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ITepiindm

Ta cOyypova UTOAOYLOTIXE CUCTAUATO OmAUTOUY OAOEVAL XL TEPLOCOTERES AUCELS UvAUNG uPmiic
YWPNTIXOTNTOS, Ol omoleg Tpoo@épouy TG0 LYNAY anddoon 6co xou Buwotpdtnto. T v xdhudn
QUTOV TWV AVAYXOV, HPYLTEXTOVIXES ETEPOYEVOUS UVAUNG—TOU EVOWUATOVOLY TNy Tapadoctoxy DRAM
pe teyvoroyiee Mn IItnunic MvAune (NVM)—avadlovtar w¢ amoTteheopotinés evolhaxTixée AoELS.
Qo1600, AUTA To GUCTAPATA ELGdyYoLY cUVIETES TPOXATOEC OTN Bloyelplon TN Buvauixig Tortodétnong
dedouévev peto€d DRAM xou NVM. Xe auth ) yehétn, mapouoidloupe to SPID, évav ohyodptiuo
tonodétnone dedopévev younhol xéotoug, Baciopévo oe auyuéc (spikes) yio etepoyevd cuoThuota
DRAM/NVM. To SPID allomolel nponypévou unyovicpolc aviyvevone spikes oto glpoc {dvng xou
oToL EVERYS avTIXElUEVA UVAUNG, XodiC XaL TEOCUPHOC TN MPN AmOPAcE®Y, Yo TNV ATOTEAECUATIXT
Behtiotonoinom g xerong uviung. AZohoyolue to SPID oe olyxpion pe éva aivoho Baouv ol
TGOV Tono¥ETNONG Xl TEONYUEVWY AUGEWY, YPNOULOTOLWVTIS TROYUOTIXES EQUOUOYES, ot delyvouue 6Tl
emtuyydvoupe 30.82% udmhdtepn anddoor xou 31.61% younhdtepn xatavdhoor evépyelag xatd uéoo
6po. To SPID evowpatwvetar ot BiBhodfxn avolytod x@dixa SPMalloc, 1 onola avoryoutilet Tic xAh-
ol DUV BESUEVONE UVANG XaTd TNV EXTENEDT), EmTEéTOVTOS axplf3Y) Tapaxolovinon twy wotiBuy
déoueuone PVAUNG pe ehdytoto @opto. Mall, to SPID xau v SPMalloc [BeltioTonolody tny tonodétnon
BEBOPEVLY, EVIOYVOVTOS TNV ant6d00T Gt TEPLBAANOVTA ETEROYEVOUS UVAUNG.

‘Opor Evpetneiouv — Data Placement, DRAM, NVM, Spike-based, library, heteroge-

neous, allocation
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Abstract

Modern computing systems require more and more high-capacity memory solutions that deliver
both high performance and sustainability. To address these needs, heterogeneous memory architec-
tures—integrating traditional DRAM with Non-Volatile Memory (NVM) technologies—are emerging
as effective alternatives. However, these systems introduce complex challenges in managing dynamic
data placement between DRAM and NVM. In this work, we introduce SPID, a lightweight, spike-
based data placement algorithm for heterogeneous DRAM/NVM systems. SPID leverages advanced
bandwidth and active object spike detection mechanisms and adaptive decision-making to optimize
memory utilization efficiently. We evaluate SPID against a set of baseline placement policies and state-
of-the art solutions over real-life applications, showing that we achieve 30.82% higher performance and
31.61% less energy consumption on average. SPID is integrated in SPMalloc, an open-source library
that intercepts dynamic memory allocation calls at runtime, enabling precise monitoring of allocation
patterns with minimal overhead. Together, SPID and SPMalloc optimize data placement, enhancing
performance in heterogeneous memory environments.

Index Terms — Data Placement, DRAM, NVM, Spike-based, library, heterogeneous,
allocation
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Oo fleha vo exppdon Tig ethixplvelc you euyopiotiec otov emPBAénovta xadnynth ywou, x. Anurtelo
Yolvten, Yy TV TOAUTWN xadodrynon Tou xod’ OAn TN Bidpxeld aUTAC TNG SIMAWUATIXAC gpyaoiag.
Euyaploted deppd enione tov diddxtopa x. Mavoin Koatoopoydxn, v tnv detior cuvepyaoio pog, Ty
ocuveyh othplln xat T EVOTOYES XU ETOLXOBOUNTIXEG Tapatnerioels tou. Oa Hieho va evyaploTAow
ohouyo TNV oXoYEVELS UoU xou WBLITERA TOUC YOVE(C Uou, yiol TNV evidpeuvoTn ol THY oXaTdnouoTh
unootiele)) Toug, xatd T Bidpxela aUTHC NS dladixaoiog xou xad’ OAN TN Bldpxeld TWV OTOUBWY Uou.
Euyopiotod téhog Toug Glhouc Hou Yo T1) GUVEYT] CLUUTIUEAoTACT Xt TN oTARLEY) TOUC, XS xou YioL TNV
eviddppuvon xan TN VeTix) TOUC OTAOT], TOL GUVEBUANY GTO Vo TUEOUEIVG TEOCTAWUEVOS GTOUS OTOYOUS
HouL.
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Chapter 1

Extetouevn EAAnvixn Ilepiindn

1.1 Ewayowyn

Ta TeheuTaion Ypovia, 1 avamTUEN TV VEWY TEYVOAOYLOY PVAUNG TIOU EVOOUITOVOVTAL Ot GUYYEOVI
ocvothpoata Troloyopol YTdniic Anddoone (High Performance Computing, HPC) xou Cloud
ExEL ELOAYAYEL £VOL VEO HPYITEXTOVIXO TUEABELYUN, YVWOTO w¢ €Tepoyevég obotnua uviunc. T v
AVTHIETOTLON TWV TEPLOPLOUMY TOU 0POEOVY TNV EMEXTACLUOTNTA Xl BLwoUOTNTO TWV TUPASOCLUXY
teyvohoyidy DRAM [1], [2], ou Mn ITtntixée Mvruec (Non-Volatile Memories, NVM), yvwotéc xou o¢
Moévipee Mvrjueg (Persistent Memories, PM), yivovtow ého xou neplocdtepo edxnouxés. Teyvoloyleg
6nwe ot 3D-XPoint [3], Resistive RAM (ReRAM)[4], xou Spin Transfer Torque Magnetic RAM (STT-
MRAM)[5] anoteholv yapoxtneiotxd nopodelypata NVMs.  Autéc ol teyvohoyiee npoogépouv Bi-
atienom TwV OeBOUEVWY, YELWUEVY XATAVOAWGY EVERYELS, Xal LPNAGTERT TUXVOTNTA GE OYECT| HE TNV
DRAM, emtuyydvovtog aUENUEVES YWENTIXOTNTES PVAUNG ME Younhotepo xdotog [6].  Qotdoo, ol
NVMs nopoucidlouy enione npoxifoels, dnwe udmidtepo ypdvo mpdoPacng, yauunidtepo edpog Lmvng,
xa Teploptopévn avtoyy ot eyypagpéc. Eugoavilouv enlone acupuetpixéc xaduoTERHOELS Kol XATAVIA-
wom evépyelag PEToD AELToVpYLOY avdyvwone xau eyypapic [7], odnydviac o cuufiBacuolc xatd v
evouudtwon Toug pe Ty tapadootax’y DRAM.

Liyypoves eunopéc mhatgbppes xar tpoundeutéc, énwe n Google, 1 Amazon, xou n Alibaba [8], [9],
[10], ouvdudlouv napadooctaxd DIMMs DRAM ue Intel Optane DC Persistent Memory, nou péypet ofuepa
anoteAel 1 ovadixy epnopixd diardéoiun teyvoroyia NVM. Autd ta cuc thpatoa antooxonody otn Pudoun
0L OXOVOUIXE AOBOTLXY) ETEXTUCT, TNS YWENTIXOTNTAC UVAUNG, TOEEYOVTOS OTOUC YPHOTES [ial TOKLALYL
texvohoYldy uviune. Mo oelpd e@appoy®y vnootneiletol o oUTES TIC TAXTQPOPUES, OIS UNYAVIXT
pddmon, Bodd uddnon [11], pdptol epyacioc Pdocwy dedouévwy [12], xon emoTnuovinéc/ueydhwy de-
dopévwv (big data) epapupoyéc [13]. Autol o gdptoL gpyaociog anoutodv LA anddoon enelepyaoiog
we eddytota onuelo cuppdenone ewoddou/e€68ou (I/0 bottlenecks), aoxdvtog onpavtny tieon oto un-
000G TN xOELIC UVAUNG.

Me 1 poryBaior eEEMEN TWV ETEPOYEVHV CUGTNUATOY UVARNG XL TS ONOEVA Xal To Toixiheg amantioelg
EQOPUOYWY, TOCO oL axodNUixéC 600 xan oL Brounyavixéc xowoTnteg xataBdhhouvy tpoondideleg yior TNV
avdmtudn anodotxmy ohyoplduwy tortodétnone dedopévwv [14], [15], [16]. IIpdowotee elelifec otic
TohTixég Tonodétnone unootneilovy Ty Tonotétnor Sedopévwy o TOAATAG EMiNEdO AVIALOTC, OTWS
eninedo oehidac (page-level) [16], [17], [18], [19], eninedo avuxewévou (object-level) [14], [20], [21], [22],
xau mpooappooTixd eninedo (adaptive-level) [23]. Qotdoo, autéc ol npooeyyioels anoutoldy eXTETUUEVES
teyvixée mpogik (profiling), cupnepthauBoavouévne e evopyfiotpwong(instrumentation) [24], [25] xou
Aentopepolc avdluone ot eninedo avuxewévoy [21]. aupdho mou avtéc ol pédodol eivon axpiBelc, cuyvd
elvon evepyoPopec xan emPBoplvouy onpavTixd Tov yedvo extéleorng, neplopilovtag T SuVITOHTNTA ETEX-
TAoWOTNTAC TOUC OF TEAYHATIXA, UeYSAne xAlpoxac cuotAgota uvAune. Lo mopddetypa, €peuva mou
TOPOLCLACTNXE 0TO [26] umodewviel 6T to mhpec profiling pviune uropel va emgpéper éwe xou 53%
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emPBdpuvorn oty anddoor), eved auth 1 emBdpuvon avdvetor onuavtxd 6co avgdveton to péyedoc xou 1
ToAUTAOXOTN T TOL PEETOL EpYaciag.

I va Eemepaotoly autol ot teploptopot, ol véeg Aioelg Tonodétnone dedopévwy npénel va fehtioTonololv
Ti¢ dladixaoieg profiling xon va ehoyiotonoloty v emBdpuvon xatd Tov ¥EOvVo exTEAEONS, DlATNEWVTAS
TopdAAn e Ty axpiBela tng tomovétnong. Xe autd to mAaioto, mapouaidlouue to SPID, Tnv TemdN
epyaoia mtou npoteivel éva ehappy, duvaixd Thaioto TotoVétnone dedouévmv Paoctouévo oe avyuéc (spike-
based), oyediouévo eldwd yio etepoyevi ouothuata DRAM/NVM, efadeipovioac tnv e€dptnon e
AMOTEAECPATIXOTNTAS TNG AUong and Aentouepés profiling xouw dhhec evepyofdpec diadixaciec. To SPID
petdver Ty e€dptnom amo e€avtinTtins profiling oe eninedo avtixeipévwy xou a€ionotel Ty aviyveuor spikes
OTIC POOBACELS UVAUNG YIX TOV EVTOTUOWS TEPLOY MY uviune ue udmio ebpog {ovne (bandwidth spikes)
X0l TEPLOY Y EVERYODVY avTiXEWéVwY (active object spikes), emtpénovtac v tpocappoctixy Tonodétnon
dedouévev o TpaypaTnd ¥povo. Auth 1 otoyeupévn Teocéyyior emtpénel oto SPID va mpocopuoleTol
duvoxd, BlatnedvTag younhé goptio profiling, npocpépovtac £Tol o TEaxTixY) Xt XALPAXOUUEVY AU
Yio EQUPUOYES OE TEAYHATIXG Ye6vo. Ol XAUVOTOUES CUVELCPORES ALTAS TNG UEAETNG Elvor
ot e&Ac:

e ITapouocidlovpe To SPID, évav ehappy, xhgoxoluevo akydprduo tomodétnone dedouévwv
Boowouévo oe spikes v etepoyev) ouothuata DRAM/NVM. To SPID aZlonoiel mponyuévoug
unyoviopols aviyveuone spikes, ovoyetilovtoac spikes oto elpog Lwvne eyypapric (Write BW
spikes) xou oe evepyd avtxelyeva (Active Object spikes), xou mopéyelr mpocopuootixd| Mdn
anogdoeny yio TN Bektiotonoinon tng tonodénong dedouévmy.

¢ AvantOCCOUVUE XA EVOWUATWVOLE TNV SPMalloc, uio BiBAoU XN avolyTol x@oixo Tou
avoyontilel Tig xANoELS BUVOIXTC DECUEVOTC UVAUNG, EVOWHUATWOVEL T1) AELTOLEYWOTNTA Tou SPID
O ETLTEETEL TNV AMEOOUOTTY] TOTOVETNOY) DEBOUEVLV GE ETEPOYEVY] CUCTAUATO UVAUNG.

o ALeVERYOUUE ULO EXTEVA TELPARATIXN AELOAOYTNOY TOoL TAclou pag, cuYXpivovTdc
10 pe Baowoic alyopldpoug xou mponyuéves otpatnyés Tonovétnone dedouévev. To amoteréo-
portor detyvouv 6Tt to SPID emituyydvel pelwon tou ypdvou extéleons xotd 30.82% xou pewdver Ty
xatavdhwon evépyetag xatd 31.61% xatd yéoo 6po.

To undhoino xepdhato opyovidvetar e eéic. H Evétnra 1.2 napouctdler v oyeuxt| BiBhoypacpio
xan meplypdgel Tig Baowég e€elileic tne épeuvag. H Evétnta 1.3 mepiypdget ) Abon tomodétnong de-
Bopévwy nou tpotelvoupe, eve  Evotnta 1.4 avallel tny netpapatixn a€lohéynor. Télog, n Evéotnta 1.5
OhOXANPOVEL TNV pyaoia.

1.2 Xyetwxn BiBAioypapia

Ta televtala ypdvia, €youv mpayuatonomdel Tolamiéc perétec mou ectdlouv otnv TomoYétnor de-
dopévwy oe eTEpoYEVH cuo THATA XVplac uviung. Katnyoplomolotue t oyetixn BiBAoypapia ue Bdon to
eninedo avdlvong oto onolo egapudleton 1 TonodéTnor, dnhadh TNy Tomolétnon dedopévev ot ETINEdO
dopric/avuxeluévou xau ot eninedo celidoc.

ToroVdétnon Acdopéveyv oe Eninedo Aophc/Aviixeipnévou: O ouyypageic tou [14] npo-
Telvouy BLUCTPWHUATMOY XaL UETAVAG TEVCY] AVTIXEWEVWY OF ETUNESO TUENVAL Yiol ETEPOYEVY] GUGC THUATA
wvhune. Xto [20], topovoidleton évag profiler tou mopéyel xatevdivoels yio Ty tonodétnon dedouévwy oe
€TEROYEVA UV, evé oo [21], npoteiveton Suvopxs BehtioTonoinon twv tinwy dedopévevy yio xahldtepn
tonovétnon. Xto Bio eninedo, oto [22], napoucidletar pa uédodoc tonodétnone dopdv dedouévmv
mou Aafdvel unodn g eyypopés o cached xou uncached NVMs. Ou ouyypageic tou [23] npoteivouy
éva mAaiolo ypdvou exTENENE VLol TNV TOTOVETNOY SEBOUEVWV TPOCUPUOCUEVOU ETUTEDOU avdAUGTS Yo
EQUPUOYEC Pootopéves oe ypaphuata, eve oto [27], ou cuyypageic epoapuélouy totoldétnor dedouévev
Aopfdvovtog uddn Tic PACELS TN EPUPUOYNS.

TonoYétnorn Acdopeévwy o Eninedo XeAidag: O Moeic tonotétnong dedopévwy oe eninedo

oelidog €youv egepeuvniel eupéng yio T BelTioTonolinoT NG XPHoNG X TNG ATOBOONS UVARNG OE ETEPO-
yev ouothuata. Ot ouyypageic Tou [17] tpotelvouy évay alydprduo Tonodétnone oeidwy Baciopévo oe
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Figure 1.3.1: Yuoyétion tou apidpod TV eVERY®Y AVTIXEWWEVWY o €Y0UY BEGUEVTEL 0T UVAUN
(npdowvo) xou tou ebpoug Lhvne eyypaphc Uvhune (xitelvo), cuvapTHOEL TOU YEbvou, YLot ONoL Ta
benchmarks nou e€etdotnray.

LSTM (Long short-term memory) nou mpoBiénet yelovuxd potifo npdofaone wote va tonodetel Tic
oelidec anoteleoyatind oto enlneda uvAung. Xto [16], mpoteiveton yio mpooéyyion evioyutixic udinong
(reinforcement learning) yio tnv Tonod€tnomn cehidwy, eved oto [18], o cuyypagelc napovoidlouy évoy
online ynyoviopd tonodétnone dedouévev ue xadodnynorn and profiling, ednd oyedioacuévo yior Tny
tono¥étnon dedouévwv oe eninedo oehiduc oe mepBdirovia HPC. Téhog, oto [19], mpoteiveton évog
UNYOVIOUOS TOTOVETNONE OEAMBWY O ETUMEBO AELTOURYIXOU CUCTAULITOSC, TOU AELToVEYEL Ywpelc Vo amontel
TEOTIOTOL|OELS OTLC EQUPUOYES.

ITapdho mou mponyolUEVES £peuVES £Y0LY eEEREUVATEL GTRATNYIXES TOTOVETNONGC BEBOUEVWY YL ETEPOYEVT
ocuoThoTa uviune oe didpopa enineda avdivong, autéc ol tpoceyyioelc cuvidwe topoustdlouy dlo xbpLa
HELOVEXTHHOTOL

1. Booilovton oe danavnpoic xou evepyofépouc unyoviopol profiling, xou

2. Ewdyouv onpovuxd emBdpuvor ypdvou exTéNecc NOY® EXTETOUEVNS Tapaxololinone (monitor-
ing) xou anoitnong eZaywyhc TANPoopiac Xxatd Tov YEbdvo exTEREOTLC.

EE 6owv yvwplloupe, auth elvan 1 mpwtn epyocioa mou mpotelvel wor Abor youniod x66T0UC Y TNV
tono¥étnon dedouévwv oe etepoyev) cuothuata DRAM/NVM, eZakeipovtoc Ty edptnon ne anote-
Aeopatixdtnrag e Aoong and Aemtopepés profiling xaw dhheg evepyoPopeg dadixacies. Emmiéov, oe
avtideon ye mponyolueveg €peuveg, auTh 1) epyacia €lGdyel To TEMTO TAdCIO duvoxig TomodéTnong
dedopévwy Paotopévo oe spikes yio etepoyev) ovothuata DRAM/NVM. H npocéyyion pac alionotel
v aviyveuor spikes oTic TpocBdoeic UVARNE YLl TOV EVTOTIOUS TEQLOY WY UVAUNG HE LPNAG ebpog Ldvng
0L EVEQYWV OVTIXEWUEVRY, EMUTOENOVTUC TNV TPOCUPUOC TIXY TOTOYETNOT SEBOUEVLY XOTE TOV YPOVO EX-
Téheong, ywplc va Bacileton oe danavneo profiling ¥ uévywo monitoring.




Chapter 1. Extetouévn Einvuc Ilegiindn

Step 2. Quantization & Spike Detection H Step 3. Correlation, K-Max Selection & Dy ic Data P, |»

Mem. Bandwidth% Active Object Spike K-Max Object Data Placement
Spike Detector
| P | Detector Selection Decision Making
d

H Allocation Trigger E

Step 1. Profiling & Analysis |
C/C+ -
Application

Dynamic Data H

Placement '

SPMalloc Vo
T S\

DRAM NVM

;

System-Level Profiling
& Monitoring

Mem. Bandwidth
Profiling
Active Object
Monitoring

Interval Tree

Construction

' Vo '
DRAM vs NVM Bandwidth Active object & Bandwidth

-

SPMalloc

,."‘
Spikes

L

Figure 1.3.2: Emioxénnon tou nhawciou SPID

1.3 Ilpoztewvdéuevn pedodoroyio

Ye auth v Evétnra, napousidloupe to SPID, wa Alorn duvouixic tonodétnong dedopévmy Bactopévne
oe ouypés (spike-based) yia etepoyev ovotiuata DRAM/NVM. O depehuddelc oyediactinéc opyéc
e pedodoroylag pog xadodnyolvraw and v mapatienon g LVYNAAG xpovixAc cuoyEtione PeTal
e Yerong evpoug LOVNG UVANG Xol TV BECUEVOERY UVAUNG Lot TOAES eapuoyéc. Mto Myrua 1.3.1
anewovileTon 1 GUOYETION TNE XATAVAAWOTGS E0POUS LHOVNG WVAUNG (XETELYO) Xo1 TWV EVERYMY OV TIXELUEVGY
déopevone pviune (mpdovo) oto ypdvo yio dhec Tic egappoyéc Tou eetdotnray. O oplotepde dEovog
Y Oelyvel Tov apripd TwV EVERYHV AVTIXEWEVWY UVHUNG, eved o de€log dovae Y delyvel to ebpog Lidvng
EYYEAUPNC UVAUNG XaTd TN BLdpxela TNG EXTENEONS TNE avTioToly N EQaproYNS.

O e€etalbyeveg e@apuoyég anoxahdTTOUY OploUEVA SLapopeTixd wot(Ba cuoyEtiong HETAEY TWY EVERYWY
BeoUEVoEWY XAl TNG XeNoNG eVpoug Lidvng uvhung. Ly meplntwon twv Lulesh, LavaMD xo. Pathfinder,
Tapatneolue Tt ol teptoyéc udmiol ebpouc Twvne eyypaprc eutuypauuilovtoar otevd pe spikes otov apl-
BUb TWV EVEPYY SECUEVPEVLY AVTIXEWEVLY, SelyvovTag dueor cuoyétion uetall spikes deopeboewy xau
yefone edpoug Lavne. Xto Streamcluster, ou nepoyés vdPmiol ebpouc LHOVNG EYYEUPAS UVARNS TUPOUCLE-
Couv o uxet| yeovixn Yetatomion oe oyéon pe ta spikes evepy®v aviixeévwy, érmou tolhamAid spikes
decueloewy 0dnyoLy ot avtictolya spikes edpoug Lwdvng petd and puxer xoduotéenon. Avtideta, eqop-
povée omwe to Srad, Lud, Cfd xa Kripke eugaviCouv éva extetayévo potifo cuoyétiong, 6mou éva
povadixé spike deopedoewy Eexwvd uio tapatetagévn nepiodo udmiod edpouc Ldvne uviune. Télog, oe
epapuoyéc omwe ta Backprop xoan Kmeans, mapatnpolue nwg éva spike otnv opyy| Tou TpoYeduuaTtoq
axohovieite 1660 amd meployéc yopunhod oo xau uPnAol ebpoug LHOVNG UVARNG.

* KiYpiro Yvunépaoua 1: Or nepioyés évtovwy duvapikdy Oeopueloewy UVHUNG TUTXETI-
lovar xpovikd ue spikes atn xprion €lpovs {dvng pyiuns.

H noapoamdve magatienon xadodnyel tig facixéc emhoyéc oyediaopod tou SPID, to onolo elivon 1 mpodtn
gpyooia mou Baciletar oe nponyuévoug unyaviopole aviyvevone oe spikes, yéow tne cuoyétione spikes
ebpouc Lovne (BW-spikes) xon evepyddv avtixeévev(Active object-spikes), xadodnydvtoag Ty anoteheo-
patix) Tono¥étnon dedouévwy xat T dlayelplorn Tépwy e eTEPOYEVY cuo ThuaTa UvAuNG. To Xyrua 1.3.2
Topovatdlel Pl ETLoXOTNOY TNe Tpotewouevne pedodoloyiac. ¢ eloodoc, napéyeton 1 emduunty eqop-
woyh oe C/C++. H mpotewdpevn pedodoroyia anotelelton and tpeic Slaxpltéc @doelc, ol omoles elvon ot
eZfc i) Profiling & Analysis (Evétnua 1.3.1), ii) Quantization & Spike Detection (Evotnta 1.3.2) xou
iii) Correlation, K-Max Selection & Dynamic Data Placement (Evétnta 1.3.3), ol onolec neptypdgpovon
Aemtopepdds oto undhoino e Evétnrac authic. O Ilivaxac 1.1 cuvodiler tic Paoixés mopopéteous Tou
ocuo ThHaTOC oL culnTovvton 6T cLVEYELX aUThHS TNe Evotnrac.

1.3.1 Brpa 1: Profiling & Analysis

H cpyxn @dom tou SPID éyel oyedlaoTtel yior var Slegdryetl plot ohoXANpmUEVn xal uixpol @épTou Sodixacio
profiling tng otoyevpévng egapuoyic, SlEuXoAbVOVTOC Uila CUC THRATIXT TOEVOUNOT TV Teploywy spikes
mou meplypdgpoviar oty Evotnra 1.3.2. To profiling Eexwd pe to monitoring oe eninedo cuvotAua-
TOC/EQOpUOYHC X T GUANOYT dedopévewy (@), OTIOV XATAYEAPOVTAL BACXEC UETPXES OIS TO €0POC
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Codvne pvAune xou ot deoyevoelc pviune. ‘Onwe gaiveton oto Xyrua 1.3.1, npayuotonotolue profiling
e0poug LMvNg UvAUNG EXTEAMVTOG TNV EQUPHUOYY, (OTE Vo AELONOYHOOUUE TN CUCYETION METOEY NG
xatovdAwong ebpoug TMvne WVARNG xot Twv wotiBwy deopeboeny uviune. Eldxodtepa, enixevipwvépacte
070 elpog LOVNC eYYpaP®y, To omolo yenoluelel we Baolxog delxtng yio Tov eviomoud uetofdoewy
QAN XKoL TNV XATAVONTY) TNS SUVOULXNC CUUTERLYPORAS YENONS UVAUNG XAUTA TNV eXTEAEST).

INo vo avtigetoniotel 1o onuavtind x60T0¢ Tou cuvdéeTtal ouVABwe Ye TNV avdiuon ot eninedo ov-
Tieévwy, 1 pedodoroyia pag aflonotel wa anodotxt| otpatnyxf mou Poociletor otny mapoxohobinon
EVERYWV avTIXELEVLY. Autd To Bripa mepthaufBdvel Ty mapaxolotinor tng duvauixic déopeuong bytes
%o TOU apldUol TV EVERYDV avTIXEWEVKDY xad’ OA1 TN BLdpXxela TNG EXTENEONG, ETUTEENOVIAC YOS Vo
xatayedouye Tor YEVIXG TpoTUTH YeNong MVAUNG Xwelg Vo amoute(ton AETTOUERNC avdhucT oe eTinEdO
aviieléveoy.  Me 1 ouvduaopévn yenon tou ebpouc {OVNG PVAUNG xou TN mapaxokobinong ev-
EPYOV AVTIXEWEVWY, £YOUUE anoTeAeouatixd profiling tne cupneppopdc UVAUNG TN eQopuoYhc, To onolo
BIEUXOAUVEL TOV EVTOTLOUS ONUEiwY CUPPOENONE TNE ATOBOOTC.

Ta dedoyéva mou cuAAEYovTal eneepydlovTal Xou ovaADOVTAL (@) Yot VoL EVTOTLOTOOY XElOWUES TEQLOYES
xon petafdoelg pdone ota endueva PBriuata. To eneepyacuéva dedoyéva tpowtolvton oto enduevo Brua,
T0 omoio nopoucialetar oty Evétnra 1.3.2.

1.3.2 Brpa 2: Quantization & Spike Detection

Ye auté to By, o xbploc otdyog elvan 1 aviyveuor xou TaELVOUNGCT) BlaXELTOY QACEWY NG EQUPUOYNS
oe dVo Paowéc xotnyoplec: tic Ilepioxés e Spikes atn xprion tov Evpovs Zdvns Myrjuns (Memory
Bandwidth Spike Regions), mou yapoxtneilovta and vPmi yerion ebpoug Ldvng uvhung, xou tic Ilepioxés
pe Spikes Evepydv Avtikauévowr (Active Object Spike Regions), mou yapoxtneilovtor and norhomhéc
deoueloelc avuxeévmy uviung. H tagivounon autdv twv eployoy Bacileton oe 500 vEoug Uy aviopoig
aviyvevone: (i) tov Memory Bandwidth Spike Detector (@) xou (ii) tov Active Object Spike Detector

(@), oL oTolol TEPLYPAPOVTOL AVOAUTIXG OTY GUVEYELN AUTHAC TN UTOEVOTNTAS.

Memory Bandwidth Spike Detector: I'w tnv oaviyveuorn Blaxeit®dv @dcewy TS EQapUoYhc,
napovatdloupe évay ahyopliuo mocotuxonoinoneg, oyedlaopévo vo Sloupel TV egapuoyR oe Bloxpltd
Yeovxd Swothuota pe Bdomn to wotifa eldpoug Lodvng uviung. O alyopdudg yog yenoudomolel évoy
unyeviopd ohoYaivov mopadipou (sliding window) yua v aviyvevon @doewy uPnrod ebpouc Lodvne.
Yo Tyfua 1.3.3 anewxovilovton ol xupotopoppéc Tou evpouc Lodvne eyypaphc yio Dram (xéxxivo) xou
NVM (unhe) v xdde benchmark. Autéc elvon oL xupatopoppéc ndvew otic onolec Aettovpyel 10 OMo-
Yalvov napddupo pe otdyo Ny ebpeom teploydy 6mou 1 NVM votepel oe peydho Badud oe clxypion ue
Dram 6c0v agopd 610 £0pog LhVNg, xal GUVETKE GTOV Ypovo extéheans. ‘Onwg Yo avauévaye, oL XUPTo-
pop@éc autéc mapouatdlouy moavopotdtuna wotiBa ebpouc Lodvne, e v NVM va onueidvel pixpdtepe
TIEC AOYW TNG TEPLOPLOUEVTC OmOB0CTE TNS OTIC EYYPUPES, UE UMOTEAEGUA YPOVIXE UEYUNDTEPES HUUOTO-

Denotation Description
BWprawm(t) Edpoc Lodvne eyypapric tne DRAM ) ypovi| otiyun ¢
BWnvu(s) [Méooc dpoc ebpouc Léhvne eyypaphc tne NVM néve oto olodaivoy mapddupo s
t; Xpovixn otiypn évapine evée spike ebpoug Lovrng
t; Xpovu otiyph AMENe evée spike edpouc Lodvrng
0 Yuvteleothic xatw@hiov yia spikes ebpoug Ldvne
oy O aprdudc TwV EVERYDV AVTIXEWEVOY T XEOVXY) CTIYUY ¢
cd H yéomn Sapopd YeTall 800 SLaBoy XY dpLiimY TWV EVERYOV AVTIXEWEVKY
spitt Avodix) cuvdptnom Yo TNy avlyveuor twv spikes

Table 1.1: Kopieg mapduetpol yio tnv vhonoinon tou SPID




Chapter 1. Extetouévn Einvuc Ilegiindn
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Figure 1.3.3: Edpoc Ldvne eyypagrc tne Dram (x6xxvo) évavtt tng NVM (umhke) xatd ) Sidpxeto
extéheonc (secs.) twv benchmarks .

poppéc. M meployn e spike edpoug {idvne avtiotouyel oe éva ypovixd Budotnue [t;, t;], dmou: ¢; eivou
1 apyn yeovixr oTiyur) mou to evpog Lavng eyypapric ot DRAM unepfaivel éva mpoxadopiouévo 6plo
oe oyéon pe tov péoo 6po tou ebpouc Ldvne eyypaphc ot NVM evide tou tpéyovioc ohodaivov mopa-
Yopov otadepol uhiroue s (E&iowon 1.3.1), xau t; eivon 1 tehixs] ypovixh otiyud mou to ebdpoc Lhdvng
eyypagrc otn DRAM négptel xdtw and éva napdpolo 6pto (E&iowon 1.3.2). H yedodohoyio pog xoto-
YedpeL anoTerecpaTind TS Qdoelc LPNATC YeHone UVAUNG, ETLTEENOVTOS TNV TROCUPHOGTIXY ToTto¥étnon
dedopévwy xal T Bertiotonoinon Tng xeYong népwv ot eTEPOYEVT TEpBdAhovTa uvAENG. Ag Yewprioouue
ot 0 elvon évag ouvteleo i xatw@hiov Tou opilel éva spike oto ebpog Ldvne e DRAM oe oyéon ue
Tov pé€co 6po tou evpoug Ldvng e NVM. Térte, o otiyués évopéng ¢; xan MENg ¢ mag auyuns ebpoug
Ldvne opilovton we e€nc:

t; = min{t : BWDRAM(t) >0 - BWNVM(S)} (1.3.1)
tj = min{t >t BWDRAM(t) <6- BWNVM(S)} (132)

6mov BWpram(t) elvar to edpoc Lodvne eyypaphic ot DRAM tn ypovuxt| otiyph ¢t xou BWnywm(s)
elvar 0 péoog 6pog Tou evpoug Lwvne eyypagphc otn NVM xatd to ohodaivov mopddupo s. To plo 6
xadoplleton melpapaTind xaL 1) eTAOYY TOL agrveton oTO XEHoTH.

Active Object Spike Detector: Opoiwce, aviyveboupe meployéc pe spikes evepy®v avtxeiyévoy e&-
etdlovtog T petaBoln otig Sadoyxés TWES Tou oprtuod TwV EVERY®Y avTXEWWEVWY. AuTH TN Qopd,
epYalOUACTE TEVL OTIC XUPATOUOpPEC Tou Lyfuatoc 1.3.1 xou CUYXEXEWEVR AOYOMOVUICTE UE TNV
TRAOWVY XUPATOUOPPY, 1) onola Tapouctdlel Tov aptiud TOV EVERYXDY AVTIXEWWEVWY CUVAPTACEL TOU YPO-
vou. Avohutixdtepa, Tapdyoupe BlaxpLTeg TWES Yid TOV optdUd TV EVERYMY AVTIXEWEVWLY, oy NuaTi{ov-
Tag por oxoroudia otolyelwy a;, TOU UTOBNAMVEL TOV OpldUs TWV EVEPYOV AVTIXEWWEVWY CUVIPTHOEL
ToU Ypbévou extéleons, oc e&fc: {ap, a1, ..., an ). Aedouévne NG CEWREC AUTMY TV TIHOY, 0 ok
yoprduoe poc vroloyilel Tig amdAUTES SLapopés UETAUED TOV DABOYIXMY TV, TOU avomopioTavTal »e
{lar — aol, ..., |an — an—1]}. Tmoroyiloupe 0 yéon andluty Spopd, Tou opiletar 1S %PIOWO KATOPAL
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cd amd Tic Tée oy, bnwe goivetor oty EZicwon 1.3.3. H cuvdptnon spit! (Eicwon 1.3.4) evionile
spikes evepy®V aVTIXEWEVOY CUYXEIVOVTOC TIC DLAPOLES TV AVTIXEWEVKDY UE TO XplOWO XATWEAL. Luy-
XEXPWEVQL, 1) CUVAPTNOT) ETLCTEEPEL spz+1 =1 étav a1 — ;| Eemepvd To cd, xon sz}l = 0 dlopopeTixd.
Spikes to omola eflvan yeltovixd cuyywveLovTUL GE UEYOADTEQO BLOC THUATO, XATUYPAPOVTAS TEPLOBOUSG
LVPNAC BEaC TNELOTNTUC AVTIXEWWEVWY, Y0elc EXTEVY avdAucT ot eninedo avTIXEWEVOL.

‘ai+1 — Oti‘ (133)

— Vie{0,.,n—1} (1.3.4)

i+l _ 1, if |ai+1—ai|>a
0, if |Oéi+1 — Oéi| S cd

1.3.3 Brpa 3: Correlation, K-Max Selection & Dynamic Data Placement

Metd tnv avary videlon twv teptoy®v spikes ebpouc Ldvne uviung xon evepy®v avtixeluévey (1.3.2), o end-
HEVOC GTOY0C oG elval 1) GLUGYETIOY Toug xai 1 mbavotixy| e€epelvnon Twy spikes evepydv avuxeluévmy
mou eivon mavotepo va oyetiCovtan pe xdlde enepyduevo spike ebpoug Lovng. Io va to emtdyoupe autd,
yenowonoloVue éva interval tree [28] yio va xortorypdipouye xou va e€arydyouue anoteheopatixd to spikes
EVERYOV AVTIXEWWEVWY oL epavilovial 6To Yeovixd Bidotnua uetald ddoyxy spikes ebpoug Ldvng
(@) To interval trees emtpénovy toyela eZoywyy oe ypdvo O(log N), oo TdVTOC ToL XUTIAANAL YLot
yeYyopn dwamépac xon e€gpebivnon.

Kdde xépPoc oto interval tree avtiotou el 6o Ypovixd didotnua [t;, ;] evoc spike evepydv avTixeévemy.
Ity e€epedivion twv spikes evepydv avtixewévmy péoa oto egetalduevo ypovixd didotnua tou opile-
Tou anb Vo dadoyixd spikes edpouc Lodvng, To interval tree emotpégel Toug x6pPfouc/dlacThNTA TOU
emxohOmTovTal ge outd. Aol avaxtniolv ta oyeTnd spikes, o aAyopldudc pog @uitedpet xou emAéyeL Ta
K-maz (to K peyoltepa) spikes Bdoetl Twv deopeupévev bytes (allocated bytes) ota emheypéva spikes

EVEQY WV OVTIXEWUEVLV (@), T omola efvan xon Ta o xplotua yia amodoTxY| ToToVETNOo.

Téhog, 1 duvapx) Tomo¥ETnorn Bedouévey TpaypaToTolElTol XoTd TNV EXTEAEOT (@) Ta K spikes
EVERYDV AVTIXEWEV®Y TIOU EVTIOTLGTNXAY TEOTYOUREVLE Yapoxtnellovta we hot regions, eved oL undAoLTeg
neployég yapaxtnellovtar we cold regions. Kdde neployy| cvoyetiletar ye tov cuvolund aptdud twv bytes
mou €youv xotaveundel oe authv. T va petplaotel ) mbavr vnofdduion e anddoong Tou TEoxaAelToL
and Tov mo apY6 Yebdvo npdcPacne tne NVM, ou kot regions dpopohoyolvtol yio Tono¥étnon otn Uvhun
DRAM.

Agol eviomiotoly to spikes evepyV avTIXEWEVWY Yol TOTOVETNOT OTN YENYOROTERT, UVAUT, O ahYOpL-
Yuoc oflonotel tar vietepuvioTixd potifo déopevone uviune twv benchmarks yur vo Adfer amogdoeic
Tonovétnong xatd TNy extéhean Y Tig cold regions. Kdde neployn Syeipiletan we Eeywelot wovdda,
pe to otouyela e avtiotoiyng meptoyfic va tonodetolvton ot NVM. Ou cold regions mou avtioTouyi-
Covtan ot NVM eivan emppeneic oe gouvépeva 6mwe to write amplification xou to write throttling [29],
AOY W TOV CUYVOV ULXPOY DECUEVCEWY OV TIXEWEVELV.

o v avTetodnion autody Tov tpolAnudtoy, cpapudletor Evae UNYoVIoHOS EVOANICOOUEVNSC TOTO-
Vétnong, omou dadoyéc cold regions opadomololvtan oe Yeyohltepeg ouddec. Téhog, 1 tomodétnon
dedouévev mpaypatonoteitor péow e evowpatwuévne BiBAodixne pac, touv ovoudleton SPMalloc (@),
1 omola teplypdpeTal Aemtopepws oty Evotnta 1.3.4.

1.3.4 Teyvixy YAoroinon

Yyedudalovpe 1 BiBAodnxn SPMalloc, wa avolytod x@dxa BiBAodrxm, n onola avtxoho té T cUVIETY-
oeigmalloc, calloc, realloc, free xounew/delete yia Tic YAWooeg npoypoppatiopod C xo C++,
avtiotouya. Ou xhfoelg mpog ) BBAoUH N poc avoyoutilovtar xotd TV EXTEAEST] YENOLLOTOLOVTOS TO
LD_PRELOAD, cuvdéovtog Tt PiAodrxn oto exteréowo apyceio.
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H Biriodiun poc yenotponotet to memkind API [30], T0 0Toio ETLTEETEL GTOUC TEOYPAUUUATLO TES VL TOTLO-
Yetolv dedoyuéva elte ot uviun DRAM elte otn uviun Optane DCPM. ¥to Xyfua 1.3.4 napovoidleton
1 oUYxelon Tou Yedvou extéleone Twv benchmarks nou neprypdgoviar oty Evotnro 1.4.1 yio duvopxnég
deopeloelc otn uviun DRAM, ou omolec mpoaypotonowodvton Yéow tne mpoemheyuévne malloc() xou
¢ SPMalloc() mou mapéyouue. Iapatnpolue por eldytotn péon Slagopd anddoong Tng Tagng Tou
1.8%, yeyovde mou unodexviel 6Tl ol deopetoels uvhiune uéow tne BBhodinne poac emBédiiouy auehntéo
emPBdpuvon xatd TNV eXTEAEOT).

Q¢ anotéleopa, Yeonilouvpe plo evoToinuévn TOATIXY BEGUELONG UVAUNG, XATA TNV OTolol GAEC OL BUVOLXES
deopeloelc dievepyolvtal péow touv memkind API, dieuxolbvovtog T dfBdduion xou Tov EAeYYo NG
uvAune. Emmiéov, n SPMalloc eivon eumioutiopévn pe duvatotnreg profiling, dote vo unootneiler
dlayelplon UVAUNG o€ TEayUaTiXd Yedvo.

Tt vou petprdooupe v emPdpuvon nov oyetileton pe epyohela thipoug profiling twv avuxewévov [21],
evowyatovouye évav profiler Boociouévo oe derypotohndila péoo otn BPBAodhxn. O profiler auvtog
Tapoxoloudel xou xaTorypdgel T Xeron WVAUNG, mopaxolovdwvtag Ta bytes mou deopclovton xou Tov
aptdd TV EVECYMV AVTIXEWEVWY XATd TN SLdpxelo TN exTéAeonc. Lyedlaouévn we éva emniéov thread
670 mapaoxnvio NG egapuoyic Tpog extéheot), 1 SPMalloc emitpénel Tn cuveyh Mn arogdoewy ywelc
vou emnpedlel TopeUBatixnd TNV anddoon TNS EQUPUOYTE, TapéyoVTAS TANEOYOoplES Yia TIC BecUEUOELS UVAUNS
%Ol TNV TOTOVETNOY OE TEAYHATIXG XEOVO Yo ATOTEAECHATIXY Blaryelplom UvAUNG.

1.4 A&woAoyrnonm

1.4.1 IIeipopatiny Aidtodn

Ta mewpdparta Siegiydnoav oe évav LPNAGY TEodLAYEUPOY server tou amoteAelton and dGo 20-core Intel
Xeon Gold 5218R CPUs @ 2.10 GHz, ye 4x32GB DDR4 DIMMs xat 6x256GB Optane DC NVDIMMs.
H Intel Optane DCPM dwpoppaxdnxe oe App-Direct mode pe to cVotnua apyeiwv EXT4-DAX. T'a
™V avVETTUEY TRV EQPUPUOYOY Yenoldoroinxe N éxdoon 1.11 tou Persistent Memory Development Kit
(PMDK) xou o gee-13.3.

H npotewdpevn Aoon poc afoloyeltan oe 11 mpoypotixd benchmarks, mou mpoépyoviar omd o
PARSEC [31], Rodinia [32] xou CORAL-2 [33], xah0ntoviac évo euplh GUVOAO TOUEWY EQUPUOY®Y, bTwe ML
workloads, ene€epyacia exdvag xar puowr. Eotidlouye oe epopuoyéc pe évtovn yeron wviung, émwe
to Streamcluster, LUD, Kripke, CFD, Backprop, Srad, Lulesh, xau oe copponnuéva workloads petald
anawthoewy enegepyacioc xou uviung, 6nwe ta Canneal, LavaMD xou Pathfinder.

Yuyxpivoupe tny npotelvouevn mohitixy Tonodétnong Ye 5 toltnég Tonovdétnong:
1. DRAM-all, 6mou 6ha to dedopéva Tonodetovvton oty DRAM,
2. Optane-all, émou 6ha tor dedouévo tonodetolvton ot NVM,
3. Round-Robin, 6mou to dedoyéva Tonodetodvion xuxAxd oe xdie tOTo uvAung,
4. Random, 6mou to 8edopévo Totodetobvton Tuyolo, xou

5. Phase-based [27], mou anotekel wa oy ypovn Aon tonodétnong dedouévwy. Ta authyv, ol dloxpttéc
pdoelg ywellovtal oe YEoVIXd BLUCTALATE TV 5 BEUTEPOAETTWY.

O e€etalopevee moltnée duvauixic tonodétnone dedouévwv alloloyolvta pe Bdorn tny anddoor, Thy
XATAVIAWGCT eVERYELOG xat TNV eldpacy) toug oty ddpxeta Lwig tne NVM, clugwva ye tov opiduo
eyypapoy mou npayuotonoovvton ot DIMMs tne NVM. H xoatavédwon evépyetag xa 1o ebpog Lhdvng
UVAUNG LeTplolvTan Yenotponowdvtac to Intel PCM [34], éva epyoheio mou emtpénel tnv mapoxohovinon
e Loybog xat Tou ebpoug LdVNe oe TpaypaTind yedvo uéow hardware counters, eved yio T p€tenom Tou
OPLIUOD TV EYYPOPMV X0 AVOLYVOCEWY, YENOWOTOLOUUE To epyolelo ipmetl [35], To onolo anotelel To
TeoTUTO Yiar TN pLYWoT, Sayelpiom xan mapaxohovdnon twv NVDIMMs.
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1.4.2 Arnotelécpata

Performance Analysis: Yto Xyruo 1.4.1 nopouctdletol O XAUVOVIXOTOMUEVOS YEOVOS EXTENECTC
(emdve) xon 1 xotovdhwon evépyeoe (xdtw) Yy ha to e€etolbueva benchmarks, avtiotowya. To
ATOTEREGUATA YLOL TOV XPOVO EXTERECNC XAVOVIXOTIOLOUVTAL WS TEOS TNV ToALTiX Tono¥étnone Optane-all.

H nohuxy DRAM-all napéyel tov Béhtioto ypdvo extéleons oe 6ha ta benchmarks, Aoyw tne értione
xaductépnong téoo Yo T Aertovpyieg avdyvwong 600 xou Yo TIC AeltoupYles eYypapric, EVEM 1 TOML-
) Optane-all napoucidlel Tov Yeyohltepo ypdvo EXTENEONC AOYW NG ONUAVTIXAC EMBApUVETC amd TIC
eyyeagéc. IHoapatneolue 6Ti To SPID unEpEyEl TV AELOAOYOUUEVWY TOATIXWY TOTOUETNONC, EMITUY Y EVOV-
Tog %otd Yéoo 6po 28.86%, 34.16% xou 29.43% wixpdtepo ypdvo extéleomc o oUYXpION PE TIC ANIOELS
Round-Robin, Random xou Phase-based, avtictoiya. O mohtixéc tonodétnone Round-Robin xou Ran-
dom elvan uTEEBONXE AMAOIXES Yol VO AMOBCOLY ATOTEAECUATIXG OE €VaL EVPL PAGHUAL EQUQUOY V.

Emniéov, 1o SPID emituyydvet anddoon mou elvan uéhic 15.15% mo apyn and ) Béktiotn Moon oe DRAM
(DRAM-only), xotd péco 6po, anodemviovTas TNy AnOTENESHUTIXOTNTE Tou oTny oflonolnon 16co e
DRAM 660 xan tne NVM yia Bértiotn anddoon ot mowxihoug @bptous epyaciag.

To x0pro mheovéxtnuo Tou SPID o oyéom Ye tnv mpocéyyion Phase-based €yxeitow oto yeyovdg 6T n
tehevtala Baciletar poévo oe pdoelc mou opllovton and to edpog LHVNG UVAUNG, oY VOWVTIS T1 CUUTERLPOEE
TV BECUEVoEWY UVAUNG EVTOC QUTWV TWV QACEWY, 1) ontola eivan xplown Yl 1 cuvoAixY| anddoor. Autd
odnyel oe unoPddworn tne anddoonec. To SPID Eemepvd auTtoOV TOV TERLOPLOUOS, EVTOTILOVTAS ANOTEAES-
paTd xploweg meployéc déopeuong uviunc. Auth n didxpior emitpénel 0to SPID va UTEREYEL AP
e npoaéyyione Phase-based oe benchmarks énou ol xploweg deoueboeic dev axolovdolvton dueca and
neptoyée udmiic xatavdhwong edpoug Lhdvne (.. backprop, srad, Kripke, Canneal), emtuyydvovtog
xatd u€co 6po 3.7x adinomn e taydTnToC anddoong.

Téhoe, yia benchmarks nou yapaxtnpilovton we un eviatxd ot yphon uwhune (t.x. pathfinder, lavaMD,
Kmeans), 6hec ol nolTtixéc nopouctdlouy TapbuoLs anédoo), UTodeviovTas 4Tl oL GTRUTNYIXES TOTO-
PEnone LVRUNS €XOUV EAGYLIOTO AVTIXTUTO GE TETOLEG TEPLTTWOELS.

* KYpro Yvunépaopua 2: To SPID evtoriler kar Oivel mpoTepaidtnta o€ KplOULeS TEPIOXES
Oéouevong uvnuns, Pedtiotonoidrtag tny anédoon péow tomoletrioewy mov avtikatomntpilovy
Téo0 tn kalopiotikn onuacia tov €fpovg {dvng 600 kal Ty OeTUEVOEWY UVTUIS.

Avidivon Katavalwone Evépyeiag: H xatavdiwon evépyewag ota DIMMs tou cuctiuatog
pvAune vt to e€etoopéva benchmarks amotundveton oto Eyhue 1.4.1 (xdtw) oe hoyoptdund| xh{woo.
Ta anoteréopata nou mpoéxudhay evduypopuilovtoan oTevd ye Toug ypdvoug extéheonc, delyvovtac 6Tl To
SPID emtuyydver 29.81%, 34.86%, xou 30.15% Beltinpévn xatavdAmoT) EVEPYELNS GE OYEOT UE TIC TTOAL-
Tixéc tono¥étnone Round-Robin, Random, xa. Phase-based, avtictowya. H Behtiotonomuévn xatovdi-
wom evépyelag Tou SPID anodidetan xuping oe 800 Baoixols mapdyovtes: (1) ta avtixelpeva ye vdming
ouyvotnTa eyypapny tonovetodviar ot DRAM, amogedyovtoac tny uPniy xatavdienon evépyelag Tou
oyetileton ye i eyypagpéc oe NVM, xou (ii) tor ovTixelevo e wixpr cuyvOTNTA EYYPAUPOY XOTUVEULOVTOL
oe NVM yaunirc xoatavdhwong, Bonddvtag otn dlatienorn tne anddoong eVed XaTavaA@VOUY AydTeeT
evépye. Emmiéov, n otpatnyer duvouxnc tonodétnong Paciopévn oe spikes nou yernowonolel To SPID
draoparilel 6t o meployée uviune dayelpilovtar anoteheopatind, Adyw Tou unyoviopod monitoring ev-
EPY WV aVTIXEWEVWY, 0 omolog evioy Vel T Mn anogdoewy totodétnong, oe avtideon ue v Phase-based,
omou Ta evepYd avtixeipeva dev houfBdvovton umodn. Auth 1 Suvoxh TeocEyyion avTitideTon oTIg ToEa-
dootaxég otatnég pedodouc tonodétnong, ol omoleg cuyvd 0dnyoly ot LTOBEATIOTY evepyeLoxy anddooT
AOYw AydTERO EUPUAOY aVOtEcEWY UVAUTC.

* KvYpio Yvunépaoua 3: To SPID peidver tn onatdAn evépyeag Adyw Ttns antoTeAeouaTikig
tonotétnong twy spikes ka1 non-spikes o€ DRAM ka1 NVM, avtiotoiya.

NVM Accesses & Lifetime Analysis: H anoteAeopotindtnta piag moltixhic 1onodétnong 0edouévey
npénel vo oftohoyelton ye Bdon v wavdtnTd e vor oéfeton Ty meptoplouévn avtoyh tne NVM oe
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eyypagéc. O eyypagéc mou nporypatonotolvton ot NVM Aettoupyolv wg deixtec ¢pdopdc e NVM [21].
Yxoméde pag ebvan 1 enéxtaon e dudpxetog Lwnic e NVM, xan yU' autd a€lohoyolUe TLC avary VOCELS Xol
g eyypaéc oty Optane, divovtag Wiitepn mpocoy otn uelwon twv eyypapny. H Ewdva 1.4.2
amewovilel Tov cuVoAxS apldud TwY EYYEAPOY (T8ve) xou TwY ovayvooewy (xdtw), aviiotorya, yio
tic tohtixée Optane-all (baseline), Phase-based xou SPID ota e€etalbueva benchmarks. To anotehéo-
portd pog detyvouv éti to SPID emituyydvel 73.03% xou 33.02% Aiydtepes eyypagéc xatd péco bpo oe
oUyxplon pe T Optane-all xoau Phase-based, avtictouya. Opolng, ot 6,TL agopd Tig avoryvaoels, to SPID
emtuyydver 70.81% xan 30.3% hiyodtepec avoyvaoels xatd uéoo bpo oe oUyxplon e Tic Optane-all xou
Phase-based, avtictoiya. H emdextin) tomodétnon un eviatindv eyypapdv oe NVM xai 1 amodotixy
tonodétnon nov emtuyydveton oto cvotnua DRAM/NVM odnyolv otn pelwon e cuyvétnac twv
eyyeagpwy ot NVM. Q¢ anotéheoya, to SPID 6yt udvo nopéyel BEATIOUEVT anddoon o OyEoT) Ue ONeC
T dAAeg moMTIXEC ToU EEETATTXAY, OAAG HELDVEL eiong T plopd, BeEATOVOVTIG TN GUVOAXT| BldpXELd
Lohe e NVM mo anoteheopotind and dhheg AUGELS.

* K¥pio Yvunépaopua 4: To SPID enekteiver tn didpkeia {wns tng NVM peadvovtas onuav-
ukd g eyypapés, ebooppondvtas tny mpéoPacn petaéd DRAM xar NVM, BeAtidvovtas érot
Tn ourolikn) avtoxn kai owdpkeia {wns.

Avdivon ITIohtixric TomnoOétmong: Téhog, mpoxewévou vo amoxtricouye o Poditepn
XATOVONON) TG OLUUTEPLPOEAC Tou SPID, e€etdloupe TNV XATAVoUY] BeBOUEVKY OTO ETEPOYEVEC GUOTNUA
uvAune DRAM/NVM. Ta pie plots nou napousidlovia oto Lyhua 1.4.3 ancxovilouy 10 1060616 Twv
bytes mou éyouv xataveundel ce DRAM xow NVM xotd v extéheon xdde benchmark pe ypron tou
SPID. Autéc ol xatavouéc unopolv va xotnyoptonotniody oe Teelc Sloxpltés xatnyoples:

o Ioopponmnuévn Katavoun: T benchmarks pe évtovn yeron uviung, émwc ta Kripke,
Lulesh, Srad, Canneal, Streamcluster xoan CFD, ta onola napoucidlouv enione nohbmioxa yotifa
XUTAVOUTC, amanToOVToL Xploes anopdoel Tonotétnong dedouévwy. To SPID emtuyYdveL plo Loop-
pomnuévn xotavour| bytes petafd DRAM xoaw NVM vyio autd to benchmarks, eaogaiifovtag dtu
Ta write-intensive avtuxeiyeva tonodetodvtoan ot DRAM, evé to non write-intensive avtixeipeva
xatovégovton oty NVM yaunirc xatovdiwmong evépyelag.

o Katavour YTrep tng NVM: [No benchmarks pe younis yeron uviung mou Boasilovton xuplng
oty alonoinon tou CPU, 6nwe ta kmeans, pathfinder xou lavaMD, to SPID xotovéuel xuplwg
dedoyuéva ot NVM. Auth| ) tpocéyyion Bedtiotonolel Ty anddoot eved eAayLoTOTOLE! TNV XATOVAA-
WOT| EVEPYELAS, OELOTOUIVTAS TO YUPAUXTNELOTIXG YAUNATS Xxatavdimwone tne NVM.

e Katavour YTreép tne DRAM: Téhog, v opioyéva benchmarks, énwe to Lud xouw Backprop,
70 SPID xotavépel 6ha ta bytes ot DRAM. Aut n ouunepupopd ogethetar oe dvo napdyovtes: (i)
to benchmarks autd spgpavilouv @doeig €vtovng yeHong KVARNG XoTd TNV EXTEAEDT, 0ONYOVTAUC OE
bandwidth spikes, xou (ii) yopaxtnpilovion and éve apyixd spike evepydv aviixeévov—ouvidug
oTNV oY1 TOU TEOYEAUUATOC—UETA To omolo dev eupavilovior mepoutépw Seoueloell UVAUNG.
Yuvende, To SPID tonoVetel to apyxd spike oty DRAM, ye amotéheopo 1o oUvoho twv dedouévmy
vo mopapéver ot DRAM.

To Yynuo 1.4.4 nopéyel npdodeteg mhnpogoplec yio Ti¢ mpooavapepleloeg xaTavoués.  MUYXEXPWEVA,
amexovilel tor W wNdevixd xotoveunuéva bytes (xéxxvo) xou to bandwidth tne DRAM (xitpivo)
xatd T Bidpxetla extéleong xde benchmark. ‘Onwe napatneeiton, benchmarks énwe to Lulesh, Kripke,
Streamcluster xan Canneal mov napouctdlouvy TONOTAOXO LOTIB XATOVOUTC, ETITUYYAVOUV [La LOOPEOTY-
pévn xotavour| uetafd DRAM xou NVM. Avtideta, benchmarks ye younhn yeron uviung, 6mwg to
Kmeans xou LavaMD, dwyepllovtan anoxielotind uéow tng Optane. Téhog, benchmarks pe évtovn
xefion uvnung, énwe to Backprop xou Lud, nou decuebouv 6An T uviun mou ypeldlovial oTny ey TN
extéheong, dayepilovta €€ ohoxAfipou and t DRAM.

To diudypoppa violin nou napoucidletoan oto Lyfua 1.4.5 anewxovilel To péoo mocootd twv bytes mou
gyxouv xotavepniel oty DRAM xa oty NVM yio 6ha ta a€tohoynuéva benchmarks. H avdluoy| poc
anoxohOTTEL 6Tt To 52.04% Twv dedopévwv éxel xataveundel oty DRAM xou to 47.96% oty NVM, pe
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TOL TOCOGTA XATAVOURS Vol Tapouctdlouy eNdytotn petofAntotnta xan va evduypoppilovton oTevd pe Tig
Tiég TNg Btduecov. Auth 1 xotavour) avadexviel Ty ixavotnTa Tou SPID va e€looppomnel anoteAecUoTING
NV TomoYETnon dedouévwy Yetadd Twv 800 TOMWY UvAung, cUPBIANOVTOC GTNV LCOPEOTNUEVY amOdOCT
(Byfua 1.4.1 xopuer), oty xatavdloor evépyetog (Tyhua 1.4.1 Bdorn) xou otic tpooPdoeic uviung
(Eyfhua 1.4.2), énoe oulnmidnxe vopitepa oe auTh v evoTnTO.

* KvYpio Yvunépaoua 5: H wooppornnuévn torodérnon tov SPID anotelel tov faoikd mapd-
YorTa TOU €MTPENEL TN TUV-PEATIOTOTOMOT) TNS aAnédoons, Tns evépyeias kal twy mpoofdocwy

€y Ypagns.

1.5 Xvunepdopata xow MeAhovTixy doLAsLd

1.5.1 Xvunepdopato

Ye auth v epyaotio, noapovotdlovue To SPID, wpior xouvotoua npocéyylon yio profiling yauniod xéo-
Toug xat TonodéTnom dedopévwy, oyedlopévn Yl etepoyev ous thato wviune DRAM/NVM. To SPID
oZloTOlEl OMOTEAECUOTIXG TN CUCYETION UETOED EVIOVWY (QAOEWY OEOUEUCNC UVAUNG XL TEQLOYWV UE
udPnAéd edpog Lidvne eyypapnv Yo T BedtioTonoinon tne tonovétnong dedouévwy. H pedodoroyia pag
nopovotdlel Behtidoel oty anédoon xatd uéoo bpo 30.82% oe oyéon Ue TEONYOUUEVES TEYVIXES, EVED
HELDOVEL TNV XOTAVEAWOT EVERYELAS XaTd péco 6po 31.61% xou drayelplleton anoteheopatixd TNy NEPLOP-
lopévn avtoyh twv NVM pewdvovtag tov aprdud eyypapoyv. Emniéov, nopousidlouvye tnv SPMalloc,
Mol ETEXTAOUIT] %ot ovoly ToU xwdxa BiBhiotxy, oyediaopévn vor avoyontilel Tic duvaxés deoUeloELS
DEBOUEVOV XATA TOV YEOVO EXTEAEOTIC, ETUTEENOVTOC TNV axel3Y) TapaxololbineT twy potiBwv déousuong
pvAUNG oo TV exTtéAeot) TNg emduunTAC eQapRoYTC, ELOAYOVTAS EAGYLIOTO EUNTAEOV XOGTOC.

1.5.2 MeAlovTixr} BovAeld

Yrdpyouv apxetéc UTOoYOUEVES XUTEVDUVOELS Yia HEANOVTIXY epyaoia, oL omole Yo umopoloay Vo xdvouv
autd To ThaioLo To aflOmGTO, EUEALXTO Xat anodoTixd. Autéc ol Beitidaoelg Yo unopodoay vo oToyebouv
1600 OTIC BUVATHTNTEC Xai TG Aettovpylec avdhuong tng SPMalloc, 600 xou otov alybprduo xou
pevdodoroylo tonodétnone tou SPID. Me tnyv avTetdnion autdy twv neptoywy, to SPID uropel va
eZehylel o éva mo avdextixd xan evpuéc mAaiolo v TN Sioyelplon etepoyevois uvAung.  Mepixég
mdavég Behtiotonooelg tepthauBavouy:

o Aentotepn Avdiuom oto Xtadio Profiling: H Beitiwon tou otadiou profiling péow
EVOWUATOONG TLO TEONYUEVLY epyolelwv Topaxorolinone, 6twe éva npocuppocuévo epyaieilo In-
tel Pin, to omolo Va Aettovpyel o cuvduaousd pe Tig uTdpyouces dladixaociec Tapaxoiodinong Tou
SPMalloc. Ta apyixd dedouéva profiling mou moapéyovtan and tnv SPMalloc Yo prnopolooav vo xo-
Yodnynoouv autd Ta epyolelo Vo ECTIICOUV GE CUYXEXPWEVES YPOVIXES (QPAOELS, UELDVOVTOS TOV
p6pTo Xt Behtidvovtae Ty anodotixdtnta.  Auth 1 mpocéyylon Ya unopoloe va emitpéel oTo
SPID vo npocopudscel Ty avdAUGT) TOU GTY) BUVHULXT) CUUTERLPORE TWY EQPURUOYWY TLO OTOTEAEC-
HoTLX G

¢ ITpoocapupoocTixdtnTtaa o OopuBwdn IlegiBdArovta: Ta nepdyoatd pog mpay-
patonodnxay oe eheyyduevo nepBdihov, dnwe culntiinxe oty Evétnta 1.4.1 6mou o $6pufoc
Aty eNdyotoc. o vor Bedtiwdel n oflomotion tou Thawciov, pehhovtiny epyacta Yo uropolvoe va
emxevtpwiel ot Behtinon twv otadiwy profiling xou tonodétnong khote va Aettovpyoly anoteleo-
poTixd oxdpor xou untd LPMAG poptio cucThaTog o YopuBndelc cuvinxeg. Autd Va adoave TNy
npooapuoctxotnTa Tou SPID oe mpoypotind oevdpta, xodiotédhvtoc To xatdhhnio yia Sidpopa xoL
anpofBiento nepiBdhhova.

e Evgun Epyalieio Tornodetnong: H evowudtworn mponypévwy gpyaielwv 6to otddlo tono-
YE€tnone yio mo axplBelc xan Tpocupuocuéves anogdoels. T'al Topddelyua, 1 EVOWUATWOT) HOVTEAWY
pnyeviec uddnone xou evpeTixddy uedddwy Yo unopovoe vo emtpéder oto SPID v mpofBiédel
pehhovtixd yotiBo déoucuong pviAune ue Bdon to dedopéva profiling tne SPMalloc.  Autéc ol

11



Chapter 1. Extetouévn Einvuc Ilegiindn

duvatotnTeg mEdBiedne Vo propodoay vo odnyroouy ce eEunviTepes oTEATHYXES TOTOVETNONG
TIOU UEYLOTOTOLOVY TNV AmOBOCT) X0l EAAYLOTOTOLO0Y To OTUEl CUPPOENONG OTN UVHAUN.

o Enéxtaocn Acsttovpyixétnioag tng SPMalloc: H enéxtoon tov  Suvatotitwv
napaxohovinone g SPMalloc dote va xatoypdget emmiéov petproels, 6mwe 1 didpxeta Lwnhg
TOV AVTIXEWEVOY DECUELOTC, Yo unopoloe va tpoc@épet Paditepeg Yvwoelc yio Ta wotiBa yeriong
puviung. Iloapddinia, n mpocVxn neplocdTeEENC AOYIXAC OTIC AEiToVpY(eC BECUEUOTC XaL AmOBED-
pevong Yo umopoloe Vo SleuxolOVEL XUAVTEQES OMOPACEC TOMOVETNONG OF TMEAYUATIXO YPOVO.
[ mopdderyuo, 1 eVOWUATWoY aAyopliuwy Yla TNV Topoxohovdnoy xol XoTNnyoplonoincy Twy
cLYVOTATWY TEdoPacne oty uviun 1 tov yeyeddyv g, Yo urnopoloe va emteédel mo duvauixég
TOMTXES DEGUEVOTC.

o Evowpdtwon pe Awayeipior oe Eninedo Tvothnatog: M dAin mdavh xatedduvon
elvan 1) €€epelivnon NG EVOLUITWONG UE DlayelploTég Uviung o€ eninedo AettoupY ol GUGTAUATOS
7 ouoThuaTa ewovixic UviAung Y T Bedtiwon twv anogdoewy torodétnong. Epyaldpevo oe
eninedo ohdxhneov Tou cuothuatog, To SPID do unopoloe va hayPdvel amogdoeic Tonodétnong
mou hoPdvouv unddm 6hn T YeRoN TG UVAUNG OTO GUOTAHO XoL O}l HOVO TNV EQAUPUOYYH UTO
Soxun.

o YTrootheln v Avaduodueveg Teyvoroyicge MvAung: Ta pehlovuxd etepoyevy|
ocuo TApaTo uvAune Uropel va tepthopBdvouy véeg teyvohoyleg épa omd Optane xow DRAM, émwc
7o CXL (Compute Express Link) # n un el RAM. H enéxtaon tov otpatnywoy profiling xou
tonod¥étnone tou SPID vy va unootneilouvv autols Toug véoug Timoug pvhAune Yo to xahotoloe
TEPLOGOTERPO EVEMXTO Xou ETOLWO Yiat UEAAOVTIXY Yenion.
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Chapter 2

Introduction

Over recent years, the growth of emerging memory technologies integrated into modern High Per-
formance Computing (HPC) and Cloud systems has introduced a novel architectural paradigm,
known as heterogeneous memory system. To address the scalability and sustainability limitations of
traditional DRAM technologies [1], [2], Non-Volatile Memories (NVM), also referred to as Persistent
Memories (PM), have gained significant traction. Technologies such as 3D-XPoint [3], Resistive RAM
(ReRAM) [4], and Spin Transfer Torque Magnetic RAM (STT-MRAM) [5] serve as key examples of
NVMs. These technologies typically offer data persistence, reduced energy consumption, and higher
density than DRAM, resulting in increased memory capacities at lower costs [6]. However, NVMs
also present challenges, such as higher access latency, lower bandwidth, and limited write endurance.
They also exhibit asymmetrical latency and energy consumption between read and write operations [7],
leading to trade-offs in the integration of NVM technologies with traditional DRAM.

Modern commercial platforms and vendors, such as Google, Amazon, and Alibaba [8], [9], [10], com-
bine conventional DRAM DIMMs with Intel Optane DC Persistent Memory, which is, up to now,
the only commercially available NVM technology. These systems aim to expand memory capacity
sustainably and cost-effectively, offering users a diverse range of memory technologies. A variety of
application domains are supported on these platforms, including machine learning, deep learning [11],
database workloads [12], and scientific/big data applications [13]. These workloads demand high pro-
cessing throughput with minimal I/O bottlenecks, thus placing considerable stress on the main memory
subsystem.

With the rapid evolution of heterogeneous memory systems and increasingly diverse application re-
quirements, both academic and industrial communities are stressing efforts to develop efficient data
placement algorithms [14], [15], [16]. Recent advancements in placement policies support data place-
ment at multiple granularity levels, such as page-level [16], [17], [18], [19], object-level [14], [20], [21],
[22], and adaptive-level [23]. However, these approaches require extensive profiling techniques, includ-
ing instrumentation [24], [25] and detailed object-level analysis [21]. Such methods, while precise, are
often resource-intensive and incur significant runtime overhead, limiting their scalability and appli-
cability in real, large-scale memory systems. For instance, research presented in [26] indicates that
full memory profiling can impose up to 53% performance overhead, where the overhead increases
significantly as the size and complexity of the target workload grow.

To overcome these constraints, novel data placement solutions need to optimize profiling processes and
minimize run-time overhead while optimizing placement accuracy. In this context, we introduce SPID,
the first work to propose a lightweight, spike-based dynamic data placement framework specifically
designed for heterogeneous DRAM/NVM systems, eliminating the dependency of the efficiency of our
solution to detailed profiling and other resource-intensive processes. SPID reduces the dependency
on exhaustive object-level profiling, and leverages the detection of memory access spikes to identify
high-bandwidth and active memory regions, enabling runtime-adaptive data placement. This targeted
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approach allows SPID to dynamically adapt data placement while maintaining low profiling overhead,
thus providing a practical and scalable solution for real-time applications. The novel contributions
of this work are as follows:

e We introduce SPID, a lightweight, scalable spike-based data placement algorithm
for heterogeneous DRAM /NVM systems. SPID leverages advanced spike detection mechanisms,
through correlating bandwidth and active objects spikes and provides adaptive decision-making
to optimize data placement.

e We develop and integrate SPMalloc, an open-source library that intercepts dynamic mem-
ory allocation calls, integrates SPID’s functionality and enables seamless data placement across
heterogeneous memory systems.

¢ We conduct a comprehensive experimental evaluation of our framework, comparing
it against baseline algorithms and state-of-the-art data placement strategies. Results demon-
strate that SPID achieves an average reduction in execution time by 30.82% and reduces energy
consumption by 31.61%.

The remainder of this work is organized as follows: Chapter 3 reviews the related work and highlights
the key advancements achieved through this research. Chapter 4 provides the theoretical foundation
necessary for understanding the subsequent chapters. Chapter 5 introduces our proposed data place-
ment solution, with Chapters 6 and 7 focusing on the technical implementation of the solution and
the experimental evaluation, respectively. Finally, Section 8 presents the conclusion of this work.
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Chapter 3

Related Work

Over the last years, multiple works have been conducted that focus on data placement over het-
erogeneous main memory systems. We classify the related literature based on the granularity
that the placement is applied on, i.e structure/object-level and page-level data placement.

Structure/Object-level Data Placement: Authors of [14] propose kernel-level object tiering and
migration for heterogeneous memory systems. In [20], authors introduce a profiler that provides
guidance for data placement in heterogeneous memory, while in [21], authors propose dynamic data
type refinement to optimize placement. On the same level, in [22], a write-aware data structure
placement for cached and uncached NVMs is proposed. Authors of [23] propose a runtime framework
for adaptive granularity data placement for graph-based applications, while in [27] the authors perform
data placement through considering individual application phases.

Page-level Data Placement: Page-level data placement solutions are widely explored to optimize
memory usage and performance in heterogeneous memory systems. Authors of [17] propose an LSTM-
based page placement algorithm that predicts future access patterns to place pages effectively in
memory tiers. In [16], the authors introduce a reinforcement learning approach for page placement,
while in [18], the authors present an online, profile-guided data tiering mechanism designed specifi-
cally for page-level data placement in HPC environments. Last, authors of [19] propose an OS-level,
application-transparent page placement mechanism that operates without requiring modifications to
applications.

While previous research has explored data placement strategies for heterogeneous memory systems
across various granularity levels, these approaches typically suffer from two major drawbacks: i) they
rely on costly and resource-intensive profiling mechanisms, and ii) they introduce significant execution
time overhead due to extensive monitoring and runtime inference requirements. To the best of our
knowledge, this is the first work to introduce a lightweight solution for data placement in heterogeneous
DRAM/NVM systems, eliminating the dependency of the efficiency of our solution to detailed profiling
and other resource-intensive processes. Additionally, in contrast to prior research, this work introduces
the first spike-based dynamic data placement framework for heterogeneous DRAM/NVM systems.
Our approach leverages the detection of memory access spikes to identify high-bandwidth and active
memory regions, enabling runtime-adaptive data placement without relying on expensive profiling or
persistent monitoring.
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Chapter 4

Theoretical background

This chapter lays the theoretical foundation essential for understanding the remainder of this work.
It begins with an in-depth analysis of memory architecture and hierarchy, followed by an intro-
duction to the fundamentals of persistent memory and heterogeneous memory systems. The chapter
concludes by addressing the challenges associated with programming persistent memory and exploring
the various data placement strategies employed by modern programmers for heterogeneous memory
systems.

4.1 Memory Architecture: An Overview

Memory architecture is a critical aspect of computer systems, determining how data is stored, accessed,
and managed across various memory levels. It involves organizing memory in a hierarchical structure,
designed to balance performance, capacity, cost, and energy efficiency. This structure enables faster
access to frequently used data while providing larger storage for less frequently accessed information.
The memory hierarchy is essential for optimizing overall system performance, as it mitigates the
speed gap between the processor and memory. Understanding the basics of memory hierarchy, its
key characteristics, and the challenges faced by modern memory systems is fundamental to improving
computing efficiency and scalability. This section explores these areas, providing insights into how
memory systems are structured and the ongoing efforts to address their limitations.

4.1.1 Basics of Memory Hierarchy

Authors of [36] describe the fundamental concepts of the memory architecture and hierarchy. In
general, a hierarchy is an organizational structure where items are arranged in ranked levels, often
based on their importance or priority. In computing, several systems utilize a hierarchical framework.
For instance, most file systems organize files within a structured tree-like arrangement, assigning them
specific locations.

Similarly, a computer memory hierarchy categorizes memory components based on their access speeds
and response times. This structure typically consists of multiple memory levels, each offering varying
performance characteristics and speeds of access.

Memory hierarchy is essentially employed to organize memory in such a way that data access time can
be minimized, thus improving system performance. In hierarchical memory systems, processor (CPU)
registers are at the top of a pyramid-like structure (level 0) while optical disks and tape backup devices
are at the bottom (level 4). This system was developed based on a type of program behavior known
as "locality of references." This behavior refers to the tendency of programs to access instructions
that have addresses or memory locations near one another in order to speed up access and improve
performance.
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Figure 4.1.1: Memory Pyramid, adapted from [37] .

Fig. 4.1.1 illustrates the hierarchical pyramid of memory, which can be categorized into five levels,
based on speed and usage. Those levels are the following :

e Level 0: CPU registers

e Level 1: Cache memory

e Level 2: Primary memory or main memory

e Level 3: Secondary memory or magnetic disks or solid-state storage
e Level 4: Tertiary memory or optical disks or magnetic tapes

As a general rule, the cost and capacity of memory levels are inversely related to speed. CPU registers
are the fastest but smallest and most expensive, while tertiary memory devices are the slowest, largest,
and least costly. The hierarchy levels can be further analyzed as such :

Level 0: CPU Registers

CPU registers are small, high-speed memory locations inside the processor used to store data needed for
operations. They have the shortest access time and are the most expensive type of memory, typically
sized in kilobytes. Implemented using static RAM (SRAM) and digital flip-flops, registers include
components like the program counter, status word register, and accumulator to handle data storage
and calculations efficiently.

Level 1: Cache Memory

Cache memory stores frequently accessed program code or data for rapid retrieval by the CPU. When
the processor needs information, it first checks the cache; if the data is not found, it accesses the main
memory. Cache memory is typically smaller than CPU registers, measured in megabytes (MB), and
is implemented using static RAM (SRAM). It is often integrated into the processor but can also exist
as a separate integrated circuit (IC).

Level 2: Primary/Main Memory
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Primary memory, often called random access memory (RAM), serves as the main storage unit for
active programs and data. It communicates directly with the CPU and peripheral devices through the
I/0 processor. RAM is typically implemented using dynamic RAM (DRAM), though main memory
may also include read-only memory (ROM).

Inactive programs and data are transferred to auxiliary memory to free up space for currently active
tasks. Main memory is less expensive and larger than registers or cache, with capacities typically
measured in gigabytes.

Level 3: Secondary Storage

Secondary storage includes devices like magnetic disks, which store programs and data on one or both
sides. Multiple disks can be stacked on a spindle to increase storage capacity. In modern systems,
magnetic disks are often replaced by faster, non-mechanical solid-state drives (SSDs).

Serving as backup storage, secondary storage is much larger and cheaper than cache or main memory,
with capacities often reaching up to 20 terabytes (TB).

Level 4: Tertiary Storage

Tertiary storage, including magnetic tapes and optical disks, is primarily used for long-term data
archiving and backup. These auxiliary storage devices store duplicate copies of data or programs not
needed for immediate use.

Tertiary storage is the slowest and least expensive memory type, with capacities typically ranging from
1 TB to 20 TB.

4.1.2 Memory Hierarchy Characteristics
The key characteristics of a memory hierarchy include the following:

e Capacity: Capacity refers to the amount of information a memory device can store. As we
progress down the memory hierarchy pyramid, the storage capacity increases significantly.

e Access Time: Access time represents the duration between initiating a read/write request and
the moment the data becomes available. Moving from the top to the bottom of the hierarchy,
access time increases. CPU registers, located at the top, have the shortest access time and are
the fastest. Conversely, storage devices like magnetic tapes at the bottom of the hierarchy have
the longest access times.

e Performance: The absence of a memory hierarchy creates a speed gap between CPU registers
and main memory, leading to increased access times and reduced system performance. By op-
timizing the memory hierarchy, fewer levels are needed to access and manipulate data, thereby
improving overall performance.

e Cost per Bit: Cost per bit is determined by dividing the total memory cost by the number
of accessed bits. As we move downward in the memory hierarchy, the cost per bit decreases.
This trend arises because internal memory, found higher in the hierarchy, is more expensive than
external memory.

e Durability: Durability refers to the ability of a memory device to withstand wear and maintain
functionality over time. For example, DRAM is highly durable, especially for frequent read and
write operations. In contrast, technologies like Intel Optane, while offering high performance,
are less durable, particularly under heavy write workloads.

These characteristics are critical considerations when designing and implementing modern memory
systems. They directly influence system performance, cost-efficiency, and reliability, ensuring that
memory configurations meet the demands of increasingly complex and data-intensive applications.
By balancing these factors, designers can optimize the overall efficiency and scalability of computing
systems.
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4.1.3 Challenges in Modern Main Memory Systems

In recent years, DRAM has faced several significant challenges that have hindered overall computer
performance. As a key component in computing systems, RAM became a major bottleneck to the
growth of performance. However, these challenges have been actively addressed by both research and
development departments in technology companies and by computer scientists in research institutes.
Their efforts have led to innovative solutions and improvements. Various sources have been compared
to ensure the inclusion of the most recent advancements and discussions regarding the challenges faced
by main memory systems. Authors of [38], point out some of the most prevalent challenges of modern
main memory systems:

Memory Capacity : The doubling of core counts occurs every two years, whereas DRAM capacity
doubles every three years, leading to a 30% decrease in memory capacity per core every two years.
The demand for memory capacity continues to grow rapidly, driven by data-intensive applications, and
this trend is expected to persist. Certain areas of computer science, such as advanced neural network
models or driver assistance systems, are particularly memory-intensive. These fields often struggle
with limited memory bandwidth, which remains a significant bottleneck in the evolution of hardware
performance.

Energy Consumption For a long time, memory systems were designed primarily for performance,
with energy consumption being a secondary concern. For example, about 50% of the energy in IBM
servers was consumed by the off-chip memory hierarchy. In response, solutions like the CapMaestro
project [39] were introduced to improve power management in data centers, allowing for a 50% increase
in server capacity under the same power infrastructure.

Currently, DRAM accounts for around 50% of total system power. To address this, low-power DRAM
variants, such as DDR3L, LPDDR3, and LPDDR4, have been developed, with LPDDR4 consuming
40% less power than DDR4. Persistent Memory (PMEM), which offers a unique balance of performance
and power efficiency compared to traditional DRAM, is also being explored as a potential solution to
reduce energy consumption while maintaining high data throughput.

Given the significant power consumption of DRAM, it is crucial to develop new low-power solutions.
However, accurate measurement of DRAM’s power usage remains challenging due to limited control
over DRAM commands in most systems and the lack of specialized monitoring tools for DRAM power
consumption.

Scaling The scaling of DRAM faces significant challenges due to its reliance on capacitors to store
charge. As DRAM cells shrink, their reliability diminishes, leading to reduced sensing capabilities
and increased leakage. Access transistors also need to remain large enough to ensure low leakage and
high retention time. While reducing DRAM size can lower costs, it also compromises performance, as
smaller capacitors become more prone to noise and failure.

DRAM scaling is reaching its physical limits. While processor transistors have already reached the 3
nm and 2 nm nodes, DRAM is expected to struggle with further miniaturization beyond 10 nm. This
limitation impacts the overall performance growth of computers.

To address this, researchers are exploring alternatives like STT-MRAM, ReRAM, and PCM, which
offer higher densities, lower power consumption, and increasing scalability. These technologies are
advancing rapidly, with STT-MRAM and ReRAM already in production with 12 nm processes. PCM
is also actively used by various companies, and its market is projected to grow significantly in the
coming years.
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4.2 Persistent Memory (PMEM) and the rise of Heterogeneous
Memory Systems

4.2.1 Persistent Memory
What Is Persistent Memory?

As mentioned in [40], persistent memory (PMEM) is a type of high-performance solid-state memory
that retains data even when the system loses power. Unlike volatile memory, like RAM, which clears
its data when powered off, persistent memory keeps the information stored. This capability allows for
faster data access and improved system performance when the system is rebooted.

How Does Persistent Memory Work?

Persistent memory (PMEM) is based on non-volatile memory (NVM) components that store data
even without power. This data is directly accessible by the central processing unit (CPU), allowing it
to bypass the delays of traditional storage devices like hard disk drives (HDDs) or solid-state drives
(SSDs). PMEM resides on the memory bus, enabling it to function like regular system memory while
retaining data like an SSD.

PMEM fits seamlessly into the memory hierarchy, positioned between volatile memory and storage
devices as depicted in Fig. 4.1.1. Technologies like Optane act similarly to RAM but also retain data
like an SSD, bridging the gap between fast memory and durable storage.

Figure 4.2.1 illustrates a typical CPU microarchitecture with three cache levels (L1, L2, L3) and a
memory controller connected to three memory channels, each with DRAM and persistent memory.

In systems where CPU caches are not power-fail protected, any unflushed data in the CPU caches will
be lost during a power failure or crash. However, in systems with power-fail protected caches, modified
data is flushed to persistent memory to prevent loss during a crash.

Data moves through the cache hierarchy from L3 (larger, slower) to L2, and then to L1 (fastest, holding
data for immediate CPU operations). If the CPU cannot find data in the caches, it accesses it from
memory. When data is written, it is first placed in the L1 cache and may be evicted to L2, L3, and
eventually written to the memory device via the memory controller.

In systems without persistent memory, data is written to non-volatile storage like SSDs or HDDs, and
application software ensures data integrity through flushing operations like msync() or fsync(). In
persistent memory systems, the application is responsible for ensuring data integrity directly.

Benefits of Persistent Memory
Integrating persistent memory (PMEM) into enterprise systems offers several key advantages:

¢ Enhanced performance: PMEM provides faster access to data, improving overall system
performance.

¢ Reduced latency: By bypassing traditional storage devices, PMEM reduces latency.
e Versatility: PMEM offers different operating modes, enabling access to diverse capabilities.

e Improved scalability: PMEM enables more memory capacity without significant cost in-
creases.

e Non-volatility: It ensures data remains accessible even during power losses, crashes, or shut-
downs, providing data persistence and reliability.

¢ Better total cost of ownership (TCO): Larger memory sizes can be achieved without dra-
matically increasing costs, offering more affordable solutions compared to traditional RAM.

e Better data security: PMEM can include encryption add-ons for improved data protection
in-memory.
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Figure 4.2.1: CPU cache and memory hierarchy. Adapted from [37].

Differences of Persistent Mlemory when compared against Volatile and Traditional Storage

DRAM vs. Persistent Memory

Dynamic Random Access Memory (DRAM) is fast but volatile, meaning it loses data when power is
lost. While DRAM offers features like buffering, registers, and error correction, it cannot retain data
during power failures or crashes. As DRAM constitutes a significant portion of server costs, persistent
memory (PMEM) offers a combination of speed, resilience, and non-volatility, making it a strong choice
for applications requiring quick data access and retention. Additionally, PMEM tends to be cheaper
per gigabyte than DRAM.

SSDs and HDDs vs. Persistent Memory

Traditional storage devices like SSDs and HDDs are durable but have slower data access speeds com-
pared to the main memory. Persistent memory addresses this limitation by offering fast access times
while maintaining data persistence. Unlike flash storage, PMEM is directly connected to the memory
bus, providing faster access and greater efficiency in enterprise storage systems.

4.2.2 Heterogeneous Memory Systems

Combined with the previous discussion on DRAM and persistent memory technologies like Optane,
which have varying latencies and performance characteristics, this highlights the need for heterogeneous
memory systems. As highlighted in [41], memory vendors offer different types of memory optimized
for specific system requirements. For example, RLDRAM is designed for low access latency but
consumes more power, while LPDDR offers lower power consumption but has higher latency and lower
bandwidth. HBM, on the other hand, provides higher bandwidth but is designed for bandwidth-
sensitive workloads.

However, there is no single memory type that excels in all areas—latency, bandwidth, and power
consumption. Homogeneous memory systems, where a single type of memory is used, often fail to meet
the demands of diverse workloads. This inefficiency is due to the varying memory access behaviors of
different applications, as shown by benchmarks such as SPEC CPU2006. For instance, computation-
heavy workloads like gcc may work well with LPDDR, for reduced power consumption, while memory-
intensive tasks like mcf or milc benefit from memory modules with low latency or high bandwidth.
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Thus, heterogeneous memory systems, which combine multiple types of memory, offer the flexibility
to optimize performance and energy efficiency by assigning applications to the most suitable memory
module. This approach is essential in a landscape where workloads are increasingly diverse in their
memory access patterns.

4.3 Intel Optane DC Memory

4.3.1 Intel Optane DC Persistent Memory Module

Izraelevitz et al. [42] provide a thorough explanation of the basic performance and functionality of
the Intel Optane DC Persistent Memory Module. The Intel Optane DC Persistent Memory Module
(Optane DC PMM) is the first commercially available NVDIMM that introduces a new memory tier
between volatile DRAM and block-based storage. Unlike traditional storage devices, such as SSDs,
which connect through interfaces like PCle, the Optane DC PMM leverages a byte-addressable memory
interface, delivering superior performance. While similar to DRAM in many respects, it offers higher
density and data persistence. Upon its introduction, the Optane DC PMM is offered in three capacities:
128 GB, 256 GB, and 512 GB, providing an innovative solution for workloads that require both speed
and data retention.

The Intel Optane DC Persistent Memory Module (Optane DC PMM) operates similarly to traditional
DRAM DIMMSs by connecting directly to the memory bus and interfacing with the integrated memory
controller (iMC) on the CPU. It is designed to work with Intel’s second-generation Xeon Scalable
processors (Cascade Lake), where each CPU supports two iMCs, and each iMC can manage three
memory channels. This allows a CPU socket to support up to six Optane DC PMMs, reaching a
maximum of 6 TB of memory.

To ensure data persistence, Optane DC PMM integrates with Intel’s asynchronous DRAM refresh
(ADR) feature, which guarantees that CPU stores reaching the ADR domain will survive a power failure
and be flushed to the NVDIMM within a hold-up time of less than 100 ps. The iMC communicates
with the Optane DC PMM via a DDR-T interface, which shares the mechanical and electrical interface
with DDR4 but uses a distinct protocol for variable latencies. The Optane DC PMM uses a 72-bit
data bus, similar to DDR4, and transfers data in 64-byte cache-line granularity.

Upon receiving memory access requests, the on-DIMM controller handles address translation and access
to the Optane DC media. Like SSDs, the controller manages wear leveling and bad-block management
through an address indirection table (AIT), which resides in the Optane DC media, while a copy of
the AIT is stored in on-DIMM DRAM. The memory access granularity is 256 bytes, leading to write
amplification as smaller CPU stores are handled as read-modify-write operations.

In terms of power efficiency, Optane DC PMMs consume less power than DRAM when idle since they
do not require constant refreshing. The modules feature two configurable power budgets: an average
power budget for sustained workloads and a peak power budget for burst traffic, both of which can be
customized by the user.

Intel Optane technology is built on 3D-XPoint, a groundbreaking non-volatile memory technology
co-developed by Intel and Micron. Unlike NAND flash, 3D XPoint features a unique cross-point
architecture that allows for faster, low-latency data access and higher endurance. It combines the
speed of DRAM with the persistence of storage, making it ideal for applications requiring rapid, non-
volatile memory. With its 3D design and resistive memory mechanism, 3D XPoint offers improved
density and durability, positioning Optane as a revolutionary solution for both memory and storage
needs.

4.3.2 Operation Modes

Memory Mode, App Direct Mode, and a sliding scale of allocations in between are among the operating
modes in which the PMMs can be further adjusted after being placed on a server. An overview of
those modes is illustrated at Fig. 4.3.1 and can be further analyzed as such:
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Figure 4.3.1: Overview of Intel Optane DCPM operating modes as adapted from [43].

Memory Mode for Optane DC Persistent Memory PMMs

The Optane PMMs function similarly to DRAM in memory mode. The persistent memory keeps the
data "volatile," but the volatile key is cleared each power cycle, thus no special software or application
modifications are required. The host memory controller controls the persistent memory, which is
utilized in memory mode as an extension of DRAM. Persistent memory to DRAM ratios are not fixed;
instead, they can vary depending on the requirements of the application. Naturally, everything that
hits the DRAM cache (near memory) will have a latency profile of less than 100 nanoseconds. The
persistent memory, also known as distant memory, will receive any cache misses and provide latency
in the sub-microsecond range.

App Direct Mode for Optane DC Persistent Memory

App Direct mode is another feature of Optane DC persistent memory. Certain persistent memory-
aware programs are required for this mode. This option exploits the persistent behavior of this memory
type while maintaining memory-like byte addressability. Persistent memory maintains cache coherence
and provides DMA and RDMA functionality in App Direct mode. Additionally, persistent memory can
be set up as storage via App Direct. Here, persistent memory uses conventional read /write instructions
and functions in blocks, just like SSDs. This is compatible with current file systems, provides block-
level atomicity, and allows for block size customization (4K, 512B). Users only require an NVDIMM
driver in order to use the storage over app direct. Compared to conventional enterprise class SSDs,
this mode offers faster performance, lower latency, and greater endurance, as well as capacity scaling.

4.3.3 Intel Optane Characteristics and Basic Performance

Latency, Write Endurance and Power Consumption on Optane and various memory Tech-
nologies

Takahiro et al. [44] report that DRAM exhibits average read and write latencies of approximately 95 ns,
with minimal differences between the two (1-2 ns). In contrast, Intel Optane DC Persistent Memory
Modules (DCPMM) demonstrate significantly higher latencies, with a read latency of up to 374.1 ns
and a write latency of 391.2 ns, marking a 400.1% and 407.1% increase over DRAM, respectively.
Additionally, memory accesses involving write-backs in DCPMM show a latency of 458.4 ns, which is
16.1% higher than read-only accesses. These results underscore the latency disparity between DRAM
and DCPMM, highlighting the latter’s slower performance in both read and write operations.

Liu et al. [45] report on the latency, write endurance, and power consumption characteristics of various
memory technologies, including Flash SSD, DRAM, PCM, STT-RAM, ReRAM, and Intel Optane DC
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Memory Read Latency Write Latency Write Endurance Standby
Technology (ns) (ns) (times) Power
Flash SSD 25,000 200,000 10” Zero
DRAM 20 80 >1018 Fresh power
PCM 50-80 150-1000 10% Zero
STT-RAM 6 13 107 Zero
ReRAM 10 50 1011 Zero
Intel Optane 169 (Sequential),
DCPMM 305 (Raudom)) %0 10° rero

Figure 4.3.2: Latency, Write endurance and Power Consumption of memories including Flash SSD,
DRAM, PCM, STT-RAM, ReRAM, and Intel Optane DC Persistent Memory [45]

Persistent Memory Modules (DCPMM). They note that while non-volatile memory modules (NVMM)
offer benefits such as higher density and lower energy usage, they face challenges like 6-30x higher
write latencies and 5-10x greater write power consumption compared to DRAM. Additionally, NVMM
has significantly lower write endurance (10% cycles) compared to DRAM’s 1016 cycles, making NVMM
unsuitable as a direct DRAM replacement.

Instead, Liu et al. suggest hybrid memory architectures that combine DRAM and NVMM to leverage
the strengths of both technologies. However, the integration of NVMM introduces challenges in per-
formance optimization, energy efficiency, cost, wear leveling, and data persistence, requiring advances
in memory hierarchy design, management, and allocation schemes.

The study also highlights that the behavior of Intel Optane DCPMM differs from prior expectations
based on simulations. Optane DCPMM exhibits 2-3x higher read latency than DRAM but lower write
latency. These findings emphasize the need to revisit and optimize existing persistent memory designs
for real-world NVMM devices. Fig. 4.3.2 provides their results on the latencies, write endurance and
power consumption of the aforementioned memory types.

Bandwidth

Izraelevitz et al. [42] investigate the maximum read and write bandwidth of memory devices using
the MLC tool [46] to generate sequential read and write operations across varying thread counts. By
gradually increasing the number of threads, they identify the saturation point for memory bandwidth,
using up to 23 threads to minimize CPU contention.

Their findings reveal that for read operations, PM-Optane scales with increasing thread count but at a
slower rate compared to PM-LDRAM. For non-cached writes, PM-Optane reaches its peak bandwidth
with just four threads, after which scalability halts. In contrast, PM-LDRAM continues to scale more
effectively.

The experiments show that six interleaved Optane DC PMMs achieve a maximum read bandwidth of
39.4 GB/sec and a maximum write bandwidth of 13.9 GB/sec. Reads scale effectively with thread
count, reaching peak throughput at 17 threads, while writes saturate at just four threads. These results
highlight the asymmetric scalability of Optane DC memory.

The results of their experiments are diplayed in Fig. 4.3.3. The graph illustrates memory performance
as the number of threads increases for read operations (left) and write operations (right). Optane DC
demonstrates good scalability for read operations as thread count increases, while write bandwidth
reaches saturation with just four threads. Remote DRAM exhibits a distinct access pattern, peaking
at approximately 35 GB/sec due to bus bandwidth limitations.

Benefits of Intel Optane DC Persistent Memory

As highlighted by [47], Intel Optane offers numerous benefits. For end users, Intel Optane DC persistent
memory modules provide a multitude of advantages. To begin with, the modules provide a far more
economical means of scaling a server’s DRAM footprint. The total TCO of an organization’s server
investment is improved because persistent memory can be meshing with the DRAM layer, which causes
the effective usable DRAM footprint to scale more quickly with persistent memory. Additionally, some
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Figure 4.3.3: Sequential memory bandwidth with different number of threads [42].

servers might be able to take advantage of new chances to combine workloads since they can process
more data faster. When it comes to value, a second point can be made: persistent memory modules
are more affordable than DRAM. Organizations can choose to build their servers with less DRAM
but more Optane DC persistent memory to maintain a reasonable, or larger, memory footprint for
workloads that might not require as much of the nanosecond latency that DRAM offers. This is
because Optane DC persistent memory modules are more affordable than DRAM.

As the name makes clear, the persistent memory modules are just that—persistent. This results in
quicker server reboots since the PMMs don’t need to be updated with new data. When it comes to
memory resident databases, this is quite crucial. Restoring all of the in-memory data after a server
reboot can take a very long time. Persistent memory has shown to be quite beneficial for independent
software vendors (ISVs) that specialize in high-performance databases in these situations where speedy
operation is crucial. Intel has really provided evidence to support this claim. They discovered that
a columnar store reloading the entire 1.3TB dataset into DRAM took 20 minutes on a DRAM-only
server. An entire system restart in that server before persistent memory was 32 minutes; 12 minutes for
the OS, 20 minutes for the data. It took 13.5 minutes on the same server with Optane DC persistent
memory. Although it appears remarkable at first glance, the fact that the data component lasted only
one and a half minutes—a 13X gain—makes it much more astounding.

The first hardware-encrypted memory was Intel Optane DC persistent memory modules, which also
provide on-module encryption. The modules employ a 256-bit AES-XTP encryption engine for data
at rest security. The encryption key is lost in Memory Mode and is generated every boot if the DRAM
cache loses its contents. In App Direct Mode, a key that is only accessible by the Intel Optane DC
controller and is kept in a security metadata region on the module is used to encrypt persistent media.
A passphrase is required to unlock the Intel Optane DC persistent memory, which is locked during a
power outage. For safe repurposing or disposal at the end of life, the modules also offer DIMM overwrite
and secure cryptographic erase. Finally, revision control mechanisms are available and signed firmware
versions are permitted.

4.4 Programming Persistent Memory and PMDK

4.4.1 What’s different?

The core concept of programming persistent memory is understanding that it combines characteristics
of both memory and storage. Unlike traditional memory, persistent memory retains its data after
crashes or power failures, making consistency across application runs crucial. Developers must address
challenges like recovery strategies and maintaining consistent data structures, similar to storage.

Existing storage techniques, such as write-ahead logging, can be applied to persistent memory, but they
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may not fully exploit its advantages. Persistent memory allows direct, byte-granular access through
memory mapping, eliminating the need for traditional block-based storage APIs and enabling higher
performance and simpler data paths.

4.4.2 Common Challenges when Programming Pmem
Authors of [37], [48] and [49], point out the core challenges presented when programming PMEM:
Counsistency :

Consistency ensures that a transaction transitions a data structure only between valid states. In per-
sistent memory, thread-safe updates typically rely on locking, which naturally aligns with consistency
points. Locks prevent threads from observing intermediate or invalid states, and releasing a lock signals
that the data structure is in a consistent state that other threads can safely access.

Start-Time Responsibilities :

Start-time responsibilities in persistent memory programming involve tasks like detecting platform
details, available instructions, and media failures. Unlike traditional storage, where such checks are
handled in the storage stack by the operating system, persistent memory allows direct access, removing
the kernel from the data path once the memory is mapped. Skipping these initial checks can lead to
significant issues, such as unnecessary cache flushing on hardware that doesn’t require it, reducing
performance, or ignoring media errors, which could result in the use of corrupted data and unpre-
dictable behavior. Ensuring these responsibilities are addressed is essential for production-quality
programming.

Atomicity :

Atomicity in persistent memory ensures that a set of operations either completes fully or not at all,
even during system failures. Common methods include redo logging (logging full changes for forward
recovery), undo logging (logging information to reverse partial changes), and atomic pointer updates
(safely swapping pointers to old and new data). A significant challenge arises when transactions
involve memory allocation and deallocation, such as adding nodes to data structures. If a transaction
is interrupted, memory leaks or inconsistent states can occur unless all allocations and deallocations
are managed as part of the atomic operation, adding complexity to implementation.

Crash Consistency :

Crash consistency [48], in persistent memory (PM) is a critical challenge due to its non-volatile nature.
The issue arises because the maximum atomic CPU write size is limited to 8 bytes. Writing data
larger than this can result in partial updates and inconsistencies during system crashes. Furthermore,
the order in which data is persisted in write-back caches often differs from the store instruction order,
necessitating the use of memory barriers and cache line flushes to maintain consistency. CPUs now
provide specific instructions (e.g., clflush, clflushopt, clwb, sfence, etc.) to address these issues, and
techniques like logging or copy-on-write (CoW) can ensure consistency for larger data. However, these
methods introduce significant overhead from additional writes, impacting performance. Tools like
PMDK help manage these challenges by implementing persistence instructions efficiently.

Write Amplification :

Write amplification [49], refers to the phenomenon where the amount of data written to storage exceeds
the amount of actual data being modified, which can significantly reduce the lifespan and performance
of storage devices. In the context of non-volatile memories (NVMs), reducing write amplification
is crucial for enhancing the endurance and efficiency of NVM-based systems, as frequent writes can
degrade the memory over time. Kargar et al. address write amplification by redesigning existing data
structures and systems, rather than building new ones from scratch. They focus on structures like LSM-
trees, B+-Trees, and hash-based indexing, tailoring them to reduce unnecessary writes. Techniques
such as separating keys and values in LSM-trees, using XOR linked lists, and placing mutable data in
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DRAM and immutable data in NVM are proposed. These methods aim to optimize write operations,
increase NVM lifespan, and enhance overall system performance.

4.4.3 Persistent Memory Development Kit

The unique characteristics of persistent memory make it a complex technology to work with, as high-
lighted in previous chapters. Anyone who has worked with persistent memory software can attest to
the challenges it presents. To simplify this, Intel developed the Persistent Memory Development Kit
(PMDK). This toolkit was designed to be the go-to library for persistent memory, offering solutions
to the common difficulties encountered in persistent memory programming.

The PMDXK [50], has grown into a comprehensive collection of open-source libraries and tools designed
to simplify the management and access of persistent memory devices for both application developers
and system administrators. Developed alongside the evolving operating system support for persistent
memory, these libraries fully leverage the features exposed by the OS interfaces.

Building on the SNIA NVM programming model [51], the PMDK libraries vary in complexity, with
some offering simple wrappers around OS primitives for ease of use, while others provide sophisticated
data structures and algorithms for persistent memory. This diversity means that you, as a developer,
need to choose the right level of abstraction for your specific needs.

Although created by Intel to support its hardware, the PMDK is designed to be vendor- and platform-
neutral, meaning it is not restricted to Intel processors or persistent memory devices. It can also be
used on any platform that exposes the necessary operating system interfaces, including Linux and
Windows. Intel encourages contributions from individuals, hardware vendors, and ISVs to enhance the
PMDK.

The PMDK is licensed under the BSD 3-Clause License, allowing developers to incorporate it into both
open-source and proprietary software. This flexibility means you can integrate only the components
of PMDK that meet your requirements.

As of the time of writing, the following libraries are currently part of the PMDK:

e libpmemobj: This library provides a transactional object store, supporting memory allocation,
transactions, and general persistent memory programming features. It’s ideal for developers new
to persistent memory.

e libpmem: Offering low-level persistent memory support, this library serves as the foundation
for the other libraries. It’s particularly useful for developers creating custom persistent memory
algorithms, though most developers will likely use libpmemobj, which calls libpmem internally.

e libpmem?2: A newer version of libpmem, libpmem?2 offers a more universal, platform-agnostic
interface. Like libpmem, it provides low-level persistent memory support and is useful for custom
algorithm development, but most developers will use libpmemobj for its higher-level memory
allocation and transaction support.

e libpmempool: This library supports offline pool management and diagnostics for persistent
memory.

e pmempool: A tool for managing persistent memory pool files created by the PMDK libraries.
It is useful for both system administrators and software developers for troubleshooting and
debugging.

¢ daxio: A utility for performing I/0O on Device DAX devices or zeroing out a Device DAX device.

e pmreorder: A utility for checking the consistency of a persistent memory program.
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4.4.4 Memkind API

The Memkind API [30], a component of the Persistent Memory Development Kit (PMDK), is a
versatile and easy-to-use memory allocator built on top of the widely used jemalloc. It is designed
to enhance memory management by reducing fragmentation and supporting scalable concurrency.
Memkind enables efficient utilization of diverse types of memory in modern systems, including DRAM,
NVDIMM, and High-Bandwidth Memory (HBM), by extending the standard malloc API with an
additional argument that specifies the desired memory type. One of its key features is a transparent
mode, which facilitates memory tiering across different memory types without requiring modifications
to existing applications. Additionally, Memkind provides flexibility by supporting file-backed memory
allocations on specified devices or user-defined memory regions. These capabilities make it a powerful
tool for optimizing application performance on systems with hybrid memory architectures, particularly
those leveraging persistent memory

4.5 Placement

With the advent of heterogeneous memory systems, the development of effective data placement meth-
ods has become a critical area of research. These systems combine multiple memory types, such as
high-speed DRAM and non-volatile memory (NVM), each with distinct performance, durability, and
cost characteristics. Efficient data placement is pivotal for optimizing the use of these diverse memory
tiers, directly influencing system performance, energy efficiency, and cost-effectiveness.

This section explores the challenges inherent in placing and migrating data across different mem-
ory types, the varying granularity levels at which data placement occurs, and the diverse strategies
employed by researchers and practitioners to address these challenges.

Among the many tasks faced by developers of heterogeneous memory systems, data placement stands
out as the most complex and critical. It serves as the cornerstone of system design, determining the
overall performance and operational efficiency of applications. Poor placement strategies can lead
to bottlenecks, excessive latency, and increased energy consumption, while effective approaches can
unlock the full potential of heterogeneous memory technologies.

4.5.1 Challenges of Data Placement

Modern programmers face numerous challenges when designing algorithms or methods for data place-
ment in heterogeneous memory systems. These challenges arise due to the complexity of managing
two distinct memory types, such as DRAM and persistent memory (PMem), each with unique char-
acteristics. Some of the key challenges are described below:

e Overheads:

Implementing tools or algorithms to make data placement decisions often introduces significant
overhead. This occurs because the placement algorithms must interact with the allocation pro-
cedures of the target applications, adding additional complexity to the memory system, which
is already strained by application execution. Moreover, data migration decisions—moving data
between memory tiers to optimize placement—consume even more memory bandwidth and pro-
cessing power, exacerbating the overhead. These migration operations, if not carefully managed,
can lead to performance bottlenecks and increased latency, undermining the benefits of hetero-
geneous memory systems.

e Access Pattern Variability:

Data placement algorithms must account for the dynamic nature of application memory access
patterns. Even with prior profiling information about data behavior, these algorithms need
to predict, at runtime, whether upcoming data should be placed in DRAM (for fast access)
or PMem (for larger capacity and persistence). This variability creates a significant challenge
because applications often exhibit unpredictable or irregular access patterns. To address this,
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programmers increasingly rely on advanced techniques, such as machine learning models, to
predict memory access behavior. For example, some researchers employ reinforcement learning or
neural networks to classify "hot" versus "cold" data. While these methods can improve accuracy,
they require additional expertise in machine learning, as well as computational resources, further
complicating implementation.

e Scalability with System Complexity:

As heterogeneous memory systems grow in complexity—integrating multiple memory tiers, dis-
tributed architectures, or accelerators—the challenge of scaling data placement algorithms be-
comes increasingly prominent. A placement strategy that works well for a single-node system
may fail to perform effectively in large, distributed setups. For instance, ensuring data local-
ity while minimizing migration costs becomes exponentially harder as the number of nodes or
memory types increases. Programmers must design scalable solutions that balance performance
across the system without overloading communication links or memory channels.

4.5.2 Granularity of Data Placement

One of the most critical decisions in data placement for heterogeneous memory systems is choosing the
granularity level—the detail level at which data is managed and placed. The granularity level directly
impacts performance, implementation complexity, and system overhead, requiring programmers to
balance trade-offs. Below, we explore the three commonly used granularity levels:

Page-Grained Placement:

Page-Grained Placement operates at the level of operating system pages, typically 4KB in size, offer-
ing a practical balance between precision and simplicity. This method is widely adopted because it
integrates seamlessly with existing virtual memory systems, as presented in [52], reducing the need for
extensive software changes. While it sacrifices the precision of finer-grained methods, it remains effec-
tive for many workloads by enabling reasonable performance improvements with moderate complexity.
However, its larger granularity can lead to inefficiencies, especially when managing smaller or highly
fragmented data structures.

Fine-Grained Placement:

Fine-Grained Placement provides the highest level of precision by managing data at the byte or cache-
line level (typically 64-128 bytes). This method enables optimal placement of frequently accessed
("hot") data in faster memory tiers, maximizing performance for latency-sensitive workloads. However,
this precision comes at the cost of significantly increased complexity and overhead. Fine-grained
placement requires sophisticated tools to monitor memory access patterns and detailed logging, which
can strain system resources. While highly efficient for specific applications, its implementation is
challenging and may not scale well for larger, more dynamic workloads.

Object-Level Placement:

Object-Level Placement uses application-specific data structures, such as arrays, lists, or objects, as
the basis for data placement decisions. This granularity allows for fine-tuned memory optimizations
by aligning placement strategies with the application’s inherent memory behavior. For example, the
Dynamic Data Type Refinement (DDTR) methodology, as authors of [53] present, enables the restruc-
turing and optimization of data objects to improve performance in heterogeneous memory systems.
By leveraging techniques like DDTR, object-level placement can exploit detailed knowledge of appli-
cation data layouts to enhance both performance and energy efficiency. However, this approach often
requires extensive modifications to the application’s source code and demands a deep understanding of
its data access patterns. While it offers significant optimization potential, object-level placement can
be labor-intensive and challenging to generalize, making it better suited for workloads with predictable
and well-defined memory requirements.
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4.5.3 Placement Methods

Last but not least, an essential component of the data placement process is the method used to
implement it. Different approaches to data placement offer unique advantages and trade-offs, each
managing placement decisions from a distinct perspective. Below, we explore the most commonly used
methods:

OS-Driven Placement:

Operating system (OS)-driven placement relies on the OS to dynamically manage data placement
across memory tiers. The system monitors metrics such as access frequency, latency requirements, or
bandwidth usage and makes automated decisions to move data between tiers. Examples of such policies
include Linux NUMA and AutoNUMA [54], which aim to optimize memory locality and access patterns
in multi-node environments. These approaches simplify data placement by abstracting decisions away
from developers, enabling broad compatibility across applications. However, they often lack the fine-
grained control that developers might need for specific workloads. As a result, OS-driven placement
is effective for general use cases but can fall short for applications requiring precise memory allocation
strategies.

Manual Placement:

Manual placement gives developers direct control over data placement decisions. Programmers design
tools or integrate APIs into their applications to dictate where data should reside at runtime. Using
frameworks like the Persistent Memory Development Kit (PMDK) or the memkind API, developers
can manually allocate memory to different tiers based on workload characteristics. This method
allows for fine-grained optimizations, as programmers can tailor placement decisions to the unique
requirements of their applications. However, manual placement can be labor-intensive and requires a
deep understanding of both the application’s behavior and the underlying memory system. While it
provides maximum flexibility, it is best suited for expert users or critical applications where performance
is paramount.

Hardware-Assisted Placement:

Hardware-assisted placement leverages specialized hardware, such as FPGAs or ASICs, to accelerate
and automate placement decisions. By utilizing the parallel processing capabilities of these devices,
hardware can dynamically analyze data access patterns and optimize placement in real-time. As
pointed out by researchers in [55], modern hardware has the potential to scale placement decision-
making as systems grow in complexity, offering a solution to the increasing computational demands
of heterogeneous memory management. Hardware-assisted placement is particularly useful in high-
performance scenarios where minimizing latency is critical. However, it requires significant initial
investment in hardware design and may be less flexible than software-driven approaches.

Hybrid Approaches:

Hybrid methods combine elements of OS-driven, manual, and hardware-assisted placement to balance
their strengths and weaknesses. By integrating automated OS-level management with targeted devel-
oper interventions and hardware accelerations, hybrid approaches distribute the complexity of profiling
and placement decisions. For instance, developers can use OS tools to handle general memory allo-
cations while employing manual or hardware-assisted techniques for specific performance-critical data
paths. This flexibility allows hybrid systems to achieve higher performance and adaptability, making
them a robust choice for managing diverse and complex workloads.
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Chapter 5

Proposed methodology

In this Chapter, we present SPID, a spike-based dynamic data placement solution for heterogeneous
DRAM/NVM systems. The fundamental design principles of our methodology are motivated by
the observation of high temporal correlation between memory bandwidth utilization and memory allo-
cations for multiple applications. Figure 5.0.1 shows the correlation of memory bandwidth consump-
tion (yellow) and the active allocations (green) through time for Lulesh, Streamcluster, Pathfinder and
Srad applications, respectively. The left Y-axis illustrates the number of active allocated objects, while
the right Y-axis shows the memory write bandwidth throughout the execution of the corresponding
application.

The examined applications reveal three distinct patterns of correlation between active allocations and
memory bandwidth usage. In the case of Lulesh and Pathfinder, we observe that regions of high memory
bandwidth align closely with spikes in the number of allocated objects, showing a direct correlation
between allocation spikes and bandwidth usage. In Streamcluster, high-memory bandwidth regions
exhibit a slight temporal shift relative to allocation spikes, with multiple allocation peaks leading
to corresponding bandwidth peaks after a short delay. Finally, applications such as Srad display
an extended correlation pattern, where a single allocation spike initiates a prolonged period of high
memory bandwidth.

* Key Outcome 1: Regions of intense dynamic memory allocation correlate temporally with
spikes in memory bandwidth usage.

This insight enables the key design choices for SPID, which is the first work that relies on advanced spike
detection mechanisms, through correlating bandwidth and active objects spikes, guiding efficient data
placement and resource management within heterogeneous memory systems. Figure 5.0.2 illustrates
an overview of the proposed methodology. As input, we provide the target C/C++ application. The
proposed methodology consists of three distinct phases, i.e. i) Profiling & Analysis (Sec. 5.1), ii)
Quantization & Spike Detection (Sec. 5.2) and iii) Correlation, K-Maz Selection & Dynamic Data
Placement (Sec. 5.3), which are detailed in the rest of this Section. Table 5.1 summarizes the key
system parameters discussed in the rest of this section.

5.1 Profiling & Analysis

The initial phase of SPID is designed to conduct a comprehensive, lightweight profiling of the target
application, facilitating a systematic classification of spiking regions described in Sec. 5.2. This profiling
begins with system-level monitoring and data collection (@), where key metrics such as memory
bandwidth and allocations are gathered. As shown in Fig. 5.0.1, we perform memory bandwidth
profiling by running the application to assess the correlation between memory bandwidth consumption
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and memory allocation patterns. In particular, our focus is on write bandwidth, which serves as a key
indicator for identifying phase transitions and understanding the dynamic behavior of memory usage
during execution.

To overcome the significant overhead typically associated with object-level profiling, our methodology
utilizes an efficient strategy based on active object monitoring. This step involves tracking the run-
time allocation of bytes and the number of active objects throughout the execution, which allows us to
capture the overall memory usage patterns without the need for fine-grained object-level analysis. By
combining both memory bandwidth and active object monitoring, we effectively profile the applica-
tion’s memory behavior, enabling us to detect performance bottlenecks. We post-process and analyze
the gathered metrics (@) to identify critical patterns and phase transitions in the next steps. The
processed data are propagated to the next step, presented in Sec. 5.2.

5.2 Quantization & Spike Detection

In this step, the primary objective is to detect and classify distinct application phases into two key
regions: Memory Bandwidth Spike Regions, which exhibit high memory bandwidth utilization, and
Active Object Spike Regions, characterized by increased object allocations. The classification of these
regions is based on two novel detection mechanisms: (i) the Memory Bandwidth Spike Detector (@)

and (ii) the Active Object Spike Detector (@), both of which are described in detail in the rest of this
section.

Memory Bandwidth Spike Detector: To identify distinct application phases, we introduce a
quantization algorithm, designed to partition the application into discrete intervals based on memory
bandwidth patterns. Our algorithm utilizes a sliding window mechanism to detect high bandwidth
phases. A bandwidth spike region corresponds to a time interval [¢;,¢;], where: ¢; is the initial times-
tamp at which DRAM write bandwidth exceeds a predefined threshold relative to the average NVM
bandwidth within the current sliding window of constant length s (Eq. 5.2.1) and ¢, is the ending times-
tamp when the DRAM write bandwidth drops below a similar threshold relative to NVM bandwidth
(Eq. 5.2.2). Our methodology effectively captures high-intensity memory phases, allowing adaptive
data placement and optimized resource utilization in heterogeneous memory environments. Let 6 be
a threshold factor that defines a spike in DRAM bandwidth relative to the average NVM bandwidth.
Then, the start ¢; and end ¢; times of a bandwidth spike can be defined as follows:

t; = min{t : BWpram(t) > 0 - BWxvm(s)} (5.2.1)
t; = min{t > t; : BWpram(t) < 0 - BWxvm(s)} (5.2.2)
Denotation Description
BWpgrawm(t) DRAM write bandwidth at time ¢
BWvm(s) | Average NVM write bandwidth over sliding window s
t; Start timestamp of a bandwidth spike
t; End timestamp of a bandwidth spike
0 Threshold factor for bandwidth spike
Q; The number of active objects at time i
cd Average consecutive active object difference
spitt Binary function that identifies spike regions

Table 5.1: Key parameters for SPID formulation
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where BWpgram(t) is the DRAM write bandwidth at time ¢, BWNywMm(s) is the average NVM write
bandwidth over the sliding window s. Thrshold 6 is derived through experiments.

Active Object Spike Detector: Similarly, we identify active object spike regions by examining
the variation in consecutive values of the number of active objects. We derive discrete values for
the amount of active objects, forming a sequence of elements «;, indicating the run-time number of
active allocated objects, as follows: {«ag,a1,...,a,}. Given the array of active object counts, our
algorithm calculates the absolute consecutive differences between these values, represented as follows:
{lar—aql, ..., |an—an—1|}. We derive the average absolute consecutive difference, defined as the critical
threshold, cd from the a; values, as illustrated in Eq. 5.2.3. The sp™' is a binary function (Eq. 5.2.4)
which identifies spike regions among active objects by comparing each object’s absolute consecutive
differences, i.e |a; 11 —a;| with the average absolute consecutive difference, cd. Specifically, the function
outputs sp::'H = 1 when |a;41 — a;| exceeds the average difference threshold cd, indicating a spike,
and sp;:Jr1 = 0 otherwise. Consecutive detected spikes are merged into larger intervals, thus allowing
to capture extended periods of high memory object activity. This classification enables detection of
high-activity regions within heterogeneous memory systems, supporting lightweight profiling without

extensive object-level analysis.

lovip1 — il (5.2.3)

= vie{o,.,n—1} (5.2.4)

i+l _ 1, if |Oéi+1—04i| >a
O, if |Oli+1 - ai| S cd

5.3 Correlation, K-Max Selection & Dynamic Data Placement

After identifying memory bandwidth and active objects spike regions (5.2), we aim to perform their
correlation and perform probabilistic mapping of the active object spikes most likely associated with
each upcoming bandwidth spike. In order to achieve this, we employ an interval tree [28] to efficiently
capture and query active object spikes occurring within the time frame between consecutive bandwidth
spike regions (@) Interval trees enable fast query in O(logN) time, thus making them sufficient for
fast traversal and exploration. Each single node in the interval tree corresponds to the time interval
[ti,t;] of an active object spike. For the exploration of active object spikes within the examined time
interval defined by two consecutive bandwidth spikes, the interval tree returns those nodes/intervals
that overlap with the latter. Once the relevant spikes are retrieved, our algorithm filters through
selecting the K-max spikes based on the allocated bytes within each bandwidth spike (@), which are
the most critical for efficient placement.

Finally, dynamic data placement is performed at run-time (@) The K active object spikes detected
earlier are flagged as hot regions, while the remaining regions are characterized as cold regions. Each
region is associated with the total number of bytes allocated within it. To mitigate potential perfor-
mance degradation caused by the slower access latency of NVM, the hot regions are prioritized for
placement on DRAM memory. After identifying active object spikes for faster memory placement, the
algorithm leverages the deterministic allocation patterns of benchmarks to make runtime placement
decisions for the cold regions. Each region is managed as a distinct unit, with elements of the corre-
sponding region placed on NVM. Cold regions assigned to NVM are susceptible to phenomena, such as
write amplification and write throttling [29] due to frequent small object allocations. To address these
issues, an alternating placement mechanism is employed, where consecutive cold regions are grouped
to bigger groups. Finally, the data placement is performed through our integrated library, namely
sPMalloc (), which is detailed in Sec. 6.3.
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Figure 5.0.1: Correlation of active memory allocated objects (green) and memory bandwidth (yellow)
over the execution time, for Lulesh, Streamcluster, Pathfinder and Srad benchmarks.
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Chapter 6

Technical Implementation

In this chapter, we present SPMalloc, our custom, open-source library designed to intercept and
replace standard memory allocation function calls (malloc, calloc, realloc, and free) with custom
implementations tailored for heterogeneous memory systems. We begin by discussing the motivation
for designing such a library, emphasizing the growing need for precise memory management in mod-
ern applications. We then explore the commonly used methods to achieve function interception and
compare their advantages and limitations.

Additionally, we detail the numerous challenges encountered during the design and implementation
process, such as ensuring compatibility with C++ applications and resolving issues like recursion in
function calls. For each challenge, we describe the solutions adopted, showcasing the thought process
behind our design choices. The chapter also includes a detailed, code-based analysis of the library,
supported by figures illustrating the core implementation, to provide a comprehensive understanding
of its functionality and integration.

6.1 Technical Implementation: An Overview

A crucial aspect of our work involves devising an effective strategy for placing data across two distinct
memory types: DRAM and Optane. There are various approaches to achieve this goal, each with its
own set of challenges and benefits. Previous studies, such as [52], have often relied on simulators to
explore methodologies for data placement between memory types. Simulators simplify experimentation
by abstracting away hardware complexities and providing greater control over allocation and placement,
enabling researchers to test different algorithms and granularities without being constrained by real-
world hardware limitations. However, these advantages come at the cost of fidelity, as simulators may
not fully capture the intricacies of hardware behavior and performance variability present in physical
systems.

The granularity of data placement is another key consideration in the design of such systems. For
instance, page-level placement, a widely used approach, involves migrating entire memory pages be-
tween memory types. This is often achieved using operating system mechanisms such as NUMA node
migration or kernel-level extensions [54]. While this method is relatively straightforward to imple-
ment, it lacks the precision required to target specific data structures or objects, potentially leading
to suboptimal performance for workloads with fine-grained memory requirements.

In contrast, object-level placement allows for much finer control by enabling the allocation of individual
objects to specific memory types. However, implementing object-level placement is significantly more
challenging, as it requires custom allocation tools capable of intercepting and managing individual
allocation calls. Given that we work on a physical system equipped with Optane DIMMs, and aim to
achieve the precision and flexibility beyond what page-level methods provide, we focus on a solution
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Chapter 6. Technical Implementation

that operates at the object level. To achieve this, we designed a custom library that intercepts and
redirects malloc, calloc, realloc, and free calls in C, and new/delete in C++ to custom allocation
routines, enabling us to precisely control the placement of allocation objects in the target application.
In this chapter, we discuss the challenges encountered during the implementation of this approach and
detail the final solution we developed to address them.

6.2 Memory Allocation Basics and Linking Methods

6.2.1 Memory Allocation Basics

Modern programs predominantly allocate memory using functions such as malloc, calloc, and realloc
from the GNU C Library (glibc) for C, and the new operator in C++. These functions manage heap
memory, returning a pointer that indicates the memory location allocated for the requested object.
This allocated memory remains reserved until explicitly released by calling free in C or delete in C++.
The seamless functioning of these allocators is a cornerstone of modern operating systems and runtime
environments, making them integral to program execution.

Replacing these standard allocation functions with custom implementations introduces significant chal-
lenges. Problems such as memory leaks, segmentation faults, and improper synchronization in mul-
tithreaded environments are common pitfalls. Despite these difficulties, there is a growing need to
modify or bypass these functions in order to optimize memory utilization, especially in the context of
emerging heterogeneous memory systems, which integrate technologies like DRAM and Optane.

Developing a completely new memory allocator tailored for heterogeneous memory systems would be
a complex task, requiring extensive effort to ensure optimal performance and reliability. Furthermore,
establishing trust in a novel allocator can be difficult without widespread community validation. In-
stead, a more practical and efficient approach is to create custom versions of the existing allocation
functions (malloc, calloc, realloc, free, and their counterparts) that leverage widely accepted tools and
APIs.

To achieve this, we will focus on designing a custom library that intercepts calls to these allocation
functions. This library will enable precise control over memory placement, allowing objects to be dy-
namically allocated on either DRAM or Optane, based on the specific requirements of the application.

6.2.2 Linking Methods

Linking [56] is the process of combining one or more object files, produced by the assembler, with
necessary libraries to create an executable program. Object files are binary representations of code,
where memory locations for functions and variables are either absolute or virtual (relative to a base
address). References to external libraries, which are initially unresolved, are addressed during linking
by mapping them to their actual memory locations.

Linking can be performed in two ways:
e Static Linking: Embeds all necessary library functions directly into the executable.

¢ Dynamic Linking: Resolves library references at runtime, allowing libraries to be shared across
programs.

The two linking methods can be further analyzed as follows [57]:

Static Linking: When an executable file is launched, all the necessary contents of the binary are
loaded into the process’s virtual address space. Many programs also rely on functions from system
libraries, which must be included during execution. In the case of static linking, these library functions
are embedded directly within the program’s executable binary file. As a result, the program is fully
self-contained and ready to execute as soon as it is loaded into memory.
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Static linking is performed during the compilation phase of the program. It involves combining a
collection of relocatable object files and command-line arguments into a fully linked object file, which
can then be directly loaded and executed.

A significant drawback of static linking is that each program must include its own copy of the necessary
system library functions, leading to redundancy. This approach can be inefficient in terms of physical
memory and disk space, as multiple copies of the same library functions are stored and loaded for each
program. In contrast, dynamic linking resolves this issue by allowing a single instance of the system
library to be loaded into memory and shared among multiple programs.

Dynamic Linking: A dynamically linked program includes a small statically linked function that
is executed when the program starts. This function is responsible for mapping the required dynamic
libraries into memory and initiating their execution. The dynamic linker identifies the necessary
libraries, along with the variables and functions the program requires, by analyzing metadata in the
program and the libraries. It then maps these libraries into the program’s virtual address space,
typically at runtime, and resolves references to the symbols they contain.

The exact memory locations where shared libraries are mapped are not predetermined. To accommo-
date this, shared libraries are compiled as position-independent code (PIC), allowing them to execute
correctly regardless of their memory address.

The core advantage is that Dynamic linking reduces the memory requirements of a program. A
dynamically linked library (DLL) is loaded into memory only once and can be shared by multiple
applications, saving memory space. Furthermore, dynamic linking lowers application support and
maintenance costs by enabling updates to shared libraries without the need to recompile or redistribute
dependent programs.

In this work, we use benchmarks from various benchmark suites. Most of these benchmarks compile
into a single executable, but the source files that contribute to this executable are numerous and
often distributed across multiple directories. Attempting to statically link our custom library to all
these source files would require significant modifications to each individual file, assuming we could
even identify all of them. This approach would be cumbersome, error-prone, and time-consuming.
In contrast, dynamically linking our library to the benchmark is a much simpler and more reliable
solution. By leveraging the LD PRELOAD mechanism [58], we can preload the contents of our
library before the main program begins execution, without requiring any modifications to the source
files of the benchmark. This allows us to seamlessly intercept memory allocation calls at runtime.
As a result, we opted for dynamic linking for our library, marking it as a key design decision in our
implementation.

6.3 Creating the Library, Challenges and Solutions

6.3.1 Allocation Functions

Our objective is to create custom implementations of the standard memory allocation functions (malloc,
calloc, realloc, and free) that retain their original names but introduce our custom function-
ality. Specifically, our custom implementations must enable the placement of allocation objects either
in DRAM or Optane, depending on the requirements. For placing objects in Optane, we rely on the
Memkind API, which is explicitly analyzed in Chapter 4, using the memkind malloc() function (or the
equivalent functions for calloc and realloc). For DRAM allocations, however, we need a mechanism
to invoke the original allocation functions from within our custom implementations. This requires
retrieving the original symbols of these functions.

To the best of our knowledge, there are two primary methods to achieve this:

malloc Hooks [59]: A mechanism previously available in glibc to intercept allocation calls. How-
ever, this approach has been deprecated in modern versions of glibc, making it unsuitable for our
implementation.
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dlsym(): A function provided by the dynamic linking library, which allows the retrieval of the original
symbols of functions at runtime. By calling dlsym with the appropriate symbol name (e.g., "malloc"),
we can bypass our custom functions and access the standard implementation.

While dlsym is a versatile and widely used solution, it introduces a significant challenge in our context.
dlsym itself internally calls calloc, which becomes problematic when we intercept and replace calloc
with our custom implementation. Specifically, when dlsym is used for the first time to retrieve the
original symbol of malloc, it inadvertently triggers our custom calloc implementation, which has not yet
been fully initialized. This results in an infinite recursion that causes a segmentation fault. Addressing
this issue is a critical part of our implementation strategy.

This challenge led us to make another critical design choice: leveraging the Memkind API not only
for Optane memory allocations but also for DRAM allocations. One of Memkind’s key features is
its ability to allocate memory in DRAM using the memkind malloc function. By specifying the
kind management parameter (the first argument of memkind malloc) as MEMKIND DEFAULT, we
ensure that memory allocations are directed to the system’s main DRAM. This approach provides
a seamless and efficient way to handle DRAM allocations without relying on the standard malloc
function.

To validate that this method does not introduce any significant overhead compared to the original
malloc function, we ran all benchmarks using both allocators — our memkind _malloc-based imple-
mentation and the standard malloc. As shown in Fig. 6.5.6, there was no noticeable difference in
execution times between the two allocators across all benchmarks. This result eliminates concerns
about potential performance penalties associated with using memkind _malloc for DRAM allocations
and reinforces the robustness of our approach.

6.3.2 Free Function

Implementing the custom free function presents another significant challenge. When freeing an allo-
cated object, the only available information is its pointer, which indicates the memory location of the
object but provides no details about the memory type (DRAM or Optane) from which it should be
deallocated. This creates the need for an efficient mechanism to determine the memory type associated
with the pointer during deallocation.

One straightforward approach to solve this issue is to allocate an additional byte alongside every
memory allocation. This extra byte could serve as a flag, set to 1 for DRAM and 0 for Optane (or
vice versa), effectively encoding the memory type with the pointer. During deallocation, the custom
free function would read this byte to determine the memory type and then invoke the appropriate
deallocation function, such as memkind _free with MEMKIND DEFAULT for DRAM or the respective
kind option for Optane. While simple and conceptually sound, this approach proved to be highly
inefficient in practice. Experimental results showed that this method introduced substantial overhead,
drastically increasing the execution time of the benchmarks and making it unsuitable for practical use.

To address this issue, we leveraged a key feature of the Memkind API: the memkind_ detect kind(void
*ptr) function. This function can identify the kind associated with a given pointer, returning
MEMKIND DEFAULT for DRAM allocations or the specific kind used for Optane allocations. By us-
ing this function, we simplified the logic of our custom free function, eliminating the need for additional
metadata in memory allocations while significantly improving performance and maintainability.

However, the authors of the Memkind API caution that memkind detect kind incurs a "non-trivial
performance overhead." To assess its impact, we ran all benchmarks with this implementation and care-
fully measured the performance during memory deallocation. As illustrated in Fig. 6.5.6, our results
showed no noticeable performance overhead, even in benchmarks with frequent memory operations.
Based on these findings, we chose to implement our custom free function using memkind _detect kind,
as it provides a clean, efficient, and reliable solution for managing memory deallocation across DRAM
and Optane.

Fig. 6.5.1 illustrates the implementation of our custom malloc, calloc, realloc, and free functions, as
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described earlier. A global variable named dram is used to control the allocation behavior: when
dram = 1, allocations are directed to DRAM, and when dram = 0, they are allocated to Optane.
This variable provides a simple yet effective mechanism for dynamically specifying the target memory
type for allocations within our heterogeneous memory system. To ensure compatibility with C++
applications, our library also incorporates custom implementations of the new and delete operators.
Fig. 6.5.2 shows the implementation of these functions, where we simply redirect their functionality
to our custom malloc and free equivalents. This approach ensures seamless integration with C++
applications while maintaining the custom memory allocation behavior. The library is compiled into a
shared object file (.s0), which can then be preloaded into the target executable using LD PRELOAD.
This redirection ensures that all allocation functions—whether in C or C++—are intercepted and
routed to our custom implementations.

6.3.3 The constructor and destructor Functions

An important aspect of designing a shared library is the use of _ attribute _ ((constructor)) and
__attribute__ ((destructor)) functions. These special functions play a vital role in the lifecycle of the
shared library by allowing us to define initialization and finalization routines.

The constructor function is executed immediately before the main() function of the target executable
begins execution. This makes it the ideal location to perform any setup required by the shared library.
In our implementation, the constructor function initializes Optane memory by creating a file-backed
kind of memory using the Memkind API. Additionally, it sets a global variable named "initialized"
to 1, signaling that the library is fully initialized and ready to manage memory placement between
DRAM and Optane. This flag acts as a safeguard, ensuring that all memory operations proceed only
after proper initialization.

Conversely, the destructor function is executed right after the target executable finishes execution,
making it essential for cleaning up resources. In our implementation, the destructor function resets
the initialized flag to 0, signaling that the program has concluded, and no further memory placements
should occur. This step ensures a clean termination of the library’s operations, preventing potential
memory corruption or resource leakage.

By leveraging the constructor and destructor functions, we ensure seamless integration of the shared
library with any target application, providing robust initialization and cleanup mechanisms. Fig. 6.5.3
illustrates the straightforward yet crucial implementation of these functions in C.

6.4 Implementing Object Monitoring Capabilities to Our Li-
brary

6.4.1 Monitoring

One of the fundamental design choices in creating a shared library to intercept allocation function calls
(malloc, calloc, realloc, and free) is that it grants us complete control and visibility over the memory
allocation behavior of the target application. By capturing the call arguments and return values of
these functions, we gain access to critical information such as memory pointers, the sizes of allocated
objects, and the total number of objects being allocated or freed during the program’s execution.

This level of access is invaluable for analyzing the allocation patterns and behavior of the target
application. It enables us to identify allocation hotspots and phases, which are key to understanding
how memory is utilized. Such insights play a crucial role in optimizing memory placement decisions,
particularly in heterogeneous memory systems like DRAM and Optane. By studying these patterns, we
can make informed decisions about which data should reside on DRAM for performance and which can
be placed on Optane for capacity. This understanding forms the foundation of efficient and intelligent
memory management.

To abstract such information effectively, it is essential to adopt a method that tracks allocation behavior

45



Chapter 6. Technical Implementation

without significantly impacting the program’s execution or introducing excessive overhead. Monitoring
every individual allocation object, including its size and corresponding pointer, can result in substantial
runtime overhead and the generation of enormous log files. This issue becomes particularly pronounced
in benchmarks with a high frequency of allocations, making this approach impractical.

To address the challenges of excessive log sizes and runtime overhead, we made a key design choice:
instead of logging every individual allocation, we aggregate allocation behavior over user-defined times-
tamps. Specifically, we periodically log summary information, such as the total allocated bytes and
the number of active allocated objects, at intervals defined by the user (0.25 seconds by default). This
allows users to make trade-offs between finer-grained monitoring and runtime overhead by adjusting
the timestamp duration and logging frequency. Shorter intervals provide more detailed insights, while
longer intervals minimize overhead.

The implementation of this monitoring capability requires that we extend the functionality of the
allocation and deallocation functions. Each allocation function increments a global counter, allo-
cated_bytes, by the size of the allocation and increases one more counter, active objects, by one.
Correspondingly, each deallocation function decrements the active objects counter by one. To ensure
thread safety, we utilize mutex locks to manage updates to these counters, preventing race conditions
in multi-threaded applications.

The actual logging of this aggregated information is handled by a background thread, which operates
independently of the allocation and deallocation calls. This thread is triggered at the specified intervals
and logs the collected information to a file descriptor or output of the user’s choice. By offloading the
logging functionality to a separate thread, we minimize interference with the execution of the main
program and reduce runtime overhead significantly.

The initialization and finalization of the background thread are seamlessly integrated into the library’s
__attribute__ ((constructor)) and __ attribute _ ((destructor)) functions, ensuring the monitoring
mechanism operates only during the program’s execution. Fig. 6.5.4 illustrates the implementation of
the background thread, as well as the additional lines of code required to initialize and terminate its
functionality.

6.4.2 Placement

Another important role of the background thread is assisting in object placement decisions. As de-
scribed in Chapter 5, our placement strategy is guided by the output of the SPID algorithm, which
provides an input array to the library for making placement decisions. This array alternates between
bytes to be allocated on Optane (even indices) and bytes to be allocated on DRAM (odd indices). For
example, if the input array is [1 kB, 2 kB, 3 kB], the algorithm instructs the placement of the first 1
kB on Optane, the next 2 kB on DRAM, and the final 3 kB on Optane.

The background thread can easily integrate this functionality. Instead of logging allocation data, it
monitors the allocation progress against the SPID input array. For each allocation, it tracks whether
the specified number of bytes (as defined in the input array) has been allocated to the correct memory
type. Once the target number of bytes for a memory type is reached, the thread switches the memory
type (via the dram variable) to ensure subsequent allocations follow the instructions of the array.

Fig. 6.5.5 illustrates the modifications to the background thread for integrating this placement logic.
The updated thread continuously checks whether the allocated bytes match the specified values for
the current memory type, switches memory type when necessary, and ensures proper adherence to the
placement strategy.

6.5 Concluding, SPMalloc

We design SPMalloc, an open-source library, which replaces the malloc, calloc, realloc, free
and new/delete operations for C and C++ programming languages, respectively. The calls to our
library are intercepted at runtime using LD_PRELOAD, linking the library to the target executable. Our
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library makes use of the memkind API [30], which allows developers to place data either on DRAM or
Optane DCPM. Figure 6.5.6 illustrates the execution time comparison of the benchmarks presented
in Section 7.1 for dynamic allocations on DRAM performed through the default malloc() and our
SPMalloc(). We observe a minimal average performance difference of 1.8%, indicating that memory
allocations executed via our API impose negligible runtime overhead. As a result, we establish a
unified allocation policy whereby all dynamic allocations are directed through the memkind API to
facilitate memory tiering and control. Furthermore, SPMalloc is enhanced with profiling support to
aid in real-time memory management decisions. To mitigate the overhead associated with exhaustive
object profiling tools [21], we incorporate a sampling-based profiler within the library. This profiler
monitors and logs memory usage by tracking the bytes allocated and the number of active objects
throughout the execution. Designed as a background thread, SPMalloc enables continuous decision
making without intrusively affecting application performance, providing real-time allocation insights
and placement for effective memory management.
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*malloc(size_t size)

if(initialized ==
return memkind_malloc(MEMKIND DEFAULT, size};

else
if(dram == 1){
return memkind_malloc (MEMKIND DEFAULT, size);

lse{
return memkind_malloc(pmem_kind, size);

*calloc(size_t num, size t size) {
if(initialized == @
return memkind_calloc(MEMKIND DEFAULT, num, size);

else
if(dram == 1){
return memkind calloc(MEMKIND DEFAULT, num, size);

lse{
return memkind_calloc(pmem_kind, num, size);

*realloc( *ptr,size t size)

if(ptr == return malloc(size);

memkind t kind = memkind_detect_kind(pt
if(kind == MEMKIND DEFAULT return me
else return memkind realloc(pmem kind,ptr,size);

®
PTr c(MEMKIND DEFAULT,ptr,size);

memkind_t kind = memkind_detect_kind(ptr);
if(kind == MEMKIND DEFAULT memkind free(MEMKIND DEFAULT,ptr);
lse memkind_free(pmem_kind,ptr);

Figure 6.5.1: Custom functions for malloc, calloc, realloc and free, using the Memkind Api .
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free(ptr)

Figure 6.5.2: Redirecting new and delete functions of C++ to behave like the custom function we
created .
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memkind *pmem kind ;
err=8, initialized = 8, dram =

attribute_ ((constructor init_memkind | _
err = memkind_ create_pmem{ " /mnt/pmemd”, @, &pmem_kind);

=i

return;

initialized = 1

__attribute {(destructor)}) del(

initialized

Figure 6.5.3: Constructor and Destructor functions that are used to initialize and terminate the
functionality of our library when using LD preload .
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err = @, initialized = @, dram
pthread_t timer thread;
*timer_threadproc( *arg);
done = 8;
seconds_elapsed = 8.8;
allocated_objects =
allocated bytes =
pthread_mutex_t alloc_mutex =

__attribute_ ((constructor)) init memkind()
initialized = 1;
done = 8;
if (pthread_create(&timer_thread, » &timer_threadproc, ) !1=8
fprintf( , "Failed to create timer thread\n");

__attribute_ ((destructor
initialized = 8;
done = 1;
pthread_join(timer_thread,

*timer_threadproc( *arg) {
while (!done
usleep(250000);
seconds_elapsed += 0.25;
pthread_mutex_ lock(&alloc_mutex);
fprintf( » "Allocated: ¥lu bytes (second ¥%f) (objects alive = %lu)\n", allocated_bytes, seconds_elapsed, allocated objects);
allocated bytes = 8;
pthread_mutex_unlock{&alloc_mutex);

return

*malloc(size_t size) {
pthread_mutex_lock(&alloc_mutex);
*p = memkind malloc(MEMKIND DEFAULT, size);
if (initialized == 1
allocated_bytes += size;
allocated objects += 1;

return p;
pthread mutex unlock(&alloc mutex);

Figure 6.5.4: Extending SPMalloc to perform monitoring on the Active Objects and Allocated Bytes
over the course of the program’s execution .

*timer_threadproc *arg) {
while (!done
usleep(1@);
seconds_elapsed += @.88001;
if(i »= switches) {
done = 1;
return

(allocated bytes »>= allocations[i] && i % 2 == @){

pthread_mutex_lock(&alloc_mutex);

dram = 1;

fprintf . llocated: %1lu bytes on optane (second %f) ( alive = %11u)\n", allocated_bytes, seconds_elapsed, allocated objects);
allocated_bytes = @;

i+=1;

pthread_mutex_unlock(&alloc_mutex) ;

(allocated_bytes »>= allocations[i
pthread_mutex lock(&lloc_mutex);
dram = @;
fprintf » "Allocated: ¥1lu bytes on dram (second %f) (objects a = %11lu)\n", allocated bytes, seconds_elapsed, allocated objects);
allocated bytes = @;
i4=1;
pthread_mutex_unlock(&alloc_mutex);

Figure 6.5.5: Extending the Functionality of the background thread, to perform placement decision
during exeuction .
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Chapter 7

Experimental Evaluation

7.1 Experimental Setup

The experiments were conducted on a high-end server consisting of two 20-core Intel Xeon Gold
5218R CPUs @ 2.10 GHz, with 4x32GB DDR4 DIMMs and 6x256GB Optane DC NVDIMMs.
Intel Optane DCPM was configured in App-Direct mode with the EXT4-DAX filesystem. Version 1.11
of the Persistent Memory Development Kit (PMDK) and gcc-13.3 were employed for the deployment
of the applications. Our proposed solution is evaluated over 11 real-life benchmarks derived from
PARSEC [31], Rodinia [32] and CORAL-2 [33] suites, covering a set of application domains, e.g. ML
workloads, image processing and physics. We focus on memory-intensive applications, namely Stream-
cluster, LUD, Kripke, CFD, Backprop, Srad, Lulesh and on balanced workloads between compute and
memory demands, i.e. Canneal, LavaMD and Pathfinder. Table 7.1 summarizes the benchmarks we
experimented with, including their respective suites and core functionalities

We compare our proposed placement policy against 5 placement policies: i) DRAM-all, where all data
are placed on DRAM, ii) Optane-all, where data are placed on NVM, iii) Round-Robin, where data
are placed in round-robin way on each memory, iv) Random, where data are randomly placed and v)
Phase-based [27], which is a state-of-the-art data placement solution implemented from scratch. For
the latter, the discrete phases are split into 5-second chunks. The examined dynamic data placement
policies are evaluated based on performance, energy consumption and their impact on the NVM’s
lifetime, based on the number of write operations performed on the persistent memory DIMMSs. The
energy consumption and memory bandwidth are measured utilizing the Intel PCM [34], a tool that
allows power and bandwidth run-time monitoring over DIMMs through hardware counters, while for
measuring the number of read and write accesses, we utilize the ipmct1 tool [35], which is the standard
for configuring, managing and monitoring the NVDIMMs.

7.2 Experimental Evaluation

Performance Analysis: Fig. 7.1.1 illustrates the normalized execution time (top) and the energy
consumption (bottom) for all the examined benchmarks, respectively. The execution time results
are normalized over the Optane-all placement policy. The DRAM-all provides the optimal execution
time across all benchmarks, due to its optimal latency for both read and write operations, while
the Optane-all policy exhibits the highest execution time due to significant write access overhead.
We observe that SPID outperforms the evaluated placement policies, achieving 28.86%, 34.16%, and
29.43% less execution time on average, compared to Round-Robin, Random, and Phase-based solutions,
respectively. Round-Robin and Random placement policies are too simplistic to perform efficiently
across a wide range of applications. Furthermore, SPID achieves a performance that is only 15.15%
slower than the optimal DRAM-only solution on average, demonstrating its effectiveness in utilizing
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Figure 7.1.1: Execution time (top) and energy consumption (bottom) comparison of the SPID againts
the examined data placement policies for the examined applications.

both DRAM and NVM for optimized performance across diverse workloads.

The key advantage of SPID compared to the Phase-based is that the latter relies only on bandwidth-
defined phases, disregarding allocation behavior within those phases, which is critical for the overall
performance, thus leading to performance degradation. SPID overcomes this limitation, through effec-
tively identifying critical allocation regions. This distinction enables SPID to clearly outperform the
Phase-based approach in benchmarks where critical allocations are not directly adjacent to bandwidth-
intensive regions (e.g. backprop, srad, Kripke, Canneal), by achieving 3.7x performance speedup on av-
erage. Last, for benchmarks that are characterized as non-memory-intensive (e.g. pathfinder, lavaMD,
Kmeans) all policies demonstrate similar performance, indicating that memory placement strategies
have minimal impact in such cases.

* Key Outcome 2: SPID effectively identifies and prioritizes critical allocation regions by
optimizing performance through placements that reflect both bandwidth and allocation dynamics.

Energy Consumption Analysis: The energy consumption on memory DIMMs for the examined
benchmarks is depicted in Fig. 7.1.1 (bottom) in log. scale. The derived results closely align with the
execution times, showing that SPID achieves 29.81%, 34.86%, and 30.15% improved energy consump-
tion compared to the Round-Robin, Random, and Phase-based placement policies, respectively. The
optimized energy consumption of SPID is primarily attributed to two key factors: (i) write-intensive
objects are placed on DRAM, thus avoiding the high energy consumption associated with write op-
erations on NVM, and (ii) non-write-intensive objects are allocated to low-power NVM, which helps
in maintaining performance while consuming less power. Additionally, the spike-based dynamic place-
ment strategy used by SPID ensures that memory regions are effectively handled, due to the active
object monitoring mechanism, which boosts placement decision making, in contrast to Phase-based,
where active objects are not considered. This dynamic approach contrasts with traditional static
placement methods, which often result in suboptimal energy efficiency due to less intelligent or fixed
memory assignments.

* Key Outcome 3: SPID reduces energy waste due to effective spike and non-spike intensive
placement on DRAM and NVM, respectively.

NVM Accesses & Lifetime Analysis: The effectiveness of a data placement policy should be
evaluated on its ability to respect the limited NVM write endurance. Write accesses performed on
the NVM act as high-level indicators for the NVM-wear [21]. Therefore, aiming to extend the NVM
lifespan, we evaluate the read and write accesses on Optane, focusing particularly on minimizing write
operations. Fig. 7.2.1 illustrates the overall number of write (top) and read (bottom) accesses, respec-
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Figure 7.2.1: Number of NVM write (top) and read (bottom) accesses for the SPID, Optane-all and
Phase-based for all the examined applications.

tively for the Optane-all (baseline), Phase-based and SPID policies across the examined benchmarks.
Our results indicate that SPID achieves 73.03% and 33.02% less write accesses on average compared to
Optane-all and Phase-based, respectively. Similarly to the write accesses, SPID achieves 70.81% and
30.3% less read accesses on average compared to Optane-all and Phase-based, respectively. The selec-
tive placement of non-write-intensive objects on NVMs and the balanced placement achieved across
the DRAM/NVM system leads to reduced frequency of write operations performed on the NVM. As a
result, SPID not only delivers improved performance over all other policies examined but also minimizes
wear, enhancing the overall longevity of NVM more effectively than alternative solutions.

* Key Outcome 4: SPID extends NVM lifespan by significantly reducing write operations,
balancing access across DRAM and NVM, thereby enhancing overall endurance and longevity.

Placement Policy Amnalysis: Last but not least, in order to gain deeper understanding of the
behavior of SPID, we examine the distribution of data across the heterogeneous DRAM /NVM system.
The pie charts presented in Fig. 7.2.2 illustrate the percentage of bytes allocated to DRAM and NVM
during the execution of each benchmark using SPID. These distributions can be categorized into three
distinct patterns:

e Balanced Distribution: For memory-intensive benchmarks such as Kripke, Lulesh, Srad, Can-
neal, Streamcluster, and CFD, which also exhibit complex allocation patterns, critical memory
decisions are required. SPID achieves a balanced allocation of bytes between DRAM and NVM
for these benchmarks, ensuring that write-intensive objects are placed on DRAM, while non-
write-intensive objects are allocated to low-power NVM.

e NVM-Favored Distribution: For benchmarks with lower memory pressure that primarily
rely on CPU utilization, such as kmeans, pathfinder, and lavaMD, SPID predominantly allocates
data to NVM. This approach optimizes performance while minimizing energy consumption by
leveraging the low-power characteristics of NVM.

¢ DRAM-Favored Distribution: Finally, certain benchmarks, namely Lud and Backprop, see
SPID allocate all bytes to DRAM. This behavior is driven by two factors: (i) these benchmarks
exhibit memory-intensive phases during execution, leading to bandwidth spikes, and (ii) they
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SPID data distribution over DRAM/NVM for each benchmark
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Figure 7.2.2: SPID data distribution over DRAM/NVM

feature an initial allocation spike—often at the program’s start—after which no further alloca-
tions occur. Consequently, SPID allocates the initial spike to DRAM, resulting in the entirety
of the data residing in DRAM.

Fig. 7.2.3 provides additional insight into the aforementioned distributions. Specifically, it illustrates
the non-zero allocated bytes (red) and the DRAM bandwidth (yellow) throughout the execution
of each benchmark. As observed, benchmarks such as Lulesh, Kripke, Streamcluster and Canneal
which exhibit complex allocation patterns, achieve an even distribution between DRAM and NVM.
Conversely, benchmarks with low memory intensity, such as Kmeans and LavaMD, are exclusively
managed using Optane. Finally, memory-intensive benchmarks like Backprop and Lud, which allocate
all their memory at the start of execution, are entirely handled by DRAM.

The violin plot shown in Fig. 7.2.4 illustrates the average percentage of bytes allocated to DRAM
and NVM for all the evaluated benchmarks. Our analysis reveals that 52.04% of the data is allocated
to DRAM and 47.96% to NVM, with the placement percentages show minimal variation and closely
align with the median values. This distribution highlights SPID’s ability to effectively balance data
placement between the two memory types, contributing to balance performance (Fig. 7.1.1 top), energy
consumption (Fig. 7.1.1 bottom) and memory accesses (Fig. 7.2.1), as discussed earlier in this section.

* Key Outcome 5: The balanced placement of SPID is the key enabling factor for performance,
energy and write accesses co-optimization.

56



7.2. Experimental Evaluation

I Number of Allocated Bytes

3 Dram Write Bandwidth (GB/s)

169 Kripke 1e10 Lulesh 1610 Srad 1e8 Kmeans
. 10d * . 30+ B
s 25 2.0
0.6 20 e
' . 15
0.4 1.0
1.0
02 R | 05 05
il o 2, o
4 s wecoccen oo ae 0o wo 0o ee 0.0 1 i E B T B D 0.0 00
169 Backprop 1e8 1e8 Canneal 1e7 CFD
. 1245 . .
10 25 5
08 2.0 4
0.6 15 3
; 0.4+ 1.0 2
-l 0.2 05 !
0.0 0.0 S ——— 0
1e9 LUD 169 P 169 LavaMD
. 8+ .
3
6
2
44
2 1
0 0

Figure 7.2.3: Correlation of allocated bytes (red) and memory bandwidth (yellow) over the execution

time, for all benchmarks.

Benchmark Name|Benchmark Suite Description
LULESH CORAL-2 Simulates shock hydrodynamics for unstructured meshes in
physics-based applications.
Kripke CORAL-2 Proxy application for solving linear Boltzmann transport
equations using sweep-based algorithms.
Streamcluster PARSEC Performs online clustering for data mining, often used in
real-time applications.
Canneal PARSEC Uses simulated annealing for optimizing chip design layouts
under constraints.
Kmeans Rodinia Clusters datasets into groups based on similarity using the
k-means algorithm.
LavaMD Rodinia Simulates molecular dynamics for calculating particle
interactions in a 3D space.
CFD Rodinia Performs computational fluid dynamics simulation for solving
Navier-Stokes equations.
Backprop Rodinia Implements backpropagation for training neural networks in
machine learning tasks.
Srad Rodinia Applies speckle reducing anisotropic diffusion for image
denoising in medical imaging.
Pathfinder Rodinia Uses dynamic programming for pathfinding and traversal in 2D
grids.
LUD Rodinia Performs LU decomposition to solve systems of linear equations
efficiently.

Table 7.1: Benchmark details including name, suite, and description.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

In this work, we introduce SPID, a novel, low-overhead profiling and data placement approach de-

signed for heterogeneous DRAM /NVM memory systems. SPID effectively leverages the correlation
between intense allocation phases and high write bandwidth regions to optimize data placement. Our
methodology demonstrates performance improvements of 30.82% over prior techniques on average,
while reducing power consumption by an average of 31.61% and effectively handling the limited NVM
endurance by reducing the number of write accesses. Additionally, we present SPMalloc, a custom,
scalable, and open-source library designed to intercept dynamic data allocations at runtime. while
enabling precise monitoring of allocation patterns within the target application, introducing minimal
overhead.

8.2 Future Work

There are several promising directions for future work that could make this framework more reliable,
versatile, and efficient. These improvements could target both the profiling capabilities and func-
tionalities of SPMalloc as well as the placement algorithm and methodology of SPID. By addressing
these areas, SPID can evolve into a more robust and intelligent framework for heterogeneous memory
management. Some potential optimizations include:

¢ Finer Granularity in Profiling: Enhancing the profiling stage by incorporating more sophisti-
cated monitoring tools, such as a custom Intel Pin tool, to work in conjunction with SPMalloc’s
existing monitoring procedures. The initial profiling data provided by SPMalloc could guide
these tools to focus on specific time phases, thereby reducing overhead and improving efficiency.
This approach could enable SPID to adapt its profiling to the dynamic behavior of workloads
more effectively.

e Adaptability in Noisy Environments: Our experiments were conducted under a controlled
setup, as discussed in Chapter 7, where noise was minimized. To improve the framework’s re-
liability, future work could focus on enhancing the profiling and placement stages to perform
effectively even under high system load and noisy conditions. This would increase SPID’s adapt-
ability to real-world scenarios, making it suitable for diverse and unpredictable environments.

e Intelligent Placement Tools: Incorporating advanced tools into the placement stage to enable
more accurate and context-aware decisions. For example, integrating machine learning models
and heuristics could allow SPID to predict future allocation patterns based on SPMalloc’s profil-
ing data. Such predictive capabilities could lead to smarter placement strategies that maximize
performance and minimize memory bottlenecks.
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e Extending SPMalloc’s Functionality: Expanding the monitoring capabilities of SPMalloc to
track additional metrics, such as the lifetime of allocation objects, could provide deeper insights
into memory usage patterns. Similarly, adding more logic to the allocation and deallocation
functions could facilitate better placement decisions in real time. For instance, integrating algo-
rithms to track and categorize memory access frequencies or sizes could allow for more dynamic
allocation policies.

e Integration with System-Level Management: Another potential direction is to explore
integration with OS-level memory managers or virtual memory systems to enhance placement
decisions. By working at a system-wide level, SPID could make placement decisions that account
for all memory usage on the system, not just the benchmark or workload under test.

e Support for Emerging Memory Technologies: Future heterogeneous memory systems may
incorporate new technologies beyond Optane and DRAM, such as CXL (Compute Express Link)
or non-volatile RAM. Extending SPID’s profiling and placement strategies to accommodate these
new memory types would make it future-proof and more versatile.
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