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H mpéPhedr unotponfic oe coPapéc Quynés dlatopoyéc Omwe 1 BLmoAny| dlatopoyy) Xo oL SLUTIRUYES TOU
pdopatoc e o LLOPEEVELNC TOPAUUEVEL Wial oNUavTiX) TEOXANCT), cLYVE amauTVTaG damovneés voonieles xou
empépovtag duoxohieg oty xaldnuepwvr (oY twv acdevdyv. O mpbogates e&ehileic otnv el Qouvo-
tunonoinon (digital phenotyping) mopéyouv T BuvatéTTA GLVEYOUS TOEAXOAOLINONG CUUTEPLPORLXMY XAl
QUOLONOYIXODY BEXTAY, emTEEMOVTUG €yXaupes mopeufdoelc oty meplntwon urnotponrc. H mogolooa épeuva
Baoileton oto épyo e-Prevention—€va oloxinpwuévo cbotnua mou utootnellel aodevels pe Yuyinée datopayée
péow pedddnv unyavixnc uddnong yio Ty aviyveuon vnotpon®v—enextelvovtac v nyntuxy| Bdorn dedopévuwv
TOU X0 aVOmTOOGOVTOS VEa HOVTEAA TTOU GUVOLALOLY Ny NTiXd xou BLOUETEIXE GHUOTA.

Apyixd, enextelvaye Ty nynuxy Bdorn dedoyévev tou e-Prevention dote va cuunepildfoupe nepiocdtepoUS oo-
Yevel xo TEPLoTUTING UTOTEOTNS. 2TN GUVEYELX, ENAVUEIONOYHOUUE TA HOVTEAL LUVEMX TGOV AUTOXOOIXOTOL-
ntov (Convolutional Autoencoders - CAEs) ot Zuvelxtxav Metaolndv Auvtoxwdixonomtodv (Convolu-
tional Variational Autoencoder - CVAESs) mou avontiydnxav oto mhaioto tou e-Prevention, ypnowonoudvtog
T0 emexTaéVo aOvolo dedopévev. Ta anoteréopora emBeBaiwoay dtt 1 adEnon Twy dedouévwy Behtidvel Ty
IXAVOTNTA AVl VEUOTC OVOUAALOY oTNy owha. 3TN cuvéyela, avantulaue autoencoders Poctouévoug oe Alx-
oo Moxpde Bpayeloc MvAune (Long Short-Term Memory Networks - LSTMs), ou onolot culhopBdvouv tic
yeovixéc e€aptrioelc ota guvnuxd ofuoata. Awmotdoaye 6Tt To LSTMAE povtélo evioyvoe meputépw tnv
anédoor oty TedBredr unoteondv, eved to CVAE povtého napauével 1 xahbtepn variational npocéyylon.

I va Blepeuvicouue Ta 0QEAT TOU GUVBLAGHOV TOANATAGY TNY WY DEBOUEVLV, AVTIOTOLYICUUE TIC NYOYEUPHOELS
ouvevtedZewy Ye Bropeteind dedouéva (oot xopdlaxol pulHoD, ETLTOYUVGCLOUETPOU, Xol YUPOOXOToU) Tou
SUAAEY Oy péow poloyidv (smartwatches). AvantdZoye cuvduootixéc (joint) apyttextovixéc autoencoders,
oL onoleg anoteholvTton and MNyNTXo0S xou Bloyeteixols ¥AdBoug, xot oL GUVBLALOLY TLC MYNTIXES Xl PBLOPETEIXES
OVOTIOPACTICELS OV TEOXVUTTOUV OO TOUG XWOXOTOUNTES GE €Vay XOLvd AovIAvVOVTa YMEO, ETLTUYYAVOVTAS
BeATIUEVN aviy VEUGT UTOTEOTOY CUYXELTIXG UE TIC TROCEY YIOELS TTOU YENOWOTOLOUY UOVO EVary TUTO DEBOUEVLV.
To netpapotixd anoteréopota UTOSEVOOLY OTL Ta eEATOIXEVUEV LOVTEND (personalized) unepéyouy évavtt Tev
xadolxav (global), urnoypapuifovtac ™) onuacia e Tpocuppoyc TwY LOVTEAWY GTiG BLloutepdTNTES TOL XdlE
ac¥evolg. Emmhéov, péow melpopdtonv anevepyonoinong tou xdde xhddou, emBeBauidvVoute TNV CUVELGPORd
Tou x&de TOTOL BeBoUEvwy, anOBEXVIOVTIUS OTL Tot GUVOLAOTIXG LOVTEAN OELOTOLOUY AMOTEAECHATIXG TOCO To
NyNTxd 660 xou Tor BloueTteixd dedopéva yio BEATIWPEV aviyVeuon LTOTEOTNS.

Yuvolilovtag, n napoloa gpyacia utooTE(lel OTL 1 EVOWUATOON NYNTWOY X BLOUETEXWY BEBOPEVOY UEGL
apyLTEXTOVIXWY autoencoders unopel va BEATIOGEL THY EYXALEY aviyVEUOY UTOTEOTOY ot ac¥evelc Ye Bimohixr) Si-
atapaymy xou oyLlopeévela, cuUBdALOVTAS OTIC TpooTddeles Yo Eyxatpes XAVIXES TapeUPdoels xou EUTOUXEVUEVT,
peovtida oe acdevels pe Puyinée dlatopayée.
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Abstract

Relapse prediction in severe mental health conditions such as bipolar disorder and schizophrenia spectrum
disorders (SSD) remains a pressing challenge, often necessitating costly hospitalizations and causing sig-
nificant disruptions in patients’ lives. Recent advancements in digital phenotyping offer the potential to
monitor behavioral and physiological patterns continuously, thus enabling earlier intervention. This thesis
builds upon the e-Prevention project—an integrated system designed to support patients with mental health
disorders through machine learning-based relapse detection—by expanding its audio database and developing
new models that fuse speech and biometric signals.

First, we expand the original audio database to include additional patients and relapse cases. We then re-
evaluate the Convolutional Autoencoder (CAE) and Convolutional Variational Autoencoder (CVAE) models
developed during the e-Prevention project on this expanded dataset, confirming that the larger dataset
improves anomaly detection in speech. Subsequently, we introduce LSTM-based autoencoders (LSTMAE,
LSTMVAE) to capture temporal dependencies in speech signals, finding that the LSTMAE further enhances
predictive performance, whereas the CVAE remains the strongest variational approach.

To examine the benefits of multimodal fusion, we align audio recordings from clinical interviews with bio-
metric data (heart rate variability, accelerometer and gyroscope signals) collected from smartwatches. We
design joint autoencoder frameworks, that include biometric and audio branches, and combine the learned
representations of each modality’s encoder into a unified latent space, which yields improved relapse detec-
tion compared to unimodal approaches. Experimental results indicate that personalized (patient-specific)
models tend to outperform global models, highlighting the importance of tailoring these models to indi-
vidual patients. Furthermore, ablation experiments through branch disabling validate the contribution of
each modality, demonstrating that the joint models effectively leverage both audio and biometric data for
improved relapse detection.

In summary, this work demonstrates how integrating audio and biometric data through advanced autoencoder
architectures can enhance the early detection of relapse in bipolar disorder and SSD, contributing to the efforts
aimed at more timely clinical interventions and personalized care for patients with mental health conditions.

Keywords — Mental Health Disorders, Digital Phenotyping, Machine Learning, Anomaly Detection, Au-
toencoder Architectures, Spontaneous Speech, Biometric Markers, Multimodal Fusion
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Extetopevn Iepiindn oto EAAN VX

H Yrnpacio tou Ilpofruartog: IlpoBAedn YTrotponvg oe AcVeveic ue Puyixég
AlaTopayEg

O Quyixéc Srortaporyée, 6mewe 1 Simolnr| Btartaipoy ) xat ot dlortapayég Tou @douatos tne o lloPeévelas, amoTe ol
ooPopéc Puyéc madfoeic mou ennpedlouy exatopudpta avipndnous, ye ) oylopeéveta va TARTTEL 24 EXaToU-
popto avdpdoug [Wor22] maryxoopiwe xan tn dtmoluxy| Sortorpary ) va emnpedlet to 2,4% tou mAinduopol [Zho+24].
Augpdtepeg ol Slatopayég yopaxtnellovio and LPNAL TOGOGTY UTOTEOTY, Ol 0Toleg GUYVE ATUTOUY VOoTAEld
xou emdevvouy Ty eZENEN e datapayfic. Ewe xou to 52% twv acdeviv pe oylogppéveila ol onofol €youy
voomnheute! Tapouctdlouy LTOTPOTY| péoa ot évay Ye6vo and to edithplo [BMV12], evdd 1o 25% tov atdumy pe
dumodunn Brortapayh eppavilouv coPopéc unotponés, pe to 40% va utotpomdler TOMATAES Qopéc o€ JdoTNUa
névte etéov [Het+23].

Ou Bratopayég autég emneedlouy oNUOVTIXE TNV AetToupYwdTnTa Xat TN xodnueptvh Lwn Ty acdevoy, pe
dumohuer| Suartoipary | var yopoxtneiletan omd evolhay e PETOED XATOHDATTINGOY X0l JavIX @Y eTelcodiwy [Niet23],
eved 1 oyloppévela exdNAGVETIL PE PuywTind cupmTdpota xou yvewolaxy duciettoupyia [VK09]. Ov unotponée
oyetilovton pe alhoryée otny ophior [LBG20; Fau+16], tn cwpatixy dpactmpdtnta [WMILT7] xou ) Aettovpyia
TOU UTOVOUOL VeLpoU cuothuatos (ANX), énwe n petafintédTnta tou xopdaxol puduot [Hen+10]. Ou
ropadoctoxnés pédodol Bidyvwone Bacilovtar oe xAVixéC GUVEVTEDEELS XAl AVOPORES TGV (Blwy Twy ac¥evdy,
xohoT®VToS BVoXOAN TNV £yxaien TapéuPooy. Enouévng, Sedogévwy autdy Ty TpoxhNoewmy xol TNE tepltioxng
X0 AmEOPBAENTNG PUONC TWV BLATUPAUYWY, 1) CUVEYTE ToEoxXoAoVUNCY acUeEVOY UE TN YENOT PWVNTIXOY Xl
Blopetpix@yv dewctdv Yo unopovoe va amoteréoetl xplowo epyohelo yio Tnv Eyxoupn aviyveuon xou tedAndn twy
UTOTPOTIV.

Passive data Active data
. 9 Questionnaire
Mobility b/ Scales
and jJ
social =
activities Phone use GPS Sacial j —_
o —_

Biometrics & v l .IIIII'Il

Temperature Heart rate - HRV Voice

' [

Activity h ) ®
and - .._.‘." -
exercises

Sleep tracker Pedometer Accelerometer

Figure 0.0.1: Topousioon e "dngroxfc gavotunonoinone” [Mou+21].

H "¢meuxd gawvotunonoinon” (digital phenotyping), amotehel pio xowvotépo mpocéyyion mou allonoel de-
douéva and Pnploxéc cuoxevée, dnwe eEunvo pohdytla (smartwatches) xon xwvntd TnAéQuva, Yot THY avdAuon
CUUTEPLPOPIXMV ot PUSIOAOY WY PoTiBwy [OR16; MZS17|, pe eopuoyéc oe ddgpopouc Touelc tne uyelog
(Byfuo 0.0.1). Xtov topéa e Puyinhc vyelag, N cuveyhic xan un TopeuBating Tapaxoholinon Tou TpooEpel
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EMTEEMEL TNV €YXouEn oviyVEUST) AETTWY UETOBOAGY TOU TEONYOUVTOL LG UTOTEOTACUETOBOAGY Tou cuy vl
0EV UTOPOUY VoL OVLYVEUTOUY UECWL TOV THUPABOCLIXMY XAVIXDY UeVOdwY alohdynonc—PeAtidvovTag €Ttol Ty
OMOTEAEOUATIXOTNTOL TNG TEOANYNS xou Tne éyxaupne mapéuPoone [Pan+-18; Bar+-18].

Yxonog tng ‘Egeuvag

H nopoloa Simhwuatixf epyooia Baciletoan oto épyo e-Prevention [Zla+22|, to omolo avéntuie éva
ohoxhnpwpévo clotnua Yoo TN mopoxololinon actdevdy ye Quyixés Blatopayés, EVOWUATOVOVTIS TEYVIXES
unyovixhc wainone yua v aviyvevon vrotponwy. To épyo emxevtpddnxe xvplwe oty Eeyxwplo T avdiuon
BLOPETEIXMY Xt 00V TV BEBoévmv, Ywpels vo e€etdlel mhfpwe TN cuvdUNG TN Toug YeNoT Yo Ty evioyuon
e TedPBAedne e unotpomic. LUVETAS, 1 épeuva auTr oToyelel TNV enéxTacT) xou TN BeATiwon TV HovTélny
Tou ovamTOnxay xatd TNy épeuva Tou e-Prevention, ectdlovtog otn GUVBLUGTIXY AVEAUGT] AXOUGC TIXWY X0l
Blopetpixwyv dedouévwy yia T Behtlwon tng aviyvevong unotpondy ot acdevels pe Puyixéc datapayéc.

Suyrexpléva, 1 €peuva CLVELSPEREL aToV TouEd NS dngLoxic gatvotumonolnone otny Quyxr vyeia Yéow Twy
elnic:
o Eméxtaon tne nynturic Bdong dedouévwy e-Prevention, dnutovpydvtag éva ueyahOETEo GUVORO BESOUEVLY
yior BeATioUEVN a€LOAOYNOT XL YEVIXEUGY) TV HOVTEAMVY.

o Ex véou afloAdynom TV GUVEAXTIXGY HOVTENY autoxndixonotay (autoencoders) tou avamtOydnxay
%aTd TNV €peuva Tou e-Prevention, ¢ote va e€etaoctel 1 anddooy| Toug GTNY AVl VEUCT] UTOTROTWY OE
neplocoTEPOLS aoVevelC.

o Avdmtuén xau aflohdynon autoencoder apyttextovixwv Boaoctopéves oe Alxtua Moxedc Bpoyelag MvAune
(Long Short-Term Memory - LSTM) yia tnv aviyveuon unotpondv and dedopévo ophiog, ouyxelvovtog
TNV ATOTEAECUATIXOTNTE TOUC HE TOL CUVEALXTIXG HOVTEAAL.

o JUVOUACTIXY AVIAUCY) TWV OXOUCTIXMY Yol BLOUETEXOY BESOUEVWY PECW TNS AVATTUENG GUVEBLACTIXY
(joint) autoencoder povtélwv yio Ty evioyuon e axp{Beloc TpdBAEdNS UTOTEOTOY Xou TNV AVEBEIEN TwV
TAEOVEXTNUATOY TV GUVBUAOTIXMY TPOGEYYICEWY.

Ocswpentixd YroRadeo
Avanopactdoeig Hyntixov Ynudtwy

Ta NynTixd ofuato AmOTEAOUY CNUAVTIXY TNYH TANEOQOELOY Yidl TNV avdAuot TeoTUTwY OopAlag o Thv
aviyveuon petofordyv oe avth. o v enelepyasioa Toug Yéow olyopiduwy unyovixic uddnong, mpénel va
HETATEATOUY GE XATEANNAES AVATOPAUC TACELS €TOL (OOTE var oy VoUV ToL YEHOLIA YOEAXTNELO TIXE TOUC.

Y10 nedlo Tou YEoVoL Ta MYMTIXG GHPATA ANEXOVILOVTAL WG XVUOTOUORPES, OTOU TO TAATOG UETHBAAAETOL UE
ToV Xpovo. 20T600, AUTH 1 AVATUPAoTACT) BEV TAUPEYEL GUECH TANPOPOPIES VLol TO QPUOUATIXG TEQLEYOUEVO TOU
ofpatog. Enopéveg, v tny e€aywyr) Tou Qaopatinod TEPLEYOUEVOU, YENOWOTOLOUVTAL O UETUCY NUATIOUOS
Fourier (FT), v to ofuata ocuveyolc ypdvou, xou o Awxprtéc Metaoynuatiopéc Fourier (DFT), yio o
ofjuata dloxpltod Ypdvou, avticTolyo.

Tt Ty avdhuom un oTatiedy onudtey, yenowonoteitar o Metaoynuoatiouéds Fourier Bpayéog Xpévou (STFT),
o omnolog avolloel To onpa e@apuélovtac évo olodaivov napddupo oe TUARATE TOU, UE OXOTO VoL OTOTUTWOEL
petaoréc Tou Qdopatog oTov yedvo. Mio and T ONUAVTIXOTERES OVOTURUGTACELS TWV NYNTLXMY ONUATWY
elvon 10 Qaopatoypdenua (spectrogram), to onofo amewxovilel TNV PETOPONY TNG EVERYELNS TOU GHUNTOC O
ouVdpTNON Ue TO Xedvo xaL T cuyvotnTa. Troloyiletan we e€hc:

spectrogram(m,w) = |STFT{s[n]}(m,w)|? (0.0.1)
‘Onou:
o |STET{s[n]}(m,w)|? eivon n Tuxvénta pdopatoc woyvoc (PSD) tou ohpatoc.

Qo1600, T0 YacpaToYEdPNUL anewoVilel TIG CUYVOTNTES OE Yeapx) xhipoxa, avtideto ye Ty avpddmivny oxon,
n onolo avtihouBdveton TNV ToVXOTNTA e Aoyoptduxt xhipaxa. Enouévwe, yia tnv mpocapuoyn otny avipdmivn
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Figure 0.0.2: Amewxdvion Mel-spectrogram nyntxol ofuoatoc.

oxouoTh) avtindm, yenowonoeiton to Mel-gaopatoypdgnua (Mel-spectrogram), to onolo ypnowonotel v
oo Mel, mou avtiotouyel ypapuixés ovyvétniee f oe Mel-ouyvétntee m(f).

Avanopactdoeig Biopetpuixov nudtwy

Ta Bropetpind ofuata, mov tpoépyoviol and aoInTrpes, UTOPOLY Vo TROCPEROUY TOADTIUES TANPOYOoples Yio TN
QUOLXT| XUTACTUOT XOU TLG METAUBOAES TG CUUTERLPOEAS EVOC atduou. AT to ofuata autd cuvitng e€dyovtan
YEOVIXAL, PUCUOTIXG 1] UN-YQOUULXE YUPAXTNELOTIXG YL TNV atvdAuoT Toug e alyopiduoug unyavixic uddnong.

Xeovixd Xopaxtneiotixd: Xopaxtnplotxd énee 1 evépyeta Bpoyéoc ypdvou (Short-Time Energy - STE),
N wéon T xou 1 PETABANTOTNTA, elvan Yprowo Ylol TNV TEQLYQEUPY| TV BLUXUMAVOEWY TNG EVTAONE Xal TWV
OTATIOTIXADV WBLOTATWY TOU OHUATOC.

Pacpatixd XapaxtneloTixd: To Quopatind yoeaxtneloTixd ovaAbouy TNy xotavoun e Loy dog Tou
ofuartog ot dwapopetinée cuyvotinés Livee, e uedddous 6nwe to Teptodoypdynua Lomb-Scargle [Sca82], tou
YenotpomoLeiton eupéns o€ Ploutepixd ohiporto 6w N LeToAntdtnta xapdioxol puduod (HRV). H HRV peletdton
TEPOUTEP® UEGL ouyvoTX®Y Lwvay (frequency bands) yio v a&loAdynon e Spao TNELOTNTAS TOU AUTOVOUOU
veupixol ouothuatog [SG1T7al.

Mn-Teoppixd Xapaxtnerotixd: H avdhuon tou ypapruatog Poincaré amotelel wia dnpoguly uédodo
YloL TNV avamopdoTaon g UETABANTOTNTOG TwV Ploetondy onudtwy, énwe tne HRV, yenowonowdtvas toug
neptypoagntés SD1 xou SD2, ol omolol avtiotolyolv ato Uiy Twv aévewy tne EAAewPng mou mepixhelel onuela
TOU YPaPAPUTOC, To omola avinpocwredouy Levyn Sraboyxdy NN diactnudtmy Tou xapdaxol putuold [BPKO1;
PGO7].

RRI . (s)

08 09 1 1.1 12 13 14 15 16 17
RRI_(s)

Figure 0.0.3: Hopdderypa ypaghuatog Poincaré evée ofuatoc HRV [Cho+-09].
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Emmhéov Un-ypopixd YapaxtneloTixd, amoTeAoby 1 evTpomnia Tou ouatog, 1 onola Tapéyel TANpogople Yio TO
n660 "axavévioto" elvon To ofua, xou ot diaotdoelg fractal (Fractal Dimension - FD) [Mang82|, 6w 1 Sidotaon
Higuchi (HFD) [Hig88| xou 1 toduxhipoxwth didotaon fractal (Multiscale Fractal Dimension - MFD) [Mar94|,
TOU TUPEYOLY TTANPEOPORIES YOl TNV TOAUTAOXOTNTA TOV PLOYETEIXOY ONUETOY.

Apyrtextovixéc Nevpwvixwy AwxtOwy

Ta veupwvixd dixtua elvol UTOAOYLOTIXE LOVTENX EUTVELGUEVA 06 T1) SoUT| TV Blohoyix®y vevpwvwy. H Baouxr
dour| Toug TepthapBdvel cuVBedeUEVa enlteda VELpWVLY, To ontola enegepydlovTton dedouéva elcddou UECL PBapwdv
X0l CUVOPTHCEWY EVERYOTOIMONG UE OXOT6 TNV avTloTolyNnot| Toug ot wla emduunty é€odo.

Yuvilelc ouvaptroeic evepyomoinone anoteholyv ot orypoedrc (Sigmoid), n unepfolin epantouévn (Tanh)
xou 1) ReLU (Rectified Linear Unit), ou onole etodyouy un-ypopuxdtnta xou enttpénouy 6to dixtuo va udidet
nohOmhoxeg oyéaelc UeTa€d TwV BEBOPEVLV.

H exnaideuon tou dixtiou yivetar péow teyvixdyv Behtotonoinone (backpropagation, gradient descent) xou
TEYVXMY xovovixornoinone (regularization) 6nwe n L1/L2 xou n xavovixonoinon naptidwy (batch normal-
ization), mou BEATUOVOLY T YEVIXELOT XU AMOTEETOUY TNV UTEPTROCUPUOYY TOU HOVTENOU oTo Dedopéva ex-
naidevone.

Yuvehixtixd Nevpwvixd Aixtua (CNNs)

Toa Suvehxtind Neupwwixd Aixtua (Convolutional Neural Networks - CNNs), aroteholv plo and Tic mo
onpavtixéc mpooeyyloelc otov touéa tng enelepyaoiag Edvag xou HYou AOYw The txavoTNTde Toug va eEdyouv
LEAPYIXSL YOEOX TNELOTIXG ATtd Tot BEBOUEVOL YE TN YENOT CUVEMXTIXY ETUTESWY Xou TNV eqoppoy gpiktowy [MIB20;
HGD17|. Ta ¢pilktpo autd EMXEVTPOVOVTUL GE WXPES, TOTUXES TEQLOYES TwV dedoUévmy elobddou, yeyovde Tou
Tol XM TA XATIAANAAL YLOL TNV AVAAUGT] BEBOUEVLV TOAAGY BIACTATEWY.

L IF SN -

Speech |

Convolutions Subsampling Convolutions Subsampling Fully connected

Figure 0.0.4: TTopdderypa yphione apyttextovixic CNN oe nymtixd dedopéva [Cha+17].

Boowxéc TopdeTpol TwV GUVEMXTIXOY emnédwy eivar To péyedoc tou gihtpou A nuprva (kernel), to PrAua tne
ouvENENe (stride) xou 1 uédodoc cuuniipwone (padding), to omola EAEYYOUV TIC DA TAGELS TWV YAPAXTNELO-
Ty Tov e€dyovtar and To eninedo. Muxpdtepa piktpo (T.y. 3x3) aviyVEDOUY O AETTOUEQPT YUPUXTNELO TIXA,
eved peyahitepa @ihtpa (m.y. 7X7) anotundvouy evpltepa wotiBa. Emmiéov, wxpdtepa Briucta napéyouvy vn-
AOTepn avdhuom, eve peyahdTepa Bridata petdvouy to péyedog twv dedouévev. To padding emtpénel Tnv mhfen
xdhun Tou ofuatog and T PiATea, TeooBETovTag UNdEVIXS aTolyElo GTIC dXPES TNG ELGBOU.

Enineda cuyxévtpwone (pooling layers) yeidvouv Tic SIIOTIOELS TWY YOROXTNELOTIXGDY, BIATNEMYTIS TOPGAANAAL
™ onpavtixf tAnpogopio. Téhog, mAfpwe cuvdedeuéva eninedo (fully connected layers) evonololv ta e€orybdueva
YopoxTnetoTind yioe T teAxn mpdfBhedn. Teyvixée 6nwe unepderyyatoindio (upsampling), unoderypotohndio
(downsampling) xou cuvaptiioels evepyonoinone Bektidvouv Ty anddoon twv CNNs oe didgopes egappoyéc.

Aixtua Maxpdg Beaysioc MvAune (Long Short-Term Memory Networks - LSTMs)

To Aixtua Maxpdc Bpoayelac MyvAunc (Long Short-Term Memory - LSTM) [HS97] anoteholv pia eZehypévn
pop@Y) Twv Avodpouxdv Nevpwvixdv Awtiov (Recurrent Neural Networks - RNNs), oyeSuouévo vo Eemep-
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voOv Tto meéfBinua vanishing gradient yéow evog unyaviouol UVAUNG TOU ETUTEETEL TN BLATHAENOT TANEOPOELLY
yior peydho ypovixd Slaothato. Adyw e itdTntde Toug awthg, oo LSTM etvan xortddinia yio tnv avdAuor Oe-
dopévwv pe ypovixt e€dptnon xat Peloxouy epapuoyy oe tohholc topelc, dTwe 1 avary vidplon outhlog, 1 avdluon
xou 1 TpdPAedm ypovooepdy [Li+23; Lin+21].

()

Figure 0.0.5: Apyttextovin| evoc LSTM xehot [Olalb].
H apyitextovixnt| toug Baoileton oe "xeMd" uvAune (memory cells) xou mohec ehéyyou (input, forget, output
gates), ot omoleg doyetpillovton Tn pof TANEOPORELHY, ETNAEYOVTAC TOLES TYES Vo anodnxeloouy, va datneoouy
7 vo dlarypdouy.

Avtoxwdixonowntéc (Autoencoders)

Ov autoxwdwonomntée (autoencoders) elvor veELpwvixd dixTua GYEDLOUEVA YO EQUPUOYES UN-ETUBAETOUEVNC
UNYOVIXAC Wdinong, 6mou Tot ovTéAA ovoxahOTTOUY TedTUTA Xou Bopéc oto Bedouéva ywelc TN yeron emon-
pewoewy. Arotehovvion and 8o xOplo TuAaTa, Tov xwdxonomty (encoder) o onolog cuumiélel ta dedouéva
€L06d0L o€ pia avanapdo toor younhotepne didotaone 1 Aavddvovia yopeo (latent space), xou Tov amoxwdixoror-
Nt (decoder) mou avoxataoxeudletl Ty oyt elcodo. Adyw TG XAVETNTIS TOUS Vo AVaXAADTTOUY GTUAVTIXS
YUEUXTNEIO TIXA GTA DEQOUEVA, YENOWLOTIOLOUVTIL EUPEWS Yiol EE0Y WYY YOEAUXTNELO TNV, OViYVEUGT] OVWUAALLDY
o ovaXaTooxeLy| dedouévey youniic towdtntac [Ber+-24].

Reconstructed
Input <-------oooe Ideally they are identical. ------------------ > inpu;‘
x~x
Bottleneck!

Encoder Decoder ,
X i
9¢ fo X

An compressed low dimensional
representation of the input.

Figure 0.0.6: ITopdderypa apyrtextovinfic autoencoder [Wenl8|.

O otéyoc e exmoideuonc evée autoencoder elvon 1 ehoyiotonolnon TNe amMAELNG avoxoTaoxeurc (recon-
struction loss), 1 omolo uetpd 0 Blopopd YETAEY NS apyIXAC ELOOBOU oL TNG OVUXATACKELAG TNG omd TOV
amoxwdixomomt. Mio clvning yetpixh andielag avaxataoxeuhc eivar to péoo tetparywvind ogpdiua (Mean
Squared Error - MSE) petall e €16680u xou tng avoxoatevaopévne e£6dou xau opileta we e&hc:

1 & )
MSE = D (z—1)? (0.0.2)

i=1

‘Omovu:

xxii



o x elvan To delypa elgbdou.
o T clvol 1 avaXaTAoXEUT] TNG ELGOBOL ANd TOV AMOXWBIXOTOLNTH.
o N elvar o aptiude Twv detypdtomv.

AwopopeTinéc mopodhayés Twv autoencoders €youv avantuy Vel Yo THY AVTIUETOTLON JAPOPETIXDY EQPUPUOYY,
omwe or Luvehxtixol Autoencoders (CAEs) vy exdvee xon mymuxd dedouéva xou oo LSTM Autoencoders
(LSTMAES) vt ypovooeipés xon oxohoudiond dedopéva.

MertafoAixoil Autoxwdixonointég (Variational Autoencoders - VAEs)

Ov MetaBolxol Avtoxwdionomtéc (Variational Autoencoders - VAESs) Siogpépouv and touc xhaowols au-
toencoders, xodode avtl va avtioTolyoby Ta dedopéva oe €vay onuelo otov Aavddvovta yweo, yodolvouy pio
mdovotnTo xotavoprc (Gaussian Distribution) yu xdde Selypo. O xwdwonomntic podaivel i mopauéteoug
Tne xotavouic (Léom Tuh i xon BlexipaveT) 02), Ve 0 UmOXOBKOTOMTAC ovoxaTaoxeUdeL dedopéva amd detypa-
toAndio otov Aavddvovta ywpeo. H andieia evée VAE nepihayBdvel 0o dpoug:

o Andhero avaxataoxeufic (Reconstruction Loss): Metpd tn Siapopd petall etoédou xou e£680u 6mwe otoug
xhaowole autoencoders.

o Anédxhon Kullback-Leibler (Kullback-Leibler - KL Divergence): YTnoloyilet tnv andxhion petadd ne
AavIEvousag HATAVOURAG HOL LG HKAVOVIXTC XATAVOURE, BEATIGVOVTOC TN YEVIXEUST) TOU HOVTENOL.

Ot VAEs ypnowomnoolvtal gup€ws Yl TNV avdAUCT XL TNV OVOXATUOXELY) OESOUEVWY, Xou UTOPOUV Vo AEl-
TOVPYHOOLY ¢ YEVETIXE povtéla (generative models), Snuovpydvtac véo delypato Topdpola pe to dedouéva
exnaideuone [CCM24].

Aviyvevon Avopaiioy

H aviyveuorn avouolody efva gllor ongovTin eQaguoy TS unyavixng wdinone mou evionilet anoxiicelg omd @u-
olohoyd mpdtuna, cuyvé oyetiloueves pe BAdBec cuoTudtwy, andtes ¥ tpoiruarta vyeioc. Ou autoencoders,
¢ UN-eTBAETOUEYY) TEOGEYYION), Hodaivouy TN Bour TV PUGLONOYIXWY BedoPéveY ot evTonilouy avwpohies
péow anwheldy avaxataoxevic (t.y. MSE, andéotacn Mahalanobis, andxhon KL).

Tty a€loddynon yenotponoeiton ocuvidne n ROC-AUC petpwer), 1 omolo petpd v txavotnto didxplone
HETAED PUOLOAOYLXEV XL AVOUUAWY DELYUET®VY, avahDOVTOG T1) OYXECT TV TEOYUOTIXMOY AVWUAALDY TOU EVTOT-
Lovtan owotd and to yoviého (True Positive Rate - TPR) xou twv guoiohoyixdv dedouévmv mou havdaouéva
o vouRdnay o avepohics (False Positive Rate - FPR) o Swwpopetind xatdohon. Ydmiétepn Ty ROC-AUC
UTOBNAWVEL XOADTERT) AMABOCT] TOU HOVTEAOU GTNY OVIYVEUCT] AVWUAALDY.

Yxetxn BiBAtoypapia
Urnepraxy Parvotunonoinon

H {megroxyy gauvotumonoinon, n onola adlonolel v nadntixr cuALoYY| Sedopévwy amd QopnTés cUoXEVES, EXEL
avadelyel wg éva oyupd cpyahelo Yot TNV TapaxoAoVINCY CUUTERLPORIXADY XAl QUOIONOYIXOY UOTRwY Tou
oyetilovtan pe v Juyin) vyelo. Aldgpopes peréteg Exouv avadeiel tn cuPfolr e oty TEdBAedn UTOTEOTOY
HEOW ETUPBAETOUEVWY o UN-eTUBAETOUEVWY UEVOBWY unyavixic uddnong. Ot emPBrendueveg mpooeyyioews, yenot-
pomnoinoay cuunepipopixd dedopéva and smartphones, énwe xivntdtnta, Lotifo emxovwviog xou yerorn epop-
HoY Y, i va tpofBAédouy utotponéc otn oyllogeévela, T Sumohixy dotapaym xou Ty xatddiurn ue tocooTd
oxpifelac mov @tédvouv to 80% [Bar+18; Osm+15; Tkid+24]. ITopddinia, un-emBhendpevec pédodol, dnwe to
oVotnpa CrossCheck [Adl+20], aflonoinoav autoencoders (LyAua 0.0.9) yio tnv aviyveuor anoxhicewy ond
N QUOLOAOYIXY] GUUTERLPORG, eVTOTLOVTOG EYXoUEa ONUABLY UTOTEOTNS UECWL OVWUUALDOY OTNV XIVNTIXOTNTA,
ToV UTVO XU TNV Xowwvix ahAnhenidpaon. Emmiéov, 1 avdluotn yopoxtnolo ey Tne olhiog amoteAel plo
ONUAVTIXY TEOGEYYLON Yol TNV TEOBAed LTOTEOTWY, XIS Ol BLUXUPAVOELS TNV OpLAla UTopoUY Vo AELTOURY Y-
couv w¢ avTxelevixol delxteg g Puynnc xatdotaone. Xyetuxéc uehéteg oflonoinooay dedopéva audodpuntng
xat xododnyoluevne ophiog and nyoyeaproelc wéow smartphones, epopudlovtos t6co mopadooiaxd wovtéha
pnyoviic pddnone (6mwe Support Vector Machines (SVMs) xouw Gaussian Mixture Models (GMMs)) 660
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xan Bahd veupwvind dixtua (6mwe CNN-LSTM xow Dense Neural Networks (DNNs)). Ou npoceyyioeic autéc
elyav wg anotéheoya TNV eEoywYH CNHAVTIXOV YUPUXTNEIOTIXMY TS OWALG XaL TNV avlyVEUST| UTOTRPOTWY GE
acVevelc pe dimohur| Sotopay | xou oytlopeévela, emttuyydvovag VYmhA axpifBeta [Pan+t18; HWS18; Gid+19).

X X0 Bidirectional
GRU encoder
m units Input layer | \‘ \
i -[ GRU ]———[ GRU ]—v-‘- *[ GRU ]
h units | Hidden layer encoder |
A+
h /2 units Compressed layer X1+ 1 prediction only
h units Hidden layer decoder |
Xt GRU GRU =emm GRU -— it
training only
m units Output layer I / /
x@ X GRU decoder
Figure 0.0.7: FNN-AE Figure 0.0.8: GRU-Seq2Seq-AE

Figure 0.0.9: Apyttextovixéc autoencoders nou yenotponotfdnxay oto cbotnua CrossCheck yuo
™V aviyveuor) ovepodoy [AdlH-20].

Ta amotehéoyota TwWV EPELVHY NTay EVIPRPUVTIXG, aVUBEYUOVTOSC TNV IXOVOTNTA TwV UEVOBOY (Nplaxhc Qarv-
otunonoinong oty meoPRiedn vrotpondy xar TNV mopaxorolinon e Puyrc vyelac. Qotdco, mapouévouy
TPOXMATELS OTWE TOL PXEd GUVORaL BEBOUEVWY, N LETABANTOTNTA UETAUED oVEVEY o 1) avdryxn YLl TNV avamTudn
EEATOUXEVUEVOY LOVTENWY TRdPBAedng, Ta omola amoutoly nepattépw Slepebvan.

Yuvdiaowdg oA anAodv IInydv Asdopévev (Multimodal Fusion)

O ocuvduaoudc ToMATAGY TYGY dedopévev (multimodal fusion) éyer anodewydei anoteheopotixf| npocEy-
yion oty aviyveuor UToTEOTKY Xt TopaxoholinoT Puyndy dlatapaywy, cuVOUELoVTaS UXOUGTIXE, YEUTTY,
OTTUXY, AL CUUTERLPORIXA YopaxTNEloTwd. Melétee mou yenowomooly to civoho dedouévwv DAIC-WOZ
[Rin+17] €youv Bellel 6TL 0 CUVBLAOUOE PWYNTIXEY, OTTIXWOY XL YPUTTOV dedouévev BeATidvel Ty aviyveuon
e xatdOAPNC péow PoVTEN® veupwvixdy dixtiny (VGGish [SZ14], BERT [Dev-+19|, CNNs, LSTMs, DNNs)
[Flores2022; 0Z22; LHL19; Alm-+24].
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Figure 0.0.10: Ilpotewvouevn apyttextovixn yio multimodal aviyveuon avouoiidy oe
aodevelc pe xotddium [Alm+-24].

Iopddhnho, 1 EVOWUATWOY GUCLONOYIXWY X0 CUUTERLPOPXKY dedouévey and smartphones €xel emtpédel v
neoBhedn Baduoroyioy HDRS [Ham76] xow YMRS [You+78] yia dumohnr) Swataporyh [Su+21]. Avtiotouya,
n Xenon tou poviéhou FusionNet anédelée 6L 0 cuVBUAOUOC BEBOUEVODV XEWEVOU Yol OTTIXODY BESOUEVLY amtd
péoa xovevixic dtinone Behtidver Ty aviyveuon xatddhne [Wan+22]. Qotdoo, onpovuxée npoxhioels
TOEOPEVOLY, 0TS 1) EAAedm BeBouévmv, 1 avicopponior HETAED XAAGEWY, 1) ACUVETELRL GTY) YPOVIXY avTLoTOl) Lo
TOV YOUEAXTNELOTIXGY Xl 1) VPN utoloyiotxh) tolumhoxdtnta Twv fusion teyvixdv. Emmiéov, mopd tnv
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TEG0D0 TOU GUVBUIGHOU OXOUCTIXOY, YRATTOV Xl OTTIXWY DEBOUEVKV, 1) CUVBUACUEVT) OVEAUGCT] POVNTIXDY XAl
BlopeTpin@y dedouévewy Topaével aveEepelvnTy, TopouctdlovTag oNUaVTIXES EUXALRIES Yia WEANOVTIXY €pEuvaL.

Aviyvevon Avopaiiwy oc Hyntixd Acdouéva

H aviyveuorn avwpahidv o nyntixd dedopéva anotehel npdxhnon Adyw Tng TOAUTAOXOTNTOC XU TNG UETABA-
NTOTNTOC TWV NYNTXOY TEOTUTWY, Xxadd¢ xar Tou Yoplfou Tou cuyvd cuvodelel Ta NyNTixd ohpata. H yeron
Badudv autoencoder apyitextovixy, xa wialtepoa LSTM autoencoders, éyel anodeiyel anoteheoyatiny otov
EVIOTUOUO AVWUUALOY oE Ypovixd efoptdpeva dedopéva. Meléteg €youv a&lOTOACEL TETOLL HOVTEN YLl TNV
aviy VEUOT] oVWUOMDY OE BLoUmyovixd nynTxd ohuata, entuyydvovtos toAd udmif axpiPeia [Coe+22; BDI20;
Mob+22]. Zuvende, Sedopévne Tne avOTNTAS TOUS Vo ovty VEDOUY aOXAICELS 0 TONOTAOXO axoLoTXd, LoT{Ba,
1 epapuoyy| Toug Yo unopoloe va emextadel xou oV aviyveuon avwpahldy otny outhia, cupBdilovtag oTnv
napoxohovinon tne Puyinic uyelag péow Eyxaieng aviyveuons ahhaydy ot Qovh xou ot doun Tng optiog.

To 'Epyo e-Prevention

To e-Prevention [Zla+22] anotelel tpletéc épyo noU anooxonel oTNY avATTUEY TEONYUEVKY XL XOUVOTOUMV
NAEXTEOVIXWY UTNEEGLOY YLoL TNV Lotelxy] Topaxohotinor Quytxdy Slotapoy @y, cUYXEXEWWEVE NG SITONXAC
datapay e xou g oxlogpévelas. H npoonddeia auth anooxonel oTov eVIOTIOUS BEXTEV XL YAOUXTNELOTLXV
ToL unopoLV va TeoPBAédouv yetooréc tng diddeong xar TwV YuYoTAIOROYINGDY CUUTTWHUATOY TwV ac¥evdy,
pe otéy0 TNV TEOANdYN TV utotpon®y xou TN Bertinon e towdtnTag Lwhg Toug.

To ohoxhnpwuévo chotnuo mou vlomoidnxe xatd t didpxela Tou €pyou (Uyfua 0.0.11), nephayuBdvel évay
popentd awoInthea smartwatch mou mopaxohouvdel xon xataypd@er cUVEYHS Wit GELEd BLOUETEIXMY (TT.)Y. UETUBA-
NTOTNTAL %0EdLOKOD PLHLOV) X0l CUUTEPLPOPLXDY BEXTOV (T.). JEDOPEVA ETUTUYUVOLOUETPOU Xl YUPOOXOTIOU).
Emnhéov, To clotnua nephapBdvel pla gopnth cuoxeu] (tablet) n onola éxel eyxotaotadel oto onitt Tou ao-
VevoUC 1o xUTOY PAPEL GUVTOUO OTTIXOUXOUC TIXE AMOCTIEACHATA TV AGVEVODY XA HOC CUPUETEYOUV GE GUVEVTEVE-
el Ue xAvixole totpolc. Auth 1 Aettovpyia emitpénet T cUAAOYH TOADTILWY Sedopévwy, cuprepthauBavopévne
NS OMALAIC O TWV EXPEACEWY TOU TEOCHTOU.
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Figure 0.0.11: To ohoxinpwuévo clotnua tou e-Prevention [Zla-+22].

YtatioTix) Avaiuor Acdopéveyv Blopetpixody Asixtoy

Blopetpxd dedouéva Yupooxoniou, EMLTAYUVOLOUETEOU Xl xapdloxol puiuol cUAAEYUnXay and To smartwatch,
v 23 vyiele edeloviég xon 24 acvevelc pe dimohuxy dratapoy| xou oylogeéveia. o v otatiotiny avdhuon
TWV SEBOUEVWY YENOWOTOUATNMAY TA YaeaxX TNELOTIXA Tou avapépovTal 6To Oewpntixd Yrolodpo, ye oxond va
avoadelydolv ol dlapopés petall twv 800 opddwy. IopatneRdnxoay onuavtixée diapopés ota TpdTLTY Xivnone
xatd T Bidpxelo TG Muépag, xadde xou xaTd TN Bidpxelo Tou UTVou, YEYOVOS Tou xohoTd Toug BloueTtenolq
delxteg yproou Yo T Sudxplon YeTOED TwV BV0 OpddwY xal TNV avi)VELOY) AVOUOALOY.

Aviyvevorn YTrotponwv pe Xpror Autoencoders

Ity aviyveuon unotponty oToug aolevelc To €pyo dlepebivnoe Sudpopeg dpyltexTovixég autoencoders, yenot-
HOTIOLOVTOC BLOYETEIXE Xan NYNTXE Sedouéva.

Yta Biouetpd dedopéva, Tor eE0TOULXEUUEVA HOVTERD, OTOU TO Xd¥E UOVTENO EXTUDBEUTNXE YLOL EVOY GUY-
XEXPWEVO acVeVY, elyov YeVIXd xah(Tepn anddOaT OE GYECT] UE TA LOVTENN TTOU EXTIUSEUTNHOY GE OAOUS TOUC Uo-
Yevele. Buyxexpipéva, ot Buvelxtxol Autoencoders (CAESs) elyoav v xahltepn anddoor ota e€atopixeuuéva
Telpdpota, eved ot I hpwe Xuvdedepévol Autoencoders (Fully Connected AEs) Atav mo anodotixol oe autd
ToU apopoLoaY 6Aoug Toug acevelc.
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‘Ocov agopd 1o dedopéva ophlog, yenoilonolfunxay dedouéva and 8 acldeveic ol omolol elya mopovoidoet
unotpony. Amo T dedouéva autd eEnydnxav Mel-goacuoatoypapruota xou exnadedtnxay CAE xou CVAE pov-
k. ‘Onwe napatneidnxe xou oto Plopetend dedouéva, To eETOUNEVUEVO HOVTERX ELY OV CUYXELTIXE XOAUTERT,
anédoor, wotéco o CVAEs elyav xaiuvtepn anddoon oe oyéon ue 1o CAEs, ota neipduato mou agogolooy
6houg Toug acevelc.

Hparypatonotfdnxay enione nelpduato mouv cuvdlalav Ta PloueTexd xon Ny NTixd dedopéva, ue Ty exmaldeucn
d0o CVAE povtélov yia to xdde eldoc dedopévwy Eexmwplotd xou tov cuvduaoud 1wy petpixav Touc (KL Diver-
gence). H ouvduaotinh avdluon tov dedopévev Behtinoe Tepoutépn Ty aviyVEUST UTOTEOTMY, YEYOVOSC TOU
xorhoTd ToL BLope TS BEBOPEVA YENOUOL YLOL TNV AVIYVEUST) OVWUIAWY OF GUYOLAOUS UE ToL NYNTXE dedoUEvaL.

Yuupnepdopata xow MeAhoviixée Enextdoelg

Etvon epgavég 6TL o abotnua e-Prevention €yel onueidoet onpoavtiny npéodo otny anoteheoyotiny| tpoBiedr m-
Yovdv utotponty o acevels ye dimohur] Sotapoy ) xat oylogpévela. 2oT600, UTdEYoLY TEPLIDELL TEPULTERE
Behtiwone tng amddooric tou. H enéxtact tou cuvélou BeBoUEvmy Ue T CUUUETOYY| TEPLOGOTERKY acPevmy Yo
UTTOPOVGE Vo BEATIOCEL TN YEVIXEUST] TWV HOVTEAWY, EVE 1) EEETAUCT DUPOPETIXMV APYITEXTOVIXWY autoencoders
Yo umopoVoE Vo TPOGPEREL VEEC TPOOTITIXES YLOL TNV AViY VEUGT) avepoy. Emimiéov, n cuvduac iy xenomn twy
Blopeteix®y xou NNy dedopévwy Yo uropoloe va avolulel nepontépw, Ue €val xov6 wovtéro nou oflonolel
QUPOTEPA TAL YAPUXTNELOTLXA TOUC Yol TNV Vi) VEUGT] UTOTEOTOV. XUVETKC, 1) Topodon Epeuva G ToYEVEL OTN
Blebpuvon TV BuVATOTATWY Tou e-Prevention, ulomoudviag T MapEAmdve BEATIOCEC XaL DIEPELUVHVTAS VEEC
apyLTEXTOVIXEC autoencoders Ue eMTAEOY TNYEC DEDOUEVWLV.

Anuioveyio xouw Encepyacio Asdopévwy
Hyntuxd Acdopeva

H nymt| Bdor dedouévwy tou e-Prevention nepihapfdver nyoypoaprioelc ocuveviedéewy yetall aolevdv xou
XAVIXODY LUTROY, XATAYEYPOUUEVESC HEaw TNE e@apuoYic e-Prevention and tov Mdio tou 2020 éwg tov Aexéufplo
tou 2021. Apywxd, n Bdon dedouévwv mepieiye 474 cuvevtelelc and 16 aoclevelc, tallvounuéves otic e€hc
xatnyopieg pe Bdon v xatdotacy tou aclevh Ty tepiodo tng cuvévteung:

o Kadapég (Clean): Zuvevtedielc otic ontoleg o aodevic dev eiye mapoustdoel UToTpOTH.
e ITpo-unotponc (Pre-Relapse): Yuvevtedieic nov nponyhdnxay tne unotponic uéyel 28 nuépec.
e Yrotponhc (Relapse): Tuvevtedelc nov nporypatonotdnuay xotd tn didpxela Tne VTOTPOTHC.

Augdtepa ta pre-relapse xou relapse dedopéva Yewpolvtal avwpokiee oo Thalola TV Telpaudtry. Emmiéov,
ané toug 16 aodevelc tne Bdong, 8 acBeveic nopousiacay utotponh xatd tn Sidpxeto Tng €peuvac.

To npdto BrAua e dixic yoc €peuvde Htav 1 enéxtacn e Bdong Sedouévmv pe cUVEVTEDEELS XaLVOURLLY
ac¥evey Tou tapovaiacay utoTponn xou aclevev ou elyay dedouéva yetd Tic 31 Aexepfpiov 2021. Metd v
enéxtao), 1 Bdor neplelye 555 nyoypaprioeic and 18 acleveic pye cuvevtelEelc ewe xat Tov Mdio tou 2022, ex
Twv onolwy oL 9 acVeveig napovsiacay unotpony.

IMpoeneicpyacia xaw EEaywyrn Xapaxtneltotixmy

Aedouévou 6Tl oL NYoYRUPHOELS TwV acUevey Tpogpyovtay and Bivieo, mpayuatonojinxe eEoywyy| Tou Yyou
xan untoderypotoandio ota 16 kHz yiar var Siotnendel 1 ogotopoppio uetagd OAwY T6V NYOYEUPHGEWY.

O Buywplopde TV NYOYPAPROEGY NS QuVAC TV acdevdy and Ttev Lotpov (speaker diarization) mpory-
wortomotidnxe ye yefion x-vector embeddings and to epyaheio Kaldi [Sny+18; Pov+11|. Xtn cuvéyela, ond ta
ATOOTIAOUOTA TWV NYOYPAUPRoEWY TV acdevody e&fydnxay Aoyaptduixd Mel-poacuatoypagpruote pe dido oo
128 x64 avd deutepdiento.

H enéxtaon adénoe tov cuvohixd apldud twv anocnocydtony oe 16.917, ye 735 Aentd oplhlag, oe obyxplom ue
Tig apyixd 14.562 amoondoyota xar To 635 Aentd owiog. H evnuepwuévn Bdorn Sedopévwy nepthauBdvel théov
477 clean ouvevtelielg, 27 pre-relapse cuvevteldeic xou 42 relapse cuvevtelielc , oe avtideon pe Tic apyLxéc
396 clean cuvevteliclc, 26 pre-relapse cuvevtetielc xou 36 relapse cuvevtedielc.
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Mel-spectrogram of Patient Utterance
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Figure 0.0.12: Iopdderypo Mel-gaouatoypapnuatog and andoUacud NY0YeUPNUEVNS
ouvévteugng aodevolc.

Koatd v enéxtaon tng Bdone noapouctdotnxay xdnoleg TeoxAOELS OWE ACUVETELES DEBOUEVKV, COANIATA OTIC
ETUONUELICELS TWY GUVEVTEVEEWY X0 GTO Bl WELOUS TOV OUANTGY, OL OTOlEg AVTIHETOTICTNXAY UE YELpOoXIVNTES
dlopioel Yo Blatheno e ouvEnelag TG Bdong.

Buiopetpind Acdopéva

H Buopetpixn Bdon dedopévev e-Prevention nepihopfdver dedopéva and 24 acdevelc ue oyiloppéveia xon dimoixn
drotaporyy xou oyrlocuvonotnuatin datapoyn, xotayeypouuéva uéow smartwatches [Mag+20]. To 8edouéva
nepthauBdvouy petproelc xopdlaxol puHoy, ETLTAYUVOLOUETEOU X0t YUROOXOTou, oL onoleg UAAEY DNV uéow
€QapUoYNC, VAOTOLNUEYY YIoL TOV OXOTO aUTO, Xol UETAPORPTOUNXay ot cloud server yio avdhuon.

AvtioToiyion Hyntixov xouw Bliopetpixdy AcsSouévmy

INo tic avdyxec twv multimodal nelpopdtov, emAéydnxay ot 9 aoleveic Tou mapovciocay utoTeony|, GUUEWVL
He TNV NyNTe Bdom BeBoUEVKV, UE OTOYO TOV CUVBLAOUS NYNTIXDY ot BloUeTELX®Y debopévwy yia T Beltiwon
™ TEORAEPNC UTOTEOTGOY.

Apyind, emhéyOnxav Plopetpixd dedopéva to omofo elyov xotaypagel T uépa Twv cuvevtebiewy. {dotdoo, 0
apLIUOC TWV BELYUATWY HTUY TEQLOPLOUEVOS UE AMOTEAECUO Vo BIEPEUVACOUPE TN YpNoY BeBOUEVLY ToL elyov
xatorypapel yOpw and TNV nuepounvio Twv cuvevteldiewy. Muyxexpéva, efetdooue Ta dedouéva Tou Elyoy
xatorypapel 3, 5 xan 7 Nuépeg TV xou HETA TI¢ cLVEVTEVEELS, UE 0TOYO TN Bedtinon Tne npoBAiedng unoTEOTMY.

Encepyacia Acdopevay xow EZaywyh Xapaxtnelotixoy

Do x&de owodnthpa tar dedouéva amodnxedtnxav oe parquet apyeio xou éneita oe Pandas dataframes, ye to
xadéva var avtioTolyel oe ouyxexplpévn nuepounvia. H cuyvotnta deltypatolndlog Tou enitayUVoLOUETEOU Xol
Tou yupooxoniou fitav 20 Hz, evéd tou anodntripa tou xapdiaxol puduod 5 Hz. T tnv npoeneepyacia twv
dedouévev axoroudinxe 1 e€hc Sodixaoio:

o Aradeoipdtnta Acdopevwy: Ia xdde nuepounvio, €yive €hyyoc yio v Onopsn enapxoic aprd-
poU BelyudTwy, dnAady ToLAdyioTov 4 wewy dedouévewy. O aptdudc autdc emAéydnxe Ye yVOUOvo TNy
e€aopdhlon emopxole aprtuol BELYUATWY Yiol TNV EXTUBEVCT) TWV LOVTEAWY XL TNV EENYWYT] CNUAVTIXOY
YOLOXTNELO TIXV.

o Tunuatoroinorn Acdopevwy: Ta dedopéva Twv acintipwy Tunuatotodnxay ot dlaoTApaTe 8
wewv. O apiude autdc emhéydnxe e yvopova ty e&ao@dhion enopxolc aptduol detypdtomy yio Thy
exnafBeUoT) TWV UOVTEAWY Xl TNV EAYWYT) ONUAVTIXMY YUPUXTNPLOTIXDY.
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o Araypaph) Mn 'Evyxvpwyv Acdopevmv: Acdouéva Je Un eYXUpES TWES, ol onoleg ouyxpilnxay e
npoxatoplouévo GpLa, dlarypdpnxay.
T %8s ddotnua 8 wedv eTAEEaUe Vo EEEYOUPE XopaXTNELOTIXE EVTOC BlaoTrnudtwy 5 Aentdv (96 dothuoTa

TV 5 AETTOVY), olugpuva ye tponyoluevn épeuva [Ret+20]. Ta yapoxtnetotixd mov eZhydnxoy and to dedouéva
TV aodnThpwy elvar to e€rg:

e STE twv onpdteny Yupooxoniou XolL ETLTOYUVOLOUETEOV.
o Méoog xapdloxdc pududc xou péooc bpoc twv RR dotnudtwy (ypovind yapoaxtneiotind HRV).

o Ilepiodoypdgnua Lomb-Scargle yio tnv avdhvor younhédv (0.04-0.15 Hz) xon udnidy cuyvotftwy (0.15-
0.4 Hz).

e SD1 tou ypagruatog Poincaré.
o Aptdudg tov Eyxupwy BELYRATWY ovE BIACTNUO 5 AETTEY.

o Huttovoeldric xat CLUYNULTOVOELSNE AVUTUPAOTACT) TOU YPOVOU YLol TNV AVATOEAGTICT] TWV YPOVIXWDY HOTIBwY
oTa dedouévaL.

‘Eneita and v eaywyh) TV YopaxTneloTixdy, Tiwés ol onoleg anovaiolov avtixataotdinxay Ye tn wéon Tun
TOU EXUOTOTE YoEAXTNELOTIXOV. Luvolixd, e€fyinoay 10 yapoxtneiotxd, pe anotéieopo T dnwovpyia 96x 10
VXA YUPOXTNELOTIXAY Yla XdUe SIdo TN 8 wev.

To Xyhuo 0.0.13 napovoidler 3 and ta 10 yopaxtnelotixd mov eEfydnoay, cUYXEXPIEVE TNV EVEQYELD TGV
ONUETWY YUPOGXOTIOU XOll ETILTOYUVGLOUETEOU X0l TOV UECO xapdlaxd pudud evog acdevi xatd tn didpxeio 8
WEOV.
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Figure 0.0.13: Iopddelyua 3 yopoxtnelotixdy mou e&fydnoay ond ta Plopetend
dedoyuéva evog acdevy.

‘Onwe xou oo Ny NTixd SeBoPéva, TEOXAACELS OTWE ACUVETELEG UETAUED TWV OVOULTWY TV 0PYEIWY, TWV NUEOUN-
VLY, ToL aptiuol Tou actevol Xo TwY BEBOUEVKOY TWV aoUNTAPWY AVTIETWTIOTNXAY YE YElpoxivnTeg Blopdo-
oElg Yl TN BlaThenon TG cuvénelag Tne Bdong.

ITeipapota Hyntixoyv Asdopévwy

Ta medTo TEWPAUOTA QUTAS TNG EPELVAC ETUXEVTEWINXAY OTN CLUYXELTXY avdhuoy autoencoder Yovtélwy Yylo
™V aviyveuor unotpontv ot acVevelc pe Puyéc Sotapoyée ue dedopéva auddpuntne ouhlag. Apyixd, o&-
wloyhnxe 1 anddoon twv Convolutional Autoencoder (CAE) xaw Convolutional Variational Autoencoder
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(CVAE) povtéhwv, otny véa enextouévn nyntixf Bdon dedopévev. Xtn cuvéyela, avortdydmoy xon oli-
ohoyfidmxav, oTtny véo Bdon dedouévwv, autoencoders e LSTM apyitextovixy (LSTMAE, LSTMVAE), ouy-
PTG UE T GUVENXTIXG UOVTERD, PE GTOYO TNV EEETACT €AV 1 HOVTIEAOTIOMNGT YPOVIXDY EEUPTACEWY PETL) TWY
LSTM pnopel vo BEATIOOEL TNV TNV aviy VEUGT, AVWUOALOY GTNY OpLALdL.

MeYodohoyia
IMepopatind LyRApota xar Kavovixonoinon Asdopéveyv

Ta mewpdpata Twv autoencoder LovtéAwv anoteholvtay and d0o xatnyoples: eatoluxeuuéve TelpdUaTe, OTOU
Tor govtéda exmoudeltnxay xan oftohoyhinxay oe dedopéva evde aolevh, xou "xodohxd" (global) mepduorta,
omou Ta povTéla extouded Ty xou alohoyinxay oe dedouéva amd dhoug Toug aolevelq.

Yo xodohnd mepdparta, adiohoyidnroay dvo texvinéc xavovixonoinone: (i) xavovixonoinon avéd aclevy (per-
patient), émou to dedopéva xdde acdevolc xavovixomowolvtay Eeyweotd xan (i) xodohxy| (global) xovov-
wonoinon émov ta dedouéva OAWY TwV ac¥evidv xavovixorowlvtay woli.

Apyitextovixée Moviélwy

e Convolutional Autoencoder (CAE): To povtého, uAomomuévo oto TAoLa TWV TELRUULATOY TOU e-
Prevention [Gar+21; Zla+22|, anoteleiton and 4 downsampling umhox, 6mou to xodéva nepuhapBdvel
dlobLdotata cuvehixtixd eninedo, Max Pooling enineda xou ReLU cuvaptroeic evepyomoinong, to onolo
ovumélouy To apynd mel-pocyatoyedpnua diactdoewy 128 x64 oe Evay haviddvovta yweo younhoteene
dudotaone. Ta v avaxataoxevy tou mel-gacuatoypaghuatog and tov decoder yenoiwomolodvion 4
upsampling uriox, ye cuuuetpixt apyttextovixn ye to downsampling umhox, extéc and to Max Pooling
enineda nou avuxatiotavion and Upsampling eninedo.

Figure 0.0.14: Ilpotewvdpevn apyrtextovix) CAE yovtéhou yio nymntind dedouéva
[Gar+21].

e Convolutional Variational Autoencoder (CVAE): To povtého onotehel EMEXTACT TNG OPYLTEX-
tovixfic Tou CAE ye mdavotns avanopdotaon tou Aavddvoviog yweou, 6mou o encoder e€dyet ) péon
T poxon T hoyeprdpe] Stoxdpavon logo?, twéc ol omolec ypnotponolobvion Yl Tr detypotohndio
avamapootdoewy (embeddings) ond tov havddvovta ydeo.

Sampled Latent ——
Representation

Ds1 Ds4 us1 us4

Probabilistic Decoder

Probabilistic Encoder

Figure 0.0.15: Ipotewvépevr apyttextovixy CVAE yovtélou yio nynuxd dedouéva.

e Long Short-Term Memory Autoencoder (LSTMAE): H emloyY vhonoinone autoencoder op-
yrtextovifc pe LSTM eninedo elvon eunveuouévn and to épyo twv Mobtahej et al. [Mob+22], nov
€deile onuovtixn wavétnta Twv LSTM va povtehonololv ypovixéc e€apTthoel; o nynTxd dedopéva
pe oxomd v aviyveuorn avouolidy. To povtého amoteheitow and évov LSTM encoder mou cupmiélet
mel-@aopatoypapruata Sotdoeny 64x128 xan nepihauBdver enineda xavovixomoinong, Leaky ReLU
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ouvdentnon evepyomoinone (n omola dlagépet and v ReLU cuvdptnon evepyonoinone oto yeyovée 6t
ETUTEETEL PEES apyNTixéS TuéS) xou enlneda dropout, 6mou évag xadoplouévos aptduds VELRMVKY AmEY-
epyomnoleitan Tuyaio xotd TNy exnaideuot v Ty amoguyY| unepexnoideuvong. O decoder amotelelton omod
LSTM eninedo xou avtiotorya enineda xavovixonoinong, Leaky ReLU xou dropout.

Latent i —
Representation T | 3
@ o
Z |3 B 2| |&||Z| |e3
® & 5 z @ |l |[Ef
| = el (] v | = ®
— [=]
LSTM Encoder —

Figure 0.0.16: ITpotewvépevn apyttextovixy LSTMAE povtéhou yio nyntixd Sedouévar.

e Long Short-Term Memory Variational Autoencoder (LSTMVAE): Avtictoiya pe to CVAE,
10 LSTMVAE povtého anotehel enéxtaom tng apyttextovixrc tou LSTMAE pe nidavotns| avoamapgdotoon
oL havddvovTog Yheou.

Exnaidcsuon xow AZiohdyrom

o v exnofdevon twv poviélwy, yenowonoujinxe 1 uédodoc e SlICTAUEOVUEVNG ETMXMVPWONS, WE 5
enavalideic (5-fold cross validation), xou tor dedopévar exnaidevong anotehovviay anoxielsuxd ond clean de-
dopéva oplhiag, €tol wote Ta ovtéda va uddouv ta Pacixd npdTuna TNg @uatoroyixnc ophlac. Xta CAE xou
LSTMAE yovtéha, yenowonoidnxe to MSE yio v ehaylotonoinon twv anwiewdy, evéd yia 1o CVAE xou
LSTMVAE, n KL-anéxkion mpootédnxe otic andietes yia v ptdon tou haviddvovta ydeou.

Ta povtéha aflohoydnxav oe clean, pre-relapse xou relapse dedopéva. Xuyxexpéva, yio xdde nuepounvio
CUVEVTELENG, TOL LOVTELA Tophyoryay €va oxop avwpahiog (anomaly score) yio x&de mel-gacuatoypdgnuo e
ouvedplog, To omolol 6T CUVEYELL GUYXEVTEWINXAY Yeovixd Yo vo Tapaydel To TeAxd anomaly score tng
ouvedplag. T T CAE xow LSTMAE yenowwonowidnxe to MSE w¢ anomaly score eved yur to CVAE xou
LSTMVAE egapuéotnxav 1660 1o MSE 600 xau n KL-andxhon. H tehur) aglohoynom, Baciotnxe ota uéoa
(median) anomaly scores petall twv 5 enavahfidenv xo 1o yéoo (mean) ROC-AUC score. Qot600, yiow TNV
TUPOVGIAOT) TV ATOTEAECUETWY 6NV Tapoloa tepidndn Yo yenowwonomndel to péoo ROC-AUC score.

ArnoteAéocpata

Y0yxpion Anddoorng tou CAE Moviélou oto Apyixd xou Enextoapévo XOvolo Ac-
SouEvwY

Yo Eyfue 0.0.17 nopouotdleton n oUyxplon tne anddoone tou CAE povtélou 670 apynd oOvolo dedouévmy Tou
e-Prevention xat oto olvolo dedouévmv mou enextelvape. Ewbixdtepa, anewxoviCovton tao ROC-AUC scores twv
eEATOUXEVUEVDY HOVTENWY Yiat x&0évay and touc 9 aclevels, ue Tov aodevh #8 va anotehel ) véa mpoodixy,
X ¢ ex T00ToU, Vo egpavileton povo Yetd tny enéxtoaor. Emniéov, mapouoidletar to uéoso ROC-AUC score
yior Toug 8 xou toug 9 aodeveic. Xtic dvo teheutales oThles, paivovton To amoteréopata Ty xadohxdy (global)
CAE yovtéhwv, ota onola epopuds Tnxay ol 600 Tpooeyyioel xavovixonolinong tou avaAbinxoy Teoryouuéveg:
per-patient xou global xavovixonoinoy. Enlong, va onpewwdel 6t ta amoteréopata Tou apyixob cuVOIoU Be-
dopévmv mpoxiTTouV omd to dpdpo Tou épyou Tou e-Prevention [Zla+-22].

H avélvorn twv anotekeoudtwy Tov eEaTOUXEVUEVOY LoVTEAWY Belyvel Behtinon tng wavdtntac aviyvevong
AVOUOALOY Ylot Toug Teptocdtepoug aolevels. Muyxexpwéva, ta ROC-AUC scores mapousiocav adénor yio
acVevelc 6mwe oL #1, #7 xou #9, eved 1 péon T ROC-AUC vyia toug 8 apyixoic aodeveic Behtxdnxe omd
0.667 oe 0.684, emPBePoucdvovrag 6Tt 1 npociixn dedouévwy cuvéBare otn Bedtinon tng Bidxplong HETAED TwV
APV XATACTACERDY X0l TWV XATACTACEWY LToTEoTrG. 20Td00, Yia oplopévous acevelc dnweg o #2 xou #4,
N anddoor) napéUelve oyedOV aUETIBANTY, uTOdNAGYOVTOE OTL 1) eniBpaon Tne enéxtaong Unopel va eEopTdTol
and To ATOUIXA YAEAXTNELOTIXG TN OWAlag 1 TOV X0 TwV TpocTiéuevmy dedouévey. H ueyarbtepn Behtiwon
Tapatnee{ton ota global mewpdpata, dmou €xovue onuavtind adEnon twv ROC-AUC scores ané 0.531 og 0.618
Yl TV per-patient xovovixomoinon xo and 0.525 oe 0.633 v v global xavovixornolnon, deiyvovtag ot
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TO HOVTENO €YLVE TUO ovd oTN dldxplon PETAE) TV XATAOTIoEWY o8 GAouc Toug aovevelc. Xuvenne, T
anotehéoparto emBefoudvouy OTL 1) ETEXTACT, TOU GUVOLOL BeBopévwy evioyuoe cuvolxd Ty anddoon tou CAE
HOVTENOU.

Comparison of ROC-AUC Scores for CAE Model on Original and Expanded Datasets

1.0
Original Dataset

N Expanded Dataset
0.9

0.8 1

0.7 4

ROC-AUC Score

0.6 q

0.5

0.4 -
#1 #2 #3 #4 #5 #6 #7 #3 #9 Mean (8) Mean (9) Per-Patient  Global

Patients, Mean (Personalized Experiments), and Normalization Scheme (Global Experiments)

Figure 0.0.17: X0yxpton twv ROC-AUC scores tou CAE povtéhou oo apyixd xou
EMEXTUUEVO GUVOAO BEBOUEVWY YLot GAOUC Toug ao¥evelc 0To EEATOUXEVUEVO TIELOUUATING
oyfua, xou g d0o uedddoug xavovixomolone (per-patient, global) tou global
TEROUATINOD GYNUUTOC.

Y0yxpion Anédoone tou CVAE Moviélou oto Apyixd xou Enextopévo XOvoho Ae-
SouEVwLY

Yo Eyfuora 0.0.18 xou 0.0.19 napovoidleton n oUyxplon twv ROC-AUC scores tou CVAE povtélou 670 apyixd
xou eneXToévo obvoro Bedopévev, yia Too MSE xou KL anomaly scores avtiotoiya, yio dha toug acdeveic xou
TELRUUATING Oy AT

Comparison of (MSE) ROC-AUC Scores for CVAE Model on Original and Expanded Datasets

10
Original Dataset

094 I Expanded Dataset

0.8 1

0.7 4

0.6 1

ROC-AUC Score

0.5 4

0.4+

0.3+

0.2
#1 #2 #3 #4 #5 #6 #7 #8 #9 Mean (8) Mean (9) Per-Patient  Global

Patients, Mean (Personalized Experiments), and Normalization Scheme (Global Experiments)

Figure 0.0.18: Liyxpion twv (MSE) ROC-AUC scores tou CVAE povtélou oto apyixd
%0l EMEXTUUEVO GUVOAO BEBOUEVMV Yot GAOUC TOUC aoVEVE(C OTO EENTOUXEVUEVO
TepapaTixd oyfua, xa Tic d0o uedddoug xoavovixonolong (per-patient, global) tou
global nelpopatixol oyfuatog.

Amné 1o anoteréopato tou CVAE povtéhou oto enextapévo olvoho Sedopévmy, mopatneolvtal A BEATIOoELS
TNV IXAVOTNTA OViYVELGTG AVOUOALDY, av xat 1) Behtiwon dev elvon tdéoo évtovn oo oto CAE povtého. Yta
e€atouixevpéva netpduata, o ROC-AUC score Bertidddnxe 1 mopéuelve oxedov otadepd yio 6 and toug 8
acveveic Tou apyxol cuvorou dedopévwy, evdd ta pEoa MSE xou KL ROC-AUC scores napousioooy puxpéc
petaBoréc. H amnddoor tou poviélou yio Tov véo aolevr] #8 fTay apxeTd YounhY, YEYOVOS Tou emnpéuce
aEVNTLX TN ouVoAxY| anédooT oto cbvolo Twv 9 actevdyv. Xta global nepduata, napatnesitar Beitiwon g
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Comparison of (KL) ROC-AUC Scores for CVAE Medel on Original and Expanded Datasets

1.0
Original Dataset

0.9 4 BN Expanded Dataset

0.8 A

0.7 4

0.6 q

ROC-AUC Score

0.5 4

0.4 7

0.3+

0.2~
#1 #2 #3 #4 #5 #6 #7 #8 #9 Mean (8) Mean (9) Per-Patient  Global

Patients, Mean (Persconalized Experiments), and Normalization Scheme (Global Experiments)

Figure 0.0.19: Z0yxpion twv (KL) ROC-AUC scores tou CVAE povtéhou 6to opyind
X0l ETMEXTUUEVO GUVOAO BEBOUEVLV Y GAOUS TOUG AoVEVEIC 0TO EEXATOUXEVUEVO
TELRAUOTING Oy AR, XoL Tic B0 puedddouc xavovixornoione (per-patient, global) Tou
global mewpopatod oyfuatoc.

an6doong v Ty global xavovixonoimon, pe to MSE ROC-AUC score va augdvetan and 0.519 oe 0.619, xon to
KL ROC-AUC score and 0.576 oe 0.594. Xuvohxd, 1 enéxtaoy tou cuvdrou dedouévwy ennpéace YeTixd To
CVAE povtého, wotdéoo 1 alénon e anddoonic tou Atav uixpdtepn o obyxpton ye to CAE povtélo. Autod
evdéyetar vou ogelhetan ot peyahltepn evarodnoia tou CVAE otn yetoffintétnra twv dedouévev, 1 omola
mdavede auEninxe Yetd Ty enéxtoon.

YO0yxpion Anédoong twv CAE xouw LSTMAE MoviéAwy oto Enextapévo XOvolo Ac-
SouEvwY

Yto Yyfua 0.0.20 noapovoudletar 1 olyxplong e anddoone twv CAE xoauw LSTMAE povtéhwv otig (Bleg
TEQINTAOCELS TOU AvAAOLTNXOY TEONYOUUEVWC.

Comparison of ROC-AUC Scores for CAE and LSTMAE Madels on the Expanded Dataset

10

LSTMAE

0.9

0.8 A

0.7 4

0.6

ROC-AUC Score

0.5+

0.4

0.3+

0.2 T T T T T T T T T T T T
#1 #2 #3 #4 #5 #6 #7 #8 #9 Mean Per-Patient Global

Patients, Mean (Personalized Experiments), and Normalization Scheme (Global Experiments)

Figure 0.0.20: X0yxpton twv ROC-AUC scores twv CAE xoauw LSTMAE povtélwy oto
EMEXTOUEVO GUVORO BEBOUEVOV YLoL GAOUG TOUG aoVEVELC 0TO EENTOUIXEVUEVO TELOUUOTING
oyha, xou Tic dVo pedddouc xavovixonoione (per-patient, global) tou global
TELPAUATIXOV OYAUATOS.

Ané o anoteléopata tou Xyhuatoc 0.0.20, napatnpodue éti to LSTMAE unepéyel otic neplocdtepeg neptn-
TOOELE, UTOBEVOOVTOC Ta OPENT) TG LovTIEAoTolinong yeovixwy e€aptioenwy, Tou tpoopépet 1| LSTM opyitex-
TOVXT), GTNV VY VEUOT avwpoahlidv. Buyxexplpéva, ota e€atopxeupéva tetpduata, To LSTMAE eugdvioe vn-
Motepa ROC-AUC scores ylo toug meplocdtepouc actevele, pe ) wéon tiuh vo avgdveton and 0.661 oe 0.679,
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eve TapatnpolvTal aloonuelntes BEATIOCELS Yol ouyxexpévous aolevelc, dtwe o aoleviic #7. Xta global
newpdpata, to LSTMAE Swtneet tnv unepoy tov, ue to ROC-AUC scores va BeAtichvovton t6c0 yio Ty per-
patient 660 xau yio v global xavovixonoinorn. Xuvokxd, o LSTMAE, afionoidviag tig ypovixéc oyéoelg
ota dedoyéva, patvetal vor BEATIOVEL TNV oVl VEUCT] UTOTEOTIY GTO EXTETAUEVO GUVOAO BEBOUEVWY, WOTOCO, TO
CAE e&oxohoudel va anotelel anoteheopatiny mpocéyyion.

X0yxpion Anodoong twv CVAE xouw LSTMAVE MovtéAwy oto Enextapévo YUvoho Ae-
Sopévwy

Ta Yyruata 0.0.21 xou 0.0.22 mapovoidlouv ) obyxpeion twv MSE xaw KL ROC-AUC scores twv CVAE xau
LSTMVAE povtéAowv 070 enextogévo oivoho SESOUEVMY.

Comparison of (MSE) ROC-AUC Scores for CVAE and LSTMVAE Models on the Expanded Dataset

1.0
CVAE

094 LSTMVAE

0.8 A

0.7 4

0.6

ROC-AUC Score

0.5

0.4

0.3+

0.2 T T T T T T T T T T T T
#1 #2 #3 #4 #5 #6 #7 #8 #9 Mean Per-Patient Global

Patients, Mean (Personalized Experiments), and Normalization Scheme (Global Experiments})

Figure 0.0.21: Z0Oyxpion twv (MSE) ROC-AUC twv scores twv CVAE xou LSTMVAE
HOVTENWY 0TO EMEXTOUEVO GUVONO BEBOUEVLV Yia GAoUC Toug aolevelc oTo
eEUTOUNEVUEVO TEWPAUUATIXG OY AR, Xou Ti Vo pedddoue xavovixonoione (per-patient,
global) tou global nelpapatinol oyfuatoc.

Comparison of (KL) ROC-AUC Scores for CVAE and LSTMVAE Models on the Expanded Dataset

10
s CVAE

09 1 LSTMVAE

0.8 1

0.7 4

0.6

0.5

0.4

0.3
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#1 #2 #3 #4 #5 #6 #7 #8 #9 Mean

Per-Patient Global

ROC-AUC Score

Patients, Mean (Personalized Experiments), and Normalization Scheme (Global Experiments)

Figure 0.0.22: X0yxpion twv (KL) ROC-AUC 1wy scores twv CVAE xou LSTMVAE
HOVTEAWY OTO EMEXTOPEVO GUVORO BEBOPEVLV Yol 6AoLG Toug aolevelc oTo
e€aTopxeLPEVO TELOATIXG oy fua, xou Tic d0o pedddouc xavovixomolong (per-patient,
global) tou global mepapatixol oyfuatoc.

H obyxpion twv LSTMVAE xaw CVAE 8eiyver 611 1o CVAE anod{der xohbtepa o1 Bidxplon avepolemy
xataotdoewy uéow KL-andxhong, evey to LSTMVAE unepéyel ehappidc oTny aviyVEUsT| avWUO®Y YESE
tou MSE. ¥ta e€atopixeupévo mepdyato, to LSTMVAE eugdvioe vdpniotepa MSE ROC-AUC scores, oAAd to
CVAE elye onuavuxd xahutepn anddoon 6cov agopd v KL-andxhon. Eta global neipdpata, ta KL ROC-
AUC scores Tou LSTMVAE vtav ehagpddc udmidtepa, av xou o MSE ROC-AUC scores ftov xovtd oe autd
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tou CVAE. Yuvohxd, gaiveton mwe av xat to LSTMVAE efvon txavé otny aviyvevon unotpondy, to CVAE
anodidel xAAVTERA OTO GUYHEXELIEVO GUVORO BEBOUEVMV.

Yuvodilovtag, 1 enéxtaon Tou cuvohou dedopévwy Bedtiwoe v aviyveuor avwpahidy oe dha Ta HOVTEAQ,
e dapopetind Badud Bedtimwone avdhoyo e Ty adpyltextovixy] xou To melpopatixd midiolo. To CAE xo to
LSTMAE rnopouciacay onuavtixf adénon ota ROC-AUC scores tou, pe to LSTMAE vo unepéyet, aflonowdvtog
e axohoutioxés xan ypovixés elapthioelc Twy dedopévev. To CVAE avadelytnxe we npotipdtepn variational
TpocEyYLlon Tou tpolAiuatos, wotdéco to LSTMVAE napoucioce cuyxpioiun enidoor, yeyovde mou 1o xadotd
HLoL EVAAAOCTIXNT ETLAOYY.

IMewpdpata [TorhanAdy IInydy Asdopéveyv (Multimodal)

To x0pto Ypog NG €pEUVIS APOEE TOV GUVBLICUS THV NYNTIXWY Xl BLOUETEIXGY DESOUEVKY AMOCKOTOVTNS OTH
Behtiwon tne aviyvevone unotpondv ot aclevelc pe Puynéc Swotapayée. o tov oxond autd, avantdydnxay
800 povtéha cuvduaoTixdy (joint) autoencoders, xadéva pe Eeywperotolc XAEBoUE Yiar To My NTLXd xou PropeTteixd
dedopéva, e tov cuvduaoud toue (fusion) va mpaypatonoeiton otov havddvovia yweo wote va dnuovpyndel
poL xowvy| avamopdotaon. Emniéov, npayupatonotidnxay tewpduota yior var aglohoyndel 1 aveEdotntn cupBoir
%&e TNYNc Sedopévev xou 1) ENIBEUCT TNG TEO-EXTAUBEVGNC TWV LOVTEAWY GTNY anddOcY| TOUC.

MeUYodohoyio

AvtiocToiyion Hyntixdv xow Bloptepixodv Acdopévwy

It v exnaldevon xou a€lohdynon Twv joint ovtéhwy, 1 oxpiBric avTioTolylomn TWV NYNTXOY X0t BLOUETEXOY
dedouévev Ntav xplown. Apyxd, to Plopetpnd dedouéva avtiotolylotnxay otg oxplBelc nuepounvieg twv
oLVEVTELEEWY, OMULoLEYOVTAS éva txpd cUvolo Bedopévwy "day-of" mou mephduPBave téooeplc acdevelc ue
emopxt) xou €yxupa dedouéva. 201dc0, To TEPLOPLOUEVO UEYETOC AUTOU TOU GUVOAOU BEBOUEVKY BV ETETRENE
o&omioTn exnoideuon Twy wovtéhwy. o v avtipetdnion autod tou {ntiuatog, ouunepAhpdnxay emttiéov
Blopetpixd dedopéva péoa ot ypovixd mopddupo Yiew and Tig NuEpoUNnvies TV cuVeVTElEEwY, 0BNYWVTAC OTN
onwovpyia TV cLVOAWY dedouévey 3-day, 5-day xau 7-day. O Ilivoxag 1 napoucidlel ta Snuoypopixd cTolyeld,
TAnpogoplec oyetixd pe ta obvolo dedouévwy day-of, 3-day, 5-day xou 7-day, yetd tnv mpo-enedepyaoio xou
e€ay YY) YAEAUXTNELOTIXWY.

Datasets Day-of 3-day 5-day 7-day
Demographics

Male/Female 2/2 2/3 2/3 3/4
Age (years) 31 +8.7 30.2 + 8 30.2 +£ 8 28+ 7.6
Education (years) 14 £ 2 144 £ 2 14.4 + 2 13.7 £ 2
Ilness duration (years) 889 7.2+ 8.6 7.2+ 8.6 6.4+74
Recorded Data

Num. of Days Recorded (total) 66 102 124 158
Num. of Days Recorded (mean + std) 16.5 £ 5 204 £75 248 £ 7.2 22.6 £ 10.8
Num. of Hours Recorded (total) 888 1,752 2,400 3,280
Num. of Hours Recorded (mean =+ std) 222 £+ 45.7 350.4 £ 89.6 480 £ 96.7 468.6 + 185
Num. of 5-min intervals (total) 10,656 21,024 28,800 39,360

Num. of 5-min intervals (mean + std) 2,664 £ 548.9 4,204.8 + 1,074.9 5,760 £ 1171  5,622.9 + 2,219.5

Table 1: Z0yxpion dnpoyeapdy cTolyelv, TANEOPORPLOY Yiol TNV ACVEVELN KoL XUTUYEYPOUUUEVOY BLOUETELXMV
dedopévmy yia Toug aodevelc oto olvola dedopévwv day-of, 3-day, 5-day, xou 7-day, petd tnv npo-enelepyaoio xou
eCAY WY YAPAXTNELOTIXDY.

H avtiotolyion twv 800 tinwy dedopévwy napouciosce TpoxAoelc AoYw Twv YeUeEMMBDY Blapopy TN YeoVIXT
Toug Bopn o OTA YoEUXTNELOTIXG, YeYOVOS mou xathotoloe BUoxoAN v amevdeiog avTiotolyion, xododg
dev umfpye amevdeiog oyéon 1-mpoc-1 petald twv dUo tinwv dedopévewyv. Emmhéov, o apidpdc twv mel-
(POCUATOYPAPNUATWY avd Nepounviot GUVEVTELENS HTAY ONUOYTXE YEYOAUTEROS oo ToV apltdud Twv Slrdéoiuey
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Blopetpix@y dedopévwy. Ta vo avtwetwmiotel auth 1 Slpopd, xdlde mel-gaoyoatoypdpnua avticTolyloTnxe
0€ TOAMATAY GTLYMOTUTO TV PLOYETEIXDY Bedopévewy amd v Bla nuepounvia. Auty n Swduacio e€acpdhios
emoipxy) Towthiol 0Tl GTOLYLOUEVOL BEBOUEVX, BLOTNEMVTAS TUPEAANAL TN YpOoViXY cuayETion UeTal Twv dvo.

Apyitextovixég Joint Autoencoder

Ou joint autoencoder opyttextovixég mou avantdyUnxoay yia to multimodal nelpduata cuvdudlouy B0 Ee-
Y0ELOTOUC XA&BoUG: Evay Yl Tor NYNTXE Sedopéva xon Evay Yl To BLOUETEIX, YENOLLOTOLOVTAS SLopopeTIN00C
autoencoders yia xdde OO deDOUEVWLV.

O mymTxde xhddog mephopfBdvel tig dvo opyttextovixés autoencoder, tov CAE xou LSTMAE, nou ofi-
ohoy oy oTo TEAUOTA YLoL TNV oVl VEUGT] AVWUUALWY ot Bedopéva outhiog.

O x\&dog twv Blopetpwmy dedopévey Paoileta ot éva CAE povtédo (Eyhua 0.0.23), to onolo avamtiydnxe ye
Bdon TNV xahOTEPT aEYITEXTOVIXY] TWV TEWpaUdT®Y Tou e-Prevention yia aviyveuon unotponwy ot Bloyetpixd de-
Souéva [Zla+22]. To yovtého déyetan w¢ eicodo ta BlopeTtpixd dloviouata yapoxTnelo Txmy ddotaone 96x 10,
T omolo mapovsLdoTHXOY avoluTIXd Tapandvw. O apyitextovixy) tou encoder mephaufdver 4 cuveAxTxd
enineda, enineda xavovixonoinone naptidac (batch normalization) xou LeakyReLU cuvoptfoeic evepyonoinong,
eved o decoder eqopudlel avtiotpopn dadixacio pe Upsampling xouw Dense eninedo thote var avoxataoxeudoel
TOL Py LXA PLOUETEIXE Y apaXTNELO TLXG.

Yuvohixd, o encoder tou xdde ¥AdBou mopdyel Wil CUUTLEGUEVY] OVATORACTAON TWV BESOUEVRLY €Ll66BOU TOou,
n omola 0T cuvéyel cuvdudleTar Yoo vor dnuovpyndel évac xovée havddvoviac ydeog and Tov onolo oL
avtiotouyol decoders Vo mpoonadficouy va avaxaTacreLdoouy TNy elcodo ye Ty mheovdlovoa TAnpopoplo Tou
Tpocéepe 0 dlapopeTnds TUTOC dedopévwy. Xta LyfAuarto 0.0.24 xou 0.0.25 mopouctdlovTat oL pyLTEXTOVIXES
twv CAE-CAE xou LSTMAE-CAE povtéhwv avtiotouya.

Latent
Representation

Input Bio > DS1 DS4 Conv. Ust us4 Dense N Reconstructed
Tensor BioTensor

Encoder

Figure 0.0.23: Enioxénnom tne mpotewvdpevne CAE yio tov xA\ddo twv Plopetoixdv
OEDOUEVLV.

Input
Mel-Spectrogram

DS1 Ds4 us1 us4
Reconstructed

Mel-Spectrogram

Encoder

Concatenate
N

Input Bio DS1 DS4 | Conv. us1 US4 | Dense Reconstructed
Tensor BioTensor

Encoder

Figure 0.0.24: Enioxémnon e npotewvéuevne joint apyttextovinfic CAE-CAE.

Exnaidsuomn xaw ASLoAoyToT

H exnaldevon twv joint autoencoder povtéhwv oxohotidnoe v Bio Pooixn uedodoroyio ye ta mponyodueva
nelpdyata, pe v npootixn Bapdv oTtoug xAdBoug Twv joint povtéiwv mou xadopilouv TN cuvelo@opd Tou
xdde tOnou dedopévwy. T v aglohdynom, apyixd eXTUdELTNXAY Tol HOVTEND Tou xdde TOMOL Bedouévwy
(unimodal) oe xdde cOvolo dedopévmv pe oxond TN Yphom TV aroTeAEoUdTnY Tne anddoohc Tou we onuelo
avaopds otny aflohdynon twv multimodal povtédwy. Ot yetpués aflohdynone ftoy to MSE anomaly scores
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Figure 0.0.25: Emoxénnon tng npotewvouevng joint apyttextovinic LSTMAE-CAE.

ot ROC-AUC scores towv xAddwv, oAl xat éva cuvduaotixd MSE xaw ROC-AUC score, mou npoxUntel and
MY TE6GUEST) TWY ETUEEOUS Scores TOAATAACIACUEVA YE T Bdpog Tou xdle xhdBou, pe oxond TNy a€lohdéynon
NS CUVOAMXAC OmOB00TE TOU HOVTEAOU.

ArnoteAéopaTa
Joint CAE-CAE Movzého

Yto Yy 0.0.26 mopovoidloviar ta ROC-AUC oamoteléopota tou joint CAE-CAE povtéhouv oto e&-
OTOIXEVUEVDL TELPAUOTA, YLl X8Ue cOvolo Sedopévwy. Apyixd, mapatnpolue 6Tt oto day-of chvoro dedopévwv
UTdPYEL CNUAVTIXNT AVIo0PEOTia 0TV amddocT Twy unimodal HOVTEAWY, X0 AT EMEXTACT XAl GTOUS AVTIG TOLYOUG
xAhddoug. To yeyovog autd Ty 0 AGYOC TOU AnOPACICOHE Vol GUPTERLAGBOUYE BEBOPEVA EVTOE EVOS YPOVIXOU
Topordipou YUpw amd TNV NUEpd TwV cLVEVTENEEWY, TO 0TO{0 UTOPOUKE Vo TapaTNENCOUUE OTL NTOV ATOTENED-
HATXO ApoU QOUVETOL TIKC 1) AVLOOPEOTIAL GTY) CUVELGPORE Tou xdle TUTOL Bedouévny uewndnxe. Qotéc0, oxdun
xa pe TNV Onapdrn TG avicoppoTiag, UTopoUpE Vo SOUUE OTL 0 GLVBUUCUOE TwY BV0 TNYKY dedopévwy Beltivoe
Ny anddoon tou xdie xAddou Eeywelotd oto day-of chvolo Bedopévev, ahhd 1 cuvolut| anddoor elvon Belti-
WUEVT oLYXELTXE HOVo Ue To Blouetpd povtéro. T tor umdhoima Ghvola BeBopévwyY, TapATNEOVUE OTL TO
joint povtého unepelye otadepd évavtl Twv unimodal poviéhwy, pe Tov MYNTX6 xou Tov PLOPETEXG XAGDO Vo
emdevOoLY BeATiwPEVY xavoTnTa aviyveuong aveopohlody. Erouéveg, to anoteréopota autd delyvouv 6Tl o
GUVBLACUOE MY NTLXWY X0l BLOPETEXDY DEBOUEVLY Elvar IXOVOE VoL EVIOYDOEL TNV LXAVOTNTO AViY VEUGTIC UTOTROTY
oe aolevelc pe Puyixéc datopayée.

ROC-AUC Scores for the CAE-CAE Personalized Experiments

ROC-AUC Scores

Day of 3-day 5-day T-day
Datasets

Audio Unmodal - Audio Branch Bio Unmodal = Bio Branch - Combined

Figure 0.0.26: Méoa ROC-AUC scores yia to joint CAE-CAE povtélo ota e€atopixeuyéva
TELPGUATA.
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To Eyfua 0.0.27 nopouoidler o ROC-AUC scores tou joint CAE-CAE povtélou ota global neipdpora pe
per-patient xavovixonoinom, eve to Xyfue 0.0.28 napovoidlel ta avtiotoya anoteréopoto pe global xovov-

womnoinom.

ROC-AUC Scores for the CAE-CAE Global Experiments (Per-Patient)

ROC-AUC Scores

Day of 3day 5-day T-day

Datasets

e Audio Unmodal - Audio Branch % Bio Unmodal == Bio Branch - Combined

Figure 0.0.27: Méoa ROC-AUC scores yia to joint CAE-CAE povtélo ota global nelpdporta
ue per-patient xoavovixonoinom.

ROC-AUC Scores for the CAE-CAE Global Experiments (Global)

ROC-AUC Scores

7-day

Day of 3-day 5-day
Datasets

% Audio Unmodal - Audio Branch % Bio Unmodal W= Bio Branch s Combined

Figure 0.0.28: Méoa ROC-AUC scores vyia to joint CAE-CAE povtého ota global neipduato
ue global xavovixomoinom.

Yo melpduarta ue per-patient xoavovixonoinor, to joint poviého CAE-CAE mogoucioce pétpieg PBeltidoeic
oe oyéomn pe to unimodal yovtéha, pe Tov NYMTWS xou Tov BLOYETEIXO ¥AGDO Vo EMITUYYAvouY o Tadepd Lun-
Motepee Badporoyiec ROC-AUC. Qotédoo, ot fehtidoeic Aoy Ay6tepo €vToves and auTtés Twv eEEATOMXEUIEVDY
nelpapdtey. Ot cuvduaouévee twéc ROC-AUC napousiacay Sioxuudvoels Hetalld twv cUVOAwY dedouévny, e
10 5-day clvohova napouatdlel tn ueyahitepn Behtinwon évavtt xat tev 800 unimodal povtélwy, eved ota chvoha
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3 xou 7 Nuepdyv to joint yovtélo umepeiye xupiwe tou Bloyetpixol unimodal yovtélou. Ta amoteréopota autd
delyvouv 6TL 1 per-patient xavovixonoinon enwpeheitan and Tov cuvduaoud, ahhd 1 anddoor elvor YELWUEVT O
oUYXELON UE TA EENTOUIXEVUEVD OVTEAD, TLHaviS AOYw Tng Slapopornoinong Yetald twv ac¥eviy.

Y global xavovixonoinoy, ol BehTdoEl 0TV oviyVEUGT AVOUOAMMY QoiVETOL Vo EVAL TLO TEPLOPLOUEVES, UE
ToUg ¥AGBoUC Vo Topouctdlouy Pxeés BeAToel oty anddoor oe olyxplon pe to unimodal povtéia. Emi-
A€oV, 1) cuUVOAY| anddoaT v elvar LPNAGTERT CLUYXELTXE P6Vo Ue To PBlopeteixd unimodal yovtélo, yeyovoc
TOU UTOBNAGVEL OTL 0 GUVBLAOUOC TWV BEBOUEVKV EIYE TEPLOPIOUEVO OVTIXTUTO OE QT TNV XAVOVIXOTOINo).
Ta amoteréopata autd delyvouv 6TL 1 anddoor tou joint povtéhou otny global xavovixomoinom eivon pev Behti-
wuévn oe alyxpton ue ta unimodal povtéla, ahhd dev aflomololvton Thipwe ol duvatdtnteg tng multimodal
TPOGEYYLONG, 0TS oTNy per-patient xavovixomonon.

Yuvolxd, 0 GUVBLAGHOS TWY 800 TUTIKLY BEBOUEVWY ATOBELYUNUE ENWPENTE YIX TNV AVIYVEUCT]) UTOTRPOTMY, UE TA
eEATOUXEVPEVOL LOVTERD VoL TIopoUGLALoUY TIC To onuoavTxég Bedtidoelg. To euphuota autd utoyeauuilouy Ty
o&lo Tng multimodal mpocéyyiong vy Ty e€atouixeuuévr tapaxohotinon g Puyxhc uyelag xow TNV avdyxn
nepattépw PertioTonoinone Twyv global povtéhwy, etol dote va Bertindel n cavdtnTa yevixeuong oe nowxihoug
acdevele.

Joint LSTMAE-CAE Movtélo

Y10 ynfua 0.0.29 napovoidlovtar ta ROC-AUC scores tou joint LSTMAE-CAE povtéhou ota e€atopixeuyéva
TelpdpoTa, Yol xdde ovvoro dedouévwy. Onwg xau ota mewpduota tou CAE-CAE povtélou, n avicoppomia
HETOEY TNG OmOBOCNE TV NYNTLXWY X0l BLOUETEMOY LOVTEAWY elvan epupavic. 201600, oTa ueYahlETEo GOVORY
oedouévev, 1o LSTMAE-CAE napoucioce BeATidoels oty avlyveuon xaTaoTdoE®wY UTOTPOTAS CUYXELTIXG
pe to unimodal povtéla, pe ta olvolo Sedouévev Twv 3 Muepmv va mapouctdlel TRV LPNAETEPA GUVOALXN
Bertiwon. Emniéov, oe dha 1o obvola dedopéverv to ROC-AUC scores tov nyntixddy xou BLOUETEDY XAADwY
elvon uPnAOTEPES oMb aUTéC Twy avtiotolywy unimodal povtéhwy. Xuvende, ta anoteréopata tou LSTMAE-
CAE povtéhou ota e€atopxeuuéva tetpduarta eviyel v o&la tng multimodal npocéyyiong yia v aviyvevon
UTOTPOTIV, EWBXS Yol UEPHOVWUEVOUS acVeVELC.

ROC-AUC Scores for the LSTMAE-CAE Personalized Experiments

ROC-AUC Scores

Day of 3-day 5-day 7-day
Datasets

Audio Unmodal === Audio Branch Bio Unmodal === Bio Branch Combined

Figure 0.0.29: Méoa ROC-AUC scores yia to joint LSTMAE-CAE povtého ota
eCATOUIXEUUE VA TIELAULOITOL.

To EyAua 0.0.30 mopouoidler o ROC-AUC scores tou joint CAE-CAE povtélou ota global neipdpota pe
per-patient xavovixonoinom, eve to Xyfue 0.0.31 napovoidler ta avtiotolya anoteréopoto pe global xovov-
womnoino.
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ROC-AUC Scores for the LSTMAE-CAE Global Experiments (Per-Patient)

0.7

051

0.4

ROC-AUC Scores

03{

024

0.0+

Datasets

0 Audio Unmodal - Audio Branch 0 Bio Unmodal == Bio Branch . Combined

Figure 0.0.30: Méoa ROC-AUC scores yia to joint LSTMAE-CAE povtélo ota global
TEWPAUOTO e per-patient xavovixoroinon.

ROC-AUC Scores for the LSTMAE-CAE Global Experiments (Global)

0.7

051

041

ROC-AUC Scores

03{

029

0.0-

Datasets

9 Audio Unmodal === Audio Branch =% Bio Unmodal === Bijo Branch === Combined

Figure 0.0.31: Méoa ROC-AUC scores v to joint LSTMAE-CAE povtého ota global
nelpdpoto we global xavovixonoinon.

Ané to amoteréopota twv global nelpoudtov ye per-patient xavovixonoinon napotnpolye, énwe xan oto CAE-
CAE povtého, uixpdtepes BEATIOOELS TwV XhddwvY ot oyéon ue ta unimodal povtéla. H cuvolny| anddoon tou
povTéENOU elvor et o€ GOYXELOT UE Ta EEATORIXEVUEVA TIELRGUOTOL Xol GUYXEIoLY XUELKOE UE TO BlodeTpxd uni-
modal yovtého. 31 global xavovixonoinoy, to joint povtélo napousciace enlong Ayotepo €vioveg BeATIOOELG
oe oyéon pe ta unimodal povtéha. Av xa o tiwéc ROC-AUC Arav ehagene udmidtepes and to avtio torya
unimodal povtéla, n cuvduacpévn enidoon Touv poviéhou €delle PelTiwpéva anoteréopata Lovo 6To olvolo
BEBOUEVLY TV 3 Nuep®V. Enopévwe, o ouvBuaouds temv 800 TUTwWY dedopévwy elvon YeHotdog yia TNy aviyveuon
UTOTPOTIOVY GE OGAOUG TOUG aoVeVE(S, OUMC Tol EENTOUNEVUEVO LOVTERA TUPOUEVOUY AVEITERO GE AGO00T).
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Yuvolxd, 1 an6édoom tewv 500 HOVTEAGY Qaivetal Vo elval TapOUOLd, UE WiXpEs Dlapopés oTa EEUTOUIXEVUEVD TIELRY-
pota, 6mou 1o CAE-CAE povtého napousiace xohitepn anddoon, evéy 1o LSTMAE-CAE povtého napousiace
xoAUTeRT anddoor ota global meipdparta. To eupripato xou twv Vo uroypauuilouy 0 cUVBUACHOS BloUeTElx®Y
X0 NYNTIXOY OEBOUEVODY EVOL TEAYUATL OTOTEAEOUNTIXOS, oL EIVOL LXAVOS VO TTROCQEREL EYxalpT avlyveuon
unoTPoTY ot aoVevels we Puyinée datapayés. Tavtodypova, xadiotatu capéc 6T 1 global npocéyyion amautel
nepautépw BerTioTonolnoy, OoTe vo emTeEUYVEl 1) ATOTEAECUATIXY YEVIXELOT TWV HOVTEAWY OE BEBOUEVO TOANGDY
acVeEVEY.

AZLoloynon tng Luvelogopds tou Kdde KAddou

Téhog, yia TV a€lohdYNON TNG CUVEIGPOEAS TOL xdde XAdBoU 6TO GUVOAXS joint povtélo anogacicoye va "omev-
gpyomolioouue” Tov évay amd toug 800 xAddoug ot Bladixacio Tng ntedPiedne. H anevepyornoinon emtedydnxe
undeviCovtag v €lcodd tou xhddov, dnAadr| Yétovtag Gha Tal BEBOUEVO EIGAHBOU TOU GUYXEXPLIEVOU XAdBOU oE
undevixéc Twéc. Auto elye w¢ amotéleopo vo unyv mapéyetal xopio Thnpogopia Tou ¥Addou autod oo joint
povtého, avayxdlovide To v Poctotel amoxAeloTiXd 6TOV EVERYS ¥AGDO Yl TNV aviyveuon avepohdy. Ou
ITivaxeg 2-5 napovaidlovy ta ROC-AUC anoteléopota Twv Telpaddtwy anevepyonoinong tou xdie xhddou ota
egatouixeuuéva xau global yovtéha.

. ROC-AUC
All Patients
Audio Unimodal | Audio Branch (Bio Disabled) | Audio Branch
Mean | 0.598+£0.064 | 0.620-+£0.108 | 0.643£0.079

Table 2: S0yxpion twv ROC-AUC scores tou eZ0ToUXEVLEVOL NYNTIX0Y HOVTEAOL, TOU Ty NTXol xA&Bou Tou joint
HOVTENOL UE TOV BLOUETELXS HAEBO OMEVERYOTONUEVO XAl EVERYOTIOLNUEVO aVTioTOLY AL,

. ROC-AUC
All Patients
Bio Unimodal | Bio Branch (Audio Disabled) | Bio Branch
Mean | 0.557+0.136 | 0.602-0.108 | 0.629:£0.120

Table 3: Z0yxpion twv ROC-AUC scores tou eZatopixevpévou Blopetpnod Loviéhou, tou Blopeteixol xAddou Tou
joint wovtéhou ue tov NYNTXS *AEDO AMEVERYOTONUEVO XAl EVEQYOTONUEVO AVTIGTOLYA.

Norm ROC-AUC
) Audio Unimodal | Audio Branch (Bio Disabled) ‘ Audio Branch
Per-Patient 0.603+0.059 0.607+0.093 0.61440.048
Global 0.600+0.060 0.60240.056 0.607+0.053

Table 4: Z0yxpion twv ROC-AUC scores tou global nynuxol povtélou, Tou nyntixod xA&dov tou joint poviéhov pe
oV BLOYETELXS XAEBO AMEVERYOTOINUEVO XAl EVEQYOTOUNHEVO avTioTOLY AL,

Norm ROC-AUC
) Bio Unimodal | Bio Branch (Audio Disabled) ‘ Bio Branch
Per-Patient 0.55340.029 0.55540.040 0.55540.032
Global 0.54310.050 0.550+0.057 0.57240.039

Table 5: Z0yxpion twv ROC-AUC scores tou global Blopetpxol poviéhou, tou Plopetpixod xhddou Tou joint
ULOVTENOU UE TOV NYNTIXO XAEBO AMEVERYOTOINUEVO XAl EVEQYOTONUEVO avTioTOLY L.

Ta nepdpata npaypatonoidnxay vy to CAE-CAE povtého oto olvoho Sedopévwv twv 7 nuepdv xou o
anotehéopata, ot efatopxevuéva xou ota global neipdpota, €deilay, dnwe galveton amd toug ivaxeg 2-5, 6t
ta ROC-AUC scores tou nyntixod xhddou, dtay o BLoUETEX0E NTav AmEVERYOTONUEVOS, HTay LUYmAGTERY oo
To avtiotolyo unimodal yovtélo aAld pewwpéva oe oyéon Ue autd Tou NYNTXoL XAdBou 6Ttav o BLOPETEXOC
elvon evepyonomuévog. H (Bl cupnepipopd mapatneeiton avtiotorya yia tov Bloyetend xhddo. H avdluon
ot emPBefoucdivel 6TL To joint povtélo mpdypott allomolel anoteheopatixd ta dedopéva xou amd Tig dVo mYéc,
odNYWVTaG o8 axpBECTERT aviyVELOT) UTOTPOTMV.
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Yuvoilovtac, 6ha tar mopandve TElpdpata avédellay T onuacion Tou GUVBLUCHOD NYNTXDY Xo BLOPETEXOY
BEBOPEVLY OTNV aViYVEUOY) UTOTEOTIAY, UE To joint wovtéha va Eemepvolv otaldepd T emddoelc twv unimodal
npooeyyloewy. H e&atopxeupévn npocéyyion emPefouwinxe g n mo anoteAeopotiny, xaddg To wovtéia Tou
EXTIUBEVTNXOY OE BESOUEVO CUYXEXPLUEVWY AGUEVHDY ATEBWOAY XOADTERN o6 QUTA OV EXTALBEDTNXAY GE GAOUC
Toug aoVevelc, avadexviovtog T onuacio tne eCotolxevpévne topaxorolinone e duyixic uyelac.

Yvunepdopata xow MeAhovtinéeg Enextdoeig

H nopotoa Simhopatixr eaTidlel oTny avdhuoT NynTxedy oNudteny ol BLoPeTeixey dedopévey Yo ) Bedtinon
e neoBiedmg unotpon®y ot acevelc ue dimoixn Sotapory ) xou oyllopeévela. Apyixd, enextelvope TNV Ny NTLXN
Bdon Sedopévwy tou e-Prevention ye npbéodeto dedouéva aolevddv xou meplocdTepe cUVEVTEDEELS TOU AVTIO-
Tolyolv ot meplddoug umotponrc. H alohdynon twv Mdn vhonomuévey yoviéhwv CAE xa CVAE tou e-
Prevention oe autéd 10 véo olvolo dedouévev emfBefoiwoe 6TL N adénon tou aprduol twv dedopévev odfynoe
oe Behtiwon e andédoang Twv povtéiwy, pe To CAE va napovoidlel tn peyolttepn Bedtinon. Ilopdiinia, to
CVAE ennpedotnxe Yetixd and v adénon twy dedouévwy, wotoco Ayotepo ot oyéon e 1o CAE, yeyovog
mou davde Vo ogetheton otn ueyahltepn svaoinoio tou CVAE ot petofAntotnta twv dedouévey. o
Behtiwon tng aviyveuong avouaAey, TeoTtelvoue LovieAonolnon Ty axohovthox®y eEapTHoEWY TwV dedouévny
vhornowdvtac LSTM autoencoders (LSTMAE xou LSTMVAE). Ta anotehéopata €dei&av 611 1o LSTMAE
unepelye tou CAE oe 6ha ta mepapotixd oevdpia, evey 1o LSTMVAE elye moapéyowa andédoon pe to CVAE,
wot6co 1o CVAE nopayével 1 mo a&iémiotn mpocéyylon yia variational autoencoders. H onpavtixdtepn ouy-
Bolf Tng €peuvac HTay 0 CUVOUUCUOE BLOPETEIXWY ot MYNTXOY Bedouévw Yoo T Behtiwon tne mpofiedng
unotponhic. AvomtUydnxav joint autoencoder povtéha, mou evowpatdvouy to CAE xou LSTMAE yovtéia
v o nynTixd dedouéva xou éva CAE povtého yio ta Propetend dedopéva. To povtéda agloroyrdnxay oe
oUvola dedouévmv mou meplehduBavay Blouetpxd dedopéva amd Ty Bio Nuépa TV GUVEVTEGEEWY, xodME Xou
and ypovixd mapddupa YOpw and v Nuépa Twv cuvevtetéewy. Ta anotehéopota €deilov 6Tl o joint yovtéia
Eemépaoay TIC EMOOOEIC TWYV MYNTIXDY X0l PLOUETEIXDY HOVTEAWY EEXWPLOTA, UE TO EEATOUXEUPEVOL LOVTERN VO
emiTuYydvouv TN peyahitepn axpelfBeia. Xuyxptvovtog ta poviéha CAE-CAE xou LSTMAE-CAE, Siamotadnxe
6t to CAE-CAE ntav mo anodotuxd ota e€atouixevpéva netpduata, eved 1o LSTMAE-CAE nogousiace éva
uxpd mAgovéxtnuo ota global melpduata, YeYovos TOU UTOBNAGDYVEL OTL 1 ETLAOYT TOU XATIAANAOU UOVTENOU
elaptdTon amd TiC amuTHOoES ToU exdotote mpofBhiuatoc. Téhog, ta melpdyota anevepyonolnone Twv xhadwv
emBefaiwoay 6Tl Ta joint povtéia a&lonololy anoteheouatind xon TC 600 mNYES dedouévwy, BEATUOVOVTOC TNV
aviyveuon unoTpoT®Y.

Ou yehovtinég enextdoelc tng épeuvac Yo unopoloay va emxevipwdouy oto e€nig:

o Ilepoutépw Biebpuvon Tou cUVOLOL BeSOUEVWY Ue TNV EVTOET TEPLOCOTERWY AOUEVEY oL ETUTAEOV TEELT-
TOOEWY UTOTPOTHC, UE OXOTO TNV eVIOYUCT TNE YEVIXEUONC TV LoVTEAWY xou TNV abnor tne adlomiotiog
TWYV ATOTEAECUATWY.

e [ ta variational autoencoder yovtéia, unopolyv va diepeuvnolv npdoveteg TEXVIXES XUVOVIXOTOINOT,
OTWE 1) TEOCUPUOGTIXY xavovxormoinom, 1 Yerorn Bapdv mpocopuocuéva oe xdide acdevi 1 nepartépw
npocappoyy (fine-tuning) twv goviélwv yia cuyxexpévoue aodevelc drou 1 anddoor dev Bertidrdnxe
ETOPHC.

o Eosaywyn texvindy ypovixhc poviehonoinong, 6nne ol unyaviopol npocoyfc (attention mechanisms), ot
omnoleg Vo unopoloav vo Bedtidcouy nepountépw Ty anddoon twv LSTM autoencoder poviéhwy.

o Algpelvnon TN avTLoTOlYloNG TWV NYNTXOV Xl PLOPETEXOY OESOUEVLY %ot TEYVIXWY ETaOENONE TV
dedopévwy (data augmentation) yio TNy avTHETOTON TS dlapopdc oY anddoon twv 300 xAEBwV.
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Chapter 1. Introduction

Mental health disorders are complex and multifaceted conditions that pose significant challenges to individu-
als, families, and healthcare providers. These disorders are often characterized by reoccuring relapses, which
can have profound impacts on patients’ well-being and functional capacity. Relapses are not only distressing
but also costly, often requiring hospitalization and leading to disruptions in personal and professional life.
Addressing these challenges necessitates approaches that go beyond traditional methods of care and priori-
tize early detection and prevention. Advances in technology have created new opportunities to address the
intricacies of mental health management. By harnessing diverse types of information, it is possible to gain
deeper insights into the subtle changes that often precede relapse. Patterns in speech, physical activity, and
physiological signals, for example, offer valuable clues about an individual’s mental state. These data-driven
approaches have the potential to fill the gaps left by traditional methods, which rely heavily on clinical
assessments and self-reported symptoms.

This thesis seeks to address these challenges by exploring advanced methods for relapse prediction in patients
with bipolar disorder and schizophrenia spectrum disorders (SSD). By evaluating and improving models that
detect behavioral and physiological changes, it aims to provide valuable insights that could support earlier and
more effective interventions. Through this research, the thesis contributes to the broader goal of developing
tools and strategies that improve mental health outcomes and facilitate the lives of individuals living with
these complex conditions.

1.1 Relapse in Bipolar Disorder and Schizophrenia

Mental health disorders, particularly bipolar disorder and schizophrenia spectrum disorders (SSD) represent a
significant global health challenge due to their prevalence, chronicity, and profound impact on patients’ quality
of life. Schizophrenia affects approximately 24 million people worldwide, about 0.32% of the global population
[Wor22|, while bipolar disorder impacts an 2.4% of the global population [Zho+24]. These conditions are
associated with high rates of reoccuring relapse, which often necessitate hospitalization, disrupt social and
occupational functioning, and increase the risk of mortality. For instance, studies indicate that up to 52%
of individuals with schizophrenia who have already been hospitalized experience a relapse within the first
year after discharge [BMV12]. Similarly, 25% of individuals with bipolar disorder experience relapses severe
enough to require hospitalization or result in acute episodes, with 40% experiencing multiple relapses within
a five-year period [Het+23].

Bipolar disorder is characterized by recurrent episodes of depression and mania. Depressive episodes are
marked by feelings of deep sadness, fatigue, and loss of interest in daily activities, often accompanied by
suicidal thoughts. In contrast, manic episodes include hyperactivity, impulsive decision-making and a reduced
need for sleep [Nie+23|. These behaviors can lead to risky actions and require immediate medical intervention.
Relapse in either phase is common and can significantly impact an individual’s daily functioning, often leading
to long-term disability. [JA03; Gra-+16].

Schizophrenia is a chronic psychotic disorder with symptoms including hallucinations, delusions, cognitive
deficits, emotional dysregulation and social withdrawal [VK09]. Psychotic relapses, which frequently occur
in the course of the illness, can lead to prolonged hospital stays, further cognitive and functional decline and
diminished opportunities for recovery [LDG13|. Furthermore, schizophrenia is associated with a significantly

increased risk of premature mortality, driven primarily by suicide and comorbid cardiovascular conditions
[LNM14].

During manic and psychotic episodes, individuals with bipolar disorder often exhibit accelerated speech, along
with increased variability in pitch and volume. In contrast, depressive episodes are characterized by slower,
monotonic speech that often lacks emotional expression. Similarly, in schizophrenia, patients during relapse
tend to demonstrate reduced prosody, lower vocal intensity, and an increased number of pauses. These vocal
characteristics can serve as significant indicators for evaluating the state of these disorders, as changes in
speech patterns often reflect the emotional state of the patient [LBG20; Fau+16].

In addition to vocal features, bipolar disorder and schizophrenia affect various biometric characteristics of
patients. Levels of physical activity and movement fluctuate significantly during periods of relapse. Manic
episodes in bipolar disorder are often marked by increased agitation and hyperactivity, whereas depressive
episodes frequently lead to reduced activity and lethargy [Max+16]. Similarly, in schizophrenia, psychotic
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episodes are associated with hyperactivity, often manifesting as irregular, repetitive, and rapid physical
movements [WM17]. Another critical aspect of both disorders is the dysfunction of the autonomic nervous
system (ANS). Heart Rate Variability (HRV), a measure of ANS function, can also be used as an indicator of
fluctuations in the mental state of patients. Individuals with bipolar disorder and schizophrenia often exhibit
reduced HRV during depressive episodes or heightened emotional distress, indicating lower adaptability to
stressors. Conversely, higher HRV is typically associated with relaxation, reduced stress, and emotional
balance, which correspond to stable mental health states [Hen+10].

Traditional methods for assessing bipolar disorder and schizophrenia primarily rely on clinical interviews,
self-reported questionnaires, and standardized diagnostic tools such as the DSM-5 criteria [Amel3], the
Positive and Negative Syndrome Scale (PANSS) [KFOS87a] for schizophrenia, and the Young Mania Rating
Scale (YMRS) [You+78] for bipolar disorder. These evaluations are inherently subjective, relying heavily on
patient recall and clinician interpretation. This makes it difficult to capture subtle, continuous changes that
may precede relapse, leading to missed opportunities for early intervention.

Consequently, continuous and accurate monitoring of patients with bipolar disorder and schizophrenia is vital.
Existing approaches often fall short in detecting relapses in a timely manner and managing the fluctuations in
mental state. The complexity of these disorders, combined with their significant impact on multiple aspects
of a patient’s life, underscores the need for complementary methods that utilize vocal and biometric markers
to facilitate early detection and relapse prevention.

1.2 Digital Phenotyping

Digital phenotyping is an emerging approach that involves the use of passive data from digital devices, such as
smartphones and wearable sensors, to capture and analyze behavioral and physiological patterns (Fig. 1.2.1).
It enables continuous, objective and unobtrusive monitoring of individuals’ daily lives, providing insights
into their mental and physical health. Unlike traditional relapse evaluations, digital phenotyping allows for
the detection of subtle, evolving patterns in behavior or physiology that may precede clinical symptoms of
relapse. These behavioral markers can be particularly valuable for mental disorders such as bipolar disorder
and schizophrenia, where early intervention can significantly improve outcomes [OR16; MZS17].

Digital phenotyping has found applications across a variety of health domains. In cardiovascular health,
wearable devices monitor heart rate variability (HRV) to detect arrhythmias, assess stress levels, or predict
risks of heart disease [SG17a]. Similarly, continuous glucose monitoring systems paired with smartphones
enable real-time tracking of blood sugar levels for diabetes management [Cap+19]. Neurological conditions
such as Parkinson’s disease are monitored through wearable devices that track tremors and gait abnormalities,
while epilepsy management has been enhanced by tools that detect seizure activity [JMM18]. Other notable
applications include maternal health, where wearables track vital signs to detect pregnancy complications
like preeclampsia [DAS22].
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Figure 1.2.1: Overview of digital phenotyping [Mou+21].




Chapter 1. Introduction

In the context of mental health, digital phenotyping has emerged as a powerful tool for understanding and
managing conditions such as bipolar disorder, schizophrenia, depression, and anxiety. Continuous monitor-
ing of speech, physical activity, and physiological metrics has shown promise in identifying behavioral and
emotional changes that precede clinical symptoms of relapse or deterioration. By providing real-time, passive
data, digital phenotyping enhances the ability to detect early warning signs of relapse, ultimately enabling
more personalized and proactive mental health care [Pan+18; Bar+18].

1.3 Goals and Contributions

This study builds upon the e-Prevention project [Zla-+22|, which leverages digital phenotyping for early re-
lapse detection in patients with bipolar disorder and schizophrenia spectrum disorders (SSD). The project
developed an integrated system for long-term monitoring using wearables and video recordings, applying
machine learning techniques to detect behavioral and physiological markers of relapse. However, its primary
focus was on analyzing biometric and speech data separately, without fully utilizing the potential of multi-
modal fusion for relapse prediction. The primary goal of this research is to further evaluate and extend the
models developed in the e-Prevention project by incorporating advancements in data processing and machine
learning techniques. Additionally, the study seeks to explore the integration of audio and biometric data
within a multimodal framework to enhance relapse prediction performance.

More specifically, this research extends the field of digital phenotyping and mental health monitoring through
the following contributions:

e Expansion of the e-Prevention audio database to create a more diverse dataset, in order to improve
model evaluation and generalization.

e Reassessment of the CAE and CVAE models developed during the e-Prevention project on the expanded
dataset, ensuring their performance on detecting relapse across existing and additional patients.

e Development and evaluation of LSTM-based autoencoders for relapse detection from speech data, com-
paring their effectiveness to convolutional models and examining how their ability to capture temporal
dependencies in speech signals can improve prediction accuracy.

e Development of joint autoencoder models for feature-level fusion of audio and biometric data, enhancing
relapse prediction accuracy and demonstrating the benefits of multimodal approaches in mental health
monitoring.

1.4 Thesis Outline

This thesis is organized into the following chapters:
e Chapter 1: Introduction

This chapter provides an overview of the research context, highlighting the challenges of relapse detec-
tion in bipolar disorder and schizophrenia. It introduces the e-Prevention project, the objectives and
the contributions of this thesis.

e Chapter 2: Theoretical Background

This chapter reviews the key methodologies and machine learning concepts relevant to this research. It
covers audio and biometric signal representations, neural network architectures, autoencoder approaches
and the concept of anomaly detection.

e Chapter 3: Literature Review

This chapter analyzes current state-of-the art approaches to relapse detection in mental health using
behavioral and physiological data. It covers studies on digital phenotyping, multimodal fusion, and
techniques for anomaly detection in audio data. Finally, it presents on the e-Prevention project, its
methodologies, and the models developed for audio and biometric data.
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Chapter 4: Data and Preprocessing

This chapter describes the datasets used in the study, including the expansion of the e-Prevention
audio database and the processing of biometric data. It details data preprocessing techniques, feature
extraction, and the alignment of audio and biometric data using temporal windows.

Chapter 5: Audio Experiments

This chapter focuses on the methodologies, results, and discussions related to audio-only experiments. It
presents the architectures used for detecting anomalies in speech data, including typical and variational
autoencoders consisting of convolutional and LSTM-based blocks, and evaluates their performance on
the expanded audio dataset.

Chapter 6: Multimodal Experiments

This chapter presents the methodologies, results, and discussions for experiments that integrate bio-
metric and audio data. It introduces the autoencoder model used for the biometric data and the
joint autoencoder models developed for multimodal relapse detection. Additionally, it examines the
contribution of each modality through ablation experiments.

Chapter 7: Conclusion and Future Work

The final chapter summarizes the key contributions of the thesis and discusses potential directions for
future research that can be conducted based on the presented work.
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2.1. Audio Signal Representations and Features

2.1 Audio Signal Representations and Features

Audio signals are a critical source of information for analyzing speech patterns and identifying behavioral or
emotional changes. To utilize these signals effectively in machine learning tasks, raw data must be transformed
into representations that highlight key features.

2.1.1 Time Domain-Representations

In the time domain, an audio signal is represented as a continuous waveform s(t), where ¢ denotes time in
seconds, and the amplitude of the signal varies with time.

Audio Signal
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Figure 2.1.1: Audio signal waveform.

To process these signals digitally, they must be sampled, converting the continuous signal into a discrete-time
signal:

s[n] = s(nTs), Ts=— (2.1.1)

Where:
e f. is the sampling frequency in Hz.
e T is the sampling period in seconds.

e 1 is the sample index.

The sampling process is governed by the sampling frequency fs which determines the number of samples
taken per second. According to the Nyquist theorem, the sampling rate must be at least twice the highest
frequency present in the signal to avoid aliasing (i.e., deformation of the analog signal).

2.1.2 Frequency-Domain Representations

While the time-domain representation of a signal captures its amplitude variation over time, it does not
provide information directly about the frequency content. The Fourier Transform is used to convert the
time-domain signal into the frequency domain:

S(f) = /OO s(t)e 72t (2.1.2)

—oo
Where:
e S(f) is the Fourier Transform of the signal s(t), representing the signal’s frequency content.
e f is the frequency in Hz.

e ¢ 727/t represents oscillations at frequency f.
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The Discrete Fourier Transform (DFT) analyzes the frequency components of a discrete-time signal s[n] over
N samples:

S[k] = i s[n)e=92mkn/N (2.1.3)

n=0

[y

Where:
e k corresponds to specific frequency components present in the discrete-time signal s[n].
e S[k] represents the frequency-domain signal at frequency index k.

e N is the number of samples.

For practical use with finite and non-stationary signals, the Short-Time Fourier Transform (STFT) is applied.
The STFT analyzes short segments of the signal using a sliding window:

STFET{s[n|}(m,k) = S(m,k) = Z s[n]w[n — m)e=I2mmk/N (2.1.4)

n=—o00
Where:

e S(m,k) is the STFT of the signal.

e wn] is a window function (e.g., Hamming or Hann).

e m is the frame index, indicating the position of the window.

e [ is the frequency index.

The STFT produces a time-frequency representation, capturing how the frequency content of the signal
evolves over time.

2.1.3 Spectral Representations

The spectrogram is a widely used time-frequency representation that visualizes how the power of a signal
varies across different frequencies over time. Mathematically, the spectrogram is computed as follows:

spectrogram(m,w) = |STFT{s[n]}(m,w)|? (2.1.5)
Where:
o |STFT{s[n]}(m,w)|? is the power spectral density (PSD) of the signal.

The spectrogram reveals how energy is distributed over time and frequency but still represents frequencies
on a linear scale, unlike the human auditory system, which perceives pitch logarithmically.

2.1.4 Mel-Spectrograms

The Mel-spectrogram adjusts the spectrogram’s frequency representation to match human auditory per-
ception. Humans are more sensitive to lower frequencies and perceive higher frequencies on a logarithmic
scale. This transformation uses the Mel-scale, which maps linear frequencies f to perceptually meaningful
Mel-frequencies m(f) as follows:

f

) (2.1.6)

To compute a mel-spectrogram:
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1. The STFT is computed for each frame to obtain the magnitude spectrum:

|S(r,w)[?

(2.1.7)

2. A set of triangular filters is applied to the frequency bands of the spectrogram to map them onto the

Mel-scale:

Where:

M(m, k) = Z |S(m,w)|> Hy(w)

e M(m, k) is the mel-spectrogram.

e Hji(w) is the triangular filter centered at frequency band k.

3. The logarithm of the Mel-scaled spectrogram is computed to compress its dynamic range:

Where:

e ¢ is a small constant to avoid logarithmic instability for near-zero values.
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Figure 2.1.2: Filter bank on a Mel-scale [Fay16].
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Figure 2.1.3: Mel-spectrogram of audio signal.
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2.2 Biometric Signal Representations and Features

Biometric signals derived from sensors provide crucial insights into physiological states and behavioral pat-
terns. These signals are represented as time-series data and processed into time-domain, frequency-domain,
and non-linear features for analysis. In this section, we present an overview of common biometric signal
representations that have been used in related studies [Zla+22; Ret+20; Mag+20; Fil+20].

2.2.1 Time-Domain Features

Time-domain features are computed directly from the raw signal and describe statistical characteristics of
the data.

Short-Time Energy (STE)

Short-Time Energy (STE) measures the localized energy of a signal within overlapping windows, capturing
temporal variations in intensity. It is a fundamental technique in short-time analysis, used to examine non-
stationary signals by segmenting them into overlapping frames. This allows for tracking changes in signal
intensity, variability, and periodicity over time.

STE is computed as the sum of squared signal samples within a window of length N:

N-1
STE = > 2[n] (2.2.1)
n=0

Mean and Variability

Statistical features, such as the mean and variability, are fundamental descriptors of biometric signals. These
features summarize the central tendency and spread of the data, offering insights into the overall behavior
and fluctuations within the signal.

The mean is computed as the average of the signal samples:

1
T= > aln] (2.2.2)
n=0
The variability is computed as the standard deviation of the signal samples:
1 N-1
Var(x) = N (z[n] — z)? (2.2.3)
n=0

For biometric signals representing time intervals (e.g. NN intervals in Heart Rate Variability (HRV)), the
mean NN interval and standard deviation of NN intervals (SDNN) are commonly extracted features [SG17b].

2.2.2 Frequency-Domain Features

Frequency-domain analysis decomposes biometric signals into their spectral components to understand how
power is distributed across various frequency bands. The Lomb-Scargle Periodogram [Sca82] is a particularly
useful method estimating the PSD and detecting periodic patterns in HRV and other physiological signals.

Lomb-Scargle Periodogram

The periodogram estimates the PSD of a signal by squaring the magnitude of its DFT. The Lomb-Scargle
Periodogram is a powerful extension of the periodogram for analyzing unevenly spaced time-series data, which
is common in physiological recordings like HRV. It is computed as follows:

L[ [ el cos(@ut, — 7)) [S05 el sin(@(e, — )]
Prs() = 5 - + =
21 Ea50 cos(Qtn — 7)) Snco st (Q(tn — 7))

, (2.2.4)
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Where:

e T is given by:

N—-1 .

20t,,

= 2 tan! Z;giol sin(2Mn) | (2.2.5)
2Q Y n_o cos(2Qt,)

e Q is the angular frequency in radians per second (rad/s).

e t, is the time at which the signal is sampled.

HRV Frequency Bands

In the context of HRV, the PSD is analyzed within specific frequency bands [SG17a|, which are defined as
follows:

¢ Ultra-Low Frequency (ULF): < 0.003 Hz.
Reflects slow physiological processes such as circadian rhythms.
e Very Low Frequency (VLF): 0.003 — 0.04 Hz.

Associated with regulatory mechanisms, including thermoregulation and the renin-angiotensin system.
Low VLF power is linked to increased mortality risk and inflammation.

e Low Frequency (LF): 0.04 — 0.15 Hz.

Represents both sympathetic and parasympathetic nervous system activity under resting conditions.
Influenced by baroreceptor activity and breathing rhythms.

e High Frequency (HF): 0.15 — 0.4 Hz.

Reflects parasympathetic activity, often related to respiratory sinus arrhythmia (RSA). Corresponds to
heart rate changes during inhalation and exhalation.

The LF/HF Ratio, a commonly used metric, provides an estimate of the balance between sympathetic and
parasympathetic nervous system activities [SG17a).

2.2.3 Non-Linear Features

Non-linear features capture the complexity and irregularity of signals, providing deeper insights into the
underlying dynamics that are not easily represented in the time or frequency domains.

Poincaré Plot Analysis

Poincaré analysis is a widely used non-linear method for visualizing and quantifying variability in biometric
signals, particularly in HRV. The Poincaré plot is a scatterplot of consecutive intervals, where each point
represents a pair of successive intervals (NN;, NN;y1).

The geometry of the Poincaré plot is often quantified using two standard descriptors: SD1 and SD2. These
metrics are derived by fitting an ellipse to the scatterplot, where SD1 and SD2 correspond to the lengths of
the minor and major semi-axes of the fitted ellipse, respectively [BPKO01; PG07].

e SD1 (Short-Term Variability): Captures the spread of points perpendicular to the line of identity
(y = x), reflecting rapid, short-term fluctuations primarily associated with parasympathetic activity.

V2

2

e SD2 (Long-Term Variability): Captures the spread of points along the line of identity, reflecting
slower, long-term fluctuations associated with both sympathetic and parasympathetic activity.

SD2 = \/2Var(NN;)2 — SD12 (2.2.7)
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The SD1/5D2 Ratio provides insights into the balance between short-term and long-term variability,
with lower values indicating a shift towards sympathetic dominance [BPKO01].
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Figure 2.2.1: Example of Poincaré plot of HRV signal [Cho+09].

Entropy

Entropy quantifies the unpredictability or irregularity of a time-series signal, making it a robust tool for
assessing complexity. In biometric signals, entropy measures are utilized to capture the irregularity of phys-
iological processes.

Approximate Entropy (ApEn): Quantifies the regularity of patterns in a time series; higher values
indicate greater complexity.

Sample Entropy (SampEn): An improved version of ApEn, less dependent on data length and
excluding self-matching patterns.

Shannon Entropy: Measures the uncertainty or information content of a signal, reflecting the diversity
of signal values.

Permutation Entropy: Evaluates the complexity of a signal by analyzing the ordinal patterns of its
values, robust to noise.

Multiscale Entropy (MSE): Captures the complexity of a signal across multiple time scales, pro-
viding insights into the dynamics of physiological systems.

Fractal Dimension

Fractals are complex geometric shapes that exhibit self-similarity across different scales, meaning their struc-
ture looks similar regardless of the level of magnification. Defined mathematically, a fractal dimension is a
measure that describes how the detail in a pattern changes with scale, providing a non-integer value that
characterizes the object’s complexity [Man82]. In biometric signals, the fractal dimension is used to quantify
the irregularity and self-similarity of physiological processes.

Common fractal dimension measures for time-series signals include:

Higuchi Fractal Dimension (HFD): Estimates the fractal dimension directly from time-series data
by calculating the length of the curve at various scales, providing insight into the signal’s complexity
[Hig88].

Multiscale Fractal Dimension (MFD): Extends fractal analysis across multiple temporal scales to
capture variations in signal complexity at different resolutions [Mar94].
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2.3 Machine Learning

Machine learning (ML) is a branch of artificial intelligence (AI) focused on developing algorithms that allow
systems to learn from data and improve their performance on specific tasks without explicit instructions. It
forms the foundation of many modern applications, from predictive analytics to autonomous systems.

2.3.1 Types of Machine Learning

Machine learning techniques are broadly classified into three main categories based on the availability of
labeled data and the learning objective:

e Supervised Learning: In supervised learning, the model is trained on labeled data, where each input
is paired with a corresponding output. The objective is to learn a mapping function f(z) — y that
accurately predicts the output for new inputs. Common supervised learning tasks include regression,
which involves predicting a continuous value or vector from given inputs, and classification, where the
model assigns inputs to discrete categories or classes.

e Unsupervised Learning: Unsupervised learning focuses on discovering hidden patterns, underlying
structures, and relationships in data without relying on labeled inputs. It allows models to explore
and organize data autonomously, making it particularly useful for extracting meaningful insights from
large, unstructured datasets. Common unsupervised learning tasks include clustering, dimensionality
reduction and anomaly detection.

¢ Reinforcement Learning: Reinforcement learning is a subfield of machine learning where an agent
learns to make decisions by interacting with an environment. The agent receives feedback in the form
of rewards or penalties based on its actions, allowing it to learn the optimal strategy for maximizing
cumulative rewards over time. Reinforcement learning is commonly used in robotics, gaming, and
autonomous systems.

2.3.2 Key Concepts in Machine Learning
Feature Engineering

Feature engineering is the process of selecting, transforming, and creating new features from raw data to
improve the performance of machine learning models. It involves identifying relevant features, handling
missing values and scaling numerical data to ensure that the model can effectively learn from the input data.

Model Training and Optimization

Training a machine learning model involves optimizing its parameters to minimize a loss function, which
measures the difference between the model’s predictions and the ground truth. A well-designed training
process is essential to achieve high performance and generalization. Key components of model training
include the following;:

Loss Function: The loss function quantifies how well the model’s predictions align with the actual values.
It guides the optimization process by providing a metric to minimize. Common loss functions include:

e Mean Squared Error (MSE) for regression:

MSE =+ > (5 — 31)? (2.3.1)

i=1

e Cross-Entropy Loss for binary or multi-class classification:
1
= 7N Z Yi log y7 1 - yl) log(l - yv)] (232)

Where:
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e y; is the actual value, which is a continuous value for regression problems, and a binary label (0 or 1)
for classification problems.

e g, is the predicted value, which is a continuous value in regression problems, and a probability score or
discrete class label in classification problems, depending on the model’s output type.

Optimization Algorithms: Optimization algorithms, such as stochastic gradient descent (SGD), are used
to update the model’s parameters iteratively, reducing the loss and improving its predictive accuracy. The
parameter updates are calculated using the gradient of the loss function with respect to the parameters:

011 =0, —aVL(6) (2.3.3)
Where:
e 0, represents the model parameters at iteration t.
e « is the learning rate that controls the step size of the updates.
e VL(6;) is the gradient of the loss function with respect to the parameters.

Regularization: Regularization techniques are used to prevent overfitting, where the model performs ex-
ceptionally well on the training data but fails to generalize to unseen data. Common regularization methods
include L1 and L2 regularization, which add penalty terms to the loss function to discourage complex models.
The regularization strength is controlled by the hyperparameter A, which determines the trade-off between
model complexity and performance.

e L1 Regularization: Adds the absolute value of the weights to the loss function:

N
Ly =L+ 6] (2.3.4)

=1

e L2 Regularization: Adds the squared weights to the loss function:

N
Lpa=L+\)» 67 (2.3.5)

i=1

Hyperparameter Tuning: Hyperparameters are parameters that control the learning process. Common
hyperparameters include the learning rate, batch size (number of samples processed in each iteration) and
model architecture parameters. Hyperparameter tuning involves selecting the optimal values for these pa-
rameters to improve the model’s performance.

Validation: Validation is used to evaluate the model’s performance on unseen data during training. Cross-
validation techniques, such as k-fold cross-validation, split the data into training and validation sets multiple
times to obtain more reliable performance estimates.

Early Stopping: Early stopping is a regularization technique that stops training when the chosen monitoring
metric (e.g., validation loss) stops decreasing, preventing the model from overfitting.

Model Evaluation

Model evaluation is a critical step in the ML pipeline to assess a model’s performance and ensure its ability to
generalize to unseen data. Common evaluation metrics for binary classification tasks include accuracy, pre-
cision, recall, F1 score, and area under the receiver operating characteristic curve (ROC-AUC). Additionally,
for regression tasks, metrics such as MSE (2.3.1) or the mean absolute error (MAE) are commonly used.

e Accuracy: The proportion of correctly classified samples:

TP + TN
Total Number of Predictions
14
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e Precision: The proportion of true positive predictions out of all positive predictions:

TP
TP +FP

Precision =

(2.3.7)

e Recall: The proportion of true positive predictions out of all actual positive samples. Also known as
sensitivity or true positive rate (TPR):

TP
Recall = m (238)

e F1 Score: The harmonic mean of precision and recall:

Precision x Recall
F1=2 2.3.9
X Precision + Recall ( )

¢ ROC-AUC: Measures a model’s ability to distinguish between classes by evaluating the trade-off
between the True Positive Rate (TPR), which represents the proportion of actual positives correctly
identified, and the False Positive Rate (FPR), which indicates the proportion of actual negatives incor-
rectly classified as positives, with the AUC (Area Under the Curve) quantifying overall performance
across different classification thresholds.

Where:
e TP is the number of true positive predictions.
e TN is the number of true negative predictions.
e FP is the number of false positive predictions.
e FN is the number of false negative predictions.
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Figure 2.3.1: Example of ROC curve with ROC-AUC score [DG21].

2.4 Neural Network Architectures

Neural networks are computational models inspired by the structure and function of biological neurons. They
consist of interconnected layers of neurons that process inputs and learn to map them to desired outputs.
A typical neural network comprises an input layer, one or more hidden layers, and an output layer. Each
neuron applies a weighted sum of its inputs, adds a bias, and passes the result through an activation function
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to introduce non-linearity. This structure allows neural networks to model complex, non-linear relationships
within data [Bis94].

Mathematically, the output of a neuron can be expressed as:

y=1r (i w;T; + b) (2.4.1)

Where f is the activation function, x is the input vector, w is the weight vector and b is the bias.

Activation Output

)

Inputs

Figure 2.4.1: Example of a simple neural network architecture [Raj23].

Activation Functions

An activation function is a vital component of a neural network that introduces non-linearity, enabling the
model to learn complex patterns and distinguishing it from a simple linear model. The functions are applied
to the weighted sum of inputs and biases to determine the output of a neuron. Common activation functions
include:

e Sigmoid: The sigmoid function maps the input to a range between 0 and 1. It is commonly used in
the output layer of binary classification models.

1

o) == o (2.4.2)

e Tanh (Hyperbolic Tangent): The tanh function maps the input to a range between -1 and 1. It is
commonly used in the hidden layers of neural networks.

6!1: _ e—.’K

et e %

tanh(z) = (2.4.3)

e ReLU (Rectified Linear Unit): The ReLU function sets all negative values to zero and passes
positive values unchanged. It is commonly used in deep learning models due to its simplicity and
efficiency.

ReLU(z) = max(0, x) (2.4.4)

e Leaky ReLU: The Leaky ReLU function allows a small gradient for negative values, preventing the
dying neuron problem [Maal3].

LeakyReLU(z) = max(ax,xz) where o€ (0,1) (2.4.5)

Training and Optimization

Neural networks incorporate many of the techniques mentioned in Section 2.3.2. These include the use of loss
functions, such as MSE (2.3.1) and cross-entropy loss (2.3.2), to measure prediction error, optimization algo-
rithms like stochastic gradient descent (SGD) to iteratively minimize this error and regularization techniques
such as L1 (2.3.4) and L2 (2.3.5) penalties to prevent overfitting.
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Figure 2.4.2: Common activation functions used in neural networks [Igh+23].

Concepts like hyperparameter tuning, cross-validation, and early stopping are also applied to neural net-
works, ensuring robust training and generalization. Building on these general techniques, neural networks
incorporate additional mechanisms that are fundamental to their architecture and training:

e Backpropagation: The backpropagation algorithm calculates the gradient of the loss function with
respect to each parameter in the network using the chain rule of differentiation. This enables the
optimization algorithm to update weights and biases efficiently, layer by layer. The process involves
the forward pass and the backward pass phases.

Forward Pass: During the forward pass the inputs are propagated through the network and the pre-
dictions are computed from the output layer. Then, the loss is calculated by comparing the predictions
with the ground truth. This value will be backpropagated through the network to update the weights.

Backward Pass: During the backward pass, the gradients of the loss function with respect to the
weights and biases are computed by applying the chain rule. These gradients are then used to update
the weights and biases, reducing the loss and improving the model’s performance.

e Dropout: Dropout is a regularization technique where randomly selected neurons, along with their
connections, are set to zero during training. This prevents overfitting and improves the networks’s
generalization performance by preventing it from relying too heavily on specific neurons. The dropout
rate is a hyperparameter that defines the probability of a neuron being dropped out during training.

e Batch Normalization: Batch normalization is a technique that normalizes the input of each layer to
have zero mean and unit variance. For input x, the batch normalization operation is defined as:

TR =i B (2.4.6)

T =

Where p is the mean and o is the standard deviation of the batch, and v and g are learnable parameters.

e Layer Normalization: Layer normalization is an alternative to batch normalization, particularly
useful for sequential data like text or time series. Instead of normalizing across the batch, it normalizes
across the features of each input sample [BKH16]. The normalized output is computed as:

T; —

€Ty =

. y=7%; +p (2.4.7)

Where p is the mean and o is the standard deviation of the input sample.

2.4.1 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) have revolutionized the fields of image and audio processing by
leveraging their ability to learn hierarchical patterns in data. Unlike traditional fully connected neural
networks, CNNs take advantage of the spatial and local structure of input data. By using convolutional
operations, these networks focus on small, localized regions of the input, which makes them highly efficient
for complex and high-dimensional data, enabling their application in tasks such as object detection, image
classification, speech recognition, and time-series analysis [MIB20; HGD17].
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A CNN's architecture consists of convolutional, pooling layers, fully connected layers and activation functions,
with each component contributing to the network’s ability to learn complex hierarchical features. Further-
more, CNNs often incorporate techniques such as upsampling and downsampling, padding, and stride to
control the spatial dimensions of the data and the size of the learned features.
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Figure 2.4.3: Example of a CNN architecture for audio task [Cha+17].

Convolutional Layers

Convolutional layers are the fundamental building blocks of CNNs. These layers perform the convolution
operation, a mathematical process that extracts local features from the input data. In a convolutional layer,
a small matrix called a filter or kernel slides over the input data. At each position, the filter computes the dot
product of its weights with the overlapping region of the input. This process is mathematically represented
as:

M-1N-1

k)il =Y > ali+m,j+n] kfm,n] (2.4.8)

m=0 n=0

Where:

e r is the input data.

k is the kernel (filter) matrix.

e y is the output.

e M and N are the dimensions of the kernel.

e i and j are the positions of the filter on the input.
Key Parameters of Convolutional Layers

e Kernel Size: Defines the dimension of the filters. Common kernel sizes include 3x3, 5x5, and 7x7.
Smaller kernels capture fine-grained details, while larger kernels capture more global patterns.

e Stride: Determines the step size of the filter as it moves across the input (e.g. a stride of 1 moves the
filter one sample at a time). A larger stride results in a smaller filter output.

e Padding: Refers to the addition of zeros around the input data to preserve its spatial dimensions after
convolution.

During training, the weights of these filters are optimized, allowing the network to adaptively learn the most
relevant features for the task. The output, known as a feature map, highlights the presence of features
detected by the filter across different regions of the input. A single convolutional layer typically contains
multiple filters, each producing its own feature map. These feature maps are stacked together to form the
layer’s output, which serves as the input to the next layer. This allows CNNs to capture diverse patterns at
different spatial locations.
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The benefits of convolutional layers include parameter sharing, which reduces the number of learnable pa-
rameters, and translation invariance, which enables the network to detect features regardless of their location
in the input.
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Figure 2.4.4: Visualization of convolution layer and demonstration of how the filter
moves across the input image and performs the convolution operation [BI21].

Pooling Layers

Pooling layers are designed to reduce the spatial dimensions of feature maps while retaining their most
important information. By summarizing the presence of features in localized regions, pooling layers help
to achieve spatial invariance, reduce computational complexity, and prevent overfitting. Pooling normally
operates on small, non-overlapping regions of a feature map and applies a specified function to aggregate the
values within each region. The most common pooling operations are:

e Max Pooling: Extracts the maximum value from each region with the purpose of capturing the most
prominent feature in each region.

e Average Pooling: Extracts the average value from each region, providing a more smooth representa-
tion of the feature map.

The key parameters of pooling layers include the pooling size, which defines the dimensions of the pooling
regions, and the stride, which determines the step size of the pooling operation. Most commonly, the stride
is set equal to the pooling size.

Fully Connected Layers

Fully connected (FC) serve as the final layers in a CNN and are responsible for combining the high-level
features learned by the convolutional and pooling layers to make predictions. These layers connect every
neuron in one layer to every neuron in the next layer, allowing the network to capture global patterns in the
data by integrating all the features extracted by earlier layers. The output of the FC layers is computed by
the equation (2.4.1).

Additional Techniques

e Upsampling and Downsampling: Upsampling and downsampling are techniques used to modify
the spatial dimensions of data. Upsampling increases the spatial resolution, while downsampling, on
the other hand, is primarily performed through pooling layers, which reduce the spatial dimensions
while retaining essential features.

e Activation Functions: The most common activation functions used in CNNs are ReLU and its
variants, such as Leaky ReLU. After the FC layers, a softmax activation function is often used in the
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Figure 2.4.5: Visualization of max and average pooling operations [YIS19].
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Figure 2.4.6: Visualization of fully connected layer in a neural network [HGD17].

output layer for classification tasks.

2.4.2 Long Short-Term Memory Networks (LSTMs)
Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs) are a class of neural networks designed to handle sequential data by
maintaining a memory of previous inputs through recurrent connections. Unlike traditional feedforward
networks, RNNs process inputs sequentially, making them well-suited for tasks where the order of data
points is critical, such as time-series analysis, natural language processing, and speech recognition.

The key feature of RNNs is their hidden state, which serves as a dynamic memory, capturing information
from previous time steps. At each time step, the network updates its hidden state based on the current input
and the previous hidden state:

hy = f(Wh - hg—1 + Wy -2 + D) (2.4.9)
Where:
e h; is the hidden state at time ¢.
e W, and W, are the weight matrices for the hidden state and input, respectively.

e b is the bias term.
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e f is the activation function, commonly a Tanh or ReLLU function.

The output of an RNN at each time step is typically computed as:

yr = g(Wy - by +¢) (2.4.10)
Where:
e y; is the output at time ¢.
o W, is the weight matrix that maps the hidden state to the output.
e c is the bias term.

e g is an activation function.

Despite their potential, traditional RNNs suffer from two major limitations:

e Vanishing Gradient Problem: Gradients become very small during backpropagation through long
sequences, making it difficult for the network to learn long-term dependencies.

¢ Exploding Gradient Problem: Conversely, RNNs can also suffer from the exploding gradient prob-
lem, where the gradients grow exponentially during training, leading to unstable learning.
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Figure 2.4.7: Basic architecture of an RNN [Olal5].

Long Short-Term Memory Networks (LSTMs)

Long Short-Term Memory (LSTM) networks, introduced by Hochreiter and Schmidhuber [HS97], address the
vanishing gradient problem in standard RNNs by incorporating gates that regulate the flow of information.
Unlike traditional RNNs, which struggle to retain information over long sequences, LSTMs introduce memory
cells that store information over extended periods and gating mechanisms (input, forget, and output gates)
that selectively update, retain, or discard information. This structure allows LSTMs to effectively capture
long-term dependencies in sequential data, making them well-suited for tasks like time-series forecasting,
natural language processing, and speech recognition [Li+23; Lin+21].
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Figure 2.4.8: Internal architecture of an LSTM cell [Olal5].

A 4

At the core of an LSTM is the memory cell, which maintains information over long periods. To control the
flow of information, LSTMs uses the following gates:
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Figure 2.4.9: Visualization of LSTM cell components [Ola15].

Forget Gate

The forget gate determines which information to discard from the previous cell state ¢;_1. The output is a
value between 0 (forget) and 1 (retain) for each element in the cell state. The forget gate is computed as:

ft :O'(Wf [ht_l,ﬂft]+bf) (2411)
Where is f; is the forget gate output, x; is the current input and o is the sigmoid activation function.

Input Gate

The input gate decides what new information to add to the cell state. It works in conjunction with a candidate
value ¢; which represents potential updates to the cell state. The input gate is computed as:

it = o(W; - [he—1, 2] + b;) (2.4.12)
¢ = tanh(W, - [hy_1, z¢] + be) (2.4.13)
Where i; is the input gate output.
Cell State Update

The cell state C; is updated by combining the retained information from the previous cell state f;-C;_1 with
the new information i; - Cj: 3

Co=fi-Ciatir- Gy (2.4.14)
Output Gate

The output gate determines what information from the cell state should be included in the hidden state h;.
The output gate is computed as:
Ot = O'(Wo . [ht—h IL't] + bo) (2415)

ht = o; - tanh(ct) (2.4.16)
Where o; is the output of the output gate.
Variants of LSTMs

LSTM networks have inspired several variants to address specific challenges and enhance their functionality,
including:
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e Bidirectional LSTMs (BiLSTMs): BiLSTMs process input sequences in both forward and back-
ward directions, enabling the model to capture dependencies from past and future contexts simultane-
ously. This is particularly useful for tasks where full sequence information is essential, such as speech
recognition and text analysis.

e Stacked LSTMs: Stacked LSTMs consist of multiple layers of LSTMs stacked on top of one another.
This deep architecture enables the network to learn complex temporal patterns, with lower layers
capturing short-term dependencies and higher layers modeling long-term relationships.

e Gated Recurrent Units (GRUs): GRUs are a simplified version of LSTMs that combine the forget
and input gates into a single update gate. This reduces the number of parameters and computations,
making GRUs more computationally efficient than LSTMs. GRUs are particularly useful for tasks
where memory efficiency is a priority.

2.5 Autoencoders

Autoencoders (AEs) are a class of neural networks designed for unsupervised learning tasks, primarily focusing
on learning efficient representations of input data. Their architecture consists of two main components:
an encoder that compresses the input into a lower-dimensional latent representation and a decoder that
reconstructs the input from this representation. By minimizing the difference between the original input and
its reconstruction, autoencoders aim to capture the most important features of the data.

The primary goal of autoencoders is to learn compressed, meaningful representations, which makes them
valuable for tasks like dimensionality reduction, feature extraction, and anomaly detection. Unlike traditional
dimensionality reduction techniques like Principal Component Analysis (PCA), autoencoders can learn non-
linear relationships in data, providing greater flexibility and adaptability.

Autoencoders also serve as foundational architectures for advanced applications such as data denoising,
generative modeling, and pre-training for other machine learning tasks. Over time, specialized variations
like variational autoencoders (VAEs) have been developed to address specific challenges and expand their
application domains [Ber+24].

Encoder

The encoder function g¢(-) is parameterized by ¢ and maps the input data z to a low-dimensional latent
representation z, often referred to as the bottleneck layer, which captures the essential features of the input
data. The bottleneck layer can be represented as:

z = gg(x) (2.5.1)

The encoder can consist of multiple layers, allowing for more complex representations of the input data.
Decoder

The decoder function f(-) is parameterized by 6 and reconstructs the input data 2 from the latent represen-
tation z. The reconstruction is a non-linear mapping;:

&= fo(z) = fo(ge(x)) (25.2)

The encoder and decoder are typically symmetrical in structure, but asymmetrical architectures are sometimes
used depending on the task.

Loss Function

The parameters (¢, 6) of the autoencoder are learned by minimizing a loss function that measures the dif-
ference between the input data x and the reconstructed output #, in order to achieve x ~ fp(gs(z)). Most
commonly, the MSE (2.3.1) is used as the loss function, but other metrics like cross-entropy can be used
depending task.
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Figure 2.5.1: Example of a basic autoencoder architecture [Wen18].

2.5.1 Types of Autoencoders
Vanilla Autoencoders

Vanilla Autoencoders are the simplest and most basic form of autoencoders. They typically consist of one or
more fully connected (dense) layers in both the encoder and decoder. These models are primarily used for
tasks such as dimensionality reduction, feature learning, and data reconstruction. Due to their straightforward
architecture, vanilla perform well on simple, structured data, but may struggle with more complex patterns.

Convolutional Autoencoders (CAEs)

Convolutional Autoencoders (CAEs) adapt the autoencoder architecture to handle spatially structured data,
such as images, audio spectrograms, and other grid-like data. Instead of fully connected layers, CAEs use
convolutional layers in the encoder and decoder to capture local patterns and spatial hierarchies.

Reconstructed
__fnput

LA

Minimisation of the

=’
A
%

Conv Up Conv| Conv
L ] L J
Encoder Decoder

Figure 2.5.2: Example of a CAE architecture [Gou+21].

The encoder of a CAE consists of convolutional layers to extract spatial features, progressively reducing the
input’s spatial dimensions through pooling or strided convolutions. The decoder uses transposed convolutional
layers to upsample the latent representation and reconstruct the input.

LSTM Autoencoders (LSTMAEs)
LSTM Autoencoders (LSTMAEs) are designed for sequential data, such as time series, text, and speech.
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They combine the autoencoder architecture with LSTM cells to capture temporal dependencies and patterns
in the data. An LSTM network is used in both the encoder and decoder to process sequential data, with the
encoder compressing the input sequence into a latent representation using the last hidden state output and
then the decoder then reconstructs the original sequence from this latent representation.

Reconstruction loss

Encoder Decoder

LSTM LSTM LSTM LSTM

X = e e E S <

Figure 2.5.3: Example of a LSTMAE architecture [Lee-+24].

2.5.2 Variational Autoencoders (VAEs)

Variational autoencoders (VAEs) are a type of autoencoder that learns a probabilistic latent space represen-
tation of the input data. They are trained to maximize the likelihood of the input data under the learned
latent space distribution, which is typically a Gaussian distribution. Additionally, VAEs are designed to
generate new data points by sampling from the learned latent space, making them suitable for generative
modeling tasks [CCM24].

Architecture

e Encoder: Maps the input = to a distribution in the latent space, producing the mean p and variance
o? of the distribution.

e Latent space sampling: Samples latent representations z from the learned distribution using the
reparameterization trick:
z=p+o-e€ (2.5.3)

Where € ~ AN (0,1) is a random noise from a standard normal distribution.

e Decoder: Reconstructs the input from the sampled latent representation.
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Figure 2.5.4: Example of a VAE architecture [Wen18].
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Loss Function

The loss function of a VAE consists of two components: the reconstruction loss and the KL divergence loss.
Similar to traditional autoencoders, the reconstruction loss measures the difference between the input and
the reconstructed output, while the KL divergence loss regularizes the latent space distribution to be close
to a standard Gaussian distribution.

The Kullback-Leibler (KL) Divergence is a measure of how one probability distribution ¢(z|z), the posterior
distribution learned by the VAE, differs from a second probability distribution p(z), typically a standard
normal distribution. The KL divergence between two distributions ¢(z|z) and p(z), for the case of a spherical
isotropic Gaussian distribution, is given by:

K
> (07 + pf —log(o?F) — 1) (2.5.4)

i=1

N | =

Drer(q(zl2)p(2)) =

Where:
e 4; and o; are the mean and standard deviation of the latent distribution for the i-th dimension.
e K is the dimensionality of the latent space.

The total loss of a VAE is the sum of the reconstruction loss and the KL divergence loss:

Lvar = Lreconstruction + B . DKL((](Z|9€)HP(Z)) (255)

Where § is a hyperparameter, introduced in B-VAEs [Hig+17], that controls the trade-off between the two
losses.

2.6 Anomaly Detection

Anomaly detection is a critical area in machine learning that focuses on identifying patterns or observa-
tions that deviate significantly from the expected behavior or norm. These anomalies, often referred to as
outliers, can represent rare but important events, such as system failures, fraud, or health-related abnormal-
ities. The ability to detect such deviations is essential across various domains, including finance, healthcare,
manufacturing, and cybersecurity.

Traditional anomaly detection methods include statistical approaches (e.g., Z-score analysis), clustering tech-
niques and supervised ML models, such as Support Vector Machines (SVMs). However, with the rise of au-
toencoder architectures, anomaly detection has seen significant advancements in recent years. Autoencoders,
in particular, have proven to be an effective unsupervised learning approach in capturing complex patterns
and identifying anomalies in high-dimensional data.

A typical autoencoder-based anomaly detection system includes the following steps:

e Learning Normal Patterns: The autoencoder is trained solely on data representing normal condi-
tions, allowing the model to learn to encode and reconstruct the structure of normal inputs.

e Defining Anomalies: Once trained, the model reconstructs new unseen data samples, and an anomaly
score is computed based on the difference between the original and reconstructed input. Common scores
include MSE between input and reconstruction, Mahalanobis distance of reconstruction errors, or KL
divergence in the latent space.

e Thresholding for OQutlier Detection: A threshold is defined to distinguish anomalies from normal
samples. This threshold can be set empirically or based on statistical analysis of reconstruction errors.
In practice, models are evaluated using ROC-AUC scores, which provides a threshold-independent
performance metric.
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3.1 Relapse Detection in Mental Health

3.1.1 Digital Phenotyping

As mentioned in 1.2, digital phenotyping is an emerging approach that takes advantage of passive data
collection from smartphones and wearables to monitor behavioral and physiological patterns, offering new
possibilities for mental health care. It enables the continuous and unobtrusive tracking of individuals, cap-
turing real-time insights into mood, behavior, and cognitive function. Various physiological signals, such as
heart rate variability, movement patterns from gyroscope and accelerometer sensors, and behavioral data
from smartphones, including phone usage duration and social communication metrics, provide valuable indi-
cators of stress levels, mood states, and cognitive decline [Adl+20; Tkd+24; Osm-+15]. By providing objective
and scalable data, digital phenotyping addresses limitations in traditional subjective clinical evaluations such
as interviews, self-reports, and questionnaires, paving the way for more effective mental health monitoring
and early intervention [AMC17].

Supervised Machine Learning Approaches

Several studies have demonstrated the potential of digital phenotyping for predicting relapse and monitoring
mental health conditions through passive smartphone data collection. A pilot study on digital phenotyping
[Bar+18] has demonstrated the potential of smartphone-based phenotyping to predict relapse in schizophrenia
patients. Using the Beiwe app, the researchers collected passive data, such as mobility and communication
patterns, and active self-reported symptom data from seventeen (17) participants over three months. The
findings revealed that behavioral anomalies, detected through smartphone use, increased by 71% in the
two weeks leading to relapse. This approach highlighted the potential of smartphones as low-cost, scalable
tools for real-time mental health monitoring, offering critical early warning signs that could prompt timely
interventions.

The study by Osmani et al. [Osm+15] involved twelve (12) patients with bipolar disorder who were moni-
tored for an average of 12 weeks using smartphones equipped with accelerometers, GPS, and voice analysis
capabilities. The study demonstrated that sensor data, such as physical activity and location patterns, could
predict the state of the patient with up to 81% accuracy while the fusion of phone and sensor modalities
could detect episode changes with 94% precision and 96% recall, by using traditional classification methods
such as Naive Bayes and k-Nearest Neighbors.

Similarly, the study by Ikaheimonen et al. [Ikd+24] explored the potential of passive smartphone data
to predict and monitor depression symptoms. Thirty-two (32) behavioral markers were identified, including
GPS location, app usage, communication logs, and battery levels, collected from ninety-nine (99) participants
participants over one year. By combining this data with biweekly survey scores, the study used supervised
ML approaches, such as XGBoost [CG16], achieving up to 82% accuracy in detecting depression and 75%
accuracy in predicting depression state transitions. Significant predictors included screen-on time, app usage,
and total distance traveled, highlighting behavioral patterns associated with depressive states.

Although the results were promising, these studies faced several challenges. Small sample sizes and short
monitoring periods limited the generalizability of the findings, emphasizing the need for larger, long-term
datasets to validate the results. Additionally, the last study [Ik&+24] highlighted the need for developing per-
sonalized models, applying temporal modeling techniques, and integrating deep learning methods to enhance
the robustness and performance of predictive models.

Unsupervised Machine Learning Approaches

The CrossCheck system [Adl+20] represents a significant advancement in leveraging smartphone-based pas-
sive sensing for monitoring and managing symptoms of serious mental illnesses, particularly Schizophrenia
Spectrum Disorders (SSDs). CrossCheck collected continuous behavioral data from participants using pas-
sive smartphone sensors alongside occasional self-reported assessments. The primary objective was to explore
how unobtrusive digital phenotyping could detect early warning signs of psychotic relapse, enabling timely
clinical interventions. The behavioral data collected from sixty (60) individuals with SSDs, eighteen (18) of
whom experienced relapses, included the following:
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Physical Activity: Measured using accelerometer data.

Phone Usage: Patterns of app usage, text messaging, and screen activity.

Social Interaction: Frequency and duration of calls and detected conversations.

Geolocation: Movement patterns and time spent at different locations.

Sleep Metrics: Estimation of sleep onset, duration, and wake times.

Daily behavioral features were extracted from the passive data, such as mean acceleration, call activity
(number and duration of incoming, outgoing, missed, rejected, and blocked calls), conversation frequency
and duration, location data (time spent in primary and secondary locations, total distance traveled), screen
activity (frequency and duration of phone use), sleep metrics (duration, onset, wake time), and text messaging
behavior (number of received, sent, drafted, failed, and queued messages).

The study employed autoencoders for anomaly detection, leveraging their ability to reconstruct patterns
of "healthy" behavior and flag deviations as potential anomalies. Specifically, a FNN and a GRU-based
sequence-to-sequence (Seq2Seq) AE, as shown in Figure 3.1.3, were trained on the data to detect behavioral
anomalies indicative of relapse. Both models were trained exclusively on data from "healthy" periods to
establish a baseline of normal behavior. The reconstruction errors were then analyzed to detect anomalies
in the days leading up to relapse. A baseline comparison with the Local Outlier Factor (LOF) algorithm
[Bre+00] provided additional context for the models’ performance, highlighting the robustness of neural
network approaches in identifying subtle behavioral shifts.
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Figure 3.1.3: Autoencoder architectures used in the CrossCheck system for anomaly detection
[Ad1+20].

The models were optimized using varying hidden layer configurations and training dataset sizes, with the
FNN-AE achieving the best results with 40 hidden units and 80% training data, achieving a median sensitivity
of 0.25 and specificity of 0.88.

CrossCheck demonstrated the potential of passive sensing to identify behavioral changes preceding relapse.
For instance, significant reductions in physical activity and altered communication patterns often marked the
near-relapse period. However, challenges such as missing data, variability in individual behaviors and the
need for personalized models were identified as areas for future research.

3.1.2 Speech-Based Relapse Detection

As a natural and unobtrusive medium, speech serves as a rich source of markers that reflect cognitive, emo-
tional, and behavioral states, with features such as pitch, intensity, and prosody revealing mood fluctuations
and can be used to detect early signs of relapse in mental health disorders [LBG20; Fau-+16].
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Detecting Manic State of Bipolar Disorder Based on Support Vector Machine and Gaussian
Mixture Model Using Spontaneous Speech

The study by Pan et al. [Pan+ 18] investigated the use of machine learning techniques to detect manic states
in patients with bipolar disorder based on their spontaneous speech. The study involved twenty-one (21)
hospitalized patients, all diagnosed with bipolar disorder and and having experienced a manic episode during
the course of the study. Speech data from conversations between patients and clinicians was collected using
a smartphone, ensuring that the calls took place in a controlled, sound-insulated environment. Each patient
provided multiple recordings, capturing both manic and euthymic states.

The extracted speech features were categorized into two groups: (i) prosodic, which included pitch and
formants and (ii) spectral, such as Mel-Frequency Cepstral Coefficients (MFCCs), Linear Prediction Cepstral
Coefficients (LPCCs) and Gammatone Frequency Cepstral Coefficients (GFCCs).

A Support Vector Machine (SVM) and a Gaussian Mixture Model (GMM) were trained on the speech features
to classify manic and euthymic states. The models were evaluated in two settings:

e Single-Patient Detection: The SVM model outperformed the GMM, achieving an average accuracy
of 88.56% compared to GMM’s 84.46%. This demonstrated the efficacy of SVM in scenarios with
smaller datasets and individualized patterns.

e Multiple-Patient Detection: The GMM excelled in this context, with an accuracy of 72.27%, sig-
nificantly higher than SVM’s 60.87%. GMM’s generative nature made it better suited for capturing
variability across a larger, diverse dataset.

The results highlighted the distinct advantages of both models: SVM for personalized, small-scale applica-
tions, and GMM for broader, population-level predictions. The study emphasized the potential of speech
analysis as a non-invasive tool for monitoring mood states in bipolar disorder, paving the way for integrating
machine learning into clinical practices for mood disorder management. The researchers also noted the need
to explore additional speech features and mood states.

Attention-based Convolutional Neural Network and Long Short-term Memory for Short-term
Detection of Mood Disorders based on Elicited Speech Responses

Another novel study by Huang et al. [HWS18] proposed a methodology for the short-term detection of mood
disorders, including unipolar depression and bipolar disorder, using elicited speech responses. Participants
watched six (6) emotion-eliciting videos that triggered emotions such as happiness, sadness, and anger,
followed by interviews where their speech responses were recorded and analyzed.
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Figure 3.1.4: Example of mood shifts in unipolar depression and bipolar disorder
[Wu+23].

Two databases were collected and utilized for training and evaluation in this study: (i) the CHI-MEI Mood
Disorder Database, which contained elicited speech responses from forty-five (45) participants (fifteen (15)
with bipolar disorder, fifteen (15) with unipolar depression, and fifteen (15) healthy controls) and (ii) the
Multimedia Human-Machine Communication (MHMC) Emotion Database, a labeled dataset of emotional
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expressions. Due to the complexity of labeling the diverse emotions in the CHI-MEI database, the MHMC
dataset was used to train a model for generating emotion profiles (EPs).

For the CHI-MEI database, speech data were collected after participants viewed 6 carefully selected emotion-
eliciting videos, each designed to evoke happiness, sadness, anger, fear, surprise, or disgust. Participants
then answered five (5) emotion-related questions in an interview setting. To bridge the gap between the
labeled emotion data (MHMC) and the unlabeled mood disorder data (CHI-MEI), the Hierarchical Spectral
Clustering (HSC) algorithm [Liu+13] was employed. This process adapted the emotion database into the

mood disorder space by iteratively aligning clusters of features, addressing the inherent bias in transferring
knowledge between domains.
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Figure 3.1.5: Example of mood disorder database structure for each speech response
after watching corresponding emotion-eliciting video [HWS18].

Modeling Emotional Profiles

To extract localized emotional features from each speech response, the study implemented an Attention-based
CNN. The CNN architecture included convolutional layers to capture short-term emotional characteristics
within speech signals, pooling layers for dimensionality reduction and fully connected layers to output the
Emotion Profiles (EPs). These EPs provided a vector representation of the local intensity and variation of
emotions expressed during each response. An attention mechanism enhanced the CNN by weighting parts

of the speech response that were most relevant to the emotional context, ensuring that crucial features were
emphasized during the EP generation process.
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Figure 3.1.6: Proposed architecture of the Attention-based CNN for generating EPs
[HWS18].
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Temporal Analysis of Emotion Profiles

While CNNs captured the local features of individual speech responses, the study recognized the importance
of modeling the temporal progression of emotions across all six responses. To achieve this, an LSTM network
was employed. The LSTM captured the sequence of EPs, modeling the evolution of emotional patterns over
time. Prior to feeding the EP sequences into the LSTM, an Multilayer Perceptron (MLP)-based attention
model was employed to refine the weights of the video-based responses. The MLP assigned importance to each
video-based response (consisting of concatenated question-based EPs) by evaluating their relevance to mood
disorder detection. Finally, the LSTM processed the weighted EP sequences, generating a final prediction of
the participant’s mood disorder state.
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Figure 3.1.7: Proposed architecture of the MLP-based attention model [HWS18].
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Figure 3.1.8: Proposed architecture of the LSTM-based mood disorder detection
model with attention [HWS18§].

The proposed methodology combining Attention-based CNNs and LSTM networks demonstrated a supe-
rior performance for mood disorder detection, achieving an overall accuracy of 75.56%. This significantly
outperformed traditional classifiers such as SVMs and CNN-based models without temporal analysis. The
study also found that emotion-eliciting videos designed to provoke anger, sadness, and disgust resulted in
more accurate mood disorder detection compared to other emotions like fear or happiness. Additionally, the
attention-enhanced LSTM network provided a critical advantage by modeling the temporal progression of
emotional states across responses, validating the importance of sequence-level analysis.
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Figure 3.1.9: Overview of the proposed mood disorder detection system framework
[HWS18].

Detecting Abnormal Mood using Everyday Smartphone Conversations

In the study by Gideon et al. [Gid+19], reserachers proposed a novel approach for detecting abnormal
mood states in individuals with bipolar disorder using everyday smartphone conversations. Additionally,
this research is part of the PRIORI (Predicting Individual Outcomes for Rapid Intervention) project, which
focuses on passive mood monitoring using natural phone conversations, emphasizing the prediction of when
clinical intervention is necessary.

The study utilized the PRIORI dataset [Kho+ 18|, which included 51,970 phone calls (approximately 3,997
hours) from fiftly-one (51) individuals with bipolar disorder and nine (9) healthy controls. Conversations were
passively recorded using smartphones equipped with the PRIORI app, and data were labeled using clinical
mood assessments such as the YMRS [You+78] and Hamilton Depression Rating Scale (HDRS) [Ham76].

Clinical
Interviews

i (For Training)

Clinicians

. All Phone Extracted Mood
Speech Recordings Features Predictions
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Figure 3.1.10: Overview of the proposed system [Gid-+19].

After data collection, the following features were extracted from the phone conversations:

e Emotion Features: Emotion-related data were extracted from speech using a Multiclass Adversar-
ial Discriminative Domain Generalization (MADDoG) model [GMP19] trained on multiple emotion
datasets. This model identified levels of emotional intensity (activation) and positivity or negativity
(valence) in the speaker’s voice. These emotion levels were summarized into statistics like averages,
maximums, and ranges across each call or day, providing a detailed picture of how emotions changed
during conversations.

e Transcript Features: Linguistic features, such as word choice, sentence structure, speaking speed
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and pauses were analyzed using an automatic speech recognition (ASR) tool. The use of emotional
words, grammar patterns and speech timing were also analyzed.

Temporal Normalization (TempNorm)

The study introduced an algorithm called Temporal Normalization (TempNorm) to adapt to individual mood
baselines and detect mood abnormalities by learning and adapting to an individual’s unique mood baseline
over time. The algorithm starts with a general population baseline and updates it dynamically using an
exponentially weighted moving average (EMA) and exponentially weighted moving variance (EMVar). A
half-life parameter controls how quickly the algorithm adapts: shorter half-lives make it more sensitive to
recent changes, while longer half-lives create a more stable baseline by incorporating a larger history of data.

A Dense Neural Network (DNN) was employed to predict mood abnormality ratings based on TempNorm-
processed features. The DNN incorporated a TempNorm layer within its architecture to align feature spaces
with personalized mood baselines.
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Figure 3.1.11: Proposed DNN model architecture with TempNorm layer [Gid+19].

The above methodology achieved Unweighted Average Recall (UAR) scores of 0.70 for structured clinical
conversations and 0.68 for unstructured personal conversations. Transcript-based features performed best
for clinical calls, likely due to the structured nature of these conversations, while emotion features worked
well across both structured and natural speech. The results highlighted the importance of adapting models
to individual baselines for improved anomaly detection. However, the study faced challenges, including
balancing sensitivity and stability in the TempNorm algorithm through the half-life parameter, where shorter
half-lives risked overfitting to recent fluctuations and longer ones delayed adaptation. The researchers also
noted variability in data quality, such as transcription errors and noise in personal calls, which impacted
performance. Despite these challenges, the study paved the way for personalized mood monitoring systems
and emphasized the need for further work on including additional features.

The studies reviewed highlight the significant role of speech analysis in predicting relapses in mental health
disorders, particularly bipolar disorder, schizophrenia, and depression. The various machine learning tech-
niques applied to spontaneous, elicited, and natural speech conversations have demonstrated promising results
in identifying mood fluctuations, and early warning signs of relapse. Key findings include the effectiveness of
prosodic and spectral speech features in distinguishing between manic and euthymic states, the advantage of
deep learning models such as CNNs and LSTMs in modeling emotional progression, and the ability of auto-
matic speech recognition (ASR) tools to extract linguistic and acoustic markers relevant to mood disorders.
Furthermore, personalized models such as those using Temporal Normalization (TempNorm) have shown
the importance of adapting to individual speech baselines to improve relapse detection accuracy. Despite
challenges such as data variability, and the need for larger datasets, speech remains a non-invasive, scalable,
and objective marker for early relapse detection.

3.2 Modality Fusion in Mental Health

Mental health conditions can manifest across multiple aspects, such as behavior, speech, and physiological
responses, making multimodal analysis a valuable tool for detecting, assessing, and monitoring these condi-
tions. By integrating multiple data types, such as audiovisual signals, textual information and behavioral
patterns, multimodal approaches can provide a greater understanding of mental health states and enable
more accurate predictions of episodes or relapses.
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3.2.1 Audiovisual and Textual Feature Fusion

The integration of audiovisual and textual features has been extensively explored in mental health research to
enhance the detection of conditions such as depression. The DAIC-WOZ dataset [Rin+17] serves as the pri-
mary dataset in many studies focused on depression detection. It consists of 189 clinical interviews annotated
with PHQ-8 scores [BSB96], providing multimodal data, including audio recordings, textual transcriptions
and visual features such as gaze, pose, and facial Action Units (AUs). The dataset captures interactions be-
tween participants and a virtual interviewer, offering rich contextual data for analysis. The following studies
demonstrate the effectiveness of multimodal fusion approaches in depression detection using the DAIC-WOZ
dataset.

The study by Othmani et al. [0Z22], introduces a multimodal system for depression relapse prediction. The
system processes the DAIC-WOZ dataset by extracting audio features using a modified VGGish network
[SZ14] and visual features via a 1D-CNN applied to the AUs. Data fusion occurs at the feature level,
where the extracted high-dimensional audio and visual embeddings are concatenated to form a single feature
vector. These features are passed to a Deep Neural Network (DNN) for depression detection, achieving
78.97% accuracy. An anomaly detection distance-based approach called Model of Normality (MoN) [Abu-+20],
and trained on anomaly-free data, further predicts relapse by measuring similarity between a test subject’s
audiovisual encoding and representations of "depression" and "non-depression" (built from the training data)
achieving up to 82.55% accuracy.
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Figure 3.2.1: Proposed multimodal framework for depression recognition and
depression relapse prediction. [OZM22]

Similarly, the study by Fontinele et al. [Alm+24] proposed a stacking ensemble model for automatic depres-
sion detection (ADD) by combining MFCC-based audio features, OpenFace visual descriptors, and Word2Vec
text embeddings. Individual DNNs trained on each modality were stacked into a meta-classifier, achieving
an F1 score of 0.857 and an AUC of 0.913. The model effectively addressed class imbalance and overfitting
using SVM-SMOTE and dropout regularization.
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Figure 3.2.2: Proposed architecture for multimodal ADD [Alm+24].

In another similar study [Flores2022], the researchers proposed AudiFace, a multimodal deep learning model
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designed to enhance depression screening by integrating audio, text transcripts, and temporal facial features
from clinical interview videos. The model extracts features using pre-trained architectures like VGGish and
BERT [Dev-+19], combined with LSTMs and self-attention. These features are fused through a linear layer for
classification. AudiFace outperformed the state-of-the-art AudiBERT [TTR21], having included the temporal
facial features aspect, in 13 of 15 datasets of the DAIC-WOZ , achieving an average F1 score of 0.71, with
eye gaze features being particularly effective.
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Figure 3.2.3: Proposed AudiFace framework [Flores2022; TTR21].

Finally, in the study by Lam et al. [LHL19], the researchers designed a multimodal fusion model for depression
detection. By integrating context-aware topic modeling with deep learning, the study introduces a data
augmentation framework that generates balanced training datasets from text and audio features. The models
include a 1D-CNN for audio and a fine-tuned Transformer for text, with a feedforward network for multimodal
fusion. The augmented models achieved significant results, with F1 scores of 0.67 for audio, 0.78 for text,
and 0.87 for multimodal fusion.
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Figure 3.2.4: Proposed multimodal model consisting of Transformer and CNN models
[LHL19].

The reviewed studies highlight the effectiveness of combining audiovisual and textual data in depression
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detection and relapse prediction. Feature-level fusion techniques such as concatenation of embeddings have
demonstrated strong performance, while deep learning models incorporating pre-trained architectures, have
further enhanced detection accuracy. Despite these advances, data scarcity and class imbalance, particularly
within DAIC-WOZ, often hinder model performance, necessitating the use of data augmentation and resam-
pling techniques to improve generalizability. Additionally, feature alignment across modalities poses another
major challenge, as mismatched timestamps, inconsistent data quality, and variations in data collection can
disrupt effective fusion and model training.

3.2.2 Physiological and Behavioral Feature Fusion

In addition to audiovisual and textual data, physiological and behavioral features have been integrated to
enhance mental health detection and monitoring. The study by Su et al. [Su+21] presents a smartphone-
based system for assessing bipolar disorder, by predicting the score of HDRS [Ham76] and YMRS [You+78]
scales. The system used heterogeneous digital phenotyping data, including passive (GPS, sleep, mood) and
active (self-reports, text, speech, video) inputs. Weekly data subsets were created to account for behavioral
patterns over different time frames (e.g., weekdays versus weekends) and features were extracted from each
data type, such as GPS entropy, sleep regularity, emotional profiles and self-reported scale scores. Feature
fusion was performed by concatenating combinations of unimodal features into multimodal feature vectors,
resulting in thirty-one (31) possible configurations of data combinations. These feature vectors were used
to train models like Lasso Regression, ElasticNet Regression, Polynomial Regression, and DNNs. Lasso and
ElasticNet Regression achieved the best results, with MAE values of 2.73 for HDRS and 1.06 for YMRS.
While feature fusion enhanced performance, challenges like data scarcity, handling missing data, and selecting
the most predictive features could be areas for future improvement.
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Figure 3.2.5: Proposed system framework for HDRS and YMRS prediction [Su+21].

3.2.3 Textual, Behavioral and Visual Feature Fusion

The study by Wang et al. [Wan+22] introduced FusionNet, a multitask learning framework designed to
detect depression on online social networks (OSNs) using heterogeneous modalities, including text, social
behavior (e.g. tweets and posting behavior) and image data. The proposed framework is evaluated using
the developed Weibo User Depression Detection Dataset (WU3D), containing 10,325 depressed users and
22,245 normal users. The developed FusionNet model processes word embeddings generated by XLNet
[Yan+19], along with manually engineered statistical features, including text-based linguistic patterns, social
behavior metrics, and image-based color characteristics. The model integrates these modalities by a Bi-
GRU model with attention layers followed by concatenation with statistical features for classification. A
multitask loss function optimizes two objectives simultaneously: text-based feature classification and overall
depression classification. The framework demonstrated superior performance, achieving an F1-score of 0.977,
outperforming both traditional machine learning models (SVM, Random Forest) and deep learning models
(CNN-1D, Bi-LSTM) trained on unimodal data. FusionNet also showed robustness to dataset imbalance,
with the lowest intra-group F1-score variance (IFV) among tested models. Despite its strong performance, the
study faces challenges such as data imbalance, feature misalignment across modalities, limited generalizability
to other platforms, lack of interpretability, and reliance on static feature extraction, highlighting the need
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for more diverse datasets, improved multimodal synchronization, and dynamic behavioral modeling in future
research.
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In conclusion, the integration of diverse data modalities in mental health has demonstrated significant po-
tential to enhance the accuracy and robustness of detecting and monitoring conditions such as depression
and bipolar disorder. By combining audiovisual, textual, physiological and behavioral data, multimodal ap-
proaches leverage the complementary strengths of each modality to provide deeper insights into mental health
states. However, challenges persist across all modalities, including data scarcity and imbalance, feature align-
ment and the computational complexity of integrating heterogeneous data. Addressing these issues requires
larger, more diverse datasets, improved feature extraction methodologies and advanced fusion strategies.
Additionally, despite advancements in integrating audio, textual, and visual data, the combined analysis of
audio and biometric data remains unexplored, presenting significant opportunities for future research.

3.3 Anomaly Detection in Audio Data

Detecting anomalies in audio signals is a challenging task due to the complexity and variability of sound
patterns, which can be influenced by environmental factors, background noise, and signal distortions. Deep
learning models, particularly autoencoders, have shown promise in capturing intricate audio features and
learning complex temporal patterns, making them well-suited for anomaly detection tasks.

The study by Coelho et al. [Coe+22] explored the use of deep autoencoders for unsupervised Acoustic
Anomaly Detection (AAD), comparing a Dense Autoencoder (Dense AE), Convolutional Autoencoder (CNN
AE), and Long Short-Term Memory Autoencoder (LSTMAE) on industrial machine monitoring and in-vehicle
anomaly detection. For the industrial machine monitoring task, two public datasets were used, namely the
ToyADMOS dataset [Koi+19] and the MIMII dataset [Pur+19], which contain normal and anomalous audio
signals from various machines. For the in-vehicle anomaly detection task, a synthetic dataset was generated
to simulate real-world conditions, including anomalous scenarios (people arguing, breaking a window, and
coughing), as well as normal activities (reading a book, singing, talking, and using a smartphone). It also
accounted for real-world variations such as different vehicle sizes, background noise levels (radio on/off),
and environmental factors (windows open/closed, multiple passenger positions). Mel Frequency Energy
Coefficients (MFECs) were extracted from the audio signals to represent the audio features, and the models
were evaluated based on ROC-AUC and partial AUC (pAUC) metrics. Results demonstrated that the
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proposed models achieved strong anomaly detection performance, with AUC values ranging from 72% to
91% for industrial applications and 78% to 81% for in-vehicle scenarios. The LSTMAE model exhibited the
best performance in detecting in-vehicle anomalies, particularly cough detection, which was further validated
in a real-world pilot demonstration, achieving up to 100% accuracy in specific conditions. Therefore, the
study highlighted that deep autoencoders, particularly the LSTM AE, are effective for unsupervised AAD in
industrial and in-vehicle applications; however, challenges such as computational complexity and sensitivity to
real-world noise variations were noted, along with the need for further exploration of Variational Autoencoders
(VAEs) and Generative Adversarial Networks (GANSs) to enhance performance.

A similar approach was taken by Bayram et al. [BDI20|, who proposed a real-time AAD system for in-
dustrial processes using sequential autoencoders, specifically comparing a Convolutional Long Short-Term
Memory Autoencoder (Conv-LSTMAE) with a Convolutional Autoencoder (CAE). The study utilized a cus-
tom dataset comprising industrial sounds, such as painting, cutting, welding, and robotic arm movements,
along with synthetic anomaly sounds like explosions, fires, and glass breaking, mixed at various signal-to-
noise ratios (SNRs). Mel-spectrograms were extracted as input features, and a sliding window approach
was applied to process streaming audio in real-time. Results demonstrated that Conv-LSTMAE consistently
outperformed CAE, especially in low-SNR environments, where it achieved higher anomaly detection accu-
racy. Glass breaking was the most distinguishable anomaly, whereas explosions and fires were more difficult
to detect due to spectral overlap with industrial noise. This study validated the effectiveness of sequential
autoencoders for real-time anomaly detection in manufacturing environments and suggested the integration
of online learning techniques to improve adaptability to evolving acoustic patterns.

Extending the application of LSTM-based autoencoders, Mobtahej et al. [Mob+22] focused on anomaly
detection in natural gas compressor systems, identifying deviations in operational signals. Their LSTM Au-
toencoder (LSTMAE) utilized LSTM layers to encode and decode sequential audio data, learning compact
latent representations of normal operating conditions. The dataset, comprising 12,190 audio samples (8,559
normal and 3,631 anomalous), included spectral centroid and Mel-spectrogram features. The LSTM AE
model achieved 100% accuracy, precision, recall, and F1 score, significantly outperforming baseline models
such as GRU, LSTM, and Stacked LSTM, which were less effective at modeling high-dimensional features.
Despite challenges such as class imbalance and high feature dimensionality, the model proved robust, high-
lighting its potential for automated anomaly detection.
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Figure 3.3.1: Proposed architecture for anomaly detection and classification using
LSTM-AE [Mob-+22].
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In conclusion, the reviewed studies demonstrate the effectiveness of deep autoencoders, particularly LSTM-
based models, for anomaly detection in audio data across various applications, highlighting their ability to
capture complex temporal patterns in audio signals. While these models have been successfully applied to
industrial environments, their potential could be explored in the context of detecting anomalies speech for
mental health monitoring.

3.4 The e-Prevention Project

The e-Prevention project [Zla+22| is a long-term initiative aimed at advancing electronic health services
to support the effective monitoring and relapse prevention of mental disorders, specifically bipolar disorder
and schizophrenia. Spanning over three years, the project has developed an innovative integrated system to
provide continuous, objective monitoring of patients’ mental states. Through this system, the project aspires
to identify key markers and features that correlate with mood and psychopathological changes, enabling early
detection and prevention of relapses.

The e-Prevention System

The e-Prevention system consists of three primary components. First, a non-intrusive smartwatch facilitates
the long-term monitoring of biometric and behavioral indices, including heart rate variability, physical activ-
ity, and movement patterns. Second, a portable tablet installed in patients’ homes records short audio-visual
clips during clinician interviews, capturing social features such as speech patterns and facial expressions. Fi-
nally, all collected data is automatically stored on a secure cloud server, creating a centralized repository for
analysis. This multimodal approach reflects the integration of digital phenotyping, where diverse, real-time
data streams are analyzed to understand the dynamic nature of physiological and behavioral signals. The
system’s architecture is illustrated in Figure 3.4.1.

Data Collection

et Cloud Data.
. i, Upload Storage Analysis —
Ey g . Ees

Medical
Intervention

Figure 3.4.1: e-Prevention system overview [Zla+22].

Data Collection and Statistical Analysis

The project utilized smartwatch devices to collect biometric data, including heart rate variability (HRV),
accelerometer, and gyroscope readings from twenty-three (23) healthy control volunteers and twenty-four (24)
patients. Statistical analyses of this data, using features mentioned in 2.2, revealed significant distinctions
in physiological and behavioral markers between the patients and the healthy controls, some of which are
illustrated in Figure 3.4.2. For instance, patients displayed higher variability in movement patterns during
wakefulness, likely reflecting increased agitation or impulsivity. During sleep, the mean and variability of
the energy (accelerometer, and gyroscope) was notably reduced in patients, which could be attributed to
the sedative effects of medication. These insights formed the foundation for feature selection and machine
learning models in relapse detection.

Relapse Detection Using Autoencoder Architectures

A variety of machine learning models were implemented to evaluate their effectiveness in detecting anomalies
and predicting relapse using data from both smartwatch sensors and speech recordings. For the biometric
data, several autoencoder architectures were tested, including Fully Connected Neural Networks (FNNs),
CNNs, GRUs, and Transformers. The results highlighted the advantages of personalized models, which were
adapted to individual patients’ unique data patterns. Notably, the models performed particularly well for
patients experiencing moderate to severe relapses, as their physiological and behavioral markers exhibited
stronger deviations compared to those with milder symptoms. Among the tested models, the CNN model
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Figure 3.4.2: Example of boxplots for selected biometric features of patients and
controls [Zla+22].

achieved the best performance in the personalized setting, while the FNN model performed the best in the
global configuration, corresponding to a single model trained on all patients’ data.

For speech data, the performance of CAE (Figure 3.4.3) and CVAE models was evaluated, focusing on
their ability to extract meaningful features from mel-spectrograms using speech recordings from eight (8)
patients. Similar to the biometric models, personalized approaches yielded better results overall, with CVAESs
demonstrating superior performance in the global setting. This finding prompted the integration of the VAE
architecture with the CNN biometric model, leading to an improvement in the global scheme and indicating
decreased dependency on person-specific speech properties.
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Figure 3.4.3: Overview of proposed CAE architecture for audio data [Gar+21].

Finally, the integration of results from the biometric and speech models in a single predictive framework high-
lighted the effectiveness of multimodal analysis. Combining physiological signals with vocal features through
additive fusion improved predictive performance, demonstrating the value of leveraging complementary data
sources. These results underscore the potential of multimodal approaches in accurately predicting relapses.

Future Directions

The e-Prevention system has made significant adavances in the successful prediction of possible relapses
in patients with bipolar disorder and schizophrenia. However, approaches to further enhance the system’s
performance could be explored. Expanding the dataset to include more patients and controls would pro-
vide a broader range of data for training and validation, potentially improving the models’ generalizability.
Additionally, the further refinement of multimodal fusion techniques could enhance the system’s predictive
capabilities by leveraging the complementary nature of biometric and speech data. As mentioned in 1.3, this
thesis aims to build upon the e-Prevention project’s work by implementing the aforementioned improvements
and exploring other autoencoder configurations with additional data sources.
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4.1 Data Collection

Participant Recruitment and Assessment

Participants for the e-Prevention project [Zla+22|, comprising both control subjects and patients, were
recruited at the University Mental Health, Neurosciences and Precision Medicine Research Institute “Costas
Stefanis” (UMHRI) in Athens, Greece. The recruitment process adhered to ethical standards, with written
consent obtained from all participants in accordance with the provisions of the General Data Protection
Regulation (GDPR) 2016/679.

In the initial phase of the project, twenty-three (23) healthy control participants were recruited and monitored
for approximately three months. In the subsequent phase, thirty-nine (39) patients diagnosed with bipolar
disorder or schizophrenia spectrum disorders (SSD) were recruited.

Prior to recruitment, clinicians conducted detailed assessments of all participants, lasting approximately 180
minutes. These assessments included the collection of demographic information (age, sex, education, occupa-
tion, marital status, place of birth and residence), physical and mental health histories and neuropsychological
evaluations.

Data Collection and Monitoring

Data ware collected through wearable devices and clinical interviews. Weekly unstructured interviews, av-
eraging 5—10 minutes each, were conducted via a dedicated web application or telephone. These interviews
assessed participants’ physical activity using the Greek version of the International Physical Activity Ques-
tionnaire (IPAQ-Gr) [Pap+09]. Video recordings were anonymized and securely stored on a cloud server for
further analysis. For the collection of biometric data, participants wore Samsung Gear S3 Frontier smart-
watches, which continuously recorded physiological and behavioral data. The mesurements included heart
rate and movement activity during both wakefulness and sleep (accelerometer and gyroscope data).

Clinical Follow-Up and Relapse Evaluation

For patients, follow-up assessments were conducted monthly to evaluate clinical status and relapse severity.
These assessments included:

e Psychopathology: Positive and Negative Syndrome Scale (PANSS) [KFOS87b].
Disability: WHO Disability Assessment Schedule 2.0 (WHODAS 2.0) [Ust+10].
Side Effects: Glasgow Antipsychotic Side-effect Scale (GASS) [WTO08]

Motor Symptoms: Abnormal Involuntary Movement Scale (AIMS) and Simpson-Angus Scale (SAS)
[Guy76; SATO|

e Additional Metrics: Body Mass Index (BMI) and a computerized go/no-go task to assess cognitive
functioning.

Relapse evaluation involved the following methods:

e Monthly assessments to identify the duration and severity of relapses (categorized as low, mid, or
severe).

e Monthly administration of psychopathological scales.

e Communication with attending physicians, family members, or caregivers, as well as hospital records
(if hospitalization occurred).

Relapse data, including severity and classification (e.g., psychotic or non-psychotic), were systematically
documented and stored in a secure web portal for further analysis.
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4.2 Audio Dataset

4.2.1 e-Prevention Audio Database

The audio database consists of audio recordings of short interviews between patients and clinicians, captured
via the e-Prevention app. Initially, the database included interview data from 16 patients recorded between
May 2020 and December 2021, consisting of individuals with diagnoses of schizophrenia (8), bipolar disor-
der I (5), schizoaffective disorder (1), schizophreniform disorder (1) and Bipolar disorder II (1). Of these
participants, 8 patients experienced a relapse during the e-Prevention study period.

Each recording was annotated based on the patient’s condition at the time of the interview as follows:
e Clean: No relapse detected.
e Pre-relapse: Interviews recorded up to 28 days prior to the appearance of a relapse.
e Relapse: Interviews where the patient was confirmed to be relapsing.

Both relapse and pre-relapse data were considered anomalous for the purposes of anomaly detection.

4.2.2 e-Prevention Audio Database Expansion, Preprocessing and Feature Ex-
traction

The initial step in our research involved expanding the e-Prevention audio database by incorporating ad-
ditional interviews from both existing and new patients. This expansion included data from patients who
experienced a relapse after December 2021, as well as previously excluded data from patients with isolated
recordings up to that date. The same pipeline used to create the original database was applied to this
expansion, encompassing the processes of audio preprocessing, speaker diarization, and feature extraction.

Audio Preprocessing

Since the audio recordings were coming from video files, the audio was extracted and downsampled to 16
kHz to ensure uniformity across all recordings.

Speaker Diarization

To separate the speech segments of the patients from those of the clinicians, we employed the the x-vector
diarization pipeline provided by the Kaldi toolkit [Sny-+18; Pov-+11]. The x-vector diarization pipeline uses
Mel-Frequency Cepstral Coefficients (MFCCs) as input to a pre-trained neural network to extract speaker-
specific embeddings (x-vectors). These embeddings are grouped into separate clusters, resulting in distinct
speaker segments and ensuring accurate isolation of patient speech from other sources.

Feature Extraction

The diarized audio segments were then processed to extract acoustic features for each speaker. For each
utterance, a log mel-spectrogram (2.1.4) was computed using Librosa [McF+15]|, a Python library suited for
audio signal processing, with the following parameters:

e Frame length: 512 samples (=~ 30 ms)
e Hop length: 256 samples (=~ 15 ms)
e Number of mel bands: 128

The log mel-spectrogram was then sliced into fixed-length segments of 64 frames (= 1 second), resulting in
a 128x64 feature representation for each second of speech.

After applying the pipeline mentioned above to the additional patients data, the extended database includes
data from patients who experienced a relapse up to May 2022. Additionally, the expanded database containes
a total of 555 interviews from 18 patients, with diagnoses of schizophrenia (9), bipolar I disorder (6), schizoaf-
fective disorder (1), schizophreniform disorder (1) and bipolar II disorder (1), compared to the original 474
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Figure 4.2.1: Example of a log mel-spectrogram computed from a patient’s utterance.

interviews from 16 patients. Between the two additional patients, one experienced a relapse during the study
period, while the other did not. Therefore, the extended database now includes 9 patients who experienced
a relapse during the study period, compared to the original 8 patients. This expansion also increased the
total number of utterances to 16,917, with 735 minutes of diarized speech, compared to the original 14,562
utterances and 635 minutes of diarized speech. The updated database now contains 477 clean interviews, 27
pre-relapse interviews and 42 relapse interviews, in contrast to the original 396 clean, 26 pre-relapse and 36
relapse interviews.

Detailed information about patient demographics, illness details and speech data statistics for both the
original and expanded datasets, involing only the relapse patients, can be found in Table 4.1.

Original Database

Extended Database

Demographics

Male/Female 3/5 4/5
Age (years) 289 £ 7.7 281+ 76
Education (years) 13.5 £ 1.9 13.3 £ 1.9
Illness duration (years) 7T0+75 6.6 + 7.2
Recorded Data

Num. of Interviews (clean, total) 162 192
Num. of Interviews (clean, mean =+ std) 20.3 £ 8.1 21.3 £ 9.8
Num. of Interviews (pre-relapse, total) 26 27
Num. of Interviews (pre-relapse, mean + std) 3.3+ 21 3.0+ 2.1
Num. of Interviews (relapse, total) 36 42
Num. of Interviews (relapse, mean =+ std) 4.5 + 2.7 4.7 £ 2.7
Num. of Utterances (clean, total) 5,164 6,459
Num. of Utterances (clean, mean =+ std) 646 £ 419 718 + 489
Num. of Utterances (pre-relapse, total) 909 934
Num. of Utterances (pre-relapse, mean =+ std) 114 £ 111 104 £ 108
Num. of Utterances (relapse, total) 1,588 1,727
Num. of Utterances (relapse, mean =+ std) 199 + 204 192 + 219

Table 4.1: Comparison of demographics, illness information, and recorded speech data statistics for relapse patients
in the original and extended e-Prevention databases.
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Addressing Challenges and Inconsistencies

During the expansion process, some challenges and inconsistencies were encountered, which required manual
intervention to ensure the consistency and accuracy of the database. These included:

e Ensuring that date directories for each patient followed a consistent naming pattern to avoid misalign-
ment during data processing.

e Addressing inconsistencies between date directories and the actual audio files, ensuring that all audio
files were correctly labeled.

e Verifying and correcting annotations for pre-relapse and relapse dates to ensure they aligned with the
actual relapse periods.

e Addressing cases where patient audio data did not align with the corresponding patient ID.

e While the Kaldi diarization pipeline automated much of the segmentation process, a subset of diarized
utterances required manual adjustments to isolate patient speech accurately.

For all experiments involving audio data in this thesis, we use the dataset that includes the 9 patients who
experienced a relapse during the study period, with the goal of detecting anomalies in their speech patterns
during pre-relapse and relapse periods.

4.3 Biometric Dataset

4.3.1 e-Prevention Biometric Database

The biometric database included physiological data from twenty-four (24) patients with diagnoses of
schizophrenia (12), bipolar I disorder (8), schizoaffective disorder (2), bipolar II disorder (1) and schizophreni-
form disorder (1), recorded with Samsung Gear S3 Frontier smartwatches due to their capability to record
and send data from accelerator, gyroscope and heart rate sensors. During the study, a smartwatch applica-
tion was developed to collect raw data from the smartwatches and transmit it to a cloud server for further
analysis [Mag+20].

For the purposes of our experiments, the goal of using biometric data was to explore the fusion of audio and
biometric signals to enhance the prediction of relapse. Therefore, a subset of the biometric dataset was used,
which consisted of data from the same 9 patients included in the extended audio database collected over the
same period.

4.3.2 Audio and Biometric Data Alignment

The first step in the biometric data processing pipeline was to accurately align the biometric data dates with
those of the audio interviews, to ensure reliable results in the multimodal experiments. It is worth noting
that patients for whom less than 10 interview days of biometric data were available, were excluded from the
multimodal experiments.

Initially, the alignment strategy focused only on using biometric data collected on the exact day of the
audio interviews. However, due to data scarcity, we resorted to different alignment strategies, where the
biometric database was expanded with data within extended temporal windows surrounding the interview
dates. Specifically, data collected within 3-day, 5-day, and 7-day windows centered on the interview dates
were incorporated into the experiments. From now on, we will refer to these datasets as the "day-of", "3-day",
"5-day", and "7-day" datasets, respectively.

The Table 4.2 provides an overview of the raw biometric data recorded the same day as the audio interviews
for all 9 patients in the expanded audio relapse dataset, mentioned in 4.2.2. The data includes the number
of days recorded, the number of hours recorded and the number of 5-minute intervals recorded for both the
"day-of" audio interviews and the extended 7-day windows around the interviews.
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Day-of Interview 7-day Window

Recording Statistics

Num. of Days Recorded (total) 275 475
Num. of Days Recorded (mean =+ std) 153 £ 7.5 26.4 £ 104
Num. of Hours Recorded (total) 3,937 6,860
Num. of Hours Recorded (mean =+ std) 218.8 + 115 381.1 + 171.8

Table 4.2: Comparison of raw recorded biometric data for all patients in the multimodal experiments between
day-of interview and 7-day window around the interview.

4.3.3 Biometric Data Preprocessing and Feature Extraction

The raw data from each sensor was stored in parquet files and then converted into Pandas dataframes, with
each file corresponding to a specific day. The gyroscope and accelerometer sensors sampled data at 20 Hz,
while the heart rate sensor recorded at 5 Hz. The initial preprocessing procedure involved the following steps:

e Data Availability: Each daily dataframe was examined to ensure that it contained sufficient hours of
data. Days with less than 4 hours of recorded data were dropped entirely, as they were considered too
sparse for reliable analysis.

e Data Segmentation: To maximize the use of available data, each daily dataframe was divided into
8-hour segments. This segmentation was chosen for its balance between capturing meaningful physio-
logical patterns and accommodating the variability in daily recording durations. Within each 8-hour
segment, the recorded data was reassessed to confirm it contains at least 4 hours of valid data. Seg-
ments failing this threshold were dropped. This segmentation ensured that even on days with partial
recordings, at least one segment per day would meet the minimum data standards.

e Invalid Sample Removal: Invalid samples were identified and removed based on predefined thresholds
for each biometric sensor. For the accelerometer, limits for each axis’ (z,y, z) values were constrained
to -19.6 to 19.6, while the gyroscope’s limits were set to -573 to 573. For the heart rate sensor, negative
values were considered invalid and removed.

Feature Extraction

The feature extraction included time-domain, frequency-domain, and non-linear features from the raw data,
also used in the e-Prevention study and detailed in 2.2. These features were extracted for 5-minute intervals
within each 8-hour segment (96 5-minute intervals). The choice of the interval was motivated by a previous
study showing the effectiveness of 5-minute windows in capturing meaningful short-term patterns [Ret+20].
The extracted features included:

e Gyroscope and accelerometer features: Short-time energy (STE) of the signals, calculated as the
norm of the 3-axis signals within a 5-minute window.

e Heart Rate Variability (HRV) features:
— Time-domain features: Mean heart rate and mean of the RR intervals.

— Frequency-domain features: Lomb-Scargle periodogram of the RR intervals, capturing the low-
frequency (LF: 0.04-0.15 Hz) and high-frequency (HF: 0.15-0.4 Hz) components.

— Non-linear features: Poincaré plot features, including the standard deviation of the points perpen-
dicular to the line of identity (SD1).

— The number of valid samples within the 5-minute interval.

e Additional features: Sinusoidal representation of the seconds within the 5-minute interval, capturing
the chronological patterns of the data.

After feature extraction, any missing values were imputed using the median of the feature across the entire
dataset.
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In total, 10 features were extracted for each 5-minute interval, resulting in a feature tensor of size 96x10
for each 8-hour segment. An example of the 10 extracted features for a single 8-hour segment of a patient’s
biometric data is shown in Figure 4.3.1.
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Figure 4.3.1: Example of extracted features for a single 8-hour segment of a patient’s
biometric data.
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In Table 4.3, we provide an overview of the demographics, illness information, and recorded biometric data
for the patients in the day-of, 3-day, 5-day, and 7-day datasets after preprocessing and feature extraction.
All patients included in these are datasets also included in the expanded audio relapse dataset, as mentioned
before. The information includes the number of days recorded, the number of hours recorded and the number
of 5-minute intervals recorded for each dataset.

Datasets Day-of 3-day 5-day 7-day
Demographics

Male/Female 2/2 2/3 2/3 3/4
Age (years) 31 +8.7 30.2 + 8 30.2 +£ 8 28+ 7.6
Education (years) 14 £ 2 144 £ 2 144 £ 2 13.7 £ 2
Ilness duration (years) 88+ 9 7.2+ 8.6 7.2+ 8.6 6.4+74
Recorded Data

Num. of Days Recorded (total) 66 102 124 158
Num. of Days Recorded (mean + std) 16.5 £ 5 204 £75 248 £ 7.2 22.6 £ 10.8
Num. of Hours Recorded (total) 888 1,752 2,400 3,280
Num. of Hours Recorded (mean =+ std) 222 + 45.7 350.4 £+ 89.6 480 + 96.7 468.6 + 185
Num. of 5-min intervals (total) 10,656 21,024 28,800 39,360

Num. of 5-min intervals (mean + std) 2,664 £ 548.9 4,204.8 £ 1,074.9 5,760 £ 1171  5,622.9 + 2,219.5

Table 4.3: Comparison of demographics, illness information, and recorded biometric data for the patients in the
day-of, 3-day, 5-day, and 7-day datasets after preprocessing and feature extraction.

Addressing Challenges and Inconsistencies

Similarily to the audio data, the biometric data presented several challenges and inconsistencies that were
identified and addressed to ensure the accuracy of the dataset. These included:

e Ensuring consistency between the date names in the file names and the timestamps within the parquet
files to avoid misalignment during data processing.

e Discarding dates that did not contain all three types of sensor data to ensure that all features could be
extracted.

e Correcting cases where biometric data was incorrectly assigned to the wrong patient ID by cross-
referencing patient metadata and reassigning the data to the appropriate patient.
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5.1. Methodology

The first set of experiments in this thesis focused on a comparative analysis of autoencoder models for
detecting relapse in mental health patients based on spontaneous speech. The primary objective was to
evaluate the performance of Convolutional Autoencoder (CAE) and Convolutional Variational Autoencoder
(CVAE) models, originally developed during the e-Prevention project, on the newly expanded audio database.
As mentioned in 4.2.2, this updated dataset now includes 477 clean interviews, 27 pre-relapse interviews and
42 relapse interviews from 9 patients, compared to the original 396 clean, 26 pre-relapse and 36 relapse
interviews from 8 patients, providing a broader basis for analysis.

In addition to re-assessing the CAE and CVAE models, another key objective was to develop and evaluate
LSTM-based autoencoders, specifically an LSTM Autoencoder (LSTMAE) and a LSTM Variational Au-
toencoder (LSTMVAE). The goal was to determine whether these sequence-based architectures, which are
designed to capture temporal dependencies in speech, offer improved anomaly detection capabilities com-
pared to the convolutional models. Through this comparative study, we aim to identify the most effective
autoencoder-based approach for relapse detection in speech, forming the basis for subsequent multimodal
experiments.

5.1 Methodology

5.1.1 Data Normalization: Per-Patient and Global

To assess the effectiveness of autoencoder models in detecting relapse, two types of experiments were con-
ducted: Personalized patient experiments and multi-patient global experiments. Each experimental setup
was designed to evaluate the models under different generalization conditions, providing insights into both
patient-specific relapse prediction and relapse detection across multiple patients.

Personalized Experiments

In the first experimental setup, each model was trained on the clean data of a single patient and later used to
predict relapse exclusively for that patient. This approach allows the model to learn patient-specific speech
patterns, capturing personalized variations that may indicate a relapse.

Global Experiments

The second set of experiments involved training models on the combined clean data from all 9 patients in
the dataset. This approach evaluates whether a model trained on diverse patient data can generalize across
different individuals and accurately identify relapses. Within this multi-patient training framework, two
normalization strategies were applied:

e Per-Patient Normalization: Each patient’s data ware normalized independently, using statistics
(mean and standard deviation) computed from their respective clean training data.

e Global Normalization: All patient data ware normalized collectively, using statistics computed from
the entire training set, which includes clean data from all patients.

By comparing these experimental setups, we aim to determine whether patient-specific models provide better
relapse detection compared to models trained on multiple patients and to assess the impact of normalization
strategies on model performance.

5.1.2 Autoencoder Architectures
Convolutional Autoencoder (CAE)

The CAE developed in [Gar+21; Zla+22] follows a deep convolutional neural network structure, composed
of encoding layers that progressively compress the input 128x64 mel-spectrogram into a lower-dimensional
latent space representation, followed by decoding layers that attempt to reconstruct the original spectrogram.

The encoder is composed of 4 sequential convolutional downsampling (DS) blocks, each consisting of a 2D-
Convolution layer with a ReLU activation function, followed by a Max Pooling layer that progressively
reduces the spatial dimensions of the input spectrogram. Conversely, the decoder comprises 4 convolutional
upsampling (US) blocks, where each block begins with an Upsampling layer, followed by a 2D-Convolution
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layer with a ReLU activation function, incrementally reconstructing the original mel-spectrogram. The final
reconstructed mel-spectrogram is produced through a single-channel 2D-Convolution layer, aiming to match
the input dimensions.

In Table 5.1, we present the architecture parameters of the CAE model that was used in the audio experiments.
Each row in the Table corresponds to a convolutional block, downsampling (DS) or upsampling (US), and
includes the number of filters, kernel size, pooling or upsampling size, and the output dimensions of the block.
Additionally, the Figure 3.4.3 illustrates the architecture of the CAE model used in [Gar+21].

Conv. Block | Filters ‘ Kernel Size ‘ Pooling Size ‘ Upsampling Size ‘ Output Dimensions

DS1 32 (5,5) (2,2) - 64x32x32
DS2 64 (5,5) (4,2) - 16x16x64
DS3 128 (5,5) (4,4) - 4x4x128
DS4 256 (5,5) (4,4) - 1x1x256
US1 128 (5,5) - (4,4) 4x4x128
US2 64 (5,5) - (4,4) 16x16x64
US3 32 (5,5) - (4,2) 64x32x32
US4 1 (5,5) - (2,2) 128%64x 1

Table 5.1: Architecture parameters of the Convolutional Autoencoder (CAE) used in the audio experiments.

Convolutional Variational Autoencoder (CVAE)

The CVAE model, shown in Figure 5.1.1, extends the aforementioned CAE architecture by introducing a
probabilistic latent space representation. The CVAE follows, similar to the CAE, a convolutional encoder-
decoder structure, but introduces a latent space modeled as a Gaussian distribution. The encoder outputs
the parameters of the latent distribution, mean p and log variance log o2, which are used to sample latent
representations using the reparameterization trick, which is defined as follows:

z=p+o-€ (5.1.1)
Where

e 0 = exp(0.51log o?) is the standard deviation of the latent distribution.

e ¢~ N(0,1) is random noise from a standard normal distribution.

The decoder then reconstructs the input from the sampled latent representation. The architecture parameters
for the downsampling and upsampling blocks of the CVAE model are identical to the CAE model and shown
in Table 5.1.

sampled Latent —————

H Representation

DS1 | .. | Ds4 |z 3 | Ust | .| Us4

Probabilistic Encoder =

Figure 5.1.1: Overview of the proposed Convolutional Variational Autoencoder
(CVAE) architecture used in the audio experiments.

Long Short-Term Memory Autoencoder (LSTMAE)

The development of the LSTMAE was inspired from the study by Mobtahej et al. [Mob+22] that demon-
strated outstanding results in anomaly detection from audio signals using mel-spectrograms, as mentioned
in 3.3. Given the effectiveness of LSTM-based architectures in modeling temporal dependencies, this study
highlighted their potential for capturing sequential patterns in audio samples that might be indicative of
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relapse in mental health patients. Building on these findings, the next step in our research was to experiment
with this architecture and assess its performance compared to the CAE.

The LSTMAE follows a sequence-to-sequence architecture consisting of an encoder and a decoder. The
input is the same 128 x64 mel-spectrogram as the CAE model, but for compatibility with the LSTM layers,
it is reshaped to 64x128, representing 64 time steps of 128 frequency bins. The encoder processes the
input mel-spectrogram sequences using an LSTM layer, which captures temporal dependencies in speech
data, followed by layer normalization, Leaky ReLU activation, and dropout for regularization. The encoded
sequence is then flattened and mapped to a low-dimensional latent space through a dense layer. The decoder
reconstructs the original input by first expanding the latent representation using a dense layer, reshaping it
into a sequence format, and then applying an LSTM layer with layer normalization and dropout to generate
the final spectrogram reconstruction. The parameters of the LSTMAE architecture are presented in Table
5.2, and the model’s architecture is illustrated in Figure 5.1.2.

Layer Type Units Add. Parameters ‘ Output Dimensions
LSTM 64 return_sequences=True 64x64
Flatten - - 4096
Dense 64 - 64
Dense 4096 - 4096
Reshape - - 64x64
LSTM 64 return_sequences=True 64x64
Time Distributed Dense 128 - 64x128

Table 5.2: Architecture parameters of the Long Short-Term Memory Autoencoder (LSTMAE) used in the
audio experiments.

To ensure optimal performance, the LSTMAE was fine-tuned using Python’s GridSearchCV from the scikit-
learn library [Ped+11|. This method systematically searches through a predefined set of hyperparameter
values to identify the best-performing model configuration. The primary hyperparameters optimized include
the number of LSTM units, latent dimension size, dropout rate, and the optimizer’s learning rate (which will
be detailed in the next section on the model’s training methodology). The search was conducted over the
following parameter ranges: LSTM units {32,64,128,256} and latent dimension {32,64,128,256}.
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Figure 5.1.2: Overview of the proposed Long Short-Term Memory Autoencoder
(LSTMAE) architecture used in the audio experiments.

Long Short-Term Memory Variational Autoencoder (LSTMVAE)

The LSTMVAE follows the same fundamental logic as the CVAE, incorporating a probabilistic latent space.
Similar to the CVAE, the LSTMVAE learns a distribution over the latent space rather than a fixed represen-
tation. The model retains the sequence-to-sequence architecture of the LSTMAE, with identical architectural
parameters, including the number of LSTM units, latent dimension size and overall types of layers as shown
in Table 5.2. The difference lies in the latent space, where the LSTMVAE introduces dense layers to compute
the mean p and log variance log o2 of the latent distribution. The model then samples latent representations
using the reparameterization trick (5.1.1) exactly as in the CVAE. The LSTMVAE architecture is illustrated
in Figure 5.1.3.

All models were implemented using the TensorFlow [Aba+16] and Keras [Cho+15] libraries in Python.
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Figure 5.1.3: Overview of the proposed Long Short-Term Memory Variational
Autoencoder (LSTMVAE) architecture used in the audio experiments.

5.1.3 Model Training

All models followed a common training pipeline, established in [Zla+22], with parameter modifications ad-
justed to each model’s architecture to enhance performance. The training involved 5-fold cross-validation,
where models were trained exclusively on clean data, while evaluation was conducted on both clean and
anomalous (pre-relapse and relapse) data, allowing the models to learn a baseline representation of normal
speech patterns while testing their ability to identify anomalies associated with relapse. During each cross-
validation fold, the clean speech data were divided into three sets: 60% for training, 20% for validation, and
20% for testing. To prevent session-wise overfitting, the splits were structured so that all mel-spectrograms
from the same interview remained within the same fold.

Loss Functions

The loss function used for training the CAE and LSTMAE models was the Mean Squared Error (MSE) loss,
which measures the squared difference between the input mel-spectrogram and the model’s estimate.

For the CVAE and LSTMVAE models, the loss function was formulated as the weighted sum of the MSE
(2.3.1), applied at the output of the autoencoder, and the Kullback-Leibler (KL) divergence (2.5.4), which
measures the difference between the latent distribution and a standard normal distribution. During training,
the loss weights for the CVAE model were set at 0.01 for the KL divergence and 1 for the MSE, while the
LSTMVAE model used a weight of 0.05 for the KL divergence and 1 for the MSE, to balance reconstruction
accuracy and latent space regularization.

Hyperparameters and Optimization

The common hyperparameters, shown in Table 5.3, include a maximum training duration of 200 epochs, a
batch size of 8, and the Adam optimizer. To prevent overfitting, early stopping was applied with a patience
of 10 epochs, ensuring that training was terminated if the validation loss did not improve for 10 consecutive
epochs.

‘ Epochs ‘ Batch Size ‘ Optimizer ‘ Patience
All Models | 200 | 8 | Adam | 10

Table 5.3: Common training hyperparameters for all audio models.

The model-specific hyperparameters, presented in Table 5.4, primarily differ in learning rate and dropout
rate. The CAE and CVAE models, were trained with a learning rate of 3 x 10~* and did not require dropout
regularization.

For the LSTMAE and LSTMVAE models, as mentioned in 5.1.2, the hyperparameters were optimized using
GridSearchCV. The search was conducted over the following parameter ranges: learning rate {1 x 1074,
3 x 1074, 1 x 1073} and dropout rate {0.1,0.2,0.3,0.5}. The final model configuration, presented in Table
5.2, included a learning rate of 1 x 10~2 and a dropout rate of 0.2, which was applied to the LSTM layers
for regularization.
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Model Learning Rate | Dropout

CAE 3x107* -
CVAE 3x107* -
LSTMAE 1x1073 0.2
LSTMVAE 1x1073 0.2

Table 5.4: Model-specific training hyperparameters for all audio models.

5.1.4 Evaluation Methods and Metrics

The performance of all models was evaluated on a per-session basis, meaning that each test session was
identified, and its corresponding mel-spectrograms were normalized depending on the experimental setup.
As mentioned before, the testing set included clean, pre-relapse, and relapse data while the models were
trained exclusively on clean data. Each mel-spectrogram within a session produced an anomaly score, which
was then aggregated across time to obtain a single anomaly score for the entire session.

The method of computing the mel-spectrogram anomaly score varied based on the model architecture:

e For the CAE and LSTMAE models, the MSE was calculated between the input mel-spectrogram and
the model’s reconstruction.

e For the CVAE and LSTMVAE models, we experimented with both using the MSE (computed at the
output of the autoencoder, i.e. the reconstructed mel-spectrograms) and the KL divergence to the
N(0,1) distribution at the learned latent space.

The overall model performance was evaluated using the following metrics:

e Anomaly Score: The anomaly score (MSE, KL divergence) was computed across all sessions for each
state (clean, pre-relapse and relapse). This metric quantifies the model’s ability to detect anomalies,
with higher scores in pre-relapse and relapse states than in the clean state indicating successful anomaly
detection.

e Area Under the Receiver Operating Characteristic Curve (ROC-AUC) Score: The ROC-
AUC score (explained in 2.3.2) measures how well the models separate sessions that contain clean data
from those associated with pre-relapse and relapse states, based on the per-session computed anomaly
scores.

For the final results, the median anomaly scores and mean ROC-AUC scores were averaged across the
5 cross-validation folds, corresponding with the e-Prevention project’s methodology. The evaluation was
conducted separately for each model architecture and experimental setup, comparing the personalized patient
experiments with the multi-patient global experiments and the per-patient normalization with the global
normalization strategies.

5.2 Results

5.2.1 CAE Model Results on the Expanded Database

This section presents the evaluation of the CAE model on both the expanded relapse dataset and the original
dataset for comparison. Notably, the results for the original dataset correspond to those reported in the
e-Prevention paper [Zla+22]. Additionally, it is important to highlight that patient #8 is the new addition
in the expanded dataset. The goals of this evaluation include the following for both experimental setups
mentioned in 5.1.1:

e Personalized Experiments: Assess the impact of additional patient data on personalized model
performance, specifically whether increasing the dataset for each patient improves the model’s ability
to capture individual characteristics and detect anomalies.
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e Global Experiments: Determine whether adding more patients and utterances improves or disrupts
global anomaly detection, specifically investigating whether increased data diversity helps the CAE
generalize or leads to higher reconstruction errors due to patient variability.

Beyond model comparisons, a key goal of this experiment is to determine whether the CAE can effectively
differentiate clean speech from anomalous states (pre-relapse and relapse) using the additional patient data.

Personalized Experiments

Table 5.5 presents the median MSE anomaly scores across five cross-validation folds for the clean and anoma-
lous states, with bold values indicating cases where reconstruction error increases in pre-relapse and relapse
states. The bottom row summarizes median values for both datasets, highlighting performance changes after
adding Patient #8. Table 5.6 presents the mean ROC-AUC scores across five cross-validation folds, with
bold values marking patients for whom the CAE model performed better after dataset expansion, suggesting
that additional data enhanced anomaly detection for those individuals. This annotation will be consistently
applied in all subsequent tables.

. Original Dataset Expanded Dataset
Patient ID
MSE-C MSE-P MSE-R MSE-C MSE-P MSE-R
#1 0.292 £ 0.035 0.321 £ 0.067 0.313 £ 0.065 0.267 £ 0.020 0.386 + 0.067 0.337 £ 0.065
#2 0.452 £+ 0.065 0.577 £ 0.000 0.464 + 0.064 0.429 £ 0.068 0.578 + 0.024 0.461 + 0.034
#3 0.417 £+ 0.068 0.456 + 0.065 0.504 + 0.061 0.408 £ 0.074 0.470 + 0.025 0.551 4+ 0.034
#4 0.273 £ 0.034 0.359 £+ 0.070 0.295 + 0.027 0.248 +£ 0.025 0.366 4+ 0.017 0.280 + 0.009
#5 0.308 £ 0.029 0.389 £+ 0.010  0.286 % 0.000 0.277 £ 0.037 0.331 4+ 0.034  0.267 + 0.022
#6 0.649 + 0.104  0.646 4+ 0.130 0.599 + 0.146 0.571 £ 0.080 0.598 + 0.019 0.602 + 0.030
#7 0.320 + 0.018 0.386 + 0.048 0.380 + 0.000 0.290 £+ 0.010 0.338 + 0.014 0.345 + 0.010
#8 - - - 0.322 £ 0.039 0.421 + 0.010 0.333 + 0.013
#9 0.520 + 0.051 0.573 £ 0.000 0.665 + 0.000 0.458 +£ 0.061 0.593 + 0.034 0.638 + 0.041
Median (8) | 0.369 + 0.123 0.423 + 0.112 0.422 + 0.135 0.349 £ 0.108 0.428 + 0.102 0.399 + 0.139
Median (9) - - - 0.322 £ 0.105 0.421 4+ 0.102 0.337 £ 0.139

Table 5.5: Comparison of MSE anomaly scores for clean (C), pre-relapse (P), and relapse (R) states for the
personalized CAE models on the original and expanded datasets.

. ROC-AUC
Patient ID
Original Dataset H Expanded Dataset
#1 0.549 £ 0.140 0.653 + 0.048
#2 0.465 £ 0.133 0.468 + 0.159
#3 0.718 £+ 0.171 0.722 + 0.165
#4 0.665 £ 0.064 0.650 £ 0.093
#5 0.780 £ 0.063 0.754 £ 0.082
#6 0.489 £ 0.148 0.500 + 0.159
#7 0.883 £ 0.082 0.905 + 0.055
#8 - 0.483 £ 0.187
#9 0.790 + 0.245 0.817 + 0.186
Mean (8) 0.667 £ 0.143 0.684 + 0.139
Mean (9) - 0.661 £ 0.146

Table 5.6: Comparison of (MSE) ROC-AUC values for the personalized CAE models on the original and expanded
datasets.

From Table 5.5, we can observe that after the dataset expansion there is a general decrease in the MSE
anomaly scores for clean states, indicating that the CAE model is better at reconstructing normal speech
patterns. In contrast, the MSE anomaly scores for pre-relapse and relapse show an increase for most patients,
indicating improved ability in detecting anomalous speech patterns related to relapse. This improvement in
detecting anomalous states is further validated by the results in Table 5.6, which shows an overall increase
in ROC-AUC scores for most patients after dataset expansion. The mean ROC-AUC for the 8 original
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patients improves from 0.667 to 0.684, confirming that the expanded dataset enhances the model’s ability
to differentiate between normal and relapse states. Notably, some patients, such as #1, #7 and #9, exhibit
a significant increase in ROC-AUC scores, with patient #7 having a ROC-AUC of 0.905 after expansion.
However, for a few patients (#2 and #4), the ROC-AUC remains nearly the same, suggesting that while
expansion benefits most cases, its impact may depend on individual speech patterns or the amount of added
data. Overall, these results indicate that dataset expansion did improve the CAE model’s ability to detect
relapse-related anomalies.

Global Experiments

Tables 5.7 and 5.8 present the median MSE anomaly scores and mean ROC-AUC scores for the global
CAE models on the original and expanded datasets. The results are provided for both per-patient and
global normalization schemes, allowing for a comparison of model performance across different normalization
strategies.

Norm Original Dataset Expanded Dataset
) MSE-C MSE-P MSE-R MSE-C MSE-P MSE-R
Per-Patient | 0.341 + 0.074 0.388 £ 0.142 0.339 £ 0.094 0.188 £ 0.008 0.236 + 0.013  0.206 + 0.007
Global 0.280 £ 0.055 0.292 £+ 0.082  0.255 + 0.064 0.199 £+ 0.009 0.232 £ 0.007  0.204 =+ 0.007

Table 5.7: Comparison of anomaly scores for per-patient and global normalization schemes for clean (C),
pre-relapse (P), and relapse (R) states for the global CAE models on the original and expanded datasets.

ROC-AUC
Norm.
Original Dataset H Expanded Dataset
Per-Patient 0.531 £ 0.021 0.618 + 0.023
Global 0.525 £ 0.024 0.633 + 0.033

Table 5.8: Comparison of ROC-AUC scores for per-patient and global normalization schemes for the global CAE
models on the original and expanded datasets.

From Tables 5.7 and 5.8, we can observe that the global CAE model performed significantly better after
dataset expansion, with a consistent improvement in MSE anomaly scores for pre-relapse and relapse states.
The ROC-AUC scores also show a significant increase from 0.531 to 0.618 and 0.525 to 0.633 for the per-
patient and global models, respectively. This improvement suggests that the additional patient data helped
the global model generalize better across patients and detect anomalies.

Therefore, both personalized and global experiments demonstrate that the CAE model benefits from the
expanded dataset, with improved anomaly detection for most patients and normalization schemes.

5.2.2 CVAE Model Results on the Expanded Database

In this section, we evaluate the performance of the CVAE model using the same experimental setup as
the CAE model. The evaluation metrics include both the values of the reconstruction MSE and the KL
divergence as anomaly scores, and their corresponding ROC-AUC scores, aiming to assess how the inclusion
of additional patient data affects the personalized and global CVAE models’ performance as well their ability
to detect relapse-related anomalies. By incorporating KL divergence and its associated ROC-AUC scores,
we further explore the model’s ability to capture meaningful latent space representations, complementing the
MSE results.

Personalized Experiments

Tables 5.9, 5.10, 5.11, and 5.12 present the median MSE anomaly scores, mean MSE ROC-AUC scores,
median KL divergence anomaly scores and mean KL ROC-AUC scores for the personalized CVAE models
on the original and expanded datasets.
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. Original Dataset Expanded Dataset
Patient ID
MSE-C MSE-P MSE-R MSE-C MSE-P MSE-R
#1 0.520 £ 0.040 0.544 + 0.073 0.535 + 0.088 0.523 £ 0.033 0.638 + 0.022  0.581 + 0.023
#2 0.703 £ 0.074 0.880 £ 0.000 0.662 + 0.063 0.653 = 0.131 0.889 + 0.036  0.659 + 0.024
#3 0.689 £ 0.101  0.769 £ 0.068 0.879 =+ 0.043 0.685 £ 0.121  0.752 + 0.065 0.865 + 0.066
#4 0.606 £ 0.065 0.729 £+ 0.102 0.622 + 0.046 0.599 £+ 0.038 0.734 + 0.024 0.603 + 0.020
#5 0.595 £ 0.044 0.706 £ 0.019  0.569 + 0.000 0.569 £ 0.030 0.649 £ 0.024 0.549 + 0.020
#6 0.887 £ 0.091 0.896 + 0.190  0.835 & 0.181 0.846 + 0.131  0.867 + 0.040  0.874 + 0.042
#7 0.573 £ 0.033 0.669 £+ 0.035 0.632 + 0.000 0.504 £ 0.030 0.632 + 0.031  0.585 + 0.015
#8 - - - 0.617 & 0.109  0.631 + 0.045 0.567 £ 0.047
#9 0.776 £ 0.079  0.815 £ 0.000  0.981 =+ 0.000 0.733 £ 0.132 0.809 + 0.044  0.967 + 0.065
Median (8) | 0.648 + 0.112 0.749 + 0.108  0.647 + 0.152 0.626 = 0.107 0.743 + 0.096  0.631 + 0.154
Median (9) - - - 0.617 = 0.101  0.734 =+ 0.097 0.603 £ 0.152

Table 5.9: Comparison of MSE anomaly scores for clean (C), pre-relapse (P), and relapse (R) states for the

Table 5.10: Comparison of (MSE) ROC-AUC values for the personalized CVAE models on the original and

personalized CVAE models on the original and expanded datasets.

. (MSE) ROC-AUC
Patient ID L.
Original Dataset H Expanded Dataset
#1 0.537 £ 0.011 0.622 + 0.076
#2 0.433 £ 0.127 0.432 £+ 0.136
#3 0.720 £ 0.162 0.722 + 0.189
#4 0.650 £ 0.092 0.662 + 0.073
#5 0.800 £ 0.063 0.718 £+ 0.051
#6 0.512 £ 0.115 0.543 + 0.143
#7 0.929 + 0.090 0.838 £ 0.118
#8 - 0.342 + 0.233
#9 0.770 £ 0.048 0.833 + 0.211
Mean (8) 0.669 + 0.119 0.671 + 0.135
Mean (9) - 0.635 £ 0.155

expanded datasets.

Patient ID Original Dataset Expanded Dataset
KL-C KL-P KL-R KL-C KL-P KL-R

#1 18.60 + 2.26  21.67 +£ 3.81 16.77 £+ 3.89 11.49 + 0.60 13.13 £ 0.76 12.89 £ 0.76
#2 12.44 + 3.23  18.17 £+ 0.00 10.10 + 1.58 8.57 £+ 1.41 10.73 + 1.40  6.803 £+ 0.87
#3 18.49 £+ 3.62  22.30 £ 3.20 26.45 + 8.26 9.96 £ 1.69 12.05 + 0.66 10.44 £ 0.65
#4 14.38 £ 1.51 24.53 £ 12.60 21.46 £+ 2.10 11.09 + 0.67 11.99 + 0.52 11.98 =+ 0.52
#5 15.03 £ 1.65  27.98 £ 2.92 13.71 + 0.00 12.03 + 0.41 13.52 + 0.31 11.40 + 0.24
#6 12.43 £ 3.03  16.23 £+ 7.57 17.48 + 4.35 5.86 + 1.42 7.67 £ 1.16 7.36 =+ 1.16
#7 14.03 £ 1.95 20.17 £ 5.85 14.45 + 0.00 11.21 + 0.45 12.67 = 0.61  10.54 + 0.46
#8 - - - 8.93 £ 1.05 8.82 £ 1.07 9.27 + 0.76
#9 13.32 £2.28 16.12 £+ 0.00 20.79 £+ 0.00 9.33 + 1.39 9.44 £+ 0.97 15.05 + 1.74

Median (8) | 14.21 +2.30  20.92 + 2.85 17.125 + 4.81 10.52 + 1.89 12.02 £1.92 10.97 £ 2.56

Median (9) - - - 9.96 + 1.81 11.99 + 1.98 10.55 £ 2.46

Table 5.11: Comparison of KL anomaly scores for clean (C), pre-relapse (P), and relapse (R) states for the
personalized CVAE models on the original and expanded datasets.

From Table 5.9, we can observe that MSE-P and MSE-R values are generally higher than MSE-C, though
some patients (e.g., #4 and #5) show slight drops in MSE-R, which could be possibly due to the increased
variability in data post-expansion. Similarly, Table 5.10 shows a minor improvement in ROC-AUC scores,
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Patient ID (KL) ROC-AUC
Original Dataset H Expanded Dataset

#1 0.549 + 0.115 0.632 + 0.078
#2 0.405 £ 0.127 0.552 + 0.164
#3 0.662 £+ 0.179 0.689 + 0.174
#4 0.742 4+ 0.087 0.668 + 0.110
#5 0.786 £ 0.068 0.687 £ 0.088
#6 0.656 + 0.142 0.723 + 0.106
#T7 0.701 4+ 0.149 0.570 £ 0.024
#8 - 0.483 + 0.133
#9 0.770 £+ 0.256 0.833 + 0.211

Mean (8) 0.659 £+ 0.119 0.669 + 0.091

Mean (9) - 0.649 £ 0.098

Table 5.12: Comparison of (KL) ROC-AUC values for the personalized CVAE models on the original and
expanded datasets.

with the mean increasing from 0.669 to 0.671 for the original 8 patients. This indicates a modest improvement
in anomaly detection, though the effect is less pronounced compared to the CAE model.

Additionally, from Table 5.11, we can still observe a distinction between clean (KL-C), pre-relapse (KL-P),
and relapse (KL-R) states in the expanded dataset. However, the overall KL scores are lower. The ROC-AUC
scores in Table 5.12 show a slight improvement for some patients, with the mean ROC-AUC increasing from
0.659 to 0.669 for the original 8 patients, which is consistent with the MSE results.

Overall, the personalized CVAE model shows a slight improvement in anomaly detection after dataset ex-
pansion, with a small increase in ROC-AUC scores and a more pronounced improvement in KL divergence
scores, which suggests that the expanded dataset helps the model learn more meaningful latent space rep-
resentations. However, we can observe that the model for the new patient #8 shows a significant drop in
performance, which affects the overall mean ROC-AUC scores.

Global Experiments

Tables 5.13-5.16 present the median MSE anomaly scores, mean MSE ROC-AUC scores, KL divergence
anomaly scores and mean KL ROC-AUC scores for the global CVAE models on the original and expanded
datasets.

Norm Original Dataset Expanded Dataset
’ MSE-C MSE-P MSE-R MSE-C MSE-P MSE-R
Per-patient | 0.905 £+ 0.176 1.197 + 0.420 1.139 4+ 0.411 0.519 +£ 0.025 0.610 + 0.019 0.548 + 0.051
Global 0.774 £ 0.120 0.804 + 0.176  0.722 4+ 0.139 0.521 +£ 0.024 0.609 + 0.011 0.553 + 0.044

Table 5.13: Comparison of MSE anomaly scores for per-patient and global normalization schemes for clean
(C), pre-relapse (P), and relapse (R) states for the global CVAE models on the original and expanded
datasets.

(MSE) ROC-AUC

Norm.
Original Dataset H Expanded Dataset
Per-patient 0.633 £ 0.036 0.621 + 0.051
Global 0.519 £ 0.021 0.618 + 0.044

Table 5.14: Comparison of (MSE) ROC-AUC scores for per-patient and global normalization schemes for
the global CVAE models on the original and expanded datasets.

The results in Table 5.13 suggest that the expanded dataset enhances the model’s ability to distinguish
between clean, pre-relapse, and relapse states, particularly under the global normalization scheme, with
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consistently higher MSE-P and MSE-R values. Similarly, the ROC-AUC scores in Table 5.14 show a significant
improvement for the global normalization scheme, with the mean ROC-AUC increasing from 0.519 to 0.618.
This suggests that the expanded dataset helps the global CVAE model generalize better across patients and
detect anomalies more accurately. However, the per-patient normalization scheme exhibits a slight decrease
in performance, with a possible explanation being the increased variability in the data post-expansion.

Norm Original Dataset Expanded Dataset
’ KL-C KL-P KL-R KL-C KL-P KL-R
Per-patient | 22.31 + 4.27 31.64 + 9.21 28.50 4 7.43 13.14 + 0.58 14.96 + 0.73 13.34 £+ 4.49
Global 21.58 £+ 3.68 24.78 + 4.94 21.78 + 4.22 12.87 + 0.54 14.32 £ 0.18 13.07 £ 0.17

Table 5.15: Comparison of KL anomaly scores for per-patient and global normalization schemes for clean
(C), pre-relapse (P), and relapse (R) states for the global CVAE models on the original and expanded
datasets.

(KL) ROC-AUC
Norm.
Original Dataset H Expanded Dataset
Per-patient 0.694 + 0.032 0.604 + 0.037
Global 0.576 £ 0.026 0.596 + 0.035

Table 5.16: Comparison of (KL) ROC-AUC scores for per-patient and global normalization schemes for the
global CVAE models on the original and expanded datasets.

Similar to the personalized experiments, Table 5.15 shows that the model retains its ability to distinguish
between clean and anomalous states, but the KL scores are lower compared to the original dataset. The
ROC-AUC scores in Table 5.16 show a slight improvement for the global normalization scheme only, with
the mean ROC-AUC increasing from 0.576 to 0.596. However, the per-patient normalization scheme exhibits
a decrease in performance, which is consistent with the MSE results.

Considering all experiments, the global CVAE model shows a slight improvement in performance after the
dataset expansion, but the effect is less pronounced compared to the CAE model. It is possible that the CVAE
model is more sensitive to the increased data variability, leading to reduced performance. Therefore, future
work should explore different techniques to address this issue, such as adaptive regularization, patient-specific
weights or fine-tuning for specific patients for whom the performance did not improve.

5.2.3 LSTMAE vs. CAE Model Comparison on the Expanded Database

In this section, we compare how the LSTMAE and CAE models perform on the expanded dataset. The
main goal is to understand how adding temporal modeling with the LSTMAE influences anomaly detection
compared to the CAE, which focuses on spectral/temporal features. To ensure a fair comparison, both models
are evaluated using the same experimental setup and metrics.

Through these experiments, we aim to uncover the strengths and trade-offs between the LSTMAE’s ability
to capture sequential patterns and the CAE’s focus on spectral/temporal representation. Additionally, we
explore whether the expanded dataset provides a bigger advantage to the LSTMAE, given its focus on
temporal dependencies, and assess how capable the model is at distinguishing between clean, pre-relapse,
and relapse states.

Personalized Experiments

Tables 5.17 and 5.18 present the median MSE anomaly scores and mean ROC-AUC scores for the personalized
CAE and LSTMAE models on the expanded dataset.

The results in Table 5.17 and 5.18 indicate that the LSTMAE model outperforms the CAE in most metrics,
highlighting the advantages of incorporating temporal modeling for anomaly detection. The LSTMAE con-
sistently achieves higher MSE-P and MSE-R scores for all patients with a better distinction between clean
and anomalous states for most. This trend is further supported by higher overall ROC-AUC scores, with the
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. CAE LSTMAE
Patient ID
MSE-C MSE-P MSE-R MSE-C MSE-P MSE-R

#1 0.267 £ 0.020 0.386 £ 0.067 0.337 £ 0.065 0.241 £ 0.040 0.396 + 0.028 0.321 + 0.031
#2 0.429 + 0.068 0.578 + 0.024 0.461 + 0.034 0.440 £+ 0.047 0.584 + 0.036 0.442 + 0.012
#3 0.408 £+ 0.074 0.470 £+ 0.025 0.551 + 0.034 0.399 £ 0.115 0.509 + 0.025 0.572 + 0.040
#4 0.248 £ 0.025 0.366 £+ 0.017 0.280 =+ 0.009 0.263 £ 0.024 0.382 4+ 0.010 0.283 + 0.013
#5 0.277 + 0.037 0.331 + 0.034 0.267 £ 0.022 0.259 £+ 0.017 0.355 + 0.011 0.263 + 0.004
#6 0.571 +£0.080 0.598 + 0.019 0.602 + 0.030 0.548 £ 0.130 0.589 + 0.053 0.583 + 0.042
H#7 0.290 £+ 0.010 0.338 £+ 0.014 0.345 £ 0.010 0.258 £+ 0.026  0.313 4+ 0.030 0.313 + 0.029
#8 0.295 + 0.039 0.367 £ 0.010 0.284 + 0.013 0.299 £+ 0.067 0.336 £ 0.042 0.265 + 0.034
#9 0.458 + 0.061 0.593 + 0.034 0.638 + 0.041 0.477 £ 0.088 0.538 + 0.029 0.658 + 0.056

Median 0.295 + 0.105 0.386 + 0.102 0.337 + 0.139 0.299 £+ 0.108 0.396 + 0.104 0.321 + 0.152

Table 5.17: Comparison of MSE anomaly scores for clean (C), pre-relapse (P), and relapse (R) states for

the personalized CAE and LSTMAE models on the expanded dataset.

Patient ID ROC-AUC
CAE | LSTMAE
#1 0.653 + 0.048 || 0.668 & 0.050
#9 0.468 £ 0.159 || 0.500 = 0.087
43 0.722 £ 0.165 || 0.733 & 0.231
44 0.650 + 0.093 || 0.653 & 0.135
#5 0.754 £ 0.082 || 0.727 & 0.081
46 0.500 £ 0.159 || 0.510 & 0.183
7 0.905 + 0.055 || 0.958 & 0.093
#8 0.483 4+ 0.187 || 0.492 4 0.172
49 0.817 £ 0.186 || 0.850 = 0.200
Mean 0.661 £ 0.146 || 0.679 & 0.152

Table 5.18: Comparison of (MSE) ROC-AUC scores for the personalized CAE and LSTMAE models on the
expanded dataset.

mean ROC-AUC increasing from 0.661 to 0.679 for all 9 patients, with significant improvements for individ-
uals like Patient #7. However, for a few cases (e.g., Patient #5), the LSTMAE shows slight performance
decline.

Global Experiments

Tables 5.19 and 5.20 present the median MSE anomaly scores and mean ROC-AUC scores for the global
CAE and LSTMAE models on the expanded dataset.

Norm CAE LSTMAE
) MSE-C MSE-P MSE-R MSE-C MSE-P MSE-R
Per-Patient | 0.188 £+ 0.020 0.386 + 0.067 0.337 &+ 0.065 | 0.256 4+ 0.009 0.322 4+ 0.004 0.267 + 0.002
Global 0.429 £ 0.068 0.578 £ 0.024 0.461 + 0.034 | 0.245 &+ 0.006 0.326 + 0.013  0.270 + 0.004

Table 5.19: Comparison of MSE anomaly scores for CAE and LSTMAE under per-patient and global
normalization schemes.

Similarly to the personalized experiments, the global LSTMAE model outperforms the CAE model, particu-
larly in terms of ROC-AUC scores, as shown in Table 5.20. The mean ROC-AUC increases from 0.618 to 0.640
for the per-patient normalization scheme and from 0.633 to 0.648 for the global normalization scheme, sug-
gesting that the LSTMAE model is more effective overall, especially under the global normalization scheme.
Additionally, the MSE results in Table 5.19 demonstrate a comparable ability to distinguish between clean
and anomalous states, further emphasizing the LSTMAE’s effectiveness in anomaly detection.

Overall, the LSTMAE model consistently outperforms the CAE model in both personalized and global
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ROC-AUC
Norm.
CAE || LSTMAE
Per-Patient | 0.618 & 0.023 || 0.640 % 0.031
Global | 0.633 4 0.033 || 0.648 % 0.031

Table 5.20: Comparison of ROC-AUC scores for CAE and LSTMAE under per-patient and global

normalization schemes.

experiments, with higher ROC-AUC scores. This suggests that the LSTMAFE’s ability to capture sequential
dependencies is beneficial for relapse prediction. However, the CAE model still shows competitive results,
especially in terms of MSE scores, also highlighting the importance of spectral/temporal representation for
anomaly detection.

5.2.4 LSTMVAE vs. CVAE Model Comparison on the Expanded Database

In this final section of the audio experiments, we compare the performance of the LSTMVAE and CVAE
models to evaluate their effectiveness in anomaly detection across both personalized and global experimental
setups using the expanded dataset, repeating the same analysis performed in Section 5.2.3.

Personalized Experiments

Tables 5.21-5.24 present the median MSE anomaly scores, mean MSE ROC-AUC scores, KL divergence
anomaly scores, and mean KL ROC-AUC scores for the personalized CVAE and LSTMVAE models on the

expanded dataset.

. CVAE LSTMVAE
Patient ID
MSE-C MSE-P MSE-R MSE-C MSE-P MSE-R

#1 0.523 + 0.033 0.638 4+ 0.022 0.581 + 0.023 0.712 +£ 0.047 0.831 + 0.040 0.786 + 0.044
#2 0.653 £ 0.131 0.889 + 0.036 0.659 + 0.024 0.871 £ 0.123 1.066 + 0.056  0.744 + 0.048
#3 0.685 + 0.121 0.752 4+ 0.065 0.865 + 0.066 0.926 +£ 0.129 1.014 + 0.072 1.133 £ 0.070
#4 0.599 £+ 0.038 0.734 4+ 0.024 0.603 + 0.020 0.799 £ 0.037 0.977 + 0.040 0.832 £ 0.038
#5 0.569 £+ 0.030 0.649 + 0.024  0.549 + 0.020 0.778 £ 0.037 0.920 4+ 0.024  0.769 + 0.026
#6 0.846 + 0.131 0.867 4+ 0.040 0.874 + 0.042 0.972 £ 0.141 0.991 4+ 0.065 0.974 + 0.062
#T7 0.504 + 0.030 0.632 + 0.031 0.585 + 0.015 0.704 + 0.041 0.867 + 0.025 0.752 4+ 0.014
#8 0.617 £ 0.109 0.631 £+ 0.045 0.567 + 0.047 0.768 £ 0.049  0.739 4+ 0.016 0.653 £+ 0.021
#9 0.733 £ 0.132 0.809 4+ 0.044 0.967 + 0.065 0.918 £ 0.142 0.974 + 0.042 1.248 £+ 0.077

Median 0.617 £ 0.101 0.734 4+ 0.097 0.603 £+ 0.152 0.778 £ 0.092 0.974 + 0.096 0.786 + 0.188

Table 5.21: Comparison of MSE anomaly scores for clean (C), pre-relapse (P), and relapse (R) states for
the personalized CVAE and LSTVMAE models on the expanded dataset.

Table 5.22: Comparison of (MSE) ROC-AUC scores for the personalized CVAE and LSTMVAE models on

Patient ID ROC-AUC (MSE)

CVAE || LSTMVAE

#1 0.622 + 0.076 || 0.644 + 0.060
#2 0.432 4+ 0.136 || 0.435 4 0.095
#3 0.722 4+ 0.189 || 0.744 + 0.130
#4 0.662 &+ 0.073 || 0.667 & 0.110
5 0.718 & 0.051 || 0.726 =+ 0.097
#6 0.543 + 0.143 || 0.577 £+ 0.113
#7 0.838 &+ 0.118 || 0.787 + 0.074
#8 0.342 4+ 0.233 || 0.425 + 0.187
#9 0.833 &+ 0.211 || 0.850 =+ 0.200
Mean 0.635 + 0.155 || 0.667 + 0.188

the expanded dataset.
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5.2. Results

The results from Tables 5.21 and 5.22 indicate that while the LSTMVAE offers an advantage in some aspects,
the CVAE performs comparably in terms of MSE anomaly scores. For most patients, the MSE-P and MSE-
R values for both models are consistently higher than MSE-C, indicating that both models can distinguish
between clean, pre-relapse, and relapse states effectively. However, the LSTMVAE does not consistently
outperform the CVAE in terms of MSE scores. This suggests that the added complexity of temporal modeling
in the LSTMVAE does not necessarily translate into a significantly better ability to detect anomalies. Where
the LSTMVAE does show an improvement is in the ROC-AUC scores. For Patients #3, #6, #8, and #9 the
LSTMVAE outperforms the CVAE, with the overall mean ROC-AUC increasing from 0.635 to 0.667 for all
9 patients, as shown in Table 5.22. This suggests that the LSTMVAE is better at ranking anomalies, even if
the reconstruction errors are similar.

. CVAE LSTMVAE
Patient ID
KL-C KL-P KL-R KL-C KL-P KL-R

#1 11.49 £ 0.60 13.13 £0.76 12.89 £ 0.76 2.71 £0.29 3.02 +0.18 2.92 £+ 0.26
#2 8.57 £ 1.41 10.74 + 1.40  6.803 & 0.87 1.59 £ 0.17 1.95 +0.15 1.50 4 0.08
#3 9.96 £+ 1.69 12.05 + 0.66 10.44 £ 0.65 1.88 £ 0.26 2.13 £0.20 1.82 £ 0.24
#4 11.09 +£ 0.67 11.99 £ 0.52 11.98 £ 0.52 2.06 £ 0.12 2.28 +0.14 2.08 £+ 0.16
#5 12.03 £ 0.41 13.52 £+ 0.31 11.40 £+ 0.24 2.20 £ 0.25 2.09 £ 0.24 2.04 £+ 0.21
#6 5.86 + 1.42 7.67 £ 1.16 7.36 £ 1.16 1.12 £ 0.19 1.25 +0.13 1.28 £ 0.11
H#7 11.21 £ 0.45 12.67 £ 0.61 10.54 4+ 0.46 2.38 £ 0.27  2.19 £ 0.07 2.08 £ 0.11
#8 8.93 £ 1.05 8.82 £ 1.07 9.27 4+ 0.76 211 £0.18 199 +£0.15 2.36 £+ 0.11
#9 9.33 £ 1.39 9.14 £ 0.97 15.05 + 1.74 1.64 + 0.25 1.55 + 0.23  2.45 + 0.31

Median 9.96 + 1.81 11.99 + 1.98 10.55 £ 2.46 2.06 £ 044 2.09 + 046 2.08 £+ 0.47

Table 5.23: Comparison of KL anomaly scores for clean (C), pre-relapse (P), and relapse (R) states for the
personalized CVAE and LSTVMAE models on the expanded dataset.

Patient ID ROC-AUC (KL)

CVAE | LSTMVAE

#1 0.632 + 0.078 | 0.675 + 0.212
#2 0.552 & 0.164 | 0.582 + 0.146
#3 0.689 & 0.174 | 0.633 & 0.109
#4 0.668 + 0.110 | 0.611 =+ 0.094
#5 0.687 £ 0.088 | 0.361 & 0.090
#6 0.723 £ 0.106 | 0.490 & 0.333
7 0.570 + 0.024 | 0.268 4 0.238
#8 0.483 & 0.133 | 0.525 %+ 0.200
49 0.833 & 0.211 | 0.767 & 0.162
Mean 0.649 & 0.098 | 0.582 + 0.147

Table 5.24: Comparison of (KL) ROC-AUC scores for the personalized CVAE and LSTMVAE models on
the expanded dataset.

The results presented in Tables 5.23 and 5.24 indicate that the CVAE generally outperforms the LSTMVAE
in modeling latent space differences using KL divergence anomaly scores. The KL-P, and KL-R values for
the CVAE are consistently higher than those for the LSTMVAE, suggesting that the CVAE captures more
pronounced latent space differences between clean, pre-relapse, and relapse states. For instance, for Patients
#1 and #3, the KL-P and KL-R values for the CVAE show stronger separations than those of the LSTMVAE;,
highlighting its superior ability to identify anomalies in these cases. In terms of ROC-AUC, the CVAE also
performs better in most cases, with mean values of 0.669 for the 8-patient dataset and 0.649 for the 9-patient
dataset, compared to 0.596 and 0.582, respectively for the LSTMVAE. While the LSTMVAE shows better
performance for certain patients (e.g., #1 and #8), its overall lower mean scores indicate less consistent
classification of anomalous states. The inferior performance of the LSTMVAE in this case can be attributed
to the added complexity introduced by sequential modeling which might not translate into better anomaly
detection for KL divergence.
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In summary, the comparison of the CVAE and LSTMVAE personalized models across both MSE and KL
divergence metrics reveals complementary strengths and weaknesses for each architecture. For MSE, the
results indicate comparable performance between the two models in identifying anomalies. While the LST-
MVAE demonstrated slight improvements in ROC-AUC scores for some patients, the CVAE achieved similar
levels of anomaly detection through reconstruction errors. In contrast, the KL divergence results highlight
the superior performance of the CVAE in modeling latent space differences between clean, pre-relapse, and
relapse states. The LSTMVAE is optimized for capturing temporal dependencies, which may provide an
advantage in tasks where sequential patterns are critical. However, this might lead to over-regularization, in
the latent space, as reflected in its lower KL divergence performance. On the other hand, the CVAE, seems
to be the more suitable model for capturing differences in clean and anomalous states.

Global Experiments

Tables 5.25-5.28 present the median MSE anomaly scores, KL divergence anomaly scores and their corre-
sponding ROC-AUC scores for the global CVAE and LSTMVAE models on the expanded dataset.

Norm CVAE LSTMVAE
) MSE-C MSE-P MSE-R MSE-C MSE-P MSE-R
Per-patient | 0.519 £ 0.025 0.610 £ 0.019 0.548 £ 0.051 0.774 £ 0.011  0.906 £ 0.029 0.799 + 0.012
Global 0.521 £ 0.024 0.609 £ 0.011 0.553 £ 0.044 0.732 £0.040 0.914 £+ 0.020 0.797 £+ 0.013

Table 5.25: Comparison of MSE anomaly scores for clean (C), pre-relapse (P), and relapse (R) states for
the personalized CVAE and LSTMVAE models on the expanded dataset.

ROC-AUC (MSE)
Norm.
CVAE || LSTMVAE
Per-patient | 0.621 & 0.051 [[ 0.619 & 0.015
Global | 0.618 & 0.044 || 0.618 & 0.032

Table 5.26: Comparison of (MSE) ROC-AUC scores for CVAE and LSTMVAE under per-patient and
global normalization schemes.

The results in Tables 5.25 and 5.26 show that the LSTMVAE demonstrates similar performance to the CVAE
in terms of MSE anomaly scores and ROC-AUC scores. This indicates that the LSTMVAE is effective in
distinguishing between clean and anomalous states, but does not necessarily outperform the CVAE in terms
of anomaly detection.

Norm CVAE LSTMVAE
) KL-C KL-P KL-R KL-C KL-P KL-R
Per-patient | 13.14 £ 0.58 14.96 + 0.73 13.34 £ 4.49 2.02 £0.17 2.26 £0.18 2.08 + 0.15
Global 12.87 £ 0.54 14.32 £ 0.18 13.07 £ 0.17 2.03 £0.14 2.27 £0.16 2.07 +0.11

Table 5.27: Comparison of KL anomaly scores for clean (C), pre-relapse (P), and relapse (R) states for the
personalized CVAE and LSTMVAE models on the expanded dataset.

ROC-AUC (KL)
CVAE | LSTMVAE

Per-patient | 0.604 4+ 0.037 0.614 + 0.030
Global 0.596 £ 0.035 0.606 + 0.027

Norm.

Table 5.28: Comparison of (KL) ROC-AUC scores for CVAE and LSTMVAE under per-patient and global
normalization schemes.

The KL anomaly scores in Table 5.27 indicate that the CVAE captures more pronounced differences between
clean, pre-relase, and relapse states compared to the LSTMVAE. Despite the CVAE’s higher KL scores, the
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ROC-AUC results in Table 5.28 show that the LSTMVAE slightly outperforms the CVAE. The LSTMVAE
achieves better mean ROC-AUC values under both normalization schemes, with 0.614 for per-patient and
0.606 for global normalization, compared to 0.604 and 0.596 for the CVAE, respectively. This suggests that
the LSTMVAE is more effective at detecting anomalies, even if the KL divergence scores are lower.

In conclusion, the results from both experimental setups highlight that while the LSTMVAE is an effective
and comparable alternative, the CVAE emerges as better suited for this specific task.

5.3 Discussion

Expanding the dataset to include additional patients and more utterances per patient has notably improved
anomaly detection performance across all models, although the degree of improvement depends on both the
model architecture and experimental setup.

A principal observation from the CAE experiments is that increasing data diversity and volume generally
leads to higher reconstruction errors for anomalous speech, especially during relapse states. In personalized
experiments, most patients exhibit stronger separation between clean and anomalous states, with consistent
increases in ROC-AUC. In global experiments, the CAE demonstrated significant improvement in ROC-
AUC, suggesting that the model benefits from increased data diversity, enabling better generalization across
different patients.

The CVAE exhibits strong distinction ability in personalized experiments, effectively separating clean and
anomalous states, with slight improvements in ROC-AUC scores. However, in global experiments, the per-
patient normalization scheme shows a slight decrease in ROC-AUC, indicating sensitivity to the added
individual variability introduced by the expanded dataset. This sensitivity likely could possibly lead to
over-regularization in the latent space, emphasizing the need for refinements such as adaptive regulariza-
tion techniques, patient-specific weights, or fine-tuning. These adjustments could also enhance the CVAE'’s
performance in personalized experiments. Conversely, the global normalization scheme shows a significant
increase in ROC-AUC, indicating that a common normalization approach enhances the CVAE’s ability to
generalize across patients by prioritizing shared patterns over individual differences.

The inclusion of temporal modeling with the LSTMAE proves to be a promising approach for this task,
showcasing clear advantages over the CAE across both experimental setups and normalization schemes. By
leveraging sequential dependencies, the LSTMAE effectively captures temporal patterns associated with pre-
relapse and relapse states. This capability translates into consistently higher ROC-AUC values for most
patients, underscoring its potential as a robust method for relapse detection in speech data.

Despite the LSTMAE’s strengths in temporal modeling, the CVAE emerges as the better-suited variational
autoencoder model for this task. In personalized experiments, the CVAE performed comparably to the
LSTMVAE, with the first model showing clearer separations across states in terms of KL-divergence scores,
while the latter demonstrated better distinction in terms of MSE scores. Furthermore, the CVAE’s ability to
generalize across patients in global experiments suggests it is more resilient to increased data variability com-
pared to the LSTMVAE. However, the LSTMAE remains a strong candidate for tasks where sequential and
temporal cues are critical, and its performance could potentially be further enhanced through regularization,
weighting, and fine-tuning strategies.
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6.1. Methodology

This chapter presents the multimodal experiments, which form the central focus of this thesis, aiming to
enhance relapse detection in mental health patients by integrating diverse data modalities. While the earlier
chapter focused on audio-based anomaly detection, this chapter explores the potential of combining speech
features with complementary biometric data collected from smartwatch sensors. These biometric signals,
derived from accelerometer, gyroscope and heart rate measurements, capture key aspects of physical activity
and physiological state. This fusion is based on the assumption that relapse-related anomalies may manifest
across multiple physiological and behavioral domains and aims to provide a more holisitc and accurate relapse
detection.

To explore the potential of multimodal fusion, two joint autoencoder models were developed, each featur-
ing distinct autoencoder branches for audio and biometric data. The audio branch incorporates the CAE
and LSTMAE models introduced in Chapter 5, which demonstrated strong performance in audio anomaly
detection. For the biometric signals, a CAE model was developed, based on the best performing model in
the e-Prevention experiments mentioned in 3.4. The two branches are fused in the latent space, allowing the
model to learn a unified representation of multimodal data. Additionally, to validate this approach, ablation
studies were conducted following the main experiments. These included testing the effect of disabling one of
the branches during training to assess the contribution of each modality independently.

The ultimate objective of these experiments is to showcase the potential of multimodal fusion in enhancing
relapse detection, compared to unimodal methods, and contribute meaningfully to relapse detection research
in general.

6.1 Methodology

6.1.1 Audio and Biometric Data Alignment

As mentioned in Section 4.3.2, accurate alignment between audio and biometric data is necessary for training
the multimodal joint autoencoder models. Initially, alignment was performed by matching the biometric
data to the exact dates of the audio interviews. After preprocessing the bio data, as described in Section
4.3.3, the resulting "day-of" dataset consisted of 4 patients who had sufficient and valid data However, the
small size of the dataset was insufficient for reliably training the joint autoencoder models. To address this
limitation, we expanded the dataset by including biometric data within defined time windows around the
interview dates. This approach resulted in the creation of three additional subsets: 3-day, 5-day, and 7-day
datasets. The biometric data in these subsets were preprocessed similarly to the day-of dataset, with all
dataset sizes summarized in Table 6.1.

Datasets Day-of 3-day 5-day 7-day
Demographics

Male/Female 2/2 2/3 2/3 3/4
Age (years) 31 £8.7 302+£8 302 £8 28+ 76
Education (years) 14+ 2 14.4 £ 2 14.4 £ 2 13.7 £ 2
Illness duration (years) 8819 7.2+ 8.6 7.2+ 8.6 6.4+ 74
Recorded Data

Num. of Days Recorded (total) 66 102 124 158
Num. of Days Recorded (mean + std) 16.5 £5 204+ 75 24.8 £ 7.2 22.6 + 10.8
Num. of Hours Recorded (total) 888 1,752 2,400 3,280
Num. of Hours Recorded (mean =+ std) 222 £ 45.7 350.4 £ 89.6 480 £ 96.7 468.6 + 185
Num. of 5-min intervals (total) 10,656 21,024 28,800 39,360

Num. of 5-min intervals (mean + std) 2,664 £+ 548.9 4,204.8 + 1,074.9 5,760 4+ 1171  5,622.9 £+ 2,219.5

Table 6.1: Comparison of demographics, illness information, and recorded biometric data for the patients in the
day-of, 3-day, 5-day, and 7-day datasets after preprocessing and feature extraction.

Aligning audio and biometric data posed several challenges, primarily due to fundamental differences in
their temporal structure and sampling characteristics. While mel-spectrograms are extracted from short
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speech segments, biometric feature tensors capture continuous physiological signals over extended periods,
often covering an entire day. This discrepancy complicated direct alignment, as there was no natural 1-to-1
correspondence between the two modalities. Additionally, as shown in Figure 6.1.1, each interview date in
the audio dataset included a significantly larger number of mel-spectrograms compared to the number of
biometric feature tensors available for the same date, further highlighting the challenge of direct alignment.

Figure 6.1.1 illustrates the disparity in the available mel-spectrograms and biometric feature tensors across
the day-of, 3-day, 5-day, and 7-day datasets for the same patient and a specific interview date.

Comparison of Mel-Spectrograms and Biometric Feature Tensors
149
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Day-Of Bio Tensors 142
3-Day Bio Tensors
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7-Day Bio Tensors

140 4
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Figure 6.1.1: Comparison of the number of mel-spectrograms and biometric feature
tensors across the day-of, 3-day, 5-day, and 7-day datasets for the same patient and
sessions.

To address this challenge and ensure reliable and diverse training data, each mel-spectrogram was matched
to multiple instances of the corresponding biometric data from the same date. This was done by duplicating
the available biometric data to match the quantity of audio data, followed by a randomized assignment of
biometric tensors to mel-spectrograms, before training. This approach ensured sufficient diversity in the
aligned data while maintaining a temporal relationship between the audio and biometric data, avoiding
inconsistencies during training.

6.1.2 Joint Autoencoder Architectures

The joint autoencoder architectures developed during this study combine two distinct branches: an audio
branch and a biometric data branch, using different autoencoders for each data modality.

Audio Branch

For the audio branch of the joint autoencoder, we experimented with the CAE and the LSTMAE architectures
introduced in Section 5.1.2. The specific architectural details of the CAE are presented in Table 5.1 and Figure
3.4.3, while the architecture of the LSTMAE is presented in Table 5.2 and Figure 5.1.2. For reference, the
input, latent representation and output dimensions of the audio branches are summarized in Table 6.2.
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CAE [ LSTMAE
Encoder Input 128x64x1 64x128
Latent Representation | 1x1x256 64
Decoder Output 128x64x1 64x128

Table 6.2: Details of the input, latent representation and output dimensions of the CAE and LSTMAE
audio branch architectures.

Bio Branch

For the biometric data, a CAE model was implemented and adapted based on the best performing architecture
from the experiments on the e-Prevention study [Zla+22]. The model follows a deep convolutional neural
network structure, composed of encoding layers that progressively compress the 96x10 biometric feature
input tensor, where 96 represents the number or 5-minute intervals in a 8 hour window and 10 is the number
of features extracted from the accelerometer, gyroscopeand heart rate sensors, as described in Section 4.3.3,
into a lower-dimensional latent representation. The encoding layers are followed by decoding layers that
reconstruct the original input tensor.

The encoder is composed of 4 sequential convolutional downsampling (DS) blocks. Each block consists of a
1D-Convolution layer, followed by Batch Normalization, a LeakyReL U activation function, and a MaxPooling
layer. The final encoder layer uses a 1D-Convolution layer to compress the input into the latent space
representation, which has a shape of 1x16. The decoder mirrors the encoder in reverse, with 4 sequential
convolutional upsampling (US) blocks. Each block starts with an Upsampling layer, progressively increasing
the dimension of the latent space representation. The Upsampling layers are followed by a 1D-Convolution
layer, Batch Normalization and a LeakyReLU activation function. The final decoder layer consists of a Dense
layer with an output size of 10 and a linear activation function, reconstructing the original input tensor. The
full architecture parameters are presented in Table 6.3, where the downsampling (DS) and upsampling (US)
blocks are detailed, along with the number of filters, kernel size, pooling or upsampling size and output
dimensions of each block.

Conv. Block ‘ Filters | Kernel Size ‘ Pooling Size | Upsampling Size ‘ Output Dimensions

DS1 4 5 2 - 48x4
DS2 8 5 2 - 24x8
DS3 16 5 2 - 12x16
DS4 32 5 2 - 6x32
Latent 16 - - - 1x16
US1 32 4 - 4 4x32
US2 16 4 - 4 16x16
US3 8 5 - 3 48x8
US4 4 5 - 2 96 x4
Dense 10 - - - 96x10

Table 6.3: Architecture parameters of the Convolutional Autoencoder (CAE) used in the biometric data
branch.

The latent representation size was set to 16 after conducting a hyperparameter search using GridSearchCV
over the range {8, 16, 32, 64}. The architecture parameters were then selected to achieve this latent space
size while maintaining a relatively simple architecture and ensuring compatibility with the audio CAE im-
plementation.

CAE-CAE and LSTMAE-CAE Joint Autoencoders

The architecture of the joint autoencoder models was implemented as follows:

e Input and Encoding: Each input is first passed through its respective encoder branch. For mel
spectrograms, the audio branch encoder compresses the input into a latent representation of size 256
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Figure 6.1.2: Overview of the proposed Convolutional Autoencoder (CAE)
architecture for the biometric data branch.

in the case of the CAE or size 64 for the LSTMAE. Biometric feature tensors, on the other hand, are
passed through the CAE bio branch encoder, which generates a latent representation of size 16.

Latent Space Fusion: After encoding, the latent representations from each branch are concatenated
to form a joint latent representation. For the CAE-CAE joint autoencoder, the concatenated latent rep-
resentation has a size of 272, combining the 256-dimensional audio latent space and the 16-dimensional
biometric latent space. For the LSTMAE-CAE joint autoencoder, the concatenated latent represen-
tation has a size of 80, combining the 64-dimensional LSTMAE latent space and the 16-dimensional
biometric latent space. The joint latent representation is not reduced further. Experimental observa-
tions showed that reducing the dimensionality at this stage did not improve model performance.

Decoding and Output: Finally, the joint latent representation is processed through Dense and
Reshape layers, transforming it back into the respective encoded latent sizes of each branch. The
decoders then reconstruct the original mel spectrograms and biometric feature tensors, completing the
autoencoder’s pipeline.
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Figure 6.1.3: Overview of the proposed CAE-CAE joint autoencoder architecture.
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Figure 6.1.4: Overview of the proposed LSTMAE-CAE joint autoencoder architecture.
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6.1. Methodology

6.1.3 Model Training

The training pipeline for the joint autoencoder models followed the same methodology as in the case of the
unimodal audio model, described in Section 5.1.3, with specific adjustments tailored to the multimodal data.
Both the audio and biometric data were split into training, validation, and test datasets in a 60-20-20 ratio
based on the interview sessions. As mentioned before, pre-relapse and relapse data were excluded from the
training and validation datasets and was used exclusively during testing to evaluate the model’s ability to
identify anomalies. Additionally, as in the unimodal experiments, to prevent session-wise overfitting, the
splits were structured so that all mel-spectrograms and biometric feature tensors corresponding to the same
interview session remained within the same fold.

Loss Function

The loss function used for both branches was the Mean Squared Error (MSE) loss, focusing on minimizing
the reconstruction error for both the mel spectrograms and the biometric features. The loss weights for
each autoencoder branch during training were initialized based on extensive experimentation to balance the
reconstruction quality of both the audio and bio branches. As shown in Table 6.4, the audio branch was
assigned a higher weight in both joint models, reflecting the intention to prioritize audio reconstruction.

Model ‘ Audio Branch ‘ Bio Branch
CAE-CAE 0.6 0.4
LSTMAE-CAE 0.8 0.2

Table 6.4: Loss weights of the audio and bio branches during training of the CAE-CAE and LSTMAE-CAE
joint autoencoder models.

Hyperparameters and Optimization

Both joint autoencoder models were trained using a maximum training duration of 200 epochs, a batch size of
8, and the Adam optimizer. To prevent overfitting, early stopping was applied with a patience of 10 epochs.
Additionally, for the learning rate, a value of 3 x 1074 was selected for the CAE-CAE model, while a value
of 1 x 10~2 was chosen for the LSTMAE-CAE model. A dropout rate of 0.2 was applied to the audio branch
of the LSTMAE-CAE model.

6.1.4 Evaluation Metrics

The performance of the joint autoencoder models was evaluated on both MSE and ROC-AUC, as mentioned
in Section 5.1.4. Specifically, the MSE and ROC-AUC scores of each branch (audio and biometric) were
compared to the metrics obtained from the unimodal models. This comparison allowed for a direct assessment
of how the joint models leveraged both modalities relative to the independent approaches.

Additionally, a combined MSE score was calculated for the joint models using a weighted sum of the audio
and bio branch MSE scores, while the corresponding ROC-AUC scores were computed from these combined
anomaly scores. The combined MSE was calculated as follows:

MSEjoint = Waudio * MSEaudio + Whio - MSEp;o (6.1.1)
Where wauqio and wy, are the weights assigned to the audio and bio branches during training, as shown in
Table 6.4.

The combined metrics were then evaluated against both the unimodal baselines to determine the overall
effectiveness of the joint models.

6.1.5 Unimodal Model Baselines

As mentioned previously, in order to evaluate the performance of the joint autoencoder models, unimodal
baselines were established for both the audio and biometric data. The unimodal models were trained and
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evaluated to establish baseline performance metrics for each dataset, including the day of, 3-day, 5-day and
7-day datasets. The CAE and LSTMAE models for the audio branch were trained exactly as described in
Section 5.1.3. Similarly, the bio CAE model followed the same training methodology, using a learning rate
of 3 x 1074, a batch size of 8, 200 epochs, and the Adam optimizer. The evaluation methodology for all
unimodal models was consistent with that described earlier and in Section 5.1.4.

6.2 Joint CAE-CAE Model

This section presents the results of the CAE-CAE joint autoencoder experiments conducted on the day-of,
3-day, 5-day and 7-day datasets, with the overall format of the results following the one used in Section 5.2.

For the day-of dataset’s personalized experiments, results are presented with MSE and ROC-AUC values for
all individual patients, in order to highlight the imbalance in performance between the audio and bio branches,
underscoring the necessity for expanded datasets. For the remaining temporal window datasets, only the
median MSE and mean ROC-AUC scores across patients are reported, since they effectively summarize the
model’s performance across all patients and are sufficient to highlight the trends and insights. The results
for the global experiments also follow the same format as in Section 5.2.

The performance of the audio and bio branches is compared against their respective unimodal baselines,
while the combined MSE and ROC-AUC metrics are computed to evaluate the overall effectiveness of the
joint model. These experiments aim to evaluate the CAE-CAE model’s ability to leverage audio and bio
features for relapse detection, assess its performance against unimodal models and determine the influence
of the temporal windows on its overall effectiveness.

6.2.1 Day of Interview

The day-of dataset includes the audio and biometric data of patients #1, #2, #4, and #6, with a total of
66 days of recorded data.

Personalized Experiments

Tables 6.5, 6.6, and 6.7 present the MSE anomaly scores of the audio and bio unimodal models and branches
of the joint CAE-CAE model and its combined MSE scores, respectively.

. Audio Unimodal Audio Branch
Patient ID
MSE-C MSE-P MSE-R MSE-C MSE-P MSE-R

#1 0.366+0.016 0.673+0.041 0.52240.034 0.45940.044 0.761+0.027 0.640+0.036
#2 0.5534+0.061 0.648+0.031 0.589+0.035 0.6044+0.077 0.790+0.031 0.697+0.023
#4 0.310£0.079  0.413+0.027 0.316+0.015 0.400£0.075 0.50440.035 0.401+40.021
#6 0.6754+0.116  0.908+0.056 0.796+0.060 0.8544+0.138  1.12440.081 0.897+0.024

Median 0.4604+0.146 0.661+0.175 0.556+0.171 0.5324+0.175 0.776+0.220 0.669+0.177

Table 6.5: Comparison of MSE anomaly scores for clean (C), pre-relapse (P), and relapse (R) states of the
personalized unimodal audio model and audio branch of the joint CAE-CAE model for the day-of dataset.

A Bio Unimodal Bio Branch
Patient ID
MSE-C MSE-P MSE-R MSE-C MSE-P MSE-R

#1 0.95940.265  0.79840.055 0.793£0.076 1.22340.367 1.02140.090 0.839£0.212
#2 0.6984+0.087 0.726+0.059 0.810+0.050 0.84740.082 0.834+0.034  0.874+0.029
#4 1.006+0.583  0.941+0.115 1.049+0.161 1.25240.772 1.1174+0.193 1.289+0.121
#6 0.9364+0.131  1.23840.258  0.64440.231 1.2164+0.150 1.14440.178  0.68140.158

Median 0.9484+0.119  0.87040.196 0.802+0.145 1.22040.167 1.06940.122 0.857+0.225

Table 6.6: Comparison of MSE anomaly scores for clean (C), pre-relapse (P), and relapse (R) states of the
personalized unimodal bio model and bio branch of the joint CAE-CAE model for the day-of dataset.
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Patient ID Combined
MSE-C MSE-P MSE-R
#1 0.773+0.148 0.866+0.034 0.859+0.034
#2 0.735+0.024 0.817+0.026 0.765+0.022
#4 0.7714+0.285  0.73140.081 0.75440.046
#6 0.9994+0.411  1.0974+0.090  0.92140.069
Median 0.7724+0.105 0.842+0.135 0.812+0.069

Table 6.7: Combined MSE anomaly scores for clean (C), pre-relapse (P), and relapse (R) states of the personalized
joint CAE-CAE model for the day-of dataset.

Based on the results presented in Tables 6.5 and 6.6, we can clearly observe that the unimodal audio model
has superior performance compared to the unimodal bio model in terms of distinguishing between the clean,
pre-relapse, and relapse states. One contributing factor to this is the small size of the dataset (in terms
of available biometric feature tensors) which may have limited the bio model’s ability to learn sufficient
representations of the data.

As it was expected, this limitation affected the joint autoencoder as well, since the audio branch of the
joint CAE-CAE model also outperforms the bio branch in terms of MSE anomaly scores, indicating that the
biometric data did not provide significant additional information to complement the audio modality. The
combined MSE scores in Table 6.7 show that the joint CAE-CAE model’s performance did not significantly
improve the audio model’s performance, but it did improve the bio model’s performance, which is expected
given the imbalance.

Table 6.8 presents the ROC-AUC scores for the personalized unimodal audio and bio models, the audio
and bio branches of the joint CAE-CAE and the combined ROC-AUC scores for the day-of dataset. The
bolded ROC-AUC scores represent the cases where the joint autoencoder branch outperformed its unimodal
counterpart and the cases where the combined ROC-AUC score is higher than both the ROC-AUC scores of
the audio and bio unimodal models. This notation is going to be used in the all following Tables.

. ROC-AUC
Patient ID A . . K . . X

Audio Unimodal ‘ Audio Branch H Bio Unimodal ‘ Bio Branch H Combined
#1 0.86040.049 0.860£0.049 0.2404-0.206 0.360+0.344 0.640+0.273
#2 0.70040.187 0.750+0.224 0.65040.200 0.500£0.158 0.850+0.200
#4 0.62940.178 0.629+0.203 0.49640.206 0.535+0.196 0.59440.181
#6 0.67540.100 0.650£0.094 0.32540.218 0.450+0.281 0.475+0.278
Mean 0.716+0.087 0.722+0.092 0.428+0.158 0.461+0.066 0.640+0.136

Table 6.8: Comparison of ROC-AUC scores of the personalized unimodal models and branches of the joint
CAE-CAE model, as well as the combined ROC-AUC scores for the day-of dataset.

The ROC-AUC scores presented in Table 6.8 further validate the imbalance in performance between the
audio and bio models, suggesting that the bio branch did not provide sufficient additional information to
significantly enhance the joint model’s performance. Despite this, the branches and combined ROC-AUC
scores are comparable to, and in some cases slightly better than the unimodal models, which suggests that
the added modality could be beneficial for relapse detection, given a larger and more diverse dataset to enable
the joint model to effectively leverage complementary information from both modalities.

Global Experiments

Tables 6.9-6.11 present the MSE anomaly scores of the global audio and bio unimodal models and branches
of the joint CAE-CAE model and its combined MSE scores, respectively.
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Norm Audio Unimodal Audio Branch
) MSE-C MSE-P MSE-R MSE-C MSE-P MSE-R
Per-patient | 0.275+0.019 0.397+0.022 0.309+0.016 0.3404+0.028 0.47440.031 0.375+0.019
Global 0.250+0.043 0.354+0.020 0.27240.011 0.348+0.029 0.465+0.022 0.385+0.010

Table 6.9: Comparison of MSE anomaly scores for clean (C), pre-relapse (P), and relapse (R) states of the global
unimodal audio model and audio branch of the joint CAE-CAE model for the day-of dataset.

Norm Bio Unimodal Bio Branch
’ MSE-C MSE-P MSE-R MSE-C MSE-P MSE-R
Per-patient | 0.746+0.131 0.743£0.045 0.761+0.042 0.861+0.175 0.8584+0.081 0.868+0.038
Global 0.8284+0.171  0.70440.082 0.721£0.114 0.9614+0.147 0.9314+0.110  0.86240.026

Table 6.10: Comparison of MSE anomaly scores for clean (C), pre-relapse (P), and relapse (R) states for the global
unimodal bio CAE model and the audio branch of the joint CAE-CAE model for the day-of dataset.

Patient ID Combined
MSE-C MSE-P MSE-R.
Per-patient | 0.56940.057 0.618+0.041 0.592+0.021
Global 0.597-+0.036  0.657+0.045  0.571-0.016

Table 6.11: Combined MSE anomaly scores for clean (C), pre-relapse (P), and relapse (R) states of the global joint
CAE-CAE model for the day-of dataset.

The results in Tables 6.9 and 6.10 also highlight that the imbalance in performance between the audio and
bio models is present in the global experiments as well. The audio unimodal model achieved clear distinction
between clean, pre-relapse and relapse states, while the bio model’s performance is significantly lower. The
audio branch follows the same trend, with its performance being slightly improved compared to the unimodal
model. This suggest that the biometric modality did provide some additional information to the joint model,
but it was not sufficient to significantly improve the model’s overall performance, as also shown by the
combined MSE scores in Table 6.11.

Table 6.12 presents the ROC-AUC scores for the global unimodal models and branches of the joint CAE-CAE
model and its combined ROC-AUC scores. The results show that the audio and bio branches’ ROC-AUC
scores are again higher than their unimodal counterparts, but with the imbalance between them persisting.
The combined ROC-AUC scores indicate that the joint model’s performance is improved only compared to
the bio unimodal model, which is consistent with the MSE results.

Norm ROC-AUC
’ Audio Unimodal | Audio Branch H Bio Unimodal | Bio Branch H Combined
Per-patient 0.684+0.125 0.698+0.162 0.452+0.125 0.474+0.162 0.541+0.140
Global 0.67440.127 0.691+0.118 0.4374+0.127 0.483+0.118 0.55740.119

Table 6.12: Comparison of ROC-AUC scores of the global unimodal models and branches of the joint CAE-CAE
model, as well as the combined ROC-AUC scores for the day-of dataset.

Overall, the results of the day-of dataset experiments show that there is potential for the joint CAE-CAE
model to improve relapse detection, but the imbalance in performance between the audio and bio models
highlights the need for a larger and more diverse dataset to fully leverage the benefits of the multimodal
approach.
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6.2.2 Temporal Windows Around Interview

The 3-day dataset consists of audio and biometric data from patients #1, #2, #3, #4, and #6, totaling 102
days of recorded data. The 5-day dataset includes the same patients, with an expanded dataset of 124 days.
The 7-day dataset extends the patients to #1, #2, #3, #4, #6, #8, and #9, including 158 recorded days in
total.

Personalized Experiments

Tables 6.13-6.14 present the median MSE anomaly scores of the audio and bio unimodal models and branches
of the joint CAE-CAE model and its combined MSE scores, respectively, for each temporal window dataset.

Dataset Audio Unimodal Audio Branch
MSE-C MSE-P MSE-R MSE-C MSE-P MSE-R
3-day 0.526+0.180 0.58840.202 0.480+0.197 0.5534+0.162 0.7414+0.202 0.696+0.211
5-day 0.4644+0.121 0.54840.122 0.463+0.122 0.5594+0.176  0.6534+0.209 0.59440.191
7-day 0.469+0.175 0.525+0.106 0.503+0.159 0.527+0.151 0.615+0.124 0.64740.188

Table 6.13: Comparison of median MSE anomaly scores for clean (C), pre-relapse (P), and relapse (R) states of the
personalized unimodal audio model and audio branch of the joint CAE-CAE model for the 3, 5, and 7-day datasets.

Dataset Bio Unimodal Bio Branch
MSE-C MSE-P MSE-R MSE-C MSE-P MSE-R
3-day 0.67940.108  0.64340.451 0.684+0.273 0.7684+0.204 0.8214+0.456 0.776+0.351
5-day 0.541£0.073 0.600+2.849 0.648+0.255 0.662+0.225 0.783+2.359 0.775+0.382
7-day 0.6154+0.196 0.832+0.166 0.624+0.355 0.6754+0.259 1.056+0.259 0.706=+0.390

Table 6.14: Comparison of MSE anomaly scores for clean (C), pre-relapse (P), and relapse (R) states of the
personalized unimodal bio model and bio branch of the joint CAE-CAE model for the 3, 5, and 7-day datasets.

Combined
Dataset
MSE-C MSE-P MSE-R
3-day 0.639£0.115 0.779+0.642 0.734£0.133
5-day 0.6274+0.164 0.6824+0.996 0.72440.311
7-day 0.651£0.133 0.710+0.135 0.807+0.311

Table 6.15: Combined MSE anomaly scores for clean (C), pre-relapse (P), and relapse (R) states of the global joint
CAE-CAE model for the 3, 5, and 7-day datasets.

The results in Tables 6.13-6.15 consistently demonstrate the superior performance of the joint CAE-CAE
model over its respective unimodal models in detecting pre-relapse and relapse states across all datasets. In
the 3-day dataset, both the audio and bio branches achieve higher MSE anomaly scores for the pre-relapse
and relapse states, which is also reflected in the combined MSE scores. The similar trend is observed in the
5-day dataset, with higher MSE scores in anomalous states for both branches, and the combined MSE scores
as well. Finally, the 7-day dataset exhibits the strongest improvements in detecting pre-relapse and relapse
states, with the MSE anomaly scores consistently highlighting significant gains for both branches and the
joint model overall.

Table 6.16 presents the ROC-AUC scores for the personalized unimodal audio and bio models, the audio and
bio branches of the joint CAE-CAE and the combined ROC-AUC scores for the 3, 5, and 7-day datasets.
Additionally, Figure 6.2.1 illustrates the mean ROC-AUC scores for the personalized experiments across all
datasets, including the day-of dataset.
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ROC-AUC
Dataset . . . K . ) .
Audio Unimodal | Audio Branch || Bio Unimodal | Bio Branch || Combined
3-day 0.61840.062 0.674+0.099 0.54740.198 0.564+0.188 0.656+0.186
5-day 0.62540.064 0.654+0.079 0.60340.126 0.626+0.129 0.654+0.143
7-day 0.59840.064 0.643+0.079 0.55740.136 0.629+0.120 0.652+0.170

Table 6.16: Comparison of ROC-AUC scores of the personalized unimodal models and branches of the joint
CAE-CAE model, as well as the combined ROC-AUC scores for the 3, 5, and 7-day datasets.

ROC-AUC Scores for the CAE-CAE Personalized Experiments
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Figure 6.2.1: Mean ROC-AUC scores for the personalized experiments for all datasets.

The ROC-AUC results in Table 6.16 and Figure 6.2.1 further demonstrate the advantages of integrating
audio and biometric data for relapse detection. The joint CAE-CAE model consistently surpasses the uni-
modal models in ROC-AUC scores across all datasets, with the audio branch exhibiting the most substantial
improvement over its unimodal counterpart, particularly in the 3-day dataset (0.618 to 0.674), suggesting
that biometric data enhances speech-based anomaly detection. Similarly, the bio branch also shows improve-
ments in performance, although not as pronounced, confirming that audio data contributes to more effective
predictions. Finally, the combined ROC-AUC scores also show improvements compared to both unimodal
models, with the 3-day dataset achieving the highest score of 0.656. It should be noted that the comparisons
are not between datasets, but rather between the models’ performance within each dataset compared to their
respective unimodal models.

Overall, in the personalized experiments, the multimodal approach proves to be effective in detecting pre-
relapse and relapse anomalies. The findings emphasize that biometric data significantly improve speech-based
models, while audio data reinforces biometric predictions, making the combined approach more robust than
either modality alone. Additionally, the results suggest that the additional biometric data in the larger
datasets had a positive impact on the joint model’s performance, since the imbalance between the audio and
bio branches was less pronounced compared to the day-of dataset.
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Global Experiments
Per-Patient Normalization

Tables 6.17-6.19 present the MSE anomaly scores of the global unimodal audio and bio models and branches
of the joint CAE-CAE model and its combined MSE scores, respectively, for each temporal window dataset
with per-patient normalization. Table 6.20 and Figure 6.2.2 present the ROC-AUC scores.

Dataset Audio Unimodal Audio Branch
MSE-C MSE-P MSE-R MSE-C MSE-P MSE-R
3-day 0.2864+0.037 0.33740.009  0.28140.011 0.3014+0.044 0.3954+0.024 0.3124+0.012
5-day 0.237+0.018 0.326+0.010 0.258+0.011 0.272+0.030 0.348+0.018 0.2854+0.015
7-day 0.2334+0.017  0.2744+0.015 0.245+0.008 0.2544+0.021 0.3194+0.011 0.283+0.009

Table 6.17: Comparison of MSE anomaly scores for clean (C), pre-relapse (P), and relapse (R) states of the global
(per-patient normalization) unimodal audio model and audio branch of the joint CAE-CAE model for the 3, 5, and
7-day datasets.

Dataset Bio Unimodal Bio Branch
MSE-C MSE-P MSE-R MSE-C MSE-P MSE-R
3-day 0.7044+0.063  0.64040.045 0.653+0.058 0.7614+0.100  0.68840.035 0.768+0.081
5-day 0.5584+0.062  0.5314+0.027  0.620=£0.030 0.59440.044 0.631+0.029 0.655+0.072
7-day 0.5494+0.063 0.630+0.033 0.639+0.057 0.5784+0.023 0.658+0.041 0.597+0.024

Table 6.18: Comparison of MSE anomaly scores for clean (C), pre-relapse (P), and relapse (R) states for the global
(per-patient normalization) unimodal bio CAE model and the audio branch of the joint CAE-CAE model for the 3,
5, and 7-day datasets.

Combined
Dataset
MSE-C MSE-P MSE-R
3-day 0.47940.040 0.508+0.037 0.518+0.015
5-day 0.3964+0.034 0.437+0.026 0.473+0.029
7-day 0.401£0.008 0.466+0.013 0.42940.008

Table 6.19: Combined MSE anomaly scores for clean (C), pre-relapse (P), and relapse (R) states of the global
(per-patient normalization) joint CAE-CAE model for the 3, 5, and 7-day datasets.

ROC-AUC
Dataset . . . K . . .
Audio Unimodal | Audio Branch H Bio Unimodal | Bio Branch H Combined
3-day 0.615+£0.069 0.639+0.112 0.490+0.049 0.539+0.042 0.602+0.054
5-day 0.60540.032 0.626+0.075 0.51940.077 0.556+0.040 0.612+0.054
7-day 0.60340.059 0.614+0.048 0.55340.029 0.555+0.032 0.58240.028

Table 6.20: Comparison of ROC-AUC scores of the global (per-patient normalization) unimodal models and
branches of the joint CAE-CAE model, as well as the combined ROC-AUC scores for the 3, 5, and 7-day datasets.

The results in Tables 6.17-6.19 reveal a moderate enhancement in the joint CAE-CAE model’s performance
compared to the unimodal models. The improvement is more evident in the ROC-AUC scores in Table
6.20 and Figure fig:cae-cae-roc-auc-global-per-patient, where both the audio and bio branches consistently
outperform their unimodal counterparts. However, the combined ROC-AUC scores show a more varied trend;
while the 5-day dataset demonstrates a slight overall advantage over both unimodal models, in the 3-day and
7-day datasets, the combined model primarily surpasses the bio unimodal model.
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ROC-AUC Scores for the CAE-CAE Global Experiments (Per-Patient)
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Figure 6.2.2: Mean ROC-AUC scores for the global experiments (per-patient normalization)
for all datasets.

Global Normalization

Tables 6.21-6.23 present the MSE anomaly scores of the global unimodal audio and bio models and branches
of the joint CAE-CAE model and its combined MSE scores, respectively, for each temporal window dataset
with global normalization. Table 6.24 and Figure 6.2.3 present the ROC-AUC scores.

Audio Unimodal Audio Branch

Dataset
MSE-C MSE-P MSE-R MSE-C MSE-P MSE-R

3-day 0.252+0.034  0.340+0.008  0.27940.007 0.299+0.050 0.372+0.031  0.31340.022
5-day 0.233+0.016  0.326+0.019  0.257+0.011 0.291+0.028 0.368+0.013  0.292+0.018
7-day 0.233+0.019  0.277+0.010  0.250+£0.006 0.257+0.021  0.321+0.012 0.276+0.011

Table 6.21: Comparison of MSE anomaly scores for clean (C), pre-relapse (P), and relapse (R) states of the global
(global normalization) unimodal audio model and audio branch of the joint CAE-CAE model for the 3, 5, and 7-day
datasets.

Dataset Bio Unimodal Bio Branch
MSE-C MSE-P MSE-R MSE-C MSE-P MSE-R
3-day 0.6404+0.036  0.59840.022 0.626+0.028 0.6974+0.023  0.675+0.054  0.698+0.009
5-day 0.5554+0.043  0.537+0.028  0.601+0.040 0.5794+0.089 0.598+0.043 0.680+0.064
7-day 0.5894+0.055 0.629+0.032 0.663+0.056 0.5594+0.077 0.607+0.066 0.589+0.076

Table 6.22: Comparison of MSE anomaly scores for clean (C), pre-relapse (P), and relapse (R) states for the global
(global normalization) unimodal bio CAE model and the audio branch of the joint CAE-CAE model for the 3-day
dataset.
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6.2. Joint CAE-CAE Model

Combined
MSE-C MSE-P MSE-R

3-day 0.453+0.022  0.495+0.016 0.510+0.013
5-day 0.435+0.047 0.455+0.018 0.488+£0.035
7-day 0.375+0.043  0.449+0.032  0.428+0.033

Datasets

Table 6.23: Combined MSE anomaly scores for clean (C), pre-relapse (P), and relapse (R) states of the global
(global normalization) joint CAE-CAE model for the 3, 5, and 7-day datasets.

ROC-AUC
Dataset
Audio Unimodal | Audio Branch || Bio Unimodal | Bio Branch || Combined
3-day 0.61940.086 0.622+40.101 0.49740.044 0.519+0.028 0.59840.033
5-day 0.60240.061 0.610+0.071 0.53640.054 0.551+0.062 0.58840.048
7-day 0.60040.060 0.607+0.053 0.54340.050 0.572+0.039 0.59840.046

Table 6.24: Comparison of ROC-AUC scores of the global (global normalization) unimodal models and branches of
the joint CAE-CAE model, as well as the combined ROC-AUC scores for the 3, 5, and 7-day datasets.

ROC-AUC Scores for the CAE-CAE Global Experiments (Global)

ROC-AUC Scores

Day of 3-day S-day 7-day
Datasets

@ Audio Unmodal  mmm Audio Branch = Bio Unmodal === Bio Branch == Combined

Figure 6.2.3: Mean ROC-AUC scores for the global experiments (global normalization) for
all datasets.

Under global normalization, the performance gains are more moderate compared to the personalized results.
While both branches of the joint CAE-CAE model still outperform unimodal approaches, the improvements
are less pronounced and the combined model’s performance is more variable, surpassing only the bio unimodal
models. Therefore, the global normalization scheme may not be as effective as the per-person normalization,
but the benefits of the multimodal approach are still present.

Therefore, the joint CAE-CAE model demonstrated its strongest performance in the personalized experi-
ments across all larger datasets, where it effectively captured individual patient characteristics, leading to
enhanced relapse detection. In the global experiments, the model consistently showed slight improvements
over unimodal approaches, suggesting the potential for generalization in global setups with further research.
Mixed results may stem from patient variability and differences in relapse severity, highlighting the challenges
of generalizing across diverse populations.
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Overall, the integration of multimodal data proved beneficial for relapse detection, with personalized models
showing the most significant gains. These findings highlight the value of multimodal modeling for personal-
ized mental health monitoring and emphasize the need for further refinement in global settings to enhance

generalization across diverse patient datasets.

6.3 Joint LSTMAE-CAE Model

This section presents the results of the LSTMAE-CAE joint autoencoder experiments conducted on the
day-of, 3-day, 5-day and 7-day datasets. The results are presented in the same format and structure as the
joint CAE-CAE model results, with the same metrics and evaluation methods used to assess the model’s

performance.

6.3.1 Day of Interview

Personalized Experiments

Tables 6.25-6.27 present the MSE anomaly scores of the audio and bio unimodal models and branches of the

joint LSTMSE-CAE model and its combined MSE scores, respectively.

Audio Unimodal

Audio Branch

Patient ID
MSE-C MSE-P MSE-R MSE-C MSE-P MSE-R
#1 0.3914+0.024 0.758+0.021 0.587+0.018 0.35940.034 0.703+0.046 0.55140.025
#2 0.5554+0.078 0.662+0.021 0.631+0.028 0.5544+0.063 0.676+0.045 0.614+0.044
#4 0.30940.084 0.441+0.015 0.321£0.014 0.3544+0.094 0.486+0.056 0.373+0.030
#6 0.71740.131  1.006+0.099 0.883+0.084 0.666+0.155 0.906+0.154 0.785+0.100
Median 0.4734+0.157  0.710+0.203 0.609+0.199 0.45740.133  0.690+0.149 0.583+0.147

Table 6.25: Comparison of MSE anomaly scores for clean (C), pre-relapse (P), and relapse (R) states of the
personalized unimodal audio model and audio branch of the joint LSTMAE-CAE model for the day-of dataset.

. Bio Unimodal Bio Branch
Patient ID
MSE-C MSE-P MSE-R MSE-C MSE-P MSE-R

#1 0.95940.256  0.79840.055 0.793£0.076 1.08940.217  0.99740.097 0.962+0.257
#2 0.6984+0.087 0.726+0.059 0.810+0.050 0.8554+0.186  0.887+0.070  0.82040.234
#4 1.006+0.583  0.941+0.115 1.049+0.161 0.9584+0.619 1.130+0.202 1.2004£0.163
#6 0.9364+0.668 1.2384+0.258  0.64440.231 1.0044+0.631 0.946+0.311 0.626+0.327

Median 0.9484+0.119  0.87040.196 0.802+0.145 0.9814+0.084  0.97240.090 0.891£0.209

Table 6.26: Comparison of MSE anomaly scores for clean (C), pre-relapse (P), and relapse (R) states of the
personalized unimodal bio model and bio branch of the joint LSTMAE-CAE model for the day-of dataset.

. Combined
Patient ID
MSE-C MSE-P MSE-R

#1 0.517+£0.051 0.789+0.045 0.71640.029
#2 0.6154+0.048 0.709+0.024 0.648%+0.053
#4 0.61740.089  0.57840.050 0.555+0.022
#6 0.88240.347 1.01840.145  0.82940.142

Median 0.6164+0.133  0.749+0.149 0.682+0.147

Table 6.27: Combined MSE anomaly scores for clean (C), pre-relapse (P), and relapse (R) states of the

personalized joint LSTMAE-CAE model for the day-of dataset.

As it was observed in the CAE-CAE personalized experiments, the results presented in Tables 6.25 and
6.26 show that the unimodal audio model significantly outperforms the unimodal bio model in terms of

distinguishing between the clean, pre-relapse, and relapse states.
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6.3. Joint LSTMAE-CAE Model

This is also observed in the audio branch which outperforms the bio branch in the same way, with the
performance of each branch separately being comparable to the unimodal models. The combined MSE
scores in Table 6.27 also show that the joint LSTMAE-CAE model’s performance is comparable to the audio
branch’s performance, which is expected given the imbalance and it suggests that the biometric data did not
provide significant additional information to complement the audio modality in this case as well.

Table 6.28 presents the ROC-AUC scores for the personalized unimodal audio and bio models, the audio and
bio branches of the joint CAE-CAE and the combined ROC-AUC scores for the day-of dataset.

R ROC-AUC
Patient ID A . . K R . .

Audio Unimodal ‘ Audio Branch H Bio Unimodal ‘ Bio Branch H Combined
#1 0.8404:0.049 0.880+0.040 0.24040.206 0.300+£0.200 0.860+0.080
#2 0.800+0.245 0.800+0.187 0.650+£0.200 0.600+0.122 0.800+0.187
#4 0.65440.122 0.669+0.150 0.496+0.206 0.500+0.181 0.52540.151
#6 0.70040.100 0.67540.127 0.32540.218 0.350+0.242 0.45040.257
Mean 0.70040.100 0.756+0.127 0.4284+0.158 0.438+0.158 0.65940.089

Table 6.28: Comparison of ROC-AUC scores of the personalized unimodal models and branches of the joint
LSTMAE-CAE model and its combined ROC-AUC scores for the day-of dataset.

The ROC-AUC scores presented in Table 6.28 also hightlight the imbalance in performance between the audio
and bio models in a similar way to the CAE-CAE model. The mean ROC-AUC scores show that the audio
and bio branches performed slightly better than the unimodal models, which suggests that the additional
modalities could be beneficial for relapse detection, given a larger and more diverse dataset that balances the
contribution of each modality.

Global Experiments

Tables 6.29-6.31 present the MSE anomaly scores of the global audio and bio unimodal models and branches
of the joint LSTMAE-CAE model and its combined MSE scores, respectively.

Norm Audio Unimodal Audio Branch
) MSE-C MSE-P MSE-R MSE-C MSE-P MSE-R
Per-patient | 0.269+0.048 0.391+0.012 0.305+0.012 0.3104+0.039 0.479+0.037 0.396+0.018
Global 0.2774+0.021  0.3824+0.018 0.305+0.012 0.3544+0.028 0.5114+0.042 0.400+0.012

Table 6.29: Comparison of MSE anomaly scores for clean (C), pre-relapse (P), and relapse (R) states of the global
unimodal audio model and audio branch of the joint LSTMAE-CAE model for the day-of dataset.

Norm Bio Unimodal Bio Branch
’ MSE-C MSE-P MSE-R MSE-C MSE-P MSE-R
Per-patient | 0.746+0.131 0.743+£0.045 0.761+0.042 0.788+0.121 0.863+0.062 0.866+0.044
Global 0.8284+0.171  0.7044+0.082  0.72140.114 0.80240.136  0.825+0.051 0.807+0.050

Table 6.30: Comparison of MSE anomaly scores for clean (C), pre-relapse (P), and relapse (R) states for the global
unimodal bio CAE model and the audio branch of the joint LSTMAE-CAE model for the day-of dataset.

Patient ID Combined
MSE-C MSE-P MSE-R
Per-patient 0.450+£0.022 0.51440.032 0.527+0.038
Global 0.4524+0.022 0.540+0.031 0.541+0.019

Table 6.31: Combined MSE anomaly scores for clean (C), pre-relapse (P), and relapse (R) states of the global joint
LSTME-CAE model for the day-of dataset.

The results in Tables 6.29 and 6.30 indicate that both branches outperform their respective unimodal models
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Chapter 6. Multimodal Experiments

in distinguishing between clean and anomalous states. Furthermore, the combined MSE scores in Table
6.31 also demonstrate an improvement in the joint LSTMAE-CAE model’s performance compared to the
unimodal models, however the imbalance is still evident.

Table 6.32 presents the ROC-AUC scores for the global unimodal models and branches of the joint LSTMAE-
CAE model and its combined ROC-AUC scores.

Norm ROC-AUC
’ Audio Unimodal ‘ Audio Branch H Bio Unimodal | Bio Branch H Combined
Per-patient 0.69440.111 0.718+0.040 0.45240.125 0.462+0.112 0.64340.048
Global 0.69140.046 0.704+0.043 0.43740.127 0.476+0.154 0.61740.091

Table 6.32: Comparison of ROC-AUC scores of the global unimodal models and branches of the joint
LSTMAE-CAE model and its combined ROC-AUC scores for the day-of dataset.

The ROC-AUC scores in Table 6.32 also show that the audio and bio branches’ performance is increased
compared to their respective unimodal models, with the combined ROC-AUC score showing an improvement
over the bio model only, as it was observed in the personalized setup.

Overall, the performance of the LSTMAE-CAE model on the day-of dataset is comparable and slightly better
than the CAE-CAE model and also it demonstrates the same behavior in terms of the imbalance between
the audio and bio modalities. However, the results suggest that the joint LSTMAE-CAE model has the
potential to outperform the unimodal models on a larger dataset and improve the overall relapse detection
performance.

6.3.2 Temporal Windows Around Interview

Personalized Experiments

Tables 6.33-6.35 present the median MSE anomaly scores of the audio and bio unimodal models and branches
of the joint CAE-CAE model and its combined MSE scores, respectively, for each temporal window dataset.
Table 6.36 and Figure 6.3.1 present the mean ROC-AUC scores for the personalized experiments across all
datasets, including the day-of dataset in the Figure.

Dataset Audio Unimodal Audio Branch
MSE-C MSE-P MSE-R MSE-C MSE-P MSE-R
3-day 0.491+0.156  0.593+0.206 0.475+0.178 0.452+0.159 0.584+0.168 0.566+0.144
5-day 0.4404+0.117 0.587+0.132 0.481+0.126 0.4434+0.106 0.574+0.109 0.499+0.108
7-day 0.4824+0.145 0.55240.112  0.457+0.193 0.4594+0.115 0.5414+0.097 0.550+0.173

Table 6.33: Comparison of median MSE anomaly scores for clean (C), pre-relapse (P), and relapse (R) states of the
personalized unimodal audio model and audio branch of the joint LSTMAE-CAE model for the 3, 5, and 7-day

datasets.
Bio Unimodal Bio Branch
Dataset
MSE-C MSE-P MSE-R MSE-C MSE-P MSE-R
3-day 0.679+0.108 0.643+0.451 0.684+0.273 0.796+0.101 0.885+0.956 0.832+40.267
5-day 0.5414+0.073 0.600+2.849 0.648+£0.255 0.5714+0.237 0.779+2.707 0.771£0.395
7-day 0.6154+0.196 0.832+0.166 0.624+0.355 0.63940.237 0.845+0.223 0.699+0.380

Table 6.34: Comparison of MSE anomaly scores for clean (C), pre-relapse (P), and relapse (R) states of the
personalized unimodal bio model and bio branch of the joint LSTMAE-CAE model for the 3, 5, and 7-day datasets.

82



6.3. Joint LSTMAE-CAE Model

Combined
MSE-C MSE-P MSE-R

3-day 0.516+0.125 0.638+0.620 0.618=£0.580
5-day 0.529+0.086  0.571+0.552  0.557+0.439
7-day 0.520+0.137  0.634+0.111  0.677+0.287

Dataset

Table 6.35: Combined MSE anomaly scores for clean (C), pre-relapse (P), and relapse (R) states of the global joint
LSTMAE-CAE model for the 3, 5, and 7-day datasets.

ROC-AUC
Dataset . . . K . A .
Audio Unimodal | Audio Branch || Bio Unimodal | Bio Branch || Combined
3-day 0.64240.087 0.669+0.061 0.54740.198 0.583+0.173 0.662+0.169
5-day 0.63340.082 0.650+0.094 0.60340.126 0.630+0.142 0.646+0.165
7-day 0.62440.143 0.650+0.143 0.55740.136 0.597+0.151 0.627+0.163

Table 6.36: Comparison of ROC-AUC scores of the personalized unimodal models and branches of the joint
LSTMAE-CAE model and its combined ROC-AUC scores for the 3, 5, and 7-day datasets.

The results in Tables 6.33-6.35 show an advantage of the joint LSTMAE-CAE model over its unimodal
counterparts, yielding higher MSE anomaly scores for pre-relapse and relapse states across all datasets.
ROC-AUC scores in Table 6.36 and Figure 6.3.1 further confirm the observed trend, with the combined
ROC-AUC scores exceeding those of the unimodal models, which suggests that the LSTMAE-CAE model is
also effective in detecting pre-relapse and relapse states for individual patients.

ROC-AUC Scores for the LSTMAE-CAE Personalized Experiments
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Figure 6.3.1: Mean ROC-AUC scores for the personalized experiments for all datasets.

Overall, the results are comparable to the CAE-CAE model, although the CAE-CAE shows a slightly better
performance in terms of the ROC-AUC scores, especially in the combined results.
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Global Experiments
Per-Patient Normalization

Tables 6.37-6.39 present the MSE anomaly scores of the global unimodal audio and bio models and branches
of the joint CAE-CAE model and its combined MSE scores, respectively, for each temporal window dataset
with per-patient normalization. Table 6.40 and Figure 6.3.2 present the ROC-AUC scores.

Dataset Audio Unimodal Audio Branch
MSE-C MSE-P MSE-R MSE-C MSE-P MSE-R
3-day 0.298+0.054  0.397+0.022 0.321+0.014 0.334+0.046  0.425+0.029 0.363+0.013
5-day 0.2934+0.031 0.381+0.021 0.303+0.009 0.3234+0.035 0.426+0.015 0.336+0.012
7-day 0.2724+0.020 0.3524+0.016  0.297+0.003 0.3214+0.021 0.378+0.004 0.335+0.008

Table 6.37: Comparison of MSE anomaly scores for clean (C), pre-relapse (P), and relapse (R) states of the global
(per-patient normalization) unimodal audio model and audio branch of the joint LSTMAE-CAE model for the 3, 5,
and 7-day datasets.

Dataset Bio Unimodal Bio Branch
MSE-C MSE-P MSE-R MSE-C MSE-P MSE-R
3-day 0.7044+0.063  0.64040.045 0.653+0.058 0.6794+0.033 0.706+0.037 0.695+0.037
5-day 0.5584+0.062  0.5314+0.027  0.620=£0.030 0.5634+0.080 0.603+0.050 0.632+0.080
7-day 0.5494+0.063 0.630+0.033 0.639+0.057 0.5114+0.015 0.610+0.018 0.577+0.016

Table 6.38: Comparison of MSE anomaly scores for clean (C), pre-relapse (P), and relapse (R) states for the global
(per-patient normalization) unimodal bio CAE model and the audio branch of the joint LSTMAE-CAE model for
the 3, 5, and 7-day datasets.

Combined
Dataset
MSE-C MSE-P MSE-R
3-day 0.4144+0.040 0.491+0.011 0.487+0.015
5-day 0.3884+0.041 0.464+0.020 0.440+0.022
7-day 0.376+0.033 0.428+0.006 0.413+0.010

Table 6.39: Combined MSE anomaly scores for clean (C), pre-relapse (P), and relapse (R) states of the global
(per-patient normalization) joint LSTMAE-CAE model for the 3, 5, and 7-day datasets.

ROC-AUC
Dataset . . . K . . .
Audio Unimodal | Audio Branch H Bio Unimodal | Bio Branch H Combined
3-day 0.63940.090 0.643+0.091 0.49040.049 0.540+0.038 0.641+0.058
5-day 0.62240.052 0.637+0.065 0.51940.077 0.562+0.080 0.61340.057
7-day 0.632+0.032 0.61240.042 0.55340.029 0.576+0.033 0.60340.043

Table 6.40: Comparison of ROC-AUC scores of the global (per-patient normalization) unimodal models and
branches of the joint LSTMAE-CAE model and its combined ROC-AUC scores for the 3, 5, and 7-day datasets.

In the global experiments using per-patient normalization, the joint model achieved moderate improvements
over unimodal models. The MSE scores reflected a slight enhancement in identifying relapse states, while
the ROC-AUC scores provided more noticeable improvements, particularly within the bio branch. The
combined ROC-AUC scores showed mixed results, outperforming both unimodal models only for the 3-day
dataset and for the others demonstrating only a marginal advantage. These findings suggest that per-patient
normalization preserved some of the individualized benefits seen in the personalized experiments, enabling a
better distinction of relapse states while still being constrained by the challenges of generalization.
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ROC-AUC Scores for the LSTMAE-CAE Global Experiments (Per-Patient)
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Figure 6.3.2: Mean ROC-AUC scores for the global experiments (per-patient normalization)
for all datasets.

Global Normalization

Tables 6.41-6.43 present the MSE anomaly scores of the global unimodal audio and bio models and branches
of the joint CAE-CAE model and its combined MSE scores, respectively, for each temporal window dataset
with per-patient normalization. Table 6.44 and Figure 6.3.3 present the ROC-AUC scores.

Audio Unimodal Audio Branch
MSE-C MSE-P MSE-R MSE-C MSE-P MSE-R

3-day 0.293+0.017  0.392+0.025 0.317+0.011 0.344+0.050  0.424+0.022 0.361+£0.015
5-day 0.270+0.011  0.386+0.011  0.300£0.003 0.339+0.036  0.425+0.019  0.342+£0.008
7-day 0.271+0.010  0.353+0.015  0.296£0.012 0.284+0.029 0.376+0.007 0.330£0.008

Dataset

Table 6.41: Comparison of MSE anomaly scores for clean (C), pre-relapse (P), and relapse (R) states of the global
(global normalization) unimodal audio model and audio branch of the joint LSTMAE-CAE model for the 3, 5, and
7-day datasets.

Bio Unimodal Bio Branch
MSE-C MSE-P MSE-R MSE-C MSE-P MSE-R
3-day 0.6404+0.036  0.59840.022 0.626+0.028 0.6654+0.014 0.6954+0.059 0.702+0.051
5-day 0.5554+0.043  0.537+0.028  0.601+0.040 0.5794+0.089 0.598+0.043 0.680+0.064
7-day 0.5894+0.055 0.629+0.032 0.663+0.056 0.546+0.035 0.605+0.047 0.595+0.037

Dataset

Table 6.42: Comparison of MSE anomaly scores for clean (C), pre-relapse (P), and relapse (R) states for the global
(global normalization) unimodal bio CAE model and the audio branch of the joint LSTMAE-CAE model for the
3-day dataset.

Under global normalization, the joint model’s performance closely aligned with that of the unimodal models,
offering only minimal gains in relapse detection. The MSE scores in Tables 6.41-6.43 reflected a slight increase
in anomaly differentiation, but the overall improvements were less pronounced than in the personalized and
per-patient normalization setups. The ROC-AUC scores in Table 6.44 and Figure 6.3.3 showed that, while the
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Combined
MSE-C MSE-P MSE-R

3-day 0.410+0.051  0.469+0.015 0.480+£0.032
5-day 0.397+0.037  0.458+0.017  0.452+0.015
7-day 0.384+0.035  0.430+0.010  0.426£0.046

Datasets

Table 6.43: Combined MSE anomaly scores for clean (C), pre-relapse (P), and relapse (R) states of the global
(global normalization) joint LSTMAE-CAE model for the 3, 5, and 7-day datasets.

ROC-AUC
Dataset . . A K K ) .
Audio Unimodal | Audio Branch || Bio Unimodal | Bio Branch || Combined
3-day 0.63640.027 0.643+0.113 0.49740.044 0.530+0.045 0.644+0.073
5-day 0.62640.028 0.638+0.069 0.53640.054 0.548+0.066 0.6144-0.060
7-day 0.61740.022 0.629+0.051 0.54340.050 0.556+0.037 0.61240.046

Table 6.44: Comparison of ROC-AUC scores of the global (global normalization) unimodal models and branches of
the joint LSTMAE-CAE model and its combined ROC-AUC scores for the 3, 5, and 7-day datasets.

bio and audio branches generally outperformed their unimodal counterparts, the combined score displayed
only slight gains, especially for the 3-day dataset.

ROC-AUC Scores for the LSTMAE-CAE Global Experiments (Global)
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Figure 6.3.3: Mean ROC-AUC scores for the global experiments (global normalization) for
all datasets.

Overall, the joint LSTMAE-CAE model demonstrated its strongest performance in personalized experiments,
where it effectively captured individual patient patterns, leading to improved relapse detection compared to
unimodal models. Per-patient normalization in global experiments provided a moderate advantage, preserv-
ing some of the benefits of personalization while enabling generalization across patients. However, global
normalization resulted in the least pronounced improvements, highlighting the challenges of applying a this
approach to anomaly detection in diverse patient populations. Despite these limitations, the multimodal
integration of audio and biometric data consistently outperformed unimodal models in all setups, reinforcing
the value of this approach for relapse prediction.
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Additionally, in comparison to the CAE-CAE model, the performance of the LSTMAE-CAE model was
comparable, with the CAE-CAE model showing a slight advantage in the personalized experiments. However,
the LSTMAE-CAE model demonstrated a better performance in the global experiments, especially in the
3-day dataset, where the combined ROC-AUC score was higher than both unimodal models.

6.4 Evaluating Modality Contributions Through Branch Disabling

Ablation experiments were conducted to further evaluate the contributions of each modality to the perfor-
mance of the joint model. By selectively disabling one branch at a time during inference, we aimed to asses
the performance of the remaining branch and determine whether the joint model was effectively leveraging
both modalities.

To disable one branch, we zeroed out its input during inference while keeping the other branch intact.
This removes the contribution of the disabled branch on the model’s output, allowing us to evaluate the
performance of the remaining branch in isolation. The experiments were conducted on the 7-day dataset
using the CAE-CAE joint model since it was the best performing model in the multimodal experiments.

We compare the MSE anomaly scores and ROC-AUC scores of the enabled branch, when the other branch
is disabled, with its unimodal counterpart and the branch itself when both branches are enabled for both
personalized and global experiments.

Personalized Experiments

Tables 6.45 and 6.46 show the comparison of MSE anomaly scores and ROC-AUC scores for the personalized
audio unimodal model, the audio branch of the CAE-CAE joint model with the bio branch disabled and
enabled, respectively.

Similarily, the Tables 6.47 and 6.48 show the comparison of MSE anomaly scores and ROC-AUC scores for
the personalized bio unimodal model, the bio branch of the CAE-CAE joint model with the audio branch
disabled and enabled, respectively.

Audio Unimodal
MSE-C MSE-P MSE-R

Median ‘0.469:‘:0.175 0.525+0.106  0.503+0.159

All Patients

(a) Unimodal audio model.

Audio Branch (Bio Disabled)
MSE-C MSE-P MSE-R

Median 0.502+0.153  0.559+0.119  0.539+0.195

All Patients

(b) Audio branch of the CAE-CAE joint model with the bio branch disabled.

Audio Branch
MSE-C MSE-P MSE-R

Median 0.5274£0.151 0.615+0.124 0.647+0.188

All Patients

(¢) Audio branch of the CAE-CAE joint model with the bio branch enabled.

Table 6.45: Comparison of MSE anomaly scores for clean (C), pre-relapse (P), and relapse (R) states of the
personalized audio unimodal model, the audio branch of the CAE-CAE joint model with the bio branch disabled
and enabled respectively.

The MSE anomaly scores for the audio branch, as seen in Table 6.45, show a progressive improvement from
the unimodal audio model to the audio branch with the bio branch disabled, and finally to the fully enabled
joint model. This suggests that the addition of biometric data improves the performance of the audio branch,
which is further supported by the ROC-AUC scores in Table 6.46.

87



Chapter 6. Multimodal Experiments

. ROC-AUC
All Patients
Audio Unimodal ‘ Audio Branch (Bio Disabled) ‘ Audio Branch
Mean | 0.598+0.064 | 0.620-+£0.108 | 0.643:£0.079

Table 6.46: Comparison of ROC-AUC scores of the personalized audio unimodal model, the audio branch of the
CAE-CAE joint model with the bio branch disabled and enabled respectively.

Bio Unimodal
MSE-C MSE-P MSE-R

Median ‘ 0.615+0.196 0.832+0.166 0.624+0.355

All Patients

(a) Unimodal bio model.

Bio Branch (Audio Disabled)
MSE-C MSE-P MSE-R

Median 0.7504+0.252  1.07940.208 0.78740.364

All Patients

(b) Bio branch of the CAE-CAE joint model with the audio branch disabled.

. Bio Branch
All Patients
MSE-C MSE-P MSE-R
Median ‘ 0.675£0.259 1.056+0.259 0.706+0.390

(c) Bio branch of the CAE-CAE joint model with the audio branch enabled.

Table 6.47: Comparison of MSE anomaly scores for clean (C), pre-relapse (P), and relapse (R) states of the
personalized bio unimodal model, the bio branch of the CAE-CAE joint model with the audio branch disabled and
enabled respectively.

. ROC-AUC
All Patients . . . ) . i
Bio Unimodal ‘ Bio Branch (Audio Disabled) ‘ Bio Branch
Mean | 0557£0.136 | 0.602+0.108 | 0.629:£0.120

Table 6.48: Comparison of ROC-AUC scores of the personalized bio unimodal model, the bio branch of the
CAE-CAE joint model with the audio branch disabled and enabled respectively.

The results in Table 6.47 and Table 6.48 show a similar trend to the audio modality, with the bio branch
of the joint model, while the audio branch is disabled, outperforming the unimodal bio model, but still
underperforming the fully enabled joint model.

Overall, the results from both the audio and bio branch disabling experiments confirm that the joint model
is effectively leveraging both modalities to improve relapse detection over their unimodal counterparts.

Global Experiments

Tables 6.49-6.52 show the comparison of MSE anomaly scores and ROC-AUC scores for the global unimodal
models, the branch of the CAE-CAE joint model with the other branch disabled and enabled, respectively.

For both the audio and bio branches, the MSE anomaly scores and ROC-AUC scores follow a similar pattern
to the personalized experiments, albeit with less pronounced improvements. This is consistent with the
findings from the experiments on the 7-day dataset, where the global models exhibited more moderate
results compared to the personalized models. Although the improvements are smaller, the results from the
global branch disabling experiments still indicate that the joint model effectively integrates both modalities
to enhance relapse detection beyond what unimodal models achieve.
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6.4. Evaluating Modality Contributions Through Branch Disabling

Audio Unimodal

Norm.
MSE-C MSE-P MSE-R
Per-patient | 0.233+0.017 0.2744+0.015 0.24540.008
Global 0.233+0.019 0.2774+0.010 0.250+0.006
(a) Unimodal audio model.
Audio Branch (Bio Disabled)
Norm.
MSE-C MSE-P MSE-R
Per-patient | 0.232+£0.021 0.287+0.013 0.253+0.011
Global 0.224+0.020  0.288+0.009  0.251+0.005

(b) Audio branch of the CAE-CAE joint model with the bio branch disabled.

Norm.

Audio Branch

MSE-C MSE-P MSE-R
Per-Patient | 0.2544+0.021 0.3194+0.011 0.283=+0.009
Global 0.2574+0.021 0.321+0.012 0.276+0.011

(c) Audio branch of the CAE-CAE joint model with the bio branch enabled.

Table 6.49: Comparison of MSE anomaly scores for clean (C), pre-relapse (P), and relapse (R) states of the
globalaudio unimodal model, the audio branch of the CAE-CAE joint model with the bio branch disabled and

enabled respectively.

Norm ROC-AUC
) Audio Unimodal | Audio Branch (Bio Disabled) ‘ Audio Branch
Per-Patient 0.603+0.059 0.607+0.093 0.614+0.048
Global 0.60040.060 0.602+0.056 0.607+0.053

Table 6.50: Comparison of ROC-AUC scores of the global audio unimodal model, the audio branch of the
CAE-CAE joint model with the bio branch disabled and enabled respectively.

Bio Unimodal

Norm.
MSE-C MSE-P MSE-R
Per-Patient | 0.5494+0.063 0.630+0.033 0.639+0.057
Global 0.589+0.055  0.629+0.032 0.663+0.056
(a) Unimodal bio model.
Bio Branch (Audio Disabled)
Norm.
MSE-C MSE-P MSE-R
Per-Patient | 0.635+0.066 0.684+0.044 0.655+0.073
Global 0.620+0.055 0.675+0.025 0.653+0.032

(b) Bio branch of the CAE-CAE joint model with the audio branch disabled.

Bio Branch
Norm.
MSE-C MSE-P MSE-R
Per-Patient 0.578+0.023 0.658+0.041 0.597+0.024
Global 0.5594+0.077 0.607+0.066 0.589+0.076

(c) Bio branch of the CAE-CAE joint model with the audio branch enabled.

Table 6.51: Comparison of MSE anomaly scores for clean (C), pre-relapse (P), and relapse (R) states of the global

bio unimodal model, the bio branch of the CAE-CAE joint model with the audio branch disabled and enabled

respectively.
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Norm ROC-AUC
) Bio Unimodal | Bio Branch (Audio Disabled) ‘ Bio Branch
Per-Patient 0.553£0.029 0.55540.040 0.555+0.032
Global 0.543£0.050 0.550+0.057 0.57240.039

Table 6.52: Comparison of ROC-AUC scores of the global bio unimodal model, the bio branch of the CAE-CAE
joint model with the audio branch disabled and enabled respectively.

6.5 Discussion

Incorporating additional data around the interview dates led to a consistent and notable improvement in
detecting pre-relapse and relapse states for both the personalized CAE-CAE and LSTMAE-CAE models
across all datasets. This improvement was reflected in higher ROC-AUC scores for each branch as well as
the combined scores, highlighting a clear advantage over the unimodal baselines.

A key observation across all experiments was the consistent superior performance of personalized setups
compared to global setups. Personalized models were particularly beneficial and well suited for individual
patients, as they could more effectively capture and leverage patient-specific patterns from both audio and
biometric modalities. This advantage translated into a more significant improvement in detecting pre-relapse
and relapse states, underscoring the potential of personalized multimodal models for early relapse detection
in mental health.

In contrast, the global setups produced more variable results. While the 3-day and 5-day datasets showed
potential—especially under per-patient normalization—the 7-day dataset yielded more mixed outcomes, likely
due to increased variability introduced by additional patients. Interestingly, the global models demonstrated a
more significant improvement in the bio branch compared to the audio branch, suggesting that the integration
of audio data was particularly beneficial for enhancing the bio branch’s performance.

Comparing the CAE-CAE and LSTMAE-CAE models, their performance was relatively similar across the
datasets, with the CAE-CAE model slightly outperforming the LSTMAE-CAE model in the personalized
setup, while the LSTMAE-CAE model showed a slight advantage in the global setup. Therefore, the choice
between the two models may depend on the specific requirements of the application, with the CAE-CAE
model potentially being more suitable for personalized setups, while the LSTMAE-CAE model may be more
appropriate for global setups.

Finally, the branch disabling experiments provided further confirmation that the joint models effectively
utilized both modalities to enhance relapse detection, though the degree of improvement varied between the
personalized and global setups. In the personalized experiments, both the audio and bio branches showed
clear performance gains when the complementary modality was enabled, demonstrating that the joint model
successfully leveraged both modalities. The global experiments followed a similar trend, but with more subtle
improvements, consistent with earlier observations of the global models.
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Conclusion

In this thesis, we conducted an in-depth analysis of audio signals and biometric markers to enhance relapse
prediction in individuals with bipolar disorder and schizophrenia spectrum disorders. Building upon the
e-Prevention project, we first expanded the existing audio database by incorporating additional patient data,
including more relapse interviews. This expanded dataset allowed us to re-evaluate the CAE and CVAE
models developed during the e-Prevention project, demonstrating that increased data volume improved model
performance, particularly for the CAE, which showed significant improvements in both personalized and
global setups. The CVAE remained effective in personalized experiments but exhibited more variability in
global setups, possibly due to the added complexity of additional data. To further enhance anomaly detection,
we introduced temporal modeling using LSTM-based autoencoders (LSTMAE) and variational autoencoders
(LSTMVAE). The LSTMAE effectively captured sequential dependencies, outperforming the CAE across
all experimental settings. The LSTMVAE produced results comparable to the CVAE, although the latter
proved to be the most reliable variational autoencoder approach, while the LSTMVAE showed potential for
further exploration. The most significant contribution of this research was the integration of multimodal
data, combining speech with biometric signals (accelerometer, gyroscope, and heart rate) to improve relapse
detection. We developed joint autoencoder frameworks incorporating CAE and LSTMAE models for the
audio branch and a CAE model for the biometric branch, training and evaluating them on datasets that
included biometric data from the exact interview day and extended temporal windows around the interview
date (3-day, 5-day, and 7-day). Both multimodal models consistently outperformed unimodal models in
detecting pre-relapse and relapse states, with personalized models proving particularly effective at capturing
patient-specific patterns. Comparing CAE-CAE and LSTMAE-CAE models, we found their performance to
be similar, with CAE-CAE excelling in personalized setups and LSTMAE-CAE performing slightly better
in global setups, suggesting that model choice should be tailored to the application’s needs. Lastly, branch
disabling experiments confirmed that the joint models effectively leveraged both modalities.

The contributions of our work can be summarized as follows:

e Dataset Expansion and Evaluation of Autoencoder Architectures: We expanded the existing
e-Prevention audio database by incorporating additional patient data and relapse interviews, which
provided a more diverse dataset for evaluating the performance of the already developed Convolutional
Autoencoder (CAE) and Convolutional Variational Autoencoder (CVAE) architectures. Our findings
confirmed that a larger dataset enhances the detection of relapse states, across both personalized and
global models.

e Development of LSTM-based Autoencoders: We explored the potential of sequential models to
capture temporal dependencies in speech data by developing Long Short-Term Memory (LSTM)-based
autoencoder architectures, namely LSTMAE and LSTMVAE models. Our experiments demonstrated
that the LSTMAE model was effective in capturing temporal patterns in audio data, leading to improved
performance in relapse detection compared to the CAE model.

e Multimodal Fusion nd Joint Autoencoder Frameworks: We explored the benefits of multimodal
fusion by combining audio and biometric data. By designing joint autoencoder frameworks that inte-
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grate the learned representations from both modalities into a common latent space, we demonstrated
that multimodal approaches can significantly improve the accuracy of relapse detection. Our find-
ings suggest that the fusion of diverse data sources offers complementary information that strengthens
predictive performance.

e Personalized and Global Setups: Overall, our experiments indicate that personalized mod-
els—tailored to the specific characteristics of individual patients—consistently outperform global mod-
els, which are trained on the entire dataset.

In summary, this research demonstrates that integrating audio and biometric data through advanced autoen-
coder architectures can enhance the early detection of relapse in bipolar disorder and schizophrenia spectrum
disorders. By leveraging multimodal data, we contribute to the efforts aimed at more timely clinical inter-
ventions and personalized care for patients with mental health conditions.

Future Work

The work presented in this thesis can be extended in several directions to further improve the performance
of relapse detection models and multimodal fusion approaches. Future research could focus on the following:

e Dataset Expansion: Further expanding the dataset to include more patients additional relapse cases
could enhance even more the generalization of the models.

e Latent Space Regularization: For the variational autoencoder models, who generally performed
less effectively than the traditional autoencoder models, additional regularization techniques could be
explored, such as adaptive regularization, patient-specific weights or fine-tuning for specific patients for
whom the performance did not improve.

e Temporal Modeling: Investigating more advanced temporal modeling techniques, such as attention
mechanisms, could further improve the performance of the LSTM-based autoencoders.

e Multimodal Data Alignment and Augmentation: Exploring advanced alignment techniques, and
data augmentation strategies could enhance the robustness of the multimodal fusion models by reducing
the imbalance between the audio and biometric data.

92



Appendix A

Bibliography

[Aba-16]

[Abu+20]

[Ad1+20]

[Alm+24]

[Amel3|

[AMC17]

[BKH16|
[Bar+18|

[BDI20]

[BSBY6|
[Ber+24]

[Bis94]

BI21]

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis,
A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, 1., Harp, A., Irving, G., Isard, M., Jia,
Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S.,
Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, 1., Talwar, K., Tucker, P.,
Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M.,
Yu, Y., and Zheng, X. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
Software available from. 2016.

Aburakhia, S., Tayeh, T., Myers, R., and Shami, A. “A Transfer Learning Framework for Anomaly
Detection Using Model of Normality”. In: IEEE (2020).

Adler, D. A., Ben-Zeev, D., Tseng, V. W.-S., Kane, J. M., Brian, R., Campbell, A. T., Hauser,
M., Scherer, E. A., and Choudhury, T. “Predicting Early Warning Signs of Psychotic Relapse
From Passive Sensing Data: An Approach Using Encoder-Decoder Neural Networks”. In: JMIR
mHealth and uHealth 8.8 (2020), €¢19962.

Almeida, F. F. de, Aires, K. R. T., Soares, A. C. B., Sousa Britto Neto, L. de, and Melo Souza
Veras, R. de. “Multimodal Fusion for Depression Detection Assisted by Stacking Deep Neural
Networks”. In: IEEE Journal (2024).

American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 5th.
American Psychiatric Publishing, 2013.

Aung, M. H., Matthews, M., and Choudhury, T. “Sensing Behavioral Symptoms of Mental Health
and Delivering Personalized Interventions Using Mobile Technologies”. In: Depression and Anz-
iety 34 (2017), pp. 603-609. DOI: 10.1002/da.22646.

Ba, J. L., Kiros, J. R., and Hinton, G. E. “Layer Normalization”. In: (2016). arXiv: 1607 .06450.
Barnett, 1., Torous, J., Staples, P., Sandoval, L., Keshavan, M., and Onnela, J. P. “Relapse Predic-
tion in Schizophrenia through Digital Phenotyping: A Pilot Study”. In: Neuropsychopharmacology
(2018).

Bayram, B., Duman, T. B., and Ince, G. “Real time detection of acoustic anomalies in industrial
processes using sequential autoencoders”. In: Expert Systems €12564 (2020). DOI: 10.1111/exsy.
12564.

Beck, A. T., Steer, R. A., and Brown, G. K. Beck Depression Inventory—II. 1996.

Berahmand, K., Daneshfar, F., Salehi, E. S., and Safabakhsh, R. “Autoencoders and their ap-
plications in machine learning: a survey”. In: Artificial Intelligence Review 57 (2024), p. 28. DOI:
10.1007/510462-023-10662-6.

Bishop, C. M. “Neural networks and their applications”. In: Review of Scientific Instruments 65.6
(1994), pp. 1803-1832.

Biswas, A. and Islam, M. “An Efficient CNN Model for Automated Digital Handwritten Digit
Classification”. In: Journal of Information Systems Engineering and Business Intelligence 7 (Apr.
2021), pp. 42-55.

93


https://doi.org/10.1002/da.22646
https://arxiv.org/abs/1607.06450
https://doi.org/10.1111/exsy.12564
https://doi.org/10.1111/exsy.12564
https://doi.org/10.1007/s10462-023-10662-6

Appendix A. Bibliography

[BMV12]

[BPKOL]

[Bre-+00]

[Cap+19]

[CCM24|

[Cha+17]

[CG16]

[Cho+15]
[Cho-+09]

[Coe+22]

IDG21]

[DAS22]

[Dev+19]

[Fau+16]

[Fay16]

[Fil +20]

[Gar+21]

[Gid+19]

Bowersox, N. W., McCarthy, D. E., and Valenstein, M. “Predictors of Relapse in the Year After
Hospital Discharge Among State Hospital Patients With Schizophrenia”. In: Psychiatric Services
63.1 (2012), pp. 89-90. DOI: 10.1176/appi .ps.201100084.

Brennan, M., Palaniswami, M., and Kamen, P. “Do existing measures of Poincaré plot geom-
etry reflect nonlinear features of heart rate variability?” In: IEEFE Transactions on Biomedical
Engineering 48.11 (2001), pp. 1342-1347.

Breunig, M. M., Kriegel, H.-P., Ng, R. T., and Sander, J. “LOF: Identifying Density-Based Local
Outliers”. In: Proceedings of the ACM SIGMOD International Conference on Management of
Data. Dallas, TX, USA: ACM, 2000, pp. 93-104.

Cappon, G., Vettoretti, M., Sparacino, G., and Facchinetti, A. “Continuous Glucose Monitoring
Sensors for Diabetes Management: A Review of Technologies and Applications”. In: Diabetes &
Metabolism Journal 43 (July 2019), pp. 383-397.

Carbonera, M., Ciavotta, M., and Messina, E. “Variational Autoencoders and Generative Ad-
versarial Networks for Multivariate Scenario Generation”. In: Data Science for Transportation 6
(2024), p. 23.

Chang, Y.-H. S., Liao, Y.-f., Wang, S.-M., Wang, J.-H., Wang, S.-y., Chen, J.-w., and Chen,
Y .-d. “Development of a Large-Scale Mandarin Radio Speech Corpus”. In: Proceedings of the
IEEE International Conference on Consumer Electronics-Taiwan (June 2017).

Chen, T. and Guestrin, C. “XGBoost: A Scalable Tree Boosting System”. In: Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD
’16). San Francisco, CA, USA: Association for Computing Machinery, 2016, pp. 785-794.
Chollet, F. et al. Keras: Deep Learning for Humans. Software available from. 2015.

Chouchou, F., Pichot, V., Garet, M., Barthelemy, J.-C., and Roche, F. “Dominance in cardiac
parasympathetic activity during real recreational SCUBA diving”. In: European journal of applied
physiology 106 (Mar. 2009), pp. 345-52.

Coelho, G., Matos, L. M., Pereira, P. J., Ferreira, A., Pilastri, A., and Cortez, P. “Deep autoen-
coders for acoustic anomaly detection: experiments with working machine and in-vehicle audio”.
In: Neural Computing and Applications 34 (2022), pp. 19485-19499. DOI: 10.1007/s00521-022-
07375-2.

Deary, M. and Griffiths, S. “A novel approach to the development of 1-hour threshold concen-
trations for exposure to particulate matter during episodic air pollution events”. In: Journal of
Hazardous Materials 418 (June 2021), p. 126334.

Dese, K., Ayana, G., and Simegn, G. L. “Low Cost, Non-Invasive, and Continuous Vital Signs
Monitoring Device for Pregnant Women in Low Resource Settings (Lvital Device)”. In: Hard-
wareX 11 (Feb. 2022), e00276.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. “BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding”. In: arXiv preprint arXiv:1810.04805 (2019).
Faurholt-Jepsen, M., Busk, J., Frost, M., Vinberg, M., Christensen, E. M., Winther, O., Bardram,
J. E., and Kessing, L. V. “Voice Analysis as an Objective State Marker in Bipolar Disorder”. In:
Translational Psychiatry 6 (July 2016), e856.

Fayek, H. Speech Processing for Machine Learning: Filter banks, Mel-Frequency Cepstral Coeffi-
cients (MFCCs), and What’s In-Between. 2016.

Filntisis, P. P., Zlatintsi, A., Efthymiou, N., Kalisperakis, E., Karantinos, T., Lazaridi, M., Smyr-
nis, N., and Maragos, P. “Identifying Differences in Physical Activity and Autonomic Function
Patterns Between Psychotic Patients and Controls Over a Long Period of Continuous Monitoring
Using Wearable Sensors”. In: Proceedings of the International Conference on Digital Phenotyping
and Mental Health. IEEE, 2020.

Garoufis, C., Zlatintsi, A., Filntisis, P. P., Efthymiou, N., Kalisperakis, E., Garyfalli, V., Karanti-
nos, T., Mantonakis, L., Smyrnis, N., and Maragos, P. “An Unsupervised Learning Approach for
Detecting Relapses from Spontaneous Speech in Patients with Psychosis”. In: 2021 IEEE EMBS
International Conference on Biomedical and Health Informatics (BHI). 2021.

Gideon, J., Matton, K., Anderau, S., McInnis, M. G., and Mower Provost, E. “When to Intervene:
Detecting Abnormal Mood Using Everyday Smartphone Conversations”. In: IEEE Transactions
on Affective Computing (Preprint) (2019).

94


https://doi.org/10.1176/appi.ps.201100084
https://doi.org/10.1007/s00521-022-07375-2
https://doi.org/10.1007/s00521-022-07375-2

[GMP19]

[Gou+-21]

[Gra+16]
[Guy76]
[Ham?76]
[HGD17]

[Hen+10]

[Het+23]

[Hig+17]

[Higss]
[HS97]

[HWS18]

[Tkii+24]

[isb-+23]

[TMM18]

[JA03]

[KFO87a]
[KFO87b)

[Kho+18]

[Koi+19)

Gideon, J., McInnis, M., and Provost, E. M. “Improving Cross-Corpus Speech Emotion Recogni-
tion with Adversarial Discriminative Domain Generalization (ADDOG)”. In: IEEE Transactions
on Affective Computing (2019).

Gouverneur, P., Li, F., Adamczyk, W., Szikszay, T., Luedtke, K., and Grzegorzek, M. “Compar-
ison of Feature Extraction Methods for Physiological Signals for Heat-Based Pain Recognition”.
In: Sensors 21 (July 2021), p. 4838. DOI: 10.3390/521144838.

Grande, 1., Berk, M., Birmaher, B., and Vieta, E. “Bipolar Disorder”. In: The Lancet 387.10027
(Apr. 2016), pp. 1561-1572.

Guy, W. ECDEU Assessment Manual for Psychopharmacology. Rockville, MD, USA: US De-
partment of Health, Education, and Welfare, Public Health Service, 1976.

Hamilton, M. “Hamilton Depression Scale”. In: ECDEU Assessment Manual for Psychopharma-
cology. Revised Edition. National Institute of Mental Health, 1976, pp. 179-192.

Hatami, N., Gavet, Y., and Debayle, J. “Classification of Time-Series Images Using Deep Con-
volutional Neural Networks”. In: arXiv preprint 1710.00886v2 (2017).

Henry, B. L., Minassian, A., Paulus, M. P., Geyer, M. A., and Perry, W. “Heart Rate Variability in
Bipolar Mania and Schizophrenia”. In: Journal of Psychiatric Research 44 (Feb. 2010), pp. 168—
176.

Hett, D., Morales-Mufioz, 1., Durdurak, B. B., Carlish, M., and Marwaha, S. “Rates and asso-
ciations of relapse over 5 years of 2649 people with bipolar disorder: a retrospective UK cohort
study”. In: International Journal of Bipolar Disorders 11.1 (2023), p. 23. DOI: 10.1186/s40345-
023-00302-x.

Higgins, 1., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., and Lerch-
ner, A. “beta—VAE: Learning Basic Visual Concepts with a Constrained Variational Framework”.
In: (2017).

Higuchi, T. “Approach to an irregular time series on the basis of the fractal theory”. In: Physica
D: Nonlinear Phenomena 31.2 (1988), pp. 277-283.

Hochreiter, S. and Schmidhuber, J. “Long Short-term Memory”. In: Neural computation 9 (Dec.
1997), pp. 1735-80. DOI: 10.1162/neco.1997.9.8.1735.

Huang, K.-Y., Wu, C.-H., and Su, M.-H. “Attention-based Convolutional Neural Network and
Long Short-term Memory for Short-term Detection of Mood Disorders Based on Elicited Speech
Responses”. In: Pattern Recognition (2018).

Ikéheimonen, A., Luong, N., Baryshnikov, I., Darst, R., Heikkil&, R., Holmen, J., Martikkala, A.
Riithiméki, K., Saleva, O., Isometsé, E., and Aledavood, T. “Predicting and Monitoring Symp-
toms in Diagnosed Depression Using Mobile Phone Data: An Observational Study”. In: medRxiv
Preprint (2024).

Isbitirici, A., Falcone, P., Giarre, L., and Xu, W. “LSTM-based Virtual Load Sensor for Heavy-
Duty Vehicles”. In: (Nov. 2023).

Johansson, D., Malmgren, K., and Murphy, M. A. “Wearable Sensors for Clinical Applications
in Epilepsy, Parkinson’s Disease, and Stroke: A Mixed—Methods Systematic Review”. In: Journal
of Neurology 265 (Feb. 2018), pp. 1740-1752.

Judd, L. L. and Akiskal, H. S. “The Prevalence and Disability of Bipolar Spectrum Disorders in
the US Population: Re-analysis of the ECA Database Taking into Account Subthreshold Cases”.
In: Journal of Affective Disorders 73.1-2 (2003), pp. 123-131.

Kay, S. R., Fiszbein, A., and Opler, L. A. “The Positive and Negative Syndrome Scale (PANSS)
for Schizophrenia”. In: Schizophrenia Bulletin 13 (June 1987), pp. 261-276.

Kay, S. R., Fiszbein, A., and Opler, L. A. “The Positive and Negative Syndrome Scale (PANSS)
for Schizophrenia”. In: Schizophrenia Bulletin 13.2 (1987), pp. 261-276.

Khorram, S., Jaiswal, M., Gideon, J., Mclnnis, M., and Provost, E. M. “The PRIORI Emotion
Dataset: Linking Mood to Emotion Detected In-The-Wild”. In: Proceedings of Interspeech. ISCA.
2018, pp. 1903-1907.

Koizumi, Y., Saito, S., Uematsu, H., Harada, N., and Imoto, K. “ToyADMOS: A dataset of
miniature-machine operating sounds for anomalous sound detection”. In: 2019 IEEE Workshop
on Applications of Signal Processing to Audio and Acoustics (WASPAA). IEEE, 2019, pp. 313—
317. DOI: 10.1109/WASPAA.2019.8937164.

95


https://doi.org/10.3390/s21144838
https://doi.org/10.1186/s40345-023-00302-x
https://doi.org/10.1186/s40345-023-00302-x
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/WASPAA.2019.8937164

Appendix A. Bibliography

[LHL19]

[LNM14]
[Lee+24]

[Li+23]

[LDG13]

[Lin+21]

[Liu+13]

[LBG20]

[Maal3]
[Mag+20]

[Man82]
[Mar94]

[Max-+16]

[McF+15]

[MIB20]

[Mob+22]

[MZS17]

[Mou+21]

[Nie+23]

[Olal15]
[OR16]

Lam, G., Huang, D., and Lin, W. “Context- Aware Deep Learning for Multi-Modal Depression De-
tection”. In: Proceedings of the IEEFE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP). IEEE, 2019, pp. 3946-3950.

Laursen, T. M., Nordentoft, M., and Mortensen, P. B. “Excess Early Mortality in Schizophrenia’.
In: Annual Review of Clinical Psychology 10 (Feb. 2014), pp. 425-448.

Lee, Y., Park, C., Kim, N., Ahn, J., and Jeong, J. “LSTM-Autoencoder Based Anomaly Detection
Using Vibration Data of Wind Turbines”. In: Sensors 24 (2024), p. 2833.

Li, Y., Wang, Y., Yang, X., and Im, S.-K. “Speech emotion recognition based on Graph-LSTM
neural network”. In: EURASIP Journal on Audio, Speech, and Music Processing 2023 (2023),
p- 40. DOI: 10.1186/s13636-023-00303-9.

Lieberman, J. A., Dixon, L. B., and Goldman, H. H. “Early Detection and Intervention in
Schizophrenia: A New Therapeutic Model”. In: JAMA 310.7 (Aug. 2013), pp. 689-690.
Lindemann, B., Miiller, T., Vietz, H., Jazdi, N., and Weyrich, M. “A survey on long short-term
memory networks for time series prediction”. In: Procedia CIRP 99 (2021), pp. 650-655. DOTI:
10.1016/j.procir.2021.03.088.

Liu, L., Chen, X., Luo, D., Lu, Y., Peng, Y., and Du, J. “HSC: A Spectral Clustering Algorithm
Combined with Hierarchical Method”. In: Neural Network World 23.6 (2013), pp. 499-521.
Low, D. M., Bentley, K. H., and Ghosh, S. S. “Automated Assessment of Psychiatric Disor-
ders Using Speech: A Systematic Review”. In: Laryngoscope Investigative Otolaryngology 5 (Jan.
2020), pp. 96-116.

Maas, A. L. “Rectifier Nonlinearities Improve Neural Network Acoustic Models”. In: (2013). URL:
Maglogiannis, 1., Zlatintsi, A., Menychtas, A., Papadimatos, D., Filntisis, P. P., Efthymiou, N.,
Retsinas, G., Tsanakas, P., and Maragos, P. “An Intelligent Cloud-Based Platform for Effec-
tive Monitoring of Patients with Psychotic Disorders”. In: IFIP Advances in Information and
Communication Technology (AIAI). Vol. 584. Springer, Cham, 2020, pp. 293-307.

Mandelbrot, B. B. The Fractal Geometry of Nature. New York: W. H. Freeman and Company,
1982. 1SBN: 978-0716711865.

Maragos, P. “Fractal Signal Analysis Using Mathematical Morphology”. In: Advances in Elec-
tronics and Electron Physics 88 (1994), pp. 199-246.

Maxhuni, A., Munoz-Meléndez, A., Osmani, V., Perez, H., Mayora, O., and Morales, E. F.
“Classification of Bipolar Disorder Episodes Based on Analysis of Voice and Motor Activity of
Patients”. In: Pervasive and Mobile Computing 31 (Feb. 2016), pp. 50-65.

McFee, B., Raffel, C., Liang, D., Ellis, D. P. W., McVicar, M., Battenberg, E., and Nieto, O.
librosa: Audio and Music Signal Processing in Python. Proceedings of the 14th Python in Science
Conference. 2015. DOI: 10.25080/Majora-7b98e3ed-003.

Mihajlovic, S., Ivetic, D., and Berkovié¢, I. “Applications of Convolutional Neural Networks”. In:
(Oct. 2020).

Mobtahej, P., Zhang, X., Hamidi, M., and Zhang, J. “An LSTM-Autoencoder Architecture for
Anomaly Detection Applied on Compressors Audio Data”. In: Computational and Mathematical
Methods 2022 (2022), pp. 1-22.

Mohr, D. C., Zhang, M., and Schueller, S. M. “Personal Sensing: Understanding Mental Health
Using Ubiquitous Sensors and Machine Learning”. In: Annual Review of Clinical Psychology 13
(May 2017), pp. 23-47.

Mouchabac, S., Conejero, 1., Lakhlifi, C., Msellek, 1., Malandain, L., Adrien, V., Ferreri, F., Millet,
B., Bonnot, O., Bourla, A., and Maatoug, R. “Improving clinical decision-making in psychiatry:
implementation of digital phenotyping could mitigate the influence of patient’s and practitioner’s
individual cognitive biases”. In: Dialogues in Clinical Neuroscience 23 (Jan. 2021), pp. 52-61.
Nierenberg, A. A., Agustini, B., Kohler-Forsberg, O., Cusin, C., Katz, D., Sylvia, L. G., Peters,
A., and Berk, M. “Diagnosis and Treatment of Bipolar Disorder: A Review”. In: JAMA 330.14
(Oct. 2023), pp. 1370-1380.

Olah, C. “Understanding LSTMs”. In: (2015).

Onnela, J.-P. and Rauch, S. L. “Harnessing Smartphone-Based Digital Phenotyping to Enhance
Behavioral and Mental Health”. In: Neuropsychopharmacology 41 (Feb. 2016), pp. 1691-1700.

96


https://doi.org/10.1186/s13636-023-00303-9
https://doi.org/10.1016/j.procir.2021.03.088
https://doi.org/10.25080/Majora-7b98e3ed-003

[Osm+15]

[0Z22]

[0ZM22]

[Pan+18]

[Pap+09]

[Ped+11]

[PGO7]

[Pov+11]

[Pur+19]

[Raj23]
[Ret+20]

[Rin+17]

[Scag2)
[SG17a]
[SG17b]
SZ14]
[SA70]

[Sny—+18]

[Su+21]

Osmani, V., Gruenerbl, A., Bahle, G., Haring, C., Lukowicz, P., and Mayora, O. “Smartphones
in Mental Health: Detecting Depressive and Manic Episodes”. In: IEEE Pervasive Computing
14.3 (2015), pp. 10-13.

Othmani, A. and Zeghina, A. O. “A multimodal computer-aided diagnostic system for depression
relapse prediction using audiovisual cues: A proof of concept”. In: Healthcare Analytics 2 (2022),
p. 100090.

Othmani, A., Zeghina, A.-O., and Muzammel, M. “A Model of Normality Inspired Deep Learning
Framework for Depression Relapse Prediction Using Audiovisual Data”. In: Computer Methods
and Programs in Biomedicine 226 (2022), p. 107132.

Pan, Z., Gui, C., Zhang, J., Zhu, J., and Cui, D. “Detecting Manic State of Bipolar Disorder
Based on Support Vector Machine and Gaussian Mixture Model Using Spontaneous Speech”. In:
Psychiatry Investigation 15.7 (July 2018), pp. 695-700.

Papathanasiou, G., Georgoudis, G., Papandreou, M., Spyropoulos, P., Georgakopoulos, D.,
Kalfakakou, V., and Evangelou, A. “Reliability Measures of the Short International Physical
Activity Questionnaire (IPAQ) in Greek Young Adults”. In: Hellenic Journal of Cardiology 50
(2009), pp. 283-294.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,
M., Perrot, M., and Duchesnay, E. “Scikit-learn: Machine Learning in Python”. In: Journal of
Machine Learning Research 12 (2011), pp. 2825-2830. URL:

Piskorski, J. and Guzik, P. “Geometry of the Poincaré plot of RR intervals and its asymmetry
in healthy adults”. In: Physiological Measurement 28.3 (2007), pp. 287-300.

Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., Hannemann, M.,
Motlicek, P., Qian, Y., Schwarz, P., et al. “The Kaldi Speech Recognition Toolkit”. In: Proceedings
of the IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU). Hawaii,
USA, Dec. 2011.

Purohit, H., Tanabe, R., Ichige, T., Endo, T., Nikaido, Y., Suefusa, K., and Kawaguchi, Y.
“MIMII Dataset: Sound dataset for malfunctioning industrial machine investigation and inspec-
tion”. In: Proceedings of the Detection and Classification of Acoustic Scenes and FEvents 2019
Workshop (DCASE2019). 2019, pp. 209-213.

Raj, V. “Exploring the Power of Neural Networks”. In: (2023). URL:

Retsinas, G., Filntisis, P. P., Efthymiou, N., Theodosis, E., Zlatintsi, A., and Maragos, P. “Person
Identification Using Deep CNNs on Short-Term Signals from Wearable Sensors”. In: Proceedings
of the 45th IEEFE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
Barcelona, Spain: IEEE, 2020, pp. 1-5.

Ringeval, F., Schuller, B., Valstar, M., Gratch, J., Cowie, R., Scherer, S., Mozgai, S., Cum-
mins, N., Schmitt, M., and Pantic, M. “AVEC 2017: Real-life Depression, and Affect Recognition
Workshop and Challenge”. In: AVEC ’17. Association for Computing Machinery, 2017, pp. 3-9.
Scargle, J. D. “Studies in Astronomical Time Series Analysis. II-Statistical Aspects of Spectral
Analysis of Unevenly Spaced Data”. In: The Astrophysical Journal 263 (1982), pp. 835-853.
Shaffer, F. and Ginsberg, J. P. “An Overview of Heart Rate Variability Metrics and Norms”. In:
Frontiers in Public Health 5 (Sept. 2017), p. 258.

Shaffer, F. and Ginsberg, J. P. “An Overview of Heart Rate Variability Metrics and Norms”. In:
Frontiers in Public Health 5 (Sept. 2017), p. 258.

Simonyan, K. and Zisserman, A. “Very Deep Convolutional Networks for Large-Scale Image
Recognition”. In: arXiv preprint arXiv:1409.1556 (2014).

Simpson, G. and Angus, J. “A Rating Scale for Extrapyramidal Side Effects”. In: Acta Psychi-
atrica Scandinavica 45 (1970), pp. 11-19. DOI: 10.1111/j.1600-0447.1970.tb02066. x.
Snyder, D., Garcia-Romero, D., Sell, G., Povey, D., and Khudanpur, S. “X-Vectors: Robust
DNN Embeddings for Speaker Recognition”. In: Proceedings of the International Conference on
Acoustics, Speech, and Signal Processing (ICASSP). Calgary, AB, Canada, Apr. 2018, pp. 5329—
5333.

Su, H.-Y., Wu, C.-H., Liou, C.-R., Lin, E. C.-L., and Chen, P. S. “Assessment of Bipolar Disorder
Using Heterogeneous Data of Smartphone-Based Digital Phenotyping”. In: Proceedings of the

97


https://doi.org/10.1111/j.1600-0447.1970.tb02066.x

Appendix A. Bibliography

[TTR21]

[Ust-+10]

[VK09)]
[WTO0g]

[WM17]

[Wan+22]

[Wen18|
[Wor22]
[Wu+23]

[Yan+19]

[YIS19]

[You+78|

[Zho+24]

[Z1a~+22]

IEEF International Conference on Acoustics, Speech, and Signal Processing (ICASSP). IEEE,
2021, pp. 4260-4264.

Toto, E., Tlachac, M., and Rundensteiner, E. “Audibert: A Deep Transfer Learning Multimodal
Classification Framework for Depression Screening”. In: Proceedings of the 30th ACM Interna-
tional Conference on Information and Knowledge Management (CIKM) Applied Research Track.
Association for Computing Machinery, 2021, pp. 4145-4154.

Ustiin, T. B., Chatterji, S., Kostanjsek, N., Rehm, J., Kennedy, C., Jordan, E.-J., Saxena, S.,
Korff, M. von, and Pull, C. “Developing the World Health Organization Disability Assessment
Schedule 2.0”. In: Bulletin of the World Health Organization 88 (2010), pp. 815-823.

Van Os, J. and Kapur, S. “Schizophrenia”. In: The Lancet 374.9690 (Aug. 2009), pp. 635-645.
Waddell, L. and Taylor, M. “A New Self-Rating Scale for Detecting Atypical or Second-
Generation Antipsychotic Side Effects”. In: Journal of Psychopharmacology 22.3 (May 2008),
pp- 238-243. pOI: 10.1177/0269881107087976.

Walther, S. and Mittal, V. A. “Motor System Pathology in Psychosis”. In: Current Psychiatry
Reports 19 (Oct. 2017), p. 97.

Wang, Y., Wang, Z., Li, C., Zhang, Y., and Wang, H. “Online Social Network Individual Depres-
sion Detection Using a Multitask Heterogeneous Modality Fusion Approach”. In: Information
Sciences 609 (2022), pp. 727-749.

Weng, L. “From Autoencoder to Beta-VAE”. In: (2018).

World Health Organization. Schizophrenia. 2022.

Wu, C.-H., Hsu, J.-H., Liou, C.-R., Su, H.-Y., Lin, E., and Chen, P. “Automatic Bipolar Disorder
Assessment Using Machine Learning With Smartphone-Based Digital Phenotyping”. In: IEEE
Access PP (Jan. 2023), pp. 1-1.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., and Le, Q. V. “XLNet: Gener-
alized Autoregressive Pretraining for Language Understanding”. In: (Dec. 2019), pp. 5753-5763.
Yani, M., Irawan, S., and Setianingsih, C. “Application of Transfer Learning Using Convolutional
Neural Network Method for Early Detection of Terry’s Nail”. In: Journal of Physics: Conference
Series 1201 (May 2019), p. 012052.

Young, R. C., Biggs, J. T., Ziegler, V. E., and Meyer, D. A. “A Rating Scale for Mania: Reliability,
Validity and Sensitivity”. In: British Journal of Psychiatry 133 (Oct. 1978), pp. 429-435.
Zhong, Y., Chen, Y., Su, X., Wang, M., Li, Q., Shao, Z., and Sun, L. “Global, regional and
national burdens of bipolar disorders in adolescents and young adults: a trend analysis from 1990
to 2019”. In: General Psychiatry 37 (2024). DOIL: 10.1136/gpsych-2023-101255.

Zlatintsi, A.| Filntisis, P. P., Garoufis, C., Efthymiou, N., Maragos, P., Menychtas, A., Maglogian-
nis, I., Tsanakas, P., Sounapoglou, T., Kalisperakis, E., et al. “E-Prevention: Advanced Support
System for Monitoring and Relapse Prevention in Patients with Psychotic Disorders Analyz-
ing Long—Term Multimodal Data from Wearables and Video Captures”. In: Sensors 22.19 (Oct.
2022), p. 7544.

98


https://doi.org/10.1177/0269881107087976
https://doi.org/10.1136/gpsych-2023-101255

	Περιεχόμενα
	Λίστα Σχημάτων
	Κατάλογος Πινάκων
	Εκτεταμένη Περίληψη στα Ελληνικά
	Introduction
	Relapse in Bipolar Disorder and Schizophrenia
	Digital Phenotyping
	Goals and Contributions
	Thesis Outline

	Theoretical Background
	Audio Signal Representations and Features
	Time Domain-Representations
	Frequency-Domain Representations
	Spectral Representations
	Mel-Spectrograms

	Biometric Signal Representations and Features
	Time-Domain Features
	Frequency-Domain Features
	Non-Linear Features

	Machine Learning
	Types of Machine Learning
	Key Concepts in Machine Learning

	Neural Network Architectures
	Convolutional Neural Networks (CNNs)
	Long Short-Term Memory Networks (LSTMs)

	Autoencoders
	Types of Autoencoders
	Variational Autoencoders (VAEs)

	Anomaly Detection

	Literature Review
	Relapse Detection in Mental Health
	Digital Phenotyping
	Speech-Based Relapse Detection

	Modality Fusion in Mental Health
	Audiovisual and Textual Feature Fusion
	Physiological and Behavioral Feature Fusion
	Textual, Behavioral and Visual Feature Fusion

	Anomaly Detection in Audio Data
	The e-Prevention Project

	Data and Preprocessing
	Data Collection
	Audio Dataset
	e-Prevention Audio Database
	e-Prevention Audio Database Expansion, Preprocessing and Feature Extraction

	Biometric Dataset
	e-Prevention Biometric Database
	Audio and Biometric Data Alignment
	Biometric Data Preprocessing and Feature Extraction


	Audio Experiments
	Methodology
	Data Normalization: Per-Patient and Global
	Autoencoder Architectures
	Model Training
	Evaluation Methods and Metrics

	Results
	CAE Model Results on the Expanded Database
	CVAE Model Results on the Expanded Database
	LSTMAE vs. CAE Model Comparison on the Expanded Database
	LSTMVAE vs. CVAE Model Comparison on the Expanded Database

	Discussion

	Multimodal Experiments
	Methodology
	Audio and Biometric Data Alignment
	Joint Autoencoder Architectures
	Model Training
	Evaluation Metrics
	Unimodal Model Baselines

	Joint CAE-CAE Model
	Day of Interview
	Temporal Windows Around Interview

	Joint LSTMAE-CAE Model
	Day of Interview
	Temporal Windows Around Interview

	Evaluating Modality Contributions Through Branch Disabling
	Discussion

	Conclusion
	Bibliography

