S
Pz
&

s 4 KON
/%"
NPOMHOEVS
A Si==e|
N VP POPOS

t,

EONIKO METYOBIO ITOATTEXNEIO

Y XOAH HAEKTPOAOION MHXANIKON KAI MHXANIKON YTTIIOAOTIZTON

TOMEAY. TEXNOAOI'TAY. ITIAHPO®OPIKHY. KAI TIIOAOT'TXTON
EPrasTHPIO MIKPOTHOAOITETON KAI WHIIAKON Y YSTHMATON

Microarchitectural Extension of CGRA Accelerator
for Efficient LLM Code Mapping

Muxpoopyttextovint|) Enéxtoaon Emtayuvth Tonou CGRA vy
Arnodotin| Anewovion Egapuoyov Trou LLM

AIITAQMATIKH EPI'AYIA

TOL

Alovuciov Kegarinvoi

EnBAenwyv: Sothpoc 20dne
Enixovpoc Kodnyntric E.M.IL.

Adhva, Mégtioc 2025

Edvixé Metoofio Ilohuteyvelo

Yyon Hhextpohdywv Mryovixddv xan Mnyoavixodv Troloylotdv
Touéac Teyvoroyiac ITAnpogopinric xou YTohoyiotedy
Epyaotipio Mixpobnohoylotdv xan Uneloxay Suotnudtwy

Microarchitectural Extension of CGRA Accelerator
for Efficient LLM Code Mapping

Muxpoopyttextoviny| Enéxtaon Emtoyuvts) TOrou CGRA vy
Arnoootry Anewovion Egopuoyav TOrov LLM

AIITAQMATIKH EPI'AYIA

TOL

Alovuciov Kegarinvoi

ETCLﬁKE’:TC(OV: Ywthpoc E0dnc
Enixovpoc Kodnyntrc E.M.IL

Eyxpldnxe and v tpiuedr) e€etaotin emitpon) tnv 14" Maptiou, 2025,

Ywthptoc Z0dng Anurtetoc Xobvteng Tedpyioc ZepBdxne
Enixovpoc Kadnyntic E.M.II. Kadnyntie E.M.IL Enixouvpoc Kadnyntic Hav. Iateodv

Adhva, Mégtioc 2025

KE®?AAAHNOEZ AIONYSIOS
Amhopotovyoc Hhextpordyoc Mryovinde
xaw Mryovixog Trohoyiotwv E.M.IL

Copyright (©) — All rights reserved Kegohhnviéc Awvioiog, 2025.
Me emipOhagn TovToC SIXUOUATOS.

Arnayopebeton 1 avtiypagn, amodfxeuon xou davouy| tne moapoloas epyaoiag, €€ OhoxAAEoL B TUAUATOS
QUTAS, YLl EUTopd oxomd. Emtpéneton 1 ovatdnworn, anodfixeuor xou diovour| Yol oxond pun xep-
B0OXOTUXNO, EXTAUOEVTIXNG 1} EPEUVNTIXNG PUOME, UTO TNV TEoLNOVEST) Vol avapERETAL 1) TINYY) TROEAEUOTS
xon va Statnpeiton to mopoy prvupa. Epwthuata mou agopolv) yerion tne spyaciog yia xepdooxonixd
oxond mpEmel vor aneLivVoVTaL TEOS TOV GUYYEPEA.

Or andelc xou To CUUTERACHUATI TTOL TEPLEYOVTOL OE AUTO TO EYYRUPO EXPEAloUY TOoV CUYYPAPEX Xou BEV
TeéneL va epunveutel 6Tl avtinpoownebouy Ti¢ enlonue Yol Tou Edvixob Metodfiou Ilohuteyvelou.

oty oikoyévela Uov

ITepiindm

To teheutaia ypdvio oL uohoyioTiés amoutiioels twv Meydhwy Thwoowdy Movtéhwy (LLMs) ohoéva
o av€dvovton, xadde To Tedlo ePapUoY®Y Toug Slevplivetol Xat T0 TAYH0C TWV TUPAUETEWY TOUC GUVEY M
xhpaxoveton. H vedtepn epeuvntiny tdom elvon 1 yetatdmion Tou utohoyioTixol @épTou Yo To inference
6o xaL o x0ovVTé oTov Ypehotn, ue Tic edge cuoxeuéc (A agents). Ltny doulewd aut e€etdloupe éva
ouyxexpiévo emtayuvtr tonou CGRA, tov R-Blocks, we mdavh mhoat@opua extéheons tétouwy eqop-
HOYOV. APevdc emexTelVOUUE TNV UXPOUPYITEXTOVIXT] Xl To. EpYOAEla TOU TEpBEAAOVTOC UETAYAWDTTIONS
(OpenASIP) tou R-Blocks yia tnv unoo thplén aplduntixnc xvnThc UToSLIG TOAAS, ol APETEROL OMELXOV(-
Covye Ta mpwta mepopatixd benchmarks tinou LLM oto enavompoypoppotiowo LAxG, eepeuvivtog
DLOPOPETIXEC UPYLTEXTOVIXES XolL Topopé€Teoug mapahinionoinone. H tehwnr| pag allohdynon yiveton oe
ASIC teyvohoyia 22nm FD-SOI, xou e€dyovton ouunepdopata yio TNV BlooitéTnTo TNS TROCEYYLONG UAS
¢ TEOS TNV AmODOCT), TNV EVERYELX Xl TO eUBadOV TOU XUXADUATOC.

AéEeic KAewdid — CGRA, peydro yAwoowd povtéro (LLM), pixpoopyttextovix™
ENEXTUCY], ENAVATEOYPAAUATIOWLO LALXO, LTOAOYLOWOL XIVNTAC UTOBLXC TOAYg, €&-
EEEVLVYOY] YWEOV CYESLACUOU APYLTEXTOVIXDV

Abstract

In recent years, the computational demands of Large Language Models (LLMs) have been steadily
increasing, driven by their expanding range of applications and the scaling of their parameter sizes. A
key emerging trend is the shift of inference workloads closer to the user, leveraging edge devices and
specialized agents. In this work, we explore the R-Blocks CGRA accelerator as a potential platform
for running such workloads efficiently. Our contributions are twofold: first, we extend the microar-
chitecture and compilation toolchain (OpenASIP) of R-Blocks to support floating-point arithmetic,
necessary for efficient LLM inference; second, we implement and benchmark LLM workloads on the
reconfigurable hardware, investigating various architectural choices and parallelization strategies. Fi-
nally, we evaluate our design in a 22nm FD-SOI ASIC implementation, providing insights into its
performance, energy efficiency, and area footprint, and assessing the viability of our approach for
edge-based LLM inference.

Keywords — large language models (LLM), coarse-grained reconfigurable architectures
(CGRA), edge computing, inference acceleration, floating-point arithmetic, reconfig-
urable hardware, architectural design space exploration

Euyaplotieg

Io v xadodrynon xou v enlBAedn toug euyaplotd Toug xodnyntég wou xbplo A. Yolvten xou X.
Z087. T tnv Bordeta Toug euyaplotd Tou utodrigrous diddxtopes, €N e ouddac Tou Convolve xou
uéln tou Microlab A. Mépa, II. Xdwdo, I'. Avayvwoténoulo, xou Wiaitepa tov I'. AheEavdpr| yioo v
avextiuntn cupfoln toug mou dev unopel va eneényniel ot neplopiopéva dpla TN plag oehiBag. T Ty
oLVEYT XL Ao TOUATNTY LTOoTNEIEY TOUC Tar TeAeuTaiol 23 Ypovia aAAd Wialtepa Toug Teheutaloug 6 urveg
ELYAPLOTE TOUG YOVeElc Pov, oToug omoloug ogeliw Ta TdvTa.

Kegarinvoe Aloviotog
MdgeTtioc 2025

“Drink this water of the spring, rest here awhile, we have a long way yet to go and I can’t go without
you.”

— Ursula K. Le Guin, Always Coming Home

11

12

Contents

ITepirndm 7
Abstract 7
Evyopiotieg 9
Contents 11
Figure List 15
Table List 18
Extetopévn EAAnvixy Ilepiindn 19
1 Exztetopévn EAAnvixy Ilepiindn 21
1.1 Ewooayoyh . . oo 21
1.2 Oewenund Tréfodpo L 23
1.2.1 Tlpoypoppatloyevee Apyttextovinéc Muxpol Emnédou Aentopépeioc (CGRAs) . . 23

1.2.2 R-Blocks o e 24

1.2.3 Meydhoa Nhwoowxd Movtéha o o oo oo e 27

1.3 Eyetue) Epeuvor oo 29
1.3.1 Plasticine e 29

1.3.2 X-CGRA 29

1.33 CGRA-ME 30

1.34 ML-CGRA 31

1.3.5 CGLA-IMAX3 32

1.3.6 CFEACT 32

13,7 30vodm .. 33

14 Eméxtaom 34
141 Eméxtaon TAwo0o 34

1.4.2 Eméxtaon Aoyiouxol xon Egyokelwvo oo 37

1.5 Amewxowvion Egogpoydv . . . Lo 40
1.5.1 Optofbc APYLTEXTOVIXMV « « « o v v v v it e e e 40

1.5.2 Ilpoetowaocio Koo o oo 40

1.5.3 IMaparinionoinon lHorhamhaowouod Ihvdxwy oo o oo o000 41

1.6 AMOTEREOUOTA . . . o v et e 46
1.6.1 Avdhvon AmdBoomg 46

1.6.2 Movrtehomoinon Koxdwv Extéheongo 47

1.7 Emoyoc . . . e e e e 50
1.7.1 Eméxtaon tou nepi3dhrovioc R-Blockso 00000 50

1.72 LLMsoc CGRAs 50

1.7.3 Approximate Computing 50

13

Contents

1.74 E&epelvnom ApYLTEXTOVIXMY o . . o v it 50

175 Tehwég Lxéderc o oL 51

2 Introduction 53
3 Theoretical Background 57
3.1 Coarse-Grained Reconfigurable Architectures (CGRAs) 57
3.1.1 General Theory on CGRAs 57

3.1.2 R-Blocks 60

3.2 Transformer Architectures and Large Language Models 63
3.2.1 Transformer 64

3.2.2 Large Language Models 66

3.23 Meta’s Llama2 L 66

4 Related Work 69
4.1 CGRA Architectures e 69
4.1.1 Plasticine e 69

4.1.2 X-CGRA . . . e e 70

4.1.3 CGRA-ME e 71

4.1.4 Conclusion 71

4.2 Transformer Acceleration Using CGRAs 71
4.2.1 ML-CGRA e 71

4.2.2 IMAX3 . e 72

4.2.3 CFEACT e 72

4.2.4 ULP CGRA for Transformer Acceleration at the Edge 73

4.25 TransMap oL e e 74

4.2.6 SUIIATY oo e e e e e e e 75

5 R-Blocks Expansion Methodology s
5.1 Hardware Expansion 7
5.1.1 The Floating Point Unit 7

5.1.2 The FPU R-Blocks Tile 79

5.2 Toolset Expansion 81
5.2.1 Instruction Set Architecture 81

5.2.2 Blocks Translator L 83

5.2.3 Hardware Generation 83

6 LLM Mapping Methodology 85
6.1 Architecture Definitionso 85
6.2 Benchmark Code Preparation 89
6.3 Matrix Multiplication Vectorization. oo 90

7 Results 93
7.1 Performance e 93
7.2 Cycle Modeling e e 94
7.3 Area and Power Analysis 96

8 Conclusion 99
8.1 R-Blocks Development 99
8.2 LLMson CGRAs e 99
8.3 Future Work e 100
8.3.1 Continuing the Research on LLM mapping 100

8.3.2 Approximate Computing 100

8.3.3 Architectural DSE 100

8.3.4 Compiler Support 100

14

Contents

83.5 Final Words e e e 101

Bibliography 102

15

Contents

16

Figure List

1.1.1
1.2.1
1.2.2
1.2.3
1.2.4
1.2.5
1.2.6
1.2.7
1.3.1
1.3.2
1.3.3
1.3.4
1.3.5
1.4.1
1.4.2
1.4.3
1.4.4
1.5.1
1.5.2
1.5.3
1.5.4
1.5.5
1.5.6
1.5.7
1.6.1
1.6.2
1.6.3
1.6.4
1.6.5
1.6.6

2.0.1

3.1.1

3.1.2
3.1.3
3.14
3.2.1
3.2.2

YuufiBoaoudc petoll eveh&log xaL AmdBOONG. .« v . . 21
H vevuh popph) puog apyrtextovixic CGRA . . . oo Lo oo oo 23
H eowtepn| opydvwon evog npdtunov cuvotiuatog R-Blocks oo 24
Yuvdeouoloyio AELTOUpYIXOY LOVEBWY Yiot TapdhAnhn eneepyaotar L L L 25
Apyitextovued Hepiypapry R-Blocks oo 26
Apytextovinny Heprypapr TTA and to GUI tou epyareiou ProDe tng OpenASIP 26
H Swduxaoio petayrodttione oto nepBdihov R-Blockso o0 27
Apyrtextovind) tou povtéhov LLaMa2o 28
Apyitextovinry tou CGRA Plasticineo o000 o 29
Apyrtextoviep tou X-CGRA L o o 00 30
Tonoloyia dlacuvdéoewy oto ML-CGRA 31
H opyitextoviey tou CCGRA CFEACT o oo . 32
ITivoxoe ouyxploswy petald Twv dpdpwy CGRA mou topoucdotnxay 33
H puxpoapyitextoviny| dour| Tne HoVEBag xvNTHS UTOBIICTOMAS .+« . . o v o o ot v o o . 34
H tehue] yoppn Tng VEAC AELTOURYIXAC HOVABOC .+ « v v v v v o e e e 36
To ypagpixd nepiBdhrov eneepyaoiog tou OSAL oL 38
H Swoduasto yetayAdttiong tou nepiBdirovtoc R-Blockso 39
Anewxovion noloamhov FPU eheyyoduevoy omd tov B ID o000 0oL 40
Apyrtextoviny Scalaro 41
Apyitextoviery Vectord . . . L Lo 42
Apyrtextovinry Vector8 . . . o Lo 43
Apyitextovinry Vectorl6 L Lo Lo 43
ITocooto ypdvou extéleonc twv utoloyiotixwy prhox tou LLaMa2 ce CPU 44
Omntixonoinoyn tng cuVdETNONG THEIAANAOU TOANATAACLOAGUOD TUVAXOY .« 45
KiOxhot extéheong ovd apyttexTovin) 46
Enidpoaon twv dlaotdoewmy tou mivoxa otny napoAAnhorolnon L L L L L L 47
[MpoPhenduevn cUUTERLPORE WOOVIXOD GUOTARATOS « « v v v v v v e e e e e e e e e e e 47
Avdduon eufadol Tou TEMXOU XUXADUATOS .« « v v v v v v e e e 48
Avduon xatavdhwone toybog TOU TEAXOU XUXADUATOS .« « v v v v v v v o oo e 49
Avéduon tou EDP oavéd benchmarko o000 49
Flexibility and Performance 54
An example R-Blocks system consisting of a reconfigurable grid, global memory and a

host processor. On the right, the internal structure of a functional unit and a Wilton

switchbox. 60
R-Blocks compilation flow o 61
Example of a virtual R-Blocks architecture 62
Virtual architecture after being translated to TTA, and viewed using the ProDe GUI . 62
The Original Transformer Architecture from (Vaswani et al., 2017) 64
Attention in Transformers 65

17

Figure List

3.2.3

3.2.4

4.1.1
4.1.2

4.2.1
4.2.2
4.2.3
424
4.2.5

5.1.1
5.1.2
5.2.1
5.2.2

6.1.1
6.1.2
6.1.3
6.1.4
6.1.5
6.2.1
6.2.2
6.3.1

7.1.1
7.2.1
7.2.2
7.3.1
7.3.2
7.3.3

Example of Temperature on a Sampler. We assume that only the top 3 tokens/words
can be sampled. Notice how the breakpoints don’t scale linearly, as the Temperature

multiplier is applied to the raw logit scores and not the probability. 66
Overview of LLaMA 2’s Model Architecture 67
Plasticine chip-level scaled-down architecture (3x6 grid) 69

Architecture of X-CGRA in a reconfigurable system. X-RA refers to the Approximate
Reconfigurable Array, SC refers to Structural Configuration part and OM refers to the

Operation Mode part (in terms of accuracy) o L 70
Mesh topology in ML-CGRA architecture 72
CFEACT Architecture Overview o0ttt 73
ULP CGRA SoC Overview v o v v ittt i e e e e e e e 74
ULP CGRA Reconfigurable Fabric 74
Summary of publications relating to CGRA architectures and LLM code mapping . . . 75
Internal structure of the OpenCores FPU 78
The FPU Functional Unit e 81
The Operation Set Editor GUL 83
The R-Blocks Hardware-Software co-design flow 84
Mlustration of multiple FPU tiles controlled by the same ID 86
Scalar Architecture e 86
Vectord Architecture 87
Vector8 Architecture 88
Vectorl6 Architecture e 88
The LLaMa2 Inference Model 89
Runtime percentage of the LLaMa2 computational blocks on a CPU execution 90
Matrix Multiplication Vectorization Scheme 91
Cycles per benchmark for each tested architecture 94
Illustration of how different matrix dimensions make use of parallelization 95
The projected cycles if the issues regarding memory accesses are dealt with 96
Area analysis of the final IC o 96
Power analysis of the final IC L 97
Energy-Delay Product per Benchmark 0oL, 97

18

Table List

1.1
1.2
1.3
1.4
1.5
1.6

5.1
5.2
5.3
5.4

6.1

7.1

To ofjparta ewoddou/e€ddov e FPU . . . o o oo oo 35
To CAUATO TOU GUYXEUTY © « o v v v o v oo e e 35
Ta ofuato evog Tile tov R-Blocks00 oo 37
Output Conversion Logic 37
Topduetpol v Apyttextovixdy mou e€epeuvAdnxay oL 40
Avdhvon Anédoong oe KOxhoug o oL Lo oo 46
FPU Signals 0 e 79
Compare Module Signals L 79
Generic Tile Ports L 79
Output Conversion Logic 82
Architectural DSE Parameters L o 85
Performance Analysis in terms of Cycles L. 93

19

Table List

20

Chapter 1

Extetopevn EAAnvixn [epiindn

Z TO TPAOTO HEPAAAO AVTAS TNG OLTAWUATIXTE Vol TUPOUCLICOUUE OAT| LOC T SOUAELY GUECO XOU TEQLEX-

T Yo Tov ENAnvoL avaryvaotn. T neplocdtepes hentopépeieg xou teyvixd {nuuorto avoupepdeite
0TO aVTIoTOLYO Ay YAXO XEPARALO TOU XEWEVOU, oV ol oL TAnpogopiec mou Yo mopouctac oLy e8¢ elvor
emapxelc Yoo TNV TAEN XATAVONON TNG EV AOY K BOVAELAC.

1.1 Ewayowyn

H enavdotoon 6tov yweo g TexvnTrhg vonuoobvng ta teheutala Ypovia ogeiletan oe ueydho Bodud otny
elooywyn twv Metaoynuatiotay (Transformers), povtéhwy nov Boacilovion otov unyavioud npocoyhic
(Attention). Arnd tn dnpooicuon tou dpdpou "Attention Is All You Need" [1], to povtéha autd xupt-
apyoly ot dnwovpyia puohc YAOoous, we tpdta Yvwotd napadelypota T GPT-3 [2] xow LLaMA
[3]. Ta obyypove Meydha I'hwooixd Movtéha (Large Language Models, LLMs) 8ev mopdyouv amhée
XATOVONTO XELUEVO, AN UTOPOUY Vo amatvTHooUY UE axp(Bela Xou BNULoVRYIXOTNTA OE EPWTNAOELS, EVE YdEN
o€ TeYVXéC OTKe 1) evioyuT| wddnon (reinforcement learning) [4], apy{louv va emdetxviouy axdpo xou
wovoTnTeS Borhide culhoyio Tueg.

A

Flexibility
| | | 1

1]]]]] 1]]]]] N
>

I I 1 1 I |
Performance

Figure 1.1.1: ZupfiBoocude petagd suehéloag xou anédoong.

H eqappoyt twv Metaoynuatiotédyv dev neplopiletar ot puoxy| YAWooa, aAAd enneedlel tAndog emotrn-
povixdy nediov. Lty Trohoyotixd ‘Opaon [5] o tnv Avaryvodpion Opiog [6] €xouv Hdn @épel onuav-
Tée Bedtidoeig, eved ot Blohoyia éyouv ahhdEel pilixd Tov TpoT0 YE TOV 0Tol0 UEAETOUYE TIC TIpLTELVES.
To povtého AlphaFold [7], v mapddetypa, yenowwonotel unyoviopolc tpocoyfic yio vo npofhédel ue

21

Chapter 1. Extetouévn ENinvuc Ilepiindn

axp{Bela Tic TpLodLdo TaTES SoUEC TPWTEIVGDY Yvweilovtac udvo v ahknhouyio TV auvolény Toug, x4t
TOU €YEL TEPAOTIES ETUNTWOELS OTY| QPUPUAXEUTIXH EPEUVIL XalL T1) LOPLOXY ETLOTAUN.

ITopd tor 0peR, 1 xenon twv LLMs cuvodeletan and tepdotieg anouthioelc oe unohoyiotxh loyv. H ex-
naldevor xou 1 extérect| Toug Paoctlovian oyeddv anoxieloTind ot Loyupéc cuotolyiec GPU, xadae npoo-
pépouv N BéATIoTN tooppoTio HETAEY amdBOoNS Aol TEOYEOUHATIO TIXAS Euxohiog. oTdc0, oL aviyXes
Yiot AmodoTIXOTERT EXTEAEDT) 00N YOUY TNV ovalATNOY EVOANIXTIXDY OPYLTEXTOVIXEDY UAMXOU.

Mio and autée elvon ov Hpoypapuanloueves Apyrtextovixéc Mixpol Emnédou Aentouépelag (Coarse-
Grained Reconfigurable Architectures, CGRAs) [8], nou Pploxovton avdpeca otic Luotoyiec Emtdma
Mpoypoppoatiloyevey ITudvy (Field-Programmable Gate Arrays, FPGAs) xou ta Oloxhnpwpéva Kux-
Aopata Eldueol Exonot (Application-Specific Integrated Circuits, ASICs). Ta CGRAs npoogépouy
vPnhétepn anddoor and ta FPGAs xodde yenowonolodv mpooyedlacpéva Aettoupyixd otolyelio mou
umopoly vor cuVdedolv duvaixd e uxpdTtepo overhead, eved mapauévouy mo evéhnto and to ASICs,
AOY® TNS ETMAVUTPOYPUUATIOWOTNTAC Toue (edva 1.1.1).

Ye auté 1o mhadolo, to R-Blocks [9] anotehel po tohhd vrooyduevn mhatpdppa CGRA. Tlpbdxetton yior ot
EVEPYELOX amOBOTIXY AEYLTEXTOVIXT| TIou Yenotponotel To wovtéro extéheone VLIW-SIMD xou a&iomotel
ta gpyorela tne OpenASIP [10] mou 6Toxelouy 6TO HOVTEND dPYLTEXTOVIXMY xaY0odNYOUHEVWY antd TIC
petapopés dedouévwy (Transport Triggered Architectures, TTA). "Evo Booixd mheovéxtnud tou eivan 1
duvatdnTa var anewxovilel uPnhol emnédou xMBxa aneudelog 0TO ENAVATEOYEUUUATIOWO UNXS UE TOV
vnhot eminédou compiler tng OpenASIP.

Ytodyoc Tne mapoloag SimhwuatixAc elvan 1 Blepedvnon g yerone tou R-Blocks we emtoyuvty yio Ty
extéleon LLMs oe cuoxeuvéc auyuric (edge devices). 'Evo and to peyohltepa eunddio elvon 1 amousio
unoothpEne opuduntxic xivnthc unodlactohfe (floating point arithmetic), xadde to R-Blocks, 6mwe
xou 1 Thoteoppo Blocks [11] oty onola Pacileton, éxer oyedaotel yioo amhéc oprduntxée npdleic pe
EAAYLOTN XATAVIAWOTY) EVERYELIC.

T Ty avTHETOTLOT 0L TOV TOU TEPLOPLOUOY, OYEDACUUE Kol EVOWUATOOUME ULol VEo Aettovpynr) Movdda
(Functional Unit, FU) nou nepthapBdver pio avolytol xmdixa Movdda Kivnthc Trodiaotolic (Floating
Point Unit, FPU), cuvodeubuevn ond to dixd tne mpocopuoouévo oivoro eviohédv. Me v npocdinm
oo TARENG Yio TIC VEEC EVTOAEC xou ota epyahela yetayhottione tov R-Blocks, xabiototoan duvaty n
EXTEAECT] OAWV TWV BLVATOV AELIUNTIXWY TEAEEWY XVNTHE LTOBLIOTOA S YenowonotwvTtoc BiBAodxeg
vmhot emnédou (m.y. math.h).

Auth n enéxtaon enétpede, yio TpdTH Qopd, TNV amewdvion e Sadaciag napoywyric cuUBoiwy (token
generation) evéc LLM oto R-Blocks. Emnhéov, Siepeuvidnxay teyvixéc mopalhnhiopol, énwe 1 Oi-
avuopotonoinon/topahknhoroinon (vectorization), nou emTpénel TNV EXTEAECT TOMATAOY ApLUNTIXCY
TpdEewy TauTOYEOVY, aflonolwvtae ToAkés Aettouyixéc Movadec FPU ocuvbedeyéves otov (Blo amox-
dxonotnT evioh®y. Méoa and awth tn Stobixaocta, eEeTdoope TOC SLUPOLETIHES APYLTEXTOVIXES ETULOROUY
otV anddoon xou Totot glval oL Teptoplolol Tou TpoxdnToLY amd TNV (Bia TN doury Tou R-Blocks.

Ot npotelvéueveg apyttextovixéc ouvtédnxay oe teyvoroyio 22nm FD-SOI yenowonoudvtoc to Synopsys
Design Compiler, ye péylotn cuyvétnta hettovpyiog 200MHz. Me autédv tov tpémo cuhé€aue dedouéva
OYETIXA PE TNV XATAVIAWON LoYVOG X0k TNV ATOBOCT TWV XUXAWUATODY.

Ta arotehéopata detyvouv 6T o R-Blocks €yel onuavtinég duvatdtnTe wg eVEpYELoXd AmOdOTIXOS ETL-
toyuvthc LLMs. Qotéoo, undpyouv neploptogol mou agopolv T duvatdtnta xhudxwone (scalability)
xou TNV TATen aflotonon Twv duvatothtwy g apyttextovic CGRA. Avolutixd anotehéoparta nopati-
YevTon oTo TOEOXATE UTOXEPSALAL.

ITpwv amé autd, dpwe, elvon anapoltnTy Wit eloaywyn otic Baoixés évvoleg Twv CGRASs xaw twv Meydhwy
IMwoowy Movtéhwy, Tpoxelévou va yivel xoh0Tepa xaTavonTéd 1o avTXeluevo Tne €peuvag.

22

1.2. BOewpnuxd TndBadpo

1.2 Oewentixd YTroBadeo

1.2.1 Ilpoypappatiloueveg Apyirtextovixée Mixpol Emnédou Aen-
touépetac (CGRAS)

O Hpoypoppatilopevee Apyttextovinéc Mixpod Emnédou Aentopépetoc (Coarse-Grained Reconfigurable
Arrays, CGRAs), 6nwc einope, anoteholv yio evBidpeon Ao petadd e evehidiog twv FPGAs xou tne
an6doong twv ASICs. Avtl vo hettoupyolv oe enlnedo YEHOVOUEVEDY AOYIXGY TUAGDY, dtwe ta FPGAS,
o CGRASs ypnowonowoly peyahitepec Aettovpyixée povadec (Functional Units, FUs), yewdvovtoc to
%60TOC ETAVIBLALOPPOONG X0t BEATIOVOVTOC TNV EVERYELUXT] ATOBOTIXOTNTA.

Tougwva ye to o evdeheyée survey v to obyypova CGRAs [12], ou apyitextovixée autée Boaoilovtan
oe Teelc Boaowée apyéc:

o Euehi&la o8 oUYXEXQPIIEVES EQUPUOYES, TROCPELOVTOG ETAVIBLAUOPPKGT) WOV OTOU amanTeETo.

o JuVOuaous Ywenc xou Ypovixic eneepyaciog, aflomoldvioag TopoAANAoud ot eninedo eVIOAGDY
(VLIW) 1 dedopévev (SIMD).

o Movtého extéheone mov Pooiletan eite oty cuyxexpévn dapdppwon, elte otn por dedouévey,
avtl vl auotned oelptoxt| ExTéNEoT), OTwe YIVETU 0TOUC ETEEEPYUOTES YEVIXOU GXOTOV.

H yevueh popet plag apyrtextovixrc tonou CGRA gaivetar otny exdva 1.2.1. Auth amotehelton omd Tig
Aeitoupyinéc Movddec A Processing Elements (PEs) oe Sour| nhéypotoc Sacuvdedepéves omd xohoddia
ot oymuatiopd TAéypatog (6nwe edd) 1 detbou (nwe oto R-Blocks mou da oxohoudoer nopoxdtw).
Ou Aettovpyxée povddeg elval OHOYEVT] XOUMATIO UAXOD TIOU ETUTENOUV GUYXEXPWIEVES AElTOUpYIES o
elvon mpoypayupotiowa 1 oxyt, avdhoya v apyttextovixy tou ev Adyw CGRA. To enavanpoypopyatiowo
VA6 (otny ewéva PE array) elvon cuvdedepévo e eEwTepinés UVANES EVTOADY, xOplal UVAUN o €vay
x0pto ene€epyaoTh Yo Tov omolo cuVAYLS Aettoupyel wg eEmTAYUVTAG.

<:> Configuration Memory

T

PE H PE [H PE | PE

.
9
2
| 15V e ==
O [E PE {H PE |H{ PE |H PE
ﬁ GJ - | . | | I | 1
O E 1 1 1 I
| |s PE H PE | PE | PE
© 1 1 1 |
(] 1 1 1 |
PE | PE | PE | PE

Figure 1.2.1: H yevuxn popen wag apyttextovixic CGRA
Avdloya Ue TOV TEOTO TTOL VNOTIOLE(TOL 1) ATELXOVLOT| TOU TtpoYpdupatog 6To LAXG, T CGRAS ta€ivouoiv-
oL WG

e SCSD (Single Configuration, Single Data) — Ké&e Siopdppwon extehel npdleic Ue Evo GUYXEXPULEVO
6UVOLO BEBOUEVWLV.

23

Chapter 1. Extetapévn ENAnvuc Hepiindn

e SCMD (Single Configuration, Multiple Data) — Xtnv (Su Siobppwon epapudlovion Tautdypova
og molhamAd cOvoha dedopévmy, 6mwe otic SIMD apyttextovixée.

e MCMD (Multiple Configuration, Multiple Data) — Trootnpeilet Tautdypovn extéheon Eexwplo TV
CUVOAWY DEDOUEVWY GE DLOPOPETINES DLUUORPWOTELS, XATIAANAO YOl EQPUAPUOYES TOU OTOUTOUY TOA-
UVNHOTIXT) EXTENEDT).

Q¢ BladEpeon 56 EVVOELTAUL 1) CUYXEXPULEVT] AEYLTEXTOVIXY) TTOU €XEL OPLOEL O TPOYEAUUUATIOTAS, 1) OTola
neplypdgpel Ty eowtepxr didtaln Tou CGRA, tnv Sopn tou xau Tig BlacUVOETELS TOU, %ol TAVe GTNY
omolo amexovi{ovTtal xaL EXTEAOUVTOL Ol EQUPUOYEG.

Ye eninedo extéleone, ta CGRAs unopel va oxoroudodv otatind 1 Suvouixd YpovoTpoYeUUUTIoud,
a9 xou oetplaxt| enelepyacia B enelepyacia Baciopévn atn por dedopévwy (dataflow). H emhoyh tng
XAUTEAANANG WxpoopyttexTovxc e€apTdton and TapdyoVTES OTMC To YAPUXTNELOTIXG POT|C DEBOUEVKV, 1|
tonoloyia Tng Slaotvdeong xon 1) tepapyio UvAUNG.

H avdhuon evog npaypatixot cuothuatog CGRA Ya pog Bondroel va xatavoricoupe mig autég ol apyég
epapudlovtal oTny TEEEN xou TS ENNEEALOLY TNV ATOBO0Y), TV XAUEXWOT XL TNV ATOSOTIXOTNTO TN
AP YLTEXTOVIXNS.

1.2.2 R-Blocks

To CGRA 7o onolo da peretiooupe, Yo enextelvouue xat oto onolo Ha anewxovicouue epapuoyéc TOTou
LLM ovopdZeton R-Blocks [9]. Anwoupyhdnxe and to Teyvixd Hoavemothuo tou Altydgey, o yenot-
porotel v couita epyodeiwyv OpenASIP [10] tou Iavemotpiov tou Tdunepe tne Prvhavdiog.

Global memory Generic FU structure:

CGRA control interface CGRA data interface
I Config. loader Memory arbiteﬂ
To IMs, FUs & SWBs
LSU LSU £ Instr, 61
RF RF o
IFIID (GM) (GM) Datapath logic and .
internal registers’ P 71
P
ALl B B AL
IF/ID u u u u utz

Optional ‘implicit’ ports, i.e. for
LSU memory interface or ALU
adjacent-lane communication.

IF/ID MuL MuL MUL MuL Generic SWB structure (data network):

32-bit I I 1
busf{track'lr T1 T l_ _J'_ _l_ 5 A—
..... L VG Y 7 FU
ALU RE RE au | L 3 To all SWB & | inputs
IF/ID out1 - £Y outputs
= A —
LR By Switch block ! a_'
— _ﬁl (Wilton, Fs =3) pil
L L L I -
IF/ID Su su Su =Y - 2- _’
gues! Connection block —
Tinal (Wilton, Fc = 100%) Q— —
. “u
m — — vy arb. From aI_I sSWB FU
. & FU mputsd\o'mpuqs

‘_’EReconﬁgurablecontrol network HB Reconfigurable data network 5i I | I i l] I 1i] 4\ I—
(

(instruction delivery to FUs) data movement between FUs)

Figure 1.2.2: H ecwtepn opydvwon evéc mpdturov cuctiuatoc R-Blocks

IMpbxerton yio évoa CGRA e€oupetind yoaunAnc xatavdhwone mov axoloudel T0 LOVTERO EXTENEOTC EVIONDY
VLIW-SIMD xou uvnootneiletar and éva 6hoxAneo nepBEAloy TauTtodypovou GYediaotod UAXOU XaL Ao-
yiopxob. Autd onpalvel 6Tt o mpoypoppatio T c Exel TNV duvatdtTnTa va xooploel TG00 TO TEGYEULU

24

1.2. Oswpnuxd YroéPadpeo

FPU| = = = |FPU

Vector Size

Figure 1.2.3: Yuvdeoyohoyio AELTOVEYIXOV HOVABWY Yia TopdANNAY encéepyaoio

mou Yo exterectel otny mhatpopua R-Blocks 660 xou tnv apyitextovixr otny onola autd Yo aneixovio tel,
xododeg xan Oheg T Aemtopépetec Yetoll Tewv dUo ETTEdWY.

Ané dnodm apyrtextovixrc to R-Blocks anoteheiton and etepoyeveic Aettovpyinée povidec (Functional
Units, FUs), oe avtideon ye 1o nepiocdtepa poviéda nov €youv npotodel. Autd ta dowxd otouyela tomo-
YetoUvton oe Bidtaln mhéypatog, 6mwe Qolveton oTtny exova 1.2.2, xou dlacuvdéovtan te 300 SLopopeTind
dixtua xahwdinv oe oynuatiowd Network on Chip, yenowonowdvtag xovtid dtaxontdv (switchboxes).
To éva dixtuo yetapépel amoxheloTiXd EVTOAES EVE TO GAAO Tt BEBOUEVO UETAE) TWY UTONOYIO TIXWY
AELTOURYIXDY LOVABWY.

To enovampoypauatioo UAXG AElToupYEl K¢ EMTAYUVTAC 0TOV eEWTEPIXS EMEEEPYATTY), Xal CUVDEETAL
pall Tou péow e xVplag Uviung 6mwe paiveton xou oty exdva 1.2.2.

Ou Aettovpyixée povdde amd Tig onoleg amoteheitan To R-Blocks avixouv otoug e€rg Slagpopetinoi
TUTouC:

o Anoxwduornonthic Evtohov (Instruction Decoder, ID)

o Movdda ‘Apecwv Tywdv (Immediate Unit, IU) vy v dueon Snulovpyio tehectdv

o Movdda Péprwonec-Anodixevone (Load-Store Unit, LSU) v tn Swiyelpion e emxotvmviog ye
™V xOpLor Wy

o Apyelo Katoywentodv (Register File, RF) yio tnv anodfixeuon teheotdyv

o Apdunuxd xou Aoy Movédda (Arithmetic and Logical Unit, ALU)

o Movéda Sucowpeuone xan Atoaxhddwone (Accumulate and Branch Unit, ABU)

o IToMomiacwotic (Multiplier, MUL)

o Movdda Anuovpyioc Aeudivoewy (Address Generation Unit, AGU)

o Tomxéc MvAuec (Local Memories, LM), ot onoiec anodnxebouy Touc TeNeoTéC YLol DVUCUUTIXES
TpdEelc xovtd oTic avtioToles AELTOUPYLXES MOVADES, (OTE va Umopolv Vo yenoiponondolyv
TATOY POV

Kdéle pio and autéc tic Aettovpyixée povadee €xet To dixd tne olvoho eviohmdv (E£00 xou 1 ETEPOYEVELX
TOUC) X0l YENOWOTOLE(TAL Ylot TNV AMEXEVLON PEPOUSC TOU TROYEEUUATOS. LNy oucio 6An 1 Sour| Tou
R-Blocks Qupiler anocuvapporoynuévo enelepyaoth, ahrd pe TNV duVOTOTNTA Vo GUUTEPLAGBEL Xovelg
TEpLoodTERA AELTOLPYIXG oTOL el Xou oE oTmoladhrote ditdtaln emduyel.

H »&de hettoupyueh povddo (extoc tne IU) ouvdéetan oe évav ID yia var hofBdver Tic evioléc Tou Tpenet,
xoTaL TNV EXTENEDN TOL Tpoypdupatoc. Yrootnelletan enfiong 1 oOVOEON TOMAGY OUOlWY AELTOLRYIXMOY
povadwyv atov (Blo ID €tol dhote va hettovpyolyv we uio SIMD povdda enelepyasiag, 6nwe gaivetol 6To
oo 1.5.1.

H povada FPU nou anewxovileton amotehel Ty S Yo CUVELGPOEE. LTny TpdTeER! XATIoTIoY TOU TO
R-Blocks dev elye v duvatotnta eneepyaociog aprduody xivnthc unodlaoTtolre, xar onwe Yo ovahudel

25

Chapter 1. Extetouévn ENinvuc Ilepiindn

— e

Figure 1.2.5: Apyttextovinr| Ieprypapr TTA and 1o GUI tou epyareiov ProDe tng OpenASIP

TOEAXATW, TO EMEXTEIVOUE e Wiar VEO AetToupyYiny) povdda enelepyooiog aptumdy xvnthc UTodlaoTtohAc
(Floating Point Unit, FPU), dote va unopéooupe va exteréooupe egapuoyéc LLM oe autd.

To povtéro extéheonc eviorwdyv tou R-Blocks Baotleton otic apyttextovinés xododnyolueves omd Tig
petapopéc dedopévwv (Transport Triggerred Architectures) [13]. Eto apyitextovind autéd yoviého to
TEOYPOHU EYEL TOV ENEYYO TOV HETAPORMY BEBOPEVKDY GTOUC BLIUAOUE Xal oL UTOAOYIoWO! cupPaivouy e&-
outiog AUtV TRV peTagpopny avtl va cuPoivel to avdnodo. Mia TTA arotekeiton and FUs, xatoywentéc
xou Srowdhoug dedopévwy. Eivon €tol duvatdy vo anewovicovue ue amdAutr axpiBelo yior opyLTEXTOVIXH
Teplypagn] wag onotacdrinote didtagng R-Blocks we¢ TTA.

H Xertovpyla auty| emitedelton and 1o epyareio Blocks Translator mou petagppedletl wo apyttextovixy| R-
Blocks mou éyel neprypder o npoypoppatiotic (ewmdva 1.2.4) oty avtiotoryn neptypoph) TTA (exdva
1.2.5).

‘Ol oty 1) Saducosior yivetan yior var unopéocet va yenotwonomdel o petayrwttotc e coultag Ope-
nASIP (rnov otoyevet apyrtextovixéc TTA) yio Ty amewmdvion xddxa vPnhol eTTESOU GE APYLTEXTOVIXES
R-Blocks. O petayhwttiothc autdg haufBdvel we eloodo tnyv neplypapt| TNg apyitextovixiic o woppr) TTA
%ot Tov x0dxa C TNe EPapROYHC, Ko TUPEYEL VoL EXTENEGUYLO YLOL THY CUYXEXPULEVY] OPYLTEXTOVIXY (EX6VaL
1.2.6).

To exteréowwo autd unopel va ypenowonowmiel yia v mapaywyy parallel assembly 7 omolo Tehxd ex-
Tehelton 6TO MEAYUATING LAWXO.

H apyttextoviny| mou opilel o npoypopuatiotic apyixd, cuvidne dlacuvdéet GAe Tic AelToLPYIXES LOVAdES
petall Toug yior va elvon BéBano 6tL Vo umopel vo dpouoroynlel xdlde mpdypaupo 6TO LAXG. BTNV
TRy HATIXOTNTA, OUWE, OEV amatTolvTal OAeC AUTEC oL BlacLVOETELS AAAG UbVO €val Wxpd TocooTH TouC.
Emnmiéov, to mpaypatind ukixd €xel meploplodols Tou dev agrvouy okl ueydio mhdoc BlacuvdEécewy
va ylvel mporypotixdtnta oto teAwnd design. I autole Toug Adyoug, undpyel To epyaleio Prunner to
omolo xdvovtac yerion Tou exteléoilou tou map N yia wa apyLtextovix, "xoupelel" tic Slacuvdéoele

26

1.2. Oswpnuxd YroéPadpeo

Prunner [«
Input
Code
> 1010
v +| tcecc ol0! |} TPEF
1010
Fully Connected Compiler
Architecture
N
TTA
o Architecture
Optimized
Architecture

A

Y
R-Blocks RTL # (. .
R-Blocks

Assembly File /003! :::mow

(PASM)

Figure 1.2.6: H dwiduxaocio yetayhodttione oto nepdirov R-Blocks

HETOED AELTOLRYIXWY HOVEDWY Tou dev elval amapodTHTES (MOTE Vo ONULOURYNOEL VA TTLO PEAALOTIXG XOl
Hxed LOVTENO UAIXOU oL umopel Vo tepdoel oTtny @dom g cuvieong.

To tehind exteléolto TOL ToEdyETAL AR TNV VEX AUTY APYLTEXTOVIXT| Xou 1) (Blat 1) TIEpLYpopT| TNS, BNULoue-
yoOv to Tehixd bitstream mou pnopel va ypnowonowmdel yia tpocouoldoel xou 0y WY AMOTEAECUATLY
EXTAONS XAk LOYVOC TOU TEMXOD XUXADUITOS.

IToAAG epyaheio TOU GuUUETEYOLY GE AUTY TN Bladixacia YpeldoTnxe va enextordoly Yo va utootneilouv
Tig Véeg duvatdtnteg enelepyaciog aptdpdy xvnthAc unodiactolric tou CGRA.

1.2.3 Meydra 'hwoowxd Movtéla

To Meydho Mhowooixd Movtéha (LLM) BoasiCovtar otny hettovpyio tov Metaoynuatioty (Transformer)
[1], evowyatdvovtag, Gume, To xdde éva Tic Bixée Tou oYedLIoTIXES ATOPEoELS xa XUVOTOW{ES.

H Boow hettoupyio evog LLM elvon m mpdPredn tne Aé&ne mou Yo axoloudvicel ye Bdomn uior axoroudio
AéZewv mou divetan w¢ elcodoc. Me tnv avadpouixy| ehon TwY TopayOUEVLY AEewY 0 Véeg elcodol, To
LLM uropel vo nopdZet GAoxAnees TpoTdoeLs, Topaypdpous xaL Xelyeva, Baclouévo ot éva uixpd epnhTnua
oL YPHOTN.

ITpdhto Brhua oty enitevdn autol Touv oxomol eivar 1 xwdixonoinomn Twv Aédewyv (1 uto-Aé€ewy, tokens)
e axohoudiog eloddou e Blaviopata, 1 omola yivetar amd tov tokenizer. 3tn cuvéyeia To SlVOOHATA
T TEEVAVE amd CUOTABES UTOAOYLIOTIXDY CTPWUATWY OTIC oTolec CUPUETEYOLY Ta Bden N mopdueTEOoL
TOU €YEL ECWTEPIXEVTEL TO LOVTEAD XATE TNV EXTIOUBEUCY| TOU, X0l XWOLXOTOLOUY OAOXATOT TNY XATEYOUEVT|
YVOOT TOU.

Metd and Toug unohoyiopols autolc, TEoXUTTEL évag Tivaxas TdavothAtwy yio To Toée Aéelc () tokens)
elvon o Aoyx6 va axohovdiocouy otny mpdtacy), and Tic onoieg emAéyeton 1) é€0doc tou LLM.

To cuyxexpwévo povtédo mou Va yenotwonotjoovye oe auth TN dovield eivar to LLaMa2 [14], to
omnolo fTay omd To PEYUAUTEPX XoU TiLO Lxavd GTay dnuootelinxe, To 2023. H ecwtepnr Tou dour| 6mng
Tapouctdletal oty eova 1.2.7, Yo pag Bondrioet va xatahdBoupe xahbtepa tnv Aettovpyia tev LLM xou
TOUTOYEOVA VO XUTAVOTOUUE TwE XMBIxaS TéTolou Tnou unopel va exteleatel oe apyttextovinr) CGRA.

To mpwto Prpa e xwdixomoinone axoloudelton and to xbplo uépog "forward", to omolo cowtepxd
amotelelton omd pa oepd ond B dnohoyiotxd eninedo (layers). Kdde eninedo, yia guxohdtepn

27

Chapter 1. Extetouévn ENinvuc Ilepiindn

LLaMaz2 Inference

-

Input Sequence

\

Forward

/ Token Embeddings \

Layer

-

Input Vector
|

RMS Normalization

Tokenizer

Q, K, V Matrix
Calculation

Layer 0

Encoder
RoPE Encoding
Token L)
Embeddings T
!
S Multi-headed
5 Attention
IS Forward
:
=z Output Matmul &
Residual Connection
> |
Logits RMS Normalization
A 4 RMS Normalization

Sampler

Output Tokens

Feed-Forward
Network

Classifier

Output Matmul &
Residual Connection

N y

Logits

N AN

Output Vector

-

Figure 1.2.7: Apyitextovixr} Tou povtéhou LLaMa?2

/

xatavémon to €youpe ywploel oe 3 xoppdtia. To mpdto (LeP) xoppdtt unohoyilel Toug mivaxes Query,
Key xou Value mou ypewdlovton otov unyovioud npocoyric (attention) mouv eixovileton oto npdotvo xoutl.
Avutéc o umyaviopds avaryvwpellel tig cuoyetioeic yetofl Twv AMEewv e mpdtaone xou yeyedivel 1
CUPPLXVAVEL TIC XWOWOTONGELC TNG ONUAC{OC TOUC OTOV BLIVUCUATIXG YOEO avaAOYd UE TO Tolo AEEN
AVOPERETOL OE TolaL GAAY p€oa 0TV TEOTUCT).

To enépevo xoypdtt anotelel to Feed Forward Network (FFN) tou uetacynuatiots, to onolo eivou
TOLVOUOLOTUTIO PE oVTERX Pordidic uddnomng mou YenolLoToloUYTaY TELY THY EPEVREGT) TOU UETACY NUATIOT.
Autd 10 XOUPATL YPNOWOTOLWVTAC TIC CUCYETIOELS TOU EPEPE GTNV ETLPAVELNL O UNYOVIOUOC TEOCOYAC,
X0 TO PEYAUAUTEQO TOCOCTO TWV MUPAUUETEMY TOU UOVTEAOU EPUNVEUEL TO VONUA TNE XWOLXOTO(NoNS Xalt
pavTeveL TL umopel vo axohoudnoeL.

Télog, apol 1 dladuxacia autr enavodngiel Téoec Qopéc oo Tal eminedo TOU HOVTEAOU, €Vag ATAGS
Tagvountic (classifier) mopdyel tov tehnd mivoxo mdavotitwv (logits), and tov onolo Va mpoxdiet 7
endpevn AéEn otnv é€odo.

Ou mpdetc mou exterolvtar ota ddpopa otddla Tou LLM, eivan xatd x0plo Adyo, omwe Yo dodue xou
TopOX AT ToAamhaclaopol petagld mivoxa o dlavbopatog aptdudy xivnthc utodotoric. To xoutid
HE XOXXLVO YEMUO EXTEROVY AMOXAELGTIXG TETOLOU £ldoug TpdZelc xou xoTahopfdvouy méve and to 99%
TOU GUVOAXOU YPOVOU EXTEAECTC.

O undhounee npdéec (RMS xavovixornoinon, Hepiotpopur; Kwdixonoinon ©éonc-RoPE Encoding) x4-
VOUV YEHOT| U1 YEOUUXDY oI NUATIXDY CUVAPTHCEWY o Bev Bo amoTeAEGOLY UeYdAo TpoBANnua, xupitg
BLoTL Bev xatohouBEvouy HEYIAO TOGOGTO TOU UTOAOYLG TIXOU YE4VOL.

28

1.3. Xyetur ‘Epeuva

1.3 Xyetuxn 'Epsuva

IMopaxdte Yo mapovclaoTolv olvTopd HEPMES EPEUVES TIoU éyouv dnuooteulel ndve o CGRA’s xou
CUYXEXPWEVA OE OTELXOVIOT) EQUPUOYWY TEYVNTAS VOMUOCUYNE GE auTd, xai Yol GUGYETIGTOUY UE TNV BxH
pac doUAELd.

1.3.1 Plasticine

To Plasticine [15] etvon pior apyttextovini CGRA mou enuyetpel vor emhloel to tpofAfote oanddoong xo
xatovdAwone evépyeloc mou avupetwnilouv ta FPGAs, expetalheuvduevn enovolopBavouevoe medTuma
Topahhnhopol (parallel patterns) otov xddixa. H Bacixh xouvotopia eivon 1 yprion Movédwy Trolo-
yiopot Ipotinwv (Pattern Compute Units, PCUs) xa Movddwv MvAune Ilpotdnwy (Pattern Memory
Units, PMUs), ot onoleg Behtiotonowolyv Ty tomxdtta twv dedouévevy xou v mpdofaon otn wviun,
emTo OVOVTOG ETAVONBoVOUEVE UTOAOYIE TS woT{Ba.

¢:°AG s s} [s] [s } s | s} '?_|er ¢:>
Coalescing PMU PCU PMU PCU PMU PCU Coalescing
Unit Unit
AG s s s s s} s]o AG
o : 1]

N—— PCU PMU PCU PMU PCU PMU —
[r——)
Q:b AG s s [s s s] s} s:|<-> AG ¢:>
Coalescing CoalesAcing
Unit PMU PCU PMU PCU PMU PCU Unit
AG s s s s s s| Ii-l"’ AG
¢=> Il (il (I (Il (Il sz

Figure 1.3.1: Apyttextovixr) tou CGRA Plasticine

H omewovion egapuoydv oto CGRA Plasticine Bac{leton auotned otn poviehomoinon toug wg parallel
patterns (mopdhhnho potifa). Ot ypfiotec npénel vor Teplypddouy TNV EQUpUOYT TOUC OE [id EEEBEUPEVT
Yh&ooo, vy Delite Hardware Definition Language (DHDL) [16], n omola emBdAher auotney| avtio-
Tolylon oe ouyxexpéva Tétola mapdhhnha potiBa. Autd emitpénel v LPNAY amoBoTixdTnTa GE GPOUC
evépyelog xou ambdoone, Eenepvivtac oe emdooel; Ta FPGAs xatd nepiocdtepo and 10 gopéc o moAléc
TEQINTOOELS.

H dopY| tou Plasticine eivon Bialtepa opotoyevic, xodode To mhéyua anoteAelton amoxAieiotixnd ané PCUs
xa PMUs mou cuvdéovtan péow evdg otatinol, uBpedixol dtiou dlacivdbeons. To PMUs nepilouPd-
vouv uviun scratchpad pe e€edixeupévn Aoyt Sleuduvolodotnong, v 1 emxowvewvio ye v e€wtepnn
DRAM mpoyyotomole(ton U€Cw EWBXOV YEVVATELOV BIEUTOVOE®DY Xal HOVABWY CUYYWVELONS OUTHOEWY

VNG

Ye avtideon pe to R-Blocks, to Plasticine eZoptdton amd v Umopdn enavahouBavouevmy topdhhnhwy
poTiBwv yio v ometxovioel amodoTixd ToV XM 6TO UAMXS. AV xat auTté TO LOVTENO TpoopEpeL eEaLpETIXT
evepYELXY) omOB0GT], HELOVEL TNV EVEMELN TNG UPYLTEXTOVIXNG, XODLOTMVTAS TNV AYOTERO XATEAANAT) Yiat
EQOUPUOYES YE TO ETEPOYEVY] UTOAOYIGTIXG LoTifBa.

1.3.2 X-CGRA

To X-CGRA [17] eivon o opyttextovixy CGRA mou otoyelel otny emtdyuvoT eQapuoy®y aviex-
TIXOV Ot oQdAgata, Omwe 1 encéepyaoio TOAVPECWY XAl ONUATOS, AELOTOLOVTOS T TPOCEYYLO TIXES
Tou duvatdtntee (approximate computing). Méow twv Howtid Kipaxoduevoy Movédwy Enelep-
yootoc (Quality-Scalable Processing Elements, QSPES), €yl 1 Suvatdtnto var auZoUeLdVEL Suvaxd To

29

Chapter 1. Extetouévn ENinvuc Ilepiindn

Main Processor (RISC) Data Memory Subsystem

External
Execution, functionality, and

Memory

reconfiguration control

/ |
(X-RA Functiona:ity and Intercon nection) i H%ﬁ - Hq‘\ﬁ - Hq‘lﬁ - H%

|
E i I : l{ l: II
Context Memory é 4 JlloEe |
| “swsysem™” §1 1|88 [|| [T
§ (Context Words for | |
i | determining the — — | | | |}
: figuration and s el
g i:’n";?:;a.:fy"ff"mspy BE | [T e [T [
5 — A I It 1§ |
E } | 1 |

Figure 1.3.2: Apyttextovixr tou X-CGRA

eninedo axp{Belag Twv unohoyiouwy tou. Hapdhinla, unopel vo utootneiel nepintwoelg dmou 1 ToldTNTA
unneeoioc (Quality of Service, QoS) anouteiton va etvon 100%.

H apyrtextovinyy tou X-CGRA axoloudel tumixéc dopéc CGRA, pe 1o QSPEs va eivon opyoaveuéva oe
TAéyua xan vo Slacuvbéovton péow evée Bixtdou 2D mesh. H unopovdda pvAung mepiBdhhovroc elvon
urelBuvn yio ™ EOYWOYN TN BOPNC XL TNS AELTOURYIXNG XATAOTAONS TOU EMLTOYUVTY), XIS XL Yidl TNV
emxolvwvia e Tov eEWTEpInd XEVTEIXG ENEEEpYUOTH.

H anewodvion egappoyidv oto X-CGRA nepihayuBdver d0o Baowd Brpata. Apywnd, xodopileto to Béhtioto
eninedo axpiBelag, xau oTn cUVEXEL 0 XxWBXAC TpoYpapuatileton xou avtioTotyiletan otic QSPE yovddeg
yenowonowdvtae anewxovion muphvwy (loop kernels) ye DFG ypdgouc. Autde o Sduvopixde tpdmoc
npocappoYc e axpifeloc emtpénel PEYLOTY evepyelaxt] anodoTixdTNnTa, oAAE mapdhAnio emiBoplvel
onpovTixd TN dladaota YeTayAdTTiIong. Edv 1 oxplBela unopodoe va pudwotel otatind, To x65T0¢
petayhottong o propoloe va pewdel onpavtixd.

Iodpvovtoag éunvevon and to X-CGRA, 1o R-Blocks Yo pynopoloe xou autéd va emextadel dote va um-
oo tnpilel tpocey Yo o0 UTohoYLopols. AdYw Tng eLéAXTNE oyedlaong To, 1 TpocV XN EVOS GTATIXOU
npooeyyioTixol FU, énwg evée mpooeyylotnold mohamhactao Ty, elivar texvixd epueth). Kdmnoleg evdo-
gpyoo tnplaxég npoondieleg delyvouv NON TOAAE LTOCYOUEVE ATOTEAEGUATA, EVE UL TETOLL TPOCEYYION
Yo unopoloe va aflomoindel xou oe epappoyés LLMs, apxel 1o opdhua moldtntoc vor Topaével opxeTd
YoUNAS Gote va uny ennpedlel onuovTied Ty axpifelo Tou Yovtélou.

1.3.3 CGRA-ME

To CGRA-ME [18] eivou éva framework nou emuyeipel va evomolioel tov oyediooud,) poviehonoinon xou
™ npocouolwo Stapdpwy Timwy CGRA opyitextovixdv. To 2024, ye v npocifixn véwv duvatoThTwy
[19], o cUotnua enextdinxe Yy va unootneilel mo evéhixteg opyttextovixéc CGRA, apuduntid xavntic
unodlactolrg, predication xou uBEWIXE cusTAuata tou cuvdudlouv RISC-V encgepyaotéc ye CGRAs.

O Baowde ot60¢ Ttou CGRA-ME eivan 1 e€epeivnon tou ydpou apyttextovixwy twv CGRA. Aeitoupyel
Aofdvovtoc we eloodo pla teptypapt| apyltextovixrc oe XML xou napéyel epyolelo yior Ypovonpoypouuo-
Tiopd (scheduling), anewxdvion xddixa (mapping), torodétnor (placement) xou dpoporéynon (routing).
To cbotnua elvar evowpatwpévo 6to tep3dihov Tou LLVM compiler, emitpénovtag Ty autdUaTy Toocoe-
HOYT| ol HETAYADTTION EQApUOYOY Yeauuévey oe C yia dagpopetinég CGRA opyltextovinée, uéoa oe éva

30

1.3. Xyetur ‘Epeuva

!
Te.

I Voo

Figure 1.3.3: Tonohoyla Stacuvdéoewv oto ML-CGRA

eviaio mepBdrlov avdntuéng. Auth 1 SuVaTOTNTA EMUTEENEL GTOUS YENOTES VoL TELROHATIO TOUY Ol VoL oL~
ONOYNOOUV BLUPOPETIXEC OYEBLUCTIXES ETUAOYES, EVE TNEOVVTAL OL EXACTOTE TEPLOPLOUOL TOL GUG THUITOC.

H Onapén evéc tétolou evonomuévou mhawciou elvon Wiadtepar yprown, xadog or teyvohoylec CGRA
xepdilouv ohoéva xou neplocdtepo €dagoc. Eva tétolo gpyalelo umopel vo tpoopépel moAlTIUES TANEO-
poplec OYETIXA PE TOUC OYEBUOTIXOUE GUUBLBACHOVE Xol TIC ETUTTOOELS OLUPOPETIXODV OPYLTEXTOVLXV
emhoydv. Iapdha autd, 1 dueon xou evpela LWOTETNOT TOL amd TNV epeuvnTXT| xowvdTNTA Yo uTopoloe
VO AELTOVPYTIOEL TEPLOPLOTIXA, PELIVOVTAC TO VP0G EEEPEUVNONG VEWV QEYLTEXTOVIXGDY ot TeptopilovTag
T ONULOVEYIXOTNTA TWY EQEUVITV.

1.3.4 ML-CGRA

To ML-CGRA [20], emixevtpdveton otny extéheon eqappoyoy machine learning (ML). H unoloyiotixd
BOUN AUTWV TWV EQPUPHOYWY ElVOL TUPOUOLN UE OUTYH TV UETACYNUATIOTOY xat Twv LLM, xadde Baot-
Covtan xuplwe otov yevixeuuévo Ttodhamhactaopd mvdxwy (generalized matrix multiplication) yia tov
UTOAOYLOUO TV EVERYOTOOEWY amd Ta BN o TS EL06B0UC TOU UOVTEAOU.

To ML-CGRA anotehel éva nhipwe open-source evonoinpévo mhaioto petayidttione (end-to-end com-
pilation framework), oyediacpévo yio anodotixt xar evéhixtn extéleon ML odyoplduwy oe CGRAs.
H apyttextovinf touv Baoiletor oe éva tumixd npétuno CGRA, to onolo éyel Bertiwdel pe npdoleta
e€EBUELUEVDL YoPUXTNELOTIXA. XuyXexpldéva, To ouufotixd on-chip dixtuo avuxotactdinxe and éva
dixtuo dractvdeone tomou king mesh 8 xoteudivoewy (exdva 1.3.3), tou Tpoo@épel o anodotxy dpo-
poréynon dedopévwy. Emmhéov, ol elcodor Swadétouy pudwmlopevn xatuotépnon (configurable stalling)
xat oo ThEEY Sithfc arodfxeuone (double-buffering), evéy ov aroxdeistinéc povddec MAC xou MAX
emtpénovy TNy extéieon Pooixdv ML npdlewv oe évay uévo x0xho poloylov.

Me autég Tic xouvotouieg, T0 GUOTNUA XATAUPERVEL ONUAVTIXES BEATIOOELS amdBoang, EMTUYYAVOVTUS
emitdyuvon 3.15x oe 4x4 CGRAs xou 6.02x oc 8x8 CGRAs. Ilopdho mou autd to anoteAéopata lvon
EVTUTWOLAXG, TEETEL VoL SNEIWUEl OTL OL TEYVIXEC ETLTAYUVOTNC EQapUoy®y ML mou ypnoulonotobvto dev
Yo umopoloav va eopuocToly Ywele cofupéc Tpomonoioelg Yo Ty emitdyuvor LLM xadog Toug helnet
7 eveMElal TOU AMAULTEL 1) AMELXOVLON UN-YEUUUIXDY CUVAPTHGEWY.

31

Chapter 1. Extetapévn ENAnvuc Hepiindn

Accelerator Response

) Pipeline Controller
Control —
Instr.]]]
> o b [
c £
a| |5 ol Lo
q:
8 3 5| [2
o G S
5 g ol
i) @ @
2 Ak gL
) = by a2 L=
o = | 5| [Z]
o -3 Slo
ST Ctrl. MV Ctrl. LD Ctrl.
I Data transmission i
DMA Ctrl. .
« > DMA Unit

Figure 1.3.4: H apyitextovixry tou CCGRA CFEACT

1.3.5 CGLA-IMAX3

To IMAXS3 [21] eivor éva CGRA/CGLA (Coarse-Grained Linear Array Architecture), vhonowuévo oe
FPGA, oyedaopévo yia LLM inference. H oameixdvion tou xeddixa yiveton yéow tng Bihiodnxne GGML,
TIOV ETUTPETEL TN UeTapopd egapuoywy Python oto IMAX3 ywelc tnv avdyxn neplthoxng avaoyediaonc.

Apyitextovind, To IMAXS Sgpoponoteiton and ta napadootoxd 2D CGRAs ulodetdvtog pla dlacivdeon
daxtuliou (ring array interconnect), 1 omolo UELOVEL TIC AVICOPPOTIES TPOGTENAOTG UVAUNG %ot BEATUOVEL
to bandwidth cuyxeitixd pe tic GPUs. Ou unoloyiotixéc uovddeg etvou Baoiopéveg oe CISC aprduntinég
HOVEBES, UELDVOVTIC TNV TOAUTAOXSOTNTA TNG BLAoOVOECNC Xl EMLTOYUVOVTOG TN UETAYADTTION.

H Bopr| tn¢ dlachvdeong authg e€aheipel yeydho nocootéd tou overhead enavablopop@OoeEwY, ETLTEETOV-
TOC OTOUG TMPOYPOUUATIOTES Vo TpEYouv odnyleg oyetixd pe multi-input unoloylouole, avagpopéc oe
cache xou DMA transfers. Metd and Behtiotonojoelc oto matrix multiplication, mou amotehel tov
xuplapyo vroloyiopd ota LLMs, to IMAX3 nétuye émc xaw 20% Bertinon anddoone évavtt epnopxcv
CPUs, xadiotodvtag to 1o npdto CGRA, and dca 1ouldylotov xatagpépaue va Bpolue, mou Soxudotnxe
emituy o pe mpaypatée epapuoyéc LLM inference. To Eeywpiotd tou apyltextovind poviéro, Ouwe,
To xoho T8 axaTdAANAO Yo duece ouyxploelg ue mo xhaoowod tonou CGRA.

1.3.6 CFEACT

To CFEACT [22] eivan éva mhaioto yiot Ty vlomoinomn xat a&lohdynon mpocuppoouévey accelerator SoCs
Baotopévo oe CGRA, pe éugoon oty emtdyuvor transformers xow CNNs. Iepihowfdver évav hardware
generator mou utootneilel TOMATAES SLOULOPPHOCELS Xou TUEAUUETEOUS oY EdiooNg, eVe o front-end compiler
avahDEL TOUG TUPTVES EXTENESTIC TNG EQappoYic xou dnwovpyel amodotixd to data flow graph (DFG) yia
™ ouvyxexpiwévn CGRA Swopodppnon.

H apyrtextovinf) tou CFEACT axohoudel) cuvndiouévn dopr twv CGRAS, e éva ogoloyevég mhéypa

32

1.3. Xyetur ‘Epeuva

Publication Architectural LLM
CGRA Architecture Platform | Mapping Technique
Date PRING = DSE Mapped
Homogeneous Utilizing parallel
Plasticine June 2017 | PEs and Memory ASIC LI Manual No
patterns (DHDL)
Elements
X-CGRA October 2020 :ng fe”eous ASIC | DFG kernel mapping Manual No
3 homogeneous . C kernel mapping.
s May 2024 PE architectures Simulated Differs by architecture Manual No
H Python MLIR into k L
ML-CGRA July 2023 | [omogeneous Simulated | Yo on VR ntokerne Manual No
PEs mapping
IMAX3 in memory FPGA, e
CGLA November 2024 cIsC ASIC Manual, utilizing GGML Manual Yes
CFEACT e o Homogeneous ASIC Llnear‘|zat|on and kernel Scalable Yes
PEs mapping Template
R-Blocks Disaggregated ASIC High-level architecture Semi- v,
(our work) PEs (op. level) targeting compiler Automated es

Figure 1.3.5: Iivaxoc ouyxpioewy petadd twv Spdewv CGRA nou nagovsidotnxay

Processing Elements (PEs) cuvdedepévo péow evdc dixtiou xohmdinone. Hephopfdver enione povidec
€L0680u-e£600U xar memory controllers nou TepBGAROUY TO AVABIULOPPOCLUO TUHUN, ETLXOLVOVOVTOS UE
évay e€wtepnd x0plo enelepyaoty xat yenotwonoel DMA yia npoonéloaocy uvAune.

INo egoppoyéc transformers, 1 evowpdtwon extetauévwy Beltiotonojoewy otov front-end compiler
entpénel oto CFEACT va emituyydvel 58% udmhdtepn anddoon and to ML-CGRA {Blov peyédouc. Autd
ATy AVOEVOUEVO, BEBOUEVOL OTL 1) Y LtTEXTOVLXY Elvon 8L TpocuppoouéVT Yia transformers. X0ug@wva
ME TOUC EpELVNTES, UE xah0TeERn oElOTOINGT TV AELTOURYIXOY UOVAdWY utoloyiopol, 1 Beitivon oto
Area-Delay Product (ADP) urnopel va Eenepdoel to 2x og ayéon pe To ML-CGRA.

1.3.7 X0Ovodn

Yrov nivoxa e ewdvag 1.3.5 cuvodilovtar doec apyttextovixés CGRA avagépinray mopoamdvew. Autd
mou o&ilel va mapotnendel elvon 6tL to R-Blocks elvat o govadixd and autd mou yenoiponolel etepoyevelc
AELTOVPYIXEC LOVADES Xat UPNAOD ETUTEBOU UETAYAWTTIOTH TOU GTOYEVEL GUYXEXPUUEVES ORYLTEXTOVIXES.

Emuniéov, ot povadnéc npoomdieie aneixévione LLM oe apyitextovixéc CGRA, clugpuva pe doa yv-
wpilouye, dnpooietdnxay ota TEAN Tou 2024, dnhadh dtav 1 B uwag douAewd elye 1N Eexvioet, x4t
mou Belyvel téco xouwvolplo efval auTéd To epeuVNTIXG TEdio.

33

Chapter 1. Extetouévn ENinvuc Ilepiindn

1.4 Enéxtoaon

ITepvéyvtog 6T0 oTddlo TG enéxtaong Tou nepBdilovtog R-Blocks uneviuuilouue ot 1 xvntiplar SOvoun
%ol 0 ANOYOG TGO ond oUTY TNV ENEXTUON EIVAL 1) EVOWUATWCT BUVATOTATWY YELRLOUOU aptdudy xou Tedgey
xvnTic UTodLaoTOAYC amd to hardware, étol wote va elvon oe Véom va extelel anodotind epappoyéc LLM
mou PBaoctllovto xatd x0plo AdYo oe aUTEC.

1.4.1 Enéxtaorn YTAwxol

To npdtuno IEEET54 xadopilel Toug xavévee yia aprduntixée mpd€elc pe aptduoie xivnthc UTodLo TOAAC,
TIC HOPPES AMOVAAEVOTG TOUE, TIC HETATEOTES, TOUG TPOTOUE GTRoYYUAoToinomg, xodde xat Tig eEoupéoelg
xou TG eldéc Tiée (my. dmewpo ¥ NaN) mou unopel vo ndpouv. Mio povdda oprdudv xvnthc vrodloo-
tohf¢ (Floating Point Unit, FPU) mpénel vo mopdyel anoteréoporto oOU@ove He autd To TedTLTO Yo Vot
e€aopohiletan 1) opaly) cuvepyaoio ye tor utdAoLma otolyela LAXOV Xt AoYLloutxov.

r_mode op_a op b fpu_op
Pre-Normalization Pre-Normalization
Add/Sub Mul/Div
Add/Sub Mul Div

I/g
Post-Normalization
and Rounding

Exceptions Unit

result zero snan gnan inf ine divbyzero

Figure 1.4.1: H puxpoopyttextovixn dour g Lovddag xivntig UToBLUGTOMAS

T Tov oxord autd, yenotponotovue tny open-source FPU ané to OpenCores [23], n ontola eivor Thpnc
oupPath ye to mpotuno IEEET754 v aprduoie xivntric unodiaotolrc single-precision, dniady 32-bit,
elvon ypryopn xou amhr, xou mapéyel OAeg Tig BUVATOHTNTES OV Wog elvor amopalTnTeS.

H o€iomiotio tou VAol aloroyfinxe Eeywplotd, pe ndve and 14 exatouudpeta Slavboyota eAEYyou Tou
mopydnoay and) BPhotxn SoftFloat tou Berkeley [24].

H FPU vnootneilel tic e€hc Baoixée Aettovpylec pe FP32 etoddouc xou e€68ouc:

34

1.4. Enéxtoon

Table 1.1: Ta ohpata etoddou/e€63ou tne FPU

‘Ovoua Yfpnatog IIAdtog Kate®Ouvorn Ilepiypapr

clk 1 Eloobdoc Po)ér Xuothuatog

r mode 1 Eicodoc Acrtoupyia Ltpoyyuhonoinong

fpu_ op 1 Eicodoc Enoyéac IMpdéne Kivntic Trodiaotoric
op_a,op_b 32 Elcodoc Teheotéoc A xau B

out 32 "E€odoc¢ "E€o80¢ Anoteléopatog

snan 1 "E€odoc Kdrolwoc teheotéoc elvoan SNAN

qnan 1 "Eodoc¢ H éZod0c¢ elvar QNAN

inf 1 "E€odoc¢ H é20doc¢ lvar INF

ine 1 "Eodoc¢ To anotéieoya elvar Inexact

divbyzero 1 "E€od0¢ H mpdén elvon dialpeon xou to op_b elvon undév
Zero 1 "E¢odoc H €€oB0¢ elvar aplduntind undév

Table 1.2: To orjpata Tou CUYXELTH

‘Ovopa YAuatog IIrhdtoc Kate®Ouvorn Ilepiypapn

clk 1 Elcodoc Pokét Xuothuatog
opa, opb 32 Eilcodoc Teheotéoc A xou B
unordered 1 "E€odoc To opa ¥ to opb eivor NAN
altb 1 "E€odoc To opa elvon yeyahdtepo and to opb
blta 1 "E€0doc To opb elvou yeyarltepo and To opa
aegb 1 "EZodo¢ To opa elvan (oo pe to opb
inf 1 "E€odoc To opa 1| o opb eivou INF
Zero 1 "E€obdoc To opa elvon aprduntind undév
o Ilpbodeon
o Agalpeon
o ITorhamhactaoud
o Auipeon

o Metatponée (and INT32 oe FP32 xou avtiotpoga)
o Yuyxploelc

Me autée tig oTouyeiddelg aprduntixés npdelg xan) Yerorn vdniol eminédou Bihodnxdy uadnuatixdy
(). math.h e C), propoldye vo uhonotiooupe xdde Suvath TEdln, 6mwe teTparywvint| pila, exdeTinéc
X0l TELYWVOUETEIXEG cuvapThoelc. Emnpéoldeta, to vAixd unootnellel téooeplc Slopopetinég Aettoupyieg
oTpoyyUulonolnong, aAAd euelc Yo yenowwonotjoouue uévo 11 ouvrhiouévn puédodo "otpoyyuhomoinon
oTov TANCIEGTERO TATeN aptdud", xoddde ol umdhoineg dev cuvddouy ue T dour) Tou R-Blocks xau dev
elvon amopalTnTeS Yior TNV EPOPUOYY HaC.

Apyitextovind, n FPU Swodétel 4 otddia pipeline xou umopel v extelel pla mpdén avd xdxho: Ol elcodol
—6mwe o TONoC NG MPAENG, 0 TEOTOEC GTEOYYLAOTOINaNS Xat oL TeEAecTéolr— anoUnxevovtal o buffers yia
600 YEEIdoVToL, Xl TO ATOTENECUO TUPAYETOL UETA ONO TECOERPLS XUXAOUS POAOYLOU.

H eocwtepixt Sour) tne FPU (ewxévar 1.4.1) mepthopfdver 8o povddes pre-normalization: wla yio npbo-
Yeon/agoipeon xou plo yio molamhaotaopsd/dadpeor. O avtiotoiyes Baoixés povddes (Add/Sub, Mul,
Div) extelolv Tic aprduntixéc npdlelc, evad pa xowvi povdda post-normalization gpovtilet yio Ty tedixA
XAVOVIXOTIOMOT) X G TRoYYVAOTOINoT TTpLY To amoTtéheoya xwdonowndel o popyy| single-precision FP.

Eniong, to cbotnuo mepthaufBdver wa Eexwploth govdda clyxpelong, TAfews oLty UE TO TROTUTO

35

Chapter 1. Extetouévn ENinvuc Ilepiindn

Inputs Decoded Instruction
A A
Clk _> FpuOp
SrcA
Reset —— SrcB
Inputs Select
Compare
> Module
Y
Output
D Conversion
_ Logic
FPU
Comp
Dest
P> Delay
Registers
FPU Compare
Result Result
L
\ / Comp
Output Select Dest
P
Outputs

Figure 1.4.2: H ek pop@n tng véac AELTOURYIXTC HOVADAS

IEEET754 vy single-precision floating-point aprduoic. Auty| n yovdda, 1 onola €yel oyedioo tel oL enai-
noeutel aveldptnta, eniong ye ypRon e BPBMoIiune SoftFloat, etvar o amhf o tapdyel anoteAéoparta
évay xOXAO PETA TNV EVERPYOTOINGT] TWV ELGHBMV.

Téco n FPU éco xou 1 wovdda cbdyxpiong €youv mepdoel and olvieon oe teyvoroylor FD-SOI 22nm,
ue péyiotn ouyvétnta Aettoupyiog to 415MHz npoodiopiouévn and tov Synopsys Design Compiler. Ou
METEIXEG ETLPAVELNG ol XATAVAAWONG eVERYELG elvon oUYXEIOWES e GAAEC AELTOLRYIXES UOVADEC TOU
nepBdihovtoc R-Blocks, enitpénovtac opory) evowudtwon tne FPU oto cbotnua.

Ou mivaeg 1.1 xou 1.2 e€nyody ta ofjuata 16680u xal €€650U TwV VO UOVABWY.

To véo vAx6 mpénel va €xel ouyxexplévn Sour| dote va evowpatmdel wg tile oto ooclotnua tou
R-Blocks. Evey ta neptoodtepa tiles (6nwe ALU, RF, xou MUL) éyouv xaductépnon evoc pdvo xixhou
(v TV eyypapy oTov xotaywenth e€680v), 1 FPU yenowonotel pipeline 4 otadiewvy, xdt nov odnyel
oe xaduotépnom e€6dou 5 xuxhdv (4 yio emelepyaoio xon 1 yio xotoydenon).

Ta tiles Sioadtétouv cuyxexpévee elob6douc xon e€68ouc (8 eloddouc xou 2 e€6douc twv 32 bits dmwc
paiveton xou oTov Tivaxa 1.3), cuvende ypetdleton évo hardware wrapper yio 0 UETATEOTY| TV CNUETOVY
tou CGRA oe ofpata xatavontd and v FPU xou to avtiotpogo. H minpogopia yio tic H0pec el06-

36

1.4. Enéxtoon

Table 1.3: To ofjpata evég Tile tou R-Blocks

‘Ovopa Yfpatoc ITAdtog Katebduvorn Ilegiypopi

Clk 1 Eloodoc Polér Xuothuatog

Reset 1 Eicodo¢ Enavagopd Xuothuatog

Inputs 8x32 Eloodoc 8 dpopetinég eloodol twv 32-bit evwuéveg
DecodedInstruction 12 éwc 33 Elcodocg To mAdroc eoptdtan and o tile

Outputs 2x32 "E€odoc¢ 2 Sopopetinég €€odol Twv 32-bit eveuéveg

Table 1.4: Output Conversion Logic

Teieotrhc C 'Ovopa Evtorng Assembly Aoyuxr Metatpong

== eqf NOT unordered AND aeqb

1= nef NOT unordered AND NOT aeqb

> gtf NOT unordered AND altb

>= gef NOT unordered AND (altb OR aegb)
< 1tf NOT unordered AND blta

<= lef NOT unordered AND (blta OR aegb)

dou xau €€6d0u Tou Ya yenorponomndolv tpoxdintel and to ofpa DecodedInstruction, To omoio TepLéyeL
oToLYEl OTIWC:

o OutputValid (evepyomnoinom e£63ouv),
o Emoyelc Yupddv mnyrc xo mpoopiopou,
o TOno npdéng

o YApata eéyyou (T.y. yiot utooTAREN Aettovpyioc STV e€68wy Yo peyahiTepouc TEAECTEOUC OE
ouyxexpéva FU).

INo v FPU, to ofpa autd diaywpeileton oe eidd ofyoata eAéyyou, énwe CompareFlag, FPU opcode,
RoundingMode, xadmc %o o ofjpata enthoyic Yupdv el06dov/e6dov. Emnhéov, Adyw tou pipelining
TOAMGOY GTodlWY, Ta CHUATH EAEYYOU XU TO ATOTEAECUATA TNG HOVADAS CUYXELONG TEETEL VO XodUC TERT
0oLV XUTA 4 XOUNOUE TEPVOVTOC UETW EVOC UTAOX XUTAYWENTWY XoUC TERNONE VLol AOYOUS LY YEOVIOUOV.

Téhoc, n hoywn petotponhic e€6dou (Output Conversion Logic) Sioapop@ivel To amoTEAECUATA TOU GUY-
%Lt Wote va elvan olppwva Ue to tpétuno IEEET54 xou va amovtoly 6Tig epwThoELS Tewv Udmiol entmédou
evioh®v (m.y. “Is A > B?”) avtl v tnv olpPoaoct nou yenowonotel Aoy e£680U ToU GUYXELTH TTOU
yenowonoiooue (mivoxog 1.4).

H véa ohoxAnpmuévr AELTOLEYIXT) LOVADO TOU EVOWHATOVOUNE aneixoviletol oty exoéva 1.4.2.

Me autdv Tov TpéT0 EMmTUYYdVETHL 1) TAY)eNG evonudtwon e FPU oto uhixé tou R-Blocks, xo to uévo
Tou Wével elvan 1 UTOoTARIEY TNE o amd Tol EpyaAela.

1.4.2 Enéxtaon Aoyiopixol xou Epyoaleiwy

To R-Blocks, 6nwe avagépope xat etooywywd, Baciletor oto poviého TTA yio Exposed Datapath Ar-
chitectures (EDPAS), npdypa mou onuaivel 6Tt otov nuphva Tou etvon piot TTA unyovi Ye cuyxexpiuévous
neploplopotc mou xadopllouy to apyltexTovixd Tou yapaxtnetotxd. o v anexdvion vdnhol emédou
HODXO TTO OVOBLOOPPLOCLIO LVAXO, omonTelTon Lol SLodixaalor TOANAATAGY ETUTESWY.

37

Chapter 1. Extetouévn ENinvuc Ilepiindn

Apyttextovixf Zuvoiou Evrorony (ISA)

H emxowvmvior petald hoyiomxol xar Aol Eexwvd and to Instruction Decoder (ID), o edixh Aet-
Toupywxt| wovddo (Functional Unit, FU) nou anoxwdixonowel evioréc xou tic npowdel otov aviiotoyo
unohoylotind tile. H mifeng mepiypagn tou cuvdrou eviohdy yiveton oe éva apyelo XML, émou opilovtan
6hot ot dapoeptixol TUToL FUs, oL evIodég Toug xou 1 avTIoTolyioT TeVY anoxwdononuévey bit toug oe

ouyxexpwéva onueior Tou opcode.

To ISA ¢ FPU anoteleiton and 16-bit anoxwdixonomnuévmy eviohdv xou nepthaufdvel Pooinés apl-
Yunuixée mpdelc xvnthc unodlactolrg, petotponéc uetald FP32 xou INT32 xon mpdéeic olyxpiong, ot

Operation properties

Operation properties Operation description

Name: Floating-point addition. Output 3 is

ADDF
sum of inputs 1.and 2.

Reads memory
Cantrap

Clocked

Affected by Operation inputs

operation operand type
1 FloatWord 32
2 FloatWord 32

ABGAT -~ Add...

Affects Operation outputs

operation operand type
3 FloatWord 32

Operation behavior module defined. Open Open DAG < Cancel

Figure 1.4.3: To ypapxd nepBddhov enciepyaoctoac tou OSAL

omoleg @alvovTal 0TO TAUPUXATE ATOCTIUCHA ANd TO EV AOYw opYElD.

<FPU decoded_width="16">

<nop
<pass

<addf
<subf
<mulf
<divf

<cif
<cfi

<eqf
<nef
<gtf
<gef
<1tf
<lef
</FPU>

decoded_instr="0_0_000_00_00_7_?77_777"/>
decoded_instr="0_0_000_00_01_D_777_AAA"/>

decoded_instr="1_0_000_00_00_D_BBB_AAA"/>
decoded_instr="1_0_001_00_00_D_BBB_AAA"/>
decoded_instr="1_0_010_00_00_D_BBB_AAA"/>
decoded_instr="1_0_011_00_00_D_BBB_AAA"/>

decoded_instr="1_0_100_00_00_D_777_AAA"/>
decoded_instr="1_0_101_00_00_D_777_AAA"/>

decoded_instr="1_1_000_00_00_D_BBB_AAA"/>
decoded_instr="1_1_001_00_00_D_BBB_AAA"/>
decoded_instr="1_1_010_00_00_D_BBB_AAA"/>
decoded_instr="1_1_011_00_00_D_BBB_AAA"/>
decoded_instr="1_1_100_00_00_D_BBB_AAA"/>
decoded_instr="1_1_101_00_00_D_BBB_AAA"/>

38

element width eleme

element width eleme

1.4. Enéxtoon

Prunner [«
Input
Code
> 1010
v +| tcecc ol0! |} TPEF
1010
Fully Connected Compiler
Architecture
N
TTA
o Architecture
Optimized
Architecture

A

Y
R-Blocks RTL # (. .
R-Blocks

Assembly File /003! :::mow

(PASM)

Figure 1.4.4: H Swbixacio yetayAodttiong tou nepiBdiiovtoc R-Blocks

Ou ovopaoieg twv evtolody Bev elvan Tuyoleg, oAl Tpoépyovton and To Operation Set Abstraction Layer
(OSAL) touv OpenASIP, 1o onolo anodnxedel Tic oNUUCLONOYIXES IBLOTNTES TKV EVTOAGDY, 0ANE Oyt TOV
yeoviopd toug (exdva 1.4.3), eCaocpariloviac tn cwoth avuotoryia petalld Tne TPOCUPUOCUEVNC KOS
apyrtextovixic xau Tou LLVM compiler back-end.

EpyaAieio Blocks Translator

O petayhwttiotic tecece déyeton we elcodo tov high-level x@dixa xaw tnv neprypapr TTA tne apyitex-
Tovxfc oty omolo 5ToYeDOLPE Vo EXTEAECOUNE ToV x®dLxa, Tapdyovtag éva TPEF executable yio tnv
avtiototyn TTA to onolo tehxd petatpéneton o R-Blocks exteléoo dnwe éyet 7on avahudel (Ew.
1.4.4).

H petotponr tne apyttextovinic meprypaghc tou R-Blocks oe poppry TTA mpoyuotonoweiton and to
epyareio Blocks Translator, to omolo mepihopfdvel yiot Aentouepn TEQLYPOPY| CUUTERLPORAS YLl XdVe
FU. v meprypag) autr dnicdvovtal ol undpyouces eVIOAég, 0 ypovioudc tou pipeline toug xou ol
dravuopatinéc evioléc (vectorization) mou unootneilovion 6tav noikéc FUs cuvdéovtar otov idto ID we
vector units.

Ity urootieen e FPU, o Blocks Translator enextddnxe ye tnv xhdon BlocksFPU oe xhduo C++,
1 omola xAnpovouel and v yevixr| xhdon BlocksFU xou mepiéyel g véeg evtolég xon ta pipeline toug.

Metd) petayAdTTion Tou exteréoipou apyeiov, axolovdoly ta 6TddLo Tou pruning xan Tne SnuLovpyiag
tou RTL emnédou nepiypapric Tou tedxol LAxol. To epyahelo prunner peidvel Tic ouVBEoELC UETAED
v FUs dote 1 apyitextoviny] va unopel vo vhoronldel oe mporypotixd mhéyuo R-Blocks. Xtn ocuvéyela,
To epyohelo Yoo To mapping, To routing xa T obvdeon Tou TeAxol bitstream pog Bondoldv oty TEAXH
TEOGOUOILGT), XaL TAPEYOUY GTOLYELL YO TNV XATAVAAWOT oY YOS Xal TO EUBUdOV TOU OAOXANPOUEVOU
HUXADUOTOC.

Metd v evonudtwon tng véag dovadoc, mpayuatonoiinxay meocouowwoelc ot eninedo RTL yio va
dlacpahiotel 1 owoTy Aettovpyia Twv FUs xou tov dlavuopatixdv wovadwy. Emniéov, 1 ameixdévion
BOXOo TNV GUVAPTHoEWY ard TN BiBhiodrxn math.h enahidevoe 6t or FP npdEeic exterobvrtan owotd
otnv FPU, ye ta anoteléopata vo ouupwvoldy pe autd tou GCC compiled x@owxa. H aZloddynon e
anédoone e FPU da mapouciactel avolutixd xou 6To enduevo pépog, pe tny amewdviorn twv LLM
benchmarks.

39

Chapter 1. Extetouévn ENinvuc Ilepiindn

1.5 Amnewovion Egoppoyov

MeTtd v emTUYN ENEXTAOT, TOL VAXOU Xou TNe pofc epyoheiwy ote va untootne{leton aprdunuixy xiv-
NTHSC UTOBLOG TOATC, TopoLGLELovToL Xat oveADOVTOL TO AMOTEAECUATO TNG AMEXOVIONG TwV Tpwtewv LLM
benchmarks oe emheyuéveg apyitextovirée.

1.5.1 Oplopdg ApYLTEXTOVIX®Y

To npddto PAua otn dwdixacio SW/HW co-design eivor 0 xardoplopdc Twv apyttextovixdy oTic onoieg Yo
aneixoviotel 0 xdowag. ¢ agetnpla otov ayav oyedlacTind yhpeo tou R-Blocks, oplotnxay técoepig
apyLtextovixée, ot omolec aflohoyridnxav oe LLM benchmarks. Autéc yenowonololv Slagpopetind eninedo
TEAUAANALOUO0, EVOWUATOVOVTIS BDLAPORETIXA UEYEDT) BLAVUOUATIXGY UoVEdwY. Ta yapaxTnelo Tixd Toug
patvovton otov Ilivaxo 1.5.

Table 1.5: Iapduetpol twv Apyttextovinwy tou e&epeuvidnxay

‘Ovopa Apyrtextovixric Méyedog Awaviopatoc Tomixéc MvAues Méyedog IIhéypatoc IDs FPUs XOvoio FUs

Scalar - 1 4x6 [§ 1 7
Vectord 4 4 6x11 12 5 29
Vector8 8 8 8x10 12 9 41

Vectorl6 16 16 8x18 12 17 73

Or Bravuopatinég apyttextovixéc Booilovto otny Scalar apytltextoviny, nepthauBdvovtac Tic Bleg Baoixég
povédec ouothuatos (LSU, ABU, RES), oahhd evioyupéves ye dlavuopatixés povades tou xadopilouy tov
Bardud mapariniiopo. o topdderypa, 1 Vector8 diadéter 8 FPUs cuvdedeuéves e dlavuouatixn povéda,
eheyyoueveg amd tov (Blo Instruction Decoder, ahid uévo pla emniéov FPU v un diavuopatixég FP
npdieic (Ew. 1.5.1). Autd onpaiver bt unopel vo extedel péypet xou 9 (cuvidwe 8) mpdlelc xivntic
unodLacTOATC ot xdle xUxho pe BéATioto scheduling.

FPU| = = = [FPU

Vector Size

Figure 1.5.1: Anewdévion nolanhev FPU ekeyyduevev and tov BSro ID

Metd tov apyxd xodoploud, ol apyttextovixéc mépacav ond to epyouieio R-Blocks Prunner, to omolo
apoupel TEpITTEC oLVBEDES WOoTE Vo Umopel var umopel va yivel To routing tng apyltEXTOVIXHC OTO TRAY-
potxed VA6, To tehixd mAéyparta napovatdlovton otic Eux. 1.5.2-1.5.5. Xnuewdveton 6t 1 Vectorl6
Bev umdpeoe teAnd Vo yivel route pe tov undpyovta adydplduo, Aoyw Tou PUEYEAOU GYXOU SLICUVBEGENY,
ondte Bev fray duvath 1 ovvdeot) Tne.

1.5.2 IIpoetoipacio Koo

To enduevo Brua elvon 1 emhoyh TV TUNUATOY TOL XOBXa Tou Yo anewoviotovy ato CGRA. Apywd,
TEOYUATOTOLAUNXE AVEAUGT) YpdVoL exTéleons Tou xwdixa inference tou LLaMa2, emBefouwvovtog 6Tl o
TEPLOGOTEPOC UTOAOYLO TGS YPOVOC XUTAVEUETOL OE TOANATAACLOGUOVE TVEXwY. DTNy etxdva 1.5.6 gaive-
To TG0 YeOVOo XaTtohopdvouy cuyxpltixd ta blocks mou amoteholvTon and TéToloug TOANATAACLICUO0S
%ot 16oo Ta uTdhoina pépn TN extéheone (Sampling xou Rest).

To benchmarks mou emAéydnxoy yio aneixdvion elvon:

e Trnohoyiopde mvixwy Q, K, V

40

1.5. Anewodvion Egappoydy

L \D

_ SWB

\\\\

SWB NN S\VB

\\\\

L
'l
miml
LI

Figure 1.5.2: Apyitextovinr| Scalar

e Mmlox Attention
o IlolMhamhaoLoopol TVEXwWV-BLIVUCUETWY SLUPORETIXGY DLAOTACEWY

H emhoyh autddv tov ouyxexpiévwy benchmarks Bociotnxe oty avdyxrn yia cUVSUAGHS ATOULTNTIXWY
UTOAOYLOU®Y, OTWS oL ToANamAaolaouol Tivoxa-BlaviouaTos, xol SOOXONN UTEXOVICUILY U YROUULXWY
CUVAPTAHCEWY, OTKE EXVETIXES KO TRLYWVOUETEIXES. LToY0¢ Yitav 1) a€lohoynor tng anddoong Tou CGRA
oe enavolopfovopeves aprduntixés mpdlels, xadde xou 1 HEAETY TOU XOOTOUC AnOB00NE TOU ETUPEREL 1|
eLoaY YN To TOAITAOXWY PadNUaTIX®Y TPAEEWY 0TO EVOLIUECO TeV BACIXDY UTONOYLIOUAOY.

Q¢ proof of concept tng BuvaTdTNTOC ANMEWXOVIONG OTOLGONTOTE Acttoupylag Tou %ddixor LLM,
emtelydnxe Thieng aneixovion e cuvdptnong forward tou LLaMa2, wotdco 1 vhonoinet tng oe npoy-
pated LVAS amantel apyrtextovixéc ueyohltepng xhipoxac. Emnhéov, Aoyw meploplop®dy tne UVAUNG XoL
TV gpyolelnv, ol x0xhol extéleong yia auTH TN cuvdptnon e&nydnoay anoxieloTixd yéow tou TTA
simulator.

H Swbixasio anetxdvione nepthduPove opyxd v agalpeor elaptioewy mou dev urnootnpilovton and Bif3-
hodnixec Tou R-Blocks, 6nwe n avdyvwon 1wy napopétewy tou govtéhou, ta omolo poptexinxay aneudeiog
otic nopteg pvipeg tou CGRA. Tlapddhnha, cuvapthoelg émwe printf xon memepy avuxotoo t@dnxay e
avtiotoyeg Tou R-Blocks, ot onoleg exteholvton anoxieitotind ye TTA assembly. Metd and avtéc tig
npoodpuoyés, ta benchmarks 7oy étola yia anedvIon 61O avabLOLOPPOOULO UAXO PE TN YeXon Tou
compiler, av xou ywele SuvatdTNTES TAPAIAANANG EXTEREDOTC.

1.5.3 ITaparinrornoinon IloAanAaciacwol ITivdxwy

T v agomomndoly oL SVUCHATIXES AELTOVEYIXEC UOVEDES TWV BLaVUCUATIXOV/ TUPSANAGY opYLTEX-
TOVIXGY, TPETEL TR TOL VoL PeTapepdolv oL amopaltntes Tiwée ot Tomxés pviues (LM). Autéd emtuyydve-
Ton Ye ouvapthoelc and g Bihiodrixec TTA, nopdpoieg ye) memepy e C, oAAd e emmiéov oplopota
yio o péyedoc StaviouaTos.

H napolnronomuévn cuvdptnor nolhamhaotaopod mivaxa pe Sidvuoua e popprc B[Y : X| - A[X]
opyavivel To otouyelor Tne xdde ypauurc tou mivaxa (xou tou Siavbopotoc A) oe ouddec twv N (to
péyedoc TV TORdAANAWY AELTOURYIXOY HOVAdWY, cuyxexpiwéva Twv vectorized FPU), pewdhvovtog €tol

41

Chapter 1. Extetopévn EXinvid Heplindn

m i HH i
! % Z

ﬁ

@

Ol

@

.

@

@

.

@

mn m|

\l//7

; J :

/B

HHDHW

@

HHHHH)

Figure 1.5.3: Apyitextovinf| Vector4d

42

1.5. Anewodvion Egappoydy

\””\\;wv! i

mum'

' D\'

ww*ﬁ‘\

‘uljm'mnw |

E\D\u’

Figure 1.5.5: Apyttextovixr Vector16

43

Chapter 1. Extetopévn EXinvid Heplindn

100 4

80 -

5

3

% B Q, K, V Calculation
% 601 =3 Attention
(=

& B FFN .
% B sampling
E a0 [Rest

c

=]

I

20+

15M 42M 110M
Model Size (Parameters)

Figure 1.5.6: Ilocooté ypbdvou extéheong Twv unoloytoTixwy urhox tou LLaMa2 oe CPU

t0 TAH00c Twv enavolidewy Tou ecwtepixol loop and X oe X/N gopéc (Ewx. 1.5.7). O otoiyeiddelg
npdEelc yivovtal TapdAANAc XoL TO ATOTEAEGUATO CUCCWEEVOVTAL TOTUXE TELY TOV TEAXS UTOAOYLIOUS NS
yeapuhc. O ahyoprdpoc meprypdpeton xou Ye Peudoxmddixa mopoxdTe:

// vector is stored in local memory address A

// matrix is stored in global memory address B

// performing the multiplication B[y:x]*A[x] with N vector lanes
// result is stored in global memory address res

parallel_matmul(int x, int y, int N) {
for(i from O to y) { // for every row of matrix B

memcopy(row, B + i*x, size n, GM_TO_LM); // copy x elements from global
// memory to local memory, storing them in address "row"

vector row_buffer = {0.0}; // initialize buffer to 0
for(j from O to x/N) {

val += row[j] * A[j]; // row[j] is a vector of N floats
}

float val = 0.0;
for(k from O to N) {
val += vector_extract(row_buffer,k); // add up the final elements
// of the buffer
}

res[i] = val;

}

I va Sratnendet to péyedog twv LM younho, ta dedouéva tou mivaxa anovnxedovtar otny LM yeouur-
yeauur, avtl va poptwiel oAdxhnpog o mivoxag. H Behtiotomoinom auth elvon xpiown, xodog oo LM
xatohopfdvouy peydio tocootd tou telxol eufadol tou CGRA layout, xau n pelwon tou peyédoug
Toug anoteAel Baoixr] TPOTEEUUOTNTA GTOV GYEBLICUO.

44

1.5. Anewodvion Egappoydy

X
A
(0
|:A[0:N] A[N+1:2N] A[2N+1:3N] :|
X
Iteration 1 \J \
x Buffer[0:N]
Iteration 2 H
Iteration 3
_ -
B1[0:N] B4[N+1:2N] B4[2N+1:3N]
Bo[0:N] Bo[N+1:2N] Bo[2N+1:3N]
Y A
G —
L J
e
X

Figure 1.5.7: Onuxonolnon tng ouvdetnong ToedAANAoU TOAAATAAGLOGHOY TLVAXWY

45

Chapter 1. Extetapévn ENAnvuc Hepiindn

1.6 AmnoteAéoupata

‘Eyovtac e€nyfoet) pedodoroyia anewdvions xddixa, napouotdlovye Thpa Ta anotehéoyata and tny
extéleon twv tpdTwv LLM benchmarks oto R-Blocks. Yuyxexpyéva, yetpdue Toug xUxhoug poAoylol
avd exTéreoT), xadidS xou To EYPUBOY Xl TNV XATAVIAWGT] 1o 00C TWV XUXAWUATEY TOU TEoexuay and
¢ xadoplouéveg apyltextovixéc. Téhog, emycipolue TNV epunveld TV ANOTEAECUATOV UAC, XL TNV
HOVTEAOTIONGT] TG CUUTERLPORAS TOU CUYXEXPUEVOU CUCTAULATOC.

1.6.1 Avdivomn Anddoorng

O Iivaxog 1.6 napouctdlel Toug xOxhoug extéleone yio ta Tpla emheypéva benchmarks oe xdde pio and
TIC TEELS dpYLTEXTOVIXES. Ot TEEEIC TOMATAUCIAOUOY TLVEXWV-OLAVUOUATLV XUPLOEYOUV YPOVIXE o8 OGN
ta benchmarks, xou étol emiéydnxe vo napovsiactel xou éva xodapd (ywelc un-yeouuixée cuvoptAcelc
evBidueoa) matrix-vector multiplication, yia olyxpeion. To anoteréopata tpoéxuday Y€cw TEOcOUoiw-
onc RTL, extéc and tnv Vectorl6, 6nou yenowonouinxe o cycle-accurate npocopgolntic tng OpenASIP,
Moy aduvapiog dpopordynone (routing) tne apyLtexTovXhc.

Table 1.6: Avéluon Anddoone oe Kixhoug

Benchmark ‘ Apxrtextoviny ‘ KOxAol Poloyiod (Xuhddeg) ‘ % Beltiwon oe oxéon pe Scalar ‘
Scalar 12.258 -
5

Trohoyiopde Q, K, V IIvéxwy zzzzgig g;g; g??
Vectorl6 3.943 67,8

Scalar 4.175 -

. Vectord 1.606 61,5

Mnhox Attention Vector8 Lo73 69.5
Vectorl6 1.391 66,7

Scalar 13.691 -

Vectord 3.622 73,5

3 i’ _) 3 y
IToMamhaotooude ivoxa- Awvicuatog (1376x512) Vector8 2.498 817
Vectorl6 2.229 83,7

‘Onwe potvetar xar 6to didypopua tng exovag 1.6.1, n yeron nopodniioc yeudvel dpaoTnd toug x0Ox-
houc extéleone, Eemepvivtac to 60% oe bha to benchmarks xou to 70% oto xadopd matrix-vector
multiplication.

14000 Architecture

mmm Scalar
12000 e Vector4

. \ector8
mm Vector16

@ 10000

o

S

e

@ 8000

E

=

c

S 8000

=

[+

@

>

* 4000

- II I Il.
U]
Q, K, V Calculation Attention Block Matrix-Vector Mul.
Benchmark

Figure 1.6.1: KOxAol extéleong avd apyltextovixy

Iopatneeiton duwe 6Tl 0 yeyohltepog Bodudg maparkniioc dev odnyel mdvta otn BéATioTn emitdyuvon,
4Tl oL ogelheTal otV avamoteheouoTixy| dayelplon e tomxic wvAune ot Biitodixec TTA, dnwe

46

1.6. Amotehéopota

Yo ovohudel Tapaxdte.

1.6.2 Movtelonoinon KOxhwv Extéleong

INo tn povtehomolnoyn TN YPOVIOTIXHC CUUTERLPORES TOU TURIAANAOU TOAAATAUGLAOUOY, OTELXOVIG TNV
TOMATAACLAOUOL TLVEXWY BLOPOPETIXWY BLAGTACEWY OTIC SlavuopATIXES/ TapdAAnies apyltextovixés. Ta
anoteAéopata goalvovton otny exova 1.6.2, énou amotundvetol 1 un yeouuixy Bedtiworn mtou npoxintel
and v adEnomn tou peyédoug Tou daviouatoc.

1e6 Influence of Vector Size on Clock Cycles

5 B
4 4
n
[}
o 3
>
O
2 u
® 512%512
11 ® 512*1376
® 1376*512
® 1024*1024
0 T T T T
4 8 16 32

Vector Size

Figure 1.6.2: Enidpoon tov dlactdoewy Tou nivoxa otny napaiinionoinon

1e7 Influence of Vector Size on Clock Cycles

1.6 1
1.4 1
1.2 1
1.0 1

0.8 A

0.6 /

Cycles

0.4 1

0.2 1 ® 1024%1024
—— Projection

4 8 16 32
Vector Size

Figure 1.6.3: IlpoPBhenéuevn ocuunepipopd W8avixold cUCTALATOL

Ané avéluon g CUUTERLPORAS TNS CUVAETNONG TOEEAANAOU TOMNATAAGIAGHOD TOU XATUOXEUACUE,

47

Chapter 1. Extetouévn ENinvuc Ilepiindn

XOTUAYOUUE OTNY TOROXATw ouvdptnon mou dovtehomolel tov optdud xdxhwv, Bociopévn oTic
napopéteoue M, G xou E mou avtiotor oy 6tov yedvo npdcfBacng otny xipla WvAun, To Yeovixd x6GTog
Tolhamhactacpod xaL cuccwpeucng and Tig vectorized FU, xou otny tehinn eaywyr| TwVv anoteheoudtwy
and TNy oY) Uviun yia tpocieon:

2
Cost:Y~(X-M+£~G+N—-E)

5 5 (1.6.1)

H avdhuon delyvel 6t to Booind npdPAnua Beloxeton otig tpoonehdoelc otolyelwy otig tomxés pviuec. H
ev Moy ouvdptnon éxet tohunhoxétnto O(N) (Snurovpydvtog Tehxd TeTpoywvixh eEdpTnom ool xahei-
Tou v xdde otoryeio Tou vector) oe oyéon pe tov PBadud napediniioc N, xdti mou npoxahel onuavTixg
emBpdduvon,.

Ye plo yelovtr| mo anodotixy) vhonolnon, 1 e&dptnon tng npoonéhaong and to N Go Hav yeouuxy),
onwe gaiveton oty Eux. 1.6.3, énou ta npoPAendpeva anoteréopata delyvouv otadioxy| Behtinon ywelc
Eapvixer) abEnom x6oToUE, ahhd Ue oTadloxt] Uelwon tou puduol Bektiwong 6mng elvor Aoyxo.

Mezpixég Anoddoorng

O apyitextovixég mou undpecay va dpogohroynldolv oe eninedo RTL cuvtédnxav oe teyvohoyia 22nm
FD-SOI pe yéyiotn ouyvétnta poroytot 200MHz.

‘Onwe galvetan oty ewdva 1.6.4, ueydho u€pog TN EMLPAVELIS XATOAUBAVOUY Ol UVAUES, CUYXEXPUIEVAL
O OL WVAPES EVTOAWY, 0hAd xLElwe oL TOTXES, Topd TIC TPOCTAIEIES TEPLOPLOOY TOUS XaTd TNV Slodixacia
oyedlocpol xan amewxdviong Tou xwdixa. Ta undroina FUs xhpaxddvovton ypopuixd, ue v FPU vo uny
emipépel onuovTixd overhead.

Yty xatavdhwon woybog, N edva 1.6.5 delyver 6TL 1 ypfion TEpIGCHTERHY TOTUXDY UVNUMY aUEEVEL Spa-
poTixd Ty xatavdhwon, Eenepvavtac 1o 50% tng cuvolAc Loy DOC GTLC BLOVUCUATIXES OPYLTEXTOVIXEC.
Avuté elvon éva mpdPBAnua mou yelhovtixd meénel va emAudel ov to R-Blocks otoyelel va yivel mo ev-
gpyetaxd arodotixd.

Ané dnodmn LTOAOYIGTIXDY AELTOURYIXODY HOVABLY, Ouwe, Tapatneolue 6Tl 1 FPU dev emgpépel onuavtixd
overhead o0te oTnv xatavdAwon toyvog, Touldytotov oe oyéon pe Tic undrowmeg FU.

Aedouévou, axdua, OTL EVOLUPEROUICTE Yiol TNV EVERYELOXY] AMOBOTIXOTATA TOU GYEBLAOHOD, TUPOUCLE-
Couye xau to Energy-Delay Product (EDP) w¢ onpoavuxy yetpwr. H exdva 1.6.6 delyver tv tdom tou
EDP xadw¢ audvetan o Badude maparhniiog.

3,00
2,50
2,00
Area
(m m2) 1,50
1,00
0,00 Scalar Vector4 Vector8
Floating Point Units 0,01 0,05 0,08
m Other FUs 0,0756 0,2587 0,3393
® Memories 0,45 1,4383 2,187

Figure 1.6.4: Avdhuor eyfobod Tou TEMX0U XUXADUATOS

48

1.6. Amotehéopota

80,00
70,00
60,00 -
Power SOl .
(mW) 40,00
30,00
20,00
10,00 Dl
0,00 Scalar Vectord Vector8
® Floating Point Units 1,13 5,62 10,33
Other FUs 11,53 21,75 21,61
Local Memories 0,00 24,50 36,00

Figure 1.6.5: Avdhuon xatavdAnmong 1oy bog ToU TEALXOD XUXAOUATOS

EDP
(Joules - sec)

—e—(Q, K, V Matrix Calculation —e=Attention Block

7,00E-07
6,00E-07
5,00E-07
4,00E-07
3,00E-07
2,00E-07
1,00E-07
0,00E+00

\

[—

\

Matrix-Vector Multiplication

Scalar

Vector4
Architecture

Vector8

Figure 1.6.6: Avdiuorn tou EDP avd benchmark

H pelwon twv x0xhwv elvar onuoavtnd geyolitepn and v adEnon tng xotavdhwong toybog, odnywvtag
oe yelwon tou EDP 6c0 augdvetar o Bodude napalnhioc. Qotdoo, petd and éva onuelo (Vectord), o
pLUOE pelwong TégTel TohD, xohoTOVTUS TNV TEpATERK aENOT TN TopalANhiog un amodotxr, xododg
xootilel xan oe egfoddv.

49

Chapter 1. Extetouévn ENinvuc Ilepiindn

1.7 Emniloyoc

Khelvovtog v ehhnviefy oOvodn autic e Simhopotnc, cuvodilw ta Baowd evpfuato yior Ty
anexévion twv LLMs oty mhat@épua R-Blocks, magousidlovtog Eavd Tic XUplOTERES GUVELCQORES S
xo potelvovtog HehhovTnée epeuvnTinés xateudivoele.

1.7.1 Enéxtaon tou nepidilovtoc R-Blocks

IMopd to yeyovoe 6Tt 1 duvatdTnta YeTayAwTTopol xou extéreone LLMs (xan SAAwv eopuoydv nou
Basilovta ot aprduntnh FP) oto nepBddhov R-Blocks anotehel onuoavtind opdonuo, avadexviovton xou
oplopéva INTAUATA, OTWE Ol AVATOTEAEGUATIXOTNTES OTIC TPOGBACELS GTNY TOTXY UVHUT), Ol TEPLOPLOHOL
070 uéyeldog xou TNV EXYETIAAEVOY TV EEWTEPIXMY YVNUOY Xoi 1 avdyxn Bedtinong Tolhov epyahelwy
Tou TepBdirovtoc OpenASIP-R-Blocks (m.y. tou alyoplduou dpopordynone, tou prunner xAm).

Ye xdie meplntwon n npoomdiela mou €xel yivel uéypl edw, €xel pilel puwe oto avelepedivnto medlo g
enéxtaong Tou mepdihovtoc R-Blocks, mopéyovtog pio pedodoroyla mou Yo Bieuxolbver uelhovtixég
npoonddelec oTov ToUE.

1.7.2 LLMs ocs CGRAs

O Boowde otdyoc frav va e€etaotel av po thatpoppa CGRA, 6nwe 1 R-Blocks, unopel va ypnowonot-
nVel anodoTnd we emttayuVTAC Yo egapuoyéc LLMs oto edge. Av xon onpelcxdnxay onuavtixés npdodol,
dev pnopel va dodel ot optotxt] amdvinoy. To CGRAs duanpénouy oe egapuoyéc ednod oxomod tou
ATALTOUV TUPAUETEOTONGY XUXAWHAT®Y, dAAd oi GPUs nopauévouv 1 edxoln emhoyy 660V agopd to
LLM Aéyw tng extetopévng €peuvag YOpw amd ouTd xou TNg UnootThplEng amd v xowdtnta. otdoo,
n mpooéyylon tou R-Blocks, mou divel éugoon otny e€atpetind yopunhy xatovdhwor EVERYELNG oL GTO
HW/SW co-design, v xadiotd pua evdiogpépouvoo evahhoxtixt yio extéheon edge xan yia didpopeg
TELQOUATIXES EQPAUPUOYES.

H nepantépw épeuva ndvew otny amewxéviony LLMs oto R-Blocks npolnodétel tny avtipetodniorn Baocixy
TEPLOPLOUAY TOL LAXOU X0t TwV epyolelwy avdntuéne. Idwitepa xplown eivan 1 Behtiotonoinon twv
TPOGRACEWY OTIC TOTUXES UVAHES Kol 1) EEEPEUVNOT] VEWY OPYLTEXTOVIXY TOROHETEWY TOU Vol UEWGOUY Ta
onueia cupPoENoNE oToV LTOAOYLOWS. Me Ty evioyuon TV BUVITOTATWY TEOCOUOIWoNE XaL TNV dpoT
OPLOUEVRY LPLOTAUEVWY TEPLOPLOPWY, UTopel vo emiteuy Vel xolltepr diayelpion tou datapath xaw abEnom
NG EVERYELUXTNC AMODBOTIXOTNTOSC TOU GUOTHUATOC.

1.7.3 Approximate Computing

Mio evdiagépouoa xatehBuvon yio yehhoviny| épeuva ebvan 1 evowudtwor approximate computing
TEYVIXGY 0Ty opyttextovixy) tou CGRA. Autéd Yo unopoloe va emiteuydel elte ye tnyv eloaywy” tpocey-
YO TGOV AELTOVEYIXGY Lovddmy (approximate functional units), émwe petwpévne axp{Betac ToAhamhoot-
Ao TS, €(TE HEGEL OAYORLIUXDY TEYVIXWY OV ETUTEETOLY YUUNAOTERT XATAVAAWGY) EVEPYELNS UE OTOBEXT
enintwon oty axpifeia Twv uTohoyloudy. IlpoxatapxTixd anoTeAEoUAT ANd ECWTEPIXES EPEUVES OTO
Microlab, NTUA 8eiyvouv 6Tt tétoleg teyvixég €youv cofBupéc TpoomTixés Ylol QoploYEs Omou éva uixpd
o@dhua Bev enneedlel Tr CUVORXT AELTOLEYIXOTNTA.

1.7.4 EZepebvnomn ApyitexTovixmy

H euehi&io tou R-Blocks enitpénet tnv e€epevnomn SLapope TirdY 0Py LTEXTOVIXOY ETAOYWY. LNV TapoVoa
epyaoia, n éupoon 66Unxe xupine oty adénon touv Baduod topahhnhiog HESE BLUVUCUOTIXDY HOVEBWY,
OAAG Tapaévouy ovamdvTiTa pwTiaTor oeTixd ue Ty Bedtiooon tou Sixtlou Slacivdeong (interconnect)
X0l TNV XOTAVOUT] TwV scalar xau vector povddwy yia) péylotn anédoon. H autopatonoinon authc tng
dladuxactag, uéow epyolelwv énwe to prunner, Yo Ynopoloe vo 0dnyRoel ot XaAOTEPA LGOPPOTNUEVES
OPYLTEXTOVIXES TOL AofBdvouv uTon oxdua xou TEPLOPLOUOUE OE XATAVEAWGCT EVERYELS, ERPadovV xou
GUVOAXY AMOBOTIXOTATA TOU TEAXOU XUXADUATOS.

50

1.7. Exihoyoc

1.7.5 Tehuxég Xxédelg

Iapd g undpyovoeg duvatdtnteg petayrdttione tou TTA compiler tou R-Blocks, undpyouv ornuoy-
Tixd neprddpla Bertiwong. Ilepapotind dedouéva €delav 6Tl yelpoxivnta BehTio Tonomuévos xOBLXAS
assembly pnopel va emitOyEL €0¢ %Al 2 POREC EMTAYUVOT OE OYEST UE TOV AUTOUATO TTUPAYOUEVO DB
O yedMhovtixéc épeuveg Yo mpenel va emxevipwdoly oty Beitiwon tou scheduler xou twv BiBhiodnxdy
yelpropol tou dataflow tne OpenASIP, dote va a€iomomdolv mAifewe ol duvatdtntes napahiniioc tne
OPYLTEXTOVIXNG %ol VoL UELWTOUY oL TepttTég xadUo TERHOELS XUTA T UETOPOEA DEBOUEVHV.

H napotoa epyacia anoteiel uévo éva npwto Bruc oty npoondielo xaTavonong Twv SUVATOTATWY TWV
CGRAs yi emtdyuvon LLMs. ‘Ocol emugolv va cuveyloouy tny épeuva oe auté to nedio Yo Spouv éva
eZoupeTnd eVOLaPEEOY aVTIXElPEVO HE TOAAES avoly Tég Tpoxhrioels. Khelvovtag, Yo filela va exgppdon xou
Tk Tig Vepuéc pwou euyaplotieg mpog tor wéAn tou Microlab, NTUA yia tnv unoothpi&n xou ¢ ToAdTIHES
YVOOELS oL polpdatray pall wou xad’ AN tn Bidexela authg NS epyasiog.

o1

Chapter 1. Extetouévn ENinvuc Ilepiindn

52

Chapter 2

Introduction

E ver since the publication of the groundbreaking paper "Attention Is All You Need" [1], generative
transformers utilizing the attention mechanism have taken over the field of artificial intelligence
and more specifically natural language generation. Initially we saw models such as GPT3 [2] and
LLaMA [3] dominate the field, with more competitors rapidly entering the scene as the technologies
surrounding large language models (LLMs) advanced. These models can answer user questions about
seemingly anything while being not only coherent but also informative, intelligent and creative. The
latest language models, additionally utilizing reinforcement learning [4] can even perform complex
reasoning tasks at a near-human level.

Transformers utilizing the attention mechanism have not only propelled advances in the field of com-
puter science such as in computer vision [5], speech recognition [6] and natural language processing
[25], but in many other scientific domains too. In structural biology, for instance, transformer-based
models have been instrumental in the development of methods for 3D protein structure prediction. Al-
phaFold [7], an attention based model, leverages this mechanism to infer three-dimensional structures
of proteins from their amino acid sequences, and has profound implications for drug discovery and our
understanding of molecular function. By integrating such sophisticated architectures, researchers are
now better equipped to explore the complex interplay between sequence and structure, paving the way
for innovations in bioinformatics and beyond.

More effort is currently being put into leveraging this newfound technology to facilitate advances in
the fields of material science [26], physics [27] and molecular science [28]. It is therefore reasonable to
assume that transformer-based models are going to be around for a long time and are going to shape
the way we think about many scientific fields.

Large generative transformer models, however, require vast amounts of computational resources. Tra-
ditionally this refers to large GPU arrays as they are commercially available, optimized in terms of
hardware and software support and can accelerate various model architectures with minimal program-
mer effort. This unprecedented demand for training and inference hardware is fueling research into
alternative hardware architectures fitted for such applications.

At the same time, a resurfacing hardware architecture is being evaluated in different application do-
mains. Coarse-grained reconfigurable architectures (CGRAs) are, in essence, a middle ground between
the flexibility of FPGAs and the performance and efficiency of ASICs [8]. Instead of catering to the
programmer’s general needs, as FPGAs do, they instead focus on application domain-specific tasks by
being reconfigurable in a more coarse-grained fashion. Instead of bit-level flexibility they traditionally
provide pre-designed, efficient components that can be flexibly interconnected and used to execute
specific tasks with higher performance, reduced reconfiguration overhead, lower power consumption
and better area utilization compared to their fine-grained counterparts. There are also other reconfig-
urable architectures that can support the execution of virtually any program, while maintaining their
flexibility and high energy efficiency.

53

Chapter 2. Introduction

Flexibility

1]]]] 1 1]]]]] N
>

I I 1 1 I I
Performance

Figure 2.0.1: Flexibility and Performance

One such architecture is R-Blocks [9], the successor of the Blocks CGRA [11]. R-Blocks is an ultra low
power CGRA using the VLIW-SIMD execution model and leveraging the OpenASIP toolset [10] for
transport triggered architectures (TTA) to provide the programmer a complete software/hardware co-
design flow. This means that high-level code can easily be compiled and mapped to the reconfigurable
hardware, and that multiple architectures can be explored relatively quickly.

The basic idea and motivation behind this thesis, is to evaluate R-Blocks as an LLM inference accel-
eration edge device. The scope of this research, as anyone can understand is very wide and requires
a vast array of theoretical and practical knowledge, as well as access to computational resources and
tools beyond a single student’s reach. This is why I’'m extremely grateful to have the full cooperation
of the Convolve project team of Microlab, NTUA who helped me through every step of the process.

The starting point for this endeavor was the basic R-Blocks architecture, with its accompanying
toolchain for compilation, high-level simulation, architectural DSE and much more. What was missing
from this full-stack workflow is a method for handling floating point operations. R-Blocks as a plat-
form has been designed with simple instruction sets and low power in mind, and based on the earlier
Blocks iterations, it completely ignores floating point operations. But given that LLMs mostly perform
multiplications involving matrices of floating point numbers, we have to find a way to compute them
in R-Blocks.

We make the decision to expand R-Blocks and the entire end-to-end compilation toolchain to support
single precision floating point numbers. We do that by creating a new Functional Unit according to
the R-Blocks architecture, that incorporates an open source floating point unit (FPU) [23] and its own
custom instruction set. With the instructions included in this small instruction set, after expanding
the compilation tools to support it, we manage to compile any floating point operation for execution
on the reconfigurable accelerator, utilizing high-level libraries (e.g. math.h).

After successfully implementing this expansion, we manage to map the entire LLM token generation
function for the first time on R-Blocks. However, our contribution doesn’t stop there. We looked
into vectorization options -connecting Functional Units to the same instruction decoder for parallel
execution- and evaluated how they impact performance. We assigned different sections of the target
LLM inference code to programmer-defined architectures that use vectorized FPUs. This allowed us to
gather experimental data on their efficiency and model the effects of various parallelization strategies
on the system.

These architectures were synthesized on a 22nm FD-SOI technology using the Synopsys Design Com-
piler, with a maximum clock frequency of 200MHz, to gather data on the area and power of the
resulting circuits.

54

A Dbrief overview of the results, points towards promising capabilities in terms of power efficiency and
parallelization capabilities, however the issues surrounding the CGRA as technology and R-Blocks as
a platform, enforce limitations around scaling and unlocking the true potential of such an architecture.

More in depth analysis of the results follows in chapter 7, while the expansion of the platform and
the mapping of the first LLM benchmarks will be discussed in chapters 5 and 6. However, we have
to start with a foundational theory background regarding both CGRAs as an architectural paradigm
and LLMs as an emerging technology.

55

Chapter 2. Introduction

56

Chapter 3

Theoretical Background

I n this chapter, we present the fundamental concepts underpinning this work. We introduce the
principles of coarse-grained reconfigurable arrays (CGRAs), and provide an overview of the current
state of this research domain. Following this, comes a more detailed explanation of R-Blocks, the
specific reconfigurable architecture used in this work. Next we delve on transformer architectures and
their role in modern artificial intelligence, focusing particularly on large language models (LLMs).
Finally, we discuss Meta’s Llama2 as a concrete example of a modern commercial LLM, as this is the
application we will focus on accelerating.

3.1 Coarse-Grained Reconfigurable Architectures (CGRAs)

3.1.1 General Theory on CGRAs

Coarse-grained reconfigurable arrays (CGRAs) represent a pivotal evolution in the field of reconfig-
urable computing. Their development emerged from the need to bridge the gap between the fine-
grained flexibility of field-programmable gate arrays (FPGAs) and the high performance and energy
efficiency characteristic of application-specific integrated circuits (ASICs). In the early explorations of
reconfigurable computing during the late 1980s and early 1990s, FPGAs were widely adopted due to
their unparalleled adaptability at the gate level. However, the inherent granularity of FPGAs often
resulted in significant performance overheads and power inefficiencies, particularly when scaling to
complex computational tasks [8].

In response to these challenges, early research in the 1990s and 2000s [29, 30] began to investigate
architectures that operated at a higher level of abstraction. By grouping several basic processing
elements into larger, more efficient functional units, researchers laid the groundwork for CGRAs.
These architectures were designed to offer a compromise: they maintained a degree of reconfigurability
while simultaneously achieving higher computational density and better energy efficiency compared to
traditional FPGAs.

Over the subsequent decades, CGRAs have resurfaced as a new contender that could tackle the world’s
increasing hardware demands. Advances in design methodologies, interconnect strategies, and recon-
figuration techniques, as well as software compatibility, some of which will be explored later, have
transformed these early experimental systems into versatile platforms capable of accelerating a wide
spectrum of computational tasks.

Definition

The definition of a CGRA, according to the most comprehensive survey done on the topic, by Liu et
al. [12] is: A computing fabric that has the following characteristics:

LY

Chapter 3. Theoretical Background

e Domain-specific flexibility
e Combining spatial and temporal computation
e Configuration- or data-driven execution

Unpacking this definition it becomes apparent that CGRAs are not designed to accelerate -or in some
cases even compute- a solution for every possible programming problem. Instead, these architectures
deliberately sacrifice universal flexibility, in order to achieve high efficiency within a specific appli-
cation domain. This specialization is the source of their energy efficiency, as they can incorporate
highly optimized, pre-designed hardware units that outperform the fine-grained complexity of their
counterparts. However, this also implies that the advantage of CGRAs in general purpose computing
is typically limited.

Efficient data utilization in both spatial and temporal dimensions is another defining characteristic
of CGRAs. By offloading much of the scheduling responsibility to the programmer, scheduler, and
compiler, CGRAs can effectively leverage VLIW and SIMD computation (i.e., spatial concurrency)
-capabilities that are often beyond the reach of conventional general-purpose processors (GPPs). Addi-
tionally, the coarse granularity of CGRAs enhances area efficiency compared to the spatial computation
observed in FPGAs.

Finally, the configuration- or data-driven execution model employed by CGRAs signifies that they do
not adhere to the static sequential execution models dictated by compilers, as seen in GPPs. Instead,
they operate according to their configuration and the availability of data at each processing element
(PE). This approach, however, places increased demands on the scheduler and compiler, which must
be capable of managing the complex and intricate structures inherent in these architectures.

Classification

A multidimensional taxonomy proposed by Liu et al. [12] classifies CGRAs according to their:
e Programming model
e Computation model
e Execution model

At the programming model level, CGRA systems can be broadly classified into three categories:

1. Imperative Programming Models: In this category, computations are expressed as a fixed,
ordered sequence of statements—as seen in languages such as C/C++. Although this model
does not inherently expose parallelism, custom compiler support (or programmer efforts) can
enable explicit parallel constructs. Imperative programming is widely used because of its fa-
miliarity and seamless integration with general-purpose processors. For example, many CGRAs
are programmed imperatively, where the device’s operations are controlled via a predetermined
configuration sequence [31, 32].

2. Parallel Programming Models: This category encompasses models that allow the explicit or
implicit expression of parallelism. On one end, declarative models (e.g., functional or dataflow
languages, and hardware description languages) let programmers specify computation logic with-
out dictating control flow, thereby implicitly capturing parallelism. On the other end, concurrent
imperative models -such as those using OpenMP, MPI, or CUDA C- employ directives to explic-
itly expose parallelism. These models reduce the burden on compilers and hardware by letting
the programmer indicate which parts of the algorithm can be executed concurrently [15].

3. Transparent Programming Models: Here, no static compilation is performed for a spe-
cific CGRA architecture. Instead, dynamic compilation techniques generate configurations at
runtime, based on common program representations like instruction streams. Systems such as
DORA [33] and CCA [34] illustrate this approach, where runtime optimization allows the hard-
ware to adapt dynamically. Although this improves programmer productivity and can optimize

58

3.1. Coarse-Grained Reconfigurable Architectures (CGRAs)

based on live data, it typically incurs a performance and energy overhead due to the additional
hardware required for runtime parallelism management.

Moving to a lower level, the computation model characterizes how an application’s computational tasks
are structured and executed on a CGRA. While all CGRAs fundamentally follow a Multiple Instruction,
Multiple Data (MIMD) paradigm [35], a configuration-based classification provides a more nuanced
view:

1. Single Configuration, Single Data (SCSD): In the SCSD model, a single configuration is
executed on a single dataset. This approach is a pure spatial computation method that extracts
maximum instruction-level parallelism by mapping all operations of a kernel onto the hardware.
For instance, the Pegasus intermediate representation [36] paired with the application specific
hardware (ASH) microarchitecture [37] template exemplifies this model—though its scalability
is inherently limited by the hardware size.

2. Single Configuration, Multiple Data (SCMD): The SCMD model extends spatial compu-
tation by applying one configuration concurrently across multiple data sets, akin to SIMD or
SIMT paradigms. This model is especially suited for stream-oriented or vector applications (e.g.,
multimedia or digital signal processing, and more recently Al applications), where data-level par-
allelism is dominant. All threads execute the same configuration simultaneously, each working
on a different portion of the data.

3. Multiple Configuration, Multiple Data (MCMD): The most flexible model, MCMD, al-
lows multiple configurations to be executed concurrently on different datasets. This model sup-
ports both simultaneous multithreading (SMT) and temporal multithreading (TMT), and is
well-suited for scenarios requiring thread-level parallelism. Communication between threads is
typically managed via message passing or shared memory. Sub-categories such as the Commu-
nicating Sequential Processes (CSP) model [38] -where processes synchronize through blocking
message channels- and the Kahn Process Network (KPN) model [39] -using asynchronous FIFO
buffers- illustrate different approaches to handling inter-thread communication.

The execution model is the lowest layer, and it focuses on the mechanisms for scheduling and executing
the configurations on a CGRA. Two primary aspects characterize this model:

1. Configuration Scheduling: This aspect pertains to how configurations are fetched from mem-
ory and mapped onto the hardware. For example, FPGAs often rely on a static scheduling
approach where compilers determine the fetching order and placement of configurations. In con-
trast, superscalar processors might employ dynamic scheduling based on real-time conditions,
such as resource availability or predicate evaluation.

2. Operation Execution: Once scheduled, the manner in which operations within a configuration
are executed can follow either a sequential or a dataflow paradigm. In sequential execution,
operations are performed in a fixed order as determined at compile time. Alternatively, dataflow
execution allows operations to be executed as soon as their operands become available. This can
be implemented as either:

e Static Dataflow Execution: Operations execute when data tokens with matching tags
are ready, but only a single instance of an operation may run at a time.

¢ Dynamic Dataflow Execution: Multiple instances of the same routine can execute con-
currently as soon as their data dependencies are met, offering greater flexibility at the cost
of increased hardware complexity.

Applied to a specific CGRA use case, this taxonomy can help the reader understand and appreciate
the design decisions made during both the architecture design phase and the code mapping process in
the application implementation.

One huge aspect of CGRAs is also their microarchitecture, but since it can differ so much in terms of
data path granularity, reconfigurable logic function, network /interconnect topology, memory hierarchy,

59

Chapter 3. Theoretical Background

operation scheduling, reconfiguration mechanism, custom operations, coupling and resource sharing
with the host, it might be better examined in a practical scenario rather than in abstract theory.

The following analysis of a real CGRA system relies upon the previously proposed taxonomy to position
the specific architecture within the broader design space, and to set the foundation for a systematic
evaluation of its performance, scalability, and overall suitability for targeted applications.

3.1.2 R-Blocks

R-Blocks [9] is a CGRA developed by the Eindhoven University of Technology in a joint effort with
Tampere University, as an ultra low power (ULP), reconfigurable and fully programmable hardware
solution for application acceleration and also general purpose computing. It comes with a comprehen-
sive software toolchain built upon the OpenASIP tool suite [10], which encompasses compilation tools,
operation scheduling support, architectural design space exploration frameworks, and software simu-
lators, among other components. This full-stack approach empowers programmers to map high-level
code onto custom-designed architectures, thereby facilitating the efficient exploration of a wide range
of configurations.

Following is a concise presentation of the entire R-Blocks architecture, but to understand the full scope
of the work, the reader is encouraged to refer to the cited paper.

Architecture

The R-Blocks’ physical architecture is a grid of programmable functional units (FUs) and a reconfig-
urable interconnect with two switchbox networks, one for data and one for control. The interconnect
remains static during program execution for minimal recofiguration overhead.

Global memory Generic FU structure:
CGRA control interface CCRA data interface /1

| Config. Ioader f——— Memory arbiter |
+To IMs, FUs & SWBs

s -
- ey
LSu LSuU e Br L 61
IFAD RF (GM) (GM) RE LI J—J
/ -
LT
o
FID ALU BU BU ALU [l
Optional n-ﬂT:H-cF T:o-n-s, i.e. for
LSU memory interface or ALU
adjacent-lane communication.
/D MuL MuL MuL MUuL Generic SWB structure (data network):
32-bit
e it R
L= L= A
ALU RF RF ALU | M- 3 Toall SWB & | inputs
Foyn L Ittt 1N X FU ougguts
o o A
Switch block —
(Wilton, Fs =3)
N K —_—
/D Lsu LsSu Lsu LSU ..‘.’ 2. —
Connection block —_—
. L] By (Wilton, Fc = 100%) Q-T’
~.\- “‘J
U arb. arb. arb. arb. Fromall SWB | py
&FU |nput54 outputs
Reconfigurable control network Reconfigurable data network i 35 -I_ _I_ -I_ -I_‘l -] N
S| -8 I I I I I >

_I]/

(instruction delivery to FUs) data movement between FUs)

Figure 3.1.1: An example R-Blocks system consisting of a reconfigurable grid, global memory and a
host processor. On the right, the internal structure of a functional unit and a Wilton switchbox.

The FUs are programmed using instruction decode (ID) units that can connect to one or multiple
FUs of the same type, therefore enabling the SIMD execution model. The hardware of these FUs is
designed separately but uniformly, aiming at maximum power efficiency. The types of functional units
included in the original R-Blocks work are:

60

3.1. Coarse-Grained Reconfigurable Architectures (CGRAs)

e Instruction Decoder (ID)

e Immediate Unit (IU) for immediate operand generation

e Load-Store Unit (LSU) handling the main memory transactions
e Register File (RF) for storing operands

e Arithmetic and Logical Unit (ALU)

e Accumulate and Branch Unit (ABU)

e Multiplier (MUL)

e Address Generation Unit (AGU)

e Local Memories (LM) that store the operands for vectorized operations close to the respective
FUs, so they can be fetched simultaneously

Having heterogeneous types of FUs (and therefore IDs) allows for opcode reuse, keeping instruction
words small across the entire device. R-Blocks is designed with the goal of allowing the processor
designer to add functional units and operations as they see fit. This process is semi-automated, as
long as the added instructions are supported by the LLVM compilation back-end.

The CGRA is also connected to the main memory outside of the reconfigurable fabric, with the LSU
tile facilitating their communication. A typical R-Blocks system is depicted in Figure 3.1.1 as an
example.

It should finally be mentioned that while R-Blocks is designed primarily as an accelerator tethered to
a host processor, its capabilities in terms of flexibility and code adaptability allow it to sometimes act
as a standalone core in specific applications or application domains.

Prunner
Input
Code
o~ 1010
v +| tcecc olol | TPEF
1010
Fully Connected . Compiler
Architecture &
N
TTA
o Architecture
Optimized
Architecture 7
R-Blocks RTL # <
R-Blocks
Assembly File GlobaI;:Iemow
(PASM)

Figure 3.1.2: R-Blocks compilation flow

Software Tool Support

Modeled as a Transport Triggered Architecture (TTA) [13], R-Blocks is capable of leveraging the full
suite of OpenASIP tools [10] in addition to custom utilities developed specifically for R-Blocks (Fig.
3.1.2.

61

Chapter 3. Theoretical Background

N: W] = :‘: = |).: L:LZLZL:EA:
— — el

Figure 3.1.4: Virtual architecture after being translated to TTA, and viewed using the ProDe GUI

In general, TTA is a processor design paradigm in which programs exert direct control over the
internal transport buses, and computation occurs as a side effect of data transfers: writing data
into a functional unit’s triggering port initiates the corresponding computation. In R-Blocks, the
instruction memories contained within the instruction decoders (IDs) are transmitted to the FUs via
the instruction interconnect network, while operands and computation results are routed over the data
interconnect network rather than going through a centralized memory or register file. Although there
is, as previously noted, a dedicated register file FU, it is not utilized for every data transfer.

To integrate a virtual R-Blocks architecture (Fig. 3.1.3) within the OpenASIP ecosystem, it must be
described as a TTA architecture. The architecture translator tool performs the necessary adjustments,
converting an R-Blocks virtual architecture file (XML) into a TTA architecture description file (ADF)
(Fig. 3.1.4).

Subsequently, the OpenASIP TTA compiler -leveraging its complete LLVM back-end- compiles and
schedules the programmer’s high-level code for this specific TTA. At this stage, the TTA device
can be simulated using tools such as OpenASIP’s ttasim (CLI) and proxim (GUI), which provide
a comprehensive debugging interface that includes memory content views, instruction stepping, and
detailed overviews of functional units and bus activity.

Before the executable is ready for deployment on a target virtual architecture, the programmer has
the option to optimize the architecture, particularly if it is deemed overly complex for direct hardware
mapping. This optimization is achieved using the pruner tool, which iteratively prunes connections
between tiles in the original architecture description to identify an energy-optimal configuration based
on specified constraints and data transfer power estimations.

Once the TTA executable is compiled, the parallel assembly for the R-Blocks virtual architecture can
be extracted, and assembler utilities produce the corresponding binaries for program execution.

Finally, the blocks instantiator scripts automatically generate the synthesizable hardware of the virtual

62

3.2. Transformer Architectures and Large Language Models

architecture -based on the architecture description XML file- allowing the binaries to be loaded and
executed.

It is important to note that we extended many of these tools and utilities to include support for
floating-point arithmetic, an enhancement that was not part of the originally published work.

Classification

Refering back to the taxonomy section, and starting from the lowest level, the execution model of
R-Blocks consists of VLIW-SIMD cores (mainly FUs) that support software bypassing [40]. This
feature allows the compiler, in certain cases, to bypass the use of register files by directly transferring
operands between FUs. Additionally, the virtual architecture designer has the flexibility to instantiate
an arbitrary number of FUs connected by a custom datapath. Such a processor is classified as an
exposed datapath architecture (EDPA) [41].

This means that, in terms of configuration scheduling, R-Blocks adheres to a conventional, static
approach, while introducing innovations in the domain of operation execution,by employing dynamic
dataflow execution with specific optimizations.

With respect to the computation model, R-Blocks follows the single configuration multiple data
(SCMD) paradigm. It leverages the SIMD execution model to achieve data-level parallelism with-
out introducing multiple concurrent configurations, thereby preserving both flexibility and ease of
programming.

At the highest level, R-Blocks utilizes the parallel programming model, more specifically a concurrent
imperative model. The target application is developed in high-level C code and subsequently compiled
for the custom architecture using the aforementioned tool-flow. Simultaneously, the designer retains
the option to define the target virtual architecture, while also being able to rely on a default or domain-
specific configuration, and can fine-tune it down to the dataflow level according to the application’s
requirements.

Concluding the section on R-Blocks, it is important to emphasize that this architecture was designed
with power efficiency as its primary goal, while also offering remarkable flexibility in both in terms of
architectural design and application domain. Its inherent SIMD execution model excels at leveraging
data-level parallelism, which makes it well-suited for handling computationally demanding tasks. These
attributes are what inspired us to explore the feasibility of running large language model inference on
R-Blocks. LLMs are inherently resource-intensive and stand to benefit from an architecture that
can manage extensive parallelism without compromising on energy consumption. Ultimately, our
investigation aims to reveal the potential of R-Blocks as an efficient platform for emerging AI workloads,
expanding its relevance beyond traditional, power-hungry computing systems.

There is, however, one big problem when porting LLM code to R-Blocks: The hardware has zero
support for floating point arithmetic. Because floating point numbers are at the core of transformers
(as will be discussed below) and simple FP emulation methods could not be employed efficiently at a
hardware level, the decision was made to expand the entire tool-flow and hardware in unison, with a
floating point unit (FPU) and full end-to-end support for FP arithmetic. This expansion led us to a
deep exploration and understanding of the R-Blocks ecosystem and what it has to offer, and will be
the object of chapter 5 of this thesis.

3.2 Transformer Architectures and Large Language Models

In this section we give the theoretical background about transformer models, LLLMs and finally Meta’s
Llama2, required to understand the methodology section of our work.

63

Chapter 3. Theoretical Background

3.2.1 Transformer

Transformer architectures have emerged as a paradigm shift in deep learning, largely replacing tra-
ditional recurrent and convolutional models in many natural language processing tasks. Introduced
by [1], the key innovation of transformers is the self-attention mechanism, which allows the model to
weigh the importance and correlation of different input tokens dynamically. This is in contrast to
sequential models that process input data strictly in order, thereby limiting their ability to capture
long-range dependencies.

The input of the transformer is a sequence of tokens. A token in the case of natural language processing
(NLP) can be a word (or, more prominently, a subword), in the case of images or video can represent
sub-images or objects, and in the case of audio can represent a sound signature that corresponds to
a letter or a particular sound. This sequence is passed through a variation of multiple layers of the
Encoder-Decoder model. The output is simply a probability table for which token is more likely to
come next in the sequence (logits).

A transformer model can be trained in a variety of ways, with or without significant human intervention,
and usually contains billions of learnt weight parameters influencing the output result. The training
capacity, efficiency, and the challenges researchers face in this front, is beyond the scope of this work,
as we will only focus on inference of pre-trained models.

Immediately, it becomes apparent that a model like this -one that can be trained to retain vast amounts
of knowledge, can understand correlation between tokens in a sequence and has a simple and repetitive
inferencing model- is the closest computers can come to mimicking the human function of language,
among other mechanisms.

Output
Probabilities

Add & Norm

Add & Norm
(Add & Norm] :
Add & Norm Mult-Head
Attention
Nx
Nix Add & Norm
Add & Norm Masked
Multi-Head Multi-Head
Attention Attention
it At 4
\ J \ —
Positional Positional
Encodin D @ i
¢ g Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Figure 3.2.1: The Original Transformer Architecture from (Vaswani et al., 2017)

Encoder-Decoder Architecture

A transformer, as proposed in the original paper, is a specific instance of the encoder-decoder model
(Fig. 3.2.1). A generic encoder—decoder architecture consists of two main components. The encoder
processes an input sequence and encodes it into a fixed-length vector representation, while the decoder
takes this vector and generates the corresponding output sequence. Both components are jointly trained

64

3.2. Transformer Architectures and Large Language Models

SoftMax Pa: H
ed Dot-Product h
Attention

ey s
Scale [Linear]_]’[Linear]J[Linear

T

\" \% Q

Boiiy

?
K

o —>

(a) Self-attention (b) Multi-head attention

Figure 3.2.2: Attention in Transformers

to maximize the conditional log-likelihood of the output given the input, enabling the model to either
produce an output from a given input sequence or evaluate the compatibility of an input/output pair.

A transformer can be composed of arbitrarily many identical encoder and decoder structures, called lay-
ers. Each encoder layer includes two sublayers; a multi-head self-attention mechanism, which computes
token representations by attending to all tokens in the input, and a feed-forward network—augmented
with residual connections and layer normalization. The decoder, while similar, employs a masked multi-
head self-attention sublayer to prevent future tokens from influencing the current prediction, and adds
an extra multi-head attention layer to attend to the encoder’s outputs. Subsequent transformer model
variants, have modified these components by utilizing either encoder-only or decoder-only architec-
tures, respectively. Additionally, more revolutionary ideas and modifications have been introduced to
the transformer, to create this Al race that we are currently witnessing [42].

Attention

The concept of attention is to enable the storage of context information in the range of a specific
sequence. The breakthrough in the original transformer paper was that attention was the only such
mechanism necessary to achieve well performing models, as there were many others being researched
up to that point.

The way this is achieved is by calculating the Key, Query, and Value vectors for each token, from the
model’s attention weights, which are also learned through training. The Key and Query vectors for
each token are multiplied for each position in the sequence, resulting in a vector for each token that,
in a very intuitive way, represents the correlation between itself and the other tokens in this sequence.
Afterwards, this result is normalized using softmax, or some other technique, by dividing it by some
factor (usually the root of the dimensionality). Next, it is multiplied by the Value vector for each
token, in order to "drown out" the Values of tokens with small attention scores. After adding up the
Value vectors for a specific position, and for a specific token, this result (self-attention score) can be
passed on to the feed forward network.

Multi-headed attention is mostly the same thing, except replicated more times for each token, with
different initial attention weights, in order to encode more correlation information in total. These
calculations are primarily carried out in the form of matrices for efficiency. This way, the method
described above can be written simply as:

Attention(Q, K, V) = softma (QKT) V. (3.2.1)
VK V) = x| —— |V, 2.
Vdy

where @, K, and V represent the query, key, and value matrices, respectively, and dj is the dimen-
sionality of the keys.

65

Chapter 3. Theoretical Background

(original probabilities)

1.0temp 0.5temp 2.0 temp

" 1. - 58.58%
i } 1 - 96.97%
B 2 - 20.71%
2. -10% ’
3. -10% - B - To2% 3. - 20.71%

Figure 3.2.3: Example of Temperature on a Sampler. We assume that only the top 3 tokens/words
can be sampled. Notice how the breakpoints don’t scale linearly, as the Temperature multiplier is
applied to the raw logit scores and not the probability.

3.2.2 Large Language Models

Large language models (LLMs) are a direct application of transformer architectures. They leverage
vast amounts of text data (therefore "large") to learn representations of language that are both rich
and versatile. These models are capable of tasks ranging from translation and text summarization to
more complex applications such as dialogue generation and code synthesis.

In large language models, the transformer tokens are subwords. This is useful because it solves the
out-of-vocabulary issue that is inherent in a word-based system. The models are trained on broad data
(usually large data-banks from the world wide web), using self-supervision at scale. These "foundation
models" can then be futher optimized for specific tasks through a process called fine-tuning. By
fine-tuning already knowledgeable models to answer user questions, as an assistant, and enforcing
some restrictions to the generated content, Al assistants such as the famous ChatGPT were born.
Additionally, by utilizing models fine-tuned for different tasks and combining them into an assistant
model that chooses which of the "experts" to direct the question towards, a new generation of models
called "mixture of experts" was created.

The transformer at the heart of LLMs, should be noted, only calculates the most likely words to
appear after each specific sequence. The actual choice of which word will be generated next, falls to
the sampler, which can be configured to be more or less elastic with its choice of words. This is the
reason LLMs don’t always generate the same output for the same input sequence. A good temperature
can make or break a model, as it scales the probability breakpoints for the word selection, as shown
in Fig. 3.2.3.

The size of these models, being billions of parameters with a training dataset in the petabytes, begs
the question of when does a language model start to speak coherent english? This question has a
rather interesting answer as explored in the Tiny Stories paper [43]. It turns out that with a relatively
small size, even 10 million parameters, if the domain is narrow enough (such as generating stories
understandable by a 5 year old kid), language models can generate coherent english. This is important
because we will be using the Tiny Stories dataset for our own experiments, since working with a large
language model and a custom hardware architecture can prove to be difficult.

Finally, regarding the parallelization of LLMs, we note that because at the lowest level they consist
of mostly independent matrix multiplication operations, and the attention heads are also entirely
parallelizable, we expect that they will make good use of the SIMD capabilities of the host CGRA
device.

3.2.3 Meta’s Llama?2

At this section we will take a closer look at the structure of the target LLM, Meta’s Llama2 [14].
Published in 2023, the Llama2 collection of models ranging from 7 to 70 billion parameters was state
of the art compared to the best competitors of that era. The model was pretrained on an extensive
corpus of self-supervised data, followed by alignment with human preferences via techniques such as

66

3.2. Transformer Architectures and Large Language Models

Probability distribution

—$
i — N Output Tensor
H = 1x32000
Root Mean Square Normalisation ,'/ | Add -
) A _ A \
) S Feed Forward
v (Decoding Layer N ¥ 2TH=H
— LSS & : A
nmn o Multiplication
Sample S~ ; & ~
. —_—m—m + +
Logits Decoder Layer 2 [Sigmoid Linear Unit (SiLu)
: .y A '
 Decoder Layer 1 | | H®>27H | | H>27H |
. - | pan J
LEELETEETL | | Root Mean Square Normalisation |
I L] ’
I g]
- — I/ — Add
L » Embedding Layer
| Tokenizer | o saliliegon
—

' Root Mean Sguare Normalisation

Input text 4

Figure 3.2.4: Overview of LLaMA 2’s Model Architecture

Reinforcement Learning with Human Feedback (RLHF).

Llama 2 (Fig. 3.2.4) is composed of a series of decoder layers, where each layer consists of a self-
attention mechanism followed by a feed-forward multi-layer perceptron. Unlike the original trans-
former, Llama models employ different projection sizes in their feed-forward layers; both Llamal and
Llama2 use a projection size of 2.7 times the hidden size, in contrast to the standard 4 times. A notable
architectural difference between Llamal and Llama?2 is found in the attention mechanism: Llama 2
incorporates a Grouped Query Attention (GQA) mechanism, which enhances efficiency by grouping
the Key and Value vectors across groups of attention heads, interpolating between multi-head and
multi-query attention.

Some other not-so-notable modifications are the use of Rotary Positional Encoding (RoPE) for the
token embeddings and the use of the sigmoid linear unit as a non-linearity, in place of ReLu or other
commonly used functions.

For the purposes of our experiments we will be using a Baby Llama model of 15 million parameters
trained on the Tiny Stories dataset. The model can produce coherent english text at a rate of approx-
imately 30 tokens per second when inferenced with a custom script in C [44], modified for our needs,
on our Ryzen 3 Series private work laptop, or 110 tokens per second on an M1 MacBook Air. More
information about our custom setup will be presented at chapter 6 of this thesis.

67

Chapter 3. Theoretical Background

68

Chapter 4

Related Work

A ccelerating transformer architectures has become a prominent research area, with significant ad-
vancements being pursued at both software and hardware levels. As algorithmic improvements
and novel techniques continue to emerge to build faster, more intelligent models, the underlying hard-
ware must evolve to implement these innovations seamlessly. During the course of our work for this
thesis, extensive research has been published on accelerating transformers using CGRAs. To justify our
approach, we begin by comparing R-Blocks to other CGRA designs before exploring their applications
in accelerating transformer architectures.

4.1 CGRA Architectures

4.1.1 Plasticine

Starting with the project that pointed out the potential of structured computational units for exploiting
parallel patterns in software, Plasticine [45] attempts to be the first (in this recent CGRA resurgence)
to solve the problem of performance and power inefficiencies that FPGAs struggle with.

Utilizing Pattern Compute Units (PCU) and Pattern Memory Units (PMU), Plasticine aims to exploit
data locality, repeating memory access patterns and control flow to accelerate specific repeating parallel
patterns in programs. The Pattern Compute Units are reconfigurable pipelined units, based on the
SIMD execution model, while the Pattern Memory Units are composed of a banked scratchpad memory

¢:°AG s s} [s] [s } s | s} '?_'oAG ¢:>
Coalescing PMU PCU PMU PCU PMU PCU Coalescing
Unit Unit
AG s s s s s s} sj» AG
o]]

N PCU PMU PCU PMU PCU PMU -
[r—)
¢:> AG s s [s s s | s} s}-» AG ¢:>
Coalescing COaIe§cing
Unit PMU PCU PMU PCU PMU PCU Unit
AG s s s s s s| lﬂ(—» AG
¢=> = (Il (Il = = ¢:>

Figure 4.1.1: Plasticine chip-level scaled-down architecture (3x6 grid)

69

Chapter 4. Related Work

Main Processor (RISC) Data Memory Subsystem

External
Execution, functionality, and

Memory

reconfiguration control

¥

| i

| I

| : :

, 13 il i i i] |
: % ! l '» ' | H
Context Memory |5 e JleEs |, | 1
{[subsystem = 3 va = = e | i
i | (context Words for - ' [N | I 1 K1 J : :
i | determining the — — : | 1 I i
¢ | configuration and o P b
g :fn"cl?f;an'fy"ff"meqspy BE | I R
: A N If] 1
s / Jreesireaml = %I |
: I | ﬁé z‘\ié e
§ (X-RA Functionality and Interconnection) : I]l = [l - = H - | [I T : i
: : '

Figure 4.1.2: Architecture of X-CGRA in a reconfigurable system. X-RA refers to the Approximate
Reconfigurable Array, SC refers to Structural Configuration part and OM refers to the Operation
Mode part (in terms of accuracy)

with dedicated addressing logic and address decoders.

A typical Plasticine grid (Fig. 4.1.1 is composed of PMUs and PCUs that communicate with each
other by a static hybrid interconnect grid. Communication with the off-chip DRAM is achieved through
several address generators, supported by coalescing units to handle dense memory requests.

The main weakness of this architecture compared to R-Blocks is its reliance on parallel patterns in
order to map software to the chip. The application has to be represented as a hierarchy of parallelizable
dataflow pipelines written in a parallel pattern-based language called the Delite Hardware Definition
Language (DHDL) [16]. Even tho this might be an excellent model in terms of hardware efficiency and
power for a reconfigurable architecture -which it clearly is, as it achieves over 10 times the performance
and performance per watt of an FPGA in most benchmarks-, it limits the hardware to a very narrow
functional domain.

There are many other design innovations made in this project, and the reader is encouraged to look
at the cited paper in order to understand the full scope of this work.

4.1.2 X-CGRA

Leveraging its approximate capabilities, X-CGRA [17] attempts to accelerate applications that are
inherently error resilient, such as multimedia and signal processing. Having the ability to dynamically
configure the computational accuracy, utilizing its Quality-Scalable Processing Elements (QSPEs),
X-CGRA can additionally support use cases where the quality of service (QOS) requirement is 100%.

The architecture of X-CGRA is sufficiently commonplace among CGRA designs, with the QSPEs
situated in a grid, interconnected by a 2D mesh as illustrated in Fig. 4.1.2. The context memory
subsystem is responsible for the structural and operation mode configuration as well as communication
with the off-chip main processor.

The novel mapping technique employed in X-CGRA first determines the optimal accuracy level settings
and subsequently schedules and binds the software to the QSPEs. Although this technique is essential
for dynamic quality calibration, it introduces significant compilation overheads that could be mitigated

70

4.2. Transformer Acceleration Using CGRAs

by using a static approximation degree.

Inspired by the X-CGRA approach, one potential enhancement for R-Blocks is the incorporation of
approximate computing capabilities. Given that the R-Blocks fabric can be readily expanded with
new tiles and instructions, integrating a static approximate computing tile -such as an approximate
multiplier- appears feasible. Preliminary internal research in this direction has yielded promising
results, and this strategy might also be applicable in LLM applications, provided that the quality error
remains sufficiently low to avoid adversely affecting model accuracy.

4.1.3 CGRA-ME

CGRA-ME [18], is a proposed CGRA unification framework that includes design, simulation and
modelling capabilities for various types of CGRA architectures. In 2024, with [19], it became even

more capable, including support for more elastic CGRAs, floating point arithmetic, predication and
hybrid RISC-V systems with CGRA.

The main contribution of this work is an architecture exploration framework that takes an XML
description of a CGRA as input and provides a flexible scheduling, mapping, placement and routing
tool, built within the popular LLVM compiler infrastructure, that maps an optimized C-language
benchmark onto the specified CGRA. This allows the user to rapidly test and evaluate different CGRA
architectures, that adhere to the systems specific restrictions.

A unification framework is something that will become necessary in the future, as CGRA technologies
get more traction, while it can already provide valuable insights into the tradeoffs specific to CGRA
design. However, the immediate adaptation of this system by the academic community could stunt
the growth of the field by narrowing the exploration domain and restricting the creative freedom of
researchers.

4.1.4 Conclusion

There are numerous published CGRA architectures that are worth mentioning, but this is not the
point of this thesis. We expect that, up to this point, and with all the approaches presented so far, the
reader has accumulated the necessary knowledge to understand and evaluate the methodologies that
will follow. We will continue by evaluating attempts at transformer acceleration using CGRA systems
that have not been presented thus far.

4.2 Transformer Acceleration Using CGRAs

4.2.1 ML-CGRA

ML-CGRA [20], published in 2023, does not explicitly aim on accelerating transformers, but instead
machine learning applications which at a low level are very similar, relying on generalized matrix
multiplication to compute activations from weights and inputs.

ML-CGRA is an open-source integrated end-to-end compilation framework that enables efficient and
flexible ML acceleration on CGRAs. In this work, a standard CGRA template is also enhanced
with additional hardware components. The conventional on-chip mesh network is replaced by an 8-
directional king mesh topology for improved dataflow routing (Fig. 4.2.1). Furthermore, the input
buffers support configurable stalling and double-buffering, while dedicated MAC and MAX functional
units enable single-cycle execution of common ML operations.

With all these innovations the framework, on average, improves the execution performance of a diverse
set of ML models with a 3.15x and 6.02x speedup on 4x4 and 8x8 CGRAs respectively. This speedup
is certainly impressive but it should be noted that ML application acceleration has been a topic of
research for a long time and the framework ecosystem surrounding this system is very user friendly
and standardized.

71

Chapter 4. Related Work

v v / v
b5 c2
—_— ——

I Voo

Figure 4.2.1: Mesh topology in ML-CGRA architecture

4.2.2 IMAX3

IMAX3 [21] is a proposed Linear Array Coarse-Grained Reconfigurable Architecture (CGLA), im-
plemented on FPGA, used for LLM inference and result evaluation. During this thorough and very
illuminating work, improvements were made to the high level code which was adapted from Python
for IMAX3 using GGML, a library for running LLMs on CPUs.

Architecturally IMAXS3 distinguishes itself from traditional 2D CGRAs, which often experience uneven
memory access distances, by employing a ring array structure. This design choice improves memory
bandwidth utilization relative to GPUs and simplifies the programming process, thereby contributing
to enhanced power efficiency.

Another notable advantage of IMAX3 is its ability to generate computation networks directly from
conventional program code without the lengthy compilation times typically required for CGRA explo-
ration. The ring array structure removes the need for such exploration, while allowing programmers
to provide hints for location-free operations, multi-input computations, cache referencing, and DMA
transfers between main memory and cache. Optimizations across the compiler, library, and hardware
components additionally minimize data transfer overheads. Moreover, equipping each unit with CISC-
based multifunctional arithmetic units reduces the number of required units and simplifies network
routing, further decreasing compilation time. Again we encourage the reader to check out the original
paper for a deeper understanding of the architecture, as it was developed over a series of steps, based
on IMAX and IMAX2, that are documented extensively and each introduce its own innovations.

At a high level, the researchers noticed the domination of the matrix multiplication function both in
terms of time and resources utilization. After optimizing it for the CGLA and testing the system on
real hardware they reported up to 20% improvement compared to commercial CPUs. This is extremely
impressive performace considering this is the first LLM application to be tested on an actual CGRA
hardware environment.

4.2.3 CFEACT

CFEACT |[22] is another CGRA-based framework for implementation and evaluation of custom ac-
celerator SoCs. This work, however, focuses on acceleration of transformer and CNN benchmarks. It
includes a hardware generator that supports multiple template configurations and design parameters,
while a front-end compiler processes the application’s execution kernels efficiently creating the data
flow graph (DFG) for the specific CGRA configuration.

72

4.2. Transformer Acceleration Using CGRAs

Accelerator Response

) Pipeline Controller
Control —
Instr.]]]
o |7 2| Lol
m:
sl |3 5| [2
o G S
S g ol
i) @ @
g e 2l
5 5|13 ClIRE
8 = & 3| =
@] o ©
o -3 Slo
ST Ctrl. MV Ctrl. LD Ctrl.
I Data transmission i
DMA Ctrl.
« > DMA Unit

Figure 4.2.2: CFEACT Architecture Overview

The CGRA’s SoC organization is conventional, featuring the same PEs in a grid with an interconnect
network, IO units and memory controllers surrounding the reconfigurable fabric, communicating with
an off-chip main processing core and utilizing DMA for memory accessing (Fig. 4.2.2).

For transformer applications specifically, this setup, with its extensive front-end compiler optimizations
and innovations, achieves on average 58% better performance compared to the same size ML-CGRA
setup, explored previously. This is not surprising considering it is specialized for transformer applica-
tions, and, as the researchers comment, with better PE utilization it should exhibit an ADP gain of

more than 2x over ML-CGRA.

4.2.4 ULP CGRA for Transformer Acceleration at the Edge

Perhaps the most similar work to what we are trying to achive with R-Blocks is [46]. This CGRA
fitted specifically for accelerating General Matrix Multiplication (GEMM), tackles the fundamental
computational time-sink of transformers head-on. It presents an analysis of how CGRA architectures
can be tailored to these workloads, highlighting recent innovations in PE design, memory management,

and interconnect strategies.

While bearing obvious organizational similarities with other CGRA structures (Fig.4.2.3, the inno-
vation of this work is the inclusion of PEs designed to specifically perform low-latency arithmetic
operations required by GEMM, and placing them in a heterogeneous grid as shown in Fig. 4.2.4 so
that every row has direct access to a Memory Operation Block (MOB).

Additionally, a unique feature of this CGRA is its switchless mesh torus interconnect, which facilitates
data transfers between the PEs and MOBs without a conventional switching network. This reduces
the power consumption while making for a predictable, fixed data flow pattern, aligning with what is

required for GEMM.

73

Chapter 4. Related Work

shared L1 Memory
| Interconnect
()
5 Memory
L2 Memory | |, Controller
o
& CGRA Host CPU
Context [RISC-V]
Memory sub-system
CGRA subsystem

Figure 4.2.3: ULP CGRA SoC Overview

Figure 4.2.4: ULP CGRA Reconfigurable Fabric

Although no results from comparisons to baseline systems are provided in this work, the techniques
used to parallelize the software of the transformer, such as loop tiling, and data reuse can be applied
in our case as well, although in a different context.

No further research has been published on transformer or LLM acceleration utilizing CGRAs this far,
and even this cited work has been published in the year leading up to this thesis. However there is
one more dimension relevant to this field of research that might be worth discussing.

4.2.5 TransMap

A different approach to transformers in CGRA is presented in [47]. Here, instead of using the CGRA to
accelerate transformers, the transformer model is utilized to encode global attention into the CGRAs
mapping state. Furthermore, a deep reinforcement learning agent is devised to decode the state,
providing guidance for the mapping process. Experimental results show that TransMap offers superior
mapping quality and reduced compilation time compared to current state-of-the-art approaches, even
in complex mapping scenarios.

This opens the door to other avenues of future research, such as incorporating transformers to all
CGRAs, running on native hardware, for even better mapping of applications, thus revolutionizing the
field of CGRAs completely.

74

4.2. Transformer Acceleration Using CGRAs

4.2.6 Summary

Comparing R-Blocks to other proposed CGRAs, the most important differences, as shown in the
table of Fig. 4.2.5, are the operation level disaggregated approach of the architecture as well as the
retargetable compiler that allows R-Blocks to map high-level code directly to a specific user defined
virtual architecture. These differences will play a big role in our approach of expanding and mapping
code on R-Blocks that will be presented in the next chapters.

Publication Architectural LLM
CGRA Architecture Platform | Mapping Technique
Date PPing q DSE Mapped
Homogeneous Utilizing parallel
Plasticine June 2017 | PEs and Memory ASIC 112ing p Manual No
patterns (DHDL)
Elements
H
X-CGRA October 2020 QZ::E fe”eous ASIC | DFG kernel mapping Manual No
3 homogeneous . C kernel mapping.
(el 2 LiEp7er s PE architectures LTRSS Differs by architecture B L9
H Python MLIR into k L
ML-CGRA July 2023 | _omoseneous Simulated | YO0 VT Mo Kemne Manual No
PEs mapping
IMAX3 in memory FPGA, e
CGLA November 2024 cIsc ASIC Manual, utilizing GGML Manual Yes
CFEACT September 2024 Homogeneous ASIC Lmear‘|zat|on and kernel Scalable Yes
PEs mapping Template
R-Blocks Disaggregated ASIC High-level architecture Semi- v
(our work) PEs (op. level) targeting compiler Automated es

Figure 4.2.5: Summary of publications relating to CGRA architectures and LLM code mapping

What is also worth noting, is how recently the first examples of research regarding LLM mapping in
this type of architectures were published. This reveals the experimental character of this work and
how emerging the research field of combining those two technologies really is.

75

Chapter 4. Related Work

76

Chapter 5

R-Blocks Expansion Methodology

A s discussed in previous chapters, LLMs make heavy use of Floating Point (FP) arithmetic in
their calculations of attention and activation values. However, in its previously available state,
the R-Blocks architecture did not include support for FP operations. This is why we expanded the
entire CGRA flow with a Floating Point Unit tile, and tool support to be able to compile, translate,
build and execute high level code that includes FP operations.

5.1 Hardware Expansion

5.1.1 The Floating Point Unit

IEEET754 is the technical standard for Floating Point arithmetic, which we will follow. It defines the
operations between different precision FP numbers, the rules about formats, conversion and rounding
modes, as well as rules about exceptions and special values (such as infinity or NaN). A floating point
unit (FPU) needs to produce results that adhere to this standard, so they can be utilized without
conflicts by the other hardware and software components of the system.

For this purpose we use the OpenCores FPU [23], which is fully IEEE754 compliant, light, simple and
provides all the capabilities we require. This is a single-precision FPU, meaning it can only support
32-bit operands, which is, currently, also a limitation of the R-Blocks architecture.

The functionality of the hardware was verified independently by, testing it with over 14 million case
vectors, generated by Berkeley’s SoftFloat library [24].

The FPU supports the following operations with FP32 operands and output:
e Addition

e Subtraction

Multiplication

e Division

e Conversions (INT32 to FP32, and backwards)
e Comparisons

With these simple arithmetic operations and using high level math libraries such as math.h we can
perform any other operation we might require, such as square root, exponentiation and trigonometric
functions. The hardware also supports 4 different rounding modes, but we will only make use of
the "rounding to nearest even" mode, since the rest of the rounding modes neither correspond to
OpenASIP instructions bound to the LLVM back-end, nor are they required for our LLM application.

7

Chapter 5. R-Blocks Expansion Methodology

r_mode op_a op b fpu_op
Pre-Normalization Pre-Normalization
Add/Sub Mul/Div
Add/Sub Mul Div

I/g
Post-Normalization
and Rounding

Exceptions Unit

result zero snan qgnan inf ine divbyzero

Figure 5.1.1: Internal structure of the OpenCores FPU

The FPU is 4 stage pipelined. It can perform a floating point operation every cycle. It will latch the
operation type, rounding mode and operands and deliver a result four cycles later.

In terms of microarchitecture, two pre-normalization units adjust the fractions (mantissas) and ex-
ponents, one dedicated to addition and subtraction operations and the other to multiplication and
division. The Add/Sub, Mul, and Div primitive blocks then execute the corresponding arithmetic
operations. A shared post-normalization block subsequently normalizes and rounds the fraction before
the final result is packed into a valid single-precision floating-point format. Figure 5.1.1 illustrates the
internal implementation (pipeline not shown).

The input and output signals are explained in Table 5.1.

The compare module is a standalone IEEE754 compliant single-precision FP unit, that was designed
and verified separately, again, using the SoftFloat library. Table 5.2 lists the signals of the compare
module and their respective functionality. This module is not pipelined since it is more compact than
the rest of the FPU, which means it outputs the result one clock cycle after the inputs are asserted.

Both of these modules were synthesized at 22nm in FD-SOI technology, with a 415MHz maximum
clock frequency determined by the Synopsys Design Compiler. The individual area and power metrics
were not far off other R-Blocks tiles, which means that the FPU can be smoothly incorporated.

78

5.1. Hardware Expansion

Table 5.1: FPU Signals

Signal Name Width Direction Description

clk 1 Input System Clock

r_mode 1 Input Rounding Mode

fpu_op 1 Input Floating Point Operation Select
op_a,op_b 32 Input Operand A and B

out 32 Output Result Output

snan 1 Output Asserted when either operand is a SNAN
qnan 1 Output Asserted when output is a QNAN

inf 1 Output Asserted when output is an INF

ine 1 Output Asserted when the Result is Inexact
divbyzero 1 Output Asserted when fpu_op is set to divide and op b is zero
Z€ro 1 Output Asserted when the output is a numeric zero

Table 5.2: Compare Module Signals

Signal Name Width Direction Description

clk 1 Input System Clock

opa, opb 32 Input Operand a and B

unordered 1 Output Asserted when opa or opb is a NAN
altb 1 Output Asserted when opa is larger than opb
blta 1 Output Asserted when opb is larger than opa
aeqb 1 Output Asserted when opa is equal to opb
inf 1 Output Asserted when opa or opb is a INF
Z€ero 1 Output Asserted when opa is a numeric zero

5.1.2 The FPU R-Blocks Tile

A hardware module must have a specific structure in order to be incorporated to the R-Blocks ecosys-
tem as a tile. All tiles up to this point, such as ALUs, RFs and MULs have been operating at a single
cycle latency. They all perform the calculations during the clock cycle, and latch the result at the
output registers in the next rising edge. Our FPU is the first tile aiming to break that convention,
by being 4 stage pipelined, something that is thankfully supported by the OpenASIP compiler and
toolflow, as well as the hardware environment.

Additionally, tiles must have the same input and output ports, which creates the need for a hardware
wrapper module that unpacks the CGRA inputs into FPU inputs and signals, and packs the FPU
results back into CGRA outputs. All generic tiles (generic meaning not with special functionality and
connections, such as the Immediate Unit or the Instruction Decoder), have the inputs and outputs
shown in Table 5.3.

Each tile has 8 inputs and 2 outputs, each one of size 32 bits. The Inputs and Outputs signals pack

Table 5.3: Generic Tile Ports

Signal Name Width Direction Description

Clk 1 Input System Clock

Reset 1 Input System Reset

Inputs 8x32 Input 8 different 32-bit Inputs packed into one
DecodedInstruction 12 up to 33 Input Width depends on the tile

Outputs 2x32 Output 2 different 32-bit Outputs packed into one

79

Chapter 5. R-Blocks Expansion Methodology

these values in one data bus and connect to the switchbox interconnect network. The input ports that
will be used for the calculation, and the output register where the output will be stored, are specified
in the DecodedInstruction signal. This signal originates from each tile’s respective Instruction Decoder
tile and contains all the information required to perform its operations, besides the input values.
Specifically, it contains:

e The OutputValid signal (Enable).

Source and Destination ports (3-bits to distinguish between the 8 inputs and 1-bit to distinguish
between the 2 outputs).

e The Operation Type, relevant to each specific tile.

e Configuration and Mode selection signals specific to each tile. Some tiles for example can support
dual output mode for large operands.

Because each tile has its own Instruction Decoder FU, the decoded operation codes between different
tiles can overlap, decreasing the bit-width of the signal necessary to program and configure each one
of them, compared to requiring a unique opcode for every instruction in the ISA. The bits of the
DecodedInstruction signal are highly customized for each tile, and are used directly as control signals
for the underlying hardware.

To connect our FPU for instance, considering the operations it must be able to support, we break up
the DecodedInstruction signal into the following control signals:

e The OutputValid enable signal.
e The CompareFlag which identifies comparison operations.
e The FPU opcode, which is directly fed into the FPU module’s fpu_ op input.

e The RoundingMode signal, which, in this implementation, is tied to 00 for all instructions, since
only the round-to-nearest-even mode is used. However, by including this hardware connection,
new instructions that use different rounding modes can be added to the ISA with minimal effort
in the future.

e The Dest and Src signals which specify the inputs and outputs that will be used by each operation.

Figure 5.1.2 illustrates in the necessary detail the specifics of the hardware implementation. The source
and destination selection signals, originating from the decoded instruction, are used as select signals
for the input and output select multiplexers, and the CompareFlag denoted Comp in Fig. 5.1.2 is
used as the selector between the FPU result and the comparator result.

What should be commented on is the timing of the circuit. As mentioned before, the FPU produces the
correct output 4 clock cycles after the input changes and a new DecodedInstruction signal is asserted,
with the OutputValid flag set. Therefore, the rest of the control signals and also the output of the
Compare Module must be delayed too, in order for the result to reach the output register at the correct
time. This is done by the Delay Registers block which introduces a 4 cycle delay and subsequently
sends the control signals and the calculated comparison result to the output multiplexers.

In total, because the output result is also stored in a register, the circuit has a 5 cycle output latency.
This will be taken into consideration during the tool-flow expansion.

One more component of the tile is the Output Conversion Logic, which aims to make the comparator
adhere to the IEEE754 standard. Out of the box, besides the exception logic, the comparator answer
the question; "What is the relation between operands A and B?". This question has 3 possible answers
assuming valid comparison; operand A is either greater, equal or less than B. This is encoded in the 3
output signals of the original comparator, but needs to be converted to a different question, the one
that the high level (C) instruction asks. These 6 possible questions of relations between two operands
(for instance "Is a > b?", or "Is a <= b?") always have a binary answer, which can be extracted, with
some logic from the outputs of the Compare Module, as shown in Table 5.4.

80

5.2. Toolset Expansion

Inputs Decoded Instruction
A A
Clk _> FpuOp
SrcA
Reset —— SrcB
Inputs Select
Compare
> Module
Y
Output
D Conversion
_ Logic
FPU
Comp
Dest
P> Delay
Registers
FPU Compare
Result Result
L
\ / Comp
Output Select Dest
P
Outputs

Figure 5.1.2: The FPU Functional Unit

5.2 Toolset Expansion

The R-Blocks compilation and execution framework was based upon the TTA model for Exposed
Datapath Architectures (EDPAs). This means that R-Blocks at its core is a TTA machine with some
restrictions that define its architectural features.

In order to understand how to compile and map high-level code to the reconfigurable hardware we
must take a tour through the many abstraction layers utilized in this work.

5.2.1 Instruction Set Architecture

The connection between software and hardware is initially made in the Instruction Decoder (ID) tile.
This is a special FU with a specific functionality. Each computational (or generic) FU is connected
to its own ID, which has the responsibility of decoding and sending the instructions stored in the
instruction memory to its respective FU every cycle.

The ID tile is basically a dictionary of encoded bit sequences to decoded meaningful signals that
correspond to the control signals in each FU. The generation of the ID is done using Huffman Trees to

81

Chapter 5. R-Blocks Expansion Methodology

Table 5.4: Output Conversion Logic

C Operator Assembly Instruction Name Conversion Logic

== eqf NOT unordered AND aeqb

1= nef NOT unordered AND NOT aegb

> gtf NOT unordered AND alth

>= gef NOT unordered AND (altb OR aegb)
< 1tf NOT unordered AND blta

<= lef NOT unordered AND (blta OR aegb)

minimize the instruction width, which means that when the ISA changes, the ID must be regenerated
to account for the new instructions in the tree.

The entire ISA is defined in a single XML file. This is where the Functional Units and their instructions
are declared, and the specific decoded instruction bits are bound in a specific position of the decoded
instruction.

<FPU decoded_width="16">

<nop decoded_instr="0_0_000_00_00_7_777_777"/>
<pass decoded_instr="0_0_000_00_01_D_777_AAA"/>
<addf decoded_instr="1_0_000_00_00_D_BBB_AAA"/>
<subf decoded_instr="1_0_001_00_00_D_BBB_AAA"/>
<mulf decoded_instr="1_0_010_00_00_D_BBB_AAA"/>
<divf decoded_instr="1_0_011_00_00_D_BBB_AAA"/>
<cif decoded_instr="1_0_100_00_00_D_777_AAA"/>
<cfi decoded_instr="1_0_101_00_00_D_777_AAA"/>
<eqf decoded_instr="1_1_000_00_00_D_BBB_AAA"/>
<nef decoded_instr="1_1_001_00_00_D_BBB_AAA"/>
<gtf decoded_instr="1_1_010_00_00_D_BBB_AAA"/>
<gef decoded_instr="1_1_011_00_00_D_BBB_AAA"/>
<1tf decoded_instr="1_1_100_00_00_D_BBB_AAA"/>
<lef decoded_instr="1_1_101_00_00_D_BBB_AAA"/>
</FPU>

As shown in the above code excerpt directly from the FPU ISA definition file, the current imple-
mentation of the FPU ISA has 16-bits decoded instruction width and supports the basic arithmetic
operations, conversions between FP32 and INT32 numbers, as well as the comparison operations ex-
plained in Table 5.4.

The names of the instructions are noteworthy. They were not chosen at random, but instead correspond
to instructions in the Operation Set Abstraction Layer (OSAL) of OpenASIP. The OSAL stores the
semantic properties of the operation, which includes the simulation behavior, operand count, memory
accesses, interactions with other operations, but not the latency (Fig. 5.2.1). It is also possible to add
custom operations to the OSAL, but the behavioral model for the new instruction has to be defined
strictly.

Thankfully, the behaviors and parameters of the basic single-precision FP operations we are imple-
menting are already in the OSAL, so we only have to use the designated names to bind an instruction
from the ID’s ISA to the TTA OSAL, so it can be understood by the LLVM compiler.

At this stage, we have already converted the hardware control signals to instructions and now defined
their behavior as operations. However, to complete the software-hardware co-design process, and map

82

5.2. Toolset Expansion

Operation properties

Operation properties
Name: oo oati fon. OuEpUE 315

Reads memory
Cantrap

Clocked

Affected by Operationinputs

operation operand type element width eleme
1 Floatword 32 1
Floatword 32 1

ABGAT ~ Add...

Affects Operation outputs

operation operand type elementwidth eleme
3 FloatWord 32 1

Operation behavior module defined. Open Open DAG

Figure 5.2.1: The Operation Set Editor GUI

high-level code to the reconfigurable fabric, it has to be compiled with the retargetable TTA compiler
tcece.

5.2.2 Blocks Translator

The tcecc compiler takes both the high-level driver code and the target TTA description as inputs,
and produces a TPEF executable file for this specific instance of R-Blocks (Fig. 5.2.2. The conversion
from an R-Blocks architecture description to a TTA is done by the Blocks Translator tool.

To achieve this translation, which works both ways, the blocks translator must include a behavioral
description of every R-Blocks FU, containing its instructions, their pipeline timings and operands as
well as the vectorized instructions that can be used when connecting multiple FUs in parallel as a
vector unit.

Of course, the Blocks Translator tool had to be expanded with the description of the FPU tile and
its instructions in order to support the new operations. This was done simply by implementing
the BlocksFPU class in C++, inheriting from the generic BlocksFU class, and adding the different
instructions in its execution pipeline.

With the new additions, the Blocks Translator successfully translates a user defined R-Blocks archi-
tecture to a TTA description and the compiler can follow up by generating the targeted executable for
this architecture. At this stage the newly incorporated FPU tile was independently tested to verify its
functionality as a FU and ensure consistency with the R-Blocks environment.

5.2.3 Hardware Generation

The next stages after compiling an executable for a specific architecture are architecture pruning and
synthesis. The prunning is performed by the prunner utility provided in the R-Blocks tool suite, and
it is necessary, in order to convert a fully connected virtual architecture to a new architecture with
fewer connections between the FUs, so that they can be routed in the physical R-Blocks grid. Finally,
the mapping, routing and synthesis of the generated bitstream are performed by the corresponding
scripts and tools, in order to extract results about the area and power of the IC.

At this stage in the R-Blocks development, the CGRA does not actually communicate with an external
controller, so the required instruction and data initialization memories are generated in the form of

83

Chapter 5. R-Blocks Expansion Methodology

Input
Code

ol0
ol) TPEF
ol0

Fully Connected
Architecture

Compiler

TTA

o Architecture
Optimized
Architecture

| I

R-Blocks
Assembly File
(PASM)

Global Memory
Data

Figure 5.2.2: The R-Blocks Hardware-Software co-design flow

binaries and loaded to the hardware in order to simulate and evaluate the application. However,
progress towards implementing an AXI protocol connection with a host RISC-V core is underway.

The hardware generation scripts also had to be slightly expanded to include the FPU tile in all of
their parameters and restrictions. One problem encountered in this step was the limitation of the
instantiator scrip regarding the number of different FU types. The restriction stemmed from the use
of only 3 bits to encode the FU type, leading to only 8 different FU types being able to generate
in a specific instantiation. Since there were already 8 different FU types, there was no room for the
inclusion of our FPU. This constraint was lifted by increasing the configuration signal width to 4 bits,
both in the instantiator scripts and in the internal Instruction Decoder configuration signals.

Having incorporated the new FU from end-to-end, we evaluated the new capabilities of R-Blocks. RTL
level simulations validate the correct functionality of all the FUs and vector unit functionality checks
ensure the operational stability of the new tile. Early mappings of "math.h" function testcases to the
CGRA ensure that the FP operations are utilizing the FPU, and the results are consisten with those
of the GCC compiled code. The performance of the new tile, however, will be better evaluated in the
following chapter, with the LLM benchmark mapping methodology.

84

Chapter 6

LLM Mapping Methodology

I n this chapter, we will present, in an understandable and concise manner, the methodology followed

for mapping high-level LLM code to the R-Blocks CGRA, after the hardware and tool-flow expan-
sion has been successfully completed and R-Blocks can support floating point arithmetic. Afterwards,
the results from the mapping of the first benchmarks to targeted architectures will be presented and
analyzed.

6.1 Architecture Definitions

The first step to the SW/HW co-design process is defining the architectures on which the code will be
mapped. As a starting point in the endless R-Blocks architectural design space, four architectures were
described, and evaluated for LLM benchmarks. These architectures make use of varying degrees of
parallelism, by including different sizes of vector units. The specifics of each architecture are presented
in Table 6.1.

The Scalar architecture contains the fewest possible FUs on which a full LLM benchmark can be
mapped. These include the FPU tile that handles the floating point operations, MUL and ALU tiles
for integer operations, one register file (RF), the load-store unit (LSU), the accumulate-branch unit
(ABU), and the immediate (operand generation) unit (IM) that are necessary for system operation,
together with their corresponding instruction decoders. Note that the immediate unit contains its own
instruction decoder internally. This is why the number of IDs is lower than the number of FUs in the
Scalar architecture.

The vector architectures are simply extensions of the Scalar architecture, containing the same system
operation units (LSU, ABU, RFs), but augmented with vector units, designated by their vector size,
which corresponds to the degree of parallelization that each can achieve. For example, Vector8 contains
8 FPUs connected as a vectorized unit of size 8, controlled by the same Instruction Decoder (as shown
in Fig. 6.1.1), plus an extra scalar FPU for FP operations that have not been vectorized in the
mapped code. This architecture can achieve 8 concurrent FP operations per cycle -at least in theory,
with optimal operation scheduling.

Table 6.1: Architectural DSE Parameters

Architecture Name Vector Size Local Memories Grid Size IDs FPUs Total Active Computational Units

Scalar - 1 4x6 6 1 7
Vector4 4 4 6x11 12 5 29
Vector8 8 8 8x10 12 9 41
Vectorl6 16 16 8x18 12 17 73

85

Chapter 6. LLM Mapping Methodology

FPU| = = = |FPU

Vector Size

Figure 6.1.1: Illustration of multiple FPU tiles controlled by the same ID

]
]
e
]

IO

Figure 6.1.2: Scalar Architecture

The architectures were initially defined with their FUs fully connected, meaning each FU could com-
municate with any other FU directly (with a single cycle delay). This, however, is not realistic and
could not be realized in an R-Blocks ASIC, since each FU has a maximum of 8 input wires originating
from the switchbox network. To remedy this issue the architecture descriptions had to be passed

through the R-Blocks Prunner tool which iteratively identifies useless connections and eliminates them
to create a "legal" architecture interconnect network.

The final R-Blocks grids with the defined FUs colored and the unused FUs greyed out are shown in
Figures 6.1.2-6.1.5. These visualizations are produced after mapping and routing a specific architec-
ture in a specific R-Blocks instance grid. Note that Vectorl6 architecture could not be routed (this
is why no red/active connection wires appear) by the current R-Blocks routing algorithm because of
the complexity and density of connections between the FUs. Therefore, we could not extract measure-
ments about the Area and Power of this specific architecture as it couldn’t be synthesized. The cycle

measurements presented in the next sections are derived from the TTA simulator, which is adequately
accurate according to the rigorous testing conducted.

86

6.1. Architecture Definitions

m i HH i
! % Z

ﬁ

=}

Ol

@

.

@

=}

.

@

mn m|

\l//7

; J :

/B

HHDHW

@

HHHHH)

Figure 6.1.3: Vector4d Architecture

87

Chapter 6. LLM Mapping Methodology

\””\\;wv! i

mum'

' D\'

ww*ﬁ‘\

‘uljm'mnw |

E\D\u’

Figure 6.1.5: Vectorl6 Architecture

88

6.2. Benchmark Code Preparation

Layer
LLaMaz2 Inference Forward
- / Input Vector \
Input Sequence Token Embeddings I
e v 2
l [RMS Normalization]
[ey] Q. K, V Matrix
Calculation
Encoder
Layer 1 [RoPE Encoding
Token L)
Embeddings
\ 2 [Layer 2] (o h
S Multi-headed
S Attention
iy Forward WV,
2 [Layer N])
z Output Matmul &
\ v
Residual Connection
J
Y (N J
Legiz [RMS Normalization] (4 A
Y ¢ [RMS Normalization]
Sampler
Classifier] Feed-Forward
Network
Decoder
i Output Matmul &
Residual Connection
K Output Tokens / k Logits j L |)
\

K Output Vector J

Figure 6.2.1: The LLaMa2 Inference Model

6.2 Benchmark Code Preparation

The next step in the R-Blocks mapping methodology is selecting the parts of the LLM that will be
mapped to the reconfigurable fabric. In reality, this decision is made in tandem with the architecture
definition process, so the HW /SW co-design character of this platform can be utilized at a maximum
extent. Before selecting which sections will be mapped to the CGRA, a preliminary timing analysis of
the LLaMa2 inference code was performed on 3 pre-trained models of different sizes.

Taking a closer look at the internal structure of the LLaMa2 model (Fig. 6.2.1), we notice that most
of the calculations performed are matrix-vector multiplications (blocks colored in red). The exact
percentages of runtime attributed to the matrix-vector multiplications in each of the blocks are shown
in Figure 6.2.2. There, we notice that as the model size increases, the matrix-vector multiplication
blocks dominate over the sampler and the rest of the constituent blocks of LLaMa2.

The benchmarks we ultimately decide to map to the CGRA, as a starting point of reference, are the
following:

e Q, K, V matrix calculation (blue block)
e Attention block (green block)
e Pure matrix-vector multiplications of different dimensions

The reason for the selection of these specific benchmarks to be initially mapped is their combination
of time consuming calculations, in the form of matrix-vector multiplications, and difficult to map non-
linear functions, such as exponentials and trigonometric functions in the first two benchmarks. We
wanted to extract good measurements about the performance of the CGRA when handling mostly

89

Chapter 6. LLM Mapping Methodology

100 4

80
5
% B Q, K, V Calculation
% 601 =3 Attention
g E= FFN
% B sampling
E a0 [Rest
c
=]
I

20+

15M 42M 110M
Model Size (Parameters)

Figure 6.2.2: Runtime percentage of the LLaMa2 computational blocks on a CPU execution

repetitive loads of computations (matmul), and at the same time examine if mapping different non-
linear functions in between these calculations would induce a significant performance overhead.

It should be noted that, as a proof of concept, a full mapping of the forward function of the LLaMa2
inference model has been achieved, but the architectures required to map it to real hardware must
be scaled up to be able to execute it efficiently. Because of this reason and also limitations of the
hardware and the tool-flow regarding memory sizing, we were only able to extract cycle results for this
mapping from the TTA simulator.

The way these parts of the inference code were mapped, was by first stripping them of any dependencies
not included in the R-Blocks source library files. This includes the weights of the models, which were
directly loaded to the CGRA main memories from header files. From there, the weights can be accessed
with simple pointers in the main code. Other luxuries such as the printf or memcpy functions had
to be replaced with the native R-Blocks library functions that perform the same operations utilizing
strictly TTA assembly operations.

After these changes, the benchmarks are ready to be mapped to the reconfigurable hardware, although
without parallel execution capabilities.

6.3 Matrix Multiplication Vectorization

In order to be able to utilize the instantiated vector units in the Vector4, Vector8 and Vectorl6
architectures we must use the designated execution model of R-Blocks, which works by only mapping
operations to the vector units if the operands have already been transferred to the local memory (LM)
tiles.

In order to transfer data to the LM, we have to utilize the address spaces defined in the high-level
code, and the TTA functions that copy memory blocks from one to the other. This is as simple as
using the memcpy function in pure C, but with some additional arguments regarding the vector size
of the used architecture.

After this process of fetching the data, and allocating them to vector buffers in the local memory,
performing any operations between them will result in them being mapped to the corresponding vector

90

6.3. Matrix Multiplication Vectorization

X
A
r 0
|:A[O:N] A[N+1:2N] A[2N+1:3N] :|
X
Iteration 1 \J \
X Buffer[0:N]
Iteration 2 H
Iteration 3
- -
B1[0:N] B¢[N+1:2N] B1[2N+1:3N]
Bo[0:N] B2[N+1:2N] B5[2N+1:3N]
Y A
. —
L J
A
X

Figure 6.3.1: Matrix Multiplication Vectorization Scheme

FUs.

Since most of the calculations happen inside the MatMul (matrix-vector multiplication) function of the
LLM benchmarks mapped, we create a new vectorized MatMul function that always takes advantage
of the available vector FPU units.

This is done, simply by grouping the elements of lines to be multiplied and accumulated, in groups
of N, where N is the vector size of the architecture, as illustrated in Figure 6.3.1. The inner loop of
a classic matrix-vector multiplication B[Y : X| - A[X], which would normally be repeated X times, is
now repeated X /N times, and in each of these iterations two vectors of N single-precision floating point
numbers are multiplied element-wise and afterwards accumulated into a row buffer (of the same size
N). After all the row elements have been multiplied with the corresponding elements of vector A, the
N buffer elements are added up to form the final result of the row, and the same process is repeated
for the next row of the matrix.

In each outer loop iteration, so once for each matrix row, the X elements of the matrix row have to be
fetched to the LM tiles, where the elements of the A vector are also stored during the entire process to
be reused. We choose not to fetch and store the entire matrix all at once, in order to keep the required
LM size small. As will be discussed later, local memories take up a big percentage of the CGRA layout
area and minimizing their size should be a prime concern for any designer.

91

Chapter 6. LLM Mapping Methodology

92

Chapter 7

Results

ollowing the explanation of the mapping methodology, we will present the experimental results

from the execution of the first LLM benchmarks on R-Blocks. Specifically, we will measure
the clock cycles of each execution and the area and power of the circuits generated by our defined
architectures. Additionally we will attempt to interpret and model our observations so more general
conclusions can be drawn from this work.

7.1 Performance

Table 7.1 shows the execution cycles for the three chosen benchmarks when executed on each of the
3 architectures. The Q, K, V Matrix Calculation and the Attention Block contain 512x512 matrix-
vector multiplications, so we chose to also present a pure matrix-vector multiplication with different
dimensions (1376x512). These results were extracted at the stage of the RTL simulation, except for
the Vectorl6 architecture for which they were extracted from the TTA cycle-accurate simulator, since
the physical routing was impossible with the current routing algorithm, as discussed in chapter 6.

As can be observed in Fig. 7.1.1 which better visualizes the results, there is a steep decrease in cycles
when utilizing parallel execution with vector units. Specifically, in all benchmarks we notice a reduction
upwards of 60%, and on the case of pure matrix-vector multiplication (which is the benchmark fully
utilizing parallel execution) upwards of 70%.

What is, perhaps, surprising, and will be analyzed in the next section is that the optimal speedup isn’t
always the result of the greatest vector size. This is counter-intuitive, since we would expect more
operations happening in parallel to always reduce the number of cycles, even with diminishing returns.

Table 7.1: Performance Analysis in terms of Cycles

‘ Benchmark ‘ Architecture ‘ Clock Cycles (Thousands) ‘ % Improvement over Scalar
Scalar 12.258 -

Q, K, V Matrix Calculation xigtzig ggg? gf?
Vectorl6 3.943 67,8

Scalar 4.175 -

e o s

Vectorl6 1.391 66,7

Scalar 13.691 -

Matrix-Vector Multiplication (1376x512) Xigtgig 2:232 ;i’?
Vectorl6 2.229 83,7

93

Chapter 7. Results

14000 Architecture

B Scalar
12000 e Vectord
. Vector8
mm Vector16
w 10000
o
g
&)
o 8000
£
=
c
S 6000
3
o
@
]
4000
B II I Il.
:]
Q. K, V Calculation Attention Block Matrix-Vector Mul.
Benchmark

Figure 7.1.1: Cycles per benchmark for each tested architecture

This behavior is a result of inefficiencies in the TTA libraries for local memory access of elements and
will be analyzed in the following section.

7.2 Cycle Modeling

In an attempt to model the timing behavior of the parallel multiplication function that we created for
the mapping of the benchmarks onto the vector units, we mapped pure matrix-vector multiplication
benchmarks with various dimension sizes to the previously presented vectorized architectures. The
results are presented in Figure 7.2.1, with trendlines, showcasing the worsening that would result from
further increasing the vector size.

These trendlines were not generated at random. They are the result of careful modeling that takes
into account the dataflow of our parallel matmul function as showcased in the pseudocode below:

// vector is stored in local memory address A

// matrix is stored in global memory address B

// performing the multiplication B[y:x]*A[x] with N vector lanes
// result is stored in global memory address res

parallel_matmul (int x, int y, int N) {
for(i from 0 to y) { // for every row of matrix B
memcopy (row, B + ixx, size n, GM_TO_LM); // copy x elements from global
// memory to local memory, storing them in address "row"

vector row_buffer = {0.0}; // initialize buffer to O
for(j from 0 to x/N) {

val += row[j] * A[j]; // rowl[jl is a vector of N floats
}

float val = 0.0;
for(k from O to N) {
val += vector_extract(row_buffer,k); // add up the final elements of the
// buffer

94

7.2. Cycle Modeling

res[i] = val;

}

In this function, it becomes clear which operations cost cycles to perform. There is a time cost M for
copying elements from the R-Blocks global memory to the local memory tiles, so they can be used
for parallel execution, another cost G for multiplying and accumulating the vector’s elements, and a
different cost F for extracting an element from the local memory to be accumulated in the final buffer
and transferred back to the global memory.

All of these costs are modeled by the total cost function:

2
Costh-(X-M—FE-G—FNf-E) (7.2.1)
N 2

This function, when we set the parameters M, G and E to values representing the real timing costs

of our system, and by only changing the X and Y dimensions, closely models all of our experimental

measurements from mapping different sizes of matrix multiplications on different architectures (Fig.

7.2.1). Therefore, we conclude that it is a good model of how the parallelization factor influences clock
cycles in our benchmarks.

1e6 Influence of Vector Size on Clock Cycles

4

512%512

512*1376
1376*512
1024*1024

L I N

4 8 16 32
Vector Size

Figure 7.2.1: Hlustration of how different matrix dimensions make use of parallelization

The problem is, that despite parallel matmul not being completely optimized in terms of dataflow, the
main slowdown lies in the extraction of elements from the local memories. The current library functions
in the R-Blocks development environment have glaring inefficiencies which cause them to have an O(N)

complexity relative to the vector size N, resulting in the NTZ - F term in the cost function.

Additionally, the current implementation of R-Blocks (at least at a simulation level) has a much smaller
global memory access time than it should, which also linearly skews the data. By adjusting both of
those factors, in an attempt to model the cycles in a properly working system (regarding memory
transfers) we increase the value of M and remove the quadratic dependency in the last term of the
cost function. Now the cost of accessing a local memory element is linear and the projection in Figure
7.2.2 has a completely different behavior than the actual observations.

The projected cycles steadily decrease with the increase of vector size, but there is an elbow point,
after which the diminishing returns cause the increase in hardware (parallel units) to not be justified.

95

Chapter 7. Results

1e7 Influence of Vector Size on Clock Cycles

1.6 1

1.4 1

1.2 1

1.0 1

0.8 -

Cycles

0.6

0.4

0.2 1 e 1024*1024
—— Projection

4 8 16 32
Vector Size

0.0

Figure 7.2.2: The projected cycles if the issues regarding memory accesses are dealt with

Actually fixing these inefficiencies is in the scope of future work, with research already being carried
out in this direction.

7.3 Area and Power Analysis
The bitstreams of the three architectures that were able to get mapped and routed in an RTL level

grid, generated from the process described in chapter 5, were synthesized in 22nm FD-SOI technology
with a maximum clock frequency of 200MHz determined experimentally.

3,00
2,50
2,00
Area
(m m2) 1,50
1,00
0.00 Scalar Vectord Vector8
Floating Point Units 0,01 0,05 0,08
m Other FUs 0,0756 0,2587 0,3393
B Memories 0,45 1,4383 2,187

Figure 7.3.1: Area analysis of the final IC

The resulting area and power numbers produced by the Synopsys Design Compiler are summarized
in Figures 7.3.1 and 7.3.2. In Figure 7.3.1 it can be observed that most of the chip area is occupied

96

7.3. Area and Power Analysis

80,00
70,00
60,00 -
Power SOl .
(mW) 40,00
30,00
20,00
10,00 Dl
0,00 Scalar Vectord Vector8
® Floating Point Units 1,13 5,62 10,33
Other FUs 11,53 21,75 21,61
Local Memories 0,00 24,50 36,00

Figure 7.3.2: Power analysis of the final IC

by memories. These consist of instruction memories contained in each of the CGRA’s fetch units
but, at a larger extent, they are the Local Memory tiles themselves. During design we strove to keep
the required local memory address space small, in order to prevent the memories from dominating
spatially. However, even with the strict constraints enforced, this is still an issue on our future work
radar.

The rest of the FUs including the FPUs scale linearly in terms of area, which is expected, and the FPU
does not induce a big area overhead, which deems the integration successful, at least by this metric.

In terms of power consumption, Figure 7.3.2 tells the story of how including and utilizing more local
memory tiles costs more than operating more FPUs (or more FUs for that matter). In the Scalar
architecture which makes no use of local memories, their power consumption is naturally zero, whereas
by including as many LM tiles as the vector unit size, in architectures Vector4 and Vector8, the power
rises dramatically. We can see that in both architectures more than 50% of the power is attributed to
local memory transfers, while the functional units’ consumption scales linearly.

The FPU tile accounts for approximately 10-15% of power usage, which is reasonable, considering most
of the operations happening are FPU dependent.

——(Q, K, V Matrix Calculation —e=Attention Block Matrix-Vector Multiplication

7,00E-07
6,00E-07
5,00E-07
EDP 4,00E-07 \
(Joules - sec) 3,00E-07
2,00E-07 \

1,00E-07

0,00E+00
Scalar Vectord Vector8

Architecture

Figure 7.3.3: Energy-Delay Product per Benchmark

Since we are interested in the energy efficiency of our design, and the power consumption of the IC,
the clock frequency and the total number of clock cycles for our specific benchmarks are all known, we

97

Chapter 7. Results

can use better metrics such as the Energy-Delay Product (EDP) to evaluate it.
Figure 7.3.3 illustrates the EDP trends for our 3 benchmarks as the degree of parallelization increases.

Interpreting these results is straightforward. The reduction in clock cycles due to parallelization is
significantly steeper than the corresponding increase in power consumption. As a result, the Energy-
Delay Product (EDP) decreases with higher degrees of parallelization, though with diminishing returns
beyond a certain point. This inflection point suggests that increasing the parallelization degree beyond
four offers little benefit in terms of efficiency and, given the current approach to accessing local memory,
may even be detrimental. Additionally, the increase in area cost when scaling from a vector unit size of
four to eight further reinforces that Vector4 represents the optimal trade-off for our current workloads.

A final observation is the significant impact of computation type on cycle reduction. Benchmarks
composed entirely of matrix-vector multiplications, particularly those with larger dimensions that
fully leverage parallel execution, exhibit a more substantial decrease in EDP. In contrast, benchmarks
that include both matrix-vector multiplications and nonlinear functions, which cannot be optimized
within this setup, experience a comparatively smaller improvement.

98

Chapter 8

Conclusion

C losing up this thesis, I would like to summarize the most valuable insights about the inner
workings of LLMs on the R-Blocks platform, restate this work’s contributions, but mostly provide
guidelines on future research avenues relating to this field.

8.1 R-Blocks Development

While being able to compile and run LLMs (or any other FP-dependent benchmarks) on the R-
Blocks co-design environment is a significant milestone, it also brings to light many of the platform’s
shortcomings and quirks.

Some of them we touched on, during the explanation of this work, such as the inefficiencies relating to
local memory accesses, the limitations regarding memory sizing and area, or the tool-flow optimizations
that are due (e.g. routing algorithm). Other issues either remain for future researchers to address or
were resolved in this work, but mentioning them could lead to unnecessary tangents that might detract
from a clear and focused presentation.

One of the best things to come from this work, I personally believe, is the illumination of the uncharted
territory that is the expansion of the R-Blocks co-design environment. In order to expand the tools
and hardware, one must first fully understand them. This understanding, and the methodologies and
procedures developed in this work will, hopefully, help guide other researchers to bigger and better
accomplishments.

8.2 LLMs on CGRAs

The main question we set out to answer was whether a CGRA platform such as R-Blocks could be
considered as an edge accelerator for LLM inference. Although a lot of progress was made towards
answering it, a final conclusive answer can not be given. Looking at the bigger picture, it is hard to
see CGRAs being a commercially viable candidate for this specific task in the near future.

CGRAs shine as domain specific accelerators for tasks that require some degree of circuit parameter-
ization to be executed efficiently. Although one could exploit some of the characteristics of LLMs to
make use of this property to some extent, there are still more viable alternatives with a head start in
terms of research and community support. GPUs have been heralded as the premier competitor in
this scene for years, with continuous hardware and software development backed by industry giants.

Despite all these, CGRAs, and specifically R-Blocks, offer a completely different approach; one that
focuses on ultra low power and efficient utilization of HW /SW co-design. As such, nobody can rule
them out as an edge alternative with certainty. And even then, trying to map this kind of applications
gives us valuable insights into their limitations, constraints and opportunities.

99

Chapter 8. Conclusion

8.3 Future Work

8.3.1 Continuing the Research on LLM mapping

This research opens up a lot of possible directions for future work. In order to expand this work
specifically towards the direction it is headed, one would first have to iron out a lot of the hardware
and tool-flow issues previously mentioned. Afterwards, with better simulation support, less constrictive
memory limits and the potential for bigger architectures, a researcher would have all the tools required
to optimize the mapping of LLMs on this platform. Many aspects of the dataflow can still be improved
upon, such as data reuse, redundancy elimination and memory management.

These optimizations will perhaps achieve energy efficiency metrics that push R-Blocks close to the
state-of-the-art, or more realistically provide even greater insights to what the bottleneck is on LLM
inference and how it could be overcome in similar architectures.

8.3.2 Approximate Computing

Another avenue of exploration, paved by the knowledge gained about expanding the R-Blocks environ-
ment, is infusing the co-design process with approximate computing elements. This could come in the
form of new Functional Units with approximate capabilities and their own ISA, which is a direction al-
ready explored by the Convolve project team at Microlab, NTUA, with promising preliminary results.
It could also come in the form of approximate algorithmic techniques that would be incorporated and
efficiently mapped to the reconfigurable hardware, perhaps in conjunction with the approximate units.

The possibilities are truly endless with a roadmap pointing the way towards the expansion and imple-
mentation of new R-Blocks tiles.

8.3.3 Architectural DSE

Additionally, a very underrated asset of the R-Blocks co-design environment is the ease with which a
programmer can define and experiment with different architectures. Being able to design and program
the reconfigurable tiles in any way imaginable gives the engineer the freedom to create hardware truly
fit for the software mapped to it.

In our exploration, which was mostly a proof of concept for LLM architectural exploration, we only
looked into the differences in vector unit sizes, while keeping the basic structure of the scalar archi-
tecture untouched. What if more scalar FPU tiles could deliver a bigger speedup with less power
consumption? What if the interconnect network could be relieved of the congestion by including more
register file FUs?

All these questions can be answered relatively easily with the manual architectural design approach
we followed in this work, but this search could also be augmented with methodical automation. The
prunner tool mentioned in chapter 5 already provides some automation capabilities, and the entire
flow could also be expanded to include automatic architecture generation, which could perhaps also
be software- and resource-aware.

This would mean that the architecture generator would take into consideration all of the design limita-
tions we wrestled with and would produce an architecture optimized for a specific benchmark (perhaps
with help from the programmer, with high-level directives), and with area and power constraints in
mind.

8.3.4 Compiler Support

The exploration principles described above, of course, rely on the high-level architecture targeting the
compiler to work. This compiler, as explained before, was designed for Transport Triggered Architec-
tures, and R-Blocks is only one of the platforms making use of it. This means that it is not entirely
fitted for compiling code on R-Blocks architectures efficiently, and could use a lot of optimizations.

100

8.3. Future Work

Experimental observations suggest that manually optimized assembly, directly executed on R-Blocks,
could achieve a 2x speedup compared to compiler-generated code. This leaves a lot of performance on
the table since multi-stage pipelining and parallel execution can’t be fully taken into consideration by
the scheduler and end up sub-utilized in the final code.

Since fully swapping out the compiler is time costing, future research could focus on improving the
current library support and underlying scheduling decisions underpinning all of this development.

8.3.5 Final Words

For anyone interested in continuing this promising research, know that a treasure of knowledge awaits,
and I hope that you recieve as much help and guidance as I did from the members of Microlab, NTUA,
who I would like to, wholeheartedly, thank again for their invaluable contribution.

101

Chapter 8. Conclusion

102

Bibliography

(1]
2]
Bl
4]

[5]

[6]

7]

18]

19]

[10]

[11]

[12]

[13]

[14]
[15]

A. Vaswani and N. S. et al., “Attention is all you need,” 2017.
T. B. Brown, B. Mann, and N. R. et al., “Language models are few-shot learners,” 2020.
H. Touvron and T. L. et al., “Llama: Open and efficient foundation language models,” 2023.

DeepSeek-Al, D. Guo, and D. Y. et al., “Deepseek-rl: Incentivizing reasoning capability in llms
via reinforcement learning,” 2025.

S. Jamil, M. J. Piran, and O.-J. Kwon, “A comprehensive survey of transformers for computer
vision,” 2022.

S. Latif, A. Zaidi, H. Cuayahuitl, F. Shamshad, M. Shoukat, and J. Qadir, “Transformers in speech
processing: A survey,” 2023.

J. Abramson, J. Adler, J. Dunger, R. Evans, T. Green, A. Pritzel, O. Ronneberger, L. Willmore,
A. J. Ballard, J. Bambrick, et al., “Accurate structure prediction of biomolecular interactions with
alphafold 3,” Nature, pp. 1-3, 2024.

G. Theodoridis, D. Soudris, and S. Vassiliadis, “A survey of coarse-grain reconfigurable architec-
tures and cad tools: Basic definitions, critical design issues and existing coarse-grain reocnfigurable
systems,” Fine-and Coarse-Grain Reconfigurable Computing, pp. 89-149, 2007.

B. de Bruin, K. Vadivel, M. Wijtvliet, P. Jaéskeldinen, and H. Corporaal, “R-blocks: an energy-
efficient, flexible, and programmable cgra,” ACM Trans. Reconfigurable Technol. Syst., vol. 17,
May 2024.

P. Jadskeldinen, T. Viitanen, J. Takala, and H. Berg, HW/SW Co-design Toolset for Customiza-
tion of Exposed Datapath Processors, pp. 147-164. Springer International Publishing, 2017.

M. Wijtvliet, J. Huisken, L. Waeijen, and H. Corporaal, “Blocks: Redesigning coarse grained
reconfigurable architectures for energy efficiency,” in 2019 29th International Conference on Field
Programmable Logic and Applications (FPL), pp. 17-23, 2019.

L. Liu, J. Zhu, Z. Li, Y. Lu, Y. Deng, J. Han, S. Yin, and S. Wei, “A survey of coarse-grained
reconfigurable architecture and design: Taxonomy, challenges, and applications,” ACM Comput.
Surv., vol. 52, Oct. 2019.

H. Corporaal, Microprocessor Architectures: From VLIW to Tta. USA: John Wiley & Sons, Inc.,
1997.

H. Touvron and L. M. et al., “Llama 2: Open foundation and fine-tuned chat models,” 2023.

R. Prabhakar, Y. Zhang, D. Koeplinger, M. Feldman, T. Zhao, S. Hadjis, A. Pedram, C. Kozyrakis,
and K. Olukotun, “Plasticine: A reconfigurable architecture for parallel paterns,” SIGARCH
Comput. Archit. News, vol. 45, p. 389-402, june 2017.

103

Bibliography

[16] D. Koeplinger, R. Prabhakar, Y. Zhang, C. Delimitrou, C. Kozyrakis, and K. Olukotun, “Auto-
matic generation of efficient accelerators for reconfigurable hardware,” in 2016 ACM/IEEE 43rd
Annual International Symposium on Computer Architecture (ISCA), pp. 115-127, 2016.

[17] O. Akbari, M. Kamal, A. Afzali-Kusha, M. Pedram, and M. Shafique, “X-cgra: An energy-efficient
approximate coarse-grained reconfigurable architecture,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 39, no. 10, pp. 2558-2571, 2020.

[18] S. A. Chin, N. Sakamoto, A. Rui, J. Zhao, J. H. Kim, Y. Hara-Azumi, and J. Anderson, “Cgra-
me: A unified framework for cgra modelling and exploration,” in 2017 IEEE 28th International
Conference on Application-specific Systems, Architectures and Processors (ASAP), pp. 184-189,
2017.

[19] O. Ragheb, S. Wicklund, M. Walker, R. Beidas, A. Ragab, T. Yu, and J. Anderson, “Cgra-me 2.0:
A research framework for next-generation cgra architectures and cad,” in 2024 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp. 642-649, 2024.

[20] Y. Luo, C. Tan, N. B. Agostini, A. Li, A. Tumeo, N. Dave, and T. Geng, “Ml-cgra: An integrated
compilation framework to enable efficient machine learning acceleration on cgras,” in 2023 60th
ACM/IEEEFE Design Automation Conference (DAC), pp. 1-6, 2023.

[21] H. Uetani and Y. Nakashima, “Implementation and evaluation of llm on a cgla,” in 202/ Twelfth
International Symposium on Computing and Networking (CANDAR), pp. 252-258, 2024.

[22] Y. Mao, X. Gao, J. Lou, Y. Qiu, W. Yin, W.-S. Luk, and L. Wang, “Cfeact: A cgra-based
framework enabling agile cnn and transformer accelerator design,” in 2024 34th International
Conference on Field-Programmable Logic and Applications (FPL), pp. 213-219, 2024.

[23] R. Usselmann, “Opencores fpu.” https://opencores.org/projects/fpu, 2009. [Ounline; accessed 4-
March-2025].

[24] J. Hauser, “Berkeley softfloat.” http://www.jhauser.us/arithmetic/SoftFloat.html, 2017. [Online;
accessed 5-March-2025].

[25] K. S. Kalyan, A. Rajasekharan, and S. Sangeetha, “Ammus : A survey of transformer-based
pretrained models in natural language processing,” 2021.

[26] N. Rane, “Transformers in material science: Roles, challenges, and future scope,” Challenges, and
Future Scope (March 26, 2023), 2023.

[27] N. Geneva and N. Zabaras, “Transformers for modeling physical systems,” Neural Networks,
vol. 146, pp. 272-289, 2022.

[28] J. Jiang, L. Ke, L. Chen, B. Dou, Y. Zhu, J. Liu, B. Zhang, T. Zhou, and G.-W. Wei, “Trans-
former technology in molecular science,” WIREs Computational Molecular Science, vol. 14, no. 4,
p. €l725, 2024.

[29] R. Hartenstein, A. Hirschbiel, M. Riedmuller, K. Schmidt, and M. Weber, “A novel asic design
approach based on a new machine paradigm,” Solid-State Circuits, IEEE Journal of, vol. 26,
pp- 975 — 989, 08 1991.

[30] S. H. Gerez, S. M. H. de Groot, E. R. Bonsma, and M. J. M. Heijligers, Overlapped Scheduling
Techniques for High-Level Synthesis and Multiprocessor Realizations of DSP Algorithms, pp. 125—
150. Boston, MA: Springer US, 1998.

[31] B. Mei, S. Vernalde, D. Verkest, H. D. Man, and R. Lauwereins, “Adres: An architecture with
tightly coupled vliw processor and coarse-grained reconfigurable matrix,” in International Con-
ference on Field-Programmable Logic and Applications, 2003.

[32] V. Baumgarte, G. Ehlers, F. May, A. Niickel, M. Vorbach, and M. Weinhardt, “Pact xpp—a
self-reconfigurable data processing architecture,” J. Supercomput., vol. 26, p. 167-184, Sept. 2003.

104

Bibliography

[33]

[34]

[35]

[36]
[37]
[38]

[39]

[40]

[41]

[42]
[43]
[44]

[45]

[46]

[47]

M. A. Watkins, T. Nowatzki, and A. Carno, “Software transparent dynamic binary translation
for coarse-grain reconfigurable architectures,” in 2016 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pp. 138-150, 2016.

N. Clark, M. Kudlur, H. Park, S. Mahlke, and K. Flautner, “Application-specific processing on a
general-purpose core via transparent instruction set customization,” in 37th International Sym-
posium on Microarchitecture (MICRO-37°04), pp. 30-40, 2004.

M. J. Flynn, “Some computer organizations and their effectiveness,” IEEE Transactions on Com-
puters, vol. C-21, no. 9, pp. 948-960, 1972.

M. Budiu and S. C. Goldstein, “Pegasus: An efficient intermediate representation,” 2002.
M. Budiu and S. C. Goldstein, Spatial computation. PhD thesis, USA, 2003. AAI3126922.

C. A. R. Hoare, “Communicating sequential processes,” Commun. ACM, vol. 21, p. 666—677, Aug.
1978.

G. Kahn, “The semantics of a simple language for parallel programming,” in IFIP Congress, 1974.

K. Vadivel, B. De Bruin, R. Jordans, H. Corporaal, and P. Jadskeldinen, “Prebypass: Software reg-
ister file bypassing for reduced interconnection architectures,” in 2022 25th Euromicro Conference
on Digital System Design (DSD), pp. 157-164, 2022.

K. Vadivel, R. Jordans, S. Stujik, H. Corporaal, P. Jadskeldinen, and H. Kultala, “Towards efficient
code generation for exposed datapath architectures,” in Proceedings of the 22nd International
Workshop on Software and Compilers for Embedded Systems, SCOPES '19, (New York, NY,
USA), p. 8689, Association for Computing Machinery, 2019.

X. Amatriain, A. Sankar, J. Bing, P. K. Bodigutla, T. J. Hazen, and M. Kazi, “Transformer
models: an introduction and catalog,” 2024.

R. Eldan and Y. Li, “Tinystories: How small can language models be and still speak coherent
english?,” arXiv preprint arXiv:2305.07759, 2023.

A. Karpathy, “karpathy/llama2.c.” https://github.com /karpathy/llama2.c, 2023. [Online; ac-
cessed 27-February-2025].

R. Prabhakar, Y. Zhang, D. Koeplinger, M. Feldman, T. Zhao, S. Hadjis, A. Pedram, C. Kozyrakis,
and K. Olukotun, “Plasticine: A reconfigurable architecture for parallel paterns,” in Proceedings
of the 44th Annual International Symposium on Computer Architecture, ISCA 17, (New York,
NY, USA), p. 389402, Association for Computing Machinery, 2017.

R. Prasad, “An ultra-low-power CGRA for accelerating Transformers at the edge.” working paper
or preprint, Jan. 2025.

J. Li, Y. Dai, Y. Hu, J. Li, W. Yin, J. Tao, and L. Wang, “Transmap: An efficient cgra mapping
framework via transformer and deep reinforcement learning,” in 2024 IEEFE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW), pp. 626-633, 2024.

105

	Περίληψη
	Abstract
	Ευχαριστίες
	Contents
	Figure List
	Table List
	Εκτεταμένη Ελληνική Περίληψη
	Εκτεταμένη Ελληνική Περίληψη
	Εισαγωγή
	Θεωρητικό Υπόβαθρο
	Προγραμματιζόμενες Αρχιτεκτονικές Μικρού Επιπέδου Λεπτομέρειας (CGRAs)
	R-Blocks
	Μεγάλα Γλωσσικά Μοντέλα

	Σχετική Έρευνα
	Plasticine
	X-CGRA
	CGRA-ME
	ML-CGRA
	CGLA-IMAX3
	CFEACT
	Σύνοψη

	Επέκταση
	Επέκταση Υλικού
	Επέκταση Λογισμικού και Εργαλείων

	Απεικόνιση Εφαρμογών
	Ορισμός Αρχιτεκτονικών
	Προετοιμασία Κώδικα
	Παραλληλοποίηση Πολλαπλασιασμού Πινάκων

	Αποτελέσματα
	Ανάλυση Απόδοσης
	Μοντελοποίηση Κύκλων Εκτέλεσης

	Επίλογος
	Επέκταση του περιβάλλοντος R-Blocks
	LLMs σε CGRAs
	Approximate Computing
	Εξερεύνηση Αρχιτεκτονικών
	Τελικές Σκέψεις

	Introduction
	Theoretical Background
	Coarse-Grained Reconfigurable Architectures (CGRAs)
	General Theory on CGRAs
	R-Blocks

	Transformer Architectures and Large Language Models
	Transformer
	Large Language Models
	Meta's Llama2

	Related Work
	CGRA Architectures
	Plasticine
	X-CGRA
	CGRA-ME
	Conclusion

	Transformer Acceleration Using CGRAs
	ML-CGRA
	IMAX3
	CFEACT
	ULP CGRA for Transformer Acceleration at the Edge
	TransMap
	Summary

	R-Blocks Expansion Methodology
	Hardware Expansion
	The Floating Point Unit
	The FPU R-Blocks Tile

	Toolset Expansion
	Instruction Set Architecture
	Blocks Translator
	Hardware Generation

	LLM Mapping Methodology
	Architecture Definitions
	Benchmark Code Preparation
	Matrix Multiplication Vectorization

	Results
	Performance
	Cycle Modeling
	Area and Power Analysis

	Conclusion
	R-Blocks Development
	LLMs on CGRAs
	Future Work
	Continuing the Research on LLM mapping
	Approximate Computing
	Architectural DSE
	Compiler Support
	Final Words

	Bibliography

