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HepiAnyn

To grounded segmentation o€ 1aTp1KEG £1kOVEG ival pia 1Siaitepa anattnTKy EGAPHOYT),
KaBog arattel ouvoda 5edop€vev TTIOU ATTOTEAOUVIAL A0 €1KOVEG, MAOKEG KAl KEIEVIKES
neptypadég yla kade pdoka KAt 10 omoio 8e ouvavidtal ouxvd. Ia wmyv emniAuvon autou
ToU mPoBANpATog, ¥pnotpornolovpe peydda povieda 'Opaong-TAwooag (LVLMs) oe ouvd-
UAOHO JE VIETEPHUIVIOTIKOUG aAyopifpoug yia v mapaywyl OV KEPEVIKOV MEPTYPAPOV
yla ka9e paoxka. ‘Ocov agpopd to grounded segmentation, avarntuooetal éva ouotnpd 1o
ortoio aroteAeitatl arno 1o GroundingDINO kat to SAM2 1} to Med-SAM2 and ta oroia povo
10 GroundingDINO esrubéyxetal mepetaipn otoxeupévy exknaibeuvon. To ouvodo Sedopévev
ou Ya YpnopornoinOet ovopdletat RAOS kat amotedeitat arno £1KOvVeG UTTOAOY1OTIKYG TOHO-
ypadiag (CT) kat eikdveg ouvOeTIKNG payvnTikng topoypagiag (synthetic MRI). Ta mepa-
pata rmou rapouaotddoviat a§lodoyouv v EyKUpOTTa TV anavirjoeov tou LVLM LLaVA-Med
Katl 11§ ermdO0El§ TOU MPOTEWVOPIEVOU ouotnpatog dokipadoviag S1apopeg oTpATNYIKEG €100-
80U 1000 0t TIAPOHOIEG EIKOVEG 000 KAl OE £1KOVEG EKTOG KATAVOHUNG OUVOAOU ekmaidsuong.
Ta anotedéopata katadeikvuouv nwg 1o LLaVA-Med 6ev eivat adioruoto yia v mifpn
MAPAY®YH TV MEPYPAP®V TOV HAOKQV, AOY® NG IEPLOPIOPEVIG KPITIKNAG TOU 1KAVOTTAG.
EmnpooBeta, 10 mpotetvopevo ouotpd ITAPOUCIAdEl 1KAVOITOU|TIKEG EMIOO0ELS O EIKOVEG
TIOU aVvHKOUV otV id1a katavoprn pe auvtn g exnaideuong, Aapbdavoviag uroynv Kat T10Ug

EYYEVEIG TTEPLOPIOIOUG TOU.

Aégerg KAeba

Iatpikn) anewkovion, Fewwpévn Katatpnon, MeydAa poviéda 'Opaong-TAdooag, Fine-
tuning, GroundingDINO, SAM2, MedSAM2, Mayvntikr| topoypadia, YITOAOY1OTIKY] TOHO-
ypagpia
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Abstract

Grounded segmentation of medical images is a challenging task requiring expert-
annotated datasets, which are scarce. To address this problem, we employ Large Vision-
Language Models (LVLMs) as well as deterministic algorithms to generate the missing
textual descriptions for organ masks. For the grounded segmentation task, a pipeline
is developed consisting of GroundingDINO and SAM2 or Med-SAM2 with only Ground-
ingDINO being fine-tuned. The dataset used for this study is RAOS, which includes CT
scans and synthetic MRI images. Our experiments assess the accuracy of LLaVA-Med’s
responses and the performance of the proposed fine-tuned pipeline to various prompting
strategies on both in-distribution and out-of-distribution images. The results indicate
that LLaVA-Med alone cannot reliably generate the textual descriptions due to its limited
reasoning ability. Additionally, our results show that the proposed pipeline performs well

within the closed setting in which it was applied while acknowledging inherent limitations.

Keywords

Medical Imaging, Grounded Segmentation, Large Vision-Language Models, Fine-Tuning,
GroundingDINO, SAM2, MedSAM2, MRI, CT
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Chapter E

Extetapévy IepiAnyn ota EAAnvika

1.1 Ewayoyn

Ztnv teXvnTr) vonpoouvn ta foundation poviéda naidouv kabopiotiko podo, kabwg Ppiok-
oUV eQappoyn) oe TI0AAOUG ToHElg, Orwg 1 enegepyacia Quoikrg yAwooag (NLP) kat i 6paon
untoAoylotev. Aoye g 1810tntag toug va eivat yevikeuopa, n dnpioupyia toug eivat akpiPn
Kat Xpe1adoviatl apKeToi UroAoylotikoi mopot Kat peydAa ouvolda dedopévav. 'Opng pHEo® Tou
fine tuning propovv va epapooTouV ot TTOAU 1861KEG EPAPIIOYES OTIRG 1) 1ATPIKY] ATTEIKOVIOT)
€ PIKPOTEPO KOOTOG Ao auto g eKaideuorg Toug.

Ztnv 6paor) unoAoylot®v rmoAAd poviéda onwg kat 1o U-Net [6] Baoilovial oe ouveMKTiKa
veupavikd diktua (CNNs). Me v eppavion g apXitektovikg transformers dnpioupyr9nkav
erurmAéov povieda pe véeg duvatdinieg. e autd ouykatadéyoviat to Segment Anything
Model(SAM)[7] kat o 61adoxog tou SAM2[2] ta oroia MPAyPAToroloUyV KATATHN 0L EIKOVEV
pe PBdon karolo onpeio, paoka n bounding box. 'Eva dAdo mapdadeiypa poviédou ng
apxttektovikrg transformer eivat to GroundingDINO[4] to ortoio aviyveuel avukeipeva e
Baon pa kepevikn reprypadr). Mia aAAn katnyopia poviédev eivat ta yveotd peydada pov-
1¢da 'Opaong-TAwooag ta oroia eregepyadoviatl 1000 OITTIKY] 000 Kal YA@OOIKY TAnpodopia
onwg 1o large language and vision assistant (LLaVA)[1] to omoio prnopel va amavidel o
EPWTHOEIS AVOLXTOU TUTIOU TTOU A@OPOUV TO TEPlEXOHEVO piag ewkovag. ‘'OAa ta maparndve
erudExovial mePAtteEP® eKMAiIBEUOT KAl PITOPOUV EPAPHIOCTOUV HE £va OXETIKA PIKPO KOOTOG
o€ oro1ovdrIIoTe TOopEaL.

E1d1kdtepa otov T0p€a TG 1aTpKLg Anekoviong Kat oty grounded katdtpnorn opyavev,
10 oroio eival avilkeipevo authg g epyaciag, ta ouvoda Sedopévev eival omdavia Kat
ortotadrjmote 1atpky rminpogopia Ya mpérnet va sivat rpoidv e181kov yia Aoyoug agloruotiag.
'OAa ta ripoavadepBEVIa arotedouv MmePloploTKoUg MAPAYOVIES V1A TV AVAITIUSH VOGS 110V-
1¢A0U 10 ortoio arattei Keipevo oG 10060 yia va PAyPATOno)oel KAtdTinorn opyavev. Ma
v emiduon tou mpoBAnpartog, npoteivoupe pia pédodo 1 omoia propei ev pépel va pag
araAAdgel ano v avaykn mapayoyrs tov KEIPEVIKOV Meptypadav ard évav eildiko. It
autd 1o oxkoro da xpnotpornoirjooupe 1o LVLM LLaVA-Med[8] to oroio 9a petagépst v
yveoon tou oto GroundingDINO. To ouUotnpa Aouov rou da avarttuioupie ya to grounded
segmentation aroteAeital arno to GroundingDINO kat to SAM2 11 Med-SAM2[3]. 'Oco yia
10 ouvolAo Sedopévev Sa xpnopororjooupie 10 RAOSI5, 9] 1o oroio arotedeital and e1kOveg

OUVOETIKNG PAYVNTIKAG KAl UTTOAOYIOTIKIG TOpoypadiag e TG aviiotolxeg PAOKEG 0PYAVOV
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Chapter 1. Extetapévn [epiAnyn ota EAAnvika

XWPIG va urapyouv Kepevikeg rieptypadeg yla auvtég. Ia va tig mapadoupie 9a xpnoomnotr-
ooupe to LLaVA-Med kat to povtédo rou 9a exknatdeutel Ya eivatl to GroundingDINO.

Yta melpdpata rmou akoAouBouv Sa Xprolponor)coupE ®G PETPIKEG TNV TOUT] IIPOG TNV
évaorn (IoU), v axkpifeta (precision), to dice score coefficient kat to wall distance. Emiong,
Ya doxkipaoctouv Sidpopeg HopPeg £10060U WG MPOG TO Kelpevo Kabwg Katl Sa mpaypatonot-
nBei pia ouykplon petagy tou apyikou GroundigDINO pe 10 eKmabeupévo Onwg Kat tou
SAM2 e 1o Med-SAM2. TéAog Sa petpriooupe TG emdOoElg T0U EKMAISEUPEVOUG POVIEAOU

0€ €1KOVEG EKTOG KATAVOHILG 0UVvOAou dedopévav ekmnaidsuong.

1.2 YmnoPadpo kat oxetikri BiAroypapia

1.2.1 'Opaon YnoAoyiot®v

H opaon unoloyiotev eival €évag KAA6og tng TEXVNTS VONHOOUVNG TIOU EMMITPETIEL OTIG
Hnxavég va avaluouv kat va eregepyadoviatl onuiky rinpodopia. O kAdadog autdg avart-
TUOOETAL PE YP1Yopousg pubpoug 1dlaitepa peta v epdavion g Pabidag pdadSnong, Aoyw
poviedev nou Paocifovial oe CUVEAIKTIKA VEUP®VIKA OIKTUA KAl OtV apXlIEKTOVIKI trans-
former. TeAeutaieg egeAi§elg €xouv 0dnyroet otV avartudn poviéAev Ta ornoia propouv va
eregepyaoctouv 1000 OITtiKY| MAnpogopia 0oo kat yAwooa ta Aeyopeva large vision language
models (LVLMSs).

Mepika arno ta 9epedindn poPAnpata rou rpoortadel va ermAvcoet 1] 6pact) UTIOAOY10TOV
elval 1 KAt yoplomoinon £1KOvag, 1 avayvoplon AVIIKEIPEVAV, 1) KATATUNOoL €KoOvag, 1)

AAVI oL EPWINCERDV ITOU A@OPOUV £1KOVEG Katl 1o grounded segmentation.

H katnyoplomoinon ekovag sivatl éva nipoPAnpa oto oroio undpyet pia Aiota rKAAcE®V
Kat ka9e ewkova mpénel va avuoroxndel oe pia kKAaor. '’ autd 1o Adyo ot e1kOveg ouxva
anekovifouv éva Povo aviikeipevo yla va pel@9douv ot rmdavotnieg va EPmePIEXoVIal otV

€1KOVA aviikeipeva dU0 1 mep1000TEP®V KAAOEDV.

H avayvepion avukeipévou eivatl éva aAdo ipoPAnpa oto oroio Sivoviatr @g €icodot oto
HOVIEAO pia €1KOVA KAl TO OVOLd TOU AVIIKEIPIEVOU. ZTOXO0G £ival 1 mapay®yr) evog bounding
box 1o oroio Sa mepPdAdel 1o {nrovpevo aviikeipevo. Ze KAMOlEG MEPUTIOOELS PITOPel va
UTIAPX0UV Maparndve £P@avicelg t1ou 610U aviKeevou oty €1KOva Kat TOTE anartouviatl

10ap1dpa bounding boxes.

Zto ipoBAnpa tou Grounded Segmentation otdxog €ivat 0 EVIOIMIOHNOG £€VOG AVIIKEEVOU
oe pia ekova pe axkpifela miged. Qg ei00dog Hiveral oto POVIEAO pia £1KOvVA, Pia KEPEVIKT)
MEPLYPAQT] KAl TIAPAYETAl 1] PAOKA TOU.

H andvinon epotrjoemv ou agopouv eikoveg (VQA) €xel wg 0ToX0 TV IAPAy®YT) ITANPOo-
@OopP16V rou Ya araviovv pe akpifela oty epadtnon tou Xprotn. AnAadsn to poviédo avapéve-
Tat va e§Ayel ta Xprjotia XapaKPloTtiKA tng E1KOVAG VA KATAVOTOEL TNV EPpWTN 0N TOU XPHoth
KAl PEO® TRV YVOOE®V TIOU S1a0€Tel 1] apatnprjoe®v ou otnpidovial otnv eikova va dmoet

pila owotr) anavinon.
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1.2.2 Zyxeuxa Moviéda

Maoxka

H pdoxka evog avikeppévou otrnv 6pact) UTIOAOY10T®V £1val 10 0UVOAO TV ITEEA TTOU Xp1ot-
HOITo10UVIal KAtd TV MPOoBO0Ar TOU AVIIKEIIEVOU KAl T0 {exmpidouv arod 1o @ovio. To oxnua
piag pdokag eivat tuxaio kat e§aptdral and rmapdyovieg Onwg 10 OXHHA TOU AVIIKEIPNEVOU

KA1 1] OITTIKY] YoVid TIPOBOANG.

Bounding Box

To bounding box eivatl éva opSoywvio rapaAindoypappo, to oroio nepiPdAAel KAoo
AVTIKEIPEVO. Ze auth] ] PeAET o1 TIAEUPEG Tou da eival mapdAAndeg pe tov 0p1{ovilo Kat
tov kadeto afova g ewkovag. 'Eva bounding box riepiBdAdet akp1pog 10 avilkeipevo pe tyv
€vvola OTL Bev ePmePIEXETAl KA ypappn 1 otAn aro miged av kavéva arnod autd dev sivat

HEPOG TNG PACKAG TOU AVIIKEIILEVOU.

1.2.2 Iyxestira MovtéAa
LLaVA

To Large Language and Vision Assistant (LLaVA)[1] eivat éva povtéAdo 1o oroio 6Exetat
éva (euyapl €1kKOvVag KeEPEVOU ©G €10000 Katl mapdyel pia Kelpevikn anavinorn. To mpog
eriAduon npoéPAnpa kadopifetal kaSs @opd AMd TNV KEWEVIKI] £10060 TOU HOVIEAOU KAl 1)
antdvinon Baocifetal oy ekova.

To LLaVA ekntaidevUtnke oe éva instruction-following cuvolo 6edoiévav 1o oroio anoteAei-
1Al Ao £pWTNOElS Pe TG avtiotolkeg aravinoelg. To ouvolo debopévav dnpioupyndnke pe
) xpron evog kewpevikou GPT-4[10] oto omoio 669nke pia meptypadr) g £1KOVAG Kat €va
OUVOAO £PWTINOEWV TIPOG Artavinor]. Ol epETNoelg KAAUTIOUV £va €UPU PAcHd TIPOoBANPATOV
OMI®G artAr) oUTN oL, AETTTOPEPLG TTEPLYPAdI] Kal oUVOeTr oculdoylotiky). Me auto tov Tpormo
dnpoupynd9nKke Eva MOKIAOPoPPO oUVoA0 Sedoévev Kat 10 YA®oo1KoO poviédo GPT-4 petéd-
®oe Vv yveor tou oto LLaVA.

H apyutektovikn tou LLaVA (Figure 1.1) arotedeital amno €vav KEPEVIKO K1 £vaV OITTKO
kdkoront]. O KEWPEVIKOG KOSIKOTIOUTNG £lval £va TPO-eKMTAISEUPEVO YADOOIKO 110VIEAO
1o Vicunall1], eve o ormuikog kewdikorointng eivat to ViT-L/14[12]. 'Eva ypappiko erninedo
Xpnotporoteitat yia va petarpéyetl ta embeddings tou onuikou k@dikorowty) o pia ava-
napdotacn nou avtiotoixel ota embeddings tou KelpevikoU kedikorowntr. Ta diavuopata

TIOU TMTPOKUITIOUV ATIOTEAOUV TV £10060 £vog LLM 1o 01oio mapdyet Kat v andvinor).

LLaVA-Med

To Large Language and Vision Assistant yia tv Boiatpikr (LLaVA-Med)[8] eivat éva
poviédo pe 161a apyrtektoviky pe to LLaVA. H 6iagopd 10Ug £yKeltal OT0 YEYOVOS OTL TO
TIPAOTO €XEl eKTAOeUTEL TEPATEP® O €va oUVoAo Sedopévav To o1oio IpogpxeTal aro did-
(POPOUG KAABOUG NG 1aTpIKAG OMWG aKtiveg X, PAyVNTIKY Topoypadia, 1otodoyia, XovOpikr
nabodoyia kat urodoyiotikn topoypadia. H drabikaocia tng exknaideuong xwpidetatl oe Suo

otadua.
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Language Model _f¢

Projection W
rojection Z. H, *Hq

Vision Encoder X, Image Xq Language Instruction

Figure 1.1. Apyuektovikr tov LLaVA [1]

210 np®to otdadlo 0 OITKog Ked1Korout)g Kabwg kal ta Pdprn tou YA®OOIKOU HOV-
TEAOU Tapapévouv otabepd Kal avave®vovial Povo ta Bdapn 10U YPapHIKoU emIedou mou
nipoPfadouv ta embeddings g ekovag otov Xopo tov embeddings tou kewpévou. Auth 1)
dladikaoia £xel g otoXo Vv euBUYPAPPIon KEEVOU KAl £1KOvVaAg otV Blolatpiky Kabwg
KAl TNV €MEKTA0 Tou AeSIA0YIOU KAl g KATAVON oG TOU POVIEAOU 0§ IPOG TIG EIKOVEG.

Yo emdpevo otadlo xpnowponoteitat éva instruction-following cuvolo Sedopévev yla
Vv eKnaideuon 10U YA®OOIKOU HPOVIEAOU Katl tou ermrmedou npofoArng. Yrootnpifetal ot
10 PoviEdo €xel KaAég ermbooelg oe VQA ouvola Sedopévwv. TMapddautd yla mo e181keg
TIEPUTIWOELG UTIAPXEL AVAYKI TTEPAITEP® EKTIAISEUONG KAl OTIOG Kat 1€ dAAa large multimodal

models Kat auto To PoVIEAD TIAPOUo1Ael TIEPIOPIoHEVT KPITIKT] IKavotnta kat hallucinations.

Segment Anything Model 2 (SAM2)

To SAM2[2] eivatl éva Sepedwdeg poviedo 1o oroio givatl 1Kavo va TUNPATOIIO0EL av-
TiKelpeva oe e1kOveg Kat Pivieo. Aéxetal paokeg, onpeia fj bounding boxes wg ei0odo kat
mapdyel pla paocka. Te aut v epyaoia, 1o poviedo 9a Soxkpaotei oe Siobidotateg 1a-
TP1KEG e1kOveG pe bounding box wg €10060. H apxitektovikr] Tou poviélou aroteleitat amno
Evav KOOIKOTIONTY] £1KOVAG, KOOGIKOTIONTY] £10000U, KOSIKOTIOUTr] PVIING, ATTOK®S1KOITO1-
N pdokag, memory attention block kat memory bank (Figure 1.2).

O rodkomontg e1kOvag petacnuartidet ta visual data tokens oe embeddings. Xpnot-
poroet Masked Autoencoder[13] (MAE) pre-trained Hiera[14, 15] image encoder.

O kedikoroinong €10060u eivatl éva P€POG Tou PovieAou mou mapayet ta embeddings
e10080uU aro paockeg, onueia 1 bounding boxes.

O anokedikornoung pdaokag eival urnevbuvog yla v napaywyr mg packag Baocio-
pévog ota embeddings rou AapBdavet. AutO 1O TUARA TOU CUCTIATOS UITOPel va mapaget
roAAarAgg £§060UG Ot TIEPTIOOEIS apdilonpiag, aAdd poévo pia pdoka 9a dwbei oty £€0do
X@pig Kamola akopa £icodo mou va e€aleipel kade apponpia. Mia onuavukn diagopd tou
HE TO IPOINyoUHeVO Poviedo to SAM[7] eival Tt auto KATIOEG POPEG UITOPEL va Pnv rapaget
pdoka av 6ev eVIOITIoEL £YKUPO AVIIKEIPIEVO Yld KATATHNOT).

Y& autod 1o onpeio mpérnel va onpelndel g otav 1o SAM2 spappodetal og €1KOVEG Ol
oroieg eivat ave§aptnieg petau toug 6ndadr) Sev mpoxettatl yia Bivieo tote 1o cuotpa dev

KAVEL P01 TRV PNXAVIOHR®V PVIHNG IToU S1a9€Tel Kal CUPIIEPIPEPETAL aKPIPOG OTIRG TO
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1.2.2 Zyxeuxa Moviéda
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Figure 1.2. Apyuektovikr touv SAM2 [2]
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Figure 1.3. Apyusktovikn tou Medical SAM 2 [3]

SAM. ITapoAa autd, gpeig Paocifopacte oty eknaibeuorn 10U PoviéAou Tou otnpifetal oe Eva
€KTEVEG OUVOAO Hedopévav rmou arotedeital and 35.5 exatoppupila pdaokeg oe 50.9 x1A1adeg

Bivteo, to emovopadopevo SA-V.

Med-SAM2

To Medical SAM 2 (MedSAM2)[3] eivat éva poviédo rou avarntuxOnke yla katdtunon a-
TPIKOV EIKOVOV T000 0g U0 000 Kal ot 1pelg dlaotaoelg. Xpnotponolel g SepeA1ndeg poviedo
10 SAM2 K1 €ival TPOTIOMOPIEVO ATd auto oe apyitektoviky (Figure 1.3) kat fine-tuning.
Qg TPOG TV APXITEKTOVIKI 1] Siapopd £ykettal oto memory bank 1o omoio anoBnkevet ta
K tedevtaia o xpfioypa embeddings. 'Ocov agopa to dataset rou alorow)Onke yia 1o
fine-tuning autd nrav 1o One-Prompt dataset[16] pia ouAdoyn and dnpooing drabioma
datasets mou kaAumntouv oAAd modalities kat opyava. ‘OAa autd kaBiotouv 10 P1OVIEAO

YEVIKEUOII0 OE Katvoupla IpoBArjpiata e181Kd OToV TOpEA NG LATPIKNG.

Grounding DINO

To Grounding DINO [4] eival éva open-set object detector to omoio enefepyddetat Eva
{euydpt ekdvag kepévou wg eioodo katl mapayel oy €060 bounding boxes yia ta av-
TIKEPEVA TIOU TteplypadovIal otnv Kepeviky €icodo. Xapaxktnpidetat og open-set kabwg
N Kewpevikn €ioodog propel va 1o kateuBuvel va avayvepioet avikeipeva ou dev eivat
mapovta oto ouvolo dedopévev eknaideuong tou. Autr ) Suvatotnta Kabiotatal QKT Aoy®
tou modality fusion nou &1abétet 10 poviédo kat v orpatnyikev grounded pre-training.

H apyxtutektovikr) tou poviédou (Figure 1.4) amoteAeitat aro 6uo §iakpitovg KOS1KOIO-
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Chapter 1. Extetapévn IepidAnyn ota EAAnvika
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Figure 1.4. Apyuektovikn tou Grounding DINO [4]

Niég Kat évav anokmdwkorout). O image encoder xprnotporolet Swin Transformer[17],
eve o text encoder eivat turntou BERT(18]. 'Evag feature enhancer npaypatonotet to fusion
petady keyévou Katl e1kOvag Je ) Xprion tou cross attention. Ertiong, o language guided
query selector ermAéyet ta 1o oxetkd tokens g €1kOvag UNOAoyidoviag to E0RTEPIKO TOUG
ywopevo pe ta tokens tou kepévou. Tédog, o cross modality decoder eivatl unieubuvog ya

Vv apayoyr) v bounding boxes.

1.2.3 Iatpikn Anelrovion

H 1atpikn aneikovion €xel évav onpavilko podo otny Bloiatpiky) épeuva pe epappoyeg
OTI®G 1] KATATUNOL OPYAV®V, 1] AUTOHATOIIONHEVE §1ayveor Katl 0 oxedlaoog rmepibadyng.
'‘Ogov a@opd TV KATATHN 0T 0OPYAVRV £XEL TIPOOEAKUCEL TO EPEUVITIKO EVO1APEPOV 1€ TIOAAEG
nipooeyyioelg Bablag padnong. Enpavuxo napadetypa eivat to U-Net[6] pe kamoleg rap-
aAdayég tou [19, 20, 21]. Emiong Transformer-based apyitektovikeg €xouv avartuyBet yia
TV AVIIPETOITION auTou Tou rpoPAnpatog[22, 23].

Edwkdtepa pe 1o Segment Anything Model (SAM) érou €xouv yivel ToAAég mpoortd-
Yeteg fine-tuning [24, 25], prompting [26] kat adapter-based napepBaoceig rmou evioyUouv
TG ermbooelg Katatunong[27]. Me tv epgavion tou SAM2 10 EPEUVITIKO EVO1APEPOV ETTEK-
1dOnKe Kal oty IPLodldotaty KATatinon He ) XPrnon oV PNXaviopuov Pviing mou mpoo-
QEPEL.

Mia aAAn kateuduvon epeuvav agopd multimodal ipooeyyioelg ITOU XN O1HOIIO10UV TOC0
opaon 000 kAt yAwooa. LVLM poviéda éniwg to CLIP[28] £éxouv Xpnoipornoindet yU autod 1o

okoro[29].
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1.2.4 Grounded Segmentation/Open-set object Detection

Tavutoxpova adla LVLM onwg to LLaVA[1] £¢xouv mpooappootel otov topéa tng Proia-
1pkng (LLaVA-Med[8]) yia va priopouv va avaiuouv 1atplkég £1KOVEG KAl va AIaviouv o€

armA£g EPETNOELS 1] AKOPA KAl vad TEPLYPADOUV AVOPAAIEG TTOU TTAPATI|POUV.

To MIU-VL [30] evoopatovel YA®ood Kal Opacr] yld TOV €VIOIONO Kdl TNV IAPay®yT)
evog bounding box otov X®PO NG 1ATPIKLG AMEIKOVIONG. Zinv €icodo tou Sivetat povo 1o
OVOa TOU AVIIKEPEVOU ITPOG EVIOTIONO KAl MAPAYETAL AUTOPATA Pid KEEVIKY TIEPLYPAPT)
1 omoia Ya mepiEXel MANPOEPOPieg OIS TO XPWHA, TO OXI A Kat 1) tornodeoia tng {nroupevng
ovtottag. To oUvoAo TV MANPOPOPIMV ATTO TO KEIPEVO KAl TNV £1KOVA Td eMegepyaletal £va
VLM kat niapayet éva bounding box. H épesuva autr] €xel og otoxo va aglodoyroet Katd
mooo éva pretrained VLM prmopei va yevikeUoel 0€ 1ATPIKEG €1KOVEG Otav tou Sivovial ot

KataAAnleg eicodot kat rmooo 1o fine-tuning pmnopei va PeAtiwoet 11§ edO0ELG £VIOITIONOU.

To MedLAM [31] eivat éva 3D foundation poviéAo otov XHpo g 1atplKng AreElKOVIoNS
1KaVvO va eVIoTtiel opyava napdayoviag tpiodiactata bounding boxes. AnoteAeital and ocuve-
AKTIKO KOOIKOTIOUTL) KAl AMTOK®SKorowt] Kabwg katl and nodverinedo perceptron kat
€xel exntaldeutel oe 16 ouvoAa dedopévav ocupneptdapbavopévav 14,012 unoAoylouKkov 10-
poypagiwv. 'Otav xprnowponoieital oe cuvéuaopo pe 1o SAM, 1o erovopalopevo MedLSAM
€lval 1Kavo va KATatpnoel Eva opyavo apayoviag Katl TNy avtiotolxn 1plodidotatn paoka.

H povn anartovpevn eiocodog eivat ) KAAon otnv oroia avikel 10 6pyavo.

Ty 161a epyaocia yla v napaynyr) ouykpiotpov anotedeopdtov pe to MedLAM otov ev-
TOTIIOHNO 0PYAV®V Xprotponofnke éva pretrained 3D ResNet50 backbone [32] akoAouBwv-
tag v DetCo [33] poogyyion mou eivat pia pn eruBAenopevn contrastive learning 11€9080g
yla object detection. Erurnpoofeta aglodoyrnnkav ta Mask R-CNN [34] kat nnDetection
[35] oto 1610 poPAnua. To Mask R-CNN eivat éva poviédo Babiag nadnong ya instance
segmentation to oroio Baciletat oto Fast/Faster R-CNN [36, 37]. AroteAeitat aro 6uo otd-
61a, 1o region proposal network to ornoio napdayet unoyn$ia bounding boxes, eve 1o deUtepo
otadlo Katnyoplomotel 1o aviikeipevo, PBeAtidvel 1o bounding box kat tautdypova mapayet
Kat pia paoka. To nnDetection eivat pia vdomnoinor), n onoia €xet ) duvatotnta aviopamg
pudpiong napapérpev Kat npaypatorolei object detection yxpnowponowwviag Retina U-Net
[38] backbone kat e1dika detection heads yia eviormopod Kai Katnyoplonoinon, Ve €nek-

tetvel 1§ apyeg dopnong tou nnU-Net [21] 6cov agopd v autopatn pudpion napapeTpmv.

1.2.4 Grounded Segmentation/Open-set object Detection

Kat ta 6uo mpoBArjpata a@opouyv 1) XP1)on KEPEVIK®OV MEPypadaVv yia v kabodrynon
povtédav. 'H Siapopd toug éykertal oty €6060 TwV HOVIEA@V TOU OtV MEPIN®on Tou
grounded segmentation eivai pia pdoxka eve otnv adAn nepimwon eivatr éva bounding

box.

Mep1kd ano 1a POTEVOHEVA POVIEAA Yid TNV EMTIAUOT TOV ITAPATIAVE IPORANpdtev eivat
10 GroundingDINO [4] ywa object detection mou napdyet bounding box kat 1o Grounded

SAM [39, 7, 4] 1o omoio emekteivel Tig Suvatotnieg Tou SAM emTpEnoviag KePeViky) i0odo.
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Chapter 1. Extetapévn [epiAnyn ota EAAnvika

1.3 MeSo6oAoyia

1.3.1 Ileprypa@n Zuvodou Acdopivav

Ta debopéva rou Sa ypnotporonOouvv yia v eknaidsuorn tou Grounding DINO aroteAouv-

Tat ano purtAéteg (ekova, bounding box, keipevo). Ot UMOAOY10TIKEG Topoypadieg Kat ot
OUVOETIKEG PAYVNTIKEG TOHOypadieg TIPOEPYOovTAdl ard 10 ouvolo dedopévav ou ovopade-
tat RAOS[5, 9] kat ta bounding boxes mpoxkuntouv amnd g PAoKeg ou mapexet 10 RAOS.
Ot kepevikEg meptypadég mou avaduvovial otnv unoevotnta 1.3.5 nmapéxouv mAnpodopieg
yla kade pdaoka mou ouprieptdapBavouv v oxXeTKY) g 9€on oty €1Kova, 10 oXHpd, Vv
ERTEWOTNTA TG KAl QUOIKA 10 Ovolla tng ovidtntag rou amnewkovidetat. 'Eva pépog tou

apxeilou mou rep1€xel to oUvoAo Hebopévav @aivetatl oto oxnua 1.5.

{
"filename": "0_0.jpg",
"height": 259,
"width": 331,
"grounding": {
"caption": "In the image, the Colon has a slightly curved shape...",
"regions": [
{
"bbox": [240, 107, 286, 1571,
"phrase": "<s> In the image, the Colon has a slightly curved shape.
</s>Part Colon on lower middle and on right part Colon Dark Gray ."
}
{"bbox": [44, 76, 79, 124],
"phrase": "<s> In the image, the Intestine has a curved shape.
</s>Part Intestine on upper middle and on left part Intestine Dark Gray ."},
}

Figure 1.5. [Tapadsiyua mg 6oung tou ouvojou Se60UEVOU TOU agopoU uia uwdva ue ToAAd
bounding boxes

RAOS

Ot ewkoveg kat ta bounding boxes mou ypnoporotovvial oto fine-tuning avjkouv oto
RAOS. ArnoteAeital aro 413 mpaypatikég UITOAOYIOTIKEG Topoypagieg, 413x9 ouvdetikeég
HayVvnTiKEG TOPOYPAPieg Kal TI§ aviioTolXeg HPAOKEG Ol Oroieg £€xouv mapaxdei aro €vav
oyKoAOyo. Ot Katnyopieg 1mou anoteAouv ta avikeipieva rpog rkatdatunor sivat liver, spleen,
left and right kidneys, stomach, gallbladder, esophagus, pancreas, duodenum, colon,
intestine, left and right adrenals, kat left head of the femur yia to synthetic MRI kat
ermrAéov oe autd rectum, bladder, right head of the femur, prostate kat seminal vesicle
yvia ta CT scans. Ot meputooelg mou rnapouociadovial kata v exknaidsuon Sewpouviat

“ouvn9e1g”, P Vv évvola G Kavéva opyavo dev €xel agpaipedel xelpoupyikd. Ot aodeveig
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1.3.2  A§oAdynon tou cuvodou Sedopévav

etvat 287 oe apdpod oe autd 1o ouvodro. Otr 220 amnd autoug Sa xpnotpornoindouv ya v
exknaidevor), eve ol untddotrtol 67 Ja amnotedécouv 1o test set. H ekmaideuon Sa yiver tooo

oe eikoveg CT oco kat oe MRI.

(A) CT scan (B) Delayed MRI

Figure 1.6. X1a apiotepa (A) eaivetar éva CT scan. Zta ésia (B) ansucoviletar n idta mepioxn
oe uopen MRI tou twnou "Delay”. Ilapatnpouue ot n 6eia euxova avadetkvuet ue ueyaiuvtepn
EUKpIvELa TNV UOPEN TV 0pyavav kadwg ot avtidéoeig sivatl ueyautepeg.

1.3.2 AS§10Aoynon tou ouvoAou dedopivav

O1 KEWEVIKEG TTEPIYPAPES TRV PAOKWV TToU Ttapdxdnkav aglodoyndnkav ya tmyv akpipeid
toug amnod éva LLM kat ouykekpipéva to text-only GPT-40-mini [40] . Apyikd &g 669nkav
oto LLM kateuduvinpieg odnyieg Kat auto eotiale o OTolxeia g HOPPIG TV TEPLYPAPDV
rou rtav aduvato va aAddafouv, Onwg n ouvoxr) twv npotdoewv (Figure 1.7). L) ouvéxela
eruxeprOnke va §09¢ei pa naparnave kadodnynon oto LLM yia v agloddynon oote va pnv

Baoiletatl oe AdSog otokeia (Figure 1.8).

(You are a dataset quality assessor. Rate the caption from 1 to 10\
based on quality and accuracy.
Assessing region phrase: <s> In the image, the Liver has a slightly oval
shape. </s>Liver on lower middle and on right part . Liver Light Gray .

Rating: 5

The caption describes the liver with some basic characteristics, such as
its shape and color; however, it is vague and lacks clarity. The statement
"Liver on lower middle and on right part" is confusing, as it does not
accurately convey the liver’s location in relation to the rest of the image.
Overall, the caption needs improvement in precision and completeness.

Figure 1.7. Aitnua ya alojfloynon mg¢ meptypaens e Haokag

Yto apddetypa tou oxfpatog 1.8 1o poviedo sotiadet yia adAn pia @gopd otnv AAslyn
OUVOXIG KAl 0TA YPAPRHATIKA KAl OUVIAKTIKA Ad91. ‘Opwg, 1 e§AAelyn aut®v TV OTOIXEIQOV

Sev eivatl Suvatn pe v UnapPdn evog PIATPOU IMOU AMMOPAKPUVEL UXVA ep@avi{opieveg AEEetg.
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Chapter 1. Extetapévn [epiAnyn ota EAAnvika

(

You are a dataset quality assessor. Rate the caption from 1 to 10 based on quality andN
accuracy keeping in mind that this is the dataset for grounded training of a model
that detects bounding boxes. We would like to give the model the shape, relative
position of the organ in the image and its brightness.

Assessing region phrase: <s> In the image, the Liver has a slightly oval shape. </s>Liver
on lower middle and on right part . Liver Light Gray .

I would rate this caption a 7 out of 10.

Here’s my reasoning: - **Shape**: It accurately describes the liver as having a slightly
oval shape, which is relevant for the model to learn about the organ’s form. - **Position**:
It indicates that the liver is located in the lower middle and the right part of the image,
which provides useful information about its relative position. - **Brightness**: It describes
the liver’s color as light gray, which is important for the model to learn about the organ’s
appearance.

However, the phrase structure is a bit fragmented and could be improved for clarity. Addi-
tionally, a more precise description of the liver’s spatial relation to other organs or anatom-
ical landmarks could enhance the caption’s informative value. Overall, it contains the
essential elements needed for training but could benefit from refinement.

Figure 1.8. Aitnua ya aflofloynon g neptypaenc mg udokag pue kadodryynon

Ta prompts rou 669nkav tedika oto LLM pe Bdon ta omoia ékpive 0Ao to dataset @aivovrat

oto oxnpa 1.9.

~\

fYou are a dataset quality assessor. Rate the caption from 1 to
10 based on quality and accuracy keeping in mind that this is the
dataset for grounded training of a model that detects bounding boxes
in synthetic MRI images of type Delay. We would like to give the
model the shape, relative position of the organ in the image and its
brightness. We have filtered out words that appear too often. Thus,
only important keywords remain that bind the relative words with
the region. Disregard grammatical and syntactical correctness.
Assessing region phrase: <s> In the image, the Liver has a slightly oval
shape. </s>Liver on lower middle and on right part . Liver Light Gray .

Rating: 8

The caption accurately describes the shape (slightly oval) and position
(lower middle and right part) of the liver, as well as its brightness (light
gray). It includes important keywords that are relevant for the model’s
understanding of the texture, location, and appearance of the organ in
the synthetic MRI image. However, the inclusion of "on" before "right part"
could be clearer to specify the exact position more effectively. Overall, it
provides a good amount of relevant information for grounded training.

Figure 1.9. Aitnua yia adlofloynon g meptypaehc e paokag ue jemrouspn kadodrynon
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1.8.3 Zxnpata Opyavev rou divovrat aro to LLaVA-Med

O péoog 6pog v Padpoloyiwv rou mapaxdnkav anod 1o LLM artotedet piia PEIPIKN g

0p90TTag TRV MEPTYPAPDV.

Méon BaSpoAoyia
7.25/10

Table 1.1. Méon Sa9uoAoyia tng 0090TNTAS TOV KEWEVIKOV TEQLYPAGOV TOV UATKGDU

1.3.3 ZIxnpata Opyavev nou divovratr anod to LLaVA-Med

'Exoupe avadéoetl oto LLaVA-Med tnv mapayoyr 1oV oXNHATOV IOV HAOKQOV yid TV Kade
Katnyopia opyavou oto dataset. ITapakdate rapouoiddovial Ta avaAuTikd 10Toypappata yia

ka9e opyavo.

Bladder Shapes Histogram
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Figure 1.10. Iowdypaupa oxnuatov Bladder
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Figure 1.11. Iowypaupa oxnuatov Colon
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Chapter 1. Extetapévn IepidAnyn ota EAAnvika

Duodenum Shapes Histogram
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Figure 1.12. Iowdypaupa oxnuarov Duodenum

Esophagus Shapes Histogram
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Figure 1.13. Iowdypauua oxnudatov Esophagus
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1.8.3 Zxnpata Opyavev rou divovrat aro to LLaVA-Med

Gallbladder Shapes Histogram

1,500 —
g
5 1,000 |- .
S
&
o
i
500 - a
ol L D | = |
T T T T
N N\ S N\ >
> D N
s o Qéb ~o~°® o00
S S
& o
5

Figure 1.14. Iowdypaupa oxnuarov Gallbladder

Intestine Shapes Histogram
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Figure 1.15. Iowdypaupua oxnudrov Intestine
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Left Adrenal Gland Shapes Histogram
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Figure 1.16. Iowdypaupua oxnuarov Left Adrenal Gland

Left Head of the Femur Shapes Histogram
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Figure 1.17. Iotéypauua oxnuatov Left Head of the Femur
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1.8.3 Zxnpata Opyavev rou divovrat aro to LLaVA-Med

Left Kidney Shapes Histogram
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Figure 1.18. Iowdypaupua oxnuatov Left Kidney

Liver Shapes Histogram
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Figure 1.19. Iowdypauua oxnudrov Liver
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Pancreas Shapes Histogram
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Figure 1.20. Iowypaupa oxnudiov Pancreas
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Figure 1.21. Iowdypaupa oxnuatov Prostate
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1.8.3 Zxnpata Opyavev rou divovrat aro to LLaVA-Med

Diploma Thesis
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Figure 1.22. Iowypaupa oxnudtov Rectum

Right Adrenal Gland Shapes Histogram
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Figure 1.23. Iotdypauua oxnuatov Right Adrenal Gland
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Right Head of the Femur Shapes Histogram
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Figure 1.24. lowdypaupua oxnuarov Right Head of the Femur

Right Kidney Shapes Histogram
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Figure 1.25. Iowdypauua oxnudrov Right Kidney
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1.8.3 Zxnpata Opyavev rou divovrat aro to LLaVA-Med
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Seminal Vesicle Shapes Histogram
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Figure 1.26. Iotdypauua oxnuatov Seminal Vesicle

Spleen Shapes Histogram
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Figure 1.27. Iotdypauua oxnudrov Spleen
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Stomach Shapes Histogram
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Figure 1.28. lowdypaupa oxnuarov Stomach

1.3.4 Emnau¥non Asdopivav

[Ma va yivet 1o poviédo mo eUpwoto evoepatmdnkav oto training dataset ot 1d1eg e1koveg
aAlda nieplotpappéveg katd 90, 180 kat 270 poipeg. Emiong, mpootédnkav kat avartodoyupilo-
Héva aviiypaga rata tov Kabeto agova rmou Siépxetat anod 1o KEVIPO TV EIKOVeV. To Poviedo
d1ab€terl emiong autopato cropping kat addayn t@v Staotdoemv g ekovag. 'OAda ta napa-

AV ATIOOKOITIOUV otV BeATIOOoN TV eMBO0E®V TOU POVIEAOU.

1.3.5 Ztaduwa
Mapayoyn tov Ketpevirov Meprypapov

210 TIPQOTO 0TtAad10 TV MEPAPATOV XPEIACTNKE vVa SOKIIAGOUE TIOAAEG NOPPES EPWTHOEDV
ripog to LLaVA-Med wote va pag riapddet akpipeig meptypa@g yia Kade paocka. Ztoxog eivat
va petagepdet n yvoon tou fine-tuned LVLM oto Grounding DINO ®ote 10 cuotrpa rou Sa
dnuoupyndet va éxel ) Suvatdina va Katavorjoet v meplypagt] Kat va v taptdetl otnv
O®OTY] PA0KA.

Ta va 1o metuyoupe autd emALape KAMOA XAPAKINPIOTKA TOV PACK®V TTOU TG &e-
X®pidouv amnod 1§ umoAolreg Kat PIopouv va MEPypadouv AeKUKA. Autd €ival avadutikda
10 OXNUA, N OXEUKL 9€0r1, 1 EEIEWOTNTA Kal n uer. Emnopéveg autd Sa {nnSouv aro
10 LLaVA-Med va avayvepiost kat va nieptypayet. BéPawa, amogaoiotnke nwg n uer dev
Ya xpnoworoinfel @g XapaKINPloTiKO KAl AOY® IMEPLOPIOUROV OTNV KPITIKL] 1KAVOTTA TOU
LLaVA-Med ertiong n 9éon kat n gatewvotnta 9a e§axbouv pe ) Xprorn VIEEPHUIVIOTIKOV
aAyopibuwv. 'Eva oxfjpa rmou napoucidalet v rnipoavadepBeioa Sadikaoia eivat to 1.29 .

Ot avaAuTikoi A0yol TV IMapandve emAoyov avaiuovial oty vnosvotnta 1.4.1.

m Diploma Thesis



1.3.5 Ztabua

Image

Automated
script to
produce

h 4

Shape description

Mask » brigh'Ene_ss LLaVa-Med
description

o String
Automated | concatenation
script to >
*  produce
position
description

What shape does it have in the image?

Figure 1.29. Efaywyn oV KEYEVIKOU TERLYQAEOV TOU OXNUatog kade paoxag

Ixetkn Ofon

Ot oxeukég 9éoeig mou ermorpépetl 1o LLaVA-Med eival AavBaopéveg kat arkatdAAnleg
yla xpnon oty eknaidevon tou Grounding DINO. Enopévag dnpioupyndnke évag vietep-
HWIOTIKOG aAyop1Opog yia tyv e§aywyr) tng 9éong g kade pdaokag péoa otny e1Kova. Tuy-
KeKp1Péva, yia kade pdoka uroloyidetal 1o KEVIpo Padag g Katl avaloya [E Vv IEPLoXT)
otV oroia avhkel e§AyeTal £vag TOTKOG IPoodloplopdg yla tov kabeto dagova kat evag yia

Tov 0p1ddvTio dfova. Ot unodialpéoeig g e1KOvag @aivovial oto akéioudo oxrpa 1.30 .

upper
part

slightly
up

left part et slightly right part

left right slightly

down

lower
part

(A) Horizontal division (B) Vertical division
Figure 1.30. H swxova ywpiletal o 1é00epa ioa uepn wg mpog tov opt{OVTo Kat 1oV KAdETo
aova. Ze kade uépog avuortoyiletar pia raunéila. To kevipo palag wade uaokag xpnot
uormoeitat yia tov mpoodloplouo g JEong me uaockag kar Aaubaver évav mpoodoplopud amo
mv opwlovtia Saipeon kai evav and mv kadewn diaipeon. 'Eva mapddetyua mpdtaong sivat :
“The Left Kidney is located slightly up and slightly left in the image.”

PoTEWVOTTA

YAomow)9nke emiong pia avtopatonioupévn pE€S0d0g ya v nmapayeyn 1oV meEptypapov
TIOU a@OopouV Vv patevotnta. Kabag yvepidouyie 6Aeg 11§ PAOKES TV OVIOTTOV ITOU eriU-
PoUHE va KATaturooUHE PUITOPOUHE vad T1G XP1O1OTIO|C0ULLE Y1d VA UTIOAOYI00UE TNV 1E€0T)
TPY G PATEWOTTAG TOV ITEEA TOU v artotedouv. a v Katyoplonoinon g paokag

oe Kamnowa and g KAAoES g POTEWVOTTag Snpoupyoupie v akodoudn kAipaka 1.31.

Diploma Thesis m
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Brightness Scale

Black i Very Dark Gray 1 Dark Gray i Light Gray Very Light Gray White

0 43 86 129 172 215
Brightness Value

Figure 1.31. Kiiuaka yia tv Katnyoponoinon mg eetewommtag kade pdokag oe pia kAdon
ue Baon mv uéon tun g

Ixfpa

Anogaoioape va napéxoupe oto LLaVA-Med tnv mAnpogopia ywa v 9¢on kat v
PERTEWOTNTA TG OVIOINTAS €101 Wote va Ponbnbei otnv dadikaocia eviomopou tng otnv
ewkova. Ta tedika prompts rou §69nkav oto LVLM katadeikvioviatl oto enopievo riapadetypa
1.32.

User: The Stomach is located on the lower part and slightly right
in the image and appears to be Dark Gray. What shape does it
have in the image?

LLaVA-Med: The stomach in the image has a round shape.

Figure 1.32. TeAuca prompts, ypnowornowviag v minpogopia yia mv 9éon kar v
pwtewotnIa, n onoia Ja fondroet 10 Hovtéflo va evtomiost 10 {NTOUUEVO OPyavo.

Exnaidsuon tou Grounding DINO

Ze autr) ) @don xpnotporodnke to Open Grounding DINO [41] pia vldoroinon tou
Grounding DINO pe Suvatomta fine-tuning. Xto daypappa rmou akodoudei gaivetal n

dabikaoia exknaibevong 1.33.

m Diploma Thesis
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1.3.5 Ztadua

Image
[ ]
> H -
—>

Mask

System storage

L

Automated
script to
produce

brightness

description

Automated
script to
produce
position

description

Shape descriptions

—

—>

Produce

* bounding box

String
concatenation

Textual description of Mask

GroundingDINO

coordinates

Figure 1.33. Fine-tuning tov GroundingDINO

To dataset mou xpnowporo)9nke frav 1o RAOS spumAoutiopévo Pe TIg TIEPLYPAPES TOV

HAOK®OV TIOU MEPLEXOUV TTANPOMOPIa yia T OXETKY €01, PAOTEVOTTA KAl OXNa g Kade

pdorag. H gpatetvotnta unodoyidetal pe Tov TpOoIIo 1mou IAPOUCIAOTNKE MPONYOUHEVRG, EVE

n 9¢on urnodoyiletatl onwg mpwv pe v diagopd ot audhdnKav o1 UrodialpLoelg g e1IKOvag

yla peyaAutepn axkpifeia (Zxnua 1.34).

Ma 10 oxNpa IOV PaoKOV XP1oonowd9nKe 1o

LLaVA-Med.
topmost part
upper part
upper middle

leftmost | left part| ' right | right | rightmost .

part middle| middle | part part lower middle
lower part
bottommost part

(A) Horizontal division

(B) Vertical division

Figure 1.34. H sucdva yopiletar oe 6L pépn wg mpog tov kadeto kat opilovtio afova. Ym-
ofoyietal 1o kKévtpo Bapoug e paockag kat ano v 9éon v mpoodidovtat SUo TomKol TPoo-

Olopiopol otnv paoka.
part and on the left part in the image.”

Diploma Thesis
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Chapter 1. Extetapévn [epiAnyn ota EAAnvika

[Tpwv mpaypatoroindei 11 CUVEVOOL TOV TPLOV TEPLYPAP®V £QAPHOCTNKE £va @iATpo yia
Vv agaipeon v ouxva ep@avifopevev AEEemv Iou a@opouv TG IIPOTACELS Vid QETEVOTTA
Kat 9¢or. AUTO amookomnmouos otnVv H1EUKOAUVOT TOU POVIEAOU va €0TIACEL OE ONHAVIIKEG
AN Poopieg. AVIIIET®G, Kaveva @iATpo 6ev EQAPIOOTNKE OTHV TEPLYPAPT] TOU OXNATOS Yid

TG KAVOVIKEG £1KOVEG aAAd ota enaudnuéva Sedopéva @ATpaplotiKav OAEG Ol IIPOTACETS.

Ynepniapapetpot

To Grounding DINO ekniaideutnke xprotpornoloviag to Swin-B [17] (swin_B_384_22k)
®g backbone eikdévag kat 1o BERT-base-uncased [18] wg kowdikorownt) ketpévou. To pov-
téAo Aettoupyel pe 900 queries kat urnootnpidel PEY10TO PNHKOG KePevikoU token 256. Awa-
Oéter €&1 ertineba encoder kat €61 enineda decoder, pe Siaotaon Kpugou erurnedou 256 kat
diaotaor feedforward 2048. O petaocxnuatiot)g xpnowporolet 8 kepaég mpoooxng (atten-
tion heads) pe ReLU evepyonoinon. H eknaideuon mpaypatonoteitat pe péyebog maptidag
(batch size) 4, Baowko pubpo pdadnong 0.0001 xat weight decay 0.0001. Edapuddetat
data augmentation pe kAipaxkeg aro 480 g 800 kat péyioto peyebog sikovag 1333. O
BeAtiotomoun g (optimizer) peldvetl tov pubpo padnong oug emoxég (epochs) 4 xkat 8. Ta
Tov uroloyopo g anwldeag (loss computation), xpnowornoteitat to Hungarian match-
ing pe classification, L1 kat GloU losses. To poviédo BeAtidvetal rnepattépe péom text
cross-attention kat evog erurnédou ouvining (fusion layer).

IIepBaAiov

To mepifpardov exnaidbevong amotedovuviav aro eévav NVIDIA A10G GPU éxk&oor driver
550.127.05 kat CUDA 12.4. H &Swadwkaoia exnaideuong xpeldotnke nepinou 44 gpeg ya
1g MRI sikoveg, eve to LLaVA-Med xpeldotnke mepirou 24 opeg yla v Iapayeyn oV

MEPIYPAPRAV TOV OXNHATOV.

AflAoynon g exnaidsuong

H ané6oon tou poviéAou ocoTikoroteidnke PEo® GUO PETPIK®OV CUYKEKPIIEVA TNV TOUT
ipog évwor (IoU) kat v akpifeta. I'a v ovykplon pe adda poviéda xpnotpono)9nkayv
o1 petpikeg dice score coefficient kat wall distance.

Topy npog 'Evoon (IoU)

H petpikr) avut) naipvel g €10060 tig Suo PAoKeg, TV MPAYHATIKY KAl TV ITAPAYOHEVn

arno 1o poviédo. Yrodoyidetal @g 0 Adyog g Tolrg IMPog TV £VRo! TV dU0 NaOK®V:

Eppadov Topung  |AN B

IoU = - =
Eppadov 'Eveaong |AU B|

(1.1)

Axpifcila
H petpkr) avt opidetal g o Aoyog tev true positives mpog 1o dBpolopa v true posi-
tives pe ta false positives.
True Positives

Precision = (1.2)
True Positives + False Positives

Dice Similarity Coefficient

To Dice Similarity Coeflicient ekppaletat padSnpanxa:

m Diploma Thesis



1.4 AnoteAéopata

2|A N B
DSC(A,B) = ———. (1.3)
|Al + 1B
Wall Distance
To wall distance ekppadet v péon arnoddut dagopd petadl v opinv 10U 1PoBAEo-
Hevou Kat Tou rmpaypatikou bounding box. Xtg §Uo Siaoctdoelg ta opla eival t€ooepa eve

otg tpelg eivat €81 Atvetat to wall distance yia éva 2D bounding box:

4
1
WD_Z;mi—dd (1.4)

orou ta d; xat d; stvat ta opia tou mpoBAenidépevou Kat Tou mpaypatikou bounding box
avtiotolya Kat avikouv otnv i6ia meupd.

A%loAoynon

To cuotnpa mou mpoteivetatl a§lodoyeital oe €va ouvoro ard eikoveg MRI kat CT tng
KOWAWAKAS XOpag aro 67 acBevelg. Avadutkotepa, rapéxovial oto GroundingDINO pia
€1IKOVa e Pa meplypadr) g oviottag mpog katatunon. 'Emetta 1o mapayopevo bound-
ing box &ivetatl oe éva poviedo onwg 1o SAM2 11 1o Med-SAM2 10 oroio mapayet Kat v

nipoBAeropevr paoka. H dadikaoia gaiveratl oto diaypappa 1.35.

Image

‘Shape description

loU
RAOS Pasitional iption Fine tuned GroundingDINO SAM2/Med-SAM2 27‘3‘8'::;”
Mask Bounding box EE—
Precisior

Brightness description

Textual description of desired Mask

Figure 1.35. AioA0ynon touv ovotiuatog

1.4 AnoteAéopata

1.4.1 Prompting LLaVA-Med

Apxikd e€etaotnke 1 kavotnta tou LLaVA-Med va avayveopilet ta opyava rmou rapouoid-
Jovtat og pia sikova. Ot antaviroelg tou Sev rtav akpiPelg, kabwg dpyava mnou v avrkouv
010 OUVOAO Sebopévav avayvepi{oviav Kat ta oXeTKA opyava ta ayvoouoe. [Ma v BeAtioon
TOV ATIAVINHOE®V ATOPACIOTNKE VA AvA@EPOVIAL PNTMOG TA OVOULATA TOV OXETIKOV OPYAV®V TPV
Vv H1aTUNEOoT MEPETAIP® EPWINOE®V OTIOG Paiveratl oto rapddetypa 1.36.

Zto enopevo napadetypa tou oxnpatog 1.37 n ewkova £xel avaotpadel Kat avagépoupe
PNTIOG TA OVOHATA T®V OXETIKOV OpYAVeV TPV Vv d1atuneon g epwinong. H amavinon
ouU §ivetal Katadelkvuel 0Tl 10 PoviEAo Sev eival eUPEOTO OE AVAOTPAPHEVES EIKOVEG, Ka-

Ywg smoTpEPel TNV YEVIKL avatopikn) 9¢orn tou liver. 'Ocov agpopd 1o oxrpa tou kidney, 1o

Diploma Thesis m



Chapter 1. Extetapévn [epiAnyn ota EAAnvika

LLaVA-Med owotd 1o avayvepilel og “bean-shaped”. Ilapodautd, mapéxel AXPNOTES YEVIKEG
mAnpogopieg 6rwg eivat n Aettoupyia OV vePpwv IoU e OUVEIOPEPOUV OTNV IKAVOTITA TOU
GroundingDINO va napayet akpipn) bounding boxes. Ao autd to napdadetypa katadabdai-
voupe 0Tt T0 POVIEAo aravid pe BAor) mAnpodopieg rmou £xel pabet kat dev g e€ayet anod v
eKova.

Zto enopevo nieipapa (Exnpa 1.38) neprotpédoupe tnyv ewkova 180 poipeg yia va egetd-
COUHE av 01 EPyPadES TV JE0emV TV opyavev Ja eival o akpiPBeig amnd mponyoupivag.
[Tapdédo mou kdmoleg meptypadpés d€ocnv BeAtiwdnkayv, UoBEToUE OTL Ol ATAVINoelg Oev
etval anotédeopa KAtavonong g ewkovag aidda subuypappidovial pe v yveor mou €xet
QTTOKTIOEL TO PMOVIEAO KATd tnv eknaidsvon tou. Emiong to LLaVA-Med gexvast va anavir)-
o€l yla v 9€01) Kat 10 OXia KATIO10V 0pYAVAV AITOTUYXAVOVIAS HE aUTO TOV TPOTTO vd PEPEL
€1g épag 6Aa 6oa tou £xouv avatebel.

Emiong Soxkipaotnke kat pia AAAn poper) EpEINOE®V yd TOV EVIOMIOHUO 1OV YE0e®V TTOU
€XEl va Kavel pe ta tetaptnpopia (Mapadetypa 1.39). davnke o011 10 povieAdo divel amavinoeig
e pia CUYKERPIIEVE POP@N O AUTH) TNV £PWTN 0T XOPIG va EPIEPIEXEL YEVIKEG TTANPOPOPIES.
Ia v PeAtioon oV emMdOCE®V TOU POVIEAOU ATIO@ACIOTNKE aKOUn KA9e ep@INOon va @opd
€va POVo O0pyavo Kdal £va POVOo XAPAKIIP10TIKO.

IIpoonadeieg yla £§aywyrn TV HACK®OV HE KPLTLKN OKEWI) TOU HOTEAOU

Ao TS aravinoelg ToU POVIEAOU gival ep@aveg MG YVoPIfel 1a YeEVIKA oXnpata tov
0pYyavav, TtapoAauta o€ TOAAEG TIEPUTIMOELS Ol ATIAVINOELS APOPOUV T0 TPOH1ACTATO OXNHId
Kat 01 autd mou arnotuneovetal otg duo diactacelg g ekovag. Ma nmapadetypa propet to
duodenum va nieprypagei wg “C-shaped” eve otnv ekova eivat eAAenpoeldeg.

IMa v emiAuon autou Tou MPORANIATOG ATIOPACICA}IE VA TIAPOUCIACOUHE OTO POVIEAO TO
epwinpa autd wg multiple choice petady v §1061G0TaTEOV MEPTYPAP®V TRV 0pYAvVRV. AUTE)
N otpatnylky arnodeixinke pn anotedeopatiky 1.40.

'‘Ocov agopd T0 oXNua Kat IV uer akoAoudrdnke akopn pia otpatnyikn KAtd v
ortoia Sivoviav Oto POVIEAO Ta XAPAKINPIOTIKA OPLOPEVRV KATNYOPIOV e 0toX0 to LVLM va
avayveplost ano v £1Kkova rmota aro avtd taptd{ouv oTo 6pYavo Kat va T0 KATYOP10ITo| el
oe Kanola uen 1 oxnpa. Iapodautd n otpatyiky dev £pepe ta emdupnta anoteAéopata
(Mapadeiypata 1.40, 1.41).

HMepiypagig Yorg

‘Ooov agopd tnv uer) pia egétaon tou ouvodou Sedopévev exkrnaideuong tou LVLM o0dnynoe
otV avayvoplon 8Uo 0pmvV KAl CUYKEKPIHEVA “OPoYeVES”, “eTEPOYEVES” ®G YVOOTOUG OO0V
agopa Vv uer. Ilapdda autd to poviedo SuokoAsudtav va xapakinpiost éva 6pyavo ow-
OTd ®G OHOYEVEG I EIEPOYEVEG KAl YU AUTO 10 AOYO 1] U@ TeAKA &g XPnoltpornotr|fnke og

XAPAKTNP10TIKO.

1.4.2 RAOS synthetic MRI tunou "Delay"

To GroundingDINO exknaibeutnke yla 11 emoxég o€ €1KOVEG CUVOETIKNG PNAYVNTIKLG TO-
poypagiag. Ot erudodoeilg ava opyavo Stapeépouv apketd kKabmg KATola opyava givat 1mo
0patd amo aAla AOYy® NG PEIEWVOTNTAS. L1d nelpapata Soxkipdotmkav prompts pe diagopa

enineda mAnpogopiag oniwg 9£on, oXNPA KAl @ETEWVOTTA KAl OTIOG (Paivetal 600 ITo MePt-
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1.4.2 RAOS synthetic MRI turou "Delay”

ypagika eivatl ta prompts 1000 1o Kadég eivat ot emdooelg. Emiong doxkiypdotnke 1o SAM2
oe ouykplon pe 1o Med-SAM2 kat pavnke nog 1o Med-SAM2 rapdldo mou eivat fine-tuned
Oev Bedtiwvel 1a anotedéopata. Akoprn Sokipaotnkav dapopetikd £1d6n prompts, ornwg pa
KAVOVIKI] IPOTACT] yid To oxfjpa pe A&gelg kKAe1d1d yia gwtewvotnta kat 9€0n 1] Kavovikeg
npotdoelg Xopig Aégelg kAedia. Anodeix9nke ot 1 mAnpogopia dtav Siveral 0 CUVOITUKT)

Hoper e A&getg KAe161d, mepvdAet 10 KAAd oto POVIEAD Kal £Xel KAAUTepeg rmbO0EG.

Fine-tuned Grounding DINO (Epoch 11) + SAM2 IoU Precision
Liver 0.7491 0.7996
Spleen 0.7869 | 0.8399
Left Kidney 0.8344 | 0.8770
Right Kidney 0.8153 | 0.8582
Stomach 0.6430 0.7549
Gallbladder 0.4746 | 0.5584
Esophagus 0.5132 | 0.6663
Pancreas 0.3246 0.3831
Duodenum 0.3641 0.4523
Colon 0.4988 | 0.6183
Intestine 0.3063 0.3541
Left Adrenal 0.2499 0.3186
Right Adrenal 0.3187 | 0.4171
Segmentation Overall Average 0.5230 | 0.6010

Table 1.2. Performance results

Fine-tuned Grounding DINO (Epoch 11) + Med-SAM2 IoU Precision

Liver 0.7281 0.8194
Spleen 0.7815 | 0.8763
Left Kidney 0.7989 | 0.9235
Right Kidney 0.7915 | 0.9036
Stomach 0.6312 0.7738
Gallbladder 0.4637 | 0.5387
Esophagus 0.5432 | 0.6648
Pancreas 0.3055 | 0.3916
Duodenum 0.3642 0.4635
Colon 0.4967 | 0.6139

Intestine 0.2965 0.378
Left Adrenal 0.233 0.2896
Right Adrenal 0.3334 | 0.4088
Segmentation Overall Average 0.5133 | 0.6157

Table 1.3. Performance results

Diploma Thesis m
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Fine-tuned Grounding DINO (Epoch 11) + SAM2 (Position only) IoU Precision
Liver 0.7557 0.8051
Spleen 0.7677 | 0.8160
Left Kidney 0.8205 | 0.8608
Right Kidney 0.7996 | 0.8388
Stomach 0.5759 0.6674
Gallbladder 0.3927 | 0.4663
Esophagus 0.4758 | 0.6228
Pancreas 0.2641 0.3090
Duodenum 0.2509 0.3022
Colon 0.2906 | 0.3613
Intestine 0.1744 0.1980
Left Adrenal 0.1670 0.2223
Right Adrenal 0.2199 | 0.2991
Segmentation Overall Average 0.4232 | 0.4785
Table 1.4. Performance results
Fine-tuned Grounding DINO (Epoch 11) + SAM2 (Position and shape) IoU Precision
Liver 0.7509 | 0.8010
Spleen 0.7830 | 0.8353
Left Kidney 0.8295 | 0.8705
Right Kidney 0.8106 | 0.8517
Stomach 0.6419 0.7539
Gallbladder 0.439 0.5173
Esophagus 0.4916 | 0.6321
Pancreas 0.3175 0.3718
Duodenum 0.3254 | 0.3987
Colon 0.4431 0.5517
Intestine 0.2859 0.3333
Left Adrenal 0.2103 | 0.2794
Right Adrenal 0.2916 | 0.3869
Segmentation Overall Average 0.4993 | 0.5726
Table 1.5. Performance results
m Diploma Thesis




1.4.2 RAOS synthetic MRI turou "Delay”

Fine-tuned Grounding DINO (Epoch 11) + SAM2 (Unfiltered prompts

natural language shortened version with 2 sentences) IoU Precision

Liver 0.7461 | 0.7957

Spleen 0.7432 | 0.7956

Left Kidney 0.8304 | 0.8712

Right Kidney 0.8138 | 0.8553

Stomach 0.6350 | 0.7652

Gallbladder 0.4557 | 0.5473

Esophagus 0.4915 | 0.6363

Pancreas 0.3088 | 0.3659

Duodenum 0.2570 0.3207

Colon 0.4616 | 0.5756

Intestine 0.237 0.2786

Left Adrenal 0.2043 | 0.2657

Right Adrenal 0.2828 | 0.3710

Segmentation Overall Average 0.4855 | 0.5597

Table 1.6. Example of input: "In the image, the Liver has a slightly oval shape. The Liver
is located on the lower middle and on the right part of the image and appears to be Light

Gray.”

Fine-tuned Grounding DINO (Epoch 11) + SAM2 (Unfiltered prompts

natural language with 3 sentences) IoU Precision

Liver 0.7369 | 0.7863

Spleen 0.7814 | 0.8351

Left Kidney 0.8323 | 0.8739

Right Kidney 0.8146 | 0.8575

Stomach 0.6319 | 0.7619

Gallbladder 0.4647 | 0.5561

Esophagus 0.4981 0.6475

Pancreas 0.2968 | 0.3533

Duodenum 0.2962 | 0.3685

Colon 0.4357 | 0.5450

Intestine 0.2377 | 0.2818

Left Adrenal 0.2292 | 0.2974

Right Adrenal 0.3048 | 0.3981

Segmentation Overall Average 0.4842 | 0.5590

Table 1.7. Example of input: "In the image, the Liver has a slightly oval shape. The Liver
is located on the lower middle and on the right part of the image. The Liver in the image

appears to be Light Gray.”
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Extetapévn IepidAnwn ota EAAnvika

Fine-tuned Grounding DINO (Epoch 7) + SAM2 IoU Precision
Liver 0.7548 | 0.8057
Spleen 0.7876 0.840
Left Kidney 0.8345 | 0.8775
Right Kidney 0.8196 | 0.8626
Stomach 0.6311 0.7402
Gallbladder 0.4402 | 0.5185
Esophagus 0.486 0.6211
Pancreas 0.3184 | 0.3753
Duodenum 0.3259 | 0.4006
Colon 0.5085 | 0.6311
Intestine 0.3052 | 0.3528
Left Adrenal 0.2262 | 0.2871
Right Adrenal 0.263 0.3391
Segmentation Overall Average 0.5188 | 0.5951
Table 1.8. Performance results
Original Grounding DINO + SAM2 IoU Precision
Liver 0.1059 0.1078
Spleen 0.0289 0.0291
Left Kidney 0.11306 | 0.1171
Right Kidney 0.2639 0.2709
Stomach 0.0225 0.0250
Gallbladder 0.0085 0.0085
Esophagus 0.00161 | 0.0016
Pancreas 0.0177 0.0177
Duodenum 0.00262 | 0.0026
Colon 0.0230 0.0233
Intestine 0.02708 | 0.0271
Left Adrenal 0.00088 | 0.0009
Right Adrenal 0.0018 0.0018
Segmentation Overall Average 0.0487 0.0498
Table 1.9. Performance results
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1.4.2 RAOS synthetic MRI turou "Delay”

Original Grounding DINO + Med-SAM2 IoU Precision
Liver 0.0612 0.0683
Spleen 0.021 0.0223
Left Kidney 0.1054 0.1207
Right Kidney 0.2504 0.2724
Stomach 0.0204 0.02414
Gallbladder 0.0042 0.0042
Esophagus 0.00012 0.00012
Pancreas 0.0085 0.0087
Duodenum 0.00055 0.00056
Colon 0.028 0.0298
Intestine 0.01681 0.01773
Left Adrenal 0.000409 | 0.000423
Right Adrenal 0.00123 | 0.00124
Segmentation Overall Average 0.0407 0.0445

Table 1.10. Performance results

Pipeline IoU Precision
Fine-tuned Grounding DINO (Epoch 11) + SAM2 0.5230 0.6010
Fine-tuned Grounding DINO (Epoch 11) + Med-SAM2 | 0.5133 | 0.6157
Original Grounding DINO + SAM2 0.0487 | 0.0498
Original Grounding DINO + Med-SAM2 0.0407 | 0.0445

Table 1.11. Results based on model combination

Prompt information IoU Precision
Position 0.4232 | 0.4785
Position + shape 0.4993 | 0.5726
Position + shape + brightness | 0.5230 | 0.6010

Table 1.12. Results based on prompt information for the combination of the Fine-tuned
Grounding DINO (Epoch 11) with SAM2
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Figure 1.42. Ground truth bounding box  Figure 1.43. Predicted bounding box and
and mask [5] maslk. IoU = 0.85 Precision = 0.997 [5]

Figure 1.44. Example of stomach grounded segmentation with input: "In the image, the
Stomach has a slightly oval shape. Stomach on upper middle and on left part . Stomach
Light Gray .”

Figure 1.45. Ground truth bounding box Figure 1.46. Predicted bounding box and
and mask [5] mask. IoU = 0.927 Precision = 0.969 [5]

Figure 1.47. Example of spleen grounded segmentation with input: "In the image, the
Spleen has a shape that resembles a crescent. Spleen on lower part and on left part .
Spleen Very Light Gray .”
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1.4.3 RAOS CT Scans

Figure 1.48. Ground truth bounding box  Figure 1.49. Predicted bounding box and
and mask [5] mask. IoU = 0.595 Precision = 0.784 [5]

Figure 1.50. Example of duodenum grounded segmentation with input: "In the image, the
Duodenum has a C-shaped appearance. Duodenum on upper middle and on right middle .
Duodenum Light Gray .”

1.4.3 RAOS CT Scans

To cuotnpa rmou avantuxdnke SOKIPACTNKE KAl OF £1KOVEG UITOAOY10TIKIG Topoypa@iag.
'Eywve a§lodoynon ota i6ia meypdpata pe e1kOveg g KOWAKAG X0pag aro toug idioug 67

aodeveig.

Fine-tuned Grounding DINO (Epoch 11) + SAM2 IoU Precision
Liver 0.7844 | 0.8200
Spleen 0.8311 0.8829
Left Kidney 0.8777 | 0.9288
Right Kidney 0.8689 | 0.9250
Stomach 0.7219 | 0.8462
Gallbladder 0.6155 | 0.7125
Esophagus 0.6553 | 0.8081
Pancreas 0.5152 | 0.5899
Duodenum 0.4490 | 0.5535
Colon 0.5822 | 0.7347
Intestine 0.3308 | 0.3770
Left Adrenal 0.5283 | 0.6468
Right Adrenal 0.4800 | 0.5863
Rectum 0.7242 | 0.8564
Bladder 0.8437 | 0.9023
Left Head of the Femur 0.7773 | 0.9074
Right Head of the Femur 0.7586 | 0.9000
Prostate 0.6632 | 0.7589
Seminal Vescicle 0.6205 | 0.7329
Segmentation Overall Average 0.5779 | 0.6702

Table 1.13. Performance Results
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Fine-tuned Grounding DINO (Epoch 11) + Med-SAM2 IoU Precision
Liver 0.7879 0.8395
Spleen 0.8435 | 0.9160
Left Kidney 0.8773 | 0.9448
Right Kidney 0.8563 | 0.9257
Stomach 0.7288 0.8368
Gallbladder 0.6108 | 0.6874
Esophagus 0.6800 | 0.7888
Pancreas 0.5056 0.5790
Duodenum 0.4601 0.5525
Colon 0.6030 | 0.6937
Intestine 0.3338 0.3717
Left Adrenal 0.4803 0.5725
Right Adrenal 0.4929 | 0.5709
Rectum 0.7418 0.8546
Bladder 0.8113 | 0.8952
Left Head of the Femur 0.6695 0.9011
Right Head of the Femur 0.6967 | 0.8859
Prostate 0.6445 0.7631
Seminal Vescicle 0.6246 0.7240
Segmentation Overall Average 0.5783 | 0.6588

Table 1.14. Performance Restults

Fine-tuned Grounding DINO (Epoch 11) + SAM2 (Position only)

IoU Precision

Liver
Spleen
Left Kidney
Right Kidney
Stomach
Gallbladder
Esophagus
Pancreas
Duodenum
Colon
Intestine
Left Adrenal
Right Adrenal
Rectum
Bladder
Left Head of the Femur
Right Head of the Femur
Prostate
Seminal Vescicle

0.7358 | 0.7682
0.8230 | 0.8729
0.8698 | 0.9223
0.8629 | 0.9194
0.6222 | 0.7217
0.5396 | 0.6216
0.6500 | 0.7945
0.4272 | 0.4870
0.2862 | 0.3516
0.3965 | 0.4958
0.1449 | 0.1591
0.5025 | 0.6145
0.4445 | 0.5456
0.7143 | 0.8545
0.8160 | 0.8684
0.7210 | 0.8487
0.7292 | 0.8670
0.5699 | 0.6492
0.5197 | 0.5937

Segmentation Overall Average

0.4592 | 0.5262

Table 1.15. Performance Results
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1.4.3 RAOS CT Scans

Fine-tuned Grounding DINO (Epoch 11) + SAM2 (Position and shape) IoU Precision
Liver 0.7661 0.7994
Spleen 0.8295 | 0.8814
Left Kidney 0.8775 | 0.9286
Right Kidney 0.8687 | 0.9248
Stomach 0.7137 | 0.8386
Gallbladder 0.6166 | 0.7148
Esophagus 0.6566 | 0.8055
Pancreas 0.4937 0.5646
Duodenum 0.4272 | 0.5254
Colon 0.5584 | 0.7064
Intestine 0.2892 0.3274
Left Adrenal 0.5267 0.6476
Right Adrenal 0.4739 | 0.5780
Rectum 0.7237 | 0.8530
Bladder 0.8417 | 0.9003
Left Head of the Femur 0.7164 | 0.8457
Right Head of the Femur 0.7176 | 0.8570
Prostate 0.6508 | 0.7441
Seminal Vescicle 0.5970 0.7023
Segmentation Overall Average 0.5540 | 0.6422

Table 1.16. Performance Results

Fine-tuned Grounding DINO (Epoch 11) + SAM2 (Unfiltered prompts

natural language shortened version with 2 sentences) IoU Precision

Liver 0.7272 | 0.7585

Spleen 0.8280 | 0.8787

Left Kidney 0.8785 | 0.9300

Right Kidney 0.8687 | 0.9246

Stomach 0.6909 | 0.8130

Gallbladder 0.6049 | 0.7077

Esophagus 0.6565 | 0.8047

Pancreas 0.4506 | 0.5212

Duodenum 0.3806 | 0.4719

Colon 0.4993 | 0.6360

Intestine 0.2564 | 0.2956

Left Adrenal 0.5239 | 0.6512

Right Adrenal 0.4765 | 0.5859

Rectum 0.7250 | 0.8639

Bladder 0.8159 | 0.8725

Left Head of the Femur 0.7102 | 0.8360

Right Head of the Femur 0.7117 | 0.8514

Prostate 0.6481 0.7375

Seminal Vescicle 0.5236 | 0.6220

Segmentation Overall Average 0.5231 | 0.6088

Table 1.17. Example of input: "In the image, the Liver has a slightly oval shape. The Liver
is located on the lower middle and on the right part of the image and appears to be Light
Gray.”
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Fine-tuned Grounding DINO (Epoch 11) + SAM2 (Unfiltered prompts

natural language with 3 sentences) IoU Precision

Liver 0.7754 | 0.8111

Spleen 0.8279 | 0.8789

Left Kidney 0.8781 | 0.9297

Right Kidney 0.8683 | 0.9242

Stomach 0.7117 | 0.8364

Gallbladder 0.6090 | 0.7156

Esophagus 0.6504 | 0.8054

Pancreas 0.4918 | 0.5695

Duodenum 0.3982 0.4941

Colon 0.5427 | 0.6858

Intestine 0.2702 0.3092

Left Adrenal 0.5287 | 0.6541

Right Adrenal 0.4851 | 0.5996

Rectum 0.7223 | 0.8650

Bladder 0.8304 | 0.8876

Left Head of the Femur 0.7159 | 0.8393

Right Head of the Femur 0.7368 | 0.8768

Prostate 0.6615 | 0.7587

Seminal Vescicle 0.5489 | 0.6511

Segmentation Overall Average 0.5443 | 0.6326

Table 1.18. Example of input: "In the image, the Liver has a slightly oval shape. The Liver
is located on the lower middle and on the right part of the image. The Liver in the image

appears to be Light Gray.”

Fine-tuned Grounding DINO (Epoch 7) + SAM2 IoU Precision

Liver 0.7859 | 0.8223

Spleen 0.8323 | 0.8849

Left Kidney 0.8764 | 0.9285

Right Kidney 0.8675 | 0.9251

Stomach 0.7187 | 0.8392

Gallbladder 0.6019 | 0.7010

Esophagus 0.6523 | 0.8040

Pancreas 0.5080 | 0.5837

Duodenum 0.4260 | 0.5174

Colon 0.5810 | 0.7358

Intestine 0.3264 0.3731

Left Adrenal 0.5305 | 0.6542

Right Adrenal 0.4763 | 0.5861

Rectum 0.7111 0.8459

Bladder 0.8463 | 0.9062

Left Head of the Femur 0.7717 | 0.9033

Right Head of the Femur 0.7581 | 0.8995

Prostate 0.6520 | 0.7521

Seminal Vescicle 0.6196 | 0.7277

Segmentation Overall Average 0.5741 | 0.6668
Table 1.19. Performance Results
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1.4.3 RAOS CT Scans

Original Grounding DINO + SAM2 IoU Precision
Liver 0.0906 | 0.0910
Spleen 0.0385 | 0.0385
Left Kidney 0.0433 | 0.0441
Right Kidney 0.0425 | 0.0430
Stomach 0.0321 0.0431
Gallbladder 0.0066 | 0.0066
Esophagus 0.0018 | 0.0018
Pancreas 0.0184 0.0184
Duodenum 0.0038 | 0.0044
Colon 0.0113 0.0131
Intestine 0.0259 | 0.0260
Left Adrenal 0.0014 | 0.0015
Right Adrenal 0.0015 | 0.0015
Rectum 0.0130 | 0.0130
Bladder 0.0717 | 0.0718
Left Head of the Femur 0.0299 | 0.0318
Right Head of the Femur 0.1072 | 0.1155
Prostate 0.0201 0.0201
Seminal Vescicle 0.0051 0.0051
Segmentation Overall Average 0.0293 | 0.0306

Table 1.20. Performance Results

Original Grounding DINO + Med-SAM2 IoU Precision
Liver 0.1060 0.1098
Spleen 0.0422 0.0422
Left Kidney 0.0427 0.0442
Right Kidney 0.0326 0.0333
Stomach 0.0346 0.0433
Gallbladder 0.0077 0.0077
Esophagus 0.0011 0.0011
Pancreas 0.0205 0.0206
Duodenum 0.0038 0.0043
Colon 0.0102 0.0117
Intestine 0.0266 0.0268
Left Adrenal 0.0012 0.0012
Right Adrenal 0.0015 0.0015
Rectum 0.0123 0.0124
Bladder 0.0776 0.0777
Left Head of the Femur 0.0253 0.0295
Right Head of the Femur 0.0883 0.1053
Prostate 0.0215 0.0215
Seminal Vescicle 0.0062 0.0062
Segmentation Overall Average 0.02949 | 0.03134

Table 1.21. Performance Results
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Pipeline IoU Precision
Fine-tuned Grounding DINO (Epoch 11) + SAM2 0.5779 0.6702
Fine-tuned Grounding DINO (Epoch 11) + Med-SAM2 | 0.5783 0.6588
Original Grounding DINO + SAM2 0.0293 0.0306

Original Grounding DINO + Med-SAM2 0.02949 | 0.03134

Table 1.22. Results based on model combination

Prompt information IoU Precision
Position 0.4592 | 0.5262
Position + shape 0.5540 | 0.6422
Position + shape + brightness | 0.5779 | 0.6702

Table 1.23. Results based on prompt information for the combination of the Fine-tuned
Grounding DINO (Epoch 11) with SAM2

e

Figure 1.52. Predicted bounding box and
mask. IoU = 0.91 Precision = 0.98 [5]

i

Ground truth bounding box

Figure 1.51.
and mask [5]

h >

Figure 1.53. Ground truth bounding box
and mask [5]

i

Figure 1.54. Predicted bounding box and
mask. IoU = 0.89 Precision = 0.95 [5]

Figure 1.55. Example of left head of the femur grounded segmentation with input: "In the
image, the Left Head of the Femur has a rounded shape. Part Left Head Femur on lower
middle and on left part Left Head Femur Very Light Gray .” for the first pair and "In the
image, the Left Head of the Femur has a rounded shape. Part Left Head Femur on lower
middle and on leftmost part Left Head Femur Very Light Gray .” for the second pair
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1.4.4 RAOS a§lodoynon oe dAAa Synthetic MRI

CPIEDIE

Figure 1.56. Ground truth Figure 1.57. Predicted Figure 1.58. Predicted
bounding box and mask [5] bounding box and mask. bounding box and mask.
IoU = 0.57 Precision = 0.58 IoU = 0.54 Precision = 0.46

151 [5]

Figure 1.59. Example of bladder grounded segmentation with SAM2 on the left and Med-
SAM?2 on the right

—r

Figure 1.60. Ground truth bounding box  Figure 1.61. Predicted bounding box and
and mask [5] mask. IoU = 0.73 Precision = 0.89 [5]

Figure 1.62. Example of pancreas grounded segmentation with input: "In the image, the
Pancreas has a slightly irregular shape. Pancreas on upper middle and on left middle .
Pancreas Very Light Gray.”

1.4.4 RAOS afioAoynon oc aAAa Synthetic MRI

Mexpt autd 1o onpeio, to povigdo £xet aglodoyndei oe ouvoda Sedopévev ota oroia
ekmadevnKke. e autd 1o meipapa, aglodoyoupe v anodoorn oe cUVOAa He8opEvav eKTOG
Katavoprng. Xug véeg ouvdetikeg ekoveg MRI, anewkovifoviat ot 16101 acSeveig pe onpaviikeg
510@OPOIIO0ELG Ot PATEWVOTNTA TOV 0PYAV®V 0 OUYKpPlon pe tov turo "Delayed”. Autd
ONPaivel 0Tt 01 ATEIKOVIOELS TOV OPYAVAV S1a@EPOUV, YEYOVOG TTIOU AVIIKATOMIPI{ETal Kat otig
KEEVIKEG TIEPTYPAPES OXETIKA HE T PATEWOTHTA. YTIO AUTEG TIG VEEG OUVINKeG, Soripialouie

€AV TO POVIEAO Katavoel v adAayn Kal IIpooappodetal, diatnpoviag napopold anddoor).
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Pre Artery type of Synthetic MRI IoU Precision
Liver 0.7166 0.7903
Spleen 0.6833 | 0.7694
Left Kidney 0.6740 | 0.7274
Right Kidney 0.5578 | 0.6058
Stomach 0.5818 | 0.6977
Gallbladder 0.3575 | 0.4267
Esophagus 0.4236 | 0.5426
Pancreas 0.1910 | 0.2356
Duodenum 0.2007 | 0.2658
Colon 0.4410 | 0.5885
Intestine 0.2908 | 0.3617
Left Adrenal 0.0197 | 0.0284
Right Adrenal 0.0996 | 0.1343
Segmentation Overall Average 0.4352 | 0.5235

Table 1.24. Fine-tuned Grounding DINO (Epoch 11) + SAM2

PV type of Synthetic MRI IoU Precision
Liver 0.7402 | 0.8076
Spleen 0.7547 | 0.8254
Left Kidney 0.8173 | 0.8739
Right Kidney 0.8172 | 0.8729
Stomach 0.6395 | 0.7526
Gallbladder 0.4103 | 0.4979
Esophagus 0.4859 | 0.6572
Pancreas 0.3341 0.4071
Duodenum 0.3439 | 0.4404
Colon 0.4703 | 0.6039
Intestine 0.2985 | 0.3569
Left Adrenal 0.2556 | 0.3367
Right Adrenal 0.2742 | 0.3706
Segmentation Overall Average | 0.5071 0.5972

Table 1.25. Fine-tuned Grounding DINO (Epoch 11) + SAM2

Type of Synthetic MRI IoU Precision
Delay 0.5230 | 0.6010
Pre Artery 0.4352 | 0.5235
PV 0.5071 | 0.5972

Table 1.26. Results across different types of Synthetic MRI
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1.5 Zupnepaopata

Figure 1.63. Delay [5] Figure 1.64. Pre Artery [5] Figure 1.65. PV [5]

Figure 1.66. Examples of different synthetic MRI types

1.5 Zupnepaopata

1.5.1 ZuUykrplon pe aAAa poviéda

e auTtr) TV evotnta ot ermb00Elg TOU TIPOTEWVOHEVOU cuothatog Sa ouykptdouv pe diAa
poviéda. H ouykpion Sa yiver pe to MedLAM [31], éva foundation poviédo yia eviormopo
0pyavev mmou og ouviuaopo pe 1o SAM [7] 1 1o MedSAM [24] nipaypatonotei katdtunon.
Emniong napouctadoviat ot ermbooelg tou SAM kat tou MedSAM otav §090Uv ta mpaypatika
bounding boxes [31] (manual prompting) kat 1€éAog tapouoiaetatl 1 emidoorn tou nnU-Net
[21], éva AN pag emPAeniopevo poviedo Padiag padnong.

Eival onuaviko va onuetobet 0Tt ta arnoteAéopata rmou a@opouv AAAd POVIEAd IIPOEPXOV-
tat and 10 ouvodo Sedopévov WORD [9] 10 ormoio IepléXel €1KOVEG UITOAOYIOTIKLG TOO-
ypadiag amd v KOWAlaKL X®Opd, eve 11 S0UAeld IOU MAPOUCIACTNKE 1€ AUty TV gpyacia
£xet a§lodoynBei oto cuvoro debopévav RAOS. Ta §Uo autd ouvolda debopévav potpadovat
TIG €1KOVEG UTTOAOY1IOTIKIG TOPoypadiag KATIOI®V acBeviv. XUYKEKPIHEVA, Ol EMIONMEID-
oe1g tTou WORD 1ou a@opouv toug Kowvoug acBeveig émpere va enektabouv €101 @ote va

dnpoupyndouv 19 kAdoeig orwg oto RAOS avti yia 1ig 16 mou vnirjpxav.

Table 1.27. Dice scores (%) for region segmentation. Prior work is evaluated on the WORD
dataset. Our framework is evaluated on RAOS, a continuation of WORD, and thus, "-" refers
to values missing from prior worlk.

Regions MedLAM Man. Prompt  Fully Supervised nnU-Net Our pipeline
SAM MedSAM | SAM MedSAM | 5-shot full SAM2 MedSAM2
Liver 66.0 23.8 84.2 46.6 94.3 96.3 85.2 85.7
Spleen 61.7 36.3 85.3 65.0 90.9 95.7 89.4 90.4
Kidney L 82.1 70.7 92.1 84.1 83.4 94.7 93.0 93.0
Kidney R 88.3 77.3 92.9 86.4 86.0 95.2 92.4 91.7
Stomach 44.6 37.2 77.1 80.3 83.2 93.1 80.8 81.3
Gallbladder 13.1 10.2 72.7 68.8 54.7 77.0 70.7 70.5
Esophagus 36.6 27.8 67.0 63.1 72.0 81.5 77.2 79.0
Pancreas 29.7 21.4 64.4 46.9 72.0 84.7 61.6 60.9
Duodenum 26.0 21.1 54.1 51.0 53.7 77.3 53.9 54.9
Colon 25.6 26.6 41.8 44.1 74.7 86.1 67.4 68.7
Intestine 37.5 34.1 61.4 52.5 77.6 88.0 41.2 41.7
Adrenal 3.3 10.0 17.4 26.5 58.3 72.8 63.5 62.0
Left Adrenal - - - - - - 65.6 61.7
Right Adrenal - - - - - - 60.9 62.4
Prostate - - - - - - 75.3 74.3
Seminal Vesicle - - - - - - 72.9 73.2
Rectum 50.1 46.0 75.5 80.0 70.2 80.3 82.2 83.6
Bladder 65.3 59.1 83.0 82.9 84.0 91.8 89.9 87.9
Head of Femur L 81.7 71.5 90.5 80.3 43.1 31.2 84.9 77.3
Head of Femur R 80.1 74.3 89.1 83.2 47.8 40.98 83.3 79.1
Average 49.5 40.5 71.8 65.1 71.6 80.4 66.1 66.3

Am6 10 mvakaxkt 1.28 mapatnpoupie Ot 1) Ipotevopevn) Pédodog mapdayel ta KaAutepa
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bounding boxes. H ouykpton €xet yivel pe 1o MedLAM, to DetCo [33], pia pn emmBAsniopevn
1€dodo contrastive learning yia object detection, to Mask R-CNN [13] kat to MIU-VL [30],
€va POVIEAO Opaong-yA®ooag yla Katavonorn atpikng ewkovag. To tedeutaio poviedo bev
£xel exradeutel oto WORD 10 oroio katadeikvuetl ot repattép® ekmnaibeuon Sa prnopouvoe

va BeAtiwoet tig ermdooelg.

Table 1.28. Wall Distance (WD) results for each region and method on the RAOS dataset
for our work and WORD for prior work. The best performance for each region is noted in
bold

Regions MedLAM DetCo Mask R-CNN | Our pipeline MIU-VL
Liver 10.5 73.8 7.1 4.5 80.4
Spleen 5.7 37.9 6.0 1.7 142.5
Kidney L 5.0 39.4 5.7 0.9 164.3
Kidney R 3.6 61.4 4.1 1.0 166.1
Stomach 17.7 49.3 8.8 4.6 102.8
Gallbladder 16.9 71.4 5.1 2.5 153.2
Esophagus 6.8 47.3 4.1 1.5 153.8
Pancreas 12.2 42.0 7.0 5.1 135.2
Duodenum 12.7 56.6 8.1 5.9 139.8
Colon 15.6 49.0 12.3 9.8 83.3
Intestine 15.4 50.7 11.3 25.3 106.0
Adrenal 7.6 52.3 6.2 2.1 160.2
Rectum 8.6 54.7 5.8 2.2 203.1
Bladder 8.1 65.1 3.7 1.9 167.7
Head of Femur L 5.3 55.8 3.3 4.2 175.1
Head of Femur R 5.9 52.1 4.1 4.0 163.4
Average 9.9 53.9 6.5 4.7 143.6

1.5.2 Emniloyog

Ta anotedéopata tev nelpapdtev 1ou LLaVA-Med amodeikvuouv 0Tl £XEl TIEPIOPIOPEVT)
KPIKY wKavotnta. I[Iapodo mou ypnowioroinOnkav 81adopeg 1eXVIKEG prompting omnwg
epwtoelg moAAarmng emoyrg kat rule based inference to poviéAo gaitvetat va pnv €xet
KAtavor|oetl TG ox€oelg HETady TV KEHEVIKOV MIEPIYPAPOV KAl TOV XAPAKINPIOTIKOV TG
ewovag. ' auto to Adyo Sev Sewpeital £urmoto va rmapdget 10 GUVOAO TOV KEIPNEVIKGOV TEPT-
YPAP®V OTIOG apX1KA JewpnOnkKe.

Y& auto 1o onpeio mpénet eriong va tovicoupe ot 1o LLaVA-Med onwg ta LLMs 6ev eivat
VIETEPHIVIOTIKO Kal 8ev mapayet v idia keypevikr £6060 e 1o 1610 prompt, to oroio e1oayet
évav Badpo PeBadtniag. Zinv MEPUTIOON TOV MEPYPAP®V OXNIATOS AUTOS O JI) VIETEP-
pwiopog dev arotedel 0oBapo mpofAnpa kabwg Ta nmapayopeva oxfpata eival anodektd.
[TapoAautd oty rnepinm®on g ueng rmou dokipdotnke Kat {nirdnke anod 1o 1o PovieAo va
KATNYOP1OIIO|0EL T OPYavVa O OLIOYEVI] KAl EIEPOYEVI] Ol araviroelg dev nrav navia idieg
e 161a eicobo.

'Oneg Aivetal KAt arto T0V IivaKd 0 EVIOITIGHOG ITOU IIPOCPEPEL TO IIPOTELVOEVO CUCT A
etvatl armodotikog kat eivat emiong to povo npoBAnpa yua to onoio eknatdsvnke 1o Ground-
ingDINO. to emdpevo PEPOG TOU CUCTIIATOG, TO OITO10 ITAPAYEL TNV HAOKA, EITITUYXAVEL
aviayeoviotikda anotedéopata. Ilapoda autd, UTIAPXOUV TEPUTIOOEIS OTIG OMOiEg TIEPATTEP®D
exntaidevorn Tou segmentation poviédo eival anapaimtn, kabwg tov bounding box sivat to
16aviko.

Zuykpivoviag 1o apyiko GroundingDINO pe v fine-tuned exkdoxr) tou apatnpovpe Ot
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1.5.3 TIIepropiopot

10 apX1KO Hev KATAVOEL Td OVOPATA T®V OPYAVAV TTOU TOU ITApouotadovial Katl aratiel mapa-
nave exnaideuon otov topéa g Proiatpikrng kabag emotpépet bounding boxes yupo arnd
10 ouvolo tou oopatog. To MedSAM2 amo 1) pepla tou dev arotedel onpavikr PeAtioon
oto foundation poviédo SAM2, kaBng Ta aroteAéopata Toug £ival oUyKpioid.

'‘O00v a@popd TIS KEPEVIKEG TIEPYPAPES TTOU divovial oto cuotnpa auteg da mpEmnet va
€lval 000 IO TEPIYPAPIKEG YIVETAL EUTIEPIEXOVIAG TANPOMOPIA Yld TV OXETKL 9YEorn ToU
0PYAVOU OTnVv €1KOVA, TNV QPXOTEVOTNTA TOU KAl TO0 XA TOU £T01 WOTE VA EMMTUYXAVETAL 1)
péyotn anodoor). To poviédo eival ermiong 1kavo va evioridel opyava Kat va td KATAatunoet
aroua Kt av ta prompts toug dagépouv and auvtd tou training set.

Ermiong 1o poviédo Soxkpdotnke KAl og Kawvoupyla ouvoda dedopévev ota omoia povo
1 PEIEWVOINTA T®V 0pYyAveVv dAAade, €lo0ayoviag véa OITTIKA Yapakinplotikd. To poviédo
napouociace KaAég armodooelg yia opyava ta oroia mapapévouv opatd. Ot aldayég otnv
PETEWOTNTA TOV 0PYAVAV EVORPATOINKAV KAl OTI§ KEIPEVIKEG TIEPYPAPEG KAl TO ouoTnpd
katadafe avtn v addayrn oe IoAAEG reputtaoelg. ['a eikodveg otg oroieg ta dpyava rrav
YolAd n mapoucialav peydaleg 51adoOPOITO)OELG 0T PRTEVOTITA, Il ATT0d00T) PeEIWdNKe. LUVo-
Akd e1kOveg pe KaBapr) AMEIKOVIOT TOV 0PYAVAV eiXaV Ta KAAUTEPA OKOP.

To mpotevOpReEVO CUOTNHA ENMESEGE Pia MIPOCAPHIOCTIKOTHTA OT0 KAE10TO TeP1BAAAOV OTo
ortoio eknatbevutnke. Me v €vvola KAE10TO TIEPIBAAAOV EVVOOUVTAL EIKOVEG O1 OTTO1EG TIPOEPYOV-
Tat and v ida katavopr) ya napdadetypa £xouv rapaxOetl armo to 1610 pnxdavnpa. Auto
10 ocuotnpa da prnopouoce va xpnotporondei og éva Pondnuko epyaleio yla enmayyeApatieg

OTOV TOPEA OF €va TETO10 KAE10TO TIEP1BAAAOV.

1.5.3 IIepropropot

'Evag Baoikog napdyoviag rmou replopifet tig fadpoloyieg oe OAeg TG peTpikeEg eivar 1)
aduvapia prompting yeltovik®v 11 oUuveX®v IeploX®v tou 1d1ou opydvou. I'a napadetypa,
omG aivetat oto Zxnpa 1.67, d1a@opetikd TPUNPATA TOU TAXE0G EVIEPOU UIOPEL va Pnv
etvatl Stakptd Baoet tng 9¢ong toug, kKadng katadapBavouv v idia yevikr) meploxrn kat Sa

AToKTIoouV Vv 1d1a neprypaer) 9¢ong.

Figure 1.67. I'ia ta 6Uo uépn tou i61ou opyavou mou fpiokovtat uéoa oto mpaowo miaiowo 9a
npayuarorom9ovv dvo prompts oro ovotnua. ‘Ouwg vrapxetl mdavotnia ta 6vo prompts va
eivar akpiBe¢ ta ibia Aoye g eyyuntdg toug.

Diploma Thesis



Chapter 1. Extetapévn [epiAnyn ota EAAnvika

1.5.4 MeAAovuikég Enertaosig

Y& autv v £pyaocida, To POVIEAO eKMAISEUTNKE SEX®PLOTA Ot dU0 Srapopetikd repBaA-
Aovta (urtoAoy1otikEG TOpoypadieg Kal OUVOETIKEG Pay VI TIKEG TOpOYpadieg) kat alodoyriOnke
0€ AUTA TA OUYKEKPEVA KAE10Td Tep1BAAlovia Kal og KATOWM aKopa Kawouptla dedopéva.
Mia rmbavr) peAdovukn BeAtioon Sa ftav ) mepattép® IIPOCAPIOYT] TOU PHOVIEAOU O€ £€vad eUpU
oUvoAo §e5011EVeV TTOU KAAUTTTEL OAOKANPO TOV TOPEA TG 1ATPIKIG ATIEIKOVIONS, CUNIIEPAap-
Bavovtag moAAdITA£G TIEPLOXEG TOU aVOPOITIVOU 0OATOS KAl EIKOVEG aTto dladopeg 1ebodoug
anekoviong (axtvoypagieg, moAAardol VMol Payvnikig Topoypadiag, UMTOAOYIOTIKEG TO-
poypagieg, 10todoyia, pakpookorikr rmabodoyia). Autd da odnyouce ot Snpioupyia evog
HOVIEAOU 1€ EKTETAPEVT] YVAOOT] OTOV 1ATPIKO TOHEd, TO OrToio 9a PIropouoe va Xpnotpiornoin et
oe omolodnmote riepiBaddov, kabwg Sa Paciletal oe éva peyddo ouvoAro dedopévav kat Sa
elvat yevikeuoo.

Mia aAAn kateuduvor yia peddoviikn) épeuva 9a propouoe va ivat 1) OUVEXNS EVIIHEPKDOT
10V Bap®v tou LVLM poViEAOU 1€ TIG KEWHEVIKEG TIEPLYPAPEG TTOU TAPAYOvVIaAl Ao TOUG
VIETEPHIVIOTIKOUG aAyopidpoug. Auto Sa Pmopouoe va €xel ©g anotédsopa v PeAtioon g
KPIUIKNG 1Kavotntag tou LVLM ®ote va sivat o agiérmorto kat va 6ivel akpiPfeig anaviroeig.

TéAlog, Sa propouce va epeuvnBel 1 epappoyr] TOU IMIPOTEIVOPEVOU cuotnpatog oe 3D
aTPIKEG £1KOVEG ITapdyoviag tpiodiactata bounding boxes is kat xpnoworowwviag to Med-
SAM2, ®ote va enegepyactel KAl va KATAtproel oykoug. Autd Sa propouoce va odnyroet
oe BeAtiwpéva anotedéopata ta oroia Ya enwdsAovvial amod Vv @uon v dedopévev otig
1pelg draotaoelg, omou ola ta slices eivat iaBeopa oe éva prompt 1o oroio Sa £xel wg

arotédeopa pia mo anodotiKy XPnor ToU PNXaviopou Pvijpng Tou segmentation poviéAou.
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1.5.4 MeAAovukég Enextaoeig

User: Describe the organs in this image in detail in regards to their
position and shape.

LLaVA-Med: In this image, the organs are positioned in a way that is
typical for a female. The liver is located on the right side, and the spleen
is on the left side. The liver appears to be enlarged, with a shape that
resembles a "bunch of grapes." The spleen is also enlarged, with a shape
that resembles a “sausage."

User: The visible organs in this image are the liver, spleen, duodenum,
colon, stomach, pancreas, left and right adrenal. Describe them in detail
in regards to their position and shape.

LLaVA-Med: In the image, the liver is located in the right upper quadrant,
and it appears to be enlarged. The spleen is situated in the left upper
quadrant, and it also appears to be enlarged. The duodenum is the first
part of the small intestine and is located in the upper right quadrant. The
colon is the large intestine and is situated in the lower right quadrant. The
stomach is located in the upper left quadrant, and the pancreas is in the
upper left quadrant, just below the stomach. The left and right adrenal
glands are small, triangular-shaped glands located on top of each kidney.

Figure 1.36. To LLaVA-Med ayvosi kanowa dpyava. I't” auto 1o Adyo anoepaociotnke oc kade
prompt va avagépovial ta ovopuata 0oV IOV 0pyav®v ToU Uag eVOLAeEQOUL.
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Chapter 1. Extetapévn [epiAnyn ota EAAnvika

User: In this image the organs are the two kidneys, the liver, the colon,
the intestine, the pancreas, and the duodenum. Describe them as they
appear in the image.

LLaVA-Med: In the image, the two kidneys are visible as well as the liver,
colon, intestine, pancreas, and the duodenum. The kidneys are shown in
their normal positions, with the liver located in the upper right part of the
abdomen, the colon and intestine in the lower right part, the pancreas in
the upper left part, and the duodenum in the upper middle part of the
abdomen. The organs appear to be in their usual anatomical positions,
and there are no visual abnormalities or pathologies mentioned in the
context.

User: Describe the shape of the kidneys.

LLaVA-Med: The kidneys in the image are described as having a normal
shape. They are bean-shaped organs with the right kidney being slightly
higher than the left one. The shape of the kidneys is important for their
proper functioning as it allows them to efficiently filter waste products
and excess water from the blood.

User: Where is the liver here?
LLaVA-Med: In the image the liver is located in the upper right part of
the abdomen.

User: Here the spinal cord is located in the lower part of the image in the
middle. With that in mind, where is the liver?

LLaVA-Med: In the image the liver is located in the upper right part of
the abdomen.

Figure 1.37. To povtéAo emikevipovetal mo ToAv oc Tjlnpoeopicg mou xet padet kar 6ev Tg
efayetl pe KPITIKN OKEYN anod U ek0va
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1.5.4 MeAAovukég Enextaoeig

User: The visible organs in this image are the liver, spleen, duodenum,
colon, stomach, pancreas, left and right adrenal. Describe them in detail
in regards to their position and shape.

LLaVA-Med: In the image, the liver is located in the right upper quadrant
of the abdomen. It appears to be enlarged and has a nodular contour.
The spleen is situated in the left upper quadrant, and it also appears to
be enlarged. The duodenum, which is the first part of the small intestine,
is visible in the image. The colon is located in the lower right quadrant,
and it appears to be dilated. The stomach is situated in the upper left
quadrant, and it appears to be enlarged. The pancreas is visible in the
image, and it appears to be enlarged as well. The left and right adrenal
glands are also visible in the image, and they appear to be enlarged.

Figure 1.38. H swcdva mepotpaenke katd 180 uoipeg unnwg avio Bfondroet 1o poviéio yia
MU mapaywyrn 0oTOv TEPYPaAGOD.
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( )

User: The visible organs in this image are the stomach, the
liver, the spleen, the left kidney, the right kidney, the colon, the
intestine, the right adrenal, the pancreas and the duodenum.
Describe them in detail in regards to their position and say in
which quadrant they belong or center of the image.

LLaVA-Med: In this image, the stomach is located in the left
upper quadrant, the liver is in the right upper quadrant, the
spleen is in the left upper quadrant, the left kidney is in the left
lower quadrant, the right kidney is in the right lower quadrant,
the colon is in the left lower quadrant, the intestine is in the right
lower quadrant, the right adrenal is in the right lower quadrant,
the pancreas is in the left lower quadrant, and the duodenum is
in the right upper quadrant.

User: The visible organs in this image are the stomach, the
liver, the spleen, the left kidney, the right kidney, the colon, the
intestine, the right adrenal, the pancreas and the duodenum.
Describe their shape in the image in detail.

LLaVA-Med: In this image, the stomach appears to be oval-
shaped, the liver is oval-shaped, the spleen is oval-shaped, the
left kidney is bean-shaped, the right kidney is bean-shaped,
the colon is oval-shaped, the intestine is oval-shaped, the right
adrenal is oval-shaped, the pancreas is oval-shaped, and the
duodenum is oval-shaped.

User: The visible organs in this image are the stomach, the
liver, the spleen, the left kidney, the right kidney, the colon, the
intestine, the right adrenal, the pancreas and the duodenum.
Tell me about the brightness of each organ if it is white, gray or
dark closer to black.

LLaVA-Med: In this image, the stomach, the liver, the spleen,
the left kidney, the right kidney, the colon, the intestine, the
right adrenal, the pancreas, and the duodenum appear to be
white. This means that they are well-visualized and easily dis-
tinguishable from the surrounding tissues.

Figure 1.39. Aanogaociotnke kads ep@Non va aeopd £va Povo XapaKinplotko
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1.5.4 MeAAovukég Enextaoeig

User: The Liver is located slightly up and on the right part of the image
and appears to be Light Gray. Describe its shape in detail. If the liver ap-
pears to be elongated and small that means it has the shape of a sausage
but if it is large it has its normal shape. What shape does it have here?
LLaVA-Med: In this image, the liver has a large shape, which is its normal
shape.

User: Can you locate the liver in this image?

LLaVA-Med: Yes, the liver is located slightly up and on the right part of
the image.

User: But it has the shape of a sausage because it is small and elongated.
LLaVA-Med: No, in this image, the liver has its normal shape, which is
large.

User: The liver lies on the right of the right kidney. What shape does it
have?

LLaVA-Med: The liver has a large shape, which is its normal shape.
User: No, it has the shape of a sausage.

LLaVA-Med: No, in this image, the liver has its normal large shape.
User: The liver here appears to cover a small area in regards to the area
of the image, so it must be small, and a small liver typically has the shape
of a sausage. So what shape does it have here?

LLaVA-Med: In this image, the liver has the shape of a sausage because
it is small.

Another example for the same image

User:The Liver is located slightly up and on the right part of the image
and appears to be Light Gray. If the liver appears to cover a small area
in regards to the area of the image it must be small and a small liver
typically has the shape of a sausage. Otherwise it has an irregular shape
and is wedge-shaped. So what shape does it have here?

LLaVA-Med:In this image, the liver appears to be wedge-shaped.

Figure 1.40. [Isipauata e epotjoeig toAAaniov emioyov
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User: The Liver is located slightly up and on the right part of the image
and appears to be Light Gray. If the liver appears to cover a small area
in regards to the area of the image it must be small and a small liver
typically has the shape of a sausage. Otherwise it has an irregular shape
and is wedge-shaped. So what shape does it have here?

LLaVA-Med: In this image, the liver appears to be wedge-shaped.

Figure 1.41. [Iapabciyua Kpiukng oKEWYng Tou UovteAou yia 1o oxnua tou liver
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Chapter E

Introduction

2.1 Scope of Work

In Artificial Intelligence (Al), foundation models play a significant role and can be uti-
lized in various domains such as natural language processing (NLP) and computer vision
(CV). Due to the need for generalizability, they are expensive to create, requiring vast
computational resources and rely on large-scale datasets. Any improvement regarding
their architecture, size, training dataset and optimization method can significantly en-
hance performance, bringing new opportunities for their application. A major advantage
of foundation models lies in the fact that their use can be extended to more domains than
they were trained for at a relatively low cost. Notable foundation models in NLP are BERT
[18] and GPT-4 [10].

In computer vision, models such as the U-Net [6], which is a task-specific model,
used to rely on convolutional neural networks(CNNs). With the advent of the transformer
architecture, new models emerged with broader capabilities. These include the Segment
Anything Model(SAM) [7] and its successor SAM2 [2], which are capable of segmenting
images based on a bounding box, point, or mask. Another example is the GroundingDINO
[4], which can detect objects based on a textual description. Beyond these, a new category
of models known as large vision-language models (LVLMs) integrate vision and language
modalities and can be utilized in multimodal tasks. One such model is the large lan-
guage and vision assistant (LLaVA) [1] that can be used in the context of visual question
answering (VQA), a task where an image is provided and the model has to answer an
open-ended question. All of the aforementioned foundation models have learned through
their training general knowledge and can be applied with slight modifications and low
cost to any specific domain.

Especially in the field of medical imaging and more specifically grounded organ seg-
mentation, which is the application of this work, datasets are often either scarce or unan-
notated and the creation of ground truth data can only be the work of experts for reliability
purposes. These constitute limiting factors for the development of models, which special-
ize in medical imaging, as the dataset is the backbone of the training process. To address
this issue, in this work, we propose a method that is able to partly replace the need for
expert annotations by utilizing the domain-specific knowledge of a fine-tuned LVLM, the
LLaVA-Med [8] and transferring it to GroundingDINO. For the grounded segmentation
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Chapter 2. Introduction

of the organs (or parts of them if they are non-contiguous), we develop a pipeline con-
sisting of the GroundingDINO for the production of a bounding box from the (2D image,
text) input and SAM2 or Med-SAM2 [3] to generate the predicted mask of the organ. As
for the dataset it comprises both CT scans and Synthetic MRI images along with their
respective labelmaps all of which belong to the RAOS [5, 9] dataset. The only missing
part for grounded segmentation training are the organ textual descriptions which will be
generated by LLaVA-Med and deterministic algorithms. From the utilized models, only
GroundingDINO will be fine-tuned in the combined data of the RAOS and the produced
textual descriptions, while the segmentation models will remain unaltered.

With the proposed method we proceed on fine-tuning the GroundingDINO and con-
duct a series of experiments to analyze the performance of the pipeline on grounded
segmentation. As metrics, the intersection over union (IoU), the precision, the dice score
coefficient and wall distance are used to quantify the performance. During the testing
phase, different types of prompting strategies are initially assessed both for the whole
pipeline and LLaVA-Med. Additionally, a comparison is presented between the fine-tuned
version of the GroundingDINO and its original counterpart. Furthermore, the pipeline
performance is assessed with the use of SAM2 and then the fine-tuned Med-SAM2 to
understand if the fine-tuning of the second component is imperative for improved results.
Lastly, the pipeline will be evaluated on unseen synthetic MRI images of unknown type

for the system.

2.2 Thesis Organization
This work is organized into the following chapters:

e Chapter 2: Introduction - This section provides a brief overview of the work, the

motives and the purposes.

e Chapter 3: Background and Related Work - In this chapter a small introduction
to computer vision and relevant concepts are presented. Additionally, the utilized

models are analyzed in more detail and related work is also mentioned.

e Chapter 4: Methodology - Here, all of the decisions regarding the architecture of
the pipeline, the hyperparameters of the model, the dataset and a dataset evaluation

are provided.

e Chapter 5: Results - In this section, the results are presented in both quantitative

and qualitative form with the use of example images and segmentation masks.

e Chapter 6: Discussion - In the last chapter, we include a comparison with other
models, an analysis of the findings, a discussion about the limitations of the project

and a suggestion about future work.
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Chapter B

Background and Related Work

3.1 Overview of Computer Vision

Computer vision (CV) is a subfield of Artificial Intelligence (AI) that focuses on enabling
machines to analyze and interpret visual information in a meaningful way. In the past
computer vision relied on handcrafted features and rule-based approaches for tasks such
as edge detection and feature matching. However, the introduction of large-scale data-
driven models, availability of information and improvement of computational methods
and hardware have all resulted in more robust and generalizable models. The field has
progressed rapidly with the advent of deep learning, particularly with convolutional neural
networks and the more recent transformer-based architectures.

Recent developments have enabled the use of large vision language models (LVLMs)
that bridge the gap between visual and textual modalities performing applications such
as image captioning, visual question answering and grounded segmentation. Other tasks
that fall under CV are image classification, object detection and image segmentation.

In the image classification task, there is a list of classes and the objective is to match
each image to one class. To this end, images usually depict a single object to reduce the
chance of containing objects from two different classes.

Object detection is another task in which an image and a class name are given as
prompts and the output should be the bounding box surrounding the requested object in
the image. In some cases, there might exist multiple instances of the object in a single
image and multiple bounding boxes are required.

Grounded image segmentation is a task in which the object is detected with pixel
precision and a mask is formed. The input for this task should be the image along with
a textual description of the requested object.

Visual question answering (VQA) is a task in which an image along with a text-based
question regarding its content is provided as input. The model in turn is expected to
extract image features, understand the given text and produce an accurate response to

the question.

Mask

A mask of an object in computer vision is the set of pixels that are used to delineate

it, segmenting it from the background. The shape of a mask is arbitrary, depending on
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Figure 3.1. Architecture of LLaVA [1]

factors such as the structure of the object, occlusion and the camera’s capture angle.

Bounding box

A bounding box around the object of interest is a rectangular region that perfectly fits
the object. In this study, the edges of the bounding box are parallel to the horizontal and
vertical axes of the images. Notably, a bounding box does not include any row or column

of pixels unless at least one of them is part of the object’s mask.

3.2 Relevant Models

3.2.1 LLaVA

The Large Language and Vision Assistant (LLaVA) is a large-scale multimodal model
[1] that accepts image text pairs as input and generates a textual response. The tasks
it can handle vary as each task can be described in the textual input and the answer is
based on the input image.

The model was trained using an instruction-following dataset, consisting of tasks and
their corresponding responses. The dataset was curated using text-only GPT-4, which was
prompted with the caption for each image along with a set of questions to answer. The
questions covered a wide variety of tasks and difficulties ranging from simple conversation
and detailed description to complex reasoning. This process resulted in an elaborate set
of questions and answers with diversity. As a result, the GPT-4 worked as a teacher
model that distilled its knowledge to the LLaVA model.

The architecture of LLaVA (Figure 3.1) consists of both text and vision encoders.
The text encoder is a pre-trained large language model, the Vicuna [11], while the vision
encoder is the ViT-L/14 [12], the same model used in CLIP [28]. A linear layer is employed
to transform the embeddings of the image encoder into a representation in the vector space
of their textual counterparts acting as a form of fusion. The resulting embeddings of the
linear layer along with the text embeddings are then processed by the LLM that generates

a textual response.
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3.2.2 LLAVA-Med

3.2.2 LLAVA-Med

The Large Language and Vision Assistant for BioMedicine (LLaVA-Med) [8] is a conver-
sational generative artificial intelligence model. Similarly to LLaVA it takes a multimodal
input (text-image) and produces a textual output. The difference between LLaVA and
LLaVA-Med is that the latter is a fine-tuned variant of the former, retaining the same ar-
chitecture. The fine-tuning process is based on a dataset that includes images, captions
and question-answer pairs regarding multiple fields of medicine such as X-rays, MRI,
Histology, Gross pathology and CT scans. The training procedure consists of two stages
one entailing a concept feature alignment and an end-to-end instruction tuning stage.

In the first stage, the image encoder and the language model (LM) weights remain
frozen, while only the projection matrix that transforms the visual input embeddings
into a vector in the text domain is updated. This training process leads to an improved
alignment between the two modalities in the biomedical domain, thus expanding the
vocabulary and image understanding of the model.

The subsequent stage involved training the LM and the projection layer weights using
an instruction-following dataset in the same way the original LLaVA used one. The model
is claimed to achieve good zero-shot task transfer performance on several VQA datasets.
However, for more specialized scenarios the model needs further fine-tuning and as with
other large multimodal models (LMMs), the model presents hallucinations and has a

limited reasoning capability.

3.2.3 Segment Anything Model 2 (SAM2)

SAM2 [2] is a foundation model capable of segmenting objects in both images and
videos. It accepts bounding boxes, points, or masks as prompts and outputs a segmenta-
tion mask. In this study, it will be tested solely on medical 2D images with a bounding box
acting as input. The model’s architecture comprises an image encoder, prompt encoder,
memory encoder, mask decoder, a memory attention block and a memory bank (Figure
3.2).

The image encoder transforms visual data tokens into embeddings, leveraging hi-
erarchical feature extraction. It employs a Masked Autoencoder [13] (MAE) pre-trained
Hiera [14, 15] image encoder and after producing the image embedding, multiple prompts
and segmentation masks can be inferred.

The prompt encoder is a part of the model that produces the input embeddings from
masks, points, or bounding boxes.

The mask decoder is responsible for generating a mask based on the embeddings it
receives. This component can produce multiple outputs in cases of ambiguity, but only
one mask will be given on the output without a refinement of the prompts. A notable
difference between its predecessor in SAM [7] is that this part can sometimes output no
mask in case the model does not detect any valid objects that require segmentation.

At this point, it should be noted that when the SAM2 model is used to segment images
instead of videos, the memory mechanism is not utilized and remains empty. This leads

SAM2 to behave as SAM. Despite this, in our work, we employ SAM2 due to its training
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Figure 3.2. Architecture of SAM2 [2]

that is based on a larger dataset.

This dataset known as SA-V was created with the use of a data engine. It includes
35.5M masks across 50.9K videos. The masks are not limited to a predefined list of
objects but rather regard any visible object or even occluded.

The dataset generation was completed in three phases. Initially, the original SAM
model was used in videos to segment objects in each frame and human annotators ad-
justed the predicted masks. In the subsequent stage, both SAM and SAM2 were utilized.
SAM generated a mask for the first frame of the video and SAM2 was tasked with predict-
ing the mask of the same object in the next frames using its memory mechanism. At any
frame, annotators may have adjusted the masks with pixel precision. In the last phase,
only SAM2 was used in its final structural form accepting all kinds of prompts such as

points or masks. During this phase, only slight modifications to the masks were made.

3.2.4 Med-SAM2

The Medical SAM 2 (MedSAMZ2)[3] is a model developed to handle medical image
segmentation tasks both for 2D and 3D applications. It utilizes the SAM2 model as
a foundation and builds upon it in terms of architecture (Figure 3.3) and fine-tuning
enabling a more diverse set of functions such as the One prompt image segmentation
[16]. In more detail, the memory bank of the model has been altered and does not keep
the last K frames, but only the most relevant and informative embeddings. In this way,
the model is more robust as the images presented are not sorted and the tasks may
vary from image to image. Another action in the direction of enhancing the model is the
fine-tuning. The dataset used for this was the One-Prompt dataset [16] a compilation of
publicly available datasets that span many modalities and organs. All of these actions
make the model more generalizable to unseen tasks directed to the medical domain and

enhance its capabilities for 3D input, video segmentation and One prompt segmentation.

3.2.5 Grounding DINO

Grounding DINO [4] is an open-set object detector that processes an image-text pair
as input to generate bounding boxes for objects relevant to the textual description within
the image. It is characterized as open-set because it can be guided from the textual input
to detect objects outside of the training set. This capability is enabled through modality

fusion (image-text) and grounded pre-training strategies.
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Figure 3.3. Medical SAM 2 Architecture [3]

The architecture (Figure 3.4) comprises two distinct encoders and a single decoder.
The image encoder utilizes the Swin Transformer [17], a deformable attention-based
framework, while the text encoder employs BERT [18]. A feature enhancer facilitates a fu-
sion between the two modalities as it combines cross attention to align the two modalities.
Subsequently, a language guided query selection stage selects the most relevant image
tokens by evaluating their inner product with text tokens. Lastly, the cross modality
decoder is responsible for the production of the bounding boxes.

A key innovation of the Grounding DINO lies in its ability to process each text input
on a sub-sentence level (Figure 3.5) in the process of grounded training. This approach
enables the model to analyze each sentence word by word, independently of other sen-
tences within the same text prompt. By doing so, it mitigates irrelevant dependencies and
ensures more precise alignment between textual and visual features while maintaining

the fine grained details of each sentence regarding a single class.

3.3 Related Work

Medical Imaging. Medical imaging plays a fundamental role in healthcare and
biomedical research, enabling the delineation of anatomical structures, automated diag-
nosis and treatment planning. Among its applications, organ segmentation has received
significant attention with various deep learning based approaches. A notable example is
the U-Net [6] and some variations [19, 20, 21]. Transformer based models have also been
developed to address this problem [22, 23], leveraging self-attention mechanisms.

In addition, the advent of the Segment Anything Model (SAM) has further fueled re-
search interest, with numerous efforts being made to tackle this problem by fine-tuning
[24, 25], prompting [26] or developing adapter-based enhancements to improve segmen-
tation efficiency [27]. The introduction of Segment Anything 2 (SAM2) [2] has expanded
the scope of segmentation research, particularly in the realm of 3D segmentation, with
the use of the memory bank architecture.

Another prominent direction of research interest involves multimodal approaches that
utilize both image and language modalities. Vision language models such as CLIP [28]

have been adapted to address this issue [29]. They utilize text as a means to make
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segmentation more robust and efficient across diverse datasets.

More specialized LVLM’s, such as LLaVA [1] and especially LLaVA-Med [8] for the
biomedical domain, have been trained to analyze images describe them in detail often
detecting if there is an anomaly and are able to answer simple questions.

Grounded Segmentation/Open-set object Detection. Traditional segmentation ap-
proaches rely solely on visual features and predefined categories or prompts in the form of
points and bounding boxes. Unlike those, the problem of grounded segmentation refers
to the use of textual prompts to guide a model in segmenting objects within an image.
This method leads to an inherently more generalizable segmentation that utilizes learned
features to detect even unseen objects. Similarly, open-set object detection is a task in
which a textual input describes the requested entity. The key difference between those
two tasks lies in the output, which is a mask in the first case and a bounding box in
object detection.

Several implementations have been proposed, including Grounding DINO [4], which
integrates transformer-based object detection with textual grounding mechanisms and
Grounded SAM [39, 7, 4], which extends the capabilities of SAM by incorporating text
prompts.

MIU-VL [30] is a framework that integrates both language and vision to localize and
produce a bounding box in the medical domain. It is prompted with the name of the object
to be localized and a textual prompt is automatically generated containing information
about the color, shape and location of the requested entity. The combined information
from the text and image modalities is assessed by a VLM and a bounding box is produced.
This study aims to evaluate the generalization of pretrained VLMs on medical images with
the appropriate prompts and proceed on fine-tuning models to showcase the performance
improvement.

MedLAM ([31] is a 3D medical foundation model that is capable of localizing organs,
producing three dimensional bounding boxes. It consists of CNN based encoder and
decoder along with a multilayer perceptron and has been trained on 16 datasets including
14,012 CT scans. When integrated with SAM, MedLSAM is able to segment an organ,
generating the respective 3D mask. The only required input is the class of the organ.

In the same work, to create comparable data to MedLAM for organ localization, they
utilized a pretrained 3D ResNet50 backbone [32] following the DetCo [33] approach,
an unsupervised contrastive learning method for object detection. Additionally, they
evaluated the Mask R-CNN [34] framework in the same task. Mask R-CNN is a deep
learning model for instance segmentation and builds upon Fast/Faster R-CNN [36, 37].
It comprises two stages, the region proposal network which produces candidate bounding
boxes and a second stage where it classifies the object and refines the bounding box,

while simultaneously predicting a mask.
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Chapter ﬂ

Methodology

4.1 Dataset Description

The dataset used for fine-tuning the Grounding DINO is multimodal, consisting of
(image, bounding box, text) triplets. The CT scans and Synthetic MR images originate
from the RAOS [5, 9] dataset, with the bounding boxes deriving from the annotated label
maps within the same dataset. The textual input analyzed in section 4.6.1 provides a
detailed description of each annotated entity, including its relative position in the image,
shape, brightness and its corresponding name. A snippet of the dataset file can be viewed

in Figure 4.1.

{
"filename": "0_0.jpg",
"height": 259,
"width": 331,
"grounding": {
"caption": "In the image, the Colon has a slightly curved shape...",
"regions": [
{
"bbox": [240, 107, 286, 1571,
"phrase": "<s> In the image, the Colon has a slightly curved shape.
</s>Part Colon on lower middle and on right part Colon Dark Gray ."
}
{"bbox": [44, 76, 79, 124],
"phrase": "<s> In the image, the Intestine has a curved shape.
</s>Part Intestine on upper middle and on left part Intestine Dark Gray ."},
}
]
}
}

Figure 4.1. Example of dataset structure regarding a single image with multiple bounding
boxes
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4.1.1 RAOS

The images and bounding boxes employed for fine-tuning the groundingDINO model
derive from the RAOS [5, 9] dataset. It consists of 413 real clinical CT scans and 413x9
MR scans from the human abdominal area. It is also worth noting that this dataset
contains mask annotations by a senior oncologist, which enables supervised fine-tuning.
From the nine available types of Synthetic MRI scans, we have selected to train the model
on the category “Delayed” as various filters and imaging techniques have been applied
to increase the contrast between the organs and thus create more suitable conditions
for computer vision tasks. Among the annotated organs which will be the categories of
interest are the liver, spleen, left and right kidneys, stomach, gallbladder, esophagus,
pancreas, duodenum, colon, intestine, left and right adrenals and left head of the femur.
The rest of the organs in the dataset, such as the rectum, bladder, right head of the femur,
prostate and seminal vesicle, are not present in this type of Synthetic MRI but exist in the
CT scans. The dataset is also separated into sets A, B and C. Set A has slices considered
as the average case, while sets B and C consist of corner cases because of missing organs
or parts of them. For this reason, we chose to fine-tune and evaluate the model on the
images of Set A, which contains CT scans and MRI slices from 287 patients. It should
be noted that the fine-tuning is separate for the CT scans and the Synthetic MRI of type
"Delay".

(A) CT scan (B) Synthetic MRI of type "Delayed"

Figure 4.2. On the left (A) is an original CT scan that displays the organs of the abdomen.
On the right (B) the same area is displayed but it appears to be an enhanced version as the
organs are more distinguishable, their boundaries are clearer and the contrast is higher.

The images have been rotated so that the spinal cord is positioned at the lower part
of the image, as illustrated in Figure 4.2. Each slice is presented as a top-down view to
maintain consistency across the dataset. In total, there are 220 patients for the training

set and 67 patients for the test set.

m Diploma Thesis



4.2 Dataset Evaluation

4.2 Dataset Evaluation

The textual descriptions of the masks were evaluated for their accuracy and reliability
using a large language model (LLM) and specifically the GPT-40-mini model [40]. The
LLM was initially prompted to assess the descriptions without any further instructions.
However, it was quickly evident that it focused on aspects that cannot be changed, such
as sentence cohesiveness (Figure 4.3). Subsequently, an explanation regarding the eval-
uation task was provided to guide the model and ensure that it focused on relevant points
(Figure 4.4).

rYou are a dataset quality assessor. Rate the caption from 1 to 10N
based on quality and accuracy.
Assessing region phrase: <s> In the image, the Liver has a slightly oval
shape. </s>Liver on lower middle and on right part . Liver Light Gray .

Rating: 5

The caption describes the liver with some basic characteristics, such as
its shape and color; however, it is vague and lacks clarity. The statement
"Liver on lower middle and on right part" is confusing, as it does not
accurately convey the liver’s location in relation to the rest of the image.
Overall, the caption needs improvement in precision and completeness.

Figure 4.3. Request to assess the mask description

In the next example illustrated in Figure 4.4, the model focused on the fragmented
nature of the sentence, penalizing the lack of cohesiveness, grammatical and syntactical
correctness. Admittedly, the cohesiveness cannot be improved as the sentences pass
through a filtering function that omits all the frequently occurring words such as “and”
and "the". This filtering aims to mitigate the redundancy by preventing the repetition of
such words during the training process, thereby allowing the model to focus on relevant
information. For this reason, further refinement of the prompt was necessary. The final
version, which serves as the basis for evaluating all textual descriptions is presented in
Figure 4.5.

Diploma Thesis



Chapter 4. Methodology

\

fYou are a dataset quality assessor. Rate the caption from 1 to 10
based on quality and accuracy keeping in mind that this is the
dataset for grounded training of a model that detects bounding
boxes. We would like to give the model the shape, relative posi-
tion of the organ in the image and its brightness.

Assessing region phrase: <s> In the image, the Liver has a slightly oval
shape. </s>Liver on lower middle and on right part . Liver Light Gray .

I would rate this caption a 7 out of 10.

Here’s my reasoning: - **Shape**: It accurately describes the liver as
having a slightly oval shape, which is relevant for the model to learn
about the organ’s form. - **Position**: It indicates that the liver is located
in the lower middle and the right part of the image, which provides useful
information about its relative position. - **Brightness**: It describes the
liver’s color as light gray, which is important for the model to learn about
the organ’s appearance.

However, the phrase structure is a bit fragmented and could be improved
for clarity. Additionally, a more precise description of the liver’s spa-
tial relation to other organs or anatomical landmarks could enhance the
caption’s informative value. Overall, it contains the essential elements
needed for training but could benefit from refinement.

Figure 4.4. Request to assess the mask description with some guidance

~\

fYou are a dataset quality assessor. Rate the caption from 1 to
10 based on quality and accuracy keeping in mind that this is the
dataset for grounded training of a model that detects bounding boxes
in synthetic MRI images of type Delay. We would like to give the
model the shape, relative position of the organ in the image and its
brightness. We have filtered out words that appear too often. Thus,
only important keywords remain that bind the relative words with
the region. Disregard grammatical and syntactical correctness.
Assessing region phrase: <s> In the image, the Liver has a slightly oval
shape. </s>Liver on lower middle and on right part . Liver Light Gray .

Rating: 8

The caption accurately describes the shape (slightly oval) and position
(lower middle and right part) of the liver, as well as its brightness (light
gray). It includes important keywords that are relevant for the model’s
understanding of the texture, location and appearance of the organ in the
synthetic MRI image. However, the inclusion of "on" before "right part"
could be clearer to specify the exact position more effectively. Overall, it
provides a good amount of relevant information for grounded training.

Figure 4.5. Request to assess the mask description with detailed guidance
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Finally, the average rating will be a metric of the accuracy and quality of the dataset.

Average Rating
7.25/10

Table 4.1. Average rating of the accuracy and quality of dataset’s textual modality

4.3 Shape Descriptions by LLaVA-Med

In this work, we have assigned the task of finding the shape for each mask to LLaVA-

Med. In this section the descriptions are presented analytically per category.
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Figure 4.11. Histogram of Intestine Shapes
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Figure 4.12. Histogram of Left Adrenal Gland Shapes
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Figure 4.13. Histogram of Left Head of the Femur Shapes
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Figure 4.14. Histogram of Left Kidney Shapes
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Figure 4.16. Histogram of Pancreas Shapes
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Figure 4.17. Histogram of Prostate Shapes
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Figure 4.18. Histogram of Rectum Shapes

Right Adrenal Gland Shapes Histogram

800+ [ ] =
600 | | | .
&
<
[}
2. 400 )
()
St
=
200 + -
ol Tﬂﬂmﬁﬁﬁﬁﬁm
T T T T T T T T T T T T
N
04"} &@'5 04‘5\0.06 &’b‘ Q?J@ 4617 46%' ‘6@6Q006@@¢§J
) ST LL SIS &
DD LY O S Iy
L S & @
UL @069
(e) .
[ e\x‘?qo\?

Figure 4.19. Histogram of Right Adrenal Gland Shapes
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Figure 4.20. Histogram of Right Head of the Femur Shapes
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Figure 4.21. Histogram of Right Kidney Shapes
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Figure 4.22. Histogram of Seminal Vesicle Shapes

Spleen Shapes Histogram

4,000

3,000

Frequenc
q‘[\3 y

o

o

S

I

|

1,000 .
ol L 00 1 Wl s S S
I I I I I I I I I
s P& er Q@b S &S
R PP L
S TS SE S O
L& TS
> @e & 400‘}
P &

Figure 4.23. Histogram of Spleen Shapes
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Figure 4.24. Histogram of Stomach Shapes

4.4 Visualization Tool

During data preparation, a tool (Figure 4.25) was developed to display abdominal
Synthetic MRI or CT slices of patients and allow easy switching between them using a
slider. This tool displays the actual image on the left and a label map on the right. Users
can interact with the tool using the slider or by clicking on any region within the image or
on the label map to reveal the associated mask label. Additionally, the tool provides the
pixel value and the coordinates of the cursor on the image, improving the interpretability
of the data.

Organ: Liver (Liv)

Label

- o ,y) = (266.2,137.4
#€>+bQ=0 COEEE

Figure 4.25. Visualization tool for the patient’s abdominal images.
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4.5 Data Augmentation

4.5 Data Augmentation

In the medical field, CT and MRI scans can appear in multiple orientations and in
some cases, may even be flipped. To address this issue, we extended the dataset by
incorporating rotated and flipped versions of the existing images. This augmentation
enhances the model’s ability to generalize across different orientations, improving its
robustness when processing normally oriented scans. In addition, we applied resizing
and random cropping to ensure that the model learns from objects of different scales and
improve its robustness to object occlusion and localization errors.

As a result, 35 patients were randomly selected and their slices were appended to the

dataset in altered forms:

5 patient’s slices were rotated 90 degrees

5 patient’s slices were rotated 180 degrees

5 patient’s slices were rotated 270 degrees

5 patient’s slices were flipped

5 patient’s slices were flipped and rotated 90 degrees

5 patient’s slices were flipped and rotated 180 degrees

5 patient’s slices were flipped and rotated 270 degrees

4.6 Project Phases

4.6.1 Generation of textual descriptions for the masks

The first stage of the experiments involved prompting LLaVA-Med to create relative
captions for the images. These captions should describe in detail the organs depicted,
forming image-text pairs. The aim was to ultimately extract the knowledge of the fine-
tuned LVLM in the biomedical field and distill it to groundingDINO. This step is essential
for enabling the latter model to comprehend medical terminology and accurately produce
a bounding box around the relevant organs.

To achieve this, key features were identified, namely shape, position, brightness and
texture. Therefore, these constitute the primary attributes that LLaVA-Med will be asked
to produce. However, texture was dropped as a feature. As for the relative position and
brightness, deterministic algorithms were used instead to generate the textual descrip-
tions, due to the inaccuracies of the LVLM. The overall process is illustrated in Figure

4.26 and the reasons for selecting this structure are presented in section 5.1.
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Figure 4.26. Extraction of textual descriptions for the shape of each mask

Relative position

The locations provided by LLaVA-Med were inaccurate, making them unsuitable for
fine-tuning the GroundingDINO, as the erroneous information could be learned and result
in inaccuracies during inference. To address this issue, the retrieval of organ positions
was automated using Python scripts. For each organ mask, whether it represented a
non-contiguous part of an organ or the whole organ, the center of mass was calculated.
Subsequently, a sentence was generated based on the region of the image where the

center of mass was located. The image divisions, are shown in Figure 4.27.

upper
part

slightly
up

left part slightly slightly right part

eft right slightly

down

lower
part

(A) Horizontal division (B) Vertical division

Figure 4.27. The image is divided into four equal parts along both the vertical and hori-
zontal axes. Each part is assigned a descriptive label. The center of mass of each mask is
used to determine its position, acquiring one descriptor for the horizontal axis and another
for the vertical axis. For instance a generated description might be: “The Left Kidney is
located slightly up and slightly left in the image and appears to be Very Light Gray.”

Brightness

An automated method for generating captions regarding the brightness of each organ
was also implemented. Since the dataset described in section 4.1 includes pixel-level an-

notations, it allows for the computation of the mean brightness value for each segmented
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4.6.2 Fine-tuning Grounding DINO

entity. The brightness scale used in this process to classify the brightness of a mask is

presented in Figure 4.28.

Brightness Scale
T r T
Black 1 Very Dark Gray : Dark Gray 1 Light Gray Very Light Gray White

0 43 86 129 172 215
Brightness Value

Figure 4.28. Brightness scale utilized to categorize the brightness of each organ mask
based on the mean pixel intensity value

Shape

We ultimately decided to provide the LLaVA-Med with the information about the po-
sition and brightness to assist it in locating the organ within the image. The revised
prompts for LLaVa-Med, incorporating both positional and brightness information, are

illustrated in figure 4.29.

( )

User: The Stomach is located on the lower part and slightly right
in the image and appears to be Dark Gray. What shape does it
have in the image?

LLaVA-Med: The stomach in the image has a round shape.

Figure 4.29. Revised prompts, utilizing automated position and brightness descriptions,
that should help the model identify the organ.

4.6.2 Fine-tuning Grounding DINO

For this phase, the Open-GroundingDino [41] was utilized, a third-party implementa-
tion of GroundingDINO with fine-tuning capability. The diagram depicting the process is
illustrated in Figure 4.30.
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Figure 4.30. Fine-tuning of GroundingDINO diagram

The dataset used consisted of images from the RAOS dataset, as mentioned earlier,
enriched with shape, position and brightness descriptions for each mask in every slice.
The brightness description was calculated using the same methodology as in the prompts
provided to Llava-Med. However, to enhance the accuracy of the position descriptions,
the image was further subdivided and the number of possible combinations increased
(Figure 4.31). For organ shape descriptions, the output of Llava-med was utilized and

treated as ground truth.
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(A) Horizontal division (B) Vertical division

Figure 4.31. The image is divided into six equal parts along both the vertical and horizontal
axis. The center of mass of each organ is used to determine its spacial description, acquiring
one regarding the horizontal axis and another regarding the vertical axis. For instance, a
generated description might state: “The Left Kidney is located on the topmost part and on
the left part in the image and appears to be Very Light Gray.”

Before concatenating the descriptions obtained from LLaVA-Med (shape) and those
from the deterministic algorithms (position and brightness), a filtering function was ap-
plied to the combined prompt for position and brightness. This step aimed to minimize
redundancy by reducing the frequency of commonly used words, helping the model to
focus on relevant information. In contrast, the shape prompt remained unfiltered for the
primary dataset images but was filtered for the augmented, flipped or rotated, images.
Without the full filtering regarding the augmented images, the model exhibited signs of
collapse, failing to generate meaningful outputs. This issue may be attributed to the fact
that in this case the same textual prompts would be combined with the original and the
altered augmented versions of the same image, thus hindering the learning process.

An additional advantage of adding flipped and rotated images to the dataset is the
improvement in precision with respect to the task of object detection. Without the inclu-
sion of augmented images, the model failed to generate any results for object detection.
However, with the augmented dataset, its performance improved significantly, demon-
strating greater accuracy in detecting objects. Nevertheless, further training is required

to optimize the model’s performance on this task.

Hyperparameters

Grounding DINO was trained using Swin-B [17] (swin_B_384_22k) as the image back-
bone and BERT-base-uncased [18] as the text encoder. The model operates with 900
queries and supports a maximum text token length of 256. It features six encoder and
six decoder layers, with a hidden dimension of 256 and a feedforward dimension of 2048.
The transformer uses 8 attention heads with ReLU activation. Training involves batch
size 4, a base learning rate of 0.0001 and weight decay of 0.0001. Data augmentation
is applied with scales ranging from 480 to 800 and a maximum image size of 1333. The
optimizer follows a learning rate drop at epochs 4 and 8. For loss computation, the Hun-

garian matching is used with classification, L1 and GloU losses. The model is further
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enhanced by text cross-attention and a fusion layer.

Environment

Our environment is equipped with an NVIDIA A10G GPU, running driver version
550.127.05 and CUDA 12.4. The training process took approximately 44 hours for the
synthetic MRI images, while the LLaVA-Med required around 24 hours to produce the

shape descriptions.

4.6.3 Evaluation of the fine-tuning
Evaluation metrics

The experiment involves prompting Grounding DINO with a textual description of the
mask, which in turn generates a bounding box that serves as input to the SAM2 model.
The SAM2 model then produces the final output, a segmentation mask of the target object.
The performance of this pipeline is assessed using two evaluation metrics: Intersection
over Union (IoU) and precision. For the comparison with other models in the next chapter

we will use the Dice similarity coefficient and wall distance.

Intersection over Union (IoU)

As the name suggests, intersection over union (IoU) is defined as the ratio of the
common pixel area between the predicted and the ground truth mask to the total area
covered by both masks. A value of one indicates a perfect match, while lower values

signify a deviation from the ground truth. In mathematical terms:

Area of Intersection _ |AN B

IoU = =
Area of Union |AU B|

(4.1)

where A and B are the ground truth and predicted masks, respectively.

Precision

Precision is defined as the ratio of true positive values to the sum of true positive and
false positive values. It quantifies the proportion of the predicted mask that correctly
overlaps with the ground truth mask. A precision value of one indicates that all predicted
pixels belong to the ground truth mask, whereas lower values suggest that some pixels
that do not belong in the mask have been classified as mask pixels. Mathematically,
precision is expressed as:

True Positives

Precision = 4.2)
True Positives + False Positives

Dice Similarity Coefficient

The dice similarity coefficient is expressed mathematically as follows:
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4.6.3 Evaluation of the fine-tuning

2|AN B
DSC(A,B) = ——. (4.3)
|Al + |B|
where A and B are the ground truth and predicted masks, respectively. A score of 1

is the perfect match, while O indicates no common area.

Wall Distance

The Wall Distance expresses the average absolute difference between the boundaries
of the predicted and the ground truth bounding boxes. In two dimensional bounding
boxes the boundaries are four while in three dimensional bounding boxes the boundaries

are six. We showcase the Wall Distance of a 2D bounding box:

4
1
WD = o Z; d; — dy| 4.4)

where d; and d; are the boundaries of the predicted and ground truth bounding boxes

respectively, belonging to the same side.

Evaluation

The fine-tuned Grounding DINO model was evaluated on a dataset consisting of syn-
thetic MR images of type “Delay” and CT scans from 67 patients with slices of their
abdominal area. The testing pipeline, as illustrated in Figure 4.32, consists of Grounding
DINO and a segmentation model, such as SAM2 or Med-SAM2. In this process, the im-
age, along with a detailed description of each mask, are provided as input to Grounding
DINO, which generates a bounding box. This pair (image, bounding box) is then used
as the input for the segmentation model that processes it and produces a segmentation

mask.

Image ‘

&

Shape description

Positional ipti Fine tuned GroundingDINO SAM2/Med-SAM2
Bounding box

—>

Mask

Brightness description

Textual description of desired Mask

Figure 4.32. Inference mode architecture
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Chapter E

Results

5.1 Prompting LLaVA-Med

Initially, the ability of LLaVA-Med to detect organs within an image was evaluated. Its
responses were not always accurate, as unannotated organs in our dataset were identified
and occasionally, it failed to detect relevant ones. To improve the approach, we decided to
adjust the prompts to explicitly mention the names of the relevant organs before asking

other questions about them as depicted in figure 5.1.

In the next example illustrated in figure 5.2 the image is flipped and we explicitly
mention the relevant organs before assigning a task to the model. The answer indicates
that the model lacks robustness to this flipped version of the image, as it incorrectly
returns the general anatomical position of the liver (upper right instead of lower left).
Regarding kidney shape, LLaVA-Med correctly identifies them as “bean shaped”. However,
it also provides extraneous general information, such as the function of the kidneys and
a comparison of their vertical positions in three dimensions, which does not contribute
to groundingDINO’s ability to generate accurate bounding boxes. This example suggests
that the model prioritizes learned knowledge over direct image-based reasoning. Instead,
the locations it returns are the anatomical positions of the organs in the human body and

not the relative positions of the organs in the image.

In the subsequent experiment (Figure 5.3), we rotated the image 180 degrees to eval-
uate whether the model’s descriptions of organ positions became more accurate than
previously. Although the positional descriptions improved, it is hypothesized that the
responses are not directly inferred from the image, but rather align with the model’s
learned anatomical knowledge. Furthermore, the model continues to avoid elaborating

on the position and shape of some organs, failing to describe all the requested structures.

We further concentrated on asking about the quadrants to which each organ belongs
(Figure 5.4), as the model demonstrated an understanding of this task and provided
consistent responses without including general information. To enhance the model’s
performance, each task was segmented into distinct prompts, simplifying the process

and task clarity.
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Attempts to reason with the model

From the responses, it is evident that LLaVA-Med has learned the general shapes
of the organs, although in many cases the answers reflect the three-dimensional shape
rather than the actual shape observed in the image. For example, the model may describe
the duodenum as "C-shaped" even when it appears ovoid in the given image.

One approach to address the problem of the 3D shape descriptions that it returns is to
present this task as a multiple choice question for LLaVa-Med between the 2D descriptions
of the organ and let the model deduce the correct shape. However, this strategy proved
ineffective, as demonstrated in Figure 5.5.

Regarding shape and texture, another reasoning-based prompting strategy was also
utilized to enhance the quality and reliability of the responses. This method involved
providing detailed descriptions of the characteristics of each shape and texture while
guiding the model through a step-by-step reasoning process. By analyzing the available
information and identifying the relevant features, the model was expected to provide more
precise predictions (Figures 5.5, 5.7). However, this proved ineffective as the model’s

reasoning capabilities are limited.

Texture descriptions

Regarding texture, a review of the training set of the LLava-Med was conducted to
identify frequently occurring terms associated with texture. Based on this analysis, the
model was asked whether an organ exhibited a homogenous or heterogenous texture,
leveraging its familiarity with these terms (Figure 5.6). However, the model demonstrated
limited reliability and struggled to recognize homogenous and heterogenous textures. This
issue may be attributed to the fact that there are numerous synthetic MRI types, each
displaying organs with varying colors and textures. Consequently, the model’s responses
were inaccurate, likely due to its lack of exposure to the specific synthetic MRI type.
Given these challenges, texture was ultimately discarded as a descriptive feature for

each organ.

5.2 Evaluation on Synthetic MRI of type "Delayed"

The model was fine-tuned for eleven epochs and this updated version of Grounding
DINO demonstrated enhanced capabilities, surpassing the original foundation model in
the task of segmenting medical images (Table 5.10). However, the performance differs
across the organs, as some are more clearly visible than others due to higher contrast at
their borders and distinct texture. A significant challenge is that certain organs are not
easily distinguishable to the untrained eye, necessitating expert knowledge for accurate
segmentation.

During the testing phase, a series of evaluations were performed using prompts with
varying levels of detail, including or excluding position, shape and brightness descriptions
of the masks. Initially, the model was provided with only positional information, followed

by a combination of positional and shape data and finally, with position, shape and
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5.2 Evaluation on Synthetic MRI of type "Delayed"

brightness details for each organ. As anticipated, the model’s performance improved as

more descriptive and inclusive input was provided (Table 5.11).

Another evaluation was conducted to assess the impact of bigger sentences on the
model’s performance. In the previous tests, the model was prompted with only one full
sentence regarding the shape and keywords for the position and brightness. However, in
this phase, two and three full-sentence descriptions were given. The results indicate that
this excess of information distracts the model, leading to slightly inferior results. While
shorter prompts provide more focused input, full-sentence prompts necessitate that the
model filter out irrelevant details, which may result in the model overlooking essential
information (Tables 5.5 and 5.6).

Fine-tuned Grounding DINO (Epoch 11) + SAM2 IoU Precision
Liver 0.7491 0.7996
Spleen 0.7869 | 0.8399
Left Kidney 0.8344 | 0.8770
Right Kidney 0.8153 | 0.8582
Stomach 0.6430 | 0.7549
Gallbladder 0.4746 | 0.5584
Esophagus 0.5132 | 0.6663
Pancreas 0.3246 0.3831
Duodenum 0.3641 0.4523
Colon 0.4988 | 0.6183
Intestine 0.3063 0.3541
Left Adrenal 0.2499 0.3186
Right Adrenal 0.3187 | 0.4171
Segmentation Overall Average 0.5230 | 0.6010

Table 5.1. Performance results

Fine-tuned Grounding DINO (Epoch 11) + Med-SAM2 IoU Precision

Liver 0.7281 0.8194
Spleen 0.7815 | 0.8763
Left Kidney 0.7989 | 0.9235
Right Kidney 0.7915 | 0.9036
Stomach 0.6312 0.7738
Gallbladder 0.4637 | 0.5387
Esophagus 0.5432 | 0.6648
Pancreas 0.3055 | 0.3916
Duodenum 0.3642 0.4635
Colon 0.4967 | 0.6139

Intestine 0.2965 0.378
Left Adrenal 0.233 0.2896
Right Adrenal 0.3334 | 0.4088
Segmentation Overall Average 0.5133 | 0.6157

Table 5.2. Performance results
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Fine-tuned Grounding DINO (Epoch 11) + SAM2 (Position only) IoU Precision
Liver 0.7557 0.8051
Spleen 0.7677 | 0.8160
Left Kidney 0.8205 | 0.8608
Right Kidney 0.7996 | 0.8388
Stomach 0.5759 0.6674
Gallbladder 0.3927 | 0.4663
Esophagus 0.4758 | 0.6228
Pancreas 0.2641 0.3090
Duodenum 0.2509 0.3022
Colon 0.2906 | 0.3613
Intestine 0.1744 0.1980
Left Adrenal 0.1670 0.2223
Right Adrenal 0.2199 | 0.2991
Segmentation Overall Average 0.4232 | 0.4785
Table 5.3. Performance results
Fine-tuned Grounding DINO (Epoch 11) + SAM2 (Position and shape) IoU Precision
Liver 0.7509 | 0.8010
Spleen 0.7830 | 0.8353
Left Kidney 0.8295 | 0.8705
Right Kidney 0.8106 | 0.8517
Stomach 0.6419 0.7539
Gallbladder 0.439 0.5173
Esophagus 0.4916 | 0.6321
Pancreas 0.3175 0.3718
Duodenum 0.3254 | 0.3987
Colon 0.4431 0.5517
Intestine 0.2859 0.3333
Left Adrenal 0.2103 | 0.2794
Right Adrenal 0.2916 | 0.3869
Segmentation Overall Average 0.4993 | 0.5726
Table 5.4. Performance results
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5.2 Evaluation on Synthetic MRI of type "Delayed"

Fine-tuned Grounding DINO (Epoch 11) + SAM2 (Unfiltered prompts

natural language shortened version with 2 sentences) IoU Precision

Liver 0.7461 | 0.7957

Spleen 0.7432 | 0.7956

Left Kidney 0.8304 | 0.8712

Right Kidney 0.8138 | 0.8553

Stomach 0.6350 | 0.7652

Gallbladder 0.4557 | 0.5473

Esophagus 0.4915 | 0.6363

Pancreas 0.3088 | 0.3659

Duodenum 0.2570 0.3207

Colon 0.4616 | 0.5756

Intestine 0.237 0.2786

Left Adrenal 0.2043 | 0.2657

Right Adrenal 0.2828 | 0.3710

Segmentation Overall Average 0.4855 | 0.5597

Table 5.5. Example of input: "In the image, the Liver has a slightly oval shape. The Liver
is located on the lower middle and on the right part of the image and appears to be Light

Gray.”

Fine-tuned Grounding DINO (Epoch 11) + SAM2 (Unfiltered prompts

natural language with 3 sentences) IoU Precision

Liver 0.7369 | 0.7863

Spleen 0.7814 | 0.8351

Left Kidney 0.8323 | 0.8739

Right Kidney 0.8146 | 0.8575

Stomach 0.6319 | 0.7619

Gallbladder 0.4647 | 0.5561

Esophagus 0.4981 0.6475

Pancreas 0.2968 | 0.3533

Duodenum 0.2962 | 0.3685

Colon 0.4357 | 0.5450

Intestine 0.2377 | 0.2818

Left Adrenal 0.2292 | 0.2974

Right Adrenal 0.3048 | 0.3981

Segmentation Overall Average 0.4842 | 0.5590

Table 5.6. Example of input: "In the image, the Liver has a slightly oval shape. The Liver
is located on the lower middle and on the right part of the image. The Liver in the image

appears to be Light Gray.”
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Fine-tuned Grounding DINO (Epoch 7) + SAM2 IoU Precision

Liver 0.7548 0.8057

Spleen 0.7876 0.840
Left Kidney 0.8345 | 0.8775
Right Kidney 0.8196 | 0.8626
Stomach 0.6311 0.7402
Gallbladder 0.4402 | 0.5185
Esophagus 0.486 0.6211
Pancreas 0.3184 0.3753
Duodenum 0.3259 0.4006

Colon 0.5085 | 0.6311
Intestine 0.3052 0.3528

Left Adrenal 0.2262 0.2871

Right Adrenal 0.263 0.3391
Segmentation Overall Average 0.5188 | 0.5951

Table 5.7. Performance results

Original Grounding DINO + SAM2 IoU Precision
Liver 0.1059 0.1078
Spleen 0.0289 0.0291
Left Kidney 0.11306 | 0.1171
Right Kidney 0.2639 0.2709
Stomach 0.0225 0.0250
Gallbladder 0.0085 0.0085
Esophagus 0.00161 | 0.0016
Pancreas 0.0177 0.0177
Duodenum 0.00262 | 0.0026
Colon 0.0230 0.0233
Intestine 0.02708 | 0.0271
Left Adrenal 0.00088 | 0.0009
Right Adrenal 0.0018 0.0018
Segmentation Overall Average 0.0487 0.0498

Table 5.8. Performance results
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Original Grounding DINO + Med-SAM2 IoU Precision
Liver 0.0612 0.0683
Spleen 0.021 0.0223
Left Kidney 0.1054 0.1207
Right Kidney 0.2504 0.2724
Stomach 0.0204 0.02414
Gallbladder 0.0042 0.0042
Esophagus 0.00012 0.00012
Pancreas 0.0085 0.0087
Duodenum 0.00055 0.00056
Colon 0.028 0.0298
Intestine 0.01681 0.01773
Left Adrenal 0.000409 | 0.000423
Right Adrenal 0.00123 | 0.00124
Segmentation Overall Average 0.0407 0.0445
Table 5.9. Performance results
Pipeline IoU Precision
Fine-tuned Grounding DINO (Epoch 11) + SAM2 0.5230 0.6010
Fine-tuned Grounding DINO (Epoch 11) + Med-SAM2 | 0.5133 | 0.6157
Original Grounding DINO + SAM2 0.0487 | 0.0498
Original Grounding DINO + Med-SAM2 0.0407 | 0.0445

Table 5.10. Results based on model combination

Prompt information IoU Precision
Position 0.4232 | 0.4785
Position + shape 0.4993 | 0.5726
Position + shape + brightness | 0.5230 | 0.6010

Table 5.11. Results based on prompt information for the combination of the Fine-tuned
Grounding DINO (Epoch 11) with SAM2
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Figure 5.9. Ground truth bounding boxand  Figure 5.10. Predicted bounding box and
mask [5] maslk. IoU = 0.85 Precision = 0.997 [5]

Figure 5.11. Example of stomach grounded segmentation with input: "In the image, the
Stomach has a slightly oval shape. Stomach on upper middle and on left part . Stomach
Light Gray .”

Figure 5.12. Ground truth bounding box Figure 5.13. Predicted bounding box and
and mask [5] mask. IoU = 0.927 Precision = 0.969 [5]

Figure 5.14. Example of spleen grounded segmentation with input: "In the image, the
Spleen has a shape that resembles a crescent. Spleen on lower part and on left part .
Spleen Very Light Gray .”
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Figure 5.15. Ground truth bounding box  Figure 5.16. Predicted bounding box and
and mask [5] mask. IoU = 0.595 Precision = 0.784 [5]

Figure 5.17. Example of duodenum grounded segmentation with input: "In the image, the
Duodenum has a C-shaped appearance. Duodenum on upper middle and on right middle .
Duodenum Light Gray .”

5.3 Evaluation on CT Scans

The developed pipeline was also evaluated on computed tomography scans. Following
the same steps by first producing the textual descriptions, then training GroundingDINO
we proceed on asking the model to predict the masks for the organs of the abdominal area

of the same 67 patients as in the previous section.

Fine-tuned Grounding DINO (Epoch 11) + SAM2 IoU Precision
Liver 0.7844 | 0.8200
Spleen 0.8311 0.8829
Left Kidney 0.8777 | 0.9288
Right Kidney 0.8689 | 0.9250
Stomach 0.7219 | 0.8462
Gallbladder 0.6155 | 0.7125
Esophagus 0.6553 | 0.8081
Pancreas 0.5152 | 0.5899
Duodenum 0.4490 | 0.5535
Colon 0.5822 | 0.7347
Intestine 0.3308 | 0.3770
Left Adrenal 0.5283 | 0.6468
Right Adrenal 0.4800 | 0.5863
Rectum 0.7242 | 0.8564
Bladder 0.8437 | 0.9023
Left Head of the Femur 0.7773 | 0.9074
Right Head of the Femur 0.7586 | 0.9000
Prostate 0.6632 | 0.7589
Seminal Vescicle 0.6205 | 0.7329
Segmentation Overall Average 0.5779 | 0.6702

Table 5.12. Performance Results
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Fine-tuned Grounding DINO (Epoch 11) + Med-SAM2 IoU Precision
Liver 0.7879 0.8395
Spleen 0.8435 | 0.9160
Left Kidney 0.8773 | 0.9448
Right Kidney 0.8563 | 0.9257
Stomach 0.7288 0.8368
Gallbladder 0.6108 | 0.6874
Esophagus 0.6800 | 0.7888
Pancreas 0.5056 0.5790
Duodenum 0.4601 0.5525
Colon 0.6030 | 0.6937
Intestine 0.3338 0.3717
Left Adrenal 0.4803 0.5725
Right Adrenal 0.4929 | 0.5709
Rectum 0.7418 0.8546
Bladder 0.8113 | 0.8952
Left Head of the Femur 0.6695 0.9011
Right Head of the Femur 0.6967 | 0.8859
Prostate 0.6445 0.7631
Seminal Vescicle 0.6246 0.7240
Segmentation Overall Average 0.5783 | 0.6588

Table 5.13. Performance Restults

Fine-tuned Grounding DINO (Epoch 11) + SAM2 (Position only)

IoU Precision

Liver
Spleen
Left Kidney
Right Kidney
Stomach
Gallbladder
Esophagus
Pancreas
Duodenum
Colon
Intestine
Left Adrenal
Right Adrenal
Rectum
Bladder
Left Head of the Femur
Right Head of the Femur
Prostate
Seminal Vescicle

0.7358 | 0.7682
0.8230 | 0.8729
0.8698 | 0.9223
0.8629 | 0.9194
0.6222 | 0.7217
0.5396 | 0.6216
0.6500 | 0.7945
0.4272 | 0.4870
0.2862 | 0.3516
0.3965 | 0.4958
0.1449 | 0.1591
0.5025 | 0.6145
0.4445 | 0.5456
0.7143 | 0.8545
0.8160 | 0.8684
0.7210 | 0.8487
0.7292 | 0.8670
0.5699 | 0.6492
0.5197 | 0.5937

Segmentation Overall Average

0.4592 | 0.5262

Table 5.14. Performance Results
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Fine-tuned Grounding DINO (Epoch 11) + SAM2 (Position and shape) IoU Precision
Liver 0.7661 0.7994
Spleen 0.8295 | 0.8814
Left Kidney 0.8775 | 0.9286
Right Kidney 0.8687 | 0.9248
Stomach 0.7137 | 0.8386
Gallbladder 0.6166 | 0.7148
Esophagus 0.6566 | 0.8055
Pancreas 0.4937 0.5646
Duodenum 0.4272 | 0.5254
Colon 0.5584 | 0.7064
Intestine 0.2892 0.3274
Left Adrenal 0.5267 0.6476
Right Adrenal 0.4739 | 0.5780
Rectum 0.7237 | 0.8530
Bladder 0.8417 | 0.9003
Left Head of the Femur 0.7164 | 0.8457
Right Head of the Femur 0.7176 | 0.8570
Prostate 0.6508 | 0.7441
Seminal Vescicle 0.5970 0.7023
Segmentation Overall Average 0.5540 | 0.6422

Table 5.15. Performance Results

Fine-tuned Grounding DINO (Epoch 11) + SAM2 (Unfiltered prompts

natural language shortened version with 2 sentences) IoU Precision

Liver 0.7272 | 0.7585

Spleen 0.8280 | 0.8787

Left Kidney 0.8785 | 0.9300

Right Kidney 0.8687 | 0.9246

Stomach 0.6909 | 0.8130

Gallbladder 0.6049 | 0.7077

Esophagus 0.6565 | 0.8047

Pancreas 0.4506 | 0.5212

Duodenum 0.3806 | 0.4719

Colon 0.4993 | 0.6360

Intestine 0.2564 | 0.2956

Left Adrenal 0.5239 | 0.6512

Right Adrenal 0.4765 | 0.5859

Rectum 0.7250 | 0.8639

Bladder 0.8159 | 0.8725

Left Head of the Femur 0.7102 | 0.8360

Right Head of the Femur 0.7117 | 0.8514

Prostate 0.6481 0.7375

Seminal Vescicle 0.5236 | 0.6220

Segmentation Overall Average 0.5231 | 0.6088

Table 5.16. Example of input: "In the image, the Liver has a slightly oval shape. The Liver
is located on the lower middle and on the right part of the image and appears to be Light
Gray.”
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Fine-tuned Grounding DINO (Epoch 11) + SAM2 (Unfiltered prompts

natural language with 3 sentences) IoU Precision

Liver 0.7754 | 0.8111

Spleen 0.8279 | 0.8789

Left Kidney 0.8781 | 0.9297

Right Kidney 0.8683 | 0.9242

Stomach 0.7117 | 0.8364

Gallbladder 0.6090 | 0.7156

Esophagus 0.6504 | 0.8054

Pancreas 0.4918 | 0.5695

Duodenum 0.3982 0.4941

Colon 0.5427 | 0.6858

Intestine 0.2702 0.3092

Left Adrenal 0.5287 | 0.6541

Right Adrenal 0.4851 | 0.5996

Rectum 0.7223 | 0.8650

Bladder 0.8304 | 0.8876

Left Head of the Femur 0.7159 | 0.8393

Right Head of the Femur 0.7368 | 0.8768

Prostate 0.6615 | 0.7587

Seminal Vescicle 0.5489 | 0.6511

Segmentation Overall Average 0.5443 | 0.6326

Table 5.17. Example of input: "In the image, the Liver has a slightly oval shape. The Liver
is located on the lower middle and on the right part of the image. The Liver in the image

appears to be Light Gray.”

Fine-tuned Grounding DINO (Epoch 7) + SAM2 IoU Precision

Liver 0.7859 | 0.8223

Spleen 0.8323 | 0.8849

Left Kidney 0.8764 | 0.9285

Right Kidney 0.8675 | 0.9251

Stomach 0.7187 | 0.8392

Gallbladder 0.6019 | 0.7010

Esophagus 0.6523 | 0.8040

Pancreas 0.5080 | 0.5837

Duodenum 0.4260 | 0.5174

Colon 0.5810 | 0.7358

Intestine 0.3264 0.3731

Left Adrenal 0.5305 | 0.6542

Right Adrenal 0.4763 | 0.5861

Rectum 0.7111 0.8459

Bladder 0.8463 | 0.9062

Left Head of the Femur 0.7717 | 0.9033

Right Head of the Femur 0.7581 | 0.8995

Prostate 0.6520 | 0.7521

Seminal Vescicle 0.6196 | 0.7277

Segmentation Overall Average 0.5741 | 0.6668
Table 5.18. Performance Results
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5.3 Evaluation on CT Scans

Original Grounding DINO + SAM2 IoU Precision
Liver 0.0906 | 0.0910
Spleen 0.0385 | 0.0385
Left Kidney 0.0433 | 0.0441
Right Kidney 0.0425 | 0.0430
Stomach 0.0321 0.0431
Gallbladder 0.0066 | 0.0066
Esophagus 0.0018 | 0.0018
Pancreas 0.0184 0.0184
Duodenum 0.0038 | 0.0044
Colon 0.0113 | 0.0131
Intestine 0.0259 | 0.0260
Left Adrenal 0.0014 0.0015
Right Adrenal 0.0015 | 0.0015
Rectum 0.0130 | 0.0130
Bladder 0.0717 | 0.0718
Left Head of the Femur 0.0299 | 0.0318
Right Head of the Femur 0.1072 | 0.1155
Prostate 0.0201 0.0201
Seminal Vescicle 0.0051 0.0051
Segmentation Overall Average 0.0293 | 0.0306

Table 5.19. Performance Restults

Original Grounding DINO + Med-SAM2 IoU Precision
Liver 0.1060 0.1098
Spleen 0.0422 0.0422
Left Kidney 0.0427 0.0442
Right Kidney 0.0326 0.0333
Stomach 0.0346 0.0433
Gallbladder 0.0077 0.0077
Esophagus 0.0011 0.0011
Pancreas 0.0205 0.0206
Duodenum 0.0038 0.0043
Colon 0.0102 0.0117
Intestine 0.0266 0.0268
Left Adrenal 0.0012 0.0012
Right Adrenal 0.0015 0.0015
Rectum 0.0123 0.0124
Bladder 0.0776 0.0777
Left Head of the Femur 0.0253 0.0295
Right Head of the Femur 0.0883 0.1053
Prostate 0.0215 0.0215
Seminal Vescicle 0.0062 0.0062
Segmentation Overall Average 0.02949 | 0.03134

Table 5.20. Performance Results
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Pipeline IoU Precision
Fine-tuned Grounding DINO (Epoch 11) + SAM2 0.5779 0.6702
Fine-tuned Grounding DINO (Epoch 11) + Med-SAM2 | 0.5783 0.6588
Original Grounding DINO + SAM2 0.0293 0.0306

Original Grounding DINO + Med-SAM2 0.02949 | 0.03134

Table 5.21. Results based on model combination

Prompt information IoU Precision
Position 0.4592 | 0.5262
Position + shape 0.5540 | 0.6422
Position + shape + brightness | 0.5779 | 0.6702

Table 5.22. Results based on prompt information for the combination of the Fine-tuned
Grounding DINO (Epoch 11) with SAM2

S o

Figure 5.18. Ground truth bounding box  Figure 5.19. Predicted bounding box and
and mask [5] mask. IoU = 0.91 Precision = 0.98 [5]

h > =

Figure 5.20. Ground truth bounding box Figure 5.21. Predicted bounding box and
and mask [5] mask. IoU = 0.89 Precision = 0.95 [5]

Figure 5.22. Example of left head of the femur grounded segmentation with input: "In the
image, the Left Head of the Femur has a rounded shape. Part Left Head Femur on lower
middle and on left part Left Head Femur Very Light Gray .” for the first pair and "In the
image, the Left Head of the Femur has a rounded shape. Part Left Head Femur on lower
middle and on leftmost part Left Head Femur Very Light Gray .” for the second pair
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Figure 5.23. Ground truth Figure 5.24. Predicted Figure 5.25. Predicted

bounding box and mask [5]  bounding box and mask. bounding box and mask.
IoU = 0.57 Precision = 0.58 IoU = 0.54 Precision = 0.46
[5] (51

Figure 5.26. Example of bladder grounded segmentation with SAM2 on the left and Med-
SAM?2 on the right

—r

Figure 5.27. Ground truth bounding box  Figure 5.28. Predicted bounding box and
and mask [5] mask. IoU = 0.73 Precision = 0.89 [5]

Figure 5.29. Example of pancreas grounded segmentation with input: "In the image, the
Pancreas has a slightly irregular shape. Pancreas on upper middle and on left middle .
Pancreas Very Light Gray.”

5.4 Evaluation on out-of-distribution Synthetic MRI types

Up to this point, the model has been evaluated on datasets it was trained on. In this
experiment, we assess the performance of the pipeline on out-of-distribution datasets. On
the new Synthetic MRI images, the same patients are depicted with significant variations
in organ brightness compared to the "Delayed" type. This means that the image depictions
differ and that is also reflected on textual prompts regarding the brightness. Under these
unseen circumstances we test whether the model understands the change and adapts to
it.
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Pre Artery type of Synthetic MRI IoU Precision
Liver 0.7166 0.7903
Spleen 0.6833 | 0.7694
Left Kidney 0.6740 | 0.7274
Right Kidney 0.5578 | 0.6058
Stomach 0.5818 | 0.6977
Gallbladder 0.3575 | 0.4267
Esophagus 0.4236 | 0.5426
Pancreas 0.1910 | 0.2356
Duodenum 0.2007 | 0.2658
Colon 0.4410 | 0.5885
Intestine 0.2908 | 0.3617
Left Adrenal 0.0197 | 0.0284
Right Adrenal 0.0996 | 0.1343
Segmentation Overall Average 0.4352 | 0.5235

Table 5.23. Fine-tuned Grounding DINO (Epoch 11) + SAM2

PV type of Synthetic MRI IoU Precision
Liver 0.7402 | 0.8076
Spleen 0.7547 | 0.8254
Left Kidney 0.8173 | 0.8739
Right Kidney 0.8172 | 0.8729
Stomach 0.6395 | 0.7526
Gallbladder 0.4103 | 0.4979
Esophagus 0.4859 | 0.6572
Pancreas 0.3341 0.4071
Duodenum 0.3439 | 0.4404
Colon 0.4703 | 0.6039
Intestine 0.2985 | 0.3569
Left Adrenal 0.2556 | 0.3367
Right Adrenal 0.2742 | 0.3706
Segmentation Overall Average | 0.5071 0.5972

Table 5.24. Fine-tuned Grounding DINO (Epoch 11) + SAM2

Type of Synthetic MRI IoU Precision
Delay 0.5230 | 0.6010
Pre Artery 0.4352 | 0.5235
PV 0.5071 | 0.5972

Table 5.25. Results across different types of Synthetic MRI
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Figure 5.30. Delay [5] Figure 5.31. Pre Artery [5] Figure 5.32. PV [5]

Figure 5.33. Examples of different synthetic MRI types
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User: Describe the organs in this image in detail in regards to their
position and shape.

LLaVA-Med: In this image, the organs are positioned in a way that is
typical for a female. The liver is located on the right side and the spleen
is on the left side. The liver appears to be enlarged, with a shape that
resembles a "bunch of grapes." The spleen is also enlarged, with a shape
that resembles a “sausage."”

User: The visible organs in this image are the liver, spleen, duodenum,
colon, stomach, pancreas, left and right adrenal. Describe them in detail
in regards to their position and shape.

LLaVA-Med: In the image, the liver is located in the right upper quadrant
and it appears to be enlarged. The spleen is situated in the left upper
quadrant and it also appears to be enlarged. The duodenum is the first
part of the small intestine and is located in the upper right quadrant. The
colon is the large intestine and is situated in the lower right quadrant. The
stomach is located in the upper left quadrant and the pancreas is in the
upper left quadrant, just below the stomach. The left and right adrenal
glands are small, triangular-shaped glands located on top of each kidney.

Figure 5.1. LLaVA-Med misses some organs and does not return their shapes in the image.
It may get confused when asked about multiple organs simultaneously
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User: In this image the organs are the two kidneys, the liver, the colon,
the intestine, the pancreas and the duodenum. Describe them as they
appear in the image.

LLaVA-Med: In the image, the two kidneys are visible as well as the liver,
colon, intestine, pancreas and the duodenum. The kidneys are shown in
their normal positions, with the liver located in the upper right part of the
abdomen, the colon and intestine in the lower right part, the pancreas
in the upper left part and the duodenum in the upper middle part of the
abdomen. The organs appear to be in their usual anatomical positions
and there are no visual abnormalities or pathologies mentioned in the
context.

User: Describe the shape of the kidneys.

LLaVA-Med: The kidneys in the image are described as having a normal
shape. They are bean-shaped organs with the right kidney being slightly
higher than the left one. The shape of the kidneys is important for their
proper functioning as it allows them to efficiently filter waste products
and excess water from the blood.

User: Where is the liver here?
LLaVA-Med: In the image the liver is located in the upper right part of
the abdomen.

User: Here the spinal cord is located in the lower part of the image in the
middle. With that in mind, where is the liver?

LLaVA-Med: In the image the liver is located in the upper right part of
the abdomen.

Figure 5.2. The model focuses on the learned general anatomical knowledge rather than
reasoning directly from the image
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User: The visible organs in this image are the liver, spleen, duodenum,
colon, stomach, pancreas, left and right adrenal. Describe them in detail
in regards to their position and shape.

LLaVA-Med: In the image, the liver is located in the right upper quadrant
of the abdomen. It appears to be enlarged and has a nodular contour.
The spleen is situated in the left upper quadrant and it also appears to
be enlarged. The duodenum, which is the first part of the small intestine,
is visible in the image. The colon is located in the lower right quadrant
and it appears to be dilated. The stomach is situated in the upper left
quadrant and it appears to be enlarged. The pancreas is visible in the
image and it appears to be enlarged as well. The left and right adrenal
glands are also visible in the image and they appear to be enlarged.

Figure 5.3. Rotated version of the image to assess whether the positional descriptions
improve.
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( )

User: The visible organs in this image are the stomach, the
liver, the spleen, the left kidney, the right kidney, the colon, the
intestine, the right adrenal, the pancreas and the duodenum.
Describe them in detail in regards to their position and say in
which quadrant they belong or center of the image.

LLaVA-Med: In this image, the stomach is located in the left
upper quadrant, the liver is in the right upper quadrant, the
spleen is in the left upper quadrant, the left kidney is in the left
lower quadrant, the right kidney is in the right lower quadrant,
the colon is in the left lower quadrant, the intestine is in the right
lower quadrant, the right adrenal is in the right lower quadrant,
the pancreas is in the left lower quadrant and the duodenum is
in the right upper quadrant.

User: The visible organs in this image are the stomach, the
liver, the spleen, the left kidney, the right kidney, the colon, the
intestine, the right adrenal, the pancreas and the duodenum.
Describe their shape in the image in detail.

LLaVA-Med: In this image, the stomach appears to be oval-
shaped, the liver is oval-shaped, the spleen is oval-shaped, the
left kidney is bean-shaped, the right kidney is bean-shaped,
the colon is oval-shaped, the intestine is oval-shaped, the right
adrenal is oval-shaped, the pancreas is oval-shaped and the duo-
denum is oval-shaped.

User: The visible organs in this image are the stomach, the
liver, the spleen, the left kidney, the right kidney, the colon, the
intestine, the right adrenal, the pancreas and the duodenum.
Tell me about the brightness of each organ if it is white, gray or
dark closer to black.

LLaVA-Med: In this image, the stomach, the liver, the spleen,
the left kidney, the right kidney, the colon, the intestine, the
right adrenal, the pancreas and the duodenum appear to be
white. This means that they are well-visualized and easily dis-
tinguishable from the surrounding tissues.

Figure 5.4. The tasks were divided into separate propmts, requesting the position response
to be in terms of quadrants. This was followed by inquiries about their shape and, finally
brightness in a multiple-choice question form
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User: The Liver is located slightly up and on the right part of the image
and appears to be Light Gray. Describe its shape in detail. If the liver ap-
pears to be elongated and small that means it has the shape of a sausage
but if it is large it has its normal shape. What shape does it have here?
LLaVA-Med: In this image, the liver has a large shape, which is its normal
shape.

User: Can you locate the liver in this image?

LLaVA-Med: Yes, the liver is located slightly up and on the right part of
the image.

User: But it has the shape of a sausage because it is small and elongated.
LLaVA-Med: No, in this image, the liver has its normal shape, which is
large.

User: The liver lies on the right of the right kidney. What shape does it
have?

LLaVA-Med: The liver has a large shape, which is its normal shape.
User: No, it has the shape of a sausage.

LLaVA-Med: No, in this image, the liver has its normal large shape.
User: The liver here appears to cover a small area in regards to the area
of the image, so it must be small and a small liver typically has the shape
of a sausage. So what shape does it have here?

LLaVA-Med: In this image, the liver has the shape of a sausage because
it is small.

Another example for the same image

User:The Liver is located slightly up and on the right part of the image
and appears to be Light Gray. If the liver appears to cover a small area
in regards to the area of the image it must be small and a small liver
typically has the shape of a sausage. Otherwise it has an irregular shape
and is wedge-shaped. So what shape does it have here?

LLaVA-Med:In this image, the liver appears to be wedge-shaped.

Figure 5.5. Experiments with multiple choice questions and reasoning based propmts
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User: The Spleen is located slightly up and on the left part of the image.
Does it have a homogenous or heterogenous texture? How did you come
to the conclusion?

LLaVA-Med: The spleen appears to have a homogenous texture in the
MRI image. This means that the spleen’s appearance is uniform and
consistent throughout the image.

Figure 5.6. Example of prompt and response regarding texture

User: The Liver is located slightly up and on the right part of the image
and appears to be Light Gray. If the liver appears to cover a small area
in regards to the area of the image it must be small and a small liver
typically has the shape of a sausage. Otherwise it has an irregular shape
and is wedge-shaped. So what shape does it have here?

LLaVA-Med: In this image, the liver appears to be wedge-shaped.

Figure 5.7. Example of reasoning-based prompt for the shape of the liver
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User: The texture of the organ has to do with the inconsistencies that
appear in the image. For example if there are arteries visible or other
artifacts and noise then it is inconsistent. If there are different parts of
the same organ with different brightness then it is inconsistent. The Liver
is located slightly up and on the right part of the image and appears to
be Light Gray. In this image what is the texture of the Liver?
LLaVA-Med: The texture of the Liver in this image is described as Light
Gray.

User: I mean is it consistent or does it have irregularities in the pattern
of the liver?

LLaVA-Med: The texture of the liver in this image is described as Light
Gray, which suggests that it is consistent in appearance. However, it is
important to note that the actual appearance of the liver in the image may
vary depending on the imaging technique used and the specific details of
the image.

User: The imaging technique is the delayed MRI. what is the texture of
the liver?

LLaVA-Med: The texture of the liver in this delayed MRI image is de-
scribed as Light Gray. This consistent appearance suggests that the liver
tissue is uniform in this particular image. However, it is important to
remember that the actual appearance of the liver in the image may vary
depending on the imaging technique used and the specific details of the
image.

Figure 5.8. The model does not accurately interpret the concept of texture and instead
mistakenly associates it with brightness
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Discussion

6.1 Comparison with other Methods

In this section, we compare the performance of our pipeline with that of other mod-
els. Primarily, we compare it with MedLAM [31], a foundation model that localizes the
requested organ and in combination with SAM [7] or MedSAM [24] segments it. We also
present the performance of manual prompting [31] with SAM and MedSAM and lastly,
the performance of nnU-Net [21], a fully supervised deep learning-based method.

It is important to note that prior work is tested on the WORD [9] dataset, which
contains CT scans from the abdominal area, while our work is evaluated on the RAOS
dataset. These two datasets share some patient CT scans. In particular, the annotations
in WORD regarding common patients needed to be extended to match the 19 classes of
RAOS instead of 16.

Table 6.1. Dice scores (%) for region segmentation. Prior work is evaluated on the WORD
dataset. Our framework is evaluated on RAOS, a continuation of WORD and thus, "-" refers
to values missing from prior worlk.

Regions MedLAM Man. Prompt  Fully Supervised nnU-Net Our pipeline

SAM MedSAM | SAM MedSAM | 5-shot full SAM2 MedSAM2
Liver 66.0 23.8 84.2 46.6 94.3 96.3 85.2 85.7
Spleen 61.7 36.3 85.3 65.0 90.9 95.7 89.4 90.4
Kidney L 82.1 70.7 92.1 84.1 83.4 94.7 93.0 93.0
Kidney R 88.3 77.3 92.9 86.4 86.0 95.2 92.4 91.7
Stomach 44.6 37.2 77.1 80.3 83.2 93.1 80.8 81.3
Gallbladder 13.1 10.2 72.7 68.8 54.7 77.0 70.7 70.5
Esophagus 36.6 27.8 67.0 63.1 72.0 81.5 77.2 79.0
Pancreas 29.7 21.4 64.4 46.9 72.0 84.7 61.6 60.9
Duodenum 26.0 21.1 54.1 51.0 53.7 77.3 53.9 54.9
Colon 25.6 26.6 41.8 44.1 74.7 86.1 67.4 68.7
Intestine 37.5 34.1 61.4 52.5 77.6 88.0 41.2 41.7
Adrenal 3.3 10.0 17.4 26.5 58.3 72.8 63.5 62.0
Left Adrenal - - - - - - 65.6 61.7
Right Adrenal - - - - - - 60.9 62.4
Prostate - - - - - - 75.3 74.3
Seminal Vesicle - - - - - - 72.9 73.2
Rectum 50.1 46.0 75.5 80.0 70.2 80.3 82.2 83.6
Bladder 65.3 59.1 83.0 82.9 84.0 91.8 89.9 87.9
Head of Femur L 81.7 71.5 90.5 80.3 43.1 31.2 84.9 77.3
Head of Femur R 80.1 74.3 89.1 83.2 47.8 40.98 83.3 79.1
Average 49.5 40.5 71.8 65.1 71.6 80.4 66.1 66.3

From Table 6.1 it is evident that our pipeline has a higher average dice score than Med-
LAM with SAM and MedSAM and is more successful in segmentation. It even surpasses
in some classes the segmentation when the ground truth bounding boxes are provided
to SAM or MedSAM. However, the fully supervised model nnU-Net with self adapting

capabilities surpasses our results in most classes.
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From Table 6.2 it is evident that our framework establishes better bounding boxes.
We compare against MedLAM, DetCo [33], an unsupervised contrastive learning method
for object detection, Mask R-CNN [13], a fully-supervised detection and segmentation
approach and MIU-VL [30], a visual-language foundation model for medical image un-
derstanding. This model is not fine-tuned on the WORD dataset, which showcases that
further training could significantly improve the results. Our performance is higher in

most classes, except for the intestine.

Table 6.2. Wall Distance (WD) results for each region and method on the RAOS dataset for
our work and WORD for prior work. The best performance for each region is noted in bold

Regions MedLAM DetCo Mask R-CNN | Our pipeline MIU-VL
Liver 10.5 73.8 7.1 4.5 80.4
Spleen 5.7 37.9 6.0 1.7 142.5
Kidney L 5.0 39.4 5.7 0.9 164.3
Kidney R 3.6 61.4 4.1 1.0 166.1
Stomach 17.7 49.3 8.8 4.6 102.8
Gallbladder 16.9 71.4 5.1 2.5 153.2
Esophagus 6.8 47.3 4.1 1.5 153.8
Pancreas 12.2 42.0 7.0 5.1 135.2
Duodenum 12.7 56.6 8.1 5.9 139.8
Colon 15.6 49.0 12.3 9.8 83.3
Intestine 15.4 50.7 11.3 25.3 106.0
Adrenal 7.6 52.3 6.2 2.1 160.2
Rectum 8.6 54.7 5.8 2.2 203.1
Bladder 8.1 65.1 3.7 1.9 167.7
Head of Femur L 5.3 55.8 3.3 4.2 175.1
Head of Femur R 5.9 52.1 4.1 4.0 163.4
Average 9.9 53.9 6.5 4.7 143.6

6.2 Conclusion

From the analysis of the sets of prompts and responses generated by LLaVA-Med,
it can be concluded that there are limitations in the reasoning capability of the model.
Despite the use of various prompting methods, such as multiple choice questions and
rule based inference, the model seemed to lack an understanding of the relationship
between the textual descriptions and the image features. Thus, it cannot be entrusted
with producing the entirety of the textual descriptions as initially theorized.

At this point, it should be noted that LLaVA-Med as an LLMs is not deterministic,
meaning it does not produce identical textual output for the same prompt, introducing a
degree of unpredictability. In the case of the shape descriptions, this non-determinism
does not constitute a significant issue, as the generated description generally aligns with
the expected shape of the organ and in an open ended question other similar words can
be selected. However, in the case of the organ’s texture, when the model was prompted
to classify the texture as either homogeneous or heterogeneous, its responses were not
always consistent for the same image and prompt. This could also be detrimental for the
position and brightness of the organs where the question has a multiple choice form and
only one answer is correct.

As demonstrated in table 6.2 the localization that our pipeline offers is efficient and
was the only task for which GroundingDINO was trained. The consecutive part of the

framework, which generates the mask, achieves competitive results. However, there
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are cases in which further fine-tuning is necessary for the segmentation model, as the

bounding box is ideal.

When comparing the original GroundingDINO with its fine-tuned version, it is evident
that the original does not comprehend the concepts presented and needs further training
on the biomedical field as it detects the whole body. The segmentor MedSAM2 does not

constitute a significant improvement of SAM2 as they achieve comparable results.

Regarding the textual prompts of the pipeline, they need to be as detailed as possible
including information about the relative position in the image, brightness and shape of
the mask to increase the performance of the pipeline. The model can also detect organs
and segment them successfully when the prompts are different from the training set as

was the case for the unfiltered version of the textual descriptions.

Finally, the performance of the model on unseen datasets was evaluated in which only
the brightness of the organs changed, introducing new visual features. The result is that
the model performed well when the organs remained clearly visible. Variations in organ
intensity were also incorporated in the textual descriptions and the model understood
this change in many cases. For images in which organs were blurred or exhibited signif-
icant variation in the pixel intensity, the model’s performance declined. Overall, images
with clear depictions, where the displayed organ’s appearance deviated slightly from the

training set, retained the best scores.

The proposed pipeline demonstrated adaptability in a closed setting, as demonstrated
by the multiple evaluations on the datasets it was trained on. By closed setting it is
inferred that images stem from the same distribution, for example have been generated
by the same imaging technique and machine. As a result, this tool could be utilized as an
assisting tool for medical professionals within a single clinical setting, trained on internal
data.

6.3 Limitations

A key factor that limits the scores across all metrics is the inability to prompt neigh-
boring non-contiguous areas of the same organ, as they cannot be exclusively prompted
because the position description will be the same. For instance, as illustrated in Figure
6.1, different parts of the colon may not be distinguishable based on their position as they

occupy the same general area.
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Figure 6.1. Labelmap illustrating the challenge of distinguishing adjacent segments of the
same organ based solely on position. The two parts inside the green bounding box will be
prompted separately in the evaluation process as they are non-contiguous. However, if the
same prompt is used for both, the model may generate identical outputs, affecting the final
score.

6.4 Future Work

In this work, the model was trained separately in two different settings (CT scans and
synthetic MRI) and was evaluated in those particular closed settings. A possible future
improvement would be to fine-tune the model on a large set of datasets spanning the whole
medical imaging field covering multiple areas of the human body and containing images of
different modalities (X-rays, multiple types of MRI, CT scans, Histology, Gross pathology).
This would create a model with vast knowledge across the medical field that can be utilized
in any setting as it is based on a large-scale dataset and will be generalizable.

Another direction for future development could be the continuous weight update of
the LVLM model with the textual descriptions produced by the deterministic algorithms.
This could enhance its reasoning capabilities and lead to more reliable answers.

Lastly, the application of the pipeline on 3D medical images could be explored by
generating three dimensional bounding boxes and utilizing MedSAM2 to process and
segment volumetric data. This could lead to improved results benefiting from the nature
of the data, which is volumetric and the availability of all the slices in one prompt, leading

to a more effective use of the memory mechanism of the segmentation model.
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List of Abbreviations

Al Artificial Intelligence

CNN Convolutional Neural Network
CT Computed Tomography

Cv Computer Vision

IoU Intersection over Union
LLaVA Large Language and Vision Assistant
LLM Large Language Model

LM Language Model

LMM Large Multimodal Model
LVLM Large Vision-Language Model
MAE Masked Autoencoder

MRI Magnetic Resonance Imaging
NLP Natural Language Processing
SAM Segment Anything Model
VLM Vision-Language Model

VQA Visual Question Answering
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