9
A
HOEVS L.
El§
nVvpPopos

Bl

P’“;;:':‘ : D
P

W om

N\

|

E®NIKO METZOBIO ITOAYTEXNEIO

2XOAH HAEKTPOAOTQN MHXANIKOQON KAT MHXANIKOQN YTIOAOTTETON
TOMEAX. HAEKTPIKOQN BIOMHXANIKQN AIATAZEQN
& LYETHMATON ATIO®PAZEQN

Evioyvtikn Madnon kot @vcikd Movtéra ya Ilpofieyn
Kotaostaong ®optiong o Mrnatapies [ovrov ABiov

AITIAQMATIKH EPTAXIA

KOQNEXTANTINOX BAXIAAKHX

Empiénov: I Mévtlag
Kafnynmg E.M.I1.

AbBnva, 24 deBpovapiov 2025

H celida avtr eivon oxdmpo AevK.

EOGNIKO METXZOBIO ITOAY TEXNEIO

2~ XOAH HAEKTPOAOI'GN MHXANIKQN
KAI MHXANIKQN YITOAOT'IZETQN

TOMEAX HAEKTPIKON BIOMHXANIKOQN
AIATAZEQN & ZYEZTHMATQON AIIOPAXEQN

g
of

WA

%
POMHOEVS
=
A VP POP

Reinforcement Learning and Physics-based Models for State of
Charge Prediction of Li-Ion Batteries

AITIAQMATIKH EPTAXIA

KOQNXTANTINOX BAXIAAKHX

Empiénov : I. Mévilag
Kadnyntmg E.M.IL.

Eykpinke and v tpuein e€etactikn emrponn v - PePpovapiov 2025.

I Mévtlag A. Ackodvng E. Mapvéxng
Kafnynmg E.M.IL. Kafnynmg E.M.IL. En. Kabnyntig E.MLIL

ABMva, 24 OeBpovapiov 2025

Kovetavrtivog Bacihakng

Authopotovyog Hiektpoddyog Mnyavikog kot Mnyovikdg Yroroyiotov E.MLIT.

Copyright © - 2025
Me gmeOdlaén mavtog dwkaidpotoc. All rights reserved.

AmayopeveTaL 1] AVTLIYPAPT, 0TOONKEVOT] Kot S1OVOUT TNG TAPOVGCAS EpYaciog, €& 0AOKANpoL 1
TUNLLOTOG OVTYG, Y10 EUTMOPIKO oKomd. Emitpénetan | avatdhnwor, amobikevon Kot dtovopn yio
OKOTO 1] KEPOOGKOMIKO, EKTALOEVTIKNG N EPEVVITIKNG VO, VIO TNV TPOLTOOEST] VO AVAPEPETAL 1|
YN TPOEAEVGONG KoL VoL ST pEiTOL TO TapoV punvopa. Epompato mov apopoldv) ypnon g
£PYOOIOG Yo KEPOOGKOTIKO GKOTO TPEMEL VoL ameLBVVOVTOL TPOG TOV GVYYpapéa. Ot amdyelg Kot To
GLUTEPAGLLOTO TTOV TEPLEYOVTOL GE OVTO TO EYYPAPO EKQPALOLYV TOV GUYYPOPEN Kot dEV TPETEL VoL
epuNvevbel 0TL avTITpocOTELOLY TIg emion e Béaelg Tov EOvikod Metaofiov [ToAvteyveiov
(N.5343/1932, 4pBpo 202).

Mepiinyn

O oxomog ™ SMmMAMUATIKNG gpyaciog elval 1 avantuén pog pebodoroyiog n omoio
umopel va. ypnowonomBel v tov vroroyioud g Koatdotaong @optiong pnatapunv
[ovtov ABiov. T'evikdtepa 600 Poaocikés puébodol pmopovv va ypnoywomombovdv yuo v
LOVTEAOTTOINGN €VOG GLGTNUATOG, N TPOTN Paciletol 6g KATOWO VGIKO HOVIEAO TO O0mOi0
amotereiton amd €I0MGES TOV TEPLYPAPOLY TN CGLUTEPIPOPE TOV GULOTHLOTOS KO M
debtepn oe mpooeyyioelg Poaciopéveg o TtEYVOAOYieG MUNyovikng pdabnong oOmov 1|
ovoumeplpopd pobaiveTtor amd KATO0 GUVOAO UETPNCE®V TOV NON VIAPYEL. XE ALTAV TNV
gpyacia ypnoonom)dnke voag GuVOLAGHOG TV dVO TOPATAVED HEBGd®MV OOV Eva PLGIKO
povtélo ¢ uratapiog onuovpyeiton pe Pdon €va Movtéro Ioodbvapov Kukiopatog evo
Ol TOPAEPETPOL TOV HOVTEAOL ALTOV VITOAOYILOVTOL GE TPOYUATIKO POV amd Eva VELP®VIKO
dikTLO TO OMOol0 EKTAOEVETAL GE £Vl GUVOAO TEIPAUATIKOV HETPTCEMV YPTCLOTOUDVTOG
nedddovg Evioyvtikng Mdbnong.

H pébodog mov meprypdetal 6ToxeVEL GTO VO GLVOVAGEL TAEOVEKTUATO KO OO TIG
Vo empuépovg UeBodOAOYIEG YPNOYLOTOIDOVTOS TO PUGIKO LOVTEAO YO VO TPOCEYYIGEL TN
Bacwkn SVVOUIKY] TOL GUOTAHOTOS KOl TO VELPMVIKO JSIKTLO Yo Vo LTOAOYICEL TIg
TOPOUETPOVG TOL KOl VO PEATIOGEL TN GULUTEPIPOPA TEPLYPAPOVTAS TOAVES Un
YPOUUIKOTNTES TOL EUTEPLEYOVTOL GTA TEPAUATIKG dedopéva. ZTdyog eivar n onpovpyia
€VOC GUVOMKOU HOVTEAOL pe évav amodektd ovuPipacud petald axpifelog ko
moAvmAokOTNTOG TO omoio B umopel vo ypnowomombel ce €PoprOyES OV amonTeiTOL
VTOAOYIOUOG GE TPAYUATIKO XPOVO.

Aé€erg Khewona: evioyvtikn pdonomn, poviéAo 10000VOHOL KUKADUOTOS HTOTAPIOG, VITOAOYIGHOC

KATAGTOONG POPTIONG, LOVTEAOTOINOT LITOTopiog

H celida avtr eivon oxdmpo AevK.

Abstract

The scope of the thesis is the development of a methodology that can be used in order
to estimate the State of Charge of Li-ion batteries. In general two basic methods can be used
when modeling a system, physics-based approaches, where the underlying equations of the
system are derived and solved, and data-based approaches, where the behavior is learned
from a dataset using machine learning methods. In this work a hybrid approach is utilized
where a physics-based model for a battery is derived based on the battery’s Equivalent
Circuit Model (ECM) while the parameters of the model are estimated in real time by a
neural network that has been trained on a dataset of real measurements using Reinforcement
Learning.

The approach described is focused on combining advantages from both methodologies
by using a physics-based model to describe the base dynamics of the system while
estimating the model parameters and capturing any additional nonlinearities present by
utilizing a data driven approach. There is also a strong focus to produce a combined model
with a good trade off between accuracy and complexity that can be used in applications with
real time requirements.

Keywords: reinforcement learning, battery equivalent circuit model, state of charge estimation,

battery modeling

H celida avtr eivon oxdmpo AevK.

IHivakog mepreyopévmv

1 Exteviig [lepiinyn

2 Introduction

2.1 Overview

2.2 Motivation

2.3 Problem Statement

2.4 Objectives

3 Literature Review

3.1 State of Charge (SoC) Estimation Method

3.2 Battery Models

3.2.1 Physics-based electrochemical models

3.2.2 Equivalent Circuit Models

3.2.3 Data Driven Methods

3.2.4 Hybrid Methods

4 Approach of the Thesis

4.1 Selection of the Battery Model

4.2 State of Charge Estimation Method

10
16
16
17
17
18
19
19
20
20
21
21
22
24
25
27

4.3 Mathematical Representation

4.4 Parameter Description

4.5 Reinforcement Learning

4.6 Description of the Methodology

5 Implementation

5.1 Datasets

5.1.1 Dataset Description

5.1.2 Dataset Overview

5.1.3 Data Selection

5.1.4 Exploratory Data Analysis

5.2 Software Framework Overview

28
30
31
33
39
39
39
41
43
45
47

5.2.1 Data Management

5.2.2 Battery Simulation

5.2.3 Reinforcement Learning Algorithm

Training Code

Evaluation Code/Result Analysis

5.2.4 Dataset Visualization

5.3 Training Methodology

5.3.1 Alternative Models

48
49
51
52
55
58
59
59

5.3.2 Training Process

5.4 Evaluation Methodology

6 Results

6.1 Experiments

59
61
63
63

6.1.1 2nd Order ECM - Linear SoC Approximation

6.1.2 2nd Order ECM - Cubic SoC Approximation - Model 1
6.1.3 2nd Order ECM - Cubic SoC Approximation - Model 2
6.1.4 2nd Order ECM - Cubic SoC Approximation - Filter

6.2 Evaluation of Results

6.3 Effects of Datasets

7 Conclusion

7.1 Summary

7.2 Key Findings and Evaluations

7.3 Limitations

7.4 Future Work

8 References

63
66
69
72
76
77
79
79
79
80
81
83

List Of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10
Figure 11

Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:

ECM Circuit

Neural Network - ECM Interaction In Training
Deployed Neural Network - ECM

Training Approach

Circuit of Battery Model

High Level Neural Network Training Process

Input from Dataset to Neural Network

Inputs/Outputs of Physics-Based Model

Reward Function of Reinforcement Learning Algorithm
: Model Deployment Methodology

: Neural Network - Physics Based Model Interaction In Training
Neural Network - Physics Based Model In Deployment
Example of Dataset Filenames

Dataset File Internal Structure

Battery’s Current, Voltage and State of Charge
Battery’s Temperature

Battery’s Current, Voltage and State of Charge (1 Cycle)
Model 1 - State of Charge Results

Model 1 - Neural Network Parameters

Model 1 - ECM Inputs and Outputs

Model 2 - State of Charge Results

Model 2 - Neural Network Parameters

Model 2 - ECM Inputs and Outputs

Model 3 - State of Charge Results

Model 3 - Neural Network Parameters

Model 3 - ECM Inputs and Outputs

Model 4 - State of Charge Results

Model 4 - Neural Network Parameters

Model 4 - ECM Inputs and Outputs

Model 4 - Results (3 Cycles)

11
13
14
24
26
32
34
34
35
37

38
41
42
45
46
47
64
65
65
67
68
68
70
71
71
74
75
75
78

List Of Tables

Table 1: Parameter Ranges for Equivalent Circuit Models
Table 2: 2nd Order ECM + Linear SoC Results

Table 3: 2nd Order ECM + Cubic SoC - Model 1 - Results
Table 4: 2nd Order ECM + Cubic SoC - Model 2 - Results
Table 5: Model 4 - Filter Parameters

Table 6: 2nd Order ECM + Cubic SoC + Filter - Results

Table 7: Comparison of Results

31
66
69
72
73
76
77

Abbreviations

BM
BMS
CC
DDM
ECM
MAE
ML

ocv
RF

RL
RMSE
SAC
SoC
SoH

Battery Model

Battery Management System
Coulomb Counting

Data Driven Methods
Equivalent Circuit Model
Mean Absolute Error
Machine Learning
Neural Network

Open Circuit Voltage
Reward Function
Reinforcement Learning
Root Mean Square Error
Soft Actor Critic

State of Charge

State of Health

Extevng Ilepiinyn

Ewayoy

O oxomd¢ ¢ Tapovoag epyaciag ival n Tpocopoimon TG Asltovpyiog HraTapidV
wvtov AMbiov (Li-ion) pe Pactkd oKomd 1oV LTOAOYICUO TNG POPTIGNG TOVS TNV KAOE
ypovikn otiypr (State of Charge). H peBodoroyia eivar évag ocvvovaouds
TAPOOOCIOKNG LOVTEAOTOINGNG VO GUOTNUOTOS UE TNV XPNOT €VOG HaBNUATIKOD
povtélov katl pefddmv evioyvtikng pddnong. To teAikd povtédo amoteleitan amd Eva
160d0vopo ponpatikd cvotnua yia v protapio (Equivalent Circuit Model, ECM -
Movtélo Ioodvvapov Kukhdpatog) Kot £va vELpoVviKO dIKTvo Tov £xel eKTodevTel
péom evioyvtikng padnong (Reinforcement Learning, RL) to omolo emdpd mévw 610
@Lod povtého aArdlovrog Tig TapapnéTpovg Tov (Model Calibration). H Bacikn 0éa
elvalr 0Tt KaBdg o1 TOPAUETPOL TOL HOVTIEAOL Ogv €ival YVOOTEG Kol UTOpel va
aArhalovv Kotd TV Asrtovpyio 0 VTOAOYICUOG TOVG YIVETOL TG TO VELPOVIKO OIKTLO

RL 10 omoio £yt exmaidevtel Tve 6e TPOyUATIKA TEWPAUATIKA dEGOUEVA.
Me0odoroyia

1. Emioyn Movtéhov Mratopiog

‘Eva and o mAéov ypnoomolovpeva poviéda purotoapiog otn Prpioypagio sivorl to

2nd Order Battery ECM (Equivalent Circuit Model) to omoio gaiveton 6to mapakdato

oXNHO!

10

O
$4—

Figure 1: ECM Circuit

To povtédo avtd ypnoyonoteital yu Tov voAoyiopo g V. (Open Circuit Voltage)
n omoia givar M thon ™G pmatapiog OTav ovt OV givol cuVOEdEUEVT] GE KATOL0
KOKAopa. Ot avTloTdoelS Kol TUKVOTES amOTELODV £VoL OTAOTOUEVO LOVTEAD TMV
QULGIKOYNUK®V JEPYACIOV HECO OTN Uratapio (ECOTEPIKT OVTIGTAOT), VOTEPTOT Kot
nolwon). H V. umopet va petpnfel mepapatikd av n pratoapio arocuvoedel, apebet

xopig poptio Yo KATOLo YPpovikd ddotnua Kot HeTd petpndet Eova n tdon .

2. Emi.oyi pedéoov tpocéyyiong tov SoC

I'vopifovtag ™m V., amd 10 mopamdve cOGTNHE UTOPOVUE VO VTOAOYIGOLUE TN
@option ¢ umatopiag (SoC) emedn vdpyel GLGYETION UETOED TV 000 (KOUTOAN
SoC - OCV). H npaypotikn oyéomn tovg givor moAdmiokn Kot e€aptdraol Kot amd tov
tomo ¢ pmatopiog. [evikdtepa vIApYoLV SAPOPES TPOCEYYIGEIS TOV UTOPOVUE
ypnooromcovpe. Mia amd avtéc eivar n mpocéyyion g Vi ooV €va TOAVMOVLLO
™G SoC. Mmnopodue emiong av Béhovue va glcdyovpe Kot v Oeppokpacio cov

napdpetpo. Mia tpocgyyion tvor n mapokdTm

V. =p,(50C) + p(T)

11

omov pl wor p2 eivor moAvdvopa g EOptTiong Kot Bepuokpaciog avticTorya,

TOLPASELYLLOL

n n—1
pl(SoC) = anSoC + an_lSoC + -+ alSoC + a,

"Exovtoc to mapamdve PUmopovpe amd UETPNGELS TAGNG KOl PEVUOTOS GTA OAKPO, LLLOG

TPUYUOTIKNG UTOTAPIOG VO VTOAOYIGOVLE T QOPTIO).

3. Yn0oroYlop@V TOV TOPIUETPOV TOV HOVTELOD

Ye ovtd to onueio yoo vo yivouv ot TOPATAVEO VLTOAOYIGUOL TPEMEL VO EXOVUE
VTOAOYICEL TEPAUATIKA TIS OAPOPES TOPOUETPOVS TOL HOVTEAOL OMAdY| Tig
avtiotacelg kol Tokvotss (R, Ry, R,, C;, C,) tov ECM kafag kol 6heg Tic otabepég
TOV TOAV®VOHOL Tov emAéCope oto Prua 2 yuo v mpocéyyion tov SoC. Avtd
vevika gtvar pio moAvmAokn dtadikacio, amortel TOAAEG TEPALOTIKEG LETPNGELS Kot Ol
Tipég mov vroroyilovran givarl otabepés, ol omoieg Opwe pmopel kot va aAAdlovy KoTd

T0 GLVOMKS ¥pdvo NG pio TPOYUOTIKNG UTaTapiog.

e avtd 10 onueio pebodoroyio TOL TOPOLGLALETUL TPOTEIVEL TV AVTIKOTAGTOCN
0V PHaTog avTov HE TV XPNOoMN EVOS VELPOVIKOD OIKTVOVL TO OToio Yo KAOE TN
Tdong, pevpatog kot Bepuokpacio mapdyst oG ££000 TIG TAPOUETPOVG aVTEC. Me
KOTOAANAN €KTOHOEVON TO HOVTIEAO 0OUTO EMAEYEL KOTAAANAQ TIG TOPAUETPOVG

TPOSTOOOVTOG VO, EAAYICTOTOGEL TO GOAALA TNG TS Tov SoC mov vroAoyiletail.

l E ,ﬁ E 'DI,B

Onwc meprypdonke Topomdved ot TOPEUETPOL EKTILAOVTAL OO £V VELPOVIKO O1KTLO
Tov €xel ekmondevtel pEc® evog alydpduov evicyvtikng pdnone. To povtého avtod
ypnowonotel £va dataset to omoio mepiéyet petpnoeis ywo V, I, T kot SoC,., mov €xovv

petpnBel xoatd ™ Aewovpyio piog pmatoapioc. AnAadn katd Tn SWUPKEW €VOG

12

TEPALATOG LETPALE TNV TAGT Kol TO peLULA OV divel N pumatapio o Eva poptio, TNV
Bepurokpacio g kat v eoption ts. H pdption (SoC,.,) apkel va mpocdoptotet pe
KOO0 TEPAUATIKO TPOTO KATA TO 1010 melpoapa 1 akduo va givor 1 €£060¢ €vog
GAAOL VEVPMOVIKOD OIKTOOV TO OTOI0 £YEL EKTOOEVTEL HEGM UNYOVIKNG HaOnong (to
omoio yw €w0ooovg V, I, T divel cav £€€0do éva SoC) ota avtictoryyo dedouéva.
Xpnoonoumvtag 10 Hoviédlo tov Pnudtov 2 kot 3 pali pe ta meipopatikd dedopéva

EKTTAOEVOVE TO HOVTELO EVIGYVTIKNG LdOnomng pe Pdon v Tapokato dtodikacio

Physics-based
Ewar System Model

Figure 2: Neural Network - ECM Interaction In Training

1. Opilovpue éva action kou state space yio Tov veupmvikd 6iktvo mov BEAoLE va
EKTTOOEVCOVE

2. Me gicodo petpnoeic V, I, T avtd pog mpoteivel KAmoleg mapapéTpous yio 10
paOnuotiKd povtédlo

3. Me 1 deg perprioeig V, I, T ko 11g mopapétpoug mov £xel eKTIUAEL TO
VEVPOVIKO SiKTLO ADVOLUE TO HoONUOTIKO HOVTELDO kot vroloyilovue €va
SoCqc

4. Xvykpivoope 1o SoC, pe t0 S0C,, TOV €xovpe NN Yo TN dadKacio (ord
TEWPAUATIKEG LeTPNOELS) Kol btohoyilovpe éva reward function.

5. Avatpoeodotodpe t0 omotédecpo tov reward function otov adyopiBuo
EVIOYLTIKNG pabnomg o omoiog pvOuilel to vevpwvikd diktvo mpoomabmvrog
Vo EMAEEEL TOPAUETPOVE TOV EANYIOTOTTOLOVY TNV OAPOPA OVTOV TV V0

TV Tov SoC

13

6. Zvveyilovue yuo Oleg Tig Tég Tov dataset mov €yovpe. TeAkd To vELPOVIKO
dtktvo Yo dedopéves tipeg V, I xor T poBaiver va emdéyel Tig TIHES TOV

QLoD povtéAov £tol dote 1 T SoC,. Vo Tpoceyyilel TNV TPOYUATIKY.

4. llpaypatikn Agrtovpyia

Metd v eknaidevon ypewldpacte poévo to podnuatikd poviéro (2nd Order ECM)
poli pe to povtélo RL mov €yovpe ekmondevoet. Ztnv Tparylatiky Aettovpyio EXOvHE

TO TOPOKAT® Pripota

Model
Parameters

Observation

Policy Network

Real Process

Figure 3: Deployed Neural Network - ECM

1. Katd v Aertovpyia g pratapiog maipvoupe TpoyUoTikéS HETPOELS TAOMG,
pevpatog kot Oeppoxpaciag (V, I, T)

2. Me gicodo 1 Tywég V, I, T yuo kémota xpovikn GTiypr] 10 VELP®VIKO diKTLO
pog dtvel ¢ €000 TaPAPETPOLS Y10 TO PUGIKO HOVTELD. Ot TOPAUETPOL OVTEG
OT®G avapEpOnke Kot Tapamdve eivol TYHES TOV AVTIGTACE®V, TUKVOTOV Kol

TOV VTOAOT®V TAPAUETPOV TOV GLGTHLOTOG.

14

XPNOUOTOUDVTOAG TIS TOPAUETPOVS AVTEG TOV VEVPMOVIKOD OKTVOL Hall LE TIC
npaypotikég petpnoelg V, I, T pmopovpe va Adoovpe 1o HOVTEAO Kot Vo,
VTOAOYIGOVE TNV KATAGTACT) POPTIONS TNG UraTapiog

Agdopévou 0Tl T0 vevpvikd OiKTLOo €xel ekmandevtel cmaTd N T avt O

TPEMEL VO GUYKAMVEL GTNV TPOLYLOTIKY TN TS OPTIONG TNG UTaTopiog

MlsovekTinota

Kémown amd ta mAeovektpata e peddoov avtig eival Ta TapakdTo

1.

Mmnopet va ypnoyoromBel pe éva pabnuatikd poviélo 6mov avtd Kpiveton
OKOTO, Yl Topddelypo o€ mpoPANUaTo. Tov MON LEAPYEL OOVAELY
poOnuotikng povtelomoinong evog GLGTHUATOS OO TO TAPEAOGV

Yovovalert v mopadooloKy povieromoinon pe pebodoovg Evioyvtikng
MéOnong 1o omoio pmopel va PeEATUOGEL TV ATOS0GT LOONUATIKOV LOVTEA®DV
7OV 101 VILAPYOLV.

To povtéro evioyvtikn pudOnong (RL) dovAevel mapdiinia kot aArdlel Tig
TIéG T0v ELGKOV povtélov (ECM) katd v Aettovpyia (Online Calibration).
AvtO pmopel vo 0dNynoel € AMAOTOWGEL TOV (QULGIKOL HOVIEAOL aPOV
TAEOV, OEJOUEVOL OTL O1 TAPAUETPOL AAAALOVVY, OVTO UTOPEL VO TPOCEYYIGEL UN
YPOUUKEG GUUTEPLPOPES TTOV TPV {omG dgv NTay duvatov N xperaloviay pio
OKOMOL TT10 TOADTAOKT LaONUOTIKN TTEPTYpap.

g KAmo1ovg TOMOVG TPOPANUATOV O GUVOLAGHOG TOV HOVIEA®V UTOopel va
BeATidVEL TN OULVOMKY] GUUTEPLPOPE OPOV TO VELPOVIKO OIKTLO KAVEL
calibration tov @LGIKOD HOVTEAOL evd avTOd pe TN Porbela TV eElcdoewmY
umopel va mpooeyyilet KoAOTEPA TN OLVOUIKY) TOL GCULGTNUOTOS OF

oLYKEKPLULEVA onpeia Asttovpyiog.

15

Introduction

2.1 Overview

Today there is an increased reliance on batteries across different types of applications,
such as electric vehicles and renewable energy storage systems that requires an
efficient management of the battery’s health and performance. A key metric in battery
management systems (BMS) is the State of Charge (SoC) which is a measure of the
energy remaining in the battery that can be used by our application. An accurate
estimation of SoC plays a vital role in optimizing utilization of the battery system and
extending the battery’s lifespan. Different ways of SoC estimation have been
proposed, which are generally divided into two big categories, the first one involving
the utilization of physics-based battery models and the second various machine
learning methods that are trained on experimental datasets. Equivalent Circuit Models
(ECMs) for batteries are commonly employed for this purpose due to their simplicity
but their static parameters often fail to capture the changing operating conditions of a
real system. This thesis proposes a novel approach that integrates reinforcement
learning (RL) to dynamically adjust the parameters of the ECM in real time and trying

to improve the accuracy of SoC estimation under various conditions.

16

2.2 Motivation

Traditional methods for SoC estimation rely on physics-based models of batteries that
mostly have static parameters that have been estimated during the model
identification. These parameters in general may not adequately account for variations
in the behavior of the battery caused by temperature changes, aging or nonlinearities
that are inherent in the process. Different techniques have been implemented in order
to account for the differences in battery behavior, such as Kalman filters, but these
methods often struggle with the model nonlinearities, require manual tuning and they

are computationally more intensive if employed in a real time scenario.

Reinforcement learning techniques offer an alternative approach that allows the
system to learn and adapt autonomously. Using them, a neural network can be trained
that can update the parameters of the physics-based model online eliminating the need
for manual calibration or the recalibration to fit different scenarios. This can offer an
attractive alternative for commercial application where the battery is expected to work
under different working conditions, such as warm and cold climates and across the

different stages of the battery’s life.

2.3 Problem Statement

Current battery management systems have limitations in accurately estimating the
State of Charge (SoC) due to either the inability of the models to capture the behavior
for different working conditions or the inherent non linearities of the battery system

without becoming too complex and computationally intensive. In general

1. Static model parameters can lead to increasing estimation errors under different

scenarios of operation.

2. Manual recalibration of the models can be time consuming and also impractical for

commercial applications.

17

3. Other techniques can struggle when handling model nonlinearities (Kalman filters)
or be computationally intensive for a real time application (Electrochemical battery

models).

This thesis addresses these limitations by developing a reinforcement learning based
neural network that adjusts the model parameters of a Li-ion battery ECM (Equivalent
Circuit Model) attempting to combine traditional modeling with learning techniques

thus improving the accuracy and robustness of the overall model.

2.4 Objectives

The primary objectives are the following:

1. Select a battery model, from the ones available in the literature, that can adequately
capture the behavior of Li-ion batteries and be used for the estimation of the battery’s

SoC.

2. Develop a reinforcement learning methodology that can be used to train a neural

network capable of online calibration of the battery model.

3. Train the neural network using datasets of real Li-ion batteries under different

working conditions.

4. Validate the proposed approach through simulations of different working conditions

based on real data.

5. Explore how slight variations of the selected physical model can affect the resulting

accuracy.

18

Literature Review

3.1 State of Charge (SoC) Estimation Method

Battery Management Systems (BMS) are utilized in order to enhance battery lifetime,
reliability and efficiency [1]. Their main objective is, amongst other things, to monitor
the State of Health (SoH) which estimates the battery’ condition and State of Charge
(SoC) which is an important parameter that measures the remaining capacity on a
battery. One drawback when estimating these parameters is that they cannot be
measured directly from the available sensors (in an electric vehicle for example) and
are also dependent on many factors such as current, voltage, temperature, aging etc.

which raises the need to develop accurate estimation algorithms.

There are a number of different approaches for estimating the State of Charge such as
Coulomb Counting (CC), open-circuit voltage (OCV) methods, electrochemical
methods, machine learning based methods, Kalman Filter based methods and others
[2]. Some of the methods such as Coulomb Counting or machine learning methods do
not need to explicitly define a battery model, while others can use an equivalent
model (models based on ECM or Kalman filtering) or a model that describes the inner
battery processes (electrochemical models). Different methods have different
computational complexities either upfront (learning or hybrid methods) or during the

solution of the models (electrochemical methods).

One popular approach is the modeling of the battery’s State of Charge through its
relationship to the Open Circuit Voltage (SoC - OCV curve) which is an internal

characteristic of a specific type of battery. This approach can be generalized to

19

different batteries but it should be noted that modeling and parameter estimation
should be repeated for different types. The SoC - OCV curve is generally a nonlinear
monotone function and a good estimation of this curve leads to more accurate models.
The estimation of this curve is generally involved and needs to find a good function to
approximate the curve, parameter identification and also a good way to model the
Open Circuit Voltage of the battery as this quantity is also not directly measured to a
battery that is in use. (To measure OCV experimentally for a specific battery state we
need to disconnect the battery and let it settle for some time and then measure the
voltage again). Several functions have been proposed that model the SoC - OCV
curve that include polynomial functions of various degrees, logarithmic, exponential
or a combination of them. The function becomes even more complex if we need to

include other variables such as battery temperature or aging.

3.2 Battery Models

The battery models that exist in the literature in general can be divided into the
following categories: physics-based electrochemical models, electrical equivalent
circuit models (ECMs) and data driven models utilizing artificial intelligence

algorithms such as neural networks and support vector machines [3].

3.2.1 Physics-based electrochemical models

The most mature of the physics based electrochemical models is the single-particle
model where the concentration distribution in the electrode is done through a single
particle. Though simple this model has a relatively low accuracy which has led to the
extension of it by other models, for example SPMe that utilize more complex
modeling as well as partial differential equations to describe parts of the
electrochemical process. Other models such as the P2D have also been proposed that
treat the anode and cathode of the cell as porous electrodes and the spaces between
particles are filled with electrolyte. This model utilizes a system of coupled partial
differential equations PDEs which makes it necessary to introduce simplifications
from the perspective of engineering practice. Even more complex models have been

proposed, for example a P2D electrochemical-thermal-capacity coupled model that

20

accounts for several mechanical and electrochemical factors. In general all these
models are difficult to apply because they have a large number of unknown variables
and are also computationally intensive to solve especially in a real time scenario.
They are also highly sensitive to accurate estimation of the parameters which in many
cases are internal to the battery and hard to identify which can lead to simulation

results that are not ideal.

3.2.2 Equivalent Circuit Models

The electrical equivalent circuit models model the battery behavior using electrical
components [4]. They have attracted interest due to their simplified structure with
respect to other approaches. One of the simplest such models is the Rint model which
approximates the battery with a real voltage source with a resistor in series. An
extension of this model is the first order ECM which also includes an additional
resistor and capacitor connected in parallel which aims at modelling the behavior
during charging and discharging. A more complex approach is the second order ECM
that employs an additional RC component that can better approximate the polarization
and diffusion phenomena that happen during the battery’s behavior. More complex

approaches also exist that extend the model to higher orders.

3.2.3 Data Driven Methods

A variety of data driven methods (DDM) also exist that use neural networks and
various learning algorithms to simulate the behavior of the battery. These methods in
general have very good performance when it comes to the nonlinear phenomena
without requiring a detailed knowledge of the underlying electrochemical system.
When trained using comprehensive datasets can achieve high accuracy but this
depends a lot on the quality and the quantity of the provided data. On the other hand
they can struggle when approximating scenarios outside the dataset which can include
different temperatures, loads or aging effects of a battery. In addition they can also be
influenced by the training method and algorithm used which also need to be taken into

account.

21

3.2.4 Hybrid Methods

As described above an approach where the SoC - OCV curve is modeled will require
the selection of a complex function as well as the identification of a number of
parameters used in it. This is an involved process and requires dedicated parameter
identification methods also referred to as model calibration. The inferred model
parameters often correspond to real physical quantities that are not directly observable
and thus cannot be measured during operation. The relevance of the model calibration
process in the final accuracy of the predictions while also making it robust to
uncertainty in observations makes this process inherently challenging. This can
introduce computational issues such as time consuming simulations, requirements for
big datasets of high quality data and highly complex dynamic models. Also the
existence of multiple solutions which increases with model complexity should also be

taken into account.

Several methods have been proposed to tackle this problem . If a physics-based model
already exists and is well founded on known underlying physical laws the available
methods can include parameter inference using probabilistic or estimation approaches
based on techniques from optimal control theory and statistics (for example Kalman
Filters, extended Kalman Filters, particle filters, Bayesian inference methods and
other). These methods have all been deployed in some form or another in real
applications but still have limitations such as high processing power requirements or

sensitivity to any inaccuracies in the modeled dynamics.

Data Driven approaches have also been proposed as an alternative method for
calibrating physics-based models which results in a more probabilistic approach when
solving the calibration problem. A common approach is to use supervised learning
where a neural network is trained where a correlation is derived from observation and
model parameters. These methods provide real time calibration possibilities but are
also more sensitive to the absence of high quality data in the training datasets. Also in

order to adapt to new scenarios, retraining of the neural network is necessary.

22

Recently developments in model-free reinforcement learning have achieved progress
towards addressing control problems in essence effectively being successful in finding
optima control policies. RL has proven effective in finding optimal control policies
for nonlinear systems with dynamics that have a degree of uncertainty [5]. These
methodologies give some flexibility to adapt to new scenarios while they can be
employed in real time and can be utilized for the inference of the parameters of
physics-based models. One approach is the formulation of the parameter estimation as
a tracking problem where an agent is trained to keep the model response matching the

observations [6].

23

Approach of the Thesis

In this work our goal is to train a Neural Network using Reinforcement Learning to
learn to make optimal predictions of the parameters of a Physics-Based Model which
in turn will be solved to calculate the State of Charge of the battery. After the training
the models could be used to estimate the SoC during the operation. The general

approach to the training process is summarized in the figure below.

——

Neural
I Network

Dataset 2 Ve ~
1 ®
¢ Reward Reinforcement
Function Learning
' V., 1, T‘
(observation) _ Y,
2

as.ap,a1,01,80 /3)

i \ SoC
RO R1 R2 Cq CQ (aCtlon) = (estimation)
2 Ro |
I —
VI, T
(observation) _/\/\/\/\/_
R1 RZ v

Voo = 8350C3 + a,50C? + 3,S0C + by T +a,

ECM

Figure 4: Training Approach

24

The steps are described here briefly and explained in detail in the following chapters

1. Measurements (observation) from the Dataset are given as inputs to the Neural
Network (NN)

2. The Neural Network then estimates the parameters (action) of the
Physics-Based model (the ECM in this case)

3. The ECM then, using the measurements and parameters, is solved to produce
an estimation of the State of Charge of the battery at the current time step
which is then, along with the real State of Charge from the measurements,
inputted in a Reward Function

4. The result of the Reward Function is used by the Reinforcement Learning

algorithm to calibrate the Neural Network and minimize the estimation error.

4.1 Selection of the Battery Model

The first step of the methodology is to select a battery model. The purpose of this
model is to describe the internal state of the battery for the purposes of this
methodology. This essentially means to give us a way to estimate the open circuit
voltage (V,.). This is the voltage measured when the battery is not connected to any
circuit either to provide power or to get charged. In order to measure this voltage the
battery needs to be disconnected and be left idle for some amount of time, for
example half an hour, so it can settle to a voltage which represents the battery’s Voc.
In general this can vary with the individual characteristics and type of battery and it is
not feasible to be measured in a real time scenario as it needs to be disconnected. So
for our purposes we treat V. as a variable internal to the battery that cannot be

directly measured.

In general V. is a variable directly connected to the State of Charge of the battery so a
model needs to be used to estimate it from the available measurements that we have,

1.e. voltage on the battery terminals, circuit current and temperature of the battery. A

25

number of physical models can be found in the literature that belong to broad
categories, electrochemical models and equivalent circuit models. In general
electrochemical models are complex models that model the internal structure of the
battery and thus require a lot of parameters and possibly more complex mathematical
representation which is unsuitable for real time calculations. Equivalent Circuit
Models (ECMs) are considered a good middle ground between accuracy and
complexity requiring only electrical components and can approximate the battery’s
behaviour adequately. A number of models also exist in this category from very
simple one resistor models (Rint Model) to different orders of ECMs. The most
commonly used model is the 2nd Order ECM which is the one used in the following
analysis. This can adequately model the battery’s internal voltage as well as some
important dynamics of the battery such as polarization and hysteresis with the use of

two additional capacitors and resistors.

2nd Order ECM

Figure 5: Circuit of Battery Model

As we can see in the picture we have two resistor/capacitor pairs modeling the
dynamic behavior of the battery and an additional internal resistance. The value I and

V. are the battery measurements and V, is the open circuit voltage of the battery.

26

4.2 State of Charge Estimation Method

The model above gives us the means to calculate the battery’s internal variable V,,
given the measurements I and V.. An extra step is needed in order to be able to
calculate the state of charge by adding an equation for it to the model. Several SoC
approximations [7] can be found in the literature that connect the open circuit voltage
V.. with the current State of Charge. There is a plethora of models from different
order polynomials to models also containing logarithmic or exponential factors. Since
this is a non linear relationship the model can be chosen depending on the battery type
and specific dataset in order to achieve the best fit. In our case the advantage of
varying the model parameters in real time means that using a simpler model can
capture this nonlinearity which is indirectly modeled inside the neural network trained

using reinforcement learning.

There is also another factor that is taken into account and that is the battery’s current
temperature. In general the temperature is also included in the State of Charge model
and can also vary depending on the approximation and it is common to also be

modeled as a polynomial .

In our case a trade off needs to be made. Choosing a higher order model can improve
accuracy but it does have diminishing returns as we add more parameters. On the
other hand, more complex models can make the training of the RL based policy
resource intensive, as more parameters need to be checked, increasing the dimensions
of the action space. In our approach different SoC approximations have been studied,
one simpler with a linear approximation for both SoC and temperature and one with a
cubic approximation for SoC and a linear for temperature. More complex approaches
can also be studied but in our case we achieve accurate results as the RL policy also

captured part of the nonlinearities.

27

Model 1

V =aSoC+bT+a
1 1 0

oc

Model 2

V =aSoC3+aSoCZ+aSoC+a
3 2 1 0

oc

4.3 Mathematical Representation

The State of Charge estimation combined with the Equivalent Circuit Model of the
battery described in the previous two chapters gives us a complete model that can be
used in order to calculate the State of Charge of a battery based on the measured
voltage, current and temperature. The combined model consists of the following

system of algebraic and differential equations

For each capacitor resistor pair we have that

av

vV
= — < 4 R
I—IC+IR—C - TR

Also from the whole circuit by applying the Kirchoff’s law of voltages we have that

Vv =V +IR0+VR1+VR2

oc

Two additions to the model have also been made in order to improve the overall

behavior taking into account also the integration with the neural network

Firstly a limit function has been placed in the output of the model that bounds the SoC
between 0 and 1, which are the values that it can normally take. This is done to

remove possible peaks and undershoots created during the operation. Secondly taking

28

into account that the neural network changes the parameters of the model in real time
this can in effect create discontinuities internally in the ECM circuit. The NN also has
the ability to select any parameter within the action space which can have two effects.
Firstly it can change a capacitor to a very low value in which the capacitor voltage
(i.e. the capacitor voltage in the previous timestep) is higher than the one that could be
achieved in the new circuit. Secondly it can change the capacitor to a very high value
and because the capacitances are selected with high upper bounds, this can make the
circuit very slow in reacting (since the capacitor will need to be charged requiring a
lot of timesteps). The same applies in changes to the values of resistances. To solve
these two problems a check has been applied so if the previous capacitor voltage is
higher than the upper limit or lower than 70% of the max limit it is adjusted to 85% of
the max value. These percentages have been empirically selected but work well in

practice.

Taking into account all the above the equations of the complete model are given

below
ECM

dvcl R1
C—ot+=1

1

C dvcz + VRZ = J
2 dt R2
VRl = Vcl' VRZ = VCZ

V0C= V + IRO + VR1 + VR2
SoC (one of the two equations)
V =aSoC+bT+a

1 1 0

oc

V =aSoCB+aSoCz+aSoC+a
oc 3 2 1 0

29

Limit Functi

SoC =1, 80C > 1
SoC = 0, S0C < 0

= 0.85IR,V >1IR orV < O0.7IR
1 cl 1 cl 1
= 0. 851R2, ch > IR2 or ch < 0. 7IR2

cl

c2

4.4 Parameter Description

As we can see the above model has parameters that need to be identified or estimated.

The parameters are the following

2nd Order ECM: R, R, R,, C,, C,
SoC Approximation: as, a,, a;, b;, 8, or a;, by, a,

so we have to identify 8 to 10 parameters depending on the SoC approximation we

choose.

The ECM parameters are the values of the internal circuit components that model the
behavior of the battery. In essence Ro is the internal resistance of the battery and the
R1 - C1, R2 - C2 pairs model internal battery dynamics such as polarization and
hysteresis. For example if the battery is in use and the charging cycle has started it
takes some time for the internal voltages to settle because of the internal

electrochemical phenomena that are here modeled by the capacitors.

The table below contains a range of typical values for the parameters based on their

order of magnitude

30

Table 1: Parameter Ranges for Equivalent Circuit Models

Minimum Value Maximum Value
R, 0.001Q 0.1Q
R, 0.01Q 0.5Q
R, 0.05Q 1Q
C, 500F 5000F
C, 5000F 10000F
a; -0.1 0.1
a, -1 1
a, 0 5
b, -0.5 0.5
a, -10 10

Please note that the above are roughly the orders of magnitudes for the variables and
are used as limits during the training process of the NN. They do not necessarily have
any strict limitation and should be tinkered with during the modeling process to
achieve the best results. For example a range could be increased slightly or a subset of
the above ranges could be used to improve training time if it is judged that a reduced

range is adequate for the modeling process.

4.5 Reinforcement Learning

As discussed in the previous chapters the above model is adequate, given the directly
measurable inputs V, I and T to calculate the current State of Charge of the battery.
The only missing part is the estimation of the parameters of the model. This
traditionally is achieved by identification techniques in the laboratory and in general
when the parameters are identified they remain fixed to specific values. A different

approach that is used in the current thesis is instead to use a neural network trained

31

using reinforcement learning to learn a policy that itself will be responsible for
dynamically updating the parameters of the model during operation. This offers the
advantage that no identification is required as the neural network learns to propose
optimal values of the parameters in real time while the parameters are updated at each
timestep, not forcing us to adhere to a single set like in a more typical identification

process.

Policy Network

Figure 6. High Level Neural Network Training Process

As seen in the figure above a neural network is trained and an optimal action is
learned. In our case a state is represented by the actual measurements that are acquired
in real time or through a dataset, i.e. the voltage in the battery terminals, the current
and the battery temperature. This NN in turn is responsible to produce an optimal
action, which in our case is an estimation of the parameters described in the previous
chapter, that will minimize the reward function. The goal of the Reward Function
(RF) as defined in this problem is the minimization of the error of the calculated and
the real State of Charge of the battery.

There is no specific requirement about the RL algorithm that is needed to be used in
the problem so experimentation with different algorithms that meet the problems
criteria can also be done. In our case a Soft Actor Critic (SAC) algorithm has been
used that has the following advantages

1. Encourages the agent to explore more by adding an entropy term in the reward
function thus reducing the chance to get stuck in local minima

2. Increases training efficiency by using a replay buffer that keeps past training
states

3. Has improved critic performance by using two separate neural networks
mitigating overestimation bias.

32

In any case though other RL algorithms could also achieve similar results so this is
open for experimentation.

4.6 Description of the Methodology

Integrating all the above we have the final system that can be used for the estimation
of the State of Charge of the battery. The first step that needs to be done is the training
of the NN by the RL algorithm so it learns the optimal policy for parameter
estimation. In our approach we used two different SoC models (as described above)
which results in systems with different numbers of parameters. Below we will
describe one of the two systems but the approach is similar for both. It should be
noted that for each change of the physical model, i.e. the ECM or the SoC

approximation, a new NN must be trained.

Training
First we train the neural network. This process takes the most time and a quality

dataset is necessary for good results. The process is a follows:

1. In this step the model starts from an initial action that is produced by the
neural network, that is arbitrary in the beginning as the network is untrained
and converges to the optimal values as the training continues. The input
(observation) to the NN comes from the dataset which is the measurement
values for voltage, current and battery temperature.

2. The model then generates a new range of parameters (action) that are all
bound by the action space during the problem formulation. This essentially is

the expected range for the parameters (described in the previous chapters).

33

Dataset

MNeural
Network

| VLT
{observation)

Figure 7: Input from Dataset to Neural Network

3. The parameters (action) along with the measurements (observation) are then

fed to the physics-based model i.e. the ECM and SoC approximation models

which can now be solved arithmetically.

83,82,81,b1,ao VLT

Rq,R1,R2,C4,Co

Cq Cy

WA A

- R1 R2

Voo = a350C3 +a,50C2 + a4SoC + by T + 3y

Physics-Model

SoC
(estimation)

Figure 8: Inputs/Outputs of Physics-Based Model

34

4. The physics-based model then produces a new SoC estimation that
corresponds to the current observation. This estimation is then compared with
the real SoC that is included in the dataset, using a reward function and the
result is used by the reinforcement learning algorithm to calibrate the neural

network which learns the correct policy for minimizing the error between the

two values.
Physics Model
SoC
(estimation)
\'/_
— 3 Reward —_>
' Function
SoC
(real) \)
Dataset

RL Network

Figure 9: Reward Function of Reinforcement Learning Algorithm

Deployment

When the training process is completed a neural network is produced which has
learned an optimal policy that attempts to reduce the SoC estimation error of the
ECM. In general this policy is the best one found during training that minimizes this
error. That said there could be different policies that produce similar results that could
be learned by the neural network or even suboptimal policies if the model converges

to possible local minima that may exist. The goal is to keep a model simple enough to

35

minimize this effect, as well as use RL algorithms that encourage exploration even if
they have found a possibly good solution. Now that the NN has learned an optimal
policy it can be used for a specific observation to give the best action (i.e.

combination of parameters to be used in our case in the following way)

1. Each time new measurements are available, in our case the voltage, current
and temperature of the battery, these values are used as an input to the NN to
produce an optimal action, i.e. the parameters of the ECM.

2. These parameters along with the original measurements are used to solve the
ECM and produce a new SoC estimation. It should be noted here that both the
NN as well as the ECM work in combination to try and capture the behavior of
the battery and in this sense both of these models contain part of the system’s
dynamics.

3. The ECM is solved and a prediction for the State of Charge of the current
timestep is produced. This should be an optimal prediction with respect to the
training of the Neural Network in the sense that its error from the real is

minimized.

The figure below shows the process of using the model during a real time scenario.
The NN now is the one that has been trained and along with the ECM can be used in

real time as a battery is operating.

36

Dataset
."‘/_-\.
d

ll. *
\, VI, T

(observation)

Neural
Network

A N
I..\.__2__.-/ll I\'\..__ 4
ag,8p,81,01,8
Vi, T_ (action)
(observation) Rg,R1,R2,C4,Co
v Y
Cq G2
Ry I

Ve = a350C3 + 3550C2 + a150C + by T+ a

. @ ECM

(prediction)

Figure 10: Model Deployment Methodology

37

In the two figures below we have a more high-level summary of the process. As a first
step we train the NN using a dataset and solving the Physics-Based model, the output
of which is used by the RL algorithm to calibrate the NN which learns the optimal
policy.

Physics-based

Policy Network System Model

Figure 11: Neural Network - Physics Based Model Interaction In Training

After the training is completed we can deploy the network to an application in a real
time environment. Here the NN is used as an optimal estimator of the best system
parameters for a specific set of measurements. These measurements are then used
with the parameters to solve the physics based model and get the estimation of the

current State of Charge of the battery.

Model
Parameters

Observation

Policy Network

Real Process

Figure 12: Neural Network - Physics Based Model In Deployment

38

Implementation

5.1 Datasets

5.1.1 Dataset Description

The datasets used [8] consist of 124 commercial lithium-ion batteries which have
been charged/discharged till failure using fast charging. These lithium-ion cells were
cycled in horizontal cylindrical fixtures on a 48-channel Arbin LBT potentiostat in a
forced convection temperature chamber set to 30°C. The cells have a nominal
capacity of 1.1 Ah and a nominal voltage of 3.3 V. There are also temperature
measurements that have been performed by a Type T thermocouple. It should be taken
into account that because of the nature of the experiment the temperature
measurements could exhibit reduced accuracy since the thermal contact between the
thermocouple and the cell may vary or the thermocouple could lose contract during

some cycles.

The datasets are divided into three different groups each consisting of about 48 cells.
Each group has a separate date denoting when the tests started. All data used were

available as csv files and loaded into python during the training and validation phases.

39

Measurement Group 1

Experiment Information

1.

All cells were cycled with one-step or two-step charging policies. The
charging time varies from ~8 to 13.3 minutes (0-80% SOC). There are
generally two cells tested per policy, with the exception of 3.6C (80%).

1 minute and 1 second rests were placed after reaching 80% SOC during
charging and after discharging, respectively.

We cycle to 80% of nominal capacity (0.88 Ah).

An initial C/10 cycle was performed in the beginning of each test.

The cutoff currents for the constant-voltage steps were C/50 for both charge
and discharge.

The pulse width of the IR test is 30 ms.

Measurement Group 2

Experiment Information

1.

All cells were cycled with one-step or two-step charging policies. The
charging time is fixed at 10 minutes (0-80% SOC). There is generally only one
cell tested per policy, with the exception of 4.8C(80%) (three cells).

We resumed 5 cells from the 2017-05-12 batch that didn’t complete yet - 3.6C
and 4.0C.

We cycle to 75% of nominal capacity (0.88 Ah).

5 minute rests were placed both after reaching 80% SOC during charging and
after discharging.

An initial C/10 cycle was performed in the beginning of each test.

The cutoff currents for the constant-voltage steps were C/50 for both charge
and discharge.

The pulse width of the IR test is 30 ms.

Measurement Group 3

Experiment Information

1.

All cells were cycled with two-step charging policies. The charging time fixed
at 10 minutes (0-80% SOC). We test multiple cells per policy (3-8x per
policy).

We cycle to 80% of nominal capacity (0.88 Ah).

. Four 5-second rests were placed after reaching 80% SOC during charging,

after the IR test, before discharging, and after discharging.

40

4. A final C/10 cycle was performed at 80% of nominal capacity.

5. The cutoff currents for the constant-voltage steps were C/20 for both charge
and discharge.

6. The pulse width of the IR test is 33 ms.

Example files available for this dataset are the following (total 46 files of multiple

cycles on different batteries)

2017-05-12_5_4C-60per 3 6C_CH23

2017-05-12_6C-50per_3 6C_CH36
Channel 23

Channel 36

2017-05-12_5_4C-60per 3 _6C_CH24

2017-05-12_6C-40per 3 6C CH34
Channel 24

Channel 34

2017-05-12_6C-50per 3C CH27
Channel 27

©00

2017-05-12_7C-40per 3C_CH37
Channel 37

Figure 13: Example of Dataset Filenames

5.1.2 Dataset Overview

As we can see above the datasets have multiple charging/discharging cycles for
multiple batteries. Also there are three groups that have different experimental designs
with varying parameters. Moreover each group consists of multiple files each
containing different load profiles for the battery (i.e. different Voltage and Current
inputs during the charging and discharging process). This provides a rich dataset
covering multiple different conditions for Li-ion batteries that in turn is expected to
enhance the number of different real time scenarios that a model trained on these data

can COVcer.

41

dataPoint,datetime,cycle, current,voltage, chargeCapacity,dischargeCapacity, chargeEnergy, dischargeEnergy, dv_dt,internalResistance, temperaturel
0,2017-05-13 03:20:40,0.0,0.0,3.30164,0.0,0.0,0.0,0.0,-2.3841858e-05,0.021195354, 30.545906
1,2017-05-13 03:20:40,0.0,0.0,3.30164,0.0,0.0,0.0,0.0,-2.3841858e-05,0.021195354,30.545906
2,2017-05-13 03:20:50,0.0,0.0,3.3016343,0.0,0.0,0.0,0.0,-4.5776367e-05,0.021195354,30.545906
3,2017-05-13 03:20:50,0.0,0.0,3.3016343,0.0,0.0,0.0,0.0,-4.5776367e-05,0.021195354,30.524321
4,2017-05-13 03:21:00,0.0,0.0,3.30164,0.0,0.0,0.0,0.0,4.7683716e-06,0.021195354,30.524321
$,2017-05-13 03:21:00,0.0,0.0,3.30164,0.0,0.0,0.0,0.0,4.7683716e-06,0.021195354,30.485966
6,2017-05-13 03:21:10,0.0,0.0,3.301621,0.0,0.0,0.0,0.0,-2.5749207e-05,0.021195354,30. 485966
7,2017-05-13 03:21:10,0.0,0.0,3.301621,0.0,0.0,0.0,0.0,-2.5749207¢-05,0.021195354, 30. 526203
8,2017-05-13 03:21:20,0.0,0.0,3.3016562,0.0,0.0,0.0,0.0,4.196167e-05,0.021195354,30.526203
9,2017-05-13 03:21:20,0.0,0.0,3.3016562,0.0,0.0,0.0,0.0,4.196167e-05,0.021195354, 30.518002
10,2017-05-13 03:21:30,0.0,0.0,3.3016295,0.0,0.0,0.0,0.0,-2.2888184e-05,0.021195354,30.518002
11,2017-05-13 03:21:30,0.0,0.0,3.3016295,0.0,0.0,0.0,0.0,-2.2888184e-05,0.021195354, 30.503145
12,2017-05-13 03:21:40,0.0,0.0,3.301681,0.0,0.0,0.0,0.0,-9.5367432e-06,0.021195354,30.508085
13,2017-05-13 03:21:50,0.0,0.0,3.3017201,0.0,0.0,0.0,0.0,6.8664551e-05,0.021195354,30.508085
14,2017-05-13 03:21:50,0.0,0.0,3.3017201,0.0,0.0,0.0,0.0,6.8664551e-05,0.021195354,30.5417
15,2017-05-13 03:22:00,0.0,0.0,3.3016658,0.0,0.0,0.0,0.0,4.9591064e-05,0.021195354,30.514406
16,2017-05-13 03:22:10,0.0,0.0,3.3016276,0.0,0.0,0.0,0.0,-4.3869019¢-05,0.021195354, 30.549698
17,2017-05-13 03:22:20,0.0,0.0,3.3016257,0.0,0.0,0.0,0.0,-2.0027161e-05,0.021195354,30.553904
18,2017-05-13 03:22:30,0.0,0.0,3.3016429,0.0,0.0,0.0,0.0,2.76565556-05,0.021195354,30.553904
19,2017-05-13 03:22:30,0.0,0.0,3.3016429,0.0,0.0,0.0,0.0,2.7656555e-05,0.021195354,30.516321
20,2017-05-13 03:22:40,0.0,0.0,3.3016286,0.0,0.0,0.0,0.0,-7.6293945e-06,0.021195354, 30.516321
21,2017-05-13 03:22:40,0.0,0.0,3.3016286,0.0,0.0,0.0,0.0,-7.6293945e-06,0.021195354, 30.519758
22,2017-05-13 03:22:50,0.0,0.0,3.301641,0.0,0.0,0.0,0.0,1.335144e-05,0.021195354,30.519758
23,2017-05-13 03:22:50,0.0,0.0,3.301641,0.0,0.0,0.0,0.0,1.335144e-05,0.021195354,30.487312
24,2017-05-13 03:23:00,0.0,0.0,3.3016381,0.0,0.0,0.0,0.0,-3.9100647e-05,0.021195354, 30.528526
25,2017-05-13 03:23:10,0.0,0.0,3.3016458,0.0,0.0,0.0,0.0,2.1934509¢-05,0.021195354,30.511553
26,2017-05-13 03:23:20,0.0,0.0,3.3016372,0.0,0.0,0.0,0.0,-2.0027161e-05,0.021195354,30.487312
27,2017-05-13 03:23:30,0.0,0.0,3.3016534,0.0,0.0,0.0,0.0,3.14712526-05,0.021195354,30.471111
28,2017-05-13 03:23:40,0.0,0.0,3.3016315,0.0,0.0,0.0,0.0,-4.3869019e-05,0.021195354,30.507553
29,2017-05-13 03:23:50,0.0,0.0,3.3016391,0.0,0.0,0.0,0.0,-3.8146973e-06,0.021195354, 30.507553
30,2017-05-13 03:23:50,0.0,0.0,3.3016391,0.0,0.0,0.0,0.0,-3.8146973e-06,0.021195354,30.481607
31,2017-05-13 03:24:00,0.0,0.0,3.3016334,0.0,0.0,0.0,0.0,1.0490417-05,0.021195354,30.559464
32,2017-05-13 03:24:10,0.0,0.0,3.3016381,0.0,0.0,0.0,0.0,1.04904172-05,0.021195354,30.559464
33,2017-05-13 03:24:10,0.0,0.0,3.3016381,0.0,0.0,0.0,0.0,1.0490417-05,0.021195354,30.539469
34,2017-05-13 03:24:20,0.0,0.0,3.301641,0.0,0.0,0.0,0.0,6.0081482e-05,0.021195354,30.539469
35,2017-05-13 03:24:20,0.0,0.0,3.301641,0.0,0.0,0.0,0.0,6.0081482e-05,0.021195354,30.499935
36,2017-05-13 03:24:30,0.0,0.0,3.3017001,0.0,0.0,0.0,0.0,3.6239624e-05,0.021195354,30.488876
37,2017-05-13 03:24:40,0.0,0.0,3.301662,0.0,0.0,0.0,0.0,5.9127808e-05,0.021195354,30.501326
38,2017-05-13 03:24:50,0.0,0.0,3.3016601,0.0,0.0,0.0,0.0,-1.7166138e-05,0.021195354, 30.490475
39,2017-05-13 03:25:00,0.0,0.0,3.3016267,0.0,0.0,0.0,0.0,9.5367432e-06,0.021195354,30.520803
40,2017-05-13 03:25:10,0.0,0.0,3.3016429,0.0,0.0,0.0,0.0,9.5367432e-07,0.021195354,30.521015
41,2017-05-13 03:25:20,0.0,0.0,3.30164,0.0,0.0,0.0,0.0,1.4305115e-05,0.021195354, 30.521015
42,2017-05-13 03:25:20,0.0,0.0,3.30164,0.0,0.0,0.0,0.0,1.4305115e-05,0.021195354,30.500811
43,2017-05-13 03:25:30,0.0,0.0,3.3016448,0.0,0.0,0.0,0.0,-4.863739¢-05,0.021195354,30.515835
44,2017-05-13 03:25:40,0.0,0.0,3.3016486,0.0,0.0,0.0,0.0,2.1934509e-05,0.021195354,30.515835
45,2017-05-13 03:25:40,0.0,0.0,3.3016486,0.0,0.0,0.0,0.0,2.1934509¢-05,0.021195354,30.478447
46,2017-05-13 03:25:50,0.0,0.0,3.3016267,0.0,0.0,0.0,0.0,-4.7683716e-06,0.021195354,30.497963
47,2017-05-13 03:26:00,0.0,0.0,3.3016276,0.0,0.0,0.0,0.0,-1.5258789e-05,0.021195354, 30.497963
48,2017-05-13 03:26:00,0.0,0.0,3.3016276,0.0,0.0,0.0,0.0,-1.5258789e-05,0.021195354, 30.46224
49,2017-05-13 03:26:10,0.0,0.0,3.3016448,0.0,0.0,0.0,0.0,-2.1934509¢-05,0.021195354, 30.46224
50,2017-05-13 03:26:10,0.0,0.0,3.3016448,0.0,0.0,0.0,0.0,-2.1934509¢-05,0.021195354, 30.429823
51,2017-05-13 03:26:20,0.0,0.0,3.3016763,0.0,0.0,0.0,0.0,2.0980835e-05,0.021195354,30.430939
52,2017-05-13 03:26:30,0.0,0.0,3.3016782,0.0,0.0,0.0,0.0,-1.2397766e-05,0.021195354, 30.474663
53,2017-05-13 03:26:40,0.0,0.0,3.3016248,0.0,0.0,0.0,0.0,9.5367432e-06,0.021195354,30.463816
54,2017-05-13 03:26:50,0.0,0.0,3.3016553,0.0,0.0,0.0,0.0,-2.28881846-05,0.021195354, 30.463516
55,2017-05-13 03:26:50,0.0,0.0,3.3016553,0.0,0.0,0.0,0.0,-2.2888184e-05,0.021195354,30.476994
56,2017-05-13 03:27:00,0.0,0.0,3.3016524,0.0,0.0,0.0,0.0,-1.5258789e-05,0.021195354, 30.388756
57,2017-05-13 03:27:10,0.0,0.0,3.3016686,0.0,0.0,0.0,0.0,3.71932982-05,0.021195354,30.396576

Figure 14: Dataset File Internal Structure

Here we can see the structure of a single file of the above datasets. It is formatted as a
CSV and provides the measurements for each experiment. From the above

measurements in for our analysis we use the following cycle, current, voltage,

1. dataPoint: The experiment’s current datapoint

2. datetime: The date and time for the specific measurement. Here we are mostly
interested about the time which gives us the second that this measurement was taken.
This is useful to find the total time that has elapsed between data points that is mainly
needed during the simulation of the ECM when the differential equations of the model

are solved.

3. cycle: This informs us of the specific cycle in the current experiment. As will be
described below the cycle is used for differentiating the datasets into separate

subgroups to be used as the training and test sets respectively.

4. current: The current supplied (during charging) or drawn (during discharging)

from the battery. This is used as an input to the battery’s Equivalent Circuit Model and

42

in a real time scenario can be the last measurement taken from a battery during its

operation.

4. voltage: Similarly the voltage measured at the battery’s terminals. This is also used
as an input to the model and is the voltage that can be measured in real time from a

battery.

5. chargeCapacity: The current chargeCapacity of the battery. This along with the
dischargeCapacity represent the total State of Charge of the battery which is the
model’s output variable and the value that we are trying to estimate. This is a value

that cannot be measured directly in a real time scenario.
6. dischargeCapacity: The current dischargeCapacity of the battery.

7. temperaturel: The battery’s current temperature. This is also used as an input to

the model as different temperatures can affect its behavior.

5.1.3 Data Selection

This is a vast dataset that includes many different experiments each with multiple
cycles. In order to use the whole dataset much processing power and memory is
needed as well as very big processing times that a normal consumer grade pc may not
suitable to handle in a reasonable time. Thus a selection of a subset of all the data has
been made. This selection has been done using a broad range of cycles from different
files during different conditions and from all the available datasets. The goal was to
have a diverse selection covering multiple different cases in order to confidently
validate the results of the methodology. In any case if the necessary resources are
available in a company environment for example all data could be used to produce an

even more versatile model.

In our case 7 different experiment files have been selected from across all the datasets
groups where the batteries have been exerted to different load conditions, days and
temperatures. From each file 300 cycles have been used for a total of about 2100
cycles. From these 80% (1680 cycles) have been used during the training phase and

20% (420 cycles) have been used as the test dataset for the validation. In order to have

43

a uniform distribution and because the battery’s behavior is changing with

temperature and aging the following process has been followed.

1. Load the data from all the dataset files (that represent a different experiment

scenario).

2. Take the first 300 cycles from each file. (here we could expect for each scenario the

later cycles to potentially have slightly different behavior due to aging).

3. Rearrange the data so the first cycles from files 1 to 7 come first then the second
cycles etc. This ensures that we have a dataset where a battery has different load

conditions in each subsequent cycle to better simulate a real world scenario.

4. Every 5th iteration, separate the data to a different group that is the test group so it

is only used for validation and not training.

So in summary we would have the following structure

Training dataset

(cycle 1 from dataset files 1 to 7),
(cycle 2 from dataset files 1 to 7),
(cycle 3 from dataset files 1 to 7),
(cycle 4 from dataset files 1 to 7),
cycle 5 has been excluded and added to the test dataset
(cycle 6 from dataset files 1 to 7),

Test dataset

(cycle 5 from dataset files 1 to 7),
(cycle 10 from dataset files 1 to 7),
(cycle 15 from dataset files 1 to 7),

This ensures a more realistic battery usage scenario, shuffles the data so the training
algorithm is exposed to all the different load conditions from the beginning and takes
cycles for the test dataset uniformly from the start to the later stages of the

experiments.

44

5.1.4 Exploratory Data Analysis

Below we have a plot of the dataset for 7 consecutive cycles each belonging to a
different dataset. With blue we have the current that is applied to or drawn from the
battery (depending if we are currently charging or discharging). Here positive currents
denote that the battery is charging. With orange we have the voltage as measured in
the battery terminals. With green we have the real State Of Charge as measured in the
experiment (ranges from 0 to 1). As we can see, we have different load conditions that
are exerted on the battery depending on the experiment selected, especially during the
charging stage where different charging profiles have been implemented. After that
we also include the temperature graph for the same experiments. The graph is in
Kelvin degrees and we can see that more or less the temperature is within the range of
30 - 40 degrees Celsius. We can also see that the temperature is rising as the
experiments progress. As also mentioned above the temperature might sometimes be

inaccurate due to the way the measurement setup has been implemented.

Current, Voltage, and State of Charge

—— Current [A]
Voltage [V]
6 —— SoC %

a7\ AN

B R R I N

T ; T T ;
0 1000 2000 3000 4000
datapoints

Figure 15: Battery's Current, Voltage and State of Charge

45

Temperature

Al — Temperature [K]

310 A

308

306 A

304 A

302 A

T T T T T
0 1000 2000 3000 4000

Figure 16: Battery's Temperature

Below we also present two measurement cycles from different datasets for a more
detailed look. As we can see the cycles have a constant discharge current of about 4.4
A and a charging stage with varying currents with a maximum of about 6.6 A. We can
see that the terminal voltage of the battery also changes, but as expected, much less
than the current in the two cycles. Within each cycle the voltage drops or increases
with respect to its SoC (denoting the voltage drop as a battery depletes). The SoC of
each cycle also has differences between the cycles if plotted against each other but

overall the curve appears similar.

46

Current, Voltage, and State of Charge

—— Current [A]
Voltage [V]
6 — 50C %
4 4
2 -
Q0 =
_2 .
74 -
800 1000 1200 1400 1600 1800 2000

datapoints

Figure 17: Batterys Current, Voltage and State of Charge (1 Cycle)

5.2 Software Framework Overview

For the training, testing as well as the data management python code has been used.
Below we will provide an overview of the framework and libraries as well as a brief
description of them. In general we can divide the code into four main functionalities:
data management, battery model simulation, reinforcement learning algorithm and
dataset visualization. Below we will give a brief description of each category and how

they were all organized together.

47

5.2.1 Data Management

Data management is the first step that needs to be addressed as the datasets that have
been described above need to be read and transformed to a usable format by the
following algorithms. For this two main reusable functions used by the rest of the

code have been created.

auxiliary.py

This is a collection of helper functions mainly responsible for loading the datasets
from the csv files and converting them to dataframes using the pandas library.
Depending on the use case separate functions have been created that load either the
training or test datasets, all of them or selected cycles as needed. The need to load a
selected cycle is mostly used for evaluation and visualization purposes. Here we also
do some preprocessing of the input data. We first open the correct csv files, and we
keep all the columns that we need by adding them to a pandas dataframe. We also
convert Celsius to Kelvin for temperature, calculate the time elapsed from the
beginning of the experiments and also calculate the time differential between two
consecutive measurements that is needed during the calculations. Lastly we can do
some dataset trimming like remove some regions where there are transitions between
the experiments that we don’t necessarily need during the training process because it

can produce unneeded calculation artifacts.

import pandas as pd

used dataset names = [

'2017-05-12 3 6C-80per 3 6C CHl.csv',
'2017-05-12 4C-80per 4C CH5.csv',
'2017-05-12 6C-60per 3C CH29.csv',
'2017-06-30 4 9C-27per 4 75C CH24.csv',
'2018-04-12 4 8C-80per 4 8C CHl.csv',
'2018-04-12 5C-67per 4C CH7.csv',
'2018-04-12 5C-67per 4C CH42.csv',

def load train datasets():
selected cycles = [n for n in range(l, 301) if n % 5 != 0]
return load selected datasets(used dataset names, selected cycles)

48

def load test datasets():
selected cycles = [n for n in range(l, 301) if n % 5 == 0]
return load selected datasets(used dataset names, selected cycles)

def load all datasets():
selected cycles = [n for n in range(l, 301)]
return load selected datasets(all dataset names, selected cycles)

def load single cycle datasets():
selected cycles = [120]
return load selected datasets(used dataset names, selected cycles)

def load selected datasets(dataset names, selected cycles):
merged dataset = load dataset(dataset names[0], selected cycles)

for dataset name in dataset names[1:]:
dataset = load dataset(dataset name, selected cycles)
merged dataset = pd.concat ([merged dataset, dataset], ignore index=True)

merged dataset = merged dataset.reset index(drop=True)
return merged dataset

def load dataset(dataset name, selected cycles):
path prefix = '../'

dataset path = path prefix + 'datasets/data/' + dataset name
dataset = pd.read csv(dataset path)

dataset = dataset[dataset['cycle']l.isin(selected cycles)]

dataset = dataset.reset index()

dataset['time'] = pd.to datetime(dataset['datetime']) .apply(lambda x:
x.timestamp ())

dataset['time'] = dataset['time'] - dataset['time'].iloc[O0]

dataset['temperaturel'] = dataset['temperaturel']l + 273

dataset['dt'] = dataset['time'].diff().fillna(-1)

dataset['soc'] = (dataset['chargeCapacity'] - dataset['dischargeCapacity'])

dataset = dataset[dataset['dt'] > 0]
dataset = dataset][
(abs (dataset['current']) > 3.0) | ((abs(dataset['current']) < 1.2) &
(abs (dataset['current']) > 0.01))]1]

dataset.dropna (inplace=True)
dataset = dataset.reset index(drop=True)

return dataset

5.2.2 Battery Simulation

This is the first part of the total model. Here we model the physical battery using a
2nd Order ECM combined with a SoC approximation. This produces a system of

differential and algebraic equations that can be solved in real time using arithmetic

49

methods. This essentially allows us to calculate given the three inputs (voltage,
current and temperature) the intermediate open circuit voltage (V,.) which is internal
to the battery and from this the current State of Charge (SoC) for this timestep.
Essentially this has been modelled in python using a separate class which implements
the system of equations that are needed to be solved along with functions to allow the
neural network to be able to update in real time the internal model parameters. The
class also holds the current state of the model (i.e. current parameters, state of charge
and capacitor charge). Below we include the code for the 2nd order model with the
cubic SoC approximation as well as the part of the code that differs for the one
utilizing the linear SoC approximation. The Cubic SoC model also utilized the scipy
library to arithmetically solve the 3rd order SoC polynomial. It should also be noted
that the SoC approximation has been implemented as a separate function which

enables us to change the function separately as needed. In this example also the

filtering and scaling functions used in the end have been included.

import numpy as np
from scipy.optimize import fsolve

class Ecm2ndOrder:
def init (self, VR1, VR2):
self.update parameters(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)

State

self.VR1l, self.VR2 = VR1l, VR2

self.time, self.Voc, self.SoC = 0.0, 0.0, 0.0
self.dt = 1.0

def update parameters(self, Ro, Rl, R2, Cl, C2, a3, a2, al soc, al temp, al):
self.Ro, self.Rl, self.R2, self.Cl, self.C2 = Ro, R1, R2, Cl, C2
self.a3, self.a2, self.al soc, self.al temp, self.al = a3, a2, al soc,
al temp, a0

def update(self, Vout, I, T, dt):
if (abs(self.VR1l) > abs(I*self.R1)) or (abs(self.VR1l) < abs(0.7*I*self.R1)):
self.VR1 = 0.85*I*self.R1

if (abs(self.VR2) > abs(I*self.R2)) or (abs(self.VR2) < abs(0.7*I*self.R2)):
self.VR2 = 0.85*%T*self.R2

dVvRldt = (I / self.Cl) - (self.VR1 / (self.R1l * self.Cl))
self.VR1l += dVR1ldt * dt

dvR2dt = (I / self.C2) - (self.VR2 / (self.R2 * self.C2))

50

self.VR2 += dVR2dt * dt

self.Voc = Vout + I * self.Ro + self.VR1l + self.VR2
self.time += dt

self.dt = dt

self.SoC = self.estimate soc(T)

def

estimate soc(self,

T) :

def poly func(SoC):
return self.a3

self.al temp * T + self.a0

* (SoC ** 3) + self.a2 * (SoC ** 2) + self.al soc * SoC +
- self.Voc

SoC_solution, info, ier, mesg = fsolve(poly func, self.SoC, full output=True)

SoC_solution
SoC_solution

SoC_solution

self.SoC + (1/25)*(SoC solution - self.SoC)
1.0008* (SoC_solution-0.5) + 0.5

np.clip(SoC_solution, 0, 1)

return SoC_solution

ecm 2nd order model.py (Linear SoC Approximation)

def estimate soc(self, T):

SoC_solution (self.Voc - T*self.al temp - self.al) / self.al soc

SoC_solution np.clip(SoC solution, 0, 1.0)

return SoC_solution

5.2.3 Reinforcement Learning Algorithm

This is the second part of the model which utilizes reinforcement learning to train the
neural network and then combine it with the physical system (in this case modeled by
the code presented in the previous section) to change its parameters in real time. This
code is split into two different files one for training and one for the testing of the final
system. This code utilizes stable-baselines3 which is a python library implementing
reinforcement learning algorithms based on PyTorch and can be used as a framework
for training and testing neural networks trained using RL. It in turn uses gymnasium
library which is an interface that can be used for the representation of RL problems as

well as numpy for any arithmetic calculations needed.

51

Training Code

This code is responsible for the training of the neural network. This is based on an
implementation of a Soft Actor Critic algorithm provided in stable-baselines3. The
Soft Actor Critic algorithm (SAC) is an off-policy maximum entropy deep
reinforcement learning algorithm with a stochastic actor. This algorithm uses an actor
that takes actions which in turn a critic evaluates trying to minimize the mean square
error for the objective function. In our case this is the minimization of the difference
between the real and calculated State of Charge. This part of the code runs
independently and internally utilizes the ECM and SoC models presented before. This
is by far the most computationally intensive part of the code as it is responsible for the
training of the neural network and is required to run for a long time to provide
meaningful results (in our each of the different models that are presenting in the next
chapter has been training for at least a day but many other models have also been
trained to various times while evaluating the process). This code in turn provides a
neural network that is saved as a .zip file in an internally recognized format and can

then be used to make predictions for the model parameters.

Below we include the main code of the training functionality. As already mentioned
this code is responsible for the training of the neural network. As we can see it
implements an interface as required by the used libraries to describe the RL problem,
the action space, the observation space as well as the reward function. In our case the
system model is the ECM/SoC Approximation models that we mentioned above. This
model is solved in real time using running in each timestep the code provided in the
previous sections which in turn produces an estimation of the current state of charge.

Following is a brief description of the most important parts of the code.

__init_ function: As we can see during the initialization of the environment we
define an action space (which is the range of the actions the Actor can make an
represent the parameters of the system), the observation space (which is the range of
the inputs to the NN in our case the input of the system that is the measured voltage,

current and temperature of the battery) as well as custom variables defined by us and

52

needed by the current implementation (such as episode length, capacitor initial

voltage etc).

step function: This is the main function where the training is performed. This runs
after every system update which in our case is at every timestep of the discretized
system. During each step a new action is selected by the Actor which in turn is used to
update the ECM/SoC models described in the previous section. These models in turn
calculate a new State of Charge estimation by solving the system of equations of the
internal model. Based on this the reward function is calculated which is the negative
square error of the estimated and real State of Charge. This value is then returned
along with the current observation (the measurements of voltage, current and
temperature of the battery). These values are in turn processed by the Critic part of the

reinforcement learning algorithm which tries to minimise the total estimation error.

reset function: This function is required to reset the environment in the beginning of

the training as well as when each episode finished.

The rest of the code initializes the environment described above, sets any initial
variables needed and starts the training. In the end a file is produced containing the
trained network that can be used for the estimation of the parameters. This model can

also be loaded if needed to continue its training.

ecm 2nd order train.py

import gymnasium as gym

from gymnasium import spaces

import numpy as np

from stable baselines3 import SAC

from stable baselines3.common.vec_env import DummyVecEnv

import src.auxiliary.auxiliary as auxiliary

from src.rl.second order ecm.soc voc cubic.ecm 2nd order model import EcmZ2ndOrder

class Ecm_env(gym.Env):
def init (self, dataset, Vcl, Vc2):
super (Ecm env, self). init ()

self.action space = spaces.Box(low=np.array([0.001, 0.01, 0.05, 500, 5000,

53

def

def

0.0, 0.0, 1.0, -0.0005, 0.01),
high=np.array([0.01, 0.2, 0.5, 5000, 10000,
0.01, 0.01, 3.0, 0.0005, 10.01),
shape=(10,) ,dtype=np.float32)
self.observation space = spaces.Box(low=np.array([1.8, -5.0, 3001),
high=np.array([3.8, 7.0, 315]),
shape=(3,), dtype=np.float32)
self.dataset = dataset
self.dataset length = len(dataset)
self.vcl = Vvcl
self.vVc2 = Vc2
self.ecm model = Ecm2ndOrder (self.vVcl, self.Vc2)
self.episode length = 1
self.counter = 0
self.dataset parses = 0

step(self, action):

Ro, R1, R2, Cl, C2 = action[0], action[l], action[2], action[3], action[4]

a3, a2, al _soc, al _temp, a0 = action[5], action[6], action[7], action[8],
action[9]

self.ecm model.update parameters(Ro, Rl, R2, Cl, C2, a3, a2,
al soc, al temp, a0)

Vout, I = dataset['voltage']l.iloc[self.counter],
-dataset['current'].iloc[self.counter]

T = dataset['temperaturel'].iloc[self.counter]
SoC _real = dataset['soc'].iloc[self.counter]
dt = dataset['dt'].iloc[self.counter]

self.ecm model.update(Vout, I, T, dt)
SoC_estimated = self.ecm model.SoC

reward = -np.square(SoC _real - SoC estimated)

observation = np.array([Vout, I, T]).astype(np.float32)
truncated = False
info = {}

self.counter = (self.counter + 1) % self.dataset length

if self.counter ==
self.dataset parses += 1
print("Dataset parse", self.dataset parses, "finished")

if (self.counter % self.episode length) ==
terminated = True

else:
terminated = False

return observation, reward, terminated, truncated, info

reset (self, seed=None, options=None) :

super () . reset (seed=seed)

Vout, I = dataset['voltage']l.iloc[self.counter],
-dataset['current'].iloc[self.counter]

T = dataset['temperaturel'].iloc[self.counter]

return np.array([Vout, I, T], dtype=np.float32), {}

54

dataset = auxiliary.load train datasets()

vel,

Vec2 = -0.8, -1.4

dataset length = len(dataset)

env =

DummyVecEnv ([lambda: Ecm env(dataset, Vcl, Vc2)])

env.reset ()

model name = "model-epl-cubic"

model

model.

model.
model.

= SAC("MlpPolicy", env=env, verbose=0)
learn(total timesteps=dataset length)

save ("models/" + model name)
save replay buffer("models/" + model name + " buffer")

env.close()

Evaluation Code/Result Analysis

This part of the source code is responsible for running the tests and evaluating the
trained neural network. In essence it loads the model presented before which is the
physical system (2nd Order ECM and SoC model) and simulates the system assuming
real time operation. This is achieved by loading the dataset files and using the
measurements (that were used before for training) as if they were real time inputs
measured in a battery. These inputs (i.e. battery voltage, current and temperature) are
fed in the physical model as well as the trained neural network which in turn produces
the optimal model parameters at each time instant. All the results are stored in
separate lists and are then used for plotting as a way to visualize and evaluate the
results. This code is mainly used with the test datasets to evaluate the results but can
also be used with the training dataset to check the fitting there or any other subset of

them for visualization or analysis needs.

ecm_2nd_order_test.py

55

import numpy as np

from stable baselines3 import SAC

from src.auxiliary import auxiliary

import matplotlib.pyplot as plt

from src.rl.second order ecm.soc _voc cubic.ecm 2nd order model import Ecm2ndOrder

Vecl, Vc2 = -0.8, -1.4
ecm _model = Ecm2ndOrder (Vcl, Vc2)

model name = "model-epl-cubic"
dataset = auxiliary.load test datasets()

dataset length = len(dataset)

model = SAC.load("models/" + model name)

SoC_calculated = []

Voc_calculated = []

Ro list, R1 1list, R2 list, Cl 1list, C2 list, a3 list, a2 list, al soc list,
al_temp_list, a0_list =[], [I], [1, (1, (1, [1, [1, [1, [1, Il

for i in range(dataset length):
Vout, I = dataset['voltage']l.iloc[i], -dataset['current'].iloc[i]
T = dataset['temperaturel'].iloc[i]
action, states = model.predict(np.array([Vout, I, T]), deterministic=True)

Ro, R1, R2, Cl, C2 = action[0], action[l], action[2], action[3], action[4]
a3, a2, al _soc, al temp, a0 = action[5], action[6], action[7], action[8], action[9]

ecm _model.update parameters(Ro, R1, R2, Cl, C2, a3, a2, al _soc, al temp, a0)

dt = dataset['dt'].iloc[1i]
ecm_model.update (Vout, I, T, dt)

SoC _calculated.append(ecm model.SoC[0])
Voc_calculated.append(ecm model.Voc)
Ro list.append(Ro)

R1 list.append(R1)

R2 list.append(R2)

Cl list.append(Cl)

C2 list.append(C2)
a3_list.append(a3)

a2 list.append(aZ2)

al soc list.append(al_ soc)

al temp list.append(al temp)

a0 list.append(a0)

index = dataset.index.values.tolist()

soc_index = index

SoC real = dataset['soc'].iloc[:].tolist()

Vout real = dataset['voltage'].iloc[:].tolist()
I real = dataset['current'].iloc[:].tolist()

mse = sum((a - b) ** 2 for a, b in zip(SoC calculated, SoC real)) / len(SoC _calculated)
print("Mean Square Error:", mse)

plt.figure (1)

56

plt.plot(index, Ro_list, label='Ro [Ohm]")
plt.plot(index, Rl list, label='R1l [Ohm]")
plt.plot(index, R2 list, label='R2 [Ohm]'")
plt.xlabel ('datapoints'")
plt.title('Parameters from RL, ' + model name)
plt.legend()

plt.grid()

plt.figure(2)

plt.plot(index, Cl list, label='Cl [F]")
plt.plot(index, C2 list, label='C2 [F]")
plt.xlabel ('datapoints'")

plt.title('Parameters from RL, ' + model name)
plt.legend()

plt.grid()

plt.figure(3)

plt.plot(index, a3 list, label='a3")
plt.plot(index, a2 list, label='aZ2')
plt.plot(index, al soc list, label='al soc')
plt.plot(index, al temp list, label='al temp')
plt.plot(index, a0 list, label='al0"')
plt.xlabel ('datapoints'")

plt.title('Parameters from RL, ' + model name)
plt.legend()

plt.grid()

plt.figure (4)

plt.plot(index, Vout real, label='V")
plt.plot(index, I real, label='1")
plt.plot(index, Voc_calculated, label='Voc')

plt.xlabel ('datapoints')
plt.legend()
plt.grid()

plt.figure(5)

plt.plot(soc_index, SoC calculated, label='SoC Estimation %')
plt.plot(soc_index, SoC real, label='SoC Real %')

plt.xlabel ('datapoints")

plt.title('State of Charge, ' + model name)

plt.legend()

plt.grid()

plt.show()

5.2.4 Dataset Visualization

Lastly we have a helper function that can plot selections of the datasets and is mainly
used for visualization and design purposes (for example inspecting a dataset during

the initial design of the system). Here the auxiliary.py presented above is used for

57

loading the selected datasets as well as that matplotlib library for creating the plots.
This is a useful functionality especially in the early stages of the training where visual
inspection of the datasets is needed. It also helps judge the effect that any

preprocessing of the datasets, such as trimming or downsampling, can have.

plot-dataset.py

import matplotlib.pyplot as plt
import auxiliary

dataset = auxiliary.load test datasets()

index = dataset.index.values.tolist()

current = dataset['current'].tolist()

voltage = dataset['voltage'].tolist()

soc = dataset['soc'].tolist()

temperature = dataset]['temperaturel'].tolist()

plt.figure(l)

plt.plot(index, current, label='Current [A]")
plt.plot(index, voltage, label='Voltage [V]'")
plt.plot(index, soc, label='SoC %'")

plt.xlabel ('datapoints')

plt.title('Current, Voltage, and State of Charge')
plt.legend()

plt.grid()

plt.figure(2)

plt.plot(index, temperature, label='Temperature [K]")
plt.title('Temperature')

plt.legend()

plt.grid()

plt.show()

5.3 Training Methodology

5.3.1 Alternative Models

The training methodology that has been used is given below. In general this is the part
that takes the most time as the training depending on the available system and selected
datasets can vary vastly. In this work good results have been achieved using the
dataset selection described in the previous chapters. A lot of different models have

also been evaluated raging from different battery models (Rint and 1st Order ECM

58

has also been evaluated) as well as different SoC approximations (in this work a linear
and cubic approximation with temperature are presented but also the same
approximations without temperature as well as other SoC approximations have been
evaluated briefly). Specifically in the literature different SoC approximations exist
that include higher order polynomials with respect to SoC and/or temperature as well
as different functions that consist of logarithmic and exponential terms. Models like
these have also been evaluated (trained for at least a few hours each) during this
process to various degrees of success resulting in the selection presented in the next
chapter that produced the best results. It should be noted that the fitting to any of these
models is a result of training time but because of real time constraints not all models
could be run for a very long time so for the ones not selected it does not mean that
these models cannot necessarily be used successfully for other similar applications or
datasets. It should also be noted that the more complex the model gets the training
time can increase exponentially as new parameters are introduced for which the Soft
Actor Critic (SAC) algorithm of the reinforcement learning need to try combinations
as well as more complex models could introduce more local minima describing
suboptimal solutions that the algorithm can converge to, so a good trade off between

acceptable accuracy and model complexity needs to be achieved.

5.3.2 Training Process

During training and after a model has been selected two main things firstly need to be

defined which are the range of the action and observation space.

Action Space

The action space is the range of values that can be proposed by the Actor of the RL
algorithm (the physical system’s parameters in our case). This needs to be selected
using a reasonable range of values because if care is not taken we could exclude the
optimal solutions altogether as we constraint the algorithm not to search in those
ranges. On the other hand if the range is too big we can increase the training time

needlessly as the RL algorithm will evaluate parameters that are not realistic for our

59

system thus wasting processing cycles. In our case a range of parameters have been
used as have been proposed in the literature (for example [9], [10]). Typical range of
parameters include 0.001Q to 0.5Q for the resistors and 500F to 10000F for
capacitors. The parameters for the SoC polynomial range from a little below zero to

around 10.

Observation Space

The observation space is in turn the range of values the inputs to the SAC algorithm
are going to take (in essence the value domain). These ranges are defined by the
datasets available and are the ranges of the inputs that have been measured during the
experiments. So to set the observation space we look at those ranges in the dataset
(and we also make the range slightly bigger to have some extra room). In our case the
voltage is between 1.8V - 3.8V, current is between -5.0A and 7.0A and temperature

between 300°K and 315°K

After the initial selection of the parameters the training is conducted. As already
mentioned a lot of different models have been evaluated. A candidate model is
initially run for a few hours to investigate if any fit is achieved. If it is, the model is
reloaded and training is continued. The models that provided the best fits have been
training for 20+ hours at least although it needs to be mentioned that most of them did
not achieve much better results if trained for longer. The output either stayed the same
or improved slightly (while in some cases there was a deterioration in some areas and

improvement in others).

Training Flow

During the training and after the initialization mentioned above the following process

1s conducted:

60

1. The Actor of the RL training algorithm produces a set of actions to be used by the

system. These actions in our case represent all the parameters of the physical system.

2. The ECM model with the SoC Approximation described above are updated with

the proposed parameters from the RL
3. A new State of Charge estimation is calculated

4. Using this estimation with the real SoC from the dataset the reward function is

calculated

5. The result of the reward function, the current observation (V, I, T of the current
time step as measured in the dataset) are passed to the Critic of the RL algorithm

which evaluates the result and updates the neural network.

6. The process continues for all the available data.

In the end we have a trained neural network representing a policy that its goal is to
minimize the SoC error calculated from our model given the input conditions. The
training is conducted in the train datasets described (80% of all available

measurements).

5.4 Evaluation Methodology

When the training completes the neural network produced can be used to produce
optimal actions (meaning parameters of the physical model) given inputs V, I and T.
This can happen in real time as new measurements are provided. In our case we use

the datasets in a step process described below.

Evaluation Flow

1. A trained neural network describing an optimal parameter policy is loaded

2. We prepare the test datasets which in our case in which each timestep is treated

sequentially as if it were real time measurements.

61

3. For each measurement the real measurements for V, I and T are fed to the neural
network which in turn provided the optimal action for the current stage (i.e. the

parameters of the system)

4. These parameters are updated to the physical model consisting of the 2nd Order
ECM and the chosen SoC Approximation Model.

5. The system of differential and algebraic equations are solved for the current

timestep using the parameters provided by the RL providing a SoC estimation.

6. We return to number 3 and we continue the same process for all the timesteps.

This process produces a State of Charge curve that is the estimation of the actual SoC
measured in the experiment. These values are then used to calculate the error metrics
of the estimation as well as plot the different simulation curves for visualization and

further analysis.

In general the datasets are constructed in a way so the battery is simulated like it is
running on multiple charging/discharging cycles one after the other which have
different load profiles. This happens in order to make the training and testing data
seem like they come from a real scenario where the battery will be working in

different conditions in its successive cycles.

62

Results

6.1 Experiments

Below we will present the simulations for different models that have been done and
also a comparison between them. Two different main models have been validated. As
has been presented before the base battery model for all the use cases is a 2nd Order
ECM which provides a good trade off between model complexity and accuracy
capturing the main battery dynamics such as battery hysteresis and polarization with
an adequate approximation. The difference between the wuse cases is the
approximation used for the modeling of the State of Charge of the battery which is
combined with the 2nd Order ECM to calculate the charge and discharge of a Li-ion
battery. For the State of Charge two approximations have been considered. The first is
a linear approximation of the V., and SoC and the second is a cubic approximation of
the V. and SoC that also includes a linear term to take into account the battery’s

temperature.

6.1.1 2nd Order ECM - Linear SoC Approximation

This model uses a 2nd Order ECM and a linear approximation with respect to SoC
and temperature. Below we can see the output of the model for 7 consecutive charge
and discharge cycles of a Li-ion battery. The model can in general achieve a good
approximation of the state of charge with the exception of the top part of the cycle

where it has a flatter output.

63

State of Charge, model-epl-linear

1.0

0.8 4

A H

0.4 4

—— SoC Estimation %
—— SoC %

0.2 4

T T T T T
0 1000 2000 3000 4000
datapoints

Figure 18: Model I - State of Charge Results

In the graph below we have the output of the neural network. This is a selection from
all the parameters that are provided by the model (for example also the resistances and
capacitances of the model are provided). We observe that the model actively changes
the parameters capturing the non linear behaviour of the system. In the third graph we
also provide the measured parameters V and I that are used as an input to the circuit
and the open circuit voltage V.. which is an intermediate variable in the system and

the output of the 2nd order ECM.

64

Parameters from RL, model-epl-linear

B0 LR
5 U b \HL 1 \H |
| |
WL
| L
Figure 19: Model 1 - j:;::::l Network Parameters

I ;; A e N r
. / J

= fLr’_ ¥ I rj
0 i LU

1000

2000

datapoints

3000

Figure 20: Model 1 - ECM Inputs and Outputs

4000

The error metrics of the output are given below. We can see that the errors are low in
spite of some regions (the top of the curve in this case) that the error increased. Also a

high R Squared score close to one shows that the curve has overall a good fit.

Table 2: 2nd Order ECM + Linear SoC Results

Error Metrics
2nd Order ECM + Linear SoC

RMSE 5.66%
MAE 3.66%
R-Squared 0.976

6.1.2 2nd Order ECM - Cubic SoC Approximation - Model 1

This is the second model that has been evaluated. This is also using a 2nd Order ECM
for the battery but it also uses a cubic approximation for the SoC of the battery as well
as a linear term for the temperature. This model also has a good overall approximation
of the SoC although we can observe some flatter regions on the top of each charge
cycle. The error of those flat regions is reduced with respect to the linear model

presented above.

66

State of Charge, model-ep1-cubic

1.0+

0.8

0.6

0.4 4

0.2 4

—— SoC Estimation % k
0.0

—— S0C Real %

T T T T T
0 1000 2000 3000 4000
datapoints

Figure 21: Model 2 - State of Charge Results

In the two graphs below we present a selection of the parameters of the output of the
neural network. We can see here that since the approximation is cubic we have two
more parameters that have been introduced to represent the coefficients for the square
and cubic terms of the equation. We also present the graph of the physical

measurements and ECM output (V).

67

-2

-4

Parameters from RL, model-epl-cubic

IR LT T T T AT
L |l
INvAYA Yive
NERSER RN A
FNTNNENTNTYTS
) I

1000

2000

datapoints

3000

Figure 23: Model 2 - ECM Inputs and Outputs

4000

We also see that in this model which uses the higher order approximation the overall

error is reduced for all the error metrics with respect to the linear model.

Table 3: 2nd Order ECM + Cubic SoC - Model 1 - Results

Error Metrics
2nd Order ECM + Cubic SoC 1

RMSE 4.95%
MAE 3.17%
R-Squared 0.982

6.1.3 2nd Order ECM - Cubic SoC Approximation - Model 2

This model is identical with the model of the previous section. It uses a 2nd order
ECM, a cubic approximation for SoC as well as a linear term for modeling the battery
temperature. The difference between the two models is that they have been trained
independently for similar times with the same methodology and on the same datasets
to investigate the results. As we can see, the output of the whole model also achieves
a reasonable approximation of the real SoC but is a bit different from the one of the
previous one mostly in the top regions of the curve where the calculated output does
not have as flat a response as before. As a trade off we can observe that there are some
deviations in lower regions of the curve. In general with these comparisons we want
to present that using the same methodology can produce slightly different models as
the neural network that is produced by the learning process can converge to different
values depending on the nature of the functions and local minima that it can find. In
any case those models both approximate the SoC with similar accuracy so there are

not big deviations in the total errors.

69

State of Charge, model-epl-cubic

1.04

0.8 -

0.6

—— SoC Estimation %
—— SoC Real %

0.4 -

0.2 4

0.0 1

0 1000 2000 3000 4000
datapoints

Figure 24: Model 3 - State of Charge Results

Like before we also provide the two graphs, one for the parameters as are outputted
from the NN and one for the output of the ECM model along with the real parameters
V and I as measured in the real battery. It is worth noting here that some visible
differences occur between these models that lead to similar approximations of the
SoC though. This makes evident the different minima that this approach can converge

to, something that is expected to be amplified the more complex a model gets.

70

Parameters from RL, model-ep1-cubic

IR R AL

2.0 v
— a3
— a2
1.5 4 =— al_soc
— al_temp
— a0
1.0

o e e e

L

0.0

0 1000 2000 3000 4000
datapoints

Figure 25: Model 3 - Neural Network Parameters

6 — Voc |

AT
|/

:
B

e

\h‘*--.‘
g
]

-2

-4

o] 1000 2000 3000 4000
datapoints

Figure 26: Model 3 - ECM Inputs and Outputs

71

Lastly the mean square error is provided below. This error is comparable to the first
cubic model (with MAE being a bit higher). We can say that in practice this will not
be a meaningful difference and the decision on which model should be used should be

taken qualitatively based mostly on the general response of the computed SoC.

Table 4: 2nd Order ECM + Cubic SoC - Model 2 - Results

Error Metrics
2nd Order ECM + Cubic SoC 2

RMSE 4.94%
MAE 3.41%
R-Squared 0.982

6.1.4 2nd Order ECM - Cubic SoC Approximation - Filter

All the above models present an acceptable approximation of the state of charge for
different applications and alone or maybe with some minor tweaking can be used with
acceptable accuracy. One step further can be to add one more stage to the whole
model which is the filtering of the output. This does not require any changes to the
ECM model or the NN which can be used as is. The idea here is that the 2nd Order
ECM model, although a system of linear differential equations, can present some
discontinuities at times when coupled with the NN. The reason is that since the NN
changes the parameters of the model in real time, big changes will affect the internal
behavior of the model instantly producing jumps and overshooting. This is slightly
counteracted by the fact that the ECM model includes two capacitors that could
slightly filter these changes as a side effect but they cannot do this for the SoC model
that is also affected by the NN and also this is not their main function as they only

need to model the internal behavior of the battery correctly.

72

Thus a simple filter has been added to the output of the model to investigate if the
behavior will improve. Any filter could be used with different cut off frequencies but
here a simple moving average has been used. This filter has three effects on the model
output. Firstly it smoothens the output depending on the cut off frequency (or number
of samples in the case of the moving average) that has been selected. As a byproduct
of the filtering, which is affected by our previous selection, the output amplitude is
reduced and a time lag is also introduced. The two effects are not desirable so special

steps are taken so they can be compensated.

In this case we present the final model that produced the best results. This is a model
identical to the 2nd Order ECMs with Cubic SoC approximation (discussed in the
previous two sections) but also the proposed filtering has been added in the output.
Both cubic models can produce similar results so any one of them can be selected (so
the neural network that has been used is from one of the models that has been

presented above and not a newly trained one).

In this model the proposed filtering has been applied to the output without affecting or
changing the base model calculation presented above in any way. The filtering and
compensation parameters have been selected once (here through trial and error)
though more analytical methods could be employed if needed. The parameters of the
filter do not change in any way during the simulations to avoid specifically tuning the
model for each dataset. They are selected one time and used as is and stay fixed for

every cycle and for all the different datasets.

Table 5: Model 4 - Filter Parameters

Filter Parameters

Moving Average Samples Scale Factor Delay Compensation

25 samples 1.0008 22 samples

73

In the figure below we have the output of the model. We can see that the output is
much smoother and it produces a better overall fit. Some small peaks exist at the
highest point that is a remnant of the overshooting of the normal output but overall
there are much smaller spikes in the graph. This could be expected as the state of
charge of a battery is expected to change slowly in most normal scenarios. The two
graphs for the NN estimated parameters as well as the ECM inputs and outputs are

also given.

State of Charge, model-epl-cubic

1.0

0.8 1

0.6 1

—— SoC Estimation %
—— SoC Real %

0.4 4

0.2 1

|

T T T T T
0 1000 2000 3000 4000
datapoints

Figure 27: Model 4 - State of Charge Results

74

-2

-4

3.0

2.5

2.0

15

1.0

0.5

0.0

Parameters from RL, model-epl-cubic

—
——

TARY Tl (T

M T Y A

| 1 | I I

1000 2000 3000 4000
datapoints

Figure 28: Model 4 - Neural Network Parameters

— Vv

— VocC |

~

I\

T

~
~=
=2\
~
—
—
7

s A

1000 2000 3000 4000
datapoints

Figure 29: Model 4 - ECM Inputs and Outputs

75

From the error metrics of this model we can also find that this is a much better fit than
the previous ones and the filtering does provide a noticeable improvement if applied
on the output of a Cubic Model. As we mentioned above this filtering is done once for
all datasets and no tuning for a specific cycle is done so in essence these parameters
could be selected once and used as is for all possible scenarios. We can see here that
both RMSE and MAE errors have been reduced an we have a slightly increased R

Squared metric which show an improvement to the curve fitting.

Table 6: 2nd Order ECM + Cubic SoC + Filter - Results

Error Metrics
2nd Order ECM + Cubic SoC + Filter

RMSE 4.49%
MAE 2.94%
R-Squared 0.985

6.2 Evaluation of Results

In general from the results presented above the accuracy of estimation has low error
even for the simpler models. Between the models we can observe some
improvements, which is desirable, but depending on the application these
improvements may not necessarily be needed and a simpler model could provide
adequate accuracy. Indeed even the worst performing model which is linear does
achieve low error metrics by itself. The biggest inaccuracies of these models lie
mostly in specific regions (mostly on the top and bottom regions of the state of charge

curve).

Lastly we present the error metrics of all the models together. As we described above
all models use the same 2nd Order ECM as the underlying battery model and have
been trained on the same datasets for similar time. All models also include the

temperature as a linear term in the SoC estimation. The difference lies in the order of

76

the SoC model with respect to the SoC variable itself. We can see that the linear
model with respect to SoC achieves the lower accuracy (although still good in
absolute terms). Then we have the two Cubic models that have been separately trained
which provide an increase in the overall accuracy with respect to the linear model and
similar performance with respect to each other. The final model is the Cubic model
that has a filter applied to its output as described above with no alterations to the
internal behavior of the model either the ECM or the NN which also provides an

improved performance with respect to all the previous models.

Table 7: Comparison of Results

Error Metrics

2nd Order ECM + | 2nd Order ECM + | 2nd Order ECM + | 2nd Order ECM +

Linear SoC Cubic SoC1 Cubic SoC 2 Cubic SoC + Filter
RMSE 5.66% 4.95% 4.94% 4.49%
MAE 3.66% 3.17% 3.41% 2.94%
R-Squared 0.976 0.982 0.982 0.985

6.3 Effects of Datasets

The datasets also play an important role in the final accuracy. As already mentioned
each dataset (containing multiple cycles, i.e. multiple battery charges and discharges)
is done under different conditions. This means that different loads are applied to the
battery and which results in different current and voltage patterns during the charging
and discharging. Also during an experiment where the battery is charged and
discharged multiple times (something that can take multiple hours) also affects the
temperature and thus the behavior of the battery. Lastly there is always the aging
factor for a battery and the same battery can perform differently after a large number
of charges and discharges even under the same load profiles. This makes the training
of the neural network take into account different conditions and the resulting model,
while it has a low error overall, it is expected to perform better or worse on specific

datasets.

77

For example below we have three consecutive charging-discharging cycles of the

battery using different load profiles from different datasets. As we can observe the fit

differs between each dataset with some dataset being approximated better than others.

1.0 4

0.8 1

0.6

0.4 1

0.2 1

0.0 1

State of Charge, model-epl-cubic

Y

\

|\

/N

/

\

—— SoC Estimation %

SoC Real %

J

/
/
/

250

500

Figure 30: Model 4 - Results (3 Cycles)

750

1000
datapoints

1250

1500

1750

2000

Essentially the RL algorithm will try to find the optimal policy that fits a better curve

on average to all the different datasets. This is also coupled with the fact that the base

dynamics are modeled by the ECM which should capture the average behavior of a

cycle regardless of the conditions or at least it should not diverge that much. That in

itself provides a guarantee that even if different conditions are met between the

datasets or during the deployment, the model should not diverge that much from an

acceptable solution. If this is not the case the physics-based model should be revisited

and improvements there should be considered.

78

Conclusion

7.1 Summary

In the above work we have presented the implementation of a hybrid approach that
uses classical modeling along with reinforcement learning in order to model a Li-ion
battery and estimate its State of Charge which is an internal quantity and cannot be
directly measured. While several approaches have been proposed, most include either
complex electrochemical models that are non trivial to model and solve, approaches
based on physics-based models (Kalman Filters) or completely data driven methods
based on machine learning. This approach aims to provide a framework where both a
physics-based model can be used to capture the main dynamic behavior of the system
as well as a neural network that acts as an optimal estimator for the system parameters
and captures nonlinear dynamics that may exist while also providing a model that

could run in real time during a battery’s operation.

7.2 Key Findings and Evaluations

This approach can provide good accuracy for a real scenario of operation. The models
have provided good approximations and low estimation errors for the different
datasets that have been used. Moreover the data driven approach of the RL allows us
to capture possible nonlinear behavior that is harder to be captured by more classical
approaches while it also provides a model lightweight enough to be feasible to run in

real time.

79

The main advantages of the method are summarized below

1. It utilizes a data driven approach while it also uses a physics-based model. This can
be advantageous in applications where physical modeling has previously been done
and a different approach could be desirable without abandoning any work that already

exists.

2. The physical model already captures part of the dynamics which makes it easier for
the RL algorithm to converge to a solution and improves accuracy. The NN trained by
the RL can drive the model to an optimal state by introducing non linear behavior by
changing its parameters while leaving the model to capture faster dynamics that could
be harder to capture with a data driven approach..

3. Since the physics-based model can be thought to act as a constraint to the RL it
could be argued that faster training or training that requires less data could be
achieved.

4. It is fast enough to be used in a real time scenario.

5. Having a physics-based model could improve the generalization capabilities of the
model to scenarios outside the provided datasets as a big part of the system dynamics

is already captured.

7.3 Limitations

This methodology, while it provides good accuracy in the current use case, should be
further investigated in more scenarios. Some disadvantages and limitations of the

method are the following.

1. It utilizes a hybrid approach. This can be also a disadvantage as well as an
advantage since competence for both classical modeling and data driven methods

need to be present within a team which can prove a limiting factor.

2. While it is fast enough to run in real time, it is not necessarily faster than simpler

methods that could be adequate in many cases especially in applications where not

80

that much processing power or memory is available. This can be a limiting factor as

both a physical model as well as a neural network need to run concurrently.

3. Good quality datasets are needed. If these datasets do not already exist separate
meticulous experiments should be done which requires time and the necessary

experimental setup.

4. On the other hand if good quality datasets exist the time that is required to
investigate physical models to be used with this approach may not be worthwhile if

concrete advantages in the accuracy or generalization of a model are not provided.

We can see that a lot of the advantages of the method can also prove disadvantages so
the method should be evaluated on a case by case basis taking into account the

competences available within a team as well as the problem at hand.

7.4 Future Work

There are a number of things that could be investigated further mainly related to the

advantages mentioned above.

Generalization Capabilities

It is worthwhile to investigate how good the method generalizes to other datasets of
similar systems. Since part of the dynamics are captured by the physical model a
study where a model is trained in a specific dataset but is also tested at experiments
done at completely different battery conditions can be conducted to test how the
model behaves. The results will be useful to be compared to the ones of a purely data

driver approach in the same use case.

Improved Training

It could be argued that since the physical model behaves as a constraint to the RL
network, reduced training time or a reduction in training data needed could be

possible while achieving good results. A comparison of different data driven methods

81

along with this method could be done to investigate if this can be proven true. This

can be especially useful in more complex systems.

Different Use Cases

This method could be applied to different use cases i.e. either modeling batteries using
different models for the battery and state of charge estimation or modeling completely

different systems and evaluating the results.

82

References

[1] Fadlaoui Elmahdi, Lagrat Ismail, Masaif Noureddine, Fitting the OCV-SOC
relationship of a battery lithium-ion using genetic algorithm method, The International
Conference on Innovation, Modern Applied Science & Environmental Studies

[2] Yong Tian, Dong Li, Jindong Tian, Bizhong Xia, State of charge estimation of
lithium-ion batteries using an optimal adaptive gain nonlinear observer,
Electrochimica Acta, Volume 225, 2017, Pages 225-234, ISSN 0013-4686

[3] Yujie Wang, Jiaqiang Tian, Zhendong Sun, Li Wang, Ruilong Xu, Mince Li,
Zonghai Chen, A comprehensive review of battery modeling and state estimation
approaches for advanced battery management systems, Renewable and Sustainable
Energy Reviews

[4] Xiaosong Hu, Shengbo Li, Huei Peng, A comparative study of equivalent circuit
models for Li-ion batteries, Journal of Power Sources, Volume 198, 2012, Pages
359-367, ISSN 0378-7753

[5] Yuan Tian, Manuel Arias Chao, Chetan Kulkarni, Kai Goebel, Olga Fink,
Real-time model calibration with deep reinforcement learning, Mechanical Systems
and Signal Processing, Volume 165, 2022, 108284, ISSN 0888-3270

[6] Unagar, A.; Tian, Y.; Chao, M.A.; Fink, O. Learning to Calibrate Battery Models
in Real-Time with Deep Reinforcement Learning. Energies 2021, 14, 1361

83

https://www.sciencedirect.com/science/article/pii/S1364032120303063
https://www.sciencedirect.com/science/article/pii/S1364032120303063
https://www.sciencedirect.com/science/article/pii/S1364032120303063
https://doi.org/10.1016/j.electacta.2016.12.119
https://doi.org/10.1016/j.electacta.2016.12.119
https://doi.org/10.1016/j.electacta.2016.12.119
https://www.sciencedirect.com/science/article/pii/S1364032120303063
https://www.sciencedirect.com/science/article/pii/S1364032120303063
https://www.sciencedirect.com/science/article/pii/S1364032120303063
https://www.sciencedirect.com/science/article/pii/S1364032120303063
https://doi.org/10.1016/j.jpowsour.2011.10.013
https://doi.org/10.1016/j.jpowsour.2011.10.013
https://doi.org/10.1016/j.jpowsour.2011.10.013
https://doi.org/10.1016/j.ymssp.2021.108284
https://doi.org/10.1016/j.ymssp.2021.108284
https://doi.org/10.1016/j.ymssp.2021.108284
https://doi.org/10.3390/en14051361
https://doi.org/10.3390/en14051361

[7] Yu, QQ., Xiong, R., Wang, LY. et al. A Comparative Study on Open Circuit
Voltage Models for Lithium-ion Batteries. Chin. J. Mech. Eng. 31, 65 (2018)

[8] Severson et al. Data-driven prediction of battery cycle life before capacity
degradation. Nature Energy volume 4, pages 383-391 (2019)

[9] Pang, H.; Zhang, F. Experimental Data-Driven Parameter Identification and State
of Charge Estimation for a Li-lon Battery Equivalent Circuit Model. Energies 2018,
11, 1033

[10] Ruba, Mircea & Nemes, Raul-Octavian & Ciornei, Sorina & Martis, Claudia.
(2020). Parameter Identification, Modeling and Testing of Li-lon Batteries Used in
Electric Vehicles

84

https://doi.org/10.1186/s10033-018-0268-8
https://doi.org/10.1186/s10033-018-0268-8
https://www.nature.com/articles/s41560-019-0356-8
https://www.nature.com/articles/s41560-019-0356-8
https://www.mdpi.com/1996-1073/11/5/1033
https://www.mdpi.com/1996-1073/11/5/1033
https://www.mdpi.com/1996-1073/11/5/1033
https://www.researchgate.net/publication/338663346_Parameter_Identification_Modeling_and_Testing_of_Li-Ion_Batteries_Used_in_Electric_Vehicles
https://www.researchgate.net/publication/338663346_Parameter_Identification_Modeling_and_Testing_of_Li-Ion_Batteries_Used_in_Electric_Vehicles
https://www.researchgate.net/publication/338663346_Parameter_Identification_Modeling_and_Testing_of_Li-Ion_Batteries_Used_in_Electric_Vehicles

	Πίνακας περιεχομένων
	List Of Figures
	List Of Tables
	Abbreviations
	1​Εκτενής Περίληψη
	2​Introduction
	2.1​Overview
	2.2​Motivation
	2.3​Problem Statement
	2.4​Objectives

	3​Literature Review
	3.1​State of Charge (SoC) Estimation Method
	3.2​Battery Models
	3.2.1​Physics-based electrochemical models
	3.2.2​Equivalent Circuit Models
	3.2.3​Data Driven Methods
	3.2.4​Hybrid Methods

	4​ Approach of the Thesis
	4.1​Selection of the Battery Model
	4.2​State of Charge Estimation Method
	4.3​Mathematical Representation
	4.4​Parameter Description
	4.5​Reinforcement Learning
	
	4.6​Description of the Methodology

	5​Implementation
	5.1​Datasets
	5.1.1​Dataset Description
	5.1.2​Dataset Overview
	5.1.3​Data Selection
	5.1.4​Exploratory Data Analysis

	5.2​Software Framework Overview
	5.2.1​Data Management
	5.2.2​Battery Simulation
	5.2.3​Reinforcement Learning Algorithm
	Training Code
	Evaluation Code/Result Analysis

	5.2.4​Dataset Visualization

	5.3​Training Methodology
	5.3.1​Alternative Models
	5.3.2​Training Process

	5.4​Evaluation Methodology
	

	6​Results
	6.1​Experiments
	6.1.1​2nd Order ECM - Linear SoC Approximation
	6.1.2​2nd Order ECM - Cubic SoC Approximation - Model 1
	6.1.3​2nd Order ECM - Cubic SoC Approximation - Model 2
	6.1.4​2nd Order ECM - Cubic SoC Approximation - Filter

	6.2​Evaluation of Results
	6.3​Effects of Datasets

	7​ Conclusion
	7.1​Summary
	7.2​Key Findings and Evaluations
	7.3​Limitations
	7.4​Future Work

	8​ References

