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Abstract in Greek

Η κβαντική υπολογιστική (QC) και η επιστήμη της κβαντικής πληροφορίας (QIS) α-
ποτελούν ταχέως αναπτυσσόμενους τομείς στη σύγχρονη επιστήμη και τεχνολογία,

παρέχοντας τη δυνατότητα επίλυσης ορισμένων υπολογιστικών προβλημάτων με εκθε-

τικά μεγαλύτερη ταχύτητα από τις κλασικές μεθόδους. Ως εκ τούτου, παρατηρείται

έντονο ενδιαφέρον από διάφορους επιστημονικούς και τεχνολογικούς κλάδους για την

ταυτοποίηση προβλημάτων και τον σχεδιασμό κβαντικών αλγορίθμων που επιδεικνύουν

‘‘κβαντικό πλεονέκτημα’’ σε σχέση με τις αντίστοιχες κλασικές μεθόδους. Συγκεκρι-

μένα, η παρούσα εργασία εστιάζει στην διάδοση και τη σκέδαση ηλεκτρομαγνητικών

κυμάτων σε μαγνητισμένο πλάσμα και πολύπλοκα ηλεκτρομαγνητικά υλικά, μελετώντας

και ενσωματώνοντας τις εξισώσεις του Μάξγουελ (Maxwell) στο πλαίσιο της κβαντικής
υπολογιστικής.

Η διατριβή οργανώνεται ως εξής: Το Κεφάλαιο 1 περιγράφει την τρέχουσα κα-

τάσταση της έρευνας σχετικά με την κβαντική υπολογιστική στη φυσική πλάσματος.

Παρουσιάζονται επίσης οι στόχοι και το όραμα της διατριβής. Στο Κεφάλαιο 2 περι-

γράφονται βασικές έννοιες της κβαντικής μηχανικής, της κβαντικής υπολογιστικής και

των ανοικτών κβαντικών συστημάτων, οι οποίες αποτελούν τη θεωρητική βάση για

τις επόμενες ενότητες. Το Κεφάλαιο 3 αναλύει τη θεωρητική διατύπωση και τις αλ-

γοριθμικές τεχνικές που απαιτούνται για την κβαντική αναπαράσταση των εξισώσεων

Maxwell. Στο Κεφάλαιο 4 παρουσιάζεται μια συστηματική προσέγγιση για την κβα-
ντική προσομοίωση της διάδοσης και της σκέδασης ηλεκτρομαγνητικών κυμάτων σε

πολύπλοκα μέσα και μαγνητισμένο πλάσμα. Τέλος, το Κεφάλαιο 5 αξιολογεί την πιθα-

νή επίδραση αυτής της έρευνας τόσο στις εφαρμογές της κβαντικής υπολογιστικής στη

φυσική πλάσματος όσο και στις συνεισφορές της φυσικής πλάσματος στην προώθηση

των κβαντικών τεχνολογιών. Συζητούνται επίσης προτάσεις για μελλοντική έρευνα και

ανοιχτά ζητήματα.

Λέξεις Κλειδιά

Κβαντική υπολογιστική, Φυσική πλάσματος, Εξισώσεις Maxwell, Διάδοση και σκέδα-
ση ηλεκτρομαγνητικών κυμάτων.
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Abstract

The prospect that, for a range of problems, quantum computers could be exponentially
faster than conventional computers has led to an enhanced interest in quantum computer
sciences. Naturally, this raises the question of identifying suitable physical problems that
can leverage these quantum resources for alternative numerical approaches. In this direc-
tion, the present thesis aims to explore integrating Maxwell equations within the quantum
computation and information framework, focusing on electromagnetic wave propagation
and scattering in magnetized plasmas and complex media. However, the goal is not to
chase after a so called “quantum advantage” as it cannot be actually verified and tested
in the Noisy Intermediate-Scale Quantum (NISQ) era. Instead, the objective is to iden-
tify the possibilities, limitations, and quantum resources required for a future quantum
implementation of a realistic contemporary physical problem closely related to magnetic
confinement fusion.

This thesis is structured as follows: Chapter 1 provides a brief overview of the moti-
vation and current research status of quantum computing for plasma physics, along with
the general objectives and vision of the manuscript. Chapter 2 introduces fundamen-
tal perquisites from quantum mechanics and quantum computing and algorithms to open
quantum systems. Chapter 3 encompasses all the theoretical elements and insights, as well
as the quantum algorithmic techniques required to eventually arrive in Chapter 4. There,
a systematic approach to quantum representation and simulation simulation of Maxwell
equations in complex media and magnetized plasmas is presented. Finally, Chapter 5
assesses the impact of the proposed research on both ”quantum for plasmas” and ”plas-
mas for quantum” perspectives and provides suggestions and open problems for future
research and improvements.

Keywords
Quantum computing, Plasma physics, Maxwell equations, Electromagnetic wave propa-
gation and scattering.
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Extended Abstract in Greek

Τα τελευταία χρόνια, η ανάπτυξη κβαντικών υπολογιστικών συστημάτων και τεχνολο-

γιών, έχει ανοίξει νέες προοπτικές για την εφαρμογή της κβαντικής υπολογιστικής σε

ένα ευρύ φάσμα επιστημονικών και τεχνολογικών προβλημάτων. Ειδικότερα, το πεδίο

των κβαντικών αλγορίθμων συνεχώς επεκτείνεται, περιλαμβάνοντας τεχνικές όπως οι

κβαντικοί μετασχηματισμοί Fourier, οι αλγόριθμοι αναζήτησης τύπου Grover, και οι
μέθοδοι κβαντικής μηχανικής μάθησης, που στοχεύουν στη βελτιστοποίηση και στην

επιτάχυνση σύνθετων υπολογισμών.

Η αναζήτηση εναλλακτικών μεθόδων υλοποίησης υπολογισμών δεν περιορίζεται α-

ποκλειστικά στο πεδίο της κβαντικής υπολογιστικής. Αντίθετα, αποτελεί αντικείμενο

ευρύτερης έρευνας τα τελευταία χρόνια π.χ. νευρομορφικά δίκτυα (neuromorphic net-
works), καθώς οι υπολογιστικές απαιτήσεις αυξάνονται συνεχώς, ενώ είναι δεδομένο
ότι οι σύγχρονες υπολογιστικές μηχανές κάποια στιγμή θα αγγίξουν τα όριά τους.

Συνεπώς, στο πλαίσιο της εξερεύνησης των υπολογιστικών δυνατοτήτων αλλά και

της προοπτικής εφαρμογής των κβαντικών υπλογιστικών μεθόδων σε κλασσικά φυσικά

προβλήματα, η παρούσα διατριβή μελετάει την σύγκλιση των κβαντικών τεχνολογιών

με τον τομέα της φυσικής πλάσματος και σύντηξης όπου οι υπολογιστικές προκλήσεις

είναι κρίσιμες για τη μελέτη των πολύπλοκων φυσικών διεργασιών που λαμβάνουν χώρα

στο πλάσμα. Συγκεκριμένα, η παρούσα εργασία εστιάζει στην διάδοση και τη σκέδαση

ηλεκτρομαγνητικών κυμάτων σε μαγνητισμένο πλάσμα και πολύπλοκα ηλεκτρομαγνη-

τικά υλικά, μελετώντας και ενσωματώνοντας τις εξισώσεις του Μάξγουελ (Maxwell)
στο πλαίσιο της κβαντικής υπολογιστικής.

Τα ηλεκτρομαγνητικά κύματα, που περιγράφονται από τις εξισώσεις Maxwell, δια-
δραματίζουν κεντρικό ρόλο σε σύγχρονες τεχνολογικές εφαρμογές από τις τηλεπικοι-

νωνίες μέχρι τη θέρμανση πλάσματος σε πειράματα σύντηξης. Στον τομέα της μαγνη-

τικής σύντηξης, τα ηλεκτρομαγνητικά κύματα είναι απαραίτητα για τον μετριασμό των

αστάθειων, την οδήγηση ρεύματος, τη θέρμανση και τον έλεγχο της θερμοκρασίας

του πλάσματος. Παρότι η θεωρητική κατανόηση της δυναμικής των ηλεκτρομαγντη-

τικών κυμάτων σε μαγνητισμένο πλάσμα και άλλα πολύπλοκα υλικά έχει εδραιωθεί,

η ανάπτυξη υπολογιστικών μοντέλων που μπορούν να περιγράψουν με ακρίβεια αυτά

τα φαινόμενα υπο ρεαλιστικές πειραματικές συνθήκες παραμένουν ένα κρίσιμο πεδίο

έρευνας. Η παρούσα διατριβή εξετάζει την κβαντική αναδιατύπωση των εξισώσεων

Maxwell, με στόχο:

1. Την θεωρητική μελέτη και αξιολόγηση των περιορισμών και δυνατοτήτων της

κβαντικής υπλογιστικής θεώρησης στις κλασσικές εξισώσεις Maxwell.

2. Την πρόταση και μελέτη κβαντικών αλγορίθμων και των κβαντικών πόρων που
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απαιτούνται για την προσομοίωση των εξισώσεων Maxwell στην εποχή των Κβα-
ντικών Υπολογιστών με Θόρυβο (NISQ) και πέρα από αυτή.
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in Eq.(4.20). 52

4.2 The quantum circuit implementation of the collision operators ĈX and ĈY
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Chapter 1

Introduction

1.1 Motivation and scope

Since the introduction of quantum mechanics in 1925, that profoundly enhanced our un-
derstanding of nature’s physical laws and established it as the second pillar of modern
physics (alongside the theory of general relativity), today we are in the midst of the sec-
ond quantum revolution [1, 2]. Quantum Computing (QC) and Quantum Information
Science (QIS) have emerged at the forefront of the contemporary technological advance-
ments due to the novel and exotic capabilities of quantum systems in terms of computation
and information processing [3–5]. Subsequently, the research endeavor around the theo-
retical and experimental verification of quantum protocols’ supremacy over their classical
counterparts, is growing exponentially leading to pioneering applications in various fields
in industry and science. Illustrative examples can be found in the respective areas of
medicine [6], optimization and machine learning [7], dynamical systems [8], fluid dy-
namics [9] and many others.

These rapid advancements in quantum technologies have ignited the interest of plasma
and fusion science community to integrate the novel and powerful quantum computational
techniques into the notoriously complex and demanding in computational resources, field
of plasma physics. Particularly, in 2018, the United States Department of Energy has
made public a technical report titled “Quantum for Fusion, Fusion for Quantum” [10]
that was highlighting several opportunities for leveraging quantum computing and quan-
tum technologies for scientific discoveries and technology advances in fusion and plasma
physics. As a result, unique research directions relevant to applications of QC and QIS to
plasma physics have emerged [11–13] in the subsequent years. The impact of those works
as well as the interdisciplinary nature of plasma physics have facilitated a paradigm shift
towards quantum computing for addressing many different plasma physics problems.

The main contributions of the present thesis, motivated by these pioneering research
directions, is the quantum reformulation of Maxwell equations and the subsequent quan-
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tum simulation of electrodynamics in complex media such as magnetized plasmas. In
summary:

1. Reformulating Maxwell equations for dispersion-less media as a quantum Schrodinger
equation with explicit unitary dynamics. Following this, a Qubit Lattice Algorithm
(QLA) reflecting a Quantum Walk (QW) process is employed for quantum simula-
tion of electromagnetic propagation and scattering, with numerical results from the
corresponding classical implementation.

2. Analyzing the complexity of a potential quantum implementation of the algorithm.

3. Developing a QW based quantum algorithm for simulating electromagnetic wave
propagation in cold magnetized plasmas, along with the complexity analysis of the
algorithm.

4. Introducing dissipation and using quantum simulation techniques inspired by open
quantum systems to evaluate the algortihms’ required quantum resources to accu-
rately capture the transient dissipative dynamics.

But, why Maxwell equations?
Electromagnetic waves are ubiquitous in nature and play a crucial role in various appli-
cations ranging from communications to heating of thermonuclear fusion plasma. In all
these applications, to predict the behaviour and obtain physical insight on the electromag-
netic wave dynamics one can solely rely on the computational simulation of Maxwell
equations. Specifically, in magnetic confinement fusion experiments electromagnetic
waves play a vital part to mitigation of instabilities, current-drive and heating as well
as plasma temperature control. While the theoretical and analytical foundations for elec-
tromagnetic wave propagation in magnetized plasmas have long been establish [14, 15]
and remain an active field of research, the focus has shifted to construction of compu-
tational models that can accurately capture the physics of wave propagation in realistic
fusion experiments [16].

Consequently, the scope of the proposed research is two-fold. Initially, it aims to
prepare the plasma physics community to leverage quantum computers for fundamental
aspects of fusion plasma physics. Whereupon, it seeks to establish quantum computing as
a prominent simulation and validation tool in the field of computational electromagnetism
with the potential to breakthrough the computational studies of electromagnetic wave
dynamics in plasma fusion and beyond in the near future.
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Chapter 2

A Primer to Quantum Computing and
Quantum Information Science

2.1 A prelude to quantum mechanics

This section serves as a brief exposition to quantum mechanics and the related notation,
for the unfamiliar reader to prepare for the material in the following chapters. For a
thorough and comprehensive introduction to the mathematical and physical aspects of
quantum mechanics, there is a plethora of excellent textbooks [17–21] for the interested
reader to consult.

2.1.1 States and Hilbert space

A quantum state, denoted with |ψ⟩ (ket), is an element of a Hilbert space H . A Hilbert
space H , is a linear vector space V over the field of complex numbers F =C, equipped
with the standard triplet of linear operations (+, ·,⟨|⟩),

+ : V ×V → V (addition), (2.1)

· : C×V → V (scalar multiplication), (2.2)

⟨|⟩ : V ×V → C (inner product). (2.3)

The dual space H ∗ of the Hilbert space H , contains functional elements denoted with
⟨ψ| (bra). Due to Hilbert space reflexivity, H = H ∗∗, the dual pairing (⟨φ | , |ψ⟩) is
respectively equivalent to the inner product (|φ⟩ , |ψ⟩). Thus, the inner product (|φ⟩ , |ψ⟩)
between the states |ψ⟩ , |φ⟩ ∈H can be compactly represented as ⟨φ |ψ⟩. This formalism
is called the bra-ket notation of quantum mechanics and was firstly introduced by Dirac
[17]. The relation between the state |ψ⟩ ∈H and its dual ⟨ψ| ∈H ∗ is

(|ψ⟩)† = ⟨ψ| , (2.4)
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where the superscript † indicates the complex conjugate transposition operation.

Using the inner product structure of H , it is possible to define the norm ∥ψ∥ of the
state |ψ⟩ as

∥ψ∥=
√
⟨ψ|ψ⟩ ≥ 0, ∥ψ∥= 0 iff |ψ⟩= 0. (2.5)

Two states |φ⟩ , |ψ⟩ ∈ H satisfying ⟨φ |ψ⟩ = 0, are orthogonal and can be written as
|φ⟩ ⊥ |ψ⟩. If also, the norm of the states is ∥ψ∥ = ∥φ∥ = 1, then the states are called
orthonormal. Given a specific orthonormal basis {

∣∣e j
〉
} of the Hilbert space H (assuming

that the Hilbert space is finite dimensional, dim(H )< ∞) the arbitrary state |ψ⟩ ∈H is
expressed as

|ψ⟩=
dim(H )

∑
j

c j
∣∣e j

〉
, c j =

〈
e j
∣∣ψ

〉
∈ C. (2.6)

An admissible quantum state in the form of Eq.(2.6) obeys the normalization condition

∑ j
∣∣c j

∣∣2 = 1. As such, the complex numbers c j constitute the probability amplitudes to
find the particle in the state

∣∣e j
〉
.

2.1.2 Operators and observables

A map T̂ : H →H is a linear operator in Hilbert space if,

T̂ (a |ψ⟩+b |φ⟩) = aT̂ |ψ⟩+bT̂ |φ⟩ , |ψ⟩ , |φ⟩ ∈H , a,b ∈ C. (2.7)

Expressing the operator T̂ into a specific orthonormal basis of Hilbert space results into
the outer product expression

T̂ = ∑
i j

Ti j |ei⟩
〈
e j
∣∣ , Ti j =

〈
ei
∣∣T̂

∣∣e j
〉
, (2.8)

where Ti j is the matrix representation of the operator. From Eq.(2.8), it can be directly
deduced that the unity operator Î |ψ⟩= |ψ⟩ is

Î = ∑
j

∣∣e j
〉〈

e j
∣∣ . (2.9)

In analogous way with Eq.(2.4), the dual mapping T̂ † : H ∗→H ∗, is defined as

⟨ψ| T̂ † = (T̂ |ψ⟩)† (2.10)

where T̂ † is the complex conjugate transpose operator, T †
i j = T ∗ji.

Quantum mechanics is a physical theory, so it has to describe reality by accurately
providing physical quantities of interest such as position, momentum, energy etc. These
meaningful physical quantities are defined as observables and are associated with a Her-
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mitian operator. An operator T̂ is Hermitian iff,

⟨φ |(T̂ |ψ⟩) = (⟨φ | T̂ ) |ψ⟩ ≡ ⟨φ |T̂ |ψ⟩ , T̂ = T̂ †, |φ⟩ , |ψ⟩ ∈H . (2.11)

Hermitian operators admit spectral decomposition with real eigenvalues and the respective
eigenvectors form a orhtonormal basis in Hilbert space H , [22]. Utilizing this aspect,
given a Hermitian operator, for example the energy operator Ê, it is possible to expresses
the arbitrary state |ψ⟩ ∈H through the eigenvectors-basis {

∣∣E j
〉
} of Ê,

|ψ⟩= ∑
j

d j
∣∣E j

〉
, d j ∈ C. (2.12)

Therefore, the quantity ⟨ψ|Ê|ψ⟩

⟨ψ|Ê|ψ⟩= ∑
j

∣∣d j
∣∣2λ j ∈ R, (2.13)

represents the mean value ⟨Ê⟩ of the energy operator Ê, with λ j being its respective
eigenvalues. Equation (2.13) reflects that the observable physical quantities are the real
eigenvalues of the corresponding Hermitian operator. For instance, the probability to
measure the energy E = λk of the system in state (2.12), is pk = |dk|2.

A different kind of operator that plays a crucial role in quantum mechanics is the
unitary operator. An operator Û is unitary iff,

ÛÛ† = Û†Û = Î, Û−1 = Û†. (2.14)

Unitary operators are isometries, i.e they preserve the inner product structure. This can
been easily verified by constructing the state |φ⟩= Û |ψ⟩, then

⟨φ |φ⟩= ⟨ψ|U†Û |ψ⟩= ⟨ψ|ψ⟩ . (2.15)

In terms of physical context, Eq.(2.15) implies that unitary operators are probability pre-
serving.

2.1.3 Postulates of quantum mechanics

• Postulate 1: The evolution of a closed quantum system is dictated by the Schrodinger
equation

i
∂ |ψ⟩

∂ t
= Ĥ |ψ⟩ , Ĥ = Ĥ†. (2.16)

According to Stone’s theorem [23], there is a one-to-one correspondence between
Hermitian operators acting on Hilbert space H and one-parameter families Ût∈R
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of unitary operators. Therefore, the Hermitian operator Ĥ generates unitary time
evolution, Û = exp

{
−itĤ

}
.

The unitary dynamics of Schrodinger equation (2.16) convey the probability conservation
that has to be present in a closed system,

|ψ(t)⟩= Û |ψ0⟩ ,
∂ ⟨ψ(t)|ψ(t)⟩

∂ t
= 0⇔ ⟨ψ(t)|ψ(t)⟩= ⟨ψ0|ψ0⟩ , (2.17)

with |ψ0⟩ the initial state at t = 0.

• Postulate 2: A quantum measurement is described by a collection of measurement
operators {M̂m} acting on a state |ψ⟩ ∈H of the system being measured. After the
measurement the probability p(m) to obtain the outcome m is

p(m) = ⟨ψ|M̂†
mM̂m|ψ⟩ , (2.18)

and the post-measurement state |ψ⟩′ now reads

|ψ⟩′ = M̂m |ψ⟩√
p(m)

. (2.19)

The aforementioned definition of measurements is the most general one, encompassing
projective as well as Positive Operator-Valued Measure (POVM) measurements. Projec-
tive measurements P̂m are described by Hermitian operators–observables as delineated in
Sec.2.1.2,

P̂m = |em⟩⟨em| , P̂m = P̂†
m, P̂2

m = P̂m, (2.20)

with |em⟩ an eigenvector of a Hermitian–observable–operator. The possible outcomes
from such a measurement corresponds to the eigenvalues λm of the observable operator.
On the other hand, POVM measurements denoted with Êm = M̂†

mM̂m are usually used in
cases where the post-measurement state is not of particular interest but the measurement
statistics and the related disclosed information matters the most. A characteristic example
is the use of POVM measurements to distinguish between two quantum states with a
certain success probability [24].

• Postulate 3: The state space of a composite quantum system is the tensor product
of the Hilbert spaces of the component quantum systems.

We define the tensor product operation ⊗ between two Hilbert spaces H1 and H2 as

⊗ : H1×H2→H , (2.21)
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with dim(H ) = dim(H1)×dim(H2). Hence, a general bipartite quantum state |ψ⟩ can
be represented in a prescribed basis {|ek⟩= |ei⟩⊗

∣∣e j
〉
}

|ψ⟩=
dim(H )

∑
k

ak |ek⟩ , ak ∈ C, (2.22)

where |ei⟩⊗
∣∣e j

〉
now translates into the Kronecker product [22] between the basis vec-

tors {|ei⟩} and {
∣∣e j

〉
} of the Hilbert spaces H1 and H2 respectively. Most of the times,

for brevity purposes, the tensor product notation will be suppressed, so |ei⟩ ⊗
∣∣e j

〉
≡

|ei⟩
∣∣e j

〉
≡

∣∣eie j
〉
. A direct consequence of definition (2.22) is that the tensor product

state space H contains non-separable states,

∃|ψ⟩ ∈H ⇒ |ψ⟩ ̸= |ψ1⟩⊗ |ψ2⟩ , |ψ1⟩ ∈H1, |ψ2⟩ ∈H2. (2.23)

In the following sections it will be showcased that these non-separable states, character-
ized as entangled, play a pivotal role on the computational prowess of quantum computers
as well as in the quantum information theory.

2.1.4 Density operator formalism

In the previous sections the pure state formalism of quantum mechanics was illustrated;
The quantum system was described by the state |ψ⟩ ∈H with absolute certainty. How-
ever, a quantum system can be in one of a number of pure states |ψi⟩ with probability pi.
Thus, to deal now with an ensemble of pure states {pi, |ψi⟩} the density operator or den-
sity matrix formalism is employed. The density operator of a quantum system is defined
though,

ρ = ∑
i

pi |ψi⟩⟨ψi| , ∑
i

pi = 1. (2.24)

A density operator ρ is associated with an ensemble iff,

• Tr(ρ) = 1, and

• ρ is a positive definite operator.

The Tr notation stands for the trace operation. The density matrix for pure states is
Tr(ρ2) = 1, whereas for mixed states, i.e. states that are characterized by lack of maximal
knowledge about them, Tr(ρ2)< 1.

The quantum postulates for the pure states can be equivalently expressed in terms of
the density matrix formalism as follows:

i
∂ρ(t)

∂ t
= [Ĥ,ρ], ρ(t) = Ûρ0Û† (Postulate 1), (2.25)
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where [ , ] is the commutator operator, [Â, B̂] = ÂB̂− B̂Â, and ρ0 is the initial density matrix
at t = 0.

p(m) = Tr(M̂†
mM̂mρ), ρ

′ =
M̂mρM̂†

m
p(m)

(Postulate 2). (2.26)

A bipartite separable state ρAB of a quantum system composed of subsystems–A and B
with density matrices ρA and ρB respectively, reads

ρAB = ρA⊗ρB (Postulate 3). (2.27)

Perhaps the most powerful application of the density operator formalism is on the
characterization of the composite quantum systems. For a bipartite system as in Eq.(2.27),
we define the partial trace operation with respect to subsystem–B to be

TrB(ρAB) = ρATr(ρB) = ρA. (2.28)

The partial trace formula (2.28) enables us to efficiently compute the purity of the density
matrix of the subsystem of interest and identify entanglement.

Before proceeding to the next section, the reader is advised to refer to Ref.[19] for a
detailed and quantum informational-wise exposition of the aforementioned concepts.

2.2 Fundamental concepts in quantum computing

Embarking on our exploration of quantum computing and quantum information, a valu-
able reference is the seminal textbook by Nielsen and Chuang [25]. The reader is encour-
aged to consult it for additional clarification on the presented material.

2.2.1 Qubits and quantum gates

The fundamental carrier of quantum information, the quantum bit–qubit, is a coherent
quantum state that resides in a two dimensional Hilbert space H2,

|ψ⟩= a |0⟩+b |1⟩ , a,b ∈ C, |a|2 + |b|2 = 1, (2.29)

where the basis vectors {|0⟩ , |1⟩} constitute the so called computational basis. Immedi-
ately, from the mere definition of qubit (2.29) it is evident that the superposition structure
of a qubit as a pure state contains richer information compared to the the classical bit
which can be represented as a quantum mixed state ρbit ,

ρbit = |a|2 |0⟩⟨0|+ |b|2 |1⟩⟨1| . (2.30)
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An illustrative representation of the qubit is the Bloch sphere representation, Fig.2.1,
which exploits the isomorphism between the complex two-dimensional Hilbert space H2

and the S3 surface of a unit three-dimensional sphere,

|ψ⟩= cos
θ

2
|0⟩+ eiφ sin

θ

2
|1⟩ (Bloch sphere representation), (2.31)

where the angles θ and φ are the azimuthal and polar angles respectively.

Figure 2.1: Bloch sphere representation of a qubit [25].

According to Postulate 1 the evolution of a closed system is unitary for the total proba-
bility to be conserved (see Eq.(2.17)). Therefore, only unitary operations–quantum gates–
are admissible in the quantum computing framework. The most important single qubit
gates are summarized as follows:

Pauli gates

X̂ =

[
0 1
1 0

]
, Ŷ =

[
0 −i

i 0

]
, Ẑ =

[
1 0
0 −11

]
, (2.32)

Hadamard and Phase gates

Hadamard gate: Ĥ =
1√
2

[
1 1
1 −1

]
, Phase gate: Ŝ =

[
1 0
0 i

]
, (2.33)

Rotation gates

R̂x(θ) =

[
cos θ

2 −isin θ

2

−isin θ

2 cos θ

2

]
, R̂y(θ) =

[
cos θ

2 −sin θ

2

sin θ

2 cos θ

2

]
, R̂z(θ) =

[
e−iθ/2 0

0 eiθ/2

]
.

(2.34)
Allowing now n qubits to interact, the composite pure state according to the tensor

product rule (2.21) in the third quantum mechanical postulate reads,

|ψ⟩=
n−1

∑
i=0

ji={0,1}

ci | jn−1 jn−2.... j1 j0⟩ , |ψ⟩ ∈H = H ⊗n
2 , (2.35)
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where the basis elements | jn−1 jn−2.... j1 j0⟩ consists of 2n permutations of the binary ele-
ments {0,1}. The binary representation (2.35) can be easily re-expressed in the standard
computational basis {|k⟩},k = 0,1, ...,2n−1 of the composite Hilbert space H ⊗n

2 ,

|ψ⟩=
2n−1

∑
k=0

ck |k⟩ , k = jn−12n−1 + jn−22n−2 + ...+ j121 + j020, ck ∈ C. (2.36)

Two things are to be taken from the state (2.36) and the resulting dimension of Hilbert
space H :

1. The dimension of the composite Hilbert space H = H ⊗n
2 is exponentially large,

dim(H ) = 2n, in respect to the number of qubits. In contrast, the state space di-
mension of m classical bits scales as m. This implies that a quantum computer has
an exponentially larger memory capacity compared to the classical machines.

2. The second element that stands out is that a state can carry an exponentially large
amount of information (in the amplitudes ck) due to the superposition structure,
Eq.(2.36). This characteristic feature lies in the heart of quantum parallelism in
which different information elements about the same object can be encoded in the
the same quantum state and processed in parallel ways.

For n = 2 qubits, the four-dimensional space allows to introduce the simplest unitary
controlled operation, the controlled-NOT (CNOT), that depending on the value the bit
of the first–control–qubit, a Pauli X̂ transformation is applied to the second–target–qubit.
Then, the matrix representation of CNOT operation in the computational basis is,

CNOT =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



. (2.37)

For example the action of CNOT gate into the 2-qubit state 1
2(|00⟩+ |11⟩) results to

1
2(|0⟩+ |1⟩) |0⟩. Notice how an initial non-separable, entangled, state has become sep-
arable through the CNOT action. In the same sense, it is possible to define a general
controlled operation C(Û) of a general singe qubit unitary gate Û . More general, the
action of a controlled operation Cm,k(Û) which applies the unitary Û operator into the
k–target qubit state |ψ⟩ , controlled by m qubits, is

Cm,k(Û) |xm...x1x0⟩ |ψ⟩= |xm...x1x0⟩Ûxm·...·x1·x0 |ψ⟩ , or Cm,k(Û).=

[
Î(2m×2m) 0

0 Û

]

(2.38)
A useful example of a m = 2,k = 1 controlled gate is the Toffoli gate C2,1(X̂).
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2.2.2 Quantum circuit model and gate decomposition

Applying different gates to multiple qubits can be extremely tedious in terms of the al-
gebraic representation. Fortunately, there is an elegant way to depict the operations that
apply to the different qubits thought quantum circuits.

A quantum circuit is composed by parallel horizontal lines representing the quantum
wires. Each wire contains a qubit. Starting from the left-side, the input state is provided
and the applied single qubit gates are depicted as boxes in the respective quantum wires.
For controlled operations, control by the one–bit is depicted with solid black dot, whereas
control by the zero–bit uses a hollow white dot. The outcome state is produced at the right
side of the circuit. A measurement operation is depicted by a meter. Below, in Fig.2.2, the
quantum circuit representation of important controlled gates is presented. The quantum

=

X̂

(a) CNOT gate. (b) Toffoli gate.

m = 3

k = 2 Û

(c) A multi-controlled gate.

Figure 2.2: Quantum circuit representation of different controlled operations.

circuit for preparing a two–qubit entangled Bell state is also presented in Fig.2.3.

|0⟩ Ĥ
|00⟩+|11⟩√

2

|0⟩

Figure 2.3: Quantum circuit representation of preparing a maximally entangled Bell state.

While the depiction of a sequence of unitary operations through quantum circuit is
particularly useful, it has to be complemented with known decomposition of the applied
operators into simple gates that consist a universal set, namely the Hadamard, CNOT,
phase and π/8 gates, for fault tolerant quantum computation. Under this discrete univer-
sal set of gates any unitary operator can be approximated to arbitrary precision. Usually,
it is sufficient to provide the decomposition of the unitary operator in a number of CNOTs
and single-qubit gates as this set is also universal but not fault-tolerant. However, we must
have in mind that approximating arbitrary unitary gates in terms of universal simple gates
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is generally hard and it may requires an exponentially large number of universal gates.
For example, the decomposition of a n qubit unitary operator into single-qubit and CNOT
gates scales as O(4nn2), with the big O being the standard asymptotic notation. However
this situation is not viable as it directly affects the actual implementation efficiency of the
quantum process to quantum hardware. Therefore, the search for optimized (”shallow”),
in terms of the required numbers of gates, decomposition procedures [26–30] is consid-
ered extremely important as it is closely tied with the ability to implement and benchmark
the proposed algorithms to present quantum hardware.

To illustrate the decomposition procedure we provide two important examples with
the first being the decomposition of a single-qubit controlled operation C1,1(Û) and the
second one the decomposition of a two-level, two-qubit unitary operation. Based on the
fact that any single-qubit operator Û can be written in the form [25],

Û = eiaÂX̂ B̂X̂Ĉ, ÂB̂Ĉ = Î, (2.39)

with a arbitrary phase, then the two-qubit controlled operator implementation in single
qubit gates and CNOTs is presented in Fig.2.4. The phase gate Ŝ in the quantum circuit
2.4 is,

=
Ŝ

Û Ĉ B̂ Â

Figure 2.4: Decomposition of arbitrary two qubit controlled gate C1,1(Û) to single-qubit
and CNOT gates.

Ŝ =

[
1 0
0 eia

]
. (2.40)

The next example pertains to decomposition of two-level unitary matrices into multi-
controlled gates. A two-unitary matrix is a unitary matrix characterized by non-trivial
action only in two or fewer components of the state vector. For instance, the following
matrix is a two-level unitary R̂y(θ) rotation,

R̂y(θ) =




1 0 0 0
0 cos θ

2 −sin θ

2 0
0 sin θ

2 cos θ

2 0
0 0 0 1



. (2.41)

Applying the Gray code [25], the decomposition of the two-level matrix (2.41) into sim-
pler controlled gates depicted in Fig.2.5. In addition, using the decomposition procedure
of Fig.2.4, the two-level rotation matrix can be expressed solely in single-qubit gates and
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R̂y(θ)

Figure 2.5: Decomposition of the two-level rotation matrix of Eq.(2.41) into simple con-
trolled gates.

CNOTs. In general a two-level unitary matrix acting on n qubits, admits a breakdown to
these elementary gates that scales as O(n2) [25].

The quantum circuit model naturally introduces three important parameters that have
to be specified for a complete characterization of the operational specifics of a quantum
algorithm. In particular, the term circuit depth conveys the number of qubits (number
of quantum wires) that the algorithm requires for operation whereas the circuit depth
reflects the number of elementary gates (or more properly, the maximum number of the
gates acting on each quantum wire). Finally, an error ε of the proposed decomposition
must always be accounted and its scaling in respect to both depth and width of the circuit.

2.3 Selected quantum algorithms

As a testimony of the computational prowess of quantum computers it is instructive to
present some influential quantum algorithmic processes that exhibit quantum advantage
compared to the classical counterparts and form the building blocks for various other
algorithms.

2.3.1 The quantum Fourier transform

The quantum Fourier transform (QFT) is a quantum algorithm widely used as a sub-
routine in the quantum factoring protocol, phase estimation, quantum simulation as well
as other interesting quantum algorithms. It efficiently transforms the quantum mechanical
amplitudes of a N–dimensional input state to a different basis,

N−1

∑
j=0

x j | j⟩ →
N−1

∑
k=0

yk |k⟩ , yk =
1√
N

N−1

∑
j=0

x je2iπ jk/N . (2.42)

To encode the transformation (2.42) into a quantum computer, first we assign the number
N of the of the complex amplitudes to n qubits by setting N = 2n. Then, the transformation
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in Eq.(2.42) can be factorized [25] as

| j⟩ → 1
2n/2

2n−1

∑
k=0

e2iπ jk/2n
=

1
2n/2

n⊗

m=1

(|0⟩+ e2iπ j2−m|1⟩)

=
1

2n/2 (|0⟩+ e2iπ0. jn |1⟩)(|0⟩+ e2iπ0. jn−1 jn |1⟩) · · · (|0⟩+ e2iπ0. j1 j2... jn |1⟩),
(2.43)

where in expression (2.43) the binary fraction form, 0. jl jl+1... jm = jl
2 +

jl+1
4 + ...+ jm

2m−l+1

with jl = {0,1}, has been employed. To quantum implement the decomposition of
Eq.(2.43) into a circuit, we introduce the unitary phase gate R̂k,

R̂k =

[
1 0
0 e2iπ/2k

]
. (2.44)

The respective quantum circuit implementation of the general n-qubit QFT is presented
in [25]. In Fig.2.6, for the sake of clarity and completeness, the QFT for n = 3 qubits is
presented along with the required SWAP gate.

|j1⟩ Ĥ R̂2 R̂2

|j2⟩ Ĥ R̂2

|j3⟩ Ĥ

Figure 2.6: The quantum circuit implementation of QFT for n = 3 qubits.

For n qubits, the numbers of required elementary gates for implementing QFT scales
as Θ(n2), where the big Θ notation means that the number of gates is asymptotically
bounded between c1n2 and c2n2 with c1,c2 > 0. However, the corresponding classical
counterpart, the fast Fourier transfrom (FFT) requires Θ(n2n) gates to calculate the 2n

amplitudes of the discrete Fourier transform. Therefore, an exponential quantum advan-
tage in computational resources ∼ 2n/n is achieved for the computation of the discrete
Fourier transform compared to the classical FFT method.

The QFT algorithm is widely used as a sub-routine in other interesting quantum al-
gorithms for phase estimation[25], factoring and computing the discrete logarithm [31],
quantum signal processing (QSP) [32], solution of linear systems of equations [33] (HHL
algorithm) and others.

2.3.2 Quantum simulation

Quantum simulation is the process of approximating the unitary quantum dynamics gener-
ated by the Hamiltonian operator in the Schrodinger equation (2.16), and has been the ba-
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sis for simulation of dynamics for general classes of partial differential equations. Quan-
tum simulation was first proposed by Feynman [34] recognising the intractability issue of
classical digital computers to simulate the dynamics of typical quantum systems.

The first quantum simulation algorithm was explicitly presented by Lloyd [35] for
simulation of a k-local Hamiltonian

Ĥ =
l

∑
i=1

Ĥi, (2.45)

which describes the interaction between n particles, where the Hamiltonian can be decom-
posed into l with each Ĥi acting only on k-particles. To efficiently compute the unitary
evolution generated by Hamiltonian (2.45) we employ a first order Lie-Trotter-Suzuki
product formula [36],

e−iĤt =
( l

∏
i=1

e−it/rĤi
)r

+ ε, (2.46)

where the approximation error ε in Eq.(2.46) is

ε =
t2

r
. (2.47)

From Eq.(2.46), the problem boils down to find an efficient implementation for the each of
the unitary gates e−it/rĤi and apply it r times. But since Ĥi are k-local Hamiltonians their
implementation is possible within 22k = O(1) elementary gates, as they act only within
the k-qubit subspace of the total system, where n>> k. Notice that the former implemen-
tation cost is constant even with n→ ∞ due to the locality condition. Finally, the number
of required operation for simulation of unitary dynamics within an prescribed error ε

is rl22k. For local Hamiltonian the number of the individual Ĥi’s scales as O[poly(n)].
Therefore, using the error expression (2.47), the overall complexity of the quantum simu-
lation algorithm is

O[poly(n), t2, 1/ε]. (2.48)

Lloyd’s quantum simulation algorithm is near optimal in time dependence but the
error estimation is very crude assuming that the higher order terms are dominated by the
lower ones. The latter issue was addressed in the work of Berry et al. [37] who provide
an optimised complexity bound dependence on both

∥∥Ĥ
∥∥ and t,

OBerry ≤ 22(k+1)n2∥∥Ĥ
∥∥t exp

{
2
√

ln5 ln(n
∥∥Ĥ

∥∥t/ε)

}
. (2.49)

In Eq.(2.49),
∥∥Â

∥∥ is the spectral norm of operator Â i.e. its largest singular value. The
complexity of Eq.(2.49) is close to linear for large n

∥∥Ĥ
∥∥t and applies to general sparse

Hamiltonian operators.
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In the following years various quantum simulation algorithms have been emerged for
simulation of both quantum and classical systems the study of which is devoted in Chapter
3. Quantum simulation algorithms are important because they reflect the prospect of
quantum computing to dominate the computational studies of complex quantum systems.

2.3.3 Quantum search

The third quantum algorithmic process presented here, regards the task of search through
a search space of N elements. For example that could be to find the correct configuration
(up or down) of n switches that successfully light up a lamp from the N = 2n different
combinations. Classically this task requires O(N) operations, albeit Grover’s quantum
search algorithm [25, 38] accomplishes the task using O(

√
N) operations.

To illustrate Grover’s algorithm we begin be defining the Grover’s oracle Ô that labels
the solution of the problem– the n-bit correct configuration of switches– with one and the
non-solution with zero through a function f (x). Then, the operation of Grover’s oracle to
a arbitrary n-qubit encoded state |x⟩ is

Ô |x⟩
( |0⟩− |1⟩√

2

)
= (−1) f (x) |x⟩

( |0⟩− |1⟩√
2

)
. (2.50)

Next the Grover diffusion operator Ĝ is defined as,

Ĝ = (2 |ψ⟩⟨ψ|− Î)Ô, |ψ⟩= Ĥ⊗n |0⟩⊗n =
1√
N

N−1

∑
x=0
|x⟩ . (2.51)

Then, starting with the initial state |0⟩⊗n |1⟩ applying r ≈ π
√

N/4 times the operator Ĝ

we obtain,

Ĝr(Ĥ⊗n⊗ Ĥ) |0⟩⊗n |1⟩ ≈ |xs⟩
( |0⟩− |1⟩√

2

)
, (2.52)

where |xs⟩ is the solution of the search with f (xs) = 1. Evidently, Grover’s algorithm
finds with probability O(1) the proper xs solution of the search problem with O(

√
N)

calls–queries– of the oracle. The respective quantum circuit representation of Grover
iteration (2.52) is presented in Fig.2.7.

. . .

. . .

|0⟩⊗n
Ĥ⊗n

Ĝ Ĝ Ĝ

|1⟩ Ĥ

Figure 2.7: Quantum circuit for Grover’s search algorithm. The Grover diffusion operator
Ĝ is applied O(

√
N) times. Then, a measurement in the first register provides the xs

solution of the search problem with success probability O(1).
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A significant application of Grover’s algorithm is in the amplitude estimation algo-
rithm [39] which enables reading the amplitudes of a quantum state, an indispensable
process in the information retrieval of classical amplitude encoded states.

2.4 Quantum noise

In the previous sections we have adhered to the unitary postulate for admissible opera-
tions in quantum theory. Here, we depart from this restriction by considering the quantum
system to be open. Open quantum systems are subject to a rich spectrum of physical phe-
nomena such as dissipation, deconherence and loss of information due to the interaction
with a different system which is usually labeled as environment [40]. The existence of
correlations-interaction between the open system and the environment breaks the unitary
evolution, which translates into noise in the information transmission.

2.4.1 Quantum operations and Kraus representation

In Secs.2.1.3 and 2.1.4, the main operational transformations in quantum mechanics were
described, namely the unitary operations and measurements. However, those two exam-
ples are only sub-cases of the evolution circumstances of a quantum state. Specifically,
we define a general map Ê : H1→H2

ρ
′ = Ê (ρ), (2.53)

that is called quantum operation that describes the change of the state ρ due to an occur-
ring physical process. In general the super operator Ê is non-unitary. For the quantum
operation Ê to map quantum states to other quantum states it has to be a completely
positive and trace preserving (CPTP) even though it is possible to relax the complete
positiveness to positive only operations (PTP).

To efficiently represent the map Ê , it is regarded that the subsequent dynamics arise
from the interaction of the system of interest with an environment ρenv as depicted in
Fig.2.8. Thus, under the proposed scheme of Fig.2.8 the action of quantum operation Ê

reads,
ρ
′ = Ê (ρ) = Trenv[Û(ρ⊗ρenv)Û†]. (2.54)

To explicitly calculate the expression (2.54) we assume that the environment state is ini-
tially on a specific eigenstate ρenv = |e0⟩⟨e0|, where {|em⟩} is a finite dimensional or-
thonormal basis of the environment state space. Thus, Eq.(2.54) obtains the form of an
operator-sum representation,

Ê (ρ) = ∑
m

K̂mρK̂†
m, ∑

m
K̂†

mK̂m = Î, (2.55)
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ρ

Û
Ê(ρ)

ρenv

Figure 2.8: Schematic representation of an open quantum system interacting with an
environment described by the density matrix ρenv. The quantum operation Ê describes
the resulting non-unitary dynamics from this interaction and the dynamical change ρ →
Ê (ρ). The combined system is closed and evolves under a unitary operator Û .

the so-called Kraus representation [25, 40]. The Kraus operators K̂m cannot be unitary
and are provided by

K̂m = ⟨ek|Û |e0⟩ . (2.56)

The Kraus representation Eq.(2.55) suggests that the principal system undergoes a prob-
abilistic non-unitary transformation as result of the interaction with the environment, i.e
introducing a Markovian type of noise in the system.

In quantum computing and information, many times instead of the quantum operation,
the term quantum channel is used, with the scope that a quantum operation is a transmis-
sion channel of information about the change of the quantum state. A prototypical single
qubit quantum channel that will be exploited later is the amplitude damping (AD) channel
which reflects noise effects related to energy dissipation from the quantum system. The
respective Kraus representation is,

ÊAD(ρ) = K̂0ρK̂†
0 + K̂1ρK̂†

1 , (2.57)

with

K̂0 =

[
1 0
0
√

1− γ

]
, K̂1 =

[
0
√

γ

0 0

]
. (2.58)

One physical system that the AD channel models, is the the spontaneous emission of a
photon under the transition |1⟩→ |0⟩, with probability γ = sin2

θ . Hence, the environment
plays the role of the photonic recipient in the vacuum state |0⟩. The quantum circuit
implementation for the AD process is represented in Fig.2.9.

ρ ÊAD(ρ)

|0⟩ R̂y(2θ)

Figure 2.9: Quantum circuit implementation for the amplitude damping channel.
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2.4.2 Master equation

In the previous section the Kraus representation has been illustrated. The main advan-
tage of the formulation is the affine representation of the environment, as it is not re-
quired to have exact knowledge of the physics pertain to the environment. On the other
hand, it lacks the time-evolution differential form that its unitary evolution counterpart,
the Eq.(2.25), possesses.

Starting from the Kraus representation Eq.(2.55), expanding for a small time advance-
ment t→ t +δ t and keeping only terms to first order in δ t [40],

K̂0(δ t) = Î− iδ t(Ĥ0− iĤdiss), Ĥdiss =−
1
2 ∑

m
γmL̂†

mL̂m, K̂m>0(δ t) =
√

γmδ tL̂m

(2.59)
we arrive at the celebrated Gorini-Kossakowski-Sudarshan-Lindblad (GKLS) master equa-
tion [41, 42]

∂ρ

∂ t
=−i[Ĥ0,ρ]+∑

m
γm

(
L̂mρL̂†

m−
1
2
{L̂†

mL̂m,ρ}
)
, (2.60)

where the L̂ operators are called the Lidbland operators or jump operators and the second
sum term is the dissipator. The operation {,} in Eq.(2.60) denotes the anti-commutator.
The GKLS master equation (2.60) can be compactly written as,

∂ρ

∂ t
=−i(Ĥe f f ρ− iρĤ†

e f f )+∑
m

γmL̂mρL̂†
m, Ĥe f f = Ĥ0 + iĤdiss. (2.61)

Consequently, the effective non-Hermitian Hamiltonian Ĥe f f in Eq.(2.61) generates the
dissipative dynamics.
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Chapter 3

Quantum Rerpesentation and
Simulation

The main theme of this chapter is to establish the theoretical and computational quantum
blocks that will be utilized in Chapter 4 for implementing Maxwell’s equations in complex
electromagnetic media within a quantum setting.

3.1 The role of representation

As briefly outlined in Sec.2.3.2, the task of quantum simulation involves the quantum
implementation of the dynamical evolution operator generated by the linear partial differ-
ential equation,

i
∂ |ψψψ(rrr, t)⟩

∂ t
= D̂(rrr, t) |ψψψ(rrr, t)⟩ , |ψψψ⟩ ∈H , (3.1)

where D̂ is the generator of dynamics and H denotes the Hilbert space. Although equa-
tion (3.1) describes both classical and quantum evolution, in the classical case the operator
D̂ is not an observable. Thus, we refrain from using the Hamiltonian operator notation Ĥ.

In Sec.2.2 it was established that for a quantum operation to be admissible it must
be unitary. This requirement arises directly from the unitary evolution dictated by the
Schrodinger equation in Eq.(2.16) with D̂ = D̂†. However, when D̂ ̸= D̂†, the evolution is
in general non-unitary except in cases where certain symmetries are present. This raises
two natural questions:

• Are there theoretical approaches to address the challenges posed by non-unitary
dynamics?

• On the same hand, how can a classical state be expressed in terms of quantum
resources?

In this initial section, we will address fundamental questions surrounding the relation-
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ship between classical and quantum frameworks before transitioning to a more computa-
tional perspective.

3.1.1 Dyson maps

Since quantum computers operate using unitary gates, it is highly beneficial to identify
dynamical systems that exhibit unitary evolution, promoting them as prime candidates for
immediate quantum simulation. In this context, we provide the following result:

For the linear dynamics of a system described by the partial differential equation

i
∂ |ψψψ⟩

∂ t
= D̂ |ψψψ⟩ , |ψψψ⟩ ∈H , D̂† ̸= D̂, (3.2)

if the system possesses a quadratic positive definite globally conserved quantity Θ =

⟨ψψψ|Θ̂|ψψψ⟩ with,

∂Θ

∂ t
= 0⇔ Θ̂D̂†− Θ̂D̂ = 0, Θ̂

† = Θ̂, Θ̂> 0, (3.3)

then, an endomorphism η̂ can be constructed, such that

Θ̂ = η̂
†
η̂ , |ΨΨΨ⟩= η̂ |ψψψ⟩ , η̂ : H →H , (3.4)

transforming Eq.(3.2) into the following explicit Hermitian structure Schrodinger repre-
sentation:

i
∂ |ΨΨΨ⟩

∂ t
= η̂D̂η̂

−1 |ΨΨΨ⟩= D̂η |ΨΨΨ⟩ , |ΨΨΨ⟩ ∈H . (3.5)

The operator η̂ is called a Dyson map originally introduced in the study of complex
quantum many-body Hamiltonians [43].

From a classical perspective this result should not be surprising as Θ satisfies the re-
quirements for being a Lyapunov function, indicating the stability of the dynamics. How-
ever, from a quantum perspective, the discovery that non-Hermitian Hamiltonians can
possess a real spectrum and generate unitary dynamics was groundbreaking. This revela-
tion began with the seminal work of Bender and Boettcher [44], opening an entirely new
field of non-Hermitian Quantum Mechanics [45–51]. In this framework, the operator Θ̂ is
referred as the metric operator and is closely associated with the underlying symmetries
of the quantum system. Specifically, rewriting Eq.(3.3),

D̂† = Θ̂D̂Θ̂
−1, (3.6)

one obtains the pseudo-Hermicity condition for an invertible metric Θ̂ which implies that
the initially non-Hermitian operator D̂ in Hilbert space H is Hermitian in the weighted
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Hilbert space HΘ under the inner product,

⟨φφφ |ψψψ⟩
Θ
= ⟨φφφ |Θ̂|ψψψ⟩ , |ψψψ⟩ , |φφφ⟩ ∈HΘ. (3.7)

As a result, the PT symmetry can be understood as a specific choice of the metric Θ̂,
corresponding to the existence of a conserved quantity. On a final note, while the exis-
tence of a Hermitian positive definite metric Θ̂ satisfying the pseudo-Hermicity relation
(3.6) ensures the Hermicity of operator D̂ in the weighted ”physical” Hilbert space HΘ,
applications in quantum computing require the Dyson representation Eq.(3.5) such that
that the operator D̂η is Hermitian in the initial computational space H . The interconnec-
tion of the Dyson map with the different spaces is presented in Fig.3.1.

|ψψψ⟩ ∈HΘ |ΨΨΨ⟩ ∈H

|ψψψ⟩ ∈H

η̂

Definition of HΘ

η̂−1

Figure 3.1: The dual role of the Dyson map. It endows the structure of the weighted space
HΘ into the initial Hilbert space H through an isometry and serves as a different but not
equivalent representation of elements |ψψψ⟩ and |ΨΨΨ⟩ belonging to H .

The key takeaway from the preceding discussion is that if a physical system with
linear dynamics possesses a positive-definite conserved quantity, this quantity can serve
as a metric to construct an explicitly unitary evolution suitable for quantum computing
applications.

To bridge these concepts—which may initially appear abstract and unrelated to the
standard toolbox of a plasma physicist lets consider the Force Operator formalism of the
linearized ideal MHD [52],

∂ 2ξξξ

∂ t2 = F̂ξξξ , F̂ = F̂†, (3.8)

where ξξξ is the Lagrangian displacement vector from an equilibrium. Assuming ξξξ (rrr, t) =

ξξξ r(rrr)e
−iωt Eq.(3.8) becomes an eigenvalue problem,

F̂ξξξ r =−ω
2
ξξξ r, (3.9)

from which we deduce that when the force operator F̂ is positive definite then ω2 < 0
resulting in MHD instabilities, whereas for the negative definite case, ω2 > 0 represents
stable dynamics (MHD waves). The Hermicity of the force operator in ideal MHD en-
forces that the energy EMHD is conserved,

EMHD(t) =
1
2

∫

V
(vvv†vvv−ξξξ

†F̂ξξξ )d rrr = constant, vvv =
∂ξξξ

∂ t
, V ⊂ R3. (3.10)
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We now reformulate Eq.(3.8) as a first order differential equation,

i
∂ψψψ

∂ t
= D̂ψψψ, ψψψ =

[
ξξξ

vvv

]
, D̂ = i

[
0 1
F̂ 0

]
. (3.11)

By defining the energy operator ÊMHD,

ÊMHD =

[
−F̂ 0
0 1

]
, (3.12)

it is evident from Eq.(3.10) that,

EMHD(t) =
∫

V
ψψψ

†Êψψψd rrr = constant (3.13)

In addition, the energy operator is positive definite if and only if the force operator is
negative definite, F̂ < 0 reflecting the stable wave case. Therefore, the energy operator
fulfills the conditions in Eq.(3.3) and can used as a metric Θ̂ = ÊMHD. An mediate Dyson
map is,

η̂ =

[
(−F̂)1/2 0

0 1

]
, ΨΨΨ = η̂ψψψ, (3.14)

under which, Eq.(3.11) becomes a first order MHD wave equation,

i
∂ΨΨΨ

∂ t
= D̂ηΨΨΨ, D̂η = D̂†

η , D̂η =

[
0 iĜ

−iĜ 0

]
, with Ĝ = (−F̂)1/2. (3.15)

Evidently, these considerations coincide with the MHD stability energy principle [52].
Moreover, through the Dyson map, we explicitly obtained the Hermitian MHD wave
evolution equation (3.15), which admits unitary evolution and is therefore suitable for
implementation on a quantum computer.

3.1.2 Quantum encoding

To represent a classical d-dimensional continuous state ψψψ(rrr, t) defined in V ⊂ R3,

ψψψ(rrr, t) =
d

∑
i=1

ψi(rrr, t)ei, (3.16)

where ei denotes the standard orthonormal basis in Rd , as a n-qubit quantum superposition
state, a finite spatial discretization is required. To achieve this quantization we perform
an amplitude encoding of the classical state (3.16) by defining two registers of qubits as
follows:

The first register denoted with {|q⟩}, q = 0,1, ..,d− 1 stores the information on the
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amplitudes and therefore requires nq = log2(d) qubits. The second register accommodates
the information related to the discretization. Suppose we discretize the configuration
space V = [x0,x0+Lx]× [y0,y0+Ly]× [z0,z0+Lz] into a lattice consisted of N = NxNyNz

nodes, where the separation length along each axis is δi = Li/Ni, for i = x,y,z. Then,
the spatial register {|p⟩} is formed containing np = log2(N) = log2(Nx) + log2(Ny) +

log2(Nz) = npx +npy +npz qubits with

|pi⟩= |i0 + piδi⟩ , pi = 0,1, ...,Ni−1, for i = x,y,z. (3.17)

As a result the classical state in Eq.(3.16) translates into the n = nq +np–qubits quantum
state,

ψψψ(rrr, t)↔ |ψψψ(t)⟩=
d−1

∑
q=0

2np−1

∑
p=0

ψqp(t) |q⟩ |p⟩ . (3.18)

In Eq.(3.18), the binary representation of Eq.(2.36) has been employed in the expression
|px⟩⊗

∣∣py
〉
⊗|pz⟩= |p⟩ for compactness.

Notice that, as seen Eq.(3.18) the quantum memory of a quantum computer expo-
nentially larger compared to a classical machine. For instance, storing the amplitudes of
a d = 10 dimensional classical state in a 3D lattice with N = 10003 cites requires only
n∼ 34 qubits.

3.2 Quantum simulation for unitary dynamics

Having established a proper linear Hermitian Schrodinger representation with unitary dy-
namics either naturally or induced via a Dyson map) for the problem at hand, a wide
range of quantum simulation techniques can be applied. These include Trotterization and
product formulas [37, 53, 54], Quantum Signal Processing (QSP) [32, 55, 56], Taylor se-
ries [57] and Linear Combinations of Unitaries (LCU) [58, 59] and quantum walks [60].
A comprehensive and comparative review of these simulation methods including their
implementation scaling can be found in [61].

Among the aforementioned plethora of available simulation techniques the required
ones for implementing Maxwell equations in plasmas and other dielectrics in the fol-
lowing chapter are a multi-dimensional quantum walk (QW) namely the Qubit Lattice
Algorithm (QLA) and the LCU method.

3.2.1 Quantum walks (QW) and Qubit lattice algorithm (QLA)

Returning our attention to the quantum simulation of the linear dynamics in terms of the
Schrodinger representation (3.1) with D̂ = D̂† and based on the quantum encoding in
Eq.(3.18) we now outline the characteristics of the simulation algorithmic framework.
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Discrete time QW are the quantum counterparts of classical random walks [62, 63].
Their prioritization as a quantum simulation technique [60] over the aforementioned quan-
tum algorithms is motivated by the fact that that quantum walks on regular lattices can
give rise to wave equations for relativistic particles in the continuum limit [64–67]. This
property is particularly important for our studies, as we will see in the next chapter, where
the quantum implementation of Maxwell equations requires a proper quantum represen-
tation in the form of a generalized multi-spinor Dirac-type equation. This extension in-
volves incorporating multiple particles to increase the dimension of the coin-amplitude
space HC, thereby extending quantum walk (QW) algorithms to multi-dimensional and
multi-particle quantum secular automata [68, 69], quantum lattice Boltzmann [70] and,
eventually, qubit lattice algorithms (QLA) [71].

In the standard notation of quantum walks, the dynamics of a particle are described by
a walking exterior space HS and an interior 2-dimensional Hilbert space HC dubbed as
the coin space. The walking process is applied between the vertex of the graph which in
our case will be mapped as a lattice though the swift/streaming unitary operator Ŝ acting
on the |p⟩ ∈HS register in respect of the coin register,

Ŝ = |0⟩⟨0|⊗ |p+1⟩⟨p|+ |1⟩⟨1|⊗ |p−1⟩⟨p| . (3.19)

Selecting different coin operators Ĉ results to various non-trivial dynamics. Thus, the
evolution of the state from time t to t +∆t is

|ψ(t +∆t⟩= Ŝ(Ĉ⊗ I) |ψ(t)⟩ . (3.20)

Extending the evolution in Eq.(3.20) for a multi-particle d-dimensional space HC for
the evolution of states in Eq.(3.18) we define

1. a set of local unitary collision operators Ĉp acting in the amplitude {|q⟩} register
for each lattice cite |p⟩, and

2. a conditional unitary shift operator Ŝ acting in the {|p⟩} register.

The action of the shift operator in the computational basis reads,

Ŝ+ |p⟩= |p+1⟩ , Ŝ− |p⟩= |p−1⟩ , Ŝ− = Ŝ+†. (3.21)

Then, the evolution of the state |ψ(rrr, t)⟩ in time frame ∆t

|ψψψ(t +∆t)⟩= ∏
p
(CqŜ±)(CpĈp) |ψψψ(rrr, t)⟩= ÛQLA |ψψψ(t)⟩+O(ε4), ∆t ∼ ε

2, δ ∼ ε,

(3.22)
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which in the continuous limit δ → 0 recovers the evolution equation,

i
∂ |ψψψ(rrr, t)⟩

∂ t
= D̂ |ψψψ(rrr, t)⟩+O(ε2). (3.23)

In Eq.(3.22) the Cp,q symbols in front of the collision and streaming operators denotes
controlled operation in respect to the {|q⟩} and {|p⟩} registers.

The product evolution scheme in Eq.(3.22) offers three distinct advantages:

1. Efficient quantum implementation of the streaming operation

The streaming operator, defined in Eq.(3.21), is implemented explicitly using np-qubit
operations, requiring an np-fold series of CNOT gates. These operations ultimately de-
compose into 0(n2

p) single-qubit and CNOT gates [26]. Meanwhile, the local nature of

∣∣pnp−1

〉
X

∣∣pnp−2

〉
X

...

|p0⟩ X

Figure 3.2: Quantum circuit implementation of the streaming Ŝ+operator within the np
qubits with p0 being the least significant bit.

the collision operators Ĉ permits a constant implementation scaling of O(n2
q) = constant,

with the primary cost determined by the number of distinct, the number of the distinct
Cp collision operators. Consequently, the general implementation cost of the product se-
quence in Eq.(3.22) scales as O(2npn2

p). However, as will be demonstrated in Chapter 4
this scaling can be significantly reduced to an appealing O[poly(np)] for quantum simu-
lation of Maxwell equations in media with sufficiently localized inhomogeneities.

2. Trotterization avoidance

The QLA techniques circumvents the need for Trotterization [36] of the exponential evo-
lution operator exp

{
−itD̂

}
because relative phases generated by the collision operators

accumulate to reproduce the desired dynamics.. The total error for a simulation time of
ttotal = Nt∆t reads,

εtotal =
t2
total
Nt

. (3.24)

Notice how the error in Eq.(3.24) coincide with that of Lloyd’s algorithm, Eq.(2.48), for
the quantum simulation of local Hamiltonian dynamics.
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3. Explicit implementation scaling

Finally, evolution sequence (3.22) is explicit, involving no oracle operations or undefined
unitary gates with hidden implementation costs. This transparency makes the proposed
QW-QLA algorithmic framework a strong candidate for practical testing on quantum
hardware, as it reflects true scaling for potential quantum advantage compared to clas-
sical algorithms.

3.2.2 Application to Dirac equation

To provide a concrete example of the QLA prior to its implementation for Maxwell equa-
tions in plasmas, we apply it to the Dirac equation.

The Dirac equation [17, 20, 21] is one of the most celebrated equation in physics
describing the quantum motion of a relativistic spin-1/2 particle,

∂ |ψψψ⟩
∂ t

+ cẐ⊗ X̂
∂ |ψψψ⟩

∂x
+ cẐ⊗ Ŷ

∂ |ψψψ⟩
∂y

+ cŶ ⊗|1⟩ ∂ |ψψψ⟩
∂ z

+ iX̂⊗ Î
mc2

h
|ψψψ⟩ , (3.25)

where X̂ ,Ŷ , Ẑ are the Pauli operators defined in Eq.(2.32) and the state |ψψψ⟩ is a four-spinor,

|ψψψ⟩=




ψ0

ψ1

ψ2

ψ3



, nq = 2 qubits. (3.26)

Following [72], setting ε2 = mc2∆t/h the evolution for the Dirac equation reads,

|ψψψ(t +∆t⟩= ÛXÛYÛZĈ(1)
x |ψψψ(t)⟩ , (3.27)

where the unitary operators Ûi are QLA sequences of the form (3.22),

ÛX = Ŝ−x
1,3ĈyŜ+x

1,3Ĉ†
y Ŝ+x

0,1ĈyŜ−x
0,1Ĉ†

y , (3.28)

ÛY = Ŝ−y
1,3Ĉ(2)†

x Ŝ+y
1,3Ĉ(2)

x Ŝ+y
0,2Ĉ(2)†

x Ŝ−y
0,2Ĉ(2)

x , (3.29)

ÛZ = Ŝ+z
1,2Ĉ(1)

x Ŝ−z
1,2Ĉ(1)†

x Ŝ+z
0,3Ĉ(1)

x Ŝ−z
0,3Ĉ(1)†

x . (3.30)

In the QLA sequences Eqs.(3.28)-(3.30) the notation Ŝi, j implies conditional action of
the swift operator Ŝ based on the i, j spinor amplitudes in Eq.(3.26). In addition, the
participating coin/collision operators Ĉ are 2-qubit two-level rotation matrices of angle
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θ ∼ δ ∼ ε in the amplitude register,

Ĉ(1)
x = ẐR̂x(θ)Ẑ⊗ Î,=




cosθ/2 0 isinθ/2 0
0 cosθ/2 0 isinθ/2

isinθ/2 0 cosθ/2 0
0 isinθ/2 0 cosθ/2



, (3.31)

Ĉ(2)
x = Î⊗ ẐR̂x(θ)Ẑ =




cosθ/2 isinθ/2 0 0
isinθ/2 cosθ/2 0 0

0 0 cosθ/2 isinθ/2
0 0 isinθ/2 cosθ/2



, (3.32)

Ĉy = Î⊗ X̂ R̂y(θ)X̂ =




cosθ/2 −sinθ/2 0 0
sinθ/2 cosθ/2 0 0

0 0 cosθ/2 −sinθ/2
0 0 sinθ/2 cosθ/2



. (3.33)

In expressions (3.31)-(3.33) the rotation gates R̂x and R̂y have been defined in Eq.(2.34).

Since the algorithmic sequence (3.27) θ depends only on a finite number of collision
operators which do not depend on the lattice cite that they act on, the total implementa-
tion of the QLA requires O(n2

p) elementary gates for the streaming operators and 3 gates
for the decomposition of each collision operators as depicted in Fig.3.3 Therefore, imple-
menting the evolution sequence (3.27) within error ε for time δ t requires O(n2

p) simple
gates which is equivalent to simulating the exponential evolution operator with the Quan-
tum Fourier Transform (QFT).

3.3 Breaking unitarity

As demonstrated in Sec.3.1.1, every linear and positive-definite conservative system pos-
sesses a Hermitian Schrodinger representation that admits unitary evolution, making it
suitable for quantum simulation. However, many systems of interest, particularly dissipa-
tive ones, break the underlying symmetries, resulting in non-unitary evolution. Address-
ing this issue requires moving beyond the QLA product sequence of unitary operators to
incorporate non-unitary operators within the unitary framework. Naturally, this cannot be
achieved deterministically; instead, we must the praice of a probabilistic implementation
to remain consistent with closed-system quantum theory.

Below, the Linear Combination of Unitaries (LCU) method is delineated, along with
other dilation techniques for transforming a non-unitary operator into a unitary one within
an enlarged Hilbert space.
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∑3
q=0 ψq |q⟩

Z R̂x(θ) Z

(a) Quantum circuit implementation of Ĉ(1)
x operator

in Eq.(3.31).

∑3
q=0 ψq |q⟩

Z R̂x(θ) Z

(b) Quantum circuit implementation of Ĉ(2)
x operator

in Eq.(3.32).

∑3
q=0 ψq |q⟩

X R̂y(θ) X

(c) Quantum circuit implementation of Ĉy operator in
Eq.(3.33).

Figure 3.3: The quantum circuit implementation of the collision operators Ĉ in Eqs.(3.31)-
(3.33).

3.3.1 The LCU method

Treating non-unitary quantum gates rely on duality quantum computing proposed initially
in [73] and then further developed into the LCU method [58, 59, 74] for quantum sim-
ulation of unitary and non-unitary dynamics. In contrast with the algorithmic procedure
of simulating the evolution through a sequence of unitary operators, the LCU method
considers the implementation of weighted sums of unitary operators,

V̂ =
N

∑
i

aiÛi, ÛiÛ
†
i = Î, ai > 0. (3.34)

To implement the sum (3.34) we define two unitary operators Ûprep and Ûselect and an
ancillary register composed of m = log2 N qubits,

Ûprep
∣∣0⊗m〉= 1√

a ∑
i

√
ai |i⟩ , a =

N

∑
i

ai, (3.35)

Ûselect = ∑
i
|i⟩⟨i|⊗Ûi. (3.36)
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Then, the sequence of operators acting on the composite state produces,

Û†
prepÛselectÛprep

∣∣0⊗m〉 |ψψψ⟩= 1
a

∣∣0⊗m〉V̂ |ψψψ⟩+ |⊥⟩ , (3.37)

where the |⊥⟩ state is orthogonal to the |0⊗m⟩V̂ |ψψψ⟩ state. Notice that the RHS of Eq.(3.37)
is a superposition of the desired part and an othrogonal complement. Hence, a measure-
ment in the ancillary register in respcet to the |0⟩= |0⊗m⟩ state implements the non-unitary
operator V̂ of Eq.(3.34) up to a normalization factor with probability,

psucess =

∥∥V̂ |ψ⟩
∥∥2

a2 . (3.38)

The LCU implementation procedure of Eq.(3.37) is depicted in Fig.3.4.

|0⊗m⟩ Ûperp Û†
perp

|ψ⟩ Ûselect V̂ |ψ⟩

Figure 3.4: Schematic quantum circuit implementation of the LCU method Eq.(3.37)
along with the measurement operation. The ancillary register has been traced out in the
final outcome.

According to Eq.(3.38), the implementation success of the LCU method depends on
the number of summands that the non-unitary operator V̂ is decomposed of, psucess ∼
1/N2. However, it can be proven that every non-unitary contraction operator

∥∥V̂
∥∥< 1, is

the sum of three unitary operators, irrespectively of operator’s dimension [75]. Hence, the
LCU method can be implemented with only 2 extra ancillary qubits and with a reasonably
feasible manner.

3.3.2 Dilation methods

An alternative approach to address non-unitary operators in quantum computing involves
the use of dilation techniques. A unitary dilation of a non-unitary operator V̂ in the Hilbert
space H is defined as a unitary operator V̂D in an enlarged Hilbert space K whose
projection P̂H on the Hilbert space H ⊂K is the operator V̂ [76],

P̂H V̂D|H = V̂ , V̂ †V̂ = Î in K . (3.39)

Dilation methods find extensive use in quantum computing for implementing non-
Hermitian and open quantum systems dynamics [77–81].
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3.3.2.1 Stinespring dilation

Returning to the Kraus representation in Eq.(2.55) for an open quantum system dynamics,

Ê (ρ) =
d2−1

∑
m=0

K̂mρK̂†
m, ∑

m
K̂†

mK̂m = Î, (3.40)

it is possible to construct a unitary operator of the form,

ÛS+E =




K̂0 ∗ ...

K̂1 ∗ ...

. ∗ ...

. ∗ ...

. ∗ ...

K̂d2−1 ∗ ...




(3.41)

where the elements ∗ must be specified appropriately to ensure unitarity, and d = 2n

represents the dimensionality of the operators involved

Therefore, the dimension of the unitary operator ÛS+E is d22n = 23n meaning that the
dilated unitary evolution,

ρ
′
S+E = ÛS+EρS+EÛ†

S+E (3.42)

requires an ancillary environment (E) consisting of 2n qubits. Tracing out the environ-
ment component we retrieve the evolution Eq.(3.40) for the density matrix of the open
system of interest ρS = ρ .

Although the size of the environment scales linearly with the number of qubits of the
open system, Stinespring dilation provides a direct method for unitary implementation of
open system dynamics in through the Kraus form. An application for the method for open
lattice theories can be found in [82].

3.3.2.2 Sz.-Nagy dilation

In contrast to the Stinespring dilation, the Sz.-Nagy unitary dilation requires only a single
extra ancillary qubit as an environment. From the trace-preserving property in Eq.(3.40) it
follows that the Kraus operators are contractions,

∥∥K̂m
∥∥≤ 1. Consequently, the following

operator is unitary,

ÛK̂m
=

[
K̂m D̂K̂†

m

D̂K̂m
K̂†

m

]
, D̂K̂m

=

√
I− K̂†

mK̂m. (3.43)

In Eq.(3.43) the operator D̂K̂m
is the defect operator.

Therefore, instead of relying on the cost-ineffective implementation described in Eq.(3.41),
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more advanced unitary algorithms can be constructed using only one ancillary qubit [83].
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Chapter 4

A Quantum Computing Approach to
Electromagnetic Wave Propagation in
Complex Media and Cold Magnetized
Plasmas

Classical Maxwell equations have recently emerged as a compelling set of differential
equations for applying quantum algorithms [84–90], primarily due to their (i) inherent
linearity within the linear response framework and (ii) broad applicability to various phys-
ical problems.

Albeit the significant contributions of the previous studies, most have focused on sim-
plified models of wave propagation and scattering in either homogeneous or inhomoge-
neous scalar media. Such simplifications limit their practical relevance to realistic ap-
plications where the electromagnetic media response is anisotropic, inhomogeneous and
potentially complex. In this direction, the goal of this chapter is to extend beyond these
simplified models and incorporate the complex response of electromagnetic media within
Maxwell equations.

Therefore, this chapter serves as the centerpiece of the research presented in this the-
sis, leveraging the theoretical and computational tools outlined in Chapter 3 to explore
the prospect for quantum computing to revolutionize the computational studies on elec-
tromagnetic wave propagation in complex media and plasmas [91–97].
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4.1 Classical Maxwell equations in complex electromag-
netic media

The source free Maxwell equations [98, 99] for a medium, consist of two evolution equa-
tions namely the Faraday and Ampere equations,

∂BBB(rrr, t)
∂ t

=−∇∇∇×××EEE(rrr, t),
∂DDD(rrr, t)

∂ t
= ∇∇∇×××HHH(rrr, t), (4.1)

along with the divergence Gauss’s laws,

∇∇∇ ···DDD(rrr, t) = 0, ∇∇∇ ···BBB(rrr, t) = 0. (4.2)

Employing the six-vector formulation [100] for the electromagnetic fields uuu = (EEE,HHH)T

and their respective intensities ddd = (DDD,BBB)T , Maxwell equations (4.1), (4.2) are compactly
written as

i
∂ddd
∂ t

= M̂uuu, ∇∇∇ ···ddd = 0. (4.3)

The Maxwell operator M̂ in the Faraday-Ampere equation (4.3),

M̂ = i

[
0 ∇∇∇×××
−∇∇∇××× 0

]
, (4.4)

is Hermitian in the Hilbert space L2(V ⊂R3,C) under the imposed Perfect Electric Con-
ductor (PEC) Dirichlet boundary condition,

nnn(rrr)×EEE = 0 on the boundary ∂V , (4.5)

where nnn is the outward pointing normal at the boundary.

Maxwell equations in the form presented in Eq.(4.3) are under-determined. To self-
consistently describe the evolution of the fields uuu it is necessary to consider the char-
acteristics of the electromagnetic medium, which translate into the connection between
the response vectors ddd and the applied electromagnetic field uuu, known as the constitutive
relations [101],

ddd(rrr, t) = L̂ uuu = Ŵ (rrr)uuu(rrr, t)+
∫ t

0
Ĝ(rrr, t− τ)uuu(rrr,τ)d τ. (4.6)

The matrix Ŵ in Eq.(4.6) represents the instantaneous–optical–response of the medium,
and it is a positive-definite, Hermitian and boundedly invertible operator. On the other
hand, the susceptibility kernel Ĝ accounts for time-dispersion effects such as memory
and dissipation. For simplicity we will assume only anisotropic media so the matrices Ŵ
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and Ĝ take the block-diagonal form,

Ŵ (rrr) =

[
ε̂(rrr) 0

0 µ̂(rrr)

]
, Ĝ(rrr, t) =

[
K̂e(rrr, t) 0

0 K̂m(rrr, t)

]
, (4.7)

where ε(rrr) and µ(rrr) are the electric permittivity and magnetic permeability of the medium
respectively and K̂e(rrr, t) and K̂m(rrr, t) are the electric and magnetic susceptibility kernels.
The constitutive linear operator L̂ in Eq.(4.6) obeys the following physical postulates
[101]:

1. Determinism, L̂ is a single valued operator and relates the cause fields uuu with the
response fields ddd.

2. Linearity, L̂ is a linear operator .

3. Causality, if uuu = 0 for t ≤ τ , then L̂ uuu = 0 for t ≤ τ .

4. Locality in space, L̂ is a local operator with respect to the spatial variable rrr ∈ V ⊂
R3.

5. Time translation invariance, L̂ uuu(rrr, t− τ) = (L̂ uuu)(rrr, t− τ).

For more general constitutive relations relaxing the validity of the previous physical pos-
tulates along with their mathematical treatment, we direct the reader to [102].

Combining Eqs.(4.3) and (4.6) we obtain,

i
∂uuu
∂ t

= Ŵ−1M̂uuu− iĜA ∗uuu, (4.8)

where the X̂∗ operation denotes the convolution operation with kernel X̂ ,

ĜA =W−1 ∂ Ĝ
∂ t
, ĜA ∗uuu =W−1(rrr)

∫ t

0

∂ Ĝ(rrr, t− τ)

∂ t
uuu(rrr,τ)d τ (4.9)

In derivation of Eq.(4.8) it is assumed that Ĝ(rrr,0) = 0, else this extra term can be directly
absorbed in the optical part. Finally, the divergence equations ∇∇∇ ··· ddd = 0 are, in effect,
initial conditions for the compact Maxwell equation (4.8), dictating that if the initial fields
uuu(rrr,0) = uuu0 satisfy the divergence equations ∇∇∇ ··· (L̂ uuu)(rrr,0) = 0, then the derived fields
uuu(rrr, t) will continue to satisfy these conditions for all t > 0.

Summarizing, we have accomplished to express the source free Maxwell equations
Eqs.(4.1) and (4.2) as a initial value problem for the evolution of the electromagnetic
fields uuu = (EEE,HHH)T in a complex electromagnetic medium contained in a closed domain

48



V ⊂ R3 with the following mathematical structure,

i
∂uuu
∂ t

= D̂uuu, D̂ = Ŵ−1M̂− iĜA∗, uuu ∈H = L2(V ⊂ R3,C).

uuu(rrr,0) = uuu0 such that ∇∇∇ ··· (L̂ uuu)(rrr,0) = 0.

nnn(rrr)×EEE = 0 on ∂V .

(4.10)

The generator of dynamics D̂ in Eq.(4.10) is linear with the Ŵ ,M̂ operators being Her-
mitian in the Hilbert space H . It is evident that Eq.(4.10) represents a Schrodinger-like
formulation of the Maxwell equations, where the Hermicity of the operator D̂ depends
solely on the properties of the electromagnetic medium. Harnessing the theoretical and
computational quantum tools presented in Chapter 3, our goal is to implement the electro-
magnetic Schrodinger equation in a quantum computer. In the next section, we proceed
to do that starting with optical media, extending to the dispersion case, and finally incor-
porating dissipation.

4.2 Non-dispersive media

In many applications, dispersion can be safely neglected if the electromagnetic waves
posses a very narrow frequency spectrum around a central value ω ≈ ω0 provided that,

d ˆ̃G(ω)

dω

∣∣∣
ω0
≈ 0. (4.11)

In Eq.(4.11) the operator ˆ̃G(ω) is the Fourier-transformed variant of the operator Ĝ∗.
The frequency window ω0± δω is referred as the transparency window. In such cases,
the action of the operator ĜA∗ in Eq.(4.8) can be neglected, and therefore the Maxwell
equations take the simplified form,

i
∂uuu
∂ t

= Ŵ−1M̂uuu. (4.12)

Before proceeding with any quantum implementation effort of the evolution of Maxwell
equations in Eq.(4.12) an important observation regarding the generator of dynamics
D̂ = Ŵ−1M̂ has to be made. Even though Ŵ−1 is Hermitian, the product D̂ = Ŵ−1M̂

is not generally Hermitian even for the trivial case of vacuum, (ε = ε0, µ = µ0) since
[Ŵ−1 M̂] ̸= 0. Therefore a suitable representation must be devised before constructing the
quantum algorithm.
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4.2.1 Homogeneous scalar media

In homogeneous media, the unitary evolution of Maxwell equations (4.12) can be re-
trieved using the Rieman-Silberstein-Weber (RSW) vector [103],

FFFRSW =
1√
2

(√
εEEE + i

BBB√
µ

)
, (4.13)

under which the Maxwell equations transforms into [104],

i
∂ |ψψψ⟩

∂ t
− vγ̂γγ · p̂pp |ψψψ⟩= 0, |ψψψ⟩=




−Fx + iFy

Fz

Fz

Fx + iFy



∈ C4. (4.14)

The quantum momentum operator p̂pp has its usual representation p̂pp=−i∇ and v= 1/
√

εµ

is the speed of light within the medium. In addition, the matrix vector γ̂γγ = (γ̂x, γ̂y, γ̂z)

contains the Dirac matrices

γ̂x =




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0



, γ̂y =




0 0 −i 0
0 0 0 −i

i 0 0 0
0 i 0 0



, γ̂z =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1



. (4.15)

The apparent similarity of Eq.(4.14) with the quantum-mechanical Dirac equation in
Eq.(3.25), (3.26) has led many authors to associate the RSW vector with the photon wave
function [103, 105–107]. The four-dimensional status of the state |ψψψ⟩ in Eq.(4.14) arises
from the inclusion of the Gauss laws ∇∇∇ ··· uuu = 0 into the construction of optical-Dirac
equation (4.14). This results in two linearly dependent entries Fz, as expected since the
divergence laws define the initial conditions (see the relevant discussion at the end of
Sec.4.1). From a computational standpoint, this unification of the evolution and Gauss’s
laws is advantageous because it ensures the divergence conditions are satisfied at each
step. Theoretically, the roots of the optical-Dirac equation in Eq.(4.14) lie in the Clifford
Geometric Algebra formulation of electromagnetism. For further details, the interested
reader is referred to Sec.4.3.3 and [108, 109].

Similarly with Sec.3.2.2, the unitary evolution Û of the optical Dirac equation (4.14)
in the x− y plane

Û(t) = exp{−itvγ̂γγ · p̂pp}, (4.16)

admits a QLA representation [91],

|ψψψ(t +∆t)⟩= V̂YV̂X |ψψψ(t +∆t)⟩ , (4.17)
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where the unitary operators V̂X , V̂Y are given in terms of an interleaved sequence of coin-
shift operators in an analogous way to Eq.(3.28), (3.29),

V̂X = Ŝ01
+XĈ†

X Ŝ01
−XĈX Ŝ23

−XĈ†
X Ŝ23

+XĈX Ŝ01
−XĈX Ŝ01

+XĈ†
X Ŝ23

+XĈX Ŝ23
−XĈ†

X , (4.18)

V̂Y = Ŝ23
+YĈ†

Y Ŝ23
−YĈY Ŝ01

−YĈ†
Y Ŝ01

+YĈY Ŝ23
−YĈY Ŝ23

+YĈ†
Y Ŝ01

+YĈY Ŝ01
−YĈ†

Y . (4.19)

Now there is only one collision/coin operator for each direction provided by the matrices,

ĈX =




cosθ 0 sinθ 0
0 cosθ 0 sinθ

−sinθ 0 cosθ 0
0 −sinθ 0 cosθ



, ĈY =




cosθ 0 isinθ 0
0 cosθ 0 isinθ

isinθ 0 cosθ 0
0 isinθ 0 cosθ



,

(4.20)
with rotation angle θ ∼ ε/4. On the other hand, the conditional action of the shift operator
Ŝqiq j
+X ,Y in respect to the qi,q j amplitudes has been provided in Eq.(3.21) along with the im-

plementation quantum circuit of Fig.3.2. Decomposing the collision operators Eq.(4.20)
into two-level rotations,

ĈX =




cosθ 0 sinθ 0
0 1 0 0

−sinθ 0 cosθ 0
0 0 0 1







1 0 0 0
0 cosθ 0 sinθ

0 0 1 0
0 −sinθ 0 cosθ



, (4.21)

ĈY =




cosθ 0 isinθ 0
0 1 0 0

isinθ 0 cosθ 0
0 0 0 1







1 0 0 0
0 cosθ 0 isinθ

0 0 1 0
0 isinθ 0 cosθ



, (4.22)

we can construct their explicit quantum circuit implementation as depicted in Fig.4.1.

Since the action of the collision operators is only local in the nq = 2-qubit register
that means that their implementation is accomplished through O(4) elementary gates.
Therefore, implementing the full unitary evolution Eq.(4.17) requires 16(n2

p +n2
q) single

qubit and CNOT gates. The latter implies that our algorithm scales quadratically with the
number of spatial qubits O(n2

p), rendering it implementable on present quantum hardware.

4.2.2 Extension to inhomogeneous and tensor media

4.2.2.1 Theoretical considerations

In contrast to establishing unitary evolution through the RSW vector for Maxwell equa-
tions in a homogeneous scalar medium, as illustrated in Sec.4.2.1, extending our consid-
erations to inhomogeneous and tensor media requires returning to the starting point of
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∑
q ψq |q⟩

Ẑ R̂y(2θ) R̂y(2θ) Ẑ

(a) Quantum circuit implementation of ĈX operator in
Eq.(4.21).

∑
q ψq |q⟩

Ẑ R̂x(2θ) R̂x(2θ) Ẑ

(b) Quantum circuit implementation of ĈY operator in
Eq.(4.22).

Figure 4.1: The quantum circuit implementation of the collision operators ĈX and ĈY in
Eq.(4.20).

Eq.(4.12) to establish the appropriate conditions for unitary evolution.

Rewriting Maxwell equations in a general tensor and inhomogeneous medium, we
have

i
∂uuu
∂ t

= Ŵ−1M̂uuu, Ŵ = Ŵ (rrr) =

[
ε̂(rrr) 03×3

03×3 µ̂(rrr)

]
, (4.23)

where ε̂ and µ̂ are the 3× 3 permittivity and permeability matrices. Next we define the
inner product,

⟨vvv|uuu⟩=
∫

V
vvv†(rrr, t)uuu(rrr, t)d rrr, V ⊂ R3, t ∈T = [0,T ], (4.24)

where uuu(rrr, t) and vvv(rrr, t) are two solutions of Eq.(4.23) within the bounded domain de-
fined by V . We now explicitly show that the Maxwell operator M̂ is Hermitian in the
assigned Hilbert space H = L2(V ⊂ R3,C),

〈
vvv
∣∣M̂uuu

〉
= i

∫

Ω

(
vvv∗1 · (∇∇∇×××uuu2)− vvv∗2 · (∇∇∇×××uuu1)

)
d3rrr

= i
∫

Ω

(
uuu2 · (∇∇∇××× vvv∗1)−uuu1 · (∇∇∇××× vvv∗2)

)
d3rrr+ i

∫

∂Ω

(
vvv∗1 · (n̂nn×uuu2)− vvv∗2 · (n̂nn×uuu1)

)
dA

=
〈
vvvM̂

∣∣uuu
〉
.

(4.25)
The transition from the second line of Eq.(4.25) to the desired result is due to the imposi-
tion of PEC boundary condition in Eq.(4.5). Thus, M̂ = M̂†.

Following [110], the electromagnetic energy density is defined as,

U(rrr, t) =
∫ t

0
uuu† ∂ddd(rrr,τ)

∂τ
dτ =

1
2

uuu†Ŵuuu+
∫ t

0
uuu†(rrr,τ) Ŵ A ∂uuu(rrr,τ)

∂τ
dτ, (4.26)

where Ŵ A =
(
Ŵ −Ŵ †)/2 is the anti-Hermitian part of Ŵ . Moreover, for a passive
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medium [110] it applies that,

U(rrr, t)≥ 0, ∀ rrr ∈ V . (4.27)

Then, from Eq.(4.26) it follows that Ŵ must be Hermitian and semi-positive definite,

Ŵ = Ŵ † and Ŵ ≥ 0. (4.28)

Therefore, the total integrated stored electromagnetic energy E in a volume V is,

E(t) =
1
2

∫

V
uuu† Ŵ uuu d3rrr ≥ 0. (4.29)

Integrating the Poynting theorem [101] over the V domain and making use of the diver-
gence theorem, we obtain,

∂E(t)
∂ t

+
∫

∂V
SSS · n̂nn(rrr) dA = 0, (4.30)

where dA is an elemental area on the surface ∂V , n̂nn is the outward pointing normal to ∂V

and SSS = uuu1× uuu2. From Eq.(4.30) and the PEC boundary condition (4.5) is follows that
E(t) is conserved,

E(t) = E(t = 0) =
∫

V
uuu†

0Ŵ (rrr)uuu0 d3rrr. (4.31)

As expected for a passive medium, there is no net dissipation or generation of electro-
magnetic energy within V .

Inspecting Eqs.(4.28), (4.29) and (4.31) it is evident that the operator Ŵ fulfills the
conditions of Eq.(3.3) for being a proper metric operator with Θ̂= Ŵ . Indeed, in a manner
analogous to Eq.(3.6),

D̂† = M̂Ŵ−1 = Ŵ Ŵ−1 M̂Ŵ−1 = Ŵ D̂Ŵ−1. (4.32)

Subsequently, the non-Hermitian operator D̂ in Hilbert space H becomes Hermitian in
the new weighted Hilbert space HW under the inner product ⟨vvv|uuu⟩W =

〈
vvv
∣∣Ŵuuu

〉
,

〈
vvv
∣∣D̂uuu

〉
W =

〈
vvv
∣∣M̂uuu

〉
=
〈
vvvM̂Ŵ−1Ŵ

∣∣uuu
〉

=
〈
vvvM̂Ŵ−1∣∣uuu

〉
W =

〈
vvvD̂

∣∣uuu
〉

W .
(4.33)

Harnessing the Dyson map concept from Sec.3.1.1, there is an operator η̂ : H →H

such that η̂†η̂ = Ŵ with its explicit form provided by the following decompositions [22]:

• Spectral decomposition:

Ŵ (rrr) = Û†
∆̂(rrr)Û = Û†

√
∆̂(rrr)

√
∆̂(rrr)))Û = η̂

†(rrr)η̂(rrr), (4.34)
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leading to the Dyson map,

η̂(rrr) =
√

∆̂(rrr)Û . (4.35)

• Square root decomposition:

Ŵ (rrr) = Ŵ 1/2(rrr)Ŵ 1/2(rrr) = η̂
†(rrr)η̂(rrr), (4.36)

with the corresponding Dyson map,

η̂(rrr) = Ŵ 1/2(rrr). (4.37)

• Cholesky decomposition:

Ŵ (rrr) = T̂ †(rrr)T̂ (rrr) = η̂
†(rrr)η̂(rrr), (4.38)

giving the Dyson map,
η̂(rrr) = T̂ (rrr). (4.39)

For the spectral decomposition Eq.(4.34), ∆̂(rrr) = λi(rrr)δi j (where no summation is im-

plied over repeated indices) with λ (rrr) > 0 and
√

∆̂(rrr) =
√

λi(rrr)δi j. For the Cholesky
decomposition Eq.(4.38), the T̂ matrix is an upper triangular matrix with positive diag-
onal elements. The specific choice of a Dyson map is determined by the decomposition
scheme leading to a sparse η̂ .

Applying the Dyson map to Maxwell equations in Eq.(4.23) we obtain a Hermitian
Schrodinger representation with an explicit unitary evolution,

i
∂ψψψ

∂ t
= η̂(rrr)D̂η̂

−1(rrr)ψψψ = D̂ηψψψ, ψψψ(rrr, t) = e−itD̂η ψψψ0 (rrr) , (4.40)

where ψψψ = ρ̂uuu ∈H , and D̂η = η̂(rrr)D̂η̂−1(rrr) is now Hermitian in H .

As an illustration of the explicit form of Hermitian structured Maxwell equations in
Eq.(4.40) we consider a non-magnetic, uniaxial dielectric medium,

ε̂(rrr) =




εx(rrr) 0 0
0 εx(rrr) 0
0 0 εz(rrr)


 , µ̂ = µ0I3×3. (4.41)

A useful choice for a sparse Dyson map is,

η̂ = Ŵ 1/2 =

[
ε̂1/2 03×3

03×3
√

µ0I3×3,

]
, (4.42)

54



where,

ε̂
1/2 (rrr) =




√
εx(rrr) 0 0
0

√
εx(rrr) 0

0 0
√

εz(rrr),


 . (4.43)

Then, the Hermitian generator of dynamics D̂η = η̂ D̂ η̂−1 reads,

D̂η =

[
03×3 icẐZZ · p̂pp
−icp̂pp · ẐZZ†

03×3

]
, (4.44)

where, in terms of the refractive index ni(rrr)=
√

εi(rrr)/ε0, the components of ẐZZ =(Ẑx, Ẑy, Ẑz)

are

Ẑx =




0 0 0

0 0 − i
nx (rrr)

0
i

nz
(rrr) 0



, Ẑy =




0 0
i

nx (rrr)
0 0 0

− i
nz (rrr)

0 0



, Ẑz =




0 − i
nx (rrr)

0

i
nx (rrr)

0 0

0 0 0



,

(4.45)
with nx =

√
εx/ε0 and nz =

√
εz/ε0 being the refraction indices in the x and z directions,

respectively, and, as before p̂pp =−i∇.

Applying the unitary operator L̂

L̂ =
1√
2

[
1 i

1 −i

]
, (4.46)

in Eq.(4.40) results,

i
∂

∂ t
L̂ψψψ =

(
L̂D̂η L̂−1) L̂ψψψ. (4.47)

Upon defining,

FFF±r = L̂ψψψ = L̂Ŵ 1/2uuu =
1√
2

(
ε̂

1/2(rrr)EEE ± i√
µ0

BBB
)
, (4.48)

the unitary evolution equation of Eq.(4.47) for a uniaxial anisotropic dielectric medium
takes on the form,

i
∂

∂ t

[
FFF+

r

FFF−r

]
= c

[
(ZZZ · p̂pp)H −(ZZZ · p̂pp)A

(ZZZ · p̂pp)A −(ZZZ · p̂pp)H

][
FFF+

r

FFF−r

]
. (4.49)

Here, the superscripts H and A represent the Hermitian and the anti-Hermitian parts of
the operators in the parentheses. The definition in Eq.(4.48) generalizes the notion of the
RSW vectors in Eq.(4.13) for an inhomogeneous and tensor dielectric medium.
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4.2.2.2 Quantum algorithm

Having established the proper theoretical framework for the unitary evolution of Maxwell
equation for non-dissipative inhomogeneous tensor media, we now proceed to construct
the QLA algorithm and its corresponding quantum circuit implementation. For a general
biaxial tensor dielectric, the state vector is given by:




nxEx

nyEy

nzEz

µ
1/2
0 Hx

µ
1/2
0 Hy

µ
1/2
0 Hz




=




ψ0

ψ1

ψ2

ψ3

ψ4

ψ5




= ψψψ, q = 0,1, ...,5. (4.50)

Assuming two-dimensional spatial dependence in the x-y plane, the decomposition of
the Maxwell-Schrodinger equation (4.40) into Cartesian components yields,

∂ψ0

∂ t
=

1
nx

∂ψ5

∂y
,

∂ψ1

∂ t
=

1
ny

∂ψ5

∂y
,

∂ψ2

∂ t
=

1
nz

[
∂ψ4

∂y
− ∂ψ3

∂x

]
,

∂ψ3

∂ t
=

∂ (ψ2/nz)

∂y
,

∂ψ4

∂ t
=

∂ (ψ2/nz)

∂x
,

∂ψ5

∂ t
=−∂ (ψ1/ny)

∂x
+

∂ (ψ0/nx)

∂ny
.

(4.51)

We discretize the two-dimensional space into a lattice with the spacing given by the or-
dering parameter O(δ ). Then, we define the unitary collision operators in the x and y

directions to be [95],

ĈX =




1 0 0 0 0 0
0 cosθ1 0 0 0 −sinθ1

0 0 cosθ2 0 −sinθ2 0
0 0 0 1 0 0
0 0 sinθ2 0 cosθ2 0
0 sinθ1 0 0 0 cosθ1




, (4.52)

ĈY =




cosθ0 0 0 0 0 sinθ0

0 1 0 0 0 0
0 0 cosθ2 sinθ2 0 0
0 0 −sinθ2 cosθ2 0 0
0 0 0 0 1 0

−sinθ0 0 0 0 0 cosθ0




. (4.53)

In addition, to complete the walking process in the spatial {|p⟩} register, we define the
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swift operator Ŝqiq j to denote a unitary streaming operator which shifts the amplitudes ψqi

and ψq j one lattice unit along x and one lattice along y directions while leaving all the
other amplitudes unaffected. Then, the QLA sequence along each direction to retrieve
Eq.(4.51) without the refractive index derivatives is then given by:

ÛX = Ŝ+x
25 Ĉ†

X Ŝ−x
25 ĈX Ŝ−x

14 Ĉ†
X Ŝ+x

14 ĈX Ŝ−x
25 ĈX Ŝ+x

25 Ĉ†
X Ŝ+x

14 ĈX Ŝ−x
14 Ĉ†

X ,

ÛY = Ŝ+y
25 Ĉ†

Y Ŝ−y
25 ĈY Ŝ−y

03 Ĉ†
Y Ŝ+y

03 ĈY Ŝ−y
25 ĈY Ŝ+y

25 Ĉ†
Y Ŝ+y

03 ĈY Ŝ−y
03 Ĉ†

Y .
(4.54)

The terms in Eq.(4.51) that contain the derivatives of the refractive index are recovered
through the following potential operators,

V̂X =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 −sinβ2 0 cosβ2 0
0 sinβ0 0 0 0 cosβ0




(4.55)

and

V̂Y =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 cosβ3 sinβ3 0 0

−sinβ1 0 0 0 0 cosβ1



. (4.56)

The angles θ0, θ1, θ2, β0, β1, β2, and β3 that appearing in Eqs.(4.52), (4.53), (4.55), and
(4.56) are chosen appropriately, such that the discretized system reproduces Eq.(4.51) to
order δ 2 [95]. Thus, the evolution of the state vector |ψψψ⟩ from time t to t +∆t is given by,

|ψψψ(t +∆t)⟩= V̂YV̂XÛYÛX |ψψψ(t)⟩ . (4.57)

Although we have proven that the continuous time evolution of the quantum repre-
sentation of Maxwell equations, Eq.(4.51), is unitary, in the presented O(δ 2) discrete-
time scheme, the external potential operators V̂X ,V̂Y are not unitary. This stems from the
fragility of the unitary structure in perturbative schemes that do not employ Trotterization.

Using the quantum encoding in Eq.(3.18) and the two-level decomposition of ĈX and
ĈY matrices [93], their quantum circuit implementation is presented in Fig.4.2, whereas
the streaming operators in each direction follow the implementation in Fig.3.2. The im-
plementation scaling of the collision operators ĈX and ĈY is constant due to the locality
of the operators in the {|q⟩} register. However, because the angles θ0,θ1,θ2,

θ0 =
δ

4nx
, θ1 =

δ

4ny
, θ2 =

δ

4nz
(4.58)

57



∑
q ψq |q⟩

Ry(2θ1) Ry(2θ2)

(a) Quantum circuit implementation of ĈX operator in Eq.(4.52).
The spatial dependence has been suppressed for simplicity.

∑
q ψq |q⟩

Z Ry(2θ0) Z

Z Ry(2θ2) Z

(b) Quantum circuit implementation of ĈY operator in Eq.(4.53). The spatial de-
pendence has been suppressed for simplicity

Figure 4.2: The quantum circuit implementation of the collision operators ĈX and ĈY in
Eqs.(4.52) and (4.53).

are spatially dependent on the refractive index, the overall implementation cost for apply-
ing the collision operators in each lattice node is O(2np). However, for physical appli-
cations, particularly relevant to electromagnetic wave scattering from inhomogeneities,
these scattering structures are usually localized enabling us to reduce the encoding cost of
the collision operators to O[poly(np)]. Taking into consideration the quadratic implemen-
tation scaling of streaming operator Ŝ in Fig.3.2 results into a polynomial implementation
scaling O[poly(np)] for the unitary sequence in Eq.(4.57).

Turning our attention to the implementation of the non-unitary operators V̂X and V̂Y

in Eqs.(4.55) and (4.55), these are sparse matrices and can be decomposed into a sum of
four unitary terms, respectively.

V̂X ,Y =
1
2

3

∑
j=0

ˆ̃VjX ,Y , (4.59)
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with the unitary operators ˆ̃Vj to be defined as

ˆ̃V0X = ˆ̃V0Y = I6×6,

ˆ̃V1X =




−1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1




, ˆ̃V1Y =




1 0 0 0 0 0

0 −1 0 0 0 0

0 0 1 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1




,

ˆ̃V2X =




1 0 0 0 0 0

0 cosβ0 0 0 0 −sinβ0

0 0 cosβ2 0 sinβ2 0

0 0 0 1 0 0

0 0 −sinβ2 0 cosβ2 0

0 sinβ0 0 0 0 cosβ0




, ˆ̃V2Y =




cosβ1 0 0 0 0 sinβ1

0 1 0 0 0 0

0 0 −sinβ3 cosβ3 0 0

0 0 cosβ3 sinβ3 0 0

0 0 0 0 1 0

−sinβ1 0 0 0 0 cosβ1




,

ˆ̃V3X =




1 0 0 0 0 0

0 −cosβ0 0 0 0 sinβ0

0 0 −cosβ2 0 −sinβ2 0

0 0 0 1 0 0

0 0 −sinβ2 0 cosβ2 0

0 sinβ0 0 0 0 cosβ0




, ˆ̃V3Y =




−cosβ1 0 0 0 0 −sinβ1

0 1 0 0 0 0

0 0 sinβ3 −cosβ3 0 0

0 0 cosβ3 sinβ3 0 0

0 0 0 0 1 0

−sinβ1 0 0 0 0 cosβ1




.

(4.60)

As a result, the product structure of evolution in Eq. (4.57) now turns into a weighted
sum of unitary operators,

Ûev =
1
4

3

∑
j,k

ˆ̃VjX
ˆ̃VkYÛXÛY =

( 15

∑
m=0

Ûm

)
ÛXÛY . (4.61)

that can naturally implemented through the LCU method. Specifically, following the
LCU implementation process described in Sec.3.3.1, we consider an ancillary register of
nm = log2 16 = 4 qubits and define the following operators:

Ûselect =
15

∑
m=0
|m⟩⟨m|⊗Ûm

Ûprep : |0⟩⊗nm → 1
4

15

∑
m=0
|m⟩ .

(4.62)

Unitary operator Ûprep represents state preparation in the ancillary register whereas im-
plementation of operator Ûselect is similar to those presented in Fig.4.2 because Ûm are
composed of dual combinations of two-level matrices Eq.(4.60), containing rotations and
X̂ , Ẑ Pauli gates.
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Applying the sequence ÛprepÛselectÛ†
prep we obtain the desired evolution, in accor-

dance to Eq.(3.37) with success probability psuccess ∼ 1/16. This concludes the imple-
mentation process of evolution in Eq.(4.57) using O[poly(np)] single qubit and CNOT
gates.

On a final note, let us explore a potential quantum advantage of the QLA over the con-
ventional Finite Difference Time Domain (FDTD) classical algorithm, which originated
from the seminal work of Yee [111] for scalar media and was later extended to general
dielectric tensor media in [112]. For a biaxial dielectric medium, the Yee FDTD algo-
rithm updates the uuu electromagnetic fields in a staggered lattice. Thus, for a x− y lattice
consisting of NxNy nodes the number of operations for evolving the field in a time step
∆t asymptotically scales as O(NxNy). Conversely, for the QLA, we have shown that by
leveraging the quantum walking process on a collocated lattice, the scaling for the same
number of lattice nodes is O[poly(log(NxNy))]. For simplicity, assuming Nx =Ny, an indi-
cating measure of potential quantum speedup S1 is the ratio between the implementation
cost of the FDTD algorithm and the quantum algorithm [113],

S1 = lim
N→∞

∑
M
k ak logk N

N2 = lim
N→∞

aM logM N
N2 ∼ lim

N→∞

M!
N2 . (4.63)

Here, M is the degree of the polynomial that characterizes the complexity in terms of
resources of the quantum algorithm.

Equation (4.63) suggests that there is a possible exponential quantum speed-up of
the QLA compared with the FDTD algorithm. In addition, even in the non-asymptotic
regime, the QLA maintains an advantage over the FDTD method when the degree M,
which reflects the locality of the scatterer, satisfies the condition M! << N2. This con-
dition ensures the computational implementation cost of the quantum algorithm remains
significantly lower than that of the classical method for practical problem sizes.

4.2.2.3 Simulation results

To showcase what we expect to obtain from this quantum algorithmic process described
thus far, as well as to benchmark the capabilities of the QLA we examine a 2D x− y

scattering of a wave-packet from scalar but non-dispersive localized inhomogeneities
with refractive index n = n(x,y), as displayed in Fig.4.3. The shape of the inhomo-
geneities, can be either a cylinder or a cone. The initial electromagnetic wave-packet
uuu0 = (Ez0(x),−By0(x))T is a Gaussian envelope with internal oscillations, Fig.4.3b. The
wave-packet propagates in the x-direction, from a vacuum n = 1 towards a localized di-
electric inhomogeneous object with nmax(x,y) = 2. This polarization satisfies the initial
divergence conditions. As the 1D vacuum wave-packet interacts with the 2D refractive in-
dex of the dielectric. the By field now becomes 2D, with By(x,y, t). This self-consistently
generates a Bx(x,y, t) so that ∇ ·BBB = 0 as well as a 2D Ez(x,y, t). Throughout the QLA
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(a)

(b)

Figure 4.3: Two different inhomogeneity refractive index profiles 1≤ n(x,y)≤ 2 and the
electric field Ez0(x) of the incident wave-packet. The cylinder dielectric has strong spatial
gradient near the vacuum-dielectric interface, while the conic dielectric has very weak
spatial gradients. In Fig.4.3a these two profiles are shown superimposed. In Fig.4.3b the
conic dielectric is shown together with the incident wave-packet (arbitrary normalization).

scattering simulation, ∇ ·BBB is monitored and is non-zero in very small isolated spatial re-
gions with some time instants in which maxx,y|∇ ·BBB/BBB000| ≤ 0.006. ∇ ·DDD is identically zero
throughout the simulation. (For initial Ey0(x)-polarization, 2D QLA simulations retain
∇ ·BBB = 0 identically zero for all time.)

In Fig.4.4, the wave-packet has interacted with the dielectric objects. The viewpoint
is looking down from the z axis onto the x− y plane. The apex of the cone is seen as
a white dot, while the interior of the dielectric cylinder is in a somewhat darker color
than the surrounding vacuum. In the case of a dielectric cone, Fig.4.4a, there is a mild
slowing down of that part of the packet that is around the apex of the cone - since the phase
velocity is reduced to c/n(x,y). But, more importantly, one does not see any reflected part
of the packet from the slowly varying boundary region between vacuum and dielectric.
Basically the propagation is Wentzel–Kramers–Brillouin (WKB)-like. On the other hand,
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there are immediate reflection fronts emitted back into the vacuum from the interaction
of the wave-packet’s oscillation peaks with the steep refractive index gradients in the
boundary region of vacuum and cylinder dielectric, Fig.4.4b. There is also considerable
retardation in the oscillation peaks within the dielectric cylinder as the refractive index
away from the boundaries are n = 2. As mentioned earlier, the transmitted component of

(a) (b)

Figure 4.4: QLA scattering simulation of z-component of an electromagnetic pulse, Ez0
off a dielectric inhomogeneity in the shape of a cone (Fig.4.3a), versus a cylindrical di-
electric (Fig.4.3b). The perspective is looking down the z-axis onto the x-y plane. The
full-wave simulation for the wave-cylinder encounter reveals strong initial reflection phe-
nomena whereas the reflection is very weak in the cone case. This differentiation in the
wave behavior is directly related to the steepness of the inhomogeneity gradient. The
weak reflected wave from the cone corresponds to asymptotic WKB type of solution.

the initial wave-packet propagates into the respective dielectrics with phase velocity

vph =
c

n(x,y)
(4.64)

because there is no dispersion in the media. However, the wave crests and the envelope
along the y-direction possess different phase velocities during their propagation in the
dielectric resulting in a lag between the interior and outer wave components. Ultimately,
both dielectrics act as a focusing lens for the transmitted wave inside them. This latter
behavior is clearly depicted in Fig.4.5.

As the bounded modes within the dielectric approach the vacuum boundary, the rapid
change in the cylindrical dielectric object produces a secondary internal reflection that
propagates back inside the cylinder. For the cone case, the slowly varying transition be-
tween the different regions contributes a negligible secondary reflection. Those secondary
reflections, along with the secondary propagating wave-fronts in the vacuum region are
presented in Fig.4.6.

The back and forth succession from Fig.4.6 to Fig.4.4 through higher order internal
reflections in the cylindrical dielectric results in a radiating temporal pattern. It should
be reminded that the presented algorithmic process is an initial value solver giving the
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(a) (b)

Figure 4.5: The propagation of the transmitted wave within the conical and cylindrical
dielectrics. The wave propagation is now distorted because the initial wave crests along
the y axis diffract on the dielectric boundary. In both cases, Figs.4.5a, 4.5b, transmitted
bounded modes are observed towards the exit point to vacuum.

(a) (b)

Figure 4.6: The absence of internal reflections from the conical dielectric Fig.4.6a versus
the internal reflections from the cylindrical dielectric Fig.4.6b. Similar to the behavior
of the primary reflections in Fig.4.4 the inhomogeneity gradient of the dielectrics plays a
pivotal role on the strength of the internal reflection.

temporal (and transient) evolution of the scattered field without the introduction of any
internal boundary conditions to handle vacuum-dielectric effects. Most importantly, the
simulations reveal that the QLA accurately grasps the interconnection of the transient
behavior of waves with the inhomogeneity profile.

In all simulations, the total energy is conserved to the seventh significant digit. A
numerical study of errors with respect to spatial resolution was performed in [71]. It
indeed verified that the QLA performs better than 2nd order accuracy. This scaling was
further verified in [114] for spinor Bose-Einstein Condensates. Finally, simulation results
for scattering of Gaussian pulses from biaxial media can be found in [95].
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4.3 Dispersive media and plasmas

In this section, we build upon the considerations for the non-dispersive media by pre-
senting the theoretical framework for transforming the dispersive Maxwell equations
Eq.(4.10) into a Hermitian structured Schrodinger representation for conservative dis-
persive media like scalar Lorentz media and gyrotropic media such as cold magnetized
plasmas. Finally, we will examine the effect of dissipation in its simplest form, utilizing
the LCU method and dilation techniques as outlined in Secs 3.3.1 and 3.3.2.

It is important to emphasize that the authors of Refs.[115–117] have demonstrated that
Maxwell equations in passive, dissipative, and dispersive media can be formulated within
a Hermitian Schrodinger framework. This is accomplished by extending the Hilbert space
of the primary electromagnetic fields EEE,HHH with an appropriate set of auxiliary fields, de-
rived using functional analysis techniques. However, the resulting Hermitian generator of
dynamics operator D̂ has a complex structure rendering it unsuitable for implementation
of the underlying dynamics on a quantum computer. Therefore, a quantum representa-
tion of Maxwell equations that aligns with the principles of quantum information science
(QIS) is required for their implementation in lossy and dispersive media.

For the cases of conservative Lorentz and gyrotropic media, following [117], we will
formulate a quantum Schrodinger equation representation of classical Maxwell equations
by introducing auxiliary electromagnetic fields related to the wave polarization and to the
polarization density current.

4.3.1 Lorentz media

Lossless, scalar, and dispersive Lorentz media are characterized by scalar permittivity and
permeability. Their general constitutive relations in the frequency domain are described
as follows [117]:

ε̃(rrr,ω) = ε0

(
1+

Ne

∑
l=1

Ω2
e,l(rrr)

ω2
e,l(rrr)− iγe,l(rrr)ω−ω2

)
, (4.65)

µ̃(rrr,ω) = µ0

(
1+

Nm

∑
l=1

Ω2
m,l(rrr)

ω2
m,l(rrr)− iγm,l(rrr)ω−ω2

)
. (4.66)

Equations (4.65) and (4.66) describe the phenomenological Lorentz oscillator response
model of bound charges in materials. Ωe and Ωm are the characteristic frequencies of the
oscillator, whereas ωe, ωm are the resonant frequencies. The high frequency response of
the medium is that of the vacuum with permittivity ε0 and permeability µ0. Finally, the
γe,l(rrr), γm,l(rrr)≥ 0 are the relaxation-dissipation rates. If γe = 0 and γm = 0, the medium
is dispersive but lossless and for ωe = 0 and ωm = 0, we retrieve the Drude model for
a simple metal. The connection between the susceptibility kernel Ĝ in Eq.(4.7) and the
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constitutive relations Eqs.(4.65), (4.66) in the frequency domain is,

Ĝ(rrr, t) =
1

2π

∫
∞

−∞

[
ε(rrr,ω)− ε0 0

0 µ(rrr,ω)−µ0

]
e−iωt dω. (4.67)

Treating the lossless case we introduce the following auxiliary fields [117],

Pl(rrr, t) =
1

2π

∫ t

0

∫
∞

−∞

e−iω(t−τ)

ω2
e,l−ω2 EEE(rrr,τ)d ωd τ, (4.68)

and

Ml(rrr, t) =
1

2π

∫ t

0

∫
∞

−∞

e−iω(t−τ)

ω2
m,l−ω2 HHH(rrr,τ)d ωd τ, (4.69)

which are related to the electric PPP and magnetic MMM polarizability of the medium,

PPP(rrr, t) = ε0

Ne

∑
l=1

Ω
2
e,lPl, MMM(rrr, t) = µ0

Nm

∑
l=1

Ω
2
m,lMl. (4.70)

Maxwell equations (4.8), together with the evolution equations for the auxiliary fields in
Eqs.(4.68), (4.69) result in the following closed system of partial differential equations,

i
∂uuu
∂ t

= Ŵ−1
0 M̂uuu− i

N

∑
l=1

Ω̂
2
l Pl,t ,

i
∂Pl

∂ t
= iPl,t , l = 1,2...N,

i
∂Pl,t

∂ t
= iuuu− iω̂2

l Pl, l = 1,2...N,

(4.71)

where uuu = (EEE,HHH)T , Pl = (Pl,Ml)
T , N = max{Ne,Nm} and the matrices Ω̂2

l and ω̂2
l are

diagonal of the form,

Ω̂
2
l =

[
Ω2

e,l 0

0 Ω2
m,l

]
, ω̂

2
l =

[
ω2

e,l 0

0 ω2
m,l

]
. (4.72)

Upon applying the Dyson transform [93],

η̂ = diag(Ŵ 1/2
0 ,Ŵ 1/2

0 Ω̂lω̂l,W
1/2
0 Ω̂l), (4.73)

to Eq.(4.71), we obtain a Hermitian Schrodinger representation of the extended Maxwell
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system of equations,

i
∂

∂ t




Ŵ 1/2
0 uuu

Ŵ 1/2
0 Ω̂lω̂lPl

W 1/2
0 Ω̂lPl,t


=




cM̂ 0 −iΩ̂l

0 0 iω̂l

iΩ̂l −iω̂l 0







W 1/2
0 uuu

Ŵ 1/2
0 Ω̂lω̂lPl

W 1/2
0 Ω̂lPl,t


 ,

l = 1,2, ...,N,

(4.74)

where c = (ε0µ0)
−1/2 is the speed of light in vacuum. The evolution equation (4.74) can

be compactly written as,

i
∂ψψψ

∂ t
= D̂ψψψ, D̂ = D̂†, (4.75)

with initial condition ψψψ0 = (Ŵ 1/2
0 uuu0,0,0)T with uuu0 = (EEE0,HHH0)

T being the initial elec-
tromagnetic field quantities. Equation (4.75) is called the Schrodinger representation of
Maxwell equations for dispersive media due to its quantal form similar in mathematical
properties to Schrodinger equation. The state vector ψψψ includes all the physically rele-
vant electromagnetic fields that are necessary to understand propagation and scattering of
waves in a lossless Lorentz medium. A generalization of Eq.(4.74) to a tensor Lorentz
medium can be found in [118].

The unitary evolution described by Eq.(4.75) leads to conservation of the extended
electromagnetic energy Etotal which corresponds to the norm of the state vector, ∥ψψψ∥2

Etotal(t) =
1
2
∥ψψψ∥2 =

1
2

Ŵ0

∫

V
∥uuu∥2d rrr

+
1
2

Ŵ0

N

∑
l=1

∫

V
Ω̂

2
l

(
ω̂

2
l ∥Pl∥2 +

∥∥Pl,t
∥∥2
)

d rrr.
(4.76)

The first term on the right hand side of Eq.(4.76) the electromagnetic energy of the vac-
uum,

Eel(t) =
1
2

∫

Ω

ε0

(
∥EEE∥2 +µ0∥HHH∥2

)
d rrr ≤ Etotal(0) = Eel(0). (4.77)

The Energy expression in Eq.(4.76) holds beyond the plane-wave, harmonic and semi-
harmonic approximations for the fields, as imposed by Landau and Brillouin [98].

4.3.2 Cold magnetized plasmas

On the other hand, gyrotropic media such as cold magnetized plasmas are tensor dielectric
dispersive media. This translates into a frequency dependent permittivity matrix ε̃(ω).
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Following the Stix notation [14],

ε̃(ω) =




S −iD 0
iD S 0
0 0 P


 , µ = µ0. (4.78)

with

S =ε0

(
1− ∑

j=i,e

ω2
p j

ω2−ω2
c j

)

D =ε0 ∑
j=i,e

ωc jω
2
p j

ω(ω2−ω2
c j)

(4.79)

P =ε0

(
1− ∑

j=i,e

ω2
p j

ω2

)
.

of the Stix permittivity tensor are defined for a two-species plasma consisting of ions
(i) and electrons (e). The plasma features an inhomogeneous plasma frequency ω2

p j(rrr) =
n j(rrr)q2

j
m jε0

and cyclotron frequency ωc j =
q jB0
m j

. The homogeneous magnetic field B0 is aligned
along the z axis with m j and q j the mass and charge of the j-species respectively. Finally,
n j(r) represents the jth species number density.

Calculating the integral transformation of Eq.(4.67) for the Stix permittivity tensor in
Eq.(4.78) we obtain the electric susceptibility kernel K̂e(rrr, t) (see Eq.(4.7)),

K̂e(rrr, t) = ε0 ∑
j=i,e




ω2
p j

ωc j
sinωc jt

ω2
p j

ωc j
(cosωc jt−1) 0

ω2
p j

ωc j
(1− cosωc jt)

ω2
p j

ωc j
sinωc jt 0

0 0 ω2
p jt


 . (4.80)

Thus, the ĜA kernel in Eq.(4.9) reads,

ĜA =

[
1
ε0

∂ K̂e

∂ t 03×3

03×3 03×3

]
,

1
ε0

∂ K̂e

∂ t
= ∑

j=i,e
ω

2
p j(rrr)




cosωc jt −sinωc jt 0
sinωc jt cosωc jt 0

0 0 1


 . (4.81)

Since ε̃(ω) in Eq.(4.78), is Hermitian, this ensures that the conductivity current does
not produce dissipation inside the plasma, i.e. the cold magnetized plasma behaves as
a lossless dispersive dielectric. As a result, based on the considerations on Sec.3.1.1 it
is possible to construct a Schrodinger representation of Maxwell equations that admits
unitary evolution, corresponding to the conservation of electromagnetic energy.
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Similarly to Eq.(4.68), defining the total conductivity current density JJJc as

JJJc =
∫ t

0

∂ K̂
∂ t

EEE(rrr,τ)d τ = JJJce + JJJci, (4.82)

and exploiting the rotational symmetry of ∂ K̂e

∂ t in Eq.(4.81) to reformulate Maxwell equa-
tions as

i
∂EEE
∂ t

=
i

ε0
∇×HHH− i

ε0
JJJc,

i
∂HHH
∂ t

=− i
µ0

∇×EEE, (4.83)

i
∂JJJc j

∂ t
= iε0ω

2
p j(rrr)EEE +ωc jŜzJJJc j, j = i,e.

The set of equations in Eq.(4.83) represents the augmented Maxwell system, which self-
consistently describes the behavior of electromagnetic fields within a cold magnetized
plasma. We point out that Eq.(4.83) forms the basis for finite-difference time-domain
(FDTD) simulations [119, 120]. The Hermitian matrix Ŝz given by,

Ŝz =




0 −i 0
i 0 0
0 0 0


 (4.84)

represents the projection of spin-1 onto the z-axis.

Once again, to obtain an explicit Schrodinger representation of Eq.(4.83) we apply a
Dyson transformation [93] to Eq.(4.83),

η̂ = diag(ε1/2
0 I3×3,µ

1/2
0 I3×3,

1

ε
1/2
0 ωpi

I3×3,
1

ε
1/2
0 ωpe

I3×3) (4.85)

resulting into

i
∂

∂ t




ε
1/2
0 EEE

µ
1/2
0 HHH
1

ε
1/2
0 ωpi

JJJci

1
ε

1/2
0 ωpe

JJJce



=




03×3 ic∇∇∇××× −iωpi −iωpe

−ic∇∇∇××× 03×3 03×3 03×3

iωpi 03×3 ωciŜz 03×3

iωpe 03×3 03×3 ωceŜz







ε
1/2
0 EEE

µ
1/2
0 HHH
1

e1/2
0 ωpi

JJJci

1
e1/2

0 ωpe
JJJce



⇔ i

∂ψψψ

∂ t
= D̂ψψψ,

(4.86)
or compactly,

i
∂ψψψ

∂ t
= D̂ψψψ, D̂ = D̂†. (4.87)

Equation (4.86) can be easily extended to incorporate different ions species by adding
the respective ion-species current components in the stave vector ψψψ . In realistic fusion
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experiments there will be hydrogen, deuterium and tritium ions, so their contribution must
be included in Eq.(4.86) for a complete description of the total inhomogeneity profiles.

Similarly with Eq.(4.76), the evolution operator Û = e−itD̂ of Eq.(4.87) is unitary and
corresponds to the conservation of an extended electromagnetic energy E(t) through the
inner product,

E(t) = ⟨ψψψ|ψψψ⟩=
∫

V

(
ε0|EEE|2 +

|BBB|2
µ0

)
d rrr+

∫

V

( |JJJci|2
ε0ω2

pi(r)
+
|JJJce|2

ε0ω2
pe(r)

)
d rrr

= E(0) =
∫

V

(
ε0|EEE0|2 +

|BBB0|2
µ0

)
d rrr, V ⊂ R3.

(4.88)

The extended electromagnetic energy Eq.(4.88) consists of two terms. The first term is
the standard electromagnetic energy in a vacuum whereas the second term reflects the
energy associated with the cold plasma response. We have denoted with EEE0 and BBB0 the
initial values of the electromagnetic fields. Notice that due to the causality constraint in
the plasma response, the initial values of the conductivity currents according to Eq.(4.82)
are zero, JJJce,i(t ≤ 0) = 0.

4.3.2.1 Quantum algorithm

To construct a quantum walk algorithm for simulation of Eq.(4.86) we must first decom-
pose the generator of dynamics D̂ into simpler parts [94],

D̂ = D̂vac + ∑
j=i,e

[D̂ωp j + D̂ωc j ], (4.89)

with
D̂vac =−

c
2
(I2×2 + Ẑ)⊗ Ŷ ⊗∇∇∇×××

D̂ωpi =
1
2

Ŷ ⊗ (I2×2 + Ẑ)⊗ωpi

D̂ωpe =
1
2
(X̂⊗ Ŷ + Ŷ ⊗ X̂)⊗ωpe

D̂ωci =
1
4
(I2×2− Ẑ)⊗ (I2×2 + Ẑ)⊗ωciŜz

Dωce =
1
4
(I2×2− Ẑ)⊗ (I2×2− Ẑ)⊗ωceŜz.

(4.90)

Given the operators in Eq.(4.89), the assigned task is to recover them to order δ 2,
through a quantum walk in a x− y lattice with discretization step δ . The amplitude or
coin register {|q⟩} is 12-dimensional, hence the number of particles-walkers corresponds
to nq = 4 qubits. Using the 12-dimensional canonical representation [121] for 4 qubits we
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assign quantum to classical amplitudes and states in the following manner:

ψ0↔ Ex→ |q = 0⟩ ↔ |0000⟩
ψ1↔ Ey→ |q = 1⟩ ↔ |0100⟩
ψ2↔ Ez→ |q = 2⟩ ↔ |0101⟩
ψ3↔ Hx→ |q = 3⟩ ↔ |0110⟩
ψ4↔ Hy→ |q = 4⟩ ↔ |1000⟩
ψ5↔ Hz→ |q = 5⟩ ↔ |1001⟩
ψ6↔ Jcix→ |q = 6⟩ ↔ |1010⟩
ψ7↔ Jciy→ |q = 7⟩ ↔ |1011⟩
ψ8↔ Jciz→ |q = 8⟩ ↔ |1100⟩
ψ9↔ Jcey→ |q = 9⟩ ↔ |1101⟩
ψ10↔ Jcey→ |q = 10⟩ ↔ |1110⟩
ψ11↔ Jcez→ |q = 11⟩ ↔ |1111⟩

(4.91)

Thus, the interior ”spin” state of the walkers in this 12-dimensional subspace HC is

∣∣ψq
〉
= ∑

q
ψq |q⟩ . (4.92)

The walk between the N = NxNy nodes for the x− y lattice is realized by introducing the
np = log2 N qubit HS space in which the swift/streaming operator acts controlled by the
spin space. Therefore, the total plasma state reads,

|ψ(t)⟩= ∑
q,p

ψq,p(t) |q⟩⊗ |p⟩ . (4.93)

The QLA evolution of the state is,

|ψ(t +∆t)⟩= V̂peV̂piV̂ceV̂ciÛYÛX |ψ(t)⟩+O(δ 4), (4.94)

where the participating operators in evolution Eq.(4.94) are all unitary to order O(δ 4).
The ÛX and ÛY operators recover differential D̂vac operator in Eq.(4.90) following the
same sequence as in Eq.(4.54) since its action regards only the {q0−q5} subspace. There-
fore,

ÛX = Ŝ+x
25 Ĉ†

X Ŝ−x
25 ĈX Ŝ−x

14 Ĉ†
X Ŝ+x

14 ĈX Ŝ−x
25 ĈX Ŝ+x

25 Ĉ†
X Ŝ+x

14 ĈX Ŝ−x
14 Ĉ†

X ,

ÛY = Ŝ+y
25 Ĉ†

Y Ŝ−y
25 ĈY Ŝ−y

03 Ĉ†
Y Ŝ+y

03 ĈY Ŝ−y
25 ĈY Ŝ+y

25 Ĉ†
Y Ŝ+y

03 ĈY Ŝ−y
03 Ĉ†

Y .
(4.95)

Consequently, the participating unitary 12-dimensional coin/collision operators ĈX and
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ĈY are the 12-dimensional variants of Eqs. (4.52) and (4.53) respectively,

ĈX =

[
Ĉx 06×6

06×6 I6×6

]
, Ĉx =




1 0 0 0 0 0
0 cosθ 0 0 0 −sinθ

0 0 cosθ 0 −sinθ 0
0 0 0 1 0 0
0 0 sinθ 0 cosθ 0
0 sinθ 0 0 0 cosθ




, (4.96)

and

ĈY =

[
Ĉy 06×6

06×6 I6×6

]
, Ĉy =




cosθ 0 0 0 0 sinθ

0 1 0 0 0 0
0 0 cosθ sinθ 0 0
0 0 −sinθ cosθ 0 0
0 0 0 0 1 0

−sinθ 0 0 0 0 cosθ




, (4.97)

with rotation angle θ ∼ cδ/4. The quantum circuit implementation of the non-trivial
part Ĉx and Ĉy is analogous with the ones presented in Fig.4.1 but for a 4-qubit {|q⟩}
register. For completeness, we provide their implementation in Fig.4.7. As a reminder,

∑
q ψq |q⟩

R̂y(2θ) R̂y(2θ)

(a) Quantum circuit implementation of ĈX operator in Eq.(4.96). The
spatial dependence has been suppressed for simplicity.

∑
q ψq |q⟩

ˆ̃Ry(2θ)

ˆ̃Ry(2θ)

(b) Quantum circuit implementation of ĈY operator in Eq.(4.97).
The spatial dependence has been suppressed for simplicity and
the single qubit rotation ˆ̃Ry is ˆ̃Ry = ẐR̂yẐ

Figure 4.7: The quantum circuit implementation of the collision operators ĈX and ĈY in
Eqs.(4.96) and (4.97) in the {|q⟩} register.
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the implementation cost of streaming operator Ŝ in the {|p⟩} register is O(n2
p) and the

respective quantum circuit implementation has been presented in Fig.3.2. The streaming
operator is a controlled operator Ŝqiq j ,

Ŝqiq j = |qi⟩⟨qi|⊗ Ŝ+
∣∣q j

〉〈
q j
∣∣⊗ Ŝ, Ŝ |p⟩= |p+1⟩ , Ŝ† |p⟩= |p−1⟩ . (4.98)

To recover the non-differential terms associated with the diagonal magnetic cyclotron
terms (see the underline structure of operators D̂ωci,e in Eq.(4.90)), we define the V̂ci,e

operators,

V̂ci =

[
I6×6 06×6

06×6 v̂ci

]
, V̂ce =

[
I6×6 06×6

06×6 v̂ce

]
, (4.99)

with

v̂ci =




cosθci −sinθci 0 0 0 0
sinθci cosθci 0 0 0 0

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




, v̂ce =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 cosθce −sinθce 0
0 0 0 sinθce cosθce 0
0 0 0 0 0 1




.

(4.100)
The rotation angles now read θci,e ∼ δ 2ωci,e. For simplicity we assume homogeneous
magnetic field so ωci,e = constant. The implementation of these rotations in the amplitude
register is very simple and the quantum circuit for the product V̂ceV̂ci is depicted in Fig.4.8.

∑
q ψq |q⟩

R̂y(2θci) R̂y(2θce)

Figure 4.8: Quantum circuit implementation of the product V̂ceV̂ci in the {|q⟩} coin regis-
ter. The spatial dependence has been suppressed for simplicity.

Finally, moving on to the off-diagonal plasma frequency terms, we define

V̂pi =




cosθpe 03×3 −sinθpi 03×3

03×3 I3×3 03×3 03×3

sinθpi 03×3 cosθpi 03×3

03×3 03×3 03×3 I3×3



, V̂pe =




cosθpi 03×3 03×3 −sinθpe

03×3 I3×3 03×3 03×3

03×3 03×3 I3×3 03×3

sinθpe 03×3 0 cosθpe



,

(4.101)
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with θpi,e ∼ δ 2ωpi,e and the respective cos,sin elements in Eq.(4.101) are diagonal 3×
3 matrices. The quantum circuit implementation of the V̂pi,e matrices of Eq.(4.101) is
illustrated in Fig.4.9.

∑
q ψq |q⟩

R̂y(2θpi) R̂y(2θpi) R̂y(2θpi)

(a) Quantum circuit implementation of V̂pi operator in Eq.(4.101). The spatial dependence
has been suppressed for simplicity.

∑
q ψq |q⟩

R̂y(2θpe) R̂y(2θpe) R̂y(2θpe)

(b) Quantum circuit implementation of V̂pe operator in Eq.(4.101). The spatial de-
pendence has been suppressed for simplicity.

Figure 4.9: The quantum circuit implementation of V̂pi,e operators in Eq.(4.101) and in
the {|q⟩} register.

The locality of the collision operators in the HC space guarantees that their implemen-
tation cost as shown in Figs.4.7-4.9 is constant∼O(42) for each of their two-level compo-
nents. However, assuming an inhomogeneous plasma profile means that ωpi,e = ωpi,e(rrr)

and therefore the angles θpi,e take different values for each lattice cite |p⟩. As a result,
implementing the collision operators V̂pi,e scales as O(2np). Overall, the total implemen-
tation cost of the algorithm is O(n2

p2np) in terms of the number of single qubit and CNOT
gates. However, for applications in plasma physics, for example studying the electromag-
netic scattering from localized inhomogeneous blobs and filaments [122, 123] it is safe to
assume that

∣∣ωpi,e
〉
=

poly(np)

∑
p

ωpi,e(p) |p⟩ . (4.102)

Equation (4.102) implies that the description of the inhomogeneity requires a sparse
subset of the total 2np states in HS. Then, the total implementation cost is reduced to
O[poly(np)]. Since np = log2(N) where N = NxNy are the total lattice points the imple-
mentation scaling in terms of the spatial resources are O[poly(log(N))].

Notably, the QLA implementation for magnetized plasmas achieves the same asymp-
totic scaling as the non-dispersive case, O[poly(log(N))]. This a direct consequence of
the quantum walking process in the lattice which is handled efficiently through the stream-
ing operator. As a result, the same considerations regarding the quantum advantage in-
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dicator S1 from Eq.(4.63) apply. However, now, the FDTD implementation scaling is
actually worst than O(NxNy) because for general anisotropic media (dispersive and non-
dispersive), the staggered lattice segmentation of space means that the evolution of fields
on each lattice side is not directly available at the required grid points. Consequently,
an interpolation process is necessary [112, 120], introducing an additional complexity
overhead that must be accounted for.

The total simulation time ttotal is obtained after Nt applications of the evolution oper-
ator in Eq.(4.94) with ttotal = Nt∆t and the total simulation error ε reads,

ε = Ntδ
4 =

t2
total
Nt

. (4.103)

Thus, the number Nt of time steps ∆t is Nt = t2
total/ε .

4.3.3 Clifford Geometric Algebra approach

The theoretical formulation of Maxwell equations for a cold inhomogeneous plasma, as
described in Sec.4.3.2, can be geometrically extended in analogy to the full state-vector
description in Eq. (4.74). This extension leverages the formalism of Clifford geometric
algebras for electromagnetism [108, 109], thereby generalizing the standard RSW vector
in Eq. (4.13).

To establish a Maxwell-Dirac isomorphism we employ the Clifford Geometric Alge-
bra C l(R1,3) which is called Dirac Algebra, DA , or, alternatively, spacetime geometric
algebra (STGA), which refers to the four dimensional Minkowskian spacetime, R1,3, with
the metric (1,−1,−1,−1). The mathematical structure and necessary involutions for the
discussion that follows are detailed in Appendix A. can be found in the Appendix A. The
underlying correspondence between this approach and Maxwell equations has been the
subject of early work by Vaz and Rodrigues [124, 125].

In Clifford algebra C l(R1,3), the electromagnetic bivector, along with its Clifford
conjugate, (see Eq.(A.11)), are defined as follows:

F = E + cI B, F † = E − cI B, (4.104)

where E and B are space-time bivectors of the electric field intensity and the magnetic
induction, respectively and I is the pseudo-scalar element of DA ,

I = γ0123 = γ0γ1γ2γ3, (4.105)

In components form (summation convention is adopted) one may write:

E = Emγmγ0, B = Bmγmγ0, (4.106)
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where the scalar amplitudes Em,Bm, according to Eq.(A.2), read

Em = γ0 ···E ··· γm, Bm = γ0 ···B ··· γm. (4.107)

Also, the electromagnetic bivector and its Clifford conjugate bear the property of a sign
change upon reversion (defined in Sec.(A)), that is,

F̃ =−F , F̃ † =−F †. (4.108)

Considering the differential operator D operating geometrically on the electromag-
netic bivector F , that is, in accordance with Eq.(A.12),

DF = D ···F +D ∧F , (4.109)

as well as the polarization space-time bivector P ,

P = Pmγmγ0, (4.110)

Maxwell equations for a general dielectric medium obtain the the compact Clifford form
[109], [

D 0
0 D†

][
F

F †

]
=− 1

ε0

[
D† 0
0 D

]
···
[
P

P

]
. (4.111)

For a cold magnetized plasma consisting of a-species,the explicit form of the polar-
ization space-time bivector P in Eq.(4.110) depends on the space-time representation of
the K̂e operator in Eq.(4.80). This representation is also linked to the definition of the
space-time conductivity current J , as in Eq.(4.82),

J ≡ ∂
0P, (4.112)

which is also a bivector. Therefore, by gathering all the bivectorial entities F , F †,
P(α;L,R,∥) and J (α,;L,R,∥) over all a-species and across the Left (L), Right (R) and paral-
lel (∥) directions relative to the plasma magnetic axis, a Clifford spinor representing the
quantum state |Ψ⟩ is constructed,

|Ψ⟩ ≡
[
F F †

(
α; PL

ε0

) (
α; PR

ε0

) (
α; P∥

ε0

) (
α; J L

ε0

) (
α; J R

ε0

) (
α; J ∥

ε0

)]T
,

(4.113)
where (α;−) denotes contribution from each of the a-species. This leads to a Dirac-like
representation,

∂0 |Ψ⟩= W · |Ψ⟩ , (4.114)
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where the operator W is given by,

W =


∂ lγl0 0
(
∂ lγ0l ···,α

) (
∂ lγ0l ···,α

) (
∂ lγ0l ···,α

)
(−1,α) (−1,α) (−1,α)

0 ∂ lγ0l
(
∂ lγl0···,α

) (
∂ lγl0···,α

) (
∂ lγl0···,α

)
(−1,α) (−1,α) (−1,α)

(0,α) (0,α) (0,α) (0,α) (0,α) (1,α) (0,α) (0,α)

(0,α) (0,α) (0,α) (0,α) (0,α) (0,α) (1,α) (0,α)

(0,α) (0,α) (0,α) (0,α) (0,α) (0,α) (0,α) (1,α)(
S (α,L)···,α

) (
S (α,L)···,α

)
(0,α) (0,α) (0,α)

(
εα ωcα

c ,α
)

(0,α) (0,α)(
S (α,R)···,α

) (
S (α,R)···,α

)
(0,α) (0,α) (0,α) (0,α)

(
− εα ωcα

c ,α
)

(0,α)(
S (α,∥)···,α

) (
S (α,∥)···,α

)
(0,α) (0,α) (0,α) (0,α) (0,α) (0,α)




,

(4.115)

with

S (α,L) =−ε0
ω2

pα

4c2 (γ1γ1 + γ2γ2−2γ0γ3) , (4.116a)

S (α,R) =−ε0
ω2

pα

4c2 (γ1γ1 + γ2γ2 +2γ0γ3) , (4.116b)

S (α,∥) =−ε0
ω2

pα

2c2 γ3γ3. (4.116c)

Equation (4.114) provides the Clifford representation of Eq.(4.75) for the plasma case,
where the operator W is Hermitian under Clifford conjugation, satisfying W = W †.

4.4 Formulating dissipation

Returning to the Lorentz media Eqs.(4.65) and (4.66) with γe,l ≥ 0 and γm,l ≥ 0 (analogous
considerations will apply to the plasma case for collisional dissipation). Consequently, the
denominators in Eqs.(4.68) and (4.69) now include the appropriate factors of −iγe,l and
−iγm,l , respectively. As a result, the Hermitian structure of the Maxwell-Schrodinger
evolution equation (4.75) is not preserved. While the first two Maxwell equations in
(4.71) are not affected by dissipation, the third equation now reads,

i
∂Pl,t

∂ t
= iuuu− iω̂2

l Pl− iγ̂lPl,t , l = 1,2...N, (4.117)

where,

γ̂l =

[
γe,l 0
0 γm,l

]
. (4.118)

The dissipative counterpart to Eq.(4.71) has the form,

i
∂ψψψ

∂ t
= [D̂− iD̂diss]ψψψ. (4.119)
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The diagonal matrix D̂diss = diag(0,0, γ̂l) is Hermitian and positive definite (γe,l ≥ 0 and
γm,l ≥ 0) so the anti-Hermitian term −iD̂diss is purely dissipative. As a consequence, the
non-Hermitian generator of dynamics D̂− iD̂diss in Eq.(4.119) possesses both real eigen-
values as well as complex eigenvalues but with negative imaginary part, indicating the
absence of any global Parity-Time (PT ) [44] or pseudo-Hermitian structure [49]. An
example of PT -symmetry in electrodynamics is two coupled optical systems with bal-
anced gain and loss [126] whereas a paradigm on unbroken pseudo-Hermitian structure
of Maxwell equations in passive media for wave propagation can be found in [93]. More-
over, it has to be highlighted that even if PT symmetry was present, by permitting gain
(now some of γe,l and γm,l can be negative) in constitutive relations Eqs.(4.65) and (4.66),
an unbroken PT region where the non-Hermitian operator D̂− iD̂diss possesses only
real eigenvalues will be present at discrete frequencies [126], due to Kramers-Kroning
causality relations [99].

For an infinitesimal time step δ t, starting at t = 0, a first order Suzuki-Trotter approx-
imation [36] of the non-unitary operator Û (t) = exp

{
−it[D̂− iD̂diss]

}
yields,

exp
{
−iδ t[D̂− iD̂diss]

}
= e−iδ tD̂e−δ tD̂diss +O(δ t2). (4.120)

This allows us to separate out the non-unitary term exp
{
−δ tD̂diss

}
. The diagonal dissi-

pative operator D̂diss contains at most 6N positive elements
(
γe,l, γm,l

)
, l = 1, . . .N. Then,

exp
{
−δ tD̂diss

}
= K̂0 = diag(I6×6, I6N×6N , Γ̂), (4.121)

where,

Γ̂ =

[
e−δ tγe,l I3×3 0

0 e−δ tγm,l I3×3

]
. (4.122)

The dimensions of the diagonal sub-matrix Γ̂ are 6N×6N.

4.4.1 Treating dissipation in the context of quantum channels

In the density matrix framework, the Suzuki-Trotter evolution (4.120) is,

ρ̄(δ t) = e−iδ tD̂K̂0ρ(0)K̂†
0 eiδ tD̂, (4.123)

where the initial density matrix ρ(0) is,

ρ(0) = |ψψψ0⟩⟨ψψψ0| , |ψψψ0⟩=
1√
E0

d−1

∑
j=0

ψ0 j | j⟩ , d = (6+12N)NxNyNz, (4.124)

where NxNyNz are the number of nodes in the 3D lattice discetization. It should be noted
that ρ̄(δ t) is not a proper quantum mechanical density matrix, as the operation K̂0ρ(0)K̂†

0
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is not trace preserving (TP). Non-TP quantum channels emerge when a measurement is
performed in the environment and selecting over a specific outcome [25]. Consequently,
we can think of classical dissipation as a post-selective outcome from the interaction
between a quantum represented lossless system and an unspecified environment. Accord-
ingly, to retrieve the TP property we augment Eq.(4.123) with the term,

K̂1ρ(0)K̂1, (4.125)

where the second Kraus operator K̂1 satisfies K̂†
1 K̂1 = Id×d − K̂†

0 K̂0, and has an upper-
triangular form,

K̂1 =

[
0

√
Ir×r− Γ̂2

0 0

]
, (4.126)

with r = 6NNxNyNz being the dimension of the dynamic space occupied by dissipation.
The operator K̂1 corresponds to a transition – a quantum jump from the dissipative state
of interest to a different state. The operators K̂0 and K̂1 are the multi-dimensional analogs
of the amplitude damping channel operators in Eq.(2.58) The augmented quantum dissi-
pative evolution for the open quantum system is similar to Eq.(4.57),

ρaug(δ t) = e−iδ tD̂
ρdiss(δ t)eiδ tD̂, (4.127)

where,
ρdiss(δ t) = K̂0ρ(0)K̂†

0 + K̂1ρ(0)K̂†
1 . (4.128)

The constructed linear CPTP quantum channel in Eqs.(4.127),(4.128) describes the
evolution of the linear dynamics of an open quantum system, generated by the effective
Hamiltonian Ĥe f f ,

Ĥe f f = D̂− iL̂†L̂, L̂ =

[
0

√
γ̂r

0 0

]
. (4.129)

The diagonal matrix γ̂r represents dissipation in the r-dimensional subspace. The operator
L̂ is a Lindblad jump operator [41] and the generated Gorini–Kossakowski–Sudarshan–Lindblad
(GKSL) master equation [41, 42] (also see Sec.2.4.2) is then,

∂ρ

∂ t
=−iĤe f f ρ + iρĤ†

e f f +2L̂ρL̂†. (4.130)

For an infinitesimal time evolution 0→ δ t, the density matrix evolution, to first order in
δ t, can be generated through the master equation (4.130) for the classical, non-Hermitian
operator,

ρ(δ t) = Ê0ρ(0)Ê†
0 + Ê1ρ(0)Ê†

1 , (4.131)
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with
Ê0 = Id×d− iδ tD̂−δ tD̂diss, Ê1 =

√
2δ tL̂. (4.132)

By expanding in a Taylor series the Kraus operators in the augmented evolution Eq.(4.127)
we obtain,

ρaug(δ t) = ρ(δ t)+O(δ t2). (4.133)

Equation (4.133) confirms that treating the classical non-Hermitian operator D̂− iD̂diss

as a quantum effective Hamiltonian generates, to first order, the same dynamics with the
quantum channel establishing that this minimal augmented form is sufficient to capture
the classical dissipative dynamics.

Since the set of Kraus operators K̂0 and K̂1 in Eq.(4.128) define a linear CPTP quantum
channel, they are contractions [83]. Thus, a guaranteed minimal unitary dilation Ûdiss can
be formulated for according to Sec.3.3.2,

Ûdiss =

[
K̂0 −K̂†

1

K̂1 X̂ K̂0X̂

]
. (4.134)

The operator X̂ is an appropriate extension of the Pauli X̂ operator to d-dimensions. The
unitary Ûdiss is a 2d× 2d matrix operator acting on n+ 1 qubits with n = log2 d. The
ancillary qubit represents the environment; the lossless system together with the envi-
ronment form a closed conservative system that evolves under the unitary operator Ûdiss.
This minimal dilation is related to the Sz. Nagy dilation (Sec.3.3.2) of K̂0 operator by a
rotational transformation.

The action of Ûdiss on the composite initial state |0⟩ |ψψψ0⟩ yields,

|0⟩ K̂0 |ψψψ0⟩+ |1⟩ K̂1 |ψψψ0⟩ . (4.135)

Next, we apply a controlled e−iδ tD̂ operation to state (4.135) with respect to the 0-bit
environment qubit, leading to the composite state,

|0⟩e−iδ tD̂K̂0 |ψψψ0⟩+ |1⟩ K̂1 |ψψψ0⟩ . (4.136)

Subsequently, a projective measurement in the first qubit with operator P̂0 = |0⟩⟨0| ⊗
Id×d followed by tracing out the environment, leads to the non-unitary Suzuki-Trotter
evolution equation (4.120) for the lossy, dispersive medium, up to a normalization factor
with success probability p0(δ t) = ⟨ψψψ0|K̂2

0 |ψψψ0⟩. The steps in Eqs.(4.135)-(4.136) along
with the post-selection of the output state are illustrated in the quantum circuit in Fig.4.10.
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|0⟩
Ûdiss

|ψ0⟩ e−iδtD̂ |ψ(δt)⟩

Figure 4.10: Quantum circuit for simulation of the non-unitary classical evolution
Eq.(4.120) in a dissipative and dispersive electromagnetic medium.

The explicit form of Ûdiss in Eq.(4.134) is,

Ûdiss =




I(d−r)×(d−r) 0 0 0
0 Γ̂ −

√
Ir×r− Γ̂2 0

0
√

Ir×r− Γ̂2 Γ̂ 0
0 0 0 I(d−r)×(d−r)



. (4.137)

Setting cosθl/2= Γ̂ll , we can decompose Ûdiss into r two-level unitary y-rotations, R̂y(θl),
acting on n+1 qubits,

Ûdiss =
r

∏
l=1

R̂y(θl). (4.138)

Hence, to leading order, we can implement Ûdiss in O(rn2) CNOTs and a single qubit
rotations R̂y(θl). Since d = (6+ 12N)NxNyNz = 6NxNyNz + 2r = 2n then r = 2n−1(1−

1
1+2N ), and the implementation of Ûdiss is achieved using O(2n−1n2) simple gates.

4.4.2 An optimized approach employing the LCU method

In the previous section, we showed a pathway to convert the non-unitary, diagonal, dis-
sipative exp

{
−δ tD̂diss

}
into O(2n−1n2) elementary unitary gates, based on a constructed

interconnection between dissipative and post-selective open quantum systems and clas-
sical dissipation. A different approach is to refrain from associating classical dissipation
with a quantum process but treat K̂0 with the LCU method of Sec.3.2.1. Specifically, K̂0

in Eq.(4.121) can be written as a sum of two unitary matrices,

K̂0 =
1
2
(K̂0z + K̂†

0z), (4.139)

where,

K̂0z =

[
I(d−r)×(d−r) 0

0 e−iθl/2

]
, l = 1,2, ...,r. (4.140)

As previous, we have set cosθl/2 = Γ̂ll and the unitary components in Eq.(4.139) remain
diagonal. In order to apply the LCU method as described in Sec.3.2.1, we need one
auxiliary qubit as in the dilation process of Sec.4.4.1. Then, according to Eqs.(3.35) and
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(3.36) we introduce the unitary operators,

Ûprep : |0⟩ → 1√
2
(|0⟩+ |1⟩), (4.141)

Ûselect = |0⟩⟨0|⊗ K̂0z + |1⟩⟨1|⊗ K̂†
0z, (4.142)

where Ûprep = Ĥ is the Hadamard gate. We can probabilistically implement K̂0 using the
unitary dilated operator,

Ûdiss = (Ĥ⊗ Id×d)Ûselect(Ĥ⊗ Id×d). (4.143)

The action of Ûdiss on the initial state |0⟩ |ψψψ0⟩ is,

Ûdiss |0⟩ |ψψψ0⟩= |0⟩ K̂0 |ψψψ0⟩+
1
2
|1⟩(K̂0z− K̂†

0z) |ψψψ0⟩ . (4.144)

Again, a measurement on the first qubit provides the desired result. Then, the quantum
circuit representation for simulation of the Suzuki-Trotter dynamics (4.120), is depicted
in Fig.4.11.4.11 The probability of measuring the 0-bit value qubit in the output state

|0⟩ Ĥ

Ûselect

Ĥ

|ψ0⟩ e−iδtD̂ |ψ(δt)⟩

Figure 4.11: Quantum circuit for simulation of the non-unitary classical evolution (4.120)
in a dissipative and dispersive medium using the LCU method.

(4.144) is agiain p0 = ⟨ψψψ0|K̂2
0 |ψψψ0⟩.

The remaining question is whether the implementation cost of Ûselect scales favorably
compared to that of Ûdiss from the previous section. Given the definition in (4.142), Ûselect

is a 2d×2d diagonal operator,

Ûselect =

[
K̂0z 0
0 K̂†

0z

]
, (4.145)

which contains r two-level z-rotations R̂z(θl) compared to the r two-level y-rotations
R̂y(θl) of Eq.(4.137). As a result, the diagonal nature of Ûselect allows for an imple-
mentation in 2n(1− 1

1+2N )−3 alternating CNOTs and single-qubit R̂z(θl) rotations [127].
Thus, to leading order, a quadratic improvement is achieved as compared to the scaling of
the physical dilation of the previous section. The LCU method produces the same dilation
method, specialized for diagonal operators, as in [79].
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4.4.3 Post-selection, time and total complexity of the algorithm

To first order in δ t, the probability p0(δ t) = ⟨ψψψ0|K̂2
0 |ψψψ0⟩ for a successful post-selection

is,

p0(δ t) = 1−2δ t
d−1

∑
q=d−r

γq

∣∣ψ0q
∣∣2

E0
. (4.146)

where p0(δ t) is bounded p0min(δ t)≤ p0(δ t)≤ p0max(δ t),

p0min(δ t) = 1−2γmaxδ t
d−1

∑
q=d−r

∣∣ψ0q
∣∣2

E0
, (4.147)

p0max(δ t) = 1−2γminδ t
d−1

∑
q=d−r

∣∣ψ0q
∣∣2

E0
, (4.148)

with r = 6NNxNyNz, γmax = max{γe,l,γm,l}, and γmin = min{γe,l,γm,l}, l = 1, . . . ,r. From
Eq.(4.146), the optimal time-step δ t for a high success post-selection out of the output
state requires,

δ t <<
1

2∑
d−1
q=d−r γq

|ψ0q|2
E0

. (4.149)

Based on (4.147), the upper bound on δ t is,

∆tdiss =
1

2γmax ∑
d−1
q=d−r

|ψ0q|2
E0

, (4.150)

with δ t << ∆tdiss, where the time step ∆tdiss corresponds to the fast time scale 1/γmax

associated with dissipation – since ∑
d−1
q=d−r

|ψ0q|2
E0
∼ r/d ∼ 1/2, ∆tdiss ∼ 1/γmax. Thus, for

an accurate modeling of dissipation we have to select a simulation time step that is smaller
than the fastest dissipative time scale. We have realized this physical conclusion solely
from the quantum operational requirement of a highly successive post-selection process.

The non-normality of operator D̂− iD̂diss dictates that besides the dissipation time
scale ∆tdiss which is dominant for large simulation time, there is also a time scale ∆tuni =

1/λmax associated with the Hermitian part D̂ with λmax = λmax(n,Ωe,m,ωe,m) the largest
eigenvalue of operator D̂ [128], depending on the number of qubits n and on the parame-
ters present in operator D̂. This time scale is dominant for small simulation time.

The quantum circuit in Figs.4.10 and 4.11 can be interpreted as a building blocks for
a quantum simulation of total time ttotal = Ntδ t in two different ways [129]. The first
one utilizes the extra qubit globally and applies the quantum circuits of Figs.4.10,4.11,
Nt consecutive times. Then, a single post-selection on the total output state is enough to
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obtain the desired normalized non-unitary evolution,

|ψψψ(ttotal)⟩=
e−ittotal(D̂−iD̂diss) |ψψψ0⟩∥∥∥e−ittotal(D̂−iD̂diss) |ψψψ0⟩

∥∥∥
. (4.151)

However, taking into consideration the probability ptotal for a successful post-selection at
the final stage, this decays exponentially [128] as

ptotal =
∥∥∥e−ittotal(D̂−iD̂diss) |ψψψ0⟩

∥∥∥
2
. (4.152)

Thus, Eq.(4.152) implies that we need an exponentially large number, Nt/ptotal , of rep-
etitions for obtaining the state (4.151) to within a desired error. This picture refers to
monitoring only the continuous evolution of a quantum trajectory from a collection of
them by disposing the trajectories with quantum jumps with a global post-selection pro-
cess [128, 130]. The second implementation path for the total evolution is a repetition
of the quantum circuits to be followed by a a post-selection with success probability p0

each time. This local re-usage of the extra qubit in each step exploits the magnitude
optimization Eq.(4.150) of probability p0 relying on the dissipation characteristics. The
post-selection complexity for the total evolution now reads Nt/pNt

0 .

While the global method incorporates only one post-selection the exponentially small
success rate of it, Eq.(4.152), renders it extremely costly in terms of resources for large
time-scale simulation. Conversely, the local method demands of Nt post-selections which
introduces a readout error, but the overall success rate is realizable after suitable selection
of the δ t time step.

For the local simulation method with the intermediate post-selections to be efficiently
applied, a suitable selection of δ t has to made in relation with the physical time scales
∆tdiss and ∆tuni to capture the transient physical phenomena. However, a fine-meshing in
the temporal domain directly affects the number of Trotter steps Nt required for a complete
simulation time ttotal = Ntδ t within an error ε . After Nt Trotter repetitions the error of
the resulting (without considering the post-selection complexity overhead) non-unitary
evolution (e−iδ tD̂e−iδ tD̂diss)

Nt is [54],

ε ∼ γmaxλmaxt2
total

Nt
exp

{
2(λmax + γmax)

Nt
ttotal

}
(4.153)

reflecting the trade-off between the smallness of the time step δ t and the number of repe-
titions Nt for the desired error scaling. Considering a more sophisticated and higher order
product formulas [54] can lead to an optimized selection between the quantities ε,Nt ,δ t

and p0.

Let us now combine the previous considerations of the case of a weakly dissipative
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homogeneous dielectric medium. For such a simple N = 1 medium the diagonal matrix
Ûselect contains repetitive values. It is then possible to further reduce the implementa-
tion cost of Ûselect to polynomial scaling O[poly(n)], [131]. Similarly, according to the
discussion in Sec.4.3.2, a QLA implementation of the unitary part e−iδ tD̂ for the homo-
geneous case scales as O(n2). Consequently, the overall implementation scaling of the
LCU quantum circuit of Fig.4.11 is O[poly(n) + n2]. For a quantum simulation of to-
tal time ttotal = Ntδ t the overall number of gates, taking into consideration the the local
post-selection complexity reads O

[ Nt

pNt
0
(poly(n)+n2)

]
.

For a weakly dissipative medium in a specific frequency window [98] applies that,

λmax >> γ, ∆tuni << ∆tdiss. (4.154)

Hence, the dissipative time scale ∆tdiss corresponds to the large scale temporal dynamics.
Therefore, selecting a Trotter time scale δ t ∼ ∆tuni a high success local post-selection
process, Eq.(4.149), is guaranteed. The number Nt of the required Trotter steps to obtain
the desired approximation within an error ε is provided in Eq.(4.153),

Nt =
2λmaxttotal

W (2ε/γttotal)
, (4.155)

where W (x) is the Lambert W function. The scaling law Eq.(4.155) for the number of
Trotter steps Nt is interwoven with the different physical time-scales. For instance, aiming
to simulate the dynamics for long total time ttotal ∼ κ∆tdiss with κ >> 1 with constant
error ε ∼ O(1) we obtain from Eq.(4.155),

Nl
t ∼ κ

2 λmax

γ
. (4.156)

For simulation time ttotal = κ∆tuni < ∆tdiss with κ > 1, reflecting the transient dynamics,
the number of required Trotter steps for constant error is,

Nt
t ∼

2κ

W (2λmax/κγ)
. (4.157)

Finally, for short-scale simulation time ttotal = κ∆tuni with κ ∼ O(1),

Ns
t ∼

2κ

ln(2λmax/κγ)
. (4.158)

In derivation of Eqs.(4.156)-(4.158) the following approximations W (x<< 1)≈ x, W (x>>

1)≈ lnx have been used.

Consequently, the total number of gates Ngates, including the post-selection complex-
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ity, required for simulation of the various temporal regimes with constant error ε is,

Ngates =





O
[

κ2 λmax

γ p
Ns

t
0

(poly(n)+n2)

]
, for κ >> 1,

O
[

2κ

p
Nl

t
0 W (2λmax/κγ)

(poly(n)+n2)

]
, for κ > 1,

O
[

2κ

p
Ns

t
0 ln(2λmax/κγ)

(poly(n)+n2)

]
, for κ ∼ O(1),

(4.159)

where pNm
t

0 = ⟨ψψψ0|K̂
2Nm

t
0 |ψψψ0⟩, for m = s, t, l. and λmax = λmax(n,Ωe,ωe). Evidently,

Eq.(4.159) proves a polynomial overall scaling of our algorithm as well as it is in ac-
cordance with the physical constrains and the transient nature of evolution, features that
cannot be captured through quantum imaginary time evolution approaches [132, 133]
which would be more suitable for calculation of low frequency modes rather than physical
evolution implementation. In the same manner, allowing for different and inhomogeneous
dissipation rates will result into complex temporal dynamics with different local basins of
attraction, rendering the task of finding the correct solution very difficult even for modern
variational quantum algorithms [134].
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Chapter 5

Conclusions and Future Research

In concluding this thesis, the reader may find themselves with more questions than defini-
tive answers to the question: ”Can quantum computers eventually surpass classical ma-

chines for scientific computing purposes?” In the context of this work—where the Maxwell
equations in plasmas and complex media are considered—the response leans towards
”There are theoretical indications that quantum algorithms can be resource-efficient com-
pared to classical counterparts for certain studies of electromagnetic wave propagation
and scattering in plasmas and similar media.”

However, a significant gap exists between the theoretical performance of quantum
algorithms and their actual implementation, especially in the current Noisy Intermediate-
Scale Quantum (NISQ) era. Noise and constraints on circuit depth and width heavily
influence performance, highlighting the need for advances in quantum hardware to real-
ize the practical potential of these algorithms. The ultimate answer will hinge on these
advancements, which will determine the feasibility and efficiency of quantum algorithms
for a variety of tasks.

To mitigate potential confusion and provide clarity, we asses our findings, suggest
pathways for extending this research, and highlight open problems that may inspire the
curious minds to address them in the future.

5.1 Key takeaways

• Theoretical contributions

1. Established that every linear dynamics with a positive definite conserved quan-
tity possess unitary dynamics which are explicitly retrieved by transforming
the governing dynamical equations into a Hermitian structured Schrodinger
representation. As a result, every conservative plasma physics problem ad-
mits an explicit unitary representation for wave dynamics.
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2. Explored the quantum implementation of non-unitary operators within the
framework of open quantum systems and unitary dilations.

3. Reformulating Maxwell equations in both dispersive and non-dispersive regimes.
In the non-dissipative regime, the equations are treated as a closed quantum
system, whereas in the dissipative regime, classical dissipation is mapped to
a multi-dimensional analog of a quantum amplitude damping channel. While
this post-selective open quantum system interpretation of classical dissipation
scales quadratically worse than the LCU method, it can potentially benefit
from leveraging the native quantum noise of the quantum hardware [135] as
part of simulation better rather than serving as a pathway to unitary dilation.

• Contributions on quantum computation

1. Proposed a quantum walk based algorithm (QLA) for the quantum simulation
of Maxwell equations in conservative media such as cold magnetized plasmas.
The main advantages of the algorithm is its explicit nature in terms of scaling
and error. For homogeneous media, whether dispersive or not, the primary
computational cost is the walking process on the spatial lattice, which scales as
O(n2

p), where np represents the number of qubits required to describe the grid
points in the discretized space. For scattering from localized inhomogeneities,
the quantum algorithm maintains an appealing scaling of O(poly(np)).

2. The explicit implementation complexity of the algorithm in terms quantum
gates, demonstrates that simple test cases such as the propagation of a pulse in
a uniform medium can be used to benchmark quantum computer performance
under realistic error conditions for a physical problem. This will highlight a
paradigm shift in using quantum computers for scientific computing, as shown
in similar applications to hydrodynamics [136].

3. As supported by Eq.(4.63), that the proposed quantum algorithm exhibits an
exponential quantum advantage in implementation resources compared to the
widely used classical FTDTD method.

4. Finally, a post-selective quantum algorithm has been developed to handle sim-
ple collisional dissipation using the LCU method, achieving polynomial scal-
ing for multiple dissipation rates as well as capturing distinct transient regimes
effectively.

5.2 Open problems and future research directions

Two significant challenges that quantum computing faces in quantum simulation is ad-
dressing general non-unitary evolution and non-linear dynamics.
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The quantum simulation of linear but non-unitary dynamics is typically addressed us-
ing dilation methods, as outlined in Sec. 3.3.2, with notable examples including the LCU
method [74] and Schrodingerization [137]. However, these methods become less effi-
cient when the dynamics involve not only dissipation but also amplification components,
which may represent instabilities in classical dynamics or PTP open quantum systems.
To address this challenge, we have proposed a biorthogonal dilation method [138] as an
alternative approach tailored to such scenarios.

As quantum mechanics is inherently a linear physical theory, handling non-linear dy-
namics remains an area of active research and debate. In the design of quantum algorithms
for non-linear dynamics, particularly in the context of partial differential equations, the
community has explored linear embedding methods such as the Koopman–von Neumann
formulation of classical mechanics and Carleman linearization [8, 139, 140]. However,
these methods encounter limitations when attempting to delve into the chaotic or turbu-
lent regimes [141], which are often where the most interesting physics occurs. A primary
issue with these linear embedding techniques is that, while they enable the quantum sim-
ulation of non-linear classical systems, the necessary projection into a finite-dimensional
space can introduce numerical artifacts. These artifacts are difficult to control or even to
eliminate tehm, hence comprising the accuracy of the simulation [142].

An alternative approach, motivated by the works of Childs and Geller [143, 144] ex-
plores performing ”impossible tasks” through consistent non-linear extensions of quan-
tum mechanics as well as probabilistic non-linear transformations [145]. Towards the
former direction, one can establish connections with classical dynamical systems theory
[146] or develop non-linear quantum representations for simulation [147]. In the latter,
the non-linear transformations can be incorporated as components of the quantum algo-
rithms [148].
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Appendix A

Basics of C l(R1,3)

The Dirac Algebra, DA is a remarkably powerful tool that describes scalars along with
4-dimensional objects such as vectors, planes, volumes and pseudo-scalars. It contains all
of the familiar vector operations, but most importantly a new type of algebraic product,
the so-called Geometric or Clifford product. For vectors, denoted by bold face letters,
aaa,bbb ∈ R3

aaabbb = aaa ···bbb+aaa∧bbb (A.1)

The result is the sum of a scalar (the so-called inner product) and the so-called wedge (∧)
or exterior product which is called bivector. Thus, it produces the sum of two distinct
objects that forms a multivector just like the sum in the complex numbers. Orthonor-
mal vectors render, by definition, zero inner product. In the Dirac Algebra we choose
an orthonormal basis of vectors denoted with {γν ,ν = 0,1,2,3}, or, equivalently, with
{γ0,γm, m = 1,2,3} that satisfy the following generalized orthonormality conditions:

γ0γ0 = 1, γm ··· γn =−δmn, γ0 ··· γm = 0, m,n = 1,2,3, (A.2a)

as well as:
γµ ∧ γµ = 0, µ = 0,1,2,3, (A.2b)

The R1,3 space now has been equipped with the product of Eq.(A.1), hence the basis
set of the DA is generated from the orthonormal basis {γµ} vectors, rendering five differ-
ent bases for the respective five geometrical grades, namely the scalars and 4-dimensional
(spacial and temporal) vectors, the 4-dimensional bivectors (space-space and space-time
planes or blades), the trivectors (spatial oriented volumes and spacetime oriented vol-
umes) and the pseudo-scalars (the highest grade geometrical element). Furthermore, be-
cause of (A.2) one can actually suppress the exterior product in the process of defining
the bases for the various grades:

{1} (A.3a)

{γ0,γ1,γ2,γ3} (A.3b)
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{γ1γ0,γ2γ0,γ3γ0,γ1γ2,γ2γ3,γ3γ1} (A.3c)

{γ1γ2γ3,γ1γ2γ0,γ2γ3γ0,γ3γ1γ0} (A.3d)

{γ0γ1γ2γ3} (A.3e)

The latter basis element is usually denoted as I = γ0γ1γ2γ3. All the elements of DA can
be decomposed in elements (multivectors) that belong to different grades. On the other
hand, the pseudoscalar has a paramount intrinsic geometrical significance: It commutes
with elements of even grade and anti-commutes with elements of odd grade. If Ar is a
multivector of grade r (a pure multivector), then:

ArI = (−1)3rI Ar (A.4)

As a consequence of the choice of the Minkowskian metric (1,−1,−1,−1), the geometric
product of the pseudo-scalar with itself (its square) is scalar and:

I I = I 2 =−1 (A.5)

The LHS of (A.4) is the (minus) so called dual (prefix ⋆) of the pure blade Ar, or, equiv-
alently, its orthogonal complement (superscript ⊥). Generally speaking, going from
a multivector to a multivector via multiplication by the pseudoscalar is the so-called
duality transformation:

⋆Ar ≡Ar
⊥ ≡−ArI (A.6)

The orthogonal complement of a pure blade of grade r does not contain vectors that “lie
on” the blade, since the grade of the orthogonal complement is 4− r. For bivectors, this
amounts to going (for example) from space-time bivectors to purely spatial ones.

The duality transform is of tantamount importance in reformulating Maxwell equa-
tion to a Schrodinger-Dirac form. In the framework of DA , the proper “tools” are (1)
the so-called grade involution, specifically called space conjugation: It is the geometric
multiplication of an object A from both sides by the time-like direction γ0 (superscript
⋆):

A ⋆ ≡ γ0A γ0, (A.7)

and (2) reversion (over∼). In terms of a geometric product of grade one objects (vectors)
this can readily defined as follows:

˜(abc...z)≡ (z...cba) (A.8)

This amounts to the following change of signs (from plus) in the separation of grades
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(signified by ⟨⟩r,r = 0...4) in an object A of DA :

A = ⟨A ⟩0+⟨A ⟩1+⟨A ⟩2+⟨A ⟩3+⟨A ⟩4, Ã = ⟨A ⟩0+⟨A ⟩1−⟨A ⟩2−⟨A ⟩3+⟨A ⟩4
(A.9)

Both involutions (grade and reversion) commute by definition. The application of both is
called Clifford conjugation (†) in DA . It is an extension of Hermitian conjugation from
the Pauli Algebra PA to the Dirac Algebra DA (that is why the same symbol is used,
although there are different symbolisms in the literature). It is also called relative (relative
to the time-like direction γ0) reversion-involution:

A † ≡ γ0Ã γ0 = Ã ⋆ (A.10)

As far as the EM bivector is concerned, it is straightforward to obtain its reversion as well
as its Clifford conjugate :

F̃ =−F , F † = E −I B (A.11)

It is also important in our application to generalize the geometric product (A.1) to the one
between a vector or vector operator aaa (grade 1 objects) and a bivector B:

aaaB = aaa ···B+aaa∧B (A.12)

Above, both the vector and the bivector are expressed in the basis (A.3) and the inner and
exterior products are executed in accordance with (A.2).

We now introduce the Dirac differential operator. It is a grade 1 (vectorial) differential
operator and it involves the 4-tangent vectors in the Minkowskian space and the partial
differentiation of the differentiated object of DA . Its form is (summation convention is
adapted):

D ≡ γµ∂
µ , µ = 0,1,2,3 (A.13)

Seeing this gradient operator as a four-vector operator, operating in DA , one can ”split”
it by its right geometric product with the time-like direction γ0 as follows (summation
convention is adapted):

Dγ0 = D ··· γ0 +D ∧ γ0 = ∂
0 + γm∧ γ0∂

m = ∂
0 + γmγ0∂

m, m = 1,2,3 (A.14)

The second part is clearly a differential bivector acting on each space-time blade γmγ0.
We introduce the double arrow to signify this space-time differential operator:

←→
∇ ≡ γ0∧ γm∂

m = γ0γm∂
m (A.15)
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Thus, similarly:
D = (∂ 0−←→∇ )γ0 = γ0(∂

0 +
←→
∇ ) = D̃ , (A.16)

That is, the time-like direction splits the 4-dimensional gradient into two mutually or-
thogonal parts: the time-like scalar differential operator and the space-like bivectorial
one. The Clifford conjugate of the operator D can be easily deduced in analogy to the
Clifford conjugation of the 4-vectors. Because of (A.16):

D† = (∂ 0 +
←→
∇ )γ0 = γ0(∂

0−←→∇ ) = D̃† = D⋆ (A.17)

That is, the Clifford (Hermitian) conjugate (or relative reversed) of the 4-dimensional
differential operator D with its space-conjugate. This is something to be expected from
the very definition of the relative inversion acting on grade 1 objects and operators. Notice
that both the differential bivector and its Clifford conjugate coincide with their reverse
ones.

In Sec.4.3.3 one needs to evaluate the Clifford conjugate of the operation of D on the
electromagnetic bivector F :

(DF )† = γ0F̃ D̃γ0 = F †D† =
˜̃D†F̃ † =−D̃†F † (A.18)

or, equivalently:
D†F † =− ˜(DF )† (A.19)

From (A.19) one has to reverse the RHS of this equation and then take its Clifford con-
jugate. Before we proceed, one must easily notice that the inner product part of the dif-
ferential operator (a one-vector operator) as well as its Clifford conjugate with a bivector
coincides with its reverse:

D̃† ···P = D† ···P (A.20)

and,via the relations (A.16) and (A.17) one obtains:

(
D̃† ···P

)†
= (D† ···P)† =−D ···P. (A.21)
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