
NATIONAL AND TECHNICAL UNIVERSITY OF ATHENS
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING
DIVISION OF TECHNOLOGY, INFORMATION AND COMPUTERS

Creation of a complete cloud system for the
management of second life battery systems

Thesis Report

of

Ioannis E. Mytis

Supervisor: Panayiotis D. Tsanakas,
Professor of Computer Engineering NTUA

Athens, March 2025

2

National and Technical University of Athens
School of Electrical and Computer Engineering
Division of Information Technology and Computer

Creation of a complete cloud system for the
management of second life battery systems

Thesis Report

of

Ioannis E. Mytis

Supervisor: Panayiotis D. Tsanakas,
Professor of Computer Engineering NTUA

Approved by the examination committee on 3rd March 2025:

..
Panayiotis Tsanakas
Professor, NTUA

..
Angelos Amditis

Reseacher A’, ICCS-NTUA

..
George Korres

Professor, NTUA

Athens, March 2025

Εθνικό Μετσόβιο Πολυτεχνείο

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Τομέας Τεχνολογίας Πληροφορικής & Υπολογιστών

Δημιουργία ολοκληρωμένου συστήματος νέφους για τη διαχείρηση

μπαταριών

Διπλωματική Εργασία

του

Ιωάννη Ε. Μύτη

Επιβλέπων: Παναγιώτης Δ. Τσανάκας,

Καθηγητής Ε.Μ.Π.

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την 3η Μαρτίου 2025:

(Υπογραφή)

..

Παναγιώτης Τσανάκας

Καθηγητής, Ε.Μ.Π.

(Υπογραφή)

..

΄Αγγελος Αμδίτης

Ερευνιτής Α΄, ΕΠΙΣΕΥ-Ε.Μ.Π.

(Υπογραφή)

..

Γεώργιος Κορρές

Καθηγητής, Ε.Μ.Π.

Αθήνα, Μάρτιος 2025

(Signature)

...............................
Ioannis E. Mytis
Graduate Electrical and Computer Engineer NTUA

Copyright ©–All rights reserved Ioannis E. Mytis, 2025.

Copying, storing, and distributing this work, in whole or in part, for commercial purposes is
prohibited. Reproduction, storage, and distribution for non-profit, educational, or research
purposes are permitted, provided that the source is cited and this notice is retained. Any
inquiries regarding the use of this work for commercial purposes should be directed to the
author.

The views and conclusions expressed in this document represent those of the author and
should not be interpreted as reflecting the official positions of the National Technical Uni-
versity of Athens.

2

Περίληψη

Η χρήση των μπαταριών για δεύτερη ζωή θα έχει έναν ολοένα και πιο σημαντικό αντίκτυπο

στη ζωή μας, όπως αναφέρει η Ευρωπαϊκή ΄Ενωση. Εν τω μεταξύ, η ζήτηση για συστήματα

μπαταριών αυξάνεται ραγδαία και αρκετά συστήματα μπαταριών βρίσκονται κοντά ή έχουν ήδη

φτάσει στο τέλος της πρώτης τους ζωής, ενώ εξακολουθούν να διατηρούν την ικανότητα να

επαναδιαμορφωθούν για άλλες χρήσεις. Ταυτόχρονα, δεν υπάρχει ένα ισχυρό πλαίσιο που να

καθιστά την επαναχρησιμοποίηση αυτών των μπαταριών εύκολη, ασφαλή και αποδοτική.

Αυτό οδηγεί σε προβλήματα όπως υψηλοί παράγοντες κινδύνου κατά την αποσυναρμολόγη-

ση των μπαταριών και δυσκολίες στον σχεδιασμό, την πρόβλεψη και την παρακολούθηση της

απόδοσης των συστημάτων μπαταριών δεύτερης ζωής. Κατά συνέπεια, αυτό δημιουργεί ση-

μαντικά εμπόδια για τη συμμετοχή εξωτερικών ενδιαφερόμενων επιχειρήσεων της αλυσίδας

αξίας της ανακύκλωσης μπαταριών. Ως αποτέλεσμα, σε μια περίοδο που χαρακτηρίζεται από τη

ραγδαία αύξηση της παραγωγής αποβλήτων μπαταριών, το δυναμικό για την επαναχρησιμοπο-

ίησή τους μειώνεται, επηρεάζοντας τόσο την επαναχρησιμοποίηση των μπαταριών όσο και τη

βιωσιμότητα του περιβάλλοντος.

Αυτή η διπλωματική εργασία ασχολείται με τη δημιουργία μιας cloud πλατφόρμας για τη σω-
στή διαχείριση και επικοινωνία πληροφοριών σχετικά με συστήματα μπαταριών δεύτερης ζωής,

στο πλαίσιο του ευρωπαϊκού έργου Horizon, Battery2Life. Θα υλοποιήσει δομές δεδομένων
σύμφωνα με το Ψηφιακό Διαβατήριο Μπαταρίας, αποδοτικούς μηχανισμούς αποθήκευσης δεδο-

μένων και θα παρέχει ασφαλείς και ευέλικτους τρόπους επικοινωνίας αυτού του ευρέος συνόλου

δεδομένων σε όλους τους ωφελούμενους της αλυσίδας αξίας της δεύτερης ζωής των μπαταριών.

Στο Κεφάλαιο 1, θα εξετάσουμε το ζήτημα της διάρκειας ζωής των μπαταριών πέρα από την

αρχική τους χρήση και θα παρουσιάσουμε το τμήμα μας στο έργο Horizon Battery2Life.
Στο Κεφάλαιο 2, θα καλύψουμε τις συγκεκριμένες απαιτήσεις της πλατφόρμας, θα παρέχου-

με λεπτομερή παραδείγματα των API endpoints και θα περιγράψουμε την αρχιτεκτονική της
λύσης,συμπεριλαμβανομένων των στοιχείων της και των αλληλεπιδράσεών τους. Στο Κεφάλαιο

3, θα συζητήσουμε πώς υλοποιήσαμε την πλατφόρμα σύμφωνα με τις προδιαγραφές και την αρ-

χιτεκτονική που περιγράφηκαν στο προηγούμενο κεφάλαιο, και θα εξηγήσουμε γιατί επιλέξαμε

τις συγκεκριμένες τεχνολογίες καθώς και πώς τις διαμορφώσαμε. Στο Κεφάλαιο 4, θα καθο-

ρίσουμε τη μεθοδολογία δοκιμών της πλατφόρμας μας, θα διεξάγουμε τις δοκιμές, θα παρουσι-

άσουμε τα αποτελέσματα και θα αναλύσουμε τα βασικά σημεία ενδιαφέροντος. Στο Κεφάλαιο

5, θα ολοκληρώσουμε αυτήν τη διπλωματική εργασία, επισημαίνοντας τα κύρια συμπεράσματα

και προτείνοντας μελλοντικές βελτιώσεις για την cloud πλατφόρμα Battery2Life.

Λέξεις Κλειδιά— Διαχείρηση Μπαταριών, Ψηφιακό Διαβατήριο Μπαταρίας, Ανακύκλωση

Μπαταριών, API, Cloud, Django, Docker

3

4

Abstract

The act of utilizing batteries beyond their first life will have an increasingly important
impact on our lives, as stated by the European Union. Meanwhile, the demand for battery
systems is skyrocketing and several battery systems are close or have reached the end of
their first lives while still maintaining the capacity to be reconfigured for other use cases. At
the same time, there is no robust framework that makes the task of reusing these batteries
easy, safe and efficient.

This leads to problems including high risk factors for the disassembly of batteries and
difficulty in designing, predicting/monitoring the performance of 2nd life battery systems.
Consequentially, this poses significant obstacles for the participation of outside stakeholders
in the recycling value chain. As a result, during a time marked by a rapid rise in battery
waste production, the potential for reusing batteries is reduced, affecting both the reuse
aspect of batteries and environmental sustainability.

This thesis takes up the matter of building a cloud platform for the correct management
and communication of information of second life battery systems within the scope of the
European Horizon project Battery2Life. It will implement data structures according to the
Digital Battery Passport, efficient data storing mechanisms and provide secure and flexible
ways of communicating this wide set of data to all the benefactors of the second battery life
value chain.

In Chapter 1, we will explore the issue of battery life beyond initial use and introduce our
segment of the Horizon Battery2Life project. In Chapter 2, we will cover the platform’s
specific requirements, provide detailed examples of the API endpoints, and outline the
solution’s architecture, including the solution components and their interactions. In Chapter
3, we will discuss how we implemented the cloud platform according to the specifications and
architecture outlined in the previous chapter, and explain why we selected the technologies
we did, as well as how we configured them. In Chapter 4, we will establish the testing
methodology for our platform, carry out the tests, present the results, and discuss key focus
areas. In Chapter 5, we will conclude this thesis by highlighting key takeaways and offering
suggestions for future work on the Battery2Life cloud platform.

KEYWORDS — Battery Management, Digital Battery Passport, Cloud, Django, Docker,
Battery 2nd Life, API

5

6

Contents

1 Introduction 14
1.1 Problem Statement . 15
1.2 The Battery2Life (B2L) Horizon Project . 16
1.3 The Battery2Life Cloud Platform . 16

2 System Model 19
2.1 Data Management System . 20

2.1.1 Digital Battery Passport . 20
2.1.2 Database Design Logic . 21

2.2 REST API Endpoint Structure . 25
2.2.1 Analytics . 26
2.2.2 Battery Management . 40
2.2.3 Authentication . 58
2.2.4 Endpoints Summary Table . 62

2.3 System Architecture . 63
2.3.1 System Requirements . 63
2.3.2 System Components . 64
2.3.3 Use Cases . 66

3 Implementation 68
3.1 Component Communication . 69

3.1.1 REST Endpoints . 69
3.1.2 Message Broker - Mosquitto MQTT 69

3.2 Server - Django/Django Rest Framework . 71
3.2.1 Authentication . 71
3.2.2 Security . 71
3.2.3 User Management . 72
3.2.4 Router . 74
3.2.5 Controllers - ViewSets . 75

3.3 REST API Documentation - Swagger UI . 79
3.3.1 Performing HTTP requests . 79

3.4 Database - PostgreSQL . 81
3.4.1 Database Django ORM . 81
3.4.2 Database Configuration . 83
3.4.3 Database Migrations . 84

3.5 Activity Logging - Python/Django Loggers 85
3.5.1 Python Logging Setup . 85

3.6 Development Tools . 88
3.6.1 Execution Environment - Docker Containers 88
3.6.2 Version Control Management - Git . 90

3.7 System Practical Instructions . 91
3.7.1 Project file structure . 91
3.7.2 Basic Usage Instructions . 94

4 Results 96
4.1 Testing Methodology . 97

4.1.1 Testing philosophy . 97

7

4.1.2 Testing Solution . 97
4.1.3 Testing Validity/Performance . 97
4.1.4 System Under Test . 98

4.2 Testing Results Presentation . 99
4.2.1 Testing Implementation . 99
4.2.2 Experiment 1: Normal Load Testing 102
4.2.3 Experiment 2: Heavy Load Testing . 105
4.2.4 Findings . 109

5 Conclusions 111
5.1 Work Summary . 112
5.2 Future Work . 112

8

List of Figures

2.1 Database Entity-Relationship Diagram . 22

2.2 Battery2Life component diagram . 64

3.1 JavaScript Web Token example . 71

3.2 Django Admin Interface - Login . 72

3.3 Django Admin Interface - Main Page . 73

3.4 Django Admin Interface - Assign Permissions 73

3.5 Django Admin Interface - Create Database Records 74

3.6 Routing - Main App . 74

3.7 Routing - API . 75

3.8 ModelViewSet - Chemical . 76

3.9 Serializer - Chemical . 76

3.10 ModelViewSet - Measurements . 77

3.11 Serializer - Measurements . 78

3.12 Swagger UI - Landing page . 79

3.13 Swagger UI - Authorize . 79

3.14 Swagger UI - Get request . 80

3.15 Swagger UI - Get response . 80

3.16 Database - Initialization and Configuration script 84

3.17 Logging - ModelViewSets . 86

3.18 Logging - Mosquitto Client . 87

4.1 Experiment 1 - Overview . 102

4.2 API - request rate . 102

4.3 Batteries endpoint - response time . 103

4.4 Modules endpoint - response time . 103

4.5 Cells endpoint - response time . 103

4.6 EIS endpoint - response time . 104

4.7 Measurements endpoint - response time . 104

4.8 All endpoints get all method - response time 104

4.9 Experiment 2 - Overview . 105

4.10 API endpoint - request rate . 106

4.11 Batteries endpoint - response time . 106

4.12 Modules endpoint - response time . 106

4.13 Cells endpoint - response time . 107

4.14 EIS endpoint - response time . 107

4.15 Measurements endpoint - response time . 107

4.16 All endpoints get all method - response time 108

9

List of Tables

2.1 API Endpoints Summary . 62

4.1 System Specifications . 98
4.4 Experiment Parameters . 104
4.2 API Validation Confusion Matrix . 105
4.3 Performance Metrics . 105
4.5 Experiment Parameters . 108
4.6 API Validation Confusion Matrix . 108
4.7 Performance Metrics . 108

10

Εκτενής Περίληψη

Η χρήση των μπαταριών για δεύτερη ζωή θα έχει έναν ολοένα και πιο σημαντικό αντίκτυπο

στη ζωή μας, όπως αναφέρει η Ευρωπαϊκή ΄Ενωση. Εν τω μεταξύ, η ζήτηση για συστήματα

μπαταριών αυξάνεται ραγδαία και αρκετά συστήματα μπαταριών βρίσκονται κοντά ή έχουν ήδη

φτάσει στο τέλος της πρώτης τους ζωής, ενώ εξακολουθούν να διατηρούν την ικανότητα να

επαναδιαμορφωθούν για άλλες χρήσεις. Ταυτόχρονα, δεν υπάρχει ένα ισχυρό πλαίσιο που να

καθιστά την επαναχρησιμοποίηση αυτών των μπαταριών εύκολη, ασφαλή και αποδοτική.

Αυτό οδηγεί σε προβλήματα όπως υψηλοί παράγοντες κινδύνου κατά την αποσυναρμολόγη-

ση των μπαταριών και δυσκολίες στον σχεδιασμό, την πρόβλεψη και την παρακολούθηση της

απόδοσης των συστημάτων μπαταριών δεύτερης ζωής. Κατά συνέπεια, αυτό δημιουργεί ση-

μαντικά εμπόδια για τη συμμετοχή εξωτερικών ενδιαφερόμενων επιχειρήσεων της αλυσίδας

αξίας της ανακύκλωσης μπαταριών. Ως αποτέλεσμα, σε μια περίοδο που χαρακτηρίζεται από τη

ραγδαία αύξηση της παραγωγής αποβλήτων μπαταριών, το δυναμικό για την επαναχρησιμοπο-

ίησή τους μειώνεται, επηρεάζοντας τόσο την επαναχρησιμοποίηση των μπαταριών όσο και τη

βιωσιμότητα του περιβάλλοντος.

Αυτή η διπλωματική εργασία ασχολείται με τη δημιουργία μιας cloud πλατφόρμας για τη σω-
στή διαχείριση και επικοινωνία πληροφοριών σχετικά με συστήματα μπαταριών δεύτερης ζωής,

στο πλαίσιο του ευρωπαϊκού έργου Horizon, Battery2Life. Θα υλοποιήσει δομές δεδομένων
σύμφωνα με το Ψηφιακό Διαβατήριο Μπαταρίας, αποδοτικούς μηχανισμούς αποθήκευσης δεδο-

μένων και θα παρέχει ασφαλείς και ευέλικτους τρόπους επικοινωνίας αυτού του ευρέος συνόλου

δεδομένων σε όλους τους ωφελούμενους της αλυσίδας αξίας της δεύτερης ζωής των μπαταριών.

Στο Κεφάλαιο 1, θα εξετάσουμε συνοπτικά το ζήτημα της διάρκειας ζωής των μπαταριών πέρα

από την αρχική τους χρήση και θα παρουσιάσουμε το τμήμα μας στο έργοHorizon Battery2Life.

Στο Κεφάλαιο 2, θα καλύψουμε τις συγκεκριμένες απαιτήσεις της πλατφόρμας σε σχέση με την

αποθήκευση των δεδομένων. ΄Υστερα, θα παρέχουμε λεπτομερή περιγραφή των API endpoints
μαζί με αναλυτικά παραδείγματα που θα περιέρχουν μία γενική περιγραφή του endpoint, τη
μέθοδο που χρησιμοποιήθηκε, την είσοδο/ κορμό του αιτήματος εάν υπάρχει και την αναμε-

νόμενη απάντηση του endpoint.τέλος, θα σταθούμε στην αρχιτεκτονική της λύσης, συμπε-
ριλαμβανομένων των στοιχείων, των αλληλεπιδράσεών τους και της γενικότερης χρήσης του

συστήματος με συγκεκριμένα σενάρια χρήσης.

11

Στο Κεφάλαιο 3, θα περιγράψουμε το πώς υλοποιήσαμε την πλατφόρμα σύμφωνα με τις προδια-

γραφές και την αρχιτεκτονική που περιγράφηκαν στο προηγούμενο κεφάλαιο. Πιο συγκεκριμένα

θα αναλύσουμε τη δομή του κάθε μέρους του συστήματος και θα εξηγήσουμε γιατί επιλέξα-

με τις συγκεκριμένες τεχνολογίες καθώς και πώς υλοποιήσαμε την λύση μας. Αυτά τα μέρη

περιλαμβάνουν:

• τα πρωτόκολλα επικοινωνίας (REST, MQTT)

• την ανάπτυξη των endpoints (Django, Django Rest Framework)

• την καταγραφή των endpoints (Swagger UI)

• τη βάση δεδομένων και την παραμετροποίηση της (PostgreSQL)

• το σύστημα καταγραφής γεγονώτων (Python Loggers)

• βασικές οδηγίες χρήσης του συστήματος

Στο Κεφάλαιο 4, θα μιλήσουμε για το πως υλοποιήσαμε τον έλεγχο της πλατφόρμας και ποιες

μετρικές χρησιμοποιήσαμε προκειμένου να διασφαλίσουμε την ποιοτική του λειτουργία. Πιο

συγκεκριμένα, θα καθορίσουμε τη μεθοδολογία δοκιμών της πλατφόρμας μας σε ότι αφορά τη

λειτουργικότητα και την ποιοτική λειτουργία της πλατφόρμας. Στην συνέχεια, θα διεξάγουμε

τις δοκιμές και θα συλλέξουμε τα δεδομένα. Τέλος, θα παρουσιάσουμε τα αποτελέσματα των

δοκιμών και θα αναλύσουμε τα βασικά σημεία ενδιαφέροντος με έμφαση στους ποιοτικούς

περιορισμούς που έχουμε θέσει παραπάνω.

Στο Κεφάλαιο 5, θα ολοκληρώσουμε αυτήν τη διπλωματική εργασία κάνοντας μία ανασκόπησή

σχετικά με το τι θέλαμε να πετύχουμε, τι καταφέραμε και πως το καταφέραμε επισημαίνοντας

τα κύρια συμπεράσματα. Τέλος, θα μιλήσουμε για την ετοιμότητά της πλατφόρμας μας για την

παραγωγή και θα αναλύσουμε κάποια σημεία ενδιαφέροντος για μελλοντικές βελτιώσεις για την

cloud πλατφόρμα Battery2Life.

Λέξεις Κλειδιά— Διαχείρηση Μπαταριών, Ψηφιακό Διαβατήριο Μπαταρίας, Ανακύκλωση

Μπαταριών, API, Cloud, Django, Docker

12

13

Chapter 1

Introduction

14

1.1 Problem Statement

Battery utilization has become increasingly significant in today’s world. Batteries vary in
application, shape, and material composition with unique traits especially evident in larger
battery packs.

Currently, about 54 million electric vehicles (EVs) are in use globally[1]. In 2024, EV sales
reached 16 million units, with projections rising up to 20 million by 2025. Furthermore,
the electric truck market is predicted to surpass 1 million units within five years, up from
100,000 units three years ago. Typically, these battery packs carry a warranty ranging from
5 to 10 years, with an annual capacity decline of approximately 2.3%. Consequently, by
2030, around 5 million metric tons of battery modules will have reached the end of their
lifecycle, retaining 70-80% of their original capacity.

Coincidentally, the demand for motive batteries of any kind is set to reach around 50GWh
by 2025. This situation presents a substantial opportunity for reusing these modules in a
second life, albeit with challenges. Notably, the absence of standardized packaging hampers
disassembly efforts posing high costs, safety risks, and potential large scale cell defects.
Additionally, the lack of uniform battery state monitoring coupled with the inherent inability
of knowing how a battery has been used, poses the seemingly insurmountable challenge of
not knowing how a battery can behave in second-use applications. This inevitably will
make its use potentially inefficient and even dangerous. Finally, transferring the Battery
Management System (BMS) to a secondary application is seldom quite complicated, due to
varied BMS specifications.

In this part of the thesis diploma, we are going to attempt to give the reader a general
overview of the aims, goals and objectives of the Battery2Life (B2L) initiative. Then we
are going to do the same with our particular given task (which is the implementation of the
Battery2Life cloud solution) and try to explain how it interacts with all the other compo-
nents of B2L. Then we are going to give a brief and abstract synopsis of the architecture
of our solution with a more detailed description of the RESTful Application Programming
Interface (API) and the Data Management Schema (DMS). We are going to continue with
the testing of the platform and presentation of the results and key points of interest. Finally,
we are going to conclude by summarizing what we have achieved and referring future areas
of improvement.

15

1.2 The Battery2Life (B2L) Horizon Project

The Battery2Life project aims to impact the battery industry significantly by introducing
innovative solutions for the second-life of batteries, with a stronger focus on the station-
ary energy storage systems (ESS)[1]. The project will contribute to several key outcomes,
including the development of an open and adaptable cloud-based interface that enables ef-
fortless communication of battery data between 3rd parties and the BMSs, improved safety
and reliability of battery system by monitoring through embedded sensing and State-of-X
(SoX) estimation algorithms, and new system designs that facilitate the disassembly and
reconfiguration of batteries for second-life applications.

The Battery2Life project is designed to have a substantial impact in a variety of fields.
Notably, these advancements are expected to reduce the time and cost of repurposing EV
batteries for second-life use, extend the lifespan of batteries, and enhance their environmen-
tal and economic sustainability. The project also aims to support promoting circularity and
recycling in the battery industry, thereby reducing the carbon footprint of Europe.

1.3 The Battery2Life Cloud Platform

As mentioned above, the challenges that jeopardize the extension of battery use to a second
life are immense. One of the most important ones being the niche properties that current
BMS design present, tailored to the specific needs of the application in use. Therefore, within
the vision of perfect reuse of batteries, an absolutely and unequivocally vital step towards
the right direction is to design data-driven and application-agnostic Battery Management
Systems.

The emerging and long-lasting goal of Battery2Life is to provide the enablers that foster an
ecosystem of solutions which makes the extension of battery life attractive to 3rd parties.
Some components of these solutions that manage to achieve just that and need to be given
special attention, as they directly influence our system design and implementation, include
the embedded sensors that provide data from the battery system (BS), advanced State-
of-X algorithms that provide key analytics for monitoring and assessments, and a new
Electrochemical Impedance Spectroscopy (EIS) implementation (which is integrated straight
into the BMS) that provides some key data about the state of the BS.

We observe that all aspects of the project share a fundamental requirement: data. Conse-
quently, one of the key elements that will fast-track our vision is to work towards holistic
and flexible data formats and models. Moreover, the storage of the data produced by the
aforementioned processes and logistical management of all the levels of abstraction of a
battery ecosystem (from a single cell to a whole module) should become an intuitive and
seamless process. Finally, the importance of well-defined communication protocols for the
coherent interconnection of the systems that will implement the solutions described above
becomes apparent and is of vital importance.

The Battery2Life Cloud Platform comes to fill in that gap by delivering an open and adapt-
able solution to potential beneficiaries. Special focus is given on precisely defining frame-
works and their characteristics. Effective operation and communication with third party
systems is key. This, in turn, will enhance our ability to unambiguously get a better un-
derstanding of the elements that make up the model of our system and precisely pinpoint
areas of improvement that further help the monitoring and analytics of these systems.

Now we will offer an overview of the way that our application will satisfy these requirements.
Firstly, and most importantly, by taking into account the existing battery passport models.
our app will formulate a well-defined yet flexible data model. Secondly, our system will
provide a User Interface (UI) for the bookkeeping of the battery systems. Thirdly, our

16

system will provide a RESTful API with several endpoints to be used by algorithms for the
analytics of the system as well as endpoints for the retrieval of data of EIS experiments and
real time measurements. Lastly, the system will provide a publish-subscribe communication
functionality for the insertion of data to the Data Management System (implements the
DMS).

For the scope of this diploma thesis, we will focus on the implementation of the backend
aspect of the system for displaying and updating information to third-party users. Next, we
will develop the backend system for storing data to a DMS of our fabrication. These data will
come as a result of EIS experiments and live timing measurement of system characteristics.
Additionally, we will ensure the implementation of user management, authorization, and
authentication functionalities that will be utilized by the User Interface (UI). Finally, all of
these systems will be implemented, and the appropriate tools will be selected according to
the specifications and requirements set by the project’s earlier work packages.

17

18

Chapter 2

System Model

In this chapter, we are going to get into the specifics of the data management system where
we present the schema of the database as well as the rationale behind it. Then we are
going to continue with the demonstration of the endpoints structure including the expected
behavior and examples. We are going to finish by providing a high-level overview of the
architecture of our system and its components linking it with the use cases for our cloud
platform.

19

2.1 Data Management System

2.1.1 Digital Battery Passport

The Digital Battery Passport is defined as an electronic record of an individual battery [2]
(Article 77) and essentially acts as a digital identity. The European Union introduced the
concept of the Digital Battery Passport as part of its new Batteries Regulation, which was
adopted in July 2023[3]. This regulation mandates that, starting from February 18, 2027,
all light means of transport (LMT) batteries, industrial batteries with a capacity greater
than 2kWh, and electric vehicle batteries placed on the EU market must have an electronic
record known as a “battery passport”. Therefore, the need to accurately define the final
blueprint of the DBP becomes of vital importance and is a work in progress.

The Battery Pass Consortium(BPC)1 is actively working on developing the necessary frame-
works and technical standards for the implementation of the battery passport. The BPC
passport content guidance provides us with a wealth of useful information for the design of
the data schema. In particular, the data can be divided into static and dynamic categories[4],
reflecting how frequently they are updated. Static data are updated infrequently, while dy-
namic data are updated more regularly. In addition, essential attributes such as battery
and manufacturer information, compliance and carbon footprint, battery composition, per-
formance, and durability are systematically detailed and utilized in our data model.

The battery passport is designed to enhance transparency and sustainability throughout
the battery value chain. It will document a battery’s entire lifecycle—from raw material
extraction and production to use, reuse, and recycling—by recording data such as carbon
footprint, material composition, information pertinent to recycling/ repurposing and more.
This directive was introduced in order to enhance the sustainability, traceability and ac-
countability in the battery sector.

The description of the DBP though doesn’t come without its restrictions and challenges.
As described in the DBP value assessment[5] several setbacks and obstacles could include:

• The complexity and scope of the data leads to difficulties in collecting, validating and
managing large amounts of data

• The integration of the DBP into existing systems will be a tough challenge due to the
variety in battery management systems

• Coordinating the various stakeholders involved, given the diverse roles and responsi-
bilities they hold across the battery value chain

• The additional cost and resource allocation that are required for its implementation
• The intricate nature of data systems needed to handle the extensive data volume,
while meeting all specifications

Additionally, the standardized data model for the battery passport[6] offers valuable insights
for the structure of our model. Specifically, it outlines a tree structure of nodes consisting of
battery attributes, manufacturing information, usage attributes, and environmental impact
attributes. Furthermore, it includes part nodes that provide detailed insights into the various
components of a battery. The key takeaways of this model are, the modularity and flexibility
that the abstraction of nodes imparts as well as some basic attributes our model could exploit
regarding the use and performance.

The precise framework and technical details of the DBP are still under development. The

1The Battery Pass Consortium is a collaborative effort involving multiple stakeholders, including compa-
nies like BMW, AUDI, and Umicore. It is co-funded by the German Federal Ministry for Economic Affairs
and Climate Action

20

Battery Pass Consortium, as well as several 3rd party research, are working on technical
specifications and testing systems, which are anticipated to be finalized by the end of 2025 to
ensure readiness for implementation in 2027. The aims and objectives of the current effort
to describe the DBP though, are in line with the aims and objectives of the B2L project.
More specifically, there is a need to enhance reusability, serve the ever-increasing demands
for the motive power delivery and give consistent, standardized and modular frameworks
for the monitoring and assessment of second life battery systems. The DBP provides well-
organized, crucial information to stakeholders in the battery value chain to support these
objectives. As a result, the assimilation of the DBP to our project (even at its early stage)
by utilizing it to define data formats that are as uniform and meaningful according to the
use cases and specifications of our cloud-platform (that have been extensively described in
section 2.3), is projected to have significant impact and will foster our goals to provide an
open and interoperable second life battery management system.

2.1.2 Database Design Logic

The goals of our data management system, as far as the data structure model is concerned,
is to provide a standardized framework of structured data that minimizes data volume, finds
the right balance of data granularity, facilitates easy and real time data retrieval (for all the
stakeholders of the value chain) and provides flexibility for future extensions.

On the other hand, the goals of our data management system as a whole is to render
communication with any kind of 3rd party system feasible and efficient, ensure the security
and access control of the data, streamline data integrity, control backup and failure recovery
protocols and ensure high percentage of service availability.

For all the reasons that are mentioned above the use of a Database Management System
(DBMS) is the most fitting solution. More on the specifics of it will be laid out in Chapter
3, where we describe the implementation of our solution. Following this, we introduce the
data model we developed based on the specified requirements mentioned above and provide
an explanation of our rationale behind the crucial data design decisions.

21

Data Model

The developed data model schema is represented by the relational diagram below. Marked
as ”PK” are the primary keys of each entity.

Figure 2.1: Database Entity-Relationship Diagram

22

Table logic

Now follows a short description and explanation of the design logic and functionality of each
table.

User:
A User table will be necessary in order to ensure user authentication. Having groups of users
with different privileges will help us give specific authorization to different parts of the data.
As a result, the system administrator will have exclusive authority over data monitoring
and modification rights, therefore maintaining data privacy and consistency.

Battery:
This is the highest level of abstraction of our power module. This table contains aggregate
information such as the weight, dimensions and capacity of the battery. Also, it provides
key values regarding its identification, material composition and manufacturing information
which are essential for the correct monitoring of the Battery System.

Module:
Then we have the model for the individual 2nd hand battery modules that comprise the
battery pack. In this model we identify a wide variety of attributes for the identification
and management of the component and then most attributes regarding its operation.

Cell:
This table focuses on the most fundamental level of abstraction for a functional battery:
the cell. Cells are the basic building blocks, which are grouped together to form modules,
and multiple modules are combined to create a complete battery. The model primarily
includes attributes that define the specifications of the cell, such as nominal energy and
volumetric energy density. Additionally, it incorporates attributes related to the physical
dimensions of the cell and operational characteristics, such as operating voltage.

23

In our work we are following a modular approach, as suggested in the Standardized Data
Model for the Battery Passport [6], we will try to make separate tables that contain all the
attributes that are common from the previous relationships.

Manufacturer:
To enhance the recycling and traceback processes, a dedicated manufacturer table was cre-
ated to store essential information. The manufacturer table is optional and can be utilized
by the model’s Battery, Module and Cell.

Chemical:
This table contains information for the chemicals used by the battery module as a whole
and contains attributes like information about hazardous substances, type of chemical and
extinguishing agent.

SafetyFeature:
The Battery relationship leverages this connection to store critical safety insights specific to
each battery pack.

Material:
This relationship is also leveraged by the battery model to provide users with a com-
prehensive overview of the materials used in their batteries, including details about their
state—such as whether they are recycled or pose any potential hazards2.

Our data management system also accommodates the storage and retrieval of information
generated through experiments and live measurements. This includes enabling the seamless
insertion of experimental data and ensuring efficient access for analysis and further use.

Measurement:
This model defines a structure for the insertion of real time data from a battery cell like
voltage, temperature and state of charge.

EIS:
This model defines a data structure to insert Equivalent Impedance Spectroscopy (EIS) data
into the system. Attributes include status, frequency, amplitude, temperature and others.

The exact attributes for each table were selected from the technical specification for the EU
battery passport[7] where more information regarding the description of the fields can be
found.

2These hazards include environmental contamination and human poisoning

24

2.2 REST API Endpoint Structure

Our Application Programming Interface(API) is designed to serve as an interoperable plat-
form for managing and analyzing Battery Management System (BMS) data. It is struc-
tured into two core functional categories: Analytics Endpoints and Battery Management
Endpoints.

The Analytics Endpoints are responsible for retrieving real-time data and experimental re-
sults, as well as storing this information in the database for further analysis. The structure
of those endpoints, is illustrated by a specification document we received about the operation
of the onboard BS Wi-Fi modules [8]. On the other hand, the Battery Management End-
points focus on logging and managing operational data, ensuring all relevant information is
captured in alignment with the Data Model outlined in the previous section.

In our system, user authentication/authorization is required to access the API resources at
all times. So, an authentication mechanism and an inclusion of the produced authentication
token is demanded to grant access rights to the API. All the objects in the examples shown
below conform to the data model design.

In the following sections, we will provide a detailed description of each endpoint, including
its purpose, input parameters/body, output and expected behavior with example request-
s/responses.

25

2.2.1 Analytics

EIS
API Endpoint

GET /api/eis/

Description: Retrieves all the available information about the requested model.
Path Parameters:

• No parameters required

Response: Returns an array of objects for the required resource, with HTTP
status code 200 (OK). If no objects are found it returns an empty array, also with
HTTP status code 200 (OK).

Example Request:

HEADERS

GET /api/eis/ HTTP/1.1

Host: https://dev-battery2life.iccs.gr/

Authorization: Bearer <token>

Content-Type: application/json

Example Response:

HEADERS:

allow: GET,POST,HEAD,OPTIONS

connection: keep-alive

content-length: Integer

content-type: application/json

cross-origin-opener-policy: same-origin

date: Date

referrer-policy: same-origin

server: nginx/1.18.0 (Ubuntu)

vary: Accept,origin

x-content-type-options: nosniff

x-frame-options: DENY

1 [

2 resource_object1,

3 resource_object2,

4 ... ,

5 resource_objectN

6]

Possible Errors:

• 401 — Unauthorized: Authentication required

• 403 — Forbidden: Insufficient permissions

• 404 — Not Found: Resource not found

• 500 — Internal Server Error: A generic server error occured

• 503 — Service Unavailable: The server is temporarily unable to handle the
request (e.g., due to maintenance or overload)

26

API Endpoint
POST /api/eis/

Description: Creates a new database entry for the required resource according the
values of the body of the request.
Path Parameters:

• No parameters required

Response: Returns an object with HTTP status code 201 (Created)

Example Request:

HEADERS:

POST /api/eis/ HTTP/1.1

Host: https://dev-battery2life.iccs.gr/

Accept: application/json, text/html

Authorization: Bearer {token}

1 {

2 "status": "success",

3 "event_id": "207_1",

4 "cell_id": 1,

5 "frequency": 25.11886432,

6 "amplitude": 0.00033255133178403194,

7 "phase": 0.085914587975807,

8 "current_offset": 2,

9 "v_start": 3.5,

10 "v_end": 3.5,

11 "temperature": 25

12 }

Example Response:

HEADERS:

allow: GET,POST,HEAD,OPTIONS

connection: keep-alive

content-length: 149552

content-type: application/json

cross-origin-opener-policy: same-origin

date: Fri,21 Feb 2025 11:07:01 GMT

referrer-policy: same-origin

server: nginx/1.18.0 (Ubuntu)

vary: Accept,origin

x-content-type-options: nosniff

x-frame-options: DENY

STATUS CODE:

201

1 {

2 "id": 1001,

3 "status": "success",

4 "event_id": "207_1",

5 "frequency": 25.11886432,

6 "amplitude": 0.00033255133178403194,

27

API Endpoint
7 "phase": 0.085914587975807,

8 "current_offset": 2,

9 "v_start": 3.5,

10 "v_end": 3.5,

11 "temperature": 25,

12 "added_at": "2025-02-26T07:48:08.704086Z",

13 "cell_id": 1

14 }

Possible Errors:

• 400 — Bad Request: Request structure is wrong (e.g. invalid JSON structure)

• 401 — Unauthorized: Authentication required

• 403 — Forbidden: Insufficient permissions

• 404 — Not Found: Resource not found

• 500 — Internal Server Error: A generic server error occured

• 503 — Service Unavailable: The server is temporarily unable to handle the
request (e.g., due to maintenance or overload)

GET /api/eis/{id}/
Description: Retrieves a specifc object from the requested resource.
Path Parameters:

• id (required:Integer) – Unique identifier for the selected data registration

Response: Returns the requested resource object, with HTTP status code 200 (OK)

Example Request:

HEADERS

GET /api/eis/{id}/ HTTP/1.1

Host: https://dev-battery2life.iccs.gr/

Accept: application/json, text/html

Authorization: Bearer {token}

Example Response:

HEADERS

allow: GET,PUT,PATCH,DELETE,HEAD,OPTIONS

connection: keep-alive

content-length: Integer

content-type: application/json

cross-origin-opener-policy: same-origin

date: Date

referrer-policy: same-origin

server: nginx/1.18.0 (Ubuntu)

vary: Accept,origin

x-content-type-options: nosniff

x-frame-options: DENY

28

API Endpoint
1 {

2 "field1": "value1",

3 "field2": "value2",

4 ...

5 "fieldN": "valueN",

6 }

Possible Errors:

• 401 — Unauthorized: Authentication required

• 403 — Forbidden: Insufficient permissions

• 404 — Not Found: Resource not found

• 500 — Internal Server Error: A generic server error occured

• 503 — Service Unavailable: The server is temporarily unable to handle the
request (e.g., due to maintenance or overload)

PUT /api/eis/{id}/
Description: Replaces the required database entry, with specific id, with the infor-
mation provided by the body JSON object. Doesn’t replace the optional ommited
fields but instead replaces the values that sees that has changed.
Path Parameters:

• id (required:Integer) – Unique identifier for the selected data registration

Response: Returns the request resource changed object that is saved to the
database, with HTTP status code 200 (OK) or 204 (No Content).

Example Request:

HEADERS

PUT /api/eis/1001/ HTTP/1.1

Host: https://dev-battery2life.iccs.gr/

Accept: application/json, text/html

Authorization: Bearer {token}

1 {

2 "cell_id": 1,

3 "status": "fail",

4 "event_id": "207223_1",

5 "frequency": 0,

6 "amplitude": 0,

7 "phase": 0,

8 "current_offset": 0,

9 "v_start": 0,

10 "v_end": 0,

11 "temperature": 0

12 }

Example Response:

HEADERS

access-control-allow-origin: *

allow: GET,PUT,PATCH,DELETE,HEAD,OPTIONS

29

API Endpoint
connection: keep-alive

content-length: 1000

content-type: application/json

cross-origin-opener-policy: same-origin

date: date

referrer-policy: same-origin

server: nginx/1.18.0 (Ubuntu)

vary: Accept,origin

x-content-type-options: nosniff

x-frame-options: DENY

1 {

2 "id": 1001,

3 "status": "fail",

4 "event_id": "207223_1",

5 "frequency": 0,

6 "amplitude": 0,

7 "phase": 0,

8 "current_offset": 0,

9 "v_start": 0,

10 "v_end": 0,

11 "temperature": 0,

12 "added_at": "2025-02-26T07:48:08.704086Z",

13 "cell_id": 1

14 }

Possible Errors:

• 400 — Bad Request: Request structure is wrong (e.g. invalid JSON structure)

• 401 — Unauthorized: Authentication required

• 403 — Forbidden: Insufficient permissions

• 404 — Not Found: Resource not found

• 500 — Internal Server Error: A generic server error occured

• 503 — Service Unavailable: The server is temporarily unable to handle the
request (e.g., due to maintenance or overload)

PATCH /api/eis/{id}/
Description: Provides some fields to be changed for a specific database entry. The
rest of the fields of this entry are not changed in any way. Request body contains
only the fields that we want to change and no more.
Path Parameters:

• id (required:Integer) – Unique identifier for the selected data registration

Response: Returns the requested changed object that is saved to the database,
with HTTP status code 200 (OK) or 204 (No Content).

Example Request:

HEADERS

PATCH /api/eis/1001/ HTTP/1.1

Host: https://dev-battery2life.iccs.gr/

Accept: application/json, text/html

Authorization: Bearer {token}

30

API Endpoint
1 {

2 "cell_id": 1,

3 "status": "success",

4 "event_id": "207_1",

5 "v_end": 3.5,

6 "temperature": 25

7 }

Example Response:

HEADERS

access-control-allow-origin: *

allow: GET,PUT,PATCH,DELETE,HEAD,OPTIONS

connection: keep-alive

content-length: 1000

content-type: application/json

cross-origin-opener-policy: same-origin

date: date

referrer-policy: same-origin

server: nginx/1.18.0 (Ubuntu)

vary: Accept,origin

x-content-type-options: nosniff

x-frame-options: DENY

1 {

2 "id": 1001,

3 "status": "success",

4 "event_id": "207_1",

5 "frequency": 0,

6 "amplitude": 0,

7 "phase": 0,

8 "current_offset": 0,

9 "v_start": 0,

10 "v_end": 3.5,

11 "temperature": 25,

12 "added_at": "2025-02-26T07:48:08.704086Z",

13 "cell_id": 1

14 }

Possible Errors:

• 400 — Bad Request: Request structure is wrong (e.g. invalid JSON structure)

• 401 — Unauthorized: Authentication required

• 403 — Forbidden: Insufficient permissions

• 404 — Not Found: Resource not found

• 500 — Internal Server Error: A generic server error occured

• 503 — Service Unavailable: The server is temporarily unable to handle the
request (e.g., due to maintenance or overload)

DELETE /api/eis/{id}/
Description: Deletes the database entry with the id given by the parameter id in
the url.
Path Parameters:

31

API Endpoint
• id (required:Integer) – Unique identifier for the selected data registration

Response: Returns HTTP status code 204 (No Content) if successful.

Example Request:

HEADERS

DELETE /api/eis/1001/ HTTP/1.1

Host: https://dev-battery2life.iccs.gr/

Accept: application/json, text/html

Authorization: Bearer {token}

Example Response:

HEADERS

access-control-allow-origin: *

allow: GET,PUT,PATCH,DELETE,HEAD,OPTIONS

connection: keep-alive

content-length: 0

cross-origin-opener-policy: same-origin

date: Wed,26 Feb 2025 07:59:08 GMT

referrer-policy: same-origin

server: nginx/1.18.0 (Ubuntu)

vary: Accept,origin

x-content-type-options: nosniff

x-frame-options: DENY

Possible Errors:

• 401 — Unauthorized: Authentication required

• 403 — Forbidden: Insufficient permissions

• 404 — Not Found: Resource not found

• 500 — Internal Server Error: A generic server error occured

• 503 — Service Unavailable: The server is temporarily unable to handle the
request (e.g., due to maintenance or overload)

32

Measurements
API Endpoint

GET /api/measurements/

Description: Retrieves all of the available information about the requested model.
Path Parameters:

• No parameters required

Response: Returns an array of objects for the required resource, with HTTP
status code 200 (OK). If no objects are found it returns an empty array, also with
HTTP status code 200 (OK).

Example Request:

HEADERS

GET /api/measurements/ HTTP/1.1

Host: https://dev-battery2life.iccs.gr

Authorization: Bearer {token}

Example Response:

HEADERS

allow: GET,POST,HEAD,OPTIONS

connection: keep-alive

content-length: Integer

content-type: application/json

cross-origin-opener-policy: same-origin

date: Date

referrer-policy: same-origin

server: nginx/1.18.0 (Ubuntu)

vary: Accept,origin

x-content-type-options: nosniff

x-frame-options: DENY

1 [

2 resource_object1,

3 resource_object2,

4 ... ,

5 resource_objectN

6]

Possible Errors:

• 401 — Unauthorized: Authentication required

• 403 — Forbidden: Insufficient permissions

• 404 — Not Found: Resource not found

• 500 — Internal Server Error: A generic server error occured

• 503 — Service Unavailable: The server is temporarily unable to handle the
request (e.g., due to maintenance or overload)

POST /api/measurements/

Description: Creates a new database entry for the required resource according the
values of the body of the request.
Path Parameters:

33

API Endpoint
• No parameters required

Response: Returns an object with HTTP status code 201 (Created)

Example Request:

HEADERS

POST /api/measurements/ HTTP/1.1

Host: https://dev-battery2life.iccs.gr/

Accept: application/json, text/html

Authorization: Bearer {token}

1 {

2 "cell_ids": [1, 2, 3, 4],

3 "voltage": [3.934999943, 3.950999975,

3.816999912, 3.948999882],

4 "temperature": [18.5, 19.39999962,

17.29999924, 16.60000038],

5 "sot": [1, 0, 1, 1],

6 "phase": [45, 21, 211, 0],

7 "current": [0, 0, 0, 0],

8 "soc": [69.66569519, 70.92323303,

59.74949265, 70.6905365]

9 }

Example Response:

HEADERS

allow: GET,POST,HEAD,OPTIONS

connection: keep-alive

content-length: Integer

content-type: application/json

cross-origin-opener-policy: same-origin

date: Date

referrer-policy: same-origin

server: nginx/1.18.0 (Ubuntu)

vary: Accept,origin

x-content-type-options: nosniff

x-frame-options: DENY

STATUS CODE:

200

1 {

2 "cell_ids": [

3 1,

4 2,

5 3,

6 4

7],

8 "voltage": [

9 3.934999943,

10 3.950999975,

11 3.816999912,

34

API Endpoint
12 3.948999882

13],

14 "temperature": [

15 18.5,

16 19.39999962,

17 17.29999924,

18 16.60000038

19],

20 "current": [

21 0,

22 0,

23 0,

24 0

25],

26 "sot": [

27 1,

28 0,

29 1,

30 1

31],

32 "phase": [

33 45,

34 21,

35 211,

36 0

37],

38 "soc": [

39 69.66569519,

40 70.92323303,

41 59.74949265,

42 70.6905365

43]

44 }

Possible Errors:

• 400 — Bad Request: Request structure is wrong (e.g. invalid JSON structure)

• 401 — Unauthorized: Authentication required

• 403 — Forbidden: Insufficient permissions

• 404 — Not Found: Resource not found

• 500 — Internal Server Error: A generic server error occured

• 503 — Service Unavailable: The server is temporarily unable to handle the
request (e.g., due to maintenance or overload)

GET /api/measurements/{id}/
Description: Retrieves a specifc object from the requested resource.
Path Parameters:

• id (required:Integer) – Unique identifier for the selected data registration

Response: Returns the requested resource object, with HTTP status code 200 (OK)

Example Request:

HEADERS

GET /api/measurements/{id}/ HTTP/1.1

35

API Endpoint
Host: https://dev-battery2life.iccs.gr/

Accept: application/json, text/html

Authorization: Bearer {token}

Example Response:

HEADERS

allow: GET,PUT,PATCH,DELETE,HEAD,OPTIONS

connection: keep-alive

content-length: Integer

content-type: application/json

cross-origin-opener-policy: same-origin

date: Date

referrer-policy: same-origin

server: nginx/1.18.0 (Ubuntu)

vary: Accept,origin

x-content-type-options: nosniff

x-frame-options: DENY

1 {

2 "field1": "value1",

3 "field2": "value2",

4 ...

5 "fieldN": "valueN",

6 }

Possible Errors:

• 401 — Unauthorized: Authentication required

• 403 — Forbidden: Insufficient permissions

• 404 — Not Found: Resource not found

• 500 — Internal Server Error: A generic server error occured

• 503 — Service Unavailable: The server is temporarily unable to handle the
request (e.g., due to maintenance or overload)

PUT /api/measurements/{id}/
Description: Replaces the required database entry, with specific id, with the infor-
mation provided by the body JSON object. Doesn’t replace the optional ommited
fields but instead replaces the values that sees that has changed.
Path Parameters:

• id (required:Integer) – Unique identifier for the selected data registration

Response: Returns the request resource changed object that is saved to the
database, with HTTP status code 200 (OK) or 204 (No Content).

Example Request:

HEADERS

PUT /api/measurements/1001/ HTTP/1.1

Host: https://dev-battery2life.iccs.gr/

Accept: application/json, text/html

Authorization: Bearer {token}

36

API Endpoint
1 {

2 "voltage": 0,

3 "temperature": 0,

4 "current": 0,

5 "sot": 0,

6 "phase": 0,

7 "soc": 0,

8 "cell_id": 42

9 }

Example Response:

HEADERS

access-control-allow-origin: *

allow: GET,PUT,PATCH,DELETE,HEAD,OPTIONS

connection: keep-alive

content-length: integer

content-type: application/json

cross-origin-opener-policy: same-origin

date: date

referrer-policy: same-origin

server: nginx/1.18.0 (Ubuntu)

vary: Accept,origin

x-content-type-options: nosniff

x-frame-options: DENY

STATUS CODE:

200

1 {

2 "id": 1001,

3 "voltage": 0,

4 "temperature": 0,

5 "current": 0,

6 "sot": 0,

7 "phase": 0,

8 "soc": 0,

9 "added_at": "2025-02-21T11:16:37.051142Z",

10 "cell_id": 42

11 }

Possible Errors:

• 400 — Bad Request: Request structure is wrong (e.g. invalid JSON structure)

• 401 — Unauthorized: Authentication required

• 403 — Forbidden: Insufficient permissions

• 404 — Not Found: Resource not found

• 500 — Internal Server Error: A generic server error occured

• 503 — Service Unavailable: The server is temporarily unable to handle the
request (e.g., due to maintenance or overload)

PATCH /api/measurements/{id}/

37

API Endpoint
Description: Provides some fields to be changed for a specific database entry. The
rest of the fields of this entry are not changed in any way. Request body contains
only the fields that we want to change and no more.
Path Parameters:

• id (required:Integer) – Unique identifier for the selected data registration

Response: Returns the requested changed object that is saved to the database,
with HTTP status code 200 (OK) or 204 (No Content).

Example Request:

HEADERS

PATCH /api/measurements/1001/ HTTP/1.1

Host: https://dev-battery2life.iccs.gr/

Accept: application/json, text/html

Authorization: Bearer {token}

STATUS CODE:

200

1 {

2 "cell_id": 3

3 }

Example Response:

HEADERS

access-control-allow-origin: *

allow: GET,PUT,PATCH,DELETE,HEAD,OPTIONS

connection: keep-alive

content-length: integer

content-type: application/json

cross-origin-opener-policy: same-origin

date: date

referrer-policy: same-origin

server: nginx/1.18.0 (Ubuntu)

vary: Accept,origin

x-content-type-options: nosniff

x-frame-options: DENY

1 {

2 "id": 1001,

3 "voltage": 0,

4 "temperature": 0,

5 "current": 0,

6 "sot": 0,

7 "phase": 0,

8 "soc": 0,

9 "added_at": "2025-02-21T11:16:37.051142Z",

10 "cell_id": 3

11 }

Possible Errors:

38

API Endpoint
• 400 — Bad Request: Request structure is wrong (e.g. invalid JSON structure)

• 401 — Unauthorized: Authentication required

• 403 — Forbidden: Insufficient permissions

• 404 — Not Found: Resource not found

• 500 — Internal Server Error: A generic server error occured

• 503 — Service Unavailable: The server is temporarily unable to handle the
request (e.g., due to maintenance or overload)

DELETE /api/measurements/{id}/
Description: Deletes the database entry with the id given by the parameter id in
the url.
Path Parameters:

• id (required:Integer) – Unique identifier for the selected data registration

Response: Returns HTTP status code 204 (No Content) if successful.

Example Request:

HEADERS

DELETE /api/measurements/1001/ HTTP/1.1

Host: https://dev-battery2life.iccs.gr/

Accept: application/json, text/html

Authorization: Bearer {token}

Example Response:

HEADERS

access-control-allow-origin: *

allow: GET,PUT,PATCH,DELETE,HEAD,OPTIONS

connection: keep-alive

content-length: 0

cross-origin-opener-policy: same-origin

date: Date

referrer-policy: same-origin

server: nginx/1.18.0 (Ubuntu)

vary: Accept,origin

x-content-type-options: nosniff

x-frame-options: DENY

STATUS CODE:

204

Possible Errors:

• 401 — Unauthorized: Authentication required

• 403 — Forbidden: Insufficient permissions

• 404 — Not Found: Resource not found

• 500 — Internal Server Error: A generic server error occured

• 503 — Service Unavailable: The server is temporarily unable to handle the
request (e.g., due to maintenance or overload)

39

2.2.2 Battery Management

Battery

API Endpoint
GET /api/batteries/

Description: Retrieves all of the available information about the requested model.
Path Parameters:

• No parameters required

Response: Returns an array of objects for the required resource, with HTTP
status code 200 (OK). If no objects are found it returns an empty array, also with
HTTP status code 200 (OK).

Example Request:

HEADERS

GET /api/batteries/ HTTP/1.1

Host: https://dev-battery2life.iccs.gr

Authorization: Bearer {token}

Example Response:

HEADERS

access-control-allow-origin: *

allow: GET,PUT,PATCH,DELETE,HEAD,OPTIONS

connection: keep-alive

content-length: integer

content-type: application/json

cross-origin-opener-policy: same-origin

date: date

referrer-policy: same-origin

server: nginx/1.18.0 (Ubuntu)

vary: Accept,origin

x-content-type-options: nosniff

x-frame-options: DENY

1 [

2 resource_object1,

3 resource_object2,

4 ... ,

5 resource_objectN

6]

Possible Errors:

• 401 — Unauthorized: Authentication required

• 403 — Forbidden: Insufficient permissions

• 404 — Not Found: Resource not found

• 500 — Internal Server Error: A generic server error occured

• 503 — Service Unavailable: The server is temporarily unable to handle the
request (e.g., due to maintenance or overload)

40

API Endpoint
POST /api/batteries/

Description: Creates a new database entry for the required resource according the
values of the body of the request.
Path Parameters:

• No parameters required

Response: Returns an object with HTTP status code 201 (Created)

Example Request:

HEADERS

POST /api/batteries/ HTTP/1.1

Host: https://dev-battery2life.iccs.gr/

Accept: application/json, text/html

Authorization: Bearer {token}

1 {

2 "field1": "value1",

3 "field2": "value1",

4 ...

5 "fieldN": "value1",

6 }

Example Response:

HEADERS

access-control-allow-origin: *

allow: GET,PUT,PATCH,DELETE,HEAD,OPTIONS

connection: keep-alive

content-length: integer

content-type: application/json

cross-origin-opener-policy: same-origin

date: date

referrer-policy: same-origin

server: nginx/1.18.0 (Ubuntu)

vary: Accept,origin

x-content-type-options: nosniff

x-frame-options: DENY

1 {

2 "field1": "value1",

3 "field2": "value1",

4 ...

5 "fieldN": "value1",

6 }

Possible Errors:

• 400 — Bad Request: Request structure is wrong (e.g. invalid JSON structure)

• 401 — Unauthorized: Authentication required

• 403 — Forbidden: Insufficient permissions

• 404 — Not Found: Resource not found

41

API Endpoint
• 500 — Internal Server Error: A generic server error occured

• 503 — Service Unavailable: The server is temporarily unable to handle the
request (e.g., due to maintenance or overload)

GET /api/batteries/{id}/
Description: Retrieves a specifc object from the requested resource.
Path Parameters:

• id (required:Integer) – Unique identifier for the selected data registration

Response: Returns the requested resource object, with HTTP status code 200 (OK)

Example Request:

HEADERS

GET /api/batteries/{id}/ HTTP/1.1

Host: https://dev-battery2life.iccs.gr/

Accept: application/json, text/html

Authorization: Bearer {token}

Example Response:

HEADERS

allow: GET,PUT,PATCH,DELETE,HEAD,OPTIONS

connection: keep-alive

content-length: Integer

content-type: application/json

cross-origin-opener-policy: same-origin

date: Date

referrer-policy: same-origin

server: nginx/1.18.0 (Ubuntu)

vary: Accept,origin

x-content-type-options: nosniff

x-frame-options: DENY

1 {

2 "field1": "value1",

3 "field2": "value2",

4 ...

5 "fieldN": "valueN",

6 }

Possible Errors:

• 401 — Unauthorized: Authentication required

• 403 — Forbidden: Insufficient permissions

• 404 — Not Found: Resource not found

• 500 — Internal Server Error: A generic server error occured

• 503 — Service Unavailable: The server is temporarily unable to handle the
request (e.g., due to maintenance or overload)

42

API Endpoint
PUT /api/batteries/{id}/

Description: Replaces the required database entry, with specific id, with the infor-
mation provided by the body JSON object. Doesn’t replace the optional ommited
fields but instead replaces the values that sees that has changed.
Path Parameters:

• id (required:Integer) – Unique identifier for the selected data registration

Response: Returns the request resource changed object that is saved to the
database, with HTTP status code 200 (OK) or 204 (No Content).

Example Request:

HEADERS

PUT /api/batteries/{id}/ HTTP/1.1

Host: https://dev-battery2life.iccs.gr/

Accept: application/json, text/html

Authorization: Bearer {token}

1 {

2 "field1": "value1",

3 "field2": "value1",

4 ...

5 "fieldN": "value1",

6 }

Example Response:

HEADERS

access-control-allow-origin: *

allow: GET,PUT,PATCH,DELETE,HEAD,OPTIONS

connection: keep-alive

content-length: integer

content-type: application/json

cross-origin-opener-policy: same-origin

date: date

referrer-policy: same-origin

server: nginx/1.18.0 (Ubuntu)

vary: Accept,origin

x-content-type-options: nosniff

x-frame-options: DENY

1 {

2 "field1": "value1",

3 "field2": "value1",

4 ...

5 "fieldN": "value1",

6 }

Possible Errors:

• 400 — Bad Request: Request structure is wrong (e.g. invalid JSON structure)

• 401 — Unauthorized: Authentication required

43

API Endpoint
• 403 — Forbidden: Insufficient permissions

• 404 — Not Found: Resource not found

• 500 — Internal Server Error: A generic server error occured

• 503 — Service Unavailable: The server is temporarily unable to handle the
request (e.g., due to maintenance or overload)

PATCH /api/batteries/{id}/
Description: Provides some fields to be changed for a specific database entry. The
rest of the fields of this entry are not changed in any way. Request body contains
only the fields that we want to change and no more.
Path Parameters:

• id (required:Integer) – Unique identifier for the selected data registration

Response: Returns the requested changed object that is saved to the database,
with HTTP status code 200 (OK) or 204 (No Content).

Example Request:

HEADERS

PATCH /api/batteries/{id}/ HTTP/1.1

Host: https://dev-battery2life.iccs.gr/

Accept: application/json, text/html

Authorization: Bearer {token}

1 {

2 "selected_field1": "value1",

3 "selected_field2": "value1",

4 ...

5 "selected_fieldN": "value1",

6 }

Example Response:

HEADERS

access-control-allow-origin: *

allow: GET,PUT,PATCH,DELETE,HEAD,OPTIONS

connection: keep-alive

content-length: integer

content-type: application/json

cross-origin-opener-policy: same-origin

date: date

referrer-policy: same-origin

server: nginx/1.18.0 (Ubuntu)

vary: Accept,origin

x-content-type-options: nosniff

x-frame-options: DENY

1 {

2 "field1": "value1",

3 "field2": "value1",

4 ...

5 "fieldN": "value1",

6 }

44

API Endpoint
Possible Errors:

• 400 — Bad Request: Request structure is wrong (e.g. invalid JSON structure)

• 401 — Unauthorized: Authentication required

• 403 — Forbidden: Insufficient permissions

• 404 — Not Found: Resource not found

• 500 — Internal Server Error: A generic server error occured

• 503 — Service Unavailable: The server is temporarily unable to handle the
request (e.g., due to maintenance or overload)

DELETE /api/batteries/{id}/
Description: Deletes the database entry with the id given by the parameter id in
the url.
Path Parameters:

• id (required:Integer) – Unique identifier for the selected data registration

Response: Returns HTTP status code 204 (No Content) if successful.

Example Request:

HEADERS

DELETE /api/batteries/{id}/ HTTP/1.1

Host: https://dev-battery2life.iccs.gr/

Accept: application/json, text/html

Authorization: Bearer {token}

Example Response:

HEADERS

access-control-allow-origin: *

allow: GET,PUT,PATCH,DELETE,HEAD,OPTIONS

connection: keep-alive

content-length: 0

cross-origin-opener-policy: same-origin

date: Date

referrer-policy: same-origin

server: nginx/1.18.0 (Ubuntu)

vary: Accept,origin

x-content-type-options: nosniff

x-frame-options: DENY

Possible Errors:

• 401 — Unauthorized: Authentication required

• 403 — Forbidden: Insufficient permissions

• 404 — Not Found: Resource not found

• 500 — Internal Server Error: A generic server error occured

• 503 — Service Unavailable: The server is temporarily unable to handle the
request (e.g., due to maintenance or overload)

45

Module
API Endpoint

GET /api/modules/

Description: Retrieves all of the available information about the requested model.
Path Parameters:

• No parameters required

Response: Returns an array of objects for the required resource, with HTTP
status code 200 (OK). If no objects are found it returns an empty array, also with
HTTP status code 200 (OK).

Example Request:

HEADERS

GET /api/modules/ HTTP/1.1

Host: https://dev-battery2life.iccs.gr

Authorization: Bearer {token}

Example Response:

1 [

2 resource_object1,

3 resource_object2,

4 ... ,

5 resource_objectN

6]

Possible Errors:

• 401 — Unauthorized: Authentication required

• 403 — Forbidden: Insufficient permissions

• 404 — Not Found: Resource not found

• 500 — Internal Server Error: A generic server error occured

• 503 — Service Unavailable: The server is temporarily unable to handle the
request (e.g., due to maintenance or overload)

POST /api/modules/

Description: Creates a new database entry for the required resource according the
values of the body of the request.
Path Parameters:

• No parameters required

Response: Returns an object with HTTP status code 201 (Created)

Example Request:

HEADERS

POST /api/modules/ HTTP/1.1

Host: https://dev-battery2life.iccs.gr/

Accept: application/json, text/html

Authorization: Bearer {token}

46

API Endpoint
1 {

2 "field1": "value1",

3 "field2": "value1",

4 ...

5 "fieldN": "value1",

6 }

Example Response:

1 {

2 "field1": "value1",

3 "field2": "value1",

4 ...

5 "fieldN": "value1",

6 }

Possible Errors:

• 400 — Bad Request: Request structure is wrong (e.g. invalid JSON structure)

• 401 — Unauthorized: Authentication required

• 403 — Forbidden: Insufficient permissions

• 404 — Not Found: Resource not found

• 500 — Internal Server Error: A generic server error occured

• 503 — Service Unavailable: The server is temporarily unable to handle the
request (e.g., due to maintenance or overload)

GET /api/modules/{id}/
Description: Retrieves a specifc object from the requested resource.
Path Parameters:

• id (required:Integer) – Unique identifier for the selected data registration

Response: Returns the requested resource object, with HTTP status code 200 (OK)

Example Request:

HEADERS

GET /api/modules/{id}/ HTTP/1.1

Host: https://dev-battery2life.iccs.gr/

Accept: application/json, text/html

Authorization: Bearer {token}

Example Response:

HEADERS

allow: GET,PUT,PATCH,DELETE,HEAD,OPTIONS

connection: keep-alive

content-length: Integer

content-type: application/json

cross-origin-opener-policy: same-origin

date: Date

referrer-policy: same-origin

server: nginx/1.18.0 (Ubuntu)

47

API Endpoint
vary: Accept,origin

x-content-type-options: nosniff

x-frame-options: DENY

1 {

2 "field1": "value1",

3 "field2": "value2",

4 ...

5 "fieldN": "valueN",

6 }

Possible Errors:

• 401 — Unauthorized: Authentication required

• 403 — Forbidden: Insufficient permissions

• 404 — Not Found: Resource not found

• 500 — Internal Server Error: A generic server error occured

• 503 — Service Unavailable: The server is temporarily unable to handle the
request (e.g., due to maintenance or overload)

PUT /api/modules/{id}/
Description: Replaces the required database entry, with specific id, with the infor-
mation provided by the body JSON object. Doesn’t replace the optional ommited
fields but instead replaces the values that sees that has changed.
Path Parameters:

• id (required:Integer) – Unique identifier for the selected data registration

Response: Returns the request resource changed object that is saved to the
database, with HTTP status code 200 (OK) or 204 (No Content).

Example Request:

HEADERS

PUT /api/modules/{id}/ HTTP/1.1

Host: https://dev-battery2life.iccs.gr/

Accept: application/json, text/html

Authorization: Bearer {token}

1 {

2 "field1": "value1",

3 "field2": "value1",

4 ...

5 "fieldN": "value1",

6 }

Example Response:

HEADERS

access-control-allow-origin: *

allow: GET,PUT,PATCH,DELETE,HEAD,OPTIONS

connection: keep-alive

48

API Endpoint
content-length: integer

content-type: application/json

cross-origin-opener-policy: same-origin

date: date

referrer-policy: same-origin

server: nginx/1.18.0 (Ubuntu)

vary: Accept,origin

x-content-type-options: nosniff

x-frame-options: DENY

1 {

2 "field1": "value1",

3 "field2": "value1",

4 ...

5 "fieldN": "value1",

6 }

Possible Errors:

• 400 — Bad Request: Request structure is wrong (e.g. invalid JSON structure)

• 401 — Unauthorized: Authentication required

• 403 — Forbidden: Insufficient permissions

• 404 — Not Found: Resource not found

• 500 — Internal Server Error: A generic server error occured

• 503 — Service Unavailable: The server is temporarily unable to handle the
request (e.g., due to maintenance or overload)

PATCH /api/modules/{id}/
Description: Provides some fields to be changed for a specific database entry. The
rest of the fields of this entry are not changed in any way. Request body contains
only the fields that we want to change and no more.
Path Parameters:

• id (required:Integer) – Unique identifier for the selected data registration

Response: Returns the requested changed object that is saved to the database,
with HTTP status code 200 (OK) or 204 (No Content).

Example Request:

HEADERS

PATCH /api/modules/{id}/ HTTP/1.1

Host: https://dev-battery2life.iccs.gr/

Accept: application/json, text/html

Authorization: Bearer {token}

1 {

2 "selected_field1": "value1",

3 "selected_field2": "value1",

4 ...

5 "selected_fieldN": "value1",

6 }

49

API Endpoint
Example Response:

HEADERS

access-control-allow-origin: *

allow: GET,PUT,PATCH,DELETE,HEAD,OPTIONS

connection: keep-alive

content-length: integer

content-type: application/json

cross-origin-opener-policy: same-origin

date: date

referrer-policy: same-origin

server: nginx/1.18.0 (Ubuntu)

vary: Accept,origin

x-content-type-options: nosniff

x-frame-options: DENY

1 {

2 "field1": "value1",

3 "field2": "value1",

4 ...

5 "fieldN": "value1",

6 }

Possible Errors:

• 400 — Bad Request: Request structure is wrong (e.g. invalid JSON structure)

• 401 — Unauthorized: Authentication required

• 403 — Forbidden: Insufficient permissions

• 404 — Not Found: Resource not found

• 500 — Internal Server Error: A generic server error occured

• 503 — Service Unavailable: The server is temporarily unable to handle the
request (e.g., due to maintenance or overload)

DELETE /api/modules/{id}/
Description: Deletes the database entry with the id given by the parameter id in
the url.
Path Parameters:

• id (required:Integer) – Unique identifier for the selected data registration

Response: Returns HTTP status code 204 (No Content) if successful.

Example Request:

HEADERS

DELETE /api/modules/{id}/ HTTP/1.1

Host: https://dev-battery2life.iccs.gr/

Accept: application/json, text/html

Authorization: Bearer {token}

Example Response:

50

API Endpoint
HEADERS

access-control-allow-origin: *

allow: GET,PUT,PATCH,DELETE,HEAD,OPTIONS

connection: keep-alive

content-length: 0

cross-origin-opener-policy: same-origin

date: Date

referrer-policy: same-origin

server: nginx/1.18.0 (Ubuntu)

vary: Accept,origin

x-content-type-options: nosniff

x-frame-options: DENY

Possible Errors:

• 401 — Unauthorized: Authentication required

• 403 — Forbidden: Insufficient permissions

• 404 — Not Found: Resource not found

• 500 — Internal Server Error: A generic server error occured

• 503 — Service Unavailable: The server is temporarily unable to handle the
request (e.g., due to maintenance or overload)

51

Cell
API Endpoint

GET /api/cells/

Description: Retrieves all of the available information about the requested model.
Path Parameters:

• No parameters required

Response: Returns an array of objects for the required resource, with HTTP
status code 200 (OK). If no objects are found it returns an empty array, also with
HTTP status code 200 (OK).

Example Request:

HEADERS

GET /api/cells/ HTTP/1.1

Host: https://dev-battery2life.iccs.gr

Authorization: Bearer {token}

Example Response:

1 [

2 resource_object1,

3 resource_object2,

4 ... ,

5 resource_objectN

6]

Possible Errors:

• 401 — Unauthorized: Authentication required

• 403 — Forbidden: Insufficient permissions

• 404 — Not Found: Resource not found

• 500 — Internal Server Error: A generic server error occured

• 503 — Service Unavailable: The server is temporarily unable to handle the
request (e.g., due to maintenance or overload)

POST /api/cells/

Description: Creates a new database entry for the required resource according the
values of the body of the request.
Path Parameters:

• No parameters required

Response: Returns an object with HTTP status code 201 (Created)

Example Request:

HEADERS

POST /api/cells/ HTTP/1.1

Host: https://dev-battery2life.iccs.gr/

Accept: application/json, text/html

Authorization: Bearer {token}

52

API Endpoint
1 {

2 "field1": "value1",

3 "field2": "value1",

4 ...

5 "fieldN": "value1",

6 }

Example Response:

1 {

2 "field1": "value1",

3 "field2": "value1",

4 ...

5 "fieldN": "value1",

6 }

Possible Errors:

• 400 — Bad Request: Request structure is wrong (e.g. invalid JSON structure)

• 401 — Unauthorized: Authentication required

• 403 — Forbidden: Insufficient permissions

• 404 — Not Found: Resource not found

• 500 — Internal Server Error: A generic server error occured

• 503 — Service Unavailable: The server is temporarily unable to handle the
request (e.g., due to maintenance or overload)

GET /api/cells/{id}/
Description: Retrieves a specifc object from the requested resource.
Path Parameters:

• id (required:Integer) – Unique identifier for the selected data registration

Response: Returns the requested resource object, with HTTP status code 200 (OK)

Example Request:

HEADERS

GET /api/cells/{id}/ HTTP/1.1

Host: https://dev-battery2life.iccs.gr/

Accept: application/json, text/html

Authorization: Bearer {token}

Example Response:

HEADERS

allow: GET,PUT,PATCH,DELETE,HEAD,OPTIONS

connection: keep-alive

content-length: Integer

content-type: application/json

cross-origin-opener-policy: same-origin

date: Date

referrer-policy: same-origin

server: nginx/1.18.0 (Ubuntu)

53

API Endpoint
vary: Accept,origin

x-content-type-options: nosniff

x-frame-options: DENY

1 {

2 "field1": "value1",

3 "field2": "value2",

4 ...

5 "fieldN": "valueN",

6 }

Possible Errors:

• 401 — Unauthorized: Authentication required

• 403 — Forbidden: Insufficient permissions

• 404 — Not Found: Resource not found

• 500 — Internal Server Error: A generic server error occured

• 503 — Service Unavailable: The server is temporarily unable to handle the
request (e.g., due to maintenance or overload)

PUT /api/cells/{id}/
Description: Replaces the required database entry, with specific id, with the infor-
mation provided by the body JSON object. Doesn’t replace the optional ommited
fields but instead replaces the values that sees that has changed.
Path Parameters:

• id (required:Integer) – Unique identifier for the selected data registration

Response: Returns the request resource changed object that is saved to the
database, with HTTP status code 200 (OK) or 204 (No Content).

Example Request:

HEADERS

PUT /api/cells/{id}/ HTTP/1.1

Host: https://dev-battery2life.iccs.gr/

Accept: application/json, text/html

Authorization: Bearer {token}

1 {

2 "field1": "value1",

3 "field2": "value1",

4 ...

5 "fieldN": "value1",

6 }

Example Response:

HEADERS

access-control-allow-origin: *

allow: GET,PUT,PATCH,DELETE,HEAD,OPTIONS

connection: keep-alive

54

API Endpoint
content-length: integer

content-type: application/json

cross-origin-opener-policy: same-origin

date: date

referrer-policy: same-origin

server: nginx/1.18.0 (Ubuntu)

vary: Accept,origin

x-content-type-options: nosniff

x-frame-options: DENY

1 {

2 "field1": "value1",

3 "field2": "value1",

4 ...

5 "fieldN": "value1",

6 }

Possible Errors:

• 400 — Bad Request: Request structure is wrong (e.g. invalid JSON structure)

• 401 — Unauthorized: Authentication required

• 403 — Forbidden: Insufficient permissions

• 404 — Not Found: Resource not found

• 500 — Internal Server Error: A generic server error occured

• 503 — Service Unavailable: The server is temporarily unable to handle the
request (e.g., due to maintenance or overload)

PATCH /api/cells/{id}/
Description: Provides some fields to be changed for a specific database entry. The
rest of the fields of this entry are not changed in any way. Request body contains
only the fields that we want to change and no more.
Path Parameters:

• id (required:Integer) – Unique identifier for the selected data registration

Response: Returns the requested changed object that is saved to the database,
with HTTP status code 200 (OK) or 204 (No Content).

Example Request:

HEADERS

PATCH /api/cells/{id}/ HTTP/1.1

Host: https://dev-battery2life.iccs.gr/

Accept: application/json, text/html

Authorization: Bearer {token}

1 {

2 "selected_field1": "value1",

3 "selected_field2": "value1",

4 ...

5 "selected_fieldN": "value1",

6 }

55

API Endpoint
Example Response:

HEADERS

access-control-allow-origin: *

allow: GET,PUT,PATCH,DELETE,HEAD,OPTIONS

connection: keep-alive

content-length: integer

content-type: application/json

cross-origin-opener-policy: same-origin

date: date

referrer-policy: same-origin

server: nginx/1.18.0 (Ubuntu)

vary: Accept,origin

x-content-type-options: nosniff

x-frame-options: DENY

1 {

2 "field1": "value1",

3 "field2": "value1",

4 ...

5 "fieldN": "value1",

6 }

Possible Errors:

• 400 — Bad Request: Request structure is wrong (e.g. invalid JSON structure)

• 401 — Unauthorized: Authentication required

• 403 — Forbidden: Insufficient permissions

• 404 — Not Found: Resource not found

• 500 — Internal Server Error: A generic server error occured

• 503 — Service Unavailable: The server is temporarily unable to handle the
request (e.g., due to maintenance or overload)

DELETE /api/cells/{id}/
Description: Deletes the database entry with the id given by the parameter id in
the url.
Path Parameters:

• id (required:Integer) – Unique identifier for the selected data registration

Response: Returns HTTP status code 204 (No Content) if successful.

Example Request:

HEADERS

DELETE /api/cells/{id}/ HTTP/1.1

Host: https://dev-battery2life.iccs.gr/

Accept: application/json, text/html

Authorization: Bearer {token}

Example Response:

56

API Endpoint
HEADERS

access-control-allow-origin: *

allow: GET,PUT,PATCH,DELETE,HEAD,OPTIONS

connection: keep-alive

content-length: 0

cross-origin-opener-policy: same-origin

date: Date

referrer-policy: same-origin

server: nginx/1.18.0 (Ubuntu)

vary: Accept,origin

x-content-type-options: nosniff

x-frame-options: DENY

Possible Errors:

• 401 — Unauthorized: Authentication required

• 403 — Forbidden: Insufficient permissions

• 404 — Not Found: Resource not found

• 500 — Internal Server Error: A generic server error occured

• 503 — Service Unavailable: The server is temporarily unable to handle the
request (e.g., due to maintenance or overload)

57

2.2.3 Authentication

Token
API Endpoint

POST /api/token/

Description: Makes a request with authentication credentials and gets back a
JWT(JavaScript Web Token). Essential for accessing all the other endpoints
Path Parameters:

• No parameters required

Response: Returns a user object with the JWT authentication token and refresh
token. HTTP status code is 200 (OK) if successful.

Example Request:

HEADERS

POST /api/token/ HTTP/1.1

Host: https://dev-battery2life.iccs.gr/

accept: application/json

Content-Type: application/json

X-CSRFTOKEN: CSRF-TOKEN

1 {

2 "username": username:String,

3 "password": password:String

4 }

Example Response:

HEADERS

access-control-allow-origin: *

allow: POST,OPTIONS

connection: keep-alive

content-length: Integer

content-type: application/json

cross-origin-opener-policy: same-origin

date: Date

referrer-policy: same-origin

server: nginx/1.18.0 (Ubuntu)

vary: Accept,origin

x-content-type-options: nosniff

x-frame-options: DENY

1 {

2 "refresh": refreshToken:String,

3 "access": accessToeken:String

4 }

Possible Errors:

• 400 — Bad Request: Request structure is wrong (e.g. invalid JSON structure)

• 401 — Unauthorized: Authentication required

58

API Endpoint
• 500 — Internal Server Error: A generic server error occured

• 503 — Service Unavailable: The server is temporarily unable to handle the
request (e.g., due to maintenance or overload)

59

API Endpoint
POST /api/token/refresh/

Description: Makes a request with the refresh token and gets back a valid JWT.
Path Parameters:

• No parameters required

Response: Returns a JSON object with key:access and value:newValidToken(string)
and HTTP status code 200 (OK) when successful.

Example Request:

HEADERS

POST /api/token/refresh/ HTTP/1.1

Host: https://dev-battery2life.iccs.gr/

accept: application/json

Content-Type: application/json

X-CSRFTOKEN: CSRF-TOKEN

1 {

2 "refresh": refreshToken:String

3 }

Example Response:

HEADERS

access-control-allow-origin: *

allow: POST,OPTIONS

connection: keep-alive

content-length: Integer

content-type: application/json

cross-origin-opener-policy: same-origin

date: Date

referrer-policy: same-origin

server: nginx/1.18.0 (Ubuntu)

vary: Accept,origin

x-content-type-options: nosniff

x-frame-options: DENY

1 {

2 "access": accessToken:String

3 }

Possible Errors:

• 400 — Bad Request: Request structure is wrong (e.g. invalid JSON structure)

• 401 — Unauthorized: Authentication required

• 500 — Internal Server Error: A generic server error occured

• 503 — Service Unavailable: The server is temporarily unable to handle the
request (e.g., due to maintenance or overload)

60

The endpoints chemical, material, manufacturers and safety feature have the same func-
tionality with the batteries endpoint and therefore are ommited for the sake of simplicity
and concisesness

61

2.2.4 Endpoints Summary Table

Table 2.1: API Endpoints Summary

Category Endpoint Methods

EIS /api/eis/ GET, POST
/api/eis/{id}/ GET, PUT, PATCH, DELETE

Measurements /api/measurements/ GET, POST
/api/measurements/{id}/ GET, PUT, PATCH, DELETE

Authentication /api/token/ POST
/api/token/refresh/ POST

Battery
Management

/api/batteries/ GET, POST

/api/batteries/{id}/ GET, PUT, PATCH, DELETE

Cell Management /api/cells/ GET, POST
/api/cells/{id}/ GET, PUT, PATCH, DELETE

Chemical /api/chemical/ GET, POST
/api/chemical/{id}/ GET, PUT, PATCH, DELETE

Manufacturer /api/manufacturers/ GET, POST
/api/manufacturers/{id}/ GET, PUT, PATCH, DELETE

Material /api/material/ GET, POST
/api/material/{id}/ GET, PUT, PATCH, DELETE

Module /api/modules/ GET, POST
/api/modules/{id}/ GET, PUT, PATCH, DELETE

Safety Features /api/safety feature/ GET, POST
/api/safety feature/{id}/ GET, PUT, PATCH, DELETE

62

2.3 System Architecture

In this section, we aim to outline the main architectural concepts of our system, providing
readers with a deeper insight into the project and the rationale behind our design choices.
We will begin by detailing our platform’s requirements. Then, we’ll highlight the high-level
components that will facilitate the achievement of our goals. Finally, we will dive deeper
into the usage goals of our system.

2.3.1 System Requirements

Our platform is built on an array of requirements, as defined in the deliverable 2.3 of the
Battery2Life project[9], that can be categorized into the following types: functional3, non-
functional4 and data management requirements of our cloud platform.

1. We need to provide a working system that is as open as possible. In order to achieve this
we integrate open standards. Then, we need to ensure the vendor neutrality for our API
and communication protocols; therefore, using open-source tools will be paramount for this
effort. Also, we need to make sure for our app’s interoperable capabilities by implementing
widely used and mature communication protocols. Our efforts for a holistic solution will
be enhanced by integrating the Digital Battery Passport to our platform that will in turn
provide all the necessary data and in the right format for the effective monitoring of the
Battery System(BS) and traceability for its components.

2. Our platform needs to be developed in a way that will make the scalability aspect of our
project an easy task. The concurrent devices connected and data streams are key parameters
to consider in this effort. At the same time we need to cater for the high fault tolerance
of the platform by implementing load balancing and error detection/correction strategies,
that will in turn ensure high availability of the system.

3. Regarding the data, our platform must ensure their privacy by utilizing authentication
and authorization mechanisms for the endpoints. Then we need to emphasize on establishing
a secure environment that is impervious to outside attacks by implementing functionalities
for the detection and mitigation of malicious actions. Last but not least, we need to take
into account the integrity of the data by checking that all types and values are correct and
the database is up-to-date with all the available data.

3functional: requirements related to the specific low level functions of our system
4non-functional: requirements related to the operation of the system as a whole

63

2.3.2 System Components

We will present the component diagram of our cloud platform as was designed per the spec-
ifications of the previous section and then we will delve into the details of every component:

Figure 2.2: Battery2Life component diagram

Architecture

We chose a monolithic architecture for our application (client-server) due to the limited
number of services, avoiding unnecessary complexity[10]. This architecture ensures efficient
communication within the system’s integrated components, minimizing latency and over-
head compared to distributed systems. Additionally, it offers reduced operational costs,
easier maintenance and faster development cycle. The ability to respond to big loads of
requests isn’t hindered at all, since scaling the system horizontally with more servers will
be an easy task.

Communication

Two methods are going to be used for the communication of our app with 3rd party appli-
cations:

1. A publish-subscribe module will be implemented, where the server is going to be sub-
scribed into a topic and get requests like this. This is very useful for maintaining data

64

consistency when the server is down, because the messaging broker stores the unprocessed
requests and the application parses them when it resuscitates.

2. A RESTful5 API with the specific endpoints described on Section 2.2 will be implemented.
Therefore, any kind of application connected to the internet can pose HTTP(GET, POST,
GET id, PUT id, PATCH id, DELETE id) requests by sending, receiving and editing the
data that they have the right to take that specific action.

Authentication Module

The authentication module will include a way for the user to provide its credentials and
get a perishable authentication token as a response, which can then by used in the headers
of the HTTP request to gain access to our app resources. The frequent recycling of the
authentication token will further enhance the security of our platform.

User Management Module

The User Management module handles the creation and management of users with different
kind of permissions.

Database Module

The database module is the service that is responsible for the storage and management of
the data. A database with a robust database management system (DBMS) is essential for
our application. Especially since data type integrity/consistency, data access, efficient data
processing and recovery mechanisms are all integrated into it.

Activity Logging

This module is used by the server, database and message broker modules. It is signifi-
cant for the effective troubleshooting of system failures that occurred, or potential future
failures, through the error/warning logs. Also, this module sends an email notifying the
administrators that a service is down, contributing in the swift resolution of an error.

Server Module

This is the most basic module that encompasses the authentication module, the router mod-
ule, the user management module and the controller module. The server is able to receive
requests for getting, creating, deleting and modifying data from an outside client, message
broker or REST API through an HTTP request. The router handles which controller needs
to process the request. The user management and authentication modules are used when
there is a request demanding the use of resources with restricted access. Additionally, the
user management module is responsible for the creation/deletion of users and the assignment
of new access rights to them.

5An API is RESTful when it adheres to the REST(Representational State Transfer) principles[11]. Such
principles include client-server architecture, statelessness, layered system architecture etc.

65

Client Module

This is a user interface where the user is able to inspect, add and modify all the attributes
regarding the specification of the available batteries. This module sends HTTP requests to
the server via the REST API then displays the result for the user in a friendly and well
organized manner.

2.3.3 Use Cases

The proper design of each individual component is crucial, but it’s also important to consider
how they interact with each other. This can be seen by outlining the three primary use cases
for our system. The use cases include:

1. Every function regarding the management of the battery systems. A user can
utilize the user interface (UI) of the client to log into the system, fill in and edit sections
with data about the characteristics of the batteries. These data could include batteries, cells,
manufacturer details and other important information about the bookkeeping aspect of the
system as was described in section 2.1 . The UI, Server, Activity Logging and Database
modules are utilized here.

2. Every function regarding the data ingestion in the system contributed by 3rd parties.
The battery systems share real time data and data regarding experiments with the platform
through the REST API and message broker channels. Then the battery system validates
these data and stores them into the database. All the actions mentioned above require
some sort of authorization in order to be able to use the associated resources. The Server,
Message Broker, Activity Logging and Database modules were employed in this scenario.

3. Every function regarding data sharing. An authorized 3rd party can request certain
parts of or all the dataset, either in JavaScript Object Notation(JSON) format or presented
in the UI. These data will be mainly used for running predictive algorithms and monitoring
by 3rd parties.

66

67

Chapter 3

Implementation

The goal for this chapter is to give the reader a basic understanding of how the components
of chapter 2 were implemented and the rationale behind the implementation choices in
terms of software tools. We begin by explaining how the components were implemented,
then continue by presenting some of the key tools that aided the satisfaction of the non-
functional requirements of the project and in the end by providing some basic insights about
the practicalities of our system.

68

3.1 Component Communication

Now we are going to explain the two communication protocols that our platform uses.

3.1.1 REST Endpoints

For the communication of the components the main protocol used is HTTP requests. All of
our endpoints implement the GET, POST, PUT, PATCH, DELETE methods as described
in the specification section. For a GET, PUT, PATCH, DELETE request a parameter
named ”id” is used at the end of the URL section of the request in order to conduct the
necessary activities for the specific request. For the POST, PUT and PATCH methods a
body section is required, containing the information that we want to either insert into the
database either modify the values of a specific row in a table or tables. For the body of the
request, the data that needs to be inserted must be described in JavaScript Object Notation
(JSON) format.

Although HTTP requests is the prevalent form of message transmission in our solution,
many of the components are integrated as packages or tools so they implement their own
communication protocols internally. For example, as we are going to see next, the authenti-
cation, user management, viewsets(controllers) and router components are all incorporated
in Django and Django Rest Framework.

Some key aspects of the HTTP request to consider before developing endpoints that will
implement this protocol is idempotency and safety. More specifically, by idempotency we
mean the repeatability of requests like GET, PUT and DELETE without unwanted side
effects and the consistency of the API. Conversely, methods like POST, PUT, PATCH, and
DELETE alter the database and system state, so it’s crucial to use appropriate tools to
prevent both malicious and inadvertent misuse.

3.1.2 Message Broker - Mosquitto MQTT

We also implemented an alternative way of communication between clients and 3rd parties
with our platform through a deployment and configuration of a Mosquitto Message Queueing
Telemetry Transport (MQTT) broker.

We have created a Mosquitto broker as a docker container with the following parameters
that we mount inside the container as a volume.

1 listener 1883

2 listener 9001

3 allow_anonymous false

4

5 persistence true

6 password_file /mosquitto/config/passwd

7 persistence_file mosquitto.db

8 persistence_location /mosquitto/data/

9 log_dest file /mosquitto/log/mosquitto.log

Listing 3.1: Example Mosquitto Configuration

Our application listens on ports 1883, 9001 and doesn’t allow any messaging without au-
thentication. Furthermore, this configuration allows us to persist messages so that when
a service that had some downtime returns to operation, it receives all the messages that
were sent to it while it was down. This functionality is paramount in order to ensure the

69

consistency of the dataset. Last but not least, the Mosquitto MQTT tool gives us options
to encrypt the exchanged messages.

In order to validate that our configuration works, we created a Mosquitto client that runs
also as a docker container. We made the configuration in order for it to subscribe in a certain
topic and can receive messages successfully both from clients outside the docker network
and inside it. Finally, we connected it to the Logging Activity module in order to keep a
record of the status of the service and the messages received.

70

3.2 Server - Django/Django Rest Framework

At a high level when a user makes a request for a resource the server gets the request
and then the router matches the URL with the corresponding view1. Then that view is
responsible for utilizing the right modules to authenticate the user and check that they
have the right permissions to perform the action that they wish to perform. After that the
serializers take action and parse any JSON data that is included in the request. Finally,
the controller performs the actions that the request mandates, returns a result and a code
describing the status of the request. We will now delve into a more detailed explanation of
how these processes occur.

The platform is developed with Django[12] and Django REST Framework(DRF)[13].

3.2.1 Authentication

In order to make it possible for a user to be authenticated, the user needs to make a POST
request on the /api/token endpoint with their credentials (username, password) into the
body of the request. Then they will get a JSON response with two key-value pairs as shown
below in figure 4.1 . Finally, the client retrieves the access token and includes it in the
request headers to authenticate or users employing software to interact with our API can
manually place it in the headers section of the request.

Figure 3.1: JavaScript Web Token example

In order to be able to implement authentication, we used from simplejwt [14] module the
views.TokenObtainPairView and views.TokenRefrashView and then assign the related URLs
to them in our router. The access tokens are set to be valid for up to an hour and the refresh
tokens for up to a day. Whenever the access tokens are invalid the user can make a POST
request at /api/token/refresh with the refresh token as payload and get a new access token
as a result without providing their credentials anew.

3.2.2 Security

We enhance our app security in ways described in more detail below[15]:

• Several key configuration parameters are defined in environment variables and not
hardcoded. Such as secret key and database parameters.

• Host and origin restrictions are implemented. The allowed hosts environment variables
restricts domains which our application responds to. This functionality is further

1This is the piece of code that parses the request and produces a response. Stated as controller in the
component diagram fig. 2.2

71

enhanced with the use of Cross-Site Request Forgery Protection (CSRF). Finally,
Cross-Origin Resource Sharing Protection (CORS) is implemented on the production
server with the CORS ALLOWED ORIGINS parameter listing the specific domains
and the corsheaders module used.

• Django REST Framework authorization classes(IsAuthenticated, JWTAuthentication)
enables certain users access rights to certain resources.

• The use of the SecurityMiddleware that adds specific security headers automatically.

• We have implemented password validators that check the length, commonality and
inclusion of special characters of any password that a user defines and urges the user
to make it stronger .

3.2.3 User Management

Django provides us with a very convenient admin interface[16] that lets us manage the user
creation, management and permission assignment.

A user can log in with their credentials if they have elevated rights as shown below.

Figure 3.2: Django Admin Interface - Login

After logging in the superuser will be prompted to the main page.

72

Figure 3.3: Django Admin Interface - Main Page

They can manage users or groups and assign specific permissions to them such as can ad-
d/change/view/delete model records, can add/change/view/delete user, can add/change/view/delete
permission etc.

Figure 3.4: Django Admin Interface - Assign Permissions

They can also create records for the database models. We achieve this by registering these
models on the admin.py file.

73

Figure 3.5: Django Admin Interface - Create Database Records

3.2.4 Router

Our platform consists of two applications, the main application which is called battery2life
and the application that contains the API called batteries.

The routing functionality in the main app is seen on figure 3.6 . It includes the routes for
the admin interface, authentication, SWAGGER UI documentation and the routes of the
application batteries.

Figure 3.6: Routing - Main App

For the main API the routing is a bit more complex, so we chose to implement it with
the DefaultRouter from the rest framework module[17] for the easier management of the
endpoints. Each route is in the format host/api/api route. In essence, each route defines
which Django ViewSet is going to handle the specific request.

74

Figure 3.7: Routing - API

3.2.5 Controllers - ViewSets

One of the main reasons we chose to develop our cloud platform with Django and Django
REST Framework(DRF) is because it makes the implementation of Create, Replace, Update
and Delete (CRUD) endpoints very simple and intuitive when the functionality is quite
rudimentary. Faster and simpler development means much easier maintenance and less
error frequency. This is ensured by utilizing a wide range of modules that are supported
rigorously by the Django large community [18].

So the way that a ModelViewSet operates when a request is sent to our server is the following.

• the server parses the request

• the router directs the request to the appropriate view

• the view conducts the side effects requested2

• the view returns a response with a HTTP status code and a body

We have 8 views that have very basic functionality (ChemicalViewSet, SafetyFeatureViewSet,
MaterialViewSet, ManufacturerViewSet, BatteriesViewSet, ModuleViewSet, CellViewSet,
EISViewSet) and 1 view that needs some custom code because of the nature of the input
that is delivered to us (MeasurementViewSet). Our views handle the communication with
the database with ORM models which makes the correlation of the attributes of an SQL
table with object in python and the querying of the database an automated task.

2For example getting, deleting or inserting some table records

75

For simplicity, we are going to explain the ChemicalViewSet and for reference we attach the
code for it below in figure 4.8 . The ChemicalViewSet inherits from ModelViewSet which
implements all the basic CRUD functionalities and also contains a custom LoggingMixin
that records every incoming and outgoing request in a log file. Now, in order for this view to
return a valid response it firstly checks if the user is authenticated with the IsAuthenticated
class from the DRF module and then checks if the user has valid permissions to obtain the
resource that they are asking with JWTAuthentication class from the simplejwt module. The
next step is to validate the request input and reconstruct it in a python manageable form
with a serializer (as shown in figure 4.9). Finally, the internal logic of the ModelViewSet
handles all the further processing required to complete the request side effects and produce
the necessary response.

Figure 3.8: ModelViewSet - Chemical

Figure 3.9: Serializer - Chemical

The process for the MeasurementViewSet is similar, with the important distinction of need-
ing custom logic to manage the POST request input. Unlike regular ViewSets and Serial-
izers, ModelViewSets and Serializers require us to explicitly define each field and a custom
validation function. The Measurement model fields are arrays containing four values, so
to insert a single row into the database, we need to override the create function[19] of the
ModelViewSet and implement the logic ourselves.

76

Figure 3.10: ModelViewSet - Measurements

77

Figure 3.11: Serializer - Measurements

78

3.3 REST API Documentation - Swagger UI

For the documentation of our REST API endpoints and for the easier testing of them we
integrated the Swagger UI module[20] with our solution. When following the https://dev-
battery2life.iccs.gr/api/schema/swagger-ui/ URL we arrive at the landing page of our end-
point documentation (as seen in figure 3.12). Before we are able to use this UI to make
requests to our app to test it we need to authorize. In order to do this we go to the token
endpoints and make a POST request to the /api/token endpoint with our username and
password credentials. If successful, we will get an access and refresh token as a response.
Then we need to click on the ”Authorize” button on the top right, paste the access token
into the tab shown in figure 3.13 and press “Authorize” then close the tab.

Figure 3.12: Swagger UI - Landing page

Figure 3.13: Swagger UI - Authorize

3.3.1 Performing HTTP requests

In order to make a request you need to click on a method of an endpoint (as show in picture
3.14) and then hit ”try it out” and then ”execute”. If the request method is POST, you
need to add the body of the request below before trying it out. If the request method is

79

a PUT, PATCH or DELETE you also need to provide the ”id” for the record you want to
change.

Figure 3.14: Swagger UI - Get request

The result of the previous experiments usually provides us with a response body, a status
code and the response headers as seen in figure 3.15 .

Figure 3.15: Swagger UI - Get response

80

3.4 Database - PostgreSQL

The database system of our choice is PostgreSQL. One of the many positives of PostgreSQL
includes the Multi-Version Concurrency Control (MVCC) feature [21]. This functionality
gives us high performance by providing concurrent execution of queries, which leads to low
latency responses that is highly sought after in our system. Furthermore, its Atomicity,
Consistency, Integrity and Durability (ACID)[22] design principles really aids to our goals
to maintain a robust database without any data loss. Last but no least, PostgreSQL is
open-source, which highly contributes to our goal of not having any vendor lock-in risks.

3.4.1 Database Django ORM

The Django ORM gives us a lot of flexibility. It implements SQL database table interpreta-
tions in corresponding python objects while still performing integrity checks with validators,
checking for type matching, implementing foreign key constrains and deletion protocols and
finally handling null/blank values. We chose the Cell model from our database to showcase
the strength of this tool (shown in listing 3.2).

1 class Cell(models.Model):

2 cell_name = models.CharField(max_length =255, unique=

True)

3 # Unit Ah

4 nominal_capacity = models.IntegerField(blank=True ,

null=True , default =1)

5 # Unit Wh

6 nominal_energy = models.IntegerField(blank=True , null=

True , default =1)

7 nominal_cycles = models.IntegerField(blank=True , null=

True , default =1)

8 # Unit Wh/kg

9 gravimetric_energy_density = models.IntegerField(blank

=True , null=True , default =1)

10 # Unit Wh/l

11 volumetric_energy_density = models.IntegerField(blank=

True , null=True , default =1)

12 # (ex LFP71173207)

13 industry_standard = models.CharField(blank=True , null=

True , max_length =255)

14 # Unit V

15 nominal_voltage = models.DecimalField(max_digits =8,

decimal_places =2, blank=True , null=True , default

=1.0)

16 # Unit V

17 operating_voltage = models.DecimalField(

18 max_digits =22,

19 decimal_places =2,

20 blank=True ,

21 null=True ,

22 validators =[MinValueValidator (0.0),

MaxValueValidator (10.0)],

23)

24 # Unit Megaohm

25 ac_resistance = models.DecimalField(

26 max_digits =22,

27 decimal_places =2,

28 blank=True ,

29 null=True ,

30 default =0.1

81

31)

32 # Unit % / month

33 max_self_discharge_rate = models.DecimalField(

max_digits =22, decimal_places =2, blank=True , null=

True , default =1.0)

34 # Unit %

35 nominal_soc_at_delivery = models.DecimalField(

max_digits =22, decimal_places =2, blank=True , null=

True , default =1.0)

36 # Unit kg

37 cell_weight = models.DecimalField(max_digits =22,

decimal_places =2, blank=True , null=True , default

=1.0)

38 # Unit C

39 cell_charging_temperature = models.DecimalField(

40 max_digits =22,

41 decimal_places =2,

42 blank=True ,

43 null=True ,

44 validators =[MinValueValidator (0.0),

MaxValueValidator (60.0)],

45)

46 # Unit C

47 cell_discharging_temperature = models.DecimalField(

48 max_digits =22,

49 decimal_places =2,

50 blank=True ,

51 null=True ,

52 validators =[MinValueValidator (-30.0),

MaxValueValidator (60.0)],

53)

54

55 # cell dimension

56 # all metrics in mm

57 height = models.DecimalField(max_digits =6,

decimal_places =2, blank=True , null=True)

58 width = models.DecimalField(max_digits =6,

decimal_places =2, blank=True , null=True)

59 length = models.DecimalField(max_digits =6,

decimal_places =2, blank=True , null=True)

60

61 cell_chemistry = models.ManyToManyField(Chemical ,

blank=True , related_name=’cells ’)

62 module = models.ForeignKey(Module , blank=True , null=

True , on_delete=models.CASCADE , related_name ="

cells")

63 manufacturer = models.ForeignKey(

64 Manufacturer ,

65 on_delete=models.CASCADE ,

66 blank=True ,

67 null=True ,

68 related_name =" cells",

69)

70

71 class Meta:

72 verbose_name_plural = "Cells"

73

74 def __str__(self):

75 return self.cell_name

Listing 3.2: Cell Django ORM Model

82

We notice the following:

• A model interpretation of a database table inherits from a base class Model allowing
high reusability and conciseness which enhances maintainability and simplicity of code

• Each model has certain fields types that helps us define different types of data

• Each field has certain attributes that define key characteristics of it. For example
cell name field defines an attribute of string type that has a max of 255 characters
and each value is unique

• Django ORM defines its own id, when not stated otherwise, that auto-increments.
The thing to keep in mind though is when populating the database manually (within
the docker container and not from the API) this counter doesn’t update on its own

• For foreign keys a one-to-many relationship is defined with the on delete parameter
stating what is going to happen on the connected values if the parent record is deleted.
For example on delete=models.CASCADE states that the record of the Cell model is
retained if the record of the foreign model is deleted.

• Several Meta attributes can be defined for the easier management of the tables on the
admin interface. For example the str attribute state the name of the model shown
on the admin interface.

3.4.2 Database Configuration

Now we will talk about the configuration and setup of the database.

Our database operates within a docker network as a docker container. In order
for our database to be created and configured the init.sql script (shown in figure 3.16) is
mounted as a volume on the /docker-entrypoint-initdb.d directory and is executed during
the initialization of the container. Several environment variables including user, password
and db are stated on the parameters of the docker-compose.yaml file which is described in
section 3.7.1 .

The init.sql script configures PostgreSQL settings related to write-ahead logging (WAL),
replication, and user management.

• The ALTER SYSTEM statements modify key parameters to enhance performance,
particularly by reducing WAL-related overhead

• synchronous commit = ’off’ : disables synchronous commits, improving transaction
speed by allowing transactions to be acknowledged before being written to disk, at
the cost of durability

• wal level = ’minimal’ : minimizes the amount of WAL data generated, reducing log-
ging overhead, which is ideal for non-replicated setups

• wal keep size = 0 and max wal senders = 0 :disable WAL retention and replication,
ensuring WAL files are not retained for standby servers

• archive mode = off : disables WAL archiving, preventing storage of logs for point-in-
time recovery (PITR)

The script then creates the b2l database, followed by a procedural block (DO $$... $$) that
ensures the root role exists. If not found, it creates the role with superuser, login, database
creation, replication, and role creation privileges.

83

Figure 3.16: Database - Initialization and Configuration script

3.4.3 Database Migrations

Another highly useful functionality, that Django offers us, is database migrations. When-
ever we make a change to the model of the database, Django creates a new migration file
containing information about how to apply them into the database with the python man-
age.py makemigrations command. Then, in order for these to take effect, we need to actually
apply the migration with the python manage.py migrate command. This gives us a lot of
information about previous database states and allows us to revert to previous versions very
easily if required.

In our implementation such functions happen automatically during the initialization of the
database docker container. Therefore, whenever we need to apply new migrations we have
to stop, delete and restart the db and api containers (we need to maintain the volumes).

84

3.5 Activity Logging - Python/Django Loggers

Activity logging is a paramount component of our effort to provide a highly available plat-
form with low fault tolerance by minimizing the downtime and debugging time. We imple-
mented logging for two modules which includes the views of the Server module and for the
Message Broker Client.

3.5.1 Python Logging Setup

A custom Django Mixin[23] was implemented in order to log the HTTP requests and re-
sponses of our cloud platform. Making this feature into a separate component allows us to
reuse it therefore making our code simpler, all the while making our codebase easier to be
maintained and extended as wished.

In order to implement a Django Logging Module we configured the settings.py of the main
application as shown in figure 3.17 .

85

Figure 3.17: Logging - ModelViewSets

Two message logging formatters were created with the structure seen above. The filters
were set to log when in Debug mode. Then we have some handlers that state how to
parse potential messages received. Finally, we have the loggers, that is the highest level of
abstraction, incorporating the whole logic that was defined with the specific filters, handlers,
level of logging and hierarchy stated by the attribute propagate.

For the Mosquitto Client a more direct approach was taken. As seen below in figure 3.18 two
loggers has been defined. One for printing logs into the command line and one for printing
logs into a file, ensuring the persistence of the logs. The Mosquitto Client utilizes the logger

86

when connecting to specific clients, topics and when receiving a message.

Figure 3.18: Logging - Mosquitto Client

87

3.6 Development Tools

3.6.1 Execution Environment - Docker Containers

The Docker containers[24] enables us control the environment and configuration of the run-
ning services. Some key benefits include better horizontal scalability, separation of respon-
sibility for different services and seamless deployment to any resource, cloud or local.

Now we are going to describe how we implemented each service as a container and their
main behavior. As seen in listing 3.3 we have 4 services defined, which are:

• api: implements main server of our system

• db: implements the database section

• mosquitto: implements the Mosquitto Broker

• mosquitto-client: which implements the Mosquitto client

In order to be able to create a container first the exact image needs to be specified or the
build section of the specific service. Applications like api and mosquitto-client specifies
custom images with base Linux layers and installation of specific modules useful for their
operation. On the other hand services like db and mosquitto get ready to use images from
the docker hub[25] cloud, stating the specific version (in order to be able to know exactly
if we have a bug which version caused it) of a PostgreSQL and Mosquitto broker. In turn,
this entails that when we want to upgrade the database version we have to do it manually.

Furthermore, we see that containers are configured to restart every time they stop, run
specific commands when initialized, depend on specific ontainers’ initialization before they
themselves begin and belong to a specific network stated as configuration. Port forwarding
is essential for the ability to have these services available from the host machine.

One of the key points of the docker-compose.yaml configuration are the volumes. There
files mounted during the initialization of the container inside the internal file structure of it
mapped from the project directory. Lastly and most importantly, we can see some volumes
like pgdata are managed from the docker daemon. These volumes constitute one of the most
important parts of our applications because when the db service experiences downtime after
it resuscitates the data are persisted and the database is revived entirely in its previous
state.

Listing 3.3: Docker-Compose.yaml Configuration

1 services:

2 api:

3 build: ./battery2life

4 container_name: api

5 restart: unless-stopped

6 command: >

7 sh -c "␣python␣manage.py␣makemigrations␣--noinput␣&&

8 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣python␣manage.py␣migrate␣&&

9 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣python␣manage.py␣create_admin␣&&

10 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣python␣manage.py␣runserver␣0.0.0.0:8000

11 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣"

12 depends_on:

13 - db

14 ports:

15 - 8000:8000

16 volumes:

17 - ./battery2life:/usr/src/app

18 - ./battery2life/app.log:/usr/src/app/app.log

19 env_file:

20 - ./.env.dev

88

21 networks:

22 - db

23

24

25 db:

26 image: postgres:17.0

27 container_name: db

28 restart: unless-stopped

29 ports:

30 - "5432:5432"

31 volumes:

32 - pgdata:/var/lib/postgresql/data

33 - ./database/init.sql:/docker-entrypoint-initdb.d/init.

sql

34 - ./database/data:/data

35 - ./database/dummy_data:/data

36 - ./database/populate_dummy.sql:/populate_dummy.sql

37 environment:

38 - POSTGRES_USER=root/

39 - POSTGRES_PASSWORD=root

40 - POSTGRES_DB=b2l

41 networks:

42 - db

43

44

45 mosquitto:

46 image: eclipse-mosquitto

47 container_name: mosquitto

48 restart: unless-stopped

49 depends_on:

50 - db

51 ports:

52 - "1883:1883"

53 - "9001:9001"

54 volumes:

55 - ./mosquitto/config:/mosquitto/config:rw

56 - ./mosquitto/data:/mosquitto/data:rw

57 - ./mosquitto/log:/mosquitto/log:rw

58 networks:

59 - mosquitto

60

61

62 mosquitto-client:

63 build: ./mosquitto-client

64 container_name: mosquitto-client

65 restart: unless-stopped

66 depends_on:

67 - mosquitto

68 environment:

69 - MQTT_BROKER=mosquitto

70 - MQTT_PORT=1883

71 - MQTT_KEEPALIVE=60

72 - MQTT_USER=user1

73 - MQTT_PASSWORD=user1

74 volumes:

75 - ./mosquitto-client/mosquitto-client.log:/usr/src/

mosquitto-client/mosquitto-client.log

76 networks:

77 - mosquitto

78 command: ["python3", "mosquitto_client.py"]

79

80

81 volumes:

82 battery2life:

83 pgdata:

84 mosquitto-client:

85 mosquitto:

86

87 networks:

88 mosquitto:

89 driver: bridge

90 db:

89

91 driver: bridge

3.6.2 Version Control Management - Git

For the efficient management of our project versioning, the git tool[26] coupled with a
GitLab repository was used. Through the use of branches like main, staging, development,
feat/{feature} and bug/{bugFix} we were able to streamline the development, track the
changes of specific features and isolate the specific fixes of a problem. A cloud repository
was necessary when multiple people were working on the same project to ensure the project
version consistency.

More specifically for each branch:

• Main: This is the branch were after rigorous testing on a development environment,
a group of updates are published as releases.

• Staging: This is the branch where functional and unit testing are performed before
publishing a release.

• Development: This is the branch that aggregates the development of entire features
and bug fixes.

• Feature: This branch is created when we want to create a feature that we think
multiple commits are going to be included

• BugFix: This is the branch that encapsulates the whole process of fixing a specific
bug during development.

90

3.7 System Practical Instructions

The project is supported by a GitLab repository with scripts and HOWTOs. The rights
for the access of source code are restricted, therefore for getting those right contact the
administrators at vangelis.tsougiannis@iccs.gr and giannismitis@gmail.com

3.7.1 Project file structure

The project file structure is as follows:
/

README.md

battery2life

Dockerfile

api schema.yaml

app.log

batteries

pycache

admin.py

api

pycache

serializers.py

urls.py

views.py

apps.py

management

migrations/

mixins.py

models.py

tests.py

utils.py

views.py

battery2life

init .py

pycache

app.log

asgi.py

settings.py

urls.py

wsgi.py

db.sqlite3

manage.py

requirements.txt

venv

create necessary files.sh

database

data

database erd.mmd

dummy data

batteries cell cell chemistry.csv

battery.csv

cell.csv

chemical.csv

dimension.csv

eis.csv

manufacturer.csv

91

material.csv

measurement.csv

module.csv

safety feature.csv

init.sql

pgdata

populate dummy.sql

docker-compose.yaml

mosquitto

config

data

log

mosquitto-client

Dockerfile

mosquitto-client.log

mosquitto client.py

node modules

startup.sh

.gitignore

testing

data

invalid input.json

valid input.json

valid output.json

main.js

modules

config.js

helpers.js

metrics.js

test.js

package-lock.json

package.json

test data

invalid input.json

valid input.json

valid output.json

Explanation

For the entire system, the most vital files are:

• docker-compose.yaml3: This is the most important file and contains the definitions
for all the available services in a format that makes them really easy to deploy.

• .gitignore: The file states which files are to be ignored from tracking their history
by Git.

• create necessary files.sh: Script to create the files necessary for logging, since
they contain sensitive information and are not tracked by Git.

3The docker-compose defines features like images (exact instructions to deploy each service), container
parameters (host name, environment variables, port forwarding), volumes (maps directories used by the
container) and networks (connecting container with private networks). The entire services stack is managed
by a single command (docker-compose up/down/restart/stop)

92

Django App

The entire API resides in the ./battery2life directory. The most important files are:

• Dockerfile: This is the custom Docker image we built to run the application, includ-
ing a base system image and all the appropriate packages.

• manage.py: This is the basic script that allows us to perform database management
actions and create new applications.

• requirements.txt: This file is used for the bookkeeping of the modules used in our
application. The Dockerfile image uses it to install any module necessary inside the
produced docker container.

Main Application:
Our main application is the one in the ./battery2life/battery2life directory. It con-
tains the following crucial files:

• settings.py: This is the main settings file containing settings for loggers, the database,
authentication, etc.

• urls.py: This is the main file for URLs (Unified Resource Locators) of our resources.

API Application:
This is the application that implements the main functionalities. It resides in the directory
./battery2life/batteries. It contains the following files and directories:

• admin.py: Includes the definitions for the database models to be used by the admin
control panel.

• api/: This directory includes the application views (they parse the request and send
responses), serializers (they translate the JSON input to a known Python format and
vice versa), and URLs (they match views and endpoints/URLs).

• migrations/: This directory contains the database version history.

• models.py: Defines the Django Object Relational Mapping(ORM) models for the
database.

PostgreSQL Database

The necessary files for the database are located in the ./database directory. The most
important ones are:

• database erd.mmd: This is the entity-relationship schema of our database done in
Mermaid markup language.

• init.sql: This is the script that is run when the database docker container starts.
Its purpose is to initialize and configure the database.

• pgdata: This is the volume that is mapped by Docker and contains all the data of the
database. This file ensures that all our data is preserved in the event of a database
failure.

93

• dummy data/: This is the directory that contains all the mock data useful for testing
the API and the database.

• populate dummy.sql: This is the script that populates the database with dummy
data.

Mosquitto Broker

The necessary directories for the Mosquitto message broker are located in the ./mosquitto
directory. The most important ones are:

• config/: Contains the mosquitto.conf file, which is the configuration data for the
broker, and the passwd file used for authentication of clients.

• data/: Contains the data that persists when we receive a message.

• log/: Contains the log data from the broker.

Mosquitto Client

The necessary files for the Mosquitto Client are located in the ./mosquitto-client direc-
tory. The most important ones are:

• Dockerfile: The custom image created to enable the client to use a Python logger,
connect to the broker and handle the incoming/outgoing messages.

• mosquitto client.py: The implementation of the Mosquitto client together with the
client logger.

3.7.2 Basic Usage Instructions

Next follows some basic instructions to download and run the app locally. For more detailed
instructions refer to the administrators for access.

Clone the repository

1 # clone repository

2 cd ~/

3 git clone {repository_url}

4

5 # navigate to the necessary repository

6 git branch -a

7 git checkout -b [BranchName] origin/[BranchName]

8

94

Run the app

1 # run automated creation script

2 chmod +x create_necessary_files.sh

3 ./create_necessary_files.sh

4

5 # start all of the services

6 cd ~/backend

7 docker-compose up -d --build --force-recreate

8

9 # stop all of the services and remove all containers and

networks

10 cd ~/backend

11 docker-compose down

12

Test the API

Step 1: Navigate to the API Documentation

• Start the application as described above and go to http://localhost:8000/api/schema/swagger-ui/.

Step 2: Authenticate

• Click on the /api/token/ endpoint.

• Make a POST request with your username and password.

• Copy the access token from the response of the request.

• On the top right corner of the page, click Authorize (green button with a lock).

• Paste your access token into the value placeholder.

• Click the Authorize button and then press the Close button.

Step 3: Test Endpoints

• Click on an endpoint.

• Click on Try it out.

• Fill in the required HTTP method information (e.g., ID, body).

• Click on the blue Execute button.

• Inspect the response headers, URL, status code, and body below in the Response
section.

Step 4 (Optional): Request Example Payloads

• You can find example payloads for the /api/measurements/ and /api/eis endpoint in
section 2.2.1: REST API Endpoint Structure.

• You can also see example responses to compare if your response was valid.

95

Chapter 4

Results

In this chapter, we will begin by explaining the reasoning for the testing, then we are going
to give a high level description of the testing methods applied to the cloud platform and then
we are going to highlight the metrics employed for the validity of the system. Finally, we
are going to close with the presentation and commenting of the results of these experiments.

96

4.1 Testing Methodology

4.1.1 Testing philosophy

As we have mentioned in chapter 2, our system is going to be used by BMSs to publish data
and by administrators for the management/bookkeeping of the system1.

Therefore, some key considerations for measuring our system performance and usability
includes:

• Our system needs to be able to process requests at a minimum rate of one request per
second [8]

• Our request needs to adhere to low response times to ensure a basic Quality of Service
(QoS)

• The API endpoints needs to have the expected responses and side effects

• Whenever the system doesn’t behave in the way that it should, there should be mech-
anisms to bring the system back to consistency.

• The Get all HTTP requests are performed once per week by State-of-Warranty algo-
rithms therefore they need to present satisfying Quality of Service (QoS)

4.1.2 Testing Solution

In order to satisfy, to the best of our ability, the aforementioned considerations we devised
a method of testing. This method includes performing a number of HTTP requests for all
the available methods of the most basic endpoints.

A number of concurrent Virtual Users(VUs) are going to pose these requests in parallel for
a limited amount of time. The endpoints under test include the analytics endpoints (EIS,
Measurements) and the most basic battery management endpoints (Batteries, Modules,
Cells).

Two experiments are going to be conducted, one testing the system under normal load and
one under big load. The key metric that defines how load heavy is the experiments lies on
the number of concurrent Virtual Users. These experiments are going to be conducted two
times each, once with valid inputs and once with invalid inputs. The invalid inputs will
include missing values, wrong value type, out of range values, wrong parameters, duplicate
values for unique fields.

4.1.3 Testing Validity/Performance

For the functionality aspect of the system for each request there is a check routine for
validating if the request was parsed as expected. This routine checks the HTTP status
code, the type of the response body and the contents of the response body to define if the
request has been parsed successfully or not.

For the performance aspect of the API we used a confusion matrix including the parameters:
accuracy, misclassification, precision, sensitivity and specificity. These metrics really helps

1Key physical system information about batteries/modules/cells such as models, components, specifica-
tions etc.

97

our testing scheme identify and quantify the positive and negative cases, giving us a good
overview about the areas of improvements and the restrictions of our API[27].

Some key metrics that gives us a good overview about the systems scalability and user
experience are throughput and response time. They show us how good is a system at
processing high volumes of data in the unit of time and showcase the delay factor of the
response of the requests[28].

4.1.4 System Under Test

Our system is deployed in a cloud Virtual Machine(VM) as a network of docker containers.
Below is a table with the specifications of this machine:

Table 4.1: System Specifications
Component Specifications

Memory

Main:
- Model: QEMU
- Space: 16 GB
- Capabilities: Not specified

Secondary:
- Space: 100 GB
- Type: SSD
- Model: QEMU HARDDISK
- Capabilities: 5400 RPM, GPT-1.00 partitioned

CPU

- Number: 4
- Cores per CPU: 2
- Processing Speed: 2.49 GHz
- Model: Not specified

OS
- Name: Ubuntu
- Version: 22.04.4 LTS

Network
- Download Speed: 925 Mbps
- Upload Speed: 940 Mbps

98

4.2 Testing Results Presentation

4.2.1 Testing Implementation

For our experiment, we used k6[29] for performing the tests and Grafana[30] for the visual-
ization of metrics. Prior to starting, we generated 1000 records of dummy data for each of
the main endpoints and populated the database.

One full experiment includes several stages. Firstly, we conduct a request to gain the
necessary JWT in order to be able to call the endpoints. After that we iterate over every
endpoint and conduct the same test with 5 valid inputs or 5 invalid inputs. Then we get
the result of the request and conduct checks about the status of the response2, the type of
the returned item and the composition of the returned item (all fields are valid). Finally,
we update the metrics necessary to calculate the confusion table at the end3.

An example of valid and invalid input respectively are shown below.

VALID INPUT:

1 {

2 "/api/batteries/": {

3 "GET": null,

4 "POST": [

5 {

6 "serial_number": "zdaz6d51",

7 "battery_name": "ufwo0sf6",

8 "weight": 6671.295,

9 "capacity": 776000,

10 "original_power_capability":

776000,

11 "expected_endoflife": "2027-02-15",

12 "manufactured_date": "2023-02-15",

13 "height": 3025.14,

14 "width": 3,

15 "length": 8888,

16 "manufactured_city": "string",

17 "manufactured_street": "string",

18 "manufactured_number": 2147483647,

19 "manufactured_zipcode": "string"

20 }

21]

22 },

23 "/api/batteries/{id}/": {

24 "GET": null,

25 "PUT": [

26 {

27 "serial_number": "cmqp0bcj",

28 "battery_name": "wfi1gw01",

29 "weight": 6400.85,

30 "capacity": 7850000,

31 "original_power_capability":

7850500,

32 "expected_endoflife": "2029-03-15",

33 "manufactured_date": "2022-12-01",

2Successful status codes include: 200, 201, 204
3Includes: True Positive (we have a valid input and successful status), True Negative (we have an invalid

input and unsuccessful status), False Positive (we have an invalid input and successful status), False Negative
(we have a valid input and unsuccessful status)

99

34 "height": 3100.25,

35 "width": 5,

36 "length": 8700,

37 "manufactured_city": "Chicago",

38 "manufactured_street": "Lake Shore

Drive",

39 "manufactured_number": 500,

40 "manufactured_zipcode": "60611"

41 }

42],

43 "PATCH": [

44 {

45 "serial_number": "fsj67mqx",

46 "battery_name": "m9owrafc",

47 "weight": 6420.12

48 }

49],

50 "DELETE": null

51 }

52 }

INVALID INPUT:

1 {

2 "/api/batteries/": {

3 "POST": [

4 {

5 "serial_number": "zl4xkln9",

6 "battery_name": "

uwgvizkongdfogdfsngoisdfghdpijj

7 ghdfsogudfshgpsidfugjsdfhgpudfgd

8 fhsgipusdfjhipudfsjghdsfipugjhdf

9 siupgdfsjghdsfuijgkhdsfipugjdkfh

10 gpifsdujghsdfiughdfiugfdspuidsiy

11 euwgvizkongdfogdfsngoisdfghdpij

12 jghdfsogudfshgpsidfugjsdfhgpudfg

13 dfhsgipusdfjhipudfsjghdsfipugjhd

14 fsiupgdfsjghdsfuijgkhdsfipugjdkf

15 hgpifsdujghsdfiughdfiugfdspuidsi

16 yeuwgvizkongdfogdfsngoisdfghdpi

17 jjghdfsogudfshgpsidfugjsdfhgpudf

18 gdfhsgipusdfjhipudfsjghdsfipugjh

19 dfsiupgdfsjghdsfuijgkhdsfipugjd

20 kfhgpifsdujghsdfiughdfiu",

21 "weight": 5000.754353,

22 "capacity": 650000,

23 "original_power_capability":

650000,

24 "expected_endoflife": "2028-06-20",

25 "manufactured_date": "2022-08-10",

26 "height": 2800.5,

27 "width": 5,

28 "length": 7500,

29 "manufactured_city": "New York",

30 "manufactured_street": "5th Avenue"

,

31 "manufactured_number": 120,

32 "manufactured_zipcode": "10001"

33 }

34]

35 },

36 "/api/batteries/{id}/": {

100

37 "GET": null,

38 "PUT": [

39 {

40 "serial_number": "zl4xkln9",

41 "battery_name": "

42 vaiuvaipuefgaipuvbaipuuwgv

43 izkongdfogdfsngoisdfghdpijj

44 ghdfsogudfshgpsidfugjsdfhgpudfgd

45 fhsgipusdfjhipudfsjghdsfipugjhdf

46 siupgdfsjghdsfuijgkhdsfipugjdkfh

47 gpifsdujghsdfiughdfiugfdspuidsiy

48 euwgvizkongdfogdfsngoisdfghdpij

49 jghdfsogudfshgpsidfugjsdfhgpudfg

50 dfhsgipusdfjhipudfsjghdsfipugjhd

51 fsiupgdfsjghdsfuijgkhdsfipugjdkf

52 hgpifsdujghsdfiughdfiugfdspuidsi

53 yeuwgvizkongdfogdfsngoisdfghdpi

54 jjghdfsogudfshgpsidfugjsdfhgpudf

55 gdfhsgipusdfjhipudfsjghdsfipugjh

56 dfsiupgdfsjghdsfuijgkhdsfipugjd

57 kfhgpifsdujghsdfiughdfiu",

58 "weight": 50.754353,

59 "capacity":

65054325342523534254524000,

60 "original_power_capability":

650000,

61 "expected_endoflife": "2028-06-20",

62 "manufactured_date": "2022-08-10",

63 "height": 2800.5,

64 "width": 5,

65 "length": 7500,

66 "manufactured_city": "New York",

67 "manufactured_street": "5th Avenue"

,

68 "manufactured_number": 120,

69 "manufactured_zipcode": "10001"

70 }

71],

72 "PATCH": [

73 {

74 "serial_number": "c5axt2qj",

75 "width": 5,

76 "manufacturer": 200,

77 "battery_name": "n9inbrba",

78 "manufactured_city": "London",

79 "original_power_capability":

7750500

80 }

81],

82 "DELETE": null

83 }

84 }

101

4.2.2 Experiment 1: Normal Load Testing

Methodology

For the first experiment, we tested the system under normal load. More specifically, we
implemented a testing scenario where we had from the get-go 5 concurrently running VUs
and they run 4 stages in total.

During the first stage, for the duration of 1 minute one iteration (full experiment) was going
to be executed every 1 second for every VU. The second stage featured the retention of the
number of VUs but it run 2 iterations for the duration of 2 minutes. The third stage scaled
to 5 iterations per VU (again for the same number of VUs) for a duration of 1 minute.
Finally, for 1 minute we have the stage of ramping-down with no additional requests being
made but ongoing requests are allowed to finish.

An overview of the experiment can be seen below. The orange time series represents the
rate of failed requests (measured in request/s), the blue represents the response time value
(measured in milliseconds), the yellow represents the rate of requests made (requests/s) and
the green represents the number of the available Virtual Users.

Figure 4.1: Experiment 1 - Overview

Results

Figure 4.2: API - request rate

102

Figure 4.3: Batteries endpoint - response time

Figure 4.4: Modules endpoint - response time

Figure 4.5: Cells endpoint - response time

103

Figure 4.6: EIS endpoint - response time

Figure 4.7: Measurements endpoint - response time

Figure 4.8: All endpoints get all method - response time

Experiment 1 Iterations Concurrent Virtual Users

Input 1 (Valid Input) 5721 5

Input 2 (Invalid Input) 6072 5

Table 4.4: Experiment Parameters

104

API validation confusion matrix Valid Input Invalid Input

Valid output 5354 (True positive – TP) 3 (False positive – FP)

Invalid output 367 (False negative – FN) 6069 (True negative – TN)

Table 4.2: API Validation Confusion Matrix

Metric Value

Accuracy 96.86%

Misclassification 3.14%

Precision 99.94%

Sensitivity 93.58%

Specificity 99.95%

Table 4.3: Performance Metrics

4.2.3 Experiment 2: Heavy Load Testing

Methodology

In this experiment, the system is going to be inspected under much heavier than normal use.
Namely, we have two stages where in the first stage the system gradually scales to 25 VUs
over a period of 1 minute. During this period an for every period there is no set number
of iterations, but the VUs conduct as many of them as they can. Then for 2.5 minutes the
system retains the same number of Virtual Users. Finally, the system is given 30 seconds
grace-period to finish all the ongoing requests before it terminates.

An overview of the whole second experiment can be seen below.

Figure 4.9: Experiment 2 - Overview

105

Results

Figure 4.10: API endpoint - request rate

Figure 4.11: Batteries endpoint - response time

Figure 4.12: Modules endpoint - response time

106

Figure 4.13: Cells endpoint - response time

Figure 4.14: EIS endpoint - response time

Figure 4.15: Measurements endpoint - response time

107

Figure 4.16: All endpoints get all method - response time

Experiment 2 Iterations Concurrent Virtual Users

Input 1 (Valid Input) 5082 25

Input 2 (Invalid Input) 11789 25

Table 4.5: Experiment Parameters

API validation confusion matrix Valid Input Invalid Input

Valid output 4465 (True positive – TP) 3 (False positive – FP)

Invalid output 617 (False negative – FN) 11786 (True negative – TN)

Table 4.6: API Validation Confusion Matrix

Metric Value

Accuracy 99.98%

Misclassification 3.81%

Precision 99.93%

Sensitivity 87.80%

Specificity 99.98%

Table 4.7: Performance Metrics

108

4.2.4 Findings

Confusion Matrix

While looking at the confusion matrix of the two experiments, there is some key takeaways
and things to consider for the future use and development of our platform.

Firstly, we notice that even though accuracy is very high in both cases its is not perfect.
This means that in some cases we expected certain results, but we got wrong ones. By
taking a look at the failed requests, we notice that most failures that stem from POST
requests provide subsequent failures to PATCH, PUT and DELETE methods as our tests
are conducted in a way that any record created by the test must be edited and deleted and
no other ones. And this is not the case for the endpoint measurements, which yields further
errors. Nonetheless, the spike in false negatives is not going to have a big effect on the
utility of our platform, since some data are not going to be available rather than wrong.
Furthermore, we utilized a second way of communication with the Mosquitto Broker and
logging failures with Python loggers so this will make it very easy for us to recover the
loss data and maintain the consistency of the database. We also notice that the True
Positives in the heavy load experiment is comparable to the True Positives of the normal
load experiment. This is because our platform cannot process much more requests at the
same time, therefore it hits a ceiling. But the virtual difference in the accuracy, which is
quite significant (3.12%), is mostly attributed in the failure of the system to live up to the
high demand and since true negative cases are much faster to process and therefore more in
number, it is easier for us to think our platform is more accurate when we get more requests
when that is not the case.

We also notice that the rate of misidentifying an input for an invalid or valid falsely is quite
low, around the 3% mark. One key area to notice is that the mistakenly misinterpretations
of valid inputs as invalid is doubled from experiment 1 to experiment 2. Meanwhile, valid
input interpreted as valid input cases drops on the second experiment. This means that
because of the higher utilization of our resources, the system is unable to process the already
undertaken tasks and makes a lot of error that it wouldn’t make. This points to a load
balancing mechanism being quite beneficial.

As far as precision is concerned in both experiments, it is kept quite high. Meaning, our
system very rarely mistakes an invalid input to a valid one. This is all attributed to the
type checking and validator implementation of the Django ORM which flushes out any
inconsistencies with incorrect data.

We notice that our system is more sensitive by a factor of 5% as the system scales in
concurrent users. This is also attributed to the inability of the system to manage higher loads
of requests and therefore making mistakes with the existing requests because of timeouts as
well.

Finally, our system boasts high specificity marks around the 99,9 percentage. This also
attributes to the fact that the system can flush out easily any wrong information.

Performance Metrics

From an initial perspective of the API request rates of the two experiments (figure 4.2
and figure 4.10) we notice something strange. Even though the high load test experiment
has more VUs than the normal load test, the median requests per second sent appears to
be higher in experiment 1 than in 2. That makes sense if we think that the high volume
of demand for the resources of the system by the 2nd experiment clutters the cloud plat-
form, therefore being unable to process current request or receive request to its maximum
potential.

109

As far as the processing power of our system, we get a better view by comparing the response
time diagrams for each endpoint on both experiments. The first thing that we notice is
that for experiment 1 the average response time function is fairly linear with no visible
trend or frequent big deviations from the average. This is in line with our experiment
structure since we have fairly lower number of VUs therefore a manageable amount of
requests leads it way to the API. More importantly, for the analytics endpoints, we notice
that the average response time is around 250 milliseconds(ms). Meanwhile, for experiment
2 we notice an evident upwards trend for the average response time for most endpoints
with the sole difference of the batteries endpoints were at first the average response time is
fairly uniform with an upwards trend on the second part and a return to uniformity for the
third part. The upwards trend is very well in line with our experiment with is increasingly
putting more weight on the system with the gradual increase of VUs and limitless amount
of iterations per second possible. The response time for the measurements endpoints still
remains in the ballpark of 300 ms and the EIS endpoints is around 1 second.

In comparison, all response times for management endpoints in experiment 2 seem to be
2 to 4 times higher than their counterparts. The measurements endpoint response times
remain pretty much the same while the EIS response times scales up to 5 times higher.

Last but not least, we notice that the most intensive endpoints include all the endpoints
that implement the GET all HTTP method. For up to 5 concurrent users most endpoints
respond within a second while the slowest endpoint (/api/cells) responds in 5 seconds. The
view is totally different when the system scales to 25 concurrent users where responses
vary from 1 second up to 1 minute with the most frequent being around 30 seconds. This
method get all the records of the requested table, therefore it is normal to be that intensive
in processing power and in turn latency.

Key Takeaways

Considering that the main use of our platform is going to include mostly POST requests
to analytics endpoints, with a frequency of 1 request per second, from the Battery Systems
(that amount to a total of 4) and GET requests from 3rd party software systems that run
real time analytic algorithms our system is going to live up to the specifications that are
set.

Our system implements a messaging solution retaining information from the request of the
BS’s that have failed, therefore there is no question that even in the case of our system
recognizing valid inputs as invalid the integrity of the main function of the system will
remain and total consistency of the database can be very easily implemented in the future.

Special attention must be given when it is required by the system to handle larger loads,
since the key points of interest will not be met, leading to an inconsistent state of the system.
This will be remedied easily by the horizontal scaling of the system resources and inclusion
of a load balancer.

110

Chapter 5

Conclusions

111

5.1 Work Summary

During the course of this thesis, we undertook the task of creating a cloud platform capable
of storing data according to specifications given regarding the consistency and structure of
the data, the response times, security, interoperability and fault tolerance.

We began by stating the problem, analyzing its importance and putting our application into
the perspective of the whole Battery2Life project. Then we laid out the specifications for our
platform regarding the data management, the REST API structure and the architecture of
the whole solution. More specifically, our solution required the interconnection and correct
implementation of the components’ server, database, publish-subscribe broker and activity
logger.

Following that, we proceeded with the implementation of the solution by organizing the data
into data models with the help of Django ORM, organize our server request handlers into
ModelViewSets with the help of Django Rest Framework, documented our API with Swagger
UI, utilized docker container to execute the application in a secluded and stable environment,
implemented system monitoring with Python loggers and set up all the necessary security
protocols including CSRF, CORS, authentication and authorization with the help of various
python modules.

Additionally, we laid out the schemes for the methodical and meaningful testing of our
platform where under normal circumstances we establish a 96.86 percentage of accuracy,
99.94 percentage of precision and response times well below the crucial limit of 1 second.
Ultimately, in order to ensure the Quality of Service(QoS) of our platform we also conducted
a heavy load test with 25 concurrent users where we determined that the accuracy and
precision metrics maintained their values with 99.98% and 99.93% respectively and response
times were kept within QoS acceptable values.

Although our platform works very well under normal circumstances, it isn’t bulletproof to
all scenarios. From the last experiment we deduced that when the number of user scales,
the response times and incorrect responses also have an upwards trend.

5.2 Future Work

Software systems are a dynamic entity and always have a tendency to evolve along with the
system requirements over time.

To name a few possible evolutions, if we consider that our platform will receive at least one
POST request per second and the request will contain data in the ballpark of 500 bytes,
then we can easily deduce that per month the system is going to be required to handle and
store approximately 1.3 terabytes of data. For this reason, further consideration should be
given to the architecture of the application regarding the storage of all of those data as well
as the management of the communication of all of these data with 3rd parties.

When handling such amounts of data, even if the tiniest of probabilities that something’s
is going to go wrong exists, this means that things are going to go wrong quite often. For
this reason, special care needs to be given to implement the handling of HTTP requests
(especially POST) by the Mosquitto broker. Furthermore, several protocols, such as han-
dling failed status of responses with care in order to ensure the consistency of the database,
should be put in place.

For the availability and scaling of the system, a configuration that deploys the services in a
Kubernetes cluster should be considered.

112

Furthermore, with the mature and implementation of the Digital Battery Passport admin-
istrators should update and extend the schema of the database with useful information
derived from the real deployment of the system virtually at will.

Last but not least, with the integration of the system into the general solution of Battery2Life
future maintainers should consider real world feedback and enhance the system with features
in an agile way.

113

Bibliography

[1] European Commission and Project Consortium. Battery2life — horizon-cl5-2023-d2-01:
Description of action (doa). Grant Agreement No. 101137615, Unpublished document,
December 2023.

[2] The Battery Passport Initiative. Battery passport technical guidance, 2024. Accessed:
2025-02-18.

[3] The Battery Pass Consortium. Battery passport content guidance, December 2023.
Version 1.1.

[4] Battery Pass Consortium. 2023 battery passport content guidance. Technical report,
Battery Pass Consortium, 2023.

[5] Battery Passport. 2024 battery passport value assessment, 2024. Accessed: 2025-02-20.

[6] Mattia Gianvincenzi, Marco Marconi, Enrico Maria Mosconi, and Francesco Tola. A
standardized data model for the battery passport: Paving the way for sustainable
battery management. Procedia CIRP, 122:103–108, 2024.

[7] DIN and DKE. Din dke spec 99100: Technical specification for the eu battery passport,
2024. Accessed: 2025-02-20.

[8] CSEM and EPFL. Wifi module documentation. Battery2Life — HORIZON-CL5-2023-
D2-01, Grant Agreement No. 101137615, Unpublished document, November 2024.

[9] ICCS. D2.3: Bms cloud platform (version 1.0). Battery2Life — HORIZON-CL5-2023-
D2-01, Grant Agreement No. 101137615, Unpublished document, December 2024.

[10] GeeksforGeeks. Monolithic vs microservices architecture, 2023. Accessed: March 6,
2025.

[11] IBM. What is a rest api?, 2023. Accessed: 2023-02-26.

[12] Django Software Foundation. Django 5.1 documentation, 2023. Accessed: 2023-02-26.

[13] Django REST Framework. Django rest framework documentation, 2023. Accessed:
2023-02-26.

[14] Simple JWT. Simple jwt documentation, 2023. Accessed: 2023-02-26.

[15] ITservices Expert. Django security best practices: Fortifying your web application,
2022. Accessed: 2023-02-26.

[16] Django Software Foundation. The django admin site, 2023. Accessed: 2023-02-26.

[17] Django REST Framework. Routers, 2023. Accessed: 2023-02-26.

[18] Simeon Emanuilov. Is django still relevant in 2024?, 2024. Accessed: February 24,
2025.

[19] Django REST Framework. Viewsets, 2023. Accessed: 2023-02-26.

114

[20] Swagger. Swagger ui, 2025. Accessed: 2025-02-26.

[21] PostgreSQL Global Development Group. PostgreSQL Documentation. 2022. Accessed:
2024-02-24.

[22] Databricks. Acid transactions, 2025. Accessed: 2025-02-26.

[23] Django Software Foundation. Django class-based view mixins, 2025. Accessed: 26-Feb-
2025.

[24] Docker Documentation. Docker Documentation, 2025. Accessed: 2025-02-26.

[25] Docker Inc. Docker hub, 2025. Accessed: 3 March 2025.

[26] Git Documentation. Git Documentation, 2025. Accessed: 2025-02-26.

[27] Scikit learn Developers. Scikit-learn: Machine Learning in Python, 2023. Documenta-
tion on Classification Metrics.

[28] Betsy Beyer, Chris Jones, Jennifer Petoff, and Niall Richard Murphy. Site Reliability
Engineering: How Google Runs Production Systems. O’Reilly Media, 2016.

[29] k6 Team. k6 Documentation, 2023. Official documentation for the k6 load testing tool.

[30] Grafana Labs. Grafana Documentation, 2023. Official documentation for Grafana
monitoring and visualization.

115

	Introduction
	Problem Statement
	The Battery2Life (B2L) Horizon Project
	The Battery2Life Cloud Platform

	System Model
	Data Management System
	Digital Battery Passport
	Database Design Logic

	REST API Endpoint Structure
	Analytics
	Battery Management
	Authentication
	Endpoints Summary Table

	System Architecture
	System Requirements
	System Components
	Use Cases

	Implementation
	Component Communication
	REST Endpoints
	Message Broker - Mosquitto MQTT

	Server - Django/Django Rest Framework
	Authentication
	Security
	User Management
	Router
	Controllers - ViewSets

	REST API Documentation - Swagger UI
	Performing HTTP requests

	Database - PostgreSQL
	Database Django ORM
	Database Configuration
	Database Migrations

	Activity Logging - Python/Django Loggers
	Python Logging Setup

	Development Tools
	Execution Environment - Docker Containers
	Version Control Management - Git

	System Practical Instructions
	Project file structure
	Basic Usage Instructions

	Results
	Testing Methodology
	Testing philosophy
	Testing Solution
	Testing Validity/Performance
	System Under Test

	Testing Results Presentation
	Testing Implementation
	Experiment 1: Normal Load Testing
	Experiment 2: Heavy Load Testing
	Findings

	Conclusions
	Work Summary
	Future Work

