NATIONAL TECHNICAL UNIVERSITY OF ATHENS
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ge

v

DivisioN OF COMPUTER SCIENCE

v,

s

7 ‘nposmHOE

Advanced Web Scraping in the Modern Web

Techniques, Prevention, and Al Integration

DiPpLOMA THESIS

of

ADONIS M. TSERIOTIS

Supervisor: Vassilios Vescoukis
Professor, NTUA

Athens, February 2025

National Technical University of Athens
School of Electrical and Computer Engineering

Division of Computer Science

Advanced Web Scraping in the Modern Web

Techniques, Prevention, and Al Integration

DiPpLOMA THESIS
of

ADONIS M. TSERIOTIS

Supervisor: Vassilios Vescoukis
Professor, NTUA

Approved by the examination committee on 7th March 2025.

(Signature) (Signature) (Signature)
Vassilios Vescoukis Nikolaos Papaspyrou Zoe Paraskevopoulou
Professor, NTUA Professor, NTUA Assistant Professor, NTUA

Athens, February 2025

National Technical University of Athens

School of Electrical and Computer Engineering

Division of Computer Science

Copyright (©), Adonis M. Tseriotis, 2025
All rights reserved.

The copying, storage and distribution of this diploma thesis, exall or part of it, is pro-
hibited for commercial purposes. Reprinting, storage and distribution for non - profit,
educational or of a research nature is allowed, provided that the source is indicated and

that this message is retained.

The content of this thesis does not necessarily reflect the views of the Department, the

Supervisor, or the committee that approved it.

DISCLAIMER ON ACADEMIC ETHICS AND INTELLECTUAL PROP-
ERTY RIGHTS

Being fully aware of the implications of copyright laws, I expressly state that this diploma
thesis, as well as the electronic files and source codes developed or modified in the course
of this thesis, are solely the product of my personal work and do not infringe any rights of
intellectual property, personality and personal data of third parties, do not contain work
/ contributions of third parties for which the permission of the authors / beneficiaries is
required and are not a product of partial or complete plagiarism, while the sources used
are limited to the bibliographic references only and meet the rules of scientific citing. The
points where I have used ideas, text, files and / or sources of other authors are clearly
mentioned in the text with the appropriate citation and the relevant complete reference
is included in the bibliographic references section. I fully, individually and personally un-
dertake all legal and administrative consequences that may arise in the event that it is
proven, in the course of time, that this thesis or part of it does not belong to me because

it is a product of plagiarism.

(Signature)

Adonis M. Tseriotis
Electrical &

Computer Engineer
Graduate, NTUA

7th March 2025

to my family

[eptingn

H nopotoa epyaocta e€etdlel To web scraping, pta Siodixactio autopatoroinuévng e€orywyhc
OedOPEVLV oMb LoTOCEADBES, €0TIALOVTOG OTIC TEYVIXES, TIC TPOXAHOELS XU TIC XOULVOTOUES
Nooelg mou xadopiCouv To clyypeovo TepBdAlov cUALOYHC Bedouévwy. Me tnv auvlavouevn
TOAUTAOXOTNTOL TWV BLAOLXTUOXMY TEYVOROYLOV X0 TNV EQPURUOYY| UNYAVICUDY ATOTEOTNS
QUTOPATOTIOUNUEVNS TEOGPBUCTC, AMUTOOVTOL TEONYUEVES OTRATNYIXES YIO TNV OTOTEAECUTIXT
xou od amodex T cLUAAOYT TANEOpopiag.

H epyaolo availel tic Yepshuwdelg pedddoug scraping, omwg n avdhvon HTML péow
HTTP avtnudtwy, 1 yenon headless browsers xon 1 ovoryodTion SIXTLOXGY UTUATOY, CUY-
%plVOVTAC TOL TASOVEXTAUTA X0 Tol UELOVEXTHUTA Touc. TTapdhinAa, e€etdlovTal oL TEYVIXES
TpooTUGlAS TWV I6TOCEABWY, OTwe To browser fingerprinting, 1 avdiuon potiBwv xivnong,
ot CAPTCHA npoxAfioeic xau 1 amdxpun 8edouévmy Y€ BUVUULXDY ATOOOCEMY TEQIEY OUE-
Vou.

H ewoaywyh e teyvntic vonuooivng (Al) xou twv peydhwy yhwoowoy poviéhwy (LLMs)
oto web scraping omoteAel pio and T mo xouvotoueg npooeyyioelc. H ypron unyovinic
udinong emTEENEL TNV AVATTUET AUTOTEOCUPUOLOUEVKY EEAYWYEWY OEDOUEVLV, TNV AUTOUATT
oVaY VORLOT) SOUMY SESOUEVWY Xat TNV EEUTVY TOEAX AU OVEYVELTIXOV UNYAVIOUDY.

Q¢ mpoxTxny egapuoyy, 1 gpyacia mopouctdlel TNV TAaT@opUa “soniq”, €vo avolyTol
%WOixa, no-code epyaieio scraping mou a&tonotel Al yior Ty auvtopatomoinon xou BeAticTonolnon
¢ ouhhoytic dedouévev. H mhatpdoua evonpotwvel LLM-assisted schema inference, npo-
YEUUUATIOUEVY EEaywYY| OEOOUEVLV XU TROTYUEVT dloyelplor proxies, eMTEENOVTNG OTOUC
YPNOTES VoL TEAYHATOTIOOUY scraping ywpelc eEelBIXEVUEVES TEYVIXES YVAOOELS.

H epyaoto xatorfjyel oc o cuCATNON Yol TS HEANOVTIXESC TPOOTTIXES GTOV (PO Tou web
scraping, eotidlovtag ot dnuoupyior ELPUAY, avilexTixwy xo NUXd amodeEXTOY scraping
pipelines, tn SwcOvoeon ue data warehouses yio mponyUEvn avdAucT BEBOUEVLY, xou T
YENON OTMOXEVIPOUEVDY UPYLTEXTOVIXMOV Yiot HEYAUAUTERN avewvuplor xou aviextixotnta. To
EVPNUATA AUTAS TNC UEAETNG AVOBEXVUOLY TN onuaoior TNS TEXVOROYIXNG xatvoTouiog xou
TNe Onuoxpatixonoinong Tne TeocBacng oTa OE00UEVA, EVIOYVOVTUS TN DLUPAVEL XL TNV

AMOTEAEOUATIXOTNTOL TNG CUAAOYYS TANROQOELKY GTOV GUYYEOVO Ynplaxd xdGuo.

Aglesic KAeowk

Web Scraping, E€aywyr Acdouyévev, Avtuetonion Bots, Mnyavir Mddnon yio Eoy-
oy Aedopévwy, Meydha I'wooid Movtéha yo E€aywyr Aedouévwy, Teyvntr Nonuooivn,
No-Code Web Scraping, Ilpoypauuotiouévn E€aywyr Acdopévwy, Aviyveuon Bots, Auto-
npooapuolopevee Teyvixée ECaywync, Avtipetpa Aviyveuone Scraping.

Abstract

Abstract

The modern web presents both unprecedented opportunities and significant challenges
for data extraction, as web technologies evolve to become more dynamic and resistant
to automated scraping. Data are the new currency, playing significant role in everything
from business intelligence to scientific research, with a particularly vital impact on Al
training, where properly structured and high-quality datasets are essential for building
accurate and reliable models. This thesis explores the landscape of web scraping, focusing
on advanced techniques, countermeasures, and Al integration. It systematically examines
the foundational methods for web scraping, detailing strategies for handling both static
and dynamic web content while addressing the rising challenges posed by anti-scraping
mechanisms such as CAPTCHASs, browser fingerprinting, and traffic pattern analysis.

A major focus of this work is to make web scraping more accessible to non-technical
individuals, facilitated through the development of Soniq, an open-source, no-code web
scraping platform that integrates LLM-assisted schema extraction, automated proxy man-
agement, and real-time adaptability to frontend changes. By leveraging machine learning
for intelligent data extraction and generative Al for structured data understanding, this
system enables accessible, scalable, and resilient scraping for diverse applications, from
market analysis to Al model training.

The findings of this thesis illustrate the transformative impact of LLMs and generative
Al in automating, optimizing, and scaling web scraping workflows. Additionally, the
study provides insights into ethical considerations and compliance frameworks necessary
for responsible data extraction in an era of increasing regulatory scrutiny and cybersecurity
challenges. The proposed solutions not only enhance efficiency and accuracy in data
extraction but also contribute to the broader effort of making structured web data available

to a wider audience beyond large corporations and specialized developers.

Keywords

Web Scraping, Al in Data Extraction, LLM-Assisted Web Scraping, Scraping Preven-
tion, No-Code Web Scraping, Structured Data Extraction, Anti-Scraping Countermea-

sures, Generative Al

Acknowledgements

I would like to thank my professor, Vassilios Vescoukis, for his guidance and support
throughout this thesis. His feedback and advice helped me a lot.

I also appreciate my supervising Ph.D. candidate, Mr. Christos Hadjichristofi, for
always being available to help me and for giving me useful suggestions along the way.

A big thank you to my family and friends for always supporting me and standing by

me through this process.

Athens, February 2025

Adonis M. Tseriotis

Table of Contents

Hepirndm

Abstract

Acknowledgements

0

Extetopévn Iepiindn ot EAAvixd

0.1 EZén&n xou Ilpoxhroeig tov Web Scraping

0.2 Teyvixéc Web Scraping xow XOyxpiofy Toug oL

0.3 Mnyoviopol Ilpootactag xou Aviyvevone Scraping

0.4 H Egapuoy? tng Teyvntic Nonuooivne oto Web Scraping

0.5 H IThatgodpua "soniq” — No-Code Scraping ue AI
0.5.1 Boaowd Xapoxtnpiotxd tne Mhatpdepag oo oL

Background Knowledge

Modern Web Scraping Architecture

1.1 Imtroduction e

1.2 Evolution of Web Technologies

1.3 Advanced Web Technologies,
1.3.1 Modern Javascript Frameworks
1.3.2 Advanced API Interfaces

1.4 Search Engine Optimization (SEO)

Techniques and Innovations in Web Scraping

2.1 Foundational Scraping Techniques
2.1.1 Scraping Static Websiteso oL
2.1.2 Dynamic JavaScript-Driven Websites
2.1.3 Network Request Interception
2.1.4 Comparing Techniques oL

Scraping Prevention and Countermeasures

3.1 Detection and Mitigation Strategies
3.1.1 Browser Fingerprinting
3.1.2 Traffic Pattern Analysis

17
17
17
18
19
19
20

23

25
25
26
27
27
36
37

39
39
39
41
42
44

47
47
47
48

TABLE OF CONTENTS

3.1.3 CAPTCHAs e 48
3.1.4 Homeypotting 49
3.1.5 IP Reputation Systems 50
3.1.6 Behavioral Analytics Lo 50
3.1.7 Conclusion 50

3.2 Preventive Development Techniques 52
3.2.1 Rate Limiting and Throttling 52
3.2.2 Dynamic Code and CSS Attributes 52
3.2.3 API Key and Token-Based Authentication 53
3.2.4 JavaScript Challenges 54
3.2.5 Cookie-Based Authentication 55
3.2.6 CDN Security o o v i 56
3.2.7 Data Obfuscation Techniques 56
3.2.8 Adaptive User Interface Rendering 57

3.3 Advanced Protection Mechanisms 59
3.3.1 Anti-Scraping SaaS Platforms 0oL 59
3.3.2 Browser Integrity and Verification 59
3.3.3 Hybrid Defense Architectures 60

4 Integration of AI in Web Scraping 63
4.1 Machine Learning in Scraping oL 63
4.1.1 Adaptive Algorithms for Intelligent Data Extraction 63
4.1.2 Automated Proxy Management 64
4.1.3 CAPTCHA Solving with AT 65

4.2 NLP for Data Understanding 66
5 Leveraging Generative Al for Scraping 69
5.1 LLMs in Scraping Pipelines oL 69
5.1.1 Crawling Stage 70
5.1.2 Data Extraction Stage oL 70
5.1.3 Antibot Measures Bypassing Stage 71
5.1.4 Post-Processing Data Stage 71

5.2 Advanced Generative Al Capabilities in Web Scraping 72
5.2.1 Cross-Modal Scraping: Bridging Vision and Text 72
5.2.2 WebVoyager: A Case Study in Multimodal Web Agents 72

5.3 Use Cases and Implications 73
5.3.1 Training Data Acquisition 73
5.3.2 Domain-Specific Applications 74
5.3.3 Augmented Search Engines 74
5.3.4 Implications for Future Development 74

TABLE OF CONTENTS

II Implementation 77

6 soniq: No-code web scraping platform for structured data extraction 79

6.1 Problem definition 79
6.2 Technologies Used 79
6.21 Backend Lo 79
6.2.2 Frontend 84
6.3 Architecture 87
6.3.1 Frontend Layer 88
6.3.2 Backend Layer 88
6.3.3 Deployment Architecture 91
6.3.4 System Workflow L 92
6.4 Use Case - Scraping Energy News Articles in Seconds 94
6.4.1 Creating the Ontology 94
6.42 CreatingaPage o 95
6.4.3 Inspecting Job Executions 100
6.4.4 Scraped Data Exploration 101
IITI Epilogue 103
6.5 Overview L 105
6.6 Future Work 105
6.6.1 Enhancing Al-Driven Adaptability in Scraping 105
6.6.2 FExpanding No-Code Customization &User Experience 106
6.6.3 Exploring Decentralized &Federated Scraping Approaches 106
6.6.4 Ethical and Regulatory Considerations 107

6.6.5 Extracted Data Ingestion in Data Warehouses for Better Processing
and Analytics 107
6.6.6 Conclusion 108
Bibliography 112
List of Abbreviations 113

List of Figures

1.1
1.2
1.3
14
1.5
1.6
1.7
1.8
1.9

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20

Global number of internet users 2005-2024[1] 28
Angular Usage Statistics [2] oL 29
Component Based Architecture UML Component Diagram 30
React Usage Statistics [2] 30
Vue Usage Percentage [2] o 32
SSR Sequence Diagramo oo 33
ISR Sequence Diagram 33
SSG Sequence Diagram L oL 34
Svelte Usage Statistics [2] 35
soniq Component UML Diagram 80
soniq API Swagger Docs 1 89
soniq API Swagger Docs 2o 90
soniq Database UML Class Diagram 91
soniq Deployment UML Diagram 92
soniq Activity UML Diagram 93
soniq Sequence UML Diagram 94
Ontology Creation 95
Basic Page Information oo 95
Inspect HTML Container 96
CSS Extraction Schema Generation using LLM 96
Modified Generated Schema 97
Scraping Job Simulation 0oL 98
Scraping Job Schedulingo oo 98
Page Explorer 99
energia.gr Pagination Url o000 99
Pagination Url Enqueuer L Lo 0oL 100
Run Explorer 100
Job Execution Details 101
Data Explorer 101

https://trends.builtwith.com/javascript/React

List of Tables

1.1
1.2
1.3
14

2.1

3.1
3.2

Angular Usage Percentage, 29
React Usage Percentage oo L. 31
Vue Usage Percentage o 32
Vue Usage Percentage L L L 35
Comparison of Foundational Scraping Techniques 45
Comparison of Web Scraping Bot Detection Methods 51
Comparison of Preventive Development Techniques 58

Chapter m

Extetouevn Ilepiindn ota EAANvixd

H epyaoio aut| anotelel yio ohoxAnpwuévn uehétn Tou web scraping, plog diadwasctag Tou
ETUTEENEL TNV AUTOPATH eCoywYY) SEGOUEVLY amd To Web, ue éupaon oTig TEYVIXES, Ta EUTOBLAL
X0l TLS XOUWVOTOUES AOGELS TTou €y ouv avamtuydel Ta Tedeutala yeovia. Koadde n morumhoxdtnta
TOV 16 TOGEABOY AUEGVETAL X0 OL UMY OVICHOL TEOGTAGIS OO TNV AUTOUATOTOLNUEVY TEOGHoT
BeATidvovTo, 1 avayxn YLl TRONYUEVES, TROCUPUOCIIES Xot aVIEXTIXEG TEYVIXEC scraping ei-
VO TILO ETUTOXTIXT AT TOTE.

H perétn Eexvd and Tig YeueMmOeLg TEYVIXES EEAY WS OEDOUEVWY, OVIAUEL TOUC UMY OVLO-
nolc aviyveuone xaw amoxhetopol bots, e€etdler mde n texvnth vonuoolvn (Al) urnogel va
HETOCY NUATIoEL TO TEBIO, XL OAOXANEWVETAL UE TNV Topouciacy Tou “soniq”, wag no-code,
Al-powered miot@opuoc scraping, oyedlaopévne Yoo var BIEUXOADVEL TNV Tpdcoor ot doun-

péva dedouéva ywels TV avdyxn Texvixng eeldixeuong.

0.1 E&éM&n xou [IpoxArioeig tou Web Scraping

Y1ig apyéc Tou dladixtiou, 1) Soun TwV W ToceABwY fTay otatixn, Boctopévn oe HTML
xan CSS, xoiotodvtog Ty eCorywyr) BeBoUEVOV Al xou anpdoxonty. {20T600, UE TNV Eo-
aywyh v poviépvwy JavaScript frameworks 6nwe React, Angular xou Vue.js, noAléc to-
T00eA(BeC YeTaTpdmNXOY OE BuVoIXES eopUoYES Hovhc oeAdac (SPAs), étou o mepieyduevo
poptwveTal aclyypova péow API xifoewv xou JavaScript rendering.

Avut 1 ahhayr) Onuoteynoe onuavTixég duoxohieg oto scraping, xadde ol TAneoopicg
oev fitav Théov dldéotueg otov opyxd HTML xwdwa. Emmiéoy, neugdvion vEwy TexVOhOYLOY
emxowoviog Yetald meAdtn-oloxowoty|, 6nwe to GraphQL xo to gRPC, enégepe véa eunod-
Otat, xodwe oL Topadocloxés TEYVIXES eCaywy N 0edopévwy Tou Baoilovtav oc REST APIs
dev umopoloay va e@appootoly dueoo. Iopdhhnha, o pdroc tou SEO (Search Engine Op-
timization) otn Sopn xou mapovciaoy Twv Sedouévwy ennpéace oNUUVTIXG TIC duvatdTnTES
GUAOYTHC TATROQOELAY, BESOUEVOL OTL TOMAES LG TOGEAIDES TPOTOTOLOUY TN SNUOCLA 0PATOTN T

TOU TEPLEYOUEVOU TOUC Yol VO BEATIOOOLY TNV XATATAET TOUC OTLC UNYOVES avalATNOMS.

0.2 Teyvixéc Web Scraping »xouw 20vxplon Toug

O pédodol xou oL TEYVIXESC TNS CUCTNUATIXNG EEUYWYNEC BEGOUEVMLY amo To BladixTuo Ot

apépouy ue Bdorn TNy @lon tne xdie 1oTooeAdag. XuvAdng, 1 TEYVIXY elvon EVag ay@vog Vo

Chapter 0. Extetopévn Iepiindmn ota EXAnvixd

ABeig ye xdmolo tpono to HTML nepieyduevo g 1otooehibac mou tepiéyel Tor Sedouéva 1
vo uoxhéeic Ty xhrion SxTOoU Tou Y€K AUTAS ToEEYoVTaL Tor BEBOPEVO OTNV Lo TOGEALDN
yio TeoBoAY. Xty TMERInTWOT TWV OTATIXWY CEADBWY Umopolue vo vhormotcouue To HTML
Request Parsing, 6mouv o HTML »x0uxag yoc mapéyeton ano yior ok xhfion dixtdou tinou
GET xou ta dedopéva e€dyovtar amd to oxatépyacto HTML yéow CSS selectors xaw XPath
queries. Auty 1 uédodog elvar Ypriyopr xou AMOTEAECUAUTIXY VIOl CTATIXEC LOTOOEAIDES AAAG
amotuyydvel o JavaScript-heavy egapuoyéc. Ytig ntepintidoeic 6mou 1 o toceABa Bacileton
ot Javascript yia Vo QOpTOOEL TO TEPLEYOUEVO TNG Wlat amhr) xAnorn dxtbou dev apxel yio
va ABoupe tov HTML %x6houxa. Enouévoc, eiodyovton ow Headless Browsers, émou epyoheio
npoopiouéva yia application testing émwe Puppeteer xou Playwright npocouowwvouy tnyv ov-
Yowmvn aAAnAeidpoon ue pla loTooehiba, €yovTag TNy duvatdtnTa va Teé€ouy tny JavaScript
xan adAnAemidpwvtog ye to UL Auth n teyvind| elvon mo euéhixtn, aAAd amontel LPnNAr -
ohoytoTixn) Loyl xou umopel vo aviyveudel yéow browser fingerprinting xouw dAAwv pedodwv
aviY VEUOTC QUTOUATOTIOMNUEVODY TROYEAUUUATRY. 01600, ot 16TooeNBES oL omolec Bacilov-
TOL EXTETAUEVA OTIC XAOELS OTUOU Yiar vor AdBouv Tar OedopEVa TTou TEOBAANOLY UTOEOVUE
vo mapoxdpoupe v avdyxn yiao HTML retrieval xou parsing viomowdvtoag tn uédodo tou
Network Interception. Xuyxexpwéva, auvtn n pédodoc expetariedeton ¢ API xhfoeic pog
L0 TOOEABOG Ylot TNV GueoT) amdomacy dedouévwy. Ilapdro mou auth n Teyvixr elvar amote-
AeoUoTiny, oL TEPIOCOTERES Lo TOoEADES Ypnotdonololy authentication tokens xou encryption
yia v amoteéouv TN un e€ovctodotnuévn npdcBaor ota API touc. Metd and cuyxpitixn
AVIAUGT), DLAMICTOVETOL OTL O CUVOUAOHUOS UTOV TWV TEYVIXWY ATOTEAEL TNV TLO ATOBOTIXT

OTEATNYIXY|, TRPOCUPUOCUEVT] OTIC AVAYXES TOU EXACTOTE €QYOU.

0.3 Mnyavicuol Ilpooctaciag xaw Aviyvevong Scraping

Ot Suoxohieg e€aywyrc SeB0UEVWY Ao TNV EXACTOTE LOTOGEADA BEV PEVOUV UOVO OTN
OUOXOAIL VY VWELOTG NS XATIAANANG PeVdBou xou vhomolwvTag Tny. Ou cbyypoves Lo-
T00eMBeg eQupuolouy eEEMYUEVES TEYVIXEC OMOTEOTNG scraping ylo Vo TpocTAtelcouy Tol
OEDOUEVIL Xal TN AELTOLEYWOTNTA TG GeABAC TOUg amo xaxoBouvAia autopatonotnuéva bots.

Ot teyvixéc amotponc scraping mou avahbovtol eivon ol eEAC:

Browser Fingerprinting, 6mou cUAAEYOVTOL BEBOUEVAL YIOL TOL YORUXTNPLO TLIXA TOU YPNoTH
(user agent, installed plugins, time zone) ®ote va evtomotody avwuaiies Tou un-

odnhwvouv bot.

Traffic Pattern Analysis, 6tou avolleton 1 oupneplpopd tou emoxéntn (pudude awtn-

HETWY, YPOVIXE BLoG THOTAL) YLo TNV TUUTOTOMOT dUTOUATOTOMUEVNS TedofBaoTe.

CAPTCHASs xou Honeypots, mou hettoupyolv g doxipacies yia Tn Slopoporoinon Twv

avlp®dTVRY YenoTey and bots.

IP Reputation Systems, nou anoxieiovv yvwotéc IP Sievdivoeic mou oyetilovton ye

scraping 0paoTNELOTNTES.

0.4 H Egapuoy? tne Texwntic Nonuoolvne 6to Web Scraping

Rate Limiting and Throttling, émou to cUcTnua SloxouloTr avory vewpetlet xou amoppinTel
aAAETIAANAES HANoELG Tou €youv Yivel amo Tty Bl diedduvon IP oe uixpd ypovind

OLAOTNUOL.

Dynamic Code and CSS Attributes, 6mou xata tnv vAomoinoT o TEOYEUUUATIOTHE ETAEYEL
TN oLUOAOTIOT TOL WO xaL Twv CSS attributes xdvovtag d0oxokn Ty elpeor evog

ototepol potiBou yio e€aywyr| SEGOUEVLYV.

API Key, Token-Based and Cookie-Based Authentication, ncuctruatu Jwedx-
LOT) TNG LOTOCEADAC YENOWOTOUDVTAS BIUBESOUEVES TEYVIXES ACPAAELNS UTOREL VoL TEOPEL
o yapaxtnelo x| yedodo anotponic scraping xodoe to dedopéva xde ypnotrn elvou

OO TIXE XL ATPOCTENAGTO.

Javascript Challenges, 6nou o browser tou ypfotn doxdleton oE Uiot GEWRA AmO TOAD-
TAOXES Dlepyaoieg €TOL MHOTE Vol EMNEEEACEL 0pYNTIXE TOUS Topoug Tou client etol ote
VoL XOTAAGBeEL oy TEoOXELTOL Yo AN OvO YENoTN 1) EVOL AUTOPATOTONUEVO TTEOY RIS TTOU

TEEYEL OE OLOXOULO TEC UE TIEPLOPLOUEVOUC TOROUC.

Yuunepaouatind, ot o anoTeAeouaTiég péYodol anoTeoTrg scraping lval 0 GUVOLICUOG
TOAGDY TORATAVL TEYVIXGY €T0L OOTE var Yivel uia depyaocio ToAD dUoxohn, 1 omola Yo

amoVappivel xox6Bouho hoYLoWxd Ao TO Vo TEocToEel Vo To TEOGTEALGEL.

0.4 H Egappoyn tng Teyxyvnine Nonuooivng octo Web
Scraping

H evowydtwon tng texvntric vonuoolLyne oto web scraping amotekel évav and Ttoug
To xawvotououe Toyels épeuvac. Meydha yhwoowd povtéla (LLMs) unopolv va yenot-
pomotdoly yior TNV AUTOUOTY oVOrY VORLOT) TNG Boung Mg Lo TooeABaC, TNV eaywYT) ONUast-
ONOYIXE OYETIXDY TANPOPOELOY XUk TNV XUTAVONGT TOU TROTOU UE TOV OTOL0 0PYUVHOVOVTOL T
ocdopéva. H umyovinr) pdinorn emitpénel tn dnplovpyio autonpocaplolOUEVKDY GUC TNHUETWY
scraping mou Unopolv vo aviyveLouy xat Vo Teocopldlovion o aAlayéS Tou TEpBEANOVTOG
wog lotooeAdag. O teyvinég autég xaioToOy To scraping mo aviextind, xoog To cOoTNUA

unopel vo podabver omd Tig ahhary€g xol VoL TeocapOLETon OUTOUOTA.

0.5 H ITAatgpdppo ”soniq” — No-Code Scraping pe Al

Q¢ mpaxTxh) eQopUoYT, 1 epyaoia Tapouatdlel TNV TAaT@Opua “soniq”, éva ovolyTol
xwOWa, no-code epyolelo scraping mou eMITEENEL O YPEHOTES YWEIC TEYVIXEC YVWOELS Vo
OnutoupyoLy, va teoypeaupatilouy xou va SwyetpiCovton dladixacieg e€oywmyng SedouEvmy and
totooehideg e euxohion xou axpifeta. Xe avtideon ye ta mapadootoxd pyahela scraping, to
omofo anoutoly eEEWBXEVPEVY] YVOOT] TEOYRUUUATIOUO) X0l GUVEYY| TEOTOTOINGT TWY XWX
Yoo vor Tpocopuoloviol oTC aAAXYES TwV LoTOCEABWY, To "soniq” yenowonolel TeYvnTy

VOTUOGUVT| XL UNYOVICHOUS QUTOUATOTOMONG Yia TNV AmAOUGTEUGCT] TNE Btadixaclog.

Chapter 0. Extetopévn Iepiindmn ota EXAnvixd

0.5.1 Boaowd Xapaxtneiotixd tng ITAatpdpuag

H mhatpopuo EVOWUATOVEL TRONYUEVIL YOQUXTNELO TIXA, XUNOTOVTIG TNV EVEAXTY), ETEX-

TACLUN XU PLALXT| TPOG TOV YENOT).

Avtépatrn Avayvopiorn ynudtwyv Acdopéveoyv (LLM-powered Schema Inference)
H mhatgbppa ofomotel peydho yAwoowd povtéha (LLMs) yioe v avayvoeton xat
xatovonon e doung Sedouévev wog Wotooehidag. Avtl vo amouteiton yepoxivntog
npoadloplopog twv CSS Selectors 1} XPath xavovev, n Al avollel To mepleyduevo xou
mpotelvel o BéNTioTa nedio dedouévwy Teog eZaymY . AuTo UEWdVEL SpaoTIXd TO YEOVOo

npoetoaoiog xou xahoTd To scraping mo avlextixd oc arlayéc UL

YVotnpa Xpovonpoypohatiopwol xol Auvtopatonowmnuévns Extéleong To AP-
Scheduler emitpénet oToug yeroteg va npoypeauuotiCouy scraping epyooieg Bdoel Tpoxo-
VOpLOUEVODV YEOVIX®Y BlaoTNUdTwy. O ¥eHoTeC Unopoly va oploouy nuepholee, f3do-
HOBLIUES 1) TPOCUPUOCHUEVES OVIVEWGELS TWV OEBOUEVWY TTOU €E8YOUV, XOGTOVTIS TNV
TAOTQOEUO WOaviXY Yia emavahopfBovoueves epyaoies tapaxohobinone TAnpogopLtdy (..

SUVOIXES TWES TTREOLOVTWY, avahDGELS oyopdc, EVIUEPOTXG dpdpar).

Apyrtextovixy xou Texyvoroyieg tng IThatpdppac To "soniq” €yet avantuydel
ue obyypoveg teyvoloyieg, draopolilovtag VYN amddoscT, AGPIAELN Xl EUXOAA YRNOTS.

e Backend: AvantOydnxe pue Fast API, éva ehappd ahhd toyued framework yia tayOtepn

ene€epyaoia API cutnudtov xou evowudtwon Al yovtéhwy.

e Database: Xpnowonowel MongoDB, emtpénovtag anodotiny| amodrixeuon xou ovix-

TNoM SouNUEVKY BEBOUEVKY Ue eveNEla.

e Task Scheduling: H uvlonoinon tou APScheduler Siver tn duvatdtnta mpoypao-
TIOUEVNC EXTENEDTC EpYaoLOY scraping, dlcpaiilovtag otadepr| por) Sedouévnvy ywelic
NV avdyxn yetpoxivntng nopéufBaong.

e Frontend: Xpnowonoiel React xau Refine.dev yio tn dnuoupyio @uiixod mpog tov
Yenotn interface, yéow Tou omolou oL yprRoteg umopolV va Snuiovpyoly scraping ee-

yooteg ywelc TNV avdyxn x@oxa.

YOyxpion pe ‘AN Epyaleia Scraping H sgapuoyr emdidxel vo Eeywpioel and

To UTdPyovTa scraping epyoheto xodoe:

1. Amloroiel 11 Sadixacto eCorywyhc GEGOUEVOV, XATARYWVTAS TNV OVEYXY TEOYEOUUd-

TIoUOL.

2. Ipoocopudleton duvouxd oTic ahhayég 16TooeMBwyY, uéow LLM-powered schema in-

ference.

3. Meuwdvel tov xivduvo aviyveuone xol amoxAelopoU, yden otnyv €Eunvn proxy rotation

xou human-like traffic generation.

0.5.1 Baowd Xopoxtnetotixd tne IThatpdpuos

4. EvooUaTtoVeL TROYRoUUATIOUEVES EEXYWYES BEBOUEVKY, XOIOTHOVTSC TO XUTIAANAO Yia

ToEoxoAoVINGT BUVAUIXO) TERLEYOUEVOU OE UEYAAES XA(UOXEC.

Xenoeig xou IIvdavég E@apuoyég To "soniq” unopel vo yenowonoinel o dud-

(OoPOUC TOUEIC OTOU 1) GUANOYT| BouNUEVWY BEdoUEvwY elval amopalTnTn:

1. Avaiuon Ayopdg: Iapouxorodinon TWOY TeoidVTwY, TAGEWY oy0pds Xol CUUTERL-

(POPAC HATAVUAWTOV.

2. Anupoocioypapio & ‘Epeuva: Autéuatn culloyn edrioewy xou dptpwy and Toi-
Aamhéc TnyEQ.

3. Exnaidesuon AI MovTtéhwv: Anoxtnon ueydhwy 6yxmy Sedouévmy yio exnaldeuon

VEUPWVIXOV OIXTOWY.

4. Awayeipion Entotnuovixedy Asdopévmv: YuhAoYT TANROQORLOY Omo oXAUONUOIXES

Bdoeic BEBOPEVLV.

Yvpnepdopata xou MeAloviixég Beltiwoeig To "soniq” anotehel €vor xouv-
0Ttouo no-code epyalelo web scraping, To onolo SlEUXOAUVEL T1 GUANOYT) BEBOUEVWV YLol EPE-
UVNTES, ETUYELRHOELS Xl OVOAUTES Ywpelg vor amoutel e€etdixeuuéveg teyvixéc yvooeg. H au-
TopoTonoino Twv Sldixactey eEaywyne, N xeron Al v v avayvoplon doumy dedouévwy
xan 1) Oroyelpiom proxies xaho oLy TNV TAATQOEUA AVIEXTIXY X0l TEOCUPUOGCLUY] OTIG GUVEYELS
AAAYES TOL BLadLXTOOU.

Melovtixée Bedtiwoe mepthopfdvouy tn dlachvoeon g mAat@oépuas ue data ware-
houses, v avdntuln povtéhwy reinforcement learning yio autoBektiwon twv teyvixwy €&-
aywyhc. To "soniq” dev elvon amhodg éva epyakeio scraping, oAAd éva Briua Teog TV adnon
e mpooPaong ota dedouéva, xahoTovTtag Ta dladéoiua, opYavwUEVa xal TEOoBAod OE

OhouC.

Part

Background Knowledge

Chapter

Modern Web Scraping Architecture

1.1 Introduction

Web scraping is the practice of programmatically extracting data from web pages,
which has become indispensable in the digital age. Its relevance spans industries and
disciplines, from data aggregation to provide market data analysis [3] to training data
sets for machine learning models [4]. However, with the increasing complexity of modern
web technologies, web scraping has turned out to be a more difficult and sophisticated
task, requiring deep understanding of the underlying architectural frameworks that power
today’s web.

Web technologies have changed a lot in the last decade. From static content being
delivered through server-rendered HTML to SPAs and real-time data streaming through
WebSocket connections, the web has now become dynamic and interactive. These changes
bring more richness to user interactions, but also make the extraction of structured data
from websites more complicated. Consequently, web scraping, which was once straightfor-
ward, has now become an elaborate task that must adapt to these changes in technology.

This evolution has been defined, among other things, by the use of heavy JavaScript
frameworks like React, Vue.js, and Angular. Such libraries apply techniques such as
Virtual DOM and client-side rendering that improve user experience but, very often, make
traditional scraping methods a lot harder because they change page content dynamically
after loading. In addition, GraphQL and gRPC have replaced simpler RESTful interfaces
in many applications and introduce other challenges while accessing and interpreting data.

Starting below, in this chapter, one will discuss contemporary web technologies that
have changed the complexion of web scraping analyzing their key architecture ingredients,
discussing every challenge for the extraction of data through them, together with the so-
lutions that could address or defeat these challenges. By understanding them, we actually
lay the foundational elements to strongly implement some agile scraping techniques, which

have been elaborated on in the following chapters.

Chapter 1. Modern Web Scraping Architecture

1.2 Evolution of Web Technologies

The evolution of web development has been a dynamic interaction between technolog-
ical advances and changing user needs. From its inception in the early 1990s, the web
has undergone a lot of transformations, each era defined by its prevailing methodologies,

tools, and user expectations.

Early Web Development: Text and Hyperlinks The early 1990s marked the birth
of the World Wide Web, characterized by static web pages made up mostly of plain
text and hyperlinks. It was all about information distribution, with very little in-
teractivity, let alone visual appeal. This was the period when basic HTML domi-
nated the standard for structuring content, enabling users to navigate between pages
through hyperlinks. At that time, the web was still an emerging technology, mostly

available to academic and research institutions.

Mid-1990s: The Rise of Client-Side Scripting The mid-1990s witnessed the emer-
gence of JavaScript, which was a game-changing client-side scripting language. Ini-
tially used to add interactivity to web pages without communicating with the server,
JavaScript enabled developers to add functionality like form validation and simple
animations. This was the first step toward more interactive web experiences and set

the stage for dynamic, user-centric applications.

Early 2000s: Dynamic Content with Server-Side Scripting In the early 2000s one
can see the introduction of server-side scripting technologies such as PHP, ASP, and
JSP. These technologies allowed servers to dynamically create HTML content in
response to user actions or database interactions. For the first time, the web was
able to become personalized and responsive, as web applications could now provide
dynamic content to users in real time. This expanded the role of web applications
and became an fundamental part of e-Commerce, social networking, and content

management systems.

Mid-2000s: The Introduction of AJAX The introduction of AJAX in the mid-2000s
revolutionized how interactions on the web were performed. AJAX allowed web
pages to asynchronously fetch data from servers, enabling pieces of a page to be
updated without requiring a full reload. This greatly improved the user experience
by providing smoother and faster interactions. The adoption of AJAX braced the
creation of more dynamic and responsive web applications, clearing the way for

modern web interfaces.

2010s: The Emergence of SPAs In the 2010s, Single-Page Applications were made
possible with frameworks like AngularJS, React, and Vue.js. SPAs dynamically
loaded content within a single page, enhancing performance and user experience by
avoiding page reloads and enabling smoother interactions. SPAs leveraged the power
of JavaScript and AJAX to create an era of highly interactive and fascinating web

applications.

1.3 Advanced Web Technologies

Mid-to-late 2010s: The Comeback of SSR During the mid to late 2010s, SSR method-
ologies resurfaced. This was set in motion by frameworks like Next.js. These newer
methodologies were implementing the classic server-rendering techniques with mod-
ern improvements tackling problems related to search engine optimization and per-

formance of the first load. Notable developments during this time included:

e Techniques of Server Rendering

SSR Server-side rendering of HTML, which gave a boost to SEO [1.4] and

reduced initial load times.

ISR It took a hybrid approach by allowing the updating of static pages on
demand at runtime and used the best of both worlds between static and

dynamic rendering.
e Hydration

This involved serving static HTML from the server and then making it in-
teractive with the help of client-side JavaScript. Hydration was necessary
to bridge both static and dynamic web experiences without sacrificing the

benefit of faster initial rendering while retaining its interactivity.

This retrospective [5] underscores this transition of the web from static to dynamic,
interactive, and intelligent platforms. The roots of basic evolution outlined above hold

great importance as a background to present sophisticated web technologies.

1.3 Advanced Web Technologies

Over the past twenty years, the Internet has become a crucial component of daily life,
from work-related applications to social media and news. Around the last decade Google,
Facebook and other tech leaders, in their efforts to modernize their web pages, developed
certain frameworks and protocols that were later released and saw great adoption in the
community. These included Angular and React for making Google and Facebook more
dynamic, adding interactivity, and overall improving user experience, as well as gRPC and

GraphQL which revolutionized the way a client communicates with the server.

1.3.1 Modern Javascript Frameworks

At their essence, frameworks and libraries serve as a method to separate fundamental
boilerplate code from the logic of an application. The wheel stops getting reinvented
on every web page creation by standardizing web development practices reducing the
development time and costs while enhancing cross-browser compatibility and improving
performance and security. At their core, the frameworks that will be discussed in this
section introduced efficient data binding, component-based architecture, and virtual DOM

manipulation.

Chapter 1. Modern Web Scraping Architecture

Number of internet users worldwide from 2005 to 2024 (in millions)

5,500
5,300 3400

1028 11147
1,000

a0 Y T T S
P & PP
(S S N S D S S S S S

Source Additional Information:
m Worldwide; ITU; 2005 1o 2024; figures ars estimates

Figure 1.1. Global number of internet users 2005-2024[1]

Angular

Originally developed by Miko Hevery in 2010 and maintained by Google and the com-
munity, AngularJS is a web framework that aims to simplify both the development and
testing of web applications by providing a framework for client-side model—-view—controller
(MVC) architectures, along with components commonly used in web applications [6]. The
initial iterations of AngularJS contained numerous flaws, prompting Google developers
to completely rewrite the framework and rebrand it as Angular (dropping the JS). Some
notable features that might impact web scraping techniques in Angular-based web pages

are:

Component-Based Architecture Angular uses a component-based architecture, which
allows developers to build encapsulated, reusable user interface elements. Each com-
ponent encapsulates its own HTML, CSS, and TypeScript, making it easier to man-

age and test individual pieces of an application.

Directives Angular extends HTML with additional attributes called directives. Direc-

tives offer functionality to change the behavior or appearance of DOM elements.

SSR Angular has official support for server-side rendering, which improves an applica-
tion’s load time and performance. Server-side rendering also enhances search engine

optimization by making content more accessible to web crawlers.

Numerous websites are using Angular 7], but in the vast Web it still corresponds to
only 0.5%.

1.3.1 Modern Javascript Frameworks

[Top 10k "@— [Top 100k “@=—

18750

17500

16250

15000

13750

12500

n250

10000

8750

7500

6250

5000

3750

2500

1250

0

ETopIm @=

[all Internet @=

2017/06 202006 2021f07

2024(02 2024/10

Figure 1.2. Angular Usage Statistics [2]

No of Live Websites | Percentage
Top 10k 433 4.33%
Top 100k 3,296 3.3%
Top 1m 12,679 1.27%
All Internet 521,384 0.05%

Table 1.1. Angular Usage Percentage

React

React, designed by Facebook in 2013, “is basically a web framework that was mainly

designed to address the performance issues in web applications. React uses virtual DOM

that decides whether the component has to be reloaded or not based on the current state

of the component and the changes that have occurred. This prevents the application

from re-rendering unnecessarily. Apart from this, React also introduces one-way data flow

which helps to control the flow of the data within the application which makes the tracking

of the occurred easier and also simplifies the propagation and stability.” [8] To emphasize

how the React framework could affect web scraping in applications built with it, these

features must be addressed.

Virtual DOM The DOM (Document Object Model)[9] is a crucial component in web

development, as it divides into modules and executes the code. The standard practice

of Javascript Frameworks is to update the DOM at once, which can negatively

impact the application’s performance. React pioneered the use of a virtual DOM,

an exact copy of the real DOM, which gets updated first and then is used to find

Chapter 1. Modern Web Scraping Architecture

the minimal changes that need to be made. While this surely improves performance,
it can complicate the process of a web scraper, adding the need to be able to run
Javascript in order to get the website’s content.

Component-based architecture Similar to Angular, React uses components to struc-
ture the Ul.

Figure 1.3. Component Based Architecture UML Component Diagram

¥ Top 10k *@— E Top 100k @@= B Topim @@= [CJAll Internet “@=
P P =

175000

162500 j/\‘-
150000
137500
125000

12500
100000

87500 /

75000

62500

50000

37500

25000 /

12500

]
2013/06 2020/07 20221 2024/04 2024/10

Figure 1.4. React Usage Statistics [2]

React’s adoption is fairly notable in the above statistics as nearly half of the most

popular websites are using it.

https://trends.builtwith.com/javascript/React

1.3.1 Modern Javascript Frameworks

No of Live Websites | Percentage
Top 10k 4,246 42.46%
Top 100k 34,952 34.95%
Top 1m 197,181 19.72%
All Internet 51,355,483 4.5%

Table 1.2. React Usage Percentage

Vue.js

Vue.js [10], created by Evan You in 2014, is a progressive JavaScript framework pop-
ular for its simplicity and flexibility. Designed to be incrementally adoptable, Vue.js can
function as a lightweight library for enhancing parts of a web page or as a full-fledged
framework for building complex Single-Page Applications (SPAs). Its balanced approach
between performance and ease of use has contributed to its widespread popularity among
developers.

Key features of Vue.js include:

Two-Way Data Binding Vue.js provides a strong two-way data binding mechanism
that seamlessly synchronizes the model and the view. This makes it particularly
beneficial for developing dynamic interfaces, but for web scraping, it may require
handling frequent updates to the DOM efficiently.

Component-Based Architecture Like other modern frameworks, Vue.js emphasizes a
component-based structure, allowing developers to wrap and reuse user interface
elements. Scrapers can leverage this modularity to identify repetitive patterns in

data structures in components.

Directives Vue.js extends HTML with directives such as ‘v-bind‘ and ‘v-for‘, enabling
developers to add dynamic behavior to the DOM. These directives, while powerful
for interactivity, require advanced handling techniques for web scraping tools to

interpret and extract rendered content effectively.

Virtual DOM Similar to React, Vue.js uses a virtual DOM to optimize rendering perfor-
mance. This virtual representation can streamline updates but adds complexity for
scrapers, as they may need to execute JavaScript to fully load and capture dynamic

content.

Extensibility Vue.js is highly extensible with plugins, state management solutions like
Vuex, and routing capabilities through Vue Router. These tools enhance develop-
ment capabilities, but may present additional layers for scrapers to navigate, partic-

ularly when dealing with nested routes or complex states.

Vue.js achieves a compelling balance between simplicity and sophistication, making it
suitable for a wide range of applications. For web scraping, understanding the dynamic

nature of Vue and its modular architecture is crucial to implement effective strategies.

Chapter 1. Modern Web Scraping Architecture

E Top 10k “@— E Top 100k @@= EBTopim @@= [CJAll Internet ~@=—

100000
95000
80000
85000
80000
75000
70000
65000
60000
55000
50000
45000
40000
35000
30000
25000
20000
15000
0000
5000

0
2om/o 2020{06 20211 2024/04 202410

Figure 1.5. Vue Usage Percentage [2]

No of Live Websites | Percentage
Top 10k 2,361 23.61%
Top 100k 20,058 20.06%
Top 1m 117,128 11.71%
All Internet 4,790,110 0.43%

Table 1.3. Vue Usage Percentage

Next.js

Next.js[11], introduced by Vercel in 2016, represents a significant leap forward in
web development by merging modern performance-focused methodologies with traditional
server-side rendering (SSR). It was designed to tackle issues related to performance, search
engine optimization (SEO[12]), and development efficiency, making it a popular choice for
building powerful and scalable web applications. Its feature set provides developers with

tools to build static and dynamic web pages with enhanced performance and flexibility.

Key features of Next.js that impact web scraping include:

Server-Side Rendering (SSR) One of the core functionalities of Next.js is SSR, which
enables the generation of HTML on the server for each request. This ensures that
the content is available to users and search engines immediately, improving initial
load times and SEQO. For web scraping, this makes data extraction more accessible

as the content is pre-rendered and available in the source HTML.

1.3.1 Modern Javascript Frameworks

Browser Server

1: Visits Page 2: Requests Site

User

4: Responds with pre built pages &
framework base HTML, links to C5S and
IS scripts

5: Events, DOM, etc are added

3: Fetch data and generate HTML

|
|
|
i P{‘o.u'cc: By Visual Paradigm Community Edition @

Figure 1.6. SSR Sequence Diagram

Incremental Static Regeneration (ISR) ISR allows developers to update static pages
on demand at runtime. This feature combines the speed of static generation with
the flexibility of dynamic content updates. For scrapers, ISR introduces challenges
in determining when content is updated, as changes may occur asynchronously post-

initial rendering.

Browser Server

1: Visits Page 2: Requests Site

User

4: Responds with pre built pages &
framework base HTML, links to C55 and
IS scripts

5: Events, DOM, etc are added

7: Requests Site

:‘ 3: Fetch data and generate HTML

6: Revisits page

8: Re-generation
9: HTML + CS5S + JS

fvered By Visual Paradigm Community Edition @

Figure 1.7. ISR Sequence Diagram

Hydration Next.js employs hydration, a process where the server-rendered HTML be-
comes interactive on the client side through JavaScript. While this enhances user
interactivity, it requires web scrapers to execute JavaScript to capture fully interac-

tive content.

API Routes Next.js simplifies the creation of backend endpoints using its API routes,
enabling developers to build serverless functions directly within the application. This
segmentation often requires additional steps for web scrapers to identify and interact

with these endpoints.

Static Site Generation (SSG) SSG is another feature of Next.js that pre-renders pages
at build time, ensuring faster delivery of static content. For web scraping, this
typically simplifies the process, as static pages are readily available without needing

JavaScript execution.

Chapter 1. Modern Web Scraping Architecture

% Browser Server

User

1: Visits Page Z2: Requests Site

3: Responds with pre built pages

4: Events, DOM, etc are added I
|
I Powered By Visual Paradigm Community I::;i{i:r @

Figure 1.8. SSG Sequence Diagram

Next.js is a React framework that has become essential for modern web development,
offering performance, scalability, and dynamic interactivity. For web scraping, under-

standing its rendering and update mechanisms is key.

Svelte

Svelte[13], introduced by Rich Harris in 2016, represents a paradigm shift in web
development by shifting the workload from the browser to the build process. Unlike
traditional JavaScript frameworks such as React and Angular, Svelte compiles components
into highly efficient, plain JavaScript code during build time, resulting in faster runtime
performance and smaller bundle sizes.

Key features of Svelte include:

Compile-Time Optimization Svelte eliminates the need for a virtual DOM by com-
piling components into minimal JavaScript code during the build process. This
approach reduces runtime overhead and delivers exceptional performance, making it

appealing.

Reactive Declarations Svelte’s reactivity system allows developers to declare reactive
variables directly in the code. This simplifies the state management process, but

may require scrapers to handle dynamically updated elements with care.

Scoped Styles With Svelte, styles are scoped to components by default, ensuring better
encapsulation. For web scraping, this can introduce challenges in identifying and

extracting content tied to dynamically styled elements.

Minimal Framework Overhead By compiling to plain JavaScript, Svelte avoids the
inclusion of a framework runtime, which contributes to its small bundle size. This
efficiency can simplify scraping as the application is less dependent on heavy client-

side JavaScript.

Svelte has quickly gained popularity for its simplicity and performance. Understand-
ing its compile-time features and reactive nature is essential for effective web scraping

strategies.

1.3.1 Modern Javascript Frameworks

M Top 10k “@=— [Top 100k *@= B Top Im @@= (] All Internet ~@=—

3250
3000
2750
2500
2250
2000
1750
1500
1250
1000
750
500

250

0
20131 2021f07 2022/ 2024/05 202408

Figure 1.9. Svelte Usage Statistics [2]

No of Live Websites | Percentage
Top 10k 168 1.68%
Top 100k 933 0.93%
Top 1m 4,121 0.41%
All Internet 262,802 0.026%

Table 1.4. Vue Usage Percentage

Conclusion

Despite the popularity of modern JavaScript frameworks like React, Angular, and
Vue.js, their adoption across the broader web remains surprisingly limited. Statistics indi-
cate that while these tools might dominate the realm of high-profile web applications and
tech-driven companies, a significant portion of websites still rely on simpler technologies
or legacy systems. The rise of these frameworks also represents a fascinating full-circle in
web development. Initially, server-side HTML dominated the web with its straightforward
content delivery. Over time, as client-side interactivity and AJAX became more and more
important, rendering was moved to the client to improve user experience. However, chal-
lenges such as search engine optimization (SEO), initial load times, and the demand for
faster performance brought server-side rendering (SSR) back into focus, albeit in a more
advanced form. Frameworks like Next.js have revitalized SSR by combining it with mod-
ern techniques such as hydration and incremental static regeneration, achieving a balance

between performance and interactivity.

Chapter 1. Modern Web Scraping Architecture

1.3.2 Advanced API Interfaces

The evolution of web communication technologies has led to the development of ad-
vanced API interfaces, which have revolutionized the way clients and servers interact.
These technologies include the foundational REST API as well as more recent innovations
such as GraphQL and gRPC, each of which addresses specific limitations of its predecessors

while introducing new paradigms for data exchange.

REST API

Representational State Transfer (REST) was introduced by Roy Fielding in 2000 as
part of his doctoral dissertation[14]. REST defines a set of principles for designing net-
worked applications, focusing on stateless communication, resource-based structure, and
standard HTTP methods such as GET, POST, PUT, and DELETE. Its simplicity and
wide adoption have made REST the default standard for APIs over the past two decades.

From a web scraping perspective, REST APIs offer a predictable and structured way
to access data. Public and private APIs are often utilized to scrape specific endpoints
to extract information. However, reliance on fixed endpoints can sometimes limit its
flexibility, particularly in dynamic applications that require tailored queries or efficient

batch operations.

GraphQL

GraphQL[15], developed by Facebook in 2012 and open-source in 2015, implemented as
a solution to the challenges posed by the rigid structure of REST. Unlike REST, GraphQL
allows clients to specify the structure of the response, enabling them to fetch exactly
the data they need in a single query. This eliminates the problem of overfetching or
underfetching data, which is common with REST APIs.

For web scraping, GraphQL presents both opportunities and challenges. Its query lan-
guage allows scrapers to tailor requests for precise data extraction. However, its complex-
ity, including nested and deeply interconnected queries, often requires advanced handling.
In addition, limiting the rate and enforcing the schema can cause problems to automated

scraping tools.

gRPC

gRPCJ16], short for Google Remote Procedure Call, was created by Google in 2015
as an open-source framework for high-performance cross-platform communication. Unlike
REST and GraphQL, which rely on human-readable formats such as JSON, gRPC uses
Protocol Buffers (protobuf) for compact binary serialization. This makes gRPC excep-
tionally efficient for real-time communication and large-scale applications.

From a web scraping perspective, gRPC introduces significant challenges. The bi-
nary format of Protocol Buffers is not inherently human-readable, making it difficult for

traditional scraping tools to interpret. In addition, reliance on bidirectional streaming

1.4 Search Engine Optimization (SEO)

and persistent connections can complicate data extraction efforts. However, for scrap-
ers equipped with the necessary decoding and streaming tools, gRPC efficiency can be

harnessed for high-performance data retrieval.

Implications for Web Scraping

These advanced API interfaces reflect the ongoing effort to optimize client-server inter-
actions. Although REST remains widely used due to its simplicity, GraphQL and gRPC
provide powerful alternatives for specific use cases. For web scraping, the choice of API
interface significantly affects the complexity and efficiency of data extraction. Understand-
ing the nuances of each technology is critical for designing scraping strategies that balance

performance, precision, and adaptability.

1.4 Search Engine Optimization (SEO)

Search Engine Optimization, or SEQ, is the process of improving a website’s visibility
on search engine result pages to increase organic traffic. By structuring a website’s struc-
ture, content, and metadata in harmony with algorithms which search engines like Google
use, SEO secures high ranking relevant to queries. In the modern digital ecosystem, SEO
is very important, as it directly influences aspects of discoverability and user engagement.
17)

History of SEO

The origins of SEO date back to the late 1990s, which also saw the emergence of search
engines such as Yahoo! and AltaVista. Early SEO techniques were unsophisticated, based
on keyword stuffing and backlinks. As search engines matured, especially with Google’s
PageRank algorithm, SEO practices became more complex, shifting their focus to quality
content, relevance, and user experience. With the evolution of web technologies from
simple static HTML pages to dynamic SPAs and SSR described above, SEO also had
to evolve. In modern SEO practices, technical considerations such as page load times,
mobile responsiveness, and schema markup have been incorporated to keep up with the

complexity of modern web architectures.

Search Engines and Data Crawling

Search engines use automated programs called web crawlers or bots-e.g., Googlebot)
to index the web. These crawlers systematically visit websites, analyzing their content,
metadata, and structure to determine relevance and ranking. Crawlers mainly use two

ways to access data from a website:

HTML Parsing Obtaining information from static or server-side rendered pages.

API Requests Obtaining structured information through publicly available APIs or
schemas like JSON-LD.

Chapter 1. Modern Web Scraping Architecture

These processes make sure that search engines are able to provide appropriate and
high-quality results to users. For websites, proper indexing is the beginning of visibility;

hence, they usually apply SEO methods like sitemaps and meta tags to guide crawlers.

Allowing and Restricting Crawlers: The Role of Robots.txt

Websites regulate crawler permission with a special configuration file called robots.txt.
The robots.txt file, located in a website’s root directory, instructs crawlers regarding what

the website allows or disallows. The most common directives include the following.
Allow Explicitly allows crawlers to access specified directories or files.

Disallow Prevents crawlers from accessing certain areas.

Crawl delay Specifies the time interval between successive requests to reduce server load.

Example of a robots.txt file:

User—agent: *
Disallow: /private/
Allow: /public/

Most search engines and other legitimate crawlers honor what is specified in robots.txt.
However, it cannot be technically enforced. Most search engines would follow it, but other

bots may not, including some scrapers.

Legal and Ethical Considerations

The use of robots.txt introduces legal and ethical dimensions to web crawling. Ignoring
robots.txt directives may violate the terms of service (ToS) of a website and, in some
jurisdictions, could be considered unauthorized access. In contrast, adhering to robots.txt

ensures ethical scraping practices and minimizes the risks of legal repercussions.

Implications for Web Scraping

For web scrapers, SEO-oriented websites can simplify data extraction. Crawlers often
make key information accessible and well structured for indexing purposes, reducing the
complexity of scraping tasks. However, it is important that scrapers make these allowances
responsibly, with attention to directives like robots.txt to not conflict with website admin-
istrators or legal frameworks. SEO highlights the mutual reliance between websites and
search engines, highlighting that visibility and accessibility are balanced by ethical con-
cerns. Recognizing this dynamic is crucial to develop web scraping strategies that are

both technically sound and ethically responsible.

Chapter

Techniques and Innovations in Web Scraping

Web scraping is an evolving discipline that combines elements of software engineering,
data science, and ethical considerations. As web technologies have become increasingly
complex, the methods and tools used for scraping data have also advanced. This chapter
provides an in-depth exploration of the foundational techniques, optimized processes, and
real-time strategies that support modern web scraping practices.

Having laid the groundwork in Chapter 1 by discussing the evolution of web technolo-
gies and the challenges they introduce, this chapter focuses on how data can be efficiently
extracted from modern websites. The goal is to bridge the gap between theoretical un-
derstanding and practical application, enabling readers to understand the methodologies

that make modern scraping effective.

2.1 Foundational Scraping Techniques

Web scraping techniques are the foundation of data extraction from the web, and their
evolution parallels the increasing complexity of modern websites. This section examines

the basic methods used to navigate static and dynamic web content effectively.

2.1.1 Scraping Static Websites

Static websites are created using only simple HTML and CSS, without complex back-
end logic or JavaScript frameworks that render content. In static sites, the response to an
HTTP GET request returns the whole HTML file of the requested page. This will also, of
course, contain the visible content of the webpage, metadata, and structural information.
Since the content is pre-rendered and delivered directly to the client, obtaining and parsing
the HTML is straightforward. The simplicity of static websites is a direct consequence
of their architecture, which separates content from presentation. The contents of a static
webpage are precompiled and fixed and stored in fixed files on a web server. This makes
them much faster to load and also easier to scrape, since the required data will already be
there in the HTML source.

HTML parsing is done with libraries such as Cheerio.js[18] for JavaScript or Beautiful
Soup[19] for Python. These libraries enable a developer to navigate and change the Doc-
ument Object Model (DOM) in order to extract the target data. In general, the DOM is

a tree-like representation of an HTML document structure where every node is assigned

Chapter 2. Techniques and Innovations in Web Scraping

to an element or text. Among these, Cheerio.js, for instance, is a light yet fast solution
inspired by jQuery[20] allows for CSS selectors to effectively target elements within the
DOM. CSS selectors, as popularized by jQuery, allow effective targeting of elements based
on their attributes, tag name, class, or ID. Examples targeting elements by tag - div, by
class - .header or by ID - #main. CSS selectors are central to web scraping. They offer
a declarative way to specify what to extract. They are especially effective because they
enable intricate queries that merge several criteria, such as selecting all the p elements
within a div of a specified class. This adaptability allows the extraction of structured data
from web pages that are even moderately intricate.

To illustrate, consider the following HTML content:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Example Page</title>
</head>
<body>
<div id="content">
<hl class="title">Welcome to the Example Page</h1>
<p class="description">This is a simple HTML page for scraping.</p>
<ul class="items">
<1i class="item">Item 1</1i>
<1i class="item">Item 2</1i>
<1li class="item">Item 3</1li>

</div>
</body>
</html>

This HTML contains a simple structure where content is organized into a header, a
paragraph, and a list. Each element is marked with attributes such as classes and IDs,
which can be used to precisely locate and extract them using CSS selectors.

Using Cheerio.js, the content of this page can be scraped as follows:

const cheerio = require(’cheerio’);

const axios = require(’axios’);

async function scrapeStaticPage(url) {
try {
const { data: html } = await axios.get(url);

const $ = cheerio.load(html);

2.1.2 Dynamic JavaScript-Driven Websites

const title = $(’hl.title’) .text();
const description = $(’p.description’).text();

const items = [];

$(’ul.items li.item’).each((index, element) => {
items.push($(element) .text());
b;

console.log(’Title:’, title);
console.log(’Description:’, description);
console.log(’Items:’, items);

} catch (error) {

console.error(’Error scraping the page:’, error.message);

scrapeStaticPage(’https://example.com’);

In this code, the axios[21] library retrieves HTML content via an HTTP GET request,
while Cheerio.js parses HI'ML and applies CSS selectors to extract specific elements. The
function $(°hl.title’) .text () retrieves the text content of the header with the class
title, while the $("ul.items li.item’) query iterates through all list items in the
unordered list with the class items, collecting their text values.

This approach highlights the theoretical reinforcements of static website scraping: re-
liance on a predictable and stable document structure, the use of efficient tools for DOM
traversal, and the application of precise CSS selectors for targeted data extraction. To-
gether, these elements form the basis for extracting meaningful information from static

websites in an organized and efficient manner.

2.1.2 Dynamic JavaScript-Driven Websites

The shift from static to dynamic was a significant evolution in web architecture, driven
by the demand for interactivity and richer user experiences. In contrast to static website
simplicity, modern dynamic websites generate their content client-side after the first HTML
file has loaded. This results in a distinct architecture that requires an alternative method
for web scraping, due to the requirement for the scraper environment to execute Javascript.

Dynamic websites rely on CSR: client-side rendering, which means that JavaScript
execution in the browser fetches data and builds or updates the DOM. A basic GET request
typically yields an HTML file with a tree structure, serving as the primary entry point of
each framework without revealing the actual content. The execution of Javascript code is
necessary to produce the content. Such dynamic content generation is thus very helpful
for interactivity and performance, yet significantly increases the challenge for traditional
scraping methods relying on a simple HTTP request to retrieve the HTML file. For

example, content may only be loaded after certain user interactions or asynchronous API

Chapter 2. Techniques and Innovations in Web Scraping

calls, and thus the scraper would not be able to extract any meaningful data directly from
the server response. Once the HT'ML file has been generated, the process is the same as
static web scraping using Cheerio. js or a similar library.

An approach to address these challenges is through the use of headless browsers in
the context of web scraping. A headless browser is one that operates without a graphical
user interface and, in so doing, can run JavaScript, render dynamic content, and program-
matically interact with websites. Although originally designed for use within automated
testing of web applications, headless browsers have proved invaluable when it comes to
scraping JavaScript-driven websites.

The main purpose of a headless browser is to provide a running environment for the
JavaScript code within a page, as would any real user. For this reason, it can load dynamic
content, perform updates to the DOM, and generally render the page just as a user would
see it. This will be quite important in scraping, as it ensures that scrapers will get the
fully loaded and dynamic state of the webpage. This has been made easy with tools such
as Puppeteer[22], Playwright[23], and Selenium[24] by giving access to a programmatic
method for controlling headless browsers such as Chromium and Firefox.

The described method involves a number of crucial steps. The scraper starts the
headless browser and opens the target URL. The browser will execute JavaScript, fetching
data and rendering the DOM while the page is loading. The scraper can then interact
with the rendered page, either by using DOM traversal techniques or capturing network
requests to get structured data from APIs. For example, Puppeteer has the option of
waiting until certain DOM elements load so that all dynamic content is present before
scraping even starts.

Headless browsing revolutionized the possibility of scraping dynamic websites, but
not without challenges. The headless browser consumes much more resources than a
traditional parser since it emulates a full browser environment. Additionally, most dynamic
websites include some protection against scraping, such as CAPTCHAs, bot detection
algorithms, and rate limiting, all of which will be analyzed later in the thesis.

In other words, as websites transitioned from static to dynamic formats, scrapers
needed to adapt to the imposed challenges. This gap was closed with the advent of
headless browsers, which allowed scrapers to handle content generated by JavaScript. By
simulating a user environment, headless browsers enabled developers to interpret data
extracted from a contemporary web application, broadening the scope and utility of web

scraping for dynamic web technologies.

2.1.3 Network Request Interception

Another advanced technique for handling dynamic websites is based on the interception
of network requests, enabling asynchronous communications between the client and the
server. Many modern dynamic websites heavily rely on these communications to fetch
data and update the UI. Driving factors include AJAX, Fetch APIs, and WebSocket
protocols. Although static websites include all the content in the initial HTML response,

dynamic websites load the essential data through discrete network requests at runtime.

2.1.3 Network Request Interception

Thus, traditional scraping methods, which rely on DOM parsing, might not be sufficient to
fetch the required data. This naturally leads to other ways in which this can be achieved,
including intercepting network requests. A technique that is helpful for scrapers to directly

access data exchanged between the browser and server.

The interception of network requests relies on the very basic principle of observing
the communication channels that take place and helping to exchange data in dynamic
web applications. By monitoring these requests, scrapers can determine the endpoints
and payloads involved in fetching a required piece of information. It bypasses the need
for DOM traversal by capturing raw data in formats like JSON or XML, which is often

well-structured and more parse-friendly compared to HTML.

The most important application of network request intercepting in scraping is to emu-
late the requests a browser would make. That means peering into the headers, parameters,
and body of HI'TP requests and programmatically re-creating them in order to extract
data from a source directly. Browser developer consoles, Mitmproxy|[25], and Puppeteer’s
network interception capabilities are some of the tools that make this process easier. These
tools provide developers with the functionality to monitor network activity, filter out rel-

evant requests in order to automate data extraction workflows.

For example, SPAs built using either React or Angular fire API calls on user interaction
or page load to dynamically fetch data from a server. These can be observed in the Network
tab of the browser’s developer tools. From these requests, the scraper could know which
endpoint URL, HTTP method, headers, and query parameters are required to fetch the
data. Once identified, the scraper can programmatically issue identical requests for that

data without having to render a full page or interact with the DOM.

This approach offers some real advantages, especially in terms of efficiency and accu-
racy. Directly accessing structured data, scrapers avoid processing overhead and potential
inconsistencies due to dynamic manipulation of the DOM. Additionally, intercepting net-
work requests reduces resource consumption because it does not need to open and execute
JavaScript code. However, the method also means some challenges: Many websites im-
plement protection measures such as authentication tokens, rate limiting, and encryption

that should be handled with care to make your data extraction successful.

More specifically, a higher application in network request interception involves the
processing of communications done via WebSockets. WebSockets are a special technology
that allows for real-time, bidirectional communication between client and server, usually
adopted to provide live updates, as in chat systems or financial dashboards. Capturing
and decoding these streams demands deeper knowledge of the protocol and tools able to

analyze binary data formats, such as Wireshark[?] or specialized WebSocket libraries.

By focusing on the communication layer, the mess in the DOM manipulation and
extract structured data can be bypassed. There are lots of pitfalls while developing because
of protective mechanisms, but generally, it is a crucial tool in an arsenal of different web

scraping strategies to handle such applications driven by JavaScript.

Chapter 2. Techniques and Innovations in Web Scraping

2.1.4 Comparing Techniques

Web scraping techniques differ greatly depending on the structure of the target website,
the technology stack it employs, and the level of protection against automated extraction.
The three fundamental approaches discussed earlier HTML Request Parsing, Headless
Browsers, and Network Interception each have distinct strengths and weaknesses that

influence their suitability for different scenarios.

HTML Request Parsing

HTML request parsing is best suited for simple, static websites such as blog pages,
news archives, and document repositories where the structure remains stable over time.

Advantages

e Fast and lightweight: Does not require rendering JavaScript, making it efficient for

simple pages.

e Low resource consumption: Can run on low-power machines since it does not require

a full browser.

e Structured HTML accessibility: Works well for static websites where content is fully

available in the initial HT'TP response.
Disadvantages

e Fails on JavaScript-heavy sites: The websites that use client-side rendering, where
key content is loaded asynchronously via JavaScript, making direct HTML requests

insufficient.

e Vulnerable to structural changes: If a website modifies its HTML layout, scrapers

relying on hard-coded selectors may break.

e Limited interactivity: Cannot handle authentication flows, infinite scrolling, or other

dynamic behaviors.

Headless Browsers

Headless browsers are ideal for web applications with complex JavaScript rendering,
such as e-commerce platforms, social media feeds, and interactive dashboards.

Advantages

e Handles JavaScript-heavy sites: Can extract content from Single Page Applications
(SPAs) that load dynamically.

e Supports interactivity: Can click buttons, scroll pages, and fill forms, making it

effective for sites requiring user interaction.

e Bypasses basic anti-scraping measures: Can simulate real user behavior, reducing

detection risks.

2.1.4 Comparing Techniques

Disadvantages

e Resource-intensive: Running a full browser instance consumes significantly more

CPU and memory compared to HTML parsing.

e Slower execution: Because the page needs to be rendered and JavaScript executed,

scraping speeds are lower.

e Detection risks: Some sites use methods to detect automation tools like Puppeteer,

which may require additional evasion techniques.

Network Interception

Network request interception is most effective for applications that rely heavily on
APIs, such as stock market data feeds, travel booking platforms, and live sports score
updates.

Advantages

e More efficient than full browser automation: Extracts structured data directly with-
out rendering HTML.

e Bypasses Ul-based obfuscation: Since it does not rely on DOM elements, it is unaf-

fected by dynamic layout changes.

e Reduces computational overhead: Consumes less resources than a headless browser,

since it only captures API responses.
Disadvantages

e Requires knowledge of network protocols: Extracting API calls can be complex and

require developer tools, proxies, or packet analyzers.

e APIs may require authentication: Some requests include API keys, tokens, or session

cookies, making them harder to replicate.

e WebSocket encryption: Some real-time communication protocols encrypt responses,

requiring decryption techniques to access meaningful data.

Technique Best For Challenges

HTML Request Parsing | Static websites Ineffective for dynamic content
Headless Browsers JavaScript-heavy websites Resource-intensive

Network Interception API-driven or dynamic data | Requires protocol expertise

Table 2.1. Comparison of Foundational Scraping Techniques

Chapter

Scraping Prevention and Countermeasures

3.1 Detection and Mitigation Strategies

Web scraping detection and mitigation strategies are at the core of modern web ap-
plication security to avoid data extraction by unauthorized sources. These methodologies
detect and deter attacks by malicious parties through a blend of technological frameworks,
behavioral analytics, and artificial intelligence. In this section, we consider key method-
ologies, their theoretical grounds, and their practical application in order to point out

their efficiency and limits.

3.1.1 Browser Fingerprinting

Browser fingerprinting involves capturing and analyzing unique attributes of the browser
environment, including the user agent string, the type and version of the browser, as well as
the operating system used, any active plugins, the time zone and language of the machine,
the screen resolution and various other active settings. These attributes when combined,
they form a browser fingerprint that can identify and track individual users. For example,
as described by Acar et al. in their FPDetective development, browser fingerprinting can
involve analyzing JavaScript and Flash-based attributes to identify fingerprinting behav-
ior across thousands of websites [26]. Laperdrix et al. provide a comprehensive survey on
browser fingerprinting, explaining how a combination of device-specific attributes, such
as canvas fingerprinting and WebGL parameters, contributes to unique identification [27].
Surprisingly, browsers give a lot of information about the user and, based on research
carried out by the Electronic Frontier Foundation[28], 84% of collected fingerprints are
globally exclusive, and they found that the next 9% were sets of two. Even though finger-
prints are dynamic, new ones can be matched up with old ones with 99.1% correctness,
therefore allowing websites to track online behavior in order to serve hyper-personalized
advertisements. In other cases, these fingerprints are being used for anti-bot detection as
scraping bots, which rely on headless browsers or minimalistic HT'TP clients, usually have

limited diversity in their fingerprints, making them easier to detect.

However, the latest developments in scraping tools that emulate full browser environ-

ments have increased the complexity of this task.

Chapter 3. Scraping Prevention and Countermeasures

3.1.2 Traffic Pattern Analysis

Among the widely used methods is the analysis of traffic patterns. It involves checking
the inbound traffic coming to a website for anomalies that may suggest the presence
of some bot-like traffic. For instance, humans tend to produce requests at a somewhat
predictable cadence, interspersed by moments of inactivity that reflect human browsing
habits. A web scraper, on the other hand, will make a lot of requests in quick succession
to scrape off the maximum data. This kind of anomaly is detected by applying various
statistical techniques or machine learning models. Machine learning, in particular, excels
at distinguishing between normal and anomalous traffic by identifying subtle non-linear
patterns in request metadata, such as headers, referrers, and IP addresses.

These characteristics are derived primarily from the frequency of the request, the
duration of the response, and the diversity of user agents. The aim is to classify the
traffic as human or automated by employing supervised learning algorithms. More recent
deep models combine a transformer and convolutional neural network architecture in their
designs, aimed at both temporal and spatial feature capture from web traffic streams with
greater detection sensitivities toward even very small-scale anomalies indicative of the
operation of a scraping bot. [29].

Another powerful strategy is to combine different detection methodologies, such as
rule-based systems, statistical anomaly detection, and machine learning classifiers. This
layered approach will analyze the traffic indicators of IP diversity, request rates, and
browser capabilities to enhance robustness against sophisticated bots. [30].

Unsupervised learning techniques also play a critical role in environments where la-
beled data is scarce. These methods identify suspicious patterns and behaviors indicative
of scraping activities, enabling dynamic anomaly detection across varied traffic datasets
[31]. Furthermore, indirect traffic analysis techniques, such as examining packet size distri-
butions and timing, offer a unique perspective in detecting scraping activities, particularly
those using obfuscation techniques such as VPNs and proxy servers [32].

Although traffic pattern analysis provides powerful tools to detect web scraping, it is
not without challenges. False positives can arise from legitimate high-frequency access,
such as API usage or bulk data downloads. Moreover, advanced bots employ sophisticated
tactics to evade detection, such as dynamically altering request patterns and mimicking
human browsing behaviors. Addressing these challenges requires continued refinement of

the detection algorithms and the integration of multiple detection methodologies.

3.1.3 CAPTCHAs

CAPTCHAs (Completely Automated Public Turing tests to tell Computers and Hu-
mans Apart) are among the most widely adopted techniques to combat web scraping.
CAPTCHAs, introduced by von Ahn et al. [33], serve as a challenge-response mech-
anism designed to differentiate between human users and automated bots by requiring
users to solve problems that are easy for humans but difficult for bots. Common forms of
CAPTCHA include identifying distorted text, selecting specific images, or solving simple

puzzles.

3.1.4 Honeypotting

The effectiveness of CAPTCHAS lies in their ability to disrupt the automated work-
flows of scraping bots. Since bots rely on programmatically sending requests and parsing
responses, introducing CAPTCHAs adds an additional layer of complexity that often re-
quires sophisticated Al models to bypass. For example, image-based CAPTCHASs require
visual recognition capabilities that many bots lack. Moreover, modern CAPTCHAs, such
as recCAPTCHA, employ behavioral analysis by monitoring user interactions like mouse
movements and keystrokes to assess whether the user is a bot.

Despite their effectiveness, CAPTCHAs have limitations. Sophisticated bots that use
advanced Al and machine learning can now solve many CAPTCHA challenges with high
accuracy [34]. Additionally, CAPTCHASs can negatively impact the user experience, par-
ticularly when they are overly difficult or appear frequently. This trade-off between secu-
rity and usability necessitates careful deployment of CAPTCHASs to ensure that they do
not deter legitimate users.

In recent years, invisible CAPTCHASs have gained popularity. These CAPTCHAs work
silently in the background by analyzing user behavior to identify bots without requiring
explicit user interaction. Although this approach minimizes user inconvenience, it raises
concerns about privacy and the potential misuse of behavioral data.

In summary, CAPTCHASs remain a valuable tool in web scraping prevention strategies,
particularly when combined with other detection methods. Their evolution toward more
user-friendly and sophisticated forms continues to make them a crucial component of

modern web security.

3.1.4 Honeypotting

Honeypotting is a really smart web security approach aimed at the detection, deflec-
tion, or analysis of unauthorized scraping activities. This involves the intentional place-
ment of deceptions, such as links, forms, or hidden content, within a web application in
order to detect and evade malicious bot traffic. The principle of honeypotting involves
enticing the bots into taking action on the deceptive elements so that indications of ma-
licious behavior are attained and unauthorized data extraction can be barred effectively.
Generally, honeypotting means creating traps that would appear very legitimate for bots
but should remain undetectable to a human user. This can be performed by honeypots
through hidden links and form fields by using the HTML and CSS properties of display:
none or visibility: hidden. Since these are not visible or accessible by humans, any
action could be counted as that from a bot. If a bot does come into contact with a
honeypot, then it can log activity, analyze the data, and block further access.

Honeypots have proven to be very efficient in picking up the presence of scraping
bots that get through traditional rate-limiting or CAPTCHAs. The honeypot data allows
organizations to further tune their bot detection algorithms and apply countermeasures
in focused ways: logging IP addresses, user agents, or request patterns of bots interacting
with honeypots to proactively block malicious entities.

One good thing about honeypotting is that it actually does not affect the user experi-
ence at all. Unlike CAPTCHAs, which may introduce bad experiences for users, honeypots

Chapter 3. Scraping Prevention and Countermeasures

just silently do their thing in the background, unobtrusive as such. However, advanced
bots may sometimes identify honeypots using advanced algorithms, reducing their effec-
tiveness. Moreover, honeypots not configured properly can block legitimate users or leak
sensitive data.

Recent research in the field of honeypot technologies has been geared toward inte-
grating machine learning into their detection capabilities. Machine learning models can
interpret honeypot interaction data in search of patterns indicative of bot behavior, en-
hancing the accuracy of bot detection systems. Dynamic honeypots, changing attributes at
regular intervals, provide another layer of complexity for a bot seeking to avoid detection.

Honeypotting represents one of the most important tools in web scraping prevention
strategies. Complementing traditional methods of detection, such as traffic pattern anal-
ysis and CAPTCHASs, honeypots provide a sound and low-impact approach to the iden-
tification and mitigation of malicious bot activities. Continuous innovation in the design
of honeypots and their integration with machine learning promise to further strengthen

security in web applications.

3.1.5 IP Reputation Systems

Another layer of defense is the IP reputation system. These systems maintain whitelists
and blacklists of IP addresses and networks with known malicious participation in sending
out bots, in order to block or throttle requests from these flagged IP addresses. The
advanced ones update their databases dynamically using crowd-sourced intelligence and
real-time threat detection. However, this very method is highly challenged by scrapers

using rotating proxies or large pools of residential IP addresses.

3.1.6 Behavioral Analytics

Behavioral analytics enhances detection by focusing on how users interact with a web-
site. Legitimate users have complex, non-linear behaviors-like scrolling, hovering over
elements, and irregular click patterns, all of which characterize the interaction as organic.
Scraping bots programmatically interact with the website and often bypass elements al-
together. Advanced behavior analytics leverages machine learning to model typical user
interactions and flags deviations indicative of bot activity. These models are trained on
massive datasets of real and malicious interactions for the purpose of maximum accuracy.
However, a bot can be programmed to simulate human behavior, implementing random

delays and scrolls, making it difficult to discover by this method.

3.1.7 Conclusion

Although these techniques are strong in devising ways through which web scraping
may be detected and hampered, all of them have certain weaknesses. In cases of legit-
imate high-frequency access, such as API usage, false positives may result from traffic
pattern analysis. Browser fingerprinting is vulnerable to spoofing, in which bots spoof
actual browser attributes. CAPTCHAs can be solved with advanced Al bots or using

3.1.7 Conclusion

solver APIs. Honeypotting can be avoided by checking that the element is visible be-
fore scraping it. In turn, IP reputation systems struggle against the now ordinary use
of residential proxies and methods for obscuring one’s IP address. Behavioral analytics,
promising as it may be, depends on relentless retraining as bot tactics continue to change,
with a likely added downside. It might punish users with unconventional browsing behav-
ior. Therefore, successful bot detection implementation requires a multilayered solution
that combines different approaches against a multidimensional threat landscape while also

applying preventive techniques in the development stage.

Table 3.1. Comparison of Web Scraping Bot Detection Methods

Methodology Advantages Disadvantages Bypass Techniques
Browser Finger- | Unique identifi- | Susceptible to | Bots emulating full
printing cation of wusers; | spoofing; com- | browser environments;
effective against | plexity increases | fingerprint spoofing
simple bots with advanced
bots
Traffic Pattern | Effective in de- | False positives | Bots mimicking human
Analysis tecting abnormal | for legitimate | traffic patterns; dis-
traffic patterns; | high-frequency tributed requests
adaptable to vari- | users; complex
ous data points implementation
CAPTCHAs Proven effective- | Impacts user | Using CAPTCHA
ness; disrupts | experience; solver APIs; employing
automated work- | advanced human solvers
flows Al can solve
CAPTCHAs
Honeypotting Minimal user | Can be detected | Bots avoiding hidden
impact; provides | by sophisticated | elements; inspecting
valuable bot data | bots; improper | DOM for honeypots
configuration
risks
1P Reputation | Blocks known | Less effective | Use of proxy pools; dy-
Systems malicious IPs; | against rotating | namic IP switching
crowd-sourced proxies or resi-
intelligence im- | dential IPs
proves accuracy
Behavioral Ana- | Detects complex | Requires retrain- | Bots simulating realistic
lytics bot behavior; | ing; challenges | user interactions
leverages machine | with sophis-
learning ticated bots
mimicking human
behavior

Chapter 3. Scraping Prevention and Countermeasures

3.2 Preventive Development Techniques

3.2.1 Rate Limiting and Throttling

Rate Limiting and throttling are some of the core web security methods that allow
the reduction in the number of requests possible by a client to a server within a certain
timeframe. The above measure helps server avoid abuse that includes denial-of-service
attacks or data scraping. Rate limiting works by defining the limits on the requests; if
these limits are exceeded, further requests will be blocked or refused for some time. To
illustrate this, in order to allow a maximum of 100 requests per minute from one IP address,
any additional requests can be throttled or rejected. The rate limit is usually implemented
on the server side or on the API gateway. A server tracks the timestamp of the moment
the request arrived and its origin. Then, the server compares successive requests from that
very same origin against the defined threshold within that time window. In such cases,
when the limit is exceeded, the servers can delay or refuse processing. Most of the time,
this will be combined with an HTTP status code corresponding to an issue, in this case
429 (too many requests). This approach prevents not only overloading on the server, but
also shares resources equitably between the users.

Rate limiting works really well in APIs that support programmatic access to sensitive
data or high value data. By setting a limit on how often clients can request specific
endpoints, APIs can prevent scripted processes from attempting to pull a large volume
of data in a very short amount of time. Dynamic rate limiting adjusts those thresholds
based on usage patterns or customer authentication levels and provides another layer of
security and flexibility. In this regard, for example, authenticated users could have higher
thresholds compared to anonymous users; in that respect, their status as trusted would
be reflected in that way.

Although rate limiting has proved effective, there are a number of drawbacks. Ad-
vanced scraper tools usually implement distributed networks of bots that will send re-
quests from different IP addresses. This is called a ”botnet” where the distributed nature
of their requests evades rate limiting, given that it seems like requests from different origins
for whatever server. Besides that, even legitimate high-frequency users-for instance, data
analysts or businesses using APIs for legitimate reasons-get mistakenly rate-limited, and
nuanced policies have to be made to create a distinction between benign and malicious
traffic.

Rate limiting and throttling remain two highly critical tools when trying to protect
against unauthorized access and resource abuses. Although it is very powerful with the
aspects of simplicity and adaptability, the weaknesses outlined clearly prove that further
security measures should be contemplated in view of the bypass techniques available which

have been polished accordingly.

3.2.2 Dynamic Code and CSS Attributes

Another effective approach to impeding web scraping would be frequent changes to the

website code or dynamic CSS attributes. This approach includes periodic changes to the

3.2.3 API Key and Token-Based Authentication

structure or presentation of web content; thus, the scraping bots have to be continuously
updated, and hence increase the cost and complexity of maintaining them.

Dynamic changes can involve regular renaming of HI'ML element IDs, classes, or
attributes. For example, unique identifiers and class names can be dynamically generated
using randomized or hashed strings with each server response. Since most scraping bots
rely on static identifiers to locate and extract data, these changes disrupt their ability to
locate the desired elements consistently.

The data presentation might be changed similarly using dynamic CSS attributes. For
instance, some elements could be moved in the view by using the position or z-index CSS
property, for instance, yet nothing actually changed within the real DOM. This allows
critical data, for instance, to shift visually without user experience degradation while
confusing web scraping bots relying on static DOM parsing.

More advanced would be the combination of server and client-side approaches. On the
server side, scripts randomize key aspects of the HTML structure as it is rendered; on the
client side, JavaScript manipulates the DOM even more after the page loads. This two-
layer approach ensures that even sophisticated bots rendering JavaScript cannot interpret
this dynamically changing environment.

It becomes even more powerful when applied together with some content obfuscation
techniques, such as encoding or encrypting certain data elements. For instance, critical
data fields should appear only after decoding a token passed via JavaScript; this means
that a bot should be able to execute and interpret complex scripts.

In turn, frequent changes in code and dynamic attributes need to be weighed against
development and maintenance costs. They may bring along some potential problems with
debugging and SEO optimization, since the dynamic changes might affect search engine
crawlers.

This means that regular code changes and dynamic CSS attributes create one more
layer of complexity for a web scraping bot, which cannot be relied upon in its results. An
organization that sets up a dynamically changing web reduces the level of effectiveness
with which automated tools can scrape information, hence making this tactic a core one

in any serious anti-scraping strategy.

3.2.3 API Key and Token-Based Authentication

API key and token-based authentication are considered basic mechanisms to secure
programmatic access to web resources. Both methods will use some unique identifier or
token that authenticates and authorizes client requests to make sure that only valid users
or applications can interact with the API or server.

An API key is a static alphanumeric string assigned to a client after they register or
subscribe to an API. The key is a sort of credential that must accompany every request to
the API. Returning to our example of a weather service API, let us say that clients must
specify the API key as a query parameter or via a request header. Then, upon receiving
a request, the server checks the key against its database of issued keys and only processes

the request if the key is valid. API keys are relatively easy to implement and use; thus,

Chapter 3. Scraping Prevention and Countermeasures

they are popular for public APIs and low-risk applications.

Token-based authentication, on the other hand, uses dynamically generated tokens,
which are, for the most part, short-lived and bound to a session or a specific user. This
adds security in that the exposure of keys is minimal. Tokens are often issued after some
authentication process, such as login via OAuth. In this case, once authenticated, a token
is assigned to the client, and they must specify it within subsequent requests. The server
then verifies if the token is valid and has not expired before allowing access.

Both have unique advantages in reducing unauthorized access. API keys are easy
to administer and implement; thus, they work well for applications with very minimal
security needs. Tokens provide much more flexibility and are more secure, especially
when implemented with other more advanced authentication mechanisms like OAuth 2.0.
Tokens can also encode additional metadata, such as user roles or permissions, enabling
fine-grained access control.

However, these methods are not immune to exploitation. API keys, if compromised,
can be used by malicious actors until the key is revoked. Tokens are also susceptible to
interception during transmission if secure channels such as HT'TPS are not used. Rate
limiting, IP whitelisting, and secure storage of keys and tokens are among other measures
taken by developers. In addition, refresh tokens and the token expiration policy reduce
the time frame during which the intruder might misuse the obtained token.

The bottom line is that API key and token-based authentication is a critical com-
ponent in today’s web application security. The two systems discussed have advantages
and disadvantages, but their appropriate execution and incorporation into other security
complementing solutions could provide an adequate scenario for safeguarding APIs and

web resources against unauthorized access.

3.2.4 JavaScript Challenges

JavaScript challenges are a sophisticated method to block unauthorized access and
automated scraping, where many computational obstacles that bots must overcome in-
troduce an access barrier to the Web. They are based on client-side execution, making
the way forward very difficult for general scrapers who do not have advanced browser
emulation. The website filters off the simple bots and crawlers by embedding code which
should run correctly in every successful request.

A common implementation of JavaScript challenges would be generating a dynamic
token or changing some structure of a webpage’s content according to a JavaScript script
executed in the client browser. Services like Cloudflare use challenges based on JavaScript
as part of their anti-bot protection mechanisms. Once a request is made, the server sends
a script to the client that performs some calculation or data transformation. The result
of these operations, normally encoded as a token, is subsequently sent to future requests
as evidence of valid client-side execution.

The biggest advantage with JavaScript challenges is that they are able to filter and
block bots that cannot run JavaScript. Traditional scraping scripts that directly parse
HTML or utilize lightweight HTTP clients will be instantly defeated. Moreover, JavaScript

3.2.5 Cookie-Based Authentication

challenges can be dynamic, with the complexity or logic of the script changing to out-smart
evolving scraping technologies.

However, with the sophistication of scraping tools, this becomes a big challenge. Ad-
vanced bots integrating headless browsers like Puppeteer or Selenium are actually able to
emulate the execution of JavaScript, thus bypassing such defenses. If poorly implemented,
such challenges to JavaScript may accidentally degrade user experience, particularly for
users operating slow devices or with limited browser support. Therefore, it is very critical
to balance security and usability when implementing JavaScript challenges effectively.

Overall, JavaScript challenges are a very good addition to web security frameworks,
but only in combination with other types of prevention. The fact that they can take
advantage of the limitations of basic scraping tools makes them an effective deterrent,

though they require careful implementation to remain effective against advanced threats.

3.2.5 Cookie-Based Authentication

Cookie-based authentication is a widely used technique to maintain session integrity
and verify user identity in web applications. By storing a unique session identifier in the
user’s browser as a cookie, the server can validate requests and ensure that they origi-
nate from authenticated users. This mechanism is integral to protecting web applications
against unauthorized access and provides a seamless user experience by persisting authen-
tication across multiple requests.

The process begins when a user logs into a web application. Upon successful authen-
tication, the server generates a session token, which is stored as a cookie in the client’s
browser. All subsequent requests to this server contain this cookie, which helps the server
validate the session of the user without asking him to log in every time. To improve
security, cookies have various attributes like ‘HttpOnly‘, which will not allow client-side
scripts to access the cookie, and ‘Secure® will send cookies only over HTTPS.

Cookie-based authentication has a number of advantages. It simplifies session man-
agement by offloading state persistence to the client, reducing server-side storage require-
ments. Furthermore, it provides a seamless user experience, by which users remain au-
thenticated across page reloads and navigations. Advanced configurations, such as the
‘SameSite‘ attribute, mitigate risks like cross-site request forgery (CSRF) by restricting
the contexts in which cookies are sent.

Meanwhile, despite its broad usage, cookie-based authentication also has vulnerabil-
ities. The leakage of cookies while transmitting over unsecured channels will make it
possible for an attacker to hijack the sessions of users. Likewise, wrong handling of storing
cookies-for instance, saving sensitive information without encryption-makes users a poten-
tial target for a data breach. Bots that have tools for handling cookies will use a weakly
implemented authentication mechanism to mimic user behavior.

These risks can be reduced by various protection means that a developer could im-
plement, such as session tokens, periodic rotation of the tokens, and various server-side
activity monitors. In addition, combining the results of cookie-based authentication with

other means of protection, such as CAPTCHASs or IP whitelisting, enhances it.

Chapter 3. Scraping Prevention and Countermeasures

In other words, cookie-based authentication is still a basis in the security of modern
web applications. Its simplicity and effectiveness make it popular, while its vulnerabilities
raise the need for thoughtful implementation and integration with complementary security

strategies to protect against evolving threats.

3.2.6 CDN Security

Content Delivery Networks, or CDNs, are the backbone of modern web security, dis-
tributing web content across a number of geographically dispersed servers. Beyond their
core function of reducing latency and improving load times, CDNs boast security features
in an attempt to mitigate threats such as web scraping. By acting as intermediaries be-
tween the client and the origin server, CDNs provide a layer of abstraction that enables
sophisticated request filtering and traffic analysis.

One of the main security features of CDNs is their ability to apply traffic filtering
and rate limiting at a scale. CDNs analyze incoming requests in real time for patterns
indicative of bot behavior, such as high frequencies of requests or unusual headers. These
malicious requests are filtered out before reaching the origin server, reducing the risk of
data scraping and server overload. Other CDN providers, such as Cloudflare and Akamai,
use machine learning algorithms that dynamically adapt to evolving bot tactics, thus
ensuring protection against sophisticated threats.

In addition to filtering traffic, many CDNs also have built-in solutions for bot man-
agement. These include challenges such as CAPTCHAs and JavaScript verification that
identify legitimate users and automated bots. By centralizing these defenses, CDNs re-
lieve origin servers of the computational overhead associated with detecting and mitigating
bots.

However, the effectiveness of CDN-based security depends on proper configuration
and integration. Poorly configured rules or overly aggressive filtering can result in false
positives, which block real users. Advanced bots that can mimic human behavior can also
bypass many of the standard detection mechanisms used by CDNs, requiring constant
refinement of security protocols.

In the end, security is one of the most important modern CDN web application de-
fenses. Using distributed infrastructure and advanced analytics, CDNs provide scalable
adaptive solutions to combat web scraping and other threats. Their integration with other
preventive measures further enhances their efficacy, making them an essential component

of a comprehensive security strategy.

3.2.7 Data Obfuscation Techniques

Data obfuscation techniques are designed to obscure the presentation and structure of
web content, making it challenging for scraping bots to extract meaningful information.
By altering how data are displayed or encoded, these techniques create significant hurdles
for automated tools while remaining transparent to legitimate users.

One of the common ways of data obfuscation is to encode critical information. For

example, numerical values or textual data can be encoded using base64 encoding or other

3.2.8 Adaptive User Interface Rendering

reversible encoding schemes. The encoded data are then correctly rendered on the client
side using JavaScript. Scraping bots that rely on static DOM parsing are often unable
to decode this information without executing the accompanying scripts, adding a layer of
complexity to their operations.

Dynamic content rendering is another powerful obfuscation technique. With the use
of JavaScript, a web application might load or change some information on the page
asynchronously, without static content in place. Such data would be shown only to those
users whose browser environment was working. Very effective against bypassing JavaScript
execution by bots: they cannot get information from dynamically rendered data.

Obfuscation also extends to the structural organization of web content. For example,
critical elements can be randomized or scattered across the DOM and their positions
corrected visually through CSS. That confuses scraping bots that rely on predictable
element structures to extract data.

Although data obfuscation methods significantly interfere with the work of scrapers,
it is not without its own weaknesses. Advanced bots with headless browsers and complex
parsing algorithms can bypass a lot of these obfuscation techniques. Too much obfuscation
can also cause website performance problems and make them difficult to maintain, so

balanced implementation is really important.

3.2.8 Adaptive User Interface Rendering

Adaptive user interface (UI) rendering is an innovative approach to web security that
dynamically adjusts the presentation of content according to user behavior and context.
By tailoring the loading and display of web elements to individual users, this technique
complicates scraping attempts, as bots are unable to anticipate or replicate the exact
rendering patterns.

An implementation of adaptive Ul rendering is lazy loading, where web content is
loaded incrementally based on user interaction. For example, images or data tables may
load only as the user scrolls through the page. This approach minimizes the amount
of content immediately available for scraping, forcing bots to mimic user interactions to
access the full dataset.

Another example is content fragmentation, whereby data is fragmented into smaller
pieces and served only when certain predefined triggers are activated, for example, mouse
movements or specific keystrokes. This ensures that only users exhibiting human-like
behavior will get the full content, whereas bots will be left with incomplete or fragmented
datasets.

Adaptive UI rendering also uses behavioral analytics to alter content delivery. Ana-
lyzing click patterns, cursor movements, and scrolling behaviors, among others, allows a
website to detect potential scraping activities in real time and respond accordingly. For
example, if an interaction seems abnormal, it could prompt the server to mask or hold
sensitive content.

Although very efficient in making scraping workflows fragile, the implementation of

adaptive Ul rendering needs to be done with care; otherwise, it becomes counterproductive

Chapter 3. Scraping Prevention and Countermeasures

by affecting user experience. Aggressive policies or overreliance on behavioral triggers

could easily frustrate legitimate users; a balanced approach would be required.

Table 3.2. Comparison of Preventive Development Techniques
Technique Advantages Disadvantages Bypass Tech-
niques
Rate Limiting | Effective in con- | Susceptible to | Use of distributed

and Throttling

traffic
reduces
server overload

trolling
volume;

distributed at-
tacks using
botnets; potential
false positives
for legitimate
high-frequency
users

bots and rotating
IPs to distribute
requests

API Key and | Simple to imple- | Vulnerable to | Token inter-
Token-Based ment; enhances | key/token inter- | ception during
Authentication security for pro- | ception; requires | transmission;
grammatic access | secure storage | reuse of stolen
and periodic | API keys
rotation
JavaScript Chal- | Filters out basic | Advanced bots | Emulation of
lenges bots; adapts | with headless | JavaScript ex-
dynamically to | browsers can | ecution using
evolving threats bypass; potential | headless browsers
user experience | like Puppeteer
degradation
Cookie-Based Maintains session | Vulnerable to | Session hijacking
Authentication integrity; seam- | cookie theft; | through cookie
less user experi- | improper con- | theft or replay
ence figurations can | attacks
expose sessions
CDN Security Scalable and dis- | Misconfiguration | Bots mimicking
tributed; reduces | risks; false posi- | human behavior
server load with | tives may block | to evade detec-
advanced traffic | legitimate users tion
filtering
Data Obfuscation | Conceals critical | Performance Parsing obfus-
Techniques information; dis- | degradation; so- | cated data using
rupts static scrap- | phisticated bots | advanced al-
ing tools can decode obfus- | gorithms and
cation headless browsers
Adaptive User In- | Dynamically ad- | May affect user | Mimicking hu-
terface Rendering | justs to user be- | experience; com- | man interactions
havior; fragments | plex implementa- | to trigger full

data for enhanced
security

tion and mainte-
nance

content rendering

3.3 Advanced Protection Mechanisms

3.3 Advanced Protection Mechanisms

3.3.1 Anti-Scraping SaaS Platforms

The role of Software-as-a-Service platforms, which have become an essential arm in the
fight against web scraping, is to offer a suite of anti-scraping solutions with the integra-
tion of advanced technologies such as machine learning, behavioral analytics, and cloud
computing. They promise ease of integration, scalability, and speed, which positions them
well with organizations in dire need of solid web application security.

Anti-scraping SaaS solutions generally work by sitting between the client and the web
server, analyzing incoming traffic in real time for malicious requests to block. Cloudflare
Bot Management, Akamai Bot Manager, and Datadome are some of those that use ad-
vanced algorithms that check request patterns, browser attributes, and user behavior in
order to tell a legitimate user from a scraping bot. For example, Cloudflare Bot Man-
agement uses machine learning models trained on vast amounts of data to evolve with
changing scraping tactics to provide continued protection.

The advantages of SaaS solutions go beyond detection. These platforms can be easily
integrated with an organization’s infrastructure and provide real-time analytics with in-
sight into traffic patterns and vulnerabilities in the system. In addition, they also come
with customized settings that will allow an organization to orient its defenses to use cases.
Companies can define very granular rules based on geolocation, user agent, or API usage
patterns to allow or block requests.

Of course, such platforms also come with their own challenges. The fact that they are
cloud-operated introduces latency that can affect the user experience. Advanced scrap-
ing tools that can emulate human behavior may occasionally bypass detection, and thus

require constant updates of the algorithms.

3.3.2 Browser Integrity and Verification

Browser integrity and verification techniques involve a set of advanced methods to
ensure that client interactions with web applications are well-intentioned and untampered
with. This kind of technique validates the expected behavior of a browser, hence distin-
guishing real users from bots trying to pose as browsers.

One of the most important ways to validate the integrity of the browser is to challenge
it with certain cryptographic operations. For example, browsers should calculate some
result with the help of their cryptographic key, such as a digital signature. The server
then checks the result to confirm who the actual client is. Such mechanisms guarantee
that only real browsers-and not light scraping software-will be able to work with the web
application.

Another widely used technique is JavaScript-based validation, which uses scripts to
evaluate browser attributes and behavior. Examples of JavaScript challenges include test-
ing the execution of certain scripts, the consistency of outputs rendered, and timing met-
rics. These techniques have been employed by a set of tools, including Cloudflare’s browser

challenges, to identify deviations that give away the bot. Forcing bots to reproduce sub-

Chapter 3. Scraping Prevention and Countermeasures

tleties exhibited by real browsers, these challenges pose formidable obstacles to automated
tools.

Other emerging solutions include device attestation protocols such as WebAuthn,
which are improving browser verification. These protocols leverage hardware-based mod-
ules for the attestation of a device’s authenticity, hence increasing security against complex
bots.

Yet, despite all their power, browser integrity and verification mechanisms have limita-
tions. Advanced bots, equipped with headless browsers and strong emulation capabilities,
can take advantage of some of the mechanisms. Poorly implemented challenges also risk

disrupting legitimate users, making it essential to balance security with usability.

3.3.3 Hybrid Defense Architectures

Hybrid defense architectures are the epitome of holistic approaches to web security,
combining multifaceted anti-scraping techniques into one strong, cohesive framework. In-
dividual methods presented throughout this chapter can easily suffer from various draw-
backs and vulnerabilities that advanced bots successfully manipulate. These approaches
leverage their complementary strengths, integrated together in an effective dynamic sys-
tem against a broad landscape of scraping threats.

Generally speaking, a hybrid architecture starts at the very bottom foundational layer
with techniques such as rate limiting, API authentication, and cookie-based session man-
agement. These measures are generally used to provide a baseline level of security by
limiting both the rate and scope of access to web resources. In addition, dynamic ca-
pabilities include behavioral analytics and browser integrity checks that detect and re-
spond to anomalous activity in real time. Further complication arises with the addition
of JavaScript challenges and adaptive Ul rendering, which forces bots to further emulate
complex browser interactions and behaviors.

Advanced machine learning-powered bot detection and anti-scraping SaaS platforms
develop an additional layer of intelligence with great scalability. These technologies analyze
a huge volume of data and self-improve with the constantly evolving tactics of bots, keeping
the architecture effective in the face of sophisticated threats. Lastly, honeypotting and
dynamic traps form proactive countermeasures based on deception-based strategies, where
bots get lured into self-disclosure and therefore enable the operation of targeted mitigation.

What makes this approach effective is the synergy of these methods within a hybrid
framework. For example, browser fingerprinting may identify a bot, while rate limiting
and traffic analysis contain its activity. Similarly, adaptive Ul rendering can disrupt
scraping workflows, and machine learning models dynamically adjust defenses based on
observed behavior. By layering these techniques, organizations can address both known
and emerging threats, maximizing their ability to detect and prevent web scraping.

However, one should not forget the limitations in any anti-scraping strategy. With
the continuous development of web scraping tools and techniques, no defense can ensure
100% prevention. Advanced bots with sophisticated emulation capabilities and distributed

infrastructures will always find a way to break through even the most comprehensive

3.3.3 Hybrid Defense Architectures

defenses. The goal of a hybrid defense architecture is not to achieve absolute security,
but to make web scraping prohibitively difficult and resource intensive for the average bot
operator.

With a hybrid architecture in place, a website can be more consistent in the blocking
of non-sophisticated bots, minimizing the overall risk to web applications. At the same
time, it can really focus on identifying and mitigating the more advanced threats, ensuring
a balance between security and usability. In the dynamics of Web scraping, this multi-
layered and adaptive approach remains one of the most viable means of protecting online

resources by accepting the fact that total protection will never be possible.

Chapter

Integration of AI in Web Scraping

4.1 Machine Learning in Scraping

4.1.1 Adaptive Algorithms for Intelligent Data Extraction

The fast-changing nature of web technologies requires the creation of adaptive algo-
rithms that can support efficient data extraction processes against frequent and often
unpredictable changes in the structure of web pages. Traditional web scrapers are of-
ten based on static configurations fitted to specific page layouts that can quickly become
obsolete due to changes in the underlying HTML or JavaScript frameworks. The key de-
velopment to meet this challenge in web scraping is the design of automatically adaptable
web wrappers. These wrappers, through the use of algorithmic techniques, can automati-
cally adapt to structural changes to continue operation without human intervention.

Adaptability in web scraping algorithms is based on two key principles: adaptability to
recognize structural patterns and the intelligence to act upon deviations. By embedding
machine learning models that identify and classify recurring patterns in HTML and DOM
elements, adaptive algorithms can make predictions about future changes to the layout of
websites. These models leverage historical data to build probabilistic mappings of likely
changes that allow scrapers to adapt their extraction logic preemptively.

One pioneering contribution in this domain is that of Ferrara and Baumgartner on
automatically adaptable web wrappers [35]. The proposed framework represents the design
for a modular architecture in which scrapers are endowed with a hierarchical understanding
of web page structures. In this study, a multilayer representation of the content is adopted,
in which the various layers are mined to detect structural consistencies between versions.
If there are discrepancies, the system updates the extraction pathways using heuristics
and probabilistic methods to maintain accuracy.

Central to this approach is the application of context-aware parsing mechanisms. These
mechanisms assess semantic relationships between DOM elements and allow the scraper
to focus on content of interest while ignoring irrelevant changes. For example, when a
webpage redesign introduces new ornamental elements, the adaptive algorithm can dis-
tinguish these from fields containing substantive data, and preserve the integrity of the
extracted information. It minimizes a lot of manual reconfiguration and develops and

scales the operation of web scraping.

Chapter 4. Integration of Al in Web Scraping

Theoretically, its ability to generalize across a range of different Web environments
motivates adaptive systems. Their respective algorithms leverage reusable components
through which the abstraction of the extraction logics is possible and achieve modularity
to a very higher degree to plug into varied architectures seamlessly. The integration
of real-time feedback loops allows the scraper to continuously learn from the success or
failure of extraction attempts, continuously improving its models. This not only allows
the scrapers to be increasingly accurate, but also resilient against increased sophistication
in anti-scraping measures.

Adaptive algorithms for intelligent data extraction represent a transformative shift in
the practice of web scraping. By embedding adaptability into the core architecture of
scrapers, these systems ensure sustained performance in dynamic web ecosystems. The
integration of context-aware parsing, probabilistic mapping, and real-time learning mecha-
nisms underscores the theoretical and practical advancements that define modern adaptive

scraping technologies.

4.1.2 Automated Proxy Management

In modern web scraping, effective proxy management is crucial, especially in overcom-
ing the restrictions imposed by websites to limit automated access. Proxies are intermedi-
aries that anonymize requests, enabling scrapers to distribute their traffic across multiple
IP addresses and avoiding detection and throttling. However, traditional methods of proxy
management, relying on static proxy pools and unsophisticated rotation mechanisms, of-
ten prove quite insufficient when dealing with the sophisticated anti-scraping mechanisms
of modern web platforms. The integration of machine learning and intelligent automation
into proxy management systems represents a significant evolution in this domain.

Automated proxy management systems apply data-driven methods for optimal selec-
tion, rotation, and usage of proxies. These systems monitor key performance indicators,
such as response times, success rates, and error codes, to determine the effectiveness of
individual proxies. Then, machine learning models are trained on this data to predict the
likelihood of success of future requests routed through particular proxies. Based on these
predictions, automated systems dynamically adjust the usage of such proxies in an effort
to minimize latency, maximize throughput, and reduce the risk of IP bans.

Anomaly detection is the most important element in intelligent proxy management.
Advanced algorithms analyze traffic patterns for irregularities that could indicate possible
detection by target websites. For example, sudden spikes in failed requests, or uniform
browsing across multiple proxies, may trigger automated actions such as switching to
alternative pools of proxies or making the browsing more human-like. This proactive
approach not only enhances the efficiency of web scraping operations but also ensures
their long-term viability.

Third-party APIs and integrations improve real-time feedback loops to improve the
adaptability of proxy management systems. Active feedback mechanisms permit scrapers
to iteratively refine their methods based on the feedback from previous interactions of these

agents. If one proxy gets flagged off or blocked consistently, the traffic can be assigned to

4.1.3 CAPTCHA Solving with Al

better proxies while retraining the models. Such a process of iteration keeps the model
responsive to shifting sands on the Web.

The most accessible kind of bot proxies are data center IPs. Because of their de-
tectable features as non-residential or server-generated interactions, they are blocked by
most anti-bot mechanisms. Data center proxies originate either from cloud services or
hosting providers; because they lack the diversity and authenticity of residential IPs, they
can be detected with the more advanced anti-bot systems. These systems use advanced
algorithms to differentiate genuine user activity from automated behavior, considering net-
work attributes such as ASN, geolocation, and browsing patterns. This has consequently
made reliance on datacenter proxies alone significantly detrimental in most scraping op-
erations.

Residential proxies have become a necessary solution due to such limitations. Resi-
dential proxies reroute traffic via IP addresses assigned to real residential users by ISPs.
Unlike datacenter IPs, residential IPs are less suspicious since they mimic actual usage
patterns and are more difficult to detect and block. This means that web scrapers can
interact with targeted websites under a cover of legitimate user traffic, thus avoiding most
of the anti-bot defenses.

Large companies, such as Bright Data or Apify, have pioneered the development and
commercialization of residential proxy services. The Bright Data platform connects one
to the widest pool of residential IPs anywhere around the globe-unsurpassed in either
coverage or flexibility. Often, this might mean adding premium features such as geo-
targeting abilities, session persistence, and automatic IP rotation, greatly increasing the
effectiveness of residential proxies. This technology keeps scrapers ahead in their abil-
ity to dynamically respond to changing conditions in Web environments and navigate
sophisticated mechanisms of blockage.

The success of residential proxies depends on how well they can be camouflaged within
regular web traffic. Anti-bot systems often check behavioral metrics, such as request fre-
quency and navigation patterns, for anomalies. Residential proxies, together with behav-
ioral simulation techniques, enable scrapers to mimic human-like interactions that reduce
the possibility of detection. Moreover, diversity and distribution in residential IPs will
mean that requests will appear to be coming from a wide variety of different legitimate
users, which complicates the task of anti-bot systems in attempts to isolate and block

scraping activities.

4.1.3 CAPTCHA Solving with Al

CAPTCHASs are an important set of Web security mechanisms that attempt to dis-
tinguish between legitimate human users and automated bots. The challenges presented
by these mechanisms range from recognizing distorted characters to performing visual or
logical tasks. Despite their utility, significant strides have been made using Al to overcome
CAPTCHA systems, putting into question their long-term efficacy. This section will cover
the main types of CAPTCHA, ways to solve them with the use of Al, and the availability
of third-party APIs providing CAPTCHA-solving capabilities.

Chapter 4. Integration of Al in Web Scraping

Text-based CAPTCHASs are among the earliest and most common forms of challenge.
They usually ask users to decipher and input alphanumeric characters presented in dis-
torted or obscured formats. Al techniques have been successfully able to solve such chal-
lenges, especially those using optical character recognition in combination with supervised
machine learning [36]. Deep learning models, trained on a large number of CAPTCHA
images, could recognize and interpret text, even distorted, rotated, or with overlapping
characters, with high precision. Research shows that such models could achieve very high
success rates by undermining the reliability of traditional text-based CAPTCHAs.

In this sense, puzzle-based CAPTCHASs challenge users with tasks that require assem-
bling the pieces to make up a meaningful picture or finishing some logical series; they rely
on skills believed to be distinctive to human cognitive capabilities. However, such a solu-
tion may be quite easily tackled using a combination of convolutional neural networks and
reinforcement learning algorithms. The Al is able to pick up patterns and ways by which
it works out the puzzle and can apply them to different formats. Researchers have pointed
out the potential of Al-driven approaches to break down such CAPTCHASs, compelling
developers to develop newer, more sophisticated designs to keep their strength alive.

Image selection CAPTCHASs require users to scroll through grids of images and to
indicate which of them meet a certain criterion, like ”select all images containing bicycles.”
These have also been subjected to attacks from Al, as they depend on human visual
recognition and semantic understanding. Deep learning models, which are trained for
image classification tasks, do an outstanding job in the analysis and categorization of
images, hence finding the right selections [37]. Recent research underscores the capabilities
of Al technologies in attacking image-based CAPTCHASs with very high success rates and
discloses the shortcomings of their design.

In addition to creating customized Al models, there are also third-party services to
solve CAPTCHASs. Such platforms, including 2Captcha and Anti-Captcha, will offer APIs
easily integrated into web scraping workflows that automatically solve the CAPTCHAs.
These services ensure high accuracy with the help of a mixture of Al-driven algorithms
and, where necessary, human operators. In addition, many of these services work with
a range of CAPTCHA types, from reCAPTCHA v2 and v3 to Hcaptcha, through their
easy-to-implement solutions that make the bypassing process practical for developers who
want to skip model development challenges.

These continuously improving Al technologies are a big challenge for the CAPTCHA
systems since they keep degrading the separating barriers between human and machine
interactions. The review of various types of CAPTCHAs and an overview of the Al-
based solutions and third-party services depict the dynamic nature of this field. While Al
capabilities continue to grow, innovative and robust CAPTCHA designs will be required

to maintain their status as valid security mechanisms.

4.2 NLP for Data Understanding

The integration of Natural Language Processing (NLP) into web scraping methodolo-

gies has transformed the ability to extract and process unstructured textual data from

4.2 NLP for Data Understanding

the web. The rapid development of digital content on the Internet has created a wide
resource base for information, with the major component existing in unstructured forms
such as social media posts, customer reviews, news articles, and many others. NLP pro-
vides computational tools to process and analyze such information data and convert it
into structured and actionable insight. This section discusses some of the key techniques,
applications, and challenges in using NLP for the interpretation of unstructured data over
the web [38].

Unstructured text data are particularly difficult to analyze due to lack of structure or
predefined format. NLP addresses these challenges by employing preprocessing techniques
such as tokenization, stemming, and stop-word removal. Tokenization breaks down text
into individual words or phrases, forming the basic units for further processing. Stemming
reduces words to their root forms, ensuring consistency across variations, while stop word
removal eliminates common but uninformative words like ”the” or ”"and.” These prepro-
cessing steps prepare the raw text for more advanced analysis, ensuring that only the most
relevant information is retained.

Named Entity Recognition (NER) is a crucial NLP technique to understand web data.
This process involves the identification and categorization of entities that might be con-
tained in unstructured textual data, such as names, organizations, dates, and locations.
For example, in customer reviews scraped from e-commerce platforms, NER can extract
references to specific products or brands. Employed with sentiment analysis, another es-
sential application of NLP, one can programmatically assess the polarity of text- whether
it is positive, negative, or neutral. Such analysis can enable organizations to gauge public
opinion on various products or topics. This is particularly valuable in domains such as so-
cial media analysis or overall product satisfaction, where insights into customer attitudes
and preferences can inform marketing strategies.

Another significant application of NLP in web scraping is text summarization. Large
volumes of textual data, such as news articles or forum discussions, can be distilled into
concise summaries using techniques such as extractive and abstractive summarization.
Extractive summarization identifies key sentences or phrases from the original text, while
abstractive summarization generates new sentences that convey the core ideas.

The combination of web scraping and NLP is not limited to academic or industrial re-
search but extends to practical tools and APIs. Frameworks like SpaCy[39] and NLTK[40]
offer pre-built modules for tasks such as tokenization, POS tagging, and entity recognition,
simplifying the integration of NLP into web scraping pipelines. Additionally, third-party
APIs, such as MonkeyLearn and Aylien, provide ready-to-use sentiment analysis and text
classification services, eliminating the need for custom model development. These tools
democratize access to advanced NLP capabilities, allowing developers to focus on specific
application objectives without digging into the complexities of model training.

As the capabilities of NLP continue to expand, they pave the way for more sophis-
ticated approaches to the understanding of web data. While this chapter has focused
on traditional and non-generative NLP methods, the next chapter will explore the trans-
formative potential of generative Al in web scraping, offering new paradigms for data

extraction and analysis.

Chapter

Leveraging Generative Al for Scraping

The rise of Large Language Models (LLMs) marked an evolutionary era in artificial
intelligence. OpenAl’s ChatGPT received sweeping attention in 2023 receiving the title
of the faster ramp in users in a consumer internet app. These models demonstrated
unprecedented capabilities in understanding and generating human-like text, reshaping the
landscape of NLP, content generation, and automation. This triggered an everlasting race
between AI companies and academics to create the most advanced and affordable model,
while industries quickly adopted this technical achievement, easily deploying chatbots,
documentation helpers, and other tasks requiring human cognition.

Web scraping has a symbiotic relationship with LLMs [41]. Automated data extraction
from online sources using web scraping techniques was crucial to their implementation,
as they rely heavily on large amounts of high-quality structured data for training. By
extracting diverse datasets, ranging from product reviews to scholarly articles, scraping
plays a fundamental role in shaping the contextual richness and performance of LLMs.
The accuracy and volume of these data directly influence the model’s ability to generate
reliable outputs. In addition to training, scraping also enables real-time features such as
advanced web search capabilities. LLMs leverage live data to enhance user search expe-
riences by providing detailed source-backed answers based on natural language prompts
(e.g. Perplexity, ChatGPT search[42]). Real-time scraping facilitates dynamic browsing
interactions used to provide up-to-date information, giving context to the LLM model,
thus improving the relevance of responses.

Consequently, generative Al models are great tools for web scraping. Many complex
scraping tasks and practices mentioned earlier in this thesis, from NLP to self-modifying
scrapers[43] and CAPTCHA solvers, can be transformed using LLMs unlocking new pos-
sibilities. This chapter explores how LLMs can be used to automate web scraping, bypass

anti-scraping mechanisms, and transform the data attribution layer.

5.1 LLMs in Scraping Pipelines

Introducing LLMs to web scraping has changed the way data are extracted, processed,
and understood. They can be integrated in every stage of the pipeline such as crawling,
extracting, bypassing anti-bot measures, post processing, making the process smarter

cutting down on manual work while boosting accuracy.

Chapter 5. Leveraging Generative Al for Scraping

5.1.1 Crawling Stage

At the initial stage of web scraping, the crawling phase establishes the foundation
for effective data acquisition. Dynamic site mapping, powered by large language models
(LLMs), offers a revolutionary approach to navigating complex websites. This involves the
generation of detailed visual maps that illustrate how the structure of a site is organized.
In addition to mapping visual elements, LLMs also create semantic maps that identify
relationships between different sections of a website. These semantic maps go beyond
surface-level details to reveal deeper interconnections, such as the hierarchy of pages and
the logical flow between them. By predicting page hierarchies, LLMs can infer how various
components of a website are related, enabling an optimized crawling strategy. For exam-
ple, pages that are central to the site’s purpose can be prioritized for crawling, while less
significant pages are given lower precedence. In addition, LLMs excel at identifying inter-
link relationships, which are crucial for understanding how users and bots are expected to
navigate the site. This predictive capability ensures that the crawling process is not only
efficient, but also thorough, capturing critical data while minimizing redundant efforts.
These capabilities are particularly useful for websites with nested navigation structures or

dynamically loaded content, which pose significant challenges for traditional crawlers.

5.1.2 Data Extraction Stage

The data extraction phase represents the core of web scraping activities, and LLMs
have introduced transformative methods to enhance this process. One prominent applica-
tion involves the use of LLMs to understand free text and structure the results into formats
such as JSON. For example, LLMs can process customer reviews written in free-form text
and output them in a structured schema, allowing for easier analysis and integration into
databases. Tools such as LangChain[44] exemplify this capability, as they are specifically
designed to extract semantic meaning from unstructured data. These tools can analyze
context, identify key elements, and generate precise structured outputs.

Another powerful approach uses LLMs to identify the necessary CSS or XPath selectors
for precise data extraction. This process involves analyzing the DOM (Document Object
Model) structure of a webpage to pinpoint the exact elements that contain the desired data.
Once identified, the LLM can generate custom scraper code tailored to the specific layout
of the page. This method is particularly valuable for websites that frequently update
their layouts, as LLMs can dynamically adapt the generated scripts to accommodate
changes. For example, if a site’s structure is modified, an LLM-powered scraper can
adjust its approach by recalibrating the selectors or rewriting sections of the code. This
adaptability ensures that data extraction remains functional over time without requiring
extensive manual intervention.

Despite these advancements, it is important to recognize the limitations of using LLMs
for direct scraping. Employing LLMs to process every request is computationally expensive
and introduces significant time overhead. Although the precision and versatility of LLMs
make them invaluable during the setup phase, their continuous use for routine scraping

tasks is impractical. Instead, a hybrid strategy proves to be the most effective. In this

5.1.3 Antibot Measures Bypassing Stage

approach, LLMs are employed during the initial configuration phase to create an adaptable
scraping framework. Once the setup is completed, traditional methods can take over the
repetitive execution of scraping tasks. This combination ensures the benefits of LLM-

driven precision while maintaining the cost-effectiveness of conventional techniques.

5.1.3 Antibot Measures Bypassing Stage

One of the most significant challenges in web scraping involves bypassing anti-bot
measures, which are designed to identify and block automated access to websites. LLMs
offer pioneering solutions to address these barriers. For example, text-based CAPTCHAs,
which require users to interpret distorted text, can be solved by LLMs through advanced
natural language processing and pattern recognition capabilities [45]. The models analyze
the text within the CAPTCHA and generate an accurate response, effectively bypassing
the challenge.

For more complex visual CAPTCHAs, LLMs can be integrated with vision-based mod-
els to interpret and solve the challenge. These models are capable of analyzing images,
identifying patterns, and producing appropriate solutions. Some antibot systems rely on
behavioral analytics to detect bots by analyzing user actions, such as mouse movements,
scrolling patterns, or click timings. Here, LLMs can simulate human-like behavior, pro-
ducing realistic interactions that are indistinguishable from those of a genuine user. For
example, an LLM can mimic the randomness of human mouse movements or introduce
deliberate delays between actions to avoid detection.

By combining these techniques, LLMs provide a versatile toolkit to navigate various
anti-bot mechanisms. However, the ethical implications of bypassing such measures should
not be overlooked. Although these capabilities expand the potential for data acquisition,
they also raise questions about legality and responsible use. Deploying LLMs for antibot
bypassing requires careful consideration of both technical feasibility and ethical bound-

aries.

5.1.4 Post-Processing Data Stage

After data have been successfully extracted, the post-processing phase ensures its us-
ability and relevance. LLMs excel in categorizing and tagging unstructured data, which is
critical to gaining actionable insights[46]. For example, social media comments often come
in diverse and unorganized forms, making it difficult to identify patterns or trends. LLMs
can analyze these comments, categorize them by sentiment, and tag them with relevant
metadata. This process not only organizes the data, but also enhances its value by making
it easier to interpret.

Another example is the processing of product reviews. LLMs can identify recurring
themes, highlight positive and negative feedback, and even summarize the overall senti-
ment of a dataset. This capability is rooted in the natural language understanding (NLU)
features of LLM, which enable them to comprehend context, intent, and sentiment within

text. The categorization process can also be extended to include tagging for specific use

Chapter 5. Leveraging Generative Al for Scraping

cases, such as identifying comments related to product quality, shipping issues, or customer
service.

The theoretical basis for these capabilities lies in the ability of LLMs to perform con-
textual analysis at scale. By understanding the relationships between words, phrases, and
a broader context, LLMs transform raw data into structured insights. This not only saves
time, but also allows organizations to extract deeper meaning from their data. Ultimately,
the role of LLMs in the post-processing stage underscores their value as a comprehensive

solution for refining and enriching the outputs of web scraping pipelines.

5.2 Advanced Generative AI Capabilities in Web Scraping

5.2.1 Cross-Modal Scraping: Bridging Vision and Text

Cross-modal scraping represents a paradigm shift in the way data are extracted from
the Web, combining the strengths of natural language processing (NLP) and vision-based
approaches. Unlike traditional methods that rely solely on HTML parsing, cross-modal
techniques incorporate visual elements such as screenshots and multimedia, alongside tex-
tual information, to enable more nuanced and comprehensive data extraction. For exam-
ple, Optical Character Recognition (OCR) can be applied to images containing embedded
text, while video frame analysis can extract relevant information from multimedia con-
tent. These techniques are particularly beneficial for visually complex web pages, such
as those containing dynamic charts, infographics, or non-standard text placements. The
integration of vision and NLP expands the range of data that can be scraped, providing
richer datasets for downstream applications.

Cross-modal scraping is especially useful in scenarios where structural data is obfus-
cated or presented in a visually appealing but less machine-readable format. Using vision-
enabled models, such as those powered by large multimodal models (LMMs), scrapers
can navigate and interpret visual cues just as a human user would. This capability not
only enhances the depth of data extraction, but also opens new possibilities for analyzing

unstructured or semi-structured content that would otherwise be inaccessible.

5.2.2 WebVoyager: A Case Study in Multimodal Web Agents

WebVoyager represents a groundbreaking advancement in the domain of web scraping
by utilizing LMMs to create a fully autonomous end-to-end web agent. Designed to interact
seamlessly with real-world websites, WebVoyager combines visual and textual inputs to
navigate, interpret, and extract data. Unlike earlier approaches that relied on static HTML
snapshots or simplified simulations, WebVoyager operates directly on rendered web pages,
leveraging the full spectrum of visual and semantic information available in modern web
environments [47].

The core functionality of WebVoyager lies in its ability to observe and act iteratively.
For example, the agent receives inputs such as screenshots and textual descriptions of in-

teractive web elements. It then formulates a thought process to determine the appropriate

5.3 Use Cases and Implications

action, such as clicking, scrolling, or typing, before executing that action on the live web-
site. This iterative approach mimics human browsing behavior and allows WebVoyager to
adapt to real-time changes in web layouts or interactive components.

The utility of WebVoyager extends beyond mere navigation. It excels in handling
complex, multi-step tasks that require contextual understanding and decision-making.
For example, in a benchmark evaluation, WebVoyager successfully completed tasks such
as identifying specific products on e-commerce platforms, locating information from aca-
demic websites, and even extracting structured data from multimedia-rich pages. Using
both visual analysis and semantic reasoning, WebVoyager achieved a task success rate sig-
nificantly higher than that of text-only or static methods, demonstrating its effectiveness
in real-world scenarios.

One of the distinguishing features of WebVoyager is its innovative evaluation protocol,
which uses GPT-4V as an automatic evaluator. This protocol uses a combination of
human-like judgment and machine-driven assessment to validate the agent’s performance.
With a reported 85.3% agreement rate with human evaluations, this method ensures a
reliable measure of the agent’s capabilities.

Despite its advancements, WebVoyager is not without limitations. The reliance on
screenshots as primary input means that text-heavy websites or those with highly complex
visual designs can pose challenges. Moreover, while the agent is capable of solving basic
web navigation tasks autonomously, further refinements are necessary to handle edge cases
such as CAPTCHA solving or interacting with highly customized web components.

In conclusion, WebVoyager exemplifies the potential of multimodal agents in web scrap-
ing, showcasing how vision and NLP can be integrated to push the boundaries of what
automated systems can achieve. As tools like WebVoyager continue to evolve, they promise
to redefine the landscape of data extraction, offering new levels of precision, adaptability,

and intelligence to navigate the complexities of the modern web.

5.3 Use Cases and Implications

5.3.1 Training Data Acquisition

One of the most impactful applications of generative Al in web scraping lies in its
ability to facilitate the acquisition of training data for machine learning and LLMs[4].
Personalized scraping pipelines for specific domains enable the extraction of relevant high-
quality data sets essential for the refinement of Al models. For example, generative Al
can identify and parse academic articles, extracting metadata, abstracts, and references
to construct domain-specific data leads. Similarly, it can collect data sets for conversation
agents by extracting interactions from public forums or posts on social networks. The
precision offered by LLMs ensures that the collected data is relevant and free of unnecessary
noise, significantly improving the quality of downstream applications.

However, this capability also raises ethical concerns. Scraping proprietary or sensitive
data without explicit consent can violate privacy laws and intellectual property rights.

Many websites for example disallow the ChatGPT User-Agent to protect the data they

Chapter 5. Leveraging Generative Al for Scraping

expose from using it to train OpenAls models. Ensuring compliance with regulations such
as GDPR and CCPA is critical when designing scraping pipelines. By employing ethical
guidelines and transparency in data handling, generative Al can strike a balance between

utility and responsibility in training data acquisition.

5.3.2 Domain-Specific Applications

Generative Al-powered scraping extends its utility across diverse sectors, unlocking
unique use cases tailored to each domain. In e-commerce, it can track price fluctuations,
monitor competitor strategies, and aggregate customer reviews to provide actionable mar-
ket insights. For healthcare, web scraping can extract and standardize medical research
data, enabling healthcare providers to stay up-to-date with the latest treatments and
trends. Similarly, in education, generative AI can scrape educational content such as
open-access research, course materials, and multimedia resources, creating rich learning
repositories.

The financial sector also benefits significantly from these advancements. Scraping
financial news, stock market trends, and analyst reports empowers investors and firms
with real-time intelligence. LLMs ensure that the extracted data maintain high accuracy,
allowing for the automation of time-sensitive analyses. These domain-specific applications
highlight how generative Al can transform industries by providing precise and actionable

information at scale.

5.3.3 Augmented Search Engines

Search engines are foundational tools for accessing information online, and generative
AT offers promising enhancements to their capabilities. By integrating scraped data, search
engines can provide richer, more contextual responses to user queries. For example, a
search engine powered by generative Al can aggregate data from live news sources, e-
commerce platforms, and social media to deliver comprehensive responses tailored to real-
time events.

Incorporating LLM-powered real-time insights further refines search engine function-
ality. Adaptive ranking systems, informed by user trends and dynamic content, ensure
that results remain relevant and personalized. This capability not only improves user
satisfaction, but also improves the discoverability of content creators, fostering a mutu-
ally beneficial ecosystem. The integration of scraped data into augmented search engines
demonstrates the potential of generative Al to redefine how information is accessed and

utilized.

5.3.4 Implications for Future Development

The growing reliance on generative Al in web scraping brings with it a set of im-
plications that warrant careful consideration. Scalability remains a critical challenge, as
the computational requirements for large-scale scraping operations increase alongside the
complexity of modern websites. Optimizing these processes to balance performance and

cost will be vital for long-term sustainability.

5.3.4 Implications for Future Development

Ethical and legal frameworks will also need to evolve to keep pace with these ad-
vancements. As generative Al enables deeper and more nuanced data extraction, ensuring
compliance with global privacy standards becomes increasingly complex. Collaborative
efforts among researchers, policymakers, and industry stakeholders will be essential to
navigate these challenges and establish best practices.

Finally, the integration of generative Al into web scraping welcomes a new era of
possibilities for data access and use. By addressing its limitations and maximizing its
strengths, this technology has the potential to drive innovation in countless fields, shaping

a future where information is more accessible, actionable, and impactful than ever before.

Part

Implementation

Chapter m

soniq: No-code web scraping platform for struc-

tured data extraction

6.1 Problem definition

Web scraping plays a critical role in modern data acquisition, contributing significantly
to fields such as search engine indexing, Al model training, and competitive intelligence.
However, it presents a technological barrier due to each website’s different and potentially
complicated structures, and standard web practices that require headless browsers and
anti-bot measurements that can be price and resource intensive task. Naive approaches
to web scraping consist of different database structures for each data domain to be ex-
tracted and different code implementations for each website to be scraped regardless of
the framework that will be used to create the scraping pipeline. Therefore, while public
information is available to anyone through user interaction, only companies and teams
that have the resources to create complex pipelines can automatically acquire and lever-
age this information. Although there are numerous pay-as-you-go API scraping services,
these are predominantly closed-source, limiting users’ ability to directly access raw data,
define their own extraction schemas, or customize the scraping pipeline. The goal of this
thesis is to create an open-source, no-code, supported by LLM technology Software as a
Service platform that can give the same advantage to individuals or academic teams, in
order to be able to integrate public data to their knowledge systems, train or fine-tune
their own LLMs and Al models through a more accessible multi-domain, structured web

data extraction without the need to create a scaping pipeline from scratch.

6.2 Technologies Used

The thesis implementation can be broken down to three counterparts: backend, and
frontend, which have the ability to inter-communicate and ensure the functionality of the

final product.

6.2.1 Backend

The backend counterpart of the application has been built in order to be able to handle

multiple users, successfully respond to concurrent requests and efficiently store and query

Chapter 6. soniq: No-code web scraping platform for structured data extraction

<<component>>
g] e g]

kend

<<component>>
gl FastAPl ll

User Login

<<companent>> g [
Ontology Endpoint | 7

Ontology Ul

e
B adapte|

O TG

L
Data Plovider | REST API

Page UI Reafe Ul

lapi delegate:

Home

Scheul

.
T e
E‘ PScheduler E

Data Endpoint Al

Data Ul

Figure 6.1. sonig Component UML Diagram

large amount of data. In order to make this possible, open-source, production-grade widely

adopted technologies have been utilized:

MongoDB

MongoDBJ48] is a NoSQL, document-oriented database designed for high-performance,
scalability, and flexibility. Unlike relational databases (SQL), MongoDB stores data in
BSON (Binary JSON) format, allowing for schema-less document structures, making it
ideal for storing and managing unstructured or semi-structured data. It is widely used
in modern web applications, including web scraping pipelines, big data processing, and

Al-driven analytics.
Key Features

1. Document-Oriented Storage

e Data is stored in collections of documents, rather than traditional rows and
tables.

e Each document is structured as a JSON-like object (BSON), supporting nested
fields and flexible data types.

2. Schema-Less Design (Dynamic Schema)

e Unlike SQL databases, MongoDB does not require a fixed schema.

e Documents in the same collection can have different structures, making it easy

to evolve data models over time.
3. High Scalability (Sharding & Replication)

e Sharding: Distributes data across multiple servers to handle large-scale work-
loads.
e Replication: Ensures high availability and fault tolerance by maintaining mul-

tiple copies of data.

4. Rich Query Language

6.2.1 Backend

e Supports CRUD operations (Create, Read, Update, Delete) with powerful fil-

tering, aggregation, and indexing.
e Queries can be performed using JavaScript-like syntax.
5. Indexing for Fast Queries
e Supports multiple types of indexes, including single-field, compound, and text

indexes for efficient query performance.

e Geospatial indexing enables location-based searches.
6. Aggregation Framework
e Similar to SQL’s GROUP BY, the aggregation pipeline allows for complex data

transformations, filtering, and computations.

e Used for data analysis and processing within the database itself.
7. Built-in Horizontal Scaling

e MongoDB is optimized for distributed computing, making it an excellent choice

for big data and real-time applications.
8. ACID Transactions (Multi-Document)

e Supports multi-document ACID transactions, ensuring data integrity in com-

plex applications.

Features like schema-less design, rich query language, aggregation framework and hor-
izontal scaling make MongoDB the most responsible decision for this implementation

enhancing data versatility and ability to create informative data tables.

FastAPI

FastAPI[49] is a modern, high-performance web framework for building APIs using
Python 3.74+. It is designed for speed, scalability, and ease of use, making it an excellent
choice for developing web services, including RESTful APIs for data-driven applications
like web scraping systems.

FastAPI is built on Starlette (for async web handling) and Pydantic (for data valida-
tion and serialization), offering automatic data validation, OpenAPI documentation, and

asynchronous support.

Key Features
1. High Performance (Asynchronous & Non-Blocking

e Built on ASGI (Asynchronous Server Gateway Interface), allowing concurrent

request handling.

e Supports async/await, making it faster than Flask for I/O-bound operations.

Chapter 6. soniq: No-code web scraping platform for structured data extraction

2. Automatic OpenAPI & Swagger Documentation

e Enables self-documenting APIs without additional effort.

o FastAPI automatically generates OpenAPI documentation (/docs endpoint us-

ing Swagger UI).
e Provides Redoc UI for alternative API exploration (/redoc).

3. Data Validation with Pydantic

e Uses Pydantic for strict data validation and serialization.
e Ensures API requests contain correctly formatted data.

e Allows definition of strict types for request/response models.
4. Dependency Injection System

e Allows clean separation of concerns with dependency injection.
e Useful for integrating authentication, database connections, and middleware
efficiently.
5. Built-in Security (OAuth2, JWT)

e Supports OAuth2 and JWT authentication out of the box.

e Provides automatic handling of API security, reducing development effort.
6. WebSocket & GraphQL Support

e Enables real-time communication through WebSockets.

e Supports GraphQL APIs alongside traditional REST endpoints.
7. Easy Integration with Databases

e Works well with MongoDB (Motor), PostgreSQL (SQLAlchemy), Redis, and

other databases.

e Supports async database operations for high scalability.

Therefore, FastAPI is a great addition to the implementation’s stack checking every

potential need there is in order to design a robust and well documented APT infrastructure.

crawl4ai

Crawl4AI[50] is a next-generation Al-powered web scraping framework that leverages
large language models (LLMs) for intelligent data extraction. Unlike traditional web
scrapers that rely on static CSS selectors and XPath queries, Crawl4Al uses machine
learning and NLP techniques to dynamically detect, structure, and extract web content,
making it more resilient to Ul changes and less prone to anti-scraping mechanisms.

It is designed to work with structured and unstructured web data, integrating auto-
correcting pipelines, proxy management, and API-based scraping for a scalable and adap-

tive scraping experience.

6.2.1 Backend

Key Features

1. AI-Powered Smart Extraction

e Uses LLMs and NLP models to understand webpage layouts and extract struc-

tured data automatically.

e Can infer relationships between elements (e.g., extracting product details even

if HTML structures vary across different sites).

e Supports semantic extraction, allowing it to capture contextual information.
2. Hybrid Extraction Methods

o Al-Assisted Extraction: Automatically detects and extracts key data fields

without predefined rules.

e Manual Extraction: Allows users to define CSS selectors and XPath queries for

precision.

o LLM-Assisted Schema Generation: Generates CSS selectors for users based on

textual descriptions.
3. Multi-Threaded & Asynchronous Execution

e Supports parallel scraping for high efficiency.

e Uses asynchronous I1/O operations to handle multiple pages simultaneously,

reducing execution time.
4. Open Source

e Code is available to inspect, build, contribute.

e Ability to extend and add extra features applying to each use case.
5. Proxy and CAPTCHA Handling

e Integrates with residential proxies, rotating IPs, and CAPTCHA solvers.
e Uses adaptive proxy selection to minimize detection.

e Supports third-party CAPTCHA solving services like 2Captcha and Anti-Captcha.

Crawl4Al functionality is very crucial for this implementation as it provides an ab-
straction layer for tasks that would otherwise need to be implemented from scratch such
as undetectable headless browsers, uniform css extraction, and LLM prompt engineering.
While it provides these features, is highly flexible allowing this application to effortlessly

use and extend it.

APScheduler

APScheduler[51] (Advanced Python Scheduler) is a lightweight, flexible, and efficient
job scheduling library for Python. It allows developers to schedule tasks (jobs) to run
at specific intervals, on a fixed date, or in response to events. APScheduler is commonly
used for task automation, cron-like scheduling, and background job execution, making it

an ideal choice for scheduling web scraping jobs in the web scraping system.

Chapter 6. soniq: No-code web scraping platform for structured data extraction

Key Features
1. Multiple Job Scheduling Options

e One-time jobs — Execute a task at a specific datetime.
e Interval-based jobs — Run tasks every X seconds/minutes/hours.

e Cron-like jobs — Schedule jobs using cron expressions for precise timing.
2. Persistent Job Storage
e Supports SQLite, PostgreSQL, MySQL, and MongoDB for storing scheduled

jobs.

e Ensures that jobs persist across application restarts.
3. Asynchronous & Threaded Execution

e Supports multi-threaded execution (default) and async job execution.

e Ensures that scheduled tasks do not block the main application thread.
4. Error Handling & Job Monitoring

e Logs job failures, execution times, and retries.

e Provides job state tracking, including paused, running, and completed jobs.
5. Flexible Job Triggers

e Uses built-in triggers for different scheduling needs (date, interval, cron).

e Allows custom event-based triggers.

6.2.2 Frontend

The frontend of the application has been built on two pillars of modern software design:
user experience and extensibility. Following production-grade practices, the Ul counter-
part of this application attempts to be user friendly, intuitive while being attentive to

performance and productivity. The technologies utilized to achieve this are the following:

React

React[52] is a JavaScript library for building user interfaces, developed and maintained
by Meta (formerly Facebook). It is widely used for single-page applications (SPAs) and
component-based Ul development. React is particularly well-suited for dynamic and in-
teractive web applications, making it an ideal choice for the frontend of the web scraping
system.

React’s virtual DOM (Document Object Model) and declarative programming paradigm
ensure high performance and efficient Ul updates, making it perfect for rendering and

managing user-defined scraping jobs.

6.2.2 Frontend

Key Features
1. Component-Based Architecture

e React applications are built using reusable components, allowing modular and

maintainable code.

e Each component manages its own state and can be reused across the applica-

tion.
2. Virtual DOM for Efficient Rendering

e React uses a virtual DOM to efficiently update only the necessary Ul elements

when the state changes.
e Reduces the number of actual DOM manipulations, improving performance and
responsiveness.

3. Declarative Ul

e React describes the Ul state declaratively, making code easier to read and

debug.

e Instead of manually updating the UI, React updates the view when data changes.
4. React Hooks for State and Effects

e Introduces functional components with React Hooks (useState, useEffect, etc.).

e Simplifies state management and side effects handling without using class com-

ponents.
5. Context API for Global State Management

e Built-in alternative to Redux, allowing global state management without prop

drilling.
6. React Router for Navigation

e Enables client-side routing, making navigation fast and seamless without full

page reloads.
7. Integration with APIs

e Works efficiently with RESTful APIs (FastAPI backend), GraphQL, and Web-
Sockets.

Refine.dev

Refine.dev[53] is an open-source React framework for building data-intensive applica-
tions. It is designed to simplify CRUD (Create, Read, Update, Delete) operations, making
it a powerful tool for managing structured data applications like admin dashboards, in-
ternal tools, and scraping monitoring systems.

Refine.dev is an ideal choice for the web scraping system’s frontend, as it allows quick

development of dashboards for job management, scheduling, and data monitoring.

Chapter 6. soniq: No-code web scraping platform for structured data extraction

Key Features
1. Rapid CRUD API Integration

e Automatically connects to REST or GraphQL APIs.

e Provides hooks (useList, useCreate, useUpdate) to fetch and manipulate data.
2. Auto-Generated Admin Ul

e Generates CRUD interfaces automatically from API schemas.

e Provides table views, forms, and filters with minimal configuration.
3. Authentication & Authorization

e Supports JWT authentication, OAuth, and third-party login providers.

e Provides role-based access control (RBAC).
4. Powerful Data Fetching with React Query

e Uses React Query to fetch and cache API data efficiently.

e Provides real-time updates and optimistic UI.
5. React Router & Navigation

e Seamlessly integrates with React Router for SPA navigation.

e Provides built-in support for nested routes and protected pages.
6. Custom Hooks for Business Logic
e Developers can override default behavior using custom hooks.

Refine is built on top of React, React Query, and other modern libraries, providing out-
of-the-box support for many application features. Adding opinion to common repetitive
layers that are crucial for each application make the code more readable, efficient file
structure and many other features that prevents the developer from reinventing the wheel

while making the fronted of their application scalable

ShadCN UI

ShadCN UI[54] is a modern, accessible, and customizable component library for React
applications. Unlike traditional UT libraries (e.g., Ant Design, Material UI), ShadCN
provides unopinionated, developer-friendly components built on Tailwind CSS and Radix
Ul

ShadCN UI is ideal for building beautiful, lightweight, and highly customizable Uls,

making it perfect for the frontend of the web scraping system.

6.3 Architecture

Key Features
1. Tailwind CSS-Based Styling

e Uses Tailwind utility classes for styling instead of complex stylesheets.

e Allows full customization without the need for additional CSS overrides.
2. Headless & Accessible Components

e Uses Radix UI for keyboard navigation and screen reader support.

e Components are unstyled by default, giving developers full control over Ul

styling.
3. Server-Side Rendering (SSR) Friendly

e Fully compatible with Next.js and React Server Components.

e Supports progressive enhancement for fast page loads.
4. Dark Mode Support

e Auto-detects system themes and allows manual toggling between light and dark

mode.
5. Lightweight & Fast

e Unlike Ant Design or Material UI, ShadCN does not ship unnecessary CSS or
JS.

e Works out of the box with Vite, Next.js, and React.
6. Component Reusability

e Components are imported per use case, reducing bundle size and improving

performance.

6.3 Architecture

The architecture is built to accommodate a broad range of users, from non-technical
individuals requiring a no-code solution to advanced users who may customize and extend
its functionality. The system consists of three primary layers: the frontend, which enables
users to interact with the system through a well-structured user interface; the backend,
which is responsible for API handling, job scheduling, ensures the persistence of extracted
data and scraper coordination; and the proxy layer, which creates an isolated network
between the other layers while exposing it to the rest of the world. Each of these layers
operates within its own dedicated Docker container [55], ensuring a clear separation of
concerns and allowing for tailored environmental configurations based on their specific
requirements. Despite this isolation, the proxy layer acts as an intermediary, seamlessly
managing communication between containers within their private network while also inter-

facing with the external environment. Once each service is individually configured, Docker

Chapter 6. soniq: No-code web scraping platform for structured data extraction

Compose [56] orchestrates the multi-container deployment, synchronizing the lifecycle of
all components to maintain system coherence and operational efficiency.

This architecture follows a modular monolithic approach, where different components
interact within a unified backend system without being entirely decoupled as separate
services. The decision to follow this design was motivated by the need to balance simplicity,
maintainability, and efficiency resulting in a streamlined and performant architecture, well-
suited for handling structured data extraction tasks.

The following sections provide a detailed breakdown of each architectural component,

its role within the system, and the interactions between different layers.

6.3.1 Frontend Layer

The frontend of the system is designed to provide a modern, responsive, and interactive
user interface that allows users to create, manage, and monitor their scraping jobs. It is
developed using React, leveraging Refine.dev for simplified CRUD operations and ShadCN
UI for a clean and customizable design. This choice of technologies ensures a balance
between usability, flexibility, and efficiency.

The primary responsibilities of the frontend include allowing users to define ontologies,
specifying the structure of the data they wish to extract, as well as configuring scraping
jobs by providing target URLs and selecting extraction methodologies. The frontend also
facilitates data visualization, enabling users to inspect extracted data through interactive
dashboards. Authentication and authorization mechanisms are implemented to ensure
secure access control, allowing only registered users to define and manage scraping oper-
ations.

The frontend interacts with the backend through a RESTful API, exchanging struc-
tured JSON data. Data related to scraping jobs, ontologies, and extracted content is
retrieved dynamically from the backend and displayed in the user interface. Secure com-
munication is facilitated through Traefik, which acts as a reverse proxy, ensuring proper

request routing and enforcing authentication policies.

6.3.2 Backend Layer

The backend is implemented using FastAPI, a high-performance web framework op-
timized for asynchronous execution. It is responsible for securely handling user requests,
managing scraping jobs, scheduling extractions, and processing data interactions with the
database. The backend exposes a REST API, which the frontend consumes to enable
users to create and manage their scraping workflows.

The core functionality of the backend revolves around ontology management, scraping
job scheduling, and data retrieval. Users can define custom ontologies that structure the
data extraction process, specifying the type of information they need to extract. These
ontologies are then used to define page schemas, which determine the specific extraction
rules for each web page. The backend ensures that these configurations are properly stored

and retrieved when needed.

6.3.2 Backend Layer

soniq & &
lapifv1/openapi.json
login ~
‘m /api/v1/login/magic/{email} LoginWit Magic Link v ‘
‘m /api/v1/login/claim Vaidate Magic Link av ‘
‘m /api/v1/login/oauth Login Wi Oauthz - ‘
‘m /api/vl/login/refresh RefreshToken av ‘
‘m /api/vl/login/revoke Revoke Token av ‘
(IS0 /2pi/v1/Login/recover/{enail} Recove Passnos v
(B /2pirvi/ogin/reset. RessiPassuad av]
users ~
‘m /api/vl/users/ Read User av ‘
/api/vl/users/ Update User a8V
‘ TN /api/vl/users/ Create User Profile v ‘
(=R /apisv1/users/all fecdalusers av|
‘ "T58 /api/vl/users/new-totp RequestNew Toip av ‘
‘ /api/vl/users/toggle-state Toggle State D% ‘
‘m /api/vl/users/create Create User Y ‘
‘m /api/vl/users/tester TestEndpoint ~ ‘

Figure 6.2. soniq API Swagger Docs 1

To handle scheduled scraping jobs, the system utilizes APScheduler, which periodically
triggers web scraping tasks based on user-defined schedules. Unlike architectures that rely
on distributed task queues, the scheduler directly invokes the Crawl4Al scraper, ensuring
that scraping jobs are executed efficiently without unnecessary complexity. Once a job is
initiated, the scraper fetches the target web pages, applies the specified extraction schema,
and stores the extracted data in the MongoDB database.

Data retrieval is another key function of the backend. Users can request previously
extracted data through dedicated API endpoints. The system supports advanced filtering
and querying mechanisms, allowing users to extract insights from large datasets efficiently.
Logs of all executed jobs are maintained, enabling users to track scraping performance and

debug any potential issues.

Web Scraping Engine

The web scraping functionality is powered by Crawl4Al, an Al-enhanced scraping en-
gine that enables both rule-based and Al-driven extraction methods. Traditional web
scrapers rely on static CSS selectors to extract specific elements from web pages, making
them fragile in the face of website layout changes. Crawl4Al, however, incorporates ma-
chine learning techniques to identify structured data patterns dynamically, improving its
ability to adapt to changes in webpage structures.

Scraping can be performed in two modes: an Al-assisted mode, where the system

automatically detects and extracts structured content, and a manual mode, where users

Chapter 6. soniq: No-code web scraping platform for structured data extraction

proxy ~
EZEIN /2pi/v1/proxy/{path} Proxy Post Requsst av
IEEAN /2pi/vi/proxy/{path} Proxy Get Request av
ontology ~
IEZER /2pi/vi/ontology/ create Ontlogy av
/api/v1/ontology/{ontology_id} Updaie Oniology av
ISR /api/vi/ontology/{ontology_id} GetOriology I
IS /2pi/visontology/List Lstoroiogies av
page ~
BEZER /2pisvi/page/ croate Page av
/api/v1/page/{page_id} Update Page 3~
A /2pi/vi/page/{page_id} Geipae v
B30 /api/vi/page/tist st Pages av
job ~
A /2pi/vi/iob/{job_id} Getvoo ~
IEEGE /2pi/v1/job/{job_id} Deistesod v
BEER /apisv1/iob/tist ustuons o
run ~
=R /api/va/run/{run_id} Gethun v
BEER /api/v1/run/tist ustauns av
data ~
=R /api/vi/data/{data_id} GetDaa o
BEER /2pisvi/data/tist Lsioaa &V

Figure 6.3. soniq API Swagger Docs 2

define CSS selectors to specify exact elements to be extracted. This flexibility allows the
system to cater to both technical and non-technical users.

Once a scraping task is triggered, Crawl4Al fetches the requested web pages and
processes them according to the defined ontology and extraction schema. The extracted
data is validated, structured, and stored in MongoDB. In cases where an error occurs
during extraction, the system logs the failure and provides debugging information to the

user.

Data Storage and Processing

All structured and unstructured data collected by the scraper is stored in MongoDB,
a NoSQL document-oriented database optimized for handling large-scale web data. The
database schema is designed to support the flexible nature of the data being extracted while
maintaining data consistency and fast retrieval times. The primary collections within the

MongoDB instance include:

Ontologies , which define the structure of extracted data.

Pages , which store webpage configurations and their corresponding extraction schemas.
Jobs , which schedule the scraping tasks.

JobRuns , which tracks the execution of scraping tasks.

ExtractedData , which contains the final structured output from web scraping opera-

tions.

6.3.3 Deployment Architecture

ExtractionSchemaField
+ype
+selector
+attribute
k¥
SchemaField Schema
0.+ |+name Teees
+description
felds 1. [
JobRuns
+id Joh
+job_id +id
+page +name
+date 1.* [+args
+status +trigger
+num_items +next_run_time
+details 1
*

* Page 10

DataExtract +id Cmplgy
+id +url +id
+unigque_hash +ontology sl :
s = +mode +description
data +extraction_schema | * +schema
+created +job_id 1 +creat.e.d_by
ot +Cron +rrmdrf|ed_by
e +created_by +crea1§ed

+maodified_by +modified
+created
+modified

ExtractionSchema

+base_selector
+base_fields

Powered By Visual Paradigm Community Edition @

Figure 6.4. soniq Database UML Class Diagram

6.3.3 Deployment Architecture

The system is designed to be containerized, ensuring that all components can be easily
deployed and managed. The deployment is structured around Docker, where each com-
ponent runs as an isolated container. Traefik is used as a reverse proxy to route requests

securely between the frontend and backend while also handling SSL termination and load

Chapter 6. soniq: No-code web scraping platform for structured data extraction

balancing. The key components of the deployment include:

Frontend (React + Refine.dev + ShadCN UI), deployed as a Docker container.

Backend (FastAPI + APScheduler + Crawl4AT), handling API requests and job

execution.
MongoDB, which persists all scraping configurations and extracted data.

Traefik, which manages routing and API exposure.

The deployment architecture ensures scalability and maintainability, and easy deployment

allowing components to be updated independently without affecting the entire system.

Figure 6.5. soniq Deployment UML Diagram

6.3.4 System Workflow

The system follows a well-defined workflow for executing scraping tasks. First, the
user defines an ontology and configures the extraction schema for a target web page. This
configuration is stored in MongoDB, ensuring that the system retains the extraction rules
for future jobs. Next, the user schedules a scraping job, which is handled by APSched-
uler and triggered at the specified time. When execution begins, the Crawl4Al scraper
retrieves the target page, extracts data according to the ontology, and stores the results

in MongoDB. The user can then access the extracted data through the frontend interface.

6.3.4 System Workflow

This workflow enables an end-to-end automated scraping pipeline, from configuration
and scheduling to data retrieval and visualization. The combination of Al-assisted extrac-
tion, manual selector-based scraping, and task scheduling ensures that users can extract

data efficiently without requiring deep technical knowledge.

[ves]

[Ne] \J<
[] User opens app Login/Register Cm‘:;‘:g' Fill in form

[IsAuthenticated)

[smart| Write Prompt

[Extraction Strategy]

!

[css mode]

The css selector
that describes the
container of the
content we want
to scrape

Select HTML base selector

Reguest data
extraction

.

Request schema
generation

Cawled website
‘and cleaned HTML
%rmm Generated [Ng]

Verify Schema

Crawled website
and cleaned
Markdown

No

[Correct Data?]

Schedule Extraction
Job Frequencyoierifd By visual Paradigm Community Edition €%

Figure 6.6. soniq Activity UML Diagram

[Correct Schema?]

Chapter 6. soniq: No-code web scraping platform for structured data extraction

A
1: Sign In with OAuth
> 2: Get or Create User
[4: User Info
&: Authenticated | 5: Successful Login
L] 7. Define Ontology
8: Create new Ontology 9: store
12: Show Created Ontology. 11: Ontalagy Created Succesfully 10: Ontology Infa
[oe
13: Update Ontology Form 14: Update Ontology Request 15: Update Ontology in DB
(- 18: Show Updated Ontology 17: Ontology Updated Succesfull 16: Updated Ontology Info
D
[Authenticated & Ontology Created]
ED
20: Crawl Page 21: Crawl Page
f
24: Request Base Selector 22: Page Crawled Succesfully 23: HTML Retumed
27: Base Selectar Provided 25: Clean HTML and Generate Schema 26: Generate Schema
29: HTML Cleaned Successfully 28 HTML Cleaned
31: Verlfy Extraction Schema i 30: Schema Generated 32: Schema Returned
34: Extraction Schema Verified 33: schema Verified
35: Verlfy Page and Provide Cron Schedule T
37: Create Page 38: Create Page and Schedule Exraction | 39: Store new Page and Schedule
40: Show Created Page 42: Page Created Successfully I 41: Page Created
i
[smart Extraction]
44: Define Page Info 43: Crawi Page 45: Crawl Page
f
47: Page Crawked Suecesfully % 46: arkdown Retumed
+
50: Extraction Prompt Provided i
51: Scrape Page with LLM
52: Page Scraped
i
55: Create Page 56: Store new Page and Schedule o
60: Show Crated Page U SE: Page Craatad 5 ‘
il] T
11 T N
i
! i] Powered by Visua Faradigm Commupity Ediion €%

Figure 6.7. soniq Sequence UML Diagram

6.4 Use Case - Scraping Energy News Articles in Seconds

In this section, one will analyze the usage described above applied to the energy news
domain. Extracting news from websites is a very common practice that provides re-
searchers with powerful data points that can be utilized to train Al models, gain insights
about current advancements, or even maintain a system up-to-date by repeating the ex-

traction process every day.

6.4.1 Creating the Ontology

The first step of scraping a semantic domain in ”soniq” is to create the desired ontology.
In the context of the implementation of this thesis, an ontology is the basic entity that

describes and structures the extracted data.

6.4.2 Creating a Page

Energy news

Description

News articles about energy

Schema

title

summary

content

® Add Field

Figure 6.8. Ontology Creation

Once an ontology is created, the user can continue defining the websites they desire to

extract data from.

6.4.2 Creating a Page

A page is a secondary entity that refers to an existing ontology. During its creation,
the user needs to define the URL from which ”soniq” will source the data, the extraction

schema to be followed, and the frequency in which the job will run.

Step 1: Basic Information

Page >

1. Page information

Ontology

Energy news

Mode

Css

url

https:/fwww.energia.gr/eidiseis/1/list

Figure 6.9. Basic Page Information

Chapter 6. soniq: No-code web scraping platform for structured data extraction

Step 2: Schema Generation

In the next step of the workflow, the user can optionally find the css selector of the
HTML element that contains the data they want to extract. This process is only useful
to limit the tokens sent to the LLM and therefore the price of the request, but can also

be skipped in cases where the user is not so technical.

ENERGIA,gr
—

Figure 6.10. Inspect HI'ML Container

Once this process is finished and the user has found a potential css selector, they can
move on to querying the LLM to generate the actual css selectors that can successfully

retrieve the data structure defined in the ontology.

2.CSS Schema Generation

posiep

. energia.gr

> Crawling https://ww.energia.gr/eidiseis/1/list. ..

> Generating css extraction schema...

Base Selector
article.post
Css Schema
title
post-meta time

summary p.excerpt-entry

content div.content

h3a
-post-meta .time.

p.excerpt-entry

® Add Field

Figure 6.11. CSS Eztraction Schema Generation using LLM

6.4.2 Creating a Page

One can notice that the LLM has hallucinated and added fields that the user did
not specify in the ontology (content has nested fields). For that reason, the generated
schema is completely modifiable in order to add, edit, or remove fields that have not been

generated correctly.

2.CSS Schema Generation

.post-wrap Generate

. energia.gr

> Crawling https://www.energia.gr/eidiseis/1/list...

> Generating css extraction schema...

Base Selector
article.post

CSS Schema
title

.post-meta .time

summary p.excerpt-entry

® Add Field

Figure 6.12. Modified Generated Schema

In order to verify the LLM results, the user can simulate the scraping job and retrieve
the data using the generated strategy by clicking the ”Test” button. By viewing the
extracted data, the user can verify if there is a field without content and can cross-validate
using the real website that every data point they needed to scrape has been successfully

extracted.

Chapter 6. soniq: No-code web scraping platform for structured data extraction

Title Summary

Tnv EKTIUNAGT TOU Yia ToV OTUAVTIKS péAo Tou emtelel n Kumplaky) Anpokparia atnv Avatolkr Megdyelo Kal ya
TN Potifeld iou apEXEL OTLG EMYEIPNONS EKKEVWATG AHEPIKAVWV TIOALT®Y and JWVES TEPLPEPELAKIIV TUYKPOUTEWY
eEEPpaoE o UMoupYSG ESWTEPIKWY TwV HIMA Mapko PolUpTIo KOTA TN SLAPKELa TNAEGWVIKTIG guvolliias Tou elye He
Tov KGmplo opudioyo Tou Kwvatavtivo Kéumo

MNa Evépyela kat ZTpanwtikn Zuvepyacia
Zuvopiingav TnAepwvikd ot YMNE= HMNA kat
Kunpuokrig Anpokpartiag

To 2024, n) Cenergy Holdings ouvéyioe va aglonolel T Slapkdg av§avopevn {itnan otov evepyelakod Topéa. H
gitnan yia mpoidvia kaAwdlwv TapEUEVE LKAVOTIOMTIKY oupBAALOVTAS 0T CTHPEN TWY TRV, EVU) TA EVEPYEIOKA
£pya eKTEAECTNKAY OPaAG, QMOTEARVIAS TOV KUPLO TUAKVA NG aténong Tng Kepdogoplag Tou Topéa Kahwbiwy. O
Topéas owANvwY XaAuBa TETUXE KaAUTEpES embAcels and o 2023, Adyw BeAtwpévwy eplBwplwv kEpSoug, Tou
TIpoEKuav ame To PElyua EXTEAECUEVIIV EpywY

Cenergy Holdings: ADENOT) AEITOUPYIKTIS Tet, 5
Kepdogoplag Katd 27% 1o 2024 - Maptiou
MeyaiiTepo Katd 76% To MpoTEWSHEVO 2025 -
Mépiopa yia Epétog 19:44

0 5e0TEPOG EUMOPIKAG TIGAEPOS TOU NTSVAAVT Tpaum elval TTAEOV MPAYUATIKGTITA Kal Ol TIPWTES ETUTITWAELS EXOUV
16N Karaypagel. Me Toug EpMopikols eTalpous Twv HIMA va yvwpilouv mAgov Tr vooTponla Tou AHEPIKAvOUD
MNpoé5pou, oL anavtiioels Sev dpynoav va épBouv, eEaadalifovTag mwe autds o TOAEHOS 6a EXEL MAPATIAEUPES
amwAeles. Me) 51e6vr apepaidtnta va auvgaveral, ol ayopésg AapBavouy wg Sedopévo 6TL T katdotacn Ba yivel
TIoAD XELpATEPN TPV BEATUWOEL

HIMA: O Néog Eumopikag MéAepog Tou Tpapm
KaL Ta AVTIHETPA Twy AMAWY Xwpy

Tet, 5 «ZI1d)0q Mag rrav va Snuioupyricoupe éva ktiplo nou Ba éxer evehi§la oty xprion, Ba Asttoupye! MEPLOTOTEPO WG
Maptiou XWPOS TIPOOPLTHOY KAl &)1 LOVOS Wwe XWPoS Epyaciag KL EXTILW MWS To katadepapes, TOVIOE N Evie Leon,

2025 - AiguBlvouoa LUpBoulog, Deutsche Telekom Cloud Services, otn oudritnan mou mpayuaternomBnke oto TAalolo Tou
19:16 8ou ouvedpiou Tng Prodexpo North, otn ©ecoahovikn

Prodexpo North 2025: Ta Ktipla Tng
Begoaiovikng AAdZouv Mopdri - H Inpaocia
Twv Mpdovwy Kriplww

Tert, 6

Maptiou Tnv T@Anan tou mholov Kpri I, évavTt 3,6 exat. oM., € OKOTIO TNy avakiKAWOoT] Tou, avakowmvel 1) Attica AE
2025 - TUHPETOXMV

18:43

Tnv NwAnon tou Mholou «Kprjtn ll» yia
AvakUkAwan, Evavit 3,6 Ekat. Ach.
Avakolvwoe n Attica Group

Ter, 6
Netavidyou: «ElpacTte Amodacigpévol va Maptiou
Nikrigoupe» 2025 -

18:20

0 npwBunoupyég Tou Ioparjh Mrieviapiv Netavidyou 6rjAwce oYjpepa oTov véo apynyé tou wopanhvol atpatol 6T
eival anopaciopuévog va odnyrioeL Ty wpa atny vikn oxedov 17 pnjveg petd tnv évapsn evég moAupétwiou
TioA&pou Tiou Eexivnoe 1) eniBeon g Xapag katd Tou lopaniA atig 7 Oktwpplou 2023

Ter, 8
O KaMugpyetes Tpodlpwy oe Kivouvo AT v Maptiou KaBug o1 Beppokpacieg ouvexiouv va av§dvouy, To éva Tplto TNg maykoouias napaywyns Tpediuwy 8a propodoe
Al§nom g Geppokpaciag 2025 - va tebei gt kivbuvo. AUTO SLATIOTWVEL MEAETT) TIow SnuociedBnKe oTo eplodikd «Nature Food»

17:29

Tpla xpévia GUUTIANPWVEL OE AlYEG NUEPES OTO «TIRAVL» TOU Xprpatiotnplou ABNVEY o Mdvwog Kovtdmoulos, o
omolog PAETEL TOV LEYEAC OTEXO TNG avaBABULONG aTIG AVanTuypEveS Ayopés va TIANaIalel ohogéva Kal
TIEPIOTETEPD, TNUATOSOTWVTAS TNV TIATET) ETMOTPOPY) GTHV... KAVOVIKETNTA. Ki QuTd evéow 1) EyXwpla
Kepaialayopd mpaypatonolel otabepd pripata yia va «§exaoel» Tekelwg Tnv eMoxr Twv SladoXKiv Kploewy Kat
TN MOAVETOUG OLKOVOULKTIG MEPITETELAS

Ter, 5
H Enétetog tou MNdvwou Kovtdmouiou: To Maptiou
NAfipwpa Tou Xpévou kat To +80% otnv 3etia 2025 -
177

Tet, 5 Tponomoiroelg TG HEAETNG yia TNV avdamiaon Tou mapaAlakold HETWTOU TNG ©ecoaiovikng Pplokovral oe eEEMEN,
Maptiou 6mws avédepe aTilepa 0 avTIMEPLPEPEIApYNS YToSopwy Kal ATiwy Tng MNepidpépeiag Kevtpikns Makesoviag
2025 - Napig MaiAMag, piivrag oto 8o ouvédplo Prodexpo North, pe avuikelpevo v a§lonolnon g akiving

16:53 Teplovaiag otn Bopewa EXAGSa

©egoaiovikn: L& EEEMEN TpoMOMOIMOELS TNG
MeAETNG yia To Eviaio Mapaiaks Métwmo Ev
Avaplovri Tou

H uynir} popoloyia, pe Baan To Texpapté el06dNpa, To UYNAS PN PoBoAOVIKG KOOTOG Kal Ol CUOCWPEUHEVES
odekés Tou napehBéviog, sfakoiouBoiv va anoteholv «TPOXOTESN yia TV avarrTugn Twy BoTExvikay

IyEono gliuduug o g dovapacud Top Bloten mushningio

Ter, 5
Maptiou

BEA: hopoloyia kat KéaTog Evépyetag ta
! v oLecg

Figure 6.13. Scraping Job Simulation

Step 3: Job Scheduling

It is now time to schedule the extraction frequency. This is the last step of the page
creation workflow and once it is completed, the scraping job is scheduled using the afore-

mentioned technologies.

3. Schedule the scraping job

Day of Month Month Day of Week

Every day v Every month v Every day

© At10:00 AM
Next run time: 06/03/2025, 10:00:00

Figure 6.14. Scraping Job Scheduling

6.4.2 Creating a Page

The user can verify that the page has been created and explore other pages in the

exploration data table.

> 5l Pagelctl Rowsperpage 20 v TotalRows1

Figure 6.15. Page Explorer

Step 4: Handle pagination

Pagination is the most common practice of limiting data availability on all types of
websites that expose valuable information. For this purpose, ”soniq” manages to resolve
this issue by providing the user the ability to define the pagination variables. It is visible
from the browser’s url input that the current website the user intends to scrape adds a

query parameter named p in order to handle pagination.

ENERGIA .gr
g

IBapi A $101,40/t0

Ebrigeis | Oheg ol Ebiostc

Ewdrioeig
. "}'// Eurelectric: H EveAtgia Twv H/0 EEowkovopei
ii i, Xphata yta Tovg MeAdres kat BeTiatonotei 1o
= Aiktuo Hhextpucis Evépyetag

Mohupehéc Mpwrobikeio KoZavng: Attayopedet T

- Kataokeui ©/B Mépkov 45 MW otnv Kakaptd.
s

Enitipn AbdxTopag Tov Tprpatog Guatkiic Tov AN
Avayopeietat oti 11 Maptiov n Meviki) AguBivpia
Tou CERN

@ Anépomto

Figure 6.16. energia.gr Pagination Url

Once the user has identified all the required variables to handle pagination in the
website of their choice, they can edit the page and configure it to enqueue more urls for

extraction.

Chapter 6. soniq: No-code web scraping platform for structured data extraction

Enqueuer

Type

pagination

Pagination Config

Type

url

Figure 6.17. Pagination Url Enqueuer

6.4.3 Inspecting Job Executions

In the last section, the user created and scheduled a page. The ”soniq” platform has
the responsibility to enqueue this scraping job when the user has defined. An additional
feature is the job execution exploration and detailed review that the platform provides to

the user to monitor and debug their defined jobs.

Figure 6.18. Run Explorer

The detailed review of the job execution provides valuable information to the user, such
as its status, the number of items successfully scraped, the date it took place, its duration,

and for advanced users the actual service logs in order to identify potential errors.

100

6.4.4 Scraped Data Exploration

Job Details

 Suscess

Job Overview © CopyID

Basic information about the scraping job

67c8bfcce39f357cleda54a5) £ Mar 5, 2025, 09:20:12 PM

Statu [success ration: © 1790 seconds

Items Scraped: 52 Schedule: 0 10 * * x

Target Information

Schema Configuration

Execution Logs

Detaile of the

View Execution Logs

[©) Copy Logs al Duration:

Figure 6.19. Job Execution Details

6.4.4 Scraped Data Exploration

Finally, the most important feature of this platform is the ability to view, explore, and

export scraped data to analyze and manage the data.

ontoloy

Energy news

Refresh Create
<EEouovopis 2026 Me Zexupiara Kvmipa Evidogovtar o TAyé T, § Maprlon 2025 - 16:36 Me véa anogaon v Y u Evepyeias x.©
To EXE10 ApAaT T EE Ve To MEoy TS ATovITOBloumIava T, 5 Mapriow To a0 6paan TG EE ia o pédiow TS auToRVTOBORTYUa:
gk dausi: Avcal <o Knua AvSapro. Ter, § Maprion 2 OLUn00pGpDL LyiZouy To o oTpavTIKS Béa Ty BKAOYGY TOUS: |
HIOENHED 21t Napéiaon T PAAEY va ANkayés o Yroug Ter, 6 Maprion 2025 - 16193 Me aTispu EmGTON TG oS T PUBKGTURT AVEAPTTEY ABYT
Puou Ertoean o¢ Evepyeia Moue noss Tex, 5 Magriou 2025 - 1519 Pl B emTéa 08 uEpyeIaK UovEa T TEpL0de
Tz Meipatis: Me Frpay Zovepyaoia s v MANTILITY, - Ter, § Magriou 2025 - 1615 HTotneta Nepais, o mhaloto s Exatpics s Yneueuéra
c: H EUeEia v HIO Efokovope{ XpAaTa wa Tous ek Ter, § Magriow 2025 - 15715 EVa 0K PASKTDXO0 OXTHaToS ST Eupen 0a propodoe.

i Amayopebes v Kaaowest /8 | Ter, § Magriou 2 3 Me T U’ 6 1212025 anbooan oo Mahupsedols MputoBuio

Erinyn 8163KT0pas Tou ThraToS GuotKs 190 ATIO Avayopsderas Ter, 6 Maprion 2025 - 1485 Enftyn 6183K70pas 00 Tatos Ouot i Oeuea Er
o KpeuAluo Xaiperies Ty AAOT ZeAEvoi yia Tv MpoBupla tok Tt § Maprion 2025 - 14:48 Hpuota yan o o0 mpotpo BohovT ZekEvo
131 Solaire Expo Marac: Auuévo EvBiagépoy tuy ENAnukay Emy Ter, § Maprion 2025 - 443 « L T ——
Rt Efvn Togo Taves ot v Fales T OUKpavias (e O, Tet, 5 Maprion 2025 - 14:05 T TEpacén Napaokaut, ko5 o TAavfon lse e Tov eefeute.
Fepuavio: Bourd G Mot Ty Tesa tov Osfpoudpio Tex, § Maprou 2025 H auspukaunch autoirofiounaa Tesla owvéace va xave 8508,
EY: 01 GEOs Maywoopias MNapaluévouy A060Eas, <BAETovtasa N Ter, 6 Maprion 20 H moTootvn wy CEOS 0Ty aveug KepiCet 50005 TayKod)
Viood yia FEK TEPNA: AvaBals Ty Tuaf 60 010 €27 e 48 Tet, 5 Maprion 2 e 27 eups v o (a6 18 copt) auEueL Ty T-oTO NV
 Fatio Quaranta siua 0 véos ABGY E0BOUNGS TG Zen® T, § Maprion 2025 H Zenio, n Buyatpuc aupeia i Plentude oty ENAGSa e ey
EEAA: A0vojxd eTapiva T 70 B Verde.Toc - ADooiaon o T, 5 Mapriow H B Eraupeta Aforolnon AvaxdkAuos (EEAR) oouetetxs
By Avdmeun oy ENAASG: Ta Né Assopve & Taoess o Ter, § Magriou 2 o Kévepo Aetpopias (CSE) napoucnéles 121 et épene Tt
HINTRACOM DEFENSE rat n ETIMAD Evivouy s o5 Ter, § Magriou 20 H inracom Defense (IDE) nypabe Mympowo Twvepyacias e v

N 0865 - Kevepuch 066s: XpuoH Bdpin 0T Al & DATA Avard: Ml a6y Xpuor Bdkpion ketpody n Néa 0866 Kat Kevia OF

Page20f3 Rowsperpage 20 - TotalRows 42

Figure 6.20. Data Explorer

Part

Epilogue

103

6.5 Overview

6.5 Overview

The journey through advanced web scraping in the modern web has underscored the
growing complexities and innovations shaping the field. This thesis has explored both
offensive (scraping methodologies) and defensive (anti-scraping techniques) perspectives,
while also proposing an alternative vision: the democratization of web scraping through
a no-code Al-enhanced platform.

As the arms race between scrapers and anti-bot defenses continues, this work highlights
the potential of Al-driven adaptability in overcoming technical barriers while maintaining
ethical and legal compliance. The introduction of LLM-assisted schema generation, adap-
tive pipeline correction, and automated API-based extraction provides a path toward a
more accessible and structured approach to data extraction. The implementation of soniq
demonstrates how open-source, Al-enhanced web scraping can level the playing field, al-
lowing smaller teams, researchers, and independent developers to access structured web
data without extensive engineering expertise.

Looking forward, the interplay between web security, Al, and data accessibility will
only grow more intricate. The future of web scraping lies in intelligent, ethical, and highly
adaptive solutions that balance efficiency with compliance. Further research should focus
on enhancing Al-driven automation, improving adversarial robustness, and refining real-
time scraping frameworks.

Ultimately, this work serves as a bridge between technological advancement and ac-
cessibility, reaffirming that structured web data should not be a privilege of large-scale

enterprises but an open and democratized resource for all.

6.6 Future Work

While this thesis has laid a strong foundation for Al-driven, no-code web scraping
democratization, several avenues for future research and development remain open. The
evolution of web technologies, security measures, and Al capabilities presents both chal-
lenges and opportunities for advancing the field of intelligent data extraction. Below are

key areas for potential future work:

6.6.1 Enhancing AI-Driven Adaptability in Scraping

One of the most critical areas for future development is increasing the adaptability of
web scraping systems to handle dynamic and ever-changing web environments. Websites
frequently update their DOM structures, anti-bot measures, and data formats, often ren-
dering traditional scrapers obsolete. While this thesis has introduced LLM-assisted schema
detection and self-correcting pipelines, further work is needed to develop autonomous
scraping agents that can learn and evolve over time.

Future advancements should focus on self-learning scrapers that leverage reinforcement
learning and continual adaptation techniques. These agents should monitor UI changes

over time, detect patterns of modifications, and automatically adjust their extraction

105

strategies without human intervention. Additionally, the integration of multimodal AI,
combining computer vision for layout interpretation with NLP for text structuring, can
significantly enhance the robustness of web scrapers. This hybrid approach would allow
scrapers to navigate web interfaces more naturally, much like a human user would, ensuring
accurate data extraction even in the face of sophisticated obfuscation techniques.
Beyond adaptability, another key area for future work is optimizing Al-driven scrap-
ing for speed and efficiency. Current Al-assisted extraction models introduce higher com-
putational overhead, making real-time scraping impractical for large-scale applications.
Research into lightweight Al models, edge processing techniques, and optimized inference

pipelines will be necessary to enable high-speed, cost-effective Al-driven scraping at scale.

6.6.2 Expanding No-Code Customization & User Experience

Democratizing web scraping requires further development in no-code and low-code
solutions, making data extraction more accessible to researchers, business analysts, and
non-technical users. While this thesis introduces a no-code scraping platform, future work
should focus on enhancing user experience, automation, and customization to create a
seamless and intuitive data extraction process.

One of the most impactful directions for expansion is the development of a visual
ontology builder, where users can define structured data schemas through an interactive,
drag-and-drop interface. This would eliminate the need for manual ontology scripting,
allowing users to visually map relationships between extracted data fields and generate
structured outputs without writing a single line of code. Such a feature would significantly
lower the entry barrier for users who need structured data but lack technical expertise in
web scraping.

Additionally, integrating Al-driven guidance into the no-code interface can help users
automatically generate optimized scraping configurations based on natural language de-
scriptions. Users should be able to describe their data needs conversationally, and the
system would generate, test, and validate the necessary extraction workflows. Further-
more, expanding the multi-domain capabilities of the platform—such as enabling seamless
scraping across e-commerce, finance, academia, and social media—will ensure that differ-
ent industries can easily adopt structured web data extraction without requiring extensive
customization.

Finally, integrating real-time monitoring dashboards that provide insights into scraping
efficiency, data quality, and system performance will enhance usability. These dashboards
should allow users to identify errors, track historical trends, and receive automated sug-
gestions for improving scraping efficiency. Future research should explore how real-time
analytics and visualization tools can empower non-technical users to make data-driven

decisions while keeping scraping operations efficient and transparent.

6.6.3 Exploring Decentralized & Federated Scraping Approaches

Web scraping currently relies heavily on centralized architectures, where individual

scrapers operate in isolation or within controlled server environments. However, decen-

106

6.6.4 Ethical and Regulatory Considerations

tralized and federated approaches offer exciting possibilities for scalability, anonymity, and
data resilience while reducing the risk of centralized failures and legal vulnerabilities.
One promising avenue for future work is the development of peer-to-peer (P2P) scrap-
ing networks, where users contribute scraping resources in a distributed fashion, effectively
creating a crowdsourced data extraction ecosystem. In such a system, scrapers can col-
laborate, sharing learned extraction patterns while distributing crawling workloads across
a decentralized network. This would not only improve scraping efficiency but also make
it harder for websites to detect and block scraping operations, as requests would originate
from diverse, geographically dispersed nodes rather than a single centralized entity.
Additionally, federated learning techniques could be applied to web scraping, enabling
scrapers to collaboratively improve extraction models without sharing raw data. This
method would allow different scraping agents to learn from each other’s experiences, refin-
ing Al-assisted extraction techniques in a privacy-preserving manner. Such an approach

could lead to a more adaptive, intelligent, and community-driven scraping ecosystem.

6.6.4 Ethical and Regulatory Considerations

The growing legal and ethical concerns surrounding web scraping necessitate further
research into compliance frameworks and responsible data extraction methodologies. As
governments and organizations impose stricter data protection regulations such as GDPR,
CCPA, and Al transparency laws, future work should focus on developing Al-driven com-
pliance tools that ensure scraping remains within legal and ethical boundaries.

One direction for future research is the development of privacy-preserving scraping
techniques that leverage differential privacy and anonymization methods to protect both
website owners and users. By ensuring that extracted data is sanitized, de-identified,
and aggregated in a compliant manner, organizations can minimize ethical risks while
maintaining access to valuable public data.

Additionally, Al-generated dataset attribution mechanisms should be explored, en-
suring that any data scraped and used in Al training or analytics is properly cited and
referenced. The introduction of automated transparency reports, which log data prove-
nance and usage, could help address concerns about Al model biases and dataset integrity.

Beyond compliance, future research should also investigate the ethical implications
of Al-generated scraping decisions, particularly in cases where models autonomously de-
termine which data to extract, retain, or discard. Establishing ethical guidelines and
AT governance policies for web scraping will be crucial to ensuring fair, responsible, and

transparent data extraction practices.

6.6.5 Extracted Data Ingestion in Data Warehouses for Better Process-
ing and Analytics

As web scraping becomes more sophisticated, integrating extracted data seamlessly
into modern data warehouses is a crucial next step. Current scraping solutions often focus

on extraction but lack optimized pathways for long-term storage, querying, and large-scale

107

analysis. Future research should explore how scraped data can be efficiently structured,
transformed, and ingested into cloud-based data lakes and analytics platforms.

A key direction is the development of automated ETL (Extract, Transform, Load)
pipelines that allow scraped data to be cleaned, normalized, and integrated into structured
warehouse environments like BigQuery, Snowflake, or Apache Druid. This would enable
organizations to leverage scraped data in real-time analytics, business intelligence, and Al
model training, significantly enhancing its value beyond raw collection.

Further work should focus on real-time ingestion pipelines, allowing scraped data to
continuously update dashboards, predictive models, and decision-making systems. By
creating a direct bridge between web scraping and enterprise analytics, organizations can

harness the full potential of structured web data for strategic insights.

6.6.6 Conclusion

Future work in web scraping must focus on enhancing adaptability, accessibility, decen-
tralization, ethical compliance, and seamless data integration. As Al-driven automation
continues to evolve, these directions will shape the next generation of intelligent, respon-

sible, and scalable web scraping solutions.

108

Bibliography

[10]
[11]

[12]

Statista. Global number of internet users 2005-2024. https://www.statista.com/
statistics/273018/number-of-internet-users-worldwide/. Access Date: 05-
02-2025.

Built With. https://builtwith.com. Access Date: 20-12-2024.

Kasereka Henrys. Importance of Web Scraping in E-Commerce and E-Marketing.
Bugema University, January 19, 2021.

SCM De S Sirisuriya. Importance of Web Scraping as a Data Source for Machine
Learning Algorithms - Review. 2023 IEEE 17th International Conference on Indus-
trial and Information Systems (ICIIS), celidec 134-139, 2023.

Vijay Panwar. Web FEwvolution to Revolution: Navigating the Future of Web Ap-
plication Development. International Journal of Computer Trends and Technology,

72:34-40, 2024.

Radu Bucea-Manea-Tonis. Angular JS — The Newest Technology in Creating Web
Applications. Annals of Spiru Haret University FEconomic Series, 16:103, 2016.

madewithangular Lalith Polepeddi. Made With Angular. https://www.

madewithangular.com/sites.

Arshad Javeed. Performance Optimization Techniques for ReactJS. 2019 IEEE In-
ternational Conference on FElectrical, Computer and Communication Technologies
(ICECCT), oehidec 1-5, 2019.

Joe Marini. Document Object Model. McGraw-Hill, Inc., USA, 1n éxdoon, 2002.
Vue JS. https://vuejs.org/. Access Date: 22-11-2024.
Next JS. https://nextjs.org/. Access Date: 08-12-2024.

Nursel Yalcin xon Utku Kose. What is search engine optimization: SEO? Procedia
- Social and Behavioral Sciences, 9:487-493, 2010. World Conference on Learning,

Teaching and Administration Papers.
Svelte. https://svelte.dev/. Access Date: 27-01-2025.

Roy Thomas Fielding. Architectural Styles and the Design of Network-based Software
Architectures. University of California, Irvine, 2000. Access Date: 08-11-2024.

109

https://www.statista.com/statistics/273018/number-of-internet-users-worldwide/
https://www.statista.com/statistics/273018/number-of-internet-users-worldwide/
https://builtwith.com
https://www.madewithangular.com/sites
https://www.madewithangular.com/sites
https://vuejs.org/
https://nextjs.org/
https://svelte.dev/

BIBL

IOGRAPHY

[15]
[16]
[17]
18]

[19]

31]

110

GraphQL. https://graphql.org/. Access Date: 31-01-2025.

gRPC. https://grpc.io/. Access Date: 16-02-2025.

Harold Davis. Search Engine Optimization. O’Reilly Media, Inc., May 2006.
Cheerio.js. https://github.com/cheeriojs/cheerio. Access Date: 21-11-2024.

BeautifulSoup. https://www.crummy.com/software/BeautifulSoup/bs4/doc/.
Access Date: 13-12-2024.

JjQuery. https://jquery.com/. Access Date: 06-01-2025.
Awxios. https://axios-http.com. Access Date: 09-02-2025.
Puppeteer. https://github.com/puppeteer/puppeteer. Access Date: 04-12-2024.

Playwright. https://github.com/microsoft/playwright. Access Date: 18-01-
2025.

Selenium. https://github.com/seleniumhqg/selenium. Access Date: 07-02-2025.
MitmProzxy. https://github.com/mitmproxy/mitmproxy. Access Date: 25-12-2024.

Gunes Acar, Marc Juarez, Nick Nikiforakis, Claudia Diaz, Seda Giirses, Frank
Piessens xouw Bart Preneel. FPDetective: dusting the web for fingerprinters. Pro-
ceedings of the 2013 ACM SIGSAC Conference on Computer & Communications
Security, CCS ’13, oehida 1129-1140, New York, NY, USA, 2013. Association for
Computing Machinery.

Pierre Laperdrix, Nataliia Bielova, Benoit Baudry xo Gildas Avoine. Browser Fin-
gerprinting: A Survey. ACM Trans. Web, 14(2), 2020.

Peter Eckersley. How Unique Is Your Web Browser? Privacy Enhancing Tech-
nologiesMikhail J. Atallah xou Nicholas J. Hopper, emyeintéc, oehidec 1-18, Berlin,
Heidelberg, 2010. Springer Berlin Heidelberg.

Yundi He, Runhua Shi xou Boyan Wang. WT-CFormer: High-Performance Web
Traffic Anomaly Detection Based on Spatiotemporal Analysis, 2024.

Pedro Marques, Zayani Dabbabi, Miruna Mihaela Mironescu, Olivier Thonnard,
Frances Buontempo, Ilir Gashi xou Alysson Bessani. Using diverse detectors for de-
tecting malicious web scraping activity. 2018 48th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks Workshops (DSN-W), cehidec 67—
68. IEEE, 2018.

Viktor Petrov. Network Traffic Analysis: Studying Anomaly Detection Approaches
for Network Traffic Analysis to Identify Suspicious Patterns and Behaviors Indicative
of Cyber Threats. Cybersecurity and Network Defense Research, 3(1):13-24, 2023.

https://graphql.org/
https://grpc.io/
https://github.com/cheeriojs/cheerio
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://jquery.com/
https://axios-http.com
https://github.com/puppeteer/puppeteer
https://github.com/microsoft/playwright
https://github.com/seleniumhq/selenium
https://github.com/mitmproxy/mitmproxy

BIBLIOGRAPHY

[32]

33]

[34]

Xun Gong, Nikita Borisov, Negar Kiyavash xou Nabil Schear. Website detection using
remote traffic analysis. Privacy Enhancing Technologies: 12th International Sym-
posium, PETS 2012, Vigo, Spain, July 11-13, 2012. Proceedings 12, oelideg 58-T78.
Springer, 2012.

Luisvon Ahn, Manuel Blum, Nicholas J. Hopper xo John Langford. CAPTCHA:
Using Hard Al Problems for Security. Advances in Cryptology — EUROCRYPT
2003Eli Biham, emueAnthc, oehideg 294-311, Berlin, Heidelberg, 2003. Springer Berlin
Heidelberg.

Meriem Guerar, Luca Verderame, Mauro Migliardi, Francesco Palmieri xon Alessio
Merlo. Gotta CAPTCHA °Em All: A Survey of 20 Years of the Human-or-computer
Dilemma. ACM Comput. Surv., 54(9), 2021.

Emilio Ferrara xoa Robert Baumgartner. Design of Automatically Adaptable Web
Wrappers. CoRR, abs/1103.1254, 2011.

Ye Wang xou Mi Lu. An optimized system to solve text-based CAPTCHA, 2018.

Huthaifa Mohammed Kanoosh, Ammar Farooq Abbas, Noora Nazar Kamal, Zainab
Mejeed Khadim, Duaa A. Majeed xou Sameer Algburi. Image-Based CAPTCHA
Recognition Using Deep Learning Models. Proceedings of the Cognitive Models and
Artificial Intelligence Conference, AICCONF 24, ceAida 273-278, New York, NY,
USA, 2024. Association for Computing Machinery.

Vijayaragavan Pichiyan, S Muthulingam, Sathar G, Sunanda Nalajala, Akhil Ch xo
Manmath Nath Das. Web Scraping using Natural Language Processing: Fxploiting
Unstructured Text for Data Fxtraction and Analysis. Procedia Computer Science,
230:193-202, 2023. 3rd International Conference on Evolutionary Computing and
Mobile Sustainable Networks (ICECMSN 2023).

spaCy. https://github.com/explosion/spaCy. Access Date: 30-11-2024.
nltk. https://github.com/nltk/nltk. Access Date: 20-01-2025.

Aman Ahluwalia xou Suhrud Wani. Leveraging Large Language Models for Web Scrap-
ing, 2024.

ChatGPT Search. https://openai.com/index/introducing-chatgpt-search/.
Access Date: 03-02-2025.

Samuel Zuehlke, Joel Nitu, Simone Sandler, Oliver Krauss xot Andreas Stockl. Self-
Repairing Data Scraping for Websites. 2024 4th International Conference on Electri-

cal, Computer, Communications and Mechatronics Engineering (ICECCME), ce\idec
1-4, 2024.

LangChain. https://github.com/langchain-ai/langchain. Access Date: 15-02-
2025.

111

https://github.com/explosion/spaCy
https://github.com/nltk/nltk
https://openai.com/index/introducing-chatgpt-search/
https://github.com/langchain-ai/langchain

BIBLIOGRAPHY

[45]

[46]

[47]

[52]
[53]
[54]
[55]

[56]

112

Gelei Deng, Haoran Ou, Yi Liu, Jie Zhang, Tianwei Zhang xou Yang Liu. Oedipus:
LLM-enchanced Reasoning CAPTCHA Solver, 2024.

Xuanhe Zhou, Xinyang Zhao xot Guoliang Li. LLM-FEnhanced Data Management,
2024.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang,
Zhenzhong Lan xow Dong Yu. WebVoyager: Building an End-to-End Web Agent
with Large Multimodal Models. Annual Meeting of the Association for Computational
Linguistics, 2024.

MongoDB. https://github.com/mongodb/mongo. Access Date: 15-11-2024.
FastAPI. https://github.com/fastapi/fastapi. Access Date: 07-12-2024.

UncleCode. CrawlfAl: Open-source LLM Friendly Web Crawler Scraper. https:
//github.com/unclecode/crawldai, 2024.

APScheduler. https://github.com/agronholm/apscheduler. Access Date: 05-01-
2025.

React. https://github.com/facebook/react. Access Date: 12-12-2024.
Refine.dev. https://github.com/refinedev/refine. Access Date: 19-11-2024.
ShadCN Ul https://github.com/shadcn-ui/ui. Access Date: 23-12-2024.
Docker. https://docs.docker.com/. Access Date: 10-12-2024.

Docker Compose. https://github.com/docker/compose. Access Date: 26-12-2024.

https://github.com/mongodb/mongo
https://github.com/fastapi/fastapi
https://github.com/unclecode/crawl4ai
https://github.com/unclecode/crawl4ai
https://github.com/agronholm/apscheduler
https://github.com/facebook/react
https://github.com/refinedev/refine
https://github.com/shadcn-ui/ui
https://docs.docker.com/
https://github.com/docker/compose

List of Abbreviations

SEO Search Engine Optimization

API Application Programming Interface
Ul User Interface

Al Artificial Intelligence

LLM Large Language Model

NLP Natural Language Processing
NLU Natural Language Understanding
NER Natural Entity Recognition

SSR Server-Side Rendering

SPA Single-Page Application

CSR Client-Side Rendering

P2P Peer-to-Peer

ETL Extract, Transform, Load

OCR Optical Character Recognition
CDN Content Delivery Network

BPF Band Pass Filter

CAPTCHA Completely Automated Public Turing test to tell Computers and Humans Apart
JWT JSON Web Token

REST Representational State Transfer
SQL Structured Query Language
JSON JavaScript Object Notation

RDF Resource Description Framework
gRPC gRPC Remote Procedure Call
SSG Static Site Generation

ISR Incremental Static Regeneration
DOM Document Object Model

PWA Progressive Web Application
ACL Access Control List

TLS Transport Layer Security

IoT Internet of Things

CCPA California Consumer Privacy Act
GDPR General Data Protection Regulation
ACL Access Control List

RBAC Role-Based Access Control

SSO Single Sign-On

113

List of Abbreviations

VPN Virtual Private Network
MITM Man-in-the-Middle
SQL Structured Query Language

114

	Περίληψη
	Abstract
	Acknowledgements
	Εκτεταμένη Περίληψη στα Ελληνικά
	Εξέλιξη και Προκλήσεις του Web Scraping
	Τεχνικές Web Scraping και Σύγκρισή τους
	Μηχανισμοί Προστασίας και Ανίχνευσης Scraping
	Η Εφαρμογή της Τεχνητής Νοημοσύνης στο Web Scraping
	Η Πλατφόρμα "soniq" – No-Code Scraping με AI
	Βασικά Χαρακτηριστικά της Πλατφόρμας

	I Background Knowledge
	Modern Web Scraping Architecture
	Introduction
	Evolution of Web Technologies
	Advanced Web Technologies
	Modern Javascript Frameworks
	Advanced API Interfaces

	Search Engine Optimization (SEO)

	Techniques and Innovations in Web Scraping
	Foundational Scraping Techniques
	Scraping Static Websites
	Dynamic JavaScript-Driven Websites
	Network Request Interception
	Comparing Techniques

	Scraping Prevention and Countermeasures
	Detection and Mitigation Strategies
	Browser Fingerprinting
	Traffic Pattern Analysis
	CAPTCHAs
	Honeypotting
	IP Reputation Systems
	Behavioral Analytics
	Conclusion

	Preventive Development Techniques
	Rate Limiting and Throttling
	Dynamic Code and CSS Attributes
	API Key and Token-Based Authentication
	JavaScript Challenges
	Cookie-Based Authentication
	CDN Security
	Data Obfuscation Techniques
	Adaptive User Interface Rendering

	Advanced Protection Mechanisms
	Anti-Scraping SaaS Platforms
	Browser Integrity and Verification
	Hybrid Defense Architectures

	Integration of AI in Web Scraping
	Machine Learning in Scraping
	Adaptive Algorithms for Intelligent Data Extraction
	Automated Proxy Management
	CAPTCHA Solving with AI

	NLP for Data Understanding

	Leveraging Generative AI for Scraping
	LLMs in Scraping Pipelines
	Crawling Stage
	Data Extraction Stage
	Antibot Measures Bypassing Stage
	Post-Processing Data Stage

	Advanced Generative AI Capabilities in Web Scraping
	Cross-Modal Scraping: Bridging Vision and Text
	WebVoyager: A Case Study in Multimodal Web Agents

	Use Cases and Implications
	Training Data Acquisition
	Domain-Specific Applications
	Augmented Search Engines
	Implications for Future Development

	II Implementation
	soniq: No-code web scraping platform for structured data extraction
	Problem definition
	Technologies Used
	Backend
	Frontend

	Architecture
	Frontend Layer
	Backend Layer
	Deployment Architecture
	System Workflow

	Use Case - Scraping Energy News Articles in Seconds
	Creating the Ontology
	Creating a Page
	Inspecting Job Executions
	Scraped Data Exploration

	III Epilogue
	Overview
	Future Work
	Enhancing AI-Driven Adaptability in Scraping
	Expanding No-Code Customization & User Experience
	Exploring Decentralized & Federated Scraping Approaches
	Ethical and Regulatory Considerations
	Extracted Data Ingestion in Data Warehouses for Better Processing and Analytics
	Conclusion

	Bibliography
	List of Abbreviations

