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IMepiAnyn

O vonpartikég YAOoGeg ammoTe oDV TNV KOPLX HOPPT] ETLKOLVOVING YL EKATOVTADEG EKATOUPDPLAL OLV-
BpdTOULG TOL AVAKOLY OTLG KOLWVOTNTEG TWV KOWPDOV avd TOV KOGHO, £V LITOAOYLLeTaL OTL LIT&PYOLV
OV ortd 200 SLapopeTikéC VONUATIKES YADOGEG kot Siddextol. Me okomd TNV yepOpwoT) TG emLkoLy-
wviag PeTOED YVOOTOV TNG VONUATIKNG YA®ooAg kal pn, Wiaitepa otnv obyyxpovn yndiakr mpoy-
potikotnTa, Oa frav kabopiotikn 1 tapkn evog kaBoAlkod GLOTHHATOG, LKavoL Vo PeTadpilel otd
KOLL TTPOG TNV OULAOVUEVT) KoL TV vonpatikh YAdooo. Eva tétolo cbotnua Ppickel dueon eboapuoyn oe
BaoucdTatoug Topelg TG KaBNUEPLVOTNTAG KOPOV ATOUWY, OTTWG elval 1) ekTaidevoT), o péoa evnép-

wong, N Yuyaywyio KoL 0 TOATIoHOC.

TN to oKkomd avtd, 1 cLVEXNG UETAPPACT] KL TAPAYWYT TNG VONUATIKNG YADOOOHG otd Keiplevo
elval o Vo ammapaitnTa otowyeio yia tn dnuiovpyioe evog tétolov cuvothuatog. Tig televtaleg
dexaetieg, 1 petddpaon NG VONUATIKNG YAOGGAC, 1) petatpornt] dnAadn Tov unvopdtev ard Pivieo
VOTUOTIKNG YADOOOG O€ KELUEVO, EYXEL GUYKEVTPMOGEL CNUAVTLIKO EPELVNTIKO eVOLADEPOV OTO YDPO TNG
Opaong Yroloylot®v, pe TANBGpa Snpocteboewmy va eEepeuvoiy auTh TNV TPOKANGT) XPTCLLOTOLDV-
Tog texvoloyieg Mnyavikng Mabnong. Qotdc0, GLYKEKPLUEVA 1] AUTOUOTY TOUPAYWYT] PEAALOTIKOV
Bivteo vonpatikng yAdooag amd keipevo Bewpeital éva amd TaL Lo ool TN TIKE ovoLY T TTpoPArpata
600V apopd TIG TEXVOAOYLEG VONUATIKOV YAWSS®OV. OL 1tLo Tpdodates TEXVOLOYIEG VIO TNV TTAPAYWYT
VONUOTIKNG YAOGGOG avTipeTwri{ovy To mpoPAnua aflomoiwvtag Pabid vevpwvikd diktua 6Twg oL
MeTaoyNUaTIOTEG KO TTOLKLALGL TTOPAYWYLK®OV HOVTEA®V, kot tapOAo tov avtég ot pébodol deiyvouv

evBappuvTikad amote éopata, LTapyel PePoain SuvaToTnTa Yo TepaLTEPw® eEENLEN.

O KxevTpikdg 6TOX0G aUTHG TNG STAWPATIKAG elvor va avorttogel éva povtého Mnyovikng M&Bnong
YOt TV QUTOHATH TTOPOYYT) PEAALOTIKGOV Bivteo vonpatiknig yAwooog oo keipevo. Xwpilovpe tnv
Moo pag oe dvo Paocikd otddia: [pota, xpnopomotdvrog diktva Metaoxnuatiotov (Transformers)
petappalovpe o Keipevo oe okeleTikég akorovBieg avBpdmivng molag (MediaPipe). Xtn cvvéyela
oLVOETOVLE TOV TTAPAYOUEVO PEXALGTIKO OKEAETO Péow apxLTekTOVIKNG Pactopévn oe Generative Ad-
versarial Networks, to omoio 0dnyetl 610 TeAtkcd ovvBetikod Pivreo vonpatiotr. Afloloyolue Tnv aote-
AECUATIKOTITA TOL TTPOTELVOUEVOL GLGTHUATOG o€ TPio StadopeTikd cOvora dedopévwv pHEcw eKTE-

TAPEVOV CUYKPLTIKDV TELPOPATOV KXl AELOAOYNONG XPNOTOV.

Tufpo g epyaociog éywve dektd oto 180 ouvédpro PErvasive Technologies Related to Assistive Envi-
ronments (PETRA 2025), pe titAo "A Transformer-Based Framework for Greek Sign Language Produc-
tion using Extended Skeletal Motion Representations” [49] xow cuyypadeig tovg Xpdoo partikdxn,

Havoayidtn Plvtion, ABavacio Katoopdvn, Avaotacio Povbooo kot ITétpo Mapayko.

Aétarg khewda — Topaywyn Nonpoartikig F'Adooag, Babuk Mébnon, Transformers, Generative Ad-

versarial Networks, Neural Rendering, Extipnon I16{ag






Abstract

Sign Languages are the primary form of communication for Deaf communities across the world. It is es-
timated that more than 70 million people make part of the deaf and hard-of-hearing (DHH) community,
while there are more than 200 Sign Languages across the world. To break the communication barriers
between the DHH and the hearing communities, it is imperative to build systems capable of trans-
lating the spoken language into sign language and reciprocally. To this end, continuous sign language
translation and production are the two necessary components for making such machine-learning based
system. Over the past three decades, Sign Language Translation has gained significant interest, result-
ing in a plethora of publications exploring various technologies to address the challenge. However,
Sign Language Production is considered to be one of the most challenging open problems regarding
Sign Language technologies. The most recent suggested technologies for SLP tackle the synthesis of
photorealistic sign language videos with neural machine translation and a variety of generative models,
and although these methods show encouraging results, there remains potential for further adaptations

and innovation.

Building on insights from previous research, the central objective of this thesis is to develop a robust
deep learning model for Sign Language Production (SLP). We tackle this task by utilizing a transformer-
based architecture that enables the translation from text input to human pose keypoints. Furthermore,
we explore the photerealistic aspect of the problem, aiming to create a complete SLP pipeline that
transforms text directly into realistic human SL videos. For the photorealistic module, we harness Gen-
erative Adversarial Networks (GANs) to perform neural rendering on the pose sequences generated by
the transformer model. Finally, we evaluate the effectiveness of the proposed pipeline on three different

datasets through an extensive series of comparative analyses, ablation studies, and user studies.

Part of our work was accepted at the 18th International Conference on PErvasive Technologies Related
to Assistive Environments (PETRA 2025), titled "A Transformer-Based Framework for Greek Sign Lan-
guage Production using Extended Skeletal Motion Representations” [49] with the authors being Chrysa

Pratikaki, Panagiotis Filntisis, Athanasios Katsamanis, Anastasios Roussos and Petros Maragos.

Keywords — Sign Language Production, Sign Language Translation, Deep Learning, Transformers,

LLMs, Generative Adversarial Networks, Neural Rendering, Pose Estimation






Evyopirotieg

H epyaoia avtr onpaivel owoing tnv oAokApwor Twv 6movdodv pov otnv XxoAr) HAextpoddywv
Mnyavikdv ko Mnyavikav Yrorloyiotov tov EMIL Oa rjfela va evyopiotion Bepud tov kabnyntn
ITétpo Mapoykd yi TNV eukaipiot vor eKTTOVo® TNV SUTAMUOTIKH POV €PYOCiot GTO EPYAGTHPLO
Opaong Ynoloyiotodv kou Eme€epyaciag Ipatoc, yopw amd éva Bépa pe évroveg okadnpaikég

QTTOLTHOELG CAAQ KL KOLVWVLKO aVTIKTUTTO.

>t ovvéyewx Ba Nlela va evyoplotiow oAdPuvya Tovg Ap. Avactdolo Povcoo, kbplo epevuvntr oo
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yaoio kol cuveniPAeyr) tovg. Me tnv kaBodnynomn toug katddepa va Gpépw eig mépag k&be TpokAno
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Extetapévn [lepiAnyn ota eAAnvViKG

Ewaywyn

OL vonuatikég YADOOGES ammote A0V TNV KOpLa Hopdt) emttkovaviag dekddwv exatoppvpiov avlporwv
ova tov kOopo. EpdaviCovton ammd tnv apyotdtnTa V) GUVOVTOpE EKATOVTAdEG SIAEKTOUG e peydAn

TOLKIAOPOpPi G8 YPAUHATLKT), EKPPACELS KOl KLVIGELS.

TNa ta kodpd dtopa 1 opbr) expddbnon vonuatikng yAdooog eivon kpiown, S0tL 1 xpron g ei-
vou aopoitntn Tpobmdbecn yio TNV TANPN GUUPETOYT] TOVG GTNVY ekTTaidevoT], 6TOV epyactakd Pio
oAA& ko oe Kowevikd Oépata. Qotdco, peydAn mAcoyndio Tov kwdpodv/ Paprkowy avBpdmwv
oaviikouv eite otnv Tpitn NAkia eite ce gumabelg KowvwvIKéG opddeg, pe amotélecpa 1 ekpddnon
VONHATIKAG YA®OGGOG Vo Unv aroteel Tk pHépog g eKmaidevong Toug o veapr nAtkic, odnywdv-
TOG 0€ ATOGVVOEGT) TTOUL UTTOPEL Vo ePItodiceL TNV KOWVWVLIKT aAAnAentidpaot ko tnv mtpdcPacn oe did-
dopeg vrnpecieg. Avtd TO KeVO, AAAK KaL 1) AvAyKT) TOAAATAXGLAGHOD TV ovOpOT®Y oL Yvwpilovv
TNV VONUaTIK YAOCoK, VIoypoppilel Tn onpocio Tng avamtuéng NAEKTPOVIK®OV TEXVOAOYLOV OV
WITOpOUV Vo SLEUKOADVOLV TNV ETLKOLVOVIA 0€ TPAYHOTLKO XpOVO HETOED TV XPTOTOV TNG VONUATIKNG

YA®OGaG o€ PactkOTATOVG TOpELG OTTMG 1) eKTaidevoT), Ta HEGK EVIIUEPWGTS KAL 1) Yuyxaywyia.

OL vonuartikéc yAodooeg eivar moAdmAokeg yAdooeg mov Pacilovial Kupiwg € OTTIKOKLVITIKA
otouyeio ko OxL o 1xovg. Exovv dopr mov ovykpiveton pe Tig tpodopikég yAdooeg, mepthapfavovtog
dwvoroyia, popporoyia, cOvtaln, onuactoloyia KoL TPpAypHatoAoyia. AVTi v XproLLoTolody Gpwv-
NTwK& otolyela ov mophyovtal pe tn dovnTiky dpdpwaor, oL VonUaTkKég YADOTES X PNOLLOTOLODV
TOUTOYPOVEG XELPOVOULEG, EKPPATCELS TTPOTHOTOV KAL KLVIGELG TOV COUATOG YLO VAL HETOSDOOUV VOTUAL.
Avtr) 1) moAvtporiky UGN KAVEL TNV VTOAOYLOTIKT] HOVTEAOTOINGT TNG VONUATIKNG YADGOAS TTLO
S0OKOAT, €K OTAV XPNOLUOTOLOVVTAL TEXVIKES Pabidg pabnong yio tnv autdpatn avoyvopLon
N mopoywyn emkovoviog pe yewpovopies. H Poaowkr dwadopd peta&d tov mpodoplk®dv Kot twv
VOTUOTIKOV YAWOO®V €lval OTL OL TTPMOTES XPTCLUOTOLODY YPOUULKE GOVARATA, €V oL debTeEpE]
XPNOLOToLoVV TapdAANAovg StadAovg TANPoPopLOV, KATL TOL autontel SLaepopeTikég YAWOOLKES Kot
vroAoyloTikég mpooeyyioels. Iloapd tnv éAderyn GwvnuUATwV, OL VONUATIKEG YAWMOGES EXOLV éval

adwvoroyukd cvotnua factopévo ot xelpokivnteg (manual) mopapétpoug, ot omoieg eival ot e€Ng:
« Mopdn xeLpovopiog
+ OfoT) TV XEPLOV GTO XDOPO
« Kivnon xepiov (eidog kou katevBovon)
+ [IpocavatoAopog XepLOV GTO XOPO

Ex1dg ammd T1g xelpovopieg, ol vonpatikég yAwooeg Pacifovral kal oe pn xelpokivnrovg deikteg, mov
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ouppariovv ot onuacia tng tpdtaong. Meta&d avtdv cupmeptiopfavovro:
« Exdppdoelg Tov mpoccmov
« Exdpaocelg Tov otopatog
« AM\ayég otnv TOla TOL COUATOG

Ou vonuortikég yAwooeg SpaotnplomolodvTal 6ToV TPLodLAeTOTO XOPO vIoypodnig yia Tnv
K@OLKOTTOINOT) TOUG HEGW HLOG CUYKEKPLLEVIC XWPLKNG YPOUUATIKNG. Xe avtiBeon e Tig TpodopLiég
yA®ooeg, mov Pacilovtor otn dradoyikr] oelpd Aé€ewv kol oTIg TPOoBETELS, OL VONUATIKEG YADCGEG
ETMLTPETOVY GTOVG YPNOTEG var avatomofeTolv AEEELG Kol Vo eTOVaPEPOLY OPYOTEPK VOTLOTOL e
kwhoelg katevbuvong. Etol dievkoldveton 1 avostapdotoot oOVOeToV evvolmdvy, 0AA& TTorpdAAnAo
dnpovpyel TPOKANCELS YLO TNV VITOAOYLOTIKT] LOVTEAOTOLNGT TNG VONUATIKAG YAOGOAG, eldlkd OTav

Xprotponolovvrol Texvikég foabidg padnong.

H yAwooikr] TOALTAOKOTNTA TOV VONHATIKOV YAOGO®V O0Nwg mepLyphdnke, Snpiovpyel TpokAncelg
yia oo povtéda Padiig pabnong. e avtibeon pe ta cvothpata Tov facilovton oe Keipevo 1) optAia,
1 TOPAYWYT VONUOTIKAG YADCOAS OTLTel TTOAVTPOTILKT] TTPOGEYYLOT] TTOV EVOWUATOVEL XTTOTEAEC-
HOTIKE TNV TOLTOXPOVI] TTOLpaKOAODONGT KIVACE®Y TV XEPLOV, TOL TPOGOIOV KAL TOL COUNTOC,

npokelévou va mapayBovv vonuatikd ouvvereic tpothoelg NI

IIpbéodarteg eeribelg otnv Pabid pabnon ko otnv ektipnon g avlpodmvng otdong €Xovv ouve-
LloGEPEL GNUAVTIKE GTOV TOHE TNG QVAYVAOPLONG KL TOPAYWYNG VONUATIKAG YA®ooog. Qotdoo,
TOPAPEVOLY XPKETEG TTPOKANOELS, OTWG 1) YeVikevoT] o€ SLxdOPETIKEG VONUATIKEG YADOGES KaL 1)
npocappoyn oe SadekTikég mapadlayés. e avtr) mn SimAwpatikn epyooica, Bo eEetdioovpe Aert-
TOUEPHOG VTEG TIG TPOKAToELS, mapovatdlovtag pebodoroyieg yio Tnv Tapaywyn vonuatikig YAGOG-

oog Paciopéveg oe Pabid paBnomn ko a€loAoy®vTog TNV TOTEAEGUATIKOTI TR TOVG G€ TPALYHATIKES

epoppOYEG.
Sign Language ‘ i ﬁ l.i Ii "i ii ii
Video

Sign language REGION TRUEB REGEN SCHNEE BERG MOEGLICH _
Glosses (region) (cloudy) (rain) (snow) (mountain) (possible)

» « v v v e

Spoken Language Immer wieder fillt leichter regen oder schnee in den mittelgebirgen
Sentence (Light rain or snowfall is frequently recurring in the low mountain ranges.)

Figure 0.0.1: Metadpaoelg wov vmootnpilel éva cvotna petddpacng Nonpatikig I'Adocag

O topéog g EneEepyaoiag Nonpartikric I'Adooag (Sign Language Processing) ayyiletl tnv diaotadp-
WOT) TOPEWV TNG YAwosGoAoylag, Tng 0pacng vtoloyloT®V (computer vision) kot tng emefepyoaciog
dvoknc yAdooog (NLP) kabodg ouvdudlel Tnv mopokoAovdnon Tou COUATOG PE TNV KELUEVIKT] ovaL-

napactaoct. Ta mo facikd otoyeia evog diadpactikod nhektpovikod cvotrpatog NI eivar n Avary-
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vopron Nonuatknig M'loooag (Sign Language Recognition - SLR), n Metddppoon Nonpartikrig TAdooog
(Sign Language Translation - SLT) kou 1 Ilapaywyn Nonpatiknig F'Adooag amoé keipevo (Sign Language
Production - SLP).

H Avayvdpion Nonpartikig M'Awcoag (SLR) eotidlel otnv epunveio Tng vonpatikig ycwooog (Piv-
TEO — KEIPEVO) KL OTNV aVTIoTOiYLoT) TNG o€ oelplakés kwdikég AéEelg (glosses) mov avamapiotodv
To vonpa k&Be dwakprrrg kivnong. H Metadppaon Nonpartikng Moccag (SLT) eivon mpoéktaon tng
OTTANG VY VAOPLOTG, KOL ETILTPETIEL TV HETATPOTT TV dedopévwv Pivteo oe athd keipevo (o€ ov-
tibeon pe ta glosses) . Avtr n SuvatoTnTa gival (WTIKAG CNUAGLOG YLt TNV GOYXPOVN] ETLKOLVOVIX
HETOED OKOVOTIKGDV KoL KOGDOV ATOUOV, TOPASELYHATIKE HEG® TAXThOppdV TnAedibokenc, eite péow

ONUOCLWV VTN PECLOV.

Mia o6 Tig o dbokodeg ko Arydtepo e€epevvnuéveg meploxég otnv EneEepyosio Nonpatikng FAdo-
oog eivan 1) Hapaywyn Nonpatikng F'Adooag and keipevo (Sign Language Production - SLP). H SLP
avadépeton ot dnpovpyia kvodpeveov Pivreo NI axpifeiog pe dedopéva eilocddou keipevo. Xe avrti-
Beom pe TV avayvapLoT) Kot TNV HETAPpacT), oL e6TLALOVY GTNV KATAVOTOT| TG VONUATIKAG YADGC-
00G, 1) THPOYWYT) ot KeleVOo ototel ot To SIKTLO TNV LKAVOTH T Vo Tapdyel GLVOETIKO TTepLeXOUEVO

VOTUATIKNG YADOGOG OV eivarl TuTOY POV YAWOGIKA akpLPEG KoL OTTIKA TTELGTLKO.

Ta tpwtoeppovilopeva cvotnuata SLP facilovrol kuping o amAr aviictoiyion Aé€ewv ae akolov-
Biec xwvioewv. Ipdodarteg e€eAikelg otn Pabid padbnon, Wiaitepa ota vevpwvikd dikTuo Kot 6TIg
Topaywylkés (generative) apyLtekTovikég, éxouv EekAelddoel TOANG vITOGYOUEVEG SLVATOTNTES YL
N dnuovpyia o pwtopeadioTikol mepLexopévov vonuartiknig YAwooag. Iapd avtég tig e€elikelc,
oL Tpéyovoeg Aboelg PpiokovTot akdpo ota apyxlkd oTadia, e oHaVTIKO XOpo yio PeAtivon otnv

evei€ia ko TV akpifelo Twv Topoyopevev PLvTeo VONUATIKAG YAOCCOC.

To Bacikd xivntpo avtig g SuTAwpatikng epyaciog eival 1 a&lomoinon clYXpPoOVeV TEXVIKOV
UNXAVIKNG H&Bnong pe okomd tnv avamtugn evog Pedtiopévou cuaTipatog topaywylkng Pivteo NI
oo Keipevo. XTOY0G HOG ELVOL VO AVTIHETWITIGOVE TIG LITOPKTEG TTPOKATGELS TTOU EVOEYETOL VOL OLV-
TIHETOTIOEL EVa TETOLO cVGTNUA, HETAED TV omoiwv PplokovTou 1 emitevEn LKAVOTTOLNTIKOD PEALGHOD

Ko puotkodTnTag, 1) oNpacloloylkn akpifetor cAAd ko 1 EAAeLym SoBéoipwv dedopévev ENT.

T 10 o6k0md aVTd, ALTH 1) SITAWUATIKT epyocio Slepevvd Hio TPOGEYYLoT oL oLVOLALEL opyLTEK-
Tovikég Pociopéveg oe dikTua YAWOOLKOV peTaoynUatiotodv (transformers) yio tn yAwoouwkn emet-
epyocio kol oe TeXVIKEG veLpwVIKNG addoong (neural rendering) yi peaxAiotikr ontikny ovvBeon.
ITo ouykekpéva, avarbovpe TN mapaywyr fivteo NI and keipevo oe dvo Pripato: IpdTa, xpnot-
LLOTTOLOVTOG opYLTEKTOVIKT] Paciopévn oe petaoynuatiotés (transformers) petatpémovpe to keipevo
(eloodog) oe okeAetikég avamapactaoelg avOpomvng modog (keypoints, é€0dog). Xtn ocvvéyeuwa,
xpnotponolovpe IMapoywyikd Nevpwvikd Aiktva (Generative Adversarial Networks - GANs) yuo
VO TTPALYHOTOTOLGOUVE ATOS00T) TWV CKEAETIKOV akoAoLOLOV ot éva GwTO-peailoTikd cuvBeTiicd
vonuatioth. Télog, akloloyolue TNV aroTeAeopATIKOTNTA TG TPOTELVOUEVNG HeBOSoL ot Tpia Si-

opopeTikd GVUVOAX deSOUEVWV, HECW LOG CELPAG TIELPAPATWV KO HEAETOV XPNOTOV.
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Oewpntiko YrnoPabpo

Avti n Sumhwpartikn xprnotomnolet apytrektovikég Paciopéveg otn Babux Mabnorn - Transformers ko
Generative Adversarial Networks - koL Tpokelpévov vor KaTavorjcovpe TNV AELTOVLPYL TNG TPOTELVO-

pevng pebodoroyiog mapéxovpe pioe oOVTOUN eeENYNOT TNG AELTOLPYLAG OPLOUEVODVY €€ AULTOV.

Apyik&, T Feed Forward Networks (FFNs) eivo ot T1g omAo0GTEPEG APYLTEKTOVIKES VEVPWOVLIKMV
SikTOWV, 610V 1) TANpOodopin péel LOVO TPOG TaL ePTPOG, aItd TIG eLcOdOVG TTPOG TIG eE6d0VG. QoTdTO,
yia dedopéva pe Sradoyikry e€dptnon, 6nwg otn Pvoikn TAdooa (NLP), asontodvton o moAOITAOKEG
opxLTekToVIKEG, Otwg T EavalapPavopeva Nevpwvikd Aiktoa (RNNs). Tae RNNs éyouv pa kukALkn
dour) mov emitpénel oty mAnpodopia va dratnpeital antd to éva Pripa tng akoAovbiag oto emdpevo,
K&vovtag to WOavikd yio epyacieg povtelomoinong yAoooag. Mia edikr) katnyopio RNNs eivol to
Atxtvo LSTMs, ta omoia emtAbovy to pofAnua twv vanishing gradients. Xpnoipomorov modeg (gates)
yloe va edéyyouv mota tAnpodopio Oa diatnpnbel ) B amopprdBei katd tnv eme€epyacio tng akorov-

Biog.

‘Eva Pripo petd too RNNs, Bpickovton o Metaoynuoatiotég (Transformers) ov mpotddnkoav to 2017
ko Pacilovtal ot unyaviopo tpocoyng (self-attention). O punyoviopdg tpocoyng ovvnBwg tpocdidet
v WLOTN T KOAVTEPNG eKPAON oG TV e€apTrioewy HeTaED TV oToLYElwY PG okoAovBiog aAAd kot
mopariniiopd oty ekmaidevon. H apyitektovikn evog Transformer amoteleitol amd kwdikomointég
(encoders) ko amokwdikomointég (decoders), oL omoiol Xpropomolody ToAAATAELG kedpaAég TTPOGOYXTIG
(multi-head attention) yix tnv e€orywyn TAnpodopLidv oo SLapopeTikd LITOGHVOAR OVATAPOCTAGEWV.
St ewkdva 0.0.2 BAémovpe avadvtikd v Baocikr apyitektoviky evog Transformer. O o cuvnbio-

pévog tomog tpocoyng eivou 1) Scaled Dot-Product Attention, 1 omola eprypddetar amd v ekicwon:

QK™

Attention(Q, K, V') = softmaz(
en

W (0.0.1)

omov:

« @Q: Eivow 0 ivakag Tov epotnudtov (queries), ov avTutpocneveL TNV Tpéxovoa epyacio (..

pee A¢En ov Bélovpe vo petadpioouvpe).

« K: Eivau o mivakag twv kAetduov (keys), mov aviutpocwedel Ta oTolyeio Tng akolovbiog e106-

dov.

« V: Elvan o mivakag twv tiuov (values), mov mepiéxel tig mAnpodopieg mov Bélovpe va eEdryouvpe

artd v akolovbia elcddov.
« di: Eivaun ) Siotaon towv kdedidv (keys), otabepd kavovikomoinong

Mo &AM onpovTiky avoadopd oe ovTd To cVvTopo Bewpntikd VTOPabdpo eivar Ta Xvveluktikd Nevp-
wvika Atktoa (CNNs). Meta tnv meplypadn Towv mo BaAGIKOV apXLTEKTOVIKOV OV X PTCLHLOTOLOVV-
tar oty Ene€epyaoia duoikrg TAdooag (NLP), avadépoupe emiong too CNNs, kabog eival e€aipeticd

OYETIKA [e TNV €pevva Hag, TOoO oe eninedo neural rendering kot GAN 600 kot o€ eninedo pose estima-
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Figure 0.0.2: Baouwkr apyitektovikr) Metaoynuatiot and tnv dnpocicvon [67].

tion. Too CNNSs givon po katnyopioe povtéAwv fabidg pabnormg mouv xpnotporolodvTal Kupiowg ylo tnv
eme€epyaoia eLKOVAG, AV KAl PITopolv va epaplooTovV kol e GAleg epyaoieg. To facikd cvoTaTikd
evog CNN eivan iowg to otpopa cuveliEewv (convolutional layer), To omoio xpnotpomotel dpidtpa, Ko-
Béva amd Ta omola éxel éva Eexwplotd oOvolo learnable fapov. Avtoi ta pidtpa cuvelicoovtot pe Tnv
elkova elc6d0V, SNULOLPYDOVTAG TOVG AeyOpEVOLG XapTeg XopakTnploTik®Vv (feature maps). Kabmg to
dixtvo guPabivel, autd ta oTpdpaTa KoTorypddovy oTadlokd o TOADTTAOKO XOLPAK T PLOTIKE, EEK-
LVOVTAG OO TNV QVIXVELOT] OITADV YPOUHOV KoL VPOV GTO OPYLKE CTPOUATH MG TLO TEPITAOKES
avanapoactoelg oto Pabitepa otpodpata. T tn peiworn tng SloTaoNg TV XOPTOV XOUPAKTHPLO-
TIKOV KoL TOL aplOpod Tewv mapapéTpwy, Xpnoorolodvtal LY v oTpopata pooling layers, 6mwg to
max pooling 1) To average pooling. Ta teAikd otpodpata evog CNN eival cuviBwg TANpwg cuvdedepéva
otpopota (fully connected layers), ta omoio petatpémouvv tnv €£080 amd Ta TPOTYOOHEVH GTPOUXTOL

o€ £Voy HOVOSLAGTATO SLAVUGHA YL TNV TOELVOUNGOT).

Ta CNNs eival Loxupd HOVTEAQ, EVPEWS X PTOLLOTOLOVEVA YLO EPYAGLEG OTTWG 1) TOELVOUNGT) ELKOVQV,
N aviyvevorn avTiKeEWEVOY kol GAAeG epyaoieg omTIKNG avayvoplong. Xto mhaicio tng Emekep-
yaoiag Nonpartikng I'Adooag, too CNNs éxovv amodetyBei amotedecpatikd otnv aviyvevon Pacikdv
OTOLYELWV TNG VONUATIKNG, OTTWG TAL OYNUOTR TV XEPLOV, TA OTOLYEL TOL TTPOCOITOL Kot 1 ol
TOL OOUATOC. XTN petddpaot vonuatikig yYAwooag pe Pdomn Pivreo, ta CNN éyxovv cuvdvaotel pe
Transformers otnv BipAoypadio extetopéva. EmumAéov, ta CNNs mailovv kpioipo poAo otnv ek-
TIUNOT) XELPOVOLLODV KOL CTACEWVY, OELOTOLOVTOG TPOo-eKTTadeLpEVa povTéAa Omtwg To OpenPose 1) To
MediaPipe ywa tnv aviyvevon yopoktnplotik®v onpeiov g avlpaomivng moag. Télog, mépa omd
NV avoyveoplot Ko tn petddpao, o CNNs éxovv ypnoipomotnbel kot 6TV mapoywyr] VONUOTIKHG
yAoooa. TaHapaywykd Nevpwvikd Aiktoa (Generative Adversarial Networks - GANs) wov facilov-
tal oe apyrrektovikég CNNs ypropomolobvtal Guxva oty €pevva yio 1) dnpLovpyio peAAGTIKOV

ovvBeTikwv Pivreo NI
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Biprroypadikn Avaokomion

>tn ovvéyela akolovbel g avadvon tng vapyovoog PipAloypadieg yopw amd texvoloyieg NI ko

eldkdTEpa YOPw ad aTéG TOL XPNOLUOTOLOVY TeXVIKEG Mnyavikrig M&Onong.

Avayvopion kot Metadppoaon Nonpatikng 'owoccog

H Avayvopion Nonpartiknig TAwooag opiletal wg 1 dtadikacio amtddoong tewv vonuatey evog Pivteo
NI oe yopaktnploTikég AEEELG-VOTHATA TTOL TO EPUNVEDOLV Gelplakd. ALTEG oL Aé€elg avadépovTal
g Sign Language Glosses otn Piprioypadio ko amthomolodv tnv amddoon vonudtwv oe Pivteo
vonuatikng yAoooag. Amd v GAAn mAevpd, 11 Metddpaon Nonpatikrig M'Awcoag apopd tnv
petadppoon twv Pivteo NI' oe mpotdoelg mpodopiknig YAOCoOG, TPOG TNV KATAVONGT KAl OTd Ov-

Opdoug ov Sev £YOUV OLKELOTNTA e TLG VONUATLKEG YADCOES.

Tig Televtaieg Sekaetieg N AvoyvoOPLOT VONUATIKAG YAWOCOOG €XEL TPOCEYYLOTEL atd pioe TANOwpa
OPYLTEKTOVIKOV Unyxovikng palnong, copmeplopfovopévov tov Eravotappovopevov Nevpovikodv
Awctowv ([3], [8]), Twv LSTMs ([14]), GRUs ([35]) kot twv Transformers Transformers ([10], [9]),
ouvvnBwg oe cuvdvaopd pe T xpron ZuvelkTik®v Nevpwvik®v Aktdwv (CNNSs) y tnv e€aywyn
XOPLKAOV XOUPAKTNPLOTIKOVY atd Tox Pivteo elcddov. Te autrv TNV evoTnTo Bl THPOLGLAGOLE TTLO oLveL-
AuTik& kuping Tig dnpooctedoelg Twv Camgoz et al. [10] oyetikd pe ) Metddpaon Nonpartikrg FTAdo-
o0og (Sign Language Translation - SLT) pe Metaoynpatiotég Adyw tng katvotopiog tng, Tov vPniod

oplOpol TOPATTOUTTOV KoL TNG GYETLKOTNTAG TNG e AVTHV T SLITAWUOTLK.

Apyik& oto [14] mpotdOnxke o apyirektovikn Pabidg pddnong yia to mpodPAnpa Tng averyvopLong
vonuatikng yaoooag, Paciopévn oe pikpa e€etdikevpéva vodiktua, tar omoiar ovopalovtal Sub-
UNets. H apyirextovikn pe SubUNets Boaciletar otnv amoodvBeon tov moAbmAokov mpoPApatog
TNG VALY VOPLOTG VONUATIKNG YADCOOG PECW TPLOV Pactkdv ototyeiwv: Zuvellktikd Nevpwvikd Aik-
oo (CNNs) yioe Tnv eEaywyn xopLKov YopokTnplotikev otd ta video frames eitod6dov, BLSTMs yio
TNV Sty ELpLoT TWV XWPLKOV eEapTroenv TV dedopévwy pe TNy Tdpodo tov xpovou kot Connectionist
Temporal Classification (CTC Loss yio tnv diadikocio exkpdbnong tov povrédov oe 6OvBeto seq2seq

pOPAnua (pe petafAnTd prkn akoAovbidv elcddov ko e£6d0v).

270 [8] TumomowOnke n Metadpaon Nonpatiknig M'Adcoag (SLT) wg mpofAnpa pabnong arxorovbiog-
oe-akolovbia (seq2seq). Avtr n mpocéyylon xpnoipomotel CNNs yio Tnv e€oywyn YopLKOV Yopok-
TNPLOTIKGOV artd Pivteo vonuartikig yYAwoooag, ta omoix ot cuvéyelo Tpodpodotodvtal oe Evo TA-
G0 KOOLKOTTOLNTI-0UTOKWOLKOTTOLN T UE UNYXOVIGHO TPOGOYTG Yo Th dnutovpyio petadpdoewy mpo-
dopikrg yYAhooog. Ta melpapata éywvav ot tpetg dradopetikég dadikacieg: Gloss-to-Text (G2T), end-
to-end Sign-to-Text (S2T) kou Sign2Gloss2Text (S2G2T), ) omoix xproipomotei ta gloss annotations wg

eVOLAUEGO CTPOLLCL.

Télog, oo [10] xpnopomoiOnkav Transformers t6c0 yiot TNV avayvoplon 660 kKoL i Tr HeTaPpao
vonuatikng yAwooag. Ou kwdikomontég emeEepydlovtal akolovbieg Pivreo vonuatikig yAwooog

ylo v mopdyovv embeddings mov kataypddpouvv 1060 XwpLkd 0G0 KoL XPOVIKE XOPAKTNPLOTIKE, EVE
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Ol ATTOKWALKOTTOLNTEG TTapdryouv mtpotdoels tpodopikng yrAdooog. H andieia CTC ypnoipomoteitol
ylx va StevkoAvvel T pabnon xwpig pntda dedopéva evBLYpAUHLONG, GLVSEOVTAG TNV AVAYVOPLOT)
twv glosses pe tn dnuiovpyia kewpévov. To metpapatikd omoteAéopata twv npoavopepBéviwv ep-
YOOV arrodelkvoouv OTL 1) Xprion TANpodopldv Twv glosses wg evdidpeso Pripa yio n petadpact
TPOPOPLKNG YAWGGAG PEATIOVEL TNV otd0GT) TOL HOVTEAOV, WGTOGO 1) eEdpTnoT outd aLTA T oY OAL
(gloss annotations) pwopei va eivar meploplotikn oe peyoddtepa cOvora dedopévwv, kabdg amontodv

oavBpomvn emtifAreyn yio tnv dnpovpyie Toug.

Avovupornoinon Bivteo Nonpatikig F'hoooog

H avevupomroinon Pivreo vonpatikig YAOooog opiletal wg 1 NAEKTPOVLKY KAALYY TNG TOUTOTTAG
TWV VONUATIOTAOV, 010U autr] kpiveton amapaitntn. H avovoporoinon Bivteo NT' fpiokel edappoyn
ot dapopa mhaiola, 61wG 1) Tpootacio TG wTkNg Lwng Twv Kwddv kot Baprrowv atépwy ce Si-
oS TLOKEG TAATPOPUES, AKAUSTIHOTKEG £PEVVEG KO VOULKEG TLEPLIITOGELS OTTOL GL{NTOVVTOL EVALGONTEG
mAnpodopies. O vonuartikég yYAdooeg eivar YAdooeg omtikég kot facifovion oe peydro Pabud otig
EKPPAGELS TOV TTPOGOITOV, TIG KIVAGELS TOU COUATOG KL TO GXNHOTO TOV XEPLOV YA TN UeTAdOOT
TOL VONUOTOC, KAVOVTAG TIG TUTLKEG TEXVLKEG AVwVLHOToinong avamoteleopatikés. [Iponyodpeveg
épevveg [32] Sakpivouv Toug SradopeTikovg TPOTOULS Pe Tovg omoiovg éva Pivteo pmopel v avwvo-
pomownBei oe dvo xatnyopieg: avtég mov aokpbmTovy 0AOKANPO 1} HEPOG TOL PivTeo Kol ALTEG OV
nopayovv éva ouvBetikod Pivreo. H ammokpuym pmopel va emitevyBel péow tng 00Awong tunuatwv
NG elkOvag 1) pe v epappoym evog Gpidtpov pixelation ota yéplo kKol To GTOU TOL XPHIOTH KOTA TN
dudpreta TnG oxetikng vonuatiknig ékdppacng. O mpooeyyicelg avamapoywyng meptiapfavoovv tnv

oAoKANpwTIKY emavacOvBeot) Tov Bivteo eite pe nBomolovg eite pe vtoloyloTikd avatars.

Sy Biploypadia evromilovpe apxetéq evdiadépovoeg peBddovg mov mpooeyyilovv v avwvo-
pomoinon NI' péow avamapaywyng xpnotporowdvrag texvikég deep learning. H pébodog Cartoonized
Anonymization twv Tze el al. [65] mpoteivel tn yprion povtéAwv ekTipnong oTdong ylo Ty ouTo-
potn dnpovpyio yopaktrpwv TOITOL avatar wov ektedAovv vofpato. H diadikacio mepiiopfaver tnv
e€aywyn oKkeAETIKOV akoAoLOL®OV otd To opyLkd Pivteo Ko TNV emovatomoféTnor] TOLg GTOV Yapok-
mpa Gfatap péow evog alyopibuov petadopdc okeletod oL cTOXEVEL 0T drxtrpnon TG opOrig
okeheTikng doung. Eedevyovtog ammd ta avatars, o Neural Sign Reenactor [64] eiodyer pia texvikn
avamapoywyng Pivreo Paciopévn oe GANs, eldikd oxedioaopévn yia Bivteo vonuatikng yAOooog.
Metadépel TIG ekPpAOELS TOV TPOCHDTOV, TIS OTAGELS TOV KEGAALOD KO TLG KLVGELS TOL COUATOG
amd éva Pivteo-mnyn oe éva Pivteo-otoxo, Siacdaiifovtag Tn SaTrpnon TwV AETTOUEPELOV TOV
XELPOVOULOV KoL PEATLOVOVTOG TNV GPWTOPEAALOTIKT AVATOPACTACT] G EPAPUOYES AVWVVIOTTOLNGTG
vonuUatikng yAwooag. Xe pio AAn dnpocievon, mpoteivetar to ANONYSIGN [55], pio apyitekTovikm
1oL ovvdualel Variational Autoencoders ko (VAEs) kot GANs yia tnv adaipeon tng eppaviong tov

OPYLKOL XPHOTI KO AVTIKATAGTHOTG He GUVOETLKO VONHATLOTH.
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Hopaywyn Nonpartikng M'eoocoag

H Swdikacio tng Mapaywyng Nonpartiknig F'Adooag and keipevo (Sign Language Production - SLP)
IOV P0G KTTOOXOAEL e auTh) TNV SuTAwpaTiKy pitopel va oplotel g e€ng: Aedopévng piag tpodTacng
KeWévou podopikng YAdooag (ei0080¢), To HOVTELD pnYoviKTG paBnong Topdyel To avtioToryo Piv-
TEO VONHATIKAG YADOOo T oG (§£080G). Ze avtr) Tnv evotnta, eEeTA{OVIE GUVOTTIKG TTPOYOOHEVES EPEVVEG

YOpw amd Tnv topoywyn NI atd keipevo.

OL mpwteg texvoAoyieg mapaywyng vonuatikig yAoooog Poaciloviav kupiwg G CLUGTHRATO
ovallTNonG PpACE®V KL AVTLOTOLYLOTG TPOTAGEWY, KABMG KL € LITOAOYLOTLKK TTatporyOpeva avatars
yla TNV mapoywyn Tov Pivteo vonuatikng yAwoooag. IMapadeiypota amd tétola avatars eivor 1
Tessa kot o Simon, tng Ppetaviknig vonuatikig yAowooog. Ilapdlov mov TETOlEG TEXVIKES EXOUV TNV
dvvatdtnto va metvxaivouy vYNAd peaiiopd, ouvvibwg Tig amodedyovpe emeldn 1 akpifeld Tovg
e€aptaral oe peydho Pabuod amd xpovoPopa annotations ko awodOGELG VONUATWV, EVE TR TEPLOPLO-
péva chvola mpo-katoyeypappévev dedopévev amoteAovv v Pactkdtepr npdkAnomn. HapdAinia,
npémel va avodpepBoipe ko ot Stpopa cvoTHpATA YPOPHG TWV VONUATIKOV YAWGo®V 0Ttwg ASCII
Stokoe, HamNoSys kot SIGML mov éyouv eniong xpnowomrondei otnv mapaywyn cvetnudtwyv SLP,
O6mwg o1o [34]. 1N ocvvéxelwn, oto &pbpo [54], o Saunders eichyel TV TPOTN op)LTEKTOVIKT PaoLo-
pévn oe Transformers yio Tnv end-to-end mopaywyn vonuatikng yAdooag amd dedopévo keipevo. H
GUVOALKT apXLTEKTOVIKT TwVv Metaoynuatiotdv NI paiveton otnv eicdva 0.0.3. Enerta ortd v mpw-
tonoplakt dovAeia tov Saunders £xouvv akoAovOrcel apkreTEG SOVAELEG TTOV ETTLYELPOVVY TNV TTAPAYWYT

NT amd keipevo péow twv Transformers, 6mwg ot [56], [60], [43].

GLOSS  --------- - |
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Figure 0.0.3: Apyitektovikr] Progressive Transformers: Ilpotn apyitektovikn yia SLP pe petacynuoatiotés,

xpnowormotei wg eviidpeso Pripa ta glosses.
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Metd tn dnuovpyio tng akolovBiog kopé, TPONYOOUEVES EPEVVEG XPTOLUOTOLODV TTAPAYWYLKESG
apylrektovikég 0mwg GANs, VAEs 1 Diffusion models ywa ) ocOvOeon peahiotikodv Pivreo. T
mopdderypa, oto [60], To diktvo pose-to-vid cuvdualel évav kwdikomointr eikovog pe GAN yio
dnuovpyia peaioTikadv Bivteo amod avBpamiveg otaoelg. Xta diktva SignDiff [18] kou Neural Sign
Actors [2] xpnowomototvtat Diffusion Models yia tn dnpovpyia peaiiotikodv 3D avatar mov ekteAovv
vorjpate. T v a€loddynon tng moldTnTog TG TAPAYWYNG VONUATIKNG YAOGGAG, XPTCLHLOTOLODV-
ta petpikég 6mwg 1) BLEU kot ROUGE a6 tov topéa tng ene€epyaoiog dpuoikng yAwoosog (NLP), ot
o7oleg HeTPOUV TNV OpOLOTN T HETAED TNG TopayOpeVNG TpoTaong kot TG avapopdc. Emiong, xpnot-
pomoteiton ko 1 texvikry Dynamic Time Wrapping (DTW) yia tnv edpeon g BéAtiotng evbuypdy-
pong petad g mapoyopevng akorovdiag kat tng akorovbiog avadopdg.

IIpotewvopevn MeBodoroyia

310 kepdrowo avtd Ba meprypdfovps v mpotewvopevy pebodoroyia yi tnv Iapaywyn Pivteo
Nonpoartikrg F'Adooag amd keipevo. Ztoxog pog eivat 1 dnpovpyio evog LOVTELOL PnYoVIKTG Hdbnong
1ov B déxeTal wg eloodo pia Tpdtoon Kewévou kot Ba mapdayel To avtiotolyo Pivteo vonuartikng
yAwooag. A’ 660 yvwpilovpe, avth eivar 1) TpodTn dovAeia yia tnv maporywyn EAAnvikrg Nonportikrg
T\booag, Paciopévn oe Babud MaOnor. T va vAomoujcovpe to cOGTNUA pog, dnpovpyovpe d0o
Srokprra Pripoata mapaywyng ENT. Apyikd, xpnoipomotoope diktva Transformer yia tn dnpovpyio
SLodAOTATOV CKEAETIKOV 0KOAOLOLOV 0td TO Keipevo elcOd0ov. XTH GUVEXELY, X PTOLHOTOLOVUE Evay
Neural Renderer Baciopévo oe GANS yia va petatpéovpe tn dnpovpynuévr okeletikn akolovdia oe
évar oLVOETIKO GWTOPEAALGTIKO PLVTEO VONUATIKTG YAWMGGAG, TO OTOLO X PTOLUOTTOLEL VOTUXTIOTES OO
T0 apyLicd oVVoAo dedopévwv. Ztnv Eikova 0.0.4 ametkovifovol ta KOpLot GTOLYELR TOVL TPOTELVOUEVOL

dukTOov.

Apxik&, 10 otddio mpoemeEepyaciog dedopévev mepthapfdver tn Snpovpyia Tevydv KePEVOUL Ko
akoAovBudv molag mov Ba xpnoipomonBoiy yia tnv ekmaidevon tov povrélov Transformer. Xpnot-
pomototpe SaBéoipa aOvora Sdedopévav vonuartikic yAwooag, 6nwg to How2Sign (Apepicavikd Ay-
yAwé), To Elementary23 (EAAnviké) ko to PHOENIX14T (Ceppavikd). H e€aywyr] xapoktnpLloTik®v
yivetauw xpnoipomowwvrog to MediaPipe Holistic oe k&Be chvoro dedopévav, ko to apyticd 578 onpeio

avapopdg (landmarks) petdvovtal oe 191, dnwg e€nyeiton o emdpevn evotnTo.

Ta dnpovpynuéva Lebyn ot GLVEXELR XPTCLHOTOLOOVTOL Y TNV ekTtaidevot) evog Siktoov Pabidg
nabnong Paciopévou otnv apyikt apyitektovikr Transformer. Exovpe eVoOUATOOEL P VEQ ATTOAELOL
petadppaong amd Pivreo oe keipevo (pose-to-text SL translation loss) amd tn xprion evog mpoek-
moudevpévou povtédov SLT Paciopévov oto state-of-the-art povrédo [10]. H xprijon twv texvntdv
YAwooikov oxolacuov (gloss annotations) pécw peydAwv yAwooikov povtédwv (LLMs) daiveton
YEVIKA vou eVioyVeL TNV otdd0GT) TOL HOVTEAOL Kol va petwvel TNV Ae€ikr) moAvmAokotnTa TV de-

dopévav.

‘Emteita, 1 apyLtektoviky yia pwtopeaiiotiky ovvheon Aapfavel og eicodo Tig gvbuypoppiopéveg

elkoveg pe ypwpatikd koduwa NMFC ko Snptovpyei éva Pivteo vonpartiotr mov ektehel tnv Gppdon,

27



List of tables

Data-Driven
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Figure 0.0.4: IIpotewvopevn diadwkaoio mapaywyrg pivteo NI and keipevo: (Idvw) Mopoywyn okeleTikng
noloag: Xpnowomowovpe transformers yu vo mapé€ovpe pia woéla vonpatikic yAwoooag oe evdidpeor ava-
nophotoon pe onueia evdiapépovrog MediaPipe. To diktvo ekmoudevetan amd éva dBporopa MSE kai pose-to-
text anwiedv. (Katw) Potopeaiiotikn TOvOeon: Akolovbovtag tnv akorovbio molag mpaypatomolovpe
neural rendering kot cvvBétovpe To pwTo-peaAioTikd Pivreo vonuaTIoTH.

OVAAOYQ |LE TOVG XELPLOTEG TOV OPXLKOL cLUVOAOL dedopévwy. O neural renderer ypnoipomotel cuveAik-
Tk vevpovikd diktua (CNNs) pe enineda viroderypoatoAniog (downsampling) kou residual otpodpata

yto T oOvBeon evog Pivteo vYmAng moldtnTag amd ta dedopéva molag.

Amo 0 keipevo oto Pivieo

Ipoto Pripa tng pebBdSov pog eivon oL petatponr twv apylkev text embeddings tng elcddov oe
oxehetikég akolovbieg vonpatikic yAdooac. o va vAomoljocouvpe avTd TO KOUUATL TNG OPXLTEK-
Tovikr|g Ba xtiocovpe mhvw 6To open source Progressive Transformers diktvo [54]. Tpomomolodye tnv
OPXLTEKTOVIKT OoTE Vi £xeL TV e€Ng Aettovpyios: Apytkd, To keipevo kwdikomoteital pécw tov Encoder
TOV PETACYNUATIOTH. XTI GLVEXELX, TO Kwdlkomotnuévo input mepvael péoa otd tov Progressive De-
coder, o omolog xpNoLHOTOLEiTAL YO TNV TApaywyT TNG ovveyolg akolovdiog kapé. O progressive
decoder eivou éva auto-regressive povtéAo mov mopayel éva kopé okeAletikng Ol oe kK&be xpovikd
Briper, poli pe pior tiun petpner wov dnAdvel Béon oto cuvoArikd Pivreo. To Zyrjper 0.0.5 deixver Tnv
OPYLTEKTOVLKT] TTOV Y PTCLUOTTOLOVHE YL TNV LETATPOTH TWV LGOIV KEWHEVOL GE GVVOAX OKEAETIKOV

akohrovbidv. H é€0dog Tov mpoodevutikot ammokwdikomointh popel va meprypadel amd v e€icwon:

[Qu—i—la éu—i—l] = DP(.;U|.;1:U—17 Tl:T) (0.0-2)
OMOV [Jut1, Cut1] TO TOPOYOHEVO Kapé KoL T HETPNTH Kopé 6TO Xpovikd Prjpo u+l, ko ju oL

TOPAUETPOL TV TTPONyoLpevwy frames. 2tn cuvéxel, To GLUVOALKO pHoVTELOD ekmatdeteton Paoel Mé-

oov Tetpaywvikod Xdpaipatog (MSE error) petafd diadoxikwv kapé cOppwva pe v eEicwon:
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Figure 0.0.5: Transformer-Based Sign Language Production (Text-to-Video) Module

Teacher Forcing kot Auto-regressive Decoding

Y mpornyovpeveg pebddoug, o povtéla Transformers exmondebovToy XproLHOTOLOVTAG TNV TEXVIKT
teacher forcing. Katd avtr tnv teyvikn mapéyovpe oto povtédo ta ground-truth embeddings twv mtpo-
NYoOpevVeV Kopé TpokeLpévou va mopdEel tnv mpoPAedn tov Tpéxovrog kopé. XProLLOToLOVTRG TO
embeddings avadopdg wg eicodo, yivetal edpikt ) mapariniomoinon tng ekmaidevong kabmg ToAAég
ovaropootaoelg eivon 1dn dtabéoipeg ToawtdYpova amd TIg eEaywyEg ov eiyaype kdvel oty Stopdp-
dwon tov cuvorov dedopévwv. Ilapdro mov 1 texvikn teacher forcing éyxel Seikel tkavomoinTikég emido-
oelg oe oOvora dedopévwv pe meplopiopévo AeEloylo, 6mwg to PHOENIX14T, otnv mepintoot] pHog
duokoAebetal |Le TO eVPOTEPO KAl TTLO TTOLKIAO GOVOAO dedopévwv Tng EAAnvikng Nonpatiknig I'Aovcoag
Elementary?23. Tevikd, evd to teacher forcing mapéyel kadvTepn otabepoTnta oty ekmaidevon Ko
e€aocdariler evbBuypoppion petafd elo0dwVv Kol e£6dwvV, eldikd ota opyLkd oTddio NG ekmaidevonc,
TOPoLGLalel oLy va ToAvdpounon otn péon Ty opdApatog kot to diktvo dev eivar oe Béon va

ook apper oatd ta Stk Tov odpdApata tpoPAredng.

Avtifeta, otnv auto-regressive decoding exmaidevon, ot akorovbieg twv frames dnpiovpyovvron Si-
adoyikd katd tn Sidpkelx TNG eKToUdELONG. e QUTH TNV TPOCEYYLOT], TO HOVTELD TtpoPAémel kaBe
frame Paocwlopevo ota embeddings mov éxel mponyouvpévag dnpovpynoet, Kot Oyt oTLG oavapopEg.
Ipwv amd v epoppoyn g ovvaptnong amoieiac MSE (Mean Squared Error), oAdkAnpn 1 akoAov-
Bio vonpartwv dnpovpyeiton amd ta embeddings keipévov, pipovpevn ammoteheopatiké tn Stadikacio
tov inference. Avtéd emitpémel 6To povtédo va paber v dopBwvel ta Sikd tov opdApata avti va
Baoileton oe mpaypatikég etoddovg. Qotdoo, autr 1 dadikacio ekmaidevong eival oNUAvTIKA Lo
xpovoPopa ce oyéon pe to teacher forcing Adyw tng oetplakrig dnpovpyliag frames kai g amovciog

moparinionoinong.

TNa va wooppomricovpe PeTo€d otodOTIKOTNTAG KO OUTOTEAEGUATIKOTITOG, YPTCLLOTTOLCOHE HLoL

vPpLdLKN TPoGEYYLoT), EKTOLOEVOVTOG TO HOVTEAD XPTICLHOTOLOVTAG TIG TeXVIKEG teacher forcing ko
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auto-regressive decoding yia évo vtooOvolo eox®v TNV kabe po. Svykekplpéva, Eexvoope tnv
ekmaidevon pe teacher forcing yix v aflomoijcovpe ) otabepotnta ko TNV TOXOTNTA KOTA T
Kkploo opytkd otddia tng ekmaidevong. Avtod e€acdalilel 0Tl To povtédo pobaivel amoteAecpaTiKd
T1G Paoikég eEapTroelg petad dedopévwv. Xtn ovvéyeln, petafaivovpe oe auto-regressive decoding,
EMLTPETOVTOG GTO HOVTEAOD va p&bBel va dopBmvel T dik& Tov cPaipata. Avth 1 GTPATNYLKH GUV-
dualel Ta mAeovekTApATH Kol TV 00 pebodwv, odnywvtog oe PeATiwpévn amddoon e oOYKpLOT e
TN xpnon k&Be pebodov Eexwplotd. Se avth T SITAWUATIKT, 6TOX0G HOG ELVOL VOL TTPOLYLOTOTTOL]GOUVLE
TELPAPATO e SLAPOPETIKES LoOPPOTTieg Kot TV dV0 peBOdWV, TPOKELUEVOL VO ETLTUYOVLE TAL KAADTEPQL

dLVOTA ATTOTEAEGUAT GTNV TOPAYWYT] VOTUATIKNG YADCC OGS,

Texvnt Hopoywyn Glosses pe Data-driven pé@odo

3TN cuvéXEL 6TO TAALOLO TNG €PEVVAG HOG, eEepeuvioape TNV SLVATOTNTA VO XproLpomotjoovpe off-
the-shelf peydia yAwoowkd povréla yio v Snuiovpyrioovpe gloss annotations yio To KeLHEVIKO KOU-
HATL TOV GLVOA®V Sedopévv Hag. ALTr 1) TEXVIKT HELOVEL aloONT TNV Ae€Lkr) TOALTAOKOTNTA TOV
KELLEVOL, oyvodvTag ULKpEG AéEelg Omwg apbpa 1 avtwvupieg mov dev ekdppdlovtav oto Pivreo NI,
daTNpOVTHG TO GLVOALKO VOnua. Xtov mivaka 1 daivovton kdmolx Tétola apadeiypoto eEaywyng
glosses, Ta omola cuykekpLpéva £xovv mpokvPeL atd to gpt-40 APL Yav evdidpeco Pripa, o deibovpe

OTO TELPAPATA pag OTL prropei va emidépet OeTikd amotedéopata 6To dikTvo mapaywyng NT.

Table 1: Iapadeiypata E€aywyng Gloss amd keipevo pe YAWOGIKE HOVTEL

Prompt Transform this Greek sentence into Greek Sign Language gloss: "o &€ovag coppetpiog
Xwpilel éva oxnipa oe dvo oo uépn”

Gloss AEONAY XYMMETPIA XQPIZEI X XHMA AYO IXA MEPH

Prompt Transform this Greek sentence into Greek Sign Language gloss: "cupmAnpove tov mi-
voko VITOAOYILOVTOG TPATA TIG TIHEG GTO TEPLTOL EAEYXW OTN GUVEXELX TOVG LITOAO-
YLopHOUG pov”

Gloss SYMIIAHPONQ ITINAKAY YIIOAOITZQ TTPQTA TIMEX IIEPIIIOY EAEI'XQ META
YIIOAOTTEMOI MOY

Prompt Transform this Greek sentence into Greek Sign Language gloss: "mapotnpd kot
cuveyilw To potifo "

Gloss ITAPATHPQ XYNEXIZQ MOTIBA

Am6 to Pfivreo oto KeEipevo

T tnv vhomoinon awtob Tov TUHHATOG XTilovpe Thvw 6To open source Sign Language Transform-
ers Kol TPAYHATOTOLOVE TIG e€NG Tpomomolroelg: [a va authomotjoovpe tn cuvoAlkr dradikacio
ekTTaidevong oL ekTEAEL TOGO TNV AVAYVOPLOT] 060 KOL TN UETAPPACT] TNG VONUATIKNG YADCOAG,
dlatnpovpe HOVO TNV QOAELX TOL CXETI(ETAL [e TN HETAPPACT), [e OTOXO Vo ENMLTOXOVHE TOL ETL-
Bupnté atotedéopato pEcw evog dpecou povtédov sign2text (oo Pivreo oe keipevo). O kOpLog 6TOX0G
TOU TUNHOTOG aLTOD eival va BeATidoel TNV akpifelar kKot vor amoTpéPel To HOVTEAO QTO TNV TTOALV-
dpoéunon ot péon tiun tng tolog (mean pose), kAT oL cupPaivel cux VA Otav N exmaidevon yiveton
povo pe tn oovvaptnon anwiewng MSE (Mean Squared Error). EmiumAéov, 6to)0g elvon var amodety-
Bel 1 tkavOTNTA TOL HOVTEAOL Vi EVIGYDEL TNV TToldTN T TNG eVB0TEPNG petddpaong. To Xxfua 0.0.6

delyvel TNV apXLTEKTOVLIKY OV XPT|GLLOTTOLODHE YO TNV UETATPOTH TV OKEAETIKOV akoAoLOLOV oe
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keipevo. H amolela petddppacng, n omola eivor amopaitntn TO60 yio TV eKaidevct 660 Ko yio TNy

a&loroynon, dopopdmvetal wg eEng:

U D
Ly =1- ][] Y. p@d)p(wi|h) (0.0.4)

omov p(d) eivon ) mbavoTnTa TC AéEng w? oo fripa amokwdikomoinong u ke D to péyeBog Tov Aek-
thoyiov, evd vtohoyilovpe To ngl p(wl|h,) pe Sadoxikn edpappoyn g amideiag CTC oe emimedo

frame yuo k&Be AEEn.

Spoken Language Sentence

Word Embedding

Figure 0.0.6: Transformer-Based Sign Language Translation

JuvoAika, éxovpe dnpovpyroel éva Suadikd cVOTNHHA HETAPPAOTIG TTOL PITOPEL VO TTOPAYEL ETTLTUX MG
oKeAeTLKEG OKOAOLOIES VONUATIKNG YADOCTHG OTTO KEHEVO KOl OTI GUVEXELR VO LETAPPALEL AVTEG TIG
Topayopeveg axolovbieg micw oe popdr) KEWPEVOL, TO OTTOLO Y PTOLUOTOLELTAL TOGO YLaL EKTTALOELTLKO
000 KoL yla oEloAoyiko okomd. To Zxnua 0.0.7 deiyvel T Aoyikr por) Tng meplypadopevng diadikaciog

peTddpaongs, xpnoponotdvtog amokAelotiké Transformers.

{
text USSR e —_ Pose-to-Text —  translated
Input SLP Transformer Module 'Generated SLT Transformer Module text
Sign Sequence

Figure 0.0.7: Apyitextovikn petddppaong dbo katevbbvoewv

Pwropeaiiotikrn cOvOeon

3tn ovvéyela, oav emdpevo Pripo O Bédape va petatpéPoupie TIG okeAeTIkEG akoAovBieg o€ va peah-
1otk Pivreo vonuatioTh y va eival o amodektd amd tov xpriotn. [ tov okomd avtd akolov-
Bovpe tnv Head2head [37] apyirextovikr] yuo neural rendering, 1 omoio eixe amodetyBel amoteleo-
HOTIKT] KoL 6TV SOVAELX YLOL AVOVULOTTOINGT) VONUATIKNG YAWooag [64]. To clotnue, cuvonTikd,

ooTeAeiTon otd Tor €ENG TUAOTOL:

« Generator (G): ZuvBétel To t-ooT0 frame yprnoipomodvTag T0 TwpLvd input, kaBdg ko Ta inputs

KoL outputs Twv VO TPONYOVUEVWV XPOVIKGOV PUATWV.
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« Image Discriminator (D7): Atokpiver peto€d aAnbvodv kot cuvOeTIKdV Kopé.

+ Sign Features Discriminators: ZEeywptotol Discriminators yio ta Hati, 6TOPX KoL XEPLaL, oL gi-

0080G TTPOLYLLOTOTIOLELTAL e TTEPLKOTTH YOPW atd T onpeio evdiadpépovtog.

« Dynamic Discriminator (Dp): Xpnowomoteitor yior va Stakpivet Tig pn puoikég mrikég peta -

GELG AVA T KOPE.

H ovvolwr) ouvaptnon anodielag yia va ekmoidevtel to diktvo dote va evBapplvel tnv Sidkplon

peTo€d aAnOvrg- Yedtikng e€E630v Ko v Topayel tkavoronTikd aotéAecpa, eival n e€ng:
L= L5+ A\geLE + Meat L5 + Apace L5 (0.0.5)

Hewpdpata

310 keparoto avtd Bo provpe oe peyahbTepn AemTOUEPELD Yot T SLAPOPOL TEYVLKA XOPAKTNPLOTLKA
(exmaidevon diktdwv, chvola dedopévwv) Tng pnebddov eved emiong Bo mapovoitdcove AVAALTIKA T

QTTOTEAEGUATA LLOLG.

Yovola Aedopévav

Iopodro mov vrdpyovv kdmowx large-scale cOvora dedopévwv vonuatikng yroooag Stabéoio yio
petappoon (Open-ASL [57], Youtube-ASL [66]), povo Atyootd omd awtd éxovv yprotpomotndel kot
YLOL T1 GUVEXT] TTOPOYWYT] VONUATIKNG YAOooG ad keipevo. Metd amd mpooextikn e€étaon twv

emAOYOV pog yio dnpocing Stabéoipa obvola NT, kataAnEope otig akdlovbeg emAoyés:

« EAAnvikr) Nonuatiwkr) TAoooo: Xyetikd pe tnv ENI, to Elementary23 [68] mepilopfdver
Cevyn petadphoewv Paciopéva oto emionpo mpdypoppa omovdodv Tov EAAnvikod Anpotico?
YxoAeiov xou éxel ypnotpononOel yia n HETAHPOAOT) VONUATIKNG YADOOOG HE HETACYNUATIOTEG
(transformer-based SLT). To mepiexopevo Tov droxwpileton pe fAoT TO AVTLKEILEVO TOV TPOYPAL-
potog omovdwv (my. Mobnuatwd, EAAnvikn TA®cow), yeyovdg mov pog emTpémel va mpory-
L TOTTOL)COVE EKTTALOELOT) TOUPAYWYNG VOTHATIKNG YAMOoaS 8k yio kaBe avTikeipevo. Aev
éxeL xpnoworownBei axodpn otnv epyacia Hapaywyng Nonpatikig TAdcoog kot eival évo oo

ta Alya large-scale covoha atnv EAAnvikn I'hdooo.

« Apepicavikp Nonpartikr) 'Adooo: To How2Sign [16] eivon éva multimodal cOvoAo dedopévwv
ovvexotg Apepikaviknc Nonpatikig IAoocag (ASL). Amotedeital amd éva mopdAinio corpus 80
wp&V Plvteo vonpatiknig yYAdooag wov mepthapfévouy opthia, ayyAkég petaypadég kot fabog.
To mepiLeyopevd Tov aoteAeiTan KLPLG ad exmondevtikd Pivteo ko tutorials.

« Teppovikr) Nonpatikr) TAdooa: To PHOENIX14T [36] eivar éva oOvoro dedopévwv tng Tep-
povikng Nonpatikng I'Adooag (GSL) mov mepthapfavel ekTOUTEG TPOYVWONG KALPOD OO TO
2009 ¢wg o 2011, cvvodevpéveg amod gloss annotations. Eivor to odvolo dedopévwv ov xpnot-

pomoOnke oTIg Tponyoveveg epyacieg Twv Saunders ko Stoll ([54], [56], [60], [61]), ot omoieg
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NTAV Ol TPATEG OV AVTIHETOTLONV TNV peTddpact kot mapaywyn NI' ypnoworowdvtag vevp-

wvika diktva yia neural machine translation.

Dataset Language Year Video Text Gloss
PHOENIX14T [36] German SL 2014 v v v
How?2Sign [16] ASL 2021 v v X
Elementary23 [68]  Greek SL 23k v v X

Table 2: Zvola Aedopévmv yio VONUATIKEG YADOOES

Efoyowyn Xopaktnpotik®v

Xpnowomotovpe to MediaPipe Holistic yio tnv e€aywyn okeletikdv onpelwv avadopdg ot kdbe Piv-
teo NI' ard tar oOvora dedopévwv ov mpoavadépOnkav. To MediaPipe Holistic xpnoipomotet po
Srdikcaoio eme€epyaoiag diadopetikmdv meproxdv evdiadpépovtog (ROIs) péoa o€ por etkdva yiow vo
voAoYicelL CUVOALKA £wg Kol 543 onpeio avadpopdas. Avta mepihapfavouvv 33 onpeio avadopdg yio
T1 GTAOT) TOL COUATOG, 468 cnueia avapopds Yo To TPOCWTTO Ko 42 onueior avopopag yor To XépLa
(21 ava xépr). To MediaPipe Holistic Aettovpyel povo pe tnv CPU, amauntdvtag epimov 3 devtepdhenta

yio TV eme€epyaocio kabe kapé.

TNa v emitoyOvovpe n Sradikacion ekmaidevong, VTOSELYHATOANTTOVE TOGO T OTpeiot AVadOPAG
NG 6TAGTG TOV COUATOS OG0 KAl TOL Tpocmov. Ta Tar onpeia avadopdg tng mdlog, emAéyovpe
TaL 8 XOPOKTNPLOTIKE Onpela Tov epLAapPAvouy To PéPT TOL CAOUATOG TOL EIVOL ATAPALTNTA YL
éva Pivteo SL, OTTwG 0 KOPHOG, OL ayK®dVeg Kol oL kaprol. i ta onpeia avapopdg Tov Tpocimov,
emAéyoupe 141 avti yio 468 onpeio avapopig, To 0ol TEPLEXOVV OAEG TIG OTOpaitnTEG TANpOdOpieg
YlOL TO TTPOCWITO, OTWG TO GTOUA, TA PATLAL, 1) HOTH Ko 1) TTepipeTpog Tov mpoommov. Ta kdde xépt,
dratnpovpe kat ta 21 onpela avadopdc. Avtd pag pépvel oe Eva obvoro 191 onpeiwv avadopdg, avti
yla o apxké 543 onueio avapopdg tov MP, mov amotelel onpavtikr peiworn. TéAog, 1 cuvolikr

akohovBia onpeiwv avadopdg mov eEayetal yio k&Be xapé opileTon wg eEng:

Pf - [aleft hand| ‘am’ght hand‘ |aface| |apose‘ |Cf] (0-0'6)

omov 1o Py eivou 1 axolovbia onpeinv avapopdg yix To f-00T6 kapé, To ¢f eivar 1) TiU TOL pETPNTH
7OV Kupaiveton otd 0 éwg 1 ko vtodetkviel T oxetiky Béom Tov kapé, ko to || elvor To cOpPoro Tng

GLVEVOOT|G.

Awaxeipnon ITolag

Metd to apy ik Prpa tng extipnong otdong Kot 1 Stopdphwor Tov cuVOAOL SedOUEVOVY YA TO HOV-
téAo Text-to-Pose, mpémet emiong va wpoetopudoovpe ta dedopeva yia tn Siadikacio Neural Rendering.
Aedopévov 0L kabe cvoro dedopévwv mepLéyel d00 1} TEPLETOTEPOLG SLPOPETLKOVG XELPLOTES, OTAV
TPOYUATOTOLOVHE HETAPOPE KIVIONG aItd TOV €vay 6Tov GAAov, Tpémel va AaPoupe voyn mibaveg
dadopéc ot cwpatiky Tovg avartopin 1 dStapopég ot Béon TG KApEPUG GE OXEDT LE TO COUA 0T

apxtkd Bivteo.
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T to Aoyo avtd, mpocappdlovpe peBodovg petadopag molag yio to onpeio aevadopdg Tov TPocOTOUL
KoL ToL oopatog Eexwplotd, akolovbnvrag Tig pebodovg Avadvong Procrustes ov ypnoiporolodv-
touw oto Head2head yio to mpdowmo ko oto Neural Sign Reenactor yia ta xépia ko to oopa. T
NV HETAPOPA TOL TPOCHIOV, EGTIAOVHE Ge GTaOEPEG TEPLOXEG TOVL TPOGOITOL OV eNNPedlovTaL
Ayotepo amd mopopopddcelg Aoyw ekdppdoemy. XpnoLHOTOLOVTOS VA LITOGOVOAO TWV GTUELWV,
evbuypappilovpe 10 TPOGWIO TNG TNYNAG KL TOL GTOXOL O€ €ve HEGO TPOTULTO TTPOCHTOV HECW
avéAvong Procrustes. T tnv petadopd twv onpelov ToV COUATOG, GUMITEPLAAUPOVOUEVOL TOV KO-
PHOD KoL TV XePLOV, vioBeTolpe emiong pia Tapopola tpocéyylon Paciopévn otnv Avadvon Pro-

crustes.

Adol mpaypatomotjoovpe TNV avaddtagn Omov auvtd eival amopaltnto, dnovpyolie Ta avTic-
oLy O Kopé HE XPOHOTIKO KOSLIK, T 0moia XproipomotodvTal yio va pubpicouvv tov neural rendering.
Avta eivan eikdveg RGB, 6mmov kébe onpeio avadopdg ametkovifeton wg évag dickog otabepng ok-
Tivag pe éva Lovadikd X podpa Tov éxel ekxwpnBel péow evog mpokaboplopévou oYHUATOG X PORATIKOD
kwdikomoinong. Kabe dpbpwon Swatnpei éva otabepd xpodpa oe 6Aovg Toug xelplotég, dtacdaiilov-
TOG L0t CUVETH KOl OTJUAGLOAOYLKT avautapdotaot 6to xopo RGB, n omoio fondé tov renderer vo

p&BeL TNV avtiotoiylon pe Tig etkdveg e£6dov.

A€loA0ynon AToteAeECPHATOV

Onwg avadépnke, 6tOX0G pog HTov va a€loloyrjoovpe Tnv mpotetvopevn dtadikacio 660 To dSuvatdv
O EKTEVAG, TPAYHATOTOLWOVTOG TELPAPATX Kol 6T TP GOVOAX deSOUEVWV TOV Y PTCLUOTTOLCOYLE.
Juykpivovpe tn puéBodod pog pe tovAdylotov tpia mponyovpeva benchmarks mov vdpyouvv yio Tnv
mopaywyn NI' and keipevo, epdoov avtd eivon dabéopa. To benchmarks mov mapovoidlovron
emAéxOnrav pe Phorn TN oXeTIKOTNTA Kot TNV OpoLOTNTE Toug pe TN UéBodd pag. Eivor onpovtikd
va dtevkpviotel oe mowa epyacio (Metddpaon 1 Hapaywyn) avadépetar k&be benchmark, xabog

Srudépouvv oe duokolio vAoTOiNONG.

Hexwvape tnv Sadikacio afloAdynong pog exmaldeboviag ae oAOKANpa Tot cOVoAa dedopévmv, TpadTa
otnv Metddpaon kot otr ovvéxeto otny Mopoywyn NI Eivow onpavticd va onpewndei 6tL to povréda
7OV TTPOKVIITOLV GE QLUTH) TNV EVOTNTA TPOEPYOVTAL ATTO HOVTEAX TTOV EKTTOLOEDTNKAV ITOKAELOTIKA
oe axolovbieg oreleTikdV dedopévwv factopévev oe ground-truth. Avtd cuviBwg pmopei vo avdvel
NV atddoot TV HOVTEA®VY Kot TowTdypova ackoAovBei pe peyaddtepn akpifeta Ta benchmarks mov
nmopovctdlovtal otnv PipAoypadic. O IMivakag 3 Seiyvel Ta amotedéopata pog yio to SLT ota tpio
ovvola dedopévewv: How2Sign (ASL), PHOENIX14T (Teppovikr) Nonuatikr) ko Elementary23 (EAAR-

vikr) Nonparikn) eve avtiotowya o Iivakag 4 deiyvel ta amotedéopata SLP ota idix ohvola.

H enopevn pelétn amopdvwong (ablation study), mov mapovoidleton oto Elementary23 Greek Lan-
guage Subset 5 kot oto Math Subset 6, deiyvel 011 1 cvpTeEpIANYN TG amdAelg pose-to-text ko
Twv oxolaopdv Gloss ennpedlel emdpaotikd tnv ammddoon. Av kot ta okop BLEU-4 feAticdovovtan
aveEaptnta (4.42 dev, 4.55 test), o cuvdvaopog pe ta Gloss Sivel AVAUEIKTO ATOTEAECUATR, HELWOVOVTOG
ehadppd to BLEU-4 610 dev set (4.06) adl& feltiddvovTag To oo test set (4.32). Avth 1) adAnienidpoo

VITOdNAGVEL OTL eV T glosses ATA0TOLOVY TH) YAWOGLKT] TTOALTAOKOTNTA, £V 1) LTTepPoAikT) eEdpTnon
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Dev Test
Method BLEU-41 ROUGE?T BLEU-47 ROUGE?T
How2Sign (SLT) [52] - - 14.9 36.0
ours 9.01 22.34 8.53 25.22
| Progressive Transformers [54] (SLT) ~ 20.23 5541 1910 5455 |
Sign Language Transformers [10] (SLT) 22.38 - 21.32 -
ours 21.53 - 21.22 -
| Elementary23 SLT (Voskou et al. [68]) 667 - 569 -]
Elementary23 SLT (ours) 8.34 32.36 8.2 32.16
Table 3: SLT Evaluation Banchmarks
Dev Test
Method BLEU-47 ROUGE{ BLEU-41 ROUGE?T

Neural Sign Actors [2] 13.12 47.55 13.12 47.55
SignDiff [18] 16.92 49.74 15.92 46.57
MS2SL [42] 4.26 16.38 4.26 16.38
ours 4.5 12.36 4.48 12.16

| Progressive Transformers [54] ~ 11.82 3318 1051 3246 |
There and Back again [61] 17.10 40.42 16.91 40.22
ours 12.34 33.98 12.51 34.21

| Elementary23 SLT [68] 6.67 - 569 -]
Elementary23 Math (ours) 7.58 15.11 7.69 15.26
Elementary23 Greek Lang (ours) 5.63 14.56 5.52 14.23

Table 4: SLP Evaluation Banchmarks

oo oLTA prtopel va eplopioel Tnv pooappoctikdTnTe. Xto Elementary23 Math Subset ko A, to

oamotedéopata detyvouv Ot o Video-to-Text loss fonbael otnv advénon twv emddocewv BLUE4 evd n

ehadpd peiwor pe tnv xprion tov glosses LITOdNAGVEL OTL PITOPEL VO LITAPYEL KATTOLXL TOPATTOLNGT) TWV

KeWPEVeV péow tng enelepyaciog amd YAWOOLKE LOVTEAQ.

Dev Test
LvigeooTest Gloss BLEU-41 BLEU-41
X X 4.17 4.15
X v 3.56 3.44
v X 4.42 4.55
v v 4.06 4.32

Table 5: Ablation Study on the Elementary23 Greek

Language SL Dataset

Dev Test
LvideoosTest Gloss BLEU-41 BLEU-41
X X 3.17 3.15
X v 4.36 4.44
v X 5.42 5.55
v v 5.12 5.06

Dataset

Table 6: Ablation Study on the Elementary23 Math SL

311 ovvéyela, eotidlovpe ot deEaywyn TELPAPAT®OY 0TN OYKpLoT Twv pefddwv exnaidevong twv

transformers oto cUvoAo Elementary23. EmAéyovpe cuykekpipéva oAdkAnpo to vtocOvoro Math ko

o vrrocVvoro EAANvikng TAdooag. H pelétn, mov mapovoidletal otov mivaka 7, GUYKPLVEL TNV €K-

naidevon pe Teacher Forcing (TF), Auto-regressive Decoding (AD) kot tov cuvdvacpo tovg (TF+AD),

vroypoppilovtag ta opéAn tng xprong pog vPppLdikng tpocéyyiong. Evo pe to Auto-regressive De-

coding emituyydvovtor onpoavtikd vymAotepa okop BLEU-4 kot ROUGE (5.4 ko 14.5 oto dev set,

avtiotowya) o€ oUykpion pe to Teacher Forcing (1.69 kou 8.52), To vPpidikd povrédo TF+AD mapéyet

woopporio peta&hd voAoyloTikng amodotikdTnTag Ko akpifetag. To vPpLdLKd povTéro emTuy)AveL
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v VPNAOTEPT GLVOALKT atddooT), T060 oTo LItocvoro EAANVIkNg TAdoGaG 060 Kot 6TO LITOGUVOAO

MaOnpatikav, eTikvpOVovVTag TNV aodoTIKOTNTA TNG ADGTG HOG.

Dev Test

Subset Method Epochs Time/ Epoch (s) BLEU-47 BLEU-41
Teacher Forcing, (PT [54]) 2500 5 0.49 0.35
Greek Autoregressive Dec 2500 30 43 4.13
TF + AD 1250 + 1250 5,30 4.67 4.46
Teacher Forcing, (PT [54]) 2500 5 1.69 1.46
Math Autoregressive Dec 2500 30 5.4 5.3
TF + AD 1250 + 1250 5,30 5.69 5.59

Table 7: X0yxpion peta€d Teacher Forcing, Auto-regressive decoding kot vBpidikrg mpocéyyiong

Axopn évog TpoOTog VoL ELOAOYTGOULE TNV OTTTLKT) TTOLOTNTA TV AT0TEAEGUATOV eivar 1) petpikr DTW
(Dynamic Time Wrapping) ywx edpeon g pobnuotikd BéATiotng evbuypbppiong petod tng mapoyd-
Levng okeAeTIKTG arkoAovbiog kat Tng akoAovBiag avadopds. Etnv didypoppa 0.0.8 cuykpivouvpe Tnv
Tiur) g DTW ota televtaio fripata tng ekmaidevong yix tig peBodovg TF, AD ko TF+AD. BAémovpe
WG apyLKd, pe xprjon povo Teacher Forcing ) tipr] kvpaiveton oto paopa 15-25, evad pe tov vPpLdukd

oAyopiBuo dptdvel oe tkavomonTikég TpéG evBuypappiong, dSnAadn k&tw ostd 10.

25 A
A1 Prog Trans

g AD
S 207 =) TF+AD
215100
5| Z
© 10 -
ol 2
g’ ? %

0 / T / T

Greek Language Math

Elementary23 Subset

Figure 0.0.8: 20ykpion DTW yua 1ig pebodovg TF, AD ko Hybrid TF,AD ota televtaio otadio tng ekmaidevong

A&oAoynon Xpnotov

OvyAwooikég petpikég BLUE kot ROUGE kaBd¢ ka1 pébodog avtiotoiyiong DTW emiPefaiddyvouvv tnv
opBn Aettovpyia Tov cLoTHATOG HOVO LITOAOYLOTIKG. Tl TNV ovolaoTiK aELoAdYN T £VOG GLOTH-
potog emkowvwviag NI xpetdleton kat a€loddynon amtd yvooteg kot eidikovg ENT. T To Adyo awto,
dnpovpynoope Eva EpWTNHATOAOYLO XproTdV (Web-based) To omoio amavtnOnie amd 8 e1dikodg g

EAANVIKTG VONUATIKNG YADOG XS, Héow TNG ouvepyaoiag pag pe To Epevvntikd Kévrpo ABnva.

310 TPADTO HEPOG TOV EPWTNUATOAOYIOV, emAéEape TpooekTikG 14 Tpotdoelg (ko Ta avtioToryo Piv-
TEO VONUATIKNG YAWooOG) ard 1o cbvolo dedopévwv Math Elementary23, cvpmepilappavopéveov
TPOTACE®WV TOG0 atd 1o test 660 koL otd to dev set. T k&Be PBivreo, {ntroape omd Tovg ouy-

LLETEXOVTEG VO ETAEEOLY TNV TLO TAUPLXOTH TTPOTACT) OTd TPELS eMLAOYEG, e emutAéov SuvatoTnTa
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am&vtnong "kovéva amd Ta Tapamdve” edv kopio dev avtamokplvotay. AkolovBnooav dvo epwtr)-
OElg OXETIKEG He TN cadrvelx kot TNV akpifela Tng vonuatikig ékdppaong: "TIdco edkoro rav va
Katavorjoete To vonua tov Pivteo;” kat "TI6co kodd mioTebete OTL LITOYPAUPIoTNKE TO VONp;" 2TN
GUVEXELD, OL GUUETEXOVTEG aloAdYnoav oe kAipaka 1-5 TNV onTikn moloTtnTa TwVv Pivteo (Tpdcwo,
XépLa, GLVOMKTY TTOLOTNTA). ALTO TO TAioLo ELOAOYNOTG oLVEVOCE YAMOOLKR KoL OTTIKK KPLTHPLOL

ylot OAOKANpWHEVT) avadvoT).

O TTivokag 8 deiyver 6tL 1 mpotewvdpevr pébodog Eemépooe v pébodo PT katd 35 povadeg, emi-
detcvoovtag peyadOTepn akpifela 6TV Tapoywyn VONUaTikng YAOcoas. 26T060, TO LITOAEUTOUEVO
26% vroypoppilel mbavég aocddeleg oTIg XeLpOVOpieg 1) meploplopons ota dedopéva exmaidevong. To
Sxnpa 0.0.9 Topovcldlel AVOALTIKE TIG ATTAVTIOELS OXETIKEG LE TNV OTTIKT] TOLOTNTA AN KOl TNV
katavonon. O xprioteg Pabuordynoav ko tig dvo pebddovg oyetikd yopunAd (1-3), mboavodg Aoyw

0CAPOV XELPOVOULOV 1] XAUNANG avAALONG, 6TO 0ol Ko B e6TIAGOVHE O HEAAOVTIKES EMEKTATELS.

Table 8: Svykpitikd AToTEAECUATA EPWTIOEWY KATAVOT|OTG VOT|UATIOHOD

Method Answered Choices Accuracy
Proposed Pipeline 40/56 71.42%
PT Baseline SLP Pipeline 20/56 35.71%
) ) , I Baseline
Négo e0koAa KaTAVOroaTE ,:| E== Proposed
To napandvw Blvteo; :|
MNéoo owWoTd MOTEVETE _]
OTL vonuaTLoE; ]
Nuwg Ba aEloAoyoloaTe TNV OUVOMKH MOWGTHTA _:|
TOU VONUATIONoD OTo nopandvw Bivteo; :|
Ne¢ Ba afloAoyoloaTE TNV MOLGTN T _:I
TWV YEPLLV OTO Napandvw Blvteo; |
Ne¢ Ba aElodoyoloaTe TNV MOLGTN T ,j
ToU MPOCWIoL OTo Mapandvw PluTeo;

1.0

T T T
1.5 2.0 2.5

T T
3.0 3.5

MEoog Opog OUYKEVTPW LKLY QMOUTHOEWY @ud EpLITNan
Figure 0.0.9: User study results: Picture Quality and Signer- related questions
3to deltepo pépog, emAéEape 6 Tpotdoelg amd To idlo ocVvoro dedopévav kol {ntioape amd Tovg
GUUETEXOVTEG VO GUYKpivouy PBivteo autd tnv mpotetvopevn pébodo ko tovg Progressive Transformers

g baseline. H mpotewvopevn pébodog mpotipnbnke od 91.66% TV GUUUETEXOVTWOV, ETLOELKVOOVTOG

oaveTEPo peaiopd kot puoikdTnTo (Mlivakag 9).

Table 9: Zvuykpitikd ATOTEAEGUATA EPWTNCEWV PERALGUOD

Method Answered Choices Accuracy
Proposed Pipeline 44/48 91.66%
PT Baseline SLP Pipeline 4/48 8.33%
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Ontikd Anotedéopata

Téhog, avtn 1 evotnTa mepthapPhvel aselkovicelg mov Kataypddovv kabe Pripa g Sadikaciog
nopoywyng NI' pe eme€nynuotikd tpomo. To Zyrua 0.0.10 Seixver éva mopdderypo tng cuvBetikng
mopaywyng Pivteo, pall pe tig ametkovioelg tng evdiapeong okeletikng akolovbiog kabmg katl twv
Kapé pe ypwpotikn kwdikomoinon. Télog, otov mivaka 10 mapéyovpe mopoadelypoto tng evotn-
tag video-to-text mov extelel tnv Metddpaon Nonpatikig MAvcoag. Zvykpivovpe petadpoopéveg

oakohovBieg amd T ground-truth landmarks kot T landmarks tng pefodov pog.

Input: "Tedpw Toug aprduoic mou Beloxw”
Tr: "I write down the numbers | find"

Figure 0.0.10: ITAv)peg omTik6 amotéAeapa amd tnv mpotetvopevn pébodo mapaywyng NI (Ilavew) H mapaydpevn
ola and Tov transformer, (péon) H emelepyaopévn etkdva yix eicodo otov renderer ko (k&tw) To ovvOeTLKO
Bivteo vonuatiot.

1 | Ref: ou apiBuol and o 6 péypr to 10
Prod w/ GT: o1 ap1Bpoi amo to 6 péxpt o 10
Prod w/ SLP: ot apiBpot and to 6 péypt o 10

2 | Ref: dpTidyvw yeopetpikd oxnuato
Prod w/ GT: yewpetpik& oxnuata
Prod w/ SLP: ¢Tibeyve yewpeTplkd oxmpoTo

3 | Ref: av oe k&Be pANO ToL dApTovp PaAet , moéoa oA Ba xpnoylomoLoey;
Prod w/ GT: av oe k&0e pvAAO Tov dApmovp Parel 10 avtokdAAN T, OGO PUAAX Bt ¥proLoToLoeL;
Prod w/ SLP: av oe k&Be ¢pOAL0 Tov dApmovp Pédet , oo pUAA B xproyomotoet;
4 | Ref: xavw T1g KoL Ypadw To amotéespo
Prod w/ GT: k&vo T1g Tapoakdto ntpdelg
Prod w/ SLP: x&vw T1g KoL Ypadw To amoTélecpo

5 | Ref: cuvdéw Tor oyrjpaTo pe To GVopa TOUG
Prod w/ GT: dunyodpou éva tpoPpAnpa
Prod w/ SLP: cuvdéw pie pior ypappn T KOPHATIO

Table 10: Hapadeiypata amwd tnv petddpacn NI. pe Ref avadepopacte oto keipevo-avadopd amd 1o Hvoro
dedopévwv, pe Prod w/ GT oto keipevo mov éxel petadpaotei and tovg ground-truth ckeletovg ko pe Prod w/
SLP oo keipevo mov éxel petadpaotel omtd ToUg okeAETOVG OV éxovv mapoyDet pe tnv péBodo pag. Amd mhve
P0G T KAT® vIToypappilovpe, Ue TPAGLVO TIG ETMLTUXNUEVES HETAPPAOELS, e TOPTOKAAL TIG peTodpdoelg o
dtaxtnpovv o¢ kavomotntikd Babpo to vonua ko pe koxkvo Tig Adbog petadpdoers.
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SUPTEPOCHO

Iepiinyn Epyoaciog

e ovtn 1 dumhwpatiky e€epevvioape tov topéa otn draotadpwon Opaocng Ymoloylotdv Ko
Nonuatikdv IMwooov, divovtag éudoon otnv mopoywyrn Nonuatikng I'loccag omd keipevo.
IMopovoidoape pio ektetopévy PpAloypadikn avddvon yopw omd TS LITAPYOLV TEXVOAOYIEG
Mnyavikng Mabnong yw vonuartikéc yAdooeg. Bacloope ta melpapuatd pog oe pioe cOyypovr ap-
XLTEKTOVIKT) METOOYNUATIOTH TTOU opY LKA HETATPETEL HOGPEVES TTPOTATELG KELEVOL GTLG OLVTIGTOLYEG
okeAeTIkéG aAAnAovyieg vonuatwy oe Bivteo. Zopdwva pe tnv vapyovoa PipAoypadic, To cOGTNUA
pog eivar 1) TpdTn epoppoyn tapaywyng EAAnvikic Nonuatikig I'ioooag, Paciopévn oe texvoloyia
Babudig MaOnone. H apyitektovikn pog elodyel molkilo kovotopa otolyeia ot dtadikooio topay-
wyng NI, 6mwg n tpocOnkn avtictpodng anmrelog fivreo-mpog-keipevo, 1) TexvnTH Topaywyn YAwo-
OLKOV VONUATOV pe peydha YAwoolkd povtéda kot o vPpldikdg adyoplbuog ekmaidesvong evah-
Aayng teacher-forcing ko auto-regressive decoding. ‘Emeita, e€epevvodpe tnv dpwtopealoTiky amo-
doon tov TpoPAnuatog mapaywyng Pivteo, peTaTpEémovTag TIG oKeAETIKEG ackoAovBieg Tov Tponyoo-
pevov Pripatog oe cvvletika Pivreo vonuatioty. o TNV TPAYHATOTOINGT) TNG VELPWVIKNG OITO-
doong ypnopomolovpe mopaywykd diktva GANs ta ool ekmondedovtol OoTE va PLHODVTAL TO
OTITIK& XOLPOKTNPLOTIKG KATTOLOU €K TV OPYLKOV VONHATIOTOV ard T0 cOvolo dedopévwv. Télog,
afloloynoape tnv mpotevopevn pebodoroyia Héow eKTEVODG CELPAG TELPUUATOV KoL 0ELOAOYNONG

XPNOTOV, TETLXALVOVTOUG AVTAYWVIOTIKA ATOTEAECHATOL.

YnoAoyiotikoi Ilepropiopot

H SovAeld pog, mopd tnv avtay®vioTikr) enidoon o€ TOAAR TEPAPATR, CUVOVTA KOl OPLOHEVOLG TTE-
plopiopote. Apyikd emewdn) 1 dwadikaoio ekmaidevong eivar xpovikd kot voloyloTikd akpipr, ta
povTéAa pag ouvnBwg LITOAELTOVTOL G8 AYVWOOTEG 1} HEYOAES Oe UKkog potdoelg keévou. Emiong, 1)
Eexwplotr] ekmaidevon Twv povtéAdwv transformer kot tov neural renderer B&lel axodun pia xpoviky
onaitnon oto mpoPANud pog. Téhog, 1 vmdpyxovca mpocéyyion dev ekpetaAlebetal v TpiTn
ouvieTOoa oL mopéxel 1) MediaPipe (&€ovog z), 1 omoiot cuviiBwg mepiéxel onuavtikt TAnpodopio

ytoe o PaBog Tng elkdvVaAg Kal TNV amdGTHOT ad TV KApepa.

MeAlovtikég Enextdoerg

"ExovTag avadépel Toug TEPLOPLEPOVGS, OTPEPOLUE TNV TPOSOXT HOG 0€ TOAVODS TPOTOUG HEAAOVTIKTIG

e€éMEng tng dovAeldg pog:

« Apyutektovikég VQ-GAN, VQ-VAE: Ilpocdateg Odnpoociedoelg vmootnpifovv 0Tl 1)
evowpdtoon Siktowv variational autoencoders 6Tig TOpAyWYLKEG QPYLTEKTOVIKEG UTOPEL Vo
evioyboel ONUaVTIKA TNV atddoot twv cuotnuatwv NI. Me tnv avtictoiyion tov kwdikomoln-
HEVWV oKOAOUOLOV VONUATIKAG YADCOS e TOV TANGCLEGTEPO YEITOVA OO £vav eKTTOLdEDGLUO

nivaka kodikov (codebook), B pmopovoape va e€edifovpe oaoOntd to vdpyov diktvo. H
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EVOWUATOOT TETOWWV Tpooeyyicewv otnv apyitektovik) Encoder-Decoder ce peAlovrtikég
vAomotnoelg O HIropovoe Vo EVIGYVGEL TOV PEAALGHO TV TAPAYOUEVOV VONUATWOV, HELWOVOVTOG

TOLTOYPOVA TLG DITOAOYLOTLKEG OTTOUTHOELS TOU auto-regressive decoding katd tnv ekmaidevon.

+ 3D Avakoartoaokevn: Xe avth Tnv gpyacia xpnotpomotinkav 2D avamopactdoelg yia tnv
kwdikomoinomn Pivreo NI, kabdg 1600 ot Transformers 660 kot o Neural Renderer Aeitovpyotv
QTOTEAEGUATIKA 0 LTO TO TAaiclo. QoTd00, LITapYeL akoun n dvvatotnta eaywyng 3D ava-
nopactdoewv pe v MediaPipe. Ou 3D avamapactdoelg mepiéxovv yproiueg mAnpodopieg
oxeTkd pe o Pabog tng ewkdvag kat ) Béomn tng kapepag, ewdikd kot T diodikacio neural
rendering. Ano tnv GAAN TAevpd, TpdohaTeg dnpocievoelg eEeTdlovv T dnpiovpyio LOVTEAWY
VOTHOTIKAG YADGO OGS TTOL XPToLHoTolovy peoitotikd 3D oxfiuata, cuyvé faciopéva o€ o ovv-

feta mAaiowo 6mwg To SMPL-X.

« TOvola Aedopévov: Evac a€loonueiowtog meploplopoc Twv VPLOTAREV®OY 6LVOAWY dedopévamv
vonpatikig yAdooag eival ot meploplopéveg AeEthoyikég toug duvatotnreg. T mophderypa,
to Elementary23 eotidler oe oxoAkd Pifria dnpotikot, o How2Sign oe exmadevtikd Piv-
teo ko tutorials, ko To PHOENIX14T o€ mpdyvwon kotpov. Q¢ amotéAecpa, ta meplocdtepa
povtéda SLP PaciCovtor otnv avamapoywyn mpotdcewv amxd to 1101 meploplopévo AeEtAdylo
EKTTOUOEVOTG TNG VONUATIKNG YAMOGAG, KO ETOUEVWS WITOPEL VAL NV KOADIITOUV TIG XVAYKEG
eVOG TANPOLG EKTTOUSEVTIKOD GULOTHUATOS VONUATIKNG YAwooag. H mbavr avamtuén g
peyodbtepng kot evorotnpévng Paong dedopévav vonuatikng YAOooag 0o wdpeAodoe GTHOVTIKG

TNV KOWVOTNTA TV KOPDV, O oTnVv YndLokn emoxr).

« KaBoAwkn exkmaidevon: e avth ) duthopatikn epyacio, 1 mopoywyn NI avtipetonileton
ot dvo dwakpird Prpato: MIpdtov, 1 dnpovpyio oreAeTIkOV okoAovOLdV atd Kelpevo kal o)
OLVEXELX 1) TOD0GT) TV OKEAETOV o€ pwTopeaiotikn popdn. EmmAéov, péoa otn povada Text-
to-Pose, exmaidevovral Eexwplotol Metaoynuatiotég yiow tnv epumpdedia ko v avtictpodn
petadppoon. H petdPfoocn oe pio o oAloTikr) Tpocoéyyion mov dev amottel tnv ekmaidevor di-

odopeTIKOV HOVTEA®VY Bat HTAV LITOAOYLOTIKX KOl GTUAGLOAOYLKX WHEALUT).

E¢appoyég kot Korvoviko Avtiktono

H ymodroxr mapaywyn vonuatikic yAoooog eival évag tpodmog va yedpupwbel 1) emikovovia peto€d
KGOV Kot opAobvtov atopwy. Ta Yndlokd cuoTipate VONUATIKNG YAOCoOG Htopolv vo £xouv
TOAOTIHEG epappoyég otnv kabnuepvi {or) twv avBpdrwy mov evdéxetal va ta xpetdlovtal. T
Topadetypa, peoiloTikd dnpovpynuévol vonuatiotés Ba pmopodoay vor AELTOUPYHOOUV WG eVEPYX

ekmtondeuTikd epyaleia, dSiadpaotikoi 0dnyol oe povoeio 1} TAPOLOLACTEG OE EKTTOUTES ELOTCEWV.

Eivou eEoupetikd onpoavticd va onpelmbel 0TL avTég oL Texvoloyieg Sev £€X0UV OKOTO VO AVTIKATOGTT-
GOUV TOUG OLEPUNVELS TNG VOMUATIKNG YAOCOHS avTifeta, GTOYXEVOUV Vo eVIGYDOOLV TNV TTPOOC-
Baootnta vtootnpilovrag Tnv ekmotdevTikT Stadikacio TNG VONUATIKNAG YAOGGG Kol KaBLoTOVTG
TETOLOVG TTOPOLG TtLo TTPOGPacipovg. Télog, Texvntd cuoTHpaTa gy kKot autd, SNAadr) Tov avortopd-

youv cuvBetTikr] elkova oavOpomov, Ba pémel TAvTa VoL avamTOGEOVTOL e YVOUOVO THV OVRVTIKOTAG-
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ot a€la TG avOpOITLYNG EMLKOLVOVIOG, EVE TULTOXPOVA VAL SLVOLY TPOTEPALOTNTA OTLG TTPALYHATLKES

QVAYKEG KOL TLG TTPOTIUNCELS TWV KOLVOTHTOV TOV KOPDV Kol Paprkowy aTOp®Y.
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Chapter 1. Introduction

1.1 Sign Languages

Sign Languages are the primary form of communication for Deaf communities across the world. It is
estimated that more than 70 million people make part of the deaf and hard-of-hearing (DHH) com-
munity, while there are more than 200 Sign Languages across the world. American Sign Language
(ASL), British Sign Language (BSL), and Chinese Sign Language (CSL) are just a few examples, each

with unique grammar, syntax, and cultural nuances.

The widespread use of sign languages highlights their critical role in enabling full participation in ed-
ucation, work, and society for Deaf individuals. However, for many DHH individuals, learning sign
language is not a standard part of their education, leading to a disconnect that can impede social in-
teraction and access to services. This gap underscores the importance of developing technologies that
can facilitate real-time communication between sign language users and those who do not understand
it, as well as making information more accessible to DHH individuals in various public domains, such

as education, news media, and entertainment.

Sign languages are fully-fledged natural languages that rely on a visual-manual modality rather than an
auditory-vocal one. They exhibit structural complexity comparable to spoken languages, encompassing
phonology, morphology, syntax, semantics, and pragmatics (Stokoe, 1960 [59]; Sandler & Lillo-Martin,
2006 [53]). Unlike spoken languages, where linguistic elements are produced sequentially through vo-
cal articulation, sign languages employ simultaneous articulations involving manual gestures, facial
expressions, and body movements to convey meaning. This multimodal nature presents unique chal-
lenges in the computational modeling of sign language production, particularly when leveraging deep

learning techniques for automatic generation and recognition of sign-based communication.

A fundamental distinction between spoken and signed languages is their reliance on visual-spatial artic-
ulation. Spoken languages organize phonemes linearly, whereas sign languages utilize multiple parallel
channels of information, requiring distinct linguistic and computational approaches [44]. Despite the
absence of phonemes in the traditional sense, sign languages exhibit a phonological system composed

of key manual parameters:
« Handshape
« Location (placement of the hands in signing space)
+ Movement (direction and type of motion)
« Palm orientation

Along with the different manual parameters that occur in Sign Languages across the world, SL encodes
referents, relationships, and events within a three-dimensional signing space utilizing spatial grammar.
Unlike spoken languages, which rely on sequential word order and prepositions, sign languages use
spatial grammar, enabling signers to place referents in signing space and later refer to them through
pointing or directional movements. This modality allows for efficient representation of complex con-

cepts while introducing computational challenges in deep learning-based sign language synthesis.

44



1.2. Sign Language Processing

Beyond manual articulations, sign languages also heavily on non-manual markers, which play syn-

tactic and semantic roles. These may include:

« Facial expressions: Essential for conveying grammatical markers, affective meaning, and empha-
sis. In ASL, raised eyebrows indicate yes/no questions, while head tilts and facial movements

mark conditionals and topicalization.

« Mouth gestures: Modify lexical meaning, functioning similarly to adverbial markers in spoken

languages.

+ Body posture and shifts: Used to indicate speaker role shifts or emphasize discourse structure.

Handshape Hand orientation
(W o ey = B o
CBwerpd] [w b O ]
L 5 B A s C o 1
Location Movement Non-manual
o . o5 A~ .\/_‘
g

Wan Slanted
o
° °fs 0o o~
L ) Squint
\ v

Figure 1.1.1: Overview of the different characteristics of SL

The integration of both manual and non-manual components makes sign languages highly expressive
and complex, requiring computational models that can accurately capture spatial and multimodal ar-

ticulations for effective sign language recognition and synthesis.

1.2 Sign Language Processing

The linguistic complexity of sign languages, as outlined in the previous section, poses unique chal-
lenges for deep learning models designed for sign language production. Unlike text or speech-based
systems, sign language generation demands a multimodal approach that effectively integrates hand
motion tracking, spatial representations, and non-manual features to produce grammatically coherent

and natural signing.

Recent advancements in deep learning and human pose estimation have contributed significantly to the
fields of sign language recognition and generation. However, several challenges persist, including gen-
eralization across different sign languages, adaptation to dialectal variations, and the accurate modeling
of complex morphological and syntactic structures. The following sections of this thesis will explore
these challenges in detail, outlining methodologies for deep learning-based sign language generation

and evaluating their effectiveness in real-world applications.

The field of Sign Language Processing (SLP) emerges at the intersection of linguistics, computer vision,
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Chapter 1. Introduction

and machine learning, to address communication barriers in the digital age. Sign Language Processing
encompasses a variety of tasks aimed at bridging the gap between DHH and hearing communities
by enabling the automatic recognition, translation, and generation of sign languages. The most critical
components of an effective interactive SLP system are Sign Language Recognition (SLR), Sign Language

Translation (SLT), and Sign Language Production (SLP).

Sign Language : .
Video

Sign language REGION TRUEB REGEN SCHNEE BERG MOEGLICH _
Glosses (region) (cloudy) (rain) (snow) (mountain) (possible)

» R - . ¥

Spoken Language Immer wieder fillt leichter regen oder schnee in den mittelgebirgen
Sentence (Light rain or snowfall is frequently recurring in the low mountain ranges.)

Figure 1.2.1: Overview of Sign Language Processing Technologies

Sign Language Recognition (SLR) focuses on interpreting sign language input (e.g., video or motion
capture data) and mapping it to the corresponding meaning in a spoken or written language. Sign Lan-
guage Translation (SLT) builds on this recognition by enabling two-way communication—translating
spoken language into sign language and vice versa. This bi-directional capability is vital for real-time
communication between hearing and DHH individuals, whether through video conferencing platforms,

public services, or media content.

One of the most challenging and underexplored areas in Sign Language Processing is Sign Language
Production (SLP). SLP refers to the generation of accurate, fluent, and natural-looking sign language
animations or videos based on textual or spoken language input. Unlike SLR and SLT, which focus on
understanding sign languages, SLP requires the ability to synthetically produce sign language content
that is both linguistically accurate and visually convincing. The complexity of SLP stems from the
intricate movements and expressions involved in sign languages, which must be replicated realistically

to convey the correct meaning and cultural nuances.

Existing SLP systems have primarily relied on basic animation techniques or rule-based models, which
often fail to capture the subtleties of human motion and natural language. Recent advancements in
deep learning, particularly neural machine translation models and generative networks, have opened
new possibilities for generating more photorealistic sign language content. Despite these advances,
current solutions are still in their early stages, with significant room for improvement in the fluidity

and accuracy of the produced sign language videos.
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1.3. Research Motivation and Contributions

1.3 Research Motivation and Contributions

The motivation behind this thesis is to advance the field of Sign Language Production by leveraging
cutting-edge deep learning techniques. Current methods for SLP often struggle with:

+ Realism and Naturalness: Existing sign language avatars and animations frequently lack the flu-

idity and expressiveness of human signers.

« Linguistic Accuracy: Producing semantically accurate and grammatically correct sign sequences

remains a major challenge.

+ Data Scarcity: The limited availability of large-scale, high-quality sign language datasets hinders

the development of robust models.

« Generalization Across Sign Languages: Most SLP models are trained on specific sign languages,

making cross-linguistic adaptation difficult.

To address these challenges, this thesis explores an approach that integrates transformer-based ar-
chitectures for linguistic processing and neural rendering techniques for realistic visual synthesis. In
greater detail, we tackle sign language production by utilizing a transformer-based architecture that
enables the translation from text input to extended skeletal pose representations. Furthermore, we ex-
plore the photerealistic aspect of the problem, aiming to create a complete SLP pipeline that transforms
text directly into realistic human SL videos. For the photorealistic module, we harness Generative
Adversarial Networks (GANs) to perform neural rendering on the pose sequences generated by the
transformer model. Finally, we evaluate the effectiveness of the proposed pipeline on three different

datasets through an extensive series of comparative analyses, ablation studies, and user studies.

1.4 Thesis Outline

This thesis is organized in chapters as follows:

Chapter 2: Review of fundamental deep learning architectures that have been applied to Sign Language

related tasks and the pose estimation frameworks, OpenPose and MediaPipe.

Chapter 3: Review of the Neural Machine Translation related methods on Sign Language processing in-
cluding Sign Language Recognition and Translation (SLT), Sign Language Video Anonymization Tech-

niques and a review of all existing methods on Sign Language Production (SLP).

Chapter 4: Thorough description of proposed methodology for sign language production using a dual

architecture with Transformers and GANs.
Chapter 5: Presentation of performed experiments, ablations and user studies.

Chapter 6: Conclusion of thesis results, discussion of limitations and future work.
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Chapter 2. Deep Learning Background

2.1 Background on Deep Learning Architectures

We start the main text by presenting a brief introduction on the background technical knowledge
needed to develop a proper understanding for the fields of Deep Learning, Pose Estimation and Gener-

ative Neural Architectures.

2.1.1 Neural Machine Translation Networks
2.1.1.1 Recurrent Neural Networks (RNNs)

The traditional Feed Forward Network, sometimes referred to as the "vanilla" neural network, is one
of the simplest neural architecture, where the information only flows in the forward direction, from
the input nodes, through the hidden layers, and to the output nodes. Feed-forward neural networks
are designed to handle independent data points. Thought they are proven useful in tasks like Image
Classification, more complex input-dependent architectures are required to handle sequential data for
NLP tasks.

Input layer Hidden layer Output layer

Figure 2.1.1: One Hidden layer Feed Forward Network Architecture. Figure from [1]

Unlike feedforward neural networks, Recurrent Neural Networks (RNNs) have a looped architec-
ture that allows information to persist from one step of the sequence to the next. This makes them

particularly well-suited for language modeling related tasks.
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Figure 2.1.2: Unrolled Recurrent Neural Network Architecture
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RNNs can be categorized depending on the input and output dimensions, as shown in figure 2.1.3. In
the last case, many-to-many RNNs receive a sequence of inputs and generate a sequence of outputs

while maintaining sequential dependencies and can be thus used in Machine Translation.
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Figure 2.1.3: Different types of RNN Architectures

Long Short-Term Memory networks (LSTMs) are a special kind of RNN, capable of learning long-term
dependencies. They were introduced by Hochreiter and Schmidhuber (1997) [31] to specifically address
the vanishing gradient problem found in traditional RNNs. The LSTM contains an internal state called
the cell state, which runs through the entire chain of the network. This state uses gating as shown in

figure 2.1.4 to control which (relevant) information carries throughout the processing of the sequence.

C ) > > G

It

Figure 2.1.4: LSTM Cell Architecture: The Input Gate decides which values from the input should be used to
update the memory state. The Forget Gate determines what portions of the memory to retain or discard from
block to block, while the Output Gate focuses on output generated based on input and the memory of the block.

2.1.1.2 The Transformer Network

Transformers were originally proposed in the paper “Attention Is All You Need” [67] in 2017, and since
then have been extensively used in many NLP applications, including machine translation, text sum-
marization and question answering. Unlike RNNs, Transformers do not rely on recurrence but instead
operate on self-attention, drawing global dependencies between the input and output. Transformers
scale naturally to very large models (e.g., GPT, BERT) and datasets, making them suitable for tasks
requiring billions of parameters. Also, by leveraging parallel computation, Transformers are faster to

train than RNNs and can handle larger datasets effectively.

The full Transformer architecture follows an encoder-decoder framework, where both components are
constructed using repeated layers of self-attention and feed-forward neural networks. The complete

transformer architecture is shown in figure 2.1.5.
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Each encoder layer includes a multi-head self-attention mechanism to capture token-to-token depen-
dencies, a position-wise feed-forward network to transform the representation, and layer normalization
with residual connections to stabilize and enhance training. The decoder, on the other hand, produces
the output sequence by attending to both the encoder’s output and its own previous outputs. Each
decoder layer features a masked multi-head self-attention mechanism for autoregressive decoding, a
cross-attention mechanism to integrate information from the encoder, and a feed-forward network with
residual connections for additional transformations. Encoders and decoders can have multiple layers

and multiple attention heads for parallel computing.
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Figure 2.1.5: The Transformer Architecture. Figure from [67]

Self-Attention: The Scaled Dot-Product Attention Mechanism aims to encode the in-sentence de-
pendencies. The input consists of queries and keys of dimension dj, and values of dimension d,,. We
compute the dot products of the query with all keys, divide each by v/d}, and apply a softmax function
to obtain the weights on the values. In practice, this is done by packing multiple inputs into the matrices
Q, Kand V for parallel computation. The output attention matrix is computed as follows:

T

Attention(Q, K, V') = softmaz( Cf/di
k

W (2.1.1)

Multi-Head: The Multi-head attention mechanism allows the model to jointly attend to informa-
tion from different representation subspaces at different positions. The scaled dot-product attention

function is applied concurrently to each of the projected results, producing h output values, known as
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‘heads’. The heads are finally concatenated and transformed using an output weight matrix, following

the equation mentioned below:

MultiHead(Q, K, V') = Concat(heady, . .. ,headh)Wo

(2.1.2)
where head; = Attention(QWiQ, KwE vw))
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Figure 2.1.6: Self-Attention (left) and multi-head Attention (right). Figure from [67]

2.1.2 Convolutional Neural Networks

Another notable mention in this brief Machine Learning background are Convolutional Neural Net-
works (CNNs). After describing the most essential architectures used in NLP, we briefly mention CNNs
as well, as they are highly relevant to our research. Convolutional Neural Networks are a class of deep
learning models primarily used for image processing, though they can be applied to other tasks as
well. The core component of a CNN is the convolutional layer, which employs multiple filters, each
having a distinct set of learnable weights. These filters are convolved with the input image, creating
feature maps by computing the dot product between the filter parameters and corresponding regions
of the input. The size of the filters is typically smaller than the input image, and they are moved across
the image to extract local features. As the network deepens, these layers progressively capture more
complex features, starting from simple edge and texture detection in the early layers to more intricate
representations in the deeper layers. To reduce the dimensionality of the feature maps and the number
of parameters, pooling layers such as max pooling or average pooling are often used. These layers com-
press the feature maps by taking the maximum or average values from small patches, respectively. The
final layers of a CNN are usually fully connected layers, which convert the output from the previous
layers into a 1D vector for classification. The last fully connected layer classifies the image based on
the features extracted by the preceding convolutional and pooling layers. CNNs are powerful models,

widely used for tasks like image classification, object detection, and other visual recognition tasks.

In the context of Sign Language Processing, since it contains inherently visual tasks, CNNs have been
proven effective in detecting key elements of sign communication, such as hand shapes, facial expres-
sions, and body movements. In video-based sign language translation, CNNs are often combined with

Recurrent Neural Networks (RNNs) or Transformers to capture temporal dependencies across frames.
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Additionally, CNNs play a crucial role in hand gesture and pose estimation, leveraging pre-trained mod-
els such as OpenPose to detect hand and body keypoints for multiple SL pipelines. Beyond recognition
and translation, CNNs have been employed in sign language production and video anonymization.
Generative Adversarial Networks (GANs) utilizing CNN-based architectures are often used in research,
described in the following sections, to generate realistic sign language avatars for automated transla-

tion, without compromising linguistic integrity.

2.1.3 Generative Adversarial Networks
2.1.3.1 Definition

Since their introduction by Goodfellow et al. in 2014 [24], Generative Adversarial Networks (GANs)
have revolutionized the way we approach generative modeling, offering powerful capabilities in gen-

erating realistic images, videos, and audio.

GANSs consist of two neural networks - the generator and the discriminator - that contest with each
other in a game-theoretic scenario. The generator’s role is to create new data samples, such as images,
that resemble the data from a real dataset. It takes random noise (usually from a simple distribution
like Gaussian or uniform) as input and transforms it into synthetic data. The goal of the generator is to
generate data so realistic that the discriminator cannot distinguish it from real data. The discriminator
on the other hand distinguishes between real data (training set) and fake data (by the generator). It
outputs a probability indicating whether a given input is real or fake. The discriminator is a binary
classifier trained to correctly identify real samples from generated ones. In the original paper [24], it
is usually assumed that the generator moves first, and the discriminator moves second, thus giving the

following equation for the value function V (D, G), in the form of a minimax game:

minmax V(D, G) = By, () [log D(2)] + Bz, () [log(1 — D(G(2)))] (2.1.3)

where:
+ G is the generator,
« D is the discriminator,
« x is a data point from the dataset,

+ zis a point from the generator’s input noise distribution,

Pdata 18 the data distribution,

* p. is the noise distribution.

2.1.3.2 Applications

Image-to-Image translation covers a large variety of Computer Vision and Graphics related tasks,

including style transfer, resolution improvement, image restoration etc. The need for output customiza-
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tion and fine-tuning is solved by conditional GANs by extending the original GAN so that both the gen-
erator G and the discriminator D are conditioned on the same auxiliary information y. Depending on
the type of the additional information, cGANs may be used in a variety of applications, including text-
to-image synthesis, video generation and image-to-image translation. In cGANSs, the objective function

of the minimax game becomes:

minmax V(D, G) = By, (nllog D(xly)] + Eoop o log(1 = D(Glaly))] (219

Pix2pix is a popular cGAN architecture developed by Isola et al. [33] for general purpose image-to-
image translation. Similarly to the vanilla GAN, the pix2pix architecture involves a generator G and
a discriminator D competing against each other. In addition to the noise vector z, the generator is fed
with an input image y from the source domain and learns to translate it into the corresponding ground
truth image x from the target domain. In the pix2pix model, the authors add an L1 reconstruction loss

to the standard training objective, to stabilize training, which is defined as follows:
Ly, (09) = Eqpy:lle = G(zy)llL (2.1.5)

Pix2pix experiments also prove the usage of noise z ineffective because the generator simply ignores
it. Its architecture follows the general shape of a U-Net, which is an encoder-decoder model with
skip connections between symmetrical parts of the encoder and decoder stack. The promising results

presented in pix2pix are shown in figure 2.1.7.

Labels to Facade BW to Color

Labels to Street Scene

o out
Day to Night

input output

output input output

input output

Figure 2.1.7: Example results of pix2pix on various tasks. An input image from a source domain is fed into the
generator, which then converts it into the target.

Video-to-video Synthesis: Wang et al. propose vid2vid [69], which is a general purpose cGAN for
generating photorealistic videos from input source videos, such as sequences of semantic segmentation
masks. The authors introduce a spatio-temporal learning objective that ensures the photorealism and
temporal coherence of the generated videos. The model is capable of producing videos with diverse
appearances from the same input by conditioning on varied semantic representations, including seg-
mentation masks, sketches, and poses. The generator G operates sequentially, taking a sequence of

source frames (such as semantic segmentation masks) and then generating a sequence of video frames
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that mimic real video frames. This sequential generation is guided by a Markov assumption, meaning
the generation of a current frame only depends on a limited history of previous frames. The core of
the training objective is to match the conditional distribution of the synthesized videos given the input

videos to that of real videos. This is expressed mathematically as:

p(Z71lsT1) = p(2T1l571) (2.1.6)

where s represents the input sequence and x7; and Z7; are the real and synthesized video sequences,

respectively.

The minimax optimization problem is defined as follows:

HIIE;.X HlGil’l IEQ7T1,$T1 [IOgD(’CBTla sTl)] + IE$T1 [log(l - D(G(sTl)a STl))] (217)

Figure 2.1.8: Generation of a photorealistic video from an input segmentation map video from Cityscapes. Top
left: input. Top right: pix2pixHD [70] and Bottom right: vid2vid. Figure from [69]

Another interesting approach to the video-to-video synthesis task is the do as I do Motion Transfer
method presented in the Everybody Dance Now publication [13]. Similar to the previously mentioned
c¢GAN-based works, this model utilizes c-GAN's for realistic Pose to Video Translation. The video gener-
ation pipeline is seperated into three stages, pose detection with OpenPose, global pose normalization
and finally the video translation by mapping from normalized pose sequences to the target subject.

Both the training and transfer objectives are shown in figure 2.1.9.

GANSs in Neural Rendering: Neural rendering refers to the use of neural networks to generate or
manipulate images, videos, or 3D scenes in a way that mimics traditional rendering methods used in
computer graphics. Unlike traditional rendering techniques that rely on physics-based simulations of
light and materials, neural rendering uses deep learning models to learn the mappings between 3D
representations and 2D images. Conditional GANs are often used in the neural rendering frameworks.
A great example of this is the Head2head network [37], which uses GANs to generate realistic frame

videos from their senmantic representations.
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Figure 2.1.9: Top: Training - The discriminator D attempts to between the real and fake correspondences,
(e, xe41), (Ye, Y1) and (24, 2e41), (G(2t), G(2¢41)), respectively. Bottom: Transfer - The pose detector P is
again used to obtain pose joints for the source person and are then normalized. The pre-trained mapping G is
applied onto the normalized joints to generate the final output. Figure from [13]

2.2 Background on Pose Estimation

2.2.1 Pose Estimation with OpenPose

OpenPose ([71], [12]) is one the most widely used frameworks for full body 2D skeleton joint prediction.
An RGB monocular image is used as an input and the model jointly predicts hand, body and face 2D
anatomical keypoints. The typical OpenPose output consists of 21 keypoint locations, corresponding to
each hand, 25 keypoints for the body and 70 keypoints for the face. In the context of sign language pro-
cessing, OpenPose plays a crucial role by enabling detailed tracking of hand, body, and face movements.
Sign languages, such as American Sign Language (ASL) and others, rely heavily on these physical ges-
tures, and OpenPose’s ability to track fine-grained details of hand poses, facial expressions, and body

movements makes it a valuable tool for recognizing and analyzing sign language.

The model is a two-branch multi-stage Convolutional Neural Network. The input image is fed to a CNN,
that extracts image features, namely the first 10 layers of VGG-19. At each stage the top branch passes
the image features through a series of convolutional layers in order to obtain a set of confidence map S
of body part locations. The bottom branch, also consisting of a stack of convolutions predicts the part
affinity fields L, which are a set of flow fields that encode pairwise relationships between body parts. In
each subs equent stage the predictions from both branches along with the original image features, are
concatenated and used to produce more refined predictions. Two loss functions are applied at the end
of each stage, one at each branch respectively. A standard L2 loss between the estimated predictions

and ground truth maps and fields is used.
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Figure 2.2.1: OpenPose Landmarks

2.2.2 Pose Estimation with the MediaPipe Framework

MediaPipe (MP) is a comprehensive, open-source framework devised by Google for constructing mul-
timodal and cross-platform machine learning pipelines. This framework supports a broad range of
applications, from video and audio processing to real-time data analysis across different platforms. It
allows developers to build complex pipelines using a graph of modular components known as Cal-
culators, which handle tasks ranging from data pre-processing and inference to post-processing and
annotation. It also provides developers with a suite of pre-trained models and the flexibility to create

custom calculators tailored to specific needs.

A particular implementation of MediaPipe is the MediaPipe Holistic model, which integrates several of
the framework’s capabilities to perform comprehensive human pose estimation. This model seamlessly
combines pose, face, and hand landmarks to offer a holistic approach to motion tracking. MediaPipe
Holistic employs a graph-based pipeline that processes different regions of interest (ROIs) within an
image to estimate a total of up to 543 landmarks. These include 33 body pose landmarks, up to 468
facial landmarks, and 42 hand landmarks (21 per hand). [27]

The MediaPipe Holistic model operates in several phases. Initially, human pose is detected using the
BlazePose detector, a sophisticated model that provides an initial set of body landmarks. These land-
marks help to define the crop bounds for the face and hands, which are crucial for detailed landmark
detection in subsequent steps. In scenarios where pose detection is less accurate, the model can apply

additional hand and face re-crop models to ensure the precision of landmark estimation.

For each detected region (face and hands), specific models—such as the MediaPipe Face Mesh for facial
landmarks and MediaPipe Hands for hand landmarks are applied. These models are designed to perform
optimally on the respective cropped images, ensuring high fidelity in landmark detection. The final
step in the MediaPipe Holistic pipeline merges the landmarks from all models, presenting a unified
set of body, face, and hand landmarks. This comprehensive landmark detection facilitates advanced
applications such as augmented reality, gesture recognition, and interactive applications where real-

time human interaction with machines is required.

MediaPipe Hands is a cutting-edge solution offered by Google’s MediaPipe framework, designed specifi-
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Figure 2.2.2: MediaPipe Holistic Pipeline. Figure from [26]

cally for real-time hand tracking and landmark detection. This solution is notable for its ability to infer
21 3D hand landmarks from a single RGB camera frame with high accuracy and low latency, which

makes it applicable to a broad range of applications, including sign language interpretation.

The architecture of MediaPipe Hands consists of two main components: the palm detector and the hand
landmark model. The palm detector, known as BlazePalm, is a crucial first step in the hand tracking
process. It utilizes a single-shot detector (SSD) approach to analyze the full input image and identify
the orientation and location of the hand via a bounding box. This detection is generally performed
only once at the beginning or when there is no hand present in the frame, leveraging previous frame
data to track the hand in subsequent frames. Following the detection of the palm, the hand landmark
model comes into play. This model focuses on the region of interest (ROI) specified by the BlazePalm
detector, and processes it to output 21 three-dimensional coordinates corresponding to key points across
the hand, such as finger joints and the wrist. The robustness of the hand landmark model is ensured
through its training on a diverse dataset comprising both real-world images and synthetic data, which

helps it handle various challenging scenarios like partial visibility and complex hand gestures.
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Figure 2.2.3: MediaPipe Hand Landmarks. Figure from [25]

Following the same logic as MP Hands, MediaPipe Pose uses a Pose Detector and a Pose Landmark

Model for performing estimation of human poses.
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The Pose Detector, known as BlazePose, is pivotal for the initial localization of the human subject within
the video frame. BlazePose is inspired by MediaPipe’s earlier model, BlazeFace, which was designed for
face detection. It identifies a region of interest (ROI) around the person by predicting person-specific
parameters such as the midpoint of the hips and the overall body orientation. Once the ROI is estab-
lished by BlazePose, the Pose Landmark Model calculates the precise 3D coordinates of 33 landmarks
on the human body. This model employs a sophisticated network that combines heatmaps and off-
set regression to predict landmark positions with high accuracy. The network’s design ensures that it

captures both global pose features and finer local details necessary for accurate pose reconstruction.
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Figure 2.2.4: MediaPipe Pose Landmarks [27] (left), BlazePose Architecture [5] (right)
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3.1 Sign Language Recognition (SLR) and Translation (SLT)

Sign languages serve as the primary form of communication for DHH individuals and enable them to
engage with their communities. Unlike spoken languages, which rely on auditory signals, sign lan-
guages are visual-manual languages that use hand gestures, facial expressions, and body movements
to convey meaning. Despite their richness and complexity, sign languages remain underrepresented
in technological advancements. The development of Sign Language Recognition (SLR), Sign Language
Translation (SLT) and Production (SLP) systems, leverages deep learning architectures to bridge the
communication gap. In this chapter we provide a systematic review of previous approaches to SLR,

SLT and SLP and especially addressing deep learning methods.

Sign Language Recognition (SLR) involves the task of interpreting sign language gestures from video
inputs and converting them into a structured representation, such as glosses (annotated labels for signs)
or spoken language text. Continuous Sign Language Recognition (CSLR) extends this task to continuous

signing streams, where the model must segment and recognize a sequence of signs from a video.

SLR has been the first approach to address the challenge of automating sign language understanding.
Generally, this field focuses on developing methods to extract meaningful features from sign language
videos and classify them into discrete signs. For instance, S. Theodorakis, V. Pitsikalis and P. Mara-
gos [62] introduced a dynamic-static unsupervised sequentiality approach for SLR, which leveraged
statistical subunits and lexicons to improve recognition accuracy. This work laid the foundation for
subsequent research by demonstrating the importance of combining dynamic and static features in
SLR. Similarly, A. Roussos, S. Theodorakis, V. Pitsikalis and P. Maragos [51] proposed dynamic affine-
invariant shape-appearance handshape features for SLR, which addressed the challenge of recognizing
handshapes in sign language videos and introduced a novel feature extraction method, robust to vari-
ations in hand appearance and orientation. These contributions highlighted the potential of machine

learning techniques for automating sign language recognition.

On the other hand, as an extended task on SLR, Sign Language Translation (SLT) focuses on translating
sign language videos into spoken or written language, instead of SL glosses. Recent advancements in
deep learning have revolutionized the field of SLR and SLT. Instead of relying on traditional machine
learning algorithms, recent work uses several Deep Learning based Approaches to tackle the task, in-
cluding RNNs ([3], [8]), LSTMs ([14]), GRUs ([35]), and Transformers ([10], [9]), after using CNNs for
spatial feature extraction from the input video frames. CNNs have become the standard for extract-
ing spatial features, including hand shapes, facial expressions, and body postures, from sign language
videos. On the other hand, temporal modeling using RNNs or Transformers has further improved the
performance of SLR and SLT systems by enabling the models to learn the temporal text dependencies
in sign language sequences. In the following section we mostly present Camgdz’s work on SLT due to

its novelty, high number of citations and relevance to this work.

Camgoz et al. [14] proposed a novel deep learning architecture for video to sequence learning problems

based on small specialized sub-networks, called SubUNets. The SubUNets framework is built around
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Figure 3.1.1: Sign Language Recognition vs Sign Language Translation. SLR usually refers to the conversion of
signs to gloss while SLT usually refers to the translation to spoken language.

decomposing the complex problem of sign language recognition into manageable sub-problems. Each

SubUNets three main components:

« Convolutional Neural Networks (CNNs), which are responsible for spatial feature extraction from

input images.

« Bidirectional Long Short-Term Memory (BLSTM) Layers, which manage the temporal aspects by
processing the spatial features over time, using both past and future context to make predictions

at each time step.

« Connectionist Temporal Classification (CTC) Loss Layer: This layer is crucial for sequence-to-
sequence learning, allowing the model to handle varying lengths of input and output sequences

by introducing a ’blank’ label for alignment.

Camgoz et al. [8] formalized SLT as a sequence-to-sequence (seq2seq) learning problem. This approach
employs CNNs for spatial feature extraction from sign language videos, which are then fed into an
attention-based encoder-decoder framework to generate spoken language translations. These exper-
iments where made on three different pipelines, Gloss2Text (G2T), end-to-end Sign2Text (S2T) and

Sign2Gloss2Text (S2G2T) which uses gloss annotations as an intermediate layer.

In another work, Camgoz et al. [10] use transformer models for both the recognition (SLRT) and trans-
lation (SLTT) pipelines. The encoders process sign video sequences to produce embeddings that capture
both spatial and temporal features, while the decoders generate spoken language sentences. CTC Loss
is used to facilitate learning without explicit alignment data, tying the recognition of sign glosses to
the generation of text. Experimental results of the previously mentioned works prove that using gloss
information as an intermediate step to spoken language translation improves the performance of the
model, however relying on gloss annotations can be limiting on larger datasets since they require pro-

fessional annotation.
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Figure 3.1.2: Transformer Based Architecture for both SLR and SLT tasks. [10]

3.2 Sign Language Video Anonymization

3.2.1 Methods

Sign language video anonymization is essential in various contexts, such as protecting the privacy of
DHH individuals in online platforms, academic research, and legal settings where sensitive information
is discussed. Unlike vocal-auditory languages, sign languages are visual-manual and heavily rely on fa-
cial expressions, body movements, and hand shapes to convey meaning, making standard anonymiza-
tion techniques ineffective. Previous research [32] divides the different ways in which video can be
anonymised into two categories, those which conceal all or part of a video, and those which reproduce
a video. Concealment can be achieved through blackening sections of the image or by applying a
pixellation filter to the signer’s hands and mouth for the duration of the relevant sign. Reproduction
approaches involve the anonymization of entire corpora by either human actors or computer-generated

avatars.

3.2.2 Deep Learning Approaches for Anonymization

In [38] the authors experimented with three prototypes (with-torso, without-torso and tiger face) for
anonymizing the face of ASL signers. Particularly,the with-torso prototype is based on image-to-video
transformation works (ex. [63]) and swaps the face of a signer with a target face from an input image.
However, [38] shows some limitations as the extent of the anonymization is not complete, since only

the face is replaced, while the rest of the pose remains the same as in the original video.

In another work, the authors propose ANONYSIGN [55], an automatic method that achieves visual
anonymisation of sign language which is built upon a combination of Variational Autoencoders (VAEs)
and Generative Adversarial Networks (GANs) (cVAE-GAN [4]). In order to remove the original signers

appearance, a skeleton pose sequence is first estimated from the source sign language video.

Cartoonized Anonymization [65] by C. O. Tze, P. P. Filntisis, A. Roussos, and P Maragos, proposes the

use of pose estimation models to automatically generate cartoon-like characters to sign. The process
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involves extracting skeleton sequences from the original video and the reference cartoon figure. These

sequences are then processed through a recursive kinematic tree-based algorithm that adapts the car-

toon’s bone structures to match the human signer’s poses.

The Neural Sign Reenactor [64] by C. O. Tze, P. P. Filntisis, A.-L. Dimou, A. Roussos, and P Maragos,
introduces a GAN-based neural rendering pipeline designed for sign language videos. It transfers the
facial expressions, head poses, and body movements from a source video to a target video, ensuring

the retention of manual sign nuances and improving photorealistic representations in sign language

anonymization applications.
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Figure 3.2.1: Neural Sign Reenactor. Figure from [65]

In [74], Xia et al. designed a sign video anonymization pipeline by using an asymmetric encoder-
decoder structured image generator for high resolution image generation and designing a custom loss
function for better generation of hand gestures and facial expressions. More recent work by the authors
[75] called DiffSLVA, explores a novel approach to anonymizing sign language videos by utilizing dif-
fusion models enhanced with ControlNet for spatial guidance. The method aims to preserve linguistic
content while anonymizing the signer’s identity effectively, addressing challenges in maintaining facial

expressions and other linguistic features critical for sign language communication.

3.3 Sign Language Production (SLP)

The task of Sign Language Production (SLP) reviewed in this work can be described as follows: Given
a spoken language text sentence (input) the model used generates a corresponding video of M frames

(output). In this section, we briefly examine previous work regarding the Sign Language Production
task.
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Figure 3.2.2: Encoder-Decoder architecture for video anonymization. Figure from [74]

3.3.1 SLP Prior to Deep Learning
3.3.1.1 Symbolic Notation Systems for Sign Languages

Pre-NMT work mainly uses phrase lookup and direct sentence matching for SLP as well as computer
generated avatar sign videos for a realistic animated output. These avatars are programmed to gen-
erated sign language videos accurately, making them useful tools for education, accessibility, and en-
tertainment for the deaf and hard-of-hearing communities. The effectiveness of these avatars largely
depends on the accuracy and naturalness of the sign language they produce while they usually rely on

manual labor-intensive work [73].

The ASCII Stokoe system represents the symbols of the Stokoe phonemic notation as ASCII characters,
which makes the notation of signs compatible with computer processing. Grieve Smith took advantage
of this to develop an early sign authoring system as a Web-based avatar display [28]. SignWriting
is another written notation system for Sign Languages, and is the first to adequately represent facial
expressions and shifts in posture, and to accommodate representation of series of signs longer than
compound words and short phrases. Researchers have developed an XML-compliant format called
SignWriting Markup Language (SWML) to aid in processing SignWriting texts and creating dictionaries

and sign avatars [6].

avatar
description
. Animgen A
Text to HamNoSys | translate SiGML umg animation avatar
.. . animation
signing to SIGML . data renderer
synthesizer

Figure 3.3.1: ViSiCAST [34]: Block diagram of the generation of synthetic signing animation

HamNoSys is a transcription system for all sign languages, with a direct correspondence between sym-
bols and gesture aspects, such as hand location, shape and movement. Although HamNoSys is machine-
readable, researchers developed SiIGML (Signing Gesture Markup Language), as an XML-compliant for-
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mat that is more amenable to computer processing [34]. The purpose of SIGML is to support signed
language generation through avatars, and so required additional information beyond the data required
for linguistic analysis. To the original specification of SiIGML, Glauert and Elliott [24] added a frame-
work that specifies timings internal to a sign. The framework incorporates Johnson and Liddell’s SLPA
model which decomposes signs into a series of consecutive segments, each of which lists any changes
occurring to articulators during the segment [23]. An advantage of this approach was that changes to
articulators were no longer constrained to sign boundaries but were constrained to segment bound-

aries. Several avatar-based applications have utilized SiGML or HamNoSys including the eSign Editor

[30], the ViSiCAST animation component [34], and JASigning [17].
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Figure 3.3.2: HamNoSys linear organization. Figure from [29]
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Figure 3.3.3: ASL signs in Stokoe Notation, HamNoSys and SignWriting. Figure from [29]

3.3.1.2 Data-driven Signing Avatars
Data-Driven Techniques for Sign Language Avatar Synthesis

Data-driven synthesis approaches, which utilize motion capture (MoCap) to animate avatars, are less
commonly employed than either hand-crafted or procedural synthesis techniques, despite their ability

to achieve a high degree of realism that procedural methods often cannot match. In MoCap, the posi-
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tions of markers placed on a human performer are recorded to deduce the positions and orientations
of the joints during post-processing. The crucial step of annotation involves segmenting the contin-
uous motion flow into smaller sections and labeling these segments. This is essential for the editing
process, aiming to identify linguistic features and establish precise temporal boundaries between lin-
guistic units. The complexities associated with annotation are discussed in [72] and [22], highlighting

that manual annotation is labor-intensive and its automation has been extensively explored [77], [41].

It is technically impossible to capture all the signs in all the possible contexts due the size of the SL
vocabulary, the multiple inflection mechanisms of signs and sentences in SL, the need for various Deaf
participants, and time and memory constraints. Therefore, synthesizing signs using a limited set of pre-
recorded signing sequences is the major challenge of data-driven techniques. Essentially, the quality
of the resulting avatar animations depends on the granularity of the annotation and on the size and

content of the initial corpus.
Some of the data-driven avatars for sign language generation include:

« Tessa [58], a BSL avatar, and Simon [48], a Sign Supported English avatar, which both take ad-
vantage of the play-back technique

« The Sign3D project combines play-back and sign synthesis editing techniques [39]

« Sign360 (by MoCapLab), a French SL avatar driven by pre-recorded gestures [7]

Dictionnaire

AAAAA

=V e

(a) Tessa (b) Simon (c) Sign3D (d) Sign360

Figure 3.3.4: Mentioned data-driven sign avatars

3.3.2 Text-to-Pose using Neural Machine Translation

In the paper [54] the authors introduce the first Transformer-Based architecture for end-to-end SLP
from given text. The architecture consists of two sequential transformers. First, the text is encoded
through the Symbolic Transformer, which follows the architecture of the classic transformer model [67].
Then, the encoded input is passed through the Progressive Transformer, which is used for producing
the continuous frame sequence. The Progressive Transformer uses a Counter Embedding ranging from
0 to 1 as shown in figure 3.3.6 which indicates the start and the finish of the generated frame sequence
respectively. The progressive decoder is an auto-regressive model produces a sign pose frame at each
time-step, along with the frame’s counter value. The progressive decoder’s output can be described by

the equation:

[Jut1, Cut1] = DP(3u|51:u71a T1.7) (3.3.1)
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Finally, the overall training objective of the Progressive Transformer is concluded by calulating the

Mean Squared Error (or another selected type of loss) between the groundtruth y7.;; landmark sequence

and the predicted landmark sequence 9.y
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Figure 3.3.6: Progressive Decoder proposed in [54]

Prior work to the Progressive Transformer [60] employed Motion Graphs (MG) to generate realistic 2D
skeletal poses corresponding to the gloss sequence following the text2pose NMT model. Motion graphs

are structured as finite directed graphs with motion primitives, allowing for dynamic and smooth tran-

sitions between different sign gestures based on the sequence of glosses generated. Saunders’ method

can directly translate a source sequence of glosses/text into a target sequence of sign poses and thus
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introducing the Transformer innovation into the SLP task.

In more recent work Saunders et al. [56] (2022) improved the previously mentioned model by intro-
ducing FS-NET, a frame selection network based on the original Encoder Arcitecture. In this work
the original encoder - decoder architecture is used to train a text2gloss model. The gloss sentences
are translated to pose using a pre-made set of dictionary signs and then linear interpolation between
different signs. Finally, FS-NET (built as a transformer encoder [67]) is used to improve the temporal
alignment of interpolated dictionary signs. This is a monotonic sequence-to-sequence task, due to the
matching order of signing and the different sequence lengths. FS-NET predicts a discrete sparse mono-
tonic temporal alignment path A which contains binary decisions representing either frame selection
or skipping:

A= FSNET(R, hi:w) (3.3.3)
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Figure 3.3.7: SLP Architecture proposed in [56]

In addition, in [61] the authors introduce a back-translation approach to generating 3D sign language
animations from text. This research focuses on generating realistic 3D mesh sequences of sign language
from textual inputs. The technique of back-translation is adapted to improve the generation process
by refining the accuracy of the sign language animations. By translating the generated signs back into

text and comparing it with the original input, the model can self-correct and enhance its output.

CasDual-Transformer: Since the publication of the Progressive Transformer for SLP [54] these works
have been based on the proposed architecture and reproduce the results on the PHOENIX14T dataset
with some modifications. For instance, the dual - decoder Transformer module [43] aims to resolve the
regression to the mean hand position, where the original SLP architecture suffers. The source represen-
tation obtained from the encoder is fed into a hand pose decoder that generates only the manual sign
pose sequence. The obtained manual representations along with the full-channel sign embedding and
text representations are passed to a global decoder which produces the full sign pose sequence. The

model uses a spatio - temporal loss to align the feature maps of both manual and full sign representa-
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tions, which is defined as follows:

u u

Hand Si 1 h ah )2 1 a 2
Lspatio = Lsﬁﬁaf + Lsgﬂio = U Z(SI:U - Sle) + U Z(SliU ) (3.34)
i=1 =1

3.3.3 Pose-to-Video using GANs

Following the landmark sequence generation, previous works ([56], [60]) utilize GANs to synthesize a
realistic output. The pose2vid [60] network combines a convolutional image encoder and a Generative
Adversarial Network (GAN) to generate photo-realistic video sequences from human poses. The gen-
erator (G) functions as an encoder-decoder, conditioned on human pose and appearance. It converts
input data into realistic video frames by encoding this data into a latent space, which can be either
a fixed-size one-dimensional vector or a variable-size block of residual layers. The discriminator (D)
assesses whether the outputs of the generator match the distribution of real training data, helping train
the generator through a minimax game. The overall training objective employs both adversarial loss
(to train G against D) and L1 loss (to minimize the difference between generated and real images). The

full architecture is shown in figure 3.3.8.

Real/
Fake

HD

[ Res JHl FC

Figure 3.3.8: GAN Architecture used in Text2Sign [60]

In [56] Saunders proposes SignGAN for sign language video co-articulation. SignGAN follows a gen-
erator - discriminator architecture. The discriminator aims to evaluate the quality of the generated
sign image. SignGAN enables style-controllable video-to-video signer generation given a signer target
style image S, taking inspiration from [13]. The training objective combines multiple loss functions
including a GAN Adversarial Loss L 4N, a Feature-Matching Loss Ly, a Perceptual Reconstruction
Loss Ly g which compares features extracted by a pre-trained VGG-Net from both generated and real

images and a Hand Keypoint Loss. The full architecture is shown in figure 3.3.9.

Table 3.1 compares two GAN-based models, for the Pose-to-video SLP task, namely Text2Sign and
SignGAN, using the visual-based metrics for evaluation. SSIM is a perceptual metric that measures
the similarity between the generated video frames and the ground truth frames, considering three key
factors of frame quality, luminance, contrast and structure. Hand SSIM is a specialized version of SSIM

that focuses specifically on the hand regions in the generated videos. Hand Pose Error measures the
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Figure 3.3.9: SignGAN [54]

deviation of the predicted hand keypoints from the ground truth keypoints, using Mean Squared Error
(MSE). Lower values indicate more accurate hand pose generation. Lastly, FID measures the similarity

between the feature distributions using a pre-trained Inception network.

SSIM1T HandSSIM{T HandPose| FID |
Text2Sign [60] 0.727 0.533 23.17 64.01
SignGAN [56] 0.759 0.605 22.05 27.75

Table 3.1: Comparison results of photo-realistic sign language video generation

3.3.4 Evaluation Metrics on the SLP pipeline

The standardized evaluation of SLP systems is a critical aspect of assessing their performance and effec-
tiveness. Since SLP involves both natural language processing and computer vision tasks, a combination
of metrics from these domains is typically used. These metrics measure the quality of the generated
sign language sequences, the accuracy of the translation, and the naturalness of the produced videos.

Below, we provide a detailed discussion of the most commonly used evaluation metrics in SLP.

Lingual evaluation metrics are primarily borrowed from NLP and are used to assess the quality of
the generated sign language sequences in terms of their linguistic accuracy and fluency. Some of the
lingual evaluation metrics used to measure the output quality include the BLUE [46] and ROUGE [40]

metrics.

In the BLEU@N metric [46], the matched N-grams between the machine-generated and the ground-
truth answer are utilized to compute the precision score. BLEU@N metric is calculated for N = 1 to
4, where shorter N-grams are used to fulfill the adequacy and longer N-gram matching accounts for

fluency.

N
BLUE = BP - exp(an logpn> (3.3.5)

n=1

where p,, is the precision for n-grams of length n, w,, are optional weights and N is the maximum
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n-gram length considered, in our case from BLUE1 to BLUE4.

ROUGE (Recall-Oriented Understudy for Gisting Evaluation), is a set of metrics and a software package
specifically designed for evaluating automatic summarization, but that can be also used for machine

translation [40].

Length of LCS
Length of generated sequence (#words)

ROUGELprecision = (3-3'6)
In both metrics higher scores indicate higher similarity between the produced sentence and the refer-
ence. BLEU focuses on precision (how much the n-grams in the model output appear in the ground-
truth sequence) while ROUGE focuses on recall (how much the n-grams in the ground-truth sequence

appear in the model output) and usually a precision-recall trade-off is observed.

Table 3.2 shows the performance of SLP models on the Text2Gloss task, where the goal is to generate
gloss sequences from spoken language text. The results indicate that SignGAN [56] achieves the highest
BLEU-4 and ROUGE scores, outperforming earlier models. Table 3.3 shows the performance of SLP
models on the Text2Pose task, where the goal is to generate skeletal poses from spoken language text.

The results are retrieved by translating the generated poses back to text.

Dev Test
Model Year BLEU-47 ROUGET BLEU-47 ROUGET
Text2Sign [60] 2020 16.34 48.42 15.26 48.10
End-to-end [54] 2020 20.23 55.41 19.10 54.55
SignGAN [56] 2022 21.93 57.25 20.08 56.63

Table 3.2: SLP Model Evaluation - Performance Text2Gloss

Dev Test
Model Year BLEU-47 ROUGE{ BLEU-47 ROUGE?T
SignGAN [56] 2022 11.93 34.01 10.43 32.02
There-and-Back [61] 2023 17.10 40.42 16.91 40.12

Table 3.3: SLP Model Evaluation - Performance Text2Pose using Back Translation

3.3.5 Other Works on Sign Language Production

In addition to the Transformer-based approaches to SLP discussed earlier, recent publications have
introduced innovative methods that leverage Machine Learning disciplines, such as vector quantization,
3D body reconstruction, and diffusion models. These approaches aim to address the limitations of
earlier systems, such as the lack of realism in generated videos, the complexity of pose estimation, and
the challenges of achieving high lingual accuracy. Below, we provide a brief summary of some of these
cutting-edge methods and their contributions, seeing how they could benefit our work when approach

photo-realistic SL synthesis.

3.3.5.1 Vector Quantization Architectures

VQ-GAN: In more recent work, Xie et al. [76] choose to completely discard the landmark sequence

generation (pose estimation) and directly generate realistic word-level sign videos with VQ-GAN. This
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work uses a two stage generation process. In the first stage, the 3D VQ-GAN with a motion transformer
enables video understanding while the second stage uses sentence-to-sentence attention to perform au-
toregression on the flattened latent codes. In the VQ-GAN the encoded features are passed through the
vector quantizer and are mapped s to the nearest discrete representations in the codebook. This quan-
tization process introduces a bottleneck in the latent space, which helps in learning a more structured
and efficient latent representation. The latent transformer performs auto-regressive training on the

quantized codes to produce more accurate sequences.
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Figure 3.3.10: Figure from [76]

3.3.5.2 3D Body Reconstruction

Besides the pose-to-video frameworks that we mentioned above, recent advances in SLP enable the gen-
eration of realistic 3D signing avatars by leveraging deep learning techniques. Unlike traditional motion
capture methods, modern approaches use 3D body reconstruction and diffusion models to synthesize
natural signing from video or text. This section explores key methods in 3D sign avatar generation,
specifically SGNify, There and Back again and Neural sign actors, which employ linguistic constraints

and diffusion-based 3D generation respectively.

SGNify: The authors introduce a method called SGNify, which leverages linguistic priors to enhance
the reconstruction of 3D signing avatars from monocular SL videos. SGNify emphasizes capturing de-
tailed hand poses, facial expressions, and body movements automatically from SL videos captured in
natural settings. The effectiveness of SGNify was validated through a commercial motion-capture sys-

tem, showing superior performance in generating 3D avatars compared to other state-of-the-art 3D
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body-pose and shape-estimation methods. A key finding from their perceptual study indicates that

avatars reconstructed using SGNify are more comprehensible and appear more natural than those cre-

ated using previous technologies, aligning closely with the source videos in terms of quality. SGNify is
built upon SMPL-X [47] and SPECTRE [20] for 3D body parameter and facial expression extraction.
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Figure 3.3.11: Figure from [21]

There and back again: The Pose2Mesh network in this paper [61] converts the predicted 2D pose

sequences into 3D signing avatars using an extended version of SMPLify-X. The Pose2Mesh model

uses temporal consistency between frames to ensure smooth motion and reduce artifacts and a video

compression method (I and P frames) during training.

Neural Sign Actors: In [2] Baltatzis et al. propose a Diffusion based architecture that produces 3D

SMPL-X avatars from text, in the architecture shown in fig 3.3.12. The model encodes text sentences

with CLIP, pose embeddings with MLPs and performs autoregressive LSTM decoding to produce the

3D avatar.
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Figure 3.3.12: Neural Sign Actors Diffusion Training Process [2]

3.3.5.3 Diffusion Models

Diffusion models have emerged as a powerful tool for high-quality video generation, and their applica-

tion to SLP has shown significant promise. These models work by iteratively refining noisy inputs to

produce realistic outputs, making them well-suited for the sign language production tasks.
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Sign-Diff: Fang et al. [18] use a Diffusion Model Architecture following the pose estimation step for
photorealistic SL video synthesis. The first stage of Sign-Diff involves generating skeletal poses from the
input text. This module is based on the Progressive Transformer architecture proposed by Saunders et
al. [54]. The core of Sign-Diff is its use of Control-Net[78], a framework for controlled stable diffusion.
Control-Net allows the model to generate high-quality videos while incorporating conditional inputs,
such as skeletal poses, to guide the generation process. Control-Net operates by iteratively refining a
noisy input to produce a realistic output. At each step of the diffusion process, the model incorporates
the conditional inputs (e.g., skeletal poses) to ensure that the generated video adheres to the constraints
imposed by the input text. Finally, Sign-Diff’s method includes the use of FR-Net, a frame refinement

network that selects the diffusion process inputs to achieve temporal consistency in the generated poses.
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Figure 3.3.13: Figure from [18]

Neural Sign Actors: Mentioned above in the 3D reconstruction chapter, the Neural Sign Actors train-
ing process involves a novel diffusion-based architecture for sign language production. The diffusion
model is trained using a combination of adversarial loss and feature-matching loss. The adversarial loss
ensures that the generated avatars are realistic, while the feature-matching loss ensures that they are

consistent with the input text.

MS2SL: Another recent interesting work [42], proposes the use of diffusion models for multimodal
continuous sign language production, including text and speech. It uses a sequence diffusion model
with embeddings from text and speech to create sign language sequences. The framework also includes
an embedding-consistency learning strategy that leverages cross-modal consistency to enhance model
training, even with missing audio data. The approach is validated on the How2Sign and PHOENIX 14T

datasets, showing competitive performance in sign language production.
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Chapter 4. Proposed Method: SL Production using Transformers and Neural Rendering

4.1 Method Overview

This chapter thoroughly describes the proposed pipeline for end-to-end sign language production. The
goal of our method is to introduce a novel system that allows for realistic sign language video genera-
tion from a single line of text input. To our knowledge, this is the first work on Greek Sign Language
Production. To achieve our goal, we create two separate modules towards realistic SLP. First, we utilize
Transformer Networks to generate (2D) Sign poses from text input. Then, we use a Neural Rendering
framework to disguise the generated skeletal motion figure in a synthetic photo-realistic SL video, that
uses signers from the original publicly availiable SL dataset. Figure 4.1.1 illustrates the main compo-

nents of the proposed SLP network.

Data-Driven
Gloss Generation Gloss Symbolic Progressive| Tofal Loss
Text @ Encoder Decoder
Large Language
Model

Ler

Pose2Text
Translation
NMFC Extraction
Pose Alignment

Neural Renderer

Video

Figure 4.1.1: Overview of the proposed inference. (Top) SLP Module: Transformer architecture used to produce
extended skeletal motion sequences. The total loss objective consists of a MSE pose loss and a pose-to-text SL
translation loss. (Bottom) Photorealistic Module: Following the skeletal pose generation, the neural rendering
framework, allows for high-quality video synthesis with respect to the original dataset sign actor, taking as input
just the transformer generated sequences.

Initially, the data preprocessing stage involves creating text and pose sequence pairs which will be
used to train the transformer model. We utilize existing and publicly available sign datasets, such as
How2Sign (American English), Elementary23 (Greek) and PHOENIX14T (German). Feature extraction
is done using MediaPipe Holistic on each dataset, and the original 578 landmarks are down-sampled to

191, as explained in section 5.

The generated pairs are then used to train a deep learning network based on the original Transformer
architecture [67], that also uses the Progressive Transformer implementation [54] as the baseline model.
We have incorporated a novel pose-to-text SL translation loss from inferencing on a pre-trained SLT
model based on the state of the art model [10]. The optional use of data-driven generated gloss anno-
tations (through of-the-self LLMs) seems to generally boost the performance of the model and reduce

the lexical diversity of our dataset.
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4.2. Sign Language Production Module

The photorealistic module takes the aligned NMFC color coded images and generates a video of a person
performing the sign language, respective to the sign actors in the original dataset. The neural renderer
uses convolutional neural networks (CNNs) with residual and downsampling layers to synthesize a

high-quality video from the pose data.

4.2 Sign Language Production Module

4.2.1 Text to Video Production Module

The most critical component of the proposed SL Production pipeline arguably is the Text to Video Mod-

ule. To implement this component we built upon publicly available Progressive Transformer network:

In the paper [54] Saunders et al. introduce the first Transformer-Based architecture for end-to-end
SLP from given text. The architecture consists of two sequential transformers. First, the text is encoded
through the Symbolic Transformer, which follows the architecture of the classic transformer model [67].
Then, the encoded input is passed through the Progressive Transformer, which is used for producing
the continuous frame sequence. The Progressive Transformer uses a Counter Embedding ranging from
0 to 1 as shown in figure 3.3.6 which indicates the start and the finish of the generated frame sequence
respectively. The progressive decoder is an auto-regressive model produces a sign pose frame at each
time-step, along with the frame’s counter value. The progressive decoder’s output can be described by

the equation:

[Qu+1, éu-‘,—l] = DP(§U|.;1:U—17 Tl:T) (4-2-1)

Finally, the overall training objective of the Progressive Transformer is concluded by calulating the
Mean Squared Error (or another selected type of loss) between the groundtruth y7.;; landmark sequence

and the predicted landmark sequence ¢;.¢:

1 N ~
Lyse = U Z(yle - yl:U)2 (4.2.2)

4.2.2 Teacher Forcing vs Auto-regressive Decoding

Teacher forcing is widely used technique, used during the training phase of sequence-to-sequence
models like RNNs and Transformers, where the model is trained to predict the next output token given
the ground truth token as input, rather than relying on its own previous predictions. During training,
at each time step, the true target output from the training data is fed into the model as the input for
predicting the next token. Since the correct target sequence is provided during training we are lead
to faster convergence as the model is directly learning the mapping from input to the correct output
sequence. We also have to be mindful of the possible exposure bias during inference. If the model

is being trained solely on ground truth landmarks sequences, and is dependent on making inference
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Figure 4.2.1: Transformer-Based Sign Language Production (Text-to-Video) Module

predicts in a true auto-regressive matter, we may observe poor performance in the inference on the test
set. For this reason, we will explore the concept of harnessing the benefits of auto-regressive decoding

during training below.

Autoregressive Decoding is a strategy used during inference where the model generates the output
landmark sequence frame by frame, using its own previous predictions as inputs for future time steps.
This is a widely used method with models like RNNs, Transformers during the inference for sequence
generation purposes. During inference, the model generates the output sequence step by step. At
each time step t, the model predicts the next token based on the previously generated tokens. Since
autoregressive decoding reflects the actual inference procedure of generating outputs sequentially, it
reduces the risk of exposure bias that teacher forcing introduces. The model learns to cope with its own
predictions, even if they are imperfect, making it more robust during inference. The main disadvantage
of using during training is the inherently slower inference since the model generates one token at a

time.

In previous methods [54], transformer models were trained using teacher forcing. This approach in-
volves providing the model with the ground truth spatial embeddings from the previous frame during
sequence generation. By using the correct embeddings as input, this method enables parallel training
with known outputs. While teacher forcing has demonstrated satisfactory results on limited vocabu-
lary datasets such as PHOENIX14T [54, 10], it struggles with the broader and more diverse Greek Sign
Language dataset. In general, while teacher forcing provides better training stability and ensures align-
ment between inputs and outputs—particularly in the earlier stages of training—it suffers from error

compounding during inference, as the network is unable to recover from its own prediction errors.

On the contrary, autoregressive training generates frame sequences sequentially during training as
well. In this approach, the model predicts each frame by conditioning on the spatial embeddings it has
previously generated. Before applying the MSE loss, the entire sign sequence is generated from the text
embeddings, effectively mimicking the inference process. This allows the model to learn to correct its
own errors rather than relying on ground-truth inputs. However, this training process is considerably

more time-consuming than teacher forcing due to the sequential nature of frame generation.
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4.2. Sign Language Production Module

To balance efficiency and effectiveness, we employed a hybrid approach, training the model using
teacher forcing and autoregressive generation for half of the epochs each. Specifically, we began train-
ing with teacher forcing to leverage its stability and strong input-output alignment during the critical
early stages of training. This ensures the model effectively learns the foundational relationships in the
data. We then switched to autoregressive training, allowing the model to learn to correct its own errors
and better handle the challenges of inference. This strategy combines the strengths of both methods,
resulting in improved performance compared to using either method independently. In this thesis, we
aim to perform experiments with different balances of both teacher forcing and auto-regressive training

in order to achieve the best possible results on SLP.

4.2.3 Data-driven Gloss Generation

Based on insights from previous research, we also explored the use of off-the-shelf large language mod-
els (LLMs) to automatically generate gloss annotations for the SL dataset. This approach effectively
reduces the lexical diversity of the dataset by condensing commonly used words, such as articles and
connective phrases, while preserving the overall meaning of the sentences. Table 4.1 presents examples
of these translations along with the corresponding prompts used to generate them. Given the estab-
lished benefits in previous literature, where gloss annotations as an intermediate step have been shown

to enhance model performance, we anticipate observing similar improvements in our experiments.

Table 4.1: LLM Gloss Generation Examples

Prompt Transform this Greek sentence into Greek Sign Language gloss: "o &€ovag ocvppetpiog
Xwpilel éva oxnpe oe dvo ico uépn"

Gloss AEONAY SYMMETPIA XQPIZEI SXHMA AYO IXA MEPH

Prompt Transform this Greek sentence into Greek Sign Language gloss: "cupmAnpove tov mi-
voka VITOAOYI{OVTOG TPOTA TIG TIHEG OTO TEPITOL EAEYXW OTN CLVEXELXL TOVG VITOAO-
yiopotg pov”

Gloss SYMITAHPONQ ITIINAKAY YIIOAOTIZQ TTPQTA TIMEY ITEPIIIOY EAEIXQ META
YIIOAOTTEMOI MOY

Prompt Transform this Greek sentence into Greek Sign Language gloss: "mapatnpod kot
cuveyilw To potifo "

Gloss ITAPATHPQ YYNEXIZQ MOTIBA

4.2.4 Video-to-Text Translation Module

An integral component of the proposed training pipeline is the implementation of the Video-to-Text
Translation Loss. This approach entails the pre-training of a distinct Translation model that maps Me-
diaPipe features to text, which is subsequently utilized during the training of the text2pose model with
the objective of enhancing accuracy. The inclusion of this step was a natural progression in the con-
struction of the training pipeline, given that an SLT pose2text model is already required for evaluation
purposes, such as computing BLEU scores. Therefore, it is only logical to assume that incorporating a
Video-to-Text translation loss to the training process is going to only affect positevely the results of the

SL production module.

In order to implement the back translation model we built on the state-of-the-art, publicly availiable

network Sign Language Transformers by Camgoz et al. [10]. Simplifying the overall training process
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Figure 4.2.2: Transformer-Based Sign Language Translation

that performs both SL recognition and translation, we keep solely the translation loss objective, aiming

to achieve the desired results through a direct sign2text model.

The core objective of the Video-to-Text module is to enhance accuracy and prevent the model from
regressing to mean pose, which often happens when only training with MSE loss, and also prove its
ability to reinforce the quality of the forward translation. The translation loss, essential for both training

and evaluation, is formulated following [10] as follows:

U D
Ly =1-[]>_ pt@d)p(wi|h.) (4.2.3)

where p(1?) is the probability of word w? at decoding step u, while D is the vocabulary size.
ngl p(wl|h,) is calculated by sequentially applying CTC Loss on a frame level for each word.

Overall, we have created a two-way translation system that can successfully produced sign sequences
from text and then translate those generated sign sequences back to a text format, used both for training
and evaluation purposes. Figure 4.2.3 shows the logical flow of the described translation process, using

only transformer modules:

\ am »
'fext Text-to-Pose —_— e ! — Pose-to-Text —p  translated
Input SLP Transformer Module Generated SLT Transformer Module text

Sign Sequence

Figure 4.2.3: Transformer-Based Sign Language Translation

4.3 Photo-realistic Module

4.3.1 Head2head GAN Architecture

We built a person-specific neural rendered for SL realistic video generation based on the publicly avail-

iable Head2head [37],[15] network, which was also proven highly effective in Tze’s anonymization
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network [64]. The network consists the following components, which are briefly described below:

« Generator G: Synthesizes the t-th frame, at time step t, given the current conditional input x,
as well as the 2 previous inputs x;_1, x¢_2 along with their 2 previous generated outputs y;_1,

yi—2. Thus the generated frame y; at time step t is formulated as follows:

Ut = G(21—2:4, Yt—2:0-1) (4.3.1)

« Image Discriminator D;: Inspired form pix2pixHD [70] the Image Discriminator is used to
separate the generated pair (x4, ¢;) from the real pair (x¢, y;) at each time step t, classifying it as

either real or fake.

« Sign Features Discriminators: Following the architecture of the Image Discriminator, we also
define separate discriminators, for the hands Dy, mouth D,, and eyes D.. The corresponding
regions are fed to the network using cropping around the predefined body and face landmarks,

hoping to enhance high-detailed hand and face generation.

« Dynamic Discriminator Dp: The dynamics discriminator is trained to detect videos with un-
realistic temporal dynamics. This network receives a set of K consecutive real frames ;.44 51 or
fake frames ¢y.; 1 i1 as its input, which are randomly drawn from the video. Given the optical
flow wy.7—1 and the ground truth video y;.7, the Dynamic Discriminator ensures that the flow
Wy+ K —2 corresponds to the given video clip, by classifying the pair (wy.i4 k-2, Y:t+ K —1) as real
and the pair (ws.¢1 k2, Urt+x—1) as fake.

Training Objective The total objective of the network consists of a mixture of four losses:

Lo = EaGdV + )\vggﬁ‘(l,g;g + )\featﬁfce:at + )\faceﬁfca:ce (4.3.2)

where Avgg = Afeat = Atace = 10 and each function is defined below.

The first loss is an adversarial GAN loss, which follows LSGAN [45] using the 0-1 binary coding scheme
(labels b = ¢ = 1 for real samples and label a = 0 for fake ones) which results in the following objective

for the Generator:

s (Dr(xe¥0 = 1)+ (Duxp ¥ - 1) .

h vh 2 e ye 2
+(Dh(Xt,Yt)—1> +(D6(Xt,Yt)—1)

The next two losses of the total function are a VGG loss and a feature matching loss. The VGG loss is
computed by using the VGG network to extract visual features in different layers for both the ground-
truth frame y; and the synthesised frame g;. The feature matching loss is computed by extracting
features with the Image Discriminator D and computing the /; distance of these features for a fake

frame g; and the corresponding ground truth y;.
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To further improve our results, additional to the VGG loss and face discriminators, we incorporated an
identity loss similar to the SMIRK framework [50], implemented using a ResNet-50 model pre-trained
on the VGG-Face2 dataset [11],[19]. This perceptual loss ensures that the synthesized frames retain

identity consistency, preventing artifacts where facial features change unnaturally across frames.
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Lp oLy, Lp_2
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Frames
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Face & hand m ﬁ "IH
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Figure 4.3.1: Generator architecture for the neural rendered

4.4 Summary

In this chapter, we presented our pipeline targeted to Sign Language Production from text, which com-
bines Transformer text-to-pose generation with neural rendering to generate photo-realistic sign lan-
guage videos. Our method introduces a novel approach to Greek Sign Language Production, leveraging
a hybrid training approach that combines typical teacher forcing with auto-regressive decoding for pose
generation. Additionally, we explored the use of data-driven gloss generation through large language
models to reduce lexical diversity and enhance model accuracy. The inclusion of the video-to-vext

Translation Loss further ensures that the model doesn’t regress to the mean output pose.

The Photo-realistic Module employs a GAN architecture, inspired by the Head2head framework, to
synthesize realistic videos of signers performing the generated poses. By incorporating multiple dis-
criminators for different facial and hand regions, as well as a dynamic discriminator for temporal con-
sistency, we ensure that the synthesized videos are both visually and temporally coherent. The use of
perceptual losses, such as VGG and identity loss, further ensures that the synthesized signers retain

natural-looking movements.

Overall, our method represents a significant step forward in the field of Sign Language Production,
particularly for Greek Sign Language, which has not been extensively explored in prior research. By
combining advanced Transformer architectures with neural rendering techniques, we have developed

a system capable of generating realistic and accurate sign language videos from text, with potential
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applications in education, accessibility, and communication for the deaf and hard-of-hearing commu-
nity. Future work could focus on expanding the dataset, improving the robustness of the model across

different signers, and exploring additional applications of this technology in real-world scenarios.
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Chapter 5. Experiments

5.1 Datasets

While there are some large-scale and annotated datasets available for sign language translation (Open-
ASL [57], Youtube-ASL [66]), there are only a few publicly available large-scale datasets that have been
used for continuous sign language production. After carefully considering our options for publicly

available SL datasets we chose the following datasets:

« German Sign Language: PHOENIX14T [36] is a German Sign Language (GSL) dataset which
contains weather forecast airings from 2009 to 2011, transcribed with gloss notation. It is the
dataset that was used in Saunders and Stoll’s previous works ([54], [56], [60], [61]) which were the

first to tackle the Continuous Sign Language Production Task using Neural Machine Translation.

+ American Sign Language: How2Sign [16] is a multimodal continuous American Sign Language
(ASL) dataset. It constists of a parallel corpus of more than 80 hours of sign language videos and
the corresponding modalities include speech, English transcripts, and depth. Its contents mainly

consist of instructional videos with a wide vocabulary variety.

+ Greek Sign Language: Regarding the Greek Sign Language, Elementary23 [68] contains trans-
lation pairs based on the official syllabus of Greek Elementary School and has been used for
transformer-based SLT. Its contents are separated based on the syllabus subject (i.e Maths, Greek
Language) we enables us to perform subject- specific SLP training. This dataset has not yet been

used on the sign Language Production Task and its one of the few Large scale datasets existing

on Greek SL.
Dataset Language Year Video Text Gloss

PHOENIX14T [36] German SL 2014 v v v

How?2Sign [16] ASL 2021 v v X

Elementary23 [68]  Greek SL 23k v v X

Table 5.1: Sign Language Datasets Availiabily
Dataset Vocab Size # Signers Lenghth (hours) Frame Size
PHOENIX14T [36] 3k 9 11 210 x 260

How2Sign [16] 16.5k 11 79 1280 x 720
Elementary23 [68] 23k 9 71 1280 x 720

Table 5.2: Sign Language Datasets Size Details

Focusing on Greek SL, the Elementary23 dataset [68], extensively used in this thesis, contains annota-
tions of the first three classes of Greek Elementary school books in all subjects, with a large vocabulary
exceeding 30,000 words. In our work, we focus on The Greek Language subset which contains 9499
videos with a vocabulary of 14345 words, and the Math subset which contains 6583 videos with a vo-
cabulary of 6457 words. Specifically for the Math subset, we begin our evaluation, by training the SLP
pipeline on the two most prominent signers, referred to as Signer A and Signer B, who appear in 3,476
and 746 videos, respectively. Then, we generalize our training process across all signers to achieve a

more holistic result. Table 5.3 visualizes the size and vocabulary of each subset used, while Figure 5.1.1
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shows the original distribution of signers in Elementary23.
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Figure 5.1.1: Signer Distribution inside the entirety of the Elementary23 Dataset. Since the Greek Language and
Math subsets contain mostly videos of Signer A and Signer B, we select those for our future training[68]

Videos | # Words
Math | Signer A 3473 3654
Signer B 746 1059
Greek | Signer A | 2467 4749
Signer B 1927 3535

Table 5.3: Defined Elementary23 subsets used in this thesis

5.2 Feature Extraction and Data Preprocessing

We use MediaPipe Holistic [26] for landmark extraction on each SL video. As mentioned in chapter
2, MediaPipe Holistic employs a graph-based pipeline that processes different regions of interest (ROIs)
within an image to estimate a total of up to 543 landmarks. These include 33 body pose landmarks, up to
468 facial landmarks, and 42 hand landmarks (21 per hand). Its also worth mentioning that MediaPipe

Holistic runs on just the CPU, taking approximately 3 seconds of inference per frame.

In order to expedite the training process we sub-sample both the pose and face mesh landmarks. For
the pose keypoints, we select the 8 points shown in figure 5.2.1 which include the body parts necessary
for a SL video, such as the torso, elbows and wrists. For the face landmarks, we choose 141 instead of
468 face keypoints, which contain all the necessary face information, such as the mouth, eyes, nose and
face perimeter. For each hand, we keep all 21 landmarks. This brings us to a total of 191 landmarks,
instead of the original MP 468 landmarks, which is a substantial reduction to nearly one third. Finally,

the total extracted landmark sequence for each frame is defined as follows:

Pf = [aleft handHaright hand‘ ‘aface‘ |apose‘ |Cf] (5'2-1)

where Py is the landmark sequence for the f-th frame, cy is the counter value ranging from 0 to 1 that

indicates the relevant frame posisition and || the concatenation symbol.
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Figure 5.2.2: (left) Original 478 MP face landmarks. (right) Selected 141 MP face landmarks for SLP

5.3 Pose Retargeting and CCBR extraction

After the initial step of pose estimation and the curation of the dataset for the Text-to-Pose models, we

also have to prepare the data for the Neural Rendering process.

Since each SL dataset contains two or more distinct signers, when motion retargeting from one to
another, we must consider possible differences in their bodily anatomy or a difference in camera-body

placement in the original videos.

For this reason we adapt pose retargeting methods for the face and body landmarks seperetally, follow-
ing the Procrustes Analysis methods used in Head2head [37] for face and Neural Sign Reanactor [64]
for hands and body.

For the face retargeting, we focus on rigid facial regions less affected by deformations due to expres-
sions. Using a subset of n rigid facial landmarks, we align the source and target faces to a mean facial
template through Procrustes Analysis. At each frame, this alignment applies isotropic scaling, transla-
tion, and rotation transformations to minimize the disparity between the source and target landmarks.
The aligned landmarks are then refined using a geometric median across all frames to compute median
source and target face templates. Non-uniform scaling factors are subsequently calculated to match
the spatial dimensions of the median source face to the median target face. These scaling factors are
then applied frame-wise to adjust the source facial landmarks while ensuring proper alignment with

the target’s anatomy.
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For the body retargeting, including torso and hands, we also adopt a similar Procrustes-based approach.
Here, body landmarks are aligned with a mean skeletal template, and transformations are computed to
preserve the relative spatial dynamics of the source pose while ensuring compatibility with the target’s

skeletal proportions.

After performing retargeting where necessary, we generate the corresponding color-coded frames, used
to condition the neural rendering process. These are RGB images, where each keypoint is visualized
as a fixed-radius disk with a unique color assigned through a predefined color-coding scheme. To
define our color scheme, we use the normalized x,y 2D MediaPipe landmarks in the space [0,1] for
the red and green values, and pre-define the blue coordinate. For the face, we utilize the triangular
mesh representation from MediaPipe and assign colors to the mesh triangles based on the transformed
vertex positions after retargeting. Fach joint retains a fixed color across signers, ensuring consistent
and semantic representation in the RGB space, which aids the renderer in learning the mapping to

output images.

Figure 5.3.1: Example of MediaPipe extracted and sub-sampled keypoints (left), example of retargeted and color-
coded extended skeletal pose used for renderer conditioning (center) and superimposition with the RGB reference
frame (right).

5.4 Training and Implementation Details

The transformer models in the Text to Pose and backwards generation use the following configuration:

All models have been trained using 2-layer transformers with 4 attention heads, embedding dimension
512 and all weights are initialized with Xavier. All SL Production and SL Translation models used in
a specific pipeline and data subset are trained on the same network specifications (i.e. vocab size, em-
bedding dimensions) for model compatibility. Most SL transformer modules contain approximately 20
million parameters which ensures a balance between computational efficiency and modeling capability.

This manageable parameter count enables the models to be effectively trained while maintaining high
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correlation with the dependent data subsets.

The training process uses Adam optimization with an initial learning rate of 10~3, which is dropped
using a scheduler depending on the resulting BLEU-4 scores during evaluation, with a 50-epoch patience
and decrease factor of 0.95, till reaching a learning minimum. Both Text-to-Pose and reverse generation
models are trained with a batch size of 8, requiring 3 to 4 days depending on the alterations between

auto-regressive decoding and teacher forcing.
Next, regarding the neural rendering process:

The neural rendering process focuses on generating realistic signer-specific video output. The video
rendering network is trained on a signer-specific 8 minute concatenated video, chosen from the Ele-
mentary23 dataset. The network is trained on given signer for 100 epochs, and the training is complete
in approximately 4 days on a NVIDIA GeForce GTX 1080 Ti GPU. The network is optimized using Adam
wit an initial learning rate = 2 - 1074, 8; = 0.5 and B2 = 0.999.

5.5 Evaluation

5.5.1 Evaluation Methods

As mentioned in chapter 3, both SLT and SLP tasks use metrics from typical NLP seq to seq expirements
in order to perform evaluation. Some of the lingual evaluation metrics used to measure the output
quality include the BLUE [46] and ROUGE [40] metrics.

5.5.1.1 The BLEU Metric

In the BLEU@N metric [46], the matched N-grams between the machine-generated and the ground-
truth answer are utilized to compute the precision score. BLEU@N metric is calculated for N = 1 to
4, where shorter N-grams are used to fulfill the adequacy and longer N-gram matching accounts for
fluency. The BLEU@N score is calculated as the product of the Brevity Penalty and the translation

Geometric Average Precision Score. Formally, the BLUE score can be calculated as follows:

N

BLUE = BP - ea:p(an log pn> (5.5.1)
n=1

where p,, is the precision for n-grams of length n, w,, are optional weights and N is the maximum

n-gram length considered, in our case from BLUE1 to BLUEA4.

5.5.1.2 The ROUGE Metric

ROUGE (Recall-Oriented Understudy for Gisting Evaluation), is a set of metrics and a software package
specifically designed for evaluating automatic summarization, but that can be also used for machine
translation [40]. ROUGE-L, which is used in our case, measures the overlap percentage of Longest Com-
mon subsequences between groundtruth and generated sentences. More formally ROUGE-L precision

score is defined as:
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Length of LCS
Length of generated sequence (#words)

ROUGELprecision = (5.5.2)
In both metrics higher scores indicate higher similarity between the produced sentence and the refer-
ence. BLEU focuses on precision (how much the n-grams in the model output appear in the ground-
truth sequence) while ROUGE focuses on recall (how much the n-grams in the ground-truth sequence

appear in the model output) and usually a precision-recall trade-off is observed.

5.5.1.3 Dynamic Time Warping

Dynamic Time Warping (DTW) is a time-series alignment technique used to measure the similarity
between two sequences that may vary in time or speed. In the context of sign language production,
DTW plays a crucial role in aligning motion trajectories of skeletal keypoints between the generated

and ground-truth signs, specifically for evaluation purposes.

5.5.2 Compared Benchmarks

As mentioned, we aimed to evaluate the proposed pipeline as extensively as possible, conducting ex-
periments on all three used datasets. We compare our method with at least three previously existing
benchmarks on SLP, if those are available. The benchmarks shown where chosen based on their rele-
vance and similarity to our method. It’s important to also clarify which task (Translation or Production)
each benchmark is referring to, since the differ in difficulty in implementation. Since PHOENIX14T is
one of the most popular datasets for Sign Language Processing we considered it almost necessary to

include it in our evaluation method.

5.5.2.1 Sign Language Translation Benchmarks

First, we structure our evaluation process by presenting results on the Sign Language Translation mod-
ule. It’s important to note the models resulting in this section are obtained from models solely trained on
ground-truth skeleton sequences. This increases model performance and also follows accurately bench-
marks presented in previous literature. Table 5.4 shows our SLT results on the three datasets, How2Sign
(ASL), PHOENIX14T (German SL) and Elementary23 (Greek SL). The ground-truth keypoints for the
PHOENIX14T set-up where retrieved from the Sign-Diff repository [18] for faster results during this
thesis. For the How2Sign experiments, we extract data keypoints ourselves as described previously,

only excluding the face landmarks (75 in total) for expedited training.

The evaluation results for Sign Language Translation (SLT) demonstrate that the proposed model per-
forms competitively across multiple datasets. In the PHOENIX14T (German SL) dataset, the model
achieves a BLEU-4 score of 21.22. This indicates strong translation quality comparable to previous lit-
erature benchmarks. However, in the How2Sign (ASL) dataset, the proposed model scores 8.53 BLEU-4,
which is slightly lower than the reported 14.9 BLEU-4 in the most recent (sota) work. This discrepancy
may be attributed to differences in pre-processing, such as the exclusion of face landmarks for expe-

dited training. On the other hand, for the Elementary23 (Greek SL) dataset, the proposed model shows

93



Chapter 5. Experiments

Dev Test
Method BLEU-41 ROUGE?T BLEU-47 ROUGE?T
How2Sign (SLT) [52] - - 14.9 36.0
ours 9.01 22.34 8.53 25.22
| Progressive Transformers [54] (SLT) ~ 20.23 5541 1910 5455 |
Sign Language Transformers [10] (SLT) 22.38 - 21.32 -
ours 21.53 - 21.22 -
| Elementary23 SLT (Voskou et al. [68]) 667 - 569 -]
Elementary23 SLT (ours) 8.34 32.36 8.2 32.16

Table 5.4: SLT Evaluation Banchmarks

a significant improvement over prior results, reaching 8.2 BLEU-4 compared to the previous original

paper’s 5.69 BLEU-4, suggesting a good adaptation to Greek Sign Language.

5.5.2.2 Sign Language Production Benchmarks

Naturally, when switching to SLP, we expect BLUE-4 scores to slightly drop as it’s a more complex and
challenging ML task. As previously mentioned in chapter 4 the SL translation loss is used during our
SLP training along with the mean squared error differences, so a drop in BLUE-4 scores is justified. It’s
also important to note that the results shown in tables 5.4 and 5.5 are not directly comparable with
previous literature, as the selected test set often differs across publications. However the scores remain

clear indicators of how well are models perform.

Dev Test
Method BLEU-47 ROUGET BLEU-41 ROUGE?T

Neural Sign Actors [2] 13.12 47.55 13.12 47.55
SignDiff [18] 16.92 49.74 15.92 46.57
MS2SL [42] 4.26 16.38 4.26 16.38
ours 4.5 12.36 4.48 12.16

| Progressive Transformers [54] ~ 11.82 3318 1051 3246 |
There and Back again [61] 17.10 40.42 16.91 40.22
ours 12.34 33.98 12.51 34.21

| Elementary23SLT [68] 667 - 569 -
Elementary23 Math (ours) 7.58 15.11 7.69 15.26
Elementary23 Greek Lang (ours) 5.63 14.56 5.52 14.23

Table 5.5: SLP Evaluation Banchmarks

For Sign Language Production (SLP), as expected, the BLEU-4 scores generally decrease due to the com-
plexity of generating sign language sequences. In the How2Sign dataset, the proposed model achieves
4.48 BLEU-4, which is slightly higher than MS2SL but still below the Neural Sign Actors and SignDiff
models. Despite this, the proposed model performs well in other benchmarks, notably in the Elemen-
tary23 (Greek SL) dataset, where it achieves BLEU-4 scores of 7.69 (Greek Language subset) and 5.52
(Math subset), both well competing with the previous 5.69 SLT score.
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5.5.3 Ablation Studies

In order to test the effect of each proposed component on the overall accuracy we perform several

ablation studies on the Elementary?23 dataset, presented below in detail.

To begin our SLP ablation analysis, we performed experiments on the Mathematics subset of the Ele-
mentary?23 dataset, on the two most frequently appearing signers, Signer A and Signer B. To assess the
model’s ability to generalize across different signers, we performed two separate training sessions: one
focused exclusively on Signer A and the other on Signer B. For evaluation, we alternated between their
respective test sets to measure cross-signer performance. Results are shown in table 5.6. We clearly
see that the model fails to produce accurate signs when the "wrong" test set is used. These findings
suggest that the model struggles to generalize across signers, likely due to differences in signing styles
or vocabulary correlations unique to individual signers. To address this limitation, we proceed to train
our models on larger sections of the Elementary23 dataset, emphasizing the need for more generalized

training approaches.

Test - Signer A Test - Signer B

BLEU-11 | BLEU-41 | BLEU-11 | BLEU-41
Train - Signer A 17.05 5.02 5.93 0.00
Train - Signer B 6.29 1.18 21.87 6.69

Table 5.6: Ablation Study on the Elementary23 Greek Language SL Dataset. Best-performing results are high-
lighted in bold, while failure scores in the case of swapped signer test scores are shown in red.

Our next ablation study, shown in table 5.7, on the Elementary23 Greek Language Subset, shows that
the inclusion of pose-to-text Loss and Gloss annotations possessively affects on performance. Although
BLEU-4 scores improve independently (4.42 dev, 4.55 test), the combination with Gloss yields mixed
results, slightly reducing BLEU-4 on the dev set (4.06) but improving on the test set (4.32). This interplay
suggests that while gloss annotations simplify linguistic diversity, over-reliance on glosses can limit
adaptability. This study includes the entirety of the Greek Language subset, addressing the dataset’s

signer and vocabulary dependencies.

Dev Test
LvigeoosTest Gloss BLEU-41 BLEU-41
X X 4.17 4.15
X v 3.56 3.44
v X 4.42 4.55
v v 4.06 4.32

Table 5.7: Ablation Study on the Elementary23 Greek Language SL Dataset

We show a similar ablation study, in table 5.8, this time conducted on the Elementary23 Math Subset.
Again, The results demonstrate that Ly ;geoo7es¢ 1S a critical component for achieving high performance
in our SLP pipeline, while The slight reduction in performance when combining Ly ;gcoo7est and LLM
retrieved gloss annotations suggests that there may be some redundancy or misalignment between the

two components.

An example of the Video2Text Loss is show in figure 5.5.1. We ultimately observe that the use of the
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Dev Test
LvideooTest Gloss BLEU-41 BLEU-41
X X 3.17 3.15
X v 4.36 4.44
v X 5.42 5.55
v v 5.12 5.06

Table 5.8: Ablation Study on the Elementary23 Math SL Dataset

CTC Loss added to the MSE training objective increases movement variability on the generated signs.
While changes in body pose and head are minimal, the use of CTC Loss during training suggests the

improvement of movement in the hands during specific representation of SL sentences from the dataset.

Figure 5.5.1: Sample visualization of the effect of the pose-to-text Loss. Top to bottom: (a) 2D Pose w/o pose-
to-text Loss, (b) 2D Pose with pose-to-text Loss, (c) ground-truth sequence reference. When used, the generated
poses show greater movement variability and regress less on mean pose.

Next, we focus on conducting experiments on entire sections of the Elementary23 dataset, disregarding
the fact that videos are filmed with different signers. We specifically choose the entire Math subset
and the Greek Language subset. Our first ablation study, shown in table 5.9, compares training with
Teacher Forcing (TF), Auto-regressive Decoding (AD), and their combination (TF+AD), underlining the
benefits of employing a hybrid approach.

While Auto-regressive Decoding achieves significantly higher BLEU-4 and ROUGE scores (5.4 and 14.5
on the dev set, respectively) compared to Teacher Forcing (1.69 and 8.52), the hybrid TF+AD model
provides balance between computational efficiency and predictive accuracy. Notably, the hybrid model
achieves the highest overall performance, both in the Greek and Math subsets, validating the impor-

tance of alternating decoding strategies during training.

Following the ablation study in table 5.9 we shown that the hybrid model of TF+AD successfully in-

creases the quality of generated pose signs. Another way of performing quantitative evaluation is by

96



5.5. Evaluation

Dev Test
Subset Method Epochs Time/ Epoch (s) BLEU-47 BLEU-41

Teacher Forcing, (PT [54]) 2500 5 0.49 0.35

Greek Autoregressive Dec 2500 30 4.3 4.13
TF + AD 1250 + 1250 5,30 4.67 4.46

Teacher Forcing, (PT [54]) 2500 5 1.69 1.46

Math Autoregressive Dec 2500 30 5.4 5.3
TF + AD 1250 + 1250 5,30 5.69 5.59

Teacher Forcing, (PT [54]) 3000 5 0.98 0.00

Signer A Autoregressive Dec 3000 30 2.12 2.06
TF + AD 2000 + 500 5,30 5.23 5.02

Teacher Forcing, (PT [54]) 3000 5 0.18 0.18

Signer B Autoregressive Dec 3000 30 2.5 2.2
TF + AD 2000 + 500 5,30 6.7 6.69

Table 5.9: Ablation Study on the Elementary23 Greek (Top) and Math (Bottom) SL Dataset. Best TF+AD results
are highlighted in bold. Teacher Forcing (TF) method is equivalent to the Progressive Transformers (PT) work
[54].

using Dynamic Time Wrapping to align ground-truth and produced sign sequence in an optimal way
mathematically. Figure 5.5.2 compares DTW scores in late training both in the Math and Greek Lan-
guage SL subsets.
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Figure 5.5.2: Comparison of DTW values for methods TF, AD and Hybrid TF,AD at late stage training

To further support the claim that the combination of Teacher Forcing combined with Autoregressive
Decoding (TF+AD) works best in our training setups, we also provide below some of the plots retrieving
during training. Figure 5.5.3 shows the averaged dynamic time wrapping values, calculated during
evaluation (or inference), across the dev set (or the test set, respectively). Initially, the DTW values
fluctuate within the range of 15-25, indicating a relatively random alignment between predictions and
reference sequences. However, upon adopting AD training, there is a noticeable and significant drop
in the DTW values, settling at a promising value of 8.8. This improvement in DTW similarity signals
a substantial enhancement in the model’s ability to generate more accurate and coherent sequences,

further validating the effectiveness of TF+AD training in our specific application.
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Figure 5.5.3: Visualization of the DTW values on the test set on an Elementary23 Math model. DTW values drop
significantly after switching to training with autoregressive decoding, achieving a promising final similarity score
of 8.8.

Along with the DTW plot shown above, we also provide a training loss diagram, to further analyze
the model’s learning dynamics. Figure 5.5.4 compares the progression of the training loss during two
phases: first with Teacher Forcing (TF) and then with Autoregressive Decoding (AD) in the same hybrid
TF+AD model. The plot reveals the following insights regarding our hybrid training process: During
the TF phase, the model converges more quickly, achieving a lower Mean Squared Error (MSE) loss.
Specifically, the MSE loss during TF training drops to approximately 10e-5, the AD phase shows con-
verges at a slower rate, with the MSE decreasing to around 10e-3. However, despite the slower learning
rate and higher loss values during AD training,this phase contributes to enhanced video quality and

improved DTW scores which immensely benefits our case in SLP videos.
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Figure 5.5.4: Visualization of the training MSE loss between TF and AD training on the same hybrid model, trained
on Elementary23. As expected, AD converges slower but boost video quality.

98



5.5. Evaluation

5.5.4 User Study

While NLP-based metrics such as BLEU-4, ROUGE, and dynamic time warping provide a quantitative
assessment of our model’s performance, they do not fully capture the crucial aspect of human-like
evaluation. To address this, we conducted a web-based study focusing on sign classification and sign
realism. The study contains approximately 30 unseen SL videos, from the dev and test set of the Elemen-
tary23 Math dataset. The first half of our study required participants to select the correct corresponding
sentence from a set of three options, evaluating the model’s ability to generate semantically accurate
signs. The second half, participants are asked to compare videos generated from our pipeline versus
the progressive transformer network [54] and choose which of the two videos best describes the given
sentence. Additionally, we included questions specifically measuring the perceived naturalness of the
generated sign videos. Our pipeline was separately evaluated by 8 sign language experts, with the as-
sistance of members of the Athena Research Center. Below we present all results retrieved from the

study.

5.5.4.1 Sign Classification Study

In the first part of our web-based study we carefully selected 14 sentences (and their corresponding
generated SL videos) from either the test or the dev set of the Mathematics Elementary23 subset. Both
dev and test sentences are unseen from the transformers models and equally contributing to our user

study, as dev sentences are only used during evaluation and DTW calculations.

For each of the 14 videos included in the first half of the study, we asked the participants to select
the best matching text option over three sentences, based on which they believe was more accurate.
one over the three text option that they think best matches the generated video. To account for cases
where none of the provided text options accurately reflected the video, a "none of the above" option
was also included. This initial question aimed to assess the semantic alignment between the generated
signing videos and their corresponding textual descriptions. Following this, participants were asked
two additional questions to evaluate the correctness and clarity of the signed sentences: Namely, we
ask "How simple was it to understand the meaning in the signing video?" and "How well do you thing
the person signed?". These questions are designed to best model the comprehensibility of the generated
signing, focusing on both the linguistic accuracy and the naturalness of the signing performance. After
these question we follow by adding three separate scales (1 through 5) rating the visual quality of the
videos, namely for the face, hand and overall video quality. These ratings provided insights into the
optical quality of the generated videos, highlighting areas for improvement in terms of visual detail.
Together, these questions form a comprehensive evaluation framework, combining linguistic and visual

elements needed for SLP.

Table 5.11 shows the results of the sign classification study based on correctly answered questions. We
can see that our method outperforms PT by 35 percentage points suggesting that the proposed pipeline
achieves better results on SLP for SL experts. The study’s reliance on SL experts as participants ensures
that the evaluation is grounded in real-world usability and comprehensibility, taking into account the

needs of the DHH community. While the proposed pipeline achieves a strong accuracy of 71%, there
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Table 5.10: Sentences (translated) from Elementary23 Math used in the user study, produced by different methods

Ours PT
How many kids are in my class? The green boxes are in total
Revision Lesson Numbers and additions
Checking in the number line I'm drawing geometrical shapes
Calculating the product I'm checking the answer I wrote down

How can we find the result? Approximately
Discuss the solutions in class Examples

I'm explaining my thought process Which kid got the most change?

Table 5.11: Sign Classification Study Comparative Results

Method Answered Choices Accuracy
Proposed Pipeline 40/56 71.42%
PT Baseline SLP Pipeline 20/56 35.71%

is still room for improvement. The remaining 29% of mismatches may be due to challenges such as
ambiguous signing, insufficient visual quality, or limitations in the training data. On the other hand,
Figure 5.5.5 depicts the answers on the comprehension and visual quality scales. The SL users rated both
pipelines relatively low (1 through 3), possible due to low image analysis and sing ambiguity. Future

work could focus on addressing these issues to further enhance our performance.

Comparison of Pipeline Scores

How simple was it to understand _:l Baseline
the meaning in the signing video? = Proposed
How well do you thing _D
the person signed?
How would you rate the overall _D
signing quality in the video?
How would you rate the quality |
of the hands shown in the video?
How would you rate the quality _D
of the face shown in the video?
T T T T T
1.0 1.5 2.0 2.5 3.0 3.5 4.0

Averaged Linear Scale scores across answers

Figure 5.5.5: User study results: Picture Quality and Signer- related questions

5.5.4.2 Comparative Realism Study

In the second phase of our web-based study, we selected six sentences (along with their corresponding
sign language videos) generated from both the proposed pipeline and the Progressive Transformer
architecture, which serves as the baseline method. The sequences were again chosen from the Math

Elementary23 subset and also previously appear in the first part of the questionnaire. This decision was
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made to maintain consistency and avoid introducing additional complexity to the results. The findings
demonstrate that the proposed SLP-realistic pipeline was overwhelmingly preferred by SL users in

comparison to PT, highlighting the clear advantages and effectiveness of the proposed approach.

Table 5.12: Comparative Realism Study Results

Method Answered Choices Accuracy
Proposed Pipeline 44/48 91.66%
PT Baseline SLP Pipeline 4/48 8.33%

Table 5.12 shows the results obtained from the second half of the questionnaire. This Table indicates
that 91.6% of participants preferred the videos generated by our method. This overwhelming majority
highlights the pipeline’s ability to produce sign language videos that are relatively more accurate and

natural, in comparison to PT.

5.6 Qualitative Results and Additional Visualizations

Finally, this section contains various visualizations that capture each step of the end-to-end SLP pipeline
in a explainable manner. First, we show figures solely from the text-to-video generation using Medi-
aPipe as an intermediate representation step, and the we finalize by showing the results of the rendering
process. Figure 5.6.1 depicts two sample sentences from the best performing model in the math subset,

showing the (2D) generated skeleton and the original RGB video frame reference from the dataset.

Input: "ouvexilw TOV XpMUATIOUS WE TOV BLo TpoTo” Input: "TopaTtned xaot Yedpe Tov aptdud 3"
Tr: "l continue coloring in the same manner" Tr: "l observe and write down the number 3"

Model Generated Sequence Cém:raffd QFqufn(r

Ground Trm‘fv Reference Grmmd’ Trutfz Rejrrmu- o

RGB Reference R(B Reference

Figure 5.6.1: Sample (test set) visualizations of our SLP method. Top to bottom: Text inputs, 2D generated sign
sequence from text embeddings, ground-truth sequence reference, RGB reference.
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Figure 5.6.2 again shows the generated skeleton poses, this time comparing between out proposed
pipeline and the PT framework. The results clearly demonstrate that our approach achieves superior

hand quality in the generated sign.

Figure 5.6.3 shows two examples of the synthetic generated video output. Along with the synthetic
output, we also provided visualizations of the generated 2D landmark seqeunce as well as the retargeted

color-coded frames.

Finally, in table 5.13 we provide several examples of the video-to-text module that performs the Sign
Language Translation task. We compare translated sequences from the ground-truth landmarks and

the transformer landmarks.

Progressive Transformer

5

Proposed

Figure 5.6.2: Sample visualization in order to compare Progressive Transformers [54] to the proposed generative
pipeline. Top to Bottom: PT output, Proposed Pipeline Output (ours), Ground-truth Reference.
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Input: "Tlapatneolpe Tic etxxdves xon culnTdue”
Tr: "We observe the pictures and discuss”

I O O O

Input: "Tedpe Toug aprduolc tou Beloxe”
Tr: "l write down the numbers | find"

Figure 5.6.3: Sample total pipeline visualizations. (Top) Skeletal Pose generated from text, (Middle) Corresponding
color-coded poses after retargeting and Procrustes analysis, (Bottom) Neural Renderer Result.
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1 | Ref: oL apiBuol artd to 6 péypr to 10

Prod w/ GT: ot aptBpoi amd to 6 péxpt to 10
Prod w/ SLP: ot apiBpoi amd to 6 péypt to 10
Ref (Tr): The numbers from 6 to 10

Prod w/ GT (Tr): The numbers from 6 to 10
Prod w/ SLP (Tr): The numbers from 6 to 10
2 | Ref: ¢pTidyve yeopetpicd oyfupota

Prod w/ GT: yewpetpikd oxrparto

Prod w/ SLP: ¢ptidyve yewleTplkd oyfipoto
Ref (Tr): I create geometrical shapes

Prod w/ GT (Tr): geometrical shapes

Prod w/ SLP (Tr): I create geometrical shapes

3 | Ref: av oe k&Be pvAIO TOL GApTTovp PdAel , tooa pUAAa Ba xproomoost;
Prod w/ GT: av o¢ k&Be pOANO Tov dApmovp Paiet 10 avtokOAAN TR, TOoK GOAA Box yproLpomoLrcet;
Prod w/ SLP: av o¢ k&Be $pOANO TOUL dApmovp PoAel , mooa $pOAA Ba xpnoylomoLoey;

Ref (Tr): if he puts 8 stickers on each sheet of the album, how many sheets will he use?
Prod w/ GT (Tr): if he puts 10 stickers on each sheet of the album, how many sheets will he use?
Prod w/ SLP (Tr): if he puts 10 stickers on each sheet of the album, how many sheets will he use?

4 | Ref: kavw Tig Kot yphdpw To amotéAecpa
Prod w/ GT: k&vw T1g Tapakdte tpaelg
Prod w/ SLP: x&vo Tig Kol Ypadw To amotéAecpo

Ref (Tr): I do the divisions and write the result

Prod w/ GT (Tr): I do the following operations

Prod w/ SLP (Tr): I do the additions and write the result

5 | Ref: evivo pe To ydpoka ta onpeia o €xouv To idlo Ypopo
Prod w/ GT: eviyvew pe pio ypoppr) ta onpeio tov éxouvv to ido xpopo
Prod w/ SLP: evodvo e To ydpoko ta onpeio ko o cOpfoia

Ref (Tr): I join the points that have the same color with the ruler
Prod w/ GT (Tr): join the points that have the same color with a line
Prod w/ SLP (Tr): join the points and shapes with the ruler

6 | Ref: cuvdéw ta oxrpato pe To Hvop TOvg

Prod w/ GT: dunyodpou éva tpoPfAnpo

Prod w/ SLP: cuvdéw e pioe ypoppr] toe KoppeTion

Ref (Tr): I connect the shapes with their names

Prod w/ GT (Tr): I'm telling a problem

Prod w/ SLP (Tr): I connect the pieces with a line

Table 5.13: Cumulative Sign Language Translation Examples. Notation meaning: Ref is Text Reference for Dataset
, Prod w/ GT is the SLT text result using the ground-truth landmark sequences and Prod w/ SLP is the SLT
text result using the landmark sequences produced from our SLP module. From top to bottom, with green are
highlighted correctly translated sentences, with orange sentences that differ in words but not in meaning and in
red the wrong translations. (Tr) denotes free translation in English.
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6.1 Summary

In this thesis we explore the field of Sign Language Processing and specifically SL production and pro-
pose a deep learning system for SLP. We provide an extended review on exiting research regarding deep
learning based SL translation and production to gain a better understanding of the field. We base our
SLP pipeline on an Encoder - Decoder architecture that predicts pose - landmark sequences given just
the text input. To our knowledge, this is the first sign language production system applied to Greek sign
language datasets using deep learing architectures. The proposed method utilizes several architectural
details that ultimately seem to improve the generated sign quality. More specifically, we incorporate
components such as the use of a Pose-to-Text loss during training and SL gloss generation through
text transcriptions, which help the quality of the generated sign poses. We also propose a scheduling
algorithm that alternates between using teacher forcing and auto-regressive decoding during training.
We evaluated the effectiveness of the proposed pipeline on three diverse datasets through an extensive
series of comparative analyses and ablation studies, proving its effectiveness. Our work on SLP was
accepted at the 18th International Conference on PErvasive Technologies Related to Assistive Envi-
ronments (PETRA 2025), titled "A Transformer-Based Framework for Greek Sign Language Production

using Extended Skeletal Motion Representations".

Furthermore, we explore the photorealistic aspect of the problem, aiming to create a more complete and
user-friendly pipeline that transforms text directly into realistic human SL videos. For the photorealistic
module, we harness Generative Adversarial Networks (GANSs) to perform neural rendering on the pose
sequences generated by the transformer model. The rendering process produces a synthetic signer
video that emulates the appearance of one of the original dataset’s signers, this way addressing potential
concerns regarding signer anonymization. To comprehensively assess the performance of the proposed
model, we conducted a web-based user study answered by Greek Sign Language experts. The study
included a series of questions assessing both the comprehensibility of the generated signs, as well as

questions regarding the visual realism of the rendered output.

6.2 Computational Limitations and Future Work

This work, despite its competitive performance in several benchmarks, also posed some architectural
limitations, highlighted as follows. As continuous sign language production is a relatively complex task
with high computational cost, our model often struggles in unseen or longer sign language sentences.
Additionally, the separate training of the neural renderer and the forward and backward Text2Pose
models on different machines introduces inefficiencies, especially in the case of autoregressive decod-
ing, where training can take up to 3-4 days to complete. Finally, our current rendering approach does
not fully exploit the third coordinate of the MediaPipe skeleton signs, which encodes valuable informa-
tion about image depth and camera positioning. After summarizing the work presented in this thesis
and addressing seen limitations we focus our attention on expanding sign language production and

synthesis research and several possible ideas arise to mind:
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« VQ-VAE, VQ-GAN architectures: Recent advancements demonstrate that integrating varia-
tional autoencoders can significantly enhance the performance of sign language production sys-
tems. By mapping the encoded sign language sequences to their nearest candidate from a learn-
able codebook we could enhance the quality of the produced SL videos. Embedding such ap-
proaches into our Encoder-Decoder architecture in future implementations could further enhance
the realism of produced signs while reducing the reliance on autoregressive decoding during train-

ing.

+ 3D model reconstruction: This work utilizes 2D representations to encode SL videos, as both
the Transformer and neural rendering modules perform effectively within this framework. How-
ever, there still remains the capability of extracting 3D represenations with MediaPipe. 3D repre-
sentations could contain useful information regarding the image depth and the camera position
especially during the neural rendering process for better result quality. On the other hand, sev-
eral recent works explore the creation of SL models which use realistic 3D figures, often employed

using SMPL-X and other body representation frameworks.

« Lexical Diversity: Notable limitation of existing SL datasets is their constrained vocabularies.
For example, Elementary23 focuses on elementary school textbooks, How2Sign on instructional
and tutorial videos, and PHOENIX14T on weather forecasts. As a result, most SLP modules re-
lay on reproducing words and sentences from the already limited SL training vocabulary, and
thus may not covers the necessities of a complete Sign Language education system. The possible
development of a larger and unified SL base would tremendously benefit the DHH community,

particularly in the digital era.

« End-to-end Training: In this thesis, SLP is addressed as a twofold task: First, generating MP-
extended skeletal poses from text and then performing neural rendering in a separate step using
distinct models. Additionally, within the Text-to-Pose module, separate Transformer models are
employed for forward and backward translation. Transitioning to a more holistic approach that
doesn’t require the training of diverse modules could be proven beneficial, by improving semantic

coherence and enhancing computational efficiency.

6.3 Possible Applications and Social Impact

Sign Language Production is a way of bridging communication between the hard of hearing and non-
DHH communities. Digital sign language systems can have a wide range of valuable applications in the
daily life of people who might be in need of it. For example, lifelike generated sign language avatars
could serve as active educational aids, interactive guides in museums, or presenters in news broadcast-
ing.

Is of great importance to note that these technologies are not intended to replace human sign language
interpreters; rather, they aim to enhance accessibility by supporting sign language education and dub-
bing, making these resources more accessible and widely available. Such artificial systems that often

output a synthetic human should always be developed with a deep respect for the irreplaceable value
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of human-to-human communication, while also prioritizing the genuine needs and preferences of the

DHH community.
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