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FPGA Design and Analysis of a RISC-V Out-Of-Order GPU
™™g Maplag ZépPoa

Xapn oTig e€aLpeTinég LITOAOYLOTIKEG EMOOCELS KAl TNV ATOOOTIKOTNTA TOUG, OL
Movadeg EmteEepyaciag Ipagpucdv (GPUs) éxovv edparmaoel tn dEom TOUG WG 1) *OPLPOL-
ot TAATPOPHA YL TNV ETLTAYLVOT] EQUPHOYDV YeVIKOU oxomo. [lap” 6N avtd, éva v-
TOGVVOAO TV TeAevTalwV Telvel va Topovoitalel pétpleg entdocelg. To TponyoupEVKG
npotadév oxnpo extéleong Light-weight Out-Of-Order GPU (LOOG) avtipetwmilet
avtod to {RTnpa evioybovtag tov NN vrtapyovra apariniiopd ce Eninedo Nipotog
pe tnv expetdAlevon tov eyyevoug HoaparinAiiopov oe Eninedo Evtolwv. IMaporo
mov 10 LOOG éxeL povrehomoindel pe tn yprion epyoreinwv mpocsopoiwong GPU oe
TPOTYOUHEVEG HEAETEG, OL VAOTIOLNGELG QVTEG VITEPEPALV, TTEPQL OTTO TNV ALPYT) EXTENECT)
TOV EQAPHOYRDV, ATTO TEPLOPLOPEVT) AUPIPELX GTOV VTTOAOYLOHO TNG HATOVOALCHOHEVNG
Evépyelag ko otnv extipnon tov xpicytov povoratiod tng oxediaomnc.

H mapotdoa epyacia mpoteivel tnv evewpdtwot tov LOOG ce RTL oyediaon pog
GPU nan cvyrexpipéva otnv éxdoon 2.0 tng Vortex GPU , pix oxediaon avoixtod
1O HATAAANAN Yo avamTugn oe TAatpoppes FPGA . T va Statnpndei To #épdog
an6doong tng LOOG ot Paciopévn oe RISC-V cwAfjvwon tng Vortex , 1 enéxtoon
oxeOLAleTOl OYOAXCTIHA OOTE VO CUUTANPOVEL TNV VITAPYXOVCU HIUPOUPXLTEXTOVL-
n1). Emuthéov, die€dyeton pia ohoxAnpwpévn diepedvnon tov PeATioTomolcewy oye-
dlaong yloe TNV evioxvon Twv emdOGEWV HE TAVTOYXPOVO TEPLOPLOHO TNG GUVOALKTG
empapuvong oe Empdvero o Ioyo.

[Ipwv amd v melpopatinn oEloAOynon exteAeltol AETTOPEPTG XOXPOXTIPLOROG
21 epappoywv mov mpoc@épel 1 Vortex pe PAon Tr CUUTEPLPOPL TOVG WG TTPOG TLG
1aJVOTEPT|CELG TTOV TTPOUVITTOLY HOTA TNV EXTENEGT), EMLTPETOVTOG T OWOTH dlXGTA-
GLOAOYNOT) TNG HIXPOXPYLTEXTOVIKTG G€ EVay VPV XWPO oxediaong mov vitooTnpileTot
amod ) dvvatotnta Stopdppwong g Vortex . Ta amoteAéopata xatadeivoovy éva
Héco uEPdOG emTaYLVONG €wG KoL Tepimov 23,5%, SLaTnpOVTOG TOPAAANAA XOWT-
Aotepa ywopeva Emgpavelac-Kadvotépnong ot Ioyvog-Kadvotépnong oe clyrpion
He TNV apyn apyttextovinn tng Vortex yio SLipopovg cuVSLAGHOUG TUPAHETPMV.

AgEerg Khewdud: Yyning Enidoong Yrmoloyiopog, GPU Muxpoapyttexpovinr, E-
ntéleon Extog Zepac, RISC-V, Exedioon RTL, ITAateoppa FPGA, E€opoiwon YAuos
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FPGA Design and Analysis of a RISC-V Out-Of-Order GPU

by Maria ZERvA

Owing to their exceptional computational performance and cost efficiency, GPUs
have solidified their status as the premier platform for accelerating general-purpose
workloads. Nonetheless, a subset of these workloads continues to exhibit performance
stagnation. The previously proposed Light-weight Out-Of-Order GPU (LOOG) execu-
tion scheme addresses this issue by augmenting conventional Thread-Level Parallelism
with the exploitation of inherent Instruction-Level Parallelism. Although LOOG has
been modeled using GPU simulation tools in previous studies, these implementations
have suffered from limited accuracy in power consumption and critical path estima-
tions, in addition to slow execution of applications.

To overcome these limitations, this thesis proposes integrating LOOG into an RTL
GPU framework and specifically Vortex GPU version 2.0, an open-source design that
is well-suited for deployment on FPGA platforms. To preserve LOOG’s performance
gain in Vortex’s RISC-V-based pipeline, the extension is meticulously designed to com-
plement the existing micro-architecture and the operations it supports. Furthermore,
a comprehensive investigation of design optimizations and trade-offs is conducted to
enhance performance while constraining the overall Area and Power overhead.

A detailed characterization of 21 Vortex workloads based on their stalling behav-
ior is executed previous to the experimental evaluation, enabling the right-sizing of the
micro-architecture across a broad design space that is supported by Vortex’s configura-
bility. The results demonstrate an average speedup of up to approximately 23.5%, while
maintaining lower Area-Delay and Power-Delay products compared to the in-order
Vortex in various configurations.

Keywords: High Performance Computing, GPU Micro-Architecture, Out-Of-Order
Execution, RISC-V, RTL Design, FPGA, Hardware Evaluation
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KepdAroro 1

Extetapévn EAAnvin Hepiinyn

1.1 Ewoayoyn

O Gordon E. Moore 1o 1965 mpoéfAefe otL 1) TuorvoTnTa TWV TPaviioTOop oTA OAO-
nAnpopéva xordopata da Simhaoialdtav wdde dvo xpovia [1]. Avth 1 tdomn, mov
TpoPodoTrInKe amd TNV xApaxwor tov Dennard , moapépeive aAndng o Stopdppwoe
TNV TeXVOAOYT] aVATTTUEN HEXPL TTPLV oo Ttepimov eixoot xpovia [2]. Tote, opwg,
1o OG 1 TUKVOTN T TNG HarTarvallonopevng loxvog avEavotav Adyw TV TEPLOPLOHOV
NG TAONG TPOPOSOGLAS KL TNG TTOAVTAOKOTNTAS TNG HATOOHEVTG O XTOMUO ETTLTTE-
do, eppovictnue 1 emoyxn Tov «Xxotewvov Iupitiov» [3]. H televtaio ovopdotnie
£TOL XoJOG amantel TOAAE TPAVEICTOP PG GLUOKELTIG VO TTOXPAPEVOVV OLVEVEPYR OLVEL
o TApaTa 1} va AeLTovpyolV o€ PHELWHEVES GUYVOTITEG.

Ye Topeig 0mwg n Texvnt Nonpoovvn ko 1) Avaivon Aedopévwv, or GPUs éyvav
Ol ETUPATEGTEPOL ETLTAYVVTEG LALKOV, SLUTTAN pOdvovTag TG Kevipuég EmeepyooTi-
néG Movadeg yLor TNV aoTeAeOPATINT XAAVYT] TV DITOAOYLOTIXOV QTTOUTHOEWV. XTLG
HEPEG HOG, TTPOUELPEVOL VO EETEPVODY TOVG AVOPEPTEVTOVG TTEPLOPLOHOVG, OL OPYLTE-
UTOVIKEG TIPETIEL VAL EVOWOHATOVOUV TOGO TNV TOWIAOHOPPLX AOYLGHLKOD OG0 KoL TNV

eTEPOYEVELDL 6TO LAWO [4].

1.1.1 Tevwuo oxonov GPUs

Ou Kevtpwég Movadeg EmeEepyaciog (CPUs) éxovv e€eliydel ava ta xpovia wote
va arotelobvton otd pepeots (Senddeg) TUPTVES TTOL Y PTOLHOTOLOVY TTPOTYHEVEG
TEXVIMEG YLOL YPIYOPT) EXTEANECT] OUOHO UL "OVOUOADV EPUAPUOYDOV, OHAVOVIOTWV
dNAadn g mpog TIg evToAég Tovg. Amo TtV AAAn, ot GPUs , apyd oxediocpéveg
ylor TNV ATO800T YPOPUOV, GUVTEAOVVTOL AITO VX GUVOAO TTEPLOGOTEPWV (GLVITWG
XIMASWV) TAODGTEPWVY TUPTIVAV, OL 0TT0L0L EXTEAOVV TLG 1dLeG TTPAEELG TE SLopOopeTIHdL
dedopéva, pe amotéleopa va vepéxovv évavtt twv CPUs oe “rwovovinég”™ doov apopi
v ene€epyacio dedopévav xal LITOAOYLOTIKG EVTOVES e@appoyEg [5]. Me tnv mdpodo

Tov xpovov, oL GPUs éywvav mo evEAKTEG KoL TAEOV elval WOVEG VoL ETTLTOVUVOLY
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EQPUPUOYEG YEVIXOD GHOTTOV, TTOV TTPOEPYOVTOL OTTO XWDPOULG OTTWG TN UNyavixn padnon,

TIG EMLOTNHOVIXEG TIPOCOHOLOOELS xaL TNV ene€epyacia Pivteo.

1.1.2 Avadrapoppacipo YAuro & FPGAs

To etepoyevi} LITOAOYLOTHG GLOTHHAT TTEPLAAPPAVOLY CUX VA e€eldLeLIEVOLG ETTL-
TOXLVTEG LAWKOV, 0mtwg OAloxAnpopéva Koxhopata Ewdwmng Egappoyng (ASIC) xou
Yvortoryieg Hpoypoppartilopevwv ITvAdv (FPGA). Eve ta ASICs mpoo@épouy vymAég
emOOCELG KL YOUNAT LoXD, cvuvodevovtol amtd LYNAO ®O0TOG oYeSLATHOD KoL KO-
taoxevng. Ta FPGAs, amd tnv GAAn mAevpd, moapéxouvv eveAlEio xo YapUnNAd ©0GTOG
oxedioong, Tapd TG TPOUANGELG OTTWG 1) AVENHEVT) ETLPAVELX TTUPLTIOV HOrL O TTOAVTAO-
1OG TTPOYPOUPPATIONOG [6]. Adyw Tng duvartdtnTag avadiopdpewong, Toa FPGAs eivon
Wovid yo e€opolwot) LAY koL avAALGT) eTLOOCEWV, TPOGPEPOVTOAG TT) SLVATOTNTA

ylo AemtTopepelc SOULHEG VEDV apYLTELTOVIXOV [7].

1.1.3 BeAtiwon tng Anodoong evog tupnva pe To XxNpo Extéde-
ong LOOG

Eved ot GPUs enwgelodvtal yeviud and tov Iapariniiopd oe Eminedo Nfpoartog
(TLP) , opiopéveg epappoyég yeviuot oxomot epgavifovv meplopiopévo TLP xan ao-
TUyXAvoLV va alomotjoouy amotelecpatind tovg topovg tng GPU . To Light-weight
Out-Of-Order GPU (LOOG ) [8, 9] PeAtidvel Tig emddoelg etodyovtog HapoaAiniiopd
Emuédov Evtoddv (ILP) otoug muprveg tng GPU . Ilapadooiond, ot GPU exteAolv Tig
EVTOAEG JLE TN GELPA TOV TTPOYPAUHATOG, TAPAXOAOLIOVTAG TIG eEapTroelg Sedopévwv
TOV UOTOYXWPNTOV He TN Xpnor Scoreboarding. To LOOG enavaypnotpomotet Ta Col-
lector Units (CUs) tng GPU wg Reservation Stations atd tov adyopidpo tov Tomasulo
, ELOQYOVTOG TN HETOVOHAGLO HOTAXWPNTOV KoL TNV EEXWPLOTH vadl&Taln eVTIOADV
HVARNG Yo va emitpéel TN extédeon Extdg Seipdg, odnywvrag oe PeATiopévn To-

XOTNTX TV EPAPHOY®V KoL arodoTHOTEPT) Xprion TV mopwv g GPU .

1.1.4 E&opoiwon GPGPU pe Vortex-GPU

T v akloroynon véwv puepoapyttextovinedv GPUs, amoutovvtal epyoieia e€opo-
lwong VAoL xat mpocopoiwong. IMAaioio 6w To Accel-Sim [10] povteAomolovv
v Anodoon g GPU oto Aoylopud, aAdd yio tnv e€opoiwon LAOD, oL emAOYEG
elvor weploplopéveg. To Vortex-GPU , éva mhaioio RTL oyedioong avowtod uddwa
Baoiopévo oe RISC-V , vtootnpilet e€opoiwon GPGPU oe mAatpdppeg FPGA [11, 12].
To Vortex emexteivel tnv Apyrtextovinr] Xvvolov Evtodov tov RISC-V cupmepiiog-
Bavovtag yopoutnprotind piog GPU , emTpETOVTOG TNV €PELVA KOL TOV TTELPOHATIOHO

pe duapopeg mapopétpovg g GPU ot éva meptfdAdov avoutod nddnat.
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1.1.5 Avooxromnon tng Tpotoong

To potadév oxnpa extéleong LOOG emideucviel vimooyopeves PeATioOoeLg emd0GEwV
no extipnoelg yio tnv Empavela tng cvoxevng xal tnv xatavaiiorodpevn Ioyt. Q-
0T660, péxptL oTiypng, To LOOG éxel povrelomoindel povo ce epyaheia TpOoOpHOimaTg
(GPGPU-Sim xau Accel-Sim ), 67tov ot extiprioelg Paocilovtar ypoppind *AHOHOVHEVEG
TIES HoD MG TpoTtoToteital 1) apyitextovinn tng GPU - pe amotéleopa amoxAicelg oe
oOYXPLOT] HE Pl TTPOYHTIHT VAoTToineT vAwoL. Emiong, avtd ta epyaleio dev mo-
péxovv extipnomn g xpiciung SLdpopng TG apXLTEXTOVIXNG, 1) omoia xadopilel TN
ovyvotnta pohoytov g GPU .

[ va wahvgdet avtd T0 KEVO, TTpoTeivoupe v vAomoinon Tov LOOG ce mpaypo-
Twd VAWO pe Aemttopepr) RTL meprypoagr) Tov pnyaviopol Tou YproLLoToLdVToS Hio
yAwooa meptypagng Aot (HDL) 6mtwg n SystemVerilog . ITapdAo mov pio tétoto v-
Aomoinon yux e€opoiwot oe FPGA mapovoidlel meploplopotc 66ov apopd To péyedog
noL TN oLyxpLopoTTA pe epmopnéc GPUs , mpoo@pépel oapreTd TAEOVEUTIHATA, OTTWG
oL TorX OTEPOL XPOVOL EXTENEDTC, 1] PEATLOHEVT) TOPATNPNOLUOTNTA GE ETITESO CTHATOC.
Axopa, 1 duvatotnta avadiopopewong Twv FPGA dievpivel Tov xdpo oxediaong e-
TLTPETOVTAG TN HEAETT) SLopOpwV peyed®v xat cVPPLpacpcdv. Avtr 1 Tpocéyylorn do
amodwoel aupléotepeg exTIPoELS NG xatavilwong Evépyelag xow tng xprong twv
TOPWV, TTOL ELVOL EVOELUTIUT TNG ETLPAVELXG TNG TEAUNG CUGKHELTG.

Qg apyn g oxedioong emAéyovpe Tnv éxdoomn 2.0 tov mAouciov Vortex GPU ,
1ol g elvat avortod k@dwa xou faciopévn oe RISC-V , addd ua Adyw Twv emAoyov
TOPOUETPOTTOINGTNG (WG TTPOG TA VARAT 0tVE Warp, Tot Warps avq JTUPTVeL Ko ToL jLe-
YEIN TV Stapdpwv oTolyeiwv), oL 0oieg SlevpPOVOLY TEPALTEPW TO XWPO oxediaoNg.
H mpocéyyion pog mepthopfdvel Tnv Tpomonoincn Tov oXHATOS CWARVOONS TNG
Vortex evowpatdvovtag mpota éva otddio ZvAloyng Optopdtwv (Operand Collect)
e€omAopévo pe Collector Units -éva yopoutnplotind mov amovctdlel amd Tov apytL-
10 oxediaopo, oe avtideon pe tig epmopwég GPU - xow 0T cLvEXELX TNV EQAPHOYT
TV PNYoviopov yio extéleon Extog Zeipag tov LOOG , mpocappocpévev oto xo-
POUTNPLOTIHA TNG ap)LTeEXTOVIXNG TNG Vortex . XTn cvvéyela, dlepevvovpe dLdpopeg
BeAtioTomouoelg ko LPPLBACHODG OGOV aPopd TIG EMLOOCELG KL TOVG TTEPLOPLOHOVG
7oL apopovv edind ta FPGA |, 0wg 1 oupgdpnon Adyw tng SpopoAdynong ot ot
emPopOvoelg amd T XPrion Twv TOPwV.

[ v melpopatiny oa€lodoynon, yapaxtnpicope 21 epappoyég, apov TG opodo-
TOLCOle O TTEVTE HATNYOPieg e PAoT TIG TNYEG KXDVOTEPNGNG TOVG OTAV EXTENO-
vvton oty Pacwn apyltextovir g Vortex . Avtr) 1) Ta&lvOUNon Hag emLTPETEL VoL
oploovpe pe axpifela Tig e@oppoyég o eival mo evaiodnteg oto LOOG .

Télog, extedovpe pa avalvon tng apyttextovinrig LOOG-Vortex yia tov tpocdio-
PLOHO TV PEATIOTOV GXESLACTIHMOV TUPAUETPMOV KOl OLHOPPDCEWY EVTOG TOL XDPOL

oxedioong pag. H akohdynon pog o cuyrpivel o emitevydévra xépdn 6cov apopa
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v entidoon kot Tig emPapOVoeLg TNG XPrIoNG TV TOPWV Kot THG xatavaiwaong Evép-
yelog e exeiveg tng apy g Vortex . Ta amoteAéopata vtodewevoovy péon PeAtioon
TV emdOcenV €wg kot 23,5%, emPapuvon NG emLPAVELNS TOL KLUpiveToL oo 4,5%
¢wg 27,5% (pe mepimov 5% oTIG ®aADTEPEG SLAPOPPHOCELG) KOl HEIWTT) TOL YLVOUEVOD
Ioxvoc-Kadvotépnong - mov avtiotolyel otnv xatavalwon Evépyelag g cvoxreung

- ¢wg nou eplmov 17% o€ oxéon pe v apyun oxedlaom.

1.1.6 Xvvewogpopég tng Epyaciag

H rapovoa epyacio mopoucldlel apueTég GLVELGPOPES GTOV TOPEX TG OPYLTELTOVIXNG

twv GPUs . O xuplotepeg amd avtég meplhopfavouv:

« Erentetapévn Avvarotnta Ixyvnidrnong: Iopoxn Aemtopepdv pnxoaviopoy
LYVNA&Tnong e oxpifeto ®OXAoL yiot OAQ TX TPOCTLIEPEVA GTIHATO GTNV EXTENE-

on epappoywv oe tpocopoiwon RTL .

+ Néor petpntég emdocewv: Elcaywnyn peTpnTodV endOcemv Yo TPOGOHOLWwOT)
RTL xou e€opoiwon oe FPGA , pe 0t0)0 T 6LUAAOYT OTATIGTIKOV GTOLXELDV KL

HETPNOEWV KT TN SLApHELX EXTENEGTG, OTIWG:

Aertovpyieg avlyvwong xot eyypaeng apyelov xataywpnTov

Enavatafivopnpéveg eviolég & amooTAOELS ETAVATOELVOUNOTG

Kadvotepnoeig mov e€aptovror and to oxnpa extéheong LOOG

Xprjon twv Collector Units & mepiodog avddeong Tovg oe eVTOAEG

Xprion tov RRS & mepiodog avadeong twv mediwv Tov e eVTOAEG

« Xapantnpiopog epappoy®dv tng Vortex : Opadomoinon twv epaproymy a-
EloAoynong tng Vortex pe Paon Tig mnyég xaduoTeprioe®V TOVG KoL OVAALOT)

NG oLPIEPLPOPAG rdde opddag oto LOOG-Vortex .

« Evpeon tov BéAtictov Topapétpov tov LOOG ywa tn Vortex GPU 2.0:
BeAtiotomoinem tov LOOG yio TV omtoTeAeGHATINY EVOOPUATWOT] KoL 0ELoTTo-
inon twv Topwv tng éxdoong 2.0 tng Vortex GPU , 660V apopd TIG HETPIHES:

— Amoddoon
- Xpnowomnoinon mopwv tov FPGA
- Kartavérwon Ioxvog tov FPGA
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1.1.7 Aopn tng Epyacioag
To vrtdoAouro g mapovoug epyaciog dapdpaivetol wg eEng:

« To Kegpdahato 3 epfadivvel oto Jewpntind vmofadpo tov mapdAiniov violoyt-
ooV, mepthapPavovtag otpatnywég yio tnv aflomoinomn tov HaparinAiiopoo,
TIg Paocnég apxég tng apyrtentovinng twv GPUs yevikod oromob xal To avo-
Sropoppoaoyo vAwo. Iapovoidlel eniong to mAaicto Vortex RTL ko o oxfipo
LOOG vy extéheon Extog Zetpdg, oo omola elvo XEVTPHA YL TNV Tapovea

HEAETT).

« To Kepdaharo 4 Siepevva tnv vapyovon épevva mov oxetiletan pe Tov opoi-
AAopod oe Eninedo Eviodwv otig GPU xou ta mAaiow RTL mov e€opotdvouv
yevuot oxomot GPUs , emionpaivovtag Tig mpooddoug kot evTomilovTag To KeVA

OTO GMHEPLVO TOTTIO.

« To Kepdhowo 5 meprypdpel AemTOPEPOS TNV EVOWHATWOT Tov oxfipatog LOOG
evtog g GPU Vortex , tn Sopr Twv TpooTIIéREVOV GTOLXELWV HOL TO TTAT)PEG
oxNHo extéleong. Alepeuva eTIONG TIG ATTAPALTNTES TTPOCAPHOYEG Kot PeATL-
OTOTOLNGELG TNG LAOTOINGNG HatL, TEAOG, Yorpotnpilel TIG EPAPHOYES TTOV XPT)-

OLHOTTOLN TN KOV YLoL TNV TELPAPATIXY AELOAOYNON).

« Xto Kepdhowo 6 a€loroyeiton 11 Amdédoon tng vlomoinong LOOG-Vortex péow
JOUIUDOV e HAPOUWOT] TOV TAPAUETPWOV TOL YLt TNV EMLTEVEN TNG eMIVUNTNHG

Am6d00MG KoL VAADOVTOL TOL UTTOTEAEGHALTAL.

« Me to Kepdhowo 7 ohoxAnpavetal n epyocio, cuvoyilovtag TG xOPLEG GLVEL-
opopég NG épevvag. Emiong, mepiypdpovtor miaveég HeANOVTINEG EPELVITIUEG

HOTELIVVOELG.

1.2 Ozwpntnd YroPfodpo

AvTo TO LITOKEPAAXLO TTOPEXEL TIG TEWPNTIKEG PAGELS YL TNV HATAVOTGT) TNG TTPOTEL-
vopevng apytrextoviung LOOG-Vortex . Eentva pe depeAtoddn dépato 0mwg 1 Sopn Tev
ovyxpovwv apyltextovine®yv GPGPUs , mpoxwpwvtag ot mo oOvieta Jépata 6mmg N
oxedlaon RTL yux avadiapoppooipo vAwmd onwg toa FPGAs . Emiong, moapéxeton o-
volvtinn e€nynon tov oxnpatog extéleong Out-Of-Order LOOG xou Tov mhausiov

Vortex GPU, 1o omoio amotelel DepéALO TG TPOTELVOHEVNG CLPXLTEXTOVIXNG.
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1.2.1 INapdiiniog YroAloyiopog ot Xtpotnynég Ioparinit-
opo?

IMoapdAAniog Yroloyiopog: O mopdAAniog voloyiopdg avapépetor ot dtadi-
nooio dloywPLopol evog TPOPARUATOG Oe pHinpOTEP PEPT) HAL ETLAVOTG CVUTOV TOW-

TOXPOVA HEGW TTOAA®V PLCIK®V eme€epyacToV [13].
Tomot ITaparinAicpod

IMoporinAiopog oe Exinedo Aedopévov (DLP): O DLP expetadedeto Tov mo-
PAAANALOHO Ge OedOUEVI OPYUVWHEV GE OOUES OTIWG TILVOUEG, ELTEADVTOG TNV

i Aertovpyia oe moAhamAd dedopéva tavtdxpova [14].

Moaporiniopog oe Exinedo Epyaoioag (TLP) : O TLP Sixywpilel éva mpdypoppo

oe aveEapTnTEG epyacieg mov exteAovvTal mapdAAnia [15].

IMapaiiniopog oe Exinedo EvroAng (ILP) : O ILP agopd tnv extéleon mOAA®V

EVTOA®V TOLTOYpOVa Péoa o€ Evay xOXAO eme€epyaoiag [16].

SoAvoon: H texviun g cwAnveoong apopd oTnv exTéAEcT] SIXPOPETIHOV HEPDOV
HLOG EVTOATG G OLotdoXIHEG HOVADES, ETLTPETOVTOG TNV TAVTOX POV ELTEAECT) EVTOADV
[17].

Extéleon ExtogZepag: Heutéheon Extog Xelpag emitpénel TNV emavata§LVOUNHEVT)
entéleon) eviol®v pe Paom tn dodeotpdtnTa TV TopwV, BeAtidvovtag tnv Atddoon
[18].

SIMD: Xtnv texvoroyia SIMD , 1 idia evtoAn exteleiton od ToAAOVG emeEepyaoTég
yia Stapopetind dedopéva [19].

1.2.2 Boowd Xtoryeia twv GPUs

GPGPU: Qg GPGPUs yapoxtnpilovtal ot EneEepyactég I'pagpnodv yeviwos oxomov,
OL OTTOLOL ETLTPETTOVY TNV EULTEAEGT] YEVIUDV DITOAOYLOH®V pe TNV idtar VAT vtodopn

7OV Xproomoteitat yior tnv Amddoon ypapnav [20].

Kernels: Oukernels eivot tpuipoatoa xddwa mov exteAovvton oe GPUs , xadopllopevo
amno6 v CPU [21].

Nipoza: To vijpata tmg GPU extedodv tavtoypova v idiax evtoAr) oe StapopeTind
dedopéva [22].

Warps: Ta warps otig GPUs eivou opddeg vipatov o omoia exteAodV TNV idlax eVTOAT

Tavtoxpova [23].
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Yxnpa 1.1: Katavopn tng xpnong tov Warp - IPC yuo 115 yevinng xprong
kernels oe 800 puowég TAatpdppeg GPU [28].

Streaming Multiprocessors (SMs): Kade SM otnv GPU extedel mapdAAnieg epyo-

oleg péow ToANATAGV povadwv entekepyaoiog [24].

Collector Units (CUs): Ta Collector Units eivor dopég tng GPU mov amacyolobvtal

aTTo TIG EVTOAEG PEXPL TN CLAAOYT TWV OPLOPUAT®V TOLG [21].

1.2.3  Avadrapop@dctpo YA rot Texvinég E€opoimong

Reconfigurable Hardware: Ot avadiopop@dotpeg apxLtextovinég cuvdvalouvy évav
ene€epynaTn pe £V VASLOHOPPOG O PITAOK, TTPOCPEPOVTAS TNV ATAPaiTN T eVEAE LR

OTA EVOWOHATOHEVA GLOTApOTA [25].

Field Programmable Gate Arrays (FPGAs): Ta FPGAs givo mAat@Oppeg mov mept-
Aapévouv tpoypoppati{opeva Aoyd prAox xon Stondnteg SpopoAdynong yio tnv

vAoToinon YneLo®v *UXAWpP&ToVY [25].

RTL Xyxediaon: H oxedioon oe eninedo RTL xpnoiponolel yAwooeg mepLypaeng v-
Auo0 omwg 1 Verilog xou 1 VHDL yua tnv meprypogn} xoxAwpdtwov [26].

Efopoiwon oto YAwro: H e€opoiwon oto vAwod ypnoiponotel TAAT@OppES OTWG Ta

FPGAS yuot TNV TpoGOpolwoT) xatl Tov EAeyX0 cLoTHHATWV [27].

1.2.4 Aentopépereg tov LOOG

H avntipua dovapn icw amd to oxnpa extédeong Light-weight Out-Of-Order GPU
(LOOG ) [8, 9, 28] eivouw n mapatripnon Ot opiopéva kernels mov extelobvtan oe
GPGPUs emituy)avouv YapunAn xproLLoToincT) TopmV, [ eXHETAAAEVOPEVO TTAPWS
tov [apoarAniiopod oe Eninedo Nipatog (TLP) mov mapéxel o vAd. Avtd gaivetol
oto Zynpa 1.1, 6mov éva peydho mocootd kernels oe dvo mhatpoppeg GPU mapov-

owalet yopnAn xprion tov warps xot xopnAo IPC. To LOOG avtipetwniler avtd to
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npoPArpata expetodlevopevo tov Hapadiniiopd oe Eminedo Evtolov (ILP) péow
Extéleong Extog Zelpdg, XproLomoLdvTag pict eAa@pLd exdoyr Tov adyopidpov Tov
Tomasulo, tpocappocpévn yia ) cwinvwon pag GPU. To oxfpa cowAnvwong tov
LOOG ¢aivetor oo Zxnpoa 1.2.

To LOOG emitpémel TNV eXAVATOELVOUNGT] EVIOADV ETOVOY PT)CLLOTTOLOVTOG TOL
Collector Units tng GPU wg Ztadpotg Kpdtnong twv evioAdv oe avtd péxpL vo
emAvdoiv oL mdavég e€aptroelg dedopévmv. Avti tov Tapadociarob Scoreboard yio
TNV TapaxoAovinom Twv eaptnoewv Avayvwong peta arnd Eyypoaen (RAW), 1o LOOG
xpnotpomotel évav Iivaxa Avtiotoiyiong Kataywpntov (RAT) yia va mtapaxolovdet
Tig e€aptrioelg RAW. Avtictolyo, e€alelpel exeiveg mTov a@opobv Avayvwor Hetd
and Eyypagn xou Avayvwon petd and Avayvoorn (WAR) xar (WAW) pe tnv texvin
TNG HETOVOUAGLOG XOTAYWPNTOV, AVTIXATLOTOVTOG TO OVOHA TOU XUTOYXWPTTH HE TOV
avtiototyo apldpd tawtomoinong tov CU. ‘Otav pia evtodr] avartideton o éva CU,
npdTa oupPovieveton To RAT yia ndde tnyn watoywpntr. Eav o xataywpntrg éxet
Ndn petovopaoTel, 1) eyypogn Tov mepLéxel Tov aptdpd tov CU mov mapdyel Tnv Tipn
tov. Avtr 1 T avtrypageton 6to CU Tng eVTOATNG KO TO ATTOTEAEGHO XATOY PAPETOL

otav yivel n) eyypagn tov oo to CU pe tov ev AOYyw apldpd TavTonoinong.

[Legend (common]) ':m-gdzﬁe:d.: | LOOG | [Baseline]]

_——— e m o m == _—— e m e == T —— o

Fetch \ Issue R gperand Collect ™, /° Writeback
¥ - ! 2
F i h : s : : RRS 1 5€
Sehed| L) @ ¥ L v (RAT:: |2
' A L d P
J\* : : I : 1 " 3
A I v Yeon ol e
G,Registers 1 fi Warp gy § YWarp X
1-- 1_' = |1 Sched 1 1 | Sched2 ) ::
il pliptuliuiuted siglulelulotul | TATATAT AAA
- -y . f :
 Decoders 1, T | 3
o5 o | gnm @ } L
|1—B;uf:fe£ I X Sltzg ScoreboardJ & |_
Decode /' ' )

Sxnpo 1.2: Ou tpomomotioelg tov LOOG mévw oto Pacind oxripa ow-
Ajvoong g GPU [28].

EmuAéov, to LOOG elcdyel évay €l81K0 pYAVIGHO YLO TNV ETOVATOELVOUNGT) TWV
EVTOAQV TpOcPacng oTn pvipn, ov prropet va mepthopfavooy xon e€aptrnoelg diev-
Jovoewv. Avtég deopevouvv Jéoelg eite oe pia ovpd PopTwong amd tn Mviun (LQ)
eite o pux ovpé Amodnrevong ot Mvrun (SQ) yio Tnv mopoarorotinen autdv twv
efaptnoewv. Ilpv v emovata&lvopnon omolncdNToTe TETOLHS EVTOANG, GUYKpPLVE-

tou ) dLevduvor] tng pe Tig drevdVVoELg TPONYOOHEV®Y eVTOAGV amodrixevong. 'Otav
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Swmiotwdel wootnTa, 1 entédeot TG EVTOANG avaoTéAAeTon péxpL vo emtAvdel to
TPOPANpaL.

[ v Bedtiotomoujoel mepattépw tn xprion twv mopwv, To LOOG ypnoipomotet
pia Etoifa Metovopasiog Kataywpntov (RRS ), n omola Swatnpel pio Aoto pova-
SV apdpov mov ypnoponrotovvtal otov RAT , avti Twv Tpaypatinody aptdpov
tavtomnoinong twv CUs. Katd tnv avddeon evog CU otnv evtolr, tng amodidetot
eniong évog povadwog apldpog amd to RRS . O tedevtaiog xataypdpetal oto RAT
1oL OL EEAPTWOHEVES EVTOAES TO XPTGLHOTTOLOVV YixX va A&Povv ta amoteAéopata. Avtr
1) TIPOGEYYLOT EMLTPETEL GTNV EVTOAN va edevdepwoel to CU mpv tnv extéleon tng
TPAENG, dratnpwvTag povo Tov aptdpd tov RRS péxpl tnv ohoxAnpwon g eyypoeng

TOV OTOTEAEGHATOG.

1.2.5 XZwAinvwon tng Vortex GPU

———— branch | tmc | split | wspawn | barrier | join Core
Schedule ‘ Fetch ! Decode
)
Warp Table :
pc [ mask :
" )
1 : writeback
)
v : '
L] .
IPDOM Warp ICache " Heg_lster
Stack | Scheduler [+ | Stage | T Decode File

!

Inflight active warps
Tracker | |sialled warps

visible warps

Scoreboard

barrier table

R R R e e
A
o o
P T I

[ Y —

|

-------------------------------------------------------------------

Sxnpo 1.3: Emiondmnon tng HipoapyLTEXTOVIXTG TNG COARVWONG TNG
Vortex GPU [29].

H Vortex GPU [11] [12] [30] xpnoipomotel piox aepxLtextoviny cwAfvwong 6 otadiowv
RISC-V mov cuvdvaletan pe e€edinevpéva otoryeia yio eme€epyacio SIMT . To oxnpa

ocwAfvoong mepthopPavel To vdtwo oTadio:
« Schedule: Awxyeipion TV evepydv Kot avesTAAPEVOV Warps.

« Fetch: Avdaxtnon evtod®v otd tn pvipn xow Stayelplorn atnudToy g tepop-

xlag pvnuaov cache.

+ Decode: Meth@paot TV EVIOA®V KOL TPOGAPHOYT] OTLG TTEPLTTMOCELG AAAXYTG

NG PoNG extéleong.
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« Issue: IMopororotinon efaptioeewv dedopévov kot tpodcPact ce dedopéva

TOL ALPXELOL HATOXWPTTADV.

« Execute: Extéleon twv eviolov oe elduég povadeg enekepyaciag (ALU, FPU,
LSU, SFU).

« Commit: Eyypogrn ToV amoTeAeCHATOV GTOVG KATAXWPNTEG KL EVIHEPWOT)

tov Scoreboard .

H apyitextovinr, emmAéov, vmootnpilel ¥Aponwon péocw tepapytdv L1 won L2

caches , emiTpénovtag Tov amodoTind Sopolpacpo dedopévev peTa&d TupTVeV.

1.3 Aemtopépereg tng YAomoinong

1.3.1 Aopég TOL TPOSTEINRAV

Ba ovveyioovpe meplypdpovtag TG facég dopEG TOL TPOSTEINHAV TNV HKPOP-

xLtextovinr tng Vortex , oL omoieg paivovtot pe poP ypopo 6to Zynpo 1.4.

Schedule H i Decode .
L} L) "o
Warp Table : : i :
) L)
[pe mask| : ' 11 writeback
L} L}
L} i : :
L} L) L}
L} L) LI
L} i L)
] L) [
L} [ [
IPDOM Warp ' | ICache | 41 Decod '
Stack Scheduler [ ;| Stage [, , ' 1| Collector
L ' ' Units
: ' [ i
L} L}
Lo = : D :
i active warps | ! ! ' ' '
Inflight P p U ' ' source '
L} L}
Tracker | siglled warps n h H . y
.............. visible warps | 1 | 1 N ' .
] s a9 w1 e
UUID ' o ier table | : : .
) L) [
L} L} 1
L} L} A
Al A}

branch | tmc | split | wspawn | barrier | join

.........................................................

Sxnpo 1.4: H emwcopomoinpévn piepoapyitextovinn tng Vortex GPU

HeTA TNV LAOTOLNoT ToL oyrpatog extéleong LOOG.

1.3.2 Collector Units

.........

H Baowr) dopn mov emitpémel v avadidtagn tov eviohdv oto LOOG eivon ta Col-

lector Units (CUs), ta omoia dev vmrjpyav otn Vortex, omdte vAomotdnuov pe v

appd TOvg var eivol TOPAPETPOTTOOIHOG. OTWG avoépdnKre TPONYOUHEVKS, TOL

CUs xpatodvtol amtd eVTOAES, ETTOUEVMG ELVAL ATTOPALTNTO VAL £XOLV TH XWPNTHOTNTA

Yo OAeg TIG TANpoYopieg TG evToAng (Stedduvor, amd molo warp TpoEpYeTaL, EVEPYX

VAHOTO, XOTOXWPNTEG OPLOPATWV ¥AT.). EmimAéov, ota CUs vitdpyovv media onpuatwy
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7OV LTTOJEKVOOLY TNV eyrLPOTNTX dedopévwy 1) TNV xatdotaot tov CU, eved o pe-
yolOTepa Tedio TOUG elval aLTA TOL APOPOVV TaL SEGOUEVE® TWV HATAYWPNTOV-TTNYOV
XOL TOL HOTAXWPNTH ToL artoTeAéopatoc. Ola avtd Tor edior paivovTon avalvTind

oto Xxnpa 1.5.

Collector Unit

allocation status
dispaich status
rd data valid status

]
y
]
3 rs data valid status
3

rs to be read from RF

3 x (CU ID width) rs source |D

instr. UUID, warp 1D, PC,

(INSTR DATA width)
tmask, regs etc.

T x (DATA width) rd data
rs1 data,
3 x T x (DATA width) rs2 data,
rs3 data

Sxnpo 1.5: Ta medio evog Collector Unit ) podi pe too avtiotoryo peyéon
Toug o€ Svadud Ynpio.

1.3.3 Iliva ag Avtictoiyiong Kataxwpntov

>to LOOG &8¢ xpnoyomoteitar Scoreboard yix tov xeipiopd tov e€aptrioenv dedo-
HEVWV, OTTOTE 1) oppodLOTNTA orvTr) avartideton oe évav Ilivaxa Avtictoiynong Kato-
xopntav (RAT). Avtdg éxel tooeg déoelg 6o0L oL xatoxwpntég OAwV Twv warps (64
HATOXWPNTEG AV wWarp) xot xade déon amoteleitan amd dvo media. To mpoTo vo-
deweviel av 0 naTorywpn TG TpoxeLton va droPactel amd To Apyeio Kataywpntdv ko
to devTepo eivan évag aplopog tavtonoinong CU, otnv mepintworn mov TpoxeLToL vou
drPactel and v emotpor) Tov anmoteAécpatog evog dilov CU. To RATgaiveton

oTo Zynpo 1.6.

1.3.4 Tevvitpra aprdpov UUID

Kadwg oto mAaiclo avtrg tng epyoasiog dev vAomoleital pHnYaviopog eTavatagLlvoun-

ONG TV EVIOA®V TPOGPacng ot Pvipn, elvot amopaitnTn n TANPoPopia TNG COOTNG
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RAT
wampd | warmp1 . warp(N-1)
req0 (inty | CUID
from RF
reg31 (int)
rea0 (ip)
req31 (fp)

Sxfpa 1.6: O Ilivorag Avtiotoiynong Katoywpntov pe ta avtiotoryo
nedio Tov.

OELPAG TOV EVTOA®V. Tl avtdV TOV 6%0To, Ja TV YPHOLHOG EVOG HOVASIKOGC, aDEWV
apLIpoG TALTOMOINONG TWV EVIOA®V (OOTE VA YVWPLLOLpE TOTE plo EVTOAY TTporyeital
piog dGAANG. Qotdo0, KdTL TéTOoo Jo amatovoe To péyedog arvtol Tov mediov va elva
TEPAOTLO, XATLTTOVL 6T oXedioioT VA0V TTpémel va amopevydel. 'Etot, ypnoylomoteiton
Hio xOxAn yevvhtpla apldpav tavtonoinong UUIDava warp, amote A obpevev amo
8 dvadwd Ynpio ywplopéva oe 2 xotL 6, ov Eexvd avoadétovtag v T 00000001.
Ké&e emopevn evroln éxet peyadttepo UUID, extdg amtd TNV mepintmao mov 1 TpaTn
EVTOAT] £XEL T TTLO ONHOVTIXA TNG Ynein ioo pe 117 xo 1y devtepn avtiotoya 00,
omov 1 dévutepn Jewpeital peyaldtepn. Me avTOV TOV TPOTO, EMTLYXAVETOL £V “TTe-
pLrI®pLo aoPareiag” 65 EVTIOA®VY TOL HITOPOUV VO EXTEAEGTOVV pPéEXPL va Snptovpyndel
npOPAnpa. Av, ©oTdG0, Yivel x&TL TETOLO, QLTO EVTOTILETOL APECTMG HATA TNV APLEN
NG véog eVTOANG pe apldpd 00000001 oto otddio tng ZvAloyng Oplopdtwv kot 1

EVTOAT) TTepLLéVEL PéYPL va emmtAvdel To (T

00 000001>OD 000010> o >11 111110>11 111111> OVERFLOW? <E>

NN
e~

Sxnpo 1.7: EAoppg pnyovicpdg yia tnv avadest Movadinov Aptdpov
Tavtonoinong UUID o1ig evioAég.
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1.3.5 Pon prag evroAng oto LOOG-Vortex

Ye avtn v evotnta do eprypopel 1 por pog evroing oto LOOG-Vortex amd
OTLYHI] TTOV QLT PTAVEL 6TO OTAdL0 TNG ZVAAOYNG OPLoPATOV HEYPL KO TO TEAOG TG
entéleong g, otig Sopég Tov Yaivovton 6To Xynpo 1.8. Apyxwd yiveton n avade-
on evog amd ta elevdepa CUs oTnv eVvTOAr] koL oUTH QVTLYpAQEL TIG TANPOPOpPLeg
NG ota avtictolya Tedlar TOV, TOL TEPLYPAPTUAV TTPONYOUHEVWOG. XTOV ETOUEVO
nOxAo poroylo0, cupPovAedeton o RAT yio ndde OpLopd TnG. ZUYHEXPLHEVAL, YL TOUG
HOTOYWPNTEG-TNYEG, AVTLYPAPEL ATTO TO AVTioTOLYO Medio TNV TNYN Atd TNV OToio
npémnel v doPootel 0 nodévog od avTols, £V, oV TTPOKELTOL VAL ETLOTPEYEL TO O
TOTEAEGHA TNG G€ HAITOLOV HATAYWPTTH-TPOOPLOHO, YP&peL o€ exelvo To medio TOV
aplipod tavtomoinong tov CU . H evtoAn eival mAéov étopun vo cUAAEEEL Ta oplopoTd
™mg. Av xpewdleton vo drofdaoel uamolo opiopa and to Apyeio Kataywpntodv, to
CU 1tng praiver otnv ovpa twv CUs “yia avayvwon™ xoat, otav emhexdel, Sioafdalet
000VG HATOXWPNTEG-TNYES Xperdletor amd To Apyeio Kataywpntov. H avayvwon
avtn dtoprel TOoOLG HOXAOULG, OGA elval Tat OPLOHAT TNG EVTOANG TTOL TTPOUELTOL VO
dxPpactodv and To Apyeio Kataywpntov, »xadadg povo éva opiopa propei vo StorPo-
otel avi Ouho poroytod. ‘Otav OAa Ta SeSOPEVA TV HATAYWPTTOV-TTNYOV TNG EXOUV
onNpovIEl WG EYyrLPA, 1) EVTOAT €lval ETOLLN Vo TTEPACEL GTO EMOPEVO GTASL0, dNAadN
avtd g Extédeong otnv avtiotoryn povada. Av oe avtd To onpeio damiotwdel 6TL N
EVTOAT] deV eMOTPEPEL HATTOLO ATTOTENEGHA, TOTE oL tOpoL Tov CU auteAevdepwvovtol
1oL QUTO CTHALVETOL WG EAEDDEPO WO TE VO arvaTedel oe eTOPEVT) EVTOAT).

Av, ©®6T000, 1] EVTOAN] TPOXELTAL VAL ETLOTPEPEL KATTOLA TULT) GE EVOLV XOTOYXWPTTH-
npooptopod, to CU xpateiton péxpt To téAog tng Extéleong tng. Metd tnv Extédeon,
1] €VTOAN PTTopel var emoTPEYeL Pl 1) TEPLOGOTEPEG EYYPOPES ATTOTEAEGUATWV OTO
avtoictolyo medio Tov CU(TMOANATALG eYYPOPES TPOXDIITOLY GTNV TEPITTWAOT] TOV
SLUPOPETIHG VIJHALTOL TOV LGLOL Warp EMLGTPEPOVY TOL ATTOTEAEGPATR TOVG O€ dLoLpope-
TG xpovinég otiypéc). H tedevtaio eyypoagr) emonpoivetor otd puoe eidnr) onpoio
TéAOLG 1 oTtola TupodoTel GAAN pia etopt) pe To RAT. Av oto medio Tov xatoywpnti-
TPOOPLGHOD EVTOTLOTEL 0 apLIpog Tarvtomoinong tov CU ard o omolo mpoépyetat, 1
EVTOAT] LITOYPEOVTAL VA YpAPeL TO atoTéAecpd TNG oto Apyeio Kataywpntov otov
eTOpEVO HOKAO poAoyloD, aAAlmg dev elval amapaitntn ot N eyypoern. e wdde
TEPUTTWOT), GTOV anOAOLT0 HVOKAO YiveTal 1) HETADOGT] TOV ATTOTEAEGHATOS MDOTE VX
ovMeyxdel amo to CUs mov avopévouy tnv a@Ler Tov. XTov emOHEVO KoL TEAEVLTOLO
nOuxAo Aettovpylag Tng evtoAng, amelevdepwvovtar 6Aa T mediar Tov CU xot avtod

onpaiveton wg eAebdepo, OTWG avopépinue TPONYOLHEVHC.
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IBuffer

issue width

v

iF read ¢ CU allocation l i \

v v v v v v

cuo CU 1 cu2 cus cus | ... [oumen RAT
. ) rsi rsi rs1 151 rsi 151
Reglster File rs2 rs2 rs2 152 rs2 152
rsd rsd rs3 [**|rs3 [¥r=3 153
rd rd rd rd rd rd

A
b J

Y 2 L2 2 2 ¥ 3
EI$I:IWF wii 'e‘!‘dy :¢E

NN N N N N N N B Writeback

v
Y v v _v
ALU FPU SFU m Lsu M{—) Main Memory
\ 2R 2 2

Sxnue 1.8: Ou dopég twv otadiov g ZvAioyrg Opopdtwv, g E-
ntéleong xat g Oloxdrpwong tng evroing oto LOOG-Vortex.

1.3.6 2rtoifa Metovopaociag Kataywpntov

Ye avtideon pe Tig ovpPatnég apyrtentovinég I'TIY, 6mov oL evtolég mapapévouy
ot CUs povo yia Alyovg xOxAovg poroylod — éwg 6tov dafactodv Tar dedopéva
TV oplopatwy and to Apyeio Kataywpntov — 1o oxnua extédeong LOOG amoaitel
NV Tapopovr] TV eviodwv ota CUs péxpl xal Tnv eyypogr] ToU amoTeAECHATOG.
AvTO éxel WG ATTOTEAECHO GTHAVTIXT QOENCT) TNG HEGTIG TTEPLOSOV KATOXVPWOTG EVOG
CU, yeyovdg mov Snpovpyel xtvdvoug doHOV Yl TIG VEEG EVIOAEG TTOV ELGEPYOVTOL
o010 oTddlo NG LvAloyng Oplopdtev, tporaldvtog radvotepnoels. H mpopoavig
Abom ylor TNV amo@uyn TETOLWV xaduoTepnoewy da NTav 1 adénon tov aptdpol twv
Swdéoypwv CUs . QoT1000, #ATL TETOLO GULVETAYETOL CNUAVTIXO HOGTOG € eminedo
EMLPAVELNG, 0O YDOVTAS 68 oXedoTNd cUPPLPacO, 0 0mTolog avadbeTal extevéoTepa
o€ emOpeVo onpelo Tng epyaciog.

H evalloxtinn mov mpoteiveton eivan 1) eloaywyr) plag véag dopng: g Ztoifog
Metovopaoiog Kataywpntadv (RRS). To RRS Aettovpyei wg evdidpesog amodnuevti-

1OG XDPOG Yla EVTOAEG TTOL €x0LV TTepaoel tpog tnv Extédeom, aldd dev éxouv omdun
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emtotpéPel To amotéheopd tovg. Kade déon tov RRS mepilapPaver o évden o-
oYX OANONG atd eVTOAN, éva medio Yl T dedOpEVAL TOL HATOYXWPTTH-TPOOPLGHOD,
evOELEELS TV EVEPYDV VIHATOV KoL TNG EYHVPOTNTAG TOV QTOTEAEGHATOS, TO OTTOLO
EVEPYOTIOLELTOL OTOALV EVTOTLOTEL TO OO ONpa TEAOVG TV eyypap®Vv. To dedopéva
no T edio eynvpotnTag petagépovron amd to CUs tov apyinod oxediocpot oto

RRS, ywpig va tpootidetal onpovtind k6otog o€ eminedo VALKOD.

Collector Unit

allocation status

dispaich status

rs data valid status
RRS entry

rs to be read from RF 1 allocation status

4| | o]~

tmask 1 rd data valid status

T tmask
3 x (RRS ID width) rs source ID

instr. UUID, warp ID, PG, U g e rd data

(INSTR DATA width) - T
regs etc.

rs1 data,
3 x T x (DATA width) rs2 data,
rs3 data

Yxnuo 1.9: Iedia Collector Unit ko RRS pe ta avricTouyo peyédn toug
oe dvadud Ymepioe.

M déon tov RRS avartideton oe udde evtoArn (mov dev amoutel eyypagn oso-
TeEMEGPATOG) TaALTOXpOVA e TNV xatoxvpwot CU, xatd tnv eicodo g oto 6Ttddio
YvAroyng Optopatwy. O aptipdg g Jéong tov RRS amodnuedeton oto avtictoryo
nedio tov CUxou 1 onpaio awocyoAnong evepyomnoteital. Katd tn Siédevon tng evro-
ANg antd o RAT, yuo exeiveg mov €xouv mpooplopod, o aptdpog tov RRS amodnredeton
oto medio Tov ratoywpnTH-Tpoopiopov. H evtodr mpoxwpd oto otddio tng Extéle-
ong pe Tov aptdpod Tov RRS avri yia exeivov tov CU. Avto emitpémel Tnv oteAevdépwon
tov CU oTov endpevo x0nAo poAoylol, xaddg Ta amoTeAEGHATA Yo ATOUTKELTOVY KOL

o petadodoiv OTwG KoL TPOTYOLHEV®S, dAAX amtd To RRS .
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branch | tmc | split | wspawn | barrier | join \ Core
Schedule ! Decode
Warp Table
pc [ mask
IPDOM Warp ICache - d
Stack | Scheduler Stage D

Inflight active warps
Tracker | | gialled warps

_____________ , | visible warps

Collector
Units

! | barrier table
source

.....................................................

___________________________

Sxnpa 1.10: H tpomomownpévn apyirextoviur) LOOG-Vortex pe mpo-
odnun tov RRS.

H mpocdnun tov RRS Bedticdver onpavtind ) Sroedeopotnta twv CUs, Onwg aro-
dewmvietan amd tnv Zvvaptnon Katavopurg g meptdodov xatoxvpwong twv CUs oto
Sxnpo 1.11. Topoatnpeitol pelworn TG CUHEOPNONG, EMLTPETOVING GE TEPLOCOTEPEG
EVTOAEG VO eLGEATOLV eyralpwg 6To otddlo NG XvAiloyng Oplopdtwv. Axdun, oto
Sxnpo 1.13, mopatnpeiton capng Helwor TV xodvotepioewy AOY® pn dlodécipwy
CUs. Télog, To Zxnpa 1.12 Seiyvel mwg 1 a€lomoinon twv CUs eivat o amodotinn e
v ntpocdnun g RRS.

1.0 4 — No-RRS LOOG S — —
—— RRS LOOG (12 entries)

- 0.81
S
S
3
a
5 0.6
]
[m]
(]
2
= 0.4+
S
£
3
Y02

0.01

0 20 40 60 80 100 120 140

CU Allocation Period

Sxnue 1.11: Tvvaptnon Katavopng tng xatoxvpwong twv CUs yix To
LOOG-Vortex pe »o yopic RRS.
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1.0 — No-RRS LOOG
—— RRS LOOG (12 entries)

- 0.8
2
5
2
5 0.6 1
o
fa
[
2
£ 0.4
3
£
>
“ 02

0.0

0 20 40 60 80
CU Utilization (%)
YxAuo 1.12: Zvvaptnon Katavoprg tng xprong twv CUs yux to LOOG-
Vortex pe xou ywpig RRS.
101 — No-RRS LOOG
—— RRS LOOG (12 entries)

- 0.81
b=
5
2
5 0.6 1
hu
=
Q
2
£ 0.4
3
£
]
“ 02

0.0

0 20 40 60 80
No-Available-CU Stalls (%)

xnuo 1.13: Zvvaptnon Katavoprg twv radvoteprioewnv Adyw pn duo-
Yéoywv CUs yia 1o LOOG-Vortex pe not xwpic RRS.

1.4 AEwoAoynon

Ye avtn v evotnta, afloloyeiton n Aodoon tov LOOG-Vortex ce cOyupilon pe tnv
apywr) apytrextoviun tng Vortex GPGPU 2.0.

Apywd, agoroyeitar 1 Amodoon tov AOOT ywpig tnv Ztoifa Metovopaoiog
Kataxwpnrtov (RRS)ocov agpopd tig Evtorég ava Koxho (IPC). Yroloyiletou 1 yew-
petpwny péon T Tov xepdadv IPC (exppaocpévwv wg mocootd %) tov LOOG-Vortex

o€ oX£0T) HE TO apyd KoL TAPoLCLALovToL AT T ®XEPOT Yo wdde Sapdppwon SM



20 A

=
w

GeoMean of IPC Gain (%)
[
o

w

mimi

38 Kepdadaio 1. Extetauévn EAAnvua) HepiAnyn

(warps, vipata), Omwg @aiveton oto Zynpa 1.14. Kade ypopa avtiotoyel oe évav
oLuyxePHEVO apldpo drodéopwy CUs.

A&loonpeinTo eivor 0TL x&de Stapdppwaon deiyvel Yetind 1uépdn, Eemepvaidvtag drap-
1®G N Paocwr) apyitextoviny. Zuvidwg, 1 adEnen touv aptipod twv CUs oxetileton
pe vYnAoTEpa #EPSN, HAFDOS 1) APLEN VEWV EVTOADV aTd TO TTPONYOVHEVO GTASLO €-
val Ayotepo mdavo va prhoraplotel artd v éAAerym xevov CUs. EmumAéov, eiva
Wiaitepa evdlapépov 6Tt To LOOG-Vortex mopovotdlel GNHOVTIIG TAEOVEXTNHA GTNV
Amodoon Otav Aettovpyel pe pxpoTepo apldpd VIHAT®VY ava warp. Avto ogeileton
otV abv€&non g SuvaTOTNTOG ETAVATUELVOUNOTG TV EVIOA®V 0G0 aLEXVOVTAL OL
EVTOAEG avé warp.

CU Count

6 CUs
8 CUs
10 CUs
12 CUs
14 CUs
16 CUs
18 CUs

|
(1l
|

i

I T . N I N T S R
B SN R G R A Yop

Configuration (Warps, Threads)

Ixnpo 1.14: Tewpetpu péon tpr) xepdodv IPC (21 epappoyég) avd
Spdpewon yioe drapopetinotg aptipotg CUs ot pinpoapyLtextovi-
»1) LOOG-Vortex ywpig RRS.

Aklohoyotpe eniong to LOOG-Vortex oe 6povg Empdverag war Katavahwong E-
vépyelag, vAomoldvTag o Yo pia tAat@oppo FPGA (ovyrexpiypéva tny AMD Alveo
U50 Data Center Acceleration Card). Me yprjon tov epyodeiov Vivado 2021.1 yia tn
oVOVIECT) AL TNV VAOTOLNOT), TA ATOTEAEGHATA YL TNV ETLPAVELX LITOAOYLOVTaL CTTd

TOUG X PTCLHOTTOLOVHEVOLG TTOPOLG WG eENG:

CLBRegisters(%) + CLBLUTs(%) + BRAM (%) + DSPs(%)
4

Empbaveio(%) =
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H evowpdtwon tov amotelecpdtov g Amddoong tov LOOG-Vortex pe Tig pe-
TPTOELG ETMLPAVELXG YLt HATE OLAPOPPOOT) ETMLTUYYAVETUL HEG® TNG HETPLKNG TOVL Y-
vopévou Emgavelag-Kadvotépnong mov amewovileton 6to Zynpa 1.15. Me avt tnv
pocéyylon, N apyn Vortex emtuyydavet ywvopevo Empaveiag-Kadvotépnong (ADP)
oo pe 1 yuo 6Aeg TIg SLapopPdoelg, xol THEG H&Ttw od 1 vodewvoouy o PeA-
TIGTOTOLNHEVO O)EDL0. XPNOLHLOTOLOVHE QLTOV TOV OeinTn yla Vo AELOAOYTGOULLE TO

LOOG-Vortex yia dtoapoppaoelg pe 8, 10 ko 12 CUs.
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Configuration (Warps, Threads)

Yxfuo 1.15: Twopevo Empaveiac-Kadvotépnong tov LOOG-Vortex yw-
pig RRS avd Sropdppwon yia Stapopoug apripotg CUs (kavovirormotr)-
HEVO GTNV ap)Lir] OPYLTELTOVIKT)).

SOHPVA PLE QLT T EVPTHALTAL, OL SLAPOPPOTELS TOL Vortex Tov evVooDVTAL TTEPLD-
06tepo amtd to LOOG eivar auTég pe o pinpdtepa pey€dm warp. Aryotepa VIOt v
warp omo@épouv T LYNAGTEpa xEPdN ATOS00NG Ge OYECT) e TNV apXuT] SLAPOPP®-
o1, VO ST POV KOl TN XOUNAOTEPT) XPHIOT) TOPWV. ZUVETMOGC, VTEG OL OLAPOPPOCELG
Jewpolvtal BEATIOTEG YLt TO GXESLO PG,

EmutAéov, XproLHoToLOVTOG TIG EXTIHNOELS TOV epyaieiov LAOTTOINGNG, HITOPOUpE
va aklohoyrioovpe v Katavaiionopevn Evépyerr tov LOOG-Vortex yia dwovpope-
Tég dopoppwoelg xon aptdpovc CUs. 'Onwg @aivetar otd to ywopevo Ioybdog-
Kadvotépnong (PDP) tov Zxfpartog 1.16, 0Aeg ot Stapoppacelg eival PeATiopéveg o

OXECT) JLE TNV OPXLUT] OPYLTEXTOVLXT).
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Sxnue 1.16: T'wopevo Ioyvog-Kadvotépnong tov LOOG-Vortex ywpig
RRS avé Swapopewon yio didgpopoug aptdpotg CUs (xavoviromotnpuévo
OTNV OpXHT] ApXLTEXTOVIKT)).

To emdpevo Prpa eivon ) a&loddynon tov LOOG-Vortex pe tnv mpocsdnun tov RRS
0G0V QPOpa TIG 1OLEG PETPLUEG TTOV X PTICULOTOLINHAV TPONYOUHEVWS. XP1GLLOTTOLE-
it To 110 cVVOAO epappoydV KoL eEeTalovtan dtapopeTind peyédn tov RRS, T omoia
e€aptdvTal atd Tov aptipd tewv CUs. Zvyxexpipéva, ypnotporoovvron Jéoelg RRS
loeg pe tov apdpo towv CUs moAlamAaoiacpévo pe évav mapayovto 1.5, 2 xo 2.5,
not to aotedéopata yia Tig Evtodég ava Koxho (IPC) tapovoialovtor otov Iivoua
1.1. Edxoha mapatnpel xaveig mwg 6tav mpootidevion emmtAéov déoelg oto RRS, Ta
uépdn Amddoong oTopatody va avEdvovtal yior Toug meplocdTepoug aptdpovg CUs

otov mapdayovta 1.5 kot yia piepovg aptdpotg CUs oTtov Topdyovta 2.

MMivoxag 1.1: Tewpetpu péon ipr IPC yio Stxpopetinong mopdyovteg
Jéoewv tov RRS Tov LOOG-Vortex.

CUs NoCUs #RRS=#CUs x 1.5 #RRS=#CUs x 2 #RRS =#CUs x 2.5

6 4.5406 8.2399 11.1017 11.8398
8 8.6834 11.0765 12.0894 12.0894
10  10.3601 12.3409 12.6604 12.6620
12 11.4342 13.3033 13.3528 13.3528

14 12.2760 13.7937 13.7747 13.7747
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CU Count
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Configuration (Warps, Threads)

Ixnpo 1.17: Tewpetpnen péomn tipr) IPC (21 epappoyés) avé Siopdppwon
ya Sudpopoug apidpovg CUs otnv apyrrextovinr) LOOG-Vortex pe RRS
(rapbyovtog 1.5).

CU Count

m 6 CUs
] I j E 8 CUs
i E 10 CUs
= 12 CUs
14 CUs
JI 2l 'l
N R R a0 o
O A R S S R R AU VI VT

Configuration (Warps, Threads)

Txnpo 1.18: Tewpetpnn péomn tyur) IPC (21 epappoyéc) avd Sropdppwon
yia Sudpopoug apidpovg CUs oty apyrrextovin) LOOG-Vortex pe RRS
(ropbyovtog 2).

Sto Zynpata 1.17 ko 1.18 gaivovton avadvtind to xépdn IPC ce oyéon pe v

apywr apyttextovinr] tng Vortex, ylo OAeG TIG SLOPUOPPOCELS Warps, VIHATOV KoL
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SropopeTindv apdpdv CUs yia taphyovteg RRS 1.5 xou 2, avtiotoya. ‘Onwg a-
vopevotav, Wiaitepa yior piepotepovg aptdpovg CUs, 1 Pedtioon Amddoong eivo
peyodOtepn ort’ 0,11 oTnv apyttextoviny xwpic to RRS tov Zyrjpatog 1.14.

EmutAéov, autd ta amoteléopato vwodewvbouy OTL, 6€ GOYXPLOT) HE TNV TTPO-
odnun neprocotepwv CUs, i enéutaon tov RRS mpoc@éper naldtepn Anddoon. Eva
eviloépov otolyelo mponmTeL OTAV oLYXPLVOLpE dlopopeTinovg mapdyovteg RRS:
yia opaderypa, pa Stapdpgwor pe 8 CUs ko mopdyovta RRS 1.5 (dniadn) 12 Séoeig
oto RRS) vmeptepei évavtt g dioapopgwong pe 6 CUs xou mapdyovta 2 (eiong 12
Jéoeig RRS), mapd to yeyovog 6tL n tedevtaio €xel Ayotepeg dopég. AvTh 1 acLVETELD
prtopet va atodovel oe SLapopég otV avadLATOEN TwV eEXTEAECEWY, OL OTTOLEG EMNpE-
alovton atd Tor dLdpopar eTITEdX CUHPOPTONG KL HATVGTEPT|CEWV GTLG AELTOVPYiEG
twv CUs.

Yxetwd pe tn xpnon mopwv oto FPGA xou tnv Katavalwon Evépyewag, vrmo-
Aoyiovpe xar AL toug deinteg yvopévov Empaveiag-Kadvotépnong won Ioyvoc-
Kadvotépnong, avtn ) @opd yie tnv apyrtextovinr) LOOG-Vortex pe RRS, 0mwg
eaiveton oto Xxnpota 1.19 xou 1.20. Ta amotedéopata tov ADP deiyvouv 011 meplo-
00TEPEG ATTO TIG HLOEG TV SLOHOPPDOCEWDY TTOV OULPUATTNUAV DITEPTEPODY EVAVTL TNG
APYUNG OPYLTELTOVIXNG, HE TLS UOAVTEPEG VO CLVTLOTOLYODV G€ XOaUNAOTEPO apldpd
VIHATOV v warp, 01wg avopévovtoy amd Ty wg Topa avéivor. ‘Ocov apopd To
PDP, 6\&c ot Stopoppdc el mapouctdlouv VITOGYXOHEVA ATTOTEAEGHOTO, HE HELWOT) TNG

KatavaAionopevng Evépyelag mov @tavel mepimov to 17%.
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Configuration (Warps, Threads)

Exnua 1.19: I'wwopevo Empaveiag-Kadvotépnong tov LOOG-Vortex xw-
pig RRS avé Stopdppwon yia 6 xow 8 CUs (xarvovirkomotnpévo otnv op-
XUT) XPYLTEXTOVIUT)).
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xAuo 1.20: T'wopevo Ioybog-Kadvotépnong tov LOOG-Vortex ywpig
RRS ava dioupdppwon yio 6 xo 8 CUs (xovoviromolnpévo oty apyixn
OPXLTEXTOVIUT]).

1.5 Svunepdopora rot MeAlovtinég Ementdoerg

H epappoyn tov oxnpatog extédeong LOOG (Light-weight Out-Of-Order GPU) otnv
apyrrextovinn tng Vortex GPU , 1660 pe 660 xou ywpig tn Ztoifa Metovopasiog Ko-
tayopntodv (RRS) , amédeite onpavtuég BeAtidoelg otnv Anddoon pe YoapnAod x0otog
Emgpavelog ko Katavédwong Evépyelag oe cOynplon pe tnv apyiur) opyLTELTOVIKT
in-order tov Vortex. To oxfpo LOOG vAomoumjdnxe pe xpron tng SystemVerilog yio
v éxdoon 2.0 tng Vortex GPU, mov eivou Paoiopévn oe apyirextovinr RISC-V.

H melpapatinn a&loAdynon Tov Slopdpwv dlopoppodcewy Tov apy ko, tov LOOG
xat tov RRS-LOOG Vortex édetfe onpoaviuég PeAtidoelg otnv Amodoon (g uot
23,5%), pe to n60t0og Emipdvelag va nupaivetol petad 4,5-27,5% (mepinov 5% oTig
TayOtepeg Sapoppaoelg) xat peiwon Katavalwong Evépyeiag péxpl 17% yia tnv
RRS-LOOG mpocéyyion.

Av xou 1) Tpéyovoa epyacion TPOoPEPEL TOAVTIHEG TTAN pOoYopies Y TNV PeATioTO-
moinon g extéAeong LOOG otn Vortex GPU, vapyouv opreTol TOpELS YIO TEPALTEPW
eEepedvnon. Evag tétolog Topéag eivat 1 eVEOUAT®OOT) HEYAADTEPWV GLVOAWVY EPap-
poyodv OpenCL, 6mtwg to Rodinia, mpoxepévov va e€etaotel mog to LOOG-Vortex
xewpiletou mio mepimAoneg epappoyés. EmumAéov, n aklordoynon tng oxedicong LOOG-
Vortex oe peyadttepeg mAateoppeg FPGA Ja emitpéfel Tnv extipnon tng orddoong
TOU GUGTIHATOG HAVDG HALPUOKWDOVETAL GE TLO GUVIETES SLUHOPPOCELS.

EmutAéov, vmapyouvv evxaipieg yia e€epedvnon mo eEeALYHEVOV TTOALTIK®OV TTPO-

YPOHUATIONOD Yloe TNV aviyvwon tov Apyeiov Kataywpntodv amd ta CUs xot tov
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XPOVOTLPOYPOUUHATIOHO TNG EXTEAEOTIC TWV EVIOA®V TwV warps. Evag dAAog topéoag
BeAdtiwong elvon 1 vAomoinom evog Apyelov Kataywpntodv moAlamAov elo6dwv, yio
Vo petwdoiv oL xaduoteproelg oto otddlo NG LvAloyng Oplopdtey xot va PedTiodet
1 GLVOAWKT] ATTOSOGT).

Télog, n vAoToinon xot cOYKRPLET] SLAPOPETIHOVY GXNHATWV extéleong Extog Xet-
pac ywe GPUs mov mpoteivovtal omd TNy epevviTivg *OvOTNTO daot TPOCPEPEL TTO-
AOTeg yvooelg Yo Tnv avafadpien tov apariniicpot ce Eninedo Eviolov ota
peAdovtwnd oxédia twv GPUs, mpoopépovtag 1déeg yix tn PeAticon tng taydtnTog

HOL TNG EVEPYELOUNG XITTODOCTG.
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Chapter 2

Introduction

2.1 Hardware Accelerators Today

2.1.1 The end of the Scaling Laws

Gordon E. Moore in 1965 observed a very significant trend: the density of components
on integrated circuits, more specifically transistors, doubled approximately every two
years [1]. Not only did this observation hold true, but it propelled technological inno-
vation for decades until about twenty years ago. During this period, the semiconduc-
tor industry benefited from Dennard’s scaling, another underlying scaling law, which
contended that chip power density would remain constant as transistors were scaled
down in size [2]. This enabled the creation of more power-friendly, faster, and power-
saving transistors, which justified the astronomical expenses of bringing up new pro-
cess nodes.

But supply voltage limitations and increased fabrication complexities at the atomic
level soon pushed power density on chips upwards, ushering in the age of "Dark Sili-
con” [3]. This necessitates a large proportion of transistors to be turned off, operated
at reduced frequencies, or reconfigured into more power-friendly clusters at runtime.

To overcome these challenges, particularly in continuously computing-capacity-
dependent fields like Artificial Intelligence and Data Analytics, software optimization
and the creation of highly advanced microarchitectures are crucial. These architec-
tures must effectively integrate software diversity with hardware heterogeneity [4].
In this context, GPUs have become essential hardware accelerators, complementing
multi-core CPUs to meet the intensive computational demands of modern data analyt-

ics workloads.

2.1.2 General-Purpose GPUs

As Central Processing Units (CPUs) have evolved through the years, they have become
multicore processors capable of performing several tasks in parallel, as they can utilize

sophisticated computational, scheduling and memory techniques to minimize latency.
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Conversely, Graphics Processor Units (GPUs) are manycore processors, devoting thou-
sands of threads on executing simple computations in parallel for massive amounts of
data. Thus, GPUs serve as co-processing units to CPUs, optimally suited for tasks that
demonstrate high regularity and arithmetic intensity [5].

While GPUs were initially designed for graphics rendering applications and gained
popularity and development interest for enhancing gaming visuals, their capabilities
have expanded significantly over time. Starting from the introduction of vertex shaders
into NVIDIA Tesla GPU architecture [31], they soon started to efficiently handle com-
plex linear algebra tasks [32]. Today, GPUs can be used to accelerate a wide range
of data-parallel applications across various domains. These include Machine Learning,
scientific simulations (such as weather modeling, physics and computational chemistry
simulations), medical imaging and video editing. This way, GPUs evolved from being
specialized devices for graphics rendering to becoming versatile, general-purpose ma-

chines capable of handling a diverse array of computing tasks.

2.1.3 Reconfigurable Hardware & FPGAs

In Heterogeneous computing platforms, alongside CPUs and the GPUs, additional ac-
celerating hardware components are often present to enhance energy efliciency and
improve performance when handling specific tasks. The current design of such hard-
ware accelerators is based primarily on Application-specific Integrated Circuit (ASIC)
and Field Programmable Gate Array (FPGA).

ASICs are custom-designed to serve a particular purpose, with high-performance,
low power consumption and compact size but come with lengthy design cycles and high
manufacturing costs. In contrast, FPGAs represent a class of reconfigurable devices
that support both the flexibility of software and the performance of hardware. They
attain extremely low design cost compared to ASIC accelerators, although they tend
to increase the silicon area and involve complex programming that can extend R&D
cycles [6].

Despite these challenges and due to their reconfigurability, FPGAs are favored over
simulation-aided analysis for emulating novel computer architectures. Their inherently
programmable fabric and operation at hardware speed allow for accurate and flexible
emulation across various metrics such as cycle-accurate performance, area utilization,
and power estimation. Fast and affordable hardware emulation and verification systems

like these are essential to address the limitations of current methods [7].
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2.2 Improving single-core Performance with Light-

weight Out-Of-Order execution

GPUs leverage Thread-Level Parallelism (TLP) by scheduling and executing multiple
threads (usually 32 or 64 in commercial GPUs ) grouped into units called warps or
wavefronts. Pairing that with the fast context switching between different warps’ exe-
cution hides stalls related to memory access and utilizes more efficiently the Execution
Units of the GPU, leading to highly-parallelized operation of tasks. This is not always
the case for General-Purpose GPUs, where some functions offloaded to the GPU for
computation (also called kernels) exploit limited TLP and are not capable of utilizing
the GPU’s units sufficiently. With Light-weight Out-Of-Order GPU (LOOG) execution,
as proposed by Iliakis et al. [8, 9], kernels can also benefit from Instruction-Level Par-
allelism by executing warps’ instructions Out-Of-Order (OOO).

Out-Of-Order execution is not new to CPUs, as it dates back to the 1960s with the
development of the IBM System/360 Model 91 in 1964, which introduced Dynamic In-
struction Scheduling to reorder instructions that stalled due to data dependencies [33]
In 1967 Tomasulo’s Algorithm was published, mitigating the delays caused by operand
unavailability by leveraging Register Renaming and Reservation Stations [34]. Mod-
ern processors have continued to refine and expand upon such techniques, with OOO
execution remaining a fundamental part of ILP exploitation in Computer Architecture
[35].

The proposed LOOG execution scheme, on the other hand, targets GPU architec-
tures, which traditionally issue instructions following the program order and track
operand dependencies using Scoreboarding, thus avoiding RAW and WAW data haz-
ards. In LOOG, the GPU’s Collector Units (modules occupied by instructions until their
source operands are fetched from the Register File) are repurposed to also be used as
Tomasulo’s Reservation Stations. Also, a Register Alias Table (RAT) is added to resolve
name dependencies and a sophisticated Load-Store reordering scheme is leveraged for
handling memory operations. By adding those components to the GPU pipeline, warp
instructions can execute Out-Of-Order, benefitting from both ILP and TLP and leading

to low-cost Performance gains.
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2.3 GPGPU Emulation with Vortex-GPU

To explore and develop new microarchitectures and execution mechanisms in GPUs,
certain simulation and emulation tools are needed to validate their potential before
committing to expensive and time-consuming hardware fabrication. These offer a deeper
understanding of how modifications to the microarchitecture, such as changes in the
memory hierarchy or execution units, could impact the GPU’s performance and effi-
ciency.

For this purpose, a few simulators have been proposed, like Accel-Sim [10], an
open-source GPU simulation framework for modelling NVIDIA GPU architectures,
built around the performance model of GPGPU-Sim 4.1.0, a cycle-level GPU perfor-
mance simulator [36], as well as frameworks suitable for GPU power modelling, like
the Accel-Wattch tool [37]. When it comes to hardware emulation, the availability of
such tools, which are also open-source, is more limited. However, the Vortex GPU
framework stands out as it supports GPGPU emulation on FPGA platforms [11, 12, 30].

Vortex is an open-source, RISC-V based General-Purpose GPU (GPGPU) that sup-
ports programming with OpenCL and CUDA. It is designed to facilitate research in
GPU architectures by providing a full-stack implementation that includes a minimal
instruction set architecture (ISA) extension tailored for GPU operations. Vortex is de-
signed using Verilog and SystemVerilog Hardware Description Languages, making it
capable of running on various platforms such as FPGAs and simulators, and is aimed
at enabling the execution of OpenCL / CUDA applications in a customizable and scal-
able environment. This project is particularly notable for extending the RISC-V ISA to
support GPU functionalities, making it a valuable tool for developers and researchers

interested in exploring GPU computing within the open-source RISC-V ecosystem.

2.4 Proposal Overview

The proposed LOOG execution scheme demonstrates promising performance improve-
ments alongside attractive area and power overhead estimates. However, thus far,
LOOG has only been modeled in simulation tools (GPGPU-Sim and Accel-Sim), where
the estimations rely on simplistic, linearly scaling values as the GPU architecture is
modified—resulting in discrepancies compared to an actual hardware implementation.
Also, these tools do not provide an estimation of the architecture’s Critical Path, which
is crucial for determining the clock frequency of the GPU.

To address this gap, we propose implementing LOOG on real hardware by fully
detailing its mechanism at the Register Transfer Level (RTL) using a Hardware De-
scription Language (HDL) such as SystemVerilog. Although an RTL implementation of
a GPU for FPGA emulation presents limitations in terms of size and direct compara-

bility to commercial GPUs, it offers several advantages. These include faster execution
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times, enhanced signal-level observability, and the reconfigurability of FPGAs, which
broadens the design space by allowing exploration of various component sizes and de-
sign trade-offs. Crucially, this approach will yield more accurate assessments of power
consumption and resource utilization, providing a reliable indicator of the final chip’s
area usage.

We have selected the Vortex GPU framework version 2.0 as our baseline architec-
ture due to its open-source nature, RISC-V foundation, and parameterization options
(threads per warp, warps per core, and component sizes), which further expand our
design space. Our approach involves modifying the in-order Vortex pipeline by first in-
corporating an Operand Collect stage with dedicated Collector Units —a feature absent
in the original design and in contrast to commercial GPUs— followed by the implemen-
tation of LOOG’s Out-of-Order mechanisms, tailored to the unique characteristics of
the Vortex architecture.

Subsequently, we will explore various optimizations and trade-offs regarding per-
formance and FPGA-specific limitations, such as routing congestion and resource uti-
lization overheads. For our experimental evaluation, we have characterized a workload
comprising 21 applications, which we have grouped into five categories based on their
stall sources when executed on the in-order Vortex architecture. This classification en-
ables us to accurately define LOOG-sensitive workloads.

Finally, we will perform a LOOG-Vortex right-sizing analysis to identify the op-
timal design parameters and configurations within our extensive design space. Our
evaluation will compare the achieved performance gains, area utilization, and power
consumption overheads with those of the original in-order Vortex execution scheme.
Preliminary findings indicate average performance improvements of up to 23.5%, area
overheads ranging from 4.5% to 27.5% (with around 5% in our best configurations), and
a reduction in the Power-Delay Product—equating to the device’s energy consump-

tion—of up to 17% compared to the in-order design.

2.5 Contributions

This thesis presents several significant contributions to the field of GPU architecture
enhancements within the Vortex GPU framework version 2.0, specifically integrating

the LOOG scheme. The main contributions include:

« Hardware Implementation of Basic LOOG Scheme in Vortex GPU frame-

work:

— Accommodation of the LOOG scheme in RISC-V based 6-stage GPU pipeline.

— Provision of black-box reconfiguration capabilities for LOOG parameters

within the Vortex framework.
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— Introduction of new microarchitectural features, including a lightweight

per-warp UUID generation mechanism.
— Implementation of LOOG’s Register Renaming Stack (RRS).
— Implementation of different schedulers for RF read operations.

« Enhanced Traceability: Provision of detailed, cycle-accurate traces for all added

signals in RTL-simulated application execution.

« New Performance Counters: Introduction of performance counters for RTL
simulation and FPGA emulation, aimed at collecting runtime statistics and met-

rics such as:

Register File read and write operations

Reordered instructions & reordering distances

LOOG-dependent stalls

Collector Units utilization & allocation period

Register Renaming Stack utilization & allocation period

« Vortex workload characterization: Clustering of Vortex benchmarking ap-
plications based on their stall sources and analysis of each cluster’s behavior in
LOOG-Vortex.

« LOOG Right-Sizing for Vortex GPU Version 2.0: This includes optimization
and calibration of LOOG to efficiently integrate with and utilize the resources of
the Vortex GPU version 2.0, in terms of:

— Performance
— FPGA Resource Utilization

— FPGA Power Consumption

2.6 Thesis structure

The remainder of this thesis is structured as follows:

 Chapter 3 delves into the theoretical background of parallel computing, encom-
passing strategies for harnessing parallelism, fundamentals of General Purpose
GPU architecture, and reconfigurable hardware. It also introduces the Vortex RTL
framework and the LOOG scheme for out-of-order execution, which are central
to this study.
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« Chapter 4 explores existing research related to instruction-level parallelism in
GPUs and reviews various RTL frameworks that facilitate GPGPU emulation,

highlighting the advancements and identifying gaps in the current landscape.

« Chapter 5 details the integration of the LOOG scheme within the Vortex GPU, the
structure of the added components and the complete execution scheme. It also
explores the necessary adjustments and optimizations of the implementation and,

lastly, characterizes the workload used in the experimental evaluation.

+ Chapter 6 evaluates the performance of the LOOG-Vortex implementation through
rigorous testing, scaling the LOOG-Vortex configuration to achieve the desired

performance and analyzing the results across different scenarios.

« Chapter 7 wraps up the thesis by summarizing the main discoveries and contri-
butions of the research. It also outlines potential future research directions and

experiments to further this field of study.
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Chapter 3

Background

3.1 Introduction

This chapter aims to provide a comprehensive understanding of the theoretical foun-
dations necessary to grasp the intricacies of our proposed LOOG-Vortex architecture.
Beginning with fundamental concepts, such as the structure of contemporary GPGPU
architectures, the discussion will progress to more complex topics including the design
of Register Transfer Level (RTL) for reconfigurable devices such as FPGAs. Further-
more, an in-depth explanation of the LOOG Out-Of-Order logic will be provided, un-
derpinning the innovative aspects of our architecture. Additionally, this chapter will
detail the operations of our GPGPU RTL framework, Vortex, which serves as our base-
line. This thorough exploration prepares the reader to fully engage with the subsequent

material presented in this thesis.

3.2 Parallel Computing and Parallelism Strategies

Parallel Computing: Parallel computing refers to the process of breaking down a
problem of size n into k smaller parts (with k more or equal to 2), and solving these
parts simultaneously using p physical processors. It involves dividing the workload to

execute multiple tasks concurrently [13].
Types of Parallelism

Data Level Parallelism (DLP): DLP exploits the parallelism inherent in data struc-
tures, such as arrays or matrices, by performing the same operation on multiple

data elements at the same time [14].

Task Level Parallelism (TLP): TLP involves breaking down a program into separate
tasks that can be executed concurrently, where each task operates on a different
portion of the problem. These tasks do not necessarily operate on the same data
but are independent of each other. Each task is a self-contained unit of work that
can be executed in parallel with other tasks, provided that dependencies between

them are minimal or nonexistent [15].
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Instruction Level Parallelism (ILP): ILP is the technique of executing multiple in-
structions in parallel within a single processor cycle. It exploits the fact that many
instructions in a program can be executed independently of each other, and mod-
ern processors use techniques such as pipelining, out-of-order execution, and su-

perscalar architecture to achieve this parallelism [16].

Pipelining: Pipelining is a form of parallelism where a computational process (e.g., an
instruction) is segmented into subprocesses, each executed by dedicated, autonomous
units. These subprocesses operate concurrently, much like an industrial assembly line,

enabling efficient execution by overlapping successive instructions [17].

Out-of-Order Execution: Out-of-order execution is a processor design technique that
allows instructions to be executed as resources become available, rather than strictly
following their original program order. This approach enhances CPU performance by

minimizing idle times and optimizing resource utilization [18].

Data Dependencies: An instruction j is data dependent on instruction i under the

following conditions:

« Instruction i generates a result that instruction j utilizes.

« There is a chain of dependencies where instruction j depends on instruction k, and
instruction k in turn depends on instruction i. This chain can extend across the

entire program [19].

Data Hazards: A hazard arises when dependent instructions overlap during execu-
tion, potentially altering the intended operand access order. These hazards are catego-

rized into three primary types:

« Read-After-Write (RAW): This hazard occurs when an instruction i writes to
a register followed by another instruction j that reads from the same register. It
reflects a true data dependence, representing a direct flow of data between in-

structions.

« Write-After-Write (WAW): This happens when both instruction i and instruc-
tion j write to the same register. The correct execution of the program requires
that the last write, by instruction j, determines the final value in the register. This

type of hazard is known as output dependence.

« Write-After-Read (WAR): This arises when an instruction i reads from a register,
and a subsequent instruction j writes to the same register. To ensure data integrity,
the read operation by i must occur before the write operation by j. This hazard

corresponds to an antidependence or name dependence [19].
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SIMD (Single Instruction Stream, Multiple Data Streams): The same instruction
is executed by multiple processors using different data streams. SIMD computers ex-
ploit data-level parallelism by applying the same operations to multiple items of data

in parallel [19].

3.3 Fundamentals of GPUs

GPGPU (General-Purpose GPU): The key characteristic of GPGPUs is their ability
to handle general-purpose computations using the same hardware designed for graph-
ics rendering. This is achieved by leveraging programming models such as CUDA or
OpenCL, which allow developers to write programs that run on the GPU, taking full

advantage of its massive parallel processing power [20].

Kernels: Kernels represent the segments of code designated to run on a GPU, initiated
by the CPU through a driver. The CPU specifies the kernel, the number of threads, and
the input data for the computation. This information is conveyed to the GPU via the

driver, which signals the GPU to start executing the computations [21].

Threads: GPU threads refer to execution units that handle individual tasks. In GPUs,
each threads fetches the same instruction concurrently to execute on different data, be-
ing more precisely defined as Single-Instruction Multiple Threads (SIMT), unlike SIMD

vector processors, which fetch one instruction for a whole vector of data. [22]

Warps: Warps are defined as groups of threads within a GPU that execute the same
instruction simultaneously. This grouping aligns with the GPU’s Single Instruction,
Multiple Threads (SIMT) execution model, where each warp typically consists of 32
threads [23]

Streaming Multiprocessors (SMs): In GPU architecture, a Streaming Multiproces-
sor (SM) is a fundamental unit responsible for executing parallel operations. Each SM
contains multiple CUDA cores (processing units) and other components such as spe-
cial function units and load/store units. These cores within an SM execute threads in
parallel, enabling efficient processing of large-scale computations. The number of SMs
in a GPU varies depending on the specific model and architecture, contributing to the

overall processing power of the GPU. [24].

Collector Units: Collector Units are structures inside the GPU pipeline, specifically in
the register read stage. Each instruction is assigned a Collector Unit, enabling concur-
rent reading of source operands for different instructions and enhancing throughput.
Each collector unit is equipped with sufficient buffering space to store all the source

operands needed to execute its associated instruction [21].
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FIGURE 3.1: Warp occupancy - IPC distribution for 115 general- purpose
kernels in two physical GPU platforms [28].

3.4 Reconfigurable Hardware and Emulation Techniques

Reconfigurable Hardware: Reconfigurable architectures combine a processor with
a reconfigurable block, providing the adaptability needed by hardware for embedded
applications. This setup offers both the performance of standard processors and the
flexibility of Application Specific Integrated Circuits (ASICs) [25].

Field Programmable Gate Arrays (FPGAs): FPGAs are reconfigurable hardware
platforms containing programmable logic blocks and routing switches. The logic blocks
consist of transistors, gates, multiplexers, look-up tables (LUTs) and registers and they
are responsible for implementing logic functions. The routing switches are used to

connect the input and output pins of the logic blocks [25].

RTL Design: Designing an Integrated Circuit (IC) at the Register Transfer Level (RTL)
is an more abstract than a Netlist description and less abstract that a Behavioral descrip-
tion of the circuit. It is implemented using an HDL like Verilog or VHDL and described
using registers (flip-flops, latches), logic operators between them and wires for inter-

connection [26].

Hardware Emulation: In hardware emulation, a reconfigurable hardware platform
(like an FPGA) is used to simulate the functionality of a system for debugging and
verification purposes. Using Hardware Description Languages (HDLs) like Verilog to
implement the system’s logic, it allows for flexible design testing before the actual hard-
ware is developed, but comes at the cost of routing limitations visibility, as well as long

mapping times [27].
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3.5 LOOG Details

The motivation behind the Light-weight Out-Of-Order GPU (LOOG) execution scheme
[8, 9, 28] lies in the observation that some kernels executed on GPGPUs achieve low
utilization, not being able to fully leverage the TLP provided by the hardware. Figure
3.1 shows that a large amount of kernels running on two GPU platforms exhibit low
warp occupancy—resulting in restricted thread-level parallelism—and low IPC, which
ultimately hampers execution efficiency. LOOG tackles these issues by harnessing In-
struction Level Parallelism through Out-Of-Order execution, employing a light-weight
version of Tomasulo’s Algorithm, adapted for GPU pipelines. The LOOG pipeline is
illustrated in Figure 3.2.

LOOG enables instruction reordering by repurposing the GPU’s Collector Units
(CUs) to double as Reservation Stations. In this configuration, instructions are held
until their dependencies are met. Instead of relying on a traditional Scoreboard to track
Read-After-Write (RAW) hazards, LOOG replaces it with a Register Alias Table (RAT).
This unit not only monitors RAW dependencies, but also removes Write-After-Read
(WAR) and Write-After-Write (WAW) hazards by register renaming—substituting the
register name with the corresponding CU ID. When an instruction is assigned a CU, it
first accesses the RAT for each of its source operands. Indexed by operand and warp
IDs, each RAT entry specifies the source of the register’s value, which can either be
another CU’s ID or the RF. If a register has already been renamed, its entry contains
the ID of the CU responsible for producing its value. This ID is then copied into the
allocated CU, and the result broadcast bus is monitored to capture the value once the
matching CU ID appears. Simultaneously, the RAT is updated so that the destination

register for the instruction now points to the newly allocated CU ID.
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Additionally, LOOG introduces a tailored mechanism to handle the reordering of
Load-Store instructions, which may involve address dependencies. Memory instruc-
tions reserve entries in either a Load Queue (LQ) or a Store Queue (SQ) to track these de-
pendencies. Before reordering any memory operation, the address operand is checked
against those of all earlier issued store instructions. If a matching address is found, the
operation is held back from reordering. Moreover, any store that has not yet resolved
its target address will block subsequent memory operations, preventing potential ad-
dress conflicts. Finally, to adhere to the GPU memory consistency model, no memory
instructions are reordered ahead of memory barrier operations.

To further optimize resource utilization, LOOG employs a Register Renaming Stack
(RRS). This structure maintains a list of unique IDs that are used in the RAT instead
of the actual CU IDs. When an instruction is dispatched, it is allocated a free CU and
draws a unique ID from the RRS. This ID is written into the RAT in place of the CU
ID, and any dependent instructions use it to capture results from the result broadcast
bus. This approach permits the instruction to free up its CU immediately after dispatch,

retaining only the RRS ID until the writeback stage is completed.

3.6 Vortex GPU Pipeline
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F1GURE 3.3: Pipeline microarchitecture overview of Vortex GPU [29].

The Vortex GPU pipeline [11] [12] [30] is built on a robust 6-stage design that integrates
traditional RISC-V elements with specialized hardware for SIMT processing. It starts
with the Schedule stage, where a warp scheduler determines the next program counter
while tracking active and stalled warps. An IPDOM stack is employed to save split/join

states for divergent threads, and an inflight tracker monitors all active instructions.

________________________________________
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This careful scheduling ensures that multiple warps are effectively managed and that
the pipeline maintains a steady stream of work.

Following scheduling, the Fetch stage retrieves instructions from memory while
handling instruction cache requests and responses, keeping the pipeline adequately
fed. In the Decode stage, these fetched instructions are translated into operations, with
control instructions prompting notifications to the warp scheduler. This approach fa-
cilitates rapid adaptation to control flow changes and thread divergence, allowing for
efficient parallel execution.

In the Issue stage, decoded instructions are stored in per-warp queues within an in-
struction buffer. A Scoreboard then tracks register usage and checks operand availabil-
ity, while an Operands Collector fetches the required data from the register file. These
steps prepare instructions for the Execute stage, where specialized units—such as the
ALU for arithmetic and branch operations, the FPU for floating-point computations,
the LSU for load/store operations, and the SFU for warp control and CSR tasks—carry
out the core processing tasks.

Finally, the Commit stage writes the results back to the register file and updates
the Scoreboard, marking the completion of instruction execution. Complementing the
pipeline, Vortex also features a clustering architecture: cores are grouped into sockets
that share an L1 cache, and these sockets are further clustered to share an L2 cache. This
hierarchical design promotes scalability and efficient data sharing, making the Vortex
GPU pipeline a versatile platform for both high-performance computing and graphics

processing tasks.
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Chapter 4

Related Work

4.1 MIAOW: RTL Implementation of a GPGPU

The MIAOW (Many-core Integrated Accelerator Of Wisconsin) is an open-source Reg-
ister Transfer Level (RTL) implementation of a general-purpose GPU (GPGPU) [38]
[39]. Designed for low-level hardware explorations, MIAOW enables detailed analy-
sis of GPGPU microarchitecture and allows researchers to evaluate GPU designs from a
physical design perspective. The architecture closely follows the AMD Southern Islands
GPGPU Instruction Set Architecture (ISA), integrating with a comprehensive pipeline
to execute OpenCL-based applications.

MIAOW'’s primary contributions include its realistic and flexible design, which sup-
ports experiments in GPU hardware research by providing insights into the area, power,
and performance trade-offs involved in GPU design. It is not merely a simulator but an
actual RTL model capable of running unmodified applications. The system is designed
to emulate a full GPU, providing useful benchmarks for those researching GPGPU sys-
tems. It is particularly valuable for exploring architectural innovations and validating
designs at the RTL level, a stage where simulator-based approaches may fall short in
terms of hardware accuracy. Additionally, MIAOW facilitates research on novel GPU
features, such as memory management and thread scheduling, contributing to advanc-
ing the field of GPGPU hardware design.

4.2 GhOST: O0O Scheduling for GPUs

The GhOST (GPU Out-Of-Order Scheduling Technique) paper [40] introduces a highly
efficient and low-overhead Out-Of-Order (OOO) execution technique designed to re-
duce instruction stalls in GPUs. GhOST operates by leveraging the decode stage, which
already stores a pool of decoded instructions, to enable Out-Of-Order instruction issue
without the need for expensive hardware components. This innovative approach al-
lows independent instructions from different warps to be scheduled and executed out
of order, minimizing idle times caused by data hazards, while maintaining a simple and

efficient hardware design.
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One of the key advantages of GhOST is its minimal hardware overhead. By avoid-
ing complex components such as register renaming, load-store queues, and speculative
execution—techniques commonly used in prior OOO designs like LOOG—GhOST re-
duces the need for expensive hardware modifications, making it highly suitable for
practical GPU implementations. GhOST’s design relies on a straightforward modifica-
tion to the instruction scheduling process, without altering the warp scheduler itself.
As a result, it provides significant improvements in performance with a minimal in-
crease in area. GhOST is particularly effective in scenarios with low warp occupancy,
where traditional thread-level parallelism (TLP) optimizations are less impactful, thus

enabling more efficient execution in a wider range of workloads.

4.3 SIMIL: Simple Issue Logic for GPUs

SIMIL (SIMple Issue Logic for GPUs) [41] introduces a novel architectural enhancement
aimed at optimizing the instruction issue stage in General-Purpose GPUs (GPGPUs).
It replaces the traditional scoreboard-based mechanism with a Dependence Matrix to
track dependencies between instructions, enabling more efficient handling of data haz-
ards. This is particularly beneficial for workloads where operands are reused frequently,
such as in machine learning applications. By eliminating the need for complex com-
ponents like scoreboards, SIMIL simplifies the hardware and enhances performance,
energy efficiency, and area utilization.

Moreover, SIMIL extends the traditional in-order execution with a restricted Out-
Of-Order execution (OOO) capability. This OOO mechanism allows instructions to be
issued as soon as their operands are ready, rather than strictly in program order, lead-
ing to faster execution. By avoiding speculative execution and complex register renam-
ing, the OOO extension provides substantial performance improvements with minimal
hardware overhead. SIMIL delivers up to a 2.39x speedup for specific machine learning
applications, reduces energy consumption by 12.81%, and incurs only a 1.5% area over-
head, making it a highly efficient solution for handling Instruction-Level Parallelism in
GPUs.

4.4 TURBULENCE: 000 GPU Execution whth Distance-
based ISA

TURBULENCE [42] introduces an innovative approach to Out-Of-Order (OOO) exe-
cution on GPUs with minimal hardware overhead. This architecture aims to exploit
Instruction-Level Parallelism in GPU workloads, which are often highly data-parallel
but also contain hidden Instruction-Level Parallelism that could be unlocked through
00O execution. TURBULENCE consists of a novel instruction set architecture (ISA)
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that replaces traditional register-based operand references with a distance-based operand
referencing system. This system eliminates false dependencies and allows for more flex-
ible scheduling without the need for complex and power-hungry components such as
register renaming, reorder buffers, or load-store queues, which are typically required
for OOO execution.

The architecture includes a hybrid ISA that dynamically switches between distance-
based operands and traditional register numbers when the reference distance is too
large, optimizing both performance and instruction count. The microarchitecture im-
plementing TURBULENCE uses a scheduler similar to that of Out-Of-Order CPUs but
with low complexity, allowing for efficient instruction reordering within threads. This
approach reduces latency and enhances throughput without introducing substantial
hardware costs. The evaluation of TURBULENCE shows significant performance im-
provements—up to 17.6% faster execution—while maintaining energy efficiency, with a
6.1% reduction in energy consumption compared to a baseline GPU configuration. This
work demonstrates that low-cost Out-Of-Order execution is a viable technique for en-
hancing GPU performance, especially for workloads that can benefit from Instruction-

Level Parallelism.
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Chapter 5

Implementation Details

5.1 Introduction

The purpose of this chapter is to give the reader a thorough understanding of the imple-
mentation and the architecture specific details of our proposed LOOG-Vortex Pipeline.
The chapter is organized as follows: in Section 5.2 we present the new components
added to the Vortex pipeline to support LOOG and in 5.3 we describe the workflow
of an Instruction in the updated Pipeline. In Section 5.4, we consider some microar-
chitectural trade-offs that lead to critical design choices. Section ??, finally, presents
the exploration of different design configurations and the right-sizing of LOOG-Vortex

parameters.

5.2 LOOG-Vortex additional Components

This section lists the components that have been added to the baseline Vortex design
in order to effectively accommodate the LOOG instruction flow. An abstraction of the

updated pipeline schematic is shown in Figure 5.1.
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5.2.1 Collector Units

As described in Chapter 3, traditional GPU architectures incorporate Collector Units
(CUs) responsible for holding the data of instructions until their source registers are
retrieved from the Register File. In LOOG-Vortex GPGPU, we have implemented a con-
figurable number of Collector Units, in order to explore the possible exploitation of
instruction reordering and their reordering depths, a core component of architectures
that support dynamic instruction scheduling (further analyzed in Chapter 6).

Each of the CUs is able to fit the data of an instruction exiting the IBuffer stage,
containing the warp’s ID, PC address, operation type, source registers and des-
tination register names, thread mask etc., along with several fields. These include
an allocation status bit to indicate whether the CU is "busy” or "empty”, thereby de-
termining its availability for new allocation. Another bit signifies whether or not the
instruction has been dispatched for Execution. Further bits indicate the "readiness”
of the source registers and the source from which they will be acquired. This lat-
ter field is critical in our LOOG design, where operands may be fetched either directly
from the Register File or from another Collector Unit currently in the Writeback stage,
in cases where there is a Read-After-Write (RAW) dependency. All the fields described

above, along with their respective size in bits, are illustrated in Figure 5.2.

Collector Unit

allocation status
dispatch status
rd data valid status

rs data valid status
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3 x T x (DATA width) rs2 data,
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FiGure 5.2: Collector Unit entry fields with their respective size in bits

(first column).
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Incontrovertibly, the role of Collector Units lies in obtaining the instruction’s ope-
rands, necessitating dedicated fields for the data of source registers. On top of those,
we also incorporated a field for the data of the destination register. This feature
is crucial in the LOOG-Vortex configuration, where an instruction within a warp can
execute multiple Writebacks across distinct and not necessarily sequential clock cy-
cles, particularly in scenarios involving intra-warp thread divergence. To facilitate this,
Vortex equips each instruction, alongside the Writeback data, with a start-of-packet
(sop) and an end-of-packet (eop) bit, enabling each instruction to initiate up to the
number of threads per warp Writeback operations. In the scenario of Out-Of-Order
execution, managing these poses challenges when writing the packet back to the Reg-
ister File or during broadcast. Our approach addresses these by retaining the data in a
designated Collector Unit field until the end of the packet is reached, as indicated by
an additional rd ready bit.

5.2.2 Register Alias Table

Rather than using a Scoreboard to monitor Read-After-Write (RAW) dependencies, LOOG
employs a Register Alias Table (RAT). This mechanism not only tracks RAW dependen-
cies but also eliminates Write-After-Read (WAR) and Write-After-Write (WAW) depen-
dencies through register renaming, replacing the register name with the corresponding
CU ID. The RAT functions as an array structure within the Vortex architecture, config-
ured with individual entries for each register associated with a warp — that includes 32
integer and 32 floating-point registers in the Vortex default setup. Each entry within
the RAT is composed of two key components: a bit that indicates whether the register’s
data needs to be sourced from the Register File and a CU ID field, as shown in Figure
5.3. This holds the identification number of the Collector Unit that houses the instruc-
tion slated to broadcast the result of the specified register. As instructions enter the
Operand Collect stage, they have to first consult the RAT. This process determines the
precise location of the operands’ data, ensuring correct data retrieval before execution
proceeds.

The discussed Register Alias Table functionality, supported also from the fields
within the Collector Units, allows for Write-After-Write (WAW) dependent instructions
to prevent unnecessary multiple writings to the Register File, particularly when two or
more instructions from the same warp target the same register. In such scenarios, only
the result of the latter operation is written back to the Register File, thereby optimizing
resource usage and avoiding some structural hazards. Additionally, this configuration
helps avoid certain reads from the Register File when dealing with Read-After-Write
(RAW) dependencies, as they can be resolved by broadcasting data from one Collector
Unit and made immediately available to other Collector Units, facilitating quicker data

access and streamlining the execution process within the pipeline.
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F1GURE 5.3: The Register Alias Table with the respective fields.

5.2.3 UUID Generation Unit

When executing a kernel Out-Of-Order, it is essential to ascertain the sequential prece-
dence of instructions to effectively manage issues arising when deviating from "pro-
gram order’. Furthermore, we do not implement a reordering mechanism for memory
operations here, so the information of an instruction preceding another is necessary.
To facilitate this, we have implemented a UUID Unit responsible for generating an as-
cending Universal Unique Identification (UUID) number for each instruction that is
scheduled to traverse through the pipeline. Also, UUID generation is conducted on
a per-warp basis, since inter-warp dependencies are managed at a higher level using
barriers, which are processed in the hardware during the Schedule stage. Once gener-
ated, the UUID is embedded within each instruction’s data, accompanying it through
the pipeline until arriving at the Commit stage, where it is finally discarded.
Although the availability of an infinite —or substantially large— pool of unique
numbers for UUIDs would be simple and trouble-free, it would also lead to unneces-
sary area overhead in the hardware. To address this, we aim to minimize the number
of bits allocated for this field and allow for the reuse of IDs after a certain number of
instructions have been processed. As mentioned, we generate the UUID from a differ-
ent pool for each warp and maintain further seperation of individual instructions by
combining this with the warp ID. Furthermore, we employ a modified definition of the
“less than (<)” operator, whereby a UUID with its most significant bits (MSBs) set to
’00’ is considered greater than (or in our context, subsequent to) a UUID with MSBs
set to '11°. This adjustment allows us, if the UUID bit width is /V, to obtain a margin
of 2V=2 instructions that can be safely processed before potential serialization errors
arise. Should this margin be exceeded, an overflow is detected, prompting a pipeline

stall until it is cleared of all instructions from the affected warp.
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5.3 LOOG-Vortex Instruction Flow

In this section, we describe assiduously the data flow of an instruction passing through
our proposed LOOG-Vortex pipeline architecture. We will use figure 5.5 as the basis of

our description.

5.3.1 CU Allocation & consulting the RAT

When an instruction transitions from the I-Buffer to the Operand Collect Stage, the
initial step involves allocating an empty Collector Unit (CU). A CU is designated as
“unoccupied” when its allocation status bit is set to ’0’. Upon identification, such a CU
is assigned to the instruction, which subsequently stores all pertinent data from the
preceding stage into the CU.

In the next clock cycle, the newly allocated CU consults the Register Alias Table
(RAT) to examine the entries corresponding to its source registers. It retrieves and
copies the necessary source information into its respective fields. This process enables
the CU to determine the appropriate source of each register’s data, discerning whether
it should be read directly from the Register File or retrieved from another CU’s des-
ignated broadcasting. Concurrently, if the instruction requires a Writeback to a des-
tination register, the CU writes its own ID within the register’s field in the RAT. This
way, subsequent instructions that have a Read-After-Write (RAW) dependency upon
the CU’s instruction will be alerted to stall until the result is broadcasted and the cor-

rect data can be aqcuired.

5.3.2 Reading from the Register File

Upon obtaining the necessary details from the Register Alias Table (RAT), the Collector
Unit (CU) enters the subsequent cycle tasked with gathering the correct data for each
of its source registers. Should any operands require direct retrieval from the Register

File (RF), a "reading” status is assigned to the CU, indicating active data collection.
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FIGURE 5.5: LOOG-Vortex Issue, Execute & Commit Stages.

The Vortex architecture limits the RF to single-port reads, necessitating a stall in the
CU’s operations if another instruction is simultaneously accessing the RF. The CU will
proceed to fetch its operands sequentially from the RF, allocating one cycle per operand
retrieval (this involves collecting the data for all active threads within the warp). Con-
sequently, for an instruction that requires three source registers’ data from the RF, the
complete reading process will span three cycles. As data for each register is secured and
stored within the CU, that register is then flagged as “valid”, signifying the successful
acquisition of data. Following the completion of all data collection from the RF, the CU
transitions to a non-reading state, allowing the scheduling of another CU for operand
collection, ensuring efficient management of access to the RF and coordination among
multiple CUs.

5.3.3 Dispatching for Execution & CU Deallocation

Once a Collector Unit (CU) has acquired the data for all its source operands and each is

marked as “valid,” it is flagged as "ready.” From this pool of ready CUs, one is selected
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each cycle to advance to the Execution stage. Upon Dispatch, the instruction’s fun-
damental data, combined with the operands’ data, are packaged and forwarded to the
next stage and a flag is set to indicate the CU as "dispatched.”

Simultaneously, the instruction undergoes an evaluation to determine if it neces-
sitates a Writeback (for instance, a Store memory operation does not require writing
back a result to a register). If the instruction has no Writeback obligations, the CU
is scheduled for Deallocation in the subsequent cycle. This process involves resetting
the allocation and dispatch status flags to 0’ and clearing any fields that indicate the
“readiness” of operands and the CU overall. Conversely, if the instruction does require
a Writeback, the CU retains its current state until this task is completed, after which it

is promptly Deallocated.

5.3.4 Writing Back the Result

When an instruction completes its Execution and Commit stages , it may need to write
back its result to its designated destination register. Upon Committing, the result is
routed back to the Operand Collect stage where the Collector Units (CUs) and the Regis-
ter File (RF) are located. In the Vortex architecture, which supports multiple Writebacks
per instruction, results for threads within the same warp can arrive asynchronously.
Writeback is only deemed complete upon receipt of a special end-of-packet (eop) sig-
nal; until then, the incoming data are temporarily stored in a dedicated field within the
relevant CU.

Once the eop signal is detected, indicating that the destination register’s data within
the CU is finalized, the corresponding entry in the Register Alias Table (RAT) is re-
evaluated. If the CU discovers its own ID in this field, it is responsible for transferring
the result back to the RF and updating the RAT; otherwise, this task falls to another CU.
The write operation to the RF, if required, occurs in the following clock cycle, simulta-
neously with the update of data in all CU source register fields that are dependent on
this instruction’s broadcasted result. Subsequently, the CU has fulfilled all its respon-

sibilities and is prepared for Deallocation, as previously described.

5.3.5 CUID carried through Execution

Instructions that are stalled in the Operand Collect stage due to RAW dependencies
must ascertain from which Collector Unit to retrieve data when the valid result is
broadcasted. For this purpose, each stalled CU retains the ID of the CU on which it
is contingent. Hence, this CU ID must be carried from the Dispatch through the Execu-
tion and Commit stages for all instructions necessitating a Writeback. Accordingly, the
Execution Units are equipped with a designated CU ID field, along with the interfaces

that connect the inputs and outputs of each stage.
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5.3.6 Execution Example

We will now present an example demonstrating the execution of three instructions
within the LOOG-Vortex pipeline, focusing on their progression through the Issue, Ex-
ecute, and Commit stages, particularly emphasizing the Operand Collect phase. This
practical illustration ties into our earlier discussions and helps clarify the pipeline’s op-
erational details. In this example, instruction B haw a RAW dependency on A, because

it has r2 as a source register. Instruction C is completely independent, since it comes

from another warp, and it doesn’t require a Writeback operation.

Consider the instructions:

A) wO: addi r2,
B) wO: add r2,
C) wl: sw ril,

The following diagrams will illustrate step-by-step how these instructions are pro-
cessed, highlighting the key tasks and interactions at each stage of the pipeline. Note
that the cycle counts for the ALU and LSU Execution are not accurate (set at 2 and 3

ri, 1
r2, r3
0(r2)

cycles respectively) for simplicity and brevity in this example.
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(a) Clock Cycle 1: Instruction (A) (green) is fetched from the IBuffer.
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(B) Clock Cycle 2: Instruction (A) allocates CU 0 storing all its data to its corresponding fields and is
scheduled to consult the RAT. Instruction (B) (blue) is fetched from the [Buffer.
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(c) Clock Cycle 3: Instruction (A) copies its source register’s RAT entry to the corresponding CU field

and writes its ID (CU 0) to its destination register’s RAT entry. (B) allocates CU 1 and is scheduled to
next read the RAT and (C) (orange) is fetched from the IBuffer.
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(D) Clock Cycle 4: CU 0 is set to "reading” mode to fetch r1 from the Register File, proceeding as no
other CUs are currently accessing the RF. Simultaneously, Instruction (B) updates its CU fields with RAT
source data and adjusts the RAT entry for its destination register, r2.(C) allocates CU 2 and is scheduled

to next consult the RAT.
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() Clock Cycle 5: CU 0 collects the data for r1 from the Register File. CU 1 is marked as "reading”, as

it has to read r3 from the RF. Instruction (C) consults the RAT and copies the relevant entries to its CU
fields, making no modifications to the RAT since it requires no Writeback.
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(F) Clock Cycle 6: CU 0 has finished accessing the RF, setting r1 as "valid” and marking itself as "ready”.
CU 1 is scheduled to read from the RF, while CU 2 awaits its turn to access it.

|Buffer

Issue width

RF readj CU allocation
| Y i—\
) 7 ! : : :

[ cuo [ ecui [ cus [ cus [ cue | ... [cumn RAT
) ) st o | st rzicud | |rst AP | [rst [rs1 [rs1 - -
Register File 52 - rs2 r3: AF rs2_r2: AF rs2 152 1s2 ri: RF |ri: RE
3 - =3 - 3 - rs3 [*s3 [ =3
rd [rd [rd

r2:culfr2: RF
2 42 d - [rd 3: AF
% Y . 2 2 | v 4 £ 2 A
RF writeJ ready :EE
heck RAT-

Dispatch

v
Y v v v

ALU FPU

Writeback

SFU Lsu

U R

A
A

Main Memory

(G) Clock Cycle 7: Instruction (A) is scheduled to Dispatch. CU 1 reads r3 data from the Register File
and CU 2 remains stalled.
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() Clock Cycle 8: Instruction (A) moves to the Dispatch stage to be assigned a Function Unit. CU 1

updates rs2 as “valid” but cannot be marked as "ready” yet, awaiting the result for r2 from CU 0. CU 2 is
queued for reading from the Register File.
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(1) Clock Cycle 9: Instruction (A) occupies the Arithmetic Logic Unit (ALU) for Execution, CU 1 remains
stalled and CU 2 acquires r1 data from the Register File.
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(1) Clock Cycle 10: (A) is still Executing, CU 1 is stalled and CU 2 flags rs1 as "valid” and reads the data

for r2 from the RF.
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(x) Clock Cycle 11: Instruction (A) has completed its Execution and Commits, while CU 1 continues to
wait. CU 2 updates rs2 status as “valid” and marks itself as "ready”
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(L) Clock Cycle 12: Instruction (A) proceeds to Writeback, updating its CU’s destination register data
field with the result. Upon checking the corresponding RAT entry and finding another CU’s ID, it de-
termines there is no need to write the result to the RF. Meanwhile, CU 1 remains stalled, and CU 2 is

scheduled for Dispatch.
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(M) Clock Cycle 13: CU 0 marks its destination register’s (r2) data as “valid” and CU 1 obtains that data.
Instruction (C) is in the Dispatch stage to be assigned a Function Unit.
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(N) Clock Cycle 14: Having finished with all obligations, CU 0 is Deallocated. CU 1 updates rs1 as "valid”
and marks itself as "ready,” while Instruction (C) begins its Execution in the Load Store Unit (LSU).
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(o) Clock Cycle 15: Instruction (B) proceeds to the next stage and instruction (C) continues Executing
in the LSU.
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(p) Clock Cycle 16: Instruction (B) gets assigned a Function Unit in the DIspatch stage and (C) still

Executes.
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(@) Clock Cycle 17: (B) starts its Execution in the ALU and (C) continues its Execution in the LSU.
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(r) Clock Cycle 18: Instruction (B) still Executes in the ALU. Instruction (C), having finished Executing,
is currently in the Commit stage.
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(s) Clock Cycle 19: Instruction (B) is in the Commit stage, while (C) has been discarded as it no longer
has pending tasks.
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() Clock Cycle 20: Instruction (B) performs a Writeback, transferring its result to the specified CU
field. It also identifies its ID in the r2 entry of the RAT, preparing for a subsequent write to the Register
File.
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(u) Clock Cycle 21: CU 1 marks its destination register’s data as “valid” and writes it to the Register
File. It is set for deallocation in the following cycle.

FIGURE 5.6: Per-cycle Execution of 3-Instructions Example in the LOOG-Vortex Pipeline
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5.4 Microarchitecture Tradeoffs & Optimizations

5.4.1 Optimizing Routing between Collector Units

For the Collector Units to acquire broadcasted data from another CU for any of their 3
source registers, there arises a routing issue due to the excessive number of connections
required. Specifically, for N Collector Units and 7" Threads per Warp, the number of
wires needed for data transfer is given by the formula: 3 x N x (N — 1) x T' x data_size.
To minimize this problem, we introduce an in-betweeen register to hold the valid result
from the broadcasting CU and, in the subsequent cycle, pass this data to any CUs that
depend on it. Note that the area overhead is minimal as only one register is needed,
because only one Writeback can occur in each cycle.

This modification reduces the number of wires for /V Collector Units and 7" Threads
per Warp to 4 x N x T' x data_size, significantly easing the routing congestion, espe-
cially for large N. Furthermore, this adjustment does not impact the latency of the
broadcast, as it can be “hidden” within the two pipelined cycles already necessitated
by the Writeback with eop, the rise of the rd valid flag, and the possible write to
the Register File. In practice, this approach not only slightly decreases the overall area
of the design on the FPGA, as mapping can utilize the resources more efficiently, but
it also significantly reduces the length of the critical path, thus optimizing the GPU’s
clock frequency that can be targeted.

The routing schemes discussed earlier are depicted in the figures provided below.
Figure 5.7 illustrates the original “all to all” routing scheme for 4 CUs, while figure 5.8

displays the routing configuration after the implementation of the proposed modifica-

tions.
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rs2 rs2

rs3 1s3

rd rd ]
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FIGURE 5.7: Collector Units register routing scheme before optimization.
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WB buffer

F1GURE 5.8: Collector Units register routing scheme before optimization.

Additionally, when configuring an SM with a large number of Collector Units (e.g.,
more than 12), routing congestion on the FPGA can be further reduced by employing
a second Writeback buffer. This secondary buffer registers the same result as the pri-
mary one but is connected to a different subset of Collector Units. Although with this
approach the total number of wires are slightly increased,the routing load is effectively
distributed across multiple components, thereby alleviating congestion. In this config-
uration, the first buffer broadcasts results to one half of the Collector Units (identified
by distinct IDs), while the second buffer serves the remaining units. An illustrative

example is shown in figure 5.9.

cu1 cuz2
rs1 rsi
rs2 rs2
rs3 rs3
rd rd
cuo cus
rs1 rs1
rs2 rs2
rs3 rs3
rd rd

| WB bufer | WB buffer |

FIGURE 5.9: Collector Units register routing scheme after optimization
with 2 Writeback buffers.

This optimization significantly reduces routing congestion, thereby enabling a more

efficient utilization of design resources. Figure 5.10 illustrates this improvement by
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comparing the area of the baseline in-order Vortex pipeline with that of LOOG-Vortex
incorporating 8 Collector Units, both before and after the optimization. The light-
colored part corresponds to the LUTs used as memory and the darker part to the LUTs
used for implementing the cirquit’s logic functions. The comparison is provided across

various configurations of the SM in terms of warps and threads.

Il Baseline
60.01 mmm LOOG - Unoptimized (8 CUs)
Il LOOG - Optimized (8 CUs)
50.0 1
40.0
30.0
20.01
10.01
0.0 Q) Q) ; : ‘ o .
\>‘ ‘b "1/ Dt ‘b '11 b > v
> RN S A R SO '\.b"» '\,b?’

Configurations (Warps, Threads)

FiGUure 5.10: Comparison of CLB LUTs utilization of in-order Vortex

(baseline), LOOG-Vortex before the routing optimization (8 CUs) and

LOOG-Vortex after the routing optimization (8 CUs) across different
warps-threads configurations of the SM.

5.4.2 Exploring Scheduling Strategies for RF Reads

In our LOOG-Vortex design, a common reason of instruction stalls during the Operand
Collect stage is the single-ported Register File. With only one Collector Unit permitted
to access the RF at any given time—and given that each access requires as many cycles
as the number of source operands to be read—a queue of Collector Units often develops.
This raises the question of how best to schedule these RF access requests.

We investigated several scheduling schemes: an ID-based arbiter, which first grants
access to the Collector Unit with the smallest ID among those with valid requests;
a Round-Robin arbiter, which cyclically prioritizes valid Collector Units; and finally
a Round-Robin arbiter paired with Round-Robin scheduling selecting which Collec-
tor Unit to allocate from a pool of empty units. As illustrated in Figure 5.11, these

alternative scheduling methods did not have a significant impact—either positive or
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negative—on LOOG-Vortex’s IPC. Consequently, we have chosen to retain our original

approach, which employs an ID-based prioritization for RF accesses.
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FIGURE 5.11: Comparison of LOOG-Vortex IPC across different SM con-

figurations (warps, threads) for different scheduling schemes for RF ac-

cesses in the Operand Collect stage. The figure contrasts an ID-based

arbiter, a Round-Robin arbiter, and a Round-Robin approach with addi-
tional Round-Robin CU allocation scheme.

5.4.3 Introducing the Register Renaming Stack (RRS)

Unlike conventional GPU architectures, where instructions remain in the Collector
Units only for a few clock cycles - until their source operands’ data are read from the
Register File, the LOOG execution scheme necessitates that instructions occupy CUs
up to the Writeback stage. Consequently, the average CU allocation period is signifi-
cantly extended in LOOG. This can become a bottleneck to LOOG’s performance gains,
as the structural hazard posed by the lack of available CUs for new instructions arriv-
ing at the Operand Collect stage can lead to stalls. Minimizing such stalls within the
current microarchitecture would mean increasing the number of CUs, which come at a
substantial area cost. This requirement introduces a significant tradeoff, which will be
elaborated upon later in this thesis.

The solution to this, as proposed by Iliakis et al. [9], involves introducing a new
structure to the pipeline, called the Register Renaming Stack, designed to accommodate
instructions from the Dispatch stage until they reach the Writeback stage. The entries
within the RRS comprise several components: an allocation status bit, a destination

register data field, a thread mask field (to ensure only the correct part of the result data
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is written back), and a rd_valid bit, which indicates that the eop signal has been
detected and the result is valid. While this configuration might seem complex, it does
not entail a significant area overhead; the data and validation fields are transferred
from the CUs of the previous design to the RRS. This adjustment effectively shifts the
burden from the Collector Units, relieving them of the responsibility to store the result
data and its validation status until the completion of all Writeback operations for the
housed instruction, as well as the responsibility to broadcast the data to other CUs and

potentially write it to the RF.

Collector Unit

1 allocation status
1 dispatch status
3 rs data valid status
RRS entry
3 rs to be read from RF 7 AT T
T tmask 1 rd data valid status
T tmask
3 x (RRS ID width) rs source 1D

(INSTR DATA width) - T

instr. UUID, warp ID, PC,

T x (DATA width)

rd data

regs efc.

rs1 data,
rs2 data,
rs3 data

3 x T x (DATA width)

FIGURE 5.12: Collector Unit and Register Renaming Stack entry fields
with their respective size in bits.

In implementing the RRS, two methodologies were evaluated. The initial approach
involved allocating an RRS entry during the dispatch phase by the Collector Unit. In
this scenario, the Register Alias Table would need to accommodate either a CU ID or
an RRS ID for each register source. Subsequently, the CU ID would be updated to
the corresponding RRS ID at dispatch, which introduced significant area and routing
overheads. Consequently, the decision was made to adopt the second approach.

Under the selected method, each instruction is assigned an RRS entry concurrently
with a CU allocation as it enters the Operand Collect stage. The RRS ID is then stored
within the Collector Unit, and the entry’s allocation status bit is set. Additionally, the
thread mask (tmask), which indicates the active threads within the warp, is recorded
both in the RRS and in the CU, because its information is only needed for this stage
during the Writeback. It’s important to note that if an instruction does not require a
result to be written back to a destination register, it does not utilize an RRS entry.

For those instructions that necessitate a Writeback, during their visit to the RAT the

designated RRS ID is recorded under the destination register’s source field. The process
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proceeds normally until the CU’s source registers’ data is valid and it is prepared for
the next stage, at which point the instruction transitions carrying its RRS ID instead of
the CU ID. The subsequent clock cycle then permits the deallocation of the Collector
Unit.
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FIGURE 5.13: The LOOG-Vortex Modified Pipeline after the addition of
RRS.

Once Execution concludes and Writeback operations commence, the result data is
written into the rd data field of the relevant RRS. Upon detection of an end-of-operation
(eop) signal, the rd valid bit of the RRS is set and the RRS verifies with the RAT whether
the result should be written back to the Register File (RF). In the next cycle, the data is
broadcasted and written back and, immediately after this operation, the RRS entry is
cleared by resetting the rd valid and allocation status bits, rendering the entry “empty”
and available for reallocation by a new instruction.

Indeed, the modification introduced by the Register Renaming Stack effectively ad-
dresses the issue of long Collector Unit allocation times, as shown in Figure 5.14. This
figure presents the Cumulative Distribution Function (CDF) of the CU allocation period
for both the no-RRS LOOG-Vortex (with 8 CUs) and the RRS LOOG-Vortex (with 8 CUs
and 12 RRS entries). The results demonstrate that the RRS configuration significantly
reduces contention for Collector Units, allowing instructions to enter the Operand Col-
lect stage more quickly. Additionally, Figure 5.16 provides further insight into the stalls
caused by unavailable CUs. This CDF highlights that the no-RRS LOOG-Vortex config-
uration experiences considerably more stalls when CUs are unavailable compared to
the RRS LOOG-Vortex. The reduction in these stalls reflects the improved efficiency
of CU allocation with the introduction of RRS. Finally, Figure 5.15 presents the CDF
of the average CU utilization for both configurations, clearly showing that the RRS

LOOG-Vortex achieves more efficient CU utilization.
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FIGURE 5.14: Cumulative Distribution Function of Collector Unit Alloca-
tion Period of no-RRS LOOG-Vortex (8 CUs) and of RRS LOOG-Vortex (8
CUs, 12 RRS entries).
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FIGURE 5.15: Cumulative Distribution Function of Collector Unit Utiliza-

tion of no-RRS LOOG-Vortex (8 CUs) and of RRS LOOG-Vortex (8 CUs,
12 RRS entries).
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FIGURE 5.16: Cumulative Distribution Function of No-Available-CU stalls
of no-RRS LOOG-Vortex (8 CUs) and of RRS LOOG-Vortex (8 CUs, 12 RRS
entries).

5.5 Workload Characterization

To evaluate the LOOG-Vortex architecture, we will benchmark our design both before
and after the architectural modifications using the 21 applications provided with Vor-
tex 2.0. To gain insight into the workload diversity and its behavior under the LOOG
scheme, we characterized the applications based on their stall sources when executed
on the in-order Vortex pipeline.

An instruction may stall between the Decode and Issue stages if the Issue stage —
specifically the Scoreboard — is occupied by a data-dependent instruction, a stall re-
ferred to as an IBuffer stall. Additionally, structural hazards can cause stalls when an
instruction must dispatch to an Execution Unit that is currently busy. These are catego-
rized into ALU, FPU, or LSU stalls, corresponding to stalls due to occupied Arithmetic
Logic Units, Floating-Point Units, or Load-Store Units, respectively. Finally, stalls can
occur in the Control and Status Register stage when synchronization of warp execution
information, such as active thread status, is required; however, these account for a very
small portion of the total execution stalls.

To classify applications according to their stall source behavior, we employed Hier-
archical Clustering using the cosine metric. This approach emphasizes the proportional
relationships between stall types rather than their absolute magnitudes. The clustering

yielded five distinct groups, as shown in Figure 5.17.
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FIGURE 5.17: Dentrogram of Hierarchical Clustering of 21 applications
based on their stall types using the cosine metric.

To further elucidate each cluster’s characteristics, we generated boxplots for the
various stall sources, presented in Figure 5.18.

In Figure 5.18b, only clusters 2 and 3 exhibit stalls related to floating-point opera-
tions. When combined with the insights from subfigures 5.18a and 5.18c, we can charac-
terize cluster 2 as being both floating-point and ALU compute-instensive, whereas clus-
ter 3 is primarily floating-point and memory-intensive. Additionally, subfigure 5.18c in-
dicates that cluster 3 is memory-intensive in the absence of significant floating-point ac-
tivity. Clusters 0 and 1, on the other hand, show neither notable memory-intensive be-
havior nor floating-point stalls; instead, they have the highest CSR stall counts (5.18e).
The difference between these two clusters lies in their ALU operations—cluster 0 suffers
more performance degradation from ALU-induced stalls, while the IBuffer analysis in

5.18d suggests that cluster 1 is relatively free from data dependency issues.
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Chapter 6

Experimental Evaluation

6.1 Introduction

In this section, we assess the runtime performance of LOOG-Vortex against our base-
line—the in-order Vortex GPGPU 2.0. We analyze various SM configurations by adjust-
ing the number of warps per SM and the threads per warp, evaluating performance
using 21 micro-benchmarks that represent common GPU applications integrated into
Vortex. Additionally, we optimize LOOG-Vortex by fine-tuning its LOOG-specific pa-

rameters, such as the number of Collector Units and RRS entries.

6.2 LOOG-Vortex without the RRS

Initially, we evaluate the performance of LOOG without the Register Renaming Stack in
terms of Instructions Per Count (IPC). We calculate the geometric mean of the IPC gains
(expressed as a percentage %) of LOOG-Vortex over the baseline Vortex performance
and depict these gains for each SM configuration (warps, threads), as seen in Figure
6.1. Each color in the figure corresponds to a specific number of Collector Units (CUs)
available in the Operand Collect stage.

Notably, every configuration demonstrates a positive IPC gain, consistently outper-
forming the baseline. In general, increasing the number of CUs correlates with higher
IPC gains, as the arrival of new instructions from the preceding stage is less likely to be
stalled by a lack of empty CUs. Additionally, it is particularly interesting that LOOG-
Vortex exhibits a marked performance advantage over the baseline when operating
with a smaller number of threads per warp. This can be attributed to the increased vol-
ume of warp instructions that results from having fewer threads per warp; under data
dependency conditions, in-order Vortex incurs stall penalties more frequently, whereas
LOOG-Vortex is often able to bypass these delays.
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FIGURE 6.1: Geometric Mean of IPC (21 applications) per SM configu-
ration (warps, threads) for different amounts of Collector Units in the
no-RRS LOOG-Vortex microarchitecture.

Additionally, it is noteworthy to observe the IPC gains across the application clus-
ters, as defined in Section 5.5, which are depicted in Figure 6.2. First, Cluster 3—which
comprises memory-bound floating-point benchmarks—shows the smallest gains with
LOOG-Vortex, as expected since no reordering is applied to Load-Store instructions.
Although Cluster 4 is also characterized by a moderate amount of stalls in memory
operations, its performance improves with an increasing number of CUs because non-
memory, fixed-point instructions can exploit the additional CUs to bypass previous
high-latency operations. In Cluster 1, the in-order Vortex experiences minimal stalls
due to dependencies or memory operations, resulting in moderate, CU-independent
gains with LOOG-Vortex. Conversely, Cluster 0, while having relatively few backend
stalls in the in-order configuration, is affected by a higher number of dependencies,
leading to generally higher gains that do not scale linearly with the number of CUs.
Finally, Cluster 2, which is both compute- and memory-intensive, leverages additional
CUs more effectively to mask Load-Store induced stalls.
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FIGURE 6.2: Geometric Mean of IPC (16 SM configurations) per Cluster
of applications for different amounts of Collector Units in the no-RRS
LOOG-Vortex microarchitecture.

We also evaluate LOOG-Vortex in terms of area and power by implementing the
LOOG-Vortex design for an FPGA device (we use the AMD Alveo U50 Data Center
Accelerator Card). We use Vivado 2021.1 for the synthesis and implementation of our
design for the specific device. Figure 6.3 presents a per-configuration comparison of
CLB LUT utilization—both for memory and logic—across varying numbers of CUs. As
anticipated, the warp size (threads) is the primary factor influencing LUT area, as both
the data stored in the CUs and the interconnections among them scale with the number
of threads.

Next, we integrate our LOOG-Vortex performance results with the area utilization
metrics for each SM configuration by constructing the Area-Delay Product (ADP), as
illustrated in Figure 6.4. For the performance part, we calculate the geometric mean of
the Cycles Per Instruction (CPI) values across the 21 microbenchmarks — normalizing
these values to the CPI of the in-order Vortex execution. For the area metric, we average
the utilization percentages of CLB Registers, CLB LUTs (both for memory and for logic),

BRAM, and DSPs, again normalizing to the corresponding baseline figures.

CLBRegisters(%) + CLBLUTs(%) + BRAM (%) + DSPs(%)

Total Area(%) = 1

With this approach, the baseline architecture consistently achieves an ADP of 1
across all configurations, and values below 1 indicate a more optimized design. We use
this to evaluate the LOOG-Vortex microarchitecture for configurations featuring 8, 10,

and 12 CUs, respectively.



98

Chapter 6. Experimental Evaluation

60.0 -

CLB LUTs (%)

Area Delay Product (ADP)

Il Baseline

mmm 8 CUs

s 10 Cus
12 CUs

Configurations (Warps, Threads)
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FIGURE 6.4: Area-Delay Product of no-RRS LOOG-Vortex per SM Con-
figuration (Warps, Threads) for different amounts of CUs (normalized to
baseline).

Consistent with our earlier findings on IPC and LUT utilization, the Vortex SM

configurations that are most favored by LOOG are the ones with smaller warp sizes.

Fewer threads per warp yield the highest performance gains compared to the in-order

configuration, while also maintaining lower FPGA resource utilization. Consequently,
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these configurations are deemed optimal for our design.

Additionally, using the FPGA implementation tool’s estimations, we can evaluate
the Power consumption of LOOG-Vortex across different SM configurations and for
different numbers of Collector Units. As demonstrated by the Power-Delay Product
in Figure 6.5, all configurations outperform the in-order baseline. The minimal power

consumption overheads are effectively offset by significant performance gains.
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F1GURE 6.5: Power-Delay Product of no-RRS LOOG-Vortex per SM Con-
figuration (Warps, Threads) for different amounts of CUs (normalized to
baseline).

6.3 LOOG-Vortex with the RRS

The next step is to evaluate LOOG-Vortex with the Register Renaming Stack in terms
of the same metrics as before for Performance, Area and Power. We use the same
workload and explore different sizes of the RRS which is dependent on the number oF
Collector Units. More specifically, we use RRS entries that are equal to the number of
CUs multiplied by a factor 1.5, 2 and 2.5 and the results for the Intructions Per Count
are shown in Table 6.1 per amount of CUs and in Table 6.2 per configuration (number
of warps, threads per warp). We can see that when adding extra RRS entries to the
design, the performance gain saturates for most amounts of CUs in factor 1.5 and for
small amounts of CUs in factor 2.

To evaluate LOOG-Vortex equipped with the Register Renaming Stack (RRS), we
assessed the design based on the same Performance, Area, and Power metrics as the
previous architecture. Using the same workload as before, we varied the RRS size ac-

cording to the number of Collector Units (CUs), setting the number of RRS entries to
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the product of the number of CUs and a factor of 1.5, 2, or 2.5. Table 6.1 presents the ge-
ometric mean values of the Instructions Per Count results as a function of the number
of CUs, while Table 6.2 details the outcomes across different configurations (varying
the number of warps and threads per warp). The findings reveal that the performance
benefits of increasing RRS entries saturate: at a factor of 1.5 for most CU counts and at

a factor of 2 for smaller CU counts.

TaBLE 6.1: Geomean IPC for Different RRS LOOG Configurations

CUs NoCUs #RRS =#CUs x 1.5 #RRS=#CUs x 2 #RRS = #CUs x 2.5

6 4.5406 8.2399 11.1017 11.8398
8 8.6834 11.0765 12.0894 12.0894
10 10.3601 12.3409 12.6604 12.6620
12 11.4342 13.3033 13.3528 13.3528
14 12.2760 13.7937 13.7747 13.7747

TABLE 6.2: Geomean IPC for Configurations at Different #RRS Multi-
pliers (Including No RRS)

Warps Threads NoRRS #RRS =#CUs x 1.5 #RRS =#CUs x 2 #RRS = #CUs x 2.5

4 4 11.0565 14.2037 16.6557 16.6812
4 8.0886 9.6174 11.1462 11.7023
4 16 6.6155 7.6426 8.5589 8.8934
4 32 5.1969 6.2939 6.9217 7.2443
8 13.4249 17.7534 19.6198 19.8010
8 9.5557 12.0388 13.0930 13.4439
8 16 7.4347 9.1152 9.9228 10.1210
8 32 6.1361 7.9722 8.4442 8.6913
16 4 16.1167 18.7691 20.2537 20.6203
16 8 13.2758 15.1972 16.1180 16.2648
16 16 11.4371 12.6132 13.3414 13.5300
16 32 9.3337 9.7893 10.3011 10.6420
32 4 18.0502 20.1719 21.7298 22.1808
32 8 14.8502 15.9538 17.1416 17.4342
32 16 10.1262 10.8004 11.3135 11.4361
32 32 8.1468 8.1162 8.5670 8.8225

Figure 6.6 and Figure 6.7 illustrate the detailed IPC gains, relative to the baseline

in-order Vortex architecture, across all configurations of warps, threads, and varying



6.3. LOOG-Vortex with the RRS 101

numbers of CUs for RRS factors of 1.5 and 2, respectively. As anticipated, particularly

for smaller CU counts, the performance improvement is more pronounced than in the

201
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design without the RRS, as depicted in Figure 6.1.
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FIGURE 6.6: Geometric Mean of IPC (21 applications) per SM configura-
tion (warps, threads) for different amounts of Collector Units in the RRS
(factor 1.5) LOOG-Vortex microarchitecture.
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FIGURE 6.7: Geometric Mean of IPC (21 applications) per SM configura-
tion (warps, threads) for different amounts of Collector Units in the RRS
(factor 2) LOOG-Vortex microarchitecture.
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Moreover, these results indicate that, compared to adding more CUs, expanding the

RRS delivers better performance. An intriguing observation arises when comparing

different RRS factors: for instance, an 8-CU configuration with an RRS factor of 1.5

(yielding 12 RRS entries) is outperformed by a 6-CU configuration with an RRS factor

of 2 (also 12 RRS entries), despite the latter having fewer components. This discrep-

ancy may be attributed to differences in execution reordering, which are influenced by

varying levels of congestion and stalls in the CU operations.

We also computed the geometric mean of the IPC results for all configurations

within each application cluster, as defined in Section 5.5. Figure 6.8, which presents

results for an RRS factor of 1.5, shows that the application clusters exhibit a similar

sensitivity to LOOG reordering as observed in the no-RRS design, but benefit from ad-

ditional performance gains when the RRS is included.
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FIGURE 6.8: Geometric Mean of IPC (16 SM configurations) per Cluster of
applications for different amounts of Collector Units in the RRS (factor
1.5) LOOG-Vortex microarchitecture.

Regarding Resource Utilization on the FPGA and Power Consumption, we again
calculate the Area-Delay Product and Power-Delay Product metrics, now for the RRS
LOOG-Vortex architecture, as presented in Figure 6.9 and Figure 6.10, respectively. The
ADP results indicate that more than half of the configurations tested outperform the
baseline, with the best performing configurations corresponding to those with lower
Threads per Warp, as expected from our previous analysis. As for the PDP, all configu-
rations deliver promising outcomes, demonstrating up to approximately 17% reduction

in energy consumption.
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FIGURE 6.10: Power-Delay Product of LOOG-Vortex (with 12 RRS entries)
per SM Configuration (Warps, Threads) for 6 and 8 CUs (normalized to
baseline).

6.4 Instruction Level Parallelism Analysis

Finally, we examined ILP in our microbenchmarks by quantifying the reorder “dis-
tances” during out-of-order executions. This metric represents the number of instruc-

tions between an executing instruction and a bypassed preceding instruction within
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the same warp. The geometric mean of these distances of all applications and all con-
figurations tested determined for the no-RRS LOOG-Vortex architecture is presented in
Figure 6.11 and for the LOOG-Vortex architecture with an RRS factor of 1.5 in Figure
6.12. The findings clearly indicate that increasing the number of Collector Units (and
RRS entries for the RRS configuration) enables a greater number of instructions to by-

pass their predecessors, thereby enhancing ILP and boosting overall GPU performance.
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FIGURE 6.11: Reorder distances and their percentages normalized to the
total instructions that were executed OOO for no-RRS LOOG-Vortex with
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Chapter 7

Conclusions & Future Work

7.1 Conclusions

The implementation of the LOOG (Light-weight Out-Of-Order GPU) execution scheme
in the Vortex GPU architecture, both with and without the Register Renaming Stack
(RRS), has demonstrated substantial improvements in Performance with a low Area
overhead and Power consumption when compared to the baseline in-order Vortex de-
sign. The LOOG scheme was implemented in SystemVerilog for Vortex GPU version
2.0, in accordance with the RISC-V based pipeline and special micro-architecture char-
acteristics of the Vortex GPU framework.

In this study, we explored various aspects of the Vortex architecture to assess the
effectiveness of LOOG, including the design trade-offs concerning Performance, Area,
and routing. These include the insertion of registers to reduce connections between
the Collector Units, which are the key components of the LOOG reordering scheme,
the explotarion of different scheduling policies for RF read operations and the inster-
tion of the Register Renaming Stack (Section 5.4). These optimizations were crucial
in achieving a balanced design that not only enhances throughput but also minimizes
resource consumption on the FPGA platform.

A key part of this work involved characterizing the Vortex workload in order to de-
fine LOOG-sensitive applications (Section 5.5). Specifically, we evaluated 21 of Vortex’s
micro-benchmarks based on their stall sources upon execution in the baseline config-
uration. This step was critical in identifying which applications are more sensitive to
the LOOG-Vortex scheme, particularly the ones with low Memory accesses and more
Compute-intensive workloads.

We also focused on the right-sizing of the LOOG-Vortex architecture, exploring a
large design space that included various parameters such as Threads per Warp, Warps
per Core, and the number of Collector Units and RRS entries. Through extensive ex-
perimentation and evaluation, we identified the optimal configurations that resulted in
the best Performance, Area, and power efficiency trade-offs, which were the ones with
low Threads per Warp and moderate CUs and RRS entries.
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The experimental evaluation of different configurations—in-order, LOOG, and RRS-
LOOG Vortex—showed significant Performance improvements (Chapter 6). Average
Performance gains of up to 23.5% were achieved, with the Area overhead ranging be-
tween 4.5-27.5%, depending on the configuration, and approximately 5% for the best
configurations. Specifically, configurations such as 8 CUs with 16 Warps and 4 Threads
per Warp demonstrated an Area overhead of 5% for the no-RRS configuration and 4.5%
for the 12 RRS configuration. Furthermore, the Power-Delay Product (PDP) showed
up to approximately 17% reduction, indicating the Energy efficiency of the RRS-LOOG

approach in comparison to the baseline in-order execution.

7.2 Future Work

While the current work provides valuable insights into the optimization of LOOG exe-
cution in the Vortex GPU, several fields remain for future exploration and enhancement.
One such field is accommodating larger OpenCL benchmark suites, such as Rodinia, to
better understand how LOOG-Vortex handles a broader range of real-world applica-
tions. Expanding to these larger suites would help further refine the architecture and
ensure that it can scale effectively across different types of workloads and benchmark
environments.

Another important avenue for future work is to evaluate the LOOG-Vortex design
on larger FPGA platforms for varying numbers of GPU cores and sockets. This would
enable us to assess how the architecture performs as the system scales, particularly
when dealing with more complex configurations and increased resource demands.

Additionally, there is significant potential to explore more sophisticated schedul-
ing policies for Register File (RF) reads and warp instruction scheduling. Another key
design improvement would be to make the Register File multi-banked, which could
reduce stalls in the Operand Collect stage. By enabling concurrent access to different
banks of the RF, we can further reduce Collector Units contention and improve overall
throughput.

Moreover, it would be valuable to investigate more advanced, yet lightweight, Load
/ Store instructions reordering mechanisms. These could improve memory access pat-
terns, ensuring that address data dependencies are managed more efficiently, leading
to faster execution without introducing significant hardware overhead, thus reducing
the latency of Memory instructions that have not yet been reordered.

Finally, implementing and comparing different Out-Of-Order GPU execution schemes
proposed by the research community (like the ones mentioned in Chapter 4) would
provide valuable insights into alternative approaches for improving Instruction-Level

Parallelism in GPUs. This would broaden our understanding of the trade-offs between
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various OOO schemes, helping to inform the design of future GPU architectures, par-

ticularly in terms of hardware complexity, performance gains, and energy efficiency.
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Appendix A

Source Code

The source code for the implementation elaborated on in Chapter 5 can be found at:

https://github.com/mariazerva/diploma/tree/loogvortex


https://github.com/mariazerva/diploma/tree/loog_vortex
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