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MepiAnyn

H akpBnc mpoBAedn tng taxyTnTag tTou TAOIOU KAl TWV ATATNoewyY LoxVog amoteAel Kpiolpo
otolxeio otig Balaooleg petadopeg, emnpealdoviag TNV EVEPYELAKN amodoon, T cuPpopdwaon e
TOUC Kavoviopoug Kal tn BeAtiotomoinon tou ta&dov. Ot tapadoolakeg HEBodol ektipnong Ing
oxéong taxuINTac-loxVoc Twv TAoiwv PBacidovtal oe NUI-EUTEIPIKA POVTEAA avtiotaong Kat
TapepPBoAEC amo dokipeg otn BAaAacoa (Sea Trials), Ta omoia cuxva amotuyxdavouv va AdBouv uttogn
TIC TIPAYHATIKEG oLVONKeC otn Balacoda, OTTWE 0 AVEUOC, TA KUPATA KAl N duvapikh andédoon Twv
Hnxavwy. MNa tnv avIlHeETWTIon autwy TwV TIEPLOPLCHWY, N Ttapolod HEAETN avamtuooel Eva
pHovtEAo TIpOBAedng NG TaxvTNTag Tou TAoioU BACIOPEVO OTN PNXavikn paenon, cuvdudalovtag
TEXVIKEC GUOCIKAG PovTEAOTIOINONG HE GUYXPOVEC HEBODOUC TEXVNTAC VONUOooUVNC.

H €peuva fekwvd pe pla ektevrh OlepeuvnTikn availucon dedopévwy (EDA) Twv AslTOUpyLIKWYV
0edouévwy TOU TAoiou, cupmep\aPBavOoPEVWY OEDOPEVWY a0 ALoONTAPEC KAl NUEPNOLEC
avadopeg (noon reports). Edappodovial TeEXVIKEG OTWCE avixveuon akpaiwv Thwy, €TiAoyn
XAPAKTNPLOTIKWY KAl AvAAUGH GUCXETLONG, UE OTOXO TN BEATLIOTOTIOINGN TOU GUVOAOU Oed0UEVWY YA
TIG AVAYKEG TNG HOVTEAOTIOINONG. 2T CUVEXELQ, N HEAETN UAOTIOLEL Eva UPBPLOIKO TTAaicoLo TtpoBAeYng,
EVowHATWVoVIag HoviEAa Baclopéva otn Guolkn (TX. NUIEMTIEPIKA HOVIEAQ avtiotaong,
mapepBoAég dokipywy otn BdAacoca kat Physics-Informed Neural Networks (PINNs)) kaBwcg kat
AAYOPLOBUOUCG PNXAVIKACG paBnong (T.x. Mpappikn MaAwdpounon, Random Forest Regressor kat
XGBoost).

Mapouociddetatl yla tapaAAnAn PO oEyyLon YKPL-KouTloU (grey-box modeling), n ottoia evowpatwvel
duolkolg TEpPlOPlOPOUCG OTIC TPORAEYELC HNXAVIKNACG pABNong pe otoxo tn BeAtiwon tng
EPUNVEUCIUOTNTAC KAl TNC akpiBelag Tou pyoviéAou. H dladikacia eTiAoyng Tou BEATIOTOU HOVTEAOU
TepAauBAavel BEATIOTOTIONGCN UTIEPTIAPAUETPWY, AVAAUCH OUVAPTACEWY OGAALATOC KAl EAEYXO
EYKUPOTINTAG, efacdaiidoviag Aplotn TPOYVWOTIKN amédoon. Mpayhatomondnkavy CUYKPLTIKEG
AVOAUOELG HETAED KABAPWYV PUCIKWY HOVIEAWY, APLYWE OEDOUEVO-KEVTIPIKWY HOVIEAWY HNXAVLKAC
pHAaBnong kat LBPBIKWY Tpooeyyiocewy grey-box, afloAoywvtag tn yevikeuon Kal TNV UTIOAOYLOTLIKN
amodoTIKOTNTA.

H peAétn oculntd emiong tnv TiBavr eVowWHATWGON TOU AVATITUYHEVOU HovTEAOL TTPOBAsdNnG oE Eva
JUotnua Yoot pleng Atodpdaoceswyv (DSS), meplypddovtag wce 6a pmopoloe va Xpnotluormotndei yia
eKTipunon tng taxVINTAG OE TPAYHATIKO XPOVO Kal BeATIoToToinoN TOU TAEWOLoU.

H £peuva autn cupBAMeL oTny TtpowBNCoN TN UNXAVIKAC HABnong otn vauTiAia, tpoteivovtag pia
peBodoAoyia ou BeAtiwvel TNy amédoon Twv TAoiwv Kat uttootnpidel tn AnYn armopdoswyv pe
yvwpova ta dedopéva.

Né€eig-kAed1a: MpopAeYn Taxutntag MAoiovu, BeAtiotomoinon Ta&dlov, Mnxaviky Maénaon, MoviéAa
Aedopévwy, Oaldooleg Metadopég, Neupwvikd Aiktua
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Abstract

The accurate prediction of ship speed and power requirements is a critical aspect of maritime
operations, impacting fuel efficiency, regulatory compliance, and voyage optimization. Traditional
methods for estimating ship speed-power relationships rely on semi-empirical resistance models
and sea trial interpolations, which often fail to account for real-world operational conditions such as
wind, waves, and dynamic engine performance. To address these limitations, this study develops a
data-driven machine learning model for ship speed prediction, integrating physical modeling
techniques with modern artificial intelligence approaches.

The research begins with a comprehensive exploratory data analysis (EDA) of ship operational
datasets, including sensor-derived and noon report data. Techniques such as outlier detection,
feature selection, and correlation analysis are applied to refine the dataset for modeling purposes.
The study then implements a hybrid prediction framework, incorporating both physics-based
models (e.g., semi-empirical resistance models, sea trial interpolations, and Physics-Informed
Neural Networks (PINNs)) and machine learning algorithms (e.g., Linear regression, Random Forest
Regressor, and XGBoost).

A parallel grey-box modeling approach is introduced, integrating physics-based constraints into
machine learning predictions to improve model interpretability and accuracy. The model selection
process involves hyperparameter optimization, error function analysis, and validation testing,
ensuring optimal predictive performance. Comparative analyses between pure physics-based,
machine learning-based, and hybrid grey-box models are conducted to evaluate generalization
ability and computational efficiency.

The study also discusses the potential integration of the developed prediction modelinto a Decision
Support System (DSS), outlining how it could be used for real-time power estimation and operational
optimization.

This research contributes to the advancement of machine learning applications in maritime, offering
a methodology that enhances operational efficiency, and supports data-driven decision-making in
modern shipping operations.

Keywords: Ship Speed Prediction, Voyage Optimization, Machine Learning, Data-Driven Models,
Maritime Transportation, Neural Networks
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0. Ektetapevn EAAnvikn MepiAnyin

0.1. Elcaywyn

H vautiliakn Blopnxavia aviurpoowTevel Ttepinou To 3% Twy TTAayKOOHUIWYV ekTopTiwy CO,, yeyovog
TTOU KaBLloTA ETUTAKTIKA TNV AVAYKN yld amodOoTKOTEPEC Kal To IAKEG TIPOG TO TEPLBAAAOV
texvoloyieg. Pubpiotikég mpwtoPouiieg, omweg n MARPOL Annex VI kat to EU ETS, emiBdariouv
aUoTNPOTEPA OPLA OTLC EKTTOUTIEG, eVWw N AleBvnc NauTtiltakog Opyaviopog (IMO) exel B€ael wg oTtdx0
TN peiwon Twyv ekmopTwyY Katd 50% £wcg to 2050.

Units: GHG emissions

2008
as base year
°

Zero emissions
as soon as
o = possible within
Peak as soon Intensity: this century
as possible 40% reduction

Total: 50% reduction
Intensity: 70%

2008 2020 2030 2040 2050 within 2100

Total: Refers to the absolute amount of GHG emissions from international shipping.
Intensity: Carbon dioxide (CO,) emitted per tonne-mile.

I Emission pathway M Business-as-usual Emission gap
in line with IMO's emmissions?
GHG strategy

Ewkdva 1 Opta otdxwyv pelwaonc EKTTOUTWY

ErumAéov, to KOOTOC TWV KAUGIHWY avilmpoowTtevel To 50-60% TwV ASITOUPYIKWY £EODWV €VOG
TAoilou, evw av dev AndBouv peTpa, ol ekopteg CO, pmopei va avgnBouv katd 90-130% pEXPL TO
2050. 2& autd to TAaiolo, n MPOBAsdn NG TaxvTNTag vOg TAoiou UTIO SLadOPETIKEG CUVONAKEC
Aeltoupyiag kaBiotatal kpiown 1060 ya TN peiwon TG KAatavaAwong Kauoipyou 6co Kat yla In
BeATiwoN TNG ETIUXELPNCLAKNC ATTOSOTIKOTNTAC.

H mapouoa peAétn dlepeuvd tn XPHRon HOVIEAWV Pnxavikng pabnong (Machine Learning) ywa tnv
akplBeotepn TPoRAen tTNg TaxvTnTag MAoiou, aflomolwvtag dedopeéva and alclntripeg Kal noon
reports. O otox0¢ eival n avarntuén evog agloTioTou POVIEAOU TIoU Ba UTIOGTNPIEEL TNV ETILXELPNOLAKA
ANWN amodpacewv oToV VAUTIAMAKO TOHEQ.

(1]
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0.2. BiBAoypadikn Eiokomnon & @swpntiko Ytopabpo

H mtpoBAedin tng TaxvInTag Twy Aoiwy €xel yeAetnBei 1600 peow Ttapadoolakwy Ttpoceyyioewy,
OTIWG N EPTIELPLIKA POVTEAOTIOINGN Kal Ol GUGCIKEC TIPOCOHOLWCELG, OGO Kal HE TN XPron CUYXPOoVWwY
HEBOOWYV dedopévwy. OL duaoikec peEBodol Baoidovtal o AVOAUTIKECG £ELICWOELC KAl TIELPAPATIKA
dedopeva amo Baldooleg DOKIHEG, evw Ta dedopéva TAolwy TIOU CUAAEyovTal amo aloOnthnpeg
ETUTPETIOUVV LA TILO DUVALK KAL TIPOCAPHOCTIKA T(POCEYYLON.

H pnxavikn pabnon €xet amodeiéel TNV LKAvOTNTA TNG VA ATTOTUTIWVEL PN YPAHULKEG OXEOELG HETAEU
pHeTaBANTWY, tpoodEpovTac o akplBeic MpoBAEPEIC 08 OoXéon Pe TA CUPBATIKA POVIEAA. 21N
VauTWAig, peBodol oTtwe ta XGBoost, Random Forest kat Physics-Informed Neural Networks (PINNs)
£X0OUV xpnotuototnBei yia tnv mMPoBAsPn TNG oXEoNG HETAEL TAXUTNTAG, LOXUOC Kal TIEPLBANOVTIKWY
TIAPAPETPWV.

0.3. MeBodoAoyia

H £€peuva akoAouBnoe pla dounpevn PooeyyLlon avaiuong dedodEVWY, N otoia mepAaupBave ta
e&nc otadla:

e ZuMloyn kat Mpoene&epyacia Aedopévwy: Xpnowomolndnkav dedopéva anod alcbntnpeg
KcL noon reports, AapBavovtag uttogn apapgtpouc 0mwce to BUBLopa (draft), n taxvtnta we
TIPo¢ To vePO (STW), n taxutnta wg npog to £dadoc (SOG), oL KalpIKEG CLUVONKEG, Kal N LoxVg
NG UNXavng. AoBnke Wlaitepn Eudacn otnv e€acddAllon NG oLOTNTAG TWV OEOOUEVWY Kdal
otnv e€dAelPn O avwy odaipdtwy kataypadng i pn SLabECIPWY TIHWV.

o E&epelvnon kat AvaAuon Asdopsvwyv: Edpappdotnke avaAuon cUoXETIoNG HETAED TwV
HETABANTWYV Yld VA EVIOTILOTOUV Ol KPIoIPOoLl TtapAyovieg TIou mnNpPeddouy tTnv TaxuTnIa.
Emtiong, e€eTtdoTNKE N OTATIOTIKN KATAVOMN Twyv 0ed0UEVWY Kal EVTOTIIOTNKAV aVWHAAIEG N
AToKAicELC TToU Ba PTtopovcav va ETNPEACOLV TNV ATTOO00H TWV HOVIEAWV.

e Avamtuén Movtélou: Aokipaotnkav Stddopeg pEBODOL pnxavikig pabnong, omwce td
XGBoost kat Random Forest, evw &éetdotnke kat n xprnon Physics-Informed Neural
Networks (PINNs) ywa tnv evowpdtwon ¢uoIKwY TEPLOPIOHWY oTo HovteAo. Eyve
AETITOPEPN G CUYKPLON TWV PEBODWYV PE OTOXO TNV ETIAOYH TNG BEATIOTNG TTPOCEYYLIONG.

¢ Exmaidevon katA§loAoynon: Xpnaotpotmolndnkav katdAAnAol deikteg opdapatog (rt.x. RMSE,
MAE) ywa tnv aéloAdynon tng amodoong Twy HoVIEAWY, e Eudaon oTnv IKavotntd Toug va
TPpoBAETIOUY TNV TAXUINTa HE akpifela umo OdladopeTikEG ouvlnkeg Aettoupyiag. H
dladlkaoia eTKUPWONG TWYV ATIOTEAECHATWY TIEPAAPBAvE TN Xprion avefaptnTwy CUVOAWY
OOKIPWYV KAl TN cUYKPLON TWV HOVTEAWYV UE TIpaypatikd dedopéva Aettoupyiag Aoiwv.

(2]
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Ekdva 2 Ataypaupatikn ametkovion tng mpoaogyyLonc mou akoAouBrbnke atnv epyaacia

0.4. AmoteAéopata kat Zulntnon

Ta amoteAéoparta £€0slav OTL TA POVIEAQ PUNXAVIKNAC HABNONC TTPOCHEPOUV CNUAVTIKA BEATIWHEVN
akpiBelatpoBAePng o oxeon He TigTapadoclakeg Tpooeyyioelc. To XGBoost epddvice tn BEATIOTN
amodoon PeTtaél Twv doKlPJaopevwy pebodwy, evw n pooeyylon PINN £0eiée evdladEpouoec
TIPOOTITIKEC EVOoWHATWONC UKWV VOPWYV otn dladikacia mtpoBAsdng.

ErumAgov, n peAétn avedelée n onpaocia tTng cwoTthg poemeepyaaciag Twy dedOPEVWY, 1WBIwg OooV
adopdtn dlaxeiplon TwWy EATTIWY TIHWV KAl TV 0pBr avtiotoixion Twy ded0oUEVWY aTto SLAPOPETIKES
mnyeg (awobntnpeg kat noon reports). O cuvduacpog autwyv Twyv dedopevwy PeAtiwoe tnv
Katavonon tng oxéong Heta&L STW, SOG kal TwV EEWTEPLKWYV TIAPAYOVIWV.

Mua akopun kpiown dartiotwaon Atav n dlaxeiplon tTwyv 6aAdoclwy peupdtwy, Ta omoia emtnpealouv
TN oxéon petagy STW kat SOG. H €peuva avédelée tn onpacia tng evowpdatwong mpochetwy
HETABANTWY, OTWCE N dUvaun Kat katevBuvon Tou avepou, yla Tn BeAtiwon tng akpifelag twv
TtpoBAEPEWV.
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0.5. 2upmepaocpata

H £peuva KAtedelEe OTL OL TEXVIKEG UNXAVIKAC HABNONC uTtopoUv va TtapeXouv akplBeic tpoBAELELC
yla tnv taxvtnta twy mAoiwy, tpoodEpovtag va TOAUTIHO gpyaAeio yla tnv utootnplEn Andng
arnoddocswyv otn vavtia. H xprion dedopuévwy alobnthpwy o€ cuvOUACHO PE TIPONYHEVEG HEBODOUC
avaAucong CUMBAMEL oTnv KAAUTEPN KAtavonon tng anodoong Tou TAoiou Kal otn BeAtiotomnoinon
TWV VAUTIALAKWY AELTOUPYLWV.

MeANOVTIKEG ETIEKTACELG TNG £peuvag Ba pmopovoav va tepAapBdavouy tn BeAtiwon Twv HoVIEAWY
pe meplocotepa dedopeva, Tn xprion deep learning TEXVIKWY KAl TNV AVATITUEN EVOC OAOKANPWHEVOU
CUOTHAHATOC UTIOOTHPLENG artodACEWY TIOU Ba EVOWHATWVEL SUVAMLKA TIG TIPOBAEWELC TOU HOVTEAOU
OTO TAQICLO ETXEPNOLAKWY OTPATNYIKWYV. ETUmAgov, n peAEtn tng emidpaong tng udPOOUVAULKNG
avtiotaong Kat N eVowpatwon Guolkwy JoviéAwy Ba propolcav va GUPBAAOULY OTNV TIEPALTEPW
avgnon tng akpiBelag Twyv poBAEPEWYV Kal oTn dnpLoupyia Plag oOAOKANPWHEVNC TIPOCEYYLONG OTN
VAU TIALaKN artodoaon.
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1. Introduction

1.1. Motivation

Climate change has emerged as one of the most pressing global challenges, with international
bodies such as the United Nations Framework Convention on Climate Change (UNFCCC) and the
International Maritime Organization (IMO) taking significant steps to mitigate its effects. The
adoption of the Paris Agreement in 2015 [1] marked a global commitment to reducing greenhouse
gas (GHG) emissions, with the goal of limiting global temperature rise to well below 2°C, while
striving to keep the increase below 1.5°C relative to pre-industrial levels. Achieving these targets
necessitates reaching net-zero emissions by 2050, driving a fundamental transformation across
energy production, consumption, and industrial sectors, including the maritime industry.

The Role of the Maritime Industry in Global Trade and Emissions

Maritime transport remains a fundamental component of global trade, accounting for over 80% of
total merchandise transportation. In 2023, global seaborne trade volumes reached 12.3 billion
tonnes, reflecting a 2.4% increase following a previous contraction. This growth was largely driven
by increased demand for commodities, vessel rerouting due to geopolitical tensions, and
disruptions in key maritime chokepoints [2]. As of 2024, the global fleet comprises approximately
150,000 vessels, with an estimated total value of $2 trillion [3]. The distribution of fleet value across
vessel types is as follows:

e Offshore vessels: 22.4%
e Bulk carriers: 18.4%

e Tankers: 13.2%

e Containerships: 10.6%
e Gas carriers: 9.1%

e Othervessels: 26.3%

Vessel Types

m Offshore vessel
M Bulk carriers

W Tankers

H Containerships
B Gas carriers

W Other vessels

Figure 1 Distribution of fleet across vessel types
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In terms of deadweight tonnage (DWT), bulk carriers (41.2%) and oil tankers (28.2%) dominate the
fleet composition. Conversely, containerships, gas carriers, and offshore vessels, while constituting
a smaller percentage of DWT, hold significant market value.

Fleet segmentation by gross tonnage (GT) is as follows [4] :

e Smallvessels (GT <500): 37%

e Medium vessels (500 = GT < 25,000): 43%
e |Large vessels (25,000 < GT <60,000): 13%
e Very large vessels (GT = 60,000): 7%

Gross Tonnage (GT)

B Small vessel
B Medium vessels
M Large vessels

H Very large vessel

Figure 2 Distribution of fleet by gross tonnage

This classification is significant as vessel size directly influences operational efficiency, fuel
consumption, and regulatory compliance, particularly in speed prediction models.

Decarbonization Challenges in the Maritime Sector

The maritime industry experienced a 4.2% increase in ton-miles in 2023, the highest in 15 years,
indicating longer shipping distances due to geopolitical rerouting and climate-related disruptions
[2]. However, industry challenges persist:

o Geopolitical risks: Ongoing conflicts impact trade routes and increase supply chain
volatility.

e Regulatory compliance: The IMO 2020 sulfur cap and upcoming IMO decarbonization targets
for 2030 and 2050 require increased adoption of alternative fuels and energy-efficient
technologies.

e Economic pressures: Fluctuations in crude oil prices and rising operational costs place
financial constraints on shipowners.

e Environmental and climate risks: Increased weather-related disruptions and stricter
emissions regulations necessitate improved fleet management strategies.

The maritime sector, responsible for approximately 3% of global total emissions [5], has been
identified as a "hard-to-abate" industry due to its reliance on fossil fuels, long asset lifespans, and
the operational challenges posed by electrification [6] . Recognizing the need for a more sustainable
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future, the IMO established the goal of reducing carbon intensity per transport work by at least 40%
by 2030, with further reductions of up to 70% by 2050 [7]. However, as these targets fall short of full
decarbonization, the international community has called for further action, including the adoption
of stricter regulations and incentives for low- and zero-carbon fuels [8].

Industry Response and the Need for Data-Driven Decision-Making

In response, the shipping industry has pursued energy-efficient technologies and alternative fuels,
such as liquefied natural gas (LNG), biofuels, and hydrogen-based fuels. Additionally, initiatives like
the European Union's Emissions Trading System (EU ETS) have begun to apply market-based
measures to reduce carbon emissions from maritime transport [9]. However, the pathway to
achieving full decarbonization is complex and requires a multi-faceted approach that combines
technological innovation, regulatory frameworks, and operational efficiency improvements.

One of the critical areas of focus is optimizing vessel performance, particularly the relationship
between ship speed and power requirements. This relationship is essential for reducing fuel
consumption and emissions, as the power needed to propel a ship increases exponentially with
speed [10]. Accurately predicting speed-power dynamics under varying operational conditions can
significantly improve decision-making for ship operators, enabling more efficient routing and speed
adjustments to minimize energy use.

1.2. Problem Statement

The maritime industry faces increasing pressure to reduce greenhouse gas emissions while
maintaining operational efficiency. With the introduction of stringent regulations such as the EU
Emissions Trading System and the IMQO's decarbonization goals, ship operators must find cost-
effective ways to comply. One key challenge lies in optimizing the speed-power relationship of
vessels, which directly influences fuel consumption and emissions. The power required to propel a
ship increases exponentially with speed, yet existing methods of speed-power prediction often fail
to accountfor critical real-world variables, including weather conditions, hull resistance, and engine
performance. Moreover, operational complexities such as biofouling, propeller inefficiencies, and
dynamic factors like wind and currents can significantly impact a ship’s energy consumption [10].

This thesis addresses these challenges by developing machine learning models that predict ship
speed based on power input, while considering a wide range of operational and environmental
factors. Leveraging data from a real-time fuel optimization system installed on a tanker vessel, the
model aims to provide enhanced predictive capabilities, enabling operators to make informed
decisions regarding speed adjustments and power management, ultimately improving vessel
efficiency and reducing fuel costs. By accurately modeling the speed-power relationship, the
research seeks to provide insights that support decision-making processes for speed adjustments
and power management, in line with the goals of the IMO and the EU to decarbonize shipping.
Furthermore, the study advances data-driven methods in maritime operations, which are essential
for navigating regulatory challenges and achieving climate targets.
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1.3. Objectives

The primary objective of this thesis is to develop a machine learning model for ship speed prediction
based on power inputs, integrating data-driven techniques with maritime operational knowledge.
This research aims to enhance vessel performance monitoring, optimize fuel consumption, and
support decision-making for speed and power management in line with decarbonization efforts.

First, the study will investigate and compare ship speed prediction methods by reviewing traditional
estimation techniques and identifying their limitations. It will explore machine learning approaches
and assess their potential improvements over conventional models.

Second, the research will focus on developing and evaluating a machine learning model for ship
speed prediction. This includes conducting exploratory data analysis (EDA) to identify key
influencing factors, implementing physics-based, data-driven, and hybrid (grey-box) models, and
optimizing model performance through feature selection, hyperparameter tuning, and validation
with real-world vessel data.

The third objective is to assess the practical applications of the developed model in vessel
operations. The study will demonstrate how predictive modeling can assist ship operators in voyage
planning, speed optimization, and fuel efficiency strategies, contributing to compliance with IMO
and EU decarbonization targets.

Finally, the research will identify challenges and potential improvements in ML-based ship
performance modeling. It will analyze the limitations of the developed model in real-world
applications and suggest areas for future research and enhancements in maritime data analytics.
Additionally, it will highlight how predictive models can be integrated into DSS frameworks to
support ship operators in making data-driven speed and power management decisions.

1.4. Work Structure

This thesis is structured into eight chapters, each addressing different aspects of the research on
machine learning-based ship speed prediction.

Chapter 1: Introduction provides motivation, problem statement, objectives, and work structure of
the study. It outlines the significance of optimizing vessel operations through predictive modeling
and highlights the role of machine learning in addressing maritime decarbonization challenges.

Chapter 2: Literature Review examines existing research on machine learning applications in
maritime operations, traditional ship speed and power estimation methods, and the evolution of
data-driven models in vessel performance analysis. This chapter identifies the gaps in current
approaches and establishes the rationale for integrating machine learning techniques into speed
prediction models.
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Chapter 3: Theoretical Background presents the fundamental principles relevant to the study. It
includes a taxonomy of machine learning algorithms, an overview of ship resistance and power
dynamics, and a discussion on data preprocessing and feature engineering techniques used to
enhance model accuracy.

Chapter 4: Case Study focuses on the dataset used in this research. It describes data sources,
preprocessing steps, exploratory data analysis (EDA), feature selection methods, and outlier
detection techniques. These steps are crucial for preparing high-quality input data for machine
learning modeling.

Chapter 5: Prediction Model details the development and evaluation of the ship speed prediction
model. It introduces a semi-empirical physics-based resistance model as a baseline, followed by
machine learning approaches to enhance predictive accuracy. The chapter explores a grey-box
modeling approach, integrating physics-based data-driven methodologies, and evaluates model
performance based on real-world vessel data.

Chapter 6: Decision Support System discusses how the developed speed prediction model could be
utilized in decision support frameworks for vessel operations. This thesis highlights potential
applications of DSS in voyage planning, speed optimization, and fuel efficiency strategies, aligning
with industry sustainability goals.

Chapter 7: Conclusion and Future Work summarizes the key findings, discusses the limitations of
the study, and proposes future research directions to further enhance ML-based ship speed and
power prediction models.
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2. Literature Review

2.1. Machine Learning Applications in Maritime Operations

The maritime industry is increasingly adopting machine learning (ML) and data-driven methodologies
to address complex challenges and enhance decision-making processes. ML algorithms, by
analyzing large datasets, can predict patterns, identify anomalies, and optimize processes across a
wide range of maritime operations. These applications provide innovative solutions that improve
efficiency, safety, and environmental sustainability as global shipping continues to expand and
confront regulatory pressures related to decarbonization. Machine learning, a subset of artificial
intelligence, enables systems to learn from data and make predictions without explicit
programming. As global shipping continues to expand, the need for efficient, sustainable practices
has become paramount. According to Yan and Wang (2022) in their book “Applications of Machine
Learning and Data Analytics Models in Maritime Transportation” [11], data-driven methodologies are
transforming traditional maritime operations by providing innovative solutions that improve
efficiency, safety, and environmental sustainability.

The importance of ML in the maritime industry cannot be overstated. By leveraging ML techniques,
stakeholders can optimize ship performance, enhance fuel efficiency, and facilitate operational
decision-making. For instance, predictive maintenance models can reduce downtime by identifying
potential failures before they occur, while fuel optimization algorithms enable more efficient routing
and speed adjustments, significantly lowering emissions.

One of the most promising applications of ML is vessel health monitoring. Machine learning models
trained in real-time sensor data can predict potential failures in engines, thrusters, and other vital
mechanical systems. By leveraging predictive maintenance algorithms, ship operators can reduce
unplanned downtime and maintenance costs. Techniques such as Long Short-Term Memory (LSTM)
networks have shown efficacy in estimating the Remaining Useful Life (RUL) of critical components,
ensuring timely maintenance actions before system failures occur. The transition from reactive to
predictive maintenance enables more efficient resource management, contributing to both
operational safety and cost reduction [12].

ML has also become a key enabler in the development of autonomous ships. These systems rely on
machine learning algorithms to analyze real-time data from multiple sensors, such as GPS, radar,
and LIDAR, to enable autonomous navigation, obstacle detection, and route adjustments. For
instance, machine learning models can process environmental and navigational data in real-time,
allowing ships to make operational adjustments autonomously, enhancing both safety and
efficiency. The integration of ML into autonomous navigation systems has the potential to reduce
human error, lower operational costs, and improve safety in challenging marine environments [12].

In maritime logistics and port operations, machine learning enhances the efficiency of container
handling, ship scheduling, and cargo flow prediction. Predictive analytics tools can forecast port
congestion, improving berthing schedules and minimizing waiting times. By using data-driven
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methods to optimize cargo distribution, ML helps ports to streamline operations, reduce delays, and
increase throughput [11]. Additionally, ML models can optimize fleet management, ensuring that
vessels operate on the most efficient routes, with minimal fuel consumption and optimal cargo
loading configurations.

Machine learning is gaining traction in the maritime industry, offering innovative ways to optimize
vessel performance, improve operational efficiency, and address regulatory challenges. These
advancements mark a significant shift from traditional methods, which, while foundational, are
increasingly being supplemented by data-driven approaches. As this chapter introduces the role of
ML in shipping, the traditional methods for estimating vessel speed and power, which continue to
play a vital role in maritime engineering, will be presented in detail in the following chapter.

2.2. Traditional Methods of Ship Speed and Power Prediction

The prediction of ship speed and power requirements has long relied on traditional methods, such
as empirical formulas and physical models, which form the foundation of maritime engineering.
These methods provide a reliable basis for ship design and operational planning but struggle to
account for the complex and dynamic conditions encountered during real-world voyages.

One of the most widely used empirical methods is the cube law, also known as the propeller law,
which approximates the relationship between a ship’s required power and its speed through water
as cubic:

P(v) = kv?
where:

e visthe ship’s speed through water (knots),
e P(v)istheship'srequired power, including main engines, boilers, and auxiliary engines (kW),
e kisaconstant derived from the ship’s characteristics [10].

This formula, derived from basic hydrodynamic principles, suggests that small reductions in speed
can lead to significant reductions in power and fuel consumption. However, this approximation is
primarily under ideal conditions, such as calm water and constant speed, and does not account for
real-world variables such as waves, wind, and currents.

More advanced forms of cube law, like the modified admiralty formula, extend this approach by
incorporating the ship’s displacement and payload:

P(v,w) = m(4 + w)?/3p"
where:

e wisthe ship’s payload (tonnes),
e Aisthe lightship weight (tonnes),
e nistypically = 3,
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e misaconstant.

This formula accounts for the wetted surface area of the hull, which affects resistance, and provides
a more refined estimate of power requirements, especially at different loading conditions [10].

While the cube law provides a useful approximation for calm water resistance, real-world conditions
often introduce additional complexities. For example, a ship’s resistance in waves, known as added
resistance, is highly nonlinear. Added resistance depends on factors such as hull shape, sea state,
and the ship's seakeeping characteristics, which are not captured by simple empirical formulas.
Estimating added resistance requires more sophisticated methods, such as strip theory
approximation [13] or other hydrodynamic models [10].

The “Basic Principles of Ship Propulsion” further highlight the relationship between resistance and
fuel consumption [14]. The total resistance RT of a ship in calm water is a combination of frictional
and residual resistance, which can be described as:

1
RT = EpCTUZS

where:

e pisthe water density,
e (7 isthetotal drag coefficient (sum of the frictional and residual drag coefficients),
e Sisthe wetted surface area of the hull.

This equation shows that, even in calm water, the relationship between speed and resistance is
quadratic, reinforcing the importance of understanding how real-world conditions affect power and
fuel consumption. Traditional methods like the cube law tend to oversimplify these dynamics,
leading to less accurate predictions in varying operational environments. Moreover, empirical
formulas and hydrodynamic models often fail to account for operational factors like biofouling,
propeller slip, and sea state, which can significantly impact performance over time. Biofouling
increases hull resistance, while propeller slip—caused by currents or changes in sea conditions—
reduces the efficiency of propulsion. As the “Basic Principles of Ship Propulsion” document notes,
operators often rely on performance benchmarks from sea trials to measure these factors during
normal operations, but these methods provide limited flexibility for real-time adjustments [14].

Computational Fluid Dynamics (CFD) is an advanced method used to simulate fluid flow around a
ship's hull and predict its hydrodynamic performance. Unlike empirical formulas, which are based
on simplified assumptions, CFD offers a more comprehensive approach by solving the Reynolds-
averaged Navier-Stokes (RANS) equations. These equations govern fluid motion and allow for
detailed simulations of how water flows around the hull, accounting for factors like turbulence,
pressure distribution, and wave-structure interactions [15]. Historically, CFD models have been
used at model scale, where simulations are validated using experimental data from testing tanks.
However, advancements in computational power have enabled the shift toward full-scale
simulations, which provide more accurate predictions of ship performance under real-world
conditions. As highlighted in the Siemens white paper, full-scale CFD simulations eliminate the
scaling errors associated with model tests, particularly in terms of boundary layer behavior and drag
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coefficients. Full-scale simulations also better represent the effects of environmental conditions
such as wave heights, currents, and wind [15].

CFD models offer significant advantages over traditional empirical methods by providing detailed
insights into specific operational conditions. For example, CFD can predict how hull resistance
changes under different wave amplitudes, directions, and speeds, which is particularly valuable for
voyage optimization. Ship operators can use CFD simulations to determine optimal speeds, heading
angles, and power settings under varying sea states, leading to more efficient fuel usage and
reduced emissions. Despite its accuracy, CFD simulations are computationally intensive, especially
for full-scale simulations that require millions of grid cells to resolve the flow field around the hull.
The complexity of these simulations limits their application for real-time operational decisions. In
most cases, CFD is used during the design phase to optimize hull shapes, propeller designs, and
engine configurations rather than during voyages. This makes CFD a powerful tool for improving the
energy efficiency of new ship designs but less suitable for dynamic, on-the-fly operational
adjustments [15]. Furthermore, CFD's reliance on high-quality numerical grids and turbulence
models introduces additional challenges. Simulations must be carefully set up to ensure grid
convergence and accurate resolution of boundary layers, particularly in the turbulent flow regime.
Even slight errors in grid resolution can lead to significant discrepancies in predicted drag forces,
making it essential to balance computational cost with simulation accuracy.

Semi-empirical models represent a middle ground between empirical formulas and CFD, combining
experimental data with theoretical principles to improve accuracy. These models often incorporate
specific experimental results, such as wave resistance or hull form tests, and apply them within a
theoretical framework to predict ship performance under a variety of conditions. For example, Lang
(2021) developed a semi-empirical model to estimate a ship’s added resistance in waves based on
experimental data [16]. Although this model improved accuracy compared to purely empirical
methods, it still struggled to adapt to real-time variations in environmental factors. Lang’s work
highlighted that more accurate predictions, especially in complex sea states, required machine
learning models that could process large datasets and respond to a wider range of conditions.

Despite the utility of these traditional methods, they rely on simplifying assumptions that limit their
accuracy in real-world conditions. Assumptions such as calm water, steady-state conditions, or a
constant power-speed relationship make these models less effective in handling dynamic factors
like changing sea states, wind, currents, or biofouling. As a ship’s hull fouls over time or as
environmental conditions fluctuate, the predictions of traditional models become less reliable,
often resulting in suboptimal performance and higher fuel consumption. Moreover, while CFD and
semi-empirical models offer a more accurate representation of ship performance, they remain
computationally expensive and require significant resources to set up and run simulations. This
makes them impractical for real-time operational adjustments during voyages, where quick and
adaptable decisions are needed to optimize speed and fuel consumption. This gap has driven the
development of data-driven models, particularly those based on machine learning, which offer more
accurate predictions by incorporating a wide range of operational and environmental factors in real-
time. These models can process vast amounts of operational data, accounting for a broader range
of variables, including weather patterns, hull conditions, and traffic patterns, in real time. By
continuously learning from both historical and real-time data, machine learning models offer the
potential for more dynamic, responsive ship performance optimization.
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2.3. Data-Driven Models in Vessel Performance

Data-driven models, particularly those based on machine learning (ML) techniques, offer a
promising alternative by providing more accurate, real-time predictions of ship speed, power, and
fuel consumption under varying operational and environmental conditions.

Machine learning applications in vessel performance optimization can be categorized into three key
areas: fuel consumption prediction, speed prediction, and overall operational efficiency.

In fuel consumption prediction, ML models help predict fuel usage based on various operational
parameters, such as speed and sea conditions. For example, Madureira (2021) developed ML
models using historical operational data to optimize fuel consumption on ships [17]. Additionally,
the study “A Deep Learning Method for the Prediction of Ship Fuel Consumption in Real Operational
Conditions” demonstrates a deep learning approach to fuel consumption prediction, showcasing
how advanced techniques can significantly enhance predictive accuracy [18].

For speed prediction, algorithms such as artificial neural networks (ANNs) and support vector
machines (SVM) are utilized to predict ship speed under different operational conditions, aiding in
voyage planning and optimization. The paper “Development of Neural Networks for Ship Speed
Prediction” focuses on creating models that can enhance the accuracy of speed predictions using
various neural network architectures [19]. Lang (2021) focused on developing speed-power
performance models, leveraging the XGBoost algorithm, resulting in a significant reduction in
prediction errors compared to traditional models [16]. Furthermore, the work on “Speed-Power
Models — A Bayesian Approach” highlights the use of Bayesian methods for modeling speed-power
relationships, which can provide valuable insights into optimizing vessel performance [20].
Additionally, Lang et al. (2022) proposed physics-informed ML models that integrate physical
principles with machine learning, providing a more accurate approach to speed predictions [21].

Regarding operational efficiency, ML is applied to improve overall operational efficiency by
integrating data from various sources, including weather forecasts, vessel performance, and market
dynamics, to inform strategic decision-making. The study titled “Machine Learning Techniques for
Modeling Ships Performance in Waves” explores the integration of real-time data to enhance
operational performance [22]. The review of various applications in “Machine Learning for Naval
Architecture, Ocean, and Marine Engineering” also provides insight into how ML can optimize
different operational facets [23].

In the detailed review of key studies, Zhang et al. (2024) developed a deep learning method to predict
ship fuel consumption in real operational conditions [18]. The model incorporates an attention
mechanism into a Bi-directional Long Short-Term Memory (Bi-LSTM) network to capture the complex
relationships between operational data inputs, such as sailing speed, heading, displacement, trim,
weather, and sea conditions, and fuel consumption. The method uses data from sensors, voyage
reporting, and hydrometeorological information comprising 266 variables. This approach
demonstrated a significant improvement in prediction accuracy when compared to existing
methods, highlighting the potential of Bi-LSTM with attention mechanisms in optimizing fuel
consumption and supporting decision-making for environmentally sustainable ship operations.
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Lang (2021) developed speed-power performance models for arbitrary wave headings, focusing on
ship voyage optimization [16]. The thesis introduces two models: a semi-empirical model and a
machine learning-based model. The semi-empirical model estimates a ship's added resistance in
head waves and extends this to different wave headings, verified by experimental model tests. A
significant wave height-based correction factor is introduced to account for the nonlinear effects of
irregular waves on a ship’s resistance and power increase. The machine learning model, developed
using the XGBoost algorithm, leverages full-scale measurement data from a PCTC vessel, with input
features including operational profiles, metocean conditions, and motion responses. The machine
learning model outperformed the semi-empirical model, reducing the discrepancy between power
predictions and actual values from over 40% to less than 1%. These models significantly improve
voyage optimization, leading to reduced fuel consumption and increased energy efficiency.

Madureira (2021) aimed to develop machine learning models to represent the operation of a fuel
optimization system and to create a prototype decision support system that predicts optimal fuel
consumption [17]. The study used a one-year dataset collected from a ship’s automated fuel
optimization system, which included data on propulsion system parameters, environmental
conditions, and fuel consumption. After pre-processing and analysis, the data were used to train
machine learning models using Artificial Neural Networks (ANN) and Support Vector Machines (SVM)
algorithms. The performance of these algorithms was evaluated, and a two-stage model was
developed to predict both ship speed and fuel consumption under operational conditions. These
models were integrated into a decision support system, which was demonstrated in different
operational scenarios, showing potential for optimizing fuel efficiency and supporting operational
decision-making.

Lang et al. (2023) proposed a novel hybrid model that integrates physics-informed approaches with
machine learning to improve ship speed predictions [21]. The study utilized a grey-box model (GBM)
approach, where the expected ship speed in calm water was modeled using Physics-Informed
Neural Networks (PINNs) based on speed-power model tests. This was combined with the XGBoost
machine learning algorithm to estimate ship speed reduction under actual weather conditions. The
results demonstrated that the GBM significantly improved prediction accuracy compared to
traditional black-box models, especially when sufficient data was available. Even with limited data,
the GBM showed considerable improvements in speed prediction accuracy, making it a robust
method for practical applications. The model was further validated through its implementation for
Estimated Time of Arrival (ETA) predictions for cross-Pacific and North Atlantic voyages, showing a
maximum cumulative error of only 5 hours

Grubisi¢ et al. (2018) developed a system for monitoring and recording the influence of sea
conditions on avesselin motion using machine learning techniques to model the ship's performance
in waves [22]. The system correlates measured wave parameters such as encounter angle, wave
height, and wave amplitude with the vessel's motion characteristics. High-quality GRIB data from
regions like the North Sea and Adriatic were used to generate training sets, and these correlations
were stored in a neural network. The modelis then applied alongside performance indicators like the
root mean square (RMS) of linear acceleration, roll or pitch angle, and fuel consumption. This data
helps create historical performance charts that assist in rational route planning and optimization.
The study's experiments demonstrated its effectiveness in enhancing operational decision-making
and optimizing ship performance under various sea conditions.
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When comparing these studies, it is evident that different ML methodologies can yield significant
improvements in predictive accuracy and operational efficiency. For example, deep learning models
like RNNs have shown high accuracy in fuel consumption predictions, while tree-based methods like
XGBoost excel in modeling speed-power relationships. However, each approach comes with its
advantages and limitations, such as the need for extensive data for training deep learning models
compared to the relatively simpler requirements of traditional regression models.

Despite the promising applications of ML in maritime operations, several challenges persist. Data
quality and availability remain critical issues, as incomplete or inaccurate data can significantly
affect model performance. Additionally, integrating ML solutions into existing operational
frameworks poses its own set of difficulties, particularly regarding staff training and system
compatibility.

In summary, the applications of machine learning in maritime operations are diverse and impactful,
offering solutions that enhance efficiency and sustainability. The studies reviewed demonstrate the
significant potential of MLtechniques to optimize fuel consumption, improve speed predictions, and
enhance operational decision-making. As industry continues to evolve, the integration of ML will play
a crucial role in shaping the future of maritime transportation.

A critical focus in maritime operations is the relationship between ship speed, power, and fuel
consumption, which is central to both operational efficiency and policy decisions. As discussed in
"Ship Speed vs Power or Fuel Consumption: Are laws of physics still valid? Regression analysis
pitfalls and misguided policy implications" [10], the non-linear relationship between speed and fuel
consumption is key to reducing greenhouse gas emissions from ships. Reducing speed can lead to
a disproportionate reduction in fuel consumption and emissions, making it a powerful tool in the
short to medium term while the industry transitions to low-carbon fuels. The paper emphasizes that
this speed reduction is critical in achieving compliance with regulations such as the Energy
Efficiency Design Index (EEDI), Energy Efficiency Existing Ship Index (EEXI), and Carbon Intensity
Indicators (Cll), which are mandated by the International Maritime Organization (IMO) and the
European Union (EU).

Furthermore, the paper highlights the risks of misinterpreting the speed-fuel relationship and the
potential for misguided policies based on flawed analyses. By ensuring that policy decisions are
grounded in scientifically sound models, the maritime sector can better navigate the complex trade-
offs between operational efficiency and environmental sustainability. Machine learning models,
which incorporate large-scale operational data and environmental factors, offer a robust solution
for accurately predicting fuel consumption and optimizing speed to meet regulatory requirements
while minimizing emissions. These models, by enhancing the accuracy of speed-power-fuel
consumption predictions, can help ship operators comply with regulatory frameworks and optimize
operations in a more sustainable manner.

Ultimately, machine learning techniques, when properly integrated into decision-making processes,
hold great potential for bridging the gap between current operational practices and future
sustainability goals. As the maritime industry continues to adopt more sophisticated data-driven
methods, ML models will play a pivotal role in enabling more precise and effective measures to
reduce GHG emissions and improve the energy efficiency of ships.

[16]
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3. Theoretical Background

3.1. Ship Resistance and Power Dynamics

A ship's energy system is a complex interplay of various factors, including propulsion, heating, and
auxiliary equipment, all of which contribute to overall energy consumption. In real-world conditions,
a vessel's fuel consumption is influenced by multiple parameters such as marine engine
performance, propeller efficiency, and total hydrodynamic resistance [24]. The relationship between
propulsion power and ship speed is directly affected by environmental factors, including wind,
waves, and currents. A standard approach to estimating a vessel’s speed-power performance
follows a structured workflow, as illustrated in Figure 3.

Speed Over Ground
S0G

Water
depth

Fuel
Consumption
Fe

Figure 3 Typical workflow for the conventional estimation of a ship's speed to power/fuel consumption

The estimation of a ship's speed-power relationship begins with determining its resistance across
various sailing speeds. This can be achieved through model testing, numerical simulations, or semi-
empirical formulas. When operating in real sea conditions, external environmental factors such as
wind and wave-induced resistance significantly impact the vessel’s performance over its voyage.
Therefore, added resistance due to wind (Ry4) and waves (R,,) must be considered to accurately
compute the total resistance (Rror4.) acting on the ship.

To overcome this resistance and maintain forward motion, the ship relies on thrust force generated
by its propeller, which is powered by marine engines operating at specific RPMs under varying load
conditions. The propulsion power required for the ship to sustain a given speed through water (V) is
defined as the effective power (P,):

Py = RroraL *V
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This effective power is provided by the brake power (P,) of the main engine, which is responsible for
delivering the shaft power necessary to drive the propeller. The relationship between these
parameters is given by:

Fe

Pb:
Ns* NMn" Mr™ No

where 15, 1, Ny, Mo represent the shaft efficiency, hull efficiency, relative rotative efficiency, and
open-water efficiency, respectively.

Finally, fuel consumption is estimated by multiplying the engine’s brake power (P,) with the specific
fuel oil consumption (SFOC) and the operational time. The overall propulsion efficiency, which
depends on engine type and propeller characteristics, is typically provided by manufacturers or
shipowners and serves as a key factor in determining the vessel’s total fuel usage under different
operational and environmental conditions.

3.1.1.Calm water resistance

Holtrop and Mennen [25] proposed an approximate method for calculating a ship's calm water
resistance based on full-scale trials and model experiments. This method considers key ship
characteristics, including main dimensions, hull type, appendage configuration, and immersed
transom sterns. The total resistance in still water is decomposed into six primary components:

Rearm = Rp (14 k1) + Rapp + Ry + Rp+ Rrp + Ry
where:
e Ry represents frictional resistance, estimated using the ITTC-1957 correlation line [26].
e 1+ k;isthe form factor, accounting for viscous pressure effects.
e R, pp denotes the resistance of appendages.
e Ry, is the wave-making resistance of the bare hull.
e Ry, corresponds to the wave resistance due to the bulbous bow.
e Rpprepresents the additional resistance from immersed transoms.
e R, accounts for the model-ship correlation resistance to correct for scale effects.

When towing tank resistance test data is available, it is generally preferred to interpolate the
measured values rather than relying solely on empirical formulas. This approach helps minimize
potential deviations caused by variations in hull form and ship type, ensuring a more accurate
estimation of resistance.

(18]
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3.1.2.Added resistance due to wind

The additional resistance induced by wind is primarily influenced by the ship's superstructure area
and the relative wind conditions. The relative wind is calculated as the vector sum of the ship’s speed
and direction with the wind speed and direction. This added resistance can have a significantimpact
on the ship's propulsion power requirements, especially in adverse weather conditions. According
to the ISO [27] guideline is used to estimate wind-induced resistance:

Rpa = % pa * [CaaOwr)Axy Vg — Can(0)Axy V5]
where:
® Py, airmass density
e Ay, transverse projected area of the ship above the waterline, including the superstructure
e Vg, relative wind speed

e Oyg, relative wind direction

e Vo, ship speed over ground
o Cua(¥wr), wind resistance coefficient at a given relative wind angle
e (44(0), wind resistance coefficient for headwind conditions

The wind resistance coefficients are determined based on extensive wind tunnel experiments and
model tests, providing empirical values for different ship types and wind angles. These coefficients
play a crucial role in accurately predicting the impact of wind on ship performance, particularly for
voyage planning and fuel consumption estimation.

3.1.3.Added resistance due to wave

The resistance of a ship experiences due to waves is influenced by the wave spectrum and spreading
function, which define the distribution of wave energy in different directions. To model irregular wave
conditions encountered in real sea states, this study applies the JONSWAP wave spectrum [28]
along with a Cosine-Squared spreading function:

2 2(6 T <p< T
D(6) = {705 O, 2="=2
0, otherwise

The wave spectrum is defined as:

[19]
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—(w-wp)?

202(1)%, D(e)

320 H? —1950\ exp
S(w|Hs, T, ¥)D(8) = Y

where:
e H, significant wave height
e T,, wave peak period

o v, peakedness factor (typically set to 3.3 for JONSWAP spectrum)

e 0, spectral width parameter, with values 0.07 forw < Wy and 0.09forw > wp

The added wave resistance (R,y) in irregular waves is typically estimated by integrating the
resistance due to regular waves (R, (w)), weighted by the wave spectrum S(w), across the full
range of wave frequencies:

® (7 Raw(@lV,
RAW(les: Tpv, V”B) =2 J;) fis(wv-]s: Tp:y) %)zﬁ) D(6 - p)dbdw
_7 a

where:
e (,(w), amplitude of the regular wave
e R, /2 transfer function (RAOs) describing the ship’s added resistance response to waves

This formulation provides a realistic estimate of wave-induced resistance, crucial for accurately
modeling ship performance in various sea states.

3.1.4.Correction Factor for Ship Resistance and Power

The conventional integration methods developed by ITTC [29] and ISO [27] have played a crucialrole
in the implementation of the Energy Efficiency Design Index (EEDI) for ship design. These methods
incorporate the effects of waves based on extensive benchmark studies using experimental test data
and sea trials. While semi-empirical approaches provide reasonable estimates of the average wave
resistance for large ship datasets, they are primarily designed for ship design applications rather
than real-time operational performance assessment.

For operational applications such as voyage optimization, the focus shifts to predicting the specific
ship's actual resistance and power demand rather than relying on generalized mean wave resistance
estimates. One key limitation of traditional integration methods is their assumption of linear wave
superposition, which does not fully capture the nonlinear nature of ship responses such as wave
reflections, ship motions, and dynamic propulsion efficiency variations. These nonlinear effects
become particularly significant in harsher sea conditions, where larger waves (Hs) lead to:

[20]
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e Increased added resistance due to waves (R,y)
e Reduced propulsion efficiency due to excessive ship motions
e Surf-riding and instability, further increasing power requirements

To account for these nonlinear effects, a correction factor (CHS) is introduced, adjusting the semi-

empirical wave resistance component (Ryy,) to better reflect real-world ship performance in varying
sea states. The total resistance is thus modified as follows:

Rrorar = Rcawm + Raa + Raw * Cy,

where the correction factor is wave-height dependent and defined as:

Cys = 3'Sx/ﬁs

For broader applicability, further experimental validation and full-scale measurements are
necessary to refine and generalize this correction factor, ensuring its effectiveness across various
ship types and operational conditions.

[21]
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3.2. Machine Learning Techniques for Ship Speed Prediction

In recent years, artificial intelligence (Al) has emerged as a rapidly advancing field, revolutionizing
various industries and solving complex problems. Al has been transformative in applications ranging
from medical diagnostics and autonomous vehicles to speech recognition and personalized
recommendations on e-commerce platforms and streaming services.

At its core, Al refers to the automation of tasks traditionally performed by humans, enabling
machines to learn from data, recognize patterns, and make decisions. While Al's popularity has
surged in recent years, its fundamental concepts trace back to the 1950s. Early Al techniques, such
as rule-based systems and Support Vector Machines (SVMs), were often constrained by limited
computational power. However, significant advancements in hardware (e.g., high-performance
GPUs, faster storage solutions), data availability (large-scale datasets), and optimization algorithms
have enabled researchers to develop more sophisticated machine learning models. These
breakthroughs have led to remarkable improvements in predictive accuracy, making Al an
indispensable tool across a wide range of scientific and industrial domains [30].

Artificial
Intelligence

Machine
Learning

Symbolic Al
Decision

trees

Neural networks

Kernel
methods

Shallow
neural
networks Deep learning

Figure 4 Artificial intelligence, Machine Learning, and Deep Learning [30]

While Al encompasses various approaches, machine learning (ML) is a specific subset focused on
enabling systems to learn patterns from data without explicit programming. Unlike traditional rule-
based programming, where humans define complex rules for a task (e.g., pattern recognition),
machine learning models are trained on input-output pairs and automatically extract the underlying
patterns and relationships in the data.

[22]
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The machine learning process consists of two primary phases:

1. Training Phase: The modelis initially provided with a dataset containing known input-output
relationships. During training, the model's parameters (weights) are iteratively adjusted to
minimize the difference between its predictions and actual values using a feedback
mechanism.

2. Inference Phase: Once trained, the modelis deployed to make predictions on new, unseen
data by applying the learned relationships.

3.2.1. Taxonomy of data-driven algorithms

Data-driven models can be broadly categorized into three main learning paradigms, depending on
how they learn from data:

1. Supervised Learning
2. Unsupervised Learning
3. Reinforcement Learning

This classification is based on the availability of labeled data and the learning approach used by each
method.

e Supervised Learning requires that each observation in the training dataset is associated with
a known target value (ground truth). The model learns by mapping input features to the
correct outputs, making it well-suited for predictive modeling tasks, such as ship speed
estimation based on historical operational data.

e Unsupervised Learning does notrely on labeled data. Instead, it identifies hidden structures,
patterns, or clusters within the dataset. This approach is useful for anomaly detection,
pattern recognition, and feature extraction, where the model explores relationships between
variables without predefined categories.

e Reinforcement Learning (RL) differs from both supervised and unsupervised learning in that
it does not use labeled data. Instead, the model learns through interaction with an
environment, where it receives rewards or penalties based on its decisions. The goal of RL is
to determine the optimal strategy (policy) that maximizes long-term rewards, making it
applicable in scenarios requiring dynamic decision-making, such as autonomous voyage
optimization.

Additionally, a hybrid approach known as semi-supervised learning combines elements of both
supervised and unsupervised learning by using a mix of labeled and unlabeled data for model
training. This technique is particularly useful in situations where acquiring labeled data is expensive
or time-consuming.

[23]
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While reinforcement learning has shown promise in various applications, its practical use in ship
speed prediction and performance monitoring remains limited. Therefore, for the scope of this
discussion, the primary focus will be on supervised and unsupervised learning methods, which have
more direct applications in maritime data analysis.

3.2.2. Artificial Neural Networks (ANNs) and Deep Learning

Neural networks are a class of machine learning algorithms designed to mimic the structure and
functionality of the human brain [31]. They consist of interconnected units called neurons, which are
arranged in multiple layers:

1. Input Layer — Receives raw data and passes it to the next layer.

2. Hidden Layers - Process the information through weighted connections, applying
transformations to extract relevant features.

3. Output Layer — Produces the final prediction or classification based on the learned
representations, as shown in Figure 5.

Input Hidden Output

Figure 5 Representation of neural network

[24]
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Each connection between neurons is associated with weights and biases, which determine the
strength of influence an input has on the output. During training, these weights are adjusted through
backpropagation and gradient descent, minimizing the difference between predicted and actual
values [32]. To capture complex non-linear relationships, neural networks utilize activation
functions, which introduce non-linearity into the learning process. This enables the network to
model intricate dependencies between input features and improve predictive performance.

During training, a neural network is exposed to labeled data and iteratively adjusts its weights and
biases using backpropagation and gradient descent to minimize prediction errors [32]. This learning
process enables the network to model complex, non-linear relationships between input features
and outputs, making it highly effective for a wide range of tasks, including image recognition, natural
language processing, and strategic decision-making in games [31].

Despite their advantages, neural networks also have notable limitations. They can be
computationally demanding, requiring high processing power and large datasets for effective
training [33]. Additionally, they are susceptible to overfitting, where the model becomes too
specialized to the training data and fails to generalize to new, unseen inputs. To mitigate overfitting,
techniques such as regularization, dropout, and early stopping are commonly used to enhance
model robustness and generalization [32].
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Time Time Time
Underfitted Good Fit/Robust Overfitted

Figure 6 Model Fitting: Overfitting, Underfitting, and Balanced

In summary, neural networks are a powerful tool for solving complex problems, capable of learning
intricate patterns and modeling non-linear relationships between inputs and outputs. Their
effectiveness across various applications, from predictive modeling to autonomous decision-
making, has solidified their role as a cornerstone of modern machine learning.

Despite certain challenges, such as computational demands and overfitting, ongoing research
continues to drive significant advancements in neural network architectures, optimization
techniques, and training methodologies. These improvements are enhancing model performance,
efficiency, and generalization, making neural networks an increasingly robust and versatile solution
for a wide range of real-world applications.

[25]
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Hyperparameter Optimization

Hyperparameter optimization is a critical step in training machine learning models, as it directly
impacts their accuracy, generalization, and overall performance. Selecting the appropriate
hyperparameter values helps achieve a balance between underfitting and overfitting, ensuring that
the model performs well not only on training data but also on unseen test data. Fine-tuning these
parameters is essential for maximizing model efficiency and predictive accuracy.

Number of Hidden Layers

The number of hidden layers is a key hyperparameter in neural networks, particularly in Multi-Layer
Perceptrons (MLPs) and Deep Neural Networks (DNNs). For many tasks, a single hidden layer is
sufficient, provided it has enough neurons to capture the underlying relationships in the data.
However, for more complex problems, deep networks (i.e., those with multiple hidden layers) tend
to perform better while using fewer parameters, as they can learn hierarchical representations more
efficiently.

Deep networks exploit the hierarchical structure of real-world data:

e |ower layers capture low-level features.

e |Intermediate layers learn higher-level representations.

e Upper layers extract the most abstract and meaningful features before reaching the final
output.

This hierarchical design improves generalization and enables faster convergence to an optimal
solution. The common approach for determining the optimal number of hidden layers involves
incrementally adding layers until the error stabilizes, ensuring that the model remains efficient while
maintaining high performance on unseen data [34].

Number of Neurons per Hidden Layer

The number of neurons per hidden layer plays a crucial role in determining a neural network’s ability
to learn and generalize effectively. Earlier approaches often followed a pyramidal structure, where
successive layers had fewer neurons. However, this practice has largely been abandoned, as using
the same number of neurons across all hidden layers has been found to work just as well—if not
better—while simplifying hyperparameter tuning.

In some cases, having a larger first hidden layer can enhance performance, but this depends on the
dataset. If a hidden layer has too few neurons, the model may lose important information, limiting
its ability to capture complex relationships in the data. Conversely, too many neurons can lead to
overfitting and increased computational cost.

A common approach for selecting the optimal number of neurons is incrementally adding units until
the model’s error stabilizes, ensuring the smallest number of neurons that achieves optimal
performance [34].

[26]
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Activation Function

An activation function determines how the weighted sum of inputs from a neuron is transformed into
an output. It is a key component that affects both the learning capability and efficiency of a neural
network. Activation functions can be linear or nonlinear, with hidden layers typically using nonlinear
functions to enable the network to capture complex patterns in the data.

Common activation functions include:

e RelU (Rectified Linear Unit) — A widely used function due to its simplicity and computational
efficiency. It effectively avoids vanishing gradients but can suffer from the "dying ReLU"
problem, where inactive neurons output zero for all inputs.

e |ogistic (Sigmoid)-Used in some applications but prone to vanishing gradients, making deep
networks difficult to train.

e Tanh (Hyperbolic Tangent) — Similar to the sigmoid function but centered around zero,
allowing for stronger gradients in deep networks.

For output layers, the choice of activation function depends on the prediction task:

e Linear activation for regression problems.
e Softmax or Sigmoid for classification tasks.

The selection of an activation function is critical for ensuring model stability and convergence, with
ReLU being the preferred choice for hidden layers due to its balance of performance and efficiency
[34].
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Figure 7 ReLU function
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Number of Epochs & Batch Size

The number of epochs refers to the total number of times a machine learning model processes the
entire training dataset. Each epoch allows the model to update its parameters based on the training
data, gradually improving its predictive accuracy.

Batch size defines the number of samples processed before the model updates its parameters.
Instead of updating the model after processing the entire dataset, training is done in mini batches,
where updates occur after processing a subset of the data. The batch size must be a positive integer
that is less than or equal to the total number of training samples.

e Larger batch sizes improve computational efficiency and stabilize gradient updates,
especially in noisy datasets.

e Smaller batch sizes introduce more variability in gradient updates but can help the model
generalize better.

While the number of epochs can be any positive integer, an excessively high number may lead to
overfitting, where the model learns the training data too well and fails to generalize to new data. The
optimal values for both epochs and batch size vary depending on the dataset and model
architecture, and they are typically tuned experimentally using validation performance as a guide.

3.2.3.XGBoost: An Advanced Gradient Boosting Algorithm

XGBoost, developed by Chen and Guestrin [35], is an enhanced version of gradient boosting that
offers higher computational efficiency and improved regularization techniques to mitigate
overfitting. While machine learning methods such as Support Vector Machines (SVMs) and Artificial
Neural Networks (ANNs) are widely applied in the maritime industry, XGBoost remains underutilized
in ship performance modeling despite its robust handling of heterogeneous data and different
feature scales.

Gradient Boosting and the XGBoost Framework

XGBoost is an advanced implementation of the Gradient Tree Boosting (GTB) algorithm. Gradient
boosting is an ensemble learning method that combines multiple weak learners, typically decision
trees, to develop a strong predictive model. Unlike bagging techniques, such as random forests,
where trees are trained independently in parallel, boosting operates sequentially, with each new tree
correcting the errors of its predecessors. The process begins by training an initial weak model,
commonly a simple decision tree. Additional trees are then iteratively added, each designed to
compensate for the limitations of the previous ones. The final model aggregates the predictions from
all trees, producing a highly accurate outcome. This iterative refinement process makes gradient
boosting one of the most effective techniques for classification and regression tasks.

[28]
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XGBoost introduces several enhancements over traditional Gradient Boosting Decision Trees
(GBDTs), primarily aimed at improving model accuracy, efficiency, and regularization. One of the key
improvements is its ability to control overfitting through the integration of L1 regularization (LASSO)
and L2 regularization (Ridge Regression), ensuring better generalization across datasets.
Furthermore, XGBoost optimizes tree construction by utilizing Classification and Regression Tree
(CART) algorithms, where binary splits are applied, and leaf nodes store prediction values (leaf
weights) to enhance computational efficiency.

To further improve performance, XGBoost incorporates several computational optimizations, such
as sparse-aware computations, weighted quantile sketching, and parallelization, making it
significantly faster and more scalable compared to standard gradient boosting methods. These
enhancements make XGBoost particularly effective for handling large datasets with high-
dimensional features, making it a robust choice for predictive modeling tasks such as ship speed
prediction and vessel performance analysis.

Gradient Boosting Decision Tree (GBDT) is a boosting algorithm designed specifically for regression
tasks. The model-building process starts with a single decision tree, and additional trees are
sequentially added in an effort to reduce residual errors from previous iterations. Each tree refines
the prediction by learning from the mistakes of its predecessor, and the final model aggregates the
weighted sum of all tree predictions.

XGBoost, an advanced implementation of GBDT, introduces several key improvements, particularly
in handling regularization, computational efficiency, and predictive accuracy. Unlike conventional
GBDTs, where each leaf node represents the average value of all samples assigned to that node,
XGBoost assigns leaf weights, which serve as the regression values for each sample. These leaf
weights, denoted as fi(x;), represent the prediction score from the k-th decision tree for a given
input x;. When a single decision tree is used, the prediction is often inaccurate, but as more trees
are added, the ensemble model accumulates the outputs from all trees, leading to more refined
predictions. The final prediction for a sample is computed as:

K

~(k

9% = > fux)
k=1

where K is the total number of trees in the ensemble.
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3.2.4.Random Forest: A Robust Ensemble Learning Method

Random Forest (RF) is a widely used tree-based ensemble learning algorithm that builds upon the
bagging (Bootstrap Aggregating) technique, introducing an additional layer of randomness in the
training process. It is particularly effective for handling nonlinear relationships, reducing overfitting,
and improving predictive performance in both classification and regression tasks [11].

Ensemble learning methods fall into two main categories: bagging and boosting. Bagging creates
multiple variations of the training dataset through sampling with replacement and trains a weak
learner on each subset independently. The final prediction is obtained by averaging results (for
regression) or majority voting (for classification). Boosting, on the other hand, builds models
sequentially, where each new model corrects errors from the previous one. Random Forest is an
extension of bagging applied to Decision Trees (DTs). Unlike traditional Decision Trees (DTs), where
each node is splitbased on all available features, Random Forests introduce feature randomness by
selecting only a subset of features at each node split. This additional randomness enhances model
diversity and robustness, making RF less sensitive to variations in the training data. If a dataset
contains m features, the recommended number of features to consider at each node is typicallyd =
log,m.

Random Forest models derive their randomness from two main sources:

1. Bootstrap Sampling — Each tree in the forest is trained on a random subset of the training
data, drawn with replacement.

2. Feature Subsampling — Instead of considering all features when splitting a node, only a
random subset is used, improving generalization.

This combination significantly reduces variance, leading to improved prediction accuracy and model
stability, especially in datasets with high dimensionality or collinear features. By training multiple
weak models on different data subsets, RF significantly reduces variance and prevents overfitting.
Since training datasets may contain noise, outliers, or underrepresented samples, the RF approach
ensures that the final model is less sensitive to anomalies, leading to improved robustness and
generalization [36].
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Figure 8 An illustration of an RF model
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3.2.5. Error function

The error function is a crucial metric used to evaluate the performance of a machine learning model
by comparing its predicted values to the actual values. The choice of the error function significantly
impacts the reliability and interpretability of the model's predictions.

For regression problems, the most commonly used error functions include:

e Mean Squared Error (MSE)

n

1 N
MSE = (¥ - 7’

=1

MSE squares the differences between predicted and actual values, emphasizing larger errors more
heauvily.

e Root Mean Squared Error (RMSE)
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RMSE provides a more interpretable error measure by converting squared differences back to the
original unit of measurement but still penalizes large errors.

e Mean Absolute Error (MAE)
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MAE measures absolute differences between actual and predicted values, making it more robust to
outliers than MSE or RMSE.

e Mean Absolute Percentage Error (MAPE)
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MAPE expresses errors as a percentage, making it scale-independent, but can be problematic when
actualvalues are close to zero.
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e Coefficient of Determination (R*> Score)

I R’

R?=1 =

R® measures how well the independent variables explain the variance in the dependent variable. It
ranges from 0 to 1, where 1 indicates a perfect fit and values close to 0 suggest poor predictive
power. Negative values indicate the model performs worse than a simple mean prediction.

Each error function has specific advantages depending on the use case. MSE and RMSE penalize
larger errors more heavily, making them useful when minimizing large deviations is critical. MAE,
being less sensitive to extreme values, is preferred when robustness to outliers is required. MAPE is
commonly used in forecasting applications, where percentage-based errors provide a meaningful
performance metric. R® Score is useful for assessing the model’s overall explanatory power but
should be used alongside absolute error metrics for a complete evaluation.
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4.Case Study

4.1. Dataset Description

This chapter discusses the data sources for this project. The dataset consists of high-frequency
sensor data collected every five (5) minutes from two sister Aframax crude oil tankers (Vessel_1 and
Vessel_2). The data spans from June 2023 to May 2024, with 99,196 data points for Vessel_1 and
103,620 data points for Vessel_2. The vessels’ main particulars are presented in Table 1.

Table 1 Main particulars for both vessels

Main Particulars

Ship Type Tanker

Length Between Perpenticulars (Lgp) 242 [m]
Breadth (moulded) 44 [m]
Depth (moulded) 21.2 [m]
Scantling Draught 15.2 [m]
Main Engine Type MAN B&W 6G60ME - C10.5

MCR Power 12690 [kW]
MCR RPM 85.8 [RPM]
Propeller Type Fixed Pitch Propeller

YOB 2022

The dataset includes a variety of operational parameters as presented in Table 2.

Table 2 Recorded sensor data parameters

Label Units - Format
Timestamp YYYY-MM-DD HH:MM
Draught Mid [m]

Speed Through Water (STW) [kn]
Speed Over Ground (SOG) [kn]
M/E RPM [RPM]
M/E Power [kW]
M/E Cylinder exhaust Gas Temperature [°C]
M/E Consumption [t/h]
Wind Speed [kn]
Wind Direction [deg]
Vessel’s Course [deg]
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Additionally, the dataset is complemented by Noon Reports from both vessels for the same period,

providing information on:

Table 3 Recorded noon report data parameters

Label Units - Format
Timestamp DD/MM/YYYY HH:MM:SS
Time zone
Report Type
Draught Fore [m]
Draught Mid [m]
Draugght Aft [m]
Speed Through Water (STW) [kn]
Speed Over Ground (SOG) [kn]
M/E RPM [RPM]
M/E Power [kW]
Wind Speed [kn]
Wind Direction [deg]
Wave Height [m]
Wave Direction [deg]
Swell Height [m]
Swell Direction [deg]
Vessel’s Course [deg]
Ambient Temperature [°C]
E/R Temperature [°C]

The Noon Reports serve as a validation source, enabling cross-checking of idle periods, speed

variations, and power consumption trends.

To enhance the accuracy of predictions and to shape the final grey model, external data sources are

included:

o Sea Trials Data: Provides performance benchmarks under controlled conditions.
e M/E Shop Tests: Contains manufacturer test results for power performance.
e Model Tests: Offers hydrodynamic testing data for ship behavior modeling.

¢ Underwater Cleaning (UWC) and Propeller Polishing Records: Includes maintenance logs
affecting ship resistance and performance.
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4.2. Exploratory Data Analysis & Feature Selection

This chapter outlines the data preprocessing methodology employed to ensure high-quality input for
the machine learning model. First, an Exploratory Data Analysis (EDA) is conducted to examine the
structure of the dataset, detect missing values, and identify potential inconsistencies. Then,
statistical filtering techniques for outlier detection and removal are applied to eliminate erroneous
data points. Finally, a feature selection process is performed, leveraging correlation analysis and
domain knowledge to retain only the most relevant and independent variables for model training.

Avisualrepresentation of the multi-stage preprocessing pipeline and feature selection methodology
is shown in Figure 9. The diagram illustrates the integration of various data sources, including sensor
data, noon reports, and UWC logs, followed by the data processing steps applied before feature

Data Processing

| Implementation of Noon Data to sensor data ‘
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‘ Sensor Data Set | Handle of NaN and zeros ‘ Feature Selection
- l - ‘ Correlation Matrix
‘ Noon Reports Data Set | Calculation of extra parameters ‘ ——| Filtered Data }-—-
i Recursive Feature
‘ UWC Log | Quasi-Steady State filter ‘ Elimination

}

Physical Filtering Based on Operational
Constraints

Figure 9 Visual representation of data preprocessing and feature selection
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4.2.1.0utlier Detection and Removal

An outlier is an observation that lies an abnormal distance from other values in a random sample
from a population. In a sense, this definition leaves it up to the analyst (or a consensus process) to
decide what will be considered abnormal. Before abnormal observations can be singled out, it is
necessary to characterize normal observations [37] A first step in this process is computing
descriptive statistics, as shown in Table 4, which provides insight into the characteristics of each
parameter from sensor data analyzed.

Table 4 Descriptive statics of the raw dataset for Vessel_1

WIND_FORCE_KN | DRAFT_M ME_RPM M1_POW WIND_DIR STW
count 99050 98015 99129 99129 99055 99057
mean 11.26 9.73 35.62 3472.52 173.87 7.12
min 0.00 -2.21 -371.00 -3710.00 0.00 -4.12
25% 6.10 7.30 0.00 0.00 46.67 0.60
50% 9.45 11.02 0.50 1.00 157.50 5.24
75% 14.80 12.44 75.20 7499.00 309.09 13.65
max 46.06 14.67 81.10 10900.00 360.00 16.54
std 7.10 3.33 36.66 3769.75 126.52 6.37

Additionally, handling missing values is a critical step in data preprocessing, as they are among the
most common issues encountered. Similarly, outliers should be addressed appropriately to prevent
skewed analyses, and negative values that lack physical meaning must be identified and corrected
where necessary.

Table 5 Total number of NaN instances for Vessel_1

NaN Values
WIND_FORCE_KN 146
DRAFT_M 1181
ME_RPM 67
ME_POW 67
WIND_DIR 141
STW 139

Additionally, Figure 10 presents a time-series visualization of the dataset over its full duration,
highlighting inconsistencies and missing values. Notably, a significant data gap is observed in
February 2024, affecting most of the examined variables.
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Ship Performance Monitoring
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Figure 10 Raw data of key vessel parameters over time

To further explore feature relationships, scatter plots are used to visualize dependencies identified
in the correlation matrix. In Figure 11, the first plot shows a strong linear relationship between Speed
Over Ground (SOG) and Speed Through Water (STW), confirming expected physical behavior, due to
the current effects. The second plot, depicting the relationship between STW and RPM, follows a
trend consistent with propeller hydrodynamics. The spread and variation in the data indicates the
influence of propeller slip, which varies depending on factors such as hull fouling, sea state, and
propulsion efficiency. Slip increases when there is greater resistance acting against the vessel,
causing the actual speed through water to be lower than the theoretical value derived from propeller
RPM. Finally, the third plot demonstrates the cubic relationship between RPM and Main Engine
Power, which is consistent with the Propeller Law. Although the dataset largely follows the expected
relationships between the analyzed parameters, observed outliers should be removed to improve
model reliability and accuracy.
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Relationships Between Speed, RPM, and Power for Vessel_1
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Figure 11 Scatter plots showing key vessel relationships—SOG vs. STW, STW vs. RPM, and RPM vs. Power

The previous analysis focuses on the sensor dataset; however, this dataset is complemented by the
Noon Reports, which provide additional parameters not captured by the sensors, such as swell,
wave height, and direction. Additionally, the Noon Reports are utilized tofill in data gaps when sensor
measurements are unavailable.

Forinstance, if the mid-draft value is missing in the sensor dataset for specific records, itis replaced
with the corresponding value from the Noon Reports for the same timestamp. To ensure accurate
data alignment, it is crucial to understand the structure and reporting mechanism of Noon Reports.
These reports are typically generated at noon each day, except in cases where a key event occurs
(e.g., "Arrival"), in which case an additional report is created. Each Noon Report corresponds to the
period since the previous report, meaning that a recorded value, such as M/E fuel consumption of
40 metric tons, represents the total consumption from the previous report to the current one.

Furthermore, Noon Reports are recorded in local time, reflecting the vessel’s current time zone. To
align them with sensor timestamps, which are typically in Coordinated Universal Time (UTC), the
Noon Report timestamps are converted to UTC before merging with the sensor dataset.
Subsequently, for each missing value in the sensor dataset, the corresponding Noon Report value
within the same reporting period is used as a replacement. This methodology ensures that the
sensor dataset is enriched by incorporating reliable Noon Report data.
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After integrating the Noon Report data, additional data correction and filtering procedures were
applied to ensure data quality before analysis. As previously mentioned, Mid Draft values from
sensors were supplemented with Noon Report data in cases where the sensorreadings were missing
(NaN) orrecorded as zero. Similarly, negative values in SOG were identified as physically implausible
and were replaced with zero. The same correction was applied to negative RPM and M/E Power
values, as such readings do not hold physical meaning in this context.

As part of the data preprocessing, additional parameters were computed to improve the accuracy of
the vessel power prediction model. These derived parameters ensure a more comprehensive
dataset for analysis.

Trim Calculation

Trim is a crucial factor in vessel hydrodynamics, affecting fuel efficiency and propulsion power. It is
defined as the difference between the fore draft and the aft draft:

Trim = Draught Fore — Draught Aft

Wind Component in Vessel’s Direction

The impact of wind on a vessel’s performance depends on its relative direction to the vessel's
movement. To quantify this effect, the wind component acting along the vessel’s course was
computed using the relative wind angle:

Wind Component = Wind Speed * cos (Relative Angle)

Wave and Swell Components
To account for the impact of waves and swells on vessel resistance, two new features were
Wave Component = Wave Height * cos (Wave Direction)

Swell Component = Swell Height * cos (Swell Direction)

Fouling Factor Calculation

Biofouling on a vessel’s hull increases hydrodynamic resistance, leading to greater fuel
consumption over time. To quantify this effect, a Fouling Factor was introduced using an exponential
decay function:

Fouling Factor = 1 — e~ k*Days Since Last UWC

where:
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e kisadecayrate constant, empirically set to 0.005.

e Days Since Last UWC represents the number of days since the last hull and propeller
cleaning.

This function ensures that:
¢ When recently cleaned (Days Since Cleaning = 0), the fouling factor is near zero.

e Overtime, fouling gradually accumulates toward a maximum limit.

Current Effect Calculation

The impact of ocean currents was estimated by analyzing the difference between Speed Over
Ground (SOG) and Speed Through Water (STW):

Current ef fect = Speed Over Ground — Speed Through Water
where:
e SOG represents the vessel’s actual movement relative to the seabed.
o STW represents the movement relative to water.

If SOG > STW, the vessel benefits from a favorable current. If SOG < STW, the vessel faces an adverse
current, increasing resistance.

Systematic Filtering Approach

Beyond basic corrections, a systematic approach to outlier detection was implemented to ensure
data consistency and reliability. Outlier removal is particularly important in machine learning
applications, where incorrect data points can distort model predictions. In ship performance
monitoring, outliers may arise due to:

e Sensor malfunctions or calibration errors, leading to unrealistic readings.

e External environmental influences, such as sudden gusts of wind, strong currents, or
extreme weather conditions.

e Transient operational states, where the vessel undergoes acceleration, deceleration, or
abrupt course changes.

To address these issues, a combination of filtering methods was employed, including Quasi-Steady-
State (QSS) filtering, physical constraints filtering, and statistical outlier removal based on industry
standards (e.g., ISO 19030).

A widely used statistical approach for outlier detection, Chauvenet’s Criterion, is explicitly
referenced in ISO 19030-2:2016 [38], which recommends its use for filtering consecutive, non-
overlapping 10-minute data blocks. According to this approach, an observation is considered an
outlierif its probability of occurrence is below a defined threshold based on the complementary error
function:
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A;
P(d;) = ch(J - \/E)

where,

e P(d;)isthe probability of data pointd; occurring, §; = |d; — u| represents the deviation from
the mean, and
e o isthe standard deviation of the dataset.

Avalue is considered an outlier if the inequality:
P(d;)*N < 0.5
is satisfied, where N is the total number of data points.

However, despite its theoretical validity, several practical limitations arise when applying
Chauvenet’s Criterion to vessel performance datasets [39]. The method assumes that data is
normally distributed, yet real-world vessel data often deviates significantly from Gaussian
assumptions. Ship speed, fuel consumption, and engine load are influenced by externalfactors such
as sea state, wind, and hull fouling, leading to skewed or multi-modal distributions that Chauvenet’s
Criterion does not account for. Furthermore, Chauvenet’s Criterion treats each data point
independently, failing to consider time dependencies in vessel operation. Ship performance data is
inherently time-series-based, where variations in speed, power, and resistance occur due to
evolving operational conditions rather than sensor errors. Consequently, applying a probability-
based outlier detection method without considering temporal dynamics may lead to the removal of
valid performance data.

For these reasons, Chauvenet’s Criterion was not implemented in this study. Instead, an alternative
multi-stage filtering approach was adopted to identify and exclude unreliable data, ensuring that
only physically meaningful outliers were removed. This filtering process includes:

1. Quasi-Steady-State (QSS) filtering [40], which eliminates transient operational states such
as acceleration, deceleration, and course changes,

2. Physical filtering, applying thresholds based on vessel speed, wind force, wave height, and
swell height, ensuring that extreme environmental conditions are excluded.

3. Statistical filtering, with error thresholds to align with real-world vessel behavior.

By implementing this methodology, outlier detection focuses on operationally significant
inconsistencies, rather than removing data based solely on probabilistic assumptions. The
approach preserves genuine variations in ship performance while ensuring that spurious anomalies
do not distort modeling and analysis.
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Quasi-Steady-State (QSS) Filtering

The QSSfilter was applied to remove data corresponding to transient operational phases, where the
vessel undergoes significant changes in speed, shaft RPM, or heading. These transient states are
characterized by rapid variations in the dataset, which introduce non-stationary behavior and
increase model uncertainty. Since modeling transient states explicitly would require a significantly
more complex approach, they were eliminated before further analysis.

The QSS filter, adapted from Gupta et al. [40], operates in two stages. In the first stage, a sliding
window regressionis applied to detect periods where the rate of change (slope) in shaft RPM exceeds
a defined threshold. A t-test is performed to determine whether a given data window exhibits a
statistically significant change in state. To avoid misclassification due to near-zero variance in the
data, the t-value t; is computed as:

by

t, =
1 1+O'b

where b, is the estimated slope within the window, and g, is the standard deviation of the slope. This
approach prevents cases where flat-line data with near-zero standard deviation would incorrectly
be classified as transient.

In the second stage, a backward gradient check is applied to samples that failed the first test. This
step helps retain some observations near sudden state changes that might otherwise be incorrectly
excluded. The gradient is calculated as:

Ox;  X;— Xi—q

ot ti— ti_4

where x; and x;_4 represent consecutive data points, and t; , t;_, are their respective timestamps. If
the absolute gradient falls below a certain threshold, the sample is retained.

Figure 12 illustrates the impact of the QSS filtering process. The original dataset contains both
transient and steady-state conditions, while the filtered dataset removes acceleration and
deceleration effects, leaving only steady-state periods.
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Figure 12 Data filtering process
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Physical Filtering Based on Operational Constraints

After eliminating transient conditions, an additional filtering step was applied to exclude data
recorded under extreme environmental conditions, which could significantly affect vessel
performance. These conditions include high winds, rough seas, and low vessel speeds, where
external forces dominate the vessel’s response, making performance modeling unreliable.

The following constraints were imposed:
e Speed Through Water (STW) = 6 knots to exclude periods of slow maneuvering or drifting.

e Wind Force £ 15.5 knots to remove cases where excessive wind resistance impacts
performance.

¢ Wave Height < 3 meters and Swell Height < 3 meters to ensure that vessel behavior is not
significantly altered by heavy seas.
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4.2.2.Feature Selection

To improve model efficiency and accuracy, a feature selection process was applied to remove
redundant or irrelevant variables. The selection was conducted in two stages: correlation analysis
and Recursive Feature Elimination (RFE).

Initially, a correlation matrix (Figure 13) was computed to identify dependencies between the
recorded parameters.
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Figure 13 Correlation matrix of key vessel parameters

The analysis revealed strong relationships between certain variables, indicating potential
redundancy. Specifically, a near-perfect correlation was observed between Main Engine RPM and
Main Engine Power (p = 0.98), suggesting that both variables convey similar information, and one
may be omitted without a loss of predictive capability. A similarly high correlation was found
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between Trim and Mid Draft, implying that both parameters represent hull immersion effects and
may not be necessary together in the final feature set. Additionally, environmental parameters such
as Wave Height and Swell Height exhibited moderate correlation, indicating that their combined
effect should be assessed further. Following this initial analysis, the dataset was refined to retain
only the most informative variables, as shown in Figure 14.
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Figure 14 Remaining features after the examination of the initial correlation matrix

To refine feature selection, Recursive Feature Elimination (RFE) was applied using a Random Forest
Regressor to determine the most predictive variables for modeling Main Engine Power (M/E Power).
This method iteratively removes less significant features while retaining those with the highest
contribution to prediction accuracy. The process ranked all available features based on their
importance to the model and retained the ten most significant variables. The implementation was
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carried out using the sklearn.feature_selection package, and the final selected features are
presented in Figure 15.

Correlation Matrix of Selected Features
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Figure 15 Final feature selection

After applying RFE, the final dataset included Main Engine RPM, Speed Through Water (STW), Trim,
Mid Draft, Sea Water Temperature, Wind Component, Wave Component, Swell Component, Current
Effect, and Fouling Factor Index. The correlation matrix for the reduced feature set (Figure 15)
illustrates the improvement in feature independence, demonstrating that highly correlated
parameters were successfully removed. This selection ensures that the dataset remains
representative of vessel performance while minimizing redundancy and improving model
interpretability.
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5. Prediction Model

Accurate prediction of ship speed is a crucial component of maritime performance modeling, as it
directly impacts fuel efficiency, voyage planning, and regulatory compliance. A ship's speed over
ground (SOQG) is influenced by multiple factors, including propulsion power (Pp), hull resistance, and
environmental conditions such as wind, waves, and currents. In ideal calm water conditions, the
ship achieves speed through water (STW) purely based on propulsion power (Pp) and draft (D).
However, in real-world conditions, added resistance from wind and waves reduces the ship’s
effective speed through water. Ocean currents further affect the final speed over ground.

Predicting ship speed accurately is a complex task that requires balancing theoretical modeling with
real-world data observations. Traditionally, ship performance models fall into three categories:
white-box models (WBMs), black-box models (BBMs), and grey-box models (GBMs). White-box
models are based on first principles or semi-empirical formulations derived from physics. These
models rely on well-established hydrodynamic relationships and empirical correlations but are
limited by the assumptions and simplifications introduced during the modeling process. Their
accuracy depends on how well the resistance, propulsion, and environmental forces are
represented, but they often fail to capture real-time operational deviations caused by unpredictable
external factors.

On the other end of the spectrum, black-box models are purely data-driven, relying on machine
learning and statistical regression techniques trained on experimental or full-scale sailing data.
These models do not require prior theoretical knowledge, as they infer patterns directly from large
datasets. However, black-box models suffer from poor interpretability and limited extrapolation
ability, making them unreliable in unseen scenarios. If the training dataset does not include extreme
or rare operating conditions, the model may produce highly inaccurate predictions when
extrapolated beyond its data range.

To bridge the gap between WBMs and BBMs, grey-box models (GBMs) have been proposed as a
hybrid approach that integrates both physical principles and data-driven corrections. GBMs
combine the interpretability and theoretical foundation of white-box models with the adaptability
and accuracy of black-box models. Unlike purely data-driven approaches, grey-box models require
significantly less training data while still providing superior accuracy compared to physics-only
models. They also exhibit better extrapolation capability, ensuring that predictions remain physically
meaningful even in conditions where data is scarce.

In this study, two complementary modeling approaches are developed to predict ship speed
requirements: a physics-based white-box model, which derives power-speed relationships from first
principles and sea trials, and a data-enhanced grey-box model, which refines the physics-based
estimates using machine learning algorithms trained on historical ship performance data. This
chapter details the development, performance, and comparative analysis of both models,
demonstrating how a hybrid approach can optimize predictive accuracy while maintaining physical
consistency.
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5.1. Physics Model

The white-box model (WBM) is based onfirst principles and empirical formulations derived from ship
hydrodynamics. It provides a baseline estimation of the ship speed required for a given operating
condition, assuming calm water conditions and no external disturbances. The accuracy of the WBM
depends on the assumptions and simplifications made during the modeling process. While WBMs
provide high interpretability and generalization ability, they often fail to account for real-world
deviations caused by environmental influences, hull fouling, and variations in propulsion efficiency.

In this study, the baseline speed is estimated using a physics-based approach that incorporates:

1. A semi-empirical resistance model, which calculates calm water resistance and derives the
corresponding power requirement.

2. Seatrial-based interpolation, which uses experimental speed-power curves obtained under
controlled conditions.

3. Physics-informed neural networks (PINNs), which integrate hydrodynamic principles into a
data-driven model.

These approaches allow the white-box model to provide an initial speed estimation, which is later
refined using a black-box machine learning model in the grey-box framework.

5.1.1.Semi-Empirical Resistance Model for Speed Prediction

The semi-empirical approach estimates calm water resistance (R.4;,) @nd converts it into required
propulsion power using total propulsion efficiency (np). The resistance components are computed
using the Holtrop and Mennen method, which decomposes total resistance into multiple
components:

Reaim(STW,D) = Rp (1 + k) + Rypp+ Ry + Rg+ Rrr + Ry
where:

e Rpisthe frictional resistance, estimated from the ITTC-1957 correlation line.
e k,is the form factor, which accounts for viscous effects.

e Rypp represents appendage resistance, calculated empirically.

e Ry, isthe wave-making resistance due to the hull shape.

e Rgrepresents the resistance contribution from a bulbous bow.

e Rppisthe additional transom resistance caused by immersion.

e R, isthe model-ship correlation resistance, used for full-scale corrections.

(48]



Development of a Machine Learning Model for Ship Speed Prediction: A Data-Driven Approach

Once the total resistance is computed, the required propulsion power in calm water is estimated
using:
_ STW * R.qim(V,D)

b

D

where:
e STW isthe ship's speed through water,
e Disthevessel's draught,
e 1p isthe propulsion efficiency, provided by ship operators.

This equation assumes that no external disturbances such as waves, wind, or currents affect the
vessel's movement. As a result, it provides an idealized estimate of power consumption, which
requires further refinement for real-world conditions.

5.1.2.Sea Trial Interpolation for Speed Estimation

Sea trials are conducted under controlled conditions to measure a vessel’s performance across
different operating points. These trials typically include speed-power tests at various drafts, allowing
ship operators to establish empirical relationships between propulsion power, speed, and loading
conditions. The measured data is corrected for environmental factors such as wind and currents to
ensure accuracy and reliability.

Traditionally, sea trial data has been used for interpolation, where polynomial regression or lookup
tables provide estimates of propulsion power for intermediate speeds and drafts. However, these
methods have limitations when applied to real-world conditions, as they do not capture nonlinear
interactions influenced by hull fouling, weather effects, or operational variations.
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A Physics-Informed Neural Network (PINN) is employed in this study as an alternative to explicit
polynomial regression for learning the relationship between propulsion power, speed, and draft [21].
Unlike polynomial regression, which relies on predefined mathematical equations to fit observed
data, the PINN incorporates fundamental ship physics to guide the learning process, ensuring
hydrodynamically meaningful predictions.

By integrating sea trial data into the PINN framework, the model is trained to learn from real-world
measurements while being constrained by established hydrodynamic relationships. This approach
enhances the robustness and generalization capability of the model, allowing it to provide accurate
power predictions beyond the range of tested conditions, making it more adaptable to operational
variability.

5.1.3.Physics-Informed Neural Networks (PINNs) for Speed Prediction

A more advanced approach integrates physical principles into a neural network framework. Physics-
informed neural networks (PINNs) enforce known hydrodynamic relationships while learning from
data, providing a balance between theory-based modeling and data-driven adjustments.

Instead of purely relying on empirical regressions, PINNs attempt to solve a partial differential
equation (PDE) that governs the relationship between propulsion power (P), speed (V), and draft (D):
6P+ 6P+ [P,V,D;2] =0
Mgy T G T HEL AL
where [P, V, D; 1] is a nonlinear function representing propeller-hull interactions, efficiency losses,
and resistance effects.

The PINN model is implemented using TensorFlow, which enables automatic differentiation and
optimization. The neural network consists of three hidden layers, each containing 64 neurons, with
the hyperbolic tangent (tanh) activation function applied to introduce nonlinearity while preserving
smooth gradients. The output layer consists of a single neuron representing propulsion power,
utilizing a linear activation function to ensure continuous regression output.
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The loss functionis designed to balance data accuracy and physics consistency. Mean squared error
(MSE) is used to minimize the difference between predicted and actual power values, while a
physics-informed regularization term enforces the PDE constraint by penalizing deviations from the
known hydrodynamic relationships. The total MSE loss combines two components:

MSE = MSE,. + MSEg
where:

e MSE,. represents the boundary conditions, the loss on the boundary conditions can be
expressed as:

N
— 1 2
MSEn = 5= ) 1Po(Vactt Docv) = Poveco)
“i=1

e MSE, enforces physics-based constraints, penalizing deviations from known hydrodynamic
relationships:

PDE residual network

g(V,D)

Figure 17 Schematic representation of the applied PINN for speed-power baseline modeling
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The model training process is optimized using the Adam optimizer with a learning rate of 0.0001 to
ensure stable convergence. Training is conducted over 500 epochs with a batch size of 16, enabling
effective learning while mitigating the risk of overfitting. Power values are normalized before training
to maintain numerical stability.

By integrating sea trial data and enforcing physics constraints, the PINN model enhances
generalization and robustness. This approach ensures that speed predictions remain consistent
with hydrodynamic principles while adapting to real-world operational conditions.

5.1.4.Limitations of the White-Box Model

While the white-box model provides a strong theoretical foundation, it has inherent limitations that
make it insufficient as a standalone predictive tool. The model assumes calm water conditions,
neglecting environmental disturbances such as wind resistance, wave effects, and hull fouling.
Additionally, resistance-based formulations rely on empirical coefficients, which can vary
significantly between ship designs, leading to potential inaccuracies. Furthermore, the model lacks
adaptability, as it does not dynamically adjust to changes in operational conditions, including engine
performance degradation or real-time weather variations.

To overcome these limitations, a black-box machine learning model is introduced to capture
residual speed deviations caused by real-world factors. The final speed prediction is obtained by
integrating the physics-based baseline with data-driven corrections in a grey-box modeling
framework. The use of Physics-Informed Neural Networks (PINNs) further strengthens this approach
by embedding physical constraints within the learning process, ensuring predictions remain both
accurate and hydrodynamically consistent.
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5.2. Machine Learning Model

While the PINN model effectively integrates hydrodynamic principles, it does not fully account for
operational deviations resulting from factors such as hull fouling, weather conditions, and variations
in propulsion efficiency. These deviations introduce systematic errors in the estimated ship speed
(STW).

To address this, a data-driven black-box model is introduced, designed to learn and correct these
residual deviations based on historical performance data. The black-box model is trained to predict
the correction term, STW,,rection » Which represents the difference between the actual measured
speed and the baseline speed estimated by the PINN.

This correction term accounts for environmental and operational uncertainties that the PINN does
not explicitly model, such as variations in wind speed, wave height, and current effects. By learning
these patterns from data, the black-box model improves speed predictions under real-world
dynamic conditions.

5.2.1.Grey-Box Model: Integrating Physics-Based and Machine Learning
Approaches

The grey-box model (GBM) represents a hybrid approach that combines the strengths of both white-
box (physics-based) and black-box (machine learning-based) models. While the white-box model
(WBM) provides physically interpretable estimates of ship speed (STW) based on hydrodynamic
principles, it does not fully capture real-world deviations caused by environmental factors,
operationalinefficiencies, and hullfouling. Conversely, the black-box model (BBM) effectively learns
these deviations but lacks the physical interpretability and generalization beyond its training data.

By integrating these models, the grey-box framework ensures that speed predictions remain
physically consistent while being dynamically adaptable to real-world variations. This approach not
only improves prediction accuracy but also maintains the relevance of hydrodynamic models for
ship speed estimation.

(53]



Development of a Machine Learning Model for Ship Speed Prediction: A Data-Driven Approach

5.2.2.Parallel Grey-Box Model Architecture

The parallel grey-box model is designed to run the white-box and black-box models simultaneously,
using their combined outputs to refine power predictions. This approach differs from a serial
architecture, where a machine learning model would first process raw inputs before passing them
into a physics-based model. Instead, in the parallel grey-box model (Figure 18):

1. The WBM calculates baseline power (STW4se1ine), @ssuming calm water conditions with no
external disturbances.

2. TheBBM predicts power deviations (ASTW), adjusting for real-world conditions such aswind,
waves, and hull fouling.

3. The final predicted power (STW,,,.q) is obtained by summing the two outputs:
STWpred == STWPINN + ASTW

This parallel architecture ensures that the physics-based model anchors the predictions within
known hydrodynamic principles, while the machine learning model dynamically refines the estimate
based on real-world conditions.

Vessel database Parallel grey box approach

Pre-processing

N

Cleaned dataset J

White-box model

A

[ stw  f——{  STW,e

g Black-box model

Figure 18 The parallel grey-box modeling procedure for ship speed prediction
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5.2.3.Machine Learning Model Selection and Training

To determine the most effective model for predicting speed deviations (AV), multiple machine
learning algorithms were trained and evaluated. The goal was to select a model that could accurately
capture the complex, nonlinear relationships between operational conditions and power deviations.

The dataset was split into 80% training data and 20% testing data to ensure reliable model

evaluation. To avoid overfitting, cross-validation techniques and hyperparameter tuning were
applied during model training.

Several machine learning models were evaluated for their ability to predict, AV, including Linear
Regression, Random Forest, and XGBoost. The goal was to determine the most effective model for
capturing the complex, nonlinear relationships between operational conditions and power
deviations. Performance metrics such as the coefficient of determination (R%) and RMSE were
employed to assess model accuracy and select the best-performing algorithm.

1. Linear Regression: Used as a baseline model, Linear Regression exhibited poor predictive
performance (R* = 0.124, RMSE = 0.336). Its inability to capture the strong nonlinear
dependencies between features and AV made it unsuitable for accurate predictions.

Predicted vs Actual AV (Speed Correction)

Linear Regression Predictions
=== Perfect Fit *

Predicted AV

-2

-2 -1 0 1
Actual AV

Figure 19 Linear Regression performance, showing the predicted power versus the baseline and measured power

[55]



Development of a Machine Learning Model for Ship Speed Prediction: A Data-Driven Approach

2. Random Forest Regressor: This model performed exceptionally well (R2 = 0.929, RMSE =

0.096), successfully capturing the nonlinear effects in the data. However, further analysis is
required to assess potential overfitting.

Predicted vs Actual AV (Speed Correction)

Random Forest Predictions
=== Perfect Fit

Predicted AV

-2 1 Fii

Actual AV

Figure 20 Random Forest performance, comparing predicted power with baseline and measured values.
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3. XGBoost (Extreme Gradient Boosting): Also demonstrated strong predictive accuracy (R*=

0.915, RMSE = 0.105), performing slightly worse than Random Forest but offering a more
robust and generalizable approach.

Predicted vs Actual AV (Speed Correction)

XGBoost Predictions
=== Perfect Fit

Predicted AV

Actual AV

Figure 21 XGBoost model performance, illustrating the predicted power relative to the baseline and measured power.

The Random Forest and XGBoost models both performed well, but Random Forest was ultimately

selected due to its slightly superior performance and easier interpretability in comparison to
XGBoost.
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Comparison of Measured, PINN, and PINN + ML Predicted Speeds
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Figure 22 Comparison of sensor data, with results from PINN model, and the combination of PINN and ML models

Figure 22 presents a time-series comparison of the measured Speed Through Water, the PINN-
derived baseline speed, and the final predicted speed, which incorporates machine learning
corrections to the PINN output.

e Theblack dashed line represents the measured STW, providing a reference for actual vessel
performance.

e The blue dots denote the PINN-predicted baseline speed, which is derived from a physics-
based model without considering real-time operational variations.

¢ Thered dots correspond to the final predicted speed, which results from the combination of
the PINN baseline speed and the ML-predicted speed correction (AV).

The graph illustrates how the PINN + ML model aligns more closely with the measured STW,
capturing variations in vessel performance that are not accounted for in the purely physics-based
model. The integration of machine learning enables a more accurate representation of operational
conditions, improving the predictive capability of the model.
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6. Decision Support System Design

The maritime industry is undergoing a digital transformation, with vessels increasingly equipped with
sensors, real-time monitoring capabilities, and advanced decision support systems (DSS). The
continuous development of digital technology and connectivity enables real-time ship performance
tracking and historical data storage in cloud-based systems. These advancements are driving both
industry and academia to develop smart ship solutions, including digital twins, automation systems,
and data-driven decision-making frameworks. As part of this trend, the proposed DSS in this thesis
integrates a physics-informed machine learning model to enhance operational decision-making,
fuel efficiency monitoring, and voyage planning.

A DSS is acomputerized system that assists decision-makers by providing domain-specific insights,
analytical tools, and real-time recommendations. In the context of smart shipping, the DSS can be
installed onboard the vessel or at a remote-control center, where it provides operators with
actionable intelligence on vessel speed, energy efficiency, and environmental impact [12]. Figure X
illustrates how a DSS framework connects vessel systems to a remote monitoring center, facilitating
predictive maintenance, fleet management, and optimal route planning.

System Predictive Environment
Monitoring Maintenance Monitoring

Fleet Optimal Route Operational
Monitoring Planning Analysis

Figure 23 An illustration of smart ship and decision support system
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The DSS proposed in this thesis consists of three core components:

e Data Acquisition and Preprocessing — This module continuously collects real-time
operational data from onboard sensors, such as engine parameters, environmental
conditions, and hull performance metrics. It ensures data integrity by handling missing
values, aligning timestamps between sensor and noon report data, and filtering out
anomalies.

o Predictive Analytics — This component integrates a PINN-based baseline speed model and
a machine learning correction model (Random Forest/XGBoost) to estimate AV, refining
speed predictions based on real-world operational variations. The system continuously
updates predictions as new data becomes available.

e Decision Support & Visualization — The final component delivers insights through an
interactive dashboard, enabling operators to compare measured STW, PINN-derived
baseline speed, and ML-enhanced speed predictions over time. The DSS also includes
anomaly detection features, alerting users to unexpected speed deviations that may indicate
issues such as hull fouling, adverse weather effects, or inefficient fuel usage.

By leveraging this framework, the DSS enhances voyage planning and fuel optimization. Traditional
voyage planning often relies on historical assumptions and static models, whereas the proposed
DSS dynamically updates speed predictions based on real-time vessel conditions, weather
forecasts, and fuel consumption trends. This capability ensures that operators can adjust engine
load and routing strategies to minimize fuel costs while maintaining efficiency and regulatory
compliance. The system supports IMO’s Carbon Intensity Indicator (Cll) and Energy Efficiency
Operational Indicator (EEOI) frameworks, enabling shipowners to proactively monitor emissions and
fuel efficiency trends.

Beyond speed prediction, DSS applications in smart shipping extend to condition monitoring,
predictive maintenance, and risk assessment. The continuous digitization of vessels has
transformed them into floating sensor hubs, enabling advanced machine learning applications.
Several state-of-the-art DSS implementations include:

e Trajectory Prediction: Predicting vessel trajectory is critical for collision avoidance and
navigation planning. Modern DSS solutions employ time-series forecasting models such as
Long Short-Term Memory (LSTM) networks, which have demonstrated strong performance in
AlS-based ship trajectory prediction [41].

e Fueland Power Consumption Prediction: Fuel consumption models are typically formulated
as regression problems, utilizing inputs such as speed, draft, weather, and engine
conditions. Research has shown that machine learning models, ranging from linear
regression to deep neural networks, can significantly improve fuel efficiency predictions,
ultimately supporting route planning and energy management.

e Condition Monitoring of Machinery Systems: Advanced DSS implementations incorporate
fault diagnostics and predictive maintenance algorithms to track the operational status of
vessel machinery. Multi-label classification algorithms have been used for diagnosing
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propulsion system faults [41], while ensemble machine learning methods have been applied
for wear detection in marine diesel engines [42].

e Ocean Wave Forecasting and Estimation: Maritime operations are heavily influenced by sea
state conditions, making wave estimation and prediction essential for voyage optimization.
Machine learning approaches, including neural networks and random forests, have been
employed to classify sea states and predict wave patterns, improving ship routing decisions
in rough seas.

While this thesis focuses primarily on the modeling and predictive analytics component of a DSS,
future extensions could enhance the system’s adaptability and automation capabilities. One
promising direction is adaptive machine learning, where models continuously retrain themselves
using new operational data to improve long-term predictive accuracy. Additionally, reinforcement
learning techniques could be explored for dynamic decision-making, allowing the DSS to
recommend optimal speed and power settings based on real-time conditions.

Another key area for future research is cloud-based deployment and real-time API integration.
Deploying the DSS on a cloud computing infrastructure would enable real-time inference and
monitoring, ensuring minimal computational delays. An API-based system would allow integration
with existing fleet management platforms, providing operators with a unified dashboard for
monitoring vessel performance and making informed operational decisions.

In conclusion, the proposed DSS represents a significant step forward in integrating physics-
informed machine learning into smart ship operations. By providing real-time speed predictions, fuel
efficiency insights, and anomaly detection, the system enhances voyage planning, regulatory
compliance, and predictive maintenance capabilities. As the maritime industry continues to
embrace digitalization and Al-driven decision-making, such DSS implementations will play an
increasingly vital role in optimizing fleet performance and supporting decarbonization efforts.
Further advancements in adaptive learning, real-time deployment, and multi-vessel scalability will
continue to refine the DSS framework, ultimately contributing to the evolution of autonomous and
intelligent maritime operations.
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7.Conclusion and Future Work

The maritime industry faces increasing pressure to optimize operational efficiency, reduce costs,
and comply with stringent environmental regulations. One of the critical challenges in ship
performance monitoring is accurately predicting vessel speed under varying operational and
environmental conditions. Traditional speed-power models, while effective in controlled conditions,
often fail to capture the complexity of real-world factors such as fluctuating weather, hull fouling,
and dynamic sea states.

This research proposed a data-driven vessel speed prediction model, combining Physics-Informed
Neural Networks (PINNs) and Machine Learning (ML) techniques to improve predictive accuracy. By
leveraging sensor-derived ship performance data alongside physics-based estimations, the model
effectively captured the nonlinear relationships governing vessel speed and power dynamics. The
approach successfully addressed limitations associated with traditional empirical models,
providing a more adaptable and robust framework for real-world operational conditions.

The study developed a PINN-based baseline speed model to establish an initial estimation of vessel
speed, incorporating fundamental hydrodynamic principles. To refine this estimate, a machine
learning model was trained to predict the necessary speed correction (AV), which accounted for
deviations caused by external and operational influences. Several ML algorithms were tested, with
Random Forest achieving the highest accuracy, demonstrating its ability to generalize well across
diverse operational conditions. The final model was validated using measured Speed Through Water
(STW) data, confirming its reliability in predicting vessel speed more accurately than standalone
physics-based methods.

Beyond the development of the predictive model, this research also explored its integration into a
Decision Support System (DSS). The DSS was designed to provide real-time insights for ship
operators and fleet managers, assisting in voyage optimization, fuel efficiency monitoring, and
proactive maintenance planning. The implementation of an interactive visualization tool enabled
direct comparison of measured STW, PINN-estimated speed, and ML-corrected speed predictions
over time. This system empowers maritime stakeholders with enhanced decision-making
capabilities, ultimately leading to more efficient vessel operations and improved regulatory
compliance.

Despite its promising results, the study faced several challenges. Data quality and availability were
key constraints, as sensor inconsistencies and missing values introduced noise into the training
dataset. Aligning noon report data with sensor readings required careful preprocessing to ensure
data integrity. Additionally, while the PINN component ensured some level of generalization, the
model was primarily trained on a specific vessel or fleet segment. Future research should explore
adaptations for different vessel types, as variations in hydrodynamic characteristics may
necessitate additional model tuning.

Computational complexity was another consideration. The integration of physics-informed models
with machine learning introduced processing overhead, which may impact real-time
implementation in a fleet management system. Deploying the model on a cloud-based architecture
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could enhance scalability and ensure minimal processing delays. Additionally, while the model
incorporated key environmental and operational parameters, external factors such as hull aging,
maintenance schedules, and fuel type variations may still influence its predictions. A self-learning
mechanism that continuously updates the model with new operational data could further enhance
its adaptability.

To advance the application of this research, several future directions are proposed. Expanding the
model to multiple vessel types would improve its generalization, enabling application across various
fleet segments. Enhancing model interpretability is another priority, as tree-based machine learning
models like Random Forest and XGBoost, while highly accurate, function as black-box predictors.
Techniques such as SHAP (Shapley Additive Explanations) or LIME (Local Interpretable Model-
Agnostic Explanations) could provide deeper insights into how individual features influence speed
deviations, aiding in model validation and operational decision-making.

Further integration with voyage optimization systems could allow real-time speed and fuel efficiency
recommendations based on weather forecasts and fuel prices. Developing a prescriptive analytics
module that suggests optimal speed profiles under different conditions would enhance the system’s
practical utility. Additionally, transitioning the model to an API-based deployment would facilitate
seamless integration with existing fleet management platforms, enabling real-time inference and
monitoring.

An interesting avenue for exploration is the incorporation of reinforcement learning for adaptive
optimization. Unlike traditional machine learning models, which generate static predictions,
reinforcement learning could enable dynamic decision-making, allowing the system to adjust speed
recommendations in response to changing environmental and economic conditions. Hybrid
modeling approaches that integrate Computational Fluid Dynamics (CFD) simulations with machine
learning corrections could also enhance predictive accuracy while maintaining physical
consistency.

In conclusion, this research has demonstrated the effectiveness of combining physics-informed
modeling with machine learning to improve vessel speed prediction. The proposed approach
provides a scalable, data-driven solution that enhances operational efficiency, reduces fuel
consumption, and supports regulatory compliance in the maritime industry. As the sector continues
to embrace digitalization and Al-driven decision-making, the integration of such predictive models
into decision support systems will play a vital role in optimizing fleet performance. Addressing the
identified challenges and pursuing the proposed enhancements will further refine the model, paving
the way for a real-time, intelligent system capable of predictive analytics and operational
optimization. Ultimately, this research contributes to the ongoing transformation of maritime
operations, supporting the industry’s transition toward greater efficiency, sustainability, and
compliance with global decarbonization efforts.
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