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Περίληψη 

Ο σκοπός της διπλωματικής εργασίας είναι η ανάπτυξη μιας μεθοδολογίας η οποία 
μπορεί να χρησιμοποιηθεί για τον υπολογισμό της Κατάστασης Φόρτισης μπαταριών 
Ιόντων Λιθίου. Γενικότερα δύο βασικές μέθοδοι μπορούν να χρησιμοποιηθούν για την 
μοντελοποίηση ενός συστήματος, η πρώτη βασίζεται σε κάποιο φυσικό μοντέλο το οποίο 
αποτελείται από εξισώσεις που περιγράφουν τη συμπεριφορά του συστήματος και η 
δεύτερη σε προσεγγίσεις βασισμένες σε τεχνολογίες μηχανικής μάθησης όπου η 
συμπεριφορά μαθαίνεται από κάποιο σύνολο μετρήσεων που ήδη υπάρχει. Σε αυτήν την 
εργασία χρησιμοποιήθηκε ένας συνδυασμός των δύο παραπάνω μεθόδων όπου ένα φυσικό 
μοντέλο της μπαταρίας δημιουργείται με βάση ένα Μοντέλο Ισοδύναμου Κυκλώματος ενώ 
οι παράμετροι του μοντέλου αυτού υπολογίζονται σε πραγματικό χρόνο από ένα νευρωνικό 
δίκτυο το οποίο εκπαιδεύεται σε ένα σύνολο πειραματικών μετρήσεων χρησιμοποιώντας 
μεθόδους Ενισχυτικής Μάθησης.  

Η μέθοδος που περιγράφεται στοχεύει στο να συνδυάσει πλεονεκτήματα και από τις 
δύο επιμέρους μεθοδολογίες χρησιμοποιώντας το φυσικό μοντέλο για να προσεγγίσει τη 
βασική δυναμική του συστήματος και το νευρωνικό δίκτυο για να υπολογίσει τις 
παραμέτρους του και να βελτιώσει τη συμπεριφορά περιγράφοντας πιθανές μη 
γραμμικότητες που εμπεριέχονται στα πειραματικά δεδομένα. Στόχος είναι η δημιουργία 
ενός συνολικού μοντέλου με έναν αποδεκτό συμβιβασμό μεταξύ ακρίβειας και 
πολυπλοκότητας το οποίο θα μπορεί να χρησιμοποιηθεί σε εφαρμογές που απαιτείται 
υπολογισμός σε πραγματικό χρόνο.  
 
 
 
 
Λέξεις Κλειδιά: ενισχυτική μάθηση, μοντέλο ισοδύναμου κυκλώματος μπαταρίας, υπολογισμός 

κατάστασης φόρτισης, μοντελοποίηση μπαταρίας 
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Abstract 

 

The scope of the thesis is the development of a methodology that can be used in order 
to estimate the State of Charge of Li-ion batteries. In general two basic methods can be used 
when modeling a system, physics-based approaches, where the underlying equations of the 
system are derived and solved, and data-based approaches, where the behavior is learned 
from a dataset using machine learning methods. In this work a hybrid approach is utilized 
where a physics-based model for a battery is derived based on the battery’s Equivalent 
Circuit Model (ECM) while the parameters of the model are estimated in real time by a 
neural network that has been trained on a dataset of real measurements using Reinforcement 
Learning.  

The approach described is focused on combining advantages from both methodologies 
by using a physics-based model to describe the base dynamics of the system while 
estimating the model parameters and capturing any additional nonlinearities present by 
utilizing a data driven approach. There is also a strong focus to produce a combined model 
with a good trade off between accuracy and complexity that can be used in applications with 
real time requirements. 
 
 
 
 
Keywords: reinforcement learning, battery equivalent circuit model, state of charge estimation, 

battery modeling  
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1 Εκτενής Περίληψη 

Εισαγωγή 

Ο σκοπός της παρούσας εργασίας είναι η προσομοίωση της λειτουργίας μπαταριών 

ιόντων λιθίου (Li-ion) με βασικό σκοπό τον υπολογισμό της φόρτισης τους την κάθε 

χρονική στιγμή (State of Charge). Η μεθοδολογία είναι ένας συνδυασμός 

παραδοσιακής μοντελοποίησης ενός συστήματος με την χρήση ενός μαθηματικού 

μοντέλου και μεθόδων ενισχυτικής μάθησης. Το τελικό μοντέλο αποτελείται από ένα 

ισοδύναμο μαθηματικό σύστημα για την μπαταρία (Equivalent Circuit Model, ECM - 

Μοντέλο Ισοδύναμου Κυκλώματος) και ένα νευρωνικό δίκτυο που έχει εκπαιδευτεί 

μέσω ενισχυτικής μάθησης (Reinforcement Learning, RL) το οποίο επιδρά πάνω στο 

φυσικό μοντέλο αλλάζοντας τις παραμέτρους του (Μodel Calibration). H βασική ιδέα 

είναι ότι καθώς οι παράμετροι του μοντέλου δεν είναι γνωστές και μπορεί να 

αλλάζουν κατά την λειτουργία ο υπολογισμός τους γίνεται από το νευρωνικό δίκτυο 

RL το οποίο έχει εκπαιδευτεί πάνω σε πραγματικά πειραματικά δεδομένα. 

 

Μεθοδολογία 

 

1. Επιλογή Μοντέλου Μπαταρίας 
 

Ένα από τα πλέον χρησιμοποιούμενα μοντέλα μπαταρίας στη βιβλιογραφία είναι το 

2nd Order Battery ECM (Equivalent Circuit Model) το οποίο φαίνεται στο παρακάτω 

σχήμα 
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Figure 1: ECM Circuit 

 
 
 
Το μοντέλο αυτό χρησιμοποιείται για τον υπολογισμό της Voc (Open Circuit Voltage) 

η οποία είναι η τάση της μπαταρίας όταν αυτή δεν είναι συνδεδεμένη σε κάποιο 

κύκλωμα. Οι αντιστάσεις και πυκνωτές αποτελούν ένα απλοποιημένο μοντέλο των 

φυσικοχημικών διεργασιών μέσα στη μπαταρία (εσωτερική αντίσταση, υστέρηση και 

πόλωση). Η Voc μπορεί να μετρηθεί πειραματικά αν η μπαταρία αποσυνδεθεί, αφεθεί 

χωρίς φορτίο για κάποιο χρονικό διάστημα και μετά μετρηθεί ξανά η τάση της. 

 

2. Επιλογή μεθόδου προσέγγισης του SoC 
 

Γνωρίζοντας τη Voc από το παραπάνω σύστημα μπορούμε να υπολογίσουμε τη 

φόρτιση της μπαταρίας (SoC) επειδή υπάρχει συσχέτιση μεταξύ των δύο (καμπύλη 

SoC - OCV). Η πραγματική σχέση τους είναι πολύπλοκη και εξαρτάται και από τον 

τύπο της μπαταρίας. Γενικότερα υπάρχουν διάφορες προσεγγίσεις που μπορούμε 

χρησιμοποιήσουμε. Μία από αυτές είναι η προσέγγιση της Voc σαν ένα πολυώνυμο 

της SoC. Μπορούμε επίσης αν θέλουμε να εισάγουμε και την θερμοκρασία σαν 

παράμετρο. Μία προσέγγιση είναι η παρακάτω  

 

 𝑉
𝑜𝑐

= 𝑝
1
(𝑆𝑜𝐶) +  𝑝

2
(𝑇)
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όπου p1 και p2 είναι πολυώνυμα της φόρτισης και θερμοκρασίας αντίστοιχα, 

παράδειγμα  

 

 𝑝
1
(𝑆𝑜𝐶) =  𝑎

𝑛
𝑆𝑜𝐶𝑛 +  𝑎

𝑛−1
𝑆𝑜𝐶𝑛−1 +  ···  +  𝑎

1
𝑆𝑜𝐶 +  𝑎

0

 
 
Έχοντας τα παραπάνω μπορούμε από μετρήσεις τάσης και ρεύματος στα άκρα μιας 

πραγματικής μπαταρίας να υπολογίσουμε τη φόρτιση. 

 
 
3. Υπολογισμών των παραμέτρων του μοντέλου 
 

Σε αυτό το σημείο για να γίνουν οι παραπάνω υπολογισμοί πρέπει να έχουμε 

υπολογίσει πειραματικά τις διάφορες παραμέτρους του μοντέλου δηλαδή τις 

αντιστάσεις και πυκνωτές (Rο, R1, R2, C1, C2) του ECM καθώς και όλες τις σταθερές 

του πολυωνύμου που επιλέξαμε στο βήμα 2 για την προσέγγιση του SoC. Αυτό 

γενικά είναι μία πολύπλοκη διαδικασία, απαιτεί πολλές πειραματικές μετρήσεις και οι 

τιμές που υπολογίζονται είναι σταθερές, οι οποίες όμως μπορεί και να αλλάζουν κατά 

το συνολικό χρόνο ζωής μία πραγματικής μπαταρίας.  

 

Σε αυτό το σημείο η μεθοδολογία που παρουσιάζεται προτείνει την αντικατάσταση 

του βήματος αυτού με την χρήση ενός νευρωνικού δικτύου το οποίο για κάθε τιμή 

τάσης, ρεύματος και θερμοκρασία παράγει ως έξοδο τις παραμέτρους αυτές. Με 

κατάλληλη εκπαίδευση το μοντέλο αυτό επιλέγει κατάλληλα τις παραμέτρους 

προσπαθώντας να ελαχιστοποιήσει το σφάλμα της τιμής του SoC που υπολογίζεται. 

 

 

4. Εκπαίδευση με Ενισχυτική Μάθηση 
 

Όπως περιγράφηκε παραπάνω οι παράμετροι εκτιμώνται από ένα νευρωνικό δίκτυο 

που έχει εκπαιδευτεί μέσω ενός αλγόριθμου ενισχυτικής μάθησης. Το μοντέλο αυτό 

χρησιμοποιεί ένα dataset το οποίο περιέχει μετρήσεις για V, I, T και SoCreal που έχουν 

μετρηθεί κατά τη λειτουργία μίας μπαταρίας. Δηλαδή κατά τη διάρκεια ενός 
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πειράματος μετράμε την τάση και το ρεύμα που δίνει η μπαταρία σε ένα φορτίο, την 

θερμοκρασία της και την φόρτιση της. Η φόρτιση (SoCreal) αρκεί να προσδιοριστεί με 

κάποιο πειραματικό τρόπο κατά το ίδιο πείραμα ή ακόμα να είναι η έξοδος ενός 

άλλου νευρωνικού δικτύου το οποίο έχει εκπαιδευτεί μέσω μηχανικής μάθησης (το 

οποίο για εισόδους V, I, T δίνει σαν έξοδο ένα SoC) στα αντίστοιχα δεδομένα. 

Χρησιμοποιώντας το μοντέλο των βημάτων 2 και 3 μαζί με τα πειραματικά δεδομένα 

εκπαιδεύουμε το μοντέλο ενισχυτικής μάθησης με βάση την παρακάτω διαδικασία  

 

 
Figure 2: Neural Network - ECM Interaction In Training 

 
1. Ορίζουμε ένα action και state space για τον νευρωνικό δίκτυο που θέλουμε να 

εκπαιδεύσουμε 

2. Με είσοδο μετρήσεις V, I, T αυτό μας προτείνει κάποιες παραμέτρους για το 

μαθηματικό μοντέλο 

3. Με τις ίδιες μετρήσεις V, I, T και τις παραμέτρους που έχει εκτιμάει το 

νευρωνικό δίκτυο λύνουμε το μαθηματικό μοντέλο και υπολογίζουμε ένα 

SoCcalc 

4. Συγκρίνουμε το SoCcalc με το SoCreal που έχουμε ήδη για τη διαδικασία (από 

πειραματικές μετρήσεις) και υπολογίζουμε ένα reward function. 

5. Ανατροφοδοτούμε το αποτέλεσμα του reward function στον αλγόριθμο 

ενισχυτικής μάθησης ο οποίος ρυθμίζει το νευρωνικό δίκτυο προσπαθώντας 

να επιλέξει παραμέτρους που ελαχιστοποιούν την διαφορά αυτών των δύο 

τιμών του SoC 
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6. Συνεχίζουμε για όλες τις τιμές των dataset που έχουμε. Τελικά το νευρωνικό 

δίκτυο για δεδομένες τιμες V, I και T μαθαίνει να επιλέγει τις τιμές του 

φυσικού μοντέλου έτσι ώστε η τιμή SoCcalc να προσεγγίζει την πραγματική. 

 

4. Πραγματική Λειτουργία 
 

Μετά την εκπαίδευση χρειαζόμαστε μόνο το μαθηματικό μοντέλο (2nd Order ECM) 

μαζί με το μοντέλο RL που έχουμε εκπαιδεύσει. Στην πραγματική λειτουργία έχουμε 

τα παρακάτω βήματα 

 

 
Figure 3: Deployed Neural Network - ECM 

 

1. Κατά την λειτουργία της μπαταρίας παίρνουμε πραγματικές μετρήσεις τάσης, 

ρεύματος και θερμοκρασίας (V, I, T) 

2. Με είσοδο τις τιμές V, I, T για κάποια χρονική στιγμή το νευρωνικό δίκτυο 

μας δίνει ως έξοδο παραμέτρους για το φυσικό μοντέλο. Οι παράμετροι αυτές 

όπως αναφέρθηκε και παραπάνω είναι τιμές των αντιστάσεων, πυκνωτών και 

των υπόλοιπων παραμέτρων του συστήματος. 
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3. Χρησιμοποιώντας τις παραμέτρους αυτές του νευρωνικού δικτύου μαζί με τις 

πραγματικές μετρήσεις V, I, T μπορούμε να λύσουμε το μοντέλο και να 

υπολογίσουμε την κατάσταση φόρτισης της μπαταρίας 

4. Δεδομένου ότι το νευρωνικό δίκτυο έχει εκπαιδευτεί σωστά η τιμή αυτή θα 

πρέπει να συγκλίνει στην πραγματική τιμή της φόρτισης της μπαταρίας 

 

Πλεονεκτήματα 
 

Κάποια από τα πλεονεκτήματα της μεθόδου αυτής είναι τα παρακάτω 

 

1. Μπορεί να χρησιμοποιηθεί με ένα μαθηματικό μοντέλο όπου αυτό κρίνεται 

σκόπιμο, για παράδειγμα σε προβλήματα που ήδη υπάρχει δουλειά 

μαθηματικής μοντελοποίησης ενός συστήματος από το παρελθόν 

2. Συνδυάζει την παραδοσιακή μοντελοποίηση με μεθόδους Ενισχυτικής 

Μάθησης το οποίο μπορεί να βελτιώσει την απόδοση μαθηματικών μοντέλων 

που ήδη υπάρχουν. 

3. Το μοντέλο ενισχυτική μάθησης (RL) δουλεύει παράλληλα και αλλάζει τις 

τιμές του φυσικού μοντέλου (ECM) κατά την λειτουργία (Online Calibration). 

Αυτό μπορεί να οδηγήσει σε απλοποιήσεις του φυσικού μοντέλου αφού 

πλέον, δεδομένου ότι οι παράμετροι αλλάζουν, αυτό μπορεί να προσεγγίσει μη 

γραμμικές συμπεριφορές που πριν ίσως δεν ήταν δυνατόν ή χρειάζονταν μία 

ακόμα πιο πολύπλοκη μαθηματική περιγραφή. 

4. Σε κάποιους τύπους προβλημάτων ο συνδυασμός των μοντέλων μπορεί να 

βελτιώνει τη συνολική συμπεριφορά αφού το νευρωνικό δίκτυο κάνει 

calibration του φυσικού μοντέλου ενώ αυτό με τη βοήθεια των εξισώσεων 

μπορεί να προσεγγίζει καλύτερα τη δυναμική του συστήματος σε 

συγκεκριμένα σημεία λειτουργίας. 
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2 Introduction 

2.1 Overview 

Today there is an increased reliance on batteries across different types of applications, 

such as electric vehicles and renewable energy storage systems that requires an 

efficient management of the battery’s health and performance. A key metric in battery 

management systems (BMS) is the State of Charge (SoC) which is a measure of the 

energy remaining in the battery that can be used by our application. An accurate 

estimation of SoC plays a vital role in optimizing utilization of the battery system and 

extending the battery’s lifespan. Different ways of SoC estimation have been 

proposed, which are generally divided into two big categories, the first one involving 

the utilization of physics-based battery models and the second various machine 

learning methods that are trained on experimental datasets. Equivalent Circuit Models 

(ECMs) for batteries are commonly employed for this purpose due to their simplicity 

but their static parameters often fail to capture the changing operating conditions of a 

real system. This thesis proposes a novel approach that integrates reinforcement 

learning (RL) to dynamically adjust the parameters of the ECM in real time and trying 

to improve the accuracy of SoC estimation under various conditions. 

 

 

 
16 



 

2.2 Motivation 

Traditional methods for SoC estimation rely on physics-based models of batteries that 

mostly have static parameters that have been estimated during the model 

identification. These parameters in general may not adequately account for variations 

in the behavior of the battery caused by temperature changes, aging or nonlinearities 

that are inherent in the process. Different techniques have been implemented in order 

to account for the differences in battery behavior, such as Kalman filters, but these 

methods often struggle with the model nonlinearities, require manual tuning and they 

are computationally more intensive if employed in a real time scenario.  

 

Reinforcement learning techniques offer an alternative approach that allows the 

system to learn and adapt autonomously. Using them, a neural network can be trained 

that can update the parameters of the physics-based model online eliminating the need 

for manual calibration or the recalibration to fit different scenarios. This can offer an 

attractive alternative for commercial application where the battery is expected to work 

under different working conditions, such as warm and cold climates and across the 

different stages of the battery’s life. 

 

2.3 Problem Statement 

Current battery management systems have limitations in accurately estimating the 

State of Charge (SoC) due to either the inability of the models to capture the behavior 

for different working conditions or the inherent non linearities of the battery system 

without becoming too complex and computationally intensive. In general 

 

1. Static model parameters can lead to increasing estimation errors under different 

scenarios of operation. 

2. Manual recalibration of the models can be time consuming and also impractical for 

commercial applications. 
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3. Other techniques can struggle when handling model nonlinearities (Kalman filters) 

or be computationally intensive for a real time application (Electrochemical battery 

models). 

 

This thesis addresses these limitations by developing a reinforcement learning based 

neural network that adjusts the model parameters of a Li-ion battery ECM (Equivalent 

Circuit Model) attempting to combine traditional modeling with learning techniques 

thus improving the accuracy and robustness of the overall model. 

 

2.4 Objectives 

The primary objectives are the following: 

 

1. Select a battery model, from the ones available in the literature, that can adequately 

capture the behavior of Li-ion batteries and be used for the estimation of the battery’s 

SoC.  

2. Develop a reinforcement learning methodology that can be used to train a neural 

network capable of online calibration of the battery model. 

3. Train the neural network using datasets of real Li-ion batteries under different 

working conditions. 

4. Validate the proposed approach through simulations of different working conditions 

based on real data. 

5. Explore how slight variations of the selected physical model can affect the resulting 

accuracy. 
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3 Literature Review 

3.1 State of Charge (SoC) Estimation Method 

Battery Management Systems (BMS) are utilized in order to enhance battery lifetime, 

reliability and efficiency [1]. Their main objective is, amongst other things, to monitor 

the State of Health (SoH) which estimates the battery’ condition and State of Charge 

(SoC) which is an important parameter that measures the remaining capacity on a 

battery. One drawback when estimating these parameters is that they cannot be 

measured directly from the available sensors (in an electric vehicle for example) and 

are also dependent on many factors such as current, voltage, temperature, aging etc. 

which raises the need to develop accurate estimation algorithms.  

 

There are a number of different approaches for estimating the State of Charge such as 

Coulomb Counting (CC), open-circuit voltage (OCV) methods, electrochemical 

methods, machine learning based methods, Kalman Filter based methods and others 

[2]. Some of the methods such as Coulomb Counting or machine learning methods do 

not need to explicitly define a battery model, while others can use an equivalent 

model (models based on ECM or Kalman filtering) or a model that describes the inner 

battery processes (electrochemical models). Different methods have different 

computational complexities either upfront (learning or hybrid methods) or during the 

solution of the models (electrochemical methods). 

 

One popular approach is the modeling of the battery’s State of Charge through its 

relationship to the Open Circuit Voltage (SoC - OCV curve) which is an internal 

characteristic of a specific type of battery. This approach can be generalized to 
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different batteries but it should be noted that modeling and parameter estimation 

should be repeated for different types. The SoC - OCV curve is generally a nonlinear 

monotone function and a good estimation of this curve leads to more accurate models. 

The estimation of this curve is generally involved and needs to find a good function to 

approximate the curve, parameter identification and also a good way to model the 

Open Circuit Voltage of the battery as this quantity is also not directly measured to a 

battery that is in use. (To measure OCV experimentally for a specific battery state we 

need to disconnect the battery and let it settle for some time and then measure the 

voltage again). Several functions have been proposed that model the SoC - OCV 

curve that include polynomial functions of various degrees, logarithmic, exponential 

or a combination of them. The function becomes even more complex if we need to 

include other variables such as battery temperature or aging. 

 

3.2 Battery Models 

The battery models that exist in the literature in general can be divided into the 

following categories: physics-based electrochemical models, electrical equivalent 

circuit models (ECMs) and data driven models utilizing artificial intelligence 

algorithms such as neural networks and support vector machines [3]. 

 

3.2.1 Physics-based electrochemical models  

The most mature of the physics based electrochemical models is the single-particle 

model where the concentration distribution in the electrode is done through a single 

particle. Though simple this model has a relatively low accuracy which has led to the 

extension of it by other models, for example SPMe that utilize more complex 

modeling as well as partial differential equations to describe parts of the 

electrochemical process. Other models such as the P2D have also been proposed that 

treat the anode and cathode of the cell as porous electrodes  and the spaces between 

particles are filled with electrolyte. This model utilizes a system of coupled partial 

differential equations PDEs which makes it necessary to introduce simplifications 

from the perspective of engineering practice. Even more complex models have been 

proposed, for example a P2D electrochemical-thermal-capacity coupled model that 

 
20 



 

accounts for several mechanical and electrochemical factors. In general all these 

models are difficult to apply because they have a large number of unknown variables 

and are also computationally intensive to solve especially in a real time scenario. 

They are also highly sensitive to accurate estimation of the parameters which in many 

cases are internal to the battery and hard to identify which can lead to simulation 

results that are not ideal. 

 

3.2.2 Equivalent Circuit Models 

The electrical equivalent circuit models model the battery behavior using electrical 

components [4]. They have attracted interest due to their simplified structure with 

respect to other approaches. One of the simplest such models is the Rint model which 

approximates the battery with a real voltage source with a resistor in series. An 

extension of this model is the first order ECM which also includes an additional 

resistor and capacitor connected in parallel which aims at modelling the behavior 

during charging and discharging. A more complex approach is the second order ECM 

that employs an additional RC component that can better approximate the polarization 

and diffusion phenomena that happen during the battery’s behavior. More complex 

approaches also exist that extend the model to higher orders.  

 

3.2.3 Data Driven Methods 

A variety of data driven methods (DDM) also exist that use neural networks and 

various learning algorithms to simulate the behavior of the battery. These methods in 

general have very good performance when it comes to the nonlinear phenomena 

without requiring a detailed knowledge of the underlying electrochemical system. 

When trained using comprehensive datasets can achieve high accuracy but this 

depends a lot on the quality and the quantity of the provided data. On the other hand 

they can struggle when approximating scenarios outside the dataset which can include 

different temperatures, loads or aging effects of a battery. In addition they can also be 

influenced by the training method and algorithm used which also need to be taken into 

account.  
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3.2.4 Hybrid Methods 

As described above an approach where the SoC - OCV curve is modeled will require 

the selection of a complex function as well as the identification of a number of 

parameters used in it. This is an involved process and requires dedicated parameter 

identification methods also referred to as model calibration. The inferred model 

parameters often correspond to real physical quantities that are not directly observable 

and thus cannot be measured during operation. The relevance of the model calibration 

process in the final accuracy of the predictions while also making it robust to 

uncertainty in observations makes this process inherently challenging. This can 

introduce computational issues such as time consuming simulations, requirements for 

big datasets of high quality data and highly complex dynamic models. Also the 

existence of multiple solutions which increases with model complexity should also be 

taken into account. 

 

Several methods have been proposed to tackle this problem . If a physics-based model 

already exists and is well founded on known underlying physical laws the available 

methods can include parameter inference using probabilistic or estimation approaches 

based on techniques from optimal control theory and statistics (for example Kalman 

Filters, extended Kalman Filters, particle filters, Bayesian inference methods and 

other). These methods have all been deployed in some form or another in real 

applications but still have limitations such as high processing power requirements or 

sensitivity to any inaccuracies in the modeled dynamics.  

 

Data Driven approaches have also been proposed as an alternative method for 

calibrating physics-based models which results in a more probabilistic approach when 

solving the calibration problem. A common approach is to use supervised learning 

where a neural network is trained where a correlation is derived from observation and 

model parameters. These methods provide real time calibration possibilities but are 

also more sensitive to the absence of high quality data in the training datasets. Also in 

order to adapt to new scenarios, retraining of the neural network is necessary.  
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Recently developments in model-free reinforcement learning have achieved progress 

towards addressing control problems in essence effectively being successful in finding 

optima control policies. RL has proven effective in finding optimal control policies 

for nonlinear systems with dynamics that have a degree of uncertainty [5]. These 

methodologies give some flexibility to adapt to new scenarios while they can be 

employed in real time and can be utilized for the inference of the parameters of 

physics-based models. One approach is the formulation of the parameter estimation as 

a tracking problem where an agent is trained to keep the model response matching the 

observations [6]. 
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4  Approach of the Thesis 

In this work our goal is to train a Neural Network using Reinforcement Learning to 

learn to make optimal predictions of the parameters of a Physics-Based Model which 

in turn will be solved to calculate the State of Charge of the battery. After the training 

the models could be used to estimate the SoC during the operation. The general 

approach to the training process is summarized in the figure below. 

 

Figure 4: Training Approach 
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The steps are described here briefly and explained in detail in the following chapters 

 

1. Measurements (observation) from the Dataset are given as inputs to the Neural 

Network (NN) 

2. The Neural Network then estimates the parameters (action) of the 

Physics-Based model (the ECM in this case) 

3. The ECM then, using the measurements and parameters, is solved to produce 

an estimation of the State of Charge of the battery at the current time step 

which is then, along with the real State of Charge from the measurements, 

inputted in a Reward Function 

4. The result of the Reward Function is used by the Reinforcement Learning 

algorithm to calibrate the Neural Network and minimize the estimation error. 

 

 

4.1 Selection of the Battery Model 

The first step of the methodology is to select a battery model. The purpose of this 

model is to describe the internal state of the battery for the purposes of this 

methodology. This essentially means to give us a way to estimate the open circuit 

voltage (Voc). This is the voltage measured when the battery is not connected to any 

circuit either to provide power or to get charged. In order to measure this voltage the 

battery needs to be disconnected and be left idle for some amount of time, for 

example half an hour, so it can settle to a voltage which represents the battery’s Voc. 

In general this can vary with the individual characteristics and type of battery and it is 

not feasible to be measured in a real time scenario as it needs to be disconnected. So 

for our purposes we treat Voc as a variable internal to the battery that cannot be 

directly measured. 

 

In general Voc is a variable directly connected to the State of Charge of the battery so a 

model needs to be used to estimate it from the available measurements that we have, 

i.e. voltage on the battery terminals, circuit current and temperature of the battery. A 
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number of physical models can be found in the literature that belong to broad 

categories, electrochemical models and equivalent circuit models. In general 

electrochemical models are complex models that model the internal structure of the 

battery and thus require a lot of parameters and possibly more complex mathematical 

representation which is unsuitable for real time calculations. Equivalent Circuit 

Models (ECMs) are considered a good middle ground between accuracy and 

complexity requiring only electrical components and can approximate the battery’s 

behaviour adequately. A number of models also exist in this category from very 

simple one resistor models (Rint Model) to different orders of ECMs. The most 

commonly used model is the 2nd Order ECM which is the one used in the following 

analysis. This can adequately model the battery’s internal voltage as well as some 

important dynamics of the battery such as polarization and hysteresis with the use of 

two additional capacitors and resistors. 

 

 

 
Figure 5: Circuit of Battery Model 

 
 
As we can see in the picture we have two resistor/capacitor pairs modeling the 

dynamic behavior of the battery and an additional internal resistance. The value I and 

Vc are the battery measurements and Voc is the open circuit voltage of the battery. 
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4.2 State of Charge Estimation Method 

The model above gives us the means to calculate the battery’s internal variable Voc 

given the measurements I and Vc. An extra step is needed in order to be able to 

calculate the state of charge by adding an equation for it to the model. Several SoC 

approximations [7] can be found in the literature that connect the open circuit voltage 

Voc with the current State of Charge. There is a plethora of models from different 

order polynomials to models also containing logarithmic or exponential factors. Since 

this is a non linear relationship the model can be chosen depending on the battery type 

and specific dataset in order to achieve the best fit. In our case the advantage of 

varying the model parameters in real time means that using a simpler model can 

capture this nonlinearity which is indirectly modeled inside the neural network trained 

using reinforcement learning.  

 

There is also another factor that is taken into account and that is the battery’s current 

temperature. In general the temperature is also included in the State of Charge model 

and can also vary depending on the approximation and it is common to also be 

modeled as a polynomial . 

 

In our case a trade off needs to be made. Choosing a higher order model can improve 

accuracy but it does have diminishing returns as we add more parameters. On the 

other hand, more complex models can make the training of the RL based policy 

resource intensive, as more parameters need to be checked, increasing the dimensions 

of the action space. In our approach different SoC approximations have been studied, 

one simpler with a linear approximation for both SoC and temperature and one with a 

cubic approximation for SoC and a linear for temperature. More complex approaches 

can also be studied but in our case we achieve accurate results as the RL policy also 

captured part of the nonlinearities. 
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Model 1 
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Model 2 
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4.3 Mathematical Representation 

The State of Charge estimation combined with the Equivalent Circuit Model of the 

battery described in the previous two chapters gives us a complete model that can be 

used in order to calculate the State of Charge of a battery based on the measured 

voltage, current and temperature. The combined model consists of the following 

system of algebraic and differential equations 

 

For each capacitor resistor pair we have that 

 𝐼 = 𝐼
𝑐

+ 𝐼
𝑅

= 𝐶
𝑑𝑉

𝑐

𝑑𝑡 +
𝑉

𝑅

𝑅

 
 𝑉

𝑅
= 𝑉

𝑐
 

 

Also from the whole circuit by applying the Kirchoff’s law of voltages we have that 

 𝑉
𝑜𝑐

= 𝑉 + 𝐼𝑅
𝑜

+ 𝑉
𝑅1

+ 𝑉
𝑅2

 

Two additions to the model have also been made in order to improve the overall 

behavior taking into account also the integration with the neural network 

  

Firstly a limit function has been placed in the output of the model that bounds the SoC 

between 0 and 1, which are the values that it can normally take. This is done to 

remove possible peaks and undershoots created during the operation. Secondly taking 
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into account that the neural network changes the parameters of the model in real time 

this can in effect create discontinuities internally in the ECM circuit. The NN also has 

the ability to select any parameter within the action space which can have two effects. 

Firstly it can change a capacitor to a very low value in which the capacitor voltage 

(i.e. the capacitor voltage in the previous timestep) is higher than the one that could be 

achieved in the new circuit. Secondly it can change the capacitor to a very high value 

and because the capacitances are selected with high upper bounds, this can make the 

circuit very slow in reacting (since the capacitor will need to be charged requiring a 

lot of timesteps). The same applies in changes to the values of resistances. To solve 

these two problems a check has been applied so if the previous capacitor voltage is 

higher than the upper limit or lower than 70% of the max limit it is adjusted to 85% of 

the max value. These percentages have been empirically selected but work well in 

practice. 

 

Taking into account all the above the equations of the complete model are given 

below 

 

ECM 

 𝐶
1
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SoC (one of the two equations) 
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Limit Functions 

 𝑆𝑜𝐶 =  1 ,  𝑆𝑜𝐶 >  1
 𝑆𝑜𝐶 =  0 ,  𝑆𝑜𝐶 <  0

 
  𝑉
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> 𝐼𝑅

2
 𝑜𝑟 𝑉
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2
 
 
 

4.4 Parameter Description 

As we can see the above model has parameters that need to be identified or estimated. 

The parameters are the following 

 

2nd Order ECM: Ro, R1, R2, C1, C2 
SoC Approximation: a3, a2, a1, b1, a0   or   a1, b1, a0 
 

so we have to identify 8 to 10 parameters depending on the SoC approximation we 

choose. 

 

The ECM parameters are the values of the internal circuit components that model the 

behavior of the battery. In essence Ro is the internal resistance of the battery and the 

R1 - C1, R2 - C2 pairs model internal battery dynamics such as polarization and 

hysteresis. For example if the battery is in use and the charging cycle has started it 

takes some time for the internal voltages to settle because of the internal 

electrochemical phenomena that are here modeled by the capacitors.  

 

 

 

The table below contains a range of typical values for the parameters based on their 

order of magnitude 
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Table 1: Parameter Ranges for Equivalent Circuit Models 

 

 Minimum Value Maximum Value 

Ro 0.001Ω 0.1Ω 

R1 0.01Ω 0.5Ω 

R2 0.05Ω 1Ω 

 C1 500F 5000F 

 C2 5000F 10000F 

a3 -0.1 0.1 

a2 -1 1 

a1 0 5 

b1 -0.5 0.5 

a0 -10 10 

 
 

Please note that the above are roughly the orders of magnitudes for the variables and 

are used as limits during the training process of the NN. They do not necessarily have 

any strict limitation and should be tinkered with during the modeling process to 

achieve the best results. For example a range could be increased slightly or a subset of 

the above ranges could be used to improve training time if it is judged that a reduced 

range is adequate for the modeling process. 

 

4.5 Reinforcement Learning 

As discussed in the previous chapters the above model is adequate, given the directly 

measurable inputs V, I and T to calculate the current State of Charge of the battery. 

The only missing part is the estimation of the parameters of the model. This 

traditionally is achieved by identification techniques in the laboratory and in general 

when the parameters are identified they remain fixed to specific values. A different 

approach that is used in the current thesis is instead to use a neural network trained 
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using reinforcement learning to learn a policy that itself will be responsible for 

dynamically updating the parameters of the model during operation. This offers the 

advantage that no identification is required as the neural network learns to propose 

optimal values of the parameters in real time while the parameters are updated at each 

timestep, not forcing us to adhere to a single set like in a more typical identification 

process. 

 

Figure 6: High Level Neural Network Training Process 

 

As seen in the figure above a neural network is trained and an optimal action is 
learned. In our case a state is represented by the actual measurements that are acquired 
in real time or through a dataset, i.e. the voltage in the battery terminals, the current 
and the battery temperature. This NN in turn is responsible to produce an optimal 
action, which in our case is an estimation of the parameters described in the previous 
chapter, that will minimize the reward function. The goal of the Reward Function 
(RF) as defined in this problem is the minimization of the error of the calculated and 
the real State of Charge of the battery.  
 
There is no specific requirement about the RL algorithm that is needed to be used in 
the problem so experimentation with different algorithms that meet the problems 
criteria can also be done. In our case a Soft Actor Critic (SAC) algorithm has been 
used that has the following advantages 
 

1. Encourages the agent to explore more by adding an entropy term in the reward 
function thus reducing the chance to get stuck in local minima 

2. Increases training efficiency by using a replay buffer that keeps past training 
states 

3. Has improved critic performance by using two separate neural networks 
mitigating overestimation bias. 
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In any case though other RL algorithms could also achieve similar results so this is 
open for experimentation.  
 
 

4.6 Description of the Methodology 

Integrating all the above we have the final system that can be used for the estimation 

of the State of Charge of the battery. The first step that needs to be done is the training 

of the NN by the RL algorithm so it learns the optimal policy for parameter 

estimation. In our approach we used two different SoC models (as described above) 

which results in systems with different numbers of parameters. Below we will 

describe one of the two systems but the approach is similar for both. It should be 

noted that for each change of the physical model, i.e. the ECM or the SoC 

approximation, a new NN must be trained. 

 

Training 

First we train the neural network. This process takes the most time and a quality 

dataset is necessary for good results. The process is a follows: 

 

1. In this step the model starts from an initial action that is produced by the 

neural network, that is arbitrary in the beginning as the network is untrained 

and converges to the optimal values as the training continues. The input 

(observation) to the NN comes from the dataset which is the measurement 

values for voltage, current and battery temperature. 

2. The model then generates a new range of parameters (action) that are all 

bound by the action space during the problem formulation. This essentially is 

the expected range for the parameters (described in the previous chapters). 
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Figure 7: Input from Dataset to Neural Network 

 

 

3. The parameters (action) along with the measurements (observation) are then 

fed to the physics-based model i.e. the ECM and SoC approximation models 

which can now be solved arithmetically. 

 

 

 

Figure 8: Inputs/Outputs of Physics-Based Model 
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4. The physics-based model then produces a new SoC estimation that 

corresponds to the current observation. This estimation is then compared with 

the real SoC that is included in the dataset, using a reward function and the 

result is used by the reinforcement learning algorithm to calibrate the neural 

network which learns the correct policy for minimizing the error between the 

two values. 

 

 

 

 

Figure 9: Reward Function of Reinforcement Learning Algorithm 

 

 

 

Deployment 

When the training process is completed a neural network is produced which has 

learned an optimal policy that attempts to reduce the SoC estimation error of the 

ECM. In general this policy is the best one found during training that minimizes this 

error. That said there could be different policies that produce similar results that could 

be learned by the neural network or even suboptimal policies if the model converges 

to possible local minima that may exist. The goal is to keep a model simple enough to 
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minimize this effect, as well as use RL algorithms that encourage exploration even if 

they have found a possibly good solution. Now that the NN has learned an optimal 

policy it can be used for a specific observation to give the best action (i.e. 

combination of parameters to be used in our case in the following way) 

 

1. Each time new measurements are available, in our case the voltage, current 

and temperature of the battery, these values are used as an input to the NN to 

produce an optimal action, i.e. the parameters of the ECM. 

2. These parameters along with the original measurements are used to solve the 

ECM and produce a new SoC estimation. It should be noted here that both the 

NN as well as the ECM work in combination to try and capture the behavior of 

the battery and in this sense both of these models contain part of the system’s 

dynamics. 

3. The ECM is solved and a prediction for the State of Charge of the current 

timestep is produced. This should be an optimal prediction with respect to the 

training of the Neural Network in the sense that its error from the real is 

minimized. 

 

 

The figure below shows the process of using the model during a real time scenario. 

The NN now is the one that has been trained and along with the ECM can be used in 

real time as a battery is operating. 
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Figure 10: Model Deployment Methodology 
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In the two figures below we have a more high-level summary of the process. As a first 

step we train the NN using a dataset and solving the Physics-Based model, the output 

of which is used by the RL algorithm to calibrate the NN which learns the optimal 

policy. 

 
Figure 11: Neural Network - Physics Based Model Interaction In Training 

 
 
After the training is completed we can deploy the network to an application in a real 

time environment. Here the NN is used as an optimal estimator of the best system 

parameters for a specific set of measurements. These measurements are then used 

with the parameters to solve the physics based model and get the estimation of the 

current State of Charge of the battery.  

 
Figure 12: Neural Network - Physics Based Model In Deployment 
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5 Implementation 

5.1 Datasets 

5.1.1 Dataset Description 

The datasets used [8] consist of 124 commercial lithium-ion batteries which have 

been charged/discharged till failure using fast charging. These lithium-ion cells  were 

cycled in horizontal cylindrical fixtures on a 48-channel Arbin LBT potentiostat in a 

forced convection temperature chamber set to 30°C. The cells have a nominal 

capacity of 1.1 Ah and a nominal voltage of 3.3 V. There are also temperature 

measurements that have been performed by a Type T thermocouple. It should be taken 

into account that because of the nature of the experiment the temperature 

measurements could exhibit reduced accuracy since the thermal contact between the 

thermocouple and the cell may vary or the thermocouple could lose contract during 

some cycles. 

 

The datasets are divided into three different groups each consisting of about 48 cells. 

Each group has a separate date denoting when the tests started. All data used were 

available as csv files and loaded into python during the training and validation phases. 

 

 

 

 

 

 
39 



 

Measurement Group 1 

Experiment Information 

1. All cells were cycled with one-step or two-step charging policies. The 
charging time varies from ~8 to 13.3 minutes (0-80% SOC). There are 
generally two cells tested per policy, with the exception of 3.6C (80%). 

2. 1 minute and 1 second rests were placed after reaching 80% SOC during 
charging and after discharging, respectively. 

3. We cycle to 80% of nominal capacity (0.88 Ah). 
4. An initial C/10 cycle was performed in the beginning of each test. 
5. The cutoff currents for the constant-voltage steps were C/50 for both charge 

and discharge. 
6. The pulse width of the IR test is 30 ms. 

 
 

Measurement Group 2 

Experiment Information 

1. All cells were cycled with one-step or two-step charging policies. The 
charging time is fixed at 10 minutes (0-80% SOC). There is generally only one 
cell tested per policy, with the exception of 4.8C(80%) (three cells). 

2. We resumed 5 cells from the 2017-05-12 batch that didn’t complete yet - 3.6C 
and 4.0C. 

3. We cycle to 75% of nominal capacity (0.88 Ah). 
4. 5 minute rests were placed both after reaching 80% SOC during charging and 

after discharging. 
5. An initial C/10 cycle was performed in the beginning of each test. 
6. The cutoff currents for the constant-voltage steps were C/50 for both charge 

and discharge. 
7. The pulse width of the IR test is 30 ms. 

 
 

Measurement Group 3 

Experiment Information 

1. All cells were cycled with two-step charging policies. The charging time fixed 
at 10 minutes (0-80% SOC). We test multiple cells per policy (3-8x per 
policy). 

2. We cycle to 80% of nominal capacity (0.88 Ah). 
3. Four 5-second rests were placed after reaching 80% SOC during charging, 

after the IR test, before discharging, and after discharging. 
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4. A final C/10 cycle was performed at 80% of nominal capacity. 
5. The cutoff currents for the constant-voltage steps were C/20 for both charge 

and discharge. 
6. The pulse width of the IR test is 33 ms. 

 

Example files available for this dataset are the following (total 46 files of multiple 

cycles on different batteries) 

 

 
Figure 13: Example of Dataset Filenames 

 

 
 
 

5.1.2 Dataset Overview 

As we can see above the datasets have multiple charging/discharging cycles for 

multiple batteries. Also there are three groups that have different experimental designs 

with varying parameters. Moreover each group consists of multiple files each 

containing different load profiles for the battery (i.e. different Voltage and Current 

inputs during the charging and discharging process). This provides a rich dataset 

covering multiple different conditions for Li-ion batteries that in turn is expected to 

enhance the number of different real time scenarios that a model trained on these data 

can cover. 
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Figure 14: Dataset File Internal Structure 

 

Here we can see the structure of a single file of the above datasets. It is formatted as a 

CSV and provides the measurements for each experiment. From the above 

measurements in for our analysis we use the following cycle, current, voltage, 

 

1. dataPoint: The experiment’s current datapoint 

2. datetime: The date and time for the specific measurement. Here we are mostly 

interested about the time which gives us the second that this measurement was taken. 

This is useful to find the total time that has elapsed between data points that is mainly 

needed during the simulation of the ECM when the differential equations of the model 

are solved. 

3. cycle: This informs us of the specific cycle in the current experiment. As will be 

described below the cycle is used for differentiating the datasets into separate 

subgroups to be used as the training and test sets respectively. 

4. current: The current supplied (during charging) or drawn (during discharging) 

from the battery. This is used as an input to the battery’s Equivalent Circuit Model and 
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in a real time scenario can be the last measurement taken from a battery during its 

operation. 

4. voltage: Similarly the voltage measured at the battery’s terminals. This is also used 

as an input to the model and is the voltage that can be measured in real time from a 

battery. 

5. chargeCapacity: The current chargeCapacity of the battery. This along with the 

dischargeCapacity represent the total State of Charge of the battery which is the 

model’s output variable and the value that we are trying to estimate. This is a value 

that cannot be measured directly in a real time scenario. 

6. dischargeCapacity: The current dischargeCapacity of the battery. 

7. temperature1: The battery’s current temperature. This is also used as an input to 

the model as different temperatures can affect its behavior.  

 
 

5.1.3 Data Selection 

This is a vast dataset that includes many different experiments each with multiple 

cycles. In order to use the whole dataset much processing power and memory is 

needed as well as very big processing times that a normal consumer grade pc may not 

suitable to handle in a reasonable time. Thus a selection of a subset of all the data has 

been made. This selection has been done using a broad range of cycles from different 

files during different conditions and from all the available datasets. The goal was to 

have a diverse selection covering multiple different cases in order to confidently 

validate the results of the methodology. In any case if the necessary resources are 

available in a company environment for example all data could be used to produce an 

even more versatile model.  

 

In our case 7 different experiment files have been selected from across all the datasets 

groups where the batteries have been exerted to different load conditions, days and 

temperatures. From each file 300 cycles have been used for a total of about 2100 

cycles. From these 80% (1680 cycles) have been used during the training phase and 

20% (420 cycles) have been used as the test dataset for the validation. In order to have 
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a uniform distribution and because the battery’s behavior is changing with 

temperature and aging the following process has been followed. 

 
1. Load the data from all the dataset files (that represent a different experiment 

scenario).  

2. Take the first 300 cycles from each file. (here we could expect for each scenario the 

later cycles to potentially have slightly different behavior due to aging).  

3. Rearrange the data so the first cycles from files 1 to 7 come first then the second 

cycles etc. This ensures that we have a dataset where a battery has different load 

conditions in each subsequent cycle to better simulate a real world scenario. 

4. Every 5th iteration, separate the data to a different group that is the test group so it 

is only used for validation and not training.  

 
So in summary we would have the following structure 
 
 
Training dataset 
 
(cycle 1 from dataset files 1 to 7),  
(cycle 2 from dataset files 1 to 7),  
(cycle 3 from dataset files 1 to 7), 
(cycle 4 from dataset files 1 to 7), 
cycle 5 has been excluded and added to the test dataset  
(cycle 6 from dataset files 1 to 7), 
… 
 
 
Test dataset 
 
(cycle 5 from dataset files 1 to 7),  
(cycle 10 from dataset files 1 to 7),  
(cycle 15 from dataset files 1 to 7), 
… 
 
This ensures a more realistic battery usage scenario, shuffles the data so the training 

algorithm is exposed to all the different load conditions from the beginning and takes 

cycles for the test dataset uniformly from the start to the later stages of the 

experiments. 
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5.1.4 Exploratory Data Analysis 

Below we have a plot of the dataset for 7 consecutive cycles each belonging to a 

different dataset. With blue we have the current that is applied to or drawn from the 

battery (depending if we are currently charging or discharging). Here positive currents 

denote that the battery is charging. With orange we have the voltage as measured in 

the battery terminals. With green we have the real State Of Charge as measured in the 

experiment (ranges from 0 to 1). As we can see, we have different load conditions that 

are exerted on the battery depending on the experiment selected, especially during the 

charging stage where different charging profiles have been implemented. After that 

we also include the temperature graph for the same experiments. The graph is in 

Kelvin degrees and we can see that more or less the temperature is within the range of 

30 - 40 degrees Celsius. We can also see that the temperature is rising as the 

experiments progress. As also mentioned above the temperature might sometimes be 

inaccurate due to the way the measurement setup has been implemented. 

 

 

Figure 15: Battery’s Current, Voltage and State of Charge 
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Figure 16: Battery’s Temperature 

 
 
 
 
 
Below we also present two measurement cycles from different datasets for a more 

detailed look. As we can see the cycles have a constant discharge current of about 4.4 

A and a charging stage with varying currents with a maximum of about 6.6 A. We can 

see that the terminal voltage of the battery also changes, but as expected, much less 

than the current in the two cycles. Within each cycle the voltage drops or increases 

with respect to its SoC (denoting the voltage drop as a battery depletes). The SoC of 

each cycle also has differences between the cycles if plotted against each other but 

overall the curve appears similar. 
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Figure 17: Battery’s Current, Voltage and State of Charge (1 Cycle) 

 

 

5.2 Software Framework Overview 

For the training, testing as well as the data management python code has been used. 

Below we will provide an overview of the framework and libraries as well as a brief 

description of them. In general we can divide the code into four main functionalities: 

data management, battery model simulation, reinforcement learning algorithm and 

dataset visualization. Below we will give a brief description of each category and how 

they were all organized together. 
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5.2.1 Data Management 

Data management is the first step that needs to be addressed as the datasets that have 

been described above need to be read and transformed to a usable format by the 

following algorithms. For this two main reusable functions used by the rest of the 

code have been created.  

 

auxiliary.py 
 
This is a collection of helper functions mainly responsible for loading the datasets 

from the csv files and converting them to dataframes using the pandas library. 

Depending on the use case separate functions have been created that load either the 

training or test datasets, all of them or selected cycles as needed. The need to load a 

selected cycle is mostly used for evaluation and visualization purposes. Here we also 

do some preprocessing of the input data. We first open the correct csv files, and we 

keep all the columns that we need by adding them to a pandas dataframe. We also 

convert Celsius to Kelvin for temperature, calculate the time elapsed from the 

beginning of the experiments and also calculate the time differential between two 

consecutive measurements that is needed during the calculations. Lastly we can do 

some dataset trimming like remove some regions where there are transitions between 

the experiments that we don’t necessarily need during the training process because it 

can produce unneeded calculation artifacts. 

 
 

 

import pandas as pd 
 
used_dataset_names = [ 
    '2017-05-12_3_6C-80per_3_6C_CH1.csv', 
    '2017-05-12_4C-80per_4C_CH5.csv', 
    '2017-05-12_6C-60per_3C_CH29.csv', 
    '2017-06-30_4_9C-27per_4_75C_CH24.csv', 
    '2018-04-12_4_8C-80per_4_8C_CH1.csv', 
    '2018-04-12_5C-67per_4C_CH7.csv', 
    '2018-04-12_5C-67per_4C_CH42.csv', 
] 
 
def load_train_datasets(): 
    selected_cycles = [n for n in range(1, 301) if n % 5 != 0] 
    return load_selected_datasets(used_dataset_names, selected_cycles) 
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def load_test_datasets(): 
    selected_cycles = [n for n in range(1, 301) if n % 5 == 0] 
    return load_selected_datasets(used_dataset_names, selected_cycles) 
 
def load_all_datasets(): 
    selected_cycles = [n for n in range(1, 301)] 
    return load_selected_datasets(all_dataset_names, selected_cycles) 
 
def load_single_cycle_datasets(): 
    selected_cycles = [120] 
    return load_selected_datasets(used_dataset_names, selected_cycles) 
 
def load_selected_datasets(dataset_names, selected_cycles): 
    merged_dataset = load_dataset(dataset_names[0], selected_cycles) 
 
    for dataset_name in dataset_names[1:]: 
        dataset = load_dataset(dataset_name, selected_cycles) 
        merged_dataset = pd.concat([merged_dataset, dataset], ignore_index=True) 
 
    merged_dataset = merged_dataset.reset_index(drop=True) 
 
    return merged_dataset 
 
def load_dataset(dataset_name, selected_cycles): 
    path_prefix = '../' 
 
    dataset_path = path_prefix + 'datasets/data/' + dataset_name 
 
    dataset = pd.read_csv(dataset_path) 
 
    dataset = dataset[dataset['cycle'].isin(selected_cycles)] 
    dataset = dataset.reset_index() 
    dataset['time'] = pd.to_datetime(dataset['datetime']).apply(lambda x: 
x.timestamp()) 
    dataset['time'] = dataset['time'] - dataset['time'].iloc[0] 
    dataset['temperature1'] = dataset['temperature1'] + 273 
    dataset['dt'] = dataset['time'].diff().fillna(-1) 
    dataset['soc'] = (dataset['chargeCapacity'] - dataset['dischargeCapacity']) 
 
    dataset = dataset[dataset['dt'] > 0] 
    dataset = dataset[ 
        (abs(dataset['current']) > 3.0) | ((abs(dataset['current']) < 1.2) & 
(abs(dataset['current']) > 0.01))] 
 
    dataset.dropna(inplace=True) 
    dataset = dataset.reset_index(drop=True) 
 
    return dataset 
 

 
 

5.2.2 Battery Simulation 

This is the first part of the total model. Here we model the physical battery using a 

2nd Order ECM combined with a SoC approximation. This produces a system of 

differential and algebraic equations that can be solved in real time using arithmetic 
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methods. This essentially allows us to calculate given the three inputs (voltage, 

current and temperature) the intermediate open circuit voltage (Voc) which is internal 

to the battery and from this the current State of Charge (SoC) for this timestep. 

Essentially this has been modelled in python using a separate class which implements 

the system of equations that are needed to be solved along with functions to allow the 

neural network to be able to update in real time the internal model parameters. The 

class also holds the current state of the model (i.e. current parameters, state of charge 

and capacitor charge). Below we include the code for the 2nd order model with the 

cubic SoC approximation as well as the part of the code that differs for the one 

utilizing the linear SoC approximation. The Cubic SoC model also utilized the scipy 

library to arithmetically solve the 3rd order SoC polynomial. It should also be noted 

that the SoC approximation has been implemented as a separate function which 

enables us to change the function separately as needed. In this example also the 

filtering and scaling functions used in the end have been included. 

 

ecm_2nd_order_model.py (Cubic SoC Approximation with Filtering) 
 

import numpy as np 
from scipy.optimize import fsolve 
 
 
class Ecm2ndOrder: 
    def __init__(self, VR1, VR2): 
        self.update_parameters(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 
 
        # State 
        self.VR1, self.VR2 = VR1, VR2 
        self.time, self.Voc, self.SoC = 0.0, 0.0, 0.0 
        self.dt = 1.0 
 
    def update_parameters(self, Ro, R1, R2, C1, C2, a3, a2, a1_soc, a1_temp, a0): 
        self.Ro, self.R1, self.R2, self.C1, self.C2 = Ro, R1, R2, C1, C2 
        self.a3, self.a2, self.a1_soc, self.a1_temp, self.a0 = a3, a2, a1_soc, 
a1_temp, a0 
 
    def update(self, Vout, I, T, dt): 
        if (abs(self.VR1) > abs(I*self.R1)) or (abs(self.VR1) < abs(0.7*I*self.R1)): 
            self.VR1 = 0.85*I*self.R1 
 
        if (abs(self.VR2) > abs(I*self.R2)) or (abs(self.VR2) < abs(0.7*I*self.R2)): 
            self.VR2 = 0.85*I*self.R2 
 
        dVR1dt = (I / self.C1) - (self.VR1 / (self.R1 * self.C1)) 
        self.VR1 += dVR1dt * dt 
 
        dVR2dt = (I / self.C2) - (self.VR2 / (self.R2 * self.C2)) 
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        self.VR2 += dVR2dt * dt 
 
        self.Voc = Vout + I * self.Ro + self.VR1 + self.VR2 
 
        self.time += dt 
        self.dt = dt 
        self.SoC = self.estimate_soc(T) 
 
    def estimate_soc(self, T): 
        def poly_func(SoC): 
            return self.a3 * (SoC ** 3) + self.a2 * (SoC ** 2) + self.a1_soc * SoC + 
self.a1_temp * T + self.a0 - self.Voc 
 
        SoC_solution, info, ier, mesg = fsolve(poly_func, self.SoC, full_output=True) 
 
        SoC_solution = self.SoC + (1/25)*(SoC_solution - self.SoC) 
        SoC_solution = 1.0008*(SoC_solution-0.5) + 0.5 
         
        SoC_solution = np.clip(SoC_solution, 0, 1) 
 
        return SoC_solution 
 

 
   
ecm_2nd_order_model.py (Linear SoC Approximation) 
 

def estimate_soc(self, T): 
    SoC_solution = (self.Voc - T*self.a1_temp - self.a0) / self.a1_soc 
 
    SoC_solution = np.clip(SoC_solution, 0, 1.0) 
 
    return SoC_solution 

 
 

5.2.3 Reinforcement Learning Algorithm 

This is the second part of the model which utilizes reinforcement learning to train the 

neural network and then combine it with the physical system (in this case modeled by 

the code presented in the previous section) to change its parameters in real time. This 

code is split into two different files one for training and one for the testing of the final 

system. This code utilizes stable-baselines3 which is a python library implementing 

reinforcement learning algorithms based on PyTorch and can be used as a framework 

for training and testing neural networks trained using RL. It in turn uses gymnasium 

library which is an interface that can be used for the representation of RL problems as 

well as numpy for any arithmetic calculations needed. 
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Training Code 
 
This code is responsible for the training of the neural network. This is based on an 

implementation of a Soft Actor Critic algorithm provided in stable-baselines3. The 

Soft Actor Critic algorithm (SAC) is an off-policy maximum entropy deep 

reinforcement learning algorithm with a stochastic actor. This algorithm uses an actor 

that takes actions which in turn a critic evaluates trying to minimize the mean square 

error for the objective function. In our case this is the minimization of the difference 

between the real and calculated State of Charge. This part of the code runs 

independently and internally utilizes the ECM and SoC models presented before. This 

is by far the most computationally intensive part of the code as it is responsible for the 

training of the neural network and is required to run for a long time to provide 

meaningful results (in our each of the different models that are presenting in the next 

chapter has been training for at least a day but many other models have also been 

trained to various times while evaluating the process). This code in turn provides a 

neural network that is saved as a .zip file in an internally recognized format and can 

then be used to make predictions for the model parameters. 

 
Below we include the main code of the training functionality. As already mentioned 

this code is responsible for the training of the neural network. As we can see it 

implements an interface as required by the used libraries to describe the RL problem, 

the action space, the observation space as well as the reward function. In our case the 

system model is the ECM/SoC Approximation models that we mentioned above. This 

model is solved in real time using running in each timestep the code provided in the 

previous sections which in turn produces an estimation of the current state of charge. 

Following is a brief description of the most important parts of the code. 

 
 
 
 
__init__ function: As we can see during the initialization of the environment we 

define an action space (which is the range of the actions the Actor can make an 

represent the parameters of the system), the observation space (which is the range of 

the inputs to the NN in our case the input of the system that is the measured voltage, 

current and temperature of the battery) as well as custom variables defined by us and 
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needed by the current implementation (such as episode length, capacitor initial 

voltage etc). 

 
 
step function: This is the main function where the training is performed. This runs 

after every system update which in our case is at every timestep of the discretized 

system. During each step a new action is selected by the Actor which in turn is used to 

update the ECM/SoC models described in the previous section. These models in turn 

calculate a new State of Charge estimation by solving the system of equations of the 

internal model. Based on this the reward function is calculated which is the negative 

square error of the estimated and real State of Charge. This value is then returned 

along with the current observation (the measurements of voltage, current and 

temperature of the battery). These values are in turn processed by the Critic part of the 

reinforcement learning algorithm which tries to minimise the total estimation error. 

 
 
reset function: This function is required to reset the environment in the beginning of 

the training as well as when each episode finished. 

 
The rest of the code initializes the environment described above, sets any initial 

variables needed and starts the training. In the end a file is produced containing the 

trained network that can be used for the estimation of the parameters. This model can 

also be loaded if needed to continue its training. 

 

ecm_2nd_order_train.py 
 

import gymnasium as gym 
from gymnasium import spaces 
import numpy as np 
from stable_baselines3 import SAC 
from stable_baselines3.common.vec_env import DummyVecEnv 
import src.auxiliary.auxiliary as auxiliary 
from src.rl.second_order_ecm.soc_voc_cubic.ecm_2nd_order_model import Ecm2ndOrder 
 
 
class Ecm_env(gym.Env): 
    def __init__(self, dataset, Vc1, Vc2): 
        super(Ecm_env, self).__init__() 
 
        self.action_space = spaces.Box(low=np.array([0.001, 0.01, 0.05, 500, 5000,  
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                                                     0.0, 0.0, 1.0, -0.0005, 0.0]), 
                                       high=np.array([0.01, 0.2, 0.5, 5000, 10000, 
                                                      0.01, 0.01, 3.0, 0.0005, 10.0]),  
                                                      shape=(10,),dtype=np.float32) 
        self.observation_space = spaces.Box(low=np.array([1.8, -5.0, 300]),  
                                            high=np.array([3.8, 7.0, 315]),  
                                            shape=(3,), dtype=np.float32) 
        self.dataset = dataset 
        self.dataset_length = len(dataset) 
        self.Vc1 = Vc1 
        self.Vc2 = Vc2 
        self.ecm_model = Ecm2ndOrder(self.Vc1, self.Vc2) 
        self.episode_length = 1 
        self.counter = 0 
        self.dataset_parses = 0 
 
    def step(self, action): 
        Ro, R1, R2, C1, C2 = action[0], action[1], action[2], action[3], action[4] 
        a3, a2, a1_soc, a1_temp, a0 = action[5], action[6], action[7], action[8], 
                                      action[9] 
 
        self.ecm_model.update_parameters(Ro, R1, R2, C1, C2, a3, a2,  
                                         a1_soc, a1_temp, a0) 
 
        Vout, I = dataset['voltage'].iloc[self.counter],   
                  -dataset['current'].iloc[self.counter] 
 
        T = dataset['temperature1'].iloc[self.counter] 
        SoC_real = dataset['soc'].iloc[self.counter] 
        dt = dataset['dt'].iloc[self.counter] 
 
        self.ecm_model.update(Vout, I, T, dt) 
        SoC_estimated = self.ecm_model.SoC 
 
        reward = -np.square(SoC_real - SoC_estimated) 
 
        observation = np.array([Vout, I, T]).astype(np.float32) 
        truncated = False 
        info = {} 
 
        self.counter = (self.counter + 1) % self.dataset_length 
 
        if self.counter == 0: 
            self.dataset_parses += 1 
            print("Dataset parse", self.dataset_parses, "finished") 
 
        if (self.counter % self.episode_length) == 0: 
            terminated = True 
        else: 
            terminated = False 
 
        return observation, reward, terminated, truncated, info 
 
    def reset(self, seed=None, options=None): 
        super().reset(seed=seed) 
        Vout, I = dataset['voltage'].iloc[self.counter],  
                  -dataset['current'].iloc[self.counter] 
        T = dataset['temperature1'].iloc[self.counter] 
 
        return np.array([Vout, I, T], dtype=np.float32), {} 
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dataset = auxiliary.load_train_datasets() 
 
Vc1, Vc2 = -0.8, -1.4 
dataset_length = len(dataset) 
 
env = DummyVecEnv([lambda: Ecm_env(dataset, Vc1, Vc2)]) 
env.reset() 
 
model_name = "model-ep1-cubic" 
 
model = SAC("MlpPolicy", env=env, verbose=0) 
 
model.learn(total_timesteps=dataset_length) 
 
model.save("models/" + model_name) 
model.save_replay_buffer("models/" + model_name + "_buffer") 
 
env.close() 

 

 

Evaluation Code/Result Analysis 
 
This part of the source code is responsible for running the tests and evaluating the 

trained neural network. In essence it loads the model presented before which is the 

physical system (2nd Order ECM and SoC model) and simulates the system assuming 

real time operation. This is achieved by loading the dataset files and using the 

measurements (that were used before for training) as if they were real time inputs 

measured in a battery. These inputs (i.e. battery voltage, current and temperature) are 

fed in the physical model as well as the trained neural network which in turn produces 

the optimal model parameters at each time instant. All the results are stored in 

separate lists and are then used for plotting as a way to visualize and evaluate the 

results. This code is mainly used with the test datasets to evaluate the results but can 

also be used with the training dataset to check the fitting there or any other subset of 

them for visualization or analysis needs. 

 
 
 
 
 
 
ecm_2nd_order_test.py 
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import numpy as np 
from stable_baselines3 import SAC 
from src.auxiliary import auxiliary 
import matplotlib.pyplot as plt 
from src.rl.second_order_ecm.soc_voc_cubic.ecm_2nd_order_model import Ecm2ndOrder 
 
 
Vc1, Vc2 = -0.8, -1.4 
ecm_model = Ecm2ndOrder(Vc1, Vc2) 
 
model_name = "model-ep1-cubic" 
 
dataset = auxiliary.load_test_datasets() 
 
dataset_length = len(dataset) 
model = SAC.load("models/" + model_name) 
SoC_calculated = [] 
Voc_calculated = [] 
Ro_list, R1_list, R2_list, C1_list, C2_list, a3_list, a2_list, a1_soc_list, 
a1_temp_list, a0_list = [], [], [], [], [], [], [], [], [], [] 
 
for i in range(dataset_length): 
    Vout, I = dataset['voltage'].iloc[i], -dataset['current'].iloc[i] 
    T = dataset['temperature1'].iloc[i] 
    action, _states = model.predict(np.array([Vout, I, T]), deterministic=True) 
 
    Ro, R1, R2, C1, C2 = action[0], action[1], action[2], action[3], action[4] 
    a3, a2, a1_soc, a1_temp, a0 = action[5], action[6], action[7], action[8], action[9] 
 
    ecm_model.update_parameters(Ro, R1, R2, C1, C2, a3, a2, a1_soc, a1_temp, a0) 
 
    dt = dataset['dt'].iloc[i] 
    ecm_model.update(Vout, I, T, dt) 
 
    SoC_calculated.append(ecm_model.SoC[0]) 
    Voc_calculated.append(ecm_model.Voc) 
    Ro_list.append(Ro) 
    R1_list.append(R1) 
    R2_list.append(R2) 
    C1_list.append(C1) 
    C2_list.append(C2) 
    a3_list.append(a3) 
    a2_list.append(a2) 
    a1_soc_list.append(a1_soc) 
    a1_temp_list.append(a1_temp) 
    a0_list.append(a0) 
 
 
index = dataset.index.values.tolist() 
soc_index = index 
SoC_real = dataset['soc'].iloc[:].tolist() 
Vout_real = dataset['voltage'].iloc[:].tolist() 
I_real = dataset['current'].iloc[:].tolist() 
 
mse = sum((a - b) ** 2 for a, b in zip(SoC_calculated, SoC_real)) / len(SoC_calculated) 
print("Mean Square Error:", mse) 
 
 
plt.figure(1) 
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plt.plot(index, Ro_list, label='Ro [Ohm]') 
plt.plot(index, R1_list, label='R1 [Ohm]') 
plt.plot(index, R2_list, label='R2 [Ohm]') 
plt.xlabel('datapoints') 
plt.title('Parameters from RL, ' + model_name) 
plt.legend() 
plt.grid() 
 
plt.figure(2) 
plt.plot(index, C1_list, label='C1 [F]') 
plt.plot(index, C2_list, label='C2 [F]') 
plt.xlabel('datapoints') 
plt.title('Parameters from RL, ' + model_name) 
plt.legend() 
plt.grid() 
 
plt.figure(3) 
plt.plot(index, a3_list, label='a3') 
plt.plot(index, a2_list, label='a2') 
plt.plot(index, a1_soc_list, label='a1_soc') 
plt.plot(index, a1_temp_list, label='a1_temp') 
plt.plot(index, a0_list, label='a0') 
plt.xlabel('datapoints') 
plt.title('Parameters from RL, ' + model_name) 
plt.legend() 
plt.grid() 
 
plt.figure(4) 
plt.plot(index, Vout_real, label='V') 
plt.plot(index, I_real, label='I') 
plt.plot(index, Voc_calculated, label='Voc') 
 
plt.xlabel('datapoints') 
plt.legend() 
plt.grid() 
 
plt.figure(5) 
plt.plot(soc_index, SoC_calculated, label='SoC Estimation %') 
plt.plot(soc_index, SoC_real, label='SoC Real %') 
plt.xlabel('datapoints') 
plt.title('State of Charge, ' + model_name) 
plt.legend() 
plt.grid() 
 
plt.show() 

 
 

 

 

5.2.4 Dataset Visualization 

Lastly we have a helper function that can plot selections of the datasets and is mainly 

used for visualization and design purposes (for example inspecting a dataset during 

the initial design of the system). Here the auxiliary.py presented above is used for 
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loading the selected datasets as well as that matplotlib library for creating the plots. 

This is a useful functionality especially in the early stages of the training where visual 

inspection of the datasets is needed. It also helps judge the effect that any 

preprocessing of the datasets, such as trimming or downsampling, can have. 

 

plot-dataset.py 
 

import matplotlib.pyplot as plt 
import auxiliary 
 
dataset = auxiliary.load_test_datasets() 
 
index = dataset.index.values.tolist() 
current = dataset['current'].tolist() 
voltage = dataset['voltage'].tolist() 
soc = dataset['soc'].tolist() 
temperature = dataset['temperature1'].tolist() 
 
plt.figure(1) 
plt.plot(index, current, label='Current [A]') 
plt.plot(index, voltage, label='Voltage [V]') 
plt.plot(index, soc, label='SoC %') 
plt.xlabel('datapoints') 
plt.title('Current, Voltage, and State of Charge') 
plt.legend() 
plt.grid() 
 
plt.figure(2) 
plt.plot(index, temperature, label='Temperature [K]') 
plt.title('Temperature') 
plt.legend() 
plt.grid() 
 
plt.show() 
 

 
 

5.3 Training Methodology 

5.3.1 Alternative Models 

The training methodology that has been used is given below. In general this is the part 

that takes the most time as the training depending on the available system and selected 

datasets can vary vastly. In this work good results have been achieved using the 

dataset selection described in the previous chapters. A lot of different models have 

also been evaluated raging from different battery models (Rint and 1st Order ECM 
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has also been evaluated) as well as different SoC approximations (in this work a linear 

and cubic approximation with temperature are presented but also the same 

approximations without temperature as well as other SoC approximations have been 

evaluated briefly). Specifically in the literature different SoC approximations exist 

that include higher order polynomials with respect to SoC and/or temperature as well 

as different functions that consist of logarithmic and exponential terms. Models like 

these have also been evaluated (trained for at least a few hours each) during this 

process to various degrees of success resulting in the selection presented in the next 

chapter that produced the best results. It should be noted that the fitting to any of these 

models is a result of training time but because of real time constraints not all models 

could be run for a very long time so for the ones not selected it does not mean that 

these models cannot necessarily be used successfully for other similar applications or 

datasets. It should also be noted that the more complex the model gets the training 

time can increase exponentially as new parameters are introduced for which the Soft 

Actor Critic (SAC) algorithm of the reinforcement learning need to try combinations 

as well as more complex models could introduce more local minima describing 

suboptimal solutions that the algorithm can converge to, so a good trade off between 

acceptable accuracy and model complexity needs to be achieved.  

 

5.3.2 Training Process 

During training and after a model has been selected two main things firstly need to be 

defined which are the range of the action and observation space. 

 

 

Action Space 

 

The action space is the range of values that can be proposed by the Actor of the RL 

algorithm (the physical system’s parameters in our case). This needs to be selected 

using a reasonable range of values because if care is not taken we could exclude the 

optimal solutions altogether as we constraint the algorithm not to search in those 

ranges. On the other hand if the range is too big we can increase the training time 

needlessly as the RL algorithm will evaluate parameters that are not realistic for our 
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system thus wasting processing cycles. In our case a range of parameters have been 

used as have been proposed in the literature (for example [9], [10]). Typical range of 

parameters include 0.001Ω to 0.5Ω for the resistors and 500F to 10000F for 

capacitors. The parameters for the SoC polynomial range from a little below zero to 

around 10.  

 

 

Observation Space 

 

The observation space is in turn the range of values the inputs to the SAC algorithm 

are going to take (in essence the value domain). These ranges are defined by the 

datasets available and are the ranges of the inputs that have been measured during the 

experiments. So to set the observation space we look at those ranges in the dataset 

(and we also make the range slightly bigger to have some extra room). In our case the 

voltage is between 1.8V - 3.8V, current is between -5.0A and 7.0A and temperature 

between 300°K and 315°K 

 

After the initial selection of the parameters the training is conducted. As already 

mentioned a lot of different models have been evaluated. A candidate model is 

initially run for a few hours to investigate if any fit is achieved. If it is, the model is 

reloaded and training is continued. The models that provided the best fits have been 

training for 20+ hours at least although it needs to be mentioned that most of them did 

not achieve much better results if trained for longer. The output either stayed the same 

or improved slightly (while in some cases there was a deterioration in some areas and 

improvement in others).  

 

 

Training Flow 

 

During the training and after the initialization mentioned above the following process 

is conducted: 
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1. The Actor of the RL training algorithm produces a set of actions to be used by the 

system. These actions in our case represent all the parameters of the physical system.   

2. The ECM model with the SoC Approximation described above are updated with 

the proposed parameters from the RL 

3. A new State of Charge estimation is calculated 

4. Using this estimation with the real SoC from the dataset the reward function is 

calculated 

5. The result of the reward function, the current observation (V, I, T of the current 

time step as measured in the dataset) are passed to the Critic of the RL algorithm 

which evaluates the result and updates the neural network. 

6. The process continues for all the available data. 

 

In the end we have a trained neural network representing a policy that its goal is to 

minimize the SoC error calculated from our model given the input conditions. The 

training is conducted in the train datasets described (80% of all available 

measurements). 

 

5.4 Evaluation Methodology 

When the training completes the neural network produced can be used to produce 

optimal actions (meaning parameters of the physical model) given inputs V, I and T. 

This can happen in real time as new measurements are provided. In our case we use 

the datasets in a step process described below.  

 
 
Evaluation Flow 
 

1. A trained neural network describing an optimal parameter policy is loaded 

2. We prepare the test datasets which in our case in which each timestep is treated 

sequentially as if it were real time measurements. 
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3. For each measurement the real measurements for V, I and T are fed to the neural 

network which in turn provided the optimal action for the current stage (i.e. the 

parameters of the system) 

4. These parameters are updated to the physical model consisting of the 2nd Order 

ECM and the chosen SoC Approximation Model. 

5. The system of differential and algebraic equations are solved for the current 

timestep using the parameters provided by the RL providing a SoC estimation. 

6. We return to number 3 and we continue the same process for all the timesteps. 

 

This process produces a State of Charge curve that is the estimation of the actual SoC 

measured in the experiment. These values are then used to calculate the error metrics 

of the estimation as well as plot the different simulation curves for visualization and 

further analysis.  

 

In general the datasets are constructed in a way so the battery is simulated like it is 

running on multiple charging/discharging cycles one after the other which have 

different load profiles. This happens in order to make the training and testing data 

seem like they come from a real scenario where the battery will be working in 

different conditions in its successive cycles. 
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6 Results 

6.1 Experiments 

Below we will present the simulations for different models that have been done and 

also a comparison between them. Two different main models have been validated. As 

has been presented before the base battery model for all the use cases is a 2nd Order 

ECM which provides a good trade off between model complexity and accuracy 

capturing the main battery dynamics such as battery hysteresis and polarization with 

an adequate approximation. The difference between the use cases is the 

approximation used for the modeling of the State of Charge of the battery which is 

combined with the 2nd Order ECM to calculate the charge and discharge of a Li-ion 

battery. For the State of Charge two approximations have been considered. The first is 

a linear approximation of the Voc and SoC and the second is a cubic approximation of 

the Voc and SoC that also includes a linear term to take into account the battery’s 

temperature.  

 

6.1.1 2nd Order ECM - Linear SoC Approximation 

This model uses a 2nd Order ECM and a linear approximation with respect to SoC 

and temperature. Below we can see the output of the model for 7 consecutive charge 

and discharge cycles of a Li-ion battery. The model can in general achieve a good 

approximation of the state of charge with the exception of the top part of the cycle 

where it has a flatter output.  
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Figure 18: Model 1 - State of Charge Results 

 

 

In the graph below we have the output of the neural network. This is a selection from 

all the parameters that are provided by the model (for example also the resistances and 

capacitances of the model are provided). We observe that the model actively changes 

the parameters capturing the non linear behaviour of the system. In the third graph we 

also provide the measured parameters V and I that are used as an input to the circuit 

and the open circuit voltage Voc which is an intermediate variable in the system and 

the output of the 2nd order ECM. 
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Figure 19: Model 1 -  Neural Network Parameters 

 

 
Figure 20: Model 1 - ECM Inputs and Outputs 
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The error metrics of the output are given below. We can see that the errors are low in 

spite of some regions (the top of the curve in this case) that the error increased. Also a 

high R Squared score close to one shows that the curve has overall a good fit. 

 
 

Table 2: 2nd Order ECM + Linear SoC Results 

Error Metrics 
2nd Order ECM + Linear SoC 

RMSE 5.66% 

MAE 3.66% 

R-Squared 0.976 

 
 
 
 

6.1.2 2nd Order ECM - Cubic SoC Approximation - Model 1 

This is the second model that has been evaluated. This is also using a 2nd Order ECM 

for the battery but it also uses a cubic approximation for the SoC of the battery as well 

as a linear term for the temperature. This model also has a good overall approximation 

of the SoC although we can observe some flatter regions on the top of each charge 

cycle. The error of those flat regions is reduced with respect to the linear model 

presented above. 
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Figure 21: Model 2 - State of Charge Results 

 
 

 

 

In the two graphs below we present a selection of the parameters of the output of the 

neural network. We can see here that since the approximation is cubic we have two 

more parameters that have been introduced to represent the coefficients for the square 

and cubic terms of the equation. We also present the graph of the physical 

measurements and ECM output (Voc). 
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Figure 22: Model 2 -  Neural Network Parameters 

 

 
Figure 23: Model 2 - ECM Inputs and Outputs 
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We also see that in this model which uses the higher order approximation the overall 

error is reduced for all the error metrics with respect to the linear model.  

 

Table 3: 2nd Order ECM + Cubic SoC - Model 1 - Results 

Error Metrics 
2nd Order ECM + Cubic SoC 1 

RMSE 4.95% 

MAE 3.17% 

R-Squared 0.982 

 
 
 

6.1.3 2nd Order ECM - Cubic SoC Approximation - Model 2 

This model is identical with the model of the previous section. It uses a 2nd order 

ECM, a cubic approximation for SoC as well as a linear term for modeling the battery 

temperature. The difference between the two models is that they have been trained 

independently for similar times with the same methodology and on the same datasets 

to investigate the results. As we can see, the output of the whole model also achieves 

a reasonable approximation of the real SoC but is a bit different from the one of the 

previous one mostly in the top regions of the curve where the calculated output does 

not have as flat a response as before. As a trade off we can observe that there are some 

deviations in lower regions of the curve. In general with these comparisons we want 

to present that using the same methodology can produce slightly different models as 

the neural network that is produced by the learning process can converge to different 

values depending on the nature of the functions and local minima that it can find. In 

any case those models both approximate the SoC with similar accuracy so there are 

not big deviations in the total errors. 
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Figure 24: Model 3 - State of Charge Results 

 

 

Like before we also provide the two graphs, one for the parameters as are outputted 

from the NN and one for the output of the ECM model along with the real parameters 

V and I as measured in the real battery. It is worth noting here that some visible 

differences occur between these models that lead to similar approximations of the 

SoC though. This makes evident the different minima that this approach can converge 

to, something that is expected to be amplified the more complex a model gets. 
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Figure 25: Model 3 -  Neural Network Parameters 

 
 

 
Figure 26: Model 3 - ECM Inputs and Outputs 
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Lastly the mean square error is provided below. This error is comparable to the first 

cubic model (with MAE being a bit higher). We can say that in practice this will not 

be a meaningful difference and the decision on which model should be used should be 

taken qualitatively based mostly on the general response of the computed SoC.  

 

Table 4: 2nd Order ECM + Cubic SoC - Model 2 - Results 
 

Error Metrics 
2nd Order ECM + Cubic SoC 2 

RMSE 4.94% 

MAE 3.41% 

R-Squared 0.982 

 
 
 

6.1.4 2nd Order ECM - Cubic SoC Approximation - Filter 

All the above models present an acceptable approximation of the state of charge for 

different applications and alone or maybe with some minor tweaking can be used with 

acceptable accuracy. One step further can be to add one more stage to the whole 

model which is the filtering of the output. This does not require any changes to the 

ECM model or the NN which can be used as is. The idea here is that the 2nd Order 

ECM model, although a system of linear differential equations, can present some 

discontinuities at times when coupled with the NN. The reason is that since the NN 

changes the parameters of the model in real time, big changes will affect the internal 

behavior of the model instantly producing jumps and overshooting. This is slightly 

counteracted by the fact that the ECM model includes two capacitors that could 

slightly filter these changes as a side effect but they cannot do this for the SoC model 

that is also affected by the NN and also this is not their main function as they only 

need to model the internal behavior of the battery correctly.  
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Thus a simple filter has been added to the output of the model to investigate if the 

behavior will improve. Any filter could be used with different cut off frequencies but 

here a simple moving average has been used. This filter has three effects on the model 

output. Firstly it smoothens the output depending on the cut off frequency (or number 

of samples in the case of the moving average) that has been selected. As a byproduct 

of the filtering, which is affected by our previous selection, the output amplitude is 

reduced and a time lag is also introduced. The two effects are not desirable so special 

steps are taken so they can be compensated.  

 

In this case we present the final model that produced the best results. This is a model 

identical to the 2nd Order ECMs with Cubic SoC approximation (discussed in the 

previous two sections) but also the proposed filtering has been added in the output. 

Both cubic models can produce similar results so any one of them can be selected (so 

the neural network that has been used is from one of the models that has been 

presented above and not a newly trained one).  

 

In this model the proposed filtering has been applied to the output without affecting or 

changing the base model calculation presented above in any way. The filtering and 

compensation parameters have been selected once (here through trial and error) 

though more analytical methods could be employed if needed. The parameters of the 

filter do not change in any way during the simulations to avoid specifically tuning the 

model for each dataset. They are selected one time and used as is and stay fixed for 

every cycle and for all the different datasets. 

 

 

Table 5: Model 4 - Filter Parameters 

Filter Parameters 

Moving Average Samples Scale Factor Delay Compensation 

25 samples 1.0008 22 samples 
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In the figure below we have the output of the model. We can see that the output is 

much smoother and it produces a better overall fit. Some small peaks exist at the 

highest point that is a remnant of the overshooting of the normal output but overall 

there are much smaller spikes in the graph. This could be expected as the state of 

charge of a battery is expected to change slowly in most normal scenarios. The two 

graphs for the NN estimated parameters as well as the ECM inputs and outputs are 

also given. 

 

 

 

 
Figure 27: Model 4 - State of Charge Results 
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Figure 28: Model 4 -  Neural Network Parameters 

 

 
Figure 29: Model 4 - ECM Inputs and Outputs 
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From the error metrics of this model we can also find that this is a much better fit than 

the previous ones and the filtering does provide a noticeable improvement if applied 

on the output of a Cubic Model. As we mentioned above this filtering is done once for 

all datasets and no tuning for a specific cycle is done so in essence these parameters 

could be selected once and used as is for all possible scenarios. We can see here that 

both RMSE and MAE errors have been reduced an we have a slightly increased R 

Squared metric which show an improvement to the curve fitting. 

 
Table 6: 2nd Order ECM + Cubic SoC + Filter - Results 

Error Metrics 
2nd Order ECM + Cubic SoC + Filter 

RMSE 4.49% 

MAE 2.94% 

R-Squared 0.985 

 
 

 

6.2 Evaluation of Results 

In general from the results presented above the accuracy of estimation has low error 

even for the simpler models. Between the models we can observe some 

improvements, which is desirable, but depending on the application these 

improvements may not necessarily be needed and a simpler model could provide 

adequate accuracy. Indeed even the worst performing model which is linear does 

achieve low error metrics by itself. The biggest inaccuracies of these models lie 

mostly in specific regions (mostly on the top and bottom regions of the state of charge 

curve). 

 

Lastly we present the error metrics of all the models together. As we described above 

all models use the same 2nd Order ECM as the underlying battery model and have 

been trained on the same datasets for similar time. All models also include the 

temperature as a linear term in the SoC estimation. The difference lies in the order of 
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the SoC model with respect to the SoC variable itself. We can see that the linear 

model with respect to SoC achieves the lower accuracy (although still good in 

absolute terms). Then we have the two Cubic models that have been separately trained 

which provide an increase in the overall accuracy with respect to the linear model and 

similar performance with respect to each other. The final model is the Cubic model 

that has a filter applied to its output as described above with no alterations to the 

internal behavior of the model either the ECM or the NN which also provides an 

improved performance with respect to all the previous models. 

 

Table 7: Comparison of Results 

Error Metrics 

 2nd Order ECM + 
Linear SoC 

2nd Order ECM + 
Cubic SoC 1 

2nd Order ECM + 
Cubic SoC 2 

2nd Order ECM + 
Cubic SoC + Filter 

RMSE 5.66% 4.95% 4.94% 4.49% 

MAE 3.66% 3.17% 3.41% 2.94% 

R-Squared 0.976 0.982 0.982 0.985 

 
 
 

6.3 Effects of Datasets 

The datasets also play an important role in the final accuracy. As already mentioned 

each dataset (containing multiple cycles, i.e. multiple battery charges and discharges) 

is done under different conditions. This means that different loads are applied to the 

battery and which results in different current and voltage patterns during the charging 

and discharging. Also during an experiment where the battery is charged and 

discharged multiple times (something that can take multiple hours) also affects the 

temperature and thus the behavior of the battery. Lastly there is always the aging 

factor for a battery and the same battery can perform differently after a large number 

of charges and discharges even under the same load profiles. This makes the training 

of the neural network take into account different conditions and the resulting model, 

while it has a low error overall, it  is expected to perform better or worse on specific 

datasets. 
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For example below we have three consecutive charging-discharging cycles of the 

battery using different load profiles from different datasets. As we can observe the fit 

differs between each dataset with some dataset being approximated better than others. 

 

 
Figure 30: Model 4 - Results (3 Cycles) 

 
 

Essentially the RL algorithm will try to find the optimal policy that fits a better curve 

on average to all the different datasets. This is also coupled with the fact that the base 

dynamics are modeled by the ECM which should capture the average behavior of a 

cycle regardless of the conditions or at least it should not diverge that much. That in 

itself provides a guarantee that even if different conditions are met between the 

datasets or during the deployment, the model should not diverge that much from an 

acceptable solution. If this is not the case the physics-based model should be revisited 

and improvements there should be considered. 
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7  Conclusion 

7.1 Summary 

In the above work we have presented the implementation of a hybrid approach that 

uses classical modeling along with reinforcement learning in order to model a Li-ion 

battery and estimate its State of Charge which is an internal quantity and cannot be 

directly measured. While several approaches have been proposed, most include either 

complex electrochemical models that are non trivial to model and solve, approaches 

based on physics-based models (Kalman Filters) or completely data driven methods 

based on machine learning. This approach aims to provide a framework where both a 

physics-based model can be used to capture the main dynamic behavior of the system 

as well as a neural network that acts as an optimal estimator for the system parameters 

and captures nonlinear dynamics that may exist while also providing a model that 

could run in real time during a battery’s operation. 

 

 

7.2 Key Findings and Evaluations  

This approach can provide good accuracy for a real scenario of operation. The models 

have provided good approximations and low estimation errors for the different 

datasets that have been used. Moreover the data driven approach of the RL allows us 

to capture possible nonlinear behavior that is harder to be captured by more classical 

approaches while it also provides a model lightweight enough to be feasible to run in 

real time.  
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The main advantages of the method are summarized below 

 

1. It utilizes a data driven approach while it also uses a physics-based model. This can 

be advantageous in applications where physical modeling has previously been done 

and a different approach could be desirable without abandoning any work that already 

exists. 

2. The physical model already captures part of the dynamics which makes it easier for 

the RL algorithm to converge to a solution and improves accuracy. The NN trained by 

the RL can drive the model to an optimal state by introducing non linear behavior by 

changing its parameters while leaving the model to capture faster dynamics that could 

be harder to capture with a data driven approach.. 

3. Since the physics-based model can be thought to act as a constraint to the RL it 

could be argued that faster training or training that requires less data could be 

achieved. 

4. It is fast enough to be used in a real time scenario. 

5. Having a physics-based model could improve the generalization capabilities of the 

model to scenarios outside the provided datasets as a big part of the system dynamics 

is already captured. 

 

 

7.3 Limitations 

This methodology, while it provides good accuracy in the current use case, should be 

further investigated in more scenarios. Some disadvantages and limitations of the 

method are the following.  

 

1. It utilizes a hybrid approach. This can be also a disadvantage as well as an 

advantage since competence for both classical modeling and data driven methods 

need to be present within a team which can prove a limiting factor. 

2. While it is fast enough to run in real time, it is not necessarily faster than simpler 

methods that could be adequate in many cases especially in applications where not 
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that much processing power or memory is available. This can be a limiting factor as 

both a physical model as well as a neural network need to run concurrently. 

3. Good quality datasets are needed. If these datasets do not already exist separate 

meticulous experiments should be done which requires time and the necessary 

experimental setup. 

4. On the other hand if good quality datasets exist the time that is required to 

investigate physical models to be used with this approach may not be worthwhile if 

concrete advantages in the accuracy or generalization of a model are not provided. 

 
We can see that a lot of the advantages of the method can also prove disadvantages so 

the method should be evaluated on a case by case basis taking into account the 

competences available within a team as well as the problem at hand. 

 
 

7.4 Future Work  

There are a number of things that could be investigated further mainly related to the 

advantages mentioned above.  

 

Generalization Capabilities 
 
It is worthwhile to investigate how good the method generalizes to other datasets of 

similar systems. Since part of the dynamics are captured by the physical model a 

study where a model is trained in a specific dataset but is also tested at experiments 

done at completely different battery conditions can be conducted to test how the 

model behaves. The results will be useful to be compared to the ones of a purely data 

driver approach in the same use case. 

 
Improved Training 
 
It could be argued that since the physical model behaves as a constraint to the RL 

network, reduced training time or a reduction in training data needed could be 

possible while achieving good results. A comparison of different data driven methods 
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along with this method could be done to investigate if this can be proven true. This 

can be especially useful in more complex systems.  

 
Different Use Cases 
 
This method could be applied to different use cases i.e. either modeling batteries using 

different models for the battery and state of charge estimation or modeling completely 

different systems and evaluating the results. 
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