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MepiAnwn

H napouoa d1dakTopikn diaTpIBn €EETAlEl TNV ETEPOYEVEIQ TWV AAAQYWV Mou
oupBaivouv oTov avBpwMIVo E€YKEPAAO PE TN ynpavon kar TNV €P@Avion
VEUPOEKPUAIOTIKWV nabnocwv. MNa Tnv eniTeu€n autou TOU EMNICTNHOVIKOU
oToxou, a€ionoloUvTal oUyXpoveG HEBODOI pNXavikng padnong, ol Oroieg
epapuolovral o OedopEVA  PAYVNTIKNG TOHOypa®iac npoepXOMeEvVA ano
MEYAAOUC Kkal NOIKINOPOPPOUC NANBUOHOUGC. ZUYKEKPIYEVA, HEAETWVTAl Ol
VEUPOAVATOMIKEC JETABOAEC MOU CUPBAIVOUV OTOV EYKEPANO O OAO TO (pACHA
NG ynpavonG, and Ta npwiga oTadia npiv TNV ekdNAWON YVWOTIKAC
€£aoBevnong €wg Ta npoxwpnuéva otadia Tng vooou AAToxaluep (Alzheimer’s
disease). XTnv avaiuon autn AauBavovrtar unoyn napayovreg Onwe n
ouvvoonpoTtnTa (comorbidity), o Tponog {wng, kabwg kal nepiBaANovTIKoI Kal
YEVETIKOI NAPAYOVTEC, Ol Oroiol EVOEXETAI VA EMNPEACOUV TIC EYKEPAAIKEC
ahhayéc. EminAgov, n diatpiBn enidiwkel va aglonoinoel Ta avaduopeva PoTia
OopIkwV aAaywv yia Tnv npoBAswn TnG MBavoTNTag HEANOVTIKNG EMPAVIONG
YVWOTIKNG €€a00&vnonc kal eMdEiVwonG TNE VOOOU JE OTOXO TNV BEATIWON TV
KAIVIK@WV NapePBAcewy kal TNV KaAUTepn dIaxeipion TwV acOevwy.

>TO NPWTO WEPOC TNC dIATPIPNC, XpnolhonolsiTal pia pEBodoc Babiac yaenong
(deep learning), To Smile-GAN, nou BaocileTal o napaywyika avTinapadeTika
dikTua (generative adversarial networks, GAN), pe okond Tnv avixveuon
MOTIBwV dopIKWV aANaywV o€ yvwolaka uyin atopd. H yébodoc epappoleTal o
OouyXpoVIKa (cross-sectional) dedopEva nou nepIAapBavouv OYKOUC avaToMIKWV
nepIOXwWV  Kal  aloIiWoswv  TNG  Aeuknc ouciac  (white  matter
lesions/hyperintensities) Tou eyke@alou, ol onoiol NpogpxovTal anod eikoveg T1-
kal T2- payvnTiknG Todoypagiac. Ta dsdopéva avtAoUvTtal and €va eKTEVEC
Ogiypa 27.402 atopwyv PJEONG Kal NpoXwpenHEVNG NAIKIAg, Ta onoia CUMKETEXOUV
oTtnv koivonpa&ia pehetwv iISTAGING (imaging-based coordinate SysTem for
AGIng and NeurodeGenerative diseases). To dciypa Xwpiletal o€ NAIKIGKES
OEKAETIEG, OUYKEKPIPEVA 45-55 €Twv pEXPI kal 75-85 €Twv, NPOKEIPEVOU va
HEAETNOEI N TepoyEveld TV OOMIKWOV aAAaywV EEXwPIOTA yia KABe NAIKIGKN
oHadA. 2TNn OUVEXEIQ, HEAETWVTAI OUCXETIOEIC TWV €EAYOUEVWY UNOONAdWY WE
napayovTeg onwe n aguhoeidng B (amyloid B) npwTeivn, nou £xel ouvdeBei pe
Tn vooo AATOXAINEP, KapOIAyYEIaKOoi OEIKTEC, YVWOTIKEC ENIDOCEIC, O TPOMOC
(wNc Kal n yeveTikn npodiabeon. TEAoC, diEpeUvATAl N CUOXETION AUTWV TWV
UMOOHAdWV MNPWIHWV OOMIKWV EYKEPAAIKWV aAaywv MHe Tnv meavotnta
MEMOVTIKNG eupaviong nmiag  yvwoTikng diatapaxng (mild cognitive
impairment).



H peAétn autny evronilel unNoopadsC nou epgavifouv Koiva XapakTnpIioTIKA
METAEU Twv d3IaPOpwV NAIKIGKWV opadwv. ZUYKEKPIPEVA, nNapatneouvTal Jia
TUNIKN unoopdda ynpavonc Pe xaunAd enineda atpo®iac kai aAAOIWOEWV
AEUKNC 0uoiac Kal YEVETIKO MPO@IA Mou npooTaTEUEl and KapdIayYEIAKEC
naénoeig, kar OU0 UMOOMAdEC MpPOXWPNMEVNG yApavong: n  npwtn
xapaktnpiletar and au&nuévouc napayovreC KivOUVOU Yia KapdlayYEIaKEC
naénoeig, dlIaTapaxeéc TNG aKEPAIOTNTAC TNG AEUKNG ouciag kal augnuevn
gvanobeon apulosidouc B, evw n deUTepn napouoialel dIAXuTn Kal UWNANG
EVTAONC EYKEPAAIKT aTpo®ia, niBavwc Aoyw nepIBAAAOVTIK®WY NapayovTwy Kal
napayovTwv nou oxeTifovTal e Tov TPono {wnGc. AUTEC Ol UNOONAdES (paiveTal
va avTikatonTpifouv Tn JIAPOPETIKN €UaIoONOIA TwV ATOPWV TWV UNOOHAdWV
0TN YVWOTIKA EKNTWON Kal ToV pUBKO eNIdEIVWONG TNG, KABWG Kal TN HEAAOVTIKNA
gUPAvion TnG vooou ANToxaiPep.

270 OeUTEPO WEPOG TNG BIATPIBNAG, avanTuooeTal pia vea pebodoloyia yia Tn
MEAETN TNC €TEPOYEVEIAC. AUTN N MNPOCEYYION €MIOIWKEl va EENepAosl TOug
nEPIOPIOPOUG nou  eniBaA\ouv oI unapyouoeg HeBodoAoyieG, O  Onoieg
BaoilovTal anokAEIOTIKA O OuyXpovika Ocdopéva yia Tnv €UPEDn HOTIRwV
EYKEQAAIKNG ynpavong, napapAénovrag Tn duvapikn €EEAIEN TNG ynpavong Kai
TWV OXETIKWV NABOAOYIKWV KATAOTACEWV o€ BABog xpovou. H npoTeivopevn
peBodoAoyia, mou ovopdaleTar and koivoU WN-apvnTIKR Mnapayovtonoinon
OUYXPOVIKWV kal Olaxpovikwv nivakwv (Coupled Cross-sectional and
Longitudinal — Non-negative matrix factorization, CCL-NMF), BaaileTal oTn pun-
apvnTIKA napayovrtonoinon nivaka kai €Eayel Ta JoTiRa ekPeETAAEUOHEVN dUO
€idn dedopEVWV NOU NPOCPEPOUV DIAPOPETIKEG Kal dUVNTIKA CUUNANPWHATIKEG
NANPOMOPIEC: XAPTEC/NIVAKEC MOU AMOTUMMWVOUV CUYXPOVIKEC Kal OIaXPOVIKEC
(longitudinal) aAAayég oTov eykE@alo We Tn ynpavon. ZUYKEKPIMEVA, N
napayovronoinon die€ayeral and koivoUu oTouc OUO MIVAKEC: O OUYXPOVIKOG
nivakag avanapioTa Ta Pakpoxpovid Kal OWPEUTIKA anoTEAEOPATA TNG
ynpavong evog nAIKIwPEVou nANBuopou (NANBUCOC 0TOXOC) O OXEDN HE Evav
uyIn kai vedTepnc nAikiac nAnBuoud (NAnBuopoc ava®opdc), v o d1axpPovIKOC
nivakag anoTunwvel TIG OUVAUIKEG aAAayEG TOU EYKEQPAAOU HE TN yRpavon o€
aTopiko eninedo. H peBodoloyia CCL-NMF nepiAapBavel Tnv napayovTonoinon
KGBe nivaka o€ OUO VEOUG MIVAKEG MIKPOTEPWV HEYEBWV: O MPWTOC Mivakag
aneikoviCel Ta poTifa eyke@alikwv alaywv (nivakag Ae€iko/Bacn) kai givai
KOIVOG yla Toug dUo TUnoug dedopévwv kal o OeUTEPOG nivakag (nivakag
ouvTeAeoTWV/Bapwv) npoadiopilel Tov Babud €kppaonc kabe poTiBou o€
aTopiko €ninedo kal JlagOoPONOIEITAl yiId Ta OUYXPOVIKA Kal Ta Olaxpovikda
Oedopéva. EmnAeov, o€ avTiBeon e nponyoupeva povTeAa, n peEBodog CCL-
NMF dev npooeyyilel TNV €TEpoyéveld w¢ €va npoBAnua cuoTadonoinong,
Kabwg EMITPENEl GTO KAOE ATOHO TNV TAUTOXPOVN EKPPAC NOAAANAWY HOTIBwV
ME OIAPOPETIKOUC OUVTEAEDTEC.



Autr) n peBodoloyia pnopei va epapupooTel yia TN MEAETN dlaPOpwv
XAPAKTNPIOTIKWV MOU OXETICOVTAl PE TNV EYKEPAAIKN yrpavan onwc n otadiakn
ouppikvwaon/aTpoia TN paiag ouaiac, N NPOodEUTIKN evandBean apulogIdoug
B kal tau npwTeivwv, N au&avopevn oUOOWPEUON AAAOIWOEWY TNG AEUKNG
ougiac oTov &eykepalo, k.Am. H napouca OiaTpIfry ENIKEVTPWVETAI OTNV
EQAPUOYN] TOU HOVTENOU VYia TN HEAETN TNG EYKEPAAIKAG aTpogidg,
XPNOIKONoIwVTAC OYKOUG AVATOUIKWY MEPIOXWV NPOEPXOHEVOUG anod eIkOVeS T1-
HayvnTIKNG Topoypagiac. Aedouévou TOU XAPAKTAPd TOu MPOBANUATOC, TO
onoio apopa Hn-enIBAENOPEVN MABNON XWPIC oapwe kabopiopevn Auon, n
ENIKUPpWON TNG MEBOGOOU npayPaTonolsiTal Pe Tn XPHAon NUI-OUVOETIKWV
0edopEVWY, OTA Oroia €XOUV NPOCOMOIWOEI CUYKEKPIUEVA WOTIBa aTpoiag. Me
aQutod TOV TPOMO, JIEPEUVATAl N IKAVOTNTA TOU HOVTEAOU va avixveuel Td
NPOCOMOIWKEVA HOTIRa.

>Tn OUVEXEID, TO HOVTEAO XPNOIKONOIEITAl YIA TNV EUPECT HOTIBWV EYKEPAAIKNG
arpogiag o evav nAnBuopd npoxwpnuevng nAikiag (N=48.949) €xovtag wg
avagopad £vav uyin nANBuopo peonc nAikiag (N=977), kai o1 dU0 NpoePXOUEVOI
ano To iSTAGING. H avaAuon Twv OUCXETIOEWV HE NAPAYOVTEG KIVOUVOU
kapdiayyelakng vooou, BIOdEIKTEG TNG VOOOU AATOXAIUEP, YVWOTIKN EKNTWON
Kal meavoTnTa PHEAOVTIKAG ENIOEIiVWONG auTnc, pavepwvel 0TI Ta avaduopeva
MoTiBa aTtpogiag euBuypappifovral Pe KAIVIKOUG @aivoTunouc. EminAgov, n
g€aywyn €EATOMIKEUPEVWV ENINEOWV EKPPAONC AUTWV TWV HOTIBWV HEOW TWV
OUVTEAEOTWV npodyel Tnv  Kateubuvon €vog Mo €EATOMIKEUNEVOU
npoypapuaTog  dlaxeipiong acBevwv  kal  oXedlaopoU  BEPANEUTIKWV
napePpacswy.

EminAéov, n ouUykpion ME nponydéva povTEAa PBabiac padnong nou
e@appolovTal oTa idia OedoUEVa PAvEPWVEl OTI Ol GUVTEAEOTEG EKPPATNG TWV
MoTiBwv CCL-NMF npoo@épouv  BeATIWUEVN NPOBAENTIKR IKAVOTNTA Vid
diapopa KAIVIKG XapakTnpioTikda. ‘ETol, ouvelo@Epouv otV  KAAUTEPN
KaTavonon TWV HPNXaVIOMWV YNPavonc Kali  VEUPOEKPUAIOWOU. TEAOG,
avanTuooovTdl HOVTEAA NAAIVOPOUNONC Yia TNV YPryopn Kai EUKOAN €KTiUNoN
TWV OUVTEAEOTWV QUTWV TWV HOTIRwV 0t véa ouvoAa OeDOMEVWV, XWPIC va
anaiTeitalr n epapuoyn TnG peBOGdou and Tnv apxn, dleupUvovTac €Tol TNV
XPAON auThG o€ dIaPOPETIKA EPEUVNTIKA Kal KAIVIKA nepiBAiAovTa.

NeEeic kKAEIDIa
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KAipakag, Mn-apvnTikn Mapayovtonoinon Mivaka, Eykepalikn Mpavon, Nooog
AAToxaipep, Kapdiayyeiakry Nooog, ATpoia, ANoiwoelc Aegukng Ouaiac,
ETepoyevela, EEaTopikeupevn IaTpikn.



Abstract

The present thesis investigates the complex and multifaceted brain changes
associated with aging, which lead to cognitive decline and the development of
Alzheimer’s disease (AD). Utilizing and advancing state-of-the-art machine
learning techniques and harnessing large-scale datasets, distinct and
homogeneous imaging patterns linked to various brain aging trajectories are
identified. The overarching objective is to disentangle the neuroanatomical
heterogeneity across the brain aging spectrum, examining the variability driven
by AD-related degeneration and the influence of co-existing pathologies,
lifestyle, environmental, and genetic risk factors. Additionally, this work seeks
to leverage the identified dimensions of brain changes to predict future
cognitive decline and clinical progression, providing insights that may ultimately
improve early diagnosis, risk stratification, and intervention strategies in aging
and neurodegenerative diseases.

First, the heterogeneity of neuroanatomical brain changes in aging at early
asymptomatic phases is investigated by leveraging recent advancements in
deep learning and big data analytics. Collectively, there has been an increasing
understanding of the neurobiological processes related to various
neuropathologies that affect the human brain, including AD and
cerebrovascular disease. However, little is known about how people, at the
individual level, transition from normal aging to pathologic manifestation. This
knowledge gap is partly due to the lack of sufficiently large-scale neuroimaging
datasets and the tools to model and validate such complex processes.
Unraveling the neuroanatomical heterogeneity in aging at early stages before
the emergence of clinical symptoms may provide prognostic information about
susceptibility to or presence of neurodegenerative disease and influence patient
management and clinical trial recruitment.

To address this challenge, a novel semi-supervised clustering method based on
generative adversarial networks (GAN), termed Smile-GAN, is applied to cross-
sectional anatomic regions of interest (ROI) volumetrics and white matter
hyperintensities (WMH) derived from T1- and T2-weighted magnetic resonance
imaging (MRI) data, respectively, consolidated by the iISTAGING (imaging-
based coordinate SysTem for AGIng and NeurodeGenerative diseases)
consortium for a large-scale and diverse harmonized multi-cohort sample of
middle-to-late age cognitively unimpaired individuals (N=27,402).
Neuroanatomical subgroups are independently examined in four decade-long
age intervals spanning 45 to 85 years, with the use of decade intervals helping
to mitigate age-related effects during clustering. The derived subgroups are



then correlated with genetic and lifestyle risk factors, biomedical measures, and
cognitive decline trajectories.

Three subgroups, consistent across decades, are identified within the
cognitively unimpaired population. Briefly, a typical aging subgroup
characterized by low atrophy and white matter lesions and a genetic profile
protective against vascular disease and two accelerated aging subgroups are
found: one characterized by elevated cardiovascular disease risk factors,
disruption of white matter integrity, and increased cerebral amyloid B
deposition, while the other displays diffuse and severe atrophy, likely driven by
lifestyle and exposure factors. These subgroups may reflect differential
susceptibility to AD and other neurodegenerative conditions, cognitive decline,
and clinical progression.

Next, a novel methodology for the study of heterogeneity is introduced. Unlike
current approaches relying solely on cross-sectional data, thus neglecting
dynamic observations of pathological changes, the proposed approach, termed
Coupled Cross-sectional and Longitudinal Non-negative Matrix Factorization
(CCL-NMF), develops a mutually constrained NMF framework to delineate
components that encapsulate distinct patterns of brain alterations derived
jointly from cross-sectional and longitudinal data. A cross-sectional map (C-
map) captures the cumulative brain changes due to aging or disease over long
periods inferred from broader population-level comparisons, while a
longitudinal map (L-map) captures the dynamic patterns of brain change on an
individual basis. CCL-NMF identifies components shared by C- and L-maps
based on the assumption that an aging or disease effect estimated cross-
sectionally at a population level should be compatible with dynamic brain
changes captured by longitudinal data. It also estimates corresponding
coefficients (loadings), representing the degree of expression of each
component from each individual by optimizing the reconstruction of both data
types, thereby capturing the complex interplay between static and dynamic
aspects of brain alterations. Notably, CCL-NMF avoids rigid classification into
mutually exclusive categorical subtypes, allowing individuals to exhibit varying
degrees of co-expression across multiple patterns, which is important for
capturing co-existing pathologies.

The proposed methodology is formulated in a general framework, enabling its
application to analyses of heterogeneity of any disease characterized by
monotonic brain alterations (e.g., gradual gray matter atrophy and
cerebrospinal fluid expansion, progressive white matter lesion accumulation, or
increasing deposition of neuropathologies such as amyloid and tau). This thesis
applies CCL-NMF to parse the heterogeneity of aging-related atrophy using
anatomic ROI volumetrics derived from T1-weighted MRI data. The method is



first validated using semi-synthetic data with predefined atrophy patterns and
severity levels. Then, it is applied to delineate the heterogeneity in an aging
population (N=48,949) with a healthy middle-aged cohort (N=977) as a
reference. Both populations are drawn from the iISTAGING consortium. The
identified components are correlated with AD biomarkers, cognition,
cardiovascular disease risk factors, and disease progression, revealing
meaningful patterns closely aligned with clinical phenotypes, highlighting the
method’s ability to offer deeper insights into the biological processes underlying
aging. Importantly, by deriving individualized expression levels across these
components, the approach facilitates personalized therapeutic interventions
tailored to individual patient profiles, paving the way for more targeted and
effective treatment strategies.

Moreover, comparisons with state-of-the-art deep learning models applied to
the same dataset demonstrate that the CCL-NMF components provide improved
predictive power for biomarkers and clinical variables, refining our
understanding of brain aging pathways. Finally, the model facilitates out-of-
sample application through regression-based loading estimation, broadening its
utility in research and clinical contexts.

Keywords
Neuroimaging, Machine Learning, Clustering, Big Data, Non-negative Matrix

Factorization, Brain Aging, Alzheimer’s Disease, Cardiovascular Disease,
Atrophy, White Matter Hyperintensities, Heterogeneity, Personalized Medicine.
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EuxapioTieg

H napouoa d1dakTopikn diaTpIBry EKNOVABNKE KaTta To Xpovikd diaoTnua 2018-
2024 oto Epyaomipio BioiaTpikwv [MPoocopoiwoswy Kal  ANEIKOVIOTIKAC
Texvoloyiag Tng ZX0ARG HAekTpoAdywv Mnyavikwv kai  Mnxavikwv
YnoAoyioTwv Tou EBvikou MetooBiou MoAuTeEXVEIOU Kal O ouveEPYaadia PE TO
Center for Biomedical Image Computing and Analytics (CBICA) Tou University
of Pennsylvania. Me Tnv oAokANpwon TnG, KAeEivel €vag KUKAOG £E1 xpovwy,
YEUATOC HE VEEC YVWOEIC, MAOUCIEC EUNEIPIEC KAl AEEXAOTEC AVAUVNOEIC.

©a nBeha va ekPpacw TIC Mo BEPPEC Jou euxaploTiec aTnv Kabnyntpia ka.
KwvoTtavtiva Niknta kai otov Kabnynm K. Xproto NtaBatliko yia Tnv
kaBodnynon Toug, TNV ApEPIOTN UNOCTAPIEN TOUG Kal TOV EvBoOUGIaouo Toug yia
TO QVTIKEIMEVO TNG EPEUVNTIKAC MOU €pyaciac. Enmiong, BEAw va suxapioTiow
Beppua Ta undhoina PEAN TNC ENTAPEAOUC ENITPONNC YIA T OUVEPYAaTia Kal Tnv
unooTnpIEN nou pou napeixav kab' OAn Tn JldpKeld TNG €PEUVNTIKNAG HOU
diadpopnc. Eipar 1diaitepa suyvmpwv otov Ap. Guray Erus yia TIGC OUPBOUAEC
Kal Tov XpOvo Mou navTa e npobupia apIEPWVE yia va Pe evBappuvel Kal va HE
unooTnpiEel oe €peuvnTIKO Kal npoownikd eninedo. Akoua, Oa nbeia va
guxapiotnow Tou¢ Ap. Ilya Nasrallah kar Ap. Haochang Shou yia Tnv
unoaTNPIEN TOUG Kal TNV EAIPETIKN OUVEPYAOIa Nou EXOUKE avanTugel OAa auTa
Ta xpovia.

©a nBeAa akodun va euxapioTAoW TA HPEAN Twv OUO €pyacTnpiwv yia Tnv
ONUIoUPYIKN OUVEPYAoia pac, kabwc kai yia Tnv aAAnAgyyun nou oikodounoaue
OAa auTtda Ta Xpovia. H avraAhayr OKEWEwWvV, avnouxiov Kal YEAIWV unnpée
avanoonaoTo KOMPATI AUuTNC TNC EUNEIpiac.

H evBdppuvon kai n unooTnpIiEn TwV ayannueEvwy Pou avBpwnwv unnpéav n
KIvNTApIO¢ dUvapun O€ auTn Tnv nopeia. EuxapioTw Toug PiAoUG Jou — avapeoa
Toug TNV EAEvN Kkal Tov ZTABN — yIa TIG EUXAPIOTEG OTIYHEG MOU [IOU NPOCEPEPAV
Kal yla Tnv karavonon nou €0e1&av OTIC AavnouxieC pou, Kabw¢ Kalr OAoug
gKeivouc nou Bpednkav dinAka pou kai Pe oTnpiEav o auto To Ta&idl, o kabevag
ME TOV JIKO TOU Hovadikd Tpono.

H 3i1dakTopikr) pou diaTpIPn €ival apIiEpWHEV OTOUG YOVEIG HOU, ZTAPATN Kal
KaTepiva. Toug euxapioTw and kapdiag yia Tnv ayann, Tn oUVeXn ¢povTida Kal
TNV noAunAeupn oTAPIEN Touc. H oupBoAr Toug unnp&e kabopioTikn yia TNV
ekndvnan kal oAOKANPwWon auTtig Tng d1IaTpIRAG.
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>TOUG YOVEIC Jou,
>Tapartn kar Katepiva






EkTETAPEVN NEPIANWN

H naykoopia al&non Tou npocdokipou {wng odnyei o€ dpauarikn auv&non Tou
NAIKIWPEVOU NANBUOPOoU, 0 onoio¢ avapeveTal va ¢Taoel To 1,5 dioekaToppupio
hEXpI To 2050. AuTh n Onuoypaikn €EEAIEN ouvodeUeTal and auénon Tou
KIVOUVOU EUPAVIONG VEUPOEKPUNIGTIKWY aoBeveIwyY, Onwe n avola (dementia)
Kal n voooc Tou AAToxaidep (Alzheimer’s disease, AD). ZUP@wva HE TOV
Maykoopio Opyaviopo Yyeiag, n davoia nNANTTel nepinou 50 ekaToppupia
avbpwrnou¢ naykoopig, HE TO AD va anoTtehei Tnv kUpIa aiTiq,
avTinpoownevovtac 1o 60-70% Twv nepinTwocswv. O apiBuoc auTog
npoBAEnsTal va TpinAaciaoTei €wg To 2050, NpokaAwvTag coBapeS ENINTWOEIC
0Td OUCTAKATA UYEIOVOUIKNG NEPIBAAWNG Kal OTIG OIKOYEVEIEG AOYW TNG AvAyKNG
yla Hakpoxpovia @povTida, 1aTPIKEG NAPEPPACEIG KAl UMOOTNPIEN Twv
(ppovTIOT®V. AUTH N dnuUoypagIkn aAAayr unoypaupilel TNV engiyouca avaykn
yla avanTtuén oTpaTtnyikwv PE OTOXO TNV nNpowdnaon Tng uylouc yipavong Kai
TNV €ykaipn dIAyvwaon VEUPOEKPUAIOTIKWY ACHEVEIWV.

O eyke@alog anoTeAei €va 1D1IAITEPWG €uaiobnTo Opyavo o€ O,TI apopd TN
ynpavon. H eyke@alikr yripavon eival pia eEaipeTika noAunAokn d1adikacia nou
ennpealetal and Tnv aAAnAenidpacn YeveTIKwY, NEPIBAAOVTIKWY, Kal
naBoAoylkwv napayovTwv. AuToi ol NapdyovTeG EMNIPEPOUV ETEPOYEVEIG AAAAYEG
oTtn Ooun Kal Tn ASITOUPYIKOTNTA TOU EYKEPAAOU, Ol OMOIEC, OTN OUVEXEIQ,
ennpealouv kabopIoTIKA TIC YVWOTIKEG IKAVOTNTEG, TN MVAKN, TNV ene&epyaacia
NANPOMOPI®V Kal TNV IKavoTnTa Jaénong Tou atopou.

MapayovTeg Tou Tponou {wNG, onwc n diaTpoPn, N owUaTikn dpaocTnpIdTNTa,
N KOIVWVIKI) ouvavaoTpo@r Kal n yvwaoTiKn dIEyepon, KaBwe Kal n eknaidsuon
Kal N KOIVWVIKOOIKOVOMIK) KaTaoTaon, ennpedlouv onuavTika Tnv Uyeia Tou
gyKePAlou kab' 6An Tn diapkeia TNS {wrc Tou aTOHoU. SUPPWVA PE OXETIKEG
MEAETEC, N TAKTIKN QUOIKA AoKNon Kal n 1gopponnuevn dlaTpogr EXOUV
anodeixBei 1010iTEPA  MPOOTATEUTIKEG €vaVTI TNG EYKEPAAIKAG aATPOPIac.
AvTiOETa, TO XpOVIO OTPEC Kal n €ANEIYn vonTiKNG OIEYEPONC MWMOPEi va
OUMBAANOUV OTnV emITAXuvon TNG YVWOTIKAG E€KNTwoNnG EmnAéov, ol
nePIBAAOVTIKOI NAPAYovTEC, ONwG N €kBeon og pUNoUG kal Togives ennpealouv
TNV UYEia TOU YKEQPAAOU Kal TNV Mopeia Tng ynpavong.

MapaMnAa, ol yeveTikoi napdyovtec diadpapaTilouv kabopioTikd poAo oTn
dladikacia autn. MNa napadeiypa, To aAAnAOHoppo €4 TnG ANoAINonpwTEivng
E (Apolipoprotein E, APOE) €xel ouvdebei pe au&nuévo kivduvo eugaviong AD.
Auti n  vyeveTikn noikiAopop@ia  unodnAwvel 0TI OpIOPEVA  ATOMd
OI1a0£TOUV PeYaAUTEPN avOeKTIKOTNTA OTIC EMNTWOEIC TNG YNPAvoNc, evw aAAa
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gival NEPICOOTEPO EMIPPENN OTN YVWOTIKN NaApakun. Autd npooBeTel €va
emnA&ov eninedo noAunAokOTNTAg oTnVv Kartavonon Tng diadikaciag ynpavonc.

TENOG, n ouvvoonpOTNTA KATa Tn OIAPKEIa TNC ynpavaongc, n onoia nepIAayBavel
METAEU aMwv nabnoeig onwc ol kapdiayyEIakES, Ol EYKEPANOAYYEIOKESG Kal O
dIaBATNG MNOpPOoUV va €MITAXUVOUV Tn ynpavon Tou eykepdalou. H napouacia
apulogIdwv NAakwv, VEUpOiviBIakwy Oeapidwy kal BAABwV TNG AEUKAG ouaiag
nePINAEKEI NEPICOOTEPO TN S1adikaaoia TNG ynpavonc, Kabwg auTeg ol naboAoyieg
MMopei va enikaAunTovTal Pe TIG TUMIKEG dladikaaoieg ynpavong, kabioTwvTag
OUOKOAN TN OIAkpIoN MWETAEU TNC (PUGCIOAOYIKNG/TUMIKAG ynpavong kair Twv
NPWINWV 0TAdIWV VEUPOEKPUNIGTIKWV VOONUATWV.

AOyw TG povadikng aAnAenidpaonc autwv Twv napayovtwyv o€ KaBs aTtopo,
N ynpavon Tou €yKeQAAOU Napoucialel OnNUavTikn ETEPOYEVEID HECA OTOV
nANBUoWO, Yeyovog Mou unoypaupifel Tnv avaykn yia €EATOHIKEUMEVEG
NPOOEYYIOEIC OTN HEAETN Kal oTo oXedlaoud TG Bepaneiac. H napouoa diatpifn
ENIXEIPEl va avTanokpiBei g€ autn TNV NPOkANon JIEPELVWVTAG TIG OUVOETEG
ahhayég nou epgavifovTal oTov eykepalo kata Tn diadikaaoia Tng ynpavaong, ol
onoieg oUKPBAANOUV OTN YVWOTIKN EKNTWON Kal oTnv avanTtuén AD. MEow TNG
XpNonG kai TnG €EENIENG OUYXPOVWY TEXVIKWV MNXAVIKAG padnong (machine
learning, ML) nou e@appolovtal oc OedOpEVA HAYVNTIKAG Topoypagiag
(magnetic resonance imaging, MRI) and peyaia oUvoAa dedopevwy, n diaTpiPn
gvronidel JIQKPITA HOTIBa ynpavonc HE OUYKEKPIYEVA XAPAKTNPIOTIKG Kal
nopeieg €EENIENG oTo Xpovo. EidikOTEpa, €EeTAlETAl N VEUPOAVATOMIKN
ETEPOYEVEIQ OE OAO TO PACHA TNG EYKEPAAIKNG YRPAvONG, and acuUUNTWHATIKA
oTadla PEXp! Ta TeEAIKA aTadia Tou AD, SIEPEUVWVTAC TNV ENIOPACT YEVETIKWY,
nepiBalovTikwv kal naboAoyikwv napayovtwv. EmnAéov, Ta avadudpeva
HOTIBa VEUPOAVATOMIKWV AANOIWOEWY XPNOILHONOoIoUVTal yia TNV NpoBAswn TG
meavoTnTag HEAAOVTIKNAG EPPAvIonG N eMdeivwong TNG YVWOTIKNG EacBévnong.

H oupBoAn Tnc napouoac diaTtpiPnc diapBpwveTal o dUo0 BepeNIMOEIC GEOVEC:

e AIEpEUVA TNV ETEPOYEVEIA TWV VEUPOAVATOUIKWY HETABOAWV TOU EYKEPAAOU
0 AOUPNTWHATIKG oTadid, napéxovrac NOAUTIHEC NANPOPOPIEC OXETIKA HE
NPWIPOUG OEIKTEG YVWOTIKNG EKNTWONG. AUTH N NPOCEyyIon QWTIlEl TIG
NOIKINOHOPPEG EYKEPAAIKEG AAAAYEG, Ol ONoiEC PNopei va nponyouvTal 1 va
UNodEIKVUOUV TNV EUPAVION YVWOTIKWV OIaTapaywy.

e EE&eAiooel TIC UPIOTAPEVEG HEBODOUC avaAuonC TNG ETEPOYEVEIAC HECW TNC
avanTuéng evog KalvoTOPOU HOVTEAOU. TO VEO QUTO HOVTEAO EVOWUATWVEI
ouyxpovika (cross-sectional) kair diaxpovika (longitudinal) dedopéva,
npoogEépovTac Tn duvaTtoTnTa €vog Mo akpiBouc XapakTnpiopoUu Twv
EYKEQAAIKWV  alkaywv  nou  oxeTiovrar  We TN ynpavon.
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1. AvAluon TnNC ETEPOYEVEIQG TWV VEUPOAVATOMIKWV aAAAQywv TOu
EYKEPANOU KATA TN ynpavon O€ NpwIKNd ACUUNTWHATIKA oTadid HEOW
MNXAVIKAG HABNONC KAl EKTEVWV GUVOAWV DEOOHEVV.

H diadikaoia Tng ynpavongc, onwc £xel npoavapepOei, gival eEaIpeTIKG GUVOETN
kal Olapépel PETAEU aTopwv, kabBwg npokUnTel and Tnv aAAnAenidpaon
YEVETIKWV, NEPIBAMOVTIKWY Kal naboAoylikwv napayovtwv. AuToi ol
napayovrec AaA\oTe Opouv aveEaptnTd, AGANOTE OUVEPYIOTIKG  Kal AAAOTE
avTaywvioTIKG NPoKaAWVTAC NEPINAOKEG OOMIKEG Kal AEITOUPYIKEG WETABOAEG
OTOV EYKEPANO, O1 OMOIEC EKONAWVOVTAI UE MOIKIAIQ KAIVIKWV CUPNTWHATWV. Ol
KOIVEG veuponaBoloyieg nou oxetiCovral Pe Tnv nAikia, onwg n vooog Tou
AATOXGIJEP KAl Ol  ayyeldkéC  nabnoeic, ouxva  napouoialouv
NapaTETAPEVEG NPOKAIVIKEG (PACEIG KATA TIG onoieg oI dOMIKEG aAAayeG oTov
EYKEPAAO WMOPOUV va avixveubouv HECW TNG HayvnTiknG Topoypagiac. H
£yKaIpn AViXVEUON QUTWV TWV PJETABOAWV OTA Npwiua oTadia €ival Kpioiun yia
TNV Katavonon TnG euaiobnoiag Twv atopwv ortn  Oiadikacia TG
vEUpoekPUAIONG. AuTn n diadikacia Oev €ival GNUAvTIKn POVO yia TNV €ykaipn
napeppBaon al\@ kal yia Tn OwOTH KAThyopionoinon Twv acbevay,
EMITPENOVTAG TN BEATIOTN 0pYAVWON Kal EKTEAEON KAIVIKWV JOKIHWV.

2TO NApeABOV, TO MNEPIOPIOPEVO HEYEBOG Twv JdelypdTwy, Kabwg kal o
ouvOUAOoHOC GUVOAWV DEDOUEVWV NMOU £XOUV ANPOEi P dIapOPETIKEC HEBODOUG
Kal NpwTOKOAAa aneikoviong eunodifav Tnv 1IkavoTnTa avixveuong TwV AENTwV
dlapopwyv OTN YRPAvaon Tou eykepalou. ‘OPwc, Ta TEAEUTaia Xpovia, ol Pebodol
EVAPHOVIONG HEYAAWV GUVOAWV OeDOPEVWY, O OUVOUAOHO ME TNV avanTuén
EEENIYHEVWV TEXVIKWOV HNXAVIKNG HABNONG, NPOOPEPOUV VEEC BUVATOTNTEG YId
TNV avayvopion Twv AENTWV Kal NOAUCUVOETWY VEUPOAVATOUIKWV HETABOAWY
OTOV EYKEPAAO HE TN yrpavan.

H napouoa diaTpiBr a&onolei pia nui-eniBAenopevn (semi-supervised) TEXVIKN
BaBiag pabnong (deep learning, DL), To Smile-GAN, yia Tov EVTOMNIOHO
UNooHAdWV OOHIKWV EYKEPAANIKWV aMaywv o€ nAnbuopols péong Kal
NPOXWPNUEVNG NAIKIAG nou Oev €Xouv €KONAWOEI CUUNTWHATA YVWOTIKAG
€€aoBevnonc. Meow TNC UAOMOINONG AUTNC TNG NPOCEYYIONG O€ £va EKTEVEC KAl
EVAPHOVIOMEVO OUVOAO OedOUEVWV Nou nepIAAPPBAVEl MEPIOTOTEPOUC aMNO
27.000 OUPMETEXOVTEC, OTOXOG €ival N AViXVEUOTN VEUPOAVATONIKWY UNOOUAdwV
ME OIaKPITA VYEVETIKA, KAIVIKA Kal YVWOTIKG npo@iA. AUTEC Ol UMOOMADEG
NapeXouv onUAvTikn Bacn yia Tnv Katavonon Twv NPokKAIVIKWV diadikacimv
VEUPOEKPUAIONG Kkal Jnopouv va a&ionoinfoulv yia Tnv npowpn didyvwaon, Tn
dlaoTpwUATWON Twv acBevwv kal Tnv e€atopikeuon TnG Oepaneiac.
JUYKEKPIYEVA, N avalucn auTh anookonei 1) oTov evronmopd unoopddwv
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aTOPWV HE OIAKPITA XapaKTNPIOTIKA OOMIKWV AANOIWOEWY TOU EYKEPAAOU OF
€va peyalo nAnBuopd pEONG Kal NpoxXwpnUEVNG NAIKiag Xwpic diayvwopeva
OUNNTOHATA YVWOTIKNG €€a00€vnonc, 2) 0Tn CUCXETION AUTWV TWV UNMOOHAdwV
ME YEVETIKOUC, kapdiayyelakoUc kal nepiBAAAovTIkoUC napayovTeC Kivouvou,
apuloeidec B (amyloid B, AB) kal eNIOOCEIC OE YVWOTIKEG DOKIPATIES, Kal 3) aTNV
a&loAdynon Tn¢ dlaxpoviKnG oTadepOTNTAG AUTWV TWV UNMOONAdwv, kabwg Kai
TNC onuaaiag Toug yia Tnv NPOoRAsWn eUPAavIonG YVWOTIKAG EEacBévnonc.

H napouoa avaiuon a&ionoinos dedopeva anod Tnv koivonpa&ia iSTAGING, n
onoia anoTeAei pia cUPNPAgn VEUPOANEIKOVIOTIKWY, KAIVIKWV Kal YVWOTIKWV
Oedopévwyv and nepioodTepouc and 39.000 OUPMETEXOVTEC MNAYKOOMIWC.
SUYKEKPIPEVA, emAexBnkav 27.402 atopa nAikiag 45 €wg 85 eTwv Xwpig
dlayvwopévn yvwoTikn €EaoBevnon (cognitively unimpaired, CU) katd tnv
evapén TnNG MEAETNG, WE nepiocoTepa anod 58.000 xpovika onueia dedopEVWV
NPoEPXOHEVa anod TIG NapakaTw HEAETEG: Alzheimer’s Disease Neuroimaging
Initiative (ADNI), Australian Imaging, Biomarker, and Lifestyle (AIBL) Study,
Biomarkers of Cognitive Decline Among Normal Individuals (BIOCARD),
Baltimore Longitudinal Study of Aging (BLSA), Coronary Artery Risk
Development in Young Adults (CARDIA) study, Open Access Series of Imaging
Studies (OASIS), University of Pennsylvania Memory Center cohort (Penn-
PMC), Study of Health in Pomerania (SHIP), UK Biobank, Women’s Health
Initiative Memory Study (WHIMS), kai Wisconsin Registry for Alzheimer’s
Prevention (WRAP).

H npoene&epyacia Twv eikovwv nepiayBave Tn d16pOwaOn TNG avouoIoyEVEIAG
NG €vraong Tng MayvntikoU nediou (correction of magnetic field intensity
inhomogeneity) kabw¢ kal Tnv a@aipecn Tou Kpaviou anod TIG EIKOVEG
MayvnTiknG Topoypaiag (skull-striping). ZTn ouvéxela, npaypartonoinénke
kataTtunon Twv T1-eikdvwv (T1l-weighted) payvnTikng Topoypagiag yia Tnv
€Eaywyn TwV avaTodIKwV NEPIOXWV Tou eyke@alou (regions of interest, ROIS)
Kal Twv T2-elkovwv (T2-weighted) payvnTikic Topoypagiac yia Tnv eEaywyn
Twv neploxwv BAaBwv Aeukng ouaiag (white matter hyperintensities, WMHSs).

>Tnv availuon xpnoidonoinénkav 145 ROI dykor (volumes) ornou kaAUunTouv
0AOKANpPO Tov eykePaAo kal 8 oykol WMH and Toug Téooepig dipepeic (bilateral)
gykePaAikoUc AoBouc. H evapuovion Twv ROIs HETAEU TwV dIaPOPwV HEAETWV
npaypartonomenke Pe Tn xpnon Tnc neBddou ComBat-GAM (General Additive
Model) n onoia xpnoigonolei Tov eUneipikO kavova Bayes yia Tn npooappoyn
NG MEONG TIMNG Kal TNG dlakupavong Twv OedOPEVWY NMOU AnoppeOUV ano Tn
XpAon JlaPOopETIKWV NPWTOKOM®V Kal JeBddwV aneikoviong oTIC JIAPOPEC
MEAETEC. MapaMnAa diatnpei TN METABANTOTNTA TWV TIHWV AOY® BIOAOYIK®V
xapakTnpioTikwv (ny, nAikia, puAo, evdokpaviakog oykog (intracranial volume,
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ICV)) Kal OUYKEKPIYEVA EMITPENEl TN KN-YPAMMIKN HovTeAonoinory Touc. Ol
UNOOKAdeC Twv OOMIKWV EYKEPAAIKWV aAAaywv eEETAoTNKav aveEdpTnTa o< 4
NAIKIGKG O1a0TAPATA JIAPKEIAC OEKAETIAC, OUYKEKPIYEVA 45-55 €TV Kal PEXPI
75-85 €TWV, NPOKEIPEVOU va eAaxioTonoinbouv ol emdpAcel nou oxeTi(ovTal
ME TNV NAIKia kaTa Tnv ocuoTadonoincn Twv aTOHWV.

>e kaBe nAikiakr) opada, apxika epapuOOoTnNKE avaAuan KUPIWV GUVIOTWOWV
(principal component analysis, PCA) oTouc Oykouc Twv 145 ROIs kal Twv 8
WMHSs, &xwpioTd, Je okono TN YEiwon TN dlaoTaTikOTNTAG Kal TNV avixveuon
Miac unoopadac A0 (resilient brain aging) pe xapnAn aTtpogia kai
nepiopiopévouc oykouc WMH.  XpnoiponolovTac Tnv unoopada A0 wc opdda
avagopac, dIEPEUVNONKE N ETEPOYEVEIQ EVTOC TOU UMNOAOINOU NANBUCHOU TNG
NAIKIGKNG opadac MWe xpnon Tou Movréhou Smile-GAN. To Smile-GAN
£QappooTnke and koivou ara 145 ROIs kal 8 WMHSs. H €€0dog Tou Smile-GAN
gival yia mBavoTnTa yia kabe unoopada e To ABPoIoHA TwV NIBAvoTATWV va
ioouTal pe 1. H Smile-GAN eTikéTa (label) anodideTar Baoel TnG unoopadag pe
TN pEYIOTN MBavoTnTa. H enidoyn Tou apiBpou Twv unoopadwv kabopioTnke
MEOw Tou npooappoopévou deiktn Rand (adjusted rand index, ARI), o onoiog
aflohoyei TN OupQvia METAEU dla@OPWV KATAVEUNHEVWV CUVOAWV Kal
npooapuoleTal yia TNV TuxalotnTd. Ta povtéda Twv PCA kar Smile-GAN
eknaideuTnNKav ota dedopeéva Twv NpwTwv oapwoswv (baseline scans) Twv
aTOPWV Kal 0T OUVEXEIQ epapuooTnkav oTa dedopeva OAwv Twv dIabETIPwY
dlaxpovikwv oapwoewv (longitudinal scans) evrog kaBe nAIKIGKAC opadac.

To Smile-GAN e&ival pia péEBodOC nuI-enIBAENOPEVNC  cuoTadonoinong
(clustering) nou BacileTal oe napaywylka avtinapadbeTika dikTua (generative
adversarial networks, GAN). Ze avTiBeon pe TIG napadooiakeg PHeBOdoug
ouoTadonoinong, ol onoie¢ avalnTouv UMNoopadsC aneubeiac pEoa oTov
nAnBuopo oToxo (target group) - ouxva ennpealdueves ano Tnv HETaBANTOTNTA
Mou OXETICETAI PE XAPAKTNPIOTIKA aveEapTnTa TNG MEAETWHEVNG KATAOTAONG N
aoBgvelag - To Smile-GAN €oTialel oTnV €KPABNON XapTOypPaAPROEWV WETAEU
Tou NAnBuopou avagpopac (reference group), onou €dw eival To A0, kai Tou
nAnBuopoU oToXoU, 0 onoioc 3w NEPIAAPBAVEI TOV UMOAOINO NANBUOUO EKTOC
Tou AO. AUTR N NUI-eMNIBAENOPEVN NPOCEYYION OIEUKOAUVEI TNV ANOTEAECUATIKNA
HovTeAoMnoinan TG ETEPOYEVEIAC TOU NANBuUoPoU oToXou, evw dev ennpedleTal
anod Tn QUOIOAOYIKR METABANTOTNTA MouU uUnApxel kal aToug dUo NAnBuapouc.
JUyKekpIgéva, To Smile-GAN pabaivel dIaKpITEC AVTIOTOIXIOEIC and TOV XWPOo
Twv uylov (X) oto xwpo Twv acBevav (Y) kataokeudlovtag OUVOETIKA
Oedopeva acBevwv (Y) nou, xapn otn diadikacia TG Mapaywylkng
AvTinapaBeong, npooeyyiouv OAO Kal NEPIOCOOTEPO TOUC NPAYMATIKOUG
aoBeveic. Autn n diadikacia UAonolsiTal PJEOw €vOG napaywylkoU OIKTUOU
(generator), To onoio pabaivel pia cuvapTtnon aneikoviong (f) nou ouvdEel Tov
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XWPOo TwV uylnv (X) kai Tov Aaveavovta Xwpo Twv unotunwv (Z) PE ToV XwPo
TwV aoBevwv. Q¢ anoTeAeopa, To Napaywylko dikTuo PeTaoxnpaTilel dedopéva
uylwv (X) o€ ouvBeTika dedopeva aoBevav (Y'), oUPNPWVA e hia HETABANTN Z,
Ta onoia dsv pnopouv va diakpiBouv anod Ta npaypaTika oedopeva acdevwv (y)
and To OdlaxwploTikd OikTuo (discriminator). EninAéov, emBAAMAeTal OTIG
ouvapTnosiC f va napayouv dIakpITa PoTiBa WweudoaoBevwv yia SIAPOPETIKEC
€10000UG Z, EMITPENOVTAG OTNV AVTIOTPOPN ouvaptnon g: Y — Z va avixveuel
anoTeAEOPATIKA TN owoTn AavBavouoa PeTaBANnTn 1 UNoTUMNO Z.

>e oxeon Me To AO, To Smile-GAN £dei&e peyioTo ARI yia 3 unoopadec: Al, A2,
kar A3. Av kai n €€aywyn TWV UNoouadwv npayparonoindnke aveEaptnTa o€
kKGBe nAikiaky opdada, or unoopadeg Al, A2 kai A3, napouciacav KOIVEG
dlapopEC o oUYKpION KE To avTioToixo A0 TnG nAIKiaknc Touc opadac (Eikova
1), ava@opika e Tnv atpoia kai To GopTio Twv BAaBwv oTN AEUKN ouaia oTIg
TEOOEPIG NAIKIOKEG OMADEC,

H napolUaoa PeAETN XPNOIKOMNOINGE TNV TEXVIKN TNG HOPPOUETPIAG OYKOTTOIXEIWV
(voxel based morphometry, VBM), onw¢ uAonoinbnke PECW TOU AOYIOHIKOU
SPM (statistical parametric mapping) oe nepiBdAhov MATLAB, €kdoong R2017b
(Mathworks Inc), yia Tn oUykpion Twv PoTiBwv TG gaidg ouaiag (gray matter)
XPNOIMONOIWVTAG XAPTEC NukvoTnTac I1oToU (regional analysis of volumes
examined in normalized space, RAVENS), kai AauBavovtag unoyn NnapapeTpous
onwg n nAikia, To GUMo, kai To ICV. Ta anoTeAéopaTta TnG availuong £dsiEav
OOMIKEG O1apopeG HETAEU Twv Smile-GAN unoopadwv o€ oUyKpIon MHE TNV
unooyadda A0 oe kaABe nAikiakn opada. EidikoTepa, otnv unoopdda Al
napaTnenOnKe NMia aTpogia eNIKEVTPWHEVN OTIC NEPICUABIAKES (peri-Sylvian)
neploxec. AvtiBeta, n unoopada A2 napouciace WETPIA aATpopia OTIC
nePICUABIAKEC MEPIOXEC, KABWC kal oTov koyxoueTwrniaio (orbitofrontal) (pAoid
Kal o€ 8IAPOPEC NEPIOXEG Tou npopeTwniadiou (prefrontal) @Aoiou. H unoopada
A3 napouaciace goBapr kal 8IAxuTn aTpo®ia KUPIOTEPA OTIC HECAIEC HETWMIAIES
(frontal) nepioxég kai otov BdAapo (thalamus). ‘Ocov agopad TG BAABEG TNG
AEUKNG ouaiac, n unoopada A2 napouadiace TIC evTovoTepeC BAABeC. MeTa&u
Twv Tpiwv Smile-GAN unoopddwv, n Al €ixe Tn pPikpOTEPN artpogia Kai
anoTeAede TNV NOAUNANBECTEPN UMNooPAadd, YEYovoc nou dOnNAWVEl OTI PMOPEi
va BewpnBei w¢ N EKNPOCWNOC TNS TUMIKAG I} ouviBouc ynpavong (typical brain
aging). ZuykpITikd, n A2 (Je uwnAoTepo eninedo WMHSs) kai n A3 (Me nio
ooBapny atpo®ia) Ynopoulv va XapakTnpioToUV WG UMOOWADEC NPOXWPNHEVNC
yrpavong.
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Alvs. AO A2 vs. A0 A3vs. A0

',

. ~ .

Eixova 1: Aopikd XapakTnpioTIKd TV UMOOUAO®V yiipavorG ToU EyKE@AAoU avd nAikiaxi
opada. A) Atpopia Tng gpaids ouoiac yia 1i¢ Smile-GAN unoouddosc o ouykpion LE TV urnoouada A0 o
KGBs nAikiakr) opada, UrnoAoyilOUevn LIE XPron TEXVIKIG LIOPPOUETPIAs oykooTolxEiwv (voxel based
morphometry, VBM). Ta Bspuotepa (WuxpoTepa) xpwuara avrioTooUV OE MEPIOXEC LE EVTOVOTEDN
(xaunAotepn) atpopia. Exel yiver diopBwar OIKOYEVEIGKOU 10000TOU OPAAIaToq (family-wise error rate,
FWER) yia noAAanAeg ouykpioeic e opio Tiurn¢ onuavrikornrac 0,001. B) XApTeq nou ansikoviiouv tov
oyko Twv BAaBav Asukric ouoiac. Or ev AOyw XAPTec Exouv dnuIoupynB@er ano 1o LECO Opo TwV XapTwV
BlaBwv Asukric ovoiac Twv atouwv kdBe unoouadag. Pol (Aeukd) xpwuara UnodEIKVUOUY MEPIOXEC LIE
XaunAotepa (vywnAoTepa) enineda PAaBwv Acukiic oudiag.

H epappoyn Tou Smile-GAN oTa dedopéva Twv OIaXPOVIKWV OApWOEWV
anokAaAUWe OTI UNAPXElI GUVEMEIA OTNV ouoTadomnoinon Twv aToOPwvV KaTta Tn
didpkela diadoxIkwV NAIKIaKwV diaoTnuatwv. EidikdTepa, ol Smile-GAN €TIKETEC
yla Ta dedopeva Twv dlaxpoVIKWV 0apwoewv EVTOG NAIKIGKNG ouadag £dsiav
ouvenela TnG Ta&ewce Tou 85% (Mivakag 1). MNapopoia cuvéneia, uwous 80%,
napatnpnRdnke kai yia Tic Smile-GAN £TIKETEC TwV OEDOPEVWV TWV BIAXPOVIKWV
oapwoswv PeTall diadoxikwv nAikiakwv opadwv (Mivakag 2). Suvolikd, Ta
anoTeEAEOPATA AUTAC TNG MEAETNG (PAVEPWVOUV MId 10XUpry OlaxpovViKN
0TaBePOTNTA OTIC AVABECEIC TWV CUMUETEXOVTWY OFE UMOOMADJEG, TOGO EVTOC
TwV NAIKIGK@V 01Id0TNUATWY 000 Kal KATa Tn HETABacn HETA&U O1adoXIKWV
NAIKIGK®WV Oadwv.

lMivakag 1: Megon perafoln 1ng Smile-GAN mBavornrag yia kdBs vnooudda peraéu Ouo
OIad0XIK@WV OAPWOEWV EVTOGC TG I01a¢ nAikiakng ouddas. 2.775 droua xouv TouAdyiotov OUo
OapwOoEIc EVTOC TNE 101a¢ NAIKIGKIIG opddac.

Smile- Mean Smile-GAN probability change
GAN . . . . . .
subgroup A1(i+1)-A1(i) A2(i+1)-A2(i) A3(i+1)-A3(i)
Age group [45,55)
Al 0.02+0.25 -0.001+0.17 -0.02+0.16
A2 -0.09+0.22 0.18+0.30 -0.09+0.20

A3 -0.06+0.16 -0.01+0.18 0.07+0.19
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Age group [55,65)
Al 0.04+0.20 -0.03+0.15 -0.01+0.13
A2 -0.05+0.18 0.06+0.22 -0.002+0.14
A3 -0.08+0.18 -0.04+0.15 0.12+0.21
Age group [65,75)
Al 0.06+0.19 -0.06+0.14 0.01+0.13
A2 0.01+0.13 0.04+0.17 -0.05+0.12
A3 -0.07+0.17 -0.002+0.12 0.07+0.20
Age group [75,85)
Al 0.07+0.17 -0.03+0.13 -0.03+0.12
A2 -0.01+0.12 0.03+0.15 -0.02+0.09
A3 0.004+0.11 -0.01+0.11 0.005+0.15

Mivaxkag 2: Méon perafoAn tng Smile-GAN mBavornrag yia kdBs vnoouyada HETaéu dUo
O1a00XIK@WV OAPWOEWV OF JIAPOPETIKEG NAIKIGKES opddeg. 1.201 droua £xouv TouAdyioTov Ouo
OapWOEIC O€ OIAPOPETIKEC NAIKIGKES OLIAOEC,

Smile- Mean Smile-GAN probability change
sulngrI:up A1(i+1)-A1(i) A2(i+1)-A2(i) A3(i+1)-A3(i)

Age group [45,55)

Al -0.01+0.25 -0.03+0.19 0.04+0.18

A2 -0.09+0.24 0.18+0.31 -0.09+0.24

A3 -0.09+0.23 0.06+0.21 0.03+0.28
Age group [55,65)

Al 0.10+0.26 -0.11+0.19 0.002+0.19

A2 -0.02+0.18 0.12+0.24 -0.10+0.19

A3 -0.09+0.23 0.01+0.17 0.08+0.26
Age group [65,75)

Al 0.07+0.26 -0.03+0.19 -0.03+0.19

A2 -0.03+0.15 0.02+0.22 0.003+0.16

A3 0.002+0.16 -0.08+0.22 0.08+0.26

3TN OuvExela, €EETACTNKAV Ol OUCXETIOEIC TWV UMOOHAdWV HE KAIVIKG
XapakTNPIOTIKA, YVWOTIKEC EMOOOEIC, BIOdEIKTEG kal TNV AnoAinonpwTeivn E pe
xpnon ypaupikwv (linear regression) kai AOYIOTIKWOV HOVTEAWV NAAIVOPOUNGNG
(logistic regression) (Eikova 2). Znueiwdnkav diopbwaeIG yia NapayovTeG Onwe
N nAikia, To QUAO, n HEAETN npoéAeuong kal To €ninedo eknaideuong. H
unoopada A2 pe To uPnAOTEPO Oyko BAaBwv AEUKNG ouadiag €ixe €niong To
UWNAOTEPO NMOCOOTO CUMKETEXOVTWV E NApAyovTeG kapdiayyeiakoU kivouvou,
ONwW¢ UNEPTAaoN kai naxuoapkia. Eniong, n A2 napouadiace kal To uPnAOTEPO
NMOOOOTO OCUMMETEXOVTWV HE TO aAMNAOJOppo €4 Tou yovidiou TngG
AnoAinonpwTeivng. EmnAéov, n unoopada A2 €xel To UYnAOTEPO MOOCOCTO
OUMMETEXOVTWV HE enineda AR avwTepa anod To KAIVIKO KATWPAI, KaBIOT®VTAC
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TOUG BETIKOUC 0 OUYKPION PE TOUC OCUMKETEXOVTEC WE XapnAa enineda AR, 10iw¢
META TNV NAIKia Twv 65 €TQV.
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Eikova 2: KAIVIKEG UETPHOEIS, YVWOTIKEG OOKIUAOIES, auUAOeIONS B npwreivn Kai
alAnAouoppo €4 TG AnoAInonpwreiviig yia TIGC UNOOUAOES EyKePAAIKIIC yiipavong. Ta
EIKOVICOLIEVA XaPAKTNPIOTIKG avagepovTal O€ i) GnEIKOVIOTIKA XaPAaKTNPIOTIKG 10U EUPAVIOaV OUVENEIG
TAOEIC O€ NEPICOOTEPEG ano Lia NAIKIGKES OUdOes, Kai napouoIadovTal we ouvown LETd Tnv avaAuon Twv
OE00UEVWY aro OAEC TIC avTiIOTOIXEC NAIKIGKES ouddes. Ta nAikiakd €Upn nou avaypdgovral dvw Twv
OIaypauudTwV UMOOEIKVUOUV TIC EUPUTEPES NAIKIGKES KATNYOPIEG rou e&eTdoTnkav. ®Dopeic Tou &4
alnAduoppou g AroAinonpwreivng (APOE-€4 carriers or APOE4) BswpouvTar Ta droua rou diabeTouv
&va 1j 0vo alnAduoppa €4. Ta diaypdupara KouTioU aneikoviiouV TiS UMOAEILLATIKEG TILES, LETA aro
npooaployri yia Tnv niAikia, To QUAO Kai TNV LEAETN MPOEAEUONS, KABw¢ Kal TV eKNAiOEUon yia TiC
EMIDOCEIC TWV YVWOTIKWYV dOKILAOIWV, Via KABE Urnooudda. YWnAOTEPES TIUEC OTIC YVWOTIKEG OOKILIATIEG
MMSE, DSB ka1 CVLT unodnAwvouv avaTepes yVwOTIKEG EMOOOEIS, VW XaunAoTepes Tiueg ornv TMT-B
unoonAwvouv Emiong avaTeEPES YVWOTIKEGC EMIOOCEIC — of LaBuoloyiec Tng TMT napariBevrai Le
aveoTpauuEVn KAIUAKa, MPOKEIUEVOU OAEC O NMaparnpoULEVES EMIOOOEIC va napoucialouy Tnv idia
KarevBuvon ora Tecoepa ypanuarda. To N dnAwver To LEyeBog Tou OeiyLIaTog rnou XpnoiononiénkKe yia
70 KABe ypapnua. TEAog epapuooTnke dI0pBwaor Tou nooooTou Weudwv avakaAuwewy (False Discovery
Rate, FDR) yia 1ic noAAanAec ouykpioeis, e katw@Ar Tiurc onuavtikornrag oro 0,05.
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'Ooov agopad TIC dIAPOPEC NIDOCEWV OE YVWOTIKEG DOKIPATIEC, Napd To OTI Ol
OUMMETEXOVTEG €MEAEYNOAV WG ATOMA XWPIC YVWOTIKA €EaoBévnon, ol
unoopadec A2 kai A3 napouadiacav oTaTIoTIKG onUavTika XeipoTepn enidoon o€
oX€on HE TIC UNOAoINEG unoopddec og noikiAa yvwaTika TeoT (Eikova 2). Auth
n dlanioTwon @avepwvel TIC NPOCHETIKEG eMOPATEIC TNG ATPOYPIAC Kal TwV
BAaBwv AEUKNC ouaiac oTn YVwoTIKA €€aoBévnaon. TEAog, n unoouada A3 eixe
TO MEYAAUTEPO NOCOOTO CUUMETEXOVTWY ME KAaTABAIWN PETA TNV NAIkia Twv 55
ETQV.

Ev ouvexeia, o pubuog HETABOANG Twv dIAPOPWV  XAPAKTNPIOTIKWY
a&loAoynBnKe PECW TNC EPAPHOYNC YPAUMIKOV HOVTEAWV HIKTWV EMIOPACEWV
(linear mixed-effects models), Ta onoia nepiIAappavav Tuxaieg Topeg (random
intercept) yia To kKABe aropo. EmnpooBETwe, npaypaTtonoindnke availuon
emBiwonc (survival analysis) Tunou Kaplan-Meier yia Tnv €kTignon Tou Xpovou
METABaoNG anod Tn yvwolaka uyin Kataoracn oTnv nnia yvwoTikn diatapaxn
(mild cognitive impairment, MCI). Ta anoteAéoparta Tng availuong £deiEav oI
ol unoopadec A2 kai A3 napouciacav Tov UWNAOTEPO PUBHO YVWOTIKNAG
EKNTWONC Kal TNV Taxutepn peTapaon os MCI (Eikova 3).

MeTa TNV €€aywyn TwV UNoouadwy, dievepyndnkav PHEAETEG CUOXETIONG EUPOUG
YOVIOIWHATOC (genome wide association studies, GWAS)
XPNOILONOoIWVTAG YEVETIKG Oedopeva anod Tn UK Biobank, npokeipgevou va
EVTOMIOTOUV Ol OUOYXETIOEIC METAEU Twv mbavotATwv Twv Smile-GAN
UMoONAdWV Kal HOVOVOUKAEOTIOIKWY NoAupoppiopwy  (single nucleotide
polymorphisms, SNPs). O1 GUOXETIOEIG €EETAOTNKAV HE TN XPNON YPAHMIKNG
naAivopounong, NPooapuoopévne yia Tnv nAikia, To QuAo, To ICV, kai TIg
npwteg 40 yeveTIkEG KUpleg ouvioTwoeg (principal components),
XPNOILONOIWVTAG TO  AoyIodiIkO Plink 2. Aegdopévng TnG naApaTnpPOUHEVNC
dlaxpovikng oTabepdTnTac TnC ouoTtadornoinong, ol GWAS 0diegnxdnoav anod
KoIvoU 0To oUVOAIKO NAIKIakd eUpog Twv 45-85 eTwv. 'EneiTa npaypaTtonoindnke
AEITOUPYIKN  €nionueinon kalr yovidlakr XapToypdagnon Twv OTATIOTIKA
ONMHAVTIKWV NOAUHOPPICHWV HEcw TNG NAaT@opuag FUMA (functional mapping
and annotation).
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Eixova 3: Aiaxpovika anoreAéouara. A) PuBLOC LETABOANC avd ETOC TWV EMNIOOOEWY TOE YVWOTIKEG
Ookiacies. O1 puBuoi LETABOANC UNOAOYIOTNKGV LIE TN XPIION VOGUIIKWV LOVTEAWV LIKTWV EMOPAOEWY
(linear mixed-effects models). O1 OUYKDIOEIC Twv puBUWV LETABOMIG LETAEU Twv UMOOUAOwWYV
npayuaronoinénkav Peow g ueBodou Wald, To N avapeperar oTov apifuo Twv arouwy rnou diaBeTouv
TOUAGXI0TOV 4 OIAXPOVIKEC LIETPIIOEIC VIa TO EIKOVICOLIEVO XAPAKTIPIOTIKO. EQapuooTnke diopBworn Tou
10000TOU WEUOWV avakaAvwewyv (False Discovery Rate, FDR) yia noAAGriAeg ouykpioeic e katweAr Tiurng
onuavrikonrac 0,05, Or puBuoi ueraBolric twv LaBuoloyiwv tou TMT-B napouvoidlovral e
aveoTPauuEVn KAjUaKa, ETo1 WOTE 1 TaYUTEPN yripavor Tou EYKEPAAoU (rou avTIKaTonTpileTal ano v
TaYuTEP EITE aTPOPIa, OUCOWPEUOT) PAGBWV 1T YWWOTIKI] EKIITWON) Va EXEl TNV I0Ia kKaTeUBuvon s oAa
1a ypagnuara. B) Or kaunuAss emBiwonc Kaplan-Meier deiyvouv Tnv méavornTa napayoviic o€ yVwolakd
uyirj kardoraon (cognitively unimpaired, CU) kar ano@uyri¢ LUeTaBaocnc o€ rima yvwoTikrj diarapayri (mild
cognitive impairment, MCI) yia Ta aroua L€ nAikia npwng oapwons LETaéU 65-75 etawv. To N unodnAwver
TOV APIBUO TWV aToUWV O KABE XPOoVIKO OIdoTnia. To TEOT Log-rank XprnoionoiiBnkKe yid Trn oUyKpIon
TWV KaunuAwv empioons twv Smile-GAN urnoouddwv. H Lovn oTaTioTikag onuavTikn diapopd eivar UETaEU
TWV KaunuAwv Twv unoouddwv Al kai A3 (Tiuri onuavtikotnTac=0,01). Ta diaxpovikd anoTeAcouara yia
v A0 dev napouaidlovrai, kabwg nporAbav ano dIapopeTiki} LHEBOOOAOYIa OE TUYKPIOT) LIE TIC UNOOUAOES
Smile-GAN. Erinpoo@eTa, o nepiopiouevos apiBuog arouwv ¢ A0 Le diaxpovika anoTeAcouara kabioTd
70 anoteAgouara un aéioniora.

O1 GWAS ¢dei&av OTI oI nmiBavoTnTeg Twv Smile-GAN unoopdadwv €xouv
OTATIOTIKA ONUAVTIKEC CUOXETIOEIC JE OVOVOUKAEOTIOIKOUC MOAUHOP(PIOHOUG
MouU E€iXav MPONYOUUEVWG CUCXETIOTEI We O1Apopa KAIVIKA XApaKTnpIoTIKA,
ouUMNEPIANAPBAVOUEVWV PaIVOTUNWV MOU MPOEKUYAv and Tnv aneikovion TNG
MIkpodounG TG Asukng ouaiag (A1-3), Tng aTpoiag TnG gaiag ouciag (A1-3),
Twv BAaBwv TG Aeukng ouaiag (A1-3), kabwg kal NapayovTeg KIivoUvou yia
kapdiayyeiakn vooo (A1-2) kai vooo AAtoxdipep (A1-2) (Eikova 4). Eival
afloonpeiwTo  OTI  €vTonioTnKav KOIVOi  MOAUMOPQIoHOI  HeTaEl  Twv
unoopddwv Al kar A2 o1 onoiol €ixav OIAMOPETIKEC €MIOPACEIC OTIC OUO
UMOOUAdEC. ZUYKEKPIUEVA, O NOAUMOPPIOHNOC rs72932727 nou oxeTileTal pe AD
€iXe NPOOTATEUTIK Opdon yia Tnv unoopdada Al (beta=0.1+0.02; p-
value=6.49E-09), evw avTiBeTa anoTéAeoe napdyovra KivOUVOU yia Tnv
unoopdada A2 (beta=-0.09+0.02; p-value=4.05E-07). Mapopoiwc, ol rs7209235
Kal rs55715426, ol onoiol oxeTifovral Ye BAABEC oTn Aeukn ouoia, enedeiEav
npooTaTeuTIKN dpdaon yia Tnv unoopada Al, evw AsiToUupynoav we napayovTeg
KIvoUvou yia Tnv A2 (rs7209235: Al:beta=-0.07+0.01, p-value=2.31E-09, kai
A2:beta=0.1£0.01, p-value=1.73E-15; rs55715426: Al: beta=-0.09+0.02, p-
value=4.09E-08, kal A2: beta=0.13+0.02; p-value=1.04E-15).
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Eixova 4: leverikég avaAuoeig Twv mbavornTwv Twv Smile-GAN unoouddwyv (A1, A2 kar A3).
A) O1 LUEAETEG OUGXETIONG EUPOUC yovidiwuaroc (genome wide association studies, GWAS) evromioav
LovovoukAgoTidikoug rnoAupop@iououc (single nucleotide polymorphisms, SNPs) nou oxeTiovrai e TiC
mBavorntes Twv Smile-GAN unoouddwv (A1, A2 kar A3). STic v AOyw WEAETES xpnoiuonoiibnke 1o
KarwTaro Oplo TIPWV OnuavTikoTnTas o€ eninedo yovidiwuarog (5E-08). To yovidiwua avapopdc eivail To
Genome Reference Consortium Human Build 37 (GRCh37). To didypauiia I0e0ypaudTawV aviioToixel oTa
22 qUTOOWIKG Xpwloowuara. B) @avoTurnikeG OUCXETIOEIG and Tov kardAoyo GWAS. Oi supliokouEevol
LOVOVOUKAEOTIOIKOI  MOAUpOp@pIopol  OUOXETIOTNKAY — ME  OIdpopa  KAIVIKD — XAPaKTnpIoTIKd
OULINEPIAGLBAVOLIEVWY LETPHOEWV TG Paids (M.xX. (Uno)pAoiwdns Oykoc, naxog Kai Emeaveia gAoiou),
Kar ¢ Aguknc ouodiac (n.x. avicotporia ot OIdYuon ToU VEPOU), Kapdlayyelakes nabroeic (1.x.
oTEQavIaia Vooog Kal ELPPAayLa Tou LUokapdiou), Vooo AATOXGILED, aiuaToAOyIKd XapakTnpioTiKd (11.X.
apiBuos aiponsTaliov Kai AEUKWV aioo@aipiav), WUxikee oiarapaxes (n.X. OUUNEPIPopd aviAnwng
KIVOUVOU Kai GrioneIpEG aUTOKTOVIAC), Kal EKNAIOEUOT].

JupnNeEPAocHaATIKA, N napouoa epyaocia aglionoinoe TIG NPOoPaTeS EENIEEIC oTOV
TOopEA TNG BaBiag pdabnong kal TnG availuong OeOOMEVWV HEYAANG KAIJAKag
MPOKEIJEVOU Va JIEPEUVAOEI TO PACKHA WETAEU TNC (PUOIONOYIKNG EYKEPAAIKNG
ynpavong kai TnG npwiung naboAoyiac. ZUYKekpIKEva, ol npoodol oTn
OUYKEVTPWON Kal Evapuovian NoAuapIBUwV ouVOAWV OEDOPEVV ENETPEYPAV TN
Onuioupyia evog evappoviopevou deiypaTog 27.402 atopwy nAikiag 45-85 eTwv,
XWPIG OIayVWOoMEVN YVWOTIKN €EA0BEVNON, NPOEPXOHEVO and 11 WEAETEC.
EninA€ov, epappOoTNKE Kia TEXVIKNA NMHI-EMNIBAENOUEVNC ouoTadonoinong yia Tnv
€€ETAON  TNG  ETEPOYEVEIAC TwV  MNPWIHWV, OUxXva avenaiobnrwv,
VEUPOAVATOMIK®V aAANaY®WV O€ auTOV Tov NANBUGHO.
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Mapa To yeyovog OTI N avaAuon npaypaTonoinénke EExwpioTa yia kabe nAIKIakn
oMada, Ta eupnuata £dsiEav OTI ol NPWIKYEG OOMIKEG AAAOIWOEIC Eival OXETIKA
OMOIOMOP(PEC KAl OUVENEIC 0 OAOKANPO TO €EeTAlOPEVO NAIKIGKO PAOA.
JUYKEKPIYEVA, Ol MAPATNPROEIC KATESEIEAV NOIKIAOPOPPia OOUIKWV AAAOINCEWV
OTOV EYKEPAAO NOU OXETICOVTAl KE TN YRPAVON, Ol OMOIEC KATNyopionoinénkav
0€ TEOOEPIC UMOOUADEC, avIXVEUCIUEC ano Tn KEON NAIKIa Kal JE ouvenn JoTipa
METAEU Twv €EeTalOPEVWV NAIKIGKWY OPAdwV.

Mo avaAuTikd, evronioTnke pia unoopdada (A0) pe avBekTIKOTNTA OTN yRpavon,
Xwpic €vOeIEn eykePpaAIkNG aTpo®iac, BAaBwv oTn AEUKn ouwdia, YVWOTIKAG
EKNTWONG | NapayovTwv Kivouvou yia kapdiayyeiaka voonuara, hia unoopada
(A1) pe TUMIKA XAPAKTNPIOTIKA YNPAVONG, GCUMMEPIAAMPBAVOUEVWY HETPIWV
emnedwv atpoPiac kar BAaBwv Aeuknc ouodiag kai, OUO UMOOPAdEC HE
XAPAKTNPIOTIKA NpoxwpnuUEVNG ynpavong: n dia (A2) euygpavioe au&nuevouc
napayovTeg kKivdUvou kapdlayyeiakwy voonuaTwy kal evanobeon AR, kai n aAAn
(A3) napouciace £vrovn Kalr OIAXUTn artpoia, Kupia MPOEPYXOMEVN ano
nepiBaiovTikoug napayovTeg kal Tpono {wng (Eikova 5) . Eival agloonpeinTo
OTI Napa TIC SIAPOPEC OTA XAPAKTNPIOTIKA aTpodiac, ol urnoopadec A2 kar A3
EUPAVIOaV OUYKPIOINa XEIPOTEPEC €MIOOOEIC OTIC YVWOTIKEC AEITOUPYIEC OF
oxéon e Tnv A0. ZTnVv NepinTwan autn, n atpoia kai ol BAABEC TNG AEUKNG
ouaiac ¢aiveral va dpouv ouvOUAOTIKA, MPOEEVWVTAC YVWOTIKN EKMTWON,
YEYOVOG MOU WMNOpEi va €Enynoel Tn MeEwpEVn aTpogia oTnv unoopdda A2 ot
ouUyKplon PE TNV unoopdada A3.

Kapia ano Ti¢ napandave unoopadesg Oev PNOPE va XapakTnpIoTEl w¢ NPWIKo
oTadIo TNG vooou Tou AATOXAINEP, YEYOVOC Mou UNodnAWVEl OTI UNAPYXOuV
noAAanAd povonaTia €mTaxuvopevnG ynNPavong Tou EykepAAou, Ta oroia
hrnopei va odnynoouv OTn VOOO. JUVOAIKG, Ta eupnuata avadelkvUouv
KUPIOPXEG UMOOUAdEC aVvOEKTIKOTNTAC Kal €UNABelaC oTnv €UQAvion Kal
emoeivwon TNG YVWOTIKNAG EKNTWONG KaBwg kal TNV gugavion AD.

H napouoa peAeéTn napouoialel apkeTa duvata onueia, Onwcg ival To eupu Kal
noIKINOJoppo deiyua To onoio kaAunTel eupU (pAcpa nAIKIwV, kabwc kal n
EQApuoyn nponydévwv HEBOdwV  evapupoviong kal  Babiac  padnong.
EninpogB&Twg, n €Upedn MOAWV HOVOVOUKAEOTIOIKWY MOAUHOPPIOUWY MNOU
oxeTiCovTal pe TNV Unapén BAaBwv AEUKNG ouaiag kal TNV eyKEPAAIKr aTpo®ia
€UBUYpapMICETal JE TO VEUPOAMEIKOVIOTIKO MPOMIA Twv unoouddwv. MapoAia
auTd, n YeAETN napouoialel kal OpIoHEVEG aduUVapieg.
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A2: Vascular Aging

AQ: Resilient Brain Aging -Highest and fastest growing
WMH

-Preserved brain volumes

-Lowest CVRFs -Higher CVRFs
-Highest baseline cognition -Genetic risk for WMH
-Brain age approximately -APOE4 enriched

y younger than -AB enriched (65 years)

chronological age \c .
& g -Poorer cognitive profile

-Higher progression to MClI
-Brain age approximately 2-3y
older than chronological age

A3: Atrophy Predominant Aging

-Highest brain atrophy

-Low WMH

-Not APOE4 or A enriched

-Poorer cognitive profile

-Most unfavorable

progression to MCI V35
AL: Typical Brain Aging Si3in gge approxmately 35

-Mild atrophy, particularly -Higher depression prevalence
peri-Sylvian and prefrontal

-Modest CVRFs

-Intermediate cognitive profile

-Genetic factors protective for WMH
-Intermediate clinical progression to MClI
-Brain age approximately2-3 y

younger than chronological age

Eixkova 5: Zynuariki ouvown T@v PAcIK®V XAPAKTNPIOTIKOV TV UMOOUAO®V yiipavorg Tou
EyKkepdiou.

MpwTov, n nepiopiopevn OlaBeaIuOTNTA dedopevwy AB Kkal N avenapkng
01a6e0IuOTNTA PETPROEWY TNG tau NpwTeivng kai BI0dEIKTWV Nou oxeTi(ovTal K
GAAEG VEUPOEK(PUAIOTIKEC VOOOUC népav Tou AD, evOEXeTal va oupBalouv o€
KEVA OTNV €pUnveia Twv unoopadwv. AeUTEPOV, N anoucia Pakpoxpoviag
napakoAoubnonc Twv dTOPWV  AnoTpEnEl TNV €8aywyn  I0XUPWV
OUMNEPAOTHATWY OXETIKA HE TNV KAIVIKN €EENIEN Kal Tn peTaBaon og MCI. TpiTov,
o0oov agopd Tn ouveeon Tou JsiyuaToG, NAPATNPEITAl TO (PAIVOUEVO ‘0poPnC’
(ceiling effect), kaBw¢ Ta aropa Pe nio 0oBAPEC VEUPOAVATOMIKEG AAANOIWTEIG
gival no niBavo va diayvwoBouv Pe yVwaoTIK €Ea00£vnon, anokAEiovTag £Tal
TNV €vTta&n Toug oTo deiypa. TETapTov, av kal £Xouv Napatnpenoei HopPOoAoyIKEG
KAl GUOXETIOTIKEC OMOIOTNTEC TWV UNOOPAdwVY OTIC JIAPOPETIKEC OEKAETIEC, OEV
propei va anodeixbei pe anoAutn ocagrvela n 1coduvapia Toug, Kabwg
Xpnoidonointnkav JlapopeTIka HOVTEA Kkal oudadeg avagopag (A0) ava
OekaeTia, kar O0ev UMNPEE HaKpoxXpovia napakoAoudnon Twv aATOPWV O€
diaoTnua dekasTiwv. TEAOC, n oudda avapopds (A0), Nnapd Tnv EKNPOCWNNON
gvoc Mo avBekTikoU oTn ynpavon nAnbuopou, eEakoAouBei va napouaialel eva
eninedo naboAoyiac nou au&averai Pe TNV Napodo TwV OEKAETIQV.
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2. Avantuén kaivoTopou  PEBOdOU  PBaciopEVNG  OE  MN-ApVNTIKN
napayovTonoinan Nivakwy nou EVOwHPATWVEl GUYXPOoVvIKa Kal dlaxpovika
OedoEVa yIa TN HEAETN TwV POTIBwWY EYKEPANIKNG ynpavonc.

MExpl ONMEPA, Ol TEXVIKEC ouoTadonoinonG €XOUV MNPOOPEPEI GNUAVTIKEC
duvaToTNTEC OO0V aPOopPa Tn HEAETN TNG ETEPOYEVEIAG NMOU NApATNPEITAl OTN
YNpPavon TOU €EYKEPAAOU, KABWC Kal OTIC OXETIKEC VEUPOEKPUANIOTIKEC
dlaTapaxec. Q0TO00, N KATAVONON TNG ETEPOYEVEIAC NAPAPEVEI HIa OUOKOAN
npokAnon. O1 unapyouosg MeBodohoyiec PaociovTal anokAEIOTIKA O€
ouyXpoVvika dsdopéva, dnAadn pia YETpnon ava aTtopo, yia TNV EUPEDT HOTIRWV
yneavong, ayvowvTag Tn Ouvapikn €EENIEN TNG ynpavong kai Twv Aoinwv
nadoloyikwv KaTaoTaoswyv o€ Xpoviko Baboc. H napouca diaTpiPr) eicdayel pia
véa PEBOBO, ovOuaTi anod Koivou HNn-apvnTIKr) NapayovTonoinon GuyXpovIKWY
kar diaxpovikwv mivakwv (Coupled Cross-sectional and Longitudinal — Non-
negative matrix factorization, CCL-NMF), yia Tov evToniopo dIakpITwV HOTiBwv
EYKEQAAIKNG yNpavong MECw KoIvAG BEATIOTONOINONG TNG AVAKATAOKEUNG
OUYXPOVIKWV Kal dlaxpovikwv Oedopévwv. AuTh n peBodoloyia pnopei va
EQAPHOOTEI yIa TN MEAETN BIAPOPWV XAPAKTNPICTIKWY MOU OXETI(OVTaAl HE TNV
EYKEQAAIKN yrpavan onwg n otadiakn ouppikvwaon (aTpoia) Tng ¢paiag ouaiag,
N NPoodeuTIK €vanobeon apulogidoluc B kal tau npwTeivav, n augavopevn
ougowpeuon BAaBwV TNG AEUKNG ouciag oTov EyKEPAAO, K.AM. ZTn napouod
oIaTpIBr), N OUYKEKPIUEVN peBodoAoyia epapuoleTal yia Tn HEAETN TNG
EYKEPAAIKNG aTpogiag Pe Tn ynpavon.

Av kal Ta ouyxpovika Oedopéva eival eUpewc OlaBEoIua kal KaTaypapouv
OWPEUTIKEG Kal HAKPOXPOVIEG aANaYEG OTOV EyKEPAAO AOyw ynRpavong,
EMITPENOUV TNV MPOCEYYIOTIKA EKTIUNON TWV ANOKAICEWV TWV NAIKIOPEVOV
EYKEQAAWV anoO TNV VEA Kal UyIn KATAOTAon TOuG AOYyw TnG €AAEIYNG
€EATOMIKEUPEVWV BACEWV oUYKpionG. Epdoov ival diabeoiun pia pérpnon ava
ATopo, Ol anokKAIOEIC MPOKUNTOUV and OUYKPIOEIC PE EUPUTEPEC NANOUCUIAKEG
KaTavopec. Avtifeta, Ta Olaxpovikd Oedopéva  MPOOPEPOUV Wia  AUEDN,
£EATOUIKEUPEVN MOCOTIKOMOINON TWV EYKEPAAIKWV AAAAYWV PE TNV Napodo Tou
XpOvou, napéxovTtag MoAUTIHEG NAnpo@opieg yia Tn duvapikn €EENEN Twv
veupoBioloyikwv diadikaciwv. QoTdco, Ta diaxpovika ouvoAa dedoPEVWY Eival
onavioTtepd. H peBodoloyia CCL-NMF eival oxediaopevn yia va avTIHETWNIOE
auToUC TOUC NEPIOPIOPOUC, avaAlovtac ouvOuaoTika TouC Ouo TUMOUG
Oedopevwy e aTOXO TNV £€aywyr OlakpiTwv dlaoTacswv (dimensions) nou
avanapioTouV TIC CUVTOVIOUEVEC HETABOAEC MOU GUKPPBAIVOUV OTOV EYKEPANO HE
TN ynpavon kar Tnv nadoloyia. H ev Aoyw pebodoAoyia Bacileral oTn pn-
apvnTiKr napayovronoinon nivaka (non-negative matrix factorization, NMF),
HIa TEXVIKI EUPEWG XPNOILOMOIOUKEVN OE MOIKIAI EPEUVNTIKWV TOUEWYV, N onoia
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emoeikvUel  €EQIPETIKEC  duUVATOTNTEC XApN OTOV MEPIOPIOPO  TNG  MN-
apvnTIKOTNTAG. AUTOC O NEPIOPIOHOG 0dnyei o€ avanapaoTaon Twv OEdOPEVWV
oc pepn (part-based representation), onou Ta pépn ouvdualovralr HE
NpooBeTIKO TPOMO yId va OXNUATIOOUV £va OUVOAO. TN OUYKEKPIMEVN
nepinTwon, n napayovronoinon die€ayeTtal and kolvoUu o OUO MIVAKEG: O
nivakag ouyXpoVvIiKwV anokAioewv (cross-sectional map, C-map) avanapiota Tig
anoKAICEIC TWV EYKEPAAIKWV XAPAKTNPIOTIKWY TWV NAIKIOMEVWV aTOPWV
(NMANBUOPOC OTOXOC) O OXEON ME €vav uyIn Kal veoTepng NAIKIAc nAnBuopo
(nAnBuopog avagopdc), evw o nivakag diaxpovikwv alkaywv (longitudinal
map, L-map) anoTtunwvel TOouGg pPuUBPOUC aANaYNG TWV  EYKEPANKWV
XAPAKTNPIOTIKWV AOYw ynpavonc o€ atopikod eninedo. H pebodooyia CCL-NMF
nepIAapBavel Tnv napayovrtonoinon kabe nivaka o€ OUO VEOUG MivaKeG
MIKPOTEPWV HEYEBWV: O MPWTOC Mivakag aneikovilel Ta PoTiBa €YKEPANKWV
alaywv (nivakag Ae€iko/Baon) kai ival kovog yia Toug dUo TUNouG dESOPEVWV
kal o deUTepOG nivakag (nivakag ouvteAeoTwv/Bapwv) npoadiopilel Tov Babuo
EKPPAONC KABe poTIBoUu o0t aTopikd €ninedo kair dlapoponolsiTal yid Td
OUYXPOVIKA kal Ta diaxpovika dedopéva.

H extipnon Tou C-map ulonolsitTal WYECW MIAG KAVOVIOTIKNAG MPOCEYYIoNG
MovTelonoinong (normative modeling), n onoia eknaideleTal o€ €vav uyin
nANBuUoNO PeoNG nAikiag pe okond Tn Onuioupyia €vOG KAvovioTIKoU XwPou
avagopdac. Katoniv, To HovTeNo epapuoleTal o eva NAIKIWHEVO NANBUOHO Kal
Ol anokAioEIC TV NAIKIWUEVWV aTOPWV and TOV  KAVOVIOTIKO  Xwpo
avTikaTonTpilouv TIC €YKEPAAIKEG AANAYEC MOU O@EIAOVTal OE CGWPEUTIKEG
eMOPACEIC YEVETIKWY, NEPIBAAOVTIKWV Kal naBoAoylikwv napayovtwv. O L-
map, O OrnoioG anoTUNWVEl TIC JIAXPOVIKEC AAAAYEC OTOV EYKEPAAO rouU
oxeTifovTal pE TN ynpavon, NPOKUNTEl PHECW €VOG OTATIOTIKOU HOVTEAOU MOU
unoAoyilel Tov puBud aA\aynG TwV HEAETOHPEVWV XAPAKTNPIOTIKWV, OnNwG
avaAUeTal AeNTOUEPWG OTN ouvexela. Ta diaxpovika dedopEva avTikaTonTpifouv
TIC €YKEPAAIKEG aAAayec nou mbavwg oxeTilovral HE TIG UMOKEIMEVEG
veuponaBoAoyIKeC diepyaciec nou e€eAiooovTal O ATOUIKO €ninedo. Me Tnv
EVOWPATWON auTtwVv Twv OUO0 CUPNANPWHATIKWV TUNWV OeJOUEVWYV, N
pueBodohoyia CCL-NMF npoo®epel €va ONOKANPWHEVO MAAIOI0 yid ToV

XAPAKTNPIOKO TNG ETEPOYEVEIAC TNG YNPavong.

AkoAoUBwc, napouaialeTal avaAuTika To ovtého CCL-NMF, dnwc aneikovileTal
otnv EIkova 6. To ev AOyw HOVTEAO ouvioTaTal o€ dUo KUPIEG PACEIG. ZTnV
npwTn QAaon, unoloyilovTal Ol CUYXPOVIKEG ArOKAIOEIC kal Ol OlaXPOVIKEG
alMayec. 2Tn Ouvéxeld, auta Ta OUo €idn nAnpogopiwv agonololvTal
NPOKEIJEVOU va €EaxBouv ol dIaoTACEIC TNG YrPavonc.
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KavovioTikr peBodog pgovreAonoinong via Tnv €&aywyn Tou XApTn OUYXPOVIKNG
anokAiong (C-map)

‘EotTw S1 o nAnBuopoc avagopdc kal S2 o nAnbuopog aTtoxoc. O C-map
EMNEPIEXEI TIC AMNOKAICEIC TOU S2 and ToV KavovIoTIKO XWPO Mou dIaUopPuVETal
anoé Tov S1 XpnoIMonolwvTac €vav avTinapadeTikd auTokwdikonointn AA
(adversarial autoencoder). H Baoikn 10¢a auTic TNG HeBOBOU gival OTI ENEION O
AA exnaideUsTal anokAeloTIka o€ dedopeva Tou S1, pabaivel va kwdIKoNoIEi kal
va avakaTaokeuadel pe akpiBeia Ta dedopeva Tou S1, evw n akpifeia Tou Ba
gival NepIOPICUEVN KATA TNV AVAKATAOKEUN TwV dedopeEvwy Tou S2. EIdIkoTEpQ,
TO OQPAAPa PETAEU TNG 10000V Kal TNG AVAKATAOKEUAOHEVNG EKTIMNONG/E000U
aQvapEveTal va avTikatonTpilel Tnv anokAion Tou S2 and Tov S1.

H apyitekTovikr Tou AA nepidapBavel évav kwdikonoinTt (encoder E) pe duo
KpUpa €nineda veupwvwy, To kabeva pe 110 veupwvec, kal evav Aaveavovra
xwpo (latent space) diaoTaong 10 veupwvwv. O anokwdikonoinTng (decoder D)
Kal To diaxwplioTikd dikTuo (discriminator D;) €xouv idia dour), HE dUO Kpupa
enineda Twv 100 veupwvwv To kabeva. O AavBavwv XwpPog Kavovikomnoleital
wOoTe va Taipialel pe pia ykaouaiavr kartavopn. ‘OAa Ta kpupd enineda
VEUPWVWV Xpnaigonoiouv Tn ouvaptnon leaky Rectified Linear Unit (ReLU) pe
MN YPAUMIKOTNTA, v 0 AavBavwv Xwpog kal To eninedo €€0dou (output layer)
TOU anokwAIKONOINTM XPNOIKOMNOoIOUV HIa YPAWMIKR ouvapTnan EVEPYONoINoNG
(activation function).

H exnaideuon Tou AA €xel dUO (PACEIC:

1) ®Adon avakaTaokeunG: € auTn Tn (Aacn, €AAxIOTOMOIEITAI N ouvapTnon
kOoToug/anwAeiag avakaTaokeung (reconstruction loss), e€aopaAifovTtag oTi n
£€000¢ Talpialel 600 To duvaTOv KaAUuTepa e Tnv €i0odo. O KwdIKOMOINTNG
aneikovilel Ta 0edopéva (x) oTov Aaveavwv Xwpo (z) kal 0 anokwdIKonoINTG
Ta avakataokeuadel. H ouvapTtnon anwA&iag avakaTaokeung ivai:

Lrecon = llx — D(E(X))“% (1)

2) ®daon «kavovikoroinong: EGw npaypatonolsital n  avTinapabeTIKn
(adversarial) exnaideuon, n onoia emPBaMel oTov AavBavovrta xwpo (z) va
Taipialel pe TNV npotepn (prior) ykaouaiavr katavoun (P(z)) woTe TO
dlaxwpIoTIKO JIKTUO va KN WNopei va diakpivel Ta npaypaTika deiypara and Tnv
prior katavopn (P(z)) ano Ta weUTika OsiyyaTta mou npogpxovTal anod Tov
kwdikonoinTA. H ouvapTnon avTinapabeTiknG anwAelag ivat:

Lagv = E[log (D,(2))] + E[log (1 — D,(Ex))] (2)
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O kwdIkonoINTNG Npoonabei va eAaxIGTONOINCEI AUTH TV CUVAPTNON ANWAEIAC
yla va &eyeAaoel To dlaxwpIoTIKO diKTUO.

Ma Tnv exnaidsuon Tou AA, Xpnoiponolsital o BeATioTonoinTnc (optimizer)
Adam yia 1000 enoxeg, pe epappoyn npwiKng diakonng (early stopping) peTa
ano 50 €noxec. ZTo nAaiolo autoU Tou BeATioTOnOINTN, Mou BacileTal oTnv
kaBodikny kAion, e@apupoleTal npootyyion MikponapTidag (minibatch), pe
MEyeBog naptidag 200. 'Evac KUKAIKOG PuBHOC pdabnong evioxUsl Tnv
anoTeEAEOPATIKOTNTA TNG €knaideuonc, OIEUKOAUVOVTAC Tn OUyKAIOn HE
AlyoTEPEC €NoxEC. O apxIkog pubuog padnong eivar 0,0001, pe PeyIoTO pubuo
padnong 0,005. O kUkAoC¢ puBpoU paenong akoAhouBei €éva Bacikod TPIYWVIKO
oXNMa Ke ouVTEAEDTH pEiwong nAdToug 0,98.

Apxika, Ta XapakTnpioTika dlopbwvovTal wg npog To QUAo kal 1o ICV. Ta
HOVTEAQ yia Tn ypappikn d10pBwon eknaidevovTal aTa dedopPEVa TWV apXIKWV
oapwoswv Tou S1 kai epapuodlovTal oTa dedoPEva TWV apXIKWV OAPWOEWV TOU
S1 kal TV apxIkwv Kai dlaxpovIKwV oapwoewV Tou S2. MNpoTol epapuoaTei 0
AA, Ta XapakTnpIoTIKG TunonoiouvTal o€ BabuoAoyieg z (z-scores). =ava 0w,
Ta JOVTEAA TUMOMOINONG EKNAIOEUOVTAl OTA OEOOHUEVA TWV APXIKWY OAPWOEWY
Tou S1 kai epappolovTal ota deBoUEVA TWV APXIKWV CAPWOEWV TwV S1 Kal
S2, apou o AA apopa POVO OTIC GUYXPOVIKEC (apXIKEC) oapwaelc. O NANBUGHOC
Tou S1 xwpileTal o€ Tpia unooUVoAa: Sltrain, Slval KaI Slheldout, HE AVaAOYia
dlaxwpiopou 65%, 15% kai 20% avTioToixa. O AA eknaideUsTal 6TO Sltrain KAl
EMNIKUPWVETAI 0TO Slval, NPIV €papupooTei oTo S2. H péon TETPAYWVIKN

anokAion (mean squared deviation, MSD = % .(x; — %)% onou R eival o
apIOUOC TV XapakTNPIoTIKWV - €0 TWV NEPIOXWV TOU EYKEPAAOU -, X €ival N

€i0odoc kal X €ival n avakataokeudopevn €£000G) Xpnoidonolsital yia Tnv
eMAOYN TWV aTOPWV HE TIG HEYAAUTEPEG anokAioelg. Aedopévou OTI N napouod
dlaTpIBn enikevtpwveTtal oTn diadikacia TG anwAeiag Oykou Nou OXETICeTal e
TNV aTpoQid, Ol MEPIOXEG TOU EYKEPANOU HE APVNTIKEC anokAiosic (dnAadn
MeyaAuTepn €€000 ano €icodo) dev nepidapBavovTal oTov unoAoyiopod Tng MSD.
Ol OUPMETEXOVTEC TOU S2 e MSD>750 €kaTooTNHOPIO TOU MSD TOU S1heldout,
ol onoiol XapakTnpiovral wG S3, €MIA&yovTal WG €EKEIVOI HE ONUAVTIKA
veuponaBoAoyikr) anokAion ano Ta kavovioTIka deiypaTa kai XpnoigonololvTal
oT1o NMF. O C-map, 0 onoiog €xel PEyeBOC i00 e TOV apIBPO TWV EYKEPAAIKOV
nepIOXwV €ni Tov apiBud Twv atopwv S3, nepIAauPBavel TIG anokAioeIg, e TIG
apvNTIKEG AnokKAICEIC va kKaTaoTEAOVTAl avTikabioTwvTag Teg e TNV Tiyn O.

>TaTioTikn PEB0dOC yia TNV e€aywyn Tou XapTn diaxpovikng alayng (L-map)
FPAPMIKO HOVTENO MIKTWV EMIOPACEWV XPNOIKOMNOIEITAl YIA TOV UNOAOYIOWO TOU
XapTn d1axpoVviKNG aAAaync TwV XapakTnpIoTIKOV TwV S3 aTOPwV NoU £XOUV
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noAanAec oapwoelc. MNa To ATOho i KAl TO XPOVIKO Onueio j, Kabe
XAPAKTNPIOTIKO MNopei va JovteAonoindei wg ENG:

Yije = Boj + ByyTimeyje + B2 Xij + Yoy + ey Time e + & (3)

onou Yi; €ival n TIUA TOU XapakTnNPIOTIKOU OTO j-00TO XPOVIKO GNHEIO yia TO
aTopo i kai Xi; €ival o nivakag Twv GUVOJEUTIKWV PETABANTWV (covariates) yia
TIG oTaBepec emdpdoeig (fixed effects) (n.x. Xpovikd onueio, apxikn nAikia
K.An.). O1 Tuxaiec napapeTpol TNE kAiong (slope) kai Tng Toung (intercept) nou
dlapépouv ava atopo akoAouBouv dIeTaBANTA KAvovikr KaTavoun.

O unoAoyiopoG Tou puBpou HETABOANC KABe XapakTnpIioTIkoU KABe aTopou
nepIAapBavel dU0 GUVIOTWOEG: TN KESN NANBUCIaKH KAioN B ano Tov 0po TwV

oTaBepwv enIdpAcewV Kal TNV Tuxaia kAion Vi €101ka yia To artopo i. 'ETal, o
TEANIKOG puUBHOG HETABOANG diveTal wG: By, + v1;;- O L-map, o oroiog Exel

MEYEBOG i00 We Tov apIBUd Twv XapaKTNPIOTIKWV €MNi TOV APIBUO TwV ATOPWV
ME OlaXPOVIKEG METPNOEIG, QAMOTUNWVEI TOUG PUBPOUG aAayng Twv
XAPAKTNPIOTIKWV OTO XPOVO. XTO NAQiolo TnG napouoac avaluonc, n €0Tiaon
gival oToug puBupoUG eYKEPAAIKNG aTpo®iag, kal yl' auTto enmIA&yovTal va
KpaTnBoUV POVO Ol apVNTIKEG TIMEC, EV® Ol BETIKEC TIMEC -AiyeG O€ aplBuo kal
MIKpEG 0€ PEyeBoG- pndevilovTal. MNa va diacpalioTei n ouppaToTNTa WE TOV
NEPIOPIOUO UN-apvNTIKOTNTAC NoU anaiTeiTal yia Ta dedopeva 100dou oto NMF,
TO NPOCNHO TOU L-map avaoTpEPeTal wOTE va NePIAAPBAVEI ANOKAEIOTIKA Wn-
ApVNTIKEG TILEG.

Ano koivou (Joint) un-apvnTikr Napayovronoinon

MeTa Tov unoAoyiopo Twv C-map kai L-map, npaypatonoigital n ano koivou
napayovronoinon Tou¢ e Tn HEBodo NMF. Ma Tov nivaka OuyXPOVIKNG
anokAiong Xc peyedoug DxNc kai Tov nivaka diaxpovikng aAhayng Xo peyeboug
diaoTaonc DxN, 6riou To D €ival 0 apIBPOC Twv EYKEPANKWY XaPaKTNPIOTIKWV
kal Nc (NL) o apiBuog Twv aTOHWV HE GUYXPOVIKEG anokAioelg (81axpOVIKEG
alayec), aToxoc sival n eEaywyn K 01a0Tdoswv nou anoTunwvouv Ta HoTiRa
EYKEPAAIKNG ynpavong, xpnoidonolnvrag Tn pEBodo NMF. H npooéyyion auth
A&IToupyei uno Tnv unoBeon OTI o dUo TUNOoI dedopevwY HolpalovTal TIG idIeg
dlaoTdoeig ynpavong (nivakac Ae€ikdo W peyébouc DxK). QoTooo, kabe TUNOG
OEDOUEVWV EXEl EEXWPIOTOUC OUVTENEDTEG: He peyEBouc KxNc yia Ta ouyXpovika
dedopeva kal He peyébouc KxNi yia Ta diaxpovika dedopévd. To HOVTENO UMNopEi
va EKPPACTEl WG EENC:

Xc ~ WH¢, X, ® WH{,, subjectto W > 0,Hc > 0,H;, > 0 (4)
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H ouvaptnon anwAeiacg ivar:
L = aflXc — WHc|IF + [IX,, — WHL[IE  (5)

onou a eival évag ouvteAeoTnc otabuiong (weighting coefficient), o onoiog
kaBopileTal and TNV OUYKEKPIYEVN €papupoyn n Ta OcdOPEVA nou
Xxpnoidonolouvtal kai e€igopponei TN oupBoAn Twv C-map kai L-map otn
diadikaagia ekpadnonc Tou Ae€ikou W.

MpokeiTal yia pia apoiBaia nepiopiopevn OINAN napayovtonoinon (mutually
constrained dual factorization) Twv ouyxpovikwv Kal dIaxpovIKWV OEDOUEVWY,
n onoia BeATiOTOMOIEITAl HME T XPAON TOU Kavova noAAAnAacIaoTIKAG
evnuépwonc (multiplicative update rule).

(aXCHCT+XLHLT)i]. 6

Wij «— Wij (aWXchT+WXLHLT)ij ( )
I 1 (WTXpjj _

hjj < hijm , I=CL) (7)

Mpiv To NMF, Ta (un Undevika oToixeia Twv) Xc kal X, avanpooappolovTal Je
xpnon TG MinMax peBodou (MinMax scaling) oto e€Upog [0,1] yia va
€€a0QPAMNIOTEI TO OHOIOHOPPO EUPOC TWV XAPAKTNPIGTIKWV.

H apyikonoinon Tou W npayuaTonolsital Je Trn Xpron TuXaiov TIHWY, Ol OMoieg
NPOEPXOVTAl anod Hia opolopopepn katavoun oto didotnua [0, 0,5]. O1 apxikoi
NiVAKEG KAVOVIKOMOIOUVTAl PE Tn XpAon €vog diaywviou nivaka S, o oroiog
npokunTel ano TIG 12-voppueg (12-norms) TwV oTAWV TOU Wip;;:

Winit’ = WinitS_ll HCinit, = SHCinit’ HLinit, = SHLinit (8)

AuTo n di1adikacia kavovikonoinong enavaiauBaveral o€ kabs enavalnyn yia
va dIaopalioTei N apiBuNTIKR 0TABEPOTNTA Kal N oUYKAION Tou aAyopiduou.
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Eikova 6: Aiaypauuartikny aneikovion tou povréAdou CCL-NMF. O  avrinapaBeTikog
autokwoikornomTris (AA) urioAoyider Tov xdpTn ouyxpovikri¢ anokAiong (C-map) Tou nAnBucuou-oToxou
S2 (€dw, evo¢ nAiKiwuevou nANBUoLIoU) arno Tov KAavovIOTIKO XWpPO 110U OpIETal ano Tov nAnbuouo
avapopds S1 (0w, Evav vy nAnBuouo peong nAikiag). O AA eknaideueTal anokAEIOTIKG oTa Je00UEVa
Tou S1 kai paBaivel va Ta avakataokeuadel Le akplBeia. Kara 1n diadikaoia avakataokeurc OEO0LEVWY
ano Tov S2, 0 AA napdyer Eva o@aua rnou karaypdpel TNV artouikr} anokAion Tou S2 ano tov S1. O
OUULIETEXOVTEC TOU S2 10U 1apousidlouV TiC LEYAAUTEPES arnokAITEIC rmpocdiopilovTal wg nAnbuouog S3,
ka1 xpnoworolouvrar oto NMF. Ta LIovTeAa yoaupikawV ikTwV emdpdoswy (linear mixed-effects models,
LME) xpnooriolouvrar yia Tov UroAoyiouo Tou XdpTn JIgxpovIKIiG alAayric Twv xapakTnpioTikawv (L-map)
TWV S3 aTOUWV 110U EXOUV MOAAGNAES LUETPROEIS OTO XPovo. Me xprion Tou NMF, o C-map, Leyc6ouc DxNg,
kar 0 L-map, Lc, peyeBous DxIN,, driou D &livar o apiBuog Twv apxikawv xapaktnpiotikwv kar Nc (N,) eivar o
apiBuUog Twv aTouwV LIE OUYXPOVIKEG ArlOKAIOEIS (OIaypoVIKES aAAayeES), napayovronoiouvTai o€ £va KoIvo
nivaka Ag&iko W, ueyeBouc DxK, kai &&ExwpioTous rivakes ouvieAsotwv (He peyeBous KxINg kar Hi,
HeyEGouc KxN): Xc =WHg X, =WH,, wore W>0, Hc>0, H>0. K ivai o apiBuog twv eéayouevawv
olaordoswy yripavonc. To X’ peraéu Twv W kar H nivakwv ouBoAiler Tov noAAaniaociacuio nivdkwv.

Aedopévou Tou XapakTnpa Tou NpoBANKAToC, TO 0Mnoio apopd pn-eniBAENOueVn
Hatnon Xwpic oapwc kabopiopevn AUaon, N eNIKUpwON TNG HEBOdoU dIEENKON
ME Tn XpAon nMI-ouveeTIKwV OedOPEVWY, OTA OMnoid nPocouoIwOnkav
OUYKEKPIKEVA HOTIBA aTpo@iac. ZUYKEKPIMEVA DIEPEUVAONKE N IKAVOTNTA TOU
CCL-NMF povTéNou va avixveUel Ta NPOCOUOIMKEVA HOTIBA KAl OUYKPIONKE pE
auTn evoc NMF povTéAoU nou XpnolPonolgi oav €i0odo povo Tov C-map kail eVOg
NMF povTé\ou nou xpnaiponolei povo Tov L-map. H oUykpion gpavépwaoe 0TI TO
CCL-NMF nou AapBdvel nAnpo@opia kai and Ta OUo €idn OcdoPEVWV
avakaTaokeuddel Pe kKaAUTEPO TPOMO TA NPOCOMOIWKEVA HOTIRA aTpoiac.

>Tn ouvéxeld, To CCL-NMF €papuO0TNKe yia TN HEAETN TNG ETEPOYEVEIAG TNG
EYKEPANIKNG aTpopiag, xpnoigonoiwvtag 119 oykoug ROI Tng @aiag ouaiag
npoepxoUevoug anod T1-elkOVEC pPayvnTIKNG Topoypagiac. Ta Oedopeva
nponABav and Tnv koivonpagia iISTAGING, ouyKeKPIPEVA TIC NAPAKATW HENETEC:
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ADNI, AIBL, BIOCARD, BLSA, CARDIA, OASIS, Penn-PMC, SHIP, UK Biobank,
WHIMS, WRAP, kar HANDLS (Healthy Aging in Neighborhoods of Diversity
across the Life Span). H nposne&epyaoia Twv T1-cikovwy, n e€aywyn Twv ROI
OYKWV Kal n evapupovion He xpnon TnG pedodou ComBat-GAM nepieypd@nke
NPONYOUHEVWG.

H opdda avagopag S1 (N=977) nepiAduBave yvwoiaka uyin atopa nAikiag
KaTw Twv 50 €TV, XWpIic napayovTtec kapdiayyelakou KivOUvou, PE JEaN NAIKia
39.88+8.09 xpovwv kai NoocooTo Yuvaikwv 54.86%. AvTiOeTa, n opada-oToxog
S2 (N=48.949) anotelouvTtav anod artopa nAikiag avw Twv 50 €TWV, e pEON
nAIkia 65.41+7.92 xpovwv kai 53.98% nocooTo yuvaikeiou NANBUCHOU, €K TWV
onoiwv To 94.23% ce€ival yvwolaka uyieic (Mivakag 3). Xpnoiponoinénkav
YPAUMIKA HOVTEAd MIKT@WV €MIOPACEWV YIAd TNV €KTIUNON TwWV OIaXPOVIKWV
PUBUWV PETABOANC TWV XApAKTNPIOTIKWV PE TNV TonoBeaia, TNV apxIkni nAIkia
Kal Tov apxikd oyko Twv ROIs w¢ ouVOdeUTIKEG WeTaBANTEG. Ma va pelwdei n
aBeBalOTNTA KTIKNONG, TA POVTEAA HIKTWV €MOPAcewV nepIAaupavav artoua
Mou €ixav TOUAGXIOTOV TPEIG DIaXPOVIKEG LETPNTEIG.

lMivakag 3: Anuoypapixd xapakrinpioTikd yia Toug S1 kar S2 nAnbuopou.

Sample size Age (years) Sex Diagnosis
(%males) (%CU)
Target | Refer Target Refer | Target | Refer Target Refer
ence ence ence ence
ADNI 2391 - 73.1£7.2 - 52.4 - 36.4 -
AIBL 922 4 73.1+6.4 | 45.4+ | 43.5 25 76 100
2.5
BIOCARD 259 - 60.8+8 - 40.9 - 97.7 -
BLSA 916 100 | 70.1+9.5 | 40.5+ | 47.3 42 97.5 100
7.4
CARDIA 534 170 | 53.9+2.3 | 47.2+ | 46.4 50.6 1 100
2.3
HANDLS 147 33 | 58.6+5.8 | 42.9+ | 44.9 57.6 1 100
4.4
OASIS 1097 10 | 71.849.2 | 4742 45 20 73.3 100
PENN 959 - 73.9+8 - 43.1 - 20.8 -
SHIP 1810 660 63+7.9 | 37.6% 48 44.1 100 100
8.1
UK BIOBANK | 38582 - 64.5+7.3 - 47.1 - 100
WHIMS 1080 - 69.6+3.6 - 0 - 100
WRAP 252 - 62.1+5.8 - 29 - 99.6

Ano Ta 48.949 artopa Tn¢ opdadac S2, 13.950 (opada S3) unepéPnoav To 750
€KATOOTNUOPIO TNG MSD, kai 1.063 €€ auTtwv €ixav TPEIG 1 NEPICOOTEPEG
OlaXPOVIKEG WETPNOEIC, CUMPBANOVTAC OTNV KATAoKeUn Tou L-map. H apxikn
NAIKIO QUTWV TWV CUPHETEXOVTWV nATav 72,81+8,08 £€Tn, He HEOO XPOVO
napakoAoubnong 4,71+3,79 £1n.
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H avaAluon CCL-NMF, nou npaypartonoindnke pe eUpoc apibpou diactaccwv (K)
ano 2 €wg 15, npoadiopioe 0TI n BEATIOTN AUON €nITUYXAVETAI PE TNV €MIAOYN
entd Olaotacswv (K=7) yia Tnv eykepalikn ynpavon Bacel Tou OeikTn
avanapaywyipotnTac (reproducibility index), Tng apaidTnTac (sparsity) kar To
oTabuIoNEVOU OQAAPaToc avakaTaokeung (weighted reconstruction error),
onwc¢ opileTal anod tnv oxéon (5) .

O1 enTd dlaoTAcEIC anokaAuwav dIakpITa poTiBa aTtpogiag TnG ¢aidg ouaiag
(Eikova 7), Ta onoia oXETioTNKAV HE KAIVIKOUG, YVWOTIKOUC Kal naBoAoyikoug
Ociktec (Eikova 8).

To CCL-NMF1 supavios atpogia ota Baoika yayyAia (basal ganglia),
TOV HEOW KOIAIaKO npopeTwmniaio PpAoid (ventromedial prefrontal cortex)
Kal To PeTaixpiako ouotnua (limbic system).

To CCL-NMF2 napouciaoe atpogia oTov JEgo kpoTagikd (temporal)
AoBO, oupnepIAaUBavopévou  TOU  KPOTAQIKOU nOAou  kal  Tng
atpakToeidouc &Nikag (fusiform gyrus), kai oOuvdEBnke oTeva e
BlodeikTeg Tou AD Kal YVWOTIKA EKNTWON KaBWE Kal JE Tn PETABaAon ano
MCI o€ AD.

To CCL-NMF3 oxeTioTnke Je atpogia oTnv katw (inferior) petwniaia
(frontal) kai viakny (occipital) €Aika, kaBw¢ kal o€ TUAWATa TNG
KPOTaPIKNC EAIkac. To CCL-NMF3 gupavios onuavTikr) CUCXETION HE TNV
au&non Tng nAIKIag, Kal JETPIA CUOXETION WE TNV apuAoeldn B npwTeivn,
TN YVWOTIKN €KNTwWon Kal TIC BAABEC TNG Asukng ouaiac. EnminAgov, To
CCL-NMF3 ek@paoTnKe MEPIOCOTEPO OTOV NANBUCHO O€ OXEON WE TIG
aMe¢ dlaoTaoelc aTpogiac. Ta napanavw XapakTnpIoTIKA UNOJEIKVUOUV
OTI auTn n OIGoTaon €VOEXOUEVWC avTavakAd TUMIKG XapakTnpIoTIKA
ynpavong kai 0 OxeTI(eTal |UE GUYKEKPIKEVN nadoloyia.

To CCL-NMF4 sppavioe atpopia OTnV avwTepn Kal PECN HETWMIAIA
€Nlka, TO npooPnvoeldeg AOPIo (precuneus), TOV NPOCaywylo (pAoIO
(cingulate cortex) kar avwTepo BpeyuaTiko (parietal) AoBo. To CCL-NMF4
giXe peyaAUTeEpn E€KPpacn o€ ATopa HEONC NAIKIAC kal Napouciaoe
OUOXETION Me Tnv naBoloyia tau. QoTdCO, TO MHIKPO MEYEBOG TOU
OeiyuaTocg tau nepiopilel TNV €aywyn a&ionioTwv CUUNEPACUATWV.

To CCL-NMF5 napouciace atpogia oTIC NEPICUABIAKEG NEPIOKES Kal
oTov npoabio (Aold Tou npooaywyiou (anterior cingulate gyrus).
EninAéov, autn n OIAOTAON NAPOUCIACE I0XUPEC OUOXETIOEIG HE
napayovTeg KivoUvou Kapdlayyeiaknc vooou, onwe ol BAABEC TNG AEUKNC
ouaciag, n naxuoapkia kai n unépTaon.

To CCL-NMF6 napouciaos atpogia otov enikAiviy nupriva (nucleus
accumbens) kal OXETIOTNKE GNUAVTIKA KE TIG BAABECG TNG ASUKNAG ouaiag
Kal TNV naxuoapkia.
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e To CCL-NMF7 sugavios atpogia Tnv napeyke@alida (cerebellum) kai
TOV HEOW IVIAKO A0BO, XwpPiC wOoTOOO OTATIOTIKA ONHAVTIKEG CUOXETIOEIG
pe AD BIodeikTeC 1 NapayovTeg kivduvou kapdiayyeiaknc vooou. Eivai
moavo n Ouykekpigeévn OIAOTAON ATPOMIAC va OXETICETAl PE ANNEC
naBoAoyIKEG KATAOTACEIC YIa TIG onoiec dev NTav dlaBEaiyol PIODEIKTEC,
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Eixova 7: Neéiko CCL-NMF o€ pop@ii xaprwv eykepdAou yia K=7 (Nc =13.950, N, =1.063).
Kokkiva (Asukd) xpwuara unodnAwvouv vwnAoTepn (XaunAoTepn) ouvelopopd/Bapog TG EIKOVICOUEVNG
ngpioxric orn didoraon CCL-NMF.,
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Eixova 8: SUOXETIOEIS TV OUYXPOVIK®V OUVTEAeoTwv CCL-NMF pe A) XapakTnpioTika Kai
dsikteg AD, B) tniv nAikia, C) yvwoTikes dokiuaoies, D) Tnv miBavornra psrdpaons amno
yvworaxd vy kardoraon (cognitively unimpaired, CU) o€ rjmia yvworikij diarapayi (mild
cognitive impairment, MCI) xar ano MCI o€ AD, kai E) napdyovreg kivouvou kapoiayyeIaKiic
vooou. AiopBwaon Bonferroni xpnoiionoirinke yia 1nv aviiueTwmon Tou npofAnuarog twv noAAaniwv
eAeyywv (multiple testing) (N=17). O ypovog napakodouénong yia mbavij perafaon CU->MCI kar MCI-
>AD ritav 5.37+4.29 kai 2.6+2.65 £11, avrioroixa. To N unodniwver To peyeBog Tou Jelyparog yia tnv
avTioToixn avaAuorn rou rapouoIdieTal oTo ypapnud.
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2TnN OUVEXEIQ, MPAyhaTonoindnke MIa GCUYKPITIKA avaAuon MeTa&l Twv
avanapacTacewv €YKEPANKNG aTpo®iac nou nponABav and Tn pedodo CCL-
NMF kai and 1o Surreal-GAN. AUTEC o1 BUO MPOCEYYIOEIC EPApUOOTNKAV OTO
i0lo oUvolo Oedopevwy, To iISTAGING, kai oTn ouvexela aflohoyndnke n
NPOBAENTIKN TOUG IKavOoTnNTa yia d1agopa KAIVIKA XapakTnpioTiKa kal Tnv
meavoTnTa hJeTapaonc anod Ania yvwaoTikn diatapaxn o€ voago AAToxAIKEp.

To Surreal-GAN anoteAei pia nui-emiBAenopevn peEBodo ocuaTadonoinong nou
BaoileTal oe GAN kai €xel avanTuxBei w¢ enektaan Tou Smile-GAN. H Baoikn
Tou dlagopornoinon agopd OTnV MNePIYypaPry TNG ETEPOYEVEIAC HEOW €VOC
OUVOAOU ouvexwv dlaoTacewy, onou o Oeiktng R (R-index) anotunwvel Tnv
gvraon/ooBapdTnTa kabe poTiBou aTpopiac oTo KABe aTtoyo. ‘Oyola Pe TO
Smile-GAN, To Surreal-GAN XpnoILOMOIEl ANOKAEIOTIKA OUyXPOVIKa OedOUEVA
yla TNV PEAETN TNG eTEpoyevelac. Mapa TIG BepeIwdEIC SIaPOopEG HETAEU TwV
pueBOdwvV CCL-NMF kai Surreal-GAN, n epappoyr) Touc ora idla OedopEva
eMITPENE! Hia a&ionioTn oUyKpIoN TWV ANOTEAECHATWV.

ZUdpwva Pe Ta eupnuata, To CCL-NMF evtonioe entd d1a0TACEIC ATPOYIAG,
evw To Surreal-GAN nevre. Ztnv ElkOva 9, napatnpeitar 0TI ol OUO
avanapacTacesiC eubuypaupidovTal PEPIKWG, YEYOVOC MOU UMoypauuilel Tnv
oTaBepdtnTa (robustness) Twv e€€ayopevwv poTifwv. Qotoco, To CCL-NMF
Npoo@EpPel Pia nio nAouaoia kKal dIEUpUPEVN avanapacTacn anoTunwvovTac TNV
artpogia oTov enikAIVA) NUPAVA Kal oTNV Napeyke@aAida kal oTov HECO IVIAKO
AoBO o€ dlakpITEG DIACTACEIC.

Zuykpivovtag Tn npoBAEnTIKr 1KkavoTnTa Twv OUO avanapacTAacewv yid
d1apopa KAIVIKA XapakTnpIoTIKA kal TNV meavotnTa yeraBaonc ano MCI os AD
XpNoILONoIWVTAG HovTéAa naAivopounong kai availuong enmBiwong kai
npaypatonoiwvTac  dlaoTpwuaTwupevn — dlaoTaupoUpevn  enikUpwon 5
unoouvoAwv (5-fold stratified cross-validation), Bp€dnke 6T Ta povTéAa nou
oupnepieAaBav eite Toug deikTeg R (oTrAN 2) €ite Toug ouvTeAeaTeG Tou CCL-
NMF (otnAn 3) unepeixav TwvV POVTEAWV MOU XPNOIKOMNoINoav anoKAEIOTIKA
Onuoypaika xapaktnpioTika (oThAn 1) (Eikova 10). EidikoTePa, Ta HOVTEAT
nou oupnepieAaBav Touc ouvtedeotéc CCL-NMF napouciacav oTaBepa
KaAUTepeC emdOOEIC and ekeiva mou xpnoidonoinoav Toug OeikTeC R Tou
Surreal-GAN. AuTO (avepwvel 0TI N dlIaXPoVIKr NANPOPOpPIa NoU EVOWHATWVEI
To CCL-NMF €Eayel wia mo nAoUoia avanapdoTracn Mou (Epel PeyaAUTepn
nAnpoopia oc oxeon He TIC £€eTalopevec naboloyiec oe oUykpion HE TNV
avanapdoraon Tou Surreal-GAN, n onoia €&ayeTal anokA€IOTIKA anod
OUYXPOVIKA dedopeva. ZTo napdv onueio, €ival onuavTikd va TovioTel OTI N
nepIOPIOPEVN  OIaBe0IPOTNTA  JIAXPOVIKWY OEDOUEVWV OTNV  OUYKEKPIPEVN
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gQapyoyn, Ye avaloyia nepinou 1:13 o€ oUYKPION PE TA OUYXPOVIKG OEOOUEVQ,
Oev avadeikvUel TNV KaBopIoTIKN onuacia TG eVOWMATWONG TOug yia Tnv
gfaywyn Twv Old0TAOEWV YNpavonc. e KEANOVTIKEC €pApHOYEC nou Ba
nepINaPBAVOUV NEPICOOTEPEC OIAXPOVIKEG MAPATNPNOEIC, AVAMEVETAl OTI N
enidoon Tou CCL-NMF Ba BeATiwBei onuavTikd, kabwg 6a eivar og Béon va
e€dyel avanapaoTtdocelc nou 6a nepiAappavouv peyaAlTepn nAnpogopia,
EenepvwvTag kata noAu 1o Surreal-GAN.
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Eixova 9: Morifa atpogiacg yia 1i¢ CCL- NMF kar 1i¢ Surreal-GAN diaordoei§ nou Bpednkav
HEOw t-tests nou npayuaronoijénkav o€ XdpTeg OYKOOTOIXEIWV yia kdBe didoraor) CCL-NMF
(Surreal-GAN), v npooapuooTtnkav yia Tnyv niikia, To @ulo, To ICV kai 1i¢ unoAoineg CCL-
NMF (Surreal-GAN) d1aoTdoerg. EpaplLiooTnke JiopBwaor Tou MooooToU Weudwv avakaAvuwewy (False
Discovery Rate, FDR) yia noAAanAsc ouykpioers ue karweAr Tiur¢ onuavrikotnTac 0,001, H avéavouevn
EPUBPOTNTA TOU OYKOOTOIXEIOU UIMOOEIKVUEI IOXUPOTEPI OUCXETION) LIE T) OUYKEKPIUEV OIdoTaot). OI NEVTE
npwTee dlaoTdoelg Tou CCL-NMF napouoiadouv OLoIOTNTES LE TIG NEVTE JIAoTAOEIS Tou Surreal-GAN.
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Eikova 10: [leproxn kdrw ano 1nv kauynuAn (area under the curve, AUC) kai JcikTing
ouvupwviag (concordance index, C-index) yia povréAa nou npoPBAgnouvv didpopa kAivikd
Xxapakrnpiotikd kai Tnv mlavornra perdpaons ano MCI o AD. Ta LovieAa xpnowonoiouv
OIQPOPETIKA XapakTnpIoTIKA yia Tn npdPAswn. Ta xapaktnpioTikd autd ivar 1) uovo onuoypapikd
XApakTnpioTikd, 2) Onuoypapika xXapaktnpiotTikd kai Oeiktes R (R-indices), 3) Onuoypapikd
XapakTnpioTikd kar ouvTeAsoTec CCL-NMF kar 4) oAa Ta niponyoupeva. To N UrnodeikvUel To HEYEBOG ToU
OElyuaroc yia Tnv avrioToixn avaAuorn nov napoucialeTal oTo ypdpnua.

H avanTtuén evoc povTENOU, TO OMoIO WMOPEI va avanapacTnoel Pe agionioTia
TNV ETEPOYEVEIQ TNG EYKEPAAIKNG Yyneavong, oOuvioTd €&vav  GnPavTikod
EPEUVNTIKO 0TOXO. EEicoU onuavTikn €ival n duvatoTnTa €UKOANG UIOBETNONG
TOU Kal EQAPHOYNG TOU O€ vEa OUVOAA OeDOMEVWY Kal MOIKIAIA EPEUVNTIKWY
nepiBarovTwy. MapdAo nou To povTeEAO Oev €ival UNOAOYIOTIKA anaiTnTIKO,
nepiAappavel 2 oradia kar anaitei évav nAnbuopd ava@opdac, YEyovoc rnou
unopsi va duoYEPAVE! TN XPron Tou and vEoug XpNoTeC. IMa va dIEUKoAUVOEi n
diadikaoia, avanTtuxbnkav povTeAa naAivopounonG yia TNV EKTiPNon Twv
OUVTEAEOTWV TwV €nTa OdlaoTacewv, Paociopéva o€ oykoug ROIs kal
OnNHOYpaPIka XapakTnpIioTIkA. AUTH N NPOCEYYION EMITPENEI TOV UNOAOYIGHO
MPOCEYYIOTIKOV OUVTEAEOTWV XWPIC TNV avaykn €K VEOU €(APHOYNC Tou
HovTENOU o€ vea dedopEva.

O1 Spearman GUOYXETIOEIG HETAEU TwV APXIKWV KAl MPOCEYYIOTIKWV GUVTEAEGTWV
NPOEPXOHEVWY and HovTeAa naAivopounong He xpnon OlacTPpWHATWHEVNG
d1aoTaupoUPEVNC ENIKUPWONG 5 unoouvolwv kupavenkav ano 0,8 £wc 0,93 yia
TOUG auyxpovikoug kal anod 0,9 £€wg 0,97 yia Toug dlaxpovikoUG OUVTEAEOTEC
(Eikova 11A-B). AuTda Ta €uprjuata UMNodeEIKVUOUV OTI Ol MPOOEYYIOTIKOI
OUVTEANEOTEC CUMPWVOUV OTEVA HE TOUC apxIkoug, diatnpwvTac napaAAnAa Tig
dopéc ouvdiakupavong (Eikova 11C-F). H duvatoTnTa auTr JIEUKOAUVEI TOUG
XPNOTEG OTNV EKTIUNON TWV OUVTEAEOTWV aneuBeiag anod Ta OIkA TOUG OUVOAQ
0edOUEVV, XWPIC Va anaiTeiTal TEXVOyvwaia yia Tnv uAonoinon JovteAou anod
NV apxn. EninAgov, a&ilel va onueiwdei 0TI Ta HOvTEAG NAAIVOPOUNONG AUTNG
NG WEAETNC Xpnoluonoinoav dedopeva nou Oev €xouv evappovioTei (raw ROI
volumes), €l0ayovTag £Tol Jia onuavTikn OIEUKOAUVON YIa TOUG VEOUG XPOTEC,
ol onoiol anaAAaccovTal anod TNV avaykn evapuoviong Twv deG0UEVWY TOUC—
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pia d1adikaocia nou anoTeAEi NPOKANON O PEAETEC Nou aoxoAoUvTal PE NoIKIAig
OUVOAWV OEDOUEVWV—TIPIV and TNV Qappoyn Twv NAaAvVOPOUNCEwWY.
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Eixkova 11: Spearman OUOXETIOEIS LUETAEU A) TV nipayuarik@v Kal TV MPOOoEYYIOTIKOV
OUYXPOVIK@WV OUVTEAEOT@WV, B) TV npayuarikwv Kal TV MPOCEYYIOTIK@WV JIaxpovIKWV
ouvredeoTwv, C) TV npayuarikov OUYXPOVIK@WV OUVTEAeoTwv, D) Twv npayuarikewv
OI1axpOVIK@WV OUVTEAEOTWVY, E) TWV rPOOEYYIOTIKWV OUYXPOVIKWV OUVTEAEOTWY, Kai F) Twv
NPOOEYYIOTIKWV Olaxpovikwv ouvieAcotwv CCL-NMF. Ta «kepalaia ypdupara (nedd)
avTINPOCWIIEUOUY TOUG NPayuarikous (MPooeyyIOTIKOUS) OUVTEAEOTEG,
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JUVONKG, TO MovTéAo CCL-NMF vyepupwvel TOo Xaopa MeTa&l Tng
NMOAUNAOKOTNTAG TOU MOVTEAOU MNXAVIKAG MABNONG Kal TNG EUKOANG Npog Tov
XpPNoTn Epapuoync. Me autov Tov Tpono, dIEUKOAUVETAI 1 EUPUTEPN UIOBETNON
Kal Epapuoyn TV EUpNUATWV O JIAPOPA EPEUVNTIKA MEPIBAAOVTA Kal ano
XPNOTEG ME DIAPOPETIKA YVWOTIKG unoBabpa.

ZUMNEPACHATIKA, TO MPOTEIVOPEVO HOVTENO €I0AYEl £va €UENIKTO NAqiolo dUo
(PACEWV YId TOV EVTOMNIOMO TWV ETEPOYEVWV EYKEPANKWV aAAAYWV HE TN
ynpavan, a&ionoimvrag T000 ouyXpovika 6co kal diaxpovika dedopeva. AuTh n
npoogyyion odiagoponoleital and Ta napadooiakd povTeAa nou PacilovTal
AnNOKAEIOTIKG OE OUYXPOVIKA OedOPEVA, MPOOPEPOVTAC VEA MPOOMTIKN OTNV
KATavonan TnG GUVBETOTNTAG TNG EYKEPAAIKNG yRpavong. EninAgov, To JovTeEAO
anoeUyel TNV AuoTNPN KATNyopIonoinon TwV aTOHWV O UMOOWAdEC, Onwg
napartnpeital o€ npooeyyioelg onw¢g 1o Smile-GAN kal TIG GUVNBIOWEVEG
MEBODOUG ouoTadonoinong. AvT'  QuTOU, EMITPENEl Tn  OUV-EKPPACN
OIaPOPETIKWV dIAOTACEWV EYKEPAAIKNC YPAvonc oTo idlo aTopo. To povTEAO
O0ev anaitei uywnA unoloyioTikn kal nopoug eEaoc@aAifovTag eupeia
npooBaciydTnTa oTN XPron Tou, eV N €UEAIEId TOU OXETIKA HE TOV APIOUO TV
dlaotdoewv  emTpénel  Tnv  Olepelivnon  AvanapacTAcEwv — MOIKIANG
noAunAokoTnTac. MapoAo nou oTnv Napouoa PEAETN TO JOVTEAO €0TIAlEl OTNV
ETEPOYEVEIA TNC EYKEPAAIKNG ATPOPIac nou oxeTICETal JE TN yNPAvar, N YEVIKN
Tou Odopn kabiota duvaTh TNV €QapuUoyn Tou Ot OIAPOPEC EYKEPAAIKEG
diatapaxec ol onoie¢ napouoialouv povoTtovn (monotonic) €EENIEN  oTo
Xpovo. EminA€ov, n Xpnon TNG €UPEWC YVWOTNG OTNV EPEUVNTIKA KOIVOTNTA
NMF pebodou OIEUKOAUVEI TOV MEIPAPATIONO HE TNV EVOWHATWON OpwWV
KAVOVIKOMoinong oTo HOVTEAO, oI ornoiol npooapuolovral oUPpwva HPE Td
XAPAKTNPIOTIKA TWV EYKEPAAIKWV dlATAPAXWV MOU MEAETWVTAI KAl NApEXOUV
auaoTNPOTEPO KABOPIOUO TwV dIaCTACEWY ETEPOYEVEIAC,

H epappoyr Tou HOVTENOU O £va EKTEVEC Kal MOIKINOHOPPO GUVOAO OEDOUEVWV
ano To iISTAGING anokaAuye entda dIakpITEC, avanapaywyluec (reproducible)
Kal onuavTikoU KAIVIKOU evOIapEPOVTOC dIaoTACEIG YKEPAAIKNG aTpogiac. Ol
OUVTEAEOTEC €KPPAONG AUTWV TwV OlId0TAcswv dUvavTal va oupBdalouv oTnv
onuioupyia €vog Mo EATOUIKEUPEVOU NPo@iA Tou aoBevouc. O CUYKPIOEIC PE
€va MNPONyMEVO HOVTEAO BaBIGc padnong, TO Onoio €pApUOCTNKE OTO idIo
oUVOAO Oedopévamy, avedeiEav Tn BeATIwPEVN NpoPAenTIKn IkavoTnTa Tou CCL-
NMF 60ov apopd BI0dEIKTEG Kal KAIVIKA XapakTnPIoTIKA nou oxeTifovtal pe AD
Kal kapdlayyelakr) vogo. EminpdoBeTa, N napoloa PEAETN NAPEXE! HIA NPAKTIKA
NPOOEYYION YIA TOUG EPEUVNTEC, EMITPEMNOVTAG TNV EKTIUNON TWV CUVTEAEOTWV
AUTWV TWV €NTA dIACTACEWV aTpopiac oTa dIaBEaIua oUVoAd DEDOPEVWV TOUC,
MECW ANAOUCTEUMEVWV KAl EUKOAG EPAPHOCINWY HOVTEAWV.
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QoT000, N NPoUNOBeon TNG KN apvnTIKOTNTAG Nou niBAMel n pébodoc NMF
nepiopiCel TNV epapuoyn Tou MovTéAou oe dlaTapaxeéc nou eEeAiooovTal
govoTova. AuTr n npoUndBeon UNOpPeEi va MeEPIOPICEl TNV EUPEId Xprion Tou
HOVTEAOU 1 €VOEXETAI VA ANAITAOEI KATAANAEC NPOCAPHUOYEC O MEPINTWOEIC
onou Ta dedopEva napoucialouv PpUCIKA PIKTA NpoOonua n nepiexouv 60pupo.
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3.MeMovTika Brpata

>T0 PENNovV, Nn pebBodoloyia CCL-NMF avapevetal va Tporonoindei kataAAnAa
woTE va eQappooTei o€  OedopeEva  HopPNG  oykooTolxeiwv  (voxels),
EMITPENOVTAG TNV QAVIXVEUON XwPIKA AENTOPEPWV MOTIBwv nou ouxvd
anokpunTovTal otav xpnoidonolouvTal 0edopeEva HOPPNG NPOKABOPICHEVWV
avatopikwv nepioxwv (ROIs). EminAéov, To PovTENO Ba enekTabei pEow TNG
EVOWPATWONG OpWV KAVOVIKOMoinong, JE okono TNV npowenon TnS apaioTnTag
TV MOTIBWV kaBWC kal TNG XWPIKAG YyelTviaong (spatial contiguity) Twv
OYKOOTOIXEIWV 0Ta £€ayoueva HoTifa.

'Eva akopa Bripa 6a nepiAapBavel TNV EVOWPATWOT YEVETIKWV OEDOUEVWV LE TN
XpNon atAavTwv GE HOPQPI OYKOOTOIXEIWV NOU PEPOUV YEVETIKN NANpoPopia,
onwg ol Allen Brain Atlases, yia Tn Olgpelvnon aAAnAemidpacswy HETAEU
yovIdiwv Kal avaTopiag Tou €eykeAAou nou oxeTi(ovtal PE OOMIKEG Kal
AEITOUPYIKEG aAAaYEC KATA Tn ynpavon kal Tov VEUPOEKPUAIOWO. H xpnon
TETOIWV ATAGVTWV AVAPEVETAI va OUMPBAAEl OTNV anokAAuyn VYEVETIKWV
napayovTwy Nou ennpealouv TNV avBeKTIKOTNTA Kal TV EUNABEIa TN YVWOTIKN
napakun. EnminAéov, TO povteEAo Ba e@appooTel ot dedopeva AWV
AnEIKOVIOTIKWV HEBOOWV YIa TN MEAETN TNG ETEPOYEVEIAG TWV XAPAKTNPIOTIKWV
TNG dIAXuonG TOU VEPOU OTIG VEUPIKEG iVEG TNG AEUKNG ouaiac, TNG AEITOUPYIKNAG
OouVOECIPOTNTAG KAl TNC evanoBeonc apulogidous kal tau npwTeivnG. H HEAETN
TV 3Ia@OpWV NTUXWV TNG EYKEPAAIKNG YNPAVONG QVAUEVETAl VA NPOCPEPEI
MIa Mo  OAOKANPWUEVN €IKOVA, KATAYPAPOVTAG OUYXPOVWG OOMIKEG,
AEITOUPYIKEC KAl HOPIAKEG aAAAYEC.

TeNog, Ba €EeTacBoUV Ol CUOXETIOEIC TWV £EAYOUEVWY HOTIBWV HE BIODEIKTEC
nepav Tou AD, cupnepidappavopévev aMwv TUNwv davoiag, Tng vooou Tou
Mapkivoov (Parkinson’s disease) kai TnGg noAAanAng okAnpuvong (multiple
sclerosis). AUTI} N NPOCEYYION AVAUEVETAI va OUUBAAEI OTOV EVTOMIOUO KOIVWV
MNXQVIOUWV  PETAEU Twv  O1IaPOpWV  VEUPOEKPUAIOTIKQWV  dlaTapaxwy,
anokKaAUNToOVTAC UMNOOPadeC aoBevwv nou OIaTPEXOUV KiVOUVO YId MIKTEG
nadoloyiec, kai va evioXUOoel TNV KATavonon Tou TpOMou HE TOV Oroio ol
VEUPOEKPUAIOTIKEG Olepyanieg aAnAenmdpolv, ennpealovrag Tn ynpavon Tou
EYKEPAAOU Kal TN YVWOTIKN EKNTWON.
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Preface

The present thesis is the culmination of my long-standing interest in the
complexities of brain aging and its implications for cognitive decline and
neurodegenerative diseases, particularly Alzheimer’s disease (AD). Brain aging
is shaped by various neurobiological processes, environmental factors, and
genetic predispositions, presenting significant challenges in unraveling its
heterogeneity. This work has aimed to advance understanding of the intricate
and heterogeneous brain changes occurring with aging using state-of-the-art
machine learning (ML) techniques and large-scale datasets.

Throughout this research, I have worked at the intersection of cutting-edge ML
and large-scale neuroimaging datasets. Leveraging deep learning and big data
analytics, this thesis first targets an area that has received limited attention:
the heterogeneity of brain aging in its early stages before the onset of clinical
symptoms. While most research has focused on disease, such as Alzheimer’s,
heterogeneity, this study emphasizes understanding variability at preclinical
stages. By investigating neuroanatomical patterns early in aging, this research
seeks to advance early diagnosis, improve risk stratification, and support more
personalized interventions. The analysis reveals several subtypes of early
neuroanatomical brain changes, highlighting the diversity in brain aging and
shedding light on the role of cardiovascular and lifestyle factors in accelerating
neurodegeneration.

Additionally, this work advances current knowledge by presenting a novel
model to dissect the heterogeneity of brain changes associated with aging and
disease. Utilizing a methodology grounded in non-negative matrix factorization
(NMF), the approach circumvents rigid subtype classifications, acknowledging
that individuals can simultaneously exhibit multiple aging patterns with varying
degrees of severity. This provides a more nuanced representation of the aging
brain. The key innovation of this approach lies in integrating both cross-
sectional and longitudinal data, addressing the limitations of prior methods
focused solely on cross-sectional data, and enabling a more comprehensive
understanding of the interplay between static and dynamic brain changes
across individuals.

The thesis is organized as follows:

- Chapter 1 introduces brain aging, focusing on cognitive decline, the main
neuropsychological symptom of brain aging. Alzheimer’s disease, along with its
prodromal stage, mild cognitive impairment, is also discussed, as it is the most
common neurodegenerative disease associated with cognitive deterioration.
Finally, it delves into the factors driving cognitive decline and the onset of AD.
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- Chapter 2 provides an overview of semi-supervised clustering approaches to
explore disease heterogeneity via patterns or transformations between a
reference and a target domain. Following the discussion on clustering methods,
the chapter introduces normative modeling approaches, which establish
individualized baselines to assess deviations from typical patterns. Together,
these methods offer complementary perspectives for studying disease
heterogeneity, with semi-supervised clustering identifying subgroups within the
population and normative models highlighting deviations at the individual level.

- Chapter 3 investigates the heterogeneity of neuroanatomical brain changes
during the early asymptomatic phases of aging by utilizing advancements in
deep learning and big data analytics. Identifying neuroanatomical
heterogeneity before clinical symptoms arise could offer prognostic insights into
neurodegenerative disease susceptibility and improve patient management and
clinical trial recruitment. To achieve this, a novel semi-supervised clustering
method called Smile-GAN is applied to T1- and T2-weighted magnetic
resonance imaging data from a large, harmonized multi-cohort sample of
middle-to-late age cognitively unimpaired individuals (N=27,402), coordinated
by the iISTAGING consortium. The neuroanatomical heterogeneity is studied
separately in four-decade-long age intervals spanning 45-85 years. Finally, the
identified subgroups correlate with genetic and lifestyle risk factors, biomedical
measures, and cognitive decline trajectories. The study identifies distinct early
subgroups of neuroanatomical change that exhibit consistent patterns across
age decades, reflecting varying expressions of brain resilience and
degeneration. These findings provide critical insights into how early
neuroanatomical differences may influence susceptibility to and progression of
neuropathological conditions.

- Chapter 4 presents a novel methodology to address the limitations of existing
approaches in disentangling the heterogeneity of brain changes related to aging
and neurodegenerative diseases. This method utilizes NMF to decompose brain
changes into distinct components, integrating both cross-sectional and
longitudinal information through a mutually constrained NMF decomposition
framework. By optimizing the reconstruction of both maps of brain change, the
joint NMF approach captures the complex interplay between static and dynamic
aspects of brain alterations. This methodology is validated with semi-synthetic
data before being used to delineate atrophy heterogeneity in an aging
population (N=48,949), having as reference a healthy middle-aged cohort
(N=977), both drawn from the iISTAGING consortium. The analysis identifies
brain atrophy components correlated with AD biomarkers, cognitive
performance, cardiovascular risk factors, and disease progression, revealing
significant neuroanatomical patterns linked to clinical phenotypes and
expanding current knowledge about brain aging heterogeneity. Additionally, by



providing individualized expression levels across components, the approach
contributes to establishing personalized therapeutic interventions tailored to
patient profiles, paving the way for more targeted and effective treatment
strategies. Finally, the model enables easy out-of-sample application by
employing regression-based estimation of the expression levels of the derived
components, enhancing its applicability in research and clinical settings.

- Chapter 5 summarizes the conclusions and the contributions of the thesis and
reflects on the next steps and future research directions.



1 Theoretical background

Aging is an intrinsic feature of an organism's life cycle, marked by a gradual
physical deterioration and an elevated risk of various diseases, including cancer,
cardiovascular and neurological diseases, and death. The aging process unfolds
at different paces among different species, with variations observed not only
among individuals of the same species but also among different tissues of an
individual. At the biological level, aging is characterized by the build-up of
molecular and cellular damage, resulting in structural and functional
dysfunctions in cells and tissues, such as loss of mitochondrial homeostasis,
impaired intracellular communication, senescence, and reduced regenerative
capacity. The rate and fate of aging are determined by the interplay between
the organism, its genes, and the environment[1].

1.1 Brain aging and neurodegeneration

The brain is highly vulnerable to the effects of aging, resulting in alterations to
its structure and function. The most prevalent macrostructural age-related
changes include brain atrophy[2][3][4], disruption of white matter (WM)
integrity, accumulation of white matter lesions[5][6], and alterations in
functional connectivity[7][8].

Specifically, cerebral atrophy occurs due to morphological modifications that
decrease dendrite arborization complexity, such as dendritic shortening and
loss of dendritic spines. This reduces synaptic density and transmission,
contributing significantly to cognitive decline[9]. Extensive research indicates
that the human brain volume tends to decrease as individuals age, typically at
an approximate rate of 5% per decade beyond the age of 40[10], with the
potential for this decline to accelerate further, especially after reaching 70 years
of age[11]. Additionally, ventricular enlargement arises due to increased space
between folds and a loss of gyrification[11].

Typical alterations in WM with age involve degeneration of oligodendrocytes,
myelin breakdown, decreased remyelination, and mild reactive astrocytic gliosis
linked to white matter lesions. White matter lesions (often called white matter
hyperintensities (WMH) as they appear as hyperintense regions on fluid-level
attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI)
scans) in different anatomic brain regions can contribute to different domain
functional deterioration. For instance, frontal lobe white matter lesions are
associated with decreased information processing speed, visual-motor skills,
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verbal fluency, categorization, and mental sequencing. In contrast, subcortical
white matter lesions are primarily linked to depression as age increases[12].
Moreover, WM changes are related to small vessel disease, resulting in
ischemia, cell death, and enlargement of perivascular spaces that impede the
brain's glymphatic waste product drainage[13].

On the whole, studies employing resting-state functional MRI (rsfMRI) have
revealed that older adults exhibit decreased within-network functional
connectivity (especially within the default mode network but also other brain
networks such as salience, dorsal attention, and sensorimotor
networks[14][15][16][17]) and increased between-network functional
connectivity (such as visual - somatomotor, visual - cingulo-opercular, as well
as between dorsal attention components and components from both motor and
salience networks[18][19]) compared to younger adults. Moreover, older adults
display reduced network segregation/modularity, suggesting less distinct
functional divisions across whole-brain networks and decreased local efficiency
(increased path length to neighboring nodes). Expanding previous results to
brain connectivity during cognitive tasks, task-activation fMRI studies have
captured age-related changes in brain network connectivity during cognitive
tasks[20][21].

Importantly, aging is the primary risk factor for most neurodegenerative
diseases, such as Parkinson’s disease (PD), Alzheimer’s disease (AD), and
frontotemporal lobar degeneration (FTLD)[22]. Neurodegenerative diseases
and their associated cognitive deficits are prevalent among older populations,
impacting both their lifespan and quality of life. Various hallmarks of aging are
related to the pathogenesis of neurodegenerative diseases (Figure 1.1). For
example, genomic instability, telomere attrition, altered intercellular
communication, epigenetic alterations, mitochondrial dysfunction, abnormal
protein synthesis, and cell senescence contribute significantly to aging and
increase susceptibility to neurodegenerative diseases. Genetics, environmental,
and lifestyle risk factors also affect the possible onset and progression of
neurodegenerative diseases[23].

Motivated by cognitive decline as the key symptom of brain aging, this work
studies Alzheimer’s disease, the most common neurodegenerative disease
associated with cognitive deterioration. The next section discusses the
spectrum from normal brain aging to Alzheimer’s disease.
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Figure 1.1: Aging hallmarks found in common neurodegenerative diseases. Abbreviations: AD,
Alzheimer’s disease; PD, Parkinson’s disease; HD, Huntington's disease; ALS, amyotrophic lateral
sclerosis; AT, ataxia telangiectasia/23].

1.2 The continuum from normal brain aging to Alzheimer’s
disease

1.2.1 Normal brain aging
Despite reaching consensus on the diagnostic criteria for categorizing

individuals as Alzheimer's disease patients and some proposed criteria for mild
cognitive impairment (MCI), understanding of normal brain aging remains
limited. The precise boundary distinguishing normal aging from MCI is a subject
of ongoing debate. There are multiple ways to approach the concept of ‘normal’
in the context of brain aging. One perspective defines it as the absence of any
comorbidities. While this approach is valid for studying aging, it may not
represent the broader population; disease-free brains are rare, especially in the
older population. Individuals without any functional impairment have been
referred to as ‘super-normal’, but this is also very rare. Therefore, the focus
primarily rests on what is termed 'typical brain aging. This category
encompasses individuals being relatively functional in their everyday tasks; still,



they tend to experience a noticeable decline in performance in several cognitive
domains with aging, also reflected by neuroimaging and neuropathological
markers changes. These individuals possibly suffer from comorbid conditions
such as diabetes, hypertension, and cardiovascular disease (CVD)[24]. To
conclude, concepts and terms such as ‘normal brain aging” are not well and
strictly established and should be cautiously approached.

1.2.2 Mild cognitive impairment
The concept of a grey zone/boundary between cognitive changes observed in

normal brain aging and those typically found in Alzheimer’s disease has spurred
extensive research in the aging and dementia field. Presumably, a continuum
exists between normality and the early signs of Alzheimer's disease. This
transitional phase is usually referred to as ‘mild cognitive impairment’.

Based on current consensus, the diagnosis of MCI requires clinical data
indicating a change in cognitive abilities[25][26][27]. This data is typically
gathered through interviews with the examined individual or their next of kin.
The subjective cognitive complaints are then further substantiated by objective
cognitive assessments, such as neuropsychological test batteries. Objective
cognitive impairment is identified by below-average performance in one or
more cognitive measures, indicating deficits in specific cognitive areas or
domains. While there is no gold standard for selecting neuropsychological test
batteries, it is essential to ensure that all major cognitive areas, including
executive functions, attention, language, memory, and visuospatial skills, are
thoroughly evaluated.

The clinical assessment of cognitive complaints in MCI cases often overlaps
with the diagnosis of dementia. However, the two conditions contrast in the
additional criterion for MCI patients to maintain their independence in functional
abilities. To evaluate this aspect, a comprehensive interview is usually
conducted with the individual and closest relative, focusing on assessing
activities of daily living (ADL) such as breathing, personal cleansing, dressing,
toileting, etc., and instrumental activities of daily living (IADL) such as going
around on their own, preparing their meals, cleaning their house, etc. When
the individual starts experiencing mild difficulties in IADL, this typically indicates
MCI. On the other hand, the ability to perform basic ADL is generally supposed
to remain intact in individuals with MCI[28].

1.2.3 Alzheimer’s disease
Alzheimer's disease is a neurodegenerative disorder marked by the abnormal

accumulation and deposition of amyloid B (AB) peptides, forming extracellular



plaques, and of hyperphosphorylated tau, which forms intracellular
neurofibrillary tangles (NFTs). These changes lead to the loss of synapses and
neurons, culminating in a gradual decline in cognitive and functional
abilities[29] (Figure 1.2). Alzheimer’s disease is the leading cause of dementia,
accounting for an estimated 60% to 80% of cases[30]. Aging is the most
prominent risk factor for AD, with the incidence doubling every five years after
the age of 65[31]. Around 44 million people suffered from AD worldwide in
2020, and this number is steadily rising, doubling approximately by 2050[32].
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Figure 1.2: Alzheimer’s disease neuropathology/33]

Alzheimer's disease pathogenesis is influenced by a complex interplay of
multiple factors, with genetics playing an essential role. The AD-related genetic
variants can be grouped into two categories, as depicted in Figure 1.3:
1]Rare, highly penetrant mutations in amyloid A4 precursor protein (APP),
presenilin 1 (PSEN1), and presenilin 2 (PSEN2) lying on one end of the spectrum
are responsible for autosomal dominant familial AD (ADAD), often with early
onset. Among these mutations, PSEN1 accounts for approximately 81%, APP
for about 14%, and PSEN2 for roughly 6% of ADAD cases [34].

2]Common alleles found through genome-wide association studies (GWAS) in
the opposite end of the spectrum are primarily associated with late-onset
sporadic AD (SAD). The term ‘sporadic’, contrary to ‘familial’, indicates that the
patients rarely report the presence of first-degree relatives affected by the
disease. While these common alleles have a low individual effect on disease
susceptibility, their cumulative impact contributes to the overall genetic
predisposition for the disease. Among those genes, the only gene consistently
found to be associated with late-onset sporadic AD across multiple genetic



studies is the apolipoprotein E (APOE) gene, specifically the €4 allele of
APOE[35]. The APOE gene provides instructions for making a protein called
apolipoprotein E involved in lipid metabolism, which is immunochemically
colocalized to amyloid plaques, vascular amyloid deposits, and neurofibrillary
tangles in AD[36]. Besides APOE, various independent AD GWAS have yielded
evidence for over 80 risk loci[37].

Familial AD constitutes a small proportion of AD cases, while more than 90%
of AD patients appear to be sporadic and to have disease onset between the
ages of 60 and 65[38]. These sporadic forms of AD are regarded as
multifactorial disorders, implying that an individual's susceptibility arises from
the intricate interplay among environmental, lifestyle, genetic, and epigenetic
factors. The next section will discuss various factors that trigger a cascade of
events culminating in cognitive weakness and Alzheimer’s disease.
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Figure 1.3: Genetic framework of AD. Rare, highly penetrant mutations in APP, PSEN1, and PSENZ2
associated with autosomal dominant familial AD at one end of the spectrum vs common and low-frequency
variants with small effect size discovered by GWAS of late-onset sporadic AD at the other end of the
spectrum/37].

1.3 Factors driving cognitive decline and Alzheimer’s
disease

Over twenty years, the quest for viable treatments capable of decelerating
cognitive decline and Alzheimer’s disease progression has predominantly relied
on the amyloid hypothesis[39][40]. This hypothesis briefly suggests that the
amyloid B protein plays a pivotal role in triggering a series of events that
ultimately lead to cognitive deterioration and dementia. Clinical trials have
focused on techniques to reduce amyloid, encompassing both active and
passive immunization and inhibiting enzymes responsible for amyloid
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production. However, there has been a lot of discussion regarding the efficacy
of such drugs. Several of these trials succeeded in decreasing the accumulation
of amyloid B in the brain, but this was not reflected by improved clinical
outcomes. There were clinical trials encompassing immunotherapies that had
adverse effects because of not targeting the correct amyloid B variants[41].
Such examples raised concerns about whether the amyloid-lowering drugs
could really enhance cognition. On the other hand, recent data showcased the
potential advantages of amyloid-lowering immunotherapies. A phase 1b study
of aducanumab demonstrated pronounced removal of AB from the brain and a
deceleration in clinical deterioration[42]. Similar results were observed in a
phase 2 trial involving donanemab[43].

1.3.1 Amyloid plaques

In individuals without AD, amyloid B is formed by sequential cleavages of
amyloid B precursor protein by B- and y-secretases. Then, it is discharged
outside the cell, broken down, or eliminated. Nevertheless, as individuals get
older or when pathologies arise, the capacity to metabolize AR diminishes,
accumulating AB peptides. Among the accumulated AB, AR 40 and AB 42 are
the major components. The rise of A 42 or AB 42 /AB 40 ratio promotes the
formation of Ap fibrils. Over time, these accumulated AB fibrils aggregate into
senile plaques, leading to neurotoxicity and triggering tau pathology, which is
eventually followed by neurodegeneration (observed as brain shrinkage,
decreased metabolic activity, or elevated levels of neurofilament light in
cerebrospinal fluid or blood plasma), culminating in cognitive decline[44].

1.3.2 Tau tangles
Substantial evidence derived from biomarkers has shown that it is not just A

but the synergy between AB and tau that is linked to impaired brain function,
atrophy, and cognitive decline. Cognitively unimpaired (CU) individuals with
increased AB and tau deposits in the brain experience cognitive decline,
especially in episodic memory, faster than those without any biomarker or only
one of the abnormal biomarkers[45][46]. One step forward, there are studies
indicating early pathological tau changes that occur in the brainstem and
further propagate to medial temporal regions before evidence of A
accumulation[47]. The tau accumulation in the medial temporal lobe is linked
to neurodegeneration and memory loss. This specific pathological manifestation
of tau without the presence of AB has been categorized as primary age-related
tauopathy (PART); it is still uncertain whether PART is an independent tau-
related condition, separate from Alzheimer's disease, or if it is an earlier stage
within the AD continuum[48]. In any case, this data strengthens the hypothesis
that the simultaneous presence of amyloid and tau accumulation triggers



cognitive deterioration and the onset of dementia. Nevertheless, multiple other
factors could potentially obfuscate the link between AB and cognition.

1.3.3 Vascular disease
Vascular disease constitutes an age-related pathological condition that often

plays a pivotal role in cognitive decline. Brain MRI changes in this disease
usually manifest as white matter hyperintensities. While WMH is also present
in Alzheimer's disease cases, investigations involving cognitively unimpaired
individuals or subjects with MCI reveal that lesions and infarctions contribute
to cognitive decline independently or synergistically with amyloid and
tau[49][50][51][52]. Furthermore, vascular risk factors such as smoking and
hypertension contribute to cognitive deterioration independently of both
amyloid levels and the presence of white matter hyperintensities[53][54]. This
indicates the prominent vascular component of cognitive decline, potentially
acting through pathways beyond the scope of MRI resolution or via mechanisms
involving inflammation.

1.3.4 Non-Alzheimer's disease-related proteins
Besides vascular disease, several other protein aggregates, such as a-synuclein,

associated with dementia with Lewy Bodies (DLB) and multiple system atrophy
(MSA), and transactive response DNA binding protein of 43 kDa (TDP-43),
associated with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar
degeneration, are usually found in the brains of older subjects. These proteins
may be related to different types of dementia, but they may co-occur with AD.
Regardless of the presence of AD pathology, such non-AD pathologies heighten
the vulnerability of the aging brain to cognitive decline and dementia [55].

1.3.5 Neuroinflammation
In post-mortem examination of Alzheimer's disease cases, extracellular AB

plaques and intracellular neurofibrillary tangles are encircled by activated
microglia[56]. Microglia are the brain's resident immune cells, continuously
surveiling the cerebral microenvironment to address pathogens and
injuries[57]. Although microglial activation is prevalent in numerous
neurodegenerative diseases, the exact role of microglia is quite complex and
has not been fully explored. Depending on their surroundings, activated
microglia can adopt either a protective or neurotoxic phenotype. The protective
phenotype involves phagocytosis, which aids in clearing AB fibrils and neuronal
debris, reshaping synapses, and releasing growth factors. Conversely, the
neurotoxic phenotype releases cytokines, which can induce or contribute to
tissue damage and disease onset or progression[58]. The link between AB and
tau accumulation might entail microglia activation. In a study involving cell



cultures, soluble AB oligomers were observed to activate microglial cells[59].
Research involving transgenic Alzheimer's mouse models has demonstrated
that microglia activation occurs before tau accumulation[60]. Microglia
activation induces tau hyperphosphorylation by releasing cytokines, ultimately
leading to neurofibrillary tangles[61]. Additionally, there are several genetic
variants associated with the immune response that have been identified as risk
factors for Alzheimer's disease, indicating the possible initiating role of
inflammation in the amyloid cascade [62][63]. For example, TREM2, a gene
modulating inflammatory responses and neuroprotection in microglia and
regulating myeloid cell maturation, proliferation, and survival, has multiple
variants with diverse roles in the development and progression of AD[64].

1.3.6 Lifestyle and environmental factors
Although exploring associations between biomarkers offers convincing support

for a chain of pathological events, there remains significant unexplained
variability in these relationships. Some individuals experience a sudden and
sharp decline in their cognitive abilities; others can maintain their cognitive
performance throughout their lifespan. The concept of individual resilience is
not new; in the late 1960s, researchers first noted a divergence between the
extent of brain pathology and cognitive function before death in several brain
samples[65]. Resilience denotes preserving intact cognitive function despite
neuropathological changes that typically result in significant clinical impairment.
Resistance is when pathological features are notably absent even when they
might be anticipated based on group-level data[66][67]. Previous studies
suggest that resistance and resilience may be promoted by lifestyle factors such
as diet, physical activity, social engagement, cognitive stimulation as well as
environmental factors, including avoiding exposure to heavy metals,
nanoparticles, and toxic pesticides, socioeconomic factors, genetics, and
epigenetics mechanisms[68][69][70][71][72]. For example, sleep could act as
a resistance mechanism by aiding in the clearance of amyloid[71], while body
mass index, smoking, and alcohol consumption were considered risk factors
connected to decreased resistance[73]. On the other hand, intellectual
enrichment might primarily serve as a mechanism of resilience, potentially
linked to lower Alzheimer's disease pathology[69].
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Currently, the amyloid hypothesis has served as the predominant model for
understanding the pathophysiology of Alzheimer's disease, drawing support
from genetic data, preclinical observations, and human biomarker studies.
However, solely relying on this hypothesis might not consistently vyield
therapeutically meaningful outcomes. The complexities and limitations of this
hypothesis raise a methodologically challenging question: within an individual
or a population sample, how pivotal is the canonical amyloid cascade compared
to other contributing factors such as comorbidities, lifestyle, environmental, and
genetic factors? Figure 1.4 illustrates how protective and risk factors can
shape the canonical amyloid cascade. Alzheimer's disease, like other common
late-life conditions such as CVD, is complex and multifaceted, and multiple
therapeutic strategies might potentially treat it. By better observing and
quantifying the various pathways and biomarkers contributing to the onset and
progression of Alzheimer’s disease, starting from the early asymptomatic
stages, deeper insights can be gained into the factors at play in each individual,
ultimately facilitating the development of tailored treatments for specific
individuals at different stages of the disease.
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2 Heterogeneity in brain aging

As discussed previously, Alzheimer’s disease is a complex and multifaceted
process. Although AD is one of the most common age-related
neurodegenerative disorders, and it accounts for the majority of dementia
cases, it is only one component of the vast brain aging spectrum. Several
neuropathologies, including other dementia types (DLB, FTLD, etc.),
tauopathies, and vascular pathologies, along with lifestyle, environmental, and
genetic factors, induce intricate brain changes, either intensifying or protecting
against neurodegeneration. Characterizing this heterogeneity is crucial for
individualized predictions, patient management, and stratification into clinical
trials. However, most studies overlook this heterogeneity or use a priori-defined
neuropathological categories based on clinical diagnoses. This results in a
restricted comprehension of underlying biological mechanisms with potential
clinical implications.

Over the past decade, the progressively growing amount of clinical,
neuroimaging, and molecular biomarker data collected from large-scale
observational cohort studies have enabled a deeper investigation and,
therefore, understanding of the various manifestations of aging, Alzheimer's
disease, and related dementias[75][76][77]. The availability of such large-scale
datasets, along with the development of harmonization methods[78] allowing
cross-cohort constructive integration of these data, has fostered the
advancement of data-driven clustering techniques for studying disease
heterogeneity.

A growing body of literature seeks to dissect this heterogeneity using several
machine learning approaches. For example, Zhang et al.[79] utilize a Bayesian
Latent Dirichlet Allocation (LDA) model to identify latent atrophy patterns in
voxel-wise MRI data. While effective in uncovering patterns, the model requires
discretization of continuous voxel data, which can introduce artifacts and
reduce sensitivity. Additionally, its reliance on cross-sectional data limits its
ability to capture individual atrophy progression over time. Similarly,
SuStaln[80] infers subtypes and stages to address temporal and phenotypic
heterogeneity but assumes fixed subtypes and arbitrary timescales, potentially
oversimplifying complex disease spectra. Its dependence on cross-sectional
data may not accurately reflect true temporal dynamics, and its computational
constraints restrict input to a limited number of brain regions, hindering the
resolution of finer details. Finally, both methods, along with several other
techniques based on unsupervised clustering methods such as k-
means[81][82] and hierarchical clustering[83][84][85], parse heterogeneity
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directly in the patient domain and thus are often limited by disease-irrelevant
confounding variability, e.g., neurodevelopmental variability of brain structure
across individuals.

More recently, semi-supervised clustering approaches have emerged to address
this issue by examining heterogeneity from a different perspective. Such
approaches disentangle disease heterogeneity via patterns or transformations
between the reference (e.g., healthy controls) and the target domain (e.g.,
patients), thus minimizing the influence of disease-unrelated confounders that
are common to both groups (Figure 2.1).

Subtype 1

Reference @;}
group {é;p

1-to-K mapping

&
B
B

a3 -

Figure 2.1: Semi-supervised clustering approaches. The figure is adapted from [86].

Clustering approaches are useful for identifying subgroups of participants but
face several challenges: clustering focuses on group averages and does not
fully model individual variation within clusters, treating clusters as atomic units;
various partitioning methods can vyield different results depending on the
measures and algorithms used; some participants may not fit clearly into any
class, or some classes may be too small to be meaningful; selecting a unique
optimal number of clusters can be problematic, with different metrics
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potentially suggesting different solutions; and finally, it is unclear whether
healthy participants should be clustered separately or alongside patients, as
disease variation may be nested within normal variation.

Normative modeling offers a complementary perspective to the predominant
approach for addressing heterogeneity using clustering algorithms. It shifts the
focus away from group means to understand cohort variation, emphasizing
second-order statistics over first-order statistics. It aims to understand
individual variations and map deviations at the individual level independently of
clinical labels, offering a distinct and valuable perspective on the heterogeneity
domain [87][88][89][90].

Introduced over a century ago, normative growth charts have become essential
in pediatric medicine and anthropometry, quantifying individual variation
against centiles of a reference population[91][92]. Normative modeling is now
a well-established technique for making individual-level inferences in clinical
neuroimaging studies[89][93][94]. Normative models can estimate various
mappings, such as between behavioral scores and neurobiological measures.
They are particularly valuable in studying brain development and aging, given
that many brain disorders arise from atypical developmental trajectories[95]
and that cognitive decline is linked to brain tissue changes in aging and
neurodegenerative diseases[96][97][98]. Normative modeling has been
applied in diverse clinical contexts, including charting the development of pre-
term infants[99] and exploring the biological heterogeneity in cohorts with
brain disorders like schizophrenia[100][101][102], attention-
deficit/hyperactivity disorder (ADHD)[103][104][105], and autism[106][107].

In the remainder of this chapter, several semi-supervised approaches will be
examined, with a particular focus on the Smile-GAN model, which will be
explored in detail in Chapter 3. Normative modeling techniques will also be
discussed, emphasizing autoencoders, which will be featured in Chapter 4.

2.1 Semi-supervised clustering approaches

2.1.1 HYDRA (Heterogeneity through Discriminative Analysis)

HYDRA[108] is based on a widely used discriminative method called support
vector machines (SVM)[109]. HYDRA combines multiple (K) SVM classifiers
piecewise to build a K-facet polytope, where each PT is assigned to the
facet/hyperplane that best distinguishes it from the healthy controls (HC). Each
facet of the convex polytope can be seen as encoding a distinct subtype,
thereby capturing a unique disease effect. This approach serves the dual
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purpose of classification and clustering; the classification part involves
distinguishing between HC and PT using a convex polytope created by
combining several linear max-margin classifiers. The clustering involves
grouping PT into clusters based on their associations with the individual linear
sub-classifiers.

Estimating this convex polytope involves solving each linear SVM iteratively,
adhering to the principles of sample-weighted SVM. The optimization process
ends when the sample weights reach stability, indicating the establishment of
the optimal polytope.

The overarching objective here is to maximize the margin of the polytope,
which can be summarized as:

| ||W]||
min

b K
wybjki=1) j=1

+2 2 = max {0,1— wxT — by}

1|yl +1

+ A Z Si,jmax {0, 1+ WJTX'IF + b]}
ilyj=—1
j

where w; and b; are the weight and bias for the j hyperplane, respectively. S =
[Sii]€{0,1}"*Kis a binary subtype membership matrix indicating whether the PT
sample i (i=1,.., N) belongs to subtype j (j=1,.., K). Finally, A is a penalty
parameter on the training error.

2.1.2 CHIMERA

Similar to HYDRA, CHIMERA[110] seeks a ‘1-to-K’ mapping; however, contrary
to HYDRA, which is a discriminative approach, CHIMERA employs a generative
probabilistic  framework  modeling  pathological processes through
transformations from HC to the PT space/distribution with each transformation
T representing a disease subtype. Assuming a set of HC X and a set of patients
Y, X’ denotes the transformed HC given as x/'=T(x;). Given a disease
differentiated in K distinct ways from the HC, the transformation for a single
HC point i into the patient domain is specified as follows: T(x))=YK_; A TiXi,
In the scenario where the pathological subtypes and, thus, the pathological
directions are distinct:

1, for the transformation associated
Axi = { with the specific disease subtype affecting x;
0, otherwise

The matching between X’ and Y distributions is estimated using a variant of
the Coherent Point Drift algorithm[111]. Every HC point transformed into the
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PT domain (xi") is treated as the centroid of a spherical Gaussian cluster. Actual
PT points (y;) are considered independent and identically distributed data
generated by a Gaussian Mixture Model (GMM)[112] with equal weight
assigned to each cluster. The aim is to maximize the data likelihood expressing
the similarity between the real PT and transformed HC distributions, considering
confounders such as age and sex. The Expectation-Maximization
algorithm[113] is employed to optimize the loss function. Subsequent clustering
inference becomes straightforward once the optimized transformation Ty is
attained, allowing for the assignment of a patient to the subtype membership
corresponding to the highest likelihood.

2.1.3  Smile-GAN  (SeMI-supervised  clLustEring-Generative

Adversarial Network)
Smile-GAN[114] is a Generative Adversarial Network (GAN)[115] architecture

for clustering a PT group based on its multivariate differences to a HC group.
The primary concept lies in learning 1-to-K (number of clusters) mappings from
the HC domain X to the PT domain Y. The Smile-GAN architecture is displayed
in Figure 2.2. Specifically, the Smile-GAN model achieves this idea by learning
one mapping function, f, from joint HC domain X and subtype domain Z to the
PT domain Y, by transforming HC data x to distinct synthesized PT data y’ =
f(x, z) that cannot be distinguished from the real PT data by the adversarial
network. The data distributions are denoted as x ~ pyc, ¥ ~ per, ¥’ ~ ps, @and
Z ~ psup, Fespectively, where z ~ pg,,is sampled from a discrete uniform
distribution and encoded as a one-hot vector with dimension equal to the
number of clusters. Under the assumption that a single true function represents
the underlying pathology of the real PT variable y=h(x, z), Smile-GAN
enhances the approximation of the mapping function f to closely align with the
genuine underlying function by imposing several regularization constraints.
These constraints promote sparse transformations assuming that the disease
affects only certain specific regions, impose Lipschitz continuity of functions,
and introduce a function g: Y — Z to the model. By including the g function, the
mapping functions, with different inputs z, are constrained to capture
sufficiently distinct imaging patterns, thus enabling the inverse mapping g to
detect the correct latent variable/subtype within the PT group.

Having said that, the objective of the Smile-GAN model is the following:
L(D' f, g) = LGAN (D: f) + Ichhange (f) + 7chluster(f' g)

With
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Loan(D, ) = Ey-por [108(D®))] + Egpgyyepic |1 — log (D(fx,2)) )|
Lchange () = Ex~pHC,z~pSub [IIf(x,2) — x|l4]
Lcluster(fw g) = Ex~pHc,z~pSub [lc (Z, g(f(X, Z)))]

where 1. denotes the cross-entropy loss with 1.(a,b) = — YX , a'logb'.

The adversarial loss L;ay compels the synthesized PT data to align with the
distribution of real PT data. In this process, the discriminator D, which aims to
distinguish between synthesized and real PT data, strives to maximize this loss,
while concurrently, the mapping function f seeks to minimize it.

As discussed previously, the regularization terms Lcpange @Nd Lgjyseer are
employed to constrain the function space where f is learned from.

The mapping function, f: X« Z — Y, and the clustering function, g:Y - Z, are
learned through the following training procedure:

f,g = argmin max L(D,f, g)
fg D

After training, the clustering function g is applied to the real PT data to estimate
their subtype variables, indicating their respective clustering memberships.

A |dea of Model B Schematic Diagram
HC
A Group
HC /i i X f PT
Group Group | ¢mmd » — | erowp |— p
X Y Y
SUB /
Group g
Z
/ Mapping f \
x X Clustering function g
- _'I Discriminator D
xup | wp o | ) =] & y = -»|-»|-o:z ,

K Phasel Phase2 /

Figure 2.2: Smile-GAN model. A) Smile-GAN model conceptualization. B) Smile-GAN architecture:
Smile-GAN model learns one mapping function, f, from joint HC domain X and subtype domain Z to the
PT domain Y while learning another function g:Y — Z. The discriminator D tries to distinguish between
synthesized PT data Y’ and real PT data Y [114].
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2.2 Normative modeling approaches

Normative models offer statistical inferences at the individual level by
comparing data to an expected 'normative' distribution or trajectory. This
approach is frequently employed in growth charts to illustrate developmental
changes in body weight and height as a function of age, where deviations from
the normative growth curve are identified as outliers at each age point.
Specifically, normative modeling extends this concept by establishing mappings
between behavioral, demographic, or clinical characteristics and biological
measures, offering centile estimates of variation across populations (Figure
2.3.A). This approach allows for the positioning of an individual within the
normative distribution, thereby identifying the extent to which they deviate as
an outlier in a given measure, thus offering a precise method to parse
heterogeneity within cohorts.

Normative modeling comprises four key steps (Figure 2.3.B): First, a
reference cohort is selected alongside relevant variables to define the mapping
and population over which variability is assessed. Second, a statistical model is
constructed to model the variance in a response variable based on clinically
relevant predictors/independent variables within the reference cohort. For
instance, a normative model might be developed to relate brain regional
volumetrics to demographics such as age and sex using data from a population-
based reference cohort. Third, the predictive accuracy of the model is evaluated
using metrics such as mean-squared error and explained variance, with
validation performed on withheld data through cross-validation to ensure
reliable generalizability. Finally, the validated model is applied to assess
deviations in samples from a target cohort, such as a patient cohort relative to
the reference one.

Normative modeling techniques encompass a variety of methods, such as
Gaussian process regression, hierarchical Bayesian regression, quantile
regression, support vector regression, and autoencoders. While the primary
focus of this thesis is not on normative modeling per se, a brief review of some
principal normative models will be provided, with particular emphasis placed on
autoencoders, which will be thoroughly discussed in Chapter 4.
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Subject level statistics E E;

Clinically relevant covariates (x)

4. Apply to target cohort 3. Validate out of sample
y. = f(x.)

Figure 2.3: Normative modeling. A) Normative modeling is analogous to the use of growth charts in
pediatric medicine, but instead of traditional response variables such as body height, body weight, or
head circumference, it utilizes blological measures, such as regional brain activity or neuroimaging
phenotype. Similarly, classical predictors/independent variables such as age and sex are replaced with
clinically relevant variables. The Gaussian distribution curve provides statistical inference at the individual
level relative to the normative model (red figure). B) Normative modeling concept: Following selecting
the reference cohort and variables, the normative model is estimated and then validated out-of-sample.
The validated model is subsequently applied to a target cohort, such as a patient population. The figure
[s adapted from [88].

2.2.1 Gaussian process regression
Gaussian process regression (GPR) is a robust non-parametric Bayesian

approach that excels in normative modeling, particularly for understanding and
quantifying individual deviations from normative patterns within a population.
GPR leverages Bayesian inference principles to predict target variable values
based on input features. It assumes the data can be represented by a Gaussian
process, a collection of random variables with joint Gaussian distributions. It is
completely specified by its mean function m(x) and covariance function (or
kernel) k(x, x"):

f(x)~GP(m(x), k(x,x"))

with mean function:
m(x) = E[f(x)]

and covariance function:

k(x,x') = E[(f(x) — m(x))(f(x’) — m(x’))]
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In normative modeling, GPR relies on the covariance function or kernel to define
relationships between input space points. The choice of kernel, such as Radial
Basis Function (RBF), Matérn, or linear kernels, is crucial as it encodes
assumptions about the modeled function's properties. This kernel helps capture
complex relationships between input variables (e.g., age, gender, genetic
factors) and the target biological measure (e.g., cortical thickness). GPR places
a prior distribution over potential data-describing functions, updated to a
posterior distribution using Bayes' theorem when data is observed. This update
provides probabilistic estimates of the target variable at new points, offering
predictions and uncertainty estimates.

GPR is robust and flexible, capable of modeling complex, non-linear
relationships between variables without assuming a specific functional form. Its
ability to provide uncertainty estimates alongside predictions makes it
particularly valuable in clinical and research settings where understanding
variability and confidence is crucial. Additionally, as a Bayesian method, GPR
can be especially effective with smaller datasets, leveraging the prior
distribution to inform predictions[116].

2.2.2 Hierarchical bayesian regression
Hierarchical bayesian regression (HBR) is a sophisticated statistical approach

that enhances normative modeling by incorporating multiple levels of variability
and uncertainty. It provides a nuanced understanding of individual differences
by modeling data at various hierarchical levels (e.g., individual, group,
population) and integrating multiple sources of information. HBR, also known
as multilevel or mixed-effects regression, extends traditional regression models
by introducing parameters that vary across more than one level, making it
particularly well-suited for complex datasets where observations are nested
within larger groups.

In normative modeling, HBR captures variability at multiple levels and models
how these levels interact. Consider the scenario where measurements are from
individuals nested within groups (e.g., patients within different clinics).

At the individual level:

Yij = Boj + BujXij + €ij, 6ij~N(O,02)

where y;; is the outcome for individual i in group j, x;; are the predictors, B,;
and p;; are group-specific intercepts and slopes, and ¢;; are individual-level
errors.

At the group level:
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ﬁoj = Yoo T Uoj> u0j~N(O, Toz)
:81j = Y10 T U1j, u1j~N(O, T12)

where vy, and y;, are the overall intercept and slope, and u,; and u,; are
group-level random effects.

HBR uses prior distributions to incorporate existing knowledge or assumptions
about the parameters at each level, which are updated with data to produce
posterior distributions. The Bayesian framework allows for the integration of
prior knowledge and continuous updating of priors as new data becomes
available. HBR efficiently handles nested data structures and provides credible
intervals for estimates at each level, allowing for a nuanced understanding of
variability and uncertainty. This approach is particularly valuable in clinical and
research settings, where understanding individual deviations from group norms
is crucial. For example, in neuroimaging, HBR can model the relationship
between brain structural measures and demographic/clinical variables,
providing probabilistic estimates and uncertainty quantification for both
population-level trends and individual-specific deviations[117].

2.2.3 Autoencoders
Autoencoders are an artificial neural network used for unsupervised learning,

focusing on dimensionality reduction and feature extraction. In normative
modeling, they provide a robust method to understand and quantify individual
deviations from a normative pattern within a population. Comprising an
encoder, which compresses input data into a lower-dimensional representation,
and a decoder, which reconstructs the input from this compressed form,
autoencoders learn efficient data representations by minimizing the difference
between the original and reconstructed data (Figure 2.4).

Mathematically, let x be the input data. The encoder function f maps x to a
latent representation z:

z = f(x) = o(Wex + be)

where We and be are the weights and biases of the encoder, and ¢ is a non-
linear activation function (e.g., ReLU, sigmoid).

The decoder function g maps z back to the reconstructed input x:
X = g(z) = 0o(Wyz + by)
where Wy and by are the weights and biases of the decoder.

In normative modeling, autoencoders facilitate reducing high-dimensional
biological data, such as brain imaging, into a compact latent space, capturing
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the most relevant features that describe normative patterns. The encoder-
decoder mechanism enables the model to understand the underlying structure
and distribution of the reference cohort data, allowing for the identification of
deviations based on reconstruction errors.

The commonly used loss function for this purpose is the mean squared error
(MSE):

L2 =[x = %1% = lIx — g((CII?

These errors, indicating how well the model captures the normative pattern,
can highlight individuals whose data significantly deviates from the norm,
providing valuable insights into individual variability.

Applying autoencoders in normative modeling involves collecting relevant data
from a reference cohort, training the model to minimize reconstruction errors,
and validating it using techniques like cross-validation. Once trained, the
autoencoder can be applied to new data points to identify deviations from the
normative model. This approach is particularly beneficial for capturing complex,
non-linear relationships and handling large, unlabeled datasets common in
biomedical research. By providing detailed individual-level analysis through
reconstruction errors, autoencoders offer a powerful tool for understanding and
mapping individual deviations, making them invaluable in clinical and research
settings[118].

Encader Decoder
Input
Latent

spare
— — — — — — —

P  Reconstruction error -«

Figure 2.4: Autoencoders. An autoencoder is a neural network comprising an encoder that receives
high-dimensional input data (such as brain images), compresses it into a low-dimensional latent
embedding, and a decoder that reconstructs the input data from the compressed representation. In the
context of normative modeling, the network is trained on normative data from healthy individuals. The
reconstruction error generated by comparing the network’s output to its input indicates the brain data
deviation from the normative pattern. The figure is adapted from [119].
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3 Study of structural brain change
heterogeneity in aging at early
asymptomatic phases using a semi-
supervised deep learning clustering
method

Over the past few decades, there has been a growing understanding of the
neurobiological processes associated with various neuropathologies that affect
the human brain, including Alzheimer's disease and cerebrovascular disease.
However, the mechanisms by which individuals transition from normal aging to
pathological manifestations remain poorly understood. This knowledge gap can
be attributed, in part, to the limited availability of sufficiently large-scale
neuroimaging datasets and the requisite tools for modeling and validating such
complex processes. Investigating the neuroanatomical heterogeneity of aging
at early stages, before the onset of clinical symptoms, may yield prognostic
insights into preclinical stages of neurodegenerative diseases, paving pathways
toward patient stratification and promoting precision medicine in clinical trials
and healthcare.

This chapter explores the application of a deep learning (DL) method to identify
subgroups with common patterns of structural variation in a large and diverse
cohort of cognitively unimpaired participants, along with examining the
associations of these subgroups with genetics, functional connectivity, white
matter microstructure, biomedical measures, and cognitive decline trajectories.

3.1 Introduction

Aging is associated with complex changes in brain structure and function.
Diverse genetic, environmental, and pathologic factors may trigger, aggravate,
or protect against pathophysiologic processes that underlie neurodegeneration
and its clinical manifestation[120]. These factors may act independently,
synergistically, or antagonistically. Common age-associated neuropathologies
such as Alzheimer’s and vascular-related diseases have long preclinical phases
when magnetic resonance imaging can measure early brain
changes[121][122]. Understanding early brain structural changes may provide
prognostic information about susceptibility to or presence of neurodegeneration
and inform patient management and stratification into clinical trials.
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The investigation of heterogeneous brain changes in normal to early pathologic
brain aging spectrum requires large and diverse databases, which are not
typical of individual neuroimaging studies. New harmonization methods allow
cross-cohort constructive integration of datasets, enabling rich mega-analyses.
Additionally, novel artificial intelligence (AI) methods allow data-driven
investigation into subtle patterns of brain change.

This chapter leverages an advanced semi-supervised DL clustering method
discussed previously termed Smile-GAN to wunravel brain structural
heterogeneity in a large, diverse dataset of CU individuals drawn from 11
neuroimaging studies. Heterogeneity is analyzed separately across four
decade-long age intervals ranging from 45 to 85 years, with decade intervals
chosen to minimize age-related influences during clustering. It is hypothesized
that subgroups of early structural brain variability can be identified, which will
have distinct associations with genetics, functional connectivity, white matter
integrity, biomedical measures, lifestyle risk factors, amyloid B, and trajectories
of cognitive decline.

3.2 Methods

3.2.1 iSTAGING data
Data were drawn from the iISTAGING (imaging-based coordinate SysTem for

AGIng and NeurodeGenerative diseases)[78][123][124] consortium, a
collaborative effort to consolidate neuroimaging, clinical, and cognitive data
from >39,000 individuals across the adult lifespan. Here, a total of 58,113
timepoints from 27,402 CU individuals, aged 45-85 years at baseline scan, were
included from the following studies: Alzheimer's Disease Neuroimaging
Initiative (ADNI), Australian Imaging, Biomarker, and Lifestyle (AIBL) Study,
Biomarkers of Cognitive Decline Among Normal Individuals (BIOCARD),
Baltimore Longitudinal Study of Aging (BLSA), Coronary Artery Risk
Development in Young Adults (CARDIA) study, Open Access Series of Imaging
Studies (OASIS), University of Pennsylvania Memory Center cohort (Penn-
PMC), Study of Health in Pomerania (SHIP), UK Biobank, Women's Health
Initiative Memory Study (WHIMS), and Wisconsin Registry for Alzheimer’s
Prevention (WRAP). The supervisory committee of each study approved its
inclusion in this project. The institutional review board of the University of
Pennsylvania approved this project. According to the Declaration of Helsinki, all
participants gave written informed consent to each study for data acquisition
and analysis. Participant demographics for baseline and longitudinal cohorts are
shown in Tables 3.1-2.
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Table 3.1: Demographic summary and volumetric measures of the CU sample (baseline
scans). N=27,402. Abbreviations: WMH, white matter hyperintensities; AB, Amyloid [; APOE,
Apolipoprotein E.

Other races: Hispanic/Latino, Native American, Multiracial, unknown, other; information about races is
presented as given in the originating studies.
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Table 3.2: Demographic summary of the baseline CU sample having longitudinal scans. N=

3,567. Abbreviations: APOE, Apolipoprotein E.
Other races: Hispanic/Latino, Native American, Multiracial, unknown, other; information about races is

presented as given in the originating studies.
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3.2.2 Image pre-processing
A fully automated processing pipeline was applied to extract morphometric

variables from structural MRI. T1-weighted image intensity inhomogeneity was
corrected[125], followed by multi-atlas skull-stripping[126]. 145 anatomic
regions of interest (ROIs) were segmented using a multi-atlas, multi-warp label
fusion-based method[127]. Inter-study ROI harmonization was performed
using the Neuroharmonize toolbox[78] based on the multi-variate ComBat
method combined with generalized additive cubic spline models to capture
nonlinear age, sex, and deep learning-based intracranial volume measurement
(DLICV)[128] effects. This method reduces acquisition-related effects and
preserves variability due to biological covariates. Specifically, each ROI volume
was modeled as a nonlinear function of age, sex, and baseline DLICV. Based
on the adjusted data, the remaining systematic differences in shift (location)
and variance (scale) were attributed to site-specific acquisition settings and
adjusted conservatively with an empirical Bayes regularization. The
harmonization model was trained on each site baseline scans of CU and then
applied to the entire dataset. This method has already been validated in other
works[123][129][124].

White matter hyperintensities were segmented from FLAIR and T1-weighted
images using a DL-based method[128]. A semi-automated visual quality check
tool (https://github.com/CBICA/MRISnapshot) was used to review WMH
segmentation manually. The imaging parameters for each study are presented
elsewhere[130].

3.2.3 Study design
Subgroups of structural brain measures of CU individuals (N=27,402) were

independently examined in four decade-long age intervals spanning 45-85
years; decade intervals were used to mitigate age-related effects during
clustering. The first decade spans ages 45 to younger than 55, notated [45,55).
Participants older than 85 were excluded due to insufficient sample availability.
Within each age interval, the 145 harmonized ROI volumes were linearly
corrected for continuous age, sex, and DLICV to avoid biasing the clustering
with disease-unrelated neuroanatomical variations. Linear correction was
performed due to the limited age range within each interval. WMH volumes
were cube-root transformed due to skewness and then adjusted for the same
covariates. Corrected data were standardized to z-scores.

Principal component analysis (PCA) was separately applied to age-, sex-, and

DLICV-adjusted and harmonized anatomic ROI and cube-root transformed
WMH volumes for dimensionality reduction with the ultimate goal of detecting
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a group with low atrophy and WMH load called resilient brain agers (A0).
Specifically, for anatomic ROIs, PCA was applied to intermediate-resolution gray
matter (GM) ROIs, ventricles, and corpus callosum from the MUSE[127] atlas
to capture regional rather than focal atrophy patterns, avoiding the high
variability of smaller ROIs. The first principal component (ROI-PC1) explained
20, 20, 21, and 20% variance in the data in the [45,55), [55,65), [65,75), and
[75,85) age groups, respectively. ROI-PC1 exhibited a positive association with
GM ROI volumes and a negative association with ventricular volume. Outliers
(defined as one standard deviation (SD) from the mean) were selected as the
atrophy-resilient subjects (ROI-AQ), while all other participants were classified
as atrophy-vulnerable subjects (ROI-rest). For WMH, PCA was applied to 8 lobar
cerebral WMH volumes since WMH development varies across the brain. The
first principal component (WMH-PC1) explained 52, 56, 64, and 68% of the
data variance in the [45,55), [55,65), [65,75), and [75,85) age groups,
respectively, and it was positively correlated with lesion volumes. Thus, WMH-
PC1 was utilized to distinguish participants with low lesion burden (WMH-AOQ)
from those with high lesion burden (WMH-rest). Participants assigned to ROI-
A0 and WMH-AQ groups were ultimately labeled resilient brain agers A0, and
everyone else was labeled non-A0. For anatomic ROI- and WMH-PCA, only the
first principal component was utilized, as it was the only component
interpretable within the context of distinguishing between A0 and non-A0. The
dichotomization of ROI- and WMH-PC1, such as whether one or more SD was
selected, was empirical, with the sole prerequisite being the assurance of a
sufficient sample size for the AO group defined by the intersection of ROI- and
WMH-AO.

Using A0 as a reference, heterogeneity within the remaining samples was
investigated by fitting a Smile-GAN model independently for each age group.
Smile-GAN was trained jointly on the 145 anatomic ROI and 8 lobar WMH
volumes. Clustering methods[131][84][132] used to quantify heterogeneity in
neuroimaging are often limited by disease-irrelevant confounding variability.
Smile-GAN, by learning a one-to-many mapping from the reference (A0) to the
target domains (non-A0), models disease heterogeneity without being
confounded by disease-unrelated factors (e.g., demographics) detectable in AQ.
PCA and Smile-GAN models trained on baseline scans were applied to available
longitudinal scans within each age group.

3.2.4 Model longitudinal stability
Since clustering was performed using the model based on the age at the time

of scanning, an analysis was conducted to determine whether transitions
between study-defined age decades affect clustering stability/reproducibility,
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using individuals with longitudinal scans (N=3,567). Longitudinal clustering
stability was assessed for participants with scans acquired in multiple age
groups, clustered using independently derived models. This stability was
compared to the reference stability of longitudinal imaging for participants who
remained within a single age group during follow-up.

3.2.5 Genetic analysis
Smile-GAN probability scores were used as phenotypes in GWAS, utilizing

imputed genotyping data from the UK Biobank. Multiple linear regressions were
performed, controlling for continuous age, sex, DLICV, and the first 40 genetic
principal components via Plink 2 (v2.0.0)[133]. Given the observed longitudinal
clustering stability, GWAS was performed for the entire age range [45,85)
(N=18,282; 47% males). FUMA[134] was used to identify and annotate
candidate SNPs, independent significant SNPs, (top) lead SNPs, and genomic
loci. The top lead SNP within each locus was queried to determine whether the
locus was novel—not previously associated with any clinical traits—and the
candidate SNPs were explored for phenome-wide associations using the GWAS
Catalog[135]. Additionally, SNP-based heritability estimates (h2) were
calculated using genome-wide complex trait analysis (GCTA) (v1.93.2)[136].
Finally, Smile-GAN probability scores were associated with the polygenic risk
score (PRS) for two subtypes of late-life depression (LLD1 and LLD2), as
developed in previous studies[129][137]. LLD1 is characterized by preserved
brain structure, while LLD2 shows diffuse brain atrophy.

3.2.6 Functional connectivity and white matter microstructural
integrity

Between-network functional connectivity (FC) was analyzed based on 21 FC
networks extracted using group-independent component analysis (ICA) on
rsfMRI data from the UK Biobank study[77]. Additionally, fractional anisotropy
(FA) maps derived from diffusion tensor imaging (DTI) data from the UK
Biobank were used to measure WM microstructural integrity[77]. Mean FA
values were extracted from 48 white matter tracts using the Johns Hopkins
University tract atlas[138]. Linear regression was applied to associate the
Smile-GAN subgroups with the (20 * 21)/2 = 210 internetwork FC and 48 FA
features, adjusting for age, sex, and subgroup labels as covariates. Given the
subgroup consistency across the four age intervals, functional connectivity
(N=19,143; 47% males) and fractional anisotropy (N=3,443; 48% males) were
examined across the entire 45-85 age range.
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3.2.7 Statistical analysis
Voxel-based morphometry (VBM)[139][140] as implemented in Statistical

Parametric Mapping (SPM, Version 12, https://www.fil.ion.ucl.ac.uk/spm/)
running on MATLAB (R2017b, Mathworks Inc.) was used to compare subgroups
in gray matter patterns using tissue density maps (regional analysis of volumes
examined in normalized space, RAVENS)[141], considering continuous age,
sex, and DLICV as covariates. Multiple-voxel testing was corrected by
controlling the Family Wise Error rate (FWE) via random field theory[142] at
0.1%.

Complementary to mass-univariate voxel-based subgroup comparisons, a
manifold learning technique called locally linear embedding (LLE)[143][144]
was applied to map high-dimensional imaging patterns into a low-dimensional
space that allowed visualization of multivariate data. The LLE algorithm was
applied to the 145 covariates-adjusted harmonized anatomic ROI volumes in
each age group. Standard dense matrix operations were used for the
eigenvalue decomposition; the number of neighbors was set to 150, and the
number of manifold coordinates was set to 3 for illustration purposes.

The clinical, cognitive, biomarker, and Apolipoprotein E allele associations of
the subgroups were examined separately in each age group. Linear and logistic
regressions were performed for continuous (e.g., Trail Making Test B) and
categorical features (e.g., smokers vs. non-smokers), respectively. For
cognitive outcomes having overdispersed and skewed distributions (e.g., mini-
mental state examination, MMSE), the beta-binomial distribution[145] was
fitted. The regression models included subgroup labels while adjusting for
continuous age, sex, and study (and education for cognitive scores). For
features showing consistent trends across >1 age group, the data from multiple
age groups were pooled together, and subgroup differences were reexamined
using one model in the combined dataset over broader age ranges considering
the study*age interaction term. Differences across subgroup intercepts were
assessed using the Wald test[146]. Multiple comparison corrections were
conducted for the number of features by controlling the false discovery rate
(FDR)[147] at 5%.

3.2.8 Longitudinal outcomes analysis
Linear mixed-effects (LME) models with subject-specific random intercepts

were fitted to estimate the rate of change (RC) per year for atrophy, WMH,
cognition, SPARE-AD (spatial pattern of abnormality for recognition of early
Alzheimer’s disease)[148] — a signature of AD-specific regional brain atrophy,
which has also been found to predict progression from normal cognition to MCI
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— and SPARE-BA (spatial pattern of atrophy for recognition of brain
aging)[149] — a structural MRI-based brain age estimation. Both SPARE
models were previously validated[123][124][148][149][150][151]. The LME
models included subgroup indicators, time of visit, and their interaction term
while adjusting for baseline age, sex, study, education, and DLICV. RC
subgroup comparisons were conducted using the Wald test. The longitudinal
analyses were conducted considering individuals with >4 longitudinal measures
to reduce uncertainty in slope estimation.

Development of MCI defined by the individual participating study was used to
indicate longitudinal cognitive deterioration. Survival curves for time to
progression to MCI were generated using a nonparametric Kaplan—Meier
estimator[152]; the log-rank test[153] was used to compare the curves
between subgroups.

3.2.9 Amyloid [ status

Amyloid cutoffs calculation. Levels of amyloid accumulation were measured
using three techniques: CSF (cerebrospinal fluid) AB 1-42 (AB42), Pittsburgh
compound B ([!'C]PiB), and [!8F]Florbetapir. Two cutoffs in each outcome
measurement divided ranges into positive (AB+), unclear, and negative (AB-)
status. These cutoffs were computed for each technique and each site
separately, as differences in acquisition and pre-processing methods yielded
significantly different outcome distributions. First, a reference study was
determined per acquisition technique with well-validated cutoffs. Then,
equivalent cutoffs for subsequent studies were calculated by matching the new
distribution of CU individuals to that of the reference distribution using normal
distribution fits. Age and sex ratio were statistically matched between
participants of the pairwise distributions (P-value>0.15).

CSF- AB42 measures were provided by ADNI, BIOCARD, and PENN. For ADNI,
AB42<180pg/mL was labeled as AR+ and Ap42>200pg/mL as AB-. Based on
prior work, AB42<192pg/mL has been considered consistent with the presence
of cerebral amyloid using the Luminex platform[154]. Then, the equivalent
cutoffs were computed for BIOCARD (311.1pg/mL for Ap+, 350.5pg/mL for AB-
) and PENN (230.4pg/mL for AB+, 256.8pg/mL for AB-).

[11C]PiB standardized uptake value ratio (SUVR) measurements from amyloid-
PET were provided by ADNI, AIBL, BIOCARD, BLSA, OASIS, and WRAP. First,
for OASIS, [!C]PiB>1.50 (high amyloid burden group according to their
previous study) was labeled as AB+, and [1'C]PiB<1.25 (low burden group)
was labeled as AB- based on previously reported cutoffs[155]. Equivalent
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cutoffs were computed for ADNI (1.55 and 1.44), AIBL (1.31 and 1.20),
BIOCARD (1.37 and 1.25), BLSA (1.08 and 1.03), and WRAP (1.28 and 1.18).

[8F]Florbetapir (also known as [!®F]AV45) SUVR measurements from
amyloid-PET were provided by ADNI and OASIS, and their distributions were
similar in terms of the cutoffs. Previously, a cutoff of 1.11 was established[156].
To be conservative, ['8F]Florbetapir>1.15 was labeled as AB+, and
[18F]Florbetapir<1.05 was labeled as AB- for both studies.

Final AB status definition: CSF- Ap42 provided by ADNI, PENN, and
BIOCARD, [!!C]PiB provided by ADNI, AIBL, BIOCARD, BLSA, OASIS, and
WRAP, and ['8F]AV45 provided by ADNI and OASIS were used as amyloid
measures. For studies with more than one amyloid measure, the final AB status
was defined based on the [18F]AV45, and if this was not available, the [11C]PiB
determined the final AB status. If both PET measures were unavailable, the AB
status was defined based on the CSF- AB42.

3.2.10 Clinical risk factors
Based on the originating studies, participants being either current or former

smokers were grouped under the ‘smoker' label, while those who have never
smoked were labeled ‘non-smoker' in this study. Individuals with body mass
index (BMI) higher than 30 kg/m? were labeled ‘obese whereas those with
18.5<BMI<24.9 kg/m2 were labeled as 'normal’. Based on the originating
studies, individuals with hypertension status ‘negative/absent  or
‘remote/inactiveé were grouped as ‘Aypertension negative. In contrast, those
with  ‘Aypertension positive/present/recent/active’ status were labeled
‘hypertension positive in this analysis—the same for diabetes and
hyperlipidemia status. Contrary to the other studies, SHIP blood biochemistry
was collected in a non-fasted state; therefore, SHIP participants were excluded
from the analysis of blood measures (high/low-density lipoprotein) and relevant
CVD risk factors (diabetes, hyperlipidemia). Individuals with one or two APOE-
€4 alleles were considered APOE-€4 carriers, while individuals with zero alleles
were considered APOE-g4 non-carriers. For depression status, only the CARDIA
and UK Biobank studies were included due to their significantly higher
availability compared to other studies and the fact that depression was self-
reported in both.
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3.3 Results

3.3.1 Consistent accelerated brain aging patterns across age
groups.

PCA defined the AO resilient group as participants with the lowest atrophy and
WMH volume within each age group. In reference to A0, Smile-GAN showed
optimal stability for three clusters (K=3), measured by the Adjusted Rand
Index[157][158] (Table 3.3). Two types of phenotypes from this clustering
scheme were used for subsequent analyses. The Smile-GAN subgroup
probability was the direct model output, representing a continuous variable for
each of the three clusters for each participant, with the sum of these three
probabilities equaling 1; the Smile-GAN subgroup was decided by taking the
highest probability (dominant subgroup).

Table 3.3: Demographic summary of the subgroups in each age group. Abbreviations: ARI,
adjusted rand index; DLICV, deep learning-based intracranial volume measurement,; UKBB, UK Biobank.

Other races: Hispanic/Latino, Native American, Multiracial, unknown, other; information about races is
presented as given in the originating studies.
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Figure 3.1: Structural profile of the brain aging subgroups for the four age groups. A)
Significant GM volumetric reduction (prwe<0.001) for the Smile-GAN subgroups compared to the A0 group
in each age group. Warmer (cooler) colors indicate regions with severe (low) GM atrophy. An overlay
brain template in gray colors is used. B) Average WMH maps computed by averaging WMH RAVENS maps
aligned to a common atlas space within each ROL Pinkish colors indicate regions with lower WMH burden,
while whitish colors indicate high WMH burden regions. An overiay brain template in gray colors is used.
C) 3D projected LLE-space derived from brain volumetric measures. The data points have been colored
based on the subgroup labels. This projection allows visualization of subgroups across the age groups; as
a projection, the axes are not directly meaningful.

Although derived independently by age decade, the Smile-GAN subgroups, Al,
A2, and A3, showed consistent differences in atrophy and WMH load compared
to AO (Figure 3.1A-B). Al showed mild, predominantly peri-Sylvian atrophy.
A2 displayed greater peri-Sylvian atrophy accompanied by atrophy in
orbitofrontal and other prefrontal regions. A3 had diffuse atrophy across the
brain, including medial frontal regions and thalamus (Figure 3.1A). WMH
burden was higher in A2 than in the other subgroups (Figure 3.1B). Among
A1/A2/A3, Al had the least atrophy and was the largest subgroup, so it may
be considered ‘typical’ aging. In comparison, A2 (highest lesions) and A3 (most
severe atrophy) are considered ‘accelerated’ aging subgroups. VBM within the
[75,85) group showed less prominent between-subgroup differences due to
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relatively more advanced atrophy in the [75,85) A0 compared to younger AO
groups and more structural variability in this age group (Figure 3.1A). The
average brain age difference between the youngest- and oldest-appearing

brains (A0 vs. A3) was ~10 years and relatively consistent across age groups
(Figure 3.2).
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Figure 3.2: Anatomic ROIs, total WMH (cube-root transformed), SPARE-AD, and brain age
gap for the subgroups for the four age groups. The brain age gap is the chronological age subtracted
from the structural MRI-based brain age estimation (SPARE-BA). Abbreviations: SPARE-AD, spatial pattern
of abnormality for recognition of early Alzheimer’s disease; WMH, white matter hyperintensities; GM, gray
matter; PCG, posterior cingulate gyrus.

Longitudinal scans within one age interval showed approximately 85%
consistency of cluster assignment. Around 80% longitudinal stability of
clustering assignments was observed in participants who aged into the next
interval within a follow-up<=3 years, even though independent clustering
models were applied to scans at different age intervals (e.g., participants
classified as A2 using the [55,65) model were mainly classified as A2 on follow-
up scans using the [65,75) model). Furthermore, Tables 3.4-5 display the
mean Smile-GAN probability shifts between two consecutive scans within the
same age group and across different age groups, respectively. These findings
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indicate that the magnitude of probability changes across decades was
comparable to those observed within the same decade.

Table 3.4: Mean Smile-GAN probability changes between two consecutive scans within the
same age group. 2,775 subjects have at least two scans within the same study-defined age group.

Smile- Mean Smile-GAN probability change
su:gArI:up A1(i+1)-A1(i) A2(i+1)-A2(i) A3(i+1)-A3(i)

Age group [45,55)

Al 0.02+0.25 -0.001+0.17 -0.02+0.16

A2 -0.09+0.22 0.18+0.30 -0.09+0.20

A3 -0.06+0.16 -0.01+0.18 0.07+0.19
Age group [55,65)

Al 0.04+0.20 -0.03+0.15 -0.01+0.13

A2 -0.05+0.18 0.06+0.22 -0.002+0.14

A3 -0.08+0.18 -0.04+0.15 0.12+0.21
Age group [65,75)

Al 0.06+0.19 -0.06+0.14 0.01+0.13

A2 0.01+0.13 0.04+0.17 -0.05+0.12

A3 -0.07+0.17 -0.002+0.12 0.07+0.20
Age group [75,85)

Al 0.07+0.17 -0.03+0.13 -0.03+0.12

A2 -0.01+0.12 0.03+0.15 -0.02+0.09

A3 0.004+0.11 -0.01+0.11 0.005+0.15

Smile- Mean Smile-GAN probability change
su:;:up A1(i+1)-A1(i) A2(i+1)-A2(i) A3(i+1)-A3(i)

Age group [45,55)

Al -0.01+0.25 -0.03+0.19 0.04+0.18

A2 -0.09+0.24 0.18+0.31 -0.09+0.24

A3 -0.09+0.23 0.06+0.21 0.03+0.28
Age group [55,65)

Al 0.10+0.26 -0.11+0.19 0.002+0.19

A2 -0.02+0.18 0.12+0.24 -0.10+0.19

A3 -0.09+0.23 0.01+0.17 0.08+0.26
Age group [65,75)

Al 0.07+0.26 -0.03+0.19 -0.03+0.19

A2 -0.03+0.15 0.02+0.22 0.003+0.16

A3 0.002+0.16 -0.08+0.22 0.08+0.26

Table 3.5: Mean Smile-GAN probability changes between two consecutive scans in different
age groups. 1,201 subjects cross study-defined age groups at least once.
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Although VBM suggested a primary difference in severity across subgroups,
examination of differences in location and severity of atrophy identified unique
volumetric fingerprints across subgroups. Figure 3.1C shows the 3D projected
LLE-space derived from brain volumetric measures, revealing worse atrophy in
Al compared to AQ, followed by diverging branches for A2 and A3, especially
after age 65. These axes echo the variability of distances between regional
measures seen in radial plots (Figure 3.3). WMH volumes were not included
in LLE analyses; the 2-axes divergence exclusively reflects atrophy subgroups
and not the distinct difference in WMH burden.
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Figure 3.3: Radial plots showing the subgroup-specific mean of the (min-max) scaled values
of the ROI/WMH volumes, SPARE-AD, and brain age gap. WMH volumes were first cube-root
transformed. The brain age gap is the chronological age subtracted from the structural MRI-based brain
age estimation (SPARE-BA). Abbreviations.: SPARE-AD, spatial pattern of abnormality for recognition of
early Alzheimer’s disease;, WMH, white matter hyperintensities; GM, gray matter.

3.3.2 Clinical, cognitive, biomarker, and APOE-g4 genotype features
Between-subgroup differences in clinical and cognitive features, AB, and APOE-

€4 carrier status were examined separately for each age group. Features that
showed consistent trends across >1 age group are summarized in Figure 3.4
after reanalyzing pooling data. Consistent with the known association of CVD
and WMH, subgroup A2 had the highest proportion of participants with CVD
risk factors, including hypertension and obesity. Subgroups A2 and A3 showed
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similarly higher proportions of smokers and individuals with diabetes than A0
and Al.

Although A2 did not show the most severe atrophy, it had the highest
prevalence of APOE-€4 carriers and, after age 65, the most elevated proportion
of cerebral AB-positivity (AB+). However, trends toward a higher prevalence of
APOE-€4 carriers and higher AR+ prevalence in A2 vs. A3 were not statistically
significant. Regarding AB measures, the only statistically significant difference
was the higher prevalence of AB+ in A2 compared to AO. These findings suggest
that none of the Smile-GAN subgroups were specifically an early AD-related
group, but the A2 subgroup had a higher prevalence of AD pathologic change.
While participants were selected as not having been diagnosed with cognitive
impairment, the A2 and A3 accelerated aging subgroups showed poorer
cognitive test performance compared to the A0 and Al subgroups for ages 55-
75. Despite different structural features, A2 and A3 did not differ significantly
in cognitive performance across domains. Thus, poorer cognitive performance
in A2 and A3 appears to reflect additive effects of atrophy and WMH.
Additionally, A3 had the highest proportion of subjects suffering from
depression after age 55.
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Figure 3.4: Clinical, cognitive, amyloid B, and APOE-&4 carrier status trends of the brain aging
subgroups at baseline. The plotted features are those non-imaging features that showed consistent
trends across more than one age group, presented as a summary after pooling data across age groups.
The age ranges above the plots indicate the broader age groups examined. APOE-€4 carriers were
considered those having one or two €4 alleles. The boxplots show the residuals after adjustment for
continuous age, sex, and study (and education for cognitive test scores) for each subgroup. Higher MMSE,
DSB, and CVLT indicate better cognition, while lower TMT-B indicates better cognition; TMT scores are
presented with an inverted scale, so poorer cognitive performance is in the same direction across the four
graphs. The white dot indicates the mean value. The horizontal line shows the median value. The bar
plots show the percentage of participants with various risk factors for each subgroup. N indicates the
sample size for the graph. FDR correction for multiple comparisons with a p-value threshold of 0.05 was
applied. Abbreviations: APOE, Apolipoprotein E; MMSE, mini-mental state examination; TMT-B, trail
making test B; DSB, digit span backward; CVLT, California verbal learning test.

3.3.3 Genome-wide associations of the Smile-GAN probability scores
The Smile-GAN probability scores (A1, A2, and A3) were associated with five,

nine, and four genomic loci, respectively. Several loci were previously identified,
while others were novel (Figure 3.5A). These previously identified loci were
associated with various clinical traits, including imaging-derived phenotypes
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from white matter microstructure (A1-3)[159], gray matter atrophy (Al-
3)[160], WMH (A1-3)[161], CVD risk factors (A1-2)[162], CVD (A1-2)[163], and
AD (A1-2)[164] (Figure 3.5B). Manhattan plots are shown in Figure 3.6.

Several SNPs exerted pleiotropic effects on more than one
phenotype/probability with opposite directions of the association effects. For
example, Al (beta=-0.07+0.01; p-value=2.31E-09 and beta=-0.09+0.02; p-
value=4.09E-08) and A2 (beta=0.1+£0.01; p-value=1.73E-15 and
beta=0.13+0.02; p-value=1.04E-15) were associated with the two novel
independent variants (rs7209235 and rs55715426 at cytogenetic
region:17g25.1), whose mapped genes GALK1 and H3-3B were associated with
several CVD biomarkers, including cholesterol[165] and Apolipoprotein B[166].
Therefore, these variants may be protective against CVD for A1 but may serve
as risk variants for A2. Furthermore, Al (beta=0.1+0.02; p-value=6.49E-09)
and A2 (beta=-0.09+0.02; p-value=4.05E-07) were both associated with the
candidate SNP rs72932727 (cytogenetic position:2g33.2) previously associated
with the Alzheimer’s disease PRS[164]. Since A2 had the highest prevalence of
APOE-€4 carriers and AR+ subjects, opposite to Al, rs72932727 may play a
protective role against AD for A1 and may be a risk factor for A2.
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Figure 3.5: Genetic analyses of the Smile-GAN probability scores (A1, A2, and A3). A) GWAS
Identified genomic loci (represented by the top lead SNP) associated with the Smile-GAN probability scores
(Al, A2, and A3). The genome-wide p-value threshold (5E-08) was used in all GWAS. A locus was denoted
as novel (with the lead SNP represented in bold font) if it was not associated with any clinical traits in the
GWAS Catalog. The reference genome is Genome Reference Consortium Human Build 37 (GRCh37). The
ideogram plot represents all autosomal chromosomes (1 to 22). B) Phenome-wide associations from
GWAS Catalog. Independent significant SNPs inside each locus were associated with many clinical traits,
which were further classified into high-level groups, including gray matter measures (e.g., (sub)cortical
volume, cortical thickness, and surface area), white matter measures (e.g., whole brain restricted isotropic
diffusion and whole brain free water diffusion), cardiovascular diseases (e.g., coronary artery disease and
myocardial infarction), cerebrovascular diseases (e.g., non-lobar intracerebral hemorrhage and stroke),
hematological traits (e.g., platelet, eosinophil, and white blood cell counts), mental conditions (e.g., risk-
taking behavior and suicide attempts), etc. In addition, traits such as Alzheimer’s disease, WMH, CVD risk
factors, and education were also identified. Abbreviations: WM, white matter; WMH, white matter
hyperintensities; GM, gray matter.

44



A1 54843552 ! i rs11270925
12 - PR ]
rs140041617 l
10- i rs368863059 | |
Q ]
= |
2 : I
> i
o |
o
—
[@)]
o
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . 1617 18 19 202122
Chromosome
A2 {rs3744020
30+ []
|
o 7 N =
= QO ©
© 20- & ,? b,‘\’l, ;
d SIS Si
i “ 3
o ” S NS e rs5880893 rs35144173 &
T
S g o i &
E 109 |"-ﬂ AN a4
5- ' _|
. ‘
1 2 3 4 5 [ 7 8 9 10 11 12 13 14 15 16 17 18 19202122
Chromosome
rs167684
115 I
A3
ol
- rs1182143 rs1433188 rs3744020
[} N s 1
=
(]
=
o
S 0% 1
= .
2 1

! } 1 g
i

7 8 9 10 11 12 13 14 15 16 17 18 19202122

6
Chromosome
Figure 3.6: Manhattan plots for the GWAS for the Smile-GAN probability scores (A1, A2, and
A3).
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Moreover, the imaging-derived phenotypes showed highly significant SNP-
based heritability estimates (Al: h2=0.44+0.04, A2: h2=0.55+0.04, A3:
h2=0.45%0.04; all p-values<E-04). Finally, A3 was significantly associated with
both PRS-LLD1 and LLD2 with opposite direction association effects (LLD1:
beta=-0.05+0.01; p-value<0.001, LLD2: beta=0.05+0.01; p-value=0.001). Al
was associated with the PRS-LLD1 (beta=0.04+0.02; p-value=0.007), with
LLD1 characterized by preserved brain volume (Table 3.6).

45



Table 3.6: Polygenic risk score for the Smile-GAN probability scores (A1, A2, and A3) for Late-
Life Depression subtype 1 (LLD1) and 2 (LLDZ2). The Polygenic risk score was derived using a
Bayesian method (PRS-CS) with the conventional clumping plus thresholding approach in previous
work[137]. N=7,571. The notation "ns” indicates insignificant associations with p-value>=0.05.

Smile-GAN
probability | Phenotype Beta (B) P-value
score
LLD1 0.04+0.02 0.007
Al LLD2 -0.02+0.02 ns
LLD1 0.01+0.01 ns
A2 LLD2 -0.02+0.01 ns
A3 LLD1 -0.05+0.01 <0.001
LLD2 0.05+0.01 0.001

3.3.4 Functional and white matter microstructural associations
Internetwork connectivity analysis revealed that A3 had the most significant

differences relative to the reference A0 group. Increased connectivity for
several pairs of networks, such as the default mode - motor, somatosensory -
occipital visual, and dorsal attention - occipital visual networks, and decreased
connectivity for other pairs, such as the default mode - frontotemporal,
subcortical - frontotemporal, and occipital visual - fronto-insular-parietal
networks are observed (Figure 3.7). These results align with the literature
showing both increased[19][167] and decreased[16][17] internetwork
connectivity, uncovering a complex functional reorganization of the brain with

aging.

Regarding FA analysis, consistent with the known associations of WMH and
CVD risk factors[168][169][170] with WM integrity, the A2 subgroup showed
significant microstructural WM integrity disruption relative to A0 for 41 tracts,
with the most prominent disruption observed in posterior thalamic radiation,
corona radiata, superior fronto-occipital and longitudinal fasciculus, and
anterior limb of the internal capsule (Figure 3.8).
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Figure 3.7: Functional connectivity associations of the A3 Smile-GAN subgroup. Regression
coefficients for internetwork connectivity for the A3 subgroup relative to the reference group AO.
Bonferroni correction for multiple comparisons adjusted the significance level at 0.05/210.
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Figure 3.8: White matter microstructural integrity associations of the A2 Smile-GAN
subgroup. Regression coefficients for fractional anisotropy for the A2 vs. A0 group. Bonferroni correction
for multiple comparisons adjusted the significance level at 0.05/48.
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3.3.5 Longitudinal outcomes
Across individuals with >4 longitudinal MRI scans (N=670, 7.99+4.74 years

follow-up, baseline age=69.15+8.93 years), small differences were observed
between subgroups in longitudinal atrophy (Figure 3.9). Progression of WMH
(N=595, 8.08+4.93 years follow-up, baseline age=69.2848.93) was
significantly faster in A2. A2 and A3 subgroups showed the greatest longitudinal
cognitive decline (number of individuals with longitudinal cognitive scores was
438 to 1933, mean longitudinal cognitive testing was over 5.04 to 7.99 years
with SD 2.60 to 4.74 years across tests, and mean baseline age was over 69.43
to 70.72 years with SD 6.45 to 8.43 years across tests) in agreement with the
faster progression from cognitively unimpairment to MCI (Figure 3.9C),
emphasizing the long-term implications of the baseline MRI subgroups.
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Figure 3.9: Longitudinal outcomes for the Smile-GAN subgroups. Rate of change per year for A)
ROI and WMH volumes (units: mn?), SPARE-BA, SPARE-AD (unitless), and B) cognitive scores calculated
using linear mixed-effects models with subject-specific random intercept for the Smile-GAN brain aging
subgroups. The models included subgroup indicators, time of visit, and their interaction term while
adjusting for baseline age, sex, study, education, and DLICV. Subgroup comparisons of rates of change
were conducted using the Wald test. N indicates the number of individuals having >4 longitudinal
measures for the plotted feature. FDR correction for multiple comparisons was used with a p-value
threshold of 0.05. The rate of change for ventricles, SPARE scores, total WMH, and TMT-B is presented
with an inverted scale, so faster brain aging (reflected by either more rapid atrophy, lesions accumulation,
or cognitive decline) is in the same direction across graphs. C) Kaplan-Meier survival curves show the
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probability of remaining CU and not progressing to MCI for subjects with baseline age within the 65-75
range. N indicates the number of individuals followed up for each time interval. A log-rank test was used
to compare the survival curves of the Smile-GAN subgroups. The only significant difference is between
Al and A3 curves (p-value=0.01). Longitudinal results for A0 are not shown because the A0 group was
derived using a methodology different from that of the Smile-GAN subgroups. Additionally, the sample
size for longitudinal AO was small, and thus, the results were not robust. Abbreviations: GM, Gray Matter;
WMH, white matter hyperintensities; PCG, posterior cingulate gyrus; SPARE-BA, spatial pattern of atrophy
for recognition of brain aging; SPARE-AD, spatial pattern of abnormality for recognition of early
Alzheimer’s disease; MMSE, mini-mental state examination; TMT-B, trail making test B; DSB, digit span
backward; RAVLT, Rey auditory verbal learning test; CVLT, California verbal learning test; CU, cognitively
unimpaired; MCI, mild cognitive impairment.

3.4 Discussion

Genetics, lifestyle, CVD risk factors, and neuropathologies modify brain aging
heterogeneously across individuals even before cognitive symptoms are
expressed. Advanced DL methods were applied to a large, diverse, harmonized
multi-cohort sample to identify characteristic neuroanatomical subgroups of
brain variation. Consistent subgroups of brain aging emerged in each of the
decade-long intervals between 45-85 years: A1, or typical aging subgroup with
low atrophy and WMH load, and two accelerated aging subgroups, A2 and A3.
Heterogeneity in brain aging was observed in the CU population, with stable
patterns across decades. These subgroups were detectable from mid-life and
associated with cardiometabolic and genetic risk factors, functional connectivity
and white matter microstructural measures, and cognition (Figure 3.10).

One of the primary findings was the emergence of two accelerated brain aging
trajectories, best visualized from the manifold algorithm, which were
particularly distinct in ages 65 and older. A2 was associated with hypertension,
WMH, disrupted WM microstructural integrity, and vascular disease-associated
genetic risk factors, evidenced by the GWAS (Figure 3.5), and opposite from
the protective effect in Al. This subgroup was also mildly enriched for AB+
(ages=65) and AD-related genetic risk factors, including APOE-¢4. A3 showed
widespread GM atrophy and moderate presence of CVD risk factors. Thus, A2
and A3 may have different brain reserve[67], affecting susceptibility to future
pathology.

Despite differences in patterns of atrophy, A2 and A3 had comparable poorer
cognitive functions than AOQ. Thus, atrophy and WMH seem to act additively to
cause cognitive decline. This may account for lower atrophy in A2 versus A3;
further atrophy may predispose to conversion to MCI, resulting in exclusion
from this CU cohort. Although underlying pathology related to neuroimaging
findings was not explicitly defined, the observed effect is comparable to
previous studies demonstrating that the combined involvement of

49



neurodegenerative and vascular pathology is more pronounced in the earliest
stages of cognitive impairment[171][51]. All subgroups had low SPARE-AD
scores, indicating no significant AD-related neurodegeneration. Overall, AR+
individuals were a minority of cases and relatively evenly distributed across
subgroups, suggesting that factors influencing structural brain aging in this CU
population may be largely independent of AD before the emergence of
symptoms. A3, on the other hand, was not uniquely enriched in a particular
studied cardiovascular disease risk factor. It underwent multiple alterations in
rsfMRI internetwork connectivity. A3 had the highest prevalence of depression,
and the A3 probability score was associated with depression-related PRS.
Further investigation of the relationship of A3 to other risk factors is warranted
to understand this group better.

A2: Vascular Aging

AQ: Resilient Brain Aging -Highest and fastest growing
-Preserved brain volumes WMH

-Lowest CVRFs -Higher CVRFs

-Highest baseline cognition -Genetic risk for WMH
-Brain age ~7 years younger -APOE-£4 enriched

than chronological age -AB enriched (265 years)

-Poorer cognitive profile
-Higher progression to MClI
-Brain age ~2-3 years older
than chronological ﬁfe
-Microstructural W
integrity disruption

A3: Atrophy Predominant Aging

-Highest brain atrophy

-Low WMH

-Not APOE-€4 or AB enriched
-Poorer cognitive profile

-Most unfavorable
progression to MClI

Al: Typical Brain Aging

-Mild atrophy, particularly
peri-Sylvian and prefrontal
-Modest CVRFs

-Brain age ~3-5 years older
than chronological age
-Higher depression prevalence
-Alterations of internetwork
functional connectivity

-Intermediate cognitive profile

-Genetic factors protective for WMH
-Intermediate clinical progression to MClI
-Brain age ~2-3 years younger than
chronological age

Figure 3.10: Schematic summary of key features of the brain aging subgroups. Abbreviations:
WMH, white matter hyperintensities; WM, white matter; MCI, mild cognitive impairment; APOE,
Apolipoprotein E; CVRFs, cardiovascular risk factors; AB, Amyloid B.
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This study has several strengths, including the large, diverse, multi-site sample
covering a wide age range and the use of advanced harmonization and DL
methods. Additionally, identifying multiple SNPs associated with WMH and brain
atrophy is consistent with the neuroimaging profile of the subgroups. However,
this study also has limitations. (1) The heterogeneity in sampling strategies and
data acquisition of each contributing study might impede generalization. (2)
There is a low availability of amyloid data and insufficient availability of tau
measures and biomarkers related to non-AD neurodegeneration. (3) The lack
of long-term follow-up prevents the derivation of robust conclusions regarding
the clinical progression and transition to MCI. (4) Regarding sample
composition, there is a ‘ceiling’ effect as people with more severe findings are
more likely to be classified as cognitively impaired and thus be excluded from
the sample. (5) While morphologic and correlation similarities of subgroups
have been observed across decades, equivalence cannot be conclusively
established since different models and reference groups (A0) were used per
decade, and there was no substantial follow-up across decades. Additionally,
AO, despite representing a more resilient population, remains subject to some
degree of pathology.

3.5 Conclusion
Consistent and reproducible neuroimaging subgroups defined by regional

atrophy and WMH burden were identified across cognitively unimpaired
individuals aged 45-85. Two axes of accelerated aging emerged, one showing
elevated CVD risk factors, WM integrity disruption, and enrichment of cerebral
AB and the other with more diffuse and severe atrophy probably driven by
lifestyle factors. These subgroups likely reflect differential susceptibility to AD
and other neurodegenerative diseases, cognitive decline, and clinical
progression.
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4 Identification of heterogeneous aging-
related brain changes through a coupled
cross-sectional and longitudinal non-
negative matrix factorization

Currently, heterogeneity techniques have predominantly employed cross-
sectional data, thereby overlooking the dynamic progression of the disease
patterns. This chapter introduces a novel machine learning framework based
on non-negative matrix factorization (NMF) that captures the heterogeneous
brain changes associated with aging and related diseases by leveraging cross-
sectional and longitudinal data. Unlike traditional methods that rely solely on
cross-sectional data and categorize individuals into rigid subtypes, the proposed
methodology enables the co-expression of multiple aging patterns driven by
integrating population-based brain change maps alongside maps reflecting the
dynamic progression of changes observed in individual trajectories. Validated
on a semi-synthetic dataset, it is then applied to a large, multi-cohort aging
population; distinct components of aging-related atrophy strongly associated
with Alzheimer’s disease biomarkers, cognitive decline, cardiovascular risk
factors, and progression of cognitive impairment are identified. These findings
highlight the potential of the proposed methodology to predict clinical
progression and customize interventions based on individual neuroanatomical
profiles, offering a path toward more personalized therapeutic approaches for
neurodegenerative diseases.

4.1 Introduction

So far, semi-supervised clustering techniques[114][108][110] have offered
distinct perspectives in addressing the substantial interindividual heterogeneity
in brain aging and related disorders by delineating specific patterns or
transformations between a reference (e.g., healthy individuals) and a target
population (e.g., patients), thus minimizing the influence of disease-unrelated
confounders. However, most of these methods model disease heterogeneity as
a dichotomous process and extract categorical representation memberships
(e.g., subtypes) through hard clustering optimization. Thus, they fail to capture
the continuous spectrum along which brain aging and associated pathologies
unfold, potentially overlooking the co-occurrence of multiple subtypes within
individuals. Recently, a semi-supervised representation learning method via
GAN, termed Surreal-GAN (Semi-Supervised Representation Learning via GAN),
was developed as an extension of Smile-GAN discussed in the previous chapter,
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overcame this limitation by capturing disease-related heterogeneity through
continuous low-dimensional representations (R-indices), each reflecting the
severity of an independent, relatively @ homogeneous imaging
pattern[172][173]. However, Surreal-GAN uses only cross-sectional data,
failing to leverage dynamic observations of the progression of various
pathological brain changes.

In recent years, a data-driven approach, NMF[174][175], has gained
prominence as a robust technique for analyzing high-dimensional data across
several fields. The core concept of NMF is to decompose a given non-negative
matrix V into the product of two lower-dimensional, non-negative matrices W
and H, such that:

V = WH

where V of size mxn is the original data matrix, W of size mxk is a matrix
containing the basis vectors/components/dictionary, H of size kxn is a matrix
containing the coefficients that indicate the contribution of each component in
approximating the original data, and k is the number of estimated components.

NMF produces a decomposition in which both the components and the
associated coefficients are constrained to be non-negative. This decomposition
is typically obtained by solving an energy minimization problem:

miny ||V — WH]||%, subject to W>0, H>0

So, the optimal non-negative matrices are those that most accurately
reconstruct the data matrix while adhering to the non-negativity constraints.
Since the problem is non-convex, leading to multiple local minima, iterative
algorithms, such as the multiplicative update rules[176] and the alternating
least squares[177], are widely employed to solve it.

The non-negativity constraint differentiates NMF from other matrix factorization
methods, such as the PCA and ICA, and produces matrices with distinct
properties. First, the non-negativity ensures that the factors produced consist
only of positive values, which aligns with many real-world datasets where
negative values are not meaningful—such as in images, document-word
matrices, or gene expression data. This constraint enables NMF to generate a
parts-based, additive representation of the data, meaning that each data point
is expressed as a combination of distinct parts, making it highly interpretable.
For example, in image processing, NMF might decompose an image into parts
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like edges or textures, rather than combinations of negative and positive
features, as in other methods like PCA. Another result of the non-negativity
constraint is sparsity in the factor matrices. Since NMF restricts the values to
be non-negative, many entries in the matrices tend to be zero, leading to sparse
representations. This sparsity not only enhances interpretability but also
highlights the most relevant features of the data, making NMF particularly
useful for feature selection and pattern discovery.

NMF has applications in several fields like natural language
processing[178][179], image analysis[180][181][182],
bioinformatics[183][184], and, more recently, neuroimaging[185][186][187].
In neuroimaging, NMF has shown an ability to segment the brain into
functionally and structurally relevant components. By capturing patterns of
covariation across individuals using cross-sectional data, NMF enables the
modeling of complex brain changes associated with development, aging, and
disease, complementary to methods such as LDA and SuStaln. Despite these
advances, the potential of NMF to capture patterns of pathological brain
changes, particularly through the integration of longitudinal studies that track
the dynamics of pathological progression, remains largely untapped.

This chapter introduces a novel methodology termed Coupled Cross-sectional
and Longitudinal NMF (CCL-NMF). CCL-NMF aims to identify heterogeneous
patterns of brain changes simultaneously from cross-sectional and longitudinal
data using a joint optimization formulation.

While large cross-sectional datasets are accessible and can capture cumulative
brain changes due to aging or disease over long periods, they have well-known
limitations, such as secular effects and the absence of personalized baselines
for comparison. Consequently, the effects of aging or disease are inferred from
broader population-level comparisons. In contrast, longitudinal data provide a
direct, individualized perspective on brain changes over time, yielding insights
into the dynamic progression of neurobiological processes. However,
longitudinal datasets are scarcer. The current study develops a mutually
constrained NMF framework to delineate components (i.e. brain aging patterns)
that encapsulate distinct brain alteration patterns derived jointly from cross-
sectional and longitudinal data, each having independent, different sample
sizes. Notably, CCL-NMF avoids rigid classification into mutually exclusive
categorical subtypes, allowing individuals to exhibit varying degrees of co-
expression across multiple patterns, which is important for capturing co-existing
pathologies. The proposed methodology is formulated in a general framework,
enabling its application to analyses of heterogeneity of any disease
characterized by monotonic brain alterations (e.g., gradual brain atrophy or
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white matter hyperintensity accumulation as measured by MRI, or increasing
deposition of neuropathologies such as amyloid and tau as measured by
positron emission tomography).

The following section introduces a preliminary model, termed Cross-sectional
and Longitudinal NMF (CL-NMF), to distinguish it from the final refined CCL-
NMF model. CL-NMF is applied to investigate GM atrophy heterogeneity in an
aging population from the BLSA study. The model is then refined to its final
formulation, CCL-NMF, validated using a semi-synthetic dataset, and applied to
a large, multi-cohort aging population from the iSTAGING dataset.

4.2 Preliminary model development and application to the
BLSA aging cohort.

Here, a preliminary model termed Cross-sectional and Longitudinal NMF (CL-
NMF) is proposed to explore the heterogeneity of brain aging by integrating
both cross-sectional and longitudinal information. This model aims to unravel
the complex and diverse brain aging patterns by accounting for population-
based brain alterations and the dynamic progression of changes captured
through individual trajectories. Importantly, this approach enables the
assessment of individualized expression levels across these components, thus
providing additional valuable tools for personalized patient management and
enhancing the potential for more precise stratification in clinical trials.
Application of the proposed method to structural MRI data of an aging
population from the BLSA study identified succinct, reproducible, and clinically
informative brain aging components.

4.2.1 Methods

4.2.1.1 Model
CL-NMF addresses brain aging heterogeneity by decomposing brain changes

into distinct components using NMF. These components aim at capturing
coordinated brain changes that might be associated with underlying
neuropathologic processes. A mutually constrained NMF framework is
introduced, integrating two complementary sources of information: maps
representing cross-sectional and longitudinal brain changes (C-map and L-map,
respectively). The C-map captures aging effects over decades at a population
level. The L-map captures the dynamic patterns of brain change over time on
an individual basis. The joint NMF approach identifies components shared by
cross-sectional and longitudinal maps based on the assumption that an aging
or disease effect estimated cross-sectionally at a population level should be
compatible with dynamic brain changes captured by longitudinal data. The joint
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NMF also estimates corresponding coefficients (loadings), representing the
degree of expression of each component from each individual by optimizing the
reconstruction of both types of maps, thereby capturing the complex interplay
between static and dynamic aspects of brain alterations.

To derive the C-map, a method is used to estimate the normative brain
variability, specifically from a middle-aged cohort without reported pathologies.
The assumption is that this population is relatively unaffected by
neuropathologic processes that typically emerge beyond age 50. Deviations
from normality are quantified by projecting an aging population onto the
estimated normative space. The aging population is conceptualized as having
emerged from a similar healthy middle-aged population but with alterations
due to the gradual accrual of brain atrophy linked to normal aging, various
neuropathologies, and the cumulative effects of genetic, lifestyle, and
environmental factors. These factors induce complex and multifactorial brain
changes, modeled as deviations from normality. The heterogeneity of these
deviations, emerging from the projection of aging individuals onto the healthy
middle-aged population space, is then summarized by the subsequent NMF into
dominant patterns of brain alteration. The L-map, which captures longitudinal
brain changes, is derived using a statistical model that estimates the rate of
atrophy, as detailed in the following sections. The hypothesis is that longitudinal
data directly reflects brain changes associated with the underlying
neuropathologic processes present on an individual basis. By integrating the
cross-sectionally-derived population-based brain changes with the dynamic
progression of brain changes captured by individual trajectories, this method
provides a novel decomposition that will offer greater power for measuring
aging and disease-related effects.

PCA for estimating the cross-sectional deviation map (C-map)

Given S1, the reference population, and S2, the target population, the C-map
includes the deviations of S2 from the normative space estimated from S1
using PCA. Projection of the S2 population in this normative space provides
estimates of the deviation from the reference/normative anatomy. So, for
subject i, the deviation vector d; is:

J
di =Xj— J}:lb]'ivj (1)

where x; is the actual anatomy vector and v; are the principal components

spanning the normative brain variability calculated in S1. The number of
principal components selected is adequate to explain 95% of the variance.
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LME for estimating the longitudinal change map (L-map)

Linear mixed-effects model[146] is used to estimate the longitudinal rate of
change map (L-map) for individuals with multiple measurements over time. For
feature j, subject i and timepoint t, the model is specified as follows:

Yije = Boj + By Timeyje + B2 Xij + Yoy + ey Time e + & (2)

where X;; is a covariate matrix for the fixed effects (e.g., site, baseline age,
etc). Boj Blj, and [32]. are shared across all subjects, while the errors ¢;;, are

independent and identically distributed with a mean of zero. The subject-
specific random intercept and slope parameters, Yoi; and Y1,y are assumed to

follow a bivariate normal distribution.

The calculation of each subject's rate of change involves two components: the
population-average slope 31,- from the fixed-effects term and the subject-

specific random slope Vi for subject i. So, the final rate of change is given by
Blj + Y150 The resulting L-map is structured with dimensions corresponding to

the number of brain regions by the number of individuals with longitudinal
measurements, capturing the regional rates of change. Since the focus is on
GM atrophy rates, positive values —few in number and small in magnitude—
were set to zero. To ensure compatibility with the non-negativity constraints
required for input data in NMF, the sign of the L-map was inverted, yielding
solely non-negative values.

Joint NMF

After extracting the C-map and L-map, the joint NMF implementation is carried
out. For Xc of size DxNc and X. of size DxN., where D represents the
dimensionality of brain features, and Nc (N.) denotes the number of subjects
with cross-sectional deviations (longitudinal change rates), the objective is to
extract K components that encapsulate the brain aging patterns using an NMF
scheme. This approach operates under the hypothesis that both data types
share the same components (dictionary matrix W of size DxK). The shared
dictionary ensures that cross-sectional components of brain aging are
consistent with the dynamic progression patterns captured by longitudinal
measurements. However, cross-sectional and longitudinal measures have
distinct loading coefficients: Hc of size KxNc for cross-sectional data and H. of
size KxN. for longitudinal data. The model can be expressed as:
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Xc = WH¢, X;, = WH;,, subjectto W > 0,H¢ > 0,H;, > 0 (3)
The loss function is:
L = [[X¢c — WHclI§ + IIXL — WHLIIE (4)

This is a mutually constrained dual factorization of cross-sectional and
longitudinal data, optimized using a multiplicative update rule[188][176].

(ZIXIHIT)i]-
Wi ), )
I 1 (WTXDy _
hjj < hy; —(WTWHI)]” , I=CL) (6)

Prior to NMF, (non-zero elements of) Xc and X. are rescaled using MinMax
scaling to the range [0,1] to ensure uniform feature scaling. Initialization of
W, H¢, and Hy, is performed with random values sampled from a uniform
distribution [0, 0.5]. The initial matrices are normalized using a diagonal
matrix S, derived from the 12-norms of the columns of Wj;;:

Winit' = WinieS™%, He,,,, = SHc

Hi,p = SHL e (7)

init init/ init
This normalization step is repeated at each iteration to maintain numerical
stability and ensure convergence. Finally, the K selection is made based on

the reproducibility index, sparsity, and reconstruction error (Section 4.2.1.3).

4.2.1.2 Aging dataset
Next, the method was applied to parse the heterogeneity of aging-related gray

matter atrophy in an aging population. T1-weighted MRI data from the BLSA
study were used. All participants gave written informed consent to the study
for data acquisition and analyses according to the Declaration of Helsinki. The
institutional review board of the University of Pennsylvania approved this
project. T1l-weighted image intensity inhomogeneity was corrected[125],
followed by multi-atlas skull-stripping[126]. 114 GM ROIs were segmented
using a multi-atlas, multi-warp label fusion-based method[127] (Table 4.1).
The S1 group was defined as CU subjects without comorbidities (e.g.,
hypertension, diabetes, smoking, and obesity) and younger than 55 years
(N=105; 41% males; 44+8 vyears); all other older or equal to 55 years
participants were treated as the S2 group (N=957; 48% males; 69+12 years;
CU:934, MCI:12, AD:8, other neurodegenerative disease:3).
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The S1 and S2 ROI volumes were residualized to rule out the effect of sex and
DLICV estimated in the S1 group using linear regression. Subsequently,
adjusted volumes were standardized with respect to the S1 group. A total of
54 principal components accounted for 95% of the variance in S1 gray matter.
The Euclidean distance from the center of the PC distribution was calculated to
assess the typicality or normality of individuals. Subjects in the S2 group with
an Euclidean distance exceeding the 70%" percentile of the S1 distance
distribution, designated as S3, were used in the NMF. The normality threshold
was empirically set at the 70t percentile of the Euclidean distance distribution
to ensure an adequate sample size for S3 (N=392; 69% males; 72+12 years;
CU:373, MCI:10, AD:8, other neurodegenerative disease:1).

Table 4.1: 114 anatomic gray matter (GM) regions of interest (ROIs).

Anatomic GM ROIs

Accumbens area (R)

Triangular part of the inferior frontal gyrus (R)

Accumbens area (L)

Triangular part of the inferior frontal gyrus (L)

Amygdala (R)

Middle occipital gyrus (R)

Amygdala (L)

Middle occipital gyrus (L)

Caudate (R)

Medial orbital gyrus (R)

Caudate (L)

Medial orbital gyrus (L)

Hippocampus (R)

Postcentral gyrus medial segment (R)

Hippocampus (L)

Postcentral gyrus medial segment (L)

Pallidum (R)

Precentral gyrus medial segment (R)

Pallidum (L)

Precentral gyrus medial segment (L)

Putamen (R)

Superior frontal gyrus medial segment (R)

Putamen (L)

Superior frontal gyrus medial segment (L)

Thalamus (R)

Middle temporal gyrus (R)

Thalamus (L)

Middle temporal gyrus (L)

Basal forebrain (L)

Occipital pole (R)

Basal forebrain (R)

Occipital pole (L)

Anterior cingulate gyrus (R)

Occipital fusiform gyrus (R)

Anterior cingulate gyrus (L)

Occipital fusiform gyrus (L)

Anterior insula (R)

Opercular part of the inferior frontal gyrus (R)

Anterior insula (L)

Opercular part of the inferior frontal gyrus (L)

Anterior orbital gyrus (R)

Orbital part of the inferior frontal gyrus (R)

Anterior orbital gyrus (L)

Orbital part of the inferior frontal gyrus (L)

Angular gyrus (R)

Posterior cingulate gyrus (R)

Angular gyrus (L)

Posterior cingulate gyrus (L)
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Calcarine cortex (R)

Precuneus (R)

Calcarine cortex (L)

Precuneus (L)

Central operculum (R)

Parahippocampal gyrus (R)

Central operculum (L)

Parahippocampal gyrus (L)

Cuneus (R)

Posterior insula (R)

Cuneus (L)

Posterior insula (L)

Entorhinal area (R)

Parietal operculum (R)

Entorhinal area (L)

Parietal operculum (L)

Frontal operculum (R)

Postcentral gyrus (R)

Frontal operculum (L)

Postcentral gyrus (L)

Frontal pole (R)

Posterior orbital gyrus (R)

Frontal pole (L)

Posterior orbital gyrus (L)

Fusiform gyrus (R)

Planum polare (R)

Fusiform gyrus (L)

Planum polare (L)

Gyrus rectus (R)

Precentral gyrus (R)

Gyrus rectus (L)

Precentral gyrus (L)

Inferior occipital gyrus (R)

Planum temporale (R)

Inferior occipital gyrus (L)

Planum temporale (L)

Inferior temporal gyrus (R)

Subcallosal area (R)

Inferior temporal gyrus (L)

Subcallosal area (L)

Lingual gyrus (R)

Superior frontal gyrus (R)

Lingual gyrus (L)

Superior frontal gyrus (L)

Superior temporal gyrus (R)

Supplementary motor cortex (R)

Superior temporal gyrus (L)

Supplementary motor cortex (L)

Temporal pole (R)

Supramarginal gyrus (R)

Temporal pole (L)

Supramarginal gyrus (L)

Transverse temporal gyrus (R)

Superior occipital gyrus (R)

Transverse temporal gyrus (L)

Superior occipital gyrus (L)

Lateral orbital gyrus (R)

Superior parietal lobule (R)

Lateral orbital gyrus (L)

Superior parietal lobule (L)

Middle cingulate gyrus (R)

Medial frontal cortex (R)

Middle cingulate gyrus (L)

Medial frontal cortex (L)

Middle frontal gyrus (R)

Middle frontal gyrus (L)

Longitudinal trajectories of GM volumetric change were estimated using LME
models after accounting for baseline DLICV, baseline age, sex, and site
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covariates. 281 subjects (67.6% males; baseline age=73.03+10.23 years;
baseline diagnosis: CU:274, MCI:5, AD:2) had longitudinal scans. The follow-
up time was 5.79+4.3 years.

4.2.1.3 Metrics for optimal CL-NMF K selection
To determine the optimal number of CL-NMF components, the reproducibility

of the solutions was assessed in a split-sample context and evaluated their
data-fitting capability. This approach parallels model selection techniques
extensively utilized in clustering research. The fundamental premise is that
inferring either too few or too many components can lead to instability:
excessive components might capture random data variations, whereas
insufficient components may amalgamate distinct patterns due to the limited
expressiveness of the model.

The reproducibility analysis was conducted by dividing the dataset into two
halves with comparable age and sex distributions, examining how the
reproducibility of the solution changes with the number of components
estimated. The reproducibility was quantified by measuring the overlap
between independently estimated components from the two splits, which
were matched using the Hungarian algorithm[189]. The overlap, measured by
the inner product, termed ‘reproducibility index’, ranges from 0 to 1, with higher
values indicating greater reproducibility.

While achieving a stable solution is crucial, ensuring the solution fits the data
well is equally important. Therefore, the reproducibility analysis was
complemented by investigating how the component sparsity changes with the
number of components. The sparsity of the derived components was evaluated
using Hoyer's[190] sparsity measure. Higher sparsity is advantageous as it
enhances the model's interpretability and generalizability.

4.2.1.4 Statistical analysis
The associations of the BLSA CL-NMF components with (1) the total WMH

volume, (2) the SPARE-BA, (3) the SPARE-AD, and (4) the MMSE were
examined. To this end, linear regression modeling was performed, adjusting
for age, sex, and DLICV (and education for the MMSE). The most predictive CL-
NMF component was progressively added to the model, and the changes in
adjusted R2 were assessed. The adjusted R? accounts for the number of
predictors in the model and penalizes for excessive variables.

To evaluate the associations between the CL-NMF components and future
progression from CU to MCI, a Cox proportional hazards model was employed
while adjusting for age, sex, baseline DLICV, and education. The hazard ratio
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(HR) was calculated and reported as the effect size measure, indicating the
extent to which each CL-NMF component affects the risk of progression of
cognitive impairment. The follow-up time was 7.08+4.74 years.

4.2.2 Results

Split-half reproducibility index and sparsity metrics were used to examine the
optimal number of CL-NMF components, ranging from 2 to 10 (Figure 4.1).
The split-half reproducibility analysis demonstrated that reproducibility
decreases overall as the number of components increases. However, there is a
plateau from K=4 to 5. Since K=5 results in sparser components, it was selected
for subsequent analysis

A B

1 0.6

Reproducibility index
Sparsity
o
w

0
2 3 45 6 7 8 910 2 3 45 6 7 8 910

Number of components Number of components

Figure 4.1: A) Split-half reproducibility index and B) sparsity reported as functions of the
number of CL-NMF components (Nc=392, N,=281).

CL-NNMF identified five distinct components of aging

Figure 4.2 shows the five identified brain aging components.

-CL-NMF1 captures diffuse brain atrophy, particularly in peri-Sylvian and
prefrontal cortex.

-CL-NMF2 reflects posterior cortical brain atrophy.

-CL-NMF3 represents basal ganglia atrophy.

-CL-NMF4 mainly reflects medial temporal lobe atrophy.

-CL-NMF5 captures atrophy primarily in orbitofrontal, precentral, and posterior
cingulate gyri.
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Figure 4.2: CL-NMF dictionary in brain maps format for K=5 (Nc=392, N,=281). Red (white)
colors indlicate higher (lower) contribution of the visualized brain region in the CL-NMF component.

Associations of aging components with WMH, SPARE scores, MMSE, and future
risk of progression to MCI

Moreover, the associations of the BLSA CL-NMF components with the total
WMH volume, SPARE scores, and MMSE were examined (Figure 4.3A). The
analysis specifically investigated whether including CL-NMF components
improved the baseline regression model, which included only demographics
(age, sex, and DLICV). For total WMH volume and SPARE scores, the CL-NMF
components increased the adjusted R?, indicating that the components
explained a substantial amount of variance and improved the models.
Specifically, for total WMH volume, the adjusted R? rose from 0.29 to 0.39, with
the CL-NMF1 marked by peri-Sylvian atrophy being the most valuable
predictor in agreement with previous study[172]. For SPARE-BA, the adjusted
R? slightly increased from 0.68 to 0.75, and the CL-NMF1 mainly drove this
increase. Chronological age is highly associated with SPARE-BA, thus being the
most useful predictor. SPARE-AD adjusted R? substantially increased from 0.23
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to 0.49; CL-NMF4, characterized by medial temporal lobe atrophy, was
primarily responsible for this jump. Finally, in the MMSE plot, the adjusted R2
initially remained stable or decreased with the inclusion of CL-NMF1-3 and
CL-NMF5, and only including the CL-NMF4 improved the model by raising
the adjusted R? from 0.057 (with demographics as predictors) to 0.092
(including demographics and all CL-NMF components). Literature has widely
demonstrated the associations between medial temporal lobe atrophy and
cognitive decline and Alzheimer's disease[191][192][193][194][195].

Finally, the predictive power of the BLSA CL-NMF components for future
progression from CU to MCI was examined. The Cox proportional hazards
model was utilized to test the associations between CL-NMF components and
the risk of progression while adjusting for age, sex, baseline DLICV, and
education. CL-NMF4 (p=0.04, log(HR) (95% CI) = 0.93 (0.02, 1.84)) was the
only component significantly associated with the risk of MCI progression in
agreement with previous studies[196][197][198] (Figure 4.3B).

To sum up, section 4.2 introduced a method for dissecting the heterogeneity
observed in brain aging, effectively capturing this variation in low-dimensional
components that remain consistent across both cross-sectional and longitudinal
trajectories of brain change. The method was applied to analyze GM atrophy
heterogeneity in an aging population using as a reference a healthy middle-
aged cohort both drawn from the BLSA study. Five distinct and reproducible
aging-related pathological components were identified in a population
predominantly composed of cognitively normal individuals. CL-NMF1 showed
a significant association with white matter lesion volume, suggesting the
potential presence of vascular pathology. CL-NMF4 exhibited features
characteristic of Alzheimer's disease, aligning with the SPARE-AD index and
MMSE, and emerged as a key predictor for the clinical progression from CU to
MCI. A more concrete exploration of the proposed methodology, as well as its
application to a larger and more diverse cohort, are discussed in the next
section.
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Figure 4.3: Associations of cross-sectional CL-NMF loadings with cognition, biomarkers,
clinical features, and future risk of progression to MCI. A) Adjusted R2 as a function of predictors
for total WMH volume, SPARE-BA, SPARE-AD, and MMSE. Predictors start from demographics (age, sex,
DLICV for all cases; education was also included in demographics for MMSE) and gradually incorporate
the CL-NMF loadings. B) Longitudinal CU to MCI progression. N indicates the sample size for each graph.
Abbreviations: WMH, white matter hyperintensities; MMSE, mini-mental state examination.
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4.3 Refined model development, validation with a semi-
synthetic dataset, and application to the iISTAGING aging
population.

A novel machine learning-based approach designed to disentangle the
heterogeneity of brain aging was introduced in the previous section, leveraging
both cross-sectional and longitudinal data. In this section, refinements to the
model are presented. First, the PCA is replaced with an autoencoder capable of
capturing non-linear relationships to model normative brain variability,
revealing more intricate latent patterns in the data. Second, in the NMF part, a
weighting coefficient is incorporated into the loss function to balance the
contribution of C-map and L-map to the dictionary learning process. This
adjustment is necessary because, while the number of subjects with cross-
sectional and longitudinal data was comparable in the previous application to
the BLSA dataset, longitudinal data are typically less abundant than cross-
sectional data. Since longitudinal data provide a more direct measurement of
brain changes, it is crucial to balance the influence of cross-sectional data in
the dictionary estimation. This refined model is referred to as Coupled Cross-
sectional and Longitudinal NMF (CCL-NMF) to distinguish it from the earlier
version.

Following the presentation of modifications made to the model, semi-synthetic
data with predefined (ground truth) disease patterns and severity levels were
used to evaluate the proposed methodology. The approach was subsequently
applied to a large, multi-cohort aging population from the iISTAGING consortium
and identified seven dominant components of brain atrophy that were
consistent cross-sectionally and longitudinally. The identified components were
correlated with AD biomarkers, cognitive function, CVD risk factors, and
progression of cognitive impairment, underscoring the utility of the method in
capturing the intricate complexity of aging and disease-related
neurodegenerative processes in the human brain. Furthermore, comparisons
with a state-of-the-art deep learning model using the same dataset
demonstrated that the CCL-NMF components provided improved predictive
performance for biomarkers and clinical variables—including amyloid, tau,
cognitive worsening, hypertension, obesity, and APOE status—thereby refining
our grasp of brain aging pathways. Finally, this approach offered a practical
approach for researchers to quantify the expression of these seven atrophy
components in their datasets through simplified, readily applicable models.
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4.3.1 Methods

4.3.1.1 Model

Normative modeling for estimating the cross-sectional deviation map (C-map)
Denote S1 to be the reference population and S2 to be the target population.
The deviations of S2 from the normative space drawn by S1 are estimated
using an adversarial autoencoder (AA)[199][200] model. The core concept of
this normative method is that because the AA is exclusively trained on S1 data,
it learns to encode and precisely reconstruct the S1 data, but it will be less
accurate when reconstructing data from S2. Specifically, the error between the
input and the reconstructed estimate is expected to capture the deviation of
S2 from S1.

The AA architecture comprises an encoder (E) with two hidden layers, each
containing 110 neurons and a latent space dimension of 10 neurons. The
decoder (D) and the discriminator (D;) are similarly structured, with two hidden
layers of 100 neurons each. The latent space is regularized to match a Gaussian
distribution. All hidden layers employ a leaky Rectified Linear Unit (ReLU) with
non-linearity, while the latent space and the decoder's output layer utilize a
linear activation function.

The AA training has two phases:

1) Reconstruction phase: This phase minimizes the reconstruction loss,
ensuring the output closely matches the input. The encoder maps data (x) to
latent space (z), and the decoder reconstructs it. The reconstruction loss is:

Lrecon = lIX — D(E(X))”% (8)

2) Regularization phase: This phase uses adversarial training to enforce the
latent space (z) to match the prior Gaussian distribution (P(z)). The
discriminator distinguishes real samples from prior (P(z)) and fake samples
from the encoder. The adversarial loss is:

Laav = E[log (D,(z))] + E[log (1 — D,(E)))] (9)
The encoder minimizes this loss to fool the D..

The Adam optimizer is used for 1000 epochs and applies early stopping with
50 epochs of patience. A minibatch approach is implemented within this
gradient descent-based optimizer, with a batch size of 200. A cyclical learning
rate enhances the training efficiency, facilitating convergence with fewer
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epochs. The initial learning rate is 0.0001, with a maximum learning rate of
0.005. The learning rate cycle follows a basic triangular shape with an
amplitude decay factor (gamma) of 0.98.

The features were first corrected for sex and DLICV. The linear correction
models were trained on S1 baseline measures and were applied to both S1
baseline measures and S2 baseline and longitudinal measures. Before the AA,
the features were standardized to z-scores. Again, the z-score models were
trained on S1 baseline measures and applied to both S1 and S2 baseline
measures, since the AA concerns only cross-sectional data. The S1 was split
into three subsets: S1train, S1val, and Slheidout, With a split ratio of 65%, 15%,
and 20%, respectively. The AA was trained on Sltrain, vValidated on S1val, and
then applied to S2 baseline measures. The mean squared deviation, MSD =

% iR=1(X]- — %;)?, where R is the number of brain regions, x is the input and & is

the reconstructed output, was used to select individuals with the largest
deviations. Here, since the focus was on atrophy-related volume loss, brain
regions with negative deviations (i.e., larger reconstructed output than input)
were not considered in the MSD calculation. Those S2 individuals with
MSD>75t percentile MSD of S1heldout, referred to as S3, were selected as the
ones with large neuropathology deviation from normality and were used in the
NMF. C-map with a size equal to the number of brain regions by the number of
S3 individuals includes the deviations. Negative deviations have been
suppressed by replacing them with 0.

Joint NMF (Figure 4.4)

After incorporating the weighting coefficient a, determined based on the
application or dataset, that balances the contributions of the C-map and L-map
to the dictionary learning process, the loss function becomes:

L = allXc — WHclIE + [IXL — WHL]IE  (10)

And the multiplicative update rule becomes:

(aXCHCT+XLHLT)i].
Wjj < Wj; (CXWXCHCT‘l'WXLHLT)ij (11)
I 1 (WTXpj _
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Figure 4.4: Conceptual overview of the CCL-NMF model. Adversarial autoencoder (AA) estimates
the cross-sectional deviation map (C-map) of the target population (here, an aging cohort) from the
normative space defined by the reference population (here, a healthy middle-aged cohort). AA is
exclusively trained on the reference population, and thus, it learns to encode and precisely reconstruct
the reference population data. When reconstructing data from the target population, the AA produces an
error that captures the deviation of the target population from the reference cohort on an individual basis.

Target individuals with the largest deviations are used in the NMF. Linear mixed-effects models (LME)
estimate the longitudinal rate of change map (L-map) for the target individuals with the largest cross-
sectional deviations with multiple measurements over time. C-map, Xc, of size DxN¢ and L-map, X;, of
size DxNi, where D represents the dimensionality of brain features, and N¢ (N.) denotes the number of
subjects with cross-sectional deviations (longitudinal change rates), are factorized into a shared dictionary
W of size DxK and separate loading coefficients (Hc of size KxN¢ and H of size KxN,) through a joint NMF
scheme: Xe=WHc, Xe=WH), s.t. W>0, Hc>0, Hi>0. K is the number of components. The shared dictionary
ensures that cross-sectional components of brain aging are consistent with dynamic progression patterns
captured by longitudinal measurements. x’ between the W and the H matrices stands for matrix
multiplication.

4.3.1.2 Dataset
Here, CCL-NMF was applied to parse the heterogeneity of aging-related GM

changes using 119 GM ROIs (the 114 GM ROIs displayed in Table 4.1 and five
ROIs in the cerebellum: bilateral cerebellum exterior, Cerebellar Vermal Lobules
I-V, VI-VII, and VIII-X) extracted from baseline T1-weighted MRI. The T1-w
image intensity inhomogeneity was corrected[125], followed by multi-atlas
skull-stripping[126], and then the ROIs were segmented using a multi-atlas,
multi-warp label fusion-based method[127]. All participants gave written
informed consent to the study for data acquisition and analyses according to
the Declaration of Helsinki. The institutional review board of the University of
Pennsylvania approved this project.

70



Semi-synthetic dataset
Semi-synthetic data generated by simulating atrophy patterns in cognitively

normal individuals from the UK Biobank cohort were employed to validate the
methodology. The dataset comprised 4,517 CU (mean age 51.83+2.33 years,
56.61% females), which were divided into two subsets: a 20% subset (S1syn:
N=903; mean age 51.90+2.34 years, 56.59% females) comprised individuals
whose data remained unchanged, while the remaining 80% (S2syn: N=3,614;
mean age 51.81+2.33 years, 56.61% females) underwent simulated atrophy.
In S2syn, atrophy was introduced across 40 timepoints, each separated by one
year, with varying patterns and onset times randomly selected from a Gaussian
distribution (=7, 0=3). Within S2syn, 20% of individuals were given synthetic
frontal atrophy, 20% occipital, 20% parietal, 20% subcortical, and 20%
temporal atrophy. The ROIs affected in each atrophy pattern are listed in Table
4.2. The simulation applied a 1% annual atrophy rate to the ROIs within the
pattern and a 0.1% rate to the remaining brain ROIs. For the cross-sectional
dataset, a single timepoint was randomly selected for each subject from the 40
available, resulting in a synthetic age distribution of 71.30+£11.82 years. The L-
map of S3syn Was calculated using an LME model with baseline age and ROI
volume as covariates.

Table 4.1: Anatomic gray matter (GM) regions of interest (ROIs) affected in each pattern in
the semi-synthetic data.

Left anterior orbital gyrus

Left lateral orbital gyrus
Left medial orbital gyrus
Left posterior orbital gyrus

Right anterior orbital gyrus
Right lateral orbital gyrus

Right medial orbital gyrus
Right posterior orbital gyrus
Left anterior insula

Left posterior insula
Right anterior insula

Frontal

Right posterior insula
Left frontal pole
Left middle frontal gyrus

Left opercular part of the inferior frontal gyrus
Left orbital part of the inferior frontal gyrus
Left precentral gyrus

Left superior frontal gyrus
Left triangular part of the inferior frontal gyrus

Right frontal pole
Right middle frontal gyrus
Right opercular part of the inferior frontal gyrus
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Right orbital part of the inferior frontal gyrus

Right precentral gyrus

Right superior frontal gyrus

Right triangular part of the inferior frontal gyrus

Left gyrus rectus

Left medial frontal cortex

Left precentral gyrus medial segment

Left superior frontal gyrus medial segment

Left subcallosal area

Left supplementary motor cortex

Right gyrus rectus

Right medial frontal cortex

Right precentral gyrus medial segment

Right superior frontal gyrus medial segment

Right subcallosal area

Right supplementary motor cortex

Left central operculum

Left frontal operculum

Left parietal operculum

Right central operculum

Right frontal operculum

Right parietal operculum

Occipital

Left occipital fusiform gyrus

Right occipital fusiform gyrus

Left inferior occipital gyrus

Left middle occipital gyrus

Left occipital pole

Left superior occipital gyrus

Right inferior occipital gyrus

Right middle occipital gyrus

Right occipital pole

Right superior occipital gyrus

Left calcarine cortex

Left cuneus

Left lingual gyrus

Right calcarine cortex

Right cuneus

Right lingual gyrus

Parietal

Left angular gyrus

Left postcentral gyrus

Left supramarginal gyrus

Left superior parietal lobule

Right angular gyrus

Right postcentral gyrus

Right supramarginal gyrus

Right superior parietal lobule

Left postcentral gyrus medial segment

Left precuneus
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Right postcentral gyrus medial segment

Right precuneus

Left fusiform gyrus

Right fusiform gyrus

Left inferior temporal gyrus
Left middle temporal gyrus

Left superior temporal gyrus

Left temporal pole

Right inferior temporal gyrus
Right middle temporal gyrus
Right superior temporal gyrus

Temporal

Right temporal pole

Left planum polare

Left planum temporale

Left transverse temporal gyrus

Right planum polare

Right planum temporale
Right transverse temporal gyrus
Left Accumbens Area
Left Caudate

Left Pallidum

Left Putamen

Right Accumbens Area
Right Caudate

Right Pallidum

Right Putamen

Left Thalamus Proper
Right Thalamus Proper
Left Amygdala

Left Basal Forebrain
Left Hippocampus

Right Amygdala

Right Basal Forebrain
Right Hippocampus

Subcortical

Before the NMF, gaussian noise specific to each ROI was added to both maps
to make the problem more realistic. For the C-map, noise was added for each
subject and each ROI from a Gaussian distribution with a mean equal to the
mean (across subjects not belonging to the pattern the specific ROI belongs
to) C-map value of the ROI, and a standard deviation equal to the standard
deviation of the C-map value of the ROI. For the L-map, noise was added for
each subject and each ROI from a Gaussian distribution with a mean equal to
the absolute value/magnitude of the mean (across subjects) L-map value of
the ROI, multiplied by a random floating nhumber between 0 and 2.5, and a
standard deviation equal to the absolute value/magnitude of the standard
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deviation of the L-map value of the ROI, multiplied by a random floating
number between 0 and 2.5.

Three types of NMF experiments were conducted for the five simulated atrophy
patterns in the semi-synthetic dataset. First, the NMF was run using solely the
C-map. Second, the NMF was run using solely the L-map. Third, the CCL-NMF
was run utilizing both cross-sectional (C-map) and longitudinal maps (L-map).
In the last case, a sensitivity analysis was performed to assess the impact of
the a coefficient from Eqg. (10) on the accuracy with which the CCL-NMF
dictionary captured the simulated atrophy patterns.

To evaluate the model’s ability to identify the simulated atrophy patterns, the
inner product matrix was calculated between the I[2-normalized matrix
representing the ground truth simulated atrophy patterns and the |2-normalized
dictionary of the model. The closer the inner product matrix is to the diagonal
matrix representing the perfect identification/reconstruction of the ground truth
simulated atrophy patterns, the better the dictionary captures the simulated
atrophy patterns. To quantify the divergence from perfect ground truth
reconstruction, the norm of the difference between the two matrices (termed
divergence matrix) was used; a smaller norm of the divergence matrix indicates
a more accurate reconstruction of the ground truth.

ISTAGING aging dataset
The dataset for real data experiments was drawn from the iISTAGING

consortium. Data from the following studies were included: ADNI, AIBL,
BIOCARD, BLSA, CARDIA, HANDLS, OASIS, Penn-PMC, SHIP, UK Biobank,
WHIMS, and WRAP. The imaging parameters for each study are presented
elsewhere[130]. Interstudy ROI harmonization was conducted using the
Neuroharmonize toolbox[78]), based on the ComBat statistical methodology.
Clinical data and cognitive status, where available, were provided by the source
study.

The reference population S1 consisted of CU individuals without known CVD
risk factors (obesity, hypertension, and diabetes) and age younger or equal to
50 years (N=977; mean age 39.88+8.09 years, 54.86% females, 100% CU).
The target group S2 comprised individuals older than 50 (N=48,949; mean age
65.41+7.92 years, 53.98% females, 94.23% CU). The demographics of S1 and
S2 populations by origin study are displayed in Table 4.3. The L-map was
calculated using LME models with the site, baseline age, and ROI volume as
covariates. The LME analysis was performed using individuals with three or
more longitudinal measures to minimize uncertainty in the rate of change

74



estimation. Finally, the joint NMF was run to obtain a varying number of
components K (K=2, .., 15).

Table 4.2: Demographic summary of reference (581) and target (52) population.

Sample size Age (years) Sex Diagnosis
(%males) (%CU)
Target | Refer Target Refer | Target | Refer Target Refer
ence ence ence ence
ADNI 2391 - 73.1£7.2 - 52.4 - 36.4 -
AIBL 922 4 73.1+6.4 | 45.4+ | 43.5 25 76 100
2.5
BIOCARD 259 - 60.8+8 - 40.9 - 97.7 -
BLSA 916 100 | 70.1+9.5 | 40.5+ | 47.3 42 97.5 100
7.4
CARDIA 534 170 | 53.9+2.3 | 47.2+ | 46.4 50.6 1 100
2.3
HANDLS 147 33 | 58.6+5.8 | 42.9+ | 44.9 57.6 1 100
4.4
OASIS 1097 10 | 71.849.2 | 47+2 45 20 73.3 100
PENN 959 - 73.9+8 - 43.1 - 20.8 -
SHIP 1810 660 63+7.9 | 37.6% 48 44.1 100 100
8.1
UK BIOBANK | 38582 - 64.5+7.3 - 47.1 - 100
WHIMS 1080 - 69.6+3.6 - 0 - 100
WRAP 252 - 62.1+5.8 - 29 - 99.6

4.3.1.3 Statistical analysis
Linear and logistic regression analyses were conducted to investigate the

associations between CCL-NMF loading coefficients and AD pathology,
cognition, SPARE-AD score, and CVD risk factors. Age, sex, and study (and
education for cognitive scores) were used as covariates in the regression
models. Cox proportional hazards models, adjusted for age, sex, DLICV, and
education, were used to examine the associations between CCL-NMF loadings
and the risk of progression from CU to MCI or from MCI to AD. Hazard ratios
were calculated to quantify the effect of each CCL-NMF component on the risk
of cognitive impairment progression. Bonferroni correction was applied to
control for type I errors and account for multiple comparisons. Logistic
regression and Cox proportional hazards models with 5-fold stratified cross-
validation based on age, sex, and diagnosis were employed to assess the
predictive accuracy for binary outcomes and progression from MCI to AD,
respectively. Models using demographics alone, demographics plus CCL-NMF
loadings, demographics plus R-indices, and models incorporating all previous
predictors were compared. To apply the derived CCL-NMF model to external
data sets without retraining, a regression model was developed for each CCL-
NMF loading, incorporating ROIs, age, sex, and DLICV as predictors. Finally,
the component visualization using RAVENS maps was implemented in the
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Volume Imaging in Neurological Research, Co-Registration, and ROIs included
(VINCI64 v5.03[201]) platform.

4.3.2 Results

4.3.2.1 Validation in the semi-synthetic dataset
Among the 3,614 subjects in the S2syn group, 1,365 subjects (S3syn) exceeded

the 75 percentile MSD, and thus, their C-map was used in the NMF. A subset
of 300 was used to generate the L-map, reflecting the realistic scenario where
only a subset of individuals has longitudinal data.

Figure 4.5 presents the results from three different NMF cases:

1) Using solely C-map (Nc=1,365; synthetic mean age 77.11+11.31 years,
38.24% females, patterns: frontal: 319 (23%), occipital: 228 (17%),
parietal: 239 (18%), subcortical: 307 (22%), temporal: 272 (20%)) in the
NMF — C-NMF -, the norm was 1.67.

2) Using only L-map (NL=300; synthetic mean age 76.82+10.92 years, 40%
females, patterns: frontal: 83 (28%), occipital: 49 (16%), parietal: 50
(17%), subcortical: 54 (18%), temporal: 64 (21%)) — L-NMF —, the norm
was 1.46.

3) Using C-map (Nc=1,365) and L-map (N.=300) — CCL-NMF —, the norm was
1.39.
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Figure 4.5: Results in semi-synthetic data. From [eft to right, matrices show the inner product matrix
between the [12-normalized matrix of the ground truth simulated atrophy patterns and the [2-normalized
dictionary for C-NMF (only C-map), L-NMF (only L-map), and CCL-NMF using C-map and L-map. A strongly
diagonal structure indicates agreement between the simulated and estimated patterns of brain change.

Fig. 4.5 shows that the model using both C-map and L-map can identify the
simulated patterns with higher accuracy. Figure 4.6 displays the divergence
norm as a function of a weighting coefficient where a ranges from 0 (i.e., L-
NMF) to 1 (no data type balancing). The most accurate pattern reconstruction
was achieved using a=N/Nc=300/1,365=0.22. Since longitudinal data provide
a more direct measure of brain changes but are less readily available than
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cross-sectional data, it is essential to balance the contribution of cross-sectional
data in dictionary learning. This can be achieved by weighting their influence
according to the ratio of sample sizes between the two data types.
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Figure 4.6: Divergence norm as a function of a weighting coefficient. a ranges from 0 (i.e., L-
NMF) to 1 (no balancing). The divergence norm is defined as the norm of the difference between the
inner product matrix (between the [2-normalized matrix representing the ground truth simulated atrophy
patterns and the [2-normalized dictionary of the model) and the identity matrix; a smaller norm of the
divergence matrix indicates a more accurate reconstruction of the ground truth.

4.3.2.2 Application to the ISTAGING aging dataset
Among the 48,949 subjects in the S2 group, 13,950 subjects (S3: mean age

66.47+8.38 years, 30.82% females, 89.5% CU) exceeded the 75" percentile
MSD. Out of those subjects, 1,063 subjects had three or more longitudinal
measurements and thus built the L-map. The follow-up time was 4.71+£3.79
years, and the baseline age was 72.81+8.08 years. Detailed demographic
characteristics of the populations used for constructing the C-map and L-map
are provided in Tables 4.4 and 4.5.

CCL-NMF identified seven distinct components of brain aging

The CCL-NMF was run from K=2 to 15. Split-half reproducibility index, sparsity,
and weighted reconstruction error (as defined by Eg. (10)) were used to
determine the optimal number of components (Figure 4.7). Sparsity increased
with higher K, while the reconstruction error decreased with higher K. The split-
half reproducibility analysis revealed a declining trend in reproducibility as the
number of components increased, with a peak occurring at K=3 and 7. K=7
was selected for subsequent analyses because of its higher sparsity and lower
reconstruction error than the K=3 solution. Figure 4.8 displays the
components for the two halves used to calculate the reproducibility index.
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Table 4.3: Demographic summary and volumetric measures of individuals included in C-map
(Nc=13,950). Abbreviations: WMH, white matter hyperintensities; AB, Amyloid B; APOE, Apolipoprotein

E.

Other races: Hispanic/Latino, Native American, Multiracial, unknown, other; informatfion about races is
presented as given in the originating studies.
Other diagnoses: Frontotemporal Dementia, Hydrocephalus, Lewy Body Dementia, Posterior Cortical
Atrophy, Parkinson’s Disease, Vascular Dementia, Dementia, early MCI, and others,; information about
diagnoses is presented as given in the originating studies.
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Table 4.5: Demographic summary and volumetric measures of individuals included in L-map
(N.=1,063). Abbreviations: WMH, white matter hyperintensities; AB, Amyloid [3; APOE, Apolipoprotein
E. AD, Alzheimer's disease; CU, cognitive unimpaired; MCI, mild cognitive impairment.
Other races: Hispanic/Latino, Native American, Multiracial, unknown, other; information about races is

presented as given in the originating studies.
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Figure 4.9 shows the seven identified brain aging components. The
components are sparse, orthogonal, and right-left symmetrical.

-CCL-NMF1 captures atrophy primarily in part of the basal ganglia, including
putamen and caudate, as well as atrophy in the orbital gyrus, gyrus rectus, and
subcallosal area.

-CCL-NMF2 indicates atrophy primarily in the medial temporal lobe, temporal
pole, temporal gyrus, and fusiform gyrus.

-CCL-NMF3 represents atrophy in the inferior frontal gyrus, occipital gyrus,
and part of the temporal gyrus.

-CCL-NMF4 exhibits medial frontoparietal atrophy, including the superior and
middle frontal gyrus, precuneus, middle and posterior cingulate gyrus,
supplementary motor cortex, and superior parietal lobule.

-CCL-NMF5 is characterized by peri-Sylvian atrophy (insula, frontal and central
operculum, and planum polare), as well as anterior cingulate gyrus atrophy.
-CCL-NMF6 captures atrophy primarily in the basal ganglia, including the
accumbens area, pallidum, and thalamus.

-CCL-NMF7 captures atrophy in the cerebellum and medial occipital lobe,
including the cuneus, calcarine cortex, and lingual gyrus.

Associations of aging components with dlinical, cognition, and cognitive
Impairment progression.

The identified components exhibited differential associations with clinical
features, cognitive measures, biomarkers, APOE alleles, and disease
progression (Figure 4.10). CCL-NMF2, characterized by medial temporal lobe
atrophy, showed the strongest associations with Alzheimer’s disease pathology,
cognitive decline, and progression from MCI to AD. CCL-NMF5, defined by
prominent peri-Sylvian atrophy, showed strong links to cardiovascular disease
risk factors, particularly WMH burden, obesity, and hypertension. Similarly,
CCL-NMF6 was significantly associated with elevated WMH and obesity.

CCL-NMF3 was closely related to advanced age and showed moderate
associations with amyloid positivity and cognitive decline, although less
pronounced than CCL-NMF2, and with WMH, albeit less strongly than CCL-
NMF5. This component was more widely expressed across the sample (Figure
4.11), likely reflecting general aging effects rather than a specific pathological
process. CCL-NMF4 displayed a unique association with tau pathology and a
negative correlation with age but showed no significant relationships with other
AD biomarkers, cognitive decline, or CVD risk factors. However, the small tau
sample size limits definitive conclusions. Lastly, CCL-NMF7 was not
significantly associated with AD biomarkers, CVD risk factors, or cognitive
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impairment progression, potentially reflecting associations with other diseases
or exposures for which specific biomarkers were unavailable.
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Figure 4.9: CCL-NMF dictionary in brain maps format for K=7 (Nc=13,950, N,=1,063). Red
(white) colors indicate higher (lower) contribution of the visualized brain region in the CCL-NMF
component.
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Figure 4.10: Associations of cross-sectional CCL-NMF loadings with A) AD-specific measures,
B) age, C) cognition, D) cognitive impairment progression, and E) CVD risk factors. P-values
were adjusted using Bonferroni correction to account for the number of comparisons (N=17), controlling
for type I errors. The follow-up time for CU to MCI and MCI to AD conversion was 5.37+4.29 and 2.6£2.65
years, respectively. Age, sex, and study were included as covariates in all models. However, for APOE-£4
(APOE4) carrier status, age was not included as a covariate, while for ADNI cognitive scores, study was
excluded, and education was included instead. Additionally, education was included as a covariate in
models assessing cognitive decline progression (Part D). N indlicates the sample size for the corresponding
analysis shown in the graph. Biomarker and CVD risk factor status is defined as explained in the previous
chapter. Abbreviations: SPARE-AD, spatial pattern of abnormality for recognition of early Alzheimer’s
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disease; WMH, white matter hyperintensities; CU, cognitively unimpaired; MCI, mild cognitive impairment;
ADNI, Alzheimer’s Disease Neuroimaging Initiative; ADNI-MEM, ADNI memory composite; ADNI-VS, ADNI
visuospatial functioning composite; ADNI-LAN, ADNI language composite; ADNI-EF, ADNI executive
function composite; ADAS-COG, Alzheimer’s disease assessment scale-cognitive subscale.
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Figure 4.11: Histogram of cross-sectional CCL-NMF loadings.

Comparison with state-of-the-art heterogeneity model

The CCL-NMF components are generally consistent with, yet expand upon, the
5 dimensions of atrophy recently published by Yang et al.[172] with a different
method yet on the same data (Figure 4.12). Key differences between these
representations of brain aging are evident in CCL-NMF6, characterized by
atrophy in the accumbens area, and CCL-NMF7, defined by atrophy in the
cerebellum and medial occipital lobe. These patterns were not captured as
distinct dimensions in the Surreal-GAN representation.

To evaluate the additional information captured by the CCL-NMF representation
compared to Yang et al.'s approach, predictive models were developed using
CCL-NMF loading coefficients, Surreal-GAN R-indices, and a combination of
both as predictors for various outcomes: APOE-g4 status (one or two €4 alleles
vs. none), amyloid positivity (positive vs. negative), tau positivity (positive vs.
negative), obesity (obese vs. normal weight), and hypertension (hypertensive
vs. normotensive). These models were evaluated using 5-fold cross-validation
(stratified by age, sex, and diagnosis), with the area under the curve (AUC) as
the performance metric. Additionally, the Cox proportional hazards model was
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run to predict the progression from MCI to AD, and the concordance index (C-
index) was calculated.
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Figure 4.12: Atrophy patterns for CCL-NMF components vs. R-indices shown via voxel-wise
t-tests performed for each CCL-NMF component (R-index) while adjusting for age, sex,
DLICV, and the remaining CCL-NMF components (R-indices). False discovery rate correction was
conducted to adjust multiple comparisons with a p-value threshold of 0.001. Increasing voxel redness
Indicates stronger associations with a specific component or index. The first five CCL-NMF components
show consistency with the five R-indlices.

As shown in Figure 4.13, incorporating either R-indices or CCL-NMF loadings
significantly enhanced predictive performance across all features compared to
demographic-only models. Notably, models using CCL-NMF loadings
consistently outperformed those utilizing R-indices for all features, suggesting
that the longitudinal information embedded in CCL-NMF provides more
neuropathologically relevant components than the cross-sectional Surreal-GAN
approach.
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Figure 4.13: Area under the curve (AUC) and concordance index (C-index) for models
predicting clinical variables and MCI to AD conversion, respectively. The predictors can be 1)
demographics alone, 2) demographics and R-indices, 3) demographics and CCL-NMF loadings, or 4) all
previous combined, Age, sex, and study were included as covariates in all models. For APOE-e4 (APOE4)
carrier status analysis, age was excluded as a covariate, whereas education was additionally included as
a covariate in the model evaluating the MCI to AD progression. N indicates the sample size for the
corresponding analysis shown in the graph. The status of biomarkers and CVD risk factors is defined as
explained in the previous chapter. Abbreviations: AD, Alzheimer’s disease; MCI, mild cognitive impairment.

Easily accessible out-of-sample estimation of CCL-NMF loadings in new datasets
Although the formulation is foundational at the discovery stage, where the CCL-
NMF components were established, rederiving components for new datasets
would be intensive. Thus, we trained a regression model to estimate CCL-NMF
coefficients from ROI data and demographics. This approach facilitates the
broader adoption of these brain aging components by the research community.
Notably, the ROIs were not harmonized. This circumvents the need for users
to acquire reference subjects for harmonization—a step that was essential in
the discovery phase to mitigate scanner variability but challenging in new
datasets or single-case studies. Figure 4.14 illustrates the Spearman
correlations between original (denoted by uppercase letters) and approximated
(denoted by lowercase letters) loading coefficients, estimated using regression
models with 5-fold stratified cross-validation based on age, sex, and diagnosis.
The correlations between the original and their corresponding approximated
loading coefficients are very high, ranging between 0.8 and 0.93 for cross-
sectional and between 0.9 and 0.97 for longitudinal loadings. Figure 4.15
shows the correlations within original and approximated cross-sectional and
longitudinal loadings. Importantly, the cross-component correlations within the
original and approximated loadings are similar. This indicates that not only are
these coefficients estimable, but their covariance structure is preserved using
approximated values. The relatively lower correlations between original and
approximated cross-sectional loadings (diagonal elements in Fig. 4.14A)
compared to the longitudinal ones (diagonal elements in Fig. 4.14B) may be
attributable to the nature of the L-map, which captures individualized brain
changes often unaffected by harmonization issues. The lower correlations in
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cross-sectional loadings are also expected due to the use of cross-sectional ROI
deviations rather than ROI volumes in the CCL-NMF implementation. To
evaluate the efficacy of the approximated cross-sectional loadings in capturing
associations with Alzheimer's disease, cognition, cardiovascular disease risk
factors, and cognitive impairment progression, the associations presented in
Fig. 4.10 were examined using now the approximated loadings (Figure 4.16).
The loading associations were effectively preserved, indicating that the
approximated loadings can reliably be used instead of the original, thereby
obviating the need to run an entirely new CCL-NMF. These estimation models
have been made available in NiChart (https://cbica.github.io/NiChart Project/).
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(approximated) loading coefficients.
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Figure 4.15: Spearman correlations within original (top) and approximated (bottom) cross-
sectional (left) and longitudinal (right) loading coefficients. Upper-case (lower-case) letters stand
for original (approximated) loading coefficients.
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Figure 4.16: Associations of approximated cross-sectional CCL-NMF loadings with A) AD-
specific measures, B) age, C) cognition, D) cognitive impairment progression, and E) CVD
risk factors. P-values were adjusted using Bonferroni correction to account for the number of
comparisons (N=17), controlling for type I errors. The follow-up time for CU to MCI and MCI to AD
conversion was 5.37+4.29 and 2.6+2.65 years, respectively. Age, sex, and study were included as
covariates in all models. However, for APOE-€4 (APOE4) carrier status, age was not included as a
covariate, while for ADNI cognitive scores, the study was excluded, and education was included instead.
Additionally, education was included as a covariate in models assessing cognitive decline progression (Part
D). N indicates the sample size in each graph. Biomarker and CVD risk factor status is defined as explained
in the previous chapter. Abbreviations: SPARE-AD, spatial pattern of abnormality for recognition of early
Alzheimer’s disease; WMH, white matter hyperintensities; CU, cognitively unimpaired,; MCI, mild cognitive
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impairment; ADNI, Alzheimer’s Disease Neuroimaging Initiative; ADNI-MEM, ADNI memory composite;
ADNI-VS, ADNI visuospatial functioning composite; ADNI-LAN, ADNI language composite; ADNI-EF, ADNI
executive function composite; ADAS-COG, Alzheimer’s disease assessment scale-cognitive subscale.

4.3.3 Discussion

Brain aging exhibits high heterogeneity due to genetic predispositions, lifestyle,
environmental influences, and other risk factors that cumulatively contribute to
the gradual onset of neuropathologies. MRI, a widely accessible imaging
technique, enables detailed assessment of macroscopic neurodegeneration—
such as brain atrophy and small vessel ischemic changes. While MRI does not
directly capture underlying neuropathologies, the addition of machine learning
techniques captures patterns of neurodegeneration associated with such
processes[202][203][204][205]. Such patterns, extracted via a coupled cross-
sectional and longitudinal NMF scheme, are used to form the dimensions of a
succinct yet expressive neuroanatomical coordinate system that encapsulates
the heterogeneous changes in the brain with aging and disease-related
neurodegenerative processes. By incorporating longitudinal data, this
methodology effectively captures trajectories of brain changes over time
alongside the cumulative cross-sectional effects. This temporal dimension is
essential for identifying predominant patterns that form the foundation of the
coordinate system, allowing the model to accurately represent the progressive
nature of brain aging and associated neuropathologies. Notably, this approach
delineates individual characteristics through multiple latent continuous
variables, allowing for the concurrent expression of diverse patterns, thus
circumventing the limitations of rigid classification into mutually exclusive
categorical subtypes.

Leveraging data from the large, diverse, multi-cohort iISTAGING consortium
with a predominately cognitively unimpaired sample and the novel CCL-NMF
methodology, the neuroanatomical heterogeneity of aging was explored. Seven
distinct and reproducible brain aging components were identified. Among
these, CCL-NMF2, which primarily captured medial temporal lobe atrophy,
displayed characteristics indicative of Alzheimer's disease, such as a strong link
with amyloid and tau deposition, APOE4 alleles, cognitive decline, as expected,
and can predict clinical progression from MCI to AD. CCL-NMF5, marked by
perisylvian atrophy, demonstrated strong associations with vascular pathology.
CCL-NMF3, strongly associated with advanced age, exhibited moderate
correlations with amyloid deposition, cognitive decline, and WMH and was more
prominently expressed within the aging population, suggesting that it
predominantly reflected age-related effects rather than a distinct pathological
process. Further investigation into the associations between these components
and clinical traits, other aging-related brain disorder markers, and genetic data
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will be essential for refining the profiles and implications of the derived
components.

The CCL-NMF representation of brain aging was evaluated by comparing it to
an alternative machine learning model, Surreal-GAN. These methodologies are
fundamentally distinct: Surreal-GAN employs a GAN-based semi-supervised
clustering approach to parse heterogeneity, whereas CCL-NMF uses deep-
learning-based normative modeling combined with longitudinal brain change
maps to identify dimensions of heterogeneity through non-negative matrix
factorization. A key methodological difference is that Surreal-GAN relies
exclusively on baseline cross-sectional measures, while CCL-NMF integrates
cross-sectional and longitudinal measures, allowing the two data types to
inform one another. This approach addresses a common limitation of cross-
sectional methods by ensuring that patterns of neurodegeneration inferred
from cross-sectional data align with those observed in longitudinal progression.
Both methods were applied to the same dataset, the iISTAGING discovery
dataset, to examine aging-related brain atrophy.

The components derived from CCL-NMF largely corresponded to the five
dimensions of atrophy identified using Surreal-GAN, while also offering an
expanded representation. Predictive models utilizing CCL-NMF loadings
consistently outperformed those using R-indices, indicating the richer
representation provided by CCL-NMF, which incorporates both cross-sectional
and longitudinal data. By capturing temporal dynamics, CCL-NMF extends
beyond traditional heterogeneity models limited to static cross-sectional data,
offering a more comprehensive understanding of brain aging and associated
pathologies.

In this application, the limited availability of longitudinal data compared to
cross-sectional data (with a longitudinal-to-cross-sectional ratio of
approximately 1:13) diminished the contribution of longitudinal information to
component derivation. Despite using the a coefficient to balance the
contributions of the two data types, the CCL-NMF components were
predominantly influenced by cross-sectional data. However, in future
applications involving datasets with a higher proportion of longitudinal data,
the CCL-NMF components are expected to become increasingly refined, further
improving their predictive utility and surpassing the patterns identified by
Surreal-GAN.

The proposed machine learning framework operates in two primary phases:
first, the C-map and L-map are estimated, followed by applying a mutually
constrained NMF. This methodology produces a shared dictionary matrix for the
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two data types, along with loading coefficient matrices specific to each data
type. While the framework incorporates well-established techniques at various
stages, implementing the entire process from start to finish can pose challenges
for users. To improve accessibility and practical usability, regression models
were developed to accurately predict the loading coefficients generated by the
CCL-NMF model. This approach enables users to estimate these coefficients
directly from their datasets without requiring expertise executing the two-step
framework. Notably, the regression models operate on raw data, eliminating
the need for users to harmonize their data before input. By addressing the
complexity of the model while providing a user-friendly alternative, CCL-NMF
supports wider adoption and application of its predictive capabilities across
diverse research contexts.

CCL-NMF provides a robust and flexible framework for identifying
heterogeneous patterns of brain changes by utilizing both cross-sectional and
longitudinal data, surpassing the limitations of traditional heterogeneity models
that rely solely on static, cross-sectional data. The model accommodates the
co-expression of diverse patterns within the same individual. By deriving
individualized expression levels across these patterns, this approach facilitates
the development of personalized therapies tailored to specific patients, enabling
more targeted and effective treatments. Furthermore, the model demonstrates
computational efficiency, ensuring broad accessibility and usability. It does not
require a predefined number of components, instead allowing the data to
determine the model's complexity, which supports the exploration of higher-
dimensional systems. Although the current application focuses on aging-related
gray matter atrophy, the generic formulation of the approach enables its
adaptability to any brain disorder characterized by monotonic progression over
time. Additionally, as NMF has been widely applied across various domains, the
CCL-NMF framework benefits from the established familiarity within the
research community, facilitating integration and enrichment with insights from
other NMF-based models.

The model's primary strength lies in its ability to identify patterns guided by
longitudinal information; however, this reliance on temporal data presents
limitations in contexts where such data is unavailable. Furthermore, the non-
negativity constraint intrinsic to NMF, which facilitates part-based
representations, requires single-signed input matrices. In many real-world
scenarios, data may inherently include both positive and negative values, or
such values may arise due to noise introduced during data acquisition. In the
former case, such as functional connectivity data, this requirement may limit
the model's applicability. In the latter case, as with noisy longitudinal data that
often generates mixed-signed loading maps, it becomes necessary to eliminate
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elements with opposite signs, resulting in input matrices containing humerous
zero entries. This transformation can lead to a loss of valuable information and
poses challenges for accurately representing brain regions with low or sparse
signal intensities, potentially compromising the robustness and interpretability
of the derived components.

Future research should focus on applying the approach to voxel-wise data to
address the limitations of the ROI-based analysis utilized in the current study.
Transitioning to voxel-wise analysis would enable the capture of more localized
and granular patterns of brain activity, which are often obscured in ROI-wise
data due to spatial averaging. This refinement would facilitate a more detailed
examination of the spatial heterogeneity existing in neuroimaging data, offering
new insights into the complex processes associated with brain aging. Moreover,
the model could be extended to examine heterogeneity in amyloid and tau
deposition, key biomarkers of neurodegenerative processes, to elucidate their
distinct and overlapping contributions to brain aging.

4.4 Conclusion

This chapter introduced a novel machine learning-based approach designed to
disentangle the heterogeneity of brain aging, leveraging both cross-sectional
and longitudinal data. Applied to structural MRI data from a large aging cohort,
the method identified distinct, reproducible, and clinically relevant components
associated with brain aging. This approach surpasses traditional cross-sectional
methods by integrating temporal dynamics, enabling more nuanced insights
into the progressive nature of complex biological processes underlying aging.
The findings suggest this approach could help tailor interventions based on
individual profiles, advancing personalized therapeutic strategies.
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5 Conclusions and future directions

The global increase in life expectancy has led to a significant rise in the older
population, projected to reach 1.5 billion by 2050, representing a substantial
demographic shift[209]. Concurrently, the incidence of neurodegenerative
diseases, particularly Alzheimer's disease, is escalating, imposing a high
socioeconomic burden on healthcare systems and families due to the need for
long-term care, medical interventions, and caregiver support. According to the
World Health Organization, dementia affects approximately 50 million people
worldwide, with Alzheimer’s disease as the leading cause, accounting for 60—
70% of cases[210]. This number is projected to nearly triple by 2050. This
demographic shift underscores the urgent need for strategies aimed at delaying
brain aging and promoting healthy cognitive aging.

Brain aging is a highly complex process influenced by many factors that cause
heterogeneous brain changes. Lifestyle factors, such as diet, physical activity,
social engagement, and cognitive stimulation, significantly impact brain health
throughout a person’s lifetime. For instance, regular exercise and a balanced
diet have been shown to protect against brain atrophy[211], while chronic
stress and lack of mental stimulation can contribute to accelerated cognitive
decline[212]. Environmental factors, including exposure to pollutants and
toxins, education, and socioeconomic status, also influence brain health[213],
either protecting against or accelerating brain aging.

Additionally, genetics play a crucial role in brain aging, with certain genetic
profiles linked to a higher susceptibility to neurodegenerative diseases such as
Alzheimer’s disease. For example, the APOE €4 allele is associated with
an increased risk for AD[214]. This genetic diversity means that some
individuals may be more resilient to age-related brain changes, while others
experience accelerated decline, adding another layer of complexity. Finally, co-
existing conditions such as cardiovascular disease, diabetes, and
cerebrovascular disease interact with the aging process and can exacerbate
brain aging[215]. The presence of amyloid plaques, tau tangles, and white
matter lesions further complicates aging patterns, as these pathologies can
overlap with typical aging processes, making it challenging to distinguish
between normal aging and early signs of neurodegenerative disease.

Due to the unique interplay of various factors in each individual, brain aging
exhibits significant heterogeneity, underscoring the need for personalized
approaches to studying and treating age-related neurodegeneration and
cognitive decline. Understanding this variability allows researchers to identify

95



distinct aging trajectories and develop targeted therapies tailored to each
individual’s influences. This thesis addresses this challenge by investigating the
complex brain changes associated with aging that contribute to cognitive
decline and AD. By advancing state-of-the-art machine learning techniques and
leveraging large-scale datasets, it identifies distinct imaging patterns linked to
different brain aging trajectories. Specifically, it aspires to disentangle the
neuroanatomical heterogeneity across the spectrum of brain aging, examining
variability driven by AD-related degeneration, coexisting pathologies, and
lifestyle, environmental, and genetic risk factors. Additionally, it utilizes the
identified dimensions of brain changes to predict future cognitive decline and
clinical progression, offering insights that may ultimately enhance early
diagnosis, risk stratification, and intervention strategies in aging and
neurodegenerative diseases.

The contributions of this thesis are twofold:

« It investigates the heterogeneity of neuroanatomical brain changes at
early, asymptomatic stages, offering insights into early indicators of
neurodegeneration that may inform preventive strategies and
personalized patient management.

» It advances existing methods for analyzing heterogeneity by developing
a novel model that integrates cross-sectional and longitudinal data,
allowing for a more accurate characterization of age-related brain
changes.

Revealing Neuroanatomical Heterogeneity in Preclinical Aging through
Advanced Al for Improved Early Diagnosis and Personalized Intervention.

The goal of this research is to address the limited understanding of
neuroanatomical heterogeneity in the early phases of brain aging, particularly
before the onset of clinical symptoms. While most existing studies focus on the
heterogeneity of diagnosed neurodegenerative
diseases[114][84][216][79][110], such as AD, this thesis shifts the emphasis
to preclinical variability, aiming to uncover the diverse neuroanatomical
trajectories that characterize aging in cognitively unimpaired individuals. This
work fills a significant knowledge gap, as few studies have explored how
individuals transition from normal aging to potential pathologic manifestation
at the neural level—a gap largely attributable to the lack of sufficiently large-
scale neuroimaging datasets and advanced modeling tools.

This thesis leverages artificial intelligence and advanced harmonization
methods, along with large, diverse, multi-cohort datasets, to investigate
neuroanatomical heterogeneity at early asymptomatic stages. Specifically, it

96



employs Smile-GAN to analyze large-scale cross-sectional T1- and T2-weighted
MRI data from CU middle-to-late-aged individuals, aggregated by the iSTAGING
consortium. Heterogeneity is investigated separately within four decade-long
age intervals spanning from 45 to 85 years. The analysis identifies three distinct
neuroanatomical subgroups that remain consistent across age decades: a
typical aging group with low atrophy and white matter lesions and two
accelerated aging subgroups—one associated with high cardiovascular disease
risk, white matter disruption, and cerebral amyloid B deposition, and the other
characterized by diffuse atrophy likely driven by lifestyle factors. These findings
offer insights into differential susceptibilities to AD and other neurodegenerative
conditions and underscore the significance of early intervention and tailored
preventive strategies.

Developing an Innovative NMF-Based Framework Integrating Longitudinal and
Cross-Sectional Data for Uncovering Brain Aging Heterogeneity

Moreover, this thesis enhances our understanding of the heterogeneous
neurobiological processes implied in brain aging by developing a novel
methodology. Current approaches primarily rely on cross-sectional data, which
limits their ability to capture the dynamic nature of brain aging. This thesis
addresses this gap by introducing CCL-NMF, which integrates population-based
brain change maps alongside maps reflecting the dynamic progression of
changes, allowing for a more nuanced view of brain aging. The proposed
approach utilizes a mutually constrained NMF framework to delineate
components that encapsulate distinct patterns of brain alterations derived from
the combined analysis of cross-sectional and longitudinal data.

The proposed methodology broadly applies to conditions characterized by
monotonically progressive brain changes. Here, it is specifically utilized to
model aging-related atrophy heterogeneity using T1-weighted MRI data from
a multi-cohort aging population having as reference a healthy middle-aged
cohort both drawn from the iSTAGING consortium. This analysis reveals distinct
neuroanatomical components associated with AD biomarkers, cognitive
performance, cardiovascular risk, and cognitive impairment progression.
Ultimately, by providing individualized expression levels across components
through the CCL-NMF loadings, this approach differentiates from previous
approaches, such as Smile-GAN categorizing individuals into rigid subtypes,
thereby offering additional tools for personalized patient management and
clinical trial stratification.

A comparison between the CCL-NMF and the state-of-the-art Surreal-GAN
model demonstrates the advantages of CCL-NMF’s integration of longitudinal
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data, providing dynamic insights that complement the static nature of cross-
sectional methods. Models utilizing CCL-NMF loadings exhibit superior
predictive accuracy for AD and vascular markers than those using Surreal-GAN’s
R-indices. Additionally, to improve accessibility, regression models were
developed to predict CCL-NMF loadings, allowing for application without the
need to rerun the full model. This user-friendly feature promotes broader
adoption across research contexts.

Future directions

Future steps will involve a comprehensive exploration of the proposed CCL-NMF
methodology. This includes experimenting with integrating regularization terms
that promote component sparsity, reduced overlap, and spatial contiguity.
Additionally, techniques will be explored to address mixed-sign input data,
aiming to mitigate the risk of zeroing out important features and ensuring a
more robust analysis of the underlying patterns in the dataset. The model will
also be adapted for application to voxel-wise data, enabling the detection of
more detailed and localized brain patterns often obscured in ROI-based
approaches due to spatial averaging. This voxel-wise analysis will facilitate the
identification of distinct patterns of brain change that do not conform to
traditional ROI boundaries, thereby revealing novel regions or networks
involved in the aging process.

Another step will be integrating genetic information into these analyses by
leveraging genetically informed voxel-based atlases, such as the Allen Brain
Atlases[217]. Mapping gene expression directly onto voxel-based anatomic
data provides a powerful framework for investigating how genetic factors
interact with brain anatomy, driving structural or functional changes associated
with aging and neurodegeneration and contributing to individual variability in
aging trajectories. By uncovering genetically informed neuroanatomical
patterns, this analysis could provide valuable insights into the genetic
underpinnings of resilience vs. vulnerability to neurodegenerative diseases and
differential cognitive decline, paving the way for more precise predictive models
and personalized interventions in aging populations.

Finally, while current work focuses primarily on structural MRI data, future work
can incorporate additional imaging modalities, such as diffusion tensor imaging
for white matter integrity, functional MRI for brain activity, and positron
emission tomography for amyloid or tau deposition. This multimodal integration
will allow CCL-NMF to capture a more comprehensive and holistic view of brain
aging processes, disentangling structural, functional, and molecular changes.
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Last but not least, to enhance the characterization of the identified components,
future research could explore the links between these components and
biomarkers for neurodegenerative diseases beyond Alzheimer’s, such as
Parkinson’s disease, Lewy body dementia, and frontotemporal dementia.
Expanding biomarker analysis to include a-synuclein, tauopathies, and TDP-43
pathology could reveal shared or unique brain patterns associated with these
diseases. This broader scope will help identify overlapping mechanisms across
neurodegenerative conditions, uncover subgroups at risk for mixed pathologies,
and enhance understanding of how concurrent neurodegenerative processes
interact, impacting brain aging and cognitive decline in complex ways. Finally,
investigating the significant role of brain resilience - the ability to maintain
cognitive function despite age-related neuroanatomical changes or pathology —
in brain aging heterogeneity will improve early intervention strategies and
provide insights into mechanisms that protect against neurodegeneration.
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Glossary

Adversarial autoencoder, AA: AvTinapaBeTIKOG AUTOKWAIKOMOINTNG

Alzheimer’s disease, AD: Nogoc AAToXAIUEP

Cardiovascular disease, CVD: Kapdiayyeiakr voooc

Clustering: ZuoTadonoinon

Cognitive decline: MvwoTIKr EKNTWON

Cognitively unimpaired, CU: N'vwoiaka Yying

Comorbidity: ZuvvoonpoTtnTta

Dementia: Avoia

Generative adversarial network, GAN: MNMapaywyiko avTinapadeTiko dikTUO
Genome wide association studies, GWAS: MeAETeC OUOXETIONG €UPOUG
YOVISIWHATOG

Heterogeneity: ETepoyéveia

Intracranial volume, ICV: EvOokpaviakog Oykog

Linear mixed-effects model, LME: TpaupikO JOVTEAO HIKTWV EMOPACEWY
Machine learning: Mnxavikn paenon

Magnetic resonance imaging, MRI: Aneikovion HayvnTikou
OUVTOVIOPOU/JayvnTIKA Topoypagia

Mild cognitive impairment, MCI: ‘Hnia yvwoTikr diatapaxn

Neurodegenerative disease: NEUpOEK(PUAIOTIKE) VOOOG

Neuroimaging: Neupoaneikovion

Non-negative matrix factorization, NMF: Mn-apvnTikij napayovronoinon nivaka
Normative modelling: KavovioTikr) govreAonoinon

Personalized medicine: EEaTOMIKEUMEVN 1ATPIKA

Principal component analysis, PCA: AvaAuon KUpIWV CUVIOTWOWY
Reproducibility index: AgikTng avanapaywyigdtnTag

Semi-supervised method: Hui-emBAenopevn pebodog

Single nucleotide polymorphism, SNP: MovovouKAEOTIOIKOC MOAUHOP@IOHOC
Sparsity: ApaioTnTa

Survival analysis: AvaAuon eniBiwong

White matter lesions/hyperintensities, WMH: BAGBec AUk ouaiac
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