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Abstract

Alzheimer’s disease is an irreversible brain disease that severely damages human thinking and
is the seventh leading cause of death worldwide. Early diagnosis plays an important part es-
pecially at the Mild Cognitive Impairment stage, where timely intervention can help slow its
progression before it advances to AD. Neuroimaging data, like MRI and PET scans, can help
detect brain changes early by providing structural and functional brain changes related to the
disease. However, despite the availability of various imaging modalities for the same patient,
the development of multi-modal models leveraging these modalities remains underexplored.
This thesis aims to address this gap by proposing and evaluating classification models using
3D MRI and amyloid PET scans in a multimodal framework. We first employ a 3D Convo-
lutional Neural Network, followed by three fusion techniques: feature concatenation, Gated
Multimodal Unit, and Gated Self-Attention. To further improve classification performance and
computational efficiency, we integrate a Mixture of Experts model, which dynamically selects
the most relevant subnetworks for each prediction. Finally, we utilize Grad-CAM to visualize
disease-related regions, ensuring model interpretability.

The results show that the GMU-based model achieves 95.47% accuracy and specificity of
96.73% in the NC vs. AD classification task, outperforming state-of-the-art approaches. Ad-
ditionally, the model successfully locates disease-related regions in both MRI and PET scans,
with different activation patterns in each modality, according to Grad-CAM analysis. This re-
sult supports the effectiveness of a multimodal strategy in the diagnosis of AD by confirming

the complementary nature of MRI and PET.

Keywords

Alzheimer’s Disease, Multimodal, Neuroimaging data, Convolutional Neural Networks, Mixture

of Experts
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IepiAnyn

H vooog AAtoxaep eivat pia g avaotpePiin VEUPOoeKPUAIOTIKY acbéveila rtou ripokalei coBapég
BAdaBeg ot okEWn kat anoteAet v €B86o1n Kupla atrtia Savatou naykooping. H éykatlpn diayveon
naidel kaboplotkd podo, daitepa oto otddio g HIag Yvwotikeg e§acdevnong (avvotla), oOrovu
éykatpn napgpBaorn propet va ermbpaduvet v e§EAKEH g vooou. Neupoarieikoviotika debopéva,
oriwg ot arteikovioelg MRI kat PET, pnopouv va Bonbrjcouv otnv mpoin avixveuorn g vooou,
napéxoviag mAnpodopieg yia t1g SOPIKEG Katl ASITOUPYIKEG PeTaBoAég Tou eykedpdlou. Qotdoo,
napd ) Stabeotpdtnta moAAArmA®v arnelkovioTkev peboddwv yia tov 1610 aoBevr), n avartugn mo-
AUTPOIUK®V POVIEA@V ITOU a&l0M010UV QUTEG TI§ MANPOPOPIEG ITAPANEVEL TIEPIOPIOHEVT).

H napouoa Sutdepatiky epyacia OTOXEUEL OTNV AVIIPEIWITION AUTOU TOU KEVOU, ITpoteivoviag Kat
a&lodoyavtag poviéda tagivopnong rou xpnotpornotouv tplodiactateg MRI kat PET arneikovioelg
0Tt0 AQ1010 P1ag TIOAUTPOITIKLG ITPOCEYYIoNS. APXIKA, epappodoupe eéva Tpiodidotato ZUveAIKTIKO
Neupwvikd AIKTUO yla v €§ay®yn XapaKinplotKoV, aKOAOUBOUIEVO Ao TPELS TEXVIKEG OUVOU-
aopou TANPOPOPI®V: AIAT OUVEVMOT] Xapakinplotikewv, Gated Multimodal Unit kat pnxaviopo
npoooxrg pe muAn. Ta i Bedtiwon g axkpibelag tadvounong Kat g UTIOAOYIOTIKAG TTOAU-
mMAOKOTNTAG, evoapuatm®voule éva Mixture of Experts p1oviédo, 1o oroio erméyetl Suvapika ta 1mo
oxetkda urodikrua yia kabe mpoBleyn. TéAog, xpnowporooupe v texviky Grad-CAM yia va
OITTIKOITO|OOULE TIG TIEPLOXEG TOU EYKREPAAOU ITOU oUPBAAAOUV OTIS ArTOPACELS TOU POVIEAou, O1-
aodadidoviag 1 Srapdvela Kal TV EPUNVEUCTHOTNTA TOU GUOCTIATOG.

Ta arotedéopata deixvouv 6t to GMU poviédo niEtuyxe akpiBela 95.47% kat e1dikotnta 96.73%
otV tagivopnon uylov Kat P acbevov, Senepvoviag tig uplotapeveg pebodoug axprs. Ermrmiéov,
oupopeva pe v avaiuon Grad-CAM, 10 povi€éAo eviortidel mePloxEg Tou eyKedPAAou rou oxetiov-
tat pe 1 vooo oe aneikovioelg MRI kat PET, pe dadopetikd potiBa evepyoroinong yla kabe
1€06080. AUTO 10 anotéAeopia AnodeIKVUEL TV ATOTEAEOPATIKOTNTA THG ITOAUTPOITKNAG OTPATNYIKNG
ot dayveon g vooou Adtoxdtlpep, emBeBaidvoviag TNy CUPMANPOUATIKY @Uon tov MRI kat

PET ansikoviosov.

Aterg KAe1ba

Nooog Adtoxdapep, ITloAutporuikn mpoogyyilon, Zuvedikukda Neupovika Aiktua, Neupoareikovio-

KA 6edopéva

Diploma Thesis



to my parents



Euxapilotieg

Apxikd, 9a 110eda va eKGPACK TV EUYVEOIOOUVI HoU otov ermBAénovia pou, kabnynt Anpnipto
AoKOUVI], Y1d TV £QITIOTO0UVE] TTOU 10U £6e1§e Kat v avdbeon evog 1000 evdiapépoviog Sépartog
yla 1 Sumde@patiky pou epyaoia.

Emiong, 9a 1nBela va suxapiotjoe Seppd tov Hidaktopa Aouxkd HAla, tou ormoiou n moAutiun
KaBodnynon kat apéplotn unootrpign UnHpEav KATaAUTIKEG Yia TV 0AOKANP®OL AUtng tng £p-
yaoiag.

TéAog, €va PEYAAO €UXAPIOTO OTOUG PIAOUG POU KAl OV OIKOYEVELA 110U, TTOU JIE T OUVEXT] TOUG
otpin, Vv KAtavonorn Kat ty evlappuvor) toug otabnkav Sirda pou oe kabe Pripa autng g
dradpopurng.

Athens, February 2025

Anthi-Maria Vozinaki

Diploma Thesis E






Table of Contents

Abstract

MepiAnyn

Euxapiotieg

1

2

3

Exteviig sAAnviky nepiAnyn

1.1 E0ayOVI] . .« v v v vt e e e e e e e e e e e e e e e e e e e
1.2 Tleproptlopol mPoNyoulevey PHedOdmV . . . . . . . . e e e e
1.3 Aebopéva kat [Tpoemedepyaoia . . . . . . v v v v v v v s e e e e e
1.4 TIpotewodpevn) MeSoboAoyia . . . . . . . o o v v i i e
1.5 AMOTEALOHATA .+« v v v v e e e e e e e e e e e e e e e e e e e e e e e e

1.6 Zupnepdopata kat MeAdoviikeég Emektacels . . . . . . .. Lo w e e e e

Introduction

2.1 Alzheimer’s Disease . . . . . . . . . . . . . . 0
2.2 Diagnosis of Alzheimer’s Disease . . . . . . . . . . . . .. . ..
2.3 Deep Learning techniques for AD diagnosis . . . . . . . . .. ... ... .....
2.4 Structure of the Thesis . . . . . . . . . . . . . . L s

Theoretical Background

3.1 Machine Learning . . . . . . . . . . . . ...

3.2 Neural Networks . . . . . . . . . . . . . . e
3.2.1 Biological Neural Networks . . . . . . . . . ... ... ... ........
3.2.2 Artificial Neural Networks . . . . . . . . . . . ... ..o
3.2.3 Multi-Layer Perceptron . . . . . . . . . . ... 0
3.2.4 Activation Functions . . . . . . . ... . 000000 oo
3.2.5 Loss functions . . . . . ... . .. L o e
3.2.6 Neural Network training . . . . . . . . . . . . ... ... ...
3.2.7 The problem of overfitting . . . . . . . . . ... ... .. ... ... ..
3.2.8 Types of Neural Networks . . . . . . . . . . . . . . ...,

3.3 Convolutional Neural Networks . . . . . . . . . . .. ... ... ... ...
3.3.1 Convolutional Layer . . . . . . . . . . . . ... e
3.3.2 Pooling Layer . . . . . . . . . . e
3.3.3 Fully Connected Layer . . . . . . . . . . . . . ...

3.3.4 Batch normalization . . . . . . . . . . . . .. e

Diploma Thesis m

17
17
18
18
19
27
30

33
33
34
34
35



TABLE OF CONTENTS

3.3.5 Dropout . . . . . . .. e e e e 50

3.3.6 Limitations of CNNs . . . . . . . . . . . . . e 50

3.4 Mixture of Experts . . . . . . . . . . .. 51
3.4.1 Gating Network . . . . . . . . . . . .. oL 52

3.4.2 Sparse Activation . . . . . . . ..o Lo e 52

3.4.3 Trainingof MOE . . . . . . . . . . . . e 53

3.5 Feature Fusion Techniques . . . . . . . . . . . . . . oo 54
3.5.1 Gated Multimodal Unit . . . . . . . . . . . .. ... ... ... ... ... 54

3.5.2 Attention mechanism . . . . . . . . . ... 56

3.6 Explainability in Deep Learning . . . . . . . . . . . . ... o000 58
3.6.1 Grad-CAM . . . . . . . . . e 59

3.7 Hyperparameter Tuning . . . . . . . . . . . . . . . o 0o 60
3.7.1 Methods . . . . . . . . . . . . e 60

3.7.2 Weights &Biases (W&B) . . . . . . . . . . . o e 61

3.8 Evaluation of Machine Learning Algorithms . . . . . . . . . ... ... .. .... 61

4 Related Work 65
4.1 Limitations of the state-of-the-art approaches . . . . . . .. . ... ... ..... 69

5 Dataset and Preprocessing 71
5.1 The Alzheimer’s Disease Neuroimaging Initiative . . . . . . . . . . .. ... ... 71
5.1.1 Data OVerview . . . . . . . . . . . Lttt e e e e e e e e 72

5.1.2 Preprocessing Steps . . . . . . . . .. L. e e e e 73

6 Methodology 77
6.1 CNN Architecture . . . . . . . . . . . . e e 78
6.2 Feature Fusion Techniques . . . . . . . . . . . . . .. 0. 79
6.3 MOoE architecture . . . . . . . .. ... 81
6.4 Experimental Setup . . . . . . . . . . L L e 82

7 Results 85
7.1 Results of the whole architecture . . . . . . . . .. ... ... .. ......... 85
7.2 Grad-CAMresults . . . . . . . . . . o o e 86
7.3 Comparison of our best results with preliminarywork . . . .. .. ... ... .. 87
7.4 Ablation Study Results . . . . . . . . . ... Lo 88
7.4.1 Results without the MoE framework . . . . . .. ... ... ........ 88

7.4.2 Results of the unimodal models . . . . . . . ... ... ... ........ 88

8 Conclusion 89
8.1 Future Work . . . . . . . . . . e 920
Bibliography 94
List of Abbreviations 95

m Diploma Thesis



List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

3.13
3.14
3.15

5.1

5.2

5.3

6.1

Aladikaoia mpoenetepyaoiag 6ebopévov MRIkat PET . . . . . . . . . . . . .. ..
H ouvoAikn peBododoyia autng NG €pVACIAS  + « v v v v v v v e e e e e e e e
MeBoboAoyia e€ay®yNg XAPAKUNPIOTIKGOV « .« v v v v v v v e e e e e e e e e e e e
AmA1] OUVEV®OT] XAPAKTNPIOTIKOV OE £va KOWO d1lavuopa . . . .« « o o v o v o . .
Xprion GMU y1a 1) OUVEVOOT] TOV XAPAKTINPIOTIK®OV .« « « « « v v v v v v v o o o u
Efaywyn xapaxkinplotkov xopig Global Average Pooling . . . . . . . . . ... ..
Xprjon Gated self-attention yia ) ouvéveon TV XApAKINPIOTIKOV . . . . . . . . .
Xpron Mixture of Experts poviédo yla v teAikr) katnyoplonoinon . . . . . . . .
Anotedéopata Ipad-AM yia évav acBevi) pe AA . . . . . . Lo Lo oo oo

Healthy brain and brain with Alzheimer’s disease . . . . . . . . ... ... ...

Comparison of a biological neuron and an artificial neuron. . . . . . . . . .. ..
Architecture of Multilayer Perceptron . . . . . . . . .. .. ... .........
Activation fuctions: sigmoidand ReLU . . . . . . .. ... ... .........
Activation fuctions: Softmax . . . . . . . . .. ... Lo oo
Activation fuctions: Tanh . . . . . . . . . . .. 0oL oL
Architecture of a CNN . . . . . . . . . . e e e e e
Convolution with multi-chaneldata . . . . . . . ... ... ... .. .......
2D and 3D convolution . . . . . . . ... e e
Typesof pooling . . . . . . . . . . e e e e e e e
Dropoutlayer . . . . . . . . . . L e
The architecture of an MoE layer . . . . . . . ... ... ... ... ... ...
HNlustration of the GMU framework for two modalities (right) and multiple modal-
ities (left) . . . . . . e e e e e
Nlustration of the attention mechanism . . . . . . . . ... .. ... .......
Gated self-attention . . . . . . . . . .. .0 e

Illustration of Grad-CAM visualizations . . . . . . . . . . . . . . . ... .....

MRI of an NC, MCI, an AD patient. These are images of MRI scans from ADNI
patients. The images are oriented in coronal, sagittal, an axial view. . . . . . . .
Visualizations of participant distributions: (a) Age distribution, (b) Gender distri-
bution, and (c) Diagnostic group distribution. . . . . . ... ... ... ... ..

Preprocessing pipeline for MRl and PET scans. . . . . . . . . . .. ... .....

Methodology pipeline . . . . . . . . . . . L e

Diploma Thesis m



6.2
6.3
6.4
6.5
6.6
6.7

7.1

LIST OF FIGURES

The CNN architecture used in this thesis

Simple concatenation of the MRI and PET features

Self-Attention mechanism after the concatenation of the MRI and PET features .

MOoE architecture of this thesis

Grad-CAM results for an AD patient

GMU for the concatenation of MRI and PET features

Feature extraction without Global Average Pooling

Diploma Thesis



List of Tables

1.1
1.2
1.3
1.4
1.5

3.1

6.1

7.1
7.2
7.3
7.4

BEATIOTEG TIHEG UTIEPTIAPAPETOOV « « « v v v v v v e e e e e e e e e e e e e e e e e 27
ATIOTEAEOPATA TOU OUVOALKOU PAG HOVIEAOU . . . v v v v v v v e e e e e e e e e 27
ZUYKP101 TRV AnoTEAEOPATOV PNag He iponyoupeveg pebBodoug . . . . . . . . . . . 29
Arnotedéopata xepigto povteAo MoE . . . . oL L L Lo oL 30
AMotedéouata T@V POVIEADV PE PIA TPOTUKOTITA « « « « + v v v v v e e e e e e e a s 30
Confusion Matrix . . . . . . . . . . e e e 61
Optimal hyperparameters used for the experiments. . . . . . . . . . .. ... .. 83
Performance of the final architecture . . . . . .. ... ... ... ........ 85
Comparison of our best results with preliminarywork . . . . . . . . .. ... .. 87
Performance without the MoE framework . . . . . . . ... ... ... ...... 88
Performance of the unimodal models . . . . . . . ... ... ... ........ 88

Diploma Thesis






Chapter E

Erteviig eAANVIKL nepiAnyn)

1.1 Euwayoyn)

H Nooog AAtoxdep eival piia xpovia, VEUPOEKPUALOTIKI] aoHEvela Kal 1 KUPLOTEPT attia avolag,
KaBag eubuvetal ya 1o 60% £ng 80% tev neputtdosmyv.. H vooog xapaktinpidetat anod mpood-
EUTIKI] EKITI®OOT TG PvIIng, SUOKOAla OtV €rmKOV®OVIA KAl TOV ITPocavatoAlopo, S1aKupavoelg
ot 81a6eon, anwldela KVHTPROV Kal otadlakr) peiwon g Asttoupykomrtag. To 2019, mepirou
5,8 exatoppupla Apepikavoi ave tov 65 £tv dayvootnkav pe AAToXAaep, eve ot IPoBALYeLg
delyxvouv Spapatikrn avinorn tOv MeEPIOTATIKAV Ta £ropeva Xpovia. ErmumAéov, 10 ekupopevo KO6o-
10G Uyelovopikng nepiBaAyng édptaoce ta 305 droekatoppupla 6oddpla 1o 2020, emBapuvoviag
onpavukd ta cuotmpata vyeiag. Ot attieg tng vOoOU avantuooovial SEKAETIEG TIPV A0 TV Q-

(@PAVIOT TRV IIPAOTOV CUPITIOPATOV, YEYOVOG TTOU KaO10Td v £yKaipn diayveoon 8iaitepa SUOKO0AT.

e poplako eminedo, n vooog oxetidetal pe 1 ouoorPeuUon B-apuAoeldov MAAK®Y OT0 e§WIEPTIKO
TOV VEUPIKOV KUTIAP®OV Kdl MPOIEIVNG tau OT0 £0®MTEPIKO TOUG, OONy®VIag Ot EKPUAICHO T®V
VEUPOVAV, PEI®ON TOV OUVAYPERDV KAl EYKEPAALKT] ATPOPia, KUPIOG OTOV UTITOKAITO KAl TOV (PAOL0,
MEPLOXES KPIOHES Yia T Pvhpn Kat ) Anyn anodpdoewnv. H @uolodoyikn Aettoupyia tou eyke-
(PAAOU £TNPEACETAL TIEPATTEP® ATTO TH PEWHEVT] IKAVOTNTA TOU va PetaBoAilet ) YAUKOLr, T0 KUplo
Kauowo tou. Ilapayovieg Kivouvou replAapBavouV YEVETIKOUG KAl ITEPIBAAAOVIIKOUG TTAPAYOVIES,

KaBwg Kat ouvrBeileg ToU TPOTTOU {WNG.

‘Ocov agopd 1 dayveor g vooou, Sev umdpyel povadikr e§€taon mnou va v ermbBeBaimvet.
'Eto1, o1 e161koi Paocifovtal oe ocuvduaopo pebodwv, o omoiog reptAapBavel 10 10TOPIKO TOU AO-
9evoug, veupoloyikeg eSetdoelg, aktvoypadieg eykedpalou Kat teot pvAaung. Ermuméov, egetaoelg
aipatog Bonbouv otov AMOKAEIOHO AAARV AtV Avolag, OTG OYKOol 1 eyKRepadika erneicoda. H
TeEXvoloyla amelkoviong 10U eykedpadou €xel Pedtidost onpavukd ) didyvaorn. H Topoypagia
Exnoprning [Moditpoviev (PET) avixveuet B-apuloeideig mAdakeg Kat tov petaBoAiopo g YAukodng,
eve n Mayvnukn Topoypadia (MRI) evroridel atpodia otov mrokapno kat tov @gAotd. O ouv-
duaopodg autwv v peBodav autdavet v akpiBela tng H1AyveOoNg Katl EMMTPEIEL IO OTOXEUPEVES

Separneieg [1, 2].

H napovoa Sutdepatikn) epyaocia xpnotporiotet e€etdoeig MRI kat PET A0y g CUPIMANPOUATIKLG

mAnpogopiag rov rnmapexouv ot H1ayveor TG VOooU. XTI CUVEXELD, ITAPouotddovial ol Ieploplopiol
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Chapter 1. Extevr|g eAAnvikr) repiAnyn

nponyoupevev Peb0bwv OTo OUYKEKPIPEVO TIPOBANIA, TEPLyPAdETal T0 oUVoAo Sedopévav Tou
XPNOW0TIO|ONKe, 1] MIPOEIESEPYATia MTOU EPpAPPOOTINKE, 1 Ipotevopevn pebododoyia, kabmg kat

1a arnoteAéopata Katl ta CUPTMEPACHATA TTOU TIPOEKUYAV.

1.2 IIepropilopoi MPoOnyoupevev pedodov

B1BA1oypad1ki) avaoKo o1 1oV UPotapevey pefodmv avadelkvuel 0plopévoug IePloploplous Kat
eAAelpelg oto OUYKEKPIIEVO ITPOBANIA. APXIKA, Ol ITOAUTPOITIKEG ITPOOEYYioelg Sev £xouv pedetn Ot
EMAPKROG. AKOPA Kdl OTI§ TIEPUTIOOEIS OP®OG OTTOU £X0UV EPAPLIOOTEL, 1] EVOOUAT®OT) TV dtapope-
TIKGOV TPOTUKOTL TRV IEPLopiletal ouvhOwg o Pia arAn ouveéveor) Toug, rtapaBAénoviag tg petady

T0Ug aAAnAermdpaoceg.

EmumAéov, évag onpaviikog meploplopog agopd v aduvapia tov uplotdpevav pebodmv va pocap-
poédovral Suvapikd ota Sedopéva €10660u. Ot meP1o0oOTEPES TIPOOEYYioelg Paoidovial oe UKvA
emineda yla v TeEAKE KATnyoplonoinon t@v acfevav, ta oroia, A0y® g OTATIKIG TOUG @UOoTG,
duoxolAevovial va IPooappootouV Oe Mo MePimAoka Kat erepoyevr) dedopéva. Auto aroteAet
Kplowo {ftnpa oty mepimeon g avolag, piag diatapayng mou amno tr @uor] g Iapouotadet

peyaldo dayveotiko Babpo duokodiag.

'Evag akopn onpaviikog meplopiopog apopd v EPPNVEUcIIOTTA TV poviedev. Ta replocotepa
povtéda nou €xouv avarntuxBei Aettoupyouv wg "pauvpa kKoutd”, orou AapBavouv dedopéva e100-
dou kat mapayouv arotedéopata £§060u, XWPIG va mapéXouv MANPoPopieg OXETIKA HE Ta XAPAK-

TPOTIKA TTOU ouvEBaAav otV TeAK) TOUg anodaor).

Auto arotedel onpavuko mpoéBAnpa oty KAIKY mpddn, Kabog yia va HItopEoel £vag ylatpog
va aglodoyrost ta arnoteAéopata ToU PHOVIEAOU, £ival arapaitnto va yvepilel moieg rmeploxEg tou
eyrepalou Jewpouviat maboroyikeg. H éAdenyn dadpaveiag Suoxepaivel v ePRImotoouvy Kat v

EQAPPOYT] AUTOV TV PeBOSrV otr H1ayveon Kat Ty KAWVIKY ANYn aropAacenmyv.

1.3 Acdopéva kat IIpoenedepyaocia

Zinv napouvoa gpyaocia xpnotponotr|fnke to ouvolo dedopévav ADNI, 1o omoio mpoépyetat amo pa
EPEUVITIKY ouvepyaoia rmou &ekivnoe 1o 2004 e 0T6X0 TtV avartudn Plodektov yia Vv £yKalpn
dlayvoon kat v napakoAoudnon tng £5EAENG tng vooou Adtoxdaipep. To ADNI cuyKevipovel
debopéva arno roAdarirég mnyég, onwg MRI, FDG-PET, yeveukég avaluoelg Kal KAWIKEG adi-

oloynoeig, dnuioupydviag £va OAOKANP®IEVO KAl ITOAUTIHO GUVOAO TTIANPO(OPIRV Yid Tr VOOO.

O1 ouppetéxovieg neptdapBdavouv vyt dropa (NC), dtopa pe frua yvooukr egacbévnon (MCI)
Kat aoBeveig pe Adtoxapep (AD). 'Eva aro ta kupla misovektpata tou ADNI eival n moAtukn
avolXtrg nPooBaocng, MOV EMMIPEIEL O EPEUVITEG A0 OAO TOV KOOHO va aglorolouv ta dedopéva

péo® tng mAatpoppag LONI.

18 Diploma Thesis



1.4 TIpotewvopevn MeSodoAoyia

[Tpokepévou va ermAexBouUv 01 MO MOIOTIKEG E1KOVEG TOU OoUVOAou Hebopévev akodoubrOnke 1)
pebodoroyia twv Song et al [3]. Zuykekpipéva, smAéxOnkav MRI e1koveg Tou €X0UvV UTIOOTEL
gradwarp yla 810p0worn g YEMUETIPIKNG Mapapopdpeong g €wkovag, Bl correction mou av-
upeeri¢el ug dakupavoelg évtaong kat N3 bias field correction yia 6§uvon kopugmv. Ta tg
PET ewkoveg erudéxOnkav ekeiveg rou £€xouv evbBuypappiotet pe to ipwto kapé (Co-registration of
dynamic frames), £€xouv urtoAoyiotel wg PECOG 0pog TV Kapé (Averaging) Kat £Xouv TumoroinOet
oe otabepo mAéypa 160 x 160 x 96 voxel. 'Etol mapoldo mou ta 6edopéva tou ouvodou eivat
MOAU MMEP1000TEPA KATAANEape 0 P1OVo 379 aoBeveig MPOKEIEVOU va £XOUHE UPNANG TO10TNTAS

bedopéva.

I ouvéyxela, n mpoenedepyaocia v ekovov MRI &exiva pe v adaipeon tou kpaviou (skull-
stripping) péow tou epyaleiou FSL (FMRIB Software Library) kat ouykekpipéva tou gpyaleiou
Brain Extraction Tool (BET), anopakpuvoviag pn £yKedpaAikoug 10ToUg oniwg Kpavio kat dpua,
yla rmo otoxeupévn avdduon. O ouviedeotr|g KatapAiou opiletat oto 0.5 yia o0oppormpévn 8-
ayoyn, eve sdpappodetal 610pbwon tou bias field yua BeAtioon ng rmmoomtag g ekovag. Xin
ouvéyetla ot eikoveg MRI euBuypappidovrat pe 1o mpotunio MNI152 péow tou epyaleiou FLIRT, mou
610p00vel XWPIKEG B1aPOopPEG PE YPAPHUIKO PETACKHATIONO (HETATOTIOEG, TIEPIOTPOPES, KATHAK-
won). Avrtiotoixa, ot ewkoveg PET ugiotaviar skull-stripping kat co-registration pe tg avtio-
toixegs MNI euBuypappiopéveg MRI eikoveg, Siatnpoviag eviaio mpooavatoAlopo KAl avaiuor,

H1eukoAUvovtag T0 POVIEAO OtV PEENEa e§ay®Y XAPAKTPIOTIKGOV.

IMa arobotikdtepn enedepyaoia, o1 eikoveg PET kat MRI nepikorntovtat oe avaluon 160 x 180
X 80, e OTOXO0 11 HEI®ON 1§ UMOAOYIOTIKNG TTOAUMAOKOTNTAS. X1o Lxnua 1.1 mapouciadoviat
1a otddila g npoenedepyaoiag v dedopévov MRI kat PET yua to 1610, tuxaio dtopo pe vy

eYREPaAAO.

1.4 TIIpotewvopevn MeBodolAoyia

H ouvolAikr) pebobodoyia tng mapouoag epyaociag rnapouoialetat otnv Ewova 1.2. Anotedeitat
ano v egaynyn xapakmplotikev arod tg MRI kat PET ekdveg, pe ) xprion evog 3D cuveAik-
TKOU veupwvikou Siktuou. Ta edayodpeva XapakinplotiKa CUVEVAOVOVTIAL PE TPELS dlapopetikoug
TPOIToUg, IPOKEIPEVOU va dlepeuvnBel 1 BEATIOT oTpATYIKY CUVEUAOHOU TOUG. XTI OUVEXELd, 1|
TEAIKT] KATNYOP10MOiNon 1oV acBevav mpaypartornoleital peéo® tou poviedou Mixture of Experts.
ErumA¢ov, epappoletat avaiuorn Grad-CAM e 0toX0 TNV epunveia 1oV PoBAEYPE®V TOU POVIEAOU,

ETTPETIOVIAG TNV OITTIKOITOIN O] TV MEPLOXAV IOV ouveéBaAav otV TeAIKY aropaot.

'‘Ocov apopd Vv e§aynyr XapaKIinplotkeov Xprnoponowoape 3D Zuvediktika Neupovikd Alktua,
1a oroia eival ege1dikeupéva veupavikd diktua oxebiaopéva yia tnv enegepyaocia Sedopévav pe
X®WPIKN 6oPr), Onwg e1KOveg Katl Bivieo. Alatnpouv TS XOPIKEG OXEOEIS KAl T 1EPAPYIKA XAPUK-

TPOTIKA PE0® H1AG APXITEKTOVIKEG Baoiopiévng o otpopata.
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Figure 1.1. Awabucaoia mpoeneepyaoiag debopusévov MRI war PET
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Figure 1.2. H cvvojikn usdobofoyia avtrg g epyaoiag

'Eva turko Zuvedikuko Neupovikd Aiktuo rieptdapBavel OUVEAKTIKA, EveEPYOITOinong, urodetypa-
toAnyiag (pooling) kat mAnpwg ouvdedepéva orpopata. Ta OUVEAKTIKA OTpOUATA AVIXVEUOUV
potiBa, ta orpopata pooling peiwvouv g Siactdoelg, Kal ta MANPeSg ouvdedepéva otpopata ouy-

KEVIPMOVOUV Td XAPAKINPIOTIKA Yld TV TEAIKE TIpOBAey ).

To ouveAMIKTIKO OTpwHa arotedel 10 Mo Baocko otoxeio 1oug, Kabwg edpappddel pidtpa ota de-

dopéva e10680u péow g IPALNG g OUVEMENG, EMMITPEITOVTIAG THV AVIXVEUOT] TOTIK®OV XAPAKINP10-
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1.4 TIpotewvopevn MeSodoAoyia

KOV oT1g e1koOveg. H mpddn tng ouvédidng meptdapBavet ) petaxkivron Kabe @idtpou nave ota
debopéva €10660U Kat 10V UTIOAOY10110 TOU OTAOPIoEVOU aBpoiopatog TOV TIHMV EVIOG TOU mediou
arodoxrg (receptive field). Auto mapayet Evav XAptn XAPAKIPIOTIKOV ITOU avadelkvyel onpav-
TIKA XOPKA potiBa KAl XapaKInplotikd, Oneg aKPEG, UPES Kal oxnuata. Ot tipég tou mediou
arodoxrg egaptmviatl aro ta dsdopéva £10660u: yia povoravadika dsdopéva, 6mwg aorpdpau-
PEG EIKOVEG, O1 TIHEG AVATIAPIOTOUV EVIACEIS POTEWVOTNTAG, Ve yia multi-channel 6edopéva, omnwg

RGB g1koveg, mepiEXouv MANPopopieg yla ta pia xpopard.

To tp1odldotato ouveMKUIKO otpopa arotedel enéktaorn tng Siodidctatng ouvéAEng, mpooap-
poopévn yia tpiodiactata Sedopéva, 0rwg akoAoubieg BIVIeo 1] OYKOPETPIKEG 1ATPIKEG EIKOVEG (TT.X.
aSoVIKEG Kal payvnukeg topoypadieg). e avtibeon pe ) Siodtaotatn ouveérn, onou o ruprjvag
epappodetatl povo oto UYog KAl To TMAATog, otnv Iplodidctatn mpootibetal kat n §iactacn tou
BaBoug. Autr] 1 mPOCOHNKn erMTPENEl Ty £§Ay@yI] OYKOUEIPIKMOV XAPAKINPIOTIKAV, Kad10Toviag
) 16060 181aitepa ATOTEAECPATIKI] OTNV AVIXVEUOT OUVOET®V aVOHRAAI)V, OTIOG OyKot 1) BAABeg

IOV eKTelvovTal 0g TIOAAATTAEG TOHEG 1ATPIKOV EIKOVGV.

TMa v e€ayoyn XapaKiplotikev, akodouboupie ) pebodoloyia rmou aneikoviletat ot Ewova 1.3,
O1TI0U Xprotporiolovpe §Uo rmavopooturia adid Sexwpiotda povortatia yia tg MRI kat PET eikoOveg.
KdBe povonidtt anotedeital amno t€00epa CUVEAKTIKA eTtineda, akodouboupeva amno pooling smnineba
yla 1 peioon tov daotdoswv. EmumAéov, epappoddetat éva global average pooling eminedo yua
nepattépw ouvprieon g rnpodopiag. Télog, ypnowporoeital éva dropout emimedo yia v
aroguyr] g unepeknaidevong. Ano ) Swabikacia auvtr), e§ayoviar 128 xapaxktnploukd yua

1g MRI s1koveg kat 128 xapaxkinpiotukd yia g PET ewkoveg.

ﬁ&

Conv block (X,¥)
Conu3D(XY)

Conu bloek (3,16)
MaxPool3d(2,2,2)
Conv block (3,32)
MaxPool3d(3,3,3)
Conv block (3,64)
MaxPaool3d(l,u,u)
Conv block (3,128)
MaxPool3d(3,3,3)
Dropout(0.5)

GlabalAveragePaaling3D

Bateh Normal [¥)

RelU

Conv block (3,32)
MaxPool3d(3,3,3)
Conv block (3,64}
MaxPool3d(t,u,4)
Conv block (3,128)
GlabalAveragePaaling3D
Dropout(0.5)

MaxPool3d(3,3,3)

N
[ |
Conu block (3,16)
MaxPool3d(2,2,2)

Figure 1.3. Mcdobooyia efaywyns xapaKimpiotkov

Ta 128 autd XapaKtnplotika aro KABE TPOrKOTTA Td OUVEVOVOUHE O £va Koo diavuopa pe
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Chapter 1. Extevrig eAAnvikn nepiAnyn

1pelg Sadopetikeég npooeyyioels. H mpotn agopd v amdn ouvéveon Toug Pe arnotedeopa £va

diavuopa Siaotaong 256, onwg @aivetal kat oty ekova 1.4.

PET features

Figure 1.4. Anin ouvévwon xapakmplotkov os éva Kowo diavuoua

H 8eUtepn mpooéyyion apopd £vav £5UIvo pnxaviopo Anyng arnogdoswv, v Gated Multimodal
Unit (GMU). H GMU eivat évag pnxaviopog oxedlaopévog yla v IPOCAPHIO0TIKL) EVOIIO o1
XOPAKINPLOTIK®OV ATto ITOAAATTAEG Tportkotnteg. Pubnidoviag Suvapikd t oupBoAr) kabe tporukotn-
TaG, EIMITPEIEL OTO POVIEAO va KataotéAdet ) Atyotepo onpavuky). Ma &vo tporukotnteg (fi rat

f2), n GMU Aettoupyei wg e€1g:

h; = tanh(Wfi + by), (1.1)
hg = tanh(Wof5 + by), (1.2)
z = o(Welf1: /2] + bo), (1.3)
h=z0h;+(1-2)0 hy, (1.4)

Ot mapaperpot tng GMU avanapiotavial og:

0= {W;, Wy, W,}, (1.5)
OTIoU :
e f1 Kai f5 eival Ta XapaKInplotika £10060U amnod 1ig 6U0 TPOIKOTTES.

o Wy, Wy, W, eivat ot eknatdeUolpol mivakeg Bapodv yia 11§ aviioTolXeg TPOTKOTTEG KAl TOV

pnxaviopo gating, oxnuati¢oviag to oUvoAo napapétpev 0.
e by, by, b, eivat o1 avtiotoiyot 6pot bias.

e z sival 1o gating iavuopa, 1o omnoio unodoyidetal pE€o® g CUYHOEISH|§ ouvaptnong (o) kat

KaBopilel I oXeTKY onpaocia KOs TPOIIKOTNTAG.

e h; kat hy eivatl o1 PETACXNPATIOPEVEG AVATIAPAOTACELS TOV XAPAKINPIOTIKOV £10060U, 10U

8iépyxovtat ano pa tanh cuvdptnorn evepyortoinong.

m Diploma Thesis



1.4 TIpotewvopevn MeSodoloyia

e h egival ) TEAIKY OUYX®VEUPEVT avariapdotact), ITOU UTIOAOYileTal @G €vag otabpiopévog ouv-

duaopog twv h; kat hy, pe 1o gating Sidvuopa z va edéyyet ) oupBoAr) KABs TporuKkoTTIaAg.

To ouvolo mapapérpwv PeAtiotornoleital katda ) dadikacia eknaidevong wote va Sraocpadilet
oTl 0 unxaviopog gating npoocappodetatl Suvapika ota 6edopéva e10o6ou. H apyitektovikn g
GMU @ativetat otnv eikova 1.5 kat 1o S1dvuopa XapaKinploTiK®V MoU IPOKUITIEL £Xel eriong 128

XAPAKTNP10TIKA.

128

MRI features PET features

Figure 1.5. Xprjon GMU yia 1t OUVEV®OON TOV XapaKTpLoTIK©OU

H tpitn mpoogyyilon mou Xprotponow)oape yld I OUVEVAOT] TRV XAPAKINPIOTKOV gival 1) Xpron
tou Gated self-attention. O kUp10g OTOX0G 11AG PE AUTH TNV TEXVIKI] £lval va POVIEAOTIOW)COUHE

T1G EVOOTPOTTIKEG KAl HlaTportikeég aAAnAemdpdoelg Tautoxpova.

To self-attention sivai évag pnxaviopog mou emipEnel o€ KABs otoixeio piag akoAoubiag va divet
Bdapn ot ouoxétior) tou pe d0Aa ta unddotra, PeATidvoviag 101 TV KAtavonor) TV §apTr0E®V 010

mAaiolo pag eioodou.

O Yu et al. [4] ipdterve pa napaAdayn tou KAaowkou self-attention movu pe ) xprjon pag pdokag

M, evrortiovtal Kat 51atnpouvidal OVo Ol IO ONAVIIKEG CUCKETIOEIG:

M = o(FCy (FCL(Q) © FCE(K))). (1.6)

010U FCS Kat FC:; etvat mAnpeg ouvdedepéva ermineda mmou npoBaAdouv ta @ kat K o évav Kowo
xwpo. H otypoeidng ouvdaptnon o(-) e€aopadilet ot ot tipég tou M xupaivovrat oto Staotnpa (0,1),

PIATPAPOVIAG ATIOTEAEOHUATIKA TA AYOTEPO ONIAVIIKA XAPAKINPLOTIKA.

ErmumAéov, n pdaoka M opidetatl og:
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Chapter 1. Extevr|g eAAnvikr) repiAnyn

M € R™? (1.7)

nou avuotoixei otig 6vo pdokeg My € R™ kat M. € R™, ot oroieg oxetidovtal pe ta Xapaktnpiotka
Q xat V, avtictoixa.

1 ouvéxela, to arotédeopa yia 1o attention map vrodoyiletat wg €&ng:

© Mg)(K © Mg)"
AY = softmax((Q o) x) ) (1.8)
Vd
TéAog, 1 TEAIKT] Avarapdotact) XAPAaKINPlOTIK@V IIPOKUITTEL ©G
F = A9V, (1.9)

Aedopévav 1wV 6U0 TPOIMKOTNI®OV, TO IPAOTO PBrd IoU eKTEAECAIE €ival 1] OUVEVROON TOV Avd-

MAPAOCTACEDV TOUG :

Z = [MRI; PET) (1.10)

E86, 1n ouvevopévn avarapdotaon Z opidetat wg Z € R™4, énou m = 4 + 4 xkar d = 128. Ta
va daopadiotel 6l dlatnpeital n WPk rAnpogopia, £§AyoUpE XAPAKINPIOTIKA [PV Ard v
epappoyn tou global average pooling, avtipetonioviag 11§ Xepikeg draotdoelg og tokens, onwg
paivetal oto Xxnua 1.6. Auto srmrtpénel otov pnxaviopo self-attention va kataypdypetl xopikeég

eCaptroelg petady twv Sedopévmv.

Ux128

Conv block (3,16)
MaxPool3d(2,2,2)
Conv block (3,32)
MaxPool3d(3,3,3)
Conv block (3,64)
MaxPool3d(4,4,4)
Conv block (3,128)
MaxPool3d(3,3,3)

G[ub:lﬂ%n ling3D
Dropout(0.5)

U4x128

Conv block (3,16)
MaxPool3d(2,2,2)
Conv block (3,32)
MaxPool3d(3,3,3)
Conv block (3,64)
MaxPool3d(4,u,4)
Conv block (3,128)
MaxPool3d(3,3,3)
Dropout(0.5)

G[nba[hux:ﬁngﬁ[]

Figure 1.6. Eayoyn yapaxmpiotukav xwpic Global Average Pooling

Z1n ouvéxela, auty 1 avarnapdotact XPNOIOOEiTal yid TOV UITOAOY10U0 TV VARGV query (Q),
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1.4 TIpotewvopevn MeSodoAoyia

key (K) xat value (V):

Q=2 K=2 V=2 (1.11)

'Enetta, epappodoviat ot e§lowoeilg 1.6, 1.8 kat 1.9, akoAoubwviag tr) por| rmou aretkovidetat oto

Zxnpa 1.8.

ofimas (““""“”f "‘“'“)(.I
Vi

RLAX1ZB l

GlobalAvaragePooling3D e

lR’DZB

<

PET features

Figure 1.7. Xprjon Gated self-attention yia tm oUvEV®ON TOV X APAKINPIOTIKOU

'Enetta, ta ovvevopéva xapaktnpotikda divoviat oe poviédo Mixture of Experts (MoE) yiua v
TEAIKY) Katnyoplornoinon towv acfsvov. To MoE anoteAel piia nmp®@Tonoplakn TEXVIKI] Ot PNXAVIKY)
pabnorn, orou egeldikeupéva UTIOPOVIEAA evepyorolouvial Suvapikd avaloya pe v eicodo,
BeATidvoviag €101 TV AMOSOTIKOTHTA KAl TNV IIPOCAPHOCTIKOTTA TOV VEUPROVIK®OV S1IKTURV O€ TTIOAU-
moka mipoBAnpata. EtonyOn amod toug Jacobs et al. to 1991 [5] kat akoAouBel v apxr tou
divide-and-conquer Siaipoviag tov Xopo tou rpobArpatog oe roAdardovg egeibikeupévoug “el-
dikoug”. TNapopola pe pia opada e181K®V mou ouvepyalovidal yld TV €rmiAuot) VoG MTOAUTTAOKOU
npoBAnpatog, kabe expert oto MoE @épet povadikég 6§10t teg yia ) Siaxeipion ouyKekpiévav
UTIO-TIPOBANPAT®V, EMITPEIOVIAG OTO POVIEAO va ermtuxel uywnArn arnodoon. H apbpwtr) oxediaor)
10U mapéxet emiong eueAi§ia Kal epUNVEUCIPNOTA, EIMTPENOVIAG TV ave§aptnu) avdluon kat

publon NG ouveloPpopdag KABe expert.
To gating network, ocuyva avagepopevo wg router, arotedei éva Kpiolo otoxeio g apXlieK-
tovik)g. O KUplog poAog tou eivat va avaluel ta dedopéva €10060u Kat va mpoodlopidet oot

experts eivat mo katdAAndot yua 1 Siaxeipion tou ekaoctote mpoBAnpatog. Autn n dwadikaoia

neplypagdetal pabnpatkda og:

y= Z G(x)iEi(x) (1.12)
i=1
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Figure 1.8. Xpron Mixture of Experts povtéflo yia v teAkn Katnyoplomoinon

orou G(x); etvat 1o gating weight nmou anobibetat otov i-00to expert BACEL TOV XAPAKTNPIOTIKOV
g €10060u x, eve E;(x) eival n €§odog 10U i-ootou expert. To gating network Siaodalidel ou

ermAgyovtatl ot 1o oxetikoi experts, arnodidovrag duvapika ta kataAAnia Bapn.

O pnxaviopog Softmax Gating, rou eworyayav ot Jacobs et al. to 1994 [6], urtoAoyidet ta gating
weights moAAarnAaciadoviag v eicodo x pe évav exknaidevorpo nivaka Papeov Wy kat kavov-

IKOITOIWVIAG TI§ TIHEG PEo® g softmax function:

Go(x) = Softmax(x - Wy) (1.13)

To arotédeopa Gy(x) avarnapilotd ) onuaocia kabe expert, s§aopalidovrag ot ta Bapn sivatl pun
apvnukda kat abpoidouv oto 1. IMaporo mou autr) n pEB0dog eival amAr Kal AroTeEAEOPATIKT), EV-
gpyorolel 6Aoug toug experts yla kaBe ei0obo, aufavoviag v UMOAoy10TIKY) roAurAokotta. Ot
pnxaviopot sparse gating avupeteni{ouv auto 1o {tnpa, emAEyoviag POvVo ToUg IT0 OXETIKOUG

experts yia kaBe €icodo.

H ¢vvola ng apatrg evepyoroinong onwg neptypadnke arno toug Shazeer et al., naidel kpiowo
POAO ot PBeATi®Oon g UMOAOYIOTIKAG MOAUTTAOKOTNTAG X®PIG va HEI®VEL T X®PNTIKOTNTA TOU

povtedou.

G(x) = Softmax(KeepTopK(H(x), k)), (1.14)
orou G(x) eivat 1o gating Siavuopa, n ripagn KeepTopK Siaopadiler apair) evepyoroinon Statnpev-
1ag povo g k tpég oto H(x) kat H(x) sivat éva 6idvuopa pe ta apxika gating scores:

H(x); = (x - Wy); + StandardNormal() - Softplus((x - Wyoise):)- (1.15)

H exnaibeuon tov MoE poviéAov amattel tv avilpetpruon g IIPOKANONG TG 100PPOTIHEVNS
Xpnong wv experts. To poviédo evoepatdvel dUo pubpiotikoug napdayovieg, to load-balancing
loss, ywa va Swavépoviat ot €icodot o opodpopda petau v experts kat to importance loss,

IOU €XE€1 WG OTOXO va HUnv PEvel Kavévag expert aypnotpornointog. Atvovial amod Tig MapaKat®

OXEO0EIG:
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1.5 Anotedéopata

Limportance X) = Wimportance * CV(Importance(X ))2 , (1.16)

Lioad(X) = Wipad * CV(LO&C](X))Z. (1.17)

Autoi o1 pubpIoTIKOL TTAPAYOVIEG EVORIATHOVOVIAL OTNV KUPLd OUVAPTN 0T KOOTOUG OOTE va OXI)-
Haticouv Tov GUVOAIKO OTOX0 ekmaibeuong:

Liotal = Lioss + @ * (Limportance + Lioad), (1.18)

OTIOU Ljpgs €lval 1 anmwlela yua ouvoAlké ovuotnpa (r.x. cross-entropy loss) kat to a ivat pia
unepriapdperpog rnou kabopiel ) oxetkn) Bapuinta v opev regularization.
[Mapakdt® @aivetal o rmivakag He Tig UIEPIIAPAPETPOUG MOV XPNOIHOoONKayv yla tnyv e5ayoyn

1OV MEPAPATOV

Table 1.1. BEAtioteg TiUES UTEPTIAPL AUETO DV

Hyperparameter Value
Learning rate (n) 1x107%
Weight decay 0.1
Batch size 4
Dropout rate 0.5
Number of experts (n) | 5
Selected experts (k) 4
Parameter a in loss 0.6
Optimizer Adam

1.5 AmnoteAéopata

O ITivakag 1.2 ouvoyilel tnv amodoon ta§vopnong tou TeAKOU Pag HOVIEAOU XPTOTOIoI)VIag
1pelg Sagpopetikég neBodoug ouyxoveuong: Concatenation, GMU xkat Attention. To poviédo

a&lodoyeitat oe tpia npoBAnpata taivounong: NC vs MCI, MCI vs AD kat NC vs AD.

Table 1.2. Anotefléopata 1ov ouvojtkou pag HovteAou

Fusion Method Task ACC SEN SP AUC
NC vs MCI 78.25+3.2 75.43+4.1 79.32+2.1 76.56+3.9
Concatenation MCI vs AD 80.13+5.3 79.24+5.8 81.21+5.5 76.83+8.1
NC vs AD 89.52+3.4 87.25+3.2 89.98+4.1 89.64+2.3
NC vs MCI 80.46 + 3.9 79.71 + 4 81.76 + 3.9 | 80.51+3.5
GMU MCI vs AD 79.13+1.1 77.23+3.3 81.36+4.2 79.94+1.5
NC vs AD 9547+2.1 | 9431+3.2 | 96.73+1.8 | 9541 +2.6
NC vs MCI 80.15+2.2 78.35+5.4 83.56+2.6 77.46%+1.9
Attention MCI vs AD 82.08+2.1 | 8143+1.8 | 8524+2.7 80.48 + 3
NC vs AD 91.53+4.7 92.28+4.4 91.07+4.7 92.29+5.2

Diploma Thesis




Chapter 1. Extevr|g eAAnvikr) riepiAnyn

To Zxfpa 7.1 anewkovider tig oruikortowrjoelg Grad-CAM mou epappootnkav oe MRI katr PET

oapoelg £vog acBevoug JeTIKOU Ot VOOO.
slice = 20 slice = 30 slice = 40
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Figure 1.9. Anotejléopata I'pad-AM yia évav aodevn us AA

O Ilivakag 1.3 mapouotddel ta arotedéopata aSloAGynong Tou KAAUTEPOU 1ag HOVIEAOU, OUYKPL-

TIKA H€ UTTAPXOUOEG TEXVIKEG:
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1.5 Anotedéopata

Table 1.3. Zuykpion tov anoteAsOUdI®U Uag Ue TPONYOUUEVES HeDOOOUG

Architecture Task Accuracy Sensitivity Specificity ROC-AUC
Unimodal approaches (MRI)
Support Vector Machine [7] NC vs AD — 86 86 -
Random Forest [8] NC vs AD — 88.6 92 -
3D CNNs [9] NC vs AD 95.39 - - -
NCvs MCI  92.11 - - -
MCI vs AD 86.84 - - -
Multimodal approaches
Stacked Auto-Encoders [10] NC vs AD 87.76 88.57 87.22 -
NCvs MCI  76.92 74.29 78.13 -
Multiscale DNN [11] NC vs AD 84.6 80.2 91.8 -
3D CNNs [3] NC vs AD 94.11 94.44 95.04
NCvs MCI  88.48 93.44 85.60 -
MCIvs AD 84.83 71.19 94.69 -
2D&3D CNNs [12] NC vs AD 95.00 93.33 96.66 93.00
Our best-performing Model
GMU NC vs AD 95.47 94.31 96.73 95.41
GMU NCvs MCI  80.46 79.71 81.76 80.51
Attention MCIvs AD  82.08 81.43 85.24 80.48

TMa v a&loddynon g oupBoArg tou poviédou MoE, 1o avukataotrjoape Pe pia ardr) apyiiek-

TOVIKI] TTOU artotedeitat anod tpia minpwg ouvdedepéva enineda kat aglodoyroape v anodoor)

TOU XP1OIOTIORNVIAS TPELS dlapopetikeg peboboug ocuyxwveuong yia ta yapaktnplotikda MRI kat

PET: Concatenation, GMU kat Attention-based.

O ITivakag 1.5 mapouotddel 11g petpikeg anodoong tev unimodal poviédov (MRI kat PET) ya ta

1pia poBAnpata tagvounorng.
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Chapter 1. Extevr|g eAAnvikr) repiAnyn

Table 1.4. Anotefcouara xwpig 1o poviéjlo MoE

Fusion Method Task ACC SEN SP AUC
NC vs MCI 67.4+0.8 76.2+6 57.4+4.2 63.1+4.9
Concatenation MCI vs AD 68.5+2.8 75.2+5 59.3+£3.1 67.4+3.9
NC vs AD 86.48+5.2 84.32+4.2 87.18+5.6 84.8+4.8
NC vs MCI 70.5+2.9 74.2+4.1 65.6+4.8 72.3+3.9
GMU MCI vs AD 69.58+2.7 69.88+3.4 67.13+2.1 67.55+5.6
NC vs AD 85.65+7.2 84.51+5.6 88.61+5.2 81.25+7.8
NC vs MCI 68.4+3.8 70.2+5.1 66.8+4.5 67.1+4.1
Attention MCI vs AD 73.45+2.8 75.5+4 72.3+3.5 74.3+2.9
NC vs AD 85+8.8 84.91+6.6 84.78+7.2 83.1+7.4
Table 1.5. Anotejléopuara v puovtéAmv Ue pia 1pomkoTnIa
Fusion Method Task ACC SEN SP AUC
NC vs MCI 67.38+0.7 86.17+6 40.35+8.4 63.08+5
MRI MCI vs AD 64.29+4.6 67.56+5.6 62.19+4.8 61.14+5.5
NC vs AD 75.32+3.5 | 80.17+11.1 | 65.31+10.8 | 76.13+5.3
NC vs MCI 72.39+3.8 70.15+4.8 76.21+4.2 73.65+4.9
PET MCI vs AD 70.81+2.4 68.57+4.2 75.42+4.1 69.6+5.8
NC vs AD 81.1+1.6 81+1.6 81.88+2.6 84+6

1.6 Zupnepaopata kat MeAdovtikég Enertaosig

e aut) ) Sumlepatiky) epyaocia, otdxog 11ag ATav n avartudn evog adlorotou oUoTpatog diayv-
wong g Nooou Adtoxaipep. Aedopévou ot 11 vooog artoteldel pia anod tg Kupteg attieg Savatou,
N €ykaipn avixvevorn sivat {wukng onpaociag. Idwaitepn épgpaon 860nke otov VIOoPo acOevev

pe MCI, kaBaog n Siayveorn propel va ermBpaduvet ty e§€A€n g vooou.

Avadvoape MRI kat PET oapwoelg aoBevov ta§ivopnuéveov oe tpelg katyopieg: NC, MCI kat
AD. Ta yxapaxinpiotika e&nyxdnoav péowm evog 3D CNN, eve xproiporioirjoape tpelg pebodoug
ouyxoveuong: AmArn ouvéveorn yapaktnplotikev, GMU, Gated Self-Attention. Xpnowponooayie
MoE yia BeAtioon tng anodoong, eva epappocape Grad-CAM yia v eppnveia tov npoBAEPewnv
tou poviédou. H a§loddynorn tou cuvoAikou povigdou £6etde 6t to GMU poviédo fjtav 1o KaAutepo,

@travoviag 95.47% axpiBela oy tagvopnorn NC vs AD.

Eniong mpaypatorowjoape pedéteg adpaipeong yia va a§lodoyrjocouiie tr) ouvelopopd tov Siapope-
TIKOV Oto1Xeinv Tou poviedou pag. H avukatactaon tou MoE pe nAnpong ouvdebepéva emnineda

odnynoe oe xepodtepn anodoor), avadelkvioviag T onpacia tou otV €rmAoyr] OXETIKOV XAPaK-
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1.6 Zunnepdaopata kat Meddovukég Entektaoeig

mplotukov. H xprion povotpormikev dedopévav (MRI 11 PET) o0dnynos oe xapnlotepn axkpibela,
ermBeBaivoviag T0 MAEOVEKTNHA NG MOAUTPOIUKIG Tpootyylong. To PET genépaoe to MRI oe

0Aeg TG tadvoprnoetg, KAt rou ermBeBaiwbnke kat and v avdiuon v Bapev oto GMU poviédo.

Zuykpivoviag To MPOTEIVOPEVO POVIEAO € OUYXPOVEG IIPOOEYYIOElS, MAPATIPHOAE UTIEPOXT] Yid
v ta§vounon NC vs. AD, kabwg kat uynddtepn euaiobnoia yia NC vs. MCI. T¢dog, n avaAuon
Grad-CAM ¢£6ei§e Ot 10 POVIEAO evioruoe Ieploxeg rou Siépepav petagu toug ota MRI kat PET

b6edopéva, emBeBaimvoviag mbavag 1 CUPMANPEPATIKOTTA TOUG.

O1 peAAOVTIKEG ETIEKTAOELS TTEPAABAVOUV:

1) Ala@opeTiKO POVOIATL £§AYMYNS XAPAKINPIOTIKGOV Yia KAOe tporuxkotnta
2) TIpoxwpnpéveg texvikeg rpoeresepyaociag MRI

3) Agpeuvnon early fusion peBodwv

4) Xprionp GANs yla auinor) 6edopévav
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Chapter E

Introduction

2.1 Alzheimer’s Disease

Alzheimer’s disease (AD) is a condition of progressive neurodegeneration and the most common
cause of dementia, estimated to account for between 60 and 80% of all dementia cases. Its
main features consist of cognitive decline, memory impairment, and behavioral disturbances.
In 2019, an estimated 5.8 million Americans aged 65 and older were affected, with projections
indicating substantial growth in prevalence over the coming decades. Pathological changes
arising in AD commence years, if not even decades, before the appearance of clinical symp-

toms, rendering early detection and intervention extremely challenging.

On the molecular level, AD pathology results from the accumulation of the protein fragment
beta-amyloid outside neurons and the accumulation of an abnormal form of the protein tau
inside neurons (Figure 2.1). These pathological changes threaten synaptic integrity, stopping
neuronal communication and leading to widespread neurodegeneration and brain atrophy.
With the progressive detoriration and death of the neurons of specific regions, the brain re-
gions shrink, particularly the hippocampus and cortex, which are heavily involved in memory,
decision-making, and language processing. Normal brain function is further compromised by
the decreased ability of the brain to metabolize glucose, its main fuel. Although the exact
mechanisms of AD pathogenesis remain under investigation, Scientists believe that in most

cased the disease is caused by a combination of genetic, lifestyle and environmental factors.

As neuronal damage progresses, the effects on cognition become more noticeable, marking the
shift from hidden pathological changes to recognizable symptoms. One of the earliest recogniz-
able phases is Mild Cognitive Impairment (MCI), a stage where cognitive decline goes beyond
normal aging but hasn’t yet disrupted daily life in a major way. Individuals with MCI often
experience memory lapses, difficulties with planning, or decision-making challenges, which
may also be noticed by those around them. Although many cases of MCI do not develop AD, a
significant proportion do, making this stage a crucial window for early diagnosis and interven-
tion [2, 1].
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Chapter 2. Introduction

2.2 Diagnosis of Alzheimer’s Disease

Diagnosing AD is multifold as no single test has been developed that definitely proves the pres-
ence of the disease. Physicians would, in general, depend on several approaches: a complete
medical history, physical and neurological examinations and cognitive tests, which serve to
assess memory, problem-solving, and other intellectual abilities. Additionally, brain imaging
techniques such as Magnetic Resonance Imaging (MRI) and Positron Emission Tomography
(PET) scans are commonly used to assess structural and functional brain changes. Input from
relatives or caregivers is often be essential for the documentation of the severity of cognitive
and behavioral changes. Besides, one may carry out diagnosis tests such as blood tests that

rule out other causes for dementia, including tumors, strokes, or vitamin deficiencies.

Advancements in neuroimaging technologies are revolutionizing the detection and diagnosis of
AD with remarkable precision. Among these, Positron Emission Tomography (PET) stands out
for its ability to detect beta-amyloid plaques, a hallmark of AD, by using specialized tracers
that make these abnormal proteins visible. PET can also measure glucose metabolism in the
brain, providing insights into regions affected by Alzheimer’s. Magnetic Resonance Imaging
(MRI) complements PET by identifying structural changes, such as atrophy or shrinkage in
critical areas like the hippocampus and cortex, which are often affected in the early stages of
the disease. Together, PET and MRI offer both structural and pathological insights. Integrat-
ing these technologies into routine clinical workflows enables earlier interventions and more

personalized treatment strategies, paving the way for improved patient outcomes [1].

2.3 Deep Learning techniques for AD diagnosis

Deep learning has transformed the way AD is diagnosed, making it possible to automatically
analyze complex neuroimaging data and detect subtle patterns that might be overlooked with
traditional methods. Early models, like Deep Neural Networks (DNNs) and Recurrent Neural
Networks (RNNs), introduced advanced feature extraction and the ability to recognize temporal
patterns. However, these models often struggled with efficiency and scalability, limiting their

practical use.

A major breakthrough came with Convolutional Neural Networks (CNNs), which excel at iden-
tifying spatial features in neuroimaging data. CNN-based studies have successfully pinpointed
key biomarkers linked to AD, significantly improving diagnostic accuracy. Adding to this
progress, Variational Autoencoders (VAEs) have been instrumental in simplifying complex data
while preserving crucial information. Successive development has been also marked by the
emergence of various multimodal frameworks, which integrate complementary strengths from
different data sources like MRI, PET, and clinical records. Additionaly, the use of attention
mechanisms within CNNs have enhanced model focus by allowing them to prioritize critical
brain regions linked to AD pathology [13].
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2.4 Structure of the Thesis

Despite these advancements, the lack of explainability in deep learning models remains a sig-
nificant barrier to their widespread clinical adoption. Black-box models make it difficult for
clinicians to interpret how decisions are made. To address this, researchers are exploring
Explainable Al (XAI) techniques, such as saliency maps, Grad-CAM, and SHAP values, which

provide visual and quantitative insights into the model’s decision-making process [14].

Healthy brain Alzheimer’s brain

y . 2
€
;‘. ; . /, Tangles
Healthy / \{ Diseased {

neuron neuron

Figure 2.1. Healthy brain and brain with Alzheimer’s disease
Source: [2].

2.4 Structure of the Thesis

From the above, it becomes clear that developing a reliable and effective diagnostic method for
Alzheimer’s disease is crucial. This study seeks to achieve this by utilizing a combination of

MRI, PET and deep learning techniques. The structure of this thesis is outlined as follows:

e Chapter 3: The theoretical background necessary for understanding the various methods

and concepts discussed in the study is developed.

e Chapter 4: Related Work. This chapter briefly summarizes previous research on Alzheimer’s
disease diagnosis and identifies areas where improvements are needed, providing the con-

text for this study.

e Chapter 5: The dataset used in this study is introduced, along with the preprocessing

techniques employed to prepare the data for analysis.
e Chapter 6: The proposed methodology used in this study is presented.
e Chapter 7: The results obtained are presented.

e Chapter 8: The conclusions derived from this research are discussed, along with possible

future extensions of the current study.
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Chapter E

Theoretical Background

3.1 Machine Learning

Machine Learning (ML) is a field of Artificial Intelligence that enables systems to learn from
data and make predictions based on it without being explicitly programmed for a specific task.
The learning process begins with observing data to identify patterns, which helps improve sys-
tem performance. Machine learning algorithms are widely used in various applications, such
as analyzing medical images for disease prediction. ML methods are typically categorized into
three main types:

1) Supervised Learning: In this category, training data consists of inputs paired with corre-

sponding output values. Supervised learning algorithms are further classified into:

e Classification: Here, the output value takes discrete values. During training, the algo-
rithm searches for patterns in the input data that strongly correlate with desired outputs.
Once trained, the algorithm predicts the output value for unseen input features. In the

context of Alzheimer’s disease, examples of classification tasks include:

- Categorizing MRI or PET images as Normal, MCI, or AD.
— Determining whether a tumor is benign or malignant.

— Identifying the presence or absence of beta-amyloid plaques in PET images.

e Regression: Here, the output value takes continuous values. Examples include predict-

ing the degree of brain atrophy (e.g., hippocampal volume loss) from MRI images.

2) Unsupervised Learning: In this category, the training data consists only of inputs without
corresponding output values. The primary goal of unsupervised learning algorithms is to iden-
tify groups of features that follow similar patterns.

3) Reinforcement Learning: This involves an agent that interacts continuously with the en-
vironment, making decisions to maximize rewards in a specific situation. Unlike supervised
learning, where the model trains using known output values, reinforcement learning requires

the agent to decide what actions to take based on its experience [15].
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Chapter 3. Theoretical Background

3.2 Neural Networks

Neural networks, a subfield of Machine Learning and Artificial Intelligence, provide an algorith-
mic framework for addressing computational problems by drawing inspiration from biological
neural networks. At their core, both biological and artificial systems rely on interconnected
units that collaborate to transmit and process information. Through their ability to learn from
examples and identify complex, non-linear patterns, neural networks have become a founda-

tional component of Artificial Intelligence.

3.2.1 Biological Neural Networks

The human brain is among the most complex and remarkable structures in nature, with its
functionality serving as a continuous source of inspiration for advancements in artificial in-
telligence. Biological neural networks are intricate systems of interconnected neurons, the
fundamental units of the nervous system. A typical neuron comprises three primary compo-
nents: dendrites, the soma (cell body), and the axon. Dendrites receive input signals from other
neurons, which are processed within the soma. When the input surpasses a certain threshold,
the neuron generates an action potential which is a brief electrical impulse that travels along
the axon. At the synapse, this electrical signal is transformed into chemical signals through

the release of neurotransmitters, which influence neighboring neurons.

Synaptic weights govern the strength of these interactions, determining whether subsequent
neurons will activate. The brain’s capacity for parallel processing, with billions of neurons
working together simultaneously, serves as a key inspiration for artificial networks. By emu-
lating these mechanisms, artificial intelligence systems aim to replicate aspects of the brain’s
efficiency and adaptability [16].

3.2.2 Artificial Neural Networks

Artificial Neural Networks (ANNs) are computational models designed to emulate key principles
of biological neural networks. ANNs are composed of layers of interconnected nodes structured
into input, hidden, and output layers. Each node processes inputs by calculating a weighted
sum, applying an activation function, and transmitting the result to the next layer. This layered
design enables ANNs to perform hierarchical processing, similar to the way information flows

through biological networks.

Figure 3.1 illustrates the structural and functional similarities between biological and artificial
neurons by showing how both systems transmit and process information. While biological
neurons rely on chemical and electrical signals to communicate, artificial neurons use math-
ematical operations to simulate this process. Both systems rely on weights to adjust the
strength of connections and thresholds to determine activation. During training, ANNs adjust

their weights using algorithms like backpropagation and gradient descent, reflecting the adap-
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3.2.3 Multi-Layer Perceptron

tive processes observed in biological systems. The adaptability makes ANNs a powerful tool for
solving complex problems in various domains, including image recognition, natural language
processing, and medical diagnostics. Further details on these methods will be discussed in

later sections [17].

dendrites o

\[ 2% nucleus
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bias

Figure 3.1. Comparison of a biological neuron and an artificial neuron.
Source: [17].

The foundational component of Artificial Neural Networks (ANNs) is the Perceptron, as illus-
trated in the lower part of Figure 3.1. It processes information by receiving a set of inputs (x),
each associated with a weight (w;) that represents the importance of the input. These weighted
inputs are summed, combined with a bias term (b), and passed through an activation function
(f) that determines the output of the perceptron. Depending on the result, the perceptron
is either activated or remains inactive, simulating the firing behavior of biological neurons.
Mathematically, this is expressed as:

n

y =f[ Xiw; + b) (3.1)

While the perceptron effectively solves linearly separable problems, its inability to capture non-

1

linear relationships necessitates more advanced architectures, such as Multi-Layer Perceptron.

3.2.3 Multi-Layer Perceptron

A Multi-Layer Perceptron (MLP) classifier extends the capabilities of the Perceptron by learning
non-linear functions. It comprises multiple layers of neurons (nodes) connected by weighted
edges, including an input layer, one or more hidden layers, and an output layer. The input
layer receives raw data, while the hidden layers transform it using activation functions to cap-
ture non-linear relationships. The output layer produces the final prediction or classification.

An example of an MLP is illustrated in the image 3.2:

Diploma Thesis m



Chapter 3. Theoretical Background

Inner layer Hidden layers Outer layer

Bias Bias

Figure 3.2. Architecture of Multilayer Perceptron
Source: [18].

3.2.4 Activation Functions

Activation functions are essential components of neural networks, enabling them to capture
complex, non-linear relationships in data. Two of the most commonly used activation functions
are the sigmoid and ReLU (Rectified Linear Unit) functions. The sigmoid function maps any
real input to a range between O and 1, making it particularly useful for problems involving

probabilities. It is mathematically expressed as:

1
l+e™™

o(x) = (3.2)

On the other hand, the ReLU function introduces non-linearity by outputting zero for negative

inputs and the input value itself for positive inputs. It is defined as:
f(x) = max(0, x) (3.3)

Both activation functions are illustrated in Figure 3.3. While the sigmoid function is effective
in specific contexts, such as binary classification, ReLU is often preferred for deep networks
due to its simplicity and its ability to mitigate the vanishing gradient problem [19], which is
discussed in 3.2.6.

The Softmax function is another widely used activation function, particularly in the output layer
of neural networks for multi-class classification problems. It converts raw scores (logits) from
the network into probabilities that sum to 1, making it ideal for tasks requiring a probabilistic
interpretation of the output. Mathematically, for an input vector z = [z}, 2o, . . ., Z,], the softmax

function is defined as:
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3.2.4 Activation Functions

Lo sigmoid " RelU

o(z)= . R(z) =max(0, z)‘

Figure 3.3. Activation fuctions: sigmoid and ReLU
Source: [19].

Zi

o(z) = (3.4)

n

=1 €7

This ensures that each output value is normalized, representing the likelihood of belonging to

a particular class [20]. The softmax function is shown in 3.4:

Figure 3.4. Activation fuctions: Softmax
Source: [20].

The tanh (hyperbolic tangent) activation function is the last of the main activation functions
commonly used in neural networks. It transforms input values into a range of —1 to 1, making it
zero-centered. This property allows tanh to better handle both positive and negative activations,
helping to reduce biases in weight updates. The function is computed as:

X _ =X

tanh(x) = €

T 3.5
eX+e™* (55

While tanh can still suffer from the vanishing gradient problem, it remains useful in scenarios
where normalized outputs are beneficial. Its smooth gradient also allows for efficient backprop-
agation, making it a popular choice for intermediate layers of neural networks [21].The tanh

function is shown in 3.5:

Diploma Thesis m



Chapter 3. Theoretical Background

Figure 3.5. Activation fuctions: Tanh
Source: [21].

3.2.5 Loss functions

A loss function is a fundamental component of machine learning and deep learning models.
It measures the error or difference between the predicted output of the model and the actual
target values, serving as a guide for the optimization process. By minimizing the loss function,
the model learns to improve its predictions over time. Loss functions can be categorized into
various types, with specific ones tailored for regression, classification, and other tasks. In this
section, we are going to analyze three of the most commonly used loss functions: Mean Squared
Error, Cross-Entropy Loss, and Binary Cross-Entropy Loss, exploring their mathematical for-

mulations and applications.

The Mean Squared Error (MSE) is a widely used loss function in regression tasks. It measures
the average squared difference between the true values y; and the predicted values {j;. The

formula is:

1 v )
MSE = - Z(yi - )? (3.6)
=1

The squared term penalizes larger errors more heavily than smaller ones, which makes MSE
sensitive to outliers in the data. MSE is smooth and differentiable, allowing for efficient opti-
mization during gradient descent. However, its sensitivity to outliers may lead to suboptimal

performance if the data contains significant noise or anomalies.

The Cross-Entropy (CE) Loss is primarily used for classification tasks. The formula for CE is
derived from that of Kullback-Leibler divergence (KL divergence), which measures the differ-
ence between two probability distributions. It quantifies the difference between the true class
distribution and the predicted probability distribution. For multi-class problems, the loss is

computed as:
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3.2.6 Neural Network training

n

Cross-Entropy Loss = —

C
D yielog(Bie) (3.7)

1
n i=1 c=1
where C is the total number of classes, and y;. and {j;. represent the actual and predicted

probabilities for class c.

For binary classification tasks, the Binary Cross-Entropy (BCE) Loss is commonly used. It is
derived as a special case of the CE Loss when the number of classes C=2. Substituting this

into the CE formula results in:

n

1
Binary Cross-Entropy Loss = ~— D lyilog(@) + (1 = yo) log(1 = G (3.8)
i=1

CE is particularly powerful when paired with softmax or sigmoid activation functions in the

final layer of neural networks [22].

3.2.6 Neural Network training

Every Machine Learning model needs a learning algorithm to fit the data that wants to extract
patterns from. As we discussed in section 3.2.5, for this purpose in every neural network that
inputs a data vector x with ground truth t and outputs a vector y, a loss function is defined to

quantify the performance of the model in the training data (equation: 3.9).
N
L(w) = )" loss(ys. ) (3.9)
i=1

The process begins with computing the loss or error, which quantifies how well the model’s
predictions align with the ground truth. This computed error serves as the starting point for the
backpropagation process, which systematically adjusts the model’s parameters to minimize the
loss. During backpropagation, the chain rule is applied recursively to calculate the gradients
of the loss function with respect to the model’s weights, denoted as g—i‘v. These gradients play a

crucial role in guiding the optimization process.

However, in very deep neural networks, a challenge known as the vanishing gradient problem
can arise. As gradients are propagated backward through many layers, they can diminish
exponentially, especially when activation functions like sigmoid or tanh are used. This hap-
pens because the derivatives of these functions often result in values less than 1, causing the
gradients to shrink layer by layer. As a result, earlier layers in the network receive very small

updates, hindering effective learning and slowing down or even halting convergence.

Once the gradients are calculated, the weight vector of the model is updated by moving in the
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opposite direction of the gradient vector, scaled by a factor n which determines the step size for
each update. This update rule is applied iteratively to minimize the loss, forming the so called
gradient descent algorithm, which is aiming to converge in the global minima. The weight
update rule can be expressed as:

t+1 ¢ 0LW)

wi=w —-nq w (3.10)

Although low efficiency, when optimizing on top of large datasets, and convergence in local
minima, based on the initialization of the network’s weights, have led to the following variations

of the gradient descent algorithm, depending on the application:

e Batch Gradient Descent: Computes the gradient using the entire training dataset before

updating the weights. It provides stable convergence but can be slow for large datasets.

e Stochastic Gradient Descent (SGD): Updates the weights for each training sample indi-

vidually. It is faster and can converge quickly, but the updates can be noisy.

e Mini-Batch Gradient Descent: Divides the dataset into small batches and updates the
weights after processing each batch. It balances speed and stability, making it efficient

for large datasets [23].

3.2.7 The problem of overfitting

Overfitting in neural networks occurs when a model learns the training data, including its noise
and outliers, too well, resulting in poor generalization to new, unseen data. This leads to high
accuracy on training data but poor performance on validation or test sets. Several techniques

have been developed to mitigate overfitting in neural networks:

e Dropout Regularization: This technique involves randomly deactivating neurons during

training. A more detailed analysis of this method is provided in 3.3.5.

e Early Stopping: This technique monitors the model’s performance on a validation set
during training and stops the training process when performance starts to degrade, in-
dicating the onset of overfitting. By halting training at the optimal point, early stopping

prevents the model from learning noise in the training data.

e Weight Regularization (L1 and L2 Regularization): : These methods add a penalty to
the loss function based on the magnitude of the model’s weights. L1 regularization en-
courages sparsity in the model weights, while L2 regularization discourages large weights,

both aiming to simplify the model and reduce overfitting.

e Data Augmentation: By artificially expanding the size of the training dataset through
transformations such as rotations, translations, and scaling, data augmentation exposes

the model to a wider variety of scenarios, helping it to generalize better to new data [24].
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3.2.8 Types of Neural Networks

3.2.8 Types of Neural Networks

Neural networks come in various architectures, each designed to handle specific types of data
and tasks effectively. The simplest type is the Feedforward Neural Network (FNN), where data
flows in a single direction from the input layer to the output layer, passing through one or more
hidden layers. FNNs are widely used for general-purpose tasks, such as regression and basic
classification problems. Another key type is the Recurrent Neural Network (RNN), which is de-
signed for sequential data, such as time series or natural language processing. RNNs maintain
a hidden state that captures information from previous inputs, allowing them to process tempo-
ral patterns. Variants like Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRUs)
address the vanishing gradient problem and improve the learning of long-term dependencies.
For processing spatial data, such as images, Convolutional Neural Networks (CNNs) are widely
used. CNNs use convolutional layers to extract local patterns, such as edges, textures, and
shapes, making them highly effective for image recognition, object detection, and similar tasks.
Lastly, Generative Adversarial Networks (GANs) are a special class of networks used for gen-
erating data, such as images or videos. GANs consist of two components: a generator and a
discriminator, which compete against each other to improve the quality of the generated data
[25].

In the next section, we will focus on CNNs, analyzing their structure, functionality, and appli-

cations in greater detail. CNNs are the main focus of this thesis due to their significance and

versatility in solving computer vision problems.

Diploma Thesis m



Chapter 3. Theoretical Background

3.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a specialized class of neural networks designed to
process data with a grid-like structure, such as images and videos. Unlike traditional neural
networks that treat input data as a one-dimensional vector, CNNs preserve spatial relationships
and hierarchical features. They achieve this through a layer-based architecture, as illustrated

in Figure 3.6, which depicts the network components and their roles in processing input data.

A typical CNN comprises convolutional, activation, pooling, and fully connected layers, each
progressively extracting and analyzing features. Convolutional layers detect local patterns, ac-
tivation functions introduce non-linearity, pooling layers reduce spatial dimensions, and fully

connected layers aggregate features for final predictions [26].

In this chapter, we delve deeper into the fundamental components and workings of CNNs, de-
scribing how their structure and design have made them indispensable in modern computer

vision tasks.

fc_3 fc_ 4
Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 ReLU activation
Convolution Convolution | (—M
(5 X 5) ke"_‘EI Max-Pooling (5 X 5) kerr.ael Max-Pooling (with
valid padding 2x2) valid padding 2x2) ; N.dropout)

THPLT fLEhantels n1 channels n2 channels n2 channels
(28x28x1) (24 x24 xn1) (12x12xnl) (8 x8xn2) (4x4xn2)

Q/ OUTPUT

n3 units

Figure 3.6. Architecture of a CNN
Source: [26].

3.3.1 Convolutional Layer

The convolutional layer is a fundamental component of CNNs, specifically designed to process
and analyze spatially organized data, such as images. It operates by applying a set of filters or
kernels over the input data, performing an operation known as convolution. This mathematical

process can be expressed as:

M-1N-1

Y(i,j):ZZX(i+m,j+n)-K(m,n)+b 3.11)

m=0 n=0
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where:

e Y(i,j) is the output at position (i, j) in the feature map,

X(i+ m,j + n) is the input value at position (i + m,j + n),

K(m, n) is the value of the kernel at position (m, n),

M and N are the dimensions of the kernel,

b is the bias term.

The convolution operation involves sliding each filter over the input data and calculating the
weighted sum of the input values within the receptive field defined by the filter. This process
generates an output feature map that emphasizes critical spatial patterns and features, such
as edges, textures, and shapes. The nature of receptive field values depends on the input
data: for single-channel inputs such as grayscale images, the values are intensity levels, and
for multi-channel inputs such as RGB images, they contain color information in red, green,
and blue channels. For instance, grayscale images, like those from medical imaging modalities
such as CT or MRI scans, consist of single-channel intensity values, whereas natural images
commonly include RGB data [27]. An example of a convolution operation on multi-channel

data using three distinct kernels is depicted in 3.7:
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Figure 3.7. Convolution with multi-chanel data
Source: [26].

The 3D convolutional layer extends 2D convolutions by operating on three-dimensional data,
such as video sequences or volumetric medical images (e.g., MRI scans). While 2D convolutions
slide a kernel across height and width, 3D convolutions add a depth dimension, enabling the
extraction of volumetric features and spatial-depth relationships. As illustrated in Figure 3.8,
this approach is applied to both single-channel and multi-channel data, making 3D convolu-
tions particularly effective for detecting complex anomalies in medical images, such as tumors

or lesions spanning multiple slices.
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In this study, we focus on employing 3D convolutional layers to analyze 3D MRI and PET scans,
demonstrating their superior effectiveness in capturing intricate spatial features for diagnostic

and analytical purposes [28].
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Figure 3.8. 2D and 3D convolution
Source: [28].

3.3.2 Pooling Layer

The pooling layer plays a crucial role in CNNs by reducing the spatial dimensions of convolved
features, which helps lower computational complexity and improve efficiency. Beyond just
dimensionality reduction, pooling also preserves dominant features that remain consistent
regardless of rotation or position, making it essential for effective model training. Typically,

pooling layers follow convolutional layers, progressively condensing feature maps.

There are two main types of pooling: Max Pooling and Average Pooling. Max Pooling selects the
highest value within a given region, emphasizing the most prominent features, while Average
Pooling calculates the mean of all values in that region, resulting in a smoother representation
(Figure 3.9).

In addition to dimensionality reduction, Max Pooling serves as a noise suppressor by filtering
out weak activations, effectively enhancing important features while reducing noise. Average
Pooling, on the other hand, mainly focuses on reducing spatial dimensions without significantly
improving feature sharpness. Because of its ability to highlight crucial details and remove

noise, Max Pooling is often preferred for feature extraction in deep learning applications [26].
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Figure 3.9. Types of pooling
Source: [26].

3.3.3 Fully Connected Layer

The fully connected layer is a crucial part of Convolutional Neural Networks (CNNs), responsible
for combining the high-level features extracted by earlier layers to make final predictions.
Unlike convolutional and pooling layers, which focus on local patterns, the fully connected
layer links every neuron from one layer to every neuron in the next. This connectivity allows
the network to integrate all extracted features and interpret them as a whole. As shown in
Figure 3.6, the fully connected layer flattens the feature maps into a single vector, converting
spatial information into a format suitable for classification. The layer then applies weights,
biases, and activation functions to capture complex, non-linear relationships. Typically found
at the end of a CNN, fully connected layers aggregate learned features and output probabilities
or class labels [26].

Mathematically, the operation of a fully connected layer can be expressed as:
y=f(W-x+b) (3.12)

In this equation, the input vector x is multiplied by the weight matrix W, added to the bias

vector b, and then passed through the activation function f to produce the output vector y.

3.3.4 Batch normalization

Batch Normalization is a widely used technique in CNNs that improves training stability and
accelerates convergence by normalizing the inputs of each layer. This method standardizes
the inputs to a layer by adjusting their mean and variance during training, ensuring that
the data remains on a consistent scale. By reducing internal covariate shift—the phenomenon
where layer inputs change distribution during training—batch normalization helps the network
learn more effectively. Additionally, it reduces the sensitivity of the model to the initial weights

and allows for higher learning rates, improving overall performance. Beyond stabilizing train-

Diploma Thesis m



Chapter 3. Theoretical Background

ing, it can also act as a regularizer, reducing overfitting in some cases. Batch normalization

is often applied between the linear operation (e.g., convolution) and the activation function [29].

3.3.5 Dropout

Dropout is a regularization technique used in CNNs to prevent overfitting and improve the gen-
eralization of the model. During training, dropout randomly "drops out" a subset of neurons by
setting their outputs to zero, effectively removing them from the network for that iteration. This
forces the network to learn more robust and distributed representations, as no single neuron
becomes overly reliant on its neighbors. By introducing this stochastic behavior, dropout re-
duces the risk of overfitting to the training data and enhances the network’s ability to generalize
to unseen data. An illustration of this process is shown in Figure 3.10. Dropout is typically
applied in fully connected layers but can also be used in convolutional layers depending on
the architecture. During testing, all neurons are active, and their outputs are scaled based
on the dropout rate to maintain consistency with the training phase. This simple yet powerful

technique has become a standard practice in modern deep learning models [30].

a) Standard Neural Net (b) After applying dropout.

Figure 3.10. Dropout layer
Source: [30].

3.3.6 Limitations of CNNs

CNNs are exceptional at handling structured data, but they often face challenges with com-
plex and varied tasks. Their fixed architecture and uniform feature extraction make it difficult
to adapt to diverse data and specialized tasks. For instance, in medical imaging, the data’s
clustered structures, anatomical differences, and subtle pathological features highlight these
limitations. Additionally, CNNs activate all layers for every input, leading to unnecessary com-
putations and inefficiencies. To address these issues, adaptive architectures like the Mixture
of Experts (MoE) framework have been developed.

In the next section, we will explore the Mixture of Experts framework as a solution to these

challenges.
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3.4 Mixture of Experts

The Mixture-of-Experts (MoE) model architecture is a groundbreaking approach in machine
learning, enabling the efficient scaling of neural networks to handle increasingly complex
tasks. Introduced by Jacobs et al. in 1991 [5], MoE follows the divide-and-conquer princi-
ple by partitioning the problem space among multiple specialized "experts." Similar to a team
of specialists working together to solve a complex problem, each expert in MoE brings unique
skills to address specific tasks, allowing the model to achieve high efficiency and performance.
Its modular design also provides flexibility and interpretability, enabling independent analysis
and adjustment of each expert’s contribution. These advantages have established MoE as a
pivotal solution for a wide range of applications, including natural language processing, com-

puter vision, and speech recognition.

=

. /I\—rloE layer N
G0, | [8t,

. Network
A /

Figure 3.11. The architecture of an MoE layer
Source: [31].

Central to the MoE framework is its dynamic approach to leveraging specialized sub-models,
or "experts", to process input data. As illustrated in Figure 3.11, the framework includes a
mechanism that determines the most relevant experts for a given input [32].

Building on this foundation, the concept of Sparse-MoE was introduced by Shazeer et al. [31].
Sparse-MoE extends the original MoE framework by introducing sparsity in the activation of
experts, where only a small subset of experts is selected for each input. This innovation
significantly reduces computational costs, enabling the deployment of models with billions of
parameters while maintaining efficiency and scalability.

The architecture of the MoE model consists of three key components:

e Experts: Specialized sub-models, each responsible for a specific part of the problem

space.

e Gating Network: As described earlier, it determines the subset of experts activated for a

given input and combines their outputs efficiently through weighted summation.

e Sparse Activation: Ensures computational efficiency by activating only a subset of ex-

perts for each input.
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3.4.1 Gating Network

The gating network, often referred to as the router, is a crucial component of the MoE architec-
ture. Its primary role is to analyze the input data and determine which experts are most suited

to handle the task at hand. This process is mathematically represented as:

y= Z G(x)iEi(x) (3.13)
i=1

Here, G(x); is the gating weight assigned to the i-th expert based on the characteristics of the
input x, and E;(x) is the output of the i-th expert. The gating network ensures that the most
relevant experts are selected by dynamically assigning weights.

The Softmax Gating mechanism, introduced by Jacobs et al. in 1994 [6], computes gating
weights by multiplying the input x with a trainable weight matrix W; and normalizing the

scores using the softmax function:

Gy(x) = Softmax(x - Wy) (3.14)

The resulting G,(x) represents the importance of each expert, ensuring non-negative weights
that sum to 1. While simple and effective, this dense gating activates all experts for every input,
which can be computationally expensive. Sparse gating mechanisms address this by selecting

only the most relevant experts for each input.

3.4.2 Sparse Activation

The concept of sparse activation, as outlined by Shazeer et al., plays a critical role in improving
computational efficiency without compromising model capacity. Sparse activation ensures that
only a subset of the available experts is used for processing each input, with the weights of the

remaining experts set to 0. This is mathematically represented as:

G(x) = Softmax(KeepTopK(H(x), k)), (3.15)

where G(x) is the gating vector that determines the weights of selected experts, and H(x) is a

vector of raw gating scores defined as:

H(x); = (x - Wy); + StandardNormal() - Softplus((x - Whoise):)- (3.16)

96The operation KeepTopK ensures sparsity by retaining only the top k scores in H(x),

defined as:

v; if v; is in the top k elements of v,
KeepTopK(v, k); = (8.17)
—oo otherwise.
In addition to activating only a small subset of experts and enabling the model to scale to
billions of parameters while keeping computational costs low, sparse gating offers another key

advantage: the introduction of noise through StandardNormal() and load-balancing losses pro-
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motes a more even distribution of tasks among experts.

3.4.3 Training of MoE

Training MoE models involves addressing the challenge of ensuring balanced expert utilization.
Without appropriate mechanisms, the gating network can disproportionately favor a small
subset of experts, leaving others underutilized and reducing overall model performance. To
mitigate this, the model incorporates regularization techniques, such as load-balancing losses,
to distribute tasks more evenly across experts. One such technique is the importance loss,
which penalizes the coefficient of variation (CV) of the gating probabilities, encouraging broader

expert participation. It is mathematically defined as:

Limportance (X ) = wimportance : CV(Importance(X ))2 ’ (3- 1 8)

where Importance(X) represents the sum of gating weights across all inputs X. Complementing
this, the load-balancing loss minimizes the CV of the load distribution to ensure no single

expert is overloaded:

Lioad(X) = Wioaq - CV(Load(X))Z- (3.19)

Here, Load(X); represents the total probability of expert i being assigned tasks across X. To-
gether, these loss terms promote equitable task allocation.
These regularization losses are integrated with the primary loss function (e.g., cross-entropy)

to form the overall training objective:

Liotal = Lioss + @ * (Ll'mportance + Lload)’ (3.20)

where Lj,ss is the loss for the primary task (e.g. cross-entropy loss) a and is a hyperparameter

denoting the importance we place on these two loss functions [31].
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3.5 Feature Fusion Techniques

Multimodal data, such as MRI and PET scans, provides complementary perspectives that, when
effectively combined, can significantly improve the accuracy and robustness of machine learn-
ing models for complex tasks like disease diagnosis. Effective integration of these modalities
is crucial to fully leverage their strengths. While simple feature concatenation is a common
approach for combining multimodal data, advanced techniques like attention mechanisms and
Gated Multimodal Units provide more powerful alternatives. Attention mechanisms dynam-
ically prioritize the most relevant features from each modality [33], while GMUs use gating
mechanisms to balance information sharing and separation across modalities [34]. In this

chapter, these techniques will be analyzed in detail.

3.5.1 Gated Multimodal Unit

The Gated Multimodal Unit (GMU) is a mechanism designed to adaptively integrate features
from multiple modalities. By dynamically balancing the contribution of each modality, the
GMU allows the model to effectively capture both shared and modality-specific information
while filtering irrelevant or noisy features. For two modalities (fi and f;), the GMU operates as

follows:

h; = tanh(Wfi + by), (3.21)
hy = tanh(Wo f5 + bo), (3.22)
z = o(Welf1; /2] + b2), (3.23)
h=z0h;+(1-2)0 hy, (3.24)

The parameters of the GMU are collectively represented as:

@ = {WI!W2’ WZ}’ (325)
where:
e fi and f; are the input features from the two modalities.

o W, Wy, W, are learnable weight matrices for the respective modalities and gating mech-

anism, forming the parameter set ®.
® Dby, by, b, are the corresponding bias terms.

e zis the gating vector, computed via the sigmoid function (o), which determines the relative

importance of each modality.

e h; and hy are the transformed representations of the input features, passed through a

tanh activation function.

e h is the final fused representation, computed as a weighted combination of h; and hy,

with the gating vector z controlling the contribution of each modality.

m Diploma Thesis



3.5.1 Gated Multimodal Unit

The parameter set © is optimized during training to ensure the gating mechanism dynamically
adjusts to the given input. The GMU framework is inherently scalable and can be extended to
handle more than two modalities. For n modalities, the generalized formulation is:

n

h = Z 2z © tanh(Wif; + by), (3.26)
i=1

where z; represents the gating weight for the i-th modality, and the weights satisfy ., z; = 1.
This ensures that the contributions of all modalities are dynamically balanced, with the most

relevant modalities receiving higher weights.

Figure 3.12 illustrates the architecture of the GMU, including its ability to handle two modali-

ties or scale to multiple modalities [34].
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Figure 3.12. lllustration of the GMU frameworlk for two modalities (right) and multiple modalities
(left)
Source: [34].
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3.5.2 Attention mechanism

Whereas the GMU excels at dynamically balancing contributions from multiple modalities, the
attention mechanism, introduced by Vaswani et al [33], enables models to focus on the most
relevant features within each modality. Unlike traditional approaches that treat all input fea-
tures equally, attention dynamically assigns importance scores, allowing the model to capture
complex dependencies and relationships within the data. Initially proposed as a core com-
ponent of the Transformer architecture, attention has since become a foundational technique
in various domains, including natural language processing, computer vision, and multimodal

learning.

Generalized attention provides a versatile mechanism for modeling relationships between ele-
ments in an input sequence. At its core, as illustrated in Figure 3.13, the attention mechanism
operates using a query-key-value paradigm, where each input element is mapped to three
learned representations: queries (@), keys (K), and values (V). Keys serve as labels for distin-
guishing features, while queries evaluate all available keys to identify the most relevant ones.
The model then uses this evaluation to associate the corresponding values with the input.
Specifically, an attention layer processes queries and keys of dimension dj, and values of di-
mension d,. The attention scores, which determine the relevance between queries and keys,

are calculated as the scaled dot product, mathematically expressed as:

. OK"
Attention(Q, K, V) = Softmax V, (3.27)

Vi

Figure 3.13. Illustration of the attention mechanism
Source: [33].

For self-attention mechanisms, the queries, keys, and values are derived from the same input,
allowing the model to learn interactions within a single modality and identify which parts
of the input are most relevant for making predictions. In the context of multimodal learning

with two modalities, self-attention refers to computations performed independently within each
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modality. Specifically, the latent feature representations generated by prior layers for each
modality act as the queries, keys, and values. For two modalities, the self-attention module

performs the following operations:

self-attention(M; — M) (3.28)

self-attention(My; — Ms) (3.29)

Here, M; and M represent the feature matrices of the two modalities, but it can be generalized

to more than two modalities.

In a cross-modal attention mechanism, the queries, keys, and values originate from different
modalities. Instead of computing attention within a single modality, as in self-attention, cross-
modal attention allows one modality to attend to another. Given two modalities, M; and Ma,

the cross-modal attention module performs the following operations:

QMI K]’l\;g
cross-modal attention(M; — M) = softmax| ————| Vay, (3.30)

V.

QMZKITV}I
cross-modal attention(My — M;) = softmax| ——— | Vi, (3.31)

Vdi
where @, K, and V represent the queries, keys, and values, respectively, with one modality

acting as the query source and the other as the key-value source.

Yu et al. [4] introduced a novel technique to improve the quality of the learned attention. A key
challenge in self-attention mechanisms is learning an accurate attention map A. Traditional
scaled dot-product attention does not explicitly capture the varying importance of individual
features, potentially introducing noise i5167 3204 5514 1861nto the attention computation.

To address this, Yu et al. proposed a gated attention mechanism inspired by bilinear pooling:

M = o (FC, (FCH(Q) © FCE(K))) (3.32)

where FC‘;2 and FCLc are fully connected layers that project Q and K into a shared space, and FCy
further refines the element-wise product (©) into a feature gating mask. The sigmoid activation
function o(-) ensures that the values in M are in the range (0,1), effectively filtering out less

relevant features.

Additionally, the feature-wise attention mask M is defined as:
M e R™? (3.33)

which corresponds to the two masks M, € R™ and M) € R™, associated with the features Q and

V, respectively.
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Next, the masks M and K are tiled to obtain Mg, My € R™d and are subsequently used for

computing the attention map as follows:

O Mg)(K © Mg)"
AY = softmax((Q o) K) ) . (3.34)
Vd
Finally, the attended feature representation is obtained as:
F =A%V, (3.35)

This approach ensures that the importance of individual features is explicitly considered dur-
ing attention computation, leading to more discriminative feature representations. Figure 3.14

illustrates the flow of the gated self-attention mechanism.
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Figure 3.14. Gated self-attention

Source: [4]

3.6 Explainability in Deep Learning

In recent years, deep learning models have achieved remarkable success across various do-
mains, including computer vision, natural language processing, and healthcare. However, their
increasing complexity and black-box nature have raised concerns about their interpretability
and trustworthiness. Explainability refers to the ability to understand and interpret the de-
cisions made by machine learning models, particularly complex neural networks. The aim
is to provide human-interpretable insights into how models process input data and generate

predictions.

The importance of explainability becomes particularly pronounced in high-stakes applications
such as medical imaging, autonomous driving, and finance, where incorrect decisions can have
severe consequences. For instance, in medical diagnosis, understanding which parts of a med-

ical image influence a model’s prediction can help clinicians verify the validity of the results
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and identify potential errors.

Explainability methods are broadly categorized into two types: global and local. Global ex-
plainability provides insights into the overall behavior of a model, such as understanding
the importance of features or identifying the relationship between inputs and outputs. Local
explainability, on the other hand, focuses on interpreting individual predictions, such as high-

lighting specific regions of an input image or text that contributed most to a given output [35].

Numerous techniques have been developed to improve explainability in deep learning. These
include saliency maps, feature importance methods (e.g., SHAP and LIME), activation visual-
izations, and class activation mapping (CAM). Among these, gradient-based approaches have
gained popularity for their ability to generate visual explanations for CNNs. Grad-CAM, in
particular, introduced by Selvaraju et al. [36], generates visual explanations for CNN-based

models by leveraging gradients flowing into the final convolutional layers.

3.6.1 Grad-CAM

Grad-CAM highlights the important regions of an input image that are most relevant to the
model’s prediction, offering insights into the model’s decision-making process. Figure 7.1
demonstrates this concept by showcasing Grad-CAM visualizations for two target classes: "Cat"
and "Dog". The heatmaps highlight the distinct regions of the image that contribute most to

the predictions for each class.

Grad-CAM builds on class activation mapping (CAM) by generalizing it to models without global
average pooling layers. It achieves this by combining the gradients of a target class y© with the
feature maps of a convolutional layer. The key steps in Grad-CAM are as follows:

Let A* denote the activation map of the k-th convolutional filter in the target layer, and let y°

represent the score for the target class c. The importance of each feature map A* for the target

class is computed using the gradient ngJ;, pooled globally as follows:
1 ay°
a = — , 3.36
2 o

where Z is the total number of pixels in the activation map A¥, and A;‘. is the value of A at
spatial position (i,j). The weights a;. represent the contribution of the k-th feature map to the
target class c.

The Grad-CAM heatmap L v s then computed as:

rad-CAl
LGraa-cam = ReLU (Z a,iAk) , (3.37)
k

where ReLU ensures that only positive contributions are considered, as negative values are not

relevant for the class c. The resulting heatmap L highlights the regions of the input

rad-CAM
image that contribute most to the prediction.
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The Grad-CAM process involves the following steps:

e Forward pass: Compute the activations A¥ of the target convolutional layer and the

model’s output y¢ for the target class c.
e Backward pass: Compute the gradients 37?2 with respect to the activations A*.

e Compute weights: Use Equation 3.36 to calculate the weights a;. by performing global

average pooling on the gradients.

e Generate heatmap: Combine the weights with the activation maps and apply ReLU to

obtain L& 4 cam Using Equation 3.37.

e Overlay the heatmap: Normalize L, and overlay it on the input image for visual-

rad-CAM

ization.

Original Image Grad-CAM “Cat’ Grad-CAM ‘Dog’

Figure 3.15. Illustration of Grad-CAM visualizations
Source: [36]

3.7 Hyperparameter Tuning

In the development of machine learning models, hyperparameter tuning plays a crucial role in
optimizing performance. Hyperparameters are the parameters of the learning algorithm that
are not updated during training but are set before the training process begins. Examples in-
clude learning rate, batch size, the number of hidden layers, and the number of units in each
layer. Selecting the best combination of hyperparameters can significantly impact the model’s
accuracy, efficiency, and ability to generalize to unseen data. However, finding the optimal
hyperparameter configuration can be a complex and computationally expensive process, espe-

cially for models with high-dimensional parameter spaces.

3.7.1 Methods

There are several established methods for hyperparameter optimization:
Grid search is a brute-force approach that systematically searches through a predefined sub-

set of the hyperparameter space. It evaluates every possible combination of hyperparameters
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within this subset to identify the best performing configuration. While simple and effective
for low-dimensional problems, grid search can become computationally prohibitive for high-

dimensional or continuous hyperparameter spaces.

Random search selects hyperparameter combinations randomly, enabling it to explore a wider
area of the hyperparameter space compared to grid search. Studies have shown that random
search is more efficient in high-dimensional spaces, as it reduces computational overhead while
maintaining the ability to find optimal hyperparameter configurations. Unlike grid search, ran-
dom search does not evaluate all possible combinations, making it faster and more suitable for

problems where only a subset of hyperparameters significantly influences performance.

Bayesian Optimization builds a probabilistic model of the objective function and uses this
model to iteratively select hyperparameters that are likely to improve performance. This method
balances exploration of new regions of the hyperparameter space and exploitation of regions
known to perform well. Bayesian Optimization is particularly effective for problems with expen-
sive evaluation functions, as it focuses the search on promising areas of the hyperparameter

space, reducing computational costs [37].

3.7.2 Weights & Biases (W&B)

Modern tools like Weights & Biases (W&B) simplify and accelerate the hyperparameter tuning
process. W&B enables users to define hyperparameter sweeps using YAML configurations,
track experiments in real-time, and visualize results in an intuitive interface. By supporting
various tuning strategies like grid search, random search, and Bayesian Optimization, W&B

makes it easier to manage and optimize complex machine learning workflows.

W&B provides an interface to monitor the sweep process, visualize performance metrics across
hyperparameter configurations, and identify the best-performing model. Integrating W&B into
the hyperparameter tuning process enables practitioners to streamline experimentation, gain

deeper insights into model performance, and improve overall productivity [38]

3.8 Evaluation of Machine Learning Algorithms

In the field of machine learning, and specifically in statistical classification problems, the con-
fusion matrix is defined as a specialized table that enables the visualization of the performance
of a supervised learning algorithm. In unsupervised learning, this matrix is referred to as a
matching matrix. Each row of the matrix represents the instances in a predicted class, while

each column represents the instances in an actual class.

True Condition Condition Positive | Condition Negative
Predicted Condition Positive True Positive (TP) False Positive (FP)
Predicted Condition Negative | False Negative (FN) | True Negative (TN)

Table 3.1. Confusion Matrix
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The variables of the confusion matrix are defined as follows:
e True Positive (TP): Cases where the model correctly predicts a positive outcome.
e True Negative (TN): Cases where the model correctly predicts a negative outcome.
e False Positive (FP): Cases where the model predicts a positive outcome incorrectly.

e False Negative (FN): Cases where the model predicts a negative outcome incorrectly.

Based on the confusion matrix variables, the following performance metrics are defined:

Accuracy: The proportion of correct predictions over the total number of predictions:

Number of correct predictions TP + TN (3.38)
accuracy = = . .
Y Total number of predictions TP + TN + FP + FN

However, accuracy alone may not be sufficient to evaluate a model’s performance, especially
in cases where class distributions are highly imbalanced. For example, in datasets dominated
by one class, the classifier may favor the majority class, resulting in high accuracy but poor

performance on minority classes. Thus, additional metrics are necessary.

Recall (True Positive Rate/Sensitivity): The proportion of positive samples correctly pre-
dicted by the classifier:
TP

recall = ——. (3.39)
TP + FN

Precision: The proportion of correct positive predictions among all positive predictions made

by the classifier:

TP

—_— (3.40)
TP + FP

precision =

F1-Score: A metric that combines precision and recall. It is the harmonic mean of precision

and recall, mathematically expressed as:

precision - recall 2-TP

Fl-score =2 - = .
precision + recall 2-TP+ FP + FN

(3.41)

False Positive Rate (FPR): The proportion of negative samples incorrectly predicted as posi-

tive:
FP

"IN+ FP
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3.8 Evaluation of Machine Learning Algorithms

Specificity (True Negative Rate): The proportion of negative samples correctly predicted by

the classifier:

N

Speciﬁcity = m

(3.43)
ROC Curve and AUC (Area Under Curve): The Receiver Operating Characteristic (ROC) curve
is a graphical representation of a classification model’s performance across all classification
thresholds. It plots the True Positive Rate against the False Positive Rate, and the AUC (Area
Under Curve) measures the area under this curve, summarizing the overall performance of the
mode [39].
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Chapter ﬂ

Related Work

In this chapter, a comprehensive literature review of the methods that have been used for the
diagnosis of Alzheimer’s will be conducted. Additionally, a comparative study of the evaluation
metrics and results achieved by each study will be carried out, which will guide us in the de-

velopment of our own models aiming to improve these metrics.

One of the earliest studies in predicting AD from neuroimaging data is by Vemuri et al. (2008)
[7], which utilized structural MRI analyzed through a support vector machine (SVM) classi-
fier. The study employed three models: Model I used only MRI-based tissue density features,
while Models II and III incorporated demographic information (age and gender) and APOE geno-
type data, respectively. The dataset consisted of 190 AD patients and 190 cognitively normal
(NC) controls, matched for age and gender, recruited from the Mayo Clinic Alzheimer’s Dis-
ease Research Center (ADRC) and the Alzheimer’s Disease Patient Registry (ADPR). In Model
I, the analysis of tissue densities identified key brain regions affected by AD, such as the hip-
pocampus and medial temporal lobe, achieving a sensitivity and specificity of 86%. This work
demonstrated the strong diagnostic potential of structural neuroimaging alone, with Models II

and III showing slight improvements when additional information was included.

The study by Lebedev et al. (2014) [8] investigated the use of Random Forest (RF) classifiers
for detecting AD and distinguishing it from healthy controls using structural MRI data. The
method included preprocessing the MRI data using Freesurfer software to extract morpho-
metric measurements such as cortical thickness and subcortical volumes. Recursive feature
elimination was employed to optimize feature selection, and models were trained using Ran-
dom Forest (RF) with different morphometric modalities. The model with the best performance
achieved a sensitivity of 88.6%, specificity of 92%, and an area under the ROC curve of 0.94
for distinguishing AD from CN in the ADNI dataset.

The study by Liu et al. (2014) presents a deep learning-based framework for diagnosing AD and
MCI, using multimodal neuroimaging data, specifically MRI and PET, from the ADNI database
[10]. The proposed method utilizes stacked sparse auto-encoders for dimensionality reduc-
tion and data fusion, combined with a softmax regression layer for multi-class classification.
The model achieved an accuracy of 87.76%, sensitivity of 88.57%, and specificity of 87.22%
for binary classification of AD vs NC. Additionally, in the 4-class classification task (NC, MCI
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converters, MCI non-converters, and AD), the framework attained an accuracy of 47.42%.
This deep learning approach overcomes traditional bottlenecks by requiring fewer labeled sam-
ples and minimal domain-specific prior knowledge. This is achieved through unsupervised
pre-training with stacked auto-encoders, which reduces reliance on labeled data while auto-

matically extracting deep representations from neuroimaging data.

The study by Payan and Montana (2015) was one of the first to apply convolutional neural
networks CNNs to the classification of AD using neuroimaging data [9]. They developed a clas-
sification framework using 3D CNNs, marking an early and significant contribution to the field.
The methodology involved preprocessing MRI scans from the ADNI dataset to normalize voxel
intensities and reduce intersubject variability. Sparse autoencoders were first trained to learn
feature representations from 3D patches of brain images, which were then used to initialize
the 3D-CNN. The CNN architecture consisted of convolutional, pooling, and fully connected
layers, allowing the model to capture local 3D patterns and hierarchical features directly from
the volumetric MRI data. Their model achieved an accuracy of 95.39% for AD vs. NC, 86.84%
for AD vs. MCI, and 92.11% for MCI vs. NC, outperforming the 2D-CNN approach and many

traditional machine learning methods.

The study by Sarraf and Tofighi (2016) employed 2D CNNs, specifically the LeNet-5 architecture,
to classify AD using functional MRI (fMRI) data [40]. The data, obtained from the ADNI dataset,
were preprocessed through standard pipelines, including motion correction, skull stripping,
and spatial smoothing, before being converted into 2D JPEG images. These images were then
labeled for binary classification (AD vs. NC) and processed through the CNN. The network was
trained using 60% of the data, validated on 20%, and tested on the remaining 20%. The model

achieved a mean classification accuracy of 96.86% across five runs.

Donghuan Lu et al proposed a novel deep learning framework, the Multimodal and Multiscale
Deep Neural Network (MMDNN), for the early diagnosis of AD [11]. Using neuroimaging data
from the ADNI, including 1,242 subjects with T1-MRI and FDG-PET scans, the framework com-
bines structural MRI-derived brain volume features and FDG-PET-derived glucose metabolism
features at multiple scales. The method involves preprocessing the images to extract multiscale
patch-wise features and training independent neural networks for each scale and modality, fol-
lowed by a feature-fusion network to generate predictions. For the classification of NC vs AD,
the MMDNN achieved 84.6% accuracy, with a sensitivity of 80.2% and specificity of 91.8%.
Additionally, the framework also showed high performance in predicting conversion from MCI

to AD within 1-3 years prior to diagnosis.

The study by Huang et al. (2019) introduced a revolutionary approach to leveraging multimodal
imaging data, specifically T1-weighted MRI and FDG-PET, for Alzheimer’s Disease diagnosis
[41]. The methodology centered around the extraction of 3D patches from the hippocampal
region, a key area of atrophy in AD, allowing the model to capture complementary structural
and metabolic features. The study utilized the ADNI dataset, comprising 731 NC subjects, 647
AD patients, 441 stable Mild Cognitive Impairment (sMCI) subjects, and 326 progressive MCI
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(pMCI) subjects. The model achieved classification accuracies of 90.10% for AD vs. NC, 87.46%
for NC vs. pMCI, and 76.90% for sMCI vs. pMCI. This study showed the power of combining
multimodal data with deep learning for Alzheimer’s diagnosis and has inspired many other

researchers to explore similar approaches in the field.

Song et al. (2021) [3] proposed a novel multimodal image fusion method to enhance the di-
agnosis of AD by creating a new composite imaging modality called GM-PET, which combines
structural information from MRI and metabolic information from FDG-PET, with a focus on
the gray matter (GM) region critical for AD diagnosis. Using the ADNI dataset, which included
381 subjects categorized as AD, MCI, and NC, the authors pre-processed the data through
skull stripping, registration, and segmentation to isolate the GM region. This GM region was
then used to fuse complementary information from MRI and PET into the GM-PET modality,
which retains brain structure and metabolic data while eliminating noise. Two classification
networks, a 3D Simple CNN and a 3D Multi-Scale CNN, were employed to evaluate the fused
modality. The GM-PET modality demonstrated significant improvements in diagnostic accu-
racy, achieving 94.11% accuracy, 93.33% sensitivity, and 94.27% specificity for AD vs. NC

classification, and 88.48% accuracy for MCI vs. NC classification.

Golovanevsky et al (2022) proposed the Multimodal Alzheimer’s Disease Diagnosis framework
(MADDi), a deep learning-based system for diagnosing AD and MCI using imaging (MRI), genetic
(SNPs), and clinical data from the ADNI dataset [42]. The dataset included 2,384 participants,
with 239 participants having data across all three modalities. The model utilized modality-
specific neural network backbones (a CNN for MRI and fully connected networks for clinical
and genetic data), followed by self-attention layers to identify critical intra-modality features
and cross-modal attention layers to capture interactions between modalities. MADDi achieved
a state-of-the-art accuracy of 96.88%, with an F1-score of 91.41%. Unimodal models achieved
lower accuracies (clinical: 80.59%, genetic: 77.78%, imaging: 92.28%), highlighting the ad-

vantage of multimodal fusion.

Castellano et all (2024) conducted a study on automated AD detection using a multi-modal
approach that integrates 3D MRI and amyloid PET imaging, along with transfer learning strate-
gies [12]. Using the OASIS-3 dataset, which includes imaging data from 1098 participants, the
researchers developed CNN models to evaluate uni-modal (MRI or PET) and multi-modal config-
urations. Transfer learning was implemented by pre-training on 3D PET data and fine-tuning
on MRI data, and vice versa, but these methods did not surpass uni-modal or multi-modal
models, suggesting limited cross-modality feature applicability. The best-performing model, a
multi-modal fusion model, achieved an accuracy of 95%, sensitivity of 93.33%, and specificity
of 96.66%, outperforming uni-modal methods. MRI scans alone demonstrated stronger diag-
nostic performance than PET, but the integration of MRI and PET captured complementary
features, significantly enhancing diagnostic accuracy. Grad-CAM explainability analysis iden-
tified critical brain regions associated with AD, such as the medial temporal lobe and frontal

gyrus, emphasizing the clinical relevance of the findings.
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Reference | Modalities | Method | Dataset Task ACC SEN SP AUC
Number
[7] MRI SVM ADRC |NCvsAD | N/A 86% 86% N/A
and
ADPR
[8] MRI Random ADNI | NCvsAD| N/A | 88.6% | 92% 0.94
Forest
[10] MRI and Stacked ADNI | NC vs AD |87.76%|88.57%|87.229% N/A
PET Auto- MCI vs NC|76.92%]| 74.29 |78.13%
Encoders
[9] MRI 3D CNNs ADNI |NC vs MCI|92.11%| N/A N/A N/A
MCI vs AD|86.84%
NC vs AD [95.39%
[40] MRI 2D CNNs ADNI | NC vs AD |96.86%| N/A N/A N/A
[11] MRI and MMDNN ADNI | NCvsAD | 84.6% | 80.2% | 91.8% | N/A
PET
[41] MRI and 3D CNNs ADNI | AD vs NC ]90.10%)]90.85%]89.21%] 90.84%
PET NC vs 87.46%]90.73%]80.61% 87.61%
pMCI
[3] MRI and 3D Simple ADNI |NC vs MCI|88.48%]93.44%]|85.60% N/A
PET CNN and MCI vs AD|84.83%]|71.19%|94.69%
(GM-PET) 3D NC vs AD [94.11%]94.44%)|95.04%
Multi-Scale
CNN
[42] MRI, SNPs CNN & ADNI |NC vs MCI|96.88%| N/A N/A N/A
and clinical| attention vs AD
data
[12] MRI and 2D&3D OASIS-3| NCvs AD | 95.00 | 93.33 | 96.66 | 93.00
PET CNNs




4.1 Limitations of the state-of-the-art approaches

4.1 Limitations of the state-of-the-art approaches

The above literature review, along with other studies, has identified several limitations in ex-
isting methods. Firstly, multimodal approaches have not been adequately studied. Even in
cases where they have been applied, the integration of different modalities is usually limited to

a simple concatenation, overlooking the interactions between them.

Furthermore, a significant limitation concerns the inability of existing methods to dynamically
adapt to input data. Most approaches rely on dense layers for the final classification of pa-
tients, which, due to their static nature, struggle to adapt to more complex and heterogeneous
data. This is a critical issue in the case of MCI, a stage that is inherently associated with a

high diagnostic complexity.

Another key limitation involves the interpretability of models. Most developed models function
as "black boxes," where they receive input data and produce output results without providing

information about the features that contributed to their final decision.

This poses a significant problem in clinical practice, as for a doctor to evaluate the model’s
results, it is essential to know which brain regions are considered pathological. The lack of
transparency undermines trust and complicates the implementation of these methods in diag-

nosis and clinical decision-making.

To address these limitations, the following methodology aims to overcome these challenges by

introducing a more adaptive, multimodal, and interpretable approach.
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Chapter E

Dataset and Preprocessing

5.1 The Alzheimer’s Disease Neuroimaging Initiative

The Alzheimer’s Disease Neuroimaging Initiative (ADNI), established in 2004, is a groundbreak-
ing collaborative study designed to develop biomarkers for the early detection and monitoring
of Alzheimer’s disease progression [43]. ADNI brings together academic institutions, industry
leaders, and governmental agencies to create an extensive dataset, serving as a foundation for

significant advancements in Alzheimer’s diagnostics and therapeutic research.

ADNI focuses on identifying biomarkers that signal the onset of AD before clinical symptoms
appear, monitoring disease progression, and enhancing clinical trial designs. Participants in-
clude Cognitively Normal (NC) individuals, those with Mild Cognitive Impairment (MCI), and
individuals with clinically diagnosed AD, recruited from diverse sites across the United States

and Canada to ensure a representative sample.

The dataset collects multimodal data, including magnetic resonance imaging (MRI), fluorodeoxyglu-
cose positron emission tomography (FDG-PET), cerebrospinal fluid (CSF) biomarkers, genetic
data, clinical assessments, and psychometric tests, providing a comprehensive view of AD’s
biological and clinical dimensions. A key feature of ADNI is its open-access policy, enabling
researchers worldwide to utilize the data via the Laboratory of Neuro Imaging (LONI). For more

information, visit the ADNI website: https://adni.loni.usc.edu/.
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Chapter 5. Dataset and Preprocessing

5.1.1 Data Overview

In this study, subjects with both T1-weighted MRI (specifically MPRAGE scans for their superior

quality) and FDG-PET scans were selected, ensuring the scans were acquired closely in time

to improve alignment between the modalities. The final cohort consisted of 370 subjects from
the ADNI dataset: 73 with AD, 188 with MCI, and 118 NC individuals. Figure 5.1 illustrates

representative MRI slices (sagittal, coronal, and axial views) from subjects in each diagnostic

group. Additionally, the distributions of group, age and gender of the individuals are depicted

in Figure 5.2.

The MRI and FDG-PET images in ADNI undergo several preprocessing steps.For MRI, the

following corrections are applied:

1.

2.

3.

Gradwarp: Corrects image geometry distortion caused by the gradient model.

B1l non-uniformity correction: Addresses intensity variations using Bl calibration

scans.

N3 histogram peak-sharpening algorithm: Reduces intensity non-uniformity.

In this study, we utilized fully preprocessed MRI data. To achieve consistency across different

systems, the baseline FDG-PET scans are processed through the following steps:

1.

2.

3.

Co-registration of dynamic frames: Six 5-minute FDG-PET frames acquired 30-60
minutes post-injection are co-registered to the first frame to reduce the effects of patient

motion.
Averaging: The co-registered frames are averaged.

Standardization of image and voxel size: The averaged image is reoriented into a
standard 160 x 160 X 96 voxel grid with 1.5 mm cubic voxels, corrected for anterior
commissure-posterior commissure alignment, and intensity-normalized using a subject-

specific mask so that the average voxel value within the mask equals one.

Uniform resolution: The normalized image is smoothed using a scanner-specific filter to

achieve a uniform isotropic resolution of 8 mm full width at half maximum.

Diploma Thesis



5.1.2 Preprocessing Steps

NC Patient MCI Patient AD Patient

Figure 5.1. MRI of an NC, MCI, an AD patient. These are images of MRI scans from ADNI
patients. The images are oriented in coronal, sagittal, an axial view.

Source: [44].

Age Distribution Gender Distribution

Count

Age Gender

(a) (b)

Group Distribution

AD

(c)

Figure 5.2. Visualizations of participant distributions: (a) Age distribution, (b) Gender distribu-
tion, and (c) Diagnostic group distribution.

5.1.2 Preprocessing Steps

The preprocessing of MRI scans begins with skull-stripping, implemented using the FSL (FM-
RIB Software Library) package, specifically the Brain Extraction Tool (BET). Skull-stripping
removes non-brain tissues such as the skull, scalp, and dura mater, isolating the brain struc-
ture for more focused analysis. In the processing pipeline, a threshold parameter controls the

aggressiveness of tissue removal and is set to 0.5 for balanced extraction. Bias field correction
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is also applied to improve the clarity of the extracted brain region, enhancing the overall quality

of the output.

The skull-stripped MRI (SS-MRI) images are then affine transformed to the MNI152 space, a
widely adopted universal brain atlas template. This transformation employs the FLIRT (FM-
RIB’s Linear Image Registration Tool) module within the FSL package, which applies a linear
affine transformation to correct for spatial discrepancies between subjects. The registration
process aligns MRI scans by correcting translations, rotations, and scaling, standardizing the

images to the consistent orientation and voxel dimensions of MNI152 space.

For FDG-PET scans, preprocessing begins withPET skull-stripping to isolate the brain struc-
ture, followed by co-registration to their corresponding MNI-aligned MRI images. Both steps
are analogous to those performed for MRI scans, ensuring that the PET images adopt the same
spatial orientation and voxel resolution (e.g., 1.0 X 1.0 X 1.0 mm) as their MRI counterparts.
This alignment guarantees consistency across modalities, facilitating multimodal integration

and enabling the model to effectively learn spatial relationships inherent in the data [3].

To improve computational efficiency, the co-registered PET and MRI images are resized to a
lower resolution of 160 x 180 x 80. This resizing maintains essential structural details while
reducing the computational complexity for subsequent analysis tasks such as classification.
Figure 5.3 illustrates the preprocessing pipeline for both MRI and PET data of the same subject,
showcasing the steps of skull-stripping and registration to the MNI152 template, alongside the
spatial alignment results in transverse, sagittal, and coronal planes for each modality. The

displayed subject belongs to the NC group.
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Figure 5.3. Preprocessing pipeline for MRI and PET scans.
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Methodology

The methodology of this study follows a pipeline that integrates MRI and PET imaging data,
processed to classify subjects into MCI, AD, and NC categories. As illustrated in Figure 6.1,
the pipeline begins with extracting modality-specific features from MRI and PET scans through
dedicated pathways. These features are then fused using different techniques to create a unified
representation. The resulting combined features are fed into a Mixture of Experts model, which
leverages specialized sub-models to refine and enhance classification accuracy. In this chapter,
we will explore each component of the methodology in detail, including feature extraction using

3D CNNs, fusion strategies, and the Mixture of Experts model.

Mixture of
mmmmd Expert
Model

Feature extraction H——— m

’

Figure 6.1. Methodology pipeline
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6.1 CNN Architecture

As discussed in Section 3.3, CNNs have gained significant attention for their effectiveness in
medical image classification. Traditional 2D CNN approaches process 3D medical images slice
by slice, disregarding anatomical context in z axis. In contrast, 3D CNNs consider volumetric
data as a whole, capturing richer spatial information but at the cost of increased computational

complexity and memory usage due to the higher number of parameters.

As shown in Figure 6.2, the CNN architecture used in this study consists of four 3D convolu-
tional layers, each with a kernel size of 3x3x3. These layers are followed by batch normaliza-
tion to stabilize training and ReLU activation to introduce non-linearity. The first convolutional
layer generates eight feature maps, with subsequent layers producing 16, 32, 64 and 128
feature maps, respectively. Max-pooling layers are applied after each convolutional block to
progressively reduce spatial dimensions while preserving key features. The pooling operations
use kernel sizes of 2x2x2, 3x3x3, and 4x4x4. In the final stage, a global average pool-
ing layer further compresses the spatial dimensions, preparing the feature maps for the next

processing steps. Dropout regularization is applied after pooling layers to reduce the risk of
overfitting.

The architecture features two separate but identical pathways for MRI and PET images, each
designed to extract distinct structural and functional information from the respective modal-
ities. Both pathways culminate in 128 feature maps, which are then concatenated along the
feature dimension. In the next section, we will discuss three different fusion methods used to

integrate these extracted features.
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Figure 6.2. The CNN architecture used in this thesis
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6.2 Feature Fusion Techniques

Three feature integration techniques are employed to process multimodal data. The first tech-
nique, as illustrated in 6.3, is feature concatenation, which directly combines MRI and PET
features into a single feature vector. This straightforward yet effective approach preserves all
the information from both modalities, serving as a baseline for comparison with more advanced
methods. The resulting concatenated vector has a dimensionality of 256, as each modality con-

tributes 128 features.

PET features

Figure 6.3. Simple concatenation of the MRI and PET features

The second technique, shown in 6.4, employs GMU, which incorporates gating mechanisms to
balance information sharing and separation between modalities. The GMU takes 128 features
from MRI and 128 features from PET as input and produce a unified output of 128 features.
The weights WP € R!28, W™ ¢ R!28, and W* € R'?® correspond to the PET, MRI, and gating
components, respectively. As described in 3.21, 3.22, and 3.23, these trainable weights are
used to control the contribution of each modality towards the final classification. A more

detailed explanation of the GMU process is provided in 3.5.1.

MRI features PET features

Figure 6.4. GMU for the concatenation of MRI and PET features
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The third feature fusion technique is Gated Self-Attention. This approach allows the model
to capture both intra-modal and inter-modal interactions simultaneously while retaining only
the most relevant connections. Given the two modalities, the first step is to concatenate their

representations:

Z = [MRI,; PET] 6.1)

Here, the concatenated representation Z is defined as Z € R™4, where m = 4 + 4 and d = 128.
To ensure that spatial information is retained, we extract features before applying global average
pooling, treating spatial locations as tokens as shown in 6.5. This enables the self-attention

mechanism to capture spatial dependencies both within and across modalities.

Ux128
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MaxPool3d(3,3,3)
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Dropout(0.5)
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MaxPool3d(2,2,2)
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MaxPool3d(4,4,4)
Conv block (3,128)
MaxPool3d(3,3,3)
Dropout(0.5)

G[obalﬂuxﬂingSD

Conv block (3,64)

Figure 6.5. Feature extraction without Global Average Pooling

This representation is then used for computing the query (Q), key (K), and value (V) matrices:

Q=2 K=2 V=2Z (6.2)

Then, equations 3.32, 3.34 and 3.35 are applied following the pipeline illustrated in Figure 6.6.

80 Diploma Thesis



6.3 MOoE architecture
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Figure 6.6. Self-Attention mechanism after the concatenation of the MRI and PET features

6.3 MOoE architecture

As described in 3.4, we employ the MoE architecture, utilizing n experts to process the extracted
features from the three previously discussed fusion methods. As shown in 6.7, each expert
consists of a fully connected layer followed by a ReLU activation function, and a second fully
connected layer for final classification. The model’s output is computed according to 3.13,
while the router determines expert selection based on the equations 3.15, 3.16, and 3.17. To
ensure the correct functioning of the entire architecture, we optimize the total loss 3.20, which

is derived from the importance loss 3.18 and load loss 3.19.
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Figure 6.7. MoE architecture of this thesis

6.4 Experimental Setup

In this study, the networks are implemented using the PyTorch deep learning framework [45].
We perform three classification tasks: AD vs NC, AD vs MCI, and MCI vs NC. Comparative
experiments are conducted on both unimodal and multimodal data. To identify the optimal
hyperparameters, we utilize the wandb framework with random search, and the set of optimal
hyperparameters identified during the search is summarized in Table 6.1. The Adam optimizer
with an initial learning rate of 1 x 10~* and a weight decay of 0.1 is used to update the network
weights during training. Also a batch size of 4 is selected, while for regularization, we applied
a dropout rate of 0.5. For the number of experts, we set n = 5 and k = 4, while for the pa-

rameter a in Eq. 3.20, we chose a = 0.6. Binary cross-entropy is employed as the loss function.

A 10-fold cross-validation strategy is adopted to ensure fair performance evaluation. The
dataset is randomly divided into 10 subsets: two subsets are used as the test set, another
two as the validation set, and the remaining six subsets are used for training. Each experiment

is trained for 500 epochs, and two learning rate adjustment strategies are applied:

1. If the validation loss does not decrease within 5 epochs and the current learning rate is

above 5 x 1076, the learning rate is reduced to half of its current value.

2. If the validation accuracy does not improve within 10 epochs and the current learning

rate is above 5 x 1078, the learning rate is also halved.

Additionally, an early stopping strategy is employed, where training is terminated if the vali-
dation loss does not decrease within 30 epochs. The classification accuracy (ACC), sensitivity
(SEN), and specificity (SPE) are used as evaluation metrics. The results are reported as the
mean + standard deviation (SD) across the 10 folds. For further analysis, we use the best-

performing model from the NC vs. AD classification task, as it is the easiest task, to apply
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Grad-CAM for identifying the key areas contributing to the predictions.

This analysis begins with experiments using the full architecture to gain a comprehensive un-
derstanding of the model’s overall effectiveness. Additionally, we will conduct experiments to
assess the impact of each component. Specifically, we will evaluate simplified architectures by
systematically removing individual components (e.g., the MoE framework) and analyzing the

corresponding changes in performance.

Table 6.1. Optimal hyperparameters used for the experiments.

Hyperparameter Value
Learning rate () 1x 107
Weight decay 0.1
Batch size 4
Dropout rate 0.5

Number of experts (n)|5

Selected experts (k) |4

Parameter a in loss [0.6

Optimizer Adam

Diploma Thesis m






Chapter

Results

7.1 Results of the whole architecture

Table 7.4 summarizes the classification performance of our final model using three different

fusion methods: Concatenation, GMU, and Attention. The model is evaluated on three binary
classification tasks: NC vs MCI, MCI vs AD and NC vs AD. We observe that GMU achieves the

best results in two out of three tasks, while attention performs best in the remaining one. This

suggests that more advanced fusion techniques tend to yield superior performance.

Table 7.1. Performance of the final architecture

Fusion Method Task ACC SEN SP AUC
NC vs MCI 78.25+3.2 | 75.43+4.1 | 79.32+2.1 | 76.56+3.9
Concatenation MCI vs AD 80.13+5.3 | 79.24+5.8 | 81.21+5.5 | 76.83+8.1
NC vs AD 89.52+3.4 | 87.25+3.2 | 89.98+4.1 | 89.64+2.3
NC vs MCI 80.46+-3.9] 79.71+4 |81.76 +3.9]80.51+3.5
GMU MCI vs AD 79.13+1.1 | 77.23+3.3 | 81.36+4.2 | 79.94+1.5
NC vs AD 9547 +2.1194.31+3.2]96.73+1.8]|95.41+2.6
NC vs MCI 80.15+2.2 | 78.35+5.4 | 83.56+2.6 | 77.46+1.9
Attention MCI vs AD 82.08+2.1]|8143+1.8|8524+2.7] 8048+3
NC vs AD 91.53+4.7 | 92.28+4.4 | 91.07+4.7 | 92.29+5.2
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Chapter 7. Results

7.2 Grad-CAM results

Figure 7.1 illustrates Grad-CAM visualizations applied to MRI and PET scans of an AD patient.
The first column presents the original MRI (top) and PET (bottom) scans, while the subsequent
columns display Grad-CAM heatmaps overlaid on different axial slices (slice = 20, 30, 40). This
visualization aids in interpreting the model’s decision-making process by identifying key regions
contributing to AD classification. The red regions represent areas that the model considers
relevant to AD, with darker shades of red signifying higher importance in the classification
decision. We observe that the highlighted regions differ between MRI and PET scans, possibly

indicating their complementary nature.

|

slice = 20 slice = 30 slice = 40

MRI

PET

»

AD patient

Figure 7.1. Grad-CAM results for an AD patient
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7.3 Comparison of our best results with preliminary work

7.3 Comparison of our best results with preliminary work

Table 7.2 presents a comparative analysis of our best-performing models against state-of-the-

art techniques in AD classification. Our GMU model achieved the highest accuracy (95.47%)

for NC vs AD classification, outperforming prior unimodal and multimodal approaches, includ-
ing [12] (95.00%) and [3] (94.11%). Moreover, GMU attained the highest specificity (96.73%),
demonstrating superior ability in correctly identifying healthy individuals, and an ROC-AUC
of 95.41%. For MCI vs AD classification, our Attention-based model exhibited the highest
sensitivity (81.43%), while [3] achieved the best specificity (94.69%).

Table 7.2. Comparison of our best results with preliminary work

Architecture Task Accuracy Sensitivity Specificity ROC-AUC
Unimodal approaches (MRI)
Support Vector Machine [7] NC vs AD - 86 86 —
Random Forest [8] NC vs AD - 88.6 92 —
3D CNNs [9] NC vs AD 95.39 - - —
NC vs MCI 92.11 - - -
MCI vs AD 86.84 - - -
Multimodal approaches
Stacked Auto-Encoders [10] NC vs AD 87.76 88.57 87.22 —
NC vs MCI 76.92 74.29 78.13 -
Multiscale DNN [11] NC vs AD 84.6 80.2 91.8 —
3D CNNs [3] NC vs AD 94.11 94.44 95.04
NC vs MCI 88.48 93.44 85.60 -
MCI vs AD 84.83 71.19 94.69 -
2D&3D CNNs [12] NC vs AD 95.00 93.33 96.66 93.00
Our best-performing Model
GMU NC vs AD 95.47 94.31 96.73 95.41
GMU NC vs MCI 80.46 79.71 81.76 80.51
Attention MCI vs AD 82.08 81.43 85.24 80.48
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7.4 Ablation Study Results

7.4.1 Results without the MoE frammework

To assess the contribution of the MoE model, we will replace it with a simple architecture con-

sisting of three fully connected layers and evaluate its performance using three different fusion

methods for the MRI and PET features: concatenation, GMU and attention-based fusion. We

observe that the results without the MoE framework are worse compared to those of the com-

plete architecture.

Table 7.3. Performance without the MoE framework

Fusion Method Task ACC SEN SP AUC
NC vs MCI 67.4+0.8 76.2+6 57.4+4.2 | 63.1x4.9
Concatenation MCI vs AD 68.5+2.8 75.2+5 59.3+3.1 67.4+3.9
NC vs AD 86.48+5.2 | 84.32+4.2 | 87.18+5.6 | 84.8+4.8
NC vs MCI 70.5+2.9 | 74.2+4.1 65.6+4.8 | 72.3+3.9
GMU MCI vs AD 69.58+2.7 | 69.88+3.4 | 67.13+2.1 | 67.55+5.6
NC vs AD 85.65+7.2 | 84.51+5.6 | 88.61+5.2 | 81.25+7.8
NC vs MCI 68.4+3.8 | 70.2+5.1 66.8+4.5 | 67.1+4.1
Attention MCI vs AD 73.45+2.8 75.5+4 72.3+3.5 | 74.3+2.9
NC vs AD 85+8.8 84.91+6.6 | 84.78+7.2 | 83.1+7.4

7.4.2 Results of the unimodal models

Table 7.4 presents the performance metrics of unimodal models (MRI and PET) for the three
classification tasks: NC vs MCI, MCI vs AD and NC vs AD.

Table 7.4. Performance of the unimodal models

Fusion Method Task ACC SEN SP AUC
NC vs MCI 67.38+0.7 | 86.17+6 | 40.35+8.4 | 63.08%5
MRI MCI vs AD 64.29+4.6 | 67.56+5.6 | 62.19+4.8 | 61.14+5.5
NC vs AD 75.32+3.5 |80.17+11.1]65.31+10.8] 76.13+5.3
NC vs MCI 72.39+3.8 | 70.15+4.8 | 76.21+4.2 | 73.65+4.9
PET MCI vs AD 70.81+2.4 | 68.57+4.2 | 75.42+4.1 | 69.6+5.8
NC vs AD 81.1+1.6 81+1.6 81.88+2.6 84+6

We observe that unimodal models yield worse results compared to multimodal ones and that

PET outperforms MRI in all three classification tasks.




Chapter E

Conclusion

In this thesis, our goal was to develop a robust and reliable system for diagnosing AD. Today,
Alzheimer’s is a leading cause of death, with its prevalence expected to rise in the coming
years. Symptoms often go undetected, making recovery impossible. This is why identifying
MCI is crucial, as early detection can help slow the rapid progression of the disease.

To achieve this, we focused on detecting abnormalities in MRI and PET scans of patients cat-
egorized into one of three groups: NC, MCI, or AD. We used the ADNI dataset, which provides
high-quality images of patients with both MRI and PET scans. Prior to analysis, we prepro-
cessed the data by extracting the brain region and aligning the modalities to avoid spatial
discrepancies. We began by extracting features from both imaging modalities using a 3D CNN
through two distinct yet similar pathways. Next, we applied three different fusion techniques
to capture both inter- and intra-modality connections. The first method was simple feature
concatenation, producing 256 features. The second method was a GMU, which controls the
flow of information between different modalities by dynamically weighting their contributions,
resulting in 128 features. Lastly, we employed gated self-attention, which enhances feature
selection by dynamically weighting the most important information across modalities and also
results in 128 features. To improve classification performance and computational efficiency,
we employed a MoE model. MoE consists of multiple specialized subnetworks, each trained to
process a specific subset of inputs. A gating mechanism determines which experts contribute
to each prediction, ensuring that only a few experts are active at any given time. This also
reduces computational efficiency, as not all parameters are engaged simultaneously. Addition-
ally, we used Grad-CAM to visualize which regions of the brain influenced the model’s final
decision. This is a crucial step, as it allows us to ensure that our model is not functioning as
a mere black box, but rather making interpretable and biologically meaningful predictions.
For evaluation, we used accuracy, sensitivity, specificity, and ROC metrics to assess model
performance. The results showed that our best-performing model was the GMU model for both
the NC vs MCI and NC vs AD classification tasks reaching an accuracy of 95.47% in the NC vs
AD task. However, for the MCI vs AD task, the attention-based model outperformed the others.
Next, we conducted ablation studies to analyze the contribution of different components of our
architecture to the final performance. We observed that replacing the MoE model with simple
fully connected layers resulted in a performance drop across all classification tasks, highlight-
ing the effectiveness of MoE in selecting relevant features.

Additionally, we evaluated the model’s performance when using only a single imaging modality

Diploma Thesis m



Chapter 8. Conclusion

(MRI or PET) instead of both. The results showed that performance was worse compared to
the full multimodal architecture, demonstrating the advantage of fusing both modalities. In-
terestingly, we found that PET consistently outperformed MRI across all three classification
tasks. This observation was further reinforced when analyzing modality contributions within
the GMU model. By examining the weight distribution at the end of training of the multimodal
architecture, we observed that PET received higher weight assignments compared to MRI.

Finally, we compared our best-performing model with state-of-the-art approaches in both uni-
modal and multimodal studies within the domain. The results demonstrated that our model
outperformed previous work in terms of accuracy, specificity, and ROC metrics for the NC
vs. AD classification task. Additionally, our model achieved higher sensitivity in the NC vs.
MCI task. Regarding the Grad-CAM analysis, our model successfully identified disease-related
regions in both MRI and PET scans, demonstrating its ability to focus on relevant areas. We
also observed that the highlighted regions differed between the two modalities, confirming their

complementary nature.

8.1 Future Work

Several directions can be explored to further improve our work. One potential avenue is ex-
perimenting with different feature extraction pathways for MRI and PET scans. By designing
modality-specific extraction strategies, we may be able to capture the most informative features
from each modality independently, potentially enhancing overall classification performance.
Another important aspect to investigate is alternative preprocessing techniques for MRI scans.
Given that the MRI model underperformed compared to the PET model, evaluating different
preprocessing pipelines could help optimize feature extraction and improve MRI’s contribution
to the classification task. Exploring advanced neuroimaging preprocessing packages may lead
to better-aligned and higher-quality inputs.

Additionally, early fusion techniques could be explored to improve multimodal learning. In-
stead of processing MRI and PET features separately before fusion, early fusion combines the
raw input data or low-level extracted features at an earlier stage in the network. This approach
may help the model learn shared representations across modalities more effectively.

Finally, Generative Adversarial Networks (GANs) could be utilized to address the limited dataset
size. GANs can be employed for data augmentation, generating synthetic but realistic MRI and
PET scans to increase the training set diversity. This could improve the model’s ability to gen-
eralize, particularly in distinguishing between MCI and AD or NC and MCI, where differences

can be subtle.
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List of Abbreviations

AD Alzheimer’s Disease

MCI Mild Cognitive Impairment

NC Normal Control

MRI Magnetic Resonance Imaging
DNN Deep Neural Network

VAE Variational Autoencoders

XAl Explainable Al

ML Machine Learning

ANN Artificial Neural Network

MLP Multi-Layer Perceptron

ReLU Rectified Linear Unit

tanh Hyperbolic Tangen

MSE Mean Squared Error

CE Cross-Entropy

BCE Binary Cross-Entropy

FNN Feedforward Neural Network
RNN Recurrent Neural Network
LSTM Long Short-Term Memory

GRU Gated Recurrent Units

CNN Convolutional Neural Network
GAN Generative Adversarial Network
MoE Mixture of Experts

CAM Class Activation Mapping

W&B Weights and Biases

TP True Positive

TN True Negative

FP False Positive

FN False Negative

AUC Area Under Curve

SVM Support Vector Machine

FN False Negative

ADRC Alzheimer’s Disease Research Center
RF Random Forest

ADRC Alzheimer’s Disease Research Center
MDNN Multiscale Deep Neural Network
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List of Abbreviations

GM Gray Matter

ADNI Alzheimer’s Disease Neuroimaging Initiative
CF Cerebrospinal Fluid

LONI Laboratory of Neuro Imaging

BET Brain Extraction Tool

SS Skull-Stripped

ACC Accuracy

SEN Sensitivity

SPE Specificity

SD Standard Deviation
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