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ITepixndm

H toryeio eZENMEN TV CUCTNUATWY UNYAVIXAC UAONOTE Xou 1) EXTETUUEVT] EQUPUOYY TOUG OE TepL-
BaANovta mapaywyfg €xouy avadellel TNV avdryxr Yl agLOTIG TEC X XAUUXOVUEVES AUCELS YLot
™ Brorgelpion yapoxtnploTixddv (features). H anoBhxn yapoxtnpiotixdv (feature store), éva amo-
DeTrplo OV ENEYYEL XEVTOIXE TAL YOPUXTNELO TLXA IOV YENOLLOTOLOVOVTOL G TNV EXTALBEUCT) XU TNV
ey Y1) CUUTEPAOUETWY TWV UOVTENWY, EVOL OVITOOTOGTO XOUUATL QUTOV TWV CUC TNUATWY.
YuuPatixd, Ta feature stores amofnxebouvy UETUBESOUEVOL YALUXTNELO TNV XAl GTOLYElO YEVEN-
Noylag oe xatanoyoug Paciouévoue oe SQL. Auty 1 uébodog dev umopel va poviehonotoet xou
VO UTOBANEL EQWTAUATO ATOTENECUATING OE YAUPAUXTNELO TXE XUl OVTIOTNTES UE TONUTNOXES €E0tp-
THOELS ETOED TOUG, EVE UTHEYOLY EVUANIXTIXG epyoela Tou Ttpoopilovton yio TETOLES EpYATIES.
H moapoloa yehétn diepeuvd xotd mocov Wi fdon Sedouévmy yedpwy UTOpel Var AeLToLEYOEL WG
XATANOYOG (UQAXTNELO TIXWV, AELOTIOLOVTAS TNV EYYEVH IXAVOTNTE TNS VoL AVATUELO TY TERITAOXES
OYEOELS O YEVEANOYIO UE TLO PUOIXO TEOTO.

Avuth n epyaoio emextelvel to Feast, éva feature store avoutol xmduxa mou ypnowonoteiton
evpéwg otn Pounyavia, ye évav xatdhoyo Paciouévo oto Neodj, ytiloviag mdve oe mpon-
YOUUEVES €PEUVEC TOU BIVOUY EUPUCT] OTU TAEOVEXTHUATA TV PBACEWMY BEBOUEVOV YRAPWY OTIG
dlaoyloelc TONNATADY Prudtwy xaw otic avalntioelg tou Bacilovtar oe oyéoeic. H mpooéyyion
pac povteromolel ta avtixeiyeva tou feature store wg xoufouc, pe Tic e€aptoelc xou TN Slo-
00y TOUC VoL aTOTUTOVOVTAL 0¢ oxéoelc. TIpoaTébnxe véa Nertoupydtnta yLor TNV aviyveuon
oxéoenv PeTadl yopaxTnelo Ty, wall e tpocappocuéves evioréc CLI mou oyedidotnxay yia
VoL ETOPEANBOVY amd TNy TEpLyEapxn) SOVUUT TV EpOTNUATWY Yedpwy. Tt v aloXoynon g
TEOTEWOUEVNS AUGTG, TEoYUATOTOMNONX Y BOXES ETUDOCEWY UETEWVTIS TOV YEOVO EXTENEOTC,
YENOWOTOLOVTAS xoTandyous Tou PBacilovtar ot yedgoug, o SQL xou oe apyela.

To amoteNéopata UTOBEXYUOUY OTL O XUTINOYOS UE Bdom ToV Yedpo uTepEyel oTn dlayelplon
TeplmAOXWY OYECEOY TONNATAGY Prudtov xou eival LWOIETERR ATOTENECUATINOS YLl EQUPUOYES
mou amautoly Poabid avduon e€apthicewy. 20T600, To TAEOVEXTAUATE TOU OGOV APORd T1 XEN-
CTIXOTNTA XU TG ETDOOES elvol To ouodnTd 6Tay To epwTAUATA TEPLAAUBAVOUY TONUTNOXES
OLaoY(OEC OYETEWY, EVE YOl AMAOUCTEQW, THO GUECH EQOTAUNTO T OPENT) Tou umopel var efvon
ALYOTEQO ONUAVTIXA Yo VoL ETLOXIALOVTAL OO TNV ETULBAOUVGT] TOU TROYEOUUATIONO) TWV EPWTT
UETOV.

Ev xatox\eldt, 1 napoloo ENETN xaTadeVUEL TS oL Aol BESOUEVOY YRAPMY UTopOLY Va
QVOTUPAC THOOUY AMOTENECUATIXG TG TEPIMAOXES OYEoElC UETOEY TV TANEOPORLAOY, BENTLOVO-
VTG TN Olar elplon xa TNV EPUNVEVCUOTNTA TOV CUC TNUATWY unyxavixnic wddnone. Ilpocpépovtag
EUTIELQIXT] OTODELEY) TOV TAEOVEXTNUATOV XU TV UELOVEXTNUATOY Twv peBddwy mou Poacilovto
o€ YpdPOUS, Oyl LOVO XANUTTEL Evar xevo ot BiNoypagpla yia to feature stores, aiNd avolyet,
eniong, Tov 6pouo Yo TepauTépw £pEUVA G LPBEIOLXES OEYITEXTOVIXES XATINOYWY, TOU UTOEOVY
vau e€l00pEOTACOUY BuVaULXG Tar TRoTERHATA dladpwy cucTudtwy backend xou vo feltioTo-
TOLAOOLY TIG EPWTNOELS YEAPWV.

NANASATIRIINAR N

Mmnyavixy Mdbnon, Anobrxn Xopoxtneiotixwy, Feast, I'eveahoyia, Katdhoyoc Xapoxtneioti-
xwv I'edgou, Bdon Acdouévwv IN'edgwv, Neodj.






Abstract

The rapid evolution of machine learning systems and their extended application in production
environments have unveiled the need for robust and scalable feature management solutions.
The feature store, a repository that centrally controls features used in model training and
inference, is essential to these systems. Traditionally, feature stores have stored feature
metadata and lineage data in SQL-based registries. This method cannot effectively model
and query complex dependencies between features and entities, whereas there are alternative
tools intended for such tasks. This study investigates whether a graph database can function
as a feature store registry, leveraging its native capability to represent intricate relationships
and lineage in a more natural manner.

This work extends Feast, an open-source feature store that is widely used in industry, with
a Neodj-backed registry, building on previous research that emphasizes the strengths of graph
databases in multi-hop traversals and relationship-based searches. Our approach models
feature store objects as nodes, with their dependencies and lineage captured as relationships.
New functionality was added to detect relationships between features, along with custom
CLI commands designed to benefit from the descriptive power of graph queries. To evaluate
the proposed solution, performance tests were conducted measuring execution time across
graph-based, SQL-based and file-based registries.

The results indicate that the graph-based registry excels in managing intricate, multi-hop
relationships and is particularly effective for applications requiring deep dependency analysis.
However, its usability and performance advantages are most pronounced when the query
patterns involve complex relationship traversals, whereas for simpler, more direct queries its
benefits may be less significant and may get overshadowed by the query planning overhead.

In conclusion, this study demonstrates how graph databases may effectively represent the
intricate relationships between information, improving the management and interpretability
of machine learning systems. By offering empirical proof of the advantages and disadvantages
of graph-based methods, it not only closes a gap in the feature store literature but also paves
the way for further research into hybrid registry architectures that can dynamically balance
the advantages of several backend systems and optimize graph operations.

Keywords

Machine Learning, Feature Store, Feast, Lineage, Graph-based Feature Registry, Graph
Database, Neo4j.
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Kegpdharo 1

Extetapevn IlepiAndn ota EXAnvixd

1.1 Ewayoyn

H poryBabor e€ENEN g umyavixrc udbnong éxel avadeilel tn onuacia tne dayelplong 8edo-
HEVOV ot TNE unyavixhc yopoxtneto Tixdv. To yapoxtneiotind (features), nov npoépyoviar and
axatépyoaota dedouéva, elvon Bepuertnddn yio Ty exmaideucn xou teéPAedr woviérwv. (otdoo,
0 HEYANOS OYXOC XAl 1) TOAUTAOXOTNTA TwV oUYYXeoveY Bedouévov ducyecpalvouv T dlayeipon
TOUG UE GUVETT X0l XALLOXOUUEVO TEOTO.

N v avTieTdRoN auThS TG TEOXANONS dNUovE Y Bnxay oL amobixes XoUEaUXTNELO TIXGDY
(feature stores), mou dtacpanilouv T cuvéneta petald exnaideuone xou TedPAednc. Evd toxkéc
undpyovaes Noelg avoixtol xo)duxa Bacilovion oe SQL Pdoeic dedopévav, autéc Suoxorelovto
VOU AVOXOAVPOLY TONOTINOXES OAANAEEQRTAHOELS UETOEY TV OVIOTATWV.

H mapotoa yeétn e€etdlel tn yperion Bdocwv dedouévwy Yedpny wg EVAANXTIXT AUOT), xo-
Bdg elvan oyedlaouéveg yior T poviehomoinom xou B1doylon TONOTNOX®Y oyéceny. Alepeuvdton
%ATd 60O €vag XATINOYOS Pociouévog ot ypdpous umopel Vo Tpoc@épel PEATIOUEVES BUVITO-
TNTEC YL TNV TaeaxoXoLinam e€apTHoEMY Xl TN BACKIOT TONNATAGY CUVOECUWY, EEMEQVOVTIG
TOUC TEPLOPLOUOVE TWV GUUBATIXDV XATONOYWV.

1.2 Amofvixeg {apaxTNelo TiXwY

Mo amofvixn yapaxtneto Tixav elvon €vo eeldxeupévo oo tnua dloyelplong dedouévoy yia
EQUPUOYES UMyavXhc udbnone, to onolo eZumnpetel ToANOUC onuavtixolis oxonole [1]. TTpd-
Tov, anhornotel T Slayelpion, anobrixeucn xou Tapoy | Tov dedoPEVHY ToL YEELdlovTon To LOVTEND
unyovixnc wddnone. MopdhAnha, hertouvpyel g xevtpixds xOufog yio Tr CUYREVTEOOT YOEUX TN
PLOTIXWY XAl UETABEOOUEVWY, BIEUXONDVOVTOS TNV 0pYdvmon xa TpdcPact oe autd. Emniéoy,
EXTENEL UETATPOTEG OMO AXATERYUC T DEQOUEVA OE YENOWIA XURAXTNELOTIXG, XD TWVTAUS Ta
€towa v xenon anod to poviéa. H anobdfxeuon tov dedouévmy xa\inTtel 1660 Lo Topd dedo-
uéva 660 xan BEQOUEVA OE TEAYUATIXG XEOVO, SLAGHPANIOVTAS TOUESANTAL T (EOVIXT] CUVETELN
TV Oedouévev exmaideuons ywelc dlappoéc mAnpogoplac. TéNog, 1 anobvxn yopoxTnelo TiXwy
EMTEENEL TNV EOXONT EEEPEUVNON XU EMOVAYENCUWLOTONOT TOV SEBOUEVOY, EVE) TUPEYEL ATOTE-
Aeopatxée dlemagéc yior tpodcfocr oto dedopéva, elte mpdxeitan yia exnaldevor) elte yia mpo-

Bréderc.

To Paoixd xopaxTNEOTIXE TOU CUC TAUATOS TEPLAUUPAVOUY TN BLOEIPLOT) UETAOYNUATIOUMY
0edoUEVLV, TNV TONVETINEdN amobrxevot), TN cuven! Tapoy)| OedoUévev GTa HOVTEND, TN Ou-
VOTOTNTA TUEUXONOVONONG UETELXWY TOLOTNTUC XU TN OLATARNOTN EVOC XEVIPIXOD XATANOYOU
KOPAXTNELO TLXWV.

[Tépa amd to Feast, tnv amobrixn xopoxTnelo Tixey avoly ol xo)dlxa TNy onola emexTelvel 1
Tapoloa gpyaaio, LTEEYOLY XL IANES NUCELS avolyToU XMOLXA ToU a&loToloVUY HETAEY SANWY X

oyeoloxéc PAoels yio var BlaTneoly UETADEDOUEVWY Xau YEVEANOYia TwV XopaxTNElo Tixwy. ‘Ocov
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agopd to Feast, anotedeiton and o axdrouba utocuotiuarta [2]:

o Anobrxn Extéc Yovdeone (Offline Store): Anobnxelel 16T0pixée TYWES YopOXTNELO TV
v TNV exnaidevon LovTéwy xa enelepyooia o TapTIBES, EVE TOPEYEL Ypovixd axplPelc
ouvdéoelg, unootneilovtag mhatpopues 6w Snowflake, BigQuery xou PostgreSQL.

o Anobrxn e X0vdeon (Online Store): Ilepiéyel pévo T o TEOCPATES TYLES YAUPOXTN
PO TIXOV Yot TPoPAEYelC TparypaTiXol ypdvou xou elvon BeXTioTomomnuévn yiar YAUn\Y
xabuctépnomn xan uPn\Y dbeowodTnTa, Yenowonowwvtag Bdoeg dedopévoy 6nwe Redis,
DynamoDB xou Sqlite.

e Mnyovh) Thonoinone Iaptidoc (Batch Materialization Engine): Metogépet dedopéva amd
v offline otnv online anob¥xn, yenoiwonowwvtag eite Tomxr| Slodixacia €(TE XNUOXWOWES
A\Voeic 6moc to AWS Lambda.

o Katdhoyoe Xapaxtnpotixwv (Feature Registry): Amofnxeder 6o tar avtixeipevo tou
Feast xou toug oplopolc toug, yenotponowdvtas eite abotnua PBactopévo oe apyelo (o€
wopy| protobuf) eite xatdhoyo Paciopévo oe SQL mou déyeton epwthiyata péon SQLAlchemy.

1.2.1 Avtwxeipeva Feast

‘Eva épyo Feast amotehel tn Baocixy| yovddo opydvwong otny amobixn xaeaxTnelo Ty,
ToEEYOVTUC ATOUOVWUEVA TERLBAINNOVTA Yiat SLopopeTixég eqapuoyéc. IlepthopPdvel To &g avTi-
xelpevo

o Ilnyéc Aedopévov (Data Sources): ITapéyouv ta axatépyacta dedouéva Tou ELGAYEL Xou
eneepydleton to Feast, opyavwuéva g ypovooeipés. Katnyoplonoobvtow oe nnyéc mop-
Tdwv (m.y. anobixec dedouévwv), pofic (t.y. Kafka) xou mnyéc autiuortoc vy dedopéva
mou Satifevton HOVo xaTd TNV EXTENEDT).

e Ovtotnree (Entities): "Evvolec-X0vola BL0TATWV TOU avTLTpoomnebouy avTixe(pevo Tou
TOPEN EQPAUPUOYNC, OTIWE TENATES 1) 001 YOl, UE LOVAOIXO OVOUL Kol XAEWL cUVOEOTC.

e IlpoBoréc Xapaxtneotindv (Feature Views): Aoyixéc opadonoioeic Sedouévwv celptv
YeOVoU, Tou avTAolVToL amd Tnyég dedouévov. Ilephaufdvouv ovidtntes, oxnuata xou
TEOAEETIXG YeTadedopéva, utoctneilovTag 0 dnuovpyid IoToPIXMY CUVONWY EXTAidEU-
ong, TN POETOOT dedouévoy TNy online amodrixn xon TNV AVEXTNON YAEAXTNELC TIXDV.

o Auvopuxéc Ilpoforéc Xoapoxtnpiotuxdv (On-demand Feature Views): IlpoBoréc ye eho-
PEE(S UETATYNUATIOUOVE TTOU EXTENOUVTAL duvaxd péow Python, a€lonouwdvtoc undeyovta
YAEUXTNELO TLXL XAl TNYES UTAUITOC.

o Trnpeolec Xopaxtnpiouxmv (Feature Services): OpobdomolAcels yopaxTNplo TIXmy ond
TONNEG TEOPONES, TOU BLELXOAUVOUY TNV TEOCPACT) TWV UOVTEN®Y OTO AMAUTOUUEVOL OE-
doueva. Xuviotdtal 1) onuovpyia plag unneeoiog avd Exdoor LOVTENOU ylot XONUTEQRT Ttat-
poxoxovbnom.

1.2.2 Acwtoupylieg Feast
Ot Baowxée hertovpyieg tou Feast anewovilovton xar oty etxdvor 1.1 xon nepuhoufdvouv:
e Feast Apply: Yuyypovilel to feature store ue to apyela puBuloewy, capvel Toug oplouoic
oe Python vyl ovtotnteg, mpofoléc xapaxtnelo TV xaL TNyES DEBOUEVOV, ETUXURMVEL

TIC OANXYES O EVIUEQOVEL TNV UTOBOUY).
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Yxhua 1.1: Apyitextovixr) Tou Feast.

o Feast Materialize: Poptyvel BEBOUEVA YUQUATNEIOTIXWV YLl CUYXEXQUIEVOL XEOVLXA Olo-
othuata 6Ty online anobrxy, extelel epwtApata otny offline amodrxn, yopToypapel Ta
ATTOTENECUOTA XOU EVNUEPWVEL TOV XATINOYO YOUQUXTNELO TLXWV.

o Avixtnon Xopoxtneio Txoy:
- get historical features: Anuiovpyel cOvoro eXTUlBEUCTC UE XPOVIXT] CUVETELXL, VL

ToEAYOVTUC TNV LOTOPLXY) XATACTACT] TOV YAPAXTNELC TIXDV.

- get_online features: ITapéyel Tic mo TEOCQATES THES YoEUXTNEOTIXWY yia online
npoPNEdels, avoxtdvTag Tor dedouéva and tnv online anobrixn yia g Intolueves
OVTOTNTEC.

1.3 Bdoeig Acdopévoyv I'pdypov

O1 Bdoeic Sedopévmv Yedpwy ¥enotnotolody Eva Hoviého dedouévov Baciopévo oe xoufouc
X0l OXUES YLOL TNV AVATIAEEo TOGT) XAtk TNV aodoTxr avdxtnon advletwy oxéocwy. Alpépouy and
T oxeotaxés Pdoelc dedouévov, xaboe elvar BetioTonomuéves yia TN Slayelplor oyEoEwy xou
TOEEYOUV EVENXTA OYAUATA TOU TEOCUPUOLoVToL €0XONA OE OANXYEC G TN Bopun TV SeGOUEVLV.

1.3.1 Kipieg Alapopec ne Yyeoiaxeg Bdoeig Asdopévoy

e Amdbdoom: Ou Baoeg ypagpnudtwv dlatpéyouv oyéoelc anculeiog, eve ol oyeoloxés e€ap-
TOVTOL ad GUVEVOOELS Tvdxwv (joins) mou emfBpadivouv olvleTes epwThoELC.

o BEuehi&la Xyruatog: Ou oxeolaxés Pdoeic amoutolv npoxadopiouévo oxnua, eV ol Baoelc
YRUPNUATOV ETLTEETOLY TNV UANXY T TOU X 0plC EXTETOUUEVES TPOTOTOLNOELS.

o Ilepittwoeic Xprong: Ou Bdoeic ypagpnudtwy elvar WOUVIXES Yia EQUPUOYES OTIOU OL OYE-
oelg ebvan xevtpixhc onuaciag, OTME CUC TAUATA TEOTACEWY XAl AV} VEUOTC ATATNS, EVE) OL
o eoLaxéC elval TLO XATIANNAES yiot G ToldERd, BounuEVa BEBOUEVAL.
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1.3.2 Enwoxoénnorn tou Neodj

To Neodj (Network Exploration and Optimization for Java) etvon pio xopugaia mhotpopua
Bdong ypapnudtwy, TOU TUEEYEL UL LOYUET XoL ETEXTACLUN AUOT| yiot TNV anobrixeuoT), avdxtnor
X0l oVINLOT) BLaoLVOEdEUEVWY Bedouévay. TlepthapuPdvel o ebyxenotn YAOCO EpWTNUATOY, TN
Cypher, a\yopiBuoug ypapnudtwy xou epyorelo ontixomoinong, SleuxodvovTag TOG0 TOUG TEO-
YOUUATIO TEC 600 o Toug avoNuTéS. TTapdAAnha utootneiler odnyolc xou connectors oe Sud-
(POPES TPOYPUUMATIOTIXES YADOOoES, dnwe Python, JavaScript xou Java [3].

To Neodj Pocileton 6T0 HOVTENO WBOTATWY, OOV OL XOUPOL TEPLYEAPOUY OVTOTNTES XAl
undEyouv xatevBuvoueves oxéoelc mou cuvdéouy xouPouc. Toéco ol xopPol 660 xar ov axuéc
UTORPOUY VoL €X0UV YoEaXTNELOTIXA o€ Loy {elyoug XAEWBLON-TWAS, EVEK oL Xoufol €xouy, emi-
TIAEOV, ETIXETES XU AVTIOTOLY Ol OYECELC €XOUY Xdmolov TOTo. LNy ewdva 1.2 nopovoldleto
EVOEXTING €VOC TUNO ATNOD YRAUPHUATOC.

:ACTED_IN
Person les: ['F " :DIRECTED
roles: ['Forrest'] _ Movie - oD
Actor

name: 'Tom Hanks' title: 'Forrest Gump' name: 'Robert Zemeckis'
born: 1956 released: 1994 born: 1951

Byxfuo 1.2: Hopdderypa anhol yedgpou oto Neodj.

H yAdooa epwtnudtov Cypher, nou yenowomnoieiton 6to Neodj, npocgépel amhy, euovdry vo-
ot ovvtadn vl Ty Thofynon oo yedgnua. Ot xéufot avanaplo vt 0 (x6ufoc), oL oxéoelc
o¢ -[:XXEXH]-> xa ot diadpopéc unopoiv va €xouv duvauixd uixoc, t.x. *1..5. Trootnpeilet
AELTOLEYIEC PINTEURIOUATOS, CUYXEVTPWTIXWY UTONOYLOUMOY XUl TEOTOTOINONG OEBOUEVOV UECW
eviolwv 6nwg MATCH, WHERE, RETURN, CREATE xa. MERGE.

To Neodj xenowonotel eyyevy| eneepyooia ypapnudtwy ye index-free adjacency, émou ol
xoufol amobnxetouv dueces avapopéc otoug Yeltovéc touc. Auth 1 apyitexTovixy| emiTEénel
vYeryyopn TAOTYNoN Xwelc EMTAEOV XOGTOC, BLUTNEWVTAS TNV am6doan avdloyn ue to péyebog
TWV OEBOUEVWY.

1.4 3yediacwog YuoTApatog xot YAonoinon

1.4.1 YXoroinomn Kataréyou I'pdpou

Mio véa xhdom xataéyou avantiydnxe v evowudtwon tou Neodj, emtpénoviag CRUD
Aertovpyiec péow Cypher queries. To yovtého dedopévov metihopfdver xoufouc mou avamo-
plotolv avixelpeva tou Feast, 6nwg Feature Views, Feature Services xou Data Sources, me-
PLEYOVTOC UETUDEDOUEVE OIS OVOUATA Xal YEOoViXES ogpary(deg. TTapdhAnia opilovtan oyéoelc
oL onoleg xuTaypd@ouy eNTd Tig eE0PTACELS ot ANATAETOPAoEL PETOED avTixeluévmy. Kipleg
oyéoelg nepthopfdvouv:

o HAS: Yuvdéel Feature Views xou Data Sources pe ta Fields.
e POPULATED FROM: An\avel tnv npoélevon twv Feature Views.
e PRODUCES: Ilpoctiopilel ta xapoxtnpiotixd e€6dou twv On-Demand Feature Views.

e SERVES: Kofop(let moia Fields extifevtan péow Feature Services.
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Kdébe avuxeipevo tou Feast (Data Source, Feature View, On-Demand Feature View,
Feature Service) axolouBel ouyxexpiéva Briuoto xatayhenons mou dnuovpyolv oyECES GTOo
Neo4j o extelolvtan uéow tng eviolrc feast apply. Otav mpaypatonolobvton oANay€g, o
XATANOYOG EVIUERWVEL TIC GUVOETELS YLl TN SLUTHENOT] TNS CLUVOYNG XA TNV LY VNAACILOTNTA TOV
KOLUXTNOLO TLXWV.

1.4.2 Avixvevorn EEaptricsnv

Mt véa Aertoupyixdtnta tou npoc télnxe oto oo tnua eivon 1) aviyveuon e€apthocwy ueTal
€L060WV o OBV OTIC CLVAPTACELS PETAOYNUATIONOY Twv on-demand TpoBoXodV yopoxTn-
plo V. Autég ol TeoPoréc TEpAUPAVOUY GUVIPTACELS UETACYNUATIONOU TOU SNULOUEYOUY
véa yapaxtneloTixd péow Pandas DataFrames 1} Python dictionaries. H yoptoyedgnon twv
eCopthoewy Paoiletar oty avdluon tng agnenuévng ouvtaxtixhc dourc (AST) tou xmdixa,
xatorypdpovtag T oxéoel UETAED eloddwv xar e€6dwv. H uhomnoinon autr unoctneilelr uévo
Boowég Aettovpyleg avdbBeong xou amholg uToXoyiopols, eve o clVBeTeS dopée, dnwe Ppodyol
xon cuVOTxES, BEV XONOTTOVTAL OXOUAL.

1.4.3 Epnlovutiocpég CLI

Néec evtonég npoctébnxav otn CLI tou Feast, emtpénovtac tny €0xoXn oAAN\enldpaon e
T0 Neodj xar Ty avdAucT oxéocwv UeTall X opoxTnElo TiXeY. ‘ONeC oL oXETIXEC EVTONES AviXOLY
otnv opdda feast graph. Yuvontixd, ot eviorég mou LNoToWBNXAY TEPLYPAPOVTIL ToUEAXTW:

e execute-query: Extelel npocappoouéva epwthuata Cypher otov xatdhoyo yapauxtnet-
O TXWDY.

e most-used: Eugavilel ta mo cuyvd yenowonooluevo aviixelyeva otr Bdon yopuxtnet-
TTUAV.

e most-dependencies: Evtonilel tic mo xowéc e€opthioeic otic on-demand npoBorég ya-
QUXTNELO TLXV.

e served-by: IlpocBiopilel nowr feature services mepihaufdvouv cuyxexpluéva yapaxTnet-
O TG

e upstream-impact: Aclyvel OXa Ta avTixelueva ToU eUPTOVTIOL OTO WOl CUYXEXQLIEVT]
Ty dedopévav, Bonbwvtag ot doyeipion oXhary@v. Auty 1 VTONY xenotuonolel €Eunvn
avalrtnon Swdpouwyv oo Neodj yio va evionioel e€apthoelc €ng xal Téooepa enineda
Bdbouc.

e common-tags: Ouadonoel avtixelyeva pe Bdon xowée etixéteg (tags) yia eOXONN xatn-
yoplomoinon.

e common-owner: ITpoBdANet OXa To avTixelpeva Tou drayelpileTon €vag cUYXEXPIIEVOS YT -
OTNG, OLEUXONOVOVTOG T1) BLoXLUBEEVNOT XU TNV LY VNAXCLLOTNTA.

Avutéc ol Bertiwoelc xabioTolV TNV avdAUoY TV EEUPTACEMY Xol TWV OYECEMY TWYV XoEo-
ATNPLOTIXWY TUO EUXONT), TEOCPEQOVTAS UEYANDTEQRT DLAUQPAVELA Xou EXNEYYO OTNV amobrixr yopo-
ATNPLO TLXWV.
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1.5 Ag&woXoynon xow XOyxpion Katohoywv

Exteréotnxav nepduoata pe File, SQL xaw Neodj xatohdyoug, auvidvoviag otadloxd To

uéyebog tng amobrixng xopaxTnElo TIXKY Yo Vo ueTendel 1 anddoor xdbe cuothpatog. Ta cu-
unepdopato Tou Teoéxuay elivon tar eENC:

e Anédoor tou Feast Apply: H evtonn] feast apply ftav mo apyr ot Bdon yeagpnudtwmy

AOY® TOU X606 TOUG BNuLoLEYlaC XOUPEY XU oYEoeny. d6TOC0, OE TEAYUATIXG GEVAPLOL UE
O TABLOXES EVIUEQWCELS, OUTOC O AEYIXOC YEOVOC OEV AmOTENEL oNuavTiXd TEOBANUAL.

Extéeon Eviordv: O xatdhoyog yeapou Eenépace Tor GANX UG TAULATA OE TONOTAOXEG
EPOTACELC TOANATA®Y EMUTEdWY, OTWE upstream-impact, Noyw Tng amodotxng dayel-
olong oxéoewv. To Blo cuVEPTN xau yiot To gpwTNUa served-by mou oflonolel ) oyéon
SERVES, n omola vgpictatan pévo oe autd tov 10mo xatondyou. Avtifeto, amhd epoth-
poto 6w most-used fields Atav TayLtepa oe SQL Noyw youn\otepng unoloyio g
emPdpuvone.

IM\eovexthiuata tou Katakéyou I'pdgou: To Neodj emtpénel tnv dueorn yoviehomoinon
TwV oYEoEnY, Oleuxolbvovtag TNy avéivon elapthoenv. H yhwooa Cypher emtpénel
amodotxég avalntioelc o peydno Baboc, xabiotidvtag T ANoom Wavixr YLt avaAUGT o\-
ANNEEAPTNOEWY YOEUXTNELO TIXWY o€ OVOETES BLadixacie unyavixhc udbnong.

Av xou o xatdhoyog yedypou elvan e€oupeTinds yia ouvbeteg avalnthoels, €xel LPNAGTERO

aEYIUO XOOTOC o OEV €lval LOOVIXOS Yol ATAEG avaxTHoELS Bedopévov. T uixenc xhiponag
EQopUOYES, 0 xatdhoyoc PBaciouévog oe apyelo elvon 1 XaADTERN ETUAOYY NOY® OMAOTNTOC.
Avtifétwg, yior yeydho ohvora SEBOPEVLV UE TONNES OYETELS, O XATINOYOC YEAPOU Elvon 1) LOo-
VX ETAOYY Yot TV amoTOTWwon xou avdiuoT e€opthocwy. Mo uPedn tpocéyyion pue SQL xou
yeophuata 0o uropoloe vor BEATIOOEL TNV AOBOCT, GE UELXTE (POPTIaL EpYACIAC UECAUC-UEYANNG
Yoo,
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Chapter 2

Introduction

2.1 Background and Motivation

The quick development of machine learning (ML) applications across diverse production
environments has emphasized the significance of data management and feature engineering.
In modern ML workflows, features —quantitative or qualitative attributes derived from raw
data— form the fundamental inputs for model training and prediction. However, the sheer
size and complexity of modern datasets, potentially compiled from heterogenous sources,
pose significant difficulties to feature engineering, the critical step of designing and refining
attributes to effectively represent observations for ML algorithms [4]. As models and pipelines
grow more intricate and data inputs diversify, the task of coordinating these features in a
consistent, scalable and sustainable way has emerged as a substantial challenge.

Centralized repositories known as feature stores have emerged to facilitate the storage,
administration and delivery of features throughout the ML lifecycle [5]. They not only enable
reproducible feature engineering practices but also ensure consistency between the training
and inference phases. There are several proprietary feature store solutions in the market,
however we were able to study and analyze only the open-source options. Many of them have
traditionally relied on SQL databases to store feature metadata and lineage information.
While these systems have proven effective in simpler environments, they may encounter diffi-
culties when attempting to capture and query the complex interdependencies that naturally
occur in large-scale, dynamic settings.

Graph databases offer a potential remedy to this issue, given that they are inherently
designed to model and traverse complex relationships, providing a powerful means to represent
and search among interrelated data. Considering the potential of this approach, the present
study explores whether a graph-based registry can offer enhanced, efficient and accurate
modeling capabilities for feature stores, which is necessary to answer dependency-related
questions. Specifically, the study investigates whether a graph database can provide a system
that facilitates multi-hop traversal of links and fine-grained dependency tracking, thereby
overcoming the drawbacks of conventional registries.

2.2 Objectives and Contributions of the Thesis

The primary objectives of this thesis are to:

e Develop a Neodj-backed registry for Feast that leverages graph structures to capture
intricate relationships and lineage among features.

e Extend Feast’s CLI with relationship-focused commands to facilitate the querying and
analysis of entity and feature dependencies.

e Conduct a quantitative performance evaluation comparing the graph-based registry
with traditional file-based and SQL-based registries, focusing on execution times and
scalability.
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e Analyze trade-offs between registry implementations, particularly how each performs
under various query patterns and scales.

This research is significant for a number of reasons. Managing feature interdependencies is
essential for maintaining data integrity and model performance as machine learning systems
grow and incorporate more complicated data sources. This work advances the field of feature
store architectures, contributing to both academic understanding and practical applications
in industry. By delivering empirical evidence on the benefits and drawbacks of a graph-based
registry, it addresses a gap in the literature and provides insights into how a graph database
might be used to more naturally model complicated feature interactions and lineage. Until
now, graph databases, and Neo4j in particular, have only been integrated with feature stores
as a data source [6, 7, 8|. Furthermore, by further developing Feast, an open-source feature
store, our research not only capitalizes on the advantages of community-driven development
but also offers a flexible framework that can be expanded upon or modified for use with
proprietary systems.

2.3 Structure of the Thesis

This thesis is structured as follows:

e Chapter 3: Provides an overview of feature store capabilities and architecture, focusing
on the Feast open-source feature store.

e Chapter 4: Describes graph databases, highlighting Neo4j and its framework.
e Chapter 5: Outlines the implementation approach.

e Chapter 6: Details the experimental setup and findings from comparing different Feast
registries.

e Chapter 7: Concludes the thesis, summarizing the work and suggesting directions for
future research.
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Chapter 3

Feature Stores in Machine Learning

3.1 Definition of Feature Stores

A feature store is a specialized data management system created exclusively for machine
learning systems. Its primary purpose is to simplify and improve the management, storage
and serving of feature data, which are needed by machine learning models to make predictions.
Feature stores serve as a hub for features and metadata that are important for model training
and inference tasks, assuring consistency, reusability and scalability across ML workflows [1].

Some feature stores support the execution of data pipelines that transform raw data
into valuable feature values, while others only accept precomputed features as input. After
this step, the feature store acts as a repository for storing both historical and real-time
feature data. It guarantees that training datasets are built so that training samples do not
contain feature values from the future, avoiding future data leakage. Furthermore, the feature
store organizes feature data in a way that allows easy exploration, maintenance, monitoring
and reuse by different teams and models within an organization. A feature store offers
efficient interfaces for accessing feature data through various methods, either to generate
large training datasets or recent values for ML applications to make predictions based on
up-to-date information.

3.1.1 Components of Feature Stores

According to the Feast and Tecton documentation [9, 10], there are five core components of
a modern feature store, also shown in Fig. 3.1:

1. Transformation: Feature stores organize data transformations that produce feature
values from unprocessed data and, additionally, consume values produced by external
systems. The transformations managed by a feature store are described in the feature
registry and may be utilized across development, testing and production environments.
This common approach eliminates the need of rewriting definitions in code and precludes
training-serving skew. The principal transformation types encountered in feature stores
are presented below:

e Batch Transformation: Applied to data at rest, usually stored in a data warehouse,
data lake or database.

e Streaming Transformation: Applied to data from streaming sources, such as Kafka.

e On-demand Transformation: Applied to data that are available only at the time of

inference and cannot be computed in advance, usually in user-facing applications.

2. Storage: Feature stores facilitate both online and offline feature retrieval, therefore
various storage layers are incorporated to fulfill different requirements. Older data and
feature values, that may be used for training, are commonly stored in external data
warehouses or data lakes. The latest feature values, which need to be accessed with low
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Figure 3.1: Feature Store components.

latency during inference, also persisted in the online storage layer, usually implemented
with key-value stores.

. Serving: Feature stores are responsible for fetching and feeding data to predictive models

in production, while guaranteeing a consistent view across training and serving. In
other words, the definitions of features and the transformations applied to them must
be identical between the versions used to train a model and for real-time predictions
in production. In case of discrepancies, the model’s credibility and performance is
compromised due to training-serving skew.

. Monitoring: Feature stores have access to underlying data sources and constitute an

intermediary stage for serving features to models, therefore they can calculate metrics
on the precision and quality of these features. Monitoring these measured properties
may provide meaningful insight into the health of an entire ML application. Another
way to manage data quality is by comparing the data served to models with the data
on which the model was trained to detect inconsistencies that could degrade model
performance. Not all feature stores implement such monitoring internally, however
they may provide the necessary values to existing monitoring infrastructure through
appropriate interfaces.

. Feature Registry: Feature stores organize feature definitions and metadata in a com-

mon catalog referred to as the feature registry. In brief, it serves as the single source of
truth for information about feature groups, sources and services, which forms the basis
for feature store system behavior. The feature registry interface allows users to explore,
publish or collaborate on features, while simultaneously supplying potential automated
jobs and serving APIs with information regarding which feature values should be avail-
able, who should be able to access them and how they should be served. Any additional
metadata stored with the definitions in the feature registry may be useful in versioning,
as well as tracking ownership and lineage.



3.2 Open-source feature stores

In this section, we explore different open-source feature stores that highlight various ap-
proaches to managing the machine learning lifecycle, with a focus on data lineage. Platforms
like Hopsworks, Featureform and Feathr offer unique capabilities for tracking feature prove-
nance, simplifying collaboration and scaling feature management across teams and projects.
Before diving into Feast, which forms the core of this thesis, we will briefly compare these
platforms to understand their contributions to the evolving landscape of feature stores.

3.2.1 Hopsworks

Hopsworks is a versatile and modular MLOps platform that provides a full suite of tools for
managing the entire machine learning lifecycle [11]. The feature store, which may be used as
a standalone component, provides its primary functionality by allowing teams to efficiently
manage and serve features, promoting improved reuse and consistency across ML models.

Hopsworks also serves as a robust data science and engineering platform, enabling the
creation of feature engineering and training pipelines. It offers collaboration, version control
and workflow orchestration capabilities, which make it easier for teams to produce and share
machine learning content.

Beyond the feature store and feature engineering, Hopsworks supports model management
and deployment. This includes a model registry for organizing models and tools for monitoring
their performance once deployed. Additionally, the platform integrates a vector database,
enabling advanced tasks like similarity searches, which are often critical for recommendation
Systems.

Hopsworks feature store allows users to track provenance (lineage) through its UI and
special endpoints, which provide intel on what features are used in which feature view or
training dataset as well as what training dataset was used to train a given model. An example
from the Hopsworks Ul is pictured in Fig. 3.2. According to Hopsworks Research Papers
[12, 13|, the necessary metadata to track lineage are stored in a MySQL Cluster (NDB).

Provenance

transactions_view_fraud_batch_fvv2

transactions_4h_aggs._fraud_batch_fg v2
© © Training Data vi

co_data_raw vl O
‘trafisactions_fraud_bateh_fg v2
profiles_data_raw vi o ©

transaction_data_raw vi o

feature view O feature group O training dataset

ansactions._view_fraud_batch_fv[2] last updated: 2022-12-3000:15:43 created by

Figure 3.2: Lineage in Hopsworks UlI.

3.2.2 Feathr

Feathr is a data and Al engineering platform that was developed and widely used at LinkedIn,
before becoming open-source in 2022. Its architecture revolves around providing a cohesive
platform where data scientists and engineers can define, share and reuse features across ML
projects at scale. Two of the core components of Feathr are its Feature Registry and U,
which allow users to track feature metadata, explore data lineage and manage access control
in a collaborative environment [14].
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Users can browse and explore available features with ease thanks to the Feathr UI. They
may quickly discover data sources, examine feature details, and trace feature lineage across
projects and individual features with this intuitive and user-friendly platform, as seen in
Fig. 3.3. By graphically representing feature pipelines, Feathr helps users understand the
entire lifecycle of a feature—from its raw data source to its final transformation—enhancing
transparency and traceability.

The Feathr Registry, which can be backed by Azure Purview or a SQL-based system, is
essential for tracking feature information and managing metadata. This registry is a central
repository where feature metadata, lineage and access control information are stored. By
leveraging the registry, Feathr enables teams to efficiently share and reuse features across
different projects, thereby eliminating redundant feature engineering tasks.

Feat hr PRODUCT_RECOMMENDATION  switch Project

feature_product_quantity
anchor festure.v1

[ productprofilenata } | product_anchored_features |
source.v1 anchorv1

urchasing_power |

Figure 3.3: Lineage in Feathr UI.

3.2.3 Featureform

Featureform, as mentioned, is a virtual feature store, that orchestrates and manages feature
engineering and serving pipelines without the need for additional infrastructure. It remains
agnostic to the working details of existing data infrastructure, yet it provides a generalized
framework to transform it into a feature store and ensure the seamless management of feature
resources and transformations.

Featureform establishes a Directed Acyclic Graph (DAG) to map connections between
resources such as features, transformations, labels and training sets [15]. Users can get a
thorough understanding of the entire feature pipeline by exploring this DAG via the CLI and
Featureform dashboard. Teams can use this to not only track the origins of features but also
to comprehend how features change with time.

Additionally, Featureform offers search and discovery capabilities to support feature reuse
across models and teams. Through the feature registry Ul and CLI commands, users can
examine feature lineage, track versions and ensure immutability. With custom tags and an
intuitive interface, Featureform enhances visibility, enabling data scientists to confidently
manage and monitor feature dependencies. From a more technical standpoint, all details
regarding Featureform’s state are stored in key-value stores or Postgres databases, which act
as the single source of truth and feed the feature registry interfaces with accurate data.
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3.3 Feast

Feast (Feature Store) is a highly configurable operational data system that manages and
delivers machine learning features to real-time models by reusing current infrastructure. The
architecture of Feast aims to be both adaptable and scalable. It is constructed of a number of
components that cooperate to create a feature store that may be utilized to consistently offer
features for both inference and training. Feast aids data scientists in preventing data loss,
allowing them to concentrate on feature engineering, by producing point-in-time accurate
feature sets. It also establishes a single data access layer that separates feature storage from
feature retrieval, allowing ML teams to decouple machine learning from data infrastructure
and ensuring that models are portable when switching between batch and real-time models,
training and serving models and data infrastructure systems. A high level diagram of Feast’s
funtionality is depicted in Fig. 3.4, which will be analyzed further in the following sections.

— Online Features
= ﬂ F E A 5 T . for realtime
Stream model inference
Sources
Katka, Kinesis Transform » Store Serve —
@ ) Offline Features
Register Le  for model training
Batch / batch scoring
Sources
Snowflake,
BigQuery, Redshift,
53, GCS, Parquet

Figure 3.4: Feast components.

3.3.1 Offine store

The offline store stores previously computed feature values, which are called historical values
and are used for model training and batch inference. A complete history of feature records
is maintained, allowing data scientists to analyze data at a specific point in time or time
period, identify trends and discover insights. Typically, the offline store is based on a data
warehouse, such as Snowflake, Google BigQuery, a database, like PostgreSQL, Cassandra and
MySQL, or a distributed file system [16, 17].

In Feast, an offline store is the interface for interacting with time-series feature values that
are stored in data sources. There are currently four main offline store implementations with
corresponding storage and compute engines: File, BigQuery, Snowflake and Redshift. Only
one offline store may be configured at a time, meaning that features can only be ingested
from data sources compatible with the selected store.

The core functionalities provided by the offline store are:

e Point-in-time correct joins to retrieve historical features and create training datasets.
This is achieved through the get historical features method.

e Retrieval of the latest feature values for materialization into the online store. Feature
values need to be loaded from the offline to the online store, in order to become available
for low latency serving. This is achieved through the pull latest from table or query
method.
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3.3.2 Online Store

The online store in a feature store only contains the latest feature values, which are used for
real-time or near-real-time predictions. It is usually based on a row-oriented database or key-
value store, optimized for low latency and high availability. It is important that the online
store can fulfill many concurrent requests in a short time frame, while remaining accessible to
ensure that precomputed features can be retrieved without interruptions or downtime [16, 17].

In Feast, the online store may hold materialized feature values from the offline store or real-
time data from streaming sources directly. Data can be written to the online store through the
online write batch method and retrieved from it through the online read method. There
are currently five main online store implementations: Sqlite, Redis, DynamoDB, Snowflake
and Datastore.

3.3.3 Batch Materialization Engine

Data from the offline store is loaded and made available to the online store by the Batch
Materialization Engine in Feast. A materialization engine typically abstracts over certain
frameworks or technologies that are utilized to materialize data. By default, Feast pulls data
from the offline store and writes it to the online store using a local in-process engine that
is based on a pure local serialized method. However, this method is not scalable for big
data sets since it is executed on a single process. To make the materialization process more
scalable and allow for the delegation of materialization to distinct components, additional
infrastructure can be employed. For instance, users may utilize AWS Lambda, a serverless
computing service, to perform distributed materialization or the Bytewax stream processing
framework for more scalable data movement.

The materialization process is typically triggered by running the feast materialize
command, which is explained in detail in 3.3.6, either manually or through a scheduled job.

3.3.4 Feature Registry

Feast maintains a single feature registry to store all defined Feast objects, such as feature views
and entities. Methods to apply, list, retrieve and delete these objects are implemented and
exposed by the registry. The registry is updated during various Feast operations, including
when applying changes via the Feast CLI or during metadata updates triggered by actions
like materialization.

Feast by default employs a file-based registry, where the contents of the registry are
serialized into a file in protobuf format. This file can be stored locally or on cloud storage
platforms like S3, GCS or Azure. However, a file-based registry has certain drawbacks. For
instance, in case a single field in the registry gets changed, a complete rewrite of the entire
registry file is required, which can cause bottlenecks. This is particularly problematic during
operations like materialization across multiple feature views or time slices, where concurrent
changes must be serialized.

As an alternative option, Feast offers an SQL-based registry. This implementation allows
for atomic updates to individual objects by storing the registry in a relational database.
The SQL Registry utilizes SQLAlchemy, which allows it to support any database that is
compatible with SQLAlchemy. Testing and out-of-the-box support are offered for databases
like PostgreSQL MySQL and SQLite.

3.3.5 Feast Objects

A project is the top-level organizational unit within the Feast feature store. Projects provide
complete isolation at the infrastructure level, meaning that each project operates indepen-
dently from others.
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The basic objects in a Feast project are described in more detail in the following sections,
according to the Feast documentation [2].

Data Source

A data source in Feast refers to raw underlying data, stored in external systems and managed
by the users. Feast is responsible for ingesting this data and applying the defined operations
to retrieve or serve features. Data are represented in a time-series data model, a set of data
points accompanied by the respective timestamps that are ordered in time.

‘ entity ‘ | feature ‘
row timestamp driver_id trips_today rating
1 5/22/2021 0:00:00 driver_1001 5 4.8
2 5/22/2021 0:00:00 driver_1002 ] 42
3 5/22/2021 0:00:00 driver_1003 8 4.5
4 5/22/2021 0:00:00 driver_1004 3 4.2

|

4 " 5

| entity value ‘ feature value |

J N

‘ timestamp

Figure 3.5: Data source example.
For completeness purposes, data source categories are listed below:

e Batch data sources: Batch data sources are associated with corresponding offline stores.
These live in data warehouses (BigQuery, Snowflake, Redshift), data lakes (S3, GCS)
or local storage.

e Stream data sources: Feast offers some classes and methods that make streaming fea-
tures available in different environments. Sources with this functionality must also have
a batch source specified, to retrieve historical features. There are two kinds of sources:

1. Push sources, which provide functionality to push feature values both to the online
store and offline store in real time, making them immediately available to appli-
cations. When data is pushed to a push source, Feast forwards the fresh feature
values to all consuming feature views.

2. Stream sources, which are still an experimental feature, allow Kafka or Kinesis
streams to be registered as data sources. In this case, users are responsible for
establishing and monitoring their own ingestion jobs, which are then used to write
feature values to the online store, while writing to the offline store is also supported.

e Request data sources: Request data sources are currently utilized in conjunction with
on demand feature views, to provide data that are only available at request time.

Entity

An entity is a set of semantically connected features. Users create entities that relate to the
domain of their use case. For example, a ride-hailing service’s entities could be customers
and drivers, with similar features grouped together.
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The information needed to define an entity is: the entity name, which serves as a unique
identifier and the join key, which is used to specify the physical primary key on which feature
values should be combined in order to be fetched during feature retrieval.

Feature View

A feature view is Feast’s foremost object for defining features. It is defined as a logical
group of time-series feature data, that is retrieved directly from a data source. The main
components of a feature view are:

e A data source.

e One or more entities, if the feature view models features that are properties of specific
objects.

e A schema, which lists one or more features. If the schema is not specified, Feast will
infer the features from the columns of the underlying data source. The names and data
types of the columns will be used as the names and types of the derived features.

e A description and a dictionary with metadata are optional parts of the feature view,
however it is considered best-practice to provide as much information as possible for
better documentation and future discovery of features.

Feature views allow Feast to represent data in a consistent way in both an offline and
online environment, that are used for training and serving respectively. The applications of
feature view are summarized below:

1. Producing training datasets by querying the data source of feature views to discover
historical feature values. A single training dataset may include features from several
feature views.

2. Loading feature values from either a batch or stream source into an online store. Feature
views determine the online store’s storage schema.

3. Retrieving features from the online store. Feature views supply Feast with the schema
definition so that it can look up features from the online store.

On-demand feature view

This is a newer kind of feature view, that is still tested and adapted, and its singularity lies
in the fact that on demand feature views contain some lightweight feature transformations.
They allow data scientists to use existing features from previously defined feature views in
combination with data from request sources to transform and produce new features. These
transformations may be defined using Pandas dataframes or native Python dictionaries and
are executed in both the historical retrieval and online retrieval paths.

Feature Service

A feature service is an object that represents a logical set of features from one or more feature
views. Feature services enable machine learning models to use features as necessary, giving
users the ability to reference all or a subset of the features from each feature view. The
scenarios where feature services are used correspond to the aforementioned applications of
feature views, since they provide an alternative interface for grouping features. However, it is
recommended to construct one feature service per model version, which will allow for tracking
of the features that models employ.
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3.3.6 Core Functionality

The diagram in Fig. 3.6 provides a high-level view of how Feast manages the lifecycle of
machine learning features. By connecting offline and online stores, Feast ensures that both
historical and real-time feature data can be efficiently retrieved for model training and serving.
The platform utilizes the components and objects described above to automate complex pro-
cesses like feature materialization, point-in-time correctness and real-time feature retrieval.
In the following subsections, we will explore how Feast’s elements work together to streamline
feature management, ensuring consistency and scalability in machine learning pipelines.

Create Features
(Spark, SQL)

FEAST
Y
‘ Offline Store ﬁI—Feast Materialize——®| (qpline Store
N —

Feast Apply

Y

_ Registry . |...p Feast Online Serving
| (Object Store) | (Optional)

Get Online Features

Get Historical Features

Feast SDK - 4 Feast SDK
- Deplo
Model Training 7M§de¥4h Model Serving
|
Prediction

Product Backend

Figure 3.6: Feast architecture.

Feast Apply

The feast apply command is responsible for synchronizing the state of the Feast feature
store with the definitions provided in the configuration files. It automates the process of
registering and updating Feast objects and any associated infrastructure, such as online and
offline stores. The way it works is by following the steps below:
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1. First, Feast initializes a FeatureStore object, which is the main interface for interacting
with the feature store. This object is initialized based on the configuration specified in
the feature store.yaml file in the current working directory. The feature store.yaml
file contains the infrastructure details, such as where the online and offline stores are
located and what registry type to use.

2. Next, all Python files in the current directory are scanned for any definitions related
to Entity, Data Source, Feature View or other relevant Feast objects. These definitions
are written in Python and describe how the objects relate to one another, what features
they concern and may also contain additional metadata. An example of such definitions
is presented in Fig. 3.7.

driver = Entity(name="’driver’’, join_keys=["driver_id’’])

driver_stats_fv = FeatureView(

name=’’driver_activity’’,

entities=[driver],

schema=[
Field(name=""trips_today’’, dtype=Int64),
Field(name=""rating’’, dtype=Float32),

1,

source=BigQuerySource(
table=""feast-oss.demo_data.driver_activity’’

)

Figure 3.7: Example of Feast object definitions.

The definitions are read, validated and compared to the current state of the feature
store, which is tracked in the feature store’s registry. The comparison helps determine
if there are any new objects, modifications to existing ones or objects that should
be deleted. The objects are split based on their class. For each object type, the
corresponding method in the registry is called to either register the object -in the case
of updates or additions- or delete it -if it no longer exists.

3. Finally, Feast must also update the cloud infrastructure supporting the feature store
to match the changes. This involves updating the online store, which serves real-time
features to models, and potentially triggering the batch materialization engine, which
processes batch data and writes it to the appropriate storage locations.

Feast Materialize

The feast materialize command loads feature data in the specified interval from either the
specified feature views or all feature views into the online store, where it is available for online
serving. The materialization process is orchestrated by the underlying batch materialization
engine, which delegates individual steps to other components. The offline store is responsible
for querying and pulling the desired feature values, which are mapped accordingly and then
written to the online store in batches. Ultimately, the feature registry is updated with the
latest materialized intervals for the affected feature views.

Get Historical Features — Get Online Features

Feast provides two key functionalities for retrieving feature data: get historical features and
get online features. Both serve distinct use cases in the lifecycle of machine learning models
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and address the need for feature consistency in different stages, from training to real-time
inference.

e The get historical features API simplifies the process of conducting point-in-time joins
when preparing features for training machine learning models. One of the main chal-
lenges in feature engineering is ensuring that the training dataset reflects the state of the
world at the time when an event (such as a prediction or a transaction) occurred. This
process, called point-in-time correctness, ensures that features used for model training
do not leak future information that would not have been available at the prediction
time. Feast automates this process by joining features from one or more feature views
onto an entity dataframe and reproducing the historical state of these features through
the necessary joins, allowing data scientists to obtain a training dataset that mirrors
the conditions at the specified times.

e The online feature retrieval functionality of Feast addresses the need for real-time access
to the most up-to-date feature values to make accurate predictions. The get online features
API focuses on providing the latest feature values for a given entity or set of entities.
Users provide a list of entities for which they want to retrieve features and Feast ensures
that these latest feature values are available and can be retrieved from the online store.
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Chapter 4

Graph Databases

4.1 Definition of Graph Databases

A graph database is an online database management system that supports Create, Read,
Update and Delete (CRUD) operations working on a graph data model. Graph databases
use nodes and edges to represent data rather than tables, as relational databases do, or
documents and key-value pairs, as other NoSQL databases do.

Graph databases are designed to manage associative and contextual data, making it easy
to represent and query complex relationships. They store nodes and relationships directly,
which allows for quick traversal and scalability, while significant insights may be derived from
the connections between data. Another asset of graph databases is their flexibility, since they
can easily handle changes in data structures, making them ideal for handling data that are
susceptible to change [18].

4.1.1 Comparison with Relational Databases

Graph databases are fundamentally different from relational in terms of data storage and
management, with each providing significant advantages depending on the complexity and
nature of the relationships in the data.

Data Management and Performance

Relational databases organize data into rows and columns, with relationships between records
expressed through primary and foreign keys, that link different tables. While this system is
effective for structured data and has been the basis of software applications for years, it
can become inconvenient when dealing with composite relationships and multi-hop queries.
These queries often require joins between multiple tables, which can become complex and
slow, causing performance bottlenecks [19].

On the contrary, graph databases store data as nodes and edges and they are optimized
for such tasks. Traversing relationships directly through edges is much faster than performing
table joins, especially for queries with multiple levels of connections. By leveraging graph
theory, these databases perform exceptionally well in scenarios where relationships are as
important as the entities themselves, allowing for faster queries in highly connected data
settings [20].

Schema Flexibility

One of the key differences between relational and graph databases is their approach to schema.
Relational databases enforce a strict, predefined schema, which makes them ideal for well-
structured data that requires absolute integrity and consistency. The guarantee of Atomicity,
Consistency, Isolation and Durability (ACID principles) assures that data transactions are
reliable and fault-tolerant, which is critical for applications like financial systems or enterprise
resource planning (ERP) software.
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Graph databases, on the other hand, provide a far more flexible schema, where rela-
tionships between nodes can be updated or added over time without needing to reform the
database structure completely. This adaptability is especially useful in circumstances where
the data model is evolving, such as knowledge graphs, social networks or semantic searches.
In these cases, the ability to adjust the schema without downtime or complex migrations
makes graph databases a more suitable solution [21].

Use Cases

Graph databases excel in situations where relationships between data points are central to
the analysis. They are also superior in applications where relationships are dynamic or ever-
changing, due to their capacity to model and query intricate, interrelated data in an intuitive
and efficient manner. For instance, recommendation engines, supply chain networks and fraud
detection systems all benefit from the graph model’s ability to quickly navigate relationships.

Relational databases are best suited for scenarios where the data model is stable and
relationships between data points are minimal or well-defined. Their strong support for data
consistency, through ACID compliance, makes them the go-to choice for traditional business
applications, such as inventory management, financial systems or human resources, where
structured data and transactional integrity are critical.

4.2 Graph Data Models

A set of conceptual tools used to define real-world objects to be modeled in the database and
how they relate to one another is generally considered a data model. According to Codd [22],
a data model is more precisely defined as a collection of:

e data structure types, which form the basis for any database that conforms to the model,

e query language and transformation operators, which may be applied to instances of
these data types to retrieve data,

e general integrity rules, which standardize the compliant states of the database.

Graph data models aim to represent information using a graph-like structure and they
differ from other data models in that they contain two types of information. One, the at-
tributes of entities and relationships, and two, the connectivity structure that makes up the
network itself. The two leading graph models supported by most commercial graph databases
are the RDF model and the property graph model.

e The Resource Description Framework (RDF) was initially developed by the World Wide
Web Consortium (W3C) as part of the Semantic Web initiative. It is an assertional
language intended for representation of metadata on the Web, which can also be applied
to portray any information in a graph structure, enabling data to be linked and shared
across different domains. RDF is based on a structure called a “triple,” which consists
of three components: subject, predicate and object [23|. Each triple represents a single
fact or statement. DBPedia and YAGO are two examples of projects that utilize RDF
and they support the SPARQL query language, designed to retrieve and manipulate
data stored in the RDF format. SPARQL queries match patterns in the RDF triples,
making it highly effective for traversing linked datasets.

e The Property Graph Model is a more common and flexible approach to graph model-
ing, which represents entities as nodes and the relationships between them as edges.
Vertices and edges may have multiple properties in the form of key-value pairs, that
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describe their attributes [24]. They can also have labels that categorize them. Property
graphs typically use query languages like Cypher (used by Neo4j) or Gremlin (used by
Apache TinkerPop). These query languages are designed to navigate the graph struc-
ture efficiently by allowing traversal of nodes and edges while taking advantage of the
properties stored in them.

In general, the property graph model can capture the same information as the RDF model,
but often with fewer nodes and edges. This is because information that in RDF requires the
addition of extra nodes or edges can be represented in the property graph model as a property
of an existing node or edge [25]. This allows the complexity of the graph to be reduced, which
can lead to more efficient storage and faster data retrieval.

4.3 Neo4dj Overview

Neo4j, which stands for Network Exploration and Optimization 4 Java, is an extensive ecosys-
tem containing numerous tools, applications and libraries based on Java and used for storing
and managing data in a natural, connected state. The core product is a robust and scalable
graph database, which has evolved into the industry leader in this sector. The engineers of
Neo4j also created the Cypher query language, which enables intuitive traversal and pattern-
matching of the complex, interrelated data that it can represent. Beyond its query language,
Neodj also offers a multitude of tools that enhance the developer’s experience [3]:

Drivers and APls,
Connectors

Cypher Query Language,
GraphQL Library

Visualization
Meodj Bloom

Neodj Aura
AursDE and AuraDS

Neodj tools
Mandj Browser, Neodj Data Impertar,

Maodj Dasktop. Maodj Ops Managar Analytics

Graph Dals Sciencs

Figure 4.1: Overview of the Neo4j ecosystem.

e Neodj Browser is a built-in tool that provides an interactive interface to manage and
explore the graph database from any browser. Users can execute Cypher queries, imme-
diately see their results as graph visualizations and interact directly with the database.
It is the default interface for both Enterprise and Community Editions of the Neo4j
database.

e Neodj Bloom is a powerful graph visualization tool intended for business users, analysts
and data scientists, who may not be familiar with Cypher. It allows users to query and
interact with the graph visually to discover patterns, without requiring any program-
ming skills. Thus, a business view of the data in the database can become accessible to
a wider audience to analyze and extract insights.

e Neodj Graph Data Science (GDS) offers more than 65 efficiently implemented, parallel
versions of popular graph algorithms, such as community detection, centrality, node
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similarity and pathfinding. They are exposed as Cypher procedures, ready to be exe-
cuted with Neo4j and optimized for enterprise pipelines and workloads. GDS aids in
analyzing large and complex networks to get insights from big data and answer critical
questions. To handle graph problems like missing relationship prediction, GDS also
provides machine learning pipelines for training predictive supervised models.

Neodj Aura is a fully managed, cloud-based graph platform designed to provide fast,
scalable and highly available graph database services. Neo4j Aura is divided into
two main offerings: AuraDB, which is geared towards developers creating intelligent,
context-driven applications, and AuraDS, a tool aimed at data scientists working on
machine learning and advanced analytics. AuraDB, the graph database as a service
product, allows for importing, visualizing data and executing queries extremely quickly,
using built-in developer tools and integrations, but without worrying about infrastruc-
ture. AuraDS, on the other hand, is the data science as a service solution that combines
machine learning and graph database layers into a single workspace, simplifying the
process of finding connections in big data and delivering answers to crucial business
problems.

Neo4j has developed an extensive library of connectors and drivers that allow it to be
seamlessly incorporated into a variety of environments. Major programming languages
including Python, JavaScript, Java, NET, and Go have drivers available. The Neo4j
Python driver lets developers interact with Neo4j directly from Python applications.
This driver connects to a Neo4j database instance through a binary protocol called Bolt.
It supports executing Cypher queries, managing transactions and handling connections
to Neo4j, making it an essential component for Python-based projects that require
graph-based data storage.

4.3.1 Data Model in Neo4j

Neo4j graph database is a NoSQL database, which is based on the property graph model [26],
so it consists of:

e Nodes, which describe discrete objects in a domain. They are allowed to have zero or

more labels to classify what kind of nodes they are.

e Relationships, which always have a direction and describe a connection between a source

node and a target node. They are required to have a type, to define what kind of
relationship they are.

Nodes and relationships can have properties, which further describe them and take the

form of key-value pairs.

:ACTEDL_IN

Person roles: ['Forrest" :DIRECTED
Porest) | Movie | ——
Actor
name: 'Tom Hanks' title: 'Forrest Gump' name: 'Robert Zemeckis'
born: 1956 released: 1994 born: 1951

Figure 4.2: Simple example of Neo4j graph.

Fig. 4.2 shows a simple example of a graph as it would be represented in a Neo4j database.

The first node has the labels "Person” and ”Actor” and the properties "name” with value "Tom
Hanks” and "born” with value 1956. There is an outgoing relationship from the "Tom Hanks”
node to the "Forrest Gump” node of type ACTED IN.
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4.3.2 Cypher Query Language

The programming languages that are used to query and manipulate graph databases are
known as graph query languages. They enable developers to quickly access and modify data
stored in a graph structure and allow them to express intricate queries spanning several levels
of connections in a straightforward manner. Graph query languages allow users to search for
patterns or relationships by navigating through the nodes and edges in the database, therefore
providing understanding of the data and the ability to make well-informed decisions [27].

Cypher was created in 2011 by Neo4j engineers as an SQL-equivalent language for graph
databases. It allows for efficient and expressive queries, enabling users to realize the full
potential of their property graph databases. Writing a query is effectively like drawing a
pattern through the data in the graph. Graph patterns and operations can be expressed in a
format that is straightforward and understandable, streamlining the process of working with
complex interconnected data structures.

A key feature of Cypher is its expressive pattern-matching syntax, which uses visual
representations to depict nodes and relationships. Nodes are enclosed in parentheses (), and
relationships are represented by arrows —> or <— with optional labels and properties inside
square brackets [|. For example, a simple pattern to find actors in a movie might look like
(actor)-[:ACTED_IN] ->(movie). This approach makes it easier to visualize and construct
queries that mirror the structure of the graph itself.

Cypher lets users define the desired outcomes without getting entangled in the technical
details of how to obtain them. This allows the database engine to optimize query execution
while adhering to the principles of declarative languages. The language includes a variety of
clauses such as MATCH for specifying patterns to search for, WHERE for filtering results
based on conditions, RETURN for selecting the data to output and CREATE or MERGE
for adding or updating nodes and relationships.

One of Cypher’s strengths is its support for variable-length path queries, which lets users
search for patterns that span an arbitrary number of relationships. This is particularly useful
for traversing hierarchical data or any graph where the depth of connections is not fixed. For
instance, the pattern (start)-[:CONNECTED_TO#*1..5]->(end) finds paths between start and
end nodes that are between one and five relationships long.

Cypher also provides aggregation functions like COUNT, SUM, AVG, MIN, and MAX,
enabling users to perform statistical computations over the graph data directly within queries.
Combined with grouping capabilities, these functions facilitate complex analytics without the
need to extract data into external tools.

4.3.3 Architecture and Performance

Neo4j is a native graph database, which means that it is designed to store and process data as
a graph. The underlying structure of the database is built specifically for storing graph-like
data and ensures that data is stored effectively by utilizing storage patterns that place nodes
and relationships in close proximity to one another. Every layer of Neo4j’s architecture — from
the Cypher query language runtime to the management of store files on disk — is optimized
for storing and accessing graph data, and not a single component is built on top of other
non-graph technologies.

Additionally, Neo4j uses index-free adjacency to provide native processing capabilities.
This implies that nodes have direct references to their neighbors, so that retrieving rela-
tionships and related information is simply a memory pointer lookup [28]. Because of this,
native graph processing time is not increased exponentially with the number of relationships
traversed and hops navigated, instead native graph queries perform proportionally to the
volume of data processed. With processing specifically built for graph datasets, relationships
are exploited to maximize traversal performance as opposed to relying heavily on indexes for

41



joins.
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Chapter 5

System Design and Implementation

5.1 Tools and Technologies Used

Various tools and libraries were utilized in this implementation to incorporate Neo4j as a
graph-based feature registry and expand the capabilities of the Feast feature store. The tools
used are broken down in depth below:

Python Programming Language

Python is a versatile, high-level programming language, that is easy to use, readable and
has a large library ecosystem, making it the preferred choice for data science and machine
learning systems [29].

Python was chosen for its compatibility with Feast, which is itself written primarily in
Python. Its ability to use Object-Oriented Programming facilitated the development of a new
class that extends the Feast registry. It also offers a broad library ecosystem that made it
possible to integrate other tools like Click and the AST module, which sped up the project’s
development.

Feast Feature Store

Feast is an open-source feature store used to manage and serve machine learning features,
which served as the foundation for the implementation. By using Feast, this application ben-
efits from its existing ecosystem of feature views, data sources and entity management, while
adding advanced capabilities such as querying feature dependencies using a graph database.
More specifically, the implementation is based on a fork of Feast’s v0.38-branch, which can
be found here. Modifications were made to the Python SDK to allow for custom interactions
with the new graph registry.

Neo4j Graph Database

Neo4j is the central database used for the graph-based feature registry, chosen for its effi-
cient graph traversal and relationship management. The project offers flexible deployment
options by supporting both a locally hosted Neo4j instance and Neo4j AuraDB, a cloud-based
managed service.

Python Neo4j Driver

The Neo4j Python Driver offers a native interface to interact with Neo4j from Python pro-
grams. It enables developers to handle transactions, maintain sessions and run Cypher queries
in a manner that seamlessly interacts with Python codebases.

e Cypher Query Language: The driver allowed Cypher queries to be executed smoothly
from within the Python code. This made it possible to query the graph registry and
insert or update data efficiently.
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e Session and Transaction Handling: When adding or modifying big sets of nodes and
relationships, the driver’s integrated session management guaranteed safe and effective
transactions. Transactions were crucial in preserving the graph’s integrity during the
updates and materialization of features.

Abstract Syntax Tree (AST) Module

Python’s Abstract Syntax Tree (AST) module is a powerful tool for programmatically pars-
ing and analyzing Python source code. It converts source code into a tree-like structure,
representing the syntactic elements and their relationships [30]. The AST module was lever-
aged to automatically detect dependencies between features by parsing Python code used
in on-demand feature view transformations. By analyzing these transformations, the AST
enabled the system to extract input features that contributed to the calculation of output
features. These dependencies were then mapped to Neo4j relationships, providing a clear
representation of feature relationships in the graph database.

Click Module

Click is a Python package for creating command-line interfaces (CLI) with minimal code. It
supports nested commands, automatic help generation, and argument handling, making it
an ideal choice for building command-line tools [31].

Click was used to extend the Feast CLI with custom commands related to the graph-
based registry. This made it easier for users to interact with the Neodj database, query
feature relationships and explore feature lineage directly from the command line.

5.2 Extending Feast with a Graph-Based Registry

In order to address the limitations inherent in traditional registry implementations, this work
extends Feast with a graph-based registry that leverages the capabilities of Neo4j. The
extension was motivated by the need to capture and query the complex interdependencies
among feature store objects. This section describes the design decisions and integration steps
we followed during the development of the graph registry within Feast.

To integrate the graph-based registry within Feast, we defined a new registry class along
with a corresponding configuration specifically tailored for Neo4j. This integration involved
introducing new methods to perform CRUD operations using Neo4j’s transactional model,
ensuring data consistency and integrity throughout all operations. These registry methods
are used across the entire feature store and serve as the central mechanism for all interactions
with the registry.

The first step to create and run a Feast project is to define its basic configuration on
the feature store.yaml file, which includes infrastructure configuration for the associated
project. When working with a graph database registry, the section about it should look like
the following:

registry:
registry_type: graph
uri: neodj+s://55649b29.databases.neodj.io:7687
database: neo4j
user: neo4j
password: password

Creating an instance of Neo4j AuraDB or the Neo4j Database is a prerequisite to gather
the following information, that is necessary to create and use a graph feature registry:
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e The URL to connect to the Neo4j instance, including the port.
e The username and password for a user authorized with read and write privileges.

e The name of the database used for the queries.

5.3 Data Model and Schema Design

5.3.1 Node labels and properties

In the graph-based feature registry, nodes represent the core Feast objects that make up the
data structure. Each node is assigned a specific label corresponding to its object type, and
is enriched with properties that capture essential metadata, such as names and timestamps.

When a new project is initialized a new Project node is created, which forms the base for
all other objects-nodes related to the specific project. It bears a unique project id property.

As mentioned in subsection 3.3.6, the first time that the feast apply command is exe-
cuted Feast object definitions are parsed and nodes corresponding to each object type such
as a Field, Entity, FeatureView, OnDemandFeatureView, DataSource or FeatureService are
created. These nodes adhere to the following rules:

e They contain a name and proto property, which are labeled according to the object’s
class. For instance, Field nodes have the properties field name and field proto. The
value of the proto property is a protobuf representation of the object, which is used
across the feature store by multiple operations.

e All nodes have a last _updated timestamp property.
e If a description is specified, it is added as a node property.
e Field nodes have an additional data type property.

e Feature Views have an additional materialization intervals property.

5.3.2 Introduced Relationships

The interactions between nodes in the registry are represented by relationships such as CON-
TAINS, HAS, POPULATED FROM, PRODUCES and USED FOR. These relationships
were chosen because they directly reflect the operational and logical interactions observed in
the feature store. By explicitly modeling these connections, the registry supports efficient
querying, provides an intuitive and interpretable representation of feature interdependencies
and ultimately guarantees consistency and traceability of the data flow in the system. The
relationships evolve as new feature views, on-demand feature views and feature services are
introduced, or when modifications are made to existing entities.

CONTAINS Relationship: There is a CONTAINS relationship from the Project to any
other node, which is essential to identify the elements of different workspaces and any
potential overlap between different projects.

USES Relationship: Every time a new feature view is created or modified, a USES rela-
tionship is established from the FeatureView to its associated Entity nodes, ensuring
that the feature view properly reflects which entities it depends on.

HAS Relationship: For each feature defined in the schema of a feature view, a HAS re-
lationship connects the FeatureView to the Field node. This ensures that the features
within the feature view are directly linked to their definitions in the registry. When
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a request source is defined, it is mandatory to specify the features it contains, and a
HAS relationship is established from the DataSource to the Field node. For other data
source types, the features they contain are inferred from the related feature views, and
a HAS relationship is established from the DataSource to the Field node.

POPULATED FROM Relationship: If a stream data source is used, the FeatureView
has a POPULATED FROM relationship with the DataSource. Otherwise, the target
of this relationship is the batch data source, ensuring that the origin of data for the
feature view is accurately represented.

RETRIEVES FROM Relationship: If a push data source is used, the push data source
has a RETRIEVES FROM relationship with the batch DataSource

BASED ON Relationship: For on-demand feature views, the model introduces a BASED _ON
relationship to depict its dependency on a base feature view or data source.

PRODUCES Relationship: For every feature defined in an on-demand feature view, there
is a PRODUCES relationship from the OnDemandFeatureView to the Field node.

USED _FOR Relationship: An integral part of every on-demand feature view is a function-
transformation applied to input data fields in order to compute the final features. This
function’s syntax is analyzed to infer dependencies between features. This process is
described in more detail in section 5.4 and it results in a USED _FOR relationship from
one Field node to another.

CONSUMES Relationship: When defining a feature service, it is necessary to list all as-
sociated feature views and on-demand feature views. This is captured by a CONSUMES
relationship from the FeatureService to the relevant FeatureView and OnDemandFea-
tureView nodes, ensuring that the services are aware of which features they consume.

SERVES Relationship: When defining a feature service, there is an option to select only
part of the features from each feature view and on-demand feature view. Therefore, a
SERVES relationship from the FeatureService node is necessary to depict which Field
nodes are actually served by it.

OWNS Relationship: An OWNS relationship is directed from an Owner node, which only
has a name property, to either a DataSource, Entity, FeatureService, FeatureView or
OnDemandFeatureView node.

TAG Relationship: This is the most versatile type of relationship, since it is created based
on a dictionary of tags. DataSource, Entity, FeatureService, FeatureView and OnDe-
mandFeatureView nodes may have TAG relationships, where the destination is deter-
mined by the key to each dictionary entry.

5.3.3 Schema Diagrams

A collection of schema sub-diagrams to assist in better understanding of the relationship
between different nodes is provided below. The relationships that are formed or updated
when a particular type of node is changed are shown in each diagram. As stated in subsection
3.3.6, these actions are performed because of the feast apply command.

Data Source

When changes to a Data Source are applied-registered, the registry is updated according to
the following steps:
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1. Initially, the connection to the current Project node is verified.

2. Optionally, if an owner is specified in the Data Source definition, the node is connected
to the respective Owner node.

3. Another optional argument in the definition is a dictionary of tags. If it is present, for
each entry in the dictionary the Data Source node is connected to a node with a label
that matches the entry’s key and a value property that matches the entry’s value.

4. If the source’s schema is specified, detailing the features it contains, relationships from
the Data Source to Field nodes are inserted.

5. In the case of Push Sources, another Data Source is defined as the batch source, hence
a RETRIEVES FROM relationship is included in the registry.

These relationships are depicted in Fig. 5.1.

CONTAINS ’

OWNS

HAS DataSource

RETRIEVES_FROM

DataSource

Figure 5.1: Relationships from Data Source registration.

Feature View

The feature registry is updated according to the following steps when modifications to a
Feature View are applied-registered:

1. First, the connection to the current Project node is verified.

2. The node is linked to the appropriate Owner node, if an owner is mentioned in the
Feature View specification.

3. Another optional argument in the definition is a dictionary of tags. If it is available,
the Feature View node is connected to a node that has a label matching the entry’s key
and a value property matching the entry’s value for every entry in the dictionary.
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4. The Feature View node is linked to all the entities that it describes. If no entity is
included in the definition, a relationship to the dummy Entity node is created instead.

5. Either a batch or a stream source must be filled in the Feature View, therefore a rela-
tionship is created from the Feature View node to the Data Source that it is populated
from.

6. For every feature the Feature View contains, a HAS relationship from the Feature View
to the Field node must be created in the graph. If a relationship from the Data Source
is not already present in the registry, it is inserted at this stage.

These relationships are portrayed in Fig. 5.2.

Field
CONTAINS
A
HAS OWNS
FeatureView TA

HAS

POPULATED_FROM USES
DataSource

Figure 5.2: Relationships from Feature View registration.

On Demand Feature View

When changes to an On Demand Feature View are applied-registered, the registry is updated
according to the following steps:

1. Initially, it is ensured that it is connected to the current Project node.

2. Optionally, if an owner is included in the On Demand Feature View definition, the node
is linked to the respective Owner node.

3. A dictionary of tags is an additional optional argument in the definition. If it is present,
for each entry in the dictionary the On Demand Feature View node is connected to a
node with a label that matches the entry’s key and a value property that matches the
entry’s value.
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4.

5.

6.

On Demand Feature View transformations may use features from Feature Views or

Request Sources as input, therefore the On Demand Feature View node is linked with
nodes of these two types.

The list of features in the output of the On Demand Feature View is used to create a
set of PRODUCES relationships towards the respective Field nodes.

Additionally, dependencies between input and output features are calculated and rep-
resented as relationships between Fields in the graph.

These relationships are illustrated in Fig. 5.3.

USED_FOR CONTAINS

OWNS
PRODUCES—]| Onbemand TA
FeatureView

BASED_ON BASED_ON

DataSource FeatureView

O
@

Figure 5.3: Relationships from On Demand Feature View registration.

Feature Service

The feature registry is updated according to the following steps when modifications to a
Feature Service are applied-registered:

1.

2.

First, it is ensured that it is connected to the current Project node.

If an owner is specified in the Feature Service definition, the node is connected to the
respective Owner node.

Another optional argument in the definition is a dictionary of tags. If it is present, for
each entry in the dictionary the Feature Service node is linked to a node with a label
matching the entry’s key and a value property matching the entry’s value.

. Feature Services make a group of existing features available to be retrieved together

during training or serving. There are SERVES relationships from the Feature Service
node to all the Fields it involves.

These features may come from entire Feature Views, On Demand Feature Views or
projections of these. To represent the of origin of the features being served, there is
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a relationship from the Feature Service to any Feature View and On Demand Feature
View it consumes features from.

These relationships are depicted in Fig. 5.4.

CONTAINS ’

Feature
Service

CONSUMES CONSUMES

OnDemand

FeatureView FeatureView

@

Figure 5.4: Relationships from Feature Service registration.

5.4 Tracking Dependencies and Lineage

On demand feature view definitions are accompanied by a transformation function that uti-
lizes either Pandas DataFrames or Python dictionaries to create and calculate new features.
New dependency tracking classes were defined focusing on tracking the dependencies between
input and output dictionaries within these functions. These classes utilize Python’s ast mod-
ule to parse and traverse the abstract syntax tree (AST) of the code, identifying how the
inputs and outputs are connected.

This implementation primarily focuses on straightforward assignment operations and ba-
sic manipulations, assuming a direct mapping between input and output elements. It does
not yet handle more complex Python constructs, such as loops, conditionals, or deeply nested
structures, which may involve more intricate relationships between inputs and outputs. De-
spite these limitations, the implementation serves as a foundational tool for tracking depen-
dencies in relatively simple transformation functions, making it useful for understanding data
flow in both Pandas-based and pure Python-based data processing tasks.

5.4.1 Pandas transformation

The added DependencyTracker class is responsible for analyzing a Python user-defined func-
tion (UDF) that transforms pandas DataFrames. The goal is to track how columns in the
input DataFrame are used to produce columns in the output DataFrame. The process to
achieve this can be separated in the following steps:

1. Determining the input and output DataFrames: In order to track which input DataFrame
columns contribute to which output DataFrame columns, it is required to identify the
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corresponding DataFrame names. The input DataFrame is extracted from the func-
tion’s signature, while the output DataFrame name is inferred by inspecting the return
statement of the UDF.

2. Tracking column dependencies: The tracking itself is done by parsing the UDF, ex-
tracting its representation as an AST and then visiting the nodes it contains one by
one. After visiting all the nodes, the tracker builds a dictionary where the keys are
the output DataFrame columns or other variables, and the values are sets of the input
DataFrame columns or other variables that contribute to them. The types of nodes
visited are explained in detail below:

e Assignment nodes: The primary cases of assignment supported are DataFrame
subscript assignment and temporary variable assignment. The first applies in
cases when the output DataFrame is being assigned a value, the target column
is stored, and the value being assigned is processed to capture any dependencies.
Similarly, if a temporary variable is assigned a value, the variable’s name is stored,
and the assigned value is later processed.

e Binary operation nodes: In cases where a binary operation is performed, both
sides of the operation are visited, allowing the tracker to understand which input
columns contribute to the result.

e Subscript nodes: When the UDF accesses a DataFrame column via subscript no-
tation (e.g. df[’column name”]), this method captures which column is being
accessed.

e Variable access nodes: If a temporary variable is used later in the UDF, it’s ex-
panded to capture its underlying dependencies. This ensures that even multi-step
transformations are correctly tracked.

e Function call nodes: Function calls on DataFrame columns are also tracked, by
visiting the function and its arguments.

3. Resolving dependencies recursively: If the dependency map includes intermediate steps
or temporary variables, a recursive resolution is performed so that the final result only
maps output columns directly to input columns.

Since the described method is not exhaustive and it does not cover all AST node types,
it is vital to ensure that the tracking process does not fail in cases of unexpected syntax or
unsupported code structures. If an exception occurs during the tracking process, a warning
is printed, and the method returns an empty dictionary. This way may result in missing
relationships in the graph feature registry, but the main flow is not interrupted.

5.4.2 Python transformation

Similarly, for the Python transformation case the dependency tracking functionality focuses
on analyzing a UDF that operates on dictionary-like inputs, with the goal of tracking how
input dictionary keys contribute to the output dictionary keys. The overall steps correspond
to the ones previously described, adjusted to dictionaries instead of Pandas Dataframes.

1. Determining the input and output dictionaries: The input dictionary is extracted from
the UDF’s function signature, while the output dictionary is identified by inspecting
the return statement of the function.

2. Tracking dictionary key dependencies: The UDF is once again parsed into an AST and
visited node by node. After visiting all the nodes, the tracker builds a dictionary where
the keys are the output dictionary keys or other variables, and the values are sets of the
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input dictionary keys or other variables that contribute to them. The types of nodes
are the same as in the Pandas dependency tracking, with the addition of Dictionary
nodes.

3. Resolving dependencies recursively: Once the AST is traversed, if intermediate variables
or multi-step transformations are present in the dependency map, a recursive resolution
process is applied to ensure that only direct relationships between input and output
dictionary keys remain.

In order to prevent disruption in the transformation logic’s main flow, a warning is logged
and an empty dependency map is returned if the tracking process comes across unexpected
syntax or unsupported structures.

5.5 CLI Enhancements

The graph-based feature registry is accessible through Neo4j-specific tools, such as the Neo4j
Browser and Neo4j Bloom, which can be used to directly explore, query the database and
visualize the results. Additionally, new commands have been introduced to the Feast CLI
that allow users to interact with the registry and retrieve results in a tabular format.

All graph-related commands are grouped under the feast graph command and can be
executed from the feature store repository.

feast graph [command] [options]

The available commands with an overview of their functionality are presented below:
e cxecute-query: Execute a raw Cypher query on the graph database.

e most-used: Display the most used objects of a specified type, based on relationships
in the graph.

e most-dependencies: Display objects that are most often used as dependencies in on-
demand feature view transformations.

e served-by: Display feature services that serve a particular feature from a specified
data source.

e upstream-impact: Display objects that utilize a specified data source.
e common-tags: Group objects based on their tags and display related objects.

e common-owner: Group objects based on their owner and display related objects.

5.5.1 feast graph execute-query

This command provides the most flexibility for advanced users, allowing them to execute raw
Cypher queries against the graph database. It grants users full control over querying the
graph registry’s content, thus enabling custom exploration of relationships, dependencies and
metadata within the registry. This acts as an interface for executing complex and customized
queries that might not be covered by standard commands.

Usage:

feast graph execute-query --query ’’<cypher-query>’’
Option:

e —query / -q: The Cypher query to be executed (required).
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5.5.2 feast graph most-used

This command provides insights into the most used objects in the feature store, whether they
are feature views, on-demand feature views, data sources, entities or fields. It reveals which
objects play a critical role across the feature store by counting key relationships. A potential
use for this command is for identifying and optimizing commonly used features or addressing
bottlenecks in highly used entities or views. In order to extract the number of times each
object is used, the relationships counted in each case are:

e Feature Views, On-Demand Feature Views: Counts the number of CONSUMES rela-
tionships from feature services.

e Data Sources: Counts both POPULATED FROM and BASED ON relationships
from feature views and on-demand feature views respectively.

e Entities: Counts the number of USES relationships from feature views.
e Fields: Counts the number of HAS relationships from feature views.
Usage:

feast graph most-used --object <object-type> [--limit <number>]
Options:

e —object / -o: The type of object to query for (required). The only acceptable values
are: feature-views, on-demand-feature-views, data-sources, entities and fields.

e —limit / -1: The maximum number of objects to display (optional).

5.5.3 feast graph most-dependencies

This command highlights objects that are most frequently used as dependencies in on-demand
feature view transformations. It helps identify dependencies that are foundational for derived
features or transformations. Additionally, users can get insight into which fields or feature
views are most often reused in downstream computations, making it easier to understand
potential impacts when these objects are updated. Depending on the specified object type,
this command fulfills one of the following purposes:

e Feature Views: Counts the number of BASED ON relationships from on-demand fea-
ture views to feature views.

e Fields: Counts the number of USED FOR relationships from fields to other fields.
Usage:

feast graph most-dependencies --object <object-type> [--limit <number>]
Options:

e —object / -o: The type of object to query for (required). The only acceptable values
are: feature-views and fields.

e —limit / -1: The maximum number of objects to display (optional).
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5.5.4 feast graph served-by

This command allows you to query which feature services are serving a particular feature from
a specified data source. It specifically identifies the feature services that serve a feature field
from a given data source, either directly or through a chain of intermediate feature views
or on-demand feature views. It is very easily implemented in Cypher since the SERVES
relationship already exists in the registry, while if any other type of regitry were used, we
would be forced to search through multiple layers of objects to extract the same information.

When planning changes to a data source or a specific field, it’s crucial to understand
which feature services would be affected. The served-by command enables you to trace the
feature’s dependencies and see where it is being used. By knowing which feature services are
dependent on a particular field from a data source, you can better understand the downstream
impacts and the scope of data usage in your feature store.

Usage:

feast graph served-by --data-source <data-source-name>
Options:
e —data-source / -d: The name of the data source (required).

e —field / -f: The name of the field (required).

5.5.5 feast graph upstream-impact

This command displays push data sources, feature views, on-demand feature views and feature
services that depend on the specified data source. By showing all objects that are either
directly or indirectly reliant on a given data source, users can easily understand the ripple
effects of changes to the source, allowing for dependency management and safer modifications
to critical data sources, without accidental disruptions.

Usage:

feast graph upstream-impact --data-source <data-source-name>
Option:
e —data-source / -d: The name of the data source (required).

It is particularly interesting to understand how this command is implemented in Cypher,
since variable-length relationship patterns are used to traverse multiple layers of relationships
efficiently and finally extract a deep dependency chain. By analyzing graph structures that
may occur in the graph registry, we have determined the maximum possible path length for
this scenario is 4, which limits the search in the query shown in Fig. 5.5 to paths of certain
relationship types of length 1 to 4.

5.5.6 feast graph common-tags

This command organizes objects by their tags and displays which objects share the same
metadata tags. Tagging is often used to group objects by certain characteristics or attributes,
and this command helps users quickly identify how different entities, data sources and feature
views are categorized. It is ideal for discovering common themes or patterns within the feature
store.

Usage:

feast graph common-tags
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MATCH (s:DataSource {{ data_source_name: <dataHsourceHname> I39)
<-[:POPULATED_FROM|RETRIEVES_FROM|BASED_ON|CONSUMES*1..4]-(d)
WITH DISTINCT d
RETURN
COLLECT
(DISTINCT CASE WHEN ’’DataSource’’ IN labels(d) THEN d.data_source_name END)
AS data_sources,
COLLECT
(DISTINCT CASE WHEN ’’FeatureView’’ IN labels(d) THEN d.feature_view_name END)
AS feature_views,
COLLECT
(DISTINCT CASE WHEN ’’OnDemandFeatureView’’ IN labels(d) THEN d.feature_view_name END)
AS on_demand_feature_views,
COLLECT
(DISTINCT CASE WHEN ’’FeatureService’’ IN labels(d) THEN d.feature_service_name END)
AS feature_services

Figure 5.5: Cypher query implementation of upstream-impact command.

5.5.7 feast graph common-owner

This command groups objects based on ownership, displaying all objects created or managed
by a specific user. This can be especially useful for team management and governance, since
it facilitates accountability by showing which user is responsible for different objects.

Usage:

feast graph common-owner
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Chapter 6

Evaluation and Discussion

This section focuses on the results of experiments designed to evaluate and compare the per-
formance of different Feast registries as they grow in size and complexity. These experiments
are vital in showcasing the graph registry’s capability to handle heavy workloads of inter-
connected data in production environments as well as identifying potential limitations as the
feature store scales.

6.1 Performance Testing Framework

6.1.1 Environment

All experiments were conducted on a Virtual Machine with the following hardware and soft-
ware specifications:

e Processor: 4 CPUs
e Memory: 16 GB RAM
e Storage: 100 GB disk capacity

e Operating System: Ubuntu 22.04.3 LTS

As far as Feast is concerned, the instance we executed the commands leverages a File offline
store and a Redis online store. For the file registry, contents were stored on the disk, while
local MySQL and Neo4j databases were utilized as SQL and graph registries respectively.

6.1.2 Data Generation

The goal of the data creation process is to generate a feature store with a scalable number of
objects, such as data sources, feature views, on-demand feature views and feature services.
This setup allows for performance testing across different registries while the feature store
grows. The data generation process includes the following definitions:

1. Data Sources: Data sources consist of both file-based and push sources, with each scale
unit containing two of each type. For every file data source, a corresponding Parquet file
is dynamically generated, holding a fixed number of fields (20 by default) with integer
values.

2. Feature Views: Feature views are created in groups of three for each data source, with
each view referencing a pair of fields. A shared field is included in each feature view to
simulate field reuse, and both batch and stream (fresh) versions are defined.

3. On-Demand Feature Views: On-demand feature views are derived from combinations
of feature views and request sources. Each on-demand feature view is linked to a sepa-
rate request source, with three on-demand feature views defined per scale unit. These
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transformations involve arithmetic operations on selected features, producing derived
fields while referencing multiple feature views to demonstrate complex dependencies.

4. Feature Services: Feature services aggregate features from multiple feature views and
on-demand feature views. Each service includes ten features, selected from three feature
views and two on-demand feature views, with a total of three feature services defined
per scale unit.

The size of the feature store is controlled by a scale parameter, which determines the
number of data sources, feature views and feature services, following the pattern described
above.

The output of this process consists of:

e A Python file containing all generated feature definitions.

e Parquet files stored in a data directory, corresponding to each data source.

6.1.3 Testing Strategy

The objective of the testing strategy is to evaluate the performance of CLI commands across
different registry configurations (Graph, SQL, File). These tests simulate real-world scenarios
with complex feature dependencies and transformations.

1. Execute the data creation process for a given scale, generating feature definitions and
Parquet files. The scale is gradually increased from 2 to 5000.

2. Run feast apply to register these definitions to the feature store utilizing the desired
registry type.

3. Execute various commands and log the execution time of each one. The CLI commands
that were tested are explained in brief below:

e served-by: Displays feature services that serve a particular feature from a speci-
fied data source.

e upstream-impact: Displays push data sources, feature views, on-demand feature
views and feature services that depend on the same data source.

e common-owner: Displays all objects managed by a specific user.

e most-dependencies feature-views: Displays objects that are most frequently
used as dependencies in on-demand feature view transformations

e most-used fields: Displays the features that are most common in feature views.

4. After each test, the script cleans up the generated definitions, data files and registry
contents.

Each experiment was repeated 3 times and average metrics were calculated.

This strategy allows for a comprehensive comparison of the performance and scalability of
different registry configurations. The collected metrics provide insights into the ability of each
registry to handle increasing numbers of objects and relationships, as well as the performance
of graph-based dependency resolution compared to SQL/File-based implementations.
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6.2 Query Execution Time and Efficiency Analysis

6.2.1 Feast Apply Performance

The feast apply command is responsible for creating and updating registry objects, making
it a critical operation for scalability. Execution times were measured in seconds for the file-
based, SQL and graph-based registries across varying numbers of objects -determined by the

scale parameter- and the results are presented in Table 6.1.

Scale File SQL Graph
2 8.7 12.3 38.3
20 10.3 44.3 209
100 20.3 177.3 993.3

1000 407.7 1497.3 22498.3
2000 984.3 3086.7 37706
5000 3707.3 9586.3  231351.3

Table 6.1: Execution Times for Feast Apply.

6.2.2 Command Execution Performance

After registering object definitions to the feature store, multiple CLI commands were exe-
cuted to benchmark the performance of the graph registry against file and SQL versions. The
specific execution times (in seconds) obtained for each experiment are given in the following
tables and also plotted in figures. In general, when the feature store is small, all registry
backends demonstrate comparable performance in executing CLI commands. Once the fea-
ture store increases in scale, however, clear differences emerge that reflect the underlying data

access and query execution strategies of each implementation.

Served-by Upstream-impact
Scale
| File SQL  Graph | File SQL  Graph
2 7 7.7 8 6.7 8.7 7.7
20 8.7 12 8 7.3 9.7 9
100 12.7 22.7 15.3 8.3 17.3 14.7
200 21.7 40 22 9.3 21.3 20.7
500 108.3 93.7 60.7 19.7 59.7 63
1000 262.3 218 113.3 18.7 113.3 113.7
1500 194.7 94.3 123.7 100.3
2000 514.3 269.7 294.7 225.7
3000 423.7 225.7 367 264.3
5000 726.7 399.3 568.7 393.7

Table 6.2: Execution Times for Served-by and Upstream-impact Commands.

Because SERVES relationships are explicitly described inside the graph structure, the
graph database registry simplifies the served-by command. In a graph database like Neo4j,
relationships are first-class citizens, allowing for efficient traversal operations, since the query
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Figure 6.1: Performance of CLI Commands (1).

execution for this command directly leverages these predefined SERVES relationships. Perfor-
mance is enhanced and query execution times are decreased as a result of this optimization,
particularly as dataset sizes increase. The same connections must be found by searching
through de-serialized objects in SQL and file-based registries, which need more computation-
ally intensive operations to accomplish comparable outcomes because they do not naturally
maintain relationships.

upstream-impact is a command that needs to traverse multiple relationships, offering
an evident advantage for the graph-based registry. Neo4j natively supports variable-length
and multi-hop traversals, which allows this query to scale efficiently as the complexity of
the dependencies increases. In our tests, when the scale was increased, the graph registry
consistently identified the impacted objects with only a moderate increase in query execution
time.

However, when these same commands were executed against the file-based registry, they
either returned empty results or failed entirely. This unexpected outcome may be attributed
to memory constraints, inefficient searches or incomplete iteration over objects, since the file
registry relies on in-memory de-serialization and search.

common-owner and most-dependencies commands both query properties that were added
to the graph database as separate nodes and edges, while they were not stored separately in
other types of registries. The file and SQL registries depend on fetching the feature store’s
protobuf representations and de-serializing them. Once in memory, filtering and aggregating
objects (for example, grouping by owner or counting dependencies) can be performed ex-
tremely quickly using Python’s native data structures. The file-based registry’s performance
advantage for these commands likely stems from its simplicity and in-memory processing.
The SQL registry is slower in comparison due to the additional step of opening connections
to the database to read objects. Between the two database options, Neodj is queried directly
to search for the desired relationships leading to faster results than the SQL registry.
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Scal ‘ Common-owner ‘ Most-dependencies
cale

| File SQL  Graph | File SQL  Graph
2 6 9.3 6.3 6.7 7.3 7.3
20 7.7 11.3 8.7 8 8.7 10
100 11.7 16.3 14.7 9.3 15.3 16.7
200 10.7 22.3 21.3 8.7 19.7 21.7
500 25.7 50.3 45.3 23.7 47.3 53
1000 46.7 120.3 115.7 35.3 93.7 87.7
1500 32.7 121.7 95,7 290.7 98.7 102.3
2000 88.7 293.3 230,3 76.3 245.3 175.3
3000 98.7 363.3 262,7 93.7 316.7 230.3
5000 94 555.7 4233 89.3 491.7 404.7

Table 6.3: Execution Times for Common-owner and Most-dependencies Commands.
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The most-used fields command is designed to aggregate relationship data and count the
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Scale File SQL Graph

2 6.7 7.7 7
20 7.3 9.7 8.7
100 9 13.7 16.3
200 9.3 19.7 20.7
500 19.7 35.7 55.7
1000 14.3 86.3 60.7
1500 85.7 99.7

2000 207.7 242.3
3000 194.7 225.7
5000 349.3 409.3

Table 6.4: Execution Times for Most-used fields Command.

dependencies across feature views. In scenarios with relatively shallow dependency chains,
the cost of planning and executing a Cypher query in Neo4j sometimes leads to slower, rather
than faster, response times than the file and SQL registries. The large number of Field nodes
that need to be traversed should also be taken into consideration. As indicated by Table 6.4,
the SQL registry outperforms the graph-based option for this simple query. Therefore, the
graph registry’s performance advantage was only noticed when the queries truly leveraged
multi-hop relationships.

6.3 Strengths of Graph-Based Registries

The graph-based registry’s intrinsic capacity to represent and navigate relationships is one
of its main advantages. This capability is especially beneficial for operations that require
complex dependency analysis, as the registry can efficiently navigate multi-hop connections
across an intricate network of nodes and edges. In our experiments, queries that demanded
detailed lineage and dependency tracking—such as those calculating upstream impact or
identifying service dependencies—yielded precise and comprehensive results when executed
against the graph-based registry.

Neo4j’s use of the Cypher query language further augments these strengths. Cypher’s ex-
pressive syntax enables the construction of sophisticated query constructs that can reveal
deep interdependencies, a feat that is challenging to replicate with traditional file-based or
SQL-based registries. Since nodes and relationships are stored directly in Neo4j, users can
leverage these native structures to perform direct searches and optimizations that reduce the
complexity of querying the registry. This flexibility offers immense potential for optimization
and enables continuous performance improvements through query tuning and indexing.
Moreover, a more expressive and intuitive depiction of feature correlations is provided by the
graph-based method. This qualitative benefit significantly enhances our comprehension of
object dependencies, despite the fact that it might not be immediately measurable. Through
Neodj’s graphical interfaces or dedicated CLI commands, data scientists and engineers can
directly query the graph, enabling them to explore custom queries and extract insights that
would be more difficult to obtain with other registry models. In intricate, large-scale ma-
chine learning settings, where debugging, auditing and system optimization all depend on a
grasp of the intricate interactions between features, feature views and services, this degree of
expressiveness and interactivity is critical.
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6.4 Performance Trade-offs and Limitations

Although the graph-based registry offers significant benefits in handling complex, multi-
hop queries and detailed dependency analysis, our experiments revealed several performance
trade-offs and limitations that should be carefully considered.

The considerable overhead during initial setup and object creation is one of the main issues
with the graph-based registry. In our experiments, the process of node creation and rela-
tionship verification in the Neodj-backed registry was notably slower. This overhead arises
from the need to commit multiple transactions, create a large number of nodes and validate
numerous relationships to ensure data consistency within the graph structure. It is crucial
to remember that the feast apply command’s measured execution times reflect the first
registration of every object in the registry. In a real-world scenario, however, subsequent up-
dates typically involve only the incremental application of differences rather than a complete
re-registration. Although the graph-based approach may exhibit slower initial apply times
these overheads are expected to be insignificant in the context of the overall ML pipeline
when only minor changes occur between feast apply executions.

Moreover, even though the graph-based registry is particularly favourable for executing com-
plex queries that require deep traversals, this advantage is strongly contingent on query com-
plexity. In cases where queries involve only shallow lookups or direct relationships, such as
common-owner and most-used fields, the overhead associated with Cypher query planning
and execution can diminish performance gains. In such scenarios, the relatively straightfor-
ward, in-memory processing of a file or SQL registry may yield faster response times.

6.5 Use Cases

According to our research, the registry backend selection should be based on the size of the
deployment as well as the type of queries executed within the feature store.

6.5.1 Scale-Based Selection

e For small-scale deployments the file-based registry is optimal for development and ex-
perimental environments. Its simplicity and rapid, in-memory update mechanism de-
liver fast response times for basic lookups. In production scenarios at this scale, the
SQL registry also offers a viable alternative by supporting atomic updates and efficient
indexing without incurring the overhead associated with graph operations. However,
because the benefits of multi-hop relationship traversal are not fully utilized, using a
graph-based registry for such simple deployments may be needlessly complicated.

e At a larger scale and environments with highly connected objects, the performance
characteristics begin to deviate more clearly. The file-based registry becomes less re-
liable, as its ability to process complex dependency queries diminishes. Although the
SQL registry provides balanced performance, offering a middle ground, it is not as effi-
cient in deep relationship traversal queries. In such scenarios, the graph-based registry
is optimal, since its benefits start to emerge. Its native support for deep, multi-hop
relationship traversal enables it to model and query complex feature dependencies ef-
fectively, making it indispensable for robust, production-grade ML systems despite the
higher initial overhead.

6.5.2 Query Pattern Analysis

e Simple Lookups: For queries that involve direct, shallow data retrieval, the file-based
and SQL registries excel, thanks to their straightforward access methods.
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e Complex Relationship Traversal: The graph-based registry is unquestionably superior
for procedures that call for navigating several relationships. More thorough and precise
dependency analysis is made possible by its capacity to carry out effective multi-hop
traversals utilizing the native graph query language Cypher.

e Mixed Workloads: A hybrid method might be used when both simple and complicated
inquiries are common. With this method, deeper, relationship-intensive queries would
be sent to the graph-based registry, while basic searches would benefit from the speed
of the SQL or file-based registries.

These findings can be used to guide the design and optimization of feature store management
systems by bringing the registry backend into compliance with the particular operational
needs and anticipated query patterns. This approach ensures that the chosen solution maxi-
mizes performance while meeting the demands of modern, complex ML pipelines.
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Chapter 7

Conclusions and Future Work

7.1 Summary of Findings

This thesis set out to investigate whether a graph database can be used as a feature store reg-
istry to better model relationships between objects and their lineage compared to traditional
file-based and SQL-based registries. To this end, we implemented a Neo4j-backed registry for
Feast, extending its core functionality by incorporating relationship-focused commands into
the CLI. We also developed mechanisms for calculating feature dependencies in on-demand
feature views.

Our experiments revealed that, as the feature store grows, the advantages of a graph-based
registry become increasingly evident. In scenarios that involve complex, multi-hop depen-
dency queries the Neo4dj-backed registry excels, leveraging its native support for efficient
relationship traversals. One drawback of using a graph database as the feature registry and
introducing multiple relationships between objects is that the feast apply command be-
comes significantly slower. Conversely, for simpler, direct lookups, the file and SQL registries
often outperform the graph registry due to their lower overhead and in-memory processing.
These findings underscore that the choice of registry backend should be based on the nature
of the queries and the size of the registry.

In conclusion, this study significantly advances and contributes to the field by demonstrating
that a graph-based registry can provide an expressive and scalable solution for managing
feature store objects and dependencies. Our graph-based registry provides a more natural
modeling of relationships, with major benefits for dependency monitoring, impact analysis
and data lineage. This is particularly valuable in modern, dynamic machine learning envi-
ronments where features are regularly updated, and understanding their interrelationships is
essential for debugging and auditing purposes.

7.2 Directions for Future Research

The findings of this research reveal several areas for future investigation and potential im-
provement:

e Optimizing the graph registry: The cost of multiple transactions and extensive
query planning seem to hinder the graph registry’s performance in certain operations,
even though it exhibits great promise for intricate dependency queries. Future research
could examine ways to optimize these processes, such as lowering the number of in-
dividual transactions through more effective query consolidation or introducing batch
processing for node and relationship construction.

e Applying the registry in production settings: Additional research is required to
assess whether the graph-based registry could be applied in the real-world. The system
could be deployed and studied in a production environment in order to get insights into
how the system performs under operational loads and how well it supports the evolving
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needs of modern feature stores. Future work should also consider additional metrics,
such as end-to-end latency in a production scenario, and analyze the impact of different
workload patterns on resource utilization (memory, CPU and storage).

Combining registry backends: It may also be worth investigating a hybrid approach,
including multiple different registry implementations. Thus, the strengths of the SQL
or file registry (for simple, direct queries) can be integrated with those of the graph
registry (for deep, relationship-intensive queries). The best of both worlds would be
possible with such a system, which could dynamically route queries to the most suitable
backend depending on their complexity.

In summary, while this thesis illustrates the potential benefits of using a graph database as a
feature store registry, particularly for complex dependency queries, it also identifies challenges
that must be addressed to fully leverage these advantages at scale.
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