39] adopts a similar approach. DeepSpectrum
features are obtained from speech signals and fed into Temporal Convolutional Networks
(TCNs) followed by Attention and Dense Layers. The authors feed the word2vec embed-
dings into a transformer encoder. Finally, the audio and textual vectors are concatenated
into a single vector. Ref. [208] proposes a multimodal neural network consisting of two
branches of LSTMs for extracting textual and acoustic representations. These two rep-
resentations are concatenated in one single vector. The authors in [209] concatenate the
audio and transcript representations during training. The authors in [210] pass the MFCC
features through CNN layers, while the visual and textual modalities are passed through

dense layers. The two representations are concatenated into one feature vector.

3.2.3 Late Fusion

The authors in [41] use audio, videos, and transcripts and combine the respective
representations via a late fusion approach, namely adaptive nonlinear judge classifier. A

majority vote approach is adopted by [40].

3.2.4 Other approaches

In [211], the authors use sentence embeddings, log-Mel spectrograms, and facial ex-
pressions and employ ConvBiLLSTMs. They fuse the representation vectors by using an
attention layer and state that the proposed approach outperforms late fusion strategies.
A different approach is proposed by [212], where feed-forward highway layers with gating
units are used for controlling the information flow of the different modalities. This ap-
proach is compared with early and late fusion strategies. Results suggest that the proposed

approach yields the highest results.

3.2.5 Literature Review Findings

Existing research works rely on the feature extraction approach, which is a time-
consuming procedure, demands a level of domain expertise and does not generalize well
to new data. In terms of multimodal approaches, early, intermediate, and late fusion
strategies are employed, which cannot capture the inter-modal interactions. Additionally,
the majority of studies are performing their experiments on the english language, thus
limiting the generalization to other languages. Finally, no study has experimented with
multi-task learning approaches for exploring if the education level, age, and gender aid in

the depression detection task.

3.2.6 Datasets
3.2.6.1 Androids Corpus

The Androids corpus [42] consists of two tasks, namely the reading and interview

task. Specifically, the interview task consists of 116 spontaneous speech samples. All
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experiments are person independent. Audio files are in Italian language. This dataset
includes information about the gender, age, and education level of the individuals. The
populations of depressed and non-depressed participants have the same distribution in

terms of age, gender, and education. Manual transcripts are not provided.

3.2.6.2 Distress Analysis Interview Corpus - Wizard of Oz (DAIC-WOZ)

This database includes clinical interviews for supporting the diagnosis of psychological
distress conditions such as anxiety, depression, and post-traumatic stress disorder [213].

189 clinical interviews are included. PHQ-9 is used for annotating depressed patients.

3.2.6.3 Emotional Audio-Textual Depression Corpus (EATD-Corpus)

The emotional audio-textual depression corpus [214] includes audio recordings and
transcripts of 162 chinese student volunteers. Specifically, this dataset includes 30 de-
pressed volunteers and 132 non-depressed volunteers. Each volunteer is asked to complete

an SDS questionnaire.

3.2.6.4 Depression and Anxiety Crowdsourced Corpus (DEPAC)

The depression and anxiety crowdsourced corpus [215] includes 2,674 audio samples
collected from 571 subjects. Firstly, each participant is asked to provide some demographic
information, i.e., age, gender, education level. Then, each participant is asked to perform
five speech tasks, phoneme pronunciation, phonemic fluency test, picture description, se-
mantic fluency test and prompted narrative task. Each participant is asked to complete
two assessment tools, including Patient Health Questionnaire (PHQ-9) and Generalized
Anxiety Disorder - 7 (GAD-T).

3.2.6.5 Multimodal Open Dataset for Mental-Disorder Analysis (MODMA)

The multimodal open dataset for mental-disorder analysis [216] consists of audio
recordings, EEG signals, and questionnaires. It includes 24 depressed patients and 29
healthy controls. In terms of the questionnaires, all the participants have completed
depression assessment questionnaires, including PHQ-9 and GAD-7 (generalized anxiety
disorder-7), and a psychiatric evaluation. Each participant is asked to perform an inter-

view, reading, and picture description task.

3.3 State-of-the-art analysis of Machine Learning Methods

used in dementia from spontaneous speech

3.3.1 Unimodal Approaches

Meghanani et al. [94] used the ADReSS Challenge Dataset and proposed three deep
learning models to detect AD patients using only speech data. Firstly, they converted
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the audio files into Log-Mel spectrograms and MFCCs along with their delta and delta-
delta, in order to create an image consisting of three channels. Next, they divided the
images into non-overlapping segments of 224 frames and passed each frame through five
convolution layers followed by LSTM layers. In the second proposed model, they replaced
the five convolution layers with a pretrained ResNet18 model. Finally, they trained a model
consisting of BILSTMs and CNN layers. Results showed that Log-Mel spectrograms and
MFCCs are effective for the AD detection problem. One limitation of this study is that
the authors employed only one image-based pretrained model, i.e., ResNet18.

Gauder et al. [217] used the ADReSSo Challenge Dataset and extracted a set of
features from speech, namely eGeMAPS [218], trill [219], allosaurus [220], and wav2vec2
[221], where each feature vector was fed into two convolution layers. Then, the outputs
of the convolution layers were concatenated and were passed through a global average
pooling layer followed by a dense layer, in order to get the final output. Results from an
ablation study showed that trill and wav2vec2 constituted the best features. The main
limitations of this study are the feature extraction process and the concatenation of the
feature representations.

Balagopalan and Novikova [222] used the ADReSSo Challenge Dataset and introduced
three approaches to differentiate AD from non-AD patients by extracting 168 acoustic
features from the speech audio files, computing the embeddings of the audio files using
wav2vec2, and finally combining the aforementioned approaches by simply concatenating
the two representations. Results showed that a Support Vector Machine trained on the
acoustic features yielded the highest precision, whereas the SVM classifier trained on the
concatenation of the embeddings achieved the highest accuracy, recall, and F1-score. The
limitation of this study lies on the feature extraction process, the train of traditional
machine learning classifiers, and the usage of the concatenation operation, where the same
importance is assigned to the features.

Ref. [93] used the ADReSS Challenge Dataset and introduced two approaches target-
ing at diagnosing dementia only from speech. Firstly, after employing VGGish [223], they
used the features extracted via VGGish and trained shallow machine learning algorithms
to detect AD patients. Next, they proposed a convolutional neural network for speech
classification, namely DemCNN, and claimed that DemCNN outperformed the other ap-
proaches. The main limitation of this research work is the train of shallow machine learning
classifiers using the VGGish features, which increase the training time.

The authors in [224] proposed a feature extraction approach. Specifically, they ex-
tracted 54 acoustic features, including duration, intensity, shimmer, MFCCs, etc. Finally,
they trained the LIBSVM with a radial basis kernel function. The limitation of this study
lies on the feature extraction process and the train of only one traditional machine learn-
ing classifier. In addition, the authors have not applied feature selection or dimensionality
reduction techniques.

Research works [225, 226] used the DementiaBank Dataset and exploited a set of

acoustic features along with shallow machine learning classifiers. More specifically in
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[225], the authors extracted a set of 121 features, including the fundamental frequency,
the frequency alteration from cycle to cycle, the FO amplitude variability, features assessing
the voice quality, spectral features, etc. The authors expanded this feature set with some
statistical sub-features, i.e., min, max, mean, etc. and thus increased the number of
features to 811. After employing feature selection techniques, the authors applied two
classification algorithms, namely SVM and Stochastic Gradient Descent for classifying
subjects into AD, non-AD patients, and Mild Cognitive Impairment (MCI) groups in a
cross-visit framework. In [226], the authors extracted a set of features, including the
emobase, ComParE [227], eGeMAPS, and MRCG functionals [228] and performed three
experiments, namely segment level classification, majority vote classification, and active
data representation. The authors exploited many classifiers, including Decision Trees, k-
Nearest Neighbours, Linear Discriminant Analysis (LDA), Random Forests, and Support
Vector Machines. The limitations of these studies lie on the tedious procedure of feature
extraction, which demands domain expertise. Also, both studies train shallow machine
learning classifiers.

Bertini et al. [229] used the DementiaBank Dataset and employed an autoencoder
used in the audio data domain called auDeep [230] and passed the encoded representation
(latent vector) to a multilayer perceptron, in order to detect AD patients. Results showed
significant improvements over state-of-the-art approaches. The main limitation of this
study is the way the speech signal is represented as image. Specifically, the speech signal
is converted to a log-Mel spectrogram. On the contrary, the addition of delta and delta-
delta features as channels of the image adds more information, since these features add
dynamic information to the static cepstral features.

The authors in [231] introduced the Open Voice Brain Model (OVBM), which uses 16
biomarkers. Audio files were converted into MFCCs. The ResNet has been used by eight
biomarkers for feature representation. Finally, the authors have applied Graph Neural
Networks (GNNs) and have extracted a personalized subject saliency map. The limitation
of this study lies on the way the speech signal is represented as an image. Specifically,
the authors convert the speech signal only to MFCCs. On the contrary, the addition of
delta and delta-delta features as channels of the image adds more information, since these
features add dynamic information to the static cepstral features. In addition, the authors
train multiple models increasing in this way both the training time and computational
resources.

Li et al. [89] extracted a set of acoustic and a set of linguistic features for catego-
rizing people into AD patients and non-AD ones. Regarding the acoustic features, they
extracted the ComParE feature set and x-vectors. In terms of the linguistic features, they
exploited CLAN [232] for extracting the Linguistic feature set. They also extracted tf-idf
and BERT features. Next, they employed feature selection, i.e., Pearson’s Correlation,
and dimensionality reduction, i.e., Principal Component Analysis (PCA), techniques. Fi-
nally, they trained three classifiers, namely Linear Discriminant Analysis, Support Vector

Machine, and LSTM coupled with an attention mechanism. They used both manual and
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automatic transcripts. Findings revealed that linguistic features achieved better perfor-
mance than the acoustic ones. Also, the authors stated that linguistic features extracted
from automatic transcripts achieved similar performance with the one obtained by using
manual transcripts.

Pan et al. [233] introduced Sinc-CLA, which consists of SincNet [234], Convolutional
Layers, Long Short-Term Memory layers, and an attention layer. They used this archi-
tecture as a task-driven feature extractor, where they passed the outpits of the attention
layer and the dense layer in LR and SVM classifiers. The authors extracted also ComParE
and IS10 feature sets and trained LR and SVM classifiers. They conducted their exper-
iments both at chunk and recording-level. Results showed that the task-driven features
yielded superior performance compared with IS10 and ComParE. Moreover, the authors
performed an analysis of the learned SincNet filters and stated that low-frequency informa-
tion is critical for classifying Mild Cognitive Impairement (MCI) and Neurodegenerative
Disorders (ND) from Healthy Control (HC).

Ref. [235] used only transcripts and introduced three deep neural networks. Firstly,
the authors trained a Convolutional Neural Network. Secondly, the authors trained an
architecture consisting of CNN and Bidirectional LSTM layers. Finally, the authors intro-
duced an architecture, namely SDDNN, where they passed the representation vectors of
the transcripts through: (a) CNN, (b) CNN + BiLSTM, and (c¢) BiLSTM coupled with an
attention mechanism, and concatenated the obtained representation vectors. The authors
experimented with both GloVe embeddings and randomly initialized embeddings. Find-
ings showed that SDDNN using GloVe embeddings achieved the best evaluation results.

Wankerl et al. [236] combined two perplexity estimates, namely one from a model
trained on transcripts of speech produced by healthy controls and the other from a model
trained on transcripts from patients with dementia. An AUC score of 0.83 was achieved
by using n-gram Language Models (LMs) in a participant-level leave-one-out-cross valida-
tion (LOOCYV) evaluation across the DementiaBank dataset. Fritsch et al. [237] further
improved performance of this approach by substituting a neural LM (a LSTM model) for
the n-gram LM, and report an improved AUC of 0.92. However, it is currently unclear
as to whether this level of accuracy is due to dementia-specific linguistic markers, or a
result of markers of other significant differences between the case and control group such
as age (z = 71.4 vs. 63) and years of education (z = 12.1 vs. 14.3) [54]. The work pro-
posed by [238] investigated why these approaches are effective by interrogating neural LMs
trained on participants with and without dementia using synthetic narratives previously
developed to simulate progressive semantic dementia by manipulating lexical frequency.
Findings suggested that the “two perplexities” approach is successful at distinguishing
between cases and controls in the DementiaBank corpus because of its ability to capture
specifically linguistic manifestations of the disease.

Reference [239] exploited only transcripts and employed a feature extraction process.
Specifically, the authors extracted n-gram and lexicosyntactic features, including stop-

words ratio, word count, quantity of expressed propositions to the total spoken words, etc.
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Next, the authors proposed feature selection techniques, including the student’s t-test and
the Kolmogorov-Smirnov test. For dealing with the imbalanced dataset, a subsampling
technique was adopted, where the authors performed a random selection of a subset of the
majority with a matching size to that of the minority. Several machine learning algorithms
were trained, including Gaussian Naive Bayes, SVM, and Multilayer Perceptron Neural
Networks. The authors evaluated their proposed approaches on five classification tasks,
namely AD vs. HC, MCI vs. HC, MCI vs. AD, HC vs. Possible AD (PoAD), and AD vs.
PoAD. Results showed that early stages of dementia can be efficiently diagnosed through
linguistic patterns and deficits. In addition, the authors stated the superiority of their
approaches over state-of-the-art ones.

In [240], the authors introduced a stacked fusion model. Firstly, the authors extracted
lexicosyntactics and character n-gram features. Next, they applied feature selection tech-
niques, namely Pearson’s correlation and mutual information. After that, they trained
and evaluated several classifiers, including Random Forest, Extreme Gradient Boosting,
Linear discriminant analysis, Support Vector Machine, Gaussian Naive Bayes, Logistic Re-
gression, and Multi-layer Perceptron, where they returned the best n classifiers. Finally,
the predictions of the best n classifiers were used as input to a Meta-Classifier. Findings
suggested the effectiveness of ensemble methods for AD diagnosis.

The authors in [241] used the DementiaBank dataset and translated the transcripts
into the Nepali language. Next, the authors used CountVectorizer, tf-idf, Word2Vec, and
fastText. They trained both shallow and deep learning classifiers. Regarding the shallow
machine learning algorithms, they used Decision Trees, k-Nearest Neighbours, Support
Vector Machines, Naive Bayes, Random Forests, AdaBoost, and XGBoost. In terms of
the deep learning models, they experimented with CNNs, BiLSTMs, Attention Layers,
and their combinations. Findings showed that the deep learning models performed better
than the traditional machine learning classifiers.

Nasreen et al. [164] extracted two feature sets, namely disfluency and interactional
features, and performed an in-depth statistical analysis in an attempt to investigate the
differences between AD and non-AD subjects in terms of these features. Findings show
that these two groups of people present significant differences. Then, they exploited shal-
low machine learning algorithms using the aforementioned feature sets to distinguish AD
from non-AD patients and obtained an accuracy of 0.90 when providing both feature sets
as input to the SVM classifier.

Al-Hameed et al. [242] used a longitudinal dataset to study the natural deterioration
of AD patients across three visits. More specifically, they used only acoustic features
and employed feature selection techniques to predict MMSE scores and distinguish people
with AD from people with Mild Cognitive Impairment (MCI) and healthy control (HC).
A similar approach was proposed by [165], who extracted features only from transcripts in
order to detect AD patients. Findings suggest that word entropy, phone entropy, and rate
of pauses in utterances achieve competitive performance when they are given as input to a

Decision Tree classifier. Haider et al. [243] introduced three approaches, namely segment-
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level, majority-voting on segments, and the novel active data representation (ADR), for
identifying AD patients using only acoustic features. They claimed that ADR outper-
formed the other two approaches due to its ability to encode acoustic information of a full
audio recording into a single feature vector for model training.

The authors in [65] introduced some approaches to detect AD patients and predict the
MMSE scores using only text data. Specifically, the authors proposed a Convolutional
Neural Network (CNN) and fastText-based classifiers. Regarding the AD classification
task, they fitted 21 models and the outputs were combined by a majority voting scheme for
final classification. In terms of the MMSE regression task, the outputs of these bootstrap
models were averaged for calculating the final MMSE score.

Research works [244, 245] employed a hierarchical attention neural network to detect
AD patients. More specifically, the authors in [244] evaluated their proposed model in both
manual and automatic transcripts and found that a hierarchical neural network achieves
an improvement in Fl-score in comparison to other deep learning models. In [245], the
authors tried to interpret the decisions made by the proposed model by visualizing words
and sentences and performing statistical analyses. However, they were not able to explain
why their model pays attention to some specific words more than others.

Authors in [246] proposed a multi-task learning framework (Sinc-CLA), so as to predict
age and MMSE scores (both considered as regression tasks) and used only speech as input
for their proposed network. Concurrently, they introduced shallow networks with input
i-vectors and x-vectors both in single and multi-task learning frameworks. They claimed
that using x-vectors in a multi-task learning framework yields the best results in terms of
the estimation of both age and MMSE scores.

The research work proposed by [247] employed unimodal approaches by using only
either speech or text to classify subjects into AD patients or non-AD ones. For the
text modality, the authors extracted embeddings by using fastText, BERT, LIWC, and
CLAN. For the acoustic modality, the authors extracted i-vectors and x-vectors. For
both modalities, they employed dimensionality reduction techniques and trained shallow
machine learning classifiers and neural networks (CNNs and LSTMs). The authors claimed
that the Support Vector Machine and the Random Forest Classifiers trained on BERT
embeddings achieved the highest accuracy. One limitation of this study is the fact that
the authors used BERT embeddings as features for training additional algorithms. They
did not experiment with extracting the [CLS] token and passing it to a dense layer for
performing the classification.

Karlekar et al. [168] applied three deep neural networks based on CNNs, LSTM-
RNNs, and their conjunction to distinguish AD patients from non-AD ones utilizing only
transcripts. Next, they proposed explainability techniques by applying automatic cluster
pattern analysis and first derivative saliency heat maps, in order to uncover differences in
language between AD patients and healthy control groups. The main limitation of this
paper is the fact that the authors did not experiment with language models based on
transformers, i.e., BERT, RoBERTa, and so on.



3.3.2 Multimodal Approaches 93

Similarly, the work proposed by [248] extracted seventeen features from transcripts
for detecting AD patients. Specifically, the authors extracted the rate of pauses in ut-
terances, filler sounds, number of no answers, part-of-speech tags, intelligibility of speech,
diversity and complexity of the words, and many more. Next, they trained Support Vector
Machines, Linear Discriminant Analysis, and Decision Trees. Results indicated that 90%
prediction accuracy can be obtained using only phone entropy, silence rate per utterance,
and word entropy with a Decision Tree classifier. The limitation of this paper lies on the
feature extraction process, which is a time-consuming and tedious procedure. Addition-
ally, the optimal feature set may not be found, since some level of domain expertise is
required.

An augmented adversarial self - supervised learning method was proposed by [249].
Specifically, the introduced approach was based on contrastive predictive encoding. For
dealing with the imbalanced dataset, i.e., limited number of speech samples corresponding
to AD patients, the authors applied three augmentation schemes, including speed based
augmentation, tempo based augmentation, and tremolo based augmentation. Findings
indicated that the proposed methods improved the performance for AD detection to a

large margin compared to other models.

3.3.2 Multimodal Approaches

Several approaches have been introduced which fuse the representation vectors or fea-
tures of the different modalities at the input level. This strategy is known as an early
fusion approach and does not capture effectively the inter-modal interactions. Edwards
et al. [250] proposed a multimodal (audio and text) and multiscale (word and phoneme
levels) approach. For the acoustic modality, the authors extracted features using the
OpenSMILE toolkit, applied feature selection techniques, and trained shallow machine
learning classifiers, including SVM, latent discriminant analysis (LDA), and LR. In terms
of the language models, the authors trained a Random Forest Classifier on Word2Vec
and GloVe embeddings. Also, they trained a FastText classifier from scratch. In ad-
dition, pretrained embeddings obtained by Sent2Vec, RoBERTa, ELECTRA, and so on
were fine-tuned with the FastText classifier. The authors transcribed the segmented text
into phoneme written pronunciation using CMUDict and stated that the FastText classi-
fier was the best performing model trained on the phoneme representation. Results also
showed that the combination of phonemes and audio yielded to the highest accuracy ac-
counting for 79.17%. Martinc and Pollak [95] proposed also an early fusion approach. The
authors extracted a large number of features corresponding to the textual and acoustic
modality. They fused the feature sets via an early fusion method. Finally, they trained
four machine learning classifiers, namely XGBoost, Random Forest, SVM, and Logistic
Regression. Findings showed that the logistic regression and SVMs were proved to be
better than XGBoost and Random Forest. Also, the authors stated that the readability

features led to a surge in the classification performance. In terms of the audio features,
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the duration was the best performing one. Pompili et al. [67] proposed an early fusion
approach for fusing the modalities of speech and transcript. Specifically, for the text
modality, the authors employed the BERT model first and then trained three deep neural
models on top of the BERT embeddings, namely (i) a Global Maximum pooling, (ii) a
bidirectional LSTM-RNNs provided with an attention module, and (iii) the second model
augmented with part-of-speech (POS) embeddings. For the audio modality, the authors
extracted the x-vectors. Finally, the authors merged the feature sets corresponding to the
two different modalities and trained a Support Vector Machine classifier. Results showed
that the fusion of the two modalities increased the performance obtained by unimodal ap-
proaches exploiting only speech or text. Ref. [251] extracted three sets of features, namely
lexicosyntactic, acoustic, and semantic features. In terms of the lexicosyntactic features,
the authors extracted the proportion of POS-tags, average sentiment valence of all words
in a transcript, and many more. Regarding the acoustic features, MFCCs, fundamental
frequency, statistics related to zero-crossing rate, etc. were exploited. With regards to the
semantic features, the authors extracted proportions of various information content units
used in the picture. Next, they performed feature selection by using the ANOVA and
trained four machine learning classifiers, including SVM, neural network, RF, and NB.
Results showed that SVM outperformed the other approaches in the multimodal frame-
work. The limitation of this study lies on the way the features from different modalities
are combined. More specifically, the authors apply an early fusion strategy, where they
fuse the features at the input level. This approach does not capture the inter- and intra-
modal interactions. In addition, another limitation is the feature extraction procedure. In
[252], an early fusion approach was proposed. Specifically, the authors extracted a set of
acoustic features, i.e., articulation, prosody, i-vectors, and x-vectors, and a set of linguistic
features, including word2vec, BERT, and BERT-Base trained with the Spanish Unanno-
tated Corpora (BETO) embeddings. The authors concatenated these sets of features and
trained a Radial Basis Function-Support Vector Machine. The main limitation of this
paper is the early-fusion approach. [253] compared the performance of traditional ma-
chine learning classifiers with the performance obtained by pre-trained transformer mod-
els, namely BERT. More specifically, the authors extracted a large number of features, i.e.,
lexicosyntactic, semantic, and acoustic features and applied feature selection by choosing
top-k number of features, based on ANOVA F-value between label and features. Four
conventional machine learning models, namely Support Vector Machine, Neural Network,
Random Forest, and Naive Bayes, were trained with the respective sets of features. Next,
the authors trained a BERT model and stated that BERT outperformed the feature-based
approaches in terms of all the evaluation metrics. [254] introduced some approaches to
predict MMSE scores using textual and acoustic features. More specifically, the authors
extracted lexicosyntactic features weighted via tf-idf, psycholinguistic features, discourse-
based features, and acoustic features (MFCCs). The authors trained a Support Vector
Regressor for predicting the MMSE scores. Results indicated that a selection of verbal

and non-verbal cues achieved the lowest RMSE score. The authors in [247, 64] introduced
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approaches based on multimodal data (both linguistic and acoustic features) to detect
AD patients (binary classification task) and predict MMSE score (regression task). More
specifically, the authors in [247] exploited dimensionality reduction techniques followed
by machine learning classifiers and stated that Logistic Regression (LR) with language
features was their best performing model in terms of classifying AD and non-AD patients.
With regards to estimating the MMSE score, they claimed that a Random Forest classi-
fier with language features achieves the lowest RMSE and R? scores. The combination of
linguistic and acoustic features did not perform well on both tasks. In [64], the authors
trained both shallow and deep learning models (LSTM and CNN) on a feature set con-
sisting of acoustic features (i-vectors, x-vectors) and text features (word vectors, BERT
embeddings, LIWC features, and CLAN features) to detect AD patients. They found that
the top-performing classification models were the Support Vector Machine (SVM) and
Random Forest classifiers trained on BERT embeddings, which both achieved an accuracy
of 85.4% on the test set. Regarding the regression task, they claimed that the gradient
boosting regression model using BERT embeddings outperformed all the other introduced
architectures.

Other approaches employ late-fusion strategies. This means that multiple models, i.e.,
acoustic and language, are trained separately and the final result/prediction is often taken
after a majority vote approach. In this way, the inter-modal interactions are not captured.
The authors in [92] proposed a majority-level approach for classifying AD patients using
the audio and textual modalities. In terms of the textual modality, the authors extracted
handcrafted textual features and deep textual embeddings of transcripts. For the extrac-
tion of deep textual embeddings, they used BERT, RoBERTa, and distilled versions of
BERT and RoBERTa. Next, they exploited feature aggregation techniques and classified
the subject as AD or non-AD patient by training either a Logistic Regression (LR) or a
Support Vector Machine (SVM) classifier. In terms of the audio modality, the authors ex-
tracted handcrafted acoustic features, i.e., ComParE, COVAREP, etc. and deep acoustic
embeddings, i.e., YAMNet, VGGish, etc. Similarly to the textual modality, they used fea-
ture aggregation techniques and trained a LR and SVM classifier. Results indicated that
the majority-level approach of text models yielded the highest evaluation results, while
the fusion of textual and acoustic modalities led to a degredation in performance. Shah
et al. [64] introduced a weighted majority-vote ensemble meta-algorithm for classification
utilizing the modalities of speech and transcripts. For the textual modality, the authors
extracted language and fluency features, including the type-token ratio, the number of
verbs per utterance, etc. and n-gram features. For the acoustic modality, the authors
extracted four feature sets using the OpenSMILE v2.1 toolkit. After that, the authors ap-
plied dimensionality reduction techniques, i.e., Principal Component Analysis, and feature
selection techniques, i.e., ANOVA F-values. Finally, shallow machine learning classifiers
were trained. Best results were obtained by using only the textual modality, while the
majority vote approach by combining textual and acoustic modalities led to a decrease in

the classification performance. Sarawgi et al. [170] trained acoustic and language models
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separately and proposed three kinds of ensemble modules for classification. Specifically,
the authors experimented with hard ensemble, meaning that a majority vote was taken
between the predictions of the three individual models. A soft ensemble was also pro-
posed, where a weighted sum of the class probabilities was computed for final decision, in
order to leverage the confidence of the predictions. Also, a learnt ensemble was exploited,
where a logistic regression classifier was trained using class probabilities as inputs. Results
showed that the hard ensemble approach yielded the best results. Mittal et al. [255] pro-
posed a late fusion strategy using the modalities of speech and transcripts. Firstly, they
trained separately acoustic and language models. For the acoustic modality, the authors
trained a VGGish model with log-mel spectrograms. For the textual modality, the authors
concatenated the representation obtained by BERT, Sentence-BERT, and fastText-CNN.
Finally, the probabilities calculated by the audio and text-based model were combined in a
weighted manner, and a threshold was fixed for classifying the persons into AD and healthy
control. Pappagari et al. [256] trained acoustic and language models separately and used
the output scores as inputs to a Logistic Regression classifier for obtaining the final predic-
tion. For the language models, the authors used automatic speech recognition models for
transcribing the recordings and employed a BERT model. For the acoustic modality, the
authors used x-vectors for classifying subjects into AD patients and non-AD ones. Also,
they extracted eGeMAPS, VGGish, prosody features, etc. and trained Logistic Regression
and XGBoost classifiers. The authors stated that the combination of the different models
and the BERT model trained on automatic transcripts achieved equal accuracy on the test
set. Similarly, the authors in [90] trained also acoustic and language models separately. In
terms of the acoustic models, the authors extracted the x-vectors and trained a Probabilis-
tic Linear Discriminant Analysis classifier. For the textual modality, the authors employed
a BERT model. For fusing the two modalities, the authors employed the scores from the
whole training subset to train a final fusion GBR model that was used to perform the
fusion of scores coming from the acoustic and transcript-based models for the challenge
evaluation. Results showed that the proposed approach was the best performing one. The
authors in [257] introduced three speech-based systems and two text-based systems for di-
agnosing dementia from spontaneous speech. Also, they proposed methods for fusing the
different modalities. In terms of the speech based systems, the authors extracted i-vectors,
x-vectors, and rhythmic features and trained an SVM and a Linear Discriminant Analysis
(LDA) classifier. Regarding the text-based models, the authors fine-tuned a BERT model
and trained an SVM classifier using linguistic features. Finally, the authors exploited
three fusion strategies based on late fusion approach. Therefore, the main limitation of
this study is the late fusion approach for fusing the different modalities. Ref. [63] used
the ADReSS Challenge Dataset and introduced neural network architectures which use
language and acoustic features. Regarding the multimodal approach, the authors fuse the
predictions of the three best performing models using a majority vote approach and show
that label fusion outperforms the neural networks using either only speech or transcripts.

The limitation of this study lies on the usage of a late fusion strategy, i.e., majority vote
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approach. In this way, multiple models must be trained separately increasing the train-
ing time. Also, the inter-modal interactions cannot be captured. [61] proposed several
acoustic and language individual models. Specifically, they extracted both handcrafted
features and embeddings via BERT, RoBERTa, VGGish, YAMNet, etc. After applying
feature aggregation techniques, they trained and tested a Logistic Regression and Support
Vector Machine classifier for differentiating AD from non-AD patients. For fusing the two
modalities, the authors applied a majority voting based label fusion strategy, where each
model made a decision on whether it considered the subject to be healthy or suffering
from Alzheimer’s dementia. Results showed that the multimodal fusion did not achieve
better performance than the unimodal models. Regarding the MMSE regression task, the
authors used SVR and PLSR and fused the two modalities by applying average-based
fusion. A similar approach was conducted by [66], where the authors extracted a set of
acoustic features, i.e., Prosody, Voice Quality, ComParE, IS10-Paling, etc., and a set of lin-
guistic features using transformer-based networks, including BERT, RoBERTa, and their
distilled versions. They categorized people into AD patients or not by training a Support
Vector Machine (SVM) and a Logistic Regression (LR) classifier. The authors used label
fusion from the top performing models and stated that the label fusion of the 10 best
performing textual models achieved an accuracy of 85.42%. For predicting the MMSE
scores, the authors used support vector machines based regression (SVR) and a partial
least squares regressor (PLSR). They achieved a Root Mean Squared Error (RMSE) score
equal to 4.30 by averaging the predictions of the MMSE scores from the top-10 performing
models. Research works [169] extracted a set of acoustic and linguistic features using the
ADReSSo Challenge Dataset. Next, they concatenated these sets of features and trained
a Logistic Regression classifier. They also proposed three label fusion approaches, namely
majority voting, average fusion, and weighted average fusion, based on the predictions of
several neural networks. The limitations of this study are related to the early and late
fusion strategies introduced for detecting AD patients. In [258], the authors introduced
an approach, which accounts for temporal aspects of both linguistic and acoustic features.
In terms of the acoustic features, the authors exploited the eGeMAPS feature set, while
they used GloVE embeddings with regards to the language features. Next, the Active
Data Representation [226] with some modifications was employed. The authors used a
Random Forest Classifier for performing their experiments. The authors performed a se-
ries of experiments and stated that the majority vote approach yielded the best result.
The method for fusing the two modalities, i.e., late fusion strategy, constitutes the main
limitation of this study.

There are also approaches, which add or concatenate the representation vectors of
different modalities during training. However, in this way, the inherent correlations be-
tween the different modalities are not captured. On the contrary, equal importance is
assigned to the different modalities. Research work [259] employed also a bi-modal model
consisting of Dense, GRU, CNN, BiLSTM, and attention layers. The authors fused the

two modalities by concatenating their respective representations. Results on the ADReSS
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Challenge Dataset showed an improvement of evaluation results of the multimodal ap-
proach over unimodal architectures. The usage of the concatenation operation for fusing
the two modalities constitutes a limitation of this study. Also, the feature extraction pro-
cess proposed by the authors, constitutes another limitation. Zhu et al. [91] proposed both
unimodal and multimodal approaches. Regarding unimodal models, they employed first
MobileNet and YamnNet to discriminate between AD patients and non-AD ones. They
converted audio files into MFCC features, duplicated the MFCC feature map twice and
made the MFCC feature map as a (p, t, 3)-matrix, in order to match with the module
input of the proposed architectures. They used also BERT and Speech BERT. In terms of
the multimodal models, the authors exploited Speech BERT, YamnNet, Longformer, and
BERT. After extracting the representations of audio and transcripts, they used the add
and concatenation operation to fuse these two modalities. Results on the ADReSS Chal-
lenge Dataset showed that the concatenation operation of the representations extracted
via BERT and Speech BERT outperformed the unimodal models. The limitations of this
study are the following: (i) the way the speech signal is represented as an image. More
specifically, this study duplicates the MFCC feature map twice and makes the MFCC
feature map as a (p, t, 3)-matrix. On the contrary, the delta and delta-delta features can
be used for adding more information [260, 261]. (ii) In terms of the multimodal models,
the authors fuse the different modalities via an add and concatenation operation. These
methods do not capture the inherent correlations between the two modalities. The au-
thors in [262] proposed both unimodal and multimodal approaches. Regarding unimodal
approaches using speech data, the authors extracted acoustic features and trained four
shallow machine learning classifiers. For the language modality, the authors trained a
BERT model. In terms of the multimodal approach, the authors simply concatenated the
representations obtained by BERT and acoustic modality. Results on the test set indi-
cated that the fusion approach achieved lower performance than the unimodal one using
the textual modality. Koo et al. [263] used the ADReSS Challenge Dataset and proposed
a deep learning model consisting of BiLSTMs, CNNs, and self-attention mechanism and
exploited both textual, i.e., transformer-based models, psycholinguistic, repetitiveness,
and lexical complexity features, and acoustic features, i.e., openSMILE and VGGish fea-
tures. Specifically, they passed each modality through a self attention layer, where key,
value, and query corresponded to one single modality. However, the authors concatenated
the outputs of the attention layer, which correspond to the two different modalities, and
passed them through a CNN layer. The main limitations of this study are pertinent to
the feature extraction process and the concatenation of the representation vectors of the
two modalities into one vector.

A different approach was proposed by [62]. More specifically, the authors extracted
textual and acoustic features and passed them through two different branches of BiILSTM
layers. A gating mechanism consisting of highway networks was proposed for fusing the
two modalities. However, the authors did not experiment with replacing the proposed

fusion method with a concatenation operation via an ablation study. Thus, this fusion
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method cannot guarantee performance improvement. Similarly, [264] used BERT instead
of BILSTM for extracting the text representation and stated that the BiLSTM performed
better than BERT due to the fewer parameters used.

3.3.3 Other Multimodal Tasks

Villegas et al. [265] introduced multimodal approaches for inferring the political ide-
ology of an ad sponsor and identifying whether the sponsor is an official political party
of a third-party organization. The authors employed BERT and EfficientNet [266] for
extracting textual and visual representations respectively. They concatenated these two
representations and passed the resulting vector to an output layer for binary classifica-
tion. Results suggested that the combination of both modalities led to a surge in the
classification performance.

Villegas and Aletras [77] proposed multimodal approaches for the task of point-of-
interest type prediction. Specifically, the authors exploited BERT and Xception [267] for
extracting text and visual representations respectively. Next, they introduced three differ-
ent architectures for fusing the two modalities. First, they exploited the Gated Multimodal
Unit introduced by [75]. Secondly, inspired by [76], they proposed a model for modeling
the cross-modal interactions. Finally, the authors introduced an architecture, which in-
cludes the gated multimodal mechanism and the cross-attention layers on the top of the
gated multimodal mechanism. Findings suggested that the proposed architecture yielded
new state-of-the-art results outperforming significantly the previous text-only models.

Gu et al. [268] presented a deep multimodal network with both feature attention and
modality attention to classify utterance-level speech data. The authors used the modalities
of audio signal and text data as input to the deep neural network. In terms of the modality
fusion approach proposed, it consisted of three main parts, namely the modality attention
module, the weighted operation, and the decision making module. Findings showed that
the multimodal system achieved state-of-the-art performance and was tolerant to noisy
data indicating in this way its generalizability.

Pan et al. [269] proposed a multimodal architecture for detecting sarcasm in Twitter.
More specifically, the authors exploited the ResNet-152 model and obtained a visual rep-
resentation. Regarding the textual modality, they used a pretrained BERT model. After
obtaining embeddings for the input sequence and the hashtags included in the sequence,
the authors passed the corresponding embeddings through encoders of the transformer.
For modeling the cross-modal interactions, an additional encoder was used, where the vi-
sual representation corresponded to the key and value, while the sequence representation
corresponded to the query. In addition, an intra-modality attention approach was used,
which gets as input the sequence and the hashtag representations. The outputs obtained
were concatenated and passed to an output layer for the final prediction. Findings stated
that the proposed architecture achieved state-of-the-art results.

Inspired by the transformer model in machine translation [46], the authors in [270]
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presented some multimodal approaches for the task of visual question answering. More
specifically, the authors employed a self-attention and a guided-attention unit for captur-
ing the intra- and inter-modal interactions respectively. Next, they obtained a Modular
Co-Attention layer, which constitutes the modular composition of the self-attention and
guided-attention units. Finally, the authors proposed a deep Modular Co-Attention Net-
work consisting of cascaded Modular Co-Attention layers. Results indicated that the
introduced approach surpassed the existing co-attention models.

Zadeh et al. [271] introduced a novel model, termed Tensor Fusion Network, for the
task of multimodal sentiment analysis. The authors used visual, language, and acous-
tic modalities. For capturing the intra-modal interactions, the authors proposed three
Modality Embedding Subnetworks. For capturing the inter-modal interactions, the Ten-
sor Fusion layer has been used. Finally, the authors employed the Sentiment Inference
Subnetwork, which is conditioned on the output of the Tensor Fusion layer and performs
sentiment inference. Results indicated a surge in performance in comparison with existing
research initiatives.

Cai et al. [272] presented a multimodal approach for sarcasm detection in Twitter.
The authors used the modalities of text features, image features, and image attributes. Af-
ter extracting image features and attributes, the authors leveraged attribute features and
BiLSTM layers for extracting the text features. Next, the authors employed a representa-
tion fusion approach for reconstructing the features of the three modalities. Finally, they
proposed a modality fusion approach motivated by [268]. Results showed the effectiveness
of the proposed architecture and the usefulness of the three modalities.

A different approach was proposed by [273], where the authors utilized optimal trans-
port for capturing the cross-modal interactions and self attention mechanisms for captur-
ing the intra-modal correspondence. Specifically, they exploited three different modalities,
namely visual, language, and acoustic modalities. After utilizing self-attention and op-
timal transport methods, they used the multimodal attention fusion method introduced
by [268]. Experiments conducted towards the sarcasm and humor detection tasks demon-
strated valuable advantages over existing research initiatives.

Yu et al. [83] introduced an approach for capturing both the inter- and intra-modal
interactions for the visual question answering and the visual grounding tasks using the
modalities of text and image. Specifically, after obtaining text and visual representations,
they passed these two representations through a unified attention block. The authors
proposed also a variation of the self-attention mechanism by introducing a novel gating

model. Findings showed the effectiveness of the proposed approach on five datasets.

3.3.4 Literature Review Findings

From the aforementioned research works, it is evident that despite the negative conse-
quences dementia has in people’s everyday life, little work has been done so far towards its

identification. More specifically, most researchers introduce feature extraction approaches
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from audio and transcripts and train ML algorithms, such as SVM, LR, etc. Because
of the fact that feature extraction constitutes a time-consuming procedure and does not
generalize well to new AD patients, researchers have started exploiting deep learning
methods, such as CNNs and LSTMs, which obtain low performances. However, despite
the fact that pretrained transformer models achieve new state-of-the-art results in several
domains, including the biomedical one, their potential has been mainly used as embed-
dings for training shallow ML algorithms, such as SVM or LR. Concurrently, little has
been done regarding the interpretability of the proposed deep learning models as well as
the main differences observed in the language between AD patients and non-AD patients.
In terms of the architectures using only speech data, it is evident that current research
works [224, 217, 222, 93, 225, 226, 247] have been focused mainly on acoustic feature
extraction and then the usage of shallow machine learning algorithms, i.e., SVM, LR, RF
etc., or CNNs and BiLSTMs. The study in [94], which has converted audio files into images
of three channels, namely log-Mel spectrograms (and MFCCs), their delta, and delta-delta,
has exploited only one pretrained model of the domain of computer vision, i.e., ResNet18.
In addition, the study introduced in [91] has converted the audio files into MFCC features,
has duplicated the MFCC feature map twice and has made the MFCC feature map as a
(p, t, 3)-matrix. Next, this study has employed YAMNet, MobileNet, and Speech BERT.
However, the limitation of this study lies on the way images are created. On the contrary,
delta and delta-delta coeflicients are used for recognizing speech better, since the dynamics
of the power spectrum, i.e., trajectories of MFCCs over time, are understood better.
Regarding the multimodal models, the majority of the research works have either
concatenated or added the representations corresponding to the two different modalities
[91, 262, 259, 263]. However, the concatenation operation assigns equal importance to
each modality and it neglects the inter- and intra-modal interactions. Other research
works have trained several language and acoustic models separately and then use majority
voting for the final classification of the people as AD patients or non-AD patients [63,
170, 92, 258, 169]. Late fusion approaches have been also proposed including [257, 256,
90, 64, 255, 66, 169]. However, these approaches increase substantially the computation
time, while the inter-modal interactions are not captured. In addition, there are studies
[252, 251, 169, 67, 95, 250] proposing early fusion approaches, meaning that the features
corresponding to the different modalities are concatenated at the input level. None of

these works capture the inter- and intra-modal interactions.
3.3.5 Datasets

3.3.5.1 DementiaBank Pitt Corpus

The DementiaBank English Pitt Corpus [54] consists of participants with probable and
possible Alzheimer’s Disease, people with other dementia diagnoses, and healthy people.
Regarding the study eligibility criteria, the age of the participant must be over 44 years

old, while the person must have at least seven years of education. Also, the person should
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be able to read and write english fluently before dementia onset, should not have history
of major nervous system disorders, such as cerebral trauma, stroke, etc. In addition,
the person must not receive any neuroleptic or other medication affecting central nervous
system functions, must have an initial MMSE score greater than 10, must be able to give
informed consent, and have an informant (for patients only). Subjects in this study made

up to five visits. This dataset includes four tasks, which are described below:

e Cookie: Description of the Cookie Theft picture, which is illustrated in Fig. 3.1.
e Fluency: Responses to the Word Fluency task for the dementia group only.
e Recall: Responses to the Story Recall task for the Dementia group only.

e Sentence: Responses to the Sentence Construction task for the dementia group only.

Il

W

Figure 3.1: The Cookie Theft picture

3.3.5.2 ADReSS Challenge Dataset

In contrast to other datasets, the ADReSS Challenge dataset [53] is matched for gender
and age, so as to minimize the risk of bias in the prediction tasks. Moreover, it has been
selected in such a way so as to mitigate biases often overlooked in evaluations of AD

detection methods, including repeated occurrences of speech from the same participant
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(common in longitudinal datasets) and variations in audio quality. It consists of speech
recordings along with their associative transcripts and includes 78 non-AD and 78 AD
subjects. In addition, the dataset includes the MMSE scores for each subject except
one. We report the mean and standard deviation of the MMSE scores for the two main
groups, i.e., AD patients and non-AD ones, in Table 3.1. Each participant (PAR) has been
assigned by the interviewer (INV) to describe the Cookie Theft picture from the Boston
Diagnostic Aphasia Exam [54]. Due to the fact that the transcripts are annotated using
the CHAT coding system [274], the python library PyLangAcq [275] is used for having
access to the dataset. The ADReSS Challenge dataset has been divided into a train and
a test set. The train set consists of 54 AD patients and 54 non-AD ones, while the test
set consists of 24 AD patients and 24 non-AD ones.

Table 3.1: Mean and standard deviation of the MMSE scores for the two main groups (AD and
non-AD patients).

MMSE
mean standard deviation
AD 17.79 5.48
non-AD 29.01 1.17

3.3.5.3 ADReSSo Challenge Dataset

The ADReSSo Challenge Dataset [276] includes two datasets described below:

e a dataset consisting of speech recordings of Alzheimer’s patients performing a cate-
gory (semantic) fluency task [277] at their baseline visit, for prediction of cognitive

decline over a two year period, and

e a dataset consisting of healthy people and AD patients describing the Cookie Theft

picture.

Similarly to the ADReSS Challenge dataset, the ADReSSo Challenge dataset has been
carefully selected to mitigate several kinds of biases. However, it does not include manual

transcripts. It includes only speech recordings.

3.3.5.4 B-SHARP Dataset

B-SHARP dataset [278] includes 185 normal controls and 141 MCI patients. Each
subject has been examined with multiple cognitive tests, including the Montreal Cognitive
Assessment and the Boston Naming Test. In addition, each person speaks about three

topics, which are described below:

e Q1: daily activity
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e (Q2: room environment

e Q3: Description of the Circus Procession picture, which is illustrated in Fig. 3.2.

Figure 3.2: The Circus Procession picture

The B-SHARP study is still growing and is not publicly available yet.

3.3.5.5 Longitudinal Multimodal Dataset

This dataset includes data from three 4-week phases [279]. Each subject is examined
with multiple cognitive tools at the start and end of each phase, including the Mini Mental
State Examination score and the Addenbrooke’s Cognitive Examination-III. This dataset
is still growing. Until now, the dataset includes 22 people, 14 people with dementia or
MCI and 8 age matched controls. Each person is given a tablet application, which shows
four pictures every day, each one of them representing a topic from the 50’s, 60’s, and 70’s.
Also, three questions are shown to the person, in order to help him/her perform the task.
Then, each person can choose one picture and is able to record the conversation, type or
write the thoughts.

Regarding the eligibility criteria, the age of the participants ranges from 65 to 80 years
at the time of consent. They need to have lived in the United Kingdom during the 50’s,
60’s, or 70’s, and they must be able to use the provided tablet application. Also they need
to be in contact with a carer or a family member.

This dataset is not publicly available yet.
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3.3.5.6 Carolinas Conversations Collection

The Carolinas Conversations Collection [280] includes a digital archive of transcribed
audio and video recordings of people over 65 years of age in natural conversations about
health and is supported by the National Libraries of Medicine.

The Carolinas Conversations Collections consists of two cohorts. Specifically, Cohort
1 includes over 200 consented conversations with 125 older men and women of multiple
ethnicities, with any of 12 chronic medical conditions recorded twice a year. Cohort 2
includes over 400 naturally occurring conversations with 125 persons with Alzheimer’s

disease in a longitudinal set of persons.

3.3.5.7 Intelligent Virtual Agent (IVA)

The IVA dataset was collected at the University of Sheffield’s Department of Neurology
at the Royal Hallamshire Hospital in the UK in a real clinical setting [281, 282]. The IVA
acts as a neurologist, i.e., virtual doctor, who asks several questions similar to those asked
in real assessment situations. The IVA runs in a laptop, where two cameras are also
used for capturing the participants’ movements. The participants are asked a total of 10
conversational questions and encouraged to take part in two 1-minute verbal fluency tests.

The participants are grouped into four categories, namely functional memory disorder
(FMD), neurodegenerative disorder (ND), MCI, and HC.

3.4 State-of-the-art analysis of Machine Learning Methods
used in epilepsy detection/prediction from EEG signals

In the research work proposed by [116], the authors applied a five-level Discrete Wavelet
Transform (DWT) to the EEG signals for decomposing them into sub-bands. Then, the
authors extracted features from each sub-band, namely the energy and entropy of the
coefficients, as well as the standard deviation, variance, and mean of the absolute values
of the coefficients. The resulting feature vector was used for training a Random Forest
Classifier. Results showed the robustness of the proposed method.

A different approach was proposed by [283], where the authors exploited a novel feature
called successive decomposition index (SDI) for the automated seizure detection task.
They trained a Support Vector Machine (SVM) classifier and stated that experiments
on three EEG databases demonstrated the robustness of this approach. Also, findings
suggested that the successive decomposition index was computationally more efficient in
comparison to methods proposing wavelet decomposition and feature extraction from each
sub-band.

Ref. [284] trained a convolutional neural network (CNN) to distinguish ictal, preictal,
and interictal segments for epileptic seizure detection. As input to the CNN, the authors
experimented with raw EEG data in the time domain and data in the frequency domain by

applying Fast Fourier Transform to the EEG signals. Results suggested that the frequency
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domain signals achieved higher evaluation results than the ones achieved by the time
domain signals.

In [285], the authors proposed an approach to optimize the parameters of the SVM
classifier by using the Genetic Algorithm (GA) and the particle swarm optimization (PSO).
Firstly, the authors applied discrete wavelet transform (DWT) to decompose the EEG
signal into sub-bands and extracted a set of statistical features. Next, they used these
features for training the SVM classifier along with GA and PSO. Findings stated that the
PSO-based approach outperformed the GA.

The authors in [286] introduced an approach, where the deep neural network is hy-
bridized with a novel Adaptive Haar Wavelet-based Binary version of Grasshopper Opti-
mization (AHW-BGOA). This method can be used both for hyperparameter optimization
and the selection of the most informative features, which are capable of enhancing the
classification performance. Regarding the process of feature extraction, the authors de-
composed the signal into sub-bands via the DW'T and extracted a set of features, including
non-linear features, hurst exponent, and entropy-based features.

A straightforward approach was introduced by [287], where the authors trained a
neural network consisting of BILSTM layers and stated that this model can predict seizure
episodes reaching F1-score up to 88.00%.

A similar approach was proposed by [288], where the authors trained a neural net-
work consisting of two LSTM layers and stated that the proposed model can attain high
evaluation results. A similar approach was conducted by [289], where the authors trained
an architecture consisting of two BiLSTM layers for detecting and predicting epileptic
seizures.

Reference [290] adopted a deep convolutional neural network consisting of 23 layers
including the input layer. The proposed deep neural network is able to detect abnormal
EEG signals with an accuracy of 79.34% without requiring the tedious procedure of feature
extraction.

Similarly, the authors in [117] adopted a deep convolutional neural network consisting
of 13 layers for detecting normal, preictal, and seizure classes.

In [291], the authors proposed a long short-term memory (LSTM) network for classi-
fying epileptic EEG signals. First, the authors applied DWT for decomposing the EEG
signal into sub-bands and extracted a set of statistical features from each sub-band. Next,
for reducing the number of features, the authors exploited feature selection and dimension-
ality reduction techniques. Regarding the feature selection, they employed the correlation
coefficient and the P-value analysis. In terms with the dimensionality reduction, they
exploited the principal component analysis (PCA). Finally, they trained the LSTM neu-
ral network and found that three features were sufficient for building an effective model
for epilepsy. Concurrently, results suggested that the proposed approach outperformed
traditional machine learning algorithms, including SVM, Logistic Regression (LR), etc.

Research work [102] proposed an ensemble approach to detect abnormal EEG sig-
nals. More specifically, the authors split the EEG signal into sub-signals using fixed-size
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overlapping windows and passed them through a deep neural network consisting of three
convolutional layers followed by two fully-connected layers. Finally, the authors classi-
fied the EEG signal via a majority-voting approach of the prediction of each sub-signal.
Results indicated that the proposed approach outperformed state-of-the-art systems.

Reference [292] adopted a convolutional neural network (CNN), which is capable of
extracting spectral, spatial, and temporal features from EEG data and predicting abnormal
EEG signals. Also, the authors exploited visualization techniques, where the clinician can
see what the CNN learns. Results suggested the robustness of the introduced approach
both for patient-specific and cross-patient tasks.

A different approach was proposed by [293], where the authors exploited autoencoders
for predicting seizures. More specifically, the authors trained an autoencoder, where both
the encoder and decoder consist of convolutional neural networks. The latent vector was
passed either through a multilayer perceptron (MLP) or a BiLSTM neural network for
classifying the given EEG signal into ictal or interictal. Results indicated the superiority
of the BiLSTM over the MLP.

In [294], the authors introduced a deep learning approach for epilepsy detection. First,
they used a five level DWT for decomposing the EEG signal into sub-bands, and eliminated
the D1 and D2 coefficients. The rest of the available coefficients were used as input to a
CNN for classification. Results stated that the proposed approach is comparable to the
current state-of-the-art.

An interpretable approach was introduced by [295]. More specifically, the authors ex-
ploited the tiny visual geometry group CNN architecture [296] for epilepsy detection from
EEG signals. In addition, the authors exploited the Gradient-weighted Class Activation
Mapping method for interpreting the decisions made by the proposed network and stated
that the model was able to learn sensible features associated with well-known epilepsy
markers.

In [101], the authors introduced a deep learning approach to detect epileptic seizures.
More specifically, the authors, applied Discrete Cosine Transform (DCT) to the EEG
signals and extracted the hurst exponent and ARMA features. Finally, they trained an
LSTM network and claimed that the proposed approach improved the binary classification
accuracy by 2% in comparison with the previous SVM classifier.

The work proposed by [100] extracted a set of features from segments of EEG signals,
including time and frequency domain features, between EEG channels cross-correlation,
and graph theoretical features. Then, the authors trained an LSTM neural network and
stated that the introduced approach presents a surge in the performance compared to
the one obtained by traditional machine learning algorithms and convolutional neural
networks.

A different approach was adopted by [297]. Firstly, the authors applied some pre-
processing steps for the noise removal, including the empirical mode decomposition and
the bandpass filter. For dealing with the imbalanced dataset, they exploited Generative

Adversarial Neural Networks generating in this way synthetic EEG segments of preictal
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states. Next, they extracted a set of handcrafted features from Intrinsic Mode Functions
(IMF's) and a set of automated features. Regarding the automated features, they converted
the EEG signals to STFT spectrograms and used them as input to a CNN architecture.
Then, they concatenated the set of handcrafted and automated features and applied fea-
ture selection techniques including Pearson Correlation Coefficient and Particle Swarm
Optimization (PSO). Finally, the resulting feature set was used for training an ensemble
classifier, which combines the output of SVM, CNN, and LSTM using Model-Agnostic
Meta-Learning (MAML). Findings suggested that the proposed approach performs better
than existing research works in terms of sensitivity, specificity, and average anticipation
time.

In [298], a stacking ensemble approach based model was introduced for predicting
epileptic seizures. Findings stated that the stacking ensemble approach achieved higher
evaluation results than the ones achieved by the base Deep Neural Network (DNN).

A deep learning approach was also proposed by [299]. More specifically, the authors
proposed a deep neural network consisting of an attention mechanism, a BiLSTM layer,
a time-distributed fully connected layer, a pooling layer, a fully connected layer, and a
softmax layer. According to the authors, the attention mechanism is able to capture
the spatial features, while the BiLSTM layer is capable of extracting the discriminating
temporal features. Results indicated that the introduced approach performed well against

current state-of-the-art methods.

3.4.1 Literature Review Findings

From the aforementioned research works, it is evident that the majority of the research
works have employed feature extraction techniques for training shallow machine learning
classifiers or deep neural networks. Specifically, most of them apply the DWT to decom-
pose the EEG signal into multiple sub-bands. However, the limitation of DW'T is that one
should select carefully the number of levels of decomposition and the mother wavelet, in-
creasing in this way the computational time [283]. Another limitation of feature extraction
is the fact that it demands some level of domain expertise rendering it a time-consuming

procedure.

3.4.2 Datasets
3.4.2.1 EEG Database of the University of Bonn

This dataset [103] consists of five subsets, denoted as A, B, C, D, and E. Each subset
contains 100 single channel EEG segments of 23.6 second duration. The sampling fre-
quency is equal to 173.61 Hz. Thus, each EEG segment consists of 4097 samples. Sets A
and B have been collected from five healthy volunteers having their eyes open and closed
respectively. Sets C and D have been collected during interictal state (seizure-free inter-
val). Specifically, segments in set D have been recorded from the hippocampal formation

identified as epileptogenic zone, while the signals in dataset C have been recorded from
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hippocampal formation of opposite hemisphere of the brain. The dataset E contains seg-
ments from seizure activity (ictal state). A band-pass filter was applied to the EEG signals
with 0.53 Hz and 40 Hz low and high cutoff frequencies respectively. All these segments

have been manually inspected by an expert due to the muscle activity and eye movements.

3.4.2.2 Temple University EEG corpus

It includes a variety of corpora, which are publicly available [300]. Specifically, the
TUH Abnormal EEG Corpus is available, where EEGs have been annotated as normal or
abnormal. The TUH EEG Artifact Corpus includes annotations of 5 different artifacts,
while the TUH EEG Epilepsy Corpus contains subjects with and without epilepsy. The
TUH EEG Events Corpus contains annotations of EEG segments belonging into 6 classes,
including artifacts, spikes and sharp waves, and more. The TUH EEG Seizure Corpus is
also available, which provides information about the start and stop time of seizures as well
as the seizure type. Finally, the TUH EEG Slowing Corpus is provided, which includes

annotations of slowing events.

3.4.2.3 CHB-MIT Scalp EEG Database

This database includes 22 pediatric subjects [301, 302]. Specifically, 5 males of ages
3-22 and 17 females of ages 1.5-19 are included. There are 9-42 .edf files per subject, while
each .edf file contains 23-26 channels. All signals have a sampling frequency of 256Hz.

3.4.2.4 Siena Scalp EEG Database

This database includes 14 epileptic patients (9 males and 5 females) [303]. A sampling
frequency of 512 Hz has been used. The start and end time of seizures is provided, while
three types of seizures are annotated, i.e., focal onset with and without impaired awareness,
and focal to bilateral tonic-clonic (FBTC). This dataset can be used for the task of seizure

prediction.

3.4.2.5 A dataset of neonatal EEG recordings with seizures annotations

This dataset comprises multi-channel EEG recordings from 79 neonates, where 39 of
them have been diagnosed with neonatal seizures [304]. A sampling rate of 256 Hz has
been used. Butterworth high-pass filtering has also been applied. This dataset can be

used for the task of seizure detection.






Chapter 4

Methods for Recognizing
Depression through Social Media

posts and Spontaneous Speech

4.1 Introduction

As mentioned in Section 2.2, depression is a serious mood disorder, which affects the
way people feel and perform daily activities. People use social media for expressing their
thoughts and feelings through posts. Therefore, social media provide assistance for the
early detection of mental health conditions. Apart from recognizing depression via social
media posts, speech is a reliable biomarker for diagnosing depression, since depressed
people present decreased verbal activity productivity and “lifeless” sounding speech.

In this chapter, we present two approaches for recognizing depression. Specifically, in
Section 4.2 we present an approach for identifying depression through social media posts,
while Section 4.3 introduces a method for recognizing depression by using spontaneous

speech.

4.2 Calibration of Transformer-based Models for Identify-

ing Depression in Social Media

Existing research initiatives exploit social media data for identifying depressive posts.
The majority of these research works [1] employ feature extraction approaches and train
shallow Machine Learning (ML) algorithms. Employing feature extraction approaches
constitutes a tedious procedure and demands domain expertise, since the authors may
not find the optimal feature set for the specific problem. At the same time, the train of
shallow ML algorithms does not yield optimal performance and does not generalize well to
new data. For addressing these limitations, other approaches [3] use deep neural networks,

including Convolutional Neural Networks (CNNs), bidirectional long short-term memory
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(BiLSTM), and so on, or transformer-based networks. In addition, there are researches
employing ensemble strategies [4]. However, these approaches increase substantially the
training time, since multiple models must be trained separately. In addition, recently
there have been studies [5, 6] showing that transformer-based models struggle or fail to
capture rich knowledge. For this reason, there have been proposed methods for enhancing
these models with external information or additional modalities [7, 8, 9, 10]. However,
existing research initiatives in the task of depression detection through social media have
not exploited any of these approaches yet. In addition, the reliability of a machine learn-
ing model’s confidence in its predictions, denoted as calibration [11, 12], is critical for
high risk applications, such as deciding whether to trust a medical diagnosis prediction
[156, 157, 158]. Although methods regarding the confidence of models’ predictions have
been introduced in many studies, including suicide risk assessment [159], sleep stage clas-
sification [160], and so on, no prior work for depression detection has taken into account
the level of confidence of models’ predictions, creating in this way overconfident models.
To tackle the aforementioned limitations, in this section, we propose a method, which
injects extra linguistic information into transformer-based models, namely BERT and
Mental BERT. Firstly, we extract various linguistic features, including NRC Sentiment
Lexicon, features derived by Latent Dirichlet Allocation (LDA) topics, Top2vec, and Lin-
guistic Inquiry and Word Count (LIWC) features. Regarding the LDA topic-based fea-
tures, this is the first study in terms of the task of depression detection via social media
texts utilizing the Global Outlier Standard Score (GOSS) [24], which captures the text’s
interest on a specific topic in comparison with other texts. After passing each text through
a transformer-based model, we project the linguistic information to the same dimensional-
ity with the outputs of the transformer models. Next, we concatenate the representations
obtained by BERT (or Mental BERT') and linguistic information and apply a Multimodal
Adaptation Gate [18], where an attention gating mechanism is used for controlling the
importance of each representation. Similarly to [19], we modify M-BERT [18] by replac-
ing the multimodal information with linguistic information. Finally, a shifting component
is exploited for calculating the new combined embeddings. The new combined embed-
dings are passed through a BERT (or MentalBERT) model, where the classification [CLS]
token is fed to Dense layers for getting the final prediction. In addition, for preventing
models becoming too overconfident, we use label smoothing. According to Miiller et al.
[31], label smoothing has been used successfully to improve the accuracy of deep learning
models across a range of tasks, while at the same time it implicitly calibrates learned
models so that the confidences of their predictions are more aligned with the accuracies of
their predictions. We use metrics for assessing both the performance and the calibration
of our model. We also demonstrate the efficiency of label smoothing in both calibrating
and enhancing the performance of our model. We test our proposed approaches on three
publicly available datasets, which differentiate (i) depressive from non-depressive posts,
and (7i) posts indicating the severity of depression, namely minimal, mild, moderate, and

severe. We demonstrate the robustness of our model and advantages over state-of-the-art
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approaches. Finally, we conduct an extensive linguistic analysis and show differences in
linguistic patterns between depressive posts and non-depressive ones.

The contributions of this section can be summarized as follows:

e We introduce a method, which injects linguistic features into transformer-based neu-

ral models.

e We perform model calibration by using label smoothing. We evaluate the calibration
of our approaches by using two metrics. To the best of our knowledge, this is the

first study exploiting label smoothing and utilizing calibration metrics.

e We contribute to the existing literature by performing a detailed linguistic analy-
sis, which reveals significant differences in language between depressive and non-

depressive posts.

4.2.1 Methodology
4.2.1.1 Architecture

In this section, we describe our proposed approach for detecting depressive posts in
social media. Our proposed method is based on the work introduced by Rahman et
al. [18], and Jin and Aletras [19]. Instead of cross-modal interactions, we inject extra
linguistic information as alternative views of the data into pretrained language models.

Our proposed architecture is illustrated in Fig. 4.1.
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Figure 4.1: Our Proposed Architecture

Specifically, we use the following feature vectors:

e NRC. The NRC Emotion Lexicon is a list of English words and their associations
with eight basic emotions (anger, fear, anticipation, trust, surprise, sadness, joy, and
disgust) and two sentiments (negative and positive) [20]. Each text is represented
as a 10-d vector, where each element is the proportion of tokens belonging to each

category.

e LIWC. LIWC is a dictionary-based approach to count words in linguistic, psycho-
logical, and topical categories [21]. We use LIWC 2022 [22] to represent each text

as a 117-d vector.
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e LDA topics. Before training the LDA model, we remove stop words and punctu-
ation. We exploit LDA (with 25 topics) and extract 25 topic probabilities per text
[23]. These probabilities describe the topics of interest of each text. Inspired by Liu

et al. [24], we use the following feature vector:

— Global Outlier Standard Score (GOSS): For evaluating the i text’s in-
terest on a certain topic k, compared to the rest of the texts, we use the GOSS

feature: "
Zi:l Lik (4 1)

n
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Therefore, each text is represented as a 25-d vector.

p(zy) =

GOSS(ziy,) = (4.2)

e Top2Vec: Top2Vec [25] is an algorithm for topic modelling, which automatically
detects topics present in text and generates jointly embedded topic, document and
word vectors. After training Top2Vec by exploiting the Universal Sentence Encoder,

each text is represented as a 512-d vector.

We experiment with the following pretrained models: BERT [26] and Mental BERT
[27].

First, we pass each text through the aforementioned transformer-based models. Let
C € RN*4 he the output of the transformer-based models, where N denotes the sequence
length, while d denotes the dimensionality of the models. We have omitted the dimension
corresponding to the batch size for the sake of simplicity.

Then, we project the feature vectors to dimensionality equal to 128. We repeat the
feature vector N times, so as to ensure that the feature vector and the output of the
transformer-based models can be concatenated. Given the word representation e, we

concatenate e with feature vectors, i.e., hz(,i).

v

w? = o (Whv [e@; ()] + by> (4.3)

where o denotes the sigmoid activation function, Wp, is a weight matrix, and wq(f)
corresponds to the gate. b, is the scalar bias.

Next, we calculate a shift vector hg@) by multiplying the embeddings with the gate.

B = wfd - (Wb +bf) (4.4)

m v m

where W, is a weight matrix and b%) is the bias vector.

Next, we apply the Multimodal Shifting component aiming to dynamically shift the

word representations by integrating the shift vector h%) into the original word embedding.

el = e 4 ap) (4.5)
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, where (3 is a hyperparameter. Then, we apply a layer normalization [28] and dropout
layer [29] to e, Next, the combined embeddings are fed to a BERT /Mental BERT model.

We get the classification [CLS] token of this model and pass it through a Dense layer
consisting of 128 units with a ReLLU activation function. Finally, we use a dense layer con-
sisting of either two units (binary classification task) or four units (multiclass classification
task).

We denote our proposed models as Multimodal BERT (M-BERT) and Multimodal
MentalBERT (M-MentalBERT') followed by the linguistic features which are integrated
into them. For example, the injection of LIWC features into a BERT model is denoted as
M-BERT (LIWC).

4.2.1.2 Model Calibration

To prevent the model becoming too overconfident, we use label smoothing [30, 31].
Specifically, label smoothing calibrates learned models so that the confidences of their
predictions are more aligned with the accuracies of their predictions.

For a network trained with hard targets, the cross-entropy loss is minimized between
the true targets y and the network’s outputs pg, as in H(y,p) = Zszl —yrlog(py), where
yr is 71”7 for the correct class and ”0” for the other. For a network trained with label
smoothing, we minimize instead the cross-entropy between the modified targets y,fS“ and

the network’s outputs py.

(6%
WSt = - (1) + @)
K
H(y,p) =~y log (pr) (4.8)
k=1

, where « is the smoothing parameter and K is the number of classes.

4.2.2 Experiments
4.2.2.1 Datasets

Depression_Mixed. We use the dataset described in Section 3.1.2.1.

Depression_Severity. We use the dataset described in Section 3.1.2.2.

4.2.2.2 Experimental Setup

We use the Adam optimizer with a learning rate of 0.001. We apply StepLR with a step
size of 5 and a gamma of 0.1. We use batch size of 8. With regards to Depression_Mizred

dataset, we split the dataset into a train and a test set (80% — 20%) similar to Ansari et
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al. [4]. Regarding Depression_Severity dataset, we use 5-fold stratified cross-validation,
since the study [17] has also exploited cross-validation. All train sets are divided into a
train and a validation set. Regarding Depression_Severity dataset, we apply FarlyStopping
with a patience of 7 epochs based on the validation loss. In terms of the Depression_Mized
dataset, we train our introduced model for a maximum of 30 epochs, choose the epoch
with the smallest validation loss, and test the model on the test set. We set 5 of Eq. 4.6
equal to 0.0001.! We choose o of Eq. 4.7 equal to 0.001. We use the Python library,
namely Transformers [305], for BERT and MentalBERT. Specifically, we use the BERT
base uncased version and the Mental BERT base uncased version. We use PyTorch [306]
for performing our experiments. All experiments are trained on a single Tesla P100-PCIE-
16GB GPU.

4.2.2.3 Evaluation Metrics

Performance In terms of the binary classification task, i.e., 0 for non-depressive and
1 for depressive texts, we use Precision, Recall, F1-score, and Accuracy to evaluate the
performance of our proposed approach. We use these metrics similar to Wani et al. [184].

Regarding multiclass classification task reported on Depression_Severity dataset, we
use Weighted Precision, Weighted Recall, and Weighted F1-score. We use these metrics
similar to Mishra et al. [307].

Calibration We evaluate the calibration of our model using the metrics proposed by

relevant literature [308, 309, 171]. Specifically, we use the metrics mentioned below:

e Expected Calibration Error (ECE). The calibration error is the difference be-
tween the fraction of predictions in the bin that are correct (accuracy) and the mean
of the probabilities in the bin (confidence). First, we divide the predictions into M
equally spaced bins (size 1/M).

1 .
ace(By,) = B > 1 =) (4.1)
Ml ieBm
1 A
conf(Bm) = 12— ) Di (4.2)
’Bm| leBm

, where y; and g; are the true and predicted labels for the sample ¢ and p; is the

confidence (predicted probability value) for sample i.

ECE = Z' lace(Bp) — conf(By,)| (4.3)

'We experimented with values of 3, including 0.01 and 0.001, but setting 8 equal to 0.0001 yielded the

best results.
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, where N is the total number of data points and B,, is the group of samples whose

predicted probability values falls into the interval I, = (mﬁ_l, %]

Perfectly calibrated models have an ECE of 0.

e Adaptive Calibration Error (ACE). Adaptive Calibration Error uses an adap-
tive scheme which spaces the bin intervals so that each contains an equal number of

predictions.

, K R
ACE = %R Z Z lace(r, k) — conf(r, k)| (4.4)

k=1r=1
, where acc(r, k) and conf(r, k) are the accuracy and confidence of adaptive calibra-
tion range r for class label k, respectively; and N is the total number of data points.
Calibration range r is defined by the [N/R|th index of the sorted and thresholded

predictions.

4.2.2.4 Baselines

We use the following baselines as comparisons with our proposed approaches:

¢ BERT, Mental BERT: We fine-tune these pretrained language models in order to
explore whether our method of injecting linguistic information to pretrained models

leads to performance improvement.

In terms of Depression_Mixed dataset, we report the performance of BERT obtained
by Yang et al. [310]. We finetune Mental BERT and report its performance on this

dataset.

Regarding Depression_Severity dataset, we finetune BERT and Mental BERT and

report their performances.

We do not report calibration metrics for these models, since our goal in this case is

to compare only the performances of these models with our proposed approaches.

e Proposed Approaches (without label smoothing): We train the proposed
models introduced in Section 4.2.1 without label smoothing. We explore whether
label smoothing leads to performance improvement and better calibration of our

models.

4.2.3 Results

The results of our proposed approach are reported in Tables 4.1 and 4.2. Specifically,
Table 4.1 reports the performances of our proposed approaches on the Depression_Mixed
dataset, while Table 4.2 reports the results on the Depression_Severity dataset.

Regarding the Depression_Mixed dataset, we first compare our proposed approaches
without label smoothing with the BERT and MentalBERT models. We observe that the
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Table 4.1: Performance comparison among proposed models and baselines using the DEPRES-
SION_MIXED dataset

Model Prec. Rec. F1l-score Acc. ‘ ECE ACE
Baselines

BERT 91.40 91.40 91.40 - - -
MentalBERT 89.27 93.14 91.17 91.15 - -

Baselines - Proposed Approaches (without label smoothing)

M-BERT (NRC) 90.56 91.84 91.20 91.15 0.072 0.081
M-BERT (LIWC) 90.98 92.02 91.49 92.04 0.054 0.055
M-BERT (LDA topics) 88.07 95.80 91.77 92.04 0.071 0.071
M-BERT (top2vec) 90.97 92.99 91.97 92.21 0.057 0.069
M-MentalBERT (NRC) 90.65 92.65 91.64 91.86 0.031 0.054
M-MentalBERT (LIWC) 93.49 87.78 90.55 91.50 0.057 0.056
M-Mental BERT (LDA topics) 87.97 93.09 90.46 90.44 0.089 0.086
M-MentalBERT (top2vec) 91.63 93.77 92.69 93.27 0.058 0.054
Proposed Approaches (with label smoothing)

M-BERT (NRC) 89.82 94.81 92.25 92.39 0.059 0.065
M-BERT (LIWC) 93.06 91.78 92.41 92.21 0.034 0.044
M-BERT (LDA topics) 90.16 92.71 91.42 92.39 0.063 0.067
M-BERT (top2vec) 90.34 94.93 92.58 92.57 0.049 0.056
M-Mental BERT (NRC) 91.44 92.52 91.98 92.74 0.042 0.057
M-MentalBERT (LIWC) 94.96 89.42 92.11 92.57 0.055 0.057
M-MentalBERT (LDA topics) 94.81 90.78 92.75 92.92 0.047 0.049
M-MentalBERT (top2vec) 96.12 90.18 93.06 93.45 0.033 0.043

Table 4.2: Performance comparison among proposed models and baselines using the DEPRES-
SION_SEVERITY dataset.

Model W. Prec. ‘W. Rec. W. Fl-score ‘ ECE ACE
Baselines

BERT 72.99 71.97 71.00 - -
Mental BERT 73.35 70.81 71.67 - -

Baselines - Proposed Approaches (without label smoothing)

M-BERT (NRC) 74.48 70.08 69.96 0.107 0.076
M-BERT (LIWC) 73.77 71.74 72.13 0.110 0.078
M-BERT (LDA topics) 74.25 71.80 71.28 0.114 0.079
M-BERT (top2vec) 72.93 71.97 71.00 0.086 0.071
M-Mental BERT (NRC) 74.43 72.58 69.96 0.097 0.069
M-MentalBERT (LIWC) 72.39 72.53 71.95 0.112 0.075
M-MentalBERT (LDA topics) 73.83 72.58 72.58 0.118 0.078
M-MentalBERT (top2vec) 74.63 72.39 72.06 0.103 0.075
Proposed Approaches (with label smoothing)

M-BERT (NRC) 74.04 72.84 72.81 0.102 0.074
M-BERT (LIWC) 73.68 72.16 72.37 0.094 0.069
M-BERT (LDA topics) 73.24 71.46 71.42 0.112 0.078
M-BERT (top2vec) 73.36 72.64 72.30 0.113 0.074
M-MentalBERT (NRC) 73.03 71.23 71.46 0.112 0.079
M-Mental BERT (LIWC) 73.21 73.15 72.43 0.099 0.071
M-Mental BERT (LDA topics) 73.74 73.23 73.16 0.111 0.075
M-MentalBERT (top2vec) 73.68 72.70 72.67 0.094 0.071

injection of linguistic features, except for NRC features, into the BERT model improves
the Fl-score. Specifically, we observe that the injection of top2vec features yields the
highest Fl-score and Accuracy accounting for 91.97% and 92.21% respectively, surpass-
ing the performance of the BERT model in Fl-score by 0.57%. We speculate that the
injection of top2vec features obtains better performance than the injection of features
derived by LDA topics, i.e., GOSS features, since the top2vec algorithm is capable of
identifying the number of topics automatically. In terms of Mental BERT, we observe that
the injection of top2vec features obtains an Fl-score of 92.69% surpassing Mental BERT
by 1.52%. We observe that the integration of NRC and top2vec features improves the
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performance obtained by MentalBERT. Regarding the proposed approaches with label
smoothing, we observe that these models attain better performances than the ones ob-
tained by the models without label smoothing. Specifically, we observe that M-BERT
(top2vec) with label smoothing surpasses the respective model without label smoothing
in Fl-score and Accuracy by 0.61% and 0.36% respectively. Similarly, M-Mental BERT
(top2vec) with label smoothing obtains the highest F1-score and Accuracy accounting for
93.06% and 93.45% respectively. This model surpasses the respective model without label
smoothing in Fl-score and Accuracy by 0.37% and 0.18%. Except for the improvement of
the performance metrics, i.e., Precision, Recall, F1-score, and Accuracy, we observe that
the models with label smoothing obtain better results in terms of the calibration metrics,
i.e., ECE and ACE, than the ones obtained by the models without label smoothing. For
example, we observe that M-BERT (top2vec) with label smoothing improves the ECE and
ACE scores obtained by M-BERT (top2vec) without label smoothing by 0.008 and 0.013
respectively. Similarly, M-Mental BERT (LDA topics) with label smoothing improves the
ECE and ACE scores obtained by M-Mental BERT (LDA topics) without label smoothing
by 0.042 and 0.043 respectively.

With regards with the Depression_Severity dataset, we first compare our proposed ap-
proaches without label smoothing with the BERT and Mental BERT models. We observe
that the integration of LIWC features and features extracted by LDA topic modelling,
i.e., GOSS features, into the BERT model leads to a performance surge in comparison
with the BERT model. Specifically, M-BERT (LIWC) outperforms BERT in weighted
Fl-score by 1.13%. At the same time, the integration of all the features, except NRC, to a
Mental BERT model yields to a performance improvement compared to the Mental BERT
model. Specifically, M-Mental BERT (LDA topics) attains the highest weighted F1-score
accounting for 72.58% surpassing Mental BERT by 0.91%. When it comes to proposed
models with label smoothing, we observe an improvement in both the performance met-
rics and calibration ones. More specifically, the integration of NRC features to a BERT
model obtains a weighted Fl-score of 72.81% outpeforming BERT by 1.81%, M-BERT
(NRC) without label smoothing by 2.85%, and M-BERT (LIWC) without label smooth-
ing by 0.68%. In addition, M-MentalBERT (LDA topics) with label smoothing obtains
the highest Fl-score accounting for 73.16% surpassing MentalBERT by 1.49% and M-
MentalBERT (LDA topics) without label smoothing by 0.58%. In terms of the calibration
metrics, we observe that both ECE and ACE scores are improved when we apply label
smoothing. For example, M-BERT (LIWC) with label smoothing obtains an ECE score
of 0.094 and an ACE score of 0.069, which are improved by 0.016 and 0.009 respectively

compared to the respective model without label smoothing.

4.2.4 Linguistic Analysis

We finally perform an analysis on the Depression_ Mixed dataset to uncover the pe-

culiarities of depression. Specifically, we seek to find the correlations of LIWC features
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Table 4.3: LIWC Features associated with depressive and non-depressive posts, sorted by point-
biserial correlation. All correlations are significant at p < 0.05 after Benjamini-Hochberg correc-

tion.

l Depression_Mixed l

l Non-Depressive H Depressive ]
LIWC corr. LIWC corr.
Tone 0.3156 health 0.4108
Clout 0.3022 mental health 0.3674
Social referents 0.2914 physical 0.3603
shehe 0.2634 emo_sad 0.3506
we 0.2415 tone_neg 0.3274
social 0.2401 1st person singular 0.2974
male references 0.2199 Authentic 0.2961
affiliation 0.1960 cognition 0.2957
female references 0.1923 emo-neg 0.2843
conversation 0.1794 cognitive processes 0.2601
netspeak 0.1741 feeling 0.2507
culture 0.1732 focuspresent 0.2139
allpunc 0.1667 insight 0.2138
family 0.1589 emotion 0.2120
technology 0.1524 negations 0.2116
exclam 0.1519 verb 0.2076
analytic 0.1507 linguistic 0.1893
period 0.1458 death 0.1842
drives 0.1168 function 0.1834
OtherP 0.1156 all-or-none 0.1748
number 0.1075 dic 0.1708
assent 0.1013 affect 0.1609
tone_pos 0.0998 adverb 0.1588
leisure 0.0980 illness 0.1584
Social behavior 0.0937 emo_anx 0.1458
communication 0.0920 auxverb 0.1442
lifestyle 0.0917 discrepancy 0.1373
friend 0.0812 apostro 0.1256
curiosity 0.0792 want 0.1146
you 0.0774 achieve 0.1136
determiners 0.0758 pronoun 0.1092
politic 0.0751 lack 0.1054
relig 0.0673 differ 0.1004
focusfuture 0.0666 prepositions 0.0951
visual 0.0660 risk 0.0928
motion 0.0647 allure 0.0923
money 0.0626 causation 0.0916
ethnicity 0.0591 tentative 0.0880
article 0.0493 time 0.0811
emo_pos 0.0480 personal pronouns 0.0801
home 0.0420 impersonal pronoun 0.0789
food 0.0401 perception 0.0747
words per sentence (WPS) 0.0391 swear 0.0697
Nonfluencies 0.0385 substances 0.0686
- - memory 0.0673
- - BigWords 0.0588
- - adj 0.0575
- - certitude 0.0547
- - wellness 0.0457
- - moral 0.0433
- - conflict 0.0411
- - acquire 0.0394
- - QMark 0.0384

with depressive and non-depressive texts. First, we normalize LIWC features, so as to
ensure that they sum up to 1 across each post. Next, we use the point-biserial correlation
between each LIWC category and the label of the post. The output of the point-biserial
correlation is a number ranging from -1 to 1. Positive correlations mean that the specific
LIWC category is correlated with the depressive class (label 1), while negative correlations

mean that the specific LIWC category is correlated with the non-depressive class (label
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0). We consider the absolute values of the correlations. Results are reported in Table 4.3.
All the correlations are significant at p < 0.05 with Benjamini-Hochberg correction [69]
for multiple comparisons.

In terms of the Depression_Mized dataset, we observe that the control group tends
to use words with positive tone and emotion, i.e., good, well, happy, hope, and so on.
In addition, healthy control group discusses topics of the everyday life, including lifestyle
(work, home, school), culture (car, phone), politics (govern, congress), family, and friends
(boyfriend, girlfriend, dude). Also, these people make plans for the future, thus use words
indicating focus on the future (correlation equal to 0.0666). However, it must be noted
that this is a very weak correlation. On the other hand, people with depression focus on
the present and do not make plans for the future. They discuss about negative topics,
including death, illnesses, mental health, and substances. This can be justified by the
fact that people with depression often have tendencies to suicide and believe that they
cannot achieve anything. In addition, they use swear words, i.e., shit, fuck, damn, since
they think that everything goes wrong in their life. Also, their posts are full of sadness,

anxiety, and negative tone.

4.2.5 Discussion

Our study contributes to the literature by introducing the first approach of integrat-
ing extra linguistic information into pretrained language models based on transformers,
namely BERT and MentalBERT. Specifically, we adapt M-BERT [18] by replacing mul-
timodal information with linguistic information. To be more precise, we extract NRC,
LIWC, features derived by LDA topics, and top2vec features. We apply a Multimodal
Adaptation Gate and exploit also a Shifting component for creating new combined em-
beddings which are given as input to BERT (and MentalBERT) models. In addition,
motivated by the fact that in real-world decision making systems, classification networks
must not only be accurate, but also should indicate when they are likely to be incor-
rect, we apply label smoothing and evaluate our proposed approaches both in terms of
classification and calibration.

Therefore, our study is different from the state-of-the-art approaches described in

Section 3.1, since:

e Prior works having proposed multimodal, multitask, ensemble strategies in conjunc-
tion with transformer-based models, have just fine-tuned these pretrained transformer-
based models instead of using some modifications of them. Thus, this study is the
first attempt to inject extra knowledge into BERT (and MentalBERT), in order to

enhance its performance.

e All the prior works evaluate only the classification performance of their approaches
neglecting the confidence of the prediction. To tackle this, this is the first study in
the task of depression detection through social media posts utilizing label smoothing

and evaluating both the classification performance and the calibration of the models.
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e Finally, this is the first study utilizing features derived by LDA topics, namely the
Global Outlier Standard Score, which captures the text’s interest compared to other

texts.
From the results of this study, we found that:

e Finding 1: The integration of linguistic features into transformer-based models yields
to an increase in the classification performance. However, it is worth noting that
in some cases this improvement is limited. For instance, the integration of LIWC
features into the Mental BERT model with label smoothing obtains better perfor-
mance than MentalBERT in Fl-score by 3.36% and better performance than M-
MentalBERT (LIWC) without label smoothing in F1-score by 0.63%. However, we

believe that even a small improvement can make a difference.

e Finding 2: Label smoothing improves both the performance and the calibration of
the proposed approaches. The calibration of the proposed approaches is measured

via two metrics, namely Expected Calibration Error and Adaptive Calibration Error.

e Finding 3: Findings from a linguistic analysis reveal that people in depressive condi-

tions use words belonging to specific LIWC categories more frequently than others.

There are several limitations related to this study.

o Hyperparameter Tuning: Due to limited access to GPU resources, we were not able
to perform hyperparameter tuning. On the contrary, we tried some combinations
of parameters. We believe that the adoption of the hyperparameter tuning proce-
dure through the access to GPU resources would increase further the classification

performance.

e FEzxplainability: The present study is not accompanied with explainability techniques,
i.e., Integrated Gradients [311], and so on. Therefore, we aim to apply explainability

techniques in the future.

e Due to limited access to GPU resources and similarly to prior work [184, 4, 186], we

were not able to perform multiple runs for testing for statistical significance.

4.3 A Cross-Attention Layer coupled with Multimodal Fu-
sion Methods for Recognizing Depression from Sponta-
neous Speech

Existing research works rely on the extraction of handcrafted features and the train
of traditional machine learning classifiers or deep learning approaches [32, 33, 34]. How-

ever, extracting features is a timely procedure requiring expertise on the specific topic.

Additionally, the majority of research studies uses unimodal approaches for predicting
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depression using mainly speech [35]. Although there are studies employing multimodal
models, these studies employ early [36, 37|, intermediate [38, 39], or late fusion [40, 41]
strategies. In the early fusion strategy, representation vectors of the modalities are con-
catenated at the input level, while in the intermediate fusion, the representation vectors
are concatenated during training, thus equal importance is assigned to the modalities. In
the late fusion strategy, unimodal models are trained independently and decision voting
is applied, i.e., majority voting. The inter-modal interactions cannot be captured through
these approaches. In addition, the majority of research works have tested their approaches
only in English language, thus the acoustic and phonetic content of data might differ in
other languages. Finally, to the best of our knowledge, no study has experimented with
predicting depression, age, education level, and gender at the same time.

To tackle these limitations, we present a new method for detecting depression from
spontaneous speech in the Italian language. Specifically, we feed each transcript into
a pretrained Italian BERT model. Each speech signal is transformed into an image of
three channels, namely log-Mel spectrogram, delta, and delta-delta. Each image is passed
through a pretrained AlexNet [44] model. Next, the textual and image representations are
passed through a cross-attention scaling layer. Finally, we employ and compare a variety
of multimodal fusion methods, including Multimodal Factorized Bilinear Pooling (MFB),
Multimodal Factorized High-order pooling (MFH) [86], and more, for fusing the outputs
of the cross-attention scaling layer and predicting depression. Additionally, we introduce
multi-task learning (MTL) architectures to explore if gender, age, and education level as
auxiliary tasks help the primary task (depression recognition). Results demonstrate the
effectiveness of the proposed approach via an extensive ablation study, as well as multiple
advantages over state-of-the-art approaches.

The main contributions of this section can be summarized as follows:

e We introduce a method which includes a cross-attention layer and multimodal fusion

approaches.

e We perform multi-task learning experiments to explore whether the prediction of
gender, age, and education level lead towards the increase of depression detection’s

performance.

e We compare our approaches with competitive baselines, including shallow machine

learning classifiers and deep learning.

e We perform an extensive ablation study to verify the effectiveness of the proposed

approach.

4.3.1 Proposed Methodology

In this section, we describe our proposed methodology for recognizing depression from

spontaneous speech. Fig. 4.2 illustrates our proposed architecture.
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Figure 4.2: Our Proposed Methodology

4.3.1.1 Single - Task Learning

Text Processing: Since data are in Italian language, we employ Italian BERT?. Firstly,
each transcript is passed through the Italian BERT tokenizer, where input_ids and atten-
tion mask are returned. Transcripts are padded to a maximum length of 512 tokens, while
transcripts with number of tokens greater than 512 are truncated. Next, the input_ids and
attention mask are fed to the Italian BERT model. Let f! € R4, corresponding to the
[CLS] token, be the transcript representation, where d = 768.
Speech Processing: We use the Python library librosa [312] for converting the speech
signals into images consisting of three channels, namely log-Mel spectrogram, delta, and
delta-delta. We use 224 Mel bands, hop length equal to 512, and a Hanning window. Each
image is resized to (224 x 224) pixels. We pass each image through a pretrained AlexNet
[44] model. Let f¥ € R™? be the image representation, where d = 768.
Cross-Attention Layer: Motivated by [45], we design a cross-attention layer, which
returns a pair of scalars, one for each modality. This pair of scalars allows for scaling
the two modalities with respect to each other. One modality is used as a query for the
attention of the other.

In terms of the textual modality, let Q; = FC; (fY), Ky = FC}, (ft), and V; =

FC} (f'). The scaling value, denoted as S; can be calculated as follows:

Qi- K )

Vd

. In terms of the image modality, let Q; = FC’; (ft), K; = FCi (f%), and V; = FC! (V).
The scaling value, denoted as S; can be calculated as follows:

Q- K] >

Vd

. The outputs of the attention mechanism can be calculated as S; x V; and S; x V;. Note
that FC;, FC’,’;, FC?, FC;, FC,i, FCi ¢ Raxd

S; = sigmoid <

S; = sigmoid <

https://github.com/dbmdz/berts
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Similar to [46], we use residual connections followed by layer normalization, as de-

scribed via the equations below:

E, = LayerNorm (S’t x Vi + ft)

N

E; = Layer Norm (S; x V; + f*)

Next, we pass E; and E; through two shared fully connected feed-forward networks

with a ReLLU activation function in between, as follows:

Et/ = Layer Norm (FC,Z (ReLU (FCS (Et> ) ))

Ei/ = Layer Norm (FCZ,ZL (ReLU (FCS (Ez)))>

, where FCJ € R4 pCn ¢ Ridxd,

A~ A~/ ~ ~
Next, we concatenate F; and E; (similarly E; and F; ) into one single vector, i.e.,

N N
Et :[EtaEt]
’ Al SN
E; =[E;, E;]

"

, where E’t/,, E; e R,
Fusion Methods: Next, we employ a variety of fusion methods, which are described in

~ /! ~ /!
detail below, so as to fuse £; and F; in one single vector:

. ~ I ~ I, . .
e Concatenation: We concatenate F; and E; into one single vector, i.e., z € R,

We use a dropout layer with a rate of 0.4. We use a dense layer of 128 units.

e Gated Multimodal Unit (GMU): We adopt the method introduced in [75], which con-
trols the information flow of the two modalities towards the final classification. The
equations govering the GMU are described as follows: h! = tanh (WtEt// + ), h? =

"
7

tanh (WYE; +b%),2 = o(W?E;E"] + ¥*),h = 2« ht + (1 — 2) = h* , where
Wt We W? € R'?8 denote the learnable parameters, and [.;.] the concatenation
operation. h is the output of the GMU.

e MUTAN decomposition [85]
e Multimodal Low-rank Bilinear (MLB) pooling [313]
e MFB [86]

e MFH [86]: It is based on cascading two MFB blocks.
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e BLOCK [87]: This method is based on the block-term tensor decomposition [314]
and combines the strengths of the Candecomp/PARAFAC (CP) [315] and Tucker

decompositions.

The output of the aforementioned fusion methods corresponds to a vector with dimen-
sionality accounting for 128.
Output Layer: Finally, we use a dense layer consisting of two units, which gives the final

prediction. The cross-entropy loss function is minimized.

4.3.1.2 Multi - Task Learning

According to research, gender [316], age?, and education level [317] are linked with
depression. In this section, we design a multi-task learning framework consisting of
a primary task, i.e., depression detection (binary classification), and auxiliary tasks,
i.e., gender recognition (binary classification), estimation of education level (multiclass
classification), and age prediction (multiclass classification). In this approach, we ex-
plore if the auxiliary tasks help the primary task in increasing its performance. As
illustrated in Fig. 4.2, in terms of gender recognition, we add a dense layer consist-
ing of two units. In terms of education level recognition, we add a dense layer con-
sisting of four units. Regarding the age prediction, we define the following age groups:
[19,25],[26,32],[33,39],]40,46],[47,53],[54,60],[61,67],[68,71]. Thus, we add a dense layer con-
sisting of 8 units.

All the tasks are learnt simultaneously and updated by the following loss function:

L= (1 —a— /B - '7) . Ldepression +a- Lgender + 6 : Leducation + v Lage
, where Lgepressions Lgenders Leducation, and Lqge correspond to the cross-entropy loss func-
tion. «, B, are hyperparameters denoting the importance we place to each task.
4.3.2 Experiments

4.3.2.1 Dataset

We use the Androids corpus, which is described in Section 3.2.6.1, for performing our
experiments. We use data of the interview task. Due to the fact that manual transcripts
are not provided, we use whisper large-v3 [43], in order to produce automatic transcripts.

4.3.2.2 Baselines.

We compare our approaches with the following baselines:

e Only transcript: We use a pretrained Italian BERT model and a learning rate of
le-5.

3https://www.nhs.uk/mental-health /conditions/depression-in-adults/causes
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e Only Speech signal: Each speech signal is represented as an image and fed into a

pretrained AlexNet model. A learning rate of le-5 is employed.

e BS1 [42]: This approach segments the audio signal into analysis windows of 25ms

length and extracts features per window. SVM classifier is trained.

e BS2 [42]: After calculating the feature sets per analysis windows as above, this
approach segments the speech signal into frames of length equal to 128 and passes

each frame through an LSTM layer. A majority vote approach is adopted.

o ¢cGeMAPSv02 features (functional): This method trains a SVM classifier. We use
the openSMILE Python toolkit [318].

e ComParE_2016 features (functional): This method trains a SVM classifier. We use
the openSMILE Python toolkit [318].

4.3.2.3 Experimental Setup

In [42], the split of the participants into subsets to be used for a 5-fold setup is provided.
In our study, we repeat the experiments four times and report the average and standard
deviation over four runs. For Italian BERT and AlexNet, the learning rate is set to le-5,
while for the rest layers, the learning rate is set to le-4. We train our models for 40
epochs with a batch size of 4. In terms of the MTL setting, we set « = = v = 0.1.
We use PyTorch for performing our experiments. All experiments are performed on a
single Tesla P100-PCIE-16GB GPU with the running time ranging from 1 hour to 1.5
hours. For significance testing, we use the Almost Stochastic Order (ASO) test [47, 48]
as implemented by [49]. Specifically, the ASO test determines whether a stochastic order
[50] exists between two models, i.e., A and B. A score (€min) is calculated representing
how far the first is from being significantly better than the second. When €,,;, = 0, then
A is truly stochastically dominant over B. When €,,;, < 0.5, A is almost stochastically

dominant over B. For €,,;, = 0.5, no order can be determined.

Evaluation Metrics. Precision, Recall, F1-score, Accuracy, and Specificity are used to

evaluate the performance of the introduced approaches.

4.3.3 Results

Results are reported in Table 4.4. We observe that the usage of BLOCK as fusion
method leads to the best performing model outperforming the rest approaches in Accuracy
and Fl-score by 1.21-21.99% and 1.32-22.23% respectively. Multimodal models perform
better than unimodal ones verifying our initial hypothesis that the usage of multiple
modalities improves detection performance. The concatenation mechanism achieves the
worst results compared with the other fusion methods, since it assigns equal importance
to each individual modality. We believe that MFB outperforms MFH, since the MFH
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method is developed by cascading two MFB blocks, thus appears to be complex for our

limited dataset. We hypothesize that GMU achieves a poor performance, since it controls

Table 4.4: Performance comparison among proposed models and baselines. Reported values are
mean + standard deviation. Results are averaged across four runs (5-fold setting). (%) means that
€min < 0.1, T means that €,,;, < 0.2, I means that €,,;;, < 0.3, *x means that €,,;, < 0.4, and
11 means that €,,;, < 0.5. We are not able to perform statistical test regarding baselines in [42],

since the authors have not provided the results obtained over individual folds.

Evaluation metrics

Architecture Precision Recall F1l-score Accuracy Specificity

Unimodal approaches

Only transcript 94.72% 91.78** 93.04f 92.49% 93.51**
+5.38 +5.77 +3.77 +3.97 +6.96
Only Speech signal 80.73* 85.70* 82.49* 80.52* 74.21*
+12.12 +9.57 +8.51 +8.97 +16.87
eGeMAPSv02 79.05* 85.46* 81.67* 80.29* 76.64*
+13.50 +7.92 +9.69 +10.11 +15.26
ComParE_2016 86.03* 92.29 88.82* 87.97* 84.927
+8.92 +3.96 +5.31 +4.93 +9.49

Baselines reported in [42]

BS1 73.50 74.50 73.60 73.30 -
+16.10 +13.20 +13.60 +10.60 -
BS2 85.80 86.10 84.70 83.90 -
+3.10 +2.70 +0.90 +1.30
Single - Task Learning
Concatenation 91.51* 93.35 92.11F 91.46" 90.911
+8.74 +5.99 +5.54 +6.05 +10.48
GMU 94.10%* 93.41 03.38%* 92.34% 92.33%*
+9.51 +6.61 +6.25 +7.22 +11.91
MLB 95.95 91.82%* 93.57%* 92.96%* 95.33
+7.69 +6.31 +5.37 +5.94 +9.71
MUTAN 93.75% 94.46 93.82%* 92.75%* 90.78%*
+8.76 +5.57 +5.71 +6.79 +13.07
MFH 95.04** 92.797T 93.75%* 92.94F 91.28**
+6.62 +5.01 +4.46 +5.56 +17.76
MFB 94.68** 93.63 93.95%* 93.18** 92.53%*
+8.19 +4.63 +5.32 +6.13 +10.66
BLOCK 97.30 94.52 95.83 95.29 96.42
+4.43 +4.52 +3.81 +4.23 +6.04
Multi-Task Learning
Gender, Education, Age 96.14 93.24 94.38TT 94.08T1 96.31
+5.02 +6.95 +3.65 +3.45 +4.86
Gender, Education 97.22 92.287T 94.517T 94.077T 95.95
+5.14 +6.82 +4.65 +5.03 +9.35
Education, Age 94.41%* 93.63 93.74%* 93.627T 93.5671
+7.24 +5.97 +4.52 +4.48 +8.05
Gender, Age 96.55 92.5177 94.30TT 93.84TT 94.53
+4.87 +6.09 +3.72 +4.25 +13.05
Gender 94.61%* 93.29 93.61%* 93.20%* 93.687T
+9.28 +7.18 +6.51 +6.81 +10.63
Education 94.22%* 93.04 93.44F 93.00** 92.03%*
+9.16 +7.27 +7.34 +7.31 +12.41
Age 94.99* 92.32TT 93.34F 92.567 93.427T
+7.46 +6.72 +5.09 +5.85 +10.79

the information flow without capturing so effectively the cross-modal interactions. We
observe that single-task learning settings perform better than multi-task learning ones.
This can be justified by the fact that depression is a mental disorder, which can happen
to anyone. There are many causes of depression, e.g. stressful events, personality, health
issues (cancer), loneliness, etc. According to statistical test, our best performing model
is almost stochastically dominant in terms of accuracy over all the approaches, except for

Only speech signal, where €,,;, = 0. We are not able to perform statistical tests with [42],
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since the results obtained over individual folds are not available.

4.3.4 Ablation Study

In this section, we perform a series of ablation experiments to explore the effectiveness
of the best performing architecture. Results are reported in Table 4.5. Firstly, we experi-
ment with removing both the cross-attention layer and the fusion methods. Results show
that a decrease of Accuracy (€ = 0.25) and Fl-score by 3.14% and 2.59% (€min = 0.27)
respectively. Secondly, we remove the cross-attention layer and pass the outputs of Italian
BERT and AlexNet through the fusion methods. Findings suggest that Accuracy and
F1-score drop by 3.19% (€min = 0.16) and 3.01% (€min = 0.16). Thirdly, we replace the
shared layer with two non-shared ones and observe that Accuracy presents a decrease
accounting for 2.36% (€min = 0.31), while Fl-score is decreased by 2.26% (€min = 0.26).
Next, we remove the concatenation mechanisms in the cross-attention layer and pass the
outputs of LayerNorm through the fusion methods. Findings suggest that Accuracy and
Fl-score are decreased by 1.68% (€min = 0.45) and 1.69% (€min = 0.38) respectively. Fi-

Table 4.5: Ablation Study. () means that €, < 0.1,  means that €,,;, < 0.2, { means that
€min < 0.3, *x*x means that €,,;, < 0.4, and 11 means that €,,;, < 0.5 .

Evaluation metrics

Architecture Precision Recall Fl-score Accuracy Specificity
~ Cross-Attention and 92.77 94.66 93.24F 92.15% 90.35%
Fusion Methods

+11.29 +5.41 +6.87 +8.15 +15.75

Cross-Attention 92.997 93.16 92.82F 92.107 92.08F

+8.22 +5.68 +5.19 +5.47 +9.44
Not shared 96.21 91.66** 93.57% 92.93F 94.69

+5.51 +8.01 +4.80 +5.56 +7.75
~ Concatenation in 95.49%* 93.33 94.14%* 93.617T 95.03
Cross-Attention Layer

+7.73 +5.39 +4.72 +5.19 +8.88
- Shared feed forward 94.36™* 95.52 94.60 94.007T 92.29%*
and LayerNorm

+8.21 +4.88 +4.45 +5.04 +11.01
Proposed Approach 97.30 94.52 95.83 95.29 96.42

+4.43 +4.52 +3.81 +4.23 +6.04

nally, we remove the shared layer followed by LayerNorm and thus pass the outputs of
Add & LayerNorm directly through fusion methods. Results show that Accuracy drops
by 1.29% (€min = 0.45).

4.4 Summary

In this chapter, we presented two methods for detecting depression by utilizing social
media posts and spontaneous speech.

Firstly, we introduced a method for identifying depression in social media text by in-
jecting linguistic information into transformer-based models. Also, it is the first study
exploiting label smoothing, in order to ensure that our model is calibrated. We evaluated

our proposed methods on two publicly available datasets, which include two depression de-



Chapter 4. Methods for Recognizing Depression through Social Media posts and
130 Spontaneous Speech

tection datasets (binary classification and multiclass classification - severity of depression).
Findings suggested that transformer-based networks combined with linguistic information
lead to performance improvement in comparison with transformer-based networks. Also,
applying label smoothing yielded both to the performance improvement and better cali-
bration of the proposed models. Specifically, in terms of the Depression_Mixed dataset,
we found that the injection of top2vec features into BERT and Mental BERT models
along with label smoothing obtained the highest F1l-score and Accuracy. With regards
to the Depression_Severity dataset, findings showed that the injection of NRC features
into the BERT model and the integration of features derived by LDA topics, namely
GOSS features, into the MentalBERT model yielded the highest weighted F1-scores. We
also conducted a linguistic analysis and showed that depressive posts are full of sadness,
anxiety, and negative tone.

Secondly, we presented the first study utilizing a cross-attention scaling layer and
multimodal fusion methods in a single neural network for detecting depression from spon-
taneous speech in the Italian language through speech and automatic transcripts. This is
also the first study experimenting with a multi-task learning setting to investigate if the
prediction of gender, age, and education level as auxiliary tasks aid the depression detec-
tion task (primary task) in increasing its performance. Results showed that our introduced
approach improves competitive baselines in Accuracy by 1.21-21.99% and in Fl-score by
1.32-22.23%. Results also showed that the introduced single-task learning model out-
performs the multitask learning ones. Finally, we performed an ablation study, where we
removed several parts of the proposed architecture and observe differences in performance.

Findings showed degradation in performance in terms of Accuracy by 1.29-3.19%.



Chapter 5

Explainable Identification of
Dementia from Transcripts using

Transformer Networks

5.1 Introduction

Several research works have been conducted with regard to the identification of AD
patients using speech and transcripts. The majority of them have employed feature ex-
traction techniques [161, 162, 163, 164, 165], in order to train traditional Machine Learn-
ing (ML) algorithms, such as Logistic Regression, k-NN, Random Forest, etc. However,
feature extraction constitutes a time-consuming procedure achieving poor classification
results and often demands some level of domain expertise. Recently, researchers introduce
deep learning architectures [166, 167], such as CNNs and BiLSTMs, so as to improve the
classification results. Despite the success of transformer-based models in several domains,
their potential has not been investigated to a high degree in the task of dementia identifi-
cation from transcripts, where research works [61] having proposed them, use their outputs
as features to train shallow machine learning algorithms. Concurrently, all research works
except one [91], train machine learning models, in order to distinguish AD patients from
non-AD patients, without taking into account the severity of dementia via Mini-Mental
State Exam (MMSE) scores. Motivated by this limitation, in this chapter, we propose
two multi-task learning models minimizing the loss of both dementia identification and its
severity.

At the same time, to the best of our knowledge, the research works that have proposed
deep learning models based on transformer networks have focused their interest only on
improving the classification results obtained by CNNs, BiLSTMs etc. instead of exploring
possible explainability techniques. Specifically, due to the fact that deep learning models
are considered black boxes, it is important to propose ways of making them interpretable,
since it is imperative for a clinician to be informed why the specific deep neural network

classified a person as AD patient or not. To the best of our knowledge, only one work [168]

131
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has experimented with interpreting its proposed deep learning model (CNN-LSTM model)
in the field of dementia detection using transcripts. In order to tackle this limitation, our
contribution is twofold. First, we propose an interpretable neural network architecture.
Next, we extend prior work and employ LIME [74], a model agnostic framework for in-
terpretability, aiming to explain the predictions made by our best performing model.
Concurrently, we propose an in-depth analysis of the language patterns used between AD
and non-AD patients aiming to shed more light on the main differences observed in the
vocabulary that may distinguish people suffering from dementia from healthy people.

The contributions of this chapter can be summarized as follows:

e We employ several transformer-based models, pretrained in biomedical and general

corpora, and compare their performances.

e We propose an interpretable method based on the siamese neural networks along

with a co-attention mechanism, so as to detect AD patients.

e We introduce two models in a multi-task learning framework, where the one task is
the identification of dementia and the second one is the detection of MMSE score
(severity of dementia). We model the MMSE detection task as a multiclass classifi-

cation task instead of a regression task.

e We perform a thorough linguistic analysis regarding the differences in language be-

tween control and dementia groups.

e We employ LIME, in order to explain the predictions of our best performing model.

5.2 Dataset

We use the ADReSS Challenge Dataset described in Section 3.3.5.2 for conducting our

experiments.

5.3 Problem Statement

In this section, the problem statement used in this chapter is presented. More specifi-
cally, it can be divided into two problems, namely the Single-Task Learning (STL) Problem
and the Multi-Task Learning (MTL) Problem, which are presented in detail in Sections
5.3.1 and 5.3.2 respectively.
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5.3.1 Single-Task Learning Problem

s1, labely

So, labels
Let a dataset Spxa = ) consist of a set of transcriptions belonging to the

Sn, labely,
dementia group, d C S, and a set of transcriptions belonging to the control group, ¢ C S.

Furthermore, label; € {0,1},1 < i < n, where 0 denotes that s; € ¢, while I denotes that
s; € d. The task is to identify if a transcription s; € S, belongs to a person suffering from

dementia, i.e., s; € d, or not, i.e., s; € c.

5.3.2 Multi-Task Learning Problem

s1, label, mmsey

S9, labely, mmses
Let a dataset Spx3 = ) consist of a set of transcriptions belonging

Sn, label,, mmse,
to the dementia group, d C S, and a set of transcriptions belonging to the control group,

¢ C S. Furthermore, label; € {0,1},1 < i < n, where 0 denotes that s; € ¢, while 1
denotes that s; € d. Moreover, mmse; indicates the MMSE scores. The tasks here are
to identify (%) if a transcription s; € S, belongs to a person suffering from dementia, i.e.,

s; € d, or not, i.e., s; € ¢, as well as (4¢) to identify the MMSE scores of each person.

5.4 Predictive Models

In this section, we describe the models used for detecting AD patients. Specifically,
Section 5.4.1 refers to the models employed in the single-task learning setting, whereas in
Section 5.4.2 we refer to the models used for jointly learning to identify AD patients and

detect the severity of dementia.

5.4.1 Single-Task Learning
5.4.1.1 Transformer-based models

We exploit the following transformer-based networks in our experiments: BERT [26],
BioBERT [55], BioClinical BERT [56], ConvBERT [57], RoBERTa [58], ALBERT
[59], and XLNet [60].

Regarding our experiments, we pass each transcription through each pretrained model
mentioned above. The output of each model is passed through a Global Average Pooling
layer followed by two dense layers. The first dense layer consists of 128 units with a ReLU
activation function and the second one has one unit with a sigmoid activation function to

give the final output.
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5.4.1.2 Transformer-based models with Co-Attention Mechanism

In this section, we present an interpretable method to differentiate AD from non-AD
patients. First, we split each transcription s in the dataset into two statements of equal
length (s1 & s2). In this way, we have to categorize a pair of statements (s1 & s2)
into dementia or control group. To do this, we pass s; and sy through the transformer-
based models mentioned in Section 5.4.1.1, i.e., BERT, BioBERT, BioClinical BERT, Con-
vBERT, RoBERTa, ALBERT, and XLNet. These models can be considered as siamese
in our experiments, since we make them share the same weights. Then, we implement
a co-attention mechanism introduced by [319] and adopted in several studies, including
[320, 321], over the two embeddings of the two statements (outputs of the transformer-
based models), in order to render the entire architecture interpretable.

Formally, let C' € RN and S € R*T be the outputs of each model mentioned above,
i.e., BERT, BioBERT, BioClinical BERT, ConvBERT, RoBERTa, ALBERT, and XLNet,
where d denotes the hidden size of the model. We have omitted the first dimension, which
corresponds to the batch size. Following the methodology proposed by [319], the affinity

matrix F € RV*T is calculated using the equation presented below:

F = tanh (CTW,S) (5.1)

where W) € R?*? is a matrix of learnable parameters. Next, this affinity matrix is consid-
ered as a feature and we learn to predict the attention maps for both statements via the

following,

H® = tanh (WS + (W.C) F) (5.2)
H¢ = tanh (W.C + (W,S) FT) (5.3)

where W, W, € R¥*? are matrices of learnable parameters. The attention probabilities

for each word in both statements are calculated through the softmax function as follows,
a® = softmax (w;{SHS) (5.4)

a® = softmax (wj, H°) (5.5)

where a;, € R™T and a. € RN, Wi, Wi € RFX! are the weight parameters. Based
on the above attention weights, the attention vectors for each statement are obtained by

calculating the weighted sum of the features from each statement. Formally,

T N
§:Zafsi, é:Zagcj (5.6)
i=1 j=1

where § € R4 and ¢ € R1¥4,

Finally, these two vectors are concatenated, i.e.,

p=[3¢ (5.7)
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where p € R'*2? and we pass the vector p to a dense layer with 128 units and a ReLU ac-
tivation function followed by a dense layer consisting of one unit with a sigmoid activation

function.

5.4.2 Multi-Task Learning

In this section we propose two architectures based on multi-task learning [322] and
adopt the methodology followed by [323] & [82]. To be more precise, we employ a multi-
task learning framework consisting of a primary and an auxiliary task. The identification of
dementia constitutes the primary task, while the prediction of the MMSE score constitutes
the auxiliary one. Our main objective is to explore whether the MMSE score helps in
classifying groups into dementia or control. The introduced architectures are trained on

the two tasks and updated at the same time with a joint loss:

L = (1 — @) Lgementia + aLvmse (5.1)

;where Lgementia and Lasarse are the losses of dementia identification and MMSE predic-
tion tasks respectively. « is a hyperparameter that controls the importance we place on

each task. We mention below the MTL architectures developed.

MTL-BERT (Multiclass) We pass each transcription through a BERT model (which
constitutes our best performing STL model). The output of the BERT model is passed
through two separate dense layers, so as to identify dementia and predict the MMSE
score. For identifying dementia, we use a dense layer with 2 units and a softmax activation
function and minimize the cross-entropy loss function. Regarding the estimation of the
MMSE score, in contrast with previous research works, we convert the MMSE regression
task into a multiclass classification task. More specifically, according to [62], we can create
4 groups of cognitive severity: healthy (MMSE score > 25), mild dementia (MMSE
score of 21-24), moderate dementia (MMSE score of 10-20), and severe dementia
(MMSE score < 9). Thus, for classifying transcriptions into one of these 4 groups, we use
a dense layer of 4 units with a softmax activation function and minimize the cross-entropy

loss function.

MTL-BERT-DE (Multiclass) Similarly to [82], we pass each transcription into a
BERT model. The output of the BERT model is passed through two separate BERT
encoders, i.e, double encoders, which are followed by dense layers so as to identify dementia
and classify MMSE score into one of the four classes mentioned above. For identifying
dementia, we use a dense layer with 2 units and a softmax activation function and minimize
the cross-entropy loss function. For classifying the MMSE score, we use a dense layer with

4 units and a softmax activation function and minimize the cross-entropy loss function.
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5.5 Experiments

All experiments are conducted on a single Tesla P100-PCIE-16GB GPU.

5.5.1 Single-Task Learning

Comparison with state-of-the-art approaches We compare our introduced models
with the following research works, since these research works propose single-task learning
models and test their proposed approaches on the ADReSS Challenge test set: (1) Text
[61], (2) LSTM with Gating (Acoustic + Lexical + Dis) [62], (3) Fusion Maj. (3-best)
[63], (4) Logistic Regression (NLP) [64], (5) fastText, bi + trigram [65], (6) Attempt 5
[66], and (7) Fusion of system [67].

Experimental Setup Firstly, we divide the train set provided by the Challenge into
a train and a validation set (65%-35%). Next, we train the proposed architectures five
times and test them using the test set provided by the Challenge. Specifically, we freeze
the weights of each pretrained model (BERT, BioBERT, BioClinical BERT, ConvBERT,
RoBERTa, ALBERT, and XLNet) and update the weights of the rest layers. In this way,
these pretrained models act as fixed feature extractors. We train the proposed architec-
tures using Adam optimizer with a learning rate of le-4. We apply FarlyStopping and
stop training, if the validation loss has stopped decreasing for 9 consecutive epochs. We
also apply ReduceLROnPlateau, where we reduce the learning rate by a factor of 0.2, if
the validation loss has stopped decreasing for 3 consecutive epochs. When this training
procedure stops, we unfreeze the weights of the pretrained models and train the entire
deep learning architectures using Adam optimizer with a learning rate of le-5. We ap-
ply FEarlyStopping with a patience of 3 based on the validation loss. In terms of models
with a co-attention mechanism, we start training the proposed architectures using Adam
optimizer with a learning rate of 1le-3 and follow the same methodology. We also apply
dropout after the co-attention mechanism with a rate of 0.4. For BERT, we have used
the base-uncased model, for BioBERT we have used BioBERT v1.1 (+PubMed), for
ConvBERT we have used the base model, for RoOBERTa we have employed the base
model, for ALBERT we have used the base-vl model, and for XLINet we have used the

base model. For these pretrained models, we have used the Transformers library [305].1

Evaluation Metrics We evaluate our results using Accuracy, Precision, Recall, F1-
score, and Specificity. All these metrics have been calculated using the dementia class as

the positive one.

'For BioClinicalBERT we have used the model in: https://huggingface.co/emilyalsentzer/
Bio_ClinicalBERT
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5.5.2 Multi-Task Learning

Comparison with state-of-the-art approaches For the primary task (AD Classifi-
cation task), we compare our introduced models with BERT base [91], since this research
work proposes a multi-task learning model and tests its proposed approach on the ADReSS

Challenge test set.

Experimental Setup Firstly, we divide the train set provided by the Challenge into
a train and a validation set (65%-35%). Next, we train the proposed architectures five
times and test them using the test set provided by the Challenge. We use the Adam
optimizer with a learning rate of le-6. We apply FarlyStopping and stop training, if the
validation loss has stopped decreasing for 8 consecutive epochs. Regarding MTL-BERT-
DE (Multiclass), we freeze the weights of the shared BERT model. Moreover, because of
the class imbalance of the MMSE categories, we apply balanced class weights to the loss
function (Lyase). We set o of (5.1) equal to 0.1. 2

Evaluation Metrics For the primary task (AD Classification task), we evaluate our
results using Accuracy, Precision, Recall, F1-score, and Specificity. All these metrics have
been calculated using the dementia class as the positive one.

For the auxiliary task (MMSE Classification task), we evaluate our results using the

average weighted Precision, average weighted Recall, and average weighted F1-score.

5.6 Results

5.6.1 Single-Task Learning Experiments

The results of the proposed models mentioned in Section 5.4.1 are reported in Table
5.1. Also, Table 5.1 provides a comparison of our introduced models with existing research
initiatives.

Regarding our proposed transformer-based models, one can easily observe that BERT
obtains the highest Recall, Fl-score, and Accuracy accounting for 81.66%, 86.73%, and
87.50% respectively. Specifically, BERT outperforms the other introduced transformer-
based models in Recall by 1.67-13.33%, in Fl-score by 2.01-10.98%, and in Accuracy
by 1.25-9.17%. BioClinical BERT achieves the second highest Accuracy and Fl-score ac-
counting for 86.25% and 84.72% respectively. Also, BioClinical BERT obtains the highest
Precision score equal to 95.03% surpassing the other transformer-based models by 4.79-
15.88%. RoBERTa achieves comparable results to BERT and BioClinical BERT yielding
an Accuracy and Fl-score of 84.16% and 82.81% respectively. In addition, BioBERT
and ConvBERT demonstrate slight differences in Accuracy and Fl-score, with BioBERT
surpassing ConvBERT in both metrics. Specifically, BioBERT surpasses ConvBERT in
Fl-score by 0.46% and in Accuracy by 0.84%. Moreover, we observe that ALBERT and

2We used also the experimental setup of Section 5.5.1. However, lower evaluation results were achieved.
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XLNet achieve Accuracy scores equal to 78.33%, with ALBERT surpassing XLNet in
Fl-score by 2.70%.

Regarding our proposed transformer-based models with a co-attention mechanism,
they achieve lower performance than the proposed transformer-based models except for
ConvBERT + Co-Attention, ALBERT + Co-Attention, and XLNet + Co-Attention. More
specifically, ConvBERT + Co-Attention presents a slight surge of 0.42% in Accuracy
in comparison with ConvBERT, ALBERT+Co-Attention presents an increase in Accu-
racy by 1.67% in comparison with ALBERT, and XLNet + Co-Attention demonstrates
a slight increase of 0.42% in Accuracy in comparison with XLNet. BERT+Co-Attention
attains the highest F1-score and Accuracy accounting for 83.85% and 83.75% respectively.
BERT+Co-Attention outperforms the other models in terms of Fl-score by 1.42-7.43%,
and in terms of Accuracy by 1.25-5.00%. ConvBERT + Co-Attention and BioClinical-
BERT + Co-Attention demonstrate slight differences in F1-score and Accuracy, with Con-
vBERT + Co-Attention surpassing BioClinical BERT + Co-Attention in F1-score by 0.44%
and in Accuracy by 0.42%. BioBERT + Co-Attention and ALBERT + Co-Attention
achieve almost equal Fl-score results, with BioBERT + Co-Attention attaining a higher
Accuracy score than ALBERT + Co-Attention by 1.66%. RoBERTa + Co-Attention and
XLNet + Co-Attention demonstrate low performances attaining an Accuracy of 79.16%
and 78.75% respectively.

Overall, BERT constitutes our best performing model, since it outperforms all the other
introduced models in F1-score and Accuracy. Although there are models surpassing BERT
in Precision and Recall, BERT outperforms all of them in F1-score, which constitutes the
weighted average of Precision and Recall. In addition, there are models that outperform
BERT in Specificity. However, high specificity and low recall means that the model cannot
diagnose the AD patients pretty well and consequently AD patients are misdiagnosed as
non-AD ones.

In comparison with the state-of-the-art approaches, one can observe that our proposed
models achieve comparable performance to or outperform previous studies. More specif-
ically, BERT outperforms all the research works, except [61], in terms of Accuracy by
2.08-8.33%, in Fl-score by 1.33-8.68%, and in Recall by 2.66-14.99%. Moreover, BERT
+ Co-Attention surpasses [62, 65, 67] in Accuracy by 2.50%, 0.42%, and 4.58% respec-
tively. Also, it surpasses [62, 65, 67] in Recall by 17.49%, 5.16%, and 9.16% respectively.
BERT+Co-Attention outperforms [62, 65, 67] in Fl-score by 5.80%, 0.85%, and 5.59%

respectively.
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Table 5.1: Performance comparison among proposed STL models and state-of-the-art approaches

on the ADReSS Challenge test set. Reported values are mean + standard deviation. Results are

averaged across five runs.

Evaluation metrics

Architecture Prec. Rec. Fl-score Acc. Spec.
Comparison with state-of-the-art approaches
[61] - 87.50 - 89.58 91.67
[62] 81.82  75.00 78.26 79.17 83.33
[63] - - 85.40 85.20 -
[64] - - - 85.00 -
[65] 86.00 79.00 83.00 83.33 88.00
[66] - - - 85.42 -
[67] 94.12 66.67 78.05 81.25 95.83
Proposed Transformer-based models
BERT 87.19 81.66 86.73 87.50 93.33
+3.25 +5.00 +4.53 +4.37 +5.65
BioBERT 86.87  78.33 82.11 82.92 87.50
+6.09 +4.86 +2.83 +3.06 +6.97
BioClinical BERT  95.03  76.66 84.72 86.25 95.83
£3.03 +4.99 +2.74 +2.12 +2.64
ConvBERT 83.51  79.99 81.65 82.08 84.16
+1.23 44.08 +2.06 +1.66 +1.66
RoBERTa 90.24  76.66 82.81 84.16 91.66
+2.81 4+4.99 +3.52 +2.83 +2.64
ALBERT 79.15 78.33 78.45 78.33 78.33
+7.89 43.11 +3.12 +3.86 +8.89
XLNet 85.58  68.33 75.75 78.33 88.33
+2.77 +6.77 +4.05 +2.82 +3.12
Proposed Transformer-based models with co-attention mechanism
BERT 83.67 84.16 83.85 83.75 83.33
Co-Attention +3.36 +1.66 +1.09 +1.56 +4.56
BioBERT 85.41  76.66 80.72 81.66 86.66
Co-Attention +4.91 43.33 +3.16 +3.06 +4.86
BioClinical BERT  82.60 81.66 81.99 82.08 82.50
Co-Attention +3.60 +4.25 +2.11 +2.12 +4.86
ConvBERT 83.78 81.66 82.43 82.50 83.33
Co-Attention +6.13 +4.24 +2.37 +3.12 +8.74
RoBERTa 79.39 79.16 79.06 79.16 79.16
Co-Attention +2.26 +6.45 +2.15 +1.32 +4.56
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ALBERT 77.94 84.16 80.77 80.00 75.83
Co-Attention +3.20 +4.86 +1.68 +1.66 +5.53
XLNet 85.63 69.16 76.42 78.75 88.33
Co-Attention +3.45 45.00 +3.75 +3.06 +3.12

5.6.2 Multi-Task Learning Experiments
5.6.2.1 Primary Task

The results of the introduced models described in Section 5.4.2 are reported in Table
5.2. Also, Table 5.2 provides a comparison of our introduced approaches with state-of-
the-art approaches.

With regards to our introduced models, one can easily observe that MTL-BERT (Mul-
ticlass) outperforms MTL-BERT-DE (Multiclass) in terms of all the evaluation metrics ex-
cept Recall. Specifically, MTL-BERT (Multiclass) surpasses MTL-BERT-DE (Multiclass)
in Precision by 3.40%, in Fl-score by 0.88%, in Accuracy by 1.25%, and in Specificity by
4.16%. Although MTL-BERT-DE (Multiclass) surpasses MTL-BERT (Multiclass) in Re-
call by 1.67%, MTL-BERT (Multiclass) obtains a higher F1-score, which constitutes the
weighted average of Precision and Recall. Therefore, MTL-BERT (Multiclass) constitutes
our best performing model in the MTL framework.

In comparison to the research work [91], as one can easily observe, both our introduced
models attain a higher Accuracy score. To be more precise, MTL-BERT (Multiclass) out-
performs BERT base [91] in Accuracy by 5.42%. In addition, MTL-BERT-DE (Multiclass)
surpasses the research work [91] in Accuracy by 4.17%. These differences in performance
are attributable to the fact that we adopt a different training procedure than the one
adopted by [91], we consider the MMSE task as a multiclass classification task instead of

a regression task, as well as to the different architectures proposed.

5.6.2.2 Auxiliary Task

The results of the introduced models mentioned in Section 5.4.2 for the auxiliary task
(MMSE Classification task) are reported in Table 5.3.

As one can easily observe, MTL-BERT (Multiclass) obtains an average weighted Preci-
sion of 73.62% surpassing MTL-BERT-DE (Multiclass) by 3.12%. However, MTL-BERT-
DE (Multiclass) outperforms MTL-BERT (Multiclass) in average weighted Recall and
average weighted Fl-score by 1.26% and 3.82% respectively.
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Table 5.2: Performance comparison among proposed MTL models and state-of-the-art approaches
on the ADReSS Challenge test set for the primary task (AD Classification Task). Reported values
are mean + standard deviation. Results are averaged across five runs.

Evaluation metrics

Architecture Prec. Rec. Fl-score Acc. Spec.

Comparison with state-of-the-art approaches
[91] - - - 80.83 -
- - - +1.56 -

Proposed Multi-task learning models

MTL-BERT 88.59  83.33 85.84 86.25  89.16
(Multiclass) +£3.05 £2.64 +2.12 £2.13 +£3.33
MTL-BERT-DE  85.19  85.00 84.96 85.00  85.00
(Multiclass) +3.46 £5.00 +2.60 +2.43 +4.25

Table 5.3: Results of the proposed MTL models on the ADReSS Challenge test set for the
auxiliary task (MMSE Classification Task). Reported values are mean + standard deviation.

Results are averaged across five runs.

Evaluation metrics
Architecture Avg. W. Prec. Avg. W. Rec. Avg. W. Fl-score

Proposed Multi-task learning models

MTL-BERT 73.62 69.16 64.75
(Multiclass) +2.95 +4.04 +3.50
MTL-BERT-DE 70.50 70.42 68.57
(Multiclass) +5.59 +3.06 +2.04

5.7 Analysis of the Language used in Control and Dementia

groups

We finally perform an extensive analysis to uncover some unique characteristics, which
discriminate the AD patients from the non-AD ones, and understand the predictions made

by our best performing model as well as its limits.

5.7.1 Text Statistics

We first extract some statistics, namely the syllable count, the lexicon count, the
difficult words, and the sentence count, using the TEXTSTAT library in Python, in order to
understand better the differences in language used between control and dementia groups.
More specifically, the syllable count refers to the number of syllables, the lexicon count to

the number of words, and the sentence count to the number of sentences present in the
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given text. With regards to the difficult words, they refer to the number of polysyllabic
words with a Syllable Count > 2 that are not included in the list of words of common usage
in English [324]. After extracting these statistics per transcript, we calculate the mean
and standard deviation for both control and dementia groups. We test for statistical
significance using an independent t-test for each metric between control and dementia
groups and adjust the p-values using Benjamini-Hochberg correction [69]. As one can
easily observe in Table 5.4, the control group presents a significantly higher number of

syllables, lexicon, and difficult words than the dementia group.

Table 5.4: mean + standard deviation metrics per transcript. t indicates statistical significance
between transcripts of control and dementia groups. All differences are significant at p < 0.05 after

Benjamini-Hochberg correction.

Transcript

Metric Control Dementia

Syllable County 151.63 £+ 79.98 119.95 £+ 71.18
Lexicon Countt 107.49 4+ 62.02 86.08 + 54.10
Difficult Wordst  10.58 & 3.64 6.38 £+ 3.53
Sentence Count 1.67 £ 1.03 1.92 4+ 1.62

5.7.2 Vocabulary Uniqueness

In order to understand the vocabulary similarities and differences between control and
dementia groups, we adopt the methodology proposed by [325]. Formally, let P and C be
the sets of unique words included in the control group and dementia group respectively.
Next, we calculate the Jaccard’s index given by (5.1), in order to measure the similarity
between finite sample sets. More specifically, the Jaccard’s index is a number between 0
and 1, where 1 indicates that the two sets, namely P and C, have the same elements, while

0 indicates that the two sets are completely different.

J(P,C) = |PNC|/|PUC| (5.1)

As observed in Table 5.5, the Jaccard’s index between the control and dementia groups
is equal to 0.4049, which indicates that people with dementia tend to use a different

vocabulary than those in the control group.

Table 5.5: Jaccard’s Index between transcripts of control and dementia group

Jaccard’s Index between transcripts Result

J(P= control, C=dementia) 0.4049
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5.7.3 Word Usage

Apart from finding the vocabulary similarities and differences, it is imperative that
patterns of word usage be investigated. Thus, following the methodology introduced in
[325], the main objective of this section is to explore the differences between the two
classes (control and dementia) with regard to the probability of using specific words more
than others. Formally, let D and D, be two documents, where D; includes all the
transcriptions of the control group, whereas Do consists of transcriptions of the dementia
group. Moreover, we define S as the entire corpus consisting of D; and Ds. Now we can
define the probability of a word w; in the document D; in a collection of documents S

given by (5.1):

P(wi’Dl,S) = (1—CtD>P(wZ'|D1)+O¢DP(wi‘S) (5.1)

Similarly, we can define the probability of a word w; in the document D» in a collection

of documents S given by (5.2):

P(wi’Dg, S) = (1 — CVD>P(U)¢‘D2) + aDP(wi\S) (5.2)

We employ the Jelinek-Mercer smoothing method and consider that ap € [0, 1]. More
specifically, ap is a parameter that controls the probability of words included only in one
document (D; or Dj). In our experiments, we set ap equal to 0.2.

Moreover, we define P(w;|S) = %, where s, denotes the number of times a word w;
is included in the collection, whereas |S| is the total number of words occurrences in the
collection. Similarly, P(w;|D;) = Il%il’ where d,,, denotes the number of times a word w;
is presented in the document D1, whereas |D;| is the total number of words occurrences in
the document D;. The same methodology has been adopted for calculating the P(w;|Ds).

After having calculated the two distributions, i.e., P(w;|D1,S) and P(w;|D2,S), we
exploit the Kullback-Leibler (KL) divergence, in order to measure the difference of these
two distributions. KL-divergence is always greater than zero and is given by (5.3). The

larger it gets, the more different the two distributions are.

P(x)
C(x)

KL(P||C) =) P(x)log (5.3)

As one can easily observe in Table 5.6, the KL divergence between control and dementia
groups is high indicating that these two groups present differences regarding the probability
of using some words more than others. Our findings agree with the ones in [325], where
the authors state that there are clear differences in terms of language use between positive
(depression and self-harm) and control group, where the values of KL-divergence range
from 0.18 to 0.21.
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Table 5.6: Kullback-Leibler divergence

KL divergence Result

KL(Control || Dementia)  0.2047
KL(Dementia || Control)  0.2161

5.7.4 Linguistic Feature Analysis

Following the method introduced by [68], the main objective of this section is to shed
light on which unigrams and pos-tags are mostly correlated with each class separately. To
facilitate this, we compute the point-biserial correlation between each feature (unigram
and pos-tag) across all the transcriptions and a binary label (0 for the control and 1 for
the dementia group). Before computing the correlation, we normalize features so that
they sum up to 1 across each transcription. We use the point-biserial correlation, since it
is a correlation used between continuous and binary variables. It returns a value between
-1 and 1. Since we are only interested in the strength of the correlation, we compute the
absolute value, where negative correlations refer to the control group (label 0) and positive
correlations refer to the dementia one (label 1). We report our findings in Table 5.7, where
all correlations are significant at p < 0.05, with Benjamini-Hochberg correction [69] for
multiple comparisons.

As one can easily observe, the pos-tags associated with the dementia group are the
following: RB (adverbs), PRP (personal pronoun), VBD (verb in past tense), and UH
(interjection). On the other hand, people in the control group tend to use VBG (verb,
gerund, or present participle), DT (determiner), and NN (noun). These findings can be
justified in Table 5.8, where we present three examples of transcripts belonging to the
control group and three examples of transcripts belonging to the dementia one. More
specifically, we have assigned colours to different pos-tags, so as to render the differences
in the language patterns used by each group easily understandable to the reader. To
be more precise, red colour indicates the VBG pos-tag, refers to the DT pos-tag,
fuchsia to the RB pos-tag, to the PRP pos-tag, navy blue to the VBD pos-tag,
and the pine green to the UH pos-tag.

We observe that people in the dementia group tend to use personal pronouns (he, she,
I, them etc.) very often, since they are unable to remember the specific terms (mom,
boy, etc.). This finding agrees with the research conducted by [70], where the authors
state that personal pronouns present a high frequency in the speech of AD patients, since
these people cannot find the target word. To be more precise, in a conversation people
have to remember what they have said during the entire conversation. However, this is
not possible in AD patients, who present working memory impairment and thus tend to
produce empty conversational speech (use of personal pronouns). On the other hand,
people in the control group tend to use more nouns instead of personal pronouns, since

they are able to maintain various kinds of information.
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Moreover, AD patients tend to use verbs in the past tense (were, forgot, did, started)
in contrast to people who are not suffering from dementia and use verbs in the present
participle. One typical example that can illustrate this difference can be seen in the fifth
transcription in Table 5.8, i.e., "oh have you heard of that new game that they started to
play after christmas ¢ did you”. The AD patient perhaps remembers a personal story
from the past that wants to narrate, instead of the task he has been assigned to conduct.
Therefore, the patient is not able to stay focused on describing the picture. This finding
is consistent with [71, 72|, where the authors state that AD patients present difficulty in
maintaining and continuing the development of a topic and thus demonstrate unexpected
topic shifts. Also, this finding reveals a difference in language used by the AD patients
and the agrammatic aphasics. Specifically, patients with agrammatic aphasia typically
have problems using past tense inflection and instead rely on infinitive or present tense
verb forms [73].

In addition, AD patients tend to use the UH (oh, yeah, well) and the RB (maybe,
probably) pos-tags, since they are not certain of what they are describing due to the
cognitive impairment. Concurrently, the UH pos-tag constitutes an example of empty
speech. More specifically, this pos-tag is used as filler at the beginning of each utterance,

since AD patients are thinking of what to say.

Table 5.7: Features associated with control and dementia subjects, sorted by point-biserial cor-

relation. All correlations are significant at p < 0.05 after Benjamini-Hochberg correction.

Control H Dementia

Unigrams | corr. || Unigrams | corr.
is 0.364 here 0.310
curtains 0.361 - -

window 0.301 - -

are 0.300 - -
POS corr. POS corr.
VBG 0.285 RB 0.388

DT 0.216 PRP 0.354

NN 0.210 VBD 0.275

- - UH 0.242
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Table 5.8: Examples of transcripts along with their labels. red colour indicates the VBG pos-tag,

refers to the DT pos-tag, fuchsia to the RB pos-tag, to the PRP pos-tag,
to the VBD pos-tag, and the pine green to the UH pos-tag.

navy blue

Transcript

Label

2

well girl ©s watching boy go into cookie jar . he has = cookie in
his hand . he’s on stool . stool is falling . mother is drying dishes
. has ~ plate in her hand . sink is overflowing . there’s water on floor .
she’s stepping in water . something that’s going on you said ¢ little
girl looks like she’s motioning to boy to be quiet . and I don’t know what

else . woman’s looking out window . window’s open . 7

Control

” action . alright .  lady’s drying dishes . boy was standing on = stool but
action s that stool has slipped and he is falling . and girl has her
hand raised reaching for = cookie . and there’s a lot of action in sink here
water is flowing out . she is apparently so daydreaming that she doesn’t

realize that sink is overflowing . any more action ¢ or is that enough action
? »

Control

” touching lip . raising arm . is that what you mean ? reaching for cookie .
handing cookie down . slipping from stool . stool falling over . wiping dishes
. water running . water overflowing . breeze . I don’t know if that’s action .

stepping out from water . I guess that’s it . 7

Control

” alright . | see the little boy stealing cookies from the cookie jar . and /o gave
some to the little girl and ’s eating some of the cookies . and | guess this is
mama and ’s washing the dishes . and dropped a dish . no didn’t
drop a dish . the water that ’s washing the dishes with let run . and //’s
overflown . that doesn’t sound right . did @ ¢ forgot to turn off the spigot
. and so the water is running off onto the floor here . and mom apparently is
washing the dishes . and here’s this little boy stealing the cookies . 10’s gonna
fall because the four legged stool is gonna fall over with and the cookie jar .
and mama’s drying the dishes as usual for mamas if don’t have a husband
that dries or washes or whatever . let’s see now . | guess there’s
more things |'m sposta see . let’s see here now . oh and the water is flowing
out of the sink they forgot to turn off whoever’s doing the dishwashing . mom
apparently here , forgot to turn off the water and the water is spilling out
onto the kitchen floor . and the little girl has pushed over the stool with the boy
that was reaching up to get the cookies . either pushed it over or /o fell

over with it . know it excuse me but know | was ... ”

Dementia

Continued on next page
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Table 5.8 — continued from previous page

Transcript

Label

” mhm . oh | see a part of the whole kitchen . is that all the kitchen or isn’t

? oh | can’t read ... a lady a mother were in her kitchen . in her kitchen
doing some work | suppose . and there’s another woman there sharing their
pleasures or whatever . oh have heard of that new game that started
to play after christmas ¢ did ?is a . well i/ looks like ... ’d say this is ...
well let’s see . 1/ looks like ... oh ... . my wife will beat by a couple rows
of this . that’s like the washing machine ? or let see . | can’t ... oh that’s
the son come from school maybe or something . that’s a youngster there . well
that’s just as though getting ready to go to school or re just coming
out from school . and right there /1’s same as back there except for down there
in the bottom | think /’s ... that’s a little . ”

Dementia

7 yes . the water ¢ well let’s see . there’s something hasta be where the water

goes down over . there’s probably something that’s ... or don’t have it
open or something might have. | don’t know . what ..? when the water goes
down what do you call that ? this here . right here . this . what do you call
that ¢ what is that ? what is that 2 | don’t know ! that’s what 'm saying .
don’t know what that is . the what ? a pipe . oh water pipe ! oh yeah . okay
. well then maybe the water pipe is not broke but there must be things in there
. that the water will not go down . | don’t know . huh ? what’s happening to
the water 2 well the water is going down in the ... | don’t know . what would
you call this ¢ floor | yeah okay . yeah . well down on this side of the picture
. well this thing here is turning over . yeah . mo , uhuh . | don’t know what’s
going on . well /1c’s probably getting ... what’s this here ? cocoa jar ¢ what’s
this cocoa ? c o ok ie. | don't know . | don’t know what ..? huh ? cookie ,
oh a cookie . oh ! oh okay . mhm . well //c’s getting it out . and /-’s gonna
give it to the girl /. down here . mhm . going on in the picture ? well the boy
1s giving her the girl the cookie . this probably is broke . so the water will not
go down in and '’s coming up and going in here huh . well /1 looks like
was gonna wash . what eat with , all that . what do call that ? what
do call this ? a plate ? oh yeah . what eat on . is that what call

7

them a plate ? oh this is a cup ¢ oh maybe , | don’t know . mhm . okay .

Dementia

5.7.5 Explainability - Error Analysis

In this section, we employ LIME [74] (using 5000 samples) to explain the predictions

made by our best performing model, namely BERT, and shed more light regarding the

differences in language between AD and non-AD patients. More specifically, LIME gener-

ates local explanations for any machine learning classifier by introducing an interpretable
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model, which is trained on data generated through observing differences in the classifica-
tion performance when removing tokens from the input string.

Examples of explanations generated by LIME are illustrated in Figs. 5.1-5.4. More
specifically, Fig. 5.1 illustrates two transcripts, whose ground-truth label is dementia,
while our model predicts them as belonging to non-AD patients. Fig. 5.2 refers to tran-
scripts with both ground-truth label and prediction corresponding to dementia. In Fig.
5.3, two transcripts are presented, whose prediction is control and true label is control
too. Finally, Fig. 5.4 illustrates transcripts, which are misclassified. The ground-truth
is control, whereas the prediction is dementia. Moreover, as one can observe, each token
has been assigned a colour, either blue or orange. To be more precise, the blue colour
indicates which tokens are indicative of the control group, whilst the orange colour indi-
cates tokens, which are used mainly by AD patients. The more intense the colours are,
the more important these tokens are towards the final classification of the transcript.

1 e o kids up at the cookie jar, one on astool the other standing on the floor . cupboard door s opened . mother| washing the dishes . the water s overflowing the Sink . and theref two cups and

a plate on the counter . and she'§ holding a plate in her hand . curtains at the windorws . the cookie jar has the L off . that about it . cupboards underneath the 5ink . cupboards underneath the other
cupboards . kid falling offthe stoal . the girl laughing at him . cookies in the caokie jar with the ld off , he hes a cookie in his hand . and thatf{it .

(a)

a lttle boy B getting himself some EG0Kie out of il jar . and i 5t6ol & turning over on him that e standing on . he} MR R litle il some EGOKIES MHENGH MR jar . B that it ? well hat in [l
first one . he‘IH [ it girl EGoKies HENGH MBE cookie jar . and he'f on a stoal and itf tuming over . and R § Radiig her some ﬂ . and in [ second picture i little il looks as though

she'§ diying dishes . and R Sink & running over on i floor . she has I spigats on . a nice view from [ window . § that it ? tharf it
(b)

Figure 5.1: Label: Dementia, Prediction: Control

§eal 1 see the womn'§ in  kitchen. and /. now it looks like shef}... 1 Gt really pick it out but . B8 and theref a litl gir here alking and a litle bay 1 BSSHERE on (R side here . and fhi is a stool
here or some kind of a chalr . and I don't know what s s here . T Gt see what that is . B there another . did I talk about fis girl up here ? shef .  Gan't e too plain what shef doing . B yes
think so . where was she ? s girl? I really &t see what sheffdoing . no I don't, yeah, that§ awully hard for me to distinguish

(a)
hm.its a litle boy climbing up getting Some cookies out of e cooke jar . i his litle Siste teaching for some . & th lile bay is standing on a stool . & his big Sistf washing the dishes at
the sink . big sister washing the dishes ﬁ then Sfé g dishes siting on the sink . G 1 think §he's runming water . 1 said Johnny he s up on the ladder getting some cookies i the lttle sster
feaching up after some . he's passing it down o her . A the stool about to tum over . the cups maybe SHé going to wash them &id hié 61 them sicing on the sink . Gid maybe running water on the
sink iif §0€ 61 a curtain to pull that 558 might get some light i there . since the dishes stacked up . they might be on the sink . no that be about all

(b)
allthe e ? okay ifs 2 boy &nd a gl and their mom . and well e e faling down in throvugh here . and then this here when the atet f should be going down in fhere but s going dawn on the
side here., i’ going all the way dovin in there . Jire geting something (o eat here . cookeer . and H&§ te eting something to eat here . and this s a nice place what [ have . but [ put that
stuff around in there . it looks nice . and then hee when & had some stuff in through here . and .. I like these things in through here too . e

(©)

Figure 5.2: Label: Dementia, Prediction: Dementia

As one can easily observe in Fig. 5.2, tokens belonging to the UH pos-tag, such as yeah
and oh, are identified as important for the dementia class by our best performing model.
Moreover, personal pronouns (she, they) and verbs in the past tense (got, had) are also
indicative of dementia. Also, our model considers the token ”here”, which corresponds

to the RB pos-tag, indicative of the dementia class. These findings are consistent with
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I see a little boy on a stool almost Faling over , taking cookies BlGH the cookie jar . and the litle girl is putting her finger to her mouth to keep it quiet . the mother is washing dishes . she’l Afjifg

{he fishes and leting the Water keep on running in he sink . and then Watr is running over and she is sanding in the water thaf running over . there] a window there shelf looking at , at the grass
and the flowers . and the curtains seem to be shaking from the wind and the air that§ blowing in . the dishes that shef through HEHRg are siing n the sink top . and the little girl§ raising her hands
for the litlz boy to hand her a cookie . and he has one Eooki in his hand and heff going after anather one . hef teady o hand her a cookie . mother s holding a dish cloth that she'| H§iig the dishes
with.,she has a plater that she§ 8§g . 1 don' see any ather action .

(a)

el Ie§ see., i gir Is whispering to e Quiet because mother might fnd out that & he i sanding an a stoal which i bending over . il hereaching in a Coakiejor B he has a fockie . &
she§ grabbing for € one that he has in his le hand . 8 5 ink is running over with watet for some reason or other while she§drying a dish i looking out he window Gl stepping ina puddle
of water . and the race horse s jumping through the window . no.

(b)
Figure 5.3: Label: Control, Prediction: Control

the sink’s running over . the water's going all over the floor . here the stepstool is turming under his legs and he’s stealing cookies out_of the coakie jar . and she's begging for cookies the girlis .
coming back to the sink let’s see here . mamals stepping in the water . and I said the sink was running over . she's drying dishes . wait a minute . what the devil i ? there is something but I don't know
what it is written on the grass it seems . what is that ? and the curtains . that’s a p p something there . hm lets see . I don't see anything else there . she's stepping in the water . the sink's running over .
ihat spells something down there but  can'tSee it so far . and he's on a sool that's NG all over while they e sealing cookies . and there's  plate and two cups on the sink and she’s got a platé in
her hand . T don't see anything else .

(a)
okay the kid on the bench who's got is hand in the coolie far and he's falling off and his siser wants one . his mother s standing in a puddle of water because she didn't tum off the faucet and she'
dry a dish . she oughtacry her et nstead . the windoww i open . B te sink s overlowing . s abviously summer because the windaw as 1 said as apen . here's suppasedly leaves on th tees
anyihing els that ' spostapick up ? Rl he ki gonna fallof . and it the i s of the cooki ar . and e’ got one inhis hand and handing it o issster . and one and he's snaking another one
ot sneaking . the water is tll running inthe sink . and splashing on the foor

(b)
okay .l in fhe firstplace dhe mother fogot o tum off he water and e water's unning out e sink . and she'sstanding{here . ' alling on i floor . e child s i a stoa and reaching up inio
the cookie jar . and the ool is tipping over . and he's sort_of put down the plates . and she's reaching up to get it but | don'tsee anything wrong with her though. yeah that’s it . I can' see anything .

(c)

Figure 5.4: Label: Control, Prediction: Dementia

the ones in Section 5.7.4, where we have found that PRP, VBD, UH pos-tags as well as
the unigram ”here” are significantly correlated with the dementia class. In addition, our
model identifies the repetition of token "and” as important for the dementia class. This
finding agrees with previous research works [168], where the word ”and” indicates a short
answer and burst of speech.

Regarding Fig. 5.3, one can easily observe that our model identifies tokens belonging to
the VBG (putting, drying, blowing, standing, etc.), DT (the, a), and NN (cookie, action,
stool, etc.) pos-tags as significant for the control class. Concurrently, in consistence with
the findings in Section 5.7.4, the unigrams ”curtain” and ”window” are used mainly by
non-AD patients.

With regards to Figs. 5.1 and 5.4, our model is not able to classify these transcripts
correctly. One possible reason for such misclassifications has to do with the fact that these
transcripts include pos-tags which are indicative of both the control and the dementia class.
To be more precise, in Fig. 5.1, the majority of tokens in both transcripts belong to the
VBG, NN, and DT pos-tags, which are correctly identified by our model as significant
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for the control group. Words, like "and”, "him”, and ”"well” are used in a low frequency.
Similarly to Fig. 5.1, in Fig. 5.4, the majority of tokens in each transcript belong to the
pos-tags which are significantly correlated with the dementia class. This can be illustrated

in Fig. 5.4c, where we observe the usage of words, like ”and”, "yeah”, "well” & "got”.

5.8 Summary

In this chapter, we introduced both single-task and multi-task learning models. Re-
garding single-task learning models, we employed several transformer-based networks and
compared their performances. Results showed that BERT achieved the highest classifi-
cation performance with accuracy accounting for 87.50%. Concurrently, we introduced
siamese networks coupled with a co-attention mechanism which can detect AD patients
with an accuracy up to 83.75%. In terms of the multi-task learning setting, it consisted
of two tasks, the primary and the auxiliary one. The primary task was the identification
of dementia (binary classification), whereas the auxiliary task was the categorization of
the severity of dementia into one of the four categories -healthy, mild/moderate/severe
dementia- (multiclass classification). Specifically, we proposed two multi-task learning
models. Results showed that our model achieves competitive results in the MTL frame-
work reaching accuracy up to 86.25% on the detection of AD patients. Next, we performed
an in-depth linguistic analysis, in order to understand better the differences in language
between AD and non-AD patients. Finally, we employed LIME, in order to shed light on
how our best performing model works. Findings suggest that AD patients tend to use
personal pronouns, interjection, adverbs, verbs in the past tense, and the token "and” at
the beginning of utterances in a high frequency. On the contrary, healthy people use verbs
in present participle or gerund, nouns as well as determiners.

In this chapter, we concentrated on the usage of linguistic information, i.e., transcripts,
for recognizing Alzheimer’s dementia, thus neglecting the acoustic modality. Moving for-
ward to the next chapter, we will introduce unimodal (acoustic) and multimodal (linguistic

and acoustic) methods for identifying AD patients.



Chapter 6

Detecting Dementia from Speech
and Transcripts Using

Transformers

6.1 Introduction

In Chapter 5, we utilized only transcripts and used transformer-based models along
with explainable approaches for identifying AD patients. However, speech contains valu-
able information. Existing research works using audio data to categorize people into
AD and non-AD patients use mainly acoustic features extracted from speech, such as
eGeMAPS [218], duration of speech etc. After having extracted the respective feature
sets, they train traditional machine learning classifiers, such as Support Vector Ma-
chines (SVM), Decision Trees (DT) etc. However, feature extraction constitutes a time-
consuming procedure, does not generalize well to data from new patients, and often de-
mands some level of domain expertise. Log-Mel Spectrograms and Mel-frequency cepstral
coefficients (MFCCs) are being used extensively in heart sound classification [326], emotion
recognition [327], depression detection [328], etc. In addition, pretrained models on the
domain of computer vision, including AlexNet, MnasNet, EfficientNet, VGG, etc., have
been exploited extensively in many tasks, including Alzheimer’s disease detection through
MRIs [329], detection of epileptic seizures using EEG signals [330, 331], facial emotion
recognition [332], analysis of online political advertisements [265], heart sound classifica-
tion [326], voice pathology diagnosis [333], etc. Thus, the representation of speech signal
as an image constitutes a motivation for exploiting image-based models. However, limited
research has considered speech in such a way [94, 91, 231]. Therefore, in this chapter,
we convert each audio file into an image consisting of three channels, namely log-Mel
spectrograms (and MFCCs), their delta, and delta-delta. Contrary to [91, 231], we use
the delta and delta-delta features for adding more information [260, 261]. Next, we em-
ploy many pretrained models, including AlexNet, VGG16, DenseNet, EfficientNet, Vision

Transformer, etc. and compare their performances. Our main motivation is to find the
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best model for extracting acoustic features and exploiting it in the multimodal setting.

Moreover, another limitation of the existing research works lies in the usage of multi-
modal models. To be more precise, research works train first acoustic and language models
separately and then use the majority voting approach for classifying people into AD and
non-AD patients [63, 170, 92]. This fact increases substantially the training time and does
not take into account the inter- and intra-modal interactions. Other research works add
or concatenate acoustic and language representations during training [91, 262, 259]. This
approach may decrease the performance of the multimodal models in comparison with
the unimodal ones, since the different modalities are treated equally. In addition, there
are studies, which concatenate the features from different modalities at the input level
(early fusion approaches) [169, 67, 95]. Little work has been done in terms of exploiting
techniques to control the influence of each modality towards the final classification and
capturing the inter- and intra-modal interactions. Specifically, the authors in [62, 264]
used feed-forward highway layers with a gating mechanism. However, the authors did
not experiment with replacing the gating mechanism with a simple concatenation opera-
tion. Thus, the addition of the introduced gating mechanism cannot guarantee increase
in the performance. To tackle this limitation, in this chapter, we propose new methods,
which can be trained in an end-to-end trainable way, to combine the representations of
the different modalities. Firstly, we convert each audio file into an image consisting of
three channels, namely log-Mel spectrograms (and MFCCs), their delta, and delta-delta.
We pass these images through a Vision Transformer, which is the best performing model
among the proposed pretrained models, i.e., AlexNet, VGG16, DenseNet, EfficientNet,
etc. Each transcript is passed through a BERT model. Next, we propose a Gated Mul-
timodal Unit in order to assign more importance to the most relevant modality while
suppressing irrelevant information. In addition, we introduce crossmodal attention so as
to model crossmodal interactions.

The contributions of this chapter can be summarized as follows:

e We propose multimodal deep learning models to detect AD patients from speech
and transcripts. We also introduce a multimodal gate mechanism, so as to control

the influence of each modality towards the final classification.

e We introduce the crossmodal attention and show that crossmodal models outperform

the multimodal ones.

6.2 Dataset

We use the ADReSS Challenge Dataset described in Section 3.3.5.2 for conducting our

experiments.
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6.3 Proposed Predictive Models using only Speech

In this section, we describe the models used for detecting AD patients using only
speech. Our main motivation of exploiting these pretrained models is to find the best
performing one and exploit it in the multimodal setting, which will be discussed in detail
in Section 6.4. Firstly, we use the Python library librosa [334] for converting the audio
files into Log-Mel spectrograms (and MFCCs), their delta, and delta-delta. We extract
Log-Mel spectrograms with 224 Mel bands, window length equal to 2048, hop length
equal to 1024, and a Hanning window. For extracting MFCCs, we use 40 MFCCs, a
Hanning window, window length equal to 2048, and a hop length of 512. We employ
the following pretrained models: GoogLeNet (Inception v1) [335], ResNet50 [336],
WideResNet-50-2 [337], AlexNet [44], SqueezeNet1_0 [338], DenseNet-201 [339],
MobileNetV2[340], MnasNetl 0 [341], ResNeXt-50 32x4d [342], VGG16 [343],
EfficientNet-B2! [344], and Vision Transformer [345].

For all the models, we add a classification layer with two units at the top of the models.
Regarding the Vision Transformer, the output of the Vision Transformer (zOL ) serving as
the image representation is passed through a dense layer with two units in order to get

the final output.

6.3.1 Experiments

All experiments are conducted on a single Tesla P100-PCIE-16GB GPU.

Experimental Setup Firstly, we divide the train set provided by the Challenge into a
train and a validation set (65-35%). All models have been trained with an Adam optimizer
and a learning rate of le-5. We train the proposed architectures five times. We apply
ReduceLROnPlateau, where we reduce the learning rate by a factor of 0.1, if the validation
loss has stopped decreasing for three consecutive epochs. Also, we apply EarlyStopping
and stop training if the validation loss has stopped decreasing for six consecutive epochs.
We minimize the cross-entropy loss function. We test the proposed models using the
ADReSS Challenge test set. We average the results obtained by the five repetitions. All
models have been created using the PyTorch library [346]. We have used the Transformers

library [305] for exploiting the Vision Transformer?:3.

Evaluation Metrics Accuracy, Precision, Recall, F1-Score, and Specificity have been
used for evaluating the results of the introduced architectures. These metrics have been

computed by regarding the dementia class as the positive one.

1We experimented with EfficientNet-B0 to B7, but EfficientNet-B2 was the best performing model.
2google/vit-base-patch16-224-in21k
3We also use the ViTFeatureExtractor.
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6.3.2 Results

The results of the proposed models mentioned in Section 6.3, which receive as input
either log-Mel Spectrograms or MFCCs, are reported in Table 6.1.

In terms of the proposed models with log-Mel Spectrograms as input, as one can easily
observe, the Vision Transformer constitutes our best performing model outperforming the
other pretrained models in terms of all the evaluation metrics except specificity. To be
more precise, Vision Transformer surpasses the other models in accuracy by 2.08-14.58%,
in precision by 1.64-11.22%, in recall by 5.00-39.17%, and in Fl-score by 2.85-21.85%.
The second best performing model is the AlexNet achieving accuracy and Fl-score equal
to 62.92% and 66.91% respectively. VGG16 constitutes the third best model achieving
Fl-score and Accuracy equal to 65.55% and 61.25% respectively. The other pretrained
models achieve almost equal accuracy results ranging from 53.33% to 59.16% except for
DenseNet-201, which performs very poorly with the accuracy accounting for 50.42%.

In terms of the proposed models with MFCCs as input, we observe that the Vision
Transformer constitutes the best performing model attaining an Accuracy score of 63.33%
and an Fl-score of 60.30%. Specifically, it surpasses the other models in Accuracy by 0.41-
9.17%, in Fl-score by 0.10-6.24%, and in Precision by 0.13-12.85%. AlexNet is the second
best performing model achieving an Accuracy of 62.92%, while it surpasses the other
models in Accuracy by 2.93-8.76%. MnasNet1_0, GoogleNet, and VGG16 achieve almost
equal accuracy scores ranging from 59.17% to 59.99% with the MnasNet1 0 achieving
the highest Accuracy score. Next, SqueezeNet1_0 and DenseNet-201 yield equal accuracy
scores accounting for 58.75%, with SqueezeNet1_0 outperforming DenseNet-201 in F1-score
by 0.72%. MobileNetV2 achieves an Accuracy score of 57.92% followed by EfficientNet-
B2, whose accuracy accounts for 57.08. EfficientNet-B2 yields the highest Recall equal
to 65.00%, surpassing the other models by 5.00-10.84%. ResNeXt-50 32x4d achieves the
worst accuracy score accounting for 54.16%.

In both cases, i.e., log-Mel spectrograms and MFCCs, we observe that Vision Trans-
former constitutes our best performing model. This can be justified by the fact that all
the other pretrained models are based on Convolutional Neural Networks (CNNs). On the
contrary, the Vision Transformer does not imply any convolution layer. Specifically, the
image is split in patches and is fed to the Vision Transformer network, which exploits the
concept of the self-attention mechanism introduced in [347]. Therefore, we believe that
the difference in performance is attributable to the transformer encoder, which consists of

multi-head self-attention and is implemented in the Vision Transformer.

Table 6.1: Performance comparison among proposed models (using only speech) on the ADReSS
Challenge test set. Reported values are mean + standard deviation. Results are averaged across
five runs. Best results per evaluation metric and method are in bold.

Evaluation metrics

Architecture Precision Recall Fl-score Accuracy Specificity
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log-Mel Spectrogram

GoogLeNet (Inception vl) 57.01 70.00 60.92 57.08 44.17
+4.70 £19.08 +7.43 +4.86 +£24.80
ResNet50 58.93 41.66 4791 55.00 68.33
+9.31 +6.97 +3.61 +4.86 +14.58
WideResNet-50-2 52.99 64.16 57.70 53.75 43.33
+1.95 +10.74 +5.39 +2.43 +8.58
AlexNet 60.07 75.83 66.91 62.92 50.00
+2.60 +9.28 +5.35 +4.04 +2.64
SqueezeNet1_0 57.13 74.16 64.52 59.16 44.16
+2.61 +1.66 +2.18 £3.12 +4.99
DenseNet-201 50.49 70.00 58.46 50.42 30.83
+3.58 +7.64 +3.81 +4.82 +10.74
MobileNetV2 54.92 73.33 62.69 56.66 40.00
+1.51 +7.73 +3.70 +2.43 +4.25
MnasNet1_0 56.66 70.00 59.84 55.83 41.66
+6.08 +£22.88 +7.42 +4.45 £28.99
ResNeXt-50 32 x 4d 53.69 64.16 58.09 53.75 43.33
+3.99 +6.24 +2.06 +4.45 +£13.59
VGG16 58.89 74.16 65.55 61.25 48.33
+1.18 +6.66 +3.27 +2.12 +3.33
EfficientNet-B2 54.16 58.33 55.46 53.33 48.33
+6.44 +7.91 +3.48 +5.53 +15.72
Vision Transformer (ViT) 61.71 80.83 69.76 65.00 49.16
+2.93 +6.24 +1.61 +2.76 +10.34
MFCCs
GoogLeNet (Inception vl1) 60.77 55.00 57.49 59.58 64.17
+3.84 +6.66 +4.19 +3.39 +6.77
ResNet50 56.38 59.16 57.30 56.25 53.33
+3.83 +8.50 +3.45 +3.49 +12.47
WideResNet-50-2 55.87 54.16 54.06 55.00 55.83
+3.86 +£11.79 +4.51 +2.12 +14.34
AlexNet 65.88 55.00 59.53 62.92 70.83
+5.94 +7.64 +5.13 +4.04 +8.33
SqueezeNet1_0 58.82 59.16 58.55 58.75 58.33
+2.89 +9.65 +5.13 +2.76 +8.33
DenseNet-201 59.40 56.66 57.83 58.75 60.83
+3.31 +4.25 +2.22 +2.43 +6.77
MobileNetV2 57.76 57.50 57.22 57.92 58.33

+2.44 +11.61 +6.38 £3.58 +5.89
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MnasNet1_0 63.42 56.66 57.63 59.99 63.33
+10.27 +14.81 +9.56 +6.77 +17.95
ResNeXt-50 82 x 4d 53.16 60.00 55.88 54.16 48.33
+3.19 +14.09 +8.32 +3.73 +6.77
VGG16 59.20 60.00 59.49 59.17 58.33
+2.75 +3.33 +1.61 +2.12 +5.89
EfficientNet-B2 56.40 65.00 60.20 57.08 49.16
+5.89 +7.26 +5.51 +5.98 +10.34
Vision Transformer (ViT) 66.01 55.83 60.30 63.33 70.83
+3.36 +4.25 +1.89 +1.66 +5.89

6.4 Proposed Predictive Models using Speech and Tran-

scripts

In this section, we describe the models used for detecting AD patients using transcripts
along with their audio files. We have exploited the python library PyLangAcq [275] for
having access to the manual transcripts, since the dataset has been created using the CHAT
[274] coding system. For processing the audio files, we use the same procedure mentioned

in Section 6.3. We mention below the proposed models used in our experiments.

BERT + ViT In this model we pass each transcription through a pretrained BERT
model [347, 26] and get the output of the BERT model (CLS token). Regarding the audio
files, we convert them into Log-Mel spectrograms (and MFCCs), their delta, and delta-
delta for constructing an image consisting of three channels and pass the image through
the ViT. We exploit the Vision Transformer, since it constitutes the best performing model
as discussed in Section 6.3.2. The output of the ViT (2{) is concatenated with the output
of the BERT and then the resulting vector is passed through a dense layer with 512 units
and a ReLU activation function followed by a dense layer consisting of two units to get

the final output. The proposed model is illustrated in Fig. 6.1.

BERT + ViT + Gated Multimodal Unit In this model we pass each transcription
through a pretrained BERT model and get the output of the BERT model (CLS token).
Regarding the audio files, we convert them into Log-Mel spectrograms (and MFCCs), their
delta, and delta-delta for constructing an image consisting of three channels and pass the
image through the ViT. We exploit the Vision Transformer, since it constitutes the best
performing model as discussed in Section 6.3.2. We get the output of the ViT (z{). Next,
we employ the Gated Multimodal Unit (GMU) introduced by [75], in order to control the
contribution of each modality towards the final classification. The equations governing
the GMU are described below:
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Figure 6.1: BERT + ViT
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where f! and f denote the text and image representations respectively, © the param-
eters to be learned, and [.;.] the concatenation operation. Specifically, W € R'?8 W? ¢
R128 W= e R128.

The output h of the gated multimodal unit is passed through a dense layer consisting
of two units.

The proposed model is illustrated in Fig. 6.2.

BERT + ViT + Crossmodal Attention Similar to the previous models, we pass each
transcription through a BERT model, and each image through a ViT model. We exploit
the Vision Transformer, since it constitutes the best performing model as discussed in
Section 6.3.2. The image representation can be denoted as X, € RBTe:da  while the text
representation can be represented as Xg € REBTs:da  where B constitutes the batch size,
1\ the sequence length, and d, the feature dimension. Next, we employ the crossmodal
attention [76, 77, 78]. Specifically, we employ two crossmodal attentions, one from text to
image representations and another one from image to text representations. Formally, the
crossmodal attention from text to image representation is given by the equations below.

Specifically, we define the queries, keys, and values as:
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Figure 6.2: BERT + ViT + Gated Multimodal Unit

Qo = XaWo., K5 = XsWi,, Vs = XsWy, (6.6)

, where Wg, € Raxd Wk, € Rexdr and Wy, € Rlexdv are learnable parameters.
Therefore,

Qa c RBXTaXdk’ Kﬁ € RBXTﬂXdk’ Vﬁ c RBXTﬁ X dy (67)

The latent adaptation from S to « is presented as the crossmodal attention, given by

the equations below:

Yo = OMp 0 (Xa, X3)

QuKT
= softmax V
( Nz (6.8)
X Wo WE Xg:
= softmax 7 XgWy,

The scaled (by /dj) softmax is a score matrix, where the (i, j)-th entry measures the

attention given by the i-th time step of modality a to the j-th time step of modality 3.
The i-th time step of Y, is a weighted summary of V3, with the weight determined by i-th
row in softmax(-).

Similarly, the crossmodal attention from image to text representation is given by the

equations below:

Qs = XsWaq,, Ko = XaWk,,, Vo = Xa Wy, (6.9)
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Qﬂ c RBXT’BXdk, Ka e RBXTaXdk7 Va c RBXTade (610)

Yg = CMy—5(X35, Xa)

T
= softmax (Q\ﬁ/fli: ) Vo

XBWQﬁwgan
Vi

The outputs of the crossmodal attention layers, i.e., Y, and Y}, are concatenated and

(6.11)

= softmax ( ) X Wy,

passed through a global average pooling layer followed by a dense layer with two units.

The proposed model is illustrated in Fig. 6.3.
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Figure 6.3: BERT + ViT + Crossmodal Attention

6.4.1 Experiments

All experiments are conducted on a single Tesla P100-PCIE-16GB GPU.

Comparison with state-of-the-art approaches
1. Unimodal state-of-the-art approaches (only transcripts)
e BERT (Chapter 5): This method trains a BERT model using transcripts.

2. Multimodal state-of-the-art approaches (speech and transcripts)
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e top-3 late fusion [258]: This method proposes a late fusion approach of the
three best feature configurations, namely Temporal + chardgrams, New -+

char4grams, and chardgrams. The authors train a Random Forest Classifier.

e Audio + Text (Fusion) [92]: The authors introduce three models for detecting
AD patients using only speech data and three models for detecting AD patients
using only text data. Finally, they use a majority level approach, where the
final prediction corresponds to the class getting the most votes from the six

aforementioned models.

e SVM [251]: This method extracts lexicosyntactic, semantic, and acoustic fea-
tures, performs feature selection using ANOVA, and finally trains a Support
Vector Machine Classifier.

e Fusion Maj. (3-best) [63]: This method uses a majority vote of three ap-
proaches, namely Bag-of-Audio-Words, zero-frequency filtered (ZFF) signals,
and BiLSTM-Attention network.

e LSTM with Gating (Acoustic + Lexical 4+ Dis) [62]: This research work ex-
tracts a set of features from speech and transcripts, passes the respective sets of
features through two branches of BiLSTMs, one branch for each modality. Next

the authors introduce feed-forward highway layers with a gating mechanism.

e System 3: Phonemes and Audio [250]: This method transcribes the segment
text into phoneme written pronunciation using CMUDict and combines this

representation of features with features extracted via the audio.

e Fusion of system [67]: This method merges features extracted via speech and
transcripts and trains a Support Vector Machine Classifier. Features of speech
constitute the x-vectors. In terms of the language features, (i) a Global Max-
imum pooling, (ii) a bidirectional LSTM-RNNs provided with an attention
module, and (iii) the second model augmented with part-of-speech (POS) em-
beddings are trained on the top of a pretrained BERT model.

e Bimodal Network (Ensembled Output) [263]: In this research work, the outputs
of the top 5 bimodal networks with high validation results are ensembled and

used as the final submission.

e GFI, NUW, Duration, Character 4-grams, Suffixes, POS tag, UD [95]: This
method exploits the gunning fog index, number of unique words, duration of
the audio file, character 4-grams, suffixes, pos-tags, and Universal dependency
features in a tf-idf setting. Logistic Regression is trained with the corresponding

feature sets.

e Acoustic & Transcript [90]: This method employs the scores from the whole
training subset to train a final fusion GBR model that is used to perform the
fusion of scores coming from the acoustic and transcript-based models for the

challenge evaluation.
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e Dual BERT [91]: This method employs a Speech BERT and a Text BERT and

concatenates their representations.

e Model C [259]: This method extracts features from segmented audio and passes
them through GRU layers. Regarding the transcripts, this method extracts pos-
tags and passes both the transcripts and pos-tags through two separate CNN
layers. Then the outputs of the CNN layers are passed through a BiLSTM layer
coupled with an Attention Layer. The authors also extract a different set of
features from both transcripts and audio files and pass them to a dense layer.
The respective outputs are concatenated and passed to a dense layer, which

gives the final output.
e Majority vote (NLP + Acoustic) [64]: This method obtains firstly the best-

performing acoustic and language-based models. Next, it computes a weighted
majority-vote ensemble meta-algorithm for classification. The authors choose
the three best-performing acoustic models along with the best-performing lan-
guage model, and compute a final prediction by taking a linear weighted com-

bination of the individual model predictions.

Experimental Setup Firstly, we divide the train set provided by the Challenge into a
train and a validation set (65-35%). Next, we train the proposed architectures five times
with an Adam optimizer and a learning rate of le-5. We apply ReduceLROnPlateau,
where we reduce the learning rate by a factor of 0.1, if the validation loss has stopped
decreasing for three consecutive epochs. Also, we apply EarlyStopping and stop training
if the validation loss has stopped decreasing for six consecutive epochs. We minimize the
cross-entropy loss function. All models have been created using the PyTorch library [346].
We use the BERT base uncased version. We test the proposed models using the test set
provided by the Challenge. We average the results obtained by the five repetitions.

Evaluation Metrics Accuracy, Precision, Recall, F1-Score, and Specificity have been
used for evaluating the results of the introduced architectures. These metrics have been

computed by regarding the dementia class as the positive one.

6.4.2 Results

The results of the proposed models mentioned in Section 6.4 are reported in Table 6.2.
Also this table presents a comparison of our introduced models with both unimodal and
multimodal state-of-the-art approaches.

Regarding our proposed transformer-based models with log-Mel spectrogram as in-
put, one can observe that BERT+ViT+Crossmodal Attention constitutes our best per-
forming model surpassing the other introduced models in Fl-score and Accuracy, while
it achieves equal Recall score with BERT+ViT+Gated Multimodal Unit. More specifi-
cally, BERT+4ViT+Crossmodal Attention outperforms BERT+ViT in recall by a margin
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of 10.84%, in Fl-score by 3.22%, and in accuracy by 2.08%, confirming that the cross-
modal attention improves the performance of the multimodal models. Also, it outperforms
BERT+ViT+Gated Multimodal Unit in Fl-score by 2.77% and in Accuracy by 3.33%.
In addition, BERT+ViT+Gated Multimodal Unit surpasses BERT+ViT in Recall and
Fl-score by 10.84% and 0.45% respectively. Although BERT+ViT surpasses the other
proposed models in Specificity by 6.67-13.34%, it must be noted that Fl-score is a more
important metric than Specificity in health-related tasks, since high Specificity and low
Fl-score means that AD patients are misdiagnosed as non-AD ones.

As one can easily observe, our best performing model, namely BERT+ViT+Crossmodal
Attention, surpasses the performance of the multimodal state-of-the-art models, except
[258, 92], in Accuracy by 3.13-15.41%, while it outperforms the research works in Recall by
3.67-29.17% and in Fl-score by 3.29-18.93%. At the same time, BERT+ViT+Crossmodal
Attention obtains a higher accuracy score than BERT (Chapter 5) outperforming it by
0.83%. BERT+ViT+Crossmodal Attention outperforms BERT in Fl-score by 1.96%. At
the same time, the standard deviations of BERT+ViT+Crossmodal Attention in both
Fl-score and Accuracy are lower than the standard deviations of BERT (Chapter 5).
This fact indicates the superiority of our introduced model and shows that it can cap-
ture effectively the interactions between the two modalities. Regarding BERT+ViT, we
can observe that it surpasses the multimodal state-of-the-art models, except [258, 92], in
Accuracy and Fl-score by 1.05-13.33% and 0.07-15.71% respectively. Thus, the combi-
nation of transformer networks, i.e., BERT and ViT, outperforms or obtains comparable
performance to the multimodal state-of-the-art approaches. Although BERT+ViT sur-
passes Fusion Maj. (3-best) [63] in Fl-score by a small margin of 0.07%, it must be noted
that our proposed model is more computationally and time effective, since the method
in [63] trains three different models in order to enhance the classification performance.
We observe also that BERT+VIiT performs worse than BERT (Chapter 5). We speculate
that this difference of 1.25% in Accuracy is attributable to the concatenation operation.
In terms of BERT+ViT+Gated Multimodal Unit, it also outperforms the state-of-the-art
approaches in F1-score and Accuracy except for [63, 258, 92]. Although BERT (Chapter 5)
outperforms BERT+ViT+Gated Multimodal Unit in terms of F1l-score and Accuracy, the
results show that BERT+ViT+Gated Multimodal Unit can better capture the relevant
information of the two modalities on the test set in comparison to the performances of the
existing research initiatives proposing multimodal models.

Regarding our proposed transformer-based models with MFCCs as input, one can ob-
serve that BERT + ViT + Crossmodal Attention constitutes our best performing model
attaining an Accuracy score of 87.92% and an Fl-score of 87.99%. Specifically, it out-
performs the introduced models in Accuracy by 2.50-3.76%, in Fl-score by 1.92-3.65%,
and in Recall by 3.33-10.00%. Similarly to the proposed transformer-based models with
log-Mel spectrogram, we observe that the crossmodal attention yields better results than
the concatenation operation and the gated multimodal unit. In addition, we observe that
the BERT+ViT+Gated Multimodal Unit surpasses BERT+ViT in Accuracy by 1.26%.
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However, BERT+ViT outperforms BERT+ViT+Gated Multimodal Unit in Fl-score by
1.73%.

In comparison with the existing research initiatives, we observe that BERT + ViT +
Crossmodal Attention improves the performance obtained by BERT (Chapter 5). Specifi-
cally, Accuracy is improved by 0.42%, Fl-score sees an improvement of 1.26%, and Recall
is improved by 7.50%. On the contrary, BERT+ViT and BERT+ViT+Gated Multimodal
Unit obtain worse performance than BERT (Chapter 5). Compared with the multimodal
state-of-the-art approaches, BERT+ViT+Crossmodal Attention surpasses the research
works, except [258, 92], in Accuracy by 2.72-15.00%, in Fl-score by 2.59-18.23%, and in
Recall by 1.16-26.66%. BERT+ViT+Gated Multimodal Unit outperforms the research
works, except [258, 92], in Accuracy by 0.22-12.50%. Finally, BERT+ViT surpasses the
research works, except [258, 92, 63], in Accuracy by 1.16-11.24%, while it outperforms the
research work [63] in Fl-score by 0.67%.

6.5 Discussion

The identification of dementia from spontaneous speech constitutes a hot topic in re-
cent years due to the fact that it is time and cost-efficient. Although several research
works have been proposed towards diagnosing dementia from speech, there are still limi-
tations. For example, most methods extract features from speech or transcripts and train
traditional Machine Learning classifiers. Another significant limitation has to do with the
way the different modalities, e.g., speech and transcripts, are combined in a single neural
network. Specifically, research works train separately speech-based and text-based net-
works and then use majority voting approaches, thus increasing significantly the training
time. Other research works add or concatenate the text and image representations, thus
treating equally the two modalities and obtaining suboptimal performance. Furthermore,
although transformers have achieved state-of-the-art results in many domains, their po-
tential has not been fully exploited in the task of dementia detection using speech data.
To the best of our knowledge, this is the first study employing the Vision Transformer
for detecting dementia only from speech. This study aims also to fill gaps with regards
to the usage of multimodal models by introducing the Gated Multimodal Unit and the
crossmodal attention layers, which have not been applied before in the task of dementia
identification from spontaneous speech. From the results obtained in this study, we found
that:

e Finding 1: The Vision Transformer (receiving as input images consisting of log-Mel
spectrogram, delta, and delta-delta) outperformed the other pretrained models, i.e.,
ResNet50, WideResNet-50-2, AlexNet, etc., in all the evaluation metrics except for
Specificity. Similarly, the Vision Transformer (receiving as input images consisting
of MFCCs, delta, and delta-delta) obtained higher scores by the other models in

Accuracy, Fl-score, and Precision. We believe that the Vision Transformer consti-
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Table 6.2: Performance comparison among proposed models (using both speech and transcripts)
and state-of-the-art approaches on the ADReSS Challenge test set. Reported values are mean +
standard deviation. Results are averaged across five runs.

Evaluation metrics

Architecture Precision Recall Fl-score Accuracy Specificity

Unimodal state-of-the-art approaches (only transcripts)

BERT (Chapter 5) 87.19 81.66 86.73 87.50 93.33
+3.25 +5.00 +4.53 +4.37 +5.65
Multimodal state-of-the-art approaches (speech and transcripts)
top-3 late fusion [258] - - - 93.75 -
Audio + Text (Fusion) [92] - 87.50 - 89.58 91.67
SVM [251] 80.00 83.00 82.00 81.30 79.00
Fusion Maj. (3-best) [63] - - 85.40 85.20 -
LSTM with Gating (Acoustic + Lexical + Dis) [62] 81.82 75.00 78.26 79.17 83.33
System 3: Phonemes and Audio [250] 81.82 75.00 78.26 79.17 83.33
Fusion of system [67] 94.12 66.67 78.05 81.25 95.83
Bimodal Network (Ensembled Output) [263] 89.47 70.83 79.07 81.25 91.67
GFI,NUW,Duration, Character 4-grams,Suffizes, . ) ) 77 08 )
POS tag,UD [95]
Acoustic & Transcript [90] 70.00 88.00 78.00 75.00 83.00
Dual BERT [91] 83.04 83.33 82.92 82.92 82.50
+3.97 +5.89 +1.86 +1.56 +5.53
Model C [259] 78.94 62.50 69.76 72.92 83.33
Majority vote (NLP + Acoustic) [64] - - - 83.00 -
Proposed Transformer-based models (log-Mel Spectrogram)
BERT+ViT 90.73 80.83 85.47 86.25 91.67
+2.74 +2.04 +1.70 +1.67 +2.64
BERT+ViT+Gated Multimodal Unit 80.92 91.67 85.92 85.00 78.33
+2.30 +3.73 +2.37 +2.43 +3.12
BERT+ ViT+Crossmodal Attention 86.13 91.67 88.69 88.33 85.00
+3.26 +4.56 +2.12 +2.12 +4.25
Proposed Transformer-based models (MFCCs)
BERT+ViT 86.72 85.83 86.07 84.16 86.66
+2.05 +6.77 +2.69 +1.02 +3.12
BERT+ViT+Gated Multimodal Unit 90.57 79.16 84.34 85.42 91.66
+2.80 +5.89 +3.53 +2.95 +2.64
BERT+ ViT+Crossmodal Attention 87.09 89.16 87.99 87.92 86.66
+2.40 +5.65 +2.79 +2.43 +3.12

tutes our best performing model due to the transformer encoder and the multi-head
self-attention. On the contrary, all the other pretrained models are based on convo-

lutional neural networks.

e Finding 2: We compared the performance achieved between BERT and BERT+ViT
and showed that BERT+ViT achieved slightly worse results. We speculated that this
difference may be attributable to the usage of a simple concatenation of the text and
image representations. A simple concatenation operation assigns equal importance
to the different modalities. In addition, we compared the performance of BERT+ViT
on the test set with 13 research works and showed that BERT+ViT outperformed
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most of the research works in Fl-score and Accuracy. Thus, transformers achieve

comparable performance to state-of-the-art approaches.

e Finding 3: Results on the ADReSS Challenge test set showed that BERT + ViT
+ Gated Multimodal Unit (with log-Mel spectrogram) yielded a higher Fl-score
than BERT + ViT (with log-Mel spectrogram), while BERT +ViT + Gated Multi-
modal Unit (with MFCCs) yielded a higher Accuracy score than BERT+ViT (with
MFCCs). In addition, we compared the performance of BERT+ViT+Gated Mul-
timodal Unit on the test set with 13 multimodal research works and showed that
BERT+ViT+Gated Multimodal Unit achieved comparable performance.

e Finding 4: We presented a new method to detect AD patients consisting of BERT,
ViT, and crossmodal attention layers and showed that crossmodal interactions out-
perform the competitive multimodal models. We compared our best performing
model (BERT+ViT+Crossmodal Attention with log-Mel spectrogram as input) with
13 research works on the ADReSS Challenge test set and showed that our introduced
model outperformed 11 of these strong baselines in Accuracy and F1-score by a large
margin of 3.13-15.41% and 3.29-18.93% respectively. Moreover, the incorporation of
the crossmodal attention enhanced the performance obtained by BERT by 0.83% in
Accuracy and by 1.96% in Fl-score. In terms of BERT+ViT+Crossmodal Attention
(with MFCCs), we observed that it outperformed 11 of 13 strong baselines in Ac-
curacy and Fl-score by a large margin of 2.72-15.00% and 2.59-18.23% respectively,
while it achieved better performance than BERT. Also, we observed that the vari-
ances of BERT + ViT + Crossmodal Attention by using either log-Mel Spectrogram
or MFCCs are lower than BERT (Chapter 5).

Also, we observed that BERT + ViT + Crossmodal Attention outperforms both
BERT+ViT and BERT + ViT + Gated Multimodal Unit. Specifically, BERT +
ViT + Crossmodal Attention performs better than BERT+ViT, since BERT+ViT
fuses the features of different modalities through a concatenation operation. The
concatenation operation ignores inherent correlations between different modalities.
In addition, BERT + ViT + Crossmodal Attention outperforms BERT+ViT+Gated
Multimodal Unit. This can be justified by the fact that the Gated Multimodal
Unit is inspired by the flow control in recurrent architectures, such as GRU or
LSTM. Specifically, the Gated Multimodal Unit controls only the information flow
from each modality and does not capture interactions between text and image. On
the contrary, the usage of the crossmodal attention layers captures the crossmodal
interactions, enabling one modality for receiving information from another modality.
More specifically, we pass textual information to speech and speech information to
text. Therefore, we observe that controlling the flow of information from the two
modalities is not sufficient. On the contrary, learning crossmodal interactions is more

important.

In addition, we observed that our best performing model, i.e., BERT + ViT +
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Crossmodal Attention, outperforms most of the strong baselines. This fact justifies
our initial hypothesis that early and late fusion strategies and the usage of concate-
nation or add operation introduced by other studies do not capture effectively the
inter-modal interactions of different modalities, thus obtain in this way suboptimal

performance.

One limitation of the current research work has to do with the limited number of
samples in the ADReSS Challenge dataset, i.e., 78 AD and 78 non-AD patients. However,
as mentioned in Section 3.3.5.2, one cannot overlook that this dataset is matched for gender
and age, so as to mitigate bias in the prediction task. Concurrently, in contrast to other
datasets, it has been carefully selected so as to mitigate common biases often overlooked
in evaluations of AD detection methods, including repeated occurrences of speech from
the same participant and variations in audio quality. Moreover, it is balanced, since it
includes 78 AD and 78 non-AD patients. It is also used widely by a lot of research works

dealing with the task of dementia identification from speech.

6.6 Summary

In this chapter, we proposed methods to differentiate AD from non-AD patients using
either only speech or both speech and transcripts. Regarding the models using only speech,
we exploited several pretrained models used extensively in the computer vision domain,
with the Vision Transformer achieving the highest F1-score and accuracy accounting for
69.76% and 65.00% respectively. Next, we employed three neural network models in which
we combined speech and transcripts. We exploited the Gated Multimodal Unit, in order
to control the influence of each modality towards the final classification. In addition,
we experimented with crossmodal interactions, where we used the crossmodal attention.
Results showed that crossmodal attention can enhance the performance of competitive
multimodal approaches and surpass state-of-the-art approaches. More specifically, models
incorporating the crossmodal attention yielded accuracy equal to 88.83% on the ADReSS
Challenge test set.

In Chapters 5 and 6, we concentrated our experiments on detecting AD patients, i.e.,
binary classification task. In Chapter 5, we divided the MMSE scores into four groups
depending on the severity of dementia and performed a multitask learning framework,
where the identification of the severity of dementia constituted the auxiliary task, i.e.,
multiclass classification task. However, the exact estimation of MMSE score is crucial.
Therefore, in the next chapter, we will continue with proposing advanced fusion methods
and will perform our experiments on both detecting the AD patients and predicting their
MMSE scores.



Chapter 7

Multimodal Deep Learning
Models for Detecting Dementia
and Predicting Mini-Mental State
Examination scores from Speech

and Transcripts

7.1 Introduction

In the previous chapters, we introduced unimodal models exploiting either speech or
transcripts for detecting AD patients. Multimodal models were also proposed. The main
task was the classification of a single subject as AD patient or non-AD one. Therefore, in
this chapter, we will proceed with experimenting with fusion methods and will extend our
experiments on predicting the MMSE scores, i.e., regression task. Several research works
have been proposed aiming to predict the Mini-Mental State Examination (MMSE) scores
using the modalities of both speech and transcripts. However, the majority of them have
introduced averaging approaches [169, 170, 61]. Specifically, they train several textual and
acoustic models and they make the final prediction by simply averaging the predictions of
the individual models.

In order to tackle the aforementioned limitations, in this chapter, we employ transformer-
based networks, which can capture effectively the interaction between the different modal-
ities and control the importance of each modality towards the final prediction. Compared
with recent deep ensemble learning methods, which need to train models individually and
then fuse the results of the classifiers, the proposed neural networks in this chapter can
be trained in an end-to-end trainable manner. Similar to Chapter 6, we extract Log-Mel
spectrograms, their delta, and delta-delta (acceleration values) and construct an image

per audio file consisting of three channels. Next, we introduce a neural network consisting

167
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of BERT and Vision Transformer (ViT) for extracting textual and visual embeddings re-
spectively, and add a co-attention mechanism over the respective embeddings, which can
attend at the different modalities at the same time. In addition, we introduce an archi-
tecture, which integrates multimodal information into a BERT model via an Attention
Gate called Multimodal Shifting Gate. To be more precise, we propose three variations
of this architecture, where we inject (a) textual and visual, (b) textual and acoustic, and
(¢) textual, visual, and acoustic information into the BERT model. Finally, we propose
an architecture, which can learn both the inter- and intra-modal interactions, i.e., image-
image, text-text, text-image, and image-text, and show that it achieves state-of-the art
results. Contrary to Chapter 6, in this chapter, we propose a self-attention layer which
includes a gating mechanism. Compared with prior works, our methods provide impor-
tant advantages, since they can learn more representative features regarding the different
modalities and require also less time for training.

The contributions of this chapter can be summarized as follows:

e We conduct extensive experiments for detecting AD patients (AD classification task)
and predicting the MMSE scores (MMSE regression task).

e We propose a multimodal model consisting of BERT, ViT, and a Co-Attention mech-

anism.

e We introduce an architecture, which incorporates a Multimodal Shifting Gate aim-
ing to control the importance of text, acoustic, and visual representations. The

conjunction of the textual, acoustic, and visual embeddings is fed to a BERT model.

e We propose an architecture aiming to model the inter- and intra-modal interactions

of multimodal data.

e We achieve competitive results with state-of-the-art approaches on the ADReSS
Challenge dataset both in the AD classification and MMSE regression task.

e Our best performing model achieves a new state-of-the-art result in the MMSE

regression task.

7.2 Dataset

We use the ADReSS Challenge Dataset described in Section 3.3.5.2 for conducting our

experiments.

7.3 Problem Statement

7.3.1 AD Classification Task

Let a labeled dataset consist of transcripts and their corresponding audio files belonging

to AD patients and non-AD ones. Transcripts belonging to AD subjects are given the label
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1, while transcripts belonging to the non-AD patients are given the label 0. The task is to
identify, if a transcript along with its audio file belongs to a person suffering from dementia,

or to a person belonging to the healthy control group (binary classification problem).

7.3.2 MMSE Regression Task

Let a dataset consist of transcripts and their corresponding audio files belonging to AD
patients and non-AD ones. Each transcript along with the audio file has been assigned
with a MMSE score ranging from 0 to 30, where a MMSE score of 25-30 is considered
as normal, a MMSE score of 21-24 as mild, a MMSE score of 10-20 as moderate, and a
MMSE score less than 10 as severe impairment [62]. Given the transcript and the audio

file, the task is to predict the MMSE score (regression problem).

7.4 Predictive Models

In this section, we present the proposed predictive models for detecting dementia using
speech and transcripts. We use the python library PyLangAcq [275] for having access to
the manual transcripts, since the dataset has been created using the CHAT [348] coding
system. Moreover, we employ the Python library librosa [334] for converting the audio files
to Log-Mel spectrograms, their delta, and delta-delta (acceleration values). For all the
experiments conducted, we use 224 Mel bands, hop length equal to 1024, and a Hanning
window. Each image is resized to (224 x 224) pixels.

7.4.1 BERT + ViT + Co-Attention

We pass the transcripts through a BERT model [347, 26] and the corresponding images
through a ViT model [349]. Then, we use a co-attention mechanism [79, 80] over the
outputs of the aforementioned models, since it can help learn the attention weights of
transcripts and image patches concurrently.

Formally, let C € RN and S € R*T be the outputs of the BERT and ViT pretrained
models respectively. Following the methodology proposed by [79], given the output of the
BERT (C € RdXN) and the output of the ViT (S € ]RdXT), where d denotes the hidden
size of the model, N and T the sequence length of the transcripts and image patches
respectively, the affinity matrix F € RV¥*T is calculated using the equation presented

below:

F = tanh (CTW,5) (7.1)

where W, € R%*4 is a matrix of learnable parameters. Next, this affinity matrix is consid-
ered as a feature and we learn to predict the transcript and image attention maps via the

following,

H? = tanh (WS + (W.C) F) (7.2)
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Figure 7.1: BERT + ViT + Co-Attention

H® = tanh (W.C + (W,S) FT) (7.3)

where Wy, W, € R¥*? are matrices of learnable parameters. The attention probabilities
for each word in the transcripts and each image patch are calculated through the softmax

function as follows,

a® = softmax (w,:szs) (7.4)
a® = softmax (wf H°) (7.5)

where a;, € R™T and a, € RN, wp,, wpe € RF¥! are the weight parameters. Based on
the above attention weights, the attention vectors for text and image representations are
obtained via the following equations:
T N
§= Z ais', ¢= Z ajcj (7.6)
i=1 j=1
where § € R™*? and ¢ € R1*9,
Finally, these two vectors are concatenated.
Regarding the AD detection problem described in Section 7.3.1, the resulting vector
(p € RlXQd) is passed to a dense layer with 128 units and a ReLU activation function
followed by a dense layer consisting of two units.
Regarding the MMSE prediction problem described in Section 7.3.2, the resulting
vector (p € Rlxzd) is passed to a dense layer with 128 units and a ReLLU activation function
followed by a dense layer consisting of one unit with a ReLU activation function.

The proposed architecture is illustrated in Fig. 7.1.
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7.4.2 Multimodal BERT

In this section, we exploit the method proposed in Chapter 4. First, we pass each
transcript through a BERT model obtaining a text representation X € RY*4, Similarly,
we pass each image through a ViT model and get the output of the ViT model (z(? c RIxd),
Then, we repeat the vector zé N times, in order that the text and image representation
matrices have the same size. Regarding the acoustic modality, we use the Python library
openSMILE [318] for extracting the eGeMAPSv02 feature set per audio file. We obtain a
vector of 88d per audio file, where we project the respective vector to a 256d vector and
repeat it N times. Let e, ((li), and hg,i) denote word, acoustic, and image representation
for the i-th word in a sequence. Next, we concatenate the representations (text-image and

text-audio) using two attention gating mechanisms as described via the equations below:

wi) = o (Wiafh{):eM] +b,) (7.1)
0l = o (Wia[h0: ] + b, (7.2)

where o denotes the sigmoid activation function, Wy, Wh, are two weight matrices, and
wf,i), wg ) correspond to the visual and acoustic gates respectively. b, and b, are the scalar
biases.

Next, we calculate a nonverbal shift vector hg,? by multiplying the visual embeddings

with the visual gate and the acoustic embeddings with the acoustic gate.

B = wld - (W) +w - (Wah ) +bf) (7.3)
where W, and W, are weight matrices for acoustic and visual information respectively.
beQ is the bias vector.

Next, we apply the Multimodal Shifting component aiming to dynamically shift the

word representations by integrating the nonverbal shift vector h%) into the original word

embedding.
el = @ 4 anl) (7.4)
()
a = min <H€(i)|’2ﬁ, 1) (7.5)
[ ]2

, where (3 is a hyperparameter. Then, we apply a layer normalization [28] and dropout
layer [350] to eﬁf}. Finally, the combined embeddings are fed to a BERT model.
Regarding the AD detection problem described in Section 7.3.1, the CLS token
constituting the output of the BERT model is passed through a dense layer with 128 units
and a ReLU activation function followed by a dense layer with two units, which gives the

final output.



Chapter 7. Multimodal Deep Learning Models for Detecting Dementia and Predicting
172 Mini-Mental State Examination scores from Speech and Transcripts

Regarding the MMSE prediction problem described in Section 7.3.2, the CLS
token constituting the output of the BERT model is passed through a dense layer with
128 units and a ReLU activation function followed by a dense layer with one unit and a
ReLU activation function.

We experiment with injecting acoustic information (Multimodal BERT - eGeMAPS),
visual information (Multimodal BERT - ViT), and both acoustic and visual informa-
tion (Multimodal BERT - eGeMAPS + ViT).

The architecture (Multimodal BERT - eGeMAPS + ViT) is illustrated in Fig.
7.2.

7.4.3 BERT + ViT + Gated Self-Attention

Similar to the aforementioned introduced models, we pass each transcript through a
BERT model and each image through a ViT model. Let X € RVN*? and Y € RT*¢ be
the outputs of the BERT and ViT pretrained models respectively. In this section, our
main aim is to model the intra-modal and inter-modal interactions at the same time (i.e.,
X=X, Y =Y, and X +Y). Thus, we adopt the methodology introduced by [83].

After having obtained X € RV*4 and Y € RT*?  which correspond to the text and

image representations respectively, we concatenate these two representations as follows:

Z=[X;Y] (7.1)

Next, Z € R™*4 where m = N + T, is considered the query Q, key K, and value V,

as follows:

Q=2K=2V=2Z (7.2)

Next, we adopt the gating model introduced by [83] as follows:
M =0 (FCY (FCJ(Q)® FC (K))) (7.3)

where FCJ, F C,Z € R¥Xds FC9 € R%*2 are three fully-connected layers, and dgy denotes
the dimensionality of the projected space. ©® denotes the element-wise product function
and o the sigmoid function. In addition, M € R™*2? corresponds to the two masks
M, € R™ and M), € R™ for the features () and V respectively.

Next, the two masks M and K are tiled to ]\qu, M, € R™*4 and then used for computing

the attention map as following:

(Qom) (ko)
\/;i

A9 = softmax

H =A% (7.5)
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Then, the output H is passed through a global average pooling layer followed by a
dense layer with 128 units and a ReLLU activation function.

Regarding the AD detection problem described in Section 7.3.1, we use a dense
layer with two units, which gives the final output.

Regarding the MMSE prediction problem described in Section 7.3.2, we use a
dense layer with one unit and a ReLU activation function.

The proposed architecture is illustrated in Fig. 7.3.

7.5 Experiments

7.5.1 Comparison with state-of-the-art approaches

We compare our introduced models with research works proposing either unimodal
or multimodal approaches. These research works have been selected due to the fact that
they conduct their experiments on the ADReSS Challenge test set. These research works
are reported in Tables 7.1, 7.2, and 7.3. More specifically, Table 7.1 refers to research
works using multimodal approaches, Table 7.2 refers to research works proposing unimodal
approaches using only text, and Table 7.3 refers to research works proposing unimodal

approaches using only speech.
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Table 7.1: Overview of the multimodal state-of-the-art approaches, which are later compared

with our work.

Reference  Architecture Features/Methodology Task
[351] Fusion Maj./W- Bag-of-Audio-Words, zero-frequency fil- AD/MMSE
avg (3-best) tered (ZFF) signals, and BiLSTM-
Attention network
[62] LSTM with Gat- Acoustic, Linguistic Features, Bi-LSTM, AD/MMSE
ing (Acoustic + gating mechanism
Lexical + Dis)
[250] System 3: phoneme written pronunciation using AD
Phonemes and CMUDict + acoustic features
Audio
[67] Fusion of System fusion of x-vectors with linguistic fea- AD
tures, train SVM
[263] Bimodal =~ Net- Ensemble (top-5 bimodal networks) AD/MMSE
work (Ensembled
Output)
[95] GFI, NUW, Du- feature extraction, Logistic Regression AD
ration, Charac- Classifier
ter 4-grams, Suf-
fixes, POS tag,
UD
[90] Acoustic & Tran- fusion of the acoustic (x-vectors) and AD
script transcript (BERT) model scores
[90] Acoustic+silence  Average the scores from the different MMSE
& Transcript models, four silence features
[91] Dual BERT concatenation of the representations ob- AD
tained by BERT and Speech BERT
[259] Model C Neural network consisting of CNN, Bil.- AD
STM, Attention, GRU, and Dense layers
[64] Majority =~ vote final prediction by taking a linear AD
(NLP + Acous- weighted combination of the individual
tic) model predictions
[64] Random Forest language/fluency/n-gram features, MMSE
(NLP) + gra- MFCC and delta coefficients, Dimension-
dient  boosting ality Reduction Techniques
(acoustic)

Continued on next page
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Table 7.1 — continued from previous page
Reference  Architecture Features/Methodology Task
[61] Audio + Text majority level approach of six models, AD/MMSE
averaging-based fusion
[170] Ensemble Majority voting approach, average the AD/MMSE
predictions
[66] Attempt 4 label fusion from the top-5 performing AD/MMSE
models from audio and text modalities
(top-5 from each modality), average value
of predictions of individual models
[254] SELECTED- For selecting the features, a Random For- MMSE
FEATURE est regression model was trained. The au-

thors retained only features having mean
decrease impurity (MDI) values exceeding
a predefined threshold

Table 7.2: Overview of the unimodal state-of-the-art approaches using only text, which are later

compared with our work.

Reference  Architecture Features/Methodology Task
[351] bi-LSTM-Att GloVe 100d as pretrained weights, maxi- AD/MMSE
mum word number for each transcript is
200, Bi-LSTM with attention
[62] LSTM (Lexical GloVe features of 100d, disfluency mark- AD/MMSE
+ Dis) ers (self-repair), Bi-LSTM
[250] System The authors transcribed the segment text AD
Phonemes into phoneme written pronunciation using
CMUDict. FastText was trained on the
phoneme representation
[67] Sentence Embed- sentence embeddings are computed by av- AD
ding eraging the second to twelfth hidden lay-
ers of each word., train SVM
[263] Transformer-XL. ~ The authors extracted textual features AD/MMSE
using Transformer-XL and trained a neu-
ral network consisting of CNN, Attention,
Bi-LLSTM, and Dense Layers.
[90] Transcript The authors train a BERT model. AD/MMSE
[91] Longformer Training of Longformer AD

Continued on next page ‘
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Table 7.2 — continued from previous page
Reference  Architecture Features/Methodology Task
[259] Model A0 Neural network consisting of CNN, AD
LSTM, and Dense layers
[64] Logistic Regres- language and fluency features, n-gram AD
sion (NLP) features, Dimensionality Reduction Tech-
niques
[64] Random Forest language and fluency features, n-gram MMSE
(NLP) features, Dimensionality Reduction Tech-
niques
[61] Text (fusion) fusion of top-3 performing models from AD/MMSE
the textual modality
[66] Attempt 5 label fusion from the top-10 performing AD/MMSE
models from text modalities, average of
MMSE score predictions from the top-10
performing models
[253] BERT Training of BERT model AD
[254] n-gram All lexicosyntactic features, SVR training MMSE
[65] fastText, The authors fit 21 models and the out- AD/MMSE
bi+trigram puts are combined by a majority voting

scheme for final classification. In the re-
gression task, the outputs of these boot-
strap models are averaged to arrive at the
final MMSE score

Table 7.3: Overview of the unimodal state-of-the-art approaches using only speech, which are

later compared with our work.

Reference Architecture Features/Methodology Task
[351] SiameseNet a deep Siamese neural network consisting of AD
convolutional layers. As an input, the model
used either 8-second or 16-second segments.
[351] BoAW fusion MelFrequency Cepstral Coefficient (MFCC), MMSE
(3-best) log-Mel, and the COMPARE acoustic fea-
ture set
[62] LSTM (Acous- higher-order statistics of COVAREP fea- AD/MMSE

tic)

tures. Bi-LSTM training

Continued on next page ‘
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Table 7.3 — continued from previous page
Reference Architecture Features/Methodology Task
[250] System 1: Au- LDA posterior probabilities of Com- AD
dio ParE2016 features
[67] x-vectors.SRE  The authors use both the SRE and the Vox- AD
celeb models for the x-vectors framework.
train SVM
[263] VGGish The authors used VGGish features and AD/MMSE
trained a neural network consisting of At-
tention Layer, CNN, Bi-LSTM, and Dense
Layers.
[90] Acoustic + Si- silency features, x-vector PCA-transformed AD/MMSE
lence coefficients, Probabilistic Linear Discrimi-
nant Analysis (PLDA) for detection and
Support Vector Regression (SVR) for MMSE
prediction
[91] YAMNet The input of YAMNet is the Mel spectro- AD
gram from audio data with dimensions of (p,
t, 1)
[259] Model B0 GRU taking in audio segment features and fi- AD
(emobase) nally combining the features from the speech
segments into a common vector
[64] Majority vote acoustic feature extraction across all speech AD
(Acoustic) segments, weighted majority vote classifica-
tion on segments
[64] Gradient MFCC 1-16 features and their delta coeffi- MMSE
Boosting cients from 26 Mel-bands
(Acoustic)
[61] Audio (fusion) majority level approach of three acoustic AD/MMSE
models, averaging-based fusion
[93] DemCNN convolutional neural network for speech clas- AD
sification using the raw waveform
[352] CNN - LSTM 21 models are fitted using the above 21 boot- AD
(MFCC) strap samples and the outputs are combined
by a majority voting scheme for final classi-
fication.
[352] pBLSTM- bagging of 21 models by averaging the out- MMSE
CNN (log- puts.
Mel)

Continued on next page
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Table 7.3 — continued from previous page

Reference Architecture Features/Methodology Task

[254] acoustic-all Mel  Frequency  Cepstral Coefficients MMSE
(MFCCs), mean value, variance, etc.

[66] Attempt 3 label fusion from the top-5 performing mod- AD/MMSE

els from the audio modality, prediction from
the BERT base uncased RangePool

7.5.2 Experimental Setup
7.5.2.1 Training and Evaluation - Implementation Details

In terms of the MMSE regression task, the ADReSS Challenge train set includes
the MMSE scores for all the people except one. Thus, we remove this person from the
train set in the MMSE regression task.

We follow a similar training strategy to the one adopted by [91]. Firstly, we divide the
train set provided by the Challenge into a train and a validation set (65%-35%). Next, we
train the proposed architectures five times with an Adam optimizer and a learning rate of
le-5. Regarding the AD detection problem described in Section 7.3.1, we minimize the
cross-entropy loss function, whereas with regards to the MMSE prediction problem
described in Section 7.3.2, we minimize the RMSE. We apply Reducel ROnPlateau, where
we reduce the learning rate by a factor of 0.1, if the validation loss has stopped decreasing
for three consecutive epochs. Also, we apply FarlyStopping and stop training, if the
validation loss has stopped decreasing for six consecutive epochs. We test the proposed
models using the test set provided by the Challenge. We average the results obtained by
the five repetitions. All models have been created using the PyTorch library [353]. We
have used the Vision Transformer (with fixed-size patches of resolution 16 x 16) and the
BERT base uncased version from the Transformers library [305]. The input to the BERT
and ViT model is the output of the BERT tokenizer and ViT feature extractor respectively
as defined by the Transformers library. All experiments are conducted on a single Tesla
P100-PCIE-16GB GPU.

7.5.2.2 Hyperparameters

Regarding BERT+ViT+Co-Attention, we set k equal to 40. We use dropout after
the output of the co-attention layer with a rate of 0.4, and a dropout layer after the
dense layer consisting of 128 units with a rate of 0.2. Regarding (Multimodal BERT -
eGeMAPS), we set § = 0.01. In terms of (Multimodal BERT - ViT), we set § =
0.001. Regarding (Multimodal BERT - eGeMAPS + ViT), we set § = 0.01. With
regards to the following models: (Multimodal BERT - eGeMAPS), (Multimodal
BERT - ViT), and (Multimodal BERT - eGeMAPS + ViT), we apply dropout
with a rate of 0.4 at the output of (7.4) and freeze the weights of the first BERT model.
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Also, we use a dropout layer after the output of the second BERT model with a rate of
0.2. With regards to BERT+ViT+Gated Self-Attention, we set d, = 64. We use
dropout after the global average pooling layer with a rate of 0.3. For all the experiments
conducted, the hidden size of BERT and ViT denoted by d is equal to 768. Moreover,
N = 512, since we pad each transcript to a maximum number of 512 tokens. T is equal
to 197. Thus, m is equal to 709.

7.5.3 Evaluation Metrics

Regarding the AD detection problem described in Section 7.3.1, Accuracy, Pre-
cision, Recall, F1-Score, and Specificity have been used for evaluating the results of the
introduced architectures. These metrics have been computed by regarding the dementia
class as the positive one. We report the average and standard deviation of these metrics
over five runs.

With regards to the MMSE prediction problem described in Section 7.3.2, the
RMSE has been used for evaluating the results of the introduced architectures. We report
the average and standard deviation of the RMSE scores across five runs. The RMSE is
the metric used in the baseline paper provided by the ADReSS challenge.

7.6 Results

7.6.1 AD Classification Task

The results of the proposed models mentioned in Section 7.4 for the AD classification
task are reported in Table 7.4. In addition, in this table we compare the results of our in-
troduced models with research works proposing multimodal approaches, unimodal models
using only text data, and unimodal approaches using only speech data.

Regarding our proposed models, one can observe from Table 7.4 that BERT + ViT +
Gated Self-Attention outperforms all the introduced models in Accuracy and F1-score by a
large margin of 2.50-11.25% and 3.13-9.59% respectively. This can be justified by the fact
that the Gated Self-Attention aims to capture both the intra- and inter-modal interactions.
Specifically, BERT+ViT+Gated Self-Attention outperforms BERT+ViT+Co-Attention
in accuracy by 2.50%, in Recall by 7.5%, and in Fl-score by 3.13%. Despite the fact that
BERT+ViT+Co-Attention obtains a high specificity score accounting for 93.33% outper-
forming BERT+ViT+Gated Self-Attention by 2.5%, BERT+ViT+Co-Attention attains a
low Fl-score accounting for 86.81%. On the contrary, BERT+ViT+Gated Self-Attention
yields an Fl-score of 89.94% outperforming BERT+ViT+Co-Attention by 3.13%. This
means that BERT+ViT+Gated Self-Attention can detect better the AD patients than
BERT+ViT+Co-Attention, where AD patients are misdiagnosed as non-AD ones. In
addition, although BERT+ViT+Gated Self-Attention obtains lower results in Precision
and Recall by other introduced models, it surpasses them in F1-score, which constitutes

the weighted average of recall and precision. Regarding the Multimodal BERT models,
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one can observe that Multimodal BERT-ViT outperforms Multimodal BERT-eGeMAPS
in accuracy by 0.83%, in recall by 4.17%, and in Fl-score by 1.44%. We speculate that
Multimodal BERT-ViT performs better than Multimodal BERT-eGeMAPS due to the
usage of the Vision Transformer. Thus, the visual modality obtained via ViT seems to
perform slightly better than the acoustic modality. In addition, we observe that the injec-
tion of both the acoustic and visual information enhances the performance of the models
having just one modality, be it either the acoustic modality or the visual one. More
specifically, Multimodal BERT-eGeMAPS+ViT surpasses Multimodal BERT-eGeMAPS
and Multimodal BERT-ViT in accuracy by 2.08% and 1.25% respectively. In comparison
to the Multimodal BERT-eGeMAPS+ViT, BERT+ViT+Gated Self-Attention surpasses
its performance in accuracy by 9.17%, in Precision by 14.30%, in Fl-score by 7.66%,
and in Specificity by 18.33%. Overall, BERT+ViT+Gated Self-Attention constitutes our
best performing model, since it surpasses all the other introduced models in F1-score and
Accuracy.

In comparison to the multimodal approaches, as one can easily observe from Table 7.4,
BERT+ViT+Gated Self-Attention surpasses the state-of-the-art multimodal approaches
in Recall by 1.17-26.67%, in F1-Score by 4.54-20.18%, and in Accuracy by 0.42-17.08%.
These findings confirm our initial hypothesis that inter- and intra-modal interactions en-
hance the classification results obtained by approaches, which predict AD patients either
by using majority voting on predictions of several individual models or adding/concatenat-
ing the text and image representations. In addition, although our best performing model
outperforms Audio+ Text [61] by a small margin of 0.42% in Accuracy and by a larger
margin of 1.67% in Recall, it is worth mentioning that our proposed approach is more
computational and time-efficient, since the method proposed by [61] employs six models
and eventually uses a majority vote approach. In terms of BERT+ViT+Co-Attention, it
outperforms all the research works, except Audio+ Text [61], in Accuracy by 2.30-14.58%.
Also, it surpasses all the research works, except Fusion of System [67] in Precision by
3.36-22.83%. Also, it surpasses all the research works in F1-score results by 1.41-17.05%.
It outperforms four research works out of the eight ones, which report Recall results by
6.67-19.17%. Thus, the co-attention mechanism can yield better performance than the
results obtained by the research initiatives, since it can attend to transcripts and images
simultaneously. Finally, with regards to the proposed Multimodal BERT models, it seems
that they are rather complex for our limited dataset. However, results suggest that Multi-
modal BERT - eGeMAPS+ViT surpasses six research works in Accuracy by 1.63-7.91%,
five research works in Fl-score by 3.21-12.52%, all the research works in the Recall score
by 1.17-26.67%, and one research work in the Precision score by 6.57%.

In comparison to the unimodal approaches using only text data, as one can easily
observe from Table 7.4, the approach proposed by [61] outperforms our best performing
model in terms of accuracy, recall, and specificity by 1.67%, 2.50%, and 0.84% respectively.
However, our best performing model outperforms all the other approaches in accuracy by
4.58-17.10%, in Recall by 5.84-35.01%, in Precision by 2.73-21.87%, in Fl-score by 6.67-
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26.53%, and in Specificity by 2.83-7.50%.

In comparison to the unimodal approaches using only speech data, as one can easily
observe from Table 7.4, BERT+ViT+Gated Self-Attention outperforms the research ini-
tiatives in terms of Precision, Recall, F1-score, and Accuracy. More specifically, BERT +
ViT + Gated Self-Attention surpasses the research works in Precision by 8.87-36.70%, in
Recall by 5.84-51.17%, in Fl-score by 19.14-38.94%, and in Accuracy by 8.75-35.83%. In
addition, BERT+ViT+Co-Attention surpasses the research works in Precision by 10.83-
38.66%, in Fl-score by 16.01-35.81%, and in Accuracy by 6.25-33.33%. Additionaly, Mul-
timodal BERT - eGeMAPS, Multimodal BERT - ViT, and Multimodal BERT - eGeMAPS
+ ViT outperform all the research initiatives except [61] in terms of the accuracy score by
a margin of 5.83-24.58%, 6.66-25.41%, and 7.91-26.66% respectively.

It is obvious that the unimodal approaches exploiting only speech data achieve low
evaluation results in comparison with unimodal approaches employing text data or mul-

timodal models.

Table 7.4: AD Classification Task: Performance comparison among proposed models and state-
of-the-art approaches on the ADReSS Challenge test set. Reported values are mean + standard

deviation. Results are averaged across five runs. Best results per evaluation metric are in bold.

Architecture P. R. F1-score Acc. Spec.

State-of-the-art approaches (Multimodal)
Fusion Maj (8-best) [351] - - 85.40 85.20 -

LSTM with Gating (Acoustic

+ Legical + Dis) [62] 81.82 75.00 78.26 79.17 83.33
System 3: Phonemes and Audio [250] 81.82 75.00 78.26 79.17 83.33
Fusion of System [67] 94.12 66.67 78.05 81.25 95.83
Bimodal Network

(Ensembled Output) (263) 89.47 70.83 79.07 81.25 91.67
GFI, NUW, Duration,

Character 4-grams, Suffizes, - - - 77.08 -
POS tag, UD [95]

Acoustic & Transcript [90] 70.00 88.00 78.00 75.00 63.00
Dual BERT [91] 83.04+3.97 83.33+£5.89  82.92+1.86 82.92+1.56 82.50 + 5.53
Model C [259] 78.94 62.50 69.76 72.92 83.33
Magjority vote

(NIJ/P —/—yAcoustic) [64] i ) ) 5300 i
Audio + Text [61] - 87.50 - 89.58 91.67
Ensemble [170] 83.00 83.00 83.00 83.00 -
Attempt 4 [66] - - - 79.17 -

State-of-the-art approaches (only Text)
bi-LSTM-Att [351] - - 81.20 81.30 -

LSTM (Lezical + Dis) [62] 76.19 66.67 71.11 72.92 79.10




7.6.2 MMSE Regression Task 183

System 2: Phonemes [250] 80.95 70.83 75.56 77.08 83.33
Sentence Embedding [67] 82.35 58.33 68.29 72.92 87.50
Transformer-XL [265] 80.00 83.33 81.63 81.25 79.17
Transcript [90] 69.00 83.00 75.00 72.92 63.00
Longformer [91] 88.14£2.09 74.17£5.53  80.44+3.55 82.08+2.83 90.00 £ 2.04
Model A0 [259] 76.47 54.16 63.41 68.75 83.33
Logistic Regression (NLP) [64] - - - 85.00 -
Text (fusion) [61] - 91.67 - 91.67 91.67
Attempt 5 [66] - - - 85.42 -
BERT [253] 83.89 83.33 83.27 83.32 83.33
fastText, bi+trigram [65] 86.00 79.00 83.00 83.33 88.00

State-of-the-art approaches (only Speech)

SiameseNet [351] - - 70.80 70.80 -
LSTM (Acoustic) [62] - - - 66.60 -
System 1: Audio [250] 58.62 70.83 64.15 60.42 50.00
z-vectors-SRE [67] 54.17 04.17 04.17 54.17 54.17
VGGish [263] 78.95 62.50 69.77 72.92 83.33
Acoustic + Silence [90] 70.00 58.00 63.00 66.70 75.00
YAMNet [91] 64.40£3.93 73.40£8.82  68.60£4.84 66.20+4.79 59.20 £ 7.73
Model BO (emobase) [259] 65.21 62.50 63.82 64.58 66.67
Majority vote (Acoustic) [64] - - - 65.00 -
Audio (fusion) [61] - 83.33 - 81.25 79.17
DemCNN [95] 62.50 62.50 62.50 62.50 62.50
CNN - LSTM (MFCC) [352] 82.00 38.00 51.00 64.58 92.00
Attempt 3 [66] - - - 64.58 -
Proposed Transformer-based models

BERT+ ViT+Co-Attention 92.83£6.39 81.67£2.04 86.81+3.37 87.50+3.49  93.33+6.24
Multimodal BERT - eGeMAPS 74.51£1.01 87.50£6.45 80.35£2.77 78.75+2.04  70.00%3.12
Multimodal BERT - ViT 73.91£2.40 91.67+2.64 81.79+1.72 79.584+2.04  67.50+£4.08

Multimodal BERT - eGeMAPS+ViT  76.57£3.74 89.17+£5.65 82.28+£3.49 80.83£3.58  72.50+5.65

BERT+ViT+Gated Self-Attention 90.87+3.50 89.17+£2.04 89.94+1.36 90.00+1.56  90.83£4.08

7.6.2 MMSE Regression Task

The results of the proposed models mentioned in Section 7.4 for the MMSE regression
task are reported in Table 7.5. In addition, in this table we compare the results of our in-
troduced models with research works proposing multimodal approaches, unimodal models
using only text data, and unimodal approaches using only speech data.

Regarding our proposed models, one can observe from Table 7.5 that BERT + ViT +
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Gated Self-Attention obtains the lowest RMSE score accounting for 3.61 followed by BERT
+ ViT + Co-Attention, whose RMSE score is equal to 4.20. Regarding Multimodal BERT
- eGeMAPS, Multimodal BERT - ViT, and Multimodal BERT - eGeMAPS + ViT, it is
obvious that these neural networks are complex for the MMSE regression task achieving
RMSE scores equal to 5.64, 5.50, and 5.62 respectively.

In comparison to the multimodal approaches, as one can easily observe from Table
7.5, BERT + ViT + Gated Self-Attention, which constitutes our best performing model,
improves the RMSE score obtained by the multimodal state-of-the-art approaches by
0.15-2.40. Regarding BERT + ViT + Co-Attention, it improves the RMSE scores of all
the existing research initiatives, except Bimodal Network (Ensembled Output) [263], by
0.14-1.41. In terms of the Multimodal BERT - eGeMAPS, Multimodal BERT - ViT,
and Multimodal BERT - eGeMAPS + ViT, it seems that these architectures are rather
complex for the MMSE regression task improving the RMSE score of only one research
work [64].

In comparison with the unimodal approaches exploiting only text data, one can easily
observe from Table 7.5 that BERT 4 ViT 4 Gated Self-Attention performs better than
the existing research initiatives improving the current RMSE score by 0.13-2.25. In addi-
tion, BERT + ViT + Co-Attention achieves comparable performance to existing research
works outperforming all the existing research works, except Transformer-XL [263] and
Text (fusion) [61], by 0.10-1.66. Finally, Multimodal BERT - ViT obtains lower RMSE
score than the one obtained by [90, 64].

In comparison with the unimodal approaches using only speech data, one can observe
from Table 7.5 that BERT + ViT + Gated Self-Attention outperforms all the research
initiatives by a large margin of 1.47-3.06. Similarly, BERT + ViT 4 Co-Attention obtains
lower RMSE score than the scores achieved by all the research works. Specifically, the
performance gain ranges from 0.48 to 2.47. Finally, Multimodal BERT - eGeMAPS,
Multimodal BERT - ViT, and Multimodal BERT - eGeMAPS + ViT outperform all the
state-of-the-art approaches, except Attempt 3 [66] and VGGish [263], improving the RMSE
score by 0.22-1.03, 0.36-1.17, and 0.24-1.05 respectively.

It is obvious that the research works exploiting only speech data obtain higher RMSE

scores than the ones exploiting text data or the combination of text and speech data.

Table 7.5: MMSE Regression Task: Performance comparison among proposed models and state-
of-the-art approaches on the ADReSS Challenge test set. Reported values are mean + standard
deviation. Results are averaged across five runs. Best results are in bold.

Architecture RMSE
State-of-the-art approaches (Multimodal)

Fusion Wavg (3-best) [351] 4.65
LSTM with Gating (Acoustic + Lezical + Dis) [62] 4.54

Bimodal Network (Ensembled Output) [263] 3.77
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Acoustic+silence & Transcript [90] 5.32
Random Forest (NLP) + gradient boosting (acoustic) [64] 6.01
Audio + Text [61] 4.47
Ensemble [95] 5.06
Attempt 4 [66] 4.91
SELECTED FEATURE [25}] 4.34
State-of-the-art approaches (only Text)

bi-LSTM-Att [351] 4.66
LSTM (Lexical + Dis) [62] 4.88
Transformer-XL [263] 4.02
Transcript [90] 5.86
Random Forest (NLP) [64] 5.62
Text (fusion) [61] 3.74
Attempt 5 [66] 4.30
n-gram [254] 4.61
fastText, bi+trigram [65] 4.87
State-of-the-art approaches (only Speech)

BoAW fusion (3-best) [351] 6.45
LSTM (Acoustic) [62] 5.93
VGGish [263] 5.08
Acoustic + Silence [90] 5.97
Gradient Boosting (Acoustic) [64] 6.67
Audio (fusion) [61] 5.86
pBLSTMCNN (log-Mel) [352] 5.90
acoustic-all [254] 6.42
Attempt 3 [66] 5.18
Proposed Transformer-based models

BERT+ViT+Co-Attention 4.20 £0.47
Multimodal BERT - eGeMAPS 5.64 £0.11
Multimodal BERT - ViT 5.50 £0.30
Multimodal BERT - eGeMAPS+ViT 5.62 £0.12
BERT+ViT+Gated Self-Attention 3.61 +0.48

7.7 Discussion

The detection of dementia from spontaneous speech has emerged into a hot topic
throughout the years due to the fact that it constitutes a time-effective procedure. Al-

though dementia detection from speech is a hot topic and item of interest from several
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researchers around the world, there are still significant limitations that need to be ad-
dressed. The main limitation is pertinent to the way the different modalities, i.e., acoustic,
visual, and textual, are combined in a single neural network. Research works having pro-
posed multimodal methods tend to train separately acoustic, language, and visual models
and then apply majority vote or average-based approaches for the AD classification and
MMSE regression task respectively. In addition, they tend to add or concatenate the
representations obtained by the different modalities, thus treating equally each modality.
Therefore, in this study, we aim to tackle the aforementioned limitations and propose three
novel architectures, which combine the different modalities effectively achieving competi-
tive performance to existing research initiatives.

From the results obtained in this study for the AD classification task, we found that:

e Finding 1: The incorporation of a co-attention mechanism, which can learn the
attention weights for words and image patches simultaneously, outperforms the mul-

timodal research initiatives except one in terms of the Accuracy score.

e Finding 2: We propose a method to inject visual and acoustic modalities along
with the textual one into a BERT model via a Multimodal Shifting Gate. We
experiment with injecting only visual information, only acoustic information, and
their combination. Findings state that the injection of both modalities performs

better than the injection of single modalities.

e Finding 3: We introduce an approach aiming to model both the inter- and intra-
modal interactions at the same time and show that this approach is the best per-

forming one among the introduced approaches.
From the results obtained in this study for the MMSE regression task, we found that:

e Finding 4: The incorporation of the co-attention mechanism at the top of the
pretrained models, i.e., BERT and ViT, obtains low RMSE improving all the state-
of-the-art approaches except [263, 61].

e Finding 5: Multimodal BERT models do not perform well to the MMSE regression
task. These architectures are rather complex for the limited dataset used in this

study.

e Finding 6: BERT+ViT+Gated Self-Attention improves the RMSE score in the
MMSE regression task by 0.13-3.06 obtaining a new state-of-the-art result. The
ability of this architecture to perform well both in the AD classification task and
in the MMSE regression task establishes the usefulness of this architecture for the
dementia detection problem and indicates that both the inter- and intra-modal in-

teractions are important.

Although the unimodal approach proposed by [61] outperforms our best performing

model in the AD classification task, our best performing model obtains better results in the
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MMSE regression task. In addition, our introduced model is more computationally and
time-effective, since the approach by [61] extracts embeddings by employing transformer
networks, applies feature aggregation techniques, trains traditional machine learning al-
gorithms, and finally applies a majority voting approach of the top-3 performing models.
Regarding the multimodal approach proposed by [61], it achieves lower evaluation re-
sults than the unimodal approach. We speculate that this degradation in performance is
attributable to the fact that the majority-vote approach does not take the interactions

between the different modalities into consideration.

7.8 Summary

In this chapter, we introduced three novel multimodal neural networks for detecting
dementia (AD classification task) and predicting the MMSE scores (MMSE regression
task) from spontaneous speech. First, we proposed a model consisting of BERT, ViT,
and a co-attention mechanism at the top of the proposed architecture, which is capable
of attending to both the words and the image patches simultaneously. Results indicated
that the proposed model achieved an accuracy of 87.50% in the AD classification task
outperforming all the research works proposing multimodal approaches except one. Re-
garding the MMSE regression task, our proposed architecture achieved an RMSE score
equal to 4.20. Secondly, we introduced a deep learning architecture, where we injected in-
formation from the visual and acoustic modalities along with the textual one into a BERT
model and used an attention gate mechanism to control the importance of each modality.
Results for the AD classification task suggested that the injection of both the acoustic
and visual modalities enhanced the performance of the models achieved when using only
either the acoustic or the visual modality along with the textual one. Finally, we intro-
duced a transformer-based network, where we concatenated the representations obtained
via BERT and ViT and passed the representation through a self-attention mechanism
incorporating a novel gating mechanism. Findings showed that this introduced model
was the best performing one on the ADReSS Challenge test set reaching Accuracy and
Fl-score up to 90.00% and 89.94% respectively. In terms of the MMSE regression task,
our best performing model obtained an RMSE score of 3.61 improving the state-of-the-art
RMSE scores for the regression task of the ADReSS Challenge by 0.13-3.06.

In Chapters 5-7, we utilized manual transcripts for conducting our experiments. How-
ever, manual transcripts are not always available. Therefore, in the next chapter, we will
continue with experimenting with multimodal fusion methods by utilizing both manual

and automatic transcripts.






Chapter 8

Context-Aware Attention Layers
coupled with Optimal Transport
Domain Adaptation and
Multimodal Fusion methods for

recognizing dementia

8.1 Introduction

In the previous chapters, we introduced methods for fusing the different modalities
utilizing manual transcripts. However, some limitations still exist. Specifically, manual
transcripts are not available in clinical settings. Additionally, in Chapter 7, we proposed a
method, which concatenates the representation vectors of the two modalities and exploits a
self-attention layer incorporating a gated model. However, in terms of the textual modality
recent studies have shown that Self-Attention layers treat the input sequence as a bag-of-
word tokens and each token individually performs attention over the bag-of-word tokens.
Consequently, the contextual information is not taken into account in the calculation of
dependencies between elements. There have been proposed a number of studies enhancing
the self-attention layers with contextual information [354, 355, 356, 357].

In addition, the reliability of a machine learning model’s confidence in its predictions,
denoted as calibration [11, 12], is critical for high risk applications, such as deciding
whether to trust a medical diagnosis prediction [156, 157, 158]. However, no prior work
has taken into account the calibration of the models, creating in this way overconfident
models. According to [171], modern neural networks are not well-calibrated, while they
are overconfident at the same time.

In order to tackle the aforementioned limitations, in this chapter, we introduce deep

neural networks, which are trained in an end-to-end trainable manner and capture both

189



Chapter 8. Context-Aware Attention Layers coupled with Optimal Transport Domain
190 Adaptation and Multimodal Fusion methods for recognizing dementia

the inter- and intra-modal interactions. Similar to the previous chapters, we convert the
audio files into images consisting of three channels, namely log-Mel spectrograms, their
delta, and delta-delta. Next, each transcript and image are passed through BERT [26] and
DeiT [358] models respectively. In order to ensure that the sequence length of the vectors
obtained by BERT and DeiT is the same, we exploit an Optimal Transport Kernel (OTK)
Embedding. We pass the textual representation through an enhanced self-attention layer
with contextual information. We exploit three main methods for the contextualization,
including the global context, deep context, and deep-global context [359, 360]. Next, we
pass the image representation through a self-attention mechanism with a novel gating
model proposed by [83] to model the intra-modal interactions. Motivated by the study of
[273], we use optimal transport based domain adaptation [361] methods for capturing the
inter-modal interactions. Then, we propose two attention-based methods for fusing the self
and cross-attention features. Finally, for preventing models becoming too overconfident,
we use label smoothing. We use metrics for assessing both the performance and the
calibration of our model. We verify the effectiveness of our approaches by conducting
experiments on two publicly available datasets, namely ADReSS and ADReSSo Challenge
datasets, and using both manual and automatically generated transcripts. We show that
our introduced approaches obtain multiple advantages over the state-of-the-art approaches.

The contributions of this chapter can be summarized as follows:

e To the best of our knowledge, this is the first study utilizing DeiT, optimal transport
kernel, and optimal transport domain adaptation methods in the task of dementia

detection from spontaneous speech.

e This is the first study in the task of dementia detection from spontaneous speech
exploiting label smoothing for preventing the models become too overconfident. We
also evaluate our proposed models in terms of both the performance and the cali-

bration.

e This is the first study in the task of dementia detection from speech data exploiting
context-aware self-attention mechanisms and comparing two different approaches for

fusing the self- and cross-attention features.

e We conduct a series of ablation experiments to demonstrate the effectiveness of the
introduced approach. We evaluate our approaches on the ADReSS and ADReSSo
Challenge datasets and show that they achieve competitive results to the existing

research initiatives.

8.2 Data & Task

8.2.1 ADReSS Challenge Dataset

We use the ADReSS Challenge Dataset described in Section 3.3.5.2 for conducting our

experiments.
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8.2.2 ADReSSo Challenge Dataset

To further verify the effectiveness of our proposed approaches, we use the ADReSSo
Challenge Dataset described in Section 3.3.5.3 for conducting our experiments. This
dataset includes only audio files. No transcripts are provided. Therefore, one should
convert the speech into text automatically via Automatic Speech Recognition (ASR) meth-
ods. Specifically, we use whisper! [362] and get the automatically generated transcripts

per audio file.

8.2.3 Task

Let a labeled dataset consist of audio files and their corresponding transcripts. Each
transcript along with its audio file belongs to an AD patient or non-AD patient. The task
is to identify if a specific transcript along with its audio file corresponds to an AD patient

or to a person belonging to the healthy control group (binary classification problem).

8.3 Predictive Models

8.3.1 Architecture

In this section, we describe our proposed deep learning architectures for detecting AD
patients. The proposed architectures are illustrated in Fig. 8.4. Due to the fact that
the manual transcripts have been annotated using the CHAT coding system [348], we use
the PyLangAcq library [275] for having access to these transcripts. In addition, we use
the Python library, called librosa [363, 312], and convert each audio file into a log-Mel
spectrogram, its delta, and delta-delta. In this way, we create an image consisting of three
channels. For all the experiments conducted, we use 224 Mel bands, hop length equal to
1024, and a Hanning window. Each image is resized to (224 x 224) pixels.

Firstly, we pass each transcript through a BERT [26] model and the corresponding
image through a DeiT [358] model. Formally, let X € R™P and Y € RT*P be the
outputs of the BERT and DeiT pretrained models respectively. Next, we pass Y through
an Optimal Transport Kernel introduced by [364], in order to ensure that the sequence

RT*P where T = n,

length of Y is equal to the sequence length of X, i.e., T'=n. Let S €
denote the output representation of the Optimal Transport Kernel.
Context-Aware Self Attention for the textual modality: Fig. 8.2a illustrates the
conventional self-attention mechanism, which individually calculates the attention weight
of two items, i.e., "the” and ”tomorrow”, ignoring the contextual information. In this
study, we aim to enhance the self-attention layer by adding contextual information. There-
fore, we exploit the context-based self-attention layer [359], which is illustrated in Fig. 8.1.
We observe that this layer receives as input the input sequence denoted by X and the

contextual information vector denoted by C.

"https://github.com/openai/whisper
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We transform the input sequence X into a query, key, and value matrix, as described

via the Equation 8.1:

Q=XW;,K=XW,, V=X (8.1)

, where W, € RP*Da 117, € RP*Pr are learnable weight matrices.
As described in Equations 8.2 and 8.3, the context vector C' € R™"*Pe is transformed

to a contextual query matrix Q. € R"*P4 and a contextual key matrix K, € R?*Ds:

Qc=CW; (8.2)

, where W¢ € RP<*Dq is a learnable weight matrix.
K. =CWg (8.3)

, where W¢ € RP<XDk ig a learnable weight matrix.

Next, we exploit gated sum, as illustrated in Fig. 8.1b, for quantifying the contribution
of the input sequence X and the contextual vector C' to the attention weight prediction.
Finally, we get new query and key matrices denoted by Q € R™* P« and K € R™*Px

respectively. We describe the equations governing the gated sum below:

g =0 (QWE + QW) (8.4)

, Where WgQ, WgQC € RPax1 are learnable parameters.
gr =0 (KW} + KW[e) (8.5)

where WgK , Wch € RPxx1 are learnable parameters.

gq and g indicate the weight of the importance of the contextual information.

Q= (1 - gq)Q + quc (8-6)

K=(1-gx)K + g.K. (8.7)

Therefore, we obtain new query and key matrices. Finally, we calculate the self-attention

via the equation mentioned below:

VDy,

Next, we describe three methods, namely Global Context, Deep Context, and Deep-

= =T
Attention(Q,K, V) = softmazx (Q K ) 14 (8.8)

Global Context, for calculating the contextual vector C. Specifically, we follow [359, 360]

to represent the context vector (C'), which is composed of internal representation.
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e Global Context: Fig. 8.2b illustrates the global context strategy. More specifically,
the global context indicates the mean operation over the input sequence for sum-
marizing the input representation. Let X = [z1,x9,...,2,] € R™*P. We calculate
the context representation C' as defined in Eq. 8.9. Note that the output of Eq. 8.9
is a vector, i.e., C € RP, instead of a matrix. To facilitate subsequent calculation

operations, we use Eq. 8.10, where we obtain the contextual matrix C € R"*P.
_ 1 &
C =X = Avgpool(X) = - ;JIZ (8.9)

C = stack (C,C, ..., C) (8.10)

e Deep Context: By deeply stacking self-attention layers, the model captures only
high-level syntactic and semantic information neglecting the lower-level information.
Therefore, as shown in Fig. 8.2¢, the deep context strategy enables the layer to fuse

different types of syntactic and semantic information captured by different layers.

Formally, taking X = [z1, %2, ...,2,] € R™P as the initial input sequence X, and
the output of the L layer is X! = [:Ull, mlz, o :L“iz] € R"*P the deep context matrix

C € R™P can be represented as follows:
C =X (8.11)

X = concat(X°, X', ..., X171 e R™P (8.12)

, where W9 € RIPXP is a learnable parameter matrix. concat(.) denotes join

operation.

¢ Deep-Global Context: The deep-global context strategy combines the strategies
of global context and deep context as described before. The deep-global context
strategy is illustrated in Fig. 8.2d and is described via the equations below:

C =CWg (8.13)
C = concat(C°,C, ..., Cl_l) (8.14)

, where C7 = Avgpool(X7),C7 € RP. Therefore, C € R’. In addition, Wg €
RIP*D - Thus, we obtain C' of Eq. 8.13, as C' € RP.

As mentioned before, to facilitate subsequent calculation operations, matrix C €
R™*P is obtained through the stack operation, as follows: C = stack(C,C, ..., C).

Let F' be the output of the context-based self-attention mechanism corresponding to
the textual modality denoted by X.
Gated Self-Attention for the image modality: Motivated by the work of [83], we

pass S through a self-attention mechanism, which incorporates a novel gating model, for
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(a) Context-based Self-Attention. This method (b) Gated sum. This unit is used for quantifying
is different from the conventional self-attention the contribution of the original representation X
mechanism, since it exploits a contextual infor- and the context vector C to the attention weight

mation vector C. prediction.

Figure 8.1: Context-based Self-Attention
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(a) Conventional Self-Attention. This method (b) Global Context. This method captures the

calculates the attention weight of two items ig- summary representation of the input sentence

noring the contextual information. through an average operation.
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(c) Deep Context. This method captures both (d) Deep-Global Context. This method com-

the low- and high-level syntactic and semantic bines the concepts of global and deep context.

information.

Figure 8.2: Self-Attention based on different context-vectors

capturing the intra-modal interactions. This gated self-attention mechanism is illustrated

in Fig. 8.3. The self-attention mechanism including the gating model is described via the
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equations below:

Q=8K=8V-=_5 (8.15)

M =0 (FC? (FCJ(Q)® FC(K))) (8.16)

where FCJ, F C,g e RPxds  FC9 € R%*2 are three fully-connected layers, and dg denotes
the dimensionality of the projected space and is equal to 64 units. ® denotes the element-
wise product function and o the sigmoid function. In addition, M € RT*2 corresponds to
the two masks M, € RT and M), € RT for the features @ and K respectively.

Next, the two masks M and K are tiled to Mq, M, € RT*D and then used for com-

puting the attention map as following:

(Qo) (ko)
\/5

A9 = softmax (8.17)
H= AV (8.18)

Let H be the output of the self-attention mechanism corresponding to the visual modal-
ity denoted by S.

(=] (]
1

K Q

Figure 8.3: Gated Dot-product. This gating model is incorporated in the conventional self-
attention mechanism for improving the quality of the learned attention. This method is based on

low-rank bilinear pooling.

Optimal Transport: Next, we use optimal transport-based domain adaptation methods
[361, 365, 366], i.e., Earth Mover’s Distance (EMD) Transport, for transporting between
each pair of modalities, which can be interpreted as domain adaptation across two modal-

ities. Formally:

X'=0T(S — X) (8.19)
S'=0T(X — 9) (8.20)
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Concatenation: After that, we concatenate transported and self-attended features as

follows:
C = [F, X’] (8.21)

S =[H,JY5] (8.22)
Fusion: Next, we describe two methods for fusing C' and S:

e (i) Co-Attention Mechanism: We exploit the fusion method proposed by [79]
and implemented in Chapter 7. Specifically, given (C € Rd/xn> and (S € Rd/XT>,
where d = 2 - D, the affinity matrix F € R™*7 is calculated using the equation

presented below:

F = tanh (CTW,5) (8.23)

where W, € R¥*? is a matrix of learnable parameters. By treating the affinity

matrix as a feature, we learn to predict the attention maps via the following,

H?® = tanh (WS + (W.C) F) (8.24)
H = tanh (W.C + (W,S) FT) (8.25)

where W, W, € RF*?" are matrices of learnable parameters. We set k equal to 40.

Then, we generate the attention weights through the softmax function as follows,

a® = softmaz (wi H*) (8.26)
a® = softmax (wchC) (8.27)
where a; € R and a, € R™™. wp, wpe € RF*! are the weight parameters. Based

on the above attention weights, the attention vectors are obtained via the following

equations:
T . .
§= Z ais', ¢= Z ajc! (8.28)

where § € R4 and ¢ € RIX?,

Finally, these vectors are concatenated p = [¢, 5]. We apply a dropout layer with a
rate of 0.5. Then, this vector is passed through a Dense Layer consisting of 128 units
with a ReLU activation function. We apply also a dropout layer with a rate of 0.2.

Finally, we use a dense layer consisting of two units, which gives the final output.

The proposed architecture is illustrated in Fig. 8.4a.
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e (ii) Attention-based fusion: Motivated by the work of [270], we design an at-
tentional reduction model for C, as defined in Equation 8.21 (or S, as defined in
Equation 8.22), for obtaining its attended feature ¢ (or §). To the best of our
knowledge, this is the first study utilizing this fusion method in the task of demen-
tia detection from spontaneous speech. Taking C' as an example, we describe the

attention reduction model used in this study via the equations presented below:

af = softmax (MLP (C)) (8.29)

, where af refers to the learned attention weights and MLP is given by the equation
below:
MLP = FC(128) — ReLU — Dropout(0.1) — FC(1) (8.30)

n
=Y afe (8.31)
i=1

, where we obtain the attended feature ¢ for C.

We obtain the attended feature § using an independent attention reduction model
in the same way. Having computed ¢ and §, we design the linear multimodal fusion
function as follows:

z = LayerNorm (WlXé+ W[3) (8.32)

, where W., W, € R %= are two linear projection matrices, d, is the common
dimensionality of the fused feature and is equal to 128, and LayerNorm [28] is used
for stabilizing the training. Finally, we pass z to a dense layer consisting of two

units, which gives the final prediction.

The proposed architecture is illustrated in Fig. 8.4b.

8.3.2 Model Calibration

To prevent the model becoming too overconfident, we use label smoothing [30, 31], as
described in Chapter 4. Specifically, label smoothing calibrates learned models so that the
confidences of their predictions are more aligned with the accuracies of their predictions.

For a network trained with hard targets, the cross-entropy loss is minimized between
the true targets y; and the network’s outputs pg, as in H(y,p) = Zszl —yrlog(pk), where
yr is 717 for the correct class and ”0” for the other. For a network trained with label

smoothing, we modify the true targets y; to y,fS“ as shown in Eq. 8.1:

LS, @
v =y (1= - 8.1

, where « is the smoothing parameter and K is the number of classes.
Finally, we minimize the cross-entropy between the modified targets ylgs“ and the

network’s outputs pg, as shown in Eq. 8.2:
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(b) Attention-based Fusion. The shaded box shows this fusion method. This method exploits two in-
dependent attentional reduction models. Features are fused through an add operation, while a layer

normalization is used for stabilizing training.

Figure 8.4: Illustration of our Proposed Architectures. For the textual modality, we use BERT,
while for the image modality, we use DeiT and exploit an Optimal Transport Kernel. Next, we use
optimal transport domain adaptation methods for transporting between each pair of modalities.
Also, we pass the textual representation through context-based self-attention layers, while the
image representation is passed through a gated self-attention layer. Finally, methods for fusing the
self- and cross-attention features are presented, namely Co-Attention and Attention-based Fusion.
Each shaded box shows the fusion method used, namely Co-Attention and Attention-based Fusion.

K
H(y,p) =Y —y;5 log (ps) (8.2)
k=1

8.4 Experiments

8.4.1 Baselines

Table 8.1: Baselines (ADReSS Challenge Dataset).

Reference/Architecture Features/Methodology

Baselines - Unimodal state-of-the-art approaches (only transcripts)
BERT (Chapter 5) Fine-tune a BERT model
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Baselines - Multimodal state-of-the-art approaches
Fusion Maj. (3-best) [351]

Majority Vote of the BoOAW-MFCC-C125, ZFF, and bi-
LSTM-Att

System 3: Phonemes and

Audio [250]

Acoustic features (emobase, eGeMAPS, ComParE2016)
along with feature selection techniques, transcription of

the segmented text into phoneme written pronunciation
using CMUDict

Fusion of System [67]

merged the x-vectors features set with the combination
of linguistic feature sets (GMax/LSTM-RNNs/LSTM-
RNNs-Pos) and trained a SVM classifier

Bimodal Network (Ensem-

bled Output) [263]

For the acoustic modality, the authors use VGGish, while
for the textual modality, the authors exploit GloVe,
Transformer-XL, POS and HC features. Finally, the au-
thors combine the results of the models via an ensemble

approach.

GFI, NUW, Duration,

Character 4-grams, Suf-

fixes, POS tag, UD [95]

feature extraction, early fusion approach, train a Logistic

Regression Classifier

Acoustic & Transcript [90]

For transcripts, the authors exploited BERT, while for
speech, the authors used x-vector PCA-transformed coef-

ficients.

Dual BERT [91]

concatenation of the representations obtained by BERT
and Speech BERT

Model C [259]

The authors extracted emobase, eGeMAPS, ComParE
features. For the text modality, the used GloVe embed-
dings and pos-tags. Finally, they trained a Neural net-
work consisting of CNN, BiLSTM, Attention, GRU, and

Dense layers.

Majority vote (NLP
Acoustic) [64]

_l’_

The authors extracted a set of acoustic and linguistic
features. After training shallow machine learning classi-
fiers, they chose the three best-performing acoustic mod-
els along with the best-performing language model, and
computed a final prediction by taking a linear weighted

combination of the individual model predictions.

Audio + Text [92]

majority level approach of six models

LSTM with Gating

(Acoustic + Lexical
Dis) [62]

_l’_

Acoustic, Linguistic Features, Bi-LSTM, feed-forward
highway layers with gating units
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Ensemble [170]

A majority vote was taken between the predictions of
the three individual models. Specifically, the authors ex-
tracted three sets of features, namely disfluency, acoustic,

and interventions, and trained three deep neural networks.

BERT+VIiT (log-Mel spec-
trogram) (Chapter 6)

coversion of an audio file into an image of three channels,
BERT for the text representation, Vision Transformer for

the image representation, concatenation

BERT+ViT+Gated Multi-
modal Unit (log-Mel spec-
trogram) (Chapter 6)

Gated Multimodal Unit to control the information flow of

the different modalities.

BERT+ViT+Crossmodal
Attention (log-Mel spec-
trogram) (Chapter 6)

Similar to [76], the authors exploited a cross-attention

mechanism.

BERT+ViT+Co-
Attention (Chapter 7)

The authors used a co-attention mechanism to fuse the

representation matrices of the two modalities.

Multimodal =~ BERT -
eGeMAPS (Chapter 7)

The authors injected acoustic information (eGeMAPS)
into a BERT model.

Multimodal BERT - ViT
(Chapter 7)

The authors injected image information (via ViT) into a
BERT model.

Multimodal =~ BERT -
eGeMAPS+ViT  (Chap-
ter 7)

The injected both
(eGeMAPS) and image information (via ViT) into
a BERT model.

authors acoustic information

BERT+ViT+Gated Self-
Attention (Chapter 7)

The authors concatenated the outputs of BERT and ViT
and passed the resulting matrix through a self-attention
layer incorporating a gate model for capturing the inter-

and intra-modal interactions.

Transcript+Image—+Acoustic

[367]

The authors used a Tensor Fusion Layer for fusing the

different modalities.

Introduced Approaches without Label Smoothing

Our proposed approaches described in Section 8.3 without

label smoothing.

Table 8.2: Baselines (ADReSSo Challenge Dataset).

Reference/Architecture

Features/Methodology

Baselines - Unimodal state-of-the-art approaches (only transcripts)

BERT

We exploit a BERT model, get the [CLS]| token, and pass
it through two dense layers consisting of 128 and 2 units

respectively.
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Model C: LR[Comp| +

LR[DisFl| + Ernie The authors employed model stacking to combine two

+ Bert (stacking) [368] logistic regression models (LR) using complexity and
(dis)fluency features respectively, and the two pretrained
language models, i.e. BERT and ERNIE.

Model 5: [262] The authors concatenate the last three states of the BERT

sequence classifier with the confidence score input. The

confidence score input is generated by the ASR system.

Label Fusion selected mod- The authors extracted a set of handcrafted features,

els [369] namely syntactic, readability, and lexical diversity, and
a set of deep textual embeddings, including BERT and so
on. Finally, the authors trained Logistic Regression and
SVM classifiers.

Mp1 [370] The authors add sentence-level pauses to ASR transcripts
and exploit a BERT model.

Baselines - Multimodal state-of-the-art approaches
LSTM w/ Gating (Words

+ Acoustic + Disf + Pse extraction of acoustic and language features, feed-forward
+ WP) [264] highway layers with gating units
Global Fusion [256] fusion of BERT (ASR) and acoustic models, namely x-

vectors, x-vectors with 250ms frame-length, and encoder-
decoder ASR embeddings (SB Enc/Dec).
Top-10 Avg. [169] Average fusion of predicted class probabilities of the 10

best performing models

Attempt 1: [371] The authors used acoustic features, linguistic features,
and embedding features. For each type of feature, they
exploited a deep neural network consisting of multihead
attention layers, convolutional layers, and dilated convo-
lutional layers. They used an attention layer for fusing

the outputs of the different branches.

Introduced Approaches without Label Smoothing
Our proposed approaches described in Section 8.3 without

label smoothing.

We compare our introduced approaches with the following research works reported
in Tables 8.1 and 8.2, since these research works have conducted their experiments on
the ADReSS and ADReSSo test set. Specifically, Table 8.1 describes the baselines used in
terms of the ADReSS Challenge dataset, while Table 8.2 reports the baselines used regard-
ing the ADReSSo Challenge dataset. Regarding Table 8.1, we are using existing published

results for all the baselines except for Introduced Approaches without Label Smoothing. In
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terms of Table 8.2, we are using existing published results for all the baselines except for:
(i) BERT, and (ii) Introduced Approaches without Label Smoothing.

8.4.2 Experimental Setup

We divide the ADReSS Challenge train set into a train and a validation set (65%-
35%). We use a batch size of 4. We train the introduced architectures five times and
report the results on the ADReSS Challenge test set via mean + standard deviation.
Similarly, we divide the ADReSSo Challenge train set into a train and a validation set
(65%-35%). We train the introduced architectures five times and report the results on the
ADReSSo Challenge test set via mean + standard deviation. We use EarlyStopping, where
we stop training if the validation loss has stopped decreasing for eight consecutive epochs.
Also, we apply StepLR with a step_size of 4 and a gamma of 0.1. We set a of Eq. 8.1
equal to 0.001. We set D = D, = 768. We set D, = D, = 64. Regarding the global
context strategy, we use one layer of the contextual self-attention mechanism. In terms of
the deep-context strategy, we use three layers of the contextual self-attention mechanism.
With regards to the deep-global context strategy, we use two layers of the contextual self-
attention mechanism. We use the BERT base uncased version and the DeiT? model from
the Transformers library [305]. For the optimal transport methods, we use the Python
library Optimal Transport [372]. All the models have been created using the PyTorch
library [346]. All experiments are conducted on a single Tesla P100-PCIE-16GB GPU.

8.4.3 Evaluation Metrics
8.4.3.1 Performance Metrics

Accuracy (Acc.), Precision (Prec.), Recall (Rec.), F1-Score, and Specificity (Spec.)
have been used for evaluating the results of the introduced architectures. These metrics
have been computed by regarding the dementia class as the positive one. We report the

average and standard deviation of these metrics over five runs.

8.4.3.2 Calibration Metrics

We evaluate the calibration of our model using the metrics proposed by [308, 309, 171].

Specifically, we use the metrics mentioned below:

e Expected Calibration Error (ECE). The calibration error is the difference be-
tween the fraction of predictions in the bin that are correct (accuracy) and the mean
of the probabilities in the bin (confidence). First, we divide the predictions into M
equally spaced bins (size 1/M).

1 N
acc(Bp,) = w iezBm Wi = i) (8.1)

facebook/deit-base-distilled-patch16-224



8.5 Results 203

conf (B, Z Di (8.2)

, where y; and ¢; are the true and predicted labels for the sample ¢ and p; is the

confidence (predicted probability value) for sample 7.

M

Z

m=

|acc m) — conf (Bp)| (8.3)

, where N is the total number of data points and B,, is the group of samples whose

predicted probability values falls into the interval I, = (7”7_1, %]

Perfectly calibrated models have an ECE of 0.

e Adaptive Calibration Error (ACE). Adaptive Calibration Error uses an adap-
tive scheme which spaces the bin intervals so that each contains an equal number of

predictions.

ACE = K ZZ lace(r, k) — conf(r, k)| (8.4)

k=1r=1
, where acc(r, k) and con f(r, k) are the accuracy and confidence of adaptive calibra-
tion range r for class label k, respectively; and IV is the total number of data points.
Calibration range r defined by the [N/R]th index of the sorted and thresholded

predictions.

8.5 Results

The results of our introduced models are reported in Tables 8.3 and 8.4. Specifically,
Table 8.3 reports the results on the ADReSS Challenge dataset, while Table 8.4 reports
the results on the ADReSSo Challenge dataset. Also, these tables present a comparison of
our introduced approaches with existing research initiatives, which have proposed either
unimodal or multimodal approaches. In order to compare models, we use the Almost
Stochastic Order (ASO) test [47, 48] of statistical significance implemented by [49]. We
use con fidence_level = 0.95 and num_comparisons = 50. Generally, the ASO test de-
termines whether a stochastic order [50] exists between two models or algorithms, i.e., A
and B. This method computes a score (€min) which represents how far the first is from
being significantly better in respect to the second. When ¢€,,;, = 0, then one can claim
that A is truly stochastically dominant over B. When €,,;, < 0.5, one can claim that A
is almost stochastically dominant over B. For €,,;, = 0.5, no order can be determined.
(1) means that Attention-based Fusion (Deep Context) with label smoothing is stochasti-
cally dominant over the respective models. Similarly, in terms of the ADReSSo Challenge
dataset, (f) means that Co-Attention (Deep Context) with label smoothing is stochas-

tically dominant over the respective models. (%) denotes almost stochastic dominance
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of the Attention-based Fusion (Deep Context) with label smoothing over the respective
approaches. Similarly, in terms of the ADReSSo Challenge dataset, (x) means that Co-
Attention (Deep Context) with label smoothing is almost stochastically dominant over the
respective models. Note that we cannot compare our approaches with all the existing re-
search initiatives, since we do not have access to the multiple runs or the other approaches
have not used multiple runs. In terms of the ECE and ACE calibration metrics, we
use ASO for comparing our best performing model, namely Attention-based Fusion (Deep
Context) or Co-Attention (Deep Context) with label smoothing, with the respective model

without label smoothing.
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Table 8.3: Performance comparison among proposed models and state-of-the-art approaches

on the ADReSS Challenge test set.

Reported values are mean =+ standard deviation. Results

are averaged across five runs. (f) means that Attention-based Fusion (Deep Context) with label

smoothing is stochastically dominant over the respective models. (x) denotes almost stochastic

dominance of the Attention-based Fusion (Deep Context) with label smoothing over the respective

approaches.

Architecture P. (%) R. (%) F1(%) Acc. (%) Spec. (%) || ECE ACE
Baselines - Unimodal state-of-the-art approaches (only transcripts)
BERT (Chapter 5) 87.19 81.66 86.731 87.501 93.33

+3.25 +5.00 +4.53 +4.37 +5.65 H
Baselines - Multimodal state-of-the-art approaches
Fusion Maj. (3-best) [351] - - 85.40 85.20 -
System 3: Phonemes and Audio [250] 81.82 75.00 78.26 79.17 83.33
Fusion of system [67] 94.12 66.67 78.05 81.25 95.83
Bimodal Network (Ensembled Output) [263] 89.47 70.83 79.07 81.25 91.67
GFI, NUW, Duration, Character 4-grams, } B B 77.08 R
Suffizes, POS tag, UD [95]
Acoustic € Transcript [90] 70.00 88.00 78.00 75.00 63.00
Dual BERT [91] 83.04 83.33 82.92 82.92 82.50

+3.97 +5.89 +1.86 +1.56 +5.53
Model C [259] 78.94 62.50 69.76 72.92 83.33
Majority vote (NLP+Acoustic) [64] - - - 83.00 -
Audio + Text [92] - 87.50 - 89.58 91.67
LSTM with Gating (Acoustic + Lewzical + Dis) [62] 81.82 75.00 78.26 79.17 83.33
Ensemble [170] 83.00 83.00 83.00 83.00 -
BERT+ViT (Chapter 6) 90.73 80.83 85.47% 86.251 91.67
(log-Mel spectrogram) +2.74 +2.04 +1.70 +1.67 +2.64
BERT+ ViT+Gated Multimodal Unit (Chapter 6) 80.92 91.67 85.9271 85.007 78.33
(log-Mel spectrogram) +2.30 +3.73 +2.37 +2.43 +3.12
BERT+ViT+Crossmodal Attention (Chapter 6) 86.13 91.67 88.69x 88.33% 85.00
(log-Mel spectrogram,) +3.26 +4.56 +2.12 +2.12 +4.25
BERT+ ViT+Co-Attention (Chapter 7) 92.83 81.67 86.81x 87.50% 93.33

+6.39 +2.04 +3.37 +3.49 +6.24
Multimodal BERT - eGeMAPS (Chapter 7) 74.51 87.50 80.351 78.751 70.00

+1.01 +6.45 +2.77 +2.04 +3.12
Multimodal BERT - ViT (Chapter 7) 73.91 91.67 81.79% 79.58% 67.50

+2.40 +2.64 +1.72 +2.04 +4.08
Multimodal BERT - eGeMAPS+ViT (Chapter 7) 76.57 89.17 82.2871 80.831 72.50

+3.74 +5.65 +3.49 +3.58 +5.65
BERT+ViT+Gated Self-Attention (Chapter 7) 90.87 89.17 89.94% 90.00% 90.83

+3.50 +2.04 +1.36 +1.56 +4.08
Transcript+Image+Acoustic [367] 90.88 80.83 85.4871 86.257 91.66

+3.60 +2.04 +0.76 +1.02 +3.73
Baselines - Introduced models (without label smoothing)
Co-Attention 89.62 85.83 87.637 87.921 90.00 0.1208 0.1660
(Global Context) +1.75 +3.33 +1.80 +1.56 +2.04 +0.2296 +0.0335
Co-Attention 88.25 87.50 87.85x 87.921 88.33 0.1384 0.1532
(Deep Context) +1.56 +2.64 +1.66 +1.56 +1.66 4+0.0109 +0.0110
Co-Attention 90.26 85.00 87.51x 87.92x 90.83 0.1355 0.1648
(Deep-Global Context) +1.70 +4.25 +2.69 +2.43 +1.66 +0.0183 +0.0119
Attention-based Fusion 89.55 85.83 87.32% 87.50% 89.16 0.1256 0.1279
(Global Context) +7.31 +6.24 +4.35 +4.37 +8.58 +0.0291 +0.0277
Attention-based Fusion 91.06 89.16 89.95x% 90.00% 90.83 0.0975% 0.1046%
(Deep Context) +5.04 +3.33 +1.91 +2.04 +5.53 4+0.0188 +0.0173
Attention-based Fusion 90.45 85.83 88.04x 88.33% 90.83 0.1173 0.1065
(Deep-Global Context) +2.93 +2.04 +1.65 +1.66 +3.12 +0.0134 +0.0153
Introduced models (with label smoothing)
Co-Attention 88.65 88.33 88.39x 88.33x% 88.33 0.1075 0.1710
(Global Context) +4.63 +1.66 +1.76 +2.12 +5.53 +0.0198 +0.0281
Co-Attention 93.57 84.16 88.53% 89.16% 94.16 0.1082 0.1316
(Deep Context) +2.08 +4.86 +2.79 +2.43 +2.04 +0.0184 +0.0296
Co-Attention 87.88 87.50 87.39% 87.501 87.50 0.1176 0.1568
(Deep-Global Context) +3.73 +6.97 +2.45 +1.86 +4.56 +0.0167 +0.0306
Attention-based Fusion 90.51 85.00 87.531 87.921 90.83 0.1094 0.1168
(Global Context) +3.40 +4.25 +1.75 +1.56 +4.08 +0.0086 +0.0099
Attention-based Fusion 93.08 89.17 91.06 91.25 93.33 0.0859 0.0830
(Deep Context) +2.03 +2.04 +1.60 +1.56 +2.04 +0.0130 +0.0158
Attention-based Fusion 89.87 83.33 86.207 86.661 90.00 0.1397 0.1508
(Deep-Global Context) +5.52 +4.56 +0.90 +1.02 +5.65 +0.0102 +0.0123
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Table 8.4: Performance comparison among proposed models and state-of-the-art approaches on

the ADReSSo Challenge test set. Reported values are mean + standard deviation. Results are

averaged across five runs. (f) means that Co-Attention (Deep Context) with label smoothing is

stochastically dominant over the respective models. (%) denotes almost stochastic dominance of

the Co-Attention (Deep Context) with label smoothing over the respective approaches.

Architecture P. (%) R.(%) F1 (%) Acc. (%) Spec. (%) H ECE ACE
Baselines - Unimodal state-of-the-art approaches (only transcripts)
BERT 83.35 74.29 78.53t 80.00t 85.55 - -
+0.86 +2.55 +1.43 +1.05 +1.11 - -
Model C: [368] 85.00 80.00 82.00 83.00 86.00 - -
Model 5: [262] 81.58 88.57 84.93 84.51 80.56 - -
Label Fusion selected models [369] - - - 84.51 - - -
Mp1 [370] 87.10 77.14 81.82 83.10 88.89 - -
Baselines - Multimodal state-of-the-art approaches
LSTM w/ Gating (Words ) i 84.00 i i )
+Acoustic+Disf+Pse+WP) [264]
Global Fusion [256) 92.00 74.00 83.00 84.51 94.00 - -
Top-10 Avg. [169] - - 88.89 81.69 80.00 - -
Attempt 1: [371] 75.00 91.67 82.50 80.28 68.57 - -
Baselines - Introduced models (without label smoothing)
Co-Attention 83.77 81.13 81.85% 82.54% 83.88 0.1536 0.2017
(Global Context) +4.59 +9.13 +3.01 +1.69 +6.66 +0.0311  £0.0214
Co-Attention 82.22 84.00 83.01x 83.10% 82.22 0.1349% 0.1845
(Deep Context) +1.79 +4.28 +1.63 +1.26 +2.83 +0.0135  40.0169
Co-Attention 83.03 80.57 81.73% 82.2571 83.88 0.1414 0.1948
(Deep-Global Context) +2.07 +2.79 +1.23 +1.13 +2.72 +0.0091  40.0265
Attention-based Fusion 83.44 74.86 78.90% 80.28t 85.56 0.1633 0.1825
(Global Context) +1.16 +2.14 +1.51 +1.26 +1.11 £0.0207  £0.0140
Attention-based Fusion 81.52 81.14 81.08¢ 81.41% 81.66 0.1442 0.1737
(Deep Context) +3.47 +5.59 +1.58 +1.05 +5.44 +0.0284  £0.0089
Attention-based Fusion 79.58 85.71 82.38% 81.971 78.33 0.1671 0.1820
(Deep-Global Context) +2.69 +4.78 +1.59 +1.38 +4.78 +0.0201  40.0193
Introduced models (with label smoothing)
Co-Attention 84.77 81.71 83.12% 83.66% 85.55 0.1282 0.1630
(Global Context) +2.39 +3.43 +0.95 +0.69 +3.24 +0.0053  £0.0179
Co-Attention 84.43 86.29 85.27 85.35 84.43 0.1178 0.1800
(Deep Context) +1.59 +4.19 +1.78 +1.44 +2.19 4+0.0209  +£0.0213
Co-Attention 82.45 82.86 82.55% 82.82% 82.77 0.1443 0.1749
(Deep-Global Context) +0.99 +4.78 +2.03 +1.38 +2.08 +0.0046  £0.0082
Attention-based Fusion 80.44 81.71 80.95% 81.13t 80.55 0.1540 0.1920
(Global Context) +1.65 +4.98 +2.04 +1.44 +3.04 +0.0195 +0.0215
Attention-based Fusion 85.10 81.71 83.35% 83.94% 86.11 0.1336 0.1660
(Deep Context) +0.53 +3.43 +2.04 +1.69 +0.04 +0.0190 +0.0144
Attention-based Fusion 81.45 85.14 83.18% 83.10% 81.11 0.1690 0.1938
(Deep-Global Context) +1.32 +4.92 +2.42 +1.99 +2.08 +0.0245  +0.0112

8.5.1 ADReSS Challenge Dataset

Regarding our proposed models, one can observe that Attention-based Fusion (Deep

Context) constitutes our best performing model outperforming all the other introduced
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models in all the evaluation metrics except Precision and Specificity. Specifically, Attention-
based Fusion (Deep Context) outperforms the other introduced models with label smooth-
ing in Accuracy by 2.09-4.59%, in Recall by 0.84-5.84%, and in F1l-score by 2.53-4.86%.
Despite the fact that Attention-based Fusion (Deep Context) obtains a lower Precision
score by other introduced models, it surpasses them in Fl-score, which constitutes the
weighted average of Precision and Recall. Although it achieves lower specificity scores by
Co-Attention (Deep Context), it must be noted that in health related studies, F1-score
is more important than Specificity, since high F1-score means that the model can detect
better the AD patients, while high Specificity and low Fl-score means that AD patients
are misdiagnosed as non-AD ones. In addition, Co-Attention (Deep Context) consti-
tutes our second best performing model attaining an Accuracy of 89.16%. It achieves the
highest precision and specificity scores accounting for 93.57% and 94.16% respectively,
while it achieves an Fl-score of 88.53%. It outperforms all the introduced models, except
Attention-based Fusion (Deep Context), in Accuracy by 0.83-2.50% and in Fl-score by
0.14-2.33%. It outperforms all the models in Precision and Specificity by 0.49-5.69% and
0.83-6.66% respectively.

Next, we compare our introduced approaches with label smoothing with the ones with-
out applying label smoothing. As one can easily observe, label smoothing leads to both
performance improvement and better calibration of the proposed approaches. Specifically,
we observe that Attention-based Fusion (Deep Context) with label smoothing obtains
a higher Accuracy score than the one obtained by the respective model without label
smoothing by 1.25%, Attention-based Fusion (Global Context) with label smoothing sur-
passes Attention-based Fusion (Global Context) without label smoothing in Accuracy by
0.42%, etc. In terms of the calibration metrics, namely ECE and ACE, one can observe
that label smoothing leads to better calibrated models. For instance, Attention-based
Fusion (Deep Context) with label smoothing obtains an ECE of 0.0859 and an ACE of
0.0830, which are significantly better than the ones obtained by Attention-based Fusion
(Deep Context) without label smoothing by 0.0116 and 0.0216 respectively.

In comparison with the unimodal and multimodal state-of-the-art approaches, one can
observe that our best performing model, namely Attention-based Fusion (Deep Context)
with label smoothing, outperforms the research works in Accuracy by 1.25-18.33% and
in Fl-score by 1.12-21.30%. These differences in performance are attributable to the
fact that our best performing model captures both the inter- and intra-modal interac-
tions through the self-attention mechanisms and optimal transport domain adaptation
methods, enhances the self-attention mechanism with contextual information, and applies
label smoothing in contrast to the research initiatives. In addition, Co-Attention (Deep

Context) outperforms the research works, except [177, 92], in Accuracy by 0.83-16.24%.
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8.5.2 ADReSSo Challenge Dataset

As one can easily observe in Table 8.4, Co-Attention (Deep Context) with label smooth-
ing constitutes our best performing model attaining an Accuracy of 85.35%, a Recall of
86.29%, and a Fl-score of 85.27%. It surpasses the other introduced models (with label
smoothing) in Accuracy by 1.41-4.22%, in Recall by 1.15-4.58%, and in F1-score by 1.92-
4.32%. In addition, we observe that Co-Attention (Deep Context) with label smoothing
achieves better performance than the one obtained by the respective model without label
smoothing. Specifically, the Accuracy is improved by 2.25%, the Recall is improved by
2.29%, the Fl-score presents a surge of 2.26%, the Precision is increased by 2.21%, and
the Specificity is improved by 2.21%. In terms of the calibration metrics, we observe that
the ECE is improved by 0.0171 (ASO test indicates almost stochastic dominance).

Comparing our introduced models with label smoothing with the ones without label
smoothing, we observe that in most cases label smoothing contributes to both the perfor-
mance improvement and better calibration. For instance, Co-Attention (Global Context)
with label smoothing improves Accuracy by 1.12% compared with the respective model
without label smoothing, while ECE and ACE are also improved by 0.0254 and 0.0387
respectively. Similarly, Attention-based Fusion (Deep Context) with label smoothing out-
performs the respective model without label smoothing in F1-score and Accuracy by 2.27%
and 2.53% respectively, while the ECE and ACE also present a decline of 0.0106 and 0.0077
respectively.

In comparison with the unimodal and multimodal baselines, we observe that our best
performing model, namely Co-Attention (Deep Context) with label smoothing, outper-
forms these baselines in Accuracy by 0.84-5.35%. Also, it outperforms all the research
works, except for [169], in Fl-score by 0.34-6.74%. We observe that our best performing
model attains a better performance than BERT (ASO test indicates stochastic dominance),
verifying our initial hypothesis that both modalities, i.e., transcripts and audio files, con-
tribute to a better performance. In addition, we observe that our second best performing
model, namely Attention-based Fusion (Deep Context) outperforms some research works,
except for [262, 369, 264, 256], in Accuracy by 0.84-3.94%.

8.6 Ablation Study

In this section, we run a series of ablation experiments using the ADReSS Challenge
dataset to explore the effectiveness of the introduced architecture described in Section 8.3.
We report the results of the ablation study in Tables 8.5 and 8.6.

First, we explore the effectiveness of the context-based self-attention. To do this, we
remove the contextual information and exploit the conventional self-attention mechanism
introduced by [46]. We observe that the Accuracy score drops from 91.25% to 87.08%,
while the Fl-score presents a decline of 4.60%. Also, we observe that the removal of

contextual information yields to higher standard deviations of the performance metrics.
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Table 8.5: Ablation Study. Reported values are mean + standard deviation. Results are averaged

across five runs.

Architecture Prec. (%) Rec. (%) F1-score (%) Acc. (%) Spec. (%)
without contextual vector in self-attention 91.34 83.33 86.46 87.08 90.83
+7.35 +9.50 +4.64 +4.04 +10.00
self-attention without gate model 92.99 84.16 88.22 88.75 93.33
+4.28 +3.12 +0.88 +1.02 +4.25
without optimal transport and OTK 87.60 87.50 87.47 87.50 87.50
+2.02 +3.73 +1.52 +1.32 +2.64
repeat vector instead of OTK 86.08 91.66 88.73 88.33 85.00
+3.37 +2.64 +1.97 +2.12 +4.25
Concatenation - Without fusion 87.23 88.33 87.65 87.50 86.66
+4.99 +3.12 +2.64 +2.95 +6.12
Proposed Framework 93.08 89.17 91.06 91.25 93.33
+2.03 +2.04 +1.60 +1.56 +2.04

Table 8.6: Ablation Study. Reported values are mean =+ standard deviation. Results are averaged

across five runs.

Layers Prec. (%) Rec. (%) Fl-score (%) Acc. (%) Spec. (%)
1 90.37 83.33 86.52 87.08 90.83
+3.33 +5.27 +1.94 +1.56 +4.08
2 88.09 91.66 89.77 89.58 87.50
+1.96 +3.73 +1.45 +1.32 +2.64
3 93.08 89.17 91.06 91.25 93.33
(Our best performing model) +2.03 +2.04 +1.60 +1.56 +2.04
4 92.05 76.66 83.55 85.00 93.33
+3.70 +5.65 +4.28 +3.58 +3.33
5 88.67 83.33 85.84 86.25 89.16
+4.20 +3.73 +2.86 +2.83 +4.25

Next, we investigate the efficacy of the gate model, which is incorporated into the self-

attention mechanism. To do this, we remove the gate model and exploit the conventional
self-attention mechanism. We observe that Accuracy and Fl-score present a decline of
2.50% and 2.84% respectively.

Moreover, we explore the effectiveness of the optimal transport domain adaptation
method and the Optimal Transport Kernel. To do this, we remove these components
from the introduced architecture. We observe that the Accuracy score is equal to 87.50%,
which is lower by 3.75% than the one obtained by our best performing model. Also, this
approach yields an Fl-score accounting for 87.47%, which is lower by 3.59% than the one
achieved by Attention-based Fusion (Deep Context).

Next, we explore the effectiveness of the Optimal Transport Kernel. To do this, we
remove this component, exploit the average operation over the sequence length, and finally
repeat the vector n times, so as to ensure that both the textual and image modalities have
the same sequence length. As one can observe, this method presents a decline in Accuracy
score by 2.92%, while the Fl-score is also reduced by 2.33%.
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In addition, we explore the effectiveness of the fusion method. To prove this, we
remove the fusion method, apply the average operation over C' (Eq. 8.21) and S (Eq. 8.22)
and concatenate these two representation vectors. We observe that the concatenation
of features yields an Accuracy and Fl-score of 87.50% and 87.65% respectively. This
difference in performance can be justified by the fact that the concatenation operation
does not capture the inherent correlations between the modalities.

Finally, we vary the layers of the context-based self-attention mechanism. The results
of this ablation study are reported in Table 8.6. As the number of layers increases from
1 to 3, we observe that both the Accuracy and Fl-score also increase. This justifies our
initial hypothesis that stacking attention layers and fusing the outputs of different layers
into one context vector, yields to better evaluation results, since the model captures both
high-level and low-level syntactic and semantic information. However, we observe that the
performance of our approach starts to present a decline by stacking four or five layers of
context-based self-attention by applying the deep-context strategy. We assume that this
decline in performance is attributable to the limited dataset used and consequently to the

problem of overfitting.

8.7 Discussion

From the results obtained in this study, we found that:

e Finding 1: We proposed a context-based self-attention mechanism and exploited
three approaches of adding contextual information to self-attention layers. Results
on the ADReSS and ADReSSo Challenge datasets showed that the fusion of the
outputs (low-level syntactic and semantic information) of different layers as a deep

context vector yielded the highest evaluation results.

e Finding 2: We compared our proposed approaches with and without label smooth-
ing. Findings suggested that label smoothing contributes to both the performance

improvement and improvements in terms of the calibration metrics.

e Finding 3: We exploited two methods for fusing the self and cross-attention fea-
tures. Findings of the experiments conducted on the ADReSS Challenge dataset
suggested that the usage of two independent attentional reduction models, the add
operation, and the layer normalization achieved better performance than the usage
of a co-attention mechanism. On the other hand, results on the ADReSSo Challenge
dataset showed that the co-attention mechanism as a fusion method achieved the

best evaluation results.

¢ Finding 4: Findings from a series of ablation studies showed the effectiveness of

the introduced architecture.

e Finding 5: Our proposed models yielded competitive performances to the existing

state-of-the-art approaches. We also used the Almost Stochastic Order test to test
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for statistical significance. This test does not make any assumptions about the

distributions of the scores.

e Finding 6: We observed that in most cases the performance of the multi-modal
models (baselines) was inferior to the transcript only BERT baseline. We hypoth-
esize that this difference in performance is attributable to the fact that the multi-
modal approaches propose early and late fusion strategies or add / concatenate the
representation vectors of different modalities during training. In this way, the inter-
modal interactions cannot be captured effectively. This difference in performance
justifies our initial motivation that more effective fusion methods must be explored

for capturing the inter-modal interactions.

Our approaches entail some limitations, which are described below:

e Hyperparameter Tuning: In this study, we did not perform hyperparameter tuning
due to the limited access to GPU resources. Hyperparameter tuning yields to an

increase of the classification performance.

e Explainability: In this study, we did not apply explainability techniques, namely
LIME, Integrated Gradients, and so on, for explaining the predictions of our intro-

duced approaches.

e Self-Supervised Learning: Contrary to self-supervised learning methods, our ap-

proach relies heavily on plenty of training data.

8.8 Summary

In this chapter, we introduced some new approaches to detect AD patients from speech
and transcripts, which capture the inter- and intra-modal interactions, enhance the con-
ventional self-attention mechanism with contextual information, and deal with the problem
of creating overconfident models by applying label smoothing. Our proposed architectures
consist of BERT, DeiT, self-attention mechanism incorporating a gating model, context-
based self-attention, optimal transport domain adaptation methods, and one new method
for fusing the self and cross-attention features in the task of dementia detection from
speech data. Furthermore, we designed extensive ablation experiments to explore the
effectiveness of the components of the proposed architecture. Extensive experiments con-
ducted on the ADReSS and ADReSSo Challenge datasets demonstrate the efficacy of the
proposed architectures reaching Accuracy up to 91.25% and 83.94% respectively. Also,
findings suggested that label smoothing contributes to both the performance improvement
and calibration of our model.

In Chapters 5-8, we designed fixed deep neural networks for identifying AD patients.
Moving forward to the next chapter, we aim to incorporate the power of Neural Archi-
tecture Search (NAS) methods into our deep neural network for finding automatically the

best performing architecture for our specific task.






Chapter 9

Neural Architecture Search with
Multimodal Fusion Methods for

Recognizing Dementia

9.1 Introduction

In the previous chapters, we designed fixed deep neural networks. In this chapter, we
will introduce a method for generating automatically a deep neural network.

Several research works have been introduced, which employ Convolutional Neural Net-
works (CNNs) for classifying subjects into AD patients and non-AD ones. Specifically,
some of them use as input to CNNs embeddings of transcript data, i.e., GloVE, word2vec,
etc. [65]. Other approaches use as input the raw audio signal [63, 93], while others trans-
form the speech signal to log-Mel spectrograms and Mel-frequency Cepstral Coefficients
(MFCCs) [63, 91, 94].However, constructing high-performance deep learning models re-
quires extensive engineering and domain knowledge. Neural Architecture Search (NAS)
has emerged as class of approaches that automate the generation of state-of-the-art neural
network architectures, thus limiting the human effort [373, 374, 375]. A powerful NAS
method, namely DARTS [84], has achieved great discovered high-performance convolu-
tional architectures for image classification problems. DARTS uses a continuous relaxation
of the architecture representation and then applies gradient descent to discover the best
architecture. In this chapter, we present the first study that incorporates DARTS into a
neural network for diagnosing dementia from spontaneous speech.

In this chapter, we propose a multimodal neural network, where we pass each transcript
through a BERT model [26] and obtain a text representation. Next, we convert audio files
into images consisting of log-Mel spectrograms, delta, and delta-delta. We pass each
image through the DARTS model. Finally, we exploit a variety of fusion methods for
modelling the inter-modal interactions, including Tucker decomposition, a method based
on the block-superdiagonal tensor decomposition, etc. To the best of our knowledge, this is

the first study to propose such a framework, which combines a NAS approach, a language
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model, and fusion methods in an end-to-end neural network.

The contributions of this chapter can be summarized as follows:

e We employ a neural architecture search approach, namely DARTS, to automatically

generate the best CNN architecture.

e We introduce several fusion methods for combining the representations of the CNN
and the BERT model effectively.

e We perform extensive ablation studies to study the impact of the depth of the CNN

architecture.

e We perform a series of experiments and show that our introduced architecture yields

comparable performance to state-of-the-art approaches.

9.2 Task and Data

Given a labelled dataset consisting of AD and non-AD patients, the task is to identify
if an audio file along with its transcript belongs to an AD patient or to a non-AD one.
We use the ADReSS Challenge dataset described in Section 3.3.5.2 for conducting our

experiments.

9.3 Predictive Models

In this section, we describe the functionality of the modules, which constitute our

introduced architecture. First, we introduce the basic notation and describe the data
preprocessing steps. Next, we present the neural architecture search algorithm, namely
DARTS [84] that automatically finds the best CNN architecture to process the input
speech. Then, we describe the module that process the text modality, using the BERT
language model. Finally, we present the multimodal fusion methods, that combine the two
modalities and make the final prediction. The whole architecture is end-to-end trainable
and is illustrated in Figure 9.1.
Preliminaries. Each input sample consists of a speech signal, a text description of the
speech, and the label that indicates if the subject is an AD patient or a non-AD one.
We use librosa [312] and convert the audio files into images consisting of three channels,
namely log-Mel spectrogram, delta, and delta-delta. We use 224 Mel bands, hop length
accounting for 1024, and a Hanning window. Each image is resized to 224 x 224 pixels.
We denote each image i as Xy, € R?24*224x3,

We exploit the python library called PyLangAcq [275] for reading the manual tran-
scripts. We use the BertTokenizer and pad each transcript to a maximum length of 512
tokens, while transcripts with number of tokens greater than 512 are truncated. Bert-

Tokenizer returns the attention mask and the input_ids per transcript. We denote each
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attention mask and input_ids of a transcript i as Xq, € R°!? and X, € R®'2 respec-
tively. We further denote the binary label of each sample i as y; € {0,1}. Therefore each
sample ¢ is represented as the tuple (Xr,, Xq,, XT;,¥:). Our goal is to learn a function
f(Xr1;» Xa;» XT,), that takes as input the speech and text sample, and predicts the label
of the subject.

Speech-Neural Architecture Search. CNNs have achieved great performance in image
classification tasks, but require extensive architecture engineering. Therefore, in our work
we aim to automatically learn the optimal CNN architecture using the DARTS model [84].
Following previous works [84, 376], since the final CNN architecture can have many layers,
to reduce the computation complexity of the model, we search for a computational cell
and then we stack this cell many times to construct the CNN architecture.

Each cell can be represented as a directed acyclic graph (DAG), with 7 nodes. Every
node z; denotes a feature map, and every edge (7, j) transforms z; based on the operation
of the edge o(; ;). Since the cell is a DAG, there exists a topological ordering of the nodes.
Therefore, we can compute the feature map of each node, based on all the predecessors

nodes, using the following equations:

rj= Z 0(i.j) (i) (9.1)
1<j

The goal of the NAS algorithm then is to learn the operations on the edges. In our settings,
we search operations in the following set O: {3 x 3 and 5 X 5 separable convolutions, 3
x 3 and 5 x 5 dilated separable convolutions, 3 x 3 max pooling, 3 x 3 average pooling,

identity, and zero, which indicates no connection}.
However, gradient-based optimization is not directly applicable in a discrete search
space. Therefore, we apply a continuous relaxation in the search space, by learning a set
of weights a for each edge operation. The discrete choice of each operation is transformed

to a softmax over all operations:

Oig) =D CT ots) o(x) (9.2)

OEO ZéEO exp<aé(i’j> )

To obtain the final CNN architecture, we replace each operation o; ;) with the operation
with the largest weight o0; ; = argmax,co ao, ;-

Text-Language Models. Bidirectional Encoder Representations from Transformers
(BERT) is a multi-layer bidirectional Transformer encoder. It is trained on masked lan-
guage modeling, where some percentage of the input tokens are masked at random aiming
to predict those masked tokens based on the context only. We pass to the BERT model
the attention mask and the input_ids denoted by X, € R%'? and X, € R5'2 respectively.
We extract the classification token denoted by [CLS], where its dimensionality is equal to
768. Finally, we project its dimensionality to d = 64.

Multimodal Methods. Let 2! € R% denote the representation vector of the textual

modality. Let 2V € R5 denote the representation vector of the acoustic modality, ex-
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tracted by the output of the CNN. We fuse the two modalities, i.e., textual and acoustic,

denoted by the vectors z! and 2% by employing the following fusion methods:

Tucker decomposition [85]: a bilinear interaction where the tensor is expressed as a

Tucker decomposition.

Multimodal Factorized Bilinear pooling (MFB) [86]: This approach enjoys the dual
benefits of compact output features of Multimodal Lowrank Bilinear (MLB) pooling
and robust expressive capacity of Multimodal Compact Bilinear (MCB) pooling.

Multimodal Factorized High-order pooling (MFH) [86]: The MFH approach is de-
veloped by cascading multiple MFB blocks.

BLOCK [87]: Block Superdiagonal Fusion framework for multimodal representation
based on the block-term tensor decomposition [314]. It combines the strengths of
the Candecomp/PARAFAC (CP) [315] and Tucker decompositions.

Concatenation: We concatenate 2! and 2%, as p = [2?, 2], where p € R'2%. We pass

p through a dense layer consisting of 16 units with a ReLLU activation function.

Finally, we obtain the fused vector, denoted by z/ € R, and we pass it through a

dense layer with two units, which makes the final prediction. We optimize the model using

gradient descent by minimizing the cross-entropy loss.

Text Input

well the poor mother's doing zt

dishes . thers's a boy on a CL8toke [emsetayer | [T LT

stool . cookie jar . and a girl BERT (64 units)

down below . is that all you | I

wanted to know ? okay .

there's a cookie jar . the little

boy is standing on a stool.

Fusion Methods: P
Fmmm e e e e e e e e e mm - ——— - (i) Tucker

AD patient
(i e p
(iii) MFH (2 units)
(iv) BLOCK

—> max_pool_3x3

' 1
1 1
1 1
[ 1 i non - AD
Image Input 1 1 (v) Concatenation patient
I 1
1 1
1 1
1 1
J !
1
! rrri

Figure 9.1: Illustration of our introduced architecture. For the text modality, we use a BERT

language model to obtain the textual representation. In terms of the acoustic modality, we use the

DARTS algorithm for obtaining the optimal CNN architecture and the acoustic representation.

We fuse the two representations with fusion methods and pass the fused vector to a dense layer,

which makes the prediction.

9.4

Experiments

9.4.1 Comparison with state-of-the-art approaches

We compare our approach with (i) unimodal approaches employing only the textual

modality, i.e., BERT (Chapter 5), (ii) unimodal approaches employing only the acous-
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tic modality, i.e., DARTS, AT-LSTM (x-vector) [88], ECAPA-TDNN [89], SiameseNet
[63], x-vectors_.SRE[67], Acoustic+Silence [90], YAMNet [91], Majority vote (Acoustic)
[64], Audio (Fusion) [92], DemCNN [93], CNN-LSTM (MFCC) [94], and (iii) Multi-
modal approaches employing both the textual and acoustic modality, i.e., Audio + Text
(Fusion)[92], Fusion Maj. (3-best) [63], Fusion of system [67], GFI, NUW, Duration,
Character 4-grams, Suffixes, POS tag, UD [95], Acoustic & Transcript [90], Dual BERT
(Concat/Joint, BERT large) [91], Majority vote (NLP + Acoustic) [64], Attention-based
Fusion (Deep Context) of Chapter 8.

9.4.2 Experimental Setup

We minimize the cross-entropy loss function. We use a batch size of 8. We train the
models on the ADReSS Challenge train set and report their performance on the test set.
We divide the train set into a train and a validation set. We train the model for 50 epochs.
We choose the epoch with the smallest validation loss and evaluate the performance of
the model on the test set. We repeat the experiments five times and report the mean
and standard deviation. We use Weights & Biases [377] for tuning the hyperparame-
ters. Specifically, we perform a random search to optimize the following hyperparameters:
number of CNN layers, learning rate for CNN, learning for alpha parameters of DARTS,
learning rate for BERT, weight decay, fusion hidden dimension. We use the BERT base
uncased version provided via the Transformers library [305]. All models are created using
the PyTorch library and trained in a single NVIDIA RTX A6000 48GB GPU.

9.4.3 Evaluation Metrics

Accuracy, Precision, Recall, F1-Score, and Specificity have been used for evaluating the
results of the introduced architectures. These metrics have been computed by regarding
the dementia class as the positive one. We report the average and standard deviation of

these metrics over five runs.

9.5 Results

The results are reported in Table 9.1.

Regarding our proposed multimodal models, we observe that DARTS + BERT +
BLOCK is our best performing model reaching Accuracy and Fl-score up to 92.08% and
91.94% respectively. It surpasses the introduced multimodal models in Recall by 0.83-
6.66%, in Fl-score by 2.14-5.21%, and in Accuracy by 2.50-5.00%. DARTS + BERT
+ MFB constitutes our second best performing model achieving an Accuracy of 89.58%
and an Fl-score of 89.80%. It outperforms the introduced models, except for DARTS
+ BERT + BLOCK, in Fl-score by 1.15-3.07% and in Accuracy by 0.84-2.50%. In ad-
dition, DARTS + BERT + MFH and DARTS + BERT 4 Concatenation yield almost
equal Accuracy results, with DARTS + BERT + MFH surpassing DARTS + BERT +
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Table 9.1: Performance comparison among proposed models and state-of-the-art approaches on
the ADReSS Challenge test set. Reported values are mean + standard deviation. Results are

averaged across five runs. Best results per evaluation metric are in bold.

Evaluation metrics

Architecture Precision Recall Fl-score Accuracy Specificity

Unimodal state-of-the-art approaches (only transcripts)

BERT (Chapter 5) 87.19 £3.25 81.66 £5.00 86.73 £4.53 87.50 £4.37 93.33 £5.65
Unimodal state-of-the-art approaches (only Speech)

DARTS 70.04 £3.84 89.99 £2.04 76.09 £0.87 72.92 +2.28 62.3 £7.05
AT-LSTM (z-vector) [88] 66.00 69.00 67.00 67.00 -
ECAPA-TDNN [89] - - - 66.70 -
SiameseNet [63] - - 70.80 70.80 -
z-vectors_SRE [67] 54.17 54.17 54.17 54.17 54.17
Acoustic+Silence [90] 70.00 58.00 63.00 66.70 75.00
YAMNet [91] 64.40+3.93 73.40+8.82 68.60+4.84 66.20+4.79 59.20+7.73
Magority vote (Acoustic) [64] - - - 65.00 -
Audio (Fusion) [92] - 83.33 - 81.25 79.17
DemCNN [93] 62.50 62.50 62.50 62.50 62.50
CNN-LSTM (MFCC) [94] 82.00 38.00 51.00 64.58 92.00
Multimodal state-of-the-art approaches (speech and transcripts)

Audio + Text (Fusion) [92] - 87.50 - 89.58 91.67
Fusion Maj. (3-best) [63] - - 85.40 85.20 -
Fusion of system [67] 94.12 66.67 78.05 81.25 95.83
GFI,NUW,Duration, Character 4-grams, B B R 77.08 B
Suffizes,POS tag, UD [95]

Acoustic & Transcript [90] 70.00 88.00 78.00 75.00 83.00
Dual BERT [91] 83.04 £3.97 83.33 £5.89 82.92 +1.86 82.92 +1.56 82.50 £5.53
Magority vote (NLP + Acoustic) [64] - - - 83.00 -

Attention-based Fusion (Deep Context) (Chapter 8) 93.08 £2.03 89.17 £2.04 91.06 +£1.60 91.25 +1.56 93.33 £2.04

Our Proposed Architecture

DARTS+BERT+ Tucker Decomposition 89.16 + 3.96 85.00 £+ 6.24 86.73 + 1.57 87.08 £+ 0.83 89.16 £ 5.00
DARTS+BERT+MFB 91.29 £0.34 88.29 £3.13 89.80 £1.76 89.58 +1.86 91.66 £1.26
DARTS+BERT+MFH 94.46 + 3.38 86.66 £+ 3.11 88.31 £ 0.71 88.74 £+ 1.02 94.16 + 3.34
DARTS+BERT+BLOCK 94.09 £2.61 91.66 +6.97 91.94 +1.98 92.08 +1.56 94.16 £3.33
DARTS+BERT+ Concatenation 86.68 £3.35 90.83 £1.66 88.65 £1.36 88.33 £1.66 85.83 £4.25

Concatenation in Accuracy by 0.41%. On the contrary, DARTS + BERT + Concatena-
tion outperforms DARTS + BERT + MFH in Fl-score by a small margin of 0.34%. We
speculate that DARTS + BERT + MFB performs better than DARTS + BERT + MFH,
since the MFH approach is developed by cascading multiple MFB blocks, thus is more
complex for our limited dataset. In addition, we observe that the fusion method of Tucker
decomposition yields the worst results reaching Accuracy and Fl-score up to 87.08% and
86.73% respectively.

Compared with unimodal approaches (employing only text), we observe that our in-
troduced approaches, except for DARTS + BERT + Tucker Decomposition, outperform
BERT (Chapter 5). Specifically, DARTS + BERT + BLOCK improves the performance
obtained by BERT (Chapter 5) in Precision by 6.90%, in Recall by 10.00%, in F1-score by
5.21%, in Accuracy by 4.58%, and in Specificity by 0.83%. At the same time, we observe
that the standard deviations over five runs are lower than BERT in all the evaluation
metrics, except Recall.

Compared with unimodal approaches (employing only speech), we observe that DARTS
+ BERT + BLOCK surpasses these approaches in Precision by 12.09-39.92%, in Recall by
1.67-53.66%, in Fl-score by 15.85-40.94%, in Accuracy by 10.83-37.91%, and in Specificity
by 2.16-39.99%. We also compare our best performing model with DARTS and show
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Figure 9.2: We visualize the initial normal and reduce cells and the best performing cells obtained

from DARTS. These cells are stacked to create the convolutional neural network architecture.

that our best performing model outperforms DARTS in Precision by 24.05%, in Recall by
1.67%, in Fl-score by 15.85%, in Accuracy by 19.16%, and in Specificity by 31.86%. Next,
we compare our approach, i.e., DARTS, with the existing research initiatives employing
only speech. We observe that DARTS outperforms all the research works, except for Audio
(Fusion) [92], in Accuracy by 2.12-18.75%. DARTS attains a Recall score accounting for
89.99% and outperforms the state-of-the-art approaches, including Audio (Fusion), in
Recall by 6.66-51.99%. DARTS outperforms also the existing research initiatives in terms
of Fl-score by 5.29-25.09%.

In comparison with multimodal state-of-the-art approaches, we observe that our best
performing model outperforms the existing research initiatives in Recall by 3.66-24.99%,
in Fl-score by 0.88-13.94%, and in Accuracy by 0.83-17.08%. Although Fusion of system
[67] obtains a better Specificity score by our best performing model, our best performing
model surpasses this approach in Recall, Fl-score, and Accuracy. It is worth noting that
Recall is a more important metric than Specificity, since high Specificity and low Recall
means that AD patients are misdiagnosed as non-AD ones. We observe that DARTS +
BERT + BLOCK outperforms the approach proposed in Chapter 8, namely Attention-
based Fusion (Deep Context), in terms of all the evaluation metrics, verifying our initial
hypothesis that automatically learning an optimal CNN architecture during training yields
improvements in the performance.

We further visualize the initialized and the best performing CNN architecture obtained
by DARTS, in Figure 9.2. We observe that the best performing cell has different operations
and different structure than the initial one, showing how the neural architecture search
algorithm converges to an optimal cell, by altering the operations and the connections in

the convolutional architecture.
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Figure 9.3: Test accuracy of our proposed model with respect to the number of CNN layers
generated from DARTS.

9.6 Ablation Study

We perform a series of ablation experiments, where we vary the layers of the CNN
architecture, obtained by DARTS. Specifically, we set the number of CNN layers to 4,
8, 12, 16, 20, 24, 28, and 30. We report the accuracy obtained via these experiments in
Fig. 9.3. We observe that the best accuracy accounting for 91.66% is obtained by using
8 layers. As the number of layers increases, the accuracy decreases. Specifically, the
worst accuracy score is equal to 83.33% and is obtained, when we use 30 CNN layers. We
speculate that architectures with many layers are so complex for the dataset, and therefore

the model overfits.

9.7 Summary

We presented the first study, which exploits Neural Architecture Search methods and
fusion methods based on Tucker Decomposition, Factorized Bilinear Pooling, and block-
term tensor decomposition, in the task of dementia detection. Specifically, we proposed an
end-to-end trainable multimodal model, which combines an automatically discovered CNN
architecture obtained from the NAS algorithm as well as a language model for processing
the text information. We integrate the two modalities using a variety of fusion methods.

Our approach exhibited comparable performance with the state-of-the-art baselines.



Chapter 10

Multimodal Detection of Epilepsy
with Deep Neural Networks

10.1 Introduction

There have been a number of studies proposing methods for detecting epileptic seizures.
The majority of these studies first extract both time-domain and frequency domain fea-
tures from the electroencephalogram (EEG) signals. For instance, the authors apply the
Discrete Wavelet Transform (DWT) [97, 98] for decomposing the EEG signals into sub-
bands and then extract features from each sub-band. After having extracted a large
number of features, the authors usually exploit feature selection or dimensionality reduc-
tion techniques for finding the best subset of features or reducing the dimension of the
feature vector respectively. The last step of the proposed methods includes the train of
traditional machine learning classifiers, i.e., Logistic Regression (LR), Support Vector Ma-
chines (SVMs), Random Forests (RF), Decision Trees, etc. However, these methods are
time-consuming, since they demand some level of domain expertise for extracting the best
representative features. Only a few number of studies [99, 100, 101, 102] have exploited
deep neural networks, i.e., CNNs, LSTMs, or BiLSTMs in the task of epilepsy detec-
tion and prediction. However, most of these methods still rely on handcrafted features
[100, 101, 99]. Another limitation is the fact that existing research works split the EEG
signals into segments and propose majority-voting approaches [102]. Thus, they have to
train multiple models separately increasing substantially the computation time. At the
same time, most of the CNN models are not able to model effectively the temporal depen-
dencies among the EEG data. Although LSTMs and BiLSTMs can capture the temporal
dependencies in EEG data, they usually have high model complexity.

In order to tackle these limitations, we propose two new methods to distinguish healthy,
interictal, and ictal cases. Firstly, we introduce a unimodal approach, where we apply the
short-time fourier transform (STFT) to the EEG signal and we construct an image consist-
ing of three channels, namely the db-scaled (after having computed the absolute values)

STFT spectrogram, its delta, and delta-delta. Next, we employ several pretrained mod-
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els of the domain of computer vision, including AlexNet, VGG16, EfficientNet, etc. and
compare their performances. Secondly, we introduce a deep neural network, which dis-
tinguishes healthy, interictal, and ictal cases in an end-to-end trainable manner without
requiring the exhaustive and tedious procedure of feature extraction. We aim through this
neural network to automate the process of the feature extraction by exploiting the capa-
bilities of deep learning. Specifically, each EEG signal is passed through two branches of
convolutional neural networks (CNNs) with different filter sizes, in order to capture both
the temporal and the frequency information. Next, we apply the short-time fourier trans-
form (STFT) to the EEG signal and we construct an image consisting of three channels,
namely the db-scaled (after having computed the absolute values) STFT spectrogram, its
delta, and delta-delta. Each image is passed through a pretrained EfficientNet-B7 model.
Finally, the EEG representation vector and the image vector are passed through a Gated
Multimodal Unit for suppressing the irrelevant information. We perform extensive experi-
ments (and ablation studies) on a publicly available dataset, namely the EEG database of
the University of Bonn, and experimental results demonstrate that our introduced model
can achieve valuable advantages over existing research initiatives.

The contributions of this chapter can be summarized as follows:

e We propose a unimodal approach for detecting healthy, interictal, and ictal cases.
Specifically, we apply the STFT algorithm to the single-channel EEG signals. We
construct an image consisting of the db-scaled (after having computed the absolute
values) spectrogram, the delta, and delta-delta. Each image is passed through pre-
trained models used extensively in the computer vision domain, such as AlexNet,
VGG16, EfficientNet, etc. We compare the performance of the pretrained models.
To the best of our knowledge, there is no prior work creating images in this way

towards the epileptic seizures detection task.

e We propose a multimodal neural network, which employs (i) two branches of CNNs
with different kernel sizes for processing EEG signals, (ii) an EfficientNet-B7 model
for obtaining a visual representation vector from an image consisting of the db-scaled
(after having computed the absolute values) spectrogram, the delta, and delta-delta,
and (iii) a gated multimodal unit, which controls the importance of each modality
towards the final prediction. To the best of our knowledge, this is the first study

proposing a multimodal deep neural network with these components.

e We conduct our experiments on a publicly available dataset and consider five cases

for classification.

e We run a series of ablation experiments to explore the effectiveness of the components

of our introduced deep learning architecture.

e Our introduced model obtains comparable performance to the state-of-the-art ap-

proaches.
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Table 10.1: Description of cases considered for classification

Case Classes Description

I AB, CD, E healthy, interictal, ictal

II A E healthy, seizure

111 AB, CD healthy, interictal
v AB, CDE healthy, epileptic

A% A CE healthy, interictal, ictal

10.2 Dataset

We use the publicly available EEG dataset of University of Bonn for conducting our
experiments [103].
In this paper, we have considered five different cases for conducting our experiments,

all of which are presented below and reported in Table 10.1.

e Case I (AB-CD - E)

Case Il (A - E)

Case III (AB - CD)

Case IV (AB - CDE)

Case V(A -C-E)

10.3 Predictive Unimodal Models

In this section, we present our unimodal approaches using only image data. First,
we apply the short-time fourier transform (STFT) with a Hanning window to the raw
EEG signals. After calculating the absolute values of the STFT spectrogram (STFT’s
magnitude), we compute the db-scaled spectrogram, the delta, and delta-delta. Thus, we
construct an image consisting of three channels, i.e., db-scaled spectrogram, delta, and
delta-delta. We scale each image to [0, 1]. Each image is resized to (224 x 224) pixels. The
pixel values of all images are normalized.

Next, we pass each image through the following pre-trained models: ResNet50 &
ResNet18 [336], WideResNet-50-2 [337], AlexNet [44], SqueeezeNet 1.1 [338], DenseNet-
201 [339], ResNeXt-50 (32 x 4d) [342], VGG16 [343], and EfficientNet B7! [344].

We modify the output layer of the aforementioned models. Specifically, for cases II,
III, and IV, the output layer consists of two units. For cases I and V, the output layer

consists of three units.

"We experimented also with EfficientNet-B0 to B6, but EfficientNet-B7 was the best performing model.
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10.3.1 Experiments
10.3.1.1 Experimental Setup

We use a 10-fold stratified cross-validation procedure to train and test the proposed
models. In each iteration of this procedure, we split the train set into a train and a
validation set. All models have been trained with an Adam optimizer and a learning rate
of le-5. We apply ReduceLROnPlateau, where we reduce the learning rate by a factor of
0.1, if the validation loss has stopped decreasing for three consecutive epochs. Also, we
apply EarlyStopping and stop training, if the validation loss has stopped decreasing for
eight consecutive epochs. We minimize the cross-entropy loss function. All models have
been created using the PyTorch library [306]. All experiments are conducted on a single
Tesla P100-PCIE-16GB GPU with a running time of approximately one hour.

10.3.1.2 Evaluation Metrics

Accuracy, Precision, Recall, and F1-Score have been used for evaluating the results of
the introduced models.

Regarding the binary classification task (Cases II, III, and IV), these metrics have been
computed by regarding the seizure/interictal /epilepsy class as the positive one.

Regarding the multiclass classification task (Cases I and V), we report the precision,
recall, and F1-score for each class separately.

For all the cases, results are presented via mean + standard deviation (over 10 folds).

10.3.2 Results

The results of the proposed models mentioned before are reported in Tables 10.2-10.6.
More specifically, in Table 10.2 we report the results for case I (AB - CD - E), in Table
10.3 we report the results for case II (A - E), in Table 10.4 we report the results for case
III (AB - CD), in Table 10.5 we report the results for case IV (AB - CDE), and in Table
10.6 we report the results for case V (A - C - E).

Regarding case I (AB - CD - E), as one can easily observe from Table 10.2, EfficientNet-
B7 constitutes our best performing model achieving an accuracy score equal to 95.20%
surpassing the other models by 1.21-11.40%. In terms of Fl-score, which constitutes
the weighted average of precision and recall, our best performing model achieves the
highest score for all the classes except CD in comparison to the other models. F1l-scores
accounting for 96.57% and 90.71% are obtained for the AB (healthy volunteers) and E
(ictal state) classes respectively. EfficientNet-B7 improves the Fl-score by 2.00-12.80%
and 0.10-17.76% for AB and E class respectively. The highest Fl-score accounting for
96.28% for the CD class is obtained by the VGG16 model. AlexNet is the second best
performing model attaining an accuracy score equal to 93.99%. ResNet50 achieves the
worst performance among the introduced unimodal models with accuracy accounting for
83.80%.
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In terms of case II (A - E), one can easily observe from Table 10.3 that EfficientNet-B7
outperforms the other pretrained models in terms of Accuracy, Recall, and Fl-score by
2.00-8.00%, 4.00-14.00%, and 2.43-9.71% respectively. This fact renders EfficientNet-B7
the best performing model for case II (A - E). The highest precision score is obtained by
WideResNet-50-2 and is equal to 99.00%. Similarly to case I (AB - CD - E), ResNet50
obtains the worst classification results with accuracy accounting for 87.50%. The accuracy
achieved by the pretrained models, except EfficientNet-B7 and ResNet50, ranges from
90.00% to 93.50%, with AlexNet being the second best performing model in terms of
accuracy and F1l-score.

With regards to case III (AB - CD), looking at Table 10.4, one can observe that
EfficientNet-B7 attains the highest accuracy and Fl-score accounting for 97.50% and
97.45% respectively. Specifically, EfficientNet-B7 surpasses the other models in terms
of Accuracy and Fl-score by a margin of 0.25-4.50% and 0.22-4.97% respectively. It is
worth noting that although EfficientNet-B7 achieves lower precision and recall scores by
other models, it surpasses them in Fl-score, which constitutes the weighted average of
precision and recall. In addition, VGG16 and DenseNet201 obtain equal accuracy scores
accounting for 97.25%, with VGG16 surpassing DenseNet201 in terms of Fl-score by a
small margin of 0.08%. ResNet18 achieves the lowest classification results with accuracy
reaching up to 93.00%.

In terms of case IV (AB - CDE), one can observe in Table 10.5 that EfficientNet-B7
constitutes the best performing model surpassing the other models in accuracy by 0.40-
10.00%, in precision by 1.62-10.45%, and in F1-score by 0.26-8.39%. In addition, AlexNet
is the second best performing model obtaining an accuracy score accounting for 96.00%
and the highest recall score equal to 97.00%. DenseNet201 achieves the worst performance
in this case reaching accuracy up to 86.40%.

Finally, looking at Table 10.6 for the case V (A - C - E), one can observe that
EfficientNet-B7 yields the highest accuracy accounting for 93.00% surpassing the other
models’ performance by 3.00-13.00%. With regards to the Fl-score, EfficientNet-B7 ob-
tains the highest scores for all the classes, i.e., A, C, and E. Specifically, scores accounting
for 91.99%, 93.79%, and 93.02% are obtained for the classes A, C, and E respectively. The
second best accuracy score is obtained by VGG16 and is equal to 90.00%. The other mod-
els obtain an accuracy score, which ranges from 80.00% to 89.33% with DenseNet201 and
ResNet50 obtaining the lower accuracy results equal to 80.00% and 80.33% respectively.

Overall, EfficientNet-B7 constitutes the best performing model in terms of the accuracy

for all the cases considered for classification.

10.4 Proposed Multimodal Model

In this section, we describe our introduced architecture for detecting epilepsy using
EEG signals and STFT spectrograms. The proposed architecture is illustrated in Fig.
10.1.
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Table 10.2: Performance comparison among unimodal proposed models via cross-validation (AB

- CD - E). Reported values are mean =+ standard deviation. Best results per evaluation metric are

in bold.
Evaluation metrics
Model Precision Recall F1-score Accuracy
AB CD E AB CD E AB CD E
ResNet50 85.94  86.94  80.11 82.99 9149 70.00 83.77 88.55  72.95 83.80
+7.28 +941 +£14.15 +11.45 +7.09 +14.14 +£6.29 +4.39 +£9.63 +4.77
ResNet18 85.42  95.87  87.86 92.50  90.49  T77.00 88.20 9297  79.59 88.60
+10.75 +3.85 +£11.02 +6.80 +6.49 +20.52 +5.86 +4.24 +13.94 +5.14
WideResNet — 83.73 97.33  81.36 92.50  90.00 74.00 87.73 93.45  76.37 87.80
50-2 +5.06 +£2.67 +£13.59 +4.03 +4.99 +14.97 +2.82 +3.27 +£11.05 +3.28
AlexNet 94.27  95.02 93.77 9499 9550 89.00 94.57 9498  90.61 93.99
+4.54 +4.78 4866 +2.24 +6.49 +11.36 +2.59 +2.84 +7.62 +3.22
SqueezeNet 86.22  92.18  81.18 89.49 9299  72.00 87.58 92.55  75.58 87.40
1.1 +8.15 +£3.62 +9.31 +£7.23 +3.32 +15.36 +6.07 +2.88 +10.90 +4.48
DenseNet 89.02  89.68  77.91 82.50  89.49  82.00 84.73 88.98  78.80 85.20
201 +12.07 +£7.39 +£13.05 +£9.29 879 £13.27 +£6.65 £3.84 +£8.95 +5.46
ResNeXt-50  88.93  91.36  84.56 86.00 9349  84.00 86.93 92.18  83.96 88.59
(32 x 4d) +6.11  +£6.40 +£7.20 +9.17 £5.50 +£13.56 +4.53 +3.89 +10.19 +4.00
VGG16 90.49  96.30  90.58 94.50  96.50 80.00 9225 96.28 84.20 92.40
+6.40 +£543 +797 +£522 +5.02 +1342 +£3.98 +4.17 48.63 +3.88
EfficientNet  96.42 96.11 93.03 97.00 96.00 90.00 96.57 9597 90.71 95.20
B7 +5.09 +4.19 +9.08 +3.32 +5.39 +11.83 +£2.40 +3.98 47.73 +3.25
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Table 10.3: Performance comparison among unimodal proposed models via cross-validation (A

- E). Reported values are mean + standard deviation. Best results per evaluation metric are in

bold.

Evaluation metrics

Architecture Precision Recall Fl-score Accuracy

ResNet50 93.92 81.00 85.79 87.50

+8.46 +17.00  +11.27 +9.01
ResNet18 96.35 83.00 88.92 90.00

+5.64 +11.00 +8.26 +7.07
WideResNet 99.00 87.00 92.32 93.00
50-2 +2.99 +9.00 +5.25 +4.58
AlexNet 96.98 90.00 93.07 93.50

+4.64 +8.94 +5.61 +5.02
SqueezeNet 92.89 88.00 89.97 90.50
1.1 +6.89 +11.66 +7.57 +6.87
DenseNet 97.75 86.00 91.27 92.00
201 +4.53 +9.17 +6.37 +5.57
ResNeXt-50 97.89 85.00 90.74 91.50
(32 x 4d) +4.23 +8.06 +5.07 +4.50
VGG16 94.82 91.00 92.67 93.00

+5.26 +9.43 +6.59 +6.00
EfficientNet 96.42 95.00 95.50 95.50
B7 +5.77 +4.99 +3.38 +3.50

EEG signal: As illustrated in Fig. 10.1, we implement two branches of CNNs
with different kernel sizes to process the raw EEG signals. The choice of these two
branches of CNNs with small and large filter sizes is inspired by [104, 105], where
the authors state that the small filter is able to capture temporal information, while

the larger filter is capable of capturing frequency information.

Each branch consists of three convolutional layers and two max-pooling layers, where
each convolutional layer includes a batch normalization layer [106] and a ReLU
activation function. As one can observe from Fig. 10.1, the first convolutional block
of each branch shows the filter size, the number of filters, and the stride size. The
next two convolutional blocks of each branch show the filter size and the number of
filters. The stride size is equal to 1. Each max-pool block shows the pooling size
and the stride size. For reducing overfitting, we apply dropout with a rate of 0.5
after the first max-pool block of each branch and after the concatenation of both

branches. Finally, we flatten the matrix to a 1d vector.

Let the output of this part of the architecture be f%.
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Table 10.4: Performance comparison among unimodal proposed models via cross-validation (AB

- CD). Reported values are mean + standard deviation. Best results per evaluation metric are in

bold.

Evaluation metrics

Architecture Precision Recall Fl-score Accuracy

ResNet50 93.89 95.00 94.08 94.00

+6.85 +7.07 +4.31 +4.50
ResNet18 97.18 89.00 92.48 93.00

+3.69 +9.17 +4.09 +3.32
WideResNet 98.47 92.50 95.31 95.50
50-2 +2.33 +4.61 +2.57 +2.45
AlexNet 95.25 98.50 96.80 96.75

+2.88 +3.20 +2.26 +2.25
SqueezeNet 95.99 94.00 94.95 95.00
1.1 +2.93 +2.99 +2.32 +2.24
DenseNet 99.02 95.50 97.15 97.25
201 +1.95 +4.72 +2.51 +2.36
ResNeXt-50 93.98 93.50 93.49 93.50
(32 x 4d) +4.81 +5.02 +1.22 +1.22
VGG16 97.55 97.00 97.23 97.25

+2.46 +3.32 +2.12 +2.08
EfficientNet 98.55 96.50 97.45 97.50
B7 +2.22 +3.91 +3.91 +1.94

Image representation: We apply the short-time fourier transform (STFT) to the
raw EEG signals. After calculating the absolute values of the STFT spectrogram
(STFT’s magnitude), we compute the db-scaled spectrogram, the delta, and delta-
delta. Thus, we construct an image consisting of three channels, i.e., db-scaled
spectrogram, delta, and delta-delta. We scale each image to [0,1]. Each image is

resized to (224 x 224) pixels. The pixel values of all images are normalized.

As shown in Fig. 10.1, each image is fed to a pretrained EfficientNet-B7 model
followed by a dropout layer with a rate of 0.5. We choose the EfficientNet-B7, since
it is the best performing model as shown in Section 10.3.2. We also remove the last
layer of EfficientNet used for classification. Thus, the pretrained EfficientNet-B7

model acts as a feature extractor.
Let the output of this part of the architecture be fv.
Gated Multimodal Unit: We apply the Gated Multimodal Unit introduced by

[75] and implemented in Chapter 6, in order to assign more importance to the rele-

vant modality suppressing the irrelevant information. Given f* and f¥ as computed
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Table 10.5: Performance comparison among unimodal proposed models via cross-validation (AB
- CDE). Reported values are mean + standard deviation. Best results per evaluation metric are
in bold.

Evaluation metrics

Architecture Precision Recall Fl-score Accuracy

ResNet50 93.71 92.00 92.77 91.40

+3.31 +3.71 +2.37 +2.84
ResNet18 88.20 87.67 89.81 88.20

+5.77 +7.75 +5.03 +5.55
WideResNet 94.85 89.00 91.79 90.40
50-2 +4.87 +2.99 +3.39 +4.08
AlexNet 96.42 97.00 96.67 96.00

+2.54 +3.14 +2.13 +2.53
SqueezeNet 92.32 88.67 90.32 88.60
1.1 +4.56 +4.76 +3.10 +3.69
DenseNet 90.44 87.33 88.54 86.40
201 +6.27 +5.54 +2.69 +3.56
ResNeXt-50 91.42 90.33 90.40 88.60
(32 x 4d) +6.25 +7.81 +3.12 +3.35
VGG16 97.03 94.67 95.75 95.00

+2.24 +4.27 +1.99 +2.24
EfficientNet B7 98.65 95.33 96.93 96.40

+1.65 +3.06 +1.69 +1.96

above, we calculate the multimodal representation h, as follows:

At = tanh (W' f! + bt) (10.1)
hY = tanh (WY f" + b") (10.2)
z=oc(W?[f% f'] +b*) (10.3)
h=z%h"+(1—2)*h (10.4)

0= {Wt W w?} (10.5)

where © denote the parameters to be learned, and [.;.] the concatenation operation.
We project the ff, fY, and the concatenated vector [fV; f!] to obtain the same
dimensionality (dpro; = 256).

e Output Layer: The multimodal representation h is passed to a dropout layer with
a rate of 0.5 followed by a dense layer, which gives the final output. The number of
units in the dense layer depends on each case considered for classification and can

be either two (binary classification) or three units (multiclass classification).
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Table 10.6: Performance comparison among unimodal proposed models via cross-validation (A -

C - E). Reported values are mean + standard deviation. Best results per evaluation metric are in

bold.
Evaluation metrics
Model Precision Recall F1-score Accuracy
A C E A C E A C E
ResNet50 84.31 75.29  86.98  61.00 92.00  88.00 70.31 82.19  86.67 80.33
+6.81 +11.64 4+9.68 +13.00 £748 +11.66 +10.70 +7.58 +7.19 +6.23
ResNet18 76.53 83.86  89.47  76.00 87.99 84.00 75.43 85.34  86.07 82.66
+10.48 4+10.02 +£8.21 +£19.08 £11.66 +£9.17 +13.61 +£841 +5.28 +6.63
WideResNet — 81.42 87.49  90.55  83.00 85.00 82.99 79.42 84.37  85.63 83.66
50-2 +11.94 +12.10 +9.66 +19.52 +14.32 +£13.45 +12.45 +£7.38 +8.16 +6.57
AlexNet 84.46 89.77  95.05 89.00 87.99 90.99 86.46 88.71  92.83 89.33
+10.69 +10.45 +6.44 +10.44 +12.49 +6.99 +9.55 +11.04 +5.68 +3.22
SqueezeNet 78.23 86.16  86.77  84.00 87.99 75.00 80.28 86.56  79.74 82.33
1.1 +8.31 +12.15 +£9.76 +15.62 +£8.72 +10.25 +9.91  4+8.53 £7.23 +7.31
DenseNet 79.92 76.18  89.82  67.00 89.00 84.00 71.79 80.98  86.23 80.00
201 +10.41 +£11.35 47.93 +11.87 +11.36 +12.81 +6.93 +7.16  £9.06 +5.37
ResNeXt-50  80.78 76.39  95.58  73.00 89.00 85.00 75.47 81.77  89.44 82.33
(32 x 4d) +13.41 +6.62 4£7.49 41345 +12.21 48.06 +9.98 +7.61 +4.11 +5.59
VGG16 84.72 96.08 92.46  94.00 90.99 85.00 88.52 93.18  88.33 90.00
+10.94 £6.17 4857 +7.99 4943 £11.18 +£6.92 +£6.46 +9.09 +6.99
EfficientNet  89.68 96.52 94.55 95.00 92.00 92.00 91.99 93.79 93.02 93.00
B7 +8.12  4+6.98 £9.27 +12.04 4872 £748 4+9.29 4+5.69 £7.17 +6.74
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10.5 Experiments

10.5.1 Comparison with state-of-the-art approaches

e Case I (AB-CD - E)

Novel RF [107]: This method applies a short-time Fourier transform (STFT)
and extracts the mean energy, standard deviation, and high amplitude gamma
frequency of signals. The dimensionality of the respective feature set is reduced
via the Principal Component Analysis (PCA) and then is fed to a Random

Forest Classifier. A grid search optimization technique has also been exploited.

EMD, higher order moments, ANN [108]: This method extracts the variance,
kurtosis, and skewness from the intrinsic mode function (IMF) obtained by
the empirical mode decomposition (EMD) of the EEG signal. These features
are fed to an artificial neural network (ANN) for the classification of the EEG

signals.

BiLSTM [99]: This work extracts the instantaneous frequency and the spectral
entropy of the EEG signals and trains a Bi-LSTM neural network.

DWT + Kmeans + Multilayer perceptron neural network (MLPNN) [98]: This
method applies DWT for decomposing the EEG signal into a set of sub-bands.
K-means clustering for the wavelet coefficients in each sub-band is then used.

Finally, the probability of belonging of wavelet coefficients to a cluster for each
sub-band is fed to a MLPNN.

CNN [109]: This method proposes a deep neural network consisting of three
convolutional blocks followed by three fully connected layers to classify EEG

signals.

Random Forest [110]: This method applies the STFT to the EEG signals and
extracts the alpha band. Then, the mean, variance, skewness, and kurtosis of
the alpha band are used as features for training traditional machine learning

classifiers with the Random Forest achieving the highest classification results.

Matrix Determinant and MLP [111]: This research work proposes the arrange-
ment of the EEG time series in square matrix form of order 13, 16, 23, and 32

and then introduces the matrix determinant as a significant feature.

EMD and SVM [112]: This method applies empirical mode decomposition of
the EEG signals for getting the intrinsic mode function (IMF). The authors
select the first three IMFs for further preprocessing. Next, they calculate the
temporal and spectral characteristics of the IMF's creating in this way a feature

set, which is fed to a Support Vector Machine Classifier.

dual-tree complex wavelet transform domain [113]: This method decomposes

the EEG signal into sub-bands using the dual-tree complex wavelet transform
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(DT-CWT). Then, the parameters of a normal inverse Gaussian (NIG) proba-
bility density function (pdf) are estimated from the various sub-bands and are

used as features for training a Support Vector Machine Classifier.

— statistical dual-tree complex wavelet transform domain [114]: This paper ap-
plies a dual-tree complex wavelet transform to decompose the EEG signal into
sub-bands. Variances calculated from the EEG signals and the sub-bands are
used as features and fed to ANN and SVM.

— ANN; hierarchical multi-class SVM with new kernel [115]: This work first de-
composes the EEG signal into six sub-bands using the wavelet transform. Next,
the authors extract six features from each sub-band, namely the approximate
entropy, largest Lyapounox exponent, minimum, maximum, mean, and stan-
dard deviation. Finally, they introduce a hierarchical multiclass SVM with

extreme learning machine (ELM) as kernel for the classification.

— Random Forest, wavelets [116]: This method applies a five level decomposition
of the EEG signal using the Discrete Wavelet Transform. After extracting five

features per sub-band, the authors train a Random Forest Classifier.

— CNN [117]: This method introduces a 13-layer deep convolutional neural net-

work to classify EEG signals into normal, pre-ictal, and seizure classes.

— OPF [118]: This method applies the DWT to the EEG signals, extracts sta-
tistical features from each sub-band, and applies feature selection techniques,
including Relief, InfoGain, and correlation-based feature subset selection. Fi-

nally, the authors employ the optimum path forest (OPF) classifier.

— Symlets wavelets, statistical mean energy std and PCA, GBM-GSO, RF, SVM
[119]: This method adopts fourth-order Symlet wavelets for decomposing the
EEG data into five frequencies sub-bands. Next, statistical features are com-

puted and used as classification features.
e Case Il (A - E)

— Relative Wavelet Energy [378]: This method applies DWT for decomposing the

EEG signal into sub-bands, extracts the relative wavelet energy, and trains an
ANN.

— Permutation entropy, SVM [379]: This method applies wavelet decomposition,

extracts the permutation entropy, and trains a Probabilistic Neural Network.

— stacked sparse autoencoders [380]: This method trains a stacked sparse autoen-

coder with a softmax classifier.

— Cross-correlation aided SVM classifier [381]: This method extracts cross-correlation

and trains an SVM classifier.

— Permutation entropy - SVM classifier [382]: This method extracts Permutation

entropy and trains an SVM classifier.
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— ME [97]: This method decomposes the EEG signal into sub-bands via DWT
and trains a Mixture of Experts (ME) model consisting of a gating network and
several expert networks, where a double-loop Expectation-Maximization (EM)
algorithm has been introduced.

— multiwavelet transform based approximate entropy and ANN [383]: This method

uses approximate entropy features derived via multiwavelet transform for train-

ing an artificial neural network.
e Case III (AB - CD)

— ATFFWT and FD, LS-SVM [384]: This method employs analytic time-frequency
flexible wavelet transform (ATFFWT) for decomposing the EEG signals into
sub-bands. Next, the authors calculate the fractal dimension for each sub-band,
and use the fractal dimensions as features for training a least-square support

vector machine classifier.

— Novel RF [107]

— Random Forest [110]

— novel signal modeling [385]: This method introduces a new 3-level multirate
filterbank structure based on DCT, and a new statistical modeling of brain
rhythms. Finally, the authors use the hurst exponent values and ARMA pa-
rameters as features for training an SVM classifier.

— Symlets wavelets, statistical mean energy std and PCA, GBM-GSO, RF, SVM
[119]

— MFDFA features + SVM [386]: This approach exploits multifractal detrended

fluctuation analysis, extracts a set of 14 features, and trains an SVM classifier.
e Case IV (AB - CDE)

— Random Forest [110]
— APN [387]: This research work decomposes the EEG signal into sub-bands by

applying a discrete wavelet transform, exploits the minimize entropy principle

approach, and finally constructs an associative Petri net model.

— Alpha band (Blackman window) [388]: This method applies STFT to the EEG
signals exploiting the Blackman window, extracts the alpha band from the t-f
plane, extracts statistical features from the alpha band of the tf-plane, and

trains a Random Forest classifier.
e Case V(A-C-E)

— LSTM [101]: This method applies a multi-rate DCT filter which divides each
EEG signal into five sub-bands of different bandwidths. Next, Hurst and
ARMA features are extracted for each sub-band, which generate a total of 20
features for an EEG signal. Finally, the authors train an LSTM architecture.
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— Matrix Determinant and MLP [111]
— DWT and neural network [389]: This method utilizes DWT to decompose the

EEG signal into sub-bands and then extracts statistical features per sub-band,
namely maximum, minimum, mean, and standard deviation. These features

are fed to a NN for the classification.

— DWT and ensemble classifier [390]: This method utilizes DWT to decompose
the EEG signal into sub-bands and then extracts statistical features per sub-
band. Finally, it proposes an ensemble classifier combining four classification
algorithms, namely ANN, Bayes, k-NN, and SVM.

— CNN [391]: This method employs a convolutional neural network.

10.5.2 Experimental Setup

We use a 10-fold stratified cross-validation procedure to train and test the proposed
model. In each iteration of this procedure, we split the train set into a train and a validation
set. The proposed model has been trained with an Adam optimizer and a learning rate
of le-4. We apply ReduceLROnPlateau, where we reduce the learning rate by a factor
of 0.1, if the validation loss has stopped decreasing for three consecutive epochs. Also,
we apply FarlyStopping and stop training, if the validation loss has stopped decreasing
for eight consecutive epochs. We minimize the cross-entropy loss function. We use the
PyTorch library [306]. All experiments are conducted on a single Tesla P100-PCIE-16GB

GPU with a running time of approximately two hours.

10.5.3 Evaluation Metrics

Accuracy, Precision, Recall, and F1-Score have been used for evaluating the results of
the introduced architecture.

Regarding the binary classification task (Cases II, III, and IV), these metrics have been
computed by regarding the seizure/interictal /epilepsy class as the positive one.

Regarding the multiclass classification task (Cases I and V), we report the precision,
recall, and Fl-score for each class separately. Also, we report the macro metrics.

For all the cases, results are presented via mean =+ standard deviation (over 10 folds).

10.6 Results

The results for all the cases considered for classification of our introduced multimodal
model described in Section 10.4 are reported in Tables 10.7-10.12. Tables 10.7 and 10.11
present the results of the proposed model for cases I and V respectively and report the
precision, recall, and Fl-score for each class separately. In Table 10.12, we report the
macro results (precision, recall, and Fl-score) for cases I and V. Tables 10.8, 10.9, and

10.10 present the results of the introduced approach for cases II, III, and IV respectively.
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In addition, Tables 10.13-10.17 present a comparison of the results between our proposed
model and state-of-the-art approaches in terms of the accuracy score. Specifically, Table
10.13 presents the comparison for case I. In Table 10.14, we compare the results of our
proposed model on case II with existing research initiatives. Similarly, Tables 10.15 and
10.16 show the comparison of the proposed multimodal model for cases III and IV respec-
tively with state-of-the-art approaches. Finally, Table 10.17 compares the results of our
approach with research works on case V.

For case I (AB - CD - E), as observed in Table 10.7, our model achieves an accuracy
score accounting for 97.00%. Fl-scores equal to 97.52%, 96.77%, and 96.41% are obtained
for the AB (healthy), CD (interictal), and E (ictal) classes respectively. Our model obtains
also a macro F1-score accounting for 96.90% as shown in Table 10.12. In terms of case I1, as
one can observe from Table 10.8, our model attains an Accuracy and F1-score accounting
for 96.50% and 96.31% respectively. This case is pertinent to epilepsy diagnosis based on
the presence of seizure activity only. In case III, 98.75% accuracy and 98.77% F1-score
are obtained as shown in Table 10.9, indicating that the proposed multimodal model can
discriminate healthy and interictal cases very well. With regards to case IV, our model
attains 97.20% accuracy and 97.65% F1-score as seen in Table 10.10. In case V, looking at
Table 10.11, our model attains an accuracy score equal to 95.33%. Fl-scores accounting
for 94.05%, 94.78%, and 97.31% are obtained for the classes A, C, and E respectively.
Also, one can observe from Table 10.12 that a macro Fl-score accounting for 95.38% is
achieved by our model.

One can observe from Table 10.13 that our model outperforms 15 research initiatives
in accuracy by 0.50-17.00% for case I. For case II, as one can observe from Table 10.14,
our model surpasses state-of-the-art approaches by a margin of 0.50-3.00% in accuracy.
Table 10.15 provides the results for case I1I and shows that our introduced model improves
the accuracy score by 1.05-12.75%. Results reported in Table 10.16 for case IV indicate
that the proposed model surpasses the state-of-the-art approaches by 3.40-8.80% in terms
of accuracy. Finally, with regards to case V, one can observe from Table 10.17 that the
introduced architecture presents a surge in accuracy outperforming existing research works
by a margin of 0.33-5.33%. Owverall, our introduced approach yields a better accuracy in

all the cases compared to the other methods proposed.

10.7 Ablation Study

In this section, we run a series of ablation experiments to explore the effectiveness and
robustness of the introduced architecture described in Section 10.4. Regarding the cases
II, III, and IV, the results of the ablation studies are reported in Table 10.19. Regarding
case I and case V, the results of the ablation studies are reported in Tables 10.18 and
10.20 respectively.

First, we explore the effectiveness of the gated multimodal unit. Specifically, we remove

the gated multimodal unit and concatenate the representations ht and h¥. The resulting
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Table 10.7: Performance of the proposed multimodal model via cross-validation (AB - CD - E).
Reported values are mean £ standard deviation.

Evaluation metrics

Model Precision Recall F1-score Accuracy

AB CD E AB CD E AB CD E

Case I (AB - CD - E)
Proposed Model 97.14 97.16 97.18 9799 96.49 96.00 97.52 96.77 96.41 97.00
+3.10 £3.75 £431 £245 £2.29 £6.63 =£1.91 £1.88 +4.09 +1.84

Table 10.8: Performance of the proposed multimodal model via cross-validation (A - E). Reported
values are mean =+ standard deviation.

Evaluation metrics

Architecture Precision Recall Fl-score Accuracy

Case II (A - E)
Proposed 99.00 94.00 96.31 96.50
Model +2.99 +6.63 +4.13 +3.91

Table 10.9: Performance of the proposed multimodal model via cross-validation (AB - CD).
Reported values are mean =+ standard deviation.

Evaluation metrics

Architecture Precision Recall Fl-score Accuracy

Case IITI (AB - CD)
Proposed 98.57 99.00 98.77 98.75
Model +3.05 +2.00 +2.26 +2.30

Table 10.10: Performance of the proposed multimodal model via cross-validation (AB - CDE).
Reported values are mean + standard deviation.

Evaluation metrics

Architecture Precision Recall Fl-score Accuracy

Case IV (AB - CDE)
Proposed 98.03 97.33 97.65 97.20
Model +2.13 +2.91 +1.88 +2.22
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Table 10.11: Performance of the proposed multimodal model via cross-validation (A - C - E).

Reported values are mean + standard deviation.

Evaluation metrics

Model Precision Recall F1-score Accuracy

A C E A C E A C E

Case V(A -C-E)
Proposed Model  89.99  98.00 1.00 99.00 92.00 95.00 94.05 94.78 97.31 95.33
+8.30 +£3.99 +0.00 =£2.99 +£599 +6.71 £4.87 +£4.03 +3.66 +3.71

Table 10.12: Macro Precision, Recall, and Fl-score for Cases I (AB-CD-E) and V (A - C - E)
obtained by the proposed multimodal model. Reported values are mean + standard deviation.

Evaluation metrics
Model M. Precision M. Recall M. Fl-score

Case I (AB-CD - E)
Proposed 97.16 96.83 96.90
Model +1.73 +2.52 +2.13

Case V (A -C-E)
Proposed 95.99 95.33 95.38
Model +3.04 +3.71 +3.65
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Table 10.13: Performance comparison among proposed multimodal model and state-of-the-art
approaches (AB - CD - E). Reported values are mean + standard deviation. Best results are in
bold.

Evaluation metric

Architecture Accuracy

State-of-the-art approaches

Novel RF [107] 96.70
EMD, higher order moments, ANN [108] 80.00
BIiLSTM [99] 88.00
DWT + Kmeans + MLPNN [98] 95.60
CNN [109] 96.97
Random Forest [110] 87.00
Matriz Determinant and MLP [111] 96.50
EMD and SVM [112] 93.00
dual-tree complex wavelet

96.28
transform domain [113]
statistical dual-tree complex

_ 83.50

wavelet transform domain [114]
ANN, hierarchical multi-class SVM 95.00
with new kernel [115]
Random Forest, wavelets [116] 95.84
CNN [117] 88.67
OPF [118] 89.20
Symlets wavelets, statistical mean 96.50
energy std and PCA, GBM-GSO, RF, SVM [119]
Proposed Architecture

97.00

+1.84

concatenated vector is passed to a dropout layer with a rate of 0.5 followed by a dense
layer (with either two or three units), which gives the final prediction. In terms of the
Case I (AB - CD - E), one can observe from Tables 10.18 and 10.7 that the removal of
the gated multimodal unit leads to a decrease of the accuracy score by 0.80%. In terms
of the Case II (A - E), one can observe from Tables 10.19 and 10.8 that the removal of
the gated multimodal unit leads to a decrease of the accuracy and F1-score by 1.50% and
1.82% respectively. With regards to the Case III (AB - CD), one can observe from Tables
10.19 and 10.9 a decrease in Fl-score and Accuracy by 1.38% and 1.25% respectively.
With regards to the Case IV (AB - CDE), one can observe from Tables 10.19 and 10.10 a
decrease in Fl-score and Accuracy by 1.69% and 1.80% respectively. With regards to the
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Table 10.14: Performance comparison among proposed multimodal model and state-of-the-art

approaches (A - E). Reported values are mean + standard deviation. Best results are in bold.

Evaluation metric

Architecture Accuracy

State-of-the-art approaches

Relative Wavelet Energy [378] 95.20
Permutation entropy, SVM [379] 93.50
stacked sparse autoencoders [380] 95.50
Crross-correlation aided SVM classifier [381] 95.96
Permutation entropy - SVM classifier [382] 93.55
ME [97] 94.50

multiwavelet transform based approximate

96.00
entropy and ANN [383]
Proposed Architecture
96.50
+3.91

Table 10.15: Performance comparison among proposed multimodal model and state-of-the-art

approaches (AB - CD). Reported values are mean + standard deviation. Best results are in bold.

Evaluation metric

Architecture Accuracy

State-of-the-art approaches

ATFFWT and FD, LS-SVM [384] 92.50
Novel RF [107] 93.20
Random Forest [110] 86.00
novel signal modeling [385] 97.70
Symlets wavelets, statistical mean
energy std and PCA, GBM-GSO, 93.20
RF, SVM [119]
MFDFA features + SVM [386] 96.25
Proposed Architecture
98.75
+2.30

Case V (A - C - E), one can observe from Tables 10.20 and 10.11 a decrease in Accuracy
by 4.00%.
Next, we conduct the ablation studies to explore the effects of the part of the ar-

chitecture corresponding to the image modality. To facilitate this, we remove both the
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Table 10.16: Performance comparison among proposed multimodal model and state-of-the-art

approaches (AB - CDE). Reported values are mean + standard deviation. Best results are in bold.

Evaluation metric

Architecture Accuracy

State-of-the-art approaches

Random Forest [110] 88.40
APN [387] 93.80
Alpha band (Blackman window) [388] 92.00
Proposed Architecture
97.20
+2.22

Table 10.17: Performance comparison among proposed multimodal model and state-of-the-art

approaches (A - C - E). Reported values are mean + standard deviation. Best results are in bold.

Evaluation metric

Architecture Accuracy

State-of-the-art approaches

LSTM [101] 04.81
Matriz Determinant and MLP [111] 94.75
DWT and neural network [389] 95.00
DWT and ensemble classifier [390] 90.00
CNN [391] 90.10
Proposed Architecture

95.33

+3.71

image representation part and the gated multimodal unit and experiment with detecting
epileptic seizures by using only the two branches of the CNN layers. In terms of the Case
I (AB - CD - E), one can observe from Tables 10.18 and 10.7 a decrease of the accuracy
score by 1.80%. In terms of the Case II (A - E), one can observe from Tables 10.19 and
10.8 a decrease of the accuracy score and F1l-score by 1.01% and 1.29% respectively. With
regards to the Case III (AB - CD), one can observe from Tables 10.19 and 10.9 a decrease
in Fl-score and Accuracy by 2.76% and 2.50% respectively. With regards to the case IV
(AB - CDE), one can observe from Tables 10.19 and 10.10 a decrease in Fl-score and
Accuracy by 3.48% and 3.60% respectively. With regards to the case V (A - C - E), one
can observe from Tables 10.20 and 10.11 a decrease in Accuracy by 2.00%.

Then, we investigate the efficacy of the branch of the CNN architecture with the small
filter. To do this, we remove this branch and the EEG signal is passed only through the
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branch having the larger kernel size. In terms of the Case I (AB - CD - E), one can observe
from Tables 10.18 and 10.7 a decrease of the accuracy score by 2.20%. In terms of the
Case IT (A - E), one can observe from Tables 10.19 and 10.8 a decrease of the accuracy and
Fl-score by 1.50% and 1.94% respectively. With regards to the case III (AB - CD), one
can observe from Tables 10.19 and 10.9 a decrease in F1-score and Accuracy by 1.85% and
1.75% respectively. With regards to the Case IV (AB - CDE), one can observe from Tables
10.19 and 10.10 a decrease in Fl-score and Accuracy by 0.42% and 0.40% respectively.
With regards to the case V (A - C - E), one can observe from Tables 10.20 and 10.11 a
decrease in Accuracy by 3.00%.

Finally, we explore the effectiveness of the branch of the CNN architecture with the
large filter. To do this, we remove this branch and the EEG signal is passed only through
the branch having the small kernel size. In terms of the Case I (AB - CD - E), one
can observe from Tables 10.18 and 10.7 a decrease of the accuracy score by 2.00%. In
terms of the case II (A - E), one can observe from Tables 10.19 and 10.8 a decrease of
the accuracy and Fl-score by 1.01% and 1.22% respectively. With regards to the Case
IIT (AB - CD), one can observe from Tables 10.19 and 10.9 a decrease in Fl-score and
accuracy by 2.41% and 2.26% respectively. With regards to the Case IV (AB - CDE), one
can observe from Tables 10.19 and 10.10 a decrease in Fl-score and Accuracy by 2.08%
and 2.40% respectively. With regards to the Case V (A - C - E), one can observe from
Tables 10.20 and 10.11 a decrease in Accuracy by 1.33%.

10.8 Discussion

The early diagnosis of epilepsy is very important, since people receiving treatment are
able to live seizure-free for their entire life. Although several research works have been
proposed for detecting and predicting epilepsy, there are still significant limitations that
need to be addressed. The main limitation is pertinent to the exhaustive and tedious
procedure of feature extraction. Specifically, most research works extract features from
EEG signals both from time and frequency domain and train shallow machine learning
classifiers. Due to the fact that the feature extraction demands a lot of expertise, there
is a probability that someone will not extract the most representative set of features for
each dataset. Motivated by this limitation, in this paper we aim to automate the process
of feature extraction by utilizing two branches of CNNs with different kernel sizes. Con-
currently, we employ pretrained models on the computer vision domain to extract vector
representations from db-scaled (after having computed the absolute values) spectrograms,
their delta, and delta-delta. Finally, we propose a gated multimodal unit receiving as
input the two different modalities and trying to suppress the irrelevant information. From

the results obtained in this study, we found that:

e Finding 1: We applied STFT to the raw EEG signals and constructed an image

consisting of three channels, i.e., db-scaled (after having computed the absolute val-
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Table 10.19: Ablation Study. Cases II, IIT & IV. Reported values are mean + standard deviation.

Evaluation metrics

Architecture Precision Recall F1l-score Accuracy
Case Il (A - E)
Concatenation 1.00 90.00 94.49 95.00
+0.00 +8.94 +5.20 +4.47
Predicting from FEG signals 1.00 90.99 95.02 95.49
+0.00 +9.43 +5.45 +4.72
Predicting without the left branch of CNNs 1.00 90.00 94.37 95.00
+0.00 +10.95 +6.45 +5.48
Predicting without the right branch of CNNs 1.00 90.99 95.09 95.49
+0.00 +8.31 +4.61 +4.15
Case III (AB - CD)
Concatenation 99.52 95.50 97.39 97.50
+1.43 +4.72 +2.40 +2.24
Predicting from EEG signals 97.74 95.00 96.01 96.25
+4.06 +8.94 +5.04 +4.37
Predicting without the left branch of CNNs 98.47 95.50 96.92 97.00
+2.33 +4.15 +2.76 +2.69
Predicting without the right branch of CNNs 97.99 95.00 96.36 96.49
+2.46 +5.92 +3.46 +3.20
Case IV (AB - CDE)
Concatenation 99.38 93.00 95.96 95.40
+1.88 +5.67 +2.90 +3.10
Predicting from FEG signals 99.01 90.33 94.17 93.60
+2.12 +9.24 +5.20 +5.35
Predicting without the left branch of CNNs 99.66 95.00 97.23 96.80
+0.99 +3.73 +1.97 +2.23
Predicting without the right branch of CNNs 98.01 93.33 95.57 94.80
+2.98 +2.58 +1.84 +2.23

ues) spectrogram, delta, and delta-delta. Several pretrained models were exploited,
including ResNet18, ResNet50, AlexNet, VGG16, DenseNet201, EfficientNet, etc.
Results showed that EfficientNet-B7 was the best performing model for the five

cases considered for classification.

e Finding 2: We introduced a multimodal deep neural network. Results indicated
that the proposed approach achieved comparable performance to the existing re-

search initiatives without the exhaustive procedure of feature extraction.
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e Finding 3: We ran a series of ablation experiments and explored the effectiveness
of each component included in the proposed architecture. Results suggested that
the removal of some components of the proposed model led to a decrease in the

evaluation results.

10.9 Summary

In this paper, we introduced both unimodal and multimodal approaches for classify-
ing healthy, interictal, and ictal cases. Regarding the unimodal approaches, we applied
the STFT to the EEG data and created an image for each EEG signal consisting of db-
scaled (after having computed the absolute values) spectrogram, delta, and delta-delta.
We passed each image through pretrained models and showed that EfficientNet-B7 out-
performed all the models for all the cases considered for classification achieving accuracy
scores ranging from 93.00% to 97.50%. Next, we introduced a multimodal deep neural
network. First, each EEG signal was passed through two branches of CNNs with different
kernel sizes, i.e., large and small, aiming to automate the process of feature extraction
and capture both the temporal (i.e., when certain of EEG patterns appear) and frequency
information (i.e., frequency components). Similarly to the unimodal approach, we cre-
ated an image and passed it through the EfficientNet-B7 pretrained model. Finally, a
gated multimodal unit was incorporated in the top of the architecture for controlling the
importance of each modality towards the final classification. Extensive experiments con-
ducted on the dataset provided by the University of Bonn indicated that the introduced
architecture obtained comparable performance to the existing research initiatives with an
accuracy ranging from 95.33% to 98.75% for the five different cases considered for the

classification.
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Conclusions and Future Work

11.1 Conclusions

We investigated the latest machine learning methods for (i) identifying depression
through posts in social media and spontaneous speech, (i) detecting AD patients and
predicting their MMSE scores from spontaneous speech, and (%) identifying epileptic
patients through single-channel EEG signals. This thesis attempted to find answers to a

number of research questions which were listed in Chapter 2.

e Do transformer-based networks, i.e., BERT, ALBERT, etc. achieve bet-
ter performance than traditional techniques, i.e., LSTMs, CNNs, etc.?
In terms of this research question, we exploited and fine-tuned transformer-based
networks, including BERT, BioBERT, BioClinical BERT, ConvBERT, RoBERTa,
ALBERT, and XLNet (Chapter 5.4.1.1).

e Can we provide explanations, which will show how our models reach their
decisions? Especially in health-related tasks, it is very important for a
clinician to be informed why the deep neural network classified a per-
son as an AD patient or a non-AD one. At the same time, according to
the European Union General Data Protection Regulation (GDPR) [172]
each person has the right to the explanation. Also, can we propose inter-
pretable models, which will achieve comparable performance to existing
research initiatives? Considering this research question, we introduced an in-
terpretable deep neural network, which incorporates a co-attention mechanism for
detecting AD patients (Chapter 5.4.1.2). Also, we exploited LIME to explain the
predictions made by our best performing model and showed which pos-tags are used
by AD patients mainly (Chapter 5.7.5).

e Can we propose multi-task learning models, consisting of primary and
auxiliary tasks, to explore if the axiliary tasks help the primary one in
improving its performance? With respect to this research question, we pre-

sented two approaches. Specifically, we presented a method which investigates if

247



248 Chapter 11. Conclusions and Future Work

the estimation of age, gender, and education level helps the depression identification
task (Chapter 4.3). We also introduced two deep neural networks, which detect AD
patients and predict the MMSE scores at the same time (Chapter 5.4.2).

e How can we combine the representation vectors of the different modalities
(multimodal approaches) effectively? Regarding this research question, we
introduced several methods for (i) combining effectively the modalities of speech
and transcripts without losing information, and (i) in terms of the task of epilepsy
(Chapter 4, 6-9).

e Instead of creating fixed deep neural networks, can we create automati-
cally architectures which will perform best for our specific task? In terms of
this research question, we incorporated a NAS approach, called DARTS, into a deep
neural network, which is capable of generating a CNN architecture automatically.
This CNN architecture receives as input an image of log-Mel spectrogram (of the
input speech signal), its delta, and delta-delta, and extracts a visual representation.

This research question is answered in Chapter 9.

e How can we improve self-attention networks through capturing the rich-
ness of context? We exploit several strategies for contextualization, including
global context, deep context, and deep-global context. This research question is
addressed in Chapter 8.

e How can we prevent deep learning models from becoming too overconfi-
dent? In terms of this research question, we used label smoothing and evaluated our
proposed deep learning models in terms of both the performance and the calibration

metrics. This research question is answered in Chapters 4,8.

In the following paragraphs, we present our detailed conclusions per chapter.

In Chapter 4, we presented two methods for detecting depression by utilizing social
media posts and spontaneous speech. Firstly, we introduced a method for identifying
depression in social media text by injecting linguistic information into transformer-based
models. Also, it is the first study exploiting label smoothing, in order to ensure that
our model is calibrated. We evaluated our proposed methods on two publicly available
datasets, which include two depression detection datasets (binary classification and mul-
ticlass classification - severity of depression). Findings suggested that transformer-based
networks combined with linguistic information lead to performance improvement in com-
parison with transformer-based networks. Also, applying label smoothing yielded both to
the performance improvement and better calibration of the proposed models. Specifically,
in terms of the Depression_Mixed dataset, we found that the injection of top2vec features
into BERT and Mental BERT models along with label smoothing obtained the highest F1-
score and Accuracy. With regards to the Depression_Severity dataset, findings showed that
the injection of NRC features into the BERT model and the integration of features derived
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by LDA topics, namely GOSS features, into the Mental BERT model yielded the highest
weighted Fl-scores. We also conducted a linguistic analysis and showed that depressive
posts are full of sadness, anxiety, and negative tone. Secondly, we presented the first study
utilizing a cross-attention scaling layer and multimodal fusion methods in a single neural
network for detecting depression from spontaneous speech in the Italian language through
speech and automatic transcripts. This is also the first study experimenting with a multi-
task learning setting to investigate if the prediction of gender, age, and education level as
auxiliary tasks aid the depression detection task (primary task) in increasing its perfor-
mance. Results showed that our introduced approach improves competitive baselines in
Accuracy by 1.21-21.99% and in Fl-score by 1.32-22.23%. Results also showed that the
introduced single-task learning model outperforms the multitask learning ones. Finally, we
performed an ablation study, where we removed several parts of the proposed architecture
and observe differences in performance. Findings showed degradation in performance in
terms of Accuracy by 1.29-3.19%.

In Chapter 5, we introduced both single-task and multi-task learning models. Re-
garding single-task learning models, we employed several transformer-based networks and
compared their performances. Results showed that BERT achieved the highest classifi-
cation performance with accuracy accounting for 87.50%. Concurrently, we introduced
siamese networks coupled with a co-attention mechanism which can detect AD patients
with an accuracy up to 83.75%. In terms of the multi-task learning setting, it consisted
of two tasks, the primary and the auxiliary one. The primary task was the identification
of dementia (binary classification), whereas the auxiliary task was the categorization of
the severity of dementia into one of the four categories -healthy, mild/moderate/severe
dementia- (multiclass classification). Specifically, we proposed two multi-task learning
models. Results showed that our model achieves competitive results in the MTL frame-
work reaching accuracy up to 86.25% on the detection of AD patients. Next, we performed
an in-depth linguistic analysis, in order to understand better the differences in language
between AD and non-AD patients. Finally, we employed LIME, in order to shed light on
how our best performing model works. Findings suggest that AD patients tend to use
personal pronouns, interjection, adverbs, verbs in the past tense, and the token "and” at
the beginning of utterances in a high frequency. On the contrary, healthy people use verbs
in present participle or gerund, nouns as well as determiners.

In Chapter 6, we proposed methods to differentiate AD from non-AD patients using
either only speech or both speech and transcripts. Regarding the models using only speech,
we exploited several pretrained models used extensively in the computer vision domain,
with the Vision Transformer achieving the highest F1l-score and accuracy accounting for
69.76% and 65.00% respectively. Next, we employed three neural network models in which
we combined speech and transcripts. We exploited the Gated Multimodal Unit, in order
to control the influence of each modality towards the final classification. In addition,
we experimented with crossmodal interactions, where we used the crossmodal attention.

Results showed that crossmodal attention can enhance the performance of competitive
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multimodal approaches and surpass state-of-the-art approaches. More specifically, models
incorporating the crossmodal attention yielded accuracy equal to 88.83% on the ADReSS
Challenge test set.

In Chapter 7, we introduced three novel multimodal neural networks for detecting
dementia (AD classification task) and predicting the MMSE scores (MMSE regression
task) from spontaneous speech. First, we proposed a model consisting of BERT, ViT,
and a co-attention mechanism at the top of the proposed architecture, which is capable
of attending to both the words and the image patches simultaneously. Results indicated
that the proposed model achieved an accuracy of 87.50% in the AD classification task
outperforming all the research works proposing multimodal approaches except one. Re-
garding the MMSE regression task, our proposed architecture achieved an RMSE score
equal to 4.20. Secondly, we introduced a deep learning architecture, where we injected in-
formation from the visual and acoustic modalities along with the textual one into a BERT
model and used an attention gate mechanism to control the importance of each modality.
Results for the AD classification task suggested that the injection of both the acoustic
and visual modalities enhanced the performance of the models achieved when using only
either the acoustic or the visual modality along with the textual one. Finally, we intro-
duced a transformer-based network, where we concatenated the representations obtained
via BERT and ViT and passed the representation through a self-attention mechanism
incorporating a novel gating mechanism. Findings showed that this introduced model
was the best performing one on the ADReSS Challenge test set reaching Accuracy and
Fl-score up to 90.00% and 89.94% respectively. In terms of the MMSE regression task,
our best performing model obtained an RMSE score of 3.61 improving the state-of-the-art
RMSE scores for the regression task of the ADReSS Challenge by 0.13-3.06.

In Chapter 8, we introduced some new approaches to detect AD patients from speech
and transcripts, which capture the inter- and intra-modal interactions, enhance the con-
ventional self-attention mechanism with contextual information, and deal with the problem
of creating overconfident models by applying label smoothing. Our proposed architectures
consist of BERT, DeiT, self-attention mechanism incorporating a gating model, context-
based self-attention, optimal transport domain adaptation methods, and one new method
for fusing the self and cross-attention features in the task of dementia detection from speech
data. Furthermore, we designed extensive ablation experiments to explore the effective-
ness of the components of the proposed architecture. Extensive experiments conducted on
the ADReSS and ADReSSo Challenge datasets demonstrate the efficacy of the proposed
architectures reaching Accuracy up to 91.25% and 83.94% respectively. Also, findings
suggested that the label smoothing contributes to both the performance improvement and
calibration of our model.

In Chapter 9, we presented the first study, which exploits Neural Architecture Search
methods and fusion methods based on Tucker Decomposition, Factorized Bilinear Pooling,
and block-term tensor decomposition, in the task of dementia detection. Specifically, we

proposed an end-to-end trainable multimodal model, which combines an automatically
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discovered CNN architecture obtained from the NAS algorithm as well as a language
model for processing the text information. We integrated the two modalities using a
variety of fusion methods. Our approach exhibited comparable performance with the
state-of-the-art baselines.

In Chapter 10, we introduced both unimodal and multimodal approaches for classify-
ing healthy, interictal, and ictal cases. Regarding the unimodal approaches, we applied
the STFT to the EEG data and created an image for each EEG signal consisting of db-
scaled (after having computed the absolute values) spectrogram, delta, and delta-delta.
We passed each image through pretrained models and showed that EfficientNet-B7 out-
performed all the models for all the cases considered for classification achieving accuracy
scores ranging from 93.00% to 97.50%. Next, we introduced a multimodal deep neural
network. First, each EEG signal was passed through two branches of CNNs with different
kernel sizes, i.e., large and small, aiming to automate the process of feature extraction
and capture both the temporal (i.e., when certain of EEG patterns appear) and frequency
information (i.e., frequency components). Similarly to the unimodal approach, we cre-
ated an image and passed it through the EfficientNet-B7 pretrained model. Finally, a
gated multimodal unit was incorporated in the top of the architecture for controlling the
importance of each modality towards the final classification. Extensive experiments con-
ducted on the dataset provided by the University of Bonn indicated that the introduced
architecture obtained comparable performance to the existing research initiatives with an
accuracy ranging from 95.33% to 98.75% for the five different cases considered for the

classification.

11.2 Limitations
The studies in this thesis include the following list of limitations:

e Lack of Explainability Methods in terms of the Multimodal Approaches.
The multimodal approaches are not accompanied with explainable Al algorithms.
Therefore, the user is not capable of understanding the reasons of correct and incor-

rect predictions.

e Lack of Longitudinal Tracking. The datasets used for the detection of depression
and Alzheimer’s dementia do not allow for investigating how these brain disorders

progress over time, since each participant is recorded only once.

e Hyperparameter Tuning. The studies in this thesis do not include a hyperpa-
rameter tuning procedure due to limited access to GPU resources. It is known that

hyperparameter tuning leads to a performance improvement.

e Need for Labelled Data. The studies in this thesis require access to labelled

datasets. However, collecting labelled datasets in the healthcare domain is often
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a difficult task due to privacy reasons. On the contrary, self-supervised learning

approaches have been developed, which address the need of labels’ scarcity.

11.3 Future Work

e Interpretable multimodal deep learning models. The clinician must be in-
formed why the ML algorithm reached a specific decision. For this reason, we aim
to apply post-hoc explainability techniques for rendering the proposed multimodal
approaches explainable. Specifically, GRAD-CAM and Integrated Gradients are two
explainability techniques which can be applied for explaining the results of any ML

algorithm.

e Labels’ Scarcity. Collecting large labelled datasets for training AI/ML algorithms
is crucial. For this reason, we plan to apply self-supervised learning approaches in

the future to address the need of large labelled datasets.

e Detection of MCI. In the future, we aim to apply our introduced approaches in
the VAS dataset proposed in [120, 121]. This dataset, includes AD patients, non-
AD ones, and Mild Cognitive Impairment (MCI) subjects. Detecting MCI subjects
is challenging and has been proved to be crucial. Specifically, the progression of
the disease can be delayed substantially by detecting timely subjects in the MCI

condition.

e Privacy Issues - Federated Learning. Processing healthcare data entails privacy
issues. To be more precise, the majority of existing approaches rely on centralized
settings, where data are gathered on a central server. On the contrary, federated
learning [392] addresses this issue by distributing the training process to end-user

devices.

e Data Augmentation. Generative Adversarial Networks (GANs) can also be ex-
ploited for creating signals, i.e., speech signals, EEG, and more. Specifically, the
deep neural networks can be trained with artificially generated data, while their

performance can be tested on real data.

e Apply our methods in other brain disorders. Our introduced approaches can
be applied to other diseases as well. For instance, research has showed that Parkin-
son’s disease affects speech, thus Parkinson’s disease might be detected through

speech and transcripts.

e Use of multi-channel EEG data. In the future, we aim to use multichannel EEG
signals [122, 123].

e Multilingual Approaches. We plan to apply our introduced approaches in a

multilingual framework. Specifically, we aim to train our models in one language
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and evaluate the performance of the models in another language. For instance, one
could exploit the MADReSS Challenge dataset [124]. One can train models based

on English speech data and assess the models’ performance on spoken Greek data.

Knowledge Distillation. For addressing the need of creating large models, which
entail computational issues, we aim to exploit Knowledge Distillation approaches
[125, 126]. In this way, a large neural network is compressed into a smaller and

simpler one without sacrificing its performance.

Adapters. In this thesis, we fine-tuned some pretrained models based on trans-
formers. For example, see Chapter 5. However, some information is lost during
fine-tuning, since only task-specific data are used for updating the models’ parame-
ters. This phenomenon is known as catastrophic forgetting [127]. Therefore, in the

future, we plan to use adapters [128, 129].

Longitudinal Applications. Since depression and Alzheimer’s dementia evolves
over time, it is important to be diagnosed early. Longitudinal disease tracking is of
great importance nowadays. For instance, one of the tasks in terms of the ADReSSo
Challenge is the cognitive decline (disease progression) inference task, where one can

create a model to predict changes in cognitive status over time.
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affective norms for english words

Almost Stochastic Order

Automatic Speech Recognition

analytic time-frequency flexible wavelet transform
Bidirectional Auto-regressive Transformers
Bidirectional Encoder Representations from Transformers
bidirectional long short-term memory
Boston Naming Test

Convolutional Neural Network
Candecomp/PARAFAC

Computer Vision

Differentiable Architecture Search
Data-Efficient Image Transformer

Discrete Wavelet Transform

Expected Calibration Error
Electroencephalogram

Earth’s Mover Distance

functional memory disorder

Genetic Algorithm

Generative Adversarial Network

General Data Protection Regulation
Global Outlier Standard Score

Gated Multimodal Unit
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GPCOG General Practitioner assessment of Cognition
HAN Hierarchical Attention Network
HC Healthy Control

INV Interviewer

IVA Intelligent Virtual Agent

k-NN k nearest neighbours

KL divergence Kullback-Leibler divergence

LDA Latent Dirichlet Allocation

LIWC Linguistic Inquiry and Word Count
LM Language Model

LOOCV leave-one-out cross-validation

LR Logistic Regression

M-BERT Multimodal BERT

M-Mental BERT Multimodal Mental BERT

MCB Multimodal Compact Bilinear
MCI Mild Cognitive Impairement

MFB Multimodal Factorized Bilinear
MFCC Mel Frequency Cepstral Coefficients
MFH Multimodal Factorized High-order
ML Machine Learning

MLB Multimodal Lowrank Bilinear
MLPNN Multilayer perceptron neural network
MMSE Mini-Mental State Examination
MRI Magnetic Resonance Imaging

MTL Multitask Learning

MoCA Montreal Cognitive Assessment
NAS Neural Architecture Search

ND Neurodegenerative Disorders

NLP Natural Language Processing

OTK Optimal Transport Kernel

OVBM Open Voice Brain Model

PAR Participant

PCA Principal Component Analysis
PET Positron Emission Tomography
PHQ-9 Patient Health Questionnaire-9
PLSR partial least squares regressor
PoAD Possible Alzheimer’s Disease

PRI Perceptual Reasoning Index

PSI Processing Speed Index

PSO Particle Swarm Optimization

ReLU Rectified Linear Unit
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RF
RMSE
SDI
SGD
STFT
STL
SVM
SVR
VCI
ViT
WAIS
WHO
WMI
WMS

Random Forest

Root Mean Squared Error
successive decomposition index
Stochastic Gradient Descent
Short-time Fourier Transform
Single-task learning

Support Vector Machine
Support Vector Regression
Verbal Comprehension Index
Vision Transformer

Wechsler Adult Intelligence Scale
World Health Organization
Working Memory Index
Wechsler Memory Scale
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