
National Technical University of Athens
School of Electrical and Computer Engineering

Division of Computer Science

Advanced Web Scraping in the Modern Web

Techniques, Prevention, and AI Integration

Diploma Thesis

of

ADONIS M. TSERIOTIS

Supervisor: Vassilios Vescoukis

Professor, NTUA

Athens, February 2025

National Technical University of Athens

School of Electrical and Computer Engineering

Division of Computer Science

Advanced Web Scraping in the Modern Web

Techniques, Prevention, and AI Integration

Diploma Thesis

of

ADONIS M. TSERIOTIS

Supervisor: Vassilios Vescoukis

Professor, NTUA

Approved by the examination committee on 7th March 2025.

(Signature) (Signature) (Signature)

. .

Vassilios Vescoukis Nikolaos Papaspyrou Zoe Paraskevopoulou

Professor, NTUA Professor, NTUA Assistant Professor, NTUA

Athens, February 2025

National Technical University of Athens

School of Electrical and Computer Engineering

Division of Computer Science

Copyright ©, Adonis M. Tseriotis, 2025

All rights reserved.

The copying, storage and distribution of this diploma thesis, exall or part of it, is pro-

hibited for commercial purposes. Reprinting, storage and distribution for non - profit,

educational or of a research nature is allowed, provided that the source is indicated and

that this message is retained.

The content of this thesis does not necessarily reflect the views of the Department, the

Supervisor, or the committee that approved it.

DISCLAIMER ON ACADEMIC ETHICS AND INTELLECTUAL PROP-

ERTY RIGHTS

Being fully aware of the implications of copyright laws, I expressly state that this diploma

thesis, as well as the electronic files and source codes developed or modified in the course

of this thesis, are solely the product of my personal work and do not infringe any rights of

intellectual property, personality and personal data of third parties, do not contain work

/ contributions of third parties for which the permission of the authors / beneficiaries is

required and are not a product of partial or complete plagiarism, while the sources used

are limited to the bibliographic references only and meet the rules of scientific citing. The

points where I have used ideas, text, files and / or sources of other authors are clearly

mentioned in the text with the appropriate citation and the relevant complete reference

is included in the bibliographic references section. I fully, individually and personally un-

dertake all legal and administrative consequences that may arise in the event that it is

proven, in the course of time, that this thesis or part of it does not belong to me because

it is a product of plagiarism.

(Signature)

. .
Adonis M. Tseriotis
Electrical &
Computer Engineer
Graduate, NTUA

7th March 2025

to my family

Περίληψη

Η παρούσα εργασία εξετάζει το web scraping, μια διαδικασία αυτοματοποιημένης εξαγωγής

δεδομένων από ιστοσελίδες, εστιάζοντας στις τεχνικές, τις προκλήσεις και τις καινοτόμες

λύσεις που καθορίζουν το σύγχρονο περιβάλλον συλλογής δεδομένων. Με την αυξανόμενη

πολυπλοκότητα των διαδικτυακών τεχνολογιών και την εφαρμογή μηχανισμών αποτροπής

αυτοματοποιημένης πρόσβασης, απαιτούνται προηγμένες στρατηγικές για την αποτελεσματική

και ηθικά αποδεκτή συλλογή πληροφορίας.

Η εργασία αναλύει τις θεμελιώδεις μεθόδους scraping, όπως η ανάλυση HTML μέσω

HTTP αιτημάτων, η χρήση headless browsers και η αναχαίτιση δικτυακών αιτημάτων, συγ-

κρίνοντας τα πλεονεκτήματα και τα μειονεκτήματά τους. Παράλληλα, εξετάζονται οι τεχνικές

προστασίας των ιστοσελίδων, όπως το browser fingerprinting, η ανάλυση μοτίβων κίνησης,

οι CAPTCHA προκλήσεις και η απόκρυψη δεδομένων μέσω δυναμικών αποδόσεων περιεχομέ-

νου.

Η εισαγωγή της τεχνητής νοημοσύνης (ΑΙ) και των μεγάλων γλωσσικών μοντέλων (LLMs)

στο web scraping αποτελεί μία από τις πιο καινοτόμες προσεγγίσεις. Η χρήση μηχανικής

μάθησης επιτρέπει την ανάπτυξη αυτοπροσαρμοζόμενων εξαγωγέων δεδομένων, την αυτόματη

αναγνώριση δομών δεδομένων και την έξυπνη παράκαμψη ανιχνευτικών μηχανισμών.

Ως πρακτική εφαρμογή, η εργασία παρουσιάζει την πλατφόρμα ”soniq”, ένα ανοιχτού

κώδικα, no-code εργαλείο scraping που αξιοποιείAI για την αυτοματοποίηση και βελτιστοποίηση

της συλλογής δεδομένων. Η πλατφόρμα ενσωματώνει LLM-assisted schema inference, προ-

γραμματισμένη εξαγωγή δεδομένων και προηγμένη διαχείριση proxies, επιτρέποντας στους

χρήστες να πραγματοποιούν scraping χωρίς εξειδικευμένες τεχνικές γνώσεις.

Η εργασία καταλήγει σε μια συζήτηση για τις μελλοντικές προοπτικές στον χώρο του web

scraping, εστιάζοντας στη δημιουργία ευφυών, ανθεκτικών και ηθικά αποδεκτών scraping

pipelines, τη διασύνδεση με data warehouses για προηγμένη ανάλυση δεδομένων, και τη

χρήση αποκεντρωμένων αρχιτεκτονικών για μεγαλύτερη ανωνυμία και ανθεκτικότητα. Τα

ευρήματα αυτής της μελέτης αναδεικνύουν τη σημασία της τεχνολογικής καινοτομίας και

της δημοκρατικοποίησης της πρόσβασης στα δεδομένα, ενισχύοντας τη διαφάνεια και την

αποτελεσματικότητα της συλλογής πληροφοριών στον σύγχρονο ψηφιακό κόσμο.

Λέξεις Κλειδιά

Web Scraping, Εξαγωγή Δεδομένων, Αντιμετώπιση Bots, Μηχανική Μάθηση για Εξαγ-

ωγή Δεδομένων,Μεγάλα Γλωσσικά Μοντέλα για Εξαγωγή Δεδομένων, Τεχνητή Νοημοσύνη,

No-Code Web Scraping, Προγραμματισμένη Εξαγωγή Δεδομένων, Ανίχνευση Bots, Αυτο-

προσαρμοζόμενες Τεχνικές Εξαγωγής, Αντίμετρα Ανίχνευσης Scraping.

3

Abstract

4

Abstract

The modern web presents both unprecedented opportunities and significant challenges

for data extraction, as web technologies evolve to become more dynamic and resistant

to automated scraping. Data are the new currency, playing significant role in everything

from business intelligence to scientific research, with a particularly vital impact on AI

training, where properly structured and high-quality datasets are essential for building

accurate and reliable models. This thesis explores the landscape of web scraping, focusing

on advanced techniques, countermeasures, and AI integration. It systematically examines

the foundational methods for web scraping, detailing strategies for handling both static

and dynamic web content while addressing the rising challenges posed by anti-scraping

mechanisms such as CAPTCHAs, browser fingerprinting, and traffic pattern analysis.

A major focus of this work is to make web scraping more accessible to non-technical

individuals, facilitated through the development of Soniq, an open-source, no-code web

scraping platform that integrates LLM-assisted schema extraction, automated proxy man-

agement, and real-time adaptability to frontend changes. By leveraging machine learning

for intelligent data extraction and generative AI for structured data understanding, this

system enables accessible, scalable, and resilient scraping for diverse applications, from

market analysis to AI model training.

The findings of this thesis illustrate the transformative impact of LLMs and generative

AI in automating, optimizing, and scaling web scraping workflows. Additionally, the

study provides insights into ethical considerations and compliance frameworks necessary

for responsible data extraction in an era of increasing regulatory scrutiny and cybersecurity

challenges. The proposed solutions not only enhance efficiency and accuracy in data

extraction but also contribute to the broader effort of making structured web data available

to a wider audience beyond large corporations and specialized developers.

Keywords

Web Scraping, AI in Data Extraction, LLM-Assisted Web Scraping, Scraping Preven-

tion, No-Code Web Scraping, Structured Data Extraction, Anti-Scraping Countermea-

sures, Generative AI.

5

Acknowledgements

I would like to thank my professor, Vassilios Vescoukis, for his guidance and support

throughout this thesis. His feedback and advice helped me a lot.

I also appreciate my supervising Ph.D. candidate, Mr. Christos Hadjichristofi, for

always being available to help me and for giving me useful suggestions along the way.

A big thank you to my family and friends for always supporting me and standing by

me through this process.

Athens, February 2025

Adonis M. Tseriotis

7

Table of Contents

Περίληψη 3

Abstract 5

Acknowledgements 7

0 Εκτεταμένη Περίληψη στα Ελληνικά 17

0.1 Εξέλιξη και Προκλήσεις του Web Scraping 17

0.2 Τεχνικές Web Scraping και Σύγκρισή τους 17

0.3 Μηχανισμοί Προστασίας και Ανίχνευσης Scraping 18

0.4 Η Εφαρμογή της Τεχνητής Νοημοσύνης στο Web Scraping 19

0.5 Η Πλατφόρμα ”soniq” – No-Code Scraping με AI 19

0.5.1 Βασικά Χαρακτηριστικά της Πλατφόρμας 20

I Background Knowledge 23

1 Modern Web Scraping Architecture 25

1.1 Introduction . 25

1.2 Evolution of Web Technologies . 26

1.3 Advanced Web Technologies . 27

1.3.1 Modern Javascript Frameworks . 27

1.3.2 Advanced API Interfaces . 36

1.4 Search Engine Optimization (SEO) . 37

2 Techniques and Innovations in Web Scraping 39

2.1 Foundational Scraping Techniques . 39

2.1.1 Scraping Static Websites . 39

2.1.2 Dynamic JavaScript-Driven Websites 41

2.1.3 Network Request Interception . 42

2.1.4 Comparing Techniques . 44

3 Scraping Prevention and Countermeasures 47

3.1 Detection and Mitigation Strategies . 47

3.1.1 Browser Fingerprinting . 47

3.1.2 Traffic Pattern Analysis . 48

9

TABLE OF CONTENTS

3.1.3 CAPTCHAs . 48

3.1.4 Honeypotting . 49

3.1.5 IP Reputation Systems . 50

3.1.6 Behavioral Analytics . 50

3.1.7 Conclusion . 50

3.2 Preventive Development Techniques . 52

3.2.1 Rate Limiting and Throttling . 52

3.2.2 Dynamic Code and CSS Attributes 52

3.2.3 API Key and Token-Based Authentication 53

3.2.4 JavaScript Challenges . 54

3.2.5 Cookie-Based Authentication . 55

3.2.6 CDN Security . 56

3.2.7 Data Obfuscation Techniques . 56

3.2.8 Adaptive User Interface Rendering 57

3.3 Advanced Protection Mechanisms . 59

3.3.1 Anti-Scraping SaaS Platforms . 59

3.3.2 Browser Integrity and Verification 59

3.3.3 Hybrid Defense Architectures . 60

4 Integration of AI in Web Scraping 63

4.1 Machine Learning in Scraping . 63

4.1.1 Adaptive Algorithms for Intelligent Data Extraction 63

4.1.2 Automated Proxy Management . 64

4.1.3 CAPTCHA Solving with AI . 65

4.2 NLP for Data Understanding . 66

5 Leveraging Generative AI for Scraping 69

5.1 LLMs in Scraping Pipelines . 69

5.1.1 Crawling Stage . 70

5.1.2 Data Extraction Stage . 70

5.1.3 Antibot Measures Bypassing Stage 71

5.1.4 Post-Processing Data Stage . 71

5.2 Advanced Generative AI Capabilities in Web Scraping 72

5.2.1 Cross-Modal Scraping: Bridging Vision and Text 72

5.2.2 WebVoyager: A Case Study in Multimodal Web Agents 72

5.3 Use Cases and Implications . 73

5.3.1 Training Data Acquisition . 73

5.3.2 Domain-Specific Applications . 74

5.3.3 Augmented Search Engines . 74

5.3.4 Implications for Future Development 74

10

TABLE OF CONTENTS

II Implementation 77

6 soniq: No-code web scraping platform for structured data extraction 79

6.1 Problem definition . 79

6.2 Technologies Used . 79

6.2.1 Backend . 79

6.2.2 Frontend . 84

6.3 Architecture . 87

6.3.1 Frontend Layer . 88

6.3.2 Backend Layer . 88

6.3.3 Deployment Architecture . 91

6.3.4 System Workflow . 92

6.4 Use Case - Scraping Energy News Articles in Seconds 94

6.4.1 Creating the Ontology . 94

6.4.2 Creating a Page . 95

6.4.3 Inspecting Job Executions . 100

6.4.4 Scraped Data Exploration . 101

III Epilogue 103

6.5 Overview . 105

6.6 Future Work . 105

6.6.1 Enhancing AI-Driven Adaptability in Scraping 105

6.6.2 Expanding No-Code Customization &User Experience 106

6.6.3 Exploring Decentralized &Federated Scraping Approaches 106

6.6.4 Ethical and Regulatory Considerations 107

6.6.5 Extracted Data Ingestion in Data Warehouses for Better Processing

and Analytics . 107

6.6.6 Conclusion . 108

Bibliography 112

List of Abbreviations 113

11

List of Figures

1.1 Global number of internet users 2005-2024[1] 28

1.2 Angular Usage Statistics [2] . 29

1.3 Component Based Architecture UML Component Diagram 30

1.4 React Usage Statistics [2] . 30

1.5 Vue Usage Percentage [2] . 32

1.6 SSR Sequence Diagram . 33

1.7 ISR Sequence Diagram . 33

1.8 SSG Sequence Diagram . 34

1.9 Svelte Usage Statistics [2] . 35

6.1 soniq Component UML Diagram . 80

6.2 soniq API Swagger Docs 1 . 89

6.3 soniq API Swagger Docs 2 . 90

6.4 soniq Database UML Class Diagram . 91

6.5 soniq Deployment UML Diagram . 92

6.6 soniq Activity UML Diagram . 93

6.7 soniq Sequence UML Diagram . 94

6.8 Ontology Creation . 95

6.9 Basic Page Information . 95

6.10 Inspect HTML Container . 96

6.11 CSS Extraction Schema Generation using LLM 96

6.12 Modified Generated Schema . 97

6.13 Scraping Job Simulation . 98

6.14 Scraping Job Scheduling . 98

6.15 Page Explorer . 99

6.16 energia.gr Pagination Url . 99

6.17 Pagination Url Enqueuer . 100

6.18 Run Explorer . 100

6.19 Job Execution Details . 101

6.20 Data Explorer . 101

13

https://trends.builtwith.com/javascript/React

List of Tables

1.1 Angular Usage Percentage . 29

1.2 React Usage Percentage . 31

1.3 Vue Usage Percentage . 32

1.4 Vue Usage Percentage . 35

2.1 Comparison of Foundational Scraping Techniques 45

3.1 Comparison of Web Scraping Bot Detection Methods 51

3.2 Comparison of Preventive Development Techniques 58

15

Chapter 0

Εκτεταμένη Περίληψη στα Ελληνικά

Η εργασία αυτή αποτελεί μια ολοκληρωμένη μελέτη του web scraping, μιας διαδικασίας που

επιτρέπει την αυτόματη εξαγωγή δεδομένων από το web, με έμφαση στις τεχνικές, τα εμπόδια

και τις καινοτόμες λύσεις που έχουν αναπτυχθεί τα τελευταία χρόνια. Καθώς η πολυπλοκότητα

των ιστοσελίδων αυξάνεται και οι μηχανισμοί προστασίας από την αυτοματοποιημένη πρόσβαση

βελτιώνονται, η ανάγκη για προηγμένες, προσαρμόσιμες και ανθεκτικές τεχνικές scraping εί-

ναι πιο επιτακτική από ποτέ.

Η μελέτη ξεκινά από τις θεμελιώδεις τεχνικές εξαγωγής δεδομένων, αναλύει τους μηχανισ-

μούς ανίχνευσης και αποκλεισμού bots, εξετάζει πώς η τεχνητή νοημοσύνη (AI) μπορεί να

μετασχηματίσει το πεδίο, και ολοκληρώνεται με την παρουσίαση του ”soniq”, μιας no-code,

AI-powered πλατφόρμας scraping, σχεδιασμένης για να διευκολύνει την πρόσβαση σε δομη-

μένα δεδομένα χωρίς την ανάγκη τεχνικής εξειδίκευσης.

0.1 Εξέλιξη και Προκλήσεις του Web Scraping

Στις αρχές του διαδικτύου, η δομή των ιστοσελίδων ήταν στατική, βασισμένη σε HTML

και CSS, καθιστώντας την εξαγωγή δεδομένων απλή και απρόσκοπτη. Ωστόσο, με την εισ-

αγωγή των μοντέρνων JavaScript frameworks όπως React, Angular και Vue.js, πολλές ισ-

τοσελίδες μετατράπηκαν σε δυναμικές εφαρμογές μονής σελίδας (SPAs), όπου το περιεχόμενο

φορτώνεται ασύγχρονα μέσω API κλήσεων και JavaScript rendering.

Αυτή η αλλαγή δημιούργησε σημαντικές δυσκολίες στο scraping, καθώς οι πληροφορίες

δεν ήταν πλέον διαθέσιμες στον αρχικόHTML κώδικα. Επιπλέον, η εμφάνιση νέων τεχνολογιών

επικοινωνίας μεταξύ πελάτη-διακομιστή, όπως το GraphQL και το gRPC, επέφερε νέα εμπό-

δια, καθώς οι παραδοσιακές τεχνικές εξαγωγής δεδομένων που βασίζονταν σε REST APIs

δεν μπορούσαν να εφαρμοστούν άμεσα. Παράλληλα, ο ρόλος του SEO (Search Engine Op-

timization) στη δομή και παρουσίαση των δεδομένων επηρέασε σημαντικά τις δυνατότητες

συλλογής πληροφοριών, δεδομένου ότι πολλές ιστοσελίδες τροποποιούν τη δημόσια ορατότητα

του περιεχομένου τους για να βελτιώσουν την κατάταξή τους στις μηχανές αναζήτησης.

0.2 Τεχνικές Web Scraping και Σύγκρισή τους

Οι μέθοδοι και οι τεχνικές της συστηματικής εξαγωγής δεδομένων απο το διαδίκτυο δι-

αφέρουν με βάση την φύση της κάθε ιστοσελίδας. Συνήθως, η τεχνική είναι ένας αγώνας να

17

Chapter 0. Εκτεταμένη Περίληψη στα Ελληνικά

λάβεις με κάποιο τρόπο το HTML περιεχόμενο της ιστοσελίδας που περιέχει τα δεδομένα ή

να υποκλέψεις την κλήση δικτύου που μέσω αυτής παρέχονται τα δεδομένα στην ιστοσελίδα

για προβολή. Στην περίπτωση των στατικών σελίδων μπορούμε να υλοποιήσουμε το HTML

Request Parsing, όπου ο HTML κώδικας μας παρέχεται απο μια απλή κλήση δικτύου τύπου

GET και τα δεδομένα εξάγονται από το ακατέργαστο HTML μέσω CSS selectors και XPath

queries. Αυτή η μέθοδος είναι γρήγορη και αποτελεσματική για στατικές ιστοσελίδες αλλά

αποτυγχάνει σε JavaScript-heavy εφαρμογές. Στις περιπτώσεις όπου η ιστοσελίδα βασίζεται

στη Javascript για να φορτώσει το περιεχόμενο της μια απλή κλήση δικτύου δεν αρκεί για

να λάβουμε τον HTML κώδικα. Επομένως, εισάγονται οι Headless Browsers, όπου εργαλεία

προορισμένα για application testing όπως Puppeteer και Playwright προσομοιώνουν την αν-

θρώπινη αλληλεπίδραση με μια ιστοσελίδα, έχοντας την δυνατότητα να τρέξουν την JavaScript

και αλληλεπιδρώντας με το UI. Αυτή η τεχνική είναι πιο ευέλικτη, αλλά απαιτεί υψηλή υπ-

ολογιστική ισχύ και μπορεί να ανιχνευθεί μέσω browser fingerprinting και άλλων μεθόδων

ανίχνευσης αυτοματοποιημένων προγραμμάτων. Ωστόσο, σε ιστοσελίδες οι οποίες βασίζον-

ται εκτεταμένα στις κλήσεις δικτύου για να λάβουν τα δεδομένα που προβάλλουν μπορούμε

να παρακάμψουμε την ανάγκη για HTML retrieval και parsing υλοποιώντας τη μέθοδο του

Network Interception. Συγκεκριμένα, αυτή η μέθοδος εκμεταλλεύεται τις API κλήσεις μιας

ιστοσελίδας για την άμεση απόσπαση δεδομένων. Παρόλο που αυτή η τεχνική είναι αποτε-

λεσματική, οι περισσότερες ιστοσελίδες χρησιμοποιούν authentication tokens και encryption

για να αποτρέψουν τη μη εξουσιοδοτημένη πρόσβαση στα API τους. Μετά από συγκριτική

ανάλυση, διαπιστώνεται ότι ο συνδυασμός αυτών των τεχνικών αποτελεί την πιο αποδοτική

στρατηγική, προσαρμοσμένη στις ανάγκες του εκάστοτε έργου.

0.3 Μηχανισμοί Προστασίας και Ανίχνευσης Scraping

Οι δυσκολίες εξαγωγής δεδομένων απο την εκάστοτε ιστοσελίδα δεν μένουν μόνο στη

δυσκολία αναγνώρισης της κατάλληλης μεθόδου και υλοποιώντας την. Οι σύγχρονες ισ-

τοσελίδες εφαρμόζουν εξελιγμένες τεχνικές αποτροπής scraping για να προστατεύσουν τα

δεδομένα και τη λειτουργικότητα της σελίδας τους απο κακόβουλα αυτοματοποιημένα bots.

Οι τεχνικές αποτροπής scraping που αναλύονται είναι οι εξής:

Browser Fingerprinting, όπου συλλέγονται δεδομένα για τα χαρακτηριστικά του χρήστη

(user agent, installed plugins, time zone) ώστε να εντοπιστούν ανωμαλίες που υπ-

οδηλώνουν bot.

Traffic Pattern Analysis, όπου αναλύεται η συμπεριφορά του επισκέπτη (ρυθμός αιτη-

μάτων, χρονικά διαστήματα) για την ταυτοποίηση αυτοματοποιημένης πρόσβασης.

CAPTCHAs και Honeypots, που λειτουργούν ως δοκιμασίες για τη διαφοροποίηση των

ανθρώπινων χρηστών από bots.

IP Reputation Systems, που αποκλείουν γνωστές IP διευθύνσεις που σχετίζονται με

scraping δραστηριότητες.

18

0.4 Η Εφαρμογή της Τεχνητής Νοημοσύνης στο Web Scraping

Rate Limiting and Throttling, όπου το σύστημα διακομιστή αναγνωρίζει και απορρίπτει

αλλεπάλληλες κλήσεις που έχουν γίνει απο την ίδια διεύθυνση IP σε μικρό χρονικό

διάστημα.

Dynamic Code and CSS Attributes, όπου κατα την υλοποίηση ο προγραμματιστής επιλέγει

τη συσκότιση του κώδικα και των CSS attributes κάνοντας δύσκολη την εύρεση ενός

σταθερού μοτίβου για εξαγωγή δεδομένων.

API Key, Token-Based and Cookie-Based Authentication, η συστηματική θωράκ-

ιση της ιστοσελίδας χρησιμοποιώντας διαδεδομένες τεχνικές ασφάλειας μπορεί να προβεί

σε χαρακτηριστική μεθοδο αποτροπής scraping καθώς τα δεδομένα κάθε χρήστη είναι

ιδιωτικά και απροσπέλαστα.

Javascript Challenges, όπου ο browser του χρήστη δοκιμάζεται σε μια σειρά απο πολύ-

πλοκες διεργασίες έτσι ώστε να επηρρεάσει αρνητικά τους πόρους του client ετσι ώστε

να καταλάβει αν πρόκειται για αληθινό χρήστη ή ένα αυτοματοποιημένο πρόγραμμα που

τρέχει σε διακομιστές με περιορισμένους πόρους.

Συμπερασματικά, οι πιο αποτελεσματικές μέθοδοι αποτροπής scraping είναι ο συνδυασμός

πολλών παραπάνω τεχνικών έτσι ώστε να γίνει μια διεργασία πολύ δύσκολη, η οποία θα

αποθαρρύνει κακόβουλο λογισμικό απο το να προσπαθεί να τα προσπελάσει.

0.4 Η Εφαρμογή της Τεχνητής Νοημοσύνης στο Web

Scraping

Η ενσωμάτωση της τεχνητής νοημοσύνης στο web scraping αποτελεί έναν από τους

πιο καινοτόμους τομείς έρευνας. Μεγάλα γλωσσικά μοντέλα (LLMs) μπορούν να χρησι-

μοποιηθούν για την αυτόματη αναγνώριση της δομής μιας ιστοσελίδας, την εξαγωγή σημασι-

ολογικά σχετικών πληροφοριών και την κατανόηση του τρόπου με τον οποίο οργανώνονται τα

δεδομένα. Η μηχανική μάθηση επιτρέπει τη δημιουργία αυτοπροσαρμοζόμενων συστημάτων

scraping που μπορούν να ανιχνεύουν και να προσαρμόζονται σε αλλαγές του περιβάλλοντος

μιας ιστοσελίδας. Οι τεχνικές αυτές καθιστούν το scraping πιο ανθεκτικό, καθώς το σύστημα

μπορεί να μαθαίνει από τις αλλαγές και να προσαρμόζεται αυτόματα.

0.5 Η Πλατφόρμα ”soniq” – No-Code Scraping με AI

Ως πρακτική εφαρμογή, η εργασία παρουσιάζει την πλατφόρμα ”soniq”, ένα ανοιχτού

κώδικα, no-code εργαλείο scraping που επιτρέπει σε χρήστες χωρίς τεχνικές γνώσεις να

δημιουργούν, να προγραμματίζουν και να διαχειρίζονται διαδικασίες εξαγωγής δεδομένων από

ιστοσελίδες με ευκολία και ακρίβεια. Σε αντίθεση με τα παραδοσιακά εργαλεία scraping, τα

οποία απαιτούν εξειδικευμένη γνώση προγραμματισμού και συνεχή τροποποίηση των κώδικα

για να προσαρμόζονται στις αλλαγές των ιστοσελίδων, το ”soniq” χρησιμοποιεί τεχνητή

νοημοσύνη και μηχανισμούς αυτοματοποίησης για την απλούστευση της διαδικασίας.

19

Chapter 0. Εκτεταμένη Περίληψη στα Ελληνικά

0.5.1 Βασικά Χαρακτηριστικά της Πλατφόρμας

Η πλατφόρμα ενσωματώνει προηγμένα χαρακτηριστικά, καθιστώντας την ευέλικτη, επεκ-

τάσιμη και φιλική προς τον χρήστη.

Αυτόματη Αναγνώριση Σχημάτων Δεδομένων (LLM-powered Schema Inference)

Η πλατφόρμα αξιοποιεί μεγάλα γλωσσικά μοντέλα (LLMs) για την αναγνώριση και

κατανόηση της δομής δεδομένων μιας ιστοσελίδας. Αντί να απαιτείται χειροκίνητος

προσδιορισμός των CSS Selectors ή XPath κανόνων, η AI αναλύει το περιεχόμενο και

προτείνει τα βέλτιστα πεδία δεδομένων προς εξαγωγή. Αυτό μειώνει δραστικά το χρόνο

προετοιμασίας και καθιστά το scraping πιο ανθεκτικό σε αλλαγές UI.

Σύστημα Χρονοπρογραμματισμού και Αυτοματοποιημένης Εκτέλεσης ΤοAP-

Scheduler επιτρέπει στους χρήστες να προγραμματίζουν scraping εργασίες βάσει προκα-

θορισμένων χρονικών διαστημάτων. Οι χρήστες μπορούν να ορίσουν ημερήσιες, εβδο-

μαδιαίες ή προσαρμοσμένες ανανεώσεις των δεδομένων που εξάγουν, καθιστώντας την

πλατφόρμα ιδανική για επαναλαμβανόμενες εργασίες παρακολούθησης πληροφοριών (π.χ.

δυναμικές τιμές προϊόντων, αναλύσεις αγοράς, ενημερωτικά άρθρα).

Αρχιτεκτονική και Τεχνολογίες της Πλατφόρμας Το ”soniq” έχει αναπτυχθεί

με σύγχρονες τεχνολογίες, διασφαλίζοντας υψηλή απόδοση, ασφάλεια και ευκολία χρήσης.

• Backend: Αναπτύχθηκε με FastAPI, ένα ελαφρύ αλλά ισχυρό framework για ταχύτερη

επεξεργασία API αιτημάτων και ενσωμάτωση AI μοντέλων.

• Database: Χρησιμοποιεί MongoDB, επιτρέποντας αποδοτική αποθήκευση και ανάκ-

τηση δομημένων δεδομένων με ευελιξία.

• Task Scheduling: Η υλοποίηση του APScheduler δίνει τη δυνατότητα προγραμμα-

τισμένης εκτέλεσης εργασιών scraping, διασφαλίζοντας σταθερή ροή δεδομένων χωρίς

την ανάγκη χειροκίνητης παρέμβασης.

• Frontend: Χρησιμοποιεί React και Refine.dev για τη δημιουργία φιλικού προς τον

χρήστη interface, μέσω του οποίου οι χρήστες μπορούν να δημιουργούν scraping ερ-

γασίες χωρίς την ανάγκη κώδικα.

Σύγκριση με ΄Αλλα Εργαλεία Scraping Η εφαρμογή επιδιώκει να ξεχωρίσει από

τα υπάρχοντα scraping εργαλεία καθώς:

1. Απλοποιεί τη διαδικασία εξαγωγής δεδομένων, καταργώντας την ανάγκη προγραμμα-

τισμού.

2. Προσαρμόζεται δυναμικά στις αλλαγές ιστοσελίδων, μέσω LLM-powered schema in-

ference.

3. Μειώνει τον κίνδυνο ανίχνευσης και αποκλεισμού, χάρη στην έξυπνη proxy rotation

και human-like traffic generation.

20

0.5.1 Βασικά Χαρακτηριστικά της Πλατφόρμας

4. Ενσωματώνει προγραμματισμένες εξαγωγές δεδομένων, καθιστώντας το κατάλληλο για

παρακολούθηση δυναμικού περιεχομένου σε μεγάλες κλίμακες.

Χρήσεις και Πιθανές Εφαρμογές Το ”soniq” μπορεί να χρησιμοποιηθεί σε διά-

φορους τομείς όπου η συλλογή δομημένων δεδομένων είναι απαραίτητη:

1. Ανάλυση Αγοράς: Παρακολούθηση τιμών προϊόντων, τάσεων αγοράς και συμπερι-

φοράς καταναλωτών.

2. Δημοσιογραφία & ΄Ερευνα: Αυτόματη συλλογή ειδήσεων και άρθρων από πολ-

λαπλές πηγές.

3. Εκπαίδευση AIΜοντέλων: Απόκτηση μεγάλων όγκων δεδομένων για εκπαίδευση

νευρωνικών δικτύων.

4. Διαχείριση Επιστημονικών Δεδομένων: Συλλογή πληροφοριών από ακαδημαϊκές

βάσεις δεδομένων.

Συμπεράσματα και Μελλοντικές Βελτιώσεις Το ”soniq” αποτελεί ένα καιν-

οτόμο no-code εργαλείο web scraping, το οποίο διευκολύνει τη συλλογή δεδομένων για ερε-

υνητές, επιχειρήσεις και αναλυτές χωρίς να απαιτεί εξειδικευμένες τεχνικές γνώσεις. Η αυ-

τοματοποίηση των διαδικασιών εξαγωγής, η χρήση AI για την αναγνώριση δομών δεδομένων

και η διαχείριση proxies καθιστούν την πλατφόρμα ανθεκτική και προσαρμόσιμη στις συνεχείς

αλλαγές του διαδικτύου.

Μελλοντικές βελτιώσεις περιλαμβάνουν τη διασύνδεση της πλατφόρμας με data ware-

houses, την ανάπτυξη μοντέλων reinforcement learning για αυτοβελτίωση των τεχνικών εξ-

αγωγής. Το ”soniq” δεν είναι απλώς ένα εργαλείο scraping, αλλά ένα βήμα προς την αύξηση

της πρόσβασης στα δεδομένα, καθιστώντας τα διαθέσιμα, οργανωμένα και προσβάσιμα σε

όλους.

21

Part I

Background Knowledge

23

Chapter 1

Modern Web Scraping Architecture

1.1 Introduction

Web scraping is the practice of programmatically extracting data from web pages,

which has become indispensable in the digital age. Its relevance spans industries and

disciplines, from data aggregation to provide market data analysis [3] to training data

sets for machine learning models [4]. However, with the increasing complexity of modern

web technologies, web scraping has turned out to be a more difficult and sophisticated

task, requiring deep understanding of the underlying architectural frameworks that power

today’s web.

Web technologies have changed a lot in the last decade. From static content being

delivered through server-rendered HTML to SPAs and real-time data streaming through

WebSocket connections, the web has now become dynamic and interactive. These changes

bring more richness to user interactions, but also make the extraction of structured data

from websites more complicated. Consequently, web scraping, which was once straightfor-

ward, has now become an elaborate task that must adapt to these changes in technology.

This evolution has been defined, among other things, by the use of heavy JavaScript

frameworks like React, Vue.js, and Angular. Such libraries apply techniques such as

Virtual DOM and client-side rendering that improve user experience but, very often, make

traditional scraping methods a lot harder because they change page content dynamically

after loading. In addition, GraphQL and gRPC have replaced simpler RESTful interfaces

in many applications and introduce other challenges while accessing and interpreting data.

Starting below, in this chapter, one will discuss contemporary web technologies that

have changed the complexion of web scraping analyzing their key architecture ingredients,

discussing every challenge for the extraction of data through them, together with the so-

lutions that could address or defeat these challenges. By understanding them, we actually

lay the foundational elements to strongly implement some agile scraping techniques, which

have been elaborated on in the following chapters.

25

Chapter 1. Modern Web Scraping Architecture

1.2 Evolution of Web Technologies

The evolution of web development has been a dynamic interaction between technolog-

ical advances and changing user needs. From its inception in the early 1990s, the web

has undergone a lot of transformations, each era defined by its prevailing methodologies,

tools, and user expectations.

Early Web Development: Text and Hyperlinks The early 1990s marked the birth

of the World Wide Web, characterized by static web pages made up mostly of plain

text and hyperlinks. It was all about information distribution, with very little in-

teractivity, let alone visual appeal. This was the period when basic HTML domi-

nated the standard for structuring content, enabling users to navigate between pages

through hyperlinks. At that time, the web was still an emerging technology, mostly

available to academic and research institutions.

Mid-1990s: The Rise of Client-Side Scripting The mid-1990s witnessed the emer-

gence of JavaScript, which was a game-changing client-side scripting language. Ini-

tially used to add interactivity to web pages without communicating with the server,

JavaScript enabled developers to add functionality like form validation and simple

animations. This was the first step toward more interactive web experiences and set

the stage for dynamic, user-centric applications.

Early 2000s: Dynamic Content with Server-Side Scripting In the early 2000s one

can see the introduction of server-side scripting technologies such as PHP, ASP, and

JSP. These technologies allowed servers to dynamically create HTML content in

response to user actions or database interactions. For the first time, the web was

able to become personalized and responsive, as web applications could now provide

dynamic content to users in real time. This expanded the role of web applications

and became an fundamental part of e-Commerce, social networking, and content

management systems.

Mid-2000s: The Introduction of AJAX The introduction of AJAX in the mid-2000s

revolutionized how interactions on the web were performed. AJAX allowed web

pages to asynchronously fetch data from servers, enabling pieces of a page to be

updated without requiring a full reload. This greatly improved the user experience

by providing smoother and faster interactions. The adoption of AJAX braced the

creation of more dynamic and responsive web applications, clearing the way for

modern web interfaces.

2010s: The Emergence of SPAs In the 2010s, Single-Page Applications were made

possible with frameworks like AngularJS, React, and Vue.js. SPAs dynamically

loaded content within a single page, enhancing performance and user experience by

avoiding page reloads and enabling smoother interactions. SPAs leveraged the power

of JavaScript and AJAX to create an era of highly interactive and fascinating web

applications.

26

1.3 Advanced Web Technologies

Mid-to-late 2010s: The Comeback of SSR During the mid to late 2010s, SSR method-

ologies resurfaced. This was set in motion by frameworks like Next.js. These newer

methodologies were implementing the classic server-rendering techniques with mod-

ern improvements tackling problems related to search engine optimization and per-

formance of the first load. Notable developments during this time included:

• Techniques of Server Rendering

SSR Server-side rendering of HTML, which gave a boost to SEO [1.4] and

reduced initial load times.

ISR It took a hybrid approach by allowing the updating of static pages on

demand at runtime and used the best of both worlds between static and

dynamic rendering.

• Hydration

This involved serving static HTML from the server and then making it in-

teractive with the help of client-side JavaScript. Hydration was necessary

to bridge both static and dynamic web experiences without sacrificing the

benefit of faster initial rendering while retaining its interactivity.

This retrospective [5] underscores this transition of the web from static to dynamic,

interactive, and intelligent platforms. The roots of basic evolution outlined above hold

great importance as a background to present sophisticated web technologies.

1.3 Advanced Web Technologies

Over the past twenty years, the Internet has become a crucial component of daily life,

from work-related applications to social media and news. Around the last decade Google,

Facebook and other tech leaders, in their efforts to modernize their web pages, developed

certain frameworks and protocols that were later released and saw great adoption in the

community. These included Angular and React for making Google and Facebook more

dynamic, adding interactivity, and overall improving user experience, as well as gRPC and

GraphQL which revolutionized the way a client communicates with the server.

1.3.1 Modern Javascript Frameworks

At their essence, frameworks and libraries serve as a method to separate fundamental

boilerplate code from the logic of an application. The wheel stops getting reinvented

on every web page creation by standardizing web development practices reducing the

development time and costs while enhancing cross-browser compatibility and improving

performance and security. At their core, the frameworks that will be discussed in this

section introduced efficient data binding, component-based architecture, and virtual DOM

manipulation.

27

Chapter 1. Modern Web Scraping Architecture

Figure 1.1. Global number of internet users 2005-2024[1]

Angular

Originally developed by Miko Hevery in 2010 and maintained by Google and the com-

munity, AngularJS is a web framework that aims to simplify both the development and

testing of web applications by providing a framework for client-side model–view–controller

(MVC) architectures, along with components commonly used in web applications [6]. The

initial iterations of AngularJS contained numerous flaws, prompting Google developers

to completely rewrite the framework and rebrand it as Angular (dropping the JS). Some

notable features that might impact web scraping techniques in Angular-based web pages

are:

Component-Based Architecture Angular uses a component-based architecture, which

allows developers to build encapsulated, reusable user interface elements. Each com-

ponent encapsulates its own HTML, CSS, and TypeScript, making it easier to man-

age and test individual pieces of an application.

Directives Angular extends HTML with additional attributes called directives. Direc-

tives offer functionality to change the behavior or appearance of DOM elements.

SSR Angular has official support for server-side rendering, which improves an applica-

tion’s load time and performance. Server-side rendering also enhances search engine

optimization by making content more accessible to web crawlers.

Numerous websites are using Angular [7], but in the vast Web it still corresponds to

only 0.5%.

28

1.3.1 Modern Javascript Frameworks

Figure 1.2. Angular Usage Statistics [2]

No of Live Websites Percentage

Top 10k 433 4.33%

Top 100k 3,296 3.3%

Top 1m 12,679 1.27%

All Internet 521,384 0.05%

Table 1.1. Angular Usage Percentage

React

React, designed by Facebook in 2013, “is basically a web framework that was mainly

designed to address the performance issues in web applications. React uses virtual DOM

that decides whether the component has to be reloaded or not based on the current state

of the component and the changes that have occurred. This prevents the application

from re-rendering unnecessarily. Apart from this, React also introduces one-way data flow

which helps to control the flow of the data within the application which makes the tracking

of the occurred easier and also simplifies the propagation and stability.” [8] To emphasize

how the React framework could affect web scraping in applications built with it, these

features must be addressed.

Virtual DOM The DOM (Document Object Model)[9] is a crucial component in web

development, as it divides into modules and executes the code. The standard practice

of Javascript Frameworks is to update the DOM at once, which can negatively

impact the application’s performance. React pioneered the use of a virtual DOM,

an exact copy of the real DOM, which gets updated first and then is used to find

29

Chapter 1. Modern Web Scraping Architecture

the minimal changes that need to be made. While this surely improves performance,

it can complicate the process of a web scraper, adding the need to be able to run

Javascript in order to get the website’s content.

Component-based architecture Similar to Angular, React uses components to struc-

ture the UI.

Figure 1.3. Component Based Architecture UML Component Diagram

Figure 1.4. React Usage Statistics [2]

React’s adoption is fairly notable in the above statistics as nearly half of the most

popular websites are using it.

30

https://trends.builtwith.com/javascript/React

1.3.1 Modern Javascript Frameworks

No of Live Websites Percentage

Top 10k 4,246 42.46%

Top 100k 34,952 34.95%

Top 1m 197,181 19.72%

All Internet 51,355,483 4.5%

Table 1.2. React Usage Percentage

Vue.js

Vue.js [10], created by Evan You in 2014, is a progressive JavaScript framework pop-

ular for its simplicity and flexibility. Designed to be incrementally adoptable, Vue.js can

function as a lightweight library for enhancing parts of a web page or as a full-fledged

framework for building complex Single-Page Applications (SPAs). Its balanced approach

between performance and ease of use has contributed to its widespread popularity among

developers.

Key features of Vue.js include:

Two-Way Data Binding Vue.js provides a strong two-way data binding mechanism

that seamlessly synchronizes the model and the view. This makes it particularly

beneficial for developing dynamic interfaces, but for web scraping, it may require

handling frequent updates to the DOM efficiently.

Component-Based Architecture Like other modern frameworks, Vue.js emphasizes a

component-based structure, allowing developers to wrap and reuse user interface

elements. Scrapers can leverage this modularity to identify repetitive patterns in

data structures in components.

Directives Vue.js extends HTML with directives such as ‘v-bind‘ and ‘v-for‘, enabling

developers to add dynamic behavior to the DOM. These directives, while powerful

for interactivity, require advanced handling techniques for web scraping tools to

interpret and extract rendered content effectively.

Virtual DOM Similar to React, Vue.js uses a virtual DOM to optimize rendering perfor-

mance. This virtual representation can streamline updates but adds complexity for

scrapers, as they may need to execute JavaScript to fully load and capture dynamic

content.

Extensibility Vue.js is highly extensible with plugins, state management solutions like

Vuex, and routing capabilities through Vue Router. These tools enhance develop-

ment capabilities, but may present additional layers for scrapers to navigate, partic-

ularly when dealing with nested routes or complex states.

Vue.js achieves a compelling balance between simplicity and sophistication, making it

suitable for a wide range of applications. For web scraping, understanding the dynamic

nature of Vue and its modular architecture is crucial to implement effective strategies.

31

Chapter 1. Modern Web Scraping Architecture

Figure 1.5. Vue Usage Percentage [2]

No of Live Websites Percentage

Top 10k 2,361 23.61%

Top 100k 20,058 20.06%

Top 1m 117,128 11.71%

All Internet 4,790,110 0.43%

Table 1.3. Vue Usage Percentage

Next.js

Next.js[11], introduced by Vercel in 2016, represents a significant leap forward in

web development by merging modern performance-focused methodologies with traditional

server-side rendering (SSR). It was designed to tackle issues related to performance, search

engine optimization (SEO[12]), and development efficiency, making it a popular choice for

building powerful and scalable web applications. Its feature set provides developers with

tools to build static and dynamic web pages with enhanced performance and flexibility.

Key features of Next.js that impact web scraping include:

Server-Side Rendering (SSR) One of the core functionalities of Next.js is SSR, which

enables the generation of HTML on the server for each request. This ensures that

the content is available to users and search engines immediately, improving initial

load times and SEO. For web scraping, this makes data extraction more accessible

as the content is pre-rendered and available in the source HTML.

32

1.3.1 Modern Javascript Frameworks

Figure 1.6. SSR Sequence Diagram

Incremental Static Regeneration (ISR) ISR allows developers to update static pages

on demand at runtime. This feature combines the speed of static generation with

the flexibility of dynamic content updates. For scrapers, ISR introduces challenges

in determining when content is updated, as changes may occur asynchronously post-

initial rendering.

Figure 1.7. ISR Sequence Diagram

Hydration Next.js employs hydration, a process where the server-rendered HTML be-

comes interactive on the client side through JavaScript. While this enhances user

interactivity, it requires web scrapers to execute JavaScript to capture fully interac-

tive content.

API Routes Next.js simplifies the creation of backend endpoints using its API routes,

enabling developers to build serverless functions directly within the application. This

segmentation often requires additional steps for web scrapers to identify and interact

with these endpoints.

Static Site Generation (SSG) SSG is another feature of Next.js that pre-renders pages

at build time, ensuring faster delivery of static content. For web scraping, this

typically simplifies the process, as static pages are readily available without needing

JavaScript execution.

33

Chapter 1. Modern Web Scraping Architecture

Figure 1.8. SSG Sequence Diagram

Next.js is a React framework that has become essential for modern web development,

offering performance, scalability, and dynamic interactivity. For web scraping, under-

standing its rendering and update mechanisms is key.

Svelte

Svelte[13], introduced by Rich Harris in 2016, represents a paradigm shift in web

development by shifting the workload from the browser to the build process. Unlike

traditional JavaScript frameworks such as React and Angular, Svelte compiles components

into highly efficient, plain JavaScript code during build time, resulting in faster runtime

performance and smaller bundle sizes.

Key features of Svelte include:

Compile-Time Optimization Svelte eliminates the need for a virtual DOM by com-

piling components into minimal JavaScript code during the build process. This

approach reduces runtime overhead and delivers exceptional performance, making it

appealing.

Reactive Declarations Svelte’s reactivity system allows developers to declare reactive

variables directly in the code. This simplifies the state management process, but

may require scrapers to handle dynamically updated elements with care.

Scoped Styles With Svelte, styles are scoped to components by default, ensuring better

encapsulation. For web scraping, this can introduce challenges in identifying and

extracting content tied to dynamically styled elements.

Minimal Framework Overhead By compiling to plain JavaScript, Svelte avoids the

inclusion of a framework runtime, which contributes to its small bundle size. This

efficiency can simplify scraping as the application is less dependent on heavy client-

side JavaScript.

Svelte has quickly gained popularity for its simplicity and performance. Understand-

ing its compile-time features and reactive nature is essential for effective web scraping

strategies.

34

1.3.1 Modern Javascript Frameworks

Figure 1.9. Svelte Usage Statistics [2]

No of Live Websites Percentage

Top 10k 168 1.68%

Top 100k 933 0.93%

Top 1m 4,121 0.41%

All Internet 262,802 0.026%

Table 1.4. Vue Usage Percentage

Conclusion

Despite the popularity of modern JavaScript frameworks like React, Angular, and

Vue.js, their adoption across the broader web remains surprisingly limited. Statistics indi-

cate that while these tools might dominate the realm of high-profile web applications and

tech-driven companies, a significant portion of websites still rely on simpler technologies

or legacy systems. The rise of these frameworks also represents a fascinating full-circle in

web development. Initially, server-side HTML dominated the web with its straightforward

content delivery. Over time, as client-side interactivity and AJAX became more and more

important, rendering was moved to the client to improve user experience. However, chal-

lenges such as search engine optimization (SEO), initial load times, and the demand for

faster performance brought server-side rendering (SSR) back into focus, albeit in a more

advanced form. Frameworks like Next.js have revitalized SSR by combining it with mod-

ern techniques such as hydration and incremental static regeneration, achieving a balance

between performance and interactivity.

35

Chapter 1. Modern Web Scraping Architecture

1.3.2 Advanced API Interfaces

The evolution of web communication technologies has led to the development of ad-

vanced API interfaces, which have revolutionized the way clients and servers interact.

These technologies include the foundational REST API as well as more recent innovations

such as GraphQL and gRPC, each of which addresses specific limitations of its predecessors

while introducing new paradigms for data exchange.

REST API

Representational State Transfer (REST) was introduced by Roy Fielding in 2000 as

part of his doctoral dissertation[14]. REST defines a set of principles for designing net-

worked applications, focusing on stateless communication, resource-based structure, and

standard HTTP methods such as GET, POST, PUT, and DELETE. Its simplicity and

wide adoption have made REST the default standard for APIs over the past two decades.

From a web scraping perspective, REST APIs offer a predictable and structured way

to access data. Public and private APIs are often utilized to scrape specific endpoints

to extract information. However, reliance on fixed endpoints can sometimes limit its

flexibility, particularly in dynamic applications that require tailored queries or efficient

batch operations.

GraphQL

GraphQL[15], developed by Facebook in 2012 and open-source in 2015, implemented as

a solution to the challenges posed by the rigid structure of REST. Unlike REST, GraphQL

allows clients to specify the structure of the response, enabling them to fetch exactly

the data they need in a single query. This eliminates the problem of overfetching or

underfetching data, which is common with REST APIs.

For web scraping, GraphQL presents both opportunities and challenges. Its query lan-

guage allows scrapers to tailor requests for precise data extraction. However, its complex-

ity, including nested and deeply interconnected queries, often requires advanced handling.

In addition, limiting the rate and enforcing the schema can cause problems to automated

scraping tools.

gRPC

gRPC[16], short for Google Remote Procedure Call, was created by Google in 2015

as an open-source framework for high-performance cross-platform communication. Unlike

REST and GraphQL, which rely on human-readable formats such as JSON, gRPC uses

Protocol Buffers (protobuf) for compact binary serialization. This makes gRPC excep-

tionally efficient for real-time communication and large-scale applications.

From a web scraping perspective, gRPC introduces significant challenges. The bi-

nary format of Protocol Buffers is not inherently human-readable, making it difficult for

traditional scraping tools to interpret. In addition, reliance on bidirectional streaming

36

1.4 Search Engine Optimization (SEO)

and persistent connections can complicate data extraction efforts. However, for scrap-

ers equipped with the necessary decoding and streaming tools, gRPC efficiency can be

harnessed for high-performance data retrieval.

Implications for Web Scraping

These advanced API interfaces reflect the ongoing effort to optimize client-server inter-

actions. Although REST remains widely used due to its simplicity, GraphQL and gRPC

provide powerful alternatives for specific use cases. For web scraping, the choice of API

interface significantly affects the complexity and efficiency of data extraction. Understand-

ing the nuances of each technology is critical for designing scraping strategies that balance

performance, precision, and adaptability.

1.4 Search Engine Optimization (SEO)

Search Engine Optimization, or SEO, is the process of improving a website’s visibility

on search engine result pages to increase organic traffic. By structuring a website’s struc-

ture, content, and metadata in harmony with algorithms which search engines like Google

use, SEO secures high ranking relevant to queries. In the modern digital ecosystem, SEO

is very important, as it directly influences aspects of discoverability and user engagement.

[17]

History of SEO

The origins of SEO date back to the late 1990s, which also saw the emergence of search

engines such as Yahoo! and AltaVista. Early SEO techniques were unsophisticated, based

on keyword stuffing and backlinks. As search engines matured, especially with Google’s

PageRank algorithm, SEO practices became more complex, shifting their focus to quality

content, relevance, and user experience. With the evolution of web technologies from

simple static HTML pages to dynamic SPAs and SSR described above, SEO also had

to evolve. In modern SEO practices, technical considerations such as page load times,

mobile responsiveness, and schema markup have been incorporated to keep up with the

complexity of modern web architectures.

Search Engines and Data Crawling

Search engines use automated programs called web crawlers or bots-e.g., Googlebot)

to index the web. These crawlers systematically visit websites, analyzing their content,

metadata, and structure to determine relevance and ranking. Crawlers mainly use two

ways to access data from a website:

HTML Parsing Obtaining information from static or server-side rendered pages.

API Requests Obtaining structured information through publicly available APIs or

schemas like JSON-LD.

37

Chapter 1. Modern Web Scraping Architecture

These processes make sure that search engines are able to provide appropriate and

high-quality results to users. For websites, proper indexing is the beginning of visibility;

hence, they usually apply SEO methods like sitemaps and meta tags to guide crawlers.

Allowing and Restricting Crawlers: The Role of Robots.txt

Websites regulate crawler permission with a special configuration file called robots.txt.

The robots.txt file, located in a website’s root directory, instructs crawlers regarding what

the website allows or disallows. The most common directives include the following.

Allow Explicitly allows crawlers to access specified directories or files.

Disallow Prevents crawlers from accessing certain areas.

Crawl delay Specifies the time interval between successive requests to reduce server load.

Example of a robots.txt file:

User-agent: *

Disallow: /private/

Allow: /public/

Most search engines and other legitimate crawlers honor what is specified in robots.txt.

However, it cannot be technically enforced. Most search engines would follow it, but other

bots may not, including some scrapers.

Legal and Ethical Considerations

The use of robots.txt introduces legal and ethical dimensions to web crawling. Ignoring

robots.txt directives may violate the terms of service (ToS) of a website and, in some

jurisdictions, could be considered unauthorized access. In contrast, adhering to robots.txt

ensures ethical scraping practices and minimizes the risks of legal repercussions.

Implications for Web Scraping

For web scrapers, SEO-oriented websites can simplify data extraction. Crawlers often

make key information accessible and well structured for indexing purposes, reducing the

complexity of scraping tasks. However, it is important that scrapers make these allowances

responsibly, with attention to directives like robots.txt to not conflict with website admin-

istrators or legal frameworks. SEO highlights the mutual reliance between websites and

search engines, highlighting that visibility and accessibility are balanced by ethical con-

cerns. Recognizing this dynamic is crucial to develop web scraping strategies that are

both technically sound and ethically responsible.

38

Chapter 2

Techniques and Innovations in Web Scraping

Web scraping is an evolving discipline that combines elements of software engineering,

data science, and ethical considerations. As web technologies have become increasingly

complex, the methods and tools used for scraping data have also advanced. This chapter

provides an in-depth exploration of the foundational techniques, optimized processes, and

real-time strategies that support modern web scraping practices.

Having laid the groundwork in Chapter 1 by discussing the evolution of web technolo-

gies and the challenges they introduce, this chapter focuses on how data can be efficiently

extracted from modern websites. The goal is to bridge the gap between theoretical un-

derstanding and practical application, enabling readers to understand the methodologies

that make modern scraping effective.

2.1 Foundational Scraping Techniques

Web scraping techniques are the foundation of data extraction from the web, and their

evolution parallels the increasing complexity of modern websites. This section examines

the basic methods used to navigate static and dynamic web content effectively.

2.1.1 Scraping Static Websites

Static websites are created using only simple HTML and CSS, without complex back-

end logic or JavaScript frameworks that render content. In static sites, the response to an

HTTP GET request returns the whole HTML file of the requested page. This will also, of

course, contain the visible content of the webpage, metadata, and structural information.

Since the content is pre-rendered and delivered directly to the client, obtaining and parsing

the HTML is straightforward. The simplicity of static websites is a direct consequence

of their architecture, which separates content from presentation. The contents of a static

webpage are precompiled and fixed and stored in fixed files on a web server. This makes

them much faster to load and also easier to scrape, since the required data will already be

there in the HTML source.

HTML parsing is done with libraries such as Cheerio.js[18] for JavaScript or Beautiful

Soup[19] for Python. These libraries enable a developer to navigate and change the Doc-

ument Object Model (DOM) in order to extract the target data. In general, the DOM is

a tree-like representation of an HTML document structure where every node is assigned

39

Chapter 2. Techniques and Innovations in Web Scraping

to an element or text. Among these, Cheerio.js, for instance, is a light yet fast solution

inspired by jQuery[20] allows for CSS selectors to effectively target elements within the

DOM. CSS selectors, as popularized by jQuery, allow effective targeting of elements based

on their attributes, tag name, class, or ID. Examples targeting elements by tag - div, by

class - .header or by ID - #main. CSS selectors are central to web scraping. They offer

a declarative way to specify what to extract. They are especially effective because they

enable intricate queries that merge several criteria, such as selecting all the p elements

within a div of a specified class. This adaptability allows the extraction of structured data

from web pages that are even moderately intricate.

To illustrate, consider the following HTML content:

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<title>Example Page</title>

</head>

<body>

<div id="content">

<h1 class="title">Welcome to the Example Page</h1>

<p class="description">This is a simple HTML page for scraping.</p>

<ul class="items">

<li class="item">Item 1

<li class="item">Item 2

<li class="item">Item 3

</div>

</body>

</html>

This HTML contains a simple structure where content is organized into a header, a

paragraph, and a list. Each element is marked with attributes such as classes and IDs,

which can be used to precisely locate and extract them using CSS selectors.

Using Cheerio.js, the content of this page can be scraped as follows:

const cheerio = require(’cheerio’);

const axios = require(’axios’);

async function scrapeStaticPage(url) {

try {

const { data: html } = await axios.get(url);

const $ = cheerio.load(html);

40

2.1.2 Dynamic JavaScript-Driven Websites

const title = $(’h1.title’).text();

const description = $(’p.description’).text();

const items = [];

$(’ul.items li.item’).each((index, element) => {

items.push($(element).text());

});

console.log(’Title:’, title);

console.log(’Description:’, description);

console.log(’Items:’, items);

} catch (error) {

console.error(’Error scraping the page:’, error.message);

}

}

scrapeStaticPage(’https://example.com’);

In this code, the axios[21] library retrieves HTML content via an HTTP GET request,

while Cheerio.js parses HTML and applies CSS selectors to extract specific elements. The

function $(’h1.title’).text() retrieves the text content of the header with the class

title, while the $(’ul.items li.item’) query iterates through all list items in the

unordered list with the class items, collecting their text values.

This approach highlights the theoretical reinforcements of static website scraping: re-

liance on a predictable and stable document structure, the use of efficient tools for DOM

traversal, and the application of precise CSS selectors for targeted data extraction. To-

gether, these elements form the basis for extracting meaningful information from static

websites in an organized and efficient manner.

2.1.2 Dynamic JavaScript-Driven Websites

The shift from static to dynamic was a significant evolution in web architecture, driven

by the demand for interactivity and richer user experiences. In contrast to static website

simplicity, modern dynamic websites generate their content client-side after the first HTML

file has loaded. This results in a distinct architecture that requires an alternative method

for web scraping, due to the requirement for the scraper environment to execute Javascript.

Dynamic websites rely on CSR: client-side rendering, which means that JavaScript

execution in the browser fetches data and builds or updates the DOM. A basic GET request

typically yields an HTML file with a tree structure, serving as the primary entry point of

each framework without revealing the actual content. The execution of Javascript code is

necessary to produce the content. Such dynamic content generation is thus very helpful

for interactivity and performance, yet significantly increases the challenge for traditional

scraping methods relying on a simple HTTP request to retrieve the HTML file. For

example, content may only be loaded after certain user interactions or asynchronous API

41

Chapter 2. Techniques and Innovations in Web Scraping

calls, and thus the scraper would not be able to extract any meaningful data directly from

the server response. Once the HTML file has been generated, the process is the same as

static web scraping using Cheerio.js or a similar library.

An approach to address these challenges is through the use of headless browsers in

the context of web scraping. A headless browser is one that operates without a graphical

user interface and, in so doing, can run JavaScript, render dynamic content, and program-

matically interact with websites. Although originally designed for use within automated

testing of web applications, headless browsers have proved invaluable when it comes to

scraping JavaScript-driven websites.

The main purpose of a headless browser is to provide a running environment for the

JavaScript code within a page, as would any real user. For this reason, it can load dynamic

content, perform updates to the DOM, and generally render the page just as a user would

see it. This will be quite important in scraping, as it ensures that scrapers will get the

fully loaded and dynamic state of the webpage. This has been made easy with tools such

as Puppeteer[22], Playwright[23], and Selenium[24] by giving access to a programmatic

method for controlling headless browsers such as Chromium and Firefox.

The described method involves a number of crucial steps. The scraper starts the

headless browser and opens the target URL. The browser will execute JavaScript, fetching

data and rendering the DOM while the page is loading. The scraper can then interact

with the rendered page, either by using DOM traversal techniques or capturing network

requests to get structured data from APIs. For example, Puppeteer has the option of

waiting until certain DOM elements load so that all dynamic content is present before

scraping even starts.

Headless browsing revolutionized the possibility of scraping dynamic websites, but

not without challenges. The headless browser consumes much more resources than a

traditional parser since it emulates a full browser environment. Additionally, most dynamic

websites include some protection against scraping, such as CAPTCHAs, bot detection

algorithms, and rate limiting, all of which will be analyzed later in the thesis.

In other words, as websites transitioned from static to dynamic formats, scrapers

needed to adapt to the imposed challenges. This gap was closed with the advent of

headless browsers, which allowed scrapers to handle content generated by JavaScript. By

simulating a user environment, headless browsers enabled developers to interpret data

extracted from a contemporary web application, broadening the scope and utility of web

scraping for dynamic web technologies.

2.1.3 Network Request Interception

Another advanced technique for handling dynamic websites is based on the interception

of network requests, enabling asynchronous communications between the client and the

server. Many modern dynamic websites heavily rely on these communications to fetch

data and update the UI. Driving factors include AJAX, Fetch APIs, and WebSocket

protocols. Although static websites include all the content in the initial HTML response,

dynamic websites load the essential data through discrete network requests at runtime.

42

2.1.3 Network Request Interception

Thus, traditional scraping methods, which rely on DOM parsing, might not be sufficient to

fetch the required data. This naturally leads to other ways in which this can be achieved,

including intercepting network requests. A technique that is helpful for scrapers to directly

access data exchanged between the browser and server.

The interception of network requests relies on the very basic principle of observing

the communication channels that take place and helping to exchange data in dynamic

web applications. By monitoring these requests, scrapers can determine the endpoints

and payloads involved in fetching a required piece of information. It bypasses the need

for DOM traversal by capturing raw data in formats like JSON or XML, which is often

well-structured and more parse-friendly compared to HTML.

The most important application of network request intercepting in scraping is to emu-

late the requests a browser would make. That means peering into the headers, parameters,

and body of HTTP requests and programmatically re-creating them in order to extract

data from a source directly. Browser developer consoles, Mitmproxy[25], and Puppeteer’s

network interception capabilities are some of the tools that make this process easier. These

tools provide developers with the functionality to monitor network activity, filter out rel-

evant requests in order to automate data extraction workflows.

For example, SPAs built using either React or Angular fire API calls on user interaction

or page load to dynamically fetch data from a server. These can be observed in the Network

tab of the browser’s developer tools. From these requests, the scraper could know which

endpoint URL, HTTP method, headers, and query parameters are required to fetch the

data. Once identified, the scraper can programmatically issue identical requests for that

data without having to render a full page or interact with the DOM.

This approach offers some real advantages, especially in terms of efficiency and accu-

racy. Directly accessing structured data, scrapers avoid processing overhead and potential

inconsistencies due to dynamic manipulation of the DOM. Additionally, intercepting net-

work requests reduces resource consumption because it does not need to open and execute

JavaScript code. However, the method also means some challenges: Many websites im-

plement protection measures such as authentication tokens, rate limiting, and encryption

that should be handled with care to make your data extraction successful.

More specifically, a higher application in network request interception involves the

processing of communications done via WebSockets. WebSockets are a special technology

that allows for real-time, bidirectional communication between client and server, usually

adopted to provide live updates, as in chat systems or financial dashboards. Capturing

and decoding these streams demands deeper knowledge of the protocol and tools able to

analyze binary data formats, such as Wireshark[?] or specialized WebSocket libraries.

By focusing on the communication layer, the mess in the DOM manipulation and

extract structured data can be bypassed. There are lots of pitfalls while developing because

of protective mechanisms, but generally, it is a crucial tool in an arsenal of different web

scraping strategies to handle such applications driven by JavaScript.

43

Chapter 2. Techniques and Innovations in Web Scraping

2.1.4 Comparing Techniques

Web scraping techniques differ greatly depending on the structure of the target website,

the technology stack it employs, and the level of protection against automated extraction.

The three fundamental approaches discussed earlier HTML Request Parsing, Headless

Browsers, and Network Interception each have distinct strengths and weaknesses that

influence their suitability for different scenarios.

HTML Request Parsing

HTML request parsing is best suited for simple, static websites such as blog pages,

news archives, and document repositories where the structure remains stable over time.

Advantages

• Fast and lightweight: Does not require rendering JavaScript, making it efficient for

simple pages.

• Low resource consumption: Can run on low-power machines since it does not require

a full browser.

• Structured HTML accessibility: Works well for static websites where content is fully

available in the initial HTTP response.

Disadvantages

• Fails on JavaScript-heavy sites: The websites that use client-side rendering, where

key content is loaded asynchronously via JavaScript, making direct HTML requests

insufficient.

• Vulnerable to structural changes: If a website modifies its HTML layout, scrapers

relying on hard-coded selectors may break.

• Limited interactivity: Cannot handle authentication flows, infinite scrolling, or other

dynamic behaviors.

Headless Browsers

Headless browsers are ideal for web applications with complex JavaScript rendering,

such as e-commerce platforms, social media feeds, and interactive dashboards.

Advantages

• Handles JavaScript-heavy sites: Can extract content from Single Page Applications

(SPAs) that load dynamically.

• Supports interactivity: Can click buttons, scroll pages, and fill forms, making it

effective for sites requiring user interaction.

• Bypasses basic anti-scraping measures: Can simulate real user behavior, reducing

detection risks.

44

2.1.4 Comparing Techniques

Disadvantages

• Resource-intensive: Running a full browser instance consumes significantly more

CPU and memory compared to HTML parsing.

• Slower execution: Because the page needs to be rendered and JavaScript executed,

scraping speeds are lower.

• Detection risks: Some sites use methods to detect automation tools like Puppeteer,

which may require additional evasion techniques.

Network Interception

Network request interception is most effective for applications that rely heavily on

APIs, such as stock market data feeds, travel booking platforms, and live sports score

updates.

Advantages

• More efficient than full browser automation: Extracts structured data directly with-

out rendering HTML.

• Bypasses UI-based obfuscation: Since it does not rely on DOM elements, it is unaf-

fected by dynamic layout changes.

• Reduces computational overhead: Consumes less resources than a headless browser,

since it only captures API responses.

Disadvantages

• Requires knowledge of network protocols: Extracting API calls can be complex and

require developer tools, proxies, or packet analyzers.

• APIs may require authentication: Some requests include API keys, tokens, or session

cookies, making them harder to replicate.

• WebSocket encryption: Some real-time communication protocols encrypt responses,

requiring decryption techniques to access meaningful data.

Technique Best For Challenges

HTML Request Parsing Static websites Ineffective for dynamic content

Headless Browsers JavaScript-heavy websites Resource-intensive

Network Interception API-driven or dynamic data Requires protocol expertise

Table 2.1. Comparison of Foundational Scraping Techniques

45

Chapter 3

Scraping Prevention and Countermeasures

3.1 Detection and Mitigation Strategies

Web scraping detection and mitigation strategies are at the core of modern web ap-

plication security to avoid data extraction by unauthorized sources. These methodologies

detect and deter attacks by malicious parties through a blend of technological frameworks,

behavioral analytics, and artificial intelligence. In this section, we consider key method-

ologies, their theoretical grounds, and their practical application in order to point out

their efficiency and limits.

3.1.1 Browser Fingerprinting

Browser fingerprinting involves capturing and analyzing unique attributes of the browser

environment, including the user agent string, the type and version of the browser, as well as

the operating system used, any active plugins, the time zone and language of the machine,

the screen resolution and various other active settings. These attributes when combined,

they form a browser fingerprint that can identify and track individual users. For example,

as described by Acar et al. in their FPDetective development, browser fingerprinting can

involve analyzing JavaScript and Flash-based attributes to identify fingerprinting behav-

ior across thousands of websites [26]. Laperdrix et al. provide a comprehensive survey on

browser fingerprinting, explaining how a combination of device-specific attributes, such

as canvas fingerprinting and WebGL parameters, contributes to unique identification [27].

Surprisingly, browsers give a lot of information about the user and, based on research

carried out by the Electronic Frontier Foundation[28], 84% of collected fingerprints are

globally exclusive, and they found that the next 9% were sets of two. Even though finger-

prints are dynamic, new ones can be matched up with old ones with 99.1% correctness,

therefore allowing websites to track online behavior in order to serve hyper-personalized

advertisements. In other cases, these fingerprints are being used for anti-bot detection as

scraping bots, which rely on headless browsers or minimalistic HTTP clients, usually have

limited diversity in their fingerprints, making them easier to detect.

However, the latest developments in scraping tools that emulate full browser environ-

ments have increased the complexity of this task.

47

Chapter 3. Scraping Prevention and Countermeasures

3.1.2 Traffic Pattern Analysis

Among the widely used methods is the analysis of traffic patterns. It involves checking

the inbound traffic coming to a website for anomalies that may suggest the presence

of some bot-like traffic. For instance, humans tend to produce requests at a somewhat

predictable cadence, interspersed by moments of inactivity that reflect human browsing

habits. A web scraper, on the other hand, will make a lot of requests in quick succession

to scrape off the maximum data. This kind of anomaly is detected by applying various

statistical techniques or machine learning models. Machine learning, in particular, excels

at distinguishing between normal and anomalous traffic by identifying subtle non-linear

patterns in request metadata, such as headers, referrers, and IP addresses.

These characteristics are derived primarily from the frequency of the request, the

duration of the response, and the diversity of user agents. The aim is to classify the

traffic as human or automated by employing supervised learning algorithms. More recent

deep models combine a transformer and convolutional neural network architecture in their

designs, aimed at both temporal and spatial feature capture from web traffic streams with

greater detection sensitivities toward even very small-scale anomalies indicative of the

operation of a scraping bot. [29].

Another powerful strategy is to combine different detection methodologies, such as

rule-based systems, statistical anomaly detection, and machine learning classifiers. This

layered approach will analyze the traffic indicators of IP diversity, request rates, and

browser capabilities to enhance robustness against sophisticated bots. [30].

Unsupervised learning techniques also play a critical role in environments where la-

beled data is scarce. These methods identify suspicious patterns and behaviors indicative

of scraping activities, enabling dynamic anomaly detection across varied traffic datasets

[31]. Furthermore, indirect traffic analysis techniques, such as examining packet size distri-

butions and timing, offer a unique perspective in detecting scraping activities, particularly

those using obfuscation techniques such as VPNs and proxy servers [32].

Although traffic pattern analysis provides powerful tools to detect web scraping, it is

not without challenges. False positives can arise from legitimate high-frequency access,

such as API usage or bulk data downloads. Moreover, advanced bots employ sophisticated

tactics to evade detection, such as dynamically altering request patterns and mimicking

human browsing behaviors. Addressing these challenges requires continued refinement of

the detection algorithms and the integration of multiple detection methodologies.

3.1.3 CAPTCHAs

CAPTCHAs (Completely Automated Public Turing tests to tell Computers and Hu-

mans Apart) are among the most widely adopted techniques to combat web scraping.

CAPTCHAs, introduced by von Ahn et al. [33], serve as a challenge-response mech-

anism designed to differentiate between human users and automated bots by requiring

users to solve problems that are easy for humans but difficult for bots. Common forms of

CAPTCHA include identifying distorted text, selecting specific images, or solving simple

puzzles.

48

3.1.4 Honeypotting

The effectiveness of CAPTCHAs lies in their ability to disrupt the automated work-

flows of scraping bots. Since bots rely on programmatically sending requests and parsing

responses, introducing CAPTCHAs adds an additional layer of complexity that often re-

quires sophisticated AI models to bypass. For example, image-based CAPTCHAs require

visual recognition capabilities that many bots lack. Moreover, modern CAPTCHAs, such

as reCAPTCHA, employ behavioral analysis by monitoring user interactions like mouse

movements and keystrokes to assess whether the user is a bot.

Despite their effectiveness, CAPTCHAs have limitations. Sophisticated bots that use

advanced AI and machine learning can now solve many CAPTCHA challenges with high

accuracy [34]. Additionally, CAPTCHAs can negatively impact the user experience, par-

ticularly when they are overly difficult or appear frequently. This trade-off between secu-

rity and usability necessitates careful deployment of CAPTCHAs to ensure that they do

not deter legitimate users.

In recent years, invisible CAPTCHAs have gained popularity. These CAPTCHAs work

silently in the background by analyzing user behavior to identify bots without requiring

explicit user interaction. Although this approach minimizes user inconvenience, it raises

concerns about privacy and the potential misuse of behavioral data.

In summary, CAPTCHAs remain a valuable tool in web scraping prevention strategies,

particularly when combined with other detection methods. Their evolution toward more

user-friendly and sophisticated forms continues to make them a crucial component of

modern web security.

3.1.4 Honeypotting

Honeypotting is a really smart web security approach aimed at the detection, deflec-

tion, or analysis of unauthorized scraping activities. This involves the intentional place-

ment of deceptions, such as links, forms, or hidden content, within a web application in

order to detect and evade malicious bot traffic. The principle of honeypotting involves

enticing the bots into taking action on the deceptive elements so that indications of ma-

licious behavior are attained and unauthorized data extraction can be barred effectively.

Generally, honeypotting means creating traps that would appear very legitimate for bots

but should remain undetectable to a human user. This can be performed by honeypots

through hidden links and form fields by using the HTML and CSS properties of display:

none or visibility: hidden. Since these are not visible or accessible by humans, any

action could be counted as that from a bot. If a bot does come into contact with a

honeypot, then it can log activity, analyze the data, and block further access.

Honeypots have proven to be very efficient in picking up the presence of scraping

bots that get through traditional rate-limiting or CAPTCHAs. The honeypot data allows

organizations to further tune their bot detection algorithms and apply countermeasures

in focused ways: logging IP addresses, user agents, or request patterns of bots interacting

with honeypots to proactively block malicious entities.

One good thing about honeypotting is that it actually does not affect the user experi-

ence at all. Unlike CAPTCHAs, which may introduce bad experiences for users, honeypots

49

Chapter 3. Scraping Prevention and Countermeasures

just silently do their thing in the background, unobtrusive as such. However, advanced

bots may sometimes identify honeypots using advanced algorithms, reducing their effec-

tiveness. Moreover, honeypots not configured properly can block legitimate users or leak

sensitive data.

Recent research in the field of honeypot technologies has been geared toward inte-

grating machine learning into their detection capabilities. Machine learning models can

interpret honeypot interaction data in search of patterns indicative of bot behavior, en-

hancing the accuracy of bot detection systems. Dynamic honeypots, changing attributes at

regular intervals, provide another layer of complexity for a bot seeking to avoid detection.

Honeypotting represents one of the most important tools in web scraping prevention

strategies. Complementing traditional methods of detection, such as traffic pattern anal-

ysis and CAPTCHAs, honeypots provide a sound and low-impact approach to the iden-

tification and mitigation of malicious bot activities. Continuous innovation in the design

of honeypots and their integration with machine learning promise to further strengthen

security in web applications.

3.1.5 IP Reputation Systems

Another layer of defense is the IP reputation system. These systems maintain whitelists

and blacklists of IP addresses and networks with known malicious participation in sending

out bots, in order to block or throttle requests from these flagged IP addresses. The

advanced ones update their databases dynamically using crowd-sourced intelligence and

real-time threat detection. However, this very method is highly challenged by scrapers

using rotating proxies or large pools of residential IP addresses.

3.1.6 Behavioral Analytics

Behavioral analytics enhances detection by focusing on how users interact with a web-

site. Legitimate users have complex, non-linear behaviors-like scrolling, hovering over

elements, and irregular click patterns, all of which characterize the interaction as organic.

Scraping bots programmatically interact with the website and often bypass elements al-

together. Advanced behavior analytics leverages machine learning to model typical user

interactions and flags deviations indicative of bot activity. These models are trained on

massive datasets of real and malicious interactions for the purpose of maximum accuracy.

However, a bot can be programmed to simulate human behavior, implementing random

delays and scrolls, making it difficult to discover by this method.

3.1.7 Conclusion

Although these techniques are strong in devising ways through which web scraping

may be detected and hampered, all of them have certain weaknesses. In cases of legit-

imate high-frequency access, such as API usage, false positives may result from traffic

pattern analysis. Browser fingerprinting is vulnerable to spoofing, in which bots spoof

actual browser attributes. CAPTCHAs can be solved with advanced AI bots or using

50

3.1.7 Conclusion

solver APIs. Honeypotting can be avoided by checking that the element is visible be-

fore scraping it. In turn, IP reputation systems struggle against the now ordinary use

of residential proxies and methods for obscuring one’s IP address. Behavioral analytics,

promising as it may be, depends on relentless retraining as bot tactics continue to change,

with a likely added downside. It might punish users with unconventional browsing behav-

ior. Therefore, successful bot detection implementation requires a multilayered solution

that combines different approaches against a multidimensional threat landscape while also

applying preventive techniques in the development stage.

Table 3.1. Comparison of Web Scraping Bot Detection Methods

Methodology Advantages Disadvantages Bypass Techniques

Browser Finger-
printing

Unique identifi-
cation of users;
effective against
simple bots

Susceptible to
spoofing; com-
plexity increases
with advanced
bots

Bots emulating full
browser environments;
fingerprint spoofing

Traffic Pattern
Analysis

Effective in de-
tecting abnormal
traffic patterns;
adaptable to vari-
ous data points

False positives
for legitimate
high-frequency
users; complex
implementation

Bots mimicking human
traffic patterns; dis-
tributed requests

CAPTCHAs Proven effective-
ness; disrupts
automated work-
flows

Impacts user
experience;
advanced
AI can solve
CAPTCHAs

Using CAPTCHA
solver APIs; employing
human solvers

Honeypotting Minimal user
impact; provides
valuable bot data

Can be detected
by sophisticated
bots; improper
configuration
risks

Bots avoiding hidden
elements; inspecting
DOM for honeypots

IP Reputation
Systems

Blocks known
malicious IPs;
crowd-sourced
intelligence im-
proves accuracy

Less effective
against rotating
proxies or resi-
dential IPs

Use of proxy pools; dy-
namic IP switching

Behavioral Ana-
lytics

Detects complex
bot behavior;
leverages machine
learning

Requires retrain-
ing; challenges
with sophis-
ticated bots
mimicking human
behavior

Bots simulating realistic
user interactions

51

Chapter 3. Scraping Prevention and Countermeasures

3.2 Preventive Development Techniques

3.2.1 Rate Limiting and Throttling

Rate Limiting and throttling are some of the core web security methods that allow

the reduction in the number of requests possible by a client to a server within a certain

timeframe. The above measure helps server avoid abuse that includes denial-of-service

attacks or data scraping. Rate limiting works by defining the limits on the requests; if

these limits are exceeded, further requests will be blocked or refused for some time. To

illustrate this, in order to allow a maximum of 100 requests per minute from one IP address,

any additional requests can be throttled or rejected. The rate limit is usually implemented

on the server side or on the API gateway. A server tracks the timestamp of the moment

the request arrived and its origin. Then, the server compares successive requests from that

very same origin against the defined threshold within that time window. In such cases,

when the limit is exceeded, the servers can delay or refuse processing. Most of the time,

this will be combined with an HTTP status code corresponding to an issue, in this case

429 (too many requests). This approach prevents not only overloading on the server, but

also shares resources equitably between the users.

Rate limiting works really well in APIs that support programmatic access to sensitive

data or high value data. By setting a limit on how often clients can request specific

endpoints, APIs can prevent scripted processes from attempting to pull a large volume

of data in a very short amount of time. Dynamic rate limiting adjusts those thresholds

based on usage patterns or customer authentication levels and provides another layer of

security and flexibility. In this regard, for example, authenticated users could have higher

thresholds compared to anonymous users; in that respect, their status as trusted would

be reflected in that way.

Although rate limiting has proved effective, there are a number of drawbacks. Ad-

vanced scraper tools usually implement distributed networks of bots that will send re-

quests from different IP addresses. This is called a ”botnet” where the distributed nature

of their requests evades rate limiting, given that it seems like requests from different origins

for whatever server. Besides that, even legitimate high-frequency users-for instance, data

analysts or businesses using APIs for legitimate reasons-get mistakenly rate-limited, and

nuanced policies have to be made to create a distinction between benign and malicious

traffic.

Rate limiting and throttling remain two highly critical tools when trying to protect

against unauthorized access and resource abuses. Although it is very powerful with the

aspects of simplicity and adaptability, the weaknesses outlined clearly prove that further

security measures should be contemplated in view of the bypass techniques available which

have been polished accordingly.

3.2.2 Dynamic Code and CSS Attributes

Another effective approach to impeding web scraping would be frequent changes to the

website code or dynamic CSS attributes. This approach includes periodic changes to the

52

3.2.3 API Key and Token-Based Authentication

structure or presentation of web content; thus, the scraping bots have to be continuously

updated, and hence increase the cost and complexity of maintaining them.

Dynamic changes can involve regular renaming of HTML element IDs, classes, or

attributes. For example, unique identifiers and class names can be dynamically generated

using randomized or hashed strings with each server response. Since most scraping bots

rely on static identifiers to locate and extract data, these changes disrupt their ability to

locate the desired elements consistently.

The data presentation might be changed similarly using dynamic CSS attributes. For

instance, some elements could be moved in the view by using the position or z-index CSS

property, for instance, yet nothing actually changed within the real DOM. This allows

critical data, for instance, to shift visually without user experience degradation while

confusing web scraping bots relying on static DOM parsing.

More advanced would be the combination of server and client-side approaches. On the

server side, scripts randomize key aspects of the HTML structure as it is rendered; on the

client side, JavaScript manipulates the DOM even more after the page loads. This two-

layer approach ensures that even sophisticated bots rendering JavaScript cannot interpret

this dynamically changing environment.

It becomes even more powerful when applied together with some content obfuscation

techniques, such as encoding or encrypting certain data elements. For instance, critical

data fields should appear only after decoding a token passed via JavaScript; this means

that a bot should be able to execute and interpret complex scripts.

In turn, frequent changes in code and dynamic attributes need to be weighed against

development and maintenance costs. They may bring along some potential problems with

debugging and SEO optimization, since the dynamic changes might affect search engine

crawlers.

This means that regular code changes and dynamic CSS attributes create one more

layer of complexity for a web scraping bot, which cannot be relied upon in its results. An

organization that sets up a dynamically changing web reduces the level of effectiveness

with which automated tools can scrape information, hence making this tactic a core one

in any serious anti-scraping strategy.

3.2.3 API Key and Token-Based Authentication

API key and token-based authentication are considered basic mechanisms to secure

programmatic access to web resources. Both methods will use some unique identifier or

token that authenticates and authorizes client requests to make sure that only valid users

or applications can interact with the API or server.

An API key is a static alphanumeric string assigned to a client after they register or

subscribe to an API. The key is a sort of credential that must accompany every request to

the API. Returning to our example of a weather service API, let us say that clients must

specify the API key as a query parameter or via a request header. Then, upon receiving

a request, the server checks the key against its database of issued keys and only processes

the request if the key is valid. API keys are relatively easy to implement and use; thus,

53

Chapter 3. Scraping Prevention and Countermeasures

they are popular for public APIs and low-risk applications.

Token-based authentication, on the other hand, uses dynamically generated tokens,

which are, for the most part, short-lived and bound to a session or a specific user. This

adds security in that the exposure of keys is minimal. Tokens are often issued after some

authentication process, such as login via OAuth. In this case, once authenticated, a token

is assigned to the client, and they must specify it within subsequent requests. The server

then verifies if the token is valid and has not expired before allowing access.

Both have unique advantages in reducing unauthorized access. API keys are easy

to administer and implement; thus, they work well for applications with very minimal

security needs. Tokens provide much more flexibility and are more secure, especially

when implemented with other more advanced authentication mechanisms like OAuth 2.0.

Tokens can also encode additional metadata, such as user roles or permissions, enabling

fine-grained access control.

However, these methods are not immune to exploitation. API keys, if compromised,

can be used by malicious actors until the key is revoked. Tokens are also susceptible to

interception during transmission if secure channels such as HTTPS are not used. Rate

limiting, IP whitelisting, and secure storage of keys and tokens are among other measures

taken by developers. In addition, refresh tokens and the token expiration policy reduce

the time frame during which the intruder might misuse the obtained token.

The bottom line is that API key and token-based authentication is a critical com-

ponent in today’s web application security. The two systems discussed have advantages

and disadvantages, but their appropriate execution and incorporation into other security

complementing solutions could provide an adequate scenario for safeguarding APIs and

web resources against unauthorized access.

3.2.4 JavaScript Challenges

JavaScript challenges are a sophisticated method to block unauthorized access and

automated scraping, where many computational obstacles that bots must overcome in-

troduce an access barrier to the Web. They are based on client-side execution, making

the way forward very difficult for general scrapers who do not have advanced browser

emulation. The website filters off the simple bots and crawlers by embedding code which

should run correctly in every successful request.

A common implementation of JavaScript challenges would be generating a dynamic

token or changing some structure of a webpage’s content according to a JavaScript script

executed in the client browser. Services like Cloudflare use challenges based on JavaScript

as part of their anti-bot protection mechanisms. Once a request is made, the server sends

a script to the client that performs some calculation or data transformation. The result

of these operations, normally encoded as a token, is subsequently sent to future requests

as evidence of valid client-side execution.

The biggest advantage with JavaScript challenges is that they are able to filter and

block bots that cannot run JavaScript. Traditional scraping scripts that directly parse

HTML or utilize lightweight HTTP clients will be instantly defeated. Moreover, JavaScript

54

3.2.5 Cookie-Based Authentication

challenges can be dynamic, with the complexity or logic of the script changing to out-smart

evolving scraping technologies.

However, with the sophistication of scraping tools, this becomes a big challenge. Ad-

vanced bots integrating headless browsers like Puppeteer or Selenium are actually able to

emulate the execution of JavaScript, thus bypassing such defenses. If poorly implemented,

such challenges to JavaScript may accidentally degrade user experience, particularly for

users operating slow devices or with limited browser support. Therefore, it is very critical

to balance security and usability when implementing JavaScript challenges effectively.

Overall, JavaScript challenges are a very good addition to web security frameworks,

but only in combination with other types of prevention. The fact that they can take

advantage of the limitations of basic scraping tools makes them an effective deterrent,

though they require careful implementation to remain effective against advanced threats.

3.2.5 Cookie-Based Authentication

Cookie-based authentication is a widely used technique to maintain session integrity

and verify user identity in web applications. By storing a unique session identifier in the

user’s browser as a cookie, the server can validate requests and ensure that they origi-

nate from authenticated users. This mechanism is integral to protecting web applications

against unauthorized access and provides a seamless user experience by persisting authen-

tication across multiple requests.

The process begins when a user logs into a web application. Upon successful authen-

tication, the server generates a session token, which is stored as a cookie in the client’s

browser. All subsequent requests to this server contain this cookie, which helps the server

validate the session of the user without asking him to log in every time. To improve

security, cookies have various attributes like ‘HttpOnly‘, which will not allow client-side

scripts to access the cookie, and ‘Secure‘ will send cookies only over HTTPS.

Cookie-based authentication has a number of advantages. It simplifies session man-

agement by offloading state persistence to the client, reducing server-side storage require-

ments. Furthermore, it provides a seamless user experience, by which users remain au-

thenticated across page reloads and navigations. Advanced configurations, such as the

‘SameSite‘ attribute, mitigate risks like cross-site request forgery (CSRF) by restricting

the contexts in which cookies are sent.

Meanwhile, despite its broad usage, cookie-based authentication also has vulnerabil-

ities. The leakage of cookies while transmitting over unsecured channels will make it

possible for an attacker to hijack the sessions of users. Likewise, wrong handling of storing

cookies-for instance, saving sensitive information without encryption-makes users a poten-

tial target for a data breach. Bots that have tools for handling cookies will use a weakly

implemented authentication mechanism to mimic user behavior.

These risks can be reduced by various protection means that a developer could im-

plement, such as session tokens, periodic rotation of the tokens, and various server-side

activity monitors. In addition, combining the results of cookie-based authentication with

other means of protection, such as CAPTCHAs or IP whitelisting, enhances it.

55

Chapter 3. Scraping Prevention and Countermeasures

In other words, cookie-based authentication is still a basis in the security of modern

web applications. Its simplicity and effectiveness make it popular, while its vulnerabilities

raise the need for thoughtful implementation and integration with complementary security

strategies to protect against evolving threats.

3.2.6 CDN Security

Content Delivery Networks, or CDNs, are the backbone of modern web security, dis-

tributing web content across a number of geographically dispersed servers. Beyond their

core function of reducing latency and improving load times, CDNs boast security features

in an attempt to mitigate threats such as web scraping. By acting as intermediaries be-

tween the client and the origin server, CDNs provide a layer of abstraction that enables

sophisticated request filtering and traffic analysis.

One of the main security features of CDNs is their ability to apply traffic filtering

and rate limiting at a scale. CDNs analyze incoming requests in real time for patterns

indicative of bot behavior, such as high frequencies of requests or unusual headers. These

malicious requests are filtered out before reaching the origin server, reducing the risk of

data scraping and server overload. Other CDN providers, such as Cloudflare and Akamai,

use machine learning algorithms that dynamically adapt to evolving bot tactics, thus

ensuring protection against sophisticated threats.

In addition to filtering traffic, many CDNs also have built-in solutions for bot man-

agement. These include challenges such as CAPTCHAs and JavaScript verification that

identify legitimate users and automated bots. By centralizing these defenses, CDNs re-

lieve origin servers of the computational overhead associated with detecting and mitigating

bots.

However, the effectiveness of CDN-based security depends on proper configuration

and integration. Poorly configured rules or overly aggressive filtering can result in false

positives, which block real users. Advanced bots that can mimic human behavior can also

bypass many of the standard detection mechanisms used by CDNs, requiring constant

refinement of security protocols.

In the end, security is one of the most important modern CDN web application de-

fenses. Using distributed infrastructure and advanced analytics, CDNs provide scalable

adaptive solutions to combat web scraping and other threats. Their integration with other

preventive measures further enhances their efficacy, making them an essential component

of a comprehensive security strategy.

3.2.7 Data Obfuscation Techniques

Data obfuscation techniques are designed to obscure the presentation and structure of

web content, making it challenging for scraping bots to extract meaningful information.

By altering how data are displayed or encoded, these techniques create significant hurdles

for automated tools while remaining transparent to legitimate users.

One of the common ways of data obfuscation is to encode critical information. For

example, numerical values or textual data can be encoded using base64 encoding or other

56

3.2.8 Adaptive User Interface Rendering

reversible encoding schemes. The encoded data are then correctly rendered on the client

side using JavaScript. Scraping bots that rely on static DOM parsing are often unable

to decode this information without executing the accompanying scripts, adding a layer of

complexity to their operations.

Dynamic content rendering is another powerful obfuscation technique. With the use

of JavaScript, a web application might load or change some information on the page

asynchronously, without static content in place. Such data would be shown only to those

users whose browser environment was working. Very effective against bypassing JavaScript

execution by bots: they cannot get information from dynamically rendered data.

Obfuscation also extends to the structural organization of web content. For example,

critical elements can be randomized or scattered across the DOM and their positions

corrected visually through CSS. That confuses scraping bots that rely on predictable

element structures to extract data.

Although data obfuscation methods significantly interfere with the work of scrapers,

it is not without its own weaknesses. Advanced bots with headless browsers and complex

parsing algorithms can bypass a lot of these obfuscation techniques. Too much obfuscation

can also cause website performance problems and make them difficult to maintain, so

balanced implementation is really important.

3.2.8 Adaptive User Interface Rendering

Adaptive user interface (UI) rendering is an innovative approach to web security that

dynamically adjusts the presentation of content according to user behavior and context.

By tailoring the loading and display of web elements to individual users, this technique

complicates scraping attempts, as bots are unable to anticipate or replicate the exact

rendering patterns.

An implementation of adaptive UI rendering is lazy loading, where web content is

loaded incrementally based on user interaction. For example, images or data tables may

load only as the user scrolls through the page. This approach minimizes the amount

of content immediately available for scraping, forcing bots to mimic user interactions to

access the full dataset.

Another example is content fragmentation, whereby data is fragmented into smaller

pieces and served only when certain predefined triggers are activated, for example, mouse

movements or specific keystrokes. This ensures that only users exhibiting human-like

behavior will get the full content, whereas bots will be left with incomplete or fragmented

datasets.

Adaptive UI rendering also uses behavioral analytics to alter content delivery. Ana-

lyzing click patterns, cursor movements, and scrolling behaviors, among others, allows a

website to detect potential scraping activities in real time and respond accordingly. For

example, if an interaction seems abnormal, it could prompt the server to mask or hold

sensitive content.

Although very efficient in making scraping workflows fragile, the implementation of

adaptive UI rendering needs to be done with care; otherwise, it becomes counterproductive

57

Chapter 3. Scraping Prevention and Countermeasures

by affecting user experience. Aggressive policies or overreliance on behavioral triggers

could easily frustrate legitimate users; a balanced approach would be required.

Table 3.2. Comparison of Preventive Development Techniques

Technique Advantages Disadvantages Bypass Tech-
niques

Rate Limiting
and Throttling

Effective in con-
trolling traffic
volume; reduces
server overload

Susceptible to
distributed at-
tacks using
botnets; potential
false positives
for legitimate
high-frequency
users

Use of distributed
bots and rotating
IPs to distribute
requests

API Key and
Token-Based
Authentication

Simple to imple-
ment; enhances
security for pro-
grammatic access

Vulnerable to
key/token inter-
ception; requires
secure storage
and periodic
rotation

Token inter-
ception during
transmission;
reuse of stolen
API keys

JavaScript Chal-
lenges

Filters out basic
bots; adapts
dynamically to
evolving threats

Advanced bots
with headless
browsers can
bypass; potential
user experience
degradation

Emulation of
JavaScript ex-
ecution using
headless browsers
like Puppeteer

Cookie-Based
Authentication

Maintains session
integrity; seam-
less user experi-
ence

Vulnerable to
cookie theft;
improper con-
figurations can
expose sessions

Session hijacking
through cookie
theft or replay
attacks

CDN Security Scalable and dis-
tributed; reduces
server load with
advanced traffic
filtering

Misconfiguration
risks; false posi-
tives may block
legitimate users

Bots mimicking
human behavior
to evade detec-
tion

Data Obfuscation
Techniques

Conceals critical
information; dis-
rupts static scrap-
ing tools

Performance
degradation; so-
phisticated bots
can decode obfus-
cation

Parsing obfus-
cated data using
advanced al-
gorithms and
headless browsers

Adaptive User In-
terface Rendering

Dynamically ad-
justs to user be-
havior; fragments
data for enhanced
security

May affect user
experience; com-
plex implementa-
tion and mainte-
nance

Mimicking hu-
man interactions
to trigger full
content rendering

58

3.3 Advanced Protection Mechanisms

3.3 Advanced Protection Mechanisms

3.3.1 Anti-Scraping SaaS Platforms

The role of Software-as-a-Service platforms, which have become an essential arm in the

fight against web scraping, is to offer a suite of anti-scraping solutions with the integra-

tion of advanced technologies such as machine learning, behavioral analytics, and cloud

computing. They promise ease of integration, scalability, and speed, which positions them

well with organizations in dire need of solid web application security.

Anti-scraping SaaS solutions generally work by sitting between the client and the web

server, analyzing incoming traffic in real time for malicious requests to block. Cloudflare

Bot Management, Akamai Bot Manager, and Datadome are some of those that use ad-

vanced algorithms that check request patterns, browser attributes, and user behavior in

order to tell a legitimate user from a scraping bot. For example, Cloudflare Bot Man-

agement uses machine learning models trained on vast amounts of data to evolve with

changing scraping tactics to provide continued protection.

The advantages of SaaS solutions go beyond detection. These platforms can be easily

integrated with an organization’s infrastructure and provide real-time analytics with in-

sight into traffic patterns and vulnerabilities in the system. In addition, they also come

with customized settings that will allow an organization to orient its defenses to use cases.

Companies can define very granular rules based on geolocation, user agent, or API usage

patterns to allow or block requests.

Of course, such platforms also come with their own challenges. The fact that they are

cloud-operated introduces latency that can affect the user experience. Advanced scrap-

ing tools that can emulate human behavior may occasionally bypass detection, and thus

require constant updates of the algorithms.

3.3.2 Browser Integrity and Verification

Browser integrity and verification techniques involve a set of advanced methods to

ensure that client interactions with web applications are well-intentioned and untampered

with. This kind of technique validates the expected behavior of a browser, hence distin-

guishing real users from bots trying to pose as browsers.

One of the most important ways to validate the integrity of the browser is to challenge

it with certain cryptographic operations. For example, browsers should calculate some

result with the help of their cryptographic key, such as a digital signature. The server

then checks the result to confirm who the actual client is. Such mechanisms guarantee

that only real browsers-and not light scraping software-will be able to work with the web

application.

Another widely used technique is JavaScript-based validation, which uses scripts to

evaluate browser attributes and behavior. Examples of JavaScript challenges include test-

ing the execution of certain scripts, the consistency of outputs rendered, and timing met-

rics. These techniques have been employed by a set of tools, including Cloudflare’s browser

challenges, to identify deviations that give away the bot. Forcing bots to reproduce sub-

59

Chapter 3. Scraping Prevention and Countermeasures

tleties exhibited by real browsers, these challenges pose formidable obstacles to automated

tools.

Other emerging solutions include device attestation protocols such as WebAuthn,

which are improving browser verification. These protocols leverage hardware-based mod-

ules for the attestation of a device’s authenticity, hence increasing security against complex

bots.

Yet, despite all their power, browser integrity and verification mechanisms have limita-

tions. Advanced bots, equipped with headless browsers and strong emulation capabilities,

can take advantage of some of the mechanisms. Poorly implemented challenges also risk

disrupting legitimate users, making it essential to balance security with usability.

3.3.3 Hybrid Defense Architectures

Hybrid defense architectures are the epitome of holistic approaches to web security,

combining multifaceted anti-scraping techniques into one strong, cohesive framework. In-

dividual methods presented throughout this chapter can easily suffer from various draw-

backs and vulnerabilities that advanced bots successfully manipulate. These approaches

leverage their complementary strengths, integrated together in an effective dynamic sys-

tem against a broad landscape of scraping threats.

Generally speaking, a hybrid architecture starts at the very bottom foundational layer

with techniques such as rate limiting, API authentication, and cookie-based session man-

agement. These measures are generally used to provide a baseline level of security by

limiting both the rate and scope of access to web resources. In addition, dynamic ca-

pabilities include behavioral analytics and browser integrity checks that detect and re-

spond to anomalous activity in real time. Further complication arises with the addition

of JavaScript challenges and adaptive UI rendering, which forces bots to further emulate

complex browser interactions and behaviors.

Advanced machine learning-powered bot detection and anti-scraping SaaS platforms

develop an additional layer of intelligence with great scalability. These technologies analyze

a huge volume of data and self-improve with the constantly evolving tactics of bots, keeping

the architecture effective in the face of sophisticated threats. Lastly, honeypotting and

dynamic traps form proactive countermeasures based on deception-based strategies, where

bots get lured into self-disclosure and therefore enable the operation of targeted mitigation.

What makes this approach effective is the synergy of these methods within a hybrid

framework. For example, browser fingerprinting may identify a bot, while rate limiting

and traffic analysis contain its activity. Similarly, adaptive UI rendering can disrupt

scraping workflows, and machine learning models dynamically adjust defenses based on

observed behavior. By layering these techniques, organizations can address both known

and emerging threats, maximizing their ability to detect and prevent web scraping.

However, one should not forget the limitations in any anti-scraping strategy. With

the continuous development of web scraping tools and techniques, no defense can ensure

100% prevention. Advanced bots with sophisticated emulation capabilities and distributed

infrastructures will always find a way to break through even the most comprehensive

60

3.3.3 Hybrid Defense Architectures

defenses. The goal of a hybrid defense architecture is not to achieve absolute security,

but to make web scraping prohibitively difficult and resource intensive for the average bot

operator.

With a hybrid architecture in place, a website can be more consistent in the blocking

of non-sophisticated bots, minimizing the overall risk to web applications. At the same

time, it can really focus on identifying and mitigating the more advanced threats, ensuring

a balance between security and usability. In the dynamics of Web scraping, this multi-

layered and adaptive approach remains one of the most viable means of protecting online

resources by accepting the fact that total protection will never be possible.

61

Chapter 4

Integration of AI in Web Scraping

4.1 Machine Learning in Scraping

4.1.1 Adaptive Algorithms for Intelligent Data Extraction

The fast-changing nature of web technologies requires the creation of adaptive algo-

rithms that can support efficient data extraction processes against frequent and often

unpredictable changes in the structure of web pages. Traditional web scrapers are of-

ten based on static configurations fitted to specific page layouts that can quickly become

obsolete due to changes in the underlying HTML or JavaScript frameworks. The key de-

velopment to meet this challenge in web scraping is the design of automatically adaptable

web wrappers. These wrappers, through the use of algorithmic techniques, can automati-

cally adapt to structural changes to continue operation without human intervention.

Adaptability in web scraping algorithms is based on two key principles: adaptability to

recognize structural patterns and the intelligence to act upon deviations. By embedding

machine learning models that identify and classify recurring patterns in HTML and DOM

elements, adaptive algorithms can make predictions about future changes to the layout of

websites. These models leverage historical data to build probabilistic mappings of likely

changes that allow scrapers to adapt their extraction logic preemptively.

One pioneering contribution in this domain is that of Ferrara and Baumgartner on

automatically adaptable web wrappers [35]. The proposed framework represents the design

for a modular architecture in which scrapers are endowed with a hierarchical understanding

of web page structures. In this study, a multilayer representation of the content is adopted,

in which the various layers are mined to detect structural consistencies between versions.

If there are discrepancies, the system updates the extraction pathways using heuristics

and probabilistic methods to maintain accuracy.

Central to this approach is the application of context-aware parsing mechanisms. These

mechanisms assess semantic relationships between DOM elements and allow the scraper

to focus on content of interest while ignoring irrelevant changes. For example, when a

webpage redesign introduces new ornamental elements, the adaptive algorithm can dis-

tinguish these from fields containing substantive data, and preserve the integrity of the

extracted information. It minimizes a lot of manual reconfiguration and develops and

scales the operation of web scraping.

63

Chapter 4. Integration of AI in Web Scraping

Theoretically, its ability to generalize across a range of different Web environments

motivates adaptive systems. Their respective algorithms leverage reusable components

through which the abstraction of the extraction logics is possible and achieve modularity

to a very higher degree to plug into varied architectures seamlessly. The integration

of real-time feedback loops allows the scraper to continuously learn from the success or

failure of extraction attempts, continuously improving its models. This not only allows

the scrapers to be increasingly accurate, but also resilient against increased sophistication

in anti-scraping measures.

Adaptive algorithms for intelligent data extraction represent a transformative shift in

the practice of web scraping. By embedding adaptability into the core architecture of

scrapers, these systems ensure sustained performance in dynamic web ecosystems. The

integration of context-aware parsing, probabilistic mapping, and real-time learning mecha-

nisms underscores the theoretical and practical advancements that define modern adaptive

scraping technologies.

4.1.2 Automated Proxy Management

In modern web scraping, effective proxy management is crucial, especially in overcom-

ing the restrictions imposed by websites to limit automated access. Proxies are intermedi-

aries that anonymize requests, enabling scrapers to distribute their traffic across multiple

IP addresses and avoiding detection and throttling. However, traditional methods of proxy

management, relying on static proxy pools and unsophisticated rotation mechanisms, of-

ten prove quite insufficient when dealing with the sophisticated anti-scraping mechanisms

of modern web platforms. The integration of machine learning and intelligent automation

into proxy management systems represents a significant evolution in this domain.

Automated proxy management systems apply data-driven methods for optimal selec-

tion, rotation, and usage of proxies. These systems monitor key performance indicators,

such as response times, success rates, and error codes, to determine the effectiveness of

individual proxies. Then, machine learning models are trained on this data to predict the

likelihood of success of future requests routed through particular proxies. Based on these

predictions, automated systems dynamically adjust the usage of such proxies in an effort

to minimize latency, maximize throughput, and reduce the risk of IP bans.

Anomaly detection is the most important element in intelligent proxy management.

Advanced algorithms analyze traffic patterns for irregularities that could indicate possible

detection by target websites. For example, sudden spikes in failed requests, or uniform

browsing across multiple proxies, may trigger automated actions such as switching to

alternative pools of proxies or making the browsing more human-like. This proactive

approach not only enhances the efficiency of web scraping operations but also ensures

their long-term viability.

Third-party APIs and integrations improve real-time feedback loops to improve the

adaptability of proxy management systems. Active feedback mechanisms permit scrapers

to iteratively refine their methods based on the feedback from previous interactions of these

agents. If one proxy gets flagged off or blocked consistently, the traffic can be assigned to

64

4.1.3 CAPTCHA Solving with AI

better proxies while retraining the models. Such a process of iteration keeps the model

responsive to shifting sands on the Web.

The most accessible kind of bot proxies are data center IPs. Because of their de-

tectable features as non-residential or server-generated interactions, they are blocked by

most anti-bot mechanisms. Data center proxies originate either from cloud services or

hosting providers; because they lack the diversity and authenticity of residential IPs, they

can be detected with the more advanced anti-bot systems. These systems use advanced

algorithms to differentiate genuine user activity from automated behavior, considering net-

work attributes such as ASN, geolocation, and browsing patterns. This has consequently

made reliance on datacenter proxies alone significantly detrimental in most scraping op-

erations.

Residential proxies have become a necessary solution due to such limitations. Resi-

dential proxies reroute traffic via IP addresses assigned to real residential users by ISPs.

Unlike datacenter IPs, residential IPs are less suspicious since they mimic actual usage

patterns and are more difficult to detect and block. This means that web scrapers can

interact with targeted websites under a cover of legitimate user traffic, thus avoiding most

of the anti-bot defenses.

Large companies, such as Bright Data or Apify, have pioneered the development and

commercialization of residential proxy services. The Bright Data platform connects one

to the widest pool of residential IPs anywhere around the globe-unsurpassed in either

coverage or flexibility. Often, this might mean adding premium features such as geo-

targeting abilities, session persistence, and automatic IP rotation, greatly increasing the

effectiveness of residential proxies. This technology keeps scrapers ahead in their abil-

ity to dynamically respond to changing conditions in Web environments and navigate

sophisticated mechanisms of blockage.

The success of residential proxies depends on how well they can be camouflaged within

regular web traffic. Anti-bot systems often check behavioral metrics, such as request fre-

quency and navigation patterns, for anomalies. Residential proxies, together with behav-

ioral simulation techniques, enable scrapers to mimic human-like interactions that reduce

the possibility of detection. Moreover, diversity and distribution in residential IPs will

mean that requests will appear to be coming from a wide variety of different legitimate

users, which complicates the task of anti-bot systems in attempts to isolate and block

scraping activities.

4.1.3 CAPTCHA Solving with AI

CAPTCHAs are an important set of Web security mechanisms that attempt to dis-

tinguish between legitimate human users and automated bots. The challenges presented

by these mechanisms range from recognizing distorted characters to performing visual or

logical tasks. Despite their utility, significant strides have been made using AI to overcome

CAPTCHA systems, putting into question their long-term efficacy. This section will cover

the main types of CAPTCHA, ways to solve them with the use of AI, and the availability

of third-party APIs providing CAPTCHA-solving capabilities.

65

Chapter 4. Integration of AI in Web Scraping

Text-based CAPTCHAs are among the earliest and most common forms of challenge.

They usually ask users to decipher and input alphanumeric characters presented in dis-

torted or obscured formats. AI techniques have been successfully able to solve such chal-

lenges, especially those using optical character recognition in combination with supervised

machine learning [36]. Deep learning models, trained on a large number of CAPTCHA

images, could recognize and interpret text, even distorted, rotated, or with overlapping

characters, with high precision. Research shows that such models could achieve very high

success rates by undermining the reliability of traditional text-based CAPTCHAs.

In this sense, puzzle-based CAPTCHAs challenge users with tasks that require assem-

bling the pieces to make up a meaningful picture or finishing some logical series; they rely

on skills believed to be distinctive to human cognitive capabilities. However, such a solu-

tion may be quite easily tackled using a combination of convolutional neural networks and

reinforcement learning algorithms. The AI is able to pick up patterns and ways by which

it works out the puzzle and can apply them to different formats. Researchers have pointed

out the potential of AI-driven approaches to break down such CAPTCHAs, compelling

developers to develop newer, more sophisticated designs to keep their strength alive.

Image selection CAPTCHAs require users to scroll through grids of images and to

indicate which of them meet a certain criterion, like ”select all images containing bicycles.”

These have also been subjected to attacks from AI, as they depend on human visual

recognition and semantic understanding. Deep learning models, which are trained for

image classification tasks, do an outstanding job in the analysis and categorization of

images, hence finding the right selections [37]. Recent research underscores the capabilities

of AI technologies in attacking image-based CAPTCHAs with very high success rates and

discloses the shortcomings of their design.

In addition to creating customized AI models, there are also third-party services to

solve CAPTCHAs. Such platforms, including 2Captcha and Anti-Captcha, will offer APIs

easily integrated into web scraping workflows that automatically solve the CAPTCHAs.

These services ensure high accuracy with the help of a mixture of AI-driven algorithms

and, where necessary, human operators. In addition, many of these services work with

a range of CAPTCHA types, from reCAPTCHA v2 and v3 to Hcaptcha, through their

easy-to-implement solutions that make the bypassing process practical for developers who

want to skip model development challenges.

These continuously improving AI technologies are a big challenge for the CAPTCHA

systems since they keep degrading the separating barriers between human and machine

interactions. The review of various types of CAPTCHAs and an overview of the AI-

based solutions and third-party services depict the dynamic nature of this field. While AI

capabilities continue to grow, innovative and robust CAPTCHA designs will be required

to maintain their status as valid security mechanisms.

4.2 NLP for Data Understanding

The integration of Natural Language Processing (NLP) into web scraping methodolo-

gies has transformed the ability to extract and process unstructured textual data from

66

4.2 NLP for Data Understanding

the web. The rapid development of digital content on the Internet has created a wide

resource base for information, with the major component existing in unstructured forms

such as social media posts, customer reviews, news articles, and many others. NLP pro-

vides computational tools to process and analyze such information data and convert it

into structured and actionable insight. This section discusses some of the key techniques,

applications, and challenges in using NLP for the interpretation of unstructured data over

the web [38].

Unstructured text data are particularly difficult to analyze due to lack of structure or

predefined format. NLP addresses these challenges by employing preprocessing techniques

such as tokenization, stemming, and stop-word removal. Tokenization breaks down text

into individual words or phrases, forming the basic units for further processing. Stemming

reduces words to their root forms, ensuring consistency across variations, while stop word

removal eliminates common but uninformative words like ”the” or ”and.” These prepro-

cessing steps prepare the raw text for more advanced analysis, ensuring that only the most

relevant information is retained.

Named Entity Recognition (NER) is a crucial NLP technique to understand web data.

This process involves the identification and categorization of entities that might be con-

tained in unstructured textual data, such as names, organizations, dates, and locations.

For example, in customer reviews scraped from e-commerce platforms, NER can extract

references to specific products or brands. Employed with sentiment analysis, another es-

sential application of NLP, one can programmatically assess the polarity of text- whether

it is positive, negative, or neutral. Such analysis can enable organizations to gauge public

opinion on various products or topics. This is particularly valuable in domains such as so-

cial media analysis or overall product satisfaction, where insights into customer attitudes

and preferences can inform marketing strategies.

Another significant application of NLP in web scraping is text summarization. Large

volumes of textual data, such as news articles or forum discussions, can be distilled into

concise summaries using techniques such as extractive and abstractive summarization.

Extractive summarization identifies key sentences or phrases from the original text, while

abstractive summarization generates new sentences that convey the core ideas.

The combination of web scraping and NLP is not limited to academic or industrial re-

search but extends to practical tools and APIs. Frameworks like SpaCy[39] and NLTK[40]

offer pre-built modules for tasks such as tokenization, POS tagging, and entity recognition,

simplifying the integration of NLP into web scraping pipelines. Additionally, third-party

APIs, such as MonkeyLearn and Aylien, provide ready-to-use sentiment analysis and text

classification services, eliminating the need for custom model development. These tools

democratize access to advanced NLP capabilities, allowing developers to focus on specific

application objectives without digging into the complexities of model training.

As the capabilities of NLP continue to expand, they pave the way for more sophis-

ticated approaches to the understanding of web data. While this chapter has focused

on traditional and non-generative NLP methods, the next chapter will explore the trans-

formative potential of generative AI in web scraping, offering new paradigms for data

extraction and analysis.

67

Chapter 5

Leveraging Generative AI for Scraping

The rise of Large Language Models (LLMs) marked an evolutionary era in artificial

intelligence. OpenAI’s ChatGPT received sweeping attention in 2023 receiving the title

of the faster ramp in users in a consumer internet app. These models demonstrated

unprecedented capabilities in understanding and generating human-like text, reshaping the

landscape of NLP, content generation, and automation. This triggered an everlasting race

between AI companies and academics to create the most advanced and affordable model,

while industries quickly adopted this technical achievement, easily deploying chatbots,

documentation helpers, and other tasks requiring human cognition.

Web scraping has a symbiotic relationship with LLMs [41]. Automated data extraction

from online sources using web scraping techniques was crucial to their implementation,

as they rely heavily on large amounts of high-quality structured data for training. By

extracting diverse datasets, ranging from product reviews to scholarly articles, scraping

plays a fundamental role in shaping the contextual richness and performance of LLMs.

The accuracy and volume of these data directly influence the model’s ability to generate

reliable outputs. In addition to training, scraping also enables real-time features such as

advanced web search capabilities. LLMs leverage live data to enhance user search expe-

riences by providing detailed source-backed answers based on natural language prompts

(e.g. Perplexity, ChatGPT search[42]). Real-time scraping facilitates dynamic browsing

interactions used to provide up-to-date information, giving context to the LLM model,

thus improving the relevance of responses.

Consequently, generative AI models are great tools for web scraping. Many complex

scraping tasks and practices mentioned earlier in this thesis, from NLP to self-modifying

scrapers[43] and CAPTCHA solvers, can be transformed using LLMs unlocking new pos-

sibilities. This chapter explores how LLMs can be used to automate web scraping, bypass

anti-scraping mechanisms, and transform the data attribution layer.

5.1 LLMs in Scraping Pipelines

Introducing LLMs to web scraping has changed the way data are extracted, processed,

and understood. They can be integrated in every stage of the pipeline such as crawling,

extracting, bypassing anti-bot measures, post processing, making the process smarter

cutting down on manual work while boosting accuracy.

69

Chapter 5. Leveraging Generative AI for Scraping

5.1.1 Crawling Stage

At the initial stage of web scraping, the crawling phase establishes the foundation

for effective data acquisition. Dynamic site mapping, powered by large language models

(LLMs), offers a revolutionary approach to navigating complex websites. This involves the

generation of detailed visual maps that illustrate how the structure of a site is organized.

In addition to mapping visual elements, LLMs also create semantic maps that identify

relationships between different sections of a website. These semantic maps go beyond

surface-level details to reveal deeper interconnections, such as the hierarchy of pages and

the logical flow between them. By predicting page hierarchies, LLMs can infer how various

components of a website are related, enabling an optimized crawling strategy. For exam-

ple, pages that are central to the site’s purpose can be prioritized for crawling, while less

significant pages are given lower precedence. In addition, LLMs excel at identifying inter-

link relationships, which are crucial for understanding how users and bots are expected to

navigate the site. This predictive capability ensures that the crawling process is not only

efficient, but also thorough, capturing critical data while minimizing redundant efforts.

These capabilities are particularly useful for websites with nested navigation structures or

dynamically loaded content, which pose significant challenges for traditional crawlers.

5.1.2 Data Extraction Stage

The data extraction phase represents the core of web scraping activities, and LLMs

have introduced transformative methods to enhance this process. One prominent applica-

tion involves the use of LLMs to understand free text and structure the results into formats

such as JSON. For example, LLMs can process customer reviews written in free-form text

and output them in a structured schema, allowing for easier analysis and integration into

databases. Tools such as LangChain[44] exemplify this capability, as they are specifically

designed to extract semantic meaning from unstructured data. These tools can analyze

context, identify key elements, and generate precise structured outputs.

Another powerful approach uses LLMs to identify the necessary CSS or XPath selectors

for precise data extraction. This process involves analyzing the DOM (Document Object

Model) structure of a webpage to pinpoint the exact elements that contain the desired data.

Once identified, the LLM can generate custom scraper code tailored to the specific layout

of the page. This method is particularly valuable for websites that frequently update

their layouts, as LLMs can dynamically adapt the generated scripts to accommodate

changes. For example, if a site’s structure is modified, an LLM-powered scraper can

adjust its approach by recalibrating the selectors or rewriting sections of the code. This

adaptability ensures that data extraction remains functional over time without requiring

extensive manual intervention.

Despite these advancements, it is important to recognize the limitations of using LLMs

for direct scraping. Employing LLMs to process every request is computationally expensive

and introduces significant time overhead. Although the precision and versatility of LLMs

make them invaluable during the setup phase, their continuous use for routine scraping

tasks is impractical. Instead, a hybrid strategy proves to be the most effective. In this

70

5.1.3 Antibot Measures Bypassing Stage

approach, LLMs are employed during the initial configuration phase to create an adaptable

scraping framework. Once the setup is completed, traditional methods can take over the

repetitive execution of scraping tasks. This combination ensures the benefits of LLM-

driven precision while maintaining the cost-effectiveness of conventional techniques.

5.1.3 Antibot Measures Bypassing Stage

One of the most significant challenges in web scraping involves bypassing anti-bot

measures, which are designed to identify and block automated access to websites. LLMs

offer pioneering solutions to address these barriers. For example, text-based CAPTCHAs,

which require users to interpret distorted text, can be solved by LLMs through advanced

natural language processing and pattern recognition capabilities [45]. The models analyze

the text within the CAPTCHA and generate an accurate response, effectively bypassing

the challenge.

For more complex visual CAPTCHAs, LLMs can be integrated with vision-based mod-

els to interpret and solve the challenge. These models are capable of analyzing images,

identifying patterns, and producing appropriate solutions. Some antibot systems rely on

behavioral analytics to detect bots by analyzing user actions, such as mouse movements,

scrolling patterns, or click timings. Here, LLMs can simulate human-like behavior, pro-

ducing realistic interactions that are indistinguishable from those of a genuine user. For

example, an LLM can mimic the randomness of human mouse movements or introduce

deliberate delays between actions to avoid detection.

By combining these techniques, LLMs provide a versatile toolkit to navigate various

anti-bot mechanisms. However, the ethical implications of bypassing such measures should

not be overlooked. Although these capabilities expand the potential for data acquisition,

they also raise questions about legality and responsible use. Deploying LLMs for antibot

bypassing requires careful consideration of both technical feasibility and ethical bound-

aries.

5.1.4 Post-Processing Data Stage

After data have been successfully extracted, the post-processing phase ensures its us-

ability and relevance. LLMs excel in categorizing and tagging unstructured data, which is

critical to gaining actionable insights[46]. For example, social media comments often come

in diverse and unorganized forms, making it difficult to identify patterns or trends. LLMs

can analyze these comments, categorize them by sentiment, and tag them with relevant

metadata. This process not only organizes the data, but also enhances its value by making

it easier to interpret.

Another example is the processing of product reviews. LLMs can identify recurring

themes, highlight positive and negative feedback, and even summarize the overall senti-

ment of a dataset. This capability is rooted in the natural language understanding (NLU)

features of LLM, which enable them to comprehend context, intent, and sentiment within

text. The categorization process can also be extended to include tagging for specific use

71

Chapter 5. Leveraging Generative AI for Scraping

cases, such as identifying comments related to product quality, shipping issues, or customer

service.

The theoretical basis for these capabilities lies in the ability of LLMs to perform con-

textual analysis at scale. By understanding the relationships between words, phrases, and

a broader context, LLMs transform raw data into structured insights. This not only saves

time, but also allows organizations to extract deeper meaning from their data. Ultimately,

the role of LLMs in the post-processing stage underscores their value as a comprehensive

solution for refining and enriching the outputs of web scraping pipelines.

5.2 Advanced Generative AI Capabilities in Web Scraping

5.2.1 Cross-Modal Scraping: Bridging Vision and Text

Cross-modal scraping represents a paradigm shift in the way data are extracted from

the Web, combining the strengths of natural language processing (NLP) and vision-based

approaches. Unlike traditional methods that rely solely on HTML parsing, cross-modal

techniques incorporate visual elements such as screenshots and multimedia, alongside tex-

tual information, to enable more nuanced and comprehensive data extraction. For exam-

ple, Optical Character Recognition (OCR) can be applied to images containing embedded

text, while video frame analysis can extract relevant information from multimedia con-

tent. These techniques are particularly beneficial for visually complex web pages, such

as those containing dynamic charts, infographics, or non-standard text placements. The

integration of vision and NLP expands the range of data that can be scraped, providing

richer datasets for downstream applications.

Cross-modal scraping is especially useful in scenarios where structural data is obfus-

cated or presented in a visually appealing but less machine-readable format. Using vision-

enabled models, such as those powered by large multimodal models (LMMs), scrapers

can navigate and interpret visual cues just as a human user would. This capability not

only enhances the depth of data extraction, but also opens new possibilities for analyzing

unstructured or semi-structured content that would otherwise be inaccessible.

5.2.2 WebVoyager: A Case Study in Multimodal Web Agents

WebVoyager represents a groundbreaking advancement in the domain of web scraping

by utilizing LMMs to create a fully autonomous end-to-end web agent. Designed to interact

seamlessly with real-world websites, WebVoyager combines visual and textual inputs to

navigate, interpret, and extract data. Unlike earlier approaches that relied on static HTML

snapshots or simplified simulations, WebVoyager operates directly on rendered web pages,

leveraging the full spectrum of visual and semantic information available in modern web

environments [47].

The core functionality of WebVoyager lies in its ability to observe and act iteratively.

For example, the agent receives inputs such as screenshots and textual descriptions of in-

teractive web elements. It then formulates a thought process to determine the appropriate

72

5.3 Use Cases and Implications

action, such as clicking, scrolling, or typing, before executing that action on the live web-

site. This iterative approach mimics human browsing behavior and allows WebVoyager to

adapt to real-time changes in web layouts or interactive components.

The utility of WebVoyager extends beyond mere navigation. It excels in handling

complex, multi-step tasks that require contextual understanding and decision-making.

For example, in a benchmark evaluation, WebVoyager successfully completed tasks such

as identifying specific products on e-commerce platforms, locating information from aca-

demic websites, and even extracting structured data from multimedia-rich pages. Using

both visual analysis and semantic reasoning, WebVoyager achieved a task success rate sig-

nificantly higher than that of text-only or static methods, demonstrating its effectiveness

in real-world scenarios.

One of the distinguishing features of WebVoyager is its innovative evaluation protocol,

which uses GPT-4V as an automatic evaluator. This protocol uses a combination of

human-like judgment and machine-driven assessment to validate the agent’s performance.

With a reported 85.3% agreement rate with human evaluations, this method ensures a

reliable measure of the agent’s capabilities.

Despite its advancements, WebVoyager is not without limitations. The reliance on

screenshots as primary input means that text-heavy websites or those with highly complex

visual designs can pose challenges. Moreover, while the agent is capable of solving basic

web navigation tasks autonomously, further refinements are necessary to handle edge cases

such as CAPTCHA solving or interacting with highly customized web components.

In conclusion, WebVoyager exemplifies the potential of multimodal agents in web scrap-

ing, showcasing how vision and NLP can be integrated to push the boundaries of what

automated systems can achieve. As tools like WebVoyager continue to evolve, they promise

to redefine the landscape of data extraction, offering new levels of precision, adaptability,

and intelligence to navigate the complexities of the modern web.

5.3 Use Cases and Implications

5.3.1 Training Data Acquisition

One of the most impactful applications of generative AI in web scraping lies in its

ability to facilitate the acquisition of training data for machine learning and LLMs[4].

Personalized scraping pipelines for specific domains enable the extraction of relevant high-

quality data sets essential for the refinement of AI models. For example, generative AI

can identify and parse academic articles, extracting metadata, abstracts, and references

to construct domain-specific data leads. Similarly, it can collect data sets for conversation

agents by extracting interactions from public forums or posts on social networks. The

precision offered by LLMs ensures that the collected data is relevant and free of unnecessary

noise, significantly improving the quality of downstream applications.

However, this capability also raises ethical concerns. Scraping proprietary or sensitive

data without explicit consent can violate privacy laws and intellectual property rights.

Many websites for example disallow the ChatGPT User-Agent to protect the data they

73

Chapter 5. Leveraging Generative AI for Scraping

expose from using it to train OpenAIs models. Ensuring compliance with regulations such

as GDPR and CCPA is critical when designing scraping pipelines. By employing ethical

guidelines and transparency in data handling, generative AI can strike a balance between

utility and responsibility in training data acquisition.

5.3.2 Domain-Specific Applications

Generative AI-powered scraping extends its utility across diverse sectors, unlocking

unique use cases tailored to each domain. In e-commerce, it can track price fluctuations,

monitor competitor strategies, and aggregate customer reviews to provide actionable mar-

ket insights. For healthcare, web scraping can extract and standardize medical research

data, enabling healthcare providers to stay up-to-date with the latest treatments and

trends. Similarly, in education, generative AI can scrape educational content such as

open-access research, course materials, and multimedia resources, creating rich learning

repositories.

The financial sector also benefits significantly from these advancements. Scraping

financial news, stock market trends, and analyst reports empowers investors and firms

with real-time intelligence. LLMs ensure that the extracted data maintain high accuracy,

allowing for the automation of time-sensitive analyses. These domain-specific applications

highlight how generative AI can transform industries by providing precise and actionable

information at scale.

5.3.3 Augmented Search Engines

Search engines are foundational tools for accessing information online, and generative

AI offers promising enhancements to their capabilities. By integrating scraped data, search

engines can provide richer, more contextual responses to user queries. For example, a

search engine powered by generative AI can aggregate data from live news sources, e-

commerce platforms, and social media to deliver comprehensive responses tailored to real-

time events.

Incorporating LLM-powered real-time insights further refines search engine function-

ality. Adaptive ranking systems, informed by user trends and dynamic content, ensure

that results remain relevant and personalized. This capability not only improves user

satisfaction, but also improves the discoverability of content creators, fostering a mutu-

ally beneficial ecosystem. The integration of scraped data into augmented search engines

demonstrates the potential of generative AI to redefine how information is accessed and

utilized.

5.3.4 Implications for Future Development

The growing reliance on generative AI in web scraping brings with it a set of im-

plications that warrant careful consideration. Scalability remains a critical challenge, as

the computational requirements for large-scale scraping operations increase alongside the

complexity of modern websites. Optimizing these processes to balance performance and

cost will be vital for long-term sustainability.

74

5.3.4 Implications for Future Development

Ethical and legal frameworks will also need to evolve to keep pace with these ad-

vancements. As generative AI enables deeper and more nuanced data extraction, ensuring

compliance with global privacy standards becomes increasingly complex. Collaborative

efforts among researchers, policymakers, and industry stakeholders will be essential to

navigate these challenges and establish best practices.

Finally, the integration of generative AI into web scraping welcomes a new era of

possibilities for data access and use. By addressing its limitations and maximizing its

strengths, this technology has the potential to drive innovation in countless fields, shaping

a future where information is more accessible, actionable, and impactful than ever before.

75

Part II

Implementation

77

Chapter 6

soniq: No-code web scraping platform for struc-

tured data extraction

6.1 Problem definition

Web scraping plays a critical role in modern data acquisition, contributing significantly

to fields such as search engine indexing, AI model training, and competitive intelligence.

However, it presents a technological barrier due to each website’s different and potentially

complicated structures, and standard web practices that require headless browsers and

anti-bot measurements that can be price and resource intensive task. Naive approaches

to web scraping consist of different database structures for each data domain to be ex-

tracted and different code implementations for each website to be scraped regardless of

the framework that will be used to create the scraping pipeline. Therefore, while public

information is available to anyone through user interaction, only companies and teams

that have the resources to create complex pipelines can automatically acquire and lever-

age this information. Although there are numerous pay-as-you-go API scraping services,

these are predominantly closed-source, limiting users’ ability to directly access raw data,

define their own extraction schemas, or customize the scraping pipeline. The goal of this

thesis is to create an open-source, no-code, supported by LLM technology Software as a

Service platform that can give the same advantage to individuals or academic teams, in

order to be able to integrate public data to their knowledge systems, train or fine-tune

their own LLMs and AI models through a more accessible multi-domain, structured web

data extraction without the need to create a scaping pipeline from scratch.

6.2 Technologies Used

The thesis implementation can be broken down to three counterparts: backend, and

frontend, which have the ability to inter-communicate and ensure the functionality of the

final product.

6.2.1 Backend

The backend counterpart of the application has been built in order to be able to handle

multiple users, successfully respond to concurrent requests and efficiently store and query

79

Chapter 6. soniq: No-code web scraping platform for structured data extraction

Figure 6.1. soniq Component UML Diagram

large amount of data. In order to make this possible, open-source, production-grade widely

adopted technologies have been utilized:

MongoDB

MongoDB[48] is a NoSQL, document-oriented database designed for high-performance,

scalability, and flexibility. Unlike relational databases (SQL), MongoDB stores data in

BSON (Binary JSON) format, allowing for schema-less document structures, making it

ideal for storing and managing unstructured or semi-structured data. It is widely used

in modern web applications, including web scraping pipelines, big data processing, and

AI-driven analytics.

Key Features

1. Document-Oriented Storage

• Data is stored in collections of documents, rather than traditional rows and

tables.

• Each document is structured as a JSON-like object (BSON), supporting nested

fields and flexible data types.

2. Schema-Less Design (Dynamic Schema)

• Unlike SQL databases, MongoDB does not require a fixed schema.

• Documents in the same collection can have different structures, making it easy

to evolve data models over time.

3. High Scalability (Sharding & Replication)

• Sharding: Distributes data across multiple servers to handle large-scale work-

loads.

• Replication: Ensures high availability and fault tolerance by maintaining mul-

tiple copies of data.

4. Rich Query Language

80

6.2.1 Backend

• Supports CRUD operations (Create, Read, Update, Delete) with powerful fil-

tering, aggregation, and indexing.

• Queries can be performed using JavaScript-like syntax.

5. Indexing for Fast Queries

• Supports multiple types of indexes, including single-field, compound, and text

indexes for efficient query performance.

• Geospatial indexing enables location-based searches.

6. Aggregation Framework

• Similar to SQL’s GROUP BY, the aggregation pipeline allows for complex data

transformations, filtering, and computations.

• Used for data analysis and processing within the database itself.

7. Built-in Horizontal Scaling

• MongoDB is optimized for distributed computing, making it an excellent choice

for big data and real-time applications.

8. ACID Transactions (Multi-Document)

• Supports multi-document ACID transactions, ensuring data integrity in com-

plex applications.

Features like schema-less design, rich query language, aggregation framework and hor-

izontal scaling make MongoDB the most responsible decision for this implementation

enhancing data versatility and ability to create informative data tables.

FastAPI

FastAPI[49] is a modern, high-performance web framework for building APIs using

Python 3.7+. It is designed for speed, scalability, and ease of use, making it an excellent

choice for developing web services, including RESTful APIs for data-driven applications

like web scraping systems.

FastAPI is built on Starlette (for async web handling) and Pydantic (for data valida-

tion and serialization), offering automatic data validation, OpenAPI documentation, and

asynchronous support.

Key Features

1. High Performance (Asynchronous & Non-Blocking

• Built on ASGI (Asynchronous Server Gateway Interface), allowing concurrent

request handling.

• Supports async/await, making it faster than Flask for I/O-bound operations.

81

Chapter 6. soniq: No-code web scraping platform for structured data extraction

2. Automatic OpenAPI & Swagger Documentation

• Enables self-documenting APIs without additional effort.

• FastAPI automatically generates OpenAPI documentation (/docs endpoint us-

ing Swagger UI).

• Provides Redoc UI for alternative API exploration (/redoc).

3. Data Validation with Pydantic

• Uses Pydantic for strict data validation and serialization.

• Ensures API requests contain correctly formatted data.

• Allows definition of strict types for request/response models.

4. Dependency Injection System

• Allows clean separation of concerns with dependency injection.

• Useful for integrating authentication, database connections, and middleware

efficiently.

5. Built-in Security (OAuth2, JWT)

• Supports OAuth2 and JWT authentication out of the box.

• Provides automatic handling of API security, reducing development effort.

6. WebSocket & GraphQL Support

• Enables real-time communication through WebSockets.

• Supports GraphQL APIs alongside traditional REST endpoints.

7. Easy Integration with Databases

• Works well with MongoDB (Motor), PostgreSQL (SQLAlchemy), Redis, and

other databases.

• Supports async database operations for high scalability.

Therefore, FastAPI is a great addition to the implementation’s stack checking every

potential need there is in order to design a robust and well documented API infrastructure.

crawl4ai

Crawl4AI[50] is a next-generation AI-powered web scraping framework that leverages

large language models (LLMs) for intelligent data extraction. Unlike traditional web

scrapers that rely on static CSS selectors and XPath queries, Crawl4AI uses machine

learning and NLP techniques to dynamically detect, structure, and extract web content,

making it more resilient to UI changes and less prone to anti-scraping mechanisms.

It is designed to work with structured and unstructured web data, integrating auto-

correcting pipelines, proxy management, and API-based scraping for a scalable and adap-

tive scraping experience.

82

6.2.1 Backend

Key Features

1. AI-Powered Smart Extraction

• Uses LLMs and NLP models to understand webpage layouts and extract struc-

tured data automatically.

• Can infer relationships between elements (e.g., extracting product details even

if HTML structures vary across different sites).

• Supports semantic extraction, allowing it to capture contextual information.

2. Hybrid Extraction Methods

• AI-Assisted Extraction: Automatically detects and extracts key data fields

without predefined rules.

• Manual Extraction: Allows users to define CSS selectors and XPath queries for

precision.

• LLM-Assisted Schema Generation: Generates CSS selectors for users based on

textual descriptions.

3. Multi-Threaded & Asynchronous Execution

• Supports parallel scraping for high efficiency.

• Uses asynchronous I/O operations to handle multiple pages simultaneously,

reducing execution time.

4. Open Source

• Code is available to inspect, build, contribute.

• Ability to extend and add extra features applying to each use case.

5. Proxy and CAPTCHA Handling

• Integrates with residential proxies, rotating IPs, and CAPTCHA solvers.

• Uses adaptive proxy selection to minimize detection.

• Supports third-party CAPTCHA solving services like 2Captcha and Anti-Captcha.

Crawl4AI functionality is very crucial for this implementation as it provides an ab-

straction layer for tasks that would otherwise need to be implemented from scratch such

as undetectable headless browsers, uniform css extraction, and LLM prompt engineering.

While it provides these features, is highly flexible allowing this application to effortlessly

use and extend it.

APScheduler

APScheduler[51] (Advanced Python Scheduler) is a lightweight, flexible, and efficient

job scheduling library for Python. It allows developers to schedule tasks (jobs) to run

at specific intervals, on a fixed date, or in response to events. APScheduler is commonly

used for task automation, cron-like scheduling, and background job execution, making it

an ideal choice for scheduling web scraping jobs in the web scraping system.

83

Chapter 6. soniq: No-code web scraping platform for structured data extraction

Key Features

1. Multiple Job Scheduling Options

• One-time jobs → Execute a task at a specific datetime.

• Interval-based jobs → Run tasks every X seconds/minutes/hours.

• Cron-like jobs → Schedule jobs using cron expressions for precise timing.

2. Persistent Job Storage

• Supports SQLite, PostgreSQL, MySQL, and MongoDB for storing scheduled

jobs.

• Ensures that jobs persist across application restarts.

3. Asynchronous & Threaded Execution

• Supports multi-threaded execution (default) and async job execution.

• Ensures that scheduled tasks do not block the main application thread.

4. Error Handling & Job Monitoring

• Logs job failures, execution times, and retries.

• Provides job state tracking, including paused, running, and completed jobs.

5. Flexible Job Triggers

• Uses built-in triggers for different scheduling needs (date, interval, cron).

• Allows custom event-based triggers.

6.2.2 Frontend

The frontend of the application has been built on two pillars of modern software design:

user experience and extensibility. Following production-grade practices, the UI counter-

part of this application attempts to be user friendly, intuitive while being attentive to

performance and productivity. The technologies utilized to achieve this are the following:

React

React[52] is a JavaScript library for building user interfaces, developed and maintained

by Meta (formerly Facebook). It is widely used for single-page applications (SPAs) and

component-based UI development. React is particularly well-suited for dynamic and in-

teractive web applications, making it an ideal choice for the frontend of the web scraping

system.

React’s virtual DOM (Document Object Model) and declarative programming paradigm

ensure high performance and efficient UI updates, making it perfect for rendering and

managing user-defined scraping jobs.

84

6.2.2 Frontend

Key Features

1. Component-Based Architecture

• React applications are built using reusable components, allowing modular and

maintainable code.

• Each component manages its own state and can be reused across the applica-

tion.

2. Virtual DOM for Efficient Rendering

• React uses a virtual DOM to efficiently update only the necessary UI elements

when the state changes.

• Reduces the number of actual DOM manipulations, improving performance and

responsiveness.

3. Declarative UI

• React describes the UI state declaratively, making code easier to read and

debug.

• Instead of manually updating the UI, React updates the view when data changes.

4. React Hooks for State and Effects

• Introduces functional components with React Hooks (useState, useEffect, etc.).

• Simplifies state management and side effects handling without using class com-

ponents.

5. Context API for Global State Management

• Built-in alternative to Redux, allowing global state management without prop

drilling.

6. React Router for Navigation

• Enables client-side routing, making navigation fast and seamless without full

page reloads.

7. Integration with APIs

• Works efficiently with RESTful APIs (FastAPI backend), GraphQL, and Web-

Sockets.

Refine.dev

Refine.dev[53] is an open-source React framework for building data-intensive applica-

tions. It is designed to simplify CRUD (Create, Read, Update, Delete) operations, making

it a powerful tool for managing structured data applications like admin dashboards, in-

ternal tools, and scraping monitoring systems.

Refine.dev is an ideal choice for the web scraping system’s frontend, as it allows quick

development of dashboards for job management, scheduling, and data monitoring.

85

Chapter 6. soniq: No-code web scraping platform for structured data extraction

Key Features

1. Rapid CRUD API Integration

• Automatically connects to REST or GraphQL APIs.

• Provides hooks (useList, useCreate, useUpdate) to fetch and manipulate data.

2. Auto-Generated Admin UI

• Generates CRUD interfaces automatically from API schemas.

• Provides table views, forms, and filters with minimal configuration.

3. Authentication & Authorization

• Supports JWT authentication, OAuth, and third-party login providers.

• Provides role-based access control (RBAC).

4. Powerful Data Fetching with React Query

• Uses React Query to fetch and cache API data efficiently.

• Provides real-time updates and optimistic UI.

5. React Router & Navigation

• Seamlessly integrates with React Router for SPA navigation.

• Provides built-in support for nested routes and protected pages.

6. Custom Hooks for Business Logic

• Developers can override default behavior using custom hooks.

Refine is built on top of React, React Query, and other modern libraries, providing out-

of-the-box support for many application features. Adding opinion to common repetitive

layers that are crucial for each application make the code more readable, efficient file

structure and many other features that prevents the developer from reinventing the wheel

while making the fronted of their application scalable

ShadCN UI

ShadCN UI[54] is a modern, accessible, and customizable component library for React

applications. Unlike traditional UI libraries (e.g., Ant Design, Material UI), ShadCN

provides unopinionated, developer-friendly components built on Tailwind CSS and Radix

UI.

ShadCN UI is ideal for building beautiful, lightweight, and highly customizable UIs,

making it perfect for the frontend of the web scraping system.

86

6.3 Architecture

Key Features

1. Tailwind CSS-Based Styling

• Uses Tailwind utility classes for styling instead of complex stylesheets.

• Allows full customization without the need for additional CSS overrides.

2. Headless & Accessible Components

• Uses Radix UI for keyboard navigation and screen reader support.

• Components are unstyled by default, giving developers full control over UI

styling.

3. Server-Side Rendering (SSR) Friendly

• Fully compatible with Next.js and React Server Components.

• Supports progressive enhancement for fast page loads.

4. Dark Mode Support

• Auto-detects system themes and allows manual toggling between light and dark

mode.

5. Lightweight & Fast

• Unlike Ant Design or Material UI, ShadCN does not ship unnecessary CSS or

JS.

• Works out of the box with Vite, Next.js, and React.

6. Component Reusability

• Components are imported per use case, reducing bundle size and improving

performance.

6.3 Architecture

The architecture is built to accommodate a broad range of users, from non-technical

individuals requiring a no-code solution to advanced users who may customize and extend

its functionality. The system consists of three primary layers: the frontend, which enables

users to interact with the system through a well-structured user interface; the backend,

which is responsible for API handling, job scheduling, ensures the persistence of extracted

data and scraper coordination; and the proxy layer, which creates an isolated network

between the other layers while exposing it to the rest of the world. Each of these layers

operates within its own dedicated Docker container [55], ensuring a clear separation of

concerns and allowing for tailored environmental configurations based on their specific

requirements. Despite this isolation, the proxy layer acts as an intermediary, seamlessly

managing communication between containers within their private network while also inter-

facing with the external environment. Once each service is individually configured, Docker

87

Chapter 6. soniq: No-code web scraping platform for structured data extraction

Compose [56] orchestrates the multi-container deployment, synchronizing the lifecycle of

all components to maintain system coherence and operational efficiency.

This architecture follows a modular monolithic approach, where different components

interact within a unified backend system without being entirely decoupled as separate

services. The decision to follow this design was motivated by the need to balance simplicity,

maintainability, and efficiency resulting in a streamlined and performant architecture, well-

suited for handling structured data extraction tasks.

The following sections provide a detailed breakdown of each architectural component,

its role within the system, and the interactions between different layers.

6.3.1 Frontend Layer

The frontend of the system is designed to provide a modern, responsive, and interactive

user interface that allows users to create, manage, and monitor their scraping jobs. It is

developed using React, leveraging Refine.dev for simplified CRUD operations and ShadCN

UI for a clean and customizable design. This choice of technologies ensures a balance

between usability, flexibility, and efficiency.

The primary responsibilities of the frontend include allowing users to define ontologies,

specifying the structure of the data they wish to extract, as well as configuring scraping

jobs by providing target URLs and selecting extraction methodologies. The frontend also

facilitates data visualization, enabling users to inspect extracted data through interactive

dashboards. Authentication and authorization mechanisms are implemented to ensure

secure access control, allowing only registered users to define and manage scraping oper-

ations.

The frontend interacts with the backend through a RESTful API, exchanging struc-

tured JSON data. Data related to scraping jobs, ontologies, and extracted content is

retrieved dynamically from the backend and displayed in the user interface. Secure com-

munication is facilitated through Traefik, which acts as a reverse proxy, ensuring proper

request routing and enforcing authentication policies.

6.3.2 Backend Layer

The backend is implemented using FastAPI, a high-performance web framework op-

timized for asynchronous execution. It is responsible for securely handling user requests,

managing scraping jobs, scheduling extractions, and processing data interactions with the

database. The backend exposes a REST API, which the frontend consumes to enable

users to create and manage their scraping workflows.

The core functionality of the backend revolves around ontology management, scraping

job scheduling, and data retrieval. Users can define custom ontologies that structure the

data extraction process, specifying the type of information they need to extract. These

ontologies are then used to define page schemas, which determine the specific extraction

rules for each web page. The backend ensures that these configurations are properly stored

and retrieved when needed.

88

6.3.2 Backend Layer

Figure 6.2. soniq API Swagger Docs 1

To handle scheduled scraping jobs, the system utilizes APScheduler, which periodically

triggers web scraping tasks based on user-defined schedules. Unlike architectures that rely

on distributed task queues, the scheduler directly invokes the Crawl4AI scraper, ensuring

that scraping jobs are executed efficiently without unnecessary complexity. Once a job is

initiated, the scraper fetches the target web pages, applies the specified extraction schema,

and stores the extracted data in the MongoDB database.

Data retrieval is another key function of the backend. Users can request previously

extracted data through dedicated API endpoints. The system supports advanced filtering

and querying mechanisms, allowing users to extract insights from large datasets efficiently.

Logs of all executed jobs are maintained, enabling users to track scraping performance and

debug any potential issues.

Web Scraping Engine

The web scraping functionality is powered by Crawl4AI, an AI-enhanced scraping en-

gine that enables both rule-based and AI-driven extraction methods. Traditional web

scrapers rely on static CSS selectors to extract specific elements from web pages, making

them fragile in the face of website layout changes. Crawl4AI, however, incorporates ma-

chine learning techniques to identify structured data patterns dynamically, improving its

ability to adapt to changes in webpage structures.

Scraping can be performed in two modes: an AI-assisted mode, where the system

automatically detects and extracts structured content, and a manual mode, where users

89

Chapter 6. soniq: No-code web scraping platform for structured data extraction

Figure 6.3. soniq API Swagger Docs 2

define CSS selectors to specify exact elements to be extracted. This flexibility allows the

system to cater to both technical and non-technical users.

Once a scraping task is triggered, Crawl4AI fetches the requested web pages and

processes them according to the defined ontology and extraction schema. The extracted

data is validated, structured, and stored in MongoDB. In cases where an error occurs

during extraction, the system logs the failure and provides debugging information to the

user.

Data Storage and Processing

All structured and unstructured data collected by the scraper is stored in MongoDB,

a NoSQL document-oriented database optimized for handling large-scale web data. The

database schema is designed to support the flexible nature of the data being extracted while

maintaining data consistency and fast retrieval times. The primary collections within the

MongoDB instance include:

Ontologies , which define the structure of extracted data.

Pages , which store webpage configurations and their corresponding extraction schemas.

Jobs , which schedule the scraping tasks.

JobRuns , which tracks the execution of scraping tasks.

ExtractedData , which contains the final structured output from web scraping opera-

tions.

90

6.3.3 Deployment Architecture

Figure 6.4. soniq Database UML Class Diagram

6.3.3 Deployment Architecture

The system is designed to be containerized, ensuring that all components can be easily

deployed and managed. The deployment is structured around Docker, where each com-

ponent runs as an isolated container. Traefik is used as a reverse proxy to route requests

securely between the frontend and backend while also handling SSL termination and load

91

Chapter 6. soniq: No-code web scraping platform for structured data extraction

balancing. The key components of the deployment include:

Frontend (React + Refine.dev + ShadCN UI), deployed as a Docker container.

Backend (FastAPI + APScheduler + Crawl4AI), handling API requests and job

execution.

MongoDB, which persists all scraping configurations and extracted data.

Traefik, which manages routing and API exposure.

The deployment architecture ensures scalability and maintainability, and easy deployment

allowing components to be updated independently without affecting the entire system.

Figure 6.5. soniq Deployment UML Diagram

6.3.4 System Workflow

The system follows a well-defined workflow for executing scraping tasks. First, the

user defines an ontology and configures the extraction schema for a target web page. This

configuration is stored in MongoDB, ensuring that the system retains the extraction rules

for future jobs. Next, the user schedules a scraping job, which is handled by APSched-

uler and triggered at the specified time. When execution begins, the Crawl4AI scraper

retrieves the target page, extracts data according to the ontology, and stores the results

in MongoDB. The user can then access the extracted data through the frontend interface.

92

6.3.4 System Workflow

This workflow enables an end-to-end automated scraping pipeline, from configuration

and scheduling to data retrieval and visualization. The combination of AI-assisted extrac-

tion, manual selector-based scraping, and task scheduling ensures that users can extract

data efficiently without requiring deep technical knowledge.

Figure 6.6. soniq Activity UML Diagram

93

Chapter 6. soniq: No-code web scraping platform for structured data extraction

Figure 6.7. soniq Sequence UML Diagram

6.4 Use Case - Scraping Energy News Articles in Seconds

In this section, one will analyze the usage described above applied to the energy news

domain. Extracting news from websites is a very common practice that provides re-

searchers with powerful data points that can be utilized to train AI models, gain insights

about current advancements, or even maintain a system up-to-date by repeating the ex-

traction process every day.

6.4.1 Creating the Ontology

The first step of scraping a semantic domain in ”soniq” is to create the desired ontology.

In the context of the implementation of this thesis, an ontology is the basic entity that

describes and structures the extracted data.

94

6.4.2 Creating a Page

Figure 6.8. Ontology Creation

Once an ontology is created, the user can continue defining the websites they desire to

extract data from.

6.4.2 Creating a Page

A page is a secondary entity that refers to an existing ontology. During its creation,

the user needs to define the URL from which ”soniq” will source the data, the extraction

schema to be followed, and the frequency in which the job will run.

Step 1: Basic Information

Figure 6.9. Basic Page Information

95

Chapter 6. soniq: No-code web scraping platform for structured data extraction

Step 2: Schema Generation

In the next step of the workflow, the user can optionally find the css selector of the

HTML element that contains the data they want to extract. This process is only useful

to limit the tokens sent to the LLM and therefore the price of the request, but can also

be skipped in cases where the user is not so technical.

Figure 6.10. Inspect HTML Container

Once this process is finished and the user has found a potential css selector, they can

move on to querying the LLM to generate the actual css selectors that can successfully

retrieve the data structure defined in the ontology.

Figure 6.11. CSS Extraction Schema Generation using LLM

96

6.4.2 Creating a Page

One can notice that the LLM has hallucinated and added fields that the user did

not specify in the ontology (content has nested fields). For that reason, the generated

schema is completely modifiable in order to add, edit, or remove fields that have not been

generated correctly.

Figure 6.12. Modified Generated Schema

In order to verify the LLM results, the user can simulate the scraping job and retrieve

the data using the generated strategy by clicking the ”Test” button. By viewing the

extracted data, the user can verify if there is a field without content and can cross-validate

using the real website that every data point they needed to scrape has been successfully

extracted.

97

Chapter 6. soniq: No-code web scraping platform for structured data extraction

Figure 6.13. Scraping Job Simulation

Step 3: Job Scheduling

It is now time to schedule the extraction frequency. This is the last step of the page

creation workflow and once it is completed, the scraping job is scheduled using the afore-

mentioned technologies.

Figure 6.14. Scraping Job Scheduling

98

6.4.2 Creating a Page

The user can verify that the page has been created and explore other pages in the

exploration data table.

Figure 6.15. Page Explorer

Step 4: Handle pagination

Pagination is the most common practice of limiting data availability on all types of

websites that expose valuable information. For this purpose, ”soniq” manages to resolve

this issue by providing the user the ability to define the pagination variables. It is visible

from the browser’s url input that the current website the user intends to scrape adds a

query parameter named p in order to handle pagination.

Figure 6.16. energia.gr Pagination Url

Once the user has identified all the required variables to handle pagination in the

website of their choice, they can edit the page and configure it to enqueue more urls for

extraction.

99

Chapter 6. soniq: No-code web scraping platform for structured data extraction

Figure 6.17. Pagination Url Enqueuer

6.4.3 Inspecting Job Executions

In the last section, the user created and scheduled a page. The ”soniq” platform has

the responsibility to enqueue this scraping job when the user has defined. An additional

feature is the job execution exploration and detailed review that the platform provides to

the user to monitor and debug their defined jobs.

Figure 6.18. Run Explorer

The detailed review of the job execution provides valuable information to the user, such

as its status, the number of items successfully scraped, the date it took place, its duration,

and for advanced users the actual service logs in order to identify potential errors.

100

6.4.4 Scraped Data Exploration

Figure 6.19. Job Execution Details

6.4.4 Scraped Data Exploration

Finally, the most important feature of this platform is the ability to view, explore, and

export scraped data to analyze and manage the data.

Figure 6.20. Data Explorer

101

Part III

Epilogue

103

6.5 Overview

6.5 Overview

The journey through advanced web scraping in the modern web has underscored the

growing complexities and innovations shaping the field. This thesis has explored both

offensive (scraping methodologies) and defensive (anti-scraping techniques) perspectives,

while also proposing an alternative vision: the democratization of web scraping through

a no-code AI-enhanced platform.

As the arms race between scrapers and anti-bot defenses continues, this work highlights

the potential of AI-driven adaptability in overcoming technical barriers while maintaining

ethical and legal compliance. The introduction of LLM-assisted schema generation, adap-

tive pipeline correction, and automated API-based extraction provides a path toward a

more accessible and structured approach to data extraction. The implementation of soniq

demonstrates how open-source, AI-enhanced web scraping can level the playing field, al-

lowing smaller teams, researchers, and independent developers to access structured web

data without extensive engineering expertise.

Looking forward, the interplay between web security, AI, and data accessibility will

only grow more intricate. The future of web scraping lies in intelligent, ethical, and highly

adaptive solutions that balance efficiency with compliance. Further research should focus

on enhancing AI-driven automation, improving adversarial robustness, and refining real-

time scraping frameworks.

Ultimately, this work serves as a bridge between technological advancement and ac-

cessibility, reaffirming that structured web data should not be a privilege of large-scale

enterprises but an open and democratized resource for all.

6.6 Future Work

While this thesis has laid a strong foundation for AI-driven, no-code web scraping

democratization, several avenues for future research and development remain open. The

evolution of web technologies, security measures, and AI capabilities presents both chal-

lenges and opportunities for advancing the field of intelligent data extraction. Below are

key areas for potential future work:

6.6.1 Enhancing AI-Driven Adaptability in Scraping

One of the most critical areas for future development is increasing the adaptability of

web scraping systems to handle dynamic and ever-changing web environments. Websites

frequently update their DOM structures, anti-bot measures, and data formats, often ren-

dering traditional scrapers obsolete. While this thesis has introduced LLM-assisted schema

detection and self-correcting pipelines, further work is needed to develop autonomous

scraping agents that can learn and evolve over time.

Future advancements should focus on self-learning scrapers that leverage reinforcement

learning and continual adaptation techniques. These agents should monitor UI changes

over time, detect patterns of modifications, and automatically adjust their extraction

105

strategies without human intervention. Additionally, the integration of multimodal AI,

combining computer vision for layout interpretation with NLP for text structuring, can

significantly enhance the robustness of web scrapers. This hybrid approach would allow

scrapers to navigate web interfaces more naturally, much like a human user would, ensuring

accurate data extraction even in the face of sophisticated obfuscation techniques.

Beyond adaptability, another key area for future work is optimizing AI-driven scrap-

ing for speed and efficiency. Current AI-assisted extraction models introduce higher com-

putational overhead, making real-time scraping impractical for large-scale applications.

Research into lightweight AI models, edge processing techniques, and optimized inference

pipelines will be necessary to enable high-speed, cost-effective AI-driven scraping at scale.

6.6.2 Expanding No-Code Customization & User Experience

Democratizing web scraping requires further development in no-code and low-code

solutions, making data extraction more accessible to researchers, business analysts, and

non-technical users. While this thesis introduces a no-code scraping platform, future work

should focus on enhancing user experience, automation, and customization to create a

seamless and intuitive data extraction process.

One of the most impactful directions for expansion is the development of a visual

ontology builder, where users can define structured data schemas through an interactive,

drag-and-drop interface. This would eliminate the need for manual ontology scripting,

allowing users to visually map relationships between extracted data fields and generate

structured outputs without writing a single line of code. Such a feature would significantly

lower the entry barrier for users who need structured data but lack technical expertise in

web scraping.

Additionally, integrating AI-driven guidance into the no-code interface can help users

automatically generate optimized scraping configurations based on natural language de-

scriptions. Users should be able to describe their data needs conversationally, and the

system would generate, test, and validate the necessary extraction workflows. Further-

more, expanding the multi-domain capabilities of the platform—such as enabling seamless

scraping across e-commerce, finance, academia, and social media—will ensure that differ-

ent industries can easily adopt structured web data extraction without requiring extensive

customization.

Finally, integrating real-time monitoring dashboards that provide insights into scraping

efficiency, data quality, and system performance will enhance usability. These dashboards

should allow users to identify errors, track historical trends, and receive automated sug-

gestions for improving scraping efficiency. Future research should explore how real-time

analytics and visualization tools can empower non-technical users to make data-driven

decisions while keeping scraping operations efficient and transparent.

6.6.3 Exploring Decentralized & Federated Scraping Approaches

Web scraping currently relies heavily on centralized architectures, where individual

scrapers operate in isolation or within controlled server environments. However, decen-

106

6.6.4 Ethical and Regulatory Considerations

tralized and federated approaches offer exciting possibilities for scalability, anonymity, and

data resilience while reducing the risk of centralized failures and legal vulnerabilities.

One promising avenue for future work is the development of peer-to-peer (P2P) scrap-

ing networks, where users contribute scraping resources in a distributed fashion, effectively

creating a crowdsourced data extraction ecosystem. In such a system, scrapers can col-

laborate, sharing learned extraction patterns while distributing crawling workloads across

a decentralized network. This would not only improve scraping efficiency but also make

it harder for websites to detect and block scraping operations, as requests would originate

from diverse, geographically dispersed nodes rather than a single centralized entity.

Additionally, federated learning techniques could be applied to web scraping, enabling

scrapers to collaboratively improve extraction models without sharing raw data. This

method would allow different scraping agents to learn from each other’s experiences, refin-

ing AI-assisted extraction techniques in a privacy-preserving manner. Such an approach

could lead to a more adaptive, intelligent, and community-driven scraping ecosystem.

6.6.4 Ethical and Regulatory Considerations

The growing legal and ethical concerns surrounding web scraping necessitate further

research into compliance frameworks and responsible data extraction methodologies. As

governments and organizations impose stricter data protection regulations such as GDPR,

CCPA, and AI transparency laws, future work should focus on developing AI-driven com-

pliance tools that ensure scraping remains within legal and ethical boundaries.

One direction for future research is the development of privacy-preserving scraping

techniques that leverage differential privacy and anonymization methods to protect both

website owners and users. By ensuring that extracted data is sanitized, de-identified,

and aggregated in a compliant manner, organizations can minimize ethical risks while

maintaining access to valuable public data.

Additionally, AI-generated dataset attribution mechanisms should be explored, en-

suring that any data scraped and used in AI training or analytics is properly cited and

referenced. The introduction of automated transparency reports, which log data prove-

nance and usage, could help address concerns about AI model biases and dataset integrity.

Beyond compliance, future research should also investigate the ethical implications

of AI-generated scraping decisions, particularly in cases where models autonomously de-

termine which data to extract, retain, or discard. Establishing ethical guidelines and

AI governance policies for web scraping will be crucial to ensuring fair, responsible, and

transparent data extraction practices.

6.6.5 Extracted Data Ingestion in Data Warehouses for Better Process-

ing and Analytics

As web scraping becomes more sophisticated, integrating extracted data seamlessly

into modern data warehouses is a crucial next step. Current scraping solutions often focus

on extraction but lack optimized pathways for long-term storage, querying, and large-scale

107

analysis. Future research should explore how scraped data can be efficiently structured,

transformed, and ingested into cloud-based data lakes and analytics platforms.

A key direction is the development of automated ETL (Extract, Transform, Load)

pipelines that allow scraped data to be cleaned, normalized, and integrated into structured

warehouse environments like BigQuery, Snowflake, or Apache Druid. This would enable

organizations to leverage scraped data in real-time analytics, business intelligence, and AI

model training, significantly enhancing its value beyond raw collection.

Further work should focus on real-time ingestion pipelines, allowing scraped data to

continuously update dashboards, predictive models, and decision-making systems. By

creating a direct bridge between web scraping and enterprise analytics, organizations can

harness the full potential of structured web data for strategic insights.

6.6.6 Conclusion

Future work in web scraping must focus on enhancing adaptability, accessibility, decen-

tralization, ethical compliance, and seamless data integration. As AI-driven automation

continues to evolve, these directions will shape the next generation of intelligent, respon-

sible, and scalable web scraping solutions.

108

Bibliography

[1] Statista. Global number of internet users 2005-2024. https://www.statista.com/

statistics/273018/number-of-internet-users-worldwide/. Access Date: 05-

02-2025.

[2] Built With. https://builtwith.com. Access Date: 20-12-2024.

[3] Kasereka Henrys. Importance of Web Scraping in E-Commerce and E-Marketing.

Bugema University, January 19, 2021.

[4] SCM De S Sirisuriya. Importance of Web Scraping as a Data Source for Machine

Learning Algorithms - Review. 2023 IEEE 17th International Conference on Indus-

trial and Information Systems (ICIIS), σελίδες 134–139, 2023.

[5] Vijay Panwar. Web Evolution to Revolution: Navigating the Future of Web Ap-

plication Development. International Journal of Computer Trends and Technology,

72:34–40, 2024.

[6] Radu Bucea-Manea-Tonis. Angular JS – The Newest Technology in Creating Web

Applications. Annals of Spiru Haret University Economic Series, 16:103, 2016.

[7] madewithangular Lalith Polepeddi. Made With Angular. https://www.

madewithangular.com/sites.

[8] Arshad Javeed. Performance Optimization Techniques for ReactJS. 2019 IEEE In-

ternational Conference on Electrical, Computer and Communication Technologies

(ICECCT), σελίδες 1–5, 2019.

[9] Joe Marini. Document Object Model. McGraw-Hill, Inc., USA, 1η έκδοση, 2002.

[10] Vue JS. https://vuejs.org/. Access Date: 22-11-2024.

[11] Next JS. https://nextjs.org/. Access Date: 08-12-2024.

[12] Nursel Yalçın και Utku Köse. What is search engine optimization: SEO? Procedia

- Social and Behavioral Sciences, 9:487–493, 2010. World Conference on Learning,

Teaching and Administration Papers.

[13] Svelte. https://svelte.dev/. Access Date: 27-01-2025.

[14] Roy Thomas Fielding. Architectural Styles and the Design of Network-based Software

Architectures. University of California, Irvine, 2000. Access Date: 08-11-2024.

109

https://www.statista.com/statistics/273018/number-of-internet-users-worldwide/
https://www.statista.com/statistics/273018/number-of-internet-users-worldwide/
https://builtwith.com
https://www.madewithangular.com/sites
https://www.madewithangular.com/sites
https://vuejs.org/
https://nextjs.org/
https://svelte.dev/

BIBLIOGRAPHY

[15] GraphQL. https://graphql.org/. Access Date: 31-01-2025.

[16] gRPC. https://grpc.io/. Access Date: 16-02-2025.

[17] Harold Davis. Search Engine Optimization. O’Reilly Media, Inc., May 2006.

[18] Cheerio.js. https://github.com/cheeriojs/cheerio. Access Date: 21-11-2024.

[19] BeautifulSoup. https://www.crummy.com/software/BeautifulSoup/bs4/doc/.

Access Date: 13-12-2024.

[20] jQuery. https://jquery.com/. Access Date: 06-01-2025.

[21] Axios. https://axios-http.com. Access Date: 09-02-2025.

[22] Puppeteer. https://github.com/puppeteer/puppeteer. Access Date: 04-12-2024.

[23] Playwright. https://github.com/microsoft/playwright. Access Date: 18-01-

2025.

[24] Selenium. https://github.com/seleniumhq/selenium. Access Date: 07-02-2025.

[25] MitmProxy. https://github.com/mitmproxy/mitmproxy. Access Date: 25-12-2024.

[26] Gunes Acar, Marc Juarez, Nick Nikiforakis, Claudia Diaz, Seda Gürses, Frank

Piessens και Bart Preneel. FPDetective: dusting the web for fingerprinters. Pro-

ceedings of the 2013 ACM SIGSAC Conference on Computer & Communications

Security, CCS ’13, σελίδα 1129–1140, New York, NY, USA, 2013. Association for

Computing Machinery.

[27] Pierre Laperdrix, Nataliia Bielova, Benoit Baudry και Gildas Avoine. Browser Fin-

gerprinting: A Survey. ACM Trans. Web, 14(2), 2020.

[28] Peter Eckersley. How Unique Is Your Web Browser? Privacy Enhancing Tech-

nologiesMikhail J. Atallah και Nicholas J. Hopper, επιμελητές, σελίδες 1–18, Berlin,

Heidelberg, 2010. Springer Berlin Heidelberg.

[29] Yundi He, Runhua Shi και Boyan Wang. WT-CFormer: High-Performance Web

Traffic Anomaly Detection Based on Spatiotemporal Analysis, 2024.

[30] Pedro Marques, Zayani Dabbabi, Miruna Mihaela Mironescu, Olivier Thonnard,

Frances Buontempo, Ilir Gashi και Alysson Bessani. Using diverse detectors for de-

tecting malicious web scraping activity. 2018 48th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks Workshops (DSN-W), σελίδες 67–

68. IEEE, 2018.

[31] Viktor Petrov. Network Traffic Analysis: Studying Anomaly Detection Approaches

for Network Traffic Analysis to Identify Suspicious Patterns and Behaviors Indicative

of Cyber Threats. Cybersecurity and Network Defense Research, 3(1):13–24, 2023.

110

https://graphql.org/
https://grpc.io/
https://github.com/cheeriojs/cheerio
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://jquery.com/
https://axios-http.com
https://github.com/puppeteer/puppeteer
https://github.com/microsoft/playwright
https://github.com/seleniumhq/selenium
https://github.com/mitmproxy/mitmproxy

BIBLIOGRAPHY

[32] Xun Gong, Nikita Borisov, Negar Kiyavash και Nabil Schear. Website detection using

remote traffic analysis. Privacy Enhancing Technologies: 12th International Sym-

posium, PETS 2012, Vigo, Spain, July 11-13, 2012. Proceedings 12, σελίδες 58–78.

Springer, 2012.

[33] Luisvon Ahn, Manuel Blum, Nicholas J. Hopper και John Langford. CAPTCHA:

Using Hard AI Problems for Security. Advances in Cryptology — EUROCRYPT

2003Eli Biham, επιμελητής, σελίδες 294–311, Berlin, Heidelberg, 2003. Springer Berlin

Heidelberg.

[34] Meriem Guerar, Luca Verderame, Mauro Migliardi, Francesco Palmieri και Alessio

Merlo. Gotta CAPTCHA ’Em All: A Survey of 20 Years of the Human-or-computer

Dilemma. ACM Comput. Surv., 54(9), 2021.

[35] Emilio Ferrara και Robert Baumgartner. Design of Automatically Adaptable Web

Wrappers. CoRR, abs/1103.1254, 2011.

[36] Ye Wang και Mi Lu. An optimized system to solve text-based CAPTCHA, 2018.

[37] Huthaifa Mohammed Kanoosh, Ammar Farooq Abbas, Noora Nazar Kamal, Zainab

Mejeed Khadim, Duaa A. Majeed και Sameer Algburi. Image-Based CAPTCHA

Recognition Using Deep Learning Models. Proceedings of the Cognitive Models and

Artificial Intelligence Conference, AICCONF ’24, σελίδα 273–278, New York, NY,

USA, 2024. Association for Computing Machinery.

[38] Vijayaragavan Pichiyan, S Muthulingam, Sathar G, Sunanda Nalajala, Akhil Ch και

Manmath Nath Das. Web Scraping using Natural Language Processing: Exploiting

Unstructured Text for Data Extraction and Analysis. Procedia Computer Science,

230:193–202, 2023. 3rd International Conference on Evolutionary Computing and

Mobile Sustainable Networks (ICECMSN 2023).

[39] spaCy. https://github.com/explosion/spaCy. Access Date: 30-11-2024.

[40] nltk. https://github.com/nltk/nltk. Access Date: 20-01-2025.

[41] Aman Ahluwalia και Suhrud Wani. Leveraging Large Language Models for Web Scrap-

ing, 2024.

[42] ChatGPT Search. https://openai.com/index/introducing-chatgpt-search/.

Access Date: 03-02-2025.

[43] Samuel Zuehlke, Joel Nitu, Simone Sandler, Oliver Krauss και Andreas Stöckl. Self-

Repairing Data Scraping for Websites. 2024 4th International Conference on Electri-

cal, Computer, Communications and Mechatronics Engineering (ICECCME), σελίδες

1–4, 2024.

[44] LangChain. https://github.com/langchain-ai/langchain. Access Date: 15-02-

2025.

111

https://github.com/explosion/spaCy
https://github.com/nltk/nltk
https://openai.com/index/introducing-chatgpt-search/
https://github.com/langchain-ai/langchain

BIBLIOGRAPHY

[45] Gelei Deng, Haoran Ou, Yi Liu, Jie Zhang, Tianwei Zhang και Yang Liu. Oedipus:

LLM-enchanced Reasoning CAPTCHA Solver, 2024.

[46] Xuanhe Zhou, Xinyang Zhao και Guoliang Li. LLM-Enhanced Data Management,

2024.

[47] Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang,

Zhenzhong Lan και Dong Yu. WebVoyager: Building an End-to-End Web Agent

with Large Multimodal Models. Annual Meeting of the Association for Computational

Linguistics, 2024.

[48] MongoDB. https://github.com/mongodb/mongo. Access Date: 15-11-2024.

[49] FastAPI. https://github.com/fastapi/fastapi. Access Date: 07-12-2024.

[50] UncleCode. Crawl4AI: Open-source LLM Friendly Web Crawler Scraper. https:

//github.com/unclecode/crawl4ai, 2024.

[51] APScheduler. https://github.com/agronholm/apscheduler. Access Date: 05-01-

2025.

[52] React. https://github.com/facebook/react. Access Date: 12-12-2024.

[53] Refine.dev. https://github.com/refinedev/refine. Access Date: 19-11-2024.

[54] ShadCN UI. https://github.com/shadcn-ui/ui. Access Date: 23-12-2024.

[55] Docker. https://docs.docker.com/. Access Date: 10-12-2024.

[56] Docker Compose. https://github.com/docker/compose. Access Date: 26-12-2024.

112

https://github.com/mongodb/mongo
https://github.com/fastapi/fastapi
https://github.com/unclecode/crawl4ai
https://github.com/unclecode/crawl4ai
https://github.com/agronholm/apscheduler
https://github.com/facebook/react
https://github.com/refinedev/refine
https://github.com/shadcn-ui/ui
https://docs.docker.com/
https://github.com/docker/compose

List of Abbreviations

SEO Search Engine Optimization

API Application Programming Interface

UI User Interface

AI Artificial Intelligence

LLM Large Language Model

NLP Natural Language Processing

NLU Natural Language Understanding

NER Natural Entity Recognition

SSR Server-Side Rendering

SPA Single-Page Application

CSR Client-Side Rendering

P2P Peer-to-Peer

ETL Extract, Transform, Load

OCR Optical Character Recognition

CDN Content Delivery Network

BPF Band Pass Filter

CAPTCHA Completely Automated Public Turing test to tell Computers and Humans Apart

JWT JSON Web Token

REST Representational State Transfer

SQL Structured Query Language

JSON JavaScript Object Notation

RDF Resource Description Framework

gRPC gRPC Remote Procedure Call

SSG Static Site Generation

ISR Incremental Static Regeneration

DOM Document Object Model

PWA Progressive Web Application

ACL Access Control List

TLS Transport Layer Security

IoT Internet of Things

CCPA California Consumer Privacy Act

GDPR General Data Protection Regulation

ACL Access Control List

RBAC Role-Based Access Control

SSO Single Sign-On

113

List of Abbreviations

VPN Virtual Private Network

MITM Man-in-the-Middle

SQL Structured Query Language

114

	Περίληψη
	Abstract
	Acknowledgements
	Εκτεταμένη Περίληψη στα Ελληνικά
	Εξέλιξη και Προκλήσεις του Web Scraping
	Τεχνικές Web Scraping και Σύγκρισή τους
	Μηχανισμοί Προστασίας και Ανίχνευσης Scraping
	Η Εφαρμογή της Τεχνητής Νοημοσύνης στο Web Scraping
	Η Πλατφόρμα "soniq" – No-Code Scraping με AI
	Βασικά Χαρακτηριστικά της Πλατφόρμας

	I Background Knowledge
	Modern Web Scraping Architecture
	Introduction
	Evolution of Web Technologies
	Advanced Web Technologies
	Modern Javascript Frameworks
	Advanced API Interfaces

	Search Engine Optimization (SEO)

	Techniques and Innovations in Web Scraping
	Foundational Scraping Techniques
	Scraping Static Websites
	Dynamic JavaScript-Driven Websites
	Network Request Interception
	Comparing Techniques

	Scraping Prevention and Countermeasures
	Detection and Mitigation Strategies
	Browser Fingerprinting
	Traffic Pattern Analysis
	CAPTCHAs
	Honeypotting
	IP Reputation Systems
	Behavioral Analytics
	Conclusion

	Preventive Development Techniques
	Rate Limiting and Throttling
	Dynamic Code and CSS Attributes
	API Key and Token-Based Authentication
	JavaScript Challenges
	Cookie-Based Authentication
	CDN Security
	Data Obfuscation Techniques
	Adaptive User Interface Rendering

	Advanced Protection Mechanisms
	Anti-Scraping SaaS Platforms
	Browser Integrity and Verification
	Hybrid Defense Architectures

	Integration of AI in Web Scraping
	Machine Learning in Scraping
	Adaptive Algorithms for Intelligent Data Extraction
	Automated Proxy Management
	CAPTCHA Solving with AI

	NLP for Data Understanding

	Leveraging Generative AI for Scraping
	LLMs in Scraping Pipelines
	Crawling Stage
	Data Extraction Stage
	Antibot Measures Bypassing Stage
	Post-Processing Data Stage

	Advanced Generative AI Capabilities in Web Scraping
	Cross-Modal Scraping: Bridging Vision and Text
	WebVoyager: A Case Study in Multimodal Web Agents

	Use Cases and Implications
	Training Data Acquisition
	Domain-Specific Applications
	Augmented Search Engines
	Implications for Future Development

	II Implementation
	soniq: No-code web scraping platform for structured data extraction
	Problem definition
	Technologies Used
	Backend
	Frontend

	Architecture
	Frontend Layer
	Backend Layer
	Deployment Architecture
	System Workflow

	Use Case - Scraping Energy News Articles in Seconds
	Creating the Ontology
	Creating a Page
	Inspecting Job Executions
	Scraped Data Exploration

	III Epilogue
	Overview
	Future Work
	Enhancing AI-Driven Adaptability in Scraping
	Expanding No-Code Customization & User Experience
	Exploring Decentralized & Federated Scraping Approaches
	Ethical and Regulatory Considerations
	Extracted Data Ingestion in Data Warehouses for Better Processing and Analytics
	Conclusion

	Bibliography
	List of Abbreviations

