
National Technical University of Athens
School of Electrical and Computer Engineering

Division of Information Transmission Systems & Material
Technology

Federated Machine Learning in Network

Environments for Connected and Automated

Mobility Applications

Ph.D. Thesis

GEORGIOS DRAINAKIS

Dipl.-Ing. in Electrical and Computer Engineering, NTUA

Supervisor: Prof. Dimitra-Theodora I. Kaklamani

Athens, December 2024

Εθνικό Μετσόβιο Πολυτεχνείο
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Τομέας Συστημάτων Μετάδοσης Πληροφορίας & Τεχνολογίας

Υλικών

Συνεργατική Μηχανική Μάθηση σε Δικτυακά

Περιβάλλοντα και Εφαρμογές σε Συστήματα

Αυτόνομης και Διασυνδεδεμένης Κινητικότητας

Διδακτορική Διατριβή
του

Γεώργιου Δραϊνάκη

Διπλωματούχου Ηλεκτρολόγου Μηχανικού &
Μηχανικού Υπολογιστών Ε.Μ.Π.

Επιβλέπουσα: Δήμητρα-Θεοδώρα Ι. Κακλαμάνη, Καθηγήτρια Ε.Μ.Π.

Αθήνα, Δεκέμβριος 2024

Εθνικό Μετσόβιο Πολυτεχνείο

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Τομέας Συστημάτων Μετάδοσης Πληροφορίας & Τεχνολογίας Υλικών

Συνεργατική Μηχανική Μάθηση σε Δικτυακά

Περιβάλλοντα και Εφαρμογές σε Συστήματα

Αυτόνομης και Διασυνδεδεμένης Κινητικότητας

Διδακτορική Διατριβή
του

Γεώργιου Δραϊνάκη

Διπλωματούχου Ηλεκτρολόγου Μηχανικού και Μηχανικού Υπολογιστών Ε.Μ.Π.

Συμβουλευτική Επιτροπή: Δήμητρα-Θεοδώρα Ι. Κακλαμάνη, Καθηγήτρια

Ιάκωβος Στ. Βενιέρης, Καθηγητής

΄Αγγελος Αμδίτης, Ερευνητής Α΄

Εγκρίθηκε από την επταμελή εξεταστική επιτροπή την 5η Δεκεμβρίου 2024.

(Υπογραφή)

.............................

Δήμητρα-Θεοδώρα Ι. Κακλαμάνη

Καθηγήτρια

Ε.Μ.Π.

(Υπογραφή)

.............................

Ιάκωβος Στ. Βενιέρης

Καθηγητής

Ε.Μ.Π.

(Υπογραφή)

.............................

΄Αγγελος Αμδίτης

Ερευνητής Α΄

ΕΠΙΣΕΥ-Ε.Μ.Π.

(Υπογραφή)

.............................

Αθανάσιος Παναγόπουλος

Καθηγητής

Ε.Μ.Π.

(Υπογραφή)

.............................

Εμμανουήλ Βαρβαρίγος

Καθηγητής

Ε.Μ.Π.

(Υπογραφή)

.............................

Γεώργιος Στάμου

Καθηγητής

Ε.Μ.Π.

(Υπογραφή)

.............................

Παναγιώτης Γκόνης

Επίκουρος Καθηγητής

ΕΚΠΑ

Αθήνα, Δεκέμβριος 2024

6

(Υπογραφή)

..

Γεώργιος Δραϊνάκης

Διπλωματούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π.

Copyright ©–All rights reserved Γεώργιος Δραϊνάκης, 2024.
Με επιφύλαξη παντός δικαιώματος.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ΄

ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση,

αποθήκευση και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής

φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το

παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της εργασίας για κερδοσκοπικό

σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν το

συγγραφέα και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του

Εθνικού Μετσόβιου Πολυτεχνείου.

7

Ευχαριστίες

Θα ήθελα να ευχαριστήσω θερμά την επιβλέπουσά μου κ. Δήμητρα Κακλαμάνη για την

υποστήριξη και την επίβλεψη σε όλη τη δύσκολη διαδρομή της εκπόνησης της διατριβής, καθώς

και όλα τα παιδιά από τα εργαστήρια Μικροκυμάτων και Οπτικών Ινών και ICBNet του ΕΜΠ
και ιδιαίτερα τους Γιάννη Μπαρτσιώκα και Χαρά Ψάρρη, για την πολύτιμη βοήθειά τους.

Ιδιαίτερες ευχαριστίες εκφράζονται τόσο στην τριμελή συμβουλευτική επιτροπή όσο και

στην επταμελή εξεταστική επιτροπή για τις χρήσιμες συμβουλές και παρατηρήσεις τους.

Ξεχωριστά θα ήθελα να ευχαριστήσω όλα τα παιδιά από το εργαστήριο του ΕΠΙΣΕΥ που με

βοήθησαν κατά τη διάρκεια του διδακτορικού, ξεκινώντας από τους Παναγιώτη Πανταζόπουλο,

Κωνσταντίνο Κατσαρό και Βασίλη Σούρλα που παρείχαν την επιστημονική καθοδήγηση από τη

αρχή αυτής της προσπάθειας μέχρι και την ολοκλήρωση της ερευνητικής διαδικασίας, και έπειτα

τους παλαιότερους ΥΔ και συναδέλφους για την τεχνική και κυρίως την ψυχολογική βοήθεια:

τον Μάρκο Αντωνόπουλο, την Κατερίνα Αργύρη, τον Θοδωρή Θεοδωρόπουλο, τον Παύλο

Μπασαρά, την Αναστασία Μπολοβίνου, τον Αργύρη Ρουμελιώτη και τον Γιώργο Χατζηπαυλή.

Τέλος, ευχαριστώ θερμά την οικογένειά μου που με στήριξε καθόλη τη διάρκεια και μου

έδινε κουράγιο, στους οποίους και αφιερώνεται η διατριβή.

Περίληψη

Τα δίκτυα Πέμπτης και επόμενης Γενιάς (Beyond 5G - B5G) αναμένεται να μεταμορφώσουν
τις κινητές επικοινωνίες, επιτρέποντας την ενσωμάτωση ανθρώπων, συσκευών (Internet of
Things - IoT) και αισθητήρων σε ψηφιακά-φυσικά περιβάλλοντα, πραγματοποιώντας τελικά
την έννοια του Υπερδικτύου των Πραγμάτων (Internet of Everything - IoE). ΄Ενας βασικός
παράγοντας που διευκολύνει αυτή τη μετάβαση είναι η σύγκλιση της Υπολογιστικής Νέφους

(cloud computing) προς το πεδίο των κινητών συσκευών, που αναφέρεται ως Υπολογιστικό
Συνεχές (compute continuum). Αυτό διευκολύνει την ανταλλαγή δεδομένων, την επεξεργα-
σία και τη λήψη αποφάσεων σε όλους τους τομείς του δικτύου, από το νέφος και την άκρη

του δικτύου (Edge), φτάνοντας έως και τις συσκευές σε επίπεδο χρήστη (Extreme-Edge).

Η Τεχνητή Νοημοσύνη και η Μηχανική Μάθηση (Artificial Intelligence/Machine Learn-
ing - AI/ML) παίζουν κεντρικό ρόλο σε αυτή την εξέλιξη. Από τους τομείς της Βιομηχανίας
5.0 και της αυτοκίνησης μέχρι τη διασκέδαση, την εκπαίδευση και την υγειονομική περίθαλ-

ψη, οι τεχνολογίες αυτές έχουν εισαγάγει καινοτόμες λύσεις που επιτρέπουν σε υπολογιστικά

συστήματα να μαθαίνουν από τα περιβαλλοντικά δεδομένα, καθιστώντας τα δυνατά σε πλήρη

αυτονομία με ικανότητα λήψης αποφάσεων χωρίς την ανθρώπινη παρέμβαση.

Παραδοσιακά, η Τεχνητή Νοημοσύνη σε περιβάλλοντα δικτύου υλοποιείται με κεντρικο-

ποιημένο τρόπο, με τη συλλογή και επεξεργασία δεδομένων να πραγματοποιούνται σε κεντρικά

υπολογιστικά νέφη. Ωστόσο, οι τελευταίες έρευνες έχουν στρέψει την προσοχή τους προς

τις κατανεμημένες λύσεις, ώστε να αξιοποιηθούν τα δεδομένα που παράγονται από τις κινητές

συσκευές. Σε αντίθεση με την Κεντρικοποιημένη Μάθηση (Centralized Learning - CL), οι
μέθοδοι Κατανεμημένης Μάθησης, όπως η Συνεργατική Μάθηση (Federated Learning - FL),
μεταφέρουν τον υπολογιστικό φόρτο στις συσκευές, προσφέροντας οφέλη όπως η επεκτασι-

μότητα, η μείωση κόστους και η προστασία της ιδιωτικότητας των δεδομένων των χρηστών.

Η υπάρχουσα έρευνα για την Κατανεμημένη Μάθηση επικεντρώνεται κυρίως στην απόδοση

(ακρίβεια) των εκπαιδευμένων μοντέλων, αγνοώντας συχνά τις πρακτικές πτυχές, όπως η

επίδραση στην κατανάλωση πόρων του δικτύου. Η παρούσα διατριβή επιδιώκει να καλύψει αυτά

τα κενά ερευνώντας την εφαρμογή των σχημάτων Κατανεμημένης Μάθησης από την πλευρά

του συστήματος. Συγκεκριμένα, εξετάζει τις εφαρμογές Αυτόνομης και Διασυνδεδεμένης

Κινητικότητας στον τομέα της αυτοκινητοβιομηχανίας, οι οποίες έχουν αυστηρές απαιτήσεις

τόσο ως προς την απόδοση του δικτύου (π.χ. καθυστερήσεις) όσο και ως προς την απόδοση

των εφαρμογών (π.χ. ασφάλεια).

Ξεκινώντας, πραγματοποιούμε μια συγκριτική αξιολόγηση της απόδοσης μεταξύ Κεντρι-

κοποιημένης και Συνεργατικής Μάθησης, αναλύοντας την αποδοτικότητα της εκπαίδευσης και

την κατανάλωση πόρων σε όλο το φάσμα ενός δικτύου: τους χρήστες, το δίκτυο και τις υποδο-

μές στο υπολογιστικό νέφος και την άκρη του δικτύου. Εξετάζουμε το πολύπλοκο πρόβλημα

της επιλογής του σχήματος Μηχανικής Μάθησης, λαμβάνοντας υπόψη διάφορες παραμέτρους

και περιορισμούς του συστήματος, συμπεριλαμβανομένων και των παραμέτρων δικτύου και

κινητικότητας, καθώς και μετρικών Μηχανικής Μάθησης (π.χ. σύγκλιση).

Στη συνέχεια, βασιζόμενοι στις νέες τεχνικές της Συνεχούς Μηχανικής Μάθησης, εξε-

9

10 Περίληψη

τάζουμε το φαινόμενο της Μετατόπισης Εννοιών, δηλαδή το πώς οι αλλαγές στις κατανομές

δεδομένων των χρηστών με την πάροδο του χρόνου, επηρεάζουν την απόδοση των κατα-

νεμημένων μοντέλων μάθησης, ιδίως σε κινητά και δίκτυα οχημάτων. Αυτά τα δίκτυα είναι

εκ φύσεως δυναμικά και ταχέως μεταβαλλόμενα, άρα και επιρρεπή στο φαινόμενο της Μετα-

τόπισης Εννοιών. Στη συνέχεια της διερεύνησης, προτείνουμε καινοτόμες τεχνικές για τη

διαχείριση της Μετατόπισης Εννοιών με τρόπο αποδοτικό ως προς τους πόρους του δικτύου.

Τέλος, επικυρώνουμε τα θεωρητικά ευρήματά μας μέσω πραγματικών δοκιμών. Αρχικά,

διεξάγουμε μια εκστρατεία μετρήσεων μεγάλης κλίμακας για τη συλλογή δεδομένων ποιότητας

υπηρεσίας και κινητικότητας χρηστών στο δικτύου, τα οποία στη συνέχεια χρησιμοποιούνται

για την υλοποίηση μιας πρακτικής εφαρμογής Συνεργατικής Μάθησης: την κατανεμημένη

πρόβλεψη παραμέτρων του δικτύου. Το πλαίσιο μας επεκτείνεται για τη διαχείριση και ενορ-

χήστρωση πολλαπλών υπηρεσιών Συνεργατικής Μάθησης, εισάγοντας έναν ενορχηστρωτή

για συσκευές χρηστών που εκτελούν υπηρεσίες Μηχανικής και Συνεργατικής Μάθησης. Ο

ενορχηστρωτής αναπτύσσεται σε ένα πραγματικό δίκτυο Πέμπτης Γενιάς και αξιολογείται με

κινητές (εντός οχημάτων) και στατικές (εργαστηριακές) συσκευές. Τα αποτελέσματα επιδει-

κνύουν τη δυνατότητα διαχείρισης του κύκλου ζωής σε πολλαπλές υπηρεσίες, επισημαίνοντας

τη δυνατότητα εφαρμογής της Συνεργατικής Μάθησης σε μεγάλης κλίμακας περιβάλλοντα και

εφαρμογές Αυτόνομης και Διασυνδεδεμένης Κινητικότητας.

Λέξεις Κλειδιά

Κατανεμημένη Μάθηση, Συνεργατική Μάθηση, Δίκτυα Κινητών Επικοινωνιών, Εφαρμογές

Κινητικότητας

Abstract

5G networks and beyond (B5G) are expected to transform mobile communications, en-
abling the seamless integration of people, devices, and sensors (Internet of Things - IoT)
within cyber-physical environments, ultimately realizing the concept of the ”Internet-
of-Everything” (IoE). A key enabler of this transformation is the convergence of Cloud
Computing and the IoT domain, referred to as the 5G network and compute continuum.
This continuum facilitates data exchange, processing, and decision-making across all 5G
domains, from the cloud and network edge to the IoT domain, known as the Extreme-Edge.

Artificial Intelligence and Machine Learning (AI/ML) play a central role in this evolu-
tion. From Industry 5.0 and automotive sectors to infotainment, education, and e-health,
AI/ML technologies have introduced innovative solutions that allow computer systems to
learn from environmental data, enabling fully autonomous systems capable of decision-
making in a human-like manner.

Traditionally, AI/ML in network environments has been implemented in a centralized
manner, with data collection and processing occurring in central clouds. However, recent
research has shifted focus toward distributed solutions to leverage the data generated by
mobile client devices. Unlike Centralized Learning (CL), Distributed Learning (DML)
methods, such as Federated Learning (FL), offload computation to client devices, offering
benefits such as scalability, cost-efficiency, and privacy preservation for user data.

Existing research on DML primarily focuses on the performance (accuracy) of trained
models, often overlooking the practical aspects, such as the impact on underlying network
resource consumption. This dissertation seeks to address these gaps by investigating the
implementation of DML schemes from a systems perspective. Specifically, it examines the
Cooperative, Connected, and Automated Mobility (CCAM) applications in the automotive
domain, which have stringent requirements for both network performance (e.g., latency)
and application performance (e.g., safety).

To begin, we conduct an end-to-end performance comparison between CL and FL,
analyzing training efficiency and resource consumption across all network stakeholders:
clients, the network, and cloud/edge infrastructure. We explore the complex issue of ML
scheme selection, considering various system parameters and constraints, including net-
work and mobility conditions as well as AI/ML metrics (e.g., convergence). This analysis
identifies the trade-offs between critical parameters when choosing between CL and FL.

Next, inspired by ML operations (MLOps) and continuous learning, we examine how
concept drift—changes in data distributions over time—affects the performance of dis-
tributed ML models, particularly in mobile and vehicular networks like those used in
CCAM applications. These networks are highly dynamic and prone to drift. After un-
derstanding the impact of concept drift, we propose novel techniques to manage it in a
resource-efficient manner.

Finally, we validate our simulation-based findings through real-world testing. We first
conduct a large-scale measurement campaign to collect network Quality-of-Service (QoS)

11

12 Abstract

and mobility data, which is then used to demonstrate a practical FL application: dis-
tributed QoS prediction. Our framework is extended to manage and orchestrate multiple
FL services, introducing an orchestrator for Extreme-Edge and IoT devices performing
AI/ML tasks. This orchestrator is deployed on a commercial-grade 5G testbed and evalu-
ated using both mobile (in-vehicle) and static (lab-based) devices. The results demonstrate
the feasibility of lifecycle management for multiple services, particularly in the automotive
sector, showcasing the potential of FL in large-scale environments.

Keywords

Distributed Machine Learning, Federated Learning, Mobile Network, Vehicular Applica-
tions

Contents

Περίληψη 9

Abstract 11

Contents 14

List of Figures 15

List of Tables 17

Glossary 18

Εκτεταμένη Περίληψη 19

1 Foundations 27

1.1 Next-Generation networks landscape . 28

1.2 The role of Artificial Intelligence . 30

2 Centralized vs. Federated Learning comparison 33

2.1 Introduction . 33

2.2 Related work . 34

2.3 System model overview . 35

2.3.1 Network architecture and attributes 37

2.3.2 Client mobility pattern . 38

2.3.3 Client data acquisition and distribution 39

2.3.4 Device computational capacity . 40

2.3.5 Device energy consumption . 40

2.3.6 Machine Learning task . 41

2.3.7 Emulation environment process . 42

2.4 Simulation results . 43

2.4.1 Simulation setup and evaluation metrics 43

2.4.2 CL vs. FL: Energy-aware hyperparameter exploration 45

2.4.3 CL vs. FL: The effect of client data to model size ratio rdata 46

2.4.4 CL vs. FL: Convergence speed . 51

2.4.5 CL vs. FL: Varying the number of participating clients 53

2.4.6 CL vs. FL: Effect of data heterogeneity 54

2.5 Conclusion . 55

13

14 Contents

3 Federated Learning in the course of time 57
3.1 Introduction . 57
3.2 Related work . 58
3.3 System architecture . 60

3.3.1 Vanilla Federated Learning . 60
3.3.2 Concept drift detection and mitigation 62
3.3.3 The Drift-Resilient Resource-Aware (DareFL) algorithm 64

3.4 Simulation environment . 65
3.4.1 The use-case of pQoS . 66
3.4.2 pQoS formulation as an ML task . 67
3.4.3 Generating pQoS datasets with concept drift 68
3.4.4 Distributed ML simulator . 70

3.5 Simulation-based evaluation . 70
3.5.1 Evaluation methodology . 70
3.5.2 Evaluation results . 71

3.6 Conclusion . 76

4 Practical implementation 79
4.1 Introduction . 79
4.2 pQoS measurements . 79

4.2.1 Motivation . 79
4.2.2 Related work . 80
4.2.3 Measurement setup and data collection 81
4.2.4 Data analysis and statistics . 85
4.2.5 Potential usage and limitations . 87

4.3 Distributed pQoS . 88
4.3.1 Problem statement and evaluation methodology 88
4.3.2 QoS Prediction . 88

4.4 5G Testbed implementation . 89
4.4.1 Motivation . 89
4.4.2 Related work . 91
4.4.3 Experimental testbed setup . 91
4.4.4 Implementation of distributed pQoS 94

4.5 5G Testbed experiments . 95
4.5.1 Evaluation methodology . 95
4.5.2 Orchestration at the Extreme-Edge 96

4.6 Conclusions . 98

5 Conclusion 101
5.1 Key takeaways . 101
5.2 Publications . 102

5.2.1 Journal/Magazine Articles . 102
5.2.2 Peer-reviewed Conference/Workshop papers 102
5.2.3 Under preparation/submission . 103

List of Figures

1.1 The compute continuum . 29

1.2 A neural network model’s architecture . 31

1.3 Centralized Learning (CL) . 32

1.4 Federated Learning (FL) . 32

2.1 (a) Centralized (CL) and Federated Learning (CL) architecture (b) Network
architecture . 36

2.2 ML hyperparameter tuning: Number of epochs 45

2.3 ML hyperparameter tuning: Batch size and Learning Rate 45

2.4 Testing accuracy and normalized traffic overhead w.r.t. data to model ratio 46

2.5 Normalized traffic loss w.r.t. data to model ratio 47

2.6 (a) Total and (b) mean client energy consumption w.r.t. data to model ratio 48

2.7 Client energy consumption w.r.t. data to model ratio, broken down to
processing (proc) and transmission/reception (trx) for (a) LTE and (b)
WIFI radio access technologies. 48

2.8 Client energy consumption w.r.t. data to model ratio, broken down to
successful (succ) and failed (fail) communication 49

2.9 Core and cloud energy consumption w.r.t. data to model ratio 50

2.10 End-to-end energy consumption for all network stakeholders 50

2.11 Evolution of accuracy and traffic overhead across time 52

2.12 Evolution of energy consumption in the (a) clients- and (b) cloud-side across
time . 52

2.13 Impact of increasing the number of participating clients per round 53

2.14 Effect of client data size (e.d.) and content (i.i.d.) variations 54

3.1 Vanilla FL framework . 60

3.2 The concept of predictive QoS (pQoS) - 5GAA 66

3.3 Synthetic dataset generation: (a) import of real world map and (b) network
and mobility co-simulation . 68

3.4 Effects of drifts in client throughput: (a) probability density function and
(b) average throughput . 69

3.5 CL vs. FL pQoS: (a) RMSE and (b) Communication cost comparison . . . 72

3.6 CL vs. FL pQoS: Energy cost comparison 72

3.7 RMSE comparison for: (a) Sc1 and (b) Sc2 73

3.8 Sc1 - Communication costs . 75

3.9 Energy consumption for Sc1 in the (a) clients and (b) the cloud side. 75

3.10 Drift detection comparison . 76

4.1 Martti research vehicle . 83

15

16 List of Figures

4.2 Software architecture . 83
4.3 Spatial effects on QoS (DL Throughput) across the measurement area . . . 86
4.4 NordicDat feature correlation . 86
4.5 Temporal autocorrelation . 87
4.6 Feature dependencies . 87
4.7 DL Throughput inference . 89
4.8 Delay inference . 89
4.9 FL horizons: DL Throughput . 89
4.10 FL horizons: Delay . 89
4.11 CL vs. FL (DL Throughput) . 89
4.12 CL vs. FL (Delay) . 89
4.13 System architecture and software stack . 92
4.14 Testbed hardware and network setup . 94
4.15 Distributed pQoS using Federated Learning 95
4.16 Number of rounds: Accuracy . 96
4.17 Number of rounds: Resource cost . 96
4.18 Number of EEDs: Accuracy . 97
4.19 Number of EEDs: Data volume . 97
4.20 Number of EEDs: Energy . 97
4.21 CPU stress: Setup . 98
4.22 CPU stress: Accuracy . 98
4.23 CPU stress: Energy . 98
4.24 RAM stress: Performance test . 98

List of Tables

2.1 Research directions in ML schemes comparison 34
2.2 Nomenclature of involved quantities . 37
2.3 Effect of rdata on CL/FL performance . 51

3.1 CL vs. FL pQoS accuracy (horizon=6 sec) 72
3.2 Comparison of pQoS FL algorithms accuracy under drift, before drift (Round

1-30) (horizon=6 sec) . 73
3.3 Comparison of pQoS FL algorithms accuracy under drift, during drift (Round

31-37) (horizon=6 sec) . 73
3.4 Comparison of pQoS FL algorithms accuracy under drift, after drift (Round

38-60) (horizon=6 sec) . 74

4.1 Comparison of public cellular QoS datasets 82
4.2 Description of dataset values . 84
4.3 Extreme-Edge Orchestrator (EEO) input criteria 93
4.4 Testbed device specifications . 94

17

Glossary

Abbreviation English term Greek term

5G Fifth Generation (Mobile Networks) Πέμπτη Γενιά (Κινητά Δίκτυα)

AI Artificial Intelligence Τεχνητή Νοημοσύνη

AP Access Point Σημείο Πρόσβασης

B5G Beyond Fifth Generation Πέρα από την Πέμπτη Γενιά (Κινητά Δίκτυα)

BS Base Station Σταθμός Βάσης

CCAM Cooperative, Connected, and Automated Mobility Αυτόνομη και Διασυνδεδεμένη Κινητικότητα

CL Centralized Learning Κεντρικοποιημένη Μάθηση

DC Data Center Κέντρο Δεδομένων

DML Distributed Machine Learning Κατανεμημένη Μηχανική Μάθηση

EED Extreme Edge Device Συσκευή μετά την ΄Ακρη του Δικτύου (συσκευή χρήστη)

FL Federated Learning Συνεργατική Μάθηση

GPU Graphics Processing Unit Μονάδα Επεξεργασίας Γραφικών

IoE Internet of Everything Υπερδίκτυο των Πραγμάτων

IoT Internet of Things Διαδίκτυο των Πραγμάτων

MEC Mobile Edge Computing Υπολογιστικοί Πόροι στην ΄Ακρη του Δικτύου

ML Machine Learning Μηχανική Μάθηση

MLOps Machine Learning Operations Διαδικασίες Μηχανικής Μάθησης

NPU Neural Processing Unit Μονάδα Επεξεργασίας Νευρώνων

pQoS Predictive Quality of Service Προβλεπόμενη Ποιότητα Υπηρεσίας

QoS Quality of Service Ποιότητα Υπηρεσίας

SL Standard Learning Τυπική Μάθηση

TPU Tensor Processing Unit Μονάδα Επεξεργασίας Τανυστών

UE User Equipment Συσκευή Χρήστη

Εκτεταμένη Περίληψη

Οι κινητές τηλεπικοινωνίες υπεισέρχονται σε μια φάση ραγδαίων μεταβολών και μετασχηματι-

σμού με την έλευση των δικτύων Πέμπτης και επόμενης Γενιάς (Beyond 5G - B5G), τα οποία
αναμένεται να οδηγήσουν σε πλήρως διασυνδεδεμένα οικοσυστήματα, όπου οι άνθρωποι, οι

συσκευές και οι αισθητήρες θα αλληλεπιδρούν μέσα από έξυπνα συστήματα.

Ακρογωνιαίο λίθο προς αυτήν την κατεύθυνση αποτελεί η ενοποίηση της Υπολογιστικής

Νέφους (Cloud Computing) με το Διαδίκτυο των Πραγμάτων (Internet of Things - IoT),
δημιουργώντας ένα ενιαίο πλαίσιο διασύνδεσης και αξιοποίησης των υπολογιστικών πόρων του

δικτύου. ΄Ετσι, η αρχιτεκτονική αυτή επιτρέπει τη ροή δεδομένων, την ανάλυση και τη λήψη

αποφάσεων σε πραγματικό χρόνο, σε όλο το εύρος του δικτύου, από το Υπολογιστικό Νέφος

και τα ΄Ακρα του δικτύου (Edge), έως τις συσκευές σε επίπεδο χρήστη (Extreme-Edge).

Ενισχυτικά σε αυτήν την τάση λειτουργούν και οι ταχέως αναπτυσσόμενες τεχνολογίες

στον τομέα της Τεχνητής Νοημοσύνης (Artificial Intelligence - AI) και της Μηχανικής Μάθη-
σης (Machine Learning - ML). Χάρη στους προηγμένους αλγορίθμους που αναπτύσσονται
μέσω των τεχνολογιών αυτών, προωθείται ακόμα πιο έντονα η αυτοματοποίηση, η ψηφιοποίη-

ση, η λήψη αποφάσεων και η αλληλεπίδραση ανθρώπου-μηχανής σε μια σειρά κλάδους, όπως

η βιομηχανία, η αυτοκίνηση, οι υπηρεσίες υγείας και εκπαίδευσης, οι μεταφορές, η ψυχαγωγία

κ.α.

Εξάλλου οι αρχές που πρεσβεύει η Τεχνητή Νοημοσύνη, δηλαδή η ολοένα και μεγαλύτερη

δυνατότητα των υπολογιστικών συστημάτων να μαθαίνουν και να προσαρμόζονται, επιτρέπουν

στα συστήματα αυτά να προβλέπουν τις ανάγκες των χρηστών, να βελτιστοποιούν τη χρήση

πόρων και να λειτουργούν με πρωτοφανή αυτονομία. Πέρα όμως από τη βελτίωση της απόδο-

σης των δικτύων, η συνέργεια της Τεχνητής Νοημοσύνης με τα δίκτυα Πέμπτης και επόμενης

γενιάς αναμένεται να προωθήσει την εμφάνιση καινοτόμων υπηρεσιών και εφαρμογών, μετα-

μορφώνοντας θεμελιωδώς τον τρόπο με τον οποίο η κοινωνία αλληλεπιδρά με την τεχνολογία.

Η παρούσα διατριβή έχει ως σκοπό να φωτίσει αυτή ακριβώς τη συνέργεια και να ανα-

λύσει τις καινοτόμες τεχνολογίες της Τεχνητής Νοημοσύνης και της Μηχανικής Μάθησης

σε δικτυακά περιβάλλοντα, εστιάζοντας κατά βάση σε εφαρμογές στον τομέα της Αυτόνο-

μης και Διασυνδεδεμένης Κινητικότητας όπως η αυτόνομη οδήγηση, η συνεργατική αντίληψη

των οχημάτων κ.α. Για το σκοπό αυτό η διατριβή διαιρείται σε τρεις βασικές θεματικές ε-

νότητες. Στην πρώτη, πραγματοποιείται μια εκτεταμένη ανάλυση των καινοτόμων τεχνικών

Κατανεμημένης Μηχανικής Μάθησης σε δικτυακά περιβάλλοντα και σύγκριση αυτών με τις

(παραδοσιακές) κεντρικοποιημένες τεχνικές. ΄Επειτα, εστιάζουμε στη συμπεριφορά των τεχνι-

κών αυτών στο χρόνο, μελετώντας πώς επιδρούν οι αλλαγές των δεδομένων των χρηστών σε

τέτοια συστήματα. Τέλος, υλοποιούμε τα θεωρητικά αποτελέσματα ως πρωτότυπες λύσεις σε

δικτυακά περιβάλλοντα και εφαρμογές προς εξαγωγή συμπερασμάτων σε πραγματικό επίπεδο

χρηστών.

Εισαγωγικές ΄Εννοιες

Συγκεκριμένα ξεκινώντας από την Ενότητα 1, περιγράφουμε τις εισαγωγικές έννοιες, προς

διευκόλυνση του αναγνώστη για την περιγραφή των τεχνικών χαρακτηριστικών της Μηχανικής

Μάθησης σε περιβάλλοντα δικτύου, που θα ακολουθήσει στις επόμενες ενότητες.

Αρχικά δίνουμε τους βασικούς ορισμούς για τα διάφορα επίπεδα και τις συσκευές ενός δι-

κτύου που αφορούν τις εφαρμογές που μελετάμε. Παρουσιάζουμε τις σύγχρονες εξελίξεις και

ιδιαίτερα τις επαναστατικές αλλαγές που επιφέρουν τα Δίκτυα Πέμπτης και επόμενης Γενιάς

στις κινητές επικοινωνίες, την επίπτωση αυτών στις συσκευές των χρηστών, αλλά ταυτόχρο-

να και τις νέες ευκαιρίες που παρουσιάζονται καθώς οι συσκευές αυτές αποκτούν μεγάλη

υπολογιστική ικανότητα. Σε αυτό το πλαίσιο αναλύουμε και την έννοια του Υπολογιστικού

Συνεχούς (compute continuum), ως μια συνένωση των υπολογιστικών κόμβων του δικτύου.

Εν συνεχεία προχωράμε με την εισαγωγή των εννοιών της Τεχνητής Νοημοσύνης που θα

μας απασχολήσουν στα επόμενα κεφάλαιο. Η Τεχνητή Νοημοσύνη και η Μηχανική Μάθηση

έχουν αναδειχθεί ως λύσεις σε μια σειρά από σύνθετα προβλήματα, τα οποία δεν ήταν δυνατό

να αντιμετωπιστούν με τις παραδοσιακές αναλυτικές τεχνικές. Για αυτό το λόγο η εφαρμογή

αυτών είναι πλέον ευρέως διαδεδομένη π.χ., σε κινητές εφαρμογές, στα αυτόνομα οχήματα, σε

περιβάλλοντα έξυπνων αισθητήρων και μικροσυσκευών κ.α.

Σε δικτυακά περιβάλλοντα όπου υπάρχει το στοιχείο της κινητικότητας, μια βασική πρόκλη-

ση είναι ότι τα δεδομένα (απαραίτητα για τα μηχανικά μοντέλα) παράγονται στις συσκευές των

χρηστών με κατανεμημένο τρόπο, ενώ η αναγκαία (για την εκπαίδευση των μοντέλων) υπολο-

γιστική ισχύς κατά βάση εδράζεται σε κεντρικοποιημένους διακομιστές π.χ., σε υπολογιστικά

κέντρα.

Προκειμένου να αρθεί αυτός ο περιορισμός, εφαρμοζόταν παραδοσιακά η λύση της Κε-

ντρικοποιημένης Μάθησης (Centralized Machine Learning - CL). Σε αυτήν την περίπτωση
οι χρήστες μεταφέρουν τα δεδομένα τους στον κεντρικό διακομιστή, όπου και εκπαιδεύονται

έπειτα τα μοντέλα. Αυτή η λύση ωστόσο αποτελεί μονολιθική προσέγγιση, καθώς αφενός

παραβιάζει την ιδιωτικότητα των δεδομένων χρηστών και αφετέρου μπορεί να υπερφορτώσει

το δίκτυο, εφόσον απαιτεί συνεχή μεταφορά μεγάλου όγκου δεδομένων.

Για να αντιμετωπιστούν τέτοια ζητήματα, αναδείχθηκαν οι τεχνικές της Κατανεμημένης

Μάθησης, με χαρακτηριστικά παραδείγματα την Υβριδική, την Ομότιμη και την Συνεργατι-

κή Μάθηση. Η τελευταία, η οποία προέρχεται από την Google, σχεδιάστηκε με σκοπό την
βελτίωση της ιδιωτικότητας των χρηστών κατά την εκπαίδευση. Σε ένα σχήμα Συνεργατι-

κής Μάθησης (Federated Machine Learning - FL), ο κεντρικός διακομιστής κατανέμει τα
προς εκπαίδευση μοντέλα στους χρήστες, οι οποίοι τα εκπαιδεύουν χρησιμοποιώντας τα δεδο-

μένα τους. Εν συνεχεία, τα επιμέρους μοντέλα των χρηστών συγκεντρώνονται στον κεντρικό

διακομιστή, όπου και συνενώνονται σε ένα ανανεωμένο κεντρικό μοντέλο. Η διαδικασία περι-

λαμβάνει πολλαπλές επαναλήψεις ωσότου επιτευχθεί (ικανοποιητική) σύγκλιση του μοντέλου.

Με αυτόν τον τρόπο, τα δεδομένα παραμένουν στον χρήστη σε κάθε περίπτωση και άρα δια-

σφαλίζεται η ιδιωτικότητα.

Κεντρικοποιημένες και Κατανεμημένες τεχνικές Μηχανικής Μάθησης

Στην Ενότητα 2 αναλύουμε τις τεχνικές Κατανεμημένης Μάθησης, συγκρίνοντάς με τις α-

ντίστοιχες (εδραιωμένες) τεχνικές της Κεντρικοποιημένης Μάθησης και αναδεικνύουμε τα

πλεονεκτήματα και τα μειονεκτήματα κάθε τεχνικής τόσο από τη σκοπιά της επίδοσης των

μοντέλων, αλλά παράλληλα και ως προς αποτύπωμά τους στην κατανάλωση των πόρων του

δικτύου, προκειμένου να επιτευχθεί η εκπαίδευση.

Συγκεκριμένα πιάνουμε το νήμα από την προηγούμενη ενότητα, όπου επεξηγήθηκαν οι δια-

φορετικές τεχνικές Μηχανικής Μάθησης σε δικτυακά περιβάλλοντα και ορίζουμε το πρόβλημα

της επιλογής τεχνικής Μηχανικής Μάθησης ως εξής: ποια είναι η βέλτιστη επιλογή σχήματος

Μηχανικής Μάθησης (μεταξύ Κεντρικοποιημένης και Συνεργατικής) προκειμένου να εκπαι-

δευτούν ακριβή μοντέλα, με τους περιορισμούς που θέτει το δίκτυο ως προς την κατανάλωση

πόρων.

Αρχικά πραγματοποιούμε αναλυτική βιβλιογραφική ανασκόπηση για το συγκεκριμένο πρόβλη-

μα ως ερευνητικό αντικείμενο. Η ανασκόπηση κατέληξε στο ότι οι έως τώρα ερευνητικές

εργασίες που αφορούν τη σύγκριση των τεχνικών Μηχανικής Μάθησης εστιάζουν κατά βάση

(είτε με θεωρητικό είτε με πειραματικό τρόπο) στην επίδοση των παραγόμενων μοντέλων,

αγνοώντας την επίδραση του κάθε σχήματος στην κατανάλωση των δικτυακών πόρων. Επι-

προσθέτως, οι περισσότερες εργασίες δεν λαμβάνουν υπόψιν την επίδραση των βασικών πα-

ραμέτρων του συστήματος στην εκπαίδευση των μοντέλων, όπως για παράδειγμα τις πιθανές

διαφοροποιήσεις στις κατανομές των δεδομένων των χρηστών ανά περίπτωση, τη διαθεσι-

μότητα των χρηστών (η οποία δεν είναι δεδομένη, ιδιαίτερα σε ένα δικτυακό περιβάλλον), τις

καθυστερήσεις στην επικοινωνία, την απώλεια πακέτων δεδομένων κ.α.

Δεδομένης της πολυπλοκότητας του προβλήματος λόγω των διαφορετικών απαιτήσεων

που θέτουν οι διάφοροι παράγοντες στο δίκτυο π.χ., οι χρήστες, οι διαχειριστές του δικτύου

και των υπολογιστικών κόμβων, εστιάζουμε στα ακόλουθα ερωτήματα: 1) Πώς επηρεάζει

η επιλογή των υπερ-παραμέτρων της Μηχανικής Μάθησης την κατανάλωση των πόρων στα

προς σύγκριση σχήματα Μηχανικής Μάθησης, 2) Πώς επηρεάζει ο λόγος του μεγέθους των

δεδομένων προς το μέγεθος του μηχανικού μοντέλου την ακρίβεια των μοντέλων και την κατα-

νάλωση σε κάθε σχήμα, 3) Πώς συμπεριφέρεται κάθε σχήμα στο χρόνο (ταχύτητα σύγκλισης),

4) Ποια η επεκτασιμότητα κάθε σχήματος (κατά την αύξηση των χρηστών) και 5) Πώς επη-

ρεάζει κάθε σχήμα η ανομοιογένεια στα δεδομένα των χρηστών.

Προκειμένου να απαντηθούν τα παραπάνω ερωτήματα, κατασκευάζεται ένα μοντέλο προ-

σομοίωσης δικτύου και υπολογιστικών πόρων, το οποίο περιλαμβάνει όλες τις οντότητες του

δικτύου, από τον τελικό χρήστη μέχρι τον κεντρικό διακομιστή. Στοχεύοντας στην προσομο-

ίωση ενός ρεαλιστικού συστήματος, το μοντέλο δικτύου παραμετροποιείται με βάση μετρήσεις

από πραγματικά δικτυακά συστήματα και από τις τιμές των κατασκευαστών σε εμπορικές

δικτυακές συσκευές. Θεωρούμε δύο χαρακτηριστικές περιπτώσεις για το δίκτυο α) ένα πα-

ράδειγμα κινητών επικοινωνιών Long-Term Evolution (LTE) και β) ένα ασύρματο τοπικό
δίκτυο τύπου wireless local area (WLAN). Η κινητικότητα των χρηστών για κάθε περίπτωση
εισάγεται στο μοντέλο μέσω ιχνών κινητικότητας (mobility traces), από προηγούμενες ερευνη-
τικές εργασίες. Η διαδικασία της εκπαίδευσης στο σύστημα προσομοιώνεται μέσω λογισμικού

Κατανεμημένης Μηχανικής Μάθησης, βασισμένο σε γλώσσα προγραμματισμού Python, το
οποίο παραθέτουμε στην ερευνητική κοινότητα για την αναπαραγωγή των αποτελεσμάτων, ως

λογισμικό ανοιχτού κώδικα (open-source).

Με βάση τις προσομοιώσεις προκύπτουν μια σειρά από αποτελέσματα για τη σύγκριση των

δύο σχημάτων Μηχανικής Μάθησης. Αρχικά αναδεικνύεται η ανάγκη παραμετροποίησης των

υπερ-παραμέτρων της Μηχανικής Μάθησης ιδιαίτερα για την περίπτωση της Συνεργατικής

Μάθησης, προκειμένου να επιτευχθεί ικανοποιητική σύγκλιση. Στη συνέχεια παρουσιάζουμε

το πώς ο λόγος των δεδομένων προς το μέγεθος του μοντέλου καθορίζει την κατανάλωση των

πόρων του δικτύου καθώς και τα διαστήματα τιμών του λόγου αυτού όπου υπερτερεί το κάθε

σχήμα ως προς την ακρίβεια εκπαίδευσης και την κατανάλωση πόρων. Η ανάλυση για όλες τις

παραμέτρους του δικτύου παρουσιάζεται στον Πίνακα που ακολουθεί. Αναδεικνύεται επίσης

η ικανότητα της Κεντρικοποιημένης Μάθησης να συγκλίνει (έως και 13 φορές) ταχύτερα σε

σχέση με τη Συνεργατική, ωστόσο δημιουργώντας τοπικές εκρήσεις (bursts) στην κίνηση δε-
δομένων του δικτύου. ΄Οσον αφορά την επεκτασιμότητα, η αύξηση των χρηστών επιταχύνει τη

σύγκλιση της Συνεργατικής Μάθησης μέχρι και κατά 83%, με αμηλετέο κόστος στην τελική

ακρίβεια του παραγόμενου μοντέλου. Τέλος, δείχνουμε την υπεροχή της Κεντρικοποιημένης

Μάθησης, όταν στους χρήστες επικρατεί μεγαλός βαθμός ανομοιογένειας δεδομένων, το ο-

ποίο αποτελεί πρόκληση στην περίπτωση της Συνεργατικής Μάθησης, με ανάγκη περαιτέρω

διερεύνησης για πιθανούς τρόπους αντιμετώπισης σε ένα πραγματικό σύστημα.

Συνεργατική Μάθηση προϊόντος του χρόνου

Εφόσον στην προηγούμενη ενότητα διακρίναμε τα πλεονεκτήματα και τα μειονεκτήματα της

Κατανεμημένης έναντι της Κεντρικοποιημένης Μάθησης, στην Ενότητα 3 εστιάζουμε στην

περίπτωση της Κατανεμημένης και ιδιαίτερα στην Συνεργατική Μάθηση και εξετάζουμε τη

Επίδραση του λόγου των δεδομένων προς το μέγεθος του μοντέλου rdata στην επίδοση και
την κατανάλωση πόρων για την Κεντρικοποιημένη (CL) και την Συνεργατική Μάθηση (FL)

Μετρική CL FL Προτεινόμενο

σχήμα όταν

(rdata → 0)

Προτεινόμενο

σχήμα όταν

(rdata → ∞)

Ακρίβεια Σταθερή Σταθερή Κανένα Κανένα

Κατανάλωση (Εύρος Ζώνης) Σταθερή Εκθετική Μείωση CL FL

Απώλεια πακέτων Σταθερή Γραμμική Μείωση CL Κανένα

Συνολική Κατανάλωση Ενέργειας

(Χρήστες)

Σταθερή Γραμμική Αύξηση CL CL

Κατανάλωση Ενέργειας ανά Χρήστη Σταθερή Γραμμική Αύξηση CL CL

Απώλεια Ενέργειας Σταθερή Γραμμική Αύξηση CL CL

Συνολική Κατανάλωση Ενέργειας

(Δίκτυο)

Σταθερή Εκθετική Μείωση CL FL

Συνολική Κατανάλωση Ενέργειας

(Νέφος)

Σταθερή Εκθετική Μείωση FL FL

συμπεριφορά αυτής στο χρόνο. Αναδεικνύουμε τις προκλήσεις που προκύπτουν όταν σε ένα

πραγματικό σύστημα τα δεδομένα των χρηστών αλλάζουν στο χρόνο, την επίδραση αυτών των

αλλαγών στα μοντέλα Συνεργατικής Μάθησης, καθώς και τρόπους αντιμετώπισης τέτοιων

φαινομένων.

Κίνητρο για την αναζήτηση αυτή αποτελεί η έννοια της Συνεχούς Μάθησης, η οποία

επιτρέπει στα μοντέλα να εκπαιδεύονται περιοδικά και να χρησιμοποιούνται σε βάθος χρόνου.

Αυτό συμβαίνει διότι σε ένα πραγματικό σύστημα τα δεδομένα συλλέγονται σταδιακά (σε

χρονικό ορίζοντα ημερών, εβδομάδων ή και μηνών), άρα το σύνολο των δεδομένων δεν είναι

διαθέσιμο εξαρχής για την εκπαίδευση. Στο πλαίσιο αυτό, προκύπτει και το ζήτημα της

Μετατόπισης Εννοιών, δηλαδή της αλλαγής των στατιστικών ιδιοτήτων στις κατανομές των

δεδομένων των χρηστών, λόγω φαινομένων εποχικότητας, αλλαγών σε τάσεις και συνήθειες,

κτλ.

Η Μετατόπιση Εννοιών ως φαινόμενο μπορεί να επιφέρει μεγάλες μεταπτώσεις στην α-

ποτελεσματικότητα των εκπαιδευμένων μοντέλων αν δεν αντιμετωπιστεί καταλλήλως. Σε

κεντρικοποιημένα περιβάλλοντα, όπου υπάρχει πρόσβαση στα δεδομένα των χρηστών το φαι-

νόμενο αυτό έχει μελετηθεί ευρέως και αντιμετωπίζεται μέσω στατιστικών τεχνικών. Στα

κατανεμημένα περιβάλλοντα όμως οι κεντρικοποιημένες λύσεις δεν μπορούν να εφαρμοστούν

καθώς α) τα δεδομένα των χρηστών προστατεύονται και άρα δεν είναι διαθέσιμα κεντρικά και

β) οι συσκευές των χρηστών έχουν περιορισμένη δυνατότητα επεξεργασίας σε σχέση με έναν

κεντρικό διακομιστή και άρα δεν μπορούν δεν μπορούν να εφαρμόσουν αποτελεσματικά τις δι-

άφορες τεχνικές αντιμετώπισης της Μετατόπισης Εννοιών. Το βασικά ερωτήματα που καλείται

να απαντήσει η παρούσα ενότητα είναι: α) Το πώς μπορεί να εντοπιστεί η Μετατόπιση Εννοιών

σε ένα περιβάλλον Συνεργατικής (κατανεμημένης) Μάθησης εγκαίρως και με ικανοποιητική

ακρίβεια και β) Το τι μέθοδοι αντιμετώπισης θα ακολουθηθούν για να μην επηρεαστούν τα

μοντέλα παρουσία Μετατόπισης Εννοιών, χωρίς παράλληλα η διαδιακασία αυτή να οδηγήσει

σε κατασπατάληση πόρων του δικτύου.

Για τα συγκεκριμένα ερωτήματα πραγματοποιήθηκε βιβλιογραφική ανασκόπηση και εντο-

πίστηκαν τρεις βασικές διαστάσεις/μέθοδοι στην υπάρχουσα βιβλιογραφία για την αντιμε-

τώπιση της Μετατόπισης Εννοιών: η Προσωποποιημένη Μάθηση, η Ασύχρονη Μάθηση και η

Συνεχής Μάθηση. Οι δύο πρώτες τεχνικές φαίνεται να αντιμετωπίζουν το φαινόμενο εις βάρος

της αύξησης της πολυπλοκότητας του συστήματος, το οποίο τις καθιστά μη εφαρμόσιμες σε

ένα πραγματικό σύστημα μάθησης σε δικτυακό περιβάλλον με χιλιάδες χρήστες-συσκευές. Η

Συνεχής Μάθηση από την άλλη μεριά καταφέρνει να μετριάσει το φαινόμενο καταφεύγοντας

στη συνεχόμενη εκπαίδευση, το οποίο όπως δείχνουμε και στα αποτελέσματα αργότερα οδηγεί

σε κατασπατάληση δικτυακών πόρων όπως ενέργεια, εύρος ζώνης, κ.α.

΄Εχοντας αναδείξει τις αδυναμίες των προηγούμενων λύσεων, στη συνέχεια παρουσιάζουμε

την καινοτόμο πρότασή μας για την αντιμετώπιση του φαινομένου της Μετατόπισης Εννοιών

στην Κατανεμημένη Μάθηση (αλγόριθμος DareFL). Ο αλγόριθμος που προτείνουμε είναι
σχεδιασμένος για υλοποίηση σε περιβάλλοντα με περιορισμένη πρόσβαση σε υπολογιστικούς

πόρους, όπως σε δικτυακές συσκευές ή σε επεξεργαστές σε (αυτόνομα) οχήματα. Διέπεται

από τις αρχές της Συνεργατικής Μάθησης σε σχέση με την προστασία της ιδιωτικότητας των

δεδομένων των χρηστών και αξιοποιεί ένα μηχανισμό ελέγχου για να ανιχνεύει την ύπαρξη

Μετατόπισης Εννοιών, βασιζόμενο (και επεκτείνοντας σε κατανεμημένα περιβάλλοντα) τον

γνωστό κεντρικοποιημένο αλγόριθμο Drift Detection Method (DDM). Εφόσον ανιχνευτεί η
Μετατόπιση Εννοιών, αυτή αντιμετωπίζεται μέσω μετ-εκπαίδευσης των μοντέλων (μέσω Συ-

νεργατικής Μάθησης), της οποίας όμως η διάρκεια καθορίζεται αυστηρά με βάση τη σύγκλιση,

ώστε να ελαττωθεί η συνολική κατανάλωση πόρων.

Προκειμένου να αξιολογηθεί ο προτεινόμενος αλγόριθμος, μελετάμε ως πρόβλημα Μη-

χανικής Μάθησης την περίπτωση της πρόβλεψης χρονοσειρών δικτυακών παραμέτρων π.χ.,

ρυθμός μετάδοσης (predictive Quality of Service - pQoS) από το χώρο της Αυτόνομης και
Διασυνδεδεμένης Κινητικότητας. Οι εφαρμογές των οχημάτων βασίζονται στη δικτυακή υ-

ποδομή προκειμένου να ανταλλάζουν δεδομένα και κρίσιμα μηνύματα, όπως για παράδειγμα

στην περίπτωση της αυτόνομης οδήγησης. Σε περίπτωση που το δίκτυο δεν μπορεί να καλύψει

τα αυστηρά κριτήρια που θέτουν οι εφαρμογές αυτές π.χ., ιδιαίτερα χαμηλές καθυστερήσεις

πακέτων, εγκυμονούνται κίνδυνοι ως προς την ορθή λειτουργία των εφαρμογών αυτών και

τελικά την ασφάλεια του χρήστη-οδηγού. Στην περίπτωση του pQoS το δίκτυο έχει τη δυνα-
τότητα να προβλέψει τέτοιες καταστάσεις στο εγγύς μέλλον και να ειδοποιήσει τις εφαρμογές,

οι οποίες με τη σειρά τους μπορούν να προσαρμόσουν τη λειτουργία τους με ασφαλή για το

χρήστη τρόπο π.χ., να μειώσουν την ταχύτητα του οχήματος ή να δώσουν τον έλεγχο ενός

αυτόνομου οχήματος στον χρήστη.

Με αυτήν την έννοια η πρόβλεψη των δικτυακών παραμέτρων αποτελεί βασικό εργαλε-

ίο του τομέα της Αυτόνομης και Διασυνδεδεμένης Κινητικότητας, ενώ παράλληλα πρόκειται

για χαρακτηριστική περίπτωση όπου τα δεδομένα των χρηστών (σχετικά με το δίκτυο, την

κινητικότητα των χρηστών, κα.) μεταβάλλονται με ραγδαίους ρυθμούς και απροσδιόριστους

τρόπους και άρα το φαινόμενο της Μετατόπισης Εννοιών έχει συνήθως μεγάλη ένταση και

συχνότητα, συμπέρασμα στο οποίο καταλήγει και η υπάρχουσα βιβλιογραφία.

Δεδομένης της έλλειψης pQoS δεδομένων με παραδείγματα Μετατόπισης Εννοιών σε
δίκτυα, επικεντρωνόμαστε στην παραγωγή τέτοιων δεδομένων μέσω λογισμικού παραγωγής

συνθετικών δικτυακών δεδομένων (OMNET++), το οποίο ενσωματώνει αντίστοιχο λογισμι-
κό κινητικότητας οχημάτων σε αστικό περιβάλλον (SUMO). Συγκεκριμένα μελετώνται δύο
σενάρια Μετατόπισης Εννοιών. Το πρώτο αναφέρεται σε αλλαγές στην υποδομή του δικτύου

(μείωση του αριθμού των σταθμών βάσης στην περιοχή εξυπηρέτησης των χρηστών), ενώ το

δεύτερο σε αλλαγές στην κινητικότητα των χρηστών-οχημάτων (μεταβολή των διαδρομών των

οχημάτων στην περιοχή κάλυψης).

Με αυτόν τον τρόπο επιτυγχάνουμε ρεαλιστική αναπαράσταση φαινομένων Μετατόπισης

Εννοιών στο δίκτυο και εξαγωγή των αντίστοιχων πακέτων δεδομένων προς επεξεργασία για

την περίπτωση του pQoS. Εν συνεχεία τα δεδομένα εισάγονται στον προσομοιωτή Κατανε-
μημένης Μάθησης που περιγράφηκε στην προηγούμενη ενότητα, όπου και συγκρίνουμε τον

προτεινόμενο αλγόριθμο Συνεργατικής Μάθησης παρουσία Μετατόπισης Εννοιών με άλλες

τρεις υπάρχουσες λύσεις στη βιβλιογραφία. Τόσο τα δεδομένα που παρήχθησαν όσο και το

λογισμικό (Συνεχούς) Συνεργατικής Μάθησης για την περίπτωση του pQoS διατίθενται στην
ερευνητική κοινότητα μέσω αποθετηρίου.

Στα αποτελέσματα που παρουσιάζουμε σε αυτήν την ενότητα, δείχνουμε ότι ο προτεινόμε-

νος αλγόριθμος επιτυγχάνει έγκαιρη διάγνωση της Μετατόπισης Εννοιών και αντιμετώπιση

αυτής εν συνεχεία. Συγκεκριμένα, η τελική ακρίβεια των μοντέλων είναι παρόμοια με αυτήν

των υπόλοιπων λύσεων (Συνεχούς Μάθησης) με διαφορές που κυμαίνονται εντός του ορίου

του 10%, για τα δύο σενάρια της προσομοίωσης. Παράλληλα, παρουσιάζουμε πώς ο αλγόριθ-

μος καταφέρνει να μειώσει τα κόστη επικοινωνίας (communication costs) για το δίκτυο (έως
και 76%), αλλά και ενεργειακής κατανάλωσης για τον κεντρικό διακομιστή (έως και 74%) και

τους χρήστες (έως και 68%), σε σχέση με τις υπάρχουσες λύσεις.

Τέλος, εξετάζουμε αποκλειστικά την ικανότητα ανίχνευσης της Μετατόπισης Εννοιών του

προτεινόμενου αλγόριθμου, ο οποίος επιτυγχάνει καλύτερη συνολική αποδόση έως και 9% σε

σχέση με τις υπάρχουσες λύσεις, καταναλώνοντας ωστόσο μέχρι και τρεις φορές λιγότερη ε-

νέργεια, ως αποτέλεσμα του σχετικά απλού τρόπου λειτουργίας της μεθόδου Drift Detection
Method (DDM) σε σχέση με τις υπάρχουσες λύσεις σύγκρισης των παραμέτρων των μηχα-
νικών μοντέλων. ΄Ολοι αυτοί οι παράγοντες καθιστούν τελικά τον αλγόριθμο DareFL ισάξιο
σε επίδοση αλλά αποδοτικότερη σε κόστος λύση, σε σχέση με τις υπάρχουσες μεθόδους.

Πρακτικές εφαρμογές Συνεργατικής Μάθησης

Παίρνοντας τη σκυτάλη από την προηγούμενη ενότητα που μελετήσαμε τη συμπεριφορά της

Συνεργατικής Μάθησης σε πραγματικά περιβάλλοντα τα οποία μεταβάλλονται στο χρόνο, στην

Ενότητα 4, προχωρούμε στην υλοποίηση των θεωρητικών αποτελεσμάτων που αναλύθηκαν

στην προηγούμενη ενότητα, επικεντρώνοντας την προσοχή στην εφαρμογή τους σε πραγματικά

συστήματα, τα οποία περιλαμβάνουν μεγάλης κλίμακας δικτυακά περιβάλλοντα και κινητές

συσκευές με ικανότητα επεξεργασίας δεδομένων.

Συγκεκριμένα, εστιάζουμε στην εφαρμογή της Συνεργατικής Μάθησης για την πρόβλε-

ψη παραμέτρων ποιότητας υπηρεσίας δικτύου (predictive Quality of Service - pQoS), όπως
αναλύθηκε στο προηγούμενο κεφάλαιο, και εξετάζουμε την υλοποίησή της σε περιβάλλοντα

Αυτόνομης και Διασυνδεδεμένης Κινητικότητας. Η μελέτη αυτή ξεκινά με τη συλλογή πραγ-

ματικών δεδομένων QoS, καθώς τέτοια δεδομένα δεν είναι διαθέσιμα στην υπάρχουσα βιβλιο-
γραφία. Για να καλύψουμε αυτό το κενό, δημιουργήσαμε το σύνολο δεδομένων NordicDat , το
οποίο περιλαμβάνει πραγματικά δεδομένα ποιότητας υπηρεσίας που συλλέχθηκαν κατά τη διάρ-

κεια μιας εκστρατείας μέτρησης σε τρεις ευρωπαϊκές χώρες: Φινλανδία, Σουηδία και Νορβηγία.

Το NordicDat περιλαμβάνει 25 ώρες δεδομένων οδήγησης (με διαφορετικές ταχύτητες) και
καταγράφει τόσο φυσικά χαρακτηριστικά όσο και χαρακτηριστικά του δικτύου, καθώς και κι-

νηματικά δεδομένα των οχημάτων. Οι μετρήσεις πραγματοποιήθηκαν κοντά σε εθνικά σύνορα,

προκειμένου να καταγραφεί η επίδραση της περιαγωγής (roaming) στην ποιότητα υπηρεσίας.
Αξιοσημείωτο επίσης είναι το γεγονός ότι το σύνολο δεδομένων περιλαμβάνει καταγραφές από

τεχνολογίες που αφορούν δίκτυα μετάδοσης Τέταρτης και Πέμπτης γενιάς.

Αρχικά πραγματοποιήθηκε στατιστική ανάλυση των δεδομένων προκειμένου να εξαχθούν

συμπεράσματα ως προς τις σχέσεις μεταξύ των παραμέτρων που καταγράφηκαν. Η ανάλυση

των δεδομένων αυτών αποκάλυψε ότι ενώ δεν υπάρχει ισχυρή γραμμική σχέση μεταξύ των

παραμέτρων, ο ρυθμός μετάδοσης καθόδου (Downlink Throughput) επηρεάζεται κυρίως από
την κινητικότητα των χρηστών, ενώ αντίστοιχα στην άνοδο (Uplink) καθοριστικό ρόλο πα-
ίζουν οι παράμετροι στο φυσικό επίπεδο (physical layer) του δικτύου. Στο πεδίο του χρόνου,
η παράμετρος της καθυστέρησης (delay) παρουσιάζει χαμηλή αυτοσυσχέτιση, σε αντίθεση με
τον ρυθμό μετάδοσης που παρουσιάζει υψηλή (μεγαλύτερη του 0.8) για διάστημα μέχρι και 50

δευτερόλεπτα. Τέλος παρατηρήθηκε πώς οι αλλαγές στην περιαγωγή, στα προφίλ ταχύτητας

και τις τεχνολογίες δικτύου επηρεάζουν σημαντικά τις τιμές του μέσου ρυθμού μετάδοσης.

Το NordicDat χρησιμοποιήθηκε για την επίδειξη της πρόβλεψης δικτυακών παραμέτρων
μέσω Συνεργατικής Μάθησης. Στο βαθμό που γνωρίζουμε, αυτή είναι η πρώτη απόπειρα

να εξερευνηθεί η κατανεμημένη πρόβλεψη δικτυακών παραμέτρων με βάση δημόσια δεδομένα.

Το σύνολο δεδομένων NordicDat , συνοδευόμενο από λεπτομερή τεκμηρίωση, είναι διαθέσιμο
δημόσια σε ανοιχτό αποθετήριο, παρέχοντας μια πολύτιμη πηγή για μελλοντική έρευνα στον

τομέα της πρόβλεψης ποιοτικών και ποσοτικών παραμέτρων του δικτύου και καλύπτοντας

κρίσιμα κενά στη βιβλιογραφία της Μηχανικής και της Συνεργατικής Μάθησης.

Για τους σκοπούς της εκπαίδευσης κατασκευάστηκε μηχανικό μοντέλο πρόβλεψης Συνερ-

γατικής Μάθησης με ορίζοντα πρόβλεψης έως και οκτώ δευτερόλεπτα, το οποίο αξιολογήθηκε

με βάση την επίδοση πρόβλεψης στην καθυστέρηση των πακέτων και τον ρυθμό μετάδοσης.

Το μοντέλο της Συνεργατικής Μάθησης κατάφερε να πετύχει επιδόσεις παρόμοιες με τα κλασ-

σικά μοντέλα της Κεντρικοποιημένης Μάθησης με μέσο βαθμό απόκλισης στο 9%, κάτι το

οποίο αναδεικνύει την ικανότητα της Συνεργατικής Μάθησης στην εκπαίδευση πραγματικών

δεδομένων με την παράλληλη εξασφάλιση της ιδιωτικότητας των δεδομένων.

Εν συνεχεία προχωρήσαμε σε εγκατάσταση κινητών συσκεών σε οχήματα και εφαρμογή

της Συνεργατικής Μάθησης σε πειραματικό δικτυακό περιβάλλον. Υιοθετήσαμε μια προσέγγι-

ση προσανατολισμένη σε συστημικό επίπεδο, σχεδιάζοντας και υλοποιώντας έναν ενορχηστρω-

τή κινητών συσκεών (Extreme-Edge Orchestrator - EEO), δηλαδή ένα πλαίσιο διαχείρισης
που ενσωματώνει τους πόρους των κινητών συσκευών στο οικοσύστημα του 5G. Η λύση μας
αξιοποιεί εργαλεία του Υπολογιστικού Νέφους (cloud-native) για την παρακολούθηση (mon-
itoring) των πόρων του δικτύου και την διαχείριση του κύκλου ζωής των υπηρεσιών δικτύου
(service life-cycle management) που εκτελούνται σε κινητές συσκευές. Οι αποφάσεις που
σχετίζονται με τον κύκλο ζωής των υπηρεσιών, όπως η εκκίνηση μιας νέας υπηρεσίας, η επι-

λογή των συσκευών για την εκτέλεση της υπηρεσίας και ο ομαλός τερματισμός της υπηρεσίας,

καθοδηγούνται από πολιτικές που ορίζονται από τον χρήστη, δημιουργώντας μηχανισμούς ε-

λέγχου κλειστού βρόχου. Αυτοί οι βρόχοι ενσωματώνουν διάφορα κριτήρια τα οποία μπορεί

να ορίσει ο χρήστης και περιλαμβάνουν: α) χαρακτηριστικά συσκευής (π.χ., επεξεργαστική

ικανότητα), β) παραμέτρους κατανάλωσης πόρων δικτύου (π.χ., ενεργειακά κόστη) και γ)

χαρακτηριστικά σε επίπεδο εφαρμογής (π.χ., διαθεσιμότητα δεδομένων), που μπορεί να πε-

ριλαμβάνουν ακόμα και πληροφορίες σχετικές με την εκπαίδευση μοντέλων Μηχανικής και

Συνεργατικής Μάθησης.

Σε αντίθεση με τη συντριπτική πλειοψηφία των ερευνών στον τομέα αυτόν που βασίζο-

νται σε προσομοιώσεις, η προτεινόμενη λύση μας αναπτύσσεται σε ένα λειτουργικό Δίκτυο

Πέμπτης Γενιάς, και αξιολογείται μέσω εκτεταμένων πειραματικών μελετών στον πραγματικό

κόσμο, που περιλαμβάνουν τόσο κινητές όσο και στατικές υπολογιστικές συσκευές σε ποικιλία

πειραματικών σεναρίων (εσωτερικά σε εργαστηριακό επίπεδο και εξωτερικά σε οδικό δίκτυο).

Η συνεισφορά μας είναι διπλή: 1) εισάγουμε, σχεδιάζουμε και αναπτύσσουμε μια καινοτόμο

λύση για την ορχήστρωση κινητών συσκεών, η οποία μαζί με την αντίστοιχη αρχιτεκτονική

συστήματος επεκτείνει τη δυνατότητα υπολογισμού και επεξεργασίας δεδομέων στις παρυφές

του Δικτύου (Extreme-Edge), και 2) αξιολογούμε τη λύση μας σε ένα πειραματικό περιβάλλον
5G για την υλοποίηση κατανεμημένης πρόβλεψης δικτυακών παραμέτρων μέσω Συνεργατικής
Μάθησης, μια βασική εφαρμογή στον τομέα της Αυτόνομης και Διασυνδεδεμένης Κινητικότη-

τας, όπως αναδείξαμε και παραπάνω.

Τα πειραματικά αποτελέσματα έδειξαν ότι η εισαγωγή του ενορχηστρωτή EEO βελτιώνει
την αποδοτικότητα των πόρων μέσω της βελτιστοποίησης βασικών παραμέτρων, όπως η δι-

άρκεια των υπηρεσιών, και μειώνει τον χρόνο ολοκλήρωσης των υπηρεσιών κατά 25% υπό

συνθήκες υψηλού φόρτου (σε επίπεδο υπολογιστικής ικανότητας είτε στην μνήμη των συ-

σκευών), σε σύγκριση με τις υπάρχουσες μεθόδους. Η ανάλυσή μας αποδεικνύει την αποτελε-

σματικότητα του μηχανισμού επιλογής συσκευών με πολλαπλά κριτήρια σε σενάρια πολλαπλών

υπηρεσιών, όπου ο υπολογιστικός φόρτος στις συσκευές αυξάνεται δραματικά, ιδιαίτερα όταν

αναφερόμαστε σε σύγχρονες εφαρμογές που περιλαμβάνουν αλγόριθμους Μηχανικής Μάθη-

σης. Επίσης τα ευρήματα αυτά υποδεικνύουν ότι η διαχείριση συσκευών μέσω ενορχηστρωτή

σε δίκτυα επόμενης γενιάς γενικά μπορεί να οδηγήσει σε πιο αποδοτική και αποτελεσματική

παροχή υπηρεσιών.

Συμπεράσματα

Τέλος στην Ενότητα 5 συνοψίζουμε την ερευνητική εργασία που παρουσιάστηκε στις προηγο-

ύμενες ενότητες της διατριβής, με θέμα την εφαρμογή της Συνεργατικής Μάθησης σε δικτυακά

περιβάλλοντα. Η ερευνητική εργασία που παρουσιάστηκε είχε ως στόχο την μελέτη τριών βα-

σικών ερευνητικών κατευθύνσεων: α) το πρόβλημα επιλογής σχήματος Μάθησης, ανάμεσα

σε Συνεργατική και Κεντρικοποιημένη από τη σκοπιά της κατανάλωσης δικτυακών πόρων

και β) το ρόλο των βασικών παραμέτρων/ιδιοτήτων του συστήματος π.χ., επιλογή κόμβου

συνένωσης μοντέλων, ενεργειακή κατανάλωση και το ζήτημα της Μετατόπισης Εννοιών στα

μηχανικά μοντέλα. και γ) τις προκλήσεις στην εφαρμογή των θεωρητικών αποτελεσμάτων σε

πραγματικά συστήματα για εφαρμογές Αυτόνομης και Διασυνδεδεμένης Κινητικότητας.

Προκειμένου να απαντηθούν τα ερωτήματα αυτά, παρουσιάσαμε το θεωρητικό υπόβαθρο,

το περιβάλλον προσομοίωσης καθώς και τα αποτελέσματα που προέκυψαν από αυτό, τα ο-

ποία ανέδειξαν τις παρακάτω πλευρές: α) τις παραμέτρους του συστήματος που καθορίζουν

την απόδοση κάθε σχήματος Μηχανικής Μάθησης σε σχέση τόσο με την επίδοση (ακρίβεια

μοντέλων) όσο και την αντίστοιχη κατανάλωση σε δικτυακούς πόρους, β) το πώς επηρεάζει

η τοπολογία του δικτύου και η επιλογή των παραμέτρων της Μηχανικής Μάθησης την ε-

νεργειακή κατανάλωση και τέλος γ) τρόπους αντιμετώπισης της Μετατόπισης Εννοιών σε

περιβάλλοντα περιορισμένης υπολογιστικής/ενεργειακής ισχύος.

Εν συνεχεία, παρουσιάσαμε την υλοποίηση των θεωρητικών αποτελεσμάτων σε πραγμα-

τικά συστήματα Αυτόνομης και Διασυνδεδεμένης Κινητικότητας. Συγκεκριμένα, αναδείξαμε

τις προκλήσεις αλλά και τα αποτελέσματα που προέκυψαν από την εκστρατεία συλλογής δε-

δομένων δικτύου σε ένα οδικό δίκτυο, καθώς και το πώς μπορούν αυτά να χρησιμοποιηθούν

στο πλαίσιο εφαρμογών της Συνεργατικής Μάθησης. ΄Επειτα παρουσιάσαμε την υλοποίηση

ενός ενορχηστρωτή πολλαπλών υπηρεσιών Μηχανικής και Συνεργατικής Μάθησης σε κινη-

τές συσκευές, ο οποίος ενσωματώθηκε σε ένα περιβάλλον διαχείρησης συσκεύων πάνω από

πραγματικό δίκτυο Πέμπτης Γενιάς προκειμένου να επικυρωθούν τα αποτελέσματά του πειρα-

ματικά.

Τόσο τα θεωρητικά αποτελέσματα που αναφέρθηκαν όσο και οι πρακτικές υλοποιήσεις

μπορούν να διευρυνθούν σε διάφορες ερευνητικές κατευθύνσεις. Ιδιαίτερο ενδιαφέρον πα-

ρουσιάζει η συνένωση των αποτελεσμάτων επιλογής σχήματος Μηχανικής Μάθησης με τους

αλγόριθμους που αντιμετωπίζουν την Μετατόπιση Εννοιών, κάτι το οποίο θα μπορούσε να

συνθέσει ένα ολοκληρωμένο σύστημα Συνεχούς Μάθησης, που θα προσαρμόζεται στις αλλα-

γές των συνηθειών των χρηστών αλλά ταυτόχρονα θα μεταβάλλεται προκειμένου να επιτύχει

πιο αποτελεσματική λειτουργία (π.χ., μείωση της κατανάλωσης των δικτυακών πόρων).

1

Foundations

The foundation of this research lies in two interconnected and transformative concepts
shaping the landscape of next-generation networks and intelligent systems. The first is
the emergence of a unified Compute Continuum, which integrates multiple computational
layers within the network, extending from centralized cloud infrastructures to the core
network and all the way to edge devices, including handheld and Internet-of-Things (IoT)
devices. This continuum provides a seamless framework for data processing and decision-
making, enabling complex computations to be executed closer to the data source, thereby
reducing latency and enhancing efficiency. By leveraging this architectural evolution,
networks are increasingly capable of supporting demanding applications in dynamic envi-
ronments.

The second concept is the rise of distributed Artificial Intelligence and Machine Learn-
ing (AI/ML), a paradigm shift that has gained momentum due to two critical advance-
ments. The first driver is the exponential growth of user-generated data in the Big Data
era, fueled by billions of interconnected devices producing vast volumes of heterogeneous
data. The second driver is the significant enhancement in computational capabilities, with
cutting-edge hardware now deployed closer to the end-user, including edge servers, mobile
devices, and IoT nodes. This decentralization of computational resources has unlocked new
possibilities for deploying AI/ML algorithms at scale, enabling real-time decision-making
and intelligent behavior in distributed systems.

Together, these developments represent a convergence of computational and intelli-
gence paradigms, addressing the increasing demands of applications that require low-
latency responses, energy efficiency, scalability, and data privacy. For instance, scenarios
such as autonomous driving, smart cities, and real-time industrial automation benefit
immensely from these advancements by leveraging the synergy between distributed com-
puting and AI/ML.

This thesis explores the intersection of these concepts, focusing on their application
within the demanding and dynamic domain of Cooperative, Connected, and Automated
Mobility (CCAM). This vertical exemplifies the challenges and opportunities of the Com-
pute Continuum and distributed AI/ML, with stringent requirements for real-time pro-
cessing, network efficiency, and safety-critical operations.

In this context, the research addresses fundamental questions: How can distributed
AI/ML frameworks, such as Federated Learning (FL), leverage the Compute Continuum
to optimize resource utilization while maintaining high accuracy and robustness? What
are the trade-offs involved in deploying centralized versus distributed AI/ML schemes,
particularly in terms of network and computational resource efficiency? How do real-world
constraints, such as mobility, network volatility, and data drift, impact the performance

27

28 1. Foundations

and reliability of distributed AI/ML?
By examining these questions, this thesis provides a systematic investigation into the

theoretical and practical challenges of integrating distributed AI/ML with advanced net-
work architectures. This introductory chapter establishes the groundwork for the analysis,
methodologies, and findings presented in the subsequent chapters, offering insights into
the transformative potential of these technologies for next-generation intelligent systems.

1.1 Next-Generation networks landscape

Over the past few decades, since the introduction of mobile networks, there has been a
profound transformation in both network technologies and the devices and applications
associated with them. From the First Generation (1G) networks in the early 1980s, which
offered only analog cellular services, to the Fifth Generation and Beyond (B5G) networks,
which aim for the full automation of device and human interconnections, the evolution
has been substantial. A critical aspect of this progress has been the role of user equipment
(UE), serving as the bridge between the physical and digital worlds. This concept was
first introduced in 1999 with the term Internet of Things (IoT) [1], which describes
an interconnected network of physical devices equipped with sensors and capable of data
exchange.

Today, IoT is associated with a wide range of devices, from laptops, smartphones, and
wearables for infotainment and e-health, to on-board units (OBUs), smart sensors, and
collaborative robots (cobots) in industries such as automotive and Industry 5.0. These
devices collaborate to create adaptive environments that sense, analyze, communicate, and
take actions to meet human needs. As a result, IoT leverages real-time data to transform
various aspects of daily life, advancing us toward a smarter and more interconnected
future. In addition, advances in mobile networks have expanded this concept to include
ubiquitous and autonomous object networks, which emphasize seamless identification and
service integration. In this context, Cisco has coined the term Internet of Everything
(IoE) to describe the full interconnection of people, devices, and environments, enabling
the exchange of data and services among them and with other entities [2].

To support such functionalities, IoT networks generate vast amounts of data, com-
monly referred to as Big Data [3]. Data exchange between IoT devices and other entities
typically occurs through wireless technologies, such as the Institute of Electrical and Elec-
tronics Engineers (IEEE) 802.11 family of standards (Wireless Fidelity - WiFi) [4], the
International Telecommunication Union (ITU) ITU-T Y.4480 (Long Range Wide Area
Network - LoRaWAN) [5], and cellular networks, including Long-Term Evolution (LTE),
5G, and B5G [6]. Once the communication link is established, the management of the
computational and storage needs of Big Data is traditionally handled through cloud
computing technologies. This approach centralizes data processing in large-scale data
centers (DCs), providing near-unlimited storage, computational power, and resources,
while facilitating the emergence of innovative service models. Cloud computing operates
through a variety of service models, which include: a) Infrastructure as a Service (IaaS),
which grants on-demand access to computing, storage, and networking resources, allowing
users to scale and manage their infrastructure needs without investing in physical hard-
ware; b) Platform as a Service (PaaS), which provides a comprehensive environment for
application development, hosting, and management, simplifying software deployment and
reducing the complexity of underlying infrastructure; and c) Software as a Service (SaaS),
which enables users to access cloud-based applications, such as email, messaging, and text
editing, over the Internet, eliminating the need for local installations and updates while

1.1 Next-Generation networks landscape 29

Figure 1.1: The compute continuum

promoting seamless accessibility and collaboration across devices.

Although cloud computing offers significant advantages, it also presents challenges for
latency-sensitive applications and services that require high-volume data transmission.
Moreover, concerns regarding data privacy and trust arise when relying on third-party-
operated cloud servers [3]. To overcome these limitations, the Mobile Edge Computing
(MEC) paradigm has been introduced. MEC brings computational and storage resources
closer to UEs by deploying applications at the network edge [7]. This architecture utilizes
the existing mobile network operator (MNO) infrastructure or newly virtualized setups,
significantly reducing latency and improving service quality. MEC also enables collabora-
tion between edge and cloud data centers, fostering decentralized yet coordinated ecosys-
tems. This hybrid model is essential for supporting ultra-reliable, low-latency applications,
such as immersive augmented/virtual reality (AR/VR) and vehicle-to-everything (V2X)
services [8].

In parallel, UEs have evolved into powerful computational and communication nodes,
fueled by advancements in hardware accelerators, including Field Programmable Gate
Arrays (FPGAs), Application-Specific Integrated Circuits (ASICs), Central Processing
Units (CPUs), and Graphics Processing Units (GPUs) [9]. Specialized processors, such as
Google’s Tensor Processing Units (TPUs) [10] and Qualcomm’s Neural Processing Units
(NPUs) [11], further enhance computational power, enabling low-power acceleration for
application-specific tasks. This evolution has led to the development of on-device (or
Extreme-Edge) computing, where computational tasks are offloaded to user devices
rather than edge servers. This strategy reduces reliance on centralized infrastructure and
supports localized data processing [12].

The growing integration of cloud, edge, and on-device computing has given rise to the
concept of the compute continuum. This paradigm envisions a seamless environment
in which computing and network resources across endpoints, edge nodes, and cloud DCs
are dynamically coordinated to optimize workload distribution [13]. The compute contin-
uum marks a significant shift toward the convergence of traditionally separate domains,
enabling efficient management and security of services and data across various layers; from
devices in the access network to edge nodes in the backhaul and cloud DCs in the core
network. Each layer offers unique capabilities in terms of computational power, network
latency, and heterogeneity (see Fig. 1.1) [6]. The interplay between these layers forms the

30 1. Foundations

foundation for innovative network infrastructures, software architectures and deployment
of applications in next-generation networks.

1.2 The role of Artificial Intelligence

Recent advancements in Artificial Intelligence and Machine Learning (AI/ML) have re-
vealed substantial potential for solving complex problems where traditional methods, such
as analytical solutions and approximation techniques, either perform inadequately or fail
entirely. ML techniques offer data-driven solutions, eliminating the need for manual pro-
gramming. By leveraging large amounts of historical data, these techniques can identify
patterns, analyze behaviors, and even predict future outcomes [14]. As a result, AI/ML
technologies are becoming essential components of modern applications, including com-
puter vision, natural language processing (NLP), pattern recognition, etc. These applica-
tions extend beyond local or private environments, often spanning diverse domains such
as mobile applications, autonomous vehicles, IoT, etc.

In a broader context, AI refers to the simulation of human intelligence processes, such
as learning, problem-solving, and decision-making, by computer systems. ML, a subfield
of AI, allows computer systems to learn from data using algorithms without the need for
explicit programming. ML algorithms are typically categorized into three main types:
supervised learning, unsupervised learning and reinforcement learning.

Supervised learning is a type of ML where a model is trained using labeled data. Each
instance in the dataset consists of inputs (features) and corresponding outputs (labels or
targets). The objective is for the model to learn a mapping from inputs to outputs so that it
can predict the output for new, unseen inputs. Supervised learning problems are typically
classified into two categories: classification, which predicts discrete categories e.g., spam
email detection, and regression, which predicts continuous values e.g., house price predic-
tion. Common applications include image recognition, NLP, fraud detection, and others.
Relevant algorithms include Linear Regression, Support Vector Machines (SVMs), Neural
Networks (NN), Deep Neural Networks (DNN), Decision Trees, and Random Forests.

Unsupervised learning refers to a type of machine learning where the model analyzes
and clusters unlabeled data. These algorithms identify hidden patterns or groupings in
the data without requiring human intervention. The goal of unsupervised learning is to
explore the data, detect patterns, or group similar data points. Common applications in-
clude anomaly detection, recommendation systems, and customer/market segmentation.
Relevant algorithms include K-Means Clustering, Principal Component Analysis (PCA)
and Autoencoders. Finally, Reinforcement Learning involves an agent learning to make
decisions by interacting with an environment. The agent’s objective is to maximize cu-
mulative rewards over time by selecting actions that lead to desired outcomes. Typical
applications include gaming, finance (e.g., risk assessment, trading), decision-making, and
automation.

Among the various models, Neural Networks (NN), especially Deep Neural Networks
(DNN), have attracted considerable attention due to their exceptional performance across
diverse fields and applications, including image recognition and large language models
(LLMs) [15], [16]. NNs are ML models consisting of interconnected mathematical functions
(neurons), with the connections between neurons (called weights) represented as numerical
values, as depicted in Fig. 1.2. A typical NN model includes several input and output
variables. The model aims to identify the relationship between input and output data,
which is based on Kolmogorov’s theorem, stating that a continuous multivariate function

1.2 The role of Artificial Intelligence 31

Figure 1.2: A neural network model’s architecture

can be expressed on a compact set in terms of sums and compositions of a finite number
of single variable functions [17].

To achieve this, the model undergoes a training phase where it is fed with a large
dataset of known input-output pairs. Through a repetitive process known as back propa-
gation, the model adjusts its weights iteratively to better capture the relationship between
input and output variables. The convergence of this process is monitored by comparing
the model’s predictions with the actual results, using a metric called the loss function,
with the objective of minimizing this loss. Once trained, the model enters the inference
(or testing) phase, where it can make predictions on unseen data, with the expectation
that its outputs will closely align with the true values.

To fully harness the potential of AI/ML, data plays a crucial role, both in effectively
training the models and utilizing them (for inference) in the end-user domain. Towards
that goal, a significant challenge emerges. Client IoT devices that are the main data
sources are by nature distributed, mobile and often unreliable, as discussed in Sec. 1.1. In
contrast, the processing capacity required for model training typically resides in centralized
entities like cloud DCs. Consequently, for any ML pipeline to be implemented, there is
a need for a reliable network connection between clients and servers for data exchange
as well as an orchestration layer for the learning process that would determine essential
factors of the learning process, such as where and when processing occurs and which clients
participate.

Traditional approaches to these challenges often rely on Centralized Learning (CL)
schemes, as illustrated in Fig. 1.3. In CL, clients periodically upload their data to a
central entity, such as a cloud server, which handles the computationally intensive ML
training. Once training is complete, a global ML model is produced and distributed back
to the clients for inference. This process can be repeated multiple times, using different
datasets, until the model converges to a predefined level of performance.

Addressing concerns over user data privacy, Distributed ML (DML) schemes have
emerged as alternatives to CL. Notable examples include hybrid approaches [18] and peer-
to-peer (server-less) learning frameworks [19], where computational tasks are offloaded to
client user equipment (UEs). Among these, Federated Learning (FL), a Google-initiated
DML scheme [20], has gained prominence due to its inherent privacy-preserving design.
In FL, the training process is decentralized, as depicted in Fig. 1.4. Training occurs in
iterative cycles (rounds), during which a central server distributes a global ML model
to a subset of clients. These clients locally train the model using their private data
and computing resources, then return updated local models to the server. The server

32 1. Foundations

Figure 1.3: Centralized Learning (CL) Figure 1.4: Federated Learning (FL)

aggregates these updates to form an improved global model. This process repeats until
the model converges.

FL offers users greater control over their data and facilitates privacy by design through
distributed training and aggregation across a network of client devices. As networks evolve
towards a unified compute continuum (see Sec. 1.1), this thesis investigates the conver-
gence of these advancements, comparing emerging DML schemes with traditional CL
pipelines. It also explores trade-offs and practical considerations for real-world implemen-
tations, with a particular focus on applications in the automotive domain.

2

Centralized vs. Federated
Learning comparison

2.1 Introduction

ML workloads in networked environments have historically been dominated by centralized
(CL) approaches. In these models, clients gather raw data—such as measurements, audio,
images, or video frames—from their environment, preprocess it, and transmit it to a
centralized server. The server then performs computationally intensive ML tasks, such
as model training. However, advancements in networking technologies, such as Edge
Computing [21], coupled with the growing emphasis on data privacy through regulations
like the General Data Protection Regulation (GDPR) [22], have spurred the development of
distributed (DML) approaches as viable alternatives to CL for supporting ML in networked
settings.

Both CL and DML impose significant demands on network resources. Training data
volumes range from gigabytes to terabytes [23], and the computational demands can reach
thousands of teraFLOPS [23]. This raises a critical question: which ML paradigm is
better suited for accurate model training while adhering to network resource constraints?
Furthermore, what are the advantages and disadvantages of adopting a DML scheme
compared to traditional CL?

The choice between ML paradigms is a complex, multi-faceted problem influenced by
numerous factors. A network ecosystem consists of diverse stakeholders, such as clients,
network operators, and cloud or edge providers, each with unique constraints and priori-
ties. These include client-specific considerations (e.g., data distribution properties, device
mobility, and battery life), network-related factors (e.g., bandwidth, latency, and packet
loss), and cloud-related limitations (e.g., energy consumption and processing capacity).
Additionally, the inherent complexities of ML workflows—such as hyperparameter tuning,
client selection strategies, and data preprocessing—further complicate the decision-making
process.

To the best of our knowledge an in-depth analysis on the ML scheme selection problem
is missing from the current literature. Prior works have attempted to address similar ques-
tions in a restrictive manner. There is an extensive theoretical [24], [25] and experimental
[26], [27] research on the comparison between CL and DML in terms of convergence, but
the relevance of the two approaches to the underlying network is widely neglected. As such,
those efforts lack an end-to-end system-parameter analysis to shed light on the involved
(network) resources trade-offs (affecting various stakeholders).

33

34 2. Centralized vs. Federated Learning comparison

Table 2.1: Research directions in ML schemes comparison

ML schemes comparison

CL vs FL CL/FL vs other DML schemes

Investigation parameter Research works Investigation parameter Research works

convergence rate [24], [27] convergence rate [28]

accuracy [27], [26], [29] accuracy [18], [30], [31], [19]

training loss [24] energy cost [18], [30]

ML hyperparameters [25] bandwidth cost [30]

data distribution [25] privacy & security [30]

This chapter addresses the ML scheme selection challenge from a system-centric per-
spective, offering a holistic network resource analysis that accounts for all stakeholders.
Given the diversity of ML paradigms, we narrow our focus to two extremes: the well-
established CL approach and the emerging, widely adopted Federated Learning (FL)
framework [20]. In FL, clients collaboratively train models while retaining their data
locally, with a central server orchestrating the process, thereby enhancing data privacy.
For this chapter, we relax the data privacy constraint to enable a fair comparison between
CL and FL, emphasizing their respective impacts on model accuracy and network resource
consumption.

Our investigation centers on the following research questions: 1) How do ML hyper-
parameter choices influence resource consumption in each scheme?, 2) Given the ratio of
client data volume to model size, how do accuracy, convergence speed, and stakeholder
resource consumption vary between the schemes?, 3) How do the schemes compare in
terms of convergence speed over time?, 4) How do they scale with an increasing number
of participating clients, particularly in terms of accuracy and convergence speed? and 5)
How does heterogeneity in client data affect each scheme’s accuracy?

To address these questions, we developed a cloud-to-client system model based on em-
pirical measurements and commercial benchmarks, replicating real-world performance in
terms of bandwidth availability, energy consumption, and processing capacity. Two net-
work scenarios are considered: a mobile LTE network and a Wireless Local Area Network
(WLAN), with realistic mobility patterns derived from real-world traces. Additionally, a
dedicated AI/ML software environment is employed to simulate the training processes of
CL and FL.

The remainder of this chapter is structured as follows: Section 2.2 reviews the relevant
literature. Section 2.3 presents our system model. In Section 2.4, we discuss the results
of our simulations. Finally, Section 2.5 concludes the chapter.

2.2 Related work

The debate surrounding the adoption of centralized versus distributed ML schemes in
networked environments remains under-explored. Among distributed ML approaches, FL
has garnered significant attention as a compelling alternative to CL due to its robust
data privacy guarantees (see Table 2.1). However, existing studies primarily focus on
comparing CL and FL in terms of model performance, such as accuracy or convergence,
without adequately addressing their impact on network resources.

For instance, in [26], FL is applied to intrusion detection in an IoT environment. The
decentralized scheme achieves comparable accuracy to CL (with a maximum difference of
5%) while preserving data privacy. Similarly, FL’s applicability to sensitive medical data

2.3 System model overview 35

is explored in [29], using three benchmark clinical datasets. The results indicate that FL
approaches CL’s performance across metrics like accuracy and recall, with a maximum
discrepancy of 4

In addition to accuracy, FL and CL are often evaluated based on convergence rates.
In [24], Distributed Stochastic Gradient Descent (D-SGD) achieves comparable training
loss to CL in a static network topology while demonstrating faster convergence in low-
bandwidth environments. In another study [27], a network of distributed workers, with
identical hardware capabilities, is evaluated on the Fashion-MNIST dataset for image
classification. CL achieves 2% higher accuracy than FL, while FL converges nearly 40%
faster. However, the assumption of identical hardware across workers limits the applicabil-
ity of these findings to real-world scenarios involving heterogeneous, resource-constrained
devices. To address this, [25] benchmarks various FL algorithms e.g., FedAvg, Coopera-
tive, etc., against CL, showing that CL consistently delivers more accurate classifications.
However, FedAvg demonstrates potential, provided the client data is independent and
identically distributed (i.i.d.).

Beyond FL, other distributed ML schemes have been proposed as alternatives to CL,
including hybrid and collaborative approaches (see Table 2.1). Hybrid schemes, which
blend characteristics of CL and FL, are seen as a middle ground. For instance, [18] intro-
duces a hybrid scheme that achieves accuracy levels comparable to CL while surpassing
FL by an average of 10%. Additionally, this scheme balances the energy efficiency of FL
with the higher energy demands of CL. In another study [30], a hybrid edge-FL scheme
employs blockchain mechanisms to enhance security. This approach outperforms both CL
and FL in terms of accuracy (with a maximum improvement of 5%) while reducing energy
consumption by nearly 50% compared to CL, albeit with a 25% increase in bandwidth
usage.

Collaborative ML approaches represent another research direction aimed at reduc-
ing communication costs by eliminating the need for a central server. Examples include
Swarm Learning [31], where clients (swarm nodes) share model parameters directly via a
peer network. Tests on clinical data demonstrate improved accuracy over CL for various
patient detection scenarios, such as leukemia and COVID-19. Similarly, Gossip Learning
[28] enables clients to exchange small portions of their model parameters with neighbors,
achieving comparable accuracy to FL, albeit with slower convergence. Finally, Peer-to-
Peer Learning [19] facilitates direct model exchanges among clients using a secure sharing
protocol. While this method’s convergence heavily relies on i.i.d. data, its accuracy is
comparable to CL.

While hybrid and collaborative schemes show promise in improving accuracy over FL,
they often neglect the impact on system resources. This oversight is problematic, as effi-
cient ML deployment in networked environments requires a balance between accuracy and
resource consumption. Without addressing the network resource implications, the practi-
cal feasibility of these ML schemes remains uncertain. Our work seeks to bridge this gap
by investigating the resource consumption of ML schemes, specifically comparing CL and
FL. Through an end-to-end analysis, we aim to illuminate the trade-offs between accuracy,
convergence, and resource efficiency, providing a more comprehensive understanding of the
performance and practicality of ML schemes in real-world network environments.

2.3 System model overview

Our system model consists of multiple mobile clients operating within a dynamic network
environment. Each client possesses sensor-captured data that serves as input for the given

36 2. Centralized vs. Federated Learning comparison

(a) (b)

Figure 2.1: (a) Centralized (CL) and Federated Learning (CL) architecture (b) Network
architecture

ML task. These clients are connected to a central entity, such as a cloud server located in a
DC, via an intermediate core network, enabling data exchange with the server. To simplify
the analysis, we exclude control and management plane messages (e.g., coordination and
signaling), as their size is negligible compared to the actual training data. This exclusion
does not compromise the model’s accuracy. The system’s primary objective is to execute
an ML task over multiple communication rounds, leveraging the data available on the
clients through the following ML schemes:

Centralized Learning (CL)

In each training round the server selects a group of (mobile) clients (see the green horizontal
arrows in Fig. 2.1a) which upload their data directly to the server (see the blue vertical
arrows in Fig. 2.1a), as described in Sec. 1.2. The training task is thereafter performed
centrally by the server using all client data acquired in that round. This process repeats for
several rounds, each time with a selection of a random group of clients, until a predefined
time limit is reached or all data is depleted.

Federated Learning (FL)

The server broadcasts the training model to the selected clients (learners), which in turn
are responsible to train it using their own (private) data and computing resources (see the
red recursive arrows in Fig. 2.1a), as described in Sec. 1.2. As opposed to CL, clients are
no longer required to upload their actual data to the server. This is a key restriction posed
by FL, in order to preserve user-data privacy. Instead, once the training is completed,
they upload the updated model parameters to the central server, which in general are
considerably lightweight compared to the actual data. Upon collecting the updated model
parameters, the server performs model aggregation (see red vertical arrows in Fig. 2.1a)
and re-distributes the updated aggregated model to another group of clients.

Standard Learning (SL)

While the ML task is performed in a centralized location, CL is not to be confused with
the standard ML paradigm, where training is performed using the entire dataset. The
latter is referred to as Standard Machine Learning (SL). Essentially, an implementation
of SL would require for the server to wait for all participating client datasets to arrive in

2.3.1 Network architecture and attributes 37

order to perform the training task. On the other hand, periodic training i.e., on a per
round basis occurs in CL, given that (recently generated) data arrives in every round. In
our study we focus on CL, rather than SL, since the way SL functions deems it impractical
for employment in a real system. Applications either cannot afford waiting for the entire
dataset to reach the DC or are agnostic to the entire client dataset. More importantly SL
lacks adaptability, since it does not produce a global ML model on a per-round basis.

In an actual system, clients do not generate (or cannot acquire) a single dataset, which
will be uploaded once; they rather repeatedly collect data e.g., user analytics, network
measurements, etc., which can be (potentially) streamed to the cloud in a continuous
manner. Moreover, depending on the environment, this data can change in time e.g.,
traffic scene images and therefore the output of the ML task i.e., the ML model, needs
to be updated on a regular basis. As such, SL is not proposed as a practical solution,
but serves as a baseline to the evaluation of other centralized schemes. Moreover, CL is
needed in our study to ensure a fair and meaningful comparison to FL, given that a global
ML model is generated in every round.

In the following Sections (2.3.1-2.3.6) we detail the elements that comprise our system
model. All involved quantities are summarized in Table 2.2.

Table 2.2: Nomenclature of involved quantities

Symbol Definition

dsample Training dataset samples

d Training dataset size (bytes)

z Training dataset partitions (i.e., total
clients)

rsample Training dataset size to samples ratio

m ML model size (bytes)

rdata Client data to model size ratio

k Per round participating clients

q Online clients

tupload Total time for client data upload in
each round (sec)

tend Maximum duration of ML task (sec)

sclient Client throughput - access network
(bytes/sec)

cCH Average area throughput - access net-
work (bytes/sec)

σ Client throughput standard deviation -
access network

cCH
min Minimum client throughput - access

network (bytes/sec)

score Core network element’s throughput
(bytes/sec)

σed Data skewness parameter

Symbol Definition

σiid Independently and identically distributed (i.i.d)
level shape parameter

vML
client Client device computational capacity for train-

ing (samples/sec)

vML
cloud Cloud computational capacity for training (sam-

ples/sec)

vAG
cloud Cloud computational capacity for model aggre-

gation (models/sec)

eclient Total energy expenditure for all clients (J)

pTX
clienti

Client device power consumption for transmis-
sion (W)

pRX
clienti

Client device power consumption for reception
(W)

pML
clienti

Client device power consumption for training
(W)

ecore Total energy expenditure in the core network (J)

ecloud Total energy expenditure in the cloud (J)

pML
cloud Cloud power consumption for training (W)

pAG
cloud Cloud power consumption for model aggregation

(W)

hepochs Number of epochs (ML hyperparameter)

hbatch Batch size (ML hyperparameter)

hrate Learning rate (ML hyperparameter)

2.3.1 Network architecture and attributes

The network includes the wireless (radio) and the wired part (see Fig. 2.1b). Two common
cases are considered for the wireless part; a mobile LTE and a WLAN network. In the
LTE case, a typical cellular architecture is assumed, where a basestation (BS) lies in the
centre of each cell. In the WLAN case, several access points (APs) are assumed, which
cover a local network area (coverage area). We refer to the wireless part (link between
clients and BS/AP) as the access network. The wired part (from BS/AP up to the cloud)

38 2. Centralized vs. Federated Learning comparison

comprises the core network (see Fig. 2.1b). The core network includes: 1) the metro
and edge network, where edge nodes reside, 2) the backbone network, which includes core
switches and routers and 3) the infrastructure to reach the DC’s cloud server.

Access network throughput

The client throughput sclient in both the uplink (UL) and the downlink (DL) direction (in
MBytes/sec) is modelled as a Gaussian random variable (Ñ). Its mean value is equal to
the average area throughput cCH (where CH marks the corresponding radio technology
i.e., LTE or WLAN), divided by the number of online clients q. The inclusion of the
online clients in the computation allows to factor-in the way the locally-present number of
users shapes the throughput provision in the considered area. cLTE refers to the average
cell throughput; that is 5.9 (UL)/7.73 (DL) MBytes/sec for 2.5 GHz LTE according to
[32]. cWLAN on the other hand refers to the average coverage area throughput, which
is 2.25 (UL)/2.38 (DL) MBytes/sec for IEEE 802.11g, according to [33]. The standard
deviation parameter σ is set to 20% of the client’s mean throughput based on [34] and
accounts for throughput variations e.g., due to path loss and interference. Given that a
client is found at a certain moment connected (online), we also assume that there exists a
minimum throughput threshold (cCH

min) to enable server-client communication, both in DL
and in UL. cLTE

min is assumed equal to the 5% cell edge rate; that is, 0.24 (UL)/0.22 (DL)
MBytes/sec according to [32], which represents the worst-case scenario for the respective
radio conditions. For WLAN, a similar value for the coverage area (cWLAN

min) can be
obtained; that is, 0.03 (UL-DL) MBytes/sec according to [35]. Thus, sclient for UL and
DL, is given by:

sclient = max{Ñ(
cCH

q
, σ), cCH

min} (2.1)

Core network throughput

The core network includes the following elements [36]: 1) An interface to the access net-
work (BS for LTE or AP for WLAN); 2) The metro and edge network’s elements i.e., an
ethernet switch, a broadband network gateway (BNG) and the edge router; 3) the back-
bone network’s routers and 4) the DC’s elements i.e., an edge router and a data center
switch. The average throughput of each element for the UL/DL (score) is based on Cisco
routers/switches performance benchmarking [36] and measurements on access network
interfaces (3-sector 2×2 Multiple-Input-Multiple-Output remote radio 4G/LTE) [36]. A
total number of 3 backbone network’s routers is considered, as a hopcount of maximum
3 in the backbone network suffices to reach the DC for the majority of popular services
e.g., Facebook, Bing, Google, etc. [37].

2.3.2 Client mobility pattern

In contrast to synthetic or theoretical mobility models, real-world traces offer more realis-
tic performance evaluations and reliable results. However, questions often arise regarding
their statistical representativeness and the generalizability of the findings. To address this,
conducting multiple iterations using publicly available datasets enhances both the credi-
bility and the broader applicability of our results. For our system model, we have chosen
the Shanghai Telecom Dataset [38] for LTE traces and the Wifidog [39] for WLAN traces.
The Shanghai Telecom Dataset contains records of UEs accessing the Internet through

2.3.3 Client data acquisition and distribution 39

a BS in a period of 15 days. The database records timestamps for connection initiation
and termination at one-minute intervals, corresponding to the dataset’s time granularity.
This allows for the calculation of clients’ online presence. Clients are monitored and con-
sidered online as long as they remain connected to the network. When a client moves to
another cell i.e., serviced by another BS, a handover (HO) is assumed, to capture service
continuity. We ignore any communication disruption during the HO process. However, a
change of cell will affect the client throughput, which depends on the corresponding cell’s
congestion (see Sec. 2.3.1). The Wifidog dataset comprises user session traces collected
from various free WiFi hotspots in Montreal, Quebec, Canada. Similar to the Shanghai
dataset, each node represents an access point (AP), and timestamps are recorded for user
login and logout events with a granularity of one second. Clients are considered online
during the period they remain connected to a hotspot.

2.3.3 Client data acquisition and distribution

Client devices acquire raw data via their sensors, cameras etc., which can be used for
training. The acquisition is shaped by the client’s acquisition rate, the UE’s storage
capacity and the data staleness level [40]. To emulate such a behavior, we divide our
image-classification training dataset (see Sec. 2.3.6) into z partitions, which are assigned
to the selected clients, representing the data that the clients have generated and stored
on their devices. We define the dataset size to samples ratio rsample = d/dsample, where
dsample is the total number of dataset’s training samples and d the dataset’s size in Bytes.
Marking the per client dataset size as di, the total dataset can be written as: d =

∑z
i=1 di.

Assuming a fixed ML model size m, the per client data to model size ratio is defined as
rdatai = di/m, i ∈ [1, z]. rdata is a key parameter in the ML scheme selection problem.
Not only it regulates the network’s resource consumption e.g., large chunks of data require
more bandwidth in order to be uploaded (CL) or more energy in order to be processed
(FL), but can also affect the convergence of the ML task itself. Besides data acquisition, we
also explore how this data is distributed across clients i.e., data heterogeneity. We focus on
two dimensions; variations in size are modeled by the evenly distributed level (e.d.), while
variations in content are captured by the independent and identically distributed level
(i.i.d.). Generally, client data can experience various levels of e.d., i.i.d. or combinations
of both.

On the e.d. level

The e.d. level describes the dataset size distribution across clients. The size of each client’s
dataset is modeled as a random variable (F̃) that follows Zipf’s law, in line with related
research [41]. To represent a random variable following Zipf’s law, we are using Zeta

distribution, which has a probability density function of p(x) = x−(σed)

ζ(σed)
, σed ∈ (1,+∞).

ζ represents the Riemann Zeta function, while the Zeta distribution’s skewed parameter
σed ∈ (1,+∞) shapes the e.d. level, moving from a uniform data distribution (σed >> 0)
towards higher asymmetry cases (σed close to 1); an additional restriction is also imposed
that the minimum dataset size equals the size of one batch hbatch (see Sec. 2.3.6), in
order to ensure that training can occur at all cases. Therefore the client dataset size
becomes di = max{hbatch, F̃ (σed)}, σed ∈ (1,+∞), ∀i ∈ [1, z]. If the initial dataset is
evenly distributed among the clients (σed >> 1), the client dataset size di and dataset
to ML model size ratio rdatai are simplified to: di=d/z, rdatai=d/(m · z),∀i ∈ [1, z],
respectively. A σed value close to 1 on the other hand marks a setting where few clients
hold considerable amounts of data.

40 2. Centralized vs. Federated Learning comparison

On the i.i.d. level

If a setting with independent and identically distributed (i.i.d) data is assumed, then
the data samples in each client have the same probability distribution and are mutually
independent. In our image-classification problem (see Sec. 2.3.6) such a setting would
essentially mean that each user holds samples from all classes (unbiased setting). That is
represented by the i.i.d. level σiid, being equal to the total number of dataset classes. For
some real-world scenarios, non-i.i.d. (biased) settings could occur, since each participating
client might not be expected to possess a representative subset of all classes in the total
training dataset. To study different levels of bias, we restrict the number of dataset classes
a client can hold i.e., the value of σiid is smaller compared to the total number of classes.

2.3.4 Device computational capacity

User equipment

The computational capacity of a mobile device to perform an ML task vML
client, measured in

(processed) training samples/sec depends on the dataset content e.g., images pose different
requirements than natural language, the UE capabilities and the complexity of the ML
model. We use a reference (average) value of vML

client=125 training samples/sec, as the most
appropriate for our training dataset, ML model and ML hyperparameter settings (see Sec.
2.3.6), based on approximations for popular large-scale classification tasks [42].

Cloud server

Computational tasks for the cloud server include training (in CL) and ML model param-
eter aggregation (in FL). Regarding training, we assume that a DC is equipped with a
Tensor Processing Unit (TPU), which demonstrates an average computational capacity
for training vML

cloud = 40K training samples/sec [43]. In regards to aggregation, no reference
values could be found in the literature, thus we rely on an empirical approach; we measure
the average capacity for training and aggregation tasks in our setup i.e., 6250 training
samples/sec and 1.56 ML model aggregations/sec respectively and compare against the
training capacity reference value of 40K training samples/sec [43]. Assuming a linear re-
lation, the average cloud aggregation capacity becomes vAG

cloud=10 model aggregations/sec.
Our assumptions do not cover scale-out schemes, where clusters of servers may be used to
increase parallelism in DCs.

2.3.5 Device energy consumption

User equipment

Any consumption related to the UE’s standard operation e.g., the device’s operating
system functionalities or displaying, is neglected and we focus on energy expenditure due
to transmission (TX)/ reception (RX) of data and ML processing (training tasks). The
energy consumption eclienti i.e., battery discharge of the ith client’s device is computed
as: eclienti=eTX

clienti
+eRX

clienti
+eML

clienti
, where the superscript TX, RX and ML marks one

of the aforementioned functions. In a given time period t, this can be calculated as
eclienti = pclienti · t, where pclienti , i ∈ [1, z] stands for the respective (average) power
consumption. Average power consumption values related to transmission are reported in
[44], where pTX

clienti
=2.2 Watts and pRX

clienti
=1.5 Watts, ∀i ∈ [1, z] for LTE and pTX

clienti
=0.75

Watts and pRX
clienti

=0.25 Watts for WLAN. Likewise, for ML, based on [42], we assume

2.3.6 Machine Learning task 41

pML
clienti

=2 Watts, ∀i ∈ [1, z], as the most appropriate to our ML model’s hyperparameters
and our choice of training task, being an image classification problem (see Sec. 2.3.6).
The sum of all device energies eclienti comprises the total client energy expenditure eclient.

Core network devices

Energy consumption in the core network ecore is calculated by summing the energy con-
sumption per core component (see Fig. 2.1b) i.e., all routers, gateways and switches of the
backbone, metro & edge network and the cloud’s plus access network’s interfaces (BS for
LTE and AP for WLAN), which in turn is given by [36] in relation to the data exchanged
in the UL/DL direction (as average values measured in Joules/bit).

Cloud server

The computational capacity values of the main tasks that run in the cloud i.e., ML training
(in CL case) and model aggregation (the latter occurs in the FL case) are discussed in
Sec. 2.3.4. Energy expenditure per task in the cloud server can thus be calculated, given
an average power expenditure. Note that inference i.e., applying the trained ML model
on new data also involves resource utilization, but may come as a stand-alone task, much
later than training which is far more demanding in computations and network resources.
Similarly, latency is not considered in our setup as training time requirements typically
dominate over any latency considerations. For the training task (in CL), being an intensive
processing task, we assume an average power pML

cloud=384 Watts, based on Google’s TPU
benchmarking [45]. For the (less-intensive) aggregation task (FL), we assume pAG

cloud=15
Watts, based on measurements for matrix multiplication tasks [46], which are similar in
complexity to weighted averaging (aggregation). The cloud energy consumption ecloud
then becomes:

ecloud =

{
pML
cloud · d/(vML

cloud · rsample), for CL

pAG
cloud · z/(vAG

cloud), for FL
(2.2)

2.3.6 Machine Learning task

The ML schemes are evaluated using a representative ML task for vehicular applications:
image classification. This task is extensively utilized for various perception functions in
autonomous and remote driving systems [47]. Specifically, our evaluation is based on the
Street View House Numbers (SVHN) dataset, a benchmark in prior studies e.g., [48], [49].
The SVHN dataset consists of real-world images of digits extracted from natural scenes
(house numbers captured in Google Street View). It includes 531,131 32x32 color training
images (1.3 GB in size) divided into 10 classes (digits 0–9) and 26,032 test images (63 MB
in size). The division between training and test data is predefined by the dataset creators.

For the image classification task on SVHN, we designed a custom artificial neural
network applicable to both the CL and FL scenarios. In the FL case, we employed the
Federated Averaging (FedAvg [20]) algorithm for model aggregation, as implemented by
the PySyft framework [50]. In PySyft, a uniform averaging method is used i.e., all ML
models are equally weighted during aggregation—unlike the original FedAvg algorithm,
which applies weighted averaging based on the number of training samples per client.

Our neural network consists of three layers: an input layer with 3,072 neurons cor-
responding to the total pixels in the SVHN images (32x32x3), a hidden layer with 512
neurons using Rectified Linear Unit (ReLU) activation to filter non-positive values, and

42 2. Centralized vs. Federated Learning comparison

an output layer with 10 neurons (one for each SVHN class) employing LogSoftmax activa-
tion [51] for efficient multi-class classification. To calculate the training loss, we selected
the negative log-likelihood loss function [51], which pairs effectively with LogSoftmax in
classification tasks. The total size of the ML model is approximately 6.1 MB.

Although more complex and larger models, such as convolutional neural networks
(CNNs) like MobileNet, ResNet, or DenseNet [51], could be used to achieve higher ac-
curacy for image classification tasks, they are less practical for resource-constrained user
equipment (UE). Constraints such as limited disk space, processing power, memory, and
battery capacity could deter user participation in the training process, reducing the realism
of the system. Therefore, our design prioritizes practical feasibility over model complexity.

Hyperparameter tuning

Setting the hyperparameters of an ML model—such as the number of epochs, batch size,
and learning rate—is a crucial preparatory step before commencing the ML training pro-
cess. These hyperparameters define the training methodology rather than being intrinsic
components of the resulting ML model. Instead, they influence how the model’s param-
eters (referred to as the resulting ML model) are adjusted during training. Optimizing
these hyperparameters involves conducting multiple test runs with varying combinations
of values. The configuration that delivers the highest accuracy is then applied to the main
training task. Neglecting this tuning phase can lead to significant performance degrada-
tion or even failure to achieve convergence, as demonstrated in [52]. While most studies
focus on optimizing hyperparameters based solely on the resulting ML model’s perfor-
mance metrics (e.g., accuracy or convergence speed), our work also considers the impact
of hyperparameter selection on network energy consumption, particularly as influenced by
processing demands.

To this end, our analysis begins with the total number of epochs (hepochs), which
determines how many times the algorithm processes the entire training dataset. This
parameter influences not only the final performance of the ML model but also the pro-
cessing time, and hence, the energy consumed—whether by the clients in FL or by the
cloud server in CL. Once the value of hepochs is established, we further examine two other
critical hyper-parameters: the batch size (hbatch) and the learning rate (hrate). The batch
size defines the number of training samples used in a single iteration (forward and back-
ward pass), while the learning rate parameter controls the magnitude of weight updates
during training, effectively determining the step size of the model’s parameter adjust-
ments. Both hyper-parameters primarily influence the ML model’s accuracy, while also
having a secondary impact on processing time and energy consumption. By addressing
these parameters comprehensively, our study aims to evaluate their dual effect on model
performance and resource efficiency.

2.3.7 Emulation environment process

The following steps describe how the above-mentioned modelling components, together
with client selection and server-client communication are incorporated in our emulation
environment, both for the CL and the FL case. Initially, the cloud server generates a
(non pre-trained) ML model, which seeks to train by utilizing available client data. The
central server orchestrates, synchronizes and controls the training process and the clients
at all times. Also, the SVHN dataset (see Sec. 2.3.6) is split into z partitions (see Sec.
2.3.3). We then run a series of communication rounds, until all partitions are used or a

2.4 Simulation results 43

predefined time deadline (tend) is reached. The time deadline is selected, based on the
respective time granularity of each mobility dataset. In each communication round:

Step 1: The server identifies all (available) online clients (q) determined by the cor-
responding mobility dataset that captures the mobility dynamics.

Step 2: A total of k < z clients are randomly selected, as a subset of q, each of which
is assigned a partition (see Sec. 2.3.3). If there are not enough online clients present to
satisfy our selected per round participating client number (q < k), all the currently online
clients are used. If no clients are found at all (q = 0), the round is terminated and a
waiting period is introduced, equal to the mobility dataset’s time granularity; that is 60
sec for the Shanghai Telecom and 1 sec for the Wifidog dataset (see Sec. 2.3.2).

Step 3: The ML scheme is initiated: In case of CL, the selected clients upload their
(raw) local datasets to the cloud server. The time (ti) required for each client’s dataset
(di, i ∈ [1, z]) upload is equal to the time of the access network upload plus the time of
the core network upload, therefore can be written as (see Sec. 2.3.1): ti = di/s

UL
client +∑

j(di/s
UL
corej), for j core components. A parallel communication protocol is assumed,

thus the total time to upload all datasets (tupload) equals to that of the ”slowest” client:
tupload = max{ti}. Upon collection, the server merges all round’s data into a super-
dataset, which is then randomly shuffled to mitigate the effects of variance [53]. With the
collected super-dataset the server trains the ML model. Training time is calculated using
the cloud server’s computational capacity model (see Sec. 2.3.4). The completion of the
ML training marks the end of the round.

For the FL case, the cloud server firstly shares the training models (of size m) to
the selected clients (k). Afterwards, each client trains the model, utilizing its assigned
dataset and uploads the updated model back to the server. When all models are uploaded
back to the cloud server (again in a parallel manner, similar to the CL case), the server
performs model aggregation (averaging). The time needed for the federated training and
the server’s aggregation task is calculated from the UE’s and cloud servers computational
capacity model respectively (see Sec. 2.3.4).

Step 4: A communication failure occurs when a client goes offline, while performing
a task (either during training or during data exchange), irrespective of the task’s comple-
tion percentage. Such a failure is checked in our emulation environment by parsing the
corresponding mobility dataset. In case of failure, the client’s contribution is neglected
by the cloud server (training for CL/aggregation for FL). However, to account for the
time/resources spent for the partial communication, we consider a delay time equal to
the estimated task’s time, along with the respective resource consumption, assuming the
worst-case scenario i.e. that the connection is lost, when the task was almost completed.

2.4 Simulation results

2.4.1 Simulation setup and evaluation metrics

The simulation environment was set up on a single desktop machine with the following
specifications: Intel Core i7-10700 processor (2.9 GHz), 64-bit architecture, 16 GB of
Random Access Memory (RAM), and Windows 10 as the operating system. To simu-
late the distributed learning environment, we used the PySyft library [50]. PySyft is an
open-source, Python-based framework designed for secure and private machine learning.
It allows for the decoupling of private data from the model training process by employing
techniques such as Federated Learning, Differential Privacy, and Encrypted Computa-
tion. PySyft’s interface is similar to that of the numpy Python library [54] and integrates

44 2. Centralized vs. Federated Learning comparison

seamlessly with popular deep learning frameworks.
The DML environment1 is wrapped using a custom Python-based discrete event sim-

ulator, which emulates the underlying network i.e., the mobile clients, the core network
and the cloud server, as illustrated in Fig. 2.1b. The network simulator software realizes
the network throughput, client mobility, data distribution, computational capacity and
energy consumption models, as presented in Sec. 2.3. Its clock is synced to the mobility
dataset’s timeframe, which is used as global (time) reference. A deadline of tend = 24hrs
is chosen across all experiments which are set to terminate when all dataset (SVHN)
partitions are used or tend is reached. We report that in 95% of the cases, termination
occurred due to dataset depletion, while the average termination (simulation) time was
4 hrs, throughout all our experiments. Unlike the majority of works in literature that
evaluate the performance of CL vs. FL with regards to their accuracy, we employ a broad
set of carefully-selected metrics to capture all previously-overlooked dimensions.

Test Accuracy

The effectiveness of the trained ML model is evaluated on the SVHN test data (see Sec.
2.3.6). The percentage of successful to total classifications provides the test accuracy
metric, with a maximum value of 100%. Both in CL and in FL, we assume that the
cloud server has the ability (and the capacity, given the ML model’s negligible size) to
save each round’s ML model, so that the most accurate ML model can be extracted in
the end of the experiment. Keeping track of each round’s output is a standard technique
in ML training [55], to avoid over-training and therefore parameter over-fitting, which
results in less accurate ML models. Thus, the term Test Accuracy refers to the maximum
accuracy achieved during the (CL/FL) experiment and not necessarily the accuracy of the
chronologically latest ML model.

Traffic Overhead

It is defined as the total amount of data exchanged between the cloud server and the
clients for the duration of the ML process, multiplied by the total number of hops the
data traverses, after leaving its origin node i.e., hops = (total network nodes) − 1. In
case of CL, the exchanged data refers to the raw data uploaded by the clients, while in FL
it refers to the ML model’s parameters uploaded by the clients, plus the ones distributed
back to clients by the cloud server (see Fig. 2.1a). For the sake of clarity, traffic overhead
is normalized to the total dataset size i.e., 1.3 GB. Traffic overhead reflects the total band-
width consumed during the ML process, accounting for both successful and unsuccessful
communications. On the contrary, the total overhead generated by communication failures
(see Sec. 2.3.7), is defined as Traffic Loss.

Energy Consumption

It captures the energy expenditure in all involved devices, during the ML process (Sec.
2.3.5), regardless the success/failure of transmission. Specifically, for the clients, we
consider the total energy of all devices involved (due to ML processing and transmis-
sion/reception). For the core network it is only limited to expenditure due to data ex-
change. Lastly, for the cloud server, we only account for consumption due to processing
(either model aggregation in FL or ML training in CL). Similarly to the definition of Traf-
fic Loss, we also define the Energy Loss, as the total energy consumed e.g., by a client’s

1The source code is publicly available at: https://github.com/giorgosdrainakis/dml

2.4.2 CL vs. FL: Energy-aware hyperparameter exploration 45

device for training a model in FL, but the result was not utilized due to a subsequent
client-server communication failure.

2.4.2 CL vs. FL: Energy-aware hyperparameter exploration

(a) Testing accuracy w.r.t. epochs (b) Energy expenditure w.r.t. epochs

Figure 2.2: ML hyperparameter tuning: Number of epochs

(a) Testing accuracy w.r.t. batch size and learn-
ing rate (CL)

(b) Testing accuracy w.r.t. batch size and learn-
ing rate (FL)

Figure 2.3: ML hyperparameter tuning: Batch size and Learning Rate

The exploration of the ML hyperparameter values (tuning) is performed prior to the
actual ML tasks (experiments), as discussed in Sec. 2.3.6. Starting from the number
of epochs hepochs we consider the following values: {1, 5, 10, 25, 50, 100, 200}, which
are commonly used in bibliography for image-classification tasks and SVHN specifically
[49]. Our test-runs suggest that our ML model achieves a maximum accuracy of 85%, if
hepochs ∈ [25, 100] both for CL and FL (see Fig. 2.2a). When looking to the underlying
energy consumption in the clients side, one observes that an increase on hepochs causes a
linear increase in energy consumption, with angles of incline equal to 0.46 and 0.78 rad for
CL and FL, respectively (see Fig. 2.2b). To account for both accuracy and the consumed
energy, a value of hepochs=25 is selected.

Moving to the batch size hbatch and learning rate hrate, we perform an exhaustive search
over the following values: {64, 128, 500, 1000} for hbatch and {0.0001, 0.0005, 0.001, 0.005,
0.01, 0.05, 0.1} for hrate, based on [48] and [49]. In the CL case (see Fig. 2.3a), the
maximum accuracy is achieved for a combination of hbatch ≥ 128, hrate ≥ 0.05 and for the
FL case (see Fig. 2.3b) hbatch ≤ 128, hrate ≥ 0.05. For a fair comparison of the two ML
schemes (CL, FL), we assume a common set of values of hbatch = 128, hrate = 0.1. The
selected hyperparameter values are kept fixed throughout our experiments.

46 2. Centralized vs. Federated Learning comparison

2.4.3 CL vs. FL: The effect of client data to model size ratio rdata

In this section, we investigate the way the per client data to model ratio rdata shapes
the performance of the ML schemes under evaluation. Essentially, rdata indicates the
amount of data a client holds (in relation to the fixed ML model size m). For this set of
experiments, we assume data is symmetric across all clients (i.e., i.i.d. and e.d. setting)
and vary the number of dataset partitions i.e., total clients z ={15, 30, 60, 90, 120,
150, 190, 230, 260, 300, 330, 360, 400}. Therefore the data to model ratio becomes
rdatai=d/(m · z), ∀i ∈ [1, z] (see Sec. 2.3.3). We also, for now, assume a constant value
for the per round participants k=5. Keeping in mind that the total dataset (SVHN)
size d is fixed to 1.3 GB (see Sec. 2.3.6), larger values of rdata represent setups, where
fewer clients with larger dataset partitions (z) participate in total, in the ML scheme.
Vice versa, smaller rdata values represent a situation, where more clients with fewer data
participate in total. Nevertheless, the aggregated (total) training data (SVHN) in each
experiment remains the same, ensuring a fair comparison for all training tasks. Each
of the 13 experiments (representing different rdata or equivalently z values) runs with
both LTE and WLAN settings, for 10 different sample time periods taken randomly from
the respective mobility dataset, yielding a total of 260 pairs of CL-FL experiments. All
measurements of this section are taken at the end of each experiment and mean values out
of the 10 samples are depicted together with the corresponding 95% confidence intervals.

Impact of rdata on the achievable testing accuracy

Both CL and FL successfully converge, achieving an average testing accuracy of 85%
across both LTE and WLAN scenarios (refer to Fig. 2.4a). This result holds consistently
for all values of rdata ∈ [0.5, 15] (or equivalently z ∈ [14, 426], where the x-axis is dual-
valued, displaying dataset partitions z at the top and the parameter rdata at the bottom
for clarity). The reported accuracy corresponds to the maximum value attained during
the ML hyperparameter tuning phase (as illustrated in Fig. 2.3).

Our findings align with prior research, which highlights the importance of hyperparam-
eter tuning and increasing the number of training epochs as effective strategies to enhance
the convergence of FL’s default algorithm, FedAvg [25]. This study further substantiates
that properly configuring ML hyperparameters prior to training enables FL to achieve con-
vergence across the entire range of rdata ∈ [0.5, 15], ultimately attaining accuracy levels
comparable to those of CL.

(a) Achieved testing accuracy (b) Normalized traffic overhead

Figure 2.4: Testing accuracy and normalized traffic overhead w.r.t. data to model ratio

2.4.3 CL vs. FL: The effect of client data to model size ratio rdata 47

Impact of rdata on the bandwidth consumption

The impact of rdata on the ML schemes’ network resource utilization (reflected by the
normalized traffic overhead) is depicted in Fig. 2.4b. We observe that for low ratios
(rdata¡2), FL is bandwidth-demanding, consuming exponentially more data in comparison
to CL. This stems from the fact that more clients participate in the training process,
therefore more ML models are uploaded/downloaded to/from the server. In contrast, for
large ratios (rdata¿3), where the total number of clients decreases, FL naturally becomes
more bandwidth efficient. In fact FL demonstrates an exponential decrease of (exchanged)
data compared to CL. This holds for both studied network settings, namely in LTE and
WLAN. Note that this behavior is not related to the number of training rounds, since in
our simulation training stops upon dataset depletion. Interestingly, a relative-equilibrium
area exists when 2 < rdata < 3, where CL and FL share similar network resource utilization
profiles.

(a) LTE (b) WIFI

Figure 2.5: Normalized traffic loss w.r.t. data to model ratio

An increased rdata i.e., a setup where few clients hold more data, would also benefit
FL in terms of traffic loss, which basically represents unnecessary bandwidth usage from
communication failures due to client mobility. Note that our setup does not focus on
fairness or resilience aspects e.g., replacing a failed node or investigation of asynchronous
schemes [56]; it rather studies the effect of mobility on the default CL/FL setup, where
failed nodes are excluded from the training/aggregation phases, respectively. As a result,
performing FL with rdata >> 3 results in a traffic loss reduction up to 67% for LTE (see
Fig. 2.5a) and up to 41% for WLAN (see Fig. 2.5b), as opposed to FL with rdata < 2.
This reduction relates to the fact that in FL the client only exchanges ML models (of
fixed size m) with the cloud server, regardless the actual amount of (raw) data he holds.
Thus, a lower number of participating clients (for rdata >> 3) results in a lower number
of exchanged ML models (i.e., exchanged MBytes) and therefore decreased data loss. In
FL (unlike CL) the traffic overhead and traffic loss accordingly is not governed by the
size of each client dataset, but by the number of the total participants. Another point
worth mentioning is that FL on a WLAN channel exhibits on average 40% more data loss
compared to FL with LTE; at the same time, data loss in WLAN has larger confidence
intervals compared to LTE. These observations reflect the average time a client is likely
to remain (connected) in a service area; for WLAN that is by nature limited and erratic,
as opposed to LTE, where users can potentially be always-on.

Contrary to the FL case, traffic loss is close to zero in CL, unless rdata > 10, where
it reaches a maximum of 10%. In CL, no local processing (which is a time-consuming
task in a resource-limited UE device) is required from the mobile clients; therefore delays
may only occur due to transmission, which in turn minimizes the probability of a device

48 2. Centralized vs. Federated Learning comparison

drop. On a more general remark for both ML schemes in LTE and WLAN, the traffic loss
reaches a maximum of 16% of the total traffic overhead; this low percentage of losses is
also reflected in the consistently almost-negligible confidence interval size of all graphs in
Fig. 2.4b. Thus, the overall bandwidth expenditure (traffic overhead) appears (under the
considered conditions) significantly more sensitive to the portion of data (rdata) each user
holds, rather than his own mobility.

Impact of rdata on the energy consumption

Investigating the overall energy expenditure from the client’s perspective, as analyzed in
Sec. 2.3.5, our experimentation suggests that CL outperforms FL for all values of rdata.
Specifically, if FL is employed the clients collectively consume 300 times more energy in
the LTE case (that is 350 for WIFI), as opposed to CL (see Fig. 2.6a). The CL energy-
efficiency (compared to FL) in the clients stems from the fact that it is the processing
(i.e., on-device ML training in FL) rather than data transmission which constitutes the
prime factor for a UE’s energy expenditure and thus its battery depletion. In fact, the
total energy consumption in FL due to processing (proc) is 100 times higher (see Fig.
2.7a) compared to the total energy consumption due to transmission-reception (trx) in
the LTE case (that is 280 times in WLAN - Fig. 2.7b). Since CL does not require local
processing in the clients side, any minor gains in energy consumption due to transmission
in FL (FL-trx) for larger rdata values (see Fig. 2.7) do not affect the overall ML schemes
expenditure comparison. These minor gains stem from the fact that less ML models are
exchanged in FL for higher rdata values.

(a) Total client energy consumption (b) Mean client energy consumption

Figure 2.6: (a) Total and (b) mean client energy consumption w.r.t. data to model ratio

(a) LTE (b) WIFI

Figure 2.7: Client energy consumption w.r.t. data to model ratio, broken down to pro-
cessing (proc) and transmission/reception (trx) for (a) LTE and (b) WIFI radio access
technologies.

2.4.3 CL vs. FL: The effect of client data to model size ratio rdata 49

A secondary point to note is that the average per client energy expenditure i.e., the
total energy expenditure divided by the number of clients increases linearly as rdata in-
creases (see Fig. 2.6b - note the logarithmic scale in y-axis). For our configuration, the
mean client consumption varies in the interval [0.64, 20.7]KJ for LTE and [0.81, 28.8]KJ
for WLAN. The fact that client consumption in WIFI is consistently increased compared
to LTE stems from WLAN’s lower data rates (see Sec. 2.3.1), combined with its higher
energy transmission costs (see Sec. 2.3.5). Assuming a modern smartphone’s typical bat-
tery [57] with 2400 mAh/3.8 V, resulting in 32.8 KJ battery capacity, we deduce that in
the worst-case scenario of our configuration (rdata ≈ 14), 63% of each UE’s battery energy
is depleted in the LTE case (that is 88% for WLAN).

The results so far suggest that for rdata > 4, FL is on average 24% more energy efficient
in an LTE setting, as opposed to WLAN (see Fig. 2.6). However, LTE’s energy-efficiency
does not appear in the CL case, although transmissions of large size datasets (instead of ML
models) occur. As portrayed in Fig. 2.8, LTE’s energy-efficiency is related to processing
and specific to energy loss (see Sec. 2.4.1) i.e., energy consumed for local processing,
but followed by a communication failure. Since more communication failures occur in a
WLAN setting compared to LTE, as discussed earlier in Sec. 2.4.3, the amount of Energy
Loss (and thus total energy expenditure) is higher. In fact, energy loss is largely affected
by rdata; larger rdata values represent larger per client dataset sizes implying higher energy
consumption to perform training over these datasets. Thus, a potential communication
failure of a client with a large rdata essentially means larger energy loss compared to a client
with smaller rdata. In FL, energy loss amounts to less than 16% of the total expenditure for
rdata <2, while reaches 30% for rdata >10 in the LTE case (see Fig. 2.8a). The respective
WLAN values are 18% and 53% (see Fig. 2.8b).

(a) LTE (b) WIFI

Figure 2.8: Client energy consumption w.r.t. data to model ratio, broken down to suc-
cessful (succ) and failed (fail) communication

Unlike the client energy expenditure, both the core network’s and the cloud’s energy
consumption exhibit an exponential reduction as rdata increases (see Fig. 2.9). For the
core network, this reduction is only seen in the LTE case; the difference between the LTE-
WLAN is mainly shaped by the energy expenditure in the network elements between the
access and the metro & edge network, namely the BS and the AP respectively (see Sec.
2.3.1). Interestingly for the LTE case, a value exists for rdata ≈ 7, where an equilibrium
occurs between FL and CL (see Fig. 2.9a). In any case, core expenditure in LTE is at
least two orders of magnitude greater compared to WLAN, regardless the ML scheme. As
expected, the cloud’s consumption is reduced, when the ML task is offloaded to the clients
(see Fig. 2.9b); that reduction varies between 95% and 99%, as rdata increases from 0.5
up to 15 and relates to the total clients i.e., the total (produced) ML models aggregated

50 2. Centralized vs. Federated Learning comparison

(a) Core network (b) Cloud processing

Figure 2.9: Core and cloud energy consumption w.r.t. data to model ratio

in the cloud. The overall (system-wise) energy footprint for each ML scheme in the LTE
and the WLAN case is depicted in Fig.2.10. Overall, CL demonstrates a higher energy
efficiency compared to FL, both in LTE (see Fig.2.10a) and in WLAN (see Fig.2.10b). For
rdata ≈ 1, CL outperforms FL by 83% in the LTE case and 82% in WIFI. As rdata → 15
these values are increased to 86% and 90% respectively. CL’s energy efficiency is mainly
dictated by the lack of processing (as opposed to FL) in clients’ devices.

(a) LTE (b) WIFI

Figure 2.10: End-to-end energy consumption for all network stakeholders

Discussion on the effect of rdata

The overall performance of CL and FL as rdata increases is summarized in Table 2.3. A
setting with reduced rdata values (rdata → 0) i.e., with many clients holding few data,
greatly favors CL over FL. When rdata increases (rdata → ∞), several benefits emerge
for FL. FL becomes bandwidth-efficient, outperforming CL. As a result, clients (end-
users) significantly reduce their data consumption, which is particularly advantageous
in LTE environments where users often face constraints due to limited monthly data
allowances. Additionally, the network infrastructure benefits from this reduction in data
usage, as it alleviates the need for extensive bandwidth reservation and helps mitigate
network congestion. An increased rdata also benefits both the network and the cloud
infrastructure energy-wise. However, energy costs are distributed to the client devices,
which can lead to client dropping, due to battery unavailability in a resource (battery)-
constrained environment e.g., in smartphones or IoT devices.

Client selection schemes offer a promising avenue for optimizing resource consumption
across all network stakeholders, including clients, the network infrastructure, and the cloud
infrastructure. These schemes can dynamically determine which clients participate in the

2.4.4 CL vs. FL: Convergence speed 51

training process, factoring in criteria such as available bandwidth, energy constraints, and
the quality of the local datasets. By carefully selecting participants, it is possible to balance
resource usage efficiently, minimizing client energy expenditure and data transmission
while also reducing strain on network resources such as bandwidth and server processing
capacity.

For instance, prioritizing clients with high-quality datasets or stable connectivity could
improve training efficiency and model accuracy while avoiding unnecessary overhead for
clients with limited resources. Similarly, adaptive strategies that rotate client participation
based on their resource availability and contribution potential could further enhance the
overall system performance.

Exploring such client selection mechanisms could also pave the way for integrated
optimization frameworks that address the trade-offs between energy consumption, latency,
and model performance. These frameworks could even incorporate ML techniques to
predict and adapt to dynamic network conditions, enabling a more intelligent and holistic
allocation of resources. Investigating these aspects remains a rich area for future research,
with the potential to significantly enhance the scalability and sustainability of distributed
ML frameworks like FL.

Table 2.3: Effect of rdata on CL/FL performance

Metric w.r.t. rdata CL FL Winner (rdata → 0) Winner (rdata → ∞)

Achieved accuracy Constant Constant (via tuning) None None

Bandwidth consumption Constant Exponential decrease CL FL

Traffic loss Constant Linear decrease CL None

Total client energy consumption Constant Linear increase CL CL

Per client energy consumption Constant Linear increase CL CL

Energy loss Constant Linear increase CL CL

Core energy consumption Constant Exponential decrease CL FL

Cloud energy consumption Constant Exponential decrease FL FL

2.4.4 CL vs. FL: Convergence speed

In this section, we will analyse how ML schemes evolve across time. We make use of
the samples (experiments) described in Sec. 2.4.3, zooming on the time dimension per
experiment, instead of the final resulted values; for example Testing Accuracy refers to the
achieved accuracy per time instance. Capitalizing on the results from the aforementioned
paragraph, we limit our investigation to two values for rdata, namely 1.8 and 7, representing
a setting with more clients which hold few data and a setting with few clients holding
considerably more data, respectively.

As depicted in Fig. 2.11a, CL reaches its maximum accuracy levels in the very first
rounds (before 1K secs), utilizing the full dataset (see Fig. 2.11b). At that time it
outperforms FL in terms of accuracy by an average of 22%. CL’s faster convergence
however, comes at a cost. In CL, data exchange is performed in a bursty manner, which
results in a consumption of 100% of CL’s required bandwidth before 1K secs. At the same
time, the cloud’s energy is consumed early compared to FL (42 KJ in less than 1000 secs),
due to ML processing in the cloud server (see Fig. 2.12b). FL, on the other hand, proceeds
gradually (linear evolution) towards its completion (at 13K secs benchmark for rdata =1.8
and 15K for rdata =7) and so does the network’s data expenditure (see Fig. 2.11b) as
well as the client energy consumption (see Fig. 2.12a). Since FL’s accuracy reaches its
peak before the end of the experiments (see Fig. 2.11a), any bandwidth or energy spent
after the above-mentioned benchmarks has no obvious benefit. It is also observed that an
increased rdata does not affect CL’s behavior; in FL however, the ML task is performed

52 2. Centralized vs. Federated Learning comparison

in a total of less client devices, therefore parallelism is decreased. As a result, the ML
convergence, as well as the respective resource consumption footprint expands across time.

(a) Accuracy w.r.t. time (b) Bandwidth consumption w.r.t. time

Figure 2.11: Evolution of accuracy and traffic overhead across time

(a) Clients energy consumption w.r.t. time (b) Cloud energy consumption w.r.t. time

Figure 2.12: Evolution of energy consumption in the (a) clients- and (b) cloud-side across
time

Overall, unless bandwidth constraints are a critical factor within the system, CL
emerges as the preferred option for accelerating the training process. This makes CL
particularly well-suited for ML applications where data evolves rapidly over time, such
as time-series forecasting. By leveraging CL’s faster completion times, it is possible to
continually produce up-to-date global ML models, ensuring relevance and accuracy in dy-
namic scenarios. Additionally, the faster execution of CL reduces the duration for which
network resources are occupied, freeing capacity for other applications and mitigating the
risk of network bottlenecks.

Conversely, FL offers distinct advantages when a gradual, balanced approach to achiev-
ing maximum ML accuracy is prioritized, especially in scenarios where conserving network
resources is more critical than minimizing time, such as in data analytics applications.
FL’s distributed nature inherently economizes bandwidth by avoiding the transmission
of raw data, which can be advantageous in resource-constrained environments. Further-
more, FL’s efficiency could be enhanced through the implementation of a mechanism that
continuously monitors accuracy improvements during training. Such a mechanism would
identify when convergence is achieved, allowing the training process to halt, thereby avoid-
ing unnecessary resource consumption.

To maximize the strengths of both approaches, a dynamic and adaptable system akin
to Hybrid Learning [18] could be employed. This hybrid framework would intelligently
switch between CL and FL based on the specific requirements of the ML application
and the current availability of system resources. Such a solution could optimize both

2.4.5 CL vs. FL: Varying the number of participating clients 53

performance and resource utilization, ensuring that the training process aligns seamlessly
with the constraints and objectives of the operational environment.

2.4.5 CL vs. FL: Varying the number of participating clients

(a) Resulted accuracy w.r.t. per round partici-
pants

(b) Task completion time w.r.t. per round par-
ticipants

Figure 2.13: Impact of increasing the number of participating clients per round

We now fix the number of clients/partitions to z = 100, or rdata ≈ 2, an area where
CL and FL demonstrate a similar bandwidth consumption profile; moreover, FL exhibits
certain gains in terms of the client energy consumption (see Sec. 2.4.3). Our goal is to
investigate how each ML scheme’s accuracy is affected, when the number of participating
clients per round k varies. Essentially, a small value of k represents a setting where few
clients are selected in each round e.g., due to low availability or client scarcity, therefore
more communication rounds are required to complete the ML task. Vice versa, an in-
creased k suggests a client-rich setting, where more clients participate in each round. We
vary k from 5 clients per round (which was our initial setting) up to 50, with a step of 5.
Each experiment is repeated for 10 different time periods/samples, taken from the LTE
mobility dataset, resulting in a total of 100 pairs of CL-FL experiments.

The results suggest that scaling the participants has practically no effect on CL’s
accuracy (see Fig. 2.13a) nor on its completion time (see Fig. 2.13b). FL’s accuracy on
the other hand is reduced up to 4%, when k increases. This result is in line with [20], [58],
where it is shown that increasing parallelism (i.e., allowing for more per round participants
and decreasing the total rounds) degrades the overall accuracy, due to the smaller number
of aggregation (FedAvg) steps. In fact, it is suggested that an optimal k value exists in
FL’s client selection process, depending on the total number of online clients, the selected
ML hyperparameters and the nature of the ML task. For image classification tasks like
SVHN with a batch size of 128, the ratio of k/z needs to be close to 0.1.

Interestingly, FL enjoys a nearly-exponential reduction in completion time, as k (lin-
early) increases i.e., an increase of k from 5 to 50 reduces the completion time by 83% (see
Fig. 2.13b). The relatively small number of extra participating clients i.e., no more than
50, should be easy to realise in a real-world system of hundreds of users e.g., mobile devices
in an urban cellular network. If k → 50, the time gap between the completion times of
CL and FL is significantly reduced, although FL experiences some limitations in terms of
accuracy. This trade-off is absent in CL, where scaling the number of clients does not have
a notable effect on the performance or the training process. An important observation re-
lates to the impact of scaling on network resource consumption. As detailed in Sec. 2.4.3,
the relevant resource consumption metrics increase in a consistent, proportional manner
without any anomalies. Therefore, we have chosen to omit the corresponding plots, as

54 2. Centralized vs. Federated Learning comparison

they do not provide additional insight.

2.4.6 CL vs. FL: Effect of data heterogeneity

Thus far the SVHN dataset was assumed to be evenly distributed (in size) across the
clients (e.d.) and that each client’s subdataset is representative compared to SVHN (i.i.d.).
We now investigate the ML schemes’ response (in terms of achieved accuracy), when the
above-mentioned assumptions are relaxed and furthermore shed some light on the interplay
between non-iidness and non-edness (see Sec. 2.3.3). For the non-e.d. setting, we assume
four cases for the Zipf parameter σed ∈ {1.7, 2, 2.3, 1000}, representing various degrees of
data distribution skewness; as σed → 1, the skewness degree becomes severe. Similarly for
the non-i.i.d. setting, we select four cases for the i.i.d. parameter σiid ∈ {3, 5, 7, 10}, which
represent the total number of classes contained in a client’s subdataset. SVHN contains
samples from all 10 classes, thus a σiid = 10 is essentially an i.i.d. setting, while smaller
σiid values mark increasing non-i.i.d. conditions. We also assume a total number of clients
z = 100 and fix the per round participants k = 10, as suggested by the results of Sec.
2.4.5. For comparison purposes, we include two extra centralized ML schemes besides CL
i.e., Standard Machine Learning (SL) and CL without (w/o) shuffling and one additional
federated i.e., Federated Learning with weighted averaging (FLw). For SL, the server
waits for the majority (at least 80%) of SVHN data to arrive and then performs training.
CL without shuffling is identical to CL, however no data shuffling occurs prior to training.
FLw uses a weighted averaging scheme during aggregation, as opposed to FL’s uniform
aggregation (see Sec. 2.3.6). Each experiment is repeated 10 times, using LTE traces,
resulting in a total of 160 sextuples of {SL, CL w/o shuffling, CL, FL, FLw} experiments.

(a) Balanced i.i.d. (b) Mild non-iidness

(c) Medium non-iidness (d) Severe non-iidness

Figure 2.14: Effect of client data size (e.d.) and content (i.i.d.) variations

From all centralized ML schemes (SL, CL and CL w/o shuffling), SL exhibits the
highest performance, reaching an accuracy of 85% (see Fig. 2.14). SL’s performance is
not affected by the various degrees of non-edness or non-iidness, essentially reflecting the
advantages of centralized ML under heterogeneous environments [25]. In SL, the cloud

2.5 Conclusion 55

server waits for almost all subdatasets to arrive, before merging them into a super-dataset
and initiating the ML training. Therefore, any stochasticity introduced in the (distributed)
client subdatasets, either in size or content, is eliminated when the merging occurs. As
discussed in Sec. 2.3, SL is impractical in a real system, so it is merely used for comparison
purposes.

CL w/o shuffling can be regarded as a dynamic alternative to SL, since training is
performed in each communication round, using the collected round’s client data. Under
an i.i.d. setting (see Fig. 2.14a), CL w/o shuffling achieves similar performance to SL,
which is not affected by the data size distribution (non-edness). When non-iidness appears
and as it increases (see Fig. 2.14b-Fig. 2.14d), CL w/o shuffling exhibits lower accuracy
levels (down to 56%). The introduction of non-edness further diminishes its performance,
which drops down to 44% for severe non-i.i.d. and non-e.d. conditions (see Fig. 2.14d).
This degradation is related to the distributed manner of client data and the fact that ML
training is performed in each round. Under high data heterogeneity, consecutive series of
non-representative data samples can be uploaded in the cloud server e.g., several batches
containing only one SVHN class out of ten. Such bias is likely to have a detrimental
effect on the ML training task. Moreover, given that each round’s ML model is used for
the next round training, any abnormalities will be cascaded, resulting in less accurate
ML models. To mitigate those negative effects, we apply and experimentally evaluate a
popular technique prior to ML training i.e., shuffling [53]. CL with shuffling is referred to
as CL, for simplicity. As portrayed in Fig. 2.14, CL achieves the same or higher accuracy
levels compared to CL w/o shuffling. In fact, SL only outclasses CL by a maximum of 2%
for mild (see Fig. 2.14a-2.14b) and 7% for major (see Fig. 2.14c-2.14d) data heterogeneity
respectively.

FL on the other hand, being a distributed learning scheme is affected both from non-
iidness and non-edness; even the introduction of small levels of non-iidness can lead to
accuracy drops down to 53% (see Fig. 2.14b). When in fact non-iidness is combined with
non-edness, the training task cannot converge (see Fig. 2.14d), therefore accuracy drops
below 40%. Such performance is related to FL’s training algorithm (uniform FedAvg). As
such, a ML model trained with high diversity data will be equally weighted with another
model (from another client) trained with low diversity (biased) data. FLw (FedAvg with
weighted averaging) introduces a simple bias mitigation technique by rewarding ML models
trained with larger datasets with larger weights. When non-iidness is low, this technique
enables FLw to achieve an up to 11% better accuracy compared to FL for various levels
of non-edness (see Fig. 2.14a-2.14b). However, under the presence of higher levels of non-
iidness (see Fig. 2.14c-2.14d) FL achieves similar or (up to 8%) better accuracy compared
to FLw. This is because weighted averaging (FLw) rewards ML models according to their
training data quantity (larger datasets have larger weights) and not quality i.e., data
diversity, entropy, number of classes in the dataset As such, not only FLw is prone to non-
iidness (similarly to FL), but can potentially demonstrate erratic behavior [59]. Overall, it
becomes evident that applying FL over highly heterogeneous data environments requires
advanced statistical methods that deserve a dedicated exploration.

2.5 Conclusion

This chapter has presented a comprehensive examination of the impact that employing
ML pipelines in networked environments has on the underlying network resources. Our
investigation was grounded in an end-to-end, systematic analysis enabled by a novel,
measurement-based, pragmatic model. This model accounts for the network resource

56 2. Centralized vs. Federated Learning comparison

consumption associated with CL and FL when applied to image classification tasks. To
ensure real-world relevance, the model integrates user mobility patterns derived from ac-
tual traces to capture environmental dynamics. Furthermore, it incorporates multiple
communication channels (LTE and WLAN) to facilitate comprehensive experimentation.
Our findings, derived from simulations conducted with the SVHN dataset using openly
shared simulation code, are summarized below.

Firstly, we highlighted the necessity of hyperparameter tuning before initiating ML
training, particularly emphasizing the importance of configuring the number of local train-
ing epochs. This is crucial to ensuring FL convergence, especially when clients possess
local datasets smaller than twice the size of the ML model. By increasing the number of
local FL epochs, we demonstrated that FL could achieve accuracy levels comparable to
CL, albeit with a proportional increase in client energy consumption. When clients hold
larger datasets relative to the ML model size, FL offers several advantages over CL. These
include: (1) an exponential reduction in bandwidth usage, accompanied by decreased en-
ergy consumption in the cloud and core network (notably over LTE); and (2) a reduction
in data loss due to mobility by at least 40%.

In terms of energy consumption, we observed that ML processing on FL clients signif-
icantly outweighs the energy demands of data transmission, regardless of the communica-
tion channel (LTE or WLAN). For clients with local datasets exceeding 10 times the size
of the ML model, battery depletion becomes a significant concern, with at least 63% of an
average user equipment’s battery consumed. This high energy demand may deter client
participation in FL, particularly in scenarios aimed at alleviating network congestion.

When comparing convergence rates, CL proved to be 13 times faster than FL, making it
an appealing option for minimizing the duration of ML tasks assigned to system devices.
However, this accelerated convergence comes at a steep cost, including spikes in both
energy consumption (within the cloud) and bandwidth usage. FL, in contrast, offers a
more gradual convergence process that is considerably more bandwidth-efficient while still
achieving similar accuracy. Consistent with prior studies, we confirmed that increasing
the number of participating clients per FL training round accelerates convergence at the
expense of a marginal reduction in final accuracy.

Finally, we examined the effects of data asymmetry on the accuracy of ML mod-
els. In FL, such asymmetry—whether due to variations in client dataset sizes or con-
tent—significantly degrades accuracy. Conversely, in CL, this issue can be mitigated
through pre-training data shuffling techniques, which standardize data prior to central-
ized ML training.

This research opens the door to several promising avenues for future work, many of
which can be explored using our publicly available simulation software. For instance,
the relationship between the training data-to-model ratio and ML performance warrants
further investigation, particularly with more complex and larger neural network architec-
tures. Other factors such as data acquisition rates and client storage limitations could also
enhance the realism of future studies. Additionally, the exploration of algorithms designed
to mitigate bias in non-iid FL datasets remains a critical area for improvement. Lastly,
scrutinizing dynamic ML paradigms, such as Hybrid Learning, could yield valuable in-
sights into the parameters influencing the selection of ML schemes in resource-constrained
network environments. Through this study, we have not only characterized the trade-offs
between CL and FL but have also laid the groundwork for advancing ML deployment
strategies in dynamic, resource-limited settings.

3

Federated Learning in the course
of time

3.1 Introduction

In the previous chapter, we conducted a comprehensive end-to-end system comparison
between the traditional CL approach and the emerging paradigm of DML, focusing specif-
ically on FL as a typical example of DML. In FL, the model training task is collaboratively
performed by the clients while preserving data privacy [60]. Our exploration compared
the performance of CL and FL in terms of accuracy, while also accounting for the resource
consumption of the involved stakeholders in the underlying network, such as client devices,
the network infrastructure, and cloud/edge servers.

ML tasks that take place within dynamic network environments often involve mobile
and distributed client devices, such as smartphones, OBUs, and wearables. These de-
vices are typically subject to mobility and can be considered part of applications such as
Cooperative, Connected, and Automated Mobility (CCAM) services [61], mobile network
analytics [62], and e-Health applications [63]. In these settings, data is often collected
progressively over time—spanning days, weeks, or even months—contrary to traditional
ML paradigms that assume the availability of a complete dataset prior to training. This
progressive data collection has led to the development of Lifelong Learning (LL), which
enables ML models to be trained periodically and used for inference in the course of time
[64], [65].

A critical challenge that arises in such environments is concept drift, which refers to
changes in the statistical properties of the data over time due to factors such as seasonality,
evolving user behavior, and trends [66]. If left unaddressed, concept drift can lead to model
drift, resulting in a degradation of the model’s accuracy. In traditional CL, where data
is centrally collected, concept drift is typically managed through statistical techniques
applied directly to the raw data [67]. However, in distributed environments such as FL,
significant limitations hinder the application of centralized solutions: 1) the FL server
does not have access to raw client data and thus cannot directly monitor changes in data
distributions, and 2) client devices are often resource-constrained (e.g., limited processing
power, storage, and battery life) and can be unreliable (e.g., due to connection failures or
dropouts), making them ill-suited to handle drift detection and mitigation compared to a
stable, always-on server. These challenges give rise to two fundamental research questions:
1) How can concept drift be accurately detected in a Federated Learning environment, given
the aforementioned restrictions? and 2) How can the resource consumption cost associated

57

58 3. Federated Learning in the course of time

with drift mitigation (e.g., re-training) be minimized, particularly in resource-constrained
client and network settings?

To the best of our knowledge, there have been only a few studies addressing drift
management in the context of Federated Learning [68], [69]. However, existing solutions
often either violate the data privacy principles of FL or propose continuous training ap-
proaches that lead to excessive energy and bandwidth consumption—an issue we explore
in this chapter. To address this research gap, we propose a novel, resource-efficient drift
management solution for Federated Learning, called the Drift-aware Resource-efficient
Federated Learning (DareFL) algorithm. This algorithm is specifically tailored to mobile
and vehicular networks, which are often resource-constrained. DareFL integrates existing
centralized statistical drift detection techniques [66] while maintaining FL’s strict data pri-
vacy requirements. Upon detecting drift, the system mitigates the impact by re-training
the affected ML model. The periods for re-training are carefully controlled, ensuring that
the model remains accurate while minimizing resource consumption for the underlying
network.

In contrast to most existing drift management solutions, which are typically evaluated
on limited datasets for niche applications (e.g., digit recognition [65]), we place a strong
emphasis on realistic evaluation environments. Specifically, we focus on the predictive
Quality of Service (pQoS) use-case [70], which is an automotive ML task operating in
distributed, mobile environments prone to concept drift [71]. The pQoS use-case involves
predicting changes in network QoS in advance, enabling timely actions to be taken by
applications running on client devices or application servers. For example, the system
could trigger an automated handover of control from an autonomous vehicle to the driver
to avoid critical situations.

To overcome the challenge of limited public pQoS data, we generate synthetic datasets
through a combination of network and traffic co-simulation, utilizing real-world maps.
These datasets capture two distinct drift scenarios: one related to the dynamics of wire-
less communication and the other to variations in user behavior. The generated pQoS
datasets are used in a distributed ML simulator that emulates the training process, while
also capturing key aspects of energy and bandwidth consumption based on real-world
measurements and commercial product benchmarking.

In our experiments, we evaluate the performance of the proposed DareFL algorithm in
the presence of concept drift, comparing it against three baseline approaches: a) Vanilla
Federated Learning [72], b) a continuous training scheme, and c) a representative state-
of-the-art (SotA) drift-mitigation solution [69]. The remainder of the chapter is organized
as follows: Related work is discussed in Sec. 3.2. The system architecture is presented in
Sec. 3.3, followed by the description of the simulation framework in Sec. 3.4. In Sec. 3.5,
we present a simulation-based performance evaluation of our proposed solution. Finally, a
summary is provided in Sec. 3.6, along with a discussion on potential directions for future
research.

3.2 Related work

The problem of drift management—comprising both detection and subsequent mitiga-
tion—has been widely explored in the context of CL, where datasets, training nodes,
and resulting ML models are typically co-located in a central location. Drift detection
within CL environments is often tackled using two primary categories of detectors: data
distribution-based and performance-based methods [66]. The former monitors the distri-
bution of training data, comparing it against historical data to identify potential drifts.

3.2 Related work 59

These methods rely on statistical tests, such as Kullback-Leibler divergence [67], to quan-
tify the changes in data distributions over time. By identifying discrepancies between
the current training data and previous data distributions, these methods can flag concept
drift.

On the other hand, performance-based drift detectors focus on tracking shifts in the
model’s inference performance, particularly by monitoring the test error associated with
predictions. These approaches are grounded in the Probability Approximately Correct
(PAC) concept [66], which postulates that any significant degradation in a model’s per-
formance signals that the relationship between the input data and the target output has
changed. This change implies that a concept drift has occurred, requiring immediate in-
tervention. Upon detection of concept drift, mitigation strategies are employed, which
typically involve re-training the models using updated data, combining both old and new
models, or fine-tuning the existing models based on newly acquired information [67].

In the context of distributed settings, such as FL, drift management is a more complex
challenge due to the decentralized nature of the training process. Three main strategies
have been explored to address concept drift in FL: (a) Personalized learning, (b) Asyn-
chronous FL schemes, and (c) Continuous Federated Learning techniques.

Personalized learning

It aims to tailor a global model to individual clients, adapting it to their specific needs
or data distributions. This method enables clients to re-train a generic global model
to produce customized, client-specific models. For instance, Jothimurugesan et al. [73]
proposed a mechanism where clients detect drifts locally by monitoring their own data
streams. Clients experiencing concept drift are then grouped by the server, and each
group is assigned a distinct FL model that is fine-tuned to their data. Other approaches
propose maintaining both a global and a local client model, allowing clients to select the
model that best fits their data [74].

In some cases, clients may even rely on meta-data collected from other clients to inform
their model choices [75]. Additionally, a more generalized approach is to enable clients
to retrieve multiple personalized models from the central server using a publish-subscribe
mechanism, where the clients perform model aggregation locally [76]. However, while per-
sonalized learning offers a flexible solution, it significantly increases system complexity,
particularly in large-scale FL environments with thousands of clients. Managing multi-
ple models for each client can strain the available computational and storage resources,
presenting a challenge in terms of scalability.

Asynchronous Federated Learning

This method takes a different approach by allowing clients to independently train and
upload their models when necessary, particularly when a drift is detected. Drift detection
in Asynchronous FL typically occurs at the client-side, where local data is compared to
historical data [60], or by assessing the changes in the global model’s performance [77],
[78]. Once drift is detected, mitigation strategies are applied at the client level. These
strategies may involve re-training the local model [60], employing ensemble methods [77],
or adapting the local cost function [78]. While asynchronous techniques offer flexibility
and efficiency in addressing concept drift, they introduce additional complexity in terms
of computational resources, storage, and synchronization overheads. These challenges are
especially pronounced in resource-constrained environments, where clients may lack the
capacity to handle the increased demands of frequent model updates and drift detection.

60 3. Federated Learning in the course of time

Figure 3.1: Vanilla FL framework

Continuous Federated Learning

An alternative solution to managing drift in FL is Continuous Federated Learning (ConFL),
which involves repeatedly re-training the ML model to adapt to emerging drifts over time.
In this approach, clients continuously monitor their data streams for signs of drift, and
when drift is detected, they trigger re-training or adjustment of the global model. Ma-
nias et al. [68] explored a technique where clients detect drifts using Euclidean distance
metrics, and the server isolates those clients experiencing drift from the training process.
However, this method falls short in the case of a global drift that affects all clients, as it
relies on local detection and does not account for shared, global drifts across the network.

A more generalized approach involves using convex optimization techniques to de-
tect drift server-side, as shown in [79], where the server adapts the number of training
epochs in response to drift. However, this approach has been primarily demonstrated in
near-stationary environments, where the data distribution does not fluctuate too rapidly.
Similarly, AdaptFL [69] detects drift by comparing client model parameters received at
the server-side, using a moving average approach. Once drift is detected, the server ad-
justs the learning rate for the next training round and communicates this adjustment to
the clients. The learning rate is increased in the presence of drift and gradually decreased
otherwise. While both ConFL and AdaptFL have demonstrated success in mitigating
concept drift, they rely on constant re-training, which, in the absence of drift, consumes
excessive network resources without yielding significant gains in model accuracy.

Overall, drift detection and mitigation in distributed environments, especially in FL,
pose significant challenges due to the decentralized nature of training and the diverse data
sources involved. While various methods have been proposed to address these issues, each
approach comes with its own set of trade-offs, balancing accuracy, resource consumption,
and system complexity. As the field of federated learning continues to evolve, further
exploration is needed to develop more efficient, scalable, and resource-conscious methods
for handling concept drift in large-scale, dynamic environments. The ongoing research
in this area has the potential to significantly enhance the robustness and effectiveness of
federated learning systems, particularly in real-world applications where data distributions
are continuously changing.

3.3 System architecture

3.3.1 Vanilla Federated Learning

Firstly, we introduce the foundational concepts that underpin Vanilla FL in distributed
environments, over the course of time. We consider a typical scenario involving a cen-
tralized server, such as one hosted in a cloud infrastructure, and a set of mobile clients,

3.3.1 Vanilla Federated Learning 61

for instance, vehicles. These clients are equipped with the following capabilities: a) raw
data acquisition, typically through sensors; b) processing capacity to execute (ML) train-
ing, facilitated by local processors; and c) connectivity to the central server, typically via
cellular or other wireless networks.

Model preparation (server-side)

The process begins with the initialization of a custom ML model at the server, which, at
the start, is untrained (depicted as a blank model on the leftmost part of Figure 3.1). To
ensure optimal performance during the subsequent training phase, a ”warm-up” period
is introduced. This phase consists of a series of test runs on the server, using a limited
dataset to calibrate the model. The warm-up period involves two critical stages: model
design and hyperparameter tuning. During the design phase, the structural components of
the model are defined, including the layers, loss function, activation function, and learning
rate scheduler [80]. Subsequently, hyperparameters such as batch size, learning rate, and
number of training epochs are optimized using techniques like grid search over predefined
ranges [81].

Data pre-processing (client-side)

The raw data generated by each client undergoes a series of pre-processing steps before
being used for training. These steps may include data cleaning, augmentation, normal-
ization, and feature extraction [80]. After pre-processing, the data is partitioned into
two subsets: a training dataset and a validation dataset. The training dataset is used to
update the ML model, while the validation dataset is employed to monitor the training
process, ensuring that overfitting is prevented through techniques like early stopping [80].
Additionally, both datasets undergo normalization to ensure that the model handles the
data efficiently and effectively [81]. Common normalization methods, such as Min-Max
scaling or Max-Abs scaling, are applied [80]. Once the model has been trained on the
client’s data, it is then used for inference, evaluating the model’s performance on unseen
data.

Federated training and testing in the course of time

Training in the Vanilla FL framework occurs in successive cycles, or training rounds R,
each involving a set of clients. For each round r ∈ [1, R], the central server randomly
selects a subset of K clients to act as trainers and M clients to act as testers, where
K +M ≤ C represents the total number of clients C in the system [82]. The global ML
model is distributed to the selected trainers and testers, and each trainer uses its local data
to train the model, resulting in the generation of a local model. These models are depicted
in various colors (green, blue, red) for different clients in Figure 3.1. In parallel, each tester
uses its data to infer the performance of the global model on the current round’s dataset.

Upon completion of the training phase, the server collects the local models and ag-
gregates them into a new, updated global model using the Federated Averaging (FedAvg)
algorithm [69]. The server also collects the inference results from the testers, which are
used to generate a performance evaluation report for the global model. This evaluation
does not involve any disclosure of client data or statistics, ensuring the privacy of client
information, which is a key feature of FL.

At the conclusion of round r, the updated global model is re-distributed to a new set
of K trainers and M testers for the next round r + 1, and this process continues until

62 3. Federated Learning in the course of time

the termination criteria are satisfied. Termination may occur upon reaching a predefined
maximum number of rounds, achieving a global model accuracy above a certain threshold,
or other criteria [72]. Training is organized into rounds of fixed duration q. While asyn-
chronous approaches to training could be considered [78], they are susceptible to challenges
such as communication bottlenecks and client-induced bias. Clients continuously collect
data at a frequency f , but only the data gathered within each round’s duration q is used
for training. Consequently, each selected trainer c ∈ [1,K] divides its collected data into
a training dataset, denoted as train(c, r), and a validation dataset, denoted as val(c, r).
Likewise, each tester c ∈ [1,M] generates an inference dataset, denoted as inf(c, r), as
depicted in light blue, light green, and light red in Figure 3.1.

3.3.2 Concept drift detection and mitigation

Concept drift in ML refers to the phenomenon whereby the statistical properties of data
change over time in unforeseen ways. Assuming a distribution Pt between the independent
variables X and the dependent variable y, across time t, drift occurs if ∃t : Pt(X, y) ̸=
Pt+1(X, y). This definition assumes a single data distribution, although each FL client
can experience different drifts.

Our study operates under the assumption of a global drift, which is induced by a
widespread change in the environment. In this scenario, all clients are impacted by the
drift, although the severity or intensity of the drift may vary across different clients [60].
VanillaFL, as described in Sec. 3.3.1, is inherently ill-equipped to handle such drift ef-
fects. In this setting, training halts once the system reaches convergence, which poses
a significant challenge. Any subsequent changes in the client datasets—such as shifts in
data distribution or emerging patterns—can lead to model degradation, as the model fails
to adapt to these changes after training is completed [66].

To address this limitation, state-of-the-art variations of Vanilla FL, such as Continu-
ous FL and Personalized Learning, have been proposed. While these adaptations attempt
to mitigate the effects of drift, they come at a cost. Specifically, they tend to lead to
increased resource consumption or add significant complexity to the system (as detailed in
Sec. 3.2). ConFL requires continuous re-training of the model, which demands substan-
tial computational and communication resources, particularly in large-scale environments.
On the other hand, Personalized Learning, while capable of tailoring models to individual
clients, increases the overall system’s complexity by necessitating the maintenance of mul-
tiple models per client. These trade-offs highlight the challenges of efficiently managing
concept drift in federated learning systems, particularly when balancing accuracy, resource
consumption, and system scalability.

In contrast to the aforementioned methods, our approach centers on the precise de-
tection of two key events: 1) the completion of the training process, which signifies con-
vergence, and 2) a shift in the underlying data distribution, known as concept drift. By
detecting these events, we can effectively halt or (re)initiate the training process in a
timely manner, ensuring the model adapts appropriately to changes. The challenge in FL
arises from the fact that clients are generally unable to share their individual datasets,
which limits the ability to directly monitor data changes or model performance. However,
clients can provide performance indicators derived from their local ML models, such as
inference results, which can be used as proxies for assessing the model’s effectiveness.

The core concept of our approach lies in the use of performance-based detection mecha-
nisms. These detectors are based on the assumption that a degradation in the ML model’s
performance is indicative of issues such as overfitting or the onset of concept drift. The

3.3.2 Concept drift detection and mitigation 63

PAC model, referenced in Sec. 3.2, forms the theoretical foundation for this detection. In
the case of overfitting, the model has already converged, but continued training leads to
diminishing returns, with the model fitting noise or irrelevant features. In contrast, con-
cept drift reflects changes in the data distribution, meaning that the model’s previously
learned relationships no longer hold true, leading to a drop in accuracy. By monitoring
performance locally at each client, we can detect these phenomena and make informed
decisions about when to stop or restart the training process, ensuring that the model
remains effective and responsive to data changes.

Depending on the specific ML task, a variety of absolute performance metrics can be
employed to assess the accuracy of predictions relative to the ground truth. These metrics
may include Accuracy (%) for classification tasks, Root Mean Square Error (RMSE) for
regression, the Silhouette Coefficient for clustering, among others [80]. While these abso-
lute metrics are useful for evaluating model performance in stable environments, they can
lead to misleading conclusions, particularly in highly dynamic settings. In such environ-
ments, the performance of an ML model can degrade for a variety of reasons, including
local client biases, the presence of noise, or changes in the data distribution, all of which
can negatively impact the validity of the performance assessment [83].

To mitigate the limitations of using absolute metrics in these contexts, we propose a
novel approach that incorporates a custom performance indicator. This indicator com-
pares the ML model’s current performance against a baseline set by a naive algorithm,
which is determined locally by the clients. Naive algorithms, such as random selection for
classification tasks, rolling means for regression, or other simple heuristics, are commonly
used as benchmarks in ML research. These algorithms provide a lower bound for model
performance, indicating the minimum level of accuracy or performance that the model
should exceed. By comparing the current model performance to this baseline, we can
more accurately assess whether the model’s predictions are still meaningful and reliable,
even in the presence of changes in the data distribution, noise, or other disruptive fac-
tors. This approach allows for a more robust detection of concept drift and performance
degradation, offering a practical solution for maintaining the effectiveness of ML models
in dynamic environments [81].

Our approach offers several notable advantages. First, it incurs negligible computa-
tional cost, as the naive algorithm only requires minimal computations, especially when
compared to the intensive processing involved in running machine learning models. This
makes the approach highly efficient, particularly in resource-constrained federated learning
environments where clients may face limitations in computational power. The simplicity of
the naive algorithm means it does not place a significant burden on client devices, making
it an ideal solution for frequent, low-cost performance monitoring.

Second, our approach provides a more reliable estimation of the machine learning
model’s accuracy. Unlike absolute performance metrics, which can be influenced by various
external factors such as local data biases or noise, our method uses a relative comparison.
By measuring the ML model’s performance against a naive baseline, we obtain a clearer
picture of the model’s effectiveness. This approach is more robust in highly dynamic
environments, as it helps mitigate the inaccuracies that may arise when absolute metrics
alone are used. The relative comparison enables a better understanding of whether the
model is still performing optimally or if its accuracy has declined due to issues like concept
drift or overfitting.

In practice, for a given set of inference samples, the client conducts two types of
inference: one using the trained ML model and another using the naive algorithm. The
accuracy for each inference is then calculated using an absolute metric, such as accuracy for

64 3. Federated Learning in the course of time

classification tasks or RMSE for regression. Finally, the two accuracy values are compared
with one another yielding a single indicator value, denoted as kpi. kpi expresses the ML
model’s performance enhancement over the naive algorithm. If ACCml and ACCnaive

mark the absolute metrics of the ML’s models and the naive algorithm’s performance
respectively, our indicator kpi of a client c in a round r becomes:

kpic,r = 100 · (ACCc,r
naive −ACCc,r

ml)/ACCc,r
naive (3.1)

3.3.3 The Drift-Resilient Resource-Aware (DareFL) algorithm

Algorithm 1 DD(Input : {kpi})
1: define DDM list: {ddm}
2: for each element e ∈ {kpi} do
3: if e >= β1 then
4: append 0 to {ddm}
5: else
6: append 1 to {ddm}
7: end if
8: return DDM({ddm}, β2, β3)

Algorithm 2 CD(Input : {kpi})
1: define ckpi list: {ckpi}
2: ckpi=mean({kpi})
3: append ckpi to {ckpi}
4: if {ckpi}
5: not increase(β4) then
6: return boolean=True
7: else
8: return boolean=False

We propose a novel algorithm, Drift-aware Resource-efficient FL (DareFL), which is de-
signed to address two key objectives. First, it ensures timely halting of the training process
once model convergence is achieved, thus preventing unnecessary resource consumption.
This early termination not only saves computational resources but also optimizes energy
consumption and reduces network communication costs. Second, DareFL incorporates an
effective drift detection mechanism, which accurately identifies when a concept drift occurs
and orchestrates re-training as a targeted mitigation strategy. This proactive approach
allows the system to dynamically adapt to changing data distributions, ensuring that the
model remains accurate and relevant over time.

Our solution works by continuously monitoring the performance of the trained models.
Based on the performance feedback, it determines whether further training is necessary.
During training rounds, the system marks the round as active, indicating that the model
is being updated and resources are actively engaged. When the system detects that no
further training is required—either because the model has converged or a drift has been
successfully mitigated—it transitions the round to an idle state. In the idle state, client
devices are able to conserve processing resources, such as power consumption, and the
communication costs between the server and clients are significantly reduced. By carefully
managing these phases of activity and idleness, DareFL ensures a resource-efficient and
adaptive federated learning process, optimizing both client and network infrastructure
usage while maintaining high model accuracy.

In our scheme, model training is divided into training rounds, similar to Vanilla FL.
Prior to each round the server employs DareFL to determine if the ML model needs further
training (active round) or not (idle round). In an active round, the server performs the
process of learning similar to Vanilla FL i.e., random selection ofK trainers andM testers.
Upon round completion, the server receives the trained models from the trainers and the
kpi values from the testers (see Eq. 3.1). The acquired kpi values are used as input for
the next round’s decision. In an idle round, no additional training occurs; clients do not
update their models and only inference and kpi collection are carried out. DareFL is
activated for the first time in the beginning of the second round, when kpi values from
the first round are available. In the end of each round r, the server collects a kpic,r value

3.4 Simulation environment 65

from each tester c ∈ [1,M] and forms a kpi list, denoted as {kpi}. The algorithm includes
the drift detection (DD) and the convergence detection (CD), both of which require {kpi}
as input. If drift is detected or convergence is not reached, DareFL will resume training
(active round), otherwise training is skipped (idle round).

Drift detection algorithm

Drift detection (DD) is based on the centralized DDM algorithm [66]. DDM operates
without accessing training data or using reference data windows (see Sec. 3.2), which is
aligned with the principles of FL. It accepts a sequence of 1s and 0s (0 for a successful
classification, 1 for mis-classification). Assuming pi and si is the error rate and standard
deviation at the sequence’s instance i and pmin and smin the minimum recorded values,
respectively then:

DDM(β2, β3) =


warning, if pi + si ≥ β2 · smin

drift, if pi + si ≥ β3 · smin

no drift, otherwise

(3.2)

We adapt its functionality to allow for distributed drift detection as follows. Each
client’s kpi value is transformed to 0 or 1, by comparing to a tunable parameter β1 (see
Algorithm 1, line 3). β1 is a threshold that expresses the minimum ML model’s accuracy
improvement over the baseline (naive) algorithm’s accuracy, to account for a successful
classification. For example if β1 = 5%, any ML prediction that does not surpass the naive
algorithm’s accuracy by at least 5% is considered as mis-classification. Its value is tuned
during the ”warm-up” period’s test-runs that provide initial statistics over the ML model’s
performance (see Sec. 3.3.1). Note that the ”warm-up” period is mandatory for any ML
scheme during initialization, thus our approach does not introduce any additional cost
resource-wise. The DDM is fed with the transformed {kpi}, which we denote as (DDM
list) {ddm} so that a potential drift can be detected (see Eq. 3.2) [66]. DDM’s sensitivity
parameters β2 and β3 (see Eq. 3.2) can be tuned via grid-search or via ML techniques
e.g., reinforcement learning, which goes beyond this work’s scope.

Convergence detection algorithm

For the convergence detection (CD), we calculate the central tendency ckpi of each round’s
kpi list {kpi}, as the average value of all its elements (see Algorithm 2, line 2). The server
keeps track of all ckpi values (in a per-round basis) in a ckpi list, denoted as {ckpi} (see
Algorithm 2, line 3). Note that kpi values provide only an evaluation of the ML model
performance in each client and do not reveal private information, fully aligning with the FL
principles. Convergence detection is then achieved using the following rule: if ckpi is not
improved over the last β4 rounds we assume that convergence is reached (see Algorithm 2,
line 4). This rule is an analogy to the early-stopping concept (see Sec. 3.3.1). β4 expresses
the average number of rounds required for an FL convergence and may vary depending on
the ML model architecture and the ML task. Tuning is performed during the ”warm-up”
period, by monitoring each round’s accuracy to observe its rate of change.

3.4 Simulation environment

DareFL is designed to operate in any type of FL task and use-case (see Sec. 3.3). For its
evaluation we have selected the case of predictive Quality of Service (pQoS) i.e., prediction

66 3. Federated Learning in the course of time

Figure 3.2: The concept of predictive QoS (pQoS) - 5GAA

of network QoS parameters in vehicular environments. In the absence of public pQoS
datasets with drift instances, we have fabricated two synthetic datasets1 via a high fidelity
network simulation that realistically capture distinct drift scenarios in dynamic mobile
environments. On top, we have built a Python-based distributed ML simulator2, to utilize
the datasets and evaluate our proposal. Both the datasets and the ML simulator source
code are publicly available.

3.4.1 The use-case of pQoS

Automotive applications, such as automated driving (AD) functions, tele-operated driving
(ToD), platooning, and others, are expected to bring a wide range of benefits, including
enhanced road safety, improved traffic efficiency, and increased driving comfort. These
applications, however, depend heavily on the connectivity provided by mobile networks,
which in turn impose stringent quality of service (QoS) requirements. These requirements
may include minimum throughput, maximum delays, and other performance metrics that
are crucial for the proper functioning of such applications. Failure to meet these QoS
requirements, often due to unpredictable network conditions, can result in service degra-
dation. This degradation not only impacts the user experience but, in critical scenarios,
may compromise safety by affecting the timely and accurate functioning of the systems
involved.

To mitigate such risks and ensure the reliable performance of automotive applications,
the concept of predictive QoS (pQoS) has been introduced, as highlighted by the 5G
Automotive Association (5GAA) [70]. pQoS serves as a proactive solution to anticipate
and address potential connectivity issues before they impact service quality. It provides
the vehicle with advance notifications about potential degradation in cellular connectivity,
allowing the system to prepare for or mitigate the effects of these disruptions, as shown in
Fig. 3.2. This foresight is particularly valuable for applications requiring real-time data
exchange and high reliability.

The pQoS mechanism relies on a variety of features related to both network properties
and client mobility to make these predictions. These features may include signal strength,
vehicle position, speed, and other mobility-related parameters[71]. By leveraging these

1https://zenodo.org/records/11084689
2https://github.com/gdrainakis/distributed pqos

3.4.2 pQoS formulation as an ML task 67

variables, pQoS can forecast critical network QoS parameters, such as throughput, en-
abling the system to act proactively to prevent service failures. For example, if a potential
dip in throughput is predicted due to a vehicle’s movement through an area with known
coverage issues, the system can adjust communication strategies or make decisions that en-
sure continuous service without interruptions. This predictive approach helps maintain the
high standards required by automotive applications, ensuring that network performance
aligns with the stringent needs of safety-critical systems.

pQoS can be provided through different deployment models, primarily by the mobile
network operator (MNO) or in an over-the-top (OTT) fashion by third-party entities.
When implemented by the MNO, pQoS benefits from the operator’s comprehensive view
of the network’s statistics and performance. This allows for centralized monitoring and
prediction of QoS parameters across the entire network. However, another alternative
is deploying pQoS in an OTT manner, which typically involves third parties such as
car manufacturers [70]. One of the key advantages of the OTT approach is its broader
geographical coverage compared to the MNO-based solution, as it is not constrained by
the MNO’s network boundaries.

While both the MNO-based and OTT-based approaches have distinct deployment
benefits and trade-offs [70], our focus is on the OTT model. The OTT model leverages data
gathered directly from client devices, thus overcoming potential limitations related to data
confidentiality that might arise in the MNO-based approach. In this model, client devices
can collect and share their own data, including mobility parameters and local network
statistics, enabling more granular and personalized predictions. By utilizing client-side
data, the OTT approach can adapt to rapidly changing environments and provide a level
of flexibility that is often not feasible within the confines of the MNO’s control.

The insights provided by pQoS can then be used to dynamically adapt automotive
applications to maintain optimal performance despite changing network conditions. For
example, in ToD scenarios, pQoS can predict network issues and trigger a speed change
to ensure that the vehicle’s control system operates smoothly despite potential commu-
nication delay [84]s. In the case of video streaming, pQoS can predict bandwidth reduc-
tions and adjust video resolution accordingly, preventing buffering or service interruptions.
These adaptations help ensure that the system meets the stringent real-time requirements
of automotive applications, despite fluctuations in network performance.

Overall, pQoS offers high applicability and practicality, particularly in dynamic mo-
bile environments like those encountered in automotive scenarios. Its integration into
such systems allows for proactive management of network resources, ensuring that ser-
vices can continue uninterrupted even in the face of unexpected connectivity challenges.
Furthermore, cellular environments are known to experience frequent drifts in network
performance for a variety of reasons, including mobility, interference, and congestion [71].
This makes pQoS a particularly well-suited application for drift management, providing
a realistic and valuable context for evaluating and refining drift detection and mitigation
techniques.

3.4.2 pQoS formulation as an ML task

In our approach pQoS is addressed as a multi-variate multi-step times-series problem [81].
The term multi-variate suggests that multiple features (network-related, mobility, etc.),
are considered as input features (as opposed to uni-variate). The term multi-step expresses
the solution’s ability to predict several steps ahead in time (prediction horizon). Assuming
that the input (raw) data collected by each client is a time-series vector consisting of a

68 3. Federated Learning in the course of time

(a) (b)

Figure 3.3: Synthetic dataset generation: (a) import of real world map and (b) network
and mobility co-simulation

total of j features (columns) and i samples (rows), where ti marks the timestamp, xji the
independent variables i.e., the network-related and mobility-related input features and yi
the dependent variable i.e., the variable we wish to predict (in our case that is a QoS
parameter), the data can be formulated as an ML dataset DDDi×j as (bold letters denote a
vector):

DDDi×j =


t1 x11 .. xj−2

1 y1
t2 x12 .. xj−2

2 y2
..

ti x1i .. xj−2
i yi

 (3.3)

The time-series dataset is then restructured as a supervised ML problem via the sliding
window technique that addresses previous time steps as input variables and next time steps
as output variables. Assuming a window time w (w < i) and denoting the transpose of a
vector AAA by AAAT , the restructured dataset DDD′ becomes:

DDD′
(i−w)×(j·w+1) = [ddd1, ddd2, ..., dddk, ..., dddi−w]

T , where :

dddk = [x1k−w, .., x
1
k−1, .., x

j−2
k−w, .., x

j−2
k−1, .., yk−w, .., yk−1, yk]

(3.4)

The computation of the baseline naive predictor, serving as input to Convergence (CD)
and Drift Detection (DD) routines of DareFL (see Algorithm 1 and 2) is carried out by a
rolling-means algorithm (relevant to time-series tasks); assuming a time-series in the form
of Eq. 3.3, the (naive) prediction ŷi of the sample’s i dependent variable yi (ground truth)
in time ti is the mean value of the dependent variable’s last w values, where w stands for

the time-window of Eq. 3.4: ŷi =
1
w

i−1∑
x=i−w

yx with i < w. For the respective accuracy

metric used in DareFL to compare the naive with the ML prediction (see kpi calculation
in Eq. 3.1) we have selected RMSE, as the most relevant to time-series tasks [81].

3.4.3 Generating pQoS datasets with concept drift

Our synthetic datasets represent a dynamic environment, where several clients (vehicles)
are moving in an urban area. Each client runs a streaming cloud service constantly re-
ceiving User Datagram Protocol (UDP) data packets. This data can refer to various
automotive applications e.g., High-Definition digital maps for AD, audio commands for
ToD, video for infotainment services, etc. The QoS parameters e.g., throughput of each

3.4.3 Generating pQoS datasets with concept drift 69

(a) (b)

Figure 3.4: Effects of drifts in client throughput: (a) probability density function and (b)
average throughput

client’s service change in the course of time, depending on the vehicle position, the net-
work’s physical layer properties, etc. Network simulation is performed using Simu5G, a
library that emulates a 5G cellular environment in OMNeT++ [85]. The simulator’s ra-
dio parameters e.g., channel properties, antenna settings, etc., are set according to the
Macro-cell model proposed by International Telecommunication Union [86]. The map in
our simulations comprises of an urban 600×600 m2 area located in a suburb of a European
capital (see Fig. 3.3a).

Inside this area four 5G base-stations (gNodeBs) have been installed by the national
network operator enabling four 5G cells [87]. This area, divided into several blocks by the
actual road network is integrated in our simulation by an OpenStreetMap (OSM) instance
[88]. The total number of included vehicles is set to 25, according to vehicle density statis-
tics in the corresponding country [89]. The road network’s traffic is simulated by SUMO,
a traffic simulation package [90] that creates a digitized version of the (real-world) OSM
map and produces the route files for the vehicles. Route files are loaded in the Simu5G
simulator, where a network-vehicular mobility co-simulation takes place (see Fig. 3.3b).
For each vehicle’s route we assume SUMO’s default parameters for urban environment
i.e., exponential speed model (with maximum speed restriction as defined by the OSM
traffic rules) and the probability matrix at intersections for {lane keeping, turn left and
right} as {0.5, 0.25 and 0.25}, respectively. The following information is collected for
each vehicle using OMNeT++’s monitoring service: timestamp, channel quality indicator,
packet delay, measured signal to noise ratio (SNR), client position (x,y,z), client velocity
(x,y,z), received SNR, radio link control throughput, serving cell, client throughput. These
features are sampled at 1 Hz and comprise the values of our synthetic time-series QoS
dataset.

For the considered use-case we have created two drift datasets that correspond to
complementary cases of major long-term changes in the considered environment: 1) a
network infrastructure-driven scenario (Sc1) and 2) a human behavior-driven scenario
(Sc2). In Sc1 we assume that two out of four gNodeBs are switched off under a cost-
reduction on/off policy to address electricity costs [91] or an infrastructure-share strategy
(adopted by MNOs) [92],[93] that would imply such changes. For Sc2 we consider drifts
related to the modification of the users’ mobility pattern. We assume that a ”hotspot”
e.g., a metro station is created in the lower-right edge of the map resulting in a traffic
increase to that area [94]. This is achieved by increasing the probabilities of the routes
leading to the ”hotspot” in SUMO’s route planning. All generated datasets have a total
duration of 20 hrs (simulation time) and the respective drift instance is introduced at
t = 10 hrs.

70 3. Federated Learning in the course of time

The effect of each drift instance on the clients throughput pattern is depicted Fig. 3.4a
and Fig. 3.4b. Prior to drift, clients achieve an average throughput of 4.7±1.65 Mbps.
This is decreased to 3.32±1.79 and 4.03±1.74 Mbps for Sc1 and Sc2, respectively. These
changes on the underlying data distribution will eventually be reflected on the prediction’s
model accuracy, as we will demonstrate in Sec. 3.5.

3.4.4 Distributed ML simulator

Our simulator implements the FL framework of Sec. 3.3, along with the involved client-
server communication and ML processing (consumption) costs. The distributed ML (train-
ing and inference) is facilitated via Pytorch, a Python deep ML library [80]. For the net-
work resource consumption modelling, we assume a setup with a centralized cloud server
and several client-vehicles. Each vehicle, equipped with a 5G modem, communicates with
the cloud server via the 5G cellular network. For the processing tasks (training, infer-
ence) the server is assumed equipped with a Graphics Processing Units (GPU), while
vehicles avail less powerful processing capabilities utilizing a common CPU [95]. By load-
ing the pQoS datasets to the simulator, each client’s features e.g., position, speed, current
throughput, etc., are obtained by querying the respective client dataset.

The developed simulator also estimates the energy consumption imposed to the clients
and the server due to data processing and transmission. To do so, we rely on values
taken from credible measurements in literature and device bench-marking: A typical 5G
modem at uplink and downlink data rates of 20 and 100 Mbps respectively, consumes for
transmission and reception 2.5 and 3.5 Watt respectively [96]. A typical CPU trains an
ML model relevant to pQoS data (see Sec. 3.4.2) at a speed of 25 samples/sec, while a
GPU reaches 900 samples/sec [97]. Those tasks require power of 200 Watt [98] and 225
Watt [97], respectively. Model aggregation on the other hand, has not been measured
in literature thus we estimate the server’s GPU computational speed and consumption
based on the computationally-similar matrix-to-matrix multiplication. As in [99], the
consumption cost is set to 100 Watt and the aggregation speed averages to 10 models/sec;
with both values also validated by our processors readings.

3.5 Simulation-based evaluation

3.5.1 Evaluation methodology

In our results we perform a three-step evaluation. Firstly, we compare distributed pQoS
against the typical centralized solution (CL) and explore the involved performance and
resource-consumption trade-offs. For a fair CL-FL comparison: 1) we assume no drift
occurrence, 2) contrary to Sec. 3.2 works, we use both synthetic and real data for cross-
validation of our results. Our evaluation focuses on pQoS performance i.e., prediction of
client throughput rather than any involved adaptation actions (in case of QoS degradation),
which are application-dependant. We run experiments using a) our first synthetic pQoS
dataset (Sc1) prior to drift (see Sec. 3.4.3) and b) BerlinV2X, a public pQoS dataset from
a measurement campaign of 4 vehicles driving in Berlin on highway and urban routes[100].
Each run is repeated 10 times so that the selected vehicle-clients are changed, for a total
of 40 experiments (2 algorithms × 10 repetitions × 2 datasets).

Secondly, we study distributed pQoS under drift; we compare our novel drift manage-
ment FL algorithm (DareFL) against existing solutions: 1) Vanilla FL (see Sec. 3.3.1),
2) Continuous FL (ConFL - see Sec. 3.2) and 3) Adaptive FL (AdaptFL) [69] under the

3.5.2 Evaluation results 71

two pQoS drift scenarios (Sc1, Sc2) described in Sec. 3.4.3. Vanilla and ConFL serve as
baselines, while AdaptFL is selected as a representative SotA FL algorithm that manages
drift without introducing any additional complexity in the clients-side (see Sec. 3.2). Each
scenario is repeated 10 times for a total of 80 experiments (2 scenarios × 4 algorithms ×
10 repetitions). QoS (throughput) prediction accuracy across time is evaluated via the
following metrics, typically used for prediction error (mean values and standard devia-
tions across all clients): Root Mean Square Error (RMSE), Mean Absolute Error (MAE)
and Symmetric Mean Absolute Percentage Error (SMAPE) [74], [81]. For the respective
resource consumption: 1) Normalized communication cost i.e., total data exchanged be-
tween the server and the clients normalized to the ML model size and 2) Clients and Cloud
energy cost i.e., the total energy consumed at each side for processing and transmission
(see Sec. 3.4.4).

Finally, we provide an extensive comparative analysis of DareFL’s drift detection capa-
bility against AdaptFL. We repeat each scenario 100 times and record the drift detection
outcome in every round, for a total of 24000 samples (2 scenarios × 2 algorithms × 100
repetitions × 60 rounds). In both scenarios drifts occur at half-time, which constitutes the
experiment’s ground truth in terms of drift occurrence. Drift detection is then evaluated
as a binary classification problem (True/False) via Accuracy, Precision, Recall, Specificity
and F1 Score.

Throughout the experiments, round duration is set to q=1200 secs i.e., a total of R=60
rounds for Sc1, Sc2 and R=20 for BerlinV2X datasets. In Sc1 and Sc2, drift occurs at
half-time (R=30) and lasts throughout the experiment. Drift effects on the models need a
maximum of 7 rounds to take place, as measured during the ”warm-up” phase (maximum
rounds DareFL required for convergence after drift). For Sc1, Sc2 the total number of
clients is set to 25, with K=5 trainers and M=20 testers per round, based on [101]. For
BerlinV2X (total of 4 clients) we set K=M=2. Trainers’ data is split at a typical 80%-20%
ratio [81]. Prior to all simulations, all ML models are tuned (tuning statistics are omitted
for clarity) during the ”warm-up” phase (see Sec. 3.4.2).

Training is performed using an LSTM model (an established predictor for sequential
data [102]), consisting of: 11 input features (equal to the total client-acquired features of
each dataset) and 8 output features i.e., a (throughput) prediction horizon of 8 sec (other
automotive ML-based predictions show acceptable accuracy up to a 5 sec horizon [103]).
Note that throughout Sec. 3.5.2 we show the results for a horizon of 6 sec for clarity,
though the same principles apply to all other horizons up to 8 sec. For the LSTM we set:
sliding window w=75, hidden size=50, Min-Max normalization, decay=10−5, Rectified
Linear Unit activation and Mean Square Error loss function, based on test-runs and related
works on LSTM models[81], [80]. Hyper-parameter tuning on our LSTM model via grid-
search resulted in the following values: batch size=64, learning rate=10−5, epochs=500.
Leveraging on our test statistics during ”warm-up” we set DareFL’s parameters: β1=0,
β4=5 rounds and default values β2=2 and β3=3. For fairness, AdaptFL’s parameters are
also tuned via grid search: β1=β2=β3=0.7.

3.5.2 Evaluation results

Centralized (CL) vs Distributed (FL) pQoS

As portrayed in Fig. 3.5a, distributed pQoS (FL) converges similarly to its centralized
alternative (CL), whilst preserving data privacy. This is validated both for the public
(BerlinV2X) and our synthetic (Sc1) pQoS dataset. In terms of (throughput prediction)
accuracy (averaged across all rounds), CL achieves a maximum improvement of 9% across

72 3. Federated Learning in the course of time

(a) (b)

Figure 3.5: CL vs. FL pQoS: (a) RMSE and (b) Communication cost comparison

all metrics and rounds over FL for Sc1 and 11% for BerlinV2X (see Table 3.1). Interest-
ingly, both CL’s and FL’s accuracy in BerlinV2X exhibits up to 2 orders of magnitude
higher standard deviation compared to Sc1 across all accuracy metrics (see Table 3.1),
as a result of BerlinV2X’s limitations e.g., small number of clients. In terms of resource
consumption , FL achieves an up to 3100% reduction of communication costs (see Fig.
3.5b), since LSTM models exchanged in FL are typically lightweight compared to training
data that is uploaded to the server in CL. Offloading a pQoS task to the clients (FL),
leads to a reduction of cloud energy costs by a factor of 3.2×105 at R = 30 (see Fig. 3.6).
The energy costs are distributed to the client-devices, thus the aggregated client energy
consumption is increased by a factor of 4.4×106 at R = 30 (see Fig. 3.6).

Figure 3.6: CL vs. FL pQoS: Energy cost comparison

Table 3.1: CL vs. FL pQoS accuracy (horizon=6 sec)

ML algorithm RMSE (Mbps) MAE (Mbps) SMAPE (%)

CL (BerlinV2X) 4.76±3.54 3.55±2.73 11.55±8.27

FL (BerlinV2X) 5.13±4.35 4.00±3.52 12.45±10.54

CL (Sc1) 1.19±0.08 0.91±0.05 10.93±0.75

FL (Sc1) 1.27±0.12 0.99±0.06 11.80±0.65

DareFL vs. existing algorithms

DareFL’s accuracy comparison against existing FL algorithms for Sc1 is shown in Fig. 3.7a.
Vanilla FL suffers from a sudden increase (51%) of the prediction error (RMSE) at the
31th round, as a result of the inflicted drift. This is also portrayed in all accuracy metrics
(RMSE, MAE, SMAPE), shown in Tables 3.2 and 3.3. In Vanilla FL, the ML model is
trained for a limited number of rounds until convergence is reached, thus it cannot adapt to

3.5.2 Evaluation results 73

(a) (b)

Figure 3.7: RMSE comparison for: (a) Sc1 and (b) Sc2

future drifts; as a result, the model’s performance is degraded. ConFL on the other hand
addresses drifts by constantly training (updating) the model, thus achieving maximum
accuracy at all times. Compared to Vanilla, ConFL exhibits an average of 7% higher
accuracy (in terms of RMSE) before drift, 33% during and 40% after drift (see Tables 3.2-
3.4). Constant training however, results in the linear increase of the network bandwidth
(see Fig. 3.8), energy costs for the clients (see Fig. 3.9a) and the server (see Fig. 3.9b).
ConFL consumes almost 300% more bandwidth and 250% more energy (both in the client
and in the server-side) compared to Vanilla FL up until the 30th round. The respective
values at the end of the simulation are 720%, 470% and 580%. Unlike these solutions,
DareFL leverages on its drift detection mechanism to ensure high accuracy, comparable to
ConFL. Prior to drift, ConFL (which exhibits the top performance) outperforms DareFL
by a maximum of 8% across all accuracy metrics (see Table 3.2).

Table 3.2: Comparison of pQoS FL algorithms accuracy under drift, before drift (Round
1-30) (horizon=6 sec)

FL
algorithm

Before drift (Round 1-30)
RMSE (Mbps) MAE (Mbps) SMAPE (%)

Vanilla (Sc1) 1.42±0.16 1.16±0.15 13.32±1.20

DareFL (Sc1) 1.43±0.16 1.15±0.16 13.30±1.28

AdaptFL (Sc1) 1.36±0.17 1.11±0.17 12.94±1.19

ConFL (Sc1) 1.32±0.14 1.06±0.14 12.50±1.21

Vanilla (Sc2) 1.40±0.17 1.12±0.16 12.95±1.27

DareFL (Sc2) 1.42±0.15 1.11±0.14 12.96±1.38

AdaptFL (Sc2) 1.35±0.11 1.09±0.10 12.83±0.79

ConFL (Sc2) 1.32±0.19 1.05±0.18 12.34±1.47

Table 3.3: Comparison of pQoS FL algorithms accuracy under drift, during drift (Round
31-37) (horizon=6 sec)

FL
algorithm

During drift (Round 31-37)
RMSE (Mbps) MAE (Mbps) SMAPE (%)

Vanilla (Sc1) 1.99±0.38 1.76±0.30 23.13±4.10

DareFL (Sc1) 1.71±0.26 1.44±0.25 20.31±3.17

AdaptFL (Sc1) 1.36±0.08 1.08±0.08 16.60±1.94

ConFL (Sc1) 1.32±0.11 1.00±0.09 15.39±1.72

Vanilla (Sc2) 1.70±0.24 1.49±0.21 18.20±3.11

DareFL (Sc2) 1.36±0.24 1.05±0.23 13.14±1.82

AdaptFL (Sc2) 1.32±0.10 1.05±0.09 13.76±0.97

ConFL (Sc2) 1.14±0.15 0.86±0.11 11.24±0.98

Upon drift occurrence, DareFL adapts in a handful of rounds (an average of 5.3 rounds

74 3. Federated Learning in the course of time

Table 3.4: Comparison of pQoS FL algorithms accuracy under drift, after drift (Round
38-60) (horizon=6 sec)

FL
algorithm

After drift (Round 38-60)
RMSE (Mbps) MAE (Mbps) SMAPE (%)

Vanilla (Sc1) 2.22±0.14 1.87±0.13 25.08±1.15

DareFL (Sc1) 1.48±0.08 1.19±0.08 18.37±0.98

AdaptFL (Sc1) 1.35±0.08 1.07±0.07 17.21±0.99

ConFL (Sc1) 1.32±0.09 1.00±0.08 15.89±1.09

Vanilla (Sc2) 1.80±0.11 1.54±0.09 19.52±1.27

DareFL (Sc2) 1.07±0.08 0.84±0.07 11.50±0.67

AdaptFL (Sc2) 1.08±0.07 0.83±0.06 11.76±0.77

ConFL (Sc2) 1.02±0.06 0.78±0.06 10.77±0.70

across all experiments) and sustains similar accuracy to that of ConFL until the end of
the experiment (see Fig. 3.7a). Specifically, ConFL outperforms DareFL by a maximum
of 16% across all accuracy metrics after drift (see Table 3.4). Meanwhile, DareFL’s en-
ergy and bandwidth footprint is kept relatively low (comparable to Vanilla FL), grace to
its convergence detection mechanism that facilitates idle training rounds i.e., saving on
resources. As a result, DareFL achieves 76% lower communication costs (see Fig. 3.8) and
68% lower energy costs in the clients (see Fig. 3.9a) and 74% on the server (see Fig. 3.9b),
compared to ConFL at the end of the simulation.

AdaptFL, which serves as a SotA drift management FL algorithm has similar behavior
to ConFL, since it assumes constant training. As such, its resulted accuracy is comparable
to that of ConFL (see Fig. 3.7a). Note that AdaptFL achieves the second best perfor-
mance in all accuracy metrics (see Tables 3.2-3.4); AdaptFL outperforms DareFL by a
maximum of 10% across all metrics before and after drift and 25% during drift, due to
constant training. However, it exhibits the highest resource consumption compared to
all other algorithms. Specifically, its communication costs are equal to that of ConFL
(see Fig. 3.8 - ConFL and AdaptFL lines coincide) i.e., 720% more than Vanilla and
320% more than DareFL. Interestingly, AdaptFL consumes 200% more energy compared
to DareFL and 100% more than ConFL in the clients and in the server side by the end
of the simulation. This behavior occurs due to AdaptFL’s drift management mechanism;
at the server side it requires additional calculations for its detection process, similar to
FedAvg’s aggregation process (see Sec. 3.2). The gradual adaptation of the learning rate
also leads to ”slower” learning in the clients-side i.e., additional epochs, which increases
the client energy footprint. These excessive energy costs however, have no effect on the
increase of accuracy.

The findings of Sc1 are also validated in Sc2 (see accuracy comparison in Fig. 3.7b).
Vanilla FL experiences a 43% accuracy drop (RMSE is increased) at the 31th round,
which marks the effect of Sc2’s drift on the model’s performance. ConFL exhibits the best
performance across time, due to constant training. ConFL outperforms Vanilla across
all metrics by at least 5%, 32% and 43% before, during and after drift respectively (see
Tables 3.3, 3.4). DareFL exhibits similar performance to that of Vanilla FL prior to drift
however, it adapts after the the 31th round, due to its drift detection mechanism. As
such, it converges in similar accuracy levels as ConFL; ConFL achieves a maximum of 7%
accuracy improvement across all metrics after drift vs. DareFL (see Table 3.4). Compared
to DareFL, AdaptFL achieves no more than 4% accuracy improvement before drift and
2% after drift. Similarly to Sc1, both AdaptFL and ConFL consume multiple times more
energy and bandwidth to achieve these improvements over DareFL. Note that the induced
cost values for Sc2 are omitted, since the behavior is identical to that of Sc1 (see Fig. 3.8,

3.5.2 Evaluation results 75

3.9a and 3.9b).

Figure 3.8: Sc1 - Communication costs

(a) (b)

Figure 3.9: Energy consumption for Sc1 in the (a) clients and (b) the cloud side.

DareFL drift detection capability

The drift detection comparison between DareFL and AdaptFL for Sc1 and Sc2, formulated
as a binary classification problem is presented in Fig. 3.10. DareFL demonstrates a 6%
higher detection accuracy (ratio of successful to total detections) for both scenarios. Since
the samples under comparison (drift/no drift) are not balanced in the two concerned
scenarios (drift instances account for almost 10% of the total instances), the accuracy
metric stands as a high-level spot check for the two algorithms’ performance. Interestingly,
DareFL exhibits higher precision i.e., the ratio of true positives to the predicted positives
(by 21% for Sc1 and by 26% for Sc2) and specificity i.e., the ratio of true negatives to all
negative outcomes (by 8% for Sc1 and by 7% for Sc2) compared to AdaptFL. However,
DareFL lacks in terms of recall i.e., the ratio of true positives to the actual positives (by
14% for Sc1 and by 8% for Sc2).

This behavior suggests that DareFL minimizes false positives i.e., the (false) detection
of drift event when no drift has occurred, while AdaptFL minimizes false negatives i.e., no
detection of drift during a drift instance. In a sense, AdaptFL serves as a more sensitive
drift detection algorithm compared to DareFL, which is more drift-tolerant. For pQoS
and the drifts under consideration these metrics are of equal importance; false positives
lead to unnecessary training and therefore resource waste, while false negatives may de-
grade the prediction performance of the ML model. The algorithms’ overall detection
performance is better assessed by the F1 score metric i.e., the harmonic mean of precision
and recall, where DareFL outperforms AdaptFL (3% for Sc1 and 9% for Sc2). It is worth
noting that solely for drift detection, AdaptFL consumes up to 3 times more energy in the
server compared to DareFL. This is due to the fact that AdaptFL requires more complex
calculations that involve the parameters of the received client models (see Sec. 3.2), as

76 3. Federated Learning in the course of time

opposed to DareFL that only calculates the average of a list of metrics, received from the
clients (see Sec. 3.3.2).

Figure 3.10: Drift detection comparison

3.6 Conclusion

In this chapter, we have explored the emerging paradigm of Lifelong Machine Learning
for distributed environments, with a specific focus on FL settings. Our research is primar-
ily concerned with the phenomenon of concept drift, which refers to the changes in the
statistical properties of client data distributions over time. This drift is a major factor
contributing to the degradation of ML models, particularly in dynamic and evolving en-
vironments such as mobile networks and automotive systems. As these environments are
subject to constant changes, the challenge of maintaining model performance amidst drift
becomes particularly significant.

To address this challenge, we have introduced DareFL, a novel and efficient algorithm
designed to manage concept drift within the context of FL. DareFL is built on the core
principles of FL, such as data privacy and decentralization, and is specifically designed
to minimize resource consumption. This is achieved without compromising the ability to
detect and mitigate drift, offering a significant improvement over existing SotA techniques.
Unlike many prior studies, which often focus on tasks with limited applicability—such as
digit recognition or static datasets—our work takes a broader approach. We specifically
investigate the case of predictive QoS in dynamic automotive environments, where concept
drift is more pronounced and driven by a wider variety of factors, such as mobility, network
conditions, and environmental changes.

To overcome the challenge of a lack of publicly available QoS datasets that include
instances of drift, we have developed two complementary QoS drift scenarios that are based
on both infrastructure- and user-related factors. These scenarios are generated using our
open-source, high-fidelity network and mobility simulator. This simulator, which models
both network and vehicle mobility in great detail, provides a realistic testing environment
for the evaluation of FL algorithms. By leveraging this simulator, we are able to assess the
performance of DareFL under the influence of drift, comparing it against a set of baseline
algorithms. These include: a) the Vanilla FL algorithm, as presented by Yin et al. [[72]],
b) a continuous training approach, and c) a state-of-the-art drift mitigation solution, as
proposed by Canonaco et al. [[69]].

Our simulation results across the two distinct drift scenarios reveal that DareFL out-
performs the baseline approaches in terms of resource efficiency. Specifically, DareFL
reduces the overall resource consumption by up to 70%, including savings on network in-
frastructure, client devices, and the central server. This significant reduction in resource
usage comes at a modest cost in terms of accuracy, with DareFL exhibiting an average

3.6 Conclusion 77

accuracy drop of only 10% compared to the more resource-intensive competing schemes.
This demonstrates that DareFL strikes an effective balance between resource efficiency and
model performance, making it particularly suitable for deployment in resource-constrained
environments such as mobile networks and automotive systems.

Looking ahead, several promising directions for future research emerge from this work.
First, the proposed framework could be evaluated and validated in a real-world 5G testbed,
where actual network conditions and mobility patterns could provide further insights into
the algorithm’s practical applicability. Second, the current results could be generalized
to a broader set of drift scenarios, considering additional environmental factors or other
types of concept drift beyond the ones studied here. Finally, a potential avenue for fu-
ture improvement is the optimization of DareFL’s parameters through the use of ML
techniques, such as reinforcement learning, to adapt the algorithm’s behavior to different
environments and use cases more effectively.

4

Practical implementation

4.1 Introduction

In the previous chapter, we examined the dynamics of FL over time, specifically focusing on
how changes in the underlying client data distribution, commonly known as concept drift,
impact the performance of FL models during both training and inference. We proposed an
end-to-end framework designed to detect and mitigate these effects in a resource-efficient
manner, with a particular emphasis on volatile environments prone to concept drift, such as
vehicular and mobile networks. To illustrate the practicality of our solution, we introduced
the automotive use case of QoS prediction and demonstrated its effectiveness through
various simulation scenarios. This approach enables the deployment of FL systems in
large-scale, real-world settings that can adapt dynamically to environmental changes.

In the present chapter, we extend our theoretical findings by investigating their applica-
tion in practical scenarios involving real-world commercial networks, IoT devices capable
of performing FL, and relevant applications. The primary focus of this chapter is the
practical implementation of DML schemes within the automotive sector, particularly in
the context of CCAM applications.

The structure of the chapter is as follows. Sec. 4.2 provides a detailed description of
our measurement campaign, during which we collected a real network QoS dataset. This
dataset serves as the foundation for training AI/ML models for pQoS, as discussed in
Sec. 4.3. In Sec. 4.4, we describe the deployment of a distributed pQoS service on actual
vehicles, which act as Extreme-Edge/IoT devices, and present the valuable experimental
results obtained from this deployment in Sec. 4.5. Finally, in Sec. 4.6, we summarize the
chapter and outline future research directions.

4.2 pQoS measurements

4.2.1 Motivation

CCAM applications are expected to transform the mobility sector, enabling safer, more
efficient, and sustainable transportation systems. These applications encompass a wide
range of functionalities, including tele-operated driving, infrastructure-assisted environ-
mental perception, cooperative lane merging, and advanced features such as 5G-enabled
cross-border corridors and platooning initiatives [104], [105]. Central to the success of
these applications is reliable mobile network connectivity, as many CCAM use cases de-
pend on stringent QoS guarantees such as ubiquitous network coverage, minimum data
rates, and low-latency communication [70].

79

80 4. Practical implementation

Despite advances in modern cellular technologies, including 5G, that aim to deliver such
QoS guarantees, real-world connectivity remains vulnerable to numerous environmental
and technical factors [70]. These variables can severely impact achievable QoS, posing
significant risks to user experience and, more critically, the safety of automated systems
[104].

To address these challenges, the concept of pQoS has been introduced [70]. This ap-
proach estimates future QoS values and proactively informs automotive applications about
potential QoS degradation events. Such proactive mechanisms allow automotive systems
to adapt their functionality in response to predicted QoS changes, enabling operations
such as speed reduction, fail-safe maneuvers, or the abortion or completion of specific
operations [70].

Estimating QoS in vehicular environments is a particularly complex task, given the
rapid temporal variations in radio conditions [71]. As ML techniques increasingly underpin
pQoS systems, there is an ever-growing demand for high-quality QoS datasets to train
these models effectively. However, the data acquisition process faces several challenges,
such as the high cost of measurement campaigns and variability in data quality [71].

QoS values are influenced by a range of factors, including network and radio parame-
ters, user mobility patterns, and spatio-temporal effects [71]. Consequently, careful design
of data collection processes is essential to ensure diverse feature representation across
various mobility and network scenarios [71].

Although numerous measurement campaigns have been conducted [106], [107], [108],
existing QoS datasets present several limitations that restrict their applicability for pQoS
tasks. Key shortcomings include: a) A predominant focus on LTE radio-access network
(RAN) technologies, with limited coverage of 5G and beyond, b) Measurements concen-
trated in urban or indoor locations, neglecting the impact of high-speed mobility envi-
ronments such as highways, which are critical for vehicular applications and c) A lack
of cross-border measurements, disregarding the significant effects of roaming on QoS, a
major challenge for CCAM systems [109].

To address these limitations, we present NordicDat, a novel QoS dataset obtained
during a measurement campaign spanning three European countries: Finland, Sweden,
and Norway. NordicDat includes 25 hours of driving data featuring diverse speed pro-
files—characteristic of highway driving—and captures both physical and network-layer
features alongside vehicle kinematics. Measurements were conducted near national bor-
ders to specifically capture the impact of roaming on QoS. Notably, our dataset includes
traces from both LTE and 5G RAN technologies.

Our analysis reveals that changes in roaming, speed profiles, and RAN technologies
significantly influence QoS values. NordicDat is leveraged to demonstrate distributed
pQoS using FL for throughput and delay prediction tasks. To the best of our knowledge,
this constitutes the first attempt to explore distributed pQoS using real-world public data.
The NordicDat dataset, accompanied by detailed documentation, is publicly available in
an open repository [110], providing an invaluable resource for future research on pQoS and
addressing critical gaps in the field.

4.2.2 Related work

Training and evaluation of AI/ML-based QoS prediction algorithms frequently rely on
datasets derived from network simulations [111, 112]. While such datasets offer controlled
environments for experimentation, they are often criticized for their limited ability to
replicate the intricate and dynamic patterns observed in real-world network settings [71].

4.2.3 Measurement setup and data collection 81

This limitation underscores the growing need for real-world QoS datasets that can com-
prehensively capture the interplay between network operations, the radio environment,
and the behavior of UE.

Over the years, a variety of real-world QoS datasets have been generated through
measurement campaigns covering diverse mobility scenarios and RAN technologies (see
Table 4.1). Several of these studies focus on mobility contexts relevant to pQoS in auto-
motive applications. However, their utility is often constrained by specific technological
and environmental scopes. For instance, many datasets emphasize LTE as the primary
RAN technology [113, 114, 106, 108, 115], while neglecting advancements in 5G. Simi-
larly, mobility patterns in these studies are often limited to urban and suburban driving
profiles [116, 117], leaving out high-speed scenarios critical for highway environments.

A limited number of studies extend their focus to include 5G networks under high-
way mobility conditions [118, 96, 119], but these campaigns are generally confined to
single-country setups, thereby failing to account for the effects of cross-border roaming
on QoS. Meanwhile, another body of research investigates network characteristics under
low-mobility scenarios, such as pedestrian movement or stationary conditions [120, 107,
121, 122]. Although a few of these studies explore the impact of roaming across European
countries [109, 123, 124], their findings are primarily based on stationary or near-stationary
environments, limiting their applicability to pQoS in vehicular contexts.

In addition to outdoor studies, certain datasets have been developed for indoor environ-
ments, often leveraging mobility scenarios involving automated guided vehicles (AGVs)[125,
126] or stationary setups such as office environments[127]. These datasets are predomi-
nantly tailored for industrial applications, focusing on private 5G networks, device-to-
device (D2D) communications, and similar use cases, which differ significantly from the
requirements of automotive pQoS research.

In contrast to these existing datasets, our shared QoS dataset addresses critical gaps
and fosters advancements in the field of pQoS research. Specifically:

• Mobility diversity: The dataset is exclusively developed through drive tests, en-
compassing various real-world mobility scenarios that are directly relevant to vehic-
ular applications.

• Technological breadth: It includes data from both LTE and 5G RAN technolo-
gies, providing a comprehensive perspective on contemporary and future wireless
network capabilities.

• Cross-border coverage: The dataset is uniquely collected in a cross-border area
spanning three countries, enabling the study of roaming effects on QoS—an essential
but often overlooked aspect of CCAM applications.

By addressing these dimensions, our dataset not only enhances the realism of QoS predic-
tion tasks but also supports broader investigations into mobility-aware network adaptation,
making it a valuable resource for advancing pQoS in dynamic vehicular environments.

4.2.3 Measurement setup and data collection

The NordicDat dataset combines measurements from a 5G modem, external positioning
sensors and the vehicle internal data from the Controller Area Network (CAN) proto-
col [128]. The aim was to collect measurement sequences which combine connectivity,
positioning and kinematic data of the vehicle in geographical areas which present QoS

82 4. Practical implementation

Table 4.1: Comparison of public cellular QoS datasets

D
a
ta

se
t

M
o
b
il
it
y

R
A
N

L
o
c
a
ti
o
n

A
re

a
T
y
p
e
s

U
rb

a
n

S
u
b
u
rb

a
n

H
ig
h
w
a
y

In
d
o
o
r

5G
C
on

n
ec
te
d
M
ob

il
it
y
[1
13

]
d
ri
v
in
g

L
T
E

N
u
re
m
b
er
g,

G
er
m
an

y
✓

✓
✓

5G
M
ea
s
[1
18

]
d
ri
v
in
g,

w
al
k
in
g,

st
at
ic

5G
In
d
ia
n
ap

ol
is

an
d
C
h
ic
ag

o,
U
S

✓
✓

✓
5G

W
il
d
[9
6]

d
ri
v
in
g,

w
al
k
in
g,

st
at
ic

5G
2
U
S
ci
ti
es

✓
✓

5G
op

h
er
s
[1
16

]
d
ri
v
in
g,

w
al
k
in
g

5G
M
in
n
ea
p
ol
is
,
C
h
ic
ag

o,
A
tl
an

ta
,
U
S

✓
✓

✓
B
er
li
n
V
2X

[1
14

]
d
ri
v
in
g

L
T
E

B
er
li
n
,
G
er
m
an

y
✓

✓
✓

B
ey
on

d
T
h
ro
u
gh

p
u
t
[1
06

]
d
ri
v
in
g,

st
at
ic

L
T
E

Ir
el
an

d
✓

✓
✓

✓
L
u
m
os
5G

[1
17

]
d
ri
v
in
g,

w
al
k
in
g

m
m
W
av
e
5G

M
in
n
ea
p
ol
is
,
U
S

✓
✓

R
om

e
[1
19

]
d
ri
v
in
g,

w
al
k
in
g

L
T
E
,
N
B
-I
oT

,
5G

R
om

e,
It
al
y

✓
✓

S
R
F
G

[1
08

]
d
ri
v
in
g

L
T
E

S
al
zb

u
rg
,
A
u
st
ri
a

✓
T
er
m
in
al

[1
15

]
d
ri
v
in
g

L
T
E

S
in
gl
e
ci
ty

✓

5G
B
ea
m
s
[1
20

]
w
al
k
in
g

m
m
W
av
e
5G

C
h
ic
ag

o,
U
S

✓
✓

5G
C
on

su
m
p
ti
on

[1
07

]
w
al
k
in
g

5G
C
am

p
u
s

✓
✓

5G
P
H
Y

L
at
en

cy
[1
21

]
w
al
k
in
g,

st
at
ic

5G
M
in
n
ea
p
ol
is
,
U
S

✓
E
x
p
er
ie
n
ce

[1
09

]
m
ob

il
e,

st
at
ic

L
T
E

It
al
y,

N
or
w
ay
,
S
p
ai
n
,
S
w
ed

en
,
U
K
,
G
er
m
an

y
✓

M
O
N
R
O
E

[1
23

]
m
ob

il
e,

st
at
ic

L
T
E

It
al
y,

N
or
w
ay
,
S
p
ai
n
,
S
w
ed

en
,
U
K
,
G
er
m
an

y
✓

R
oa

m
in
g
[1
24

]
st
at
ic

5G
F
ra
n
ce
,
It
al
y,

S
p
ai
n

✓
U
E

N
et
w
or
k
T
ra
ffi
c
[1
22

]
st
at
ic
,
em

u
la
te
d
d
ri
v
in
g

L
T
E

V
ol
os
,
G
re
ec
e

✓

A
G
V

[1
25

]
m
ob

il
e

D
2D

In
d
u
st
ri
al

✓
IV

2V
/I
V
2I
+

[1
26

]
m
ob

il
e

L
T
E

In
d
u
st
ri
al

✓
U
rb
an

O
ffi
ce

[1
27

]
st
at
ic

L
T
E

V
ie
n
n
a,

A
u
st
ri
a

✓

4.2.3 Measurement setup and data collection 83

Figure 4.1: Martti research vehicle

vehicle
CAN
driver

GNSS
driver

IMU driver

Router
API driver

Data saver

DDS
72 Hz

DDS
10 Hz

DDS
100
Hz

DDS
1 Hz

Figure 4.2: Software architecture

degradation. The dataset contains 25 hours of such sequences, collected in arctic rural re-
gions of Finland, Norway and Sweden. The sequences contain sections of low connectivity
and total loss of connection, including handover events at national borders.

The dataset was collected utilizing the research vehicle ”Martti” (depicted in Fig. 4.1).
This vehicle, a modified Volkswagen Touareg, is equipped with a range of external sensors
and custom installations designed for advanced self-driving research purposes. The dataset
encompasses a comprehensive set of recorded features, all of which are detailed in Table 4.2.
These features are categorized as follows:

• Physical-layer parameters: This category includes key metrics such as Reference
Signal Received Quality (RSRQ), Reference Signal Received Power (RSRP), Re-
ceived Signal Strength Indicator (RSSI), and Signal-to-Interference-plus-Noise Ratio
(SINR). These parameters provide critical insights into the quality and reliability of
the wireless communication link.

• Network-layer parameters: Features under this category include the operational
band, the type of radio access network (RAN), the identifier of the serving cell, and
the mobile network operator. To ensure privacy and compliance with data protection
standards, operator-related values are anonymized and coded as integers.

• Mobility-related values: This set captures the dynamic aspects of vehicular move-
ment, including the vehicle’s geographic position (latitude, longitude, and elevation),
velocity, and acceleration. These parameters are vital for studying mobility’s influ-
ence on network performance and QoS.

• QoS parameters: This category measures the end-user experience by including
downlink (DL) and uplink (UL) throughput values, as well as network delay. These
features are crucial for predictive QoS tasks and evaluating the performance of
AI/ML models in real-world scenarios.

The diverse range of features in the dataset ensures a holistic representation of the in-
teractions between the physical and network layers, vehicular mobility, and resulting QoS.
By integrating these parameters, the dataset provides a robust foundation for investigat-
ing complex dependencies and facilitating advancements in predictive QoS for vehicular
applications.

The vehicle’s positioning data was collected using two advanced external sensors. First,
the Global Navigation Satellite System (GNSS) data was acquired through a Ublox ZED-
F9P Real-Time Kinematic (RTK) GNSS sensor. This sensor provided crucial geospatial

84 4. Practical implementation

Table 4.2: Description of dataset values

Data source Rate Parameter Unit

Teltonika RUTX50 1 Hz

timestamp seconds (s)
RSRQ decibel (dB)
RSRP decibel (dB)
RSSI decibel (dB)
SINR decibel (dB)
band string
RAN string

serving cell ID integer
delay (network ping) milliseconds (ms)

service status boolean
operator integer

DL throughput (ifstat in) kilobytes per second (kb/s)
UL throughput (ifstat out) kilobytes per second (kb/s)

Ublox ZED-F9P 10 Hz

latitude degrees
longitude degrees
elevation meters (m)

GNSS mode integer

Xsens MTi-680g 100 Hz
heading degrees

lateral acceleration meters per second squared (m/s2)
longitudinal acceleration meters per second squared (m/s2)
absolute acceleration meters per second squared (m/s2)

Vehicle CAN bus 72 Hz
absolute velocity meters per second (m/s)

longitudinal velocity meters per second (m/s)

parameters, including latitude, longitude, altitude, and GNSS service quality. The posi-
tioning accuracy of the GNSS varied across the measurement sequences due to the depen-
dence of RTK correction signals on mobile connectivity [129]. The GNSS service quality
was categorized into three levels: Differential GNSS (DGNSS), RTK float, and RTK fix,
reflecting the varying levels of positional precision.

To address inconsistencies in GNSS measurement accuracy, the vehicle’s velocity data
was captured through readings of wheel speeds obtained from the CAN bus, which were
then converted into vehicle speed. For vehicle orientation, data was sourced from the
Xsens MTi-680g inertia measurement unit, which provided robust inertial tracking and
orientation information.

The mobile connectivity data was gathered using a Teltonika RUTX50 5G modem
positioned on the vehicle’s dashboard. Connectivity parameters were extracted using
AT commands (where ’AT’ denotes ’Attention’), which serve as a standardized set of
Application Programming Interfaces (APIs) for interacting with cellular modems [130].
To ensure the collection of meaningful network downlink (DL) and uplink (UL) speed
data, artificial bandwidth strain was introduced during the measurements by actively
downloading large files over the mobile connection.

The UL and DL throughput metrics were measured at the application level using the
ifstat API [131], providing accurate real-time data transfer rates. Similarly, network
delay measurements were performed at the application level using the Linux ping utility
[132]. The data saver software implemented this functionality by generating ping requests
and recording the reception of the corresponding responses.

The software architecture for the data collection process is depicted in Fig. 4.2. Within
the vehicle, internal network communication is facilitated via Ethernet, with the Teltonika
router functioning as the sole gateway to the internet using a commercially available
mobile subscription. Independent software drivers were developed to interface with the
positioning sensors, the vehicle’s CAN bus, and the Teltonika router. These sensor drivers
collected measurements from their respective hardware components and published the

4.2.4 Data analysis and statistics 85

data over the vehicle’s local network using the Data Distribution Service (DDS) protocol
[133].

The measurements were aggregated by a central data saver application, which sub-
scribed to all data streams on the network. Given the heterogeneity of sensors and devices,
each producing data at varying rates, the data saver application recorded synchronized
snapshots of the most recent values from each device at a consistent refresh rate of 1
Hz. This architectural design ensured seamless integration of diverse data sources and
synchronized data logging.

The NordicDat dataset was gathered during several measurement sessions, consisting
primarily of extended continuous driving runs. These drives featured speeds ranging from
low urban velocities to highway speeds reaching 100 km/h. The data collection occurred
in the Arctic rural regions of northern Finland, Norway, and Sweden, as shown in Fig. 4.3.
While the dataset predominantly includes data from dynamic driving over long distances, it
also captures several cross-border events where handovers occur between service providers
in the respective countries.

Cross-border events provided an opportunity to study connection loss scenarios and
their effects on network performance, including weakened GNSS signal modes due to
interruptions in mobile connectivity. The routes were carefully selected to represent di-
verse Quality of Service (QoS) levels, encompassing areas with varying degrees of cellular
coverage, including regions with poor connectivity and even complete service loss. This
deliberate route selection ensured that the dataset contained rich, naturalistic data from
realistic and challenging driving environments. In total, the dataset includes over 25 hours
of measurements and covers nearly 1200 kilometers of driving. This comprehensive data
collection effort was designed to support rigorous studies in predictive QoS for vehicular
communication systems, especially in the context of remote and cross-border scenarios.

4.2.4 Data analysis and statistics

Predicting QoS values in vehicular networks poses significant challenges due to the inher-
ently volatile nature of the network parameters involved [71]. One of the most critical
influencing factors is the vehicle’s location, as it encapsulates spatial effects related to
physical layer attributes and the surrounding environmental characteristics [100]. Our
dataset provides evidence to support these findings, highlighting the profound impact of
spatial variations on QoS values.

The spatial effects heatmap (Fig. 4.3) illustrates how DL throughput fluctuates within
the range of [0, 20] Mbps across the entirety of the measurement campaign route. To
further contextualize, the 25th, 50th, and 75th percentile values for DL throughput during
the campaign are recorded as 0.38 Mbps, 4.39 Mbps, and 12.03 Mbps, respectively. These
variations underscore the critical role spatial factors play in the performance of vehicular
communication networks.

An overview of the linear relationships between the pQoS metrics—DL and UL through-
put, as well as delay—and corresponding network, spatial, and mobility features is shown
in Fig. 4.4. While no substantial linear correlations are evident, certain patterns emerge.
DL throughput exhibits a stronger dependency on mobility features (e.g., vehicle veloc-
ity) and network-level parameters (e.g., frequency band, RAN technology, serving cell,
and operator). Conversely, UL throughput and delay are more influenced by physical
layer parameters, such as RSRQ and SINR.

Temporal effects, which measure the influence of past QoS values on future predic-
tions, reveal diverse behaviors across QoS metrics. As shown in Fig. 4.5, delay obser-

86 4. Practical implementation

Figure 4.3: Spatial effects on QoS (DL Throughput) across the measurement area

Figure 4.4: NordicDat feature correlation

4.2.5 Potential usage and limitations 87

vations exhibit minimal temporal autocorrelation, with values dropping below 0.5 for
intervals exceeding 5 seconds, indicating negligible linear temporal dependencies. In con-
trast, throughput metrics display stronger temporal effects, with autocorrelation values
exceeding 0.8 for intervals up to 50 seconds. These observations highlight that while
temporal patterns are essential for predicting throughput, they are less relevant for delay
predictions.

Moreover, our dataset validates the findings of prior research (detailed in Sec. 4.2.2),
emphasizing the significant impact of three key factors on QoS metrics: a) RAN technology,
b) roaming effects, and c) mobility patterns. Fig. 4.6 provides a comparative analysis that
demonstrates the degradation in average throughput and an increased density of extreme
values (outliers) under specific scenarios. Notably, these observations hold for the following
bilateral comparisons: a) LTE versus 5G, b) roaming networks versus national networks,
and c) highway versus urban mobility (velocities up to 25 km/h). Statistical analysis using
the Mann–Whitney test confirms these distinctions, with P values approaching zero in all
cases, underscoring the statistically significant impact of these factors on QoS outcomes.

Figure 4.5: Temporal autocorrelation Figure 4.6: Feature dependencies

4.2.5 Potential usage and limitations

NordicDat exposes a wide array of features that include a) mobility-related metrics e.g.,
position, speed, acceleration, b) physical layer cellular parameters e.g., SNR, RSRQ, RSSI,
c) network-level parameters e.g., cell number, RAN, operator and finally d) QoS values,
such as (appplication-level) throughput and delay. The resulted dataset is formulated as
a time-series table and it can therefore be utilized to perform a series of relevant predic-
tion tasks, besides pQoS. Relevant examples include handover (change of cell) prediction,
vehicle trajectory prediction and driver intention classification.

The dataset’s limitations are summarized as follows: 1) All features are obtained
from the vehicle’s devices. Though such an approach bypasses any MNO-related data
confidentiality issues, it lacks information in regards to the overview of the network e.g.,
cell capacity, total number of active UEs, distance to basestation, slicing policies, etc.
[70]. 2) The 5G modem’s available interfaces (see Sec. 4.2.3) do not provide support
for additional features that could potentially enhance the accuracy of pQoS e.g., resource
blocks, Reference Signal Signal to Noise Ratio (RSSNR), Channel Quality Information
(CQI), carriers number, coding schemes, etc. [71], [112]. 3) DL and UL throughput
are measured via the Linux ifstat (application-level) API (see Sec. 4.2.3). As such, no
information is given in regards to the transport, network, or link layer. 4) The cross-border
locations under study mostly include highway road segments of low-traffic, as compared
to an urban environment. The dataset therefore lacks instances of QoS degradation e.g.,
strong interference incidents that are found in crowded areas, due to multiple parallel
user transmissions. 5) All measurements are obtained from a single vehicle, therefore

88 4. Practical implementation

scenarios that include multiple clients e.g., distributed AI/ML tasks can only be applied
via emulation (see Sec. 4.5).

4.3 Distributed pQoS

4.3.1 Problem statement and evaluation methodology

Motivated by the recent advances in distributed AI/ML, we have utilized our dataset to
showcase the application of FL on pQoS and compare against its typical centralized AI/ML
alternative. To the best of our knowledge that is the first attempt to apply distributed
pQoS on a real-world public dataset.

To emulate an FL setup with multiple clients, we split our original dataset into 10
parts of equal size, each representing a single vehicle-client. We then run a series of
pQoS training tasks using both centralized (CL) and distributed pQoS (FL) to predict a)
delay and b) DL throughput, for a total of 400 experiments (2 AI/ML approaches × 100
repetitions × 2 QoS values).

For each client, data is split at a typical 80%-20% ratio [81]. In each training round,
we select 8 clients for training and 2 for testing [101]. Round duration is set to 800
secs, for a total of 10 rounds per experiment. For the pQoS task we train a custom
Long Short-Term Memory (LSTM) AI/ML model with the following characteristics: 22
input features (equal to the total features of NordicDat) and 8 output features i.e., a
prediction horizon of 8 sec. The LSTM model is tuned to the following parameters via
grid-search: sliding window=75, hidden size=50, Min-Max normalization, decay=10−5,
Rectified Linear Unit activation and Mean Square Error loss function, batch size=64,
learning rate=10−5, epochs=50. QoS Prediction accuracy is evaluated using the Root
Mean Square Error (RMSE) metric[81].

4.3.2 QoS Prediction

We firstly present two representative instances (for a single vehicle-client during a single
experiment) of the inference results achieved by our FL model, in terms of DL throughput
(see Fig. 4.7) and delay prediction (see Fig. 4.8). These qualitative representations
suggest that the FL model is able to track the complex patterns and variations of the QoS
values under study (throughput and delay), across time. The quantitative results that
present the mean inference values of all clients, across all experiments, for all prediction
horizons (from 1 up to 8 seconds ahead) are depicted in Fig. 4.9 and 4.10. As expected,
longer prediction horizons are prone to larger prediction errors (RMSE) of the QoS value,
as compared to shorter ones. Interestingly, the horizon’s impact on throughput is much
higher as compared to delay. Specifically for throughput, increasing the horizon from 1 to
3, 5 and 8 sec, results in an increase of RMSE by 5.55%, 10.09% and 15.07% (averaged
across all rounds), respectively (see Fig. 4.9). For delay prediction on the other hand, the
respective values are 2.36%, 3.67% and 4.11% (see Fig. 4.10).

Having said that, we fix the horizon value to 8 sec and compare the performance of
distributed pQoS (FL) to that of the classical ML approach (CL), for both throughput
and delay prediction tasks. We present the mean inference values and (shady) standard
deviations of all clients, across all experiments in a per-round basis (see Fig. 4.11, 4.12).
For throughput prediction, FL converges similarly to CL in the very few rounds of the
experiments. For throughput prediction, CL outperforms FL by an average of 9.37% across
all rounds (see Fig. 4.11). In fact, CL exhibits a maximum performance enhancement of

4.4 5G Testbed implementation 89

27.73% against FL. Interestingly though, FL achieves outperforms CL by 9.16%, during
the experiment’s last round. Unlike throughput, FL for delay prediction achieves a very
similar performance to that of CL (see Fig. 4.12); on average CL outperforms FL by 2.08%
across all rounds. FL tracks the performance of CL in the course of the time (rounds),
even achieving better inference results (lower RMSE values) in certain instances. Overall
our preliminary results suggest that distributed pQoS via FL can achieve similar accuracy
levels to that of its centralized alternative, whilst preserving data privacy.

Figure 4.7: DL Throughput inference Figure 4.8: Delay inference

Figure 4.9: FL horizons: DL Through-
put

Figure 4.10: FL horizons: Delay

Figure 4.11: CL vs. FL (DL Through-
put)

Figure 4.12: CL vs. FL (Delay)

4.4 5G Testbed implementation

4.4.1 Motivation

The next generation of mobile network technology is expected to significantly transform
connectivity and data processing, offering global coverage, ultra-low latency, and excep-
tionally high data rates. The vision for beyond-5G networks revolves around the concept
of ubiquitous wireless intelligence [134], which envisions a fully interconnected Internet-of-
Everything landscape. This paradigm is driven by AI/ML, which is anticipated to enhance

90 4. Practical implementation

human activities by enabling seamless reasoning, decision-making, and actuation across
various systems and applications [135].

In this evolving landscape, UE plays a pivotal role, acting as the bridge between
digital services and the end-user [136]. From smartphones and wearables in personal
healthcare and infotainment to on-board units and collaborative robots in automotive
and manufacturing industries, these devices are becoming increasingly sophisticated in
terms of both communication and computational capabilities. As such, UEs are expected
to extend the cloud-to-edge compute continuum, evolving into what is known as Extreme-
Edge computing. This concept involves leveraging the spare resources of UEs to execute
computational tasks, enabling more efficient and decentralized processing [137].

However, two primary challenges limit the full realization of this technological shift.
First, these devices are typically under the control of the service provider, meaning they
remain isolated from the broader cloud-to-edge continuum in 5G networks. Moreover,
despite their growing computational and communication power, they are often treated as
passive clients rather than active computing nodes [138]. Addressing these limitations
presents several significant challenges [139], including: 1) managing the large number of
Extreme-Edge devices (EEDs) and the coexistence of various vertical services, 2) ensuring
reliable connectivity for EEDs, which may experience issues such as connection unavailabil-
ity or dropouts, 3) handling resource constraints like processing capacity, storage, memory,
and battery life, 4) navigating the multi-stakeholder environment, as EEDs are rarely un-
der the control of mobile network operators (MNOs), and 5) overcoming interoperability
challenges due to hardware diversity.

While these challenges remain largely under-explored in existing literature, current
approaches either focus on theoretical models, often relying on simulations that lack real-
world applicability [138], [140], or are deployed in constrained local environments [135],
[136], overlooking the inherent volatility of network connectivity. To address these gaps,
we adopt a systems-oriented approach by designing and implementing the Extreme-Edge
Orchestrator (EEO), a management and orchestration (M&O) framework that integrates
Extreme-Edge resources within the 5G ecosystem. Our solution leverages cloud-native
tools to monitor network resources and perform lifecycle management (LCM) of (con-
tainerized) network services running on EEDs. LCM decisions, such as task initiation,
selection of EEDs for task execution, and graceful task termination, are driven by user-
defined policies, establishing closed-loop control mechanisms. These loops incorporate sev-
eral criteria, including: a) device and utilization characteristics (e.g., processing capacity),
b) network resource consumption parameters (e.g., energy costs), and c) application-level
features (e.g., data availability), which may involve AI/ML models.

In contrast to the majority of simulation-based research in this area, our proposed solu-
tion is deployed on an operational 5G testbed and evaluated through extensive real-world
experiments involving both mobile and static EEDs in diverse (indoor and outdoor) sce-
narios. Our contribution is two-fold: 1) we introduce, design, and develop a novel solution
for Extreme-Edge orchestration, along with the corresponding system architecture that
extends the cloud-to-edge continuum to the Extreme-Edge, and 2) we evaluate our solu-
tion on an experimental 5G testbed through a relevant use case for the automotive sector:
predicting network QoS values using distributed AI/ML. Our analysis demonstrates the
effectiveness of the multi-criteria EED selection mechanism in scenarios where including
EEDs yields marginal benefits at the application layer, particularly for AI/ML tasks.

4.4.2 Related work 91

4.4.2 Related work

Service orchestration at the Extreme-Edge has recently gained significant attention as
a means to extend cloud-native technologies throughout the compute continuum. This
transition has stimulated the development of novel architectures [140] and intelligent al-
gorithms [138], although these efforts are still largely in the simulation phase, with limited
real-world deployment and validation.

At the system level, several attempts have been made to experimentally assess such
solutions in prototype testbeds, aiming to leverage resource-constrained devices, such as
IoT devices, as compute nodes. For instance, an experimental comparison of existing edge
orchestration tools is presented in [139], which evaluates these solutions in terms of scal-
ability and service instantiation time for EEDs. With the increasing processing demands
driven by AI/ML applications, many studies have shifted focus towards orchestrating
AI/ML pipelines at the Extreme-Edge, either for inference [136] or training [135] phases.
Additionally, some propose managing AI/ML pipelines using the microservice paradigm
[141]. While these studies provide valuable insights into the computational capabilities
of EEDs, they are primarily evaluated in local environments or on connected Virtual
Machines (VMs), which often overlook key factors such as network connectivity, device
interoperability, and hardware dependencies that are critical in real-world deployments.

An emerging area of research focuses on the development of new or the adaptation
of existing cloud-native tools specifically designed for orchestration at the Extreme-Edge.
For example, in [137], a lightweight container system for Extreme-Edge computing is in-
troduced, with evaluations conducted across devices featuring diverse architectures and
operating systems (OS), connected via Hypertext Transfer Protocol (HTTP). Similarly, in
[142], a novel architecture tailored for Machine Learning (ML) deployment in the Extreme-
Edge is proposed and experimentally validated in a 4G-enabled testbed using Unmanned
Aerial Vehicles (UAVs) as UEs, offering insights into the performance and resource con-
sumption trade-offs. However, these solutions are limited in that they operate primarily at
the container orchestration level, failing to consider the application-specific requirements
and dependencies that often arise in dynamic environments.

In contrast, our proposed approach introduces a service LCM layer that enables adap-
tive service deployment at runtime. This layer is governed by user-defined logic that
incorporates both resource-related and application-specific criteria, allowing for a more
flexible and efficient orchestration framework at the Extreme-Edge. By addressing both
the computational and network-related challenges in real-world scenarios, our solution pro-
vides a comprehensive approach to orchestrating services in highly dynamic and resource-
constrained environments.

4.4.3 Experimental testbed setup

In this section we provide the details of the software and hardware components that
comprise the 5G testbed for our experimental analysis.

System architecture

Our implemented software stack is based on Microk8s [143], a lightweight Kubernetes
variant, as shown in Fig. 4.13. Microk8s enables the configuration and M&O of a cluster
of computing nodes (workers) that run containerized applications. In our context, these
workers can refer to the compute resources on the EEDs or on the Multi-Access Edge
Computing (MEC) domain. The Microk8s controller resides on the MEC, providing the

92 4. Practical implementation

Figure 4.13: System architecture and software stack

interfaces to manage the processing resources within the cluster. All available services are
cataloged within the MEC’s Service Manager, a module that contains software artifacts (or
a reference of them) and descriptors to deploy a (set of) service(s) that provide functional-
ities to verticals, over the 5G infrastructure. The Network Slice Manager handles network
resource allocation during deployment, addressing the service requirements specified in the
descriptor and establishing the corresponding connection with the EEDs over the Radio
Access Network (RAN). On the EED side, the Local Resource Orchestration and Local
Service Orchestration modules manage network and service deployment, respectively.

Once deployed, orchestration actions for the service runtime management are con-
ducted through Policy Execution. Policies are expressed as a set of rules and actions,
defined as Service Level Agreement (SLA) expressions that represent the desired service-
level state. Rules are associated with the deployed service graphs at any given moment.
Policy execution involves a series of Representational State Transfer (REST) interfaces
that facilitate the manipulation of service policy rules. These interfaces support funda-
mental operations i.e., Create, Read, Update, and Delete (CRUD), enabling actions like
creating new policy rules, updating or deleting existing ones and retrieving policy rule
information. Additionally, the interfaces provide search functionalities based on criteria
such as policy name or identification number. The MEC also hosts a monitoring entity
that collects monitoring data from the underlying virtualized infrastructure. This entity
supports core services, including policies and is responsible for data collection via active
monitoring probes. This functionality is based on Prometheus [143] and includes: a) a
Monitoring Agent on each worker that collects telemetry metrics: total and utilized sys-
tem resource capacity (random access memory - RAM, disk/storage, central processing
unit - CPU, and graphics processing unit - GPU), number of CPU cores, UL/DL network
usage, fan and temperature readings, power consumption, location (latitude/longitude)
and application data volume; and b) a Monitoring Server located in the MEC that records
and stores monitoring data as time-series in the Resource Inventory module.

LCM of processing tasks in the (Extreme-)Edge is performed by the EEO, located
in the MEC. These tasks span from typical automotive services e.g., video streaming to
computationally-intensive processes e.g., on-device/distributed AI/ML. The EEO enables:
1) service configuration during initialization, 2) worker selection at runtime to run the
service i.e., add a new or remove an existing worker and 3) graceful service termination.
To enable these functionalities, the EEO exposes a REST interface that allows the end-user
e.g., the service provider, to provide a series of input criteria (see Table 4.3): a) generic
characteristics (device characteristics, run-time resource utilization parameters, location
filters, termination criteria) and b) application-specific criteria with support for AI/ML
tasks (configuration, data-related criteria, AI/ML performance metrics). Once the criteria

4.4.3 Experimental testbed setup 93

are set, the EEO functions as follows: it continuously monitors both the service and the
available workers, via the Monitoring Server. It thereafter performs a matchmaking to
determine if the specified user-defined criteria are satisfied. Based on the results of the
matchmaking process, the EEO infers appropriate actions; for instance, it may decide
to remove (scale in) an existing worker if its RAM utilization exceeds a predetermined
threshold, or to add a new worker (scale out) that has sufficient storage capacity. These
inferred actions are then converted into policy commands (rules) and propagated to the
Policy Execution module for implementation.

The aforementioned baseline functionalities enable a series of LCM policies to be en-
forced, including: 1) Resource-aware task execution - tuning of critical task param-
eters e.g., duration, number of EEDs, etc., to balance task performance with resource
consumption, 2) Task geo-fencing - restricts task execution to EEDs within a defined
area, enhancing privacy, 3) Resource provision - excludes heavily utilized EEDs to re-
duce risk of failure and improve robustness, 4) Load balancing - ensures fair distribution
of computational load across the EEDs, 5) Optimal task stopping - timely terminate
a task based on the optimal stopping theory [144] for efficiency, 6) Resource-aware
AI/ML hyper-parameter tuning - configure AI/ML parameters with consideration of
resource costs, 7) Smart AI/ML scheme selection - schedules AI/ML training in a
centralized, distributed or hybrid mode, based on the expected performance and resource
costs, and 8) Data-efficient AI/ML client selection - selects EEDs with sufficient data
volume to enhance training efficiency. Several of these features are demonstrated in the
forthcoming Sec. 4.5.

Table 4.3: Extreme-Edge Orchestrator (EEO) input criteria

Type Criterion Description Type Criterion Description

Device
selec-
tion:
charac-
teristics

Access rights Service provider ownership of
devices (private) or indepen-
dent status (public)

Device
selec-
tion:
AI/ML
condi-
tion

Dataset size Min application data volume
(MB)

GPU availability True/False Local train loss Min client AI/ML conver-
gence (%)

GPU capacity Min number of GPU cores Local test loss Min client AI/ML accuracy
(%)

CPU capacity Min number of CPU cores

AI/ML
configu-
ration

ML scheme Centralized, Distributed or
Hydrid AI/ML

RAM capacity Min total RAM (GB) Clients per round Min client devices for AI/ML
Storage capacity Min total disk capacity (GB) Number of epochs Hyper-parameter setting

Device
selec-
tion:
Run-
time
resource
utiliza-
tion

CPU utilization Max CPU usage-to-capacity
ratio (%)

Batch size Hyper-parameter setting

GPU utilization Max GPU usage-to-capacity
ratio (%)

Learning rate Hyper-parameter setting

RAM utilization Max RAM usage-to-capacity
ratio (%)

ML model AI/ML model type e.g.,
LSTM

Temperature Max device temperature (◦C) Aggregation algorithm (For distributed AI/ML)
Mean/Median type

Occupied storage Max current-to-total disk ca-
pacity ratio (%)

Training rounds Number of training cycles

Energy availability Min remaining battery level
(%)

Task ter-
mination

Global train loss Max AI/ML convergence of
all clients (%)

Uplink bandwidth Max uploaded data volume
(MB)

Global test loss Max AI/ML accuracy of all
clients (%)

Downlink bandwidth Max downloaded data volume
(MB)

Total energy Max energy consumed across
all devices (KJ)

Device
selec-
tion:
Location
filters

Area of interest (AoI) Bounding box (latitude and
longitude for each corner)

Total data volume Max data consumed across all
devices (MB)

Devices in area Max number of devices AI/ML efficiency Optimal stopping for global
accuracy w.r.t. total energy
consumed

94 4. Practical implementation

Figure 4.14: Testbed hardware and network setup

Hardware and network setup

Network connectivity across the testbed is provided by a standalone 5G test network in
Ulm, Germany, operated by Nokia. As depicted in Fig. 4.14, the testbed comprises: a) the
core and edge network, b) the RAN and c) several EEDs. The hardware specifications for
all involved devices are presented in Table 4.4. The core and edge network infrastructure,
hosted at Nokia’s Ulm facilities, includes a) gNodeB central units, b) a MEC server and
c) the user plane functions (UPFs), all of which are connected via a switch. The switch
provides access to external Data Networks (DNs) e.g., the Internet and to 5G control plane
functions e.g., Access and Mobility Management Function (AMF), Session Management
Function (SMF), etc., located at Nokia’s site in Finland. User data forwarding between
the gNodeBs and the DNs is handled by the UPFs, while the MEC server provides compute
resources, to support services at the network edge.

The RAN consists of three antenna sites, namely DRK Ulm, SWU K1 Ulm and Nokia
lab picocell, each connected via optical links to its respective gNodeB. Each site supports
three sector cells on the n38 band, covering a frequency range of 2575–2615 MHz. Time
Division Duplex is employed to support both uplink (UL) and downlink (DL) communi-
cation within the 40 MHz frequency range, with an UL/DL split set at 30/70. The DRK
and SWU K1 Ulm sites are set for outdoor deployment and support mobile EEDs, while
the Nokia lab site is designated for indoor deployment, primarily supporting static EEDs.
Each EED is equipped with a 5G modem to allow for wireless connectivity and possesses
diverse processing capabilities—including variations in storage, memory, and processing
power (see Table 4.4). Mobile EEDs are deployed within vehicles powered by an external
power source, whereas static EEDs are located within the Nokia lab.

Table 4.4: Testbed device specifications

MEC Server EED 1 EED 2 EED 3 EED 4

Device type Xeon E5-2680 Besstar UM560 DeskMini Besstar UM560 DeskMini NVIDIA Jetson AGX Orin NVIDIA Jetson AGX Xavier

CPU type AMD Ryzen 9 5900X AMD Ryzen 5 5625U AMD Ryzen 5 5625U Arm Cortex-A78AE v8.2 512-core NVIDIA Volta

CPU cores 12 12 12 12 8

GPU type NVIDIA RTX 3080 TI AMD ATI 04:00.0 Barcelo AMD ATI 04:00.0 Barcelo NVIDIA Ampere (2048 cores) NVIDIA Carmel Arm®v8.2

RAM (GB) 128 16 14 32 32

Storage SSD (2 TB), HDD (8 TB) SSD (500 GB) SSD (500 GB) SSD (60 GB) SSD (30 GB)

Operating system Ubuntu 22.04 LTS Ubuntu 22.04.4 LTS Ubuntu 22.04.4 LTS Ubuntu 20.04.6 LTS Ubuntu 20.04.6 LTS

5G Modem None Quectel RM500Q-AE Quectel RM500Q-AE-VA Teltonica RUTX50 Teltonica RUTX50

4.4.4 Implementation of distributed pQoS

To showcase the usage of the EEO, we have selected a relevant use-case of the automotive
vertical, namely distributed pQoS. Our implementation employs the FL paradigm to train
a pQoS model in a distributed fashion. FL involves two main components; an aggrega-
tion server (deployed in the MEC in our setup) and training agents/clients (deployed on
the EEDs). The pQoS model training occurs in consecutive cycles. In each cycle, the

4.5 5G Testbed experiments 95

Figure 4.15: Distributed pQoS using Federated Learning

aggregation server selects a group of EEDs and broadcasts the global pQoS model, as
depicted in Fig. 4.15. The selected EEDs then perform local model training, using their
collected data. The local models are then uploaded to the MEC server, where the aggre-
gation server combines (aggregates) them into an updated global model. This process is
repeated for several times, until the model converges. The implementation of FL and its
associated algorithms are based on Flower [145], a Python-based open-source framework
for FL pipelines.

4.5 5G Testbed experiments

4.5.1 Evaluation methodology

For the evaluation of the EEO, we are using the experimental 5G testbed and a total of
four EEDs. The EEDs serve as FL clients to perform distributed pQoS and specifically
round-trip time (RTT) prediction. The EEDs constantly collect: a) location (latitude,
longitude) data via a Global Positioning System (GPS) sensor and b) RTT data, via active
measurements, along with their respective timestamps. The collected time-series data is
used to train a Long Short-TermMemory (LSTM) pQoS model, given the LSTM’s inherent
ability to capture spatio-temporal dependencies [145]. The LSTM model is tuned to the
following parameters via grid-search [145]: Layers=2 (1 LSTM with Tanh activation, 1
Dense with Linear activation), Sliding window=400, Horizon=1, Min-Max normalization,
Tilted loss function, Batch size=32, Learning rate=10−2, Epochs=5.

We initially validate the device selection capability of the EEO in presence of user
mobility; two out of four EEDs are deployed inside vehicles, while the remaining are
placed in the Nokia lab. On the EEO side, we set the following location filter criteria: a)
Nokia premises, as the designated area of interest (AoI) and b) maximum of three devices
in the area (see Table 4.3). Then, the vehicles are instructed to move sequentially in and
out of the AoI. The demonstration results [146] suggest that the EEO successfully tracks
these events and timely adjusts the FL pQoS service, by selecting (adding/removing)
the respective EEDs, according to the criteria set. For further evaluation we run in-lab
experiments, using the indoor 5G deployment (see Sec. 4.4.3) and a total of four static
EEDs to perform FL pQoS. The assessment is based on the following metrics: 1) LSTM
Model (Training) Convergence (in ms for RTT prediction) using the Mean Absolute
Error (MAE) metric [145], 2) QoS Prediction (Testing) Accuracy (ms) via the Root
Mean Square Error (RMSE), a relevant metric for pQoS [71], 3) the Aggregated Energy
(in KJ) and 4)Data Volume (in MB) consumed by the EEDs during training, as recorded
by the EEO’s monitoring service. We repeat each experiment for 5 times and present the
mean and standard deviation values for all measures quantities.

96 4. Practical implementation

4.5.2 Orchestration at the Extreme-Edge

Effect of the number of training rounds

Initially, all four EEDs are employed to train the pQoS model via FL. In the EEO, we
set a variable number of total training rounds (see Table 4.3) within the range of [10, 50]
to assess their impact on the model’s performance with respect to (w.r.t.) the underlying
network resource consumption. As depicted in Fig. 4.16, increasing the number of training
rounds leads to a reduction in prediction errors (MAE and RMSE, respectively), indicating
improvements in both convergence and accuracy. However, the enhancement beyond 30
rounds is marginal (less than 10%). At the same time, allowing for more training rounds
results in a linear increase in network resource consumption (see Fig. 4.17). In fact,
when comparing to 30 training rounds, the use of 40 and 50 training rounds results in
increases by 34% and 69% in data volume as well as 33% and 65% in energy consumption,
respectively. The EEO allows for tuning the number of rounds and control the trade-
off between model performance and resource consumption. In our study, we select 30
rounds for our task, maintaining this value throughout the remainder of our experiments,
to achieve adequate accuracy (less than 0.3 ms RMSE for automotive applications [104]),
while also considering the efficiency of resource consumption.

Figure 4.16: Number of rounds: Accu-
racy

Figure 4.17: Number of rounds: Re-
source cost

Effect of the number of participating EEDs

Having set the number of training rounds, we now examine the impact of varying the
number of (FL) clients, specifically using 2, 3, and 4 EEDs (see Table 4.3). As shown
in Fig. 4.18, the accuracy differences during the first 10 training rounds (approximately
30 minutes) are minimal, with less than a 2% variation in accuracy among the three
configurations (calculated as the mean value for the first 30 minutes). By the end of the
experiments, utilizing 3 and 4 clients leads to an accuracy increase of up to 4% compared
to training with 2 clients. This also increases the involved bandwidth costs by 58% and
117% (see Fig. 4.19) and energy costs by 49% and 103% (see Fig. 4.20), respectively. Our
results suggest that while the number of participating EEDs affects model performance,
it primarily impacts the associated costs. As such, the vertical service provider can define
policies and adjust the number of selected EEDs accordingly, via the EEO’s monitoring and
control i.e., selection functionality. For the upcoming scenarios, we set this parameter to
3, as this setting achieves similar accuracy to that of 4 clients, while incurring substantially
lower costs.

4.5.2 Orchestration at the Extreme-Edge 97

Figure 4.18: Number of EEDs: Accuracy

Figure 4.19: Number of EEDs: Data
volume

Figure 4.20: Number of EEDs: Energy

CPU and RAM stress scenarios

We proceed by testing multiple service scenarios under the assumptions that the EEDs: 1)
run an FL pQoS service and 2) are periodically tasked with a higher-priority automotive
service e.g., High Definition map update. In such a scenario stress will be eventually
imposed on the EEDs’ CPU and RAM capacity. To simulate these conditions, we use
stress-ng [147]; fluctuations of CPU utilization (and therefore availability) of the EEDs
over time are shown in Fig. 4.21. We then configure the EEO as follows: the high priority
automotive service runs on all EEDs upon request, while FL (being of lower priority) runs
on the EEDs that have less than 30% CPU utilization (see Table 4.3). We compare against
the Vanilla case (without the EEO), where all EEDs are greedily selected for each service.
The results in the training performance are presented in Fig. 4.22. By smartly selecting
the EEDs with high CPU availability, the FL model in the EEO case is trained faster, with
a reduced average round duration by 24%, compared to the Vanilla case. On the contrary,
the EEDs in the Vanilla case are selected as FL clients regardless their CPU load, thereby
extending the duration of each training round and the completion time of the FL task, as
a whole. On top, the total energy expenditure in the Vanilla case is 24% higher compared
to the EEO case (see Fig. 4.23), consistent with the linear relationship between resource
utilization and energy consumption, presented in Fig. 4.20. When varying the RAM
instead of the CPU, the results indicate even greater differences between configurations. As
shown in Fig. 4.24, the EEO’s smart client selection facilitates smooth training, resulting
in the development of a pQoS model with an accuracy of 0.25 ms (RMSE) at a total energy
cost of approximately 120 KJ, consistent with the outcomes shown in Fig. 4.18 and Fig.
4.20. In the Vanilla case however, excessive RAM overload leads to training failure and
premature termination of the training process (see blue horizontal line in Fig. 4.24).

98 4. Practical implementation

Figure 4.21: CPU stress: Setup Figure 4.22: CPU stress: Accuracy

Figure 4.23: CPU stress: Energy Figure 4.24: RAM stress: Performance
test

4.6 Conclusions

In this chapter, we have presented two practical implementations of the theoretical con-
cepts explored in earlier chapters, focusing on FL in distributed CCAM environments from
a systems perspective.

Firstly, we introduced NordicDat, a comprehensive dataset collected over two weeks
across the cross-border regions of Finland, Norway, and Sweden. This dataset includes a
wide range of features related to cellular QoS values, such as throughput and delay, network
characteristics like cell and operator information, and vehicle kinematics, including speed
and location data. These features make the dataset highly valuable for training both
classical and distributed AI/ML models across a variety of use cases, such as trajectory
prediction, handover prediction, and, importantly, QoS prediction. The latter is recognized
as a crucial enabler for the future development of automotive applications. Through
our data analysis, we identified non-linear correlations between various features and the
QoS values, highlighting that factors such as roaming, vehicle speed, and radio access
technology significantly influence the QoS patterns over time and space. Additionally, we
demonstrated the use of distributed AI/ML for QoS prediction, specifically for throughput
and delay, which, to our knowledge, marks the first real-world demonstration of distributed
predictive QoS (pQoS) on real-world data.

Next, to address the critical limitations in integrating terminal-side (Extreme-Edge)
devices into the operational control framework of 5G networks, we introduced the Extreme-
Edge Orchestrator (EEO), our novel cloud-native management and orchestration solution.
The EEO combines network resource provisioning with multi-criteria, user-defined logic to
enable efficient service orchestration for containerized applications running on Extreme-
Edge devices. Our implementation of the system was extensively evaluated on an op-
erational 5G testbed, focusing on distributed AI/ML tasks. The experimental results
showed that the EEO improves resource efficiency by optimizing key parameters, such as
task duration, and reduces task completion time by 25% under high computational load
when compared to baseline methods. These findings suggest that managing Extreme-

4.6 Conclusions 99

Edge devices in next-generation networks can lead to more efficient and effective service
delivery. Moreover, they point to several promising avenues for future research, including
large-scale evaluations involving a greater number of end devices and extending the EEO’s
multi-criteria logic through the use of rule engines, which will be explored in subsequent
work.

In summary, this chapter has contributed to advancing both theoretical and practical
aspects of distributed AI/ML in the context of CCAM, with a particular focus on enhanc-
ing the integration of Extreme-Edge devices and improving QoS prediction capabilities in
real-world automotive environments.

5

Conclusion

5.1 Key takeaways

This thesis presented our research on the convergence of two key advancements in next-
generation networks: (a) the increasing utilization of client device processing capabilities
within a unified cloud-to-edge network and compute continuum, and (b) the rise of Dis-
tributed AI/ML, particularly Federated Learning (FL), as a means of enabling intelligent
decision-making for connected systems. Unlike previous theoretical studies, our focus has
been on practical applications, specifically in the demanding domain of Connected and
Cooperative Automated Mobility (CCAM), where both trends were relevant but are also
coupled with complex requirements (e.g., safety).

Our work addressed several previously under-explored questions: (a) Which ML scheme,
Centralized Learning (CL) or Distributed Learning/FL, is more efficient from a network
perspective? (b) What roles did various factors such as models, energy consumption, and
concept/model drift play in influencing these schemes? (c) What were the implementation
challenges, and how could they be addressed when deploying these schemes in real-world
environments?

To answer these questions, we presented the theoretical concepts, simulation envi-
ronment, and the results of our study, which provided valuable insights on: a) The sys-
tem parameters that influenced the efficiency of each ML scheme, in terms of both ML
performance (accuracy) and underlying network and energy resource consumption. b)
The resource consumption of DML/FL, considering AI/ML and network parameters. c)
Trade-offs and considerations for selecting the appropriate ML scheme. d) The detri-
mental impact of concept drift in volatile network and vehicular environments for FL. e)
Techniques for detecting and mitigating concept drift in distributed, resource-constrained
environments, while minimizing network resource usage. f) The results of a measurement
campaign and proof-of-concept implementation for predictive Quality of Service (pQoS).
g) A management and orchestration framework for deploying multiple AI/ML and FL
services in the automotive domain, demonstrated on a commercial-grade 5G testbed with
multiple vehicles as mobile client devices.

Future research could expand on our concept drift management framework by incor-
porating dynamic adaptation through AI/ML techniques. Along with our findings on
ML scheme selection, this could evolve into a comprehensive end-to-end ML Operations
(MLOps) framework, capable of dynamically adapting to drift and adjusting functionality
or switching between ML schemes based on user requirements.

Ultimately, our orchestration solution provided a valuable toolkit for managing the
lifecycle of AI/ML and FL services and handling compute resources on Internet of Things

101

102 5. Conclusion

(IoT) devices. This could be integrated with the aforementioned algorithmic framework
to enable continuous monitoring and management of multiple FL tasks across networks of
mobile devices, vehicles, and IoT systems.

5.2 Publications

5.2.1 Journal/Magazine Articles

• Drainakis, G., Pantazopoulos, P., Katsaros, K. V., Sourlas, V., Amditis, A., &
Kaklamani, D. I. (2023). From centralized to Federated Learning: Exploring per-
formance and end-to-end resource consumption. Elsevier Computer Networks, 225,
109657.

• Katsaros, K. V., Liotou, E., Moscatelli, F., Rokkas, T., Drainakis, G., Bonetto, E.,
Brevi, D., Klonidis, D., Neokosmidis, I., & Amditis, A. (2022). Enabling far-edge
intelligent services with network applications: the automotive case. IEEE Internet
of Things Magazine, 5(4), 122-128.

5.2.2 Peer-reviewed Conference/Workshop papers

• Drainakis, G., Pantazopoulos, P.,Katsaros, K. V., Sourlas, V., Xirofotos, T.,
Baganal-Krishna, N., Rizk, A., Horvath, R., Scivoletto, G., Amditis, A., & Kak-
lamani, D. I. Service Orchestration at the Extreme-Edge: An Experimental In-
vestigation Over a 5G Testbed. In ICC 2025 IEEE International Conference on
Communications (under peer review)

• Miekkala, T., Pyykonen, P., Drainakis, G., Pantazopoulos, P., Muller, T., Kat-
saros, K. V., Sourlas, V., Amditis, A., & Kaklamani, D. I. NordicDat: A Cross-
Border Predictive QoS Dataset. In GLOBECOM 2024 IEEE Global Communica-
tions Conference

• Drainakis, G., Pantazopoulos, P., Katsaros, K. V., Sourlas, V., Amditis, A., &
Kaklamani, D. I. (2024, June). Distributed Predictive QoS in Automotive Environ-
ments under Concept Drift. In 2023 IFIP Networking Conference (IFIP Networking).
IEEE.

• Sourlas, V., Rizk, A., Katsaros, K. V., Pantazopoulos, P., Drainakis, G., & Amdi-
tis, A. (2021, September). A Distributed ML Framework for Service Deployment
in the 5G-based Automotive Vertical. In 2021 IEEE International Mediterranean
Conference on Communications and Networking (MeditCom) (pp. 246-251). IEEE.

• Drainakis, G., Pantazopoulos, P., Katsaros, K. V., Sourlas, V., & Amditis, A.
(2021, July). On the resource consumption of distributed ml. In 2021 IEEE Inter-
national Symposium on Local and Metropolitan Area Networks (LANMAN) (pp.
1-6).

• Drainakis, G., Pantazopoulos, P., Katsaros, K. V., Sourlas, V., & Amditis, A.
(2021, May). On the distribution of ML workloads to the network edge and be-
yond. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS) (pp. 1-6).

5.2.3 Under preparation/submission 103

• Drainakis, G., Katsaros, K. V., Pantazopoulos, P., Sourlas, V., & Amditis, A.
(2020, November). Federated vs. centralized machine learning under privacy-elastic
users: A comparative analysis. In 2020 IEEE 19th International Symposium on
Network Computing and Applications (NCA) (pp. 1-8).

5.2.3 Under preparation/submission

• Drainakis, G., Pantazopoulos, P., Katsaros, K. V., Sourlas, V., Amditis, A., &
Kaklamani, D. I. Federated Learning in Automotive Environments under Concept
Drift (Journal follow-up of the IFIP Networking paper, under submission)

Bibliography

[1] P. Wang et al., “Introduction: Advances in iot research and applications,” Information
Systems Frontiers, vol. 17, pp. 239–241, 2015.

[2] Z. Qadir et al., “Towards 6g internet of things: Recent advances, use cases, and open
challenges,” ICT express, vol. 9, no. 3, pp. 296–312, 2023.

[3] A. Shahraki et al., “When machine learning meets network management and orches-
tration in edge-based networking paradigms,” Journal of Network and Computer Ap-
plications, vol. 212, p. 103558, 2023.

[4] “Ieee standard for local and metropolitan area networks: Overview and architecture,”
IEEE Std 802-2014 (Revision to IEEE Std 802-2001), pp. 1–74, 2014.

[5] A. Yegin et al., “Lorawan protocol: specifications, security, and capabilities,” in LP-
WAN Technologies for iot and m2m applications. Elsevier, 2020, pp. 37–63.

[6] A. Al-Dulaimy et al., “The computing continuum: From iot to the cloud,” Internet of
Things, vol. 27, p. 101272, 2024.

[7] L. A. Haibeh et al., “A survey on mobile edge computing infrastructure: Design,
resource management, and optimization approaches,” IEEE Access, vol. 10, pp. 27 591–
27 610, 2022.

[8] H. Kim et al., “Mobile edge computing enabler layer: Edge-native application archi-
tecture for mobile networks,” IEEE Communications Standards Magazine, 2023.

[9] H. Peng et al., “Evaluating emerging ai/ml accelerators: Ipu, rdu, and nvidia/amd
gpus,” in Companion of the 15th ACM/SPEC International Conference on Perfor-
mance Engineering, 2024, pp. 14–20.

[10] H. Kimm et al., “Performance comparision of tpu, gpu, cpu on google colaboratory
over distributed deep learning,” in 2021 IEEE 14th International Symposium on Em-
bedded Multicore/Many-core Systems-on-Chip (MCSoC). IEEE, 2021, pp. 312–319.

[11] T. Tan and G. Cao, “Efficient execution of deep neural networks on mobile devices
with npu,” in Proceedings of the 20th International Conference on Information Pro-
cessing in Sensor Networks (Co-Located with CPS-IoT Week 2021), 2021, pp. 283–298.

[12] M. S. Allahham et al., “On the modeling of reliability in extreme edge computing
systems,” in 2022 5th International Conference on Communications, Signal Processing,
and their Applications (ICCSPA). IEEE, 2022, pp. 1–6.

105

106 Bibliography

[13] P. Basaras et al., “Experimentally assessing deployment tradeoffs for ai-enabled video
analytics services in the 5g compute continuum,” in 2023 IEEE Conference on Network
Function Virtualization and Software Defined Networks (NFV-SDN). IEEE, 2023, pp.
99–104.

[14] M. Murshed et al., “Machine learning at the network edge: A survey,” arXiv preprint
arXiv:1908.00080, 2019.

[15] T. Wu et al., “A brief overview of chatgpt: The history, status quo and potential
future development,” IEEE/CAA Journal of Automatica Sinica, vol. 10, no. 5, pp.
1122–1136, 2023.

[16] M. Hussain, “Yolo-v1 to yolo-v8, the rise of yolo and its complementary nature toward
digital manufacturing and industrial defect detection,” Machines, vol. 11, no. 7, p. 677,
2023.

[17] A. Kolmogorov, “On the representation of continuous functions of several variables by
superpositions of continuous functions of lesser variable count,” in Dokl. Akad. Nauk
SSSR, vol. 108, no. 2, 1956.

[18] W. Hong et al., “Optimal design of hybrid federated and centralized learning in the
mobile edge computing systems,” in IEEE International Conference on Communica-
tions (ICC) Workshops, 2021, pp. 1–6.

[19] T. Wink and Z. Nochta, “An approach for peer-to-peer federated learning,” in 2021
51st Annual IEEE/IFIP International Conference on Dependable Systems and Net-
works Workshops (DSN-W). IEEE, 2021, pp. 150–157.

[20] B. McMahan et al., “Communication-efficient learning of deep networks from decen-
tralized data,” in Artificial Intelligence and Statistics. PMLR, 2017, pp. 1273–1282.

[21] W. Shi et al., “Edge computing: Vision and challenges,” IEEE Internet of Things
Journal, vol. 3, no. 5, pp. 637–646, 2016.

[22] P. Voigt and A. Von dem Bussche, “The eu general data protection regulation (gdpr),”
A Practical Guide, 1st Ed., Cham: Springer International Publishing, vol. 10, no.
3152676, pp. 10–5555, 2017.

[23] J. Hestness et al., “Beyond human-level accuracy: Computational challenges in deep
learning,” in Proceedings of the 24th Symposium on Principles and Practice of Parallel
Programming, 2019, pp. 1–14.

[24] X. Lian et al., “Can decentralized algorithms outperform centralized algorithms? A
case study for decentralized parallel stochastic gradient descent,” in Advances in Neural
Information Processing Systems, 2017, pp. 5330–5340.

[25] A. Nilsson et al., “A performance evaluation of federated learning algorithms,” in
Proceedings of the Second Workshop on Distributed Infrastructures for Deep Learning,
2018, pp. 1–8.

[26] S. A. Rahman et al., “Internet of things intrusion detection: Centralized, on-device,
or federated learning?” IEEE Network, vol. 34, no. 6, pp. 310–317, 2020.

[27] K. Chandiramani et al., “Performance analysis of distributed and federated learning
models on private data,” Procedia Computer Science, vol. 165, pp. 349–355, 2019.

Bibliography 107

[28] I. Hegedűs et al., “Decentralized learning works: An empirical comparison of gossip
learning and federated learning,” Journal of Parallel and Distributed Computing, vol.
148, pp. 109–124, 2021.

[29] G. H. Lee and S.-Y. Shin, “Federated learning on clinical benchmark data: Perfor-
mance assessment,” Journal of medical Internet research, vol. 22, no. 10, p. e20891,
2020.

[30] S. Otoum et al., “Blockchain-supported federated learning for trustworthy vehicular
networks,” in IEEE GLOBECOM, 2020, pp. 1–6.

[31] Warnat-Herresthal et al., “Swarm learning for decentralized and confidential clinical
machine learning,” Nature, vol. 594, no. 7862, pp. 265–270, 2021.

[32] M. R. o. Akdeniz, “Millimeter wave channel modeling and cellular capacity evalua-
tion,” IEEE journal on selected areas in communications, vol. 32, no. 6, pp. 1164–1179,
2014.

[33] K. Gomez et al., “Achilles and the tortoise: Power consumption in IEEE 802.11 n
and IEEE 802.11 g networks,” in IEEE Online Conference on Green Communications
(OnlineGreenComm), 2013, pp. 20–26.

[34] M. Rizwan and S. A. Abbas, “Median path loss, fading and coverage comparison
at 3.5 ghz and 700mhz for mobile wimax,” in 2008 IEEE International Multitopic
Conference. IEEE, 2008, pp. 266–271.

[35] M. J. Crisp et al., “Uplink and downlink coverage improvements of 802.11 g signals
using a distributed antenna network,” Journal of Lightwave Technology, vol. 25, no. 11,
pp. 3388–3395, 2007.

[36] A. Vishwanath et al., “Energy consumption comparison of interactive cloud-based
and local applications,” IEEE Journal on selected areas in communications, vol. 33,
no. 4, pp. 616–626, 2015.

[37] Y.-C. Chiu et al., “Are we one hop away from a better internet?” in Procs. of 2015
Internet Measurement Conference (IMC), pp. 523–529.

[38] S. Wang et al., “Edge server placement in mobile edge computing,” Journal of Parallel
and Distributed Computing, vol. 127, pp. 160–168, 2019.

[39] M. Lenczner and A. G. Hoen, “CRAWDAD dataset
ilesansfil/wifidog (ver. 2015-11-06),” Downloaded from:
https://crawdad.org/ilesansfil/wifidog/20151106/session.

[40] H. H. Yang et al., “Age-based scheduling policy for federated learning in mobile
edge networks,” in IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2020, pp. 8743–8747.

[41] Y. Yan et al., “Risk minimization against transmission failures of federated learning
in mobile edge networks,” IEEE Access, vol. 8, pp. 98 205–98 217, 2020.

[42] J. Liu et al., “Performance analysis and characterization of training deep learning
models on mobile device,” in 2019 25th IEEE International Conference on Parallel
and Distributed Systems, pp. 506–515.

108 Bibliography

[43] Y. Kochura et al., “Batch size influence on performance of graphic and tensor pro-
cessing units during training and inference phases,” in Intern’l Conf. on Computer
Science, Engineering and Education Applications. Springer, 2019, pp. 658–668.

[44] A. Nika et al., “Energy and performance of smartphone radio bundling in outdoor
environments,” in Proceedings of the 24th International Conference on World Wide
Web, 2015, pp. 809–819.

[45] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor processing unit,”
in Proceedings of the 44th Annual International Symposium on Computer Architecture,
2017, pp. 1–12.

[46] T. Jakobs et al., “Reducing the power consumption of matrix multiplications by
vectorization,” in International Conference on Computational Science and Engineering
(CSE). IEEE, 2016, pp. 213–220.

[47] E. S. Ali et al., “Machine learning technologies for secure vehicular communication in
internet of vehicles: recent advances and applications,” Security and Communication
Networks, vol. 2021, no. 1, p. 8868355, 2021.

[48] J. Luketina et al., “Scalable gradient-based tuning of continuous regularization hy-
perparameters,” in International conference on machine learning. PMLR, 2016, pp.
2952–2960.

[49] M. Courbariaux et al., “Binaryconnect: Training deep neural networks with binary
weights during propagations,” in Advances in neural information processing systems,
2015, pp. 3123–3131.

[50] A. Ziller et al., “Pysyft: A library for easy federated learning,” in Federated Learning
Systems. Springer, 2021, pp. 111–139.

[51] PyTorch Neural Network API. [Online]. Available: https://pytorch.org/docs/stabl
e/nn.html

[52] G. Drainakis et al., “Federated vs. centralized machine learning under privacy-elastic
users: A comparative analysis,” in 2020 IEEE 19th International Symposium on Net-
work Computing and Applications (NCA), pp. 1–8.

[53] Q. Meng et al., “Convergence analysis of distributed stochastic gradient descent with
shuffling,” Neurocomputing, vol. 337, pp. 46–57, 2019.

[54] C. R. Harris et al., “Array programming with NumPy,” Nature, vol. 585, no. 7825, pp.
357–362, Sep. 2020. [Online]. Available: https://doi.org/10.1038/s41586-020-2649-2

[55] M. M. Bejani and M. Ghatee, “A systematic review on overfitting control in shallow
and deep neural networks,” Artificial Intelligence Review, pp. 1–48, 2021.

[56] Y. Chen et al., “Asynchronous online federated learning for edge devices with non-iid
data,” in 2020 IEEE International Conference on Big Data (Big Data). IEEE, 2020,
pp. 15–24.

[57] Samsung specifications: Eb-bg531bbe battery - 2400mah li-ion. [Online]. Available:
https://batteriesglobal.com/products/samsung-eb\-bg531bbe-battery

https://pytorch.org/docs/stable/nn.html
https://pytorch.org/docs/stable/nn.html
https://doi.org/10.1038/s41586-020-2649-2
https://batteriesglobal.com/products/samsung-eb\-bg531bbe-battery

Bibliography 109

[58] T. Nishio and R. Yonetani, “Client selection for federated learning with heteroge-
neous resources in mobile edge,” in ICC 2019-2019 IEEE International Conference on
Communications (ICC). IEEE, 2019, pp. 1–7.

[59] X. Zhang, M. Hong, S. Dhople, W. Yin, and Y. Liu, “Fedpd: A federated learning
framework with adaptivity to non-iid data,” IEEE Transactions on Signal Processing,
vol. 69, pp. 6055–6070, 2021.

[60] F. E. Casado et al., “Concept drift detection and adaptation for federated and con-
tinual learning,” Multimedia Tools and Applications, pp. 1–23, 2022.

[61] M. R. Bachute and J. M. Subhedar, “Autonomous driving architectures: insights of
machine learning and deep learning algorithms,” Machine Learning with Applications,
vol. 6, p. 100164, 2021.

[62] A. Alabbasi et al., “On cascaded federated learning for multi-tier predictive models,”
in IEEE ICC Workshops, 2021, pp. 1–7.

[63] R. K. Nath and H. Thapliyal, “Machine learning-based anxiety detection in older
adults using wristband sensors and context feature,” SN Computer Science, vol. 2,
no. 5, p. 359, 2021.

[64] G. I. Parisi et al., “Continual lifelong learning with neural networks: A review,”
Neural networks, vol. 113, pp. 54–71, 2019.

[65] M. F. Criado et al., “Non-iid data and continual learning processes in federated
learning: A long road ahead,” Information Fusion, vol. 88, pp. 263–280, 2022.

[66] F. Bayram et al., “From concept drift to model degradation: An overview on
performance-aware drift detectors,” Knowledge-Based Systems, p. 108632, 2022.

[67] J. Lu et al., “Learning under concept drift: A review,” IEEE Transactions on Knowl-
edge and Data Engineering, vol. 31, pp. 2346–2363, 2018.

[68] D. M. Manias et al., “Concept drift detection in federated networked systems,” in
IEEE Global Communications Conference, 2021, pp. 1–6.

[69] G. Canonaco et al., “Adaptive federated learning in presence of concept drift,” in
2021 International Joint Conference on Neural Networks (IJCNN). IEEE, 2021, pp.
1–7.

[70] “Making 5G proactive and predictive for the automotive industry,” Industry White
Paper, 5GAA Automotive Association, 2020.

[71] A. Palaios et al., “Machine learning for QoS prediction in vehicular communication:
Challenges and solution approaches,” IEEE Access, 2023.

[72] X. Yin et al., “A comprehensive survey of privacy-preserving federated learning: A
taxonomy, review, and future directions,” ACM Computing Surveys (CSUR), vol. 54,
no. 6, pp. 1–36, 2021.

[73] E. Jothimurugesan et al., “Federated learning under distributed concept drift,” in
International Conference on Artificial Intelligence and Statistics. PMLR, 2023, pp.
5834–5853.

110 Bibliography

[74] N. Harth et al., “Local & federated learning at the network edge for efficient predictive
analytics,” Future Generation Computer Systems, vol. 134, pp. 107–122, 2022.

[75] C. B. Mawuli et al., “Semi-supervised federated learning on evolving data streams,”
Information Sciences, p. 119235, 2023.

[76] L. Gondara and K. Wang, “Pubsub-ml: A model streaming alternative to federated
learning,” Proceedings on Privacy Enhancing Technologies, vol. 2, pp. 464–479, 2023.

[77] F. E. Casado et al., “Ensemble and continual federated learning for classification
tasks,” Machine Learning, pp. 1–41, 2023.

[78] Y. Chen et al., “Asynchronous federated learning for sensor data with concept drift,”
in 2021 IEEE Intl. Conf. on Big Data, pp. 4822–4831.

[79] B. Ganguly and V. Aggarwal, “Online federated learning via non-stationary detection
and adaptation amidst concept drift,” IEEE/ACM Transactions on Networking, 2023.

[80] A. Paszke et al., “Pytorch: An imperative style, high-performance deep learning
library,” Advances in neural information processing systems, vol. 32, 2019.

[81] J. Brownlee, Deep learning for time series forecasting: predict the future with MLPs,
CNNs and LSTMs in Python. ML Mastery, 2018.

[82] Z. Charles et al., “On large-cohort training for federated learning,” Advances in neural
information processing systems, vol. 34, pp. 20 461–20 475, 2021.

[83] J. Dessain, “Machine learning models predicting returns: Why most popular perfor-
mance metrics are misleading and proposal for an efficient metric,” Expert Systems
with Applications, vol. 199, p. 116970, 2022.

[84] “5GAA Technical Report: ToD: System requirements analysis and architecture,”
https://5gaa.org/content/uploads/2021/09/5GAA ToD System Requirements Archi
tecture TR.pdf, accessed: 2023-01-28.

[85] G. Nardini et al., “Simu5G–an OMNet++ library for end-to-end performance evalu-
ation of 5g networks,” IEEE Access, vol. 8, 2020.

[86] M. Series, “Guidelines for evaluation of radio interface technologies for imt-2020,”
Report ITU, vol. 2512, p. 0, 2017.

[87] “Cellmapper,” www.cellmapper.net, accessed: 2023-01-28.

[88] “Openstreetmap,” www.openstreetmap.org, accessed: 2023-01-23.

[89] “Worldstats,” www.nationsencyclopedia.com/WorldStats/WDI-transport-vehicles.
html, accessed: 2023-01-28.

[90] M. Behrisch et al., “SUMO–simulation of urban mobility: an overview,” in Procs of
the Third Interl. Conf. on Advances in System Simulation (SIMUL). ThinkMind,
2011.

[91] N. Yu et al., “Minimizing energy cost by dynamic switching on/off base stations in
cellular networks,” IEEE Transactions on Wireless Communications, vol. 15, no. 11,
pp. 7457–7469, 2016.

https://5gaa.org/content/uploads/2021/09/5GAA_ToD_System_Requirements_Architecture_TR.pdf
https://5gaa.org/content/uploads/2021/09/5GAA_ToD_System_Requirements_Architecture_TR.pdf
www.cellmapper.net
www.openstreetmap.org
www.nationsencyclopedia.com/WorldStats/WDI-transport-vehicles.html
www.nationsencyclopedia.com/WorldStats/WDI-transport-vehicles.html

Bibliography 111

[92] “Infrastructure sharing: An overview (GSMA),” www.gsma.com/futurenetworks/wi
ki/infrastructure-sharing-an-overview, accessed: 2023-09-07.

[93] X. Liu et al., “Key technologies for 5g co-construction and shared base station data
automatic configuration,” in 2021 IEEE 20th International Conference on Trust, Se-
curity and Privacy in Computing and Communications (TrustCom). IEEE, 2021, pp.
1559–1563.

[94] “Mobility report 2022,” www.ericsson.com/4ae28d/assets/local/reports-papers/mo
bility-report/documents/2022/ericsson-mobility-report-november-2022.pdf, accessed:
2023-01-28.

[95] C. S. Evangeline et al., “Safety and driver assistance in VANETs: an experimental
approach for V2V,” in Int’l Conf. on Communication and Electronics Systems, 2019,
pp. 397–402.

[96] A. Narayanan et al., “A variegated look at 5G in the wild: performance, power, and
QoE implications,” in ACM SIGCOMM’21, pp. 610–625.

[97] Y. Wang et al., “Benchmarking the performance and energy efficiency of ai accel-
erators for ai training,” in 20th IEEE/ACM Int’l Symposium on Cluster, Cloud and
Internet Computing, 2020, pp. 744–751.

[98] “CPU benchmarking,” www.cpubenchmark.net/cpu.php?cpu=Intel+Xeon+Platin
um+8168+%40+2.70GHz&id=3111, accessed: 2023-01-28.

[99] K. Fatahalian et al., “Understanding the efficiency of GPU algorithms for matrix-
matrix multiplication,” in ACM conf. on Graphics hardware, 2004, pp. 133–137.

[100] R. Hernangomez et al., “Berlin v2x,” 2022. [Online]. Available: https:
//dx.doi.org/10.21227/8cj7-q373

[101] A. Reisizadeh et al., “Fedpaq: A communication-efficient federated learning method
with periodic averaging and quantization,” in Int’l Conf. on Artificial Intelligence and
Statistics, 2020, pp. 2021–2031.

[102] H. Na et al., “LSTM-based throughput prediction for lte networks,” ICT Express,
2021.

[103] S. Mozaffari et al., “Deep learning-based vehicle behavior prediction for autonomous
driving applications: A review,” IEEE Transactions on Intelligent Transportation Sys-
tems, vol. 23, no. 1, pp. 33–47, 2020.

[104] “Predictive QoS and V2X service adaptation,” Technical Report, 5GAA Automotive
Association, 2022.

[105] P. Zhao et al., “The case design of testing vehicle platooning in a vehicle-road coop-
eration system for a 5G cross-border scenario,” in IEEE 4th Int’l Conference on Civil
Aviation Safety and Information Technology (ICCASIT). IEEE, 2022, pp. 135–139.

[106] D. Raca et al., “Beyond throughput: A 4g lte dataset with channel and context
metrics,” in Proceedings of the 9th ACM multimedia systems conference, 2018, pp.
460–465.

www.gsma.com/futurenetworks/wiki/infrastructure-sharing-an-overview
www.gsma.com/futurenetworks/wiki/infrastructure-sharing-an-overview
www.ericsson.com/4ae28d/assets/local/reports-papers/mobility-report/documents/2022/ericsson-mobility-report-november-2022.pdf
www.ericsson.com/4ae28d/assets/local/reports-papers/mobility-report/documents/2022/ericsson-mobility-report-november-2022.pdf
www.cpubenchmark.net/cpu.php?cpu=Intel+Xeon+Platinum+8168+%40+2.70GHz&id=3111
www.cpubenchmark.net/cpu.php?cpu=Intel+Xeon+Platinum+8168+%40+2.70GHz&id=3111
https://dx.doi.org/10.21227/8cj7-q373
https://dx.doi.org/10.21227/8cj7-q373

112 Bibliography

[107] D. Xu et al., “Understanding operational 5G: A first measurement study on its cov-
erage, performance and energy consumption,” in Proceedings of the Annual conference
of the ACM Special Interest Group on Data Communication on the applications, tech-
nologies, architectures, and protocols for computer communication, 2020, pp. 479–494.

[108] S. Farthofer et al., “An open mobile communications drive test data set and its use
for machine learning,” IEEE Open Journal of the Communications Society, vol. 3, pp.
1688–1701, 2022.

[109] A. M. Mandalari et al., “Experience: Implications of roaming in europe,” in Pro-
ceedings of the 24th Annual International Conference on Mobile Computing and Net-
working, 2018, pp. 179–189.

[110] T. Miekkala et al., “Nordicdat: A cross-border predictive qos dataset,” 2024.
[Online]. Available: https://zenodo.org/records/10964584

[111] S. Schwarzmann et al., “Ml-based qoe estimation in 5g networks using different re-
gression techniques,” IEEE Transactions on Network and Service Management, vol. 19,
no. 3, pp. 3516–3532, 2022.

[112] S. Barmpounakis et al., “LSTM-based QoS prediction for 5g-enabled connected
and automated mobility applications,” in 2021 IEEE 4th 5G World Forum (5GWF).
IEEE, 2021, pp. 436–440.

[113] A. Palaios et al., “Network under control: Multi-vehicle E2E measurements for ai-
based qos prediction,” in IEEE 32nd Annual Int’l Symposium on Personal, Indoor and
Mobile Radio Communications (PIMRC), 2021, pp. 1432–1438.

[114] R. Hernangómez et al., “Berlin v2x: A machine learning dataset from multiple
vehicles and radio access technologies,” in IEEE 97th Vehicular Technology Conference
(VTC2023-Spring), 2023, pp. 1–5.

[115] D. Schäufele et al., “Terminal-side data rate prediction for high-mobility users,” in
IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), 2021, pp. 1–5.

[116] A. Narayanan et al., “A first look at commercial 5G performance on smartphones,”
in Procs. of The Web Conference 2020, pp. 894–905.

[117] A. Narayanan, E. Ramadan et al., “Lumos5G: Mapping and predicting commercial
mmwave 5G throughput,” in Proceedings of the ACM Internet Measurement Confer-
ence, 2020, pp. 176–193.

[118] Y. Liu and C. Peng, “A close look at 5G in the wild: Unrealized potentials and
implications,” in IEEE INFOCOM 2023, pp. 1–10.

[119] K. Kousias et al., “A large-scale dataset of 4g, nb-iot, and 5G non-standalone net-
work measurements,” IEEE Comm. Magazine, 2023.

[120] A. Narayanan et al., “A comparative measurement study of commercial 5G mmwave
deployments,” in IEEE INFOCOM 2022-IEEE Conference on Computer Communica-
tions. IEEE, 2022, pp. 800–809.

[121] R. A. Fezeu et al., “An in-depth measurement analysis of 5G mmwave phy latency
and its impact on end-to-end delay,” in Int’l Conf. on Passive and Active Network
Measurement. Springer, 2023, pp. 284–312.

https://zenodo.org/records/10964584

Bibliography 113

[122] T. Tsourdinis et al., “Ue network traffic time-series (applications, throughput,
latency, cqi) in lte/5G networks,” 2022. [Online]. Available: https://dx.doi.org/10.21
227/4ars-fs38

[123] A. Safari Khatouni et al., “An open dataset of operational mobile networks,” in Pro-
ceedings of the 18th ACM Symposium on Mobility Management and Wireless Access,
2020, pp. 83–90.

[124] R. A. Fezeu et al., “Roaming across the european union in the 5G era: Performance,
challenges, and opportunities,” in IEEE International Conference on Computer Com-
munications, 2024.

[125] F. Burmeister et al., “Measuring time-varying industrial radio channels for d2d com-
munications on agvs,” in 2021 IEEE Wireless Communications and Networking Con-
ference (WCNC). IEEE, 2021, pp. 1–7.

[126] R. Hernangómez et al., “Towards an ai-enabled connected industry: Agv communi-
cation and sensor measurement datasets,” arXiv preprint arXiv:2301.03364, 2022.

[127] V. Raida et al., “Real world performance of lte downlink in a static dense urban
scenario-an open dataset,” in 2020 IEEE Global Communications Conference, pp. 1–6.

[128] W. Lawrenz, CAN System Engineering From Theory to Practical Applications.
Springer Science Business Media, 2013.

[129] R. B. Langley, “RTK GPS,” in GPS World, 1998, pp. 70–76.

[130] “AT commands,” https://wiki.teltonika-networks.com/view/AT Commands,
accessed: 2024-03-30.

[131] “Linux ifstat,” https://man7.org/linux/man-pages/man8/ifstat.8.html, accessed:
2024-03-30.

[132] “Linux ping command,” https://linux.die.net/man/8/ping, accessed: 2024-04-22.

[133] “Data distribution service specification version 1.4.” ”https://www.omg.org/spec
/DDS/1.4/About-DDS”, accessed: 2024-03-30.

[134] C.-X. o. Wang, “On the road to 6g: Visions, requirements, key technologies, and
testbeds,” IEEE Communications Surveys & Tutorials, vol. 25, no. 2, pp. 905–974,
2023.

[135] J. Sung and S.-j. Han, “Use of edge resources for dnn model maintenance in 5g iot
networks,” Cluster Computing, pp. 1–13, 2024.

[136] M. Antonini et al., “Tiny-MLOps: A framework for orchestrating ml applications at
the far edge of iot systems,” in IEEE international conference on evolving and adaptive
intelligent systems, 2022, pp. 1–8.

[137] S. Sekigawa et al., “Web application-based webassembly container platform for ex-
treme edge computing,” in GLOBECOM 2023-2023 IEEE Global Communications
Conference. IEEE, 2023, pp. 3609–3614.

[138] Z. Safavifar et al., “Multi-objective deep reinforcement learning for efficient workload
orchestration in extreme edge computing,” IEEE Access, vol. 12, pp. 74 558–74 571,
2024.

https://dx.doi.org/10.21227/4ars-fs38
https://dx.doi.org/10.21227/4ars-fs38
https://wiki.teltonika-networks.com/view/AT_Commands
https://man7.org/linux/man-pages/man8/ifstat.8.html
https://linux.die.net/man/8/ping
"https://www.omg.org/spec/DDS/1.4/About-DDS"
"https://www.omg.org/spec/DDS/1.4/About-DDS"

114 Bibliography

[139] G. Baldoni et al., “Managing the far-edge: Are today’s centralized solutions a good
fit?” IEEE Consumer Electronics Magazine, vol. 12, no. 3, pp. 51–61, 2021.

[140] I. Čilić et al., “Towards service orchestration for the cloud-to-thing continuum,” in
6th Int’l Conf. on Smart and Sustainable Technologies. IEEE, 2021, pp. 01–07.

[141] T. o. Le-Anh, “An intelligent edge system for face mask recognition application,” in
International Conference on Industrial Networks and Intelligent Systems. Springer,
2022, pp. 107–124.

[142] N. T. Kien et al., “Machine learning-based service function chain over uavs: Resource
profiling and framework,” in 31st Int’l Telecommunication Networks and Applications
Conference. IEEE, 2021, pp. 127–133.

[143] Canonical, “Microk8s,” https://microk8s.io, November 2024, version 1.26.0.

[144] A. Angelovski and W. Güth, “When to stop—a cardinal secretary search experi-
ment,” Journal of Mathematical Psychology, vol. 98, p. 102425, 2020.

[145] N. Baganal-Krishna et al., “A federated learning approach to qos forecasting in
cellular vehicular communications: Approaches and empirical evidence,” Computer
Networks, vol. 242, p. 110239, 2024.

[146] 5G-IANA H2020 Project, “Use case 6: Network status monitoring,” 2024, accessed:
2024-10-23. [Online]. Available: https://www.youtube.com/watch?v=ihKWqR34hWc

[147] C. King, “stress-ng: a tool to load and stress a computer system,” 2014, version
0.13.08 or later. [Online]. Available: https://github.com/ColinIanKing/stress-ng

https://microk8s.io
https://www.youtube.com/watch?v=ihKWqR34hWc
https://github.com/ColinIanKing/stress-ng

Bibliography 115

