National Technical University of Athens

School of Electrical and Computer Engineering
Computer Science Division

Computing Systems Laboratory

Co-scheduling algorithms for HPC
applications

Diploma Thesis

of

Myrsini Kellari

Supervisor: George Goumas
Associate Professor NTUA

Athens, February 2025

EOviko Metoopro ITovteyveio

YxoAn HAektpodoywv Mnxavikwv

Kot Mnxavikwv Yroloyiotwv

Topéag Texvoloyiag ITAnpo@opikng kat Yroloyiotwv
Epyactiipto YnoloyoTikwv Zuotnuatwy

AAXyopiOuot cuvdpoporoynong mrapaAAniwy
EQAPUOYWV

AmAwpatikn epyacia

™¢

Mvpoivng KeAldpn

EmpAénwv: Tewpylog [koduag
Avanminpwtng Kabnyntrig EMII

Eykpifnke amo tnv tpipeln| e§etaotikn enttpomn tny 7n Maptiov 2025.

Tewpytog Ikovpag Nextapiog Kolopng Aloviotog ITvevpatikarog
Av. Kabnyntrg EMII KaBnyntrg EMII Kabnyntig EMII

ABrpva, DePpovaplog 2025

National Technical University of Athens

School of Electrical and Computer Engineering
Computer Science Division

Computing Systems Laboratory

‘.{‘;—D
‘él

s
/g"

nvpPopos

“' NPOMHOEVS -
N\

YnevBvvn Andwon Ia AoyokAomnr Kat Tia KAomr ITvevpatikng Idioktnoiag

Exw diafdoet kat katavonoel TOvg Kavoveg yla T AOyoKAOT Kal TOV TPOTO CWOTHG
AVAPOPAG TWV TINYWV TIOL TiePLEYOVTAL 0TOV 001Y0 ovyypagng Atmiwpatikwv Epyactav.
Anlwvw 6Tt and 6oa yvwpilw, To meplexopevo g tapovoag Atmiwpatikng Epyaciag
elvat mpoidv SIKNG Hov epyaciag Kat LITAPXOLV AvaPOopEs o€ ONeG TIG TNYEG TIOV
Xpnotpomnoinoa.

Ot amoyelg Kat Ta CLUTEPACHATA TIOV TIEPLEXOVTAL O€ o TN TN AtmAwpatikn epyacia eivat
Tov ovyypagéa kat dev pémel va eppnvevlei OTL AVTIPOCWTEVOLV TIG eTtionpeg B€oelg
™G XxoAng HAektpoddywv Mnyavikwv kat Mnxavikwv YroAoytotwv 1} Tov EOvikov
MetooPiov ITohvteyveiov.

Mvpoivn KeAAapn, AOijva 2025

STATEMENT ABOUT PLAGIARISM AND INTELLECTUAL PROPERTY THEFT

I have read and understood the rules about plagiarism and the proper way of referencing
contained in the Diploma Thesis writing guide. I declare that, to the best of my knowledege,
the content of this Diploma Thesis is the product of my own work and there are refrences
to all sources that I have used.

The opinions and conclusions contained in this Diploma Thesis are of the author and
should not be interpreted as representing the official views of the School of Electrical and
Computer Engineering or the National Technical University of Athens.

Myrsini Kellari, Athens 2025

Muvpaivn KehAapn,
Aummdwpatovyog Hektpohdyog Mnxavikog kat Mnxavikog Ymohoyotwv EMIT

This work ©2025 by Myrsini Kellari is licensed under a Creative @ @ @

Commons “Attribution-ShareAlike 4.0 International” license.

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

MepiAnyn

H napovoa Simhwpatikn epyacia e€etdlet Tnv avamtuvén kat aflodoynon akyopibuwv ocvvdpo-
poloynong (co-scheduling) yia ovotruata High-Performance Computing (HPC), pe otox0 TN
PeAtioTomoinomn TG Xpnong Twv mopwy, dtatnpavrag mapdAAnAa vynAR anddoon Tov oVOTH-
Hatog Kat tkavomoinon twv xpnotav. H avfavopevn {ritnon ya vmoloytotikn oy oe Topeig
OTIWG 1) EMOTNHOVIKT €peLVa, 1) TexVNTN vonuoovvn (AI) kat n avalvon peyalwv dedopévwv
(big data) éxet kataotroetl Ta ovotipara HPC anapaitnta. Qotdoo, avtd Ta OLoTHHATA OVXVA
VTTIOPEPOLY ATIO VTIOXPT|OLULOTIONMOT] TWV TTOPWY, 0dNYDVTAG 08 avinuévn KatavaAworn evépyelog
Kat Aertovpyikd kootrn. Ot mapadoatakoi alydpiBuot xpovodpopoldynong, omwg o First Come
First Serve (FCFS) kat o EASY, dev mapéyovv kamowa Avon.

[a avtd,mpoteivetal n ovvdpoporoynon (co-scheduling) wg Avon. H ovvdpoporoynon
eTULTPETEL 0€ TOAATIAEG EpYAOieG Va LOLPALoVTaL TOVG VTTOAOYLOTIKOVG KOUPOLG, HELDVOVTAG
TOV AVTAYWVIOHO Yl TTOPOLG Kat PEATIOVOVTAG TNV AmoSOTIKOTNTA TOV CLOTAKATOG. AVTO eival
OLaitepa WPENILO OTAV OL CLVEKTEAOVHEVEG EPYATIEG EXOVV SLAPOPETIKEG ATIATOELG TOPWY,
OTIWG ePYAOIEG pe £VTOVN XPHOT HVIUNG Kat epyaoieg pe évtovn xpron enegepyaotr. Eloayovtat
aAyoptBpot ovvdpopoloynong, ot omnoiot eetdlovv tnv emidpaon tng ovvdpouoroynong oe
Khaookovg atyopiBuovg, 6mwg o EASY Co-schedule, alAd kat véot 6mwg o Popularity, o Filler kat
o Two Factors. Avtoi ot akyopiBuot aftohoyovvtat xpnowomnowwvtag tov Efficient Lightweight
Scheduling Estimator (ELiSE), évav mpooopolwwtn Pactopévo oe Python mov emitpénel tov
eAeyxopevo Eleyxo Twv TOAMTIKWVY Tipoypappatiopod. H a§lohdynon Paciletal oe Paotkég
HETPIKEG ATOO00TNG, OTIWG 1) EMUTAXVVOT TOV XPOVOL OAOKANPwOT G (amdd00m CLOTHHATOG) Kal)
péon emPpadvvon epyactwv (tkavomoinon xpnotwv).

Ta metpapatikd anoteAéopata deixyvovv 0Tt oL akydptBpol cuvopopoldynong, iaitepa o
SJE-Filler (pia exSoxrn tov Two Factors), emtvyydvouvy onuavtikég feAtiwoels otny anodoon Tov
OVLOTHHATOG KAl TNV LKAVOTIOINOT TWV XPNOTWYV, KABIoTWVTAG TOVG VTTOGXOHEVOUG VTTOYHPLOVG
yta mpaypatika ovotiuata HPC. Qotdoo, n ouvdpopoloynon propei va odnynoet oe avénon
TOV XPOVOL EKTEAEOT|G HELOVWHEVWY EPYATLWY, VTIOYPAUilovTag TV avaykn yla e§looppdnnon
peta&d NG amodoTIKOTNTAG TOV CLOTHHATOG KAl TG EUTELPIAG TWV XPNOTWV.

Ta anotedéopata vTOdNA@VOLV OTL I CLVOpOOAGYN O™ UTTOpEL Va eVIOXDOEL TNV amddoon
Twv ovotnuatwv HPC, aAld anatteitat mpooektikn Staxeipion yia va Stac@aliotei n Sikato-
o0V Kal 1] LKavomoinon Twv Xpnotwv. MeAhovTikég enektdoelg mepthapfdvovy tn Sokipr Twv
akyopiBuwv og mpaypatikd cvotrpata HPC, tnv e€epedvion eVaANAKTIKOV OTPATNYIKWV GUVE-
KTEAEONG KAl TNV EVOWUATWOT TEXVIKWY HNXAVIKAG nabnong yia mepatépw PeAtiotonoinon twv
ATOPACEWY XPOVOdpopoAdynong.

Né€eic KAeidia

High Performance Computing (HPC), Zvv8popoloynomn, AAyopiBuot Zvvdpopordynong,
AXyopiBuot Xpovodpopordynong, Metpikég, [Tpocopoiwon

Vi

Abstract

This thesis explores the development and evaluation of co-scheduling algorithms for High-
Performance Computing (HPC) systems, aiming to optimize resource utilization while maintain-
ing high system performance and user satisfaction. The growing demand for computational power
in fields such as scientific research, artificial intelligence, and big data analytics has made HPC
systems essential. However, these systems often suffer from underutilization of resources, leading
to increased energy consumption and operational costs. Traditional scheduling algorithms, such
as First Come First Serve (FCFS) and EASY, cannot provide a solution.

To address these challenges, co-scheduling is proposed as a solution. Co-scheduling allows
multiple jobs to share computational nodes, reducing resource contention and improving system
efficiency. This is particularly beneficial when co-allocated jobs have different resource demands,
such as memory-intensive and compute-intensive tasks, which can lead to improved system
performance. However, co-scheduling also introduces challenges, such as inter-job interference
and fairness issues, which must be carefully managed. The research introduces several co-
scheduling algorithms, including EASY Co-schedule, Largest Area First Co-schedule (LAF-Co),
Popularity, Shortest Job First Co-schedule (SJF-Co), Longest Job First Co-schedule (LJF-Co),
Filler, and Two Factors. These algorithms are evaluated using the Efficient Lightweight Scheduling
Estimator (ELiSE), a Python-based simulator that enables controlled testing of scheduling policies.
The evaluation is based on key metrics such as makespan speedup (system performance) and
mean job slowdown (user satisfaction).

Experimental results demonstrate that co-scheduling algorithms, particularly SJF-Filler (a
Two Factors variant), achieve significant improvements in makespan speedup and mean job
speedup, while maintaining low mean slowdown values. These algorithms effectively balance
system performance and user satisfaction, making them promising candidates for real-world
HPC systems. However, co-scheduling can lead to increased execution times for individual jobs,
highlighting the trade-oft between system efficiency and user experience.

The findings suggest that co-scheduling can enhance the performance and efficiency of HPC
systems, but careful management is required to ensure fairness and user satisfaction. Future work
includes testing the algorithms on real HPC systems, exploring alternative colocation strategies,
and integrating machine learning techniques to further optimize scheduling decisions.

Keywords

High Performance Computing (HPC), Co-scheduling, Co-scheduling Algorithms, Schedul-
ing Algorithms, Performance Metrics, Simulation

vii

viii

Acknowledgements

This work marks the successful completion of my studies at the School of Electrical and Computer
Engineering of the National Technical University of Athens.

First, I would like to express my sincere gratitude to my thesis supervisor, Assistant Professor
George Goumas, for his invaluable support and guidance throughout this Diploma Thesis.

Furthermore, I would like to thank PhD candidate Nikos Triantafyllis and Stratos Karapana-
giotis for their encouragement, constructive advice, and continuous support. Their insights and
contributions have greatly enriched this work.

Last but not least, I am deeply grateful to my family for always being there for me and
supporting me with their love, and to my friends for making these years so special.

ix

Contents

Iepidnyn v
Abstract vii
Contents i
1 Introduction 1
1.1 Motivation - Problem Statement Lo L. 1

1.2 ThesisOutline 2

2 HPC Scheduling Background 3
2.1 High Performance Computing (HPC) 3

22 Scheduling 4
221 Schedulingintroo oL oL o 4

22.2 Batch SchedulingSystems 4

223 BasicNotation oL 5

23 Metrics e 6
23.1 TargetMetrics 6

231.1 MakespanSpeedupo L 6

2312 MeanSlowdown L., 6

2.3.1.3 Mean Slowdown Per Processor 7

232 ExplanatoryMetrics 7

2321 Utilization Lo 7

2322 MeanJobSpeedupo 7

2323 Weighted Mean JobSpeedup 8

2324 SlowdownCounts 8

3 Co-scheduling 9
31 Hownodesharingworks. L L o L 9

3.2 Advantagesofnodesharing Lo oL 9

3.3 Disadvantages of nodesharing o oL 10

3.4 Co-scheduling complexity o 10

4 HPC Simulator 13
4.1 Efficient Lightweight Scheduling Estimator (ELiSE) 13

42 Heatmap e 17

4.3 NAS Parallel Benchmarks (NPB) 19

5 (Co-)scheduling Algorithms 21
5.1 Traditional Scheduling o o 21

5.1.1 TFirst Come First Serve (FCES)

5.1.2 Extensible Argonne Scheduling sYstem (EASY)

513 Conservative e e

5.1.4 ShortestJobFirst (SJF)

5.1.5 LongestJob First(LJF)

52 Co-scheduling
52.1 EASYCo-schedule

5.2.2 Shortest Job First Co-shedule (SJF-Co)

5.2.3 Longest Job First Co-shedule (LJF-Co)

5.2.4 Largest Area First Co-schedule (LAF-Co)

525 Popularity

52.6 Filler e

527 TwoPFactors
5.2.7.1 Shortest Remaining Time Criterion (SJF-Filler)

5.2.7.2 Popularity Criterion (Pop-Filler)

6 Evaluation

6.1 Mean Values
6.2 Boxplots
6.2.1 MakespanSpeedup

622 MeanSlowdown

623 MeanJobSpeedup

6.2.4 Weighted Mean Job Speedup

6.2.5 Mean Slowdown per Processor

6.2.6 Slowdown Counts Percentage

6.2.7 Utilization

6.3 ParetoPlots
6.4 Metricscorrelation

7 Summary and Conclusions
7.1 Summary ... L e e e
7.2 Conclusions
73 Futurework. L

List of Figures

List of Tables

Extetapévn EAAnviki Hepidnyn

Bibliography

Svvaptioetg Tagvounong ovpdag avapovig

27
27
28
28
29
29
32
33
33
33
36
38

41
41
42
42

45

47

49

69

73

Chapter 1

Introduction

In this Chapter, the motivation behind the development of co-scheduling algorithms in High-
Performance Computing (HPC) systems is presented. The Chapter concludes with an outline of
the Thesis structure.

1.1 Motivation - Problem Statement

The growing demand for computational power has made supercomputers and HPC systems
essential. However, these systems consume vast amounts of energy, significantly increasing oper-
ational costs, especially during the current energy crisis. As a result, optimizing the performance
of HPC systems has become essential.

One promising optimization strategy is co-scheduling. In contrast with traditional schedul-
ing, where nodes are exclusively allocated to a single job, in co-scheduling jobs can be striped
(occupying twice as much nodes), leaving half of the allocated nodes empty, allowing other jobs
to allocate these nodes [1]. Research has shown that when the co-allocated jobs have different de-
mands on resources (memory intensive jobs versus compute intensive), the system performance
can be improved [2, 3]. It is important to be noted that due to the reduced resource contention
the overall system performance can be improved, however individual job performance may be
decreased as some jobs benefit in the expence of their co-allocated job.

The scope of this Thesis is to develop and evaluate co-scheduling algorithms designed to take
advantage of these benefits while ensuring fairness between jobs. These algorithms are compared
against traditional scheduling methods, such as First Come First Serve (FCFS), using a simulation
environment, where resource allocation process can be easily intervened. The evaluation is based
on two key metrics: system makespan speedup (a measure of system performance) and mean job
slowdown (a measure of user satisfaction).

Chapter 1. Introduction

1.2

Thesis Outline

Following the introductory Chapter, the Thesis is structured as follows:

Chapter 2

This Chapter provides an overview of HPC systems, focusing on their architecture and
resource management. It introduces traditional scheduling approaches and highlights the
limitations that motivate the need for co-scheduling. The Chapter concludes by defining
the evaluation metrics used throughout this study.

Chapter 3

Co-scheduling is examined, with a focus on its benefits, such as reduced resource con-
tention and improved performance. The challenges of node sharing, including inter-job
interference and fairness issues, are also discussed. This Chapter establishes the theoretical
foundation for the proposed algorithms.

Chapter 4

The HPC Simulator, developed by the Computing Systems Laboratory, is introduced. Its
architecture, key components, and functionality are described. The Chapter emphasizes
how the simulator enables controlled testing of scheduling algorithms, particularly in
scenarios that would be impractical to replicate on real systems.

Chapter 5

Traditional scheduling algorithms, such as FCFS and Backfilling, are reviewed. The Chapter
then introduces and explains the two proposed co-scheduling algorithms, describing their
design principles, operation, and expected advantages.

Chapter 6

This Chapter presents the experimental results obtained using the HPC Simulator. The
performance of the proposed algorithms is evaluated against traditional approaches based
on system makespan speedup and mean job slowdown. Insights into algorithm behavior
and trade-offs are provided through detailed analysis.

Chapter 7
The Thesis concludes with a summary of results and their implications for HPC system
optimization. Limitations of the study are discussed, and recommendations for future
work, such as real-world implementation and further refinement of the algorithms, are
provided.

Chapter 2

HPC Scheduling Background

In this Chapter we provide the background on HPC, scheduling in HPC and the metrics that are
being used to evaluate the performance of such systems.

2.1 High Performance Computing (HPC)

The term High Performance Computing (HPC) refers to the practice of utilizing supercomput-
ers and parallel processing techniques to solve complex computational problems that require
immense processing power. HPC systems are able to perform trillions of calculations per sec-
ond, enabling them to tackle problems that require millions of computations and/or big data
sets. HPC systems are widely used in scientific fields such as physics, chemistry, biology, and
meteorology. They are used by researchers who run applications such as molecular simulations,
computational fluid dynamics (CFD), and weather prediction [4]. In recent years, HPC has also
found applications in artificial intelligence, financial modeling, and big data analytics.

HPC systems are typically organized into clusters. Clusters consist of many separate servers
(computers), called nodes, which work together to perform computations in parallel. The nodes
are connected via a fast interconnect [5], to facilitate fast data exchange. Each node in a cluster
typically consists of multiple CPU cores, GPUs, and memory modules, allowing for efficient
execution of large-scale computations.

The applications in clusters must be designed to take advantage of parallel processing. In
parallel processing, applications are divided into hundreds or even thousands jobs that execute at
the same time and solve a common problem [4]. In order to co-operate, jobs have to communicate
with each other and access common data.

Based on the memory model, systems can be classified into two categories:

« Shared Memory Model
« Distributed Memory Model

In shared memory systems, each process can access the main memory, as a result memory access
is fast. However, there is a risk of race conditions and synchronization techniques are required.
The prototype OpenMP, is mainly used so code parallelization is not particularly complicated [6].

In distributed memory systems, processes cannot access data that belong to other processes,
and as a result the communication between processes is achieved through message passing.

3

4 Chapter 2. HPC Scheduling Background

Message passing adds overhead on the execution, but allows scalability as there is no memory
contention between the processes. In such systems the prototype MPI (Message Passing Interface)
is used [7].

2.2 Scheduling

2.2.1 Schedulingintro

In systems, we refer to scheduling as the process of managing and allocating recources to tasks
efficiently. Scheduling algorithms dictate the order in which jobs or tasks are executed. The goal
of each scheduling algorithm may vary, but mostly fall into one of these:

o+ Throughput maximization
« Wait time minimization
» Response time minimization
« Ensuring fairness
According to [8] a good scheduler should have the following properties:

o General purpose: a scheduling approach should make few assumptions about the applica-
tions and apply a few restrictions to the types of applications that can be executed.

« Efficiency: the perforamnce of scheduled jobs should be improved but at the same time,
the scheduling shoud not add noticable overhead in the scheduling decision.

« Fairness: sharing resources among users raises new challenges in guaranteeing that each
user obtains their fair share when demand is heavy.

o Dynamic: the algorithms employed to decide where to process a task should respond to
load changes, and exploit the full extent of the resources available.

Scheduling algorithms can be divided into time sharing and space sharing ones. In time
sharing, time is divided into distinct intervals, where each task will take one time slot. In space
sharing algorithms, every task allocates its recources until the end of the execution. The algorithms
we study are space sharing and we will further discuss about them in Chapter 5.

2.2.2 Batch Scheduling Systems

In HPC systems schedulers (the components that are responsible for job scheduling), manage
the execution of parallel workloads across multiple nodes in a cluster. Schedulers in HPC handle
large-scaled distributed systems with usually computationally intensive workloads. In this work
we study batch scheduling algorithms, meaning that the jobs are submitted as a set (batch) and
are not interactive. The steps of batch scheduling are the following:

2.2. Scheduling 5

1. Job Submission — Users submit jobs to a scheduler, specifying resource requirements.

2. Queue Management - Jobs are placed in a queue and prioritized based on scheduling
policies.

3. Execution - The scheduler allocates resources and runs jobs based on available compute
nodes.

4. Completion & Logging — Once a job finishes, the system logs results and frees resources
for the next job.

We also mention some of the tools that handle job scheduling, resource allocation, and queue
management in HPC clusters in a batch scheduling way:

« Simple Linux Utility for Resource Management (SLURM)

Maui Cluster Scheduler (Maui)

Moab High-Performance Computing Suite (Moab)

TORQUE

Portable Batch System (PBS) [OpenPBS, TORQUE, PBS Pro]

Most supercomputers in TOP500 (a list of the 500 most powerful non-distributed computer
systems in the world [9]) use SLURM [10]. In SLURM the sceduling algorithm that is used is the
Conservative Bacfilling with backfill depth of 100 [11].

2.2.3 Basic Notation

In order to make decisions that will better achieve the schedulers’ goal, some characteristics of
the job must be known. Some of these characteristics are parameters that are declared when a
job is submitted (i.e. £” ally and others vary between different experiment as the come up during
execution. Here we present the basic notation for the parameters that are being used:

t7“" is the time job i needs for execution

£"9 is the time job i spends in the waiting queue before executing

£ is the time of submition of job i

£l is the wall time user specified for job i

req

o N.

. is the number of cores requested for the job i

alloc

1% is the number of cores allocated by job i

N

£ is the time of submition of job i

6 Chapter 2. HPC Scheduling Background

2.3 Metrics

In order to quantify system performance when different scheduling algorithms are utilized, the
usage of metrics is required. Metrics allow researchers to detect possible system bottlenecks
and direct future improvements. In systems the main objectives that need to be optimized are
energy consumption, resource utilization and user satisfaction. These objectives are conflicting,
thus metrics measurements are necessary in order to achieve balance according to specific
requirements. We will use relative metrics [12], meaning that in our evaluation we will decide on
the "best’ scheduler based on a plethora of metrics. We divide the metrics used into two categories,
target metrics and explanatory. We explore different alterations of widely used metrics such area
weighted as proposed in [13] or simply weighted versions of metrics.

2.3.1 Target Metrics

In this work we analyze algorithms measuring two objectives, system performance and user
satisfaction.

2.3.1.1 Makespan Speedup

The system performance metric we use is makespan speedup. Makespan expresses the time
elapsed from the start of execution to the end (given a specific workload). Makespan speedup is
the ratio of a baseline scheduler’s makespan over the examined scheduler’s makespan. The aim is
to increase makespan speedup, as a reduced makespan allows more workloads to be executed in
a bigger time slot. In this work we use the Conservative scheduler as a reference, which will be
described further in Chapter 5. We can define makespan speedup msS as:

max; (tf "

1

ms =)C(;c?;ervative (21)
max; <tj)

2.3.1.2 Mean Slowdown

Considering user satisfaction, we decided to measure the mean slowdown, also known as mean
flow. Mean slowdown tries to provide a measure of fairness over applications, as it is expressed as
the ratio of the time a job spent in the system over its real execution time [14]. The slowdown sld;
of job J; is defined as:

grun 4 t_wait
Sldi =2 t.runl (22)
1
And consequantly the mean:
J
dd=1.3 g4 2.3)
J A

The goal is to minimize the mean slowdown of the jobs on the workload. As the writers of
[14] note, jobs with small execution heavily impact the mean slowdown (while being a small
portion of the actual workload computation wise), as a small relative change in the wait time
could skyrocket the value of their slowdown. One solution is to use the bounded slowdown [15],

2.3. Metrics 7

however we decided to include the metric as is. We conduct experiments with various workloads
so we expect different values and between the metrics that consider user satisfaction, slowdown
is better matching user expectations that a job’s response time will be proportional to its running
time [16]. Additionally, we study the standard deviation of the slowdown in order to ensure that
slowdown is equally distibuted across jobs.

2.3.1.3 Mean Slowdown Per Processor

Alternatively to the mean slowdown, we decided to implement the mean slowdown per processor
as mentioned in [17, 18]. The slowdown per processor sldpp; of job J; is defined as:

run wait
L; + ti

1
sldppi = —mm— " 7 (2.4)
i n;
and the mean: y
Sdpp = % -y sldpp, (2.5)

i=1
The object of this metric is to present a more fair approach of mean slowdown, as the sensitivity
of mean slowdown to small jobs is tackled.

2.3.2 Explanatory Metrics

In addition to the target metrics, we include four explanatory metrics to better understand the
systems’ behaviour.

2.3.2.1 Utilization

Sytem utilization is a metric that showcases how efficiently are computational resources used.
Low utilization means that the resources are wasted. In this work we calculate the utilization of
time period [¢,1,] as:

t
jtf p(t)dt
Nt — 1)

where p(t) is the number of jobs under execution at time t and N the number of system CPU-cores.

U(ty, b)) = (2.6)

We try to achieve high values of utilization (it varies from 0 to 1).

2.3.2.2 Mean Job Speedup

Another metric that expresses user satisfaction is the mean job speedup. Due to node sharing the
execution time of each job can vary from the traditional compact execution. The speedup S; of
job J; is calculated as

(tir un)compact
i —rm (2.7)
i
and the mean: ;
s=1.% (2.8)
J =

8 Chapter 2. HPC Scheduling Background

It is obvious that each job wants to increase its speedup, therefore a higher value of mean speedup
is considered success.

2.3.2.3 Weighted Mean Job Speedup

The mean speedup is a measure of improvement on job performance, however the contribution
of each job is considered equal. In workloads the size (execution time and number of requested
cores) of jobs can strongly vary, consequently we calculate a weighted version of speedup. In
the weighted version each S; is multiplied with a factor w; that is the product of /" and N;. We
denote Weighted Mean Job Speedup as:

WMJS = <— Y w - (2.9)

iw 5

We consider that Weighted Mean Job Speedup is a more accurate metric for job improvement.

2.3.2.4 Slowdown Counts

In order to further explore the execution speedup of applications, we decided to count the
percentage of jobs that did not achieve an execution speedup bigger than 0.99. This metric should
not be confused with the slowdown calculated above, as it is simply the percentage of slowed
applications.

Chapter 3

Co-scheduling

In this Chapter, we describe the co-scheduling technique. As mentioned earlier, most HPC
systems are underutilized, due to fragmentation and resource contention [19-21]. The chosen
method for treating this problem is node sharing.

3.1 How node sharing works

In node sharing, the resources of each node are not used by one application, but from a set
of applications. The resource manager is allowed to assign different number of processors to
different applications, resulting in them occupying more nodes than the expected (calculated as
requested cores over cores per node). The different strategies for applications deployment are
basically three (as shown in Figure 3.1):

o Compact
o Spread
o Striped

The resource manager can deploy an application as compact, spread it across many more nodes,
or allocate it in nodes that another application is executing. We will further discuss that this
co-execution can be beneficial for the system and even the individual applications.

3.2 Advantages of node sharing

When applications are spread, they take advantage of more nodes” resources like more last
level cache and perhaps some accelerator like GPU. Also, the data transfer within the node is
optimized, as less instances of the application are executed within the node and consequently
less data are transferred (we consider MPI applications). Node sharing has a positive impact
on applications that show opposite behaviour on resource intensity. For instance, a memory
intensive application (an application that its performance is bounded by bandwidth speed when
scaling) benefits when co-executing with a compute intensive application, as the communication
needs are reduced. Thus, the execution time of said application can be reduced. Moreover, from
the system’s perspective, as applications are firstly spread and then striped in the system, the

9

10 Chapter 3. Co-scheduling
B B B |B B B n “
TR EOE el
aolooen|sc(i ol o
oo M onit o o

compact spread striped

Figure 3.1: Methods for scheduling two 16 process distributed applications A and B on a super-
computer with two 8-core processor sockets [1].

fragmentation can be reduced and nodes that were previously not fully utilized can now be better
used.

3.3 Disadvantages of node sharing

On the other hand, different applications have different communication patterns, so it is possible
that a slowdown in execution time is observed. This may occur, due to the synchronization of
application instances in different nodes, or simply that the colocated applications can be both
memory intensive. It has been observed that when two jobs that run the same application but are
distinct jobs (one cannot acess the data of the other) should not be co-executed. To elaborate,
it is argued that if they are memory intensive there will be a slowdown in execution and if they
are compute intensive, it would be more beneficial to be allocated with a memory intensive
application [22, 23]. Another problem worth mentioning, is that in real systems there is a pricing
scheme that values the cores used multiplied with a constant and the total execution time. Thus,
it would be unfair to charge users more when their applications are slowed by the scheduling
decision. Certain solutions have been proposed [24], however we will not consider this in our
analysis.

3.4 Co-scheduling complexity

As we discussed above, node sharing can either have a positive or negative effect on applications’
execution. Whether the load is omogenous or eterogenous heavily impacts the performance of
co-execution. Especially the neighboring jobs play a crucial role in a job’s execution time, as
they can be the major reason for degradation [25]. Considering this, co-scheduling becomes a

3.4. Co-scheduling complexity 11

really complex problem, as in order to tackle these challenges more knowledge of the applications
submitted to the system is required. One could argue that the possible increment in execution
time can be tolerated as it comes with a desirable decrease in wait time [26]. In this work, we will
study the effect of co-scheduling and we will try to come up with co-scheduling algorithms that
may not require extra knowledge about the applications and can work on every system.

12

Chapter 3. Co-scheduling

Chapter 4

HPC Simulator

In this Chapter the simulation process is discussed, introducing ELiSE, a tool developed in
Computing Systems Laboratory (CSLab).

4.1 Efficient Lightweight Scheduling Estimator (ELiSE)

Efficient Lightweight Scheduling Estimator (ELiSE), is an HPC scheduling estimator with co-
location capabilities. ELiSE is a python-based framework that simulates the execution of the load
on the cluster under different scheduling policies.

The required input consists of three components:

1. asimple description of a HPC cluster
2. adynamic load of HPC jobs
3. a heatmap of pairwise speedups between the participating applications

The simulator resembles a finite state machine with jobs moving across four states as shown
in Figure 4.1: The Future state contains jobs that have been generated according to user requests
but their arrival time has not been reached by the simulator yet, Waiting contains jobs that have
arrived and wait to be executed in the system, Executing are those that are currently running
in the cluster, and Finished are those that have exited the system. The Scheduler decides which
job to move from the waiting queue to the running state and which nodes/cores of the cluster to
grant to the job. Further simulation logic described in the next sections orchestrates the rest of
the process, i.e. handling future jobs, advancing time, calculating finishing times, etc.

The features it currently supports are:

» Workload generation
To create a workload, users need to specify the number of applications (jobs) N, an applica-
tion seed (a set of n applications with their execution times and compact allocation), and an
n? co-execution matrix (heatmap) showing speedups for each application pair. ELiSE then
generates a workload of Napplications by selecting representatives from the seed randomly,
by user-defined frequencies, or from a specific list. Users can also set the interarrival time

of applications, choosing from constant, random, Poisson, or Weibull distributions.

13

14 Chapter 4. HPC Simulator

o Describing the target platform
To define the target platform, the framework only needs the number of nodes, CPUs per
node, and cores per CPU.

« Available schedulers
The framework currently supports several schedulers, including a basic FCFES scheduler,
FCEFS with EASY backfill, FCFS with conservative backfill, FCFS co-scheduler with EASY
backfill, and a smart co-scheduler called Filler (detailed in Chapter 5). A key feature of
ELiSE is its ease of extending to new schedulers.

o Output
ELiSE generates a detailed execution log, capturing job arrival, start, and end times, among
other metrics. It also offers various visualizations, such as Gantt charts, system throughput,
queue size, system utilization over time, and boxplots of application speedups. Example
outputs are illustrated in Figures 4.2, 4.3, 4.4 and 4.5.

Workload
Future State

Waiting Queue
Waiting State

A

Finished State

2 | Machs
Scheduler ac n?e
Executing State

Figure 4.1: High-level design logic of the framework.

4.1. Efficient Lightweight Scheduling Estimator (ELiSE) 15

Jobs and average makespan speedups

Number of finished jobs

=
(o))

=
~

=
N

[

o
o0

160

140

[u—
2
<

—_
=
(=}

60

40

20

All experiments and scheduling algorithms
1 experiment(s), 150 jobs per experiment

EASY Co-Scheduler Filler Co-Scheduler
Scheduling algorithms

Figure 4.2: Example of job speedups and makespan speedup diagramm.

All jobs throughput

= Default Scheduler
+EASY Co-Scheduler
= Filler Co-Scheduler

0 500 1000 1500
Time (s)

Figure 4.3: Example of jobs throughput diagramm.

Chapter 4. HPC Simulator

16

All unused cores

< Default Scheduler

8400

<+ EASY Co-Scheduler

=Filler Co-Scheduler

$9.102 pasnun jJo .JaquinnN

600 800 1000 1200 1400
Time (s)

400

200

Figure 4.4: Example of unused cores diagramm.

e,

A

"

o

$3.10)

6
wy
ol

EASY Co-Scheduler
I
|
|
|
|
|
|
|
|
—:_:n
|
|
|
|
|
|
|
|

il

3:15:34

1:57:20 2:16:54 2:36:27 2:56:00

1:37:47

Time

l:18:13

0:39:06 0:58:40

0:00:00 0:19:33

Figure 4.5: Example of a Gantt diagramm.

4.2. Heatmap 17

4.2 Heatmap

As described above, a heatmap of pairwise speedups between the applications is required. We
will discuss about the creation of such heatmap and we will present the heatmap’s usage. Below,
a part of a heatmap file is provided, for applications run on the ARIS system (Table 4.1). In
order to acquire this file, we run every co-execution scenario of the job pairs (including different
process requirements). For each co-execution scenario, we paired applications on the same node
and replicated this across all required nodes. Each pair ran together for 10 minutes, with any
completed job being restarted. We recorded the median execution times from these repeated
runs as the co-execution time for the benchmark. Speedups were calculated as the ratio of the
original execution time (under compact allocation) to the co-execution time. Below, we present

Table 4.1: Part of a heatmap file from execution on the ARIS system.

name_A procs_ A compact_A name_B procs_B compact B co_A_B co_B_A

bt.D.256 256 123.97 bt.D.256 256 123.97 119.62 119.40
bt.D.256 256 123.97 bt.D.512 484 60.04 121.29 57.94
bt.D.256 256 123.97 bt.D.64 64 486.25 138.96 443.08
bt.D.256 256 123.97 bt.E.1024 1024 511.22 120.39 492.30
bt.D.256 256 123.97 bt.E.2048 2025 22497

bt.D.256 256 123.97 cg.D.128 128 93.29 122.38 92.36
bt.D.256 256 123.97 cg.D.64 64 183.43 122.60 167.26
bt.D.256 256 123.97 cg.E.1024 1024 256.09 122.85 202.75
bt.D.256 256 123.97 cg.E.2048 2048 120.64

bt.D.256 256 123.97 cg.E.512 512 359.30 123.81 270.04
bt.D.256 256 123.97 ep.E.256 256 145.935 114.22 145.55
bt.D.256 256 123.97 ep.E.512 512 72.89 114.25 73.43
bt.D.256 256 123.97 ftD.256 256 55.98 126.44 41.20
bt.D.256 256 123.97 ft.D.64 64 185.72 139.93 145.63
bt.D.256 256 123.97 ftE.1024 1024 136.65 127.82 98.73
bt.D.256 256 123.97 ft.E.2048 2048 77.31

bt.D.256 256 123.97 ft.E.512 512 247.88 125.70 175.70
bt.D.256 256 123.97 is.E.256 256 85.21 128.49 63.40
bt.D.256 256 123.97 is.E.512 512 50.41 126.65 35.75
bt.D.256 256 123.97 luD.128 128 138.51 128.82 122.94
bt.D.256 256 123.97 luD.256 256 73.54 124.66 66.13
bt.D.256 256 123.97 lu.D.64 64 263.21 132.77 232.85
bt.D.256 256 123.97 lu.E.1024 1024 282.36 125.65 252.05
bt.D.256 256 123.97 lu.E.2048 2048 163.17

bt.D.256 256 123.97 lu.E.512 512 542.87 126.09 482.46
bt.D.256 256 123.97 mg.E.128 128 159.37 162.00 103.03
bt.D.256 256 123.97 mg.E.256 256 87.53 156.55 54.04
bt.D.256 256 123.97 sp.C.64 64 20.12 135.31 17.00
bt.D.256 256 123.97 sp.D.128 128 318.87 158.57 210.34
bt.D.256 256 123.97 sp.D.256 256 116.32 138.40 87.07

bt.D.256 256 123.97 sp.D.512 484 58.49 133.78 48.36

18 Chapter 4. HPC Simulator

the speedups of the pairs in different heatmaps, grouped by the requirements of the different
processes (Figure 4.6).

Heatmap of Co-execution Runtime Speedups (Core Number = 64) Heatmap of Co-execution Runtime Speedups (Core Number = 1024)

bt.D.64
bt.E.1024

cg.D.64
g.E.1024

Benchmark A
ft.D.64
Benchmark A
ft.E.1024

lu.D.64
Iu.E.1024

sp.C.64
$p.E.1024

cg.D.64 £.D.64 lu.D.64 sp.C.64 bt.E.1024 cg.E1024 fLE.1024 lu.E1024 sp.E.1024
Benchmark B Benchmark B

Heatmap of Co-execution Runtime Speedups (Core Number = 256) Heatmap of Co-execution Runtime Speedups (Core Number = 512)

109 0.98 105 102 110 101 102 100 0.95

bt.D.256
bt.D.512

0.98

ep.E.256
€g.E.512

0.99 1.00 1.00

ft.D0.256
ep.E512

Benchmark A

lu.D.256 1s.E.256
Benchmark A

ft.E.512

is.E.512

mg.E.256
lu.E.512

5p.D.256
$p.D.512

bt.D.256 ep.E.256 ft.D.256 is.E.256 MW.D.256 mg.E.256 sp.D.256 bt.D.512 cg.E.512 ep.E.512 ft.E512 is.E.512 Iu.E.512 sp.D.512
Benchmark B Benchmark B

Figure 4.6: Heatmap of runtime speedups in co-execution for processes with specific core values.

The calculated runtime speedups are then used during runtime estimation. To be more
specific, for the calculation of the remaining execution time of each job, we consider that the
execution time of an application when concurrently co-located with other applications is deter-
mined by the slowest case, since processes in HPC applications typically interact with each other
in time steps, and the slowest process determines the pace of the entire execution. The speedup
for each co-execution interval of job J; with neighbors J, is calculated by:

Spew = \%lel? getSpeedupWith(j) (4.1)

4.3. NAS Parallel Benchmarks (NPB) 19

Consequently, the new remaining execution time is calculated as:

Spld . (fun
(1) = S D 42)
i

4.3 NAS Parallel Benchmarks (NPB)

The workloads used in the simulator are taken from the set of NAS Parallel Benchmarks (NPB).
NPB were developed by the NASA Advanced Supercomputing (NAS) division to provide a
standardized way to measure the performance of parallel computing systems [27]. The set
consists of a series of computational kernels and pseudo-applications that mimic the workload of
real-world scientific and engineering simulations, derived form CFD applications. The jobs we
use consist of:

5 computation kernels

IS - Integer Sort, random memory access

EP - Embarrassingly Parallel

CG - Conjugate Gradient, irregular memory access and communication

MG - Multi-Grid on a sequence of meshes, long- and short-distance communication,
memory intensive

— FT - discrete 3D fast Fourier Transform, all-to-all communication
« 3 pseudo applications

- BT - Block Tri-diagonal solver

- SP - Scalar Penta-diagonal solver

- LU - Lower-Upper Gauss-Seidel solver
The jobs we use are also divided in two classes D and E, that denote the size of test problems
(Table 4.2). The job has another element which is the number of requested cores, that is a power

of 2. To conclude, the format of a job is
{1s,EP,CG,MG,FT,BT,SP,LU}.{D,E}.{64,128,256,512,1024,2048}.

20 Chapter 4. HPC Simulator
Table 4.2: Problem size of each class.
Benchmark Parameter Class D Class E
no. of rows 1500000 9000000
cG no. of nonzeros 21 26
no. of iterations 100 100
eigenvalue shift 500 1500
EP no. of random-number pairs 236 240
BT grid size 2048 x1024 x1024 4096 x2048 x2048
no. of iterations 25 25
IS no. of keys 231 235
key max. value 227 231
MG grid size 1024 x1024 x1024 2048 x2048 x2048
no. of iterations 50 50
grid size 408 x408 x408 1020 x 1020 x 1020
BT no. of iterations 250 250
time step 0.00002 0.000004
grid size 408 x408 x408 1020 x1020 x1020
LU no. of iterations 300 300
time step 1.0 0.5
grid size 408 x408 x408 1020 x1020 x1020
SP no. of iterations 500 500
time step 0.0003 0.0001

Chapter 5

(Co-)scheduling Algorithms

In this Chapter we describe the functionality of the algorithms studied in this Thesis. We present
both common scheduling algorithms used in clusters and systems in general such as First Come
First Serve (FCFS) and algorithms supporting job striping, the so called co-scheduling algorithms.
In co-scheduling algorithms apart from our own implementations, we include some traditional
algorithms performing job striping like Shortest Job First (SJF).

5.1 Traditional Scheduling

In traditional scheduling after a job has been submitted a possible reordering in the waiting queue
occurs and then the head of the waiting queue is selected and the required resources are allocated.
The allocation we study is about computing nodes, where continous nodes are assigned to the
job (the number of which is the least amount of nodes that contain the requested cores).

5.1.1 First Come First Serve (FCFS)

This might be the most common scheduling algorithm, where no reordering on the waiting
queue occurs and jobs are selected based on their arrival order. FCES is really simple and does
not require any computations during execution as there is no reordering. This is considered a fair
scheme as there are no starvation instances, however the system becomes prone to fragmentation.
In addition, another disadvantage of FCES is the convoy effect, where a long job delays many
shorter (in clusters we can imagine a number of long jobs, or a long job that requires many nodes),
resulting in grater wait times.

5.1.2 Extensible Argonne Scheduling sYstem (EASY)

The Extensible Argonne Scheduling sYstem [28] (EASY) algorithm is based on the FCFS algorithm
with the improvement of backfill, an improvement that treats the convoy effect and improves the
utilization.

Backfill is the procedure where one or more jobs “skip the line” and execute before their
expected time, as long as it does not affect the execution of the previous jobs. There are two
main backfilling policies as described in [29], the aggressive and conservative. The difference of
these backfilling policies is that in conservative backfill, every job is given a reservation when

21

22 Chapter 5. (Co-)scheduling Algorithms

it enters the system. A smaller job is moved forward in the queue as long as it does not delay
any previously queued job. In aggressive backfilling, only the job at the head of the queue has a
reservation. A small job is allowed to leap forward as long as it does not delay the job at the head
of the queue.

We present an example of backfill in order to demonstrate its function. Here the waiting
queue has three jobs D, E and F (Figure 5.1).

> waiting queue

C

D E

system nodes
oo

A F

N

7
time

Figure 5.1: Example of backfill policy-initial waiting queue.

Job D is selected as the top job of the waiting queue. As we can observe the execution of job
D must wait until job A finishes execution (Figure 5.2). Then the waiting queue is accessed again.

> waiting queue

C

system nodes
trd

A F

N
4
time

Figure 5.2: Example of backfill policy-allocation of job D.

Job E cannot execute before Job D as it requires nodes that if allocated, job D would have to delay
its execution. We continue to the next Job in the waiting queue, which is Job E If deployed Job
F does not affect the execution of D so it selected and executed (Figure 5.3). The process can
continue until all jobs in the waiting queue are checked, a certain number of jobs is checked or
even stop at the first find. The implementation of the policy can vary according to one of the
three options. In our implementation, every job is checked up to a certain index, called backfill
depth.
To conclude the process of EASY scheduling is the following:

1. Ajob is submitted to the waiting queue

2. The head of the waiting queue is selected and set for execution

5.1. Traditional Scheduling 23

> waiting queue

system nodes
trd

A

(§

o’
time

Figure 5.3: Example of backfill policy-allocation of job F (backfill).

3. The waiting queue is again accessed and every job that can be executed without messing
with the beggining of head’s job execution is executed

The EASY algorithm performs better than the FCES both in terms of system efliciency and user
sastisfaction, as the gaps both in time and space angle are filled. On the contrary, EASY has a
higher complexity, as the waiting queue is traversed every time a job is set for execution.

Apart from the EASY algorithm there can be many variants that perform aggressive backfilling
and combine other policies. For instance, we mention the FCFS-SJF as presented in [30], where
the shortest job is backfilled first. In real systems, this approach may suffer from bad estimations
in jobs’ runtimes.

5.1.3 Conservative

Another popular scheduling policy is the Conservative Backfilling. In Conservative Backfilling,
as in EASY a FCEFS ordering in the waiting queue is kept. As mentioned before, in Conservative
Backfilling the originally estimated start time of each job in the waiting queue must be respected,
unlike EASY. This approach to backfill is considered a fairer one, preventing starvation at the
same time. There are a few alterations of this policy as mentioned in [31], but we will implement
the common one. Conservative algorithm can be considered more complex than EASY as more
jobs have to be checked in each backfilling step.

5.1.4 Shortest Job First (SJF)

Shortest Job First (SJF) is another common scheduling algorithm. Here the jobs in the waiting
queue are sorted based on their required execution time (in this work we use the remaining
execution time as we assume it is known, however in a real system the wall time would replace it).
As mentioned in [32], this simple policy or perhaps a similar one being Shortest Area First (SAF),
can drastically outperform the EASY algorithm. We decided to only study SJF as we use this
algorithm to set a baseline on slowdown values. This algorithm favors shortest jobs over longer
ones and results in smaller values of slowdown and wait time in general. The disadvantages of
this algorithm are that starvation instances of long jobs appear and that in real applications the

24 Chapter 5. (Co-)scheduling Algorithms

wall time may vary from the real execution time. In addition, system fragmentation may also
occur as we do not consider the number of requested nodes.

5.1.5 LongestJob First (LJF)

Similarly to SJE Longest Job First (LJF) is a scheduling algorithm that reorders the waiting queue
based on the jobs’ required execution time. We would expect a major decrease in mean slowdown
values as the wait time of shorter jobs in increased. Considering system performance, we would
expect high throughput and perhaps fragmentation that could be fixed with backfill.

5.2 Co-scheduling

The other approach scheduling algorithms follow is the one of node sharing, where as previously
described, more than one jobs can allocate cores in the same node, in order to eliminate resource
contention. We present algorithms that follow the same principles as some of the traditional
scheduling algorithms and are modified for colocation, as well as our own implementations. All
algorithms perform co-allocation in the same way, that is described below. The main focus of
the algorithms presented is the reordering of the waiting queue, exactly as in the traditional
scheduling schemes.

5.2.1 EASY Co-schedule

Here the same procedure as EASY is followed as the job are deployed in the order in which they
arrive, however the jobs are firstly deployed as spread (as long as the required space is available)
and then as the system begins to fill the system, the jobs allocate nodes that are already half full.
The nodes are assigned to jobs in a serial way. We expect similar behaviour with the traditional
EASY, with perhaps an improvement in utilization, as more than jobs are allowed in the same
node, covering unused cores that may exist in the traditional approach.

5.2.2 Shortest Job First Co-shedule (SJF-Co)

Like sized based approaches, here we try to maximize the algorithm’s performance considering
only the slowdown. This algorithm reorders the waiting queue, giving priority to the shortest
jobs. The same comments as the SJF apply.

5.2.3 Longest Job First Co-shedule (LJF-Co)

Similarly to SJF-Co, in Longest Job First Co-shedule (LJF-Co) we study the effect of node sharing
in LJE. We expect less fragmentation and as a result higher makespan speedup. As in LJF, we
expect high mean slowdown values.

5.2.4 Largest Area First Co-schedule (LAF-Co)

Next, we try an approach that reorders jobs based on their size. In particular, the waiting queue
is sorted so the jobs with the grater product of requested cores and execution time are deployed

5.2. Co-scheduling 25

first, while executing aggresive backfill as well. We should note that this algorithms clearly
discriminates against smaller jobs and consequently we expect big values in mean slowdown.
Our goal with this implementation is to set some extreme values for reference, and as we evaluate
algorithms on two factors we try to optimize one of them; here being system utilization. We
expect high utilization values, as the bigger jobs fill the system’s nodes and backfill takes care of
possible gaps. In addition node sharing allows more agile allocations, thus improving utilization.

5.2.5 Popularity

This approach differs from the previous ones, as we try to take advantage of the information
provided by the heatmap. Each time a scheduling desicion has to be made (a job is going to be
deployed), the waiting queue is sorted, based on a popularity mesure that we call "rank”. Rank
is calculated for each job and it is a counter for the number of successful co-allocations the job
can have with the rest of the waiting queue (according to the heatmap). To be more precise, the
waiting queue is traversed in two for loops where when the average speedup of two jobs is grater
than the value of a threashold, both jobs’ rank is increased. The jobs with a higher rank are given
a higher priority , as they are friendlier for co-execution. However, the least friendly jobs are
pushed to the end of execution, with possibly negative results in execution times. In order to
prevent this, we deploy the last jobs in the waiting queue as compact.

5.2.6 Filler

This is a scheduling algorithm designed by Stratos Karapanagiotis while he was part of the CSLab
team, which aims to improve system fragmentation. The waiting queue is sorted like in every
other algorithm, based on the ratio of two factors. The first factor (nominator) is about the gap
the jobs are going to create in the system. For each job in the waiting queue the difference of
system’s free cores and the number of processes required by the job is calculated (as long as there
are free system cores). This difference is then divided by the number of system’s free cores and
then is subtracted from 1 and that is the value of the first factor (unless the job cannot fit into the
system, where the value is set as —1). So grater difference values result into smaller arithmetic
values for the first factor. It is clear that the first factor favours the jobs that will leave the smaller
gap in the system (in this particular moment according to the system’s state). The second factor
(denominator) is the job’s id increased by one, divided by the length of the waiting queue. As
the job id is increased according to the submission time of each job, meaning that a job with a
higher id must have a latter or at least the same submition time than that of a job with a smaller
id. This factor tries to preserve the order in which jobs arrived and insure fairness among the
jobs. We expect high utilization values, as the jobs are prioritized when leaving smaller gaps in
the system (without meaning that the resulting arrangement will be the optimal for the system).
Simultaneously, we expect small wait times and consequently small slowdown values, as an arrival
order is partially preserved.

26 Chapter 5. (Co-)scheduling Algorithms

5.2.7 Two Factors

This approach is heavily based on Filler. Again, the sorting of waiting queue is based on two
factors, where the first one is exactly the same as the first factor of Filler. We decided to keep
the mechanism of the first factor, because the system’s current situation is considered. Here the
two factors are added and currently they have the same contribution. In this implementation we
create a copy of the waiting queue and we sort this queue based on a different criterion. After the
second queue is sorted we locate the current job’s position in the second queue and divide it with
the length of the waiting queue. This value is the second factor. The complexity of this algorithm
is increased as for each job there has to be a whole reordering. Based on the sorting criterion of
the copy queue, we have created two variants of the algorithm:

o SJF-Filler
o Pop-Filler

Both of these variants use information about the jobs that are not provided in the job submission,
but require further knowledge of the workload. We also study the case where only a part of the
waiting queue is sorted in order to reduce the complexity and ensure fairness among the jobs.

5.2.7.1 Shortest Remaining Time Criterion (SJF-Filler)

This is the original variant of Two Factors algorithm. The second sorting criterion is the shortest
remaining execution time. This algorithm combines the logic of SJF in order to reduce slowdown
values, while at the same time the system’s state is considered.

5.2.7.2 Popularity Criterion (Pop-Filler)

This variant uses as a second factor the popularity as mentioned before. In this approach we try
to preserve the filling mechanism described in the Filler algorithm and at the same time increase
the speedup of execution time.

Chapter 6

Evaluation

In this Chapter we will present and discuss about the experimental results of our study. We run
10 experiments of 1000 jobs each on ELiSE, simulating the ARIS system (420 nodes with 20 cores
each). We chose 1000 jobs per experiment, as there co-exist several instances of the different
benchmarks and the system is in full load.

6.1 Mean Values

First, we present the mean values of the metrics in these 10 experiments (Tables 6.1, 6.2).

scheduler mean slowdown mean slowdown pp slowdown (%) utilization
SJF 20.6 0.101 0.00 0.947
SJEF-Co 23.6 0.118 17.51 0.875
SJE-Filler 27.7 0.109 22.94 0.964
Filler 48.1 0.189 29.70 0.965
Pop-Filler 63.5 0.265 23.78 0.971
Popularity 64.3 0.308 10.10 0.932
EASY 66.5 0.372 0.00 0.926
EASY-Co 67.5 0.368 23.82 0.904
Conservative 80.2 0.463 0.00 0.922
FCES 82.9 0.480 0.00 0.899
LJF-Co 109.6 0.599 23.62 0.939
LAF-Co 125.7 0.745 21.59 0.937
LJF 137.2 0.812 0.00 0.960

Table 6.1: Mean values of metrics for 10 experiments (1000 jobs on ARIS) - part 1.

As we expected, SJF has the smallest mean slowdown values, followed by SJF-Co. Here we
observe that co-sceduling worsens the response time of individual jobs. The mean job speedup
in the co-scheduled is increased, despite the fact that about 18% of jobs are slowed down. On the
other hand, the utilization and makespan speedup of the co-scheduled version is lower, possibly
due to an increase in execution time of certain jobs.

The SJE-Filler has similar mean value of mean slowdown to those of the other SJF approaches,
while achieving high utilization values and reaching the highest makespan speedup. The other

27

28 Chapter 6. Evaluation

scheduler mean job speedup weighted mean job speedup makespan speedup
SJF 1.000 1.000 1.028
SJF-Co 1.062 1.049 0.995
SJE-Filler 1.074 1.055 1.104
Filler 1.065 1.040 1.086
Pop-Filler 1.077 1.038 1.093
Popularity 1.047 1.020 1.029
EASY 1.000 1.000 1.006
EASY-Co 1.097 1.060 1.040
Conservative 1.000 1.000 1.000
FCFS 1.000 1.000 0.976
LJF-Co 1.083 1.042 1.063
LAF-Co 1.072 1.049 1.065
LJF 1.000 1.000 1.043

Table 6.2: Mean values of metrics for 10 experiments (1000 jobs on ARIS) - part 2.

two Filler implementations behave similarly, with the Pop-Filler combination achieving the
highest utilization.

Popularity has the lowest percentage of slowed down jobs (except from the traditional sched-
ulers), as it includes compact execution (hybrid allocation policy). Compared with the more
compact approaches, the mean slowdown values are lower.

In EASY scheduling, we observe that co-scheduling has a positive effect in mean job speedup,
achieving the highest value and in mean job speedup speedup as well. We also observe a small
decrease in utilization.

Now comparing EASY, Conservative and FCFS, we see that utilization is decreased slightly in
this order and mean slowdown is increased, again in this order. These results perfectly align with
the expected effects of backfill. Moreover, in LJF-Co, LAF-Co and LJF the highest values of mean
slowdown occur. These implementations also perform at high utilization and makespan speedup
values.

6.2 Boxplots

Here we examine the performance on each metric seperately, using the following boxplots.

6.2.1 Makespan Speedup

Firstly, we focus on makespan speedup and mean slowdown, as these are the selected target
metrics. The highest values of makespan speedup occur with SJF-Filler, followed by the other
two approaches. Moreover, LJF-Co and LAF-Co have high makespan speedups as well. The
schedulers with mean makespan speedup less than 1 are SJF-Co, Popularity and FCFS. Probably
in SJF the co-scheduling worsens fragmentation.

6.2. Boxplots 29

Boxplot of Makespan Speedup (over Conservative) by Scheduler

.

1.125 1

.
= = _
1.075 A

1.050 I_—_r_l + i \Tl

Makespan Speedup (over Conservative)

1.025 A
1.000 A .
0.975 L]
J_ ¢

0.950

" e e A e a el S —_—

? S F@ & FEFEY

c)§< QQQO Q/\,. QGQ (’Z(‘\ he \y
s
Scheduler

Figure 6.1: Boxplot of Makespan Speedups.

6.2.2 Mean Slowdown

With regards to mean slowdown, the three SJF implementations have considerably lower values.
The Filler algorithm stands somehow in the middle between the rest. Also, the ones that value
long execution time, have bigger values as expected.

6.2.3 Mean Job Speedup

The highest mean speedup values are observed in co-scheduled EASY, with a small variance. The
values in the rest schedulers do not seem to differ, with perhaps the grater variance on SJF-Filler
and Pop-Filler. Also, LJF-Co appears to achieve high values and Popularity lower ones. The
behaviour of Popularity can be interpreted as a result of the compact deployment of certain jobs,
keeping the mean lower. Here we present one example of the distribution of speedup of individual
jobs during the execution of one experiment (Figure 6.4). Here the red marks represent the mean
speedup considering only the jobs in each time bin and the black dotted line the cumulative
mean. It is visible that the mean speedup start from high values as the first jobs are co-execution
friendly and it gradually reduces as the non friendly jobs stay behind. On the other hand, the
results on Fillers indicate that mean job speedup greatly varies between different executions.

30

Chapter 6. Evaluation

Boxplot of Mean Slowdown by Scheduler

1401
—l_ é
1201 T
S
Z 100
e
2
o
2 Bs
: ==
. =
g ==
. i
40
20 A m——— i
§ & o Iqj\ ‘.~\ o & ' e Ie o X
S & L& &FF L fEE é(,o S
(‘.7\ QQ va QQQ ?:‘\\
< &
(_,0
Scheduler
Figure 6.2: Boxplot of Mean Slowdown values.
Boxplot of Mean Job Speedup by Scheduler
*
=
o _—
(%)
&
Ne]
=}
c L]
G 1.041
(]
=
1.02
1.00 |— o _ —_—
< Ie,ﬂ o & I.at\ o & W@ o o o X
o) & %{(,(J N %‘;o r;\(/ & 19«6 \)c, \53,0 >
(9§< o & QGQ Z(\\
Q &
(’0

Scheduler

Figure 6.3: Boxplot of Mean Job Speedups.

6.2. Boxplots

31

Speedup Distribution by Time Bins (Popularity_0)

—&— Mean

1.6 . + === Cumulative Mean
¢+ ¢ *
¢ ¢+
3 3
. +
' ¢ . ’ ¢ s
14 +
¢ ¢ ¢
& ¢ .
g ' ! ’
©
3
b}
2
5 1.2
<
<
o
Q
=1
el
u
v
Q
¥ 1.0
0.8

N N N Y N » N A AN A

& & & & &« & < & & K
O 34 » & 1y Gl > g A &
A § R P & 35 & 5 i 5
S K > & ¢ Ry X 3 K3 K
& & N & 4 3 v > . o
5 & i o2 & « o 8 & A5
® O g g & 9 o & % >
~ $ <& N & S & & R o
N N & > > 4 S
Q Q Q Q

Time Bin

Figure 6.4: Time distribution of mean job speedup in a Popularity scheduling execution.

32 Chapter 6. Evaluation

6.2.4 Weighted Mean Job Speedup

Boxplot of Weighted Mean Job Speedup by Scheduler
1.07
1.06 1 T .
1.05 1 « —
1.04 1 J~ + —_

Weighted Mean Job Speedup

1.034
1.024
1.014
1.004— e el e
<I< I 0 ‘k I_ A ‘o I S e (& Io o X
W L és\%‘g; & L LS
S > ¥ & & NN S
> QOQ < QGQ 5’0
(90
Scheduler

Figure 6.5: Boxplot of Weighted Mean Job Speedups.

In this plot the larger jobs have a bigger impact on the values. The values of weighted mean
speedup seem to be smaller than the unweighted version, indicating that smaller jobs are favored
(possibly due to backfill). We also observe that schedulers that treat large jobs in a consistent way
(either push them to the front or push them back), could lead to stable results in the weighted
mean.

6.2. Boxplots 33

6.2.5 Mean Slowdown per Processor

The same observations as slowdowns apply, with a slight difference in Pop-Filler, where the values
are actually smaller relatively.

Boxplot of Mean Slowdown Per Processor by Scheduler

T

_|

' L

o
o

) |
il

Mean Slowdown Per Processor

0.2 M -
= E == -
— ; ;
§ 80 OF O SE E S
(<f< &% S R & & < NN
2 & &F K
Q (10-(\"

Scheduler

Figure 6.6: Boxplot of Mean Slowdown per Processors values.

6.2.6 Slowdown Counts Percentage

When we examine the slowdown counts percentage, we observe that most schedulers’ values
are around 23%, except the Filler and Popularity and of course the traditional schedulers. We
can explain the lower values in Popularity, as it combines striped and spread deployment with
compact as well. In the Filler case, we cannot fully interpret this behaviour, as the mean job
speedup is similar to the other schedulers.

6.2.7 Utilization

In terms of utilization, the results are mostly expected. The three Filler approaches dominate,
as they actively try to reduce fragmentation on each scheduling decision. Their performance is
followed by the "Large” co-schedulers (LJE LJF-Co and LAF-Co), also expected. Interestingly, the
utilization of SJF-Co and EASY-Co is worse than the one of their compact scheduling. We suspect
that these approaches create more smaller gaps in the system, which cannot be filled during
backfill, thus resulting in lower utilization. We present an example of an SJF execution where the
makespan of the co-scheduled version (Figure 6.10) is grater than the traditional (Figure 6.9).
We can see that the gaps are getting bigger as the jobs that create them expand in more nodes
and backfilling cannot fill them.

34

Chapter 6. Evaluation

Boxplot of Slowdown Counts Percentage by Scheduler

304

254

204

Slowdown Counts Percentage

15+
10
5_
0__ —— — ——— —
‘; Ie,ﬁ ‘o IQ}) A o & _zlc-) ‘o s <<
F e BF S EE S
(‘J\ QdQ va. QOQ 4&6
<
Scheduler
Figure 6.7: Boxplot of Slowdown Counts Percentage values.
Boxplot of Utilization by Scheduler
0.98+ !

— L}
oss] N ES = T —
094 | I —

5092+ [] T
E % ‘ J_
N
T 0.90- - '
=]
+
0.88 1
L}
0.86 1
0.84 1
‘I< Ie,ﬂ o ;,} A i o & I_‘&z% o o ‘<
> & & & & & &E \53'(' >
(9\ QOQ Q/v. QGQ 6,0(\\
s
Scheduler

Figure 6.8: Boxplot of Utilization values.

6.2. Boxplots 35

SJF Scheduler
Gantt Plot

Figure 6.9: Gantt diagram of SJF in workload of 400 jobs on ARIS.

Shortest Job First Co-Scheduler
Gantt Plot

Figure 6.10: Gantt diagram of SJF-Co in workload of 400 jobs on ARIS.

36 Chapter 6. Evaluation

6.3 Pareto Plots

In this section we combine metrics in order to further evaluate our schedulers’ performance. We
address this as an optimization problem with multiple criteria. As we previously mentioned, the
target metrics are makespan speedup and mean slowdown. We add to these criteria the slowdown
counts percentage and we seek the optimal-Pareto solution on each combination [33].

Firstly, we study the the mean slowdown values versus makespan speedup (Figure G12).
The objectives are maximizing makespan speedup and minimizing mean slowdown. The SJF-
Filler approach seems to dominate the solution set, with the approaches that are based on its
components (meaning SJF and Filler based), achieving satisfying results as well.

Pareto Plot: Mean Slowdown vs. Makespan Speedup

@' ____________ Schedulers
= 1.1254 ,"* v —--=- Pareto Frontier
° . > e EASY-Co

Y 11007 = - v EASY

c ! » eoe o Conservative
o ! .

Qurors{ i 7 7 ¢ LAF-Co

g : Ve ® ® v Popularity
2 1.050q ! > ee e o FCFS

o i [O0)] » Filler

5 (A o SJF-Co

5 1.025{ | . JF-C

O * SJF-Filler
Q :

) 1.000 VY % Pop-Filler
= e LUF-Co

Q v SIF

v 0.975-

9 v UF

©

= 0.950+

20 40 60 80 100 120 140
Mean Slowdown

Figure 6.11: Pareto plot with mean slowdown and makespan speedup as objectives.

Next, we examine the slowdown counts percentage and makespan speedup objectives (Figure
G12). Here we can see that the two composite Filler approaches have solutions on the pareto set.
The original Filler does not perform that well, due to the high slowdown counts percentage values.
Popularity co-scheduler also performs well, considering it has two optimal solutions. This can be
considered a success as the scheduler was designed to avoid a slowdown in execution times. If
we were to ignore all the schedulers that include compact deployment, we see that SJF-Co and
SJF-Filler outperform the other co-schedulers.

Finally, we inspect mean slowdown and slowdown counts percentage objectives (Figure 6.13).
The frontier consists of only one point, which is one instance of the SJF scheduler. SJF clearly
dominates all implementations Again, the rest compact schedulers have a similar performance
and from the co-scheduling ones SJF-Co, SJF-Filler and Popularity seem to perform better.
Interestingly, in this scatterplot the different instances of the schedulers are more clustered.

6.3. Pareto Plots

37

Pareto Plot: Slowdown Counts Percentage vs. Makespan Speedup

1.125

1.100 1

1.075

1.0501

1.025 1

1.000 -

0.975 1

Makespan Speedup (over Conservative)

0.950 1

-
-
td LN J [2 4

vy

5 10 15 20 25
Slowdown Counts Percentage

30

[]

Schedulers

Pareto Frontier
EASY-Co
EASY
Conservative
LAF-Co
Popularity
FCFS

Filler

SJF-Co
S|F-Filler
Pop-Filler
LJF-Co

SIF

LJF

Figure 6.12: Pareto plot with slowdown counts percentage and makespan speedup as objectives.

Pareto Plot: Mean Slowdown vs. Slowdown Counts Percentage

>
>
% 30 * [3 »
0] > P
E 254 & > » .;‘ . .\
E * * Y . L)
& 204 ** b
" L 2
= *
3 15 v
O o
S v
[e] 10 1 v v
o V‘,
= v
o
[¥p) 51
04 ®
20 40 60 80 100 120 140

Mean Slowdown

®

Schedulers
.

Pareto Frontier
EASY-Co
EASY
Conservative
LAF-Co
Popularity
FCFS

Filler

SJF-Co
SJF-Filler
Pop-Filler
LJF-Co

SJF

LJF

Figure 6.13: Pareto plot with mean slowdown and slowdown counts percentage as objectives.

38 Chapter 6. Evaluation

6.4 Metrics correlation

In this section we study the correlation between the different metrics. In order to achieve this, we
created three heatmaps (Figures 6.14 and 6.15) using Pearson, Kendall, and Spearman correlation
coefficients [34, 35].

Pearson Correlation Heatmap of metrics

Makespan Speedup - 1.0 0.54
Mean Slowdown

Utilization -

-10

-0.8

Mean Job Speedup

Weighted Mean Job Speedup

Mean Slowdown per Processor

Slowdown Counts %

-0.2
o $
_g &)Q R o S ‘;\"
aa %‘ Y % a° & &
R {9\0 L)Q‘b R \§§\ & e
= & g o > &
R & o & < 3
& 8 & & & &
@
¥ o b@ $60 &®
) \&'\@ or}“
& 3
<+ &
Kendall Correlation Heatmap of metrics
-10
Makespan Speedup - 1.00
-0.8
Mean Slowdown & 1.00
Mean Job Speedup 0.6
Weighted Mean Job Speedup 80 X 0.4
Utilization -0.00 0.11 0.06
0.2
Mean Slowdown per Processor I) 12 - - b
0.0
SlOWGcwn counts % “n-- 1.
1
b?q 1>.¢° « < dp
(,Q” \o“" L,Q"" :,Q" & go(" &
o S © Ny < o
P 5 A &
R & o & g
@ o > ke & &
e o & Y &
& N $b° .‘.}0
@
S F
& ?
A &

Figure 6.14: Correlation heatmaps of Pearson and Kendal coefficients.

We observe that makespan speedup shows a strong positive correlation with utilization (0.79
Pearson, 0.64 Kendall, 0.79 Spearman), indicating that as makespan speedup increases, utilization
tends to increase as well. It seems obvious that mean job speedup and weighted mean job speedup
and mean slowdown and mean slowdown per processor are highly correlated with each other
(0.93 Pearson, 0.80 Kendall, 0.90 Spearman and 0.98 Pearson, 0.87 Kendall, 0.97 Spearman

6.4. Metrics correlation 39

Spearman Correlation Heatmap of metrics

-10
. kespan Speedup | - ﬂ -
-0.8
Mean Slowdown -0.06 -0.19 0.

Mean Job Speedup 0.6

Weighted Mean Job Speedup 0.4

0.2

Hiean Slowdeum per Processer o - > oo

& o o o
R & S)Q S o0 & <& 4
& & Q"P & o &
R &8 o R RS € i
& o & &8
R & o & N S
NF + & & & &
\h"" - bé\ $60 .,’}O
Nl ®
& o
W "g?

Figure 6.15: Correlation heatmap of Spearman coefficient.

respectively), as they measure similar aspects of performance.

On the other hand, makespan speedup has a very weak or negligible correlation with mean
slowdown and mean slowdown per processor (0.02 and -0.06 Pearson, -0.05 and -0.12 Kendall,
-0.06 and -0.15 Spearman), suggesting these metrics are largely independent of each other. This
seems to verify our decision of using these two metrics as the main two optimization objectives.

Utilization shows weak correlations with mean job speedup and weighted mean job speedup
(0.07 and 0.01 Pearson, 0.11 and 0.06 Kendall, 0.14 and 0.08 Spearman), indicating that utilization
is not strongly influenced by these speedup metrics.

There are some negative correlations, such as between weighted mean job speedup and mean
slowdown per processor (-0.22 Pearson, -0.18 Kendall, -0.23 Spearman), suggesting that as job
speedup increases, slowdown per processor tends to decrease.

We also observe a correlation between mean job speedup and slowdown counts percentage
(0.90 Pearson, 0.65 Kendall, 0.82 Spearman). This may seem confusing at first, but we estimate
that it is caused by the slowdown some jobs suffer from when co-executed.

The Pearson, Kendall, and Spearman correlation coefficients generally show consistent pat-
terns, though the strength of the correlations varies. This indicates that the relationships between
the metrics are likely real and not due to outliers. Pearson coeflicients tend to be higher, which is
expected as Pearson measures linear relationships, while Kendall and Spearman measure rank
correlations and are more robust to non-linear relationships.

40

Chapter 6. Evaluation

Chapter 7

Summary and Conclusions

7.1 Summary

This Thesis explored the development and evaluation of co-scheduling algorithms for High-
Performance Computing (HPC) systems, aiming to address the growing demand for compu-
tational power while optimizing resource utilization and reducing energy consumption. The
primary focus was on improving system performance and user satisfaction through co-scheduling,
a technique that allows multiple jobs to share computational nodes, thereby reducing resource
contention and improving overall efficiency.

The research began by identifying the limitations of traditional scheduling algorithms, such
as First Come First Serve (FCFS) and EASY, which often lead to underutilization of resources and
increased energy costs. Co-scheduling was proposed as a solution to these challenges, with the
goal of balancing system performance (measured by makespan speedup) and user satisfaction
(measured by mean job slowdown).

To evaluate the proposed co-scheduling algorithms, the Efficient Lightweight Scheduling
Estimator (ELiSE) simulator was used. ELiSE allowed for controlled testing of various scheduling
policies, including traditional and co-scheduling algorithms, using workloads generated from
the NAS Parallel Benchmarks (NPB).

Several co-scheduling algorithms were introduced and evaluated, including EASY Co-schedule,
Largest Area First Co-schedule (LAF-Co), Popularity, Shortest Job First Co-schedule (SJF-Co),
Longest Job First Co-schedule (LJF-Co), Filler, and Copy Queue. Among these, the SJF-Filler
algorithm, one of the two Copy Queue algorithms, stood out for its ability to reduce fragmentation
and improve system utilization by considering the current state of the system during scheduling
decisions.

Experimental results demonstrated that co-scheduling algorithms, particularly SJF-Filler
and Filler, achieved significant improvements in makespan speedup and mean job speedup,
while maintaining low mean slowdown values. These algorithms effectively balanced system
performance and user satisfaction, making them promising candidates for real-world HPC
systems.

41

42 Chapter 7. Summary and Conclusions

7.2 Conclusions

The findings of this Thesis highlight the potential of co-scheduling to enhance the performance
and efliciency of HPC systems. By allowing multiple jobs to share computational nodes, co-
scheduling reduces resource contention and improves utilization, leading to faster completion
times for workloads and better overall system performance. The Filler algorithm, in particular,
demonstrated superior performance by actively reducing fragmentation and optimizing resource
allocation.

However, the research also revealed that co-scheduling can lead to increased mean slowdown
for individual jobs, as some jobs may experience performance degradation when co-executed
with others. This trade-off between system performance and user satisfaction must be carefully
managed, especially in environments where fairness and user experience are critical.

The use of the ELIiSE simulator provided valuable insights into the behavior of different
scheduling algorithms under various workloads. The simulator’s ability to generate detailed
metrics and visualizations allowed for a thorough evaluation of each algorithm’ strengths and
weaknesses, guiding the development of more effective scheduling policies.

7.3 Future work

Based on the conclusion reached above and the relative discussion in the application chapters in
this Thesis, the following future works are proposed:

« Experiments in real systems:
In this Thesis all experiments were run on ELiSE, were execution time was estimated as
described in Chapter 4. We recognize that in real time execution, results may vary. Thus,
we consider that experiments in real systems (perhaps without the extra knowledge of
remaining time) should be conducted in order to validate our observations.

« Exploration of different colocation tactics:
In all co-scheduling algorithms, the resource allocation was made in a FCFS way, meaning
that after a job was deployed it occupied the first available node (at first if enough space
the jobs were deployed as spread) without futher computations. A different yet effective
allocation strategy would be of a great interest.

 Execution aware scheduler implementation:
The results of this study indicate that the co-scheduling policies which consider the system
state before the scheduling decision outperform those who do not. We believe that more
execution aware approaches could be studied and perhaps bring better results.

o Fairness and Pricing Models:
Co-scheduling can lead to performance degradation for some jobs, which may raise fairness
concerns, especially in environments where users are charged based on resource usage.
Future research could explore pricing models that account for the impact of co-scheduling
on individual job performance, ensuring fairness and transparency for users.

7.3. Future work 43

o Integration with Machine Learning:
Machine learning techniques could be employed to predict the performance of co-executed
jobs and optimize scheduling decisions. By leveraging historical data and real-time system
metrics, machine learning models could further enhance the efficiency and effectiveness
of co-scheduling algorithms.

44

Chapter 7. Summary and Conclusions

List of Figures

3.1

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
53

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15

Gl
G2
G3
G4
G5
Go6
G7
G8
GY

Methods for scheduling two 16 process distributed applications A and B on a

supercomputer with two 8-core processor sockets [1]. 10
High-level design logic of the framework. 14
Example of job speedups and makespan speedup diagramm. 15
Example of jobs throughput diagramm. 15
Example of unused cores diagramm. L. 16
Example of a Gantt diagramm. L. 16
Heatmap of runtime speedups in co-execution for processes with specific core

values. . . . oL 18
Example of backfill policy-initial waiting queue. 22
Example of backfill policy-allocationofjobD. 22
Example of backfill policy-allocation of job F (backfill). 23
Boxplot of Makespan Speedups. L L L oL 29
Boxplot of Mean Slowdown values. 30
Boxplot of Mean Job Speedups. L L Lo oL 30
Time distribution of mean job speedup in a Popularity scheduling execution. . 31
Boxplot of Weighted Mean Job Speedups. 32
Boxplot of Mean Slowdown per Processors values. 33
Boxplot of Slowdown Counts Percentage values. 34
Boxplot of Utilization values. 34
Gantt diagram of SJF in workload of 400 jobson ARIS. 35
Gantt diagram of SJF-Co in workload of 400 jobson ARIS. 35
Pareto plot with mean slowdown and makespan speedup as objectives. 36

Pareto plot with slowdown counts percentage and makespan speedup as objectives. 37
Pareto plot with mean slowdown and slowdown counts percentage as objectives. 37

Correlation heatmaps of Pearson and Kendal coefficients. 38
Correlation heatmap of Spearman coefficient. 39
OmnTikonoinon oTPATNYIKAOV Katavoung oe kopPovg [1]. 53
Katdotaon cvotnpatog mpw tnyv popordynonmesD. oL oL 57
Katdotaon cvotnpatog peta tnveicodo gD, o000 57
Eicodog epyaoiag F extog oetpag (backfill) oL 58
Boxplot of Makespan Speedups. L L. 62
Boxplot twv Mean Slowdown. Lo 63
Boxplot Twv Mean Job Speedup. o oo 64
Boxplot twv Weighted Mean Job Speedup. 65
Boxplot tov Mean Slowdown ava moprjva.o Lo 66

45

46 List of Figures
G10 Boxplot Tov mocootov Twv Slowdown Counts. 66
G11 Boxplot tov Utilization. e 67
G12 Awypappa Pareto ye To mean slowdown kat makespan speedup wg otoyovg. . 67

G13 Heatmap CUOYETIONG UETPIKWV. .+« o v v v o ottt e et e e e e e e 68

List of Tables

4.1
4.2

6.1
6.2

Gl
G2
G3

Part of a heatmap file from execution on the ARIS system. 17
Problem size of eachclass. L . 20
Mean values of metrics for 10 experiments (1000 jobs on ARIS) - part 1. 27
Mean values of metrics for 10 experiments (1000 jobs on ARIS) - part2. 28
MéyeBog mpoPAnuatog kdBe kKAGONG. L. L 56
Méoeg Tiuég petpikwv 10 mepapatwy (1000 epyaoieq oto ARIS) - pépogl.. . . 60
Méoeg Tiuég petpikwv 10 mepapdatwy (1000 epyacieq oto ARIS) - pépog2.. . . 61

47

48

List of Tables

Extetapévn EAAnVIKNA MepiAnyn

1 Elcaywyn

H Stapxwg av&avopevn {(Ttnon vToAoyLoTIKHG LOXVOG IOV TTAPATHPEITAL OTIG UEPEG HaG, KaBloTd
NV Xprion vepvmoloyloT@V (supercomputers) avaykaia. Ta vepvToOAOyLOTIKA CVOTHHATA
umopel va mapéxovv HeydAn VTTOAOYLOTIKT LOXV, OHWG EXOVV OTUAVTIKA LEYANEG EVEPYELAKES
amaLTHoELG 0dNyWwVvTag og peyala k6ot Aettovpyiag. Avagépetat emiong otnv PipAoypagia
[19-21], ot mOpot Twv cvotTnuatwy VYNAwv endocewv (HPC) dev xpnotpomotodvtat mAnpws.
Emopevwg, kpivovpe okompn Ty npoonddeta feAtiotomoinong g Aettovpyiag Twv cuoTHHATWY
AVTWYV.

H emheypévn katevBuvon PeAtiotimoinong eivat) xpron g TeXVIKAG Slapolpacpov mo-
pwv kat 1 aglomoinon g otovg alyopldpovg xpovodpopoloynone. Xe avtibeon pe T obvnon
TIPAKTLKI], OTIOV Yl TNV ekéAeaT TNG N k&Oe epyaoia katalapPavel Tovg anapaitnTovg kKOUPovg
OVHPWVA e TIG ATIAULTNOELG TNG Kat ot KOUPoL "avikovy” 6g auTr}, 6TOV SLAHOLPACHO TOPWV TEPLO-
00TEPEG ATO i Epyasieg UTOpoHV va XpOLHOTOIo0VY TOvg TOpovg Wiwv kouPwv. Exet derxOel
OTLEQAPHOYEG e SLAPOPETIKT) CVUTIEPLPOPA EKTEAEDTG (EPAPULOYEG TIOV £XOVV VYNAEG ATIAUTHOELG
O€ [LVIUN Kol EQAPUOYEG He VYNAEG VTTOAOYLOTIKEG AMAULTHOELS), PEATIWVOLV TNV eMIG00T| TOVG
av ekteheotovv padi (Snhadr av vrdpel emkalvyn otovg kKOpPovg Tov katalapBavouvv) kat
Hropovv va Betiwoovy tnv ouvolikn eniSoon tov cvathpatog [22]. BéPata a&iCet va onpetwOet
otL 1 emidoon Tov cvoTHHATOG propel va Pedtiwdei eig fdpog TG emidoong Twv EexwploTwv
EPYAOLADV.

2 YnoBaBpo xpovodpopoAdynong o HPC

[Tapéxovpe to vtoPabpo oTa CVOTHHATA LYNAWY EMEOTEWY, TNV XPOVOSPOUOAOYNOT KAl TIG
HeTPLKEG pe Péom Tig omtoieg Ba aglohoyroovpe Tnv emidoon Twv akyopiBuwyv xpovodpopoldynong
Kal oLVOPOUOAOYNON.

2.1 Zuotipata vPnAwv emdocewv (HPC systems)

Ta cvotpata VYNAWOV emdocewV N VYNAwV emddoewy ovoTrpata TapdAAnAng enegepyaciag
a&LlomoLoV TIG SLVATOTTNTEG TTOL TTPOOPEPEL 1} TTapAAANAN emeepyaoia, £TOL WOTE va eMAVGOVV
npoPARHaTA, T OTToiA ATTAUTOVV peYdAo OyKo vIoAoylopwy kat Tfavov oe peydha dedopéva.
Ta ovotrpata TapdAAning ene§epyaciag umopodv va katnyoptomonBovv pe pdon tov Tpomo
TIOV XPTOLUOTIOLOVV TO CVUCTHHA [LVIUNG O CLOTHHATA KOLVOXPNOTNG HVIUNG KAl CLOTHHATA
KATOVEUNHEVNG HLVIUNG: ZTA OVOTAPATA KOLVIG UVAHNG, kaBe Stepyaoia pumopei va éxel mpdoPaon

49

50 Extetapévn EAANVIKA Mepidnn

OTNV KVPLAL UVAHN, pe amoTéeopa nj tpooBaon otn Hviun va eivat ypriyoprn. Qotd00, vItapxet o
kivéuvog ovvOnKkng avtaywviopov (race conditions) kat anartodvTal TeXVikéG ovyxpoviopov. To
npotvmo OpenMP [6] xpropomoteital kvpiwg, £Tot woTe n TapalAnlomnoinon Tov kwdika va
unv eivat taitepa mepimhokr.

210 OLOTAHATA KATAVEUNUEVNG UVIIUNG, Ot Stepyacieg ev pumopovv va éxovv mpooPaon
oe dedopéva mov avrkovv oe dANeg Stepyaoieg Kat, wg ek TOVTOV, 1| EMKOVWVia LETAED TwV
diepyaotwv emrvyxavetal péow avtaAlayng pnvupdtov (message passing). H avtaAlayn
UNVUUATWV TTPOCOETEL EMMAEOV POPTO OTNV EKTENEOT], AANA ETUTPETEL TNV EMEKTACIUOTNTA
(scalability), kaBwg dev vTdpyel avTayWVIOHOG yia T pviun petadd twv Siepyactdv. Xe tétola
ovoTtrpata xpnotpomoteital To mpodtTuno MPI (Message Passing Interface) [7].

2.2 XpovodpopoAoynon

Me tov 6po xpovodpopoldynon, avagepopaote otnv Stadikacia emAOYNHG epyAcLOV TIPOG
ektéleon. H emloyn twv epyactwv yivetat amo pia Sopr| mov ovopdletar ovpd avapovig
(waiting queue). 2vvrifwg emAéyeTal nj KeQaAr] TG OVPAG AVAHOVAG Kat 1) idla 1 ovpd pmopel va
ta&vopnOei pe Baon pia mpotepardtnra. H Stayxeipnon tng ovpdg pmopei va Stagépet cOppwva
e TOV eMAEYOHEVO aAyOpLOO XpovodpoUoAdYyNnong. ZToxoL TNG Xpovodporoloynong eivat n
eAaXLOTOTOINOT TOL XPOVOL AVAHOVNG TWV EPYACLOV KAL T] LEYLOTOTIOINOT TWV EPYACLWV TTOV
oloxAnpwvovtal, dtac@alitovtag cuyxpovwg tnv Stkatoovvn petald twv epyactwy. Ao
emthexOei n epyaocia mpog extéAeon, akoAovbei n Sradikacia avabeong mopwv.

2ta HPC ovotipata, ovpgwva pe tnv kAaootkr xpovodpopoloynon n avabeon nopwv yive-
Tl COPPWVA LE TOVG ATIATOVUEVOVG VTTOAOYLOTIKOVG VPN VEG (eQOo0V dev éxel TpoadioploTel
kamolog edikog Tumog omwg GPU). Zvykekpipéva, avatiBetat o eAdxtotog aptBpog koppwv, o
0moiog KaAvTTEL TOV aptBuo mupnvwy mov éxet ntndei. Ot o Stadedopévorl akyopiBuot xpovo-
dpoporoynong eivar o FCES, o EASY kat o Conservative, ot omoiot 8a meptypagovv avavtika
OTa EMOHEVA KEPANALAL.

2.3 Metpikég a§loAoynong

Ot kvptot ToYOL Yl TNV PeATioTonoinomn Twv akyopibuwy xpovodpopordynong (amodotikotnta
OVOTHHATOG KAl LKAVOTIOINOT XPHOTN) Eival avTIKPOLOpEVOL, ETOUEVWG 1} aftoAdynon Tovg eivat
éva mepimhoko {ftnua. Xpnopomotjoape Aoy, oxeTikég petpikég [12], Snhadn n a§loddynon
Kat n emhoyr Tov “Béktiotov” Spopoloyntr cbpewva pe TAndwpa petpikav. [apakdtw, opifo-
vTaL ot PeTpiikég mov Ba xpnotpomomnBovv yia Ty a&loAdynon, ot omoieg xwpiovtal o€ peTpLkég
0TOXOVG Kat EMEENYNHUATIKEG.

2.3.1 Makespan Speedup

[TapovotdfovTat oL HETPIKEG OTOXOL TNG TTAPOVTAG UEAETNG. ATIO TTAEVPAG CVOTHUATOG, ETAE-
youpe va e€etdoovpe To makespan speedup. Me Tov 6po makespan ava@epopaote 6Tov Xpovo
OAOKANPWONG EVOG GLUVOLOVL gpyactwy. MeTpape TNV EMTAXVVOT] TOL XPOVOL OAOKANPWONG TOV
EKAOTOTE XPOVOOSPOHONOYNTH WG TTPOG avTov Tov Conservative. XTOX0G Hag eivatl 1) EAATTWON

2. Ynoabpo xpovodpopordynong oe HPC 51

ToL XpOovov olokAnpwong. To makespan speedup mS voloyiletat wg:

in
max; (tlf) .
Conservative

max;j (t]f in)

mS = (7.1)

2.3.2 Mean Slowdown

MeheTwvTag TWwpa TNV TAEVPE TWV XPNOTWY, ELOAYOVUE TNV UETPIKN TNG Héong emPpaduvong N
mean slowdown. Ia k&Be epyaocia, opilovpe To slowdown wg Tov Adyo Tov xpdvov mapapovig
NG epyaoiog avTng 0To CVLOTNA, TTPOG TOV XPOVo ekTéAeon TG [14]. To slowdown mapéxet éva
HETPO Stkatoovvng peTald Twv epappoywy, agov n kabvotépnon mov SexOei n exdotote epyacia
otaBuiletal and tov xpovo ektéleonig tnG. To slowdown sld; tn¢ epyaciag J; opiletat wg:

sldy = 1—1 (7.2)

Enopévwg To péoo:

sld = - > sld; (7.3)

2.3.3 Mean Slowdown Per Processor

ZvumAnpwpatikd pe To mean slowdown, €xet vonua va peletoovpe to mean slowdown ava
ene§epyaotr). Ze evtr) TNV ekS0XN TNG HETPIKNG YiVETAL KAVOVIKOTIOINOT COUPWVA [E TNV amaitn-
on NG epyaciag oe vIIOAOYLOTIKOUG VPN veG [17]. To slowdown ava muprva sld pp; TnG epyaciag

J; opiletat wg:
run wait
Hun 4

1
sdpp =t — -k 749
i n;
Emopévwg to péoo:
J
Sddpp = % -y sldpp, (7.5)
i=1

2.3.4 Utilization

[Tpoxwpdpe OTIG EMEENYNUATIKEG HETPIKEG, EekivawvTag amo Tov Babud xpnopomnoinong Tov
ovotpatog. O Babudg xpnotlomoinong ToCoTIKOTOLEL TNV AMOSOTIKOTNTA TOV CLOTHHATOG,
KaBwg ekPpaleL TO TOOO TWV TOPWY TTOL XPNOLHOTTOLOVVTAL TTPOG TOVG StaBéatpovs. Ynohoyilovpe
Tov Pabuo xpnotpomnoinong oto xpovikod dtotnua [, 1] wg e&§ng:

jttf p(t)dt

Uty,tp) = NGy —t)

(7.6)

omov p(t) To mANBog epyactdv vId ekTéleon T XpoVvikr oTtypr t kat N to mAfog muprivwy tov
OVOTNUATOG.

52 Extetapévn EAANVIKA Mepidnn

2.3.5 Mean Job Speedup

AN pia petpikr mov mpoomabel va TOOOTIKOTOOEL TNV EVXAPIOTNON TOV XPHOT €lval 1) Héom
emTéLVON 0TOV XpOvo ekTéAeong (mean job speedup). E&autiag tov Sapoipacpov mopwv,
oL xpovol ekTéAong dev eivart ot idtot o kabe xpovodpoporoyntn. H emtdyvvon petptétan pe
Bdomn Tov Xpovo ekTéAeong TG kAaoowkng avabeong nopwv. To speedup S; piag epyaociog J;
vroloyiletat wg

_ (tzr un)compact

S = ——— (7.7)

1 run
L

Enopévwg to péoo speedup vroloyiletat:

J
S==. Z S; (7.8)
i=1

1

~ =

2.3.6 Weighted Mean Job Speedup

H péon otaBuopévn emrayvvon (weighted mean job speedup), e§etdletal wg evaAlakTikn TG
LETPLKNG Tov mean job speedup, kaBwg anodidet peyalvtepn PapvtnTa OTIG Epyacies pe peyalo
péyedog, ot omoieg mBavov éxovv peyalvtepo avtiktuno oto cvotnua. Kabe S; moAAamhaotdle-
TatL pe Evav TapdyovTa wj, 0 0TIol0G €ival To YIVOpeVo Twv £ “" kat N;.

Opiovpe To Weighted Mean Job Speedup wg:

— 1 . . .
WMJS = S zl: w - S, (7.9)

2.3.7 Slowdown Counts

Ztnv mpoonafeld pag va cLYKPIVOLE TIG OLAPOPETIKEG EUTELPIEG XPTIOTN, HETPTOALE TO TOCOGTO
TWV EPYACLWV OTLG OTOiEG OL XpOvol ekTéAeong emdetvwOnkav. H petpikn avtr 8ev mpémet va
ovyyéetal pe To mean slowdown.

3 ZuvdépopoAdynon (Co-scheduling)

2 auTny TNV eVOTNTA, TEPLYPAPOVLE TNV TEXVIKT] TOV Stapotpacpov tdpwv (node sharing), o
omoiog a§lomoteitat oty ovvdpoporoynon (co-scheduling). Onwg avagépOnke mponyoue-
vwg, ta teplocdtepa ovotnpata HPC eivat vtoekpetaAllevopeva AOyw KATAKEPUATIOHOV Kat
avTaywviopov yla Tovg mopovs. H pébodog mov emAéxOnke ylo TV avTHETOMION AUTOD TOV
TpoPAHaTOG eival) Kovr Xprion KOupwv.

3.1 AlapolpacHOG KOMBwY

Ztnv kot xpnomn koppwv, ot tdpot kabe kOPPov Sev XpNOIHOTOLOVVTAL ATTOKAELOTIKA ATt pi-
a eQappoyt, aAAd amd éva cVUVoAo epappoywv. O dlaxelploTng ToOpwv UIopei va ekXwproeL
Stapopetikd aplBuod enefepyaotwv o€ SLaQOPETIKEG EQAPUOYES, LLE ATOTENEOHA AVTEG VAL KATA-
AapPdavovv eploodtepovg KOUPoLg amd Tov avapevopuevo (o omoiog vtoloyiletal wg (nrodpevot

3. Zuvdpopoldynon (Co-scheduling) 53

TIVPTIVEG TIPOG TOVG TTVPTIVEG ava KOHBO). Ot Pacikég OTPATNYIKEG KATAVOUNG TWV EQPAPHOYDV
elvat Tpetg (0nwg gaivetat oto Xxfiua G1):

o Jvpmayng katavopr (Compact)
o Adomaptn katavoun (Spread)

o Alapolpacpévn katavopr (Striped)

1T o[o
B |B ||B|B

an|om e _|o
JImE ol o
ao|oo N onionENo 1o

compact spread striped

Ixnpa G1: ONTIKOTOINON OTPATNYIKWV KATavoung og kKoppoug [1].

O SLaelptoThg TOPpWV UITOPEL VoL avamTOEEL [ia EQAPHOYT HE CUUTIOYT] KATAVOUT, VO TV Ka-
taveunXoel o€ MEPLOOOTEPOVG KOUPOVG 1] va TNV ekTeNéoel o kOpHBovGg Omov 7N ekTeAeital
Kamnota AAAn epappoyn. @a cu{nTrHooVE TTEPAUTEPW TIWG AVTT) 1] CLVEKTENEDT UIOpEL va eivat
EVEPYETIKT TOOO Yla TO CVOTNHA OCO0 KAl Yl TIG LELOVWHEVEG EQAPUOYEG.

3.2 MAeovekTpata

Otav oL eQappoyég KATAVEHOVTAL OE TIEPLOTOTEPOVG KOUPOVG, EKpETANAEDOVTAL TTEPLOOOTEPOVG
TOpovG, OTwG emmAéov emimeda kpveng uviung (last-level cache) i emrayvvtég, Omwg GPUs.
Emmhéov, n petagopd dedopévwv péoa oe kabe kopPo Pektiotomnoteital, kabwg ektedovvTal
Atyotepeg Siepyaoieg ava kOUPo kat ovvenwg petagépovtat Atyotepa dedopéva (Aappavovtag
VTTOYLY EQAPOYEG TTOL XpnoLporolovy MPI).

H kown xpnon kopPwv éxet BeTikod avTikTumo ot eQappoyég mov epgavifovv avtifeteg
amattroelg topwv. o mapaderypa, pia epappoyn pe vymAn katavalwon pvipng (dnAadn pa
eQapoyn tng omoiag n anodoon e§aptdtat and To eVPOG {WVNG TNG LVIAUNG KATA TNV KAWAKWOT))
w@eleital OTav ouvekTeAEiTAL [E (Lot VTTOAOYLIOTIKA EVTATIKY EPAPUOYT, KaBwG HetwvovTat ot
AVAYKEG EMKOLVWVIAG. AVTO Umopei va 001 ynoeL og peiwomn Tov XpOVov eKTEAEOT|G TNG EPAPUOYNS.

EmmA£éov, and Tn oKomid TOV CLOTAATOG, OTAV Ol EPAPHOYEG KATAVELOVTAL APXLKA KAt ETELTA
StapolpdfovTal, HELWVETAL O KATAKEPUATIONOG TWV TOPWY, Kat KOPPoL Tov Ttponyovpévwg Sev
a&lomoLOVVTAY TAPWG UTTOPOVV TTAEOV VA XPNOLHOTIOLOVVTAL ATOSOTIKOTEPAL.

54 Extetapévn EAANVIKA Mepidnn

3.3 MslovekTijpata

Amo v AN TAEVPd, SLaQOPETIKEG EQAPHOYEG EXOVV OLAPOPETIKA HOVTEAQ ETUKOLVWVIAG, KATL
TIOL pnopel va odnyrnoet og emPBpaduvomn Tov xpovov ekTéAeons. Avtd pmopei va ovpPei Adyw
OVYXPOVIOpHOV TwV dtepyactwv HeTall SlapopeTikwv KOUPwV 1] amhd enetdr| oL eQappoyEg mov
ovvekTeAovVTAL gival Kat ot SVo PvnUoBopes.

Exet mapatnpnBei 61t dtav dvo epyaocieg mov ektedovv TV iSta epappoyn aAAd avijkovy o€
Eexwplotég Siepyaoieg (Snhadn n pia Sev pmopei va éxet tpooBaon ota deSopéva TG AAANG),
dev Ba mpémel va cuvekTeNoDVTAL ZvyKeKpuéva, Qv eivat uvnpoPopeg, Oa vdpéet empPpaduvon
AOYW AVTAYWVIOUOD Yia TOVG TOPOVG TNG UVIUNG, EVA AV elval VTOAOYLOTIKA eVTATIKEG, Oa fTav
TILO EMWPEAEG VO CUVEKTEAODVTAL LLE L EQAPUOYT TIOV ATIAULTEL TEPLOTOTEPT VTN [22, 23].

3.4 MoAunmAOKOTNTA TNG CUVEKTEAECNG

Onwg avagépOnke mapamdvw, 1) Ko xpron KopPwv umopel va éxel eite Oetikn eite apvnTikn
enidpaon aTny ekTéAeon TV ePappoywv. OHOLOYEVEG 1) ETEPOYEVES POPTIO EMNPedlet ONHaVTIKA
NV ano6doon TNG CLUVEKTENEDT|G.

ISwaitepa, ot yertovikég epyaoieg maifouv Kpiolpo poOAo 0TOV XpOVO EKTENEDTG [LAG EPYATIAG,
kaBw¢ pumopovv va anotedécovv Ty kdpla artia vroBaduiong g anddoong [25]. Aappavovtag
auTo LVIIOYT, 1 oOLVEKTEAEOT YiveTal €va ToADTAoKO TTPOPANHa, kKabwg yla TNV AVTIHETWTLON
AVTWV TWV TPOKAOEWV ATAUTELTAL TEPLOTOTEPT] YVWOT] OXETIKA UE TIG EQAPHOYEG IOV EKTEAOVVTAL
0TO OVOTHHA.

Oa pmopovoe va vrootnpixOei 6Tt n mbavr avinon otov xpdvo ektéleong umopei va yivel
avekTr], €pooov ovvodeetal and pia embountr peiwon Tov Xpovov avapovng [26]. Xtnv
napovoa epyaoia, Ba pedetioovpe v enidpaon tng cuvekTéAeong kat Oa mpoomabnoovue va
avantoéovpe akyopiBuovg ovvektédeong mov dev amattovv pdobeteg TANPOPOpies OXETIKA e
TIG EPAPHOYES KAl UTTOPOVV Va AetTovpyovv o€ kabe ovotnpa.

4 NMpooopowwtic HPC
Ze avTd To onpeio mapovotalovpe To epyaleio OV XpNOLHOTONONKE GTO TEPAHATIKO UEPOG,

yta Vv aftohdynon Twv SpopoloynTav.

4.1 Efficient Lightweight Scheduling Estimator (ELiSE)

[ta TNV mpotvmonoinon twv akyopibuwy, éywve xpron tov Efficient Lightweight Scheduling
Estimator (ELiSE), evdg epyaleiov ypappévov oe python.
Q¢ eiocodo anaitovvtat:

1. wa amin neprypaen tov HPC cluster
2. 1o QopTio pe TIG epyaoieg

3. éva heatmap Twv ava {evyn emtaxdvoewy petagd Twv epyactwy ToL QopTiov

5. AAy6piBuot (Zuv)dpouoroynong 55

H extipnon twv xpovwv ektéeong otny mpooopoiwor yivetal pe Bdon 1o Xetpotepo speedup.
ZUYKEKPUEVA, ATIO OAEG TIG YELTOVIKEG OLVEKTENOVEVEG epYaoies (J,) emAéyeTal To WKpOTEPO
speedup.

SV = \%lelil, getSpeedupWith(j) (7.10)

Emopévwg, o véog vIoAeLmOpEVOG XpOvog vTohoyileTatl wg:

() = S () g
1 new Sinew

(7.11)

4.2 NAS Parallel Benchmarks (NPB)

Ot gpyaoieg mov xpnotpomotOnkav mpoépxovrat and to cvvolo Twv NAS Parallel Benchmarks
(NPB). To ovvolo NPB avantixOnke and tov topéa Advanced Supercomputing tng NASA
(NAS) wate va Tpoo@épeTal €vag TUTTOTIONUEVOG TPOTIOG Va HeTpdTal 1) eMidoon ovoTHATY
napdAAnAng enefepyaciag [27]. Ot epyaoieg mov xpnotpomnolodpe eivat ot e&ig:

o 5 VTOAOYLOTIKOL TTVPTIVEG

- IS - Integer Sort (ta&vounon akepaiwv), TuXaieg TPOOPATEL 0TN HviuN

- EP - Embarrassingly Parallel

- CG - Conjugate Gradient (ué60odog ov{uywv KALOEWV), [N KAVOVIKT ETUKOVWVia Kat
TMpooPAaoelg 0T Uviun

- MG - Multi-Grid og axolovBia TAeypHdTwV, CUVTOUNG Kot HEYAANG ATOOTAONG ETL-
Kolvwvia, memory intensive

- FT - Swaxpirog 3D fast Fourier Transform (ypriyopog pataoxnuatiopog Fourier),
emkovwvia peta&d Olwv

o 3 yevdoepapoyEg

- BT - Block Tri-diagonal emAbdtng
- SP - Scalar Penta-diagonal emAvtng
- LU - Lower-Upper Gauss-Seidel emAvtng

Ot epyaoieg eivar ywplopéveg oe dvo kAdoelg D kat E, ot omoieg vrodnAwvovv to péyebog Tov
npoPAnpatog (Ilivakag G1).

5 AAyop10pot (Zuv)dpopoAdynong

Ze auTr) TV evotnTa tapovotaiovtat ot akyoptdpot xpovodpopoAdynong mov vAomoOnkay.
[TepthapPavovtat kAaootkég Tpooeyyioelg alAd Kot TPOOEYYIOELG IOV VAOTIOLOVV GUVOPOUOND-

ynon.

5.1 AAyop18pot KAaGOIKNAG XPpovoSpopoAoynong

Apxikd mapovotdlovpie Tovg akydptBpovg xpovodpooAdynong mov XpnoLHoToLoDVTAL EVPEWS.

56 Extetapévn EAANVIKA Mepidnn

Nivakag G1: MéyeBog mpoBAnuarog kdbe kAdong.

Benchmark Parameter Class D Class E
no. of rows 1500000 9000000
cG no. of nonzeros 21 26
no. of iterations 100 100
eigenvalue shift 500 1500
EP no. of random-number pairs 236 240
BT grid size 2048 x1024 x1024 4096 x2048 x2048
no. of iterations 25 25
IS no. of keys 231 235
key max. value 227 231
MG grid size 1024 x1024 x1024 2048 x2048 x2048
no. of iterations 50 50
grid size 408 x408 x408 1020 x 1020 x 1020
BT no. of iterations 250 250
time step 0.00002 0.000004
grid size 408 x408 x408 1020 x1020 x1020
LU no. of iterations 300 300
time step 1.0 0.5
grid size 408 x408 x408 1020 x1020 x1020
SP no. of iterations 500 500
time step 0.0003 0.0001

5.1.1 First Come First Serve (FCFS)

H napovoa mpooéyyton eivar nj amhovotepr kat dev anaitei vtodoylopots. Onwg avagépetal,
oty First Come First Serve (FCFS) mpooéyytion, ot epyaoieg ekteAodvTal COUPWVA e TV OELPA
A@LENG Tovg, apol N Stdtagn TOVG OTNY OVPA AVAROVNG EIVAL TAVTOOTUN UE TNV OELPA aPifewy.
Ztnv FCFS §popoloynon Sev epgavitovtat gatvopeva Apoktoviag, kabwg kapia epyacia dgv
Tapapeleital, Pmopel OHWGS va EPPAVIOTEL TO QaLvopevo Tov kapaPaviov (convoy effect), dmov
pia epyaoia 1 omoia €xelL HeYANEG ATALTAOELG O€ VTTOAOYLOTIKOUG TTVPTVEG KAt €XEL HeYAAo XpOVO
ekTéNeong kabvotepel TNV ekTéleon TOADV HikpOTEPWV epyactwy. EmmAéov, To ovotnpa eival
ETIPPETIEG OE PaALVOpEVA KaTakepUaTiopoD (fragmentation).

5.1.2 Extensible Argonne Scheduling sYstem (EASY)

Ztn ovvéyela mapovaotdfovpe tov akyopiBpo Extensible Argonne Scheduling sYstem (EASY).
O EASY a)lyopiBuog [28] Paciletal otnv FCFS Aoy, pe tnv mpoadnkn tov backfill yua tnv
AVTLUETWOTILOT) TOV QALVOHEVOL TOL KapaBaviol kat Tnv PeAtiwon tov Pabuod xpnotpomnoinong
TOV CULOTNHATOG.

To backfill eivat) dtadikacia katd Tnv omoia pia epyacio ekteheital eKTOG OeLPAG apkel va
Unv “ouykpoveTaL” e TNV EKTENEOT] TWV EPYACLWV TIOVL PO youVTaL. Yrdpxovv 0o Pactiég

5. AAy6piBuot (Zuv)dpouoroynong 57

vhomowoeig backfilling otnv Biphioypagia [29] (pe Ti¢ Taparlaeyég Tovg), To aggressive kat
conservative. Xto conservative backfilling ot epyaoieg Aappdvovv pa xpovikn kpdtnon (mpooey-
ylotikd) yia to mote Oa Eexiviioovy Ty ektédeon pe Baon tnv FCES Aoyikn. Ztnv aggressive
vAomoinom, HOVO 1 TIPWTH epyacio TPOOTATEVETAL UE KPATNOT KAt EiVAL AVTT) IOV XPTOLLOTIOLEITAL
otov EASY.

[Mapovoialetat éva pkpo mapadetypa tov backfill. ES@ n ovpd avapovig mepiéxet tpetg
epyaoieg D, E kau F (Zxrua G2).

L 4

waiting queue

C

D E

system nodes
oo

A F

N

.I
time

Ixnpa G2: Kataotaon ocvotipatog mpv v Spoporoynon g D.

H epyaocia D gmAéyetal wg n mpwtn 0Ty ovpd Kal yia Tny eKTENEOT| TNG TPETEL 1) epyaoia
A va OAOKANpWOEL TNV EKTEAEOT TNG, EMOUEVWG EKTENEITAL HLOALG OL KATAAANAOL TTOpOL Yivouy
Sabéotpot (Zxnua G3). Enerta yivetar EAeyXog oTnv ovpd avapovig yla o av punopei va emihex el

> waiting queue

C

system nodes
oo

A F

N

4
time

Ixnua G3: Katraotaon ovotnpatog petd tnv eicodo tng D.

kamota epyaoia. EmAéyeton n epyaoia E. H epyacia E dev umopei va exteheotei mptv amo tnv D
Xwpig va enmpedoetl To moTe ekteleitat n) D. Ztn ovvéxela emAéyetal n epyaoia E Av exteleotein
epyaoia F Sev ennpedlet v extéheon g D kat yio avtod emdéyetal ko ekteheital (Exnua G4).
H dadkacia avtAn pumopei va ouvextoTei Kat yia TG VTOAOLTEG EPYATIES TNG OVPAS AV VTIAPXOLY,
1 va tebel éva opto (Pabog backfill).

5.1.3 Conservative

2 avTtdv Tov alyopiBuo vAomoteitat To conservative backfilling, 6mov onwg avagpépbnke mpo-
OTATEVOVTAL OAEG OL Epyaanieg OV ponyoLvTaL amo Ty voyn@la mpog backfill epyacia. Avtn

58 Extetapévn EAANVIKA Mepidnn

> waiting queue

system nodes
C
T

A

N

ol
time

Ixnpa G4: Eicodog epyaociag F ektog oeipdg (backfill)

n mpooéyylon Bewpeitat o Sikain and v EASY.

5.1.4 Shorterst Job First (SJF)

O Shortest Job First (SJF) eivat £vag axoun kovog alyoptdpog, 6mov n ovpd avapovig tatvopei-
Tat pe Baon Tov anautodpevo XpOvo eKTENEOG. ZUYKEKPIUEVA, EKTEAODVTAL TPWTA OL EPYAOLES e
HKpO xpOvo ekTéeonG (oTa TpayHaTikd oVOTApATA Xprotpomoeitat To wall time). Avapévouvpe
HIKPEG TILEG 0To mean slowdown, kaBwg TAE0V oL epyacieg pe pikpodg XpOvovg eKTENETT|G EXOVV
Kl TOVG HIKPOTEPOVG XpOVOUG avapovng. Télog, avtn n vhomoinon pnopel va odnyroel oe
QaLVOUEVA ALHOKTOVIAG.

5.1.5 Longest Job First (LJF)

O Longest Job First (LJF) akyopiBuog evvoei Tnv ektéAeon Twv peyalwv o€ XpOvo eKTEAEOTG
EPYAOLOV. X€ AUTNH TNV VAOTIOINOT AVAUEVOVUE OTHAVTIKA VYNAOTEPEG TIUEG TOL mean slowdown,
kaBwg n eppavng pepoAnyia mpog TIG CLVTOpES epyacieg avEAvel ONUAVTIKA TOVG XPOVOLG
avapovng. Amo tnv aAkn mepipévovpe LYNAEG TIuEG utilization.

5.2 AAyopiBpot GuvdpopoAoynong

Ze auTn TV LTToEVOTNTA TTapoVGtalove Tovg alyopifovg ouvdpopoldynong mov vAomotrOnkav.
Amotehdvvtat anod Ti§ ekdoxEG TwV KAAGOIKWY VAOTIOOEWV He TNV TIPOTONKN TNG TEXVIKAG
Slapolpacpov TOpwy, kat KAToLEG SIKEG oG VAOTIOLNOELG.

5.2.1 EASY Co-schedule (EASY-Co)

H Co-schedule exdoyr Tov EASY aAyopiBuov dtagopomoteital and tnv kKAaooikn ekdoxrn otov
TPOTIO e TOV o700 yiveTatl) avdBeon KOUPwV. ZVYKeKPLUEVQ, OL EPYATieq EKTEAODVTAL TPWTA WG
spread kat HOALG TO oVOTNHA Yepioel, ekTedovvTal wg striped. Avapévovpe Ty idla cvupmepipopda
pe Tov EASY, pe mBavov pa fertioon otov fabud xpnotpomnoinong.

5. AAy6piBuot (Zuv)dpouoroynong 59

5.2.2 Shorterst Job First Co-schedule (SJF-Co)

2e auTn TNV TpoogyyLon, tpoonabovpe va Pektiotonomoovye Ty enidoon, Aappdavovrag vmo-
ynv 1o slowdown. Tivetat ta&vopunon g ovpds avapovig CUHPWVA e TOVG XPOVOUG EKTENEDTG,
EVVOWVTAG TIG OVVTOEG EpYaoies. Avapévoupe avTioToln ovpmeptpopd pe Tov SJF kot mpoobe-
Tovpe aggresive backfilling kau mpogavag Stapotpacpd topwv.

5.2.3 Longest Job First Co-schedule (LJF-Co)

Opoiwg pe tov SJE-Co, otov Longest Job First Co-shedule (LJF-Co) peletovpe tnv enidpaomn tov
dapoipacpov nopwv otov LJE Avauévovpe akdpn (KPOTEPO KATAKEPHATIONO OTO GVOTNUA Kol
Katd ovvémela peyahvtepo makespan speedup. Onwg kat otov LJE avapévovpe vynhég tipég
oto mean slowdown.

5.2.4 Largest Area First Co-schedule (LAF-Co)

Te auTr TNV LAOTIOINOT 1] OVPA& AVAUOVTG TAEIVOUEITAL £TOL WOTE OL EPYACIEG HE TO PHEYANDTEPO
YLVOUEVO XPOVOUL EKTEAEOTG KAl ATOVUEVWY TVPTVWV va TotofetovvTat mpwteg. Exteleitat
emiong kat aggresive backfilling. ITpogavwg oe avtr TNV vAoTMoINON avapévovpe VYNAEG TIHEG
oto mean slowdown, kaBwg vrtapyet EekdBapn LepoAnYia KATA TWV UIKPWY EPYATLDV.

5.2.5 Popularity

AxolovBei pia vAomoinon mov avantdxOnke ya Ty StmAwpatikr. Avtn n mpooéyylon Stagépet
amnd TG mponyovpeves kabwg mpoonabei va aglomowroel TNV emmAéoy TapexOuevn TANPOPo-
pia a6 to heatmap. H ovpd avapovng ta&ivopeitat pe Baon éva pétpo dnpo@iliag to omoio
ovopagovpe "rank”. To rank eivat évag HeTpnTG 0 0TOI0G eKPPAlet TO TOoA TeTVXNUEVA (ebYN
ovvektéleong pnopel va oxnuartioet n kabe epyaocia, pe Pdon TNV TpEXOVOA KATACTAOT TNG
OVPAG AVALOVAG. ZUYKEKPLLEVA, EKTEAODVTL TIPWTA OL EpYaoieg e VYNAG ranks. Enpeidvovpe
OTL wg meTVXNEVA (evyn Bewpodpe avtd, ota onoia To péco speedup eivat peyakvtepo amod
1, emopévwg pmopel pia epyaocia pe vYNAO rank va éxet peyalvtepo xpovo ektéleong, Aoyw
Tov dtapolpacpol mopwv. EmmAéov, avagépovpe 0Tt kaBwg ot Atyotepo dnpo@iheis epyaocieg
HEVOVV TIPOG TO TENOG TNG EKTENEOTG, LETA ATIO £VAL OT||LELO TO ATOTEAEOHA TNG OVVEKTENEOTG Elval
apvntiko. Ilpoonabwvtag va 1o avTipeTwmicove avTd EMAEYOLUE VA UMV KAVOULE SLapolpacpo
TOpWV HOALG oL TIHEG TOL rank mMEcoLVV KATW amd 3.

5.2.6 Filler

AvTOG 0 A\yOPIOOG ATOOKOTIEL GTNV AVTLUETWTILOT TOV KATAKEPHATIONOV, KaBwG o€ kdBe Prpa n
ta&vounon g ovpag mpowbei Tig epyacieg mov Ba aprjoovv To KPOTEPO KEVO 0TO choTnUA (He
Bdon TV Tpéxovoa katdotaon Tov). I'ivetat emiong pia KAVOVIKOTOINoT He TO avayVwpLOTIKO TNG
KdOe epyaciag wote va tnpndei n oelpd agifewv kat katd cuvénela va anopevxBodv pavopeva
Apoxtoviag. Avapévoope vynAo utilization kot makespan speedup.

60 Extetapévn EAANVIKA Mepidnn

5.2.7 SJF-Filler (Two Factors)

AxolovBei pia Sikn pag vomoinomn n omoia BaciCetat otov Filler. e avtr) v vAomoinon yivovtat
S0 ta&ivopnoelg, fe TNV Xpron £VOG avTLypd@ov TNG OVPAG avapoviG. ZuyKekpiuéva, edw avtd
TO KPLTHPLO Eival 0 XPOVOG EKTEAEOTG, OTIOV OL EPYATIEG [E TOVG HIKPOTEPOLG XPOVOLG AapPdvovy
Vv peyavtepn mpotepatdtnTa. Ao ot epyacieg TatvounBovv emotpépetat i O¢on Tovg oTnV
ta&vounon mpog to mABog Twv epyactdv. Avtdg o Aoyog anoTelei Tov SeVTEPO TAPAYOVTAL.
O mpwtog mapayovtag, eivat To Tt kevo Ba agroel n epyacia av tomobetndei oto ocvoTNHA,
opota pe tov Filler. H tehkn tagvopunon mpoxdmtel anod to abpotopa twv §0o mapaydovtwy.
[TpoonaBoope pe avtov Tov cuvdvacuod va av§noovpe to utilization kat makespan speedup, kot
OVYXPOVWG Va pelwoovpe To mean slowdown.

5.2.8 Pop-Filler (Two Factors)

Axoun pia dikr| pag vAomoinon, pia Sta@opeTikn vAoTmoinon Twv 00 TAPAYOVIWY. Xe AVTOV
Tov aAyopiBpo ovvdpopoloynong, To kpttrpto Tagvopnong eivat to rank onwg xpnotpomnoteitat
otov Popularity. Avapévoope avtiotoiyn ovpunepipopd pe avtr tov SJE-Filler.

6 A§loAdynon

[Tapovotdfovpe ta metpapatikd anotedéopata. Exteléoape 10 metpapata twv 1000 epyaoctdv ato
ELiSE, npocopotdvovtag to ovotnpa ARIS (420 koppot twv 20 muprivwv ékactog). EmAéyovpe
1000 epyaoieg ava meipapa, kabBwg ouvundpxovv TOANEG eKSOXEG TWV EPYACILOV KAl TO CVUOTNA
elvat yeparo.

6.1 Méoeg TIHEG

Apxikd TapovotdCovple TIG HECEG TIHEG TV PeTPpkwY oTa 10 avta metpapata (IMivakeg G2, G3).

scheduler mean slowdown mean slowdown pp slowdown (%) utilization
SJF 20.6 0.101 0.00 0.947
SJE-Co 23.6 0.118 17.51 0.875
SJE-Filler 27.7 0.109 22.94 0.964
Filler 48.1 0.189 29.70 0.965
Pop-Filler 63.5 0.265 23.78 0.971
Popularity 64.3 0.308 10.10 0.932
EASY 66.5 0.372 0.00 0.926
EASY-Co 67.5 0.368 23.82 0.904
Conservative 80.2 0.463 0.00 0.922
FCFS 82.9 0.480 0.00 0.899
LJF-Co 109.6 0.599 23.62 0.939
LAF-Co 125.7 0.745 21.59 0.937
LJF 137.2 0.812 0.00 0.960

Nivakag G2: Méoeg Tipég petpikwv 10 mewpapatwyv (1000 epyacieg oto ARIS) - puépog 1.

6. ASloAbynon 61

scheduler mean job speedup weighted mean job speedup makespan speedup
SJF 1.000 1.000 1.028
SJF-Co 1.062 1.049 0.995
SJE-Filler 1.074 1.055 1.104
Filler 1.065 1.040 1.086
Pop-Filler 1.077 1.038 1.093
Popularity 1.047 1.020 1.029
EASY 1.000 1.000 1.006
EASY-Co 1.097 1.060 1.040
Conservative 1.000 1.000 1.000
FCFS 1.000 1.000 0.976
LJF-Co 1.083 1.042 1.063
LAF-Co 1.072 1.049 1.065
LJF 1.000 1.000 1.043

Nivakag G3: Méoeg Tipég petpikwv 10 mepapatwy (1000 epyaoieg oto ARIS) - puépog 2.

Onwg frav avapevopevo, o SJF éxet Tig pkpotepeg Tipég mean slowdown, akolovbnuevo
an6 tov SJF-Co. ITlapatnpovpe 6Tt 1 oLVEPOHOAOYNON EMISEVWVEL TOV XPOVOLG ATIOKPLOTG
Twv gpyaotdv. To mean job speedup av&dvetat mapolo mov mepinov o 18% Twv epyactv £xet
emPpaduvon. Amo tnv dAAn, To utilization kat makespan speedup g ovvekteAovHEVNG EKOOXNG
elvatl yapnAotepo.

O SJF-Filler éxet avtiotoryn péomn tiun oto mean slowdown pe tig vodotneg SJF mpooeyyioel,
EMTUYXAVOVTAG OLYXPOVWG VYNAEG Tiuég utilization kat To péyloto makespan speedup. Ot dAAeg
dvo Filler vAomowoeig ovpmepipépovtar avtiotorya, pe Tov Pop-Filler cuvdvaopo va emrvyydvet
To péyloto utilization.

O Popularity emtvyydvel To pkpoTEPO M000GTO eMPpaduvopevwy epyactwv (eSatpovpévav
TwV KAaooKwV dpopoloyntwv), wg vppidikr vAomoino.

>tov EASY, napatnpobue 6Tt 1 ovvektéheon éxet OeTikn emidpaon oto mean job speedup,
EMTVYXAVOVTAG MiONG TO LYNAOTEPO mean job speedup. Tlapatnpolye emiong pia pkpn Heiwon
oto utilization.

Axkoun ovykpivovtag tovg FCES, Conservative kat EASY, mapatnpovpe 61t to utilization
Behtiwvetal, apeon enidpaon tov backfill.

Télog, otovg LJF-Co, LAF-Co kat LJF mapatnpodvtat ot peyaldtepeg Tipuég mean slowdown.
Avtég ol vVAomojoelg PpiokovTatl oTig VYNAOTEPEG eOOTELG avapopikd (e To utilization kat
makespan speedup.

6.2 Boxplots

[Tapovaoialovpe tnv emidoomn Twv Spopoloyntwy oe OAa Ta TeLpapaTa, SNUIOVPYWVTAG Ta Tiad-
Katw boxplots.

62 Extetapévn EAANVIKA Mepidnn

6.2.1 Makespan Speedup

Apykd e€etdlovpe To makespan speedup wg pia and Ti§ peTpikég 0TO)X0LG (Zxnpa G5). Ot
vynAoTepeg TpéG mapatnpovvtal otov SJE-Filler, pe tig dAAeg d0o mpooeyyioelg va akoAov-
Bobv. EmumAéov, ot LJF-Co kat LAF-Co mapovoidfovv vyniég tipég makespan speedup. Ot
dpopohoyntég pe péoo makespan speedup pukpotepo tov 1 eivan SJF-Co katr FCES. IIiBavov
otov SJF o dapolpacdg mopwv va emSEVWVEL TOV KATAKEPUATIOHO. ZNUELWVOVUE OUWG OTL
oL TepLooOTEPEG ekdOXEG Eemepvoiv To 1, StatnpwvTtag Tov Pacikd pHag aTdXo, 0 0T0i0g eivat N
anodoTIKOTEPT XPTOT] TOL CLOTHHATOG.

Boxplot of Makespan Speedup (over Conservative) by Scheduler

.

=
=
N
(9]

+
1.100 E —_— -

1.0754

1.050 I_—_r_l + l %‘

Makespan Speedup (over Conservative)

1.025
1.000 - - ——
0975 J -
J_ ¢
0.950 4
& < ‘o < ' I-k ‘o & elfo o o %
P FE S FF N S
¢ D P Y & & RN
> S Qe &
(_.OQ
Scheduler

Ixfpa G5: Boxplot of Makespan Speedups.

6.2.2 Mean Slowdown

Avagopika pe To mean slowdown, ot Tpetg SJF vAomotoelg éxovv onpavTikd xapnAotepeg
TéG (Zxnpa G6). Iapatnpodue évav dtaxwpiopod oe SJF kat LJF meploxég pe tig dedtepeg va
eppavifouv peydeg Tipég Omwg nTav avapevopevo. Ot vtolotmot SpopoloynTég Kupaivovtat
ota idta emineda mepinov.

6.2.3 Mean Job Speedup

Ot peyahvtepeg Tipég mapatnpovvtal oty co-scheduled exdoyn tov EASY, pe pupr) Stakvpovon
(2xnua G7). The biggest mean speedup values are observed in co-scheduled EASY, with a small
variance. Ot Tiég Twv vtodomwy dpopoloyntwv dev gaivetat va Slapépovy, He TIG HeyaADTepPEG
draxvpavoelg va mapatnpovvtat otovg SJE-Filler kou Pop-Filler. Eniong, o LJF-Co @aivetat va
emTUyXAvel vYNAEG TipéG kat o Popularity yapnAotepeg.

6. ASloAoynon 63

Boxplot of Mean Slowdown by Scheduler

1401 T é

1201 T

100 -

T ERES

60 -

o)

Mean Slowdown

20 | ; $
: I L ‘ I‘\ "-K ‘ A I
L B L LSS
&S SR PR
C)\ QOQ ((/ QOQ (\(’2:
(JO
Scheduler

Ixnpa G6: Boxplot twv Mean Slowdown.

6.2.4 Weighted Mean Job Speedup

e avtd To oxfua (Zxnua G8) anodidetal To otabpiopévo mean job speedup, 6oV oL peydleg
epyaoieg éxovv peyahvtepn emppor|. Ot Tipég Tov otabuiopuévov mean speedup eivat pkpoTEPES
amd To aoTAOULOTO, YEYOVOG IOV LTTOSEIKVDEL OTL OL (UKPOTEPEG EpYaoieg evvoodvTal (mbavov
Aoyw backfill). TTapatnpovpe emiong 0Tt ot SpopoAOYNTEG IOV AVTIHETWTI(OVV TIG pEYANEG
gPYAOieg pe OLVETT TPOTIO £X0VV Kal AvTIOTOLXA [KPT) SLaKDUAVOT) OTIG TIHEG.

6.2.5 Mean Slowdown per Processor

Ioxvovv ot idleg mapatnproelg pe To mean slowdown, pe pia ehagpa Stagopomoinon oTov
Pop-Filler, 6mov ot Tipég eivar oxeTika pikpotepeg (Zxrpa G9).

6.2.6 Slowdown Counts Percentage

MeletwvTtag To T0000TO Twv emPpadvvopevwy epyactwv (Zxnua G10), mapatnpovpe otL ot
TEPLOTOTEPOL SPOUONOYNTEG TAPOVOLATOVY TTOGOOTA YUPw atd T0 23%, EKTOG PUOIKA ATIO TOV
Popularity, mov wg vBptdikn vAOTOINON TO TOCOGTOTOL Elval TIEPITIOV TO HLOO.

6.2.7 Utilization

Avagopukd pe To utilization, Ta anoteAéopata givat yevikag avapevopeva (Zxnpa G10). Ot tpelg
Filler exdoyég kvplapxovv, kabwg mpoomabodv evepyd va eEAaTTwo0OLY TOV KaTakeppatiopo. Tnv
enidoon tovg akolovBovv ot "Large” Spoporoyntég (LJE LJF-Co and LAF-Co). EvSiagépov
Tapovotdletl To yeyovog oti to utilization twv SJF-Co kat EASY-Co eivat xelpotepo anod avtd

64 Extetapévn EAANVIKA Mepidnn

Boxplot of Mean Job Speedup by Scheduler

L]
1.10 4 —" !
. .

Mean Job Speedup
5 5
=Y [=)]
|_
|_
l
I
|_

1.02 4
1.00 {—— —_ - _
& I ' o “\ . ‘-k 0 I S e (& I o o X
> Q\\\e ‘('(/ Q\\\e és\ \’c“) "k(/ ((\\\Q, & <<(3< <<'(" ((,(/ >
¢ 9 S A S NN
> K KR ¢
Q &
(JO
Scheduler

Ixfpa G7: Boxplot twv Mean Job Speedup.

TV KAAOOIKWV EKSOXWV TOVG. YTTOTITEVOUAOTE OTL AVTO OPEIAETAL OTA KEVA TV dnutovpyolvTaL
0TO OVOTNHA, TA OTOL0 HEYAADVOLV e TOV SLAPOLPATHO TwV TTOpwV oLV To OTL otov SJF-Co, T0
backfill dev mpoogéper onpavtikn Petiwon, kabBwg oL emdpeveg epyacieq 0Ty ovpd avapovig Ba
gXOUV HeyalbTEPO XPOVO EKTENEDT|G.

6.3 Pareto Plot

T[Tapovaotalovpe To Paociko Sidypappa Pareto (Zxnua G12) 6mov mepiéxet a dedopéva and Ola ta
nelpapata kat ot Svo afoveg amotelovvtat and to mean slowdown kat to makespan speedup [33].
H Siaxekoppévn ypapr avanaplotd to pétwno Pareto, To omoio anoteleital and Tig PEATIOTEG
Moetg. Eivan epgavnig n kvplapyia tov SJE-Filler, 6to ovvoAo BéAtiotwv Avoewyv. Akoun, ot d0o
vlomoinoteg otig onoieg Baoiletat o SJE-Filler dnAadr| o SJF kot o Filler emrtvyydvouvv kahég
emdO0ELC.

6.4 Zuoxétion MeTpikwv

Axoun mapovotdlovpe TNV oVOXETION TwV peTptkwV (Zxnua G13) [34]. ITapatnpodye oTL TO
makespan speedup epgaviCet vynAn ovoyxétion e to utilization, dSnhadn pe v Pektiwon tov
utilization metvyaivovye peiwon oto makespan. EmmAéov, Ta mean job speedup kot weighted
mean job speedup kat avtiotoixwg Ta mean slowdown kat mean slowdown per processor ¢yovv
TOAD VYNAEG TIHEG OVLOXETIONG, KABWG peTpovv idta peyedn.

Amo6 tnv aAAn, To makespan speedup £xet TOA [KpT) Tur) GVOXETIONG pe To mean slowdown,
YeYovog mov emiPePatwvel Ty emA0YN Hog va BEcovpe auTEG TIG HETPIKEG WG HETPIKEG OTOXOVG,

7. Zuunepaopata 65

Boxplot of Weighted Mean Job Speedup by Scheduler
1.07 -

1.06 | + E—

1.05 | T T ¢ —

1.04 1 -4 —

1.03 1 L

Weighted Mean Job Speedup

1.024 l
1.014
1.00 {—— —_ - _
& I ' o “\ . ‘-k 0 I S e (& I o o X
> Q\\\e ‘('(/ ((\\\0/ és\ \&) "k(/ ((\\\Q, & <<(3< <<'(" ((,(/ >
9 S P oS NN
> K KR ¢
(}O
Scheduler

Ixnpa G8: Boxplot twv Weighted Mean Job Speedup.

kabwg eivat ave§aptnTeg.

Télog, mapatnpodue vYNAR cvoyétion Tov slowdown counts percentage pe To mean job
speedup, 10 omoi0 GTNV apX1| UTOpEL va pag gaivetat tapddo&o. Mia eppnveia mov pmopov-
e va Swoovpe o€ avTo eivat OTL OTav o€ £va (gvyog ovveKTEAEONG 1 Hia epyacia emTaxbvel
NV ekTéAeon NG, To (edyog Tng mBavov va emPpadivel, e TV eMTAXLVOT WOTOCO Va givat
peyaAvTeEp.

7 Tupnepacpara

Zuvvovilovtag, oty mapovoa SimAwatikr epyacia e§eTaotnke 1 enidpacm tng cuvSpopoAOYN-
OnG 0€ LTIAPXOVTEG alyopiBovg xpovodpopoldynong, 6mov @avnke mwg frav Wiaitepa OeTikn
yta o oboTnua. ZuyKekpuéva, mapatnpnnke pia EAGTTWON 0TOV GUVOALKO XPOVOG eKTENE-
ONG TOL QYOPTIOL EPYAOLwY, AOYw TNG KalbTtepng aflomoinong Twv mdpwv Kat TG peiwong Tov
KATAKEPHATIONOV. ATtO TNV AAAN, 1 HEoT EMUTAYVVOT TOVL XpOVOL eKTENEONG QaiveTal Va eival
peyahvtepnTnG povadag, emopévwg yia TAR00G epyactwy €XOVUE EMUTAXVVOT], CLXPOVWG OUWG
napatnpeitat kat pia emPpadvvon (LeyaAdTepOg XpOVOG EKTENEDTC) OTLG EpYATieg TNG TAENG
nepimov tov 23%.

Axopn, avantoxOnkav véot akyopiBpot cuvdpopoldynong, oLomoiot avinke va e§looppomodv
Kalvtepa otovg dvo afoveg PeltioTimoinong (amoSoTIKOTNTA CLOTHHATOG KAL IKAVOTIOINOT)
XPNOTWV). Zvykekplpéva, ot VAomotoelg pag dvo mapayovtwv (Two Factors), métvxav Tig
KaAOTepeg emidooelg, pe tov SJF-Filler va mpwtaywviotel.

66

ExteTapévn EN\nvikn MepiAnyn

Mean Slowdown Per Processor

Slowdown Counts Percentage

_|

o
o
‘

o
~

o
N
-

Boxplot of Mean Slowdown Per Processor by Scheduler

T

' L

< S N S C R IR C N
% N < NGRS & & < X \yﬁ
2N QGQ <(/v. QQQ ng
C:’Q
Scheduler

Ixfipa G9: Boxplot tov Mean Slowdown ava mvprva.

Boxplot of Slowdown Counts Percentage by Scheduler

304

254

204

154

10

= 'I'* P

& (o A o S e & o o %
) N ((,(/ & & Q},‘p RS Q\\\@ N ((é @ ‘(;, N
¢ 9 > Yo s SN
(O\ QQ & QQQ [
Q &
(/0
Scheduler

Ixfipa G10: Boxplot Tov moocootov Twv Slowdown Counts.

7. Zuunepaopata

67

Boxplot of Utilization by Scheduler

0.98 1 ¢
_— ¢
s, i EH = T —
I - —
5 0.92 [] T
E % ‘ :
N
T 0.90 —_ .
-’
L]
0.88 1
¢
0.86 -
0.84 1
<'< ' S ‘ ‘,\) -\ ‘) ' X ‘6) o X
F FELEE TP Y S E LS
¢ @ > 7 &S N
> R < L [
Q N
(}0
Scheduler
Ixnpa G11: Boxplot Tov Utilization.
Pareto Plot: Mean Slowdown vs. Makespan Speedup
"E pommm =TT - Schedulers
'4% 1.125 1] v --- Pareto Frontier
e o *> e EASY-Co
Y 11007 o« v EASY
5 ! Ibb eoe o 4 Conservative
Y 1.075- L > ¢ LAF-Co
g |' ve ® ° v Popularity
2 1.0509 ! > ee e o FCFS
o 3 (O] s+ » Filler
3
5 1.025{ | vw o SJF-Co
o ® * S|F-Filler
o .
1 1.000 VY W0 Pop-Filler
= e LF-Co
Q v SJF
o 0.975 |
v, v UF
(]
= 0.950-
20 40 60 80 100 120 140

Mean Slowdown

Ixnpa G12: Aaypappa Pareto pe to mean slowdown kat makespan speedup wg otoxovg.

68

ExteTapévn EN\nvikn MepiAnyn

Pearson Correlation Heatmap of metrics

Weighted Mean Job Speedup

Utilization -

Mean Slowdown per Processor

£ o
b‘)Q & b?)Q S)Q <>°° s,‘?a & *
@ e} & & 4 & &
o :_;\o“h 2 R \5&\ O 9
2 & o) &
\lg’n,Q + G;ES\\ z'bv\ & ~:\bo
<& + b'é‘ » S
& of
o

Ixipa G13: Heatmap ovoX€TIONG HETPIKWY.

-10

-0.8

0.6

0.4

0.2

0.0

Bibliography

[1]

A. D. Breslow et al., “The case for colocation of high performance computing workloads”,
Concurrency and Computation: Practice and Experience, vol. 28, no. 2, pp. 232-251, Dec.
2013. por: https://doi.org/10.1002/cpe.3187.

J. Breitbart,]. Weidendorfer, and C. Trinitis, “Case study on co-scheduling for hpc ap-
plications”, in 2015 44th International Conference on Parallel Processing Workshops, 2015,
pp- 277-285. por: 10.1109/ICPPW.2015.38.

A. d. Blanche and T. Lundqvist, “Node sharing for increased throughput and shorter
runtimes - an industrial co-scheduling case study”, in HIPEAC 2018, 3rd COSH Work-
shop on Co-Scheduling of HPC Applications, Jan. 2018. por: https : //doi . org/10.
14459 /2018md1428535. [Online]. Available: https : / /www . researchgate . net /
publication /322662796 Node _Sharing for _Increased _Throughput _and _
Shorter Runtimes_-_an Industrial Co-Scheduling Case_Study.

GRNET, Introduction to high performance computing systems and aris system, 2015. [On-
line]. Available: https://www.hpc.grnet.gr/supercomputer/.

L. S. U. of Science and Technology, What is an hpc cluster | high performance computing.
[Online]. Available: https://www.hpc.iastate.edu/guides/introduction-to-
hpc-clusters/what-is-an-hpc-cluster.

OpenMP, Home. [Online]. Available: https://www.openmp.org/.

Jul. 2021. [Online]. Available: https://en.wikipedia.org/wiki/Message Passing_
Interface.

D. Liang, P.-J. Ho, and B. Liu, “Scheduling in distributed systems”, 2000.
2013. [Online]. Available: https://top500.0rg/lists/top500/.

W. Contributors, Slurm workload manager, Nov. 2019. [Online]. Available: https://en.
wikipedia.org/wiki/Slurm_Workload Manager.

SLURM, 2024. [Online]. Available: https://slurm.schedmd . com/sched _config.
html.

A. Burkimsher, I. Bate, and L. S. Indrusiak, “A survey of scheduling metrics and an
improved ordering policy for list schedulers operating on workloads with dependencies
and a wide variation in execution times”, Future Generation Computer Systems, vol. 29,
no. 8, pp. 2009-2025, 2013, 1ssN: 0167-739X. por: https://doi.org/10.1016/j.
future . 2012 .12.005. [Online]. Available: https : //www . sciencedirect . com/
science/article/pii/S0167739X12002257.

69

https://doi.org/https://doi.org/10.1002/cpe.3187
https://doi.org/10.1109/ICPPW.2015.38
https://doi.org/https://doi.org/10.14459/2018md1428535
https://doi.org/https://doi.org/10.14459/2018md1428535
https://www.researchgate.net/publication/322662796_Node_Sharing_for_Increased_Throughput_and_Shorter_Runtimes_-_an_Industrial_Co-Scheduling_Case_Study
https://www.researchgate.net/publication/322662796_Node_Sharing_for_Increased_Throughput_and_Shorter_Runtimes_-_an_Industrial_Co-Scheduling_Case_Study
https://www.researchgate.net/publication/322662796_Node_Sharing_for_Increased_Throughput_and_Shorter_Runtimes_-_an_Industrial_Co-Scheduling_Case_Study
https://www.hpc.grnet.gr/supercomputer/
https://www.hpc.iastate.edu/guides/introduction-to-hpc-clusters/what-is-an-hpc-cluster
https://www.hpc.iastate.edu/guides/introduction-to-hpc-clusters/what-is-an-hpc-cluster
https://www.openmp.org/
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://en.wikipedia.org/wiki/Message_Passing_Interface
https://top500.org/lists/top500/
https://en.wikipedia.org/wiki/Slurm_Workload_Manager
https://en.wikipedia.org/wiki/Slurm_Workload_Manager
https://slurm.schedmd.com/sched_config.html
https://slurm.schedmd.com/sched_config.html
https://doi.org/https://doi.org/10.1016/j.future.2012.12.005
https://doi.org/https://doi.org/10.1016/j.future.2012.12.005
https://www.sciencedirect.com/science/article/pii/S0167739X12002257
https://www.sciencedirect.com/science/article/pii/S0167739X12002257

70

Bibliography

[13]

[26]

A. V. Goponenko, K. Lamar, C. Peterson, B. A. Allan, J. M. Brandt, and D. Dechev, “Metrics
for packing efficiency and fairness of hpc cluster batch job scheduling’, in 2022 IEEE 34th
International Symposium on Computer Architecture and High Performance Computing
(SBAC-PAD), 2022, pp. 241-252. por: 10.1109/SBAC-PAD55451.2022.00035.

R. Boézennec, E Dufossé, and G. Pallez, “Qualitatively Analyzing Optimization Objectives
in the Design of HPC Resource Manager’, working paper or preprint, Aug. 2023. [Online].
Available: https://hal.science/hal-04187517.

D. Carastan-Santos and R. Y. de Camargo, “Obtaining dynamic scheduling policies with
simulation and machine learning’, in SC17: International Conference for High Performance
Computing, Networking, Storage and Analysis, 2017, pp. 1-13.

D. Feitelson, “Metrics for parallel job scheduling and their convergence”, vol. 2221, Jul.
2001, 1sBN: 978-3-540-42817-6. por: 10.1007/3-540-45540-X_11.

J. Weinberg, “Job scheduling on parallel systems”, in Job Scheduling Strategies for Parallel
Processing, vol. 5, 2002, pp. 67-73.

D. Feitelson, “Metric and workload effects on computer systems evaluation”, Computer,
vol. 36, no. 9, pp. 18-25, 2003. por: 10.1109/MC.2003.1231190.

J. Li, G. Michelogiannakis, B. Cook, D. Cooray, and Y. Chen, Analyzing Resource Utilization
in an HPC System: A Case Study of NERSC Perlmutter, 2023. arXiv: 2301.05145 [c¢s.DC].
[Online]. Available: https://arxiv.org/abs/2301.05145.

S. Maloney, E. Suarez, N. Eicker, F. Guimaraes, and W. Frings, “Analyzing hpc monitoring
data with a view towards efficient resource utilization”, in 2024 IEEE 36th International
Symposium on Computer Architecture and High Performance Computing (SBAC-PAD),
2024, pp. 170-181. por: 10.1109/SBAC-PAD63648.2024.00023.

E. V. Zacarias, V. Petrucci, R. Nishtala, P. M. Carpenter, and D. Mossé, “Intelligent colocation
of HPC workloads”, CoRR, vol. abs/2103.09019, 2021. arXiv: 2103 . 09019. [Online].
Available: https://arxiv.org/abs/2103.09019.

A. Blanche and T. Lundqvist, “Terrible twins: A simple scheme to avoid bad co-schedules’,
Jan. 2016. por: 10.14459/2016md1286952.

A. Blanche and T. Lundqyvist, “Disallowing same-program co-schedules to improve effi-
ciency in quad-core servers’, Jan. 2017.

A. D. Breslow, A. Tiwari, M. Schulz, L. Carrington, L. Tang, and J. Mars, “Enabling fair
pricing on hpc systems with node sharing”, in SC ’13: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis, 2013, pp. 1-
12. por: 10.1145/2503210.2503256.

A. Bhatele, K. Mohror, S. H. Langer, and K. E. Isaacs, “There goes the neighborhood:
Performance degradation due to nearby jobs”, in SC ’13: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis, 2013, pp. 1-
12. por1: 10.1145/2503210.2503247.

J. Hall, A. Lathi, D. Lowenthal, and P. Tapasya, “Evaluating the potential of coscheduling
on high-performance computing systems”, in Sep. 2023, pp. 155-172, 1sBN: 978-3-031-
43942-1. por: 10.1007/978-3-031-43943-8_8.

https://doi.org/10.1109/SBAC-PAD55451.2022.00035
https://hal.science/hal-04187517
https://doi.org/10.1007/3-540-45540-X_11
https://doi.org/10.1109/MC.2003.1231190
https://arxiv.org/abs/2301.05145
https://arxiv.org/abs/2301.05145
https://doi.org/10.1109/SBAC-PAD63648.2024.00023
https://arxiv.org/abs/2103.09019
https://arxiv.org/abs/2103.09019
https://doi.org/10.14459/2016md1286952
https://doi.org/10.1145/2503210.2503256
https://doi.org/10.1145/2503210.2503247
https://doi.org/10.1007/978-3-031-43943-8_8

Bibliography 71

[27]

[28]
[29]

[30]

[31]

D. Bailey et al., “The nas parallel benchmarks”, The International Journal of Supercomputing
Applications, vol. 5, no. 3, pp. 63-73, 1991. por: 10.1177/109434209100500306. eprint:
https://doi.org/10.1177/109434209100500306. [Online]. Available: https :
//doi.org/10.1177/109434209100500306.

J. Weinberg, “Job scheduling on parallel systems”, Jan. 2006.

S. Srinivasan, R. Kettimuthu, V. Subramani, and P. Sadayappan, “Characterization of
backfilling strategies for parallel job scheduling”, Feb. 2002, pp. 514-519, 1sBN: 0-7695-
1680-7. por: 10.1109/ICPPW.2002.1039773.

D. Tsafrir, Y. Etsion, and D. Feitelson, “Backfilling using system-generated predictions
rather than user runtime estimates’, Parallel and Distributed Systems, IEEE Transactions
on, vol. 18, pp. 789-803, Jul. 2007. por: 10.1109/TPDS. 2007 .70606.

A. Rajbhandary, D. Bunde, and V. Leung, “Variations of conservative backfilling to improve
fairness”, vol. 8429, Jun. 2014, pp. 177-191, 1sBN: 978-3-662-43778-0. po1: 10.1007/978-
3-662-43779-7_10.

D. Carastan-Santos, R. Y. De Camargo, D. Trystram, and S. Zrigui, “One can only gain by
replacing easy backfilling: A simple scheduling policies case study”, in 2019 19th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGRID), 2019, pp. 1-10.
por: 10.1109/CCGRID.2019.00010.

J. Hakanen and R. Allmendinger, “Multiobjective optimization and decision making in
engineering sciences’, Optimization and Engineering, vol. 22, Jun. 2021. por: 10. 1007/
511081-021-09627-x.

J. Hauke and T. Kossowski, “Comparison of values of pearson’s and spearman’s correlation
coefficients on the same sets of data’, Quaestiones Geographicae, vol. 30, no. 2, pp. 87-93,
2011. por: 10.2478/v10117-011-0021-1. [Online]. Available: https://doi.org/10.
2478/v10117-011-0021-1.

W. H. Kruskal, “Ordinal measures of association’, Journal of the American Statistical Asso-
ciation, vol. 53, no. 284, pp. 814-861, 1958. por: 10.1080/01621459.1958.10501481.
eprint: https : //www . tandfonline . com/doi/pdf /10 .1080/01621459 . 1958 .
10501481. [Online]. Available: https://www.tandfonline.com/doi/abs/10.1080/
01621459.1958.10501481.

https://doi.org/10.1177/109434209100500306
https://doi.org/10.1177/109434209100500306
https://doi.org/10.1177/109434209100500306
https://doi.org/10.1177/109434209100500306
https://doi.org/10.1109/ICPPW.2002.1039773
https://doi.org/10.1109/TPDS.2007.70606
https://doi.org/10.1007/978-3-662-43779-7_10
https://doi.org/10.1007/978-3-662-43779-7_10
https://doi.org/10.1109/CCGRID.2019.00010
https://doi.org/10.1007/s11081-021-09627-x
https://doi.org/10.1007/s11081-021-09627-x
https://doi.org/10.2478/v10117-011-0021-1
https://doi.org/10.2478/v10117-011-0021-1
https://doi.org/10.2478/v10117-011-0021-1
https://doi.org/10.1080/01621459.1958.10501481
https://www.tandfonline.com/doi/pdf/10.1080/01621459.1958.10501481
https://www.tandfonline.com/doi/pdf/10.1080/01621459.1958.10501481
https://www.tandfonline.com/doi/abs/10.1080/01621459.1958.10501481
https://www.tandfonline.com/doi/abs/10.1080/01621459.1958.10501481

72

Bibliography

ZUVAPTHOEL TaSIVOUNoNG oupdcg avapovig

SJF/SJF-Co

def waiting_queue_reorder(self, job: Job) -> float:
return -float(job.remaining_time)

LJF/LJF-Co

def waiting_queue_reorder(self, job: Job) -> float:
return float(job.remaining time)

LAF-Co

def waiting_queue_reorder(self, job: Job) -> float:
return float(job.num_of_processes * job.remaining_time)

Popularity

def waiting_queue_reorder(self, job: Job) -> float:
return self.ranks[job.job_id] / len(self.cluster.waiting_queue)

73

74 Appendix. Xuvaptioeig Taivounong oupdc avapuovig

Filler

def waiting_queue_reorder(self, job: Job) -> float:
The job that is closer to cover the gaps is more preferrable
sys_free_cores = self.cluster.get_idle_cores()
if sys_free_cores > O:
diff = sys_free_cores - job.num_of_processes

if diff > O:
factorO = 1 - (diff/sys_free_cores)
elif diff ==
factor0 = 1
else:
factor0 = -1
else:

factor0 = 1
factorl = ((job.job_id + 1) / len(self.cluster.waiting_queue))
return factor0 / factorl

SJF-Filler

def get_index(self, job: Job) -> int:
positions = [index for index, value in
- enumerate(self.cluster.second_queue) if value.job_id == job.job_id]
return positions[0]

def waiting_queue_reorder(self, job: Job) -> float:
The job that is closer to cover the gaps is more preferrable
sys_free_cores = self.cluster.get_idle_cores()
if sys_free_cores > O:
diff = sys_free_cores - job.num_of_processes

if diff > O:

factor0 = 1 - (diff/sys_free_cores)
elif diff ==

factor0 = 1
else:

factor0 = -1

else:

factor0 = 1
factorl = self.get_index(job) / len(self.cluster.waiting_queue)
return factorO + factorl

def second_queue_reorder(self, job: Job) -> float:
return job.remaining time

75

Pop-Filler

def

def

def

get_index(self, job: Job) -> int:
positions = [index for index, value in

-~ enumerate(self.cluster.second_queue) if value.job_id == job.job_id]
return positions[0]

waiting_queue_reorder(self, job: Job) -> float:
The job that ts closer to cover the gaps is more preferrable
sys_free_cores = self.cluster.get_idle_cores()
if sys_free_cores > O:
diff = sys_free_cores - job.num_of_processes

if diff > O:

factorO = 1 - (diff/sys_free_cores)
elif diff ==

factor0 = 1
else:

factor0 = -1
else:
factor0 = 1
factorl = self.get_index(job) / len(self.cluster.waiting_queue)
return factorO + factorl

second_queue_reorder(self, job: Job) -> float:
return self.ranks[job.job_id]

	Περίληψη
	Abstract
	Contents
	1 Introduction
	1.1 Motivation - Problem Statement
	1.2 Thesis Outline

	2 HPC Scheduling Background
	2.1 High Performance Computing (HPC)
	2.2 Scheduling
	2.2.1 Scheduling intro
	2.2.2 Batch Scheduling Systems
	2.2.3 Basic Notation

	2.3 Metrics
	2.3.1 Target Metrics
	2.3.1.1 Makespan Speedup
	2.3.1.2 Mean Slowdown
	2.3.1.3 Mean Slowdown Per Processor

	2.3.2 Explanatory Metrics
	2.3.2.1 Utilization
	2.3.2.2 Mean Job Speedup
	2.3.2.3 Weighted Mean Job Speedup
	2.3.2.4 Slowdown Counts

	3 Co-scheduling
	3.1 How node sharing works
	3.2 Advantages of node sharing
	3.3 Disadvantages of node sharing
	3.4 Co-scheduling complexity

	4 HPC Simulator
	4.1 Efficient Lightweight Scheduling Estimator (ELiSE)
	4.2 Heatmap
	4.3 NAS Parallel Benchmarks (NPB)

	5 (Co-)scheduling Algorithms
	5.1 Traditional Scheduling
	5.1.1 First Come First Serve (FCFS)
	5.1.2 Extensible Argonne Scheduling sYstem (EASY)
	5.1.3 Conservative
	5.1.4 Shortest Job First (SJF)
	5.1.5 Longest Job First (LJF)

	5.2 Co-scheduling
	5.2.1 EASY Co-schedule
	5.2.2 Shortest Job First Co-shedule (SJF-Co)
	5.2.3 Longest Job First Co-shedule (LJF-Co)
	5.2.4 Largest Area First Co-schedule (LAF-Co)
	5.2.5 Popularity
	5.2.6 Filler
	5.2.7 Two Factors
	5.2.7.1 Shortest Remaining Time Criterion (SJF-Filler)
	5.2.7.2 Popularity Criterion (Pop-Filler)

	6 Evaluation
	6.1 Mean Values
	6.2 Boxplots
	6.2.1 Makespan Speedup
	6.2.2 Mean Slowdown
	6.2.3 Mean Job Speedup
	6.2.4 Weighted Mean Job Speedup
	6.2.5 Mean Slowdown per Processor
	6.2.6 Slowdown Counts Percentage
	6.2.7 Utilization

	6.3 Pareto Plots
	6.4 Metrics correlation

	7 Summary and Conclusions
	7.1 Summary
	7.2 Conclusions
	7.3 Future work

	List of Figures
	List of Tables
	Εκτεταμένη Ελληνική Περίληψη
	Bibliography
	Συναρτήσεις ταξινόμησης ουράς αναμονής

