National Technical University of Athens
School of Electrical and Computer Engineering
Division of Computer Science

nVpPopos

N

Development of Web-Based
Content Management Software

Using Open Technologies

Diploma Thesis of

Oikonomou Eleftherios

Supervisor: Vassilios Vescoukis, Professor NTUA

Athens, February 2025

=<

)
X¥Xe)
S/

o N3

)

£

I 3
WA

N

m
9

<t

National Technical University of Athens
School of Electrical and Computer Engineering
Division of Computer Science

N

eT508
‘A(\I\F 3"
R o2
\X
.‘.“
’ POMHOEVS -
=_— ey
%mr 5

@‘r .

|

Development of Web-Based
Content Management Software

Using Open Technologies

Diploma Thesis of

Oikonomou Eleftherios

Supervisor: Vassilios Vescoukis, Professor NTUA

Approved by the examination committee on February 21st.

(Signature) (Signature) (Signature)
Vassilios Vescoukis Nikolaos Papaspurou Kostis Sagonas
Professor Professor Professor
Athens, February 2025

(W)
=
Z
m

‘jﬂ
7
&

“;‘? ﬁ'& National Technical University of Athens
1< Y\i#&/ School of Electrical and Computer Engineering
P

|

Division of Computer Science

Copyright © — Oikonomou Eleftherios, 2025.

All rights reserved.

You may not copy, reproduce, distribute, publish, display, modify, create derivative
works, transmit, or in any way exploit this thesis or part of it for commercial purposes.
You may reproduce, store or distribute this thesis for non-profit educational or research
purposes, provided that the source is cited, and the present copyright notice is retained.
Inquiries for commercial use should be addressed to the original author.

The ideas and conclusions presented in this paper are the author’s and do not
necessarily reflect the official views of the National Technical University of Athens.

(Signature)

Oikonomou Eleftherios

National Technical University of Athens
School of Electrical and Computer Engineering
Division of Computer Science

Acknowledgments

After completing my thesis, my journey to the School of Electrical and Computer
Engineering at the National Technical University of Athens (NTUA) ends. This would not
have been possible without my family and friends, who supported me throughout my
studies, as they always do.

| want to express my gratitude to my professor and supervisor, Mr. Vassilis
Vescoukis, for the opportunity to work on such an important subject and for his valuable
guidance, feedback, and excellent cooperation during my thesis.

In addition, | wish to acknowledge the PhD Candidate and Researcher
Hadijichristofi Christos for his help and guidance.

Athens, February 2025

Oikonomou Eleftherios

MepiAngn

Kd&Be idpupa xpetaletal pia dladIKTuaKn Tapoucia otnv Pnodlakr emoxn.
AUTN N SIMWMATIKYN €pyacia mapouctalel To oxXedlAoPO Kal TNV UAOTIONoN evOg
oUyxpovou, KAlHakoUpevou, UPnAng anddoong tototorou yia to SoftLab EMNM,
XPNOIHOTIOIWVTAG Hla apxltekToviKn headless CMS yla dlaxeiplon meplexouevou
pe Baon API, autopaTiopoUg pe AAAeg TAATHOPUEG Kal oTpaATNYLIKEG hosting Tng
€PAPHUOYNG XPNOLUOTIOIWVTAG AVOLXTEG TEXVOAOYIEG.

H nmapouUoa dlatpiBn eEeTAlEL TIG APXITEKTOVIKEG ETUAOYEG, TIC HEBODOAOYIiEQ
KAl TIG OTPATNYIKESG avArTtuEng mou anattoUvTal yla TNV UAoroinon piag
AKAdNMAIKNG OLadIKTUAKNG TAATHOPUAG TIOU eival aopaAng Kal £xel eUKOAN
dlaxeiplon kat cuvtnpnon v yivetal hosted oe 1310KTNTOUG servers. AvaAUel
eriong og BAOOG TIG TEXVIKEG BEATIOTOMOINONG TWV €MdOCEWV TNG KAl TA
{ntnuata acdpdaielag.

‘Emtelta, €€etalel TNV UAOTIOINON KAl KATAJEIKVUEL ONUAVTIKEG BEATIWOEIG
OTNV gUMelpia Tou XPNOTN, TN CUVTNENOILOTNTA KAl TNV AUTOMATOTIONoN o€
oUYKpPLON PE TIC CUMPBATIKESG OTATIKEG LOTOOEAIDEG. TENOG, avadépovTal
MEAANOVTIKEG BEATIWOELG YA TNV TAATHOPUA.

Keywords:

Next.js, Strapi, Headless CMS, ApxltektoVvikn Baolopévn og API, BeATioTomoinon
Anodoong lotoU, Nginx, SQLite, BeATioTomoinon yla Tig¢ unxavég avalntnong,
SSG, Aladiktuo, Alaxeipion Meplexouévou

Abstract

Every institution requires an online presence in the digital era. This diploma thesis
presents the design and implementation of a modern, scalable, high-performance
website for SoftLab NTUA, utilizing a headless CMS architecture for APl-based content
management, automation with other platforms, and hosting strategies using open
technologies.

This thesis examines the architectural choices, methodologies, and development
strategies required to implement an academic web platform that is secure, easy to
manage, and maintainable while being hosted on self-owned servers. Additionally, it
provides an in-depth analysis of performance optimization techniques and security
concerns.

Subsequently, it explores the implementation phase and highlights significant
improvements in user experience, maintainability, and automation compared to
conventional static websites. Finally, it outlines potential future enhancements for the
platform.

Keywords:

Next.js, Strapi, Headless CMS, API-driven architecture, Web Performance Optimization,
Nginx, SQLite, SEO, SSG, ISR, Web, Content Management

Extetapévn MepiAndin

>V Ynolakn eMoxn, N avaykn yla pia olyxpeovn, uPnAng anddoong Kalt
€UEAIKTN dladIKTUAKN Tiapouoia kabioTatal arapaitntn yia kdBe akadnuaikod
(dpupa Kal epeuvnTIKO epyactnplo. H mapoUoa diatpiPr) eEetdlel Tov oxedlaouod
Kal TNV uAotoinon evog dIKTuakoU cuotnuatog dlaxeiplong neplexopévou (CMS)
via 1o SoftLab NTUA, XpnOLLOTIOIWVTAC AVOLKTEG TEXVOAOYIES Kal uloBeTWVTAG
Ml apXITeKTOVIKN Baolopévn oe headless CMS. H AUon autn otoxeuel 6L HOVO
oTn BeATioTOTOINON TNG EUMELPIAG TOU XPNOTN KAl TNG 0paTOINTAG OTA
artoteAéopata avaldntnong, aAAd kal otnv arioroinon tg dladikaciag
EVNUEPWONG Kal dlaXe(plong TOU TIEPLEXOUEVOU HECW AUTOUATOTIOMNHUEVWV
OlEpYaoIwV.

Eicaywyn kai AjAwon MpoBARupaTog

Yridpxel avaykn yla €va olyXpovo Kal eUEAIKTO oUoTnua dlaxeiplong
TEPLEXOMEVOU TIOU VA AVTATIOKPIVETAL OTIC ATIALTOEIS EVOC EPEUVNTIKOU
neplBadAlovTtog. Ta mapadoaoiakd, HOVOALBIKA cuoTtiuata dlaxeiplong
TEPLEXOMEVOU OUXVA TIAPOUCLAloUV TIEPLOPLIOUOUG GO0V adopd TNV
KALLOKWOLLOTNTA, TNV arnddoon Kal TNV eUKoAia otn cuvthpnon. Me tnv alt&non
TWV AMAITACEWV yia Taxutnta ¢opTwong, BeAtiotoroinon SEO Kal eVOWUATWON
pe eEwTeplkEG UuTPEeaieg (6nwg To API Tou LinkedIn yia autéupatn dnuooisuon
EVNUEPWOEWV), KABIOTATAL ETUTAKTIKN 1 AvAYKnN Yyld Hia TPooéyylon rou Baacifetal
oe éva headless CMS. H dopun g dlatpIPng éxel opyavwOel pe TpodTo mou Eekiva
ard TNV TEXVOAOYLIKN avadpoun Kal KatadelkvUEL TA TANEOVEKTUATA TNG
HMOVTEPVAG APXITEKTOVIKNG, TIPOXWPWOVTAG OTN CUVEXELA OTNV UAoToinon, v
avarruén kat tTnv napouaciaon mg epapuoyng, WOTE va TPOOHEPEL [Ia
OAOKANPWHEVN €IKOVA YIA TO OXEDIAOUO KAl TNV TPAKTLKY edapuoyn g Along.

10

Emokonmon AnmaiTtoupevwv TexvoAoyiwv yia Tnv YAomoinon Tou MpoTteivopevou
ZUOTAHATOG

1.

CMS — MovoAi181ka kat Headless:

ApXIKQ, yiveTtal avagopd otn onuacia Twv Content Management Systems yia
NV opydvwon kat dlaxeipton Tou Yndlakol TEPLEXOUEVOU.
MapouaotalovTal ol apadoolakég AUoeLg, ol oroieg BaoilovTtal og
MOVOALBIKY apXITEKTOVLKY, 6Tiwg ol WordPress, Joomla kat Drupal. Evw
AUTEG TIAPEXOUV €va OAOKANPWHEVO TIEPIBAAAOV Yia TN dlaxeiplon
TMEPLEXOMEVOU, OUXVA TIAapouaclalouv TPoBANHaTa anddoaong Kal
neploplopévn euelil&ia yia HEANOVTIKES eMeKTAOELS. AVTIOETA, N TIPOCEYYLON
Tou headless CMS amnoorid to back-end amno to front-end, erutpémnovtag
dnuloupyia meplexopévou péow API kal Tnv aveEaptntn avarruén twv dlo.
310 M\aiolo auTto, To Strapi eTuAéyeTtal wg o KUpPLog TAPOX0G, AOYw NG
eueli€iag, Tou avolkToU KwdlKa Kal TNG duvaTtoTnTag EVOWHATWONG HE
MOVTEpPVa epyaAeia avamruéng.

Front-end TexvoAoyieq:

>tnv avartuén tou front-end, To Next.js erAéyetal wg kKUplo framework,
Kabwg mpoodEpel duvaTtotnTeg O6Mwg To Static Site Generation (SSG) kal To
Server-Side Rendering (SSR), ol omoieg cupBailouv otnv TaxlutnTa
doOpTWONG Kal 0N BeAtiotoroinon SEO. Erurm\éov, ol Baolkég Texvoloyieg
— HTML, CSS kat JavaScript — cuvdudlovtal pe ouyxpoveg BIBALOBNKES Kal
frameworks yla tn dnuioupyia plag SUVAULKNAG KAl AVTATIOKPIVOUEVNG
epapuoyng. H urmootplén yia moAAarmeg yYAwooeg (i18n) eival kpiowun ya
TO epeuvnNTIKO TEPIBAAAOV, KOBWG ETUTPETEL TNV TIPOORACIMOTNTA OF
XPNOTES amod dlAaPOPETIKEG YAWOOIKEG OUADEG..

SEO, SSG, SSR kat CSR:

H BeATioTomoinon yia Tig unxavég avalnmong (SEO) anoteAei kpiolo
MapAyovTa yla TNV €MMTUXI(a TOU LOTOTOTIOU. H Xprion oTpatnylk®Vv OTwg To
SSG kal To SSR eEaodaAilel 6TL ol oeAideg MapdayovTal iTe €K TWV
MPOTEPWV £iTE dUVAUIKA oTOV server, divovtag A pn HTML otov xpnotn
Kal oToug crawlers Twv unxavayv avalntnong. MapdAAnAia, mapouacialovral
kal Ta pelovektnuarta tng Client-Side Rendering (CSR), n omoia pnopei va
ETMPEATEL APVNTIKA TNV 0PATOTNTA TOU TIEPLEXOUEVOU.

API Integration kat AutopaTtoroinon:
‘Eva eTurpoo0eTo onPAVTIKO oTolxeio anoteAei n evowpdtwon APls, rou
ETUTPETIEL TNV AvTaAAayY) dedOUEVWV HETAEU TNG TAATHOPHAG Kal

11

eEwTePIKWV UTMPECIOV. Méow NG Xpnong Webhooks arnoé 1o Strapi CMS, n
€PAPHOYY) ETUTUYXAVEL AUTOPATN EVNUEPWON TOU TIEPLEXOUEVOU, KAl
evowuatwon pe to LinkedIn API, dnuooleUovtog autoUATa AvVAaKOIVWMOELQ
oto mipodiA Tou Softlab NTUA oto Linkeidn.

Deployment kat Baoeig Aedopévwv:

H etuAoyn tou SQLite wg armAn, Bdon dedouEvwy TIoU AelToupyel o €va
apxeio kal n xpnon evog aviiotpopou dakoplotn (Nginx) yia e§looppoérmon
dopTiou, Mpoowplvi anoBnkeuon Kal Kputroypddnon evioxUel TNV
arnoédoon Kat TV acpdAiela TG Matpopuag, KabloTwvTag TNV WOAVIKA yia
deployment o€ (13LOKTNTA PNXAVAMATA UE AUOTNPEG amaltnoelg acdpaieiag
Kal EAEYXOU.

YAomoinon tng MNAat¢oppag

210 TPiTO KEDAAALO TNG dlATPIRNG Mapouacialetal n UAoroinon g

TPOTELVOUEVNCG BLAdIKTUAKNG TAATPOPHAG, N oToid arnoTeAel TO TEAIKO
AroTEAEOUA TNG OUVDUACOTIKNG ETIAOYNG TWV TEXVOAOYLWV TIOU TEpLlypddnKav oTo
nponyoUuevo kedpdaAato. H ulomoinon autn erudlwkel 6L HOVO va a&loTolnoel

T\ PwC TIC duvatotnTeg evog headless CMS, aAAa kal va eEaocpalioel uPnAn
arnodoon, euKoAila otn dlaxeiplon Tou MeEPLEXOPEVOU Kal aodaln AetToupyia Tou
OUOTAMATOG.

1.

Evowpdatwon tou Strapi CMS kat Alaxeipion Meplexouévou

To Strapi, eTuAEéxONKe WG open source Kal auto-plAoEevoupuevou headless
CMS. Me v eueli&ia mou apExel otn dnuloupyia kat draxeiplon
neplexopévou péow tooo RESTful kat GraphQL API, To Strapi dleukoAUvel
TNV uloroinon evog duvaplkoU TEPIBAAAOVTOG, OTIOU Ol Un TEXVIKO(
XPNOTEG puropoUv va ene&epyalovtal, va opyavmvouv Kal va dnuoaclelouv
MEPLEXOMEVO e eUKOALQ. H ortrikn avanapdotaon Tou oxnuatog g Baong
(Schema Builder), n duvatotnTta d1apopeTIKWV DIKAIWUATWY HETAEU TV
XPNOTWV KAl N eUKOAIQ XpNong TnG SLAXELPLOTLKNG ETUPAVELAG TIPOCPEPOUV
Mla oAokANpwpévVN AUon yia TI¢ avAyKkeg TG EpapHoyNnG.

Bdon Aedopévav

Ma tnv anoBnkeuon Twv dedouEVWY eTIAEXONKe To SQLite, Aoyw NG
arm\onTag, Mg ¢opnTOTNTAG Kal TNG AMEONG EVOWUATWONG Tou oTo Strapi.
H tou kabiotd tn dladikacia avamruéng Kat ouvtnenong Tou CUCTNHATOG

12

IO ATOTEAECUATLKN, XWPIC TNV avaykn yla repirmlokeg pubuioelg
JOLAKOULOTWV BACEWV OEDOPEVWV.

. YAoroinon tou Front-end pe Next.js

H avartuén tou front-end mpaypatormoleital pe 1o Next.js, To omoio
npoodEpel duvaTeg duvaTtoTnTeS oMW To Static Site Generation (SSG) kat
To Server-Side Rendering (SSR). Méow AUTOV TWV TEXVIKWYV, ETITUYXAVETAL
BEATIOTN arddoon, yprnyopn ¢o6pTwon oeAidwv Kal eEAIPETIKN
BeATloTOTIOINON YA TIC INnXavég avalntnong (SEO). Emm\éoy, n
EVOWUATWON TMOAUYAWOOIKWV duvatoTNTWV (i18n) eEaopalilel 0TI N
mMatpopua eEurmpeTel €va dleBVEG KOLVO.

. Back-end Aoyikn kat Evowpdtwon Linkedin API

To Next.js API routes xpnoluormoleital yia tnv uAoroinon tou back-end,
ETUTPETIOVTAG TN dNULloupyia eEEIBIKEUMEVWY AEITOUPYLWV, OTIWG N
auTtopartomoinon g dnuooicuong replexouévou oto LinkedIn. H
evowuatwon pe to LinkedIn APl eEaodalilel 6TL Ol VEEC AVAKOIVWOOELQ
dnuoolelovtal auTtopaTa otnyv erionun ocAida tou SoftLab NTUA,
oupBAaAAovTag otnv MPoBOAN TNG £PEUVAG KAl TWV dPACTNPLOTHTWV TOU
1dpUuaTOG.

. Deployment

H matpopua avartuooetal He oKoTO va eival hosted oe 1B16KTNTOUGQ
servers. Na auto €ytve eruhoyn tou Nginx wg avTtioTpodou dIAKOWLOTH, TIOU
eniong evioxUel TNV acgdpdalela Kat Tnv anoddoon tou cuoTtnuatog. O Nginx
dlaxelpiCetal Tn dpopoAdynoN TWV altnoewy, mapéxel caching, dleukoAUvel
TNV KpUTroypagnon kat Aeitoupyei wg eruriéov eminedo npootaciag
evavTia oe emubéoelg, eEaogdaiifovtag TV odaAn katl a&lorotn Aettoupyia

™G ePpapuoyng.

. Alaxeipton Meplexonévou kat Evnuepwoelg

Aedopévou OTL 0 LOTOTOTIOG TIAPAYETAL WG OTATIKA apxeia, analteital pla
MNXavh yla TNV eVvnUEPWOoN Tou TepleXouévou. H dladikaoia autn
erutuyxdavetal hEow dU0 BaCIKWV HEOODWV: TwV MANPWV ETAVAKATACKEUWV
(rebuilds) Tou front-end kat Tng xpnong Tng TeXVIKNG Incremental Static
Regeneration (ISR) Tou Next.js. Me tov ISR, ol oeAideg avavewvovtal 0To
TIAPACKN VIO XWpIig dlakorm) TG epapuoyng, eEacdaliovTtag £TOL CUVEXEIS
EVNUEPWOEILG ME EAAXIOTO KOOTOG XPOVOU Kal TIOPWV.

13

7. Métpa Aogpaleiag kat Aropudvwong
H aopdaAela anoteAel akpoywviaio AiBo tTng uAomoinong. H apXITEKTOVLKY,
ME ToV dlaxwplopo peTa&l front-end kal back-end, petwvel tnv etudpdvela
emnibeong, evw ta acpaiiopéva APl endpoints mpootateUouv Ta dedopéva
anod un eEouatodotnuévn pocoaon. Emrméov, o Nginx Aettoupyel wg
Security Gateway, epappolovtag TOAITIKEG TIEPLOPLOOU TipooBaong, rate
limiting kat mpootaciag katd Twv ermuBeoswv DDoS.

8. ZUVOAIKN APXITEKTOVIKN Kal Alaypauuata
To kepAAalo OAOKANPWVETAL UE UIA CUVOAIKN ETILOKOTMON TNG
APXITEKTOVIKNG TNG £PpapHoYNG, HEow UML. Autd Ta dlaypduuata
arelkovifouv pe ocagnvela v aAAnAemnidpaon HETAEU TwV dlapoOpwV
OTOIXElWV TOU OUOTNHUATOG, TOV TPOTIO TIOU ETIKOIVWVOUV HETAEU TOUG Kal
TO OUVOAIKO TEPIBAAAOV avATTTUENG, TIPOOPEPOVTAG HIA OAOKANPWHEVN
€lKOVA TOU €pyou.

Ekkivnon N Enavag¢opa Tng Edpapuoyng

>T0 TETAPTO KEPAAalo eplypddovTal ol dladikaoieg mou anattolvTal yia
TNV €KKivnon N v enavadpopd g epapUoyng o€ Eva mapaywylko neptBaiiov. H
dladikaoia Egkivd Ye TNV anoKTNon Tou rmyaiou Kwdika arnd To arnobeTnplo,
dlaocpaliCovTtag 6TL OAa Ta arapaitnta otolxeia — 1o front-end, To back-end, ol
pubuioelg TG BAong dedoPEVWY Kal Ol EVTOAES avaATTTuENG — eival dlabéatua Kat
eVNUEPWHEVA. ITN OUVEXELQ, TIapouataleTal n dladikaoia emavagpopdg g Baong
dedouévwy SQLite, pali ue Ta OXETIKA apxeia MOAUMECWY, MOTE va avaktnOei
T\ PWGC TO ATIOONKEUPEVO MEPLEXOUEVO.

H owotn dapdpdwon tTwyv euaicdOntwy napapetpwv (APl keys, HUOTIKA)
HEOow apxelwv MepIBAANOVTOG (.env) eival Kpiolun kat eEaocpalilel Tnv acpain
eTKolvwvia HeETAEU TwV CUOTNUIKWV oTolXelwv. AKOAoUBE(| eKKivnon Twv
epapUOY®V, TIOU TEPIAAMBAVEL TNV EYKATAOTAON TWV arapaittwyv BIRBALOONK®YV,
TN METAYAWTTION TOU KWALKA KAl TNV €KKIVNON TWV EMUEPOUCS UTMPECLOV.
ErurAéov, e€nyeital n pubuion tou avtiotpodou diakoutotn (Nginx), o omoiog
dpouoloyel TIG eloepxOpeVES althoelg HeTAEU Tou front-end kal Tou back-end.
TéMNog, evnuepwvovTal ol pubpiosig DNS wote 10 emionuo domain va deixvel otn
VEQ EIKOVIKI) UNXavn, OAOKANpwvovTag TN HETABAOCN OTO VEO TIEPIBAAAOV.

14

Enidei1gn Tng Epappoyng

2TO TMEPTTTO KEPAAALO TIAPOUCIAZEL PIA TIPAKTLKY) €TUOEIEN TWV BACIKWV
AEITOUPYIWV TNG €PAPHOYNG KAl TNG eUmelpiag Tou TEAIKOU XpNOTN. ZeKIVA HE TNV
rnapouciaon TG dlaXEIPLIOTIKAG empavelag Tou Content Management System
(CMS) mou uloroleital pe to Strapi. OL dlaxelploTég uropoUv eUKOAA va
dnuloupyoUlyv, va eneEepydlovTal Kal va dnuUocleUouV TEPLEXOUEVO HECW TOU
euxpnotou Content Manager. AvadelkvUovTal BaolkEG AelToupyieg Omwg N
dnuloupyia VEwV eyypadwv Kal 1 UttooTNPLEN TIOAAATA®WY YAWOO®V, TIOU
ETUTPETIOUV TNV ATIOTEAEOPATIKN dlaxeiplon meplexopévou yia €va eupU KoLvo.

>1n ouvéxelq, napouatdletal to front-end TG epapUOYNG, AVETTTUYHEVO UE
To Next.js, ou poopEpel €va olyxpovo, responsive design Kal ypriyopoug
XPOVoUg pOpTwoNG. Ta dladpacTIKa oTolxeia OTIwS To PIATPAPLOUA TOU
TEPLEXOMEVOU HE BAon TNV eTIAeYPEVE OpAda epyaoTnpiou, BEATIWVOUV TNV
m\onynon Kat tnv npdofaon oto nepleXxouevo. TEAOG, emudelkvUETAL | AUTOMATN
evowuatwon pe to LinkedIn, 6rou, 6tav dnuoactieleTtal véo meplexouevo oto CMS,
diveTal n eruAoyn va dnuoaoleuTel autoéaTa Kat otnv enionun oeAida Tou SoftLab
NTUA oto LinkedIn. Auth n oAokAnpwuévn Aettoupyia arodelkviel TNV
ATMIOTEAEOUATIKOTNTA TWV ETIAEYHEVWV TEXVOAOYIWV, TIPOOPEPOVTACG EVa
dUVAULKO, amodoTIKO Kal eUXPNOTo cUOTNHA.

BeATiwOEIG

To teAeuTtaio kepdAalo eEeTAlel POTAOCELG YIA HEANOVTIKEG BEATIWOELG TIOU
otoxeUouv og KaAUTepPN anddoon, EMEKTACIHOTNTA KAl aoPpdAAeld TNG EPAPHUOYNG.
ApXIKQ, TipoTeiveTal n UAOTIOINON €VOG AUTOUATOTIOINUEVOU UNXAVIOHOU
enavakataokeung (build), o omoiog Ba emTPETEL OTOUG JLAXELPIOTEG VA
evepyorololv evnuepwoelg Tou front-end aneuBeiag and to CMS, eEaodaliCovtag
OTL ol aAAaY£G OTO TEPLEXOUEVO eudavifovTal auEowS XwPIig XEIPOoKivnTn
ETMAVAKATAOKEUN TNG epapuoyng. Emrmiéov, Tovidetal n avaykn yia yia
auTtopatorolnuévn dladikaoia backup Tng Baong dedouévwyv SQLite kat Twv
OXETIKWV apXEiwV TOAUPECWY WOTE VA PHEIWVETAL O KIVOUVOG amMWAELAG
dedopévwy oe mepimrwon BAARNG.

15

ErunpooBeta, mpoTteivetal n avarruén evog AUTOUATOTIOINKEVOU UNXAVIoUoU
arokataoTtaong mou Ba anokadloTd autopaTa TNV ePpapUoyr o€ TepimTwon
BAABNG. H evowpdtwon evog edikoU mail server pe 1o Strapi yla Tnv arnooToAn
€100TIOINOEWV TIPOTEIVETAL ETHONG YIA TNV TEPAITEPW BeATiwON TNG dlaxeiplong.
TéNog, eEetdlovTal peAAovTikég APl evowpatwoelg, 6Tiwg n ouvdeon e
akadnuaika repositories kal n a&lomoinon Tou CUCTHHATOG AuBeVTIKOTIONONG TOU
1dpUHATOG, YIA TNV EMEKTACN TWV dUVATOTHTWV TNG TAATGOPHAG KAl TNV
evioxuon g aocdpdaielag Kal Tng dlaxeiplong xpnoTwy.

16

17

Table of Contents

Acknowledgments ... e 5
B F0 017, X g 1171 6
ADSEract ... e 8
EKTETAMEVN TTEPIANWPN .ccneeieee s s 10
Table of Contents..........ooiiiiiii e 18
Chapter 1 - Introduction ... 23
1.1 Problem Statement ... 24
1.2 SHTUCHUIE ..t e s e e e e e e e e e e e e e eeeeeeennnnnnes 25
Chapter 2 — Overview of Technologies Needed............cccemueiiiiirriennnnnn. 26
2.1 OIS L e e e e e 26
2110 WHat iS @ CIMST ..ottt e e e e e e e et e e e e e e e s eeeaaeeeeannneees 26
2.1.2 MONOINIC CIMS ...t e e e e e e e e e e e e e e e e nnnees 28

2 B B A Lo o | (= USSP 29

B N Lo o o o] = RSP 30

D B T I U o7 USSP 31

2. 1.3 HEAAIESS CIMS ...t e e e e e e e e e st e e e e e e e e e e eaaaeeeeannnnees 32
Dt T TR B - | o OSSP 33

D I T8 @70 4 (=Y o 1 {1 OSSP 34
G TR TS T 1 2SSO 35

2.2 Front-end TEChNOIOGIEScoooiiiiiiiii e 36
2.2.1 What are front-end teChNOlOGIE€S?..........ooiiiiiiiiiiiiiii e 36
2.2.1.1 Core Front-end TEChNOIOGIESceiiiuiiiiiiieiiiee ettt 36

2.2.1.2 Modern Javascript FrameWoOrksooooiiiiiiiii e 37

2.2.1.3 Supporting TECANOIOGIESc.c.ueieiiiieeiie ettt e et e e s e e e e e sneeeeneeas 37

2.2.2 Search Engine Optimization (SEO)coiiiiiiiiiiiiie e 38

2.2.2.1 SEO Factor for RANKINGS..........oiiiiieiie ettt e s 38
2.2.2.2 Structured Data & XML SItEMAPS.......cccuriiieiiiiiiie et e ettt e s e e s sree e e e ssneaeeeessnneeees 39
DA IS T =L @ 1V =Y = T 1= T 1 OSSR 40
2.2.3 Static Site GEeNEratioNueiiiiie e 41
2.2.4 Server-side RENAEININGc.uuiiiiiiiiee ettt e aneeea e 42
2.1.5 Client-side RENAEIINGoouuiiiiiiiiie et ee e 43
2.3 API Integration and Automationcccuuiiiiiiiiiii 44
2.3.1 WAt @€ APIS? ...ttt e e e e e e et e e e e e e e e e e e e e e e e e nnnnes 44
2.3.2 What is an API INtegrationoooiiiiiiiii e 45
2.3.3 Webhooks and AUtOME@LIONcoiiiiiiiiiiie e 45
2.4 DEPIOYMENT ...ttt e e e e 46
2.4.1 Deployment BASICSccoiuiiiiiiiiieieee e 46
2.84.2 DOCKET ... 46
2.4.3 REVEISE PrOXY ...eeiiiiiiiiiiiiiie ettt e e e e e e e e e e e e e nnnees 47
Chapter 3 — Implementation..........ooceiiiiiccc s 48
3.1 Strapi CIMS ... ettt e e e e e e e e e e eaeeannae 48
3.1.1 Open-Source and Self-Hosted............ooiviiiiie e 48
3.1.2 Headless ArChiteCIUreooi i 48
3.1.3 Ease of Use and Content Management.............cc.ooiiiiiiiiiiiiiie e 49
3.1.4 Schema Builder - VisSualization ... 49

K Tt I S T =T o L@ IS T U o o Yo o SRR 49
3.1.5 Flexibility in Database ChOICESuuiiiiiiiiiiiiiiee e 49
3.1.6 Scalability and Performanceccuuiiiiiiiiiii e 49

K Tt B A o o T [] o o SRR 50
3.2 DaAl@D@SE ... 51
3121 SQILITE ettt e e e e e r e e e e e nre e e e e ennes 51
3.2.2 Strapi INtegration..........ooo i 52
3.2.3 Advantages Of SQILILEeeiiiiiiii e 52
3.3 FrONT-ENA ...t 53

19

K I =« 01 PP PPPPPPR PPN 53

3.3.2 Search Engine Optimization — Static Site Generationccocccciiiiiiiiiiiiee e 53
3.3.3 MURIINGUAL ...t e e e e 54
3.3.4 Integration With Strapicoooiiiiiii e 54
3.4 BACK-ENA ...t 55
3.4.1 Next.js BaCK-eNd ... 55
3.4.2 Linkedin AP iINtegration ... 56
3.4.3 Automated Post 0N LINKEAIN ..o 57
3.5 DEPIOYMENT ...ttt 59
3.5.1 Lightweight, Reliable, and Flexible Deploymentcccoiiiiiiiiiiiie 59
3.5.2 Deployment in PhySiCal SEIVEISooiiiiiiiiiiiiee e 59
3.5.3 REVEISE PrOXY SEIVEI.......oiiiiiiiiiii ettt 60
3.6 Content UPAateso 61
3.6.1 REDUIIAS ...t 61
3.6.2 Next.js Incremental Static Regeneration Strategycccocceiiiiiiiiiiie 62
RS T=T ol h |] PP TS OPPPPPPP 63
3.7.1 Server — Client DECOUPIINGoiuuiiiiiiiiiie e 63
3.7.2 Security Gateway — ReVErse PrOXYcooiuiiiiiiiiiii i 64
3.8 Architecture of AppliCationoooiiieiiiii e 65
3.8.1 ComMPONENt DIAGIramccuueiiiiiiieie ettt et e e e e e e ne e e e e anre e e e e annes 65
3.8.2 Deployment DIiagramoooiiiiiiiiii e 66
Chapter 4 Starting or Restoring the Applicationccciiiineeeeeeee 67
4.1 SOUICE COAE ...ttt e e e e e e e e e e e e e e 67
4.2 Data BaCKUPSo e e e ettt e e e e e e e e e e e e e e eeenenne 67
4.3 SECIEtS @Nd KEYSuuiiiiiiiiiiiiieiie et 68
4.4 Starting the ProCeSSESee i 68
4.5 Setting Up the REVEISE PrOXYccooiiiiiiiiiiiiiiei et 68

20

Chapter 5 Demonstration of the App ... 70
S 0t 1V PSSP 70
5.1.1 CoNteNt MANAGETeoiiiieiiee ettt 71
5.1.1.1 Creating @n ENtry ...ttt et e e n 72

5.1.1.2 MUKIINGUAI SUPPOIceiiiieiiee ettt e et e e e e e e e e s sr e e e e s senteeeeesanssneeaeanns 73

5.1.1.3 PUDIISNING @N ENIY...oooiiiiiee et 75

5.1.2 Content-type BUIIAEueeiiiieie e 76
5.1.3 Administrator ACCOUNt Creationooiiiiiiiiiiiee e 77

5.2 Front-end APPlICatioNcoooiiiii e 79
5.2.1 HOME PAQgE ...t e e 79
5.2.2 Lab Group FIEINGccoiiiiiiiieie e 82
5.1.3 MUltilingual SUPPOIT ... e e e e e e s e e e e e e e e nnnnes 83

5.3 Linkedin INtegration ... 85
5.3.1 Publishing an Entry in CIMS ... e 85
5.3.2 LINKEAIN POST ... 86
Chapter 6 Improvements..........coieciiiiiimiccn e 87
6.1 AUtOMALIC BUIIASoeeeieiiiiiiieeee e 87
6.2 Automated BacCKUPScoooiiiii e 87
6.3 Failure RECOVEIY ... 87
6.4 MU SEIVET ...ttt 88
6.5 MOre INtEGratioNsSoooiiiiiiiiii e 88
ReferencCes. ... 89

21

22

Chapter 1 - Introduction

In the rapidly evolving digital world, having a modern, performant, and scalable
web presence is essential for any research institution. SoftLab NTUA, as a leading
software engineering laboratory, requires a website that reflects its cutting-edge
research, facilitates collaboration, and provides easy access to academic content for
students, researchers, and external visitors.

The new website is designed with a modern technology stack to ensure:

o Improved User Experience (UX): A sleek, responsive, and accessible interface
optimized for desktop and mobile users.

e Dynamic & Scalable Content Management: A CMS-driven architecture that
allows administrators to update content effortlessly.

« Enhanced Performance & SEO: By leveraging Next.js with Static Site Generation
(SSG) and Server-Side Rendering (SSR), the site achieves fast load times and
optimal search engine visibility.

o Automation & API Integrations: Webhooks and structured APIs enable automatic
content updates and integration with third-party services like LinkedIn and
research repositories.

« Secure Deployment: Using Nginx and following best practices, the infrastructure
is scalable, portable, and easy to maintain in a production environment.

This approach ensures that the NTUA website is future-proof, easy to maintain, and
adaptable to evolving technological and academic needs.

23

1.1 Problem Statement

In an era where digital presence is crucial for academic and research institutions, a
modern, high-performance, scalable website is more pressing than ever. Traditional
web platforms, often built on static architectures, lack the required flexibility,
maintainability, and interoperability.

As research output grows and digital engagement becomes more complex,
institutions must adopt dynamic, API-driven architectures that enhance usability,
automation, and integration with external services.

The redevelopment of the website aims to address several fundamental challenges
associated with outdated web infrastructures:

« Limited Content Management Capabilities: Traditional websites rely on manual
updates and lack a structured content management system (CMS), leading to
inefficiencies in updating and maintaining information.

« Suboptimal Performance and SEO Deficiencies: Without Server-Side Rendering
(SSR) or Static Site Generation (SSG), content loading times increase, affecting
user experience and search engine rankings.

e Lack of APl and Automation Support: Modern academic workflows demand
integration with third-party platforms like LinkedIn and other scholarly
repositories.

« Scalability and Maintainability Issues: Monolithic and static websites are difficult
to extend, requiring a high development effort for new features and raising
concerns about long-term sustainability. They are also difficult for non-technical
people to operate.

o Security and Deployment Constraints: Traditional hosting solutions lack

containerized deployment strategies, which increases the complexity of
managing updates, security, and scalability.

24

1.2 Structure

This thesis is structured into six main chapters, each addressing different aspects
of developing a modern website for SoftLab NTUA. The organization follows a logical
sequence, starting with theoretical foundations and technological choices, progressing
through implementation details, and concluding demonstrations, and improvements.

The first chapter introduces the motivation behind this thesis, emphasizing the
need for a modern and efficient web platform. It defines the problem statement and
discusses the challenges associated with website development for research
laboratories. Additionally, this chapter provides an overview of the thesis structure,
guiding the reader through its key sections.

The second chapter reviews the technologies required to develop the website. It
explores content management systems (CMS), front-end frameworks, APl integration
techniques, and deployment strategies. This chapter is a foundation for understanding
the technological landscape that influenced the project's design decisions.

The third chapter details the project's technical implementation. It describes the
chosen CMS, its integration with the database, and the selected front-end technology.
Furthermore, it covers back-end development, including LinkedIn APl automation for
content sharing. Deployment strategies are examined in depth. The chapter concludes
with an architectural analysis supported by diagrams illustrating the system's structure.

The fourth chapter focuses on setting up and restoring the website. It provides a
step-by-step guide for deploying the system, managing database backups, handling API
secrets, and configuring the reverse proxy. This chapter ensures the website can be
efficiently maintained and redeployed when necessary.

The fifth chapter showcases the functional aspects of the developed system
through a series of demonstrations. It presents key features of the content management
system, front-end application, and LinkedIn integration and highlights their usability and
performance.

The final chapter outlines ideas for future improvements, including further
automation, enhanced deployment strategies, and additional integrations to expand the
system's capabilities.

25

Chapter 2 — Overview of Technologies Needed

Modern web development relies on various technologies that simplify content
management, enhance performance, and ensure scalability. This chapter overviews the
essential technologies used in developing the website, focusing on Content
Management Systems (CMS), front-end technologies, API integrations, and deployment
strategies. Each section discusses key concepts, available solutions, and their impact
on a project’s implementation.

2.1 CMS

A Content Management System (CMS) manages digital content, allowing users to
create, edit, and publish information without requiring advanced programming skills.
CMS platforms vary in structure and functionality, ranging from traditional monolithic
solutions to modern headless and external services-based architectures. This section
explores different CMS types, their advantages and disadvantages.

2.1.1 Whatis a CMS?

A Content Management System (CMS) 11] is a software application that
facilitates the creation, management, and modification of digital content without
requiring extensive technical knowledge. CMS platforms are widely used for developing
and maintaining websites, enabling users to manage text, images, videos, and other
forms of content through a user-friendly interface. They provide functionalities such as
content organization, user management, and media handling while often supporting
collaboration between multiple users.

Traditional web development requires direct HTML, CSS, and JavaScript coding,
as well as back-end development for handling databases and server logic. A CMS
abstracts much of this complexity, allowing users to build and manage dynamic
websites with minimal coding effort. This makes CMS solutions particularly valuable for
businesses, educational institutions, and research laboratories, where non-technical
users must update and maintain content efficiently.

26

Content Management Systems come in different forms, each catering to specific
needs and use cases. The two primary types of CMS are Traditional (Monolithic) CMS
and Headless CMS [2]. Those can be self-hosted or managed by External Services.

Read / Write

A

|
| Read
|

Figure 2.1: Monolithics vs Headless CMS [2]

27

2.1.2 Monolithic CMS

A traditional CMS, also known as a coupled CMS, combines the back-end (content
storage, management) and front-end (content presentation) into a single system.
Popular examples include WordPress, Joomla, and Drupal.

Advantages:

¢ All-in-one solution: Includes content management, design, and hosting in a single
package.

e User-friendly: Often comes with a visual editor, making content updates easy for
non-technical users.

e Large plugin ecosystem: Provides extensive customization options through
plugins and themes.

Disadvantages:

e Limited flexibility: The predefined front-end may restrict how content is displayed.

e Performance issues: The tightly integrated front-end and back-end can lead to
slower performance.

e Harder to scale: As content grows, performance optimization can become
challenging.

28

2.1.2.1 WordPress

WordPress is the most widely used monolithic CMS, powering over 40% of all websites
on the internet. It is an open-source platform based on PHP and MySQL, providing a
user-friendly content management system that enables individuals and businesses to
create and manage websites with minimal technical expertise.

Key Features:

Large Community and Extensive Documentation — A vast ecosystem of
developers and users provides ongoing support and resources.

Rich Plugin and Theme Repository — Thousands of plugins and themes allow for
extensive customization.

User-Friendly Interface — A graphical administration panel (Dashboard) makes
content management accessible to non-technical users.

SEO Optimization — Popular plugins such as Yoast SEO enhance search engine
visibility.

Built-in User Management System — Supports multiple roles and permissions for
different users.

E-Commerce Support — Integration with WooCommerce enables the creation of
online stores.

Disadvantages:

Security Vulnerabilities — Due to its popularity, WordPress is frequently targeted
by cyberattacks.

Performance Limitations — Extensive use of plugins can lead to slower page
loading times.

Limited Flexibility in Architecture — While plugins extend functionality, WordPress
remains a monolithic system, making it less suitable for integration into modern
microservices-based architectures.

29

2.1.2.2 Joomla

Joomla is another open-source CMS that balances ease of use and flexibility. It is
based on PHP and MySQL and is designed for users who require more advanced
content management capabilities while still maintaining usability. Joomla is particularly
well-suited for multilingual websites and complex permission structures.

Key Features:

e Advanced User Management — Offers a sophisticated system for managing user
roles and permissions.

e Multilingual Content Support — Unlike WordPress, Joomla provides built-in
support for multilingual websites without the need for additional plugins.

e Template and Extension System — Provides more customization flexibility than
WordPress, allowing for advanced design modifications.

e Caching and Performance Optimization — Includes features to improve website
speed and efficiency.

Disadvantages:

e Steeper Learning Curve — More complex than WordPress, requiring a higher
level of technical proficiency.

e Smaller Community and Fewer Extensions — Compared to WordPress, Joomla
has a more limited selection of plugins and themes.

e More Challenging Maintenance — Updates and modifications require more
technical knowledge.

30

2.1.2.3 Drupal

Drupal is a highly flexible and secure CMS, making it the preferred choice for large-
scale enterprises, government websites, and organizations with complex content
structures. It is designed to handle advanced workflows, complex permissions, and
structured content.

Key Features:

e Strong Security Measures — Used by government institutions due to its robust
security architecture.

e Advanced Content and User Management — Supports highly customizable
content types and taxonomy systems.

e Highly Scalable and Performance-Oriented — Suitable for large websites with
high traffic demands.

e Multilingual Capabilities — Offers built-in support for multiple languages without
the need for plugins.

e Headless CMS Capabilities — Can be used as a decoupled CMS, providing
flexibility for frontend development.

Disadvantages:

e Complexity and Learning Curve — Requires advanced technical skills, making it
less suitable for beginners.

e Smaller Community and Limited Themes — Compared to WordPress, Drupal has
fewer ready-to-use themes and extensions.

e Resource-Intensive — Requires more server resources, leading to higher hosting
costs.

31

2.1.3 Headless CMS

A Headless CMS separates the back-end (where content is stored and managed) from
the front-end (how the content is displayed). It provides content via an API, allowing
developers to use different front-end frameworks. Examples include Strapi, Contentful,
and Sanity.

Advantages:

e Greater flexibility: Content can be delivered to multiple platforms (web, mobile
apps, loT).

e Better performance: The front-end is independent, allowing for optimized
rendering strategies.

e Developer-friendly: The usage of modern frameworks provides complete control
over how content is displayed.
Disadvantages:
e Requires technical knowledge: Unlike traditional CMS, Headless CMS solutions
do not provide built-in themes or visual editors.

e More complex setup: Requires additional effort to integrate with a front-end
framework.

32

2.1.3.1 Strapi

Strapi is an open-source headless CMS built with JavaScript and powered by Node.js. It
enables developers to create, manage, and expose content through RESTful or
GraphQL APIs. Strapi is designed to be self-hosted, providing complete control over
data storage and content structure.

Key Features:

Self-hosted & Open-source — Unlike many other headless CMS platforms, Strapi
allows users to fully control their backend and database.

GraphQL & REST API Support — Provides built-in GraphQL and REST API
endpoints for flexible content delivery.

Role-based Access Control (RBAC) — Allows for fine-grained permissions,
making it suitable for enterprise applications.

Customizable Admin Panel — Developers can extend and modify the admin panel
to fit project needs.

Supports Multiple Databases — Compatible with SQLite, PostgreSQL, MySQL,
and MongoDB.

Disadvantages:

Requires Self-Hosting — Users need to manage their own infrastructure, unlike
SaaS solutions like Contentful.

More Configuration Required — Initial setup can be more complex compared to
cloud-based headless CMS options.

33

2.1.3.2 Contentful

Contentful is a cloud-based SaaS headless CMS, designed for enterprises and
businesses that require a scalable, API-driven content platform. Unlike Strapi,
Contentful is fully managed and provides a rich set of features for content modeling and
API integrations.

Key Features:

Cloud-based & Fully Managed — No need for self-hosting or infrastructure
management.

Rich API Support — Offers REST and GraphQL APIs for content retrieval.
Flexible Content Modeling — Users can define custom content types and fields.
Built-in Content Delivery Network (CDN) — Ensures fast content delivery
worldwide.

Integration with Third-Party Services — Supports integrations with services like
AWS, Netlify, and Vercel.

Disadvantages:

Pricing — Contentful follows a subscription-based model, which can be costly for
large projects.

Limited Customization — Unlike Strapi, users cannot modify the backend as it is a
managed service.

34

2.1.3.3 Sanity

Sanity is a real-time, API-first headless CMS with a strong focus on structured content
and collaboration. It provides a flexible content management approach that enables
dynamic content delivery across multiple platforms.

Key Features:

e Real-Time Collaboration — Supports simultaneous editing and content updates,
similar to Google Docs.

e Highly Customizable Studio (Sanity Studio) — Provides a flexible Ul for content
management that developers can extend.

e GraphQL & GROQ Support — Uses GROQ (Graph-Relational Object Queries) in
addition to GraphQL for optimized content queries.

e Content Delivery API (Sanity CDN) — Ensures fast and efficient content
distribution.

e Developer-Friendly — Provides custom schemas, making it easy to structure
content efficiently.

Disadvantages:

e Learning Curve — GROQ is not as widely used as GraphQL or REST, requiring
additional learning.

¢ Limited Self-Hosting Options — Primarily a cloud-based solution, with limited on-
premise deployment capabilities.

35

2.2 Front-end Technologies

Front-end technologies are essential for creating modern, dynamic, and interactive
web applications. They define how users interact with a website and influence
performance, responsiveness, and overall user experience. This section explores the
key front-end technologies used in this project, including the core web development
languages, rendering strategies, and techniques for optimizing search engine visibility.
By selecting the right front-end stack, the project ensures a fast, scalable, and SEO-
friendly website.

2.2.1 What are front-end technologies?

The front-end, also known as the client-side, is the portion of a web application
that users interact with directly through their web browsers. As web applications
become more sophisticated, front-end development has evolved to accommodate
growing demands for responsiveness, scalability, and user experience.

2.2.1.1 Core Front-end Technologies

HTML (HyperText Markup Language) provides the structural foundation of web
pages. Organizes elements such as headings, paragraphs, images, and links, and
Forms the backbone of all web applications and ensures accessibility.

CSS (Cascading Style Sheets) is responsible for styling and layout. Defines
styles such as colors, typography, spacing, and responsive design. Also, Modern CSS
tools like Flexbox, Grid, and CSS Variables enhance styling efficiency.

JavaScript, is a programming language that enables interactivity and dynamic
content updates. It allows developers to manipulate the DOM (Document Object Model)
and respond to user actions. Over time, JavaScript has become a dominant force in
front-end development, with numerous frameworks and libraries designed to simplify
and streamline development processes.

36

2.2.1.2 Modern Javascript Frameworks

These frameworks enable the development of SPAs, which dynamically update
content within a single HTML page rather than requiring full-page reloads. This is
achieved through client-side routing, state management, and virtual DOM manipulation,
allowing for a smooth, app-like user experience.

React [3] is component-based JavaScript library developed by Facebook. Efficient
Virtual DOM updates improve rendering performance. Suitable for building Single Page
Applications (SPAs) and Progressive Web Apps (PWAS).

Vue.js [4] is A progressive framework with an easy learning curve and flexible
integration. Supports reactive data binding and component-based architecture. Ideal for
projects of all sizes, from small applications to enterprise-level platforms.

Angular [5] is A full-fledged MVC (Model-View-Controller) framework maintained by
Google. Provides built-in dependency injection and TypeScript support. Best suited for
large-scale, enterprise applications.

2.2.1.3 Supporting Technologies

Beyond core technologies and frameworks, front-end development involves various
supporting tools that optimize performance and workflow:

e (CSS Preprocessors (SASS, LESS): Extend CSS capabilities with variables,
mixins, and nested syntax.

e Build Tools (Webpack, Vite, Parcel): Bundle and optimize code for better
performance.

e State Management Libraries (Redux, Pinia, Vuex): Handle complex application
state across components.

e Component Libraries (Bootstrap, Tailwind CSS, Material Ul): Provide pre-styled
Ul components for faster development.

37

2.2.2 Search Engine Optimization (SEQ)

Search Engine Optimization (SEO) [6] is the process of improving a website’s
visibility on search engines like Google. A well-optimized site ensures its content is
easily discoverable and ranked higher in search engine results, leading to increased
traffic.

SEO is crucial for modern web development, as search engines act as primary
gateways for users seeking information. Proper SEO implementation enhances a
website’s usability, accessibility, and credibility. It encompasses various strategies,
including keyword optimization, structured data usage, performance optimization, and
user experience enhancements.

Front-end technologies directly impact SEO through how content is rendered,
structured, and served to search engine crawlers. Choosing an appropriate rendering
strategy, such as Static Site Generation (SSG) or Server-Side Rendering (SSR), can
significantly enhance a website’s search engine ranking.

2.2.2.1 SEO Factor for Rankings

Below are the key SEO factors that influence the rank of a website in search engine
results:

e Technical SEO — Ensures that search engines can crawl and index the site
efficiently. This includes optimizing robots.txt and XML sitemaps and ensuring
proper canonicalization.

e On-Page SEO - Optimizes content, headers, meta tags, and images for
relevance and readability.

o Off-Page SEO — Relates to external factors like backlinks, domain authority, and
social media engagement.

e Performance & UX (User Experience) — Includes page load speed, mobile-
friendliness, and secure connections (HTTPS).

e Rendering Strategy — The method of delivering content impacts how search
engines index the site

38

2.2.2.2 Structured Data & XML Sitemaps

Structured data helps search engines understand the context of website content.
Schema.org [7] markup enables rich search results like breadcrumbs, FAQs, and
product ratings.

An XML sitemap provides a structured list of URLs, guiding search engines to
crawl a website efficiently. Below is an example of an XML sitemap and a meta tag
structure for SEO:

B sitemap.xml > @ urlset
xml version="1.0" encoding="UTF-8"
set xmlns="http://www.sitemaps.org/schemas/sitemap/0.9"

loc>https://www.example.com/</loc
' 2024-02-19</ last

C 2g>daily ge

priority>1.0</priority

]_ OC
req>weekly</ch
rity>0.8</priority

c>https://www.example.com/contact</loc
d>2024-02-15
C g>monthly
priority>0.5</priority
url
21 urlset

XML Sitemap Example

39

2.2.2.3 SEO Meta Tags

SEO meta tags are snippets of HTML code that provide metadata about a
webpage to search engines and social media platforms. These tags help search
engines understand the content of a page, influencing how it appears in search results.

Key meta tags include the title tag, which defines the page’s title shown in search
results. The meta description summarizes the page's content and meta keywords and
lists relevant terms.

Open Graph (og) tags optimize how links are displayed on social media platforms.
Properly using meta tags enhances a website’s visibility, click-through rate, and overall
SEO performance.

seo-metatags.html > ...
DOCTYPE html
it lang="en"

tle>Best CMS for Web Development | SoftLab NTUA</title

» name="description" content="Discover the best CMS platforms for web development."

» name="keywords" content="CMS, web development, content management, best CMS, SEOQ"
name="robots" content="index, follow"

y property="og:title" content="Best CMS for Web Development | SoftLab NTUA"

) property="og:description" content="Explore the top CMS platforms."
property="0g: image" content="https://www.example.com/images/cms—comparison.jpg"

y property="og:url" content="https://www.example.com/best—cms"

link rel="canonical" href="https://www.example.com/best—-cms"

h1>Best CMS for Web Development</hl

SEO Metatags Example

40

2.2.3 Static Site Generation

Static Site Generation (SSG) [8] is a rendering method in which web pages are
pre-built at compile time and serve as static files to the user. This approach ensures fast
loading times and better SEO performance, as search engine crawlers can easily index
pre-rendered pages.

SSG generates HTML files during the build process, eliminating the need for
frequent server-side computations. This makes it ideal for content-heavy websites like
blogs, documentation sites, and e-commerce product pages. Since the pages are
already compiled, they load almost instantly, improving Core Web Vitals, a key metric
for SEO ranking.

% Browser Server

1: Visits Page

1.1: Requests Site

1.1.1: Responds fast with pre built pages

1.1.1.1: Events, DOM, etc are added

Static Site Generation

41

2.2.4 Server-side Rendering

Server-side rendering (SSR) [9] is a rendering strategy where pages are
dynamically generated on the server before being sent to the client. Unlike SSG, which
pre-builds pages, SSR processes each request separately, ensuring that users always
receive up-to-date content.

SSR significantly enhances SEO because search engine crawlers receive fully rendered
HTML content, making it easier to index than client-rendered pages. This is particularly
useful for websites that rely on dynamic content.

However, SSR introduces additional server load, as each request requires processing
before delivering the response.

Browser Server

Actor

|
|
|
|
2: Visits Page |
1

>

2.1: Requests Site

2.1.1: Fetch / Calculate Data

]————1

2.1.2: Send built page

e
2.1.2.1: Events, DOM, etc are added

How Server Side Rendering Works

42

2.1.5 Client-side Rendering

Client-side rendering (CSR) [10] is a technique in which JavaScript renders
content directly in the browser rather than on the server. In CSR-based applications, the
browser initially loads a minimal HTML file along with JavaScript, which then fetches
and renders the necessary content dynamically.

While CSR provides a smooth, app-like experience, it poses challenges for SEO.
Since search engine crawlers primarily rely on pre-rendered HTML, CSR applications
often result in poor indexing and ranking due to delayed content loading. To mitigate
this, techniques like server-side hydration or prerendering can be used to improve
search engine visibility.

CSR is well-suited for highly interactive applications, such as dashboards and
web-based tools, where user experience takes priority over search visibility.

% Browser Server

Ac£0r

3: Visits Page

3.1: Requests Site

3.1.1: Sends back simple HTML documents and links to CSS and JS

<

3.1.1.1: Loads the page by executing JS

‘ 3.1.1.2: Events, DOM, etc are added

How Client Side Rendering Works

43

2.3 APl Integration and Automation

By integrating APls, applications can exchange data, extend functionalities, and
automate workflows without manual intervention. This section explores the
fundamentals of APIs, their integration processes, and automation mechanisms such as
webhooks, which allow real-time event-driven interactions between services. These
technologies enhance efficiency, scalability, and interoperability in web development.

2.3.1 What are APIs?

An Application Programming Interface (API) [11] is a set of rules and protocols that
allows different software applications to communicate with each other. APls define how
requests and responses should be structured, enabling data exchange between
systems. They act as intermediaries, allowing applications to access features or data
from external services without needing direct access to their underlying code or
database.

APls are widely used in web and mobile development. They enable applications to
fetch data, interact with third-party services, and enhance functionality. Common
examples include retrieving weather data from an external service, integrating a
payment gateway, or accessing social media platforms like Twitter or LinkedIn from
within another application.

APIs come in different types, including REST (Representational State Transfer),
which is most commonly used for web applications; GraphQL, which allows flexible
data querying; and SOAP (Simple Object Access Protocol), which is often used in
enterprise applications requiring strict security and structure.

44

2.3.2 What is an APl Integration

APl integration is the process of connecting two or more software applications
through APIs, allowing them to share data and functionalities. This integration enables
different systems to work together efficiently without manual intervention, improving
automation, productivity, and user experience.

APl integrations can be one-way (where data flows in a single direction) or two-
way (where both applications exchange information).

2.3.3 Webhooks and Automation

Webhooks are an API mechanism that allows applications to automatically send
real-time data to other systems when a specific event occurs. Unlike traditional API calls
that require polling (repeatedly checking for updates), webhooks enable event-driven
automation by pushing updates as soon as they happen.

For example, when a user submits a form on a website, a webhook can instantly
send the data to a CRM system, triggering an automatic response or notification.

Webhooks play a crucial role in API integrations and automation, enabling the
connection between different applications and workflow automation. They are
commonly used in payment processing (e.g., notifying a system when a transaction is
completed), CI/CD pipelines (e.qg., triggering a deployment after a code push), and
chatbot integrations (e.g., sending real-time alerts to messaging platforms like Slack or
Discord)

45

2.4 Deployment

Efficient deployment is crucial in software development, ensuring applications run
smoothly across different environments. This section explores key deployment
strategies, including Docker containerization, which allows applications to run in isolated
environments for consistency and scalability. Additionally, it covers the role of reverse
proxies in improving security, performance, and load balancing, making deployment
more efficient and reliable.

2.4.1 Deployment Basics

Deployment in software development refers to making an application available
for use in a specific environment, such as production, testing, or staging. It involves
transferring the developed application from a local or development environment to a live
system where end users can access it. Deployment encompasses various tasks,
including configuring servers, setting up databases, and ensuring the application runs
efficiently and securely.

2.4.2 Docker

Docker plays a critical role in modern software deployment by providing
containerization, which allows applications to run in isolated environments known as
containers. A container packages an application along with all its dependencies,
ensuring it runs consistently across different computing environments. This eliminates
the common problem of an application that behaves differently in development, testing,
and production due to discrepancies in system configurations.

By using Docker, developers can create lightweight, portable, and self-sufficient
containers that can be deployed on any system supporting Docker. This greatly
simplifies deployment, as applications do not need to be manually configured on each
server. Docker also enhances scalability by enabling applications to run efficiently
across multiple environments, making it easier to distribute workloads.

46

2.4.3 Reverse Proxy

A reverse proxy [12] is a server that sits between client devices and back-end
servers, directing client requests to the appropriate back-end service. It is vital in
deployment because it improves security, performance, and scalability.

A reverse proxy manages load balancing in deployment, distributing incoming
requests across multiple back-end servers to prevent any single server from becoming
overwhelmed. This ensures high availability and improved response times, especially
for applications that experience large volumes of traffic. Reverse proxies are also
instrumental in caching frequently requested content, reducing the load on back-end
servers and improving application performance.

Additionally, reverse proxies enhance security by hiding the internal architecture of
a system, preventing direct access to back-end services, and providing SSL termination
to encrypt and decrypt traffic.

Reverse Proxy Flow

<<component>>

Device 1 g] <<component>> EI

N Service A
~ example.com /77‘
.. N 3
<<component>> g] ___example.com T ombonent>> & <<component>>
ul or everse Proxy
Device 2 ,Public Network ”J“““‘> R P
S,

I A .

example.com S

- <<component>>
3y Service B gl

<<component>> El
Device 3

Reverse Proxy Visualization

47

Chapter 3 - Implementation

The implementation phase focuses on the practical development of the
application, detailing how various technologies were integrated to achieve a modern,
scalable, and efficient system. This chapter covers the CMS setup, database
integration, front-end and back-end development, AP| automation, deployment
strategies, and the system architecture. Each section explores the technical choices
made and their role in achieving the project’s objectives.

3.1 Strapi CMS

Strapi was chosen as the CMS for developing the application due to its flexibility,
modern architecture, and ease of integration with the Next.js front-end. Several key
factors make Strapi the most suitable option.

3.1.1 Open-Source and Self-Hosted
Unlike SaaS-based CMS platforms, Strapi is open-source, providing complete

control over data and customization. It allows hosting on private servers, ensuring better
security and compliance with university policies.

3.1.2 Headless Architecture
Strapi provides a headless CMS solution that offers RESTful and GraphQL API.

This enables the integration of modern front-end frameworks, allowing them to optimize
content rendering and SEO performance.

48

3.1.3 Ease of Use and Content Management
Strapi comes with an admin panel that allows non-technical users to manage

content efficiently. The role-based access control feature ensures proper user
management, making it ideal for research teams with different content responsibilities.

3.1.4 Schema Builder - Visualization

Strapi provides a visual interface for defining content structures. This feature
allows administrators to view, create, modify, and organize content types using an
intuitive drag-and-drop editor. Unlike traditional CMS platforms that require manual

schema definitions in code, Strapi simplifies this process by offering a graphical
representation of the database structure.

3.1.4 GraphQL Support

Unlike many traditional CMS solutions, Strapi provides built-in GraphQL support,
improving API efficiency by allowing clients to request only the needed data.

3.1.5 Flexibility in Database Choices

Supports multiple databases, including SQLite, PostgreSQL, and MySQL, making
it adaptable to different project needs.

3.1.6 Scalability and Performance
The decoupled architecture optimizes performance and scalability as the project

grows. Content delivery is independent of the front-end, reducing load times and
improving user experience.

49

3.1.7 Conclusion

Considering the research-oriented nature of the project, Strapi's flexibility, self-
hosting capability, and integration with modern front-end frameworks make it the ideal
CMS for this project. It provides complete control over content, ensures high
performance, and enables long-term maintainability, aligning perfectly with the project's
objectives.

50

3.2 Database

A database is the backbone of any modern web application. It provides structured
and efficient data storage, retrieval, and management.

A database is necessary for the website to store and organize content
dynamically, manage data, and support various functionalities such as API interactions.
Content management would be static and inefficient without a database, requiring
manual intervention for every update.

Given the project's scope, a well-structured database ensures data consistency,
accessibility, and security while facilitating integration with the CMS and front end.
Below, we will explore whether SQLite is the best option.

3.2.1 SQLite

SQLite is a lightweight, self-contained database engine that requires minimal setup
and operates without a separate database server. It follows the relational database
model and supports SQL-based queries for structured data management.

Unlike traditional database management systems such as MySQL or PostgreSQL,
SQLite stores the entire database as a single file on disk, making it highly portable and
easy to manage. Due to its serverless architecture, SQLite is particularly well-suited for
applications that do not require extensive concurrent write operations or complex
transaction handling.

51

3.2.2 Strapi Integration

One key advantage of SQLite is its integration with Strapi. Strapi supports multiple
database options, including SQLite, PostgreSQL, and MySQL, allowing for flexibility in
deployment. SQLite's native support in Strapi makes it an optimal choice, enabling rapid
prototyping, testing, and fast deployment without requiring an external database server.

3.2.3 Advantages of SQLite

SQLite was selected for the website primarily due to its versatility, simplicity, and
ease of maintenance. Its key advantages include:

¢ Flexibility: SQLite's single-file format makes it easy to back up, transfer, and
restore without complex database configurations.

e Ease of Use: The absence of a separate database server eliminates the need for
additional setup and administration, reducing system overhead.

e Portability: SQLite databases can be easily embedded into applications, making
development, deployment, and debugging straightforward.

e Reliability: Despite its lightweight nature, SQLite ensures compliance with ACID
(Atomicity, Consistency, Isolation, Durability), guaranteeing data integrity.

In summary, SQLite's adoption for the website is a strategic choice that maximizes
efficiency and simplicity while ensuring smooth content management and integration
with the CMS. lts low overhead and ease of backup and restoration make it an optimal
solution for the project’s requirements.

52

3.3 Front-end

The front-end plays a pivotal role in defining the user experience and ensuring the
overall performance of a web application. For the development of the website, Next.js
[13] was chosen as the primary front-end framework due to its ability to deliver high-
performance, SEO-optimized, and scalable applications. This section explores why
Next.js is the best option for this project.

3.3.1 Next.js

Next.js is a Javascript-based framework that simplifies the development of modern
web applications by providing built-in features for server-side rendering (SSR), static
site generation (SSG), and API routes. Additionally, Next.js supports incremental static
regeneration, which enables the website to update content efficiently without requiring a
full rebuild. Thus, it is particularly suitable for dynamic content-driven applications.

3.3.2 Search Engine Optimization — Static Site Generation

Search engine optimization (SEO) is a fundamental aspect of any modern website,
influencing visibility, traffic, and user engagement. Next.js significantly enhances SEO
by offering server-side rendering and static site generation features, ensuring search
engines can efficiently index content.

Static Site Generation (SSG) is particularly beneficial for SEO. It allows pages to
be generated at build time and served as static HTML files, reducing server load and
ensuring a fast, stable browsing experience. By pre-rendering content, SSG eliminates
the delays associated with fetching data on the client side, improving time-to-first-byte
(TTFB) and overall performance metrics.

The integration of SSG with Next.js ensures that the website remains highly
performant while delivering fully optimized, indexable content for search engines.

53

3.3.3 Multilingual

Given that the SoftLab NTUA is a research laboratory, multilingual support is
essential to provide accessibility in multiple languages. Next.js simplifies
internationalization (i18n) through its built-in support for locale-based routing and
compatibility with libraries such as next-i18next [14].

The i18n functionality in Next.js enables efficient language detection, locale
switching, and dynamic content rendering based on user preferences. This allows the
website to serve different audiences while maintaining optimal performance through
static site generation.

Additionally, by structuring translations efficiently, Next.js ensures that
multilingual support remains scalable and maintainable as new content is added over
time.

3.3.4 Integration with Strapi

Next.js integrates with Strapi, the selected headless CMS, enabling efficient
content management and dynamic data retrieval. Strapi serves as a back-end content
repository, allowing administrators to manage text, images, and structured data, which
the Next.js front end can fetch during the build process.

Next.js supports on-demand revalidation, which enables real-time content updates
without requiring complete site redeployment. This integration ensures a proper content
workflow, where updates made in Strapi are reflected in the front-end without
unnecessary performance overhead.

54

3.4 Back-end

This section examines the rationale behind Next.js API routes to integrate the LinkedIn
API within the application. Given the need for automated content distribution, the
integration enables administrators to publish announcements and updates directly to the
SoftLab NTUA LinkedIn page without manual intervention.

3.4.1 Next.js Back-end

Next.js API routes provide built-in back-end functionality within the framework,
allowing the creation of server-side logic without requiring a separate back-end service.
These API routes operate within the same Next.js project, facilitating a transition
between front-end and back-end operations.

Each API route is defined within the routes/api directory and is accessible via an
HTTP endpoint. These routes can handle server-side operations, such as fetching
external data, processing form submissions, authenticating users, and interacting with
third-party APIs.

Next.js API routes serve as intermediaries between Strapi and LinkedIn’s API for
this project. When an administrator publishes a new announcement in Strapi, a
webhook triggers a Next.js API route, which processes the data and posts it to LinkedIn.
This approach eliminates the need for additional back-end infrastructure while ensuring
a streamlined, maintainable solution for LinkedIn integration.

55

3.4.2 Linkedin APl integration

The LinkedIn API provides functionalities for automating content posting on behalf
of a LinkedIn organization page. Through LinkedIn’s OAuth-based authentication
mechanism, an application can obtain permission to create and share content directly
under an organization's name rather than an individual user's profile.

To post on a LinkedIn page, an application must authenticate and obtain an
access token with the necessary permissions. Once authenticated, LinkedIn allows
posts to be created in multiple formats using its community management Posts API [15].

In this project, the Next.js back-end is configured to send requests to LinkedIn’s
APl using an urn:li:organization identifier, which ensures that all posts appear under
the SoftLab NTUA LinkedIn organization page rather than an individual account. This
setup guarantees that announcements, events, and updates are consistently published
on the official LinkedIn page without requiring manual posting from administrators.

56

3.4.3 Automated Post on Linkedin

LinkedIn posts are automated using a structured workflow that eliminates manual
intervention while ensuring content delivery. When an administrator creates an
announcement or relevant content within Strapi, they have the option to publish it
directly to LinkediIn.

Once the content is published, Strapi triggers a webhook [16] that sends a
notification to the Next.js back-end. The webhook contains structured data related to the
newly published content, including its title, description, and associated media. The
Next.js API route then processes this data, formats it according to LinkedIn’s API
requirements, and makes a request to post it on the LinkedIn page.

This workflow ensures that updates from the website are consistently shared on
LinkedIn without requiring additional manual steps. By automating the posting process,
administrators can maintain an active LinkedIn presence while focusing on content
creation rather than social media management.

Section 5 presents a demonstration of this automated workflow, showcasing how
an announcement is created in Strapi, processed by the Next.js back-end, and
published on Linkedin.

% Strapi CMS Next.js Backend Linkedin API

Admin : :
M

1: Publishes Entry with PostToLinkedin option | |

1.1: Webhook with entry data :

[
|
|
|
|
|
|
|

1.1.1: Publish Post on SoftLab Page

|
1.1.1.1: Sees Post on LinkedIn |

Sequence Diagram of LinkedIn Integration

57

Start

=
=
e

Is entry type valid for LinkedIn post?

PostToLinkedin Enabled?

.

yes

yes
Is add link to website true? *

yes

@<

End

Figure 2.1: LinkedIn Integration Activity Diagram

58

3.5 Deployment

In this section, we examine the deployment strategy for the application and the
reasoning behind the selection of specific technologies. A well-structured deployment
approach is essential for ensuring stability, security, and scalability while maintaining
ease of maintenance.

3.5.1 Lightweight, Reliable, and Flexible Deployment

The deployment approach is designed to be lightweight, ensuring minimal
resource overhead while maintaining high efficiency.

Reliability is a key consideration, as the system must remain operational with
minimal downtime, even under varying workloads. Flexibility is also a fundamental
requirement, allowing for easy updates, scalability, and adaptability to future
infrastructure or application architecture changes.

By selecting technologies that align with these principles, the website benefits
from a robust deployment strategy that ensures long-term maintainability and efficiency.

3.5.2 Deploymentin Physical Servers

A critical decision in the deployment process was to opt for physical servers owned
by NTUA instead of cloud-based infrastructure. Security concerns and institutional
policies primarily drove this decision. While offering scalability and convenience, cloud-
based solutions often introduce vendor lock-in, where services become dependent on
proprietary ecosystems. This limits future flexibility and increases long-term costs.

Additionally, hosting on NTUA'’s infrastructure aligns with the university’s
established practices. Maintaining control over the deployment environment ensures
better data security. Furthermore, self-hosting eliminates reliance on external service
providers, granting total control over server configurations, updates, and optimizations.
This approach ensures deployment remains cost-effective, secure, and aligned with
institutional standards.

59

3.5.3 Reverse Proxy Server

To further optimize performance and security, Nginx [17] was implemented as a
reverse proxy. A reverse proxy manages incoming requests and directs them to the
appropriate services.

It acts as an additional security layer, preventing direct access to back-end
services and mitigating potential security threats such as DDoS attacks and
unauthorized access attempts. Nginx provides caching, which allows frequently
requested content to be stored and served quickly, reducing server load and improving
response times.

Also, Nginx simplifies SSL/TLS certificate management, ensuring secure
connections without requiring direct SSL handling within the application.

60

3.6 Content Updates

This section examines how content updates are handled. Since the website is built
and served as static files, updating the CMS does not automatically reflect changes on
the front-end. Unlike dynamic websites, where content updates are immediately visible,
static sites require a mechanism to regenerate or refresh content. Two primary
approaches are used to ensure that updates from Strapi are correctly reflected in the
front-end: manual rebuilds of the front-end and Next.js Incremental Static Regeneration
(ISR).

3.6.1 Rebuilds

One approach to updating content is to rebuild the front-end and redeploy the
application. Since the website is generated as static files at build time, a full rebuild
ensures that the latest data from Strapi is included in the front-end. This process
involves the following steps:

e Generating a new frontend build that incorporates the latest content updates from
Strapi.

e Stopping the old instance running the previous front-end version.

e Deploying and restarting the updated instance with the new front-end build.

This method guarantees that all content updates are fully reflected but has some
limitations. Since rebuilding and redeploying the entire front-end requires server
resources and time, it is not an instant update process. To address this, the rebuild
process can be scheduled periodically or manually triggered when significant updates
are made in the CMS.

61

3.6.2 Next.js Incremental Static Regeneration Strategy

To improve efficiency and reduce the need for frequent full rebuilds, the Next.js
Incremental Static Regeneration (ISR) strategy is utilized. ISR allows specific pages to
be automatically re-generated in the background without requiring an entire site rebuild.
This ensures that updated content can be served dynamically while maintaining the
performance benefits of static generation.

ISR sets a revalidation interval, which defines how often a page should check for
updates. When a request is made for a specific page:

e |f the page is still valid within the revalidation period, the cached version is served
instantly.

e If the page is stale (past its revalidation period), Next.js triggers a background
regeneration process while still serving the existing cached version to users.

¢ Once the new page version is generated, it automatically replaces the old
version, ensuring updated content without downtime.

This method balances static site performance and content freshness, making it
particularly effective for news, announcements, and frequently updated website
sections. Unlike full rebuilds, ISR enables content updates to be reflected without
stopping and redeploying the entire front-end.

% Browser Next.js Strapi CMS

bLl—‘J 1.1: Requests Page

User

1: Visits website

1.1.1: Checks cache

' 1.1.2: Return cached page

|
|
|
|
[Cache is Valid) D‘ :
|
1

1.1.3: Requests data |

>
1.1.3.1: Sends data |
1.1.3.1.1: Return new page [
|]

T |

Sequence Diagram of ISR

62

3.7 Security

Security is fundamental to any web application, but it becomes even more critical for a
research-oriented website. Research websites often contain sensitive data, unpublished
work, and institutionally managed content that must be safeguarded against
unauthorized access, data breaches, and cyber threats. Ensuring a secure architecture
protects both the website's integrity and its content's credibility.

A multi-layered approach is followed to achieve a robust security framework.

3.7.1 Server —Client Decoupling

One key security principle adopted in this project is decoupling the front-end and
back-end. Unlike monolithic architectures, where all application logic is handled within a
single system, the application employs a headless CMS (Strapi) for content
management and a Next.js front-end for content delivery. These components
communicate via secure AP| endpoints, ensuring the front-end remains independent of
back-end logic and database interactions.

Decoupling enhances security by minimizing the attack surface. Since the front-
end does not have direct access to the database, potential threats such as SQL
injection attacks and direct database exploits are significantly reduced. All back-end
services are protected behind authentication layers, allowing only authorized API
requests.

Another advantage of this architecture is secure content delivery. The front-end
serves pre-rendered static pages, meaning no direct database queries or back-end logic
are exposed to users. This makes it more resistant to DDoS [18] (Distributed Denial of
Service) attacks and other automated attacks targeting dynamic server-side processin

63

3.7.2 Security Gateway — Reverse Proxy

The deployment incorporates a reverse proxy (Nginx) as a security gateway,
adding another layer of protection between users and services. A reverse proxy serves
as an intermediary that processes and forwards incoming requests, shielding the
application components from direct exposure to the internet.

Using Nginx as a reverse proxy enhances security in multiple ways:
Traffic Filtering & Access Control:

e The proxy can enforce strict access controls, allowing only requests from trusted
sources and blocking malicious traffic.

e SSL/TLS Termination: It handles secure HTTPS connections, ensuring all
communication is encrypted and protected.

¢ Rate Limiting & DDoS Mitigation: It can limit the number of requests from a single
IP, preventing automated attacks and brute-force attempts.

Placing Nginx as the first point of contact mitigates potential threats before they reach
the services, ensuring secure APl access and controlled resource allocation.

64

3.8 Architecture of Application

This section presents the system's architectural design, outlining its key components
and their interactions. The following UML Component and Deployment Diagrams
illustrate the application's structure, deployment environment, and communication flow.

3.8.1 Component Diagram

Figure 3.4: Component Diagram

65

3.8.2 Deployment Diagram

1
https:433

Figure 3.5: Deployment Diagram

66

Chapter 4 Starting or Restoring the Application

This chapter outlines the necessary steps for setting up or restoring the
application. Ensuring a well-documented and structured restoration process is essential
for maintaining system availability, minimizing downtime, and ensuring the integrity of
the deployment environment.

4.1 Source Code

The first step in setting up or restoring the website is to fetch the source code from
the repository and place it on the target machine. The source code contains the entire
application, including the front-end, back-end, database configuration, and deployment
scripts. Cloning the repository ensures that all required files are available and that the
latest version of the codebase is deployed.

4.2 Data Backups

Restoring the database is a critical step in recovering the website. Since the
website utilizes SQLite as its database management system, the restoration process
involves retrieving the latest database backup file as well as all images located in the
Strapi folder. These files should be placed in the correct paths, as specified in the
source code documentation, to ensure that Strapi can properly access and serve the
data.

SQLite is a file-based database, which simplifies the backup and restoration
process since it only requires replacing the existing database file with the most recent
backup. Additionally, restoring the Strapi images folder is essential to maintain the
integrity of the website’s media content. Once the database file and images are
restored, Strapi automatically reads the database and accesses the associated media,
ensuring that all content, configurations, and user data are available as they were prior
to the restoration.

67

4.3 Secrets and Keys

After restoring the database, the secrets and API keys required for the
application to function correctly must be configured. Environment variables must also be
set for the front-end and back-end services to ensure they can securely interact with
external services, databases, and authentication mechanisms.

These secrets are stored in .env files specific to each service, including sensitive
information such as API keys, database connection strings, and authentication tokens.
Proper handling of these credentials is essential to maintaining security and preventing
unauthorized access to critical services.

4.4 Starting the Processes

The application processes must be initialized by launching both the front-end and back-
end services. This includes installing dependencies, compiling the necessary
components, and executing the services to ensure proper functionality. Once running,
the services become accessible and ready to be managed by the reverse proxy.

4.5 Setting up the Reverse Proxy

The reverse proxy configuration files are in the source code and must be applied
to the Nginx instance running on the target machine. This setup ensures that website
requests are correctly routed to the front-end while API requests are forwarded to the
back-end.

68

4.6 Pointing the Domain to the New Virtual Machine

The final step in the restoration process involves updating the domain name
system (DNS) settings to point the website domain to the new VM hosting the
application. This step ensures that website users are directed to the correct server.

Updating the DNS records usually involves modifying the A record to reflect the
new VM'’s IP address. Once the changes propagate across the DNS system, the
website becomes accessible under its domain name.

Fetch Source Restore Database Configure Start next Set up the Point the
H Code and Images Secrets and Keys and Strapi reverse proxy :::::.W this

Figure 4.1: Configuring the Application Activity Diagram

69

Chapter 5 Demonstration of the App

This chapter presents a comprehensive walkthrough of the developed application,
highlighting its core functionalities and user interface.

We will explore different aspects of the system, starting with the Content
Management System (CMS), where administrators can manage content efficiently. After
this, the frontend application will be showcased, highlighting key features such as
homepage navigation, filtering mechanisms, and multilingual support.

Additionally, we will demonstrate the LinkedIn integration, showcasing how events
are created and published directly from the admin panel. This demonstration will
illustrate the system's effectiveness and usability in real-world scenarios.

5.1 CMS

In this section, we will explore the applications’s administration panel. It can be
accessed after logging in to the admin panel.

%3 new.softlab.ntua.gr/backend

Welcome to Strapi!

Log in to your Strapi account

AN

Login Page

70

5.1.1 Content Manager

The Content Manager [19] is accessible from the main navigation. Clicking on it
opens a sub-navigation displaying two categories: collection types and Single types.

Each category contains the available collection and single content types created
using the Content Type Builder beforehand. Administrators can create, manage, and
publish content from these two categories.

° @ Content Manager

°3 new.softlab.ntua.gr/backend/admin/content

“ﬁl Slra:ﬂ Dashboard Content Q & Back

Course

@ Content Manager COLLECTION TYPES 10 2 entries found

PLUGINS « Academic Year
T Filters Greek (el) ~
« Announcement
« Course

NAME = SUBTITLE SEMESTER CONTENT AVAILABLE IN STATE
* Diploma

* Event 3 Ahyopi8poL - 8o Greek (el) (default), English (en) ~ Published 7 [] v
GENERAL - Lab Group
Plugins « Member 1 Texvohoyia AOVIoHIKOD - 80 Greek (el) (default), English (en) ~ Published ;7 @ W
« Paper
« Project 10 < Entries per page !

* User

« AboutPage
« Contact Page
« Home Page

« Layout

Content Manager

71

5.1.1.1 Creating an Entry

The Create new entry button is displayed at the top right of the list view interface. It
allows the administrator to create a new entry for the selected collection type.

Clicking on the new entry button will redirect the administrator to the edit view,

where he can add the latest entry's content.

] @ Content Manager

c 25 new.softlab.ntua.gr/

3% Strapi Dashboard "
& Sra Content a & Back
@ content Manager COLLECTION TYPES 10 APIID: course
PLUGINS + Academic Year
B3 content-Type Builder ganEotncement name* €3 description €
+ Course
B Media Library
« Diploma
<1 Releases subtitle € semester €3
* Event
GENERAL + Lab Group
Plugins « Member slug* classification €
hoose here
W Marketplace + Paper
« Project g
@ settings o image ¢
* User

« Contact Page
+ Home Page seo ©

« Layout

o

No entry yet. Click on the button below to add one.

announcements €

Add relatior

professors €3 events
Add relatior - Add relation
labGroup € academicYear €3
Add relatior - Add relation
content*

Add atitle ~ B I

Ic

Creating a new course

v eisn ([

* Editing draft version

INFORMATION

Created

By

Last update
By

INTERNATIONALIZATION

Locales
Greek (el)

W Fill in from another locale

2’ Edit the model

= Configure the view

Preview mode

72

5.1.1.2 Multilingual Support

The entry for the selected locale can be edited in the content manager editor. The
locale is selected in the Locales dropdown [20].

& Back
’ .
Xplo"toq v Unpublish save
API ID: member
firstName* © lastName* © ® Editing published version
Xpiotog Xat{ixplotopi
INFORMATION
email* %
. . . Created 11 months ago
christoshadijichristofi@hotmail.com
By Eleftherios Oikonomou
office © slug* % Last update 11 months ago
By Eleftherios Oikonomou

christos-hadjichristofi

INTERNATIONALIZATION

image %
Locales

Greek (el) -

® English (en)

® Greek (el)

christos.jpeg

= Configure the view

content* €3 w i
L4 W Delete this entry

Add atitle ~ B I

Ic

Preview mode

0 XpioTog Xat{nyplotody eival évag MaBlaopéVos UNXavikog AOYIOHIKOU LIE ETHKEVTPO TIG TEXVOAOYIES LOTOU,
ouunepAapBavopuévng g avantuéng front-end kat Tou oxedlaool UIJUX. A§lomotel Tig Se§10TTEG Tou yia va
SNUIOUPYEL ONUAVTIKEG YNPLAKEG EUTIEIPIES. BAOIOUEVO OTO TIEPLEYXOLEVO TOU LOTOTOTIOU TOU, Eivat cadég OTL o XpioTog
alohoyel TI§ KaoTouEeg AUCELG KAl ETIBUWKEL VA EVIOXVUOEL TIG AAANAETUSPACELS TWV XPNOTWY LECW TNG TEXVOAOYIag.
Na meploodTePeg AeMTopEPE(G TIANPOdOPIES, ETIOKEDBEITE TOV LOTOTOTO TOU.

Expand {3

Figure 5.4: Member in Greek Locale

73

& Back
Christos

API ID: member
firstName* €3 lastName* €3
Christos Hadijichristofi
email* %

christoshadjichristofi@hotmail.com

office slug* %

christos-hadjichristofi

image %

christos.jpeg

content* €3

Add atitle ~ B I

Ic

Preview mode

Christos Hadijichristofi is a passionate software engineer with a focus on web technologies, including front-end
development and UI/UX design. He leverages his skills to create meaningful digital experiences. Based on the content
on his website, it's clear that Christos values innovative solutions and seeks to enhance user interactions through
technology. For more detailed information, visit his website.

Figure 5.5: Member in English Locale

+ Unpublish Save
e Editing published version
INFORMATION
Created 11 months ago
By Eleftherios Oikonomou
Last update 11 months ago
By Eleftherios Oikonomou

INTERNATIONALIZATION
Locales
English (en)

W Fill in from another locale

-~

Edit the model

Configure the view

W Delete this entry

74

5.1.1.3 Publishing an Entry

When an entry is published, it will be shown in the front-end application when the
next update is released. To publish an entry, click the publish button at the top right of
the page.

Content Q & Back
A)\V()pleum v Publish save
COLLECTION TYPES 10 API ID: course

* Academic Year

* Announcement name* description © Editing draft version
« Course AhyopL8poL To pudénua AlyopiBuwv eEepeuvd TIG BEPEALWSELS Evvole
« Diploma INFORMATION
subtitle € semester €
* Event Created 11 months ago
go B El Oik
eftherios Oikonomou
* Lab Group Y
. . Last update in 4 seconds
o Vomlcs slug* % classification €
By Eleftherios Oikonomou
« Paper algorithms Mportuxlakd
INTERNATIONALIZATION
* Project image ©
Locales
+ User
Greek (el) -

<
SINGLE TYPES a G

Click to add an asset or drag and drop one in this area

W Fill in from another locale
+ AboutPage
/#’ Edit the model
« Contact Page

* Home Page) = Configure the view
* Layout W Delete this entry

;o

No entry yet. Click on the button below to add one.

Figure 5.6: Publishing an entry

75

5.1.2 Content-type Builder

The Content-type Builder [21] is a core functionality of Strapi. It is always activated
by default and cannot be deactivated. However, it is only accessible when the
application is in a development environment.

Administrators can access the Content-type Builder from Content-type Builder in
the main navigation of the admin panel.

o0 @ Content-Type Builder

€« C % new.softlab.ntua.gr/backend/ad

(% Strapi Dashboard
§ m f'ff‘, ashboar Content-Type 2 & Back
Builder .
Project
£ Content Manager Build the data architecture of your content
COLLECTION TYPES ~ 10

PLUGINS
« Academic Year
= Configure the view

B content-Type Builder S Arnoncament

B Media Library - Course NAME
lease * Diploma
Ab name Text
+ Event
ENERAL
+ Lab Group
Plug Ab description Text
+ Member
° R ¥ seo Component
£ Ssettings o * Project
+ User Ab metaTitle Text
SINGLE TYPES ~ 4
Ab metaDescription Text
+ AboutPage
+ Contact Page
m metaimage Media
+ Home Page
o Lo % supervisors Relation with Member
ooooooooooo 3
% academicYear Relation with Academic Year
~ Footer
+ FooterLink
= content Rich text (Markdown)
~ Linkedin
+ Linkedin
Ab slug Text
~ seo
+ Seo-tags % labGroup Relation with Lab Group
% announcements Relation with Announcement
% events Relation with Event

Content type builder

Administrators can create and manage content types, including collection types,
single types, and components, from the Content-type Builder.

Collection types are content-types that can manage several entries. Single types

are content-types that can only manage one entry. Components are data structures
used in multiple collection types and single types.

76

5.1.3 Administrator Account Creation

To create a new administrator user [22], navigate to settings = Users = Invite
User and fill in the form with the necessary details.

23 new.softlab.ntua.gr,

11% Strapi Dashboard Settings

Workplace
Users

Content Manager GLOBAL SETTINGS All the users who have access to the Strapi admin panel

= Overview
PLUGINS

« APITokens ©| | ¥ FED
B content-Type Builder
* Internationalization
B Media Library FIRSTNAME ~ LASTNAME EMAIL ROLES USERNAME USER STATUS
« Media Library

<1 Releases
. rkfl
ReviehWondons Christos hadjichristofi christoshadjichristofi@hotmail.com Author, Editor, Super Admin s o Active ’

-

GENERAL « Single Sign-On

o Plugins ° IETEE I Eleftherios Oikonomou lefterisoikonomy@gmail.com Super Admin - o Active ’

-

= Webhooks
W Marketplace
in - * Active d

-

ADMINISTRATION PANEL \vite new user
€ Ssettings (1]
« Roles
* Inactive d

-

* Users .
User details

« Audit Logs

-

First name* Last name Ain - * Active 7
EMAIL PLUGIN Kal

+ Configuration Email*

USERS & PERMISSIONS PLUGIN K

* Roles

Roles
« Providers

User's roles*
+ Email templates Select

« Advanced settings
Author

Editor

Figure 5.8: Creating a User

Then, a link will be created. Using this link, a new admin can be created with the
permission and user details just submitted.

77

Invite new user

https://new.softlab.ntua.gr/backend/adminfauth/register?registrationTo... @'

Copy and share this link to give access to this user

User details

First name* Last name
Test User
Email*
test@user.com
Roles

User's roles*
Editor X Author X v

A user can have one or several roles

Cancel

Figure 5.9: Link that can be used for new user registration

in

in

78

5.2 Front-end Application

The front-end application of the SoftLab NTUA website was developed with a
focus on usability, modern design, and seamless integration with the content
management system (CMS). The main objectives of the front-end include delivering a
fast and intuitive user experience, ensuring accessibility, and supporting multilingual
functionality.

5.2.1 Home Page

The home page is the primary gateway for users accessing the SoftLab NTUA
website. It provides a structured and visually appealing layout that highlights essential
information. All the content on the home page can be managed by the CMS.

< c 25 new.softlab.ntua.gr;

SOFTLAB @

Software Engineering Laboratory

Announcements Events Courses Diplomas Projects Papers Groups Members

Softlab receives major donation and plans expansion in Germany

read more

Figure 5.10: Home Page - Hero Section

79

Softlab Ntua

read more

Software Programming

Highlights

Announcement 2 Algo

21-03-2024

Contact [RLUCET Legacy Website

© 2025 Software Lab, National Technical University of Athens. All rights reserved. This website is a work in progress—content and design are subject to updates.

Figure 5.11: Rest of the Home Page

80

Content Manager

new.softlab.ntua.gr,

(&% Strapi Dashboard

workplace Content ¢ Back
Home Page + Unpublish Save
AL TR COLLECTION TYPES 10 API ID: home-page

PLUGINS « Academic Year
B content-Type Builder * Announcement heroTitle* € herolmage* € , Editing published
version
& Media Library * Course Softlab receives major donation and plat
* Diploma
<7 Relea INFORMATION
= Event
Created
GENERAL « Lab Group
By Eleftherios Oikonomou
hmmy.
o Plugins « Member Lastupdate
« Pal < P, By Eleftherios Oikono
W Marketplace per labGroups (2) © announcements (1) ©
* Project M A elation - INTERNATIONALIZATION
& Settings (]
o UEm Locales
Software Published . i Announceme.. Published
SINGLE TYPES a English (en) v
it Programming Published X Fill in from another
« AboutPage i o

Contact Page
heroUrl* €3 R

Home Page /
https://new.softlab.ntua.gr/en/courses/st

Edit the model

Layout Configure the view

W Delete this entry

Figure 5.12: CMS Configuration for Home Page

81

5.2.2 Lab Group Filtering

The platform includes an advanced filtering system for lab groups, allowing users
to efficiently search and explore content based on lab groups. This feature enhances
discoverability and makes the user navigation easier.

23 new.softlab.ntua.gr/e

%1 SOFTLAB

&% Software Engineering Laboratory

Announcements Events Courses Diplomas Projects Papers Groups Members
Filter By Group v
Title Date Description
Announcement 2 TI 3/21/2024
Announcement 2 Algo 3/21/2024 The announcement in algo
Thesis Presentation 2/20/2025 In February Eleftherios Oikonomou will present his thesis ...

1-30f3

Figure 5.13: Announcements without filtering

23 new.softlab.ntua.gr/e

91 SOFTLAB

Software Engineering Laboratory

5

)

Announcements Events Courses Diplomas Projects Papers Groups Members

Programming Vv
Title Date Description
Announcement 2 Algo 3/21/2024 The announcement in algo

1-10f1

Figure 5.14: Announcements with filtering

82

5.1.3 Multilingual Support

The website supports multilingual functionality, ensuring content accessibility in
both Greek and English. This implementation follows internationalization (i18n) best
practices, allowing users to switch languages effortlessly while maintaining a consistent
experience.

23 new.softlab.ntua.gr

) SOFTLAB ot

Software Engineering Laboratory

Announcements Events Courses Diplomas Projects Papers Groups Members

Algorithms

Semester: 8th
Professors: Nick Papaspurou

Algorithms course explores the fundamental concepts, techniques, and applications of computer algorithms. It covers a broad range of
algorithms including sorting, searching, graph algorithms, greedy algorithms, dynamic programming, and algorithms for data compression and
encryption.

The course aims to equip students with the skills to analyze the efficiency and complexity of algorithms (time and space) and to design effective
algorithms to solve computational problems. Practical programming assignments and theoretical problem sets reinforce the concepts taught.

The course is designed for students with a background in basic programming and data structures, aiming to deepen their understanding of

algorithmic principles and their application in software development.

Announcements

Announcement 2 Algo

Contact Linkedin Legacy Website

© 2025 Software Lab, National Technical University of Athens. All rights reserved. This website is a work in progress—content and design are subject to updates.

Figure 5.15: Course Page in English

83

25 new.softlab.ntua.gr,

SOFTLAB ®en

Software Engineering Laboratory

AVOKOIVWOELG EkénAwoelg Maénpata AMAWHOTIKEG Projects Papers Opadeg MéAn

AAyopL8pol

E€aunvo: 8o
Awdokoveg: Nikog Manaomvpou
IKOTOG

To paBnua ARyopiBuwv eEEPELVA TIG BEPEAIWDEIG EVVOLEG, TEXVIKEG KOL EQAPHOYES TWV UTIOAOYLOTIKWY OAYOPiBUwY. KaAUTTEL o EVPEID YKAHO
aAyopiBuwv nephapBavovtag Tagvopnon, avadATtnan, YPo@HuaTa, GMANCTOUG AAyopiBHoLS, SUVANIKS MPOYPONUOTIONS Kal GAyopiBuoug yia Tn
oupTiEDN KA KPUTTOypaPnon SeS0UEVWV.

To paBnua oToxeLEL 0TO VO EEOTIAICEL TOUG POLTNTEG HE TIG SEELOTNTES VIO TNV AVAAUON TNG OMOSOTIKOTNTOG KOL TNG TMOAUTIAOKOTNTAG TWV
AAYOPIBPWY (XPOVOG KOL XWPOG) KO YIO TOV OXESIOOUO OMOTEAECHATIKWY OAYOPIBUWY YO TNV ETAUGT UTIOAOYIOTIKWY TIPOBANUATWV.

MPAKTIKEG AOKNOELG TIPOYPONHATIONOU Kl BEwPNTIKA 0€T POBANHATWY EVIOXVOULV TIG SidaxBeioeq €vvoleg. To HABNUO EXEL OXESLOOTEL YO
PoTNTEG hE LTIOBABPO OTOV BOOIKO MPOYPOUUOTIONO KL TIG SOPES SEGOPEVWY, OTOXEVOVTAG OTO Va BaBUVOUV TNV KOTOVO

AVOKOLVWOELG

Avakoivwon 2 Algo

Emkowwvia Linkedin MoAaud lotooeAisa ZYeTK&

© 2025 EpyaoTriplo Aoylopkou, EOviké MetodBio MoAutexveio ABnv@yv. ‘OAa Ta SikalpaTa SlartnpoUvTal. AUTOG O LOTOTOTIOR Eival UTIO avATTTUEN — TO TTEPIEXOHEVO KAl O
OXEBIOOHOC UTIOKELVTAL O EVNHEPWOEILG.

Figure 5.16: Course Page in Greek

84

5.3 Linkedin Integration

This section will demonstrate the LinkedIn integration. When an administrator
publishes an entry with publishOnLinkedin set to true in Strapi, a webhook triggers a
Next.js API route, which processes the data and posts it to LinkedIn.

5.3.1 Publishing an Entry in CMS

Follow the instructions in section 5.2 to create and publish an entry with
publishOnLinkedin set to true. When the entry is published, the webhook triggers the
Next.js API route.

Content Q & Back
Thesis @ success: puviished X v Unpublish save
COLLECTION TYPES 10 APIID: annoL..cu..cvu.n

= Academic Year

e Editing published version

+ Announcement | name* © slug* %

* Course Thesis Presentation oikonomou-thesis-presentation
« Diploma INFORMATION
description €3
* Event Created

In February Eleftherios Oikonomou will present his thesi

B Eleftherios u
* Lab Group Y
Last update ds
= Member €
seo © L By Eleftherios ou
* Paper
metaTitle metaDescription INTERNATIONALIZATION
* Project
New Softlab Website A modern website with a headless CMS, SSG and lir Locales
 User
English (en;
metalmage 9 ‘)
SINGLE TYPES a

W Fill in from another locale
* AboutPage ~
G 2 Edit the model

+ Contact Page
Click to add an asset or drag and drop one in this area

* Home Page = Configure the view

* Layout W Delete this entry
linkedin € ¥
postToLinkedin* includeWebsiteLink*
FALSE TRUE FALSE TRUE
course €3 semester €3
Add relation

content* €3

Ic

Add atitle ~ B I Preview mode

Thesis Presentation

Date: February
Presenter: Eleftherios Oikonomou

About the Thesis
In February, Eleftherios Oikonomou will present his thesis on the development of a **modern website for SoftLab

Figure 5.17: Publishing Announcement in the CMS

85

5.3.2 LinkedIn Post

After the Next.js API route is triggered, the entry’s title and description are posted
to LinkedIn. The link opens the relevant announcement page on the website.

in (9) Feed | Linkedin x in

(9) NTUA Softlab: Company | X +

23 linkedin.com/company/106026717/admin/page-posts/published/

m Q search H!!:

Vi Page posts
Manage your page's organic and paid content

Published Page ads
NTUA Softlab
0 followers st "
art a post
-
&2 Photo D video

© View as member

Get up to 190,000 more impressions by boosting this post. @

Dashboard
| Page posts By NTUA ECE Softlab administrator « 2/12/2025
Analytics NTUA Softlab
- 0 followers
Feed Thesis Presentation
Activity In February Eleftherios Oikonomou will present his thesis about the new softlab
website.
Inbox Read more here:
https://Inkd.in/e8MGBDWt
Edit page New 4 - & Like ® Comment 2 Repost
Comment as NTUA Softlab.
@ Advertise today
Invite to follow
Tag ina to spark

BZ Write article

53

Mew

ging Notifications

Post highlights @
In the last 30 days

.4 |: ¥

B\ W
No highlights

No recent post to highlight.

Boost

Grow your followers

€&r

100/100
Build your audience and reach by inviting
connections to follow your Page

(o N\
(_ Invite connections)
AN J

About Accessibility Help Center

Ad Choices

Privacy & Terms ~

[N~ Advertising Business Servic

Get the Linkedin app More

Linked [Linkedin Corporation ® 2025

Il

Settings meaningful conversations.

T
(_Tag followers)

Pnct rantent at tha hact tima

Figure 5.18: LinkedIn Post

‘Tagging relevant followers helps the post get seen and start

v

86

Chapter 6 Improvements

This section outlines potential enhancements that could further improve the
application's functionality, automation, and integration capabilities. These proposed
features would simplify operations, enhance system resilience, and improve overall
maintainability.

6.1 Automatic Builds

Implementing an automated build mechanism would allow administrators to trigger
front-end updates on demand directly from the admin panel. This functionality would be
beneficial when content is updated, ensuring changes are immediately reflected without
requiring manual intervention. By automating the build process, the website can
maintain real-time content accuracy while reducing administrative overhead.

6.2 Automated Backups

Ensuring data integrity and disaster recovery preparedness requires a fully
automated backup process. Periodically saving the SQLite database to a secure
location can minimize data loss risks. Scheduled backups would allow administrators to
restore the system quickly in the event of unexpected failures, ensuring uninterrupted
operation. This could be implemented by utilizing cron jobs.

6.3 Failure Recovery

An automated restoration mechanism would enhance system resilience by
detecting website downtime and initiating a recovery process. This could involve
monitoring tools that trigger a backup restoration or container restart whenever an
outage is detected. Implementing such a system would avoid prolonged downtimes,
ensuring high availability and reliability.

87

6.4 Mail Server

Integrating a mail server directly with Strapi will empower the platform to manage
email communications more effectively. This integration would allow for custom emails

as well as routine notifications like password resets and user engagement updates.

6.5 More Integrations

Further integrations could enhance the platform’s functionality by enabling
automated publishing of research papers to relevant academic repositories and
journals.

Additionally, integrating NTUA’s authentication system for admin panel access
would improve security and user management by leveraging institutional credentials
and existing authentication portals for authentication.

88

References

N

© N Ok

9.

CMS. https://en.wikipedia.org/wiki/Content management system

Headless vs. Monolithic CMS. https://www.sanity.io/headless-cms/headless-vs-
traditional-cms

React. hitp://react.dev/

Vue. hitps://vuejs.org/

Angular. https://angular.dev/

SEO. https://en.wikipedia.org/wiki/Search engine optimization

Schema org: hitps://schema.org/

SSG. https://www.cloudflare.com/en-gb/learning/performance/static-site-

generator/
SSR. https://en.wikipedia.org/wiki/Server-side scripting#Server-side rendering

10.CSR. https://prismic.io/blog/client-side-rendering
11.What is an API? https://aws.amazon.com/what-is/api/
12.Cloudflare - Reverse Proxy. https://www.cloudflare.com/en-

gb/learning/cdn/glossary/reverse-proxy/

13.Next.js. hitps://nexijs.org/
14.Multilingual Next.js. https://nexijs.org/docs/app/building-your-

application/routing/internationalization

15. LinkedIn Community Managements Posts API. https://learn.microsoft.com/en-

us/linkedin/marketing/community-management/shares/posts-api

16. Strapi Webhooks. htips://docs.strapi.io/dev-docs/back-end-

customization/webhooks

17.Nginx. https://nginx.org/en/
18. Cloudflare — DDoS attack https://www.cloudflare.com/en-gb/learning/ddos/what-

is-a-ddos-attack/

19. Content Manager. htips://docs.strapi.io/user-docs/content-manager
20. Strapi Internationalization. https://docs.strapi.io/user-docs/plugins/strapi-

plugins#i18n

21.Content Type Builder. https://docs.strapi.io/user-docs/content-type-builder
22.Managing Administrator accounts. https://docs.strapi.io/user-docs/users-roles-

permissions/managing-administrators

89

https://en.wikipedia.org/wiki/Content_management_system
https://www.sanity.io/headless-cms/headless-vs-traditional-cms
https://www.sanity.io/headless-cms/headless-vs-traditional-cms
http://react.dev/
https://vuejs.org/
https://angular.dev/
https://en.wikipedia.org/wiki/Search_engine_optimization
https://schema.org/
https://www.cloudflare.com/en-gb/learning/performance/static-site-generator/
https://www.cloudflare.com/en-gb/learning/performance/static-site-generator/
https://en.wikipedia.org/wiki/Server-side_scripting#Server-side_rendering
https://prismic.io/blog/client-side-rendering
https://aws.amazon.com/what-is/api/
https://www.cloudflare.com/en-gb/learning/cdn/glossary/reverse-proxy/
https://www.cloudflare.com/en-gb/learning/cdn/glossary/reverse-proxy/
https://nextjs.org/
https://nextjs.org/docs/app/building-your-application/routing/internationalization
https://nextjs.org/docs/app/building-your-application/routing/internationalization
https://learn.microsoft.com/en-us/linkedin/marketing/community-management/shares/posts-api
https://learn.microsoft.com/en-us/linkedin/marketing/community-management/shares/posts-api
https://docs.strapi.io/dev-docs/backend-customization/webhooks
https://docs.strapi.io/dev-docs/backend-customization/webhooks
https://nginx.org/en/
https://www.cloudflare.com/en-gb/learning/ddos/what-is-a-ddos-attack/
https://www.cloudflare.com/en-gb/learning/ddos/what-is-a-ddos-attack/
https://docs.strapi.io/user-docs/content-manager
https://docs.strapi.io/user-docs/plugins/strapi-plugins#i18n
https://docs.strapi.io/user-docs/plugins/strapi-plugins#i18n
https://docs.strapi.io/user-docs/content-type-builder
https://docs.strapi.io/user-docs/users-roles-permissions/managing-administrators
https://docs.strapi.io/user-docs/users-roles-permissions/managing-administrators

