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ITepiAndn

To dixtua ITéuntne o endpevne Tevide (Beyond 5G - B5G) avouévetar var LETOOp@OGOUY
TIC XUWVNTEG ETUXOWMVIES, ETUTEENOVTNG TNV EVOWUATMDOT ovIpWTWY, CUOXEUMY (Internet of
Things - IoT) xo cuonthiewy o dneloxd-@uotxd TeptBIAROVTA, TEAYUATOTOUDOVTIS TEAXY
™V évvola Tou Trepdixtiou twv Ipayudtov (Internet of Everything - IoE). ‘Evoc Bacxdc
TEAYOVTAS TOU BLEUXOADVEL auTY| T1 YeTdBoom etvor 1 oOyxAton tng Troloyiotxhc Népoug
(cloud computing) mpog To TEBIO TWV HVNTOY CUGKEVWY, TOU AVOPERETOL S T TONOYLOTIXG
Yuveyéc (compute continuum). Autd SieuxolOver Ty avtahhoyy| Sedouévwy, Ty enelepyo-
olo xou 0 MPn anodoewy oe dhoug Toug Topelc Tou BiXTUOU, amd TO VEPOC Xou TNV dxeN
Tou dutbou (Edge), ptdvovtac éwe xau Tic cuoxeuvéc ot eninedo yprotn (Extreme-Edge).

H Teyvnth Nonpootvn xaw np Mnyoavix Médnon (Artificial Intelligence/Machine Learn-
ing - AI/ML) nailouv xevtpd pdro oe auth tny e&éhln. And toug toyelc tne Blounyaviog
5.0 xou tng autoxivnong U€yet T SLaoxEdaon, TNV eXToUBEUOT xou TNV Uyelovouxt| Tepldai-
m, ot TeyvohOYlEC AUTES €YOUV ELGUYAYEL XUVOTOUEC MIGELS TIOU ETUTEETOUY OE UTONOYIO TIXY
oucTAATA Vo pordoltvouy amd tar TEPBohAoVTIXG deBopéva, xahoTwVTaC To SuVATE GE TATET
autovoplo pe xavotnTa Adng amogdocwy ywelc Ty avdpdmivn TogéuBao.

[opadooiaxd, n Teyvnth Nonuoolvn oe nepiBdAlovTta SxTOOU VAOTIOLEITOL UE EVTELXO-
TOUNUEVO TEOTO, UE T1 GUAROYT| xou ETEEERY UGN DEDOUEVHY VOL TEXYUXTOTIOLOOVTAL O XEVTEIXA.
UTOAOYLOTIXA VEQT. §26TOC0, Ol TEAEUTUUEC EQEUVES EYOLUY OTREYEL TNV TPOCOY T TOUC TEOSC
TIC xaTaveunuéveg Aooelg, Kote va o&lonotndoly To Sedouéva Tou TapdyovToL and TIC XIVNTES
ovoxevéc. e avtideon pe v Kevtpionomuévn Médnon (Centralized Learning - CL), ot
pédodor Katoveunuévne Mddnong, 6nwe n Luvepyotix Mddnon (Federated Learning - FL),
UETAPEPOLY TOV UTOAOYIOTIXO POPTO OTIC CUCKEUES, TEOCHEQOVTAS OPEAT] OTWE 1) ETEXTACL-
HOTNTAL, 1) UELWOT) XOOTOUG XAl 1) TROCTAGIO TNE IO TIXOTNTAS TV BEBOUEVOY TWV YENO TOV.

H undpyovoa égeuva yia tnv Kataveunuévn Mddnon emixevtphvetan xuplnwg otny anddoon
(oxpifelar) TV EXTOUOEUMEVOY HOVTENWY, OYVOWVTUC CUYVE TIC TEOUXTIXES TTUYES, OTWS 1|
en{bpaon oTNY XaTavdhwon Tépwy Tou dixthou. H napolou diatpl3 emduwxet va xahber autd
TAL XEVE EQEVVVTS TNV EQPAPUOYT TwV oy Nudtewy Kataveunuévne Mddnong amd tnv mAeupd
TOU CUGTAUATOG.  Muyxexpléva, efetdlel Tic epopuoyéc Autdvoune xar Alcuviedeuévng
Kwnuixétnroc otov topéa tne autoxvntoflounyoviag, ol omoleg €youy auoTNEES ATUTACELS
1600 WS TEOS TNV anddoon Tou BixThou (.. xouoTEPHOELS) 60O XU (E TEOS TNV ATdBOoN
TWY EQUPUOYMV (T.Y. ACPIAELD).

ZEXVOVTAS, TREOYUATOTOWVUE ULol CUYXELTIXT o&lohdYNon TN amddoone uetald Kevtpl-
xomolnuEVNG xou Luvepyatixric Mddnong, avaAbovTag TNy anodoTixdTNTo TG EXTAOEVCTC XAl
TNV XATUVIAWOT TOPWY GE OAO TO QAU EVOS BIXTOOL: TOUC YPNOTES, TO BIXTUO XAl TIC UTOBO0-
HEC OTO UTOAOYLOTIXG VEQOC Xou TNV dxen Tou dixtbou. Eetdlouue to mohimhoxo mpdBinua
e emAoYHc Tou oyfuatog Mnyavixhc Mdainone, Aaufdvovtag unddm didpopes TapouETEOUS
X0l TEPLOPIOUOUG TOU GUGTAUNTOS, GUUTEQLAUBAVOUEVLY %Ol TWV TOQUUETEWY OLXTUOL Xal
XVNTOTNTOG, XS o YeTpixav Mnyovixic Mdinong (m.y. obyxhion).

Y1 ouvéyela, Baotlouevol oTiC Véeg TEYVIXES TN Muveyolg Mnyaviic Mddnong, e&e-
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télouyue To awvouevo tng Metatomiong Evvoundy, dnhadh to modg ot odAhay€C 0TI XATAVOUES
OEDOUEVOV TWV YENOTWY PE TNV TEE0B0 Tou YEeOVou, eMNeedlouv TNV amddocT) TWV XoTo-
VEUNUEVWY HOVTEAWY udidnong, iwe o xivntd xou dixtuo oynudtev. Autd to dixtua efvan
ex POOEMS DUVAUIXE XU TUYEWS UETUBUANOUEVA, dpaL XAl ETLEEETY GTO Pavouevo tng Meto-
tomong Evvolidv. X1n cuvéyela tng Blepedvnong, TROTEIVOUUE XOUVOTOUES TEYVIXES YLoL T1)
otayeipion tng Metatémiong Evvoldv pe 1pémo amodotind ¢ mpog Toug Topous Tou dixTiou.

Téhog, emxup®vouue Ta YewENTXE ELENUUTA YaC PECL TEAYUATIXGY doXumY. Apyxd,
Olegdryoupe pla exotpatelor UETPROEWY HEYSANG XAipoxag yia T GUANOYY| BEBOUEVWY TOLOTNTOG
UTNEESoC XaL XWVNTIXOTNTOC YENOTWY 0TO BixTOOL, To OTOl0L OTY GUVEYELX YETOHLOTIOLOUVTOL
vl TNV LAorolnon wog TeaxTixig epapuoyrc Luvepyotixic Mddnong: v xatoveunuévn
npoBAedn mapopétewy Tou dixtbou. To mhaloo yog emexteiveTton Yo TN Bloyeiplon xou Evop-
YO TEWON TOMATAGOY UTNEECLOY Muvepyatxrc Mdldnong, ewodyovtag €vayv evopynotewth
Y0 CUGXEVES YPNO TV Tou exTEAOVY unneeciee Mnyavixrc xou Xuvepyatixrc Mdidnone. O
EVOPYNOTeWTNE avamtuooeTon ot éva mpaypatixd dixtuo Iléuntne Ievide xon a&loloyeiton ue
xvntée (evtog oynudtwy) xou ototiés (epyaotneloxés) ouoxevéc. To anoteléopato emdeL-
%xvOoLV T BuvatotnTa daryelptong Tou xUxhou (whc o€ TOAAATAES UTNeEsie, emonuaivovTag
TN BLYVATOTNTA EPaPUOYC TNE Buvepyatxrc Mdalnong oe ueyding xiluaxog tepiB3dAlovTa o
epapupoyéc Autdvoung xan Alcuvdedepévne Kivnuxdtntog.

Agleic KAewdod

Kotaveunuévn Mdinor, Xuvepyatiey Mdainorn, Aixtua Kintdv Emxowwviev, Egapuoyég
Kwnmixétnrog



Abstract

5G networks and beyond (B5G) are expected to transform mobile communications, en-
abling the seamless integration of people, devices, and sensors (Internet of Things - IoT)
within cyber-physical environments, ultimately realizing the concept of the ”Internet-
of-Everything” (IoE). A key enabler of this transformation is the convergence of Cloud
Computing and the IoT domain, referred to as the 5G network and compute continuum.
This continuum facilitates data exchange, processing, and decision-making across all 5G
domains, from the cloud and network edge to the [oT domain, known as the Extreme-Edge.

Artificial Intelligence and Machine Learning (AI/ML) play a central role in this evolu-
tion. From Industry 5.0 and automotive sectors to infotainment, education, and e-health,
AI/ML technologies have introduced innovative solutions that allow computer systems to
learn from environmental data, enabling fully autonomous systems capable of decision-
making in a human-like manner.

Traditionally, AI/ML in network environments has been implemented in a centralized
manner, with data collection and processing occurring in central clouds. However, recent
research has shifted focus toward distributed solutions to leverage the data generated by
mobile client devices. Unlike Centralized Learning (CL), Distributed Learning (DML)
methods, such as Federated Learning (FL), offload computation to client devices, offering
benefits such as scalability, cost-efficiency, and privacy preservation for user data.

Existing research on DML primarily focuses on the performance (accuracy) of trained
models, often overlooking the practical aspects, such as the impact on underlying network
resource consumption. This dissertation seeks to address these gaps by investigating the
implementation of DML schemes from a systems perspective. Specifically, it examines the
Cooperative, Connected, and Automated Mobility (CCAM) applications in the automotive
domain, which have stringent requirements for both network performance (e.g., latency)
and application performance (e.g., safety).

To begin, we conduct an end-to-end performance comparison between CL and FL,
analyzing training efficiency and resource consumption across all network stakeholders:
clients, the network, and cloud/edge infrastructure. We explore the complex issue of ML
scheme selection, considering various system parameters and constraints, including net-
work and mobility conditions as well as AI/ML metrics (e.g., convergence). This analysis
identifies the trade-offs between critical parameters when choosing between CL and FL.

Next, inspired by ML operations (MLOps) and continuous learning, we examine how
concept drift—changes in data distributions over time—affects the performance of dis-
tributed ML models, particularly in mobile and vehicular networks like those used in
CCAM applications. These networks are highly dynamic and prone to drift. After un-
derstanding the impact of concept drift, we propose novel techniques to manage it in a
resource-efficient manner.

Finally, we validate our simulation-based findings through real-world testing. We first
conduct a large-scale measurement campaign to collect network Quality-of-Service (QoS)

11



12 Abstract

and mobility data, which is then used to demonstrate a practical FL application: dis-
tributed QoS prediction. Our framework is extended to manage and orchestrate multiple
FL services, introducing an orchestrator for Extreme-Edge and IoT devices performing
ATI/ML tasks. This orchestrator is deployed on a commercial-grade 5G testbed and evalu-
ated using both mobile (in-vehicle) and static (lab-based) devices. The results demonstrate
the feasibility of lifecycle management for multiple services, particularly in the automotive
sector, showcasing the potential of FL in large-scale environments.

Keywords

Distributed Machine Learning, Federated Learning, Mobile Network, Vehicular Applica-
tions
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Glossary

Abbreviation | English term Greek term

5G Fifth Generation (Mobile Networks) Mépnt Tevid (Kwned Aixtua)

Al Artificial Intelligence Teyvnth Nonuooivn

AP Access Point Ynuelo HpboPBaong

B5G Beyond Fifth Generation épa om6 v MTéuntn Cevid (Kwvntd Afxtuo)
BS Base Station Yroduog Bdong

CCAM Cooperative, Connected, and Automated Mobility | Autévoun xoa Awcuvdedepévn Kivnuxdtnra
CL Centralized Learning Kevtpuxonomuévn Mdinon

DC Data Center Kévtpo Acdopévev

DML Distributed Machine Learning Karaveunuévn Mnyoavu Mdnon

EED Extreme Edge Device Yuoxeu| petd tyv Axpn tou Awtbou (cuoxeul| yphotn)
FL Federated Learning Suvepyot Mddnon

GPU Graphics Processing Unit Movéda EneZepyootag Tpopueiv

IoE Internet of Everything Trepdixtuo v Heayudtwy

IoT Internet of Things Awadixtuo twyv Hpoypdtev

MEC Mobile Edge Computing Troloytotxol Ilégol oty ‘Axen tou Aixtiou
ML Machine Learning Mnyavixy Médnon

MLOps Machine Learning Operations Awdixaoieg Mnyavixric Médnong

NPU Neural Processing Unit Movéda EneZepyooioug Nevptvwy

pQoS Predictive Quality of Service poBhenodpevn Iowdtnro Trneeotog

QoS Quality of Service Tlowétnro Trneesiog

SL Standard Learning Tumuy Médnon

TPU Tensor Processing Unit Movéda EneZepyaoioag Tavuotiv

UE User Equipment Yuoxeur; Xerot




Extetauevn Ilepiindn

O rxavntée Tnhemxowvwyvieg uneloépyovtal ot Yol QAcT) porydaiwy HETUBOAMY Xal UETACY NUATL-
ouob Ye Ty éhevon twv dixtiny Iéuntne xou endpevne Fewide (Beyond 5G - B5G), ta ontola
OVOUEVETOL VO 0BT YHOOUY GE TAHPWS BLUIGUVOESEUEVOL OIXOCUG THUATY, OTOU OL dvipmToL, oL
oLOXEVES xou oL aoUNTAeES Vot IAANAETIOPOVY Yo amd €EUTVOL GUC THUOTA.

Axpoywviaio Mo mpog authv Ty xatedtuvon anotelel 1) evoroinon tne YToloylotixic
Négoue (Cloud Computing) pe to Awdixtuo twv Ipaypdtwv (Internet of Things - IoT),
OnuovpY®VTag éva eviafo Thalolo SlachvBeang xal aELOTOINONG TWY UTOAOYLIOTIXWY TORWY TOU
outoou. 'Etol, 1 opyttextovixn outy| emitpénet T por) BeBouévey, TNV avdAucon xo T ARdN
ATOPACEWY OE TEAYUATIXO YEOVO, G 6RO TO €0pOC Tou BixTloL, and To TTohoylotixd Népog
xou tor Axpo Tou dixtvou (Edge), éwe tic ouoxevéc oe eninedo yprotn (Extreme-Edge).

Evioyutixd og autriy v Tdom AELTOURYOUY XL Ol TOYEWS OVATTUCCOUEVES TEYVOAOYIEC
otov topéa e Teyvnuic Nonuoolvng (Artificial Intelligence - AI) xaun tne Mnyovixric Médn-
onc (Machine Learning - ML). Xdpn otoug mponypévouc ahyopiduouc tou avanticcovto
HEOW TWV TEYVOROYLWY oUTWY, Teondeiton oxoua mo €viova 1 autopatononan, 1 gnelonoln-
or, N AMdn amopdoewmy xan 1 ahANAETdpaoT avlp®dTOL-UNYavAC O Uid GELRA XAGDOUS, OTKC
1 Brounyavia, 1 autoxivion, ot utneeaieg Lyelog xou exmaldeuong, ol UETaPopES, 1 Puyaywyla
X0

E&dhhou ot apyéc mou npeaPevel i Teyvnth Nonuoolvn, dnhady| ) ohoéva xon ueyohiteen
OLVATOTNTA TWVY UTOAOYLO TIXWY CUC TARATOV VoL Lotdolvouy Xo VoL TpocaplolovToL, ETULTEENOUY
0T GUO THUATA AUTE VoL TROBAETOLY TIG AVAYXES TWYV YENOTWY, Vo BEATIGTOTOO0Y T YeHoT
TOPWYV %ol VoL AELToLEYOUV UE TpwTogavi) autovoplo. [lépa duwe and tn Beitiwon tng amddo-
ong Twv STy, 1 ouvépyela tng Teyvntrc Nonuoolvng ue ta dixtua Iléuntng xon enduevng
YEVIAC OVOUEVETOL VOl TEOWUHOEL TNV EUPAVIOT) XOUVOTOUMY UTNEECLMY Xl EQPURUOY OV, UETA-
HOPPWVOVTAS VEUEMWOWS TOV TEOTO UE TOV OTolo 1) xoWwVid AAANAETLORE YE TNV TeY Voloyia.

H moapoloa diatpifr) €yel wg oxomd v gwTloel auTh axpi3mg Tr CUVERYELD XAl VoL OVa-
Nooel g xawvotopeg teyvohoylec e Teyvntric Nonuooivne xou tne Mnyavixric Mddnone
oe dwtuaxd mepBdilovta, eoTidlovtog xotd Bdon o egapuoyéc oTov Topéa Tng Autdvo-
ung xon Atoouvdedepévne Kivnuxdtntog 6nme n autévourn odiynomn, 1 cuvepyatixy avtiAndn
TV oyNudTLY x.o. T'a T0 oxond autd 1 dtedr) dupeiton o Teelg Poacixég VepaTinég e-
VOTNTES. LTV TEOTY), TEOYUNTOTOLETOL Udl EXTETOUEVY) AVAAUCT] TWV XOUUVOTOUWY TEYVIXMY
Koraveunuévne Mnyavixic Mddnong oe ductuoxd mepi3dAlovTa xon cOYXELon AUTOY UE TIC
(rapadootlaxéc) xevipwonomuévee teyvixéc. Eneita, eoTidlouue 0Tn GUUTERLPOPE TWV TEYVL-
AWV AUTOV OTO YEOVO, UEAETOVTOS TS ETULOPOUY OL AAAAYES TWV OEDOUEVWY TWV YPNOTOV GE
tétola cuoThpata. Télog, uhomoloue Tor VewENTXE AMOTEAECUATA WG TEMTOTUTES AUCELS OE
OLXTUAXE TEQLBAANOVTA KO EPUPUOYES TR0 EEAYWYT| CUUTEQUCUATWY GE TEAYUATIXO ENiNEdO
XENOTWV.

Ewaywywéc ‘Evvoleg

Yuyxexpéva Eexvovtoag and tny Evotnta 1, neptypdpouue TiC el0aywyix€c €VVOLES, TROC
OLEUXOAUVGT) TOU OVOLY VGTY YL TNV TERLYRUPT] TV TEY VXMV YoRoXTNROTIXGDY TN Minyavinrc
Mdinone oe nepiBdAhovta dixtOou, Tou Yo axohoVDINOEL OTIC ETOUEVES EVOTNTEC.

Apyixd Sivouue toug Baoxols optogols Yo To SLdpopa ETITEDOL XAl TIC CUCXEVES EVOC Bl
%T00U TOL APOoEOVY TG EPUPUOYEC Tou peAetdue. TTapouoidloupe tic olyypoveg e€ehielc xan
Waitepa TIC emavac TaTxég ahhayég mou emipépouy Tor Alxtua ITéuntng xou endpevng Ievide
OTIC XWNTEC EMXOWVOVIES, TNV ETUTTWOT AUTOY GTIC CUOXEVES TWV YENO TV, 0ANS TauTdYpO-
VO XU TIC VEEC Euxatplec Tou mopouotdlovion xadmE Ol GUOXEVES AUTES OMOXTOUV UEYSAT



UTIOAOYLO TLXY) LXAVOTNTAL € oUTO TO TAXLGLO avaAUOLUE Xl TNV €vvola Tou TTONOYLoTIX0U
Yuveyolc (compute continuum), o¢ giot GUVEVWON TwV UTOAOYLIO TIXMY XOUBwY TOU SiXTOoL.

Ev cuveyela mpoywpdue pe Ty etloaywyn v evolwy tne Teyvntic Nonuooivne nou Yo
wog amacyohfoouvy ota endueva xepdioo. H Teyvnt Nonuoolvn xaw n Mrnyaviry Mdidnon
€youv avadetydel we hoelg oe uio oelpd and clvieta TpoBAuaTa, To omolo dev oy duVITd
VO AVTWETOTIGTOUY [E TIG TUPAOOCLUXES avoAUTIXEG TeyVixéC. [t autd T0 AdYO 1) eapuoYn
TV efval TAEOV EVPEWS BLABEBOUEVT T, OE XIWNTEC EPUPUOYES, OTA OUTOVOUO OY AT, OE
TepBdAlovTo EEUTVGLY oUGUNTARMY X0l UXPOCUGKEVMY 1.0

Ye dixTuaXd TERIBAAAOVTO OTIOL UTHPYEL TO GTOLYEID TNS XVNTIXOTNTOC, Uia Booixr) TEOXAN-
o ebvor 6L Tor dedouévar (omopafTnToL YLor Tor UNyovind LOVTERD) TapdyOVTOL OTIC GUOXEVES TGV
YENO TV UE XATAVEUNUEVO TEOTO, €V 1) ovaryxodar (Lol TNV EXTUOELST] TV HOVTEAWY) UTONO-
Yo T 1oy 0¢ xotd Bdor e8pdlETOL OE XEVTPIXOTONUEVOUS BLUXOULO TEG T.Y., GE UTONOYLC TIXG.
XEVTEOL.

[Tpoxewévou va apdel autdc 0 Teploplolds, epapuolotay Tapadoctoxd 1 hoon tne Ke-
vipwononuévne Mdinone (Centralized Machine Learning - CL). e authv v nepintwon
Ol YPNOTEC UETAPEPOLY TOL OEDOUEVA TOUC GTOV XEVTEIXO DLUXOULOTY], OTIOU X0l EXTIULOEVOVTOL
énertar Tor povtéda.  Autr ) Ao woTt6co anotelel povoldin| TeocEyylon, xows apevog
ToEAPBLECEL TNV WOLWTIXOTNT TWV OEBOUEVWV YENOTWY Xl APETEPOL UTOREL VoI UTERPOPTMOOEL
70 0lXTVO, EQOCOV ATUUTEL GUVEYT| UETAPORY UEYAIAOU OYXOU BEOOUEVWYV.

INo vo avtigetwmiotody tétota {nthyata, avadetydnxayv ol teyvixéc tne Koataveunuévne
Mddnong, pe yapaxtnelotixd mopadelypato v YPRewdwn, tnv Oudtiun xou tTnv XuvepyaTl-
) Mdinon. H tedeutola, 1 omola mpoépyetar and tnv Google, oyedldotnxe ye oxomd tnv
Behtiwon TS WBIWTIXOTNTIC TWV YENOTWY XATd TNV eXTdeUcT). Xe €vol oYU DUVERYATL-
xfc Mddnone (Federated Machine Learning - FL), o xevtpixoc Soxoplotrhc xatavéuer ta
TEOC EXTAUOEVCT) LOVTEAA GTOUC YENOTES, OL OTOLOL TOL EXTIULOEVOUY YENOHLOTIOLOVTOS To BEGO-
uéva toug. Ev cuveyelo, to MPUEEOUS HOVTERA TWV YPNOTWV GUYXEVTPWVOVTUL OTOV XEVIPIXO
OLUXOWULO TT|, OTIOU X0l GUVEVMVOVTAL OE V0L AVOVEWUEVO XEVTEXO HovTéro. H Siaduacia tepl-
AopPdver molomiéc enavakfels wodtou emteuydel (ixavomomtiny) clyXALon ToL LOVTELOU.
Me autdv Tov TpoT0, To HEBOPEVA TUPAUEVOLY GTOV YEeNOTN Ot xdUe TepinTwaon xa dpa dlo-
o@ahileTon 1 BLWTIXOTNTOL.

Kevtpuonowmpéveg xaw Katavepnuéveg teyvixég Mnyavixic Mdadnong

Yy Evotnra 2 avahboupe Tic teyvixés Kataveunuévne Mdidnong, cuyxpelvovtde pe Tic o-
viiotoyee (edpouwpévec) teyvixéc tne Kevtpionompévne Mddnone xou avadewviouue ta
TAEOVEXTAUATOL X0 T UELOVEXTARATO XA TEYVIXNC TOCO amd TN oxoTmid TG enidoong Twv
HOVTEAWY, OARG TUEIAANAL XAl WE TEOS ATOTUTWUS TOUS OTNV XATUVIAWGT| TWV TOEWY TOU
otOou, Tpoxelwévou va emtevy el n extaldeuon.

LUYAEXQUEVOL TUAVOUUE TO VA OO TNV TEONYOUUEYY EVOTNTA, 60U ENESNY UMMV OL Blo-
popeTixéc TEYVES Mnyovinric Méinong oe dixtuod tepBddlovta xou opllouue To TEOBANUA
e emhoyig e Ve Mnyovixic Mdinong we e€hc: mota ebvon 1) BEATIO TN EMAOYY| OYAUNTOS
Mnyovixic Médnone (uetald Kevtpuomomuévne xon SUvepYaTixAc) TROXEWEVOU VoL EXTOU-
0eUTOUV axEIPBT) LOVTEAQ, UE TOUG TEQLOPLOHOUE TOU VETEL TO BIXTUO WS TPOS TNV XATUVIAWOT)
TOPWV.

Apyixd parypatomoloVue avohuTixy| BIBALOYRUPIXY) AVACHOTNOT YLOL TO CUYXEXQHIEVO TEOBAN-
uot ¢ gpeuvnTnd avtixelyevo. H avaoxdmnon xatéhnie oTo 0Tl oL €wC TWEU EPELVNTIXES
epyaolec mou agopolv TN alyxelor TV TeyVixwy Mnyavixrie Mdadnong ectidlouv xatd Bdon
(elte pe Yewpnuxd eite ye mewpopatind 1eOT0) 6NV ENIBOON TWV TUEAYOUEVKDV UOVTEADY,
AYVOOVTOUG TNV EROEACT TOU %dIE OYAUATOS CTNV XATAVAAWGT) TV OIXTLAX®OY TopwY. Emi-



TEOGVETWE, Ol TepLoodTEPES epyaoiec dev Aapfdvouy Lo TNy enldpaor Twv Bacxdy ma-
PUMETEWY TOU CUCTAUNTOSC GTNY EXTOUOEUCT] TWV UOVTEAWY, OTKC YL TORAdELY oL TIC THovES
OLUPOPOTIOLACELS OTIC XATAVOUES TWV DEBOUEVOV TWV YENOTWV avd Teplntwor, T doeot-
HOTNTA TWY YeNo TV (1 omola dev eivar dedopévr, Wiaitepa oe Eva STuoxd TEPBEANOY), TIC
xUOTEPHOELS GTNY EMXOWVOVIO, TNV ATWOAELN TOXETWY OECOUEVLV X.AL.

Aedouévng NG TOALTAOXOTNTOG TOU TEOBAAUNTOS AOY® TWV OLOPORETIXGY AMUTHOEWY
Tou YETOUV Ol BLAPOPOL TOEAYOVTES GTO BIXTUO T.)., OL YENOTES, Ol BLUYEIRPLOTEC TOU BXTUOU
XU TWY UTOAOYLo TGV xOuPwy, eotidlovue otor axdrovda epwtiuata: 1) Ilodg ennpedlet
1 EMAOYT TwV UTER-TapAUETEWY TNe Mnyovixric Mdldnong tny xatavdAnmon tov topewy oTo
mpoc alyxpelon oyfuata Mnyavixric Mdinong, 2) o ennpedler o Adyog tou eyédoug twy
0E0OUEVLY TPOG TO PEYEVOC TOU Unyavixol LOVTEAOU TNV oxp{Bela TV LOVTEAMY Xl TNV XoTA-
véhwon oe xdde oyfua, 3) Iloe ovunepipépeton xde oyRua oto yedvo (tayltnta obyxhone),
4) Tlowa 1 emextoopota xde oyfuatog (xatd ™y adZnon twy yenotwy) xou 5) Ilode enn-
pedlel xqle oy 1 AVOUOLOYEVELN GTOL OEBOUEVA TWV YENO TWV.

ITpoxewévou va amavtndody Tor ToEamdve EpWTHUATI, XUTACKEVALETOL EVOL UOVTEAD TRO-
copolwoNE BIXTOOU X0 UTOAOYLOTIXWY TOPWY, TO 0Tolo TEQLAAUPAVEL OAEC TIC OVTOTNTEG TOU
OtxTO0U, amd TOV TEMXO YENOTN HEYEL TOV XEVTPIXO OLOXOULOTY|. LTOYEVOVTUS GTNY TEOCOUO-
{womn evog pedAlo 00 GUGTAUTOS, TO UOVTENO OLXTUOUL ToPUUETPOTOELTAL UE BdoT UETETOELS
OO TMEAYUATING DIXTUOXS CUCTAUATO XoL OO TIC TWES TWV XATUCKEVACTWY OF EUTOPIUES
OIXTUAXEC CUOXEVES. Oewpolie 800 YUPUXTNELOTIXES TEQLTTAOCELS Yot TO dixTuo o) évar To-
pdderypo xvntav emixowvoviedy Long-Term Evolution (LTE) xou B) éva aclppato tomixd
dixtuo tomou wireless local area (WLAN). H xivntixdtnra twv yenotodv yio xdde nepintwon
ELGGYETAL OTO LOVTELO PEOW Ly VOV xivnuixdTnTog (mobility traces), and nponyolueves epeuvr-
Tixég epyaoieg. H dwadixacio tng exnaideuong 6To cUGTNUL TEOGOUOUMVETHL UEGL AOYLOUIXOU
Koraveunuévne Mnyavixric Mddnone, Bacioyévo oe yAwooa mpoypauuatiopob Python, to
omolo TUEUIETOUPE OTNV EPELVNTLXY) XOWVOTNTA YL TV OVITORXYWY T TV ATOTEAECUITLY, (S
Aoyouxd avolytol xdhduxa (open-source).

Me (dom Ti¢ TPOCOUOUOGELC TEOXVOTTOUY (Lol OELR AN ATOTEAEGUATA YLol TN 0UYXQELOT) TWV
600 oynudtey Mnyavixhc Mddnong. Apyixd avadeixvietan 1 ovdyxn TOEUUETEOTOMONE TWY
umep-TopopéTewy TNe Mnyavixic Mdidnong Wiadtepa yia TV TEQINTWOT TNG LUVERYUTIXNC
Méinong, mpoxeévou va emiteuydel ixavoromnTiny oOyxhion. X1n cUVEYELL ToEOUGLALOUYE
TO TS 0 AOYOS TOV BESOUEVKY TEOC To UEYED0g TOU oVTEAOU Xadopilel TNV XATAVIANDCT) TwV
TOPWY TOU BXTUOL XIS XoL T SLOG TAUATOL TLWDY Tou AdYoU auTo) 6oL UTEpTEREl To xdle
oAU ¢ TEOg TNV axplfBeta exnaidevong xou TNy xatavdhwon tépwy. H avdiuon yia dheg Tic
TEUUETEOUS TOL OLxTOoL Topovatdletar otov Iivaxa mou oxohoudel. Avadewxvieton eniong
n wovétnto e Kevrpionompévne Mddnone va cuyxiver (wg xou 13 @opéc) tayltepa oe
OYEOT UE TN LUVERYUTIXH, KO TOCO dnuLovpynvTag ToTxéc exprioelc (bursts) otny xivnon Oe-
BoUEVKY Tou BxTOoL. ‘OCoV aPopd TNV ETEXTACIOTATA, 1 AOENCT TV YENOTOVY EMTOYUVEL TN
obyxhon e Luvepyotixic Madnone uéypet xar xatd 83%, pe aunhetéo x66T0C 0NV TEAXA
axp{Belar Tou maparyouevou povtéhou. Téhog, delyvouue tnv urepoyr e Kevrpixomoinuévng
Mdinong, dtav oToUC YENOTES EMXEAUTEL UEYOAOS Porduos avOUOLOYEVELNS BEBOUEVKV, TO O-
molo amoteAel mpdxANoY oty TepltTworn e Yuvepyatxrg Mdadnong, pe avdyxn tepountépw
Olepelvnomng Yo movolg TEOTOUS AVTWUETOTICNE GE £VOL TEAYHATIXG GUCTAHAL.

Yuvepyatixry Mddnon npoidvrog Tou ypdvou

Egdbocov otny mponyoluevn evotnta OLoaxeivoue Tor TASOVEXTHUOTA Xl TO UELOVEXTHUNTA TNG
Kotaveunuévne évavt tne Kevtpuconomnuévne Mddnong, otnv Evotnrta 3 eotidlovye otnv
nepintwon e Koataveunuévne xou wuwitepa oty Suvepyotixry Mddnon xou e€etdlouue



Enidpoon tou Adyou tev 8edouévwy Teog To UEYEY0C TOU UOVTENOU Tggrq OTNY ETBOCT xou
™V xatavdhwon népwy v v Kevtpixornomuévn (CL) xou ty Luvepyatnr) Médnon (FL)

Metpuh CL FL TTpotewdbuevo TIpotewdbuevo
oy otay | oy AL ooy
(rdata — 0) (rdata = ©0)

Axpifela Srodept| Srodept| Kavéva Kavéva

Karavdhwon (Ebdpog Zavng) Yradepr| Exdetix Melwon CL FL

Andheror ToxéTwY Yrodept| Tpopuixry Meiwon CL Kovéva

Yuvohry  Kotavddwon  Evépyelag || Etadepn Teoppna AbEnon CL CL

(Xeiiowes)

Karavéhwon Evépyeiag avd Xerot Yrodept| Tpapund AvZnon CL CL

Andrewr Evépyetog Srodept| Tpopuwei AbEnon CL CL

Yuvohry  Kotavddwon  Evépyelag || Etadepn Exdetind Meiwon CL FL

(Aixuo)

Yuvohy  Kotavddwon  Evépyelag || Etadepn Exdetix Meiwon FL FL

(Négoc)

CUUTERLPOEE UTAS OTO YEOVO. AvadelxvOOUUE TIC TEOXAHCELS TOU TEOXUTITOLY OTAY OE €Val
TEAYHATIXO GUGTNUO To BEBOUEVO TWV YENOTWY 0ANILOLY GTO Yp6VO, TNV ETUBEACT) ATV TWV
oMoy v oo povieha Nuvepyoatixic Mdidnong, xadmg xon TedTouUS AVTWETHOTIONS TETOWWY
(POUVOUEVWV.

Kiviteo vy v avalitnon auth amotehel n évvola tng Xuveyolg Mddnone, n omoia
ETUTEETEL OTA HOVTEAA VoL EXTIOUBEDOVTAL TEPLOOLXS xou Vo Ypnotuonolobvtal ot Bddog yedvou.
Autéd oupfoaiver BioTL oe évar TpaypoTixd cboTnua to dedouéva cUMEYovTL oTadtoxd (oe
Yeovixd opllovta nuepny, ERBOPEBmY 1 xat UNVKV), dpo To GOVORO TwV BESOUEVKY eV elvou
dldéouo elopync Yl TV exnaideuor. Xto mhoioio autd, meoxdntel xou To {ATNUA TNg
Metatémong Evvoidy, dnAadh e ohhayfg TwV OTATIOTIXWY WLOTATOY 0TI XATAVOUES TWV
OEDOUEVOV TWV YENOTOV, AOYL QUVOUEVKDY ETOYIXOTNTAUS, AAAXY®Y OE TACELS xat cLVHIELES,
XTA.

H Metatémon Evvoldv wg @ouvouevo unopel vor ETPEREL UEYAAES PETATTWOOES GTNY O-
TOTEASOUATIXOTNTA TOV EXTUOEVUEVODY UOVTEAWY OV OEV OVTIUETOTIOTEL XUTAAA AL, e
AEVTPIXOTIONUEVA TERUSIANOVTA, OTIOU LTAEYEL TEOCPUCT 0T OEBOUEVA TWV YENOTOV TO (POl
VoUeEVO auTo Exel uehetniel eupéwe xan avtwetonileton HECW CTATIOTIXWY TEYVIXOY. XTo
HATAVEUNUEVOL TERUSIANOVTA OUMC Ol XEVTPLXOTIOUNUEVES AUGELS OEV UTOROUV Vol EQUEUOC TOOY
%xo0C o) ToL BEBOUEVA TOV YENO TMV TEOCTATEVOVTAL Xou dpat dev elvar dtardéotuo xevTpnd xou
B) oL cuoxEVES TV YENO TV EYOLY TERLOPLOPEVY BuvatdTnTa enclepyaciac oe oyéon Ue évay
HEVTPIXO OLOXOULO TY) Xol dpal OEV UTOPOVY BEV UTOPOUYV VoL EQPURUOCOUV ATOTEAEGUATIXG TIC Ol
dpopeg TeEYVIKES avTetwnione Tne Metatomong Evvoidv. To Boacixd epwthpata mou xoheiton
va amavtrioet 1 napodoa evotnta eivon: o) To mde unogel va evtomiotel n Metaténion Evvouny
oe éva mepBdhhov Luvepyotxhc (xotaveunuévne) Mddnone eyxolpme xon pe teovomountixn
oxpifela xan B) To v yédodor avupetdmong Yo oxoroudndolv yia vo Unv Ennpedctody ta
novteha mapoucia Metatomione Evvolov, ywelc mapdAinha n dwdtoxacio autr vo 0dnyroet
O€ XATAOTATAANOT TOPWY TOU BXTLOU.

IMo toe ouyxexpéva epwtApaT Teayuatotolinxe BIBMOYpupIXH avacoxOTNoN XL EVIO-
mlotnrav teec Poowée dotdoeic/uédodol oty undpyouoa BiENoypapla Yol TNV VTLE-
twnon e Metatémong Evvounv: 1 Ilpocwronownuévn Mddnor, n Acbyeovn Mddnon xou n
Yuveynic Mddnon. O dlo mpodteg TEYVIXES QatveTan Vo avTWETOTILOLY TO PavOUEVO EiC Bdpog
TNe alENong TS TOAUTAOXOTNTAC TOU CUCTAUATOS, TO OTOlO TIC XHG T Un EPUPUOCUIES O



EVOL TEAYUATIXG cUC TN UdUNoNG OE BixTUAXO TEPUSAANOY UE YIALADES YerioTeg-ouoxeués. H
Yuveynfic Mainomn and tny dhAn UEELd XATUPEPVEL VoL UETELAOEL TO (POUVOUEVO XATAPEDYOVTAS
OTN) CUVEYOUEVT] EXTIOLOEUOT), TO 0Tl OTIWE BElY VOUUE X0l GTOL ATOTEAEGUOTA APYOTERX OOTYEl
O XOTAOTATIANOT) OIXTUOXWY TOPWY OTWS EVERYELX, €0p0¢ LOVNG, X.0.

‘Eyovtoc avadeilel Tic aduvapiec Twv mponyoluevemy AIGEWY, 0Tr GUVEYELN ToEOoUGLAlOUUE
TNV XOUVOTOUO TEOTAOT YOG Yo TNV AVTWETWTLOT Tou (orvopévou tng Metatomone Evvouny
oty Kotaveunuévn Mdidnon (odyoprdpoc DareFL). O ahydprduoc mou mpoteivoupe ebvor
OYEBLOHEVOC Yior LAOTIOINGT) OF TEQIBAAAOVTA UE TEQLOPLOUEVT] TEOGBUOT, OE LTOAOYIGC TIXOUSG
TOPOUC, OTWS O dTUOXEC CUOXEUEC N o€ emelepyaoTéc o (autdvoua) oyfuata. Aérneto
amod TIC apy € TNE Buvepyatrc Mdinong o oyéon ue TNV mpoctacio TNE WOWTIXOTNTIS TWV
OEDOUEVLV TV YENOTOV Xl 0&IOTOLEL EVOL UNYOVIOUO EAEYYOU YLaL VaL oV VEVEL TNV UTopdT
Metatémone Evvoudy, Bacilopevo (xau enextelvovtog o xataveunuévo nep3dhhova) Tov
YVOOoT6 Xevipxonoinuévo olyopripo Drift Detection Method (DDM). E@dcov aviyveutel n
Metatémion Evvoudy, auth avtipetonileton yéow Yet-exnaldeuons twv YoviéAwy (péow Xu-
vepyotixc Méinone), tne omolac dume 1 Sidpxeta xodopileton avotned ue Bdon t obyxhion,
OOTE VoL ENATTWUEL 1] GUVORLXY| XATAVIAWDCT) TTOEWV.

Ipoxewévou va afoloyniel o npotewduevog alyoprduog, Uehetdue g TEoBAnue M-
yavixnic Mddnone v mepintwon e meoBAedng yeovooelp®Y SIXTUOXMY TUPUUETOWY .Y,
pLiude petddoonge (predictive Quality of Service - pQoS) and to yweo e Autévoung xou
Awocuvoedepévne Kivnuxdtnrag. O eqopuoyéc twv oynudtov Boctlovtar otn ductuoxy u-
TodoUY| TEOXEWEVOL Vo ovTOAAGLoUY Bedopéva xat xploudor UNVOPaTa, OTWS Yol TORAOELYUL
oTNV TEPIMTWON TNS ALTOVOUNS 0ONYNoNC. L€ TEPINTWON TOU TO 6{XTUO BEV UToREl Var XOAUPEL
TAL AUOTNES XELTARLAL TOU VETOUV Ol EQUQUOYES QUTEG T.Y., WLlTEPA YoUNAES xoduo TEROELS
TOUXETWY, EYRUPOVOUVTOL %EVOUVOL ¢ TEOg TNV 0pU1] AELTOURYid TWV EQPUPUOYMY AUTOY XAl
TEANXS TNV AcQIAEL TOU ¥V O TN-001YoU. TNV nepinTtwor Tou pQoS to dixtuo Eyel TN duva-
TOTNTAL VoL TEOPBAEPEL TETOLEC XATUCTACELS GTO EYYUC HEAROY XaL VO ELDOTOLNCEL TIG EQUPUOYEC,
oL oToleg UE TN OELRd TOUG UTOEOVY VO TROCUPUOCOUY TN AELTOURYI0 TOUC UE AO(UAY Yid TO
YENOTN TEOTO T.)(., VO UEWWCOLY TNV ToUTNTA TOU OYNUATOS 1} VO BOOOLY TOV EAEYYO EVOS
QUTOVOUOU OYAUATOS GTOV YEHOTN.

Me outiv v évvola 1 TeoBAedm Twv BixTuoX®Y TopoUéTewY anoTeAEl Baoixd epyahe-
to Tou topéa g Autdvoune xan Atacuvdedeuévne Kivnuxdtnrog, eved mopdAnha mtpdxeiton
YLoL YopoXTNELo TiXY) TERITTWON 6Tou Tol BeBOUEVA TwV YENoTWY (OYETXE Ye To dixTuOo, TNV
XWVNTXOTNTAL TWY YENOTOV, Xot.) peTaBdhhovTon pe porydotous puliuolc xon ampoodldploTous
TEOTOUS XL dpar TO ovouevo e Metatomiong Evvoumy €xel ouvidog ueydin évtaor xau
OUYVOTNTA, CUUTEPAOUN OTO OTOl0 XATAANYEL o 1 uTdpyouca PUSAtoypapia.

Aedouévng e éMeudng pQoS Bdedouévwy pe mopadeiyuato Metatomong Evvowdy oe
OlXTLA, ETXEVIPWVOUICTE OTNY TOQUYWYT] TETOWWY BEBOUEVOY UEGK AOYLOUIXOU ToEaY WY NS
oLVIETIXOY BixTuax®dV dedouévwy (OMNET+4), to onolo evowpoatdver avtictotyo Aoyioui-
%0 NVNTIXOTNTOC oYMUdTwy ot aoTixd mepBdhhov (SUMO). Xuyxexpiuéva pehetdvtor 500
oevdpta Metatomone Evvoudv. To npodto avagépetar oe ohhayég otny unodoun tou dixtiou
(peiowon tou apriuol twv otadudy Bdone oty Teploy EEUTNEETNONG TWY YEPNOTAOV), EVK TO
OeVTEPO OE AANALYES OTNV XIVITIXOTNTO TWV YPNOTMOV-0YNUATLY (LETUBOM TwY DBEOUGOY TeV
oyNudTwy oTNy TEPLOY N xdhuhng).

Me autév TOV TEOTO EMUTUYYAVOUUE PEUAIC TIXT] OVOTUEAC TAOT) Qovouévemy Metatdmiong
Evwvoldyv o710 8ixtuo xon e€aywyn v avtioTolywy Taxétwy Sedouévny npog eneepyaota Yo
v mepintworn tou pQoS. Ev cuveyeia o dedouéva ewcdyovtar otov npocopoiwth Kotave-
unuévne Mdnong mou meptypdgpnxe oTNV TEONYOUUEVY EVOTNTA, OTOU X GUYXEIVOUUE TOV
TEOTEWVOUEVO aAYopriuo Xuvepyatixic Mdadnone moapovoio Metatomong Evvoldv pe dikeg
TEEG UTdpyouces AUcelg otn BiBAoypagla. Toco to dedouéva tou napydncay 6co xou o



Aoylouxd (Luveyole) Xuvepyotixfc Mdidnong yia vy nepintwon tou pQoS datidevton oty
EPELYNTIXY XOWOTNTA PECW amodeTnplou.

Y10 amoTEAEOUOTA TOU TUPOUGLALOVUE GE AUTAY TNV EVOTNTA, Ol VOUUE OTL O TPOTEWVOUE-
vog ahyopLiuoc emTuyydvel £yxouen didyvemon tne Metatomone Evvoldv xou avTipetdmon
aUTAC €V ouveyelo. Luyxexpwéva, N Tehxy axpifeio TwV HOVTEAWY Elvor TaPOUOLL UE QUTHY
WY UTOAOLTWY Aoewy (Xuveyoic Mddnoneg) pe Swpopéc mou xuyaivovTon evioe Tou 0plov
Tou 10%, vt ta 800 cevdplo e Tpocouoiwong. Hopdhhnha, topouctdlovue ToHg o akyopLd-
HOC XOUTOUPEPVEL VO LELWOEL Tat xOOTH Emxovmviae (communication costs) yia to dixtuo (éwe
xow 76%), ohhd xou eVepYELoG XOTOVEAWONG YLat TOV XEVTEIXG Slaxouto T (Ewg xon 74%) xou
Toug yerotes (éwg xou 68%), oe oyéon e Tic uTdpyouces AIGELS.

Téhog, e€etdloupe amoXAEIG TG TNV XavoTrTa aviyvevong tne Metatomong Evvoldy tou
TPOTEWVOUEVOU olY6ptdou, 0 ontolog emTuYYdveL xahUTERN cUVOXT anodbor émg xat 9% oe
OYEOT UE TIC UTHPYOVOES AUCELS, XATAVIADVOVTOS WO TOCO UEYEL XU TEELS POREC ALYOTERT €-
VEQYELY, WOC AMOTEAECUA TOU GYETIXA amhol TpoTou Aettoupyiag tne wedodou Drift Detection
Method (DDM) oe oyéon ue tic undpyouces AIGELS GUYXELONG TWY TOPUUETEOY TOV YNy 0-
VXV povtehwy. ‘Olol autol ol mopdyovteg xohotolv TeAixd tov ahyoptduo DareFL wodio
o€ emldooT ahhd ATOBOTIXOTERT OE XOGTOS AUGT|, GE OYECT UE TIC UTARY0UCES HEVHBOUG.

IMpaxtixég epappoyvés Xuvepyatixne Mddnong

IaipvovTag 0 oxUTdAn and TNV TEONYOVLUEVY EVOTNTU TOU UEAETACOUE T1) CUUTEQLPORY TNG
Yuvepyotinic Mdinone oe mporyuotixd nepi3dhiovta to onola uetofdhhovion 6To Yedvo, oTNV
Evétnta 4, mpoywpolue otnv vhomoinot temv YempnTx®V anoTEAECUAT®Y Tou avaAbdnxoy
OTNY TEONYOVUEVT EVOTNTA, ETUXEVIPWVOVTIS TNV TEOCOY T OTNY EQPUPUOYT) TOUS O TEAYHATIXE
CLOTAUATA, To OTolol TEPLAUBAVOUY UEYIANG XAlLoXAS OixTUOXd TEQUSIANOVTA XalL XUV TES
CUOXEVES UE IXOVOTNTO ETEEERYATIAC GEDOUEVWV.

Yuyxexpuéva, eoTIaCoVUE GTNY EQuEUOYT TN Muvepyatxrc Mdinone yio tnv npdPAe-
I mapopétpwy mowdtnTag unneesiog dixtvou (predictive Quality of Service - pQoS), omwe
aVOADUNXE OTO TEONYOUUEVO XEPIANO, xou eCETACOUPE TNV LAOTIOINCY| NG OE TERBAAAOVTA
Avtovoung xou Aocuvdedeuévne Kivnmixotnrog. H yekhétn autr Eexwvd ye T culhoyy| mpory-
HoTxdv 0edopévwy QoS, xong Tétola dedouéva Bev elvan Slodéotda 6Ty LTdEYoUca BIBALO-
yeaepio. T'ar vor xahOhoupe autd o %evo, dnutovpyriooue To cUvolo dedouévwy NordicDat, to
omolo TepthaBavel TEaryaTIXG BEBOUEVAL TOLOTNTOG UTNEEGTAS TOU GUARE Y OMary xorTd Tr) SLdie-
XELL PLOIC EXO TEATELNS UETENONG OE TEELS EVPMTOIXES Ypes: Prvaavdio, Loundio xou Nopfnyla.
To NordicDat nephoufBdver 25 wpeg dedoyévmy 0diynone (Ue SlapopeTixés ToyUTNTES) Xou
HATOYPAPEL TOCO PUOLXGE. YOPUXTNEIC TIXE OGO XAl YOPUXTNELO TIXA TOU BLXTVOOU, XS Xl Xi-
VNUATIXE DEBOUEVY TV Oy NUdTeY. Ol peTprioelc mparyyatomotinxay xovtd oe edvixd chvopa,
TPOXEWEVOL VoL xatarypael 1) entidpaorn tne neplaywyrc (roaming) otnv nowdtnta unneecioc.
AZoonueiwto enlorng elvor 10 yeYovog 4Tl T0 GUVOAO BEBOUEVKY TERLAUUBAVEL XaTarYRopPES oo
Teyvoloyieg mou agopolv dixtua yetddoone Tétaptng xou Iéuntng yevide.

Apyixd mparypatomotiinxe oTaTIoTINY avdhuoT Twv dedouévwy Teoxeévou va e€aydolv
CUUTERAOUATO WS TPOC TIC OYECELS PETOEY TV TOPUUETEMY Tou xataypdpnxay. H avdluon
TWV BEBOUEVWY OUTOV amOXFALPE OTL EVE BEV LUTHPYEL oY LRT YEuUUXY oyéon UETUED TwV
TopUUETEOY, 0 pulUdC petddoone xadbdou (Downlink Throughput) ennpedleton xupiwe and
Y XYNTXOTATAL TRV YENo TV, evod avtiototya otny dvodo (Uplink) xadopiotins pdho mo-
tCouv ot apduetpol oto uowd eninedo (physical layer) tou dixthou. Lto nedio Tou ypdvou,
1 mopduetpos e xaduotépnone (delay) napouctdler younhy autocucyétion, oe avtideon pe
Tov puIUs peTddoone ou mapouctdlet UPNAY (ueyolbtepn tou 0.8) yio dido trnua uéypt xon 50
oeutepoienta. Téhog mopatnendnxe Todg o ahhayéc oTNY TEPLIYWYT), OTA TEOPIA TayUTNTAS



xou TIC TEYVoloyieg BixtOou emneedlouy oNUAVTIXG TI THES TOU U€ooU pUUUOU UETABOOTC.

To NordicDat ypnowono{dnxe yio TNy enldelln e TEOBAEdNg SixTUAXOY TUPUUETEWY
péow Xuvepyotixic Mddnone. Xto Podud mou yvwpllovye, auty elvon 1 TewTn andmelpa
vor e€epeuvniel 1 xatoveunuévn neoBAed dixTuox®y TopouéTenmy UE Bdorn dnuocta dedopéva.
To cvolo dedoyévwy NordicDat, Guvodeuduevo amd AemTopERY| TEXUNElO, Elvor Slodéato
ONUOCLOL OE AYOLYTO AMOVETAPLO, TUPEYOVTUC Uiot TOADTUT TNYTH YLot HEAAOVTLXY) EQEUVIL OTOV
Topéa NG TEOBAEPNC TOLOTIXWY X0l TOGOTIXWY TAUPUUETEWY TOU BIXTOOU Xt XUAOTTOVTAC
xplowa xevd otn Bihoypapio Tng Mnyavixrg xaw tng Yuvepyatxrg Mddnong.

Mo Toug oxomole TNE EXTABEVOTC XATACKEVAC TNXE UNYAVIXO HOVTERO TEOPBAedNC Yuvep-
yatxhe Mddnong pe opiCovta npdlredng €we xan oxte deutepdienta, To onoio alioloyrinxe
pe Baon v enidoorn TeoBredne oty xoducTEENOT TWV TOXETWY XU ToV pUIUS UETABOOoTC.
To yovtéro tne XLuvepyatinric Mdidnong xotdpepe va meTdyEL EMOOCELS TUPOUOLES UE TA XAUC-
o povtéha tne Kevrpiconompévne Mdinone pe péoo Padud andxione oto 9%, xdtt to
omofo avadexviEL TNV avoTNTA TNE MuvepYatxric Mddnong otny exnaldeuor meary Uty
OEBOUEVMV UE TNV TORIAANAN €€ACPANIOT TNG LOIWTIXOTNTAS TWV OEOOUEVWLYV.

Ev cuveyela npoywefiooue o eYxatdoTaON XUVNTOY CUGKENDY O OYHUAUTH Kol EQPUQUOYT
e Yuvepyatxhic Mddnong oe nelpapotind duxtuoxd nepi3dAiov. Twodethooue wa tpocéyyl-
OY) TROCAVATOMOUEVY) OE GUC TNUIXO ETUTEDO, OYEBLALOVTAC X0l UAOTIOLWVTAS EVAY EVORYNC TEM-
™ xvntdv ovoxewy (Extreme-Edge Orchestrator - EEO), dnhady) évo mhaioto Swyelpiong
TIOU EVOWUATMVEL TOUG TOPOUS TV XWVNTWY CUGXEUMOY 0To oixocUotnua tou 5G. H Ao pag
oflontotel epyaheior tou Trohoyiotixod Négoue (cloud-native) yio v mopaxorovdnor (mon-
itoring) twv ndpwv Tou duxtioL Xou TNV droyeipton Tou xUXAoL LwhC TV LTNEESLHY dXTHOUL
(service life-cycle management) mou exteholvton oe xivntéc cuoxevéc. Ot amogdoel; Tou
oyetiCovton pe tov xUxho {whAC TWV UTNEECLMY, OTIKC 1) EXxivon Wac VEuC UTneeciag, 1) EmL-
AOYT) TWV GUOXELMY YO TNV EXTEAECT) TNG UTNEEGTIC X0t O OUOAOS TEQUATIONOS TNG UTnpeatog,
xadodnyoLvTol and ToMTXES Tou opllovian amd ToV YEHOTY, ONUOURYMVTIS UNYAVIOUOUS E-
Aéyyou xhewoTol Pedyou. Autol ol Bpdyol eVouUaTdVouY Bldpopa xpLThplo To. omolo Uropel
va 0ploel 0 yphotng xou TEQLAWPBEVOUV: o) YApPaXTNELOTIXG CUOXEUNC (T.Y., emelepyaoTixy
avOTNTa), B) TUPOPETEOUC XATAVEAWOTE TOpwY dXTOOU (T.Y., EVEPYEWXA XOOTY) XU )
Yopoxtnptoixd ot eninedo egapuoyic (.., Sodeoydnra dedopévmv), mou umopel vo me-
pthauBdvouy axduo xan TANEOQORlEC OYETXES YE TNV eXTaideuoT LoVTEAWY Mnyoavixng xou
Yuvepyatixhc Mdinong.

Ye avtideon pe tn ouvtpntixn mAsodngla Twv gpeuvdyY 6Tov Topéa autdy Tou Booilo-
VIOl O TEOCOUOLOTELS, 1) TEOTEWOUEVY MO pag ovanTOOCETUL OE €vol AElTouRYIXG AlXTuo
[Téuntne T'evide, xou a&tohoyeiton PECW EXTETUPEVMVY TELQOUATIXWY UEAETWY OTOV TROYUATIXO
%OGUO, TOL TEPLAUBAVOUY TOGO XIVNTES OGO XAl GTATIXES UTOAOYLIO TIXEC GUOXEVES GE oLl
TELPUUATIXDY OEVORIWY (E0KOTERIXA OE EpyaoTNElaxd ETUNESO Xat EEMTERIXE OE 086 BiXTUO).
H ouveiogopd pog eivar Simhf: 1) ewodyoupe, oyedidloupe xoL avamTOGGOUUE Ulol XOUUVOTOUO
OO Yior TNV 0pYHOTEWOT XIVNTOY CUCXEWY, 1) ool pall Ue TNV avTloTOLYY) dEYLTEXTOVIXT
CUCTARATOC EMEXTEVEL T1) BUVATOTNTA UTOAOYLOUOU Xou eneepyaciog DEBOUEWY OTIC TUPUPES
tou Awtiou (Extreme-Edge), xou 2) a€lohoyolue tn Ao yog o€ €va Telpoptotixd TeptBAloy
5G yia TV vAonoinon xoTaveunuévng TEOBAEYNC BIXTLAXDOY TUEUUETEWY PECL LUVERYUTIXNC
Méinong, wa Baoixr| eopuoyn otov Touéa Tng Autévoune xaw Alacuvdedepévng Kivnuixotn-
TAC, OIS AVAUOEIEUUE Ol TOROTAVE.

To nepopatind armoteréopata €delay OTL 1 eloaywyn Tou evopynotent EEO BeAtudvel
TNV OmOB0TIXOTNTA TWV TOpWY PECW TNE BeATioTononong Paoxdy TopouéTewy, OTws 1) Ol-
GEXELL TWV UTNEECLOY, XL PEWDVEL TOV YPOVO OMOXAAR®ONS TwV UTNEESIOY xatd 25% unod
ouvidixec vdnhol @bptou (o€ eninedo uTOhOYIOTIXAC xavdTNTAC EltE OTNY PVAUN TV ou-
OXEVAY), OE oUYXPLOT PE Tig UTdpyouoes uedodouc. H avdluot| pog amodetxviel Ty anotele-



OUUTIXOTNTA TOU UNYAVIOUOU ETULAOYHC CUGKEUWY UE TOMITAS XPLTARLA O GEVAQL TOAAATALY
UTINEECLOY, OTIOL O UTOAOYLO TIXOC PORTOC OTIC GUCKHEVES UEAVETOL DRAUTIXG, tOLOUTEQO OTOY
AVAPEROUUCTE GE GUYYPOVES EQOPUOYES Tou TepthapBdvouy alybprduouc Mnyovixie Mddn-
onc. Enlong ta euprjuato autd umodeviouy OTL 1) BlayElploT CUGKEUMDY UECK EVORYNOTEWTH
og BixTua EMOUEVNC YEVIAS YEVIXE UTOPEL VO OBNYHOEL GE MO OTMOBOTLXY) XUl ATOTEAECUATIXT
TUPOY T} UTNEECLMY.

Yupnepdopata

Téhoc otnv Evotnta 5 cuvoldilouye Ty epeuvntiny epyacio Tou ToQOUCIAC THXE GTIC TRONYO-
OMEVES EVOTNTES TNE dlateifNc, Ue Véua TNy eqapuoyT| Tng Xuvepyatxrc Mddnong oe dixtuaxd
nepBdihovta. H epeuvntind epyaocia mou mopoustdoTnxe elye wg 0ToOY0 TNV PEAETN TELOY Bo-
OOV EPELVNTIXADY XATEVDOVOEWY: o) To TeOBANUe emhoyhc oyfuatoc Mednone, aviueoa
oe Yuvepyoatin) xou Kevtpiomonuévn and tn oxomd Tng XoTavIAWMONS SIXTUOXMY TORWY
xou B) T0 pONO TV BACIUMY TOPUUETEWV/IBLOTATOY TOU GUOTAUATOS T.)., ETAOYH XOUBoUL
CLVEVWOTNC LOVTEAWY, EVERYELOXT XUTUVIAWGT xou To {Atnue e Metatomong Evvousy ota
WY OVIXG LOVTENDL O Y) TIC TROXAACELS OTNY EQUpUOYY TwV VEMEPNTIXDY ATOTENECUETOY OE
TEOYHATIXG GUC TRHUOTA Yol EQopUoYES Autovoune xou Atacuvdedeuévne Kivntixotnroc.

[Tpoxewévou va amavtniody To EpWTAUNTA AUTY, TUPOUCIACUUE TO VewENTX6 LTOBaieo,
T0 TEPBAAAOY TTROGOUOIWONE XIS Xl Ta ATOTEAEGUATA TOU Tpogxuday amd outd, To O-
molor avédelZay TIC TapordTL TAEUPES: o) TIC TOPAUUETRPOUS TOU cuoTHUATOS Tou xadopilouv
Vv anddoon xde oyfuatoc Mnyavixic Mdinone oe oyéon téc0 pe tnv enidoon (oxpifela
HOVTENWY) 600 xat TNV avtioTolyn xatavdhwon ot dixtuoxols mépous, B) to twe ennpedlet
7 Tomoloyia Tou OixTOOL xou 1) EMAOYT TwV TopauéTeny TNe Mrnyavixic Mdadnone tnyv e-
VEPYELUXT XATAVEAWGT o TENOS Y) TeoTouS avTiwetwnions tne Metatdémong Evvowdv oe
TEPUBANNOVTOL TIEPLOPLOUEVNC UTONOYLO TIXHC/EVERYELOXTC Loy DOC.

Ev ouveyela, napoucidoaue Ty uhonoinoy TV YewenTixdy anoTEAEOUITOV O TEOYUO-
Tixd cuo Aot Autdvoune xar Awacuvdedepévne Kivntixdtnrog. Xuyxexpyéva, avadeloue
TIC TEOXAACELS AhAGL %o TaL AMOTEAEOUATO TTOL TpoExuay amd TNy exctpoteld GUNNOYTC Oc-
00EVWY BIxTOOL OF €V 00O BIXTLO, XAVMOE XU TO TS YUTOEOUY AUTA Vo YeNotuoTotnoly
070 TAXCLO EQUpUOYGY TN Luvepyatixic Mddnone. Erneita mopovoidooue tnv vhomoinon
EVOG EVORYNOTEWTY| TOAATAWY uTneectey Mryoavixhic xaw Yuvepyatixrc Mdadnong oe xivn-
T€C OLOXEVES, O OTOlOC EVoWUATOUNXE Ot €va TepBdihoy Blayelipnong cuoxelwy Tdve anod
mparypotixd dixtuo Iéuntne I'evide mpoxeiuévou va emxupmBoldy ta amoTeAéoUaTd TOU TELRa-
HOTLXAL.

Téco to Jewpnmnd amote Aéouota TOU avaPePUNXAY OGO KoL Ol TEUXTIXES UAOTOLACELS
umopolV va Sleupuvioly oe BLdpopec epeuvNTIXES xatevdivoelg. Iditepo evblagépov ma-
EOUGLALEL 1) GUVEVKOT) TV ATOTEAECUATWY eTAoYH S oyfuotog Mnyavixrc Mddnone ye toug
alyoprduouc mou avtwetwrilouv v Metatomon Evvoldv, xdtt to omoio Yo pnopoloe va
ouv¥Eael €va ohoxhNpwpévo cLoTnua Luveyols Mddnong, mou Ya tpocopudleton 6TIC dhla-
Y€C TV SLYNIELOY TV YENOTOY AAAd TaLTOYEOVA Vol UETHBAAAETAL TEOXEWEVOL VoL ETITUYEL
o anoteheopatixy Aettoupyia (.., LEIWON TNS XUTAVIAWONS TWY BLXTLAXMY TOPMY).



Foundations

The foundation of this research lies in two interconnected and transformative concepts
shaping the landscape of next-generation networks and intelligent systems. The first is
the emergence of a unified Compute Continuum, which integrates multiple computational
layers within the network, extending from centralized cloud infrastructures to the core
network and all the way to edge devices, including handheld and Internet-of-Things (IoT)
devices. This continuum provides a seamless framework for data processing and decision-
making, enabling complex computations to be executed closer to the data source, thereby
reducing latency and enhancing efficiency. By leveraging this architectural evolution,
networks are increasingly capable of supporting demanding applications in dynamic envi-
ronments.

The second concept is the rise of distributed Artificial Intelligence and Machine Learn-
ing (AI/ML), a paradigm shift that has gained momentum due to two critical advance-
ments. The first driver is the exponential growth of user-generated data in the Big Data
era, fueled by billions of interconnected devices producing vast volumes of heterogeneous
data. The second driver is the significant enhancement in computational capabilities, with
cutting-edge hardware now deployed closer to the end-user, including edge servers, mobile
devices, and IoT nodes. This decentralization of computational resources has unlocked new
possibilities for deploying AI/ML algorithms at scale, enabling real-time decision-making
and intelligent behavior in distributed systems.

Together, these developments represent a convergence of computational and intelli-
gence paradigms, addressing the increasing demands of applications that require low-
latency responses, energy efficiency, scalability, and data privacy. For instance, scenarios
such as autonomous driving, smart cities, and real-time industrial automation benefit
immensely from these advancements by leveraging the synergy between distributed com-
puting and AI/ML.

This thesis explores the intersection of these concepts, focusing on their application
within the demanding and dynamic domain of Cooperative, Connected, and Automated
Mobility (CCAM). This vertical exemplifies the challenges and opportunities of the Com-
pute Continuum and distributed AI/ML, with stringent requirements for real-time pro-
cessing, network efficiency, and safety-critical operations.

In this context, the research addresses fundamental questions: How can distributed
AI/ML frameworks, such as Federated Learning (FL), leverage the Compute Continuum
to optimize resource utilization while maintaining high accuracy and robustness? What
are the trade-offs involved in deploying centralized versus distributed AI/ML schemes,
particularly in terms of network and computational resource efficiency? How do real-world
constraints, such as mobility, network volatility, and data drift, impact the performance
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and reliability of distributed AI/ML?

By examining these questions, this thesis provides a systematic investigation into the
theoretical and practical challenges of integrating distributed AI/ML with advanced net-
work architectures. This introductory chapter establishes the groundwork for the analysis,
methodologies, and findings presented in the subsequent chapters, offering insights into
the transformative potential of these technologies for next-generation intelligent systems.

1.1 Next-Generation networks landscape

Over the past few decades, since the introduction of mobile networks, there has been a
profound transformation in both network technologies and the devices and applications
associated with them. From the First Generation (1G) networks in the early 1980s, which
offered only analog cellular services, to the Fifth Generation and Beyond (B5G) networks,
which aim for the full automation of device and human interconnections, the evolution
has been substantial. A critical aspect of this progress has been the role of user equipment
(UE), serving as the bridge between the physical and digital worlds. This concept was
first introduced in 1999 with the term Internet of Things (IoT) [1], which describes
an interconnected network of physical devices equipped with sensors and capable of data
exchange.

Today, 10T is associated with a wide range of devices, from laptops, smartphones, and
wearables for infotainment and e-health, to on-board units (OBUs), smart sensors, and
collaborative robots (cobots) in industries such as automotive and Industry 5.0. These
devices collaborate to create adaptive environments that sense, analyze, communicate, and
take actions to meet human needs. As a result, IoT leverages real-time data to transform
various aspects of daily life, advancing us toward a smarter and more interconnected
future. In addition, advances in mobile networks have expanded this concept to include
ubiquitous and autonomous object networks, which emphasize seamless identification and
service integration. In this context, Cisco has coined the term Internet of Everything
(IoE) to describe the full interconnection of people, devices, and environments, enabling
the exchange of data and services among them and with other entities [2].

To support such functionalities, IoT networks generate vast amounts of data, com-
monly referred to as Big Data [3]. Data exchange between IoT devices and other entities
typically occurs through wireless technologies, such as the Institute of Electrical and Elec-
tronics Engineers (IEEE) 802.11 family of standards (Wireless Fidelity - WiFi) [4], the
International Telecommunication Union (ITU) ITU-T Y.4480 (Long Range Wide Area
Network - LoRaWAN) [5], and cellular networks, including Long-Term Evolution (LTE),
5G, and B5G [6]. Once the communication link is established, the management of the
computational and storage needs of Big Data is traditionally handled through cloud
computing technologies. This approach centralizes data processing in large-scale data
centers (DCs), providing near-unlimited storage, computational power, and resources,
while facilitating the emergence of innovative service models. Cloud computing operates
through a variety of service models, which include: a) Infrastructure as a Service (IaaS),
which grants on-demand access to computing, storage, and networking resources, allowing
users to scale and manage their infrastructure needs without investing in physical hard-
ware; b) Platform as a Service (PaaS), which provides a comprehensive environment for
application development, hosting, and management, simplifying software deployment and
reducing the complexity of underlying infrastructure; and c¢) Software as a Service (SaaS),
which enables users to access cloud-based applications, such as email, messaging, and text
editing, over the Internet, eliminating the need for local installations and updates while
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Figure 1.1: The compute continuum

promoting seamless accessibility and collaboration across devices.

Although cloud computing offers significant advantages, it also presents challenges for
latency-sensitive applications and services that require high-volume data transmission.
Moreover, concerns regarding data privacy and trust arise when relying on third-party-
operated cloud servers [3]. To overcome these limitations, the Mobile Edge Computing
(MEC) paradigm has been introduced. MEC brings computational and storage resources
closer to UEs by deploying applications at the network edge [7]. This architecture utilizes
the existing mobile network operator (MNO) infrastructure or newly virtualized setups,
significantly reducing latency and improving service quality. MEC also enables collabora-
tion between edge and cloud data centers, fostering decentralized yet coordinated ecosys-
tems. This hybrid model is essential for supporting ultra-reliable, low-latency applications,
such as immersive augmented/virtual reality (AR/VR) and vehicle-to-everything (V2X)
services [8].

In parallel, UEs have evolved into powerful computational and communication nodes,
fueled by advancements in hardware accelerators, including Field Programmable Gate
Arrays (FPGAs), Application-Specific Integrated Circuits (ASICs), Central Processing
Units (CPUs), and Graphics Processing Units (GPUs) [9]. Specialized processors, such as
Google’s Tensor Processing Units (TPUs) [10] and Qualcomm’s Neural Processing Units
(NPUs) [11], further enhance computational power, enabling low-power acceleration for
application-specific tasks. This evolution has led to the development of on-device (or
Extreme-Edge) computing, where computational tasks are offloaded to user devices
rather than edge servers. This strategy reduces reliance on centralized infrastructure and
supports localized data processing [12].

The growing integration of cloud, edge, and on-device computing has given rise to the
concept of the compute continuum. This paradigm envisions a seamless environment
in which computing and network resources across endpoints, edge nodes, and cloud DCs
are dynamically coordinated to optimize workload distribution [13]. The compute contin-
uum marks a significant shift toward the convergence of traditionally separate domains,
enabling efficient management and security of services and data across various layers; from
devices in the access network to edge nodes in the backhaul and cloud DCs in the core
network. Each layer offers unique capabilities in terms of computational power, network
latency, and heterogeneity (see Fig. 1.1) [6]. The interplay between these layers forms the
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foundation for innovative network infrastructures, software architectures and deployment
of applications in next-generation networks.

1.2 The role of Artificial Intelligence

Recent advancements in Artificial Intelligence and Machine Learning (AI/ML) have re-
vealed substantial potential for solving complex problems where traditional methods, such
as analytical solutions and approximation techniques, either perform inadequately or fail
entirely. ML techniques offer data-driven solutions, eliminating the need for manual pro-
gramming. By leveraging large amounts of historical data, these techniques can identify
patterns, analyze behaviors, and even predict future outcomes [14]. As a result, AI/ML
technologies are becoming essential components of modern applications, including com-
puter vision, natural language processing (NLP), pattern recognition, etc. These applica-
tions extend beyond local or private environments, often spanning diverse domains such
as mobile applications, autonomous vehicles, IoT, etc.

In a broader context, Al refers to the simulation of human intelligence processes, such
as learning, problem-solving, and decision-making, by computer systems. ML, a subfield
of Al allows computer systems to learn from data using algorithms without the need for
explicit programming. ML algorithms are typically categorized into three main types:
supervised learning, unsupervised learning and reinforcement learning.

Supervised learning is a type of ML where a model is trained using labeled data. Each
instance in the dataset consists of inputs (features) and corresponding outputs (labels or
targets). The objective is for the model to learn a mapping from inputs to outputs so that it
can predict the output for new, unseen inputs. Supervised learning problems are typically
classified into two categories: classification, which predicts discrete categories e.g., spam
email detection, and regression, which predicts continuous values e.g., house price predic-
tion. Common applications include image recognition, NLP, fraud detection, and others.
Relevant algorithms include Linear Regression, Support Vector Machines (SVMs), Neural
Networks (NN), Deep Neural Networks (DNN), Decision Trees, and Random Forests.

Unsupervised learning refers to a type of machine learning where the model analyzes
and clusters unlabeled data. These algorithms identify hidden patterns or groupings in
the data without requiring human intervention. The goal of unsupervised learning is to
explore the data, detect patterns, or group similar data points. Common applications in-
clude anomaly detection, recommendation systems, and customer/market segmentation.
Relevant algorithms include K-Means Clustering, Principal Component Analysis (PCA)
and Autoencoders. Finally, Reinforcement Learning involves an agent learning to make
decisions by interacting with an environment. The agent’s objective is to maximize cu-
mulative rewards over time by selecting actions that lead to desired outcomes. Typical
applications include gaming, finance (e.g., risk assessment, trading), decision-making, and
automation.

Among the various models, Neural Networks (NN), especially Deep Neural Networks
(DNN), have attracted considerable attention due to their exceptional performance across
diverse fields and applications, including image recognition and large language models
(LLMs) [15], [16]. NNs are ML models consisting of interconnected mathematical functions
(neurons), with the connections between neurons (called weights) represented as numerical
values, as depicted in Fig. 1.2. A typical NN model includes several input and output
variables. The model aims to identify the relationship between input and output data,
which is based on Kolmogorov’s theorem, stating that a continuous multivariate function
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can be expressed on a compact set in terms of sums and compositions of a finite number
of single variable functions [17].

To achieve this, the model undergoes a training phase where it is fed with a large
dataset of known input-output pairs. Through a repetitive process known as back propa-
gation, the model adjusts its weights iteratively to better capture the relationship between
input and output variables. The convergence of this process is monitored by comparing
the model’s predictions with the actual results, using a metric called the loss function,
with the objective of minimizing this loss. Once trained, the model enters the inference
(or testing) phase, where it can make predictions on unseen data, with the expectation
that its outputs will closely align with the true values.

To fully harness the potential of AI/ML, data plays a crucial role, both in effectively
training the models and utilizing them (for inference) in the end-user domain. Towards
that goal, a significant challenge emerges. Client 10T devices that are the main data
sources are by nature distributed, mobile and often unreliable, as discussed in Sec. 1.1. In
contrast, the processing capacity required for model training typically resides in centralized
entities like cloud DCs. Consequently, for any ML pipeline to be implemented, there is
a need for a reliable network connection between clients and servers for data exchange
as well as an orchestration layer for the learning process that would determine essential
factors of the learning process, such as where and when processing occurs and which clients
participate.

Traditional approaches to these challenges often rely on Centralized Learning (CL)
schemes, as illustrated in Fig. 1.3. In CL, clients periodically upload their data to a
central entity, such as a cloud server, which handles the computationally intensive ML
training. Once training is complete, a global ML model is produced and distributed back
to the clients for inference. This process can be repeated multiple times, using different
datasets, until the model converges to a predefined level of performance.

Addressing concerns over user data privacy, Distributed ML (DML) schemes have
emerged as alternatives to CL. Notable examples include hybrid approaches [18] and peer-
to-peer (server-less) learning frameworks [19], where computational tasks are offloaded to
client user equipment (UEs). Among these, Federated Learning (FL), a Google-initiated
DML scheme [20], has gained prominence due to its inherent privacy-preserving design.
In FL, the training process is decentralized, as depicted in Fig. 1.4. Training occurs in
iterative cycles (rounds), during which a central server distributes a global ML model
to a subset of clients. These clients locally train the model using their private data
and computing resources, then return updated local models to the server. The server



32 1. Foundations

J
Central e Central Aggregation
............. .
Server @) Server @

Local ML
model training

Global ML model Global ML model
@ % / t \ distribution @
ﬂ-i‘; Model % ®
i distribution 4 A Model
Client data : H upload
upload .

B § (@) D " N («é»}

B i

Figure 1.3: Centralized Learning (CL) Figure 1.4: Federated Learning (FL)

aggregates these updates to form an improved global model. This process repeats until
the model converges.

FL offers users greater control over their data and facilitates privacy by design through
distributed training and aggregation across a network of client devices. As networks evolve
towards a unified compute continuum (see Sec. 1.1), this thesis investigates the conver-
gence of these advancements, comparing emerging DML schemes with traditional CL
pipelines. It also explores trade-offs and practical considerations for real-world implemen-
tations, with a particular focus on applications in the automotive domain.
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Centralized vs. Federated
Learning comparison

2.1 Introduction

ML workloads in networked environments have historically been dominated by centralized
(CL) approaches. In these models, clients gather raw data—such as measurements, audio,
images, or video frames—from their environment, preprocess it, and transmit it to a
centralized server. The server then performs computationally intensive ML tasks, such
as model training. However, advancements in networking technologies, such as Edge
Computing [21], coupled with the growing emphasis on data privacy through regulations
like the General Data Protection Regulation (GDPR) [22], have spurred the development of
distributed (DML) approaches as viable alternatives to CL for supporting ML in networked
settings.

Both CL and DML impose significant demands on network resources. Training data
volumes range from gigabytes to terabytes [23], and the computational demands can reach
thousands of teraFLOPS [23]. This raises a critical question: which ML paradigm is
better suited for accurate model training while adhering to network resource constraints?
Furthermore, what are the advantages and disadvantages of adopting a DML scheme
compared to traditional CL?

The choice between ML paradigms is a complex, multi-faceted problem influenced by
numerous factors. A network ecosystem consists of diverse stakeholders, such as clients,
network operators, and cloud or edge providers, each with unique constraints and priori-
ties. These include client-specific considerations (e.g., data distribution properties, device
mobility, and battery life), network-related factors (e.g., bandwidth, latency, and packet
loss), and cloud-related limitations (e.g., energy consumption and processing capacity).
Additionally, the inherent complexities of ML, workflows—such as hyperparameter tuning,
client selection strategies, and data preprocessing—further complicate the decision-making
process.

To the best of our knowledge an in-depth analysis on the ML scheme selection problem
is missing from the current literature. Prior works have attempted to address similar ques-
tions in a restrictive manner. There is an extensive theoretical [24], [25] and experimental
[26], [27] research on the comparison between CL and DML in terms of convergence, but
the relevance of the two approaches to the underlying network is widely neglected. As such,
those efforts lack an end-to-end system-parameter analysis to shed light on the involved
(network) resources trade-offs (affecting various stakeholders).
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Table 2.1: Research directions in ML schemes comparison

ML schemes comparison

CL vs FL CL/FL vs other DML schemes
Investigation parameter | Research works || Investigation parameter Research works
convergence rate [24], [27] convergence rate [28]
accuracy [27], [26], [29] accuracy [18], [30], [31], [19]
training loss [24] energy cost [18], [30]
ML hyperparameters [25] bandwidth cost [30]
data distribution [25] privacy & security [30]

This chapter addresses the ML scheme selection challenge from a system-centric per-
spective, offering a holistic network resource analysis that accounts for all stakeholders.
Given the diversity of ML paradigms, we narrow our focus to two extremes: the well-
established CL approach and the emerging, widely adopted Federated Learning (FL)
framework [20]. In FL, clients collaboratively train models while retaining their data
locally, with a central server orchestrating the process, thereby enhancing data privacy.
For this chapter, we relax the data privacy constraint to enable a fair comparison between
CL and FL, emphasizing their respective impacts on model accuracy and network resource
consumption.

Our investigation centers on the following research questions: 1) How do ML hyper-
parameter choices influence resource consumption in each scheme?, 2) Given the ratio of
client data volume to model size, how do accuracy, convergence speed, and stakeholder
resource consumption vary between the schemes?, 3) How do the schemes compare in
terms of convergence speed over time?, 4) How do they scale with an increasing number
of participating clients, particularly in terms of accuracy and convergence speed? and 5)
How does heterogeneity in client data affect each scheme’s accuracy?

To address these questions, we developed a cloud-to-client system model based on em-
pirical measurements and commercial benchmarks, replicating real-world performance in
terms of bandwidth availability, energy consumption, and processing capacity. Two net-
work scenarios are considered: a mobile LTE network and a Wireless Local Area Network
(WLAN), with realistic mobility patterns derived from real-world traces. Additionally, a
dedicated AI/ML software environment is employed to simulate the training processes of
CL and FL.

The remainder of this chapter is structured as follows: Section 2.2 reviews the relevant
literature. Section 2.3 presents our system model. In Section 2.4, we discuss the results
of our simulations. Finally, Section 2.5 concludes the chapter.

2.2 Related work

The debate surrounding the adoption of centralized versus distributed ML schemes in
networked environments remains under-explored. Among distributed ML approaches, FL
has garnered significant attention as a compelling alternative to CL due to its robust
data privacy guarantees (see Table 2.1). However, existing studies primarily focus on
comparing CL and FL in terms of model performance, such as accuracy or convergence,
without adequately addressing their impact on network resources.

For instance, in [26], FL is applied to intrusion detection in an IoT environment. The
decentralized scheme achieves comparable accuracy to CL (with a maximum difference of
5%) while preserving data privacy. Similarly, FL’s applicability to sensitive medical data
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is explored in [29], using three benchmark clinical datasets. The results indicate that FL
approaches CL’s performance across metrics like accuracy and recall, with a maximum
discrepancy of 4

In addition to accuracy, FL. and CL are often evaluated based on convergence rates.
In [24], Distributed Stochastic Gradient Descent (D-SGD) achieves comparable training
loss to CL in a static network topology while demonstrating faster convergence in low-
bandwidth environments. In another study [27], a network of distributed workers, with
identical hardware capabilities, is evaluated on the Fashion-MNIST dataset for image
classification. CL achieves 2% higher accuracy than FL, while FL converges nearly 40%
faster. However, the assumption of identical hardware across workers limits the applicabil-
ity of these findings to real-world scenarios involving heterogeneous, resource-constrained
devices. To address this, [25] benchmarks various FL algorithms e.g., FedAvg, Coopera-
tive, etc., against CL, showing that CL consistently delivers more accurate classifications.
However, FedAvg demonstrates potential, provided the client data is independent and
identically distributed (i.i.d.).

Beyond FL, other distributed ML schemes have been proposed as alternatives to CL,
including hybrid and collaborative approaches (see Table 2.1). Hybrid schemes, which
blend characteristics of CL and FL, are seen as a middle ground. For instance, [18] intro-
duces a hybrid scheme that achieves accuracy levels comparable to CL while surpassing
FL by an average of 10%. Additionally, this scheme balances the energy efficiency of FL
with the higher energy demands of CL. In another study [30], a hybrid edge-FL scheme
employs blockchain mechanisms to enhance security. This approach outperforms both CL
and FL in terms of accuracy (with a maximum improvement of 5%) while reducing energy
consumption by nearly 50% compared to CL, albeit with a 25% increase in bandwidth
usage.

Collaborative ML approaches represent another research direction aimed at reduc-
ing communication costs by eliminating the need for a central server. Examples include
Swarm Learning [31], where clients (swarm nodes) share model parameters directly via a
peer network. Tests on clinical data demonstrate improved accuracy over CL for various
patient detection scenarios, such as leukemia and COVID-19. Similarly, Gossip Learning
[28] enables clients to exchange small portions of their model parameters with neighbors,
achieving comparable accuracy to FL, albeit with slower convergence. Finally, Peer-to-
Peer Learning [19] facilitates direct model exchanges among clients using a secure sharing
protocol. While this method’s convergence heavily relies on i.i.d. data, its accuracy is
comparable to CL.

While hybrid and collaborative schemes show promise in improving accuracy over FL,
they often neglect the impact on system resources. This oversight is problematic, as effi-
cient ML deployment in networked environments requires a balance between accuracy and
resource consumption. Without addressing the network resource implications, the practi-
cal feasibility of these ML schemes remains uncertain. Our work seeks to bridge this gap
by investigating the resource consumption of ML schemes, specifically comparing CL and
FL. Through an end-to-end analysis, we aim to illuminate the trade-offs between accuracy,
convergence, and resource efficiency, providing a more comprehensive understanding of the
performance and practicality of ML schemes in real-world network environments.

2.3 System model overview

Our system model consists of multiple mobile clients operating within a dynamic network
environment. Each client possesses sensor-captured data that serves as input for the given
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ML task. These clients are connected to a central entity, such as a cloud server located in a
DC, via an intermediate core network, enabling data exchange with the server. To simplify
the analysis, we exclude control and management plane messages (e.g., coordination and
signaling), as their size is negligible compared to the actual training data. This exclusion
does not compromise the model’s accuracy. The system’s primary objective is to execute
an ML task over multiple communication rounds, leveraging the data available on the
clients through the following ML schemes:

Centralized Learning (CL)

In each training round the server selects a group of (mobile) clients (see the green horizontal
arrows in Fig. 2.1a) which upload their data directly to the server (see the blue vertical
arrows in Fig. 2.1a), as described in Sec. 1.2. The training task is thereafter performed
centrally by the server using all client data acquired in that round. This process repeats for
several rounds, each time with a selection of a random group of clients, until a predefined
time limit is reached or all data is depleted.

Federated Learning (FL)

The server broadcasts the training model to the selected clients (learners), which in turn
are responsible to train it using their own (private) data and computing resources (see the
red recursive arrows in Fig. 2.1a), as described in Sec. 1.2. As opposed to CL, clients are
no longer required to upload their actual data to the server. This is a key restriction posed
by FL, in order to preserve user-data privacy. Instead, once the training is completed,
they upload the updated model parameters to the central server, which in general are
considerably lightweight compared to the actual data. Upon collecting the updated model
parameters, the server performs model aggregation (see red vertical arrows in Fig. 2.1a)
and re-distributes the updated aggregated model to another group of clients.

Standard Learning (SL)

While the ML task is performed in a centralized location, CL is not to be confused with
the standard ML paradigm, where training is performed using the entire dataset. The
latter is referred to as Standard Machine Learning (SL). Essentially, an implementation
of SL would require for the server to wait for all participating client datasets to arrive in
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order to perform the training task. On the other hand, periodic training i.e., on a per
round basis occurs in CL, given that (recently generated) data arrives in every round. In
our study we focus on CL, rather than SL, since the way SL functions deems it impractical
for employment in a real system. Applications either cannot afford waiting for the entire
dataset to reach the DC or are agnostic to the entire client dataset. More importantly SL
lacks adaptability, since it does not produce a global ML model on a per-round basis.

In an actual system, clients do not generate (or cannot acquire) a single dataset, which
will be uploaded once; they rather repeatedly collect data e.g., user analytics, network
measurements, etc., which can be (potentially) streamed to the cloud in a continuous
manner. Moreover, depending on the environment, this data can change in time e.g.,
traffic scene images and therefore the output of the ML task i.e., the ML model, needs
to be updated on a regular basis. As such, SL is not proposed as a practical solution,
but serves as a baseline to the evaluation of other centralized schemes. Moreover, CL is
needed in our study to ensure a fair and meaningful comparison to FL, given that a global
ML model is generated in every round.

In the following Sections (2.3.1-2.3.6) we detail the elements that comprise our system
model. All involved quantities are summarized in Table 2.2.

Table 2.2: Nomenclature of involved quantities

‘ Symbol ‘ Definition H Symbol ‘ Definition ‘
dsample | Training dataset samples Oiid Independently and identically distributed (i.i.d)
d Training dataset size (bytes) level shape parameter
z Training dataset partitions (i.e., total v%fnt Client device computational capacity for train-

clients) ing (samples/sec)
Tsample | Lraining dataset size to samples ratio vé‘l{)i d Cloud computational capacity for training (sam-
m ML model size (bytes) ples/sec)
Tdata Client data to model size ratio v(f}gt d Cloud computational capacity for model aggre-
k Per round participating clients gation (models/sec)
q Online clients €client Total energy expenditure for all clients (J)
tupload | Total time for client data upload in pgfg”tl Client device power consumption for transmis-
each round (sec) sion (W)
tend Maximum duration of ML task (sec) pﬁfgmi Client device power consumption for reception
Sclient Client throughput - access network (W)
(bytes/sec) p%é‘nti Client device power consumption for training
cH Average area throughput - access net- (W)
work (bytes/sec) Ccore Total energy expenditure in the core network (J)
o Client throughput standard deviation - || €coud Total energy expenditure in the cloud (J)
access network pML | Cloud power consumption for training (W)
g Minimum client throughput - access || poouq | Cloud power consumption for model aggregation
network (bytes/sec) (W)
Score Core network element’s throughput || Repochs | Number of epochs (ML hyperparameter)
(bytes/sec) Rbateh Batch size (ML hyperparameter)
Oed Data skewness parameter Rrate Learning rate (ML hyperparameter)

2.3.1 Network architecture and attributes

The network includes the wireless (radio) and the wired part (see Fig. 2.1b). Two common
cases are considered for the wireless part; a mobile LTE and a WLAN network. In the
LTE case, a typical cellular architecture is assumed, where a basestation (BS) lies in the
centre of each cell. In the WLAN case, several access points (APs) are assumed, which
cover a local network area (coverage area). We refer to the wireless part (link between
clients and BS/AP) as the access network. The wired part (from BS/AP up to the cloud)
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comprises the core network (see Fig. 2.1b). The core network includes: 1) the metro
and edge network, where edge nodes reside, 2) the backbone network, which includes core
switches and routers and 3) the infrastructure to reach the DC’s cloud server.

Access network throughput

The client throughput scj;ent in both the uplink (UL) and the downlink (DL) direction (in
MBytes/sec) is modelled as a Gaussian random variable (N). Its mean value is equal to
the average area throughput ¢“¥ (where CH marks the corresponding radio technology
i.e., LTE or WLAN), divided by the number of online clients ¢q. The inclusion of the
online clients in the computation allows to factor-in the way the locally-present number of
users shapes the throughput provision in the considered area. c¢/T¥ refers to the average
cell throughput; that is 5.9 (UL)/7.73 (DL) MBytes/sec for 2.5 GHz LTE according to
[32]. VAN on the other hand refers to the average coverage area throughput, which
is 2.25 (UL)/2.38 (DL) MBytes/sec for IEEE 802.11g, according to [33]. The standard
deviation parameter o is set to 20% of the client’s mean throughput based on [34] and
accounts for throughput variations e.g., due to path loss and interference. Given that a
client is found at a certain moment connected (online), we also assume that there exists a
minimum throughput threshold (cCH ) to enable server-client communication, both in DL
and in UL. cLLF is assumed equal to the 5% cell edge rate; that is, 0.24 (UL)/0.22 (DL)
MBytes/sec according to [32], which represents the worst-case scenario for the respective
radio conditions. For WLAN, a similar value for the coverage area (c!VZAN) can be

obtained; that is, 0.03 (UL-DL) MBytes/sec according to [35]. Thus, Scjen: for UL and
DL, is given by:

N CCH CH
Sclient = max{N(Tv U)a Crmin (21)

Core network throughput

The core network includes the following elements [36]: 1) An interface to the access net-
work (BS for LTE or AP for WLAN); 2) The metro and edge network’s elements i.e., an
ethernet switch, a broadband network gateway (BNG) and the edge router; 3) the back-
bone network’s routers and 4) the DC’s elements i.e., an edge router and a data center
switch. The average throughput of each element for the UL/DL (score) is based on Cisco
routers/switches performance benchmarking [36] and measurements on access network
interfaces (3-sector 2x2 Multiple-Input-Multiple-Output remote radio 4G/LTE) [36]. A
total number of 3 backbone network’s routers is considered, as a hopcount of maximum
3 in the backbone network suffices to reach the DC for the majority of popular services
e.g., Facebook, Bing, Google, etc. [37].

2.3.2 Client mobility pattern

In contrast to synthetic or theoretical mobility models, real-world traces offer more realis-
tic performance evaluations and reliable results. However, questions often arise regarding
their statistical representativeness and the generalizability of the findings. To address this,
conducting multiple iterations using publicly available datasets enhances both the credi-
bility and the broader applicability of our results. For our system model, we have chosen
the Shanghai Telecom Dataset [38] for LTE traces and the Wifidog [39] for WLAN traces.
The Shanghai Telecom Dataset contains records of UEs accessing the Internet through
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a BS in a period of 15 days. The database records timestamps for connection initiation
and termination at one-minute intervals, corresponding to the dataset’s time granularity.
This allows for the calculation of clients’ online presence. Clients are monitored and con-
sidered online as long as they remain connected to the network. When a client moves to
another cell i.e., serviced by another BS, a handover (HO) is assumed, to capture service
continuity. We ignore any communication disruption during the HO process. However, a
change of cell will affect the client throughput, which depends on the corresponding cell’s
congestion (see Sec. 2.3.1). The Wifidog dataset comprises user session traces collected
from various free WiFi hotspots in Montreal, Quebec, Canada. Similar to the Shanghai
dataset, each node represents an access point (AP), and timestamps are recorded for user
login and logout events with a granularity of one second. Clients are considered online
during the period they remain connected to a hotspot.

2.3.3 Client data acquisition and distribution

Client devices acquire raw data via their sensors, cameras etc., which can be used for
training. The acquisition is shaped by the client’s acquisition rate, the UE’s storage
capacity and the data staleness level [40]. To emulate such a behavior, we divide our
image-classification training dataset (see Sec. 2.3.6) into z partitions, which are assigned
to the selected clients, representing the data that the clients have generated and stored
on their devices. We define the dataset size to samples ratio rsgmpie = d/dsampie, Where
dsample is the total number of dataset’s training samples and d the dataset’s size in Bytes.
Marking the per client dataset size as d;, the total dataset can be written as: d = >, d;.
Assuming a fixed ML model size m, the per client data to model size ratio is defined as
Tdata; = di/m,i € [1,2]. Tgatq is a key parameter in the ML scheme selection problem.
Not only it regulates the network’s resource consumption e.g., large chunks of data require
more bandwidth in order to be uploaded (CL) or more energy in order to be processed
(FL), but can also affect the convergence of the ML task itself. Besides data acquisition, we
also explore how this data is distributed across clients i.e., data heterogeneity. We focus on
two dimensions; variations in size are modeled by the evenly distributed level (e.d.), while
variations in content are captured by the independent and identically distributed level
(ii.d.). Generally, client data can experience various levels of e.d., i.i.d. or combinations
of both.

On the e.d. level

The e.d. level describes the dataset size distribution across clients. The size of each client’s
dataset is modeled as a random variable (15‘) that follows Zipf’s law, in line with related
research [41]. To represent a random variable following Zipf’s law, we are using Zeta
distribution, which has a probability density function of p(x) = ’”&sz)),cred € (1,40).
¢ represents the Riemann Zeta function, while the Zeta distribution’s skewed parameter
Oed € (1,+00) shapes the e.d. level, moving from a uniform data distribution (o4 >> 0)
towards higher asymmetry cases (o¢q close to 1); an additional restriction is also imposed
that the minimum dataset size equals the size of one batch hpgen (see Sec. 2.3.6), in
order to ensure that training can occur at all cases. Therefore the client dataset size
becomes d; = max{hbatch,ﬁ’(aed)},aed € (1,400),Vi € [1,z]. If the initial dataset is
evenly distributed among the clients (0.4 >> 1), the client dataset size d; and dataset
to ML model size ratio 74.q, are simplified to: di=d/z, rgaa,=d/(m - 2),Yi € [1,z],
respectively. A o4 value close to 1 on the other hand marks a setting where few clients
hold considerable amounts of data.
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On the i.i.d. level

If a setting with independent and identically distributed (i.i.d) data is assumed, then
the data samples in each client have the same probability distribution and are mutually
independent. In our image-classification problem (see Sec. 2.3.6) such a setting would
essentially mean that each user holds samples from all classes (unbiased setting). That is
represented by the i.i.d. level o4, being equal to the total number of dataset classes. For
some real-world scenarios, non-i.i.d. (biased) settings could occur, since each participating
client might not be expected to possess a representative subset of all classes in the total
training dataset. To study different levels of bias, we restrict the number of dataset classes
a client can hold i.e., the value of 0;;4 is smaller compared to the total number of classes.

2.3.4 Device computational capacity
User equipment

The computational capacity of a mobile device to perform an ML task v i em, measured in
(processed) training samples/sec depends on the dataset content e.g., images pose different
requirements than natural language, the UE capabilities and the complexity of the ML
model. We use a reference (average) value of v ent—125 training samples/sec, as the most
appropriate for our training dataset, ML model and ML hyperparameter settings (see Sec.
2.3.6), based on approximations for popular large-scale classification tasks [42].

Cloud server

Computational tasks for the cloud server include training (in CL) and ML model param-
eter aggregation (in FL). Regarding training, we assume that a DC is equipped with a
Tensor Processing Unit (TPU), which demonstrates an average computational capacity
for training vélwoﬁ 4 = 40K training samples/sec [43]. In regards to aggregation, no reference
values could be found in the literature, thus we rely on an empirical approach; we measure
the average capacity for training and aggregation tasks in our setup i.e., 6250 training
samples/sec and 1.56 ML model aggregations/sec respectively and compare against the
training capacity reference value of 40K training samples/sec [43]. Assuming a linear re-
lation, the average cloud aggregation capacity becomes vg}oud—lo model aggregations/sec.

Our assumptions do not cover scale-out schemes, where clusters of servers may be used to
increase parallelism in DCs.

2.3.5 Device energy consumption
User equipment

Any consumption related to the UE’s standard operation e.g., the device’s operating
system functionalities or displaying, is neglected and we focus on energy expenditure due
to transmission (TX)/ reception (RX) of data and ML processing (training tasks). The
energy Consumption eclwm .e., battery discharge of the i** client’s device is computed
as: Cclient; = Clwntl—i-eclwmz—i—edwnt , where the superscript TX, RX and ML marks one
of the aforementioned functions. In a given time period ¢, this can be calculated as
€client; = Delient; - U, Where pepient,, @ € [1,2] stands for the respective (average) power
consumption Average power consumption values related to transmission are reported in
[44], where pclwnt =2.2 Watts and pclwnt =1.5 Watts, Vi € [1, 2] for LTE and pdwm =0.75

Watts and pdzent =0.25 Watts for WLAN. Likewise, for ML, based on [42], we assume
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pé‘fifmi:2 Watts, Vi € [1, z], as the most appropriate to our ML model’s hyperparameters
and our choice of training task, being an image classification problem (see Sec. 2.3.6).
The sum of all device energies e.jent; comprises the total client energy expenditure ecjient-

Core network devices

Energy consumption in the core network ecqre is calculated by summing the energy con-
sumption per core component (see Fig. 2.1b) i.e., all routers, gateways and switches of the
backbone, metro & edge network and the cloud’s plus access network’s interfaces (BS for
LTE and AP for WLAN), which in turn is given by [36] in relation to the data exchanged
in the UL/DL direction (as average values measured in Joules/bit).

Cloud server

The computational capacity values of the main tasks that run in the cloud ¢.e., ML training
(in CL case) and model aggregation (the latter occurs in the FL case) are discussed in
Sec. 2.3.4. Energy expenditure per task in the cloud server can thus be calculated, given
an average power expenditure. Note that inference i.e., applying the trained ML model
on new data also involves resource utilization, but may come as a stand-alone task, much
later than training which is far more demanding in computations and network resources.
Similarly, latency is not considered in our setup as training time requirements typically
dominate over any latency considerations. For the training task (in CL), being an intensive
processing task, we assume an average power pé\l/foﬁd:384 Watts, based on Google’s TPU
benchmarking [45]. For the (less-intensive) aggregation task (FL), we assume p/ ¢ =15
Watts, based on measurements for matrix multiplication tasks [46], which are similar in
complexity to weighted averaging (aggregation). The cloud energy consumption egouq
then becomes:

Cclond = Peloud * 4/ (Vjogq * Tsampte), for CL (2.2)

Piisua #/ (Vigua): for FL

2.3.6 Machine Learning task

The ML schemes are evaluated using a representative ML task for vehicular applications:
image classification. This task is extensively utilized for various perception functions in
autonomous and remote driving systems [47]. Specifically, our evaluation is based on the
Street View House Numbers (SVHN) dataset, a benchmark in prior studies e.g., [48], [49].
The SVHN dataset consists of real-world images of digits extracted from natural scenes
(house numbers captured in Google Street View). It includes 531,131 32x32 color training
images (1.3 GB in size) divided into 10 classes (digits 0-9) and 26,032 test images (63 MB
in size). The division between training and test data is predefined by the dataset creators.
For the image classification task on SVHN, we designed a custom artificial neural
network applicable to both the CL and FL scenarios. In the FL case, we employed the
Federated Averaging (FedAvg [20]) algorithm for model aggregation, as implemented by
the PySyft framework [50]. In PySyft, a uniform averaging method is used i.e., all ML
models are equally weighted during aggregation—unlike the original FedAvg algorithm,
which applies weighted averaging based on the number of training samples per client.
Our neural network consists of three layers: an input layer with 3,072 neurons cor-
responding to the total pixels in the SVHN images (32x32x3), a hidden layer with 512
neurons using Rectified Linear Unit (ReLU) activation to filter non-positive values, and
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an output layer with 10 neurons (one for each SVHN class) employing LogSoftmax activa-
tion [51] for efficient multi-class classification. To calculate the training loss, we selected
the negative log-likelihood loss function [51], which pairs effectively with LogSoftmax in
classification tasks. The total size of the ML model is approximately 6.1 MB.

Although more complex and larger models, such as convolutional neural networks
(CNNs) like MobileNet, ResNet, or DenseNet [51], could be used to achieve higher ac-
curacy for image classification tasks, they are less practical for resource-constrained user
equipment (UE). Constraints such as limited disk space, processing power, memory, and
battery capacity could deter user participation in the training process, reducing the realism
of the system. Therefore, our design prioritizes practical feasibility over model complexity.

Hyperparameter tuning

Setting the hyperparameters of an ML model—such as the number of epochs, batch size,
and learning rate—is a crucial preparatory step before commencing the ML training pro-
cess. These hyperparameters define the training methodology rather than being intrinsic
components of the resulting ML: model. Instead, they influence how the model’s param-
eters (referred to as the resulting ML model) are adjusted during training. Optimizing
these hyperparameters involves conducting multiple test runs with varying combinations
of values. The configuration that delivers the highest accuracy is then applied to the main
training task. Neglecting this tuning phase can lead to significant performance degrada-
tion or even failure to achieve convergence, as demonstrated in [52]. While most studies
focus on optimizing hyperparameters based solely on the resulting ML model’s perfor-
mance metrics (e.g., accuracy or convergence speed), our work also considers the impact
of hyperparameter selection on network energy consumption, particularly as influenced by
processing demands.

To this end, our analysis begins with the total number of epochs (hepochs), Which
determines how many times the algorithm processes the entire training dataset. This
parameter influences not only the final performance of the ML model but also the pro-
cessing time, and hence, the energy consumed—whether by the clients in FL or by the
cloud server in CL. Once the value of hepoens is established, we further examine two other
critical hyper-parameters: the batch size (hpatcr) and the learning rate (hyqre). The batch
size defines the number of training samples used in a single iteration (forward and back-
ward pass), while the learning rate parameter controls the magnitude of weight updates
during training, effectively determining the step size of the model’s parameter adjust-
ments. Both hyper-parameters primarily influence the ML model’s accuracy, while also
having a secondary impact on processing time and energy consumption. By addressing
these parameters comprehensively, our study aims to evaluate their dual effect on model
performance and resource efficiency.

2.3.7 Emulation environment process

The following steps describe how the above-mentioned modelling components, together
with client selection and server-client communication are incorporated in our emulation
environment, both for the CL and the FL case. Initially, the cloud server generates a
(non pre-trained) ML model, which seeks to train by utilizing available client data. The
central server orchestrates, synchronizes and controls the training process and the clients
at all times. Also, the SVHN dataset (see Sec. 2.3.6) is split into z partitions (see Sec.
2.3.3). We then run a series of communication rounds, until all partitions are used or a
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predefined time deadline (te,q) is reached. The time deadline is selected, based on the
respective time granularity of each mobility dataset. In each communication round:

Step 1: The server identifies all (available) online clients (¢) determined by the cor-
responding mobility dataset that captures the mobility dynamics.

Step 2: A total of k < z clients are randomly selected, as a subset of ¢, each of which
is assigned a partition (see Sec. 2.3.3). If there are not enough online clients present to
satisfy our selected per round participating client number (¢ < k), all the currently online
clients are used. If no clients are found at all (¢ = 0), the round is terminated and a
waiting period is introduced, equal to the mobility dataset’s time granularity; that is 60
sec for the Shanghai Telecom and 1 sec for the Wifidog dataset (see Sec. 2.3.2).

Step 3: The ML scheme is initiated: In case of CL, the selected clients upload their
(raw) local datasets to the cloud server. The time (¢;) required for each client’s dataset
(di,i € [1,2]) upload is equal to the time of the access network upload plus the time of
the core network upload, therefore can be written as (see Sec. 2.3.1): t; = d;/sY%L  +

client
Zj(di/sUL ), for j core components. A parallel communication protocol is assumed,

core;
thus the tot]al time to upload all datasets (fypioad) €quals to that of the "slowest” client:
tupload = maz{t;}. Upon collection, the server merges all round’s data into a super-
dataset, which is then randomly shuffled to mitigate the effects of variance [53]. With the
collected super-dataset the server trains the ML model. Training time is calculated using
the cloud server’s computational capacity model (see Sec. 2.3.4). The completion of the
ML training marks the end of the round.

For the FL case, the cloud server firstly shares the training models (of size m) to
the selected clients (k). Afterwards, each client trains the model, utilizing its assigned
dataset and uploads the updated model back to the server. When all models are uploaded
back to the cloud server (again in a parallel manner, similar to the CL case), the server
performs model aggregation (averaging). The time needed for the federated training and
the server’s aggregation task is calculated from the UE’s and cloud servers computational
capacity model respectively (see Sec. 2.3.4).

Step 4: A communication failure occurs when a client goes offline, while performing
a task (either during training or during data exchange), irrespective of the task’s comple-
tion percentage. Such a failure is checked in our emulation environment by parsing the
corresponding mobility dataset. In case of failure, the client’s contribution is neglected
by the cloud server (training for CL/aggregation for FL). However, to account for the
time/resources spent for the partial communication, we consider a delay time equal to
the estimated task’s time, along with the respective resource consumption, assuming the
worst-case scenario 7.e. that the connection is lost, when the task was almost completed.

2.4 Simulation results

2.4.1 Simulation setup and evaluation metrics

The simulation environment was set up on a single desktop machine with the following
specifications: Intel Core i7-10700 processor (2.9 GHz), 64-bit architecture, 16 GB of
Random Access Memory (RAM), and Windows 10 as the operating system. To simu-
late the distributed learning environment, we used the PySyft library [50]. PySyft is an
open-source, Python-based framework designed for secure and private machine learning.
It allows for the decoupling of private data from the model training process by employing
techniques such as Federated Learning, Differential Privacy, and Encrypted Computa-
tion. PySyft’s interface is similar to that of the numpy Python library [54] and integrates
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seamlessly with popular deep learning frameworks.

The DML environment' is wrapped using a custom Python-based discrete event sim-
ulator, which emulates the underlying network i.e., the mobile clients, the core network
and the cloud server, as illustrated in Fig. 2.1b. The network simulator software realizes
the network throughput, client mobility, data distribution, computational capacity and
energy consumption models, as presented in Sec. 2.3. Its clock is synced to the mobility
dataset’s timeframe, which is used as global (time) reference. A deadline of t¢,q = 24hrs
is chosen across all experiments which are set to terminate when all dataset (SVHN)
partitions are used or t.,q is reached. We report that in 95% of the cases, termination
occurred due to dataset depletion, while the average termination (simulation) time was
4 hrs, throughout all our experiments. Unlike the majority of works in literature that
evaluate the performance of CL vs. FL with regards to their accuracy, we employ a broad
set of carefully-selected metrics to capture all previously-overlooked dimensions.

Test Accuracy

The effectiveness of the trained ML model is evaluated on the SVHN test data (see Sec.
2.3.6). The percentage of successful to total classifications provides the test accuracy
metric, with a maximum value of 100%. Both in CL and in FL, we assume that the
cloud server has the ability (and the capacity, given the ML model’s negligible size) to
save each round’s ML model, so that the most accurate ML model can be extracted in
the end of the experiment. Keeping track of each round’s output is a standard technique
in ML training [55], to avoid over-training and therefore parameter over-fitting, which
results in less accurate ML models. Thus, the term Test Accuracy refers to the maximum
accuracy achieved during the (CL/FL) experiment and not necessarily the accuracy of the
chronologically latest ML model.

Traffic Overhead

It is defined as the total amount of data exchanged between the cloud server and the
clients for the duration of the ML process, multiplied by the total number of hops the
data traverses, after leaving its origin node i.e., hops = (total network nodes) — 1. In
case of CL, the exchanged data refers to the raw data uploaded by the clients, while in FL
it refers to the ML model’s parameters uploaded by the clients, plus the ones distributed
back to clients by the cloud server (see Fig. 2.1a). For the sake of clarity, traffic overhead
is normalized to the total dataset size i.e., 1.3 GB. Traffic overhead reflects the total band-
width consumed during the ML process, accounting for both successful and unsuccessful
communications. On the contrary, the total overhead generated by communication failures
(see Sec. 2.3.7), is defined as Traffic Loss.

Energy Consumption

It captures the energy expenditure in all involved devices, during the ML process (Sec.
2.3.5), regardless the success/failure of transmission. Specifically, for the clients, we
consider the total energy of all devices involved (due to ML processing and transmis-
sion/reception). For the core network it is only limited to expenditure due to data ex-
change. Lastly, for the cloud server, we only account for consumption due to processing
(either model aggregation in FL or ML training in CL). Similarly to the definition of Traf-
fic Loss, we also define the Energy Loss, as the total energy consumed e.g., by a client’s

!The source code is publicly available at: https://github.com/giorgosdrainakis/dml
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device for training a model in FL, but the result was not utilized due to a subsequent
client-server communication failure.

2.4.2 CL vs. FL: Energy-aware hyperparameter exploration
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Figure 2.3: ML hyperparameter tuning: Batch size and Learning Rate

The exploration of the ML hyperparameter values (tuning) is performed prior to the
actual ML tasks (experiments), as discussed in Sec. 2.3.6. Starting from the number
of epochs hepocns We consider the following values: {1, 5, 10, 25, 50, 100, 200}, which
are commonly used in bibliography for image-classification tasks and SVHN specifically
[49]. Our test-runs suggest that our ML model achieves a maximum accuracy of 85%, if
hepochs € [25,100] both for CL and FL (see Fig. 2.2a). When looking to the underlying
energy consumption in the clients side, one observes that an increase on hepochs causes a
linear increase in energy consumption, with angles of incline equal to 0.46 and 0.78 rad for
CL and FL, respectively (see Fig. 2.2b). To account for both accuracy and the consumed
energy, a value of hepocns=25 is selected.

Moving to the batch size hpgten, and learning rate hy,.qee, we perform an exhaustive search
over the following values: {64, 128, 500, 1000} for hpasen, and {0.0001, 0.0005, 0.001, 0.005,
0.01, 0.05, 0.1} for hyate, based on [48] and [49]. In the CL case (see Fig. 2.3a), the
maximum accuracy is achieved for a combination of hpgen, > 128, hrgte > 0.05 and for the
FL case (see Fig. 2.3b) hpaten < 128, hpgre > 0.05. For a fair comparison of the two ML
schemes (CL, FL), we assume a common set of values of hpgep, = 128, hpgte = 0.1. The
selected hyperparameter values are kept fixed throughout our experiments.
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2.4.3 CL wvs. FL: The effect of client data to model size ratio r .,

In this section, we investigate the way the per client data to model ratio 4., shapes
the performance of the ML schemes under evaluation. Essentially, rgq., indicates the
amount of data a client holds (in relation to the fixed ML model size m). For this set of
experiments, we assume data is symmetric across all clients (i.e., i.i.d. and e.d. setting)
and vary the number of dataset partitions i.e., total clients z ={15, 30, 60, 90, 120,
150, 190, 230, 260, 300, 330, 360, 400}. Therefore the data to model ratio becomes
Tdata;=d/(m - 2),Yi € [1, 2] (see Sec. 2.3.3). We also, for now, assume a constant value
for the per round participants k=5. Keeping in mind that the total dataset (SVHN)
size d is fixed to 1.3 GB (see Sec. 2.3.6), larger values of rg,, represent setups, where
fewer clients with larger dataset partitions (z) participate in total, in the ML scheme.
Vice versa, smaller 74,4, values represent a situation, where more clients with fewer data
participate in total. Nevertheless, the aggregated (total) training data (SVHN) in each
experiment remains the same, ensuring a fair comparison for all training tasks. FEach
of the 13 experiments (representing different rg44, or equivalently z values) runs with
both LTE and WLAN settings, for 10 different sample time periods taken randomly from
the respective mobility dataset, yielding a total of 260 pairs of CL-FL experiments. All
measurements of this section are taken at the end of each experiment and mean values out
of the 10 samples are depicted together with the corresponding 95% confidence intervals.

Impact of r4,;, on the achievable testing accuracy

Both CL and FL successfully converge, achieving an average testing accuracy of 85%
across both LTE and WLAN scenarios (refer to Fig. 2.4a). This result holds consistently
for all values of 7441, € [0.5,15] (or equivalently z € [14,426], where the x-axis is dual-
valued, displaying dataset partitions z at the top and the parameter r4,:, at the bottom
for clarity). The reported accuracy corresponds to the maximum value attained during
the ML hyperparameter tuning phase (as illustrated in Fig. 2.3).

Our findings align with prior research, which highlights the importance of hyperparam-
eter tuning and increasing the number of training epochs as effective strategies to enhance
the convergence of FL’s default algorithm, FedAvg [25]. This study further substantiates
that properly configuring ML hyperparameters prior to training enables FL to achieve con-
vergence across the entire range of 74,4, € [0.5,15], ultimately attaining accuracy levels
comparable to those of CL.
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Impact of r44;, on the bandwidth consumption

The impact of rgqt, on the ML schemes’ network resource utilization (reflected by the
normalized traffic overhead) is depicted in Fig. 2.4b. We observe that for low ratios
(rdatai2), FL is bandwidth-demanding, consuming exponentially more data in comparison
to CL. This stems from the fact that more clients participate in the training process,
therefore more ML models are uploaded/downloaded to/from the server. In contrast, for
large ratios (rgqtql3), where the total number of clients decreases, FL naturally becomes
more bandwidth efficient. In fact FL demonstrates an exponential decrease of (exchanged)
data compared to CL. This holds for both studied network settings, namely in LTE and
WLAN. Note that this behavior is not related to the number of training rounds, since in
our simulation training stops upon dataset depletion. Interestingly, a relative-equilibrium
area exists when 2 < rguq < 3, where CL and FL share similar network resource utilization
profiles.
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An increased 7444, i.€., a setup where few clients hold more data, would also benefit
FL in terms of traffic loss, which basically represents unnecessary bandwidth usage from
communication failures due to client mobility. Note that our setup does not focus on
fairness or resilience aspects e.g., replacing a failed node or investigation of asynchronous
schemes [56]; it rather studies the effect of mobility on the default CL/FL setup, where
failed nodes are excluded from the training/aggregation phases, respectively. As a result,
performing FL with rg4:, >> 3 results in a traffic loss reduction up to 67% for LTE (see
Fig. 2.5a) and up to 41% for WLAN (see Fig. 2.5b), as opposed to FL with rg., < 2.
This reduction relates to the fact that in FL the client only exchanges ML models (of
fixed size m) with the cloud server, regardless the actual amount of (raw) data he holds.
Thus, a lower number of participating clients (for rgq:, >> 3) results in a lower number
of exchanged ML models (i.e., exchanged MBytes) and therefore decreased data loss. In
FL (unlike CL) the traffic overhead and traffic loss accordingly is not governed by the
size of each client dataset, but by the number of the total participants. Another point
worth mentioning is that FL on a WLAN channel exhibits on average 40% more data loss
compared to FL. with LTE; at the same time, data loss in WLAN has larger confidence
intervals compared to LTE. These observations reflect the average time a client is likely
to remain (connected) in a service area; for WLAN that is by nature limited and erratic,
as opposed to LTE, where users can potentially be always-on.

Contrary to the FL case, traffic loss is close to zero in CL, unless r44:, > 10, where
it reaches a maximum of 10%. In CL, no local processing (which is a time-consuming
task in a resource-limited UE device) is required from the mobile clients; therefore delays
may only occur due to transmission, which in turn minimizes the probability of a device
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drop. On a more general remark for both ML schemes in LTE and WLAN, the traffic loss
reaches a maximum of 16% of the total traffic overhead; this low percentage of losses is
also reflected in the consistently almost-negligible confidence interval size of all graphs in
Fig. 2.4b. Thus, the overall bandwidth expenditure (traffic overhead) appears (under the
considered conditions) significantly more sensitive to the portion of data (rg4,) each user
holds, rather than his own mobility.

Impact of r4,, on the energy consumption

Investigating the overall energy expenditure from the client’s perspective, as analyzed in
Sec. 2.3.5, our experimentation suggests that CL outperforms FL for all values of rg.tq.
Specifically, if FL is employed the clients collectively consume 300 times more energy in
the LTE case (that is 350 for WIFI), as opposed to CL (see Fig. 2.6a). The CL energy-
efficiency (compared to FL) in the clients stems from the fact that it is the processing
(i.e., on-device ML training in FL) rather than data transmission which constitutes the
prime factor for a UE’s energy expenditure and thus its battery depletion. In fact, the
total energy consumption in FL due to processing (proc) is 100 times higher (see Fig.
2.7a) compared to the total energy consumption due to transmission-reception (trx) in
the LTE case (that is 280 times in WLAN - Fig. 2.7b). Since CL does not require local
processing in the clients side, any minor gains in energy consumption due to transmission
in FL (FL-trx) for larger 744, values (see Fig. 2.7) do not affect the overall ML schemes
expenditure comparison. These minor gains stem from the fact that less ML models are
exchanged in FL for higher 444, values.
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Figure 2.7: Client energy consumption w.r.t. data to model ratio, broken down to pro-

cessing (proc) and transmission/reception (trx) for (a) LTE and (b) WIFI radio access
technologies.
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A secondary point to note is that the average per client energy expenditure i.e., the
total energy expenditure divided by the number of clients increases linearly as rgqs, in-
creases (see Fig. 2.6b - note the logarithmic scale in y-axis). For our configuration, the
mean client consumption varies in the interval [0.64,20.7] K J for LTE and [0.81,28.8] K'.J
for WLAN. The fact that client consumption in WIFT is consistently increased compared
to LTE stems from WLAN’s lower data rates (see Sec. 2.3.1), combined with its higher
energy transmission costs (see Sec. 2.3.5). Assuming a modern smartphone’s typical bat-
tery [57] with 2400 mAh/3.8 V, resulting in 32.8 KJ battery capacity, we deduce that in
the worst-case scenario of our configuration (744t =~ 14), 63% of each UE’s battery energy
is depleted in the LTE case (that is 88% for WLAN).

The results so far suggest that for rg,:q > 4, FL is on average 24% more energy efficient
in an LTE setting, as opposed to WLAN (see Fig. 2.6). However, LTE’s energy-efficiency
does not appear in the CL case, although transmissions of large size datasets (instead of ML
models) occur. As portrayed in Fig. 2.8, LTE’s energy-efficiency is related to processing
and specific to energy loss (see Sec. 2.4.1) i.e., energy consumed for local processing,
but followed by a communication failure. Since more communication failures occur in a
WLAN setting compared to LTE, as discussed earlier in Sec. 2.4.3, the amount of Energy
Loss (and thus total energy expenditure) is higher. In fact, energy loss is largely affected
by Tqate; larger .44 values represent larger per client dataset sizes implying higher energy
consumption to perform training over these datasets. Thus, a potential communication
failure of a client with a large r44:, essentially means larger energy loss compared to a client
with smaller 7444,. In FL, energy loss amounts to less than 16% of the total expenditure for
Tdata <2, while reaches 30% for 744, >10 in the LTE case (see Fig. 2.8a). The respective
WLAN values are 18% and 53% (see Fig. 2.8Db).
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Figure 2.8: Client energy consumption w.r.t. data to model ratio, broken down to suc-
cessful (succ) and failed (fail) communication

Unlike the client energy expenditure, both the core network’s and the cloud’s energy
consumption exhibit an exponential reduction as r4., increases (see Fig. 2.9). For the
core network, this reduction is only seen in the LTE case; the difference between the LTE-
WLAN is mainly shaped by the energy expenditure in the network elements between the
access and the metro & edge network, namely the BS and the AP respectively (see Sec.
2.3.1). Interestingly for the LTE case, a value exists for 74,4, =~ 7, where an equilibrium
occurs between FL and CL (see Fig. 2.9a). In any case, core expenditure in LTE is at
least two orders of magnitude greater compared to WLAN, regardless the ML scheme. As
expected, the cloud’s consumption is reduced, when the ML task is offloaded to the clients
(see Fig. 2.9b); that reduction varies between 95% and 99%, as rgq, increases from 0.5
up to 15 and relates to the total clients i.e., the total (produced) ML models aggregated
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in the cloud. The overall (system-wise) energy footprint for each ML scheme in the LTE
and the WLAN case is depicted in Fig.2.10. Overall, CL. demonstrates a higher energy
efficiency compared to FL, both in LTE (see Fig.2.10a) and in WLAN (see Fig.2.10b). For
Tdata ~ 1, CL outperforms FL by 83% in the LTE case and 82% in WIFIL. As r44:a — 15
these values are increased to 86% and 90% respectively. CL’s energy efficiency is mainly
dictated by the lack of processing (as opposed to FL) in clients’ devices.
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Figure 2.10: End-to-end energy consumption for all network stakeholders

Discussion on the effect of rg,;,

The overall performance of CL and FL as rg44, increases is summarized in Table 2.3. A
setting with reduced 744t values (rgqtq — 0) i.e., with many clients holding few data,
greatly favors CL over FL. When 7444, increases (rgqtq — 00), several benefits emerge
for FL. FL becomes bandwidth-efficient, outperforming CL. As a result, clients (end-
users) significantly reduce their data consumption, which is particularly advantageous
in LTE environments where users often face constraints due to limited monthly data
allowances. Additionally, the network infrastructure benefits from this reduction in data
usage, as it alleviates the need for extensive bandwidth reservation and helps mitigate
network congestion. An increased g, also benefits both the network and the cloud
infrastructure energy-wise. However, energy costs are distributed to the client devices,
which can lead to client dropping, due to battery unavailability in a resource (battery)-
constrained environment e.g., in smartphones or IoT devices.

Client selection schemes offer a promising avenue for optimizing resource consumption
across all network stakeholders, including clients, the network infrastructure, and the cloud
infrastructure. These schemes can dynamically determine which clients participate in the
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training process, factoring in criteria such as available bandwidth, energy constraints, and
the quality of the local datasets. By carefully selecting participants, it is possible to balance
resource usage efficiently, minimizing client energy expenditure and data transmission
while also reducing strain on network resources such as bandwidth and server processing
capacity.

For instance, prioritizing clients with high-quality datasets or stable connectivity could
improve training efficiency and model accuracy while avoiding unnecessary overhead for
clients with limited resources. Similarly, adaptive strategies that rotate client participation
based on their resource availability and contribution potential could further enhance the
overall system performance.

Exploring such client selection mechanisms could also pave the way for integrated
optimization frameworks that address the trade-offs between energy consumption, latency,
and model performance. These frameworks could even incorporate ML techniques to
predict and adapt to dynamic network conditions, enabling a more intelligent and holistic
allocation of resources. Investigating these aspects remains a rich area for future research,
with the potential to significantly enhance the scalability and sustainability of distributed
ML frameworks like FL.

Table 2.3: Effect of rgqt, on CL/FL performance

Metric w.r.t. Tqatq ‘ CL ‘ FL ‘ Winner (rgqtq — 0) ‘ Winner (rgqtq — 00) ‘
Achieved accuracy Constant | Constant (via tuning) None None

Bandwidth consumption Constant | Exponential decrease CL FL

Traffic loss Constant | Linear decrease CL None

Total client energy consumption Constant | Linear increase CL CL

Per client energy consumption Constant | Linear increase CL CL

Energy loss Constant | Linear increase CL CL

Core energy consumption Constant | Exponential decrease CL FL

Cloud energy consumption Constant | Exponential decrease FL FL

2.4.4 CL wvs. FL: Convergence speed

In this section, we will analyse how ML schemes evolve across time. We make use of
the samples (experiments) described in Sec. 2.4.3, zooming on the time dimension per
experiment, instead of the final resulted values; for example Testing Accuracy refers to the
achieved accuracy per time instance. Capitalizing on the results from the aforementioned
paragraph, we limit our investigation to two values for 744:,, namely 1.8 and 7, representing
a setting with more clients which hold few data and a setting with few clients holding
considerably more data, respectively.

As depicted in Fig. 2.11a, CL reaches its maximum accuracy levels in the very first
rounds (before 1K secs), utilizing the full dataset (see Fig. 2.11b). At that time it
outperforms FL in terms of accuracy by an average of 22%. CL’s faster convergence
however, comes at a cost. In CL, data exchange is performed in a bursty manner, which
results in a consumption of 100% of CL’s required bandwidth before 1K secs. At the same
time, the cloud’s energy is consumed early compared to FL (42 KJ in less than 1000 secs),
due to ML processing in the cloud server (see Fig. 2.12b). FL, on the other hand, proceeds
gradually (linear evolution) towards its completion (at 13K secs benchmark for 74,1, =1.8
and 15K for 744, =7) and so does the network’s data expenditure (see Fig. 2.11b) as
well as the client energy consumption (see Fig. 2.12a). Since FL’s accuracy reaches its
peak before the end of the experiments (see Fig. 2.11a), any bandwidth or energy spent
after the above-mentioned benchmarks has no obvious benefit. It is also observed that an
increased 144, does not affect CL’s behavior; in FL however, the ML task is performed
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in a total of less client devices, therefore parallelism is decreased. As a result, the ML
convergence, as well as the respective resource consumption footprint expands across time.
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Overall, unless bandwidth constraints are a critical factor within the system, CL
emerges as the preferred option for accelerating the training process. This makes CL
particularly well-suited for ML applications where data evolves rapidly over time, such
as time-series forecasting. By leveraging CL’s faster completion times, it is possible to
continually produce up-to-date global ML models, ensuring relevance and accuracy in dy-
namic scenarios. Additionally, the faster execution of CL reduces the duration for which
network resources are occupied, freeing capacity for other applications and mitigating the
risk of network bottlenecks.

Conversely, FL offers distinct advantages when a gradual, balanced approach to achiev-
ing maximum ML accuracy is prioritized, especially in scenarios where conserving network
resources is more critical than minimizing time, such as in data analytics applications.
FL’s distributed nature inherently economizes bandwidth by avoiding the transmission
of raw data, which can be advantageous in resource-constrained environments. Further-
more, FL’s efficiency could be enhanced through the implementation of a mechanism that
continuously monitors accuracy improvements during training. Such a mechanism would
identify when convergence is achieved, allowing the training process to halt, thereby avoid-
ing unnecessary resource consumption.

To maximize the strengths of both approaches, a dynamic and adaptable system akin
to Hybrid Learning [18] could be employed. This hybrid framework would intelligently
switch between CL and FL based on the specific requirements of the ML application
and the current availability of system resources. Such a solution could optimize both
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performance and resource utilization, ensuring that the training process aligns seamlessly
with the constraints and objectives of the operational environment.

2.4.5 CL wvs. FL: Varying the number of participating clients
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Figure 2.13: Impact of increasing the number of participating clients per round

We now fix the number of clients/partitions to z = 100, or rg., &~ 2, an area where
CL and FL demonstrate a similar bandwidth consumption profile; moreover, FL exhibits
certain gains in terms of the client energy consumption (see Sec. 2.4.3). Our goal is to
investigate how each ML scheme’s accuracy is affected, when the number of participating
clients per round k varies. Essentially, a small value of k represents a setting where few
clients are selected in each round e.gq., due to low availability or client scarcity, therefore
more communication rounds are required to complete the ML task. Vice versa, an in-
creased k suggests a client-rich setting, where more clients participate in each round. We
vary k from 5 clients per round (which was our initial setting) up to 50, with a step of 5.
Each experiment is repeated for 10 different time periods/samples, taken from the LTE
mobility dataset, resulting in a total of 100 pairs of CL-FL experiments.

The results suggest that scaling the participants has practically no effect on CL’s
accuracy (see Fig. 2.13a) nor on its completion time (see Fig. 2.13b). FL’s accuracy on
the other hand is reduced up to 4%, when k increases. This result is in line with [20], [58],
where it is shown that increasing parallelism (i.e., allowing for more per round participants
and decreasing the total rounds) degrades the overall accuracy, due to the smaller number
of aggregation (FedAvg) steps. In fact, it is suggested that an optimal k value exists in
FL’s client selection process, depending on the total number of online clients, the selected
ML hyperparameters and the nature of the ML task. For image classification tasks like
SVHN with a batch size of 128, the ratio of k/z needs to be close to 0.1.

Interestingly, FL enjoys a nearly-exponential reduction in completion time, as k (lin-
early) increases i.e., an increase of k from 5 to 50 reduces the completion time by 83% (see
Fig. 2.13b). The relatively small number of extra participating clients i.e., no more than
50, should be easy to realise in a real-world system of hundreds of users e.g., mobile devices
in an urban cellular network. If k& — 50, the time gap between the completion times of
CL and FL is significantly reduced, although FL experiences some limitations in terms of
accuracy. This trade-off is absent in CL, where scaling the number of clients does not have
a notable effect on the performance or the training process. An important observation re-
lates to the impact of scaling on network resource consumption. As detailed in Sec. 2.4.3,
the relevant resource consumption metrics increase in a consistent, proportional manner
without any anomalies. Therefore, we have chosen to omit the corresponding plots, as
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they do not provide additional insight.

2.4.6 CL wvs. FL: Effect of data heterogeneity

Thus far the SVHN dataset was assumed to be evenly distributed (in size) across the
clients (e.d.) and that each client’s subdataset is representative compared to SVHN (i.i.d.).
We now investigate the ML schemes’ response (in terms of achieved accuracy), when the
above-mentioned assumptions are relaxed and furthermore shed some light on the interplay
between non-iidness and non-edness (see Sec. 2.3.3). For the non-e.d. setting, we assume
four cases for the Zipf parameter o4 € {1.7,2,2.3,1000}, representing various degrees of
data distribution skewness; as og.q — 1, the skewness degree becomes severe. Similarly for
the non-i.i.d. setting, we select four cases for the i.i.d. parameter o;;q € {3,5,7,10}, which
represent the total number of classes contained in a client’s subdataset. SVHN contains
samples from all 10 classes, thus a o;;,4 = 10 is essentially an i.i.d. setting, while smaller
0iiq values mark increasing non-i.i.d. conditions. We also assume a total number of clients
z = 100 and fix the per round participants £k = 10, as suggested by the results of Sec.
2.4.5. For comparison purposes, we include two extra centralized ML schemes besides CL
i.e., Standard Machine Learning (SL) and CL without (w/o) shuffling and one additional
federated i.e., Federated Learning with weighted averaging (FLw). For SL, the server
waits for the majority (at least 80%) of SVHN data to arrive and then performs training.
CL without shuffling is identical to CL, however no data shuffling occurs prior to training.
FLw uses a weighted averaging scheme during aggregation, as opposed to FL’s uniform
aggregation (see Sec. 2.3.6). Each experiment is repeated 10 times, using LTE traces,
resulting in a total of 160 sextuples of {SL, CL w/o shuffling, CL, FL, FLw} experiments.
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Figure 2.14: Effect of client data size (e.d.) and content (i.i.d.) variations

From all centralized ML schemes (SL, CL and CL w/o shuffling), SL exhibits the
highest performance, reaching an accuracy of 85% (see Fig. 2.14). SL’s performance is
not affected by the various degrees of non-edness or non-iidness, essentially reflecting the
advantages of centralized ML under heterogeneous environments [25]. In SL, the cloud
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server waits for almost all subdatasets to arrive, before merging them into a super-dataset
and initiating the ML training. Therefore, any stochasticity introduced in the (distributed)
client subdatasets, either in size or content, is eliminated when the merging occurs. As
discussed in Sec. 2.3, SL is impractical in a real system, so it is merely used for comparison
purposes.

CL w/o shuffling can be regarded as a dynamic alternative to SL, since training is
performed in each communication round, using the collected round’s client data. Under
an i.i.d. setting (see Fig. 2.14a), CL w/o shuffling achieves similar performance to SL,
which is not affected by the data size distribution (non-edness). When non-iidness appears
and as it increases (see Fig. 2.14b-Fig. 2.14d), CL w/o shuffling exhibits lower accuracy
levels (down to 56%). The introduction of non-edness further diminishes its performance,
which drops down to 44% for severe non-i.i.d. and non-e.d. conditions (see Fig. 2.14d).
This degradation is related to the distributed manner of client data and the fact that ML
training is performed in each round. Under high data heterogeneity, consecutive series of
non-representative data samples can be uploaded in the cloud server e.g., several batches
containing only one SVHN class out of ten. Such bias is likely to have a detrimental
effect on the ML training task. Moreover, given that each round’s ML model is used for
the next round training, any abnormalities will be cascaded, resulting in less accurate
ML models. To mitigate those negative effects, we apply and experimentally evaluate a
popular technique prior to ML training i.e., shuffling [53]. CL with shuffling is referred to
as CL, for simplicity. As portrayed in Fig. 2.14, CL achieves the same or higher accuracy
levels compared to CL w/o shuffling. In fact, SL only outclasses CL by a maximum of 2%
for mild (see Fig. 2.14a-2.14b) and 7% for major (see Fig. 2.14¢-2.14d) data heterogeneity
respectively.

FL on the other hand, being a distributed learning scheme is affected both from non-
iidness and non-edness; even the introduction of small levels of non-iidness can lead to
accuracy drops down to 53% (see Fig. 2.14b). When in fact non-iidness is combined with
non-edness, the training task cannot converge (see Fig. 2.14d), therefore accuracy drops
below 40%. Such performance is related to FL’s training algorithm (uniform FedAvg). As
such, a ML model trained with high diversity data will be equally weighted with another
model (from another client) trained with low diversity (biased) data. FLw (FedAvg with
weighted averaging) introduces a simple bias mitigation technique by rewarding ML models
trained with larger datasets with larger weights. When non-iidness is low, this technique
enables FLw to achieve an up to 11% better accuracy compared to FL for various levels
of non-edness (see Fig. 2.14a-2.14b). However, under the presence of higher levels of non-
iidness (see Fig. 2.14c-2.14d) FL achieves similar or (up to 8%) better accuracy compared
to FLw. This is because weighted averaging (FLw) rewards ML models according to their
training data quantity (larger datasets have larger weights) and not quality i.e., data
diversity, entropy, number of classes in the dataset As such, not only FLw is prone to non-
iidness (similarly to FL), but can potentially demonstrate erratic behavior [59]. Overall, it
becomes evident that applying FL over highly heterogeneous data environments requires
advanced statistical methods that deserve a dedicated exploration.

2.5 Conclusion

This chapter has presented a comprehensive examination of the impact that employing
ML pipelines in networked environments has on the underlying network resources. Our
investigation was grounded in an end-to-end, systematic analysis enabled by a novel,
measurement-based, pragmatic model. This model accounts for the network resource
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consumption associated with CL and FL when applied to image classification tasks. To
ensure real-world relevance, the model integrates user mobility patterns derived from ac-
tual traces to capture environmental dynamics. Furthermore, it incorporates multiple
communication channels (LTE and WLAN) to facilitate comprehensive experimentation.
Our findings, derived from simulations conducted with the SVHN dataset using openly
shared simulation code, are summarized below.

Firstly, we highlighted the necessity of hyperparameter tuning before initiating ML
training, particularly emphasizing the importance of configuring the number of local train-
ing epochs. This is crucial to ensuring FL convergence, especially when clients possess
local datasets smaller than twice the size of the ML model. By increasing the number of
local FL epochs, we demonstrated that FL could achieve accuracy levels comparable to
CL, albeit with a proportional increase in client energy consumption. When clients hold
larger datasets relative to the ML model size, FL offers several advantages over CL. These
include: (1) an exponential reduction in bandwidth usage, accompanied by decreased en-
ergy consumption in the cloud and core network (notably over LTE); and (2) a reduction
in data loss due to mobility by at least 40%.

In terms of energy consumption, we observed that ML processing on FL clients signif-
icantly outweighs the energy demands of data transmission, regardless of the communica-
tion channel (LTE or WLAN). For clients with local datasets exceeding 10 times the size
of the ML model, battery depletion becomes a significant concern, with at least 63% of an
average user equipment’s battery consumed. This high energy demand may deter client
participation in FL, particularly in scenarios aimed at alleviating network congestion.

When comparing convergence rates, CL proved to be 13 times faster than FL, making it
an appealing option for minimizing the duration of ML tasks assigned to system devices.
However, this accelerated convergence comes at a steep cost, including spikes in both
energy consumption (within the cloud) and bandwidth usage. FL, in contrast, offers a
more gradual convergence process that is considerably more bandwidth-efficient while still
achieving similar accuracy. Consistent with prior studies, we confirmed that increasing
the number of participating clients per FL training round accelerates convergence at the
expense of a marginal reduction in final accuracy.

Finally, we examined the effects of data asymmetry on the accuracy of ML mod-
els. In FL, such asymmetry—whether due to variations in client dataset sizes or con-
tent—significantly degrades accuracy. Conversely, in CL, this issue can be mitigated
through pre-training data shuffling techniques, which standardize data prior to central-
ized ML training.

This research opens the door to several promising avenues for future work, many of
which can be explored using our publicly available simulation software. For instance,
the relationship between the training data-to-model ratio and ML performance warrants
further investigation, particularly with more complex and larger neural network architec-
tures. Other factors such as data acquisition rates and client storage limitations could also
enhance the realism of future studies. Additionally, the exploration of algorithms designed
to mitigate bias in non-iid FL datasets remains a critical area for improvement. Lastly,
scrutinizing dynamic ML paradigms, such as Hybrid Learning, could yield valuable in-
sights into the parameters influencing the selection of ML schemes in resource-constrained
network environments. Through this study, we have not only characterized the trade-offs
between CL and FL but have also laid the groundwork for advancing ML deployment
strategies in dynamic, resource-limited settings.



3

Federated Learning in the course
of time

3.1 Introduction

In the previous chapter, we conducted a comprehensive end-to-end system comparison
between the traditional CL approach and the emerging paradigm of DML, focusing specif-
ically on FL as a typical example of DML. In FL, the model training task is collaboratively
performed by the clients while preserving data privacy [60]. Our exploration compared
the performance of CL and FL in terms of accuracy, while also accounting for the resource
consumption of the involved stakeholders in the underlying network, such as client devices,
the network infrastructure, and cloud/edge servers.

ML tasks that take place within dynamic network environments often involve mobile
and distributed client devices, such as smartphones, OBUs, and wearables. These de-
vices are typically subject to mobility and can be considered part of applications such as
Cooperative, Connected, and Automated Mobility (CCAM) services [61], mobile network
analytics [62], and e-Health applications [63]. In these settings, data is often collected
progressively over time—spanning days, weeks, or even months—contrary to traditional
ML paradigms that assume the availability of a complete dataset prior to training. This
progressive data collection has led to the development of Lifelong Learning (LL), which
enables ML models to be trained periodically and used for inference in the course of time
[64], [65].

A critical challenge that arises in such environments is concept drift, which refers to
changes in the statistical properties of the data over time due to factors such as seasonality,
evolving user behavior, and trends [66]. If left unaddressed, concept drift can lead to model
drift, resulting in a degradation of the model’s accuracy. In traditional CL, where data
is centrally collected, concept drift is typically managed through statistical techniques
applied directly to the raw data [67]. However, in distributed environments such as FL,
significant limitations hinder the application of centralized solutions: 1) the FL server
does not have access to raw client data and thus cannot directly monitor changes in data
distributions, and 2) client devices are often resource-constrained (e.g., limited processing
power, storage, and battery life) and can be unreliable (e.g., due to connection failures or
dropouts), making them ill-suited to handle drift detection and mitigation compared to a
stable, always-on server. These challenges give rise to two fundamental research questions:
1) How can concept drift be accurately detected in a Federated Learning environment, given
the aforementioned restrictions? and 2) How can the resource consumption cost associated
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with drift mitigation (e.g., re-training) be minimized, particularly in resource-constrained
client and network settings?

To the best of our knowledge, there have been only a few studies addressing drift
management in the context of Federated Learning [68], [69]. However, existing solutions
often either wviolate the data privacy principles of FL or propose continuous training ap-
proaches that lead to excessive energy and bandwidth consumption—an issue we explore
in this chapter. To address this research gap, we propose a novel, resource-efficient drift
management solution for Federated Learning, called the Drift-aware Resource-efficient
Federated Learning (DareFL) algorithm. This algorithm is specifically tailored to mobile
and vehicular networks, which are often resource-constrained. DareFL integrates existing
centralized statistical drift detection techniques [66] while maintaining FL’s strict data pri-
vacy requirements. Upon detecting drift, the system mitigates the impact by re-training
the affected ML model. The periods for re-training are carefully controlled, ensuring that
the model remains accurate while minimizing resource consumption for the underlying
network.

In contrast to most existing drift management solutions, which are typically evaluated
on limited datasets for niche applications (e.g., digit recognition [65]), we place a strong
emphasis on realistic evaluation environments. Specifically, we focus on the predictive
Quality of Service (pQoS) use-case [70], which is an automotive ML task operating in
distributed, mobile environments prone to concept drift [71]. The pQoS use-case involves
predicting changes in network QoS in advance, enabling timely actions to be taken by
applications running on client devices or application servers. For example, the system
could trigger an automated handover of control from an autonomous vehicle to the driver
to avoid critical situations.

To overcome the challenge of limited public pQoS data, we generate synthetic datasets
through a combination of network and traffic co-simulation, utilizing real-world maps.
These datasets capture two distinct drift scenarios: one related to the dynamics of wire-
less communication and the other to variations in user behavior. The generated pQoS
datasets are used in a distributed ML simulator that emulates the training process, while
also capturing key aspects of energy and bandwidth consumption based on real-world
measurements and commercial product benchmarking.

In our experiments, we evaluate the performance of the proposed DareFL algorithm in
the presence of concept drift, comparing it against three baseline approaches: a) Vanilla
Federated Learning [72], b) a continuous training scheme, and c¢) a representative state-
of-the-art (SotA) drift-mitigation solution [69]. The remainder of the chapter is organized
as follows: Related work is discussed in Sec. 3.2. The system architecture is presented in
Sec. 3.3, followed by the description of the simulation framework in Sec. 3.4. In Sec. 3.5,
we present a simulation-based performance evaluation of our proposed solution. Finally, a
summary is provided in Sec. 3.6, along with a discussion on potential directions for future
research.

3.2 Related work

The problem of drift management—comprising both detection and subsequent mitiga-
tion—has been widely explored in the context of CL, where datasets, training nodes,
and resulting ML models are typically co-located in a central location. Drift detection
within CL environments is often tackled using two primary categories of detectors: data
distribution-based and performance-based methods [66]. The former monitors the distri-
bution of training data, comparing it against historical data to identify potential drifts.
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These methods rely on statistical tests, such as Kullback-Leibler divergence [67], to quan-
tify the changes in data distributions over time. By identifying discrepancies between
the current training data and previous data distributions, these methods can flag concept
drift.

On the other hand, performance-based drift detectors focus on tracking shifts in the
model’s inference performance, particularly by monitoring the test error associated with
predictions. These approaches are grounded in the Probability Approximately Correct
(PAC) concept [66], which postulates that any significant degradation in a model’s per-
formance signals that the relationship between the input data and the target output has
changed. This change implies that a concept drift has occurred, requiring immediate in-
tervention. Upon detection of concept drift, mitigation strategies are employed, which
typically involve re-training the models using updated data, combining both old and new
models, or fine-tuning the existing models based on newly acquired information [67].

In the context of distributed settings, such as FL, drift management is a more complex
challenge due to the decentralized nature of the training process. Three main strategies
have been explored to address concept drift in FL: (a) Personalized learning, (b) Asyn-
chronous FL schemes, and (c¢) Continuous Federated Learning techniques.

Personalized learning

It aims to tailor a global model to individual clients, adapting it to their specific needs
or data distributions. This method enables clients to re-train a generic global model
to produce customized, client-specific models. For instance, Jothimurugesan et al. [73]
proposed a mechanism where clients detect drifts locally by monitoring their own data
streams. Clients experiencing concept drift are then grouped by the server, and each
group is assigned a distinct FL. model that is fine-tuned to their data. Other approaches
propose maintaining both a global and a local client model, allowing clients to select the
model that best fits their data [74].

In some cases, clients may even rely on meta-data collected from other clients to inform
their model choices [75]. Additionally, a more generalized approach is to enable clients
to retrieve multiple personalized models from the central server using a publish-subscribe
mechanism, where the clients perform model aggregation locally [76]. However, while per-
sonalized learning offers a flexible solution, it significantly increases system complexity,
particularly in large-scale FL environments with thousands of clients. Managing multi-
ple models for each client can strain the available computational and storage resources,
presenting a challenge in terms of scalability.

Asynchronous Federated Learning

This method takes a different approach by allowing clients to independently train and
upload their models when necessary, particularly when a drift is detected. Drift detection
in Asynchronous FL typically occurs at the client-side, where local data is compared to
historical data [60], or by assessing the changes in the global model’s performance [77],
[78]. Once drift is detected, mitigation strategies are applied at the client level. These
strategies may involve re-training the local model [60], employing ensemble methods [77],
or adapting the local cost function [78]. While asynchronous techniques offer flexibility
and efficiency in addressing concept drift, they introduce additional complexity in terms
of computational resources, storage, and synchronization overheads. These challenges are
especially pronounced in resource-constrained environments, where clients may lack the
capacity to handle the increased demands of frequent model updates and drift detection.
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Figure 3.1: Vanilla FL framework

Continuous Federated Learning

An alternative solution to managing drift in FL is Continuous Federated Learning (ConFL),
which involves repeatedly re-training the ML model to adapt to emerging drifts over time.
In this approach, clients continuously monitor their data streams for signs of drift, and
when drift is detected, they trigger re-training or adjustment of the global model. Ma-
nias et al. [68] explored a technique where clients detect drifts using Euclidean distance
metrics, and the server isolates those clients experiencing drift from the training process.
However, this method falls short in the case of a global drift that affects all clients, as it
relies on local detection and does not account for shared, global drifts across the network.

A more generalized approach involves using convex optimization techniques to de-
tect drift server-side, as shown in [79], where the server adapts the number of training
epochs in response to drift. However, this approach has been primarily demonstrated in
near-stationary environments, where the data distribution does not fluctuate too rapidly.
Similarly, AdaptFL [69] detects drift by comparing client model parameters received at
the server-side, using a moving average approach. Once drift is detected, the server ad-
justs the learning rate for the next training round and communicates this adjustment to
the clients. The learning rate is increased in the presence of drift and gradually decreased
otherwise. While both ConFL and AdaptFL have demonstrated success in mitigating
concept drift, they rely on constant re-training, which, in the absence of drift, consumes
excessive network resources without yielding significant gains in model accuracy.

Overall, drift detection and mitigation in distributed environments, especially in FL,
pose significant challenges due to the decentralized nature of training and the diverse data
sources involved. While various methods have been proposed to address these issues, each
approach comes with its own set of trade-offs, balancing accuracy, resource consumption,
and system complexity. As the field of federated learning continues to evolve, further
exploration is needed to develop more efficient, scalable, and resource-conscious methods
for handling concept drift in large-scale, dynamic environments. The ongoing research
in this area has the potential to significantly enhance the robustness and effectiveness of
federated learning systems, particularly in real-world applications where data distributions
are continuously changing.

3.3 System architecture

3.3.1 Vanilla Federated Learning

Firstly, we introduce the foundational concepts that underpin Vanilla FL in distributed
environments, over the course of time. We consider a typical scenario involving a cen-
tralized server, such as one hosted in a cloud infrastructure, and a set of mobile clients,
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for instance, vehicles. These clients are equipped with the following capabilities: a) raw
data acquisition, typically through sensors; b) processing capacity to execute (ML) train-
ing, facilitated by local processors; and c) connectivity to the central server, typically via
cellular or other wireless networks.

Model preparation (server-side)

The process begins with the initialization of a custom ML model at the server, which, at
the start, is untrained (depicted as a blank model on the leftmost part of Figure 3.1). To
ensure optimal performance during the subsequent training phase, a ”warm-up” period
is introduced. This phase consists of a series of test runs on the server, using a limited
dataset to calibrate the model. The warm-up period involves two critical stages: model
design and hyperparameter tuning. During the design phase, the structural components of
the model are defined, including the layers, loss function, activation function, and learning
rate scheduler [80]. Subsequently, hyperparameters such as batch size, learning rate, and
number of training epochs are optimized using techniques like grid search over predefined
ranges [81].

Data pre-processing (client-side)

The raw data generated by each client undergoes a series of pre-processing steps before
being used for training. These steps may include data cleaning, augmentation, normal-
ization, and feature extraction [80]. After pre-processing, the data is partitioned into
two subsets: a training dataset and a validation dataset. The training dataset is used to
update the ML model, while the validation dataset is employed to monitor the training
process, ensuring that overfitting is prevented through techniques like early stopping [80].
Additionally, both datasets undergo normalization to ensure that the model handles the
data efficiently and effectively [81]. Common normalization methods, such as Min-Max
scaling or Max-Abs scaling, are applied [80]. Once the model has been trained on the
client’s data, it is then used for inference, evaluating the model’s performance on unseen
data.

Federated training and testing in the course of time

Training in the Vanilla FL framework occurs in successive cycles, or training rounds R,
each involving a set of clients. For each round r € [1, R], the central server randomly
selects a subset of K clients to act as trainers and M clients to act as testers, where
K + M < C represents the total number of clients C' in the system [82]. The global ML
model is distributed to the selected trainers and testers, and each trainer uses its local data
to train the model, resulting in the generation of a local model. These models are depicted
in various colors (green, blue, red) for different clients in Figure 3.1. In parallel, each tester
uses its data to infer the performance of the global model on the current round’s dataset.

Upon completion of the training phase, the server collects the local models and ag-
gregates them into a new, updated global model using the Federated Averaging (FedAvg)
algorithm [69]. The server also collects the inference results from the testers, which are
used to generate a performance evaluation report for the global model. This evaluation
does not involve any disclosure of client data or statistics, ensuring the privacy of client
information, which is a key feature of FL.

At the conclusion of round r, the updated global model is re-distributed to a new set
of K trainers and M testers for the next round r + 1, and this process continues until
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the termination criteria are satisfied. Termination may occur upon reaching a predefined
maximum number of rounds, achieving a global model accuracy above a certain threshold,
or other criteria [72]. Training is organized into rounds of fixed duration g. While asyn-
chronous approaches to training could be considered [78], they are susceptible to challenges
such as communication bottlenecks and client-induced bias. Clients continuously collect
data at a frequency f, but only the data gathered within each round’s duration ¢ is used
for training. Consequently, each selected trainer ¢ € [1, K] divides its collected data into
a training dataset, denoted as train(c,r), and a validation dataset, denoted as wval(c, ).
Likewise, each tester ¢ € [1, M] generates an inference dataset, denoted as inf(c,r), as
depicted in light blue, light green, and light red in Figure 3.1.

3.3.2 Concept drift detection and mitigation

Concept drift in ML refers to the phenomenon whereby the statistical properties of data
change over time in unforeseen ways. Assuming a distribution P; between the independent
variables X and the dependent variable y, across time t, drift occurs if 3t : P(X,y) #
Pi1+1(X,y). This definition assumes a single data distribution, although each FL client
can experience different drifts.

Our study operates under the assumption of a global drift, which is induced by a
widespread change in the environment. In this scenario, all clients are impacted by the
drift, although the severity or intensity of the drift may vary across different clients [60].
VanillaFL, as described in Sec. 3.3.1, is inherently ill-equipped to handle such drift ef-
fects. In this setting, training halts once the system reaches convergence, which poses
a significant challenge. Any subsequent changes in the client datasets—such as shifts in
data distribution or emerging patterns—can lead to model degradation, as the model fails
to adapt to these changes after training is completed [66].

To address this limitation, state-of-the-art variations of Vanilla FL, such as Continu-
ous FL and Personalized Learning, have been proposed. While these adaptations attempt
to mitigate the effects of drift, they come at a cost. Specifically, they tend to lead to
increased resource consumption or add significant complexity to the system (as detailed in
Sec. 3.2). ConFL requires continuous re-training of the model, which demands substan-
tial computational and communication resources, particularly in large-scale environments.
On the other hand, Personalized Learning, while capable of tailoring models to individual
clients, increases the overall system’s complexity by necessitating the maintenance of mul-
tiple models per client. These trade-offs highlight the challenges of efficiently managing
concept drift in federated learning systems, particularly when balancing accuracy, resource
consumption, and system scalability.

In contrast to the aforementioned methods, our approach centers on the precise de-
tection of two key events: 1) the completion of the training process, which signifies con-
vergence, and 2) a shift in the underlying data distribution, known as concept drift. By
detecting these events, we can effectively halt or (re)initiate the training process in a
timely manner, ensuring the model adapts appropriately to changes. The challenge in FL
arises from the fact that clients are generally unable to share their individual datasets,
which limits the ability to directly monitor data changes or model performance. However,
clients can provide performance indicators derived from their local ML models, such as
inference results, which can be used as proxies for assessing the model’s effectiveness.

The core concept of our approach lies in the use of performance-based detection mecha-
nisms. These detectors are based on the assumption that a degradation in the ML model’s
performance is indicative of issues such as overfitting or the onset of concept drift. The
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PAC model, referenced in Sec. 3.2, forms the theoretical foundation for this detection. In
the case of overfitting, the model has already converged, but continued training leads to
diminishing returns, with the model fitting noise or irrelevant features. In contrast, con-
cept drift reflects changes in the data distribution, meaning that the model’s previously
learned relationships no longer hold true, leading to a drop in accuracy. By monitoring
performance locally at each client, we can detect these phenomena and make informed
decisions about when to stop or restart the training process, ensuring that the model
remains effective and responsive to data changes.

Depending on the specific ML task, a variety of absolute performance metrics can be
employed to assess the accuracy of predictions relative to the ground truth. These metrics
may include Accuracy (%) for classification tasks, Root Mean Square Error (RMSE) for
regression, the Silhouette Coefficient for clustering, among others [80]. While these abso-
lute metrics are useful for evaluating model performance in stable environments, they can
lead to misleading conclusions, particularly in highly dynamic settings. In such environ-
ments, the performance of an ML model can degrade for a variety of reasons, including
local client biases, the presence of noise, or changes in the data distribution, all of which
can negatively impact the validity of the performance assessment [83].

To mitigate the limitations of using absolute metrics in these contexts, we propose a
novel approach that incorporates a custom performance indicator. This indicator com-
pares the ML model’s current performance against a baseline set by a naive algorithm,
which is determined locally by the clients. Naive algorithms, such as random selection for
classification tasks, rolling means for regression, or other simple heuristics, are commonly
used as benchmarks in ML research. These algorithms provide a lower bound for model
performance, indicating the minimum level of accuracy or performance that the model
should exceed. By comparing the current model performance to this baseline, we can
more accurately assess whether the model’s predictions are still meaningful and reliable,
even in the presence of changes in the data distribution, noise, or other disruptive fac-
tors. This approach allows for a more robust detection of concept drift and performance
degradation, offering a practical solution for maintaining the effectiveness of ML models
in dynamic environments [81].

Our approach offers several notable advantages. First, it incurs negligible computa-
tional cost, as the naive algorithm only requires minimal computations, especially when
compared to the intensive processing involved in running machine learning models. This
makes the approach highly efficient, particularly in resource-constrained federated learning
environments where clients may face limitations in computational power. The simplicity of
the naive algorithm means it does not place a significant burden on client devices, making
it an ideal solution for frequent, low-cost performance monitoring.

Second, our approach provides a more reliable estimation of the machine learning
model’s accuracy. Unlike absolute performance metrics, which can be influenced by various
external factors such as local data biases or noise, our method uses a relative comparison.
By measuring the ML model’s performance against a naive baseline, we obtain a clearer
picture of the model’s effectiveness. This approach is more robust in highly dynamic
environments, as it helps mitigate the inaccuracies that may arise when absolute metrics
alone are used. The relative comparison enables a better understanding of whether the
model is still performing optimally or if its accuracy has declined due to issues like concept
drift or overfitting.

In practice, for a given set of inference samples, the client conducts two types of
inference: one using the trained ML model and another using the naive algorithm. The
accuracy for each inference is then calculated using an absolute metric, such as accuracy for
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classification tasks or RMSE for regression. Finally, the two accuracy values are compared
with one another yielding a single indicator value, denoted as kpi. kpi expresses the ML
model’s performance enhancement over the naive algorithm. If ACC,,; and ACCjgive
mark the absolute metrics of the ML’s models and the naive algorithm’s performance
respectively, our indicator kpi of a client ¢ in a round r becomes:

kpi®” =100 - (ACCS". — ACCS") JACCST (3.1)

naive ml naive

3.3.3 The Drift-Resilient Resource-Aware (DareFL) algorithm

Algorithm 1 DD (Input : {kpi}) Algorithm 2 CD(Input : {kpi})
1: define DDM list: {ddm} 1: define ckpi list: {ckpi}

2: for each element e € {kpi} do 2: ckpi=mean({kpi})

3: if e >=$1 then 3: append ckpi to {ckpi}

4 append 0 to {ddm} 4: if {ckpi}

5 else 5: not increase(f4) then

6: append 1 to {ddm} 6: return boolean=True

7 end if 7: else

8 return DDM({ddm}, B2, 83) 8: return boolean=False

We propose a novel algorithm, Drift-aware Resource-efficient FL (DareFL), which is de-
signed to address two key objectives. First, it ensures timely halting of the training process
once model convergence is achieved, thus preventing unnecessary resource consumption.
This early termination not only saves computational resources but also optimizes energy
consumption and reduces network communication costs. Second, DareFL incorporates an
effective drift detection mechanism, which accurately identifies when a concept drift occurs
and orchestrates re-training as a targeted mitigation strategy. This proactive approach
allows the system to dynamically adapt to changing data distributions, ensuring that the
model remains accurate and relevant over time.

Our solution works by continuously monitoring the performance of the trained models.
Based on the performance feedback, it determines whether further training is necessary.
During training rounds, the system marks the round as active, indicating that the model
is being updated and resources are actively engaged. When the system detects that no
further training is required—either because the model has converged or a drift has been
successfully mitigated—it transitions the round to an idle state. In the idle state, client
devices are able to conserve processing resources, such as power consumption, and the
communication costs between the server and clients are significantly reduced. By carefully
managing these phases of activity and idleness, DareFL ensures a resource-efficient and
adaptive federated learning process, optimizing both client and network infrastructure
usage while maintaining high model accuracy.

In our scheme, model training is divided into training rounds, similar to Vanilla FL.
Prior to each round the server employs DareFL to determine if the ML model needs further
training (active round) or not (idle round). In an active round, the server performs the
process of learning similar to Vanilla FL i.e., random selection of K trainers and M testers.
Upon round completion, the server receives the trained models from the trainers and the
kpi values from the testers (see Eq. 3.1). The acquired kpi values are used as input for
the next round’s decision. In an idle round, no additional training occurs; clients do not
update their models and only inference and kpi collection are carried out. DareFL is
activated for the first time in the beginning of the second round, when kpi values from
the first round are available. In the end of each round r, the server collects a kpi®" value
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from each tester ¢ € [1, M] and forms a kpi list, denoted as {kpi}. The algorithm includes
the drift detection (DD) and the convergence detection (CD), both of which require {kpi}
as input. If drift is detected or convergence is not reached, DareFL will resume training
(active round), otherwise training is skipped (idle round).

Drift detection algorithm

Drift detection (DD) is based on the centralized DDM algorithm [66]. DDM operates
without accessing training data or using reference data windows (see Sec. 3.2), which is
aligned with the principles of FL. It accepts a sequence of 1s and 0s (0 for a successful
classification, 1 for mis-classification). Assuming p; and s; is the error rate and standard
deviation at the sequence’s instance ¢ and p,,;, and Sy,;, the minimum recorded values,
respectively then:

warning, if p; + $8; > B2 - Smin
DDM(ﬂQ, [33) = drift, if pi +8; > ﬂ3 * Smin (32)

no drift, otherwise

We adapt its functionality to allow for distributed drift detection as follows. Each
client’s kpi value is transformed to 0 or 1, by comparing to a tunable parameter (31 (see
Algorithm 1, line 3). f; is a threshold that expresses the minimum ML model’s accuracy
improvement over the baseline (naive) algorithm’s accuracy, to account for a successful
classification. For example if 81 = 5%, any ML prediction that does not surpass the naive
algorithm’s accuracy by at least 5% is considered as mis-classification. Its value is tuned
during the "warm-up” period’s test-runs that provide initial statistics over the ML model’s
performance (see Sec. 3.3.1). Note that the "warm-up” period is mandatory for any ML
scheme during initialization, thus our approach does not introduce any additional cost
resource-wise. The DDM is fed with the transformed {kpi}, which we denote as (DDM
list) {ddm} so that a potential drift can be detected (see Eq. 3.2) [66]. DDM’s sensitivity
parameters (2 and (3 (see Eq. 3.2) can be tuned via grid-search or via ML techniques
e.g., reinforcement learning, which goes beyond this work’s scope.

Convergence detection algorithm

For the convergence detection (CD), we calculate the central tendency ckpi of each round’s
kpi list {kpi}, as the average value of all its elements (see Algorithm 2, line 2). The server
keeps track of all ckpi values (in a per-round basis) in a ckpi list, denoted as {ckpi} (see
Algorithm 2, line 3). Note that kpi values provide only an evaluation of the ML model
performance in each client and do not reveal private information, fully aligning with the FL
principles. Convergence detection is then achieved using the following rule: if ckpi is not
improved over the last 34 rounds we assume that convergence is reached (see Algorithm 2,
line 4). This rule is an analogy to the early-stopping concept (see Sec. 3.3.1). (4 expresses
the average number of rounds required for an FL convergence and may vary depending on
the ML model architecture and the ML task. Tuning is performed during the ”warm-up”
period, by monitoring each round’s accuracy to observe its rate of change.

3.4 Simulation environment

DareFL is designed to operate in any type of FL task and use-case (see Sec. 3.3). For its
evaluation we have selected the case of predictive Quality of Service (pQoS) i.e., prediction
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Figure 3.2: The concept of predictive QoS (pQoS) - 56GAA

of network QoS parameters in vehicular environments. In the absence of public pQoS
datasets with drift instances, we have fabricated two synthetic datasets' via a high fidelity
network simulation that realistically capture distinct drift scenarios in dynamic mobile
environments. On top, we have built a Python-based distributed ML simulator?, to utilize
the datasets and evaluate our proposal. Both the datasets and the ML simulator source
code are publicly available.

3.4.1 The use-case of pQoS

Automotive applications, such as automated driving (AD) functions, tele-operated driving
(ToD), platooning, and others, are expected to bring a wide range of benefits, including
enhanced road safety, improved traffic efficiency, and increased driving comfort. These
applications, however, depend heavily on the connectivity provided by mobile networks,
which in turn impose stringent quality of service (QoS) requirements. These requirements
may include minimum throughput, maximum delays, and other performance metrics that
are crucial for the proper functioning of such applications. Failure to meet these QoS
requirements, often due to unpredictable network conditions, can result in service degra-
dation. This degradation not only impacts the user experience but, in critical scenarios,
may compromise safety by affecting the timely and accurate functioning of the systems
involved.

To mitigate such risks and ensure the reliable performance of automotive applications,
the concept of predictive QoS (pQoS) has been introduced, as highlighted by the 5G
Automotive Association (5GAA) [70]. pQoS serves as a proactive solution to anticipate
and address potential connectivity issues before they impact service quality. It provides
the vehicle with advance notifications about potential degradation in cellular connectivity,
allowing the system to prepare for or mitigate the effects of these disruptions, as shown in
Fig. 3.2. This foresight is particularly valuable for applications requiring real-time data
exchange and high reliability.

The pQoS mechanism relies on a variety of features related to both network properties
and client mobility to make these predictions. These features may include signal strength,
vehicle position, speed, and other mobility-related parameters[71]. By leveraging these

"https://zenodo.org/records/ 11084689
https://github.com/gdrainakis/distributed_pqos
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variables, pQoS can forecast critical network QoS parameters, such as throughput, en-
abling the system to act proactively to prevent service failures. For example, if a potential
dip in throughput is predicted due to a vehicle’s movement through an area with known
coverage issues, the system can adjust communication strategies or make decisions that en-
sure continuous service without interruptions. This predictive approach helps maintain the
high standards required by automotive applications, ensuring that network performance
aligns with the stringent needs of safety-critical systems.

pQoS can be provided through different deployment models, primarily by the mobile
network operator (MNO) or in an over-the-top (OTT) fashion by third-party entities.
When implemented by the MNO, pQoS benefits from the operator’s comprehensive view
of the network’s statistics and performance. This allows for centralized monitoring and
prediction of QoS parameters across the entire network. However, another alternative
is deploying pQoS in an OTT manner, which typically involves third parties such as
car manufacturers [70]. One of the key advantages of the OTT approach is its broader
geographical coverage compared to the MNO-based solution, as it is not constrained by
the MNQO'’s network boundaries.

While both the MNO-based and OTT-based approaches have distinct deployment
benefits and trade-offs [70], our focus is on the OTT model. The OTT model leverages data
gathered directly from client devices, thus overcoming potential limitations related to data
confidentiality that might arise in the MNO-based approach. In this model, client devices
can collect and share their own data, including mobility parameters and local network
statistics, enabling more granular and personalized predictions. By utilizing client-side
data, the OTT approach can adapt to rapidly changing environments and provide a level
of flexibility that is often not feasible within the confines of the MNQO’s control.

The insights provided by pQoS can then be used to dynamically adapt automotive
applications to maintain optimal performance despite changing network conditions. For
example, in ToD scenarios, pQoS can predict network issues and trigger a speed change
to ensure that the vehicle’s control system operates smoothly despite potential commu-
nication delay [84]s. In the case of video streaming, pQoS can predict bandwidth reduc-
tions and adjust video resolution accordingly, preventing buffering or service interruptions.
These adaptations help ensure that the system meets the stringent real-time requirements
of automotive applications, despite fluctuations in network performance.

Overall, pQoS offers high applicability and practicality, particularly in dynamic mo-
bile environments like those encountered in automotive scenarios. Its integration into
such systems allows for proactive management of network resources, ensuring that ser-
vices can continue uninterrupted even in the face of unexpected connectivity challenges.
Furthermore, cellular environments are known to experience frequent drifts in network
performance for a variety of reasons, including mobility, interference, and congestion [71].
This makes pQoS a particularly well-suited application for drift management, providing
a realistic and valuable context for evaluating and refining drift detection and mitigation
techniques.

3.4.2 pQoS formulation as an ML task

In our approach pQoS is addressed as a multi-variate multi-step times-series problem [81].
The term multi-variate suggests that multiple features (network-related, mobility, etc.),
are considered as input features (as opposed to uni-variate). The term multi-step expresses
the solution’s ability to predict several steps ahead in time (prediction horizon). Assuming
that the input (raw) data collected by each client is a time-series vector consisting of a
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Figure 3.3: Synthetic dataset generation: (a) import of real world map and (b) network
and mobility co-simulation

total of j features (columns) and ¢ samples (rows), where ¢; marks the timestamp, xz the
independent variables i.e., the network-related and mobility-related input features and y;
the dependent variable i.e., the variable we wish to predict (in our case that is a QoS
parameter), the data can be formulated as an ML dataset D;y; as (bold letters denote a
vector):

t x% 51 , Y1
to xd .. xl”
D j=|2 7 2 0 (3.3)
2
ti x} ] Ui

The time-series dataset is then restructured as a supervised ML problem via the sliding
window technique that addresses previous time steps as input variables and next time steps
as output variables. Assuming a window time w (w < i) and denoting the transpose of a
vector A by AT, the restructured dataset D’ becomes:

Dl(i—w)x(j~w+1) = [dl,dg, ...,dk, ...,di,w]T, where :

Jj—2 Jj—2

(3.4)
d; = [a?l CL‘l X x ]
k k—wr o Pk—1r s Vk—qwr Yk 19+ Yo—ws -y Ye—1, Yk

The computation of the baseline naive predictor, serving as input to Convergence (CD)
and Drift Detection (DD) routines of DareFL (see Algorithm 1 and 2) is carried out by a
rolling-means algorithm (relevant to time-series tasks); assuming a time-series in the form
of Eq. 3.3, the (naive) prediction y; of the sample’s i dependent variable y; (ground truth)
in time ¢; is the mean value of the dependent variable’s last w values, where w stands for

i—1
the time-window of Eq. 3.4: 7; = 1 > y, with ¢ < w. For the respective accuracy

w .
T=1—w

metric used in DareFL to compare the naive with the ML prediction (see kpi calculation
in Eq. 3.1) we have selected RMSE, as the most relevant to time-series tasks [81].

3.4.3 Generating pQoS datasets with concept drift

Our synthetic datasets represent a dynamic environment, where several clients (vehicles)
are moving in an urban area. Each client runs a streaming cloud service constantly re-
ceiving User Datagram Protocol (UDP) data packets. This data can refer to various
automotive applications e.g., High-Definition digital maps for AD, audio commands for
ToD, video for infotainment services, etc. The QoS parameters e.g., throughput of each
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Figure 3.4: Effects of drifts in client throughput: (a) probability density function and (b)
average throughput

client’s service change in the course of time, depending on the vehicle position, the net-
work’s physical layer properties, etc. Network simulation is performed using SimubG, a
library that emulates a 5G cellular environment in OMNeT++ [85]. The simulator’s ra-
dio parameters e.g., channel properties, antenna settings, etc., are set according to the
Macro-cell model proposed by International Telecommunication Union [86]. The map in
our simulations comprises of an urban 600 x 600 m? area located in a suburb of a European
capital (see Fig. 3.3a).

Inside this area four 5G base-stations (gNodeBs) have been installed by the national
network operator enabling four 5G cells [87]. This area, divided into several blocks by the
actual road network is integrated in our simulation by an OpenStreetMap (OSM) instance
[88]. The total number of included vehicles is set to 25, according to vehicle density statis-
tics in the corresponding country [89]. The road network’s traffic is simulated by SUMO,
a traffic simulation package [90] that creates a digitized version of the (real-world) OSM
map and produces the route files for the vehicles. Route files are loaded in the SimubG
simulator, where a network-vehicular mobility co-simulation takes place (see Fig. 3.3b).
For each vehicle’s route we assume SUMQ’s default parameters for urban environment
i.e., exponential speed model (with maximum speed restriction as defined by the OSM
traffic rules) and the probability matrix at intersections for {lane keeping, turn left and
right} as {0.5, 0.25 and 0.25}, respectively. The following information is collected for
each vehicle using OMNeT+-+’s monitoring service: timestamp, channel quality indicator,
packet delay, measured signal to noise ratio (SNR), client position (r,y,z), client velocity
(z,y,2), received SNR, radio link control throughput, serving cell, client throughput. These
features are sampled at 1 Hz and comprise the values of our synthetic time-series QoS
dataset.

For the considered use-case we have created two drift datasets that correspond to
complementary cases of major long-term changes in the considered environment: 1) a
network infrastructure-driven scenario (Scl) and 2) a human behavior-driven scenario
(Sc2). In Scl we assume that two out of four gNodeBs are switched off under a cost-
reduction on/off policy to address electricity costs [91] or an infrastructure-share strategy
(adopted by MNOs) [92],[93] that would imply such changes. For Sc2 we consider drifts
related to the modification of the users’ mobility pattern. We assume that a ”hotspot”
e.g., a metro station is created in the lower-right edge of the map resulting in a traffic
increase to that area [94]. This is achieved by increasing the probabilities of the routes
leading to the "hotspot” in SUMO’s route planning. All generated datasets have a total
duration of 20 hrs (simulation time) and the respective drift instance is introduced at
t =10 hrs.
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The effect of each drift instance on the clients throughput pattern is depicted Fig. 3.4a
and Fig. 3.4b. Prior to drift, clients achieve an average throughput of 4.7+1.65 Mbps.
This is decreased to 3.32+1.79 and 4.03+1.74 Mbps for Scl and Sc2, respectively. These
changes on the underlying data distribution will eventually be reflected on the prediction’s
model accuracy, as we will demonstrate in Sec. 3.5.

3.4.4 Distributed ML simulator

Our simulator implements the FL framework of Sec. 3.3, along with the involved client-
server communication and ML processing (consumption) costs. The distributed ML (train-
ing and inference) is facilitated via Pytorch, a Python deep ML library [80]. For the net-
work resource consumption modelling, we assume a setup with a centralized cloud server
and several client-vehicles. Each vehicle, equipped with a 5G modem, communicates with
the cloud server via the 5G cellular network. For the processing tasks (training, infer-
ence) the server is assumed equipped with a Graphics Processing Units (GPU), while
vehicles avail less powerful processing capabilities utilizing a common CPU [95]. By load-
ing the pQoS datasets to the simulator, each client’s features e.g., position, speed, current
throughput, etc., are obtained by querying the respective client dataset.

The developed simulator also estimates the energy consumption imposed to the clients
and the server due to data processing and transmission. To do so, we rely on values
taken from credible measurements in literature and device bench-marking: A typical 5G
modem at uplink and downlink data rates of 20 and 100 Mbps respectively, consumes for
transmission and reception 2.5 and 3.5 Watt respectively [96]. A typical CPU trains an
ML model relevant to pQoS data (see Sec. 3.4.2) at a speed of 25 samples/sec, while a
GPU reaches 900 samples/sec [97]. Those tasks require power of 200 Watt [98] and 225
Watt [97], respectively. Model aggregation on the other hand, has not been measured
in literature thus we estimate the server’s GPU computational speed and consumption
based on the computationally-similar matrix-to-matrix multiplication. As in [99], the
consumption cost is set to 100 Watt and the aggregation speed averages to 10 models/sec;
with both values also validated by our processors readings.

3.5 Simulation-based evaluation

3.5.1 Evaluation methodology

In our results we perform a three-step evaluation. Firstly, we compare distributed pQoS
against the typical centralized solution (CL) and explore the involved performance and
resource-consumption trade-offs. For a fair CL-FL comparison: 1) we assume no drift
occurrence, 2) contrary to Sec. 3.2 works, we use both synthetic and real data for cross-
validation of our results. Our evaluation focuses on pQoS performance i.e., prediction of
client throughput rather than any involved adaptation actions (in case of QoS degradation),
which are application-dependant. We run experiments using a) our first synthetic pQoS
dataset (Scl) prior to drift (see Sec. 3.4.3) and b) BerlinV2X, a public pQoS dataset from
a measurement campaign of 4 vehicles driving in Berlin on highway and urban routes[100].
Fach run is repeated 10 times so that the selected vehicle-clients are changed, for a total
of 40 experiments (2 algorithms x 10 repetitions x 2 datasets).

Secondly, we study distributed pQoS under drift; we compare our novel drift manage-
ment FL algorithm (DareFL) against existing solutions: 1) Vanilla FL (see Sec. 3.3.1),
2) Continuous FL (ConFL - see Sec. 3.2) and 3) Adaptive FL (AdaptFL) [69] under the



3.5.2 Evaluation results 71

two pQoS drift scenarios (Scl, Sc2) described in Sec. 3.4.3. Vanilla and ConFL serve as
baselines, while AdaptFL is selected as a representative SotA FL algorithm that manages
drift without introducing any additional complexity in the clients-side (see Sec. 3.2). Each
scenario is repeated 10 times for a total of 80 experiments (2 scenarios x 4 algorithms x
10 repetitions). QoS (throughput) prediction accuracy across time is evaluated via the
following metrics, typically used for prediction error (mean values and standard devia-
tions across all clients): Root Mean Square Error (RMSE), Mean Absolute Error (MAE)
and Symmetric Mean Absolute Percentage Error (SMAPE) [74], [81]. For the respective
resource consumption: 1) Normalized communication cost i.e., total data exchanged be-
tween the server and the clients normalized to the ML model size and 2) Clients and Cloud
energy cost i.e., the total energy consumed at each side for processing and transmission
(see Sec. 3.4.4).

Finally, we provide an extensive comparative analysis of DareFL’s drift detection capa-
bility against AdaptFL. We repeat each scenario 100 times and record the drift detection
outcome in every round, for a total of 24000 samples (2 scenarios x 2 algorithms x 100
repetitions x 60 rounds). In both scenarios drifts occur at half-time, which constitutes the
experiment’s ground truth in terms of drift occurrence. Drift detection is then evaluated
as a binary classification problem (True/False) via Accuracy, Precision, Recall, Specificity
and F1 Score.

Throughout the experiments, round duration is set to g=1200 secs i.e., a total of R=60
rounds for Scl, Sc2 and R=20 for BerlinV2X datasets. In Scl and Sc2, drift occurs at
half-time (R=30) and lasts throughout the experiment. Drift effects on the models need a
maximum of 7 rounds to take place, as measured during the "warm-up” phase (maximum
rounds DareFL required for convergence after drift). For Scl, Sc2 the total number of
clients is set to 25, with K'=>5 trainers and M =20 testers per round, based on [101]. For
BerlinV2X (total of 4 clients) we set K=M=2. Trainers’ data is split at a typical 80%-20%
ratio [81]. Prior to all simulations, all ML models are tuned (tuning statistics are omitted
for clarity) during the "warm-up” phase (see Sec. 3.4.2).

Training is performed using an LSTM model (an established predictor for sequential
data [102]), consisting of: 11 input features (equal to the total client-acquired features of
each dataset) and 8 output features i.e., a (throughput) prediction horizon of 8 sec (other
automotive ML-based predictions show acceptable accuracy up to a 5 sec horizon [103]).
Note that throughout Sec. 3.5.2 we show the results for a horizon of 6 sec for clarity,
though the same principles apply to all other horizons up to 8 sec. For the LSTM we set:
sliding window w="75, hidden size=50, Min-Max normalization, decay=10"°, Rectified
Linear Unit activation and Mean Square Error loss function, based on test-runs and related
works on LSTM models[81], [80]. Hyper-parameter tuning on our LSTM model via grid-
search resulted in the following values: batch size=64, learning rate=107°, epochs=500.
Leveraging on our test statistics during ”warm-up” we set DareFL’s parameters: [1=0,
B4=5 rounds and default values 8o=2 and ([3=3. For fairness, AdaptFL’s parameters are
also tuned via grid search: $1=p2=05=0.7.

3.5.2 Evaluation results

Centralized (CL) vs Distributed (FL) pQoS

As portrayed in Fig. 3.5a, distributed pQoS (FL) converges similarly to its centralized
alternative (CL), whilst preserving data privacy. This is validated both for the public
(BerlinV2X) and our synthetic (Scl) pQoS dataset. In terms of (throughput prediction)
accuracy (averaged across all rounds), CL achieves a maximum improvement of 9% across
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Figure 3.5: CL vs. FL pQoS: (a) RMSE and (b) Communication cost comparison

all metrics and rounds over FL for Scl and 11% for BerlinV2X (see Table 3.1). Interest-
ingly, both CL’s and FL’s accuracy in BerlinV2X exhibits up to 2 orders of magnitude
higher standard deviation compared to Scl across all accuracy metrics (see Table 3.1),
as a result of BerlinV2X’s limitations e.g., small number of clients. In terms of resource
consumption , FL achieves an up to 3100% reduction of communication costs (see Fig.
3.5b), since LSTM models exchanged in FL are typically lightweight compared to training
data that is uploaded to the server in CL. Offloading a pQoS task to the clients (FL),
leads to a reduction of cloud energy costs by a factor of 3.2x10° at R = 30 (see Fig. 3.6).
The energy costs are distributed to the client-devices, thus the aggregated client energy
consumption is increased by a factor of 4.4x10% at R = 30 (see Fig. 3.6).
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Figure 3.6: CL ws. FL pQoS: Energy cost comparison

Table 3.1: CL vs. FL pQoS accuracy (horizon=6 sec)

| ML algorithm [ RMSE (Mbps) | MAE (Mbps) | SMAPE (%) |

CL (BerlinV2X) 4.76+3.54 3.5642.73 11.55+8.27
FL (BerlinV2X) 5.13+4.35 4.00£3.52 12.45+10.54
CL (Scl) 1.19+0.08 0.9140.05 10.93+0.75
FL (Scl) 1.274+0.12 0.9940.06 11.80£0.65

DareFL vs. existing algorithms

DareFL’s accuracy comparison against existing FL algorithms for Scl is shown in Fig. 3.7a.
Vanilla FL suffers from a sudden increase (51%) of the prediction error (RMSE) at the
31*" round, as a result of the inflicted drift. This is also portrayed in all accuracy metrics
(RMSE, MAE, SMAPE), shown in Tables 3.2 and 3.3. In Vanilla FL, the ML model is
trained for a limited number of rounds until convergence is reached, thus it cannot adapt to
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Figure 3.7: RMSE comparison for: (a) Scl and (b) Sc2

future drifts; as a result, the model’s performance is degraded. ConFL on the other hand
addresses drifts by constantly training (updating) the model, thus achieving maximum
accuracy at all times. Compared to Vanilla, ConFL exhibits an average of 7% higher
accuracy (in terms of RMSE) before drift, 33% during and 40% after drift (see Tables 3.2-
3.4). Constant training however, results in the linear increase of the network bandwidth
(see Fig. 3.8), energy costs for the clients (see Fig. 3.9a) and the server (see Fig. 3.9b).
ConFL consumes almost 300% more bandwidth and 250% more energy (both in the client
and in the server-side) compared to Vanilla FL up until the 30" round. The respective
values at the end of the simulation are 720%, 470% and 580%. Unlike these solutions,
DareFL leverages on its drift detection mechanism to ensure high accuracy, comparable to
ConFL. Prior to drift, ConFL (which exhibits the top performance) outperforms DareFL
by a maximum of 8% across all accuracy metrics (see Table 3.2).

Table 3.2: Comparison of pQoS FL algorithms accuracy under drift, before drift (Round
1-30) (horizon=6 sec)

FL Before drift (Round 1-30)

algorithm RMSE (Mbps) MAE (Mbps) SMAPE (%)
Vanilla (Scl) 1.424+0.16 1.16+0.15 13.3241.20
DareFL (Scl) 1.43+0.16 1.15+0.16 13.304+1.28
AdaptFL (Scl) 1.36+0.17 1.11+0.17 12.94+1.19
ConFL (Scl) 1.32+0.14 1.06+0.14 12.50+1.21
Vanilla (SCZ) 1.40+0.17 1.1240.16 12.954+1.27
DareFL (Sc2) 1.424+0.15 1.11+0.14 12.96+1.38
AdaptFL (Sc2) 1.35+0.11 1.094+0.10 12.834+0.79
ConFL (Sc2) 1.324+0.19 1.054+0.18 12.34+1.47

Table 3.3: Comparison of pQoS FL algorithms accuracy under drift, during drift (Round

31-37) (horizon=6 sec)

FL During drift (Round 31-37)

algorithm RMSE (Mbps) MAE (Mbps) SMAPE (%)
Vanilla (Scl) 1.99+0.38 1.76+0.30 23.13+4.10
DareFL (Scl) 1.71+£0.26 1.44+0.25 20.31+£3.17
AdaptFL (Scl) 1.36+0.08 1.084+0.08 16.604+1.94
ConFL (Scl) 1.32+0.11 1.004+0.09 15.39+1.72
Vanilla (Sc2) 1.70+0.24 1.49+0.21 18.204+3.11
DareFL (Sc2) 1.36+£0.24 1.05+0.23 13.14+1.82
AdaptFL (Sc2) 1.32+0.10 1.05+0.09 13.76+£0.97
ConFL (SCZ) 1.144+0.15 0.86+0.11 11.24+0.98

Upon drift occurrence, DareFL adapts in a handful of rounds (an average of 5.3 rounds
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Table 3.4: Comparison of pQoS FL algorithms accuracy under drift, after drift (Round
38-60) (horizon=6 sec)

FL After drift (Round 38-60)

algorithm || RMSE (Mbps) MAE (Mbps) SMAPE (%)
Vanilla (Scl) 2.22+0.14 1.87+0.13 25.08+1.15
DareFL (Scl) 1.48+0.08 1.1940.08 18.37+£0.98
AdaptFL (Scl) 1.3540.08 1.07£0.07 17.21£0.99
ConFL (Scl) 1.324+0.09 1.00+0.08 15.89+1.09
Vanilla (Sc2) 1.80+0.11 1.5440.09 19.52+1.27
DareFL (Sc2) 1.07+0.08 0.84+0.07 11.50+0.67
AdaptFL (Sc2) 1.08+0.07 0.8340.06 11.76+£0.77
ConFL (Sc2) 1.02+0.06 0.78+0.06  10.77+0.70

across all experiments) and sustains similar accuracy to that of ConFL until the end of
the experiment (see Fig. 3.7a). Specifically, ConFL outperforms DareFL by a maximum
of 16% across all accuracy metrics after drift (see Table 3.4). Meanwhile, DareFL’s en-
ergy and bandwidth footprint is kept relatively low (comparable to Vanilla FL), grace to
its convergence detection mechanism that facilitates idle training rounds i.e., saving on
resources. As a result, DareFL achieves 76% lower communication costs (see Fig. 3.8) and
68% lower energy costs in the clients (see Fig. 3.9a) and 74% on the server (see Fig. 3.9b),
compared to ConFL at the end of the simulation.

AdaptFL, which serves as a SotA drift management FL algorithm has similar behavior
to ConFL, since it assumes constant training. As such, its resulted accuracy is comparable
to that of ConFL (see Fig. 3.7a). Note that AdaptFL achieves the second best perfor-
mance in all accuracy metrics (see Tables 3.2-3.4); AdaptFL outperforms DareFL by a
maximum of 10% across all metrics before and after drift and 25% during drift, due to
constant training. However, it exhibits the highest resource consumption compared to
all other algorithms. Specifically, its communication costs are equal to that of ConFL
(see Fig. 3.8 - ConFL and AdaptFL lines coincide) i.e., 720% more than Vanilla and
320% more than DareFL. Interestingly, AdaptFL consumes 200% more energy compared
to DareFL and 100% more than ConFL in the clients and in the server side by the end
of the simulation. This behavior occurs due to AdaptFL’s drift management mechanism;
at the server side it requires additional calculations for its detection process, similar to
FedAvg’s aggregation process (see Sec. 3.2). The gradual adaptation of the learning rate
also leads to "slower” learning in the clients-side i.e., additional epochs, which increases
the client energy footprint. These excessive energy costs however, have no effect on the
increase of accuracy.

The findings of Scl are also validated in Sc2 (see accuracy comparison in Fig. 3.7b).
Vanilla FL experiences a 43% accuracy drop (RMSE is increased) at the 31" round,
which marks the effect of Sc2’s drift on the model’s performance. ConFL exhibits the best
performance across time, due to constant training. ConFL outperforms Vanilla across
all metrics by at least 5%, 32% and 43% before, during and after drift respectively (see
Tables 3.3, 3.4). DareFL exhibits similar performance to that of Vanilla FL prior to drift
however, it adapts after the the 31*" round, due to its drift detection mechanism. As
such, it converges in similar accuracy levels as ConFL; ConFL achieves a maximum of 7%
accuracy improvement across all metrics after drift vs. DareFL (see Table 3.4). Compared
to DareFL, AdaptFL achieves no more than 4% accuracy improvement before drift and
2% after drift. Similarly to Scl, both AdaptFL and ConFL consume multiple times more
energy and bandwidth to achieve these improvements over DareFL. Note that the induced
cost values for Sc2 are omitted, since the behavior is identical to that of Scl (see Fig. 3.8,
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Figure 3.9: Energy consumption for Scl in the (a) clients and (b) the cloud side.

DareFL drift detection capability

The drift detection comparison between DareFL and AdaptFL for Scl and Sc2, formulated
as a binary classification problem is presented in Fig. 3.10. DareFL demonstrates a 6%
higher detection accuracy (ratio of successful to total detections) for both scenarios. Since
the samples under comparison (drift/no drift) are not balanced in the two concerned
scenarios (drift instances account for almost 10% of the total instances), the accuracy
metric stands as a high-level spot check for the two algorithms’ performance. Interestingly,
DareFL exhibits higher precision i.e., the ratio of true positives to the predicted positives
(by 21% for Scl and by 26% for Sc2) and specificity i.e., the ratio of true negatives to all
negative outcomes (by 8% for Scl and by 7% for Sc2) compared to AdaptFL. However,
DareFL lacks in terms of recall i.e., the ratio of true positives to the actual positives (by
14% for Scl and by 8% for Sc2).

This behavior suggests that DareFL minimizes false positives i.e., the (false) detection
of drift event when no drift has occurred, while AdaptFL minimizes false negatives i.e., no
detection of drift during a drift instance. In a sense, AdaptFL serves as a more sensitive
drift detection algorithm compared to DareFL, which is more drift-tolerant. For pQoS
and the drifts under consideration these metrics are of equal importance; false positives
lead to unnecessary training and therefore resource waste, while false negatives may de-
grade the prediction performance of the ML model. The algorithms’ overall detection
performance is better assessed by the F1 score metric i.e., the harmonic mean of precision
and recall, where DareFL outperforms AdaptFL (3% for Scl and 9% for Sc2). It is worth
noting that solely for drift detection, AdaptFL consumes up to 3 times more energy in the
server compared to DareFL. This is due to the fact that AdaptFL requires more complex
calculations that involve the parameters of the received client models (see Sec. 3.2), as
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opposed to DareFL that only calculates the average of a list of metrics, received from the
clients (see Sec. 3.3.2).
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Figure 3.10: Drift detection comparison

3.6 Conclusion

In this chapter, we have explored the emerging paradigm of Lifelong Machine Learning
for distributed environments, with a specific focus on FL settings. Our research is primar-
ily concerned with the phenomenon of concept drift, which refers to the changes in the
statistical properties of client data distributions over time. This drift is a major factor
contributing to the degradation of ML models, particularly in dynamic and evolving en-
vironments such as mobile networks and automotive systems. As these environments are
subject to constant changes, the challenge of maintaining model performance amidst drift
becomes particularly significant.

To address this challenge, we have introduced DareFL, a novel and efficient algorithm
designed to manage concept drift within the context of FL. DareFL is built on the core
principles of FL, such as data privacy and decentralization, and is specifically designed
to minimize resource consumption. This is achieved without compromising the ability to
detect and mitigate drift, offering a significant improvement over existing SotA techniques.
Unlike many prior studies, which often focus on tasks with limited applicability—such as
digit recognition or static datasets—our work takes a broader approach. We specifically
investigate the case of predictive QoS in dynamic automotive environments, where concept
drift is more pronounced and driven by a wider variety of factors, such as mobility, network
conditions, and environmental changes.

To overcome the challenge of a lack of publicly available QoS datasets that include
instances of drift, we have developed two complementary QoS drift scenarios that are based
on both infrastructure- and user-related factors. These scenarios are generated using our
open-source, high-fidelity network and mobility simulator. This simulator, which models
both network and vehicle mobility in great detail, provides a realistic testing environment
for the evaluation of FL algorithms. By leveraging this simulator, we are able to assess the
performance of DareFL under the influence of drift, comparing it against a set of baseline
algorithms. These include: a) the Vanilla FL algorithm, as presented by Yin et al. [[72]],
b) a continuous training approach, and c) a state-of-the-art drift mitigation solution, as
proposed by Canonaco et al. [[69]].

Our simulation results across the two distinct drift scenarios reveal that DareFL out-
performs the baseline approaches in terms of resource efficiency. Specifically, DareFL
reduces the overall resource consumption by up to 70%, including savings on network in-
frastructure, client devices, and the central server. This significant reduction in resource
usage comes at a modest cost in terms of accuracy, with DareFL exhibiting an average
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accuracy drop of only 10% compared to the more resource-intensive competing schemes.
This demonstrates that DareFL strikes an effective balance between resource efficiency and
model performance, making it particularly suitable for deployment in resource-constrained
environments such as mobile networks and automotive systems.

Looking ahead, several promising directions for future research emerge from this work.
First, the proposed framework could be evaluated and validated in a real-world 5G testbed,
where actual network conditions and mobility patterns could provide further insights into
the algorithm’s practical applicability. Second, the current results could be generalized
to a broader set of drift scenarios, considering additional environmental factors or other
types of concept drift beyond the ones studied here. Finally, a potential avenue for fu-
ture improvement is the optimization of DareFL’s parameters through the use of ML
techniques, such as reinforcement learning, to adapt the algorithm’s behavior to different
environments and use cases more effectively.






4

Practical implementation

4.1 Introduction

In the previous chapter, we examined the dynamics of FL over time, specifically focusing on
how changes in the underlying client data distribution, commonly known as concept drift,
impact the performance of FL models during both training and inference. We proposed an
end-to-end framework designed to detect and mitigate these effects in a resource-efficient
manner, with a particular emphasis on volatile environments prone to concept drift, such as
vehicular and mobile networks. To illustrate the practicality of our solution, we introduced
the automotive use case of QoS prediction and demonstrated its effectiveness through
various simulation scenarios. This approach enables the deployment of FL systems in
large-scale, real-world settings that can adapt dynamically to environmental changes.

In the present chapter, we extend our theoretical findings by investigating their applica-
tion in practical scenarios involving real-world commercial networks, IoT devices capable
of performing FL, and relevant applications. The primary focus of this chapter is the
practical implementation of DML schemes within the automotive sector, particularly in
the context of CCAM applications.

The structure of the chapter is as follows. Sec. 4.2 provides a detailed description of
our measurement campaign, during which we collected a real network QoS dataset. This
dataset serves as the foundation for training AI/ML models for pQoS, as discussed in
Sec. 4.3. In Sec. 4.4, we describe the deployment of a distributed pQoS service on actual
vehicles, which act as Extreme-Edge/IoT devices, and present the valuable experimental
results obtained from this deployment in Sec. 4.5. Finally, in Sec. 4.6, we summarize the
chapter and outline future research directions.

4.2 pQoS measurements

4.2.1 Motivation

CCAM applications are expected to transform the mobility sector, enabling safer, more
efficient, and sustainable transportation systems. These applications encompass a wide
range of functionalities, including tele-operated driving, infrastructure-assisted environ-
mental perception, cooperative lane merging, and advanced features such as 5G-enabled
cross-border corridors and platooning initiatives [104], [105]. Central to the success of
these applications is reliable mobile network connectivity, as many CCAM use cases de-
pend on stringent QoS guarantees such as ubiquitous network coverage, minimum data
rates, and low-latency communication [70].

79
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Despite advances in modern cellular technologies, including 5G, that aim to deliver such
QoS guarantees, real-world connectivity remains vulnerable to numerous environmental
and technical factors [70]. These variables can severely impact achievable QoS, posing
significant risks to user experience and, more critically, the safety of automated systems
[104].

To address these challenges, the concept of pQoS has been introduced [70]. This ap-
proach estimates future QoS values and proactively informs automotive applications about
potential QoS degradation events. Such proactive mechanisms allow automotive systems
to adapt their functionality in response to predicted QoS changes, enabling operations
such as speed reduction, fail-safe maneuvers, or the abortion or completion of specific
operations [70].

Estimating QoS in vehicular environments is a particularly complex task, given the
rapid temporal variations in radio conditions [71]. As ML techniques increasingly underpin
pQoS systems, there is an ever-growing demand for high-quality QoS datasets to train
these models effectively. However, the data acquisition process faces several challenges,
such as the high cost of measurement campaigns and variability in data quality [71].

QoS values are influenced by a range of factors, including network and radio parame-
ters, user mobility patterns, and spatio-temporal effects [71]. Consequently, careful design
of data collection processes is essential to ensure diverse feature representation across
various mobility and network scenarios [71].

Although numerous measurement campaigns have been conducted [106], [107], [108],
existing QoS datasets present several limitations that restrict their applicability for pQoS
tasks. Key shortcomings include: a) A predominant focus on LTE radio-access network
(RAN) technologies, with limited coverage of 5G and beyond, b) Measurements concen-
trated in urban or indoor locations, neglecting the impact of high-speed mobility envi-
ronments such as highways, which are critical for vehicular applications and ¢) A lack
of cross-border measurements, disregarding the significant effects of roaming on QoS, a
major challenge for CCAM systems [109].

To address these limitations, we present NordicDat, a novel QoS dataset obtained
during a measurement campaign spanning three European countries: Finland, Sweden,
and Norway. NordicDat includes 25 hours of driving data featuring diverse speed pro-
files—characteristic of highway driving—and captures both physical and network-layer
features alongside vehicle kinematics. Measurements were conducted near national bor-
ders to specifically capture the impact of roaming on QoS. Notably, our dataset includes
traces from both LTE and 5G RAN technologies.

Our analysis reveals that changes in roaming, speed profiles, and RAN technologies
significantly influence QoS values. NordicDat is leveraged to demonstrate distributed
pQoS using FL for throughput and delay prediction tasks. To the best of our knowledge,
this constitutes the first attempt to explore distributed pQoS using real-world public data.
The NordicDat dataset, accompanied by detailed documentation, is publicly available in
an open repository [110], providing an invaluable resource for future research on pQoS and
addressing critical gaps in the field.

4.2.2 Related work

Training and evaluation of AI/ML-based QoS prediction algorithms frequently rely on
datasets derived from network simulations [111, 112]. While such datasets offer controlled
environments for experimentation, they are often criticized for their limited ability to
replicate the intricate and dynamic patterns observed in real-world network settings [71].
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This limitation underscores the growing need for real-world QoS datasets that can com-
prehensively capture the interplay between network operations, the radio environment,
and the behavior of UE.

Over the years, a variety of real-world QoS datasets have been generated through
measurement campaigns covering diverse mobility scenarios and RAN technologies (see
Table 4.1). Several of these studies focus on mobility contexts relevant to pQoS in auto-
motive applications. However, their utility is often constrained by specific technological
and environmental scopes. For instance, many datasets emphasize LTE as the primary
RAN technology [113, 114, 106, 108, 115], while neglecting advancements in 5G. Simi-
larly, mobility patterns in these studies are often limited to urban and suburban driving
profiles [116, 117], leaving out high-speed scenarios critical for highway environments.

A limited number of studies extend their focus to include 5G networks under high-
way mobility conditions [118, 96, 119], but these campaigns are generally confined to
single-country setups, thereby failing to account for the effects of cross-border roaming
on QoS. Meanwhile, another body of research investigates network characteristics under
low-mobility scenarios, such as pedestrian movement or stationary conditions [120, 107,
121, 122]. Although a few of these studies explore the impact of roaming across European
countries [109, 123, 124], their findings are primarily based on stationary or near-stationary
environments, limiting their applicability to pQoS in vehicular contexts.

In addition to outdoor studies, certain datasets have been developed for indoor environ-
ments, often leveraging mobility scenarios involving automated guided vehicles (AGVs)[125,
126] or stationary setups such as office environments[127]. These datasets are predomi-
nantly tailored for industrial applications, focusing on private 5G networks, device-to-
device (D2D) communications, and similar use cases, which differ significantly from the
requirements of automotive pQoS research.

In contrast to these existing datasets, our shared QoS dataset addresses critical gaps
and fosters advancements in the field of pQoS research. Specifically:

e Mobility diversity: The dataset is exclusively developed through drive tests, en-
compassing various real-world mobility scenarios that are directly relevant to vehic-
ular applications.

e Technological breadth: It includes data from both LTE and 5G RAN technolo-
gies, providing a comprehensive perspective on contemporary and future wireless
network capabilities.

e Cross-border coverage: The dataset is uniquely collected in a cross-border area
spanning three countries, enabling the study of roaming effects on QoS—an essential
but often overlooked aspect of CCAM applications.

By addressing these dimensions, our dataset not only enhances the realism of QoS predic-
tion tasks but also supports broader investigations into mobility-aware network adaptation,
making it a valuable resource for advancing pQoS in dynamic vehicular environments.

4.2.3 Measurement setup and data collection

The NordicDat dataset combines measurements from a 5G modem, external positioning
sensors and the vehicle internal data from the Controller Area Network (CAN) proto-
col [128]. The aim was to collect measurement sequences which combine connectivity,
positioning and kinematic data of the vehicle in geographical areas which present QoS
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Table 4.1: Comparison of public cellular QoS datasets
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Figure 4.1: Martti research vehicle Figure 4.2: Software architecture

degradation. The dataset contains 25 hours of such sequences, collected in arctic rural re-
gions of Finland, Norway and Sweden. The sequences contain sections of low connectivity
and total loss of connection, including handover events at national borders.

The dataset was collected utilizing the research vehicle ”Martti” (depicted in Fig. 4.1).
This vehicle, a modified Volkswagen Touareg, is equipped with a range of external sensors
and custom installations designed for advanced self-driving research purposes. The dataset
encompasses a comprehensive set of recorded features, all of which are detailed in Table 4.2.
These features are categorized as follows:

e Physical-layer parameters: This category includes key metrics such as Reference
Signal Received Quality (RSRQ), Reference Signal Received Power (RSRP), Re-
ceived Signal Strength Indicator (RSSI), and Signal-to-Interference-plus-Noise Ratio
(SINR). These parameters provide critical insights into the quality and reliability of
the wireless communication link.

¢ Network-layer parameters: Features under this category include the operational
band, the type of radio access network (RAN), the identifier of the serving cell, and
the mobile network operator. To ensure privacy and compliance with data protection
standards, operator-related values are anonymized and coded as integers.

e Mobility-related values: This set captures the dynamic aspects of vehicular move-
ment, including the vehicle’s geographic position (latitude, longitude, and elevation),
velocity, and acceleration. These parameters are vital for studying mobility’s influ-
ence on network performance and QoS.

e QoS parameters: This category measures the end-user experience by including
downlink (DL) and uplink (UL) throughput values, as well as network delay. These
features are crucial for predictive QoS tasks and evaluating the performance of
AI/ML models in real-world scenarios.

The diverse range of features in the dataset ensures a holistic representation of the in-
teractions between the physical and network layers, vehicular mobility, and resulting QoS.
By integrating these parameters, the dataset provides a robust foundation for investigat-
ing complex dependencies and facilitating advancements in predictive QoS for vehicular
applications.

The vehicle’s positioning data was collected using two advanced external sensors. First,
the Global Navigation Satellite System (GNSS) data was acquired through a Ublox ZED-
F9P Real-Time Kinematic (RTK) GNSS sensor. This sensor provided crucial geospatial



84 4. Practical implementation

Table 4.2: Description of dataset values

Data source ‘ Rate ‘ Parameter ‘ Unit
timestamp seconds (s)
RSRQ decibel (dB)
RSRP decibel (dB)
RSSI decibel (dB)
SINR decibel (dB)
band string
Teltonika RUTX50 | 1 Hz RAN String
serving cell ID integer
delay (network ping) milliseconds (ms)
service status boolean
operator integer
DL throughput (ifstat in) kilobytes per second (kb/s)
UL throughput (ifstat out) kilobytes per second (kb/s)
latitude degrees
longitude degrees
Ublox ZED-F9P 10 Hz -
elevation meters (m)
GNSS mode integer
heading degrees
Xsens MTi-680g | 100 Hz lateral acceleration meters per second squared (m/s?)
longitudinal acceleration | meters per second squared (m/s?)
absolute acceleration meters per second squared (m/s?)
Vehicle CAN bus | 72 Haz ab.solu.te velocit).f meters per second (m/s)
longitudinal velocity meters per second (m/s)

parameters, including latitude, longitude, altitude, and GNSS service quality. The posi-
tioning accuracy of the GNSS varied across the measurement sequences due to the depen-
dence of RTK correction signals on mobile connectivity [129]. The GNSS service quality
was categorized into three levels: Differential GNSS (DGNSS), RTK float, and RTK fix,
reflecting the varying levels of positional precision.

To address inconsistencies in GNSS measurement accuracy, the vehicle’s velocity data
was captured through readings of wheel speeds obtained from the CAN bus, which were
then converted into vehicle speed. For vehicle orientation, data was sourced from the
Xsens MTi-680g inertia measurement unit, which provided robust inertial tracking and
orientation information.

The mobile connectivity data was gathered using a Teltonika RUTX50 5G modem
positioned on the vehicle’s dashboard. Connectivity parameters were extracted using
AT commands (where "AT’ denotes ’Attention’), which serve as a standardized set of
Application Programming Interfaces (APIs) for interacting with cellular modems [130].
To ensure the collection of meaningful network downlink (DL) and uplink (UL) speed
data, artificial bandwidth strain was introduced during the measurements by actively
downloading large files over the mobile connection.

The UL and DL throughput metrics were measured at the application level using the
ifstat API [131], providing accurate real-time data transfer rates. Similarly, network
delay measurements were performed at the application level using the Linux ping utility
[132]. The data saver software implemented this functionality by generating ping requests
and recording the reception of the corresponding responses.

The software architecture for the data collection process is depicted in Fig. 4.2. Within
the vehicle, internal network communication is facilitated via Ethernet, with the Teltonika
router functioning as the sole gateway to the internet using a commercially available
mobile subscription. Independent software drivers were developed to interface with the
positioning sensors, the vehicle’s CAN bus, and the Teltonika router. These sensor drivers
collected measurements from their respective hardware components and published the
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data over the vehicle’s local network using the Data Distribution Service (DDS) protocol
[133].

The measurements were aggregated by a central data saver application, which sub-
scribed to all data streams on the network. Given the heterogeneity of sensors and devices,
each producing data at varying rates, the data saver application recorded synchronized
snapshots of the most recent values from each device at a consistent refresh rate of 1
Hz. This architectural design ensured seamless integration of diverse data sources and
synchronized data logging.

The NordicDat dataset was gathered during several measurement sessions, consisting
primarily of extended continuous driving runs. These drives featured speeds ranging from
low urban velocities to highway speeds reaching 100 km/h. The data collection occurred
in the Arctic rural regions of northern Finland, Norway, and Sweden, as shown in Fig. 4.3.
While the dataset predominantly includes data from dynamic driving over long distances, it
also captures several cross-border events where handovers occur between service providers
in the respective countries.

Cross-border events provided an opportunity to study connection loss scenarios and
their effects on network performance, including weakened GNSS signal modes due to
interruptions in mobile connectivity. The routes were carefully selected to represent di-
verse Quality of Service (QoS) levels, encompassing areas with varying degrees of cellular
coverage, including regions with poor connectivity and even complete service loss. This
deliberate route selection ensured that the dataset contained rich, naturalistic data from
realistic and challenging driving environments. In total, the dataset includes over 25 hours
of measurements and covers nearly 1200 kilometers of driving. This comprehensive data
collection effort was designed to support rigorous studies in predictive QoS for vehicular
communication systems, especially in the context of remote and cross-border scenarios.

4.2.4 Data analysis and statistics

Predicting QoS values in vehicular networks poses significant challenges due to the inher-
ently volatile nature of the network parameters involved [71]. One of the most critical
influencing factors is the vehicle’s location, as it encapsulates spatial effects related to
physical layer attributes and the surrounding environmental characteristics [100]. Our
dataset provides evidence to support these findings, highlighting the profound impact of
spatial variations on QoS values.

The spatial effects heatmap (Fig. 4.3) illustrates how DL throughput fluctuates within
the range of [0,20] Mbps across the entirety of the measurement campaign route. To
further contextualize, the 25", 50", and 75" percentile values for DL throughput during
the campaign are recorded as 0.38 Mbps, 4.39 Mbps, and 12.03 Mbps, respectively. These
variations underscore the critical role spatial factors play in the performance of vehicular
communication networks.

An overview of the linear relationships between the pQoS metrics—DL and UL through-
put, as well as delay—and corresponding network, spatial, and mobility features is shown
in Fig. 4.4. While no substantial linear correlations are evident, certain patterns emerge.
DL throughput exhibits a stronger dependency on mobility features (e.g., vehicle veloc-
ity) and network-level parameters (e.g., frequency band, RAN technology, serving cell,
and operator). Conversely, UL throughput and delay are more influenced by physical
layer parameters, such as RSRQ and SINR.

Temporal effects, which measure the influence of past QoS values on future predic-
tions, reveal diverse behaviors across QoS metrics. As shown in Fig. 4.5, delay obser-
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vations exhibit minimal temporal autocorrelation, with values dropping below 0.5 for
intervals exceeding 5 seconds, indicating negligible linear temporal dependencies. In con-
trast, throughput metrics display stronger temporal effects, with autocorrelation values
exceeding 0.8 for intervals up to 50 seconds. These observations highlight that while
temporal patterns are essential for predicting throughput, they are less relevant for delay
predictions.

Moreover, our dataset validates the findings of prior research (detailed in Sec. 4.2.2),
emphasizing the significant impact of three key factors on QoS metrics: a) RAN technology,
b) roaming effects, and ¢) mobility patterns. Fig. 4.6 provides a comparative analysis that
demonstrates the degradation in average throughput and an increased density of extreme
values (outliers) under specific scenarios. Notably, these observations hold for the following
bilateral comparisons: a) LTE versus 5G, b) roaming networks versus national networks,
and c) highway versus urban mobility (velocities up to 25 km/h). Statistical analysis using
the Mann—Whitney test confirms these distinctions, with P values approaching zero in all
cases, underscoring the statistically significant impact of these factors on QoS outcomes.
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4.2.5 Potential usage and limitations

NordicDat exposes a wide array of features that include a) mobility-related metrics e.g.,
position, speed, acceleration, b) physical layer cellular parameters e.g., SNR, RSRQ, RSSI,
c¢) network-level parameters e.g., cell number, RAN, operator and finally d) QoS values,
such as (appplication-level) throughput and delay. The resulted dataset is formulated as
a time-series table and it can therefore be utilized to perform a series of relevant predic-
tion tasks, besides pQoS. Relevant examples include handover (change of cell) prediction,
vehicle trajectory prediction and driver intention classification.

The dataset’s limitations are summarized as follows: 1) All features are obtained
from the vehicle’s devices. Though such an approach bypasses any MNO-related data
confidentiality issues, it lacks information in regards to the overview of the network e.g.,
cell capacity, total number of active UEs, distance to basestation, slicing policies, etc.
[70]. 2) The 5G modem’s available interfaces (see Sec. 4.2.3) do not provide support
for additional features that could potentially enhance the accuracy of pQoS e.g., resource
blocks, Reference Signal Signal to Noise Ratio (RSSNR), Channel Quality Information
(CQI), carriers number, coding schemes, etc. [71], [112]. 3) DL and UL throughput
are measured via the Linux ifstat (application-level) APT (see Sec. 4.2.3). As such, no
information is given in regards to the transport, network, or link layer. 4) The cross-border
locations under study mostly include highway road segments of low-traffic, as compared
to an urban environment. The dataset therefore lacks instances of QoS degradation e.g.,
strong interference incidents that are found in crowded areas, due to multiple parallel
user transmissions. 5) All measurements are obtained from a single vehicle, therefore
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scenarios that include multiple clients e.g., distributed AI/ML tasks can only be applied
via emulation (see Sec. 4.5).

4.3 Distributed pQoS

4.3.1 Problem statement and evaluation methodology

Motivated by the recent advances in distributed AI/ML, we have utilized our dataset to
showcase the application of FL on pQoS and compare against its typical centralized AI/ML
alternative. To the best of our knowledge that is the first attempt to apply distributed
pQoS on a real-world public dataset.

To emulate an FL setup with multiple clients, we split our original dataset into 10
parts of equal size, each representing a single vehicle-client. We then run a series of
pQoS training tasks using both centralized (CL) and distributed pQoS (FL) to predict a)
delay and b) DL throughput, for a total of 400 experiments (2 AI/ML approaches x 100
repetitions x 2 QoS values).

For each client, data is split at a typical 80%-20% ratio [81]. In each training round,
we select 8 clients for training and 2 for testing [101]. Round duration is set to 800
secs, for a total of 10 rounds per experiment. For the pQoS task we train a custom
Long Short-Term Memory (LSTM) AI/ML model with the following characteristics: 22
input features (equal to the total features of NordicDat) and 8 output features i.e., a
prediction horizon of 8 sec. The LSTM model is tuned to the following parameters via
grid-search: sliding window=75, hidden size=50, Min-Max normalization, decay=107?,
Rectified Linear Unit activation and Mean Square Error loss function, batch size=64,
learning rate=107%, epochs=50. QoS Prediction accuracy is evaluated using the Root
Mean Square Error (RMSE) metric[81].

4.3.2 QoS Prediction

We firstly present two representative instances (for a single vehicle-client during a single
experiment) of the inference results achieved by our FL model, in terms of DL throughput
(see Fig. 4.7) and delay prediction (see Fig. 4.8). These qualitative representations
suggest that the FL model is able to track the complex patterns and variations of the QoS
values under study (throughput and delay), across time. The quantitative results that
present the mean inference values of all clients, across all experiments, for all prediction
horizons (from 1 up to 8 seconds ahead) are depicted in Fig. 4.9 and 4.10. As expected,
longer prediction horizons are prone to larger prediction errors (RMSE) of the QoS value,
as compared to shorter ones. Interestingly, the horizon’s impact on throughput is much
higher as compared to delay. Specifically for throughput, increasing the horizon from 1 to
3, 5 and 8 sec, results in an increase of RMSE by 5.55%, 10.09% and 15.07% (averaged
across all rounds), respectively (see Fig. 4.9). For delay prediction on the other hand, the
respective values are 2.36%, 3.67% and 4.11% (see Fig. 4.10).

Having said that, we fix the horizon value to 8 sec and compare the performance of
distributed pQoS (FL) to that of the classical ML approach (CL), for both throughput
and delay prediction tasks. We present the mean inference values and (shady) standard
deviations of all clients, across all experiments in a per-round basis (see Fig. 4.11, 4.12).
For throughput prediction, FL converges similarly to CL in the very few rounds of the
experiments. For throughput prediction, CL outperforms FL by an average of 9.37% across
all rounds (see Fig. 4.11). In fact, CL exhibits a maximum performance enhancement of



4.4 5G Testbed implementation 89

27.73% against FL. Interestingly though, FL achieves outperforms CL by 9.16%, during
the experiment’s last round. Unlike throughput, FL for delay prediction achieves a very
similar performance to that of CL (see Fig. 4.12); on average CL outperforms FL by 2.08%
across all rounds. FL tracks the performance of CL in the course of the time (rounds),
even achieving better inference results (lower RMSE values) in certain instances. Overall
our preliminary results suggest that distributed pQoS via FL can achieve similar accuracy
levels to that of its centralized alternative, whilst preserving data privacy.
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4.4 5G Testbed implementation

4.4.1 Motivation

The next generation of mobile network technology is expected to significantly transform
connectivity and data processing, offering global coverage, ultra-low latency, and excep-
tionally high data rates. The vision for beyond-5G networks revolves around the concept
of ubiquitous wireless intelligence [134], which envisions a fully interconnected Internet-of-
Everything landscape. This paradigm is driven by AI/ML, which is anticipated to enhance
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human activities by enabling seamless reasoning, decision-making, and actuation across
various systems and applications [135].

In this evolving landscape, UE plays a pivotal role, acting as the bridge between
digital services and the end-user [136]. From smartphones and wearables in personal
healthcare and infotainment to on-board units and collaborative robots in automotive
and manufacturing industries, these devices are becoming increasingly sophisticated in
terms of both communication and computational capabilities. As such, UEs are expected
to extend the cloud-to-edge compute continuum, evolving into what is known as FExtreme-
Edge computing. This concept involves leveraging the spare resources of UEs to execute
computational tasks, enabling more efficient and decentralized processing [137].

However, two primary challenges limit the full realization of this technological shift.
First, these devices are typically under the control of the service provider, meaning they
remain isolated from the broader cloud-to-edge continuum in 5G networks. Moreover,
despite their growing computational and communication power, they are often treated as
passive clients rather than active computing nodes [138]. Addressing these limitations
presents several significant challenges [139], including: 1) managing the large number of
Extreme-Edge devices (EEDs) and the coexistence of various vertical services, 2) ensuring
reliable connectivity for EEDs, which may experience issues such as connection unavailabil-
ity or dropouts, 3) handling resource constraints like processing capacity, storage, memory,
and battery life, 4) navigating the multi-stakeholder environment, as EEDs are rarely un-
der the control of mobile network operators (MNOs), and 5) overcoming interoperability
challenges due to hardware diversity.

While these challenges remain largely under-explored in existing literature, current
approaches either focus on theoretical models, often relying on simulations that lack real-
world applicability [138], [140], or are deployed in constrained local environments [135],
[136], overlooking the inherent volatility of network connectivity. To address these gaps,
we adopt a systems-oriented approach by designing and implementing the Extreme-Edge
Orchestrator (EEO), a management and orchestration (M&O) framework that integrates
Extreme-Edge resources within the 5G ecosystem. Our solution leverages cloud-native
tools to monitor network resources and perform lifecycle management (LCM) of (con-
tainerized) network services running on EEDs. LCM decisions, such as task initiation,
selection of EEDs for task execution, and graceful task termination, are driven by user-
defined policies, establishing closed-loop control mechanisms. These loops incorporate sev-
eral criteria, including: a) device and utilization characteristics (e.g., processing capacity),
b) network resource consumption parameters (e.g., energy costs), and c¢) application-level
features (e.g., data availability), which may involve AI/ML models.

In contrast to the majority of simulation-based research in this area, our proposed solu-
tion is deployed on an operational 5G testbed and evaluated through extensive real-world
experiments involving both mobile and static EEDs in diverse (indoor and outdoor) sce-
narios. Our contribution is two-fold: 1) we introduce, design, and develop a novel solution
for Extreme-Edge orchestration, along with the corresponding system architecture that
extends the cloud-to-edge continuum to the Extreme-Edge, and 2) we evaluate our solu-
tion on an experimental 5G testbed through a relevant use case for the automotive sector:
predicting network QoS values using distributed AI/ML. Our analysis demonstrates the
effectiveness of the multi-criteria EED selection mechanism in scenarios where including
EEDs yields marginal benefits at the application layer, particularly for AI/ML tasks.
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4.4.2 Related work

Service orchestration at the Extreme-Edge has recently gained significant attention as
a means to extend cloud-native technologies throughout the compute continuum. This
transition has stimulated the development of novel architectures [140] and intelligent al-
gorithms [138], although these efforts are still largely in the simulation phase, with limited
real-world deployment and validation.

At the system level, several attempts have been made to experimentally assess such
solutions in prototype testbeds, aiming to leverage resource-constrained devices, such as
IoT devices, as compute nodes. For instance, an experimental comparison of existing edge
orchestration tools is presented in [139], which evaluates these solutions in terms of scal-
ability and service instantiation time for EEDs. With the increasing processing demands
driven by AI/ML applications, many studies have shifted focus towards orchestrating
AI/ML pipelines at the Extreme-Edge, either for inference [136] or training [135] phases.
Additionally, some propose managing AI/ML pipelines using the microservice paradigm
[141]. While these studies provide valuable insights into the computational capabilities
of EEDs, they are primarily evaluated in local environments or on connected Virtual
Machines (VMs), which often overlook key factors such as network connectivity, device
interoperability, and hardware dependencies that are critical in real-world deployments.

An emerging area of research focuses on the development of new or the adaptation
of existing cloud-native tools specifically designed for orchestration at the Extreme-Edge.
For example, in [137], a lightweight container system for Extreme-Edge computing is in-
troduced, with evaluations conducted across devices featuring diverse architectures and
operating systems (OS), connected via Hypertext Transfer Protocol (HTTP). Similarly, in
[142], a novel architecture tailored for Machine Learning (ML) deployment in the Extreme-
Edge is proposed and experimentally validated in a 4G-enabled testbed using Unmanned
Aerial Vehicles (UAVs) as UEs, offering insights into the performance and resource con-
sumption trade-offs. However, these solutions are limited in that they operate primarily at
the container orchestration level, failing to consider the application-specific requirements
and dependencies that often arise in dynamic environments.

In contrast, our proposed approach introduces a service LCM layer that enables adap-
tive service deployment at runtime. This layer is governed by user-defined logic that
incorporates both resource-related and application-specific criteria, allowing for a more
flexible and efficient orchestration framework at the Extreme-Edge. By addressing both
the computational and network-related challenges in real-world scenarios, our solution pro-
vides a comprehensive approach to orchestrating services in highly dynamic and resource-
constrained environments.

4.4.3 Experimental testbed setup

In this section we provide the details of the software and hardware components that
comprise the 5G testbed for our experimental analysis.

System architecture

Our implemented software stack is based on Microk8s [143], a lightweight Kubernetes
variant, as shown in Fig. 4.13. Microk8s enables the configuration and M&O of a cluster
of computing nodes (workers) that run containerized applications. In our context, these
workers can refer to the compute resources on the EEDs or on the Multi-Access Edge
Computing (MEC) domain. The Microk8s controller resides on the MEC, providing the
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Figure 4.13: System architecture and software stack

interfaces to manage the processing resources within the cluster. All available services are
cataloged within the MEC’s Service Manager, a module that contains software artifacts (or
a reference of them) and descriptors to deploy a (set of) service(s) that provide functional-
ities to verticals, over the 5G infrastructure. The Network Slice Manager handles network
resource allocation during deployment, addressing the service requirements specified in the
descriptor and establishing the corresponding connection with the EEDs over the Radio
Access Network (RAN). On the EED side, the Local Resource Orchestration and Local
Service Orchestration modules manage network and service deployment, respectively.

Once deployed, orchestration actions for the service runtime management are con-
ducted through Policy Execution. Policies are expressed as a set of rules and actions,
defined as Service Level Agreement (SLA) expressions that represent the desired service-
level state. Rules are associated with the deployed service graphs at any given moment.
Policy execution involves a series of Representational State Transfer (REST) interfaces
that facilitate the manipulation of service policy rules. These interfaces support funda-
mental operations i.e., Create, Read, Update, and Delete (CRUD), enabling actions like
creating new policy rules, updating or deleting existing ones and retrieving policy rule
information. Additionally, the interfaces provide search functionalities based on criteria
such as policy name or identification number. The MEC also hosts a monitoring entity
that collects monitoring data from the underlying virtualized infrastructure. This entity
supports core services, including policies and is responsible for data collection via active
monitoring probes. This functionality is based on Prometheus [143] and includes: a) a
Monitoring Agent on each worker that collects telemetry metrics: total and utilized sys-
tem resource capacity (random access memory - RAM, disk/storage, central processing
unit - CPU, and graphics processing unit - GPU), number of CPU cores, UL/DL network
usage, fan and temperature readings, power consumption, location (latitude/longitude)
and application data volume; and b) a Monitoring Server located in the MEC that records
and stores monitoring data as time-series in the Resource Inventory module.

LCM of processing tasks in the (Extreme-)Edge is performed by the EEO, located
in the MEC. These tasks span from typical automotive services e.g., video streaming to
computationally-intensive processes e.g., on-device/distributed AI/ML. The EEO enables:
1) service configuration during initialization, 2) worker selection at runtime to run the
service i.e., add a new or remove an existing worker and 3) graceful service termination.
To enable these functionalities, the EEO exposes a REST interface that allows the end-user
e.g., the service provider, to provide a series of input criteria (see Table 4.3): a) generic
characteristics (device characteristics, run-time resource utilization parameters, location
filters, termination criteria) and b) application-specific criteria with support for AT/ML
tasks (configuration, data-related criteria, AI/ML performance metrics). Once the criteria
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are set, the EEO functions as follows: it continuously monitors both the service and the
available workers, via the Monitoring Server. It thereafter performs a matchmaking to
determine if the specified user-defined criteria are satisfied. Based on the results of the
matchmaking process, the EEO infers appropriate actions; for instance, it may decide
to remove (scale in) an existing worker if its RAM utilization exceeds a predetermined
threshold, or to add a new worker (scale out) that has sufficient storage capacity. These
inferred actions are then converted into policy commands (rules) and propagated to the
Policy Execution module for implementation.

The aforementioned baseline functionalities enable a series of LCM policies to be en-
forced, including: 1) Resource-aware task execution - tuning of critical task param-
eters e.g., duration, number of EEDs, etc., to balance task performance with resource
consumption, 2) Task geo-fencing - restricts task execution to EEDs within a defined
area, enhancing privacy, 3) Resource provision - excludes heavily utilized EEDs to re-
duce risk of failure and improve robustness, 4) Load balancing - ensures fair distribution
of computational load across the EEDs, 5) Optimal task stopping - timely terminate
a task based on the optimal stopping theory [144] for efficiency, 6) Resource-aware
AI/ML hyper-parameter tuning - configure AI/ML parameters with consideration of
resource costs, 7) Smart AI/ML scheme selection - schedules AI/ML training in a
centralized, distributed or hybrid mode, based on the expected performance and resource
costs, and 8) Data-efficient AI/ML client selection - selects EEDs with sufficient data
volume to enhance training efficiency. Several of these features are demonstrated in the
forthcoming Sec. 4.5.

Table 4.3: Extreme-Edge Orchestrator (EEO) input criteria
Type Criterion Description Type Criterion Description
Access rights Service provider ownership of | Device Dataset size Min application data volume
Device devices (private) or indepen- selec- (MB)
selec- dent status (public) tion:
tion: GPU availability True/False AI/ML Local train loss Min client AI/ML conver-
charac- condi- gence (%)
teristics | GPU capacity Min number of GPU cores tion Local test loss Min client AI/ML accuracy
(%)
CPU capacity Min number of CPU cores ML scheme Centralized, Distributed or
Hydrid AI/ML
RAM capacity Min total RAM (GB) Clients per round Min client devices for AI/ML
Storage capacity Min total disk capacity (GB) AL/ML Number of epochs Hyper-parameter setting
Device CPU utilization Max CPU usage-to-capacity con‘ﬁgu— Batch size Hyper-parameter setting
selec- ratio (%) ration
tion: GPU utilization Max GPU usage-to-capacity Learning rate Hyper-parameter setting
Run- ratio (%)
time RAM utilization Max RAM usage-to-capacity ML model AI/ML model type e.g.,
resource ratio (%) LSTM
utiliza- Temperature Max device temperature (°C) Aggregation algorithm | (For  distributed ~ AI/ML)
tion Mean/Median type
Occupied storage Max current-to-total disk ca- Training rounds Number of training cycles
pacity ratio (%)
Energy availability Min remaining battery level Global train loss Max AI/ML convergence of
(%) all clients (%)
Uplink bandwidth Max uploaded data volume T?}Sk t,er_ Global test loss Max AI/ML accuracy of all
(MB) mination clients (%)
Downlink bandwidth | Max downloaded data volume Total energy Max energy consumed across
(MB) all devices (KJ)
Device Area of interest (Aol) | Bounding box (latitude and Total data volume Max data consumed across all
selec- longitude for each corner) devices (MB)
tion: Devices in area Max number of devices AT/ML efficiency Optimal stopping for global
Location accuracy w.r.t. total energy
filters consumed
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Figure 4.14: Testbed hardware and network setup

Hardware and network setup

Network connectivity across the testbed is provided by a standalone 5G test network in
Ulm, Germany, operated by Nokia. As depicted in Fig. 4.14, the testbed comprises: a) the
core and edge network, b) the RAN and c) several EEDs. The hardware specifications for
all involved devices are presented in Table 4.4. The core and edge network infrastructure,
hosted at Nokia’s Ulm facilities, includes a) gNodeB central units, b) a MEC server and
c¢) the user plane functions (UPFs), all of which are connected via a switch. The switch
provides access to external Data Networks (DNs) e.g., the Internet and to 5G control plane
functions e.g., Access and Mobility Management Function (AMF), Session Management
Function (SMF), etc., located at Nokia’s site in Finland. User data forwarding between
the gNodeBs and the DNs is handled by the UPF's, while the MEC server provides compute
resources, to support services at the network edge.

The RAN consists of three antenna sites, namely DRK Ulm, SWU K1 Ulm and Nokia
lab picocell, each connected via optical links to its respective gNodeB. Each site supports
three sector cells on the n38 band, covering a frequency range of 2575-2615 MHz. Time
Division Duplex is employed to support both uplink (UL) and downlink (DL) communi-
cation within the 40 MHz frequency range, with an UL/DL split set at 30/70. The DRK
and SWU K1 Ulm sites are set for outdoor deployment and support mobile EEDs, while
the Nokia lab site is designated for indoor deployment, primarily supporting static EEDs.
Each EED is equipped with a 5G modem to allow for wireless connectivity and possesses
diverse processing capabilities—including variations in storage, memory, and processing
power (see Table 4.4). Mobile EEDs are deployed within vehicles powered by an external
power source, whereas static EEDs are located within the Nokia lab.

Table 4.4: Testbed device specifications

MEC Server EED 1 EED 2 EED 3 EED 4
Device type Xeon E5-2680 Besstar UM560 DeskMini | Besstar UM560 DeskMini | NVIDIA Jetson AGX Orin NVIDIA Jetson AGX Xavier
CPU type AMD Ryzen 9 5900X AMD Ryzen 5 5625U AMD Ryzen 5 5625U Arm Cortex-AT8AE v8.2 512-core NVIDIA Volta
CPU cores 12 12 12 12 8
GPU type NVIDIA RTX 3080 TT AMD ATI 04:00.0 Barcelo | AMD ATI 04:00.0 Barcelo | NVIDIA Ampere (2048 cores) | NVIDIA Carmel Arm®v8.2
RAM (GB) 128 16 14 32 32
Storage SSD (2 TB), HDD (8 TB) | SSD (500 GB) SSD (500 GB) SSD (60 GB) SSD (30 GB)
Operating system | Ubuntu 22.04 LTS Ubuntu 22.04.4 LTS Ubuntu 22.04.4 LTS Ubuntu 20.04.6 LTS Ubuntu 20.04.6 LTS
5G Modem None Quectel RM500Q-AE Quectel RM500Q-AE-VA | Teltonica RUTX50 Teltonica RUTX50

4.4.4 Implementation of distributed pQoS

To showcase the usage of the EEO, we have selected a relevant use-case of the automotive
vertical, namely distributed pQoS. Our implementation employs the FL paradigm to train
a pQoS model in a distributed fashion. FL involves two main components; an aggrega-
tion server (deployed in the MEC in our setup) and training agents/clients (deployed on
the EEDs). The pQoS model training occurs in consecutive cycles. In each cycle, the
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Figure 4.15: Distributed pQoS using Federated Learning

aggregation server selects a group of EEDs and broadcasts the global pQoS model, as
depicted in Fig. 4.15. The selected EEDs then perform local model training, using their
collected data. The local models are then uploaded to the MEC server, where the aggre-
gation server combines (aggregates) them into an updated global model. This process is
repeated for several times, until the model converges. The implementation of FL. and its
associated algorithms are based on Flower [145], a Python-based open-source framework
for FL pipelines.

4.5 5G Testbed experiments

4.5.1 Evaluation methodology

For the evaluation of the EEO, we are using the experimental 5G testbed and a total of
four EEDs. The EEDs serve as FL clients to perform distributed pQoS and specifically
round-trip time (RTT) prediction. The EEDs constantly collect: a) location (latitude,
longitude) data via a Global Positioning System (GPS) sensor and b) RTT data, via active
measurements, along with their respective timestamps. The collected time-series data is
used to train a Long Short-Term Memory (LSTM) pQoS model, given the LSTM’s inherent
ability to capture spatio-temporal dependencies [145]. The LSTM model is tuned to the
following parameters via grid-search [145]: Layers=2 (1 LSTM with Tanh activation, 1
Dense with Linear activation), Sliding window=400, Horizon=1, Min-Max normalization,
Tilted loss function, Batch size=32, Learning rate=10"2, Epochs=5.

We initially validate the device selection capability of the EEO in presence of user
mobility; two out of four EEDs are deployed inside vehicles, while the remaining are
placed in the Nokia lab. On the EEO side, we set the following location filter criteria: a)
Nokia premises, as the designated area of interest (Aol) and b) maximum of three devices
in the area (see Table 4.3). Then, the vehicles are instructed to move sequentially in and
out of the Aol. The demonstration results [146] suggest that the EEO successfully tracks
these events and timely adjusts the FL pQoS service, by selecting (adding/removing)
the respective EEDs, according to the criteria set. For further evaluation we run in-lab
experiments, using the indoor 5G deployment (see Sec. 4.4.3) and a total of four static
EEDs to perform FL pQoS. The assessment is based on the following metrics: 1) LSTM
Model (Training) Convergence (in ms for RTT prediction) using the Mean Absolute
Error (MAE) metric [145], 2) QoS Prediction (Testing) Accuracy (ms) via the Root
Mean Square Error (RMSE), a relevant metric for pQoS [71], 3) the Aggregated Energy
(in KJ) and 4) Data Volume (in MB) consumed by the EEDs during training, as recorded
by the EEO’s monitoring service. We repeat each experiment for 5 times and present the
mean and standard deviation values for all measures quantities.
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4.5.2 Orchestration at the Extreme-Edge
Effect of the number of training rounds

Initially, all four EEDs are employed to train the pQoS model via FL. In the EEO, we
set a variable number of total training rounds (see Table 4.3) within the range of [10, 50]
to assess their impact on the model’s performance with respect to (w.r.t.) the underlying
network resource consumption. As depicted in Fig. 4.16, increasing the number of training
rounds leads to a reduction in prediction errors (MAE and RMSE, respectively), indicating
improvements in both convergence and accuracy. However, the enhancement beyond 30
rounds is marginal (less than 10%). At the same time, allowing for more training rounds
results in a linear increase in network resource consumption (see Fig. 4.17). In fact,
when comparing to 30 training rounds, the use of 40 and 50 training rounds results in
increases by 34% and 69% in data volume as well as 33% and 65% in energy consumption,
respectively. The EEO allows for tuning the number of rounds and control the trade-
off between model performance and resource consumption. In our study, we select 30
rounds for our task, maintaining this value throughout the remainder of our experiments,
to achieve adequate accuracy (less than 0.3 ms RMSE for automotive applications [104]),
while also considering the efficiency of resource consumption.
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Effect of the number of participating EEDs

Having set the number of training rounds, we now examine the impact of varying the
number of (FL) clients, specifically using 2, 3, and 4 EEDs (see Table 4.3). As shown
in Fig. 4.18, the accuracy differences during the first 10 training rounds (approximately
30 minutes) are minimal, with less than a 2% variation in accuracy among the three
configurations (calculated as the mean value for the first 30 minutes). By the end of the
experiments, utilizing 3 and 4 clients leads to an accuracy increase of up to 4% compared
to training with 2 clients. This also increases the involved bandwidth costs by 58% and
117% (see Fig. 4.19) and energy costs by 49% and 103% (see Fig. 4.20), respectively. Our
results suggest that while the number of participating EEDs affects model performance,
it primarily impacts the associated costs. As such, the vertical service provider can define
policies and adjust the number of selected EEDs accordingly, via the EEQ’s monitoring and
control i.e., selection functionality. For the upcoming scenarios, we set this parameter to
3, as this setting achieves similar accuracy to that of 4 clients, while incurring substantially
lower costs.
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CPU and RAM stress scenarios

We proceed by testing multiple service scenarios under the assumptions that the EEDs: 1)
run an FL pQoS service and 2) are periodically tasked with a higher-priority automotive
service e.g., High Definition map update. In such a scenario stress will be eventually
imposed on the EEDs’ CPU and RAM capacity. To simulate these conditions, we use
stress-ng [147]; fluctuations of CPU utilization (and therefore availability) of the EEDs
over time are shown in Fig. 4.21. We then configure the EEO as follows: the high priority
automotive service runs on all EEDs upon request, while FL (being of lower priority) runs
on the EEDs that have less than 30% CPU utilization (see Table 4.3). We compare against
the Vanilla case (without the EEO), where all EEDs are greedily selected for each service.
The results in the training performance are presented in Fig. 4.22. By smartly selecting
the EEDs with high CPU availability, the FL. model in the EEO case is trained faster, with
a reduced average round duration by 24%, compared to the Vanilla case. On the contrary,
the EEDs in the Vanilla case are selected as FL clients regardless their CPU load, thereby
extending the duration of each training round and the completion time of the FL task, as
a whole. On top, the total energy expenditure in the Vanilla case is 24% higher compared
to the EEO case (see Fig. 4.23), consistent with the linear relationship between resource
utilization and energy consumption, presented in Fig. 4.20. When varying the RAM
instead of the CPU, the results indicate even greater differences between configurations. As
shown in Fig. 4.24, the EEO’s smart client selection facilitates smooth training, resulting
in the development of a pQoS model with an accuracy of 0.25 ms (RMSE) at a total energy
cost of approximately 120 KJ, consistent with the outcomes shown in Fig. 4.18 and Fig.
4.20. In the Vanilla case however, excessive RAM overload leads to training failure and
premature termination of the training process (see blue horizontal line in Fig. 4.24).
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4.6 Conclusions

In this chapter, we have presented two practical implementations of the theoretical con-
cepts explored in earlier chapters, focusing on FL in distributed CCAM environments from
a systems perspective.

Firstly, we introduced NordicDat, a comprehensive dataset collected over two weeks
across the cross-border regions of Finland, Norway, and Sweden. This dataset includes a
wide range of features related to cellular QoS values, such as throughput and delay, network
characteristics like cell and operator information, and vehicle kinematics, including speed
and location data. These features make the dataset highly valuable for training both
classical and distributed AI/ML models across a variety of use cases, such as trajectory
prediction, handover prediction, and, importantly, QoS prediction. The latter is recognized
as a crucial enabler for the future development of automotive applications. Through
our data analysis, we identified non-linear correlations between various features and the
QoS values, highlighting that factors such as roaming, vehicle speed, and radio access
technology significantly influence the QoS patterns over time and space. Additionally, we
demonstrated the use of distributed AT/ML for QoS prediction, specifically for throughput
and delay, which, to our knowledge, marks the first real-world demonstration of distributed
predictive QoS (pQoS) on real-world data.

Next, to address the critical limitations in integrating terminal-side (Extreme-Edge)
devices into the operational control framework of 5G networks, we introduced the Extreme-
Edge Orchestrator (EEO), our novel cloud-native management and orchestration solution.
The EEO combines network resource provisioning with multi-criteria, user-defined logic to
enable efficient service orchestration for containerized applications running on Extreme-
Edge devices. Our implementation of the system was extensively evaluated on an op-
erational 5G testbed, focusing on distributed AI/ML tasks. The experimental results
showed that the EEO improves resource efficiency by optimizing key parameters, such as
task duration, and reduces task completion time by 25% under high computational load
when compared to baseline methods. These findings suggest that managing Extreme-
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Edge devices in next-generation networks can lead to more efficient and effective service
delivery. Moreover, they point to several promising avenues for future research, including
large-scale evaluations involving a greater number of end devices and extending the EEO’s
multi-criteria logic through the use of rule engines, which will be explored in subsequent
work.

In summary, this chapter has contributed to advancing both theoretical and practical
aspects of distributed AI/ML in the context of CCAM, with a particular focus on enhanc-
ing the integration of Extreme-Edge devices and improving QoS prediction capabilities in
real-world automotive environments.






5

Conclusion

5.1 Key takeaways

This thesis presented our research on the convergence of two key advancements in next-
generation networks: (a) the increasing utilization of client device processing capabilities
within a unified cloud-to-edge network and compute continuum, and (b) the rise of Dis-
tributed AI/ML, particularly Federated Learning (FL), as a means of enabling intelligent
decision-making for connected systems. Unlike previous theoretical studies, our focus has
been on practical applications, specifically in the demanding domain of Connected and
Cooperative Automated Mobility (CCAM), where both trends were relevant but are also
coupled with complex requirements (e.g., safety).

Our work addressed several previously under-explored questions: (a) Which ML scheme,
Centralized Learning (CL) or Distributed Learning/FL, is more efficient from a network
perspective? (b) What roles did various factors such as models, energy consumption, and
concept/model drift play in influencing these schemes? (c) What were the implementation
challenges, and how could they be addressed when deploying these schemes in real-world
environments?

To answer these questions, we presented the theoretical concepts, simulation envi-
ronment, and the results of our study, which provided valuable insights on: a) The sys-
tem parameters that influenced the efficiency of each ML scheme, in terms of both ML
performance (accuracy) and underlying network and energy resource consumption. b)
The resource consumption of DML/FL, considering AI/ML and network parameters. c)
Trade-offs and considerations for selecting the appropriate ML scheme. d) The detri-
mental impact of concept drift in volatile network and vehicular environments for FL. e)
Techniques for detecting and mitigating concept drift in distributed, resource-constrained
environments, while minimizing network resource usage. f) The results of a measurement
campaign and proof-of-concept implementation for predictive Quality of Service (pQoS).
g) A management and orchestration framework for deploying multiple AI/ML and FL
services in the automotive domain, demonstrated on a commercial-grade 5G testbed with
multiple vehicles as mobile client devices.

Future research could expand on our concept drift management framework by incor-
porating dynamic adaptation through AI/ML techniques. Along with our findings on
ML scheme selection, this could evolve into a comprehensive end-to-end ML Operations
(MLOps) framework, capable of dynamically adapting to drift and adjusting functionality
or switching between ML schemes based on user requirements.

Ultimately, our orchestration solution provided a valuable toolkit for managing the
lifecycle of AI/ML and FL services and handling compute resources on Internet of Things
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(IoT) devices. This could be integrated with the aforementioned algorithmic framework
to enable continuous monitoring and management of multiple FL tasks across networks of
mobile devices, vehicles, and IoT systems.

5.2

Publications

5.2.1 Journal/Magazine Articles

Drainakis, G., Pantazopoulos, P., Katsaros, K. V., Sourlas, V., Amditis, A., &
Kaklamani, D. I. (2023). From centralized to Federated Learning: Exploring per-
formance and end-to-end resource consumption. Elsevier Computer Networks, 225,
109657.

Katsaros, K. V., Liotou, E., Moscatelli, F., Rokkas, T., Drainakis, G., Bonetto, E.,
Brevi, D., Klonidis, D., Neokosmidis, I., & Amditis, A. (2022). Enabling far-edge
intelligent services with network applications: the automotive case. IEEE Internet
of Things Magazine, 5(4), 122-128.

5.2.2 Peer-reviewed Conference/Workshop papers

Drainakis, G., Pantazopoulos, P.,Katsaros, K. V., Sourlas, V., Xirofotos, T.,
Baganal-Krishna, N., Rizk, A., Horvath, R., Scivoletto, G., Amditis, A., & Kak-
lamani, D. I. Service Orchestration at the Extreme-Edge: An Experimental In-
vestigation Over a 5G Testbed. In ICC 2025 IEEE International Conference on
Communications (under peer review)

Miekkala, T., Pyykonen, P., Drainakis, G., Pantazopoulos, P., Muller, T., Kat-
saros, K. V., Sourlas, V., Amditis, A., & Kaklamani, D. I. NordicDat: A Cross-
Border Predictive QoS Dataset. In GLOBECOM 2024 IEEE Global Communica-
tions Conference

Drainakis, G., Pantazopoulos, P., Katsaros, K. V., Sourlas, V., Amditis, A., &
Kaklamani, D. I. (2024, June). Distributed Predictive QoS in Automotive Environ-
ments under Concept Drift. In 2023 IFIP Networking Conference (IFIP Networking).
IEEE.

Sourlas, V., Rizk, A., Katsaros, K. V., Pantazopoulos, P., Drainakis, G., & Amdi-
tis, A. (2021, September). A Distributed ML Framework for Service Deployment
in the 5G-based Automotive Vertical. In 2021 IEEE International Mediterranean
Conference on Communications and Networking (MeditCom) (pp. 246-251). IEEE.

Drainakis, G., Pantazopoulos, P., Katsaros, K. V., Sourlas, V., & Amditis, A.
(2021, July). On the resource consumption of distributed ml. In 2021 IEEE Inter-
national Symposium on Local and Metropolitan Area Networks (LANMAN) (pp.
1-6).

Drainakis, G., Pantazopoulos, P., Katsaros, K. V., Sourlas, V., & Amditis, A.
(2021, May). On the distribution of ML workloads to the network edge and be-
yond. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS) (pp. 1-6).
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(2020, November). Federated vs. centralized machine learning under privacy-elastic
users: A comparative analysis. In 2020 IEEE 19th International Symposium on
Network Computing and Applications (NCA) (pp. 1-8).

5.2.3 Under preparation/submission

e Drainakis, G., Pantazopoulos, P., Katsaros, K. V., Sourlas, V., Amditis, A., &
Kaklamani, D. I. Federated Learning in Automotive Environments under Concept
Drift (Journal follow-up of the IFIP Networking paper, under submission)
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