EOviko Metoofio IToAvteyveio

Yyoir] Hiektpoddywv Mnyovikov
Kot Mnyavik®v Y ToAoy1iotodv
Topéag Teyvoroyiag [TAnpo@opikng kot Y ToAOyIoTOV

’,
=
X

OEV$

. oy
0 ‘\\,‘\\
I
%\;{“\:} ‘073)
7 npomp £lS
-‘IerH!!PQOPM

')

Extending the DAPHNE Runtime: Lustre file system
integration

AIIIAQMATIKH EPTAXIA

AITOXTOAOX XTAMATHX

Empiénov : Anunrprog Toovpdkog
Avaninpomc Kabnyntg E.M.II.

AbMva, @efpovdplog 2025

EOviko Metoofio IToAvteyveio

Yyoir] Hiektpoddywv Mnyovikov
Kot Mnyavik®v Y ToAoy1iotodv

Topéag Teyvoroyiag [TAnpo@opikng kot Y ToAOyIoTOV

oA
=\ 5
h/nn? <
N Sihi==E|

A vpeopo

|

Extending the DAPHNE Runtime: Lustre file system
integration

AIITAQMATIKH EPTAXIA

AITIOXTOAOX XTAMATHX

Empiénov: Anunrprog Toovpdkog
Avarminpomc Kabnyntg E.M.II.

Eykpinke amd v tpuein eEetaotikn emtponn v 2 1n Gefpovapiov 2025.

Anpprog Toovpdkog Awovvorog [vevpatikdrog T'edpyrog 'kovpag
Avominpotig Kodnynmg EM.II. Kabnynmg E.M.IL. AvorAnpotg Kabnyntmg E.M.IL.

AbMva, @efpovdplog 2025

AméoTOoAOG XTOROTIS
Amhopotovyog Hiektporldyog Mnyavikdg kot Mnyavikog Ymoroyiotev E.MLIT

Copyright © Andotorog Xrapatng, 2025.
Me gmpoiaén mavtog sikaumdpatoc. All rights reserved.

AmaryopeleTaL 1) avTIypor], 0o KeELOT Kot S10VOUT TS TAPOVSUS EPYACIAG, €& OAOKANPOL 1 TUN-
LOTOG QUTAG, Yot EUTOPIKO okomd. Emtpéneton n avartdnwon, amodnikevon kot dlovoun yio. okomd
L1 KEPOOGKOMIKO, EKTALOEVTIKNG 1 EPEVVITIKNG GVONGC, VIO TNV TPoUTOOEGN VO avapEPETaL 1) TNy
npoélevong kot va dratnpeiton to Tapdv pnvope. Epotipata mov apopoldv) xpion e epyaciog
Y10 KEPOOOKOTIKO GKOTO TPEMEL VA, ameLBVVOVTAL TTPOG TOV GLYYPUPEQ.

O1 amOYELS KO TOL GUUTEPAG AT TTOV TEPIEXOVTOAL GE AVTO TO £YYPAPO EKPPALOVV TOV GUYYPUPEN Kol

dgv mpémet va epunvevdel 0TL avtimpoocwnevovy Ti enionpeg Béoeig tov EBvikod Metoofiov [Tolvte-
YVeiov.

IHepiinyn

[Ipoécpata vrapyet e tdon wpog tig OAokAnpmpéves Poég Avdlvuong Aedopévov (Integrated
Data Analysis pipelines), o1 omoieg evompotdvouy d169opeg pYaciec VTOAOYIGLOV Kot enelepyaciog
dedopévav og éva eviaio miaiolo. To DAPHNE eivol pia avoryt) kot enektdoiun vrodoun cuoth-
patog yio tétoov gidovg poéc. H epyacio avt eotidlel omnv evoOUAT®ON TOV ¥POVOL EKTEAEONG
tov DAPHNE pe to ocvomua apyeiov Lustre. To Lustre givan éva xatavepnpévo chotnuo apyeiov,
ovpPotd pe 1o POSIX, 10 onoio vioBeteiton svpéwg otov ydpo twv High Performance Computing
(HPC) ovomudtmv, Adym e duvotdtntds Tov va, xeipiletal amoTeAecUATIKAE TOPAAANAEC AELTOVp-
vieg /0. H dwoodvdeon tov 600 cuoTudtev emttuyydvetol pécw g avantuén rupivev C++ mov
vrootnpilovv Tic Aettovpyieg avdyvoong kat eyypagnc yio CSV kot DAPHNE Binary Data Format
(dbdf) apyeio. H pébodog ypnong evog eviaiov apyeiov yio OAeg Tig dlepyacieg el emAeyel MOTE va
pelmdel o pOpTOg oYETIKOG e Ta metadata kat vo PeATimbel 1 ETeKTOCILOTNTO.

[MpoypotomomOnkav mewpdpato g Eva VTOAOYIOTIKO cvuTAeypa oto AWS, dote va avaivbei n
Bektioon g amddoonC e AelTovpYieg EYYPAPNS KOl OVAYVOGNG, 1 EMEKTAGILOTNTA KOOGS avEaveTan
0 apNOG TOV KOUP®V, Kot 0 OVTIKTUTOG TV CAALY®V Gg TopapéTpous Tov Lustre. Ta anotedéopota
delyvouv 011 M evompdtoon pe to Lustre BeATidvel onpovTicd Ty omdd0oom TOV KATUVEUNUEVOL XPO-
vou ektéleong Tov DAPHNE kot emitpémet v koAOTEPT EMEKTAGIUOTNTA TOV.

AéEe1g KAELO1A

Kartavepnuéva cvotpata apyeiov, kataveunpéva cuotiuata, cootnua apysiov Lustre, DAPHNE

Abstract

Recently, there has been a trend toward Integrated Data Analysis (IDA) pipelines that integrate
various computational and data processing tasks within a unified framework. DAPHNE is an open
and extensible system infrastructure for such IDA pipelines. This study focuses on the integration
of the DAPHNE runtime with the Lustre file system. Lustre is a POSIX-compliant, object-based
distributed file system, which is widely adopted in High-Performance Computing (HPC) due to its
ability to handle parallel I/O operations efficiently. This integration is achieved via the development
of specialized C++ kernels that support read and write operations for CSV and DAPHNE Binary Data
Format (dbdf) files. The Single-File approach is selected to reduce metadata overhead and improve
scalability.

Experiments were conducted in an AWS-based cluster to analyze performance improvements in
read/write operations, scalability with increasing worker nodes, and the impact of various optimization
techniques such as stripe size adjustments, file preallocation, and stripe alignment. Results indicate
that Lustre integration significantly enhances the performance of DAPHNE’s distributed runtime and
enables better scalability for large datasets.

Key words

Distributed file systems, distributed systems, Lustre file system, DAPHNE

Evyoaprotieg

H exmoévnon avtg g SmA®pUOTIKNG EPpYACIiag oNHaTodoTel TOo TEAOG LG LoKPAS Topeiag. Avaio-
yilduevog ta teAevtaia ypdvia, Ba NBeha vo gvyaploTio® Tovg avBpmdTovg Tov pe Pondncav Kot
popaotnkav podi pov Tig SuoKoAiESg Kot TIg YOPES.

Ba 1Bela va guyoploTo® Tov Kabnynt pov, koplo Anuntpn Toovpdko, yio v enifieyn kot
KaBod1yNnon ¢ Tapovoag PYACiag, KAOMS ETIoNG Kot OAOVE TOVG KABNYNTEG TOL KUTA TNV SLUPKELL
NG POITNONG OV LE EVERVELCOY Kol LoV HETESWG OV TO TAHOG TOVG Yo TV Mnyavikny Y TOAOYIGTOV.

Télog, Ba HBela Vo EVYOPIGTACH TOVE PIAOVG KOl TNV OLKOYEVELY OV, Ylo. TNV oTNpién, TNV GL-
UTOPACTOOT), KOl KUPIMG TNV ayamr tovg ko’ OAn tnv dtdpkelo. avtod Tov Talolon.

Amd6TONOG ZTOUATAG,
AbBMva, 21 @efpovapiov 2025

Iepreyopeva

Mepiqyn

Abstract
Evyoprotieg
Mepreybpeva

Koataloyog mvakmv

Katdhoyocoymuérov oL
Kotahoyog GUVTONEDOE®MV L
0. ExteviigIepiinym L
0.1 Kotavepnuévo Zvomuota Apxelov o oL
0.2 Oloxinpopéves Poég Avalvong Asdopévav (IDA Pipelines)
0.3 Lustre . . . o o o e e e
0.4 DAPHNE

0.5 YXomoinon
0.6 Ileypdpoto

0.7 ATOTEAEGUOTO . . . o v v o e e e e e e e e e e e e e e

Keipevo ota ayylika
1. Introduction
1.1 Distributed File Systems
LI OVerview o o o e e e e e e e
1.1.2 Challenges e
[.1.3 Taxonomy i i i i e e e e e
[.1.4 Components v v i vt e
1.2 IDAPipelines e
121 OVEIVIEW . . . v v vt o e e e e e e e e e e e e e
1.2.2 Challenges e
1.23 Examples e
2. Background
2.1 The Lustre File System
2.1.1 Imtroduction.
2.1.2 Architecture
213 Striping e
2.2 DAPHNE e

11

13

15

17

19
19
19
20
21
22
22
23

27

27
27
27
28
29
30
30
31
31

33
33
33
34
35
36

11

2.2.1 Architecture. e 36

2.2.2 Building and Running DAPHNE 37

223 Runtime OVerview i i e 37

3. Implementation 41
3.1 Shared file and file per process comparison 41

3.2 Developed Kernels and Supported I/O formats 42

33 Padding e 42
3.4 Usage of pread and pwrite for Concurrent File /O 43

3.5 LustreLibrary e 43

3.6 Docker. 44

3.7 Extensibility e 44

3.8 Configuration e e e 45

3.9 Kernel Execution Example 45
39.1 LocalExecution 45

3.9.2 Distributed Execution 46

4. Experiments L 49
4.1 Setup e e 49
4.1.1 Hardware e 49

4.1.2 Software 49

4.2 Comparison of existing kernels with new proposed Lustre kernels 50

43 SHIPE SIZE . .« v v v e e e e e e e e e e e e e 53
4.4 Truncating the file before writing 57

4.5 Stripe Alignment 59

5. Results e 63
6. Future Directions L 65
6.1 Intensive /O algorithms 65

6.2 Directl/O e e e 65

6.3 Lustre comparison with HDFS 65

7. Conclusion 67
Appendix 73
A. Codesegments e 73

12

Katdloyog mvakmv

IMivakeg oto ayyMKo KeipeVo
1.1 Overall Comparison of Different Distributed File Systems [42]

2.1 Lustre scalability and performance numbers [16].

33

13

Katdroyog oynpatov

0.1
0.2

Apyurtextovikrytov Lustre [16].o 21
Kotdtunon apyxeiov oto Lustre [16]. L 21

XyNpoto 610 oyyMKoé Keipevo

2.1
2.2
23
2.4
2.5

3.1
3.2
33
34

3.5
3.6

4.1

4.2

43

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

Lustre architecture [16].. 35
Normal RAIDO file striping in Lustre [16]. 36
DAPHNE architecture [9]. 37
DAPHNE Runtime hierarchical approach [43] 38
Example of hierarchical and vectorized execution for the Connected Components al-

gorithm [43]. 38
File per process approach to parallel VO [31]. 41
Single file, multiple writers approach to parallel VO [31]. 41

Metadata example for CSV file of a float64 matrix with 1000 rows and 5000 columns. 42
Calculation of byte offset a worker should start performing I/O operations, given the

SEATtINZ TOW. . . v v o o o e e e e e e e e e e e e e e e e e 43
1lapi_file_opendeclaration [30]. 44
DaphneDSL script, example.daph, to read a matrix stored in CSV format on the

Lustre filesystem. 45

Comparison of Lustre and existing kernels. Read time vs. number of worker nodes

and matrix size (CSV files). 50
Comparison of Lustre and existing kernels. Write time vs. number of worker nodes
and matrix size (CSV files).. 51
Read time vs. number of worker nodes and matrix size for 4/8 OSTs (CSV files). . . 52
Write time vs. number of worker nodes and matrix size for 4/8 OSTs (CSV files). . . 53
Comparison of different stripe size values for 1 MB buffer. Read time vs. number of
worker nodes and matrix size (CSV files). 54
Comparison of different stripe size values for 1 MB buffer. Write time vs. number of
worker nodes and matrix size (CSV files). 55
Comparison of different stripe size values for 100 KB buffer. Read time vs. number
of worker nodes and matrix size (CSV files).. 56
Comparison of different stripe size values for 100 KB buffer. Write time vs. number
of worker nodes and matrix size (CSV files).. 57
Comparison of ftruncate and not truncated implementations. Read time vs. number
of worker nodes and matrix size (CSV files).. 58
Comparison of ftruncate and not truncated implementations. Write time vs. number
of worker nodes and matrix size (CSV files).. 59
Comparison of aligned and not aligned implementations. Read time vs. number of
worker nodes and matrix size (CSV files). 60

15

16

4.12

Al
A2
A3

Comparison of aligned and not aligned implementations. Write time vs. number of
worker nodes and matrix size (CSV files). 61

DaphneDSL program to compute the connected components of a co-author graph [9]. 74
DaphneDSL script that reads/writes from the provided G/D parameters respectively. . 74
DaphneDSL program to create a random matrix with R rows and C columns and write

it at location G.

Katdloyog cuvtougvoemy

Abbreviation Meaning

CSvV
dbdf
DFS
DSL
HDFS
HPC
1/0
IDA
Lnet
MDS
MDT
MGS
MGT
0SS
OST

Comma Seperated Values
DAPHNE binary data format
Distributed File System
Domain Specific Language
Hadoop Distributed File System
High Performance Computing
Input/Output

Integrated Data Analysis
Lustre Networking

Metadata Server

Metadata Target

Management Server
Management Target

Object Storage Server

Object Storage Target

17

Kepaiaro 0

Extevig Ilepiinyn

0.1 Kortavepnpéve Xvotipote Apyeiov

Ta Katavepnpéva Xvotuata Apyeiov (Distributed File Systems, DFSs) arotedodv Oepelddeg
GLGTATIKO TOV GUYYPOVOV VTOAOYICTIKOV CLUGTNHAT®V, TOV EXITPEMOVY TNV ATOTEAEGUOTIKY OTO-
Onkevon, avdirkmon kot dtayeipion dedopévav o€ £va SIKTVO S10GVVIESEUEVOV VITOAOYIGTAV. XTIV
7o PACIKN TOLG LOPPT, LLOVVTOL T1 AELTOVPYIKOTNTA EVOG [N KATAVEUNUEVOD GLGTILLOTOG OPYEIDV
Y10 TPOYPALUATO-TEAATEG TOV EKTEAOVVIOL GE OMOUAKPVGLEVOVG VITOAOYIOTES. EmmAéov, mpooeé-
povv duvaToTNTEG OTMG avTLypan] (replication) apyeimv kot avénpévn enidoon. And v TAevpd TV
TPOYPAULOTIOTAOV, 1) LEYOAT SlEvKOAVLVOT givar OTL deV amOTEITOL OAAAYT OTIS EPAPUOYEG DOTE VAL
YPNOCLOTOLOVV KATUVEUNUEVO YDPO OO KELONC.

Katd tov oyediacud evoc Katavepnuévov Zuotiuotog Apyeiov, vaapyovy S1dpopeg TPoKANGELS
OV TTPEMEL VAL AVTIPETOTIOTOVV. Kdmoteg and avtég etvat:

1. Ovopoacia kKot Ataedaveio

N

. Znuposctoroyio Kowvng ypnong

3. MéBodor Anopoakpoopévng [podcPaong

N

. Avoyn Zeoipdtov

93]

. Emekraoypomta

0.2 Oloxinpopéves Poég Avarivong Agdopévov (IDA Pipelines)

O1 OhoxAnpopéveg Poég Avaivong Aedopévev etvar chvBeteg dradikacicg cuoYeTICONEVES LE TNV
dtoyeipton kot TV avdivon dedopévev. Zoviime amoteAodvToL amd TOALUTAN SLOPOPETIKA GTASL,
pepkd omd T omoia sivar:

1. E&oywyn, Metatponn, Elcaywyn

2. Mnyovikn Mdabnon

3. ApBuntikoi Yroroyiopoi kot [Ipocopoidoetg
4. Avdivon Agdopévav

Ta KOO YOPAKTNPIGTIKA QVTMV TOV POV EIVOL O GLVTOVIGHOG TV dlEPYOCLDV, 1) dlayeipion pe-
YAAWDV KOl TOIKIAOLOP POV GLAAOYDV SEG0UEVOV KoL 1] S1ACHVOEST] SIUPOPETIKDOV TEXVOAOYLDV (OTMS
Baoeic dedopévav kot epyareinv unyovikng pdbnong).

[Mopadeiypotoo TETo1mV podV givat:

1. Earth Observation (DLR): 'Eva project mov eotidlel otnv avayvopion Tomkov KMpotikdv
Zwovov (Local Climate Zones, LCZs) ypnoylomoidvtag dedopéva dopvedpwv. EncEepyaletan
emoing dedopéva TG TaENC TV petabytes yio TV EKTOidELON LOVIEA®Y UNYAVIKNG Labnonc.

19

2.

0.3

Semiconductor Manufacturing (Infineon): Project mov otoygvel oTny TpoPAey™ TG EMTLYiNG
POBON G TNE 4GNS OVTOV KATA TNV KOTOoKELN NUaywydv. [lepiéyet v eaymyn otoyeimv,
v npoeneepyacio Kot TNV EKTAIOELON LOVIEAMV UNYXOVIKAG LAONCTS Y10 VO EAaYIGTOTOM-
Bovv damavnpég TAVCELS TOPAYWOYNG.

. Material Degradation (KAI): To project oavtd a&loroyel Tnv VITOPAOUIOT] MUY OYIKGY VAIKGV

pécw emToyvpEveV dokiumv avtoyne. Ta dedopéva eneEepydlovrol e cvotnua HPC yia
HOVTELOTOINON TNG PVGIKNAG LITOPAOeNS Le TNV TAPOdO TOV YPOVOL.

. Vehicle Development (AVL): H por avt] 6toygvel otny BeATioTONOiNoT NG YEWUETPIOG EKTO-

EeLTNPOV KOVGIHOV KOYEADY HECH SL000YIKOV TPOCOUOLDOEMV SVVOLUIKT PEVCTMOV. AKOL,
npoPAémovtan kpicipot deikteg amddoong (KPIs) oynudtov ypnoyoroidvag povtéia I'kaov-
Glvig TAALYOpOUNoNG. Baciopéva oe dedopéva SOKI®Y KOt TPOGOUOIDCEDV.

Lustre

To Lustre givon éva Koatavepnuévo oot Apyelov oxedlacévo Yo GUGTHLOTA LEYOANG KAL-
paxogc. Etvat viomompévo €€ oAoKApov 6TOV TUpHVa KoL 1 ApyLTEKTOVIKT] TOL PacileTon otnv KoTO-
veunpévn arobnkevon aviikelpnévov. Eival eupéwg xpnotlomolovpevo 6€ TOUEIG TOV amattovy EKTEVN
eneEepyocio 6ed0UEVOV, OTMG EMOTNUOVIKN EPELVA, TEYVNTI VONUOCHVY, AVAADOT] LEYAAOD OYKOL
dedopévav. Eival yvaoto yio Ty EEKTAGIUOTITA TOV KoL TV SUVOTOTNTO TOL Vo e&umnpetel (IAAOES
meAdTEC Ko petabytes dedopévav. o Tov Adyo avtd ypnoionoteital and TANOMPA VTOAOYIGTIKOV
cvoTnudTev otV Aiota top 500.

Kémowa and ta yopaktnpiotikd mov cupfdAovy oty SNUOTIKOTNTA Tov givar To €ENG:

1.
2.

Yvppatdémra pe to ovornua POSIX

Online éAeyyog apyeimv

. EAeyyopevn dwdtaén (layout) apysiov

Yrootpi&n dapopetikmdv backend cuotnudtov apysiov, 6tog to ldiskfs kat to ZFS
Y7rootpi&n SpopeTik®dv SIKTO®V VYNNG ETidooNg
Yynmin dwbeoipdtnTo

[Mopoyés Acpaietog

. AvEnon yopnTikoTNTOG

Ta otowyeio amd o omoia amoteheiton To Lustre aneucoviCovrat otnyv gwcova 0.1 ko eivon ta €ERG:

1.
2.

20

Management Server (MGS)
Management Target (MGT)

Metadata Server (MDS)

. Metadata Target (MDT)

. Object Storage Server (OSS)

Object Storage Target (OST)
Clients

Lustre Networking (LNet)

Metadata Metadata

Servers (MDSs) Targets (MDTs)
Mar M
Target (MGT) Server (MGS) / >/\

Object Storage Object Storage

Lustre Clients
Ethernet or InifniBand Network Servers (0SSs) Targets (0STs)

Xyqpa 0.1: Apyrtextovikn Tov Lustre [16].

[LoV]
[osco | [oset | | osc2 |
(0STO) é 0ST1) (0ST2) File A data

File B data

File C data

UL

2 Object

L /O VA S/

Yympa 0.2: Kotdtunon apyeiov oto Lustre [16].

To Lustre akolovBel tnv A0yKN TG KATATUNONG YO VO 0TOONKEVLGEL TOL apyEiD. ZOUPOVO [E
ovTnY, 10 apyeio omdel og Koppdtio, peyébovg ico pe v mapduetpo stripe size. Ta koppdrtia avtd
oTNV GLVEYELD amofnKeEHOVTAL GTOVG Server pe KUKAKO TpOTo, PEXPL Vo amobnKevTel OAOKANPO TO
apyeto. [Mapadetypoto ovTng TG TEXVIKNG PaivovTot oty ikova, 0.2,

0.4 DAPHNE

To DAPHNE egivat éva project mov avamthydnke yio va dievkoAdvel Ty epyacia pe OAokAnpm-
péveg Poég Avéivong Aedopévav. 'Exet avarntuoybei oe C++. O xpnotng Ypaeel KOOKO GE Pio YADGSA
€101koV Topéa, v DaphneDSL. v cvvéyela, o kddwkag petayrottiletor pe pio aAvcida moAia-
TAOV emmédwv. O oyedlaoiog avtdc mapéyetl evehéio kan enektaciomta. To DAPHNE ypnoyto-
motel mopnveg, ot omoiot gival vAomoinon Aettovpykotntog oe C++, yio va eKTEAEGEL 0L GUYKEKPL-
pévn Aertovpyio. Méow tétoliov mopnvev givar duvartr 1 dtaiertovpywdtnta tov DAPHNE pe 1o
Lustre. To DAPHNE pnopet va ektedeotel 1000 tomikd 660 kal katovepnuéva. Katd vy xotove-
UNUEVN EKTEAEDT), O LETUYAMTTIOTNG Omo@ucilel molog kddwka Oa ekteleotel amd Tov kdbe koppo. O

21

KOUPOG-0VVTOVIGTHG OVOAQUPAVEL VO, SLUOPACEL TA 0E60UEVO. KAOMG KOl TO KOUUATL KOSIKO GTOVG
Koppove.

0.5 Yhlomoinon

H dwae0vdeon tov DAPHNE pe 1o Lustre yiveton pécm mopivev viorompéveov oe C++. Ot mo-
p1veC mov avamtOéaple eivar ot ENG:

1. TTvpnvog Yo dtPacpa CSV apyeiov arnd to Lustre
2. Ivpivog Y ypayipo CSV apyeiov oto Lustre
3. Ivpnvag yia SdPBacua dbdf apyeiov amd to Lustre
4. Tvprvog yia ypayipo dbdf apyeimv oto Lustre

Enmedn to Lustre givon coppatd pe to POSIX, o1 kAqoelg cuotipatog read, write, kot open
UTOPOVV va. xpnotpomoinfovv yia Tig tepiocdtepeg Asttovpyies. [lapdia avtd yperalduacte Kamoo
Biprodnkn tov Lustre yia va tpocdiopicovie To layout Tov apygiov katd v dnpiovpyia tov. [a tov
Adyo avTo ypnoyomomOnke n BiPAodN KN oL TEPLEYETAL GTOV TTNYaio KdduKo Tov Lustre, Liblustreapi.

>to mAaioctlo ¢ epyaciag avtng enekteivape docker image too DAPHNE, npocfétovtag T1g ama-
paitnteg PipAobnkec mote vo vrootpilel v ovvoeon pe to Lustre. ‘Etol, éva docker container
umopet va ektedeotel og KOUPO OV 1MON €xel KAvel mount To cOoTNHO apyeiwv Lustre kot vo €xet
TPOGPaoN GTO EKAGTOTE GUGTNLLA APYELDV.

H napodoa viomoinon ypnoiponotel Eva koo apyeio yior GAOVE TOVG KOUBOVG TOL KATOVEUNLLEVOL
xpoOvov ektédeonc. [a va eivar avtd eQiktod, Tpénet va dtoopoulotel 0Tt 0 Kabe kOpuPog dayepileton
SLOPOPETIKO KOUUATL TOV apyeion. Avtd onpaivel tog ypeldleTal Kdmolov 100V¢ avtioToiyion peta&d
Tov index Kdmwota YpopLuNG Tov Tivaka Kot TG 0€0mg 610 apyeio mov TG avTioTolyEl. ZTnv mepintmon
tov CSV apyelov, n kdBe T Katarapfdavel évo pun tpokabopiopévo vpog yapaktipov. o v
emiAvon Tov TPOPANLATOG 0VTOV, TPOGHETOVE KEVODGS OPAKTNPEG DOTE Vo emtevyDel éva mpokabo-
PLoUEVO VP0G YapaKTNPOV. 1NV Tepintwon Tov dbdf apyeiwv kdtt Té€to1o dev givat avaykaio, KaBdg
OVTH 1] LOPOT| OPYEIDV XPNCILOTOLEL TNV S1AOTKT AVOTOPACTACT TV OEGOUEVMV 1) OTTOT0, KATUAAUPE-
vetl mpokabopiopévo e0pog bytes avaroyo TV TOTO OEO0UEVAV.

0.6 Ilewpdapota

[paypatomomoaype ta €€\g TEPAUATA Vi VO EEETAGOVUE KATE OGO 1) dtovvdeon tov DAPHNE
pe to Lustre etvor emikepdng, aAAd Kot yio va eEETAGOVE TNV EMPPOT] SLUPOPETIKAOV TAPAUETPOV TOV
Lustre otV enidoon:

1. Zoykpion vapyovoag vAomoinong pe v vAomoinon dtacivoeong pe to Lustre
2. XOykpion SpOPETIKMY TIUDV TNG TUPAUETPOV stripe size

3. X0yKplon vAoToinong ToL ¥pNCIUoTolEl TV evioln Ftruncate yio va adidEel To uéyebog Tov
apyeiov oto emBountod, L LAOTOINGN TOL dEV TNV (PN CLOTOLET

4. Xbykpion viomoinong mov gvBuypoppilel TIc KANGEL GLUGTILOTOG LE DVAOTOINGT TOV OEV TIG
gvbuypappilet

Ta wepdpatao tpaypoatomodnkoy ce cluster 6to AWS. Xpnoyoromdnkav cuvoikd 9 kdéppot,
€K TOV 001V 0 £Vag fTOV GLVTOVIGTNG Kol 01 VTOAoITol 8 workers.

22

0.7 Amoteréopato

Ta melpdpata wov mpoavaeEéptnkav delyvovy 61l 1 dtacvvdeon pe to Lustre elvan emucepong, Ka-
0mdG 0 YpOVOC EXTEAEONG EIVAL CUGTNUATIKA UIKPOTEPOS GE GUYKPLON LE TNV VIAPYOVCH VAOTOINGoN
7OV OEV YPNGILOTOLEL KATO0 KOTAVEUNUEVO GOOTNUA opyEiv. AKOUO, EVOL EUQOVIG 1 ETEKTACL-
puotra (scalability) Tov cvotTiuotoc KaOmG 1 VTapén TeplocdTEP®Y KOUPMV 00MYeEl 6€ ovénon g
amodoong. Télog, paivetal Tmg 1 S1POPOTOINCT] TOV TUPOUETP®V GYETIKOV Le T0 Lustre, 6mwg to
stripe size, 1 0AAAYT] TOV HEYEBOLG TOL OPYELOL TTPLV TIG EYYPOUPES KL 1) EVOVYPAUUIOT) TOV KANGEDY
GLGTHHOTOG, eV emnpedlovy Ta amoteAécpoTa. Avtd pumopel va opeiletal og S10.POpPES TAPAUETPOVG,
omwg to buffering oe enimedo Aettovpykov cuotipatog 1 v page cache. Eivatl emiong mbavo otu
VILAPYEL KATOLO SALPOPETIKO ONUEID KAUTNG, OTWOG 1 TEPLOPIGUEVEG dVVATOTNTES TOV KOUP®V 1 TOVL
SKTLOV.

23

Keipevo otao ayyhMkad

Chapter 1

Introduction

In this chapter, we present some foundational knowledge about Distributed File Systems (DFSs) and
Integrated Data Analytics (IDA) pipelines. A more detailed overview of the specific technologies
used in this work (namely Lustre File System and DAPHNE) can be found in Chapter 2.

1.1 Distributed File Systems

1.1.1 Overview

DFSs are a foundational component of modern computing environments, enabling efficient storage,
retrieval, and management of data across a network of interconnected computers. In their most basic
form, they emulate the functionality of a non-distributed file system for client programs running on
multiple remote computers [6]. Apart from that, they can provide advanced features, such as file
replication, and also increased performance, such as increased bandwidth.

From a developer’s perspective, the great power of the file system interface lies in the fact that
applications do not need to be modified in order to use distributed storage [3]. This means that no
additional care needs to be taken in order for the nodes of a system to share file data. In comparison,
without a DFS, the developer of a distributed application needs to implement a way to transfer file
data between nodes. This can be both cumbersome and less performant.

1.1.2 Challenges

When designing distributed systems in general, multiple challenges need to be addressed. In particular,
additional caution must be taken when dealing with DFSs. Some of these challenges are the following
[27, 6,41, 34]:

1. Naming and Transparency

Naming is essentially a mapping between logical (usually represented by file names) and phys-
ical objects. In a traditional file system, a file is mapped to a range in the disk. In a DFS, an
extra abstraction level is introduced, as the client needs not be aware of where the actual file
resides. This allows file replication, where the file name is mapped to a list of the locations of
replicas.

2. Semantics of Sharing

The Semantics of Sharing characterize the behavior of the DFS when multiple clients access
the same shared file simultaneously. These semantics are responsible for specifying when the
modifications of data by a client are observable by other clients, if at all. In practice, there
are different approaches to tackling this issue. For example, in UNIX semantics, writes to
an open file are immediately visible by all clients that have this file opened. It follows that
every read operation sees the effect of all previous writes performed on that file. Some other
common strategies are Session Semantics, Transaction-Like Semantics, and Immutable Shared
File Semantics.

27

3. Remote Access Methods

A decision needs to be made between accessing the remote server for each operation or having
the client cache a file. There are advantages in both approaches. When using client caches,
operations can be performed faster, as no network traffic is required in the majority of cases.
However, the problem of keeping caches up to date arises, as well as the loss of data when a
client crashes. On the other hand, requiring the client to communicate with the server for each
operation is simpler but slower as it creates network traffic for each operation. Designing a
caching scheme requires additional decisions, like the cache unit size, cache location, modifi-
cation policy, and cache validation.

. Fault Tolerance

Due to the multiple components of DFSs, they are more prone to errors than traditional file
systems. Deciding whether connections between servers and clients are stateless or stateful im-
pacts fault tolerance. With stateless connections, servers can seamlessly be replaced, as each
request is self-contained. On the other hand, when the connections are stateful, in case of failure
all volatile data is lost. This comes at a performance cost though, since stateless request mes-
sages are longer and processing them is generally slower, since no prior session information
(for example file descriptors) can be used to speed it up.

Another important aspect is file availability. Increased availability can often be achieved by file
replication, where different replicas of the same file reside on failure-independent machines.
DFSs choosing this approach need to implement mechanisms to decide the replication degree
and the placement of replicas, as well as maintain the consistency of replicas.

. Scalability

An essential need of DFSs is scalability. DFSs should be scalable, since they are often used
with very large amounts of data. They should be able to scale horizontally or vertically as data
volume and user demands increase.

Horizontal scaling is achieved by adding more nodes. It is a relatively low-cost solution, which
can increase fault tolerance due to replication and redundancy between nodes. The performance
is increased linearly with the number of nodes, allowing the system to gradually scale. For those
reasons, it is best suited for scenarios requiring flexible capacity and performance, such as cloud
storage services.

Vertical scaling is achieved by enhancing the resources of a single node (e.g., CPU, memory).
It is a more expensive solution, with scalability limited by the physical architecture and per-
formance of individual components. The performance impact is generally lower compared to
horizontal scaling, especially when servers are operating close to their limits. Also, it is not
helpful regarding fault tolerance. For those reasons, this solution is mostly used together with
horizontal scaling,

1.1.3 Taxonomy

There are multiple ways to categorize DFS, depending on the criterion used. We briefly present some
of those criteria, as described in [42] and [34]:

28

1. Architecture

The oldest architecture is the Client-Server Architecture, which allows clients to access the files
stored on a server. More modern approaches use a Cluster-Based Architecture, where a single
master controls multiple chunk servers. Another way to differentiate the implementations is
whether they use Symmetric or Asymmetric Architectures. The former is based on peer-to-
peer technology, whilst the latter utilizes one or more dedicated metadata managers. Finally, in

the Parallel Architecture data blocks are striped in parallel across multiple storage devices on
multiple storage servers. This allows all the workers of parallel applications to access the same
file simultaneously.

. Processes

The main consideration regarding processes is whether they are stateful or stateless. There are
advantages to each approach, as described earlier.

. Communication

Mostly, the Remote Procedure Call (RPC) method- possibly with some enhancements to support
special cases- is used. This allows the DFS to be independent of the underlying operating
system and network. One alternative is to provide a Network Abstraction Layer, which supports
heterogeneous networks.

. Naming

As discussed earlier, the DFS must provide a mapping of the file system abstraction on to physi-
cal storage media. Here we also consider whether there is a central metadata server, or metadata
is distributed across all nodes.

. Synchronization

This includes the Semantics of File Sharing, which we already discussed, and the File Lock-
ing System. The two topics are coupled together, since different file sharing semantics need
different locking schemes.

. Consistency and Replication

When sending data through a communication network, validation can be achieved via check-
sums. This provides consistency. Replication is linked with caching, which was discussed
earlier. It is worth pointing out that both metadata and data objects can be replicated.

. Fault Tolerance

Apart from the fault tolerance considerations we already examined, a distinction is made on how
the DFS handles inevitable faults. The two paradigms are “failure as exception” and failure as
norm”. When choosing the “failure as exception” approach, the system isolates the failure node
or recovers from the last normal running state. This is the case with Lustre, since it is assumed
data is available as long as the physical device is healthy, thus treating the physical failure of the
device as an exception. On the other hand, "failure as norm” systems utilize replication, which
is triggered whenever the replication ratio becomes unsafe.

. Security

Most DFSs employ security with authentication, authorization and privacy by leveraging exist-
ing security systems. However, it is also possible to assume trust between all nodes and clients
and not deploy any dedicated security mechanism (GFS and Hadoop being two examples).

We have included the table 1.1 from [42]. It is interesting to see how different implementations tackle
each challenge. For example, since we are mostly interested in the Lustre file system, we observe that
it is the only one that provides a network abstraction layer, making it network-independent.

1.1.4 Components

As we have seen, there are many different implementations of DFS. This makes it difficult to find
a common scheme to describe them. However, among most of the implementations, the following
components are present:

29

‘ File System

| GFs

| kFs

‘ Hadoop

‘ Lustre

‘ Panasas

| pvEs2

| RGFS \

Architecture

Clustered-based,

Clustered-based,

Clustered-based,

Clustered-based,

Clustered-based,

Clustered-based,

Clustered-based,

asymmetric, parallel, | asymmetric, parallel, | asymmetric, parallel, | asymmetric, parallel, | asymmetric, parallel, | symmetric, parallel, | asymmetric, parallel,
object-based object-based object-based object-based object-based aggregation-based block-based
‘ Processes ‘ Stateful ‘ Stateful ‘ Stateful ‘ Stateful ‘ Stateful ‘ Stateless ‘ Stateful ‘
Communication RPC/TCP RPC/TCP RPC/TCP Network Indepen- | RPC/TCP RPC/TCP RPC/TCP
dence
Naming Central metadata | Central metadata | Central metadata | Central metadata | Central metadata | Metadata distributed | Metadata distributed
server server server server server in all nodes in all nodes

Synchronization

‘Write-once-read-
many, give locks on

Write-once-read-
many, give locks on

‘Write-once-read-
many, give locks on

Hybrid locking mech-
anism, using leases

Give locks on objects
to clients

No locking method, no
leases

Give locks on objects
to clients

replication, checksum

replication, checksum

replication, checksum

replication, client-side
caching, checksum

replication

objects to clients, | objects to clients, | objects to clients,

using leases using leases using leases
Consistency and | Server-side replica- | Server-side replica- | Server-side replica- | Server-side replica- | Server-side replica- | No replication, relaxed | No replication
Replication tion, asynchronous | tion, asynchronous | tion, asynchronous | tion, only metadata | tion, only metadata | semantic for consis-

tency

Fault Tolerance

Failure as norm

Failure as norm

Failure as norm

Failure as exception

Failure as exception

Failure as exception

Failure as exception

Security No dedicated security | No dedicated security | No dedicated security | Security in the form of | Security in the form of | Security in the form of | Security in the form of
mechanism hanism hani. authentication, autho- | authentication, autho- | authentication, autho- | authentication, autho-
rization, and privacy rization, and privacy rization, and privacy rization, and privacy
Table 1.1: Overall Comparison of Different Distributed File Systems [42]
1. NameNode

The central node, responsible for maintaining namespace and metadata information. It receives
file operation requests from clients and forwards them to the appropriate DataNodes.

DataNodes

DataNodes are responsible for storing the actual file data and handling requests from clients.

. Clients

Clients offer the user interface of the DFS. They communicate requests to the NameNode, such
as file creation, deletion, renaming, and locating. Additionally, they can interact directly with
the DataNodes for read and write operations, using the information provided by the NameNode.

Metadata Storage

Metadata storage is responsible for persistent metadata storage, which is essential for recovery
in case of failure. It can be either a single server or a cluster. The NameNode must ensure that
metadata is consistent between this persistent storage and itself.

1.2 IDA Pipelines

1.2.1 Overview

IDA pipelines are complex workflows that combine various processes related to data management
and analysis. These pipelines typically consist of multiple phases including, but not limited to:

1. ETL (Extract, Transform, Load): This phase involves gathering data from different sources,

processing it to a suitable format, and loading it into a target system for analysis.

Machine Learning (ML) Training and Scoring: In this phase, machine learning models are
trained using the prepared data, and the trained models are then used to make predictions or
score new data.

. Numerical Computation and Simulations: IDA pipelines may also involve performing complex
mathematical computations or simulations to interpret the data further.

Data Analysis: This final phase is where actual data insights are derived, often involving query-
ing database systems or applying statistical methods.

30

The main characteristics of IDA pipelines are the orchestration of these processes, handling large and
heterogeneous data collections, and the integration of various technologies (e.g., database systems,
machine learning frameworks, and computational tools) to streamline analysis and enhance results.
The goal is to create efficient, scalable, and manageable workflows that facilitate robust data analysis
across different domains, such as manufacturing, healthcare, finance, and more.

1.2.2 Challenges

Some of the challenges encountered when designing IDA pipelines are:

1. Integration Complexity: Developing and deploying IDA pipelines is a cumbersome process
that involves integrating various systems, programming paradigms, resource managers, and
data representations, leading to significant complexity.

2. Compatibility Across Systems: There is a lack of a seamless infrastructure that allows different
systems (i.e., data management, high-performance computing, and machine learning) to work
together efficiently, causing potential compatibility issues.

3. Resource Management: Static resource allocation can lead to temporal and spatial under-utilization
of resources, which harms overall efficiency and effectiveness.

4. Overhead from Boundary Crossing: Utilizing specialized systems for orchestration can intro-
duce overhead due to the need to materialize intermediate results and handle boundary crossings
between different system components.

5. Diverse Language Abstractions: The varying programming models and language abstractions
used in data management, HPC, and ML systems make it difficult to develop a unified approach
for IDA pipelines.

6. Hardware Challenges: The systems involved are affected by hardware limitations such as the
end of Dennard scaling and Moore’s law, which contribute to dark silicon and the need for
increasing specialization at device, storage, and workload levels.

7. Dynamic Workflow Management: The complexity of handling various workflows that include
data extraction, pre-processing, ML training, and query processing complicates the design of
IDA pipelines.

8. Need for High-level APIs: There is a requirement for seamless high-level APIs and domain-
specific languages to effectively operate across data management, HPC, and ML .

1.2.3 Examples
Earth Observation

The Earth Observation project focuses on classifying Local Climate Zones (LCZs) to model climate-
relevant surface properties using satellite data from the Sentinel-1 radar and Sentinel-2 optical images,
part of the Copernicus initiative. The project generates about 4 petabytes of global data annually. To
train LCZ classifiers, the DLR team created the So2Sat LCZ42 dataset, which includes 400,673 pairs
of 32x32 image patches and LCZ labels. These labels were hand-annotated by 15 experts and verified,
achieving 85% confidence. The dataset for training, testing, and validation totals approximately 55.1
GB in HDF5 format. The training pipeline involves pre-processing Sentinel-2 data and training a
ResNet20 classifier. However, the primary challenge is efficiently implementing the scoring pipeline
at a petabyte scale, which includes managing complex data storage, preprocessing, quantization, and
conducting analyses related to urban change.

31

Semiconductor Manufacturing

In the Semiconductor Manufacturing process, ion implantation is used to alter the physical, chem-
ical, and electrical properties of silicon wafers by accelerating dopants onto them using specialized
equipment. To ensure successful tuning of ion beams after any recipe change, a prediction model is
employed to estimate tuning success, minimizing costly timeouts that occur after 15 minutes of un-
successful attempts. Data preparation involves scanning and parsing raw implant log files, which are
then stored in a multi-table database. This data is joined and exported into CSV files containing 79
categorical and 2,468 numerical features. The model training process includes preprocessing steps
such as eliminating low-variance and highly-correlated features, splitting data into training and test-
ing sets, imputing missing values, one-hot encoding, and normalization. A random forest classifier
is trained with extensive hyper-parameter tuning and cross-validation, evaluated through metrics like
F1 measure, AUC, and correlation measures.

Material Degradation

In the Material Degradation study, accelerated stress tests are conducted to assess the degradation
of power semiconductors. Multiple devices are tested simultaneously, with the resulting voltage and
current measurements recorded as waveforms, and millions of electrical signals are stored in TDMS
files. To analyze degradation, physics-based models simulate the microscopic deterioration of thin
metal layers and estimate their lifetime under various mechanical stresses, which informs reliability
analysis and degradation modeling. The analysis pipeline involves reading TDMS files, extracting
relevant data, computing power waveforms, simplifying waveforms for data reduction, and ingesting
the results into a database via a REST API. Subsequently, finite element method (FEM) simulations
are performed on a separate high-performance computing (HPC) cluster, with the simulation results
stored back in the database.

Vehicle Development

In the Vehicle Development project, two primary use cases are examined.

The first involves optimizing ejector geometry for PEM and SOFC fuel cells, where hydrogen flow is
supplied from a tank, mixed in a chamber, and adjusted based on geometric variables and operating
conditions to achieve a specific entrainment ratio and suction pressure. This optimization process iter-
atively predicts design variants using a behavioral model and conducts computational fluid dynamics
(CFD) simulations, revising the design until the desired properties are achieved while minimizing the
costs associated with CFD simulations.

The second use case focuses on predicting key performance indicators (KPIs) such as fuel con-
sumption, vehicle mass, and aerodynamic drag. These predictions are validated through simulations
and hardware-in-the-loop tests. The analysis pipeline collects data in JSON format and utilizes Gaus-
sian process regression (GPR) models to create prediction models that account for individual KPIs
and their interactions. However, a significant challenge lies in integrating the diverse measurements
and simulation data throughout the development process.

32

Chapter 2

Background

This section examines the Lustre File System and the Daphne Runtime.

2.1 The Lustre File System

2.1.1 Introduction

Lustre! is a high-performance, POSIX-compliant, open-source parallel distributed file system de-
signed primarily for large-scale computing environments. It is implemented entirely in the kernel and
its architecture is founded upon distributed object-based storage. It is widely used for applications
requiring extensive data processing, such as scientific research, Al, and big data analytics. Lustre is
renowned for its scalability, with the ability to handle petabytes of data and thousands of clients, mak-
ing it suitable for high-performance computing (HPC) clusters and supercomputing environments.

It is being used at 7 out of the top 10 fastest computers in the world today, over 70% of the top 100, and
also for over 60% of the top 500 [16]. One more testament to Lustre’s popularity is that International
Data Corporation (IDC) shows it as being the file system with the largest market share in HPC [19]
Table 2.1 demonstrates Lustre’s scalability capabilities.

The features that make Lustre such a popular choice are:

1. POSIX Compliance

With few exceptions, Lustre passes the full POSIX test suite. Most operations are atomic to
ensure that clients do not see stale data or metadata. Lustre also supports mmap() file 10.

1https://www.lustre.org/

| Feature | Current Practical Range | Known Production Usage |
| Client Performance | 100 - 100,000 | 50,000+ clients, many in the 10,000 to 20,000 range |
0SS Scalability Single client: 90% of network bandwidth Single client: 4.5 GB/s (FDR IB, OPA1), 1000 metadata ops/sec
Aggregate: 10 TB/s Aggregate: 2.5 TB/s
Single OSS: 1-32 OSTs per OSS Single OSS (Idiskfs): 32x8TiB OSTs per OSS, 8x32TiB OSTs per OSS
0SS Scalabilit Single OST (Idiskfs): 300M objects, 256TiB per OST Single OSS (ZFS): 1x72TiB OST per OSS
Y Single OST (ZFS): S00M objects, 256TiB per OST OSS count: 450 OSSs w/ 1000 4TiB OSTs, 192 OSSs w/ 1344 8TiB OSTs,
OSS count: 1000 OSSs w/ up to 4000 OSTs 768 OSSs w/ 768 72TiB OSTs
Single OSS: 15 GB/s Single OSS: 10 GB/s
OSS Performance Aggregate: 10 TB/s Aggregate: 2.5 TB/s
Sinele MDT (st 4 billon s, & T per MpT | Sinle MDS: 3 billon s
MDS Scalability Ing A, €58 15 DP MDS count: 7 MDSs w/ 7x 2 TiB MDTs in production (256 MDSs w/
Single MDT (ZFS): 64 billion files, 64 TiB per MDT 256 64 GiB MDT in testing)
MDS count: 256 MDSs w/ up to 265 MDTs g

MDS Performan. 50,000 create ops/sec, 15,000 create ops/sec,
eriormance 200,000 metadata stat ops/sec 50,000 metadata stat ops/sec
. - Single File (max size): 32 PiB (Idiskfs) or 262 bytes (ZFS) | Single file (max size): multi-TiB
‘ File system Scalability Aggregate: 512 PiB total capacity, 1 trillion files Aggregate: 55 PiB capacity, 8 billion files

Table 2.1: Lustre scalability and performance numbers [16].

33

https://www.lustre.org/

. Online file system checking

Lustre provides a file system checker (LFSCK) to detect and correct file system inconsistencies.
LFSCK can be run while the file system in online and in production, minimizing potential
downtime.

. Controlled file layouts

The file layouts that determine how data is placed across the Lustre servers can be customized
on a per-file basis. This allows users to optimize the layout to best fit their specific use case.

. Support for multiple backend file systems

When formatting a Lustre file system, the underlying storage can be formatted as either 1diskfs
(a performance-enhanced version of ext4) or ZFS.

. Support for high-performance and heterogeneous networks

Lustre can utilize RDMA over low latency networks such as Infiniband or Intel OmniPath in
addition to supporting TCP over commodity networks. The Lustre networking layer provides
the ability to route traffic between multiple networks making it feasible to run a single site-wide
Lustre file system.

. High-availability

Lustre supports active/active failover of storage resources and multiple mount protection (MMP)
to guard against errors that may result from mounting the storage simultaneously on multiple
servers. High-availability software such as Pacemaker/Corosync can be used to provide auto-
matic failover capabilities.

. Security features

Lustre follows the normal UNIX file system security model enhanced with POSIX ACLs. The
root squash feature limits the ability of Lustre clients to perform privileged operations. Lustre
also supports the configuration of Shared-Secret Key (SSK) security.

. Capacity growth

File system capacity can be increased by adding additional storage for data and metadata while
the file system is online.

2.1.2 Architecture

The Lustre file system is built on a client-server architecture, split into specialized components that
manage metadata and storage for high efficiency and scalability. The key components are:

34

1. Management Server (MGS)

Provides configuration information for the file system. Clients contact the MGS to retrieve
details on how the file system is configured when mounting it. The MGS is shared among all
Lustre clients.

. Management Target (MGT)

Block device used by the MGS to persistently store Lustre file system configuration information.

. Metadata Server (MDS)

Manages the file system namespace and provides metadata operations (e.g., directory structure,
permissions). The file system will contain at least one MDS. For small file systems, the MGS
and MDS may be combined into a single server and the MGT may coexist on the same block
device as the primary MDT.

Metadata Metadata

Servers (MDSs) Targets (MDTs)
Mar M
Target (MGT) Server (MGS) / >/\

“Du = =

Object Storage Object Storage

Lustre Clients
Ethernet or InifniBand Network Servers (0SSs) Targets (0STs)

i b o b
) HHE]
|

Figure 2.1: Lustre architecture [16].

. Metadata Target (MDT)

Block device used by an MDS to store metadata information. A Lustre file system will contain
at least one MDT which holds the root of the file system. Common configurations will use one
MDT per MDS/

. Object Storage Server (OSS)

Handles the actual file data, storing it across one or more Object Storage Targets (OSTs). A file
system will typically have many OSSs.

. Object Storage Target (OST)

Block device used by an OSS node to store the contents of user files. An OSS node will often
host several OSTs. The total capacity of the file system is the sum of all the individual OST
capacities.

. Clients

Endpoints that mount the Lustre file system, appearing as a POSIX-compliant mount point on
the client OS.

. Lustre Networking (LNet)

Network protocol used for communication between Lustre clients and servers. Supports RDMA
on low-latency networks and routing between heterogeneous networks.

2.1.3 Striping

Lustre stores file data by splitting the file contents into chunks and then storing those chunks across
the storage targets. By spreading the file across multiple targets, the file size can exceed the capacity
of any one storage target [16]. It also allows clients to access parts of the file from multiple Lustre
servers simultaneously, effectively scaling up the bandwidth of the file system. Users have the ability
to control many aspects of the file’s layout by means of the 1fs setstripe command, and they can
query the layout for an existing file using the 1fs getstripe command.

35

[0sco] [osc1] [osc2]

- N
0STO0 0ST1 0ST2 File A data

File B data

UL

File C data

2 Object

\ VAN VAN S

Figure 2.2: Normal RAIDO file striping in Lustre [16].

File layouts fall into one of two categories:

1. Normal / RAIDO

File data is striped across multiple OSTs in a round-robin manner. The stripe count determines
how many OSTs will be used to store the file data, while the stripe size determines how much
data will be written to an OST before moving to the next OST in the layout. The following
example from [16] is depicted on Figure 2.2. File A has a stripe count of three, so it will utilize
all OSTs in the file system. Assume that the stripe size is set to the default value of 1 MB. When
file A is written, the first 1 MB chunk gets written to OSTO. Lustre then writes the second 1
MB chunk of the file to OST1 and the third chunk to OST2. When the file exceeds 3 MB in
size, Lustre will round-robin back to the first allocated OST and write the fourth IMB chunk to
OSTO, followed by OST]1, etc. Files B and C show layouts with the default Lustre stripe count
of one, with stripe sizes of 1 MB and 2 MB respectively.

2. Composite

Complex layouts that involve several components, each with potentially different striping pat-
terns. The most basic version of this is a Progressive File Layout (PFL), which can be viewed
as an array of normal layouts, associated with a start and end point. Then, for each of the
non-overlapping regions of the file, the corresponding file layout is used. Lustre also offers
extensions of this concept, the Data on MDT and Self Extending Layout.

2.2 DAPHNE

In this chapter, we present an overview of the DAPHNE project, based on [9, 43, 21]. We then cover
in more detail some key aspects that are relevant to our work.

2.2.1 Architecture

Figure 2.3 depicts the DAPHNE system architecture.

DAPHNE is built from scratch in C++, but utilizes MLIR ? as a multi-level, LLVM-based intermedi-
ate representation (IR) as well as existing runtime libraries such as BLAS, LAPACK, DNN kernels,
and collective operations. These libraries are augmented with more specialized, custom kernel imple-
mentations. Users specify their IDA pipelines in DaphneDSL (a language similar to Julia, PyTorch,
or R) or DaphneLib (a Python API with lazy evaluation that creates DaphneDSL well). These DSL

2 https://mlir.1llvm.org/

36

https://mlir.llvm.org/

) Extensible

B

Infrastructure
~
DaphnelR (MLIR Dialect
@ MLR P () .
Optimization P Multi-level
IR Based ptimization Passes Compilation/
~pase New Runtime Abstractions Runtime
Compilation . .
L for Data, Devices, Operations

Chain

Hierarchical Scheduling Fine-grained

Fusion and

(CPU, GPU, FPGA, Execution Engine Buffer/Memory Parallelism

Storage) (Fused Op Pipelines) Management

Device Kernels | t Vectorized } { Sync/Async I/O]

J

Integration w/
Resource Mgmt &
Prog. Models

Local (embedded) and Distributed Environments

(standalone, HPC, data lake, cloud, DB)

Figure 2.3: DAPHNE architecture [9].

programs are then compiled—yvia a multi-level compilation chain—into executable runtime plans. An
example of such a DaphneDSL program can be seen in Figure A.1.

This design allows for the registration of new data types, kernels, and scheduling algorithms, making
the infrastructure highly extensible. Sideway entries into the multi-level compilation chain are also
allowed, as a way of enforcing certain physical data types and kernels.

Via the compilation chain, DaphneDSL is converted into DaphnelR (an MLIR-based intermediate
representation) by an ANTLR parser. Subsequently, multiple optimization passes are performed.
Finally, during runtime, the kernels are executed sequentially and produce materialized intermediates
in memory.

2.2.2 Building and Running DAPHNE

DAPHNE is developed using C++ and the CMAKE 3 build system is used to build the DAPHNE
targets. A highly configurable build script, build. sh is provided, which is able to download third-
party dependencies and build the DAPHNE targets. DAPHNE can be executed both natively and
in a containerized environment. For both use cases, users and developers can choose to build the
DAPHNE targets/container images from the source code or download the prebuilt packages provided.
Detailed instructions on building and running DAPHNE can be found in the project’s repository *.

2.2.3 Runtime Overview

Kernels are the actual code that is executed on a device’s hardware, such as a CPU or GPU, and
is used to perform a specific operation [43]. It is through such kernels, developed in C++, that the
integration of DAPHNE with Lustre is implemented. A full list of supported kernels can be found in
the DAPHNE repository °.

For completeness, we include the definition of a Kernel, as seen in [9]:

Definition 2.2.1 (Kernel). A kernel is an implementation of an IR operation (or registered user-defined
kernel) that operates on instantiated and materialized data types. Most kernels are stateless (except
memory allocation) and deterministic. Stateful kernels are allowed as well (e.g., implementing con-
figuration management and setup/tear-down of context objects for device/cluster initialization and
cleanup).

3 https://cmake.org/
4 https://github.com/daphne-eu/daphne/blob/main/doc/GettingStarted.md
5 https://github.com/daphne-eu/daphne/blob/main/src/runtime/local/kernels/kernels.json

37

https://cmake.org/
https://github.com/daphne-eu/daphne/blob/main/doc/GettingStarted.md
https://github.com/daphne-eu/daphne/blob/main/src/runtime/local/kernels/kernels.json

CPUs/
DAPHNE DAPHNE Coordinator t \g NUMA -
DSL script Distributed Runtime GPUs

. o
M ASICs ?

DAPHNE Worker DAPHNE Worker DAPHNE Worker
Local Runtime Local Runtime Local Runtime

Harness data parallelism and locality via vectorized execution

Figure 2.4: DAPHNE Runtime hierarchical approach [43]

Connected Components Local vectorized execution per
while(iter<=maxi) {

worker
// neighbor prop m -
OTITTT] ==

c = max(rowMaxs(G * t(c)), c);

iter = iter + 1;
Iy

G Worker Nodes ,

CPUs

- Workers start execution
. _ @» :
OTITITT] w—p —) ,")' Compute =) [TITT1T1]
Broadcast - x Collect output
Broadcast MLIR code
fragment

Distribute

Figure 2.5: Example of hierarchical and vectorized execution for the Connected Components algo-
rithm [43].

Context objects are used to access distributed runtimes and hardware accelerators. Information is
encapsulated in such a context object, which in turn is passed to individual kernels. The initializers
of specific devices or frameworks are local kernels themselves that add state to the global context.
This approach simplifies the integration of new accelerators by registering such kernels in the ex-
tension catalog. The compiler produces an execution plan with calls to C++ host kernels for local,
distributed, or accelerator operations. Kernels make heavy use of C++ templates for both value types
and combinations of dense and sparse inputs. Since hundreds of operations that require specializa-
tions are supported, the template instantiations are automatically generated. For n-ary operations with
mixed types, the compiler injects casts, some of which (e.g., casting an FP32 frame-column to an
FP32 matrix) are no-ops.

Local and Distributed Runtime

The local runtime is responsible for the execution of complex pipelines in a single compute node.
This node could consist of multiple heterogeneous resources, e.g., multicore CPUs, GPUs, FPGAs,
and computational storage devices.

The distributed runtime system coordinates the distribution of work among worker nodes and
collects the results. The compiler decides which code should be executed by each worker, and sends
it in the form of an MLIR snippet. The coordinator uses distribution primitives (such as broadcast,
all-reduce, ring-reduce, scatter/gather, etc.) to distribute data and the aforementioned MLIR snippet
to worker nodes. Finally, each worker locally compiles and executes the generated code through the
local runtime system via the vectorized execution engine. An example of this procedure is depicted
in Figure 2.5.

38

Data Representations

DAPHNE’s basic data types are frames, matrices, and scalars. Each matrix, scalar or frame-column
has a value type. At DSL level, users deal with these abstract data types, and the compiler system-
atically lowers operations to kernels that produce local or distributed physical data structures that are
the inputs/outputs of kernels.

Communication Backends

When running distributed, a communication framework is needed to allow different nodes to exchange
information. The distributed runtime implementation is decoupled from the communication frame-
work that is used. This makes it easy to extend DAPHNE with any communication framework. Cur-
rently, MPI (Message Passing Interface) and gRPC (synchronous and asynchronous) are supported.
The integration with both of these frameworks allows the users to choose which one they prefer, based
on their needs.

MPI is the ideal choice for complex, high-performance computing tasks. However, deploying
MPI can be more challenging compared to traditional communication mechanisms, such as gRPC,
as users may encounter hurdles during the installation and configuration of MPI libraries, which can
vary depending on the specific computing environment and system configurations.

Usage of gRPC is more straightforward compared to MPI, both for users and developers. It offers a
more intuitive and linear approach to handling requests and responses, and is responsible for handling
resources for requests and responses making it behave in a more reliable and performant manner.

Supported I/O formats

DAPHNE supports 1/O operations from multiple commonly used data formats. This includes CSV,
Arrow, and Matrix market.

Additionally, DAPHNE defines its own binary representation for the serialization of in-memory data
objects (matrices/frames). This representation is intended to be used by default whenever we need to
transfer or persistently store these in-memory objects, e.g., for:

e The data transfer in the distributed runtime
e A custom binary file format
e The eviction of in-memory data to secondary storage

More details about the DAPHNE binary data format (dbdf), including the specific mappings of bytes,
can be found in the project’s repository [10].

39

Chapter 3

Implementation

3.1 Shared file and file per process comparison

In this section, we examine the two common approaches to handling multiple processes that are trying
to write in the same file in High-Performance Computing (HPC) systems. This is related to our work
since this is a decision we also had to take. The first is the File Per Process technique, where each
process writes to a separate, independent file (Figure 3.1). The second one is the Shared File approach,
where each process writes to a different section of the same, shared file (Figure 3.2). When reading,
the performance should generally be the same. This is because reading allows multiple processes to
access the same region of a file if needed. There are arguments to be made for choosing either one,
which are briefly discussed below [23].

When each process uses a separate file, locking on file level is unnecessary. In that case, 1/O per-
formance is determined by the file system’s capabilities, since the shared resource among processes is
the bandwidth of the server which owns the parts of the file they are accessing. This means that gen-
erally, this is the most performant solution when a relatively small number of processes is considered.
However, since every process handles a different file, the number of files required is proportional to
the number of processes. For large process numbers, for example, more than 10000, there is signifi-
cant stress imposed on the distributed file system due to the potentially huge number of files. This is
caused by the additional metadata operations and general housekeeping required by the file system.

Memory

PO P1 P2 Pn
ey e
1 1 i

Pn
File logical view|

PO
File logical view

P1
File logical view,

P2
File logical view

Figure 3.1: File per process approach to parallel I/O [31].

Memory

‘ PO P1 P2 Pn
B
FYY Y

File logical view ‘

Figure 3.2: Single file, multiple writers approach to parallel I/O [31].

41

For this reason, this approach is not considered very scalable [31]. Additionally, it is common that
the output of the task is then used as input on some external tool, which more often than not accepts a
single file as input. This means that often there is the additional overhead of concatenating the partial
files for the information to be usable.

The Single File approach imposes less stress on the File System since any given I/O task uses only
one file. However, additional care needs to be taken to ensure that operations on the file are performed
on non-overlapping regions. This means that lock contention can be a significant performance bottle-
neck, depending on the implementation of the file system. For example, if a write lock is imposed on
file level, then this would mean that no parallelism can be achieved via this method. Suppose on the
other hand that locks are imposed on server level, and I/O operations are aligned so that each of them
occupies a different server. In that case, higher performance can be achieved as servers are utilized
simultaneously. It is worth noting that not all file systems support appending data at a random offset
of a file. HDFS is such a file system where this is not possible. In that case, the Single File approach
cannot be used, since nodes would not be able to write on demand at a given position.

In this work, we use the Single File approach, due to its reduced metadata overhead and better
scalability.

3.2 Developed Kernels and Supported I/O formats

Currently, we support I/O operations from CSV and dbdf files. However, due to the flexibility of the
distributed runtime design combined with the POSIX-compliant nature of Lustre, it is very easy to
extend this work to other formats. Once a kernel is implemented for a file format, and care is taken
to map matrix rows to byte offsets, then a corresponding Lustre kernel can be developed that adds
support for Lustre striping. The kernels we have developed for this work are:

1. Read kernel for CSV files
2. Write kernel for CSV files
3. Read kernel for dbdf files
4. Write kernel for dbdf files

The kernels use metadata files, identified by the .meta extension, to query information about the
target file, such as number of rows, number of columns, data type of values. These metadata files
are simple JSON-like files, which are parsed to create the distributed execution plan. An example
metadata file can be seen in Figure 3.3

{"numCo1s”:5000, "numRows” : 1000, "valueType” :"f64"}

Figure 3.3: Metadata example for CSV file of a float64 matrix with 1000 rows and 5000 columns.

3.3 Padding

The current implementation of the Daphne partitioner is based on splitting the matrix by rows. This
means that I/O kernels accept the starting row and the number of rows as parameters, and are expected
to handle the corresponding matrix segment. Since we are proceeding with the shared file approach, it
is necessary to ensure that workers operate on non-overlapping regions of the file. It is also important
to support configurations with different worker counts. This means that a mapping from row index to
byte offset is necessary, as the starting row for each worker depends on the worker count and can be
arbitrary.

42

When dealing with dbdf files, calculating the offset given a row is straightforward. That is because
in this format, the values are saved in their binary representation. This means that the size of each
value is fixed and equal to the bytes used for its data type. In the case of CSV files however, since
the string representation of the values is used, it is not possible to know deterministically its size.
We solve this problem by enforcing a fixed string size for each value. We do this by padding the
string with empty characters. The target string size should be big enough to ensure no information is
lost, meaning we only pad the value up to the desired size and never truncate it. This method might
increase the file size significantly in cases where a high percentage of values needs to be padded and
the padding is big. Another solution would be to simply read newline characters until we reach the
desired row index. This would not increase the size of the file, but it would be significantly slower.
Finally, we could also add some information to the metadata files to help with the offset calculation.
However it would be impossible to cover every possible starting index without having metadata files
linear in size compared to the actual data files. So again, some combination of other methods would
have to be used. Essentially, this problem and its solutions boil down to a trade-off between time and
space complexity.

Using the padding method described above, it becomes straightforward to calculate the byte offset
of any given row as seen in the code snippet at Figure 3.4

size_t rowSize = argNumCols * CHARS_PER_CSV_CELL + (argNumCols-1) * sizeof(’,’)
— + sizeof(’'\n’);
size_t offset = startRow * rowSize;

Figure 3.4: Calculation of byte offset a worker should start performing I/O operations, given the
starting row.

It is worth noting that the problem is not caused by our decision to use the single file approach. The
same situation would arise if the file per process implementation was chosen. In that case, suppose that
a matrix is written by a DAPHNE script in a configuration of 5 workers. This results in 5 segments.
When a DAPHNE script, executed in a distributed environment of 6 workers attempts to read the
previously generated matrix, the problem of mapping occurs again.

3.4 Usage of pread and pwrite for Concurrent File I/O

In the C++ implementation of the kernels, pwrite and pread system calls are utilized to enhance the
efficiency and reliability of file I/O operations.

Unlike standard write and read functions, which rely on the current file offset, pwrite and pread
explicitly specify the byte offset for each operation, enabling concurrent processes to read from and
write to different regions of the same file without interfering with one another. This approach is partic-
ularly beneficial in the distributed environment, as it eliminates the need for external synchronization
mechanisms, such as file locks, when managing multiple worker nodes. By directly controlling the
read/write positions, pwrite and pread minimize overhead, improve parallel access performance,
and ensure that data consistency is maintained when working with large datasets distributed across
many OSTs.

3.5 Lustre Library

Since Lustre is a POSIX-compliant file system, the standard system calls (open, read, write, or
pread, pwrite in our case) can be used for most of the kernel’s needs. However, an essential func-
tionality we need from the C++ library of Lustre is the way to determine the file layout when creating
files. For this need, we use the built-in C API that is provided in the source code of Lustre, and is
built when building the Lustre client. We simply link the library, liblustreapi, to our project via

43

CMAKE. The library provides the 1lapi_file_open method. We are using Lustre’s normal lay-
outs and the 1lapi_file_open allows us to determine the stripe size, stripe count, and starting OST
parameters at file creation, as seen in 3.5.

int 1llapi_file_open(const char *name, int flags, int mode, unsigned long long
— stripe_size, int stripe_offset, int stripe_count, int stripe_pattern);

Figure 3.5: 1lapi_file_open declaration [30].

3.6 Docker

The most common way users deploy the Daphne project is via docker images. For this reason, the
main way of deployment this work focuses on is providing a docker image which includes all the
necessary libraries that

In order to provide instructions to build a docker image capable of interacting with the Lustre FS, we
have to make the necessary changes on build. sh. In short, those changes are:

1. Clone the Lustre source code from the official repository
2. Configure the building process

3. Build the Lustre client modules

4. Preserve only the necessary dependencies for our use case

In order for the Docker container to have access to the Lustre file system, the following procedure
is used:

1. Thehost OS, where the container will be deployed, mounts the file system via the client interface
to some mount point, for example /lustre.

2. The container mounts the host Lustre directory (/lustre in this case) to some directory inside
the container.

3. DAPHNE (and any other program) can then run on the container and have access to the Lustre
file system.

3.7 Extensibility

As previously discussed, the current prototype is designed with the per-row partitioning in mind.
However, the design with a fixed length per CSV value is easily extensible to support any future
partitioner. For example, one design could partition elements by columns instead of rows. In that
case, and with the padding already applied, it is straightforward to calculate the byte offset of any
given value, thus making any partitioner design possible. The dbdf files bypass the need for padding
and the same ease of use achieved via padding on the CSV case is inherently built into the format.
This applies here as well, where the byte offset needed for any potential distribution can be easily
calculated.

It is worth noting that the way DAPHNE partitions matrix data across nodes is independent of the
way that data is stored on Lustre OSTs. Even though it makes sense for each node to store its data
on the OST residing on the same node if possible, this is not necessarily the best choice. This design
allows us to experiment with whatever partitioning we like, both for the DAPHNE data distribution
and the Lustre striping.

44

3.8 Configuration

We allow the user to provide configuration parameters at runtime via either the command line or a
JSON file. An example of such a configuration file can be found in the project’s repository '.
Lustre kernels support the following parameters at runtime:

e Stripe size
e Stripe count
e Starting OST

Those parameters are passed to the 1lapi_file_open method.

The parameters are used only for the files storing the matrices. For metadata files, the parameters
are fixed. This is because, as seen in figure 3.3, metadata files are very small, thus striping them across
multiple OSTs is not advisable as it would potentially deteriorate performance.

3.9 Kernel Execution Example

In order to provide a better understanding of the kernel and information flow when performing Lustre
1/0 operations via DAPHNE, as well as to provide a concrete example, we present here the procedure
followed when reading a matrix from a CSV formatted file stored in the Lustre file system. We
examine both the local and distributed executions.

Assume we have the simple DaphneDSL script, example . daph, depicted in figure 3.6, and the file
example.csv. lustre exists along with the corresponding metadata file example.csv. lustre.meta
under the /lustre directory. Also, assume that the CSV file is written using the necessary padding.
This can be done either via another DAPHNE script, since the Lustre write kernels are implemented
with the padding methodology, or via an external tool which takes care of padding.

// DAPHNE script that reads the contents of /lustre/example.csv.lustre into the
— matrix object A
A = readMatrix(”/lustre/example.csv. lustre”);

Figure 3.6: DaphneDSL script, example.daph, to read a matrix stored in CSV format on the Lustre
file system.

Note that the convention used for naming files is a multi-level extension, where the filename is fol-
lowed by the file format and then the underlying file system. Such an example is example.csv. lustre,
where a CSV file is stored in the Lustre file system. If no DFS (HDFS or Lustre) is used, only the
file format must be present. This means that the command readMatrix(”/lustre/example.csv”)
would instead invoke the kernel for the local file system.

3.9.1 Local Execution

Local execution only depends the daphne executable, which can be built via the build. sh script. No
additional configurational steps need to be taken, compared to what we will see in the Distributed Ex-
ecution section. The example.daph script of figure 3.6 can be executed using the daphne executable
via the command . /daphne example.daph.

At first, the Read kernel is executed. This is the entry point for any read operation. It uses the
file extension to decide which specialized kernel is to be invoked next. In this example, the . lustre
extension hints that the Lustre kernels should handle the file. Subsequently, the Lustre kernel parses

1https://github.Com/daphne—eu/daphne/blob/main/UserConfig.json

45

https://github.com/daphne-eu/daphne/blob/main/UserConfig.json

the file format extension to determine the way the file should be read. In that case the .csv ex-
tension suggests that the readLustreCsv method is the appropriate one. In case of dbdf files, the
readDaphneLustre method would have been used instead.

This multi-level specialization allows developers to introduce new methods in a sideways manner.
For example, to support additional formats of files stored in Lustre, a contributor would have to im-
plement methods that operate after the Lustre kernel is involved. This eliminates the need to modify
existing implementations and provides a nice level of abstraction.

3.9.2 Distributed Execution

As stated already, DAPHNE supports execution in a distributed fashion. Utilizing the DAPHNE dis-
tributed runtime does not require any changes to the DaphneDSL script, which is a major benefit of the
overall design. The compiler automatically fuses operations and creates pipelines for the distributed
runtime, which then uses multiple distributed nodes (workers) that work on their local data, while a
main node, the coordinator, is responsible for transferring the data and code to be executed.

At the time of writing, some limitations exist on the distributed runtime. The ones that affect this
example are:

1. Lustre kernels are only implemented for the the synchronous gRPC communication backend.
For this reason, this section focuses on the procedure followed when the synchronous gRPC
framework is used.

2. The only supported types are DenseMatrix types and value types double, meaning objects of
DenseMatrix<double>.

The steps that need to be followed for the distributed execution of DaphneDSL scripts are the
following:

1. Building the Distributed Worker

The DAPHNE Distributedworker is an executable which can be build using the build-script
and providing the - -target argument:

./build.sh --target DistributedWorker

2. Starting the Distributed Workers

Before executing Daphne on the distributed runtime, worker nodes must first be up and running.
The executable built in the previous step can be started via the command:

./bin/DistributedwWorker IP:PORT ,

where IP and PORT are the IP and port the worker server will be listening to.

3. Export environment variables at coordinator

Before running DAPHNE we need to specify which IPs and ports the workers are listening
too. At the time of writing, the environmental variable DISTRIBUTED_WORKERS is used for this
purpose, where we list IPs and ports of the workers separated by a comma. For example, if a
setup with two workers on IPs 192.168.1.1 and 192.168.1.2, both listening on port 5000, we
would use the following command:

export DISTRIBUTED_WORKERS=192.168.1.1:5000,192.168.1.2:5000

4. Execute DAPHNE at coordinator

When all workers are up and running and the environmental variable is set, the DAPHNE script
can be executed by the coordinator in a distributed manner. The distributed runtime is en-
abled by specifying the - -distributed flag. The communication backend can be specified via

46

the - -dist_backend flag. In order to execute the example.daph script with the synchronous
gRPC framework, the command to be used is:

./bin/daphne --distributed --dist_backend=sync-gRPC ./example.daph

The distributed runtime has some additional utility methods that are the backbone of each com-
munication backend worker implementation. Those are:

1. Store method

Stores an object in memory and returns an identifier.

2. Compute method
Receives the IR code fragment along with identifier of inputs, computes the pipeline and returns
identifiers of pipeline outputs.

3. Transfer method

Returns an object using an identifier.

As far as the actual I/O operations on the worker, the same kernels that were examined on the
local execution section above can be used. This is another benefit of the design, as kernels need to be
implemented only once by contributors (or at least very minor changes are needed) for both the local
and distributed runtime.

47

Chapter 4

Experiments

4.1 Setup

4.1.1 Hardware

The following experiments were conducted on an AWS cluster, utilizing t3.xlarge EC2 instances with
the following characteristics:

e 4 vCPUs
e 16 GB RAM
e 45 GB gp3 SSD as general purpose storage device

e 5 GB gp3 SSD as the Lustre block device

4.1.2 Software

This was a bare-metal installation, meaning that fresh Red Hat Enterprise Linux (RHEL) 8.10 images
were used and normal AWS' EC2 instances and networking, as opposed to existing AWS solutions, for
example, Lustre FS by AWS?. This was done to keep as much control as possible over the experiments
and the configuration, as well as to investigate potential challenges for future installations to other
systems.

We have 9 total available EC2 instances. One of them is the DAPHNE coordinator and combined
Lustre MGS and MDS node. The other 8§ instances are both Lustre clients and DAPHNE workers.
DAPHNE is deployed using Docker, as described in an earlier section. The kernel version of the
RHEL images (after the Lustre patch) is 4.18.0-513.9.1.el8 lustre.x86 64. The Lustre version used
is 2.15.4.

Through our experiments, we investigate the effect of the Lustre striping parameters as well as
different techniques aimed at improving 1/O performance. We focus on simple 1/O workflows:

1. A random matrix is generated with varying dimensions, as seen in Figure A.3.
2. The Lustre kernels are used to read and write the generated file, as seen in Figure A.2.

All the experiments are executed three times and the average time of the executions is used. The
generated files is deleted after each experiment, to ensure that the file system is always under no
stress other than running experiment.

1https://aws.amazon.com/
2https://aws.amazon.com/fsx/lustre/

49

https://aws.amazon.com/
https://aws.amazon.com/fsx/lustre/

4.2 Comparison of existing kernels with new proposed Lustre kernels

In this set of experiments, the goal is to determine whether the proposed Lustre kernels perform better
than the existing ones and to observe their scalability. Figures 4.1 and 4.2 show the comparison
between the existing kernels and the newly developed Lustre kernels. In those experiments, the file
is striped across all 8 OSTs.

Read Time for Lustre vs Local FS Kernels across Different Worker Counts

2 Workers
40
¥ 3
w
E
'—
< 20
m
Q
o
10
0
Matrix Size
4 Workers
40
230
@
=
= 20
m
L
-
10
0
Matrix Size
8 Workers
T
a0 mmm Lustre Kernel
mum Local FS Kernel
@30
@
E
=
o 20
m
7
o«
10
0
)) 9)) o) (3] o
(000 000 OQQ 000 000 OQQ 000 000 0°°
o O O) e ") O o)
P S+ g+ S+ 5+ + i+ 3 e
\90 ng 090 °b° 000 000 & & &
B ~ ~ ~ ~ M & &
2 N 7
Matrix Size

Figure 4.1: Comparison of Lustre and existing kernels. Read time vs. number of worker nodes and
matrix size (CSV files).

50

Write Time for Lustre vs Local FS Kernels across Different Worker Counts

2 Workers
100
@ 80
g
= 60
=
g,
=
=
20
Matrix Size
4 Workers
100
3 80
g
£ 60
=
I
=
=
20
Matrix Size
8 Workers
T
100 { ™= Lustre Kernel
mmm Local FS Kernel
@ 80
g
£ 60
",_
]
‘E 40
=
20
O O (] (] O O &
00 o ()Q ()Q 00 00 » O ®
)))))))) O
Si & & e i & & & e
\99 8] QQO QQO 000 000 00 QO QO
~ ~ ~ ~ ~ & & Ky
Matrix Size

Figure 4.2: Comparison of Lustre and existing kernels. Write time vs. number of worker nodes and
matrix size (CSV files).

Figures 4.3 and 4.4 show how the number of stripes (meaning the number of OSTs the file is
striped to) affects performance. In the experiments of this section, the stripe size is fixed to 65 KB
and the I/O buffer to 1MB. Values of the CSV are padded up to 17 characters. This is quite a large
amount of padding, and it was used to showcase that even with this the Lustre kernels perform better
than the existing ones. For the experiments following this section, this has been reduced to 8, which
is enough for the data types used.

Read Time for 4 vs 8 OSTS across Different Worker Counts

2 Workers
30
25
e 20
[H]
£
F 15
=}
m
10
5
Matrix Size
4 Workers
30
25
= 20
@
£
F 15
o
m
2 10
5
Matrix Size
8 Workers
T -
30 mm 4 05Ts
a5 e 8 OSTs |
2 20
@
E
F 15
=}
m
2 10
5
o) o o
o 0000 o°°° 0°°° 0°°° o°°° & & &
s+ & & P h © & & Y
@s ng 090 000 000 000 & § &
-5 5 5 5 ~ oM & &
Matrix Size

Figure 4.3: Read time vs. number of worker nodes and matrix size for 4/8 OSTs (CSV files).

52

Write Time for 4 vs 8 OSTS across Different Worker Counts

2 Workers
80 -
) 60 - I
LE)
=
w 40 1
=
s [..
. i
Matrix Size
4 Workers
80 -
Eﬂ: 60 4
7]
£ N
@ 40 _—
=
g Bl B
. [

Matrix Size
8 Workers
804 mm 4 0STs
8 0STs

E 60 m

LE)

E

)_

w 40 A

=

=

=

20 []
) o))) o ° o o
$ $ $ & & & & $ $
& S o o S o o S)
s & 0 2 b o o e
& o o o & o oF G+ o*
8 d))) g o o)
A N N P 9 N I & &
¥ B 5 5

Matrix Size

Figure 4.4: Write time vs. number of worker nodes and matrix size for 4/8 OSTs (CSV files).

For all the following experiments, the number of OSTs the file is striped upon is always equal to
the number of workers. This is done to closely resemble clusters where each compute node has an
associated storage device.

4.3 Stripe size

The default and recommended value for the stripe size is 1 MB [16]. We wanted, however, to deter-
mine whether in our application different stripe sizes would make more sense. Figures 4.5 and 4.6
show the comparison for different stripe sizes across 1 and 8 workers. We chose to perform the exper-
iments only with the least and most available workers since these are the most volatile configurations.
The values displayed on the legend are in bytes. Note that some matrix sizes are missing. This is
because the increase of the matrix size from, e.g., 1000x10000 to 1000x20000 should not produce
any different results for different stripe sizes, considering we have already reached a sufficiently large
file.

53

Read Time for Different stripe sizes across Different Worker Counts
1 Worker

Read Time (s)
I

y 11
| w1 N

Matrix Size
8 Workers
87 W stripe_65536
m stripe_655360
77 stripe_6553600
EEE stripe 1048576

Read Time (s)

I
]
A N O |
N I O

Matrix Size

Figure 4.5: Comparison of different stripe size values for 1 MB buffer. Read time vs. number of
worker nodes and matrix size (CSV files).

54

Write Time for Different stripe sizes across Different Worker Counts

1 Worker
'l'i []
v 1l
50l [N |

: 110}

£ o] i i i

=

£ 10.0 A

:

: 1l
1 Vinining
] Pl nnl
B B

Matrix Size
8 Workers
EEE stripe_65536
20.04 e stripe_655360
1751 stripe_6553600
: B stripe_ 1048576
15.0
w
@ i
2 12.5
",
& 10.0
<
=

50 N |

1|
7.5 1 ..I I
—ma P IR

o © o o o o o o
& & & & & & & & &
% & S o 5 o o o
4 & A 0 o5 5) o o
& & o o o or o st o*
N & o & & & & & &
¥ ¥ ’\9 ¥ ¥ ¥ 7 ,@ ,»0
Matrix Size

Figure 4.6: Comparison of different stripe size values for 1 MB buffer. Write time vs. number of
worker nodes and matrix size (CSV files).

An additional consideration was whether the I/O buffer of 1 MB was too big. Figures 4.7 and 4.8
show the same experiments but with a smaller I/O buffer of 100 KB. We observe that the stripe size
does not affect performance, for both the 1 MB and 100 KB buffers. Moving forward, we use the
recommended value of 1 MB for the stripe size and the 1 MB bufter.

55

Read Time for Different stripe sizes across Different Worker Counts (buffer 100KB)

1 Worker
25 .i i
20 I
C)
g
£ 15 .
E I I
m
@
o
10 A
s | -l--IIIIIIII
Matrix Size
8 Workers
B stripe_65536
25 | e stripe_655360
stripe_6553600
BN stripe_1048576
20
)
g
£ 154
o
o
7]
as
10 A
5_
. | ‘ — —p_-_-l_-_-ﬂ_-_.LI_.IL
))) [o o o © o
o $ & $ & & $ $ $
0 2] d o) o) < o
+ . & o <) b & o o
& & o N o o ot G+ G+
8 S J $ & $ $ S &
~ i B -§ ~f ~f 5 o o
~ ~
Matrix Size

Figure 4.7: Comparison of different stripe size values for 100 KB buffer. Read time vs. number of
worker nodes and matrix size (CSV files).

56

Write Time for Different stripe sizes across Different Worker Counts (buffer 100KB)

1 Worker
120 4 I I
100 + I I
% 80 A
['F)
E
.g 60 +
=
=
N I i I I
20 1 — —
T T — A—H——I—I—'—u——ll’_ I l I
Matrix Size
8 Workers
120 + BN stripe 65536
stripe_655360
100 4 stripe_6553600
BN stripe_1048576
- 80 A
L
E
o 60
=
=
40
20
I | ‘ — o Emee W“u

$ & & & & & &) $
“ o o g & g & o o
Vv e}) Qo 8 8) Q 3 S
e e S 2 o5 o “ S o
& & o+ ot o+ ot o+ st o*
o o o &§ &§ &§ &§ & &
¥ ¥ 9 5 5 5 -5 S S
Matrix Size

Figure 4.8: Comparison of different stripe size values for 100 KB buffer. Write time vs. number of
worker nodes and matrix size (CSV files).

4.4 Truncating the file before writing

In this experiment, we truncate the CSV file to its expected size after its creation, before any write op-
eration is performed. This is done to ensure that all future write calls to this file will be to preallocated
regions, avoiding the need to extend the file on the OS level. The size of the file can easily be calcu-
lated since we are using the padding method described earlier. After the file creation, the coordinator
truncates it to the desired size with the ftruncate systemcall via ftruncate(fd, fileSize); It
should be mentioned that the implementation for the read kernels is the same, so the differences in
figure 4.9 are due to randomness. This figure is included only for completeness and no meaningful
results can be drawn from it. Figure 4.10 shows the comparison of write times between the imple-
mentation using ftruncate and the one without it.

57

EEE No Ftruncate

Read Time for implementations with and without ftruncate across Different Worker Counts
mmm Ftruncate

1 Worker
40
— 30
)
[
£
£
T 20
L7}
a
10
0
Matrix Size
8 Workers
40
_ 30
)
v
£
£
T 20
QU
a
10
0 —_—j_i

o o o o o
ol o 0°°Q o°°° o°°° 0000 o°°° & K &
i & of 0F 5 o) o o o5
IS IS 4 4 & o & 4 4 4
& & § § 5 < & & & &
R < < RS 5 & & &
Matrix Size

Figure 4.9: Comparison of ftruncate and not truncated implementations. Read time vs. number of
worker nodes and matrix size (CSV files).

58

Bl No Ftruncate

Write Time for implementations with and without ftruncate across Different Worker Counts
B Ftruncate

1 Worker

140

120

100

80+

60

Write Time (s)

&
|
|
I
][]
---H
]

20+ I

Matrix Size

8 Workers
140
120
— 100
)
g
E 801
£
S 60
40 1
20
0 | | I ‘ ‘ ! ﬂﬂ
(8] (n] (s) (N D (n] (N O 8]]
G)Q QQ 0() 00 00 00 00 QQ 00 00
s el) Ny) o)) N)
o & ~ o o) B & o O)
& & ot o ot o o o+ S+ oF
Ky 8 § & £ & & &) &
5 ~ ~ ~ ~ 5 K $

Matrix Size

Figure 4.10: Comparison of ftruncate and not truncated implementations. Write time vs. number
of worker nodes and matrix size (CSV files).

4.5 Stripe Alignment

This implementation tries to occupy only one OST per system call, on the application level. To do
this we align each system call with a stripe of the file. This means that as many calls as possible are
in the form (e.g. for read kernels) read(stipe_size*multiplier). To achieve this, the first call
must generally be of a size different than buffer size, to make sure that future calls are aligned. Since
we observed in the previous experiment that truncating the file does not alter performance, we use the
version with ftruncate here.

Figures 4.11 and 4.12 show the results for read and write kernels respectively.

59

Read Time for implementations with and without aligned |10 across Different Worker Counts = Not Aligned

mm Aligned
1 Worker
40
35
30
C)
v 25
E
=
T 20
[7)
-
15
10
5
0
Matrix Size
8 Workers
40
35
30
C)
v 25
£
=
© 20
@
7}
o
15
10
5 __—___i-:
0
(5] 5] D D O
ol & e°°° e@o 00(,0 00(,0 0‘90 & & >
oF o e s i 4 o e & o
& & s & <8 <8 <8 § § §
S 5 5 B ~ & & &
~ ~ ~
Matrix Size

Figure 4.11: Comparison of aligned and not aligned implementations. Read time vs. number of
worker nodes and matrix size (CSV files).

60

EE Not Aligned

Write Time for implementations with and without aligned 10 across Different Worker Counts)
mm Aligned

1 Worker

140

120

100

80

60

Write Time (s)

20

Matrix Size

8 Workers

140

120

100

80

Write Time (s)

60

20 -
0

Matrix Size

Figure 4.12: Comparison of aligned and not aligned implementations. Write time vs. number of
worker nodes and matrix size (CSV files).

61

Chapter 5

Results

From the experiments above we can draw some conclusions regarding the performance of our imple-
mentation, as well as the various attempts to improve it further.

First and most importantly, we see that significant speedup is achieved compared to the existing
implementation of the distributed runtime, which does not utilize a DFS. It is also evident that the
implementation is scalable since increasing the number of workers reduces the execution time. From
the first set of experiments, we conclude that the number of OSTs the file is striped across is not of
significant importance since striping across 4 and 8 OSTs produces similar results. This means that a
relatively small number of OSTs (4 or 8) can be used even with higher worker counts than the ones
we have available in our environment (e.g. in the scale of 100 workers).

We see that the stripe size also does not significantly impact performance. The size of 1 MB is advised
in the docs, and it is verified by our experiments that other values do not prove to be better.
Truncating the file to the desired size before performing write operations is logical but it does not
affect performance, at least in our configuration.

One technique that was expected to alter performance but didn’t is the stripe alignment technique.
That is because each I/O operation only needs information from one OST to be completed. This,
combined with the fact that other workers are simultaneously occupying the remaining OSTs, should
result in a higher bandwidth utilization. The fact that performance remained the same even after trying
to align read and write calls with OST stripes, could be explained by the buffering or page caching on
the OS level. However, it is possible that a completely different bottleneck exists, for example, due
to network latency, hardware limitations, or coordinator saturation. The limited control we have over
the physical servers and their workload makes it difficult to further investigate those issues.

63

Chapter 6

Future Directions

We present some possible directions for future work related to this thesis

6.1 Intensive I/O algorithms

In this work we have used DaphneDSL scripts that read and write a matrix to the Lustre file system.
This shows promising results and demonstrates the capabilities of our implementation. As a next step
we would like to benchmark the Lustre integration with an algorithm that does intensive /0. Some
examples could be matrix operations algorithms, such as matrix multiplications, that store intermediate
results to disk.

6.2 Direct /O

Linux systems provide the 0_DIRECT flag to perform direct I/O operations '. This mode however

expects all buffers to be memory aligned, and it is not straightforward how this can be achieved in
accordance to the matrix distribution. Even though in most cases this mode degrades performance, it
would be interesting to see whether in the direct I/O mode the different striping configurations affect
the results, as opposed to the current implementation.

6.3 Lustre comparison with HDFS

Recently the integration of HDFS with DAPHNE has been completed [43]. We would like to com-
pare the two implementations, running benchmarks on the same cluster. The goal would be not only
to compare the different file systems, but also their performance specifically in the DAPHNE work-
flows. This would allow us to better understand the performance and the limitations of each of the
integrations, as currently we have only compared the DFS implementation with the existing (non DFS)
one.

1https://man7.org/linux/man—pages/manZ/open.Z.html

65

https://man7.org/linux/man-pages/man2/open.2.html

Chapter 7

Conclusion

This thesis has demonstrated the successful integration of the DAPHNE runtime with the Lustre file
system to enhance distributed runtime performance. We have developed specialized kernels that sup-
port I/O operations to CSV and Daphne Binary Data Format (dbdf) files. Through extensive exper-
imentation, it was shown that Lustre-based kernels provide measurable improvements in read/write
performance over existing solutions. It was also shown that the design is highly scalable, as perfor-
mance increases when additional worker nodes are added. Findings indicate that while stripe size
adjustments and pre-allocating file space had limited impact, the overall integration of Lustre with
DAPHNE resulted in a substantial increase in system scalability and efficiency.

Looking ahead, several promising directions remain for future work. Investigating the effect of
this integration with intensive I/O algorithms, exploring direct I/O mechanisms, and conducting com-
parative studies with other DFS solutions such as HDFS will provide further insights into enhancing
DAPHNE’s distributed runtime performance.

67

Biphoypaoia

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Piyush Agarwal, Harry Li xon UT Austin. “A Survey of Secure, Fault-tolerant Distributed File
Systems”. Zto: (Iav. 2008).

Big Data Storage Models Overview - Lustre, GlusterF'S and Ceph - Bizety: Tech Research. url:
https://bizety.com/2019/04/09/big-data- storage-models-overview- lustre-
glusterfs-and-ceph/ (emiokeym 23/01/2025).

J Blomer. “A Survey on Distributed File System Technology”. Xto: Journal of Physics: Conference
Sbﬂes608.1(Aﬂp.2015),c.012039.dot10.1088/1742—6596/608/1/012039.uﬂ:httpS:
//dx.doi.org/10.1088/1742-6596/608/1/012039.

Peter Braam. “The Lustre Storage Architecture”. Xto: CoRR abs/1903.01955 (2019). arXiv:
1903.01955. url: http://arxiv.org/abs/1903.01955.

Inc. Cluster File Systems. “Lustre : A Scalable , High-Performance File System Cluster”. Xto:
2003. url: https://api.semanticscholar.org/CorpusID:16120094.

George Coulouris k.a. Distributed Systems: Concepts and Design. 5th. USA: Addison-Wesley
Publishing Company, 2011. isbn: 0-13-214301-1.

Lonnie D Crosby. “Performance Characteristics of the Lustre File System on the Cray XTS5
with Respect to Application I/O Patterns”. Zto: (2009).

Lonnie D Crosby. Performance Characteristics of the Lustre File System on the Cray XT5 with
Respect to Application 1/O Patterns. en. 2009. url: https://cug.org/5-publications/
proceedings_attendee_1lists/CUGO9CD/S09_Proceedings/pages/authors/archive%
20files/13A-LCROSBY-PAPER. pdf (emiokeym 16/12/2024).

Patrick Damme «k.4. “Daphne: An open and extensible system infrastructure for integrated data
analysis pipelines”. Zto: Conference on Innovative Data Systems Research. 2022.

DAPHNE Binary Format documentation. GitHub. url: https://github.com/daphne-eu/
daphne/blob/main/doc/BinaryFormat.md (enickeyn 07/02/2025).

Suman De ka1 Megha Panjwani. “A Comparative Study on Distributed File Systems”. Xto:
Amp. 2021, oc. 43-51. isbn: 978-3-030-68290-3. doi: 10.1007/978-3-030-68291-0_5.

Phillip Dickens kot Jeremy Logan. “Towards a High Performance Implementation of MPI-
IO on the Lustre File System”. en. Xto: On the Move to Meaningful Internet Systems: OTM
2008. Empérera vd Robert Meersman kot Zahir Tari. Top. 5331. Series Title: Lecture Notes
in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, 6c. 870—885. isbn:
978-3-540-88870-3 978-3-540-88871-0. doi: 16.1007/978-3-540-88871-0_61. url: http:
//1ink.springer.com/10.1007/978-3-540-88871-0_61 (emiokeyn 10/12/2024).

Patrick Farrell. Shared File Performance Improvements. en. url: https://www.opensfs.org/
wp -content/uploads/2015/04/Shared-File-Performance-in-Lustre_Farrell.pdf
(emiokeym 16/12/2024).

Filesystems in 10500. url: https://www.opensfs.org/wp-content/uploads/2020/04/
Lustre_I0500_v2.pdf (emiokeyn 11/02/2025).

69

https://bizety.com/2019/04/09/big-data-storage-models-overview-lustre-glusterfs-and-ceph/
https://bizety.com/2019/04/09/big-data-storage-models-overview-lustre-glusterfs-and-ceph/
https://doi.org/10.1088/1742-6596/608/1/012039
https://dx.doi.org/10.1088/1742-6596/608/1/012039
https://dx.doi.org/10.1088/1742-6596/608/1/012039
http://arxiv.org/abs/1903.01955
https://api.semanticscholar.org/CorpusID:16120094
https://cug.org/5-publications/proceedings_attendee_lists/CUG09CD/S09_Proceedings/pages/authors/archive%20files/13A-LCROSBY-PAPER.pdf
https://cug.org/5-publications/proceedings_attendee_lists/CUG09CD/S09_Proceedings/pages/authors/archive%20files/13A-LCROSBY-PAPER.pdf
https://cug.org/5-publications/proceedings_attendee_lists/CUG09CD/S09_Proceedings/pages/authors/archive%20files/13A-LCROSBY-PAPER.pdf
https://github.com/daphne-eu/daphne/blob/main/doc/BinaryFormat.md
https://github.com/daphne-eu/daphne/blob/main/doc/BinaryFormat.md
https://doi.org/10.1007/978-3-030-68291-0_5
https://doi.org/10.1007/978-3-540-88871-0_61
http://link.springer.com/10.1007/978-3-540-88871-0_61
http://link.springer.com/10.1007/978-3-540-88871-0_61
https://www.opensfs.org/wp-content/uploads/2015/04/Shared-File-Performance-in-Lustre_Farrell.pdf
https://www.opensfs.org/wp-content/uploads/2015/04/Shared-File-Performance-in-Lustre_Farrell.pdf
https://www.opensfs.org/wp-content/uploads/2020/04/Lustre_IO500_v2.pdf
https://www.opensfs.org/wp-content/uploads/2020/04/Lustre_IO500_v2.pdf

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

70

John Fragalla, Bill Loewe kon Torben Kling Petersen. “New Lustre features to improve Lustre
metadata and small-file performance”. en. Xto: Concurrency and Computation: Practice and
Experience 32.20 (2020). _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5649, e5649.
issn: 1532-0634. doi: 10.1002/cpe.5649. url: https://onlinelibrary.wiley.com/doi/
abs/10.1002/cpe.5649 (emiokeyn 24/11/2024).

Anjus George «.6. Understanding Lustre Internals. Second Edition. Adnpocigutn gpguvntikn
epyocia. Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States), Zent. 2021.
doi: 10.2172/1824954. url: https://www.osti.gov/bib1lio/1824954.

Quentin Guilloteau, Jonas H. Miiller Korndorfer kot Florina M. Ciorba. “Seamlessly Scaling
Applications with DAPHNE”. Xto: COMPAS 2024 - Conférence francophone d’informatique
en Parallélisme, Architecture et Systeme. Nantes, France, loOA. 2024. url: https://hal.
science/hal-04637841.

Jaehyun Han, Deoksang Kim kot Hyeonsang Eom. “Improving the performance of lustre file
system in hpc environments”. Xto0: 2016 IEEE Ist International Workshops on Foundations
and Applications of Self* Systems (FAS* W). IEEE, 2016, cc. 84—89.

Richard Henwood kot Andreas Dilger. Why Use Lustre.2021. url: https://wiki.whamcloud.
com/display/PUB/Why+Use+Lustre (emiokeyn 23/01/2025).

Mark Howison «.d. “Tuning HDF5 for Lustre File Systems”. Zto: 2010. url: https://api.
semanticscholar.org/CorpusID:15211704.

Ilin Tolovski k.&. DAPHNE Final Project Report. Adnpocicutn gpevvntikn epyacio. KNOW,
2025. url: https://daphne-eu.eu/wp-content/uploads/2025/01/D1. 6 - DAPHNE -
Final-Project-Report-1-1.pdf (emiokeymn 06/02/2025).

Introduction to Lustre Architecture. url: https : //wiki . lustre . org/ images/ 6/ 64/
LustreArchitecture-v4.pdf (emiokeyn 01/02/2025).

Zoi Kaoudi kot Jorge-Arnulfo Quiané-Ruiz. “Unified data analytics: state-of-the-art and open
problems”. en. Xto: Proceedings of the VLDB Endowment 15.12 (A¥y. 2022), oc. 3778-3781.
issn: 2150-8097. doi: 10.14778/3554821 .3554898. url: https://dl.acm.org/doi/10.
14778/3554821.3554898 (emiokeyn 14/12/2024).

Jeremy Kepner «.d. “Lustre, hadoop, accumulo”. Xto: 2015 IEEE High Performance Extreme
Computing Conference (HPEC). Zent. 2015, 06. 1-5. doi: 10.1109/HPEC.2015.7322476. url:
https://ieeexplore.ieee.org/abstract/document/7322476 (emickeyn 24/11/2024).

M. Kerrisk. The Linux Programming Interface: A Linux and UNIX System Programming Handbook.
No Starch Press, 2010. isbn: 978-1-59327-291-3. url: https://books.google.gr/books?
id=Ps2SH727eCIC.

David Knaak ko1 Quincey Koziol. “Tuning HDFS for Lustre File Systems”. Zto: (). url: https:

//www .academia .edu/15944905/Tuning_HDF5_for_Lustre_File_Systems (emickeyn
16/12/2024).

Eliezer Levy kot Abraham Silberschatz. “Distributed file systems: concepts and examples”. en.
>10: ACM Computing Surveys 22.4 (Aek. 1990), 6. 321-374. issn: 0360-0300, 1557-7341. doi:
10.1145/98163.98169. url: https://dl.acm.org/doi/10.1145/98163.98169 (emickeyn
24/11/2024).

Wei-keng Liao. “Design and Evaluation of MPI File Domain Partitioning Methods under Extent-
Based File Locking Protocol”. ¥to: IEEE Transactions on Parallel and Distributed Systems
22.2 (@eP. 2011), 66. 260-272. issn: 1045-9219. doi: 10.1109/TPDS . 2010 . 74. url: http:

//ieeexplore.ieee.org/document/5445094/ (emickeyn 24/11/2024).

LUG2019-Lustre_Overstriping_Shared Write Performance-Farrell. url: https://www.opensfs.
org/wp-content/uploads/2019/07/LUG2019- Lustre_Overstriping_Shared_Write_
Performance-Farrell.pdf (emiokeyn 16/12/2024).

https://doi.org/10.1002/cpe.5649
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5649
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5649
https://doi.org/10.2172/1824954
https://www.osti.gov/biblio/1824954
https://hal.science/hal-04637841
https://hal.science/hal-04637841
https://wiki.whamcloud.com/display/PUB/Why+Use+Lustre
https://wiki.whamcloud.com/display/PUB/Why+Use+Lustre
https://api.semanticscholar.org/CorpusID:15211704
https://api.semanticscholar.org/CorpusID:15211704
https://daphne-eu.eu/wp-content/uploads/2025/01/D1.6-DAPHNE-Final-Project-Report-1-1.pdf
https://daphne-eu.eu/wp-content/uploads/2025/01/D1.6-DAPHNE-Final-Project-Report-1-1.pdf
https://wiki.lustre.org/images/6/64/LustreArchitecture-v4.pdf
https://wiki.lustre.org/images/6/64/LustreArchitecture-v4.pdf
https://doi.org/10.14778/3554821.3554898
https://dl.acm.org/doi/10.14778/3554821.3554898
https://dl.acm.org/doi/10.14778/3554821.3554898
https://doi.org/10.1109/HPEC.2015.7322476
https://ieeexplore.ieee.org/abstract/document/7322476
https://books.google.gr/books?id=Ps2SH727eCIC
https://books.google.gr/books?id=Ps2SH727eCIC
https://www.academia.edu/15944905/Tuning_HDF5_for_Lustre_File_Systems
https://www.academia.edu/15944905/Tuning_HDF5_for_Lustre_File_Systems
https://doi.org/10.1145/98163.98169
https://dl.acm.org/doi/10.1145/98163.98169
https://doi.org/10.1109/TPDS.2010.74
http://ieeexplore.ieee.org/document/5445094/
http://ieeexplore.ieee.org/document/5445094/
https://www.opensfs.org/wp-content/uploads/2019/07/LUG2019-Lustre_Overstriping_Shared_Write_Performance-Farrell.pdf
https://www.opensfs.org/wp-content/uploads/2019/07/LUG2019-Lustre_Overstriping_Shared_Write_Performance-Farrell.pdf
https://www.opensfs.org/wp-content/uploads/2019/07/LUG2019-Lustre_Overstriping_Shared_Write_Performance-Farrell.pdf

[30] “Lustre* Software Release 2.x - Operations Manual”. Xto: ().

[31] Sandra Mendez k.4. Best Practice Guide - Parallel I/0. eng. Adnpocigvutn epevvntikn epyacia.
Zenodo, ®ef. 2019. doi: 10.5281/zenodo . 4700698. url: https://zenodo.org/records/
4700698 (emiokeymn 16/12/2024).

[32] Michael Moore. “Exploring Lustre Overstriping For Shared File Performance on Disk and
Flash”. Zto: 2019. url: https://api.semanticscholar.org/CorpusID:209465945.

[33] Maryam M Najafabadi «.4. “Deep learning applications and challenges in big data analytics”.
en. Xto: Journal of Big Data 2.1 (Aex. 2015), . 1. issn: 2196-1115. doi: 16.1186/s40537 -
014-0007-7. url: https://journalofbigdata.springeropen.com/articles/10.1186/
S40537-014-0007- 7 (emiokeyn 24/11/2024).

[34] Xueting Pan, Ziqgian Luo kou Lisang Zhou. Navigating the Landscape of Distributed File Systems:
Architectures, Implementations, and Considerations. arXiv:2403.15701. Map. 2024. doi: 10.
48550 / arXiv . 2403 . 15701. url: http : / /arxiv . org/ abs /2403 . 15701 (eniokeyn
24/11/2024).

[35] Prabhakaran Murugesan. Seminar Presentation for ECE 658 - Distributed File Systems. url:
https://www.engr.colostate.edu/ECE658/2013/onlinepresentation/Prabhakaran/
Prabhakaran.pdf (emiokeyn 22/01/2025).

[36] Prabhat kot Quincey Koziol. High Performance Parallel I/0. 1st. Chapman & Hall/CRC, 2014.
isbn: 1-4665-8234-0.

[37] Practical Examples for Efficient I/0 on Cray XT Systems (CUG 2009). SlideShare. 21 Mdau.
2009. url: https://www . slideshare . net /slideshow/ larkin2009slides /1469541
(emiokeym 18/12/2024).

[38] AiswaryaRaj, Jan Bosch ka1 Helena Olsson. “Data Pipeline Management in Practice: Challenges
and Opportunities”. Xto: Noé. 2020, oc. 168—184. isbn: 978-3-030-64147-4. doi: 10 .1007/
978-3-030-64148-1_11.

[39] Galen Shipman k.d. “Lessons learned in deploying the world’s largest scale Lustre file system”.
>t0: The 52nd Cray user group conference. 2010.

[40] Abraham Silberschatz, Peter Baer Galvin ka1 Greg Gagne. Operating System Concepts, 10th
Edition. Wiley, 2018. isbn: 978-1-118-06333-0. url: http://0s - book.com/0S10/index .
html.

[41] Andrew S. Tanenbaum kot Maarten van Steen. Distributed Systems: Principles and Paradigms
(2nd Edition). USA: Prentice-Hall, Inc., 2006. isbn: 0-13-239227-5.

[42] Tran Doan Thanh x.&. “A Taxonomy and Survey on Distributed File Systems”. Xto: 2008
Fourth International Conference on Networked Computing and Advanced Information Management.
Top. 1. 2008, 66. 144-149. doi: 10.1109/NCM.2008.162.

[43] Dimitrios Tsoumakos x.6. DAPHNE: D4.3 Improved DSL Runtime Prototype and Overview.
Adnpoocievtn gpeuvntikn epyacia. ICCS, 2023. url: https://daphne-eu.eu/wp-content/
uploads/2023/12/D4.3- Improved-DSL - Runtime - Prototype - and - Overview- .pdf
(emiokeyn 26/08/2024).

[44] Weikuan Yu «.d. “Exploiting Lustre File Joining for Effective Collective 10”. Xto: Seventh
IEEE International Symposium on Cluster Computing and the Grid (CCGrid *07). M. 2007,
66. 267-274. doi: 10 . 1109 /CCGRID . 2007 . 51. url: https://ieeexplore . ieee.org/
abstract/document/4215390 (emiokeyn 24/11/2024).

[45] Tiezhu Zhao «.d. “Evaluation of a Performance Model of Lustre File System”. Xto: 2010 Fifth
Annual ChinaGrid Conference. ISSN: 1949-1328. Io0OA. 2010, co. 191-196. doi: 10 . 1109/
ChinaGrid.2010.38.

71

https://doi.org/10.5281/zenodo.4700698
https://zenodo.org/records/4700698
https://zenodo.org/records/4700698
https://api.semanticscholar.org/CorpusID:209465945
https://doi.org/10.1186/s40537-014-0007-7
https://doi.org/10.1186/s40537-014-0007-7
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-014-0007-7
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-014-0007-7
https://doi.org/10.48550/arXiv.2403.15701
https://doi.org/10.48550/arXiv.2403.15701
http://arxiv.org/abs/2403.15701
https://www.engr.colostate.edu/ECE658/2013/onlinepresentation/Prabhakaran/Prabhakaran.pdf
https://www.engr.colostate.edu/ECE658/2013/onlinepresentation/Prabhakaran/Prabhakaran.pdf
https://www.slideshare.net/slideshow/larkin2009slides/1469541
https://doi.org/10.1007/978-3-030-64148-1_11
https://doi.org/10.1007/978-3-030-64148-1_11
http://os-book.com/OS10/index.html
http://os-book.com/OS10/index.html
https://doi.org/10.1109/NCM.2008.162
https://daphne-eu.eu/wp-content/uploads/2023/12/D4.3-Improved-DSL-Runtime-Prototype-and-Overview-.pdf
https://daphne-eu.eu/wp-content/uploads/2023/12/D4.3-Improved-DSL-Runtime-Prototype-and-Overview-.pdf
https://doi.org/10.1109/CCGRID.2007.51
https://ieeexplore.ieee.org/abstract/document/4215390
https://ieeexplore.ieee.org/abstract/document/4215390
https://doi.org/10.1109/ChinaGrid.2010.38
https://doi.org/10.1109/ChinaGrid.2010.38

Appendix A

Code segments

73

1 G readCoo(”./AuthorCo0.csv”); // n-by-n boolean matrix

2 n nrow(G); // get the number of vertexes

3 maxi = 100;

4 ¢ =seq(1, n); // init n-by-1 matrix of vertex IDs

s diff = inf; // init diff to +Infinity

¢ iter = 1, // iterative computation of connected components
7 while(diff>0 & iter<=maxi) {

8 u = max(rowMaxs(G * t(c)), c); // neighbor propagation
9 diff = sum(u != c); // # of changed vertexes
10 C = u; // update assignment

11 iter = iter + 1;

Figure A.1: DaphneDSL program to compute the connected components of a co-author graph [9].

t1 = now();

a = readMatrix($G);
3 t2 = now();

4 t3 = now();

s writeMatrix(a, $D);
6 t4=now();

[§)

// Print elapsed times in seconds.
9 print(”read time[s]: ”, 0, 0);
0 print((t2 - t1)*10.0/7(-9), 0, 0);
n print(”write time[s]: ", 0, 0);
12 print((t4 - t3)*10.0/7(-9), 0 ,0);

o

Figure A.2: DaphneDSL script that reads/writes from the provided G/D parameters respectively.

A = rand($R, $C, 0.0, 1.0, 1.0, 42);
writeMatrix(A, $G);

[§)

Figure A.3: DaphneDSL program to create a random matrix with R rows and C columns and write it
at location G.

74

	Περίληψη
	Abstract
	Ευχαριστίες
	Περιεχόμενα
	Κατάλογος πινάκων
	Κατάλογος σχημάτων
	Κατάλογος συντομεύσεων
	Εκτενής Περίληψη
	Κατανεμημένα Συστήματα Αρχείων
	Ολοκληρωμένες Ροές Ανάλυσης Δεδομένων (IDA Pipelines)
	Lustre
	DAPHNE
	Υλοποίηση
	Πειράματα
	Αποτελέσματα

	Κείμενο στα αγγλικά
	Introduction
	Distributed File Systems
	Overview
	Challenges
	Taxonomy
	Components

	IDA Pipelines
	Overview
	Challenges
	Examples

	Background
	The Lustre File System
	Introduction
	Architecture
	Striping

	DAPHNE
	Architecture
	Building and Running DAPHNE
	Runtime Overview

	Implementation
	Shared file and file per process comparison
	Developed Kernels and Supported I/O formats
	Padding
	Usage of pread and pwrite for Concurrent File I/O
	Lustre Library
	Docker
	Extensibility
	Configuration
	Kernel Execution Example
	Local Execution
	Distributed Execution

	Experiments
	Setup
	Hardware
	Software

	Comparison of existing kernels with new proposed Lustre kernels
	Stripe size
	Truncating the file before writing
	Stripe Alignment

	Results
	Future Directions
	Intensive I/O algorithms
	Direct I/O
	Lustre comparison with HDFS

	Conclusion

	Appendix
	Code segments

