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MepiAnyn

H roAutporukrn pdbnon €xel IPOceAKUCEL ONIAVIIKO evilapEpoV otnv avaiuon ocuvat-
00Npatog, ®OTO0O, TA TTOAUTPOITIKA HOVIEAA ouyxvda epgavidouv unodegotepn amodoor oe
OUYKP10T] PE Ta POVOTPOIKA—EvVA avilpatikd @awvopevo. Ot avicopporieg Suvapikeg padn-
0ng, OITOU OP1OPEVES NOoPPES dedopévav Kuplapxouv otn dadikaoia eknaideuong, eve aAAeg
napapévouv avaglorointeg, odnyouv oe pr BEAtiotn arddoor tou poviédou.

H napovoca Sumdepatiky diepeuva v enidpaocn tov 1eXVIKOV BeAtiotonoinong oe ro-
Autporuikd veupevika diktua, £0tiddoviag oto NOG S1aPOPETIKEG OTPATNYIKEG EMNPEAOUV TIG
avioopporieg Suvapikeg pabnong otnv avaiuor ouvalodnpatog.

Atiodoyoupe &Uo katnyopieg texvikwv Pedtiotoroinong ota ouvola debopévov CMU-
MOSI kat CMU-MOSEI. Ot texvikeg OGM-GE, AGM epappodouv dpeceg IpooapioyES TV
MAPAYWY®V Katd v avdotpodrn 61adoor), otoxeuoviag o€ 100pPOIIEVI] CUVEICHOPA aTtd
KAOe popen Ssdopévav. Avtibeta, ot texvikég PMR kat ReconBoost Bacidoviat otnv e81-
0OPPOIN O PE0K oUuvaptnong noAlarmiov anwieiwv. To PMR eioayet éva oxnua mowng kat
evioyuong, evo 1o ReconBoost evoepatovel éva evaldacoopevo pabnolakéd mpotuno. Emi-
rAéov, aflodoyoupie apXITeEKTOVIKEG emMAOYEG, OrG o optimizer, to batch size kat n xpnon
OUVOAOU QVAITTUENG V1A APEPOANIITIOUS UTIOAOY10110UG.

[TapoAo 1oU 01 TEXVIKEG £§100pPOINONG PNECK MAPAYOYROV KAl MTOAAATAGVY ATIOAEIWV OUH-
BaAlouv otn Bedtioon ng wwopportiag pddnong, kapia dev emAvel MANP®S 10 IPOBANpa g
avioopporng eknaibevong. Kabiepopéva Baoikd poviéda, onwg 1o Late Concatenation kat
10 Uni-Pre Finetuned, 8iatnpouv v urepoxr] toug 60ov apopd tv akpiBeia ta§ivopnong.
H xpron evdg ouvodou avartugng anodelkvuetal eUEPYETIKY yia T otabepotnia Katl v
anoguyr] pepoAnyiag, eve o Adam avadsikvieial ©g 0 Mo arnoteAeopatikog optimizer.

IMapd autég tig egedilelg, n PeATIOTONOIN 0T MTOAUTPOITIKGY POVIEAGV TIAPAPEVEL 1A AVOl-
Xt npokAnorn. Ot Suvapikeég TeXVIKEG BeAtiotonoinong evioyuouv v 100pportia, aAdd ox1
11 OUVOAKI arnodoor), vroypappidoviag v avaykn yid mo pooapilooTiKeG ot Sor) TV
dedopévav e100d0ou texvikég. Ta mapovia anotedéopata oupBallouv otnv KAAUtepn Kata-
VON o1 TOV SUVAPIKOV TG MTOAUTPOTTIKYG 1A0nong, mpoodEpoviag MOAUTIHEG TIPOOITTIKEG Yid

HEAAOVIIKEG BEATIOOEIG OV TIOAUTPOITIKY AavAAUOCT cuvalodnpuatog.

Atge1g KAeda

Mnyxavikr) Md6non, [ToAutporuka Nevupwvika Aiktua, AvaAduorn Zuvalobnpatog, AAyopio-
pog Avaotpogpng Atddoong, Avicopporr Expddnor), Texvikég BeAtiotornoinong






Abstract

Multimodal learning has gained significant attention in sentiment analysis, yet mul-
timodal models often have degraded performance compared to their unimodal counter-
parts—a counterintuitive phenomenon. Imbalanced learning dynamics, where certain
modalities dominate the learning process while others remain underutilized, lead to sub-
optimal model performance.

This thesis investigates the impact of optimization techniques on multimodal neural
networks, focusing on how different strategies influence unbalanced learning dynamics
in sentiment analysis.

We evaluate two categories of optimization techniques on the CMU-MOSI and CMU-
MOSEI datasets for sentiment classification. Methods of OGM-GE and AGM, apply di-
rect gradient adjustments during backpropagation to ensure balanced contributions from
each modality. On the other hand, PMR and ReconBoost focuses on a multi-loss ap-
proach. PMR introduces a penalty-boosting loss scheme, while ReconBoost incorporates
an alternating learning paradigm. Additionally, we assess architectural choices, including
optimizer selection, batch size, and the use of a development set for unbiased auxiliary
calculations in dynamic adjustments.

While gradient-based and multi-loss approaches help balance learning dynamics, no
single method fully resolves modality imbalance in our tasks. Established baselines, such
as Late Concatenation and Uni-Pre Finetuned, remain superior in accuracy. The use of a
development set enhances stability and reduces bias, while Adam proves to be the most
effective optimizer.

Despite these advancements, multimodal optimization remains an open challenge.
While dynamic optimization techniques improve modality balance, they do not consis-
tently enhance overall performance, highlighting the need for more adaptive and modality-
aware optimization strategies. These findings provide a deeper understanding of multi-
modal learning dynamics, offering valuable insights for future advancements in multi-

modal sentiment analysis.

Keywords

Machine Learning, Multimodal Neural Networks, Sentiment Analysis, Backpropaga-

tion Algorithm, Imbalanced Learning, Optimization Techniques






OTOUG ayamnnuUEVOUS UOU YOUEILS,

Havaywwm kat Zogia.






Euyxaplotieg

Ba 10eda, MPETIoIRG, va euXaploo® tov Kabnyntr, AAégevdpo IMotapiavo, ya v
emiBAeyrn g SUTAGNATIKAG 110U £pyaciag KAl yla Vv eUKatlpia Imou pou £¢6®oe va TV EKIT0-
vioe oto Epyaotrplo Ene€epyaociag Adyou kat TAmwoocag. H eruotnpovikn tou kabodrynon
UIrpge KaBOoP1oTKOG MAPAYOVIAG Yid TV EIMTUXIT] OAOKAYPWON NG Mmapouods £pyoiag, Ka-
9wg pe Vv gprnelpia Kat tig oAuTipieg oUPBoUAEg Tou ouveéBale kaboplotikd ot §1apopPPKOT)
1OV BacikoOv Kateubuvoenv Katd ) Sidpkela g Epeuvag. Ba rela va euxaploton akopa
tov untoyrn o 818dkropa, Eubunio I'ewpyiou, ya v moAvtuun kabodrjynor tou, v ert-
OTNHOVIKY] TOU KATAPTIOon KAl TNV CUVEXT] UMOOTNPiEH tou Kab'oAn tn 81dpKela autng g
Simlepatikng. 'Eva peydlo euxaplotd opeid® Katl otnv OIKOYEVELA POU Yld TNV aPEPLoTn
urootr)p€n Kat 01Ky CUPIIAPACTACT) IOV 10U Mpooépepav Kad’ 0An ) diapkela twv orou-
8cv pou. O1yoveig pou otdabnkav dirmAa pou oe kaOe SuokoAia kat k&Oe ermtuyia. ISwaitepn
avagopa ailel otov 9eio pou Avdpéa, o 0roiog urr)PSe MOAUTIIOG AP@YOS OTNV MPOsTotAcia
pou yua v eloaywyr) oto [ToAutexveio. Tédog, euxaplote deppd 1oUg iAOUG POU Katl 6A0UG
TOUG ayarnpévoug Pou avBpmIioug yia v Katavonorn, v eveappuvorn Kat iy otrpigr) toug
oe kabe pou Prpa. H nmapouocia toug urpée avektipntn nnyr duvapung kat aiolodogiag,
Sivovtag vonua oe autr] ) onuavikn Sadpour) g {wng pou. H tedeutaia xpovid urrpde

KaBop1oTIKY yia gpéva, Katl ToUG EUXaplote and kapdiag rmou otdbnkav 6dot dirmAa povu.

ABnva, deBpoudpilog 2025

Ioavva Kagpgsla
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Chapter m

Extetapévn EAAnvikn IlepiAnyn

0.1 Euwayoyn

To medio g Texvnig Nonpoouvng £xel onuewoet adloonueiotn mpoéodo g tedeutaieg
bderaetieg. ITov IUprjva autng tng mpoodou Ppioketal n Mnyaviky) Mabnorn, n onoia ermt-
TpErel ota cuotpata va pabaivouv and Sedopéva Kat va mpaypatornoouv npoBAéyeig n
va AapBdavouv arodpdoelg Xopig va amatteitat pndg rpoypappatiopdg. Autég ot egedilelg
Baoilovtal oe texvntd veupwvika Siktua, oxedlaopéva va avayvepidouv ipotuna ota dedo-
Héva Kal va YEVIKEUOUV Ot véd, ayvwota Sedopéva. Kabog n Mryxavikn Mabnon cuveyidet
va e§ediooetat, 1 wavotna enefepyaciag Kat ouvduaopoy £1EPOYEVOV IINy®V MANpopopiag
kaBiotatatl odoéva Kat o arapaitntn, onpatodotmviag v otpodr] otnv [MoAutporukr Mn-
Xavikr) Mdabnon. Autr) n mPooEyyion EMMIPEIEL J1d TTI0 OAOKANP®HEVI KATAVONOr GUVOETOV
PoBANPATeV, aglornolmviag ) CUNRIANPRIATIKY ITANPOQOoPia MTOU MAapEXOUV Ol H1aPOPETIKESG
TPOTUKOTITEG.

Qo1600, 1 £VOTOINGoT MTOAUTPOTIIKOV SEHOPEVROV £10AYEL VEEG TIPOKATNOELS, OTIWG 1] ATIOTE-
Aeopatikn dlaxeipion g Povadikg QUONg KABE TPOTIKOTNTAS 0 CUYXPOVIOHEVO TTEPIBAA-
Aov. O Sagpopetikog pubpodg ekpAdnong KABs TPOTIKOTNTAG O £va TTOAUTPOITIKO VEUPOVIKO
biktuo dnpioupyel avicopportia oty pabnolakr) dadikaocia, pe arotédeopa poviéda mou
Baoidovtal unépperpa os KUPlapyeg TPOIMIKOTNTIEG KAl apeAouv 11§ unodotnieg. H avaykn
yia eSe1d1KeUpEVEG TEXVIKEG BEATIOTOIOIN0TG TToU AapBdavouy uroyn t) Hovadikr Suvapikr)
Babnong KAOe TPOTIKOTNTAG KAl EVICXUOUV TNV 100PPOTIHEV] EVORIATHOT] TOV TPOTIKOTI IOV
Kpilvetal mAéov amapaitntn.

Epnveuopévol amo 11§ IPOKANOEIS TTOU TIAPOUCIAdel 1] avicopportiia OtV MOAUTPOTITIKY)
pdbnon, n nmapovoa SUTAGPATIKY] £PEUVA SUVANIKEG TEXVIKEG BEATIOTOMOINONG TTOAUTPOTTL-
K®OV VEUP®VIKOV S1IKTU®V 010 1edio g avaAuong ouvaiodnpdiov, mapEXoviag pia oOAoKAn-
popevn aglodoynon aiyopibuev e§looppornnong cuvelopopag ot pabnon. H epyaoia auvtr

OUVEIOPEPEL OTOUG £E1G TOUEIG:

e Atgpetvnon Suvapikov pebodov PeAtiotoroinong: IMapouociddetal pia oUvoAKn a-
vdaAuon teoodpav Suvapikev TeXVIKoV Bedtiotoroinong—OGM-GE [26] kat AGM [27]
rou Paoci{ovtal oe APeceg TPOTIIOMOOE1S TOV ITAPAYAY®V ortofodidadoong, Kabwg rat
PMR [20] ka1 ReconBoost [21] ou akoAouBouv ripoogyyion MoAAATAQV ouvapToe®V
AMIEAEIDOV—OXES1AOPEVOV £161KA Y1d TNV AVIHIEIOINOT TG AVIOOPPOTIiAg OTIS TTIOAUTPO-

mkeg Sadikaoieg exkpabnong cuvalodnpATOV.
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e AZ10A0yno1N 0t Sapopetika oevapla avicopportiag: I[Ipaypartornolovvial Mepapata o
1pila Srapopetikda cevapila avicopportiag, orou egetdletal n mePInon Yiag Kupiapxng
Kal piag acfeveotepng TPOIKOTTag, U0 a0OeVECTEP®V TPOTIKOTLTOV, KAO®G KAl TPV
TPOTUKOTTOV PeE Slapopetikd emineda ouvelopopag. H avaduon autr napéxel pa
AeTtIopEPT] KATAVON 0T T1G CUNITEPLPOPAS TV HEBOSOV U0 CUVONKEG TPOTTKOTITOV 1€

dlagpopetikn 10xU.

e AvdAuorn KaBoploTKOV mapayovieov: AlepeUviorn MAapayoviev IoU emnpedlouv v
anoteAeopatkomIa 1wV dSuvapikev pebodwv Bedtiotornoinong, Onwg 1 €mAoyI Tou
optimizer, kaBwg Kat potdoeig yia ) BeATinon g epappoootnag 1oV aAyopibuey,
oupnieptiapBavopiévng g Xprong Pondnukoy ouvolou avartuing yia apepOAnItoug
BonObnukoug uroAoylopoug.

Ta suprjpata auvthg g EpYaciag artooKOmouUV OtV MaApoXl] MOAUTIIOV YVAOE®V Yld T
duvapikr feAT10TOOINON TV MTOAUTPOITIKAOV VEUPOVIKOV S1IKTU®V UTIO TO Ipiopia g avaiu-
ong ouvalcbnpatev, eve rnapdaAinda cupBaAlouv otnv €UpUTEPT KATAVON O TNS AVioOppo-

miag TPOINKOTI®V G BACIKLG MTPOKAN OIS OV £PEUVA TG TIOAUTPOTTIKLG PAdnong.

0.2 Mnyavikyy Mabnon: O AAyop1Opog Avadpaong

O aAyop1Bpog avadpaong (backpropagation), oe ouvduaopo pe aAyopiBuo (gradient de-
scent) KAl ) oUvAPTNON ATIOALIAG, anotedel tov upnva g Stadikaoiag BeAtiotonoinong

TRV VEUPOVIK®OV H1IKTUGMV.

H ocuvdptnon kéotoug: H cuvaptnon anmisiag ekppadet t Siagpopd petady g rmpoble-
nopevng £5060U £VOG NOVIEAOU KAl TNG IPAYHRATIKIG TP G-0toxou. H ancAsia rocotikornotet
10 opdApa kat kabodnyel ) Sadikacia PeAtioronoinong T®V MAPAPETPOV TOU HOVIEAOU
wote va ghayiotoroinBei 10 opdipa. H cuvaptnon anwlelag ouykpivet ty €6060 y; pe v

AVTIOTO1X1 TL-0TOX0 U OTr) XPOVIKY otuypr t Kat opidetat og:

T
L(y. ) = ) Lye. Go) (1)

t=1

H anwdeia o xpoviky ouypn t ekppaletal og L(y, Ji), Kat 1o T aviiotolXel 0to ouvo-
A6 ap1Bpo twv Xpovikwv outypov. H efiowon autr) avanapiotd to ouvoAlko abpoilopa tewv
aneAsldv o KOs Xpovikn otypn. H emdoyn tng ouvdaptnong anoleiag naidet kpioyio poAo

ot Sabikaoia padnong kat Yewpeitatl e§aptdpevy and 10 eKAotote PoBAna.

O aAyopiOpog avadpaong: 'Onwg neprypddetat oto [28], katd 1o Pripa g npowdnong
(forward pass), ta edopéva e100dou SiEpyxoviatl and Kabe erminedo 10U VEUPOVIKOU H1KTUOU.
Kdbe eninedo umnoloyidetl 1o otabpiopévo dbpoiopa tewv 10060V TOU KAl EQAPHOLEL T OU-
vAptnorn evepyoroinong. Xt ouvéxeld, petabiBddel 1o amotéleopa oto eropevo erinedo,
KataAryovtag TedKd otV napaywyr] g e§0dou. Ymoloyiletal ot ouvéxela 10 opaipa, to
oroio Baociletat otn Stapopd petadu g npoBAenopevng e§060U KAl NG IMPAYUATIKEG TIAS-

otoxou. Zto Prjpa g ormobodiddoong, o aiyopiBpog fexkiva ard to erinedo £§06ou kat



0.3 Exnaibeuorn IMoAutporukev NeUup@vikov AKTUGV

Klveital mpog 1a Mmio® IMPog 10 erinedo £10060U, eVNIEPOVOVIAS CUOTNHATIKA ta Bapn pe
OKOIO 1 pelworn tou opdApatog, akodoubmviag tov ailyopidpo (gradient descent). Le kabe
entinedo, urnodoyidetal n mMapdymyog 10U opAAPatog g IIpog td BApn @Wote va Ipocdloplotel
1 oupBoAr kdaBs PBapoug oto ouvoAikd odpdApa. H mpooappoyn tewv Bapwv yivetat pe v
ePAPPOY TOU Kavova g aduoibag, umoAoyidoviag tov Tporo e TOV OIoio T0 opaApa g
€€odou 61a616etar oe kabe ermirtedo 10U HikTUOU. ZUYKEKPIIEVA, Yia KaBe Bdapog, 1 KAion Tou
0(pAApatog urtoAoyidetal Mg T0 YIVOHEVO TRV PEPIKMOV MAPAYWOY®V TG OUVAPTINONG ATIOAEIAg
®G IPOg Vv €500, G £§660U WG IPOG TV EVEPYOITOIN L), KAl TG EVEPYOITOINO0NG ®S P0G Td

Bdapn. Mabnpaukd, yia éva ouykekpipévo Bapog w, n kAion divetat and v §iowon :

w oy 9z ow @)
orou L eivatl n ouvdptnon anomieiag, Yy eivat n £§0dog tou Siktuou, z eival 1o otabpiopévo
abpotlopa 1wV £1006GV TIPOG T1] CUVAPTN 0T EVEPYOTIOinong, Kat w eivat to fapog. H epappoyr
ToU Kavova g aducibag Gtaodpadilet 611 1 enidpaon 1@V Papwv oe KAOe eminedo AapBavetat
OMOTA UTTOYI] OTOV UTIOAOY10110 TV KAloewv. Vv ormofodiadoor, ta (biases) evnpepovoviat
napdAAnda pe ta Baprn, EMIPENOVIAG OT0 POVIEAO va TPOCAPHIO0EL TO0 KATWPAL EVEPYOITOL-
O1G TV VEUPOVOV KAl va PEtatortioet v 5060 mote va talptadel kadutepa ota dedopéva. H
MAPAKAT® £§0wor MEPYPAPEL TOV KAvova eVIIHEPKOTG TRV Bapwv tou aAyopibpou gradient
descent, o ortoiog arotelAet Sepediddeg ororyeio g dradikaociag ormobodiadoong. TUyKekptl-
Héva, ipooappodet ta Bapn Aw RATPAK®VOVTAG TV KAION TG OUVAPTNONG AN®ALIAS gTI; pe

évav pubpno pnabnong n:
oL

8wij

Awyj = —n 3)

H enavadapBavopevn autr] diadikacia edayiotornolel to opaipa, kabodnyoviag to Siktuo
P0G €va OUVOAO Bap@V ITOU HEIOVOUV T1] OUVOAIKY an®Agld. Xt0 MmAdaiolo tng ormobodi-
adoong, o alyopidpog gradient descent Asttoupyel @G 0 pnxaviopog BeAtiotonoinong mou
evnuepvel ta Papn oe kabe emavaAnyr, faociopevog otig KAloelS 1wV opaipdtev rou dia-
616ovtatl mpog 1a micw oto diktuo. H Swadikacia tng mpowbnong kat g ormobodiadoong
ekTeAeital emavelAnpPpéva yia moAAEG EMOYEG, HE Td BAPn va EVNHEPOVOVIAL OTAd1aKA, PEXPL
10 opdApa va ouykAivel og éva edaxioto eminedo. H mo onuaviiky) urnepnapdpetpog eivat o
pubpog pdabnong 7, Kabwg eAéyxel tov Babpo MPOoaPoYng TRV IIAPAPETIPOV TOU HOVIEAOU
0€ OXEOT) e TV KALloT) TG arnAsiag. ZUVEN®G, 1] EMA0YT) ToU pubpou pdabnong eivat kpiowan

yla 1 otafepotnta Kat TV AMoTEAEOPATIKOTITA TG EKIIAISEUONG TOU S1KTUOU.

0.3 Exnaidesuorn IIoAutpormikadv NEUPOVIRGOV ALKTUGOV

Ot Yepediwderg apxég ng omobodiadoong, g PeATIOTONOINONG KAl NG YEVIKEUONG OF
véa 6edopéva Iapap€vouv CUVETTEIG 1€ AUTEG TTOU 10XUOUV OTd HOVOTPOITKA cuotrpata. Q-
OTO00, Ta TMOAUTPOITIKA §iKTUa €10AYOUV POVAdIKEG TIPOKANOEIS AOY® TG £IEPOYEVELAG KAl
g aAAnAedptnong v dtapopetikmv Tponwv dedopévav. H ormobodiadoon nmapapével 1o
Oep€Adio g eKMaibeuong MOAUTPOITIKGOV VEUPOVIKGOV SIKTUMV, EMMTPENOVIAS OTO HOVIEAO va

€AAX10TOTIOW)OEL T oUvApTnon anwAelag pabaivoviag armodotikd 1000 €181KEG avd TPOTIo
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avanapaotacelg 000 KAl KOWEG AvariapaotdoelS. Le MEPUTIVOELS OTIOU XPNO0TIOI0UVIdAl U-
rodiktua e§e1d1keupéva ava TPOTIKOTTA, 01 EVIIEPOOELS TOV ITAPAyOyeV (gradients) ripéret
va péouv OX1 HOVO PE0K TV KOOV eIIEdov ouvingng adld kat péow Kabe urodiktuou
avegaptra. Auto eSaopadilet Ot ta e1861KA Xapakinploukd Kabe tporou BeAtiotonoovviat,
EVO Ta ertineda ouvéveong Kataypadouv 51adpdoetg petadl tov tponwv. Me v evhépnor)
10V Bapav oe 6Aa ta emnineda, n ormobodiddoon SieukoAuvel ) ouveknaibeuon v eget-
SIKEUPEVOV KAl KOOV OTOIXEIOV TOU HOVIEAOU, £vioXUOVIag TV 1KAVOTNTA TOU va e§ayet
OUNTANPOUATIKEG TIANPOPOPIEG KAl va BeATIOVEL T OUVOALKT] Tou arodoor. EmuAéov, n
YEVIKEUOT] IAPAPEVEL KPIOI OtV TTOAUTPOITIKI] PNXAVIKY 1abnorn, kabog kabopilel moco
KaAd priopetl va arodwoet £€va POVIEAD TTOU €Xel eKMaldeutel 0e £va OUYKEKPIPIEVO OUVOAO
b6edopevav otav epappootel oe ayveora dedopéva. H amouoia 13 o 96puBog 6edopévav, mou
AroTeEAOUV KOO (AIVOHEVO OTA TPAYHATIKA TIOAUTPOITIKA cuotipatd, oe ouviuaopo pe v
EYYEVI] ETEPOYEVELA TOV POPPOV SedoEVEOVY, NITOPOUV Va EMNPEACOUV APVNTIKA T YEVIKEUOT)

TOU poVIEAou.

0.4 Opiopog tou IlpoBAnpatog: Avicopponn ExpaOnon IToAu-

TPOMIKAOV Acdopévaov

To rpdBAnpa g avicopportiag Petail TPOMKOT IOV HEAET)ONKE CUCTIATIKA Y1d TIPWTH
@opd ard toug Wang et al. [22] oy epyacia toug pe titho "What Makes Training Multi-
modal Classification Networks Hard?”. Ot ouyypageig evidrioav §U0 Bacikoug mapdyovieg
mou eubuvovtal yia v unoBdbiiion g arnodoong TV IOAUTPOITIKGV HIKTUGV 0€ OUYKP10T)
HE Ta aviiotolya Hovotportkd. Ipotov, n audnpévi) X@PNnTUKOU|Id TV ITOAUTPOITKGOV &1
KTU®V, 8nAadn o peyadutepog aplbpiog mapapeétp®v Kat ol TIOAUTIAOKEG APXITEKTOVIKEG TTOU
AnattovuvIal yia v neiepyacia 0AOKANPOPEVOV TTANPOPOPIHV artd TOAAATTAEG TPOITKOTY)-
1eg, ouyva odnyouv oe uriepripooappoyn (overfitting). Aeutepov, kabe Tpormkotta teivel va
UTEPTIPOOAPHOETAL 1] VA YEVIKEUEL Pe H1aPOopeTIKO pubpod amno g urolorneg, Aoy drapopov
OtV MOAUTTIAOKOTNTA KAl OTOV OYKO g MAnpogopiag rmou napéxel. Enexkteivoviag auvtr
Yepedinon, ot Wu et al. [23] Siatuniwoav v YnioBeon Greedy Learner, unoypappidoviag
OTl Td TIOAUTPOTIKA POVIEAd QUOIKA §1vouv TIpoTepa1dTnIa OTiS TPOITIKOTNTIES TTOU pabaivouv
Tayutepa, napapedoviag ekeiveg mou pabaivouv pe mo apyo pubpd. Ot Huang et al. [29]
glonyayav v évvola tou modality competition yia va e§nyrfjoouv yilati ta moAutporuka
diktua armodidouv xelpdtepa oe 0XEON HE TA POVOTIPOITIKA, 81aitepa otav eknaibevovial pe
nipoogyyion late-fusion concatenation. Awartioctwoav 61t katd v eknaideuor), ol IPOIKOTY-
1e6 aviaywviovial yia ) pdadnorn) tewv avanapaotdoemV, HE aroTteéAeoa POVo £€va UTTOCUVOAO
TV TPOIKOTT®V, OUVNO®S 01 KUPlap)XEeS, va 11abaivouv anoteAeopatikd. AUto T0 @AVOLEVO
TIPOKUITIEL AOY® S1apopwv otr) Suvapiky eKPAOnong XapaKInploTK®V Kat g tuxaiag apyt-
KOTI01N01g T®V ITAPAPEIP®V TOU H1KTUOU, TIOU €UVO0oUV SUucavAloya OploPEVES TPOTTIIKOTITES.
EmmAéov, o1 aoBeveéotepeg TPOITIKOTITEG, €101KA EKEIVEG TIOU TIAPOUO1A{OUV avertapKr] Sopr)
dedopévav, ouyva nmapapedovvial, 0dnyoviag o UoBAOIIOIEVEG AVATIAPACTACELS XAPAKTI)-
PLOTIKGV.

Ta v avdduon g avicopportiag Petasy TPOIKOT IOV, Je®POoUHE £va ITOAUTPOITIKO



0.5 E&woopporuon [MoAutporukng Exnaidsuong péon Texvikov BeAtiotornoinong

ouvolAo exknaideuong Sedopévov D = {(x, yi)}li\i 1 Be N betypata, 6mou kabe Setypa arnotele-
itatl anod Xapaxkinelouka x; = {mik}];‘c/[:1 ano M S51aOopeTIKEG TPOTIKOTNTEG KAl Pid ETKETA Y.

O 010)X0G G MOAUTPOITIKYG PAOnong eival n eAax10Tornoinon g GUVAPTIONG AMMAEIOV:

N

1
LISURGONL). ) = > ASUF@c mORL). o). @)

i=1
omou ! eivai nj ouvaptnon aneoielag. Katd v omobodiadoor), n evnpépeon 1oV mapa-

Pétpwv KABe Tpormkotntag k nmpaypatornoteital péon

1 ZN: (af@M(xi), y) 90M(x) 8Fk(8k))

Vo, L(®Y(x), y) = — 5
WPV =5 2\ Towieg e daw ©)

. IPM(x;) . . P , .
O 6pog r 5 ardonoteitat oe éva povadiaio rivaxa yia 10 avtiototxo PAOK TPOMKOTY-

M) ur
%}&BW dlaxéetal oe 0Aa 1A XAPAKINPELOTIKA, YEYOVOG ITOU

0dnyel o peyalutepn evioyuorn g Kupilapyxng IPOIKOTTAS €1G BAPOG TV aoDeVESTEPGV.

tag. QO0t000, 1 KOWOG 0p0G

Te éva Poviédo ouvéveong, n Sadikaocia PeAtiotornoinong mPOoTid TPOTIKOTNTIEG T®V OI0-
10V Ta Yapaxkiplotka eubuypappi{ovial woxupd pe 1o kowo gradient. To gradient piag

Tporukotntag k subuypappidetat otabepd pe v Kowo av 1oxvet:

M M
T Fuo) = S ).+ k ©
‘Otav 1 apandave ocUvOrKn 10XUEL Yid Pd Kuplapyxn Teormkotta k, 1a XapaKtnplotikda
g AapBavouv PeyaAUTepeg EVHIEPWOELS Katd TV ormiofodiddoor, eve o1 acBevéotepeg TpO-
TKOTNTEG TTAPAPEVOUV UTIOEKTTAdeUpéves. Ta 11 aobeveoTepeg TPOTIKOTNTEG, 1 CUPBOAT)
Toug oto Koo gradient eivai pikprn, 0dnywviag oe MEPIOPIOPEVEG EVIIEPWOELS TV ITAPA-
HETIP@V TOUG. AUTO TO QAIVOHPEVO TIPOKAAEL avicopportn eKmaideuor], Kab®g o1 KUplapxes
TPOITIKOTTEG UTIAYOPEVOUV TV KATEUOUVOT) TG BEATIOTONOIN0NG KAl PE@VOUV TNV IKAVOTTA
TRV a00eVESTEP®V TPOTTIKOTITOV VA OUVEICPEPOUV ATIOTEAECATIKA Ot Pabrnon Tou povieAou.
H aocupgevia kateubuvong petady tov Babuibev tov TporiKkot)tov ermbevovel MEPAEP®
10 TipoBAnpa [20] [22] [23]. 'Otav ot Babuideg piag acBeveéotepng TpOIIKOTTAG £ival op-
Y0oyOVIEG 1] AVIIKPOUOHIEVEG TIPOG AUTEG TOV 10X UPOTEP®V TPOTUKOTTI®V, Ol EVIIEPRDOELS TG
kaBiotavial pn arodotikég. Autd odnyel ot dnpioupyia plag cuvEVEOONG XAPAKTNPLOTIKOV
®M(x) mou eivatl éviova PEPOANIITIKY] UTEP TV KUPIAPX®V TPOITIKOTATAV, MEPLOPIoviag T

yevikeuon Kat v agloroinorn) g moAuTportknig minpogdopiag.

0.5 Efwooppomnion IToAutporikng Exnaideuvong péow Texvirov

BeAtiotonoinong

Yrnidpyxouv noikideg texvikeg Pedtiotonoinong otr BBAoypadia yia v avilpeIOINoT) TOU
POoBANATOg g avicopportiag petaiy tporukotev. Optlopéveg pébodot Baoiloviatl otv
apeon enidpaon otig napaynyous (gradients) mpoxepévou va evioyUoouv v acbeveotepn
Tporukotta Katd ) Sadikaocia pabnong [22] [23] [26] [27] [30] [31] [32]. 'AAAeg erut-

Kevipovovial otnv Suvapiky PeAtiotonoinon g ouvdaptnong anwieiag [20] [12] [33], eve
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M:6oSog Texvikn Zuyvétnta Evepyonoinon Mnxaviopog TPOrmKOTNTES
OGM-GE [26] Gradient Modulation | Ka6e enavddn- | Epappodetar petagu | Ta gradients xAwpakeovoviar yia | ‘Hxog, ‘Opaon
yn OUYKEKPIHEVOV EIO- | KAOE TPOIKOTNTA XPIOHOMOIOVIAg
X0V ouvtedeotég and to discrepancy ra-
tio. Ot Adyor kabodnyouv ) Sadi-
KAoia TPOIOIoinong evrortifoviag tg
10XUPOTEPES TPOITKOTITEG KAl I) KU-
plapxn tporukota tpepeitat.
Generalization E- | KdBe enavadn- | Ilpoapetikd evepyo- | Evoopatavelr éyyuon TI'kaouoiavou
nhancement yn noeitat petafu ou- | YopuBou oug Babpibeg yia ) Bedtin-
VKEKPIPEVQV EITOXWV | On TG yevikeuong.
Discrepancy Ratio KabBe eravadn- | Katd ) 6idpkela g | Hoootukoroet v andxAion petagu
yn £prpoodilag 51adoong | TPOIKOU|TRV otV eKPAdnor.
Learning Rate Decay | Kdafe eroxr) Meta arnd opiopévo | Mewdver 1o pubpod ekpabnong kata
Bripa eroxmv évav rapayovia.
ACC [20] Gradient Modulation | Kafe eravadn- | Epappoletar petafu | Ta gradients rAmpaxovoviar yua | ‘Hyog, ‘Opaon
yn OUYKEKPIHEVOV EIT0- | KAOE TPOITIKOTTA XPIOHOOIOVIAg
XOV ouviedeotég Baotopévoug oto discre-
pancy ratio. H aoBevéotepn tporu-
KOUta evioxvetat.
Discrepancy Ratio KabBe eravadn- | Katd m Sidpkela g | ITocotkoroet tyv anokAon petagu
yn epnpdodiag 51a6oong | TPOIKO TGV otV eKPAdnon.
Learning Rate Decay | Kdafe eroxr) Metd aro opiopévo | Mewdvel to pubpo exkpdbnong katd
Bripa eroxov £vav rapdyovia.
AGM [27] Modality Masking w- | Kafe eravadn- | Katd ) Sidpkela g | Ilpaypatornotei tpeig eprnpoodieg de- | ‘Hyog, Keipevo
ith Shapley values yn gprnpoobiag S1adoong | Aevoelg: pia pe 6Aeg TG TPOTIKOTY-
€6, pia Xwpig to Ketpevo kat pia xo-
pig TOV 1X0, Y1d Va AIOPOVAOEL TI§
HEROVOUEVEG GUVEICPOPES TGV TPOTTL-
KOTIT@V PE BACH) TIHEG EPITVEUCOPEVEG
ané ) pébodo Shapley.
Competition Streng- | Kafe ermavadn- | Katd ) Sidpkewa g | ITocotkoroet ) duvaun kabe tpo-
th yn epnpdodiag H1adoong | mKoOtag PACEL G JOVOTPOITKIG
OUVEIOPOPAG NG ot KABe eprpoodia
Siédevor).
Gradient Modulation | Ka6e enavddn- | Epappodetar petagu | Ta gradients kaOe tporukotntag KAt-
yn OUYKEKPIHEVAV EIT0- | HAKGOVOVIAL SEXWPLOTA XPIOHOIOL-
Xov @VIag CUVIEAEOTEG TIOU UItoAoyidovtat
aro AGYoug aviay®VioTIKNG 10XU0G.
Learning Rate Decay | KdaBe emoxr) Meta ard oplopévo | Mewdver 1o pubpod ekpabnong kata
Bripa eroxov £vav napdayovia.
Adaptive  Gradient | Kabe eravdAn- | Evepyoroeitat otav | KAtpaxkever tig Babpibeg oe péyio
Clipping yn ol upég WV gra- | voppa 1.0, ctaBeporioidviag Tig evn-
dientsv urniepBaivouv | pepOOELS.
ripokabopiopéva
opla
PMR [20] Prototypical Loss Ad- | Kafe eravadn- | Epappoletar petadu | Metpa 10 opdApa tadwvopnong yua | ‘Hyos, ‘Opaon
justment yn OCUYKEKPIPEV@V E€IMO- | KAOE TPOIMKOTIIA XPIOIHOMOIMVIAS
XOv mv anéotaon petail HOVOTPOIIKGOV
XAPAKINPIOTIKOV KAl TV KATNYOPl-
KOV TOUG ITPGOTOTUIIOV.
Prototypical Regula- | KaBe eravadn- | IIpoaipetika evepyo- | MEeldvel v eVIPOITia TV KATAVOROV
rization Term yn roteitat petafy ou- | KAACE®V g taxutepa pabaivoucag
YKEKPIHEVMV EMOXOV | TPOITIKOTNTAG Yid VA HETIPIACEL TNV
Kuplapxia mg.
Imbalanced Ratio KabBe eravadn- | Katd ) Sidpkela g | ITocotkoroet v avicooportia pe-
yn eunpdodiag 51adoong | tady TV TPOrKOT OV
Learning Rate Decay | Kdafe ermoxr) Metwa and oplopévo | Mewwver 1o pubno ekpabnong kata
Brjpa eroxov £vav rapdyovia.
RECONBOOST Alternating Techni- | KaBe @don ex- | ‘Otav erudéyetat véa | Eknaidevel évav exupnt) tporu- | Keipevo,  ‘Hyog,
[21] que naidevong TPOIUKOINTIA Via €K- | KOUNTAg ) Qopd, erutpérnoviag oto | ‘Opaon
raibevon OUVOAO va erikevipwOel oe acbeveig
1] |1 aroSOTIKEG TPOTUKOTI|TES.
Ensemble Forward | Ka6e Bripa Katd ) diapkeia mg | Zuykevipovel mpoBAéyelg ard oAeg
Pass gprpoodiag 51adoong | TG TPOINKOTTEG TOU GUVOAOU.
Boosting Scheme Kabe otado Ze KABe @don exk- | Pubpider Suvapkd ) ouvelopopda
naibeuong Otav 1po- | KAOE TPOIIKOTTAG XPIOHOIOIOVIAg
otibeviat véeg Tpor- | pia MApAPETPo evioxuong.
KOTTEG
Global Rectification | Metd ano kabe | A to ripwto otadio | IIpooappodet to poviédo tou ou-
Scheme otado voAou, BeAtiwvoviag OAeg TIG MPOOTL-
9épEveg TPOTUKOTTES.
Memory Consolida- | Kabe enavddn- | Katd ) Sidpkeia g | Kavovikorotei ug e§6doug v véav
tion Regularization wn oruobodiadoong TPOTUKOTITOV XPNOHOIOIOVIAS
opaApa eAaxiotwv TEPAYOVOV OOTE
va pnv Xavetat Xprowpn minpogo-
pia.

IMivakag 1. Zuvofucn emiokonnon tov uedodwv BeAtiotoroinong wouv efetalovial otnuv napo-

voa épevva OmwS auteg TapoUOLAoTNKAV OTIS AUTIOTOLES ONUOOIEUOELS.




0.6 Arnotedéopata Iepapdrov kat Avaduon

OPIOPEVEG TEXVIKEG OTOXEVUOUV OTIV EIMAOYT TV IO XPNOH®V TPOTIKOTI®OV, AITOpPintoviag
€KEIVEG MTOU OUVEIOPEPOUV AlyOTEPO OtV arnodoor tou poviedou [24] [34] [35] [36]. AMAeg
npooeyyioelg uloBetouv £va evallacoopievo 11abnolako mPOTuIio, KAtd 10 o1oio kabe gopa
ekmaldevetal pia povo TPOTIKOTNTIA, ATTIOPEVYOVIAG £T101 TI§ OUYKPOUOELS KATA TOoV aAyopiBpio
ormoBodiadoong [21] [25].

T OUYKEKPIIEVT) £PEUVA ETUKEVIPOVOPACTE O TE00eP1g PeEBO6oUg BeATiotomnoinong. Avo
and auvtég, ot OGM-GE [26] kat AGM [27], aoxolouUvtal pie v AEOH TPOITOIO0n TRV
gradients kd0e UOSIKTUOU TPOIMIKOTNTAG KAl TNV ITOCOTIKOIOINOT] TG OUVEIOPOPAG KAOe
TPOITIKOTTAG, WOTE va ermteuxBei KaAuteprn) 1oopportia petadu toug. Ot dAdeg 6uo, PMR [20]
kat ReconBoost [21], Baci{ovtal os teXVIKY] TIOAAATIAGV ATI®AEIOV. ZUyKekpiéva, n PMR
epappodetl éva oxfpa rnovng-ermBpdBeuong, eved 11 ReconBoost utobetel 1o evaldacoopevo
Pabnolako mPOTUTIO MPOKEIPEVOU VA EVIOYUOEL T PABNOoTN TV ao00eVECTEP®V TPOTIIKOTITMV.
O Ilivakag 1 emednyei ouvortika 10ug BACIKOUG HUNXAVIOHOUG TIOU XPTOTHOI00UVIdl Otig

pebodoug auteg.

0.6 AmnoteAéopata IIerpapdatewv Kat Avaduor

H nepapatkn agloddynon twv teoodpev pebddov (OGM-GE, AGM, PMR, ReconBoost)
npaypatoro)dnke oto ouvolo dedopévov CMU-MOSI [37] kat CMU-MOSEI [38], pe otoxo
) PEALT TG arnodoori§ TOUG OTNV AVIHEIWITON TOU MPOBANIATOS TG AVICOPPOTTiag He-
1afu porukotAteV yla tavopnon ouvawodnpatog. Ta mepdpata oxedidoinkav gote va

ATAVIAooUV 0ta £ENG EPEUVNTIKA EPWINIATA :

e I[Towa 1€Bob0og evioKUEL )V 100ppPOITia PETay TPOITKOTH IOV, auidvoviag tnv akpiBela
KAl PEIMVOVIAS TIS ATMAEIEG, 0 OUYKPLON HE 10 Paociko poviédolate concatenation

with joint training.

e Iloieg otpatnyikég PeAtioronoinong cupBaiiouv oty avadedn twv aduvapev tporu-

KOTAT®OV.

e [log erudpouv mapAayovieg Orwg 0 PUOBNOG EVNIEP®ONG MTAPAPETIP®Y BeATioTonoinong,
n ermdoyr) optimizer, n Sidpkela eknaideuong Kat 1 EKTETAPEVH dlapKela ePpappoyng

TV IIPOTEVOIEVAV H1aPoPPOCE®V 0TI OUYKALOL TRV HOVIEA®V.

e Ilog emdpd n xpnon £vog cuvodou avartudng yia Bondnukoug UToAoyiopousg tav
1eB0dwV otV apepoAnIn eKnAibevon 10U H1IKTUOU KaAl TV KABOAIKI) £papoyr] TOUG

avegaptnta ano to batch size.

0.6.1 Baoiki ZUyKplon twv MeBodwv

Zrov ITivaka 2, nmapouoidadovial ta Bacikd anotedéopata 1oV 1e0odpev pebodev otnv
TUITIKI] TOUG €QAPHOVYL), X®WPig emutAéov napaperpornow)oelg. Ta poviéda ota mepdpatd
pag exknaidevovtal xpnotponoiwviag Adam, pe Siagopetikoug pubpoug pabnong Kkat Evav
npoypappartiot] pubpou padnong (scheduler) ReduceLROnPlateau ard to PyTorch. O

scheduler pewwvet tov pubpo pabnong kata évav apayovia 0.1 otav to validation loss Sev
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BeAtidverat yia pa kabopiopévn niepiodo ermoxmv. a 1o ouvodo dedopéveov CMU-MOSI, 1)
riepioog autr) €xet oplotel oe 5, evw yla to CMU-MOSEI €xet optotei oe 20. Xprowpornoloupie
batch size 16 yia to CMU-MOSI kat 32 yia to CMU-MOSEI. H texvikny Early Stopping
epappodetal pe nepiodo uropovrg 8 smoxov. Autég ol pubpioelg epappodovial oe 6Aa ta
nelpapata, kat orowadnnote arokAion Sa avadépetal pntd. QG AVIIKEEVIKE] OUVAPTNOT)
BeAtiotonoinong xpnowonoteitat Cross-Entropy Loss oe 6Aa ta nelpdpata. Ot ermpépoug
ouyKpioeig paypatornolouviat pe to poviédo Late Concatenation, eve ta poviéda Ensemble

kat Uni-Pre Finetuned mipootiBevtal g 1oxupd poviéda otn BBAloypagia yia OUYKPITIKY)

a&lodoynon.
Tporukotnta M:6odog CMU-MOSI CMU-MOSEI
AxpiBera(%) AnmAcsia(%) AxpiBeia (%) AnmAsia(%)
Ensemble 47.96 + 494 84.90 + 1.50 32.63 +0.29 166.05 + 0.75
Uni-Pre Finetuned 51.46 + 1.64 84.62 + 1.07 32.55+ 0.28 166.27 + 0.49
Late Concatenation | 54.93 + 1.19 84.10 + 1.25 32.55 + 0.44 166.74 + 0.88
OGM 53.30 + 3.12 85.31 +2.62 32.67 +0.33 166.76 + 0.86
'Hyog, Etxova OGM-GE 52.48 + 1.27 84.88 + 1.23 32.40 +0.30 167.12 + 0.80
ACC 52.39 £+ 2.42 85.98 +2.33 32.56 + 0.37 166.70 + 1.19
AGM 53.73 £+ 3.65 84.86 +1.81 32.71 +0.44 166.17 + 0.64
PMR 51.52 +2.85 85.24 + 1.64 32.44 +0.44 166.65 + 0.57
ReconBoost 47.29 +5.19 87.63 +£2.73 33.14 £ 0.37 167.99 + 1.18
Ensemble 73.35+£1.72 66.67 + 1.82 43.94 + 0.67 136.22 + 1.17
Uni-Pre Finetuned 75.72 £ 0.93 64.62 + 1.19 45.22 +0.41 130.93 + 0.64
Late Concatenation 74.35 + 0.58 66.57 £+ 0.49 43.99 + 0.39 133.11 + 0.39
OGM 75.04 £ 0.96 63.54 + 0.69 44.15+ 0.43 133.15+ 0.35
Keiuevo, Emcova OGM-GE 73.50 £ 0.79 64.44 + 1.26 43.58 £0.40 133.74 £0.15
ACC 74.67 £ 1.68 64.36 + 1.85 44.12 +0.21 133.13 £ 0.24
AGM 74.61 £ 0.86 63.83+1.12 44.15+0.39 132.58 + 0.34
PMR 75.51 £ 0.50 64.51 + 1.42 44.29 +0.17 131.94 + 0.56
ReconBoost 74.79 + 1.04 63.20 + 1.26 | 44.78 + 0.29 130.88 + 0.75
Ensemble 72.62 £ 1.25 71.45+ 1.00 40.40+ 1.36 141.68 + 1.32
"Hyoc, Keiugvo, Eixdva Uni-Pre Finetuned 75.65 +0.87 64.69 +1.10 44.65 + 0.37 131.51 + 0.63
! ’ Late Concatenation 74.87 + 1.23 63.05 + 1.65 44.46 £ 0.41 131.87 + 0.60
ReconBoost 75.09 £ 0.88 63.18 + 1.30 44.42 + 0.53 130.79 + 0.76

IMivarag 2. ZuUykpion anodoong 1L TPOTEWOUEVOV Ued0d®V Katl TV Bactk@dv UOVIEA®V Ot
Sragopetikoug ouvbvuaououg tportkottov ('Hyog-Eucdva, Keiusvo-Eucova kar 'Hyog-Keiusvo-
Eucdva) ota ovvojla dedoucvov CMU-MOSI kar CMU-MOSEI und tuTtikeég ouvdnKes eKaideu-
ong. Ot ugdodor meptilaubavovv ta Ensemble, Uni-Pre Finetuned, Late Concatenation (Ba-
seline), OGM, OGM-GE, ACC, AGM, PMR xat ReconBoost. Ta anotejléopata mpoKUTIouy 0¢
0 uéoog opog 5 aveapmniov el uatwv katr tapovotaloviar ue faon v arxpibeia (Accuracy)
Kat mv anwjea (Loss), kadweg kat tqv twmky anokAwon. O mivakag emionuaivel 1a poviéjla
ue M Kajutepn anodoon yia Kade UETPLKN, XPNOWOTOIOVTAS EVA XPOUATILA KOOIKOTIOMUEVO
ovotnua. Ot OKOUPES amoXPWOELS AVTTPOO®TEVUOUV TNV Kafutepn anoboon, oL pusoaisg amo-
xpwoeg deiyvouv m Seutepn KaAutepn amodoon, VW Ol AVOLYTEG ATOXPWOELS UTOONADVOUY
mv 1ol kajvtepn anodoon.

Ta nmepapatika arnoteAéopata deixvouv ot 1o Late Concatenation poviédo, mou xpn-
opornoleital @G 10 PAciKO POVIEAO OUYKPLONG, AMOTeAEl T0 ATOSOTIKOTEPO HOVIEAO 1)XOU-
ewovag oto CMU-MOSI, pe kapia ano tg egetaldopeveg peBodoug va erepvd v anodoor)
tou. Avtioctoixa, oto CMU-MOSEI, ot pébodot AGM kat ReconBoost napouoiaouv 1) pe-
yaAutepn akpiBela. Zta povieda kepévou-nyxou, to Uni-Pre Finetuned ermtuyyavetr v
KAAUTEPn OUVOAIKY] 100pportia petau akpiBeiag kar anmAsiag. To PMR BeAlumvel to Ba-
OO Ppovtedo, eve 1o OGM (CMU-MOSI) kat to ReconBoost (CMU-MOSEI) &erepvouv 1)

Late Concatenation p€6odo, mpoopépoviag kadutepn akpiBela kat Pikpotepeg armieieg. Ot
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duvapikég p€bodot PeAtiotornoinong @aivovial Imo AroTEAECPATIKEG OTAV UTIAPXEL Kupiap-
X1 tporukotnta, addd Sev ermepvouv 1o Uni-Pre Finetuned, mou napapévetl 1o 10xupotepo
povtédo. Zta tptrporiikd povieda, to Uni-Pre Finetuned ouveyidel va amobibel kadutepa,
He Vv npoodNKn pag 1pitng Ipormkotntag (fxou) va €xel edaxiotn emnibpaon otnv TeAKn
anodoorn. ErmBeBaidveral otl 1o Keljaevo €ival 1 Kuplapxn TPOIKOINIA T000 OTO0 GUVOAO
CMU-MOSEI, 600 kat oto CMU-MOSI, 6rou rapatnpeital pikpn avénon akpibeiag pe mv
Tpitn TporokoNIa (ToU 1X0u) X®WPig OP®S ONPAVIIKY PEI®OT) TG ATIWAELAS.

TéAog, ta anotedéopatda pag embBeBaldvouv and nponyovpeveg napatnpnoeig [39], on
o1 egetalopeveg 1EBodol arotuyxdvouv va BeATIOo0UV cucTNUATIKA Vv anddoorn oe OAeg
g neputtwoets. [lapou xprowpornolovviatl apyitektovikeg transformer, kabmg kat poviéda
avayveplong ouvalsdrnpartog avil yia tagivopnong, ta euprnpatd toug Katadelkvuouy 1a-
PO1010UG TTEPIOPIOH0UG TRV TEXVIKOV BeAtiotonioinong. AlAeg peAéteg [40] [41] apgprobrtouv
1] YEVIKY] amoteAeopatikointa tov pebodov OGM-GE, AGM, PMR urno diagopetika emineda
avioopportiag Petady TV TPOITIKOTATOV. AUTO £yeipel £pEOUINATA OXETIKA HE T YEVIKEUOT)
KAl ATOTEAECPATIKOTTA TETOIRV PeBOSwV og dladopa rpoBAnjiata MOAUTPOITIKLG AvAAuong

ouvaiodnpatog.

0.6.2 AvalAuvon IMapapétpwv Exnaidsuong

Ia v e1g PaBog katavonon tewv duvapikov kabe 1eBodou, pedetOnkav ol erudpaoelg

Kplowev mapapétpev eknaibeuong:

Mé£60dog 'Hyog-Eiréva Keipevo-Elirova

CMU-MOSI CMU-MOSEI CMU-MOSI CMU-MOSEI
AxpiBela (%) AndAcia (%) ArpiBeta (%) AnmAcia (%) AxkpiBeia (%) AnwAcia (%) AkpiBeira (%) AncAeia (%)

Evnpépwon BeAtiotonoinong Kads EnavaAnyn

Baseline 54.93 + 1.19 84.10 + 1.25 32.55 + 0.44 166.74 + 0.88 74.35 + 0.58 66.57 + 0.49 43.99 + 0.39 133.11 + 0.39
OGM 53.30 + 3.12 85.31 + 2.62 32.67 + 0.33 166.76 + 0.86 75.04 + 0.96 63.54 + 0.69 44.15 + 0.43 133.15 + 0.35
OGM-GE 52.48 + 1.27 84.88 + 1.23 32.40 + 0.30 167.12 + 0.80 73.50 + 0.79 64.44 + 1.26 43.58 + 0.40 133.74 + 0.15

Evnpépwon BeAtiotonoinong Kads 4 EnavaAnyelg

Baseline 53.67 + 1.87 85.48 + 1.26 32.59 + 0.22 167.46 + 0.77 73.32 + 0.86 67.20 + 0.83 43.66 + 0.38 133.97 + 0.41
OGM 52.95 + 1.65 85.79 + 0.97 32.72 + 0.33 166.59 + 0.76 73.64 + 1.19 66.65 + 1.08 43.83 + 0.40 133.70 + 0.51
OGM-GE 47.84 + 1.52 87.15 + 0.87 32.48 £ 0.17 167.94 + 0.46 73.85 + 1.04 66.41 + 0.80 43.94 + 0.39 133.91 + 0.35

IMivarag 3. Eniboon wwv puovieAwv 'Hyou-Eucdvag rkat Keuévou-Ewcovag ota auvoia debo-
uevov CMU-MOSI kar CMU-MOSEI ypnoyonowviag g uedodovg OGM katr OGM-GE umo
O1agpopetikés oUxVOTNTES EVNUEPGOE®V Beftiotoroinong. Ta amotefléopuara TPOKUTIOUV &G O
ueoog opog 5 aveapmniov weiuatov katr tapovoialoviat pe aon mu axpibeia (Accuracy)
Kat v anwieia (Loss), kadwg¢ kat v ik anokon.

Zuyvotnta Evnpépaong Mapapétpwv BeAtiotonoinong: H ouxvomta tov evhpe-
pwoev PeAtiotonoinong ennpeddel onpaviika ) SUVApIKL eKPAONoNg TV VEUPWOVIKQOV O1-
KTtuev, Stapopdovoviag v taxuinia oUYKAIoNG, ) otabepdinta kai wn yevikeuorn. Ilo
OUYXVEG EVIHEPROELS, OTIMG AUTEG Tou Paocifovial oe pikpotepa batch sizes, emrpénouv oto
poviédo va rpooappddetal ypryopa ot addayég tov gradients, addd evdéxetal va eloayouv
UYPnAr Siakupavon, odnywviag oe actadeia 1) Sopubmdn BeAtiotonoinor. Avtibeta, Atyotepo
OUYXVEG EVIIHIEPVOELS, OTING EKEIVEG TTOU XPNOIOIIO0UV peyaAutepa bate sizes, mpoodEpouv

o otabepr] Pedtiotonoinorn, aAld pmopet va emBpaduvouv ) oUYKALON KAl va SUoKo-
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Agvovtal og duvapikég ouvlrkeg pabnong. Ta aroteAéoparta tou Ilivaka 3 deiyvouv ot n
evnpépon oe KAOe emavaAnyr) yevikd odnyet oe kaAutepn anddoor) 10oo oe dpoug akpiBelag
000 KAl aI®AEIOV 0 0Ad Ta PovieAa Kal ouvoda debopévav rmou SOKIPIACTKE.

Emdoyn Optimizer: H xuUpua Siagopa petady twv Adam [42] kat SGD éykettat otov
TPOTIO e ToVv omoio Slaxelpidovral toug puboug PABNONG KAl EVIIIEPOVOUV TIS TIAPAPETPOUG
tou povtedou. O SGD xprnowporotei évav otaBepo, kKaBoAiko pubuo pabnong yia oAeg g
MAPAPETPOUS TOU POVIEAOU KAl TI EVIHEPWVEL PE Bdaon v TpExouca Pabpiba. Avtibeta, o
Adam nipoocappodet Suvapikd tov pubpo pabnong ya kabes mapdperpo, datnpwviag Kivnto-
UG péooug Opoug Too0 g KAlong (rpatn portr)) 000 Katl ToU TETPay®vou g KAlong (eutepn
portr)). Auto eivat 1blaitepa Xprotpo oty nepimeor] pag, Kabwg onweg eirnape ot mapdperpot
€VOG TTOAUTPOTITIKOU VEUP®VIKOU S1IKTUOU OUYKAivouv pe Stagpopetikoug pubpovg. EmuAéov, o
Adam ouvr)0ng cuykAivel TaxUTepa XAPT OTIS IIPOCAPILO0TIKEG EVIIEPWOELS TOU, KAO10T®VTag
Tov 18aviko yia reputtooelg pe SopuBwdelg 1 apaiég Padbnideg [42]. Zinv nepintoor] pag, ta
XOPAKTINPIOTIKA KEPEVOU £X0UV IIpoKUYel aro to poviedo BERT [43], 1o oroio €xel ouxva
nipoekmiaibeutel pe toug PeAtiotorniointég Adam 1) AdamW [43], €10t ) Xprjorn tou Adam oto

MTOAUTPOITIKO Hag Siktuo dratnpel ) ouvoyxn otn duvapikr g BeAtiotonoinong.

Tpormkotnta M£608og CMU-MOSI CMU-MOSEI
AxpiBeira(%) AncAcsia(%) AxpiBeia (%) AncdAcsia(%)
Baseline 49.97 +2.59 85.38 + 1.40 32.51 £ 0.16 167.24 + 0.41
OGM 49.82 + 2.38 85.04 + 1.25 32.37 + 0.30 167.45 + 0.42
OGM-GE 49.42 + 1.43 85.55+0.71 32.63 +0.20 167.15 + 0.60
'Hyog, Eucova ACC 50.55 + 1.80 84.86 + 0.78 32.56 + 0.31 167.56 + 0.31
AGM 49.59 + 1.17 85.15+ 0.77 32.42 + 0.23 166.94 + 0.63
PMR 51.25 + 1.85 85.74 + 1.42 32.56 + 0.31 167.56 + 0.31
ReconBoost 49.88 + 3.01 94.17 + 3.60 32.42 + 0.02 175.56 + 0.80
Baseline 73.21 £+ 2.81 63.91 +£2.15 44.46 £ 0.54 131.12 + 0.40
OGM 73.53 £+ 1.79 65.11 + 3.86 44.39 + 0.48 131.93 + 0.86
OGM-GE 74.17 £ 0.90 64.08 £ 1.73 44.33 £0.72 131.88 £ 0.71
'Hxog, Eucdva ACC 74.67 + 1.02 62.96 + 0.30 44.43 + 0.54 131.46 + 0.89
AGM 73.76 + 1.17 65.75 + 1.31 44.10 £+ 0.13 130.95 + 0.81
PMR 74.55 + 0.79 63.95 + 0.52 44.29 + 0.26 132.11 + 1.01
ReconBoost 73.45 + 5.19 71.11 + 7.90 44.37 + 0.68 133.18 + 1.09
"Hyog, Keievo, Eucdva Baseline 73.24 + 2.24 65.15+ 2.35 44.80 + 0.54 130.78 + 0.48
! ! ReconBoost 73.07 + 2.36 76.91 + 5.95 44.30 + 0.61 137.20 + 4.35

Iivakag 4. Emnidoon twv poviédwv 'Hyou-Ewovag, Keyévou-Eucdvag "Hyou-Kepuévou-
Ewcovag ota ovvoja debousvov CMU-MOSI kat CMU-MOSEI ypnotuorowovtag 1ig pedodoug
OGM kat OGM-GE uno wov BeAuortonomty SGD. Ta amotejléopata mpoKUTIoOUY @G O UECOS
0pog 5 avelaptev pelipatev kat tapovotalovial ue Saon v axkpibeia (Accuracy) kat Ty
anwAsia (Loss), kadw¢ kat v ik anokon.

Amo6 toug ITivakeg 2 kat 4 Stagaiverat ot ) ermAoyr) optimizer diadpapatidel kabopiotikod
POAO TO00 otV akpiBela tadvopnong 6oo kat otn otabepotnta g eknaideuong. O1 pébodot
ACC xat PMR pe SGD emtuyxavouv BeATiopévr) anodoon KAl PEI®PEVT] ATIOAEL, TTAPOU-
owadoviag otabepEG TIPEG TUTUKNAG AMMOKAI0NG O OUYKPION HE Td aviiotolXa Bacikd povieda
oto ouvoAo Hebopévov CMU-MOSI. AvtiBeta, oto CMU-MOSEI, ta amoteAéopata givatl ou-
ykpiopa, X®pig kamowa aro tig pefodoug va ermtuyxavel oagr| vriepoxr). ‘OAa ta uroAoura
povtéda Sev @aivetal va suvoouvial ano i Xpnon ou SGD, kabwg oxt povo aduvatouv va
Eernepdoouv TG ermdooelg 1ou Bacikou poviédou pe SGD, aAdd napouociadouv xapnddtepn

arnodoorn og OUYKPLoN HE Ta aviiotolya povieda rnou xprnotporotouv Adam. Afoonpeiotn
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eivat n nepirmwon tou Text-Vision poviédou, orou to OGM-GE poviédo katagpépvet va &e-
MEPAOEL TNV arodoorn tou aviiototyou poviedou pe Adam, urnodeikvioviag OTl 1) evioyuon
pe Trkaouotavo 96puBo bev aglomoteital mMAnpwg otnv nepintworn tou Adam. Qotodoo, 1o Re-
conBoost, 10 oroio Baocidetal oe evaAAaocoopEvT) 1OVOTPOITIKY eKTAideuon oe ouvSuaopo pe
TTOAAATIAEG ATIOAEIEG, TIAPOUCIALEL EVIOVEG O1AKUNAVOELS OtV EKITAISEUOT] TOV POVIEADV OTO
CMU-MOSI, yeyovog 1ou ermBeBaldvetal Kat arnod Tig aviiotoiXeg YPaPIKEG IAPAoTAoelg TOU

Fpagpripatog 1 mou akoAouBouv.

0

(y) ReconBoost povtéilo pue Adam. (8") ReconBoost povtéio ue SGD.

Tpagpnpa 1. Zvvdptnon anwisiov ue xpron Adam évavtt SGD yia pia exteieon oto Baseline
Kkat ReconBoost HOVTESIO e TOEIS EI0E0YOUEVES TOOTIKOTNTEG OTO oUvoo bedoucvov CMU-
MOSL

Batch Size kat Xprjon Zuvédou Avamtudng: H ermdoyr tou batch size emnpeadet
apeoa ) Stakupavon wv gradients. 'Epeuveg [44] [45] [46] éxouv beifel ot n exnaibeu-
on pe peyada batch sizes cuyxva ouvdéetatl pe oUYKAlON O IO andtopd €Adx10Ta Kovid
OtV apX1KI] Katdotaor), € arotéAeopa XEpOTepr) YEVIKEUOT o ouvoAa dokipav. Baoet au-
1OV TOV IAPATNPNOE®V, AAAd KAl MTOAUTPOIIKGOV UAOIIOI|0E®V Y1id AvAAUon ouvalodnuatog
onwg 1o Self-MM [47] kat to Multimodal Multi-Loss Fusion Network (MMML) [48], £€xou-
pe vwobetrioet batch sizes 16 yia to CMU-MOSI kat 32 yia to CMU-MOSEIL H emidoyn
auty) ggunnpetel v anoguyr Yopubou gradients, trv anotedeopatiky eknaibeuon PEO®
mini-batch gradient descent kati tnv MPAxKUKn £pAPHOYT] MTOAUTPOIIKGOV APXITEKTOVIKGOV

late concatenation fusion.
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M£6odog 'Hxog-Eikova Keipevo-Ewkova

CMU-MOSI CMU-MOSEI CMU-MOSI CMU-MOSEI

AxpiBeia (%) AnmAcia (%) AkpiBela (%) AndAcsia (%) AxpiBeia (%) AncdAcsia (%) Arpibeia (%) AnoAcia (%)

Baseline 54.93 + 1.19 84.10 + 1.25 32.55 + 0.44 166.74 + 0.88 74.35 + 0.58 66.57 + 0.49 43.99 + 0.39 133.11 + 0.39
OGM 49.13 + 5.20 86.11 + 1.24 32.68 + 0.26 166.52 + 0.73 74.49 + 0.86 64.37 + 1.17 44.16 + 0.24 132.02 + 0.82
OGM-GE 50.79 + 3.98 85.40 + 1.40 32.31 + 0.14 167.81 + 0.56 74.49 + 0.79 63.54 + 0.56 43.45 + 0.52 132.99 + 0.79
AGM 52.25 + 1.97 84.32 + 1.24 32.71 £ 0.31 166.81 + 1.01 74.46 + 1.93 64.26 + 1.69 43.84 + 0.11 133.26 + 0.63
PMR 53.76 + 2.15 84.55 + 1.14 32.44 + 0.25 167.19 + 0.92 74.72 + 1.22 63.33 + 1.95 44.60 + 0.53 130.60 + 0.36

IMivarag 5. Emnidoon tov poviéAwv 'Hyouv-Eucdvag kar Keyuévou-Ewkovag ota ovvoda Sedo-
uévov CMU-MOSI kar CMU-MOSEI ypnowonowwvtag éva ovvofdo avantuing yia apuepoin-
TTOUS UTtOAOYIOUOUS TOU puduUoU anokiiong tpomkotntev otg uedodovg OGM kar OGM-GE,
m¢ dvvaung rpomukotniag otnv uedodo AGM kat tou puduov avicooporiag ota poviefla PMR.
Ta anotefléopata mPoKUTTIOUY O¢ 0 UEcog 0pog 5 avelapniewv eliuatov kat tapovoialoviat
ue Baon mv axpibeia (Accuracy) kai v anwfecia (Loss), kadwg Kkat tnv Tumikn anokaion.

Ta mewpdpata pe 1o ouvolo avarttuing (development set) arnookorouv otnv agloAoyn-
on g evalobnoiag v pebddwv oto batch size katl ov e§epeivion evog IO EUEAMKTOU
TPOITOU £PaPPOYHS TOUG, X®PIS va meplopidoviat anod 1o péyebog auto. Tedkog otoxog sivat
1 epappoyr] pebodwv rmou mapap£vouV aroteAeORATIKEG AVESAPTNTA ATIO TOUG IEPIOPIOII0UG
batch size, anogevyoviag mapdaAAnia 1 PepOAnYia mpog Ta XaApAKINPEIOTIKA TRV TPOITIKO-
MOV 1] TG PaBNolaKEG SUVAPIKEG. AUTO EMMTUYXAVETAL NEC® TOU UTIOAOY1010U TOU pubpiou
avigoppriortiag otnv péBodo PMR, 1tou pubpou anokAiong otig pebodoug OGM, OGM-GE,
TOV PETPIKOV 10XV0g otn pébodo AGM kabmg Kat tov anapaitntov noAdaniaoiacteov gra-
dients oe 6ebopéva mou 1o povigdo ev €xetl el (oUvodo avarugng), daopadiloviag €tot
AVUKeEEVIKT aflodoynorn g anddoorig tou. To ouvolo avartuéng arotedeitat arndé 100
delypata tou ouvodou eknaibeuvong yta to CMU-MOSI kat 200 ywa to CMU-MOSEI, ta o-
rnoia artoxkortoviatl ard to ouvolo ekmaibsuong kat 1o diktuo dev enegepydletal moté Katd
v Sapkewa exkpdbnong. Efetdloupe ox1 povo v arodoorn addd kat TG TACEIS TV EITL-
HEPOUG PETPIKOV KAl TG ATIOAL1AG Katd TV eknaidsuor. Zta poviéda 0Aev tov pebodov
napatnproape otabeporoinon 10V TACERV TRV EMPEPOUS PEIPIKAV, XRPIS va aduvatouv va
urodeifouv v Kupiapxn teormkotnIa, mou eivat Kat o oKorog toug. Mdaliota otny nepinte-
on v poviédov AGM pe Xprjon OuvOAOU aVAITIUENG mapatnpoUde 1008Uvapeg arodooelg
He autég tng KAAOOIKAG edpappoyng tou adyopibpou, eve ta poviéda PMR BeAtiovouv v
anodoor] toug. Evdsiktikd, nmapabetoupe 11§ ypadpikeg MapaotAoelg arodoong Kat PETpnong
10X U0G TPOruKOTNTAS TV Poviédwv AGM oto CMU-MOSI, jie Kat X®pig T XP1or) ToU GUVOAOU
avarttugng (Cpdenpa 2).

Extetapévn Awdpkela Ernaidevong: H extetapévn exknaidesuon propei va odnyrjoet
oe KaAUutepn oUYKAON, 1dlaitepa yia poviéda mou ypnowpornotovv SGD, ta omoia ouvrBeg
Anattouv MEPIOCOTEPES EMAVAANYELS V1A va EIMTUXOUV otabepotnta. Qotooo, 1 urnepBoAiKn
exnaidevon prnopet emiong va o6nyr|oel 0e UMEPITIPOCAP}LIOYT], OITOU TO POVIEAO ATIOPVIIOVE-
vet ta 6edopéva exkmnaideuong avil va pabaivetl yevikevoya nipotunia overfitting. H anodoon
10V poviédev tou Ilivaka 6 dev Eerepvolv autv 1oV aviiotolov poviédev tou Iivaka 5.
[TapoAa autd, oe ouvduaopo Pe TS YPAPIKEG ATIEIKOVIOES Tou XXnpatog 3, avadeikvuetat
N opéAeia tou poviedou OGM-GE aro v enékraon ng diapkelag eknaidsuong. Aladaive-

1at 0Tt 0 oUVEUAOOg Iapatetapévng eKaibeuong, otabepdv EVIEPWOEDV TOV TUVIEAEOTOV
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Tpagpnpa 2. Zuyrpion v Bactkodv povtéAdov AGM kai tou AGM ue xprjon ouvojlou avamntu-
&ng oto CMU-MOSI. H mpatn ypoauun avunpoowrevet ta Baocika uoviéia, n 6eutepn 1o Hovtéflo
AGM yua g nepumtooelg 'Hyouv-Ewovag kat Keyiévou-Ewovag, eva n toitn 10 AGM ue xpron
ouvvoAou avarmtuéng yia v eVNUEP®ON NG LOXUOS KAl TOV CUVTE/IE0T®OV IOV TPOTIKOTHTIOU.
Kade ypapnua meptilapbavet Ti¢ LOVOTPOTIKEG LOXEIS Kal TG TIUES aKpIBelag EMIKUP®ONG TOU
UovtEAOU yia pia exktéfleon.
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gradients xkd6e névie enavalryelg oto CUVOAO avArtugng Kat egepevvnong pe evioxuor So-
puBou [44] [49] [50] [51] [52] erutpéner oto OGM-GE va erutuyydvetl v KaAuteprn anodoon)
napoucia Kupiapxng tporukotnrag. £to faoiko kat OGM povtédo, to validation loss apyidet
va audavetat onpavikd petd v 201 emoxr), aroxkAivel arod v anemieia exknaidsuong xat
unoSelkvuel urepnipooappioyn overfitting. Autd vnoypappidetl i onpacia g eVoOPATOONS
early stopping yta ) diatr)pnon g 1KavotnIag YeViKeEUong ToU POVIEAOU KAl TV artopuyr)
uroBabpiong g arodoorng oe oeVAPLA EKTETAPEVNG EKTTAIdEUONG, YEYOVOG TT0oU ermBeBaimve-

Tal KAl Arto TV YPAQ1KI an®ALIOV Tou ZxHpatog 1.

Mé£6oSog ‘Hxog-Ewr6va ‘ Keipevo-Ewk6va

AxpiBela (%) AnoAswa (%) ‘ AxpiBeia (%) AnmAswa (%)

Mapatetapévn Exnaidsuon ylua 100 Enoyxég

Baseline  53.09 £ 2.22 85.54 +1.35 | 72.68 + 2.08 68.54 + 1.62
OGM 52.95 +2.25 85.61 +1.31 | 72.97 £+ 1.99 68.44 + 1.62
OGM-GE 50.47 £2.22 86.82+0.98 | 73.59 + 0.64 67.56 + 1.40

Mivarag 6. Amnoteisouata twv poviéAwv 'Hyou-Ewovag katr Kewuévou-Eucovag yta 100
emoyég exkmaibevong xwpic early stopping oto ovvoio CMU-MOSI. Ta anotefléopata mpo-
KUTTOUV ®¢ O UEDOS 0po¢ 5 avefaptniov 1peuatov Kat tapovolalovial Ue 3aon v akpibeia
(Accuracy) kat v anwiewa (Loss), kadag¢ Kkat v tunkn anokAion.

ME£60oSog ‘Hxog-Ewr6va ‘ Keipevo-Ewkéva

AxpiBela (%) AnmAcia (%) Axpibera (%) ‘ ArntoAcsia (%)

AwapdépPpwong yia SuyReKpIpEvo AplOpo Enoxov

Baseline 32.55+0.44 166.74 £ 0.88 | 43.99 + 0.39 133.11 + 0.39

OGM 32.67 £ 0.33 166.76 + 0.86 | 44.15 + 0.34 133.11 + 0.39

OGM-GE 32.40 +0.30 167.12 +0.80 | 43.58 £+ 0.40 133.74 + 0.15
Ed¢dappoyri KaBoAn tn Awapreia Exnaideuong

OGM 32.59 £ 0.40 166.61 + 0.93 | 44.02 + 0.43 133.15 + 0.47

OGM-GE 32.43 +£0.29 167.30 £ 0.68 | 43.13 £ 0.53 134.83 + 0.21

Mivakag 7. Anoboon v poviédwv 'Hyou-Ewovag kar Keyuévou-Eucdvag oto avvofo be-
bopévov CMU-MOSEI ue v epapuoyn mg TEOTEWOUeUNS S1audpPpaons yia OUYKEKOULEVO
apduod eMOXWL vavit ¢ Papuoyns me kadojn m oidpkreia mg eknaidbevong. Ta amote-
Aéouata mpoKUTToUY w¢ 0 Heoog 0pog 5 avelaptwv pefiudtev Kat tapovotalovial ue Saon
mv akpibea (Accuracy) kair v anwieia (Loss), kadwg¢ kat v ik anokion.

Extetapévy Aldpreia IIpotevopevov Atapoppoocewv: MEoa aro v ArEIKOVIOL
1OV OUVAPTNOEROV ATIKAEIWV otd Ypapnpata 1 kat 3, H1armot®voupe 0Tt Ol TIPAOTEG ETTOXES €-
tvat kKaBoplotikEG yia Vv Ipoortabela 100pPOIIEVNS ASl0TI0iNoNG TOV TPOITIKOTATOV, KaOwg
HeTd amo €va oUyKeRppévo onpeio ta poviéda ouykAivouv. Ta amotedéopata tou ITivaka
7 1pag odnyouv o10 cupnEpacpa Ot €va Kadd emdeypévo napabupo Sapoppwong (..,
o1 IpoTeg 5 enoxEg) eubuypappidetal pe v nepiodo o6movu ta gradients eivatl mo aoctabeig,
ETTPETIOVIAG OTOV ETNAEYHEVO PNNXAVIOHO S1apdppwong va otabeporotrost ) Stadikaoia ek-
naidevong. AvtiBeta, n napatetapévy Pooappoyr) toug Propel va napspbaivel ot QUOIKT)
otaBeporoinon g Siadikaoiag BeAtiotonoinong, 181aitepa OTI§ PETAYEVECTEPES ETTOXES OTTOU
1a gradients eival é6n pikpa. O pnxaviopoi dapdppwong, onwg ot OGM kat OGM-GE, e-

tvat rmo anotedeopatikoi otav epappodovial orpatnyikd ota apXika otadia g eknaidsuong.
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H enéxktaon g epappoyrig 10UG O PETAYEVEDTEPES EMTOXEG EVEXEL TOV KivEuvo va Statapddet
T ouyKkAtlorn, Kabag oe auto to otddio ta gradients éxouv 16n mpooappootet yla v eAayt-

01010 0N NG CUVAPTNONG ANTMAEIDV.

(a’) Aneucovion anwAsov yia 1o Baseline Mo- (B) Ameucovion anwieiov yia to OGM Mo-
vtéflo. vtéfo.

T R

(Y)) Aneucovion arwAsidv yia 1o OGM-GE Mo-
viéio.

Tpagpnpa 3. Ancucovion anwiewwv yia to poviédo Keiugvov-Eucovag oto (a) Baseline Movtéflo
(B) OGM Movtéfo (y) OGM-GE Movtéjlo tou CMU-MOSI ouvofou yia 100 emoxeg.

0.7 Zupnepaopata kat MeAdovuikég KateuOuvoelg

Av kat ot e€etalopeveg péBodo1 Suvapkng Bedtiotonoinong deixvouv duvapikn otn PeA-
TiOOonN TtV acBevESTEP®V TPOTIKOTII®V Katl otn pubpon tev dtadikacwov eknaibeuong, 1
QAOUVEIELd Toug ot Slapopetikeg SiapopPpaoeig kat n aduvapia toug va Sernepacouv 1oxUpd
Baowkd poviéda avadeikvuouv T ouvOetn @UON TG rmoAutporukng PeAtiotornoinong. Evo
ouyva Sempeital 6Tt 01 MOAUTPOTTIKEG IIPOOEYYIOEIS UTIEPTEPOUV TOV HLOVOTPOITIKWV HOVIEARDYV,
1 apouoa peA€tn emBeBal®vel OTL 1] AVICOPPOTITiA TPOITIKOTHTOV UITOPEl va meplopioet on-
pavtika v anodoon. H BeAtiotonoinon 1@V MOAUTPOIKOV VEUPOVIKGOV SIKTUGV MAPAPEVEL
€va avolyto ffnpa £pguvag.

Qot600, 1 avartudn arnoteAeopatK®OV PeBOd®V ITOCOTIKOMOINoNG TG OUVEIoPOPAg Kabe
TPOITKOTNTAG, WOTE va Yeormotouv Kavoveg BeAtiotornoinong rmou da ermrpénouy v ave§dap-
T PUONIonN KAOe TPOrmKOTNTAG ATTOSEIKVUETAL ®G £va TIOAAA UTTOOXOUEVO GEVAPLO.

[MapaAAnda pe v Bedtotornoinon, Ya mpenet va diepeuvnBOouv tpomot Pedtioong tng
mAnpogopiag rmou e§Ayetal aro tg Seutepeliouseg TPOITIKOTTEG, TOAVAOS HECRK PNXAVIOUIOV
cross-modal attention mou evioyUouv 1 povadiky) Toug ouvelopopd.

EmumAéov, n peddoviiky €peuva Sa mpeémnel va diepeuvnoetl eav evallaktikeg péebodot
OUYX®OVEUOTNS ATTOPEPOUV PeyaAUTEPA OPEAT OTav ouvdualovial PE TEXVIKEG IIPOCAPIO0TIKNAG

BeAtiotoroinong, a§loloymviag v aroteAeopatikotntd toug o S1aPOPETIKEG OTPATYIKEG
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OUYX®WVEUONG.

H peAdovuxrn) épguva mpénet va e§etdoel akopa av eivat epikiy) pia eviaia otpatnyike)
BeAtiotoroinong 1 av anartouvial Ee181KeEUHEVEG MPOOEYYIoelS yia S1apopetika ouvola Se-
dopévev kat epappoyeég, kabwg dlarmotovetal ot pubpioelg eknaidsvong mou anodidouv
KaAd oto CMU-MOSI prnopet va pnv yevikevovial anotedeopatika oto CMU-MOSEI 1y og
aAla moAutporiikd ouvola Sedopévav.

AZicel va SiepeuvnBei kat n avartudn uBp1S1IKWV IPOCEYYioewv 1ou ouvdudlouv MPOoEK-
raideuon POVOTPOITIK®V HOVIEA®V € TIPOCAPHOOTIKY] TTOAUTPOTUKY| BeATIOTONOiNno, Kabmg
n otaBepd uYndn arodoor) tou Uni-Pre Finetuned poviédou untodnAwvet 0t autr) 1 otpatn-
YIKn propet va eivat 1diaitepa anoteAeopatiky).

Axkopa, avarntuoooviag TEXVIKEG BEATIOTONOINO0NG ITOU PHEI®VOUV TNV AVAYKI EKTETAPEVOU
MEPAPATIOROU HE UMEPTIAPAPETPOUS e§aodaliletal 1 MPAKTIKOT)TA KAl 1] EMEKTACTHOTTA
TV TTOAUTPOTTIK®V POVIEAGDV.

O kUp10g 010X06 Ya 1peret va ivat n avamntuén Suvapikov pebodwv rmou npooapuodoviat
autopata ota padbnolakd Xaparinplotka KAOe TpormKottag, PEVoVTag v e5aptnon ano
NV MIPOCAPHOYY] UTEPTIAPAPETP®V KAl ) Sopn tov 6edopévav, eved apddAnia Siatnpouv
uYnAn anodoor) oe HraPpopeTikeg ap)iiektovikes. H mapouoa dimdepatike cupBaiiet oe au-
10, avadvovtag pebodoug Baoiopéveg oe IPOCAPHOYT] MAPAYOY®V KAl OUVAPTIOELS ATIOAEIRV,

uro dtdpopeg ouvOnkeg eknaideuong, ya v avaiuorn ouvalodnpatog.



Chapter ﬂ

Introduction

Machine Learning advancements across diverse domains enable systems to learn from
data and improve performance over time. Machine Learning forms the foundation for
understanding and addressing complex real-world challenges through data-driven ap-

proaches.

1.1 Towards Multimodal Machine Learning

The field of Artificial Intelligence (Al) has seen remarkable progress in recent decades,
introducing to systems novel ways of processing and understanding information. At the
core of this progress is Machine Learning (ML), which allows systems to learn from data
and make predictions or take decisions without needing to be explicitly programmed.
Machine learning has driven advancements in numerous tasks, such as image recog-
nition, natural language processing, with applications across domains like healthcare,
education, and entertainment. These advancements rely on Artificial Neural Networks
(ANNs), designed to identify patterns in data and perform on new, unseen data. As ML
continues to evolve, the ability to process and combine diverse sources of information has
become increasingly essential, opening new possibilities in machine learning. Multimodal
Machine Learning represents a paradigm shift in the field.

Multimodal systems are able to analyze and integrate information from multiple data
sources, such as text, images, and audio. This approach provides a more comprehensive
understanding of complex problems by leveraging complementary information of different
modalities. For example, in a sentiment recognition task from a video, relying solely on
visual data might miss important emotional cues present in speech tone, while focusing
only on audio could overlook critical facial expressions. Multimodal learning has enabled
breakthroughs in tasks like video captioning, medical diagnosis, and autonomous driv-
ing, where data from one source often fail to address the problem effectively due to the
absence of critical information unique to other data streams. The importance of Multi-
modal Machine Learning lies in its potential to bridge the gap between isolated streams
of information, aiming to better replicate human understanding. However, the integra-
tion of multimodal data introduces new challenges, such as effectively combining diverse
data streams and managing the unique nature of the information each stream provides

synchronously. Driven by these challenges, training of Multimodal Neural Networks aims
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to harmonize diverse data streams and unlock the full potential of synchronous machine

learning applications.

1.2 Motivation

Leveraging the distinct characteristics of each modality to achieve accurate and com-
prehensive results makes Multimodal Learning a cornerstone of sentiment analysis and
emotion classification. To enhance the performance of Multimodal Neural Networks, re-
cent studies have underscored the need for tailored optimization techniques that account
for the unique learning dynamics of each modality. Since individual modalities exhibit
distinct learning capabilities and progression rates, multimodal models often require op-
timization strategies specifically designed to adapt to and balance these varying paces
of learning effectively [22] [23] [29]. Traditional optimization methods, applying a com-
mon optimization approach across all modalities, fail to address this issue effectively.
The challenge lies in designing optimization strategies to prevent over-reliance to one
stronger modality and promote the exploration of the weaker modalities. This imbalance
undermines the learning dynamics, resulting in models that are biased toward domi-
nant modalities while neglecting others. Numerous approaches in literature have been
proposed to explore the unique characteristics of multimodal learning and design novel
mechanisms to achieve a more balanced integration of modalities.

Inspired by the challenges posed by unbalanced multimodal learning, this thesis in-
vestigates the optimization of multimodal neural networks under the scope of sentiment
analysis. Motivated by the growing recognition in the literature of dynamic optimization
techniques as a promising solution to these issues, we aim to explore a number of novel
optimization strategies suggested to mitigate difficulties of multimodal learning. On-the-
fly Gradient Modulation with Generalization Enhancement (OGM-GE)[26] and Adaptive
Gradient Modulation (AGM)[27] directly modify the gradients of the unimodal subnet-
works by scaling them with dynamically computed factors during the optimization step.
Prototypical Modal Rebalance (PMR), a multi-loss optimization technique [20], influences
optimization indirectly by modifying the loss functions. ReconBoost is a multimodal al-
ternating learning paradigm [21] that dynamically interchanges unimodal models during
training following also a multi-loss approach. This variety of approaches allows us to
explore optimization dynamics from multiple angles, highlighting how indirect loss-based

adjustments or direct gradient modifications address unbalanced multimodal learning.

1.3 Thesis Contribution

This thesis addresses the challenges of modality imbalance in Multimodal Neural Net-
works by providing a unified evaluation of modality balancing algorithms. Building on
insights from dynamic optimization methods, we systematically test the algorithms under
both balanced and imbalanced modality conditions to explore their effectiveness in han-
dling real-world scenarios. Through detailed analysis of each algorithm’s mechanisms,

strengths, and limitations, we aim to uncover how optimization strategies influence the
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performance and robustness of multimodal systems. By focusing on the task of sen-
timent analysis, this research examines the impact of dynamic methods on optimizing
unimodal performance and evaluates whether these improvements contribute to enhanc-
ing the overall performance of the multimodal neural network. This work makes the

following contributions:

e Investigation of dynamic optimization methods: A comprehensive analysis of four
dynamic optimization techniques— OGM-GE [26] and AGM [27] gradient-modification
methods, PMR [20] and ReconBoost [21] multi-loss optimization methods—specifically

tailored for unbalanced multimodal learning in sentiment classification.

e Evaluation across varied imbalance scenarios: Experiments conducted on three
distinct imbalance scenarios including one dominant and one weak modality, two
weak modalities, and three modalities with varying contributions, providing a de-
tailed understanding of how these methods perform under modalities with varying

strengths.

e Analysis of influencing factors: An exploration of factors affecting the efficacy of the
dynamic optimization methods, like the choice of optimizer, alongside with propos-
als to enhance the applicability of the algorithms such as the use of a development

set for unbiased auxiliary computations.

The findings of this thesis aim to provide valuable insights into the dynamic opti-
mization of multimodal neural networks under the scope of sentiment analysis, while
advancing the understanding of modality imbalance as a key challenge in multimodal

learning research.

1.4 Thesis Outline

This thesis is structured to provide a comprehensive exploration of the challenges and

optimization techniques for multimodal neural networks:

e Chapter 2 provides a theoretical background on machine learning and neural net-
works, focusing on key concepts like optimization and generalization of deep learn-

ing models.

e Chapter 3 introduces multimodal machine learning, exploring fusion architectures
and the challenges of training them, within the scope of multimodal sentiment

analysis.

e Chapter 4 introduces the modality imbalance phenomenon observed in multimodal

learning, providing an in-depth analysis of its implications.

e Chapter 5 presents a comprehensive overview of state-of-the art algorithms for
multimodal optimization with a special focus on methods that dynamically adjust
the gradients during training [26] [27] and multi-loss optimization approaches [20]
[21].



Chapter 1. Introduction

e Chapter 6 provides a comprehensive evaluation of dynamic optimization methods,
detailing the key mechanisms, training patterns, and limitations of each dynamic

optimization algorithm.

e Chapter 7 concludes the thesis, summarizing the key findings and outlining poten-

tial directions for future work in the field of multi-modal optimization.
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Machine Learning

Machine Learning (ML) is a cornerstone of artificial intelligence, enabling systems
to learn from data and improve performance autonomously. This chapter provides an
overview of fundamentals, focusing on deep learning, neural network architectures, and

the core principles that drive modern advancements in this field.

2.1 Introduction

While Al focuses on the simulation of human intelligence, including reasoning and
decision-making, ML algorithms aim to learn autonomously from data. As defined by
Tom M. Mitchell, “A computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P, if its performance at tasks in T,
as measured by P, improves with experience E” [53]. This highlights the main goal of
machine learning: leveraging data and performance feedback to solve tasks effectively.
Unlike traditional programming, ML systems do not require predefined rules, but employ
algorithms to discover patterns and relationships autonomously.

Deep learning builds on these principles by employing artificial neural networks
(ANNs) as its foundational structure. Defined by Ian Goodfellow as “a class of machine
learning techniques that use hierarchical neural network architectures to model high-
level abstractions in data” [54], deep learning excels at processing unstructured data
such as images, text, and audio. Artificial Neural Network, inspired by the structure of
the human brain, is the computational cell of deep learning, enabling systems to capture
intricate patterns and dependencies. This capability has driven breakthroughs in tasks
like image recognition, natural language processing and emotion recognition, indicating
the impact of deep learning in addressing complex real-world challenges.

Towards a better understanding of machine learning, this chapter introduces the dif-
ferent types of learning paradigms. Following this, the role of neural networks as the
computational backbone of many ML systems is discussed, with a focus on their archi-
tecture and mechanisms. The core concepts of loss functions and the backpropagation
algorithm are then examined, as they form the foundation for training neural networks.
An analysis of optimization techniques, which drive the learning process by minimizing
the loss function, is included, followed by an exploration of model generalization and ro-

bustness. By understanding these components, we can address the challenges of training
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robust and efficient systems, which is central to the focus of this thesis.

2.2 Types of Machine Learning

Learning algorithms can be classified into three main categories based on how they
interact with data, whether rewards are given, feedback is provided, or labels are applied:
Supervised Learning, Unsupervised Learning and Reinforcement Learning. In this sec-
tion, we provide an overview of the main characteristics of each category, with a particular

focus on supervised learning tasks.

2.2.1 Supervised Learning

Supervised algorithms involve learning the relationship between a set of input vari-
ables and an output variable based on a labeled training dataset [55]. In this approach,
the learner is provided with an input x € X and a corresponding output y € Y, where X
and Y represent the input and output spaces, respectively. The goal is to approximate a
true mapping function f : X — Y that links each input to its corresponding output. This
is achieved by training a model on a dataset D = {(x1, y;), . ... (xy, yy)}, which consists of
human-labeled input-output pairs. The goal is, by learning from these examples, to use
new, unseen inputs to predict the values of the outputs. Supervised learning primarily
focuses on two types of tasks based on the nature of output: regression and classification.
In regression we predict quantitative outputs, while in classification qualitative outputs
are predicted.

Classification is a process of categorizing data or objects into predefined categories
according to their features or attributes. The main objective here is to build a model that
can accurately assign a label or category to a new observation based on its features. A
classification model is trained on a labeled dataset, where each sample is associated to
one or more labels. There are two major categories of classification problems: Single-
label and Multi-label classification. Single-label classification methods maps the output
approximation to a unique target label out of a number of individual labels. This set of
algorithms can be further divided into binary and multi-class classification based on the
number of potential existing categories. We refer to binary classification when the input
data can match to only one out of two target labels, while it is a multi-class problem when
the input can be assigned to one among a pool of true labels. In multi-label classification
problems the model can associate the input value with more than one target values,
meaning that each sample can belong to two or more categories at a time. For example,
an audio recording with a raised voice and fast pace could be assigned to two emotions
at time, "Angry" and "Disgusted".

Regression is a supervised machine learning technique, that predicts the value of the
dependent variable for new, unseen data. It models the relationship between the input
features and the target variable, allowing for the estimation or prediction of real or con-
tinuous values. Figure 2.1 illustrates the fundamental difference between classification

and regression in machine learning tasks. Classification groups data into predefined
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Figure 2.1. Schematic difference between classification and regression. Picture was taken

Jrom [1]

categories. Here, two classes are available, one marked with X and one with O. The clas-
sification algorithm creates a decision boundary to divide the data points into two distinct
groups. On the other hand, the plotted curve on the right side formulates a relationship
between the input and output samples. Then, the model attempts to predict a numeric

outcome based on that relationship.

2.2.2 Unsupervised Learning

Unsupervised learning is another key paradigm of machine learning, distinguished
by its use of unlabeled data. It has no interest in making predictions, because there is
no associated output label [56]. The objective is to uncover hidden patterns, structures,
or relationships within the data, without referring to any specific response. Clustering
algorithms such as k-means algorithm partitions data into k clusters based on their
spatial properties while Principal Component Analysis performs dimensionality reduction
and transforms data into a set of orthogonal components, highlighting the most important
features. By identifying underlying structures, unsupervised learning is fundamental
in tasks such as feature extraction, making it ideal for exploratory data analysis and

preprocessing.

2.2.3 Reinforcement Learning

In Reinforcement learning, an agent interacts with the environment, aiming to learn
an optimal policy, by receiving feedback in the form of rewards or penalties, to make
sequences of decisions [57]. Through repeated experiences, the agent tries to improve
its strategy and maximize a cumulative reward over time. Q-learning algorithm [58] is a

well-known model-free algorithm that learns the optimal action-value function that way.
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2.3 Neural Networks

This section introduces the fundamental concepts of neural networks, beginning with

their definition and expanding to specific architectures and their applications.

2.3.1 Definition of Artificial Neural Network

An Artificial Neural Network (ANN) is a machine learning model inspired by the human
brain, designed to recognize patterns in data. ANNs consist of interconnected units called
neurons, organized into layers: an input layer receives the data, one or more hidden layers
process it, and an output layer provides the result. Each connection between neurons is
assigned a weight, which is adjusted during training to minimize error. A neuron can be

formulated mathematically as follows:

y= cp[z wjxj—u) 2.1)
J=1

In this equation, y represents the output of the neuron, while ¢ denotes the activation
function. The term wj; corresponds to the synapse weight matrix, and x; is the input
vector for j-th input. Lastly, u refers to the activation threshold, often called the bias of
the neuron.
Bias
X, O——w

Activation
Function

Output

x, O——w,

Waights

Figure 2.2. Illustration of Artificial Neural Network. Source: [2]

Activation Functions

Activation functions introduce non-linearity into the model, enhancing its capacity
to capture complex relationships within the data.We introduce some of the fundamental
activation functions commonly used in artificial neural networks:

Sigmoid [59]: The sigmoid function squashes the input to a value between O and 1,

making it suitable for binary classification and is expressed as:

1
l+e™>

o(x) = (2.2)

ReLU (Rectified Linear Unit) [60]: ReLU function outputs the input directly if it is

positive, and O otherwise following:
@(x) = max(0, x) (2.3)
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Tanh (Hyperbolic Tangent) [61]: Tahn function squashes the input to values between
-1 and 1, making it a good choice for zero-centered data. It is expressed as
— e_x

e*
(,D(X) = tanh(x) = m (2.4)

Softmax [62]: Softmax produces probabilities from logit outputs, an ideal concept for
multi-class classification tasks. The softmax formulation:

S (2.5)
jnzl e’

o) =

Deep learning encompasses a variety of neural network architectures, each tailored

to specific tasks and data types. Among these, Feedforward Neural Networks (FNNs), Re-
current Neural Networks (RNNs), and Convolutional Neural Networks (CNNs) stand out as
foundational models. Notably, Long Short-Term Memory (LSTM) networks, a specialized
type of RNN, are particularly effective for capturing long-term dependencies, making them

central to the models employed in this work.

2.3.2 Feed-forward Neural Networks

In a Feedforward Neural Network (FNN), the internal structure is arranged in sequen-
tial layers, where each neuron in one layer connects exclusively to all neurons in the next
layer [63]. This topology rule excludes backward connections, found in many recurrent
neural networks and layer-skipping. A notable example of feedforward network is the

Multilayer Perceptron (MLP).

Hidden
layer

Input

Output
layer

Inputs
Outputs

Figure 2.3. [llustration of a Feed Forward Neural Network (FNN) architecture. Source: [3]

2.3.3 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a type of deep learning model specifically
designed to handle grid-like data, such as images. CNNs have become essential in tasks
such as image classification, object detection, and even medical imaging. The architecture

of CNNs is based on key concepts such as local connections, shared weights, pooling,
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and multiple layers, all of which help capture spatial hierarchies in data [64]. More
precisely, it comprises an input layer for raw data, convolutional layers that use filters,
also known as kernels, to detect patterns or features, activation functions introducing
non-linearity, pooling layers to reduce data dimensionality, and the final component,

a fully connected layer, which maps the learned features to output predictions. CNN

Input image Convolution Pooling Convolution Pooling
4 *

Non-linearity Mon-linearity

Flatten Fully

\_ _/ connected

\

~" —

Feature learning Classification

Figure 2.4. Illustration of a Convolutional Neural Network (CNN) architecture. The first part,
using convolution operations, performs feature learning. The features are then flattened and
Jed into a set of fully connected layers to perform the classification or the regression task.
Source: [4]

performance is enhanced by stride and padding, which control how filters move across
the input, and pooling, which simplifies data by summarizing regions while retaining
important information. These concepts enable CNNs to effectively process large, high-

dimensional data with fewer parameters compared to fully connected networks.

2.3.4 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are designed to process sequential data by retain-
ing information across time steps. Unlike feedforward networks, RNNs have connections
that allow information to persist across time, making them ideal for tasks involving time
series and sequential data. Their architecture is based on an input layer, a hidden layer,
and an output layer. The hidden layer has recurrent connections, allowing information
from previous time steps to influence the current time step. The hidden state at each

time step t is expressed as follows [65]:
Hy = ¢pn(XeWxn + Hi—1 Whn + bn) (2.6)
The output is computed:
Ot = @o(HtWho + by) (2.7)

In this context, H; represents the hidden state at time step t, while X; denotes the input
vector at the same time step. The term W, refers to the weight matrix between the input
and the hidden state, and H;_; corresponds to the hidden state from the previous time

step. Similarly, Wy, represents the weight matrix between hidden states, and by is the
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bias term for the hidden state. The activation function applied to the hidden state is de-
noted by ¢y, and common examples include tanh and ReLU. Furthermore, O; represents
the output at time step t, with Wy, as the weight matrix between the hidden state and
the output. The term b, is the bias term for the output, and ¢, represents the activa-

tion function applied to the output. The diagram illustrates a Recurrent Neural Network

K
C N =) - O -

S v tu f U T U

Figure 2.5. [llustration of a Recurrent Neural Network (RNN) architecture. Source: [5]

(RNN) in both its compact and unfolded forms. At each time step t, the network processes
input x; to update the hidden state h;, which retains past information through recur-
rent connections. This structure enables the network to capture sequential dependencies

efficiently.

2.3.5 LSTM architecture

The Long Short-Term Memory (LSTM) architecture, first introduced by [66], consists
of memory blocks connected in a recurrent fashion. Each memory block is composed of
memory cells and three types of gates: the input gate, the forget gate, and the output gate
[7]. The input gate manages the entry of new information into the memory cell. The forget
gate controls the portion of stored information to be erased, ensuring that irrelevant or
outdated information is discarded. The output gate is responsible for providing the stored
information from the memory cell when the output must be computed. At the core of
the LSTM architecture lies the memory cell, which serves as the central unit. It stores
information and determines whether to reject, retain, or retrieve it based on the gate
mechanisms, allowing LSTMs to effectively handle long-term dependencies in sequential
data. The LSTM unit, as illustrated in Figure 2.6, consists of several key components that
work together to handle sequential data effectively. The forget gate controls which parts

of the previous cell state (C;—;) should be retained, using the formula:
Je = o(Wy - [he-1, x¢] + by) (2.8)

Next, the input gate determines how much of the new input should contribute to the cell
state, calculated as:
it = o(W; - [hy-1, x¢] + by) (2.9)
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Figure 2.6. Schematic representation of Long Short-Term Memory unit cell. Source: [6].

To update the cell state, a candidate cell state is computed, providing a new candidate

value for the cell state (C;) through the equation:
C¢ = tanh(Wc - [hy—1, x¢] + bc) (2.10)
The updated cell state combines the forget gate and input gate outputs, following the rule:
Ci=fiOCi1 +1:0Cy (2.11)

The output gate determines the information to be output based on the current cell state,
given by:
ot = 06(Wy - [hy-1, X¢] + bo) (2.12)

Finally, the hidden state is computed, representing the output of the LSTM at time step
t, using the equation:
ht =0 0O tanh(Ct) (2.13)

In these equations: x; represents the input at time step t, while h,_; and C;_; are the
hidden and cell states from the previous time step, respectively. The functions o and
tanh denote the sigmoid and hyperbolic tangent activation functions, respectively, while
O represents element-wise multiplication. The weight matrices Wy, W;, W, W, and biases
bf, b;, bc, b, are learned parameters that adapt during training to optimize the LSTM’s

performance.

LSTMs exceed traditional RNNs because of their ability to control the flow of informa-
tion with their gates and capture dependencies over long sequences through their memory
cells. Let us consider the illustration of Figure 2.7. The state of the input, forget, and
output gates are displayed below, to the left and above the hidden layer respectively. For
simplicity, all gates are either entirely open (‘O’) or closed (‘—’). Black nodes are sensitive
to the inputs, while white ones are insensitive. The sensitivity of the output layer can be
switched on and off by the output gate without affecting the cell. In other words, if the
input gate is open, but the forget gate is closed, the cell will receive new information from
the current input and update its state, while still retaining relevant information from the
past. This advantage makes LSTMs a powerful tool to handle long-term dependencies in

sequential data in tasks like speech recognition and sentiment analysis.
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Figure 2.7. Preservation of gradient information by LSTM as represented in [7].

2.4 Loss Function

Focusing on supervised learning, this section introduces the fundamental concept of
loss . The loss function represents the difference between the predicted output of a model
and the true target value. Loss quantifies the error and guides the optimization of the
model parameters to minimize the error. The loss function compares the output y; with

the corresponding target g; at time step t and is defined as:

T
L(y.§) = ) L(y:. 0) 2.14)
t=1

The loss at time step t is expressed as L(y;, ), and T corresponds to the total number of
time steps. This equation represents the overall summation of losses at each time-step.
The choice of loss function plays a crucial role in the learning process and is considered
problem dependent. We present loss functions popular in literature for classification and

regression tasks [67].

Binary Cross Entropy Loss [68]: Binary Cross Entropy Loss measures the perfor-
mance of a binary classification model by quantifying the difference between predicted
probabilities and true binary labels. It penalizes confidently incorrect predictions more

heavily, making it sensitive to prediction confidence. The log-loss function is defined as:

N
L) = -~ D (wi10g(@) + (1 -y log(1 = ) .15

Here, N is the number of samples, y; is the true label (0O or 1), and {j; is the predicted
probability of class 1 for the i-th sample. Binary cross-entropy can be extended [59] by
applying the sigmoid activation function to raw logits before calculating the loss. It is
particularly suited for multi-label classification tasks, where a single sample can belong

to multiple classes. The sigmoid cross-entropy loss for one observation is:

L(yi. §0) = — (yilog(o(y) + (1 — yy) log(1 — o(T;))) (2.16)
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making it ideal for tasks with overlapping class memberships.

Here, o({);) = maps logits to probabilities. It treats each label independently,
Cross-Entropy Loss [62]: Designed for multi-class classification, this loss applies
the softmax function to logits to produce a probability distribution across all classes and

measures the divergence from the true one-hot encoded labels. It is defined as:

C ~
R eyl
L(y.§) = - E yilog(—c Q‘J (2.17)
i=1 j=1 €7

Here, C is the total number of classes, y; is the true label (1 for the correct class, O
otherwise), and the softmax function ensures the predicted probabilities for all classes
sum to 1. This loss formulation is ideal for multi-class problems.

Mean Squared Error (MSE): One of the most common loss functions for regression
tasks, it calculates the average of the squared differences between the predicted and true
values. It is particularly useful for penalizing larger errors more severely due to squaring

the error. The Mean Squared Error (MSE) is given by:

N
1
L. §) = & D= 00 (2.18)
i=1

where N is the number of observations, y; represents the actual value for the i-th obser-
vation, and {J; denotes the predicted value for the i-th observation.

Mean Absolute Error (MAE): It computes the average of the absolute differences
between predicted and true values, making it also really popular among regression prob-
lems. Mean Absolute Error is more robust to outliers compared to Mean Squared Error.
The Mean Absolute Error (MAE) is given by:

N
N 1 N
L(y. §) = N Z ly; — Uil (2.19)
iz1

where N represents the number of observations, y; is the actual value for the i-th obser-
vation, and {J; is the predicted value for the i-th observation.

In multi-task learning [69], the model performs twice or more related tasks at once.
The total loss in this case is expressed as a weighted sum of the individual losses from

each task as shown below:
Liotal = a1y + agls (2.20)

Where L; and L, are the loss functions for Task 1 and Task 2, respectively, and a; and
as are the weights assigned to the respective tasks. Each loss contributes differently to
the overall optimization, but by optimizing this total loss, the network learns to perform

both tasks simultaneously.

2.5 Backpropagation Algorithm

As described in [28], during forward step, the input data is passed through each

network layer. Each layer computes the weighted sum of its inputs and applies the
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activation function. Then it passes the result to the next layer, eventually generating
the output. The error is then calculated based on how far the predicted output deviates
from the actual target value. In the backward step, the algorithm begins at the output
layer and moves backward toward the input layer, systematically updating the weights
to reduce the error following the gradient descent algorithm. At each layer, the gradient
of the error with respect to the weights is calculated to determine how much each weight
contributes to the overall error. This weight adjustment is determined by applying the
chain rule to compute how the error at the output propagates through each layer of the
network. Specifically, for each weight, the gradient of the error is computed as the product
of the partial derivatives of the loss function with respect to the output, the output with
respect to the activation, and the activation with respect to the weights. Mathematically,

for a given weight w, the gradient is:
—-=.=. = (2.21)

where L is the loss, y is the output of the network, z is the weighted input to the activation
function, and w is the weight. This chain rule application ensures that the influence of
the weights at each layer is properly accounted for in the gradient computation. In
backpropagation, biases are updated alongside weights by calculating their gradients,
allowing the model to adjust the activation threshold of neurons and shift the output to
better fit the data.

2.5.1 Gradient Descent Algorithm

The equation provided represents the weight update rule of the gradient descent al-
gorithm, which is integral to the backpropagation process. Specifically, it adjusts the
weights Aw by scaling the gradient of the loss function %} with respect to the weights

using a learning rate 7.
oL

awij

Aw; = -1 (2.22)

This iterative process minimizes the error by guiding the network toward a set of weights
that reduce the overall loss. In the context of backpropagation, gradient descent acts as
the optimization mechanism that updates the weights during each iteration based on the
error gradients propagated backward through the network. The process of forward and
backward pass is repeatedly executed for many epochs and the weights are continuously
updated in small steps until the error converges to a minimum. The most important
hyperparameter is the learning rate 7n as it controls the extent to which the model param-
eters are adjusted concerning the loss gradient, thus the selection of the learning rate

hyperparameter is a crucial point.

2.5.2 Challenges of Backpropagation

One main challenge of the back-propagation is the Exploding Gradient Problem, where

gradients grow exponentially making the learning process unstable. Another issue is
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Figure 2.8. Illustration of the backpropagation algorithm in supervised training. The
diagram shows the direction of error propagation (red arrow) from the output layer to the
input layer, along with the calculation of gradients used to update weights in each layer.
Image taken from [8]

Vanishing Gradient Problem, where gradients can become very small as they propagate

backward through many layers, causing the learning process to slow down [70].

The Exploding Gradient Problem indicates a phenomenon where gradients grow ex-
ponentially through layers. As gradients increase, the weight updates are getting larger,
preventing convergence. One effective way to handle exploding gradients is Gradient
Clipping. A threshold value is set for the gradient magnitude. If the computed gradients
surpass this value, they are scaled down to prevent very large updates. Thus, networks
where long sequences are present, can be protected from the phenomenon of exploding

gradients. The gradient clipping formula is given by [71]:

g« 9 X threshold if ||g|| > threshold (2.23)

llgll

where g represents the gradient vector, ||g|| denotes the norm of the gradient vector, and

the threshold specifies the maximum allowable value for the gradient norm.

During backpropagation, gradients are calculated using the chain rule of calculus,
which multiplies the gradients of each layer as we move from the output layer back to
the input layer. During this multiplication gradients can shrink exponentially as they
propagate through each layer. If the gradients become too small, the weights will barely
change during backward pass. The weight updates for the layers closer to the input will
become negligible. Thus, earlier layers may freeze during the training process, preventing

later layers to learn feature patterns effectively.

The choice of initial weights and activation function can address the problem of van-
ishing/exploding gradients [72] [73]. Batch normalization [74] can also mitigate such
problems. It acts as a scaling method that make the inputs of each layer have zero
mean value and unit variance. Thus, gradients maintain a consistent scale leading to
a more stable training process. The addition of a regularization term [59] such as L2
regularization to weights can also be helpful in controlling the size of gradients during

backpropagation. This term represents a penalty applied to large weights in order to



2.6 Optimization of Neural Networks

reduce their magnitude. To address the issue of vanishing gradient more effectively,
Long-Short Term Memory Networks (LSTMs) [75] were introduced. LSTMs remain one
of the most prominent architectures for capturing long-term dependencies in sequential
data.

2.6 Optimization of Neural Networks

Optimization refers to the process of adjusting the parameters of a model in order
to minimize the loss function L. Primary goal of an optimization technique is to find the
best set of parameters that allow the model to perform well on training data as well as on
new, unseen data. Based on the kind of parameters they aim to improve, optimization
techniques can be divided to: Weight Optimization Methods, Gradient-free Optimization

Methods, Constrained Optimization, Regularization-base Optimization.

Searching through literature we can further divide weight optimization methods into
two categories: First-order Optimization Methods and Second-order Optimization Meth-
ods. First-order methods rely on calculating the first-order derivatives of loss with respect
to each model parameter, while second-order optimization algorithms rely on second-
order derivatives. Although, second-order methods can converge faster theoretically,
calculations of the Hessian matrix are time and memory expensive when dealing with
large parameter spaces such as in LSTMs. Also, first-order methods scale better with
large dataset. With these factors in mind, in this section we represent some of the most

notable first-order optimization techniques.

Stochastic Gradient Descent: Unlike full gradient descent, Stochastic Gradient De-
scent (SGD) [76] is an optimization algorithm that updates the model parameters based
on the gradient of the loss computed for a single or a few data points (batch of data) at
each iteration. This method leads to faster updates, thus faster convergence, becoming
this way a good optimization choice for large datasets. The update rule for SGD is given
by:

8t+1 = 8t — NVseL(¢: Ui, Yi) (2.24)

where 8; represents the parameters at iteration ¢; 7 is the learning rate, controlling how
large each update is; and V,,L(wy; Ui, y;) and V,L(by; Ui, y;) are the gradients of the loss
function L with respect to the weights and biases, computed using a single data point
(J;, yy) or a batch of data points. Stochastic Gradient Descent has been proved really
efficient for large datasets, as it updates models parameters for each training sample or
mini-batch of the dataset. Each point or batch is selected randomly, which makes it
stochastic. The stochastic nature of SGD introduces noise to data, which can help the

model escape local minima.

Momentum: Momentum [77] is variation of Stochastic Gradient Descent that uses a
moving average of the gradients to smooth the path of parameter updates. The update

rule is:
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Vi1 = Bue + Vo L(8y), (2.25)
Ot+1 = 8¢ — NVt 1. (2.26)

where v; represents the velocity (or momentum) at step t, which smooths the updates and

avoid oscillations; vt is the updated velocity term at step ¢ + 1; and 3 is the momentum

coefficient, controlling the contribution of previous updates to the current step.
AdaGrad: Adagrad [78] scales the learning rate for each parameter based on the sum

of past squared gradients. The update rule is:

n
Ot+1 = Ot — —mVaL(at) (2.27)
Where G; is the sum of the squares of the past gradients, and ¢ is a small constant added
to avoid division by zero.
Adaptive moment estimation (Adam): Adam [42] maintains both an exponentially

decaying average of past gradients and squared gradients. The update rules are:

mey1 = Brmy + (1 — B1)VaL(y), (2.28)
Ve = Bovr + (1 = Ba)(VoL(80))?, (2.29)
s = T 2.30)
Dip1 = lvi—t;% (2.31)
Oiey = 8 — ﬂ 2.32)

Ut41 t €

Here, my represents the first moment (mean of the gradients) at step t, v; is the second
moment (variance of the gradients) at step t, and f3;, 3 are the exponential decay rates for
the first and second moments, respectively. The terms 17, and D¢, are the bias-corrected
estimates of the first and second moments, which are used to adjust the learning rate
dynamically. The constant € is a small value added to ensure numerical stability in the
denominator. Adam dynamically adjusts the learning rate for each parameter based on
the first and second moments of the gradients (i.e., the mean and variance). This helps
the optimizer to handle varying feature scales and gradients, which is common when

multiple modalities are present, as they behave differently.

2.7 Model Generalization

Generalization refers to the ability of a model to make successful prediction when
it receives new, unseen data that have a similar however distribution as the training
data. Generalization is really crucial for a neural network, as it ensures that the model

has actually learned, not just memorized the training data, and is capable to recognize
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the patterns in unseen entries. The goal is to balance fitting the training data well
while preventing the model from memorizing them. While minimizing the training loss is
crucial, trying to minimize the generalization error is also really important. By the term
generalization error, we refer to the difference between the model’s performance on the
training set and the testing set as illustrated in Figure 2.9. Generalization ability is highly
influenced by the terms of bias and variance components in errors.

Total error of a model can be broken down into three main components: bias, variance,

and irreducible error. The total error can be represented as:
Total Error = Bias? + Variance + Irreducible Error (2.33)

Let f(x) represent the true function, f(x) the predicted function, and D the training data.

The expected squared error for a prediction is given by:
E[(f(x) = J())*] = (f(0) = E[f))* + E[(F(x) = E(0)D?] + 0 (2.34)

The term (f(x) — E[]Av(x)])2 represents the bias, which measures the error introduced by
approximating the true function f(x) with the expected prediction E[f(x)]. The term
E[(f(x) — E[f(x)])?] represents the variance, quantifying the variability of the model’s
predictions around their expected value. Finally, 0® denotes the irreducible error, which

captures the inherent noise in the data that cannot be explained by the model.
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Figure 2.9. Illustration of generalization error. The left figure shows generalization error
as the difference between training and test error, with the underfitting region on the left
and overfitting on the right. The right figure illustrates the relationship between bias, vari-
ance, total error, and model complexity, where the optimal model complexity lies between
underfitting and overfitting. Sources: [9], [10].

2.7.1 Underfitting and Overfitting

Bias arises when the model fails to capture important data patterns considering data
to be extremely simple. High bias can lead to the phenomenon of underfitting. On the
other hand, when a model is sensitive to even the smallest fluctuations in training data,

we speak about variance. Having high variance can lead to overfitting, where the model
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Figure 2.10. Comparison of underfitting, optimal fitting, and overfitting across regression,
classification, and deep learning models. Source: [11]

memorize the training data leading to poor performance on unseen data. Overfitting is
common among complex models, for example models with a large number of parameters,
because they suffer from increased variance. Performance in simpler models may be
reduced due to higher bias and lower variance, leading to underfitting as seen in Figure
2.9. The trade-off between bias and variance is a challenge in machine learning [79].
Balancing bias and variance is essential for minimizing the total error and ensuring that

the model can generalize well, avoiding both overfitting and underfitting.

There are various techniques proposed in literature to handle these phenomena.
Cross-validation [80], regularization techniques [81], dropout [82], data augmentation
[83], proper tuning of the hyperparameters have been applied over the years. Here, we
focus on another notable technique, early stopping [51]. It is a common practice in mod-
els with a large number of parameters, especially when there is no clear knowledge of the

number of epochs needed to achieve a good generalization performance.

Early stopping evaluates the performance of the model on a validation set. The vali-
dation set is a subset of the data, separate from the training set. As training progresses,
the error on the validation set is calculated at regular intervals alongside the training
loss. At first, both losses decrease, but after a certain point the training loss continues
to decrease while the validation is rising. When the validation error starts to increase,
early stopping interrupts the training of the model as illustrated. Thus, the parameters

are captured before overfitting occurs.
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Figure 2.11. (left) A sharp minimum to which a trained model converged. (right) A wide
minimum to which a trained model converged. Image taken from [12]

2.7.2 Role of Loss Landscape in Generalization

In understanding the role of the loss surface in optimization and generalization, it
is critical to consider the geometry of the minima as illustrated in Figure 2.11. Local
minima and saddle points in the loss surface can hinder backpropagation, causing the
algorithm to get stuck in a local minimum of the error function rather than finding its
global minimum. The algorithm struggles to move the weights in the opposite direction
of the gradient and thus minimize the error, resulting in poor performance.

Generalization performance has a strong connection to the geometry around the min-
imizers—sets of parameter values that minimize the loss function. Sharp minimizers are
surrounded by steep slopes. Thus, each small change in the model parameters can in-
crease drastically the loss, leading to poor generalization ability. Flat minimizers on the
other hand are associated with better generalization.

The role of weight decay in influencing the sharpness or flatness of minimizers has
been investigated in [84]. Weight decay is a regularization technique commonly used in
machine learning to prevent overfitting by penalizing large weight values during training.
The loss function is augmented with an additional term that discourages large weights,
typically by adding a penalty proportional to the L2 norm of the weights. This modifies
the objective function to:

Lnew = Lorigiat + /1 )| W] (2.35)

where j1 is the regularization strength, and w; represents the weights. Weight decay is
closely related to L2 regularization, where the sum of the squared weights is added to the
loss function. Adding weight decay significantly alters the geometry of the loss landscape,
often leading to flatter minima and better generalization, especially when using large
batch sizes [84].

2.8 Summary

This chapter provided an overview of the foundational principles of machine learning,
including the key paradigms, neural network architectures, and the critical components
of training such as loss functions, optimization techniques, and generalization. These

principles set the stage for developing robust and efficient machine learning models. In
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transitioning to multimodal machine learning, these challenges become more difficult to
mitigate. As we move into Chapter 3, we study multimodal machine learning with a focus
on sentiment analysis tasks, examining how these foundational principles evolve in the

context of multimodal interactions and optimization.
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Multimodal Machine Learning

Advancements in machine learning have shift interest to real-world data, highlighting
their multimodal nature, as they combine diverse sources of information that collectively

provide a richer understanding.

3.1 Introduction

Multimodal machine learning focuses on the integration of such data types to enable
a more human-like machine intelligence. A modality refers to a kind of information repre-
senting a specific aspect of a phenomenon. According to [85] a modality refers to the way
in which something happens or is experienced, often corresponding to a specific sensor,
input type, or data format. For instance, by the term of text modality we refer to data

describing linguistic and semantic information. The need of integrated data arise from
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Figure 3.1. Illustration of a Multimodal Al system, integrating multiple data modali-
ties—audio, video, image, and text—into a unified neural network. Source: [13]

the weakness of unimodal systems to capture the full spectrum of information needed
for complex tasks. Understanding human behavior in a video can be approached by a
analyzing the visual cues present in the video. However, by incorporating the contextual
text or spoken language, the system can enhance performance and capture determinant
insights for the task. Multimodal machine learning aims to combine different modalities
to achieve a nuanced understanding, managing to handle even missing data by leveraging

only available modalities, a common case in real-world scenarios.
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Multimodal machine leaning involves algorithms that can represent each modality
effectively, model the relationships between modalities, capture complementary informa-
tion through integration, predict outcomes that leverage information from all modalities.
Multimodal Neural Networks integrate various modalities like audio, image, and text, to
tackle complex challenges in fields such as video understanding [86], Visual Question An-
swering (VQA) [87], image captioning [88], multimodal classification [89], and cross-modal
retrieval and verification [90] [91] [92], finding application across various domains includ-
ing healthcare, human-computer interaction, autonomous vehicles, sentiment analysis.

This chapter aims to provide theoretical foundations of multimodal machine learning,
alongside with practical implementations. It addresses key challenges and introduces
neural networks architectures, tailored for multimodal training, setting the stage for un-
derstanding the employment of multimodal neural networks to sentiment analysis and

emotion recognition.

3.2 Multimodal Data Processing: Principles and Challenges

Multimodal data introduces several complex challenges, requiring models to process
multiple data streams simultaneously. These challenges arise primarily from the hetero-
geneity across modalities, as each varies in structure, representation, and noise levels.
For instance, text is sequential and discrete, while images are spatial and continuous.
Addressing heterogeneity involves designing representations that preserve the unique
features of each modality while allowing cross-modal interactions. Understanding het-

erogeneity helps mitigate biases and modality-specific noise [14].
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Figure 3.2. The figure depicts how different data elements (represented as red triangles
and blue circles) vary in their distribution patterns, hierarchical structures, and informa-
tion content. Noise is introduced through less relevant or distorted data points, while
relevance indicates how different elements contribute to distinct target outputs. This vi-
sualization highlights the challenges of handling heterogeneous data in machine learning
models. Source: [14]

Despite this diversity, modalities often have complementary, shared or correlated in-
formation, creating meaningful connections to support each other. By dynamically inter-
acting, modalities create enriched, context-aware insights that surpass the capabilities of
any single modality. Successfully managing these principles is crucial for building mod-
els capable of leveraging both the unique strengths of each modality and the combined
insights from their interactions, unlocking the full potential of multimodal data [14].

By fusing modalities, a joint representation aims to capture cross-modal interactions
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between elements of each modality. Unlike fusion strategies, coordination [85] focuses on
the interchange of cross-modal information between modalities. This approach preserves
the original number of modality-specific representations, each enriched with contextual
data from other modalities. Rather than merging information into a single, unified repre-
sentation as in fusion, fission creates multiple, independent representations that capture
details and reveal internal structures within each modality, by breaking down modali-
ties into more granular representations. In our setup, fusion is preferred as it provides
a straightforward, integrated representation that combines complementary information
from each modality, while allowing the investigation of learning dynamics for both the

shared representation and each modality individually.
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Figure 3.3. Illustration of Fusion, Coordination, and Fission paradigms in multimodal
representation learning, depicting different relationships between the number of modalities
and learned representations. Source: [14]

Alignment synchronizes elements across modalities discretely, such as spoken words
with tone pitches in video, and can be local, referring to specific pairs of elements, or
global, within the entire dataset [93] [94]. Continuous alignment applies to data without
clear breaks, such as video streams [95]. In addition to alignment, structural reasoning
plays a crucial role in interpreting multimodal data. These mechanisms not only facilitate
the integration of diverse information but also enhance the ability to draw meaningful
insights from complex multimodal datasets [96] [97].

Having explored some of the fundamental challenges and principles in multimodal
data processing, the next section presents popular multimodal architectures designed to

effectively integrate and leverage these diverse modalities for enhanced learning.

3.3 Multimodal Architectures

In this section, we discuss networks architectures commonly used in multimodal pro-
cessing, focusing on fusion methods of modalities and Long Short-Term Memory (LSTM)
networks, which are central to our experiments. Pioneering works in this area include
fusion methods for integrating diverse modalities, such as Ngiam et al. (2011) [98],
which introduced joint learning across modalities in deep networks, and Srivastava and
Salakhutdinov (2012) [99], who demonstrated the use of Deep Boltzmann machines for
multimodal fusion across text and images. Woéllmer et al. (2013) [100] applied LSTMs to
audio-visual datasets, advancing sentiment and emotion recognition tasks by capturing

long-range dependencies across modalities.
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3.3.1 Fusion Strategies in Multimodal Learning

One of the main challenges in multimodal processing is how to effectively combine
information originating from a different stream of data into a coherent representation.
Fusion techniques are typically classified in Early, Late, Hybrid and Intermediate fusion.

Early Fusion: In early fusion, features from each modality are combined at the in-
put level, following a joint process by a single network. This is why early fusion is
called feature-level fusion in other words. Early fusion is helpful in cases where different
modalities contain complementary information, as it can capture cross-modal interac-
tions across them [85]. This, however, can lead to high-dimensional feature space. For
example, concatenation of raw pixels and audio spectrograms can lead to very large in-
put vectors making the model more challenging to handle and increasing computational

requirements.
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Figure 3.4. Schematic representation of multimodal fusion strategies. Early, Late and
Intermediate fusion take place only in one stage of the topology, while modalities in hybrid
fusion can be integrated at various stages. Source: [15]
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Late Fusion: In fusion with abstract modalities, features from each modality are
processed independently by networks. Then, their outputs are combined at a later stage,
typically before the final prediction layer that performs the task. Late fusion provides each
network with the ability to specialize in a specific modality. For instance, an LSTM can
process text to capture language patterns, while a CNN can process visual data to detect

facial expressions. This way, each network uses the characteristics of each modality at
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its maximum. However, late fusion models often lack of the ability to exploit nuanced
interactions between modalities [101].

Hybrid Fusion: Hybrid fusion combines aspects of both early and late fusion, allowing
for interactions between modalities at multiple levels of the network. In hybrid fusion,
modalities are processed separately at first, then partially merged at specific points in the
network, and may continue processing independently until the final fusion layer. This
approach aim to capture both low-level and high-level cross-modal relationships and can
be particularly helpful in cases where modalities need specialized processing but still
benefit from periodic cross-modal interactions [102].

Intermediate Fusion: This approach includes one main fusion point at a middle layer
within the network topology. Each modality is processed individually in the initial layers
and then combined with the others at an intermediate stage [103]. After the fusion,
the network typically continues with the fused representation. Here stands the main
difference between hybrid and intermediate fusion. While in hybrid fusion there might be
multiple fusion points throughout the network, allowing modalities to interact at several
stages and even re-separate from the others before the final layer, in intermediate fusion

the model retains the fused representation until the final layer.

3.3.2 Attention Mechanisms in Multimodal Learning

Self-attention mechanisms [16] are critical components in multimodal architectures
allowing models to focus on the most relevant aspects of each modality. Self-attention
mechanisms can be applied within each modality independently before the fusion stage,
capturing effectively intra-modality dependencies. Multimodal Transformers [17] extend
this approach through cross-attention layers that model complex interactions between
modalities. Cross-attention focuses on interactions between modalities by aligning fea-
tures from one modality based on features from another. For instance, in a text-audio
fusion task, the model can use cross-attention to focus on specific words when analyzing
audio cues and vice versa. Modality-Specific Attention offers attention scores for each
modality separately and combines them only at a later stage. This approach has been
adopted in scenarios where one modality might be more informative than others under
different contexts as for example in [38]. Co-attention mechanisms allow each modality
to inform the attention map of other modalities. This mutual approach is often used in

visual question answering (VQA) applications [104].

3.3.3 Temporal Dynamics: LSTMs and Sequential Processing

Long Short-Term Memory networks are widely used in multimodal applications due
to their ability in handling sequential data. LSTMs manage to capture long-term de-
pendencies, which is extremely important when multiple modalities like text, audio and
video are present simultaneously. In multimodal neural networks, LSTMs can be used in
various fusion strategies each with unique advantages for different types of multimodal

integration.
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Figure 3.5. Schematic illustration of a standard Transformer model (left) and a multimodal
transformer (right). The standard Transformer architecture consists of an encoder-decoder
structure with multi-head attention and feed-forward layers, widely used for sequence-to-
sequence tasks such as natural language processing [16]. MulT architecture [17] processes
multiple input modalities (e.g., text, image, and audio) through independent subnetworks
before applying cross-modal attention mechanisms to fuse information and make predic-
tions.

In their work [98] Ngiam et al. demonstrated early fusion with LSTMs in a Audio-Visual
Speech Recognition Framework that uses audio spectrograms and visual features at the
input stage. Zadeh et al. [38] proposed DFG, where separate LSTMs process text, audio,
and visual data individually, and their outputs are combined in a dynamic late fusion
layer.In [105], a foundational approach to multimodal emotion recognition is presented,
where LSTM networks process audio and visual modalities separately before combining
them at an intermediate fusion layer. All the aforementioned frameworks highlight the
beneficial choice of LSTMs in multimodal architectures, particularly those focused on

sentiment analysis and emotion recognition, as explored in this thesis.

In late fusion architectures each modality is processed separately, allowing each en-
coder to focus in capturing unique features without interference from the other modali-
ties. Understanding the flow of information over time is important in multimodal tasks
like sentiment analysis, where LSTMs excel at handling sequential data, capturing both
short-term and long-term dependencies within each modality. For example, LSTMs can
capture sequential language cues in text, tonal shifts in audio, and gesture dynamics
in visual data, all of which are crucial for understanding sentiment and emotions. Late
fusion with LSTMs, also, allows each modality to be optimized separately before fusion,
making the final sentiment or emotion classification more manageable and interpretable.
This approach aligns with a primary goal of this thesis: to investigate how each modality

is influenced by the choice of optimization policy in multimodal neural networks.



3.3.4 Deep Fusion Architectures

| bi&

“You can't ; BILSTM |——, ” — Text
even tell— | with : —_ ¥ i
funny jokes{ | Attention |— Connected encoder

H bug, i ]

H (e N B
! Ward Sentence 1ligh

\ DHF Level |—>»| Level |—>| Level

H

)

Fusion Fusion Fusion
. v

T o T&I‘LT‘HJ"‘TL """""" £

| . | |
"|’ H BLSTM = o
; : Fully Audio |

—»| with H @—) : |

i : Conncected encoder |

| ion ——>' h !

i Attention a, K

Figure 3.6. Deep Hierarchical Fusion (DHF) [18] architecture for multimodal sentiment
analysis. The model integrates textual and acoustic features using BiLSTMs with attention
mechanisms and fuses them at word, sentence, and high levels before classification.

3.3.4 Deep Fusion Architectures

Deep fusion architectures have emerged as a powerful paradigm for integrating mul-
timodal information, particularly in vision-language tasks. Flamingo [106] employs gated
cross-attention layers to integrate image and text features dynamically, leveraging frozen
pretrained encoders to enable zero-shot and few-shot learning for applications like image
captioning. VILBERT [107] extends BERT [43] to a multimodal setting with a dual-stream
transformer that processes visual and linguistic data separately, enhancing cross-modal
interactions through co-attentional transformer layers. This approach excels in visual
question answering (VQA) and referring expressions comprehension. UNITER [108] re-
fines cross-modal fusion with joint pretraining on vision-language datasets, employing
a single-stream transformer that enhances word-region alignment and masked language
modeling, achieving state-of-the-art results in image-text retrieval and phrase grounding.
The paper "Deep Hierarchical Fusion with Application in Sentiment Analysis" [18] intro-
duces a deep hierarchical fusion (DHF) network for sentiment analysis, integrating textual
and acoustic modalities. Using BiLSTM networks, DHF propagates both fused and uni-
modal representations across multiple levels—word, sentence, and sentiment—achieving
state-of-the-art performance on the CMU-MOSI dataset [37].

3.4 Training Multimodal Neural Networks

The foundational principles of backpropagation, optimization, and generalization re-
main consistent with those in unimodal systems, but multimodal networks introduce
unique challenges due to the heterogeneity and interdependence of modalities. In this
section, we explore how these techniques are adapted to multimodal learning, while en-
suring robust and effective learning across multiple data modalities.

Backpropagation remains the cornerstone of training multimodal neural networks,
allowing the model to minimize loss by learning effectively modality-specific and shred
representations. In scenarios where modality-specific sub-networks are utilized, gradi-

ents must flow not only through the shared fusion layers, but through each sub-network
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independently as well. This ensures that modality-specific features are refined while the
fusion layers capture cross-modality interactions. By updating the weights across all
layers, backpropagation facilitates the joint optimization of modality-specific and shared
components, enhancing the model’s ability to extract complementary information and
improve overall performance.

Complexities introduced by backpropagation, such as gradient conflicts, where gradi-
ents from different modalities point in opposing directions, preventing the network from
converging effectively, and gradient misalignment, which occurs when temporal or struc-
tural inconsistencies between modalities lead to misaligned updates in shared layers, can
impact optimization of multimodal neural networks. Also, given the diversity of modali-
ties and the varying scales of modality-specific features, optimization of modality specific
learning dynamics has proved challenging. Studying modality specific optimization strate-
gies is the center of this thesis, as research indicates that balancing contributions across
modalities during training is more beneficial than joint optimization [22] [23] [29].

Additionally, missing or noisy data, a common phenomenon in real-world multimodal
systems, alongside with the natural heterogeneity across modalities can harm the gener-
alization of the model. Generalization remains a critical aspect in multimodal machine
learning, as it determines how well a model trained on a specific dataset can perform
on unseen data. Besides traditional techniques to improve generalization such as data
augmentation and regularization, multimodal learning introduces novel approaches like
Meta-learning, where models are trained to adapt quickly to new data [109]. Multimodal
transformers, also, have demonstrated improved generalization when trained on both lan-
guage and vision modalities, allowing them to adapt to tasks with unpaired modalities or

limited data by leveraging cross-modal knowledge [110].

3.5 Multimodal Applications in Sentiment Analysis and Emo-

tion Recognition

Sentiment analysis and emotion recognition are key fields in machine learning for
understanding human affect. While sentiment analysis captures overall positivity or neg-
ativity, emotion recognition identifies specific emotions. With multimodal approaches
integrating text, audio, and visuals, these fields provide deeper insights into human affec-
tion. Given the vast number of behavioral signals involved in expressing emotions, recent
research has shifted towards a multimodal approach to achieve more accurate emotion
recognition. By integrating data from multiple channels—such as text, audio, and visual
cues—models can capture a more nuanced understanding of emotional states. Similarly,
in sentiment analysis, it is now widely recognized that emotions and sentiments are rarely
communicated solely through text. Verbal and non-verbal cues, such as tone and facial
expressions, play a critical role in communicating emotions. This realization has driven
the evolution of multimodal sentiment analysis, where diverse data modalities are com-
bined to provide a richer interpretation of sentiment [102]. This development aligns with

real-world applications like video-based social media or interviews, where non-verbal cues
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significantly contribute to understanding emotional intensity. This section explores the
sentiment analysis and emotion recognition field, focusing on state-of-the-art multimodal
applications, and presents key datasets such as CMU-MOSI and CMU-MOSEI that drive

research in sentiment detection.

3.5.1 Sentiment Analysis

Sentiment analysis focuses on determining the emotional tone or polarity of informa-
tion, historically applied to text data. The term has been associated with opinion mining
and thus the two terms have been used interchangeably in many studies [111]. Early ap-
proaches relied on lexicon-based methods [111], using pre-defined dictionaries to sum the
polarity of individual words, but faced limitations handling context sensitivity. Machine
learning techniques like Naive Bayes and SVMs [112] introduced supervised learning on
labeled data, yet they were limited by their reliance on handcrafted features. Advances
like word embeddings (e.g., Word2Vec [113], GloVe [114]) captured semantic relationships
and linguistic nuances more effectively, while deep learning models, including CNNs [115]
and LSTMs [116], enabled the extraction of sequential dependencies to understand sen-
timents in sentences and paragraphs. The introduction of transformer-based models like
BERT [43] was a revolution in text-based sentiment analysis by leveraging bidirectional
context to detect cues like irony or sarcasm.

Sentiment analysis tasks can be framed as classification or regression. Sentiment
classification includes categorization of data to discrete sentiment categories (e.g., posi-
tive, negative, neutral) [111], which is common in applications like social media monitor-
ing. Regression models, in contrast, predict sentiment intensity on a continuous scale,
which is valuable for tracking nuanced emotional trends, such as analyzing fluctuations

in user sentiment over time on social media platforms.

3.5.2 Emotion Recognition

Emotion recognition in machine learning aims to identify human emotional states
through text, speech or other behavioral signals. Unlike sentiment analysis, which pri-
marily determines the positivity or negativity of a statement, emotion recognition seeks to
classify segments into discrete emotion groups, such as happiness, sadness or fear, fol-
lowing Paul Ekman’s Basic Emotions Model [117], enabling machine learning frameworks
to map input data into discrete emotion categories, each reflecting different emotional
qualities.

Emotion recognition often leverages the strengths of natural language processing
(NLP), audio processing, and computer vision. For textual analysis, models such as
recurrent neural networks (RNNs) or transformer-based models like BERT [43] are used
to associate linguistic information with various emotions [118]. To extract information
from speech tone or facial expressions emotion recognition models often use convolution
neural networks (CNNs) for image-based analysis [119] or LSTM networks for sequential

audio or video data [120].
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Utterance: “Become a drama critic!”

Emotion: Joy Sentiment: Positive

Text Audio Visual

Ambiguous = Joyous tone Smiling Face

Utterance: “Great, now he is waving back”

Emotion: Disgust Sentiment: Negative

Text Audio Visual

Positive/Joy Flat tone Frown

Figure 3.7. Multimodal sentiment and emotion recognition example. The figure illustrates
how text, audio, and visual cues contribute to emotion and sentiment classification. In
the first case, the textual information is ambiguous, but the joyous tone and smiling face
confirm a positive sentiment (Joy). In contrast, the second case shows a mismatch where
the text suggests positivity, but the flat tone and frown lead to the correct classification of
negative sentiment (Disgust). This highlights the importance of cross-modal integration for
accurate sentiment analysis and emotion recognition. Source: [19].

Sentiment analysis and emotion recognition, while distinct in their objectives, often
utilize the same underlying frameworks and methodologies, as they both aim to interpret
human affect through text, audio, and visual data. As discussed earlier, models like
LSTMs, CNNs, and Transformers have been applied successfully to both tasks, with
minimal adaptation. This overlap in techniques underscores the interconnected nature
of these fields. Therefore, in the next section, we introduce state-of-the-art multimodal
models without strict distinction between their use in sentiment analysis or emotion

recognition, reflecting their shared applicability.

3.5.3 State-of-the-Art Multimodal Sentiment Analysis Models

The state-of-the-art multimodal models for sentiment and emotion analysis demon-
strate the power of integrating multiple modalities such as text, audio, and video to
capture the complexities of human communication. Attention mechanisms [16] play a
pivotal role across many of these frameworks, dynamically prioritizing the most relevant
cues from each modality to enhance interpretability and accuracy. For instance, the
Multimodal Transformer [17] leverages attention mechanisms to align and fuse unaligned
multimodal inputs, making it highly effective in capturing intricate dependencies between
verbal and non-verbal cues. The Memory Fusion Network (MFN) [121] excels in temporal
integration by dynamically tracking patterns across modalities, ensuring comprehensive
analysis of sequential data like conversational interactions. Similarly, the Tensor Fusion
Network (TFN) [122] utilizes tensor-based fusion to model both intra- and inter-modality
interactions, enabling nuanced predictions in tasks requiring fine-grained understand-
ing. Additionally, Self-MM [47] leverages self-supervised learning to enhance cross-modal

representation learning, reducing reliance on labeled data and making it a robust frame-
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work for multimodal sentiment and emotion analysis. Together, these models underscore
the advancements in multimodal learning, offering robust methodologies to analyze and

interpret affective data.

3.5.4 Benchmark Datasets for Multimodal Sentiment Analysis

In the field of multimodal sentiment analysis and emotion detection, the CMU-MOSI
and CMU-MOSEI datasets are among the most widely used resources, providing valuable
benchmarks for evaluating models that detect sentiment across text, audio and video.

Here, a detailed overview of each dataset used in our experiments is presented.

CMU-MOSI Dataset

The CMU Multimodal Opinion Sentiment and Intensity (MOSI) [37] dataset, introduced
by Zadeh et al. (2016), is a foundational resource in multimodal sentiment analysis. The
dataset was developed to support research on sentiment intensity and subjective opinion
detection. It provides a collection of short video segments where individuals express a wide
range of opinions on topics such as movies. Each segment in the dataset is annotated for

sentiment intensity, making MOSI valuable for sentiment analysis research.

Highly Negative Weakly Neutral Weakly Positive Highly
Negative Negative

Positive Positive

(a) Distribution of Sentiment Categories in CMU-
MOSI. The chart displays the counts of seg-
ments across sentiment categories, ranging from
Highly Negative to Highly Positive [37].

(b) Example of Multimodal Sentiment Predic-
tion in CMU-MOSI. Verbal-only, visual-only, and
multimodal model predictions are shown along-
side ground truth annotations [37].

Figure 3.8. Visualizations from the CMU-MOSI dataset, highlighting the sentiment distri-
bution and multimodal prediction capabilities.

The CMU-MOSI dataset includes 3,702 video segments, categorized into 2,199 opin-
ion segments and 1,503 objective segments. Each opinion segment is annotated on a
sentiment intensity scale ranging from -3 to +3, where -3 indicates strong negativity, -2
negativity, -1 weak negativity, O represents neutrality, +1 weak positivity, +2 positivity,
and +3 signifies strong positivity. The continuous nature of this scale makes the dataset
ideal for sentiment regression tasks or categorical sentiment classification. The dataset
includes three data modalities for each segment: textual data (transcriptions), audio fea-
tures (e.g., pitch, energy, and MFCCs), and visual data (e.g., facial expressions, action

units, and head orientation), providing valuable non-verbal cues for sentiment analysis.
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CMU-MOSEI Dataset
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Figure 3.9. Distribution of Sentiment and Emotions in CMU-MOSEI. The left chart shows
sentiment categories, discretized from the original -3 to +3 scale. The right chart shows
emotion categories (Happiness, Sadness, Anger, Disgust, Surprise, Fear), with sufficient
data _for each emotion [123].

The CMU Multimodal Opinion Sentiment and Emotion Intensity (CMU-MOSEI) [123]
dataset, introduced by Zadeh et al. (2018), extends CMU-MOSI by providing 23,453 video
segments sourced from 1,000 speakers across 250 topics on YouTube videos. In addition
to sentiment annotations (-3 to +3 scale), each segment is labeled for the presence of six
emotions: happiness, sadness, anger, fear, disgust, and surprise. Each emotion is scored
on a scale from O to 3, where O represents the absence of an emotion, 1 weak presence, 2
presence, and 3 strong presence. Each video segment includes three modalities, providing
arobust foundation for sentiment and emotion analysis. Text transcriptions deliver verbal
content. Acoustic features, such as Mel-frequency cepstral coefficients (MFCCs), pitch,
and intensity, capture vocal tones reflecting emotional or sentimental intensity. Visual
data, including facial expressions, head movements, and eye gaze, offers non-verbal cues
critical for interpreting sentiment and emotion. By integrating sentiment and emotion la-
bels, CMU-MOSEI is particularly useful for multitask learning models that perform both
sentiment and emotion analysis simultaneously, improving model robustness and gener-
alization. Its large scale, multimodal design, and dual labels for sentiment and emotion
make it a valuable benchmark for evaluating multimodal models requiring sophisticated

fusion of language, visual, and acoustic signals.

3.6 Summary

Chapter 3 explores the shift towards multimodal machine learning, focusing on how
different types of data (modalities) can be combined for richer and more meaningful learn-
ing. It discusses the difficulties in handling data from various sources, and highlights

the importance of building models that balance and connect these modalities effectively.
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Key methods are introduced, such as fusion strategies to combine modalities, attention
mechanisms to focus on important features, and LSTM networks for processing sequen-
tial data. These approaches enable models to handle complex tasks like sentiment and
emotion recognition. Challenges in training, such as conflicting gradients and uneven
contributions from modalities, are also discussed. The chapter concludes with a look
at multimodal applications and benchmark datasets like CMU-MOSI and CMU-MOSEI
These datasets provide a solid foundation for research in combining language, audio, and
visual data.

The challenges discussed in Chapter 3 often lead to the phenomenon of modality
imbalance, where some modalities dominate or underperform due to differences in infor-
mation quality, noise, or biases. This issue will be presented in detail in Chapter 4, as it
is the main research topic of this thesis. Chapter 4 will analyze the causes and effects of
modality imbalance, and in Chapter 5, strategies and methods proposed to address this
critical issue will be presented, paving the way for more balanced and effective multimodal

learning systems.






Chapter ﬂ

Modality Imbalance in Multimodal Learning

In the previous chapter, we explored key concepts in multimodal learning, including
multimodal architectures, training strategies and the unique challenges introduced in
multimodal models. One of the most critical among these is modality imbalance, where
certain modalities dominate the learning process, suppressing contributions from others.
This imbalance challenges the theoretical potential of multimodal models, making it a
central focus of this thesis, which investigates a range of optimization methods to address

this issue effectively.

4.1 Introduction

The issue of modality imbalance was first systematically analyzed by Wang et al. [22]
in their work "What Makes Training Multi-modal Classification Networks Hard?". They
identified two key factors responsible for the degraded performance of multimodal net-
works compared to their unimodal counterparts, a counterintuitive observation. Firstly,
the increased capacity of multimodal networks, referring to their larger number of param-
eters and complex architectures required to process integrated information from multiple
modalities, often leads to overfitting. Secondly, each modality overfits or generalizes at a
different pace from other modalities due to differences in the complexity and amount of
information they provide. For instance, one modality may quickly adapt to the training
data, leading to overfitting, while another may generalize better but learn at a slower pace.
These discrepancies make it challenging to train them jointly using a common optimiza-
tion strategy, as the model might prioritize modalities that overfit faster, neglecting those
that require more gradual learning to learn effectively. Their study showed that naive joint
optimization frameworks result to dominance of stronger modalities and underutilization
of weaker ones.

Building upon this foundation, Wu et al. [23] formalized the Greedy Learner Hypoth-
esis, emphasizing that multimodal models naturally prioritize faster-learning modalities,
neglecting those that learn at slower rates. To quantify this phenomenon, they introduced
metrics like conditional utilization rate and conditional learning speed, which illustrate
how models disproportionately rely on dominant modalities. Together, these works un-
derline the need to address modality imbalance as a fundamental challenge in multimodal

learning.
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Huang et al. [29] introduced the concept of modality competition to explain why
multimodal networks underperform compared to unimodal models, especially under late-
fusion joint training. They demonstrated that during training, modalities compete for
representation, with only a subset of modalities, typically the dominant ones, being effec-
tively learned. This phenomenon arises due to differences in feature learning dynamics
and the random initialization of network parameters, which disproportionately benefit
certain modalities. Furthermore, weaker modalities, particularly those with insufficient

data structures, are often neglected, resulting in degraded feature representations.

Collectively, these findings provide a comprehensive foundation for understanding
the challenges of modality imbalance in multimodal learning. These works highlight how
multimodal networks are often dominated by stronger modalities due to overfitting, im-
balanced learning rates, and competitive optimization dynamics. These phenomena limit
the effective utilization of complementary information across modalities and degrade over-
all model performance. Building on these observations, we now describe the theoretical
background that explains the relationships guiding gradients during optimization and

how these dynamics lead to modality imbalances.

4.2 Problem Definition

In this section we rprovide a mathematical framework to analyze how gradient inter-
N

=1
a multimodal dataset containing N samples. Each sample consists of input features

X; = {ml.k}ll‘c/lz1 derived from M distinct modalities and a one-hot encoded label y; = {c; J}};l,

actions during optimization lead to modality imbalance. Let Diain = {(x;, y;)};L, represent

where ¢;; = 1 indicates that the label for the i-th sample belongs to category j, and Y
denotes the total number of classes. Each modality is associated with a specific fea-
ture extractor, denoted as Fy(8x), where Fj is a neural network parameterized by 6.
For the i-th sample, the features extracted from the k-th modality are represented as
Fi(85; mik) e R%, where dj is the dimensionality of the extracted features for modality
k. To perform classification, a predictor S is defined to map the extracted features into
the label space. The predictor S operates on the aggregated multimodal features, and the

objective of multimodal learning is to minimize the empirical loss function:

N
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where ? is the task-specific loss function, such as cross-entropy loss. The predictor S
can be decomposed into two components, a fusion function f, which combines modality-
specific features into a joint representation and a classifier g, which maps the fused
representation to the output label space. This decomposition allows S to be written as
S = go f. For example, using concatenation as the fusion strategy and a linear model for

the classifier, the predictor can be expressed as:
S({Fx(@i; MNey) = W [Fi(@13my) -+ - Fy(3y; mph)] (4.2)
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or
M
SUF@i; MONL) = D, Wie- Fi@ mf), (4.3)
k=1

where [- : -] denotes concatenation, W € RY*Zk i

is the weight matrix of the classifier,
and Wj. € RY* represents the portion of W corresponding to modality k. In a fusion
concatenation model, the fused representation ®¥(x;) for the i-th sample is constructed

by concatenating features extracted from M modalities:

DM (x) = [F1(81; M) : Fa(82; m?) : -+ 1 Fyr(8pr; mih)], (4.4)

where [- : -] denotes the concatenation operator, and Fj(dy; mik) represents the feature
representation extracted from modality k by the feature extractor parameterized by 8.
The gradient-based parameter update for the feature extractor parameters 8, for modality
k is:

8t =8 —n- Vo L@V (), ), (4.5)

where 7 is the learning rate. Substituting the loss gradient, we have:

N M, . My
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Since concatenation does not inherently mix features from different modalities, the
DM (x;)
IFc(81)

However, the shared gradient

term

simplifies to an identity matrix corresponding to the modality-specific block.
M) Ui
%&2’)"“) propagates globally across all concatenated fea-
tures. This shared gradient often aligns disproportionately with the dominant modality,
suppressing contributions from weaker modalities. In a fusion concatenation model,
the optimization process favors modalities whose features align strongly with the shared
gradient. For modality Ik, its gradient aligns consistently with the shared gradient if:
oD (x1), yi) P (xy), yi)

. Fk(ak) >

IDM (x;) T oMy @) ik 4.7)

When this condition is satisfied for a dominant modality k, its features receive larger
updates during backpropagation, while weaker modalities are left under-optimized. For
weaker modalities, the contribution to the shared gradient is small, leading to diminish-
ing updates for their parameters. This causes weaker modalities to stuck in suboptimal
regions of the parameter space, preventing them from contributing effectively to the fused
representation. Since concatenation aggregates modality-specific features without bal-
ancing their contributions, the fused representation ®M(x) becomes biased toward dom-
inant modalities. This reduces the diversity and robustness of the multimodal model,

particularly when weaker modalities carry critical but less pronounced information.

Furthermore, the direction of gradients also contributes to modality imbalance [20]
[22] [23] [124]. During backpropagation, the gradients from different modalities may not
align well in the high-dimensional parameter space. If the gradients of a weaker modality

point in directions that are orthogonal or even conflicting with the gradients of a dominant
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modality, the updates for the weaker modality’s parameters become inefficient or counter-
productive. This conflict in gradient directions escalates the under-optimization of weaker
modalities, further biasing the fused representation ®M(x) toward dominant modalities.

Figure 4.1 demonstrates the interference caused by the dominant modality in multimodal

direction disturbed S~ '

by dominant modal—" ‘

Interfered - *
by others: LAY S T A
b

Figure 4.1. Visualization of gradient direction distortion in multimodal learning taken from
[20]. The weaker modality (purple) is influenced by the dominant modality (yellow), causing
its gradient updates to deviate from the optimal learning path.

learning. The movement of weaker modality representations (purple) is disturbed by the
stronger modality (yellow), resulting in misaligned updates. The dashed arrows indicate
how the update direction is influenced, causing the weaker modality to shift in directions
that do not align with its optimal feature space. Additionally, the clustering structure is
affected, as weaker modalities struggle to establish distinct boundaries due to interference
from stronger modalities. The red cross marks a potential incorrect classification caused
by this imbalance. This interference leads to ineffective feature learning, misalignment in
representation space, and potential misclassifications. The visualization highlights the
challenge of modality imbalance, where dominant modalities dictate the overall learning
trajectory, preventing weaker modalities from contributing effectively to the final decision

boundary.

4.3 Impact of Modality Imbalance

Unbalanced multimodal learning has significant implications for both model perfor-
mance and practical applications. The suboptimal utilization of multimodal features,
where weaker modalities often fail to contribute effectively to the learning process, can
be considered particularly problematic in tasks where these modalities carry important
complementary information [23]. For instance, in sentiment analysis, text data often dom-
inates the learning process, leaving cues from audio and visual modalities underutilized,
despite being crucial for a comprehensive understanding of emotions. Empirical findings
[125] indicate that these networks often develop unimodal bias. This phenomenon is par-
ticularly pronounced in late fusion architectures, where modality integration occurs at
deeper layers, leading to extended unimodal phases and suboptimal learning outcomes.
A critical consequence of this bias is its impact on fused representations [29]. Dominance
of certain modalities during optimization limits the model’s ability to capture meaning-
ful cross-modal interactions. This bias reduces the richness of representations and the
model’s ability to leverage the full potential of multimodal data. Additionally, modality

imbalance leads to reduced generalization and compromised robustness, as models tend
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to overfit to the dominant modality, failing to adapt to diverse real-world scenarios. This
over-reliance on a single modality makes multimodal systems vulnerable to noisy, miss-
ing, or unreliable data of the dominant modality. When dominant modalities become less
reliable,

models trained with imbalanced modality contribu-

tions struggle to adapt, resulting in poor generaliza-

tion and reduced robustness across varying condi-
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tions [23] [126]. Finally, modality imbalance com- Multi-madal
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plicates training dynamics, introducing inefficien-

Loss

cies and conflicts in the optimization process [22]

[124]. Imbalances slow down learning and make

convergence harder to achieve, increasing the com- 0.2

putational cost and difficulty of training multimodal 0 10 £ ﬁ“ 30
poc

networks effectively. Figure 4.2 illustrates the influ-
ence of dominant modality in multimodal learning Figure 4.2. Loss curves for audio,

of CMU-MOSEI dataset. The text modality exhibits vision and text modalities of CMU-
MOSEI dataset in late concatenation

the lowest loss and drives the optimization process,
Jfusion model. Source: [21].

while audio and visual modalities remain largely
stagnant. The multimodal model closely follows the
text-only curve, confirming that the dominant modality dictates the overall learning dy-
namics. This highlights the challenge of effectively incorporating weaker modalities, as

they fail to contribute meaningfully to the optimization process.

4.4 Summary

In this chapter, we explored the phenomenon of modality imbalance in multimodal
learning, leading to suboptimal utilization of weaker modalities. Through a mathemati-
cal framework, we analyzed how gradient interactions during optimization contribute to
this imbalance, highlighting challenges such as gradient alignment issues, dominance of
stronger modalities, and under-optimization of weaker ones. These dynamics result in
biased fused representations, reduced generalization, and compromised robustness, de-
grading the performance of multimodal networks. In the next chapter, we will provide an
overview of several approaches proposed in the literature to address modality imbalance.
Building on these approaches, our experiments will investigate how modality imbalance
is mitigated in different optimization scenarios, offering insights into the effectiveness of

these strategies.
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Addressing Modality Imbalance Through Opti-

mization

Chapter 5 provides a detailed review of optimization methods proposed in the litera-
ture to address modality imbalance in multimodal learning. To organize the discussion,
we first present a brief overview of several approaches introduced to mitigate the prob-
lem. Following this, we focus on two specific categories of methods that are central
to this research: dynamic gradient adjustment methods and multi-loss rebalancing ap-
proaches. The selected methods in these categories—On-the-fly Gradient Modulation with
Generalization Enhancement (OGM-GE) [26], Adaptive Gradient Modulation (AGM) [27],
Prototypical Modal Rebalance (PMR) [20], and ReconBoost [21]—are examined in detail,

as they form the foundation for the experiments conducted in later chapters.

5.1 Overview of Optimization Methods

To ensure proportional contributions from all modalities, Wang et al.[22] introduced
gradient blending through the Overfitting-to-Generalization Ratio (OGR), which evaluates
the performance of each modality during training. This approach dynamically adjusts
gradient contributions to prevent overfitting modalities from dominating while amplifying

the contributions of weaker ones.
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Figure 5.1. Illustration of different training strategies for multimodal learning. (a) Indepen-
dent unimodal training, where each modality is optimized separately. (b) Joint multimodal
training, where a shared representation is jointly optimized using a single loss function. (c)
Joint training of two modalities with Gradient Blending [22].

Wu et al. [23] proposed two metrics: the Conditional Utilization Rate (CUR), which
quantifies how much each modality contributes to the overall learning process, and the
Conditional Learning Speed (CLS), which evaluates the rate at which a modality learns

relative to others. These metrics enable targeted gradient adjustments, slowing down
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dominant modalities and prioritizing underutilized ones. Gradient harmonization during
pre-training through cross-modality gradient realignment and gradient-based curriculum
learning has been proposed [30] to handle strong gradient conflicts in trimodal sample
interactions. Classifier-guided Gradient Modulation [31] technique addresses the chal-
lenge of modality dominance in multimodal learning by modulating both the magnitude
and direction of gradients during training. MMPareto [32] tackles gradient conflicts be-
tween multimodal and unimodal learning objectives by employing Pareto optimization
[127]. It integrates gradients in a conflict-free manner, ensuring a common direction

while enhancing gradient magnitude to improve generalization.

\
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Figure 5.2. Illustration ofmulti-modal DNN with intermediate fusion presented in [23].
Different modality streams (x,, and x;,) undergo multiple layers of transformation and
interaction, leading to joint predictions (fjo, {j1) and an overall fused output (ij). The green
connectors highlight the fusion pathways that facilitate cross-modal learning.

Beyond direct gradient adjustments, MMCosine [126] introduces a multi-modal cosine
loss function that performs modality-wise L2 normalization of features and weights, en-
hancing the discriminability and balance of multi-modal fine-grained learning. Focusing
more on the loss landscape "Sharpeness-Aware Minimization" or SAM [12] algorithm finds
the model parameters, which define a region combining flatness and low loss. Sharpness
of the training loss landscape is measured as the maximum difference between two model
losses with parameters differing only by a very small value. The maximum loss of model
with parameters’ values close to the original one is referred as the SAM loss and its min-
imum, increased by a standard L2 regularization term, identifies the "Sharpeness-Aware
Minimization" problem. Applying Stochastic-Gradient Descent to the SAM loss, authors
propose an efficient model-independent algorithm. Lookahead Optimizer [33] introduces
a "k steps forward, 1 step back" approach that balances fast, exploratory updates with
stable, recalibrated adjustments, designed to improve both convergence speed and model
stability. This optimizer operates with two sets of weights: fast weights, updated k times
using a base optimizer, such as SGD or Adam, for quick adjustments, and slow weights,
which periodically "look back" and incorporate the fast weights’ direction to shift. Al-
though the SAM algorithm and Lookahead Optimizer were originally developed for uni-
modal learning scenarios, their underlying principles—such as improving loss landscape
flatness and ensuring stable convergence—offer insights that could inform optimization

strategies for multimodal learning.



5.1 Overview of Optimization Methods

Other studies focus on excluding modalities irrelevant for a specified task. Panda et
al. propose AdaMML [24], a lightweight policy network that selects the most informa-
tive modalities dynamically, adjusting which of them are going to be used at different
stages of a video sequence. Irrelevant Modality Dropout (IMD) mechanism [34] uses a
relevance-checking model to filter out non-contributory audio cues in video classification
tasks. Liu et al introduce an Attention-based Multi-modal Fusion Framework [35] with
two modules: importance-based attention and complementary attention to emphasize
critical modalities and capture inter-modal dependencies. Another approach is explored
by He et al. [36], formulating modality selection as an optimization problem. Using
submodular optimization techniques, this method ensures near-optimal selection of a
subset of modalities that maximizes learning efficiency while maintaining computational
feasibility. This method contrasts with fusion-based strategies that integrate all available
modalities, as it focuses on selecting the most impactful subset rather than adjusting
the contribution of all modalities. By effectively selecting a diverse and informative set of
modalities, this approach indirectly mitigates modality imbalance, preventing the model

from over-relying on a dominant modality.
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Figure 5.3. Illustration of AdaMML [24] framework. A Policy Network dynamically selects
relevant modalities, guided by an efficiency loss to optimize computational cost. Selected
features are passed to a Recognition Network, where modality-specific subnets process
different streams before undergoing fusion.
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Sequential learning frameworks restructure the optimization process to avoid cross-
modal interference and retain previously acquired knowledge. Memory Consolidation
Mechanisms (MLA) [25] transforms multimodal learning into an alternating unimodal
optimization process, reducing modality interference. At the same time, it preserves
cross-modal interactions through a shared network head, which undergoes continuous
updates across different modalities. To maintain previously learned knowledge, a gradi-
ent adjustment mechanism regulates this optimization process. During inference, MLA
employs a test-time uncertainty-based fusion strategy to seamlessly integrate multimodal
information.

Influenced by the significant role of gradient modulation in the literature, we focus
on OGM-GE [26] and AGM [27], which leverage dynamic gradient adjustment to address
modality imbalance. Additionally, motivated by optimization techniques centered on loss
function adjustments, we explore PMR [20] for modality rebalance and ReconBoost [21]
combining a unimodal alternating paradigm with targeted loss rebalancing strategies.

While the methods discussed above provide a general understanding of strategies to mit-
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igate modality imbalance, this research specifically focuses on these four key methods,
which are discussed in detail in subsequent sections as representative approaches for
investigating the unbalanced multimodal learning under the scope of sentiment classifi-

cation.
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Figure 5.4. Illustration of the Modality Learning Alternation (MLA) framework [25]. (a)
Training Stage: The model alternates between unimodal learning for audio, image, and text
encoders while utilizing a shared head for cross-modal representation. Gradient modifica-
tion ensures that each modality learns effectively without interference. (b) Inference Stage:
The learned unimodal encoders pass their representations to an uncertainty-based fiision
mechanism, which dynamically assigns weights (/) to each modality before generating the
final prediction.

5.2 Dynamic Gradient Adjustment Methods

Dynamic gradient adjustment methods go beyond traditional optimization algorithms,
such as Adam or SGD, by introducing mechanisms that actively modulate gradient con-
tributions from different modalities based on specific conditions unique to each method.
This section highlights two dynamic gradient adjustment methods central to this re-
search: On-the-fly Gradient Modulation with Generalization Enhancement (OGM-GE)
[26] and Adaptive Gradient Modulation (AGM) [27]. OGM-GE leverages gradient modula-
tion and noise-based gradient adjustment to balance modality contributions dynamically
and enhance the overall robustness of multimodal models. AGM introduces competition-
free states and real-time gradient adjustments to further mitigate modality competition.
These methods represent significant advancements in the optimization of unbalanced
multimodal learning, particularly within the context of sentiment classification, and are

detailed in the following subsections.
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5.2.1 On-the-fly Gradient Modulation with Generalization Enhancement

The On-the-fly Gradient Modulation with Generalization Enhancement (OGM-GE)
[26] method combines two key mechanisms—gradient modulation and generalization en-
hancement—to address modality imbalance in multimodal learning. Gradient modulation
aims to balance contributions from each modality during training by dynamically adjust-
ing gradient magnitudes, while generalization enhancement reduces overfitting through
noise injection, improving the robustness of the model. Originally designed for bimodal
audio-visual tasks, OGM-GE adapts these mechanisms to harmonize the optimization

process and mitigate the dominance of stronger modalities.
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Figure 5.5. Illustration of the On-the-fly Gradient Modulation with Generalization Enhance-
ment Framework as presented by Peng et al. [26].

Gradient Modulation: The method introduces discrepancy ratios to balance learn-
ing contributions across modalities, ensuring that no single modality dominates during
training. Here, the modality m € {a, v} can represent either audio (a) or video (v) in a

bimodal setup. The discrepancy ratio for modality m at the t-th step is calculated as:

m _ ZieBt slm

Pt == (5.1)
‘ ZieBt si'

where n represents the other modality (n # m), and B; denotes a randomly chosen mini-
batch of size m at the t-th step. The term s]" represents the contribution of modality m

for sample i and is computed as:
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where M is the total number of output classes, 1,-,, is an indicator function that equals
1 if the predicted class k matches the true label y;, and O otherwise, W/" represents the
weights of the linear classifier for modality m at the t-th step, ¢"(8™, x{"") is the feature
representation of input xj" from modality m, produced by the encoder parameterized by 9™
and b is the bias term added to the logits before applying the softmax function. The term

W et (@™, x™) + g estimates the predicted logits for modality m, which are normalized
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into probabilities using the softmax function. The term %’ serves as a bias correction
mechanism inspired by the Deep Boltzmann Machine framework. By incorporating g,
the logits for each modality are adjusted to take the average of the bottom-up and top-
down weights. This ensures that the uni-modal prediction more accurately reflects the
individual modality’s contribution to the multimodal model, without favoring any specific
modality. Using the discrepancy ratios pi" as the guiding conditions for adjustment, the
gradients for modality m are modulated dynamically during training. The modulation

coefficient for modality m is defined as:
k" = 1 — tanh (a - ReLU(p{")), (5.3)

where a is a hyperparameter controlling the degree of modulation, ReLU is the Rectified
Linear Unit activation function ensuring non-negative values for pi" and tanh is the hy-
perbolic tangent function providing smooth scaling for the modulation coefficients. The
coefficient k"™ dynamically scales the weights, reducing the contributions of stronger
modalities, having higher discrepancy ratios, and amplifying weaker ones (with lower
discrepancy ratios). This ensures balanced optimization across modalities, enabling the

model to integrate information effectively from all available modalities.

An alteration of the Gradient Modulation described in [20] is the acceleration of the

weaker modality m by multiplying its gradients with:
k" = 1 + tanh (a - ReLU(p{")), (5.4)

where a is a hyperparameter controlling the degree of modulation, ReLU is the Rectified
Linear Unit activation function ensuring non-negative values for p{* and tanh is the hy-
perbolic tangent function providing smooth scaling for the modulation coefficients. This
method uses the discrepancy ratio for conditional enhancement of the weaker modality
each time and will be examined as an alteration of the OGM method, referred to as ACC

in Chapter 6.

Generalization Enhancement: To balance the reduction in stochastic gradient noise
intensity caused by the gradient modulation coefficients, OGM-GE incorporates a gen-
eralization enhancement mechanism. This is achieved by adding dynamically sampled

Gaussian noise to the gradient updates. The update rule is now expressed as:

aty, = 87" — n(k{"g(d¢") + h(d) (5.5)

where k" represents the modulation coefficient for modality m at step t, §(8") denotes
the modulated gradients for modality m, and h(8") ~ N(0, Z94(81)) is the dynamically
sampled Gaussian noise. Here, X%9%(8T") represents the covariance matrix of the gradient
noise. The noise term h(8]") is designed to restore and even enhance the stochastic
gradient noise’s intensity, which might diminish as a result of the modulation process.

By introducing this noise, the generalization capacity of the model is preserved.



5.2.2 Adaptive Gradient Modulation

5.2.2 Adaptive Gradient Modulation

The Adaptive Gradient Modulation (AGM) [27] method addresses the challenge of
modality competition in multimodal learning, where dominant modalities overshadow
weaker ones, limiting the effective use of multimodal information. AGM dynamically mod-
ulates gradient signals to ensure balanced learning across modalities, regardless of the
fusion strategy employed. AGM employs a Shapley value-inspired approach to compute
mono-modal outputs, disentangling individual modality contributions even in complex

fusion scenarios. Ratios derived from mono-modal outputs serve as conditional factors
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Figure 5.6. Illustration of the Adaptive Gradient Modulation Method, as presented by Li et
al. [27].

for dynamic gradient adjustments via gradient modulation coefficients. A novel metric
for modality competition further quantifies the interference between modalities, providing
insights into AGM’s efficiency.

Mono-Modal Contribution Analysis: Let ¢(x), where x = (X, ..., Xn,), represent a
multi-modal model with k modalities, and M := {m}ii) be the set of all modalities. We
define O,, as the absence of features from modality m. For a subset S C M, ¢(S) denotes
the output when all modalities in S are present, and those not in S are replaced by Oy,.

The mono-modal response ¢, (x) for a modality m is given by:

_ |S|!(k — S| - D! '
pn()= > = Vin(S: @) (5.6)
SCM/{m};S#0

where V,,,(S; @) = (S U {m}) — ¢(S). This ensures that:

P = D pmlx) (5.7)
m
For the case of two modalities, this simplifies to:
1

Pm, (X) = 5[4’({"11, ma}) — ({0, . ma}) + @({my, O, D)1 (5.8)

Dynamic Modulation of Gradients: Gradients are modulated based on modality ratio

r{* derived from mono-modal information s}*. Discrepancy ratios guide the adjustment of
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modulation coefficients xj"* for each modality during backpropagation:

1 ’
= explo—r PICHETAS (5.9)

m’e[K];m’#m
Kt =exp(—a- (" —1"), (5.10)

where a is a modulation hyper-parameter, and 1" is the discrepancy ratio measured by
the averaged differences of running average of the ratio for modality m relative to the other
modalities.

Competition Strength Metric: By incorporating the concept of a mono-modal state
the authors aim to reflect how a modality would behave without competition from other
modalities. They, also, quantify this behavior through the competition strength met-
ric. The concept of competition-less states isolates a modality’s independent behavior
by removing the influence of competing modalities. This insight allows AGM to measure
the degree of interference in multimodal setups, guiding gradient modulation to miti-
gate competition effectively. For a modality m;, its competition-less state is defined by
a function Cp,, (xm,; Em, /mg), where E,,, /my denotes the environment of m; without mg.
For example, in the late fusion case, the environment without my can be represented as

(Omy: @m,» T, » Dm,). The competition strength d,, is then defined as:

_ ZiCn") = fin(2))?
" Y UCn(x™) = G )2

(5.11)

where f,(z) is a linear predictor trained on the latent features z from the multi-modal
model, and C, is the average mono-modal concept value. The modulation coefficients
and the competition strength metric serve as interpretable signals that provide insight
into the training dynamics. These metrics reveal how dominant modalities affect weaker
ones and guide adjustments to achieve balanced learning.

Both On-the-fly Gradient Modulation with Generalization Enhancement and Adaptive
Gradient Modulation represent state-of-the-art dynamic gradient adjustment methods
that address the core challenges of modality imbalance by leveraging mechanisms like
gradient modulation, generalization enhancement, and competition-free states. These
methods provide flexible, interpretable, and effective strategies for achieving balanced

optimization across modalities, making them central to this study’s focus.

5.3 Loss-Based Rebalancing Approaches

Loss-based rebalancing methods tackle modality imbalance by dynamically adjusting
the optimization process to amplify the contributions of weaker modalities. Prototypical
Modal Rebalance (PMR) [20] and ReconBoost [21] specifically modify loss functions to
handle the dominance of stronger modalities, ensuring a more balanced learning process.
PMR uses class prototypes and entropy regularization to guide weaker modalities toward
improved generalization, while ReconBoost employs a modality-alternating framework

and reconcilement regularization to dynamically adjust learning objectives.
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Figure 5.7. Illustration of the Prototypical Modal Rebalance Method, as presented in Fan
et al. [20].

Prototypical Cross Entropy Loss: The authors [20] propose the prototypical modal
rebalance strategy for bimodal audio-vision setups by calculating for each category of
data the prototype:

1
o= — zZn, (5.12)
where z; is the representation outputs of each encoder, and m € {a, v} denotes the modal-
ities (e.g., audio and vision). After initializing the centroids, the authors calculate the
Euclidean distance between each category prototype and the corresponding unimodal
feature. Then they use the prototypes to produce a distribution over classes for the input
data x, based on a softmax over distances to the prototypes in the embedding space for

each modality. Subsequently, they find the imbalance ratio:

B ZieB{" pi"
ZieB{‘ pi'

m

o (5.13)

for batch data at training step t, where p represents the softmax over the Euclidean
distances to the prototypes. Based on this ratio, the authors define the acceleration loss
by promoting the slower-learning modality. They combine the cross-entropy loss (Lcg) of
the multimodal representation with weighted losses of each unimodal branch. If the ratio
indicates, for example, that audio (m = a) is learning faster than vision (m = v), they set

B =0, y=1, and control the degree of modulation through the hyperparameter a:

Lace = Lce + a '_BLSCE ta- YLILD)CE (5.14)
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where L for modality m is expressed:

m _ exp(=d(z™, ¢;"))
LPCE(f) = Ep(xm,y) - log Zk eXp(—d(zm, CIT)) . (5 15)

This term measures the prototypical classification loss for modality m, using the distance
between unimodal features and their category prototypes.

Prototypical Entropy Regularization: To further mitigate dominance from faster-
learning modalities, the method introduces Prototypical Entropy Regularization (PER)

terms, which reduce the entropy of the faster-learning modality’s class distributions:
b = Lo v (p(-a (s ) - B p(-a(e ) 610

where p denotes the softmax function, and d is the Euclidean distance between the
unimodal representation and its category centroid. Between each training epoch, the

prototypes are updated for a subset of unimodal data:

clrgold = €Clrcr,Lold + (1 - e)clrcn,new (5 17)

where € is a momentum term controlling the update rate. Equations 5.14 and 5.16 can be
applied selectively, depending on the objective—whether to solely accelerate one modality

or to simultaneously accelerate one while penalizing the other.

5.3.2 ReconBoost
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Figure 5.8. Illustration of the ReconBoost Method, as presented in Hua et al. [21].

ReconBoost [21] alternates the learning process across different modalities and in-
corporates KL-divergence-based regularization [128] to dynamically adjust the learning
objective and prevent competition among modalities. By preserving only the latest model
for each modality, ReconBoost prevents overfitting caused by ensembling strong learners.
Additionally, the regularization term is added to maintain diversity between current and

historical models, ensuring that the updated modality focuses on errors made by others,
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thereby improving overall performance.

Alternating Modality Updates: Alternating updates form the core of ReconBoost’s
strategy to address modality competition, where stronger modalities often overshadow
weaker ones. By updating one modality learner at a time while keeping others fixed,
the method ensures that each modality receives focused optimization attention. This
mechanism mitigates the domination of any single modality. The multi-modal learning
objective is defined as:

1 & M _
L= N Z; l’( 1 Pm(Im; X, yi], (5.18)
i= -

m

where ¢m(9m) = Wi - Fin(9n) represents the m-th modality learner, 9, are the parameters
of the m-th modality learner, x!, is the input for the m-th modality of the i-th example,
and ? is the loss function, typically cross-entropy loss. During alternating updates, the

parameters of one modality m are updated while others remain fixed:
Ot =95 —n- Vg L, (5.19)

where 7 is the learning rate, and L, is the modality-specific loss. After the alternating

training procedure, multimodal features are merged:

M
D) = D P93 ). (5.20)
m=1

Reconcilement Regularization: To promote diversity between the updated modal-
ity and the rest, ReconBoost incorporates reconcilement regularization, which penalizes

redundancy between modalities. This is achieved using the KL-divergence [128] term:

N
~ 1
Le (me(Xm)y y) = N Z [2 ((Pm(‘gm; Xm), yi) — - Ds (CDM/m(Xi)’ me('9m; xm))] , (5.21)
i=1
where £ represents the agreement term, ®y/m(x;) = Xjzm @j(95; %) is the contribution from

all modalities except m, and Ds is the KL-divergence term defined as:

D ((DM/m(xi)’ (pm(‘gm; Xm)) = KL((DM/m(Xi) ” ‘pm(‘gm; Xm)) . (5.22)

The parameter A controls the trade-off between agreement and diversity. This term en-
sures that the updated modality aligns with but remains distinct from the ensemble
prediction of the other modalities. By maintaining diversity, the model leverages comple-
mentary strengths of each modality while minimizing competition.

Boosting Perspective: ReconBoost draws inspiration from Gradient Boosting [129]
[130], where each learner corrects errors made by previous learners. However, unlike
traditional boosting methods that preserve historical models, ReconBoost discards old
models to prevent overfitting in over-parameterized deep learning setups. The boosting-

inspired objective is:

2 (pmm). ) = L(Pmm). ~Va,,, £ (Par/m(x). 1)) (5.23)
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where —Vg,,, ! represents the residual to be minimized by the current modality learner.
Memory Consolidation Regularization (MCR): Memory Consolidation Regularization

(MCR) ensures that predictions from the updated modality do not deviate significantly

from the previous modality, preserving learned knowledge and enhancing the performance

of weaker modalities. The MCR term is:

1
Lvcr = N

N
D V0, UF (). yo) = Vo, WFmo1 (k). yoIP, (5.24)
i=1

where ? is the task-specific loss. The MSE is used to calculate the squared difference
between the gradient of the current modality learner (Vg ), which represents how the
current learner is optimizing its task, and the gradient of the previous modality learner
(Vyg,_,), which captures the optimization direction of the previous learner. The MSE
computes the average of the squared differences between these gradients for all training
samples. It penalizes large deviations between the gradients of the two learners, enforcing
similarity in their optimization behavior.

Global Rectification Scheme (GRS): The Global Rectification Scheme (GRS) prevents
previously updated modalities from being stuck in local minima by allowing them to con-
tinue adjusting based on the current residual error. The parameter update for modality
mis:

9, =9 = n- Vg L(Dy(x), y). (5.25)

The complete objective combines agreement, reconcilement, MCR, and GRS terms:

M

Lan = Z [L(@m(xin), y) = A+ Drr (Par/m () || @m(xm))] + a - Lycr + Lars- (5.26)
m=1

Here, a is the weight for the MCR term. ReconBoost leverages alternating updates, rec-
oncilement regularization, and enhancement schemes to prevent modality competition
and ensure balanced learning. By alternating updates and introducing memory consoli-
dation and rectification strategies, it ensures that all modalities contribute meaningfully
to the final prediction. This makes it a robust framework for tackling the challenges of
unbalanced multimodal learning.

The difference from previous methods stands in the presence of an ensemble model
designed to handle our multi-modal inputs. Instead of a simultaneously multi-modal
fusion approach, we employ an alternating learning paradigm. The ensemble net holds
multiple models, each of which corresponds to one out of two or three modalities present.
It also uses a common feature space. A common head (classifier) is used to map the
aligned feature space to the final output. The ensemble net is responsible for boosting
and forward propagation. The boosting loss is used during the backward pass to compute
gradients and update the model’s weights. It is expressed as the combination of the direct
loss, that ensures the current model’s predictions are accurate with respect to the ground
truth, and the residual loss, which ensures that the current model complements the en-
semble of previous models by focusing on correcting their errors. Two weights control the

relative importance of the direct loss and residual loss, respectively. There is a common
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learning rate for the boosting scheme. In the training process, the gradient alignment
loss is computed by first obtaining the output from the previous model. Then, the gradi-
ent alignment loss is calculated as the mean squared error (MSE) between the detached
softmax outputs of the current model and the previous model. Next, the total loss is com-
puted by adding the boosting loss and the gradient alignment loss multiplied by a factor
a. The MSE loss acts as a regularizer that minimizes the difference between the current
modality’s predictions and the previous modality’s predictions. This encourages consis-
tency across modalities and prevents any single modality from dominating the learning
process. After each stage, the ensemble has been trained with a new modality. The GRS
refines the entire ensemble network to ensure that the integrated prediction across all
modalities is globally consistent and accurate. It does this by performing several epochs
of fine-tuning across the whole ensemble. The GRS is controlled by the number of epochs

after boosting and a specified learning rate.

5.4 Summary

The aforementioned methods were selected for their ability to tackle core challenges
from different perspectives, ensuring a comprehensive exploration of solutions. OGM-
GE and AGM focus on dynamic gradient modulation, while PMR and ReconBoost em-
phasize loss rebalancing strategies to mitigate competition and enhance weaker modal-
ities. This selection includes methods designed for either bimodal or trimodal mod-
els, enabling the examination of various modality imbalance scenarios and their impact
across different combinations of modalities. The selected methods also reflect state-of-
the-art approaches in handling modality imbalance dynamically, with each contributing
unique strengths: noise-based generalization (OGM-GE), Shapley-inspired disentangle-
ment (AGM), prototype-based rebalancing (PMR), and reconcilement with alternating up-
dates (ReconBoost). Together, they form a robust foundation for addressing the challenges

of multimodal learning, as summarized in Table 5.1.



Chapter 5. Addressing Modality Imbalance Through Optimization

Method Technique Frequency Trigger Mech Modalities
OGM-GE Gradient Modulation | Every iteration | Applied between | Gradients are scaled for each | Audio, Vision
specific epochs modality using coefficients from dis-
crepancy ratios. These ratios guide
the modulation process by identi-
fying the stronger modalities. The
dominant modality is penalized.
Generalization En- | Every iteration | Optionally activated | Incorporates Gaussian noise injec-
hancement between specific | tion into gradients to promote ro-
epochs bustness and improve generaliza-
tion.
Discrepancy Ratio Every Iteration | During forward pass | Quantifies the discrepancy between
modalities during training.
Learning Rate Decay | Every epoch After Ir_decay_step | Decays learning rate by a factor.
epochs
ACC Gradient Modulation | Every iteration | Applied between | Gradients are scaled for each | Audio, Vision
specific epochs modality using coefficients (coeff_a
for audio, coeff v for visual). The
weak modality is boosted.
Discrepancy Ratio Every Iteration | During forward pass | Quantifies the discrepancy between
modalities during training.
Learning Rate Decay | Every epoch After Ir_decay_step | Decays learning rate by a factor.
epochs
AGM Modality =~ Masking | Every iteration | During forward pass | Performs three forward passes: one | Audio, Text
with Shapley values with both modalities, one without
text and one without audio, to dis-
entangle individual modality contri-
butions based on Shapley-inspired
values.
Competition Every iteration | During forward pass | Quantifies the strength of each
Strength modality present based on the
mono-modal contribution during
each forward pass.
Gradient Modulation | Every iteration | Applied between | Gradients of each modality are
specific epochs scaled separately wusing coeffi-
cients computed from competition
strength ratios. These ratios guide
the modulation process by identify-
ing and addressing stronger, more
competitive modalities.
Learning Rate Decay | Every epoch After Ir_decay_step | Decays learning rate by a factor.
epochs
Adaptive  Gradient | Every iteration | Activated when gra- | Scales gradients to a maximum
Clipping dient values exceed | norm of 1.0, stabilizing updates.
predefined thresh-
olds
PMR Prototypical Loss Ad- | Every iteration | Applied between | Measures the classification error | Audio, Vision
justment specific epochs for each modality using the dis-
tance between unimodal features
and their category prototypes
Prototypical Regu- | Every iteration | Optionally activated | Reduces the entropy of the faster-
larization Term between specific | learning modality’s class distribu-
epochs tions to mitigate dominance
Imbalanced Ratio Every Iteration | During forward pass | Quantifies the imbalance between
modalities during training.
Learning Rate Decay | Every epoch After Ir_decay_step | Decays learning rate by a factor.
epochs
RECONBOOST | Alternating  Tech- | Every training | When a new modal- | Trains one modality learner at a | Text, Audio, Vi-
nique stage ity is selected for | time, allowing the ensemble to focus | sion
training. on weak or underperforming modal-
ities.
Ensemble Forward | Every step During forward pass | Aggregates predictions from all
Pass modalities in the ensemble.
Boosting Scheme Every stage At every train- | Dynamically adjusts the contribu-
ing stage when | tion of each modality using a boost
new modalities are | rate parameter to refine ensemble
added. predictions.
Global Rectification | After every | From first stage Adjusts the ensemble model glob-
Scheme stage ally by fine-tuning all added modal-
ities together using cross-entropy
loss.
Memory Consolida- | Every iteration | During backward | Regularizes new modality outputs
tion Regularization pass using soft labels derived from the
ensemble’s earlier predictions to
align new knowledge with prior
knowledge through Mean Squared
Error.

Table 5.1. Overview of Optimization Methods central to our research. The table presents
different methods along with their techniques, frequency of application, triggering condi-
tions, underlying mechanisms, and the modalities they operate on the original implementa-
tions.
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Experimental Results and Analysis

6.1 Introduction

This chapter presents a unified evaluation of the proposed methods to address opti-
mization challenges in multimodal learning for sentiment analysis tasks. By using the
same unimodal encoders across all experiments, we aim to investigate the optimization
dynamics in a consistent and controlled manner. The evaluation focuses on two main cat-
egories of methods: Dynamic Gradient Adjustment Methods and Loss-Based Optimization
Methods, while analyzing their sensitivity to key experimental concepts.

The Dynamic Gradient Adjustment Methods include On-the-fly Gradient Modulation
with Generalization Enhancement (OGM-GE) [26], a method designed to dynamically ad-
just gradients to improve generalization performance and Adaptive Gradient Modulation
(AGM) [27], a model quantifying modality strength to balance modality contributions dur-
ing training. The Loss-Based Optimization Methods include Prototypical Modal Rebalance
(PMR) [20], that guides optimization based on modality prototypes and ReconBoost [21],
a framework employing a loss-alternating paradigm to iteratively optimize between recon-

struction and classification objectives.

6.2 Experimental Setup

This section describes the experimental framework used to evaluate the proposed
methods. We provide details on the evaluation metrics, baseline methods, and unimodal
encoders utilized in all experiments. Furthermore, we outline the training configurations,
including the data feature extraction, ensuring a consistent and reproducible evaluation

process across all methods.

6.2.1 Evaluation Metrics

The evaluation of the models for the multiclass sentiment analysis task is based on
Multiclass Accuracy. This metric calculates the percentage of correctly predicted samples
over the total number of samples. Accuracy provides an intuitive measure of the model’s

overall performance across multiple sentiment classes. It is formally defined as:

Number of Correct Predictions
Accuracy = X 100 (6.1)
Total Number of Samples
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6.2.2 Datasets and Feature Extraction

For our experiments, we use the unaligned version of the CMU-MOSI and CMU-MOSEI
datasets, where features are extracted independently for each modality and have differ-
ing sequence lengths. Both datasets provide pre-extracted features! for three modalities:
text, audio, and video. The text features are contextualized embeddings extracted us-
ing BERT-base [43], with each word represented as a 768-dimensional vector capturing
semantic and contextual information. Audio features are extracted using the COVAREP
toolkit [131], providing frame-level prosodic and spectral characteristics such as pitch
and energy. Visual features are obtained using OpenFace [132], which computes frame-
level facial landmarks, action units, and head poses, capturing non-verbal cues like facial

expressions.

The datasets are divided into training, validation, and test sets for fair evaluation. For
CMU-MOSI, the splits consist of 1,281 samples for training, 229 for validation, and 689
for testing, with a development set of 100 samples extracted from the training split for
auxiliary calculations during training, leaving 1,181 samples in the train set. Similarly,
for CMU-MOSEI, the splits include 16,265 samples for training, 1,869 for validation, and
4,643 for testing, along with a development set of 200 samples from the training split leav-
ing 16,165 training samples. The use of the development set will be explicitly mentioned
wherever it applies in the experiments. We perform sentiment classification categorizing
samples as negative (0), neutral (1), or positive (2) for the CMU-MOSI dataset. For the
CMU-MOSEI dataset, the continuous range of sentiment labels, originally spanning from
—3 (most negative) to +3 (most positive), is divided into 7 classes to enable classification
tasks following [133].

6.2.3 Unimodal Encoders

In this section, we briefly present the model setup used in our experiments. For each
modality included in all subsequent experiments, we employ an LSTM as the encoder.

The encoder configurations for each dataset are shown below.

Modality CMU-MOSI Dataset CMU-MOSEI Dataset

Hidden Size Layers Output Size Hidden Size Layers Output Size

Text 64 1 32 64 1 64
Audio 16 1 16 16 1 16
Video 32 1 32 32 1 32

Table 6.1. LSTM Encoder Configurations for Each Modality in the CMU-MOSI and CMU-
MOSEI Datasets. All LSTM layers have a dropout rate of 0.0.

1GitHub Repository: https://github.com/thuiar/MMSA
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6.2.4 Baseline Methods

6.2.4 Baseline Methods

We conduct experiments using three multimodal baseline approaches commonly em-
ployed in the literature: ensembles with soft voting, uni-modality prefinetuned models,
and joint training with concatenation.

Ensembles with Soft Voting: Separate models are trained for each modality, one
for audio, one for video and one for text input modality. After training, the predictions
from these models are combined using an ensemble method with soft voting. Soft voting
involves averaging the probabilistic outputs of individual models, and the class with the
highest average probability is selected as the final prediction. This approach leverages
the strengths of individual modality-specific models while maintaining simplicity.

Uni-Modality Pre-finetuned Models: In this setup, separate models are pre-trained
on individual modalities before being fine-tuned on the target task. This method leverages
the strengths of specialized pre-trained models for each modality. Each model operates
independently, and the results are later combined. We choose concatenation fusion for
the fine-tuning of the pre-trained encoders.

Joint Training with Concatenation: This method involves fusing features from all
modalities into a single, unified representation through late concatenation. Specifically,
features extracted from text, audio, and video are concatenated into a single vector,
which is then used for downstream classification. The model is trained jointly on this
combined representation, enabling it to learn cross-modal relationships directly. We test
this approach following two distinct scenarios: (1) one joint learning rate and (2) individual
learning rates, one for each modality and one for the fused representation.

These setups reflect distinct strategies for leveraging multimodal information and serve
as valuable baselines for evaluating the performance of more advanced architectures. In
all our baseline experiments, we consider three scenarios: audio-video bimodal case, text-
video bimodal case and a trimodal case. Since the text modality appears dominant in our
datasets we decide to investigate the scenario of two non-dominant modalities separately
from the case were a dominant modality is present as in the text-video. As a fundamental
baseline, we utilize Late Concatenation with joint training under a common learning rate

for all modalities.

6.2.5 Training Details

The models in our experiments are trained using the Adam optimizer, varying learning
rates and a ReduceLROnPlateau learning rate scheduler from PyTorch. The scheduler
reduces the learning rate by a factor of 0.1 when the validation loss does not improve for
a specified patience period. For the CMU-MOSI dataset, the patience is set to 5, while
for the CMU-MOSEI dataset, it is set to 20. We use a batch size of 16 for CMU-MOSI
and 32 for CMU-MOSEI. Early stopping is applied with a patience of 8 epochs. These
configurations are applied across all experiments, and any deviations will be explicitly
mentioned.

Cross-Entropy Loss is employed as the optimization objective across all tasks. In Py-

Torch, it is implemented using the CrossEntropyLoss function, which combines the softmax
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operation and the negative log-likelihood loss. The loss is formally defined as:

N
1
Lcg = N ; log(piy,). (6.2)

where p;,, is the predicted probability for the correct class y; of sample i, and N is the
total number of samples. This loss function penalizes incorrect predictions proportion-
ally to the confidence of the prediction, ensuring that the model learns to assign higher
probabilities to the correct classes.

Learning rates were tuned separately for each model to ensure optimal performance, as
different architectures and training methods demonstrated varying sensitivities to learn-
ing rate. A common validation-based grid search was used to select the learning rate for
each setup. Our goal is to investigate the proposed optimization techniques and their
effectiveness on our baseline model, not to make comparisons between them. For this
cause, we represent the best models retrieved from each method implementation in our
setup. All reported results represent the average performance across five different seeds.
During training, the best-performing model was identified and saved based on the valida-
tion loss, which served as the primary metric for model selection and early stopping. To
ensure the reproducibility and robustness of our results, all experiments are conducted
using the same 5 random seeds. This allows us to report both the mean performance
and the standard deviation (std), capturing the variability introduced by stochastic train-
ing processes. All experiments are performed on a system equipped with an NVIDIA
GeForce GTX 1080 Ti GPU with 12GB VRAM. The GPU enables efficient training for both
datasets, with each experiment completing within a reasonable computational time. De-
tailed hyperparameter settings for each experiment can be found in Appendix A, ensuring

reproducibility and consistency across evaluations.

6.2.6 Training Configurations for Method Evaluation

Key factors such as batch size selection, optimizer choice, training duration, and
extended modulation are analyzed in targeted experiments to assess their impact on
model performance, convergence, and modality interactions. These evaluations aim to
provide better insights into how different training strategies influence the multimodal
optimization methods.

Frequency of Optimization Updates: The frequency of optimization updates signifi-
cantly impacts the learning dynamics of neural networks, influencing convergence speed,
stability, and generalization. More frequent updates, such as those with smaller batch
sizes or higher update rates, allow the model to adapt quickly to gradient changes but
can introduce high variance, leading to instability or noisy optimization. On the other
hand, less frequent updates, such as larger batch sizes or delayed gradient adjustments,
provide a more stable optimization but may slow down convergence and struggle in dy-
namic learning settings. Striking a balance in update frequency is crucial, as it affects
gradient estimation accuracy and overall optimization efficiency. Here we experiment with

the frequency of performing parameter updates during training, which determines how
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often the model’s weights are adjusted based on computed gradients.

Batch Size: The choice of batch size directly impacts the variance of gradient esti-
mates, influencing this way the behavior of stochastic optimization algorithms. Studies
[44] [45] [46] have shown that small or moderate batch training tends to converge to flat
minima farther from the initial state, while large batch training often correlates with con-
vergence to sharp minima closer to the initial state, resulting in poorer generalization on
test datasets. Drawing from these observations and implementations described in works
like Self-MM [47] and the Multimodal Multi-Loss Fusion Network (MMML) [48], we adopt
a batch size of 16 for CMU-MOSI and 32 for CMU-MOSEI to align with dataset char-
acteristics. For CMU-MOSI, a batch size of 16 balances gradient stability, convergence
efficiency, and computational practicality. Smaller batch sizes, such as 8, often produce
noisier gradients, potentially leading to slower convergence, whereas a batch size of 16
maintains smoother gradient estimates. Additionally, research indicates that moderate
batch sizes like 16 or 32 effectively leverage mini-batch gradient descent, accelerating
convergence while preserving generalization. In setups utilizing concatenation fusion,
where features from multiple modalities are combined into a larger representation, like
ours, a batch size of 16 efficiently handles fused representations without exceeding mem-
ory limits or slowing down computation. This makes it a practical choice for multimodal
architectures. For CMU-MOSEI, we select a larger batch size of 32 due to the greater scale
of the dataset. A batch size of 32 provides the same advantages described earlier, but it
also allows for more comprehensive sampling within each batch. Experiments using the
development set aim to assess the sensitivity of the methods to batch size and explore a
more adaptable way to employ them without being restricted by batch size. Ultimately, the
goal is to develop methods that remain effective regardless of batch size constraints, while
avoiding bias toward modality characteristics or learning dynamics. This is achieved by
calculating the discrepancy (OGM-GE, PMR) and strength (AGM) metrics on data that the
models have not seen, ensuring an accurate evaluation of their performance. For that
cause we examine not only the performance but the trends of the ratios and loss during
training.

Choice of Optimizer: The main difference between Adam and SGD lies in the way
they handle learning rates and update parameters. SGD uses a fixed global learning
rate for all model parameters and updates them based on the current gradient. SGD,
especially with momentum, often leads to better generalization by converging to flatter
minima [134]. On the other hand, Adam dynamically adapts the learning rate for each
parameter by maintaining moving averages of both the gradient (first moment) and the
squared gradient (second moment). This is helpful in our case, since the parameters in
a multimodal network may converge at different rates. Adam, also, excels in handling
sparse gradients and typically converges faster due to its adaptive updates, making it
ideal for tasks with noisy or sparse gradients [42]. Another reason we choose Adam as
the default optimizer in our experiments is that we use pre-extracted text features are from
BERT. BERT text features are often pretrained using Adam or AdamW. BERT models are
typically pretrained using these optimizers due to their adaptive learning rate capabilities

and effective handling of sparse gradients [43]. Using Adam for the multimodal network
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maintains consistency in optimization dynamics. In this study, we compare SGD and
Adam optimizers to analyze their impact on multimodal learning. By evaluating model
behavior under these two distinct optimization strategies, we aim to understand their
effectiveness in balancing stability, convergence speed, and generalization of the examined
methods. These experiments are conducted while keeping all other training parameters
constant, with only the learning rate adjusted accordingly to ensure fair evaluation for
each optimizer.

Prolonging the training duration: Training duration is a critical factor in optimizing
multimodal models, as longer training can influence both model performance and com-
putational efficiency. Extended training may lead to better convergence, particularly for
models using SGD, which typically requires more iterations to achieve stability. How-
ever, excessive training can also result in overfitting, where models memorize training
data rather than learning generalizable patterns. To examine this, we evaluate how pro-
longing training duration affects performance of some methods, focusing on loss trends,
convergence stability, and potential improvements in accuracy. By systematically analyz-
ing longer training schedules, we aim to determine whether increased training provides
benefits or merely inflates computational costs without meaningful performance gains.

Prolonging modulation duration: Modulation techniques such as OGM, AGM, and
PMR can be applied only during the early training epochs to stabilize learning and balance
modality contributions. However, the impact of extending modulation throughout the en-
tire training duration remains an open question. By maintaining modulation beyond the
initial epochs, models may experience more consistent gradient adjustments, potentially
leading to better long-term convergence and improved modality balance. Conversely, ex-
cessive modulation could disrupt natural learning dynamics, preventing the model from
adapting effectively as training progresses. To investigate this, we analyze whether pro-
longed modulation leads to sustained improvements or diminishing returns, focusing on
key metrics such as final accuracy, and loss trends. This evaluation helps determine if
modulation should be restricted to early training phases or maintained throughout the

entire training process for optimal performance.

6.3 Investigating Unimodal Learning Dynamics

Before applying advanced optimization techniques, we first conduct a baseline anal-
ysis to examine the learning dynamics of individual modalities including the evaluation
of unimodal models independently to assess their standalone performance. These exper-
iments serve as a foundation for understanding modality-specific behaviors and provide
a reference point for tuning dynamic optimization methods examined later in this study.

Table 6.2 compares the effect of optimization frequency on unimodal performance
across the CMU-MOSI and CMU-MOSEI datasets. For CMU-MOSI, updating every iter-
ation leads to higher accuracy across all modalities, especially in video and text, while
maintaining relatively stable loss values. The text modality in particular benefits from
more frequent updates, achieving similar accuracy but significantly lower loss compared

to updates every 4 iterations. For CMU-MOSEI, the optimization frequency does not cause
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Modality CMU-MOSI CMU-MOSEI
Ir Accuracy (%) Loss Ir Accuracy (%) Loss

Optimization Step Every 4 Iterations

Audio le® 42.74+2.66 8585+0.39 5¢* 32.85+0.37 167.83+1.25
Video 5e™ 47.87+3.96 86.64+1.03 le* 3242+0.19 168.64+0.64
Text le® 73.99+0.95 65.79+0.92 le* 43.38+0.55 134.98+0.48

Optimization Step Every Iteration
Audio 5¢™* 44.29+4.30 86.14+1.48 5e* 32.67+0.34 168.08 +0.72
Video 5% 50.15+2.49 85.88+2.00 5e* 32.37+0.34 168.39+0.67
Text 5% 73.91+1.41 64.81+1.92 5e* 43.94+0.61 133.84+0.72

Table 6.2. Best performance of unimodal models on CMU-MOSI and CMU-MOSEI datasets
with different optimization frequencies. The results present accuracy and loss for each
modality (Audio, Video, and Text) using two optimization settings: updates every 4 iterations
and updates every 1 iteration.

significant variations in accuracy, as values remain stable across settings. However, the
audio and video loss values are slightly lower when updating every iteration, indicating
that more frequent updates may contribute to better convergence for these modalities.
Overall, more frequent updates (every iteration) appear to enhance learning stability, par-
ticularly for text and video modalities in CMU-MOSI, without negatively impacting CMU-
MOSEI performance. CMU-MOSEI appears to have better-balanced learning dynamics,
allowing all modalities to train effectively with the same learning rate. Choosing the cor-
rect learning rate per modality is crucial for optimizing multimodal models, as different
data types have different gradient behaviors. Table 6.2 also provides useful information
for tuning the learning rate of our models in later experiments. To establish the existence
of a dominant modality we can compare the performance of the text modality of Table 6.2
with trimodal models of Table 6.10. We observe that the two performances are compa-
rable, while audio and video accuracies remain significantly lower, indicating that text is

the primary modality guiding the learning process.

6.4 Investigating Dynamic Gradient Adjustment

This section presents the experimental evaluation of the proposed Dynamic Gradi-
ent Adjustment Methods, which aim to address the challenges of optimizing multimodal
models by dynamically adapting gradients during training. Specifically, we analyze the
performance of the On-the-fly Gradient Modulation with Generalization Enhancement
(OGM-GE) [26] and Adaptive Gradient Modulation (AGM) [27] methods. To gain a better
understanding of their mechanisms and applicability, we also conduct experiments with
various alterations of the original methods, examining their sensitivity to key hyperpa-
rameters and experimental settings. The results are compared against baseline models

to evaluate their effectiveness in sentiment classification tasks.
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6.4.1 On-the-fly Gradient Modulation with Generalization Enhancement

Here, we evaluate the performance of the OGM bimodal models, OGM-GE bimodal
models, and the variation of the OGM method referred to as ACC. Our experiments focus
on analyzing the frequency of optimization updates, the choice of optimizer, the impact
of batch size, and the benefits derived from using a development set. Additionally, we
investigate the effects of modulation duration on the CMU-MOSEI dataset and the impact
of prolonged training duration on the CMU-MOSI dataset to gain a more comprehensive
understanding of these methods. For consistency, reported results represent the best-
performing model for each configuration, with detailed hyperparameter tuning procedures

provided in Appendix A.

Audio-Video Model

Training Configuration Method CMU-MOSI CMU-MOSEI

Accuracy (%)

Loss (%)

Accuracy (%)

Loss (%)

Standard Training

Baseline
OGM
OGM-GE

54.93 £ 1.19
53.30 + 3.12
52.48 + 1.27

84.10 + 1.25
85.31 + 2.62
84.88 + 1.23

32.55 + 0.44
32.67 £ 0.33
32.40 £ 0.30

166.74 + 0.88
166.76 + 0.86
167.12 £ 0.80

Optimization Update Every 4 Iterations

Baseline
OGM
OGM-GE

53.67 + 1.87
52.95 + 1.65
47.84 + 1.52

85.48 + 1.26
85.79 + 0.97
87.15 + 0.87

32.59 + 0.22
32.72 +£ 0.33
32.48 £ 0.17

167.46 £ 0.77
166.59 + 0.76
167.94 + 0.46

SGD Optimizer

Baseline
OGM
OGM-GE

49.97 + 2.59
49.82 + 2.38
49.42 + 1.43

85.38 + 1.40
85.04 + 1.25
85.55 + 0.71

32.51 £ 0.16
32.37 £ 0.30
32.63 £ 0.20

167.24 £ 0.41
167.45 + 0.42
167.15 + 0.60

Use of Development Set

Baseline
OGM
OGM-GE

54.93 + 1.19
49.13 + 5.20
50.79 + 3.98

84.10 + 1.25
86.11 + 1.24
85.40 + 1.40

32.55 + 0.44
32.68 + 0.26
32.31 £ 0.14

166.74 + 0.88
166.52 + 0.73
167.81 + 0.56

Text-Video Model

Training Configuration Method CMU-MOSI CMU-MOSEI

Accuracy (%)

Loss (%)

Accuracy (%)

Loss (%)

Standard Training

Baseline
OGM
OGM-GE

74.35 + 0.58
75.04 + 0.96
73.50 £ 0.79

66.57 + 0.49
63.54 + 0.69
64.44 + 1.26

43.99 + 0.39
44.15 + 0.43
43.58 + 0.40

133.11 £ 0.39
133.15 £ 0.35
133.74 £ 0.15

Optimization Update Every 4 Iterations

Baseline
OGM
OGM-GE

73.32 + 0.86
73.64 £ 1.19
73.85 + 1.04

67.20 = 0.83
66.65 + 1.08
66.41 + 0.80

43.66 + 0.38
43.83 + 0.40
43.94 + 0.39

133.97 £ 0.41
133.70 £ 0.51
133.91 £ 0.35

SGD Optimizer

Baseline
OGM
OGM-GE

73.21 £2.81
73.53 £ 1.79
74.17 £ 0.90

63.91 + 2.15
65.11 + 3.86
64.08 = 1.73

44.46 + 0.54
44.39 + 0.48
44.33 + 0.72

131.12 + 0.40
131.93 + 0.86
131.88 £ 0.71

Use of Development Set

Baseline
OGM
OGM-GE

74.35 + 0.58
74.49 + 0.86
74.49 £ 0.79

66.57 + 0.49
64.37 = 1.17
63.54 + 0.56

43.99 + 0.39
44.16 + 0.24
43.45 + 0.52

133.11 £ 0.39
132.02 + 0.82
132.99 + 0.79

Table 6.3. Performance of Audio-Video and Text-Video models on the CMU-MOSI and
CMU-MOSEI datasets using OGM and OGM-GE methods under various training configura-
tions: optimization updates every iteration, optimization updates every 4 iterations, SGD
optimizer, and the use of a development set. Baseline model represents joint training with
late concatenation fusion.

Varying frequency of optimization updates: For this experiment, optimization up-
dates were applied either every iteration or every four iterations. Results of Table 6.3
indicate that updating every iteration generally leads to better performance in both accu-
racy and loss across all models and datasets. However, in the Audio-Video model on the

CMU-MOSEI dataset, OGM achieves slightly lower accuracy with frequent updates com-
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pared to updates every four iterations. This deviation may be attributed to the increased
complexity of the CMU-MOSEI dataset, which might benefit from the stability provided
by less frequent updates. This difference is marginal and may fall within the range of
statistical variability. The findings suggest that more frequent updates allow the opti-
mization process to better capture fine-grained patterns in the data and reduce the loss,
improving model generalization. Frequent updates allow models to adapt more quickly to
the nuances of the optimization landscape, reducing the risk of underfitting. As a result,
updating every iteration will be considered as the preferred strategy in this thesis.
Choice of Optimizer: For the CMU-MOSI dataset, the Adam optimizer consistently
achieves higher accuracy and lower standard deviation in vanilla models. While OGM and
OGM-GE with Adam do not outperform the audio-vision vanilla model, they show notable
improvements in the text-video scenario. Under SGD, OGM and OGM-GE perform worse
than the audio-vision vanilla model but demonstrate improvements in accuracy and sta-
bility for text-vision models. For the CMU-MOSEI dataset, Adam enables OGM to surpass
vanilla models, though OGM-GE underperforms across most scenarios. Conversely, with
SGD, OGM-GE outperforms the audio-vision vanilla model but struggles to surpass the
vanilla text-vision baseline. The Adam optimizer generally delivers better accuracy and
stability across most cases, while SGD exhibits specific strengths in improving perfor-
mance for text-vision models but often underperforms in comparison to vanilla baselines.
Use of Development Set: Next, we investigate the impact of batch size on the critical
gradient coefficient calculations by incorporating the development set during training.
To reduce the influence of constant recalculation due to batch size and better capture
dynamic trends, discrepancy ratios (see Equation 5.1) and coefficients (see Equation 5.3)
are updated every five iterations, while optimization updates are conducted every itera-
tion using the Adam optimizer and the implemented gradient update method. For the
CMU-MOSI dataset, the audio-vision OGM and OGM-GE models perform worse on the
development set, indicating weaker generalization. The text-vision OGM model also de-
grades with the development set, while OGM-GE improves accuracy, reduces loss, and
maintains moderate standard deviations. In the CMU-MOSEI dataset, the audio-vision
OGM model shows similar performance with and without the development set but with
lower variance. The text-vision OGM model benefits significantly, achieving higher ac-
curacy, lower loss, and improved stability. It is worth observing some discrepancy ratio
plots to further understand the impact of development set in stability of the algorithm.
In Figures 6.1a, 6.1b, we observe the audio discrepancy ratio and text discrepancy
ratio for three different models on the CMU-MOSI dataset: the baseline model, the OGM
model, and the OGM model on the development set. As shown, the trends become more
stable, with reduced fluctuations, while still effectively representing the discrepancy be-
tween modalities without causing the model to favor the incorrect dominant modality.
In the original OGM model, the audio discrepancy ratio remains predominantly below
1, indicating that audio is the weaker, underutilized modality in the model. When the
development set is used, the OGM model successfully captures this trend while also
smoothing the discrepancy ratio. This smoothness is crucial because the ratio is fac-

tored into the expression that multiplies the gradient weights, and the alpha parameter
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remains constant. Inconsistency in the coefficient causes the modulation of the gradients
to vary unpredictably across iterations, potentially disrupting the optimization process.
By smoothing the discrepancy ratio, the model ensures that the gradient multipliers do
not deviate to misleading values, maintaining stable and effective optimization. The same
observations can be made for the Text-Vision model, where the text discrepancy ratio
remains above 1 when development set is used, indicating correctly that the dominant
modality is text, but still managing to narrow down the fluctuations or large values of
discrepancy ratio. Instability of discrepancy ratio may lead to erratic gradient modula-
tion, potentially destabilizing the optimization process. A more stable discrepancy ratio
ensures smooth and consistent gradient modulation, allowing for effective optimization
and better convergence. The same trend is present in Figures 6.1c, 6.1d presenting the
discrepancy ratios of the OGM-GE Audio-Vision and Text-Vision models. In the OGM-GE
model, Gaussian noise is added to the gradients, which interacts with the modulation
coefficient. If discrepancy ratio is stable, the noise interacts predictably with the gra-
dients, enhancing exploration without disrupting convergence. If discrepancy ratios is
unstable, the combination of noise and erratic modulation can amplify instability, further
harming convergence. Thus, it is crucial to maintain a stable, yet representing trend for

the discrepancy ratios.

ion Model

M
ion OGM using development set

Discrepancy Ratio

0 250 500 750 1000 1250 1500 1750 2000 o 200 400 600 800 1000 1200
terations terations

(a) Audio Ratio in Audio-Vision OGM Model

ision Model
Vision OGMGE
Vision OGMGE using development set

o 500 1000 1500 2000 0 200 400 600 800 1000 1200

(¢) Audio Ratio in Audio-Vision OGM-GE Model (d) Text Ratio in Text-Vision OGM-GE Model

Figure 6.1. Discrepancy Ratios in Audio-Vision and Text-Vision Models of CMU-MOSI. (a)
Audio Ratio in Audio-Vision Baseline, OGM Model and OGM Model using development set,
(b) Text Ratio in Baseline, OGM Model and OGM Model using development set, (c) Audio Ratio
in Audio-Vision Baseline, OGM-GE Model and OGM-GE Model using development set, (d)
Text Ratio in Text-VisionBaseline, OGM-GE Model and OGM-GE Model using development
set. Ratios are no longer fluctuating while indicating the dominant modality.
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Accelerating the slow-learning modality: In Table 6.4, we compare the performance
of the OGM method and its alteration, ACC. The ACC method focuses on enhancing
the gradient magnitude of the weaker modality rather than penalizing the gradients of
the dominant modality, as done in OGM. The results reveal that under the standard
training configuration, ACC fails to outperform OGM across all models and datasets.
Restricting the influence of the dominant modality, as implemented in OGM, is more
effective for balancing multimodal learning than solely enhancing the weaker modality.
When evaluated with the SGD optimizer, however, the ACC method demonstrates notable
improvements. It manages to surpass OGM in several cases and delivers results that
are comparable to the baseline models. In contrast, OGM struggles with SGD, failing to
consistently outperform the baseline. This indicates that the ACC method may be better
suited to optimization strategies like SGD, where adaptive mechanisms are absent, and
enhancing the weaker modality provides stability to the training process. Overall, these
findings highlight the complementary nature of OGM and ACC. While OGM performs
better under standard configurations and adaptive optimizers like Adam, ACC shows
promise in scenarios where simpler optimizers are employed.

Prolonging Training Duration: Previously, we noticed that calculations performed
on the development set led to more stable ratio trends and enhanced the performance
of our models compared to the standard on-the-fly calculations being applied after every
iteration. Facilitating this stability, we experiment with the prolonging of the training
process. Decreasing the learning rate to 8e-5 in Table 6.5a and increasing the patience of
scheduler and early stopping did not manage to outperform results of Text-Video CMU-
MOSI model of Table 6.3. However, experiments indicated more stable performance for the
OGM-GE than the OGM model. This gave us the idea to prolong the training for a specified

number of epochs without early stopping, but maintaining the use of development set.

Audio-Video Model

Training Configuration Method CMU-MOSI CMU-MOSEI
Accuracy (%) Loss (%) Accuracy (%) Loss (%)
Baseline 54.93 + 1.19 84.10 + 1.25 32.55 + 0.44 166.74 + 0.88
Standard Training OGM 53.30 £ 3.12 85.31 +2.62 32.67 + 0.33 166.76 + 0.86
ACC 52.39 + 2.42 85.98 +2.33 32.56 + 0.37 166.70 + 1.19
Baseline 49.97 + 2.59 85.38 + 1.40 32.51 £+ 0.16 167.24 + 0.41
SGD Optimizer OGM 49.82 +2.38 85.04 + 1.25 32.37 + 0.30 167.45 + 0.42
ACC 50.55 + 1.80 84.86 +0.78 32.56 + 0.31 167.56 + 0.31
Text-Video Model
Training Configuration Method CMU-MOSI CMU-MOSEI
Accuracy (%) Loss (%) Accuracy (%) Loss (%)
Baseline 74.35+ 0.58 66.57 + 0.49 43.99 +£ 0.39 133.11 + 0.39
Standard Training OGM 75.04 £ 0.96 63.54 + 0.69 44.15+ 0.43 133.15 + 0.35
ACC 74.67 £ 1.68 64.36 £ 1.85 44.12 +0.21 133.13 +0.24
Baseline 73.21 +2.81 63.91 + 2.15 44.46 + 0.54 131.12 + 0.40
SGD Optimizer OGM 73.53 £ 1.79 65.11 + 3.86 44.39 + 0.48 131.93 + 0.86
ACC 74.67 £ 1.02 62.96 + 0.30 44.43 + 0.54 131.46 + 0.89

Table 6.4. Performance of Audio-Video and Text-Video models on the CMU-MOSI and
CMU-MOSEI datasets using OGM and ACC methods under various training configurations:
optimization updates every iteration and SGD optimizer. Baseline model represents joint
training with late concatenation fusion.
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Method Text-Video Method Audio-Video ‘ Text-Video

Accuracy (%) Loss (%) Accuracy (%) Loss (%) ‘ Accuracy (%) Loss (%)

Prolonged Training with Early Stopping Prolonged Training for 100 Epochs

Baseline 74.35 £+ 0.58 66.57 + 0.49 Baseline 53.09 + 2.22 85.54 + 1.35 72.68 + 2.08 68.54 + 1.62
OGM 73.67 £1.19 66.92 + 1.98 OGM 52.95 + 2.25 85.61 + 1.31 72.97 £ 1.99 68.44 + 1.62
OGM-GE 73.64 £+ 0.31 67.34 + 0.42 OGM-GE 50.47 + 2.22 86.82 + 0.98 73.59 + 0.64 67.56 + 1.40

(a) Decreased learning rate. (b) 100 training epochs without early stopping.

Table 6.5. Prolonged training of OGM and OGM-GE bimodal models on CMU-MOSI dataset.
Baseline model represents joint training with late concatenation fusion. Table (a) presents
Text-Video models with decreased learning rate and increased early stopping patience and
Table (b) Audio-Video and Text-Video models for 100 training epochs without early stopping.

Experiments presented in Table 6.5b aim to examine the impact of the OGM-GE
method during extended training periods, focusing on its potential implications in the
later stages of training. To this end, we conducted experiments on the CMU-MOSI dataset
using models with a development set for coefficient updates performed every 5 iterations.
The learning rate was further decreased to 8e-5, modulation epochs were fixed at 50,
and the total number of training epochs was set to 100 without early stopping. The
audio-vision OGM or OGM-GE model fails to surpass the performance of the vanilla
model for 100 epochs. Text-Vision OGM and OGM-GE model manage to surpass the
vanilla regarding accuracy, while reducing loss and std values. Further increment of
modulation epochs to 100 and training epochs to 200 resulted in the same performance
for the Text-Vision models meaning they have already converged. Also, Text-Vision vanilla
and OGM models indicated extreme overfitting behavior with training loss close to O and
validation loss above 1. OGM-GE model limits the overfitting behavior as we will discuss
and achieves the better performance among experiments of Table 6.5b.

In Figure 6.2 we monitor the training loss of the fused representation, unimodal train-
ing losses and validation loss for the Baseline, OGM and OGM-GE Text-Vision models
on CMU-MOSI for one run. The training loss of baseline model converges effectively,
but there are fluctuations in validation loss. Vision modality learning indicates poor im-
provement, while text loss follows the trend of the joint training loss being the dominant
modality. The OGM model-having the coefficients for the weight update calculated on the
development set-indicate rapid decrease of the training loss, at a lower value compared to
the baseline model. Validation loss also is lower, but fluctuates more prominently after
epoch 40. Text loss also converges faster following the joint trend, while vision modality
indicates similar behavior with baseline training. The training loss of the OGM-GE model
(also using the development set for its coefficient updates) decreases rapidly, reaching
the lower point compared to OGM and Baseline. Moreover the validation loss decreases
steadily, indicating less fluctuations than the previous models. Vision learning process
remains static, but the model indicates overall superiority in stability and performance
compared to OGM and Baseline. The results highlight that the generalization enhance-
ment in OGM-GE effectively reduces the training loss and mitigates oscillations in the

validation loss.
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Figure 6.2. Training, Validation and Uni-modal Losses for Text-Vision models of CMU-
MOSI: (a) Baseline, (b) OGM, and (c) OGM-GE.

However, as illustrated in Figure 6.2, the application of early stopping proves criti-
cal. In the baseline and OGM models, the validation loss begins to rise significantly after
epoch 20, diverging from the training loss and indicating overfitting. This underscores the
importance of incorporating early stopping to maintain the model’s generalization capa-
bility and prevent performance degradation in extended training scenarios. The OGM-GE
model’s superior performance in prolonged training stems from its ability to modulate
gradients effectively while enhancing updates with Gaussian noise, but its behavior can
vary depending on factors like early stopping and the frequency of coefficient updates. The
use of Gaussian noise in optimization is well-known for helping escape sharp minima and
guiding models toward flatter minima, which are associated with better generalization, as
demonstrated in studies such as [44] [49]. However, this process requires sufficient train-
ing time for the noise-enhanced updates to refine the model’s parameters, which early
stopping may curtail. Early stopping, as explored by [51], is effective at preventing over-
fitting but may prematurely halt training, limiting the exploration of flatter minima. The
frequency of coefficient updates also significantly influences model behavior. When coeffi-
cients are calculated on smaller batch sizes and applied at every iteration, their sensitivity
to batch-specific noise can destabilize training, a phenomenon supported by Wilson et al.
[50], which highlights the effects of small-batch stochastic gradient noise. In contrast,
updating coefficients less frequently, as in the current setup (every five iterations), helps
smooth out these fluctuations, ensuring more stable and consistent modulation of gradi-
ents. This aligns with research by Smith et al.[52], which demonstrates the advantages of
periodic over per-iteration updates in optimization. Furthermore, this less frequent up-

date strategy interacts synergistically with Gaussian noise, as the temporal consistency
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of gradient modulation allows the noise to perturb gradients effectively, improving con-
vergence and stability. Together, these factors explain why the combination of prolonged
training, stable coefficient updates, and noise-enhanced exploration enables OGM-GE to

achieve the best performance in the presence of dominant modality.

Method Audio-Video ‘ Text-Video

Accuracy (%) Loss (%) Acc (%) ‘ Loss (%)

Modulation for First 5 Epochs

Baseline 32.55 +0.44 166.74 + 0.88 | 43.99 + 0.39 133.11 + 0.39
OGM 32.67 £ 0.33 166.76 + 0.86 | 44.15 + 0.34 133.11 £ 0.39
OGM-GE 32.40 +0.30 167.12 +0.80 | 43.58 + 0.40 133.74 + 0.15

Modulation During All Training Epochs

OGM 32.59 £ 0.40 166.61 £ 0.93 | 44.02 + 0.43 133.15 + 0.47
OGM-GE 32.43 +0.29 167.30 +0.68 | 43.13 + 0.53 134.83 + 0.21

Table 6.6. Performance of Audio-Video and Text-Video models on the CMU-MOSEI dataset
with modulation applied for a specific number of epochs vs throughout all training epochs.

Prolonging Modulation: Repeating the best experiments for the CMU-MOSEI audio-
vision and text-vision, but now applying the modulation during the whole training did not
indicate improvement in the performance, showing that the modulation application only
for the first few epochs is a better choice. Prolonging the modulation phase introduces
adjustments to gradients over a longer period. This could interfere with the model’s ability
to settle into optimal convergence paths, as the modulation modifies the gradient mag-
nitudes or adds noise when using OGM-GE. Modulating the gradients early in training
allows the model to benefit from stabilized updates during the high-variance initial phase
of optimization, which is crucial for finding smoother minima and escaping sharp ones.
During the early epochs, gradients tend to be noisy due to random initialization and high
variance in parameter updates. Modulation at this stage can act as a stabilizer, helping to
smooth gradient updates and control their magnitude. The modulation starts and ends
define a window where the gradient updates are actively adjusted. A well-chosen modula-
tion window (e.g., first 5 epochs) aligns with the period when gradients are most unstable,
allowing the modulation mechanism to stabilize the training process, while the prolonged
adjustment of gradients can interfere with the natural stabilization of the optimization
process, particularly in later epochs when gradients are already small. Modulation mech-
anisms like OGM and OGM-GE are most effective when used strategically in the early
stages of training. Extending their application into later epochs risks disrupting conver-
gence, as gradients at this stage are already optimized for minimizing the loss function.
This conclusion aligns with our previous observations: prolonging the training does not
improve performance but highlights the presence of the effectiveness of Gaussian noise
in the gradients during the later stages of training. However, by this point, our model has

already converged, making the additional modulation unnecessary.
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On-the-fly Gradient Modulation: Summary of findings

o OGM: Improves Text-Video performance but struggles to outperform the base-

line Audio-Video models under standard training configurations.

e OGM-GE: Underperforms compared to both the baseline and OGM models
in the standard setup. However, prolonged training with the development
set allows OGM-GE to better leverage its potential, particularly in text-video

models.

e ACC: Fails to surpass the OGM model when using the Adam optimizer but
outperforms it when using SGD. When used with SGD improves model per-
formance on CMU-MOSI.

e Optimization Frequency: More frequent parameter updates (every iteration)

yield better results.

o Choice of Optimizer: The adaptive nature of Adam generally performs better
than SGD in this setup. Notably, OGM-GE Text-Vision models benefit from

the incorporation of SGD optimizer.

o Development Set: Enhances model stability by reducing discrepancy ratio

fluctuations and preventing overfitting to previously seen data.

e Prolonged Training: Deploys the impact of Gaussian noise in the optimiza-

tion process, improving stability.

e Prolonged Modulation: Does not improve performance, suggesting that early

epochs are critical for effective gradient updates.

6.4.2 Adaptive Gradient Modulation

In this section, we evaluate the performance of the AGM bimodal models, building
on insights gained from the previous evaluation of the OGM-GE method. Our analysis
focuses on the effectiveness of AGM in handling both dominant and non-dominant modal-
ities, the impact of optimizer selection, the influence of batch size, and the benefits derived
from incorporating a development set. To ensure consistency, the reported results repre-
sent the best-performing model for each configuration. Detailed hyperparameter tuning
procedures are provided in Appendix A for reproducibility.

Impact of Adaptive Gradient Modulation: Results in Table 6.7 indicate that AGM
consistently demonstrates improved performance over the Baseline method across Text-
Video Models of both datasets. For the Audio-Video Model of CMU-MOSEI, AGM exhibits
better accuracy and a reduction in loss, indicating its capability to handle iterative up-
dates more effectively. Audio-Video AGM Model on CMU-MOSI, however, fails to out-
perform baseline model, showing degraded accuracy and increased standard deviation.

Results in Table 6.7 indicate that AGM consistently outperforms the Baseline method
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across Text-Video Models for both datasets, demonstrating its effectiveness in optimizing
multimodal interactions in the presence of strong, dominant modalities. For the Audio-
Video Model, AGM shows mixed performance. On the CMU-MOSEI dataset, AGM achieves
better accuracy and a noticeable reduction in loss compared to the Baseline, underscor-
ing its ability to handle iterative updates effectively in scenarios where the audio and
video modalities complement each other. However, on the CMU-MOSI dataset, AGM fails
to surpass the Baseline, with degraded accuracy and increased standard deviation. This
discrepancy suggests that AGM’s performance may be influenced by dataset-specific char-
acteristics, particularly in cases where the audio modality is less informative or dominant.
It highlights the need for further tuning or adjustments to ensure consistent performance

across different datasets and modality combinations.

Audio-Video Model

Training Configuration Method CMU-MOSI CMU-MOSEI
Accuracy (%) Loss (%) Accuracy (%) Loss (%)
Standard Traini Baseline 54.93 + 1.19 84.10 + 1.25 32.55+ 0.44 166.74 + 0.88
andard fraining AGM 53.73 + 3.62 84.17 + 1.35 32.71 + 0.44 166.17 + 0.64
SGD Optimi Baseline 49.97 +2.59 85.38 + 1.40 32.51 + 0.16 167.24 + 0.41
ptimizer AGM 49.59 + 1.17 85.15 + 0.77 32.42 + 0.23 166.94 = 0.63
Use of Devel {ser Bascline 5293+ 1.19 84.10+125 32.55+0.44 166.74 + 0.88
se of Development Set 52.25+ 1.97 84.32+ 1.24 32.71 + 0.31 166.81 + 1.01
Text-Video Model
Training Configuration Method CMU-MOSI CMU-MOSEI
Accuracy (%) Loss (%) Accuracy (%) Loss (%)
Standard Traini Baseline 74.35 + 0.58 66.57 + 0.49 43.99 + 0.39 133.11 + 0.39
andard training AGM 74.61 + 0.86 63.83+ 1.12 44.15 + 0.39 132.58 + 0.34
SGD Optimi Baseline 73.21 +2.81 63.91 +2.15 44.46 + 0.54 131.12 + 0.40
ptimizer AGM 73.76 + 1.17 65.75+ 1.31 44.10 + 0.13 130.95 + 0.81
Use of Devel (et Bascline 74.35+0.58 66.57+0.49 43.99+0.39 133.110.39
se of Development Set 74.46 + 1.93 64.26 + 1.69 43.84 +0.11 133.26 + 0.63

Table 6.7. Performance of Audio-Video and Text-Video models on the CMU-MOSI and
CMU-MOSEI datasets using AGM method under various training configurations: standard
optimization updates every iteration, SGD optimizer, and the use of a development set.
Baseline model represents joint training with late concatenation fusion.

Choice of Optimizer: Experimentation with SGD optimizer evaluates the robustness
and adaptability of the AGM method under a non-adaptive optimization strategy. While
the Adam optimizer dynamically adjusts learning rates during training, SGD offers a more
static approach, which may amplify the sensitivity of the model to hyperparameters and
training dynamics. By testing AGM with SGD, as we did with OGM, OGM-GE and ACC
models, we aim to investigate whether the method can effectively optimize multimodal
interactions without relying on the adaptive capabilities of Adam. This experiment also
provides insights into the method’s behavior across different optimization strategies. For
the Audio-Video Model, AGM under the SGD optimizer achieves comparable results to the
Baseline with SGD, showing a slight improvement in loss but failing to surpass the Base-
line in accuracy across both datasets. On the CMU-MOSI dataset, AGM under the SGD
optimizer exhibits higher loss and a drop in accuracy compared to its performance with

Adam optimizer. Similarly, on the CMU-MOSEI dataset, it still underperforms in terms
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of accuracy relative to its performance under the Adam optimizer. For the Text-Video
Model, AGM performs noticeably better than the Baseline under the SGD optimizer on
both datasets, demonstrating its capability to effectively optimize text-video interactions
under this setup. However, when compared to the results with Adam, AGM exhibits lower
accuracy and higher loss, particularly on the CMU-MOSI dataset. On the CMU-MOSEI
dataset, AGM performs reasonably well with SGD but does not achieve the same level
of improvement seen with Adam. Overall, the results suggest that AGM is sensitive to
the choice of optimizer, with its performance being more robust and effective particularly
with Adam. AGM models with SGD struggle to replicate the same level of consistency and
improvement seen with Adam-based updates

Use of Development Set: The purpose of incorporating a development set during
training is to provide a more stable and consistent basis for calculating gradient coeffi-
cients, allowing the model to better capture the dynamic trends of both strong and weak
modalities. By isolating the gradient calculations from the training batch, this setup
ensures that the coefficients reflect broader trends rather than being overly influenced
by batch-specific variations as illustrated in Figures 6.3, 6.4. Across the experiments,
the inclusion of the development set leads to improved stability in optimization, which
translates to more reliable performance and better generalization. This setup proves
particularly effective in balancing the interactions between dominant and non-dominant
modalities. For some configurations, the development set slightly improves accuracy or
loss, particularly for setups involving weaker modalities, as it helps refine gradient coeffi-
cient calculations. However, in other cases, the results are comparable to or slightly worse
than the baseline, indicating that the benefits of the development set may depend on the
interplay between dataset characteristics and modality strength. This suggests that while
the development set does not universally outperform the baseline, it contributes to a more
consistent training process.

In Figure 6.3 Audio-Vision Baseline demonstrates steady joint accuracy but struggles
with weak audio modality contributions. The CMU-MOSI Audio-Vision AGM Model im-
proves joint accuracy compared to the Vanilla Model, leveraging dynamic adjustments
in audio and video strengths during training. However, the strengths fluctuate signif-
icantly, indicating that the model is actively rebalancing modality contributions. This
dynamic balancing capability highlights the AGM model’s adaptability. The AGM Model
with development set builds upon the strengths of the AGM model by introducing addi-
tional stability through the use of a development set. Audio strength steadily increases,
while video strength stabilizes with minimal fluctuations. The model maintains high joint
and aligned audio and video performances, showcasing a more balanced and consistent
reliance on both modalities. The development set contributes to regularizing modality
contributions, making this configuration the most robust and reliable between the three
models.

The Baseline Text-Vision Model in Figure 6.3 demonstrates steady improvement in
joint accuracy but its reliance on the text modality is dominant, with text accuracy closely
aligning with joint accuracy. However, it shows fluctuating text strength and a weak con-

tribution from video, as video strength decreases steadily, reflecting the model’s weakness
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Figure 6.3. Comparison of Audio-Vision and Text-Vision Baseline, AGM and AGM with de-
velopment set models on CMU-MOSI. The first row represents the baseline bimodal models,
the second row the AGM model for the audio-vision and text-vision case and the third row
the AGM models using development set for the update of modality strength and coefficients.
Each figure includes the unimodal strengths and validation accuracies of the model for one
run.
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to dynamically balance modalities. In Text-Vision AGM Model text accuracy aligns with
joint accuracy, but follow a decreasing trend indicating that the model struggles to learn
effectively. This is supported by the unstable unimodal strengths that fluctuate having
sharp drops and increases. Unimodal strengths fail to capture the relationship between
the modalities leading to degrading trend performance compared to vanilla. AGM Model
with a development set improves stability in unimodal strengths and manages to reduce
the text strength, while increasing the video, as expected. The use of the development set
helps achieve a more balanced reliance on video and text, stabilizing the contributions of
both modalities and maintaining higher performance for the weak video modality, while
increasing steadily the joint performance.

Starting with the Baseline Model in Figure 6.4, we observe that joint accuracy aligns
closely with audio accuracy, both remaining steady throughout training. However, vision
accuracy is consistently lower, indicating minimal contribution from the video modality.
Interestingly, video strength exceeds audio strength, suggesting that while the model per-
ceives video data as significant, it fails to extract meaningful insights. Accuracy refers to
how well the model predicts using a particular modality (audio or video) when evaluated
against ground truth labels. Strength reflects how much the model relies on a modal-
ity during the decision-making process. The mismatch between accuracy and strength
arises because reliance (strength) does not directly correspond to predictive performance
(accuracy). Audio strength remains low, reflecting the model’s underutilization of the
audio modality as well. In AGM Model the reliance on audio and video modalities is un-
stable, with significant fluctuations in both audio strength and video strength throughout
training. Video strength occasionally spikes, but these do not lead to sustained accuracy
improvements. As a result AGM Audio-Vision model struggles with instability in modality
competition, leading to inconsistent reliance on video and less effective integration over-
all. It manages however to improve the video accuracy performance during training. In
AGM with development set model, audio and video strengths stabilize significantly, with
video strength remaining slightly higher than audio strength but without the instability
observed in the AGM without a development set. This stability enables the model to in-
tegrate video information more effectively without overwhelming audio input, resulting in
a better balance between the two modalities. As a results, the joint accuracy relies now
more on the video modality. If the video modality contributes significantly to the model’s
accuracy depends on the quality and relevance of the input video data.

Baseline Text-Vision Model in Figure 6.4 shows a clear dependence on text data, as
indicated by the close alignment between joint accuracy and text accuracy. Vision accu-
racy, however, remains consistently low, demonstrating the model’s inability to effectively
leverage video features. While text strength fluctuates significantly, video strength is con-
sistently low, further highlighting the model’s heavy reliance on textual input. Moving
to the AGM Model, we observe marginal improvements in joint and text accuracies over
the Baseline Model, but vision accuracy remains similarly low, reflecting the continued
difficulty in integrating video features effectively. The AGM Model exhibits high instability
in text strength, with frequent spikes and drops, while video strength improves slightly
but remains much lower than text strength. This instability suggests that the AGM Model
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Figure 6.4. Comparison of Audio-Vision and Text-Vision Baseline, AGM and AGM with
development set models on CMU-MOSEI. The first row represents the baseline bimodal
models, the second row the AGM model for the audio-vision and text-vision case and the
third row the AGM models using development set for the update of modality strength and
coefficients. Each figure includes the unimodal strengths and validation accuracies of the
model for one run.
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struggles with balancing reliance on the two modalities and faces challenges in stabilizing
the integration of video features. AGM Model with a Development Set improves stability
in modality reliance compared to the other two models but still demonstrates a preference
for textual input, with video playing a less critical role. The development set mitigates
instability rather than fundamentally changing the model’s modality integration, high-
lighting that further refinement is needed to fully leverage video features of CMu-MOSEI

dataset.

Adaptive Gradient Modulation: Summary of findings

e AGM: Improves performance, but fails to surpass the baseline Audio-Video

model on the CMU-MOSI dataset under standard training configurations.

o Choice of Optimizer: The adaptive nature of Adam outperforms SGD in this
setup. AGM models trained with SGD do not exceed the performance of their

corresponding baseline models.

o Development Set: This helps the model more accurately capture modality
strength, improving the algorithm’s accuracy as trends in modality strength
indicate a reduction in the dominant modality. At the same time, it mitigates
overfitting to previously seen data while maintaining performance comparable

or better than the baselines.

6.5 Investigating Loss Based Optimization

Prototypical Modal Rebalance [20] and ReconBoost [21] are two approaches that ad-
dress modality imbalance during training by utilizing the loss function through distinct
mechanisms. This section examines the impact of various training configurations on their
performance and evaluates their effectiveness against the baseline training approach,

which employs a joint fusion loss to optimize multimodal interactions.

6.5.1 Prototypical Modal Rebalance

We apply the Prototypical Modal Rebalance optimization method to the audio-video
and text-video models without incorporating the penalty through the entropy of the dom-
inant modality as described in equation 5.16. We study the impact of the exponential
moving average of the centroids, the choice of optimizer and the use of development set to
overcome possible limitations by batch size. For detailed hyper-parameter tuning please
refer to Appendix A.

Impact of PMR Method: The method fails to favor the audio-video models on either
dataset, but improves accuracy of text-video models. This suggests that the method is
highly affected by the relationship between modality features. The optimization guided
by class prototypes appeared effective when a dominant modality is present, but failed
otherwise.

Exponential Moving Average of Prototypes: Performance trends when the decay
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rate of the Exponential Moving Average (EMA) for modality prototype centroids is greater
than zero remain similar to previous observations. However, in this case, Text-Video
models exhibit improved accuracy scores, while CMU-MOSEI shows a further reduction
in loss, indicating that EMA contributes to better stability and enhanced modality repre-

sentation in certain configurations of this method.

Audio-Video Model

Training Configuration Method CMU-MOSI CMU-MOSEI

Accuracy (%) Loss (%) Accuracy (%) Loss (%)

Standard Traini Baseline 54.93 + 1.19 84.10+ 1.25 32.55 + 0.44 166.74 + 0.88
andard fraining PMR 51.52 + 2.85 85.24 + 1.64 32.44 + 0.44 166.65 + 0.57

Baseline 54.93 + 1.19 84.10 + 1.25 32.55 + 0.44 166.74 + 0.88

Exponential Moving Average of Prototypes pyrp 51.55 +3.71 85.04 + 1.85 32.21 + 0.61 166.61 + 0.75

SGD Optimizer Baseline 49.97 +£2.59 85.38 + 1.40 32.51 + 0.16 167.24 + 0.41

PMR 51.25 + 1.85 85.74 + 1.42 32.56 + 0.31 167.56 + 0.31
Use of Devel ¢ Set Baseline 54.93+ 1.19 84.10+ 1.25 32.55+ 0.44 166.74 % 0.88
'se of Development Se PMR 53.76 + 2.15 84.55 + 1.14 32.44 + 0.25 167.19 + 0.92

Text-Video Model

Training Configuration Method CMU-MOSI CMU-MOSEI
Accuracy (%) Loss (%) Accuracy (%) Loss (%)

Standard Trainin Baseline 74.35 + 0.58 66.57 + 0.49 43.99 + 0.39 133.11 = 0.39
g PMR 74.55 + 0.79 63.95 + 0.52 44.29 + 0.26 132.11 + 1.01
E il Mouin A Protot Baseline 74.35+ 0.58 66.57 + 0.49 43.99 + 0.39 133.11 + 0.39
~ponential Moving Average of Prototypes  pyp 75.51 + 0.50 64.51 + 1.42 44.29 + 0.17 131.94 + 0.56
SGD Optimi Baseline 73.21 +2.81 63.91 =2.15 44.46 + 0.54 131.12 + 0.40
ptimizer PMR 73.56 + 1.83 63.79 + 2.45 44.43 + 0.54 131.46 + 0.89
Use of Devel ¢ Set Baseline 74.35 + 0.58 66.57 + 0.49 43.99 + 0.39 133.11 % 0.39
se of Development e PMR 7472 £ 1.22 63.33 £ 1.95 44.60 + 0.53 130.60 + 0.36

Table 6.8. Performance of Audio-Video and Text-Video models on the CMU-MOSI and
CMU-MOSEI datasets using PMR method under various training configurations: standard
optimization updates every iteration, SGD optimizer, and the use of a development set.
Baseline model represents joint training with late concatenation fusion.

Choice of Optimizer: PMR models trained with Stochastic Gradient Descent (SGD)
achieve performance comparable or better to their respective baselines, demonstrating
their effectiveness in the given tasks. However, the Adam optimizer provides additional
benefits for PMR models specifically on the CMU-MOSI dataset, leading to improved per-
formance. On the other hand, for the CMU-MOSEI dataset, Adam yields results that are
competitive with those obtained using SGD, suggesting that the choice of optimizer may
have a dataset-dependent impact on model performance for this method.

Use of Development Set: The use of the development set for calculating the imbal-
ance ratio (see Equation 5.13) outperforms the Text-Video baselines, achieving lower loss
and improved stability. Trends in the Figure 6.5 further confirm its positive impact on
stabilizing metrics used to quantify modality contribution and dominance, reinforcing its
role in enhancing model robustness. The comparison of imbalance ratios in PMR-based
Audio-Vision and Text-Vision models of CMU-MOSI (see Figure 6.5) highlights the stabi-
lizing effect of the development set. In the Audio-Vision model, the audio ratio fluctuates
significantly without the development set, indicating instability in modality contribution.

However, its inclusion leads to smoother trends, suggesting improved balance and opti-
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mization stability, while showing that audio is the weaker modality in that case. Simi-
larly, in the Text-Vision model, the text ratio exhibits a sharp increasing trend, reflecting
its dominance over time. While PMR alone amplifies text contributions with noticeable
fluctuations, the development set helps regulate this dominance, reducing extreme vari-
ations while maintaining its increasing trend. Figure 6.6 illustrates the impact of the
development set on modality imbalance in Audio-Vision and Text-Vision PMR models of
CMU-MOSEI. In the Audio-Vision model, the audio ratio exhibits significant fluctuations
without the development set, indicating unstable modality contributions. However, its
inclusion smooths the trends, demonstrating improved balance and reducing extreme
variations. In the Text-Vision model, the text ratio increases over time, reflecting its
dominance. While PMR alone amplifies text features with noticeable fluctuations, the
development set stabilizes the trend, ensuring a more controlled and balanced modality
interaction. These findings confirm that the development set mitigates instability, helping
to regulate modality contributions and improving the robustness of multimodal learning.

Additionally, the comparison between Audio-Video and Text-Video models highlights
the dominant role of text in multimodal sentiment analysis. Text-Video models consis-
tently achieve higher accuracy than Audio-Video models, reinforcing the idea that text
carries the most informative features for sentiment classification. The performance gap
between datasets further indicates that modality interactions vary based on sentiment

distribution, emphasizing the need for dataset-aware optimization strategies.

with PMR,
with PMR using development set

Ratio
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(a) Imbalanced Audio Ratio in Audio-Vision PMR (b) Imbalanced Audio Ratio in Audio-Vision PMR
Model with Development Set
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4] —o— Textratio with PMR —e— Text ratio with PMR using development set

25 50 75 10,0 125 150 175 2 4 6 8 10 2
Epochs Epochs
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Model with Development Set

Figure 6.5. Imbalanced Ratio Trends in PMR Models on CMU-MOSI dataset. (a) Audio Ratio
in Audio-Vision PMR Model, (b) Audio Ratio in Audio-Vision PMR with Development Set, (c)
Text Ratio in Text-Vision PMR Model, (d) Text Ratio in Text-Vision PMR with Development
Set.
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Figure 6.6. Imbalanced Ratio Trends in PMR Models on CMU-MOSEI dataset. (a) Audio
Ratio in Audio-Vision PMR Model, (b) Audio Ratio in Audio-Vision PMR with Development Set,
(c) Text Ratio in Text-Vision PMR Model, (d) Text Ratio in Text-Vision PMR with Development

Set.

Prototypical Modal Rebalance: Summary of findings

than universally applicable.

SGD on CMU-MOSEI

tween modalities.

e PMR: Enhances Text-Video model performance but does not outperform the
baseline Audio-Vision model on either dataset under standard training config-

urations, suggesting that its effectiveness may be modality-dependent rather

e Exponential Moving Average: Improves the performance of PMR Text-Video

models, contributing to better stability and accuracy.

e Choice of Optimizer: PMR models trained with SGD achieve competitive
with their corresponding baselines. Adam, however, benefits the PMR models

on the CMU-MOSI dataset, while gives competitive results with the ones of

e Development Set: Consistently improves PMR model performance, leading
to higher accuracy compared to the standard PMR setup. Although it does
not surpass the Audio-Vision baseline on CMU-MOS]I, it provides stabilized
imbalanced ratio trends, effectively capturing modality dominance relation-

ships, while providing with an unbiased quantification of the imbalance be-
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6.5.2 ReconBoost

We applied the ReconBoost method to the audio-vision and text-vision bimodal cases
of the CMU-MOSI and CMU-MOSEI datasets, as well as the trimodal case involving au-
dio, video, and text. Consistent with the original ReconBoost methodology, our experi-
ments omitted learning rate scheduling, maintaining constant learning rates throughout
training. These steady learning rates, applied equally to modality-specific and ensemble
parameters, controlled the speed of parameter updates and impacted convergence. The
experiments included 100 alternating stages, with each stage comprising one boosting
epoch followed by one global rectification epoch. The boost rate, a critical parameter con-
trolling the intensity of modality-specific corrections, was set to 1.0 to ensure balanced
boosting across all modalities without additional scaling. This setup was designed to
ensure robust optimization of modality contributions, providing a comprehensive evalu-
ation of the ReconBoost method across different multimodal configurations. For detailed

hyper-parameter tuning please refer to Appendix A.

Audio-Video Model

Training Configuration Method CMU-MOSI CMU-MOSEI
Accuracy (%) Loss (%) Accuracy (%) Loss (%)
Adam Ontimi Baseline 54.93 + 1.19 84.10 + 1.25 32.55 + 0.44 166.74 + 0.88
am Cptimizer ReconBoost 47.29 + 5.19 87.63 +2.73 33.14 + 0.37 167.99 + 1.18
SGD Optimi Baseline 49.97 +2.59 85.38 + 1.40 32.51 = 0.16 167.24 + 0.41
ptimizer ReconBoost 49.88 + 3.01 94.17 + 3.60 32.42 + 0.02 175.56 + 0.80
Text-Video Model
Training Configuration Method CMU-MOSI CMU-MOSEI
Accuracy (%) Loss (%) Accuracy (%) Loss (%)
Adam Ontimi Baseline 74.35 + 0.58 66.57 + 0.49 43.99 + 0.39 133.11 + 0.39
am Cptimizer ReconBoost 74.79 + 1.04 63.20 + 1.26 44.78 + 0.29 130.88 + 0.75
SGD Optimi Baseline 73.21 +2.81 63.91 +2.15 44.46 + 0.54 131.12 + 0.40
ptimizer ReconBoost 73.45 +5.19 71.11 +7.90 44.37 + 0.68 133.18 + 1.09
Audio-Video-Text Model
Training Configuration Method CMU-MOSI CMU-MOSEI
Accuracy (%) Loss (%) Accuracy (%) Loss (%)
Adam Ontimi Baseline 74.87 + 1.23 63.05+ 1.65 44.46 + 0.41 131.87+ 0.60
am Cptimizer ReconBoost 75.09 + 0.88 63.18 + 1.30 44.42 + 0.53 130.79 + 0.76
SGD Optimizer Baseline 73.24 +2.24 65.15+2.35 44.80 + 0.54 130.78 + 0.48
ptimize ReconBoost 73.07 + 2.36 76.91 + 5.95 44.30 + 0.61 137.20 + 4.35

Table 6.9. Performance of Audio-Video, Text-Video and Audio-Video-Text models on the
CMU-MOSI and CMU-MOSEI datasets using ReconBoost method under two different opti-
mizers: Adam optimizer and SGD optimizer. Baseline model represents joint training with
late concatenation fusion.

The goal of the ReconBoost method is to address modality imbalance by leveraging a
modality-alternating learning paradigm. In our experiments, we investigate the effective-
ness of this method in managing unimodal contributions and its impact on multimodal
fusion. Specifically, we aim to understand how ReconBoost balances modality-specific
losses and ensemble corrections to optimize training dynamics and improve generaliza-

tion. Additionally, we evaluate the role of the optimizer—comparing the static updates of
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SGD to the adaptive learning of Adam—in shaping the training process and influencing
the model’s ability to converge effectively. Through this analysis, we aim to assess Recon-
Boost’s potential as a robust solution for handling multimodal challenges and enhancing
performance.

Regarding the CMU-MOSI dataset we observe that the Audio-Video models fail to sur-
pass the vanilla performance. Specifically, the Audio-Video ReconBoost model with SGD
optimizer increases its loss and std values leading to worse performance. The Audio-Video
model with Adam demonstrates the same behavior, with major drop of its accuracy. The
Text-Video model with SGD fails to improve performance, having increased loss and high
stds for both accuracy and loss. The Text-Video model with Adam indicates improve-
ment with increased accuracy and lower loss. The trimodal model with SGD also fails
to improve the accuracy of baseline model, but the trimodal model with Adam indicates
improvement with higher accuracy, lower loss and reduced std values.

The trend of the losses (see Figure 6.7) during training of the trimodal model manage
to achieve the goal of the method, which is to help weaker modalities follow the trend of
the shared loss, without getting stuck at early epochs, aligning with the trend of losses
during training of the original implementation. As we see, the baseline model with Adam
maintain audio and video loss above 1, while training loss fluctuates between 0.1 and
0.2 after epoch 20. ReconBosot model with Adam on the other hand manages to drop
the audio and video loss rapidly to 0.8 approximately, while the training loss approaches
0, suggesting a successful application of the code. It is also worth comparing the loss
trends in our ReconBoost between the model using SGD and the model using Adam.
ReconBoost model with SGD also achieves to drop the loss of each weak modality, without
getting it stuck during early epochs. However, the training loss manages to approach 0
at a later epoch than the corresponding model with Adam. Training loss, also, indicates
fluctuations during training struggling to converge.

Taking into account the model average performance results for 5 seeds and the trends
of Figure 6.7, we see that the Adam optimizer for our ReconBoost setup is preferable on
CMU-MOSI. The comparison of the training loss plots between Adam and SGD optimizers
highlights key differences in model generalization. Adam optimizer exhibits smoother and
more stable loss curves, indicating consistent convergence and effective learning. This
stability suggests that the model trained with Adam is likely generalizing better. In con-
trast, the SGD optimizer shows more oscillations, particularly in the text loss, reflecting
instability in training. These fluctuations indicate potential issues with generalization
and less consistent learning, as the model appears to struggle more to converge smoothly
across different seeds.

Although the stability of SGD compared to Adam is highly dependent on several fac-
tors, including the complexity of the model, the choice of hyperparameters such as the
learning rate, data characteristics, and the presence of regularization, careful tuning can
mitigate these issues. SGD is generally more prone to instability and oscillations, par-
ticularly in complex models and noisy environments. However, appropriate adjustment
of the learning rate, use of momentum, and effective regularization strategies can signif-

icantly enhance its stability. Adam, with its adaptive learning rate and bias correction,
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often provides more stable training with fewer fluctuations. Nevertheless, stability does
not necessarily equate to better generalization performance. In our case, after tuning
the hyperparameters for both optimizers—following the guidelines of the original imple-
mentation proposed by the authors and conducting a grid search on the validation set
to determine the appropriate learning rate—we conclude that the Adam optimizer yields
superior results in terms of both accuracy and generalization compared to SGD under

these specific conditions.

On the CMU-MOSEI dataset, results with SGD show no improvement in accuracy
and instead indicate an increase in loss values and standard deviations, leading to worse
overall performance. In contrast, experiments with Adam on CMU-MOSEI demonstrate
improvements compared to the vanilla models. Both the Audio-Vision and Text-Vision
ReconBoost models achieve higher accuracies and lower standard deviations compared to
the vanilla models. Notably, in the Text-Vision case, the models also achieve a reduction in
loss. These findings support and validate our earlier conclusions. However, the trimodal
model does not surpass the vanilla model in terms of accuracy but does achieve a lower

loss, indicating improved optimization despite the accuracy plateau.

N

)
Epochs Epochs

(a) Baseline Model using Adam optimizer. (b) Baseline Model using SGD optimizer.

stages. stages

(¢) ReconBoost Model using Adam optimizer. (d) ReconBoost Model using SGD optimizer.

Figure 6.7. Training, validation, and unimodal losses using Adam vs. SGD for a single run
in Baseline and ReconBoost setup with three input modalities on the CMU-MOSI dataset.

ReconBoost: Summary of findings

The method successfully reduces the loss of weaker modalities during the start of
training and achieves improved performance in text-vision and trimodal settings
when using the Adam optimizer. In contrast, SGD results in poorer performance

with higher standard deviations, indicating unstable training dynamics.
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6.6 Unified Comparative Analysis

In this section, we provide a conclusive summary of the best results achieved by
the proposed methods under the standard training configurations outlined in Section
6.2.5, without additional alterations or experimental variations. Unlike previous sections
where we investigate the behavior of the methods under different configurations, here we
focus on presenting the peak performance of the algorithms. Our experimental setup
included three unimodal encoders, with the baseline comparison conducted against a
joint training approach using late concatenation. Additionally, we incorporate results
from two other strong baselines—soft voting and uni-pre finetuned models—to provide a
more comprehensive evaluation. The unified analysis in this section aims to highlight
the peak performance achieved for each modality combination while identifying trends
that demonstrate the potential of dynamic optimization methods to challenge established

baselines in the literature.

Modality Method CMU-MOSI CMU-MOSEI
Accuracy (%) Loss (%) Accuracy (%) Loss (%)
Ensemble 47.96 + 4.94 84.90 + 1.50 32.63 +£0.29 166.05 + 0.75
Uni-Pre Finetuned 51.46 + 1.64 84.62 + 1.07 32.55+ 0.28 166.27 + 0.49
Late Concatenation  54.93 +£ 1.19 84.10 £ 1.25 32.55 + 0.44 166.74 + 0.88
OGM 53.30 + 3.12 85.31 +2.62 32.67 + 0.33 166.76 + 0.86
Audio, Vision OGM-GE 52.48 + 1.27 84.88+1.23 32.40 +0.30 167.12 + 0.80
ACC 52.39 + 2,42 85.98 +2.33 32.56 +0.37 166.70 = 1.19
AGM 53.73 + 3.65 84.86+ 1.81 32.71 + 0.44 166.17 + 0.64
PMR 51.52 +2.85 85.24 + 1.64 32.44 + 0.44 166.65 + 0.57
ReconBoost 4729 +5.19 87.63+2.73 33.14 +£0.37 167.99 + 1.18
Ensemble 73.35+ 1.72 66.67 + 1.82 43.94 + 0.67 136.22 + 1.17
Uni-Pre Finetuned | 75.72 + 0.93 64.62 + 1.19 45.22 + 0.41 130.93 + 0.64
Late Concatenation 74.35 + 0.58 66.57 + 0.49 43.99 + 0.39 133.11 + 0.39
OGM 75.04 £ 0.96 63.54 £+ 0.69 44.15+ 0.43 133.15+ 0.35
Text, Vision OGM-GE 73.50 £ 0.79 64.44 +1.26 43.58 + 0.40 133.74 +0.15
ACC 74.67 + 1.68 64.36 + 1.85 44.12 + 0.21 133.13 +0.24
AGM 74.61 £+ 0.86 63.83+1.12 44.15+0.39 132.58 + 0.34
PMR 75.51 £ 0.50 64.51 £ 1.42 44.29 +0.17 131.94 + 0.56
ReconBoost 74.79 £ 1.04 63.20 + 1.26 44.78 + 0.29 130.88 + 0.75
Ensemble 72.62 +1.25 71.45+1.00 40.40 + 1.36 141.68 + 1.32
Audio. Vision. Text Uni-Pre Finetuned & 75.65 £ 0.87 64.69 = 1.10 44.65 + 0.37 131.51 + 0.63
! ’ Late Concatenation 74.87 + 1.23 63.05 + 1.65 44.46 + 0.41 131.87 + 0.60
ReconBoost 75.09 +£ 0.88 63.18 + 1.30 44.42 + 0.53 130.79 + 0.76

Table 6.10. Performance comparison of proposed methods and baselines across different
modality combinations (Audio-Vision, Text-Vision, and Audio-Vision-Text) on the CMU-MOSI
and CMU-MOSEI datasets under standard training configurations. Methods include Ensem-
ble, Uni-Pre Finetuned, Late Concatenation (Baseline), OGM, OGM-GE, ACC, AGM, PMR, and
ReconBoost. Results are reported in terms of Accuracy and Loss. The table highlights the
best-performing models for each metric (Accuracy and Loss) using a color-coded scheme.
Dark shades represent the best performance, medium shades indicate the second-best per-
Jormance, and light shades show the third-best performance.

The experimental findings of Table 6.10 highlight Late Concatenation with joint op-
timization as the most effective audio-video model on the CMU-MOSI dataset. None of
the examined methods surpass its performance in terms of accuracy or loss reduction.
In contrast, dynamic gradient adjustment methods (OGM, AGM) achieve higher accuracy
scores compared to other models; however, they introduce greater variability, leading to

increased loss. The CMU-MOSEI dataset exhibits more stable learning dynamics, with
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AGM achieving the best overall performance. While ReconBoost attains higher accuracy,
it also experiences greater loss, suggesting a trade-off between these metrics. OGM re-
mains competitive but does not significantly outperform standard baselines, including
Ensemble, Uni-modal Pre-Finetuned models and Late Concatenation.

The Uni-Pre Finetuned Text-Video model achieves the best trade-off between accu-
racy and loss across both datasets. PMR successfully surpasses the Late Concate-
nation baseline across both datasets, while OGM on CMU-MOSI and ReconBoost on
CMU-MOSEI demonstrate promising performance, achieving higher accuracy scores and
reduced losses compared to the baseline concatenation model. AGM exhibits similar re-
sults for CMU-MOSEI, suggesting that the dynamic optimization methods examined in
this thesis can be more effective when a dominant modality is present. However, Uni-Pre
Finetuned remains the strongest model, raising important questions about the limita-
tions of the proposed methods in surpassing its performance and the role of pre-training
in sentiment classification. While our analysis confirms that the optimization techniques
influence loss trends as expected and improve the performance of the text-video model,
their inability to consistently improve overall performance suggests that they do not fully
resolve the underlying challenges of modality imbalance.

Observing the trimodal models, we find that the Uni-Pre Finetuned model remains the
strongest, with performance closely matching that of the Text-Video model. The results
indicate that adding a third modality has minimal impact on performance, particularly
in CMU-MOSEI, where bimodal text-video and trimodal accuracy remain nearly identical.
This observation is consistent with previous findings [133], that also reported text domi-
nates learning in CMU-MOSEI 7-class sentiment classification, with additional modalities
contributing minimally. In CMU-MOSI, trimodal accuracy shows a slight improvement,
but the negligible difference in loss suggests that the third modality (audio) contributes lit-
tle to overall learning. These findings reinforce the idea that text is the dominant modality.
The inclusion of additional modalities does not necessarily enhance performance, espe-
cially when they provide weakly informative features or fail to contribute effectively due
to constraints imposed by the dominant modality.

Results by [39] confirm our observation that the examined methods fail to univer-
sally enhance performance across tasks. While the authors utilized transformer-based
encoders and a sentiment regression framework instead of classification, their findings
similarly highlight the limitations of these optimization techniques. Other studies [40]
[41] question the universal effectiveness of the OGM-GE, AGM, and PMR methods under
different levels of modality imbalance. This raises concerns regarding the generaliza-
tion and robustness of these methods across diverse modeling paradigms in multimodal

sentiment analysis, particularly when dealing with varying degrees of modality balance.

6.7 Summary of Findings

This section summarizes the key results obtained from the experiments and evaluates
their implications for multimodal optimization. The Uni-Pre Finetuned model consis-

tently achieves the best results in both the tri-modal and text-vision models, highlighting
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its effectiveness in leveraging pre-trained knowledge for fine-tuned tasks. The strong per-
formance of text-vision models suggests that the audio modality may not consistently
contribute additional useful information, emphasizing the critical role of modality con-
figurations in influencing the outcomes of multimodal learning and the dominant role of
text in the datasets. This finding underscores the importance of carefully selecting and
analyzing modality combinations in experiments.

The optimization methods examined in this research demonstrate potential in ad-
dressing unbalanced learning by improving weaker modalities. For instance, ReconBoost
demonstrated their ability to amplify contributions from weaker modalities while control-
ling dominant ones. However, the inability of any single method to consistently outper-
form the baseline joint concatenation model across all configurations reveals a significant
limitation. This suggests that while these methods influence the training process and
benefit weaker modalities, they fail to achieve consistent, uniform improvements. Strong
baselines such as Uni-Pre Finetuned and Late Concatenation with joint optimization not
only achieve comparable results but often outperform the proposed methods.

A deeper analysis of these methods reveals certain trends and challenges. The inclu-
sion of a development set for auxiliary calculations of modality discrepancy (OGM-GE),
strength (AGM) and imbalanced (PMR) ratios proves beneficial. By using the development
set for computing modality ratios and gradient coefficients, the methods become inde-
pendent of batch size, preventing the models from being biased by sample distributions.
This allows the models to rely entirely on learned features for their behavior, thereby
examining their robustness.

Adam emerges as the more effective optimizer in terms of accuracy scores and loss
trends, primarily due to its dynamic adaptation mechanisms, which enable more stable
learning, faster convergence, and consistent performance across different training config-
urations. In contrast, SGD, with its static learning rate, exhibits slower convergence and
greater sensitivity to hyperparameter selection, making it less robust in the multimodal
training setups examined in our experiments.

However, many methods require prolonged training durations to exploit their full
potential, which often leads to reduced performance compared to baselines. This suggests
that extended training may not be sufficient or effective in bridging the performance gap.
Extended modulation periods proved ineffective, as the models successfully converged
within the initial epochs, rendering additional modulation unnecessary and redundant.
Additionally, the sensitivity of these methods to hyperparameter tuning raises questions
about their practicality and generalization in real-world scenarios.

In summary, the findings highlight the strengths and limitations of dynamic optimiza-
tion methods in addressing multimodal learning challenges. While these methods show
promise in improving weaker modalities and influencing training dynamics, their incon-
sistent performance across different configurations and their inability to surpass robust
baselines underscore the complexities of multimodal optimization. These results reinforce
the importance of dataset characteristics and modality-specific optimization, emphasizing
the need for further refinement of multimodal learning techniques to balance accuracy,

stability, and generalization.
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Conclusions and Future Work

7.1 Conclusions

Multimodal learning has emerged as a powerful approach in various machine learn-
ing applications, including sentiment analysis, where combining text, audio, and visual
modalities can provide with nuanced, comprehensive information, enhancing accuracy.
However, multimodal models often fail to outperform their unimodal counterparts, an
issue primarily attributed to unbalanced multimodal learning.

This thesis investigated optimization techniques aimed at addressing this challenge,
focusing on gradient-based methods (OGM-GE, AGM) and loss-based strategies (PMR,
ReconBoost). These approaches were evaluated on the CMU-MOSI and CMU-MOSEI
datasets to analyze their effectiveness in balancing modality learning dynamics and im-
proving overall performance. In addition, we examined critical training configurations,
including batch size selection, optimizer impact, and extended modulation periods, to
assess how they influence model convergence and stability.

This research provides with an empirical analysis on multimodal optimization strate-
gies. Gradient-based and multi-loss methods were systematically tested for their ability
to address modality imbalance. Results indicated that while these methods improved
learning stability, they did not universally outperform established baselines, such as
Late Concatenation and Uni-Pre Finetuned models. The study also explored the role of
batch size and proposed the incorporation of a development set to accurately quantify
modality contributions in each method, minimizing bias and dependency on the selected
batch size. This approach ensures that models can apply the proposed optimization
techniques without requiring batch size adjustments to align with the capabilities of the
algorithms, thereby enhancing flexibility in multimodal learning. Our study highlighted
the impact of optimizer preference with Adam as the superior optimizer, facilitating faster
and more stable convergence compared to SGD. Extending the modulation period beyond
the initial training epochs proved ineffective, as models were capable of converging early.
This suggests that dynamic optimization methods should examine whether they benefit
from early-stage adjustments or prolonged intervention. The findings reinforced that text
remains the dominant modality in multimodal sentiment analysis, with audio and video
adding only marginal performance improvements even with the applied optimization tech-

niques. This highlights the need for more modality-aware fusion techniques that better
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leverage secondary modalities rather than treating them equally.

The findings of this research contribute to a deeper understanding of multimodal
learning dynamics, particularly in sentiment analysis. While multimodal approaches
are often assumed to be superior to unimodal models, our study confirms that modality
imbalance can hinder performance. Furthermore, our analysis of training configurations
like optimizer choice and incorporation of development set provides useful guidelines
for future multimodal model training, particularly in balancing convergence speed and
generalization performance.

This study provides valuable insights into multimodal optimization, yet certain limita-
tions must be acknowledged. First, the experiments were conducted on CMU-MOSI and
CMU-MOSEI, which, despite being well-established and widely used for sentiment analy-
sis, may not fully generalize to other multimodal applications such as medical diagnosis,
human activity recognition, or audiovisual speech processing. The effectiveness of the
proposed methods should be further validated on datasets with different modality inter-
actions. Second, our work primarily relied on late concatenation fusion with LSTM-based
encoders, which, while effective, does not explore more advanced fusion strategies like
transformer-based architectures. Third, the study found that extending modulation pe-
riods beyond the early training phases did not improve performance. Longer modulation
durations may prove beneficial in settings where modality dominance shifts over time or

when training on continually evolving multimodal data.

7.2 Future Work

Given the findings and limitations discussed, several directions for future research

emerge.

e Future research should focus on developing effective methods for quantifying modal-
ity contributions to establish rules for optimizing each modality separately. A
structured optimization approach integrating real-time modality contribution as-
sessments and ensuring that each modality is adjusted based on its actual impact
on learning has proved already a promising concept. Meta-learning techniques
could further enhance this by dynamically determining when and how to adjust

modality-specific learning rates.

e Alongside with optimization methods, future work should explore how to extract
richer information from secondary modalities, potentially through cross-modal at-
tention mechanisms or modality-specific feature transformations that amplify their

unique contributions.

e Additionally, further research should explore whether alternative fusion methods
yield greater benefits when combined with adaptive optimization techniques, as-

sessing their effectiveness across different fusion strategies.

e Future research should evaluate whether a one-size-fits-all optimization strategy is

feasible or if tailored approaches are necessary for different datasets and tasks. Ex-



7.2 Future Work

panding the scope to include a broader range of sentiment analysis datasets would
provide deeper insights into generalization and scalability of adaptive optimization
methods, as training configurations that perform well for example on CMU-MOSI

may not generalize effectively to CMU-MOSEI or other multimodal benchmarks.

e Future research could explore hybrid approaches that integrate unimodal pretrain-
ing with adaptive multimodal optimization, as the consistently strong performance

of the Uni-Pre Finetuned model supports the effectiveness of this strategy.

e Future work should explore optimization techniques that minimize the need for
extensive hyperparameter tuning, ensuring more practical and scalable multimodal

learning frameworks.

The goal is to develop methods that adapt dynamically to modality-specific learning
dynamics to reduce the dependency on dataset-specific tuning while maintaining robust
performance across different architectures. This thesis contributes to the ongoing effort
of improving multimodal neural network optimization by analyzing gradient-based and
loss-based methods under various training configurations for sentiment analysis. While
no single approach fully resolves modality imbalance, our findings provide a strong foun-
dation for future research. The insights presented in this thesis aim to inspire continued

exploration of the multimodal optimization challenge.
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Appendix

Hyperparameter Tuning Details

This appendix outlines the hyperparameter tuning strategies employed in the exper-
iments discussed in the main body of this thesis. The general training configurations,
including batch sizes, optimizers, and other fundamental parameters, are detailed in the
main text. Here, we focus on the method-specific hyperparameter tuning, which was
systematically refined to ensure fair comparisons and optimal performance across differ-
ent approaches. These tuning ranges serve as a structured reference for future work,
maintaining consistency in hyperparameter selection while allowing flexibility for further

optimization.

A.0.1 On-the-Fly Gradient Modulation, On-the-fly Gradient Modulation with
Generalization Enhancement, Acceleration of slow learning modality

e Exploration Range for a: The parameter a was varied within the range [0.2,0.7]

in increments of 0.1, with the best performance typically observed around 0.5.

o Modulation Duration: For short-term experiments, modulation was applied for the
first 5 epochs, while for extended evaluations, the first 50 epochs yielded optimal

results.

e Learning Rate Selection: The learning rate was chosen from the set {5 x 1074,
1 x 1074, 8 x 107°} based on empirical performance for Adam optimizer. For the
SGD optimizer, it was set to either 1 x 1072 or 5 x 1072 for CMU-MOSI and 5 x 1073
for CMU-MOSEIL.

e Discrepancy Ratio Update Frequency: This parameter was only considered in ex-
periments where discrepancy ratio calculations were based on the development set.
The update frequency was set to 1, 2, or 5, with 5 being chosen in our experiments.

A.0.2 Adaptive Gradient Modulation

o Exploration Range for a: The parameter a was set to 1 or 2, with the best perfor-

mance typically observed when set to 2.

e Modulation Duration: Modulation was applied for the first 10 epochs.
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Learning Rate Selection: The learning rate was chosen based on empirical perfor-
mance. For the Adam optimizer, it ranged from 5 x 1073 to 1 X 10, For the SGD
optimizer, it was set to either 1 x 1072 or 5 x 1072 for CMU-MOSI and 5 x 102 for
CMU-MOSEI.

Discrepancy Ratio Update Frequency: This parameter was only considered in ex-
periments where discrepancy ratio calculations were based on the development set.

The update frequency was set to 1, 2, or 5, with 2 being chosen in our experiments.

A.0.3 Prototypical Modal Rebalance

Exploration Range for a: The parameter a was varied within the range [0.3, 1.0]
in increments of 0.1, with the best performance typically observed around 0.3 for

audio-video models and 0.5 for text-video models.

Modulation Duration: We experimented with modulation for the first 5 or 10

epochs, while for extended evaluations, the first 50 epochs yielded optimal results.

Learning Rate Selection:The learning rate was chosen from the set {5 x 1074,
1 X 107, 8 x 107°} based on empirical performance for Adam optimizer. For the
SGD optimizer, it was set to either 1 x 1072 or 5 x 1072 for CMU-MOSI and 5 x 1073
for CMU-MOSEI.

Discrepancy Ratio Update Frequency: This parameter was only considered in
experiments where discrepancy ratio calculations were based on the development

set. The update frequency was set to 1 or 5, with 5 being chosen in our experiments.

Exponential Moving Average (EMA): The smoothing factor ¢ was set to 0.1 or 0.3
to control the degree of weighting applied to past prototypes.

A.0.4 ReconBoost

Weight Parameter a: Fixed at 0.5 for all experiments.
Alternating Stages: Set to 100 in all cases.
Boosting Rate: Fixed at 1 across all experimental settings.

Weight Factors: Controlling the relative importance of the direct loss and residual

loss, respectively, with w; = 1 and wy = 0.25.
One alternating-boosting stage lasts for 1 epoch.
Global rectification stage lasts for 1 epoch.

Learning Rates: The learning rate for both the boosting scheme and the GRS
scheme was set to 5 x 107* for the Adam optimizer and 1 X 1072 for the SGD

optimizer.
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