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Abstract 
 
Mental fatigue considerably affects cognitive performance, decision-making, and 
general productivity in diverse fields such as healthcare, transportation, and military 
operations. Extended cognitive strain may result in diminished vigilance and increasing 
error rates, presenting significant hazards to safety and productivity. 
Electroencephalography (EEG), a non-invasive technique for monitoring cerebral 
activity, offers an objective approach to identify and categorize mental fatigue. This 
thesis introduces a robust machine learning framework for classifying EEG data into 
rest and fatigue states, highlighting the application of specialized feature selection 
methods and machine learning classifiers. 

Electroencephalogram (EEG) data were obtained from 20 subjects performing 
54 trials, categorized into rest and fatigue groups. The preprocessing procedures 
involved artifact elimination, including the removal of noise from muscular activity and 
eye blinks, as well as bandpass filtering into five frequency bands: delta, theta, alpha, 
beta, and gamma. Functional connectivity was assessed with the Phase Lag Index 
(PLI), a reliable metric of phase synchronization among EEG channels, producing 
high-dimensional datasets. To address the problem of dimensionality, eleven feature 
selection techniques, such as LASSO, ReliefF, Recursive Feature Elimination with 
Correlation Bias Reduction (RFE-CBR), and Fisher Score, were employed to discern 
the features that are most important while preserving interpretability. 

Five classifiers were trained using the chosen features: k-Nearest Neighbors 
(KNN), Support Vector Machine (SVM) with radial basis function (RBF) and linear 
kernels, Linear Discriminant Analysis (LDA), and Random Forest (RF). Cross-
validation methods were employed to guarantee the generalization of the chosen 
features across different subjects. Performance was assessed utilizing criteria 
including accuracy, sensitivity, specificity, and F1-Score. The findings indicated that 
feature selection significantly enhanced classification performance. LASSO was 
identified as the most effective feature selection algorithm, achieving a combined 
accuracy of 97.5% with only 19 features and exhibiting excellent performance metrics 
(accuracy, sensitivity, specificity, and F1-Score) across all classifiers, demonstrating 
its efficacy in EEG-based fatigue detection. 

Lasso identified features that distinguish between rest and fatigue states using 
EEG channel connections. Connectivity was predominantly focused in the Frontal and 
Central lobes, indicating their functions in cognitive control and sensorimotor 
integration. Delta and Theta rhythms exhibited the highest differentiation, indicating 
their involvement in restorative processes and sustained attention under fatigue. 
These findings highlight LASSO's accuracy in identifying features relevant to fatigue 
identification. 

The present research illustrates that employing feature selection methods not 
only reduces the dimensionality of EEG data but also improves model interpretability 
by concentrating on the most prominent features. The suggested methodology 
establishes a basis for additional studies in EEG-based fatigue detection and presents 
possible applications in clinical and working environments, where the assessment of 
mental fatigue is essential for enhancing safety and performance. 
 
Keywords: Mental Fatigue, EEG (Electroencephalography), Feature Selection, 
Phase Lag Index (PLI), Machine Learning, Functional Connectivity, Brain Networks 
  



 
 

  



 
 

Summary 
 
Mental fatigue, a common condition that negatively impacts cognitive processes, 
decision-making, and productivity, presents considerable hazards in fields requiring 
continuous attention and efficiency, including healthcare, transportation, and military 
operations. The increasing complexity in modern tasks and the dependence on human 
cognitive capacities underscore the importance of reducing mental fatigue. 
Understanding and mitigating this condition is crucial for improving safety and 
operational efficiency in critical conditions. Recent developments in neuroimaging and 
machine learning offer remarkable possibilities to create accurate and scalable 
methods for identifying and addressing fatigue. Electroencephalography (EEG), a non-
invasive technique for recording cerebral activity, represents a fundamental tool of this 
research. EEG provides insights into the neural activities linked to cognitive states by 
monitoring the brain's electrical signals. 

This thesis utilizes advanced feature selection algorithms and machine learning 
classifiers on EEG signals to establish an effective framework for categorizing fatigue 
states. The incorporation of sophisticated analytical methods improves the 
interpretability and efficiency of EEG-based evaluations, making them appropriate for 
practical use. The research included 20 subjects performing 54 trials, whose EEG data 
were carefully analyzed to identify important connectivity features. The study identifies 
LASSO regression as the most successful feature selection approach, with an 
accuracy of 97.5% with a minimal feature set through the application of feature 
selection techniques and classification algorithms. This research highlights the 
transformative value of machine learning in developing fatigue detection systems 
across clinical, technical, and operational environments. 

Chapter 1 establishes the theoretical framework of brain networks in order to 
clarify the neurological basis of mental fatigue. The human brain, comprising 
approximately 86 billion neurons and trillions of synapses, functions as a highly 
integrated and dynamic system. In contrast to classical neuroscience, which frequently 
focused on discrete brain areas, modern methodologies underscore the brain's 
integrative characteristics via network science. This framework explains how related 
regions cooperate to facilitate cognition and adjust for different demands. Neural 
networks display multiple distinct characteristics. Modularity denotes the brain's 
arrangement into clusters, or modules, that handle particular categories of information. 
For example, sensory processing and executive functions are regulated by separate 
yet interconnected areas. This modular design facilitates effective and focused 
information processing while reducing interference from unrelated regions. Modularity 
enables functional specialization, permitting the brain to perform complex functions via 
parallel processing streams. 

 Small-world architecture is an important characteristic of brain networks, 
facilitating local processing inside modules and global integration throughout the entire 
network. This framework facilitates swift communication across remote areas via 
rather brief routes, guaranteeing both speed and reliability. A small-world network may 
transmit sensory inputs to decision-making regions with little latency, an essential need 
in situations demanding rapid reflexes and accurate evaluations. Hubs are crucial for 
brain connectivity. These interconnected nodes function as communication hubs that 
consolidate information from multiple modules. The prefrontal cortex, a hub linked to 
advanced cognitive abilities, illustrates this integrative role. Disruptions to hub 
connectivity, as seen during mental fatigue, might hinder the brain's capacity to 
coordinate complex tasks, resulting in diminished efficiency and increased error rates. 

Neural circuits associated with sensory perception integrate into broader 
networks that regulate attention and decision-making. Mental fatigue disrupts this 
hierarchy, especially in the frontal and central regions, resulting in diminished cognitive 



 
 

ability and prolonged response times. Investigating brain networks offers a foundation 
for understanding mental states and drives the development of EEG-based fatigue 
monitoring systems. By focusing on particular connection patterns, such as phase 
synchronization, these systems can attain improved accuracy and reliability.  

In Chapter 2, the materials and methods employed in this study are thoroughly 
detailed. This study employs a multi-stage methodology to acquire, preprocess, and 
analyze EEG data, providing a comprehensive framework for identifying mental 
fatigue. 20 Participants aged 22 to 40 were recruited from medical facilities and divided 
into two groups: a control group in a rested condition and a fatigue group experiencing 
sleep loss. EEG recordings were performed from 54 trials using a 64-channel Biosemi 
ActiveTwo system, conforming to the internationally accepted 10-20 electrode 
placement standard, hence ensuring consistency and comparability in electrode 
positioning. EEG signals, inherently susceptible to noise and artifacts, were 
preprocessed in order to improve data quality. Artifacts, including muscular activity and 
eye blinks, were systematically removed through advanced signal processing 
techniques. The data were further categorized into five standard frequency bands: 
delta, theta, alpha, beta, and gamma. Each band represents specific 
neurophysiological states, from deep relaxation to increased cognitive activity. 

Functional connectivity was evaluated using the Phase Lag Index (PLI), a 
reliable metric of phase synchronization that reduces the confounding influences of 
volume conduction. PLI matrices were calculated for each participant, reflecting the 
complex dynamics of brain connections across frequency bands. These matrices 
denote high-dimensional datasets that illustrate the brain's functional connection 
across various cognitive states. Dimensionality reduction was accomplished using 
eleven sophisticated feature selection methods, each selected for its distinct 
advantages in managing high-dimensional data. LASSO regression, recognized for its 
ability to enforce sparsity, proved to be the most efficient technique, reducing the 
dataset to a minimal subset of characteristics while maintaining interpretability. 
Alternative techniques, such ReliefF and Recursive Feature Elimination with 
Correlation Bias Reduction (RFE-CBR), extended this methodology by prioritizing 
features that maximize classification performance while minimizing redundancy.  
Five machine learning classifiers were trained using the selected features: k-Nearest 
Neighbors (kNN), Support Vector Machines (SVM) with linear and radial basis function 
(RBF) kernels, Linear Discriminant Analysis (LDA), and Random Forest (RF). Each 
classifier underwent detailed assessment employing Leave-One-Subject-Out (LOSO) 
cross-validation, a technique that guarantees strong generalizability among different 
individuals. Performance indicators, such as accuracy, sensitivity, specificity, and F1-
score, were calculated to evaluate the classifiers' performance. 

Chapter 3 systematically examines the findings of this thesis, illustrating the 
reliability of the proposed methodology in effectively differentiating between rested and 
fatigued states. LASSO regression proved to be the most efficient feature selection 
strategy, attaining a classification accuracy of 97.5% with merely 19 features. These 
characteristics were predominantly linked to connection in the frontal and central brain 
regions, underscoring their essential function in cognitive control and fatigue 
identification. This outcome highlights the capacity to compress high-dimensional EEG 
data into a limited feature set without compromising performance.  
Moreover, all classifiers exhibited significant enhancements in performance when their 
hyperparameters were optimized with Bayesian Optimization. The SVM utilizing an 
RBF kernel and Random Forest frequently attained accuracy rates beyond 95%, 
accompanied by nearly perfect sensitivity and specificity measurements. The results 
underscore the excellent combination of sophisticated feature selection methods and 
robust machine learning classifiers in producing dependable classification results. 

The connectivity analysis revealed significant differences in delta and theta 
frequency bands between rested and fatigued states. Delta rhythms, associated with 
restorative functions, and theta rhythms, related to sustained attention, demonstrated 



 
 

less synchronization in fatigued conditions. These data correlate with theoretical 
models of cognitive load and reduced neural efficiency during fatigue, providing a 
comprehensive view of the underlying brain dynamics. A noteworthy finding is the 
interpretability of the reduced feature set. The selected features correspond to specific 
EEG channel connections in the frontal and central lobes, providing insights into the 
neural mechanisms underlying fatigue. This level of interpretability improves the 
translational potential of the findings, facilitating practical implementations in real-time 
fatigue monitoring systems. 

Finally, chapters 4 and 5 summarize the main contributions and conclusions of 
the proposed fatigue detection framework, address the limitations and lists some ideas 
for future extensions and further advancements. 

This thesis introduces a robust and scalable framework for detecting mental 
fatigue through EEG, incorporating advanced feature selection and machine learning 
methodologies. By emphasizing the critical role of frontal and central brain connectivity 
and the differential significance of delta and theta rhythms, the study delineates vital 
neural markers of fatigue. Future studies could extend these results by utilizing larger, 
more heterogeneous datasets and examining practical applications in operational 
scenarios. The combination of EEG technology and machine learning indicates a 
frontier with substantial promise for enhancing cognitive health monitoring and 
improving safety in critical sectors such as healthcare, transportation, and occupational 
safety.  
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1 Brain Networks 

1.1 Monitoring the Electrical Activity of the Human Brain 
 
The human brain, the central organ of the nervous system, currently consists of 
numerous unique structures, each of which is responsible for the processing, 
integration, and coordination of received information. The cerebrum, medulla, and 
cerebellum are the brain's fundamental components. The cerebrum is further divided 
into two hemispheres, which are connected by a network of nerve cells known as 
neurons. Communication is predominantly facilitated by electrical impulses, which are 
transmitted through the approximately 86 billion neurons in the human brain. The 
release of neurotransmitters is induced by these impulses, resulting in the formation of 
sophisticated neural pathways and circuits. The synchronized activity of large groups 
of neurons is represented by the subtle electrical fields generated during neural 
activity, which are referred to as post-synaptic potentials. The brain's electrical activity 
is significantly reflected in these electrical signals when they are averaged across 
thousands of neurons. This activity can be monitored as it propagates through various 
anatomical layers, such as the cranium, skin, hair, and meninges, using electrodes 
inserted on the scalp's surface.[1], [2] 

The electroencephalogram (EEG) is one of the most frequently employed 
techniques for recording brain activity. EEG is a non-invasive method that quantifies 
voltage fluctuations that are induced by ion flow within oriented neuron populations 
located near the cerebrum's surface. EEG provides numerous advantages over other 
brain imaging methods, such as exceptional temporal resolution, which enables the 
capture of thousands of snapshots of electrical activity from multiple electrodes per 
second. Furthermore, EEG is cost-effective, and the recordings are passive, which 
means they do not disrupt brain activity. Electroencephalography (EEG) devices utilize 
electrodes to record brain wave patterns and transmit the data to a computer for 
analysis. 

There are two categories of EEG electrodes: moist and dry. Wet electrodes are 
small containers composed of materials such as tin, gold, silver, or stainless steel that 
are coated with silver chloride. An electrolytic gel serves as a conductor between the 
cranium and the electrodes [3]. On the contrary, bare electrodes are entirely dependent 
on mechanical contact [4]. They are substantially smaller than moist electrodes and do 
not necessitate skin preparation or electrolyte gel. Nevertheless, dry EEG systems 
currently support a smaller number of channels than moist EEG systems, with a typical 
limit of up to 30 channels. The primary focus of this thesis will be on high-density moist 
electrode EEG systems with 32–64 channels. Despite the fact that dry EEG systems 
are more practicable for real-world applications, such as wearable EEG devices, high-
density moist electrode systems offer the necessary spatial resolution for detailed 
research and analysis. 

 

1.2 EEG Electrode Placement  
 
In order to achieve a standardized interpretation of EEG recordings, internationally 
recognized methods for describing and applying the placement of scalp electrodes 
have been established. The most commonly used systems are the “10-10” and, more 
frequently, the “10–20” systems, which relate the positions of electrodes to the 
underlying brain regions. In these systems, the terms "10" and "20" refer to the 
distances between adjacent electrodes, which are either 10% or 20% of the total front-
to-back or right-to-left distance of the skull [2]. The experiments conducted in this 
Thesis (Chapter 2.1) utilize the 10–20 system, where each electrode placement 
corresponds to a specific brain lobe and area. In this system, even-numbered 
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electrodes are located on the right side of the scalp, while odd-numbered electrodes 
correspond to the left side (Figure 1). Additionally, electrodes marked with a "z" 
indicate midline sagittal positions (e.g., Fpz, Fz, Cz, Oz). 
 

 
 
Figure 1: Electrode locations of 64 EEG channel according to the International 10-20 
system. 

 
The system identifies the main recording areas as pre-frontal (Fp), frontal (F), temporal 
(T), parietal (P), occipital (O), and central (C). Furthermore, intermediate electrode 
placements are labeled using combinations of these designations: AF (between Fp 
and F), FC (between F and C), FT (between F and T), CP (between C and P), TP 
(between T and P), and PO (between P and O). "M" electrodes are typically used to 
mark mastoid areas, located just behind the outer ear, while the "Iz" electrode is placed 
over the inion. Although mastoid and inion positions are commonly recorded, these 
locations are often used as fiducial points and do not generally represent higher-order 
cognitive processes [5]. 
 

1.3 EEG Rhythms and Oscillations 
 
EEG signals can be characterized by their rhythmic activity, which is based on the 
signal morphologies of specific oscillations, defined by the frequencies of their 
harmonic components (spectral components). These oscillations are categorized into 
frequency bandwidths that are associated with brain function and condition. The five 
primary sub-bands are delta (δ, 0.5–3.5 Hz), theta (θ, 3.5–7 Hz), alpha (α, 7–15 Hz), 
beta (β, 15–30 Hz), and gamma (γ, 30–70 Hz) [6] (Figure 2). It is important to note that 
the precise boundaries of these sub-bands are not universally defined, resulting in 
slight variations between studies. Additionally, while some research explores lower or 
higher frequency ranges, activity outside these bands is often considered artifactual 
under standard clinical recording techniques. 

In addition to frequency bands, other spectral components include power 
characteristics, which represent the amount of energy in a specific frequency band 
(commonly expressed as squared amplitude), and phase characteristics, which 
describe the synchronization of activity across multiple neural generators. Numerous 
theories have been proposed to explain how factors such as illness, age, and external 
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stimuli influence changes in internal amplitude and synchronization patterns [7], [8].

 
 
Figure 2: Brain wave frequency bands for EEG signal analysis 

 

1.4 Introduction to Brain Networks 
 
The brain operates as an extensive and linked network, with billions of neurons and 
trillions of synapses that provide organized routes across various sizes. This complex 
system facilitates all cognitive, sensory, and motor activities. Conventional research 
frequently concentrated on solitary neurons or certain brain areas in isolation. 
Nonetheless, comprehending the brain's genuine activity necessitates analyzing the 
interactions among these pieces and their formation of coherent networks. These 
connections, commonly referred to as brain networks, govern behaviors, cognition, 
and perception. A network-based approach to neuroscience provides insights 
inaccessible through standalone investigations, as it incorporates the brain's 
integrative and distributed characteristics[9], [10]. 

Network science, a field dedicated to comprehending complex systems by the 
analysis of connected structures, has emerged as a potent instrument in neuroscience. 
This methodology describes the brain as a network of nodes and edges, with nodes 
symbolizing either individual neurons or larger cerebral areas, and edges denoting the 
connections or paths among them. The application of network science in this context 
allows neuroscientists to measure and evaluate the arrangement of connections, 
therefore revealing fundamental principles of brain structure and function. This 
approach enables researchers to progress from analyzing individual components to 
comprehending the communication and mutual support across brain regions within a 
cohesive system [11], [12]. 

Brain networks are characterized by many key properties: modularity, small-
world architecture, and the presence of hubs. Modularity is a fundamental 
characteristic, denoting the brain's structure into discrete clusters, or modules, wherein 
areas with comparable functions have extensive interconnections within their group. 
This modular structure allows regions to execute specific functions well, while 
minimizing interference from other sectors. Each module can perform distinct cognitive 
or sensory activities while maintaining connectivity with other modules, promoting a 
balance between specialization and integration. Visual and motor activities may 
depend on separate modules, however they are interconnected to provide coordinated 
responses to visual inputs [9], [11], [13], [14]. 

Another crucial characteristic is the brain's small-world architecture, a 
configuration that integrates strong local clustering with short pathways linking 
distant areas. In a small-world network, each node exhibits a high degree of 
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connectivity to its surrounding nodes, creating densely packed local circuits, while 
long-range connections interlink these clusters across the network. This design 
addresses two essential requirements of cerebral function: efficient local processing 
and effective global integration. The brain's small-world architecture facilitates fast 
information transmission across distant areas, guaranteeing swift reactions to internal 
and external stimuli while promoting flexible and robust cognitive functions [15], [16], 
[17], [18]. 

Hub regions reflect a third distinctive property of brain networks. These hubs are 
interconnected nodes that function as essential sites for communication throughout 
the network. They connect several modules and promote the transmission of 
information throughout the brain, facilitating coherent and coordinated neural activity. 
Hub areas are essential to the brain's structural and functional integrity, since they 
prevent localized processing from occurring in isolation from other modules. 
Disruptions to these hub locations might yield extensive repercussions, as they impact 
many modules and obstruct inter-regional communication. Neurological diseases 
demonstrate that injury to certain hubs leads to considerable cognitive and behavioral 
disabilities [9], [10], [12], [14], [19], [20], [21]. 

Network theory's application to neuroscience has yielded significant insights into 
brain organization, clarifying the relationship between connection patterns and 
cognitive processes including attention, memory, and decision-making. Researchers 
can simulate how distinct connection patterns, through concepts like as modularity, 
small-world organization, and hub connectivity, contribute to functional capacity, 
adaptation, and resilience. This concept provides a foundation for comprehending 
network disruptions seen in neurological illnesses, where connection deficits may 
result in cognitive deterioration and behavioral alterations [10], [11], [22], [23]. 

1.5 Applications of Network Theory in Neuroscience 
 
The field of neuroscience has been significantly broadened by network theory, which 
has provided transformative insights into brain structure, function, and pathology. 
Network-based analysis in neuroscience allows researchers to examine the brain as 
an interconnected system, rather than as isolated regions. This revelation reveals the 
intricate interactions that underlie cognition, behaviour, and neurological disorders. 
This method enables neuroscientists to address concerns in the clinical, 
developmental, and cognitive domains by emphasizing the connections and influence 
within brain networks. 

Clinical neuroscience is one of the most significant applications of network 
theory. Network analysis is being employed by researchers to identify disruptions in 
brain connectivity that are indicative of neurological and psychiatric disorders. For 
example, distinct patterns of disrupted connectivity within structural and functional 
brain networks are observed in conditions such as Alzheimer's disease, schizophrenia, 
and autism. Alzheimer's disease is linked to the disintegration of long-distance 
connections that connect brain regions, resulting in cognitive impairments such as 
memory loss and general cognitive decline. Conversely, schizophrenia frequently 
manifests anomalous connectivity patterns in core regions that are crucial for the 
integration of cognitive and emotional processes, which contribute to symptoms such 
as hallucinations and impaired executive functioning [9], [14], [18], [24], [25]. 

In addition, network measures that are derived from brain imaging can function 
as biomarkers for the early diagnosis and therapy monitoring. Using imaging 
technologies such as diffusion tensor imaging (DTI) and functional MRI (fMRI), 
researchers can identify network abnormalities associated with neurological disorders 
prior to the emergence of clinical symptoms. This is achieved by evaluating their 
structural and functional connectivity patterns. In conditions that are progressive, such 
as Alzheimer's, this ability to detect symptoms early is particularly advantageous, as 
early intervention may potentially delay or mitigate the onset of symptoms. In addition, 
network analysis enables clinicians to monitor connectivity patterns over time, thereby 
assessing the efficacy of treatments as network integrity improves. [13], [14], [19], [24]. 
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Pharmacology also benefits from network theory, as it clarifies the manner in 
which pharmaceuticals influence brain connectivity. Dopamine-modulating 
medications, for instance, have demonstrated potential treatments for conditions such 
as depression and Parkinson's disease by enhancing the efficiency of functional 
networks. In disorders where neurotransmitter imbalances disrupt typical connectivity 
patterns, therapeutic pathways for restoring network function can be provided by 
understanding how drugs influence network connectivity [13], [14], [22], [25]. 

Network analysis has improved our comprehension of cognitive functions that 
arise from distributed brain systems in cognitive neuroscience. Dynamic interactions 
across networks are the foundation of processes such as executive function, attention, 
and memory, rather than dependence on individual regions. The brain's modular 
structure enables specialized processing, while its small-world and hierarchical 
features facilitate the rapid transmission of information across regions. For example, 
the default mode network (DMN) is active during repose and is involved in self-
referential thought, memory consolidation, and planning. The DMN's connectivity 
abnormalities have been associated with mental health conditions, highlighting the role 
of network dynamics in the development of cognitive health and disease [13], [25]. 

Network theory is also beneficial to developmental neuroscience, particularly in 
the context of investigating changes in brain connectivity throughout the lifespan. 
Modular integration and long-range connectivity are particularly important during 
adolescence, a time when individuals are more susceptible to mental health issues. 
These observations have the potential to inform translational applications, in which 
network-focused interventions such as cognitive training or neurostimulation can 
enhance healthy connectivity patterns during critical developmental stages[22], [24]. 

In neuroscience, network theory has become an essential instrument, enhancing 
our comprehension of cognitive functions and advancing methods for diagnosing, 
monitoring, and treating neurological conditions. Network theory provides the way for 
future research and applications in clinical and experimental neuroscience by 
emphasizing the brain's inherent connectivity and integrative properties. 
 

1.6 EEG and ML in Cognitive Workload Assessment 
 
Particularly during demanding activities, mental tasks comprise a diverse array of 
cognitive operations, including information storage, processing, transfer, and retrieval, 
which can impede performance [26]. A reallocation of cognitive resources is necessary 
for sustained high-efficiency mental efforts, particularly in challenging tasks, which 
ultimately increases the mental workload [27]. Recent research suggests that 
increased work engagement or intensity can result in mental fatigue, reduced 
operational performance, and health issues such as exhaustion syndrome [28], [29]. 
The potential for real-world evaluation of cognitive burdens is presented by the 
accurate assessment of workload-related mental states, which has the potential to be 
applied in clinical settings [30], [31]. In spite of the extensive research conducted on 
cognitive workload [28], the comprehension of the brain's functions and the 
mechanisms that regulate them remains a challenge, particularly in the context of real-
world EEG workload detection, where methodological constraints limit practical 
applications. 

The electroencephalogram (EEG) is a non-invasive, cost-effective, and practical 
method for measuring brain activity with high temporal resolution [32]. Studies have 
shown that EEG brain oscillations are strongly correlated with cognitive burden, 
identifying neuronal processes that serve as reliable indicators of workload [33], [34]. 
It has been demonstrated that brain wave patterns, including parieto-occipital alpha 
and temporal beta power [35], as well as alpha/theta power in frontal and posterior 
regions [36], [37], are influenced by task complexity and exertion. 

The effective monitoring and interpretation of mental stress mechanisms are 
facilitated by machine learning (ML) techniques, which are necessary due to the 
complexity of neural oscillatory activity across various brain regions. Despite the fact 
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that the majority of ML studies concentrate on classification performance without 
thoroughly considering physiological noise or data quality, the capacity to differentiate 
cognitive states using EEG features supports the development of high-performing, 
transparent classification models. The integration of ML with EEG-based features not 
only improves the discrimination between workload-related cognitive states but also 
reveals underlying mental processes associated with brain wave frequencies and 
cranium locations [38], [39], [40], [41]. For instance, Wang et al. [41] utilized a proximal 
support vector machine (SVM) in a four-level working memory task to achieve superior 
performance. They capitalized on EEG features such as alpha, frontal theta, and 
posterior high beta and low gamma bands. Similarly, research has emphasized the 
importance of delta band activity in the evaluation of workload, particularly in frontal 
regions, as well as reductions in brain wave amplitude (e.g., centroparietal alpha and 
midline beta) [40]. 

Nevertheless, the challenge of generalizing EEG features across a variety of 
tasks remains, despite these advancements. Cross-task workload classification 
frequently experiences diminished accuracy as a result of task-dependent 
characteristics that fail to capture global workload traits, despite the fact that single-
task workload classification has demonstrated reliable performance. Therefore, the 
classification accuracy in cross-task scenarios frequently remains at or near chance 
levels [42], [43], [44], with only a handful of exceptions attaining dependable results 
[45]. In order to enhance performance, research has investigated the integration of a 
variety of cognitive attributes, including spatial, spectral, and temporal EEG features, 
or the integration of features from other electrophysiological modalities [46], [47]. The 
accuracy of cross-task classification can be improved by the introduction of new 
features [47], [48]. 

Recent research has demonstrated that the human connectome is a large-scale 
network of interconnected regions that the brain operates as. This structure enables 
the integration of information, functional processing, and neural communication [49]. 
Insights into these intricate brain functions are provided by functional connectivity (FC) 
under varying burden conditions, which reveals localized and global processing and 
modulations of the brain's topological properties as a result of task load effects [49], 
[50]. 

The incorporation of FC features into ML frameworks improves interpretability by 
revealing the brain's functional reorganization and the concealed layers of cognitive 
processes associated with mental fatigue. This method has demonstrated potential for 
enhancing classification performance [50], [51], [52]. Nevertheless, there is a scarcity 
of research that has integrated FC into ML models to examine task-related brain 
function alterations or brain region communication under varying workload levels in 
simulated environments [53], [54] . A notable research [55] employed Feature selection 
features to discriminate between cross-task workloads, resulting in a task-independent 
classification accuracy of 0.87 through the analysis of frontal theta and beta band 
power variations. 
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2 Materials and Methods 

2.1 Data Acquisition Protocol and Recruitment Criteria 
 
The data acquisition protocol was structured to investigate the impact of sleep 
deprivation on brain connectivity and cognitive performance in a clinical setting. 
Participants were recruited from doctors and nursing staff at the 401 General Military 
Hospital of Athens, with EEG data collection carried out in collaboration with the 
Biomedical Optics and Applied Biophysics Laboratory at the National Technical 
University of Athens. The study included 20 volunteers aged 22 to 40, who met specific 
inclusion criteria: participants had to be in good general health, free from neurological 
or psychiatric conditions, and not currently using medications that could affect 
cognitive performance or brain activity. They were divided into two groups: a fatigue 
group, consisting of participants who had completed a long shift and were sleep-
deprived, and a control group in a rested state. This design allowed for direct 
comparison between fatigued and non-fatigued participants under identical conditions. 

The protocol included a series of cognitive tasks structured to assess mental 
fatigue and cognitive performance. First, participants completed a resting-state 
recording by focusing on a fixed point for five minutes to establish baseline neural 
activity. Following this, they performed the Psychomotor Vigilance Test (PVT), a task 
designed to measure sustained attention and response speed by requiring participants 
to react to visual stimuli appearing on a screen at random intervals. The PVT is highly 
sensitive to sleep deprivation effects and evaluates reaction time consistency. 

Two working memory tasks were also included to evaluate cognitive function 
under conditions of rest and fatigue. The N-Back Task required participants to view 
images on a screen and identify whether each image matched the one shown two 
images earlier. This task places demands on spatial working memory, requiring 
participants to continuously update and recognize visual information. The second 
working memory task, the Paced Auditory Serial Addition Test (PASAT), involved 
listening to a sequence of numbers and adding each new number to the one that 
immediately preceded it. The PASAT measures working memory, processing speed, 
and attention, challenging participants to process and retain auditory information 
continuously. 

EEG data from 54 trials was collected using a 64-channel Biosemi ActiveTwo 
system in line with the 10-20 electrode placement standard, capturing brain activity 
across different scalp regions for 1024 samples at 256Hz Sampling rate. EEG signals 
were synchronized with behavioural responses to provide insight into the neural 
dynamics associated with reaction times and task accuracy. Data was later filtered to 
analyse activity across specific frequency bands, enabling the comparison of 
connectivity patterns between rest and fatigue conditions across the different cognitive 
tasks. This protocol allowed for a detailed analysis of how sleep deprivation and mental 
fatigue influence both cognitive performance and neural connectivity. 

Ethical approval for this study was obtained from the institutional review board, 
ensuring that all procedures complied with ethical standards for research involving 
human participants. Each participant provided informed consent before participating, 
fully understanding the study's objectives, procedures, and any potential risks involved. 
Confidentiality was maintained by anonymizing data, and participants were informed 
of their right to withdraw from the study at any time without consequence. Special care 
was taken to ensure the physical and psychological well-being of all participants, 
especially those undergoing tasks after extended work shifts, to prevent undue stress 
or discomfort. This protocol adheres to the principles outlined in the Declaration of 
Helsinki, safeguarding participant rights and welfare throughout the study. 
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2.2 EEG Data Analysis Pipeline 
 
We implemented using MATLAB® and EEGLAB [56] a detailed pipeline for analyzing 
EEG data to classify resting and fatigue states. This pipeline is organized into distinct 
stages, including preprocessing EEG signals, extracting functional connectivity 
features, applying advanced feature selection methods, performing machine learning 
classification, and interpreting the results by identifying significant EEG channels and 
frequency bands. The ultimate aim is to uncover neural patterns indicative of fatigue, 
providing both practical applications and physiological insights. 
 

 
Figure 3: EEG Data analysis Pipeline 

 
The preprocessing stage begins by loading EEG data digitized at a sampling rate of 
256 Hz from two conditions: resting and fatigue. Data is organized into batches, with 
each subject's recordings processed independently. The EEG signals are then filtered 
into five standard frequency bands—delta (1–4 Hz), theta (4–7 Hz), alpha (8–12 Hz), 
beta (13–30 Hz), and gamma (31–45 Hz)—using zero-phase finite impulse response 
(FIR) filters. Each band captures unique neurophysiological states, such as relaxation 
(theta) or cognitive activity (beta and gamma). After filtering, the Phase Lag Index (PLI) 
is computed for each frequency band. The PLI measures phase synchronization 
between EEG channels and reflects functional connectivity in the brain. For each 
subject and frequency band, PLI matrices are computed and averaged across trials to 
reduce noise and variability, ensuring robust feature extraction. 

The feature extraction step involves processing the PLI matrices to generate 
feature vectors. Each PLI matrix is symmetrical, representing functional connectivity 
between pairs of EEG channels. The upper triangular elements, excluding the 
diagonal, are extracted to form one-dimensional feature vectors. These vectors, 
representing unique connectivity features, are compiled into a feature matrix where 
each row corresponds to a subject, and each column represents a connectivity feature. 
Separate feature matrices are created for the resting and fatigue conditions. These 
matrices are then merged into a single dataset with binary labels: 0 for resting and 1 
for fatigue. This labeled dataset forms the foundation for subsequent feature selection 
and classification. 

To enhance the classification process, feature selection is employed to identify 
the most relevant features while reducing dimensionality. The pipeline integrates 
several advanced feature selection algorithms, each offering unique strengths. Infinite 
Latent Feature Selection (ILFS) identifies features by balancing relevance and 
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redundancy. ReliefF evaluates features based on their ability to separate instances 
near decision boundaries, while Mutual Information Feature Selection (MutInfFS) 
selects features that maximize information gain. Recursive Feature Elimination (RFE) 
iteratively removes less informative features based on classifier performance, and 
Correlation-Based Feature Selection (CFS) prioritizes features with high relevance to 
the class and low inter-correlation. Other methods include the Laplacian Score, which 
preserves local data geometry, and Fisher Score, which ranks features by class 
separability. LASSO regression employs L1 regularization to shrink less relevant 
features to zero, and Local Learning-Based Clustering Feature Selection (LLCFS) 
selects features that minimize clustering error. Finally, RFE with Correlation Bias 
Reduction (RFECBR) refines feature selection using linear or Gaussian kernels to 
reduce bias. These methods are applied using Leave-One-Subject-Out (LOSO) cross-
validation to ensure robust and unbiased evaluation. The output is a ranked list of 
features for each cross-validation fold. 

The selected features are used to train and test machine learning classifiers for 
distinguishing between resting and fatigue states. Five classifiers are implemented, 
including K-Nearest Neighbors (KNN), which classifies data based on the majority 
class of the nearest neighbors, and Support Vector Machines (SVM) with both linear 
and Radial Basis Function (RBF) kernels. Linear Discriminant Analysis (LDA) projects 
the data onto a lower-dimensional space that maximizes class separability, while 
Random Forest (RF) employs an ensemble of decision trees to enhance accuracy and 
reduce overfitting. Each classifier is evaluated using metrics such as accuracy, 
sensitivity, specificity, and the area under the receiver operating characteristic curve 
(AUC). The number of features is systematically varied to optimize classification 
performance, with results visualized to show the relationship between the number of 
features and accuracy. 

The results are aggregated and visualized to provide insights into classifier 
performance and the effectiveness of feature selection methods. The accuracy of each 
classifier is averaged across all cross-validation folds, and combined accuracy metrics 
are computed to determine the optimal feature set. This stage highlights the trade-off 
between the number of features and classification accuracy, enabling the identification 
of an optimal feature subset. 
 

2.2.1 EEG Preprocessing 

 
The filtering process in EEG preprocessing is essential for isolating neural oscillations 
within specific frequency bands, each associated with distinct cognitive and 
physiological states. In the preprocessing pipeline used in this study, filtering was 
applied to the EEG signals using EEGLAB’s filtering function. EEGLAB [56], a 
MATLAB® toolbox for EEG analysis, provides tools for data preprocessing, artifact 
removal, and connectivity measurements. The filtering function allows for precise 
control over the frequency range, enabling the filtering of EEG data within specific 
bands to focus on relevant neural activity while eliminating unwanted noise. Finite 
Impulse Response (FIR) band-pass filters were employed in order to isolate the brain 
frequency bands [57]. 

The FIR Filter of N order the output sequence is calculated  

𝑦[𝑛] =∑𝑏𝑖𝑥[𝑛 − 𝑖]

𝑁

𝑖=0

 (1) 

where N is the filter order, 𝑏𝑖 is the impulse response of the filter, x[n] is the input signal, 
and y[n] is the output signal. 

Each frequency band is associated with distinct neural processes and cognitive 
states, making it crucial to separate them for targeted analysis. 

 
1. Delta Waves (1-4 Hz): The lowest frequency band, delta waves are prominent 

during deep sleep stages and are essential for restorative sleep and brain 
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recovery. Delta waves are often linked to low cognitive arousal and 
disengagement from external stimuli. Excessive delta activity while awake can 
indicate fatigue or impaired cognitive processing, as the brain enters a state 
that resembles sleep-like disengagement. 

2. Theta Waves (4-7 Hz): Theta waves are often linked to drowsiness, light sleep, 
and meditation. Theta oscillations are known to play a role in memory 
processes, learning, and emotional processing, especially during tasks 
requiring focused internal attention. In the context of fatigue, elevated theta 
activity is often observed, reflecting decreased alertness and a more relaxed, 
less vigilant mental state. 

3. Alpha Waves (8-12 Hz): Alpha waves are typically observed during wakeful 
relaxation, particularly with eyes closed. They represent an idle state where the 
brain is not actively processing sensory input. Alpha activity decreases with 
mental exertion and focused attention, making it a valuable indicator of 
relaxation versus cognitive engagement. In states of fatigue, alpha activity can 
increase as the brain moves toward a more restful state, reflecting a decline in 
active, alert processing. 

4. Beta Waves (13-30 Hz): Beta waves are associated with active thinking, 
problem-solving, and high mental engagement. This frequency band is linked 
to focused attention, concentration, and heightened cognitive performance. 
During states of fatigue, beta activity often decreases as the brain’s capacity 
for sustained attention and executive processing diminishes. A drop in beta 
waves can signal reduced cognitive control and slower response times in 
demanding tasks. 

5. Gamma Waves (31-45 Hz): Gamma waves are the highest frequency band 
typically analysed in EEG and are associated with higher-order cognitive 
functions, such as perception, attention, and memory integration. Gamma 
activity is crucial for complex information processing and is involved in multi-
sensory integration and conscious perception. Fatigue may disrupt gamma 
activity, reflecting decreased cognitive efficiency and slower processing speeds 
in high-demand tasks. 

 
By bandpass filtering the EEG data into these frequency-specific bands, the 

preprocessing step helps to isolate the oscillatory activity most relevant for 
understanding brain states related to rest and fatigue. Filtering enables precise 
analysis by discarding frequencies outside the target range, ensuring that only relevant 
brain wave information is used in further analyses.  
 

2.2.2 Feature Extraction Using Phase Lag Index (PLI) 

 
The Phase Lag Index (PLI) is a connectivity measure commonly used in EEG analysis 
to assess the synchronization between different brain regions [11], [13]. Specifically, 
PLI quantifies the consistency of phase differences between pairs of EEG signals over 
time, offering insights into the functional connectivity within the brain. It is particularly 
valuable because it is robust against volume conduction effects, which can distort 
connectivity estimates by creating artificial correlations between electrodes in 
proximity. By focusing on phase differences rather than amplitude correlations, PLI 
provides a more accurate representation of the underlying neural interactions. 

PLI computation starts by calculating the instantaneous phase of each EEG 
signal, often using the Hilbert transform or a similar time-frequency analysis method. 
The phase of a signal at a given time point reflects the position within its oscillatory 
cycle (e.g., peak, trough, or mid-cycle). For two signals, the phase difference at each 
time point can be determined by subtracting one phase from the other. When two 
signals are in sync, their phase differences remain stable, either consistently positive 
or negative. However, if the signals are out of sync or vary in synchronization, the 
phase differences will fluctuate around zero. 
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The PLI is calculated by determining the consistency in the sign of these phase 
differences over time. Specifically, it is the proportion of time points where the phase 
difference between two signals does not equal zero. Mathematically, PLI is defined as: 

𝑃𝐿𝐼 = |
1

𝑁
∑𝑠𝑖𝑔𝑛(∆

𝑁

𝑡=1

𝜑𝑡)| (2) 

 
where Ν is the number of time points and ΔΦt represents the phase difference at time 
t. The sign function is applied to the phase difference to obtain only the direction 
(positive or negative) of phase lag, ignoring the exact magnitude. PLI values range 
from 0 to 1: a PLI of 0 indicates no consistent phase relationship, while a PLI close to 
1 reflects a strong, consistent lag in phase, suggesting a directional influence or 
causality between signals. 

In practice, PLI is calculated across various frequency bands to capture 
functional connectivity in specific ranges associated with different cognitive and 
physiological states. For example, lower frequencies (such as delta and theta bands) 
are typically linked to cognitive states like attention and memory, while higher 
frequencies (alpha, beta, and gamma bands) are associated with processes such as 
perception and motor functions. By analyzing PLI in these distinct frequency bands, 
researchers can obtain a frequency-specific map of connectivity patterns, which 
provides more detailed insights into brain dynamics. 

PLI is particularly suited for studying connectivity in EEG data because it 
minimizes the influence of spurious correlations caused by volume conduction. Volume 
conduction can result in misleading correlations between signals simply due to their 
spatial proximity rather than actual neural interactions. Since PLI only considers phase 
shifts that reflect genuine interaction and not zero-phase lag, it is relatively immune to 
these artifacts, making it a more reliable measure of functional connectivity than simple 
coherence or correlation-based measures. 
 

2.2.3 Feature Selection Algorithms 

 
To improve classification accuracy, the pipeline incorporates feature selection to 
identify the most significant features while reducing the dataset's dimensionality. 
Several advanced algorithms are utilized, each offering distinct advantages. Infinite 
Latent Feature Selection (ILFS) selects features by balancing their relevance and 
redundancy. ReliefF focuses on features that effectively differentiate instances near 
decision boundaries, while Mutual Information Feature Selection (MutInfFS) targets 
features that maximize information gain. Recursive Feature Elimination (RFE) 
systematically removes the least important features based on classifier performance, 
and Correlation-Based Feature Selection (CFS) emphasizes features with strong 
correlations to the target class but low inter-correlation among themselves. Additional 
techniques include the Laplacian Score, which maintains the local geometric structure 
of the data, and the Fisher Score, which ranks features based on their ability to 
distinguish between classes. LASSO regression applies L1 regularization to eliminate 
less relevant features, and Local Learning-Based Clustering Feature Selection 
(LLCFS) minimizes clustering errors to identify key features. Lastly, RFE with 
Correlation Bias Reduction (RFECBR) improves feature selection by addressing 
correlation bias, employing either linear or Gaussian kernels. These methods are 
applied within a Leave-One-Subject-Out (LOSO) cross-validation framework, ensuring 
unbiased and robust evaluation.  
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2.2.3.1 Infinite Latent Feature Selection (ILFS) 
 
Infinite Latent Feature Selection (ILFS) is a sophisticated feature selection technique 
intended for high-dimensional datasets characterized by complex architecture. 
Conventional feature selection techniques frequently focus on statistical metrics that 
evaluate features in isolation or examine pairwise correlations, which may be 
inadequate for revealing the complex interdependencies that characterize intricate 
datasets such as electroencephalography (EEG) signals. ILFS mitigates this 
disadvantage by creating an infinite feature selection graph that represents both global 
and local data structures, facilitating the discovery of features that are meaningful, non-
redundant, and representational of the underlying data manifold [58]. 

The core concept of ILFS involves showing the connections between 
characteristics and samples via a graph-based methodology. ILFS assesses the 
significance of each feature by examining an unlimited array of potential feature 
subsets, focusing on its role in reconstructing the complete dataset. This is 
accomplished by computing a feature relevance score using pseudo-inverse 
projections, which measure the extent to which one feature may be linearly 
approximated by others. Features that substantially influence the reconstruction error 
are considered more significant, since they offer distinct information not represented 
by other features. 

ILFS enhances feature rankings by integrating locality information, so assuring 
that the chosen features maintain the local neighborhood structure of the data. This is 
especially significant in datasets where local patterns are essential for differentiating 
across classes. ILFS adeptly finds characteristics that augment the discriminative 
capacity of machine learning models by harmonizing global reconstruction capabilities 
with local structural preservation. 

A significant advantage of ILFS is its parameter-free characteristic, which 
eliminates the necessity for substantial tuning and enhances its adaptability to many 
data kinds. Its resilience to strongly correlated features and capacity to capture 
nonlinear interactions without explicit kernel functions render it appropriate for complex 
biomedical datasets. Research indicates that ILFS can markedly enhance 
classification accuracy by decreasing dimensionality while preserving critical 
information, hence improving computing efficiency and model interpretability. 

 

2.2.3.2 ReliefF 
 
ReliefF is a widely used feature selection algorithm that enhances the original Relief 
method to accommodate multiclass issues and increase resilience to noisy and 
incomplete data. ReliefF, a filter-based feature selection method, assesses feature 
quality by measuring their capacity to differentiate between identical occurrences. It 
functions by allocating weights to features according to their efficacy in distinguishing 
between instances of the same class (nearest hits) and examples of other classes 
(nearest misses) [59], [60].  

The procedure begins by randomly choosing a selection of cases from the 
dataset. For each chosen instance, ReliefF determines its nearest neighbors: one from 
the same class and one from each of the other classes in the dataset. Subsequently, 
it adjusts the weight of each feature based on the difference between the feature 
values of the instance and those of its neighbors. If a feature value differs between the 
instance and a nearby miss (of a different class), the weight of the feature is 
augmented, signifying its use in class differentiation. If the feature value varies 
between the instance and a nearest hit of the same class, the weight is diminished, 
indicating that the feature may lack reliability for classification.  

A fundamental advantage of ReliefF is its capacity to capture feature connections 
and interactions without presuming feature independence. It is responsive to 
characteristics that are conditionally dependent on other features, proving it useful in 
detecting combinatorial patterns within the data. Moreover, ReliefF exhibits greater 
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computational efficiency than wrapper approaches, as it does not need the training of 
a classifier for every assessed feature subset.  

ReliefF has been effectively utilized across several fields, including as biological 
signal processing, genetics, and text categorization. Researchers can enhance the 
effectiveness of machine learning classifiers by sorting features according to their 
weights and selecting the most informative ones. 
 

2.2.3.3 Mutual Information Feature Selection (MutInfFS) 
 

Mutual Information Feature Selection (MutInfFS) is a statistical technique employed to 
find and choose pertinent features in high-dimensional datasets, especially in 
supervised learning contexts. It utilizes the principle of mutual information from 
information theory, which measures the information one random variable contains 
relating to another. MutInfFS efficiently quantifies the mutual dependency between 
each feature and the target variable, capturing both linear and nonlinear interactions 
without supposing any particular data distribution [61], [62]. 

In MutInfFS, the mutual information for each feature relative to the class labels 
is calculated separately. This metric indicates the extent to which the knowledge of a 
feature's value diminishes the uncertainty of the target variable. Features exhibiting 
elevated mutual information scores tend to be more informative since they offer 
substantial insights into the behavior of the target variable. The algorithm orders the 
features according to these scores in descending sequence, facilitating the selection 
of the highest-ranked features for model training. 
The main advantage of MutInfFS is its capacity to identify complicated, nonlinear 
connections that conventional correlation-based techniques may neglect. This renders 
it especially appropriate for domains such as biomedical engineering and 
bioinformatics, where data frequently display complex interrelations.  By concentrating 
on the most informative attributes, it augments the efficacy of machine learning 
classifiers, resulting in enhanced accuracy and interpretability. 

Nonetheless, the computation of mutual information poses specific difficulties. 
Estimating mutual information from finite samples can be computationally demanding 
and necessitates meticulous attention to binning strategies or kernel density estimation 
methods for continuous variables. These estimate approaches may add bias or 
volatility, hence impacting the dependability of the mutual information scores. 

In practice, MutInfFS is valued for its simplicity and efficacy across several 
domains. It functions as a filtering technique, rendering it computationally more 
efficient than wrapper techniques that need model training for each assessed feature 
subset. MutInfFS accelerates the training of machine learning models by diminishing 
data dimensionality, hence mitigating the curse of dimensionality, which may enhance 
model generalization and decrease overfitting. 
 

2.2.3.4 Feature Selection with SVM (FSV) 
 
Feature Selection using Support Vector Machines (FSV) is a supervised approach that 
utilizes Support Vector Machines (SVMs) to discern the most useful features for 
classification purposes. In high-dimensional datasets, particularly in biological signal 
processing and bioinformatics, the selection of pertinent features is essential for 
optimizing model performance, minimizing computing cost, and augmenting 
interpretability. FSV employs the characteristics of SVMs, namely their capacity to 
identify optimum hyperplanes that maximally divide classes, to rank features according 
to their influence on the decision boundary[63], [64]. 

The basic theory of FSV entails building a Support Vector Machine (SVM) model 
on the dataset and examining the weights attributed to each feature. In linear SVMs, 
the magnitudes of the weight vector components directly indicate the significance of 
the associated features. Features with greater weights impose a more substantial 
influence on the hyperplane's placement and, thus, on the classification result. FSV 
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finds the most significant attributes for class distinction by ranking them based on the 
size of their weights. 

FSV may be generalized to nonlinear SVMs by the utilization of kernel functions, 
including the radial basis function (RBF) kernel. Nonetheless, evaluating feature 
significance in nonlinear models is more complicated due to the implicit modification of 
the feature space. Methods like as Recursive Feature Elimination (RFE) are frequently 
combined with Support Vector Machines (SVMs) to systematically eliminate the least 
significant features according to model performance, therefore optimizing the feature 
set to those that improve classification precision. 

Feature selection utilizing SVM is an effective technique that incorporates feature 
selection directly inside the classification model. By employing the weights obtained 
from SVM training, FSV prioritizes features according to their influence on the decision 
boundary, encompassing both the significance of individual features and their 
interconnections. Despite processing difficulties, FSV provides significant insights into 
feature significance, facilitating the creation of more precise and interpretable machine 
learning models, especially in domains involving intricate, high-dimensional data such 
as EEG signal analysis. 

 

2.2.3.5 Laplacian Score 
 
Laplacian Score is an unsupervised feature selection technique that assesses the 
significance of features by their capacity to maintain the inherent geometric structure 
of the data. In contrast to supervised approaches that depend on class labels, the 
Laplacian Score evaluates features by examining the local manifold structure, making 
it especially appropriate for datasets with little or inconsistent label information. This 
approach is based on the ideas of manifold learning and spectral graph theory, utilizing 
the concept that data points in proximity inside a high-dimensional space should 
remain adjacent in a lower-dimensional representation[65], [66]. 

The fundamental principle of the Laplacian Score involves the creation of a 
nearest-neighbor graph to represent the local associations between data points. Each 
node in the graph signifies a data sample, and edges link nodes considered neighbors 
according to a selected distance measure, commonly the Euclidean distance. The 
weight of each edge indicates the similarity between the associated nodes. The 
Laplacian Score for each feature is calculated by assessing its effectiveness in 
preserving the locality structure established by the graph. This includes calculating the 
variance of the feature, weighted by the Laplacian matrix of the graph, which 
represents the graph's connectedness and weights. 

Features that provide low Laplacian Scores are considered more significant 
since they more effectively maintain the local neighborhood structure of the data. A 
low Laplacian Score signifies that the feature exhibits analogous values for proximate 
data points while displaying distinct values for remote sites, consistent with the 
manifold assumption that adjacent points are inclined to possess comparable 
characteristics. The approach efficiently decreases dimensionality by picking features 
with low Laplacian Scores, while preserving the dataset's fundamental structural 
information. 

The Laplacian Score approach offers an important advantage in its capacity to 
manage nonlinear patterns included in complicated datasets, including those seen in 
image processing, text mining, and biological signal analysis, such as EEG data. It is 
frequently utilized with supervised algorithms to equilibrate the retention of data 
geometry with class differentiation. It functions as an essential instrument in the 
preprocessing phase, decreasing dimensionality and emphasizing aspects that are 
structurally pertinent. Integrating Laplacian Score-based feature selection with 
machine learning classifiers can boost model performance, improve computational 
efficiency, and provide deeper insights into the underlying data structures. 
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2.2.3.6 Fisher Score 
 
Feature Selection with Fisher Score is a supervised method extensively used for 
identifying and ranking important features in classification tasks, particularly within 
high-dimensional datasets common in fields like biomedical signal processing. The 
Fisher Score evaluates each feature individually based on its ability to discriminate 
between different classes. It operates by measuring the ratio of between-class 
variance to within-class variance for each feature, thereby quantifying how well a 
feature can separate the data into distinct categories [67], [68]. 

Mathematically, the Fisher Score for a given feature is calculated by taking the 
squared difference between the mean feature values of each class and the overall 
mean, weighted by the class probabilities, and dividing it by the sum of the variances 
within each class. A higher Fisher Score indicates that the feature has a greater 
discriminative power, as it shows significant differences between classes while 
maintaining consistency within classes. By ranking features according to their Fisher 
Scores, one can select the top-ranked features that contribute most effectively to class 
separation. 

One of the primary advantages of the Fisher Score method is its simplicity and 
computational efficiency. It does not require iterative optimization or complex 
algorithms, making it suitable for large datasets where computational resources may 
be limited. Additionally, since it evaluates each feature independently, it is easily 
parallelizable, which can further reduce computation time. 

In the context of EEG-based mental fatigue detection, Feature Selection with 
Fisher Score can effectively identify features that reflect significant differences in brain 
activity between rest and fatigue states. By selecting features with high Fisher Scores, 
machine learning classifiers can achieve improved accuracy and generalization, as the 
selected features provide clear separation between the cognitive states. 
 

2.2.3.7 Local Learning-Based Clustering Feature Selection (LLCFS) 
 
Local Learning-Based Clustering Feature Selection (LLCFS) is an unsupervised 
feature selection method that is specifically designed to manage high-dimensional 
datasets with intricate structures. LLCFS concentrates on the identification of the most 
important characteristics for local learning and clustering tasks by encoding the 
intrinsic manifold structure of the data. The preservation of local neighborhood 
relationships among data points is the primary focus of LLCFS, which operates without 
supervision, in contrast to traditional methods that require class identifiers or rely on 
global data properties [69], [70]. 

The fundamental concept of LLCFS is the development of a local learning model 
that approximates the data distribution in close proximity of each data point. It relies 
on the assumption that data elements that are in close proximity to one another in the 
high-dimensional space are likely to exhibit similar characteristics. LLCFS attempts to 
identify features that most accurately depict the local geometry of the data manifold by 
modelling these local neighborhoods. 

LLCFS employs a clustering-based objective function that evaluates the 
significance of features by assessing their capacity to preserve local similarities. In 
particular, it determines a locality-preserving score for each feature by assessing the 
extent to which the feature contributes to the reconstruction of data points from their 
neighbors. Features that generate reduced reconstruction errors are prioritized due to 
their superior preservation of the data's local structure. 

The capacity of LLCFS to manage nonlinear data distributions and identify 
meaningful patterns that may not be detectable by global feature selection methods is 
a significant advantage. This renders it especially well-suited for applications such as 
biomedical signal processing, image recognition, and text mining, as well as the 
analysis of electroencephalography (EEG) data. In the context of EEG signals, LLCFS 
can identify features that capture subtle, localized patterns of brain activity associated 
with different cognitive states. 
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LLCFS effectively reduces dimensionality while retaining essential information 
by concentrating on local structures, thereby improving the performance and efficacy 
of machine learning algorithms that are applied subsequently. The technique is also 
computationally efficient, as it does not require the complex optimization procedures 
that are common in some wrapper and embedded methods. 
 

2.2.3.8 Correlation-based Feature Selection (CFS) 
 
Correlation-based Feature Selection (CFS) is a filter-based feature selection method 
that evaluates subsets of features based on their predictive ability and the level of 
redundancy among them. The fundamental principle of CFS is that a good feature 
subset is one that contains features highly correlated with the target variable (class) 
while having low intercorrelation among themselves. By focusing on the selection of 
feature subsets rather than individual features, CFS aims to identify groups of features 
that collectively contribute to improved model performance[71]. CFS operates by 
calculating a merit score for each potential feature subset using the formula: 
 

𝑀𝑒𝑟𝑖𝑡𝑠 =
𝑘𝑟𝑐𝑓̅̅ ̅̅

√𝑘 + (𝑘 − 1)𝑟𝑓𝑓̅̅ ̅̅
 (3) 

 

• k is the number of features 

• 𝑟𝑐𝑓̅̅ ̅̅  is the average feature class correlation 

• 𝑟𝑓𝑓̅̅ ̅̅  is the average feature-feature correlation 

 
 

This formula balances the relevance of the features to the class label against the 
redundancy among the features. A higher merit score indicates a feature subset where 
features are strongly associated with the class but are weakly correlated with each 
other. 

In practice, CFS employs heuristic search strategies such as best-first search, 
greedy stepwise selection, or genetic algorithms to navigate the space of possible 
feature subsets efficiently. These strategies help in managing computational 
complexity, especially in high-dimensional datasets. By evaluating subsets rather than 
individual features, CFS accounts for feature interactions and synergy, which can be 
crucial in complex domains like biomedical signal processing. 

A notable feature of CFS is its simplicity and computational efficiency in contrast 
to wrapper approaches, which need training a classifier for each assessed subset. 
CFS, as a filter technique, operates independently of any particular learning algorithm, 
hence augmenting its adaptability and facilitating its inclusion into other preprocessing 
pipelines. It efficiently lowers dimensionality, resulting in accelerated training durations 
and perhaps enhancing the generalization efficacy of machine learning models by 
reducing overfitting. 

 

2.2.3.9 Lasso Regression  
 
Lasso Regression, or Least Absolute Shrinkage and Selection Operator, is a 
significant method in statistical modelling and machine learning for managing high-
dimensional datasets. Lasso Regression concurrently performs variable selection and 
regularization, hence improving the predictive accuracy and interpretability of the 
resultant model. It accomplishes this by applying an L1 regularization penalty on the 
absolute values of the regression coefficients, so reducing some of them to precisely 
zero. This characteristic inevitably chooses a more straightforward model that 
preserves just the most crucial characteristics, rendering Lasso an effective instrument 
for feature selection. [72], [73]. 
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Mathematically, Lasso minimizes the objective function: 
 

𝑚𝑖𝑛𝛽 (
1

2𝑛
∑(𝑦𝑖 − 𝑋𝑖𝛽)

2 + 𝜆∑|𝛽𝑗|

𝑝

𝑗=1

𝑛

𝑖=1

) (4) 

 
where n is the number of observations, p is the number of predictors, yi is the response 
variable, Xi represents the predictor variables, βj are the coefficients, and λ is the 
regularization parameter controlling the strength of the penalty.  

The L1 penalty 𝜆 ∑ |𝛽𝑗|
𝑝
𝑗=1 encourages sparsity in the coefficient vector β leading to the 

elimination of less important features. 
Lasso Regression is very beneficial in the realm of high-dimensional data, such 

as electroencephalography (EEG) signals. EEG datasets frequently exhibit a 
substantial number of characteristics in relation to the number of observations, with 
many of these features potentially being unnecessary or redundant. Utilizing Lasso 
facilitates dimensionality reduction by identifying a subset of features that most 
effectively predict the target variable, thereby enhancing computing efficiency and 
mitigating the danger of overfitting.  

Lasso Regression's primary advantage in feature selection is its capacity to 
manage multicollinearity among predictors. In scenarios where predictors exhibit 
strong correlation, conventional regression techniques may encounter difficulties in 
yielding consistent results. Lasso, however, often selects a single predictor from a set 
of associated predictors while reducing the rest to zero, therefore streamlining the 
model with minimal information loss. 

Lasso Regression has been effectively utilized across several fields, including 
as genetics, image processing, and signal processing. In EEG-based mental fatigue 
detection, it facilitates the identification of critical neural signatures linked to fatigue by 
extracting pertinent elements from complex brain connection metrics. This results in 
models that are both more interpretable and have enhanced generalization 
performance on new data. 
 

2.2.3.10 Recursive Feature Elimination with Correlation Bias Reduction 
(RFE-CBR-linear) 

 
Recursive Feature Elimination with Correlation Bias Reduction (RFE-CBR-linear) is a 
supervised feature selection technique aimed at improving machine learning model 
performance by efficiently identifying informative features and reducing the negative 
impact of feature collinearity. Traditional Recursive Feature Elimination (RFE) is a 
widely utilized method that systematically eliminates the least significant features 
according to the weights determined by a classifier, commonly a Support Vector 
Machine (SVM) with a linear kernel. However, RFE can be biased when features are 
correlated, as the weights assigned by the linear SVM may not accurately reflect the 
true importance of each feature due to redundancy among features [74], [75]. 

RFE-CBR-linear mitigates this problem by integrating a Correlation Bias 
Reduction (CBR) approach into the RFE methodology. The procedure starts by 
training a linear SVM on the complete feature set to derive initial weight coefficients. 
The weights are subsequently modified to reflect relationships among attributes. This 
modification entails calculating the correlation matrix of the characteristics and 
adjusting the weight of each feature inversely relative to its association with other 
features. This strategy mitigates bias from correlated features, guaranteeing that 
features are assessed according to their distinct contributions to prediction 
performance. 

The modified weights are employed to prioritize the characteristics, and the 
feature of least significance is discarded. The procedure is recursive; the SVM is re-
trained on the reduced feature set, and the weights are recalibrated and modified for 
correlation bias in each iteration. This process persists until a certain number of 



33 
 

characteristics is retained or a stopping requirement is fulfilled. The outcome is a 
sequential enumeration of properties that are relevant and minimally redundant. 

In high-dimensional datasets, such as those used in biological signal processing, 
including electroencephalography (EEG) data, RFE-CBR-linear is very beneficial. 
EEG data frequently exhibit significant feature correlation due to the intricate 
relationships among brain impulses. By mitigating the effects of feature correlation, 
RFE-CBR-linear identifies features that offer distinct and substantial information, 
hence improving the classifier's capacity to generalize to new data. 

A significant advantage of RFE-CBR-linear is the incorporation of feature 
selection within the model training process, which takes into account the interactions 
between features and the target variable. Furthermore, by mitigating correlation bias, 
the technique circumvents the possible drawbacks of conventional RFE, including the 
removal of relevant characteristics that exhibit connection with others. 

 

2.2.3.11 Recursive Feature Elimination with Correlation Bias Reduction 
(RFE-CBR-gaussian) 

 
Recursive Feature Elimination with Correlation Bias Reduction using a Gaussian 
Kernel (RFE-CBR-gaussian) is a sophisticated supervised feature selection technique 
aimed at improving machine learning efficiency in high-dimensional datasets marked 
by complex, non-linear relationships and feature correlations. Conventional Recursive 
Feature Elimination (RFE) is a widely utilized method that progressively eliminates the 
least significant features according to the weights allocated by a classifier, commonly 
a Support Vector Machine (SVM). Standard RFE may exhibit bias when correlated 
features are present, since the weight coefficients might not adequately represent the 
real significance of each feature due to redundancy[74], [75]. 

RFE-CBR-gaussian mitigates this disadvantage by including Correlation Bias 
Reduction (CBR) into the RFE methodology and utilizing a Support Vector Machine 
(SVM) with a Gaussian (Radial Basis Function) kernel. The Gaussian kernel enables 
the SVM to identify non-linear relationships between features and the target variable 
by transforming the input data into a higher-dimensional feature space. This capacity 
is especially vital in fields such as electroencephalography (EEG) signal processing 
because the fundamental patterns are intrinsically complex and non-linear. 

The CBR component modifies the feature significance ratings to consider 
correlations between features. During each iteration of the recursive elimination 
procedure, the algorithm calculates the correlation matrix of the existing feature set. It 
subsequently adjusts the weights allocated by the SVM by diminishing the impact of 
associated features, therefore guaranteeing that the selection process prioritizes 
characteristics that offer distinct and substantial contributions to the model's prediction 
performance. 
The RFE-CBR-gaussian algorithm operates iteratively as follows: 

1. Model Training: An SVM with a Gaussian kernel is trained on the current 
feature set. 

2. Weight Adjustment: The weights obtained from the SVM are adjusted based 
on the feature correlation matrix to mitigate bias. 

3. Feature Ranking: Features are ranked according to the adjusted weights. 
4. Feature Elimination: The least important feature(s) are removed from the 

feature set. 
Steps 1-4 are repeated until a predefined number of features remains or a stopping 
criterion is met. 

By incorporating correlation bias reduction and leveraging the non-linear 
modelling capabilities of the Gaussian kernel, RFE-CBR-gaussian effectively selects 
a subset of features that are both highly relevant and minimally redundant. This results 
in improved model generalization and predictive performance, especially in datasets 
where feature interactions are complex and non-linear. 
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2.2.4 Classification Algorithms 

 
The ranked selected features acquired from the feature selection algorithms   are 
utilized to train and evaluate machine learning classifiers aimed at differentiating 
between resting and fatigue states [76]. Five classifiers are employed in this process: 
K-Nearest Neighbors (KNN), which assigns class labels based on the majority vote 
among the nearest neighbors, and Support Vector Machines (SVM) with both linear 
and Radial Basis Function (RBF) kernels for capturing linear and nonlinear 
relationships, respectively. Linear Discriminant Analysis (LDA) reduces the data to a 
lower-dimensional space to maximize class separability, while Random Forest (RF) 
leverages an ensemble of decision trees to improve classification accuracy and 
mitigate overfitting. Performance metrics, including accuracy, sensitivity, specificity, 
and the area under the receiver operating characteristic curve (AUC), are used to 
assess each classifier. The number of features is systematically adjusted to optimize 
classification performance, and the results are visualized to illustrate the relationship 
between feature count and accuracy. 
 

2.2.4.1 k-Nearest Neighbors (kNN): 
 
The k-Nearest Neighbors (kNN) algorithm is a simple yet powerful method used in 
machine learning, particularly for classification tasks. It is an instance-based or lazy 
learning algorithm, meaning that instead of explicitly training a model, it uses the data 
itself to make predictions by referencing specific examples from the training set. Its 
intuitive nature and effectiveness make it a widely used algorithm, especially as a 
baseline for more complex models in pattern recognition [76], [77], [78]. 

The kNN algorithm classifies data points based on their proximity to other 
labelled points in the feature space. For a given, unlabelled data point, the algorithm 
identifies the k closest points from the training set known as the “neighbours” based 
on a defined distance metric. The Euclidean distance is the most commonly used 
metric, where the straight-line distance between two points is calculated, but other 
metrics, such as Manhattan distance (sum of absolute differences), Minkowski 
distance (a generalization that includes both Euclidean and Manhattan), or Cosine 
similarity, can also be applied depending on the data’s nature and distribution. 

The algorithm assigns a label to the new data point by majority voting among the 
k neighbours. For example, if k is set to 3, the algorithm will classify the point according 
to the majority label among its three nearest neighbors. The choice of k is crucial: 
smaller values of k make the model more sensitive to the local structure and can lead 
to overfitting, as it relies heavily on the closest data points, which might include noise 
or outliers. Larger values of k reduce this sensitivity, averaging over more points, but 
this can lead to underfitting, especially if points from different classes are included in 
the neighborhood. 

A distinctive feature of kNN is that it is a non-parametric algorithm, meaning it 
does not make assumptions about the underlying data distribution. This property 
makes it flexible and able to capture complex, non-linear decision boundaries, making 
it suitable for various applications where class boundaries are not easily separable. 
However, this also makes kNN computationally intensive since, for each prediction, it 
must calculate distances between the query point and every point in the training 
dataset. This can make kNN unsuitable for very large datasets, as the complexity for 
each classification scales with the number of instances in the dataset. To improve 
efficiency, data structures like KD-trees or Ball trees are often employed, particularly 
for low-dimensional data, as they allow for faster nearest-neighbor searches by 
organizing data points in a tree structure. 
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Preprocessing of the data is often necessary to ensure kNN performs optimally. 
Since distance calculations are sensitive to feature scales, normalization or 
standardization of features is important, especially in cases where features differ 
significantly in magnitude. Additionally, kNN is sensitive to irrelevant or redundant 
features, as these can distort the distance calculations, reducing the model’s accuracy. 
Dimensionality reduction techniques, such as Principal Component Analysis (PCA), or 
feature selection methods, can be applied to reduce the impact of irrelevant features 
and improve model performance. 

The kNN algorithm is widely used across fields due to its versatility and simplicity. 
It is popular in medical diagnostics, where it classifies diseases based on patient 
characteristics. Despite its limitations, such as its high sensitivity to the choice of k and 
computational inefficiency with large datasets, kNN remains a foundational algorithm 
in machine learning and is valuable for both practical applications and as a baseline 
model for comparison. Its simplicity and interpretability offer an excellent introduction 
to supervised learning and form the groundwork for understanding more complex 
algorithms. 

 

2.2.4.2 Support Vector Machine (SVM) with RBF Kernel 
 
The Support Vector Machine (SVM) with a Radial Basis Function (RBF) kernel is an 
effective and widely used machine learning technique, particularly for classification 
problems involving non-linearly separable data. Support Vector Machine (SVM) is a 
supervised learning algorithm designed to identify the ideal hyperplane that effectively 
distinguishes between classes within the feature space. It operates by converting data 
into a higher-dimensional space and identifying a decision boundary that maximizes 
the margin—the distance between the nearest data points (support vectors) from each 
class and the hyperplane [79], [80]. 

A linear SVM performs effectively when data is linearly separable. In instances 
where classes cannot be defined by a linear boundary, the RBF kernel, or Gaussian 
kernel, proves advantageous. The RBF kernel allows the SVM to identify complex, 
non-linear correlations in the data by transforming the original feature space into a 
higher-dimensional space where a linear boundary may be formed.  

Mathematically, the RBF kernel function is defined as: 
 

𝐾(𝑥𝑖 , 𝑥𝑗) = exp⁡ (−𝛾‖𝑥𝑖 − 𝑥𝑗‖
2
) (5) 

 
where xi and xj are data points, and γ is a parameter that controls the influence of 
individual training examples. A larger γ value allows each data point to have a smaller 
influence radius, resulting in a more complex decision boundary, while a smaller γ 
value creates a smoother boundary. 

The SVM with the RBF kernel incorporates a regularization parameter C, which 
governs the balance between maximizing the margin and decreasing classification 
mistakes. A high C value indicates that the model seeks to accurately categorize every 
point, which may result in overfitting, whereas a lower C value permits certain 
misclassifications to attain a wider margin, hence enhancing generalization. By 
adjusting C and γ an RBF SVM can be tailored to perform well across various types of 
data. 

The primary benefits of the RBF kernel SVM are its adaptability to non-linear 
data and its efficacy in high-dimensional environments. The approach performs 
effectively even when the feature count exceeds the observation count, rendering it 
advantageous in domains such as text classification, bioinformatics, and picture 
recognition. Furthermore, while SVMs concentrate just on support vectors—data 
points next to the decision boundary—they exhibit greater efficiency compared to 
some other algorithms, as extraneous data points situated further from the margin do 
not influence the model's decision boundary. 
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In conclusion, SVM with an RBF kernel provides an adaptable and resilient 
classifier for intricate, non-linear data. Its capacity to convert data into a higher-
dimensional space and identify appropriate decision boundaries renders it a favored 
option for classification jobs characterized by difficult class separation. 
Notwithstanding its computing requirements, the RBF SVM is an essential instrument 
in machine learning owing to its adaptability and robust efficacy in managing intricate 
patterns. 

 

2.2.4.3 Linear Discriminant Analysis (LDA) 
 
Linear Discriminant Analysis (LDA) is a widespread classification method in machine 
learning, especially successful for scenarios where the classes are linearly separable. 
Linear Discriminant Analysis (LDA) serves as both a classification and dimensionality 
reduction technique, designed to identify a linear combination of characteristics that 
optimally distinguishes between two or more classes. The fundamental concept of LDA 
is to enhance the distinction between several classes while reducing the variation 
within each class, so establishing a decision boundary that effectively differentiates 
them.[81], [82]. 

LDA operates by representing each class in the dataset with a Gaussian 
distribution, supposing that all classes possess a shared covariance matrix. This 
assumption streamlines the computations and makes LDA appropriate for linear 
delineations. The approach identifies a projection that optimizes the inter-class 
variance (the separation between class means) while minimizes the within-class 
variance (the dispersion of data points within each class). This projection provides a 
novel set of characteristics, wherein classes are more distinct and readily separable. 

Mathematically, LDA seeks to maximize the ratio of the between-class scatter to 
the within-class scatter. For two classes, the goal is to project the data onto a line 
where the means of the two classes are as far apart as possible while maintaining a 
low variance within each class.  

Given a dataset with two classes, LDA aims to find a vector w that maximizes 
the Fisher criterion, which is defined as the ratio of the between-class scatter to the 
within-class scatter. This vector w defines the projection direction that best separates 
the two classes. 

Within-Class Scatter Matrix Sw : The within-class scatter matrix measures the 
variance within each class. For two classes with means μ1 and μ2 and covariance 
matrices Σ1 and Σ2, the within-class scatter matrix is given by: 

 

𝑆𝑤 = 𝛴1 + 𝛴2⁡⁡⁡⁡ (6) 

𝛴1 = ∑(𝑥𝑖 − 𝜇1)(𝑥𝑖 − 𝜇1)
𝛵

𝑖∈𝐶1

 (7) 

𝛴2 = ∑(𝑥𝑖 − 𝜇2)(𝑥𝑖 − 𝜇2)
𝛵

𝑖∈𝐶2

 (8) 

Between-Class Scatter Matrix SB : The between-class scatter matrix captures 
the separation between the class means. For two classes, it is defined as: 
 

𝑆𝐵 = (𝜇1−𝜇2)(𝜇1−𝜇2)
𝛵 (9) 
 

where μ1 and μ2 are the means of classes C1 and C2 . 
Fisher Criterion: The objective is to find a vector w that maximizes the ratio of 

between-class variance to within-class variance. The Fisher criterion can be expressed 
as: 

𝐽(𝑤) =
𝑤𝑇𝑆𝐵𝑤

𝑤𝑇𝑆𝑊𝑤
 (10) 
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Maximizing J(w) leads to the direction w that best separates the classes. 
Optimal Projection: The optimal w is obtained by solving the generalized 

eigenvalue problem: 

𝑆𝑊
−1𝑆𝐵𝑤 = 𝜆𝑤 (11) 

 
where λ represents the eigenvalues. The eigenvector corresponding to the largest 
eigenvalue provides the optimal direction for maximizing class separation. 

A primary advantage of LDA is its computational efficiency, especially with high-
dimensional data. LDA excels in datasets when the feature count exceeds the sample 
size, particularly in text and picture classification. The technique is straightforward to 
implement and interpretable, as it establishes a distinct decision boundary based on 
the linear configuration of the data. Moreover, LDA serves as an effective 
dimensionality reduction technique, particularly advantageous for data visualization in 
two or three dimensions. 

In fact, LDA is frequently employed in applications such as facial recognition, 
medical diagnostics, and text classification, where it adeptly classifies data points 
using linear bounds. Its interpretability and little processing expense render it a suitable 
approach for preliminary dataset exploration and for scenarios where linear 
correlations among classes are anticipated. 

 

2.2.4.4 Random Forest 
 
Random Forest is an ensemble learning algorithm that enhances the performance of 
individual decision trees by combining many of them to create a "forest." It builds on 
the idea that multiple weak models, when combined, can create a strong model. 
Random Forest is especially effective for classification and regression tasks in 
complex, high-dimensional datasets and is designed to address the limitations of 
single decision trees, which tend to overfit and can be sensitive to noisy data. The 
Random Forest algorithm constructs multiple decision trees during training. Each tree 
is trained on a random subset of the data generated through bootstrap sampling, where 
samples are drawn with replacement, meaning some data points may be duplicated in 
a single tree's subset, while others are excluded. This sampling technique, known as 
Bagging (Bootstrap Aggregating), introduces diversity among the trees, which reduces 
correlation and makes the model more resilient to noise. Additionally, Random Forest 
implements random feature selection during the tree-building process, where each 
split within a tree is made using a random subset of the available features, further 
ensuring diversity among trees. This combination of random data samples and random 
feature subsets allows Random Forest to create a collection of diverse trees that 
capture different aspects of the data and reduces the chance of any individual tree 
overfitting [76], [83], [84]. 

Each decision tree in a Random Forest grows until it meets a stopping criterion, 
such as reaching a maximum depth or a minimum number of samples per leaf. Unlike 
traditional decision trees, which are pruned to avoid overfitting, Random Forest trees 
are typically grown to their full depth. The ensemble nature of the forest mitigates the 
overfitting tendency of individual trees, as errors in one tree are often compensated by 
the accuracy of others. When making predictions, Random Forest relies on majority 
voting for classification tasks or averaging for regression tasks. Each tree in the forest 
makes an independent prediction, and the final prediction is determined by the class 
that receives the most votes (in classification) or the average prediction (in regression). 
This voting mechanism provides a more balanced output, reducing the variance seen 
in single decision trees and resulting in more stable predictions. 

A key advantage of Random Forest is its ability to handle high-dimensional 
datasets with numerous features. It also provides insights into feature importance, as 
it records how often each feature is selected for splits across trees. Features that are 
frequently chosen to make splits are considered more influential, offering a form of 
feature selection and interpretability. This property is particularly useful in fields like 
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bioinformatics and medical diagnostics, where understanding feature relevance is 
important.  

Random Forest is widely applied in tasks requiring high accuracy, robustness, 
and feature analysis. Its ability to handle noisy, high-dimensional data while 
maintaining accuracy makes it popular in applications like fraud detection, image and 
text classification, and recommendation systems. The model’s resilience to overfitting 
and capacity to generalize well on new data have cemented its reputation as a reliable 
and powerful machine learning tool.  
 

2.2.4.5 Support Vector Machine (SVM) with Linear Kernel 
 
Support Vector Machine (SVM) with a Linear Kernel is a powerful and efficient machine 
learning algorithm primarily used for binary classification tasks. SVMs aim to find the 
optimal hyperplane that separates data into distinct classes with the widest possible 
margin. A linear SVM is ideal when classes are linearly separable, meaning that a 
single straight line (or hyperplane in higher dimensions) can effectively divide the 
classes. The linear kernel makes this SVM variant particularly suitable for high-
dimensional datasets where many features contribute to class separation, such as text 
classification and gene expression analysis [76], [85], [86]. 

The objective of a linear SVM is to identify the hyperplane that maximizes the 
margin, which is the distance between the hyperplane and the closest data points from 
each class. These closest data points are known as support vectors, and they are 
critical for defining the hyperplane. By maximizing the margin, the SVM minimizes the 
risk of misclassifying new examples, enhancing the generalizability of the model to 
unseen data. Mathematically, given a set of training data points (xi,yi), where xi 
represents the features, and yi is the class label (either +1 or -1 for binary classes), the 
goal is to find a weight vector w and bias term b that define the hyperplane . The optimal 
hyperplane maximizes the margin, which is formulated as a convex optimization 
problem: 

min
𝑤,𝑏

1

2
‖𝑤‖2 (12) 

 
 

subject to the constraint: 

𝑦𝑖(𝑤
𝑇𝑥𝑖 + 𝑏) ≥ 1⁡⁡, ∀𝑖 (13) 

 
This formulation ensures that each data point is correctly classified with a margin of at 
least 1. In cases where data points are not perfectly separable, soft margins are 
introduced by adding a regularization parameter C, which allows some 
misclassification but penalizes them to balance the trade-off between maximizing the 
margin and minimizing classification errors. The optimization problem then becomes: 

 

min
𝑤,𝑏,𝜉

1

2
‖𝑤‖2 + 𝐶∑𝜉𝑖

𝑖

 (14) 

 
subject to: 

𝑦𝑖(𝑤
𝑇𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖, 𝜉𝑖 > 0 (15) 

 
where ξi are slack variables that allow margin violations for points within the margin or 
on the incorrect side of the hyperplane. The parameter C controls the degree of 
tolerance for misclassified points. A high C value prioritizes correct classification by 
allowing fewer margin violations but may lead to overfitting, while a low C allows more 
margin violations, which can improve generalization. 

Linear SVMs are computationally effective, particularly when dealing with high-
dimensional datasets. The linear SVM is capable of operating directly in the original 
feature space, which saves both time and computational resources, in contrast to 
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SVMs with non-linear kernels, which may necessitate transforming the data into a 
higher-dimensional space. This effectiveness makes it particularly well-suited for text 
classification tasks, in which the number of features significantly exceeds the number 
of samples. 

Linear SVMs are restricted to linearly separable or nearly separable problems, 
despite their advantages. Non-linear kernels (such as polynomial or RBF) are more 
effective for datasets with complex, non-linear relationships between classes. 
Nevertheless, linear SVMs provide simplicity, interpretability, and efficiency when 
classes are approximately linearly separable. The interpretability of the model is a 
direct result of the direct relationship between the weight vector w and feature 
prominence. Specifically, features with larger weights have a more significant impact 
on classification. 
In conclusion, the Support Vector Machine with a Linear Kernel is a classification 
algorithm that is both interpretable and robust, making it an excellent choice for high-
dimensional, linearly separable data. It is a superb choice for tasks such as text 
categorization, image classification, and a variety of biomedical applications that 
require effective separation between classes, as it strikes a balance between 
simplicity and performance. 
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3 EEG Analysis Results 

3.1 Classification Results 
 
We present the results of the EEG analysis conducted using eleven advanced feature 
selection algorithms, each designed to identify the most relevant features from the 
high-dimensional dataset. These algorithms were evaluated systematically by applying 
them to five different machine learning classifiers: k-Nearest Neighbors (kNN), Support 
Vector Machines (SVM) with linear and RBF kernels, Linear Discriminant Analysis 
(LDA), and Random Forest. Each classifier was configured to process a maximum of 
500 features selected by the respective algorithms, ensuring a standardized 
comparison across methods. 

In addition to individual classifier performance, the product of the five classifiers' 
outcomes was also analyzed to assess the consistency of feature selection results. 
This approach ensures that the identified features are robust and reliable across 
different classification paradigms, highlighting their general applicability and relevance 
to the task of distinguishing between fatigue and rest states. By incorporating multiple 
classifiers into the evaluation process, we emphasize the importance of feature 
selection consistency, as variability in results could undermine the interpretability and 
reliability of the framework. The results provide a comprehensive understanding of the 
feature selection algorithms' effectiveness and their impact on classification accuracy 
and robustness 

In figure 4 (page 41) the ILFS feature selection accuracy of the five classifiers is 
depicted. KNN is the most robust and stable classifier, maintaining high accuracy 
across all feature ranges. LDA performs well initially with fewer features but struggles 
as more features are added. RF shows significant fluctuations, indicating high 
sensitivity to feature selection and potential overfitting. SVM-RBF performs steadily 
with moderate accuracy, lagging behind KNN. SVM-LIN consistently shows poor 
performance, suggesting the data may not be linearly separable. 

Additionally in figure 5 (page 41) the ILFS feature selection combined accuracy 
is depicted. The combined Accuracy of the classifiers using the ILFS feature selection 
algorithm is showing poor performance which degrades more by adding more features.  
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Figure 4: ILFS Accuracy of 5 classifiers 

 
 

 
 
Figure 5: ILFS Product of 5 classifiers accuracy 
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Figure 6: ReliefF Accuracy of 5 classifiers 

All classifiers achieve high accuracy (>0.9) as the number of features increases 
beyond 50, with minimal variations afterward. Initially, LDA and RF show instability but 
improve significantly with more features. KNN, SVM-RBF, and SVM-LIN maintain 
consistently high accuracy throughout, demonstrating their robustness. Overall, 
ReliefF effectively selects features that enhance classifier accuracy, with the 
differences between classifiers diminishing as more features are added. 
 

 
 
Figure 7: ReliefF Product of 5 classifiers accuracy 

This graph (fig 7) shows the combined accuracy of classifiers using ReliefF-selected 
features. Combined accuracy increases sharply with the first 50 features and stabilizes 
near 0.6 to 0.7 as more features are added. While there is some fluctuation, the 
accuracy plateaus after approximately 100 features, indicating that additional features 
do not significantly improve performance. ReliefF effectively selects a strong subset of 
features early, with diminishing returns as more features are included. 
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Figure 8: Mutinffs Accuracy of 5 classifiers 

Overall, performance is inconsistent across all classifiers, with significant fluctuations 
in accuracy as the number of features increases. KNN and SVM-RBF show relatively 
stable but moderate performance. LDA and RF demonstrate high variability, with RF 
having occasional peaks but generally unstable behavior. SVM-LIN remains 
consistently low, suggesting poor adaptation to the selected features. The results 
indicate that MutInfFS struggles to produce informative features, leading to varying 
classifier performance across the feature range. 
 

 
 
Figure 9: Mutinffs Product of 5 classifiers accuracy 

The combined accuracy exhibits substantial fluctuations, with no clear stabilization 
trend. Combined accuracy starts relatively high, drops around 100–250 features, and 
gradually increases again toward the end, peaking slightly near 500 features. These 
variations suggest that the feature selection process introduces instability, with limited 
subsets contributing meaningfully to classifier performance. The results indicate that 
MutInfFS does not consistently select the most effective features across the range. 



44 
 

 
 
Figure 10: FSV Accuracy of 5 classifiers 

The figure 10 displays the accuracy of various classifiers using FSV-selected features. 
The results are highly variable, with RF showing the most significant fluctuations and 
occasional peaks in accuracy, while KNN and SVM-RBF maintain moderate and more 
stable performance. LDA demonstrates instability, particularly as the number of 
features increases, and SVM-LIN exhibits consistently low accuracy throughout the 
range. Overall, FSV struggles to produce a consistently effective feature set, leading 
to fluctuating performance across all classifiers and feature ranges. 
 

 
 
Figure 11: FSV Product of 5 classifiers accuracy 

The combined accuracy fluctuates significantly throughout, with noticeable peaks and 
troughs, particularly around 50 to 150 features. There is a general upward trend in 
combined accuracy beyond 300 features, indicating gradual improvement. However, 
the overall performance remains inconsistent, suggesting that FSV-selected features 
might not consistently capture the most relevant information across the entire feature 
range. 
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Figure 12: Laplacian Score Accuracy of 5 classifiers 

This graph (fig 12) shows the accuracy of classifiers using Laplacian Score-selected 
features. KNN achieves relatively higher and more stable accuracy compared to other 
classifiers, with moderate fluctuations. RF demonstrates significant variability, 
occasionally peaking but frequently dropping. SVM-RBF and LDA show consistently 
moderate performance with less fluctuation. SVM-LIN remains nearly constant at a 
lower accuracy level throughout. Overall, the Laplacian Score method yields 
moderately effective features for KNN, but the performance of other classifiers 
suggests the selected features may not generalize well across different models. 

 
 
Figure 13: Laplacian Score Product of 5 classifiers accuracy 

This graph (fig 13) illustrates the combined accuracy of classifiers using Laplacian 
Score-selected features. The accuracy peaks early, around 50–100 features, and then 
fluctuates with a slight downward trend before stabilizing at a modest level beyond 300 
features. These fluctuations suggest that the Laplacian Score method captures 
relevant features in the early stages but struggles to maintain consistency as more 
features are added. This indicates that the most informative features are likely 
concentrated in the initial subset of features. 
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Figure 14: Fisher Score Accuracy of 5 classifiers 

This graph (fig 14) represents classifier accuracy using Fisher Score-selected features. 
KNN and RF show moderate variability, with KNN maintaining relatively stable and 
higher performance. RF fluctuates significantly, peaking sporadically but often 
dropping. SVM-RBF and LDA display consistent but average performance, with little 
improvement as features increase. SVM-LIN remains steady at a low accuracy 
throughout. The Fisher Score method produces effective features for KNN but shows 
limited benefit for other classifiers. 
 

 
 
Figure 15: Fisher Score Product of 5 classifiers accuracy 

This graph (fig 15) shows the combined accuracy of classifiers using Fisher Score-
selected features. The combined accuracy fluctuates significantly in the early feature 
range (0–100), decreases around 150–250 features, and gradually improves as more 
features are added, peaking near the end. While the upward trend after 300 features 
indicates some improvement, the variability suggests that Fisher Score-selected 
features do not consistently enhance classifier performance across the range.  
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Figure 16: LLCFS Accuracy of 5 classifiers 

This graph (fig 16) shows classifier accuracy using LLCFS-selected features. KNN 
achieves the highest and most consistent accuracy, stabilizing above 0.6 with minimal 
fluctuations as the number of features increases. RF exhibits significant variability but 
stabilizes moderately over time. SVM-RBF and LDA maintain relatively steady 
performance at lower accuracy levels, while SVM-LIN consistently performs poorly. 
LLCFS appears effective at selecting features that benefit KNN, but its generalizability 
to other classifiers is limited, as reflected in the modest and variable accuracy of the 
other models. 

 
 
Figure 17: LLCFS Product of 5 classifiers accuracy 

This graph (fig17) illustrates the combined accuracy of classifiers using LLCFS-
selected features. The combined accuracy starts with significant fluctuations in the 
early feature range (0–100), gradually improves, and peaks around 200–300 features. 
Beyond this point, the accuracy stabilizes but shows occasional variability, maintaining 
a moderate level toward the end. These trends suggest that LLCFS effectively 
identifies relevant features in the middle range, but the improvements diminish with the 
inclusion of additional features. 
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Figure 18: CFS Accuracy of 5 classifiers 

This graph (fig18) represents classifier accuracy using CFS-selected features. SVM-
LIN and SVM-RBF exhibit relatively stable accuracy, with SVM-LIN achieving 
moderate performance throughout. RF shows significant fluctuations, with occasional 
peaks but inconsistent behavior overall. KNN experiences a decline in accuracy as the 
number of features increases, particularly after 300 features, while LDA displays 
instability and moderate accuracy. The results suggest that CFS-selected features 
provide limited and inconsistent benefits across classifiers. 
 

 
 
Figure 19: CFS Product of 5 classifiers accuracy 

This graph (fig19) illustrates the combined accuracy of classifiers using CFS-selected 
features. The combined accuracy peaks early, around 0–50 features, and then 
declines significantly, stabilizing at a much lower level beyond 100 features with minor 
fluctuations. The early peak suggests that CFS is effective at selecting a small subset 
of highly relevant features, but its ability to maintain performance diminishes as more 
features are added, likely due to the inclusion of less informative or redundant features. 
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Figure 20: Lasso Accuracy of 5 classifiers 

This graph (fig 20) presents classifier accuracy using Lasso-selected features. LDA 
achieves the highest and most stable accuracy, maintaining near-perfect performance 
(>0.9) across the range of features. RF exhibits significant variability but generally 
achieves high accuracy with occasional drops. KNN , SVM-RBF and SVM-LIN show 
moderate accuracy, with a noticeable decline as the number of features increases. 
Overall, Lasso demonstrates strong effectiveness in all classifiers, with performance 
varying as additional features are added. 
 

 
 
Figure 21: Lasso Product of 5 classifiers accuracy 

Lasso achieves the best combined accuracy among all methods, with a peak near 0.9 
in the early feature range (up to ~50 features). The performance gradually declines as 
more features are added, stabilizing at a lower level after 200 features. This highlights 
Lasso's strength in selecting a small, highly relevant subset of features that 
significantly enhances classifier performance in the initial stages. 
 
 



50 
 

 
 
Figure 22: RFC-CBR-linear Accuracy of 5 classifiers 

This graph (fig 22) shows classifier accuracy using RFC-CBR-linear-selected features. 
LDA achieves the highest accuracy, stabilizing near 0.9 as the number of features 
increases. KNN and RF follow closely with consistent performance around 0.8 after an 
initial period of variability. SVM-RBF maintains moderate accuracy with slight 
fluctuations, while SVM-LIN starts lower but steadily improves. Overall, RFC-CBR-
linear demonstrates effective feature selection, leading to strong and stable 
performance for most classifiers. 
 

 
 
Figure 23: RFC-CBR-linear Product of 5 classifiers accuracy 

This graph (fig 23) illustrates the combined accuracy of classifiers using RFC-CBR-
linear-selected features. Combined accuracy shows a steady and consistent increase 
as the number of features grows. The trend indicates that this method effectively 
selects progressively useful features, contributing to improved performance across 
classifiers. RFC-CBR-linear demonstrates strong scalability, with no significant decline 
in accuracy as more features are added. 
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Figure 24: RFC-CBR-gaussian Accuracy of 5 classifiers 

This graph (fig 24) shows classifier accuracy using RFC-CBR-gaussian-selected 
features. LDA achieves the highest and most stable performance, consistently 
maintaining accuracy near 0.9. KNN and RF also perform well, stabilizing at high 
accuracy levels (around 0.8–0.85) after initial fluctuations. SVM-RBF shows moderate 
performance with slight variability, while SVM-LIN starts low but steadily improves. 
Overall, RFC-CBR-gaussian effectively selects features that enhance classifier 
performance. 
 

 
 
Figure 25: RFC-CBR-gaussian Product of 5 classifiers accuracy 

This graph (fig 25) illustrates the combined accuracy of classifiers using RFC-CBR-
gaussian -selected features. Combined accuracy shows a steady and consistent 
increase as the number of features grows. The trend indicates that this method 
effectively selects progressively useful features, contributing to improved performance 
across classifiers. 
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The analysis of 11 feature selection methods across 5 classifiers (KNN, SVM-
RBF, SVM-LIN, LDA, and RF) reveals varying degrees of effectiveness in selecting 
informative features. Lasso consistently demonstrated exceptional performance, 
achieving the highest combined accuracy early (~0.9) with small feature subsets, 
making it ideal for scenarios requiring a concise selection of relevant features. ReliefF 
also provided robust results, enabling high classifier accuracy (>0.9) for most models 
after selecting 50 features and achieving combined accuracy around 0.6. RFC-CBR-
linear and RFC-CBR-gaussian methods showed strong scalability, with steadily 
improving combined accuracy, reaching approximately 0.45 at 500 features, and 
excellent performance for LDA and RF classifiers. In contrast, methods like ILFS, 
MutInfFS, and FSV struggled to maintain consistent performance, reflected in low 
combined accuracy and fluctuations in classifier effectiveness.  
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3.2 Hyperparameters Optimization Results 
 
In order to optimize the classifiers hyperparameters we used the Bayesian optimization 
technique.  Bayesian Optimization is an efficient technique for optimizing black-box 
functions that are expensive to evaluate and have no known analytical form. It uses a 
surrogate model, often a Gaussian Process, to approximate the objective function and 
an acquisition function to decide the next set of parameters to evaluate. This approach 
balances exploration of new parameter spaces and exploitation of promising areas, 
enabling it to find optimal solutions with fewer evaluations compared to methods like 
grid or random search. It is particularly effective for hyperparameter tuning in machine 
learning, offering a systematic and resource-efficient way to achieve better model 
performance. 

In this study, we used five classifiers and optimized their key hyperparameters 
to improve performance. For k-Nearest Neighbors (kNN), we optimized the number 
of neighbors (NumNeighbors) and the distance metric (Distance) to find the best 
balance between local and global decision boundaries. For Support Vector Machines 
(SVM) with an RBF kernel, we tuned the regularization parameter (BoxConstraint) and 
kernel scale (KernelScale) to enhance the model's ability to handle non-linear 
separable data. The Linear Discriminant Analysis (LDA) classifier involved 
optimizing regularization parameters such as Delta and Gamma to manage overfitting 
and ensure robust covariance estimation.  

In the case of Random Forest (RF), we optimized the number of learning cycles 
(NumLearningCycles) and the minimum leaf size (MinLeafSize) to balance model 
complexity and generalization. Finally, for SVM with a linear kernel, we focused on 
optimizing the regularization parameter (BoxConstraint) to control the trade-off 
between margin maximization and classification error. These hyperparameter 
optimization steps ensured that each classifier operated at its best configuration for 
the given dataset.  

Additionally, we used the parallel computing toolbox of mathworks matlab® 
which enables parallel evaluations, leveraging multicore processors or clusters to 
accelerate optimization. 

 
Table 1: Classifiers Optimization 

 

Classifier Optimization Hyperparameters Optimization 
Technique 

KNN NumNeighbors, Distance Bayesian 

SVM RBF BoxConstraint, KernelScale Bayesian 

LDA Delta, Gamma Bayesian 

RF NumLearningCycles, 
MinLeafSize 

Bayesian 

SVM Linear BoxConstraint Bayesian 

 
In Figure 26 (page 54) The ILFS Accuracy of 5 Optimized classifiers is depicted. 

The ILFS Optimized Accuracy graph shows that classifier performance remains 
relatively stable across the range of features, with KNN, RF, and LDA maintaining 
moderate accuracy around 0.5. SVM-RBF lags slightly behind with lower consistency, 
while SVM-LIN performs poorly. The optimized ILFS method appears to lack strong 
discriminatory power for selecting highly effective features, as indicated by the lack of 
significant improvement in accuracy even with an increasing number of features. This 
suggests limited effectiveness in optimizing performance across classifiers. 
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Figure 26: ILFS Accuracy of 5 Optimized classifiers 

 

 
 
Figure 27: ILFS Product of 5 Optimized classifiers accuracy 

The ILFS Optimized Combined Accuracy graph shows that combined accuracy is 
extremely low, peaking briefly around the first few features (~50 features) and then 
quickly dropping to near zero. This indicates that the optimized ILFS method fails to 
effectively enhance the overall performance of the classifiers as the number of features 
increases. The inability to sustain or improve combined accuracy suggests that the 
selected features contribute minimally to the overall classification quality, highlighting 
the limitations of this feature selection approach. The optimization process for ILFS 
slightly stabilized individual classifier accuracy but did not lead to meaningful 
improvements in overall performance. The non-optimized ILFS achieved marginally 
better combined accuracy in the initial feature range, making it the slightly better choice 
between the two.  
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Figure 28: ReliefF  Accuracy of 5 Optimized classifiers 

The optimized ReliefF method demonstrates significant improvements over the non-
optimized version in terms of classifier stability and overall performance. In the non-
optimized version, classifiers like KNN, RF, and LDA steadily improved after selecting 
around 50 features, achieving accuracies above 0.9, while RF exhibited some 
fluctuations and SVM-LIN underperformed. The optimized ReliefF method not only 
reduced variability across classifiers but also ensured consistently high accuracy (near 
or above 0.9) for all models, including significant improvements for SVM-LIN. The 
stability of RF's performance also increased in the optimized version, making it more 
robust across the feature range 
 

 
 
Figure 29: ReliefF Product of 5 Optimized classifiers accuracy 

The optimized version of the combined accuracy exhibits a more gradual and 
consistent increase in accuracy as features are added, with reduced fluctuations and 
a more stable performance across the feature range. This indicates that the 
optimization process effectively refines the feature selection, ensuring the inclusion of 
more relevant and discriminative features while minimizing noise. 
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Figure 30: Mutinffs Accuracy of 5 Optimized classifiers 

The MutInfFS Optimized Accuracy graph (fig 30) shows modest performance across 
all classifiers, with no significant improvement compared to the non-optimized version. 
Classifier accuracy remains clustered around 0.4 to 0.6 for most models, with RF and 
KNN exhibiting occasional spikes but no sustained improvements. SVM-LIN and SVM-
RBF maintain stable yet lower accuracies, while LDA shows moderate fluctuations. 
The optimization process appears to have slightly stabilized performance across 
features, but it fails to achieve significant gains in accuracy or to enhance overall 
performance for the classifiers. This suggests that the optimized MutInfFS method 
struggles to identify highly relevant features that could lead to meaningful 
improvements in classifier accuracy. 

 
Figure 31: MutInfFS Product of 5 Optimized classifiers accuracy 

The MutInfFS Optimized Combined Accuracy graph (fig 31) reveals that the 
optimization process has not significantly enhanced the combined accuracy compared 
to its non-optimized counterpart. Combined accuracy fluctuates heavily across the 
feature range, remaining relatively low, with values clustered around 0.02 to 0.04. 
There is no clear trend of sustained improvement or stability. The overall impact of 
optimization is minimal, reflecting the method's limited ability to consistently identify 
and prioritize highly relevant features.  
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Figure 32: FSV Accuracy of 5 Optimized classifiers 

The FSV Optimized Accuracy graph (fig 32) shows modest improvements in classifier 
stability compared to the non-optimized version, though overall accuracy remains 
moderate. Classifier performance generally hovers between 0.4 and 0.6, with 
occasional spikes. Although optimization reduces some fluctuations in accuracy, it 
does not significantly enhance overall performance across classifiers. This indicates 
that the optimization process has limited impact on making FSV a more effective 
feature selection method, as variability persists and overall accuracy remains 
constrained. 
 

 
Figure 33: FSV Product of 5 Optimized classifiers accuracy 

The FSV Optimized Combined Accuracy graph (fig 33) shows consistent but low 
performance, with combined accuracy fluctuating between 0.02 and 0.05 across the 
feature range. Despite the optimization process, the graph indicates no significant 
improvement in stability or peak combined accuracy compared to the non-optimized 
version. Peaks are sporadic and do not suggest a clear trend of improvement as more 
features are added. This suggests that the optimization process has limited impact on 
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enhancing the overall effectiveness of FSV, and the method struggles to select 
features that meaningfully improve classifier performance. 

 
 
Figure 34: Laplacian Score Accuracy of 5 Optimized classifiers 

The Laplacian Score Optimized Accuracy graph (fig 34) shows modest performance 
across classifiers, with accuracy generally stabilizing between 0.4 and 0.6 for most 
models. KNN and RF exhibit some variability with occasional spikes, while SVM-LIN 
remains consistently lower at around 0.4. LDA and SVM-RBF show relatively stable 
but moderate performance throughout. Compared to the non-optimized version, the 
optimization appears to have slightly reduced fluctuations, leading to more consistent 
accuracy, especially for RF and KNN. However, there is no significant overall 
improvement in accuracy, suggesting limited benefits of optimization for the Laplacian 
Score method. The results highlight that the Laplacian Score struggles to identify highly 
relevant features that can substantially boost classifier performance. 

 
Figure 35: Laplacian Score Product of 5 Optimized classifiers accuracy 

The Laplacian Score Optimized Combined Accuracy graph (fig 35) shows a fluctuating 
but consistently low performance, with combined accuracy oscillating between 0.02 
and 0.045 across the feature range. Although the optimization process slightly 
stabilizes the fluctuations compared to the non-optimized version, it does not lead to 
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significant improvements in combined accuracy. This suggests that, even with 
optimization, the method struggles to provide meaningful boosts in overall classifier 
performance. 

 
 
Figure 36: Fisher Score Accuracy of 5 Optimized classifiers 

The Fisher Score Optimized Accuracy graph (fig 36) shows modest improvements in 
stability compared to the non-optimized version, but overall classifier performance 
remains moderate. The optimization process appears to reduce variability in RF and 
KNN's accuracy to some extent, but fluctuations persist across the range of features. 
While the optimization has slightly improved consistency, it has not significantly 
enhanced overall performance, indicating limited effectiveness in refining Fisher 
Score-selected features for meaningful accuracy gains. 

 
Figure 37: Fisher Score Product of 5 Optimized classifiers accuracy 

The Fisher Score Optimized Combined Accuracy graph (fig 37) shows persistent 
fluctuations in combined accuracy, ranging between 0.02 and 0.045 across the feature 
range. Although the optimization process slightly reduces variability compared to the 
non-optimized version, it fails to produce any substantial improvement in combined 
accuracy. There is no clear trend of sustained improvement as more features are 
added. This indicates that while Fisher Score optimization may marginally enhance 
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stability, it struggles to significantly refine feature selection for boosting the overall 
performance of classifier ensembles. 

 
 
Figure 38: LLCFS Accuracy of 5 Optimized classifiers 

The LLCFS Optimized Accuracy graph (fig 38) shows moderate performance across 
classifiers, with most accuracy values fluctuating between 0.45 and 0.6. Compared to 
the non-optimized version, the optimization slightly reduces variability but , the overall 
accuracy improvements are minimal, indicating that the optimization process does not 
significantly enhance LLCFS’s ability to select highly relevant features for most 
classifiers. The results suggest limited effectiveness in improving classifier 
performance across the entire feature range. 
 

 
 
Figure 39: LLCFS Product of 5 Optimized classifiers accuracy 

The LLCFS Optimized Combined Accuracy graph (fig 39) shows consistently low 
combined accuracy throughout the feature range. While optimization appears to 
reduce some variability, it does not result in a significant improvement in overall 
performance. These results indicate that the optimization of LLCFS provides limited 



61 
 

benefits, as it struggles to identify feature subsets that significantly enhance the overall 
performance of the classifiers. 
 

 
 
Figure 40: CFS Accuracy of 5 Optimized classifiers 

The CFS Optimized Accuracy graph (fig 40) shows moderate performance across 
classifiers, with accuracy values fluctuating between 0.45 and 0.65 for most classifiers. 
. The optimization process appears to slightly stabilize classifier accuracy, reducing 
variability for RF and KNN, but it does not result in substantial improvements in overall 
performance. These results suggest that while optimization enhances some aspects 
of CFS-selected features, it does not significantly improve their effectiveness for 
achieving consistently high classifier accuracy. 

 
Figure 41: LLCFS Product of 5 Optimized classifiers accuracy 

The CFS Optimized Combined Accuracy graph (fig 41) shows a sharp initial peak at 
around 0.12 for the first few features, followed by a rapid decline and stabilization 
around 0.04 for the majority of the feature range. While the optimization process may 
have slightly improved early feature selection, the combined accuracy remains low and 
fluctuates significantly as the number of features increases. Unlike the non-optimized 
version, the optimized version appears to stabilize earlier, but it does not provide a 
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substantial or sustained boost in combined accuracy. This suggests that the 
optimization of CFS has limited effectiveness in improving overall classifier ensemble 
performance across larger feature sets. 

 
Figure 42: LASSO Accuracy of 5 Optimized classifiers 

The LASSO Optimized Accuracy graph (fig 42) demonstrates exceptional 
performance, particularly for LDA, which maintains near-perfect accuracy across all 
feature ranges. The optimization process has clearly enhanced the performance of 
classifiers like, as their stability and accuracy remain high across increasing feature 
ranges. However, KNN's performance shows a noticeable downward trend as more 
features are included. Overall, LASSO optimization stands out for its ability to maintain 
strong classifier performance, making it a highly effective feature selection method. 

 
Figure 43: LASSO Product of 5 Optimized classifiers accuracy 

The LASSO Optimized Combined Accuracy graph (fig 43) reveals that combined 
accuracy peaks very early, reaching approximately 0.95 with a small subset of features 
(around 20 features), and then gradually declines as more features are added. This 
indicates that LASSO optimization is particularly effective at selecting highly relevant 
features in the early stages, enabling excellent performance with minimal feature 
subsets. However, as the number of features increases, the combined accuracy 
diminishes. This suggests that while LASSO excels at feature selection for smaller 
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number of features, its performance diminishes with larger feature sets, likely due to 
the inclusion of less relevant features. Overall, the graph highlights LASSO’s strength 
in early-stage feature optimization and suggests diminishing returns as more features 
are introduced. 

 
Figure 44: RFC-CBR-linear Accuracy of 5 Optimized classifiers 

The RFC-CBR-linear Optimized Accuracy graph (fig 44) demonstrates consistently 
strong classifier performance across a wide range of features. Most classifiers, 
including LDA, RF, and SVM-RBF, achieve high accuracy after selecting 
approximately 100 features and maintain this performance throughout the range. KNN 
and SVM-LIN also exhibit steady improvement, with reduced variability as the number 
of features increases. The optimization process clearly enhances stability and 
scalability, allowing the method to maintain robust accuracy across classifiers. The 
results highlight the effectiveness of the RFC-CBR-linear optimization in providing 
consistently high classifier accuracy, making it a reliable feature selection method for 
large feature subsets. 

 
Figure 45: RFC-CBR-linear Product of 5 Optimized classifiers accuracy 

The RFC-CBR-linear Optimized Combined Accuracy graph (fig 45) illustrates a steady 
and consistent improvement in combined accuracy as the number of features 
increases. Starting at around 0.1 with a small subset of features, the combined 
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accuracy rises steadily to reach approximately 0.6 at 500 features. This upward trend 
indicates that the optimization process effectively selects features that contribute 
meaningfully to overall classifier performance, with minimal noise or irrelevant 
features. The consistent improvement and stability across the feature range highlight 
the robustness and scalability of the RFC-CBR-linear optimization, making it a highly 
effective method for enhancing combined accuracy in ensemble classifiers. 

 
Figure 46: RFC-CBR-gaussian Accuracy of 5 Optimized classifiers 

The RFC-CBR-gaussian Optimized Accuracy graph (fig 46) demonstrates strong and 
consistent classifier performance, with most classifiers achieving accuracy levels 
between 0.8 and 0.9 across the feature range. LDA and RF exhibit particularly stable 
and high accuracy throughout, while SVM-RBF and SVM-LIN also perform well, 
consistently reaching near 0.85. KNN shows slight variability but remains above 0.75 
for most of the feature range. The optimization process effectively enhances accuracy 
across all classifiers, minimizing fluctuations and maintaining robust performance. 
These results highlight the strength of the RFC-CBR-gaussian method in identifying 
and utilizing relevant features, ensuring scalability and stability across the classifiers. 
The consistently high accuracy underscores the method's effectiveness in feature 
selection for improving overall classification performance. 

 
Figure 47: RFC-CBR-gaussian Product of 5 Optimized classifiers accuracy 
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The RFC-CBR-gaussian Optimized Combined Accuracy graph (fig 47) reveals a 
steady and consistent improvement in combined accuracy as the number of features 
increases. Starting at around 0.1 for smaller feature subsets, the combined accuracy 
rises steadily to approximately 0.5 as it approaches 500 features. This upward trend 
indicates that the optimization process effectively prioritizes relevant features, 
enhancing the overall performance of the ensemble classifiers. The smooth and 
gradual increase in combined accuracy, coupled with relatively low fluctuations, 
highlights the robustness of the RFC-CBR-gaussian optimization method. It effectively 
scales with larger feature sets, maintaining its capacity to improve classification 
accuracy consistently across the range. 

The hyperparameters optimization indicates that ReliefF, LASSO, and the RFC-
CBR methods (linear and Gaussian) were the most effective feature selection 
techniques, achieving significant improvements in classifier performance and stability. 
ReliefF excelled in identifying highly relevant features, enabling classifiers like KNN, 
RF, and LDA to achieve accuracies above 0.9 and demonstrating consistent, scalable 
performance as the feature set expanded. Similarly, LASSO showed exceptional 
results with small feature subsets, achieving near-perfect accuracy for LDA and a peak 
combined accuracy of 0.95 with around 20 features, making it the best method as 
fewer features are needed for successful classification. The RFC-CBR methods 
maintained robust and scalable performance across a wide range of features, with 
combined accuracies steadily increasing to 0.6 and 0.5 for the linear and Gaussian 
variants, respectively. In contrast, methods like ILFS, MutInfFS, and LLCFS struggled 
to provide meaningful accuracy improvements, even after optimization, reflecting their 
limited ability to prioritize highly relevant features.  

3.3 Performance Metrics 
 
In order to evaluate the feature selection algorithms, we will calculate the performance 
metrics for the number of features which provide the maximum combined classification 
accuracy as the product of all the classifiers [87]. In order to assess the performance 
of the Machine Learning algorithms included in this Thesis the classification accuracy, 
sensitivity and sensitivity were calculated with regard to the true vs the predicted labels. 
 

• Accuracy is defined as the ratio of the number of correctly classified instances, 
i.e., the number of true positives plus the number of the true negatives, to the 
total number of instances.  

•  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑𝑇𝑟𝑢𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + ∑𝑇𝑟𝑢𝑒⁡𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

∑𝑇𝑜𝑡𝑎𝑙⁡𝑁𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑐𝑎𝑠𝑒𝑠
 

 

• Sensitivity is the ratio of the number of true positives, to the total number of 
relevant positive elements.  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
∑𝑇𝑟𝑢𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

∑𝑇𝑜𝑡𝑎𝑙⁡𝑁𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

 

• Specificity is the ratio of the number of true negatives, to the total number of 
relevant negative elements  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
∑𝑇𝑟𝑢𝑒⁡𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

∑𝑇𝑜𝑡𝑎𝑙⁡𝑁𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

 

• The F1-score is a metric used to evaluate the performance of a classification 
model. It is the harmonic mean of precision and recall, providing a single 
measure that balances both metrics. 

𝐹1𝑆𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
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The maximum number of features we will perform the calculations will be 150 in order 
to ensure better explainability to our model and easier interpretation of the results 
 
Table 2: ILFS Results 

 

Feature selection algorithm  Best Combined Accuracy Number Of Features  

ILFS 0.089 1 

 

Classifier Accuracy Sensitivity Specificity F1-Score 

KNN 0.725 0.7 0.75 0.75 

SVM-RBF 0.725 0.6 0.85 0.71 

LDA 0.5 0.95 0.05 0.67 

RF 0.75 1 1 1 

SVM-LIN 0.45 0.55 0.35 0.58 

 
 
Table 3: ReliefF Results 

 

Feature selection algorithm  Best Combined Accuracy Number Of Features  

ReliefF   0.753 132 

 

Classifier Accuracy Sensitivity Specificity F1-Score 

KNN 0.975 1 0.95 0.98 

SVM-RBF 0.925 0.95 0.9 0.93 

LDA 0.95 0.95 0.9 0.93 

RF 0.95 0.95 0.95 0.95 

SVM-LIN 0.925 0.95 0.9 0.93 

 
Table 4: MutLnfFS Results 

 

Feature selection 
algorithm  

Best Combined Accuracy Number Of Features  

MutInfFS 0.062 25 

 

Classifier Accuracy Sensitivity Specificity F1-Score 

KNN 0.575 0.5 0.65 0.6 

SVM-RBF 0.65 0.75 0.55 0.72 

LDA 0.525 0.55 0.5 0.6 

RF 0.55 0.6 0.5 0.63 

SVM-LIN 0.575 0.55 0.6 0.62 

 
Table 5: FSV Results 

 

Feature selection algorithm  Best Combined Accuracy Number Of Features  

FSV   0.041 11 

 

Classifier Accuracy Sensitivity Specificity F1-Score 

KNN 0.625 0.65 0.6 0.68 

SVM-RBF 0.5 0.2 0.8 0.32 

LDA 0.525 0.7 0.35 0.65 

RF 0.625 0.5 0.75 0.62 

SVM-LIN 0.4 0.35 0.45 0.45 
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Table 6: Laplacian Score Results 

 

Feature selection algorithm  Best Combined Accuracy Number Of Features  

Laplacian Score   0.032 88 

 

Classifier Accuracy Sensitivity Specificity F1-Score 

KNN 0.6 0.6 0.6 0.65 

SVM-RBF 0.5 0.85 0.15 0.66 

LDA 0.5 0.75 0.250 0.65 

RF 0.4 0.45 0.35 0.52 

SVM-LIN 0.525 0.7 0.35 0.65 

 
 
Table 7: Fisher Score Results 

 

Feature selection algorithm  Best Combined Accuracy Number Of Features  

Fisher Score   0.043 47 

 

Classifier Accuracy Sensitivity Specificity F1-Score 

KNN 0.6 0.65 0.55 0.67 

SVM-RBF 0.475 0.45 0.5 0.54 

LDA 0.5 0.75 0.25 0.65 

RF 0.55 0.7 0.4 0.66 

SVM-LIN 0.55 0.45 0.65 0.56 

 
 
Table 8: LLCFS Results 

Feature selection algorithm  Best Combined Accuracy Number Of Features  

LLCFS 0.057 11 

 

Classifier Accuracy Sensitivity Specificity F1-Score 

KNN 0.6 0.6 0.6 0.65 

SVM-RBF 0.575 0.7 0.45 0.67 

LDA 0.6 0.65 0.55 0.67 

RF 0.525 0.5 0.55 0.58 

SVM-LIN 0.525 0.4 0.65 0.52 

 
 
Table 9: CFS Results 

 

Feature selection algorithm  Best Combined Accuracy Number Of Features  

CFS 0.13 10 

 

Classifier Accuracy Sensitivity Specificity F1-Score 

KNN 0.55 0.75 0.35 0.67 

SVM-RBF 0.675 0.6 0.75 0.69 

LDA 0.75 0.8 0.7 0.78 

RF 0.625 0.7 0.55 0.69 

SVM-LIN 0.75 0.85 0.65 0.79 
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Table 10: LASSO Results 

 

Feature selection 
algorithm  

Best Combined 
Accuracy 

Number Of Features  

LASSO 0.975 19 

 

Classifier Accuracy Sensitivity Specificity F1-Score 

KNN 0.975 1 0.95 0.98 

SVM-RBF 1 1 1 1 

LDA 1 1 1 1 

RF 1 1 1 1 

SVM-LIN 1 1 1 1 

 
 
Table 11: RFB-CBR-Linear Results 

 

Feature selection algorithm  Best Combined Accuracy Number Of Features  

RFB-CBR-Linear 0.402 71 

 

Classifier Accuracy Sensitivity Specificity F1-Score 

KNN 0.75 0.8 0.7 0.78 

SVM-RBF 0.9 0.95 0.85 0.9 

LDA 0.8 0.9 0.7 0.83 

RF 0.85 0.85 0.85 0.86 

SVM-LIN 0.875 0.9 0.85 0.88 

 
Table 12: RFB-CBR-Gaussian Results 

 

Feature selection algorithm  Best Combined Accuracy Number Of Features  

RFB-CBR-Gaussian 0.4 82 

 

Classifier Accuracy Sensitivity Specificity F1-Score 

KNN 0.7 0.8 0.6 0.75 

SVM-RBF 0.825 0.95 0.7 0.85 

LDA 0.9 0.95 0.85 0.9 

RF 0.875 0.9 0.85 0.88 

SVM-LIN 0.875 0.9 0.85 0.88 

 
The top four feature selection algorithms—LASSO, ReliefF, RFB-CBR-Linear, 

and RFB-CBR-Gaussian—are distinguished by their combined accuracy and classifier 
performance, as indicated by the calculated performance metrics. 

LASSO demonstrated the highest combined accuracy of 0.975 with only 19 
features, achieving perfect performance across all classifiers and metrics (Accuracy, 
Sensitivity, Specificity, and F1-Score). This result highlights its ability to extract the 
most relevant features while maintaining model simplicity and interpretability. LASSO's 
exceptional balance of accuracy and minimal feature count makes it the most effective 
algorithm for this dataset. 

ReliefF achieved a combined accuracy of 0.753 with 132 features, 
demonstrating robust classification performance across multiple classifiers. It yielded 
particularly high accuracy for KNN (0.97) and SVM-RBF (0.925), though the large 
number of features limits its interpretability compared to LASSO. 

RFB-CBR-Linear achieved a combined accuracy of 0.402 with 71 features, 
offering a solid balance between feature count and classifier performance. Classifiers 
such as SVM-RBF and LDA performed particularly well, with accuracy values of 0.9 
and 0.8, respectively.  
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RFB-CBR-Gaussian demonstrated a similar combined accuracy of 0.4 with 82 
features. While its accuracy is slightly lower than RFB-CBR-Linear, it still exhibited 
strong performance across classifiers like SVM-RBF and LDA, with high accuracy 
(0.825 and 0.9, respectively). This method complements RFB-CBR-Linear and is 
suitable for applications with a higher tolerance for feature dimensionality. 

Overall, LASSO stands out as the most effective feature selection algorithm for 
this dataset, achieving an outstanding combined accuracy of 0.975 while utilizing only 
19 features. Its ability to select a minimal yet highly informative subset of features 
ensures not only exceptional classification performance but also enhanced 
interpretability of the model. LASSO's adaptability and robustness to a variety of 
machine learning models are demonstrated by its acquisition of ideal metrics across 
all classifiers—KNN, SVM-RBF, LDA, Random Forest, and SVM-LIN. Specifically, it 
achieves 100% sensitivity and specificity across all classifiers, indicating its ability to 
accurately identify both rest and fatigue states without any false negatives or false 
positives. Moreover, the F1-score of 1.0 across all classifiers highlights its strong 
balance between precision and recall, further validating its reliability in capturing the 
true patterns in the data. 

The minimal feature count selected by LASSO significantly reduces model 
complexity, making it easier to interpret and apply in practical scenarios, such as 
clinical or real-time applications where computational efficiency and clarity are 
essential. Its performance across diverse classifiers also suggests that the selected 
features generalize well to different machine learning techniques, reinforcing its utility 
as a robust feature selection method.  
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3.4 Functional Connectivity Features 
 
In the previous chapter we calculated that LASSO demonstrated the highest combined 
accuracy of 0.975 with only 19 features, achieving perfect performance across all 
classifiers. We will examine those 19 features of the PLI matrix in order to extract the 
qualitative characteristics of the connections using a MATLAB® algorithm that 
translates the those features to Brean network connections.   

This algorithm identifies and interprets key EEG channels and their connectivity 
based on selected features derived from a ranking matrix created from LASSO. The 
algorithm focuses on the top 19 features, which are chosen and ranked based on their 
frequency of occurrence across multiple cross-validation folds. These features 
represent connectivity patterns in the brain, extracted from the upper triangular part of 
a 63x63 Phase Lag Index (PLI) matrix. The PLI matrix quantifies the connectivity 
between EEG channels by examining phase synchronization. 

Each feature is mapped to a specific connection between two EEG channels and 
is associated with one of the five frequency bands of brain waves: Delta (1–4 Hz), 
Theta (4–7 Hz), Alpha (8–12 Hz), Beta (13–30 Hz), and Gamma (31–45 Hz). By 
determining the index of each feature, the algorithm calculates the frequency band it 
belongs to and identifies the relative position within that band. Using a predefined 
lookup table, the algorithm converts the 1D index of the feature into row and column 
indices of the PLI matrix, which correspond to specific EEG channel pairs. 

The predefined list of 63 EEG channels is then used to map these indices to their 
respective channel names, creating a detailed list of channel connections and their 
associated frequency bands. The final output is stored in a cell array that includes the 
source channel, the target channel, and the frequency band for each identified 
connection.  

This output provides insights into the functional connectivity of the brain, allowing 
the exploration of the relationships between different regions and how these 
connections vary across frequency bands. 
 
Table 13: Most Significant Features Identified By LASSO 

 

EEG 
Channel 

'C4' 'CP1' 'FC4' 'C1' 'Pz' 'F6' 'POz' 

EEG 
Channel 

'Cz' 'F1' 'Fp2' 'FC5' 'C1' 'Fp2' 'TP7' 

Frequency 
Band 

'Beta' 'Delta' 'Theta' 'Gamma' 'Theta' 'Theta' 'Gamma' 

 

EEG 
Channel 

'FC6' 'P6' 'F6' 'C5' 'CP6' 'P4' 'PO7' 

EEG 
Channel 

'F4' 'C1' 'F4' 'FC1' 'CP5' 'AF8' 'AF7' 

Frequency 
Band 

'Delta' 'Theta' 'Delta' 'Delta' 'Delta' 'Delta' 'Alpha' 

 

EEG 
Channel 

'Fz' 'P1' 'C2' 'F4' 'AF4'  

EEG 
Channel 

'F1' 'C3' 'F6' 'Fpz' 'F5' 

Frequency 
Band 

'Theta' 'Theta' 'Theta' 'Alpha' 'Beta' 
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3.4.1 Brain Wave band analysis 

 
The first analysis of channel connections will be their associated frequency bands of 
the brain waves. Brain waves, characterized by their distinct frequency ranges, play 
crucial roles in various neural processes and are indicative of different cognitive and 
physiological states. By examining the connections within these frequency bands, we 
can gain valuable insights into how neural activity differs between rest and fatigue 
conditions. 
 
Table 14: Distribution of connections in frequency bands 

 

Frequency Band Connection Counts 

Delta (1–4 Hz) 6 

Theta (4–7 Hz) 7 

Alpha (8–12 Hz) 2 

Beta (13–30 Hz) 2 

Gamma (31–45 Hz) 2 

 
 
 

 
Figure 48: Frequency Band Connection Distribution 

 
The pie chart (Figure 48) highlights the distribution of PLI connections across the five 
primary EEG frequency bands—Delta, Theta, Alpha, Beta, and Gamma—emphasizing 
their relative contributions to differentiating between rest and fatigue states.  

The Theta band (4–7 Hz) indicated with blue color is the most dominant, 
representing 36.8% of the total connections. Theta activity is widely recognized for its 
association with cognitive effort, sustained attention, and fatigue. During prolonged 
tasks requiring mental focus, the brain often exhibits increased theta activity, reflecting 
a compensatory mechanism to manage reduced cognitive efficiency. This band plays 
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a critical role in monitoring mental states, as its heightened connectivity in fatigue 
states is indicative of the brain's efforts to sustain performance despite the adverse 
effects of fatigue. The prominence of theta oscillations underscores their significance 
as a marker for fatigue, often linked to frontal and central regions where cognitive 
processing and attentional control are most active [88], [89], [90]. 

The Delta band (1–4 Hz), indicated with red color, accounting for 31.6% of the 
connections, is the second most significant contributor. Delta activity is primarily 
associated with deep cortical recovery, slow-wave sleep, and restorative processes. 
Its increased connectivity during fatigue states likely reflects the brain's need for 
recovery and the engagement of slower oscillatory activity as a response to reduced 
neural efficiency. Delta activity is also implicated in large-scale network 
synchronization, which may become more pronounced during fatigue as the brain 
attempts to preserve homeostasis and manage the impact of prolonged exertion. The 
high representation of delta oscillations in the data suggests their critical involvement 
in both physical and mental fatigue, as these oscillations often manifest in states 
requiring recovery or rest [91], [92], [93], [94], [95]. 

The Alpha band (8–12 Hz) indicated with yellow color, contributes 10.5% of the 
connections, playing a smaller role in distinguishing between rest and fatigue states. 
Alpha activity is typically linked to relaxed wakefulness and cortical inhibition, reflecting 
states of reduced sensory input and increased focus on internal processing. Variations 
in alpha connectivity between rest and fatigue states may represent shifts in cortical 
balance, with the brain transitioning between externally and internally focused 
states.[33], [40], [43] The smaller contribution of alpha connectivity suggests it is 
secondary to the more pronounced roles of theta and delta bands. 

Similarly, the Beta band (13–30 Hz), indicated with orange color, accounts for 
10.5% of the connections. Beta activity is associated with motor and cognitive 
functions, and its involvement in this dataset may reflect increased neural effort or 
stress-related processes during fatigue. When the brain is fatigued, maintaining 
performance often requires greater motor readiness and cognitive activation, which 
may explain the role of beta oscillations[54], [55]. 

The Gamma band (31–45 Hz), indicated with purple color , also contributing 
10.5% of the connections, is associated with higher-order cognitive functions and 
localized neural activity. While its contribution is less prominent than the theta and 
delta bands, gamma connectivity may play a role in modulating fatigue-related 
changes in cognitive processing and task-specific neural dynamics. Gamma activity is 
often linked to neural synchronization in processes like working memory and attention, 
which may become relevant during fatigue [96], [97], [98]. 

Overall, the Theta and Delta bands dominate the observed connectivity 
patterns, reflecting their essential roles in neural processes impacted by fatigue. Theta 
connectivity is particularly critical in compensating for reduced cognitive efficiency, 
highlighting its role in sustaining attention and cognitive control. Delta connectivity, on 
the other hand, emphasizes the brain's restorative efforts and large-scale 
synchronization in response to fatigue. This distribution aligns with the understanding 
that lower-frequency bands are most influenced during states of fatigue, with higher-
frequency bands contributing to more localized or specific neural responses. 
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3.4.2 Channel Connection Analysis 

 
The second analysis of channel connections will be their associated regions of the 
brain which have increased connectivity.  In order to examine the topological 
characteristics of the connections we review the electrode locations of 64 EEG channel 
according to the International 10-20 system. 
 
 

 
Figure 49: Electrode locations of 64 EEG channel  

 
The EEG channels which are activated and indicated by the PLI connections are 
distributed topographically by brain region. The brain is divided into five main lobes 
based on anatomical landmarks and functional specializations. Each lobe is 
associated with specific functions and is delineated by sulci (grooves) and gyri (ridges) 
on the brain's surface.  
 
 
Table 15: Topology of connections 

 

Brain Region Channels in PLI connections 

Frontal Lobe 16 

Central Lobe 12 

Parietal Lobe 7 

Occipital Lobe 1 

Temporal Lobe 2 
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Figure 50: Distribution of EEG channel connections by Brain region 

 
The distribution (Figure 50) indicates that the connectivity patterns documented by the 
PLI method are primarily concentrated in the Frontal and Central Lobes, underscoring 
their critical roles in the neural processes under investigation. While the Temporal and 
Occipital Lobes exhibit limited contributions, the Parietal Lobe contributes 
moderately, suggesting that task-specific or methodological factors may be influencing 
their involvement. 

The Frontal Lobe, which accounts for 42.1% of the connections (yellow color 
Fig 50), is the most significant region in this analysis, as it plays a critical role in 
executive functions, decision-making, and attentional control. The brain's capacity to 
govern attention, manage complex tasks, and sustain efficient decision-making is 
frequently impaired by fatigue, which increases the vulnerability of these processes, 
which are central to cognitive performance [36], [37]. The frontal lobe's substantial 
connectivity underscores its significance in mitigating these effects, indicating that the 
brain reallocates resources within this region to maintain cognitive function during 
exhaustion. The increased connectivity of the frontal lobe during fatigue is likely a result 
of compensatory mechanisms that are designed to maintain task performance in the 
presence of strained cognitive resources. This increased activity is indicative of the 
brain's attempt to mitigate the cognitive delay that is typically associated with 
exhaustion, thereby guaranteeing that critical functions, including adaptive responses 
and attentional control, continue to function [33], [43], [52]. 

This adaptation is essential for maintaining performance in tasks that require 
sustained focus or significant mental effort, where the frontal lobe's ability to manage 
executive control becomes indispensable. The analysis's emphasis on the frontal lobe 
emphasizes its function as a central center for cognitive processing, coordinating 
neural responses to address the obstacles presented by fatigue. The frontal lobe 
facilitates the brain's capacity to adapt dynamically by improving connectivity, thereby 
prioritizing functions that are essential for task execution and compensating for 
reduced cognitive efficacy. This adaptability underscores the region's importance in 
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promoting resilience against fatigue-related impairments and its indispensable role in 
the maintenance of cognitive performance  [94], [95], [99], [100]. 

The Central Lobe, which accounts for 31.6% of the connections (orange color 
Fig 50), is a critical region in the differentiation between rest and fatigue states, as it 
plays a fundamental role in the integration of motor and sensory information. This 
region is responsible for the mediation of critical functions, including sensory 
perception, reaction timing, and movement coordination. The prevalent impact of 
fatigue on sensorimotor processing is underscored by the substantial representation 
of central lobe connectivity in the analysis. Fatigue frequently manifests as impaired 
sensory responsiveness, reduced motor precision, and delayed reaction times, all of 
which are functions that are mediated by the central lobe [101], [102]. For example, 
the central lobe's diminished ability to coordinate fine motor activities during fatigue 
can lead to reduced motor precision, while sensory responsiveness changes suggest 
that external stimuli are not being processed effectively. The central lobe's substantial 
connectivity during fatigue implies that this region adjusts by reallocating neural 
resources to account for the decrease in energy levels. The objective of these adaptive 
mechanisms is to maintain sensory processing and motor readiness in the face of the 
cognitive and physiological strain that fatigue induces. This dynamic adjustment is 
indicative of the brain's overarching strategy to efficiently manage energy while 
maintaining critical functions such as perception and movement [103], [104]. These 
findings underscore the central lobe's critical contribution to maintaining functional 
integrity and adapting to the challenges posed by prolonged cognitive or physical 
exertion. 

The Parietal Lobe, accounting for 18.4% of the connections (red color Fig 50), 
plays a significant role in spatial awareness, sensory integration, and attentional 
modulation. Fatigue can disrupt these processes, resulting in a decreased capacity to 
process sensory information effectively and a decrease in spatial accuracy. The 
parietal lobe's moderate contribution to the analysis implies that it offers critical insights 
into the neural adjustments that occur in response to fatigue. The involvement of this 
region may be indicative of modifications in the processing and integration of sensory 
and spatial information, which are essential for the preservation of task performance 
in challenging environments [88], [90], [105]. 

Limited involvement in this analysis is demonstrated by the Temporal Lobe, 
(blue color Fig 50) which accounts for only 5.3% of the connections. The temporal 
lobe's diminished contribution may suggest that fatigue has a less significant impact 
on these processes in the context of this dataset or task, as it is primarily associated 
with auditory processing and memory functions. The limited connectivity implies that 
auditory and memory-related functions are relatively stable across rest and fatigue 
states, or that their differentiation is less critical for this analysis. 

Among all cerebral regions, the Occipital Lobe (purple color Fig 50) makes the 
least contribution, accounting for only 2.6% of the connections. In this investigation, 
visual processing, which is regulated by the occipital lobe, is not a primary differentiator 
between rest and fatigue. This finding is consistent with this understanding. The 
occipital lobe's minimal involvement in distinguishing between these states is likely due 
to the fact that the task or dataset does not significantly involve visual stimuli. 

The Frontal and Central Lobes are the primary regions involved in the 
differentiation between rest and fatigue states, as the findings reveal. These regions 
underscore the cognitive and sensorimotor disruptions that are indicative of fatigue, 
such as impaired executive functions, attentional control, and motor readiness. The 
Parietal Lobe also makes a significant contribution, as it reflects alterations in spatial 
processing and sensory integration. These results offer a comprehensive 
understanding of the neural dynamics that are involved in rest and fatigue, providing 
valuable insights into the specific brain regions and connections that are most affected. 
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3.4.3 Topological Connectivity Analysis 

 
Figure 51: Brain wave connections across different brain lobes  
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Table 16: Topology of brain wave connections 

 

Brain Wave 
rhythm 

Frontal 
Lobe 

Central 
Lobe 

Parietal 
Lobe 

Temporal 
Lobe 

Occipital 
Lobe 

Delta 4 3 4 0 0 

Theta 4 4 3 0 0 

Alpha 3 0 0 0 1 

Beta 2 2 0 0 0 

Gamma 0 2 0 1 1 

 
The results presented in figure 51 highlight the brain wave connections (Delta, Theta, 
Alpha, Beta, Gamma) across different brain lobes (Frontal, Central, Parietal, Temporal, 
and Occipital) that demonstrated the maximum differentiation between rest and fatigue 
states. These findings reflect the neural dynamics underlying the transition between 
these states and emphasize the critical role of specific brain rhythms in distinguishing 
between rest and fatigue conditions: 

• Delta Wave Connections: Delta waves show a broad distribution across the 
Frontal (4 connections), Central (3 connections), and Parietal lobes (4 
connections). These slow-wave rhythms, typically associated with restorative 
processes and deep sleep, likely capture the brain's response to the need for 
recovery during fatigue. The high differentiation suggests that Delta activity may 
reflect fatigue-induced changes in neural synchrony, particularly in sensory and 
motor integration regions. 

• Theta Wave Connections: Theta rhythms exhibit balanced connectivity across 
the Frontal (4 connections), Central (4 connections), and Parietal lobes (3 
connections). Theta waves are widely recognized for their role in memory 
consolidation and attentional regulation. Their significant differentiation between 
rest and fatigue states suggests that Theta activity may be modulated to sustain 
cognitive and attentional demands during fatigue, particularly in regions involved 
in sensory processing and higher-order cognition. 

• Alpha Wave Connections: Alpha rhythms display fewer connections, 
predominantly in the Frontal lobe (3 connections) and a single connection in the 
Occipital lobe. These rhythms, associated with relaxation and sensory inhibition, 
may play a more localized role in distinguishing rest and fatigue. The reduced 
connectivity suggests that Alpha waves are primarily involved in modulating 
sensory processing (evident in the Occipital lobe) and maintaining cognitive 
balance in the Frontal regions, which are critical for decision-making and 
attentional regulation. 

• Beta Wave Connections: Beta rhythms, with limited connectivity in the Frontal 
(2 connections) and Central lobes (2 connections), reflect their specialized role 
in supporting active thinking, motor coordination, and decision-making. The 
fewer connections emphasize Beta waves' targeted involvement in processes 
strained by fatigue, such as motor readiness and task-relevant cognitive 
functions, rather than a broader neural network response. 

• Gamma Wave Connections: Gamma rhythms, the fastest brain waves, show 
the least connectivity, with differentiation observed in the Central (2 
connections), Temporal (1 connection), and Occipital lobes (1 connection). 
Associated with high-level cognitive integration, Gamma waves likely represent 
localized neural activity changes in response to fatigue. Their minimal but 
specific connections suggest their role in maintaining integrative processes, such 
as sensory coordination and temporal resolution, which are crucial in high-
demand cognitive states. 

 
The distribution of these rhythms highlights how different neural mechanisms 

adapt to distinguish rest and fatigue states. Delta and Theta waves, with their extensive 
connectivity, reflect broad neural adaptations in response to fatigue, particularly in 
restorative and attentional processes. In contrast, Alpha, Beta, and Gamma rhythms, 
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with fewer connections, likely represent specialized roles in sensory processing, 
cognitive integration, and motor control. These findings underscore the complexity of 
brain rhythms in regulating neural dynamics and provide valuable insights for 
understanding and monitoring fatigue-related neural activity 
 

4 Discussion 
 
This thesis combined sophisticated feature selection techniques and machine learning 
algorithms to provide a thorough framework for the classification of rest and fatigue 
states using EEG data. The methodology employed in this study was grounded in a 
multi-stage analysis pipeline. EEG data from 20 participants were recorded following 
the 10-20 electrode placement standard. Raw EEG data underwent necessary 
preprocessing processes including bandpass filtering and artifact removal to 
guarantee high-quality input for further analysis. The Phase Lag Index (PLI) was 
employed to evaluate functional connectivity, a technique that minimizes the impact of 
volume conduction while measuring phase synchronization. This method offered 
valuable insights into the brain connectivity patterns that are associated with fatigue 
and rest. 

In order to handle the high dimensionality of the EEG data, feature selection was 
performed using eleven advanced algorithms, such as LASSO regression, ReliefF, 
and Recursive Feature Elimination with Correlation Bias Reduction (RFE-CBR). These 
methods improved the efficacy and interpretability of the model by identifying the most 
pertinent features. During the classification phase, five machine learning algorithms 
were implemented: k-Nearest Neighbors (kNN), Support Vector Machines (SVM) with 
linear and RBF kernels, Linear Discriminant Analysis (LDA), and Random Forest. The 
purpose of these classifiers was to differentiate between states of fatigue and rest. In 
order to assess the models' generalizability and performance, the study implemented 
Leave-One-Out (LOO) cross-validation, which assessed the classifiers across 
participants. Accuracy, specificity, sensitivity, and F1-score were computed to evaluate 
the performance of the classification models. LASSO was the most effective feature 
selection algorithm for this dataset, obtaining a remarkable accuracy of 97.5% with 
only 19 features. Not only does this minimal yet highly informative feature set 
guarantee exceptional classification performance, but it also improves the 
interpretability of the model.  The robustness of LASSO is demonstrated by its 
consistent performance across all classifiers, which achieves ideal performance 
metrics. 

The most relevant features of the PLI Matrix identified by the LASSO feature 
selection were translated into specific EEG channel connections and their associated 
frequency bands. The algorithm identified top-ranked features derived from LASSO, 
mapping them to connections of the PLI matrix. Each feature corresponds to a pair of 
EEG channels and is linked to one of five frequency bands: Delta, Theta, Alpha, Beta 
and Gamma. Using a lookup table, the algorithm converts feature indices into channel 
names and frequency bands in order to provide detailed information on source-target 
channel pairs and their frequency bands. This reveals functional connectivity patterns, 
offering insights into how different brain regions interact across frequency bands during 
rest and fatigue states. 

The analysis of frequency band connectivity highlights the dominance of the 
Theta (4–7 Hz) and Delta (1–4 Hz) bands in distinguishing rest and fatigue states. 
Theta connectivity, which accounts for 36.8% of the total connections, is strongly 
associated with cognitive effort and sustained attention, reflecting the brain’s 
compensatory mechanisms to maintain performance during fatigue. The significance 
of theta oscillations as an fatigue  marker is emphasized by their prominence, which is 
frequently associated with the frontal and central regions where cognitive processing 
and attentional control are most active [88], [89], [90]. Delta connectivity, contributing 
31.6% of the connections, underscores the brain's restorative processes and large-
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scale synchronization, indicative of its efforts to recover and manage prolonged 
cognitive strain. The data's high representation of delta oscillations implies their critical 
involvement in both physical and mental fatigue, as these oscillations frequently 
manifest in states that necessitate recovery or rest [91], [92], [93], [94], [95].  

The neural activity that distinguishes rest and fatigue states is primarily 
dominated by the Frontal and Central Lobes, as revealed by the analysis of brain 
regions implicated in PLI connectivity. The Parietal lobe contributes moderately. The 
Frontal Lobe, accounting for 42.1% of the connections, emerges as the most significant 
region in this analysis. This discovery is consistent with its well-established function in 
executive functions, decision-making, and attentional control, which are processes that 
are particularly susceptible to the effects of fatigue [36], [37]. The increased 
connectivity observed in the frontal lobe during fatigue likely represents compensatory 
mechanisms employed by the brain to sustain task performance despite strained 
cognitive resources. This elevated activity suggests an effort to mitigate the cognitive 
slowdown commonly associated with fatigue [33], [43], [52]. The frontal lobe's critical 
function in facilitating adaptive cognitive responses and sustained attention is 
underscored by its prominence in this analysis [94], [95], [99], [100]. 

The Central Lobe, which accounts for 31.6% of the connections, is essential for 
the integration of sensory and motor information. Its substantial representation 
emphasizes the significance of sensorimotor processing in the differentiation of fatigue 
from rest. The central lobe is the primary mediator of these functions, which are 
frequently characterized by altered sensory responsiveness, reduced motor precision, 
and delayed reaction times in response to fatigue [101], [102]. The brain's adaptive 
response to decreased energy levels is reflected in the notable connectivity in this 
region, which suggests that fatigue-induced changes in motor readiness and sensory 
processing serve as important markers of neural state alterations [103], [104]. 

The Parietal Lobe, which accounts for 18.4% of the connections, plays a critical 
role in the modulation of attention, sensory integration, and spatial awareness. These 
functions can be substantially impacted by fatigue, which can lead to impaired sensory 
information processing and reduced spatial accuracy. The parietal lobe's moderate 
contribution to this analysis underscores its significance in offering valuable insights 
into the neural adaptations that are induced by fatigue. Its involvement is likely 
indicative of deviations in the processing and integration of sensory and spatial 
information, which are critical for maintaining task performance in challenging 
circumstances [88], [90], [105]. 

These results collectively illustrate the complex neural dynamics that underlie 
fatigue and rest, providing a thorough comprehension of the manner in which brain 
connectivity alters in response to cognitive strain. By focusing on functional 
connectivity, frequency bands, and regional brain activity, this thesis highlights the 
critical roles of the Frontal and Central Lobes, as well as the contributions of the 
Parietal Lobe, in managing and adapting to fatigue. Theta and Delta oscillations' 
predominant presence further underscores their potential as biomarkers for fatigue 
detection, as they reflect both compensatory mechanisms and restorative processes.   

The potential of EEG-based approaches for reliable fatigue classification is 
demonstrated by the integration of sophisticated feature selection methods such as 
LASSO and machine learning classifiers applied in Phase Synchronization metrics 
(PLI). These insights establish the groundwork for the creation of real-time, non-
invasive monitoring systems. These systems have the potential to substantially 
improve safety and performance in high-stakes environments by identifying fatigue-
related risks and facilitating timely interventions. This research emphasizes the 
significance of interdisciplinary methodologies that integrate neuroscience, 
computational tools, and machine learning to address complicated challenges in 
mental state classification. 
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5 Conclusion and Future Considerations 
 

The primary objective of this research was to develop a machine learning 
framework that is capable of accurately identifying mental fatigue through the use of 
EEG data. The study obtained a substantial level of accuracy and interpretability by 
integrating sophisticated preprocessing techniques, feature selection methods, and 
robust classifiers. The LASSO feature selection method was the most effective, 
obtaining a classification accuracy of 97.5% with a minimal feature set. The central 
and frontal brain regions were emphasized in the findings, as delta and theta frequency 
bands offered critical insights into the neural dynamics of fatigue. 

The findings of this research have significant implications for the scientific 
comprehension of mental fatigue and its practical applications. The study improves our 
comprehension of the neural mechanisms that underlie cognitive decline during fatigue 
by identifying neural markers that are associated with fatigue. The significance of the 
frontal and central lobes in cognitive control and sensorimotor integration is highlighted 
by the emphasis on functional connectivity. These results are consistent with the 
current body of literature, thereby underscoring the importance of delta and theta 
rhythms in sustained attention and restorative processes.  

The methodology proposed in the present research offers a scalable and 
interpretable framework for fatigue detection from a practical perspective. This has 
direct applications in a variety of sectors, such as transportation, healthcare, and 
military operations, where the monitoring of cognitive states is essential for safety and 
performance. The system is more feasible for deployment in operational environments 
due to the high accuracy obtained with a minimal feature set, which also enables real-
time implementation in widespread EEG devices.  

The approach and results of this research are in accordance with the existing 
literature on EEG-based fatigue detection. The utility of machine learning classifiers in 
identifying mental fatigue has been demonstrated in numerous prior studies. However, 
this work distinguishes itself by emphasizing feature selection to improve 
interpretability without compromising accuracy. The utilization of LASSO regression to 
attain both high classification performance and dimensionality reduction is a 
noteworthy accomplishment. Additionally, the emphasis on functional connectivity, 
particularly through the Phase Lag Index (PLI), offers a more sophisticated 
comprehension of neural dynamics than research that exclusively relies on spectral 
power analysis. 

This study has certain limitations that necessitate further investigation, despite 
the promising results. Although the sample size is sufficient for this preliminary 
investigation, it could be increased to enhance generalizability. The robustness of the 
findings would be improved by a more diverse and extensive dataset that includes 
participants from a variety of backgrounds and age categories. The fatigue states 
examined in this investigation were not quantifiable across multiple levels or gradients. 
This binary classification of rest versus fatigue may oversimplify the spectrum of fatigue 
experiences, thereby restricting the framework's capacity to identify minor changes in 
cognitive states. Furthermore, the controlled experimental design may not completely 
capture the variability that is present in real-world scenarios. The proposed 
framework's robustness in operational contexts may be challenged by factors such as 
environmental noise, variable levels of fatigue, and differences in task complexity, 
which could influence the EEG signals. 

Future research should concentrate on expanding the number of datasets to 
include a wider range of participant groups and demographics, thereby facilitating 
validation across a variety of fatigue-inducing conditions and demographics, in an 
effort to build upon the limitations and findings of this study. It is important to evaluate 
the robustness and practicality of the proposed framework in dynamic environments 
by testing it in real-world applications, such as wearable EEG devices for continuous 
monitoring. Additionally, the accuracy and reliability of fatigue detection systems could 
be enhanced by the integration of multi-modal data, which involves the combination of 
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EEG with other physiological signals such as skin conductance or heart rate variability. 
Further research on the long-term effects of fatigue on cognitive performance and 
neural connectivity would facilitate the development of predictive models for early 
fatigue detection, thereby expanding the system's applications in both clinical and 
operational environments. To further enhance practicality, the use of dry EEG systems 
could be explored, as they are more suited for real-world applications and reduce setup 
complexity. Additionally, employing fewer EEG channels concentrated in regions of 
interest, such as the frontal and central areas, could simplify the system while 
maintaining accuracy, making it more feasible for wearable and portable solutions. 

This thesis introduces a framework for EEG-based fatigue detection that is both 
interpretable and robust, illustrating the potential of integrating machine learning 
classifiers with sophisticated feature selection techniques. The results contribute to the 
expanding corpus of knowledge on mental fatigue and its neural correlates, providing 
practical solutions for its detection and management. The provided methodology has 
the potential to facilitate the development of innovative applications in cognitive health 
monitoring and operational safety across a variety of industries by addressing the 
enumerated limitations and pursuing the proposed future directions. 
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Appendix 

Matlab Code 

Main Program  
 
%% Main folders and paths 
addpath 'C:\MASTER TEAM\Thesis\eeglab2024.2\' 
savepath='C:\MASTER TEAM\Thesis\output\'; 
addpath(genpath('C:\MASTER 
TEAM\Thesis\network_PLI_and_metrics\FSLib_v7.0.1_2020_2')) 
addpath(genpath('C:\MASTER TEAM\Thesis\network_PLI_and_metrics\libsvm-
3.23')) 
addpath(genpath('C:\MASTER TEAM\Thesis\network_PLI_and_metrics\rfe')) 
Bandrange=[1 4;4 7;8 12;13 30;31 45]; 
 
%% Read and Analyze Rest Data 
addpath 'C:\MASTER TEAM\Thesis\Rest\' 
f=dir('C:\MASTER TEAM\Thesis\Rest\*.mat'); 
loadpath='C:\MASTER TEAM\Thesis\Rest\'; 
 
AllSubPLI={}; 
AllsesbandPLI={}; 
 
for i=1:length(f) 
    eeglab 
    name2load = f(i).name; 
    load(name2load) 
    EEG = EEG_NB; 
    eeglab redraw       
        for band=1:size(Bandrange,1) 
            switch band 
                case 1 
                    EEGtemp = pop_eegfiltnew(EEG, Bandrange(band,1), 
Bandrange(band,2), 2640, 0, [], 0); 
                case 2 
                    EEGtemp = pop_eegfiltnew(EEG, Bandrange(band,1), 
Bandrange(band,2), 660, 0, [], 0); 
                case 3 
                    EEGtemp = pop_eegfiltnew(EEG, Bandrange(band,1), 
Bandrange(band,2), 660, 0, [], 0); 
                case 4 
                    EEGtemp = pop_eegfiltnew(EEG, Bandrange(band,1), 
Bandrange(band,2), 408, 0, [], 0); 
                case 5 
                    EEGtemp = pop_eegfiltnew(EEG, Bandrange(band,1), 
Bandrange(band,2), 172, 0, [], 0);                
            end 
            data=EEGtemp.data; 
             
            PLI = PLI_Cal(data); 
            AllsesbandPLI{band,1}=PLI; 
        end 
     AllSubPLI{i,1}=AllsesbandPLI; 
end 
% calculate the mean every subject across all trials 
MeanAllSubPLI={}; 
for i=1:20 
    for j=1:5 
A1=AllSubPLI{i}{j}; 



89 
 

MeanAllSubPLI{i,1}{j,1}=mean(A1,3); 
    end 
end 
MeanAllSubPLI_R=MeanAllSubPLI; 
% Convert the Mean PLI Array to 1d array 
for i=1:20 
    for j=1:5 
AA=MeanAllSubPLI_R{i}{j}; 
a1 = reshape(triu(AA, 1)', 1, []);  
a3(j,:) = a1(a1 ~= 0); 
    end 
    Feat_R(i,:)=reshape(a3',1,[]); 
end 
clear a1 A1 a3 AA ALLCOM ALLEEG AllsesbandPLI AllSubPLI CorrectAns 
CURRENTSET CURRENTSTUDY data EEG EEG_NB EEGtemp f globalvars i j  LASTCOM 
loadpath MeanAllSubPLI name2load NB_RT PLI PLUGINLIST STUDY tmpEEG  
%% Read and Analyze Fatigue Data 
addpath 'C:\MASTER TEAM\Thesis\Fatigue\' 
f=dir('C:\MASTER TEAM\Thesis\Fatigue\*.mat'); 
loadpath='C:\MASTER TEAM\Thesis\Fatigue\'; 
 
AllSubPLI={}; 
AllsesbandPLI={}; 
 
for i=1:length(f) 
    eeglab 
    name2load = f(i).name; 
    load(name2load) 
    EEG = EEG_NB; 
    eeglab redraw       
        for band=1:size(Bandrange,1) 
            switch band 
                case 1 
                    EEGtemp = pop_eegfiltnew(EEG, Bandrange(band,1), 
Bandrange(band,2), 2640, 0, [], 0); 
                case 2 
                    EEGtemp = pop_eegfiltnew(EEG, Bandrange(band,1), 
Bandrange(band,2), 660, 0, [], 0); 
                case 3 
                    EEGtemp = pop_eegfiltnew(EEG, Bandrange(band,1), 
Bandrange(band,2), 660, 0, [], 0); 
                case 4 
                    EEGtemp = pop_eegfiltnew(EEG, Bandrange(band,1), 
Bandrange(band,2), 408, 0, [], 0); 
                case 5 
                    EEGtemp = pop_eegfiltnew(EEG, Bandrange(band,1), 
Bandrange(band,2), 172, 0, [], 0);                
            end 
            data=EEGtemp.data; 
            PLI = PLI_Cal(data); 
            AllsesbandPLI{band,1}=PLI; 
        end 
     AllSubPLI{i,1}=AllsesbandPLI; 
end 
% calculate the mean every subject across all trials 
MeanAllSubPLI={}; 
for i=1:20 
    for j=1:5 
A1=AllSubPLI{i}{j}; 
MeanAllSubPLI{i,1}{j,1}=mean(A1,3); 
    end 
end 
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MeanAllSubPLI_F=MeanAllSubPLI; 
% Convert the Mean PLI Array to 1d array 
for i=1:20 
    for j=1:5 
AA=MeanAllSubPLI_F{i}{j}; 
a1 = reshape(triu(AA, 1)', 1, []);  
a3(j,:) = a1(a1 ~= 0); 
    end 
    Feat_F(i,:)=reshape(a3',1,[]); 
end 
clear a1 A1 a3 AA ALLCOM ALLEEG AllsesbandPLI AllSubPLI CorrectAns 
CURRENTSET CURRENTSTUDY data EEG EEG_NB EEGtemp f globalvars i j  LASTCOM 
loadpath MeanAllSubPLI name2load NB_RT PLI PLUGINLIST STUDY tmpEEG  
%% Feature Selection  
 
RR= horzcat(zeros(20,1),Feat_R); 
FF=horzcat(ones(20,1),Feat_F); 
features=vertcat(RR,FF); 
labels = features(:,1); 
features(:,1) = []; 
CV(:,1)=1:20; 
CV(:,2)=21:40; 
clear RR FF 

 
%% Feature selection 
[FS_all_ranks_dev] = FS_kakkosP(features,labels,CV); 
 
%% PLI 
function PLI=PLI_Cal(data) 
%points*chan*trials 
[cn,pn,tn]=size(data); 
PLI=zeros(cn,cn,tn); 
for j=1:tn 
    signal=data(:,:,j)'; 
    phaseSignal = angle(hilbert(signal)); 
    pli=zeros(cn); 
    for i = 1:(cn-1) 
        for m = (i+1):cn 
            pli(i,m) = abs(mean(sign(phaseSignal(:,i)-phaseSignal(:,m)))); 
        end 
    end 
    pli = triu(pli); 
    pli = pli+pli'; 
    PLI(:,:,j)=pli; 
end 
end  
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Feature Selection 

 
function [FS_all_ranks] = FS_kakkosP(features, labels, cv) 
    % Features: instances(subjects) x features 
    % Labels: correspond to instances 
    % CV: matrix corresponding to the subjects left for testing in each 
fold 
 
    Instances = size(features,1); 
    FeatNo = size(features,2); 
 
    % Convert labels 
    Y = labels; 
    Y2 = num2str(Y); 
    Y3 = nominal(ismember(Y2,'1')); 
    Y_train = (double(Y3) - 1)*2 - 1; % labels: neg_class -1, pos_class +1 
 
    numMethods = 11; % Total number of methods 
    FS_all_ranks = zeros(numMethods, size(cv,1), FeatNo); % Dimensions: 
[methods x folds x features] 
 
    % Loop over methods 
    for M = 1:numMethods 
 
        % Start the parallel loop over folds 
        parfor JJ = 1:size(cv,1) 
            % Prepare training data 
            X_train = features; 
            X_train(cv(JJ,:), :) = []; 
            Y_train = labels; 
            Y_train(cv(JJ,:)) = []; 
 
            switch M 
                case 1 
                    % ILFS 
                    [FS_ranks, ~] = ILFS(X_train, Y_train, 6, 1); 
                case 2 
                    % ReliefF 
                    [FS_ranks, ~] = reliefF(X_train, Y_train, 20); 
                case 3 
                    % mutinffs 
                    numF = size(X_train,2); 
                    [FS_ranks, ~] = mutInfFS(X_train, Y_train, numF); 
                case 4 
                    % fsv 
                    numF = size(X_train,2); 
                    [FS_ranks, ~] = fsvFS(X_train, Y_train, numF); 
                case 5 
                    % Laplacian Score 
                    W = dist(X_train'); 
                    W = -W./max(max(W)); % Similarity matrix 
                    [lscores] = LaplacianScore(X_train, W); 
                    [~, FS_ranks] = sort(-lscores); 
                case 6 
                    % Fisher Score 
                    numF = size(X_train,2); 
                    FS_ranks = spider_wrapper(X_train, Y_train, numF, 
'fisher'); 
                case 7 
                    % LLCFS 
                    FS_ranks = llcfs(X_train); 
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                case 8 
                    % CFS 
                    FS_ranks = cfs(X_train); 
                case 9 
                    % LASSO 
                    lambda = 25; 
                    B = lasso(X_train, Y_train); 
                    [~, FS_ranks] = sort(B(:,lambda), 'descend'); 
                case 10 
 
                    % RFC-CBR-linear 
                    [FS_ranks, ~] = ftSel_SVMRFECBR_ori(X_train, Y_train, 
{1;'true';0.9}); 
                case 11 
     
                    % RFC-CBR-gaussian 
                    [FS_ranks, ~] = ftSel_SVMRFECBR(X_train, Y_train, 
{1;'true';0.9}); 
            end 
            FS_all_ranks(M, JJ, :) = FS_ranks; 
        end 
    end 
end 
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Classification 
 
%% Classification 
 
cv=CV; 
FS_all_ranks = FS_all_ranks_dev; 
for ii = 1:size(FS_all_ranks,1) 
     
    for FeatNum = 1:500%size(FS_all_ranks,3) 
        tempR = squeeze(FS_all_ranks(ii,:,:)); 
        Feats = []; 
        temp2 = []; 
        temp3 = []; 
        temp2 = tempR(:,1:FeatNum); 
        for fold = 1:size(FS_all_ranks,2) 
            temp3 = temp2(fold,:); 
            Feats = horzcat(Feats,temp3); 
        end 
        [n,bin] = hist(Feats,unique(Feats)); 
        [~,idx] = sort(-n); 
        b= n(idx); % count instances 
        a=bin(idx); % corresponding values 
        sortedFEATS = a(1:FeatNum); 
        cm2 = zeros(2); 
        for LOO = 1:size(cv,1) 
            NewDataTest = features(cv(LOO,:),sortedFEATS(1:FeatNum)); 
            TestLabels = labels(cv(LOO,:),:); 
            NewDataTrain = features(:,sortedFEATS(1:FeatNum)); 
            NewDataTrain(cv(LOO,:),:) = []; 
            TrainLabels = labels; 
            TrainLabels(cv(LOO,:),:) = []; 
             
            KNN=fitcknn(NewDataTrain,TrainLabels,'NumNeighbors',3); 
            pred = predict(KNN,NewDataTest); 
            acc(ii,1,LOO,FeatNum) = 
sum(pred==TestLabels)/size(TestLabels,1); 
            TP = size(find(TestLabels == 0 & pred==0),1); 
            TN = size(find(TestLabels == 1 & pred==1),1); 
            FP = size(find(TestLabels == 1 & pred==0),1); 
            FN = size(find(TestLabels == 0 & pred==1),1); 
            sensitivity(ii, 1, LOO, FeatNum) = TP / (TP + FN); 
            specificity(ii, 1, LOO, FeatNum) = TN / (TN + FP); 
            precision(ii, 1, LOO, FeatNum) = TP / (TP + FP); 
            f1_score(ii, 1, LOO, FeatNum) = 2 *TP/(2*TP+FP+FN); 
             
            cl = fitcsvm(NewDataTrain,TrainLabels,'KernelFunction','rbf'); 
            predSVM = predict(cl,NewDataTest); 
            acc(ii,2,LOO,FeatNum) = 
sum(predSVM==TestLabels)/size(TestLabels,1); 
            TP = size(find(TestLabels == 0 & predSVM==0),1); 
            TN = size(find(TestLabels == 1 & predSVM==1),1); 
            FP = size(find(TestLabels == 1 & predSVM==0),1); 
            FN = size(find(TestLabels == 0 & predSVM==1),1); 
            sensitivity(ii, 2, LOO, FeatNum) = TP / (TP + FN); 
            specificity(ii, 2, LOO, FeatNum) = TN / (TN + FP); 
            precision(ii, 2, LOO, FeatNum) = TP / (TP + FP); 
            f1_score(ii, 2, LOO, FeatNum) = 2 *TP/(2*TP+FP+FN);   
 
            MdlLinear = fitcdiscr(NewDataTrain,TrainLabels); 
            predLDA = predict(MdlLinear,NewDataTest); 
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            acc(ii,3,LOO,FeatNum) = 
sum(predLDA==TestLabels)/size(TestLabels,1); 
            TP = size(find(TestLabels == 0 & predLDA==0),1); 
            TN = size(find(TestLabels == 1 & predLDA==1),1); 
            FP = size(find(TestLabels == 1 & predLDA==0),1); 
            FN = size(find(TestLabels == 0 & predLDA==1),1); 
            sensitivity(ii, 3, LOO, FeatNum) = TP / (TP + FN); 
            specificity(ii, 3, LOO, FeatNum) = TN / (TN + FP); 
            precision(ii, 3, LOO, FeatNum) = TP / (TP + FP); 
            f1_score(ii, 3, LOO, FeatNum) = 2 *TP/(2*TP+FP+FN);  
 
 
            nTrees=200; 
            B = TreeBagger(nTrees,NewDataTrain,TrainLabels, 'Method', 
'classification'); 
            predTREE = B.predict(NewDataTest); 
            predTREEC = str2double(predTREE); 
            acc(ii,4,LOO,FeatNum) = 
sum(predTREEC==TestLabels)/size(TestLabels,1); 
            TP = size(find(TestLabels == 0 & predTREEC==0),1); 
            TN = size(find(TestLabels == 1 & predTREEC==1),1); 
            FP = size(find(TestLabels == 1 & predTREEC==0),1); 
            FN = size(find(TestLabels == 0 & predTREEC==1),1); 
            sensitivity(ii, 4, LOO, FeatNum) = TP / (TP + FN); 
            specificity(ii, 4, LOO, FeatNum) = TN / (TN + FP); 
            precision(ii, 4, LOO, FeatNum) = TP / (TP + FP); 
            f1_score(ii, 4, LOO, FeatNum) = 2 *TP/(2*TP+FP+FN); 
         
            cl = 
fitcsvm(NewDataTrain,TrainLabels,'KernelFunction','linear'); 
            predSVM = predict(cl,NewDataTest); 
            acc(ii,5,LOO,FeatNum) = 
sum(predSVM==TestLabels)/size(TestLabels,1); 
            TP = size(find(TestLabels == 0 & predSVM==0),1); 
            TN = size(find(TestLabels == 1 & predSVM==1),1); 
            FP = size(find(TestLabels == 1 & predSVM==0),1); 
            FN = size(find(TestLabels == 0 & predSVM==1),1); 
            sensitivity(ii, 5, LOO, FeatNum) = TP / (TP + FN); 
            specificity(ii, 5, LOO, FeatNum) = TN / (TN + FP); 
            precision(ii, 5, LOO, FeatNum) = TP / (TP + FP); 
            f1_score(ii, 5, LOO, FeatNum) = 2 *TP/(2*TP+FP+FN); 
         
        % Update all bars 
        frac1 = ii/size(FS_all_ranks,1) 
        frac2 = FeatNum/ size(FS_all_ranks,3) 
        frac3 = LOO/ size(cv,1) 
        end 
    end 
end 
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Classification Optimization  
 
%% Classification with optimization 
cv=CV; 
 
FS_all_ranks =FS_all_ranks_dev; 
 
for ii = 1:11%size(FS_all_ranks,1) 
    for FeatNum = 1:500%size(FS_all_ranks,3) 
        tempR = squeeze(FS_all_ranks(ii,:,:)); 
        Feats = []; 
        temp2 = []; 
        temp3 = []; 
        temp2 = tempR(:,1:FeatNum); 
        for fold = 1:size(FS_all_ranks,2) 
            temp3 = temp2(fold,:); 
            Feats = horzcat(Feats,temp3); 
        end 
        [n,bin] = hist(Feats,unique(Feats)); 
        [~,idx] = sort(-n); 
        b= n(idx); % count instances 
        a=bin(idx); % corresponding values 
        sortedFEATS = a(1:FeatNum); 
        for LOO = 1:size(cv,1) 
 
            %create train and test 
            NewDataTest = features(cv(LOO,:),sortedFEATS(1:FeatNum)); 
            TestLabels = labels(cv(LOO,:),:); 
            NewDataTrain = features(:,sortedFEATS(1:FeatNum)); 
            NewDataTrain(cv(LOO,:),:) = []; 
            TrainLabels = labels; 
            TrainLabels(cv(LOO,:),:) = []; 
 
 
            frac1 = ii/size(FS_all_ranks,1) 
            frac2 = FeatNum/ 200 
            frac3 = LOO/ size(cv,1) 
 
            % Set up hyperparameter optimization options 
opts = struct(... 
    'Optimizer', 'bayesopt', ...         % Use Bayesian optimization 
    'ShowPlots', false, ... 
    'Verbose', 0, ... 
    'UseParallel', true, ...             % Use parallel computing if 
available 
    'MaxObjectiveEvaluations', 30);      % Adjust as needed 
 
 
% KNN with Hyperparameter Optimization 
KNNModel = fitcknn(NewDataTrain, TrainLabels, ... 
                   'OptimizeHyperparameters', 'auto', ... 
                   'HyperparameterOptimizationOptions', opts); 
 
% Predict on the test data 
pred = predict(KNNModel, NewDataTest); 
% Compute accuracy 
acc(ii,1,LOO,FeatNum) = sum(pred == TestLabels) / length(TestLabels); 
% Retrieve the best hyperparameters 
bestKNNHyperparams = 
KNNModel.HyperparameterOptimizationResults.XAtMinObjective; 
% Optionally, store the best hyperparameters 
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bestKNN_NumNeighbors(ii, LOO, FeatNum) = bestKNNHyperparams.NumNeighbors; 
bestKNN_Distance{ii, LOO, FeatNum} = bestKNNHyperparams.Distance; 
            TP = size(find(TestLabels == 0 & pred==0),1); 
            TN = size(find(TestLabels == 1 & pred==1),1); 
            FP = size(find(TestLabels == 1 & pred==0),1); 
            FN = size(find(TestLabels == 0 & pred==1),1); 
            sensitivity(ii, 1, LOO, FeatNum) = TP / (TP + FN); 
            specificity(ii, 1, LOO, FeatNum) = TN / (TN + FP); 
            precision(ii, 1, LOO, FeatNum) = TP / (TP + FP); 
            f1_score(ii, 1, LOO, FeatNum) = 2 *TP/(2*TP+FP+FN); 
 
% SVM with RBF Kernel and Hyperparameter Optimization 
SVMModel = fitcsvm(NewDataTrain, TrainLabels, ... 
                   'KernelFunction', 'rbf', ... 
                   'OptimizeHyperparameters', {'BoxConstraint', 
'KernelScale'}, ... 
                   'HyperparameterOptimizationOptions', opts); 
% Predict on the test data 
predSVM = predict(SVMModel, NewDataTest); 
% Compute accuracy 
acc(ii,2,LOO,FeatNum) = sum(predSVM == TestLabels) / length(TestLabels); 
            TP = size(find(TestLabels == 0 & predSVM==0),1); 
            TN = size(find(TestLabels == 1 & predSVM==1),1); 
            FP = size(find(TestLabels == 1 & predSVM==0),1); 
            FN = size(find(TestLabels == 0 & predSVM==1),1); 
            sensitivity(ii, 2, LOO, FeatNum) = TP / (TP + FN); 
            specificity(ii, 2, LOO, FeatNum) = TN / (TN + FP); 
            precision(ii, 2, LOO, FeatNum) = TP / (TP + FP); 
            f1_score(ii, 2, LOO, FeatNum) = 2 *TP/(2*TP+FP+FN);   
 
% Retrieve the best hyperparameters 
bestSVMRBFHyperparams = 
SVMModel.HyperparameterOptimizationResults.XAtMinObjective; 
% Optionally, store the best hyperparameters 
bestSVM_RBF_C(ii, LOO, FeatNum) = bestSVMRBFHyperparams.BoxConstraint; 
bestSVM_RBF_KernelScale(ii, LOO, FeatNum) = 
bestSVMRBFHyperparams.KernelScale; 
 
 
% LDA with Hyperparameter Optimization 
LDAmodel = fitcdiscr(NewDataTrain, TrainLabels, ... 
                     'OptimizeHyperparameters', 'auto', ... 
                     'HyperparameterOptimizationOptions', opts); 
% Predict on the test data 
predLDA = predict(LDAmodel, NewDataTest); 
% Compute accuracy 
acc(ii,3,LOO,FeatNum) = sum(predLDA == TestLabels) / length(TestLabels); 
            TP = size(find(TestLabels == 0 & predLDA==0),1); 
            TN = size(find(TestLabels == 1 & predLDA==1),1); 
            FP = size(find(TestLabels == 1 & predLDA==0),1); 
            FN = size(find(TestLabels == 0 & predLDA==1),1); 
            sensitivity(ii, 3, LOO, FeatNum) = TP / (TP + FN); 
            specificity(ii, 3, LOO, FeatNum) = TN / (TN + FP); 
            precision(ii, 3, LOO, FeatNum) = TP / (TP + FP); 
            f1_score(ii, 3, LOO, FeatNum) = 2 *TP/(2*TP+FP+FN);  
% Retrieve the best hyperparameters 
bestLDAHyperparams = 
LDAmodel.HyperparameterOptimizationResults.XAtMinObjective; 
% Optionally, store the best hyperparameters 
bestLDA_Delta(ii, LOO, FeatNum) = bestLDAHyperparams.Delta; 
bestLDA_Gamma(ii, LOO, FeatNum) = bestLDAHyperparams.Gamma; 
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% Random Forest with Hyperparameter Optimization 
RFmodel = fitcensemble(NewDataTrain, TrainLabels, ... 
                       'Method', 'Bag', ... 
                       'OptimizeHyperparameters', {'NumLearningCycles', 
'MinLeafSize'}, ... 
                       'HyperparameterOptimizationOptions', opts); 
% Predict on the test data 
predRF = predict(RFmodel, NewDataTest); 
% Compute accuracy 
acc(ii,4,LOO,FeatNum) = sum(predRF == TestLabels) / length(TestLabels); 
TP = size(find(TestLabels == 0 & predTREEC==0),1); 
            TN = size(find(TestLabels == 1 & predRF==1),1); 
            FP = size(find(TestLabels == 1 & predRF==0),1); 
            FN = size(find(TestLabels == 0 & predRF==1),1); 
            sensitivity(ii, 4, LOO, FeatNum) = TP / (TP + FN); 
            specificity(ii, 4, LOO, FeatNum) = TN / (TN + FP); 
            precision(ii, 4, LOO, FeatNum) = TP / (TP + FP); 
            f1_score(ii, 4, LOO, FeatNum) = 2 *TP/(2*TP+FP+FN); 
% Retrieve the best hyperparameters 
bestRFHyperparams = 
RFmodel.HyperparameterOptimizationResults.XAtMinObjective; 
% Optionally, store the best hyperparameters 
bestRF_NumTrees(ii, LOO, FeatNum) = bestRFHyperparams.NumLearningCycles; 
bestRF_MinLeafSize(ii, LOO, FeatNum) = bestRFHyperparams.MinLeafSize; 
 
 
% SVM with Linear Kernel and Hyperparameter Optimization 
SVMLinearModel = fitcsvm(NewDataTrain, TrainLabels, ... 
                         'KernelFunction', 'linear', ... 
                         'OptimizeHyperparameters', {'BoxConstraint'}, ... 
                         'HyperparameterOptimizationOptions', opts); 
 
% Predict on the test data 
predSVM = predict(SVMLinearModel, NewDataTest); 
% Compute accuracy 
acc(ii,5,LOO,FeatNum) = sum(predSVM == TestLabels) / length(TestLabels); 
            TP = size(find(TestLabels == 0 & predSVM==0),1); 
            TN = size(find(TestLabels == 1 & predSVM==1),1); 
            FP = size(find(TestLabels == 1 & predSVM==0),1); 
            FN = size(find(TestLabels == 0 & predSVM==1),1); 
            sensitivity(ii, 5, LOO, FeatNum) = TP / (TP + FN); 
            specificity(ii, 5, LOO, FeatNum) = TN / (TN + FP); 
            precision(ii, 5, LOO, FeatNum) = TP / (TP + FP); 
            f1_score(ii, 5, LOO, FeatNum) = 2 *TP/(2*TP+FP+FN); 
% Retrieve the best hyperparameters 
bestSVMLinearHyperparams = 
SVMLinearModel.HyperparameterOptimizationResults.XAtMinObjective; 
% Optionally, store the best hyperparameters 
bestSVM_Linear_C(ii, LOO, FeatNum) = 
bestSVMLinearHyperparams.BoxConstraint; 
        end 
    end 
end 

Plotting Results and EEG Connections 
 
%% Plot the results 
ii=9; 
a1=squeeze(acc(ii,:,:,:)); 
a2=squeeze(mean(a1,2)); 
a3=prod(a2,1); 



98 
 

[maxValue, idx] = max(a3(1:150)); 
FeatNum=idx 
 
aa1=squeeze(specificity(9,:,:,:)); 
aa2=squeeze(sensitivity(9,:,:,:)); 
aa3=squeeze(f1_score(9,:,:,:)); 
aa4=squeeze(precision(9,:,:,:)); 
a2=squeeze(mean(a1,2)); 
 
plot(x, a2(1, :), 'r', 'LineWidth', 1.5); hold on; 
plot(x, a2(2, :), 'g', 'LineWidth', 1.5); 
plot(x, a2(3, :), 'b', 'LineWidth', 1.5); 
plot(x, a2(4, :), 'c', 'LineWidth', 1.5); 
plot(x, a2(5, :), 'm', 'LineWidth', 1.5); 
hold off; 
 
% Add legend for each row 
legend({'KNN', 'SVM-RBF', 'LDA', 'RF', 'SVM-LIN'}, 'Location', 
'northeast'); 
 
% Add labels and title 
xlabel('Number of Features'); 
ylabel('Classifier Accuracy'); 
title('RFC-CBR-gaussian Optimized Accuracy'); 
grid on; 
 
%a3=mean(a2,1); 
 
plot(a3,'DisplayName','a3') 
xlabel('Number of Features'); 
ylabel('Combined Accuracy'); 
title('RFC-CBR-gaussian Optimized Combined Accuracy'); 
 
%% Find EEG channels connections corresponding to the features 
ii = 9;% feature selection 
FeatNum = 19; % number of features 
tempR = squeeze(FS_all_ranks(ii,:,:)); 
        Feats = []; 
        temp2 = []; 
        temp3 = []; 
        temp2 = tempR(:,1:FeatNum); 
        for fold = 1:size(FS_all_ranks,2) 
            temp3 = temp2(fold,:); 
            Feats = horzcat(Feats,temp3); 
        end 
        [n,bin] = hist(Feats,unique(Feats)); 
        [~,idx] = sort(-n); 
        b= n(idx); % count instances 
        a=bin(idx); % corresponding values 
        sortedFEATS = a(1:FeatNum); 
band_names = {'Delta', 'Theta', 'Alpha', 'Beta', 'Gamma'}; 
num_bands = 5; % Number of frequency bands 
num_subjects = 20; % Number of subjects 
pli_matrix_size = 63; % Assume PLI is 63x63 matrix 
num_features_per_band = (pli_matrix_size * (pli_matrix_size - 1)) / 2; % 
Number of upper triangular elements 
% Input: Element index in Feat_R 
subject_idx = 1; % Subject index (row of Feat_R) 
for i=1:length(sortedFEATS) 
element_idx = sortedFEATS(i); % Element index within Feat_R (column of 
Feat_R) 
% Find corresponding band 
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band = ceil(element_idx / num_features_per_band); 
% Find position within the band 
relative_idx = mod(element_idx - 1, num_features_per_band) + 1; 
% Map the 1D index to row and column of the PLI matrix 
% Create a lookup table for the upper triangular indices 
[row_indices, col_indices] = find(triu(ones(pli_matrix_size), 1)'); 
row = row_indices(relative_idx); 
col = col_indices(relative_idx); 
 
channels ={'Fp1' 'AF7' 'AF3' 'F1' 'F3' 'F5' 'F7' 'FT7' 'FC5'
 'FC3' 'FC1' 'C1' 'C3' 'C5' 'T7' 'TP7' 'CP5' 'CP3' 'CP1'
 'P1' 'P3' 'P5' 'P7' 'P9' 'PO7' 'PO3' 'O1' 'Oz' 'POz'
 'Pz' 'CPz' 'Fpz' 'Fp2' 'AF8' 'AF4' 'Afz' 'Fz' 'F2' 'F4'
 'F6' 'F8' 'FT8' 'FC6' 'FC4' 'FC2' 'FCz' 'Cz' 'C2' 'C4'
 'C6' 'T8' 'TP8' 'CP6' 'CP4' 'CP2' 'P2' 'P4' 'P6' 'P8'
 'P10' 'PO8' 'PO4' 'O2'}; 
connections{1,i}=channels{row}; 
connections{2,i}=channels{col}; 
connections{3,i}= band_names{band}; 
end 

 


