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Περίληψη 

 

Η ακριβής πρόβλεψη της ταχύτητας του πλοίου και των απαιτήσεων ισχύος αποτελεί κρίσιμο 
στοιχείο στις θαλάσσιες μεταφορές, επηρεάζοντας την ενεργειακή απόδοση, τη συμμόρφωση με 
τους κανονισμούς και τη βελτιστοποίηση του ταξιδιού. Οι παραδοσιακές μέθοδοι εκτίμησης της 
σχέσης ταχύτητας-ισχύος των πλοίων βασίζονται σε ημι-εμπειρικά μοντέλα αντίστασης και 
παρεμβολές από δοκιμές στη θάλασσα (Sea Trials), τα οποία συχνά αποτυγχάνουν να λάβουν υπόψη 
τις πραγματικές συνθήκες στη θαλασσα, όπως ο άνεμος, τα κύματα και η δυναμική απόδοση των 
μηχανών. Για την αντιμετώπιση αυτών των περιορισμών, η παρούσα μελέτη αναπτύσσει ένα 
μοντέλο πρόβλεψης της ταχύτητας του πλοίου βασισμένο στη μηχανική μάθηση, συνδυάζοντας 
τεχνικές φυσικής μοντελοποίησης με σύγχρονες μεθόδους τεχνητής νοημοσύνης. 

Η έρευνα ξεκινά με μια εκτενή διερευνητική ανάλυση δεδομένων (EDA) των λειτουργικών 
δεδομένων του πλοίου, συμπεριλαμβανομένων δεδομένων από αισθητήρες και ημερήσιες 
αναφορές (noon reports). Εφαρμόζονται τεχνικές όπως ανίχνευση ακραίων τιμών, επιλογή 
χαρακτηριστικών και ανάλυση συσχέτισης, με στόχο τη βελτιστοποίηση του συνόλου δεδομένων για 
τις ανάγκες της μοντελοποίησης. Στη συνέχεια, η μελέτη υλοποιεί ένα υβριδικό πλαίσιο πρόβλεψης, 
ενσωματώνοντας μοντέλα βασισμένα στη φυσική (π.χ. ημιεμπειρικά μοντέλα αντίστασης, 
παρεμβολές δοκιμών στη θάλασσα και Physics-Informed Neural Networks (PINNs)) καθώς και 
αλγόριθμους μηχανικής μάθησης (π.χ. Γραμμική Παλινδρόμηση, Random Forest Regressor και 
XGBoost). 

Παρουσιάζεται μια παράλληλη προσέγγιση γκρι-κουτιού (grey-box modeling), η οποία ενσωματώνει 
φυσικούς περιορισμούς στις προβλέψεις μηχανικής μάθησης με στόχο τη βελτίωση της 
ερμηνευσιμότητας και της ακρίβειας του μοντέλου. Η διαδικασία επιλογής του βέλτιστου μοντέλου 
περιλαμβάνει βελτιστοποίηση υπερπαραμέτρων, ανάλυση συναρτήσεων σφάλματος και έλεγχο 
εγκυρότητας, εξασφαλίζοντας άριστη προγνωστική απόδοση. Πραγματοποιήθηκαν συγκριτικές 
αναλύσεις μεταξύ καθαρών φυσικών μοντέλων, αμιγώς δεδομενο-κεντρικών μοντέλων μηχανικής 
μάθησης και υβριδικών προσεγγίσεων grey-box, αξιολογώντας τη γενίκευση και την υπολογιστική 
αποδοτικότητα. 

Η μελέτη συζητά επίσης την πιθανή ενσωμάτωση του αναπτυγμένου μοντέλου πρόβλεψης σε ένα 
Σύστημα Υποστήριξης Αποφάσεων (DSS), περιγράφοντας πώς θα μπορούσε να χρησιμοποιηθεί για 
εκτίμηση της ταχύτητας σε πραγματικό χρόνο και βελτιστοποίηση του ταξιδιού. 

Η έρευνα αυτή συμβάλλει στην προώθηση της μηχανικής μάθησης στη ναυτιλία, προτείνοντας μια 
μεθοδολογία που βελτιώνει την απόδοση των πλοίων και υποστηρίζει τη λήψη αποφάσεων με 
γνώμονα τα δεδομένα. 

 

Λέξεις-κλειδιά: Πρόβλεψη Ταχύτητας Πλοίου, Βελτιστοποίηση Ταξιδιού, Μηχανική Μάθηση, Μοντέλα 
Δεδομένων, Θαλάσσιες Μεταφορές, Νευρωνικά Δίκτυα  
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Abstract 

 

The accurate prediction of ship speed and power requirements is a critical aspect of maritime 
operations, impacting fuel efficiency, regulatory compliance, and voyage optimization. Traditional 
methods for estimating ship speed-power relationships rely on semi-empirical resistance models 
and sea trial interpolations, which often fail to account for real-world operational conditions such as 
wind, waves, and dynamic engine performance. To address these limitations, this study develops a 
data-driven machine learning model for ship speed prediction, integrating physical modeling 
techniques with modern artificial intelligence approaches. 

The research begins with a comprehensive exploratory data analysis (EDA) of ship operational 
datasets, including sensor-derived and noon report data. Techniques such as outlier detection, 
feature selection, and correlation analysis are applied to refine the dataset for modeling purposes. 
The study then implements a hybrid prediction framework, incorporating both physics-based 
models (e.g., semi-empirical resistance models, sea trial interpolations, and Physics-Informed 
Neural Networks (PINNs)) and machine learning algorithms (e.g., Linear regression, Random Forest 
Regressor, and XGBoost). 

A parallel grey-box modeling approach is introduced, integrating physics-based constraints into 
machine learning predictions to improve model interpretability and accuracy. The model selection 
process involves hyperparameter optimization, error function analysis, and validation testing, 
ensuring optimal predictive performance. Comparative analyses between pure physics-based, 
machine learning-based, and hybrid grey-box models are conducted to evaluate generalization 
ability and computational efficiency. 

The study also discusses the potential integration of the developed prediction model into a Decision 
Support System (DSS), outlining how it could be used for real-time power estimation and operational 
optimization. 

This research contributes to the advancement of machine learning applications in maritime, offering 
a methodology that enhances operational efficiency, and supports data-driven decision-making in 
modern shipping operations.  

 

Keywords: Ship Speed Prediction, Voyage Optimization, Machine Learning, Data-Driven Models, 
Maritime Transportation, Neural Networks 
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0. Εκτεταμένη Ελληνική Περίληψη 
 

0.1. Εισαγωγή 
 

Η ναυτιλιακή βιομηχανία αντιπροσωπεύει περίπου το 3% των παγκόσμιων εκπομπών CO₂, γεγονός 
που καθιστά επιτακτική την ανάγκη για αποδοτικότερες και πιο φιλικές προς το περιβάλλον 
τεχνολογίες. Ρυθμιστικές πρωτοβουλίες, όπως η MARPOL Annex VI και το EU ETS, επιβάλλουν 
αυστηρότερα όρια στις εκπομπές, ενώ η Διεθνής Ναυτιλιακός Οργανισμός (IMO) έχει θέσει ως στόχο 
τη μείωση των εκπομπών κατά 50% έως το 2050. 

 

 
Εικόνα 1 Όρια στόχων μείωσης εκπομπών  

Επιπλέον, το κόστος των καυσίμων αντιπροσωπεύει το 50-60% των λειτουργικών εξόδων ενός 
πλοίου, ενώ αν δεν ληφθούν μέτρα, οι εκπομπές CO₂ μπορεί να αυξηθούν κατά 90-130% μέχρι το 
2050. Σε αυτό το πλαίσιο, η πρόβλεψη της ταχύτητας ενός πλοίου υπό διαφορετικές συνθήκες 
λειτουργίας καθίσταται κρίσιμη τόσο για τη μείωση της κατανάλωσης καυσίμου όσο και για τη 
βελτίωση της επιχειρησιακής αποδοτικότητας. 

Η παρούσα μελέτη διερευνά τη χρήση μοντέλων μηχανικής μάθησης (Machine Learning) για την 
ακριβέστερη πρόβλεψη της ταχύτητας πλοίου, αξιοποιώντας δεδομένα από αισθητήρες και noon 
reports. Ο στόχος είναι η ανάπτυξη ενός αξιόπιστου μοντέλου που θα υποστηρίξει την επιχειρησιακή 
λήψη αποφάσεων στον ναυτιλιακό τομέα. 
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0.2. Βιβλιογραφική Επισκόπηση & Θεωρητικό Υπόβαθρο 
 

Η πρόβλεψη της ταχύτητας των πλοίων έχει μελετηθεί τόσο μέσω παραδοσιακών προσεγγίσεων, 
όπως η εμπειρική μοντελοποίηση και οι φυσικές προσομοιώσεις, όσο και με τη χρήση σύγχρονων 
μεθόδων δεδομένων. Οι φυσικές μέθοδοι βασίζονται σε αναλυτικές εξισώσεις και πειραματικά 
δεδομένα από θαλάσσιες δοκιμές, ενώ τα δεδομένα πλοίων που συλλέγονται από αισθητήρες 
επιτρέπουν μια πιο δυναμική και προσαρμοστική προσέγγιση. 

Η μηχανική μάθηση έχει αποδείξει την ικανότητά της να αποτυπώνει μη γραμμικές σχέσεις μεταξύ 
μεταβλητών, προσφέροντας πιο ακριβείς προβλέψεις σε σχέση με τα συμβατικά μοντέλα. Στη 
ναυτιλία, μέθοδοι όπως τα XGBoost, Random Forest και Physics-Informed Neural Networks (PINNs) 
έχουν χρησιμοποιηθεί για την πρόβλεψη της σχέσης μεταξύ ταχύτητας, ισχύος και περιβαλλοντικών 
παραμέτρων. 

 

0.3. Μεθοδολογία 
 

Η έρευνα ακολούθησε μια δομημένη προσέγγιση ανάλυσης δεδομένων, η οποία περιλάμβανε τα 
εξής στάδια: 

• Συλλογή και Προεπεξεργασία Δεδομένων: Χρησιμοποιήθηκαν δεδομένα από αισθητήρες 
και noon reports, λαμβάνοντας υπόψη παραμέτρους όπως το βύθισμα (draft), η ταχύτητα ως 
προς το νερό (STW), η ταχύτητα ως προς το έδαφος (SOG), οι καιρικές συνθήκες, και η ισχύς 
της μηχανής. Δόθηκε ιδιαίτερη έμφαση στην εξασφάλιση της ποιότητας των δεδομένων και 
στην εξάλειψη πιθανών σφαλμάτων καταγραφής ή μη διαθέσιμων τιμών. 

• Εξερεύνηση και Ανάλυση Δεδομένων: Εφαρμόστηκε ανάλυση συσχέτισης μεταξύ των 
μεταβλητών για να εντοπιστούν οι κρίσιμοι παράγοντες που επηρεάζουν την ταχύτητα. 
Επίσης, εξετάστηκε η στατιστική κατανομή των δεδομένων και εντοπίστηκαν ανωμαλίες ή 
αποκλίσεις που θα μπορούσαν να επηρεάσουν την απόδοση των μοντέλων. 

• Ανάπτυξη Μοντέλου: Δοκιμάστηκαν διάφορες μέθοδοι μηχανικής μάθησης, όπως τα 
XGBoost και Random Forest, ενώ εξετάστηκε και η χρήση Physics-Informed Neural 
Networks (PINNs) για την ενσωμάτωση φυσικών περιορισμών στο μοντέλο. Έγινε 
λεπτομερής σύγκριση των μεθόδων με στόχο την επιλογή της βέλτιστης προσέγγισης. 

• Εκπαίδευση και Αξιολόγηση: Χρησιμοποιήθηκαν κατάλληλοι δείκτες σφάλματος (π.χ. RMSE, 
MAE) για την αξιολόγηση της απόδοσης των μοντέλων, με έμφαση στην ικανότητά τους να 
προβλέπουν την ταχύτητα με ακρίβεια υπό διαφορετικές συνθήκες λειτουργίας. Η 
διαδικασία επικύρωσης των αποτελεσμάτων περιλάμβανε τη χρήση ανεξάρτητων συνόλων 
δοκιμών και τη σύγκριση των μοντέλων με πραγματικά δεδομένα λειτουργίας πλοίων. 
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Εικόνα 2 Διαγραμματική απεικόνιση της προσέγγισης που ακολουθήθηκε στην εργασία 

 

0.4. Αποτελέσματα και Συζήτηση 
 

Τα αποτελέσματα έδειξαν ότι τα μοντέλα μηχανικής μάθησης προσφέρουν σημαντικά βελτιωμένη 
ακρίβεια πρόβλεψης σε σχέση με τις παραδοσιακές προσεγγίσεις. Το XGBoost εμφάνισε τη βέλτιστη 
απόδοση μεταξύ των δοκιμασμένων μεθόδων, ενώ η προσέγγιση PINN έδειξε ενδιαφέρουσες 
προοπτικές ενσωμάτωσης φυσικών νόμων στη διαδικασία πρόβλεψης. 

Επιπλέον, η μελέτη ανέδειξε τη σημασία της σωστής προεπεξεργασίας των δεδομένων, ιδίως όσον 
αφορά τη διαχείριση των ελλιπών τιμών και την ορθή αντιστοίχιση των δεδομένων από διαφορετικές 
πηγές (αισθητήρες και noon reports). Ο συνδυασμός αυτών των δεδομένων βελτίωσε την 
κατανόηση της σχέσης μεταξύ STW, SOG και των εξωτερικών παραγόντων. 

Μια ακόμη κρίσιμη διαπίστωση ήταν η διαχείριση των θαλάσσιων ρευμάτων, τα οποία επηρεάζουν 
τη σχέση μεταξύ STW και SOG. Η έρευνα ανέδειξε τη σημασία της ενσωμάτωσης πρόσθετων 
μεταβλητών, όπως η δύναμη και κατεύθυνση του ανέμου, για τη βελτίωση της ακρίβειας των 
προβλέψεων. 
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0.5. Συμπεράσματα 
 

Η έρευνα κατέδειξε ότι οι τεχνικές μηχανικής μάθησης μπορούν να παρέχουν ακριβείς προβλέψεις 
για την ταχύτητα των πλοίων, προσφέροντας ένα πολύτιμο εργαλείο για την υποστήριξη λήψης 
αποφάσεων στη ναυτιλία. Η χρήση δεδομένων αισθητήρων σε συνδυασμό με προηγμένες μεθόδους 
ανάλυσης συμβάλλει στην καλύτερη κατανόηση της απόδοσης του πλοίου και στη βελτιστοποίηση 
των ναυτιλιακών λειτουργιών. 

Μελλοντικές επεκτάσεις της έρευνας θα μπορούσαν να περιλαμβάνουν τη βελτίωση των μοντέλων 
με περισσότερα δεδομένα, τη χρήση deep learning τεχνικών και την ανάπτυξη ενός ολοκληρωμένου 
συστήματος υποστήριξης αποφάσεων που θα ενσωματώνει δυναμικά τις προβλέψεις του μοντέλου 
στο πλαίσιο επιχειρησιακών στρατηγικών. Επιπλέον, η μελέτη της επίδρασης της υδροδυναμικής 
αντίστασης και η ενσωμάτωση φυσικών μοντέλων θα μπορούσαν να συμβάλουν στην περαιτέρω 
αύξηση της ακρίβειας των προβλέψεων και στη δημιουργία μιας ολοκληρωμένης προσέγγισης στη 
ναυτιλιακή απόδοση. 
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1. Introduction 
 

1.1. Motivation 
 

Climate change has emerged as one of the most pressing global challenges, with international 
bodies such as the United Nations Framework Convention on Climate Change (UNFCCC) and the 
International Maritime Organization (IMO) taking significant steps to mitigate its effects. The 
adoption of the Paris Agreement in 2015 [1] marked a global commitment to reducing greenhouse 
gas (GHG) emissions, with the goal of limiting global temperature rise to well below 2°C, while 
striving to keep the increase below 1.5°C relative to pre-industrial levels. Achieving these targets 
necessitates reaching net-zero emissions by 2050, driving a fundamental transformation across 
energy production, consumption, and industrial sectors, including the maritime industry. 

 

The Role of the Maritime Industry in Global Trade and Emissions 
Maritime transport remains a fundamental component of global trade, accounting for over 80% of 
total merchandise transportation. In 2023, global seaborne trade volumes reached 12.3 billion 
tonnes, reflecting a 2.4% increase following a previous contraction. This growth was largely driven 
by increased demand for commodities, vessel rerouting due to geopolitical tensions, and 
disruptions in key maritime chokepoints [2]. As of 2024, the global fleet comprises approximately 
150,000 vessels, with an estimated total value of $2 trillion [3]. The distribution of fleet value across 
vessel types is as follows: 

• Offshore vessels: 22.4% 
• Bulk carriers: 18.4% 
• Tankers: 13.2% 
• Containerships: 10.6% 
• Gas carriers: 9.1% 
• Other vessels: 26.3% 

 
Figure 1 Distribution of fleet across vessel types 
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In terms of deadweight tonnage (DWT), bulk carriers (41.2%) and oil tankers (28.2%) dominate the 
fleet composition. Conversely, containerships, gas carriers, and offshore vessels, while constituting 
a smaller percentage of DWT, hold significant market value. 

Fleet segmentation by gross tonnage (GT) is as follows [4] : 

• Small vessels (GT < 500): 37% 
• Medium vessels (500 ≤ GT < 25,000): 43% 
• Large vessels (25,000 ≤ GT < 60,000): 13% 
• Very large vessels (GT ≥ 60,000): 7% 

 
Figure 2 Distribution of fleet by gross tonnage 

This classification is significant as vessel size directly influences operational efficiency, fuel 
consumption, and regulatory compliance, particularly in speed prediction models. 

 

Decarbonization Challenges in the Maritime Sector 
The maritime industry experienced a 4.2% increase in ton-miles in 2023, the highest in 15 years, 
indicating longer shipping distances due to geopolitical rerouting and climate-related disruptions 
[2]. However, industry challenges persist: 

• Geopolitical risks: Ongoing conflicts impact trade routes and increase supply chain 
volatility. 

• Regulatory compliance: The IMO 2020 sulfur cap and upcoming IMO decarbonization targets 
for 2030 and 2050 require increased adoption of alternative fuels and energy-efficient 
technologies. 

• Economic pressures: Fluctuations in crude oil prices and rising operational costs place 
financial constraints on shipowners. 

• Environmental and climate risks: Increased weather-related disruptions and stricter 
emissions regulations necessitate improved fleet management strategies. 

The maritime sector, responsible for approximately 3% of global total emissions [5], has been 
identified as a "hard-to-abate" industry due to its reliance on fossil fuels, long asset lifespans, and 
the operational challenges posed by electrification [6] . Recognizing the need for a more sustainable 
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future, the IMO established the goal of reducing carbon intensity per transport work by at least 40% 
by 2030, with further reductions of up to 70% by 2050 [7]. However, as these targets fall short of full 
decarbonization, the international community has called for further action, including the adoption 
of stricter regulations and incentives for low- and zero-carbon fuels [8]. 

Industry Response and the Need for Data-Driven Decision-Making 
In response, the shipping industry has pursued energy-efficient technologies and alternative fuels, 
such as liquefied natural gas (LNG), biofuels, and hydrogen-based fuels. Additionally, initiatives like 
the European Union's Emissions Trading System (EU ETS) have begun to apply market-based 
measures to reduce carbon emissions from maritime transport [9]. However, the pathway to 
achieving full decarbonization is complex and requires a multi-faceted approach that combines 
technological innovation, regulatory frameworks, and operational efficiency improvements. 

One of the critical areas of focus is optimizing vessel performance, particularly the relationship 
between ship speed and power requirements. This relationship is essential for reducing fuel 
consumption and emissions, as the power needed to propel a ship increases exponentially with 
speed [10]. Accurately predicting speed-power dynamics under varying operational conditions can 
significantly improve decision-making for ship operators, enabling more efficient routing and speed 
adjustments to minimize energy use. 

 

1.2. Problem Statement 
 

The maritime industry faces increasing pressure to reduce greenhouse gas emissions while 
maintaining operational efficiency. With the introduction of stringent regulations such as the EU 
Emissions Trading System and the IMO's decarbonization goals, ship operators must find cost-
effective ways to comply. One key challenge lies in optimizing the speed-power relationship of 
vessels, which directly influences fuel consumption and emissions. The power required to propel a 
ship increases exponentially with speed, yet existing methods of speed-power prediction often fail 
to account for critical real-world variables, including weather conditions, hull resistance, and engine 
performance. Moreover, operational complexities such as biofouling, propeller inefficiencies, and 
dynamic factors like wind and currents can significantly impact a ship’s energy consumption [10]. 

This thesis addresses these challenges by developing machine learning models that predict ship 
speed based on power input, while considering a wide range of operational and environmental 
factors. Leveraging data from a real-time fuel optimization system installed on a tanker vessel, the 
model aims to provide enhanced predictive capabilities, enabling operators to make informed 
decisions regarding speed adjustments and power management, ultimately improving vessel 
efficiency and reducing fuel costs. By accurately modeling the speed-power relationship, the 
research seeks to provide insights that support decision-making processes for speed adjustments 
and power management, in line with the goals of the IMO and the EU to decarbonize shipping. 
Furthermore, the study advances data-driven methods in maritime operations, which are essential 
for navigating regulatory challenges and achieving climate targets.  
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1.3. Objectives 
 

The primary objective of this thesis is to develop a machine learning model for ship speed prediction 
based on power inputs, integrating data-driven techniques with maritime operational knowledge. 
This research aims to enhance vessel performance monitoring, optimize fuel consumption, and 
support decision-making for speed and power management in line with decarbonization efforts. 

First, the study will investigate and compare ship speed prediction methods by reviewing traditional 
estimation techniques and identifying their limitations. It will explore machine learning approaches 
and assess their potential improvements over conventional models. 

Second, the research will focus on developing and evaluating a machine learning model for ship 
speed prediction. This includes conducting exploratory data analysis (EDA) to identify key 
influencing factors, implementing physics-based, data-driven, and hybrid (grey-box) models, and 
optimizing model performance through feature selection, hyperparameter tuning, and validation 
with real-world vessel data. 

The third objective is to assess the practical applications of the developed model in vessel 
operations. The study will demonstrate how predictive modeling can assist ship operators in voyage 
planning, speed optimization, and fuel efficiency strategies, contributing to compliance with IMO 
and EU decarbonization targets. 

Finally, the research will identify challenges and potential improvements in ML-based ship 
performance modeling. It will analyze the limitations of the developed model in real-world 
applications and suggest areas for future research and enhancements in maritime data analytics. 
Additionally, it will highlight how predictive models can be integrated into DSS frameworks to 
support ship operators in making data-driven speed and power management decisions. 

 

1.4. Work Structure 
 

This thesis is structured into eight chapters, each addressing different aspects of the research on 
machine learning-based ship speed prediction. 

Chapter 1: Introduction provides motivation, problem statement, objectives, and work structure of 
the study. It outlines the significance of optimizing vessel operations through predictive modeling 
and highlights the role of machine learning in addressing maritime decarbonization challenges. 

Chapter 2: Literature Review examines existing research on machine learning applications in 
maritime operations, traditional ship speed and power estimation methods, and the evolution of 
data-driven models in vessel performance analysis. This chapter identifies the gaps in current 
approaches and establishes the rationale for integrating machine learning techniques into speed 
prediction models. 
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Chapter 3: Theoretical Background presents the fundamental principles relevant to the study. It 
includes a taxonomy of machine learning algorithms, an overview of ship resistance and power 
dynamics, and a discussion on data preprocessing and feature engineering techniques used to 
enhance model accuracy. 

Chapter 4: Case Study focuses on the dataset used in this research. It describes data sources, 
preprocessing steps, exploratory data analysis (EDA), feature selection methods, and outlier 
detection techniques. These steps are crucial for preparing high-quality input data for machine 
learning modeling. 

Chapter 5: Prediction Model details the development and evaluation of the ship speed prediction 
model. It introduces a semi-empirical physics-based resistance model as a baseline, followed by 
machine learning approaches to enhance predictive accuracy. The chapter explores a grey-box 
modeling approach, integrating physics-based data-driven methodologies, and evaluates model 
performance based on real-world vessel data. 

Chapter 6: Decision Support System discusses how the developed speed prediction model could be 
utilized in decision support frameworks for vessel operations. This thesis highlights potential 
applications of DSS in voyage planning, speed optimization, and fuel efficiency strategies, aligning 
with industry sustainability goals. 

Chapter 7: Conclusion and Future Work summarizes the key findings, discusses the limitations of 
the study, and proposes future research directions to further enhance ML-based ship speed and 
power prediction models. 
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2. Literature Review 
 

2.1. Machine Learning Applications in Maritime Operations 
 

The maritime industry is increasingly adopting machine learning (ML) and data-driven methodologies 
to address complex challenges and enhance decision-making processes. ML algorithms, by 
analyzing large datasets, can predict patterns, identify anomalies, and optimize processes across a 
wide range of maritime operations. These applications provide innovative solutions that improve 
efficiency, safety, and environmental sustainability as global shipping continues to expand and 
confront regulatory pressures related to decarbonization. Machine learning, a subset of artificial 
intelligence, enables systems to learn from data and make predictions without explicit 
programming. As global shipping continues to expand, the need for efficient, sustainable practices 
has become paramount. According to Yan and Wang (2022) in their book “Applications of Machine 
Learning and Data Analytics Models in Maritime Transportation” [11], data-driven methodologies are 
transforming traditional maritime operations by providing innovative solutions that improve 
efficiency, safety, and environmental sustainability. 

The importance of ML in the maritime industry cannot be overstated. By leveraging ML techniques, 
stakeholders can optimize ship performance, enhance fuel efficiency, and facilitate operational 
decision-making. For instance, predictive maintenance models can reduce downtime by identifying 
potential failures before they occur, while fuel optimization algorithms enable more efficient routing 
and speed adjustments, significantly lowering emissions. 

One of the most promising applications of ML is vessel health monitoring. Machine learning models 
trained in real-time sensor data can predict potential failures in engines, thrusters, and other vital 
mechanical systems. By leveraging predictive maintenance algorithms, ship operators can reduce 
unplanned downtime and maintenance costs. Techniques such as Long Short-Term Memory (LSTM) 
networks have shown efficacy in estimating the Remaining Useful Life (RUL) of critical components, 
ensuring timely maintenance actions before system failures occur. The transition from reactive to 
predictive maintenance enables more efficient resource management, contributing to both 
operational safety and cost reduction [12]. 

ML has also become a key enabler in the development of autonomous ships. These systems rely on 
machine learning algorithms to analyze real-time data from multiple sensors, such as GPS, radar, 
and LIDAR, to enable autonomous navigation, obstacle detection, and route adjustments. For 
instance, machine learning models can process environmental and navigational data in real-time, 
allowing ships to make operational adjustments autonomously, enhancing both safety and 
efficiency. The integration of ML into autonomous navigation systems has the potential to reduce 
human error, lower operational costs, and improve safety in challenging marine environments [12]. 

In maritime logistics and port operations, machine learning enhances the efficiency of container 
handling, ship scheduling, and cargo flow prediction. Predictive analytics tools can forecast port 
congestion, improving berthing schedules and minimizing waiting times. By using data-driven 
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methods to optimize cargo distribution, ML helps ports to streamline operations, reduce delays, and 
increase throughput [11]. Additionally, ML models can optimize fleet management, ensuring that 
vessels operate on the most efficient routes, with minimal fuel consumption and optimal cargo 
loading configurations. 

Machine learning is gaining traction in the maritime industry, offering innovative ways to optimize 
vessel performance, improve operational efficiency, and address regulatory challenges. These 
advancements mark a significant shift from traditional methods, which, while foundational, are 
increasingly being supplemented by data-driven approaches. As this chapter introduces the role of 
ML in shipping, the traditional methods for estimating vessel speed and power, which continue to 
play a vital role in maritime engineering, will be presented in detail in the following chapter. 

 

2.2. Traditional Methods of Ship Speed and Power Prediction 
 

The prediction of ship speed and power requirements has long relied on traditional methods, such 
as empirical formulas and physical models, which form the foundation of maritime engineering. 
These methods provide a reliable basis for ship design and operational planning but struggle to 
account for the complex and dynamic conditions encountered during real-world voyages. 

One of the most widely used empirical methods is the cube law, also known as the propeller law, 
which approximates the relationship between a ship’s required power and its speed through water 
as cubic: 

𝑃𝑃(𝑣𝑣) = 𝑘𝑘𝑣𝑣3 

where: 

• 𝑣𝑣 is the ship’s speed through water (knots), 
• 𝑃𝑃(𝑣𝑣) is the ship's required power, including main engines, boilers, and auxiliary engines (kW), 
• 𝑘𝑘 is a constant derived from the ship’s characteristics [10]. 

This formula, derived from basic hydrodynamic principles, suggests that small reductions in speed 
can lead to significant reductions in power and fuel consumption. However, this approximation is 
primarily under ideal conditions, such as calm water and constant speed, and does not account for 
real-world variables such as waves, wind, and currents. 

More advanced forms of cube law, like the modified admiralty formula, extend this approach by 
incorporating the ship’s displacement and payload: 

𝑃𝑃(𝑣𝑣,𝑤𝑤) = 𝑚𝑚(𝐴𝐴 + 𝑤𝑤)2/3𝑣𝑣𝑛𝑛 

where: 

• 𝑤𝑤 is the ship’s payload (tonnes), 
• 𝐴𝐴 is the lightship weight (tonnes), 
• 𝑛𝑛 is typically ≥ 3, 
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• 𝑚𝑚 is a constant. 

This formula accounts for the wetted surface area of the hull, which affects resistance, and provides 
a more refined estimate of power requirements, especially at different loading conditions [10]. 

While the cube law provides a useful approximation for calm water resistance, real-world conditions 
often introduce additional complexities. For example, a ship’s resistance in waves, known as added 
resistance, is highly nonlinear. Added resistance depends on factors such as hull shape, sea state, 
and the ship's seakeeping characteristics, which are not captured by simple empirical formulas. 
Estimating added resistance requires more sophisticated methods, such as strip theory 
approximation [13] or other hydrodynamic models [10]. 

The “Basic Principles of Ship Propulsion” further highlight the relationship between resistance and 
fuel consumption [14]. The total resistance 𝑅𝑅𝑅𝑅 of a ship in calm water is a combination of frictional 
and residual resistance, which can be described as: 

𝑅𝑅𝑅𝑅 =
1
2
𝜌𝜌𝐶𝐶𝑇𝑇𝑣𝑣2𝑆𝑆 

where: 

• 𝜌𝜌 is the water density, 
• 𝐶𝐶𝑇𝑇 is the total drag coefficient (sum of the frictional and residual drag coefficients), 
• 𝑆𝑆 is the wetted surface area of the hull. 

This equation shows that, even in calm water, the relationship between speed and resistance is 
quadratic, reinforcing the importance of understanding how real-world conditions affect power and 
fuel consumption. Traditional methods like the cube law tend to oversimplify these dynamics, 
leading to less accurate predictions in varying operational environments. Moreover, empirical 
formulas and hydrodynamic models often fail to account for operational factors like biofouling, 
propeller slip, and sea state, which can significantly impact performance over time. Biofouling 
increases hull resistance, while propeller slip—caused by currents or changes in sea conditions—
reduces the efficiency of propulsion. As the “Basic Principles of Ship Propulsion” document notes, 
operators often rely on performance benchmarks from sea trials to measure these factors during 
normal operations, but these methods provide limited flexibility for real-time adjustments [14]. 

Computational Fluid Dynamics (CFD) is an advanced method used to simulate fluid flow around a 
ship's hull and predict its hydrodynamic performance. Unlike empirical formulas, which are based 
on simplified assumptions, CFD offers a more comprehensive approach by solving the Reynolds-
averaged Navier-Stokes (RANS) equations. These equations govern fluid motion and allow for 
detailed simulations of how water flows around the hull, accounting for factors like turbulence, 
pressure distribution, and wave-structure interactions [15]. Historically, CFD models have been 
used at model scale, where simulations are validated using experimental data from testing tanks. 
However, advancements in computational power have enabled the shift toward full-scale 
simulations, which provide more accurate predictions of ship performance under real-world 
conditions. As highlighted in the Siemens white paper, full-scale CFD simulations eliminate the 
scaling errors associated with model tests, particularly in terms of boundary layer behavior and drag 
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coefficients. Full-scale simulations also better represent the effects of environmental conditions 
such as wave heights, currents, and wind [15]. 

CFD models offer significant advantages over traditional empirical methods by providing detailed 
insights into specific operational conditions. For example, CFD can predict how hull resistance 
changes under different wave amplitudes, directions, and speeds, which is particularly valuable for 
voyage optimization. Ship operators can use CFD simulations to determine optimal speeds, heading 
angles, and power settings under varying sea states, leading to more efficient fuel usage and 
reduced emissions. Despite its accuracy, CFD simulations are computationally intensive, especially 
for full-scale simulations that require millions of grid cells to resolve the flow field around the hull. 
The complexity of these simulations limits their application for real-time operational decisions. In 
most cases, CFD is used during the design phase to optimize hull shapes, propeller designs, and 
engine configurations rather than during voyages. This makes CFD a powerful tool for improving the 
energy efficiency of new ship designs but less suitable for dynamic, on-the-fly operational 
adjustments [15]. Furthermore, CFD's reliance on high-quality numerical grids and turbulence 
models introduces additional challenges. Simulations must be carefully set up to ensure grid 
convergence and accurate resolution of boundary layers, particularly in the turbulent flow regime. 
Even slight errors in grid resolution can lead to significant discrepancies in predicted drag forces, 
making it essential to balance computational cost with simulation accuracy. 

Semi-empirical models represent a middle ground between empirical formulas and CFD, combining 
experimental data with theoretical principles to improve accuracy. These models often incorporate 
specific experimental results, such as wave resistance or hull form tests, and apply them within a 
theoretical framework to predict ship performance under a variety of conditions. For example, Lang 
(2021) developed a semi-empirical model to estimate a ship’s added resistance in waves based on 
experimental data [16]. Although this model improved accuracy compared to purely empirical 
methods, it still struggled to adapt to real-time variations in environmental factors. Lang’s work 
highlighted that more accurate predictions, especially in complex sea states, required machine 
learning models that could process large datasets and respond to a wider range of conditions. 

Despite the utility of these traditional methods, they rely on simplifying assumptions that limit their 
accuracy in real-world conditions. Assumptions such as calm water, steady-state conditions, or a 
constant power-speed relationship make these models less effective in handling dynamic factors 
like changing sea states, wind, currents, or biofouling. As a ship’s hull fouls over time or as 
environmental conditions fluctuate, the predictions of traditional models become less reliable, 
often resulting in suboptimal performance and higher fuel consumption. Moreover, while CFD and 
semi-empirical models offer a more accurate representation of ship performance, they remain 
computationally expensive and require significant resources to set up and run simulations. This 
makes them impractical for real-time operational adjustments during voyages, where quick and 
adaptable decisions are needed to optimize speed and fuel consumption. This gap has driven the 
development of data-driven models, particularly those based on machine learning, which offer more 
accurate predictions by incorporating a wide range of operational and environmental factors in real-
time. These models can process vast amounts of operational data, accounting for a broader range 
of variables, including weather patterns, hull conditions, and traffic patterns, in real time. By 
continuously learning from both historical and real-time data, machine learning models offer the 
potential for more dynamic, responsive ship performance optimization. 
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2.3. Data-Driven Models in Vessel Performance  
 

Data-driven models, particularly those based on machine learning (ML) techniques, offer a 
promising alternative by providing more accurate, real-time predictions of ship speed, power, and 
fuel consumption under varying operational and environmental conditions. 

Machine learning applications in vessel performance optimization can be categorized into three key 
areas: fuel consumption prediction, speed prediction, and overall operational efficiency. 

In fuel consumption prediction, ML models help predict fuel usage based on various operational 
parameters, such as speed and sea conditions. For example, Madureira (2021) developed ML 
models using historical operational data to optimize fuel consumption on ships [17]. Additionally, 
the study “A Deep Learning Method for the Prediction of Ship Fuel Consumption in Real Operational 
Conditions” demonstrates a deep learning approach to fuel consumption prediction, showcasing 
how advanced techniques can significantly enhance predictive accuracy [18]. 

For speed prediction, algorithms such as artificial neural networks (ANNs) and support vector 
machines (SVM) are utilized to predict ship speed under different operational conditions, aiding in 
voyage planning and optimization. The paper “Development of Neural Networks for Ship Speed 
Prediction” focuses on creating models that can enhance the accuracy of speed predictions using 
various neural network architectures [19]. Lang (2021) focused on developing speed-power 
performance models, leveraging the XGBoost algorithm, resulting in a significant reduction in 
prediction errors compared to traditional models [16]. Furthermore, the work on “Speed-Power 
Models – A Bayesian Approach” highlights the use of Bayesian methods for modeling speed-power 
relationships, which can provide valuable insights into optimizing vessel performance [20]. 
Additionally, Lang et al. (2022) proposed physics-informed ML models that integrate physical 
principles with machine learning, providing a more accurate approach to speed predictions [21]. 

Regarding operational efficiency, ML is applied to improve overall operational efficiency by 
integrating data from various sources, including weather forecasts, vessel performance, and market 
dynamics, to inform strategic decision-making. The study titled “Machine Learning Techniques for 
Modeling Ships Performance in Waves” explores the integration of real-time data to enhance 
operational performance [22]. The review of various applications in “Machine Learning for Naval 
Architecture, Ocean, and Marine Engineering” also provides insight into how ML can optimize 
different operational facets [23]. 

In the detailed review of key studies, Zhang et al. (2024) developed a deep learning method to predict 
ship fuel consumption in real operational conditions [18]. The model incorporates an attention 
mechanism into a Bi-directional Long Short-Term Memory (Bi-LSTM) network to capture the complex 
relationships between operational data inputs, such as sailing speed, heading, displacement, trim, 
weather, and sea conditions, and fuel consumption. The method uses data from sensors, voyage 
reporting, and hydrometeorological information comprising 266 variables. This approach 
demonstrated a significant improvement in prediction accuracy when compared to existing 
methods, highlighting the potential of Bi-LSTM with attention mechanisms in optimizing fuel 
consumption and supporting decision-making for environmentally sustainable ship operations. 
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Lang (2021) developed speed-power performance models for arbitrary wave headings, focusing on 
ship voyage optimization [16]. The thesis introduces two models: a semi-empirical model and a 
machine learning-based model. The semi-empirical model estimates a ship's added resistance in 
head waves and extends this to different wave headings, verified by experimental model tests. A 
significant wave height-based correction factor is introduced to account for the nonlinear effects of 
irregular waves on a ship’s resistance and power increase. The machine learning model, developed 
using the XGBoost algorithm, leverages full-scale measurement data from a PCTC vessel, with input 
features including operational profiles, metocean conditions, and motion responses. The machine 
learning model outperformed the semi-empirical model, reducing the discrepancy between power 
predictions and actual values from over 40% to less than 1%. These models significantly improve 
voyage optimization, leading to reduced fuel consumption and increased energy efficiency. 

Madureira (2021) aimed to develop machine learning models to represent the operation of a fuel 
optimization system and to create a prototype decision support system that predicts optimal fuel 
consumption [17]. The study used a one-year dataset collected from a ship’s automated fuel 
optimization system, which included data on propulsion system parameters, environmental 
conditions, and fuel consumption. After pre-processing and analysis, the data were used to train 
machine learning models using Artificial Neural Networks (ANN) and Support Vector Machines (SVM) 
algorithms. The performance of these algorithms was evaluated, and a two-stage model was 
developed to predict both ship speed and fuel consumption under operational conditions. These 
models were integrated into a decision support system, which was demonstrated in different 
operational scenarios, showing potential for optimizing fuel efficiency and supporting operational 
decision-making. 

Lang et al. (2023) proposed a novel hybrid model that integrates physics-informed approaches with 
machine learning to improve ship speed predictions [21]. The study utilized a grey-box model (GBM) 
approach, where the expected ship speed in calm water was modeled using Physics-Informed 
Neural Networks (PINNs) based on speed-power model tests. This was combined with the XGBoost 
machine learning algorithm to estimate ship speed reduction under actual weather conditions. The 
results demonstrated that the GBM significantly improved prediction accuracy compared to 
traditional black-box models, especially when sufficient data was available. Even with limited data, 
the GBM showed considerable improvements in speed prediction accuracy, making it a robust 
method for practical applications. The model was further validated through its implementation for 
Estimated Time of Arrival (ETA) predictions for cross-Pacific and North Atlantic voyages, showing a 
maximum cumulative error of only 5 hours 

Grubišić et al. (2018) developed a system for monitoring and recording the influence of sea 
conditions on a vessel in motion using machine learning techniques to model the ship's performance 
in waves [22]. The system correlates measured wave parameters such as encounter angle, wave 
height, and wave amplitude with the vessel's motion characteristics. High-quality GRIB data from 
regions like the North Sea and Adriatic were used to generate training sets, and these correlations 
were stored in a neural network. The model is then applied alongside performance indicators like the 
root mean square (RMS) of linear acceleration, roll or pitch angle, and fuel consumption. This data 
helps create historical performance charts that assist in rational route planning and optimization. 
The study's experiments demonstrated its effectiveness in enhancing operational decision-making 
and optimizing ship performance under various sea conditions. 
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When comparing these studies, it is evident that different ML methodologies can yield significant 
improvements in predictive accuracy and operational efficiency. For example, deep learning models 
like RNNs have shown high accuracy in fuel consumption predictions, while tree-based methods like 
XGBoost excel in modeling speed-power relationships. However, each approach comes with its 
advantages and limitations, such as the need for extensive data for training deep learning models 
compared to the relatively simpler requirements of traditional regression models. 

Despite the promising applications of ML in maritime operations, several challenges persist. Data 
quality and availability remain critical issues, as incomplete or inaccurate data can significantly 
affect model performance. Additionally, integrating ML solutions into existing operational 
frameworks poses its own set of difficulties, particularly regarding staff training and system 
compatibility. 

In summary, the applications of machine learning in maritime operations are diverse and impactful, 
offering solutions that enhance efficiency and sustainability. The studies reviewed demonstrate the 
significant potential of ML techniques to optimize fuel consumption, improve speed predictions, and 
enhance operational decision-making. As industry continues to evolve, the integration of ML will play 
a crucial role in shaping the future of maritime transportation. 

A critical focus in maritime operations is the relationship between ship speed, power, and fuel 
consumption, which is central to both operational efficiency and policy decisions. As discussed in 
"Ship Speed vs Power or Fuel Consumption: Are laws of physics still valid? Regression analysis 
pitfalls and misguided policy implications" [10], the non-linear relationship between speed and fuel 
consumption is key to reducing greenhouse gas emissions from ships. Reducing speed can lead to 
a disproportionate reduction in fuel consumption and emissions, making it a powerful tool in the 
short to medium term while the industry transitions to low-carbon fuels. The paper emphasizes that 
this speed reduction is critical in achieving compliance with regulations such as the Energy 
Efficiency Design Index (EEDI), Energy Efficiency Existing Ship Index (EEXI), and Carbon Intensity 
Indicators (CII), which are mandated by the International Maritime Organization (IMO) and the 
European Union (EU). 

Furthermore, the paper highlights the risks of misinterpreting the speed-fuel relationship and the 
potential for misguided policies based on flawed analyses. By ensuring that policy decisions are 
grounded in scientifically sound models, the maritime sector can better navigate the complex trade-
offs between operational efficiency and environmental sustainability. Machine learning models, 
which incorporate large-scale operational data and environmental factors, offer a robust solution 
for accurately predicting fuel consumption and optimizing speed to meet regulatory requirements 
while minimizing emissions. These models, by enhancing the accuracy of speed-power-fuel 
consumption predictions, can help ship operators comply with regulatory frameworks and optimize 
operations in a more sustainable manner. 

Ultimately, machine learning techniques, when properly integrated into decision-making processes, 
hold great potential for bridging the gap between current operational practices and future 
sustainability goals. As the maritime industry continues to adopt more sophisticated data-driven 
methods, ML models will play a pivotal role in enabling more precise and effective measures to 
reduce GHG emissions and improve the energy efficiency of ships.  
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3. Theoretical Background 
 

3.1. Ship Resistance and Power Dynamics 
 

A ship's energy system is a complex interplay of various factors, including propulsion, heating, and 
auxiliary equipment, all of which contribute to overall energy consumption. In real-world conditions, 
a vessel's fuel consumption is influenced by multiple parameters such as marine engine 
performance, propeller efficiency, and total hydrodynamic resistance [24]. The relationship between 
propulsion power and ship speed is directly affected by environmental factors, including wind, 
waves, and currents. A standard approach to estimating a vessel’s speed-power performance 
follows a structured workflow, as illustrated in Figure 3. 

 
Figure 3 Typical workflow for the conventional estimation of a ship's speed to power/fuel consumption 

 

The estimation of a ship's speed-power relationship begins with determining its resistance across 
various sailing speeds. This can be achieved through model testing, numerical simulations, or semi-
empirical formulas. When operating in real sea conditions, external environmental factors such as 
wind and wave-induced resistance significantly impact the vessel’s performance over its voyage. 
Therefore, added resistance due to wind (𝑅𝑅𝐴𝐴𝐴𝐴) and waves (𝑅𝑅𝐴𝐴𝐴𝐴) must be considered to accurately 
compute the total resistance (𝑅𝑅𝑇𝑇𝑇𝑇𝑇𝑇𝐴𝐴𝑇𝑇) acting on the ship. 

To overcome this resistance and maintain forward motion, the ship relies on thrust force generated 
by its propeller, which is powered by marine engines operating at specific RPMs under varying load 
conditions. The propulsion power required for the ship to sustain a given speed through water (𝑉𝑉) is 
defined as the effective power (𝑃𝑃𝑒𝑒): 

𝑃𝑃𝑒𝑒 =  𝑅𝑅𝑇𝑇𝑇𝑇𝑇𝑇𝐴𝐴𝑇𝑇 ∗ 𝑉𝑉 
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This effective power is provided by the brake power (𝑃𝑃𝑏𝑏) of the main engine, which is responsible for 
delivering the shaft power necessary to drive the propeller. The relationship between these 
parameters is given by: 

𝑃𝑃𝑏𝑏 =  
𝑃𝑃𝑒𝑒

𝜂𝜂𝑠𝑠 ∙  𝜂𝜂ℎ ∙  𝜂𝜂𝑟𝑟 ∙  𝜂𝜂𝑜𝑜
 

where 𝜂𝜂𝑠𝑠,  𝜂𝜂ℎ,  𝜂𝜂𝑟𝑟,  𝜂𝜂𝑜𝑜 represent the shaft efficiency, hull efficiency, relative rotative efficiency, and 
open-water efficiency, respectively. 

Finally, fuel consumption is estimated by multiplying the engine’s brake power (𝑃𝑃𝑏𝑏) with the specific 
fuel oil consumption (SFOC) and the operational time. The overall propulsion efficiency, which 
depends on engine type and propeller characteristics, is typically provided by manufacturers or 
shipowners and serves as a key factor in determining the vessel’s total fuel usage under different 
operational and environmental conditions. 

 

3.1.1. Calm water resistance 
 

Holtrop and Mennen [25] proposed an approximate method for calculating a ship's calm water 
resistance based on full-scale trials and model experiments. This method considers key ship 
characteristics, including main dimensions, hull type, appendage configuration, and immersed 
transom sterns. The total resistance in still water is decomposed into six primary components: 

𝑅𝑅𝐶𝐶𝐴𝐴𝑇𝑇𝐶𝐶 =  𝑅𝑅𝐹𝐹 (1 +  𝑘𝑘1) +  𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑅𝑅𝐴𝐴 +  𝑅𝑅𝐵𝐵 + 𝑅𝑅𝑇𝑇𝑇𝑇 + 𝑅𝑅𝐴𝐴 

where: 

• 𝑅𝑅𝐹𝐹  represents frictional resistance, estimated using the ITTC-1957 correlation line [26]. 

• 1 +  𝑘𝑘1 is the form factor, accounting for viscous pressure effects. 

• 𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴  denotes the resistance of appendages. 

• 𝑅𝑅𝐴𝐴 is the wave-making resistance of the bare hull. 

• 𝑅𝑅𝐴𝐴 corresponds to the wave resistance due to the bulbous bow. 

• 𝑅𝑅𝑇𝑇𝑇𝑇  represents the additional resistance from immersed transoms. 

• 𝑅𝑅𝐴𝐴 accounts for the model-ship correlation resistance to correct for scale effects. 

When towing tank resistance test data is available, it is generally preferred to interpolate the 
measured values rather than relying solely on empirical formulas. This approach helps minimize 
potential deviations caused by variations in hull form and ship type, ensuring a more accurate 
estimation of resistance. 
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3.1.2. Added resistance due to wind 
 

The additional resistance induced by wind is primarily influenced by the ship's superstructure area 
and the relative wind conditions. The relative wind is calculated as the vector sum of the ship’s speed 
and direction with the wind speed and direction. This added resistance can have a significant impact 
on the ship's propulsion power requirements, especially in adverse weather conditions. According 
to the ISO [27] guideline is used to estimate wind-induced resistance: 

𝑅𝑅𝐴𝐴𝐴𝐴 =
1
2
∙ 𝜌𝜌𝐴𝐴  ∙  [𝐶𝐶𝐴𝐴𝐴𝐴(𝜃𝜃𝐴𝐴𝑇𝑇)𝐴𝐴𝑋𝑋𝑋𝑋𝑉𝑉𝐴𝐴𝑇𝑇

2 −  𝐶𝐶𝐴𝐴𝐴𝐴(0)𝐴𝐴𝑋𝑋𝑋𝑋𝑉𝑉𝑇𝑇𝑂𝑂2 ] 

where: 

• 𝜌𝜌𝐴𝐴, air mass density 

• 𝐴𝐴𝑋𝑋𝑋𝑋, transverse projected area of the ship above the waterline, including the superstructure 

• 𝑉𝑉𝐴𝐴𝑇𝑇, relative wind speed 

• 𝜃𝜃𝐴𝐴𝑇𝑇, relative wind direction 

• 𝑉𝑉𝑇𝑇𝑂𝑂, ship speed over ground 

• 𝐶𝐶𝐴𝐴𝐴𝐴(𝜗𝜗𝐴𝐴𝑇𝑇), wind resistance coefficient at a given relative wind angle 

• 𝐶𝐶𝐴𝐴𝐴𝐴(0), wind resistance coefficient for headwind conditions 

The wind resistance coefficients are determined based on extensive wind tunnel experiments and 
model tests, providing empirical values for different ship types and wind angles. These coefficients 
play a crucial role in accurately predicting the impact of wind on ship performance, particularly for 
voyage planning and fuel consumption estimation. 

 

3.1.3. Added resistance due to wave 
 

The resistance of a ship experiences due to waves is influenced by the wave spectrum and spreading 
function, which define the distribution of wave energy in different directions. To model irregular wave 
conditions encountered in real sea states, this study applies the JONSWAP wave spectrum [28] 
along with a Cosine-Squared spreading function: 

𝐷𝐷(𝜃𝜃) = �
2
𝜋𝜋
𝑐𝑐𝑐𝑐𝑠𝑠2(𝜃𝜃), −

𝜋𝜋
2
≤ 𝜃𝜃 ≤

𝜋𝜋
2

  

0,                           𝑐𝑐𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑤𝑤𝑒𝑒𝑠𝑠𝑒𝑒
 

 

 

The wave spectrum is defined as: 
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𝑆𝑆�𝜔𝜔�𝐻𝐻𝑠𝑠,𝑅𝑅𝑝𝑝, 𝛾𝛾�𝐷𝐷(𝜃𝜃) =  
320 𝐻𝐻𝑠𝑠2

𝑅𝑅𝑝𝑝4 𝜔𝜔5  exp �
−1950
𝑅𝑅𝑝𝑝4 𝜔𝜔4 �  𝛾𝛾

𝑒𝑒𝑒𝑒𝑝𝑝�
−(𝜔𝜔−𝜔𝜔𝑝𝑝)2

2𝜎𝜎2𝜔𝜔𝑝𝑝
2 �

𝐷𝐷(𝜃𝜃)  

where: 

• 𝐻𝐻𝑠𝑠, significant wave height 

• 𝑅𝑅𝑝𝑝, wave peak period 

• 𝛾𝛾, peakedness factor (typically set to 3.3 for JONSWAP spectrum) 

• 𝜎𝜎, spectral width parameter, with values 0.07 for 𝜔𝜔 ≤  𝜔𝜔𝑝𝑝 and 0.09 for 𝜔𝜔 >  𝜔𝜔𝑝𝑝 

 

The added wave resistance (𝑅𝑅𝐴𝐴𝐴𝐴) in irregular waves is typically estimated by integrating the 
resistance due to regular waves (𝑅𝑅𝐴𝐴𝐴𝐴(𝜔𝜔)), weighted by the wave spectrum 𝑆𝑆(𝜔𝜔), across the full 
range of wave frequencies: 

𝑅𝑅𝐴𝐴𝐴𝐴�𝜔𝜔�𝐻𝐻𝑠𝑠,𝑅𝑅𝑝𝑝, 𝛾𝛾,𝑉𝑉,𝛽𝛽� = 2 � � 𝑆𝑆�𝜔𝜔�𝐻𝐻𝑠𝑠,𝑅𝑅𝑝𝑝, 𝛾𝛾� 
𝜋𝜋
2

−𝜋𝜋2

∞

0
 
𝑅𝑅𝛼𝛼𝛼𝛼(𝜔𝜔|𝑉𝑉,𝛽𝛽)
𝜁𝜁𝛼𝛼(𝜔𝜔)2

 𝐷𝐷(𝜃𝜃 − 𝛽𝛽)𝑑𝑑𝜃𝜃𝑑𝑑𝜔𝜔 

where: 

• 𝜁𝜁𝛼𝛼(𝜔𝜔), amplitude of the regular wave 

• 𝑅𝑅𝛼𝛼𝛼𝛼/𝜁𝜁𝛼𝛼2 transfer function (RAOs) describing the ship’s added resistance response to waves 

This formulation provides a realistic estimate of wave-induced resistance, crucial for accurately 
modeling ship performance in various sea states. 

 

3.1.4. Correction Factor for Ship Resistance and Power 
 

The conventional integration methods developed by ITTC [29] and ISO [27] have played a crucial role 
in the implementation of the Energy Efficiency Design Index (EEDI) for ship design. These methods 
incorporate the effects of waves based on extensive benchmark studies using experimental test data 
and sea trials. While semi-empirical approaches provide reasonable estimates of the average wave 
resistance for large ship datasets, they are primarily designed for ship design applications rather 
than real-time operational performance assessment. 

For operational applications such as voyage optimization, the focus shifts to predicting the specific 
ship's actual resistance and power demand rather than relying on generalized mean wave resistance 
estimates. One key limitation of traditional integration methods is their assumption of linear wave 
superposition, which does not fully capture the nonlinear nature of ship responses such as wave 
reflections, ship motions, and dynamic propulsion efficiency variations. These nonlinear effects 
become particularly significant in harsher sea conditions, where larger waves (𝐻𝐻𝑆𝑆) lead to: 
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• Increased added resistance due to waves (𝑅𝑅𝐴𝐴𝐴𝐴) 

• Reduced propulsion efficiency due to excessive ship motions 

• Surf-riding and instability, further increasing power requirements 

To account for these nonlinear effects, a correction factor (𝐶𝐶𝐻𝐻𝑆𝑆 ) is introduced, adjusting the semi-
empirical wave resistance component (𝑅𝑅𝐴𝐴𝐴𝐴) to better reflect real-world ship performance in varying 
sea states. The total resistance is thus modified as follows: 

𝑅𝑅𝑇𝑇𝑇𝑇𝑇𝑇𝐴𝐴𝑇𝑇 =  𝑅𝑅𝐶𝐶𝐴𝐴𝑇𝑇𝐶𝐶 + 𝑅𝑅𝐴𝐴𝐴𝐴 +  𝑅𝑅𝐴𝐴𝐴𝐴 ∗  𝐶𝐶𝐻𝐻𝑆𝑆  

where the correction factor is wave-height dependent and defined as: 

𝐶𝐶𝐻𝐻𝑆𝑆 =  �𝐻𝐻𝑠𝑠
3.5  

For broader applicability, further experimental validation and full-scale measurements are 
necessary to refine and generalize this correction factor, ensuring its effectiveness across various 
ship types and operational conditions. 
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3.2. Machine Learning Techniques for Ship Speed Prediction  
 

In recent years, artificial intelligence (AI) has emerged as a rapidly advancing field, revolutionizing 
various industries and solving complex problems. AI has been transformative in applications ranging 
from medical diagnostics and autonomous vehicles to speech recognition and personalized 
recommendations on e-commerce platforms and streaming services. 

At its core, AI refers to the automation of tasks traditionally performed by humans, enabling 
machines to learn from data, recognize patterns, and make decisions. While AI's popularity has 
surged in recent years, its fundamental concepts trace back to the 1950s. Early AI techniques, such 
as rule-based systems and Support Vector Machines (SVMs), were often constrained by limited 
computational power. However, significant advancements in hardware (e.g., high-performance 
GPUs, faster storage solutions), data availability (large-scale datasets), and optimization algorithms 
have enabled researchers to develop more sophisticated machine learning models. These 
breakthroughs have led to remarkable improvements in predictive accuracy, making AI an 
indispensable tool across a wide range of scientific and industrial domains [30]. 

 
Figure 4 Artificial intelligence, Machine Learning, and Deep Learning [30] 

 

While AI encompasses various approaches, machine learning (ML) is a specific subset focused on 
enabling systems to learn patterns from data without explicit programming. Unlike traditional rule-
based programming, where humans define complex rules for a task (e.g., pattern recognition), 
machine learning models are trained on input-output pairs and automatically extract the underlying 
patterns and relationships in the data. 
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The machine learning process consists of two primary phases: 

1. Training Phase: The model is initially provided with a dataset containing known input-output 
relationships. During training, the model's parameters (weights) are iteratively adjusted to 
minimize the difference between its predictions and actual values using a feedback 
mechanism. 

2. Inference Phase: Once trained, the model is deployed to make predictions on new, unseen 
data by applying the learned relationships. 

 

3.2.1. Taxonomy of data-driven algorithms 
 

Data-driven models can be broadly categorized into three main learning paradigms, depending on 
how they learn from data: 

1. Supervised Learning 

2. Unsupervised Learning 

3. Reinforcement Learning 

This classification is based on the availability of labeled data and the learning approach used by each 
method. 

• Supervised Learning requires that each observation in the training dataset is associated with 
a known target value (ground truth). The model learns by mapping input features to the 
correct outputs, making it well-suited for predictive modeling tasks, such as ship speed 
estimation based on historical operational data. 

• Unsupervised Learning does not rely on labeled data. Instead, it identifies hidden structures, 
patterns, or clusters within the dataset. This approach is useful for anomaly detection, 
pattern recognition, and feature extraction, where the model explores relationships between 
variables without predefined categories. 

• Reinforcement Learning (RL) differs from both supervised and unsupervised learning in that 
it does not use labeled data. Instead, the model learns through interaction with an 
environment, where it receives rewards or penalties based on its decisions. The goal of RL is 
to determine the optimal strategy (policy) that maximizes long-term rewards, making it 
applicable in scenarios requiring dynamic decision-making, such as autonomous voyage 
optimization. 

Additionally, a hybrid approach known as semi-supervised learning combines elements of both 
supervised and unsupervised learning by using a mix of labeled and unlabeled data for model 
training. This technique is particularly useful in situations where acquiring labeled data is expensive 
or time-consuming. 
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While reinforcement learning has shown promise in various applications, its practical use in ship 
speed prediction and performance monitoring remains limited. Therefore, for the scope of this 
discussion, the primary focus will be on supervised and unsupervised learning methods, which have 
more direct applications in maritime data analysis. 

 

3.2.2. Artificial Neural Networks (ANNs) and Deep Learning 
 

Neural networks are a class of machine learning algorithms designed to mimic the structure and 
functionality of the human brain [31]. They consist of interconnected units called neurons, which are 
arranged in multiple layers: 

1. Input Layer – Receives raw data and passes it to the next layer. 

2. Hidden Layers – Process the information through weighted connections, applying 
transformations to extract relevant features. 

3. Output Layer – Produces the final prediction or classification based on the learned 
representations, as shown in Figure 5. 

 
Figure 5 Representation of neural network 
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Each connection between neurons is associated with weights and biases, which determine the 
strength of influence an input has on the output. During training, these weights are adjusted through 
backpropagation and gradient descent, minimizing the difference between predicted and actual 
values [32]. To capture complex non-linear relationships, neural networks utilize activation 
functions, which introduce non-linearity into the learning process. This enables the network to 
model intricate dependencies between input features and improve predictive performance. 

During training, a neural network is exposed to labeled data and iteratively adjusts its weights and 
biases using backpropagation and gradient descent to minimize prediction errors [32]. This learning 
process enables the network to model complex, non-linear relationships between input features 
and outputs, making it highly effective for a wide range of tasks, including image recognition, natural 
language processing, and strategic decision-making in games [31]. 

Despite their advantages, neural networks also have notable limitations. They can be 
computationally demanding, requiring high processing power and large datasets for effective 
training [33]. Additionally, they are susceptible to overfitting, where the model becomes too 
specialized to the training data and fails to generalize to new, unseen inputs. To mitigate overfitting, 
techniques such as regularization, dropout, and early stopping are commonly used to enhance 
model robustness and generalization [32]. 

 
Figure 6 Model Fitting: Overfitting, Underfitting, and Balanced 

In summary, neural networks are a powerful tool for solving complex problems, capable of learning 
intricate patterns and modeling non-linear relationships between inputs and outputs. Their 
effectiveness across various applications, from predictive modeling to autonomous decision-
making, has solidified their role as a cornerstone of modern machine learning. 

Despite certain challenges, such as computational demands and overfitting, ongoing research 
continues to drive significant advancements in neural network architectures, optimization 
techniques, and training methodologies. These improvements are enhancing model performance, 
efficiency, and generalization, making neural networks an increasingly robust and versatile solution 
for a wide range of real-world applications. 
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Hyperparameter Optimization 
Hyperparameter optimization is a critical step in training machine learning models, as it directly 
impacts their accuracy, generalization, and overall performance. Selecting the appropriate 
hyperparameter values helps achieve a balance between underfitting and overfitting, ensuring that 
the model performs well not only on training data but also on unseen test data. Fine-tuning these 
parameters is essential for maximizing model efficiency and predictive accuracy. 

 

Number of Hidden Layers 
The number of hidden layers is a key hyperparameter in neural networks, particularly in Multi-Layer 
Perceptrons (MLPs) and Deep Neural Networks (DNNs). For many tasks, a single hidden layer is 
sufficient, provided it has enough neurons to capture the underlying relationships in the data. 
However, for more complex problems, deep networks (i.e., those with multiple hidden layers) tend 
to perform better while using fewer parameters, as they can learn hierarchical representations more 
efficiently. 

Deep networks exploit the hierarchical structure of real-world data: 

• Lower layers capture low-level features. 
• Intermediate layers learn higher-level representations. 
• Upper layers extract the most abstract and meaningful features before reaching the final 

output. 

This hierarchical design improves generalization and enables faster convergence to an optimal 
solution. The common approach for determining the optimal number of hidden layers involves 
incrementally adding layers until the error stabilizes, ensuring that the model remains efficient while 
maintaining high performance on unseen data [34]. 

 

Number of Neurons per Hidden Layer 
The number of neurons per hidden layer plays a crucial role in determining a neural network’s ability 
to learn and generalize effectively. Earlier approaches often followed a pyramidal structure, where 
successive layers had fewer neurons. However, this practice has largely been abandoned, as using 
the same number of neurons across all hidden layers has been found to work just as well—if not 
better—while simplifying hyperparameter tuning. 

In some cases, having a larger first hidden layer can enhance performance, but this depends on the 
dataset. If a hidden layer has too few neurons, the model may lose important information, limiting 
its ability to capture complex relationships in the data. Conversely, too many neurons can lead to 
overfitting and increased computational cost. 

 

A common approach for selecting the optimal number of neurons is incrementally adding units until 
the model’s error stabilizes, ensuring the smallest number of neurons that achieves optimal 
performance [34]. 
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Activation Function 
An activation function determines how the weighted sum of inputs from a neuron is transformed into 
an output. It is a key component that affects both the learning capability and efficiency of a neural 
network. Activation functions can be linear or nonlinear, with hidden layers typically using nonlinear 
functions to enable the network to capture complex patterns in the data. 

Common activation functions include: 

• ReLU (Rectified Linear Unit) – A widely used function due to its simplicity and computational 
efficiency. It effectively avoids vanishing gradients but can suffer from the "dying ReLU" 
problem, where inactive neurons output zero for all inputs. 

• Logistic (Sigmoid) – Used in some applications but prone to vanishing gradients, making deep 
networks difficult to train. 

• Tanh (Hyperbolic Tangent) – Similar to the sigmoid function but centered around zero, 
allowing for stronger gradients in deep networks. 

For output layers, the choice of activation function depends on the prediction task: 

• Linear activation for regression problems. 
• Softmax or Sigmoid for classification tasks. 

The selection of an activation function is critical for ensuring model stability and convergence, with 
ReLU being the preferred choice for hidden layers due to its balance of performance and efficiency 
[34]. 

 
Figure 7 ReLU function 
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Number of Epochs & Batch Size 
The number of epochs refers to the total number of times a machine learning model processes the 
entire training dataset. Each epoch allows the model to update its parameters based on the training 
data, gradually improving its predictive accuracy. 

Batch size defines the number of samples processed before the model updates its parameters. 
Instead of updating the model after processing the entire dataset, training is done in mini batches, 
where updates occur after processing a subset of the data. The batch size must be a positive integer 
that is less than or equal to the total number of training samples. 

• Larger batch sizes improve computational efficiency and stabilize gradient updates, 
especially in noisy datasets. 

• Smaller batch sizes introduce more variability in gradient updates but can help the model 
generalize better. 

While the number of epochs can be any positive integer, an excessively high number may lead to 
overfitting, where the model learns the training data too well and fails to generalize to new data. The 
optimal values for both epochs and batch size vary depending on the dataset and model 
architecture, and they are typically tuned experimentally using validation performance as a guide. 

 

3.2.3. XGBoost: An Advanced Gradient Boosting Algorithm 
 

XGBoost, developed by Chen and Guestrin [35], is an enhanced version of gradient boosting that 
offers higher computational efficiency and improved regularization techniques to mitigate 
overfitting. While machine learning methods such as Support Vector Machines (SVMs) and Artificial 
Neural Networks (ANNs) are widely applied in the maritime industry, XGBoost remains underutilized 
in ship performance modeling despite its robust handling of heterogeneous data and different 
feature scales. 

 

Gradient Boosting and the XGBoost Framework 
XGBoost is an advanced implementation of the Gradient Tree Boosting (GTB) algorithm. Gradient 
boosting is an ensemble learning method that combines multiple weak learners, typically decision 
trees, to develop a strong predictive model. Unlike bagging techniques, such as random forests, 
where trees are trained independently in parallel, boosting operates sequentially, with each new tree 
correcting the errors of its predecessors. The process begins by training an initial weak model, 
commonly a simple decision tree. Additional trees are then iteratively added, each designed to 
compensate for the limitations of the previous ones. The final model aggregates the predictions from 
all trees, producing a highly accurate outcome. This iterative refinement process makes gradient 
boosting one of the most effective techniques for classification and regression tasks. 
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XGBoost introduces several enhancements over traditional Gradient Boosting Decision Trees 
(GBDTs), primarily aimed at improving model accuracy, efficiency, and regularization. One of the key 
improvements is its ability to control overfitting through the integration of L1 regularization (LASSO) 
and L2 regularization (Ridge Regression), ensuring better generalization across datasets. 
Furthermore, XGBoost optimizes tree construction by utilizing Classification and Regression Tree 
(CART) algorithms, where binary splits are applied, and leaf nodes store prediction values (leaf 
weights) to enhance computational efficiency. 

To further improve performance, XGBoost incorporates several computational optimizations, such 
as sparse-aware computations, weighted quantile sketching, and parallelization, making it 
significantly faster and more scalable compared to standard gradient boosting methods. These 
enhancements make XGBoost particularly effective for handling large datasets with high-
dimensional features, making it a robust choice for predictive modeling tasks such as ship speed 
prediction and vessel performance analysis. 

Gradient Boosting Decision Tree (GBDT) is a boosting algorithm designed specifically for regression 
tasks. The model-building process starts with a single decision tree, and additional trees are 
sequentially added in an effort to reduce residual errors from previous iterations. Each tree refines 
the prediction by learning from the mistakes of its predecessor, and the final model aggregates the 
weighted sum of all tree predictions. 

XGBoost, an advanced implementation of GBDT, introduces several key improvements, particularly 
in handling regularization, computational efficiency, and predictive accuracy. Unlike conventional 
GBDTs, where each leaf node represents the average value of all samples assigned to that node, 
XGBoost assigns leaf weights, which serve as the regression values for each sample. These leaf 
weights, denoted as 𝑓𝑓𝑘𝑘(𝑥𝑥𝑖𝑖), represent the prediction score from the 𝑘𝑘-th decision tree for a given 
input 𝑥𝑥𝑖𝑖. When a single decision tree is used, the prediction is often inaccurate, but as more trees 
are added, the ensemble model accumulates the outputs from all trees, leading to more refined 
predictions. The final prediction for a sample is computed as: 

𝑦𝑦�𝑖𝑖
(𝑘𝑘) =  �𝑓𝑓𝑘𝑘(𝑥𝑥𝑖𝑖

𝐾𝐾

𝑘𝑘=1

) 

where 𝐾𝐾 is the total number of trees in the ensemble. 
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3.2.4. Random Forest: A Robust Ensemble Learning Method 
 

Random Forest (RF) is a widely used tree-based ensemble learning algorithm that builds upon the 
bagging (Bootstrap Aggregating) technique, introducing an additional layer of randomness in the 
training process. It is particularly effective for handling nonlinear relationships, reducing overfitting, 
and improving predictive performance in both classification and regression tasks [11].  

Ensemble learning methods fall into two main categories: bagging and boosting. Bagging creates 
multiple variations of the training dataset through sampling with replacement and trains a weak 
learner on each subset independently. The final prediction is obtained by averaging results (for 
regression) or majority voting (for classification). Boosting, on the other hand, builds models 
sequentially, where each new model corrects errors from the previous one. Random Forest is an 
extension of bagging applied to Decision Trees (DTs). Unlike traditional Decision Trees (DTs), where 
each node is split based on all available features, Random Forests introduce feature randomness by 
selecting only a subset of features at each node split. This additional randomness enhances model 
diversity and robustness, making RF less sensitive to variations in the training data. If a dataset 
contains 𝑚𝑚 features, the recommended number of features to consider at each node is typically 𝑑𝑑 =
𝑙𝑙𝑐𝑐𝑙𝑙2𝑚𝑚. 

Random Forest models derive their randomness from two main sources: 

1. Bootstrap Sampling – Each tree in the forest is trained on a random subset of the training 
data, drawn with replacement. 

2. Feature Subsampling – Instead of considering all features when splitting a node, only a 
random subset is used, improving generalization. 

This combination significantly reduces variance, leading to improved prediction accuracy and model 
stability, especially in datasets with high dimensionality or collinear features. By training multiple 
weak models on different data subsets, RF significantly reduces variance and prevents overfitting. 
Since training datasets may contain noise, outliers, or underrepresented samples, the RF approach 
ensures that the final model is less sensitive to anomalies, leading to improved robustness and 
generalization [36]. 

 
Figure 8 An illustration of an RF model  
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3.2.5. Error function 
 

The error function is a crucial metric used to evaluate the performance of a machine learning model 
by comparing its predicted values to the actual values. The choice of the error function significantly 
impacts the reliability and interpretability of the model's predictions. 

For regression problems, the most commonly used error functions include: 

 

• Mean Squared Error (MSE) 

𝑀𝑀𝑆𝑆𝑀𝑀 =
1
𝑛𝑛

 �(𝑌𝑌𝑖𝑖 −  𝑌𝑌�𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 

MSE squares the differences between predicted and actual values, emphasizing larger errors more 
heavily. 

 

• Root Mean Squared Error (RMSE) 

𝑅𝑅𝑀𝑀𝑆𝑆𝑀𝑀 = �
1
𝑛𝑛

 �(𝑌𝑌𝑖𝑖 −  𝑌𝑌�𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 

RMSE provides a more interpretable error measure by converting squared differences back to the 
original unit of measurement but still penalizes large errors. 

 

• Mean Absolute Error (MAE) 

𝑀𝑀𝐴𝐴𝑀𝑀 =
1
𝑛𝑛

 � |𝑌𝑌𝑖𝑖 −  𝑌𝑌�𝑖𝑖

𝑛𝑛

𝑖𝑖=1

| 

MAE measures absolute differences between actual and predicted values, making it more robust to 
outliers than MSE or RMSE. 

 

• Mean Absolute Percentage Error (MAPE) 

𝑀𝑀𝐴𝐴𝑃𝑃𝑀𝑀 =
100
𝑛𝑛

 ��
𝑌𝑌𝑖𝑖 −  𝑌𝑌�𝑖𝑖
𝑌𝑌𝑖𝑖

�
𝑛𝑛

𝑖𝑖=1

 

MAPE expresses errors as a percentage, making it scale-independent, but can be problematic when 
actual values are close to zero. 
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• Coefficient of Determination (R² Score) 

𝑅𝑅2 = 1 −  
∑ (𝑌𝑌𝑖𝑖 − 𝑌𝑌�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

∑ (𝑌𝑌𝑖𝑖 − 𝑌𝑌�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

 

 

R² measures how well the independent variables explain the variance in the dependent variable. It 
ranges from 0 to 1, where 1 indicates a perfect fit and values close to 0 suggest poor predictive 
power. Negative values indicate the model performs worse than a simple mean prediction. 

 

Each error function has specific advantages depending on the use case. MSE and RMSE penalize 
larger errors more heavily, making them useful when minimizing large deviations is critical. MAE, 
being less sensitive to extreme values, is preferred when robustness to outliers is required. MAPE is 
commonly used in forecasting applications, where percentage-based errors provide a meaningful 
performance metric. R² Score is useful for assessing the model’s overall explanatory power but 
should be used alongside absolute error metrics for a complete evaluation. 
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4. Case Study 
 

4.1. Dataset Description 
 

This chapter discusses the data sources for this project. The dataset consists of high-frequency 
sensor data collected every five (5) minutes from two sister Aframax crude oil tankers (Vessel_1 and 
Vessel_2). The data spans from June 2023 to May 2024, with 99,196 data points for Vessel_1 and 
103,620 data points for Vessel_2. The vessels’ main particulars are presented in Table 1.  

Table 1 Main particulars for both vessels 

Main Particulars 
Ship Type Tanker  
Length Between Perpenticulars (LBP) 242 [m] 
Breadth (moulded) 44 [m] 
Depth (moulded) 21.2 [m] 
Scantling Draught 15.2 [m] 
Main Engine Type MAN B&W 6G60ME - C10.5  
MCR Power  12690 [kW] 
MCR RPM 85.8 [RPM] 
Propeller Type Fixed Pitch Propeller  
YOB 2022  

 

The dataset includes a variety of operational parameters as presented in Table 2. 

Table 2 Recorded sensor data parameters 

Label Units - Format 
Timestamp YYYY-MM-DD HH:MM 
Draught Mid [m] 

Speed Through Water (STW) [kn] 
Speed Over Ground (SOG) [kn] 

M/E RPM [RPM] 
M/E Power [kW] 

M/E Cylinder exhaust Gas Temperature [oC] 
M/E Consumption [t/h] 

Wind Speed [kn] 
Wind Direction [deg] 

Vessel’s Course [deg] 
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Additionally, the dataset is complemented by Noon Reports from both vessels for the same period, 
providing information on: 

Table 3 Recorded noon report data parameters 

Label Units - Format 
Timestamp DD/MM/YYYY HH:MM:SS 
Time zone  

Report Type  
Draught Fore [m] 
Draught Mid [m] 
Draugght Aft [m] 

Speed Through Water (STW) [kn] 
Speed Over Ground (SOG) [kn] 

M/E RPM [RPM] 
M/E Power [kW] 

Wind Speed [kn] 
Wind Direction [deg] 

Wave Height [m] 
Wave Direction [deg] 

Swell Height [m] 
Swell Direction [deg] 

Vessel’s Course [deg] 
Ambient Temperature [oC] 

E/R Temperature [oC] 
 

The Noon Reports serve as a validation source, enabling cross-checking of idle periods, speed 
variations, and power consumption trends. 

To enhance the accuracy of predictions and to shape the final grey model, external data sources are 
included: 

• Sea Trials Data: Provides performance benchmarks under controlled conditions. 
• M/E Shop Tests: Contains manufacturer test results for power performance. 
• Model Tests: Offers hydrodynamic testing data for ship behavior modeling. 
• Underwater Cleaning (UWC) and Propeller Polishing Records: Includes maintenance logs 

affecting ship resistance and performance. 
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4.2. Exploratory Data Analysis & Feature Selection 
 

This chapter outlines the data preprocessing methodology employed to ensure high-quality input for 
the machine learning model. First, an Exploratory Data Analysis (EDA) is conducted to examine the 
structure of the dataset, detect missing values, and identify potential inconsistencies. Then, 
statistical filtering techniques for outlier detection and removal are applied to eliminate erroneous 
data points. Finally, a feature selection process is performed, leveraging correlation analysis and 
domain knowledge to retain only the most relevant and independent variables for model training. 

A visual representation of the multi-stage preprocessing pipeline and feature selection methodology 
is shown in Figure 9. The diagram illustrates the integration of various data sources, including sensor 
data, noon reports, and UWC logs, followed by the data processing steps applied before feature  

 

 
Figure 9 Visual representation of data preprocessing and feature selection 
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4.2.1. Outlier Detection and Removal 
 

An outlier is an observation that lies an abnormal distance from other values in a random sample 
from a population. In a sense, this definition leaves it up to the analyst (or a consensus process) to 
decide what will be considered abnormal. Before abnormal observations can be singled out, it is 
necessary to characterize normal observations [37] A first step in this process is computing 
descriptive statistics, as shown in Table 4, which provides insight into the characteristics of each 
parameter from sensor data analyzed.  

 

Table 4 Descriptive statics of the raw dataset for Vessel_1 

 WIND_FORCE_KN DRAFT_M ME_RPM M1_POW WIND_DIR STW 
count 99050 98015 99129 99129 99055 99057 
mean 11.26 9.73 35.62 3472.52 173.87 7.12 
min 0.00 -2.21 -371.00 -3710.00 0.00 -4.12 
25% 6.10 7.30 0.00 0.00 46.67 0.60 
50% 9.45 11.02 0.50 1.00 157.50 5.24 
75% 14.80 12.44 75.20 7499.00 309.09 13.65 
max 46.06 14.67 81.10 10900.00 360.00 16.54 
std 7.10 3.33 36.66 3769.75 126.52 6.37 

 

Additionally, handling missing values is a critical step in data preprocessing, as they are among the 
most common issues encountered. Similarly, outliers should be addressed appropriately to prevent 
skewed analyses, and negative values that lack physical meaning must be identified and corrected 
where necessary. 

 

Table 5 Total number of NaN instances for Vessel_1 

 NaN Values 
WIND_FORCE_KN 146 
DRAFT_M 1181 
ME_RPM 67 
ME_POW 67 
WIND_DIR 141 
STW 139 

 

Additionally, Figure 10 presents a time-series visualization of the dataset over its full duration, 
highlighting inconsistencies and missing values. Notably, a significant data gap is observed in 
February 2024, affecting most of the examined variables.  
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Figure 10 Raw data of key vessel parameters over time 

 

To further explore feature relationships, scatter plots are used to visualize dependencies identified 
in the correlation matrix. In Figure 11, the first plot shows a strong linear relationship between Speed 
Over Ground (SOG) and Speed Through Water (STW), confirming expected physical behavior, due to 
the current effects. The second plot, depicting the relationship between STW and RPM, follows a 
trend consistent with propeller hydrodynamics. The spread and variation in the data indicates the 
influence of propeller slip, which varies depending on factors such as hull fouling, sea state, and 
propulsion efficiency. Slip increases when there is greater resistance acting against the vessel, 
causing the actual speed through water to be lower than the theoretical value derived from propeller 
RPM. Finally, the third plot demonstrates the cubic relationship between RPM and Main Engine 
Power, which is consistent with the Propeller Law. Although the dataset largely follows the expected 
relationships between the analyzed parameters, observed outliers should be removed to improve 
model reliability and accuracy. 
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Figure 11 Scatter plots showing key vessel relationships—SOG vs. STW, STW vs. RPM, and RPM vs. Power 

 

The previous analysis focuses on the sensor dataset; however, this dataset is complemented by the 
Noon Reports, which provide additional parameters not captured by the sensors, such as swell, 
wave height, and direction. Additionally, the Noon Reports are utilized to fill in data gaps when sensor 
measurements are unavailable. 

For instance, if the mid-draft value is missing in the sensor dataset for specific records, it is replaced 
with the corresponding value from the Noon Reports for the same timestamp. To ensure accurate 
data alignment, it is crucial to understand the structure and reporting mechanism of Noon Reports. 
These reports are typically generated at noon each day, except in cases where a key event occurs 
(e.g., "Arrival"), in which case an additional report is created. Each Noon Report corresponds to the 
period since the previous report, meaning that a recorded value, such as M/E fuel consumption of 
40 metric tons, represents the total consumption from the previous report to the current one. 

Furthermore, Noon Reports are recorded in local time, reflecting the vessel’s current time zone. To 
align them with sensor timestamps, which are typically in Coordinated Universal Time (UTC), the 
Noon Report timestamps are converted to UTC before merging with the sensor dataset. 
Subsequently, for each missing value in the sensor dataset, the corresponding Noon Report value 
within the same reporting period is used as a replacement. This methodology ensures that the 
sensor dataset is enriched by incorporating reliable Noon Report data. 
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After integrating the Noon Report data, additional data correction and filtering procedures were 
applied to ensure data quality before analysis. As previously mentioned, Mid Draft values from 
sensors were supplemented with Noon Report data in cases where the sensor readings were missing 
(NaN) or recorded as zero. Similarly, negative values in SOG were identified as physically implausible 
and were replaced with zero. The same correction was applied to negative RPM and M/E Power 
values, as such readings do not hold physical meaning in this context. 

As part of the data preprocessing, additional parameters were computed to improve the accuracy of 
the vessel power prediction model. These derived parameters ensure a more comprehensive 
dataset for analysis. 

 

Trim Calculation 
Trim is a crucial factor in vessel hydrodynamics, affecting fuel efficiency and propulsion power. It is 
defined as the difference between the fore draft and the aft draft: 

𝑅𝑅𝑒𝑒𝑒𝑒𝑚𝑚 = 𝐷𝐷𝑒𝑒𝐷𝐷𝐷𝐷𝑙𝑙ℎ𝑜𝑜 𝐹𝐹𝑐𝑐𝑒𝑒𝑒𝑒 − 𝐷𝐷𝑒𝑒𝐷𝐷𝐷𝐷𝑙𝑙ℎ𝑜𝑜 𝐴𝐴𝑓𝑓𝑜𝑜 

 

Wind Component in Vessel’s Direction 

The impact of wind on a vessel’s performance depends on its relative direction to the vessel's 
movement. To quantify this effect, the wind component acting along the vessel’s course was 
computed using the relative wind angle: 

𝑊𝑊𝑒𝑒𝑛𝑛𝑑𝑑 𝐶𝐶𝑐𝑐𝑚𝑚𝐶𝐶𝑐𝑐𝑛𝑛𝑒𝑒𝑛𝑛𝑜𝑜 = 𝑊𝑊𝑒𝑒𝑛𝑛𝑑𝑑 𝑆𝑆𝐶𝐶𝑒𝑒𝑒𝑒𝑑𝑑 ∗ cos (𝑅𝑅𝑒𝑒𝑙𝑙𝐷𝐷𝑜𝑜𝑒𝑒𝑣𝑣𝑒𝑒 𝐴𝐴𝑛𝑛𝑙𝑙𝑙𝑙𝑒𝑒) 

 

Wave and Swell Components 

To account for the impact of waves and swells on vessel resistance, two new features were  

𝑊𝑊𝐷𝐷𝑣𝑣𝑒𝑒 𝐶𝐶𝑐𝑐𝑚𝑚𝐶𝐶𝑐𝑐𝑛𝑛𝑒𝑒𝑛𝑛𝑜𝑜 = 𝑊𝑊𝐷𝐷𝑣𝑣𝑒𝑒 𝐻𝐻𝑒𝑒𝑒𝑒𝑙𝑙ℎ𝑜𝑜 ∗ cos (𝑊𝑊𝐷𝐷𝑣𝑣𝑒𝑒 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑜𝑜𝑒𝑒𝑐𝑐𝑛𝑛) 

𝑆𝑆𝑤𝑤𝑒𝑒𝑙𝑙𝑙𝑙 𝐶𝐶𝑐𝑐𝑚𝑚𝐶𝐶𝑐𝑐𝑛𝑛𝑒𝑒𝑛𝑛𝑜𝑜 = 𝑆𝑆𝑤𝑤𝑒𝑒𝑙𝑙𝑙𝑙 𝐻𝐻𝑒𝑒𝑒𝑒𝑙𝑙ℎ𝑜𝑜 ∗ cos (𝑆𝑆𝑤𝑤𝑒𝑒𝑙𝑙𝑙𝑙 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐𝑜𝑜𝑒𝑒𝑐𝑐𝑛𝑛) 

 

Fouling Factor Calculation 

Biofouling on a vessel’s hull increases hydrodynamic resistance, leading to greater fuel 
consumption over time. To quantify this effect, a Fouling Factor was introduced using an exponential 
decay function: 

𝐹𝐹𝑐𝑐𝐷𝐷𝑙𝑙𝑒𝑒𝑛𝑛𝑙𝑙 𝐹𝐹𝐷𝐷𝑐𝑐𝑜𝑜𝑐𝑐𝑒𝑒 = 1 −  𝑒𝑒−𝑘𝑘∗𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠 𝑆𝑆𝑖𝑖𝑛𝑛𝑆𝑆𝑒𝑒 𝑇𝑇𝐷𝐷𝑠𝑠𝐿𝐿 𝑈𝑈𝐴𝐴𝐶𝐶 

 

where: 
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• 𝑘𝑘 is a decay rate constant, empirically set to 0.005. 

• Days Since Last UWC represents the number of days since the last hull and propeller 
cleaning. 

This function ensures that: 

• When recently cleaned (Days Since Cleaning = 0), the fouling factor is near zero. 

• Over time, fouling gradually accumulates toward a maximum limit. 

 

Current Effect Calculation 

The impact of ocean currents was estimated by analyzing the difference between Speed Over 
Ground (SOG) and Speed Through Water (STW): 

𝐶𝐶𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑜𝑜 𝑒𝑒𝑓𝑓𝑓𝑓𝑒𝑒𝑐𝑐𝑜𝑜 = 𝑆𝑆𝐶𝐶𝑒𝑒𝑒𝑒𝑑𝑑 𝑂𝑂𝑣𝑣𝑒𝑒𝑒𝑒 𝐺𝐺𝑒𝑒𝑐𝑐𝐷𝐷𝑛𝑛𝑑𝑑 − 𝑆𝑆𝐶𝐶𝑒𝑒𝑒𝑒𝑑𝑑 𝑅𝑅ℎ𝑒𝑒𝑐𝑐𝐷𝐷𝑙𝑙ℎ 𝑊𝑊𝐷𝐷𝑜𝑜𝑒𝑒𝑒𝑒 

where: 

• SOG represents the vessel’s actual movement relative to the seabed. 

• STW represents the movement relative to water. 

If SOG > STW, the vessel benefits from a favorable current. If SOG < STW, the vessel faces an adverse 
current, increasing resistance. 

 

Systematic Filtering Approach 
Beyond basic corrections, a systematic approach to outlier detection was implemented to ensure 
data consistency and reliability. Outlier removal is particularly important in machine learning 
applications, where incorrect data points can distort model predictions. In ship performance 
monitoring, outliers may arise due to: 

• Sensor malfunctions or calibration errors, leading to unrealistic readings. 
• External environmental influences, such as sudden gusts of wind, strong currents, or 

extreme weather conditions. 
• Transient operational states, where the vessel undergoes acceleration, deceleration, or 

abrupt course changes. 

To address these issues, a combination of filtering methods was employed, including Quasi-Steady-
State (QSS) filtering, physical constraints filtering, and statistical outlier removal based on industry 
standards (e.g., ISO 19030). 

A widely used statistical approach for outlier detection, Chauvenet’s Criterion, is explicitly 
referenced in ISO 19030-2:2016 [38], which recommends its use for filtering consecutive, non-
overlapping 10-minute data blocks. According to this approach, an observation is considered an 
outlier if its probability of occurrence is below a defined threshold based on the complementary error 
function: 
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𝑃𝑃(𝑑𝑑𝑖𝑖) = 𝑒𝑒𝑒𝑒𝑓𝑓𝑐𝑐(
∆𝑖𝑖

𝜎𝜎 ∗  √2
) 

 

where,  

• 𝑃𝑃(𝑑𝑑𝑖𝑖) is the probability of data point 𝑑𝑑𝑖𝑖  occurring, 𝛿𝛿𝑖𝑖 = |𝑑𝑑𝑖𝑖 −  𝜇𝜇| represents the deviation from 
the mean, and  

• 𝜎𝜎 is the standard deviation of the dataset.  

A value is considered an outlier if the inequality: 

𝑃𝑃(𝑑𝑑𝑖𝑖) ∗ 𝑁𝑁 < 0.5 

is satisfied, where 𝑁𝑁 is the total number of data points. 

However, despite its theoretical validity, several practical limitations arise when applying 
Chauvenet’s Criterion to vessel performance datasets [39]. The method assumes that data is 
normally distributed, yet real-world vessel data often deviates significantly from Gaussian 
assumptions. Ship speed, fuel consumption, and engine load are influenced by external factors such 
as sea state, wind, and hull fouling, leading to skewed or multi-modal distributions that Chauvenet’s 
Criterion does not account for. Furthermore, Chauvenet’s Criterion treats each data point 
independently, failing to consider time dependencies in vessel operation. Ship performance data is 
inherently time-series-based, where variations in speed, power, and resistance occur due to 
evolving operational conditions rather than sensor errors. Consequently, applying a probability-
based outlier detection method without considering temporal dynamics may lead to the removal of 
valid performance data. 

For these reasons, Chauvenet’s Criterion was not implemented in this study. Instead, an alternative 
multi-stage filtering approach was adopted to identify and exclude unreliable data, ensuring that 
only physically meaningful outliers were removed. This filtering process includes: 

1. Quasi-Steady-State (QSS) filtering [40], which eliminates transient operational states such 
as acceleration, deceleration, and course changes, 

2. Physical filtering, applying thresholds based on vessel speed, wind force, wave height, and 
swell height, ensuring that extreme environmental conditions are excluded. 

3. Statistical filtering, with error thresholds to align with real-world vessel behavior. 

By implementing this methodology, outlier detection focuses on operationally significant 
inconsistencies, rather than removing data based solely on probabilistic assumptions. The 
approach preserves genuine variations in ship performance while ensuring that spurious anomalies 
do not distort modeling and analysis. 
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Quasi-Steady-State (QSS) Filtering 
The QSS filter was applied to remove data corresponding to transient operational phases, where the 
vessel undergoes significant changes in speed, shaft RPM, or heading. These transient states are 
characterized by rapid variations in the dataset, which introduce non-stationary behavior and 
increase model uncertainty. Since modeling transient states explicitly would require a significantly 
more complex approach, they were eliminated before further analysis. 

The QSS filter, adapted from Gupta et al. [40], operates in two stages. In the first stage, a sliding 
window regression is applied to detect periods where the rate of change (slope) in shaft RPM exceeds 
a defined threshold. A t-test is performed to determine whether a given data window exhibits a 
statistically significant change in state. To avoid misclassification due to near-zero variance in the 
data, the t-value 𝑜𝑜1 is computed as: 

𝑜𝑜1 =  
𝑏𝑏1

1 +  𝜎𝜎𝑏𝑏
 

where 𝑏𝑏1is the estimated slope within the window, and 𝜎𝜎𝑏𝑏 is the standard deviation of the slope. This 
approach prevents cases where flat-line data with near-zero standard deviation would incorrectly 
be classified as transient. 

In the second stage, a backward gradient check is applied to samples that failed the first test. This 
step helps retain some observations near sudden state changes that might otherwise be incorrectly 
excluded. The gradient is calculated as: 

𝜕𝜕𝑥𝑥𝑖𝑖
𝜕𝜕𝑜𝑜

 =  
𝑥𝑥𝑖𝑖 −  𝑥𝑥𝑖𝑖−1
𝑜𝑜𝑖𝑖 −  𝑜𝑜𝑖𝑖−1

 

where 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑖𝑖−1 represent consecutive data points, and 𝑜𝑜𝑖𝑖 , 𝑜𝑜𝑖𝑖−1 are their respective timestamps. If 
the absolute gradient falls below a certain threshold, the sample is retained. 

Figure 12 illustrates the impact of the QSS filtering process. The original dataset contains both 
transient and steady-state conditions, while the filtered dataset removes acceleration and 
deceleration effects, leaving only steady-state periods. 

 

 
Figure 12 Data filtering process 
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Physical Filtering Based on Operational Constraints 
After eliminating transient conditions, an additional filtering step was applied to exclude data 
recorded under extreme environmental conditions, which could significantly affect vessel 
performance. These conditions include high winds, rough seas, and low vessel speeds, where 
external forces dominate the vessel’s response, making performance modeling unreliable. 

The following constraints were imposed: 

• Speed Through Water (STW) ≥ 6 knots to exclude periods of slow maneuvering or drifting. 

• Wind Force ≤ 15.5 knots to remove cases where excessive wind resistance impacts 
performance. 

• Wave Height ≤ 3 meters and Swell Height ≤ 3 meters to ensure that vessel behavior is not 
significantly altered by heavy seas. 
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4.2.2. Feature Selection 
 

To improve model efficiency and accuracy, a feature selection process was applied to remove 
redundant or irrelevant variables. The selection was conducted in two stages: correlation analysis 
and Recursive Feature Elimination (RFE). 

Initially, a correlation matrix (Figure 13) was computed to identify dependencies between the 
recorded parameters.  

 

 
Figure 13 Correlation matrix of key vessel parameters 

 

The analysis revealed strong relationships between certain variables, indicating potential 
redundancy. Specifically, a near-perfect correlation was observed between Main Engine RPM and 
Main Engine Power (𝜌𝜌 ≈ 0.98), suggesting that both variables convey similar information, and one 
may be omitted without a loss of predictive capability. A similarly high correlation was found 
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between Trim and Mid Draft, implying that both parameters represent hull immersion effects and 
may not be necessary together in the final feature set. Additionally, environmental parameters such 
as Wave Height and Swell Height exhibited moderate correlation, indicating that their combined 
effect should be assessed further. Following this initial analysis, the dataset was refined to retain 
only the most informative variables, as shown in Figure 14.  

 

 
Figure 14 Remaining features after the examination of the initial correlation matrix 

 

To refine feature selection, Recursive Feature Elimination (RFE) was applied using a Random Forest 
Regressor to determine the most predictive variables for modeling Main Engine Power (M/E Power). 
This method iteratively removes less significant features while retaining those with the highest 
contribution to prediction accuracy. The process ranked all available features based on their 
importance to the model and retained the ten most significant variables. The implementation was 
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carried out using the sklearn.feature_selection package, and the final selected features are 
presented in Figure 15. 

 

 
Figure 15 Final feature selection 

 

After applying RFE, the final dataset included Main Engine RPM, Speed Through Water (STW), Trim, 
Mid Draft, Sea Water Temperature, Wind Component, Wave Component, Swell Component, Current 
Effect, and Fouling Factor Index. The correlation matrix for the reduced feature set (Figure 15) 
illustrates the improvement in feature independence, demonstrating that highly correlated 
parameters were successfully removed. This selection ensures that the dataset remains 
representative of vessel performance while minimizing redundancy and improving model 
interpretability.  
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5. Prediction Model 
 

Accurate prediction of ship speed is a crucial component of maritime performance modeling, as it 
directly impacts fuel efficiency, voyage planning, and regulatory compliance. A ship's speed over 
ground (SOG) is influenced by multiple factors, including propulsion power (𝑃𝑃𝐷𝐷), hull resistance, and 
environmental conditions such as wind, waves, and currents. In ideal calm water conditions, the 
ship achieves speed through water (STW) purely based on propulsion power (𝑃𝑃𝐷𝐷) and draft (D). 
However, in real-world conditions, added resistance from wind and waves reduces the ship’s 
effective speed through water. Ocean currents further affect the final speed over ground. 

Predicting ship speed accurately is a complex task that requires balancing theoretical modeling with 
real-world data observations. Traditionally, ship performance models fall into three categories: 
white-box models (WBMs), black-box models (BBMs), and grey-box models (GBMs). White-box 
models are based on first principles or semi-empirical formulations derived from physics. These 
models rely on well-established hydrodynamic relationships and empirical correlations but are 
limited by the assumptions and simplifications introduced during the modeling process. Their 
accuracy depends on how well the resistance, propulsion, and environmental forces are 
represented, but they often fail to capture real-time operational deviations caused by unpredictable 
external factors. 

On the other end of the spectrum, black-box models are purely data-driven, relying on machine 
learning and statistical regression techniques trained on experimental or full-scale sailing data. 
These models do not require prior theoretical knowledge, as they infer patterns directly from large 
datasets. However, black-box models suffer from poor interpretability and limited extrapolation 
ability, making them unreliable in unseen scenarios. If the training dataset does not include extreme 
or rare operating conditions, the model may produce highly inaccurate predictions when 
extrapolated beyond its data range. 

To bridge the gap between WBMs and BBMs, grey-box models (GBMs) have been proposed as a 
hybrid approach that integrates both physical principles and data-driven corrections. GBMs 
combine the interpretability and theoretical foundation of white-box models with the adaptability 
and accuracy of black-box models. Unlike purely data-driven approaches, grey-box models require 
significantly less training data while still providing superior accuracy compared to physics-only 
models. They also exhibit better extrapolation capability, ensuring that predictions remain physically 
meaningful even in conditions where data is scarce. 

In this study, two complementary modeling approaches are developed to predict ship speed 
requirements: a physics-based white-box model, which derives power-speed relationships from first 
principles and sea trials, and a data-enhanced grey-box model, which refines the physics-based 
estimates using machine learning algorithms trained on historical ship performance data. This 
chapter details the development, performance, and comparative analysis of both models, 
demonstrating how a hybrid approach can optimize predictive accuracy while maintaining physical 
consistency. 
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5.1. Physics Model 
 

The white-box model (WBM) is based on first principles and empirical formulations derived from ship 
hydrodynamics. It provides a baseline estimation of the ship speed required for a given operating 
condition, assuming calm water conditions and no external disturbances. The accuracy of the WBM 
depends on the assumptions and simplifications made during the modeling process. While WBMs 
provide high interpretability and generalization ability, they often fail to account for real-world 
deviations caused by environmental influences, hull fouling, and variations in propulsion efficiency. 

In this study, the baseline speed is estimated using a physics-based approach that incorporates: 

1. A semi-empirical resistance model, which calculates calm water resistance and derives the 
corresponding power requirement. 

2. Sea trial-based interpolation, which uses experimental speed-power curves obtained under 
controlled conditions. 

3. Physics-informed neural networks (PINNs), which integrate hydrodynamic principles into a 
data-driven model. 

These approaches allow the white-box model to provide an initial speed estimation, which is later 
refined using a black-box machine learning model in the grey-box framework. 

 

5.1.1. Semi-Empirical Resistance Model for Speed Prediction 
 

The semi-empirical approach estimates calm water resistance (𝑅𝑅𝑆𝑆𝐷𝐷𝑐𝑐𝑐𝑐) and converts it into required 
propulsion power using total propulsion efficiency (𝜂𝜂𝐷𝐷). The resistance components are computed 
using the Holtrop and Mennen method, which decomposes total resistance into multiple 
components: 

𝑅𝑅𝑆𝑆𝐷𝐷𝑐𝑐𝑐𝑐(𝑆𝑆𝑅𝑅𝑊𝑊,𝐷𝐷) =  𝑅𝑅𝐹𝐹 (1 + 𝑘𝑘1) + 𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴 +  𝑅𝑅𝐴𝐴 +  𝑅𝑅𝐵𝐵 +  𝑅𝑅𝑇𝑇𝑇𝑇 +  𝑅𝑅𝐴𝐴 

where: 

• 𝑅𝑅𝐹𝐹  is the frictional resistance, estimated from the ITTC-1957 correlation line. 

• 𝑘𝑘1is the form factor, which accounts for viscous effects. 

• 𝑅𝑅𝐴𝐴𝐴𝐴𝐴𝐴  represents appendage resistance, calculated empirically. 

• 𝑅𝑅𝐴𝐴 is the wave-making resistance due to the hull shape. 

• 𝑅𝑅𝐵𝐵 represents the resistance contribution from a bulbous bow. 

• 𝑅𝑅𝑇𝑇𝑇𝑇  is the additional transom resistance caused by immersion. 

• 𝑅𝑅𝐴𝐴 is the model-ship correlation resistance, used for full-scale corrections. 
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Once the total resistance is computed, the required propulsion power in calm water is estimated 
using: 

𝑃𝑃𝐷𝐷 =  
𝑆𝑆𝑅𝑅𝑊𝑊 ∗  𝑅𝑅𝑆𝑆𝐷𝐷𝑐𝑐𝑐𝑐(𝑉𝑉,𝐷𝐷)

𝜂𝜂𝐷𝐷
 

where: 

• 𝑆𝑆𝑅𝑅𝑊𝑊 is the ship's speed through water, 

• 𝐷𝐷 is the vessel's draught, 

• 𝜂𝜂𝐷𝐷 is the propulsion efficiency, provided by ship operators. 

This equation assumes that no external disturbances such as waves, wind, or currents affect the 
vessel's movement. As a result, it provides an idealized estimate of power consumption, which 
requires further refinement for real-world conditions. 

 

5.1.2. Sea Trial Interpolation for Speed Estimation 
 

Sea trials are conducted under controlled conditions to measure a vessel’s performance across 
different operating points. These trials typically include speed-power tests at various drafts, allowing 
ship operators to establish empirical relationships between propulsion power, speed, and loading 
conditions. The measured data is corrected for environmental factors such as wind and currents to 
ensure accuracy and reliability. 

Traditionally, sea trial data has been used for interpolation, where polynomial regression or lookup 
tables provide estimates of propulsion power for intermediate speeds and drafts. However, these 
methods have limitations when applied to real-world conditions, as they do not capture nonlinear 
interactions influenced by hull fouling, weather effects, or operational variations. 

 
Figure 16 Sea Trials Curves 
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A Physics-Informed Neural Network (PINN) is employed in this study as an alternative to explicit 
polynomial regression for learning the relationship between propulsion power, speed, and draft [21]. 
Unlike polynomial regression, which relies on predefined mathematical equations to fit observed 
data, the PINN incorporates fundamental ship physics to guide the learning process, ensuring 
hydrodynamically meaningful predictions. 

By integrating sea trial data into the PINN framework, the model is trained to learn from real-world 
measurements while being constrained by established hydrodynamic relationships. This approach 
enhances the robustness and generalization capability of the model, allowing it to provide accurate 
power predictions beyond the range of tested conditions, making it more adaptable to operational 
variability. 

 

5.1.3. Physics-Informed Neural Networks (PINNs) for Speed Prediction 
 

A more advanced approach integrates physical principles into a neural network framework. Physics-
informed neural networks (PINNs) enforce known hydrodynamic relationships while learning from 
data, providing a balance between theory-based modeling and data-driven adjustments. 

Instead of purely relying on empirical regressions, PINNs attempt to solve a partial differential 
equation (PDE) that governs the relationship between propulsion power (𝑃𝑃), speed (𝑉𝑉), and draft (𝐷𝐷): 

𝛼𝛼1
𝜕𝜕𝑃𝑃
𝜕𝜕𝑉𝑉

+  𝛼𝛼2
𝜕𝜕𝑃𝑃
𝜕𝜕𝑅𝑅

+  𝜇𝜇[𝑃𝑃,𝑉𝑉,𝐷𝐷; 𝜆𝜆] = 0 

where 𝜇𝜇[𝑃𝑃,𝑉𝑉,𝐷𝐷; 𝜆𝜆] is a nonlinear function representing propeller-hull interactions, efficiency losses, 
and resistance effects. 

The PINN model is implemented using TensorFlow, which enables automatic differentiation and 
optimization. The neural network consists of three hidden layers, each containing 64 neurons, with 
the hyperbolic tangent (tanh) activation function applied to introduce nonlinearity while preserving 
smooth gradients. The output layer consists of a single neuron representing propulsion power, 
utilizing a linear activation function to ensure continuous regression output. 
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The loss function is designed to balance data accuracy and physics consistency. Mean squared error 
(MSE) is used to minimize the difference between predicted and actual power values, while a 
physics-informed regularization term enforces the PDE constraint by penalizing deviations from the 
known hydrodynamic relationships. The total MSE loss combines two components: 

𝑀𝑀𝑆𝑆𝑀𝑀 =  𝑀𝑀𝑆𝑆𝑀𝑀𝑏𝑏𝑆𝑆 +  𝑀𝑀𝑆𝑆𝑀𝑀𝑔𝑔  

where: 

• 𝑀𝑀𝑆𝑆𝑀𝑀𝑏𝑏𝑆𝑆 represents the boundary conditions, the loss on the boundary conditions can be 
expressed as: 

𝑀𝑀𝑆𝑆𝑀𝑀𝑏𝑏𝑆𝑆 =
1
𝑁𝑁𝑏𝑏𝑆𝑆

� |𝑃𝑃𝐷𝐷�𝑉𝑉𝑏𝑏𝑆𝑆(𝑖𝑖),𝐷𝐷𝑏𝑏𝑆𝑆(𝑖𝑖)� −  𝑃𝑃𝐷𝐷𝑏𝑏𝑆𝑆(𝑖𝑖)|2
𝑁𝑁

𝑖𝑖=1

 

• 𝑀𝑀𝑆𝑆𝑀𝑀𝑔𝑔 enforces physics-based constraints, penalizing deviations from known hydrodynamic 
relationships: 

𝑀𝑀𝑆𝑆𝑀𝑀𝑔𝑔 =
1
𝑁𝑁
� |𝑙𝑙(𝑉𝑉(𝑖𝑖),𝐷𝐷𝑖𝑖|2
𝑁𝑁

𝑖𝑖=1

  

 

 

 

 
Figure 17 Schematic representation of the applied PINN for speed-power baseline modeling 
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The model training process is optimized using the Adam optimizer with a learning rate of 0.0001 to 
ensure stable convergence. Training is conducted over 500 epochs with a batch size of 16, enabling 
effective learning while mitigating the risk of overfitting. Power values are normalized before training 
to maintain numerical stability. 

By integrating sea trial data and enforcing physics constraints, the PINN model enhances 
generalization and robustness. This approach ensures that speed predictions remain consistent 
with hydrodynamic principles while adapting to real-world operational conditions. 

 

5.1.4. Limitations of the White-Box Model 
 

While the white-box model provides a strong theoretical foundation, it has inherent limitations that 
make it insufficient as a standalone predictive tool. The model assumes calm water conditions, 
neglecting environmental disturbances such as wind resistance, wave effects, and hull fouling. 
Additionally, resistance-based formulations rely on empirical coefficients, which can vary 
significantly between ship designs, leading to potential inaccuracies. Furthermore, the model lacks 
adaptability, as it does not dynamically adjust to changes in operational conditions, including engine 
performance degradation or real-time weather variations. 

To overcome these limitations, a black-box machine learning model is introduced to capture 
residual speed deviations caused by real-world factors. The final speed prediction is obtained by 
integrating the physics-based baseline with data-driven corrections in a grey-box modeling 
framework. The use of Physics-Informed Neural Networks (PINNs) further strengthens this approach 
by embedding physical constraints within the learning process, ensuring predictions remain both 
accurate and hydrodynamically consistent. 
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5.2. Machine Learning Model 
 

While the PINN model effectively integrates hydrodynamic principles, it does not fully account for 
operational deviations resulting from factors such as hull fouling, weather conditions, and variations 
in propulsion efficiency. These deviations introduce systematic errors in the estimated ship speed 
(STW). 

To address this, a data-driven black-box model is introduced, designed to learn and correct these 
residual deviations based on historical performance data. The black-box model is trained to predict 
the correction term, 𝑆𝑆𝑅𝑅𝑊𝑊𝑆𝑆𝑜𝑜𝑟𝑟𝑟𝑟𝑒𝑒𝑆𝑆𝐿𝐿𝑖𝑖𝑜𝑜𝑛𝑛 , which represents the difference between the actual measured 
speed and the baseline speed estimated by the PINN. 

This correction term accounts for environmental and operational uncertainties that the PINN does 
not explicitly model, such as variations in wind speed, wave height, and current effects. By learning 
these patterns from data, the black-box model improves speed predictions under real-world 
dynamic conditions. 

 

5.2.1. Grey-Box Model: Integrating Physics-Based and Machine Learning 
Approaches  

 

The grey-box model (GBM) represents a hybrid approach that combines the strengths of both white-
box (physics-based) and black-box (machine learning-based) models. While the white-box model 
(WBM) provides physically interpretable estimates of ship speed (STW) based on hydrodynamic 
principles, it does not fully capture real-world deviations caused by environmental factors, 
operational inefficiencies, and hull fouling. Conversely, the black-box model (BBM) effectively learns 
these deviations but lacks the physical interpretability and generalization beyond its training data. 

 

By integrating these models, the grey-box framework ensures that speed predictions remain 
physically consistent while being dynamically adaptable to real-world variations. This approach not 
only improves prediction accuracy but also maintains the relevance of hydrodynamic models for 
ship speed estimation. 
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5.2.2. Parallel Grey-Box Model Architecture  
 

The parallel grey-box model is designed to run the white-box and black-box models simultaneously, 
using their combined outputs to refine power predictions. This approach differs from a serial 
architecture, where a machine learning model would first process raw inputs before passing them 
into a physics-based model. Instead, in the parallel grey-box model (Figure 18): 

1. The WBM calculates baseline power (𝑆𝑆𝑅𝑅𝑊𝑊𝑏𝑏𝐷𝐷𝑠𝑠𝑒𝑒𝑐𝑐𝑖𝑖𝑛𝑛𝑒𝑒), assuming calm water conditions with no 
external disturbances. 

2. The BBM predicts power deviations (ΔSTW), adjusting for real-world conditions such as wind, 
waves, and hull fouling. 

3. The final predicted power (𝑆𝑆𝑅𝑅𝑊𝑊𝑝𝑝𝑟𝑟𝑒𝑒𝑝𝑝) is obtained by summing the two outputs: 

𝑆𝑆𝑅𝑅𝑊𝑊𝑝𝑝𝑟𝑟𝑒𝑒𝑝𝑝 =  𝑆𝑆𝑅𝑅𝑊𝑊𝐴𝐴𝑃𝑃𝑁𝑁𝑁𝑁 +  Δ𝑆𝑆𝑅𝑅𝑊𝑊  

This parallel architecture ensures that the physics-based model anchors the predictions within 
known hydrodynamic principles, while the machine learning model dynamically refines the estimate 
based on real-world conditions. 

 

 
Figure 18 The parallel grey-box modeling procedure for ship speed prediction 
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5.2.3. Machine Learning Model Selection and Training 
 

To determine the most effective model for predicting speed deviations (∆𝑉𝑉), multiple machine 
learning algorithms were trained and evaluated. The goal was to select a model that could accurately 
capture the complex, nonlinear relationships between operational conditions and power deviations. 

The dataset was split into 80% training data and 20% testing data to ensure reliable model 
evaluation. To avoid overfitting, cross-validation techniques and hyperparameter tuning were 
applied during model training. 

Several machine learning models were evaluated for their ability to predict, 𝛥𝛥𝑉𝑉, including Linear 
Regression, Random Forest, and XGBoost. The goal was to determine the most effective model for 
capturing the complex, nonlinear relationships between operational conditions and power 
deviations. Performance metrics such as the coefficient of determination (R²) and RMSE were 
employed to assess model accuracy and select the best-performing algorithm. 

1. Linear Regression: Used as a baseline model, Linear Regression exhibited poor predictive 
performance (R² = 0.124, RMSE = 0.336). Its inability to capture the strong nonlinear 
dependencies between features and ∆V made it unsuitable for accurate predictions. 

 

 
Figure 19 Linear Regression performance, showing the predicted power versus the baseline and measured power  
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2. Random Forest Regressor: This model performed exceptionally well (R² = 0.929, RMSE = 
0.096), successfully capturing the nonlinear effects in the data. However, further analysis is 
required to assess potential overfitting. 

 

 
Figure 20 Random Forest performance, comparing predicted power with baseline and measured values. 
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3. XGBoost (Extreme Gradient Boosting): Also demonstrated strong predictive accuracy (R² = 
0.915, RMSE = 0.105), performing slightly worse than Random Forest but offering a more 
robust and generalizable approach. 

 
Figure 21 XGBoost model performance, illustrating the predicted power relative to the baseline and measured power. 

 

The Random Forest and XGBoost models both performed well, but Random Forest was ultimately 
selected due to its slightly superior performance and easier interpretability in comparison to 
XGBoost. 
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Figure 22 Comparison of sensor data, with results from PINN model, and the combination of PINN and ML models 

 

Figure 22 presents a time-series comparison of the measured Speed Through Water, the PINN-
derived baseline speed, and the final predicted speed, which incorporates machine learning 
corrections to the PINN output. 

• The black dashed line represents the measured STW, providing a reference for actual vessel 
performance. 

• The blue dots denote the PINN-predicted baseline speed, which is derived from a physics-
based model without considering real-time operational variations. 

• The red dots correspond to the final predicted speed, which results from the combination of 
the PINN baseline speed and the ML-predicted speed correction (ΔV). 

The graph illustrates how the PINN + ML model aligns more closely with the measured STW, 
capturing variations in vessel performance that are not accounted for in the purely physics-based 
model. The integration of machine learning enables a more accurate representation of operational 
conditions, improving the predictive capability of the model. 
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6. Decision Support System Design 
 

The maritime industry is undergoing a digital transformation, with vessels increasingly equipped with 
sensors, real-time monitoring capabilities, and advanced decision support systems (DSS). The 
continuous development of digital technology and connectivity enables real-time ship performance 
tracking and historical data storage in cloud-based systems. These advancements are driving both 
industry and academia to develop smart ship solutions, including digital twins, automation systems, 
and data-driven decision-making frameworks. As part of this trend, the proposed DSS in this thesis 
integrates a physics-informed machine learning model to enhance operational decision-making, 
fuel efficiency monitoring, and voyage planning. 

A DSS is a computerized system that assists decision-makers by providing domain-specific insights, 
analytical tools, and real-time recommendations. In the context of smart shipping, the DSS can be 
installed onboard the vessel or at a remote-control center, where it provides operators with 
actionable intelligence on vessel speed, energy efficiency, and environmental impact [12]. Figure X 
illustrates how a DSS framework connects vessel systems to a remote monitoring center, facilitating 
predictive maintenance, fleet management, and optimal route planning. 

 

 
Figure 23 An illustration of smart ship and decision support system 
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The DSS proposed in this thesis consists of three core components: 

• Data Acquisition and Preprocessing – This module continuously collects real-time 
operational data from onboard sensors, such as engine parameters, environmental 
conditions, and hull performance metrics. It ensures data integrity by handling missing 
values, aligning timestamps between sensor and noon report data, and filtering out 
anomalies. 

• Predictive Analytics – This component integrates a PINN-based baseline speed model and 
a machine learning correction model (Random Forest/XGBoost) to estimate ΔV, refining 
speed predictions based on real-world operational variations. The system continuously 
updates predictions as new data becomes available. 

• Decision Support & Visualization – The final component delivers insights through an 
interactive dashboard, enabling operators to compare measured STW, PINN-derived 
baseline speed, and ML-enhanced speed predictions over time. The DSS also includes 
anomaly detection features, alerting users to unexpected speed deviations that may indicate 
issues such as hull fouling, adverse weather effects, or inefficient fuel usage. 

By leveraging this framework, the DSS enhances voyage planning and fuel optimization. Traditional 
voyage planning often relies on historical assumptions and static models, whereas the proposed 
DSS dynamically updates speed predictions based on real-time vessel conditions, weather 
forecasts, and fuel consumption trends. This capability ensures that operators can adjust engine 
load and routing strategies to minimize fuel costs while maintaining efficiency and regulatory 
compliance. The system supports IMO’s Carbon Intensity Indicator (CII) and Energy Efficiency 
Operational Indicator (EEOI) frameworks, enabling shipowners to proactively monitor emissions and 
fuel efficiency trends. 

 

Beyond speed prediction, DSS applications in smart shipping extend to condition monitoring, 
predictive maintenance, and risk assessment. The continuous digitization of vessels has 
transformed them into floating sensor hubs, enabling advanced machine learning applications. 
Several state-of-the-art DSS implementations include: 

• Trajectory Prediction: Predicting vessel trajectory is critical for collision avoidance and 
navigation planning. Modern DSS solutions employ time-series forecasting models such as 
Long Short-Term Memory (LSTM) networks, which have demonstrated strong performance in 
AIS-based ship trajectory prediction [41]. 

• Fuel and Power Consumption Prediction: Fuel consumption models are typically formulated 
as regression problems, utilizing inputs such as speed, draft, weather, and engine 
conditions. Research has shown that machine learning models, ranging from linear 
regression to deep neural networks, can significantly improve fuel efficiency predictions, 
ultimately supporting route planning and energy management. 

• Condition Monitoring of Machinery Systems: Advanced DSS implementations incorporate 
fault diagnostics and predictive maintenance algorithms to track the operational status of 
vessel machinery. Multi-label classification algorithms have been used for diagnosing 
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propulsion system faults [41], while ensemble machine learning methods have been applied 
for wear detection in marine diesel engines [42]. 

• Ocean Wave Forecasting and Estimation: Maritime operations are heavily influenced by sea 
state conditions, making wave estimation and prediction essential for voyage optimization. 
Machine learning approaches, including neural networks and random forests, have been 
employed to classify sea states and predict wave patterns, improving ship routing decisions 
in rough seas. 

While this thesis focuses primarily on the modeling and predictive analytics component of a DSS, 
future extensions could enhance the system’s adaptability and automation capabilities. One 
promising direction is adaptive machine learning, where models continuously retrain themselves 
using new operational data to improve long-term predictive accuracy. Additionally, reinforcement 
learning techniques could be explored for dynamic decision-making, allowing the DSS to 
recommend optimal speed and power settings based on real-time conditions. 

Another key area for future research is cloud-based deployment and real-time API integration. 
Deploying the DSS on a cloud computing infrastructure would enable real-time inference and 
monitoring, ensuring minimal computational delays. An API-based system would allow integration 
with existing fleet management platforms, providing operators with a unified dashboard for 
monitoring vessel performance and making informed operational decisions. 

In conclusion, the proposed DSS represents a significant step forward in integrating physics-
informed machine learning into smart ship operations. By providing real-time speed predictions, fuel 
efficiency insights, and anomaly detection, the system enhances voyage planning, regulatory 
compliance, and predictive maintenance capabilities. As the maritime industry continues to 
embrace digitalization and AI-driven decision-making, such DSS implementations will play an 
increasingly vital role in optimizing fleet performance and supporting decarbonization efforts. 
Further advancements in adaptive learning, real-time deployment, and multi-vessel scalability will 
continue to refine the DSS framework, ultimately contributing to the evolution of autonomous and 
intelligent maritime operations.  
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7. Conclusion and Future Work 
 

The maritime industry faces increasing pressure to optimize operational efficiency, reduce costs, 
and comply with stringent environmental regulations. One of the critical challenges in ship 
performance monitoring is accurately predicting vessel speed under varying operational and 
environmental conditions. Traditional speed-power models, while effective in controlled conditions, 
often fail to capture the complexity of real-world factors such as fluctuating weather, hull fouling, 
and dynamic sea states. 

This research proposed a data-driven vessel speed prediction model, combining Physics-Informed 
Neural Networks (PINNs) and Machine Learning (ML) techniques to improve predictive accuracy. By 
leveraging sensor-derived ship performance data alongside physics-based estimations, the model 
effectively captured the nonlinear relationships governing vessel speed and power dynamics. The 
approach successfully addressed limitations associated with traditional empirical models, 
providing a more adaptable and robust framework for real-world operational conditions. 

The study developed a PINN-based baseline speed model to establish an initial estimation of vessel 
speed, incorporating fundamental hydrodynamic principles. To refine this estimate, a machine 
learning model was trained to predict the necessary speed correction (ΔV), which accounted for 
deviations caused by external and operational influences. Several ML algorithms were tested, with 
Random Forest achieving the highest accuracy, demonstrating its ability to generalize well across 
diverse operational conditions. The final model was validated using measured Speed Through Water 
(STW) data, confirming its reliability in predicting vessel speed more accurately than standalone 
physics-based methods. 

Beyond the development of the predictive model, this research also explored its integration into a 
Decision Support System (DSS). The DSS was designed to provide real-time insights for ship 
operators and fleet managers, assisting in voyage optimization, fuel efficiency monitoring, and 
proactive maintenance planning. The implementation of an interactive visualization tool enabled 
direct comparison of measured STW, PINN-estimated speed, and ML-corrected speed predictions 
over time. This system empowers maritime stakeholders with enhanced decision-making 
capabilities, ultimately leading to more efficient vessel operations and improved regulatory 
compliance. 

Despite its promising results, the study faced several challenges. Data quality and availability were 
key constraints, as sensor inconsistencies and missing values introduced noise into the training 
dataset. Aligning noon report data with sensor readings required careful preprocessing to ensure 
data integrity. Additionally, while the PINN component ensured some level of generalization, the 
model was primarily trained on a specific vessel or fleet segment. Future research should explore 
adaptations for different vessel types, as variations in hydrodynamic characteristics may 
necessitate additional model tuning. 

Computational complexity was another consideration. The integration of physics-informed models 
with machine learning introduced processing overhead, which may impact real-time 
implementation in a fleet management system. Deploying the model on a cloud-based architecture 
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could enhance scalability and ensure minimal processing delays. Additionally, while the model 
incorporated key environmental and operational parameters, external factors such as hull aging, 
maintenance schedules, and fuel type variations may still influence its predictions. A self-learning 
mechanism that continuously updates the model with new operational data could further enhance 
its adaptability. 

To advance the application of this research, several future directions are proposed. Expanding the 
model to multiple vessel types would improve its generalization, enabling application across various 
fleet segments. Enhancing model interpretability is another priority, as tree-based machine learning 
models like Random Forest and XGBoost, while highly accurate, function as black-box predictors. 
Techniques such as SHAP (Shapley Additive Explanations) or LIME (Local Interpretable Model-
Agnostic Explanations) could provide deeper insights into how individual features influence speed 
deviations, aiding in model validation and operational decision-making. 

Further integration with voyage optimization systems could allow real-time speed and fuel efficiency 
recommendations based on weather forecasts and fuel prices. Developing a prescriptive analytics 
module that suggests optimal speed profiles under different conditions would enhance the system’s 
practical utility. Additionally, transitioning the model to an API-based deployment would facilitate 
seamless integration with existing fleet management platforms, enabling real-time inference and 
monitoring. 

An interesting avenue for exploration is the incorporation of reinforcement learning for adaptive 
optimization. Unlike traditional machine learning models, which generate static predictions, 
reinforcement learning could enable dynamic decision-making, allowing the system to adjust speed 
recommendations in response to changing environmental and economic conditions. Hybrid 
modeling approaches that integrate Computational Fluid Dynamics (CFD) simulations with machine 
learning corrections could also enhance predictive accuracy while maintaining physical 
consistency. 

In conclusion, this research has demonstrated the effectiveness of combining physics-informed 
modeling with machine learning to improve vessel speed prediction. The proposed approach 
provides a scalable, data-driven solution that enhances operational efficiency, reduces fuel 
consumption, and supports regulatory compliance in the maritime industry. As the sector continues 
to embrace digitalization and AI-driven decision-making, the integration of such predictive models 
into decision support systems will play a vital role in optimizing fleet performance. Addressing the 
identified challenges and pursuing the proposed enhancements will further refine the model, paving 
the way for a real-time, intelligent system capable of predictive analytics and operational 
optimization. Ultimately, this research contributes to the ongoing transformation of maritime 
operations, supporting the industry’s transition toward greater efficiency, sustainability, and 
compliance with global decarbonization efforts. 
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