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MepiAndn

H ocuvbpopordynon (co-scheduling) epyaocidv oe Yrohoyotind Luothuata Ydniic Enidoone (High
Performance Computing - HPC) npoogéper onpavtixés duvatdtnies yio ) BeATiwon e GUVOAL-
g pudpanédoone (throughput) xou g evepyeloxric anodotxdtnrag touv cucthuatos. 26tdoo, 1
OLEXDIXNON ®OWODY TOPWY 6ToUS xOUPoug unopel va 0dnyfoel oe umofdduon tng amdédoong, emPBpo-
BUVOVTOG TG EPYUOIES XAl oVOLEOVTAS AUTA Tt 0eRT. [t TNV avTHETOTION QUTHS TNE TEOXAN O,
elvan amapadtnTn 1 avantuln meonyUévey ahyoplduwmy cuvBpoUoAOYNONS, Ol OToloL amAUTOVY Lol EIC
Bddog xatavénoT TV EQUQUOYMV TOU EXTEAOLYVTOL, (OOTE VO AAUPBAVOVTAL TEXUNELWOUEVES ATOPAOELS

OpoUohOYNoTNC.

Y1V nopoloo SITAWUATXY epyaoia, TaEVOUOVUE Xl TUEOUCLELOUUE LOVTEAX ATOB00TC OV UTOEOVY
va a&lomotntoly yia T BeATiworn Twv oTeatnyxdy cuvdpouoldynons. O mpotewvoueveg pédodol e-
TUXEVTPOVOVTAL E(TE GTNY XATNYOPLOTOMOTN TWV EQPUPUOYWY PECL CUYXEXPWEVKY ETIXETWY (tags) elte
oty npdPBhedn e emitdyuvone (speedup) 1 tng emPedduvoric (slowdown) toug dtay cuv-extelOUVTOL
ue dAho goptia epyaoctac. o tnv eniteun autold Tou atdyou, diepeuvolue TOCO EUTELPIXEC TEOCEY-
yioeig 600 xou TEYVIXEC Mnyoavixric Mddnone, avohbovtac To TAEOVEXTHUATA Xol TOUS TERLOPLOUONSE
touc. Emmiéov, oulnrolue tic xlpleg ouuPiBactinés ano@doelc mou TEOXOTTOUY XATd TNV ETAO-
Y1 %o oVATTUEY TOU XU TAAANAOTEEOL WoVTENOL Yia TeOBAedT ouv-exTtéleong oe mepBdihovta HPC.
Y11 ouvéyela, TapouctdlOVUE TEOXATUEXTIXG ATOTEAECUOTA TOU AMOBELXVOOUV TNV ATOTEAECUATIXOTT-
Tot XGUE LOVTENOL UECL OVTITPOCMTEVTIXWY TURAOELYUATWY And BLUPORETIXES XATNYOPIEC LOVTEAWY.
Téhoc, atohoyolue T BUVATOTNTA TNG GLUVBEOUORGYNONE VoL BEATIOCEL TOV GUVOAMXS YpoVO eEXTEAEOTC
(makespan) evoc ypovompoYpdUUATOS ERYAOLOV, Xa)DS Xot ToUS cLUPBBACUOUE TOU ATOUTOUVTOL Yidl
NV €€l00PEOTNOT TN AIOBOCNC TOU CUC THUATOS XAl TNG IXOVOTOIMONG TWY YeNoTOV o€ TERIBIANOVTA
HPC.

Aéeigc KAewoi&

Co-Scheduling, High Performance Computing, Performance Analysis, Machine Learning, Profiling,
perf, mpiP, MPI
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Abstract

Co-Scheduling jobs in High Performance Computing (HPC) systems offers significant potential to
improve system throughput and energy efficiency. However, resource contention in shared node re-
sources can introduce performance degradation, leading to job slowdowns and counteracting these
benefits. To address this challenge, sophisticated co-scheduling algorithms must be developed, re-

quiring a good understanding of the submitted applications to make informed scheduling decisions.

In this thesis, we classify and present a number of performance models that can be leveraged to
support advanced co-scheduling strategies. The methods focus on either assigning specific ‘tags’
to applications or predicting their potential speedup or slowdown when co-executed with other
workloads. To achieve this, we explore both empirical approaches alongside Machine Learning-
based techniques, assessing their respective benefits and limitations. Furthermore, we discuss key
trade-offs that arise when selecting and building the most suitable model for co-location prediction
in HPC environments. We then provide preliminary results demonstrating the effectiveness of each
model through representative examples across multiple model categories. Finally, we provide an
initial evaluation of co-scheduling’s potential to enhance the makespan of a given schedule, as well

as the trade-offs involved in balancing system performance and user satisfaction in HPC systems.

Keywords

Co-Scheduling, High Performance Computing, Performance Analysis, Machine Learning, Profiling,
perf, mpiP, MPI
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CHAPTER 1

High Performance Computing — An overview

1.1 Background

In this day and age, a vast amount of applications require processing power and memory capabilities
much bigger than what can be provided by a simple desktop computer. These limitations are
overcome through the use of High Performance Computing (HPC) systems. HPC systems are made
up of multiple servers or nodes linked together using a high-bandwidth network, to work as a single,
massive computer and are able to perform millions of mathematical operations and process large
volumes of data [10]. As a result, more and more countries are investing in their own supercomputers
and HPC systems have emerged as a very active research field. Recent years have also seen the
development of HPC as a Service (HPCaaS), that aims to provide HPC capabilities over the cloud,
leveraging the existence of faster networks than before [11], as well as High Performance Edge
Computing (HPEC), which extends HPC capabilities to edge hardware, enabling data processing

directly at the edge and eliminating the overhead of transporting data to specialized facilities [32].

1.2 Scientific Applications

HPC systems have traditionally assisted in the execution of various scientific applications and simu-
lations. Some examples include applications from the fields of biochemistry, chemistry, meteorology
and computational fluid dynamics (CFD). In Figure 1.1, one can see the different categories of ap-
plications that were submitted for execution to the Cori supercomputer, located in the National
Energy Research Scientific Computing Center (NERSC). The pie chart was made utilizing a dataset
[33] from 2019, containing 6390408 jobs. It is evident that basic sciences applications constitute
the majority of jobs submitted during that time period.

Diploma Thesis



1.3 Multiprocessing Systems

Physics

Biology
Chemistry
Materials
Computer Science
Energy Sciences
Other

Earth Science
Fusion

Muclear Energy
Machine Learning
Enginesering
Mathematics

Figure 1.1. Categories of applications submitted to the Cori supercomputer system during 2019

Nowadays though, a great deal of new scientific fields that can greatly benefit from the capabilities
of HPC systems have emerged. These include [11] :

e Big Data : The Big Data era demands the processing of a huge amount of data, originating

from various sources and containing a great deal of legacy data.

o Artificial Intelligence/Machine Learning : AI/ML algorithms contain a learning phase,
which can sometimes constitute a bottleneck in the execution. Additionally, many ML/DL

strategies have recently begun being implemented in simulation problems.

e Data Science : Data Science’s purpose is to extract knowledge and insights from large
datasets. It includes data collection and storage, data processing and analysis and finally

data visualization. All these tasks can be challenging without the proper infrastructure.

1.3 Multiprocessing Systems

A very crucial aspect of parallel processing is the types of computer architectures that are used. In
1966, Michael J. Flynn divided the available architectures into four categories, in what is known as

"Flynn’s Taxonomy" [12]:

o Single Instruction, Single Data (SISD) : A sequential computer, able to execute one

instruction at a time on a given set of data stored in a single memory. This architecture was

Diploma Thesis



1.3.1 Shared Memory Systems
utilized in early personal computers (PCs) where no parallelism could be exploited.

o Single Instruction, Multiple Data (SIMD) : A single instruction is applied at the same
time on multiple different data streams, exploiting data-level parallelism. A common example

of this architecture in use is in GPUs (Graphics Processing Units).

o Multiple Instruction, Single Data (MISD) : Multiple instruction are applied on the
same data. This particular architecture is uncommon and has been primarily used for fault

tolerance purposes.

o Multiple instruction, Multiple Data (MIMD) : Multiple units execute different instruc-
tions on different data streams at the same time. This particular architecture is the most

prominent one for HPC systems.

Parallel processing systems can be further categorized based on how they use the memory system

into shared memory systems and distributed memory systems.

1.3.1 Shared Memory Systems

In a shared memory system, all processors access the same memory. Thus, any change to a particu-
lar variable stored in this memory is visible by all processors. Each processor accesses the memory

using the common memory bus. Shared memory systems can be divided into two categories [2]:

o Uniform Memory Access (UMA) : In this case, all processors have equal access times
to the common memory. These systems are also known as Symmetric Multiprocessor (SMP)

machines.

o Non-Uniform Memory Access (NUMA) : In this case, each processor has its own local
memory that can be accessed fast. At the same time, it can also access the memories of
the other processors, albeit with a slower access time. A NUMA system can also be seen as
multiple SMPs linked together.

The most famous application programming interface for shared memory systems is called OpenMP.
While shared memory systems enable multiple processors to communicate easily through simple
load/store commands on shared data, the common memory bus and limited memory bandwidth
can become a bottleneck for the performance of the system. NUMA systems mitigate this problem
to a certain degree but also come with the need for better data locality so as to avoid the latency of
accessing data that are present in another processor’s local memory. Nevertheless, scalability may
prove to be a challenge, both for UMA and for NUMA systems.
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1.3.2 Distributed Memory Systems

-i-

(a) UMA architecture (b) NUMA architecture

Figure 1.2. Comparison of UMA and NUMA architectures [2]

1.3.2 Distributed Memory Systems

Distributed memory systems consist of multiple nodes, with each one of them containing its own
memory. A particular node can access the memory of another node only through the interconnection
network. This architecture can be also called "shared-nothing" and encompasses both Massively
Parallel Processors (MPP) and clusters. A cluster can be defined as a system that consists of
multiple, independent nodes, also capable of independent operation [34], in contrast to MPPs, where
the nodes are more tightly-coupled and are less "general-purpose’. An interesting subcategory of
clusters are commodity clusters, for which all components (compute units, network etc.) are
commercial, "off the shelf" products. These clusters have a low cost, scale easily and also mostly

use open-source software [34]. One such example are the Beowulf-class systems.

Figure 1.3. Distributed memory architecture [2]

Communication between the nodes in a distributed memory system is accomplished through the use
of message-passing standards, with the most prominent one being MPI. Distributed memory sys-
tems can scale up to hundreds or thousands of nodes without the common memory bus bottleneck.
Their drawback lies in the need for a high-bandwidth interconnection network and the potentially
big cost of communication between the nodes. For this reason, many different network topologies
have been thoroughly studied. Modern supercomputers mostly use a hybrid model, where each

node uses a shared memory architecture and the nodes are connected using an interconnection
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1.4 Challenges in HPC

network. This way, more parallelism can be exploited.

1.4 Challenges in HPC

The constant need for growing performance has given birth to many challenges in modern HPC
systems as described in [11]. Firstly, most HPC systems nowadays are designed with a hetero-
geneous architecture, containing among others, CPUs, GPUs, a combination of memories such
as DRAM and SRAM, FPGAs and application-specific integrated circuits (ASICs). Systems on
Chip (SoC), that consist of multiple units (processors, memories, accelarators etc.) on the same
chip are also widely used in Internet of Things and Edge Computing environments. Furthermore,
the rapid development of Artificial Intelligence and Machine Learning and their growing needs
for high performance during their training and inference phases has led to the development of
Al-specialized computer hardware ("AI chips", Neural Processing Units (NPUs) and more). Last
but not least, with the emergence of quantum computing, the incorporation of quantum processing
units in classical HPC systems may soon become the rule rather than the exception. For now quan-
tum operations usually come with many errors during execution. However, the remarkable speed
and computational potential of quantum machines firmly establish them as a technology poised to
drive the next major advancements in computing. Given all this heterogeneity, the need for new,
simple programming models for software development in these environments is imperative. In this
context, Intel released oneAPT in 2018, which simplifies software development across accelerators

in heterogeneous environments.

Another challenge in modern HPC systems is energy efficiency and conservation. HPC systems
are known to consume a huge amount of energy for their operations. Astonishingly though, as
mentioned in [11], only a considerably small amount of the consumed energy is actually spent
on the execution of the instructions of a parallel application. Most energy seems to be spent on
leakages and on memory accesses through the complex memory hierarchies. This is verified in [13],
where idle power was significant and high-memory applications led to more memory consumption
than non-high-memory ones. Leakages and idle power pose a challenge for processor manufacturers,
while the impact of memory accesses on energy consumption showcases the need for a scheduling
mechanism that maintains data locality of applications or the need for Processing In Memory
(PIM).

Moreover, in order to ensure user satisfaction, the system needs to continue operating even if failures
in one or more parts of the system occur (resilience). In modern HPC systems with a much greater
number of nodes than before and highly complex, heterogeneous architectures, failures happen

much more frequently and resilience becomes a difficult feat to achieve.

In any case, addressing all challenges at once is virtually impossible and as a result most works

concentrate on improving only a few functionalities or requirements. The questions of improving
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1.4 Challenges in HPC
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Figure 1.4. Illustration of an HPC-oriented processor: the Knights Landing (KNL), 2nd Genera-
tion Intel® Xeon Phi™ Processor. This design integrates a high-bandwidth memory layer positioned
close to the processor (on-package memory) for enhanced performance [3].

performance and energy efficiency sometimes come down to finding a better resource management
and scheduling mechanism. In this thesis, we will concentrate on enhancing application and system
performance through co-scheduling applications on supercomputer nodes. We will study ways
to predict the behavior of applications in a co-scheduling environment and we will evaluate co-
scheduling as a means to improve performance. Additionally, we will investigate emerging trade-offs

within this more complex co-scheduling framework.
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CHAPTER 2

Infrastructure, Benchmarking and Profiling

Before delving into co-scheduling of applications in HPC systems, we will go through all the infras-
tructure and benchmarks used for the experiments that will be presented in this thesis. Further-
more, an overview of application profiling in HPC environments will be provided, along with the

specific methodology employed in the experiments presented here.

2.1 Infrastructure

2.1.1 ARIS supercomputer

The experiments for this work were conducted using the ARIS supercomputer operated by GR-
NET S.A (National Infrastructures for Research and Technology S.A.) in Athens, Greece [4]. ARIS
ranked 468 in the top500 list when it was first installed in June 2015. It consists of 532 com-
putational nodes, separated in the partitions shown in Figure 2.1, alongside their characteristics.
Additionally, ARIS has an x86-64 architecture with Redhat/Centos 6.7 operating system and the
nodes are connected using an Infiniband FDR network with a bandwidth of 56Gb/s. The nodes
are connected using a fat tree topology. Users can connect to one of the two login nodes of the
system using a Secure Shell (SSH) connection and from there submit their jobs to the SLURM
Workload Manager. ARIS uses the environment module approach, where users must load their

modules (software, compilers, libraries) so as to use them.

For the experiments presented in this work, the thin nodes were utilized and each experiment was
taken multiple times within a ten or fifteen minute interval. Afterwards, the median value from
the multiple repetitions of the experiment was retained to minimize the influence of outliers, unlike

the average, which is more susceptible to them. As seen in Figure 2.1, each node utilized in the
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2.1.2 SLURM Workload Manager

Node Type Count Accelerator Memory Cores

THIN nodes 426 w/o 64 GB 20@2.8 GHz (two sockets)
GPU nodes 44 dual tesla ka0m 64 GB 20@2.6 GHz + 2 x K40

PHI nodes 18 dual xeon phi 7120p 64 GB 20@2.6 GHz + 2 x 7120p
FAT nodes 44 w/o 512 GB 40@2.4 GHz (four sockets)
ML node 1 8 volta vi100 512 GB 40@2.2 GHz (two sockets)

Figure 2.1. ARIS’ nodes and their technical characteristics [4]

experiments contains two sockets with 10 cores in each one of them. The 426 thin compute nodes
(thin node island) have a theoretical peak performance (Rpeak) of 190,85 TFlops and a sustained
performance (Rmax) of 179,73 TFlops.

2.1.2 SLURM Workload Manager

As mentioned before, ARIS uses SLURM Workload Manager [5] to manage and schedule the sub-
mitted jobs to the system. SLURM has the ability to allocate resources to a specific user for a
specific period of time, offering exclusive or non-exclusive access. For the purpose of the experi-
ments presented in this thesis, exclusive access to the allocated resources was used so as to correctly
measure performance without interference from other submitted jobs. After a job has been submit-
ted, SLURM monitors it until it either finishes its execution or its wallclock time (execution time
estimation provided by the user) expires. At the same time, SLURM manages a queue of pending

jobs that are ready to enter the system but await for resources to be freed by contending jobs.

Client *
/commands ",
, (partial list)

F-‘k
| (

|
|

\ 14 :
\ , slurmd :
v / f \ = =
— !/
* -
slurmd  slurmd slurmd

Compute node daemons

Figure 2.2. An overview of SLURM’s components [5]

SLURM'’s basic component is its slurmctld daemon, which is fault-tolerant, optionally has a backup
daemon and is responsible for the operation of the workload manager. It stores the system’s

information, monitors each node’s state, manages the system’s partitions and schedules incoming
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jobs to free resources. Each node also contains a slurmd daemon, which is responsible for initializing,
monitoring and finalizing the jobs running on the node. Moreover, slurmd daemons communicate
with the slurmctld daemon so that the latter can be aware of the running jobs’ states and the
availability of the nodes’ resources. Finally the slurmdbd daemon manages a database of resources,
limits and licenses and archives accounting records. Users and admins can use SLURM through a

variety of command line commands, with some of them presented in Table 2.1.

Command Explanation

srun Submits a job for execution or initiates job steps in real time

sbatch Submits a job script (that may contain multiple srun commands) for execution
squeue Reports the state of all jobs currently in the system

scancel Cancels the execution of a particular pending or running job

Table 2.1. Four important SLURM commands

2.1.3 Message Passing Interface (MPI)

Programming in distributed memory systems is less straightforward than in shared memory sys-
tems and requires a programming interface that supports message-passing between the different
processes. MPI [35] is the most popular message-passing library interface specification used in most
distributed memory systems. It supports programming in C, C++ and Fortran and has multiple
implementations, including MPICH, Intel MPI, OpenMPI etc.

An MPI program typically starts with the MPI_ Init command, responsible of initializing the
MPI environment. Afterwards, a common communicator, named MPI_COMM_ WORLD for
all processes is created, with each process being mapped to a particular rank (unique identifier).
The programmer can create more communicators that contain particular processes or groups of
processes if needed. After the MPI code has been written, the MPI environment is terminated using
the MPI__Finalize command. MPI contains a vast amount of operations, aiming to establish and

enable data transfer or synchronization. Each operation consists of the following stages:
e Initialization : The MPI operation takes control of the argument list of the MPI command.

o Starting : The MPI operation takes control of the data buffers, which are the send/receive

buffers that will be used for the data transfer. In this stage, the actual communication begins.

e« Completion : Returns control of the content of the data buffers, after having completed
the data transfer. At this point, the receive buffers have been updated with the data that

has been sent.
e Freeing : Returns control of the rest of the argument list.

MPI offers both collective and point-to-point communication. In point-to-point communication,
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a process communicates with another process through for example the basic commands MPI_ -
Send and MPI_Recv. In collective communication, the communication can be One-to-Many (e.g.
MPI_ Bcast, MPI_ Scatter), Many-to-One (e.g. MPI_Gather, MPI_Reduce) or Many-to-Many
(e.g. MPI_ Alltoall, MPI__AllReduce, MPI_Allgather). All the abovementioned commands are
blocking, which means that they return only when the communication buffers can be re-written
safely. MPI also offers non-blocking implementations of many of its commands (e.g. MPI_ Isend,
MPI_Irecv) that return immediately after being called but require from the programmer to check
if the communication has been completed before re-using the communication buffers. Nevertheless,
non-blocking operations are useful so as to overlap communication and computation, as well as
to avoid deadlocks. Finally some synchronization directives also exist, that introduce waiting
time, so as to coordinate processes efficiently. This however decreases the available parallelism of
the application and has a negative effect on the application’s scalability and speedup. The most

important synchronization directives are the following ones:

e MPI__Barrier : blocks all processes in the communicator until all of them reach the specific
point in the code where the barrier is located. As it applies to all processes of a particular

communicator, this directive may severely impact the available parallelism.

e MPI__Wait : blocks the calling process until a specified communication operation completes.
Its primary use case is to ensure that a non-blocking operation between 2 processes has
finished.

« MPI_Waitall : blocks the calling process until all specified communication operations have
completed. Its primary use case is to ensure that a group of non-blocking operations have
finished.

We must also keep in mind that many Many-to-Many communication directives may also include
some synchronization overhead, as they must ensure that all data have been distributed to the
processes that participate in the communication. Furthermore, blocking operations like MPI__Send
or MPI_Recv may also include waiting periods if one of the two communicating processes is not

ready to participate in the communication yet.

MPI programs can be compiled using different compiler wrappers. For the experiments conducted
in this thesis, we used the Intel MPI compiler, otherwise known as mpiicc (for C programs) or
mpiifort (for Fortran programs). Afterwards, the programs can be run using the mpirun or the

mpiexec commands.
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2.2 Benchmarks

In order to conduct the necessary experiments, we mainly used the MPI implementations of the
NAS Parallel Benchmarks (NPB), version 3.4.3, developed at NASA Ames Research Center.
The NAS Parallel Benchmarks [14] are derived from different computational fluid dynamics (CFD)
applications and have been widely used for many years now for various research purposes, including
performance modeling and HPC simulations. Each benchmark can have a variety of problem sizes,
which are referred to as classes. The structure of the name of each MPI benchmark is the following
one:

(benchmark_name).(class).(number_of_processes)

So for example, mg.E.128 refers to the MG benchmark, with class E, running using 128 processes.
The NPB benchmark suite consists of eight benchmarks and specifically five kernels and three

pseudo-applications. The eight benchmarks are described below:

o The Embarassingly Parallel Benchmark (EP) : Collects two-dimensional statistics from

a large number of generated Gaussian pseudo-random numbers.

o The Multigrid Benchmark (MG) : A simplified multigrid kernel that solves a 3-D Poisson

partial differential equation.

o The Conjugate Gradient Benchmark (CG) : Calculates an approximation of the small-

est eigenvalue of a large, sparse, symmetric positive definite matrix.

o The 3-D FFT PDE Benchmark (FT) : Solves a 3-D partial differential equation using
Fast Fourier Transforms (FFTSs).

o The Integer Sort Benchmark (IS) : Performs a sorting operation that is commonly used

in “particle in cell” applications of physics.

o The Lower-upper Diagonal Benchmark (LU) : Uses a symmetric successive over-
relaxation (SSOR) numerical scheme to solve a regular-sparse, block (5 x 5) lower and upper

triangular system.

o The Scalar Pentadiagonal Benchmark (SP) : Multiple independent systems of non-

diagonally dominant, scalar pentadiagonal equations are solved.

o The Block Tridiagonal Benchmark (BT) : Multiple independent systems of non-diagonally

dominant, block tridiagonal equations with a 5 x 5 block size are solved.
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It is important to note that due to their structure, each benchmark cannot run with all possible

process counts. In Table 2.2, the possible process counts for each benchmark are shown.

Benchmarks Possible Process Counts

BT, SP a square number of processes (1, 4, 9, ...)

LU 2D (nl * n2) process grid where n1/2 <= n2 <= nl
CG, FT, IS, MG a power-of-two number of processes (1, 2, 4, ...)
EP No special requirement

Table 2.2. NAS benchmarks process count requirements

The NAS Parallel Benchmarks, apart from being popular in research circles, also represent a diverse
variety of possible scientific applications, thus making them suitable for performance modeling
research and simulations of real HPC systems. This is extremely important nowadays, when the
heterogeneous and diversified HPC systems make it difficult to evaluate and model performance.
In this context, having a trustworthy and diverse set of benchmarks can prove crucial both in
performance modeling and to gain insights on how to improve the software and hardware design of

large-scale systems [13].

In addition, some benchmarks from the SPEChpc 2021 suite were utilized in this thesis. The
benchmarks of this suite cover a wide range of scientific domains and as shown in [13], are represen-
tative of modern scientific HPC workloads. Just like the NAS benchmarks. each SPEC benchmark
also comes in different workload sizes: tiny, small, medium and large. The structure of the name

of each benchmark is the following one:

(identifier).(benchmark_name).(workload_size).(number_of_processes)

The identifier is a number that is unique for this particular benchmark with a prefix indicating its
workload size (5 for tiny, 6 for small, 7 for medium and 8 for large). So for example, 619.clvleaf -
5.1024 refers to the clvleaf benchmark, with a small workload size, running using 1024 processes.

Figure 2.3 shows the SPEChpc 2021 benchmarks alongside some information about them.

Application Name Benchmark Language Approximate LOC Application Area
Tiny small Medium Large

LBM D2Q37 505.]bm_t 605.lbm_s 705.]bm_m 805.1bm_1 C 9000 Computational Fluid Dynamics

SOMA Offers Monte-Carlo Acceleration  513.s0ma_t 613.s0ma_s Not included. C 9500 Physics / Polymeric Systems

Tealeaf 518.tealeaf t 618.tealeal s 718.tealeaf_m B818.tealeaf 1 C 5400 Physics / High Energy Physics

Cloverleaf 519.clvleaf t 619.clvleaf s 719.clvleaf m 81g.clvleaf 1 Fortran 12,500 Physics / High Energy Physics

Minisweep 521.miniswp_t  621.miniswp_s Not included. C 17,500 Nuclear Engineering - Radiation Transport
POT3D 528.pot3d_t 628.pot3d_s 728.potgd_m 828.pot3d_1 Fortran 495,000 (Includes HDF5 library)  Solar Physies

SPH-EXA 532.sph_exa_t  632.sph_exa_s Not included. C++14 3400 Astrophysics and Cosmology

HPGMG-FV 534.hpgmefv_t  634.hpgmgfv_s 734hpgmgfv_m  834.hpgmgfv. 1 C 16,700 Cosmology, Astrophysics, Combustion
miniWeather 535.weather_t 635.weather_s 735.weather_m 835.weather 1 Fortran 1100 ‘Weather

Figure 2.3. All SPEChpc 2021 benchmarks alongside their workload sizes and mames, their im-
plementation language, their lines of code (LOC) and their scientific domains. [6]

Finally, studying the memory bandwidth consumption of the applications in this thesis required
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finding the upper bound of the memory bandwidth of each node of the ARIS supercomputer. To
do so, the C version of the STREAM benchmark [15] was utilized. The STREAM benchmark
measures the time it takes to execute four kernels (loops) that operate on large arrays that do not
fit in the cache memory of a machine. After multiple trials, it calculates the best MB/s rate for

each of these four kernels. The four kernels executed can be seen below:

o COPY : a[:] =b]]

SCALE : a[:] =q *b[]

SUM : al:] = b[:] + c[]

TRIAD : a[:] =b[:] + q * ¢[]

In Figure 2.4, the results of the STREAM benchmark for a random node of the ARIS supercomputer
can be seen. The largest memory bandwidth is 69177.3 MB/s and is being achieved for the Scale

kernel.

Best Rate Avg time Min time Max time
59881. 0.002687 0.002672 .002733
69177. 0.002334 6.002313 .002394
65501. 0.003714 0.003664 .003797
66589. 0.003649 0.003604 .003720

Solution Validates: avg error less than 1.000008e-13 on

Figure 2.4. Results of the STREAM benchmark in a node of the ARIS supercomputer

2.3 Profiling

2.3.1 Overview

Software Profiling is used to count the occurrences or frequencies of specific events (e.g. execution
of a particular function, loop or line of code) or to measure system metrics (e.g. total executed
instructions, cache misses etc.) during a program’s execution. This technique is particularly useful
for performance engineers, as it provides insights into a program’s behavior and aids in code op-
timization and performance analysis or tuning. Through profiling, programmers can identify the
so-called hot spots of their code (the most frequently executed code blocks). Profiling can be

divided into categories according to when it’s performed [36]:

o Offline Profiling : Traditionally, profiling is being performed offline, which means that its

findings will be available only after one full, preparatory execution of the targeted program.
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Since a significant proportion of scientific applications running in an HPC environment are
executed repeatedly (e.g., weather forecasting applications that run each time a new forecast
is required), this approach is generally not problematic. However, in many other use cases,

the profiling results are needed much earlier than offline profilers can provide them.

¢ Online Profiling : This type of profiling leverages various techniques to gather runtime data
up to a specific point in the program’s execution, and then uses these insights to predict the
behavior of the remaining execution. This approach is invaluable for dynamic compilation
systems (just-in-time compilers), dynamic optimizers and binary translators, so as to guide
them as to where their costly runtime operations must be implemented. Online profilers
must balance the trade-off between completing their analysis quickly enough to allow time
for implementing their predictions and being sufficiently accurate in identifying the program’s

hot spots.

A very common form of profiling is path profiling. A path can be defined as a series of sequential
instructions in the control flow graph (CFG) of a program. Path profiling tries to specify which
are the most commonly executed paths of a program (hot paths) to guide optimization efforts or

aid in dynamic decision-making.

Profiling applications comes with many challenges. To begin with, the profiling procedures in-
troduce time and space overheads to the original program execution. While this is of smaller
importance for offline profilers, it is a crucial issue for online ones, since the user may notice a
significant performance degradation. These overheads may stem from the methods employed by
the profiler to collect the necessary information (which will be analyzed in detail later) and from
many other program-specific characteristics. For example, in path profiling the potential paths
in big applications may be of a significant amount, especially if there’s a great deal of loops [37].
Additionally, they can also be large in size. Thus, profiling only a particular amount of paths
and up to a specific depth in the callpath itself may prove to be necessary in order to avoid large
overheads. Moreover, a program’s path can be hot for the first half of the execution and cold for
the second half. This constitutes a phase change and may mislead an online profiler and have an

impact on its predictions.

Profilers utilize a variety of methods so as to collect information on an application’s execution. The

most popular out of these methods are presented below:

e Instrumentation : Through this method, the profiler modifies the source or binary code
of an application with the intention to add specific commands in particular places in the
code that will collect the necessary information during the execution. Instrumentation can
be performed automatically by the compiler or by linking against pre-instrumented libraries

[16]. Programmers can also manually instrument their codes by adding instrumentation
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instructions where necessary. This profiling method is perhaps one of the most costly in
additional overhead. For instance, if an application contains numerous code regions that
individually take a small amount of time to execute but are executed very frequently, this can
result in significant additional overhead. Consequently, the user may need to apply selective
profiling and filter out some regions of code from the instrumentation procedure, according
to various conditions so as to reduce the overhead. Furthermore, the profiling tools need to
efficiently place instrumentation commands in the source or binary code so as to minimize
overhead, like in [37].

e Sampling : With this method, the profiler collects profile samples continuously by making
use of the operating system’s interrupt routines [17]. As a result, the final collected application
profiles are statistical and not complete like in the previous method. Nevertheless, this method
results in a much smaller overhead and can many times be sufficient or necessary in online

profiling.

e Hardware Performance Counters : Hardware Performance Counters are special-purpose
registers built within the CPU [18] [19]. They count specific hardware and software events
and are directly updated by the CPU itself. As a result, they cause much less overhead than
software-based profilers that require time-consuming system calls to gather their information.
In addition, they don’t require additional hardware cost, as they are usually already present
in the majority of modern processors. However, although there is a large number of diverse
events that most processors can measure, the number of events that can be concurrently
monitored by a processor is limited. Thus, the performance engineer must determine which
performance events best suit the intended purpose. Apart from performance analysis, hard-
ware performance counters are tremendously useful in a diverse range of research areas, like
for example in computer security, where they’ve been used, to name some examples, so as to

detect ransomware attacks in [19] or for integrity checking of applications in [18].

Although profiling can provide sufficient information to performance engineers, the information it
extracts rarely incorporates temporal relations, which can be really informative in parallel appli-
cations that are characterized by synchronization and wait states. In these cases, tracing can be
helpful, as it provides a detailed chronological record of the events that occur [16]. As expected
though, it imposes a much bigger overhead to the program execution than regular profiling and
produces a huge amount of data that require a lot of storage space. A detailed profiling use case
that showcases many of the abovementioned profiling stages using three popular profiling tools can

be found in Figure 2.5

Even if the profiling overheads are kept low, there are cases where even the slightest overhead can
be detrimental. Additionally, the way we instrument the code of an application depends on the

programming model used in its development. As a result, sometimes passive system-level probing
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Figure 2.5. A diagram depicting a profiling workflow utilizing Score-P, Scalasca and CUBE. The
application is first instrumented, then an effort to reduce the overheads by filtering the regions of
code that will be profiled is made, and afterwards the profiling (and tracing) files are produced.
Finally, the results are being analyzed and visualized in the User Interface. [7]

may be sufficient or necessary to avoid interfering with or altering the application in question.
Through this method, the performance engineer monitors data on system usage during the runtime
of the application without the need to instrument its code. Though this surely decreases the profiling
overhead and complexity, it can only be implemented to gain insights on a particular application
only if the system is relatively unoccupied. Nevertheless, this method can be employed on dedicated,
controlled testbeds, set up by researchers with the aim of studying application performance like in
[38].

In HPC application profiling there is one extra parameter that comes into play due to the distributed
nature of execution: communication between MPI processes. Profiling communication may prove
to be a challenging task, requiring new, dedicated tools. To begin with, communication in HPC
environments occurs between various components of the HPC ecosystem. In MPI implementations,
the MPI runtime interacts not only with the application itself, but also with the network fabric
of the system and the job scheduler [39]. Being aware of the communication data of all three of
these interactions is vital so as to identify bottlenecks and discover the causes for performance
degradation so as to optimize an application. However, holistic communication profiling tools that
evaluate the communication occurring during all these interactions are rare. Furthermore, tools that
just interposition themselves between the application and the MPI library to collect information
regarding the performed MPI calls may be less accurate than necessary in determining exactly the
time when each message is sent, due to them not being aware of the way network operations will be
executed [8]. For these reasons, depending on our purpose when studying application performance,

we must be careful to choose the proper methodologies to profile communication.
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In this thesis, the main purpose of the profiling performed is to provide general characterizations
for our benchmarks. As a result, there is no immediate need for the extremely specific profiling
that is required when developers try to pinpoint the causes of performance degradations so as to

optimize their code. Consequently, we will focus on:

¢ Performance Counters measured by using the Linux perf tool. These counters will help

us categorize our applications as compute or memory intensive.

« Communication Statistics measured by using the mpiP profiling tool. These statistics
will help us categorize our applications as communication intensive and identify different

communication behaviors so as to differentiate between communication intensive applications.

2.3.2 Profiling with perf

Perf [20] is a Linux command used for lightweight profiling and based on the perf events interface.
Perf can be utilized as an interface to the performance counters in Linux and to perform both static
and dynamic tracing. The former is achieved by instrumenting a given code with tracepoints that
collect information when triggered by the perf command, while the latter makes use of the kprobes
(kernel space) and uprobes (user space) frameworks. When profiling performance counters with
perf, there is no need for re-compilation or re-linking, as the perf command can just be placed in
front of the executable and all measurements are taken at runtime. The most prominent command
associated with perf is perf stat. This command is used to simply print to the standard output
after the execution of a program the aggregated counts of occurences of specified PMU (Performance
Monitoring Unit) events. PMU hardware events, like cache misses, FLOPS or load instructions
are mapped by the software to performance counters (which are physical registers as described
previously) so as to monitor them. The perf stat command can also keep track of software events
like context switches and all events can be measured at the user level, kernel level, or both, as well
as at hypervisor level in the case of Virtual Machines. The perf stat command can be phrased in

the two following ways:

perf stat -e cycles,instructions,cache-misses [executable details]

perf stat -e rla8 [executable details]

As seen above, the PMU events to be measured can be specified by the user using the -e option in

two different ways:

e by using a set of predefined events provided by perf like "cycles", that are then automatically

mapped onto actual events provided by the CPU

¢ by using hexadecimal codes that directly represent a PMU event. It’s important to note that
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the hexadecimal representations of PMU events vary between different CPU models and the
user needs to check the architecture’s documentation to find the hexadecimal codes of the

desired events.

Furthermore, starting with the Intel Nehalem microarchitecture, processors began supporting of-
fcore events [21]. These events track memory interactions that occur outside the core, providing
insights into cache misses, memory accesses, and data fetches from various levels of the memory

hierarchy, in a multi-socket or multi-node system.

As mentioned previously, each CPU has a limited number of performance counters. These can
be divided into generic counters that can measure every single PMU event, and fixed counters
that can only measure specific events. As a result, if the user specifies in the perf stat command
more hardware events than the available counters, the kernel will have to use multiplexing. This
allows the kernel to switch events in and out of the hardware counters, meaning that not all events
are measured continuously throughout the entire execution. At the end of the run, perf scales
the event counts so as to provide an estimation of the total counts, had each event utilized the
hardware counters for the entire application run. Another possible limitation is that since one file
descriptor is used for each event, per thread, it’s possible to reach the maximum number of open
file descriptors per process imposed by the kernel. An example of a perf stat output for a specific

process of a benchmark is presented in Figure 2.6.

# started on Fri Oct 25 22:26:49 2024

Performance counter stats for */fusers/pa23/goumas/skarapan/regale/NPB3.4.2/NPB3.4-MPL/bin/ft.D.x":

166292217589 UNHALTED_CORE_CYCLES (61-66%)
194862466854 INST_RETIRED (69.27%)
18566782985 FP_COMP_OPS_EXE:SSE_FP_PACKED_DOUBLE (69.21%)
34437162 FP_COMP_OPS_EXE:SSE_SCALAR_DOUBLE (69.19%)
679410009 OFFCORE_RESPONSE_@:LLC_MISS_LOCAL (69.17%)
43154303 OFFCORE_RESPONSE_@:LLC_MISS_REMOTE (69.15%)
2216766160 LLC_REFERENCES
364035033 LLC_MISSES
e LLC-LOADS
@ LLC-LOAD-MISSES
3994002833 LLC-STORES
e LLC-PREFETCHES
e LLC-PREFETCH-MISSES

68.513417526 seconds time elapsed

Figure 2.6. Perf output for a specific process of an MPI benchmark

Additionally, there exist some more perf commands that are widely used. The most prominent

ones are briefly described in Table 2.3

By default, the perf stat command counts event occurences for all threads of a specific process.
There is also the option to count the event occurrences for each CPU. This constitutes a limitation

for distributed memory applications whose execution takes place in many nodes. As a result, in our
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Command Explanation

perf record Performs interrupt-based sampling to record events for later
reporting and save them into a binary file

perf report Reads the file produced by the perf record command and
generates a concise execution profile

perf annotate | Annotates assembly or source code with event counts

perf top Presents a live event count, similar to the Linux top tool

Table 2.3. Four prominent perf commands

experiments we added together the collected performance counters for each MPI process and kept
the average value per node by dividing by the number of nodes. For each MPI process, we used the
command perf stat along with specific events. Afterwards, multiple aggregations were performed
so as to produce the abovementioned mean values of the events per node and some more complex
metrics, like for example memory bandwidth of a single benchmark. Details on the events used

and the metrics produced will be discussed later in this work.

2.3.3 Profiling with mpiP

mpiP is a lightweight MPI profiler for MPI applications [22]. It is used in order to collect statistical
information about MPI calls, using the PMPI interface to view when a directive is initialized and
when it completes [8]. It supports both link-time and run-time instrumentation capabilities, thus
not demanding re-compilation of the profiled application. Like other previously mentioned profiling
tools, it also enables profiling of only a specific user-defined section of the application. Figure 2.7
shows a fraction of the output of the profiling of a particular NAS benchmark using mpiP. The
remaining output provides detailed information about each callsite, including the execution time

and the sizes of the messages processed.
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MPITime 3 App Task  MPI Task
67.394348 32.828762 a 254
67 .380640 27.237899
67.318791 26.829214
Stddev 8.823954 1.812329
Aggregate 17249. 443965 6972.9920838 40.42
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Figure 2.7. mpiP output for a specific MPI benchmark. Visible are an overview of the time spent
in the entire benchmark and the MPI time percentage as well as the top 20 most time consuming
MPI directives alongside their callsites
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CHAPTER 3

Co-Scheduling in HPC

The co-location of jobs on HPC nodes is a promising, emerging research sector. However, co-
scheduling techniques have not yet found their way to production HPC systems. The deployment
of a co-scheduling mechanism to traditional HPC systems is a rigorous task and as of now, even if
its potential benefits have been highlighted in many research works, there exist no clear guidelines
as to how co-scheduling should be applied in a real-world scenario. Additionally, when dealing with
co-scheduling, implementing simple state-of-the-practice scheduling techniques may not be effective.
We are in need of schemes that take into consideration the profile of the jobs in our application
pool to make informed co-scheduling decisions. In this chapter, we will give a brief overview of
scheduling and co-scheduling in HPC, focusing on key approaches to incorporate application-specific

characteristics into decision-making processes.

3.1 Metrics and Application Types

Potential schedules or co-schedules in HPC and the algorithms utilized to produce them should
be evaluated based on particular metrics. As shown in [23], the task of finding a proper set of
evaluation metrics for this purpose is not straightforward. Furthermore, the necessity of categoriz-
ing applications to better label their behavior underscores the importance of identifying distinct

application types.

In the realm of HPC, each metric does not hold the same importance for all stakeholders. The
basic HPC stakeholders are the system administrators and the users that submit jobs. Obviously,
administrators are interested more in the overall system performance and efficiency, contrary to the
users who want their own submitted jobs to finish as early as possible. This antithesis can many

times lead to multi-criteria optimization problems when designing a scheduling algorithm, as we
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need to take both system and user satisfaction into consideration. The basic metrics we will

use in this work are the following;:

« Makespan : It refers to the total time needed to complete a set of jobs, starting from the
submission of the first job to the completion of the final one. Since it is an indication of the

throughput of the supercomputer, it is relevant only for system administrators.

o Utilization : It refers to the percentage of the system that is in use during an experiment.
Nonetheless, as stated in [23] we must be careful to only measure the steady-state utilization
of our system when we want to use this metric to evaluate an algorithm. Underutilization is
bound to occur during the initialization and clean-up stages as the system gradually fills and
empties afterwards. Additionally, HPC systems are not fully utilized throughout each day
and time. When system utilization is low (e.g. during night time), this metric is once again
not credible to evaluate potential scheduling algorithms. Utilization once again refers to the

overall system performance and thus is only of interest for system administrators.

e Turnaround time : It refers to the sum of the waiting time and execution time of a
particular job. As such, it is metric that interests the user that has submitted the job to the

system.

o Job Speedup/Slowdown : In a co-scheduling scenario, when the two jobs are co-located,
their execution times are bound to be different than when they are executed isolated (compact
mode). In this context, the speedup of an application is given by the following formula:

JobSpeedup = Compact Execution Time

Co-located Execution Time

If JobSpeedup value is lower than 1, then we say that an application exhibits a slowdown when
co-located with a particular neighbor. In a scheduling scenario, slowdown can also incorporate
the waiting time of an application in the queue. For the purposes of co-scheduling, we will,
for now, focus solely on the execution time change of an application to calculate its slowdown.

Job Speedup/Slowdown is a metric that is of interest to the user.

In the case of metrics such as turnaround time and speedup/slowdown, there are also weighted
versions that, in addition to the temporal aspect, also take into account the space an application

occupies [23].

Furthermore, there exist three basic categories of MPI applications in an HPC context: compute-
bound applications that mostly perform computations and utilize the CPUs of the nodes,
memory-bound applications that mostly perform memory accesses and whose main bottleneck

is the memory resources and communication-bound applications that spend most of their
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time in MPI calls. In a shared-memory environment, compute-bound applications are scalable
when more parallelism is added in the form of more CPU cores. On the contrary, memory-bound
applications have limited scalability due to the finite memory resources. This is also proven in
[24] for the case of EP (a heavily compute-bound benchmark) and MG (a heavily memory-bound
benchmark) from the NAS suite. In a co-scheduling environment, an application typically spreads
across twice the number of nodes compared to the isolated case, but occupies half the number
of cores on each node (spread mode). Thus, the number of cores utilized for the application’s
execution stays the same as in the isolated case (compact mode), meaning that compute-bound
applications are likely to experience neither a speedup nor a slowdown in these circumstances. Nev-
ertheless, memory-bound applications can drastically improve their performance, as spreading to
more nodes guarantees more memory resources and a higher memory bandwidth. Communication-
bound applications can have a more unpredictable behavior when imposing the abovementioned
co-scheduling scheme. This is because, on the one hand, more nodes provide additional memory
buffers and network ports, but on the other hand, more nodes lead to increased communication
overhead between them. As shown later on though, communication-bound applications also more

often than not tend to have speedups in spread mode compared to their compact execution.

3.2 Traditional Scheduling Techniques

In order to showcase the need for co-scheduling, we will first provide a brief overview of the existing

scheduling techniques and their shortcomings.

3.2.1 Scheduling and heuristics

Traditionally, resources are allocated to jobs using a batch scheduler, which is responsible for
scheduling jobs to nodes in a fair manner [25]. It also manages access to different queues of
a supercomputer, like for example a queue that contains nodes equipped with GPUs, or nodes
specializing in Machine Learning. In order to make sophisticated scheduling decisions, the batch
scheduler needs to have an estimation of the runtime of each submitted job at hand. For this reason,
users are tasked to provide an estimation of the execution time of their submitted job, which is
referred to as wallclock. As expected though, this wallclock is rarely accurate. Overestimation of
the job’s execution time by the user can lead to mistaken scheduling decisions by the scheduler
and a longer wait time, while underestimation will lead the job to be prematurely killed and not
concluded [40]. The former can have a negative effect on the utilization of the system, while the
latter is detrimental for the energy efficiency of the system, as particular jobs will need to re-run.
These problems have led many researchers to develop methods to predict the runtime [40] or queue
time [25] of an application, so as to provide more insights to the scheduling algorithms than the

ones given by the user estimation.

Given an estimation or prediction of the runtime of each job, the batch scheduler utilizes particular

heuristic functions so as to schedule the jobs in the system. Traditional scheduling heuristics
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include, but are not limited to [23] [26]:

o First Come First Served (FCFS) : Using this heuristic, the scheduler gives priority to
the jobs that have arrived earlier to the waiting queue. This is perhaps the fairest heuristic
towards the users and requires no knowledge of the application’s execution time. However, it
is bound to suffer from low utilization of the system’s resources and will lead to a large idle

time for particular nodes.

o Shortest Job First (SJF) : This technique prioritizes jobs with short runtimes over large
ones. This requires knowledge of an estimate/prediction of each job’s runtime and also means
that the waiting queue is re-ordered and total fairness is disrupted. Additionally, starvation
is possible. Another variant of this method is called Shortest Area First (SAF) and
also takes into account the space a job occupies (number of cores/nodes) in addition to its

wallclock, so as to determine the size of a job.

o eXpansion Factor (XF) : In this case, the waiting time of a job is also taken into con-
sideration to minimize the danger of starvation. As a result, the priority of a certain job is

given using the following formula :

Wait Time + Estimated Run Time

XFactor =
actor Estimated Run Time

Moreover, recent approaches incorporate machine learning techniques in order to schedule the
incoming jobs. A prominent example is given in [41] where the authors implemented a scheduler
that made decisions using reinforcement learning techniques. However, as pointed out in [23], the
main challenge in these scenarios is to find which metric(s) the scheduler must seek to optimize.
Given the multi-criteria problems that often emerge when it comes to scheduling, such a task is
cumbersome. Furthermore, the 'black-box’ structure of these approaches hides the reasoning behind

the decisions taken and may hinder the identification of potential injustices.

In any case, one of the most vital problems encountered when using traditional scheduling heuristics
is the potential underutilization of the system. The state-of-the-practice method to address this

limitation is through the use of backfilling.

3.2.2 Backfilling

With the use of traditional scheduling heuristics, the job with a greatest priority at a given time
period may not fit in the system and may need to wait until other resources are freed so as to start
its execution. This behavior will create gaps in the schedule, thus decreasing the overall system
utilization. However, it may be possible for another job with a lower priority to fit into the gaps

created by the stall of the job currently at the head of the queue, without causing further stalls to
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the higher-priority job or disrupting the fairness of the system. This is exactly what the backfilling
technique aims to accomplish. Figure 3.1 shows the basic backfilling principle. The two most

prominent backfilling techniques are [26]:

e Conservative Backfill : A job that fits the created gaps is moved forward in the queue
only if it does not delay any of the higher-priority jobs of the queue.

o Aggressive (EASY) Backfill : A job that fits the created gaps is moved forward in the
queue only if it does not delay the job that is currently at the head of the queue. Contrary

to conservative backfill, this technique may possibly disrupt fairness.

FIFO FIFO + Backfilling

—

Progress in Time

Processors

Figure 3.1. Visualization of backfilling [42]

Both techniques offer the system and the different types of submitted jobs both advantages and
disadvantages [26]. EASY backfill has less restrictions than conservative backfill and thus has a
higher chance of solving the issue of underutilization. It also enables long jobs to backfill under
the right circumstances, which is increasingly difficult with the extra constraints imposed by con-
servative backfill. However, with EASY backfill, many jobs may see their turnaround time grow.
In addition, the accuracy of the wallclocks provided by the users also impact the effectiveness of
backfilling. As explained in [43], systematically overestimating the application runtimes can de-
crease the overall slowdown of the applications, compared to the case when user estimates are fully
accurate. This is because this way bigger gaps are created in the schedule, thus increasing the
backfilling opportunities. In a more realistic scenario though, where the application pool contains
both accurate and overestimated user estimates, the overall slowdown seems to increase [26]. This

behavior further highlights the importance of accurate user estimates.

3.2.3 Other techniques for handling underutilization

Although backfilling plays a vital role in improving system utilization, it does not completely
eliminate the problem. As a result, more techniques are currently being used. The main adverse
effect of underutilization in modern HPC systems is the fact that it wastes energy. One technique
used to combat this problem is DVFS (Dynamic Voltage Frequency Scaling) [44]. Using this
technique, the frequency of the cores is dynamically adapted according to the given load. This
way, energy consumption is reduced if the system is idle. Nevertheless, this group of techniques

are just methods to combat the adverse effects of underutilization rather than a means to increase
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utilization. On the contrary, running multiple applications concurrently on a node (co-location)

can both improve the system utilization and increase its throughput.

3.3 Co-Scheduling Overview

Executing a job using spread mode will, more often than not, lead to enhanced performance. In
[1], the authors attribute this to the fact that processes of the same MPI job usually execute nearly
identical tasks and thus try to simultaneously access the same resources. Reducing the number of
processes of the same job in a specific node reduces contention for the said resources (e.g. caches,
memory bandwidth, network ports) and our scheme can also benefit from the additional allocated
resources to increase performance. However, simple spread mode entails that half the cores in each
node stay idle, thus severely underutilizng the system. Moreover, executing a job in spread mode
incurs higher costs for users, as in HPC environments, users are charged based on the core hours
they consume. As a result, this mode of operation is particularly used in urgent computing tasks,
where there is an immediate need for enhanced performance. For every day production use, the
proposed co-scheduling scheme in research contains some sort of co-location of jobs on the same
node. The most prominent and better performing scheme according to [1] is called job striping.
Let’s assume that each node in a supercomputer contains two sockets and each socket contains 8
cores (a total of 16 cores per node). Using the job striping scheme, half the cores of each socket (in
our case four) will be assigned to the first job, while the other half will be assigned to the second
job. Table 3.1 describes the aforementioned execution modes for an MPI job using 16 processes
and running on the system described above. Afterwards, Figure 3.2 provides a visualization of the

three execution modes.

Mode Nodes Required | Core Utilization per Node
Compact Execution | 1 16 cores (all cores used)

Spread Execution 2 8 cores (8 cores idle)

Job Striping 2 8 cores (remaining used by another job)

Table 3.1. Comparison of Ezecution Modes

Job striping is not the only viable co-location approach. Another approach is to assign an entire
socket to each job in a node (socket-exclusive). According to the system configuration any one
of these two approaches may be suitable. In [1] and [45] job striping yielded better results than
socket-exclusive, while the opposite was true in [46]. The primary advantage of job striping is that
by allocating heterogeneous processes to the same socket, we reduce the contention in the Last-
Level Cache (LLC) of that particular socket in comparison to the socket-exclusive approach where
multiple similar processes make similar demands on the LLC. However, processes from the first
socket will need to communicate with processes of the same job from the second socket, thus creating
a communication overhead, which is avoided in the socket-exclusive approach. Consequently, there

exists a trade-off between LLC and memory bandwidth contention and hardware locality and the
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Figure 3.2. Visualization of the three mentioned execution modes [1]

suitable approach depends on the system in use. For the experiments conducted in this work, the

job striping approach was utilized.

As mentioned before, the impact spread execution or co-execution have on MPI communication may
be unpredictable. On the one hand, more memory buffers and network ports certainly accelerate
communication. The time spent in MPI communication is also not necessarily useful communi-
cation as it may also include waiting and synchronization periods, as explained in Section 2.1.3.
On the other hand though, spreading a job to more nodes increases the needed communication.
Communication is also dependent on link contention in the entire system, something that is indepen-
dent from the chosen execution mode. Nevertheless, most results up to now seem to indicate that
communication-bound applications benefit from a co-execution scheme. This is corroborated in [8],
where it is shown that when two applications have different communication patterns, they can both
benefit from co-location. Since there is a high chance that two distinct jobs have different commu-
nication patterns, there is certainly a chance to benefit from co-location for communication-bound
processes. An example of the communication patterns of two NAS benchmarks in co-execution

mode is shown in Figure 3.3.

Co-Scheduling has been shown to result in an overall improvement of the makespan of an applica-
tion pool and in speedups for the majority of the application types involved. However, a specific
methodology or algorithm to find the optimal co-schedule given a specific application pool is still an
open problem. In [27], the authors proved that optimally co-scheduling jobs in a system with more
than two cores per chip is an NP-complete problem. Other works have focused on approximating
the optimal co-schedule asymptotically. In any case, some jobs are bound to be slowed down, which
gives birth to a question of fairness. Firstly, this leads to the abovementioned multi-criteria opti-

mization problem, where we need to simultaneously try and keep the system and the user satisfied
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Figure 3.3. Communication patterns of two different NAS benchmarks when co-located in a 16-
core node [8]

as far as overall and per job performance are concerned. Secondly, as mentioned above, in most
HPC systems users pay according to the core hours they consume. If a particular submitted job is
slowed down due to its co-location, the user will consume more core hours and thus pay a higher
cost. Since co-scheduling is yet to be implemented in a production system, this accounting issue
is yet to be resolved in a real-world scenario. In this context, backfilling is not as straightforward
as in traditional scheduling. Specifically, if a job is backfilled next to a neighbor that causes it
to experience a slowdown it might actually finish later than if it just entered the nodes without
being backfilled. Nonetheless, to develop a sophisticated decision algorithm for co-scheduling jobs
that accounts for both system performance and user satisfaction, rather than relying on random
co-scheduling, it is essential to understand the specific characteristics of the applications in our
application pool. The next section presents some of the available approaches for extracting and
processing knowledge about our applications, which can be used to make informed co-scheduling

decisions.

3.4 Co-Scheduling Approaches

A plethora of co-scheduling approaches have been proposed. The simplest way to perform co-
scheduling is by co-locating jobs as they come in a First Come First Served (FCFS) manner. This
technique can be further enhanced using some sort of backfilling in order to decrease underuti-
lization. However, with co-scheduling, contrary to simple scheduling, the placement of a job in
the system will impact its runtime. The aforementioned method, even if it can possibly result
in makespan improvements, does not make any effort to either further improve job speedups or
decrease job slowdowns. Thus, sophisticated co-scheduling methods have been proposed. These
methods can lead to improved system and user satisfaction but also require a varying degree of

knowledge on the characteristics of the jobs in the waiting queue. We divide these methods into
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two broad categories: tag-based models and pairwise models.

3.4.1 Tag-based models

Tag-based models aim to retrieve a particular standalone characterization of all applications in the
application pool and afterwards make informed co-scheduling decisions taking each application’s
profile into consideration. This characterization can either be resource-centric or co-location-
centric. In a resource-centric approach, we characterize applications according to their resource
consumption patterns. This may range from a simple label (e.g. memory-bound, compute-bound or
communication-bound) to a detailed analysis of the application’s resource consumption to obtain
a detailed profile. Figure 3.4 presents a snapshot from the HPC Performance Characterization
analysis provided by the profiling tool Intel VTune. Having obtained a profile for each application
in our application pool, we can then make either statically or dynamically informed decisions about

where each application must be placed in our system.

Elapsed Time : 8.788s
SP GFLOPS : 0.000
DP GFLOPS 7: 17.280
xB87 GFLOPS : 0.000

Effective CPU Utilization : 57.9% &
Average Effective CPU Utilization " : 25457 out of 44
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Top Serial Hotspots (outside parallel regions)

Parallel Region Time " : 59855 (68.1%)
Estimated Ideal Time 5.077s (57.8%)
OpenMP Potential Gain —: 0.908s (10.3%) ®
Top OpenMP Regions by Potential Gain

Effective CPU Utilization Histogram
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Figure 3.4. HPC performance characterization using Intel VTune [9]
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In a co-location-centric approach, each application must be labeled as either co-location friendly
or co-location unfriendly. This approach allows us to either utilize this information to determine
which pairs of applications will be co-located or to select a subset of applications for a co-scheduling
dedicated queue, with the remaining applications assigned to the regular scheduling queue. The
authors of [1] proposed that the performance of an application when executed in spread mode can
provide us with insights about its behavior in a co-scheduling environment. Specifically, they argue
that applications that gained a higher than 40% performance boost when executed in spread mode
are also, more often than not, expected to benefit from co-location. They then generalize this
conclusion by noting that when an application that significantly benefits from spread execution
is co-executed with another application that gains less from it, the former application experiences
improved performance. By dividing our applications into High, Medium and Low spread performers
we can then decide the optimal way to co-schedule them. This approach requires two runs for
each application in order to gain the necessary insights. Specifically, each application needs to
be executed in both spread mode and compact mode to measure its speedup when run in spread
mode. Resource-centric approaches require one run for each application in compact mode, while
simultaneously profiling it so as to determine its resource consumption patterns. This constitutes
a simple pre-processing step in most HPC cases, since the majority of HPC applications are run
multiple times by users (e.g. weather prediction models) and thus profiling only their first run adds
minimal overhead. Co-location-centric approaches demand a more sophisticated way to characterize

the applications.

3.4.2 Pairwise models

Pairwise models necessitate knowledge or estimation of the co-scheduling behavior for all potential
pairings of applications within the application pool. Heatmaps, such as the one shown in Figure
3.5, offer a visualization of these data, where each row represents the speedups of the corresponding

application when co-located with the applications represented in each column.
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Figure 3.5. Heatmap of speedups from the co-execution of eight NPB benchmarks of 256 processes
each in the Marconi supercomputer
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The main idea here is that the heatmap of the applications of our application pool is used by an
optimization algorithm to make the co-scheduling decisions. The heatmap can be produced either
by exhaustively running all possible pairings and measuring their performance compared to the
compact mode execution of each application (an impractical method in a production environment),
or by predicting the heatmap qualitatively or quantitatively. A qualitative approach could use
labels (e.g. good, bad, stationary) to characterize the behavior of each application when paired
with each one of the rest of the applications. These labels can be produced either empirically or
by using Machine Learning classification algorithms. Such methods will be proposed later
on in Chapter 4. On the other hand, a quantitative approach aims to predict the exact numerical
value of the speedups in the heatmap. This can be accomplished by using Machine Learning
regression algorithms. It is important to note that apart from the necessary sophistication so
as to conceive the aforementioned prediction models, pairwise models also require pre-existing data
(performance counters and heatmaps of applications), so as to either make empirical rules, or train
the Machine Learning models. In the next chapter, we will propose and explore some methods
to gain insights into the performance of applications in co-execution mode so as to produce the
necessary data that will be used by sophisticated co-scheduling algorithms to make informed co-
scheduling decisions. We also note, that our experiments will be conducted using benchmarks that
represent popular HPC scientific applications (e.g. NAS and SPEC benchmarks). Future research
around co-scheduling will also need to evaluate it using modern Big Data or Machine Learning

applications like in [45]. The taxonomy described above is also briefly illustrated in Figure 3.6.

Machine Learning
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Quantitative — (Regression)

— Pairwise Models
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L Tag-based Models ~|::
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Figure 3.6. A brief tazonomy of application models for co-scheduling
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CHAPTER 4

Performance Prediction in co-execution mode

In this section we will present some performance analysis methods that can be used to gain valuable
insights regarding the behavior of applications in a co-scheduling scenario. The knowledge extracted
from these methods can be utilized by co-schedulers to make informed co-scheduling decisions.
The common denominator of all presented models is their usage of performance counters. For this
reason, we will firstly explain the methodology used to obtain these counters for all applications
with the use of profiling. Afterwards, we will use these profiles in the form of a tag-based model and
provide an algorithm that leverages them to improve the results of random co-location. We will
then discuss some qualitative approaches in predicting the heatmap of a specific application set:
one approach relies on empirical rules derived from the manual analysis of previous co-scheduling
results, while the other approaches employ traditional Machine Learning algorithms trained on
the same co-scheduling data. In the end, we will also evaluate a way to use combinations of the

empirical and machine learning approaches to enhance precision.

4.1 Profiling Methodology

As mentioned before, we profiled the benchmarks used in our experiments using perf and mpiP.
Using perf, we aimed to extract information regarding the computation and memory characteristics
of an application’s runtime. With mpiP, we tried to gather insights on its communication behavior.
The computational aspect of an application will be represented in this work by the FLOPS metric,
which measures the amount of floating points operations occurring per second. This metric is widely
used as a measure of computation for scientific applications, due to the high-precision nature of
these workloads that render integer operation more rare. We calculate this metric by dividing the
total number of floating point operations during each application’s runtime by its total execution

time. In order to calculate the total floating point operations taking place during an application’s
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runtime, we utilize two perf events : FP_ COMP_ OPS_ EXE:SSE_ FP_ PACKED_ DOU-
BLE and FP__ COMP__OPS_ EXE:SSE_SCALAR_ DOUBLE. These events measure two
types of SSE (Streaming SIMD Extensions) instructions: packed and scalar double-precision
floating-point operations. Packed SSE instructions divide their operands into multiple floating-
point segments that can be processed in parallel, while scalar SSE instructions execute a single
operation, typically on data located in the lower bits of their register arguments [47]. SSE is a
SIMD instruction set extension to the x86 architecture, designed by Intel. We are interested in the
per-node value of the FLOPS metric and as a result we profile each MPI process using perf, we
add the floating point instructions performed throughout all processes using the sum of the two
above perf events and then divide the result by the total execution time of the application and the

number of nodes the processes run on. The above methodology is depicted in the following formula:

SSE_FP_ PACKED DOUBLE; + SSE_SCALAR_DOUBLE;)

Sy (
FLOPS = ==
Number of Nodes - Execution Time

where np stands for the number of processes of the MPI job.

Moreover, we want to gain insights into the memory accesses of an application. To accomplish this,
we will calculate an indication of the memory bandwidth of each application by utilizing two
perf offcore events: OFFCORE__ RESPONSE_ 0:LLC__MISS__LOCAL and OFFCORE.__ -
RESPONSE_0:LLC_MISS REMOTE. Both offcore events track the number of last-level
cache (LLC) misses, which are typically resolved by the main memory system and thus provide an
indication of main memory accesses. The former event counts the LLC misses that were handled
locally (i.e., by the core’s own memory controller), while the latter counts the cases where the data
must be fetched from a remote core or node (in a multi-socket or multi-node system). Afterwards,
we multiply the sum of these two events by the cache line size (64 bytes in the ARIS system) to
see how many bytes where transferred. The cache line size defines the amount of data that can be
retrieved from the main memory in a single operation. Making use of the same methodology as for

the FLOPS metric, the per-node memory bandwidth estimation is given by the following formula:

> ((LLC_MISS_LOCAL;+LLC_MISS_REMOTE,;) x Cache Line Size)
Number of Nodes-Execution Time

Memory Bandwidth =

LLC misses within the core can be determined using the perf event LLC__ MISSES when necessary,
while LLC hits can be calculated by subtracting the LLC misses from the perf event LLC__REF-
ERENCES. The values of both events are then divided by the number of nodes the application

utilized and its execution time, just like previously.

At the same time, the communication behavior of each application was profiled using mpiP. First of
all, from the Task Time Statistics section of the generated mpiP report, we extract the aggregate
MPI% value, which represents the proportion of the application’s runtime that was spent on MPI

operations. This value will indicate the degree to which the application is communication-bound.
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Additionally, utilizing the Callsite Time statistics section of the report, we will calculate the
percentage of MPI time consumed by each specific type of MPI directive (e.g. MPI_Wait, MPI_ -
Send etc.). This will help us determine the percentage of productive communication versus idle

waiting times.

FLOPS, Memory Bandwidth, MPI Time, LLC Hits and LLC Misses that characterize a given
application were then grouped together and visualized using spider plots. Figure 4.1 shows an

example of a spider plot for the SP benchmark running on 121 processes.

sp.D.121
FLOPS

LLC HITS MEMORY

MPI TIME LLC MISSES

Figure 4.1. Spider plot for the SP benchmark

4.2 A Tag-Based Model

Tag-based models aim to enhance the generated co-schedules by relying solely on a specific char-
acterization of each application within the application pool. This characterization can vary from a
basic tag provided by profiling tools such as Intel VTune to a comprehensive set of related perfor-
mance counters. Qur approach involved gathering the previously mentioned performance counters
related to memory and computation, along with communication-related data, and utilizing them

as application tags to guide decision-making in co-location scenarios.

We also conceived a strategy to utilize the created tag of the applications so as to improve the mean
job speedup in a co-location scenario. We have already discussed in Section 3.1, that executing
memory-bound applications in spread mode can be beneficial for them due to the higher number of
memory resources. At the same time, compute-bound applications are likely to exhibit a stationary
behavior when executed in spread mode. As proven in [28], one can reduce the average slowdown

experienced by co-located applications by simply preventing instances of the same program from
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being co-located together. This is intuitively expected, as applications that are memory intensive
will hinder each other’s performance if forced to share the same memory resources. This way, their
vast potential to have large speedups due to the bigger amount of memory resources will not be
exploited. On the other hand, co-locating two compute-intensive applications may prevent either
from experiencing a slowdown. However, as will be shown later on, compute-intensive applications
usually facilitate the speedup of their neighbors and as a result co-locating them together eliminates
the potential benefits that could be gained by reserving them for other applications. The authors
then go on to prove their hypothesis, using both a statistical theory, as well as simulated static co-
location experiments. However, the frequency with which we encounter use cases involving multiple
instances of the same program running simultaneously in a real-world HPC system is a matter of
debate. This may occur in ensemble simulations, parameter sweeps, or multi-replica runs, where
the same application is executed with different input parameters or configurations. Consequently,
we extend and generalize this reasoning by examining a co-location scenario where the goal is to

create pairs of applications whose spider plots are as different as possible.

We explore the simple static scenario, where we have an application pool of 300 applications and we
want to create 150 pairs. We conducted 100 experiments, each involving a randomly selected mix
of 300 applications in the application pool. In each experiment, we compared the performance of a
baseline approach against a more sophisticated method for the given application mix. In the simple
baseline case, applications are paired sequentially, with the first paired with the second, the third
with the fourth, and so forth. Afterwards we implement a sophisticated case, where we exploit the
abovementioned reasoning. Specifically, for each potential application pair in the pool, we calculate
a score that indicates the degree of overlap between the spider plots of the two applications. This

score is calculated as follows:
FLOPSdiff = [FLOPS; — FLOPS,|

MEMORYdiff = [Memory,; — Memorys,|

COMMiff = [IMPI_time; — MPI_time,|

score = |/ (FLOPSiff)2 + (MEMORYdiff)2 + (COMMdiff)2

The bigger this score is for a particular pair, the more different from each other these applica-
tions are, thus indicating a better co-scheduling outcome. Figure 4.2a presents two applications
with minimal overlap in their spider plots. This pair of applications is thus considered to be a
good co-location, and indeed under this co-location, mg.E.256 achieves a speedup of 1.71 which is
impressive for co-execution mode, while ep.E.256 experiences a speedup of 0.96 (actually a slight
slowdown of 4%), indicating a stationary behavior. This outcome is expected, as the EP benchmark
typically neither benefits nor is adversely affected from co-execution, as we will demonstrate later.
In contrast, Figure 4.2b illustrates two applications with significant overlap in their spider plots.

This pair of applications is thus considered to be a bad co-location, which is corroborated by the
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fact that mg.E.256 achieves a speedup of 1.01 and sp.D.121 achieves a speedup of 1.03 under this
pairing, both actually being fully stationary. Given the potential of MG for significant speedups in
co-execution mode, as demonstrated in the previous example (a behavior also observed with SP),

this pairing is justifiably regarded as a poor co-location choice.

—— mg.E.256 —— ep.E.256 —— mQ.E.256 — 5p.D.121

FLOPS FLOPS

LLC HITS MEMORY LLC HITS MEMORY

coogboooom coghboooco~

MPI TIME LLC MISSES MPI TIME LLC MISSES

(a) Exzample of a good co-location (b) Ezample of a bad co-location

Figure 4.2. Spider Co-Plots for a good and a bad co-location scenario

Our approach will try to co-locate applications in a greedy way. Specifically, as we move sequentially
through our application pool, we will co-locate each application with the one that results in the
highest possible score. This approach heavily favors the first few applications of the application pool
that will be paired with optimal neighbors. Nonetheless, it results in a considerable improvement for
the mean job speedup and a significant decrease for the percentage of applications that experience
a slowdown when co-located. Figure 4.3 demonstrates the benefits of our approach, compared to
the baseline case described before. We observe an improvement of the average mean job speedup
by 3.03% and a decrease of the average slowdowns percentage by 11.03%. We define the average
slowdowns percentage as the percentage of the applications in each experiment that experienced
a slowdown (i.e. their speedup value was below 1). These statistical results are encouraging, as
intuition suggests that a higher mean job speedup in this static scenario could translate to a shorter
makespan in a dynamic setting. However it is important to note that this statistical experimentation

makes the following simplifying assumptions:
o All applications are assumed to have the exact same execution time.
o FEach application is paired with exactly one other application for its entire runtime.

These assumptions are usually not valid in real HPC systems, as applications can have significant
variations in execution times, meaning that each process of larger applications may be co-located
with more than one other application during its runtime. Moreover, due to the diversity of processes
each application runs on, some processes of an application may be co-located with one application,
while others are placed with a different one. Additionally, there is a possibility that some pro-

cesses of an application may run alone on their node due to utilization constraints, where the next
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application cannot be accommodated in the remaining cores. These scenarios that can arise in

real-world HPC systems are depicted in Figure 4.4.

Mean Job Speedup Slowdowns (%)

1201 [Average Improvement: 3.03%] O I — [Average Improvement: —11.03%]
30 4

n Iy .
254 -

1.16 A o
20 1
15 1

1.12 4 . : : .

Baseline Sophisticated Baseline Sophisticated

Figure 4.3. Benefits of our tag-based approach in comparison with the baseline case

EASY Co-Scheduler
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0:00:00 0:00:42 0:01:24  0:02:06 0:02:49 0:03:31  0:04:13  0:04:55 0:05:38 0:06:20  0:07:02
Time

Figure 4.4. Potential application placings in a real-world HPC scenario

In particular:

e The light green application runs on 128 processes and thus some of its processes are co-located
with the dark blue application, some others with the yellow application and some run alone

on their nodes because the dark red application did not fit in the created gap.

o The dark blue application has more than one neighbors throughout its runtime (the light
green and the dark red applications), due to its large execution time. It is also practically
executed in spread mode after the dark red application has finished running, as there is no

other application left in the waiting queue.

Consequently, a plain co-location scenario where we are tasked to just make pairs out of an applica-
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tion pool is highly unlikely in a real-world setting. Nonetheless, our aforementioned approach can
be utilized to make real-time decisions. Specifically, when an application is ready to be placed in
the system’s nodes and multiple potential spots are available, we can choose among the candidate
options, the cores that contain the application that will maximize the aforementioned score. An
added benefit of our approach is that it takes both applications into consideration when making
decisions, thus trying to avoid or minimize cases where even if one application heavily benefits
from a co-location, the other application is heavily harmed by it. More sophisticated variants of
our method may be possible in an on-line scenario, where algorithms can make use of waiting queue

re-orders to further optimize the co-location decisions.

4.3 Empirical Heatmap Prediction

We then devised an empirical qualitative model that aims to predict the heatmap created by a
particular application pool. The model consists of a set of rules that were then used to make an
empirical decision tree that receives as input two applications A and B and predicts application A’s
speedup if paired with application B. The three labels the model uses to characterize the speedup of
application A when paired with application B are good, stationary and bad. In order to extract
the rules used to construct the decision tree, we analyzed a heatmap from the ARIS supercomputer,
which consisted of all NAS benchmarks, as well as a heatmap from the ARIS supercomputer that
consisted of some of the SPEChpc 2021 benchmarks. The two heatmaps are depicted in Figures 4.5
and 4.6. In order to calculate the speedup value for each co-execution pairing, we placed each pair
on the same node and replicated the pairing across the required number of nodes. The pair was
co-executed for 10 minutes, with any completed job being restarted during this period. The median
execution times from these repeated runs were used as the co-execution times for the benchmark.
The reported speedups were calculated as the ratio of the original execution time (under compact
allocation) to the co-execution time, just like we mentioned earlier in Section 3.1. It is important
to note here that most of the pairings in these heatmaps exhibit speedups or mild slowdowns,
giving a first indication that co-scheduling can be beneficial as a strategy for a plethora of scientific
applications. Moreover, the fact that NAS and SPEC benchmarks, which are representative of
many types of scientific applications, form the foundation for our empirical model suggests its

applicability for general scientific workloads.

We once again used the performance profiles created with the help of perf and mpiP to generate
spider plots for all benchmarks, allowing us to categorize them effectively. Among the three main
metrics—FLOPS, MPI Time, and Memory—the one with the highest value determined whether
the benchmark was compute-bound, communication-bound, or memory-bound, respectively. The
upper bound for the Memory axis was calculated using the STREAM benchmark, as explained
in Section 2.2, while for the FLOPS axis we used a value larger than all the used benchmarks’
respective values. The MPI Time axis ranges from 0 to 1 as each MPI Time value is the percentage
of the execution time spent in MPI calls. Finally, the spider plots also depict Last-Level Cache hits

and misses, as they will be useful in some cases as it will be seen later on. Their upper bounds
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Speedup
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Figure 4.5. Heatmap of the used NAS benchmarks in a co-execution environment (Average Speedup
:1.12)

coincide with the greatest observed value of these metrics among the used benchmarks. The spider
plots for a single case of processes from each of the 8 NAS benchmarks used are shown in Figure
4.7.

4.3.1 Compute-bound applications

We first of all turn our attention to the EP benchmark. As shown in Figure 4.7c, EP is a heavily
compute-bound program with only minimal memory accesses and MPI communication. Observing
the heatmap at Figure 4.5, we notice that the EP benchmark remains almost fully stationary when
co-executed with all other benchmarks (its speedups range from 0.96 to 1.01). As a result, it
is safe to assume that heavily compute-bound applications have the tendency to stay stationary
when co-located with all kinds of applications, something that was also explained earlier. To

further investigate this, we examine the case of the BT benchmark which is also compute-bound
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Speedup
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Figure 4.6. Heatmap of the used SPEC benchmarks in a co-execution environment (Average
Speedup : 1.14)

as seen in Figure 4.7a. This benchmark is also most of the times stationary with speedup values
never exceeding 1.09 but may also experience severe slowdowns when co-located with SP or MG.
The difference between BT and EP lies in the fact that BT also has a considerable amount of
memory accesses taking place. SP and MG are two heavily memory-bound benchmarks and, as it
is intuitively expected, co-locating two benchmarks that make extensive use of the memory resources
creates increased contention for the said resources, thus decreasing the performance. In that case,
the least memory-intensive benchmark seems to pay the biggest price. Turning our attention to
the LU benchmark, we notice that the spider plots of BT and LU are strikingly similar, as seen in
Figure 4.8.

However, LU seems to avoid significant slowdown even when co-located with SP or MG. Addition-
ally, even if most of the times it is virtually stationary, it certainly achieves larger speedups than
BT or EP, even reaching 1.16. LU’s most important difference from BT seems to be its communi-
cation, which is higher than that of BT. From a communication perspective, more resources means
more buffers necessary for receiving and sending data and access to network ports with potentially
less traffic if co-located with a non-communication intensive benchmark. Furthermore, we observe
that these three benchmarks constitute good neighbors for other benchmarks, as they allow their

neighboring benchmarks to exhibit speedups (i.e., the columns corresponding to these benchmarks
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Figure 4.8. Comparison of BT and LU

in the heatmap are predominantly green). This is expected since compute-bound applications make
limited use of shared resources in the node and mostly utilize the cores to which they have exclusive
access. Rounding up this discussion around the three compute-bound applications, we have the

first set of empirical rules:

Empirical Rules Part One: Compute-bound Applications

e Heavily compute-bound applications are stationary when co-located with all kinds of
benchmarks.

o Compute-bound applications with a considerable amount of memory accesses are sta-
tionary in all cases, except when co-located with memory-bound applications. In that
case they exhibit a slowdown.

o Compute-bound applications with a considerable amount of communication can exhibit
a speedup when co-located with non-communication-bound or non-memory-bound
benchmarks.

e Compute-bound applications are good neighbors for other applications as they make

minimal use of shared memory or communication resources in a node.

4.3.2 Memory-bound applications

Afterwards, we will discuss the behavior of memory-bound applications when it comes to co-
execution. The most predominantly memory-bound applications in the heatmap of Figure 4.5
are MG and SP. We notice that these applications exhibit remarkable speedups in almost all co-
location cases, reaching even 1.71. The only case where their speedups deteriorate is when they
are co-executed with other heavily memory-bound applications, due to the increased resource con-

tention and the reduced memory bandwidth available to each application. The slowdown that
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these applications will experience in this case will depend on how much memory-intensive their
neighboring benchmark is. At the same time, both MG and SP seem to be bad neighbors for
other benchmarks, given their monopolization of the shared memory resources (i.e., the columns

corresponding to these benchmarks in the heatmap are predominantly red).

From the spider plot in Figure 4.7b, we can see that the CG benchmark is also memory-bound.
However, a quick look at the heatmap in Figure 4.5 shows that the CG benchmark behaves much
differently than SP and MG. Specifically, it never achieves the remarkably high speedups of the
other two benchmarks, it experiences tremendous slowdowns when co-located with memory-bound
applications like SP and MG and it is also surprisingly a good neighbor for other benchmarks! To
explain this divergent behavior we study the CG benchmark more intensively. As mentioned in
[48], the CG benchmark’s memory accesses are irregular, due to the fact that it is performing calcu-
lations on a large sparse matrix. Irregular memory accesses tend to result in inefficient bandwidth
utilization, as they are unpredictable and prevent the memory system from efficiently prefetching or
batch-loading data, thus increasing the memory latency. In sequential memory access, the system
can anticipate the next memory locations to be accessed, thereby making more efficient use of the
bandwidth and enabling streaming or pre-loading of data into the cache. Furthermore, irregular
accesses often result in fetching cache lines that are not fully utilized. For example, if an algorithm
accesses memory in a random order, each memory access could cause a separate cache line to be
fetched, leading to a waste of cache space. At the same time, the lack of spatial locality of the
accessed data means that there is a high probability that the requested data will not be in the
cache and will require fetching it from main memory. Consequently, memory-bound applications
with irregular memory accesses will experience many cache misses. This is evident for the CG
benchmark in its spider plot in Figure 4.7b. The cache misses experienced by CG are much higher
than any other NAS benchmark. This characteristic of this type of memory-bound applications can
be utilized to distinguish them from regular memory bandwidth bound applications. Furthermore,
CG’s bandwidth underutilization justifies why it has different co-location behavior from MG or
SP. Specifically, if an application underutilizes the memory bandwidth, increasing it by allocating
more resources will not significantly help the application’s performance. By underutilizing the
bandwidth, this type of applications are also not monopolizing the memory resources, thus being
good neighbors to other applications. Finally, being co-located with someone who indeed monopo-
lizes the memory resources further exacerbates memory latency, adding to the inefficiencies of their
already suboptimal memory access patterns. Through these observations, we devise a second set

of empirical rules:
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Empirical Rules Part Two: Memory-bound Applications

e Memory-bound applications can achieve remarkable speedups when co-located with
compute-bound or communication-bound applications.

e When co-located with other memory-bound applications, their performance is wors-
ened, albeit not tremendously. The more heavily memory-bound application out of
the two in the pair tends to do better.

e Memory-bound applications are bad neighbors for other applications due to their high
demands on the system’s memory resources.

e Memory-bound applications that carry out irregular memory accesses cannot achieve
high speedups due to their bandwidth underutilization. For the same reason, they
constitute good neighbors for other applications. Their already significant memory
latency is exacerbated when co-executed with memory-bound applications, leading to

a tremendous slowdown.

4.3.3 Communication-bound applications

Our final two NAS benchmarks, FT and IS are both communication-bound as illustrated in Figures
4.7d and 4.7e. From the heatmap in Figure 4.5, we infer that these two benchmarks tend to have
high speedups, albeit not as high as memory-bound benchmarks. This is expected, due to the
higher number of memory buffers in spread mode. On the contrary to memory-bound benchmarks
though, they seem to maintain this behavior with virtually all potential neighbors. This stems from
the fact that they do not utilize the memory bandwidth as much as memory-bound applications
and thus have higher tolerance of such bad neighbors. At the same time, even when co-located with
other communication-bound applications (e.g. IS with FT), we do not observe a slowdown as we
would expect due to the common use of the network ports. This is a consequence of the fact that it
is highly unlikely that two distinct benchmarks will have the exact same communication patterns
and thus interfere with the execution of the other. But even when we co-locate two instances of the
same benchmark, we notice either stationary behavior (is.E.256 with is.E.256 with a speedup of
1.02) or even a considerable speedup (ft.D.64 with ft.D.64 with a speedup of 1.13). An explanation
for this is given in [8], where it is shown that the co-execution of two instances of the same NAS
benchmark will cause conflicts during the initial stages of the communication but then because of
the stall that one of the two instances will suffer, their communication patterns go out of sync.
Thus the conflicts from that point onwards are decreased. This phenomenon is illustrated in Figure
4.9.

As a result, communication-bound benchmarks seem to be suitable for co-location and more often
than not experience speedups during these circumstances. For the same reasons, they are usually
good neighbors to other benchmarks, as shown in the columns of the heatmap. However, it is
important to note that communication behavior may easily become unpredictable. Factors such as
link contention in the overall system may exacerbate performance. As mentioned before, processes

of the same application have similar demands on the system and thus lead to contention in shared
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Figure 4.9. Communication patterns of two instances of the same program (FT benchmark) in
co-execution mode [8]

resources like network ports. This is limited in spread or co-execution mode, where less processes of
the same application are present in a node. However, spread mode incurs one potential downside for
communication-bound applications. When spreading a job to more nodes, we inevitably increase the
required communication. In the above experiments, the benefits of the increased resources seem to
outweigh the added cost of the increased communication. Nonetheless, the impact of this increased
communication if we further increase the number of nodes in spread mode or during periods of high
link congestion in the system, might grow and as a result slow down the application. Other factors,

like communication patterns (All-to-all, point-to-point) or message sizes can also play a role.

NAS benchmarks did not manage to give us any more insights into the communication behavior
under co-execution. For this reason we also turned our attention to the SPEC benchmarks. The
spider plots for the utilized SPEC benchmarks whose heatmap is shown in Figure 4.6 are presented
in Figure 4.10. We observe that this benchmark suite contains two heavily communication-bound
benchmarks: 621.miniswp_s (Figure 4.10d) and 635.weather s (Figure 4.10g). However, contrary
to the behavior of FT and IS, the heatmap in Figure 4.6 shows us that these two benchmarks do
not display high speedups but rather stay stationary most of the times. To explore this divergent
behavior, we examine the mpiP reports of these two SPEC benchmarks in more detail. Specifically,
we uncover how much time is spent in each distinct MPI directive. In the first row of table 4.1,
the percentage of the total MPI time spent in each MPI call category is shown for the two SPEC
benchmarks. For comparison purposes, in the second row of the table we present the same analysis
for the F'T benchmark.

The MPI time of the 635.weather s benchmark is dominated by MPI__ Waitall calls which as men-

tioned in Section 2.1.3 represent idle waiting rather than effective communication. Consequently,
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635.weather s.1024 621.miniswp_s.1024

Callsites: 19456 Callsites: 15360
Waitall: 99.90% Recv: 85.24%
Isend: 0.04% Send: 14.49%
Irecv: 0.06% Barrier: 0.24%
Barrier: 0.00% Comm_ split: 0.02%

Comm_ free: 0.00%
Allreduce: 0.00%

ft.D.256
Callsites: 3840

Alltoall: 97.16%
Reduce: 1.70%
Barrier: 0.88%
Comm_ split: 0.19%
Beast: 0.07%

Table 4.1. Percentage breakdown of total MPI time spent on each MPI directive

this portion of the execution time cannot be optimized further. Similarly, the MPI time for the
621.miniswp_ s benchmark is predominantly spent on MPI_Recv calls. These calls also contribute
to idle waiting time rather than effective communication, as MPI must wait for the sender process
to prepare and transmit the required data. A significant amount of time spent in this call indicates
an inefficient communication pattern, resulting in increased waiting times for receiving processes
as they await data transmission. On the other hand, the MPI time of the FT benchmark is domi-
nated by MPI__Alltoall calls which constitute useful communication. As a result, we must take into
consideration the amount of idle waiting time that is included in the MPI time of each benchmark

when devising our empirical rules. Hence, the third set of empirical rules is presented below:

Empirical Rules Part Three: Communication-bound Applications

e Communication-bound applications that mostly contain useful communication are
more often than not experiencing a speedup during co-execution.

e On the contrary, communication-bound applications that are dominated by idle waiting
times exhibit a more stationary behavior during co-execution.

e Communication-bound benchmarks are good neighbors to other benchmarks due to the
fact that they do not monopolize shared resources and the communication patterns of
distinct applications are usually different.

e The behavior of communication-bound benchmarks may be more unpredictable if a
job is spread in a large number of nodes or during periods of high link congestion in

the system.
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4.3.4 Prediction Results

Using the aforementioned rules we constructed an empirical decision tree, which is presented in
Figure 4.11. As mentioned, this model receives as input two applications A and B and predicts
the speedup characterization of application A if co-located with B. The three possible categorical

labels are good, stationary and bad.
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Figure 4.11. Decision Tree made by utilizing the aforementioned empirical rules
We utilized this model to predict the heatmap of the NAS benchmarks, by applying it to every

single possible pairing from the NAS application pool. The predicted categorical heatmap can be

seen in Figure 4.12. In Table 4.4, we analyze and present the model’s accuracy.

BenchmarkA  bt.D.256 cg.D.128 cg.D.64 ¢g.E512 ep.E.256 ft.D.256 ft.D.64 is.D.256 lu.D.256 mg.E.256 sp.C.64 sp.D.121 sp.D.256

bt.D.256 stationary stationary stationary stationary stationary stationary stationary stationary stationary bad bad bad bad
cg.D.128 good stationary stationary stationary good good good good good bad bad bad bad

cg.D.64 good stationary stationary stationary good good good good good bad bad bad bad
cg.E.512 good stationary stationary stationary good good good good good bad bad bad bad

ep.E.256 stationary stationary stationary stationary stationary stationary stationary stationary stationary stationary stationary stationary stationary

ft.D.256 good good good good good good good good good good good good good
ft.D.64 good good good good good good good good good good good good good
is.D.256 good good good good good good good good good good good good good
lu.D.256 good good good good good stationary stationary stationary good stationary stationary stationary stationary
mg.E.256 good good good good good good good good good stationary good good good
sp.C.64 good good good good good good good good good bad stationary bad bad
sp.D.121 good good good good good good good good good bad good stationary good
sp.D.256 good good good good good good good good good bad good bad stationary

Figure 4.12. Predicted categorical heatmap for the NAS benchmarks
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We define the speedup bounds for the three categorizations as shown in Table 4.2.

Table 4.2. Speedup bounds for each categorization

Characterization Speedup Bounds
Good Speedup > 1.1
Stationary 0.95 < Speedup < 1.1
Bad Speedup < 0.95

Prediction Results

Given that what is considered good or bad around the case of speedup = 1 is subjective, we introduce

a sufficiently correct category of predictions during evaluation. The bounds for this category are

more lenient and are detailed in Table 4.3.

Characterization Speedup Bounds
Good Speedup > 1.05
Stationary 0.90 < Speedup < 1.15
Bad Speedup < 0.95

Table 4.3.

Sufficiently correct speedup bounds for each categorization

In Table 4.4, we analyze and present the model’s accuracy in predicting the NAS heatmap.

Characterization

Results

Fully Correct

141 out of 169 - 83.43%

Sufficiently Correct

12 out of 169 - 7.1%

Wrong

16 out of 169 - 9.47%

Table 4.4. Analysis of the results of the empirical model for the NAS benchmarks

We observe that are model accurately predicted 83.43% of the pairs in the NAS heatmap, while

7.1% of its predictions fall within the 'Sufficiently Correct’ category. As a result, the predictions

were at least sufficient for 90.53% of the pairs. In order to evaluate whether the model is

significantly biased or suffers from overfitting due to the fact that the empirical rules were heavily
based on the NAS benchmarks, we also predicted the SPEC heatmap using it. The predicted

categorical heatmap can be seen in Figure 4.13.

BenchmarkA 605.lbm_s.1024 618.tealeaf_s.1024 619.clvleaf_s.1024

605.lbm_s.1024 stationary
618.tealeaf s.1024 good
619.clvleaf_s.1024 good
621.miniswp_s.1024 stationary
628.pot3d_s.1024 good
634.hpgmgfv_s.1024 good
635.weather_s.1024 stationary

stationary stationary
staktionary bad
good stationary
stationary stationary
good bad
good bad
stationary stationary

621.miniswp_s.1024 628.pot3d_s.1024 634.hpgmgfv_s.1024 635.weather_s.1024

stationary stationary
good bad
good good
stationary stationary
good stationary
good bad
stationary stationary

stationary
bad

good
stationary
good
stationary

stationary

Figure 4.13. Predicted categorical heatmap for the SPEC benchmarks

The model’s accuracy in predicting the SPEC heatmap is presented in Table 4.5.

stationary
good
good
stationary
good
good

stationary

While the

percentage of fully correct predictions is considerably smaller (63.27%) than the one for the NAS
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benchmarks, we observe that a large number of predictions (22.45%) fall under the ’Sufficiently
Correct’ category. As a result, the predictions were at least sufficient for 85.72% of the
pairs, which is once again satisfactory and the wrong predictions account only for 14.29% of the

total pairs.

Characterization Results

Fully Correct 31 out of 49 - 63.27%
Sufficiently Correct | 11 out of 49 - 22.45%
Wrong 7 out of 49 - 14.29%

Table 4.5. Analysis of the results of the empirical model for the SPEC benchmarks

4.4 Heatmap Prediction using Machine Learning

Given the prohibitive cost of running all possible co-location pairs to evaluate their performance,
Machine Learning models have been utilized in previous co-location research with the intent to
predict the heatmap of a particular application pool. In [29], the authors claim that utilizing simple
heuristics like for example only one particular performance metric (e.g. only cache misses) does not
leverage the entire potential of co-scheduling. For this reason they use various performance counters
so as to train Machine Learning models to predict the performance degradation of applications
when co-located. They investigate the impact of using a plethora of performance counters and
derived metrics in the training phase of their models and compare the accuracy of different Machine
Learning models. Relying on these conclusions, we train our own Machine Learning classification
models, so as to compare them with the empirical approach. We utilize the 5 axes previously
presented in the spider plots as features in our training set, since we believe that they provide
a holistic overview of the application’s behavior and were also used when devising the empirical

model.

The first step is to decide which machine learning models fit our intended purpose. To do this,
we need to understand the use case. This Machine Learning algorithm will need to make frequent
predictions, as the application pool on a supercomputer frequently changes with users submitting
new jobs. Consequently, new heatmaps must be continuously predicted to provide our advanced co-
scheduling algorithm with the necessary information. As a result, our model must not have a large
inference time. The training time is less critical since the model can be updated sporadically and
trained during off-peak hours, such as at night, when the system is under less load. Additionally,
as this is not a critical task, using an outdated model for a few hours during the training process is
not detrimental. In this particular case, we aim to use a low number of features given the fact that
profiling a large number of hardware events that exceeds the available hardware counters leads to
the need for excessive multiplexing which lowers the accuracy of the estimations. Additionally we
aim to use the derived metrics calculated earlier that provide us with a holistic overview of the
application’s behavior to also compare the models with our empirical model. The fact that co-
scheduling is not a widely used method and has not yet found its way to production systems means

that the datasets we possess for training and validation are small and come mainly from experiments
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conducted during research. Even if this may change in the future, models that do not require large
datasets for their training phase may be more suitable for the time being. Interpretability would
also be desirable in order to enhance the community’s knowledge around performance analysis,
while outliers may be common because the experiments are conducted on real systems, where
load fluctuations, particularly in the interconnection network, can occur frequently and affect an

application’s execution time.

With all these in mind, we trained seven different types of Machine Learning models and compared
their inference results. For each model type, we trained a plethora of models using all possible com-
binations of many of their hyperparameters. For each model, we conducted 5-fold cross-validation
and calculated the average of the fold scores. We then retained for each model type, the model
with the highest average cross-validation accuracy score and evaluated it using an unseen test set.
Figure 4.14 presents some metrics regarding the best model from each model type. The training

time and inference time metrics are in milliseconds.

Random Forests

Multi-Layer Perceptron

Support Vector Machine k)]

-0.6 O

0

g st | 3
3 Logistic Regression N
= T
04 E

K-Nearest Neighbors =

Gaussian Naive Bayes

Gradient Boosting Machine

Mean CV Test Set Precision Training Inference
Accuracy  Accuracy (Good) Time Time

Figure 4.14. FEvaluation of the best-performing models from each model type

These results can be explained by examining each model type’s inherent characteristics [31]. In

particular:

o Neural Networks like Multi-Layer Perceptron (MLP) require a large training set in order
to yield accurate results. Even if this model type achieved a mean cross-validation accuracy
of 0.8, it fell completely short when predicting the unseen data, achieving only an accu-

racy of 0.65. It also required a very large training time, another innate feature of neural
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1.4 Heatmap Prediction using Machine Learning

networks compared to traditional machine learning techniques. They are also not humanly

interpretable.

o The best model types overall are Gradient Boosting Machine (GBM), Random Forests
(RF) and Logistic Regression (LR). The former two methods constitute ensemble learning
techniques and guarantee higher accuracy and less overfitting than simple Machine Learning
algorithms [49]. However they require more training time. Logistic Regression is a simple
model that attempts to find the correlation between a dependent and one or more independent
variables. The relatively small training set that we have at our disposal benefits this simple

model.

o Other simple models like K-Nearest Neighbors (KNN) and the probabilistic technique
Gaussian Naive Bayes (GNB) do not seem to perform well. This may be due to the
complexity in the relations between the features and the co-location characterization. K-
Nearest Neighbors also has a very high inference time, which is expected since each prediction
requires calculating the distance from all points in the training set. A large inference time

might be prohibitive in real-time co-scheduling decision-making.

o Finally Support Vector Machine (SVM) seems to have a good accuracy in the unseen
data. It can accomplish solid predictions even with smaller datasets, but its main strength
is classification in cases where the training set is high-dimensional (e.g. text classification,

bioinformatics etc.), which is not the case here where each sample contains only 8 features.

A main limitation for many of these models is the relatively small training set. As co-scheduling
is further integrated in production systems, this can easily change, as we are provided with more
real-world data. Afterwards, the efficiency of neural networks can be re-examined, especially given
the fact that training time may not be as crucial as fast inference and accuracy. Another important
factor is the stability of the model when the training set is enhanced, which will frequently occur
during model re-training and the sensibility to outliers, which may occur if measurements are taken
during high system load. These limitations also pose challenges for simple machine learning models,

as far as real-world implementation is concerned.

As highlighted in [29], underestimating application degradation in a co-location scenario can have
severe consequences in real-time environments, as it may lead the scheduler to mistakenly co-locate
incompatible applications. Similarly, in our use case, False Positives labeled as “good” can mislead
the scheduler, adversely impacting the workload’s makespan. For this reason, we included the
precision of our models as far as the “good” label is concerned in the heatmap of Figure 4.14 and
it could be useful to try and improve it. One way to achieve this is by utilizing two models at the
same time and only labeling a sample as “good” if both models have predicted it as “good”. This

may of course affect the overall accuracy of the model. We first implemented this logic by using our
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empirical model in conjunction with all the ML models in Figure 4.14. Figure 4.15 illustrates the
variations in accuracy and precision for the “good” label across each ML model upon implementing

the aforementioned policy.
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Figure 4.15. Impact of using all ML models in conjunction with our empirical model on accuracy
and precision

We observe that in all cases the precision of the “good” label is increased even reaching 0.96,
proving that this approach is promising for our intended purpose. However, we also observe that
the overall accuracy may sometimes decrease which is undesirable. We end up with a two-criteria
optimization problem: we want to have large overall accuracy while also achieving large precision
for the “good” label. To further investigate this, we perform this logic once again for all possible
pairs of the Machine Learning models of Figure 4.14. We present the results in Figure 4.16. The
red line depicts the Pareto frontier of the scatterplot, which indicates that the combinations of
models closest to satisfying concurrently both our optimization objectives are RF-LR, LR-GBM,
SVM-GBM and RF-GBM. The four models that comprise these pairs were also among our most
well-performing models when evaluated standalone. Depending on the desired level of precision
for the “good” label, we can select one of these combinations for use. It is important to note that
by raising the precision for the “good” label, we may potentially decrease the recall of this label.
For the cases of RF-LR, LR-GBM, SVM-GBM, the recall of the “good” label is decreased by 9%
in comparison to the largest recall between the two models of each pair. In the case of RF-GBM,
where the precision for the “good” label is lower, the recall is decreased by 3%. Not predicting
specific good co-locations (sacrificing recall) constitutes a missed opportunity for the scheduler to

make better use of the application pool. On the other hand, mispredicting many bad co-locations as
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good (sacrificing precision) can result in a slowdown in the overall makespan, due to incompatible

pairings by the scheduler. This is a trade-off that is worth investigating and may also depend

on the co-scheduling algorithm itself. However, a conservative approach that makes sure that the

predicted good co-locations are indeed good, coupled with the innate benefits of co-scheduling can

ensure that we avoid makespan slowdowns.
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Figure 4.16. Pareto Plot of all our models and all possible combinations of models
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CHAPTER b

Co-Scheduling Simulations

In this chapter, we will demonstrate the benefits of co-scheduling as far as makespan speedup and
throughput are concerned. We firstly propose a simple Co-Scheduler called EASY Co-Scheduler,
which places applications in the system in a First Come First Served manner, while also utilizing
EASY backfill, as described in Section 3.2.2. In addition to the EASY Co-Scheduler, we will in-
troduce a method for developing more advanced co-scheduling algorithms, by trying to shed light
on important optimization metrics. To achieve these, we will conduct experiments utilizing a novel
simulator tool that was developed in CSLab NTUA and is called ELiSE (Efficient Lightweight
Scheduling Estimator). ELIiSE has the ability to simulate the scheduling or co-scheduling of
workloads in a user-defined configuration. It requires the compact execution times of the applica-
tions in the simulated workloads, as well as the heatmap of co-execution times so as to simulate
co-scheduling algorithms. Both basic and sophisticated (co-)scheduling algorithms have already
been implemented in ELiSE and its simple object-oriented design allows the seamless development
of new, more complex algorithms by using inheritance from simpler implemented ones. In the end,
we will also pinpoint use cases, where sophisticated insights into our workloads, like the ones gained

from the methodologies in Chapter 4 are useful.

5.1 Simple Experiments

Co-scheduling can result in a considerable improvement in the makespan of a particular workload.
In order to prove it, we conducted experiments using ELiSE. We utilized four workload types of
500 jobs each. Each workload type consisted of jobs with an increasing variety of process counts.
For instance, diversity 1 included only jobs running on 256 processes, diversity 2 included jobs
running on either 256 or 64 processes, and so forth. For each workload type, we conducted four

shuffled experiments and measured the average makespan speedup of the EASY Co-Scheduler and
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a sophisticated Co-Scheduler, called Filler Co-Scheduler with regards to the state-of-the-practice
EASY scheduler. The Filler Co-Scheduler, tries to decrease the fragmentation of the co-schedule
by selecting the best-fit job to enter the nodes at each step, based on its number of processes, while
also trying to re-order the waiting queue as little as possible. As a result, it aims at improving
the utilization of the system, which is one of the key metrics for system administrators. Figure 5.1

presents the results of these experiments.

@4 FEASY Co-Scheduler
20 B Filler Co-Scheduler

13.23%

Makespan Improvement (%)

256 256/64 256/64/512 all
Process Count Diversity

Figure 5.1. Makespan improvement for two co-scheduling algorithms with regards to the EASY
Scheduler and for diverse process count mixes

It is evident that co-scheduling results in a makespan speedup for all cases, regardless of the process
count diversity. However not all algorithms are equally effective in different co-scheduling scenarios.
In the case of diversity__1, where all submitted jobs have the same process count, there is nothing to
be gained by trying to fill the created gaps in the co-schedule and as a result the Filler Co-Scheduler
cannot further improve the makespan. Furthermore, the makespan improvement achieved by the
EASY Co-Scheduler gradually decreases as process count diversity increases, whereas the Filler
Co-Scheduler is useful in larger process count diversities as more gaps are created. This study
proves that optimizations on the basic EASY Co-Scheduler are necessary in diverse workloads and
that a Co-Scheduler’s performance is reliant on the type of workload submitted. Moreover, no
sophisticated Co-Scheduler comes without drawbacks. Since the primary goal of the Filler Co-
Scheduler is to ensure high utilization, it often achieves this by completely disrupting the order of

the waiting queue, thereby compromising fairness.

Nevertheless, even the simple EASY Co-Scheduler can yield significant makespan improvements in
several cases. The results in Table 5.1 demonstrate the high makespan improvements of workloads
containing jobs with equal process counts and with varying average speedups, calculated based on
the pairwise speedups of all possible job pairs in each workload, using the Marconi heatmap. Each
workload consists of 500 jobs, and for each average speedup case we conducted four experiments

using ELiSE to simulate a cluster with 100 nodes and 48 cores.

These findings further emphasize a correlation between the average speedup of all job pairs in
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Mean Job Speedup | Makespan Improvement (%)
1.07 24.42%
1.10 25.29%
1.12 25.87%
1.155 30.63%

Table 5.1. Makespan Improvement with regards to the mean job speedup of the used sub-heatmap

an application pool and the makespan improvement achieved through co-scheduling, presenting
an approach to developing a more advanced Co-Scheduler. As a result, co-scheduling involves
numerous trade-offs and requires careful consideration of many parameters when designing co-

scheduling algorithms and selecting which workloads to co-schedule.

5.2 Towards Sophisticated Co-Schedulers

One preliminary approach to studying co-location of applications would be to exhaustively calculate
all potential pairings from the application pool and calculate the possible average speedups and
slowdowns. This analysis can provide us insights as to which application mixes would work well
in a co-scheduling environment. However, this approach cannot provide insights into makespan
or user satisfaction in real-world scenarios, as it falls significantly short of being a comprehensive
co-scheduling study by amongst others neglecting the possibility that an application may pair with
multiple other applications during its runtime and in general not taking into account the temporal
aspect of scheduling. A more complete temporal analysis would require the usage of a co-scheduling
estimator tool like ELiSE. We conducted 100 experiments for a particular application pool using
ELiSE, the heatmap from the ARIS supercomputer and a simulated cluster of 200 nodes with
20 cores per node. The workload for each experiment consisted of the exact same applications,
but their order was each time shuffled. The simple EASY Co-Scheduler presented earlier was
utilized. This way, one can attempt to find different possible co-schedules and determine which
metrics are of importance to optimize system and user satisfaction. For system satisfaction, we
utilized the makespan speedup of co-scheduling, compared to the EASY scheduler. As seen in
Figure 5.2a, the correlation of makespan speedup with the average job speedup as depicted by
the Pearson correlation coefficient is significant, as it is intuitively expected, suggesting that an
algorithm oriented at improving the average job speedup will be beneficial for the total makespan
speedup in this case. The makespan speedup improvement seems to be even more highly correlated
with the weighted average job speedup (Figure 5.2b), which is more representative in a co-scheduling

environment and is calculated through the following formula:

SN | speedup; - weight,

N | weight;

wavg_job_ speedup =
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where the weights are calculated as:

. runtime; - procs_ per_app;
weight, =

max_ weight

and the maximum weight is defined as the following product:

max_ weight = makespan,,,, - nodes - cores
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Figure 5.2. Correlation between Makespan Improvement and various metrics related to system
throughput and user satisfaction

The weighted average job speedup takes into consideration both the spatial (procs_per_app) and
the temporal (runtime) aspect of the co-schedule so as to gain a clearer insight into how much
speedup our entire application pool experienced. The max_ weight represents the entire area of the
co-schedule, since it is a product of the maximum values of its two axes. The average (weighted)
job speedup can also be viewed as a crucial metric for user satisfaction, meaning that an algorithm

alming to improve it can satisfy both our optimization goals concurrently.

At the same time though, system utilization seems to also play an important role in improving
the makespan speedup, as seen in Figure 5.2c, something that is also verified by the Filler Co-
Scheduler’s behavior in the majority of workload cases from the previous section. Finally, Figure

5.2d presents a Pareto Plot illustrating the makespan improvement alongside the percentage of
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applications that experienced a slowdown, which is another indicator of user satisfaction. These
two parameters create a multi-criteria optimization problem: we need an algorithm that can reach
the Pareto frontier so as to balance the objectives of high makespan improvement, indicating high
system satisfaction and a low percentage of applications experiencing a slowdown, thereby ensuring
user satisfaction. In any case, the abovementioned and many more research directions and trade-off
experimentations around co-scheduling can only be possible through the use of a dedicated tool to

come closer to real life circumstances rather than relying solely on statistical analysis.

5.3 Need for sophistication

In the previous sections, we firstly saw that diverse workloads necessitate a sophisticated co-
scheduling approach so as to offer benefits in comparison with simple, traditional scheduling. In
addition, we observed that the mean job speedup in a specific co-schedule has a significant impact
on improving its makespan. To this end, the techniques discussed in Chapter 4 can be employed
so as to gain information about our workloads and provide them to an advanced algorithm, aiming
to make informed decisions that enhance the mean job speedup in a co-schedule and, consequently,
improve its makespan. The gathered insights about the applications in the application pool can be

utilized by the workload manager in a variety of ways:

e To benefit the system administrator, the information can be used in order to reduce the
makespan of a particular application pool. A lower makespan entails a higher throughput

and thus more work done in less time and with less consumed energy.

e To benefit the users, the information can be used so as to minimize the jobs that experience
slowdowns, while making sure that the makespan is at least moderately reduced. In such a
scenario, a developed algorithm must find a middle ground between trying to improve the
makespan, without treating users unfairly which could result in significant losses of both time

and money.

In these two cases, the gathered insights can be utilized either real-time during the co-scheduling
process, so as to decide which nodes will be allocated to the job currently at the top of the wait-
ing queue, or in order to reorder a particular waiting queue to possibly achieve higher mean job
speedups. The latter method of course compromises fairness, as the arrival order is disrupted.
Apart from decision-making during the co-scheduling process, the insights gathered through our
proposed methods can also be leveraged so as to decide how to approach a particular workload in

advance. Specifically:

e The system can enable or disable co-scheduling altogether for a particular workload, according

to its characteristics.
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e The system can support two separate job queues: one for simple scheduling and one for co-
scheduling. Then, a sophisticated algorithm can decide which jobs will go to each queue in

order to improve particular metrics, like throughput or user satisfaction.

In conclusion, co-scheduling appears to hold significant potential for improving many common HPC
target metrics. The methods discussed for gathering information about applications can serve as
valuable inputs to specialized co-scheduling algorithms designed to enhance these metrics. Given the
need to balance the requirements of both system administrators and HPC users, these algorithms
must address multi-criteria optimization problems rather than focusing solely on improving a single
metric. As demonstrated in [23], this must be seriously taken into consideration, particularly
when trying to implement (co-)scheduling algorithms using Machine or Reinforcement Learning
techniques. With this work, we aimed to provide a groundwork for the creation of sophisticated Co-
Schedulers, by pinpointing ways to gather their necessary inputs, as well as showing the significance

of various metrics and the trade-offs that emerge.
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CHAPTER O

Future Research Directions

Co-Scheduling, while promising for increasing system throughput and energy efficiency, as well as
reducing job runtimes, has not yet been adopted in production HPC clusters. In order for that to
be accomplished, modern Workload Managers like SLURM need to be programmed to support it,
which can be a cumbersome process. Until this integration begins taking shape, there are many

questions that researchers need to find answers to.

Regarding performance analysis and its usage to retrieve application profiles so as to inform co-

scheduling decisions, the following questions have to be addressed in future research:

e MPI communication requires further study, incorporating new insights to improve the accu-
racy of performance predictions for communication-bound applications. In particular, exe-
cution during periods of link congestion is certain to increase the runtime of such applica-
tions. As shown in [38], a high demand for communication bandwidth is heavily correlated
to performance degradation for MPI applications when limited communication bandwidth
is available due to link congestion. As a result, link congestion profilers must be integrated
into our profiling methodology to leverage link congestion data for predicting the behavior of
communication-bound applications. Additionally, apart from the idle time during MPI com-
munication which was exploited by our empirical approach, communication patterns (point-
to-point, all-to-all) can also be taken into account when predicting the performance of an

application.

e We implemented and evaluated various Machine Learning classification models, as well as a

tag-based approach. More research can be performed regarding, Machine Learning Regression
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models, like the ones presented in [29], so that co-scheduling algorithms can have more precise
speedup estimations at their disposal. It would be important to once again compare the
chosen machine learning algorithms according to their innate characteristics to choose the
appropriate one for our use case. Another direction would be to focus on co-location-centric
approaches. This would be useful, especially in order to choose to enable or disable co-
scheduling according to the workload, or to divide a workload into a co-scheduling and a

simple scheduling queue.

o As the integration of co-scheduling in production systems advances, more data regarding the
behavior of applications in a co-execution environment need to be gathered so as to train and

re-evaluate the behavior of approaches that require a lot of data like Neural Networks.

Regarding co-scheduling in general, more questions are being raised, especially considering its

implementation in a real-world scenario:

o It is important to come to a consensus about the payment scheme that will be employed in a
cluster that supports co-scheduling. Specifically, the possibility for performance degradation
due to co-location may lead users to pay a higher cost, compared to the same application’s
compact execution. Since performance degradation of specific applications can never be fully
avoided in a co-scheduling environment, the community needs to agree on a new set of rules
regarding this topic. The authors in [1] have made some interesting proposals to combat this

issue.

e In this study, we concentrated only on node-sharing between two applications. In order to
further improve system throughput, one approach would be to co-locate a higher number
of applications on the same node, with each application utilizing the same or a different
percentage of the available cores relative to the others. Of course, this would result in an
even more complicated interference behavior between the applications in a node and would
require different models to predict an application’s performance when co-located with more

than one neighbors.

e One technique to minimize contention in the shared Last-Level cache (LLC) is cache parti-
tioning [50]. Cache partitioning divides the shared cache into regions and assigns each one
to a specific application. Thus, one application does not evict the cache blocks of another,
but this comes with the drawback that each application has access to a reduced portion of
the LLC. This technique can be employed to reduce interference and simplify our predictions

regarding performance during co-execution.

o As highlighted in [23], it is crucial for researchers to choose suitable metrics when evaluating

(co-)scheduling algorithms. With co-scheduling being an emerging area of research, the need
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for metrics used for evaluation will grow.

o In the exascale era, energy efficiency needs to be ensured. Techniques such as powering down
nodes during periods of low system utilization and concentrating applications onto fewer

nodes require further investigation.

Co-Scheduling as a technique is not limited to supercomputers. It can also be applied in cloud
environments, both during the execution of applications and when it comes to consolidation of
Virtual Machines in over-subscribed servers. In these and other relevant scenarios, similar trade-

offs and interference patterns to those discussed in this thesis arise.
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CHAPTER [

Extetopévn Mepidndm

7.1 Emwoxonnon

Y1 onuepvy| enoyy, évac TepdoTiog aplduog EQPUpUOYOY amoutel TOAD peyollTepn enelepyaoTIXN
o)V xou uviurn omd auTry Tou umopel v mpoo@épel évac anhog emtpanéliog unoloylothc.  Autol
ol Tteploplopol Zemepviotvta Yéow e Yerione Yrohoyiotxdv Luotnudtwy Y¢miic Enidoone (High
Performance Computing - HPC). Ta cvothuoate HPC anotelolvton omd morhanhols SlaxopoTtés
1 x6pPBoug, cuUVBESEUEVOUE UETw eVOS BxTUoL LPNAoL elpoug LOVNG, WOTE VoL AELTOURYOUV WS EVaC
eviolog, 1Y UEOC UTOAOYIOTAS, IXAVOG VoL EXTEAEL EXaTopULELa HordnUaTixég TedEels xau va eneepydleton
TepdoTieg TooOTNTES dedouévey [10]. Q¢ anotéheopa, Gho xou TEPLOCOTEPES YOPES ENEVOVOUY GTOUC
dixoUg Toug unepunoloyioTég xau To cuoThuata HPC éyouv avadewydel oe éva e€anpetixnd evepyo nedio

€pELVOC.

Ta cvotiuoata HPC nopadootaxd Bondolv otnv extéleon Slapopwy ETOTNUOVIXWDY EQURUOYWY XOol
Tpocopolwoewy. Optopéva napadelyyota nepthaufdvouy eopuoyéc and Toug Touel Tne Ploymueiog,
e ynuelag, e petewpohoyiog xan g vmoroyiotixrc duvauixic pevotwy (CFD). Ilpbogarta, mépa
and TIC PACIXEC ETUOTAUES, €YOUV EUPUVIOTEL OOXETEC VEEC XATNYORIEC EQUPUOYWY TOU ONALTOUY TNV

avédeon yeydhou yxou TopmY Yo TNV anoTENESHATIX EXTELEST] TOUS. Autéc TepthayuBdvouy [11]:

o E¢gopuovéc Big Data: H enoyy| tou Big Data anoutel tnv enelepyaoio 1epdotityy To00THTRV

0EBOUEVWY, Ta OTolo TPOEPYOVTAL ATO OLAPOPES TINYES.

o Texvnth Nonpoolvn/Mnyavixr Mdadnon: Ou arydpduor AI/ML nepuraufdvouy puo

pdor exnoldevong, 1 onola anattel TOAAOVG LTOAOYLO TIXOUE TOPOUS YL TNV YENYOpRY) DlEXTERO-
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7.1.1 Ilohvene€epyootind LuoThuota
7 4
lwoy) .

o« Emiotiun Acdopévwy: Yxonoc e Emotiung Acdopévwy elvon 1 e€oymyn yvoong xou
TAneopoplev and peydha odvoha dedopévmv. IepihauPdvelr Ty cuhhoyy xou anodfxeucr dedo-
Lévey, TNy enedepyooion xau aveAuoy Toug, xaae xou Ty ottxonoinor Toug. ‘Oleg autéc ol

epyaoieg pumopel va elvon WLadTEpa AmaATNTIXES Y WEIC TNV XATAAANAT, UTOBOUY).

7.1.1 IToAlvenelepyaoTixd LLOTALATA

‘Evoc moAd xplowog mapdyovtag Tne TapdAAning eneepyaciac eivor oL TOTOL AEYLTEXTOVIXWY UTOAO-
yiotwy ou yenowonowivta. To 1966, o Michael J. Flynn xatnyopionoinoe tic diadéoiuec apytte-

ATOVIXEC OE TEGOEPIC XATNYOpPlES, 08 auTd oL elval Yvwot6 we ‘Towopla tou Flynn’ [12]:

 Single Instruction, Single Data (SISD): 'Evoc oeiplaxdc UToNOYLOTAS, XavOC var EXTEREL
wlor evioAn) xde Qopd o€ €va CUYXEXEWEVO GUVONO BEBOUEVWY ATOUNKEVUEVWY GE Wlal UVHUN.
Avth 1 apyrtextovixy yenotpotoinxe otoug TpdhTouc tpocwtixolc utoloylotéc (PCs), 6mou

dev unopoloe va aflonoiniel 1 nopdAAnin eneepyaacto.

« Single Instruction, Multiple Data (SIMD): Mio evtolf; egopuéleton TauToYpOVo OE TOA-
hamAég poéc BeBOUEVLY, aElOTOLOVTAS TNV TapaAAniio oe eninedo dedopévwy. Eva xowd mo-

pdderypa yprone authc e apyrtextovixic eivon oo GPUs (Movéddec EneZepyaoctac Ipopixdv).

o Multiple Instruction, Single Data (MISD): Ilohhanhéc eviokéc egopuéloviar 6o (Blo
oUvolo Bedopévev.  Auth n opyitextovixy] elvar omdvior xan €xel ypnowonondel xuplog yia

oxonolg avoyfg o GHAUATA.

o Multiple Instruction, Multiple Data (MIMD): IToloamiéc povidec extelolv Sloupope-
TIXEC EVTOMES o€ BlapopeTiés poég Bedouévmy Tautoypova. Auth 1 apyttextovixy ebvar 1 mo

oladedouévn ota ouoThdata HPC.

Ta cuothpata Ttapdhining enelepyaciac unopoly, eniong, vo xatnyoplomoindoly nepoutépw Ue Bdom
TOV TPOTO TOU YENOWOTOOLY TO GUOTNUA UVAUNG OF CUCTARATA XOWOXETNOTING UVAUNG X

CUCTAPATA XATAVEUNAEVNG UVAUNG:

o Ta CUGTAUAT XOWVOYENCTNG UVAUNG ETMLTEETOLY GE OAOUS TOUC ENEEERYACTES VoL €Y 0LV TpOSBao
oty Bt uvAun. Ataxpivoviar oe UMA (émou dhot oL eneepyaotéc éyouy (oo ypbvo tpdofaone
otn uvhun) xowe NUMA (6nou xdie eneepyaothc drardétel T dixr| Tou tomuxy| uviurn ahhd uropel
VoL TPOOTIENSGEL Xau TG UVAUES S enelepyaotdy ue yeyahltepn xaduotépnon). To OpenMP
elvow 0 o Yvwoto API yia tétown cuotAuota. Ilapdtt n xowodyenotn wvAun Sleuxollver Ty

EMXOWVOVIR TWV ENEEERYUCTWY, UTOPEL VoL ATOTEAETEL GNUEID GUUPOENONS, EVE 1) ENEXTACYLOTNTA
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7.1.2 Ilpoxh¥oeig
€VOC TETOLOV CUCTHUATOS THPAUEVEL TEOXATON).

o To cuoTAPATA XATAVEUNUEVNS UVAUNG omoTehOUVTOL amd TOAAATAOUS xOuBoug, xoévag Ue
o) Tou uviun. H emxowvwvio yiveton géow dixtdou diacivieans xou YapaxTneio Tixd nopadely-
Kot TETOWWY Lo TNUATKY anoteholy ta MPP (Massively Parallel Processors) xou o1 cuctotyieg
unoloylotov (clusters), ot onolec nepthopfdvouy avedptntoug urtoloylotixols xéuPouc. H e-
Tuxovovio ETAE) TV BlEpYATLOY EVOS TUEIAANAOL TEOYEHUUATOS TOU EXTEAOVUVTOL OE Blapope-
TixoU¢ x6pPouc emttuyydvetan ouvitoe péow MPI (Message Passing Interface). To cuotAuata
HATOVEUNUEVNS UVAUNG TTEOGPEEOLY LYMAY EMEXTAGIUOTNTA, OV X0 ATOLTOUY SXTU®GY LYMAOY
ebpoug Lovne. Ou olyypovol unepumoloyio Tég cuvtng LioYetoly éva UBELWOLXG LOVTEND, GUY-
dudlovtag xowoyeNno TN UWVAUN ot xdle xOUBo xou xoToveunuévn uvhun wetol xouBwy, yia T
ueylotornoinon tne mopolhniiog.

7.1.2 IlpoxAfocig

H ouveyde auavouevn avdyxn yio uPnhotepeg amodooelc €yel YEVVAOEL TOAEC TEOXAACELS Yial To
oVyypovo HPC cuotiuarta [11]. Buyxexpwéva, ta poviépvo HPC cuotiuata elvon mhéov apxetd e-
TEPOYEVY, anotelolueva and apyttextovixég mou ouvdudlouy CPUs, GPUs, SwagopeTtixoie thmoug
wnuov (DRAM, SRAM), xadde xow FPGAs xou ASICs. ITapdhhnho, 1 porySoiar avdmtuin e Te-
xvntic Nonpoolvng odriynoe ot dnuovpyio e€edixevuévou hardware, émwg Al chips xou Neural
Processing Units (NPUs), eve 1 otodiomny| e€EMEN tov xBavtixdy enelepyoaotidv Yo amautrioel obvTo-
uot TNV evowudtwot| toug oto HPC cuostiyoata. Acdouévng tng TepOoYEVELNS AUTOY TWV CUCTUATOY,
TpoxONTEL ETioNG M) VYN VI VEES, ATAOTIONUEVES TIPOYPUUUATIO TIXES TpooeYYioels, dnwe To oneAPI

e Intel.

Mo dAAn yeydn npdxhnon eivon 1 evepyeioxy anodotixotnta. To HPC cuothpata xotovo-
AGVOLY TERUC TIEG TOCOTNTES EVERYELUS, OANS UOVO €VaL Uixpd UEQOS YENOULOTOLELTAL Yo TNV EXTEANEOT)
TV eVvToh®V. To peyolitepo Yépog ydveTon o€ BlappoEs xal TEOoBAcES UVHUNG, EWLXA OE CUC THUXTA
ue mohbmhoxeg tepopyiec uvAung [13]. Autd xodotd avoryxaio ) BEATIOON TWV UNYoVIoWUOY TROYRo-
HATIOUOU OOTE VoL BLATNEEITOL 1) TOTUXOTNTA TOV OEDOUEVLY AAAL XAl TNV EXTEAECT] TWY UTOAOYLOUWY oV
auTo ebvon duvartd ameudeiag oty pviun pe v teyxvixf Processing In Memory (PIM). Téloc, n otv-
VexTixoTNTR 08 opdhpata elivon xpiowr, xodng o clyyeovee HPC opyitextovinég nepthaufdvouy

TohhoUg xoufoug xou eivon TOAOTAOXES, ALEAVOVTAS TN CUYVOTNTA CPUAULTLY.

Yy noapovioa epyaocia, Yo emixevipwiolue ot Behtivon tng enidoong Twv eQUpUOY®Y XaL TOU GU-
othuatog péow cuvdporwoldyTons (co-scheduling) egopuoydv oe UTEPUTONOYIOTIXOUS Y-
Boug. BOa pehetooupe Yedddoug TEOBAEPNC TNS CUUTERLPORES TV EQUOUOY®Y Xat Vo aloAoyHooUUE
NV oLVOEOUOAOYN O WS oTeatNY! Beltiwone tng enidoorng, e€etdlovtac miavd trade-offs oe autod

70 1o cOvdeto Thalcto.
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7.2 YTrodopn xau Benchmarks

7.2 TYmnodowr, xauw Benchmarks

To nepduoto authg TNe epyaciag mpaypatomolinxay otov unepuroroyiot) ARIS tng GRNET S.A.
[4]. O ARIS eyxatactdinxe to 2015 xou nephopfdver 532 LTOAOYIOTIXOVC XOUPBOUC, 0PYAVLUEVOUS
oe dlupopetixd partitions. Aiodéter apyrtextoviny) x86-64, hettouvpyixd ovotnua Redhat/Centos 6.7
xou oL x6uPol tou cuvdéovtan péow dixtbou Infiniband FDR (56Gb/s) oe tomohoyio fat tree. Ot
¥enhoteg ouvddovtan péow SSH xou umofdihouv Tic epyaociec Toug otov SLURM Workload Manager.
[o tar melpdpotd wog, yenowonotjdnxay ol thin nodes, ye xdde xo6ufo va dardétel 500 sockets twv
10 muprvwv. Ou yetprioeic €yvay Tohamhéc gopég o dlaothata 10-15 Aemtodv, xou xpatidnxe 1

OLIUECOC TV AMOTEAECUATWY YO EAXYICTOTOMNGCT] TV oaXEAUWY TUDV.

O vunepunoroyiothc ARIS yenowonowel tov SLURM Workload Manager [5] yiot ) Suayelplon xou
TEOYPOUUATIONS TwY LToBAN¥EvTeY cpyaoidy. O SLURM xotavéuel mépouc oe YeHoTES Yo CUYXE-
XEWEVO YEOVIXO DIAOTNUA, EITE UE AMOXAELOTIXY EITE UE U1 AmMOXAEIC TIXY TEdoPaoT. MTo TEWAUUTA
auThg TN epyaoiag yenowwomoiinxe anoxhelcTixy npdcfact yia TV oxp3r uétenon tng enldoorng,
yoelc mopeuforéc and dhheg epyaoiec.

To SLURM Guoyeipileton wia oupd avotovic, TapaxohoVVel TNV EXTENECT] TWYV EQYUCLWV XAl TIC TEQUO-
tiler 6ty ohoxhnewdoly 1 dtav AMZet o tpoPBienduevoc and tov yefotn yedvos extéheons (wallclock
time). O x0plog daemon, ovépatt slurmetld Siayepileton To cvoTNUA, anoVnxeder ThAnpogoples, na-
poxohovdel TNV xotdotaon Ty xOuBuv xo tpoypouuatilel Tic epyaoieg. e xdde xo6ufo, o slurmd
daemon exxwvel, mapaxorovdel xan ohoxinenver Tic epyaociec. O slurmdbd Siayeiptleton Bdoeg dedo-

HEVWY UE TANPOPORIES TWV TOPWY oL UPYEL XUTAYPAPNS.

O ypnotec ahkniemdpoly pe o SLURM péow evtohov command line, 6mwe exelveg mou gaivovton

GTOV TOROXATL Thvoa:

Evtolq Eneirynon

srun unoBoln epyaciag oto choTnua

sbatch umofolf evéc oevopiou (script) mou unopel vo nepthopBaver Tohhég epyooieg
squeue AVUPORE TNE KATAOTACTS OAWY TWV EQYAUCLMY TOU CUCTHUATOS
scancel oaxVEWOT] TNG EXTENEOTNG LG Epyaciog

Iivaxag 7.1. Téooepis onuavtikég evtodés tov SLURM

O TEOYEUUUATIONOE OE ULol JEYLTEXTOVIXY| XATAVEUNUEVNS UVAUNG elvon o mepimhoxog amd 6Tl o€
CLUOTAUOTO XOWAS UVAUNG, xode amouteltan Wi diemapn avtoddayric unvupdtwy. To MPI (Message
Passing Interface) eivon 1 mo evpéwe yenowponowoluevn BiBhodixn yia tov oxond avtév. To MPI
TPoo@épeL Vo TUTOUC EToVLViae: onuelo-tpog-onueio (point-to-point) xa cLANOYLXY

(collective).

Ytnv onuelo-npog-onueio emxowvwvia, 800 diepyaoieg emxowvwvoly anculeiog YEow EVIOADY OTKC
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7.2 YTrodopn xau Benchmarks

MPI_Send xow MPI_Recv. Xtnv cuhhoyuxy| emxowvovia, 1 emxowvwvio uropel va eivon "Evag tpog
[Toaholg (m.y. MPI_Bcast, MPI Scatter), IloA\of ntpoc Evav (n.y. MPI _Gather, MPI Reduce) A
[Toihot wpoc TTodhoic (m.y. MPI_Alltoall, MPI__AllReduce, MPI__Allgather). Ot nopandve evtohéc
elvow blocking, dnAady| emioteépouy povo 6tav ol buffers emxowwviog unopodv va Eavaypnoluonoin-
Bolv pe aogdhreo. To MPI npoogépet enione non-blocking exdoyéc twv eviohdv (m.y. MPI_ Isend,
MPI Irecv), oi omoiec emoTeépouy auéons ohhd anattody ond ToV TEOYEUUATIOTY vor EAEYEEL TNV
ohoXMpWoT TNE ETXOVWVING TRV ETavaypnolonolost Ta dedopéva. Autég ol non-blocking Aettoup-

yieg emtpémouy emxdhudn emxowvmviog xow uToAoylopol, xadde xou aroguyr deadlocks.

Téhog, umdpyouv XoL EVIOAES GLYYEOVIOUOU, TOU ELGAYOUV YPOVO OVOHOVHE WOTE Vo UVTOVI{ oLV
Tic depyooiec (n.y. MPI_Barrier, MPI_Wait, MPI Waitall). ‘Aepyoc ypdvoc avopovic ewodrye-
Ton xon oo Oudpopec blocking evtohéc, epdoov to MPI avayxdleton vo mepluével Tn oTiyur| Tou xou
0 OTOCTOMENC XU O TUPUANTTNG ebvon €tool yior var deloyVel 1 emxowvwvia. Tétowwv eldmdy ovo-
HOVES UELOVOLY TOV SLIECLUO TORUAANMOUG %o ETNEEGLOUY 0EVNTIXE TNV XAWAXOOWOTNTO Xl TNV

emtdyuvon (speedup) tne eQappoOYNc.

Kotd v dieCoywyn twv nepaudtowy o autiv tny epyacia yenowonouinxay xvplne to NAS Par-
allel Benchmarks (NPB). Ta NAS Parallel Benchmarks [14] npoépyovtoan and egoppoyéc uno-
Moyotirc pevotoduvouxfic (CFD) xau yenowlomootvtan eupéne yia poviehonoinon enidoong xou
npocopoiwoelc HPC. Kde benchmark vnootnpilel diagpopetind yeyédn npofinudtwy, tou ovoudlo-

vtan xAdoeic. H ovopooia xdde MPI benchmark oxohoudel tn doun:
(6vopa). (kA&om). (ap L BSOS _BLEPYao LGV)

[o mopddetypa, to mg.E.128 avtiotowyel oto benchmark MG, pe xAdorn E, nou extedelton pe 128
oepyaoieg. H couita NPB mepihoufdvel oxte benchmarks, ex twv omolwv névte elvon unoloyiotixol
nuphvee (EP, MG, CG, FT, IS) xou tpla eivan Pevdo-epapuoyéc (LU, SP, BT).

Emmiéoyv, oe auth Ty gpyacia yenowonownxay xou benchmarks and tn couvita SPEChpc 2021,
1 omolar xahOTTEL Eva EVEY PACUN ETUOTNUOVIXGY TEDIWY %ol VAL AVTITPOCWTEVTIXY| TWV CUYYLOVWY
HPC goptiwv epyaciag. ‘Onwg xou T NAS benchmarks, étot xan T SPEC benchmarks unootneilouv
otapopeTnd ueyEedn goptiou epyaciac: tiny, small, medium xou large. H ovopacio xdde benchmark

axoroudel Tn dour:
{avoryvopLoTikd).(dvopa). (ueyedog). (ap L Bpdc_dLepyao Ldv)

To avayvopiotind ebvan €vag povadixdg apriude yia xdde benchmark, pe npddepa mou dnhwvel To
péyedoc tou goptiou (5 yi tiny, 6 yur small, 7 yio medium xou 8 vy large). T mopdderyya,
10 619.clvleaf s.1024 avagépeton oto benchmark clvleaf, ye wixpd péyedoc goptiouv (small), mou

exteleiton ye 1024 diepyaotieq.
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7 Q
{

.3 Profiling

Télog, Yo TV elpeot Tou Yéylotou Yewpntixol bandwidth uvAung Tou xde xéufou Tou unepuno-
roywoti ARIS adonoidnxe to STREAM benchmark [15], to onolo petpdel tov ypdvo extéheonc
TECGEQPMY UTOAOYLO TIXWY TURHVKY TOU EXTEAOUY BLOPORETIXES TPAEELS TAVW OF UEYSAOUS TUVOXES TTOU
dev ywedve otnv cache tou unyaviuatog. I tov ARIS, 1o péyioto Yewpntixd bandwidth puviung
npoéxue ioo e 69177.3 MB/s yio tov tuphva Scale.

7.3 Profiling

To profiling yenowomnoieiton ye oxond v UETENOT TNG CLUYVOTNTAC EUPAVIONG CUYXEXPWEVLY YE-
YOVOTWV (.. EXTEAEST) MAC CUVAPTNONG, EVOC Bedyou ¥ Mo YeouuAS XMOIXa) 1 TNV XaTory oy
HETEXOY TOU GUCTARATOS (Y. OUVOAXOC apldudc EXTEAECUEVODY EVIOADY, aotoyiec cache) xotd
TNV EXTEAEDT] EVOC TROYEGUUATOC. AUTH 1 Tey VXY elvon Wialtepa yeriown, xadne Tapéyel TOAITIIES
TANEOQOpleg YioL TN CUUTERLPORA EVOC TpoYEdUUaTog xou Bondd otn BeAtioTonolnon Tou xMoLxa xou

TNV avdAuoT TN AmOB0CTC TOL.

To profiling apxetéc gopéc npayuatomoieiton offline, dnhady) o anoteréopata TV PETPHOEDY TOU
elvon Sodéoudo YeTd amd Wiar TANEYN EXTEAEOT) TOU TEOYQEIUUATOS. XE TEPINTOOES EVEECTE TUAVHVY
onuelwy mou aratoly BeATioTonolnon, ahhd xaL OF TMEQITTWOELS OTOU ATOUTOVOVIOL TANEOPOEIES Yial
€voL TEOYPOUA TTOU TTEOXELTHL VoL TEEEEL TOMES POpEg (T.y. TEOBAEYN UETEWPONOYIXGDY BEDOUEVKVY UE
xetion HPC), wa tétola npooéyyion eivon emapxric. Qotoéo0, undpyouv xat apxetd oevdpla yeRons tou
profiling mou To anotehéopata 1 yior EXTUNOT AUTGY AMUTETOL EVOOW 1) EPAUPUOYT| axoua TeEyeL. Xo-
paxTNELo TS TETOLO TaEEBELY A AmOTEAOUY To cuo THUaTo duvauixrc petayiodttione (JIT compilers).
Q¢ ex ToUTOU, €xouv avarntuydel xou cuctruata online profiling, mou ye dedouéves T ueTEVOELS TOUC
¢ €va oLYXEXEWEVO oNpEelo TNG EXTEAECTC TOL TEOYPAUUATOS TEOBAETOUY TNV UETENELTU CUUTERLPORA
Tou. Y& xde meplntwor), ol profilers mpénel var Yeplvoly v uny €lodyouy TOAAS TEPLIGCOTEQA YEO-
Va1 ywewxd overheads otnv exTéAeoT) TV TEOYPUUUATWY, XATL TOU CUY VY ETUTUYYAVETAUL UE ¥E1|ON

emhextixol (selective) profiling ond tov mpoypaupotio ™.

O profilers ypnowomnololv didpopeg uetddoUC Yol TN GUANOYT) TANEOPORLOY CYETIXG UE TNV EXTEAEDT)
woc epapuoyhc. Ot o ddedoyéves elvon oL e€hc:

o Instrumentation: Anoutel tpomonoinon tTou Tyolou B eXTEAECLUOL HWBXO WGTE VoL TEOC Te-
Yolv eviolég mou GUAAEYOLY Bedouéva xatd TNy extérect). Autd umopel vo Yivel autopota oand
Tov compiler, péow linking pe pre-instrumented BiAiodrixec ¥ yelpoxivita and Tov Tpoyeo-
wotiot [16]. Av xou mpoo@épet hentopepr dedopéva, unopel va €xel onpovtixd overhead, eidixd

oV EPUPUOCTEL EXTEVAC Xl OYL ETUAEXTIXAL.

o Sampling: Yuléyel delyporta OEBOUEVHY OE TOXTA YPOVIXd SloTHUATA BECw interrupt routines
TOU AELTOVEYIXOU cuoTAUNTOS [17]. Av xou dev Topéyel Thien exdvo 6Twe To instrumentation,

€yeL moAD wxpdTepo overhead xan elvon yprowwo yio online profiling.
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7.3.1 perf

o Hardware Performance Counters: ITpdxeiton yio e8ixol¢ xatoymentés eviog tou enelep-
Yoot mou petpolv hardware/software events. Ilpoog@épouv younhéd overhead agol toug dua-
xepileton amevdelac o enelepyaoTHS XL Oyt TO AELTOLEYIXG CUCTNUA Xol BEV AmoUToVY ETUTAEOV
LVAXS ool cuuneptAaUBavovTon EVTOS TWV TEPLOCOTERWY UOVTEPVKY emedepyaotiy. (2otdoo,
0EBOUEVOL TOU UxEoV TARIOUC TOUG, ETUTEETOLY TNV TAUTOY POV UETENOT) XpoL aptduol yeyo-
VOTwYV. Xp1NOLLOTOUVTOL EUREWS YLAL OVEAUCT] AOB0CTC EPUQUOYWY, AAAL xat Ot TOUElC OTwg

1 acpdheto custnpdtwy [18] [19].

ITapétt to profiling nopéyel ypriowes TANpooples, BV AMOTUTWVEL YPOVIXES OYECELS HETOEY YEYO-
VOTWV, XATL ONUAVTIXO YLo TURAAANAES EPUPUOYES. e QUTEC TIC TERLTTMOELS, TO XATAAANAO elvon
To tracing, To omolo TEOCYEREL AETTOUERT] YPOVOROYIXT] XATAYQRUPY| TWV YEYOVOTWY, UE XOOTOC TN
onuovpyia peyarbtepou overhead xou TV avdyxr yior UeYEAn ywenTxotnTo ano¥ixeuong ylo To Oe-
douéva YeTpoewy Tou mpoxunTovy. Emmiéov, undpyel xou 1 duvatdtnto tadnTixol profiling pyéow
¢ TapaxohoiNone ohéxAnEou Tou GUCTAUNTOS OTou exTeAe(Ton Wia @apuoyy). Me uia tétola mpo-
oéyyion, to profiling 6ev napeuPoivel xaddhou oty extéreon Tne e@apuoY g ahhd €dyel xou Ay6TeRO

oELOTUO TOL GUULTERACUALTOL.

Ye auth v epyaocia, to profiling yenowonoleiton yior TN YEVIXY XOTIYORLOTOMNGT] TWV TELQOUATIXDV
EQUPUOY WV, YWRIE TNV avdyxn eEolEETIXd AETTOUEPOUS AVAAUCTIC OTWE AUTHE TTou amauteltan Yo BeA-

TIOTOTO(NON XWOIXA. XUVET®S, €0 TILOUYE OE:

« Hardware Performance Counters: Metpdvtar péow tou gpyareiov perf tou Linux, Bon-

VOVTAG 0TOV BloywploUd TV EPUpUOY®OY o compute-intensive 1} memory-intensive.

o YtatioTnixd Emuxowwviag: Ye oevipia HPC anoutelton eniong profiling tng neayuatonoto-
OpevNne emovwviag Hetald tov diepyoaotwy. To anapaitnto dedouéva GUNAEYOVTOUL UECW TOU Ep-
yohelou mpiP, eMTEETOVTOC TNV VoY VEOELOT EQUEUOY OV UE EVTovn exotvmvia (communication-

intensive) xou 0 Séxpiomn petadd Slapope TV LoTBwY Emixovwviog.

7.3.1 perf

To perf [20] elvon wa eviold tou Linux nou yenowonoweiton yio lightweight profiling xou Bac{Zetou
otn oenagn perf events. ‘Otav yiveton profiling petpixov anddoong ue to perf, dev amouteitan re-
compilation 7 re-linking tou exteréoioun, xadwg 1 eviohy| perf unopel amhd va tonodetndel urpootd
and TO EXTEAEOWO Xl OAEC OL UETPNOEIC TEUYHATOTOWOLVTOL xotd TNV extéheor. H mo onuavtu
evtoAt mou oyetileton pe to perf etvon To perf stat. Auty n evioly| yenoipomnoleital yia var EXTUTOVEL
otnyv standard output, Yetd TNV EXTEAEOT] EVOC TEOYEAUHUATOS, TOUS GUVOAXOUS apduols epgavioe-
v v xadopwouévoy PMU (Performance Monitoring Unit) yeyovétwv. To yeyovoto ulxod tng
PMU, énwe actoylec xpuprc uvAune (cache misses), FLOPS ¥ evtokéc @bptwone (load instruc-
tions), avtiotouyilovton and to hoytowxd oe performance counters (rou efvor Quotxol xatoywentéce,

OTWS TEPLY PAPTXE TEONYOLUEVWS) WOTE VoL uropolv va ntapoaxohovdolvtan. H evtohd perf stat uropet
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7.3.2 mpiP

va dtatunwdel pe 800 BLapopETIXOUE TEOTOUG: YENOWOTOLOVTIS €Val GUVORO TEOXAVORIOUEVLY YEYO-
VOTLV 1) Yenothonotwvtas dexaeadixols xwdxols. Emmiéoy, Eextvidvtac and tn UxpodpyLTEXTOVIXY
Intel Nehalem, ou eneZepyaotéc dpyoav vo vnootneilouv offcore events [21]. Autd to yeyovéta

ToEaxohoLolY TIg AAANAETUORACELC UVAUNS oL GUPBAlVOUY EXTOC TOU TUET VAL

perf stat -e cycles,instructions,cache-misses [executable details]

perf stat -e rla8 [executable details]

‘Onweg avagépdnxe mponyoupéveg, xde CPU éyel neplopiopévo apriud performance counters. (g
anotéheopa, av o yprotne xadopioel otnv eviohy| perf stat mepioodtepa YeYOovoTaL LAXXOU amd TOLC
dlodéotpous yetentés, o muphvag Vo mpénel va yenowonotfoet tohumhedior (multiplexing). Auto
EMTEETEL OTOV TUEYVAL VoL EVAAAGGOEL Yeyovota péoa xat €0 and toug performance counters, mou
oNuaiveL OTL BEV YETROVTAL OAAL TAL YEYOVOTA GUVEYMOS X))’ OAN T Bldpxeld TNG EXTEAEONC. LTO TENOC
™Ne exTéAeane, To perf xAoxmvel To amoTeAéouaTta Yiol Xdde YEYOVOC (OTE VoL TUREYEL ULol EXTIUNOT
TWV CUVOMXOY UETEHOEWY, oav va elyay yenotuoroiniel ol performance counters xad’ 6An T Sudpxeta
EXTEANEONC TNG EQPAPUOYAC, VLot x&le €va amd To Yetpolueva Yeyovota. Emmiéov, undpyouv xou dhheg
eviolég Tou perf mou yenowomowolvion evgénwe. Ol o ONUAVTIXES TEPLYPAPOVTOL GUVOTTIXA GTOV
ITivoneo 7.2.

EvtoAn Eneivynon

perf record Extelel Sevypatorndio Booioyévn oe diaxonéc (interrupt-
based sampling) yia Ty xatorypapR YEYOVOTOV TEOG UETO-
YeEVESTERT, AVAALGT) xou Tal amodnxeveL o€ Buadxd apyeio

perf report AwaPBdler To apyeio mou mapdyeTton and TNy eviohy| perf record
%ol ONULOVEYEL Eval CUVOTTIXG TPOYIA EXTENEOT

perf annotate | Metpdel eugavioeic yeyovotwy avd ypouun mnyolou xmduxa 1
xOWa assembly

perf top [Topovoidlel LovTovd T UETRPNOELS TV YEYOVOTWY, TUPOUOLL
ue to gpyaieio top tou Linux

ITivaxag 7.2. Téooepis onuavtiké§ evtoAés tov perf

7.3.2 mpiP

To mpiP elvou éva ehappl epyoleio yio profiling emxowvwviag oe MPI egappoyéc [22]. Xenowwonoteito
Yio T GUAAOYT| OTUTIOTIXWY TANROPORL®Y OYETIXA UE TiC xhoeic MPI, o&ionoldvtag 1 Sienagr) PMPI
OOTE Vo xatarypdpet TOTE Eexvd xou TOTE ohoxAnpveTon wa eviolt| [8]. Trootneilel té6oo link-time
600 xou run-time instrumentation, ywpic vo amantelton enavoeTayAOTTION NG e@apuoync. ‘Omwg
xa Ao epyaelor profiling mou avapépdnxay mponyoupévne, emtpénet enione to emhextxd profiling

HOVO OE CUYXEXQUEVA, TEOXAYOPICUEVA OO TOV YEHOTY), TUNUATA TNG EQUPUOYTS.
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7.4 Metpixéc xau eldn e@appoy v

7.4 Metpixég %o €ldn EQAOUOY OV

[Twavd schedules 1) co-schedules oe HPC xou ot ahydprdyol mou yenolomololvTal Yio TNV TogoymYn
Touc Yo pénel va aZlohoyolvTon BAoel cLYXEXPWEVKY LeTEXOY. ‘Onne tovileton oto [23], 1 ebpeon
EVOC XATAAANAOU GUVOAOU PETEIXMDYV AELOAOYNONS YLoL AUTOV TOV 6XOTo Bev elvar amhy undveon. E-
TUTAEOV, 1) AVAYXT) XATNYORLOTOIMONG EPUOUOYHY MOTE Vol TERLYPAPEL XANDTERA 1) CUUTEQLPORE TOUG

avaBELXVOEL TN ONUACTO TNG AVAY VRLOTS BLOXELTOY TUTWY EPUQUOYOY.

Ytov yweo tou HPC, xde petpuxn dev €xetl tnv (o onuacio yia 6houg toug stakeholders. Ou Bacixol
stakeholders elvou ot Sloyelplotéc CUGTAUATOS XL OL YEHOTES Tou uToBdihouy epyacies. Tlpogavag, ot
OLOLYELPLOTES EVOLAPEPOVTAL TIEPLOCOTERO YLOL TN} CUVOALXT ETLBOCT X0l ATOBOTIXOTNTO TOU CUCTHUATOC,
oe avtideorn ye toug yproTeg, oL onolol YEAOLY oL BIxEC TOUC gpYaoiec Vo oAoxAnpwvovtal 660 To
duVITOV vwpeltepa. Auty) 1 avtideon odnyel cuyvd oe mpofAfuata ToAuxpLTnelXC BEATioTOTOMONC
XAUTE TOV OYEDLAOUS EVHG ahYORIDUOL YEOVOTROYEUUUATIONOU, xadme Teénel va hauBdvouue Lo
TO00 TNV IXAVOTOINOT TOU CLUCTAUATOG OGO XA TV XeNoTtwyv. Ol Bacixéc yeTpéc mou

Yol YENOLWOTOACOUUE OE aUTH TNV gpyoaoia elvor oL e€ng:

o Makespan : Avagépeton 0TOV GUVOMXO YpOVO TOU OMOLTELTAL YO TNV OAOXATPWOT| EVOS GU-
VOAOU £pYUOLWY, EEXWVOVTAG Om6 TNV UTOBOAY TN Te®TNG £pYaciag €S TNV OAOXANpWoN NG
tehevtaiog. Amotehel €vdeln tou throughput tou supercomputer xou apopd amtoxAelcxd Toug

OLALYELPLO TEC CUC THUATOC.

o Utilization : Avagépeton 610 060616 TOU CUCTHUATOC Tou PBploxeton oe YERon xatd N
didpxela evie mepduotos. Qot600, 6nwe avapépetan oto [23], npénel vo elpoote TpocEXTXOL
OOTE Vo UETPdUE povo To steady-state utilization 6tav yenowwomoolue auTAY TN YETEXN Yo
v o€loloynon evdg odyopituou. H younkn yeron Tou cUCTAUATOC Elvol AVATOPEUXTN XA
g pdoelc apyLxomoinong XL AdEIdoUATOC TOU CUCTHUATOS, Xadwe autd otodlaxd yewlel xou
adedlet. Emniéoy, o HPC cuotruata 6ev ypnoiponolodvia 6To énaxpeo xad’ OArn 1 didpxeia
e Nuépac. ‘Otay 1 yehon Tou cucTthuatog etvan yauniy (.y. xotd T didpxeto Tne voyToC), auTh
N YeTewen dev ebvan a€lomotn Yot TNV agloAdynor miovey ahyoplduwy YeovoTpoYpauUaTioRoY.
‘Onwe xou to makespan, n yeteixy| utilization agopd Ty anddoon Tou GUCTALATOS XaL EVOLAPEREL

HOVO TOUC BlOyYELPLOTEC.

o Turnaround time : Avogépetar 670 ddpoloua TOL YEOVOL AVOHOVHE X0l TOU YEOVOU EXTENECTG
wog ouyxexpévng epyootac. §2¢ ex To0TOU, Elvol ULol UETELXY| TTOL apopd ToV XY OTY Tou €YEL

umofdhel TNy epyacia 6To GUGTNUA.

« Job Speedup/Slowdown : X éva oevdpio co-scheduling, 6tav dlo epyaociec cuvuTdpyouy
oTov (B0 x6uPo, ol ypovol extéleonic Toug dlapépouy and auTolg Tou Vo elyav av exTEAOOVTOY

uepovmuéva (compact mode). e outé to mhaiclo, n emtdyuvon (speedup) wac eqoproyic
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7.4 Metpixéc xau eldn e@appoy v

6’ 4 4 4 .
LVETAL ATTO TOV €ET]C TUTO!

Compact Execution Time

JobSpeedup =
obopescup Co-located Execution Time

Av 1ty tou JobSpeedup eivar pixpdtepn tou 1, téte Aéue OTL 1) eappoyr) tapouctdlet slow-
down 6tay cuvuTdEYEL UE Evay cuyxexpEVo Yeltova. Xe éva oevdplo scheduling, to slowdown
unopel vor TEPLAOUBAVEL XL TOV YEOVO OVOOVAS WIS EQUPUOYNS OTNY 0LEd. 2TO TAXICLO TOU
co-scheduling, npog 1o nopdv ectidlovye AmoXAEloTIXE 0T PETAHBOAY TOU YEOVOU EXTEAECTG
woe epopuoyic yior Tov unohoyopd tou slowdown. H petpuxry Job Speedup/Slowdown éyet
onuacion Yl TNY IXavVoTonoy Tou ¥ehoTn, ohAd BiVEL xou pio EOVE XUTd TOGO 0 oAYoeLIUOg

XPOVOTPOY LOUUATIONOU oG oELOTIOLEl CWO T TI EPAUPUOYES TNG 0LRAE OVOHOVTG.

Yy nepintwon peteixdy énwe to turnaround time xou to speedup/slowdown, undpyouv xou otod-
WOUEVES eXBOYEC TOUC TOU, EXTOC OmO TN Ypovixy| BldoTaoy), AoufBdvouy LToYN xaL Tov YWEo Tou

xortahaBaver puor epopuoyn [23].

Emmiéov, undpyouv teeig PBaocixéc xatnyopicc MPI egapuoymy oe éva nepi3diiov HPC: compute-
bound egapuoyég, mou exteroly xuplng utohoyilopoic xou agomooly i CPU twy x6ufwy, memory-
bound egopuoyéc, mou exteholy xupltC TEOCBACES GTN UVAUN XU TwV OTolwY 0 PAcIXOS TERLOPL-
O TXOC ToEdYOVTAS EVoL OL TOPOL UVAUNG, xou communication-bound egopuoyéc, Tou agLepdvouy
TOV TEELOCOTERO Ypovo Toug ot xhoelg MPL. Ye éva nepi3dAlov xowodyenotng uviung, oL compute-
bound egopuoyéc xhpaxmvouy xahd (scalable) dtav mpootidetan neplocdtepn Topaliniio uéow emi-
miéov muprvwy CPU. Avtideta, or memory-bound eqopuoyéc €youv neploptopévn xAudxmon Aoy
TWY TETEPUOUEVODV TTOpwY Uviune. Autd amodewvieton enione oto [24] ywa tnv mepintwon tou EP
(evéc évtova compute-bound benchmark) xou tou MG (evéc évtova memory-bound benchmark)

am6 Tt coulta NAS.

Ye éva mepBdhhov co-scheduling, pio epoppoyr cuvAtne xatavéuetar o BitAdoto aptdud xouPwy oe
OYEOT UE TNV OMOUOVOUEVT EXTENEDT], athhd xortahopBdvel Toug uoole tuptiveg ot xdie xoufo (spread
mode). 'Etol, 0 cuvolixdc aptiuds TUpHVLY TOU YENOWOTOLOUVTOL YIo TNV EXTEAECT) TNG EQUOUOY NS
Topopével (Blog pe T anouovwpévn extéheon (compact mode), tpdypo tou onuaivel 6Tt oL compute-
bound egapuoyéc miavotata dev Yo Pudcouv obte speedup olte slowdown oe auTéS Tic cUVITXES.
Qot6c0, o. memory-bound egopuoyéc umopolLV vo BEATIOC0UY BRACTIXd TNV AToGB00Y| TOUS, XK
N xaTovour oe meplocOTEEOUS xOufoug eEaopolilel TEPLOGOTEPOUS TOPOUS UvAUNS xat LPNAGTERO
memory bandwidth. Ou communication-bound egapuoyéc unopel va eugavicouv mo ampdBienty
CUUTERLPOEE 6TV e@apuoleTon To Tapandve oyfua co-scheduling. Autd ouyfoalvel eneldy|, agpevog,
ol emumhéov xoufol mapéyouy emmiéov memory buffers xou G0pec duxtbou, ahAd agetépou, elodyouy

emmAéov avdyxn Yo emixovmvio UETHED TV xawvolpYlwy xouBwy. ‘Onwe galvetal oTr cuVEYELL, OUWC,
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7.5 Iopadooiaxr; Xpovodpopoldynon

ol communication-bound eqopuoyéc cuviidng tagovaidlouy speedups 6to spread mode oe cOYxpLON

HE TNV EXTENEST| TOoug ot compact mode.

7.5 TIlapadoociaxr) XpovodpopohoY o

[Topadootaxd, ol TOpoL xaTavEwovtol oTiC gpyaciec uéow evoe batch scheduler, o onolog elvan une-
OOLVOC YIoL TOV YPOVOTROYPOUUATIONO TWV ERYAOIOY 0Toug Xx6uBouc ue dixowo tpémo [25]. Emniéov,
dlayelpiletar Ty mpooPact oe SapopeTinég oUpEc evog utepunoroyloTh. o var urmopel vor howfBdvel
ouvieTeg anogdoelc ypovompoypauuatiopol, o batch scheduler ypewdleton var Siordétel wa extiunon
e Sudpxetag extéleone xde unofaihouevne epyaociog. o autdv Tov Adyo, ol yerioteg xaholvto
VO TOREYOLY [LoL EXTIUNGCT] TOU YpOVoU EXTEAECTC TNE Epyasiag Toug, 1 ontola avapépeTtal oLVHTWS WG
wallclock. Aebopévng autic e extiunong 1 yiog tponyuévne neodAedng tou ypedvou extéheong xdie
epyaotag, o batch scheduler yenowwonoiel cuyxexpWEVES EUPETIXES CUVIRTHOELS, OTWS VIO TUEADELY AL
First Come First Served (FCFS) ¥ Shortest Job/Area First (SJF/SAF), dote va dpopohoyrioet tic
gpyaoiec oto cVotnua. Ilpdbogatec mpooeyYloelc EVOWUATOVOUY ETONG TEYVIXES UNYovVIXTS Uddnong

YLOL TOV YPOVOTROYQROUUITIOUO TWYV ELCERYOUEVLY EQYATLOV.

To mo onpavtind TeoBAnua mou avTETWTILETUL XAUTA TN YENHOT| TAPABOCLAXDY EVRPETIXWY YLl YPOVO-
TEOYPOUATIONO elval 1) TI VY] UTOYENOLOTOMOT) TOU GUC THUATOS, XS 1) EpYaoia Ue TN UEYOADTER
TEOTEPAULOTNTA OE Wlol DEDOUEVT YpoVixT| Teplodo EVOEYETAL Vo Uny unopel vo exteleotel dueca AOYw
EMeuhng drardéopwy mépwy xan va ypeetao el va teplével €wg 6tou eheuiepwioly népot. H pédodocg
TIOL YENOWOTOLE(TOL GTNY TEAEN YIol TNV AVTLUETAOTLOT, AUTOL TOou TERLOPLoMOUL elvan 1) yeron Tou back-
filling, to onolo ctoyelel vo xaALeL oplouéva amd TaL XEVE TTOU SNULOVEYOUVTOL GTO YPOVOTIROY P
UE epYaoiec YoUNAOTERNS TEOTEPAULOTNTAS, YWEIC Vo XU TERHOEL TNV EXTEAECT] TWV ERYACLOV LT~
Notepng mpotepandtnTag. To Myfua 7.1 ontixormoiel tny Baocuxr apyr Aettovpylag tou backfilling. Ot
o Paowéc xatnyoplec backfilling eivon or e€¥c [26]:

o Conservative Backfill : M epyacia mou ywedel ota dnuioveyniévta xevd petaxtvelton Tpog
TaL EUTPOC OTNY 0UREA HOVOo €dv dev xarduoTtepel xoyrior amd Tig epyacieg LPNAdTEENC TPOTEPU-

OTNTOC OTNV 0LEAL.

o Aggressive (EASY) Backfill : M epyaoio mou ywedel oo dnuiovpyniévto xevd yetoxi-
velTol Tpog ToL EUTEOS GTNY 0UEd Hovo edv dev xaduotepel TNy epyacio mou PBeloxeton owth T
oTYR OTNV XEPANA TNG oveds. e aviideon pe to conservative backfill, auth 1 ey VXY

EVOEYETAL VO ETNEEUCEL T1) OLXAOCUVT] OTOV YPOVOTROYPUUUATIOUO.

7.6 2UVOPOWUOANOYTOT KO TEYVIXES

H ouvBpopoldynon epappoydv (co-scheduling) etvon pior teyvixs) mou éyel we otdyo ™y adénon e

euduanddoong tou cuothpatog. H extéheon wag epyociac oe spread mode odnyel Tl neplocdTepES

Diploma Thesis m



7.6 2uUVOpOPONOYNOT AL TEYVLXEC

FIFO + Backfilling

L2 |

Processors

Progress in Time

EyxAue 7.1. Onuxonoinon wov backfilling [42]

popéc oe auinuévn anddoon. Xtnv epyacia [1], ou ocuyypagelc amodidouy autd TO PUVOUEVO GTO
yeyovog otL ol diepyaoieg tne (Blag MPI epyoacioc extehody oyeddv mavouoldTUTES ERYAOIES %O, WS
ex ToUTOV, TEooTaolV Vo €xouy Tautdypovn TedcPacT oToug (Bloug topous. Melbvovtag Tov apriud
TWV OLEPYAOLOY NS (BLog epyaoiog o Evay CUYXEXPUEVO XOUBO, UELOVETAL O OVTOLYWVICUOS YLoL TOUS
ev Moyw mopoug (m.y. caches, ebpoc Lodvne uvAuneg, network ports), evedd to mpotewduevo oyrua
unopet enlong vo emwpeniel and toug emmAéov ndpoug Yoo TNV alénon tng anddoone. 2ot600, TO
amh6 spread mode cuvendyetal 6Tt oL ool TupHveg ot xdie xOUBo TAPAUEVOLUY AVEVERYOL, 00N YWVTIC
€T0L OE ONUAVTIXY UTOYeNoLonoinor Tou cuothuatog. EmnAcoy, 1 extéheon wag epyacioac o spread
mode cuvemdyetar LPNAOTEPO XGGTOC Yl TOUS Yehotes, xadwe ot mepBdihovia HPC, ou yprotec
YeeEWvovTaL BAcEL TV 0pdY YeRoNS TWY TURHVLY Tou xatovakovouy (core hours). Q¢ anotéheoya,
auTh 1 Asltovpyla yenouwlomolelton xuplwg o xoutaotdoelc urgent computing, émou umdpyel dueon

avdyxn yior aUENUEVT amddoa.

o v xodnuepwvy) yeron oe production cUCTAUATA, TA TEOTEWVOUEVO CYAUATA CUVOLOUOAOYNONG
(co-scheduling) otnv épeuva nephopPdvouy v totodétnon 800 1 TEplocoTépwY ERYAOLOY 6TOV (Blo
x6ufo (co-location). To mo diadedouévo xau anodotixbtepo oy olupnva ye to [1] ovoudletar job
striping. Ac vnodéooupe 6t xdle xéuBog oe évav unepunoloyioTy| TepLEyel 0o sockets xou xdie
socket mepiéyel 8 muprvee (olvolo 16 muphveg avd x6ufo). Xenowomouwdvtag 1o oyfua job striping, ot
wool tuprveg xdie socket (otnv mepintwon woc téooepic) Yo avatedolv otny npdTn epyooio, eved ol
unéloinol piool Yo avatedolv otn dedtepn epyaoia. O Iivaxag 7.3 meprypdpel Toug mpoavapeplévteg
TeoémOUE avdieong mopwy Yo wioe MPT epyacioa mou yenowonoiel 16 dicpyaoleg xou extereitan oto

Tpoavapepléy cUOTNUA.  XTN CUVEYELX, TO LyNAUo 7.2 TUPEYEL Uil OTTIXOTOMNOT TWY TEWOY TEOTWY

avdeong.
Tebénoc avédeons A’nowtoupevou X}pncnp.onomc'q ITupAvewy  avd
xoufor xoufo
Compact 1 1(’3 Tuphives (yenowonotolvtar GAoL oL Tu-
erives)
Spread 2 8 muprvee (8 muprves avevepyol)
Job Striping 5 8 muprvec (oL \,m,é)\omm Xpr}ctponow()vrw
oo dhhn epyaoio)

ITivaxag 7.3. YUykpion twv tpotwy avdideong népwy

Diploma Thesis m



7.6 XUVOPOUOAOYNON XU TEYVLXEC

1T o[ o
oo onlE o_|o
(M ol o
anjoniil onl o o

compact spread striped

EyxApo 7.2. Ornuikonoinon twr tpidy tpénwy avdleong népwy [1]

To job striping dev eivon 1 wovadixn e@apudoiun npocéyyion cuv-tonovdétnong. Mio dAAN tpocéyyion
elvon 1 exydpnomn evoc ohdxhnpou socket oe xdde epyooio evide evée xépPou (socket-exclusive
avddeon). To xbpo Theovéxtnuo tne job striping eivon dtt, exywpdvtog etepoyeveic diepyooieg
oo (Blo socket, yewdvoupe tov avtaywvioud otny Last-Level Cache (LLC) tou ouyxexpyévou socket
oe olyxplon Ue v mpoceyylon socket-exclusive, émou moAamAég mapduoleg dlepyasieg aoxoUY Ta-
popoteg anoutnoelg otnv LLC. 261600, ol diepyaocieg and 1o npwto socket Yo mpénel vo emxovwvoiy
ue Oepyaoiec tng Bl epyaciac and To devtepo socket, dnuouEYOVTAC €TOL Vo EMTAEOY XOGTOC
emxoveviag, To onolo amogelyeton TNV TEOcEYYLoT socket-exclusive. Xuvemde, dnuiovpyeitan éva
trade-off yetagd touv avtaywvicpol otnv LLC xau 610 €0pog Lodvng pvAung, xodog xan ot Yoex)
TOTUXOTNTA TOU LUAOU, o 1 XATAAANAT Teocéyyior e€opTdton omd To exdotote clotnua. [a ta
nelpdpota mou delydnoav oe auth TNV gpyacia, yenoihonodnxe 1 npocéyyion job striping. Ou
communication-bound egopuoyéc enlong enwgelobvon and TN cuv-tonoVETnom, epoOcoV dlardETouy
dropopeTind emixovewviond potiBa [8]. Aedouévou otu umdpyet peydhn mdavdtnta d0o dlapopeTInég

€pYOIEC VoL £YOUV BLOPORETIXA EMIXOWVMVIXE LOoTIBa, *dTL TéTolo elvan e@uxTo.

To co-scheduling €yet anoderydei 611 00Myel o8 GUVORIXY| Beltiwon Tou makespan evog Guvolou eqop-
HOYOV xodd¢ xou oe speedups Yo TNV TAELOVOTNTA TV TOTWY EYIOUOYHY TOU CUUUETEYOLY. {26T600,
wor ouyxexpévn pedodoloyla 1 alyoprduog yio Tnv ebpeon Tou Bértiotou co-schedule dedopévou e-
VOC CUYXEXPULEVOU CUVONOU EQUPUOYMV TOPAUUEVEL Eva avoly T TedBinua. Xto [27], o cuyypogpelc
anédelav 6tL 1 ebdpean tou Béhtiotou co-schedule oe éva clotnua ye teploadTepoUg amd 500 TUEHVES
avd chip eivon éva NP-complete mpofBinuo. ‘Alkec yehéteg €youv emixevipwlel oTny AoLUUTTOTIXN
mpocéyylon tou Béltiotou co-schedule. e xdlde neplntwom, oplouéves epyaoieg avamdpeuxto Yo
emPBpaduviolv, yeyovog mou dnuovpyel éva {tnua dxawootvne. Autd odnyel oto mpoavapepdéy
TEOBANua BeATioToNOINONG TOAATAMY XELTNEIWY, OTOU TEETEL TUUTOYEOVA VO OLATNEOVUE LXAVOTIOL-
NUEVOUS 1660 To GOOTNUA OG0 XL TOV YEHOTN OCOV APOEd Tr CUVOALXY AmOBOCT XaL TNV anddooT

xde epyooiag Eeywpiotd. o var avamtdZoupe évay e€ehyuévo ahyoprduo Aidne anogdoewy yio To
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7.6.1 Tag-based povtéra

co-scheduling twv epyaoudy, o onolog haufBdver unddn 1660 TNV AMdBOCY TOL GUCTAULATOE OGO XAl
™V xavornoinon tou yenot, avti va Paciloéuyacte o Tuyala cUVBEOPONGYNOT), elvon amopaitnTo Vo
XUTOUVOOOUUE T GUYXEXPUUIEVA YORUXTNPLO TIXA TWV EQUPUOYWY OTO GOVOAO EQUQUOYOV Uac. Xw-
etloupe Tic uedddoue mou Unopolv va a&toroinoly Tpog AUTOY TOV oXoTd GE B0 EVEEIEC XATNYOpIES:

tag-based povtéha xau pairwise yovtéia.

7.6.1 Tag-based povtéla

Ta tag-based poviéha cToyelOUV OTNV AVEXTNOT EVOS QUTOVOUOU YAURAXTNELOUOV Yol OAES TG EQUQ-
HoYéc 010 GUVORO EQuPUOYWY 0 ontolog apyoTepa Yo a&lonotniel oTn AN TEXUNELOUEVOY ATOPICENDY
vt To co-scheduling, Aopfdvovtag unddn to Teoih xde epoapuoyhc. Autdc o yopaxTNEOUOS Uro-
eel va elvan elte resource-centric eite co-location-centric. Xtnv npocéyyion resource-centric,
yopoxtnellovpe Tic eQoappoYéc olupomva pe ta wotiBa xatavdiwong mopwy toug. O yopaxTnelopog
umopel vor xuyaivetar and piar amhr eTixéta (.. memory-bound, compute-bound ¥ communication-
bound) éw¢ wa Aemtouepy| avdhuot TG XeNoNne TwV TopeY and TNV EQUEUOYY, WOTE Vo ATOXTHOOUUE
évar avaduTtixd mpogih. ‘Eyovtag anoxtroet évo mpogih yio xde €@opouoyr) 610 GUVONO EQPUOUOYMVY
Hog, umopoVue otr cuvéyela va AdBouue elte oTaTxég elte BUVOULXES ATOYAOELS OYETIXA UE TO TOD
npénel va Tonovetniel xdide epapuoyy| oto cloTNUd wog. Xtnv npocéyyior co-location-centric, xdie
eQapUOYT| TEETEL Vo YapaxTneloTel we eite co-location friendly eite co-location unfriendly. Auty 7
TEOCEYYLON UOC ETUTEENEL ELTE VO YENOLWMOTOOOLUE aUTES T TANEoopies Yia v xadoplcouye mota
Cevydpla eqappoy@y Ya ouv-tonodetnioly elte vo emAé€oupe £V UTOGUVOAO EQUPUOYWY YLl Lol OVEA
co-scheduling, ye Tic UTOAOLTEC EPUPUOYES VO EXYWEOVYTOL GTNY XAVOVIXT] OURA YPOVOTROYQOUUATL-
opou. Ou npooeyyloeic resource-centric amoutolv wla extéleon yio xde egapuoyy oe compact mode,
EVe TauToyeova extelelton profiling, wote va mpocdloploToly Tl HoTBol XATAVIAWONS TOPWY TNG.
Avuté anotekel éva anhd Brua mpoemeéepyaoiog ot neplocdtepeg mepintwoel HPC, xadog 1 micio-
vomnta Ty egappoyoy HPC extehodvton modléc gopéc and toug yerotes (m.y. povtéla npdBiedng
xoupol) xou cuvende to profiling puévo e mpdtng extéheons mpoolétel eNdyloTo emTAéoV POETO.
Avtd¥étwg, ol mpooeyyioelg co-location-centric amoutodv €vav mo e€eAYPEVO TEOTO YoEAXTNELOUOD

TWV EQUPUOYDV.

7.6.2 Pairwise povtéla

To Pairwise povtéla anawtolv yvoon A extiunon tng ouunepipopds co-scheduling yio 6houg toug
Tavolg GUVBUACHOUS EQPUPUOY®OY EVTOE TOU GLVOAOL egapuoy®y. To heatmaps, 6mwe autd mou
TopovcldleTon 6To Ny fud 7.3, TEOCPEEOLY UL OTTIXOTOINCT AUTWOY TWY BESOUEVKV, OTIOU XGVE Ypouun
avTinpoownedel Ta speedups g avtiotolyng epapuoyc 6tay cuv-tonodeTeltan Ue TIC EQUPUOYES IOV

AVTLTEOCKTEVOVTAL O Xdde OTAAN.

H Baowy| 6éa elvon 6TL To heatmap twv e@opuoydy Tou GLUVOAOL EQUEUOYOY pac Vo yenouylonomdel
amo évay alyoprduo Behtiotonolinong yio t Mn anogdoewy co-scheduling. Autéd unopel va yivel elte
HE TNV eaVTANTIXY CUVEXTEAEDT OAWY TwV TWHAVOY CUVBLACUMY X0t TN UETENOT NG AnddOCTC Toug

oe olyxplon e To compact mode (o un mpaxtin uédodog oe éva mepBdihov production), eite e
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7.7 Medodoroyla profiling

Mean Job Speedup: 1.12
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YxAua 7.3. Heatmap twy speedups and tny ovvektédeon okt NPB benchmarks pe 256 processes
to kaOéva otov vrepunodoyioty Marconi

NV moloTixt| | tocotxr} tedPBiedr tou heatmap. M moloTix”] npocéyyion Yo urtopoloe va yenol-
pomotfoet eTxéteg (m.y. good, bad, stationary) yia vo yopoxtneloTel 1 cuUTERLPOEE XEVE EQupUOY TS
oTay ouvextele(ton Pe T uTohoimeg. AuTég oL eTiXéTEC UmopoLY va Tapoy Yol elte ERTELRLXA elte
yenowwornoiwvtag ahyopidumouvg Machine Learning classification. Avtideto, pio mocotixn
TEOGEYYLON oToYEVEL oY TEOBRedn e axpeBolc apriuntixic TWhAC Twv speedups oto heatmap.
Avuté ymoget va emitevydel yenowwonowwviac alyopiduwouvg Machine Learning regression. Yta
enoueva xeqpdhana, Yo mpotelvouue xon Yo SlepeLVACOLUE UEVOBOUE VLol TNV ATOXTNOY) TANEOPORLLY
OYETIXA PE TNV ATODOCT] TV EQUPUOYWY GE AELTOUPY(ol CUVEXTENEOTS, WOTE Vo Topoyoly To amo-
pattnta dedouéva mou Yo yenowonomdoly and mponyuévoug ahyopituoug co-scheduling yio ™ A

TexuneLouévey teofiédeny. H nopandve talvdunon anewovileton cuvontixd oto Xyrua 7.4.

7.7 MeOQodohoyia profiling

O x0wo6¢ Tapovouac THC OAWY TV WOVTEAWY Tou TapoucidlovTtal o auTthyv TNy gpyacia etvar 1 yeron
performance counters xou communication events. ‘Onwg avapépdnxe mponyouuévewe, TEOYUATOTOL-
fioope profiling oto benchmarks mou yenowonoudnxay ota nelpduatd pog yenothonowwviag to perf
xar to mpiP, npoxewévou vo anoxahdouvpe TN CUUTERLPORE TOUS GCOV 0POEd TG UTOAOYLOTIXEC
npdlelg, Tt wviun xau v emxowwvia. O Ilivaxoag 7.4 napouctdlel Tic HETEXES GTOYOUS HAC, XOo-
Y xou toug performance counters xou To communication events mou yeNOWOTOMOUUE Yial VO TIG
unoloylooupe. Ilepoploaye to profiling oe wxpd apwiud hardware events, xodddc 6tav o aprduode

TWV UETPOVUEVWY YEYOVOT®Y umepPalvel Toug dladéoioug guaolxole performance counters oe €voy
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7.7 Medodoroyla profiling

Machine Learning

titati .
Quantitative — (Regression)

— Pairwise Models

Machine Learning
(Classification)

Qualitative

Models

Empirical

Co-location-centric
L Tag-based Models ~|:

Resource-centric

YxApa 7.4, Ta&wvéunon twv povtélwv performance analysis yia xprion o€ akyoptiuovs auvvopo-
HOAGynong

eneepyaotn, To perf yenowonoiel ypovixn mohumiedia, yeyovog mou umopel va pewwoel Ty axpeifBeta

TWV UETPNOEWV.

Mezpuxn Epyaheio I'eyovéta
FLOPS perf SSE FP PACKED DOUBLE, SSE SCALAR DOUBLE
Memory Bandwidth  perf OFFCORE_RESPONSE_0:LLC_MISS LOCAL

OFFCORE_RESPONSE 0:LLC_MISS REMOTE

LLC hits/misses perf LLC_MISSES, LLC_REFERENCES
Total MPI Time mpiP MPI% (Aggregate MPI Time)
MPI Directive Time mpiP Callsite Time Statistics

Iivaxog 7.4. Metpikés kat oyetikd uetpoUueva yeyovota

‘Eneita, YeNoWOTOWOOUE To YEYOVOTA TOU UETPNONUE TEOXEWEVOU VO UTOAOYICOUUE TG oUVUETEG
uetpwéc otoyoug. I mapdderyua, yio To memory bandwidth yenowonowjinxe o axdrovdog tinog

®oTe vo umohoylotel oe eninedo xéufou:

LLC_MISS_LOCAL;+LLC_MISS_REMOTE;,) x Cache Line Size)
Number of Nodes-Execution Time

np
Memory Bandwidth = 2uim(

6mou o np ouuBolilel Tov aprlud Twv processes Tou xdde benchmark. Toa FLOPS, Memory Band-
width, MPI Time, LLC Hits and LLC Misses nou yopoxtneilouv uio eQoppoyy opadonotodvtal xou
ontixomololvton pe yenor spider plots. To Xyfua 7.5 oelyvel €va mopdderyua evog spider plot yia

to SP benchmark nou tpé€yet ypnowomnowdvtag 121 processes.
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7.8 Tag-based povtéia

sp.D.121
FLOPS

LLC HITS MEMORY BW

MPI TIME LLC MISSES

YxAua 7.5. Spider plot yia to SP benchmark

7.8 Tag-based povteia

Ta Tag-based povtéla otoyebouy oto va mapéyouv otoug Co-Schedulers évav cuyxexpuévo yopo-
ATNELOUO XAVE EQPUPUOYTC OTO GUVOAO EQUPUOYQDY. AuTOC 0 yopaxTnelolds umopel vo mouxiiel omod
wo Boowr) etéto €wg yio oOVUETN, TOU YENOWOTOLEL €Vol ONOXANEWUEVO GUVONO UETPHOEWY TOU
culéyovtan péow performance counters. H mpocéyyion pag eivan amhy), ywelc var anoutel toAOTAoxT
povtehonoinon. Luyxexpuéva tepthouSdvel TN GUAAOYT BEBOUEVWY OYETXG UE TN UvAUT, To TARdog
UTIOAOYIG TV TEAEEWY X0 TNV ETUXOWVODVIO, XL TN PO AUTMY WS YARUXTNEIOUO TNG EQPUPUOY NS UE
oxomod TNy xoodrynon e AMPng amogdoewy oe cevdplo cuvexTtéleonc. Evdewxtind, ypnowonolo-
Ope petpnéc mou oyetilovian pe v unohoylo T évtaot (FLOPS), tn yehon edpouc Ldvne uviung
(MEMORY BW), ta yotia npdoBacne oty xeuen uviun (LLC hits xou misses), xoddec xou tnyv
évtaon emxowvovioe (MPI time), dha ex twv onolwv otn cuvéyelo xavovixonoolvtat. Ou yetpixéc
auTéG eMAEYUNXaY eNELDY) EMNEEAOLY TN CUUTERLPORA UL EQPUPUOYHC OFE EVOL GEVAQLO CUVEXTEAECT,

ATOXAAVTITOVTOG T CUUTIERLPORE TNG OTAY UTERYEL AVTUYWVIOUOS YIal XOWOYENOTOUS TOROUG.

ITapouoidlouvpe pior Tpocéyyion yia TNy o€LoToNcT| TOU TUPAYOUEVOU YORUXTNEIOUO) TV EQUQUOY OV
ue oxond 1N Beitior tou yéoou speedup Twv EQYACLWOY OE €va GEVARLO cuvexTEReoT . Enextelvoupe
0 cLAROYIOTIXT oL Tapouctdleta oto [28], Tpoonaddvtac va dnuovpyiooupe LeHYN EQUOUOYOY TV
omolwv Ta spider plots o, xatd cUVETELR, To LOTIBA XATAVIAWONE TOPWY, BLAPEEOLY GGO TO BUVITOV
neploc6tepo. Eepeuvolye val amhd xou ototind oevdplo, 6mou dlardétouue pior oudda 300 e@oppoy Y
xan dnwovpyolue 150 Cebyn. Xtnv oapywr baseline mepintwon, ol epapuoyéc cuv-tonovetolvton
drodoyxd (1 mpdTn ye TN delTeEN, N TElTH ME TNV TETAUPTN X.0.X.). XTN CUVEXELN, UNOTOLOUUE Wid
O TEOMYUEVY] TEOGEYYIOT], 6ToL adlonoloVUE TNV Tpoavapepdeioo CUANOYIOTIXT. XUYXEXPWEVA, Yid
xdde miovd Ledyog eQoappoY®Y GTo GUVOAO EQUPUOY XY, LToloyilouye éva score Tou LTOBELXVIEL TOV
Bardud emxdhudne petold twv spider plots twv 8Vo epapuoywy. Voo peyalitepo elvon autd TO Score

v évor ouyxexpévo (ebyog, T600 TO SLUPOPETIXES EVOL OL EQPUPUOYES METAE) TOUC, YEYOVOS TOU
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7.8 Tag-based povtéia

umodnhwvel éva xahltepo anotéheoua cuvextéheons. To Myrua 7.60 napousidlel Vo eqopuoYEéc Ue
ehdylotn emxdiudn ota spider plots toug, eved to Eyfua 7.63" topoucidlel 800 eQUPUOYES UE OEXETN
emxdAudn ota spider plots toug. Auty| n Badporoyio utohoy(letan we e€ng:

FLOPSdiff = [FLOPS; — FLOPS,|

MEMORYdiff = [Memory; — Memorys,|

COMMiff = [IMPI_time; — MPI_time,|

score = |/ (FLOPSiff)2 + (MEMORYdiff)2 + (COMMdiff)2

—— mg.E.256 —— ep.E.256 —— mg.E.256 —— sp.D.121

FLOPS FLOPS

LLC HITS MEMORY LLC HITS MEMORY

coogfboooon cogbCooocon

MPI TIME LLC MISSES MPI TIME LLC MISSES

(o) Iapdderyua pag kadns ovv-torodéTnons (B") Hapdderyua ag kaxris ovv-torodérnons

YxAuna 7.6. Spider Co-Plots yia éva ogevdpio kakns ka1 éva oevdpio kakns ovv-tonodéTnong

Avuty) 1 anhoixn tpocéyylon cuv-tonovetel TIC eQapuoYES pE Evay greedy TEOTO. NUYXEXQWEVAL, XO-
YOS HVOLUAOTE CELRLOXA UEGU OTO GUVORO EQPUPUOY Y, CUV-TOTOVETOVUE XAOE EPOPUOYT UE EXEV TNV
e@appoy™ 1 onola odnyel 6To PéYLoTo score. AuTh 1 TEOGEYYION EUVOEL GNUAVTIXG TIC TPWTESC EQUp-
noyéc tng ovpdg, xadwg autée Yo ouv-tonovetndolv pe Toug BérTiIoToug yeltoveg. doTéo0, 00T YEL
oe onuoavtixy Bedtiwon tou yéoou speedup Twv pYAOLOY XaL 0€ a&lOONUEIWTY Pelwon Tou TocoGTON
TWV EQPAPUOYHOY Tou Tagovaldlouy slowdown xotd tn cuvextéheon. To Xyrua 7.7 xoatadewcviel ta
0QENT) TNG TPOCEYYLONE Hog o oUYxplor Ue Ty baseline neplntworn mou teplypdpnxe TEONYOLUEVWS.
opoatnpolye Behtiwon tou péoou speedup twv epyactdy xatd 3.03% xou pelewon Tou péoou nococto

TV EpYUOLOY Tov Tapouctdlouy slowdown xatd 11.03%.

Ta resource-centric tag-based povtéha elvon apxetd amAd xou amattoly pévo Sedouéva Tou UTopoLY v
culkeydolv ebxoha and monitoring units. Elvow onuovtixd va onueiwdel otL aut| 1 teyvixn amontel
uovo plo extéheon yio xdie epoppoyt oc compact mode, eve Tawtdypova Yiveton profiling authc dote
VoL TpocdLoploToly Tal HoT(Bol XATaVAAWONE TOpwY. AuTd GUVIOTE ULol TOAD OTAOUGTERT] TROCEYYLON
ue MOAD Aryotepn mpoeneepyaoio xou TOAUTAOXOTNTA, Ot cUyXplom pe to Pairwise povtéia mou Yo

oulntndolv otn cuvéyela.
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7.9 Pairwise povtéha : Euneipixdg classifier

Mean Job Speedup Slowdowns (%)

1201 [Avcragc Improvement: 3.03%] o T [Avcragc Improvement: -11403%]
30 4

s e ..
25 1 _

1.16 4 o
20 1
15 A

1.12 1 . . . :

Baseline Sophisticated Baseline Sophisticated

YxAua 7.7. Ta mAeovextnuata tng resource-centric tag-based mpooéyyiong uag oe oUykpion ue
v baseline nepintwon

7.9 Pairwise povtéla : Euncipixog classifier

To npdto wovtého nou culntolue TNy xaTnyopla TV pairwise HovTéAwY elvon €va EUTELRIXd TOLOTIXO
HOVTEANO TOU GTOYEVEL OTOV YoRuXTNElopd xdde mbovol cuVBUNOUOU TOU GUVOAOU EQPUQUOYMY WS
good, stationary 7 bad. To povtého amotehelton and €vo GOVOAO XAVOVWV TOL YENCULOTOLOUYTOL
yia T Onuiovpyio VO EUTELPXOL BEVTPOL amopdcewy, To onolo hauPdvel wg elcodo dlo epapuoyEs,
A xa B, xou mpofBiémel to speedup tng epopuoyic A otav cuvexteheliton ye v egapuoyr B. H
Boowr Wéa Tow amd autd To povtého elvan 1 Ypron TwV SEBOUEVKOY YEHONG TWY TOPWY YLl TNV
TEOBAEYT TNC AVAUEVOUEVTC CUUTERLPORAS UE Evay emegnyholo Teomo. Ta Ty eCaymyr) TV xavovey
TOU YPNOWOTOOLYTOL GTNY XATACXEUT] TOU OEVTPOU AmOQPAcE®wY, avallooue 600 heatmaps and tov
unepunoroyloth ARIS, yia to NAS xow SPEChpce 2021 benchmarks, 6nwg @aiveton oto XyAuorta 7.8

xan 7.803" avtioTtouya.

XenotwonotoVue Eavd to profiles mou dnuoveyHinxay pe ) Bordelo twv perf xow mpiP yio tn On-
wovpylo spider plots yioa 6ha to benchmarks, emitpénovide pac vo Ta XOTNYOPLOTOLCOUUE ATOTE-
Aeopatixd. Ta spider plots mogouoidlovtar ota Myruato 4.7 xou 4.10. Meta€d twv Te1dy x0OpLev
uetpxwv—FLOPS, MPI Time xow Memory Bandwidth—exeivn pe ) peyolltepn tiur xodopllet
av to benchmark efvon compute-intensive, communication-intensive 1} memory-intensive avtictol-
yo.. Téhoc, ta spider plots anewoviCouv enione to Last-Level Cache hits xou misses, to omoio o
elvan yerowa oe oplopéveg mepintwoelg. Iopaxdte mopadétoupe Toug xavovee mouv cuviécoue Héow

Tapatrhenong twv heatmaps xou twv spider plots, ylo xodepio ex TV TELOV THAVOY TUTWY EQUEUOYOV.

7.9.1 Compute-bound egpopupoyég

Ye auth v xatnyopio avixouv ta benchmarks EP, BT xaw LU ané ta NAS benchmarks. Me
BedOPEVN TNV CUUTERLPORA ToUC OTWE TapaTnee(ton oto heatmap, ahhd xou ota spider plots e€dyouue

Toug e€Ng HUVOVES:
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7.9.1 Compute-bound eqappoyéc

Speedup
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(") Heatmap twv xpnoipornoiouevwy NAS benchmarks
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(B") Heatmap twv xpnoiuonowluevowy SPEChpe 2021
benchmarks pe 1024 Siepyaocieg

Yxhuo 7.8. Heatmaps twv NAS ka1 SPEChpc 2021 benchmarks otov vrepumodoyoty ARIS

Eunewpixol Kavoveg: Compute-bound egapuoyég

o H anbédoon twv oyved compute-bound egopuoywyv (EP) uéver otdown 6tav ouv-
TomoYetolvTon Ye onoladNmoTE GAAY EQopUoY

o Ou compute-bound egapupoyéc pe onuovtind aptdud and npoofdoeic pviune (BT) uévouv
OTACWIES OE OAEC TIC TEPLMTWOELS, EXTOC and OTay cuv-TonoYeTovvTal Ue memory-bound
eQapuoYEg. Me auTh TV TeplnTwor, tapouaidlouy slowdown.

o O compute-bound eqoppoyéc pe opxety| emxownvia (LU) uropodv va mopouctdoouy
speedup 6tav cuv-tonovetolvTal pe non-communication-bound 7 non-memory-bound
benchmarks.

e O compute-bound egapuoyéc anoterodv xaholc YelTovee yia 6GAOUC TOUC TUTOUG EPap-

HOY OV XIS HAVOUY QUEAENTEN YPNOT TWY XOWOYENOTWY TOEWY TOU XOUBou.
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7.9.2 Memory-bound egopuoyéc

7.9.2 Memory-bound s@apuoyeég

Ov o woyvpd memory-bound egoappoyéc oto heatmap twv NAS benchmarks (XyAuo 7.8o) eivan
0 MG xa to SP. Emniéov woyupd memory-bound oelyvel va elvan to CG. Qdot600, 0T (alveton
anéd to heatmap, 1 cuumepLpopd Tou elvol dEXETE BLUPORETIXY ad exelv TwV BVO TpoavaIPepUEVTLY
benchmarks. Auté ogelheton 6t0 Yeyovog otL ev avtidéaet e ta MG, SP, 1o CG extelel axavovioteg
(irregular) mpoofdoeic uvhAune xau dpa dev altonotel xohd to memory bandwidth. Tétoleg eqopuoyés
ouvidwe eugaviCouv TohAd cache misses xou CUVETOC PEow AUTAE TNE UETEIXAC xordioTortan SuvaTty 1)

avory voplot) toug. Me Bdon tar 8edouéva Tou €YOUUE, GUVEYOUUE TOUS axOAOLTOUE XOVOVES:
Eurneipixol Kavéveg: Memory-bound egapuoyéc

e Ou memory-bound eqopuoyéc unopodv va emitdyouvv Tohd LMAd speedups 6tav Guv-
Tono¥etovvtan ue compute-bound A communication-bound egapuoyéc.

e ‘Otav cuv-tonovetolvtal ye dhhec memory-bound eqopuoyég, 1 andd00Y| TOUG UEWOVETAL.
H mo woyvpd memory-bound egopuoyn and Tic 80o oto Leuydpt Telvel va €xel xaAlTERT
anédoon.

o Ovmemory-bound eqopuoyéc elvon xoxol yeitoveg yia dAAeg eQaproYES AOY L TWV VPNADY
TOUG AMAUTHCEWY GTOUG TOPOUE UVAUNG TOU XOUfou.

o Ou memory-bound egapuoyéc Tou extehodv axavéviotes (irregular) tpoofBdoeic uvAung
dev umopoLy va emitdyoLy Yeydha speedups e€autiog TOU YEYOVOTOG OTL LUTOYENOLLOTOLO-
Ov 10 memory bandwidth. T tov (Blo Adéyo, amoteholv xaholc yeltoveg yio dAle
epapuoyéc. To 1dn uvdnAd Toug memory latency ducyepalveton oxXOUN TEPLOGOTERO OTAY

ouv-extehoUVTL ue memory-bound eapuoyéc, odnydvTag o onpavtxd slowdowns.

7.9.3 Communication-bound sgpappoyég

Ou d0o evanopeivaoes egopuoyéc and ta NAS benchmarks (IS, FT) eivor communication-bound.
Eve) autd ta 0o benchmarks nopouvoidlouv nopduota cupnepipopd, to d0o communication-bound
benchmarks tng¢ couvitag SPEChpc 2021 (621.miniswp_ s, 635.weather s) napouctdlouv dlapopeTtiny,
o TdowT cuUTERLPoRd. ()¢ ex ToUTOL, X TUTOL ATUEAITNTY Wid TO EVOEAEY NS AVEAUGCT] TNG ETUXOVG-
VoG TV EQAUPUOY®Y (OOTE Vo cuumepdvoupe TL eldoug MPI evtokéc extehobvton oe xdie mepintwon.

H avdivon autr napatideton otov Iivexa 7.5

Me Bdon ta 6edouéva TOU EYOUUE GTNY XATOYT| LS CUVEYOUUE TOoUg EEAC EUTELOINO00E XOVOVES:
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7.9.4 Amnotiunon npofBrédewv

635.weather s.1024 621.miniswp_s.1024

Callsites: 19456 Callsites: 15360
Waitall: 99.90% Recv: 85.24%
Isend: 0.04% Send: 14.49%
Irecv: 0.06% Barrier: 0.24%
Barrier: 0.00% Comm_ split: 0.02%

Comm_ free: 0.00%
Allreduce: 0.00%

ft.D.256
Callsites: 3840

Alltoall: 97.16%
Reduce: 1.70%
Barrier: 0.88%
Comm_ split: 0.19%
Beast: 0.07%

ITivaxag 7.5. Iooootiaia katavoun tov ovvokikod xpévov MPI nov éaravdtar o€ kdle evtoAry MPI

Euneipixol Kavéoveg: Communication-bound eqopuoyéc

e Ou communication-bound egappoyéc mou mepéyouv xupiwe yerown enxowvwvia (FT,
IS) cuvAdwe mapouctdlouv speedup xatd T SdEXELL TNS CUVEXTEAECHC TOUC UE Xdde
TUTO EQPAUPUOY V.

o Avtidétwg, oo communication-bound egopuoyéc Twv omoiwy o ypdévog emixovwviog o-
roteleltan xuplwe and ypdvouc avopovic (635.weather s, 621.miniswp_s) eugpavilouv
O TACLUY] CUUTIERLPOPE XATA TNV CUVEXTEAECT).

e Ot communication-bound egopuoyég eivon ouvidwg xahol yeltoveg yio dAAeS EapuoYEg,
ooV BEV HOVOTIWAOLY TOUS XOWVOYENO TOUS TOPOUG Xal T LoTiBa emxovmviog dlapopeTi-
AWV EQARUOYWYV Efvor cLUVATKC BLaPOPETIXA HETAED TOUC.

o H ouumepipopd twv communication-bound egapuoyov uropel duws va yiver anpdBientn
6Ty Uit SoUVAELd poLedleTon o dEXETA YEYEAO opldud xouBwy N o meptddoug LPNATg

CLUPOENONE TOL BIXTLOV BLACOVOESTC TOU UTEPUTOAOYLOTIXOU GUGTHUATOS.

7.9.4 Amrotipnor npofiédewy

XENOOTOWWVTAC TOUG TEOVAPECIEVTES XAVOVES, XUTAOKEVACUUE EVA EUTELOLXO DEVTPO AMOPACEWY,
T0 onolo nopovcidletar oto Lyfua 7.9. Onwg avagépinxe, autd To poviého haufdvel wg elcodo dvo
epappoyés, A xou B, xou tpofAénet Tov yopoxtneiowd tou speedup tng e@apuoyne A dtav cuvexteAeitan
ue tnv B. Ou teeig Suvatéeg xatnyopleg elvon: good, stationary xou bad. Oplloupe avotned xou yohapd
Oplo speedup Lot AUTES TIC TRELC XATNYORLOTOMTELS, OTws (atveton otov Iivaxa 7.6. Xapaxtneilouye
TIc TPOPAEPES TOU CUUUOPPHOVOVTAL UE To aoTNEd dpla speedup wg «ITAApwe Ywotégy xan exelveg

Tou axohoutoly Ta yahopd el speedup wg «Emopxde Ywotégy.
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7.9.4 Amnotiunon npofrédewv

Is A communication

intensive?
NO B YES
Is A compute intensive? Qoes & (fo.ntaln many
idle waiting states?
_VES TeNo RN
— YES NO
Is A high memory? Is A memory latency /
- bound? stationary -
YES /
T ves o
Is A high communication? N
P\ Is B memory latency
& N6 . o Is B memory latency bound?
~ \ Is A high communication? bound? T
o T~ , YES )
stationary \ o - / N\ _ T~
b “NO -
Is B memory I:xtency | . = ‘5 | good Is B memory
bol:l[\d~ Is B memory ~_ bandwidth bound?
N bandwidth bound?  stationary N
ES e) AN Is B memory _No e
B y vEs  NO stational i ? -
tatic Is B memory ry bandwuc!tb bound - Is B more memory
stationary bandwidth bound? \ - o intensive than A?
stationary - NES P
es” “vo - / ~.
NO YES
) N [ bad [ good | -
- stationary // -
Is A more memory

intensive than B?

vis  No

- stationary

Exhra 7.9. Aévtpo anopdoewy e Bdon Tous avwTépw €UTEPIKoUS Kavoves

Xapaxtneiowoc | Avotned ‘Opgia Speedup | Xahapd ‘Opra Speedup
Good Speedup > 1.1 Speedup > 1.05
Stationary 0.95 < Speedup < 1.1 0.90 < Speedup < 1.15
Bad Speedup < 0.95 Speedup < 0.95

ITivaxag 7.6. YXUykpion twv opiwv speedup yia TNy avoTnpr) Kai TNy XaAapr) Katnyopionoinon

Yrov Hivoxa 7.7, avakbouue xou mapousidlouvpe Ty oxpBeta Tou povtéhou otny TedfBiedn tou NAS
heatmap. Iopatnpolue 6Tt 0 povtélo mpoéBhede pe oxpifeio to 83.43% twv Levydv oto NAS
heatmap, eved 1o 7.1% twv npofrédedv tou avhxer otnv xatnyopla «Enapxde XYwotécy. Q¢ ano-
Téleoya, oL TEOoPAEdeLs HTav ToUuAdyLoToV enapxeic yia To 90.53% Twv Leuydv.
[Tpoxewwévou vo aZlohoYHoOUPE oV To HovTélo Tdoyel and unepnpoooppoyy (overfitting), Adyw tou
ot oL eumelpuxol xavoveg Boociotnxayv o peydro Bodud ota NAS benchmarks, yenowomnowlue to
(B0 povtéro xou yioo Ty meoPBiedmn tou SPEC heatmap. H oxp{Beiar tou povtéhouv otnv npofliedn
tou SPEC heatmap napoucidletan eniong otov Ilivaxa 7.7. Eved 10 10600T6 TV TAHRWS OWCTOV
TpoPBAEPEwY elvar onpovtind uxpdtepo (63.27%) oe oyéon pe T NAS benchmarks, nopatnpoiue 6t
évog peydrog oprdude mpoPrédewy (22.45%) eunintelr oty xotnyopia «Enoapxie Ywotécy. Q¢ ano-
éheoya, ot mpofAédels HTav TOLALYLoTOV Enapxeic Yia To 85.72% Twv Teuyvdy,
YEYOVOG TOU TOPUUEVEL IXAVOTIONTIXG, EVE oL havdaouéves TeoPBAédel; avtioTolyoly pévo oto 14.29%

Tou cUVOAoL Twv (EUY®Y.

To Baocwxd TAEOVEXTNUA TOU EUTELRIX0) LOVTENOL €YXELTAL TNV EPUNVELCWOTNTA Tov. Eved mpoopépet

wavoron Ty axpeifela ywels ) yerion texvixwy ML, 1 epopuooiudtntd Tou ot dAAES unyavéS unopet
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7.10 Pairwise povtéla : ML classifier

XopaxInelopog NAS Benchmarks SPEC Benchmarks
IMRpwe Xwotég 141 amé tic 169 - 83.43% | 31 amd Tic 49 - 63.27%
Enopxcc Xwotécg 12 amé tc 169 - 7.1% 11 ané tic 49 - 22.45%
Addoc 16 and Tic 169 - 9.47% 7 and Tic 49 - 14.29%

ITivaxag 7.7. Anotiunon mpoPAépewr tov epmeipixol povtédov yia ta NAS kar SPEC benchmarks

Vo elvol TEQLOPLOUEVT, xadw¢ avantuydnxe yenoiwomowwvtag dedouéva and éva pévo HPC cluster.
Emnmiéov, Aoyw 10V TOAITAOXWY OYéoewy YeTOE) Twv dedouévwy profiling xou tne anddoong cuve-

xtéheang, hauPdvel T pop@r| eVOC dpxeTd TOAUTAOXOU BEVTPOU AMOPACEWY.

7.10 Pairwise wovtéla : ML classifier

Ta yovtéha Mnyavixic Mddnone éyouv yenoiwonoiniel oe nponyolUeveS €pEUVEC CUVEXTEAECTC UE
oxond tnv TedfBiedn tou heatmap evog cuyxexpiuévou cuvohou eqopuoyoy. Baolouevol oe tponyo-
Opeveg mpooeyyioel [29, 30], exnawdetoupe didpopa povtéla talvéunone ML, dhote vo ta suyxpivoupe
HE TNV eunelpxn) TEoCEYYLoT. XpeNollonololUe To (810 GUVOAO BEBOUEVMY UE TN UEAETY) TNG EUTELXNAS
pedodou, o omolo anoteleiton cuvolxd and 218 eyypapéc, ue 1o 70% va dratideton yio training xou to
urohotno 30% v testing. Xapaxtnpilovpe Eavd xdde xell Tou heatmap we good, stationary 7 bad.
Xenowonotolue Toug TEVTE GEOVEC TOU TOEOUCIAC TNXAY Teonyouuévws ota spider plots wg features
070 6Uvolo exmaldevong, xadde Mo TEVOLUE OTL TAUPEYOLY ULl XUAY) ETUCHOTNGCT| TNG CUUTERLPORAS TNS

eapuoyhc xou etyav enlong yenowonomdel xatd TNy avantudr) TOoU EUNELELXO) UOVTENOL.

To npoto Briua elvon 1 emAoy? TV xatdAAnihwy ML yovtédwyv ye Bdon tn ouyxexplévrn neplntwon
xenone. To povtého Yo meénel va mpaypatomolel ouyvég mpofBAédelc Tou exdotote heatmap, xadde
T0 GUVONO £QupUOY®V UeTABEAETOL YE VEEC LTOBOAES pyaotwy. Tautdypova, dev uTdpyel avdyxn
v ypriyopn exnaldeuct), xodoe exeivn otav amouteiton unopel vor eXTEAEITOL XATE TIC OEES YAUNAOL
(popTOL. LToY0C Uog elvan 1 YeHom evog uixpol aptuol features, dote va amogeuyVel 1 unepPohl-
x) yeovixr) moAumAeglor xatd v xatoypapr performance counters omé to perf. Aedouévou 6TL 1)
ouvextéleon eEoxolovdel va Boloxeton oe melpopaTiNG GTABLO, T GUVOAX BEBOUEVMV UOG VLol EXTIO-
{devom xou emixbpwon elvon uixpd xon TEoépyovTon xuplwe and epeuvnTxd melpduata.  Aaufdvovrog
UTOYN TOL TOEATTAVE, EXTUBEVCOUE ETTA BlaPopeTiXoUS TUTOUG HovTéAwy Machine Learning xou ou-
yxelvaue To anoteréopota Twv TeoBiédedv toug. T xde tOmo povtélou, exnoudedooue didpopa
povtéha ue molholg mdavolg cuvduaopols hyperparameters. Tao delyyota 1o obvoho exnaldeuong
xavovixoronxay Hote vo emteuy Vel xahOTeE oxp(BeLol, CUUPWVOL UE TA AV TERX XL XATWTERA OPLAL
TWV YETPXAY, OTwe untoloyiotnxay oto ovotnua ARIS. Qotdoo, auth 1 xavovixonoinor anoutel ex
VEOU eXTABEVOT) TWV UOVTEAWY EQV TEOXELTAL Vo Yenowonointoly oe dAha CUCTAUTA UE OLapopE-
Txd dpta yetexdy, omwe FLOPS, edpoc Lodvne uvAung x.An. T xdde poviého, mpoypatonotioaue
5-fold cross-validation xaw uvohoylooye Tov Yuéco 6po twV accuracy scores Twv emuépoug folds. Mtn
CUVEYEL, YLo Xd¥e TOTO YOVTENOUL, SLUTNEHOOUE TO HOVTEND UE TN UEYaAUTERY Uéom cross-validation
accuracy xa. To afloAoYNooUE YenotwoToldvTag éva dyvwaoto test set. To Xynua 7.10 mopoucidle

OPLOUEVES PETELXEC OYETIXA UE TO XOADTERO HOVTENO amd xdde TUTo wovtéhou. OL ypdvol exnaldevong
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7.10 Pairwise povtéla : ML classifier

xau TeoPBAedng napouctdlovion oe YLAOG T Tou BEUTEPORETTOU.

Random Forests . . 0.81 11.97 2.60
Multi-Layer Perceptron . . 280.15 2.18
Support Vector Machine . 0.74 2.04 0.95 o
-0.6 O
n
Ko} e
3 Logistic Regression 0.78 0.77 0.89 4.55 1.07 I
= T
-0.4 g
K-Nearest Neighbors . 0.84 3.75 23.18 =z
Gaussian Naive Bayes . 0.71 0.88 1.33 0.81
Gradient Boosting Machine . 0.80 58.09 1.15
Mean CV Test Set Precision Training Inference
Accuracy  Accuracy (Good) Time Time

ExAra 7.10. A&oddynon twy kaAUtepwy povtédwy and kdle timo povtélov

Ta anoteréopota autd unopoly vo epunveutolyv eEetdlovtac Ta EYYEVH yopaxTneloTxd xdde timou
povtélou [31]. Buyxexpiuévo:

« Neural Networks (MLP): Anowtolv peydho cUvoho exnaidevong yio uhnhf oxpiPeto. Ilapd
v axp{Bewa 0.8 oto cross-validation, to MLP anédwoe doynuo oe un yvwotd dedopéva (0.65)

xou elye ueyaAlTepo Ypovo exnaldevone. Emmiéov, dev elvar epunvedoluo.

o Gradient Boosting Machine (GBM), Random Forests (RF) xo Logistic Regres-
sion (LR): II¢tuyav to xohOtepa cuvohxd anoteréopata. To GBM xa to RF npoogépouv
vpnAdTepn axp(Bela xan Ayotepn unepTEOCUPUOYY, eve Tto LR enwgelelton and to wxped pag
oUVOAO BEDOUEVLY AOYW TNG ATAOGTNTAC TOL.

o K-Nearest Neighbors (KNN) xou Gaussian Naive Bayes (GNB): Aev anédwooav 660
XA 660 Tor UTOAOLTTAL, IOV AOY® TV TOAUTAOXWY OYECEWY UETOED TWV YoRUXTNELOTIXWY.
To KNN éyel enlong udgmid yedvo npdfBiedne, o onolog augdvetan xodidg HEYARDVEL TO GUVOAO
EXTIUOEUOTG.

e Support Vector Machine (SVM): Eniong anédwoe xahd. H 1oy0¢ tou éyxeitan oe wxpd, v-
PNAGY SLac Tdoewy UVOA BEBOUEVKY, XATL TTOU OUWS OeV elval WBLaftepa OYETIXG 0TNY TERiNTWOM
Hog.
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7.10 Pairwise povtéla : ML classifier

"Evog Bacixdg meploplogdg yior TOAAS amd ouTtd Tol HOVTEAN EIVOL TO OYETE ULxpd GUVOAO EXTIALDEVOTC.
Koaddde n ouvextéreon evowpatoveton nepoutépw o production cuothiuota, oautd urnopel edxoha va
ahhdEel, xadog Yo amoxXTAOOVUE TEQLOCOTERP TEAYHATIXG DESOUEVA. L TN CUVEYELD, N ATOBOTIXOTNTA
v Neupwvixdv Awtdny puropel va enaveletaotel, eldixd dedopévou 6Tl 0 Ypdvoc extaldeuone Uropel

va unv ebvon 1600 xplowog 600 1 tay vt TEdBAedne xou 1 oxplBela.

‘Onwe emonuaivetar oto [29], 1 utotiunon e urofBdduone e enldoone wioc epappoyic ot éva oe-
vdplo cuvextéheong umopel va €xel cofapéc cUVETELEG OE TERBAANOVTA TEAYUATIXOU YPOVoU, Xadwg
unopel vo 0dnynoet tov scheduler oe haviaouévn cuvextéleon un cupBotody egapuoyov. Iapopoiwe,
otny mepintwot] pag, ta False Positives mou emonuaivovtoan w¢ ‘good’ unogel vo mapamhavicouy tov
scheduler, ennpedlovtag apvntuixd to makespan tou goptiov gpyosiac. I Tov Adyo autd, Yo urogo-
Uoe va efvan ypriowo vo npooTadicouvue vo BEATIOCOVUE TO precision TV HOVTIEAWY Yog 600V apopd
Vv euxéta ‘good’ (dnAady t0 0600 T TV detyUdTwY Tou Tpofliénoviar we ‘good’ xau eivon TEdyUATL
‘good’). "Evoc tpémoc Yo vor To emithyoude oauTo elvor var yenotdotolioouue 300 HovTERd TaUTOYEO-
vau xou vau yapaxtneloovye €va Selypo w¢ ‘good’ udvo €dv xou ta 800 povtéda to €youv mpoPiédel
w¢ ‘good’. Autd umopel puoxd va emnpedoel To GUVOAXG accuracy Tou uoviélou. Katohryouue
étol oe éva npofnua Bedtiotononang dVo xprtnelenv: Yélouue va éyouue LPNAG cuvokixd accuracy,

dlatnewmvTag TapdAAnia LPNAG precision yio TNV eTixéta ‘good’.

[o vo e€etdoovye mepautépw autd to {Rtnua, aglohoyolue oha to mdovd Lebyrn Twv HOVTEAWY Tou
TOPOUCLEOTNXAY EWS TP (TO EUTEPXG LovTENO xou ta povtéha Machine Learning tou YyAuatoc
7.10). Ta anoteréopata nopouctdlovtor oto Lyfua 7.11. H xbxwvn yeouun anexoviler to Pareto
frontier tou scatterplot, to onolo defyvel 6Tt oL cuVBLacUol LoVTEAWY ToL TANCLALOUY TEPLOGOTERO
TNV TAUTOYEOVY avoToinoT xo Twv dVo otdywyv Behtiotonolnorc pag eivar ta RF-LR, LR-GBM,
SVM-GBM xou RF-GBM. Ta téooepa povtéha mou cuviétouv ta Lebyrn Htayv eniong amd ta mio

anodOTIXG Pac LOVTENA OTay oELOAOYHOMXOY UELOVOUEVAL.

Avddoyo pe to emuuntéd eninedo axpiBeloc yia Ty eTéta ‘good’, umopolue vo emAEEOUPE Evary oo
auToUg ToLg cLVBLICUOUS Yl Yeror. Eivaw onuavtind va onuewwdel 6tL augdvovtoag tny axplBela yio
v eTxéta ‘good’, evbéyeton va pewdooupe To recall autric Tng etixétag. Ltic tepintoelg twv RF-LR,
LR-GBM, SVM-GBM, 7o recall tnc etiétog ‘good’ peuxdnxe xoatd 9% oe olyxpion ye to peyahltepo
recall petol twv dVo povtéhwy xdlde Ledyouc. Mtnv mepintwon tou RF-GBM, émou 1o precision
e etétac ‘good’ elvon younhotepo, to recall pewdveton xotd 3%. H un npdBredn ouvyxexpyévov
xah@v ouvexteréoeny (Yuotdlovtoc to recall) amotehel wio youévn guxoupior yio tov scheduler va
a&tonotioel xahltepa T0 GUVOLO eQapuoYdY. And v G Thevpd, 1 ecpoluévn TeoBRedn TOANGDY
XXV GUVEXTEAECEWY ¢ ‘good’ (Yuotdlovtoc To precision) umopel vor 0dnyYoel oe emPBpdduvor Tou
ouvolxol makespan, Aoyw acOufatwv cuvduaouwy ard tov scheduler. Ilpdxeiton yia éva trade-off
mou o&ilel va diepeuvniel xan pnopel enione vo e€aptdtan and Tov (810 TOV AAYOELIUO CUVEXTEAECTC.
Yuvolilovtag, ol ensemble techniques gaivetan vo elvon oL o amodoTnég GTNY TERITTWON XPNONS UAUS

e€autlag Tng olvdetng oyéong uetal Twv performance counters xow TG CUUTERLPORAS TWV EQPUPUOY DV
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7.11 Ilpocopoudoeic Xuvextéleonc

NB-GBM
NB-EMP R-EMP
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ExAuwa 7.11. Pareto Plot Awy twy povtélwy uag kai AAwr twv mbavdy ouvdvaoudy HovtéAdwy

og xde0TOC CLVEXTEAEDTG.

7.11 Ilpocopoiwoeic XUVEXTENEOTS

Télog mpooTadiooue vor X3AVOUUE Lol aEyIxt] ALOAGY O TNG CUUTIERLPORAS TNG CUVOPOUOAOYNONS UE
xefom evic epyahelov tpocopoiwone ypovorpoypeauudtwy tov ovopdleton ELISE (Efficient Lightweight
Scheduling Estimator). Apyuxd, yenowonoifoaue évay opxetd anhd cuvdpogoloynth, tov EASY Co-
Scheduler o omolog cuv-tonodetel Tic dovieiég ue FCFES tpéno yenoipomnowdvtag topdiinia xou EASY
backfilling mou eivan yia oyetixd aggressive pédodog backfilling. O Ilivoxag 7.8 xatadewcviel g udn-
¢ Behtidoeg oto makespan yio goptia epyasciag mou mepEyouy epyaoieg ue (0o apriud BlepYaoLeY
%ol YLor SLopopeTixd mean job speedups, to onola unoloyilovtan Bdoel twv speedups O AV Twv mdo-
vov Leuy oy epyaotoyv oe xdde goptio epyaciog, ypnowonowdvtag to Marconi heatmap. Kdébde goptio
epyaotac anotehelton and 500 epyaoieg, xan Yo xde neplntwor uéoou speedup, TEAYUATOTOLNOOUE 5

Tuyalo mewpdpata o éva cluster ye 100 x6puBoug xou 48 muprvec.

Autd to anoteréopata pog odnyolv ot dlo nopatneroes: Ilpdtov, onueidvouue otL 1 Behtivon Tou
makespan U6 NG CUVEXTEAEONC OE QUTHY TNV ELVOIXY TEp(TTWON elvol EVTUTLOLONY, XS PTAVEL
oxedov 1o 31%. Aeltepov, napatnpolye pa cucyétion uetald tou uéoou speedup GAwv twv LevydVy
EPYUOUOY OF €va GUVORO €QupuoY®y xat Tng Beitinone tou makespan mou EMTUYYAVETHL UECK TNG

CUVEXTEAEDTC.
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7.11 Ilpocopoudoeic Xuvextéleonc

Mean Job Speedup | Makespan Improvement (%)
1.07 24.42%
1.10 25.29%
1.12 25.87%
1.155 30.63%

IMivaxag 7.8. BeAtiwon tov makespan o€ oxéon e to Mean Job Speedup tov kdOe sub-heatmap

Qot600, pe TNV eXTEAECT) TEQLOCOTEQWV TEOCOUOLWOEWY YIVETOL EUPavES OTL 1 eTldooT Tou amAod
EASY Co-Scheduler ennpedleton and tnv mowxhia Stopopetixidy iy Siepyactdv oe éva ahvolo
epapuoywy. Ilewpopatiotixaue ye téooepc tomoug @optiny epyaciag, xadévag and toug omoloug
nepthduPove 500 epyaoiec and to obotnua ARIS. Kdde tinoc goptiou epyacioc arotehodvtay and
gpyaoiec ye auiavouevn mouahopoppia 6Tov apliud TV Slepyaot®y, eve xdde melpopa eXTEAECTNXE
avodlateTaypévo Tévte gopéc. Xto Nynua 7.12 mopovoidleton 1 Bedtinon tou un egehyuévou EASY
Co-Scheduler oe oyéon pe tov xhaowxd EASY Scheduler. Apyixd, nopatneolue 6t otay e&etdlouue
uovo epyaoieg mou {ntody 256 Siepyasies, emtuyydvouue wa Bedtiworn oto makespan tne tédEng Tou
12.6%, yeyovic mou uTOdNAGVEL onuavTxr; adinon tou puiHoU SLEXTERUMONS AOY® CUVEXTEAESTC.
Qotéo0, xadng To Qoptio cpyaciog YiveTon MO TOMAOUOPPO WS TEOS TOV dELIUG TWY BIERYACLAOY, 1)
APENC CUVEXTEAEDT] BUOXOAEVETAL VAL DLATNEHOEL TO OPENOS TNG, PTAVOVTUG HAALGTA 6TO oNuelo Vo TO

Yavel 6ty avtietonilel TAfen TouAouop®lo SLERYUCLIY.

Me 1 Bordeia twv epyarelwv ontixonoinong tou ELISE, unopéooue va xatavoricouvue edxoha 6Tt
AUTO OPELNOTAY OTN YOUNAT| YEeNOWOoTOoNoT TV TopwY, Xadds 1 apeAC CUVEXTENEST, 00N YOoUoE OF
HOUTOAXEQUATIOUO X0 AVEXUETIAANEUTOUE TTOPOUE TOU GUC TAUATOS. 2T oLVEYELX, LhoTotfoaue Tov Filler
Co-Scheduler, o omolog cuumhnewvel ye best-fit TpéTO TOUC AVEXUETIAAEUTOUG TTOPOUC UE TIG XAUTUA-
Anhotepeg epyaoieg. O Filler xatagpépvel vo Slatneroet Tig BEATIOOELS TNG CUVEXTEAECTC, OUWS UE TO
Tiunua e napaBioone tng apyic FCFS, xadiotdhvtoc tov BéBara ddixo. Auth 1 cuunepipopd avadel-
%xVUEL TOGO TIC BUVATOTNTES TNG CUVOROUOAOYNONE 00O xal TNV avdyxr yia sophisticated Co-Schedulers

“oTe va €youyue Behtudoelg Tou makespan xan o€ o cUVUETA GEVAELOL.

Aedopévou 6Tl i olvieta oevdplor amantelton sophistication otov ypovodpopoloynth peketooue
TNV ONUCIA XEATOLWY YORUXTNELOTIXOY HETEXAOY Yiot TNV Beltiworn tou makespan. Aweloydyoue 100
TELRAUOLTOL YOl EVOL GUYXEXPLUEVO GUVOAO EQUOUOY®Y Ypnotwonownvtag to ELISE, to heatmap and tov
unepumohoyloth ARIS xou éva cluster 200 x6uPBwv pe 20 tuprveg avd xoufo. To goptio epyaciag yia
xde melpoypa amoteholvTay and Tig Bleg axpiBng eQapUoYES, aANd 1) oeled Toug avadlatdyInxe Tuyola

x&e @opd.

To Yyfua 7.13 anewoviler ) Bedtivon tou makespan xau T cucyEToY Tou Ye To Uéco speedup

TV gpYaoldv xou To utilization tou cuctApatog. Evd xan ot 800 petpxéc napoucidlouy pio copn
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7.12 Melovuxéec Epeuvnuixéc Katevdivoeig

@4 FEASY Co-Scheduler

20 B Filler Co-Scheduler
17.74%

12.56%
%

7

Makespan Improvement (%)

256 256/64 256/64/512 all
Process Count Diversity

YxAua 7.12. Beltiwon tov makespan yia 600 adkyopiduovs ouvvopouoddynons oe oxéon pe tov
arAé EASY Scheduler ka1 ya S1apopetikég noikidies and tAnin diepyaocicr

Tdom, To speedups TWV £QYACLOY QUVETOL VO EYOUV UEYARDOTERY ENDEAOT], TOUAdYICTOV GTO TAdioLO
TOU GUYXEXEWEVOL TiElpduaTtoc. AuTéc ol mopatnenoelc unopolyv vo xododnyRoouy Tov HEANOVTIXG
oyedlaoud olyoplduwy. Emniéov, n onuocia twv speedups twv epyactdv yior Ty Beitivon tou cu-
vohixoV makespan avadeixvieL TV pORO TWV TEOTYOUPEVKS TUPOUCLICUEVWY LOVTEAMY TOU £Y0UV WG
oxond v TedfBredn twv heatmaps xou Ty ooy r dedouévev otov Co-Scheduler. Xtnv cuvéyela, to
XATE TUAUA TOU GYNUUTOS ETULONUAVEL OTL OL BLUPOPETIXES OVAUDLUTAEELS TWV ERYACLOY 00Ny oY OE €val
eupl @doyo anoteleoudtwy yia tov EASY Co-Scheduler w¢ mpog 800 xploweg petpuxée: ) Bektiowon
Tou makespan (IxXovOTONON GUCTAUNTOSC) X TO TOCOOTO TWV EPYACLMY TOU Tapovaiacay slowdown
o€ oyéon e tn compact extéleon (ixavornoinon yerotn). Auth n uetoBAntétnta unoypouiler oxdun
TEPLOGOTERO TNV avdyXxn Yo évay To e€eMyuévo olyoprduo cuvextéleons, wote vo emAvdel autd To

TeoBAnua Behtiotonoinong dVo xprtnelny.

7.12 Melrovtixég Egevvnuixég Kateudivoeig

Bdoel twv eupnudtov yog, dlagop@®dvoude Tic axdlovdec xateLdUVoES Yiol UEAAOVTIXY €pEuval Xou

Behtiwon tng ouvextéheong epyaoiwy oc HPC ocuothuota:

o AvidmtuZn eeMyUEVeY aAYopldUwY cLVEXTENEOTG: Lyedlaouds TEONYUEVWY oh-
Yoplduwy cuvexTéAeoTE oL 0ELOTIOLOUY Tol BESOUEVA OO To LOVTERN EQURUOYWY YIS XIS Xol

TOL UUTEQACUATA TNG TOROTAVE AELOAOYNONS TNS CUVOROUOAOYNOTG.

e YAomoinomn dinAng oveds epyactdv: Anuoupyio 800 EexWEIOTMOY OLEWY GTO UTEQUTO-

hoyloTind cho T
— Lo TopadooLloxy| ouEd Yiol ERYACIEC TOU EXTEAOLVTAL UE TOV Topadoctaxd compact tedmo

— ot €LY OLEA CUVEXTEREOTNC YLOL EQUPUOYESC TIOU UTORPOLUY Vo wpeAndoly amd T cuve-
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Makespan Improvement (%)

Makespan Improvement (%)

Pearson 1: 0.45, p: 0.00

°
L) == Trend
12 H -
10 ° 34 ."
K o
2o e o
8 3 ' Y
%
°

6 v *

° °

T T T T

1.06 1.08 1.10 L12

Mean Job Speedup
(") Mean Job Speedup

Pearson r: 0.29, p: 0.00

= = Trend o [}

T T T
0.925 0.930 0.935 0.940
System Utilization

(") Utilization ovotripatog

7.12

Makespan Speedup

Makespan Improvement (%)

MeAhovtxéc Epeuvntinée Kateudivoeig

Pearson r: 0.48, p: 0.00

== Trend ® [ ] [ ]
® [ ]
... "’0.‘%:’ -
":es—'f’f.‘.”'.‘.: e °
q .o“' ~o °
° [
q

.-
[ ] _
-

-
°

1.08

1.06
(]

T T T T
1.03 1.04 1.05 1.06 1.07 1.08 1.09
Weighted Average Job Speedups

(B") Weighted Mean Job Speedup

’__——-"—. e —®  Parcto Frontier
12.00 - 1 °
I o . o0 [ X ]
l [ ]
10.00 ,. o 3"' 4 00
P 1R TR
8.00 - ..00 ..'. ®e .
° .o‘° o
[ ]
6.00 - e
[ ]
[ ]

T T T T T T

T
175 200 225 250 275 300 325
Slowdowns (%)

(8") Iooootd Egappoydv ue Slowdowns

SxApa 7.13. Xvoyérion petald tng PeAtinoons tov Makespan kar 61d@opwy UETPIKWOY TOU TXE-
tilovTal pe Ty 1Kavonoinon ToU UaTHUATOS KAl TOU XPNoTn

xTéAEOT.

H »otdhAnAn xatavopy| epyaoltv HETOED Twv 800 0UEMY Vo UTopolcE VoL 00Ny OEL OE ONUOVTIXES
Behtiwoec oto makespan xou T ypron népwv xou vo emtevyVel pe Bdon To mpoavapepiévta

HOVTEAQL.

e« YTAormoinon véwv poviéAwyv: Avdntun co-location-centric tag-based xou Machine Learn-
ing Regression povtéhwv ohhd xol VEWY TPOGEYYIOEMY GToL UTEPYOVTA LOVTENY TNG TAEVOUNOTG

Hog.

o Ex véou agiordéynomn cOvietwv ML/NN povtéAwyv pe npaypotixd dedopévor
Me v evowudtwon tne cuvextéieong oe production cuoThuata, Yoo Xatao TEL EQUXTH 1) EXTO-
devomn xou atohdynon mo cbvietwy poviéhnv Mnyavixic Méinone xa Nevpwmvixodv Axtiony
UE HEYORDTEQO XOU THO OVTLTEOCKTELTIXE cUvola dedouéva. Autd Ho umopolioe vo odnynoel
oe o afldmoTeC X axeBelc TEoBAEdel Yol TN CUVEXTEAEDT) EQUOUOYWY, BEDOUEVWY oL TWYV
oLUVIETWY OYECEWY TOU GUVBEOLY TO DEBOUEVO XATAVIAWONE TOPWY UE TNV CUUTEQLPORE X0
& TNV oLv-TonoVETNOY Tou TEOBAENETOL OTL Yo EUVOHCOLY Ta CUVUETA, UM-YEOUUIXE LOVTEAD

My avixric Mdinorng.
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7.12 Melovuxéec Epeuvnuixéc Katevdivoeig

e Kadopiopwdg noltixnge nAnpopwy ce HPC cuvuothpata: Merétn oynudtwy mhn-
ewuwy Tou Yo Aaufdvouy unodn to Thavd slowdowns Adyw cuvextéleong. Oo mpémel va die-
eeuvnioly unyaviouol anolnuiwong 1 dlapopononuévng TWoAGYNoNG Tou var avTxatonteilouvy

TIC EMUNTOOELS TNG CUVEXTEAEOTC OTIC EQUPUOYES TWV YENO TAOV.

e JUVEXTEAEOT] TEPLOCOTERP®Y ANO 80O ePAPROYOY avd xouBo: Awpedvnon Tng
BUVUTOTNTOC CUVEXTEAEDTC TEQLOCOTEPWY Amd BVO EPUPUOYDY GTOV (Bl0 UTOAOYLOTIXG XOUf0,

hoBdvovtag vogn TN yehon TopwY xal TS IAANAETLOEAOELS HETAUED TOMNAATAY EQPOOUOYOV.

o Katapepiopds tng cache (Cache Partitioning): Ylonoinon otpatnyixdv xotoyept-
ouol e wvAung cache hote vo ehayiotomoindel 1 aAAnhentidpoom xou 0 AVTAYWVIOUOSC UETAED
EQOQUOYWY TIOLU GUVEXTEAOUVTAL, aEdvovTag €Tol TN oTadepdTnTa Xot TNV TEOBAePUOTNTA TNG

anédooTC.

o Evepyeiaxn anodotixotntor: Melétn tng enldpaons Tng CUVEXTEAEGTC OTNY XATAVAAWCT)
evépyelag Twv HPC ocuotnudtwy xou avantugn teyvixmy mou enitpénouy e€oxovounaor evépyelag

X welg vor utoBoduileton N amdBO0T| TWV EPUPUOY Y.
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