£
&

$

POMHOEVS .
nVp$opo

S

E9vixé Metoofio IToAuteyveio
Eyohfy Hhextpordywv Mnyovixody xow Mnyovixdy Trohoylotomy

Tougag Emxovowicyv, Hhextpovinric xou Yuotnudtev IIAnpogopurg
Epyaothpio Xyedlaong Ungloxoy LucTnudtwy

Harnessing CIM techniques for accelerating sum
operations in FPGA-DRAM architectures.

Aimhouotind Eoyoota

Alopavtidn Ocoyden

EnBAenwy: Anunrteloc Yolvieng
Kodnynthc E.M.IL

Adrva, Mdptioc 2025

A

F’
‘,‘I
&

$

TNeTS08
k“bﬂ
Lo
L
i,
&'
NPOMHOEV S
SI==e|
N VP $OPO

E9vixé MetodfBwo IToAuteyveio
Yyohfy Hhextpordywv Mnyovixoy xow Mnyovixdv Trohoylotomy
Tougag Emxovovicyv, Hhextpovinric xou Yuotnudtev IIAnpogopurg
Epyaothpio Eyedlaong Ungloxoy LucTnudtwy

Harnessing CIM techniques for accelerating sum
operations in FPGA-DRAM architectures.
Armhouotiny Epyoota
TOV

Avopavtion Ocoydpen

EnmBrénwyv: Anuiteloc Yolvterng
Kodnynthc E.M.IL

Evyxptdnxe and tny tpyelt| e€etaotiny emtpons| tnv 19" Moptiou 2025:

Anunrtelog Ywthelog IFeddeyiog
Yolverng 200N Aevtdene
Kodnyntic Kodnyntic Kodnyntic
E.M.IL E.M.IIL ITA.AA.

A9rva, Mdptiog 2025

Avopavtidng Ocsoydeng
Awmhopatodyog Hiextpohdyoc Mryoavixde xon Mnyovixde Trohoyiotaov,
E.M.IL

Copyright (©) Awopavtidne Ocoydpene, 2025.
Me emupialn noavtog dixancduatog. All rights reserved.

Anayopebetan 1 avtiypagy), anodrixeuon xai Slavour tng moapolooug epyociog,
e oloxAfpou 1| TWAUATOC AUTAC, Yl Eumopxd oxomb. Emtpénetan 1
avotuTwor, amoUrxeuon xon Slovour) Yl OXOTO Ur XEEOOOXOTIXO,
EXTUOELTINNG 1) gpeLVNTIXAG @OONG, LTO TNV TEOUTOUEoT Vol avapEpEToL 1)
mY" TeoéAeuong xan Vo Stneeitar To mopdv ufvupe. EpotAuota mou
apopolY TN YeNoN NG epYuciag Yl XEEOOOXOTUXO OXOTO TEETEL VA
ameLYOVOVTOL TEOG TOV GUYYQEPEA.

Ouv anddelc xou T CUUTERAOUATY TOU TEPIEYOVIOL OE AUTO TO EYYQEUPO
exedlouv Tov cuYYpapéa XaL OEV TRENEL Vo punveudel OTL AVTLTPOCHTEVOUY
¢ enfonueg Véoeic Tou Edvixod Metodflou ITohuteyvelou.

4

ITepiAndn

Yta mhalowa Tng mopoloog epyacioc TapouctdlETol 0 TEOTOE UE TO omoio
umopolue vo oflomolicoupe o 1N undpyov (hardware) to onolo drdétouy oL
uviues tuyaioc npooéhaone (DRAM) ye oxond va extelécoupe mpdielc péoo
otny B Ty uviun. H yetagpopd twv 6edouéveny and tov eneepyasTr oTny
%x0pLoL UVAUT XL TOVATUAY omOTEAE! €Vol OO Tal ONUAVTIXOTERPX EUTOBLL TOU
avTieTwnilouy T olyyeova UTONOYIOTIXA CUCTAUOTA. X QUTH TNV
Oimhwpatixy) epyooia e€etdlouye TEOTOUE UE TOUC OTOlOUE UTOPOUUE Vo
exteléooupe mpdlel oe eminedo (bit) ypnowomoldvTaC AmOXAECTIXE TIC
aVOAOYIXES WBOTNTES TTOU €YOUV OL TVOXES UVAUNG. Zuyxexpluéva e&etdlouue
TIC TEAEELS BLABIXAC AOYIXAC TOU UTOEOUYV Vo TRy patoTotioly aviueco e
neptocbtepa Tou evoe (bit) omwe v mapdderypa eivan or mokeg (AND, OR,
NOT). ’Ererta ouvdudlovtac autéc Tic TOAEC XOTUOXEUELOUUE Lol
Aettovpyiny povéda mhfpouc odpootr (Full Adder) n onola mpoyoutonotet
TV Suadixr) TEécVeor amoxAElCTIXd Uéoo oTny UvAun. Acelyvouue Ot
UTOPOUNE VO EXTEAECOUNE TIC OmAEC DLAOXEC EVTOAEC UE TOCOGTO emilylog
uéyer xou 90% evdd o anoteréopota Tne Suadxhc mpdodeons hopfdvovton e
emtuylo uéyper xou 80%. IHopovotdleton 1 xUx Lot UAOTOINoY EVIOYUTA
AVIYVEUOTC CHUNTOC TOU TEXUNELWVEL TOV TEOTO AELToupYldS TNG TUEATAVE
dladwdolag mou vhomoteitoan yenowonowwvtag to Cadence IC Suite oe
teyvohoylo TSMC 90nm CMOS process.

AgZeic KAedid: Avvopixr, MvyvAun Tuyoiog Ilpoonélaorg,
ITAfenc Adpoiotnig, Evioyutrc aviyvevong ofuatog, Ilpdieic
KE WVARM, Aoyixég ITOAeg

Abstract

In the context of this work, we present a method for leveraging the existing
hardware capabilities of random access memory DRAM to perform
operations directly within the memory itself. The transfer of data between
the processor and main memory, and vice versa, constitutes one of the
most significant bottlenecks in modern computing systems. In this thesis,
we explore methods for performing bit-level operations exclusively using
the analog properties inherent in memory arrays. Specifically, we examine
binary logic operations that can be performed between multiple bits, such
as the AND, OR, NOT gates. Subsequently, by combining these gates, we
construct a functional full adder unit (Full Adder) that performs binary
addition entirely within the memory. We demonstrate that simple binary
operations can be executed with a success rate of up to 90%, while the
results of binary addition achieve success rates of up to 80%. Additionally,
we present the circuit implementation of a signal detection amplifier that
validates the operation of this process. The implementation is carried out
using the Cadence IC Suite on TSMC 90nm CMOS process technology.

Keywords: Dynamic Random Access Memory (DRAM), Full
Adder, Signal Detection Amplifier, In-Memory Computing,
Logic Gates.

Euyaplotieg

Me v mopddoor NG mopoUcos OIMAWUATIXNAG €QYACIOC OAOXANPOVETUL O
(0XANOG TV TEOTTUYLOX®Y YOV OToLd®Y. XTo onueto autd Vo Hdeio va
ELY PO THOW aPYd Tov eTPBAETOVTA XNy NTY Hou x. Anunteio Lolvten yia
™V xoodynon mou pou mopelye xod OAn TNV Oudpxela exmOVNONG NG
napovoag epyactac. To Véua autd emhéydnxe pe O Tou TpwToBouhio xou
ftay oautd o Talptale PE TIC YVOOELS xat To evOla@EpovTd pou. Oa fideha
eniong va euyaplothow Tov x. Tedpyio Aevidpn (Kodnyntd IHAAA) yi v
mohOTwn Bordeld Tou, xadwe xon Yo TIC AUCEL TOU TEOTEWVE GTA TEOBAAUTA
TOU EUQAVIoTIXAY XoTd TNV Oldpxelor TG TEYVIXNG ulomolnong Tng
OLTAWUOTIXNAC.

Enlong Yo Aeha va euyopiotiow Yepud tnv ouddo tou x.Onur Mutlu
(ETH) xa eldixdtepa toug Olgun Ataberk xou Ismail Emir Yiiksel yio tnyv
TON) GNUAVTIXT] GUVELGPOEA TOUS XL TOV YEOVO TOU dPLEPWOAY XodnS Yweic
NV opwYY| Toug Bev Vo elyol TNV LTOBOUT| Yl TOV EAEYYO TOV ATOTEAECUATLY
TOL TEOEXLYAY ATO TIC TEOCOUOUDTELS.

Téhog Vo fUeha var eLyoEIOTACW WIUTEPWS TNV OXOYEVELSL UOU Xou To
adépplar Lou yia TNV Lo THEEY Toug, GAoug exelvoug Tou pe Borinooy xotd
TNV OdpXELL TNG PolTNohC Uou, xoddg emiong xou Toug QIAOUG YOoU YLlol TIC
OUOPYES CTIYHES IOV TEPACUUE AUTE TOL 5 YPOVLO GTIOUDBMY.

Atapovtiong Ocoydeng
Midptiog 2025

10

Acknowledgments

With the submission of this thesis, the cycle of my undergraduate studies
comes to an end. At this point, I would like to express my gratitude. First
and foremost, I would like to thank my supervisor, Professor Dimitrios
Soudris, for his guidance throughout the entire duration of this thesis. The
topic was chosen on his initiative and was perfectly aligned with my
knowledge and interests. I would also like to thank Professor Georgios
Lentaris (University of West Athens) for his valuable assistance and for the
solutions he proposed to the challenges that arose during the technical
implementation of the thesis.

Furthermore, I would like to express my sincere gratitude to the team
of Professor Onur Mutlu (ETH), and in particular to Olgun Ataberk and
Ismail Emir Yiiksel, for their significant contributions and the time they
dedicated. Without their support, I would not have had the infrastructure
necessary for verifying the results obtained from the simulations.

Finally, I would like to extend my heartfelt thanks to my family and
siblings for their unwavering support, as well as to everyone who helped
me during my studies. I am also grateful to my friends for the wonderful
moments we shared throughout these five years of study.

Diamantidis Theocharis
March 2025

11

12

Contents

[leptAngn 5
[_Abstractl 7
| Evyapoiotieg 9
| Acknowledgments| 11
| List of Figures| 15
[List of Tablesl 17
1 Exzetopevn EAAnvixn IlegiAndn) 19
(1.1 Ewoayoyn oo 19
[1.2 Oewpnuxo Tmoloveo|. 20
[1.2.1 H opydvwon evoc ohOXANOWUEVOL XUXAWUITOC UVNUNG |

[DRAMI oo 21
[1.2.2 H apyitextovinn tng pvnunc o€ uYnAotepo eminedo| . . . 22

[1.2.3 Aetovpyla Tou xutTadEOL UVAUNG L L L 25

(1.3 Xpowiouot Mvnung oo 27
(1.4 Aoutxd LTolyelo YIoL TNV EXTEAECT) TEOLEWY| - « « 29
(1.4.1 llpocapuocuevoc Memory Controller| 30

(1.4.2 llpacewc Xtnv Mvaun|o o000 31

[1.5 AmoTeEAEoUATA X0 LUUTEQAUOUATO, . « .« o o v v 32
2 Introductionl 35
|13 Theoretical background| 37
3.1 DRAM’schipl, 37
3.2 DRAM Architecturel 40

[3.3 The Subarray Full Circuit| 42

3.4 Timing and Basic Commands| 44
Experiments and Results| 47
4.1 Frameworkl 47
4.2 Sense Amplifier Circuit| 48
4.3 Row Copyl. o 54
4.4 Logical AND/OR|. 56
4.5 Fraction Operation| 61
4.6 Experimental Results|. 63
47 Full Adder|. o 65

List of Figures

(1.1 Apyttextovixy) Awatoln Mvunef oo o000 20
(1.2 1T wxottapo uvqung DRAM.| 21
(1.3 Taon otov xoufo tnc otiAnc bit.|o 22
(1.4 Opyavwon tnc yviune DRAM|. 22
(1.5 DRAM subarray.| 23
[1.6 Rows and Columns of a Subarray.| 23
(1.7 DRAM chip| 24
(1.8 64-bit Wide DIMM (one rank).| 25
(1.9 DRAMchip| 25
(1.10 Awmdwuévec yoouueg bit.o oo 27
(I.11 Awrypapuo tou Dram Bender| 30
[1.12° Awrypappo ACT-PRE-ACT) 31
(1.13 ITAnonc Adpototnc|o oo 33
[3.1 Storage Cell.| 37
3.2 Cell Voltage.| oL 38
3.3 When the voltage of the selected word line is raised, the |

transistor conducts, thus connecting the storage capacitor |

with the bitline capacitor| 39
3.4 DRAM architectureo 40
3.5 DRAM subarray level| 40
|3.6 The circuit of the subarray.| 41
3.7 DRAM chip architecture.|, 41
B.8 DRAM DIMM levell 42
3.9 DRAMtoplevel|o 0 0. 42
[3.10 Folded Bitline Architecturel 44
4.1 Sense Amplifier Circuit. 52

4.2 'Timing that the sense amplifier needs to charge the bitlines.|. 53

15

LIST OF FIGURES

4.3 Monte Carlo Analysis of the timings that the Sense Amplifier

16

| needs to charge the bitlnes.| 53
[4.4 Command Sequence for in memory operations. [IIf 55
4.5 Timeline for a single bit of a column in a row copy |

| operation.The data is loaded to the bitline R1 and |

| over-writes R2. 1| oL 55
4.6 Row Copy Success the regarding the distance of the activated |

T Rowl . . oo 56
4.7 Logical OR. 1| 57
4.8 Logical AND. [I]] 58
4.9 Truth Table from Charge Sharing in 3 rows.[Il[. 59
|4.10 Voltage Level of the Capacitor and the bit line during Frac |

| operation. 2] 62
411 OR Success Ratel oo 64
M12 AND Success Ratel. L 64
413 Full Adder] 65
4.14 As the number of additions increases, the absolute error ot |

| erroneous numbers exhibits a decreasing trend. This |

| suggests that random bit errors tend to partially cancel out, |
| leading to a more stable overall result. Consequently, the |
| cumulative error remains within acceptable limits, |
| demonstrating the inherent error-mitigation effect in |

| large-scale additions. .| 68
4.15 Rows occupied depending the bit length of the operators.| . . 69
|4.16 Number of operators in one subarray depending the bit length |

| of the operators.| 69
[4.17 Speed up of the addition of 1024 numbers.. 70
|4.18 Speed up of the addition of 10240 numbers.| 70
[4.19 Speed up of the addition of 102400 numbers| 71

List of Tables

(1.1 Boaowec Evtohéc Mvnund . . . 0 o o o0 00000000 27
(1.2 Boaowol Xpoviouolt Mvaungl oo 28
[3.1 Basic Memory Commands| 44
3.2 Basic Timing Parameters| 45

17

LIST OF TABLES

18

Kegpdiaio 1

Extetopevn EAAn VXN
ITepiAndn

1.1 Ewoaywyn

‘Evo cbotnua utoloyio T amantel uviun yio Ty omodixeuon twv SedoUEveY
TOU X0l TWV OONYLOV TV TEOYRUUUITwY Tou exteel. Méoa oe éva cloTnua
UTIOAOYLO T UTEEY0UV Bid@popotl TOTOL UVAUNG TOU YENOWOTOOUY BLdpOpES
TeYVOAOYiEC Mo €youv BlaopeTinolg Ypodvoug TpooTéraong. H pvAun mou
YENOWOTOOLY oL UTOAOYIGTEC pmopel va Ttodtvouniel oe 6Vo TOTOUE, TNV
x0pLor uviun xou amoUnxeutixry uviun. H xdpta uvAun ebvar autrh mou €yet
TayUTEPOUS Y POVOUS TPOOTEAUCTC Ol EXTEAOUVTOL OL TEQIOOOTEPEC EVTOMEG
Twv mpoypauudtwy. H xOpia pvAun auty amoxaAelton uvAun Ttuyolog
npoonéhaone (Random Access Memory, RAM). Ot ypévor mou amtodvat
oTIC pNUeS auTtol Tou EldoUg YLl TNV AMOUAXELOT, XOUL TNV OVEXANOT TWV
TAnpogopuwy elvan aveldotnTol amd TNV @uowt Yéon otnv omolo elvan
arnoUnxeuuévn 1 Thnpogopia.

Avtideta pe ¢ uviueg Ttuyolac TEOOTEAWONG, OTIC OEWplAXES
oaxOAOUDIAXES UVAUES, OTIWC Yol ToRdBeLyua elvon ot dioxol, To dedopéva efvar
otardéoipa povo xatd TNy (Bl oxohoudior e TNV omoio amoInxedTNXAY oEYLXd.
YUVETKE, O YPOVOS TOU AMOUTEITOL Yo TNV TEOOTEAUCT] UG CUYXEXQPLIEVNG
Thnpogoplag e&optdtar and TNy Véor anodrfixeucnc TS oTNY UVAUN xou EYEL
MEYUAOTERO YedVOo amd auTAY TN UVAUNG Tuyodog TEOOTEAACTS. H
XAVOVIXOTNTAL OV ETUOXVUEL 1] BOUY| TV XUXAWUATOV UVAUNG To xadotd
Wovixh, eqappoyy v tic teyvohoyiec VLSI[E]. Yuyvd ov Swatdlec pviunc
xataAaBavouy Ty TAelovoTTA TV TeaviicTop ot éva cloTnua o Ynplda
(system-on-chip teyvoroyiac CMOS).

19

Extetopévn EAAnvi Tlepiindm

1.2 Oeswentixd YTroBadeo

Ye éva ohoxhnpwuévo xOxAwuo UvAung To bits elvar mpoomeAdowa elte
atouxd, efte avd ouddeg twv 4 €wg 16. MTnv mapodoa ulomolnon 1 UVAUN
ATV TEOOTEALCHUY XAt ouddeg Twv 8 bits. Mia didtaln uviune mepthopBdvet
2" NeZeic (words twv 2™ Butg éxootn). Kdde bit amodnxebeta oe éva
(0TTOPO UVAUNG, OTOLU OTNY TERITTWOT TWV OLUVUUIX®Y UVNUOY Tuyaiog
npoomélaong elvon €vog muxveoth. Koatd tnv Sudpxewor tne Aettoupyiog
EYYPAUPNC 1 avAYVKONG EVERYOTOOVTAL Tot XOTTUPA GE AUTHY TNV YEUUUN
AEEN xo UECOL ATO ATOUWVKOTES 1 XUTOLOUC GTOLYEWWOELS EVIoYUTES, BidlovTo
N eyypdpovion tor Sedouévo. M tumxr) Oudtaln pvAung umopel vo €xel
YWNGOES YRUUUES EX TV oTolwy xdle Yeouur TepthouBdver YIMddee oTHAEC.
Yo mhadolar TV TELRUUTIXGY UETpRoewY aflohoyinxay UVAUES, oL omoleg
nepthduBovay 65 x 1024 ypouuéc ex twv omolwy xde ypouuy TepLAduBove
8 x 1024 Aé&eic twv 8 bits. e amholoTeuon, 1N 0pYAVWOTN TNG UVAUNG
TUPOUCIALETOL OTO TOROXATE OYAUA XOL OTNV EXOUEVY] TAURAYEAPO avahhOVTOL
EXTEVEOTEPA TOL TIEPLPEPLAXG XUXADPOTO TIOU Ypnoylorotovvra. [4]

T T T siine

t||:| Dt] Conditioning
S}[s}[s}[=}
[} [=][=}
ojo{o/o
DD e
0000
2[0000 e
IS N e o e e e e
§ | O3 3 3 01 2" olomns olooooooo
w}[a}[=}= CH CH O O CH CH O O
w][u]}[=][=] 7| OO0OO0D0HO memey
ml[nl[s][s g I [e i i P ool
O.o/00] R
) [a}[m}]=! CH O O O 01 01 O O
m][u][=}]=)][] [u][=][=}[=]{=}[=}
lluwls oo oo{oloio
[T 1

I Column
Circuitry

n-k
Column K
%]%J:?l Circuitry Dec
n n t t

Address Data (2™ bits) Address Data (2™ bits)
(a) (b)
FIGURE 12.2 Memory array architecture

-
-

Yyfuo 1.1: Apyrtextovuer; Adtagn Mvrung.

20

Extetopévn EAnvuer Tlepliindn

1.2.1 H opydvworn ev6g OAOXANEWUEVOL XUXADUATOG
wvriune DRAM

Or duvaixeg uvAueg amodnxedouy Ta TEQLEYOUEVA TOUG UE TNV Hop®h @opTiou
og évay TuXVeTH. Autéd onuaivel 6Tt To Pooixd x0OTTAUPO Elvon TOAD UXEO Xl
€T0L UTOPOUUE VAL XATUACXEUACOUPE TOAD TUXVES OLATOEES UVNUGY BUVIUIXNS
mpoonélacne. To peovéxtnuo elvon 6Tl TO TEQIEYOUEVO TWV TUXVLTOV Vo
TEENEL var SLoBAlEToL CUY VA O VO OVAVEDVETOL, ETELDY| UTAEYOUV OlappOoEC.
‘Eva x0ttapo duvaixic uvAung amotekeiton and éva tpaviloTtop xou and evay
TUXVWTH OIS QUIVETAL OTO TOEAUXATL Oy L.

bit

Eyfua 1.2: 1T xdttapo pviunce DRAM.

To xiOttopo mpoomehdleton Vétoviag v yeouun AéEng lon pe Ny
Tpogodoaio €tol wote to device vo apyloel Vo GyEL ELCAYOVTOC ULaL ULXpE
avtiotaon (to tpavliotop Yo Bploxeton oty neploy TeLddou). Me autdv tov
Te6mo 0 TMuxvVLTAc Vo ouvdeldel otnvy yeopur bit 1 omolo elvon opyixd
popTIoUéVN 670 Wéco tne tpogodooiac Vdd/2. Xtnv cuvéyelr 0 TUXVWTAS
potpdleton TO PopETiO UE TNV YRUUUT), TEOXAUAGVTAS Uit UeTaBoAr) Tdone AV ue
arnotéhecpa oTov xouBo g Yeouune Pt m tdomn vo YeTofBdAAETon OTLG
euxoviCeETaL TOROXATE AVIAOYX UE TO OV O TUXVWTAC Vol opyxd QopTICUEVOS
7 oyt. I ouyxexpyéva av elvan apyxd @optiouévog, TOTE ETELDY| 1 TdOoM
otov xopPo Va opyioer va avgdveton xadwe To poptiar Vo ‘géouv” and Tov
TUXVOTY Tou amoUnxelel TNV TANEogopld TEOC TNV YWENTXOTNTI TOU
Topouctdlel N ypouuy petopopds. Avtideta, av o muxveThc elvon opyixd
apoETIOTOE, TOTE QOpTiol Amd TNV TURACLTIXY YWENTIXOTNTO NG YRUUUNS
HETOPORAS Vo ‘PEOLUY” TEOC TOV TUXVWTY UE ATOTEAECUA 1) TAGT, OTOV XOUPo
var opyloet vo petdveton[d].

21

Extetopévn EAAnvi Tlepiindm

word

X

Vpp/2 2AV *

bit *

Yyfua 1.3: Tdon otov x6pfo tne othing bit.

Me awtév tov TpoTO Unopolue Vo SIBACGOUUE TO TEPLEYOUEVO TOU TUXVWTH
BLoTaPEACOVTAC OUKS TNV TAoT GToV XO0UB0o X, OTWe QaiveTon Topamdvw. Autd
ONUOLVEL OTL TO XUTTOPO TEETEL VoL ERAVEYYQEAPEL UETA amd %dde avdyvwon.

1.2.2 H apyitextovixy Tng wvhiung oc vpnioétepo eninedo

H opydvewon tne pviunc DRAM oe agnenuévo eninedo gaiveton otny mopaxdte
EXOVOL

e e

Eyfua 1.4: Opydvwon e uvAune DRAM.

Y10 younhdtepo eninedo (6nwe e&nyRinxe oty TeonyolUEVY TaEdYEoPO)
Beloxeton 1 xuheAida ye Tov TuxveTY, 0 omolog amoUnxevEL TNY EXAGTOTE AOYLXY
TWn pe TV pop@n goptiou. Emniong éyouue to tpavlicTop mpooméhaong mou
GUVOEEL X0l ATOCUVOEEL TOV TUXVOTY OO TNV YRUUUT] UETAPORJC.

Yuvdudlovtag évay mivaxa xuperidny oynuatiletar 1 doun Tou gaiveton 6To
enopevo oyfua. Kdie ypauun €yel éva xovd xahaooio wordline nou evepyonotel
ta tpavlictop mpooméhaonc. To anotéheoua mepvdel LTS pop@n TAONE OTIC
Yooupés petagopds bitlines xou xdie Pithive cuvdEeTon PE EVOY EVIGYUTH, O
omolog dUvatal Vo eVIoyVEL xoi TIC XEES HETABOAES TAGELS TTOU ToEATNEEL GTNY

22

Extetopévn EAnvuer Tlepliindn

eloodd tou. H mapoxdtey dour| Siopoppmvel To Aeyouevo subbaray xo o xdie
subarray uévo uia ypouur d0vortan va elvon avoly T xdie @opd.

bitlines

g [_n‘“'l3 _rn'l3 _r°'|3 _r“'\3
£ | ves
sC | & |7 | =
S :
S N
_|‘°'|3 .r"l3 .r"\g . .r°'|g
.'j'fnse | S:nse SAense S:nse Row i
m, m m m, :
o eme e e Buffer :

Yyfuo 1.5: DRAM subarray.

Av opyaviooude Tic oThHAeg o ouddeg twv 8bits, téte oymuatileton wa
doun| 6mou €youue Yeopués xa othhec. H evepyomoinon twv yeouudv yiveton
and tov anoxwdixorowth diebiuvone yeauurc (row decoder), to onofo emiéyel
auZdvovtag TNy tdon xdie ypauunc. Etol otny éZodo tou subarray emhéyovton
Oheg oL Mé&elg TN xAde YPUUUNAC XoL OTNY GUVEYELXL UE EVOV ATOXWOLXOTONTH
otéuduvong oTHANG, TEoxOTTEL 1) AEEN Tou VEAOUYE TEoYUoTIXd VoL BLaBACOUE.

— 29%columns ——
N
x
2| 1 DRAM H
3 (2% bytes) -
2 ~
!
'f 219 8 bits

‘ | Row Buffer
; (sense
Column MUX / _________
i To péyebog tou column
8bits | elvou To width autou Tou |
| interface

Column
Addr Latch

EvtoAr ano tov

AeSopéva mpocg to
memory controller

memory controller
Yynua 1.6: Rows and Columns of a Subarray.

O othhec xou ot ypopuéc auTtéc Twv subarrays ov enoavaAngdolv oe
peydho Badud Vo pnopodoav va oynuaticouv tnv uvAun. 2otéco, étol Ya
onulovpyoLTay €vag Yeydhog povolodndg mivaxog, o omolog Yo elye ueydro

23

Extetopévn EAAnvi Tlepiindm

XEOVO ambXEIoNG XU OEV Vol EMETEETE TUPIAANAES TEOOTIEAACELS GTNV UVAUN.
[Mo autdv tov Aoyo oynuoatiCouue to Aeyoueva banks tng uvAung, to omola
ebvor N gopéc ppdtepa oe péyedog and tnv cuvoliny| puvhAun mou HEAoUUE.
Ipoonehdoeic oe Spopetind banks purnopolv va emxohdnTovTar xan bits and
v Siedduvorn xadopiCouv oo bank Ya evepyomoindel. Xuvdudlovtog Tta
nohhamhd banks mpoxOnter to DRAM Chip to omolo anotehieltan cuvideg
an6 8banks. Xto xdde chip ta banks oiapolpdlovion xowolc Sloiioug
0edopévey, eVIOAGDY, Oleutivoewy. Anlady yeouués Slagpopetindy banks
EVERYOTOLOUYTOL TAUTOYEOVA péca 6To chip.

DRAM CHIP
Bank 7

1

Row Address [fecoder

ROW BUFFER

Column Decoder

Column

Address

32

DRAM command bus T DRAM data pus

4[DRAM MEMORY CONTROLLER]‘+
DRAM address bus 32

Yyfua 1.7: DRAM chip.

Q01600 Yoo TNV xaTooxeL| evog chip ye yeydro interface omwe galvetan
ue 32 bits amouteiton x00TOBORO LAXO, Vil AUTO YENOYLOTOLOVUE TOAAY chips
ue uxeodtepo interface yia tnv dnwoupyio tng dietagrc. Etor oynuatileto
7o rank onAadY Evar cOvoro amd chips mou amoxplvovton oty (Bl EVIOAT| xou
oTny Bla diebuvon TauTdYEoVA, ATOVNUEVOVTIC OUWS BLUPORETIXG UEQOS TWV
{nrodpevwy dedouévey. Autd mou Tehxd CUVBEETAL GTNY UNTELXY WIS XdpTd
elvor to anmoxoroduevo DIMM 1o onolo mepihopfBdver 1 7| meplocodtepa ranks
xa gatveton oTNY oaxdAouldn exova.

24

Extetopévn EAnvuer Tlepliindn

DIMM ‘DRAMCHIP7 '

{ DRAM CHIP 1
DRAM CHIP O

>

ddress

—_—

Eyhuo 1.8: 64-bit Wide DIMM (one rank).

‘Etol howndy oynuatileton 1 cuvohixry uviun, 1 omola YenoyloToleltal oToug
ONUEELVOUC UTONOYIOTES.

DRAM | DRAM || DRAM || DRAM | DRAM || DRAM || DRAM | DRAM
Chip Chip Chip Chip Chip Chip Chip Chip

Eyfua 1.9: DRAM chip.

1.2.3 Aettovpyio Tou %XUTTAEOUL UVAUNG

Ye autiv v mopdypago ovohlETOL O TEOTOC WPE TOV omolo AettoupYel 1)
EYYEAUPY| XAk 1) AVAYVWOT) OTNY UVAUT. Oewpolue pio Aettoupyio eyypapnc xou
unodétouye OTL 1 yeouur AEEnc xou 1 ypouun bit Beloxovtar oty Tdon
Tpogodocioc Vdd. ‘Etol to tpaviictop Va dyel goptiloviag Tov muxvmTh
arodxevong dedouévey. Koadng Aomdv goptileton 0 muxvenTig, 1 TdoT oTa
dxpa Tou Vo PTACEL XOVTA OTNV TEOPOOGIA UETA Omd EVO UXEO YPOVIXO
odotnua. 20T600, AOY® QUVOUEVKDY OlapeoNc TO (opETio TOU TUXVKTH
MELOVETOL XU Yot OUTO TO XUTTUPO TEEMEL VO OVOVEWDVETOL TEPLOOLXA
mpoxeweévou va otatneel oplh Twh. Koatd v Sudpxeio tng avavéwong
OlBdleTon TO TEPIEYOUEVO TOU XUTTAPOU XOL YEAPETAUL €X VEOU 1 hmplonx
TAnpogopla e aUTO, ATOXAVCTOVTAG TNV TACYN TOU TUXVKOTH OTNV OWCTH
h. H avavéwon auth yivetan mepinouv xdde Sms éwe 10ms [I]. Agol o

25

Extetopévn EAAnvi Tlepiindm

ATOXWINOTONTAS YEUUUAS ETUAEYEL Lol CUYXEXPWIEVT] YRUUUT auEdvovTog TNy
Tdon xatd uhxog Tng ypouuhe Aééng, Ta Tpavlictop mpoomélaomng
UTIOYPEWVOVTOL OF XATAOTAOT AYWYNG, UE ATMOTEAECUA VA GUVBEOLY TOUG
TUXVOTEC amOVAXEVCTS TV XUTTIPWY UE T Yeouuée bit. Xtnv mepintwon
e hertoupyloc avdyvwone n ypoupr bit éyer mpogoptiotel oe Vdd/2.
LNUEWVOLUE OTL 1) YweNTXOTNTH TNG Yeauune bit elvon 10 gopéc yeyaritepn
amoe TNV YWENTIXOTNTA Tou %UTTdpou. Av o TuxveTAc elvon opyxd
aPoOETIoTOS, TOTE 1 TAON OTA dxpa NS Yeauung bit peidvetan evey av eltvan
oYX POPTIOUEVOCS, 1) TAoT oTa dxpa TNG Yeouuhc bit auvidveta oe péyedog
uéyxer 90mV. H dwadixacion avdyvwong elvon xotaoteopiny|, apol aAAOL)VEL
TO MEPIEYOUEVO TOU TUXVKTY| TOU XUTTdpou uvAunc. H uixey| auth petofoly
AVLYVEVETOL GTNV GCUVEYELD ATO TOV EVIOYUTH, O oOTmolog ovdioyo Ue TNV
ad&nomn 1 TNV Pelwor oBNYEL TNV YRoUUT XU XOT ETEXTACT] TOV TUXVKTY| OTO
Vdd 7 oty yn anodnxedovtag opdd v . ‘Etol avavedvovton tor xOTTopa
e emheypévng yeopurc. Toutdyeova to orua otny €€060 TOu EVIoYUTH
aviyveuonc e EMAEYUEVNS OTAANG Tpogodoteiton otnv yeopur €&6dou
OEDOUEVOY PECK TOU amoxwdxoront dieduvong oThAng.

H Jertouvpyla eyypoaghc dleldyetar pe mopduolo Tedmo extdc and 6Tl TO
Tpo¢ eYYpapr bit, To omolo umdpyel oTNV YpouUY| ELIGOBOL BEBOUEVKY Xal
eQoapuoleTal and TOV AmoXWOXOTONTY Blebduvone OTAANG OTNY ETAEYUEVT
yveouur bit. Avdhoyo ue Tto @optio owtd peTofdAAeTan xou 1 TAOM OTOV
TUVWTH TOU XUTTAPOU, EVE TUUTOYEOVA OVEVMVOVTAL Xol OAX T UTONOLTAL
(0OTTOREA TN ETUAEYUEVNG YRUUUTAC.

Av xou oL Aertoupyleg yypapng xaL avayvemong odnYoLy OE oUTOUATY
AVAVEWOT] TOU TEPLEYOUEVOU OAWYV TV XUTTUPWY TNG EXACTOTE YRUUUNAC O
memory controller mou Swdéter 1 uviun AouBdver yépyvor yior TEELOOLXY
OVOVEVMOT) TOU GUVOROU TNG UVAUNG VS XATOLO Yeovixd BIAC TN omd 5 €ng
10ms avdloyo PE TIC TEOOLAYQPUPES TOU EXACTOTE XATAOXELUCTH. Katd tnv
OdpxeLa TNG avavEmONS TO OAOXANEWUEVO BV elvor Bladéotuo Yoo Asttoupyieg
EYYRAUPAHC X vy vewong. Adyw Tou uixpol edpoug HeToBoAAC oL Ypouuéc bit
elvoar TOAD evalointec otov YopuBo xou yior aUTO YENCILOTOLUVTAL BLAPOPES
TEYVIXEG PE OXOTO TNV OVTWETOTICT AUTOL Tou TeoPAfuatos. Mio and autéc
elvol 1 oEYLTEXTOVIXY) OITAWUEVLY YEUUUOY TOU TAUPOUCIALETOL OTO Oy
1.10. e autAv Vv apyitextovxn xdie ypouur| bit cuvdésTon uévo ue T wod
xOTTORA. Ouv yewtovixée yopupéc bit opyavaovoviow o Cebyn o
Xenowonololvtol w¢ €lcodol oToug evioyutég aloUnong. ‘Otav tlieton wia
Yeouur AENe 1 plar ypouun bit Yo alhd&el xatdotacy, eved 1 yertovxr e Yo
hertouvpynoel weg avagpopd. Emeidr todkéc mnyéc YoplPou ennpedlouv elcou
Tig 000 yertovwée ypoppés bit, eugaviCovton wg YopuBoc hertoupyiog xowol
ofuatoc o ornolog amoppintetar omd Tov evioyuth. To mhcovéxtnua autd

26

Extetopévn EAnvuer Tlepliindn

EQYETOL OUWE UE TO XOOTOC OTL YEEWLOUACTE TEQLOCOTERES YROUUUES Xal dpat
TEPLOCOTEPES TOQUCITIXEC Y WENTIXOTNTES XU HEYUAUTERY EMPAVELL OTO

(puUOLXO OYEDLO.
Sense
Amps

I il I
L - L] L]
Wordli
Def::ro(::z‘ras 1 e 1l Q
I le L I
il i il Wordline
° ¢ ° ° ° ¢ Decoders
> T T
Fag B s I
1L 1 1 <
LY L L
T T T

Sense
Amps

Eyua 1.10: Aumhoyuévee yeoupég bit.

1.3 Xpovicpol MvAung

[Mo v opdn Aetovpyla Tne uvAung elvon amapaitnTo vor TANEOOVTOL XATOIES
ATOUTACELS GTOUG YPOVIOMOUE UETAEY TwV OTOlwY GTEAVOVTOL Ol BAPORES EVIORES
oty uvhAun. O Bacixdtepe eVIOAEC ToEOUGLALOVTOL GTOV TORUXATE TVOXAL.

Evtoléc Aewtovpyia

ACT (Activate) Me authv TNV €VTOAY| evepyOTOLELTAL 1 YROUUN
TOU GUVOEEL TaL XVTTOEA UVAUNG HE TS YROUUES
bit.

PRE(Precharge) Khetver tnv 7dn undpyovoa yeouur| mou eivon
avoy T xou mpogoptilel Tic yeoupés bit oto
Vdd/2.

RE(Read) Me autriv Vv evtoly| dwofdloupe To dedopéva
Tig Brevuvong Tou €YOoUpE ATOCTELAEL.

WR(Write) Me autAv Vv evtolf| ypdpouue o dedouéva
TIOU GTEAVOUUE OE ULaL CUYXEXQPUEVT] Olebduvon).

IMivaxog 1.1: Baowée Evtohéc MvAunc
Ot evtohéc auTég OUWS BEV UTOPOUV VoI YPNOWOTOOUYTOL UE OTOLOOHTOTE

27

Extetopévn EAAnvi Tlepiindm

TEOTO, OAAG Yo TEETEL VoL 0xOAOLVOUY Lol BLUBOYIXT] CELRA TEOXEWEVOU VAL
yedpoupe xon vo daBdloupe oty uviun. Ta mopdderypo 6ev umopolv va
doYolv Tautoypova 800 Bdoyxéc eviodéc ACT, xodode o memory
controller Yo oamopplder v Bedtepn diedduvorn mou Yo Sodel Yo
evepyornoinon. Emiong 8ev pnopolue va exterécoupe eVviohéc yia Sudfooua
xon yedduwo yowplc vo €yer mponyndel xdmow evtohy ACT ue oxond ve
evepyonondel xdmotar ypouur. ANAG oxOUol o EVIOAEC TOU UTOEOVV
opopohoyniolv dadoyixd Yo TEEMEL Vo TANEOLY XATOLOUG YPOVIXOUS
TEPLOPLOMOUS, (OTE 1 €VIOA Vo odnyNoel 6To emUUNTO AMOTEAECUOL.
Megixol ypovixol tepopiopol gaivovtar 6Tov mapoxdte mivaxo. [2]

Xpoviopol ITepuypapn

tRAS Row Access Strobe. H ypovixt) didpxelor mou
amouTelTon amd TNV EVERYOTOINGT TNG YEUUMUNAS
ue eviol) ACT péypl va eméldel wiar EVTOAT
PRE.

trp Row Precharge. H ypovixy| Sudpxeia mou
amouTelTon Yot TNV EVEPYOTOMOT NS YEOUMUNS
ue evior) ACT oand po eviory PRE.

trC Row Cycle. H ypovixt| Sidpxeio mou amanteiton
yio TV evepyomoinon 600 BLUPOPETIXWY
VPO

twRr Write Recovery Time. H ypovixy| dudpxeia

mou anarteltan va otelhouye PRE agol €youue
Yeduper dedouéva ot Uviun.

tRTP Read to Precharge. H ypovixy oidpxelo mou
amouteiton va otelhovye PRE, ool €youue
ol3doel dedoPEVa amd TH UV,

ITivancag 1.2: Baowxol Xpoviopol MyvAurng

O ypoviopol autol elvon amopoftnTo vor TNEOUVTAL UE OXOTO 1) UVAUY VA
emterel TV Aertovpylor tng. Tméuduvog yia TNV THENON TV TOEATAVE
xeoviouov etvar o Memory Controller otov onolo o yehotng vetaPBiBaler Tig
eviorég xou 0 MC tnpodvtog Toug yeoviogolg GTEAVEL Tol XATAAANAGL OHUTA.
Ou ypoviopol autol elvon dueca cuoYeTlOUEVOL PE TIC YWENTIXOTNTES TOU
€y ouv TEOXVPEL XUTE TOV QUOIXG OYEDIOUO TNG UVAUNG ot BlvovTol omd Tov
EXYTOOTE XUTUOEVAO TN, Yy mapovoa epyocia mopoflacaue Toug
TEPLOPLOMOUE QUTOUC PE OXOTO VA AEITOUPYNOOUUE EXTOC TwVY 0pltv Tou
olvovton xat va o€lOTOLACOUUE TO UTHEYOV UAIXO UE OTOYO VO EXTEAEOUUE

28

Extetopévn EAnvuer Tlepliindn

TedEelg péoo oty Bo TV VAU, AlopopeTixéc axoloudiec TPOCTEAJCENY UE
OLUPOPETIXEC TOTUXOTNTES EYOLY BlaPopETXOVE YPoOVoug amoxplone. [autod
Ol XOUTOOXEVACTES OlVOUV YpovixoUg Teploplopols UEYaAlTEpOUS and O,TL
cuvilwe TEoxUTTOLUY Yiot Vo XohOPouv TuYGV aoTOYlEC TOU EVOEYETOL VoL
meoxLdouv. H Baowxn Aetovpyio tou Memory Controller dnhadn etvor va
xdver To refresh ota Oudpopa xOTTER, GOTE Vo PNV GAAOLOVETOL TO
TEPLEYOUEVO TOUC o vor eCumneeTel Tic autroelc UvAune mpoc tnv DRAM
oefouevog Toug Ypovixolg meplopilopols. Ta var To xdvel autd, amodnxedet
Tic awtrioelg oe évay evidueco buffer xou otnv cuvéyela Tic ypovodpopohoyel
UE 0TOY0 TNV LPNAY enldoaon.

1.4 Aopwd Xzowyeila vyl TNV exTEAEOT
Tediewy

H extéheon vnohoyotixdv mpdlewy eviéc uvAune (in-memory computing)
€yeL €00 xan xoupod mpotael we Abon oto meoBinua Tou "Memory Wall”. To
TEOPANUA auTé ouctacTxa avapépel 0Tt 1 e€EAEN oToug emelepyaoTEC Bev
ocupPadiler pe TV eZENEN TOU €YEL M) UVAUN XOL YL QUTOV TOV AOYO Oev
€youpe 1o xatd PEYoTo %€pdog oty Ty TNt O awavouevog aprduds Twv
TUENVLY oToug eelepyaoTég €xel e€elylel o TOAD onuavTixdtepo Bodud
an6é and To memory bandwidth, pe anotéieopa to latency avdueoo ctoug
UTOAOYLO TIX0UE Topoug xou TNy off-chip pvrAun va mopopéver éva eumddlo yia
Vv ToyUTepn enedepyaocio. NNV napodoo epyasio UEAETOUUE TOV UTONOYIOUO
EVIOC pvAung, We xadohou Tpomomoifoelc oTov oyedaoud e DRAM
YENOWOTOLOVTUS €TOWES, EUTOPXd OLdECUES %ot UM TEOTOTOLNUEVES
DRAM. Avutd emtuyydveton mopofidlovioc T OVOUACTIXEC YPOVIXES
Tpodloypopéc (timing specifications) xat evepyonowdhviac Slodoyixd TOAES
Yoouués o TOAND Uxpd YEOoVIXO OLoTNUY, YEYOVOS Tou odnyel ©TO va
TOEUUEVOUY TAUTOYEOVA TOAMATAES YEUUUES OVOXTES. AUTO UE T OEled TOL,
emtpénel Tov Olopolpacud @optiou (charge sharing) otic ypoppée bit.
XenowomoldvTog oetpd EVIOAOY Tou ToEaBLACeEl TS YPOVIXEC TEOOLHYPUPES,
UTOPOUUE VoI EXTEAECOUUE TEUEELC OTWG EWVOL 1) OVTLYQEO(PT OEOOUEVKDV Xal
Noywég mpdlelc uéoo otny UvAun, onwe OR, AND. Ytnv cuvéyewr ye Tic
TOQOTAVEL AUTEG TEAEELS QPTIYVOUPE Widt AOYIXT] UOVAdo Tou Wmopel v
npooétel aprduduc (Full Adder). Me 1 ypron mpocuppocyévou eAeyxTh
DRAM (DRAM controller) oe FPGA o pe eunopixd ddéoiuec DRAM
povadee, efetdlouvde To TMOcOcTH emTuylag mou umopel Vo mEOo@EpEL T
eEXTENEDT) TEGEEWY PECA GTNY UVAUN.

29

Extetopévn EAAnvi Tlepiindm

1.4.1 TIIpoocoppoocuévog Memory Controller

[t Tov €heyy0 TWV YPOVIOU®Y TV EVIOAWYV PECH OTNV WvAun clvan
amapaltnTn N Yerorn evog custom hardware, To omolo Va ovohouPBdver Tov
Eheyyo tne pvAune. T autév tov Aéyo Yo ypnowonoicovye to "DRAM
BENDER”, 1o omolo eivow pior doury mou €yel viomomndel o FPGA xou
ETUTEENEL TOV TElpoPoTonsd ot eunopxéc pviuec[b]. H Souh outh etvon
Wuktepa edyenotn o umopel vo yenowornowndel xou oe uviueg DDRA4.
Yuyxexpiéva, expetahhévetoar TAfewe To interface Twv pvnuov mou
UTOXEWVTOL O EAEYYO oL MUTOPOUUE PE YAOOoEC UPmMAod emmédou va
TPOGUPUOCOUUE TOV YEOVIOUO TV EVIOAGY ywelc meptopiopole. To block
OLdrypoal (OLVETAL OTNV TOPOXATL ELXOVAL.

pian ’Bender Programmable Core ak:nf
Hal o '0g store odule

EXE1 |EXE2| EXE3 4229 pata Scratchpad

sl
Register File DRAM
I : _I—) Interface —>

raw
DRANT | | DRAM2 || DRAM3: Adapter

ce

Instruction

> Frontend > piemory ":3
13
e

Decode

Periodic
Oparation [
Scheduler

Physical Interface

Host Machine
DRAM Bender API
High-Speed Interfa

|
|

Readback FIFO
Figure 2: Block diagram of DRAM Bender

Syfuo 1.11: Awdrypapor tou Dram Bender.

H dopr| aut) unootnellet éva custom instruction set mou etvor xatdAAnio yia
Tov €heyyo Tty pvnuov DRAM o6nwg oo ACT, PRE, WRITE, READ xa
UTOPEl Vo EXTEAEL OTOLIONTOTE OELPd EVIOADY Ywplc Vo elvon amopaltnTol ot
xpovixol meploplouol mou €youv ou uvriuee. H oxpeifeio otoug ypoviopoig
optleton pe PBdon v Tayvmmta tou FPGA xa [Ppioxetan oe eninedo
nanosecond. To host machine ymopel vo emxowwvroer yéow PCle xau va
otellel TpoypduUaTa TOU Elivol YeoUEVa O YAWOOES LPNAoD emTESOL, OTWS
C++ xou Python. X1tnv cuvéyela ta Sedopéva amodnxévovton oe évav buffer,
o omolog €yel ebpog 512 bits xou emoTeégovian niow oto host machine. '
TOV TPOYROUUITIONO X0 TNV AMOGTOAY] EVIOAGY TEOC TNV UVAUN, 0 YeNoTng
unopel py€oa amo avTixelueva Vo xataoxeudoet gl Alota and evtoréc. Mnopel
va yenowornowfoel labels, @ote vo extelel branches xadog 1 yerion
EMAVUANTTIXWY OOUOY XaTohoBdvouy peyahlTepo péyedog oTny UVAUD
evioh®yv. Xtnv napovoa epyocio to FPGA mou yenowonouminxe elvar to
ALVEO U200. Tt TV amocToA| TV EVIOA®Y 0pyxd TomodeTolvToL OF Lo
AMoTa ou Aettovpyleg Tng pvAung mou Yéhouue vo exterécoupe. Mio evToly
FPGA mepihoufdver 4 evtoréc yio tny puviun xadog n taydtnta ue tnv onola
umopolV va extelecTolV eivan Tepinou tetpanAdotlo. Avdusoo ot Sladoyinég
EVIOAEC UTOpOUUE Vo TomoleThcouue vTokéc mou etvon idle xou Aertoupyolv

30

Extetopévn EAnvuer Tlepliindn

cav xoducteproelc. 'Etol Aowmdv pnopolue va €youpe EAeYyo Tou ypedvou
Tou pecolofel avdueco o dradoyég evioréc. H eyypagy| xan 1 avdyvwon
yivovton pe tnv yerion buffers xa étol unopolue va €youpe TAEN €AeyyYO TWV
UVNUOY Teog eEETao.

1.4.2 TIpd&eig Xtnv Mvrjun

ot v extéheon Twv TEdEewy eviog TG UvAUNS Yo yenowonotcouUE TG
BAoHES EVTIOAES TWV UVNUWY PE OXOTO VoL EXUETUAAEUTOUUE TIC YWENTIXOTNTES.

Precharge: H evtohy| tng mpo@dptione yenolonoleltal Ue 6xXomd Vo xAeloeL
™V Yeopun 1 onola €xel KON avorlel odnyhvag 6ha Ta word-lines otnv vy xon
npogoptilel to bit lines oe Vdd/2. Egapudleton oe 6ho to Bank, to onolo
olveton ooy dediuvon.

Activate: H evtol) tng evepyomoinong otoyelel tior GUYXEXPUIEVT YRoUUY
xar Véter To word line (oo ye Vdd. Ilpwv épldet n eviols) outy|, meénel va
€yer mponyniel wa evtolr mpogopTiong, wote to bit lines va Pploxovto oe
duvopxd Vdd/2. ‘Otav evepyornounlel to tpavliotop, T61€ 0 TUXVWTAC TOU
otatneel Tnv TAnpogopia cuvdEeton ue To bit -line xou cuyfoivel diouotpaoudg
poptiou. Emeidn n yopeitixdtnTta Tou xeAtol elvol oyeTixd uixpn, ennpedlel xatd
éval Toh) uxed TocooTtéd TNV Tdon oto bit-line. O evioyutic avtidauPdvetan
QUTAY TNV Uixet| Blopopd xou e Vetixr) avddpaor odnyel v é€odo cite otnv
Tpopodoatio elte otV Y.

Read/Write: Ot evtohéc autéc agopolv 8 Sladoyind cuveydueves oThkeg
xan Eexvolv amd TNy ageTnpla Tou TNy dlvoupe cav dievduvor. Ta dedopéva
mou SwPdlovton and Toug evioyutéc petagépovtal o global buffers xau otny
ouvéyela oto I/O pins.

Av ce outéc TIC EVTOAEC UELDCOUUE TOUC YPOVOUC UETOEY TWV OTOlWY
oTEAVOVTOL BLodoyIXd, TOTE UTOPOUUE VO EXTEAECOUUE AMAEC NOYIXEC TRAEELS
péoa TNy pviun, omwg aniég Baoixéc moiec AND, OR. H Boaocwr| apyn otny
ornola otnpllovton oL TEdielc péoa TNy UvAun eivan 1 BLadoyIxr) EXTEAEST] TLV
eviordv ACT(R1)-PRE-ACT(R2). Me autiv tnv oxoloudio eviohdv av
Topafldcouue Toug meptoplopols ot dlaoThidota T1 xou T2, téte unopolue
VoL EXTEAECOUUE OLAPORES TEAZELC, OTIWG PUUVETAL GTO TOROXETE Ty UL

Syfua 1.12: Adypoppa ACT-PRE-ACT.

31

Extetopévn EAAnvi Tlepiindm

H mo amhf mpdln mou unopolue vo extehécouue péoa otny uviun ebva 1
AVTLYPUPY) WaC OAOXANENS Yeouurc o o dhAn. T vo To metdyouue autod
evepyomoloLue TNy yeopur) R1 xau mepiuévoupe xdmolo ypovixd dudotrua T1
UEYPL VAL QOPTIOTOUY Ol TUXVWTES ou 1) Ypouut| bitline. Téte exteholue tnv
evtol) Precharge 1 onola agol xheloel v ypouur, Telvel vo emovapépel tTny
yvoouur Bitline oe Suvauixé Vdd/2. Av mopafidoouye to ypovixd ddoTnuo
trp, TOTE N Yeouuy bitline €yet Suvapixd peyahitepo and Vdd/2. Enopévac,
av avoilel uior véo ypouur, To @optio g othing Vo pelver oyedov
avorhoiwto, Vo evioyudel xou Vo TEPAOEL XoL OTOUC TUXVOTEC TNG VEC
Yeouuhc mou avole. §2otéc0, To Yeovixd didoTtnua T2 Sev meémel va yivel
TOAND pxeo, Yt autd Vo ovollel xou VEEQ YPoUMES, OONYWVTAUS OF
OlopopeTind anoTéAeoua. Av PELOGOUUE xou Toug dUo ypoviopolg T1 xou T2,
TOTE EXYETAAAEUOUEVOL OUTO TO YEYOVOS, EVERYOTOWOUUE TOUTOYEOV
TEPLOOOTEPES amd Uit Ypopuée. Todte ye tov Swpolpaacud goptiou mou
napatneeiton mdvw otny yeopuy bitline, xotagépvoupe va exterécouue
hOYWES TRAEELS, OL OTOLEG TNV CLVEYELL WS XUWVOAMXEC TOAEC UTOPOLY Vo
UAOTIOLGOUV OTIOLBNTOTE GUVEETNOT), axbUa xou Tov hoyixé adpoloth. []

1.5 AmnoteAéopaTta xou XUURERACAAT

Yy moapoloo epyacta yio va Beedolv ye oyetin] axpeifeio ol xaducteprioeig
OYEDLdooUE TOV EVIOYUTH TNy TeYvoloyio 90vu oto adevee. Méoa and Tic
Tpocouownoelc Bploxouue 6Tl ol xaducteprioelc elvar Uepixd nanoseconds.
‘Etot, é€youpe wa exdva g TEENC Twv omolwv Teémel v elvar ot
xaduoTteproelg, pE oxomd vo puduicoupe Toug ypovoug idle avdueoa oTic
eviorés. 'Etol Yo metdyouye Tov Slopolpacud @optiou Tdve otV Yeuuun
bitline xou Yo metdyouue TNV LAoTONON TWV ATAWY AOYXOV TEAEEWY.
Q07600, péoa GTNY UV ETEWDY| OEV UTOROVUE VO EQUOUOCOUUE TNV AOYIXN
TEAEN TNg avTioTeopng, oamoUnxedoupe Ta Oedouévar xar oTig 800 TOug
XATOC TACELS. Autd (éfPoua €yel TO UEOVEXTNUO OTL XAUTUVUAWVOUUE
TEPIOCOTERES YPUUMES OTNY UVIUY), TO OTOl0 OUKS VewpolUe aueAnTéo Xaddg
xdde subarray €yel oto cUvoro Tou 512 ypouuéc. OuolacTind hoiméy omoLa
TedEN epopudletar oTa Bedopéva Tou VENOUUE, 1 CUUTANEWUATIXY TNG TEAEN
TEENEL Vo eapudletar xou oTa avtioTpopa dedouéva tne. ‘Eyoviac autd og
Bdor, viomowolue tov adpolo Ty mou Ue amhéc hoywée mOAeC mopouctdleTon
TEAXSTE).

32

Extetopévn EAnvuer Tlepliindn

Jear Aen S
B

S
Cin

COUI

Eyfua 1.13: Iviene Adpoiotric.

H viomnoinon autr pnopel va unv emtuyydvel xolltepn taydtnta and évay
amho6 eneepyaoTy), AR av GTOY0G Ebval 1) EXTEAECT] BLUVUOUATIXGDY TRAEEMY,
61 EMEdN 0TV Ypopu undpyouy 65 x 210 oTAkec unopolue Vo egopudooUuE
TawTOyEova TNV TEdEN NG ddpolone o OAEC AUTES Xal dpoL Vo €YOUUE TOAD
HEYahOTERO TopolANALloUO. §2oT600, To anotéheoua elvon OTL dev eupavileton
owoTd To omotéheoua o OAEC TIC YRoppES, ahhd mepinouv oto 80% ouTéV.
Emmiéov, exterdvtog diadoyixd oto (Blo x0TTapo Ty medln tne mpdcveorg,
Brénoupe OTL TO anotéheoua dev efval TdvTo 0p¥6 XaL OF AATOIES TEQITTWOOELS
olh&ler avdhoya e TiC EloddouC Tou d€yeTon To xdde xOtTapo. Extehdvrog
npbodeon 2 éwe 16 bit Beloxouye 6t T0 T0c00TH NLpAveTon and T0% uéyet
xou 30% +yior Toug aprduole 16 bit.

33

Chapter 2

Introduction

As the demand for faster and more energy-efficient computing grows,
traditional computing architectures face significant challenges. The von
Neumann bottleneck, a limitation in conventional systems where data
constantly moves between memory and processors, has become a major
obstacle in achieving high-speed and low-power computing. To address this
issue, Compute-in-Memory is addressed as an innovative approach that
integrates computation directly into memory hardware [1] [6] [7].

Compute-in-Memory eliminates the need for excessive data transfer by
performing computations where the data is stored. Instead of constantly
shuttling information between memory and processors, CIM architectures
allow operations such as logical operations, and even deep learning
computations to occur within the memory itself. This significantly reduces
power consumption and improves processing speed, making it an ideal
solution for applications such as artificial intelligence, edge computing, and
big data processing.

Prior research has demonstrated that logical operations can be
performed directly in memory without requiring hardware modifications.
For instance, RowClone, an in-memory technique, enables efficient data
copying between rows. Additionally, DRAM hardware can be leveraged to
execute bitwise logical operations, such as logical AND and OR. Other
studies suggest that storing fractional voltages in DRAM cells allows for
multi-input logical operations [I] [8] [7] [9]. Furthermore, it has been
shown that activating multiple rows within a DRAM subarray—a
fundamental mechanism behind these operations—can further enhance
computational capabilities.

In this work, we build on previous research to implement an in-memory

35

Introduction

Full Adder and evaluate its success rate and performance. To achieve this,
we utilize fundamental logical operations and apply them to a DDRA4
module. Additionally, we analyze the underlying DRAM hardware
architecture and demonstrate how it can be leveraged to execute these
operations efficiently.

36

Chapter 3

Theoretical background

3.1 DRAM’s chip

Dynamic memories (DRAM) store their data in the form of electric charge
within a capacitor. This design allows for extremely compact memory
layouts, making DRAM highly dense and efficient. However, a key
drawback is that capacitors leak charge over time, requiring frequent
refresh operations to maintain data integrity. A single DRAM cell consists
of one transistor and one capacitor, as illustrated in the figure below.

word —Jj—
X[Y
Ccell $

bit
Figure 3.1: Storage Cell.

DRAM Cell Operation The DRAM cell is accessed by activating the
wordline, which raises its voltage to Vdd, causing the access transistor to
conduct (operating in the triode region) and introducing a low resistance
path. This connects the capacitor to the bitline, which is initially
precharged to Vdd/2.

Once connected, the capacitor shares its charge with the bitline, inducing
a voltage change (AV) at the bitline node. The behavior of this voltage

37

Theoretical background

change depends on whether the capacitor was initially charged or discharged.

If the capacitor was initially charged, charge flows from the capacitor into
the bitline’s parasitic capacitance, causing the bitline voltage to increase. If
the capacitor was initially discharged, charge flows from the bitline to the
capacitor, causing the bitline voltage to decrease. This voltage fluctuation,
illustrated in the figure below, represents the stored binary value (0 or 1).

word _

Vop/2 24V y
bit +

Figure 3.2: Cell Voltage.

Since the read process disturbs the stored charge, the cell’s voltage level
is altered after each read. As a result, every read operation requires a
subsequent write-back (refresh) to restore the original data.

To fully understand how the capacitor in a DRAM cell can be charged
to the maximum supply voltage Vpp, consider a write-1 operation. During
this process, both the word line and the bit line are set to Vpp, allowing
the access transistor to conduct and charge the storage capacitor Clg.
However, conduction stops once the capacitor voltage reaches (Vpp — V),
a limitation similar to that in pass-transistor logic (PTL). To address this,
DRAM designs incorporate a technique where the word line voltage is
boosted to Vpp + V4, ensuring the capacitor reaches the full Vpp. Despite
this, charge leakage over time necessitates periodic refreshing. During a
refresh cycle, the cell’s data is read and rewritten to restore the capacitor
voltage. Typically, this refresh occurs every 5 to 10 milliseconds.

The row decoder selects a specific row by increasing the word line voltage,
activating all access transistors within that row. As a result, the storage
capacitors in the selected row become connected to their corresponding bit
lines. This means that each cell capacitor Cg is electrically linked in parallel
with the bit-line capacitance Cp, as depicted in next figure.

38

Theoretical background

Cy ==r I Cy

Figure 3.3: When the voltage of the selected word line is raised, the transistor
conducts, thus connecting the storage capacitor with the bitline capacitor.

In typical DRAM configurations, C's ranges between 20 fF and 30 fF,
whereas Cp is approximately ten times larger. When performing a read
operation, the bit line is precharged to VDTD. To determine how much the
bit-line voltage changes when a cell capacitor Cg is connected, we assume
the initial capacitor voltage is Vg, where Vog = Vpp for a stored ‘1’ and
Vog = 0V for a stored ‘0.

Applying charge conservation, we obtain:

V V
CsVes + CB% = (Cp+Cs) (gD + AV)

Solving for AV, we get:

Cs Vbp
AV =—"" (Vog — —=
CB+Cs< cs 2 >

Since C'p is significantly larger than Cg, we approximate:

For a stored ‘1’ (Vos = Vpp), the voltage change is:

~ &s Voo
Cp 2

For a stored ‘0’ (Vog = 0), the voltage shift becomes:

AV(1)

Cs Vpp
AV(0) —————
)~ -5 3
However this voltage need some time to charge the capacitances (some
nanoseconds) and this is not happening immediately. This is one of the

parameters we will exploit to achieve compute in memory

39

Theoretical background

3.2 DRAM Architecture

The Dram’s architecture appears below

Figure 3.4: DRAM architecture.

At the lowest level, as described in the previous section, each DRAM cell
consists of a capacitor that stores the logical value in the form of electric
charge. Additionally, an access transistor connects and disconnects the
capacitor from the bitline, enabling data access.

By arranging multiple DRAM cells in a matrix, we obtain the structure
shown in the next figure. Each row shares a common wordline, which
activates the access transistors of that row. The stored charge is then
transferred as a voltage signal to the bitlines. Each bitline is connected to
a sense amplifier, which detects and amplifies small voltage changes.

This structure forms what is known as a subarray, where only one row
can be activated at a time.

bitlines

wordlines

Row
Buffer

E Sense Sense
i Amp Amp

Sense
Amp

Sense
Amp

Figure 3.5: DRAM subarray level.

40

Theoretical background

DRAM Subarrays and Memory Organization When organizing columns into
groups of 8 bits, we obtain a grid-like structure of rows and columns. Row
access is managed by a row address decoder, which selects a specific row
by increasing its voltage. Consequently, all words in the selected row are
accessed simultaneously. A column address decoder then determines the
specific word that will be read.

— 2©columns ——

14 DRAM
(2% bytes)

<+ 2%rows —*

'f 210 8 bits
‘ ‘ Row Buffer

v
Column MUX

<=
S
E®
Era
S
S3
<

‘ To péyeBog tou column |
8bits | eivatto width autou tou
| interface]

EvtoAr and tov
memory controller

Aedopéva Tpog 0
memory controller

Figure 3.6: The circuit of the subarray.

If multiple subarrays are replicated extensively, they form the overall
DRAM memory. However, a monolithic memory array would suffer from
high access latency and lack of parallelism. To address this issue, DRAM is
divided into banks, which are N times smaller than the total memory
capacity. Accesses to different banks can overlap, improving memory
efficiency. The bank selection is determined by specific bits in the memory
address.

By combining multiple banks, we obtain a DRAM chip, typically
consisting of 8 banks. Within each chip, banks share common data,
command, and address buses, allowing simultaneous row activations across
different banks.

DRAM CHIP
Bank 0 Bank 7

Row O

Row Addre:

Column 0
Column C-1

3
<
8
g
g
o
bl
<
2
3
2

Row R-1

[ROW BUFFER

¥
Column Column Decoder
Address 3 '3

DRAM command bus T DRAM data bus
4[DRAM MEMORY CONTROLLER
DRAM address bus 32

Figure 3.7: DRAM chip architecture.

41

Theoretical background

A DRAM chip with a large data interface (e.g., 32-bit) requires expensive
hardware. Instead of using a single wide interface chip, multiple smaller-
interface chips are combined to achieve the required width. This results in
the formation of a rank, a set of chips that respond to the same command
and address simultaneously while storing different portions of the requested
data.

biMm { DRAM CHIP 7

. {DRAMCHIP 1
{DRAM CHIP 0

Address

Figure 3.8: DRAM DIMM level.

The component that is ultimately installed on the motherboard is the DIMM
(Dual In-line Memory Module), which contains one or more ranks. The final
organization of DRAM memory, as used in modern computer systems, is
shown in the following figure.

Figure 3.9: DRAM top level.

3.3 The Subarray Full Circuit

Consider a write operation where both the word line and the bit line are set
to the supply voltage Vpp. As a result, the transistor conducts, charging
the storage capacitor. Once the capacitor is charged, its voltage approaches
the supply voltage after a short period. However, due to leakage effects, the
charge in the capacitor decreases over time, which is why the cell must be
periodically refreshed to maintain the correct value.

During the refresh cycle, the cell’s content is read, and the digital
information is rewritten, restoring the capacitor voltage to its proper level.

42

Theoretical background

This refresh process occurs approximately every 5ms to 10ms. When the
row decoder selects a specific row by increasing the voltage along the word
line, the access transistors switch to the conducting state, connecting the
storage capacitors of the cells to the bit lines.

In a read operation, the bit line is precharged to Vpp/2. It is
important to note that the bit-line capacitance is ten times larger than the
cell capacitance. If the capacitor is initially uncharged, the voltage at the
bit line decreases, whereas if it is charged, the bit-line voltage increases by
up to 90mV. The read process is destructive, as it disturbs the charge
stored in the memory cell capacitor. The small voltage variation is then
detected by the sense amplifier, which determines whether the voltage has
increased or decreased and subsequently drives the bit line (and the
capacitor) either to Vpp or ground, correctly restoring the stored value.
This process ensures that the cells in the selected row are refreshed.
Simultaneously, the signal at the output of the sense amplifier
corresponding to the selected column is sent to the data output line
through the column address decoder.

The write operation follows a similar process, except that the bit to be
written, available at the data input line, is applied to the selected bit line
via the column address decoder. Depending on the charge, the voltage on
the cell capacitor changes accordingly, while all other cells in the selected
row are also refreshed.

Although both read and write operations automatically refresh the
contents of all cells in a given row, the memory controller is responsible for
periodically refreshing the entire memory at intervals ranging from 5 to
10ms, depending on the manufacturer’s specifications. During the refresh
cycle, the memory module is unavailable for read or write operations.

Due to the small voltage variations, bit lines are highly susceptible to
noise, necessitating various techniques to mitigate this issue. One such
technique is the folded bit-line architecture, illustrated in the next figure.
In this architecture, each bit line is connected to only half of the cells,
while neighboring bit lines are grouped into pairs and serve as inputs to
the sense amplifiers. When a word line is activated, one bit line changes
state, while its neighboring bit line functions as a reference. Since many
noise sources affect both adjacent bit lines equally, they appear as
common-mode noise, which is rejected by the sense amplifier. However,
this advantage comes at a cost: more bit lines are required, leading to
increased parasitic capacitance and a larger physical layout in the memory
design.

43

Theoretical background

Sense
Amps

1T L 1
0 .4 | L
Wordli
Wordine T . Lo
Y N N
Tc To Te Wordline

Decoders

.
<t

T T
L e N
T T

V

Figure 3.10: Folded Bitline Architecture.

Sense
Amps

< M=

3.4 Timing and Basic Commands

For the correct operation of memory, it is necessary to satisfy certain timing
requirements that define the order in which various commands are sent to
the memory. The fundamental commands are presented in the table below.

Instructions Operation

ACT (Activate) This command activates a row, allowing
access to the bit lines.

PRE(Precharge) Closes a previously activated row, resetting
the bit lines to Vy4/2.

RE(Read) Reads the data stored in a specific address
within the activated row.

WR(Write) Reads the data stored in a specific address

within the activated row.

Table 3.1: Basic Memory Commands

However, these commands cannot be executed in arbitrary order; they
must adhere to strict timing constraints that govern the interactions
between different operations in the memory. These constraints may include
minimum time intervals required between consecutive commands, such as
an appropriate delay between an ACT command and a subsequent read or
write operation. Additionally, other commands may need to be executed in
sequence to achieve the desired operation efficiently. Various timing

44

Theoretical background

constraints are illustrated in subsequent tables and figures.

These timing constraints are crucial to ensure the proper operation of
memory. The Memory Controller is responsible for enforcing these timing
requirements by managing the user’s access requests and issuing
appropriate control signals. The timing parameters are closely related to
the physical characteristics of the memory and are defined by the
manufacturers based on experimental measurements. Efficient
management of these timing constraints is essential to optimize hardware
utilization while maintaining performance.

Timings Detalils

tRAS Row Access Strobe.The time required from
activating a row using the ACT command
until issuing a PRE command.

trp Row Precharge. The time required for the
activation of a row with an ACT command
until a PRE command is issued.

trC Row Cycle. The total time required to
complete an entire row access cycle, including
precharge time.

twR Write Recovery Time. The minimum delay
required after a write operation before issuing
a PRE command.

tRTP Read to Precharge. The minimum delay
required after a read operation before issuing
a PRE command.

Table 3.2: Basic Timing Parameters

Proper handling of memory operations relies on these timing
parameters. Various techniques, such as pipelining and out-of-order
execution, are employed to optimize memory access performance. In
modern systems, memory timing plays a critical role in determining overall
system efficiency, as incorrect handling can lead to performance
degradation or even data corruption.

45

Theoretical background

46

Chapter 4

Experiments and Results

4.1 Framework

DRAM Bender [5] implements a custom Instruction Set Architecture (ISA)
optimized for DRAM control. The instruction set includes key DRAM
operations such as:

e ACT (Activate) — Opens a specific DRAM row.

e PRE (Precharge) — Closes an open row to allow access to a new row.
e WRITE — Writes data to DRAM.

e READ — Reads data from DRAM.

DRAM Bender is an FPGA-based infrastructure designed to enable
fine-grained control over DRAM commands. It provides a programmable
interface that allows users to issue DRAM commands in arbitrary order
while adhering to or intentionally violating standard timing constraints.
The framework is particularly useful for DRAM characterization, security
research, and performance optimization. This instruction set allows
executing arbitrary sequences of DRAM commands while circumventing
the default memory controller timing constraints. The accuracy of
command scheduling is determined by the operating frequency of the
FPGA, reaching the nanosecond scale.

The host system communicates with DRAM Bender via a PCle interface,
enabling efficient transfer of control instructions and data. DRAM Bender
allows users to define DRAM test programs using high-level programming
languages, such as C++ and Python. These programs are transmitted to

47

Experiments and Results

the FPGA, where they are executed, and the resulting data is stored in a
512-bit buffer before being sent back to the host for further analysis.Fach
DRAM instruction can contain up to four DRAM commands, allowing for
efficient scheduling and execution of operations.

To program the FPGA and issue commands to DRAM, users construct a
sequence of instructions organized in a command list. The execution model
supports:

e Branching Mechanisms: Users can define branch labels to
implement conditional execution.

e Loop Constructs: While loops and iterative structures are
supported, though they may consume more instruction memory.

4.2 Sense Amplifier Circuit

Apart from the storage cells, the sense amplifier is one of the most crucial
elements in a memory chip. It plays a vital role in the functionality of
DRAMSs, while its implementation in DRAMSs contributes to improvements
in both speed and area efficiency. There exist multiple designs for sense
amplifiers, some of which bear a strong resemblance to the active-load MOS
differential amplifier. This section introduces a differential sense amplifier
that leverages positive feedback. However, the one-transistor DRAM cell
described operates as a single-ended circuit, utilizing only a single bit line.
To mimic a differential signal source in DRAMSs, a technique known as the
”dummy-cell” method is employed, which we will examine shortly. For
analysis purposes, we assume that the memory cell being read generates a
differential voltage between the B and B lines. This voltage, which can
range from 20 mV to 500 mV depending on the specific memory type and
cell design, is fed into the sense amplifier’s input terminals.

The sense amplifier then amplifies this small voltage to produce a full-
swing output signal ranging from 0 to Vpp. An interesting characteristic of
the amplifier circuit under discussion is that its input and output terminals
are the same. The next figure illustrates the sense amplifier along with a
portion of the column circuitry in a RAM chip. The sense amplifier itself
is essentially a standard latch, constructed by cross-coupling two CMOS
inverters. The first inverter consists of transistors)1 and (Q2, while the
second inverter is formed by Q3 and Q4. Additionally, transistors Q)5 and
Q¢ function as switches, enabling the sense amplifier to connect to ground
and Vpp only when data sensing is required. When ¢; is low, the amplifier

48

Experiments and Results

is deactivated, thereby conserving power. This power efficiency is crucial,
as each column in the memory array has its own sense amplifier, resulting
in thousands of such amplifiers per chip.

A notable characteristic of this circuit is that the terminals x and y
serve as both input and output nodes. These terminals are linked to the
complementary bit lines B and B. The sense amplifier’s role is to detect the
small voltage differential between these bit lines and amplify it to produce
a full-swing signal. For example, during a read operation, if the stored bit
is a ‘1’, a slight voltage difference develops where vp is higher than vg.
The amplifier then drives vp up to Vpp and vg down to 0V. This amplified
output is forwarded to the chip’s I/O pin via the column decoder (not shown
in the figure) while simultaneously restoring the value ‘1’ in the DRAM cell,
ensuring data integrity despite the inherently destructive nature of DRAM
reads.

The figure also depicts the precharge and equalization circuit, which
ensures proper initialization of the bit lines before a read operation. When ¢,
is high (equal to Vpp), all three transistors in the circuit become conductive.
Transistors Qg and Qg work to precharge the bit lines B and B to Vpp /2,
while Q7 accelerates this process by equalizing the initial voltages of both
lines. This equalization step is critical, as any pre-existing voltage difference
between the bit lines before a read operation could lead to incorrect signal
amplification by the sense amplifier. The process of reading data from a
DRAM cell involves several key steps. The sequence of events during a read
operation is outlined below:

1. Precharge and Equalization: The precharge and equalization
circuit is activated by asserting the control signal ¢,. This ensures
that the bit lines B and B are initially set to the same voltage,
typically Vpp/2. Following this, ¢, is deactivated, leaving the bit
lines floating momentarily before the next step.

2. Word Line Activation: The word line is raised, linking the memory
cell to the bit lines B and B. At this point, a small voltage difference
emerges between the two lines. If the memory cell stores a logical ‘1’,
the voltage on B (vp) becomes slightly higher than that on B (vg).
Conversely, if the cell contains a logical ‘0’, vg is slightly lower than
vg. To optimize performance at high speeds, this voltage difference is
kept relatively small, typically in the range of 20-500 mV.

3. Sense Amplification: Once a sufficient voltage difference has
developed between B and B, the sense amplifier is activated. This is

49

Experiments and Results

achieved by enabling transistors ()¢ and ()2, which connect the
amplifier to both ground and Vpp via the sense control signal ¢s.
Initially, the input nodes of the inverters within the amplifier are at
Vpp/2, causing the circuit to be in a transitional, unstable
equilibrium state. Due to this condition, the regenerative effect of
the latch circuit takes over, amplifying the small voltage difference in
a positive-feedback manner.

The next figure illustrates this process, showing the evolution of the
signal on the bit line during both a read-1 and read-O operation.
Once triggered, the sense amplifier amplifies the slight initial
difference (AV(1) or AV(0)) to full voltage levels. The bit line
corresponding to a read-1 is driven to Vpp, while for a read-0, it is
pulled down to 0V. The complementary waveforms are developed on
the B line.

The behavior of the sense amplifier ensures that the stored data is
reliably read out while also initiating the necessary refresh operation to
restore the original cell content. In the following sections, we will further
analyze the temporal characteristics of this amplification process. Deriving
a precise mathematical expression for the output signal of the sense
amplifier; as shown in the figure, is a complex task. This requires
employing large-signal, nonlinear models of the inverter voltage-transfer
characteristics while also considering the impact of positive feedback.
Instead of using this detailed approach, we will analyze the operation in a
semi-quantitative manner.

At the moment when the sense amplifier is activated, both inverters
within the circuit are operating in the transition region, around Vpp/2. In
small-signal analysis, each inverter can be modeled wusing its
transconductance parameters, g¢,1 and ¢m2, which correspond to
transistors @1 and Q)o, respectively. These values are evaluated under the
condition of an input bias of Vpp/2. If a small signal component vy is
superimposed on this bias at the input of an inverter, it results in an
incremental output current given by:

Tout = gmvs

This current is directed to either of the capacitors, denoted as C, or
Cj, within the circuit. The voltage developed across the capacitor is then
fed back into the other inverter, where it is further amplified by the
transconductance parameter G,,.

50

Experiments and Results

This feedback mechanism creates a regenerative process in which the
current contributes to an output current feeding the opposite capacitor.
Due to the positive feedback, the signal in the loop continuously amplifies,
leading to an exponential rise or decay in the voltages vp and vg. The rate
of this exponential change is determined by the time constant (Cy/G,,) or
(C;/Gpm), under the assumption that Cy = Cj.

For a read-1 operation, the voltage at the bit line vp is given by:

vg = Vbp + AV(l)eGmt/Cg, vg < Vpp

Similarly, in a read-0 operation, the bit line voltage follows the equation:

These expressions, derived under the assumption of small-signal
behavior, accurately describe the initial exponential evolution of wvpg.
However, they become less precise when the signal approaches extreme
values near 0 or Vpp. Nevertheless, these approximations are useful in
estimating the time required for the sense amplifier to drive the voltage to
a sufficient level for reliable data retrieval.

51

Experiments and Results

Fanfet -

Figure 4.1: Sense Amplifier Circuit.

The results of the of the simulations are presented below.

52

Experiments and Results

200.0

100.0

Figure 4.2: Timing that the sense amplifier needs to charge the bitlines.

150.0

100.0

50.0
0.0

-50.0

Figure 4.3: Monte Carlo Analysis of the timings that the Sense Amplifier needs to
charge the bitlines.

First, we observe that the bitlines require a certain amount of time to
recharge, typically around 4 to 5. During this period, the charge on the
bitline remains between % and either ground or Vgg. A Monte Carlo

53

Experiments and Results

analysis reveals that these recharge times exhibit variations of up to 1,
implying that each sense amplifier may require a slightly different amount
of time to fully restore the bitline charge.

Furthermore, the charge stored in the capacitor may also vary due to
process wariations and mismatch effects, leading to deviations in the
sensing process. The memory controller is typically programmed to fetch
instructions based on standardized timing constraints to ensure that all
variations are accommodated. However, by leveraging the analog behavior
of the sense amplifiers and intentionally violating these timing constraints,
we can exploit in-memory operations without requiring any modifications
to the hardware. By leveraging the DRAM Bender framework, we can
deliberately violate timing constraints, reducing the number of
nanoseconds required for instruction fetching. By modifying these
parameters, we enable a range of in-memory operations, including Row
Copy, logical AND, logical OR, logical NOT, and Multiple Row
Activation, without requiring any changes to the underlying hardware
architecture.

4.3 Row Copy

Our analysis begins with the command sequence depicted in next figure,
which consists of three DRAM commands: ACTIVATE(R1), PRECHARGE, and
ACTIVATE(R2). These commands target two distinct rows, R; and Ro,
within the same DRAM bank. The timing intervals between consecutive
commands are denoted as 171 and T», which are regulated by the number of
idle cycles introduced between them.

Under standard operating conditions, the timing constraints dictate
that 77 must be greater than tgas, and 75 must be greater than tgrp.
Following these constraints ensures that row R; is properly opened,
precharged, and subsequently replaced by row Rs, without altering the
stored data. However, by strategically reducing the timing intervals 77 and
T» beyond specification limits, we can induce a non-nominal operational
state in the DRAM, enabling the realization of alternative in-memory
operations [8] [6] [1].

54

Experiments and Results

Figure 4.4: Command Sequence for in memory operations. [I]

The row copy operation is the simplest among the three studied in-memory
operations, enabling the duplication of data from one row, R, to another,
Ry. This operation is performed by first loading the contents of R; into the
bitline and subsequently overwriting Rs using the sense amplifier.

To achieve row copy, we reduce the timing interval T5, as shown in
previous figure, to a value significantly shorter than tgp, thereby causing the
second ACTIVATE command to prematurely interrupt the ongoing PRECHARGE
command. The only constraint on 77 is that it must be sufficiently long to
allow the sense amplifier to fully drive the bitline with the data stored in
R;.

It is important to note that 75 must not be reduced excessively, as doing
so could inadvertently allow another row to be activated. While this effect
can be exploited to implement more complex in-memory operations, such as
logical AND and logical OR, it is destructive in the context of row copy.

r—J'

Y
SAArg_t(

>

[
=

@

ACT(R;)

@ ©, 5
PRE ACT(R,) time
L T J Y J
T, T,

Figure 4.5: Timeline for a single bit of a column in a row copy operation.The data
is loaded to the bitline R1 and over-writes R2. [I]

55

Experiments and Results

In this study, we analyzed multiple subarrays and demonstrated that the
row copy operation can achieve a success rate of up to 98. The observed
errors are more prevalent when copying rows that are located further apart.
This phenomenon arises due to the increased resistance and capacitance
of the transmission lines, which attenuate the charge available to replenish
the cell capacitors, thereby reducing the effectiveness of the operation. The
result of the row copy is shown in the next figure. Each subarray consists
of a total of 512 rows. The results indicate the presence of three distinct
groups exhibiting similar success rates.

e Group 1: Rows separated by at most 50 positions achieve a success
rate of up to 98%.

e Group 2: Rows with distances between 50 and 230 exhibit a success
rate of approximately 92%.

e Group 3: For rows spaced beyond 230, the success rate decreases to
around 89%.

Row Copy Success Rate

99 1 1

4]
=1
T
L

4]
[43]
T
L

Success Rate (%)
[{s]
el

91 1
89
98% Success Rate (0-50 rows)
87 [|=———92% Success Rate (50-230 rows)]
89% Success Rate (230-512 rows)
85

0 50 100 150 200 250 300 350 400 450 500
Row Index

Figure 4.6: Row Copy Success the regarding the distance of the activated Row.

4.4 Logical AND/OR

By further decreasing the timing intervals in the command sequence we
successfully activated three different rows simultaneously. This

56

Experiments and Results

phenomenon enables the exploitation of charge sharing to perform in-place
logical operations. To achieve this, one of the three activated rows is
preloaded with either all-zeros or all-ones. Upon executing the command
sequence, the logical AND or OR operation between the other two rows
naturally emerges across all three rows.

Specifically, to implement the logical AND/OR operations, both Tj
and 75 are minimized, ensuring that the commands ACTIVATE(R1),
PRECHARGE, and ACTIVATE(R2) are executed in immediate succession
without idle cycles. When the addresses of the two source rows, R; and
Ry, are chosen appropriately, the command sequence implicitly activates a
third row, R3. The timing diagrams for the AND and OR operations are
provided in the next figures.

In these figures, the rows are depicted according to their physical
arrangement, with addresses 0, 1, and 2 from top to bottom. Notably,
both operations utilize identical command sequences and timing
constraints. The only distinguishing factors are:

e The specific rows designated for storing the operand values,
highlighted with rectangles in the figures.

e The operation-selecting constant, which is stored in the remaining row.

o (6] e T 0N 6
Constant:1
R:=01 | ' Sdldrgs_:s = =
Operz;;d:é F ﬂ_. l ﬂ_.'] ﬂ_.\ E
R, —t)
el | 0] U7 AN
10 R, |
SA 4F§7 Sr_, S
®_ 9 SN0, i@

Figure 4.7: Logical OR. [I]

o7

Experiments and Results

O e e O e e N
mmﬁfﬂﬂﬁf
i
el] 0 . Rj 01 a0

oty Ta Ty

-

ACT(R;) PRE ACT(R;)

T, = T, = 0idlecycle

Figure 4.8: Logical AND. [I]

As in the previous case, Step 1 in previous figures begins with the first
ACTIVATE command, which opens row R;. However, unlike the row copy
procedure, this activation is immediately followed by a PRECHARGE command
in Step 2, effectively interrupting the activation process. The short timing
interval T7 ensures that the sense amplifier remains disabled. This is a
crucial condition, as enabling the sense amplifier prematurely would restore
the charge of Ry to the bitline, potentially overwriting data in other rows.

In Step 3, the second ACTIVATE command is issued, interrupting the
ongoing PRECHARGE operation. As outlined in Section 2, the PRECHARGE
command typically serves two purposes: it deactivates the wordline to
close the currently open row and drives the bitline to Vyq/2. However, by
minimizing the timing interval T5, both of these actions can be prevented.
Consequently, the initial row R; remains open while the second ACTIVATE
command updates the row address from R; to Ry. During this transition,
an intermediate row R3 momentarily appears on the row address bus.
Since the PRECHARGE command was interrupted early, the bank remains in
a state where the wordline is still being set. This state causes the wordline
to follow the intermediate row address, effectively opening R3. As a result,
by the end of Step 3, both Ry and Rs are activated, while R; remains
open from the beginning.

Following this, in Step 4, charge sharing occurs, equalizing the voltage

o8

Experiments and Results

across all three activated rows and the bitline. The resulting voltage level
depends on the majority value stored in Ry, Ro, and R3. The process of
configuring logical AND and OR operations by preloading a designated
operation-selecting constant row is discussed in subsequent sections.

Finally, in Step 5, the computed result is stored across all three rows.
Similar to the row copy operation, logical AND and OR operations are
restricted to rows within the same subarray, ensuring consistent charge
sharing behavior.

Theoretically, if all three rows have identical cell capacitance and are
activated simultaneously, the resulting operation would follow the majority
function. Specifically, if at least two of the three rows contain a logic value
of one, the output will also be one; otherwise, it will be zero. However, in
practical scenarios, row R; is activated first, granting it a longer duration to
influence the bitline. As a result, the three rows do not contribute equally
to the final outcome.

In the next figure presents the experimentally derived truth table for all
possible value combinations in rows Ry, Ro, and R3. With the exception of
the case where Ry = 1, Ry = 0, and R3 = 0 (marked with an ‘X’ to denote
an unpredictable result), all other input combinations yield the expected
logical outcome. Based on these observations, we selectively use the robust
combinations from next figure to define operand rows while designating the
remaining row as a predefined constant for implementing logical AND and
OR operations.

SEE 01 10 11
R, N T
0 [0 01 1
1 0 T+ 1]

Figure 4.9: Truth Table from Charge Sharing in 3 rows.[I]

By setting R; to a fixed logic zero, the truth table reduces to the region
enclosed by the dotted circle, effectively performing a logical AND
operation on the values stored in Ro and Rs. Conversely, setting R3 to a
constant logic one reduces the truth table to the solid circle, thereby
implementing a logical OR operation on R; and Ra.

Thus, in addition to precise control of timing intervals, an essential
requirement for executing logical AND and OR operations is the presence

59

Experiments and Results

of a predefined constant zero or one. Before initiating an AND operation,
row R; must be preloaded with all-zeros. Similarly, prior to executing an
OR operation, row Rz must be initialized with all-ones. During the
DRAM setup phase, these constant values are stored in two dedicated rows
within each subarray, ensuring efficient execution of in-memory logic
operations.

Having established the row copy and logical AND/OR operations, a
crucial missing element for arbitrary computations is the NOT operation.
To address this limitation, prior research has proposed the in situ
implementation of the NOT operation in DRAM [6] [7] [g].

We incorporate both the regular and negated versions of a value,
enabling more complex computations. In this framework, every variable
consists of two parts: one representing the original value and the other its
negation. The simultaneous availability of both forms facilitates the
construction of universal logic functions such as NAND, which can be
leveraged to execute arbitrary computations. Equations (1) to (5)
illustrate various possible logical operations, where the right-hand side of
each equation is formulated exclusively using AND and OR gates.

To ensure arbitrary computations at any execution point, additional
steps are required to generate the negated pair. For instance, computing
the XOR operation between two values, A and B, using only AND/OR
gates, necessitates three fundamental operations: A A B, AV B, and the
logical OR of the previous two results. Similarly, for computing XNOR,
three additional operations—A V B, AV B, and the logical AND of the
prior two—are required. This ensures that computations maintain the
pairwise value structure, extending the framework to more complex
operations.

Adopting this pairwise approach increases memory usage and
effectively doubles the number of operations. However, the benefits in
computational capabilities outweigh these costs, as the inherent massive
parallelism of row-wise DRAM execution mitigates performance overheads.
Moreover, not all negated intermediate values need explicit computation.
Through logical minimization, redundant steps can be eliminated. The
resulting logical functions are expressed as follows:

60

Experiments and Results

NOT: ~(4, A) = (4, A) (1)

AND: (A, A) A (B,B) = (AAB,AV B) (2)

OR: (A,A)V (B,B) = (AV B,AN\B) (3)
NAND: ~((4, A) A (B, B)) = (AV B, A\ B) (4)
XOR: (A,A)® (B,B) = (AANB)V (AAB),(AV B)A(AV B)) (5)

This formulation ensures that logical operations remain efficient while
maintaining compatibility with the DRAM-based computation framework.

4.5 Fraction Operation

However, a limitation in DDR4 memory arises when attempting to activate
three rows simultaneously using the ACT-PRE-ACT command sequence.
Our investigation of DRAM behavior revealed that instead of three, the
system inherently enables the activation of 4, 8, or 16 rows at the same time
[@].

To implement the previously discussed operations, it is essential to
neutralize the effect of one of the activated rows during the charge-sharing
process. This is accomplished by employing a specialized operation that
adjusts the charge stored in the cell capacitor to approximately Vg;/2,
effectively negating its influence on subsequent computations.

The Frac operation [2] enables the storage of fractional values across an
entire row. To implement Frac, we leverage two fundamental DRAM
commands: ACTIVATE and PRECHARGE. These commands must be
executed consecutively, without any idle cycles in between. At a high level,
the objective is to utilize the PRECHARGE command to disrupt the row
activation process, thereby preventing the sense amplifier from being
enabled.

The next figure illustrates the voltage behavior of both the bit-line and
the DRAM cell during the Frac operation. Initially, in step 1, a
PRECHARGE command is issued to set the bit-line voltage to Vyg/2. This
command first ensures that any previously activated row is closed.
Consequently, the bit-line voltage remains unchanged for at least one
memory cycle. The initial voltage of the cell capacitor can be either Vy; or
0; for this example, we assume it starts at Vy,.

In step 2, the Frac operation begins by issuing an ACTIVATE command
to the target row, which raises the word-line and connects the cell capacitor

61

Experiments and Results

to the bit-line. As charge sharing occurs, both the cell and bit-line reach
an equilibrium voltage slightly above Vy;/2. Since the bit-line capacitance
is significantly larger than that of the cell, the final voltage is closer to the
initial bit-line voltage [?].

Next, in step 3, a PRECHARGE command is issued to interrupt the
activation process before the sense amplifier engages. As a result, the cell
capacitor is disconnected from the bit-line while holding a fractional
voltage—neither Vy; nor 0, but slightly above Vy;/2. Given the necessity
of waiting for the PRECHARGE command to complete, the total latency
of a single Frac operation amounts to 7 memory cycles (comprising two
command cycles and five idle cycles).

With just one Frac operation, fractional values can be stored in DRAM
cells within the same row. However, this stored voltage depends on the initial
state of the cell. For columns where the initial voltage is 0, the resulting
voltage will settle between Vy;/2 and 0. To improve accuracy—bringing
the stored voltage closer to Vy;/2 and reducing dependence on the initial
value—multiple Frac operations can be executed sequentially.

At step 4, after the completion of the previous PRECHARGE command,
an additional Frac operation can be issued. Our findings indicate that the
more Frac operations performed, the closer the resultant voltage approaches
Vaa/2, ensuring greater consistency across the row, regardless of the initial
voltage state. We analyze the impact of initial cell voltage and the number
of Frac operations on the final voltage in Section V.

Voltage . \ . . '
A . e
' : i E | Bit-line
0.5V, kit — e
EE ch{%T F%—I]I Frac{A@CT PRE) time

Figure 4.10: Voltage Level of the Capacitor and the bit line during Frac operation.

[2]

To evaluate the success rate of logical AND/OR operations, we followed
the sequence of steps below:

e Identifying Simultaneously Activated Rows
We begin by identifying four rows that can be activated
simultaneously. = This is achieved using the command sequence
ACT-PRE-ACT. We then write a predefined value to memory.

4

62

Experiments and Results

e Storing a Fractional Voltage (V4/2)
In one of these four rows, we store a voltage level close to Vy3/2 using
the Frac operation. This is done by issuing an ACT command,
immediately followed by a PRECHARGE command, and then waiting
for 5 cycles. This process is repeated three additional times,
accumulating a total delay of 21 cycles.

4

e Executing the Logical AND/OR Operation
Based on whether a logical AND or OR operation is desired, we store
either ‘1 or ‘0° in the third row. The command sequence
ACT-PRE-ACT is applied, followed by a 4-cycle wait for charge
sharing. A final PRECHARGE command is issued before reading back
the data to verify correctness.

4

¢ Repeating the Experiment and Collecting Statistics
The experiment is repeated approximately 1000 times to gather
statistically meaningful results.

4.6 Experimental Results

The results indicate the following success rates across the total of 65 x 210
columns:

e 11% of the columns achieved a success rate of 85%.
e 66% of the columns achieved a success rate of 62%.

e 23% of the columns achieved a success rate of 47%.

These findings highlight a significant variation in the performance of
different columns.

63

Experiments and Results

OR Success Rate per Bit-Line

100 T T
=
= J
T
o J
@
[i+]
5] J
3
@
1 23 66
Number of bitlines (%)
Figure 4.11: OR Success Rate.
AND Success Rate per Bit-Line
100 . T :
a0 | J
=
[15]
®
o
]
k]
8
3
5]

10 3 59
MNumber of bitlines (%)

Figure 4.12: AND Success Rate.
The graphs above show that we can have 3 groups of bit lines. The first
group is about the 10% of the columns (i.e 6500) have a success rate over

80% both in AND and OR logical gates. This means that they are quite

64

Experiments and Results

reliable and can produce the correct result in most cases. The experiment
showed that the logical AND is less reliable than the logical OR as fewer
columns can achieve rates up until 60%.

4.7 Full Adder

The circuit of the Full Adder is appeared below

D~
B o <

Ciﬁ o

COL.lt

Figure 4.13: Full Adder.

To achieve the full addition of two single-bit numbers, we select the
subarray that provides the highest success rate for logical AND and OR
operations. The following figures illustrate the process of performing
addition within the DRAM subarray. There are several constraints that
impact our approach:

1. Limited Subarray Size: The selected subarray consists of 512 rows,
and we cannot utilize rows from other subarrays.

2. Negation Handling: If an operation requires negation, we must
execute the entire logical negated operation, as direct bit inversion is
not feasible within the subarray.

3. Bit-Serial Arithmetic: The subarray does not support shifting
operations for multi-bit numbers. Therefore, we implement a
bit-serial arithmetic approach, where numbers are stored along the
same bit-line but across different rows.

To enhance the efficiency of row copy operations, we strategically store
the numbers in the middle region of the subarray. As demonstrated in
previous figures, this placement leads to improved row copy performance

65

Experiments and Results

and overall computation reliability. Let us assume that the data is stored
within the DRAM. Since all operations are performed between two bits,
we need to activate four rows simultaneously. Depending on the required
operation, we store a predefined value in an assisting cell: a logical 1 for OR
operations and a logical 0 for AND operations.

We describe the execution of one such operation, as the remaining
operations follow a similar approach. Given that there are a total of nine
operations to be performed (with XOR consisting of two AND operations
and one OR operation), we organize the computations into nine distinct
groups. Each group consists of four rows, which are activated
simultaneously using the ACT-PRE-ACT command sequence.

Upon closer examination, we observe that the carry bit from one
operation will serve as the carry-in for the next stage of the full adder.
Consequently, we also need to compute the negated version of the
carry-out, which is given by the following Boolean expression:

(=(A® B) +~Ciy) - (nA+ —B)
To execute the required operations efficiently, we organize the computation
into 15 groups, each consisting of 4 rows. We describe the execution of
a single logical AND operation, noting that the procedure for logical OR
follows the same structure.

To preserve the data, we first issue a row copy command within one
of the groups. This process is repeated three times—twice for the operand
rows and once for the row that determines the operation (which, in the case
of AND, is initialized to 0). Since a row copy operation requires 9 memory
cycles, the total cost for a full row clone operation amounts to 27 cycles.

Next, we execute a fractional operation on the last row of the group,
which has a latency of 7 cycles. Following this, we apply the ACT-PRE-ACT
sequence to perform the AND operation, requiring an additional 8 memory
cycles.

Once the AND operation is completed, the result is copied to the
destination row of another group with a latency of 9 memory cycles.
Similarly, the result of the SUM is transferred to the designated row for
final storage, also requiring 9 cycles.

In total, each group executes one operation with a latency of:

274+ 7+ 8 4+ 9 = 51 memory cycles

To perform these operations across all 15 groups, the total latency required
is:
15 x 51 = 765 memory cycles

66

Experiments and Results

However, since the memory speed is four times faster than the FPGA
used in our setup, the effective latency in FPGA cycles is:

744
= = 192 FPGA cycles

Thus, executing the full addition of single-bit data requires approximately
186 FPGA cycles.

We evaluate the success rate of addition for different bit-widths,
including 1-bit, 4-bit, 8-bit, and 16-bit operations. The experimental
results indicate the following success rates:

1-bit addition: 75% success rate.

4-bit addition: 67% success rate.

8-bit addition: 47% success rate.

16-bit addition: 28% success rate.

These results highlight a decreasing trend in success rate as the bit-width
increases, suggesting that larger bit-width operations introduce additional
challenges in DRAM-based computation.

Although the reported success rates may initially seem low, our
simulations indicate that when performing addition over multiple numbers,
the occurrence of random bit errors within the operands tends to cancel
out. As a result, the overall cumulative error remains below 10%

This phenomenon is illustrated in the following figure.

67

Experiments and Results

0.01 1

"

0 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Figure 4.14: As the number of additions increases, the absolute error of erroneous
numbers exhibits a decreasing trend. This suggests that random bit errors tend
to partially cancel out, leading to a more stable overall result. Consequently,
the cumulative error remains within acceptable limits, demonstrating the inherent
error-mitigation effect in large-scale additions. .

The number of rows required for computation is a function of the bit
length of the operands, as illustrated in the following figure.

For a full adder, we require 15 groups of 4 rows dedicated solely to
computation. Additionally, the number of rows must accommodate the bit
length of both operands, the sum, and the carry-out.

Thus, the total number of rows follows a linear function given by:

Total Rows = 61 + 3 x Bit Length

This relationship highlights the scalability of row usage as the bit length
increases.

68

Experiments and Results

0 50 100 150
Bit-Length

Figure 4.15: Rows occupied depending the bit length of the operators.

The number of operators that can fit in the subarray regarding their bit
length is appeared below

200

@
>

MNumber of operators
3
s
[]

@
g

0 20 40 60 80 100 120
Operators Bit Length

0

Figure 4.16: Number of operators in one subarray depending the bit length of the
operators.

To evaluate the speedup achieved through in-memory addition, we
consider the summation of 1024, 10,240,102,400 numbers, assuming that
each number is represented with an 8-bit length. The evaluation is
conducted under two different computational scenarios.

In the first scenario, all additions are performed within the FPGA,
where each addition requires exactly one cycle. Consequently, the total
number of cycles required is equal to the number of operands being summed,
namely 1024 and 10,240 cycles, respectively.

In the second scenario, computation is carried out within DRAM
using an in-memory addition approach. The numbers are divided into
groups that fit within a single subarray, enabling parallel execution. This
approach significantly reduces the overall cycle count compared to

69

Experiments and Results

FPGA-based computation. The spped up is given from the following
function

1024
—— +192x 8 x N
N + X 8 X

The results of these two scenarios are presented in the following section.

Speed up of 1024 numbers

° °
0 5 10 15 20 25 30 35 40
Numbers in each column

Figure 4.17: Speed up of the addition of 1024 numbers.

Speed up of 10240 numbers

Seep up

0 5 10 15 20 25 30 35 40
Numbers in each column

Figure 4.18: Speed up of the addition of 10240 numbers.

70

Experiments and Results

Speed up of 102400 numbers

Seep up

0 5 10 15 20 25 30 35 a0
Numbers in each column

Figure 4.19: Speed up of the addition of 102400 numbers.

71

Experiments and Results

72

Chapter 5

Comments and future work

Our analysis indicates that for a relatively small number of operands, such
as 1024, no significant speedup is observed. However, as the number of
operands increases, we begin to observe measurable improvements in
performance.

When utilizing only two operands per bitline, a moderate speedup
is achieved. For larger datasets, the speedup exceeds 4 X, reaching its peak
efficiency when eight operands per bitline are utilized. This
demonstrates the scalability of in-memory addition, where higher operand
density per bitline leads to greater computational efficiency.

Compute-in-Memory (CIM) is an emerging paradigm designed to
mitigate the memory bottleneck in conventional von Neumann
architectures. Instead of continuously transferring data between memory
and processing units, CIM enables computations to be performed directly
within memory cells, thereby reducing latency and power consumption.
This approach has broad applications across multiple domains.

One of the most prominent applications of CIM is in artificial
intelligence and machine learning, where matrix-vector multiplications are
fundamental to deep learning workloads. By executing these operations
directly within memory, CIM accelerates neural network inference and
reduces energy consumption, making it particularly useful for edge
computing and IoT devices. Additionally, CIM is well-suited for
cryptographic computations, including hashing and encryption, where
high-speed bitwise operations are required.

73

Comments and future work

74

Bibliography

1]

F. Gao, G. Tziantzioulis, and D. Wentzlaf, “Computedram: In-
memory compute using off-the-shelf drams,” IEEE/ACM International
Symposium on Microarchitecture, 2019.

F. Gao, G. Tziantzioulis, and D. Wentzlaf, “Fracdram: Fractional values
in off-the-shelf dram,” 2022 55th IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2022.

S. A. S and S. K. C, Microelectronic Circuits. Oxford university press,
2004.

N. Weste and D. Harris, CMOS VLSI Design: A Clircuits and Systems
Perspective. 2011.

A. Olgun, H. H. A., G. Yaglk¢, and O. Mutlu, “Dram bender:
An extensible and versatile fpga-based infrastructure to easily test
state-of-the-art dram chips,” IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2023.

A. Olgun, J. G. Luna, K. Kanellopoulos, B. Salami, H. Hassan, O. Ergin,
and O. Mutlu, “Pidram: A holistic end-to-end fpga-based framework
for processing-in-dram,” Proceedings of the IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2022.

N. Hajinazar, G. F. Oliveira, S. Gregorio, J. D. Ferreira, N. M.
Ghiasi, M. Patel, J. Goémez-Luna, M. Alser, O. Mutlu, and
S. Ghose, “SIMDRAM: An End-to-End Framework for Bit-Serial SIMD
Computing in DRAM,” 2024.

I. E. Yuksel, Y. C. Tugrul, A. Olgun, F. N. Bostanci, A. G.
Yaglikci, G. F. Oliveira, H. Luo, J. Gémez-Luna, M. Sadrosadati, and
O. Mutlu, “Functionally-Complete Boolean Logic in Real DRAM Chips:
Experimental Characterization and Analysis,” 2024.

75

BIBLIOGRAPHY

[9] I. E. Yuksel, Y. C. Tugrul, F. N. Bostanci, A. G. Yaglikci, A. Olgun,
G. F. Oliveira, M. Soysal, H. Luo, J. G. Luna, M. Sadrosadati, and
O. Mutlu, “PULSAR: Simultaneous Many-Row Activation for Reliable
and High-Performance Computing in Off-the-Shelf DRAM Chips,” 2024.

76

	 Περίληψη
	 Abstract
	 Ευχαριστίες
	 Acknowledgments
	 List of Figures
	 List of Tables
	Εκτεταμένη Ελληνική Περίληψη
	Εισαγωγή
	Θεωρητικό Υπόβαθρο
	Η οργάνωση ενός ολοκληρωμένου κυκλώματος μνήμης DRAM
	Η αρχιτεκτονική της μνήμης σε υψηλότερο επίπεδο
	Λειτουργία του κυττάρου μνήμης

	Χρονισμοί Μνήμης
	Δομικά Στοιχεία για την εκτέλεση πράξεων
	Προσαρμοσμένος Memory Controller
	Πράξεις Στην Μνήμη

	Αποτελέσματα και Συμπεράσματα

	Introduction
	Theoretical background
	DRAM's chip
	DRAM Architecture
	The Subarray Full Circuit
	Timing and Basic Commands

	Experiments and Results
	Framework
	Sense Amplifier Circuit
	Row Copy
	Logical AND/OR
	Fraction Operation
	Experimental Results
	Full Adder

	Comments and future work

