EoNIKO METTYOBIO ITOATTEXNEIO

Y XOAH HAEKTPOAOION MHXANIKON KAI MHXANIKON YIIOAOTISTON
EPrALTHPIO YYSTHMATON TEXNHTHY NOHMOSYNHY KAI MAGHIHE

Counterfactual Explanations for Graph Neural Networks

DIPLOMA THESIS
by

Charalampos Koilakos

EnBAEnwv: Tedpyioc Stdypou
Koadnyntic E.M.IL

Adhva, Mdgtioc 2025

Edvixé Metodfio Ilohuteyvelo

Yyon| Hhextpohdywv Mryavixddv xan Mnyoavixodv Troloylotdv
Touéac ITAnpogopixic

Eeyoaothplo Yuotnudtewy Teywntrig Nonuooivng xow Mddnong

Counterfactual Explanations for Graph Neural Networks

DIPLOMA THESIS
by

Charalampos Koilakos

EnBAEnwyv: Tedpyiog Stdpou
Koadnyntic E.M.IL

Evyxpldnxe and v tpiuer) e€etaotiny| enitpon) v 26" Maptiou, 2025,

Teddpyioc Xtdpouv Adavdoioc Boulddnuog Avdpéac-T'edpyiog Ltagpuiondtng
Koadnynme E.M.IL Enixovpog Kodnyntic E.M.IL Oudétipoc Kadnynthc E.M.IL

Adhva, Mdgtioc 2025

XAPAAAMIIOY KOIAAKOX
Amhopotovyoc Hhextpordyoc Mryovinde
xaw Mnyovixog Trohoyiotov E.M.IIL

Copyright (©) — All rights reserved Charalampos Koilakos, 2025.
Me em@OIaEn TOVTOS BLXAUDOUATOC.

Arnayopebeton n aviypagt, anodrixeuon xou Slovopr] Tne tapovoag epyactag, €€ oAoxhipou Y TUAUITOS AUTAS, Yid
eunopd oxond. Emtpéneton 1 avatinwot), amodixeuct) xou Siovour| Yol oxomd U xepdooxomuxd, EXTOUEVTIXAC
1) EEELYNTXAC PUOTC, UTO TNY TEoUTOVEST Vo avapépeTal 1) TYY) TPOEAEUOTC %ol VL BLTNEELTOL TO THPOV UAVUUAL.
Epwtiuata mou agopolv 1t yerion tne epyaociog yio xepdooxomxd oxond npénel vo aneudivoviol Teog Tov
CLUYYPAPEA.

Ou amderc xa o CUUTEPAOUATO TTOU TEPLEYOVTOL GE AUTO TO EYYRUPO EXPRELOUY TOV CUYYEAUPEX Xou EV TRETEL
va epunvevdel 6Tt avuinpoownedouy Ti¢ enionueg Yéocig Tou Edvixod Metodfiou IToduteyvelou.

ITepiindm

Ou E€nyroeic ye Avunapadelypota €youvv npoceixioel Wlaitepa eydho evilogpépov oto nedio tng e&nynong
TEYYNTAC VonuooLvng, xodwe TeoopEépouy £0CTOY O TARUBEYIATH Yot TO WS UIXPEC TEOTOTIOLCEL OF Wid £l
6080 PnopolyV va getoBdAhouy Ty TpdBiedn omotoudinote povtélou. Xe avtideon pe g nopadootaxéc post-hoc
pedodoug ene€hynong, ol omoleg aiveTon omANS VoL avalBeXvOoUY Ta X0pLal YopaXTNELO TIXG Tou 0dNYOoUV GE Wid
TeoPBAed, oL avTimopaderyUaTXé eENYHoElC e TLACOUY OTIC ENAYIOTES AmaROiTNTES TPOTOTOGEL TTOU Vol AhAEE-
0LV TO TEAXO AMOTENECUA, TOPEYOVTOS ETOL €Val LoyUEd EPYOUAED XATAVONONG TOU HOVTENOU %ot BLEUXOAUVOTC
TV Yenotwv. H onuacio autdv tov yopaxtneloTixey yivetal axdun To epQavic o dedouéva Ue Yedpoug,
6moL oL douixés OYEoELC Xou oL TpoxaTahfelc ouyvd xadioTody oxdun mo adlagpaveic Tig pevddous tedBiedng
evoc povtélou.

Yty napoloa epyaota, emdidxovye TNy diepebvnon e&nyroewy ye avtimapodelypato yior Nevpwvixd Abetua
pe Dpdypoue (GNNs) péow tpomomoiocwy otic oxpée. Ilpoteivoupe éva mhaiolo “explainer” nou podoiver pio
“udoxa ooy’ xododNYoOUEVO amd Lol TOAD-TIUEAYOVTIXT] CUVAETNOT| AMWAELWY. AQUUEMVTIS ETAEXTIXE CLY-
XEXPUEVES oxéc, M WéV0de pag evtonilel Tic ehdytoteg Slotapoyés mou amawtolvton Yo vor UeToBAndel m
Te6Bhedn onoloudinote poviéhou, odnyovias oe aviinapaderypatixée eEnynoelc ol omolec elvon towTdypOVaL
oxpBeic xou epunvedowes. H ouvdptnon anwiewdv mepthauBdver moAamhols GTOYOUE, ETUTUYYEVOVTAS WL
looppomnio avdueca ot dlathenon tne apyxic TedBiedmne, Ty elaytotonoinon Tne SlaTapay e oL TN cuVoYY
e e€fynong, téco oe eninedo ypdpou 6co xou xoufou. T'a xdde BiapopeTtiny| nepintwon, npocdopilouye Ta
Baowd otouyela g Sounc Tou Yedpou xa oyeddloupe Evay XoTEAANAO, aveldpTNTO and TO EXACTOTE UOV-
TENO, TEQLOPIOUO, EMITEETOVTAC O VO ONULIOVEYHOOUIE aXOUY) TO CUUTUXVWUEVO xou axplfr] avTimapadelypato.
H o&iohdynon xou ol doxipéc oe tumxd cUVoAo SeBOUEVWY XUTADEXVOOUY OTL 1) TROCEYYLOY| LIS TOEAYEL OUGL-
OO TIXEC Ol EQPUPUOCIIES OVTLTORAdELYHATIXES EENYNoELS, AauBdvovTag uToYn 100 TNV EAdyLOTOTOINGT 6GO %ol
v ovdextxdtnta. Emmiéov, ol Blatopayéc o eninedo oaxunc TEOCHPEROUY ONUAVTIXY TANEOYOENCT) OYETIXY
ue xploweg douxéc oyéoelc Tou Ypdpou, mapéyoviag po Baditepn xaTavoNnon Yid TO TOC OL AVETTUYUEVES
avanopac tdoel; ennpedlouy Tic tpoliédel; evog povtéhou. Tao eviappuvtind evpriuata TOoU TPEOTEWOUEVOL “ex-
plainer” vroypopuilouv tn SuvatdTnTa Behtiwong e EpUNYVELCLUOTNTOC, TNE A€lOTUO TlAS XL TNS SLapdveLas oe
EQPUPUOYES YRAPNUATODV, XUAVTTOVTAS VoL EVRY PACHUA EQUOUOY V.

AgZeig-xhedid — E&nyfoeic pe Avunapdderyyo, EEnyfown teyvnt vonpooivn, Nevpwvixd Alxtuo e
I'pdpoue, Mdoxo Axuwoy,

vii

Abstract

Counterfactual explanations are gaining increasing attention in the field of interpretable machine learning,
as they provide insightful examples of how slight modifications to an input instance can alter the prediction
of any model. Unlike traditional post hoc explanation methods that highlight important features driving a
prediction, counterfactual explanations provide minimal perturbations required to change the outcome, thus
offering a powerful tool for model clarification and user guidance. The importance of such characteristics
becomes even more apparent in graph-based domains, where structural relationships and biases often obscure
the predictive methods of a model even more.

In this thesis, we explore counterfactual explanations for Graph Neural Networks (GNNs) through edge-level
perturbations. We propose an explainer framework that learns an edge mask guided by a multi-factor loss
function. By selecting which edges to remove, our method identifies the smallest perturbations required to
alter any model’s prediction, leading to counterfactual explanations that are as accurate as they are intuitively
interpretable. The loss function integrates multiple objectives, balancing fidelity to the original prediction,
perturbation minimization, and explanation coherence across both graph and node-level classification tasks.
For each different task, we determine the key aspects of the graph structure and design a suitable, model-
agnostic constraint that allows us to make counterfactual examples even more minimal and precise. Empirical
evaluations and testing across benchmark datasets demonstrate that our approach generates meaningful and
actionable counterfactuals, while accounting for minimality and robustness. Moreover, the edge perturbations
provide insight into critical structural relationships within the graph, providing a deeper understanding of
how the learned representations influence any model’s predictions. The promising results of our explainer
highlight the potential to improve interpretability, trustworthiness, and transparency in graph applications
across multiple domains and tasks.

Keywords — Counterfactual Explanations, Graph Neural Networks, Perturbation, Edge Mask,

ix

Euyaplotieg

H ool xon enory YEAUoTixny mopeta evog atdgou dev xodoplleton Udvo amd to Tpocwnixd Tou oTolyelo, ANl
xo o6 To meplBdAiov tou. I'Vautd Aowndy, Yo fdeha vo euyaploTHOW TOV EMPBAETOVTA HoU, %. LTduou I'ede-
Y0 Ylor TNV xododynon ohhd xou yior TNV guxolplal VoL EXTOVACE TNV BLTAWUOTIXT UOL EpYacia 6TO gpyaoTHipLo
Yuotnudtwy Teyvntic Nonpoolvng xow Mddnong. Oa Hdeho enlone va euyopiothion tov Oppéa-Mev Mao-
TEOULYAAAXT YLot TNV xododRyNom, TIC LOEES, xau TNV GELOTY GUVERYAGTA XOTd TNV BIAEXELX TNE EXTOVNOTNS AUTAHS
e epyaotoc.

Iapddhnha, Yo Rdeha va euyoploThiom xou avlpdtoug omd To TEocwTX6 Ko TeplBdhhov. Apyixd Toug yovelc
pou Avaotdoto xor Pito xou tov adeppd pou Muiydhn yio v otieln toug dha tar ypdvia Tne poltnone pov.
Emumiéov Yo ieha vo euyopiotion Toug GIAOUS HOU %ol GURPOLTNTEG LOU XadS Xou TNV XOTEAN Hov Avvo Tou
Beloxovtay pali you oe xdlde Bripo xou anogolthoaue and évo TOAD onuovTnd xe@pdiao poli.

Xapdhauroc Kowhdxog, Méptioc 2025

xi

Contents

Contents
List of Figures

0 Extetopévn Ilepiindm oto EAAnvixd

0.1 Oewpnuuxd TréBadpoo
0.1.1 Exnaidevon Nevpwvixdv Awxtiny
0.1.2 Isdmrec I'edpovo
0.1.3 Nevpwvirxd Atxtva Ledgovo 0000000

0.1.4 E&nyroec pe Avtimopodelypora

0.2 Ipotewdpevny Medodoroylor
0.2.1 Ieprypapr Medodou Awrypoprc Axudy
0.2.2 Ewayodpevol Ieplopiopol oty Xuvdpetnon Kéotoug

0.3.1 Emoxénnon tov Hepoudtov oL
0.3.2 AMOTEREOUATO
0.3.3 XupBPaoude (Trade-off) oL

0.3 Ilewpdpoto o ATOTEREGUATO . . .« v o o o ot et e e
0.4 PUUREQAUOUOTA .« o v v v v v v e e

041 XulAmMon
0.4.2 Eridpoon
0.4.3 Mehovtxéc Kateudlvoelie Lo

1 Introduction

2 Preliminaries - Theory

2.1.1 Basic Concepts
2.1.2 Neural Networks
2.1.3 Deep Learning oo

2.1 Machine Learning
2.2 Graph Neural Networks

2.2.1 Graph Theory
2.2.2 GNN Taxonomy
223 Traininga GNN L
2.2.4 Architectural Variations

3 Counterfactual Explanations

3.1 Motivation L
3.2 Factual Reasoning L oL
3.3 Counterfactual Reasoning

3.3.1 Taxonomies e
3.3.2 Background oL oo
3.4 Related Work

xiii

27

29
30
30
31
33
35
35
37
38
38

Contents

4 Methodology

4.1 Counterfactual Explainer L
4.1.1 Architecture L
4.1.2 Continuous Masking L e
4.1.3 Loss Function Constraints e

5 Experiments and Results

5.1 Experimental Setup e
5.1.1 Technologies used L
5.1.2 Datasets e e e
5.1.3 Classifier Models e e
5.1.4 Evaluation Metrics e e
5.1.5 Trade-off e

5.2 Results. e
5.2.1 Quantitative Results
5.2.2 Trade-off Study e
5.2.3 Qualitative Examples

6 Conclusion
6.1 Discussion e
6.2 Tmpact e e

6.3 Future Work

7 Bibliography

51
52
52
53
54

59
60
60
61
63
64
65
66
66
68
75

79
79
80
80

81

Xiv

List of Figures

0.1.1 Evoc amhdc vevpdvoc. [39] . . . o o o o 3
0.1.2 Awgopetinol mdavol tomoL ypdpou [B] Lo 5
0.1.3 Topdderypo mou avoadetxviel TNV yenowdtnta twv EEnyioewy ye Avtinopadelypota. [15] 9

0.2.1 H high level opyitextovixr] yioo tnv nopoywy aviinopodeltypdtwy. To GNN poviého apyixd
napdryel wiot tpoBAedn yia onoladnrote elcodo and to clvoho dedopévwy. ‘Eneita o explainer
xenotponotel auth TV meoBredn xodde xou TEdTEEN YVHON Yo TNV Tapay YT avTimopadetypdtwy. 10

0.2.2 Topdderypo evog yedpou mou meptéyel 800 xoufoug ye vdmidtego Badud ce oyéorn e toug

UTIOROLTIOUC. + + v v v e e e e e e e e e e e e e 12
0.2.3 Topdderypo Ypdpou pe axpr| pe ubnhéd edge betweenness score xou x6pfo pe vdmi6 Baduo. [34] 13
0.3.1 To yotifo oe oyfua omTiod Tou cuvdéoupe oe Tuyaloug xouPoug oe évav Barabasi Graph. . . 15
0.3.2 XOyxpion petoll tou PFR xow tou 1-GED vy to Base model oto Reddit-Binary dataset. . . . 18
0.3.3 Anoteréopata and tnv yenorn tou Node Degree explainer oto Reddit-Binary dataset. 18
0.3.4 Anoteréopota and tny Yeron tou Edge Betweenness povtélou oto Reddit-Binary dataset. . . 19
0.3.5 Anoteréopota and tny Yerion tou Base model oto IMDB-Binary dataset. 20
0.3.6 Anoteléopara and tnyv yenorn tou Node Degree povtéhou oto IMDB-Binary dataset. 20
0.3.7 Anoteléopata and tnv yenorn tou Base povtéhou oto Ba-shapes dataset. 21
0.3.8 Anoteréopota and tny yeron tou Edge Betweenness povtéhou oto Ba-shapes dataset. 21
0.3.9 Avanoapdotact Tou Adeg 0€ oyéon pe v anédoon tou Node Degree povtéhou yio to Reddit-

Binary xoau to IMDB-Binary datasets. oo 22
0.3.1Avamapdotacy Tou Apey OE oyéomn Ue tnv anodoon tou Edge Betweenness povtéhou yio to

Reddit-Binary xou to BA-Shapes datasets. 23
2. 1.1 ML Algorithms [30] o o 30
2.1.2 A single neuron [39] 31
2.1.3 Frequent Activation Functions 32
2.1.4 Multi Layer Perceptron [37] e 34
2.1.5 CNN Architecture [44] o 35
2.2.1 Different Graph Types [5] o o 36
2.2.2 Convolutional GNN [43] e 40
3.1.1 Importance of Explainable and Trustworthy AI predictions 44
3.3.1 Example of user assistance through counterfactual explanations [15] 47

4.1.1 The architecture of the counterfactual example generation process. The pre trained GNN
model provides predictions for any input instance. The explainer then utilizes this prediction

along with domain knowledge to alter the model’s prediction of that instance. 52
4.1.2 Example of nodes with high degree centrality. The two nodes in blue represent hub nodes. . . 55
4.1.3 Example describing nodes with high degree centrality and high betweenness centrality. Edges

connected to these nodes are crucial for information flow across the graph. [34] 56
5.1.1 Example graph from the Reddit-Binary dataset labeled as discussion thread. 61
5.1.2 Example graph from the IMDB-Binary dataset labeled as 'Romance’. 62

XV

List of Figures

5.1.3 House motif connected with a node from a Barabasi Graph. Green nodes are labeled 'House-
Bottom’, blue nodes are labeled 'House-middle’, the red one 'House-top’ and the grey one is
‘Non-House’. o o e 63

5.2.1 Base model comparison of Flip Rate and Graph Edit Distance for the Reddit-Binary dataset.

The blue line indicates PFR and the green one 1 — GED to indicate the trade-off relationship
and that optimal behavior is found at the top. oo 68

5.2.2 Node Degree model comparison with the Base model for the Reddit-Binary dataset. The blue
line indicates PFR, the green one 1 — GED for the Node Degree model and the red and orange
ones the same metrics for the Base model respectively. 69

5.2.3 Edge Betweenness Model comparison with the Base model for the Reddit-Binary dataset. The
blue line indicates PFR, the green one 1 — GED for the Edge Betweenness model and the red
and orange dots the same metrics for the Base model respectively. 69

5.2.4 Base model comparison of Flip Rate and Graph Edit Distance for the IMDB-Binary dataset.

The blue line indicates PFR and the green one 1 — GED to indicate the trade-off relationship. 70

5.2.5 Node Degree model comparison with the Base model for the IMDB-Binary dataset. The blue
line indicates PFR, the green one 1 — GED for the Node Degree model and the red and orange

ones the same metrics for the Base model respectively. 71
5.2.6 Base model comparison of Flip Rate and Graph Edit Distance for the BA-Shapes dataset. The
blue line indicates PFR and the green one 1 — GED to indicate the trade-off relationship. . . 71

5.2.7 Edge Betweenness Model comparison with the Base model for the BA-Shapes dataset. The
blue line indicates PFR, the green one 1 — GED for the Edge Betweenness model and the red

and orange dots the same metrics for the Base model respectively. 72
5.2.8 Representation of how Ageg affects the performance of the Node Degree model for the Reddit-

Binary and the IMDB-Binary datasets. L o 73
5.2.9 Representation of how Ape; affects the performance of the Edge Betweenness model for the

Reddit-Binary and the BA-Shapes datasets. 74

5.2.10ounterfactual example from the Reddit-Binary dataset. Nodes are shown in light blue and
represent Reddit users. The original graph was labeled ’Q/A’ and the counterfactual graph
was labeled ’Discussion’. The edges marked with red are the ones deleted. We achieve a
counterfactual explanation with 4 edge deletions. 75
5.2.11Counterfactual example from the Reddit-Binary dataset.The original graph was labeled ’Dis-
cussion’ and the counterfactual graph was also labeled "Discussion’. Here we can see a failed
attempt to create a counterfactual explanation.o 0oL, 76
5.2.1ZLounterfactual example from the IMDB-Binary dataset. Nodes represent actors and are shown
in light blue. The original graph was labeled 'Romance’ and the counterfactual graph was
labeled ’Action’. The edges marked with red are the ones deleted. We achieve a counterfactual
explanation with 2 edge deletions. 76

xvi

List of Figures

xXvii

List of Figures

xviii

Chapter 0

Extetoapevn Ilepiindn oto EAAN VX

Chapter 0. Extetopévn Ieptindmn ota EAAnvixd

0.1 Oeswpntxd YnoBadeo

Ou npbdogateg e€elllelc otn unyavixy udinorn €youv @épel onuoavtixéc mpoddoug oe MOAAd medla, oamd TNy
AVIALGT EXOVKV Xl TN poumoTix) uéypt TNV enefepyaoion PUOXAC YAWMOOUS XL TA UEYOAA YAWOOLXS HOV-
téha (LLMS). ‘Eva oxépo Bioitepo epeuvnuxd nedlo eivon 1 uehétn dedopévev ypdpwy e mepinhoxes oyéoels
xan Sour). Ta Nevpwvixd Aixtua Iedgpuwy avadewviovtar wg uiot xovotopog pedodoroyia vy vo avthngiet
noAUTAoxeG cuoyeTioelg xat va Topdyel o&lomioteg tpoPfAédelc, Topd ToUC UTdEYOVTES TEQLOPLOHOUS OYETIXG e
TNV TEELTAOXOTNTO TKV DEBOUEVWLV.

ot vor avTeToToTovV oL TpoxAnioelc mou Yétouy Tta povtéla “padpou xoutiol”, avantiocovtal pédodol ep-
unvevowétnroae (Explainable Al), cuprepthopfoavouévmy twv EEnyhioeny ye Avtinapadelypata. O tehevtaies,
a€lonololvTon Wote vo xotadel&ouy noleg arhayég o fitav apxetég yia vo tpontontonel 1 €€0d0¢ evog Loviéhou,
avaryvwpellovtag étol ta xadoplo Txd ototyelo yio Ty exdotote npdPiedn. Méoa oe autd To TAaloLo, TUEOUGCLA-
Coupe évav e&nynth (explainer) nou otoyelel va anavtiioel oto epdtnpe «Ilow yapoxtneloTixd eloddou npénet
vo. ahhdEoupe ote to Nevpwvind Aixtuo v mapdyet wa Swoupopetinty npoBiedm;». Ilpoxtnd, o ahydprdude
o dnploveyel Wi “pdoxnd’” oxuy, BactlOUevos oe TPoTERN YVOOY TOU EXACTOTE TROBAAUATOS, Xou dlarypdpeL
Hovo Tig amapoltnTES ouéc €tol Wote va avortpanel N apyx teoBiedn. IapddAnio, evowUATOVEL UL TOAU-
TOEOYOVTIXY) CUVAETNGT XOGTOUG TOU ETUBUIXEL TNV OVTIOTEOYH NG exdoTtote TedPBAedng, Ty ehayioTtonolnom
TOV BLOYPAPOY XOL OTOLOLGONTOTE EMTAEOV TEPLOPLOUOUS LTIy OpelEL TO TROBATUAL.

H pédoddc poc dev e€optdran and tny ecwteptny| Soph xat Tic nopopétpouc Tou poviéiou (model agnostic) xou
unopel vo epappootel T6o0 ot tavourioelc xXOUPwy 660 xou oe Tadivouroels Yedpwy. Ta va aftohoyooupe T
AMOTEAECUATIXOTNTE TNG, TELCUUATICTAXAUE UE TElol AVTITPOCWTEUTIXE GUVOAa dedopévmv (éva yiar todvéunon
(OUBwY xau 300 Yol TAELVOUNCT YEUPNUATWY) X0 YENOHLOTOoAUE dU0 Bacinols UETPMES: TO TOGOGTO OAAAY TS
etxétog (prediction flip) xou v andotaoy enelepyaoiog ypagphuatos (graph edit distance). Ta anoteléopota
Tou explainer pog, delyvouv 6Tl tapdyoyme E&nyrioeic pe Avunapadelypoata yia tnv mAstodhnpla Twv delyudtwy
oe xdde oOvoho Bedopévev, Blotnedvtos TopdAANAa Younhé to eninedo alhaydyv, xou Siaogaiilovtag 6TL o
TAUPEUPACELS E(VOL OUCLUOTIXES XOUL EPOPUOCLUES.

Ye autr) v meptndn Yo Eexwvnioovue magoucidlovtog Ao to Jewentind undPfadpo yio Bacixéc Evvoleg NG
unyovixhc wdinone. ‘Emeito Yo eyfodtdvoupe otoug ota dedopéva Ye YEAPoug Xol TiG LWOLUTEROTNTES TOUG
eved mopdAnha Yo e&nyfoovpe g ol eényfoelc pe avunopadelyyota etvar €vol onuovTixd Uéco i TOV
exdnuoxpatiopd e Mnyavixic Mdinone. Emniéov da nogovoidoouvpe to Yewpentind undBadpo tne pedddou
TIOU YENOLUOTIOAOUUE XIS X0l Tot AvOAUTIXG, AmOTEAEGHATO TTOU TROEXLYAY od TO TELOGUTA [LOLC.

0.1.1 Exnaidcuon Nevpwvixwy Auxtiny

Ye auth ™ Tapdypago Ya napousidcouue Tic Bacinég €vvoleg g exmaldeuong evog VeLpwVIXoL BixThou, Tou
elvon onuoavTixég yior Ty peténeita Yepehlworn Tou explainer pog.

To veupwvixd dixtua anoteholy pio and Tic Théov Baocwég npooeyyioel ot unyovinh uddnon, aflomodviog
drodoynd otédia (layers) yio v emelepyooio xou Ty avdluoT Sedopéviv. LNy anhoVCGTERY Lop@T TOU, EVag
vevpwvag (neuron) vroloyiler éva Bapn-otaduiopévo ddpolopa Twv ELo6dwY TOU X0t TEOCVETEL Uiol TUPGUETPO
petatémong (bias):

A0 =3 ual) 4 40,
J

0]

émou w;; elvan To Bépog amd tov j-00Td vevpmva e Tporyolpevne otoddac (I — 1) oTov i-00T6 veuphva TNng

(=1 1 €€080¢ TOL j-00TOU VELRGOVA GTNY TEoNYoLUEVY oTolfdda. Axolouvdel 1

J
EQOPUOYT| plag oLVEpPTNoNG evepyornoinone (activation function), ote va tpoxGel 1 tehix é€odog agl).

Tpéyouoac otoBddog (1), xa a

2

0.1. Oewentind TroBadpo

=2

Input Layer Hidden Layer Output Layer
Figure 0.1.1: "Evoc anhéc veupdvac. [39]
H anddoor evog vevpwvixol dxtbou afloloyeltol UEow TNG OUVEETNONS XOOTOUS, TOL UETEA TNV AmdXALoM

HETOEY TeVY TEOPBAEPEWY TOU LOVTEAOU %ol TWV TEAYUOTIXOY TV, e regression tasks, ouvndileton 1 yprion
tnc Mean Squared Error (MSE):

1 N
MSE = — b — i),
Ngfy Yi)

7 omnolo Tiwpeel Wiodtepa Tig peyahlTtepe anoxAioelc petal medBiedne g; xou meaypotixic T ¥ Lot v
extiunon péone andhutne andxhione (mean absolute error), uropel vor ypnowonomndei n L1 loss function:

D iy lyi — fli)]
N 3

Ll =
eve yia mpofBaAuata tagivounone cuvndiletar Cross-Entropy loss:
1

N <
i=1

CE = — [yi log(9i) + (1 — ;) log(1 — §:) |,

1 omolo mpogpyetan and T Yewplo TNg TANEoopiag xal “THWEE!” AUOTNEA TIC TEPITTOOEL, OOV TO HOVTEAO
amodidet vPnA mdavéTNTa o Aaviaouévn xAdor. Ltnv mopoloa epyasia Yo yenowwonoiooupe v CE loss
xadéde xou otovyelor and v L1 mpoxeiwévou va oddd€ovue tnv mpdPBredn evog poviéhou.

H ehoyiotomoinon tng nopandve loss function mpoyuatomoieiton cuvidwe ue alyoplduoug Paciouévoug ot
pédodo Gradient Descent. Xe xdie Bua exnaideuong, unohoyiloupe v napdywyo Tou opdiuatoc (gradient)
X0l EVIUEEWVOUUE avTloTolya to Bdpn:

0" =0 —eVoL(0),

6mou € glvar o puduoe exudinone (learning rate). T voo UTOAOYLETOUY AUTEC OL TOEAYWYOL OLXOVOULXSL XoU
ue axpifeta, yenowonolelton 1 wédodoc tne backpropagation. Xe auvtry, to dixtuo “nopedetar mpog Ta tiow™:
and v éZodo (output layer) we tnv eloodo (input layer), vrmoroyilovtac nde o odhayéc oe xdde Bdpog
wﬁ) O PETUTOTLON bgl) emneedlouv 0 cuvolxXh amdAels. MECw CUVEYMOY EVIUEPMOEMY, To VEURMVIXA diXTua
BeAtiddvouv dadoyixd T TpoPhédEelc Toug, xdvovTos TS TapoéTEoUS Toug GAo xou To axplBelc w¢ Tpog To
dedopéva exnaidevonc.

Yuvodilovtag, 1 avdTnTa eVOg veLpemVIXoD Bixtiou va padalvel and dedopéva Baclleton:
e T0V 0plopd XATIAANALY CLUVAETACEWY EVERYOTOINCYNSC Yo TOUC VEUPHOVES.
o Yty emhoyy woc loss function nou avuxatonteilel tig avdyxec Touv mpoflifuotoc.
o Y11 yprion anoteheopatindy aryopiduwy (Gradient Descent) yio tnv ehayloTOTOMNON TV ATWAELDY.

e XToV unmoloyloud TWV TapayWYwY Uéow backpropagation, ®ote to dixtuo va emxanpornolel Tig
TUPUUETEOUC TOU UE CUCTNUATIXO X0l OLXOVOULXS TEOTO.

Me autédv Tov Tp6TO, TO VELPWWIXA BixTu UToPOUV Vo extoudelovTal ot TANYWEa GeVapleY, ETTUYYEVOVTIS
v oxpiBeta xou evehiEio oe mpofBiuarta tpoBiedne xa to€ivéunone.

3

Chapter 0. Extetopévn Ieptindmn ota EAAnvixd

0.1.2 Iduotnteg pdopwy

O ypdpol cuvioToly évay Wiaitepa EVEMXTO TEOTO avamoEdoTaoNG TepiThoxwY oYEoEwY YeTall dedouévwy Tou
ouvdéovton Sopixd oe xdmotov ywpo. Evac ypdypos G neplypdgeton and o olvoro twv x6ufwv (nodes) V' xau
T0 6UVOAO TwV axpdy Tou (edges) E:

GV, E) = {(u,v) : u,v € V,(u,v) € E},

OTOU oL axéC PTopoLY VoL uny €youy xatevduvor (undirected) A va etvon xotevduvépevee (directed), xadde xon
Cuytopévee (weighted) A xou ywpic Bdpoc (unweighted). Mo SiobeSouévn podnuoatind) avomopdotaoT yio Evay
omolovdfinote ypdpo anotelel whtea yertviaone (adjacency matrix) A € R™*™, énou xdde otoyelo a;j
oplletar we:

1, if {vi,vj} S
Q;i =
! 0, otherwise

Ye un xateuduvdpevoug ypdpoug, 1 ufitea yettvioong elvon cuuueTpr xal To oTolyela a;; Todpvouy Ty T 1
gdv undipyel axuh xou 0 €dv dev umdpyel. o Quytopéva ypaphpata, 1 WY ToU a;; avTioTolyel oTo Bdpog Tng
oG METAEY v OU Vj.

‘Ocov agopd Touc xdufoue, éva and to Poacnd yapauxtnetotind ueyédn eivar o Paduwoc (degree) evic xdpfou
v, 0 omolog ot Ypdpoug ywelc xateduvorn toolta e To TANHOC TWV AXPOY TOU TOV GUVOEOUV UE YELTOVIXOUC
x6uPoug. Modnuatnd, auth 1 oyéon unopel vo exppactel wg:

N
deg(v) = Z Ay,
u=1

OTOU @y, = 1 e@boOV UTdpyEL axpn peTall Tou x6uBou v xou tou xéuPBou u. KoéuPol ye vhnié Badud telvouv
Vo €Youv onuavTtixd pdho ot diddoon mAnpogoplac oe évay Yedpo X CUVBEOVTOL UE TOUG TEPLOGOTEPOUSC

7o

x6uPouc xou petadidouv Ty mAnpogopio Toug oty Thetonpio Tou Yedpou.

Iopddhnha, par amd Tic mo Sodedopéveg YETEXES Yo TNV alloAoynon Tne onuociog uiog axunic elvar 1 edge
betweenness, 1 onolo exppdlel TOGO CUYVA WL GUYXEXPWEVT axUT| BploxeTtal oe cuvtoudTepeg SLadpouéc
petagd Leuyodvy xoufov:

BetweennessCentrality(e) = Z M,
s#teV Tst

omou s xou ¢ etvou BlapopeTinol xouBot, o, 1 0 GUVORXOS dAPLILOC CUVTOUOTERKY BLABEOUMY oo TOV XOUP0 s GTOV
x6uPo t xou g5 ¢(€) 0 aptiude auTHY Tou TEEVOLY amd TNV axur e. Mia oo pe udmid T edge betweenness
ouyVa hettoupyel we “yépupd” UETAED BLUPOPETIXWY TEPLOY WY TOU YEAPoL xou 1 UTaedr Tng elvan xodoplotiny
Yo TNV 81800 NG TANEOPORIIC O BIUPOPETIXEC YELTOVIEG TOU YEAPOU..

H evehi&io twv ypopnudtomy oty avamopdotaoT) SlopopeTixmy by dedogévmv (xowvwvixd, Bloloyind, x.d.)
odnynoe otny avdntuin twv Nevpwvix®y dixtLny we I'pdgoug, 1o onola aflonololyv 1660 Ty Totohoyia
TOU Ypdpou 600 xou Ta yopaxtnelotixd (features) twv x6uPwv/axucdv. e avtideon ye Tic Topabootonéc Loppéc
dedopévemy (m.y. mivaxee, edvec), ol Sopéc Ye Ypdpous oTdlOVY 0T CUVIESIOTNT XAl TIC OYEOELS HETAUED
OVTOTATOY, XAMOTOVTUS avoryxoes eEEWBIXEUMEVES apYITEXTOVIXES Xat OAYOpLIUOUS Yl TNV OTOTEAECHATIXT
exnaideuon xou oy WY CUUTERUCUATWY.

0.1. Oewentind TroBadpo

Undirected & Unweighted

e—N
e o

Directed & Unweighted Directed & Weighted

Figure 0.1.2: Awgopetixol mdavol tonol ypdgou [5]

0.1.3 Nevpwvixd Aixtua I'edpwy

Agob neprypddope o Pooixd yopaxtneto tnd tou Eeywpilouv ta dedouéva Ye ypdpoug, Hele 1 wea va Yeueiic>-
ooupe o Nevpevind Abtua pe I'pdgoug, to onola yeténeita Yo tpoonadricovue v epunvedooupe. Emmiéov da
TUPOUCLAGOUUE CUVOTITIXG TNV AEYLTEXTOVIXT] UEPXDY LOVTEAWY Tou Yo Ypnoudonotndoly otny Tapodoa epyasia.

Aedouévou 6Tl 1 dour| eVOS YPAPoL UTEEYEL PUOXE TavToL YUpw UaS, SNULoURY UMY VEURWVIXE BixTUd GUY-
XEXPWEVOL TOTOU, TEOXEWEVOU VO UTOPEGOUY VoL EXTIOUOELTOVY GE auTol Tou eldoug Ta dedouéva. To ypapruata
anoTteNoUY pn evxAeldela poppy) dedouévwy xa enouévmy to Nevpwvind Aixtua Iedgwy (GNNs) npénet va
unopolV vor cUAAGBoUY T TohUTAoxeS xou TohLBLdG Tatee oyéoelc PeTald Twv dedopévwy. Ta dixtua autd,
€youv avantuyVel Wiaitepa Tor TEAEUTALOL YEOVLOL X0l YPTOULOTIOLOVVTOL EVPEWS GE XOWOVIXA, Olxovouxd domains
xadde xou oty poptaxt| Broroyio yia v avalATnoT QopUdxwy.

Toa Nevpwvixd Abctva ye I'pdpoug yenowonototvtal, 6nwg elnaye, o ToAG SlapopeTind eldn mpoBAnudTwy.
IMopdho autd, unopolue vo evionicouue PepXEC YEVXEC XATNYOpleC OVIAOYO UE TO XOUUATL TOU YEAPOU GTO
omnolo Y€houpe va xdvoupe TpoBAédelc.

o ITpoBrédeig oe eninedo x6uPwv (Node-level tasks): e autéc T TEPITTOOES, TO HOVTELNO
xahetton vor poPAédel Tic WdTnTeg wdde xdpPou Eeywplotd, oe évav yeydho yedyo. Ilpaxtind, to pov-
o AauPdvel we eloodo évav xduBo xou ogeliel elte vo Tou amodwoel Wwia xAdon elte vo urtohoyloel pla
aprduntuer Ty yio xdide x6uPo. H mo cuvndiopévn epyacia oe autd to eninedo etvon 1 tavéunon xoufuyv
(supervised node classification), ye v onola Ya aoyohndolue xou oe auth Ty epyoaoio.

o ITpoBAédeig oe eninedo axuwdv (Edge-level tasks): Anawtodv and to poviélo vo mpoPiédet
XATOLO YoEUXTNELOTIXG TIoL avTioTolyEel oe xdle axur evog Ypdpou. Ltny nedéy), elva dueca avdAoyeg Ue
aUTéC TV XOUPwY, Ue Ta To Sodedouéva tapadelypata vo eivon 1 tadivéunon oxudv (edge classification)
1 mpdPredm vnapéne oxurc (link prediction).

e ITpoBAédelg oe eninedo yeagpruatog (Graph-level tasks): Ye auth v xotnyopla, o ohvoro
dedouévev dev anoteheiton TAéov and évay eviafo UEYHAO YRA(PO, 0ARS otd TOAAS ETUUEEOUS YEOPHATOL, Ol
TO YOVTENO TIRETEL VoL amodWoeL elte yiot ¥Ador elte xdmolo aprdunuxnd yopoxtnelotxnd Yo xdde yedpnuo.
Auté emtuyydvetan ye v aviyveuon meoTinwy ot eninedo OAOXANEOU YEUPAUUTOS XoL T CUUTOXVWON)
e mAneogoplag oe ula poévo eloodo xdlde popd. Xto mhalolo autrg g gpyaciog, Yo ECTIACOUYE GTO TLO
obvnec task, v tadivounon yeognudtwy (graph classification).

Emniéov ta Nevpwvixd Aixtua pe I'pdpoug umopotv va ta€ivountoly avdhoya avaAoyo Ue TNy dpyLTEXTOVIXT
ToU axohoLBoUY GE GUVENXTIX, ETAVUAUUBAUVOUESI, AUTOXWOLXOTIOLNTES XAl Y WEOYPOVIXE XL AVAROYO YE TOV
TeéTO exnaldeuong o emPBAETOUEVY, un emBAetopeva xan Yepads emPBAendpeva. Tapaxdtw VYo napoucidcouue

5

Chapter 0. Extetopévn Ieptindmn ota EAAnvixd

BU0 EUPEWC YVWOTEC UPYLTEXTOVIXES, TIOU Yenowonoidnxay o auTthy TNV epyaoio. Juyxexpyéva ol 500 auTég
OEYLTEXTOVIXEG EVTAGOVTOL oTHY Xatnyopio TV Pacpatindy Nevpwvixoy Awxtiv e I'edgoue (Spectral-based
ConvGNNs

To dixtua Tou avixouv ot auTh TNV XxaTnyopia Exouv we agetnpia T pacuatixy Yewpla ypapnudtwy (spectral
graph theory), op{lovtoc T cuvéh&n (convolution) oto gaopatnd nedio Tou Ypdypou péow e Wiodidonaong
Tou Aamiactavol mivoxa. O hamhaotavog nivoxas L mapéyel xplowes mAnpooples yio Tn dour Tou Yedgou, eVE
o petaoynuotioudc Fourier a€lomoleltan yia v mpofokr tou yedgpou oe €va opfoxavovind xheo. Oewphvtog
évoy ouPPETEXS, xavovixoropévo hamhaotovd L = UAUT| énou 1o U ebvar o mivoxac lodlavuopdtov toll-
VOUNUEVWY UE BAom TIC IBLOTWES TOU TPOXUTTOUY antd T SLACTUOT, TOU XOVOVIXOTONUEVOU AATAAGLAVOU, Xl TO
A elvon évag Blaydviog mivoxag Pe TG WLOTWES, EYOUUE EVol GHUOL YRUPTUATOS T TOU UETUPEPETOL GTO (PUCUATING
nedio péow & = UTx. Tt ouvéyela, o TeheoThc TN OUVENENC TEayUOTOTOLEToL YPNoLLoToldVTaC éval piATeo
Jo OPLOUEVO WS:
go*x=Uge(A)UTz

Avty| 1 tpocéyyion avtiel éunvevon and ¢ xhaowég uedddoug encéepyaoioc oHUaTog, 6nou N cUVENEYN oToV
YWpo aviiotolyel oe otolyelddn nolhanhactacud (element-wise multiplication) otov cuyvotxd ydpo. Ev-
T00T0lg, AOY® TOu LUPNAOY UTOAOYLOTIXOD XOGTOUC TOU GUVETAYETAL 1) LBLOBLEOTOGY TOU AATAAoLavo) mivod,
TpoTddnHay véeg uédodol Tou yenoonololy arodoTixdTepa QIATe, Ti¢ onoleg Yo BOUUE TOPOXAT.

To Chebyshev Spectral CNN (ChebNet) [10] avixetl otnv xatnyopio 16V QUCUATIXGY VEVEGVIXMOY IDIXTUMV
yeapwy xou TpooeYyilel anoteheouatind To pacyotixd @ikteo ywelc va aroteltow xootoldpa WBLOBLECTACT, TOU
Aoamhaotavol mivaxa. H Baowr tou wéa Paoiletar otnv avdntuln tou giktpou gy oe mohudvuua Chebyshev,
pe amotéheoya va evtonileton ywexd N cLUVENEN oe éva TETEPAOUEVO YELTOVIXG TIEPBEANOY. ZUyXeEXpIUéva, O
tedecTC NS oLVENMENG TpooeyYleTon and Ty e&lowon:

K
g * T ~ Z Gka(i)m
k=0

o6nou T}, elvor to mohuwyvugo Chebyshev Baduol k, 0 elvou ol extoudedolues nopdueteol xou L = %L — I elvon
max

0 AVOXAUIXWOPEVOS NATAACLOVOS TUVAXOC, UE Amax VO Elvor 1) u€yiotr wiotiuy Ttou L. To noiucdvugo Chebyshev

t4éne k umopel va utohoylotel cOupeva pe Tov Tapaxdte Tono:

Tw(L) = UT(A)UT

Avtr) 1 Blatinwon yeudvel awo¥nTd To UTOAOYIOTIG XOGTOS AmoPelYOVTaG ToV pNTéd petacynuatioud Fourier,
eved mapdMnia Sortnpel W tomy) meptoyy| emppotc (localized receptive field), amapoaitnn yioo T UMY
TOTXOY dopwv tou ypdpou. To cuyxexpyévo dixtuo éyel Peetl eqoppoyn oe Sdpopouc Toyels, 6w dlxTua
U INTAEOV, XOLVOVIXE YRUPTLATA Yol LopLoxY) YNUelo.

Y ouvéyewr, To Graph Convolutional Network (GCN) anhomnoel nepoutépw T0 Qoopatind TeAeoTH
ouvéhEne [19] nou yenowwornoteiton oto Chebyshev dixtuo, epupudéloviac oUCLHGTIXG YL TEOCEYYLOT TEMTNG
¢éne Twv toAvwviuwy Chebyshev pe emBory K =1 xot Apax = 2. H avtiotoiyn cuvélén optletan we:

R (1,, n D—%AD—%) x

, SR . , . " p ;
omov D72 ADT2 elvan piol SLUQOPETINT AVOTOPECTIOY TOU Aamhactovo) mivoxo Tou Yenolomotel Tov mivoxa
Borducdv D xou) uitea yelrviaong A. Ewodyovtog pla xavovixonoinor, unopolye vo yeddouye to x’ade eninedo
(layer) tou GCN we:

HUD — a(f)—l/QA[)—lﬂg(l)W(l))

bmou o elvon wo ouvdpTnon evepyoroinone (activation function), HW eivon n whteo yapoxteiotindy oto
eninedo 1 xan WO 1 padnuotind exnondetoyn tupdpetpoc (trainable weight matrix). Auth n mpocéyyion otny

6

0.1. Oewentind TroBadpo

TEdEN aEdvel TN oTAYEREOTNTA TWV UTOAOYLOUMY XoL ETLTAUYVVEL TN GUYXALOT xatd TNV exnaldevon. Adyw tng
AMAOTNTOG, TN UTOAOYLOTIXNS AMOB0ONE Kol TNG IXAVOTNTAS TOU VO AMOTUTMVEL TLC TOTUXES BOES EVOC Yo,
0 GCN éyel vodetniel eupéwe oe mouxiho medla epapuoydv. Lto mhalolo tne mapovoug epyaoioc, to Graph
Convolutional Neural Network anotehel to Baoixd pyoviélo oto omolo eotidlouye, xadwe Yo xhndolue vo
eZnyfoouye Tic mpoPAédelc Tou oe didpopa TpoiAuaro.

0.1.4 E&nyroceic pe Aviinapadeiypata

Ye autd To onpelo, Apde 1 pa va enextodolye tdve oto Yéua twv EEnyfoeny pe Avunopadeiypato. Apyxd Yo
TPOLGLECOUIE TOUS AGYOUC Yia Toug onoloug ot e€nyfoels autéc elvan onuavtixée yia tov topéa e Teyvntic
Nonuootvne. ‘Eneita do avahicoupe tig Spopetinég netddoug xau to mpofAfpata mou Abvouv ol EEnyroeic
pe Avtinopddelypa eved Yo avapépoupe xat TNV dordnuotixy dlatdnwot] Toug.

Ou olyypovee teyvixéc Badide Mdinong diaxplvovton yia Tic uPniég emddoelc Toug ot Topeic 6mwg 1 Blokoyia,
TOL XOWVWVIXE BXTUOL XL TO OLXOVOULXE CUC THUATA, KWOTOCO cLYVE yapoxtnellovtal and EANAedr) Blapdvelds Tou
duoxohelel Ty xatavénor Tou TpdTou Aettovpyiog Touc. Ewixétepa, ta Nevpwvixd Aixtua Ipdgwy (GNNs)
TopEyoLy onuavTixée duvatdtntes enclepyaciog Sedopévwy pe oUVIeTn doun, aAAd xAnpovopoly xou evOEye-
Tou va evioy0oouv Tic Tpolndpyouces pepoindieg tou cuvérou dedopévey. Kodoe Boocilovia oe mohhamhiéc
CUVOPTACELC EVERYOTOIMONC X0l TOANATAG XU GTABLAL, TaPAUEVOUY “Uadpa xoUTId” Yo ToAAOUS YPNOTES, UE
amotéheoua Vo xodioTatal Suoyeprc 1 SIERELYNOT TWV TAPAYOVTKY TOU 081NYOUY 0NV EXGoTOTE TEOBAEM.

Ov E&nyfoeic pe Avtinapodelypata (counterfactual explanations) épyovtar va ovTiUeTR{oouy TiC Tapamdve
TEOXANOELS, TPOCPECOVTAG Uil DEAOLUY Yol XATAvoNTH ontxr otnv eppnveio yoviéhwv. e avtideon pe dh-
hec uedodoug, dev meplopllovial oty cp®dTNoT “Tolol HTAY Ol TAUPAYOVTEC TIOU OBNYNOOY GTNV CUYXEXPUIEVT
anégaot;” aAAG EMEXTEVOVTOL OTO “NMC UTOPOUUE VO TPOTOTIOLOOUKE TO AMOTEAECUN TEOC OPENOC YOG UE TG
ehdylotes Suvatéc olhayéc;”. Autéc ol e€nyfoeic anodeixviovtal TOAITIHES OF TEPITTAOOELS GOV ATOUTOUVTOL
drapdveta, apgepoindio xar TpoxTXdTNTA.

Ou E&nyroeic pe avunopadelypata ot dedopéva ypdpwy unopolv va tagvopndoly avdhoya pe to onueio eotiaotc
Toug (dnhadh av oToyetouy ot eninedo oAOXANEOL TOL PoVTENOUL 1| eVéC WoVO Belyuortog) ohAd xon avdAoya e
™V TPOGEYYLoN Tou axohoudolv yia vor topdouy Tic enyfoele [15, 41, 2].

Ye eninedo povrtélouv (Model-Level): Ou npoceyyloelc autéc otoyelouv TNy mapoywyr oviimo-
podelypdtov mou aviixatonteilouvy T cuvolxt| Aoy tou Nevpwvixol Awxtou. Ilpoopépouv éva eupltepo
GUVORO %AVOVWV 1] TOEADELYUATWY, tXAVA VoL SLpKTICOUY TOV TPOTO YE TOV OO0 TO YOVTENO GUVOAXE (PTAvEL
otic TpoPAéelc Tou, aveldpTtnta and v exdotote eicodo [20].

Ye eninedo pepovopévou deiypatoc swoddou (Instance-Level): Avtideta, autéc or yédodol ev-
Tomilouv avuinopadelypata Yoo xdde o and Tig eloddoug dedouévev Eeywptotd. Ta wa epyaoio Talvounone
yeapruatog, autd Yetapedleton o€ ooy TG TEOBAEPNE Yiol Vol GUYEXPUIEVO YEAPNUA, EVE oTY TaEVOUNo
XOUPLV, Yo EVaY GUYREXPWEVO xOUPBO.

Emuniéov, n avdhuon twy mpoceyyloewy o VPnio eninedo udg emitpénel va Sloxplvouue Tig e€ng xotnyoplec:

o Avalntntixéc (Search-Based) wédodot: Zexivolv and éva opyind unodripio avtimopdderypo ' xou
70 BeAtioTonololy wobdtou ahhdEel) TedPBiedn Tou dpyixol povtélou. Xenotponotoly xplthpla avaltnong
evtéc tou cuvdlou Bedouévwy, aglotoldvtos gradient-based teyvixéc dtav to poviéro elvan Slagopiowo
1 uedédoug 6mwe e€ehixtinole ahyoplduouc dtav dev etvou.

e Evpetixéc (Heuristic-Based) pédodou: Xpnowomolodv moluxéc Tpononoinone Tou ypophuo-
10¢, PACLOPEVEC GE CUYXEXPWEVEC DOUXEC XOL CTUTIOTXES TEYVIXEC, (OTE Vo emTOYOLY To emuunTtod
arotéheopo. Ou adhharyéc yivovtow otodlond xou xatevduvdpeva (.. ue greedy ahydprdpouc), €weg 6Tou
(PTAOOLVY 0TO EMVVUNTEO AVTLTUPAOELYUOL.

e Madrnoiaxéc (Learning-Based) pwédodou: Exnowdelouv éva dedtepo Loviého ylo Ty mopay»Yh
avTLnapadeLlYUdTwy, ouvidne aflotowdvtag po counterfactual loss function yia) Snuiovpyia urtodrigLwy
TPOTOTOLACEWV.

Emnmiéov, ol padnolaxée npooceyyioelc ywpllovton o tpelc uroxatnyoples:

7

Chapter 0. Extetopévn Ieptindmn ota EAAnvixd

e Perturbation: Awypdpouv otoyela and v uitpac yertviaone ¥ v whtea yopaxtneiotxay (feature
matrix) €m¢ 6tou mpoxUel éva Eyxupo avunapdderyua [64, 8.

e Evioyvtixy wd9non (Reinforcement Learning): Xenowonowlv npdxtopes (agents) mou avaln-
ToUV avTinapadelypata péow wog ouvdptnone avtopoBic (reward), v omola opilet o yprotne [38].

e Generative Methods: Booilovtar oe yevwnuxd yovtélo 1 variational autoencoders (VAE) vy
dnurovpyio avtimopadelypdtwy ot évay extoudeupévo havddvovta ywpeo [48, 26].

Téhog, onuavtind pého nailel xan o Badude mpdoPoaone mou €xet Yo LEY0d0C 0TO ECHTEPLXO TOU LOVTENOL:

e Model-Agnostic: Ou pédodol autéc dev anatolv TpdoPact) oTIC EcWTEPXES TapauéTeous 1 ota Bden
Tou Yovtéhov, otnpldpeves anoxhelotxd o Lebyr elo680u-e€£6d0u.

e Model-Specific: Xpnoiuonolov ta Bdpn 1 dAha ecmtepnd oTolyela Tou LovTélou, HOTe Vo eENyHoouy
xoh0TEPA Yot TEOXVTTOUY GUYXEXPWEVES ATOPACELS.

Xty medr), ol dlayweiopol autol cuyvd emxolinTovToL, Xou TOAAES Uédodol aflomololy WEeg amd TOEAUTAVE
and ula xatnyoplec, TEOCPECOVTAS EVEAIXTESC Xl AMOTEAEOUNTIXEC AUGELC OE €val eupl PAoUN TEOBANUATWLY.
H pédodoc nou Ya avantiioupe otny enduevn napdypapo avixel otic pertubation, model agnostic instance
level teyvixéc. Autd onuoiver tog Yo tpoonadoovPE Vo TORAYOLUE ovTLmapadelyUaTo Yiot OAEC TIC ELGHBOUC
TV Bedouévey Uoc EeXwEloTd, Ywpelc Vo YENOWOTOLOVUE TIC ECWTEPIXES OVOTUPUCTACELS TOU dLXTOOU GAAY
avtetwnilovtac to cav black-box.

‘Evo avtinapddetypo (Counterfactual Example) etvon o napodharypévn exdoyh x” wiog opyixic etoédou
x ntou odnyel éva omolodftote black box povtého @ oe drapopetixt; npdPhedn [14]. Tuyxexpiéva, av to povtého
® anotundvel dedopéva x € R? oe o npdPiedm § = ®(x), 161 Yio éva avTinopdderypa X' 1oy leL:

P (x) # P(x').

Me dhho Aoy, on EEnyfoeic pe Avtinopadelypoata npoxdntouy 6tav 1 véa elcodog X’ odnyel to povtého ndvta
oe BlapopeTiny TpoPBhedn oe oyéon ue Ty apyixY| elcodo X. XN nepintwon e Taglvounong Yeopnudtwy, dtou
zr = G 161 o 1o avTimopddelypa elvan ypdgpnuo ' = G, xo 1) Paocwer| amodtnon eivon vor ahhEEeL 1 tpoPBAenduevn,
x\dom BlatnedvTag Tapdhinia Tic ahhayéc oto eNdytoTo.

Opilovtac wa ouvdptnon andotaong D oyetixn Ue t0 exdotote TEOBANU, omonteltal vor Loy UeL:
D(z,2') < t,

6mou ¢ elvan éva xotdhhnho épto (threshold) mou Swogouriler v ehaylotonoinomn twv alhaydy. Xto mhaiclo
e dnuovpyiag e€nyroewy ue avunapadelypato oe Sedouéva Ypdpwy, 1 Slodixacta uropel vo diaturtedel w¢ wa
eEAOLOTOTOMOT TNE TOPAXETE CLUVAPTNOTS XOOTOUS, 1) ontola LeoppoTel TNy andotaon D(x, X") xon TV andAe
L petalfd d(x') o P(x):

arg n}l{i/nﬁ((b(x’), ®(x)) + A D(x',x),

omou L elvon pa Stapopiowun ocuvdptnomn (cuyvd emhéyeton 1 cross-entropy loss), eved A elvon piat UTepTapdUETEOS
Tou xadop(lel o Bdpog avdueoa oty odhay T TEOBAedNG xou oTNY eYYUTNTO UE TNV apyxn elcodo x [15, 41].
Yty mpd€n, otV mopandve cuVEETNoN XOGTOUS Unopoly Vo TpocTedoly ETUTAEOV GpOL, (GTE VO EMLTUY YAvETOL
dpdotun xododriynon (actionability) B xdmolog cuyxexpuyévoc otdyoc. Auth oxpBdde T tpoxtixy adLoToloUUE
xaL 0TV Topoloa epyasia, yio va e€acaiicouvue 6T or EEnyroeic pe Avtinapadelyuarto elvar Oyt uévo eqixtéc,
AAAG ol OUCLACTIXECS.

0.2. IIpotewvépevn Medodoroyla

How can | be
accepted?

redit card s
pplication .

= “Feature
Structure

Figure 0.1.3: Topddetrypa mou avadewviel Ty yenowdtnta tov EEnyfioewy ye Avunopadelypato. [15]

0.2 Ilpotewvdbpevn MeYodoroyia

Eexivodvtog €xouue Tov xadoplodd WG apyttextovixic iAol emnédou, 1) onola YENOWWOTOLE(TAL EVPEWS TNV
BBhoypagpio, eovic vo mapdyer EEnyhoeic ye Avunapadelypata. Eexivdue opillovtag 1o oUvolo dedopévwy
o, évav black-box taivounti Nevpwvixdv Awxtdwy T'edgowv (GNN) @, xadde xou thy xhdon poc mov Yo
nopdyel Tg e€nyfoeic (explainer). Apywxd, exnoudetouye to GNN povtélo mdvew oto olvolo Sedouévwy yia
v exdotote epyacio Tadvdunone (eite ypdpou eite xépPou). Aol to povtého mopdiel tic TpoBiédeic D (z)
Yt omtolodhToTe Jelypo lodBou, oL ecwtepé TopdueTpol Tou (Bden o petatonicels) Topapévouy otadepéc,
OOTE VoL SLUCPAUALGTEL 1) CUVETELD TWV TELRAUATWY.

XN ouvéyela, 1 xAdor tou eEnynTty AopPdvel we eloodo:
1. Ty apyny eloodo x.
2. Tnv mpéPredn tou GNN yia autéd T0 delypa, ®(x).
3. Omnoladnrote ypriown nedTtepy YVHoN Tov TeoxVnTel ond eneepyacio Tou GLUVOAOL BeBOPEVLV.

O explainer dnuouvpyel otn ouvéyela éva utodfigio avtinapdderypo X' péoo and enovahopfavouevn oAAnheni-
dpaomn to GNN, oe wia dladxaota mouv Yo avokudel otny enduevn napdypapo. Télog, autd To VEo Topddelyya
x' ewodyeton ex véou oto poviého GNN, ye otdyo va topaydel diapopetint| etixéta TpdPrednc:

b (x) # P(x').
9

Chapter 0. Extetapévn Ieplindn oto EXAnvixd

Dataset GNN @

p Explainer <:

Domain
Knowledge

Figure 0.2.1: H high level opyitextovixn yio tnv mapaywyn aviinapadelypdtov. To GNN povtélo apyixd
Tapdryet Yo TedPBAedn yio onotadrinote glcodo and to olvoho dedouévwv. ‘Eneita o explainer ypnoionotel
ot TNV TEOBAEP xS XoL TEOTERT) YVAON YLl TNV TOEAYWYT) AVTLRUPUBELYUATOV.

0.2.1 Ilepiypagpn Medbddou Alaypapnse Axpwy

H xevtpunn 10éa tou explainer Bacileton otny ehdyiotn Tpononoinom evéc Ypdpou TpoXeUEVoU Vo ahhEEeL 1 TpdB-
hedm evéc GNN povtéhou. Ot tponomotrioelc autée, oty TEPINTWoY Pag, apopoly Ty chhayr tne tomoloylog
TOU YPdPou U€ow TNg Slaypophc axpdy. Lo va emitevydel autd, o explainer eqopudlet pia soft masking teyvixn
oTIC oxpéC Tou ypophuatog, emtpénovtag T otadaxy (xau Swpopiown) e€acdévion 1 dathenon TV axuoy,
uéypl Telxd va yivel 1 emhoyy yio To moéc axpéc Yo Siorypopolv.

‘Ocov agopd v dladxascta tou soft 1| continuous masking cpyxd optlovton 800 nivoaxee ¥ udoxeg, Z xou M,
Tou €youv Tic dlec dlaotdoeic pe T uitpa yertvioone A xow tov mivaxa oxudv (edge index). Apywd, n Z
apyonoteitor 6To undév (z; = 0), eV oTN cuVEYEL TPOYOJOTEITAL 5T OLYUOEWY) cuVETNoT:

1

mi=oln) = e

9

TOPEYOVTOC ET0L TIC TWES TN pdoxac M, m; € [0, 1]. Auté poc emtpénet va odhdloupe Ty Ty tou Bdpouc xdie
oprc (edge weight) mpoodeutind, ywelc vo amanteiton Staxpltt| Starypagh xéde popd (un-diagopiown Swdixactar).
Apywonowdvtog 6heg Tic TWES z; 6TO PNdEy, 1 sigmoid napéyet wia oudétepn mbavotnta 0.5 yia xdide oxu),
emitpénovtog (oec mdavotnteg dlatrhenong 1 dlaypaprc.

Tpoxewévou ot TWéS TG UAOoXAG KOG Vol UTORECOLY VoL avavewdoly o€ xdle emavdindm e dadxaoioc yenot-
pomololpE TNV e€fc oUVEETNON XGOTOVE:

L(Z) = Lprea(®(G;M(2)),5) + A+ Laise (M(Z)),

6Tou:

® Lpred ebvan évag dpoc cross-entropy loss, —log Po (9 | G; M(Z)), mou elet To povtého va npoBhéder tny
emdupnTy xAdom 3.

10

0.2. IIpotewvépevn Medodoroyla

o Laist elvon évac 6poc nowvfc (penalty) mou evioppiver Ty dlorypaph 660 To JUVATOV AYOTEPWY OXUMY.

Edistance(M) = Z(l - me)

ecE

Metd and pa eunpéotho Siéheuon (forward pass) oto poviého GNN, axohouldel oniotha diddoon (backprop-
agation) mou evnuep®VEL TN pdoxo Z avdhoya e v npdBAedn mou napelye To Yoviéro oToV YEdPo e Ta
xowvolpylo edge weights:

ZUD = 7z _ v, £®,

omou « givon 0 pudude expddnone (learning rate). H Swaducacio auth enavahouBdveton yio évay dedopévo aprdud
enavalPewy.

Agdtou ohoxhnpedolv autol Bedyor exmoidevone, 1 udoxa M(Z) nepiéyel ouveyeic Twéc me € [0,1]. Xe
exelvo 10 oTddlo dev €xouv axoua diorypapel axués ahld udvo e€acleviioel 1 loyuporomndel ta Bden Toug. T
vo optotixomoindel n Slarypapn, emBdilovye plar Buader) udoxd Mpinary UE YeYiOM EVOC Opiou T:

binary __ 17 Me > T
me - ’
0, oA

Me autdv tov Tpémo, xde axun ue me > T Sotneeiton, eved ol umdroineg daypdgpovtal. Avtl va opicouue
7 = 0.5 énwe ouyvd cuvavtdue oty BiBhoypoapia, o explain avalntd T uixpdtepn T T mou odnyel oe
oadhayh whdone (flip) e npdPredne tou GNN, Srypdgovtac tov eldytoto amapaitnto aptdud oxudv. Agold
ONULOVEYHOOUPE TOV XavoVEYLO YOAPO UE TIC DLYEYPAUUUEVES axpéc va Aelmouy, Tov Blvouue w¢ eloodo oto
GNN povtého npoxeévou va xdvel tedBiedr. Av 1 npoBiedm eivon dlapopetixnr) amd TNy apyixy| €OUUE TOEAEEL
éva emituyéc avunopddetypo. Kodog auidvel otabiaxd to 7, xou eqopuoleton auty 1 dadixaoto, n avalitnon
otopatd dtav dumiotdoet 6TL N TedPhedn ®(G') elvon Sapopetind| yio Tpd T Popd. Aoxipdlovag Tic TWéS T =
[0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45, 0.5] pe auth tn oelpd oryoupeboupe twe av Beedel avtimopdderypo,
Yo elvon pe Tig ehdiyLoteg duvatés olhayée otny Tonoioyia Tou Ypdgpou.

Xdpn oty ouveyh udoxa, o apyxos yedpog pével otodepds xad’ 6hn Tt Bradixacio (tor Bdpn Twv ooy
petafBdihoviar), BeATidvovtag €Tol TNy unohoylo Tl anddoor o clyxplon pe to va Eavaytiloye €€ ohoxhApou
10 Ypdynua ot xdde Phua. Emniéov, enecdr o opiopde tne pdoxog Basiletou oe Swagpopioes cuvapthoel (sig-
moid), Swrtnpeeiton 1 Suvatdtnta poric mapaydhywy (gradient flow) xou cuvende 1 BehtioTonoinon eivan anoteheo-
HaTL Yo HEYAA YoopriuaTa. TeAxd, To Tapayouevo avTinoeddelyyo elval To EAEYLOTO BuVATS, Aol BlorypdpeL
Hovo Tic amapaitnteg oxuég Yo va emiteuy Vel adhay npoBiedng.

0.2.2 Ewayopevol Ilepropiopol otnv Juvdetnorn Kbéoctoug

YuveyiCoupe otV TpaypATIX GUVELCQORY auThC TNne epyaciog, mou elval 1 ElCAYWYY TEPLOPLOUMY, GTNV
oLVdpETNON XO6GTOVG, Tou TepLhopPdvouy mpotepn Yvworn. H mpoodiun emmhéov dpwv oTn cuvdptnon x6o-
TouC oToYEVEL TNV XATEVIUVOUEVT] Blorypapy) oy and Tov explainer pe oxond mo ctoyevpéves enyroec. H
eloaywyr) TETOWY dpwy dev elvon amopaitnTo Tee Yo €youy etnn enidpaon xadog népa and evdeheyy| nelpduata,
TRENEL QUTOL OL TEPLOPLOUOL Var v TiXaToTTEI{OLY TEaYaTXES LBLOTNTES TOU GUVOROU BESOUEVKY YOS, LTNV oUY-
xexpLévn epyooio evronioaue 800 ToTONOYIXES UETPXESG TTOU eugavilovTon oTo Bedopéva Tou Yo TapoUCLAGOUKE
TopodTw. Xuyxexpyéva, opllovtal 800 TopadelyUaTo TEPLOPLOUWY oL aEloToloVV WBLOTNTES YRdpwY, divovtog
TN BUVATOTNTA GTO UOVTENO VO ETUXEVTRPOVETOL O OXUES UE LPNAT onpacia.

1. Node Degree Centrality Constraint. téyoq elvon va mpotiudtan 1 apaipeon oxuwy ToU GUVIEOVTUL
e x6uBouc-xévtpa (hub nodes), ue vPnAf xevtpidtnta Boduov. Apyixd, yia xdde x6uBo v € V, unohoyilouue
Tov Bardud:
degree(v;) = ZH‘[(UZ-, vj) € EJ,
j

%o TNy oLvéyeta eVTOTILEToU O XOUPBOC Umax deg HE TOV UEYOAUTERO Bardud xol CUYXEVTEWVOVTOL OAEC OL UXUES
TIOU TOV GUVBEOLY UE dANouC xduBouc:

Ehub = {(U'La Uj) er | Uy = vmax_deg \ Vj = Ulnax_deg}~

11

Chapter 0. Extetapévn Ieplindn oto EXAnvixd

‘Eneita, oplleton évoc véog dpog towvic (penalty):

Edegree = § Me,

e€FEwub

70U TWwpEL TNV Slatripnon auTdY TV axpdy (M = 1), eviappivovtac dnhadh v agaipecy| Toug. H cuvolixd
oLVEETNON x6GTOUE Tou e&NYNTY YiveTtou:

[/total = ACpred +)\dist : ACdist +)\degree : Edegreey

6Tov

Lpred: Evioppiver tny odhoyn tng medPredng tou GNN oty emiduunty xhdon.

Laist: Twpel m palixy) Siorypapr] axuodv, endidxovtag vo dtnendoly doeg neptocdtepes YiveTal.

Ldegree: Hpotpénel v agolpeon oxuwy mou cuvdéovtal ue tov xoufo uéyiotou Boaduoo.

Figure 0.2.2: TTopdderyua evog ypdpou mou meptéyet d0o xouBous ye uPniotepo Badud oe oyéon ue Toug
UTLOAOLTIOUC.

2. Edge Betweenness Centrality Constraint. Avtiotoiya, n petpur edge betweenness unodetxviel
600 cuyvd wo axpn Beloxetar oe cuvtoudtepa povondtio UeTadlh Leuyddv xouPwv. ‘Etot, oplletou:

Cole)= M7

v,ueV 0(07 u)

6mov o(v,u | e) elvon o aprdudc cuVTOUdTEPWY BLadpopdy and v Tpog U Tou BépyovTon and TNV axuY e, ol
o(v,u) o ouvohixde apidude cuvtoudtepwy dadpouny. Emiéyovtar ou axuée pe th Cp(e) ndve ond éva
oLYXEXEWEVO bplo (.. 90% ota TElpdpoTa Poc):

Evet ={e € E|Cp(e) > Qoo(Cp)}.

H ouvdptnon nowic opileton we:

‘Cbet = § Me,

e€ Epet

X0l ELOAYETOL GTY) GUVOAXTY GUVAETNOT XOGTOUC:
Etotal = £pred +)\dist : £dist + /\bet ' Ebeta

6ToU 0 6p0¢ Apet EAEYYEL TN BoplTnTar Tou Teploplood. Me ik Adyia, 660 PEYAADTEPO TO Apet, TOCO TEQLO-
obtepo wieiton To povtéro va daypdder axpéc uPniold betweenness.

12

0.3. Ilewpdporo xou Anoteréopora

bottleneck
(high betweenness)

hub
(high degree centrality)

|

neighbor
of hub

Figure 0.2.3: ITopdderypa ypdpou ye oxur ue vdnhé edge betweenness score xaw x6uBo pe vhniéd Podud. [34]

O cuyxexpyévol neploplopol anoteholy dowxd tapadeiypata, Bootldueva auyde otny Tonohoyia (structure)
Tou yedgou. To mhalolo exmaldevone tou explainer, wotdco, EMTEENEL TNV ELOAYWYY) OTOLOLBNATOTE EMTAEOV
6pOL OTY| CUVEETNOY XOCTOUC YLOL VO TEOTIHATOL 1) OPOLPEDT) XUV UE CUYXEXEWEVO YapoxTnplotxd. Etot,
OLILOPPOVETAL Wal EVENXTY uedoBohoyio TOU UTOPEL VO TEOCUPUOOTE! OF BLAPOPETIXEC ATALTHOELS, AVAAOYA UE
TO eXJOTOTE TMEDIO YVWONG Xl TOUSC GTOY0UG TN EpunVveiag.

0.3 Ilewpdpatoa xou AToTEAECUATA

Ye autd To xoupdtt ¢ epyaciag Yo mopoucidcouue To TEPBIAROY TWV TEWUUATKOY IOV exTEAéCAUE. Apyixd
Yo teplypdoue GUVOTTING To GUVORA BESOUEVWY TOL YENCWOTOLUNXOY XM Xol TIC UETEIXESC oL 0ELOAOY T
ocoav Tic pevddoug poc. ‘Emerta Yo nepdooupe ota avolutixd anoteréopata xadde xo oTNY OTTIXOTONcY TOU
trade-off yeto€l e napaywyRc e€nyroewy yio ToAES €l0680UC xou TOV IS TWVY Bloty PPy TOU TEETEL VoL
EQPUPUOCOUNE TTROXEWWEVOU VO TIC TETUYOUE.

0.3.1 Emioxonnon twv Ieipapdtwy

Io ol mepdpata pag, yenotponotioope 500 cUVola SESOUEVGLY YLol TNV TaELVOUNGY YRUPNUATLY, Xodde xou €val
yior TNV Ta€Lvounom xouBwy.

REDDIT-BINARY

To cuyxexpévo chvoho Bedouévwy yenoulomolelton xuplwg ot epyaoieg taglvounong yedewy. Kdade yedeonua
avamaptotd éva viua oulhtnore (thread) oto Reddit, énou ol xdpPol avtistoryolv ot yefiotes xau dVo xoufol
GUVOEOVTOL UE axpn) oV 0 EVOE XENOTNG ATAVTNOE o€ ay6hlo Tou dhhou. O atdyog elvan va taivoundel oAdxAneo
T0 YpdgNua we éva viua culitnone Bactopévo oe JdhoYo 1 Evar VAU EpOTHOEWY AoV TAOEMY.

IMDB-BINARY

To IMDB-BINARY efvor éva ohvoho Sedouévev and tn Brounyovio Tou xvnuatoypedpou, anoTEAOVUEVO and Ta
ego-networks 1.000 ndonoudv mou €youv cupuetdoyel oe touvieg mou Beloxovian oto IMDB. Ye xdie yodgpnua,
oL x6pfol avtiotolyoly ot Nlonolole, eve pla axur velototon 6tav dVo nomolol eugaviCovta wall ot pior touvia.
Av 7o ego-network mpoépyeton and wa touvio dpdone (Action), to ypdenuo emonuaiveton e Ty eTiéta “Ac-
tion”. Avtideto, av mpoxUnTel omd plar Touvia popoavtixod nepeyouévou (Romance), onuetdveton we “Romance”.
Yuvenoe, 1 epyaoio Tagvounone cuvioToTAL 6TO Vo TEOCOLORICOVUE av Eva dyvemoTo ego-network mpoépyetou
and wa touvio dpdone 1 popavTIXN.

13

Chapter 0. Extetopévn Ieptindmn ota EAAnvixd

Reddit-Binary IMDB-Binary

classes 2 2
graphs 2000 1,000
node features 0 0
edge features 0 0
Avg # nodes 429.6 19.8
Avg # edges 497.75 96.5

Table 1: To yapaxtneiotind Twv 800 GUVOAWY dedOPEVLY Hag Yio TV Tadvéunon yedgwy. Iupatneodue mweg
to Reddit-Binary mepiéyel yeyalitepoug xou mo muxvolg yedgpoug, eve To IMDB-Binary nepiéyetl pixpdtepoug
yedpoug. Kou ta 800 chvoho dedopévev Bacilovton otny tomohoyia Toug xadde dev Slordétouy
YOPAXTNELOTIXA.

BA-Shapes

Ity epyaoio ta€vounone xouPwv, ofonofoaue to cuvietuxd clvoho dedopévewv BA-shapes. To ouy-
XEXPWWEVO GUVORO Bedopévmy dnovpyeitar tpocVétovtag éva wotifo (motif) oe tuyaloug xéuBoug evée Baoixod
yoaphuatoc Barabasi-Albert (BA). Tuyxexpyéva, emhédaye évo tuyaio ypdgnua Barabasi ye 1000 xépfouc
xou mpootéoaue 400 yotifa oe Tuyaloug SlapopeTinols xéuBoug e Bdong. Kéde xoufoc ta€voueiton oe plo and
téooeplg eTixétec: “Non-House” yia x6pufouc extdg tou potifou, xadne xa “House-Top”, “House-Middle” xou
“House-Bottom” mou unodetxviouv 11 9€om tou xouPou péoa oto wotiBo. To cuyxexpévo cUVOho BeBoPEVLY
Yenowdonoleltal evpéwg oe epyacieg epunvevoipdTnTog, e€antiog g Uopdng etixetey ground-truth oyetixd pe
™ Véom xdde xépPou yéoa oo potifo.

BA Shapes
classes 4
nodes in motif 5
edges in motif 6
nodes in total 3000
edges in total 7691
Avg node degree 5.13

Table 2: Statistics for the BA Shapes dataset.

14

0.3. Ilewpdporo xou Anoteréopora

House Motif Visualzation

i1

Figure 0.3.1: To yotifo oe oyrfua omtiod nou cuvdéoupe oe Tuyalouc xouPouc oe évav Barabasi Graph.

I v aglohdynon tne amdédoong Tou explainer gog, YeNotdonolobue 500 SLadedoUEVOUC BEXTES EPUNVEUCIUOT
¢ o€ ypophuota, To ITocootd ANNayhic Etixétag (Prediction Flip Rate) (PFR) xa tnv Anéo-
taon Enegepyacioac I'pagprnatos (Graph Edit Distance) (GED).

H petpuer; PFR xatoypdget 10 1060016 Twv detypdtwy (Ypopnudtonv | x6uBwy) twy onolwy 1 npdBiedn dhhale
pe emtuyio oe oyéomn Pe To oUVOAO TV BeryUdTwy Yo Tor omolal emtyeleinxe odhay). Lvufohixd opileton we:

1 &)
PFR = N;H‘[f(xi) 7 [,

oToU:
o N elvar to mAdog TwV BELYUdTWY 6TO GUVOAO BEBOUEVLY HAg.
o f(x;) elvan n apyh TeéBhedn Tou povtérou.
o f(z}) elvon 1 mpdPhedn petd TNy TpomoTnoiNno.
o J¥[] elvou 1 ouvdptnon deixtne (indicator function).

Yo mhadoto awthc g epyaciag, exppdloupe To PFR w¢ nocootd (%) tou cuvohou twv Setyudtonv mou dhhoday
TeéPAedn oe oyéomn ue Oho To GUVOAO TWV BEBOUEVWY oL ETLYELRONXE TpoTOTOlNO.

To GED nocotxonotel tTnv avouoldTnTa aviueco oe 800 YRuU@RUoTa, UETPOVTAC Tov apltdud evepyeldv encé-
epyaoiuc mou amoutelton Ylol Vo HETAoYNUTIOTEL TO évar aTo dhho. Aedouévou 6TL o explainer pog dwarypdget
anoxAietotxd axpés, opiloupe 10 GED w¢ tov AOY0 TV DAYEYPUUUEVRDY OXUMY TEOS TO GUVOAO TV AUV
TOU aEY WO YRAPHUATOS:

Number of edges deleted to transform G into G’
|E| ’

GED(G, @) =

6Tou:

15

Chapter 0. Extetopévn Ieptindmn ota EAAnvixd

o G = (V,E) 10 apywd ypdopnua.
e G' = (V,E') w0 tpononompévo ypdpnua.
o |E| 0 cuvohixde aptdude oy Tou apyixol YeophaToc.

Kadde 1 ouvdptnon x6otoug mepthopfdvel Gpoug Tou avTlotolyoly 16co oty avatpond| s nedBiedne (PFR)
660 xou oty elaylotonoinoy Twy adhayoyv (GED), npoxintel avandgeuxtog oupPiBacude (trade-off). Ilo
CUYXEXQPWIEVA, 1) TOPAUETEOS Adist Xotdopilel OG0 TOAD TuweelTon 1) Slarypopy| oUY:

o Av Agist elvon pixpd, o explainer agaipel ToAAEG axués, emtuyydvovtac vdnid PFR ahdd pe auénuévo
GED.

o Av Agist elvon yeydro, o dworypapée teptopllovtan, e anotéheopa yopunrotepo GED add xou Tautdypova
HxEOTERO T0GOGTO aANAYUEVWY TTPoBAEPewY.

Yuvenog, yia vo tpocdloplooupe T BéATiot Looppotia avdueca oe PFR xou GED, pnopolue va oploouye plo
ouUrOUaTTIKY) CLVAETNOT), TL.Y.:

Trade-off =k - PFR + t - GED, upe k+t=1,

O yehotne unopel va puduloet Tic Tipée k xan t avahdywe tng onpaciog mou anodidel oe xadeplo and Tt dvO
petpixéc. o napdderypa, k =t = 0.5 divel {om Popbtnta otnv avatpont| Tne tpéBAedng xou oTny ehayiotonolnom
TRV DLy PAPOV.

0.3.2 Amnotelécpata

e auth TV eVOTNTA, TOEOUCLELOUUE TOCOTIXG AMOTEAEGUOTA Yo TNV Anddoom TwV dlapopny explainer povtéiwy
oo Tpio olvola dedopévmv. Emmiéoyv, anexoviloupe avolutind tov cupPiocud (trade-off) avdpesa stoug dvo
Baowole deixtec Prediction Flip Rate xou Graph Edit Distance.

INo tic evotnteg mou axoloudoly, otav avagepduacte oto Base Model, evvoolye tov explainer mou eqap-
polel amoxAelotixd tov 6po andotacng L1 (ywelc mpbodetoug mepiopiopols). Xtn cuvéyela, mapoucidloude
to anoteréopato Yo to Node Degree Model xou to Edge Betweenness Model, to onola evowpatdvouy tov
avtiotolyo meploplopd 6Ty cuvdpetnon xéctouc. To Base Model Aeitoupyel we onueio avapopds, eved to dAAa
800 YOVTENA BEATIOVOUY TOL ATOTEAECUATO TWV THPATAVE UETEIXWYV.

REDDIT-BINARY IMDB-BINARY BA-SHAPES
Method Flip_ratetf GEDJ] Flip ratet GED| Flip ratet L-GED|
BASE MODEL 53.2 0.2 66 0.12 50.4 0.21
NODE _DEGREE 64.5 0.25 72 0.2 — —
EDGE BETWEENNESS 50.7 0.2 — — 51.7 0.2

Table 3: Xiyxpion twv pedddwv ota 3 datasets. To anoteréopata autd Peednray yio Agise = 0.01. Xto
Reddit-Binary yenowonoufdnxe Ageg = 1 o yioo to IMDB-Binary Ageg = 0.1. Il To povtého Edge
Betweenness ypnowonotidnxe Apet = 0.01 xou Apey = 0.1 yio to Reddit-Binary xou to Ba-shapes avtictouyo.

Ané autd ta anoteréopota topatneolpe 6Tt to Node Degree povtého napovaidlet upniotepo Flip Rate oe oyéon
ue to Base Model, ahAd Tautodypova eppaviCel avgnuévo GED yio tny (Sl Ty tne unepmopopétpou andotaong.
Auté uoBNAGVEL 6TL 0 CLYXEXPWEVOC Tieploplonds odnyel Tov explainer oty aQaipecy) TEPLOGOTERWY OXUWY,
TEEYOVTOC OUmS duvatdTnTa e€ynong oe meplocdtepa delyuota. Ilpdxeiton yio avopevouevn cuumepLpopd,
xaddde xon tor 800 GOvola dedopévwy Tadlvounone yeapnudtey tepiéyouv xouPouc ye uPnié Boadud. Ta va
oaM&Eetl 1 mpofBhendpevn xhdor, to Node Degree poviého otoyelel oe oxuéc mOU GUVIEOVTOL UE OUTOVUS TOUG
x6uPoug, e anotéheoua vo augdvetar 1o GED. Ye mohhég nepintdoelg, omonteltal var Slorypapoly TEpLOCOTERES
axpéc, yeyovoe mou eényel v ad&non tne andotaorg enelepyaoiag ypapruatoc. Emniéov, to Node Degree
povtého €yel oyedlaotel yio va BeATidvel cuotnuatixd to Flip Rate, Guoidalovtag duwe gl mo extetouévn
douxy) ahlolwon tou yeaphuatog. ‘Onwg Yo dolue otn cuvéyela, unepéyel otadepd wg meog Tov deixtn Flip
Rate cuyxpltxd pe to Base Model, wotéc0 cuvodeleton and uPniotepo GED. Avtideta, oto ohvoho dedoyéverv

16

0.3. Ilewpdporo xou Anoteréopora

BA-shapes to Node Degree povtého dev ypnowonomidnxe, eneldr o Badudc x6ufouv oto potifo (motif) elvon
Tpoxooplouévog xou Bev Tpocédete ouclaoT) TAnpogopla o oyéon ue To Base Model.

REDDIT-BINARY IMDB-BINARY BA-SHAPES
Method Flip ratetf GEDJ| Flip ratef GED]| Flip ratet L-GED]
BASE MODEL 80 0.32 79.5 0.17 55.6 0.3
NODE DEGREE 87.5 0.38 84 0.28 — —
EDGE BETWEENNESS 7 0.29 - - 04.7 0.28

Table 4: Y& autd ta newpdpata yenothonotobue Agist = 0.001. Ou undloineg unepTaEdUETPOL ToEAUUEVOLY (BleC
UE TIELY.

‘Onwe galveton omd to anotehéopata, 1 tdon nou mopoatnernooue yio to Node Degree Model emBeBarchveton.
Avtideta, to Edge Betweenness Model xatagépvel va diatnerioet to (dlo Prediction Flip Rate ye to Base Model,
AUPOUEWVTIC TapdAANA L Aydtepe axpéc. Kou ota 800 tasks, o neploptopde autodg odnyel tov explainer otnv
agaipeon bridge axudv (opéc-yépupes), ol onolec dadpapatilouy xpiowo pbho ot petddoorn Thnpogopiug
oto yovtéro. Eotdlovtoc oe autée tic axpée, to Edge Betweenness Model unepéyel tou Base Model ¢
npoc to Graph Edit Distance (GED), ywplc va votepel oe Prediction Flip Rate. Autéd umopel vor e€nyndel
xodog o oUvoha dedopévwv Reddit-Binary o BA-shapes nepiéyouv peydha, muxvd ypophuato ue ToAamhéc
axpéc-yépupes. Avtidétwe, oto IMDB-Binary, to Edge Betweenness Model dev epgavilet Beitivon évavtt Tou
Base Model, ndavétata eneldy) dev undpyouv cpxeTtéc dlaxpitée ouvtopdTepeg dladpopéc o autd T0 GUVOAO
OEBOUEVLV, UE ATOTEAECUO O CUYXEXPWEVOS TIEPLOPLOUOS Vol TTopatAavd ToV explainer.

0.3.3 XvppiBacuoc (Trade-off)

Ye auto 1o onpelo Yo tpoywercovue oty nagovaiacn tng avdiuong oyetxd ue to trade-off petald PFR xou
GED."Eyel xotaotel capéc 6TL ol explainer pog diardétouv 800 unepnapaléTeous, YEYOVOS Tou Suayepalvel TNy
TUEGAANAT] ATELXOVLOT| TN EMUDEACTC TOUC OTIC UETELXES Hag O €vay Uovo mivaxa anoteleoudtwy. Enouyéved,
o€ oUTYH TNV UTOEVHTNTA, Yot TUPOUCLACOLUE EVOL YRAPTUIL TOU OTOTUTVEL TOV TEOTO UE TOV onolo xdle umep-
TopdueTtpog ennpedlet Tov explainer, avadetxvioviag T0 0pOC TWDY TOL Vol ATOTEAECUATIXES, XS KoL TOV
ouuPBiPaoud wetall Prediction Flip Rate (PFR) xou Graph Edit Distance (GED).

Apywd, mapadétoupe Eeywplotd xdde clvoro dedopévwv. T'a to xodéva, Yo undpEel éva dLdypauuo oL gy-
gpavilet té6o0 v T Tou PFR (otov apiotepd d&ova oe xhipoxa (0%—-100%), pe ypoua UTAe) 660 Xou TNV Tt
tou 1-GED (otov 8e€id dZova oe xhipoxa 0-1, e ypoua tpdotvo), cuvapthoet tne xdde uneprapopéteou (dEovag
x). H avactpogh touv GED oe 1-GED emdéyeton ¢dote va tonodetodvia oL emduuntés uPniéc Tuéc xovtd oty
XOPUPT| TOU YRAUPHUOTOG, ovadewviovTog Tn avtiouuueteixh oyéon pe To PFR (%o to éva aw&dvetar, to dhho
telver va pewdvetar). T xdde obvoho Sedouévmv, mapousidloupe apyxd to Base Model xan axoroldwe Tic
avtiotolyeg ypagpixéc mapactdoels yia to Node Degree Model xau to Edge Betweenness Model. Ytic ypauuéc
tou Node Degree Model xou tou Edge Betweenness Model cuynegihopfdvovton emmiéov Ta anoTeAéGUOTA TOU
Base Model (pe ypopoto x6xxuvo xau mopToxahl), wote vo yivetow opoth xdde mdovy| Pedtioon.

17

Chapter 0. Extetopévn Iepihndn ota EAAnvid

Reddit-Binary
Prediction Flip Rate and Graph Edit Distance for Reddit-Binary (Base Model)
100 10
80 —a tos8
g
u 604 Fo6 &
2 g
=X 2
= o
§ g
540 A F0.4 ~
IS
a
20 1 Fo.2
Learning_rate = 0.5 —e— Prediction Flip (%)
= —#— 1 - Edit Distance
: - " v : - 0.0
0.000 0.002 0.004 0.006 0.008 0.010
Lambda_Dist

Figure 0.3.2: X0Oyxpton yetol tou PFR xat tou 1-GED vy to Base model oto Reddit-Binary dataset.

Prediction Flip and Graph Edit Distance for Reddit-Binary (Comparison)

100 1.0
80 1 Fo.8
£ 60 Lo6 ©
=Y 5
= 2
c fa)
S p
= h=1
] =
L 40 F0.4 ~
20 4 L0.2
—&— Prediction Flip (Node Degree)
~m— 1 -Edit Distance (Node Degree)
Lambda_deg —e— Prediction Flip (Base Model)
—#— 1-Edit Distance (Base Model)
0.0

0.00 0.01 0.02 0.03 0.04 0.05
Lambda_Dist

Figure 0.3.3: Anoteléopara and tnv yerion tou Node Degree explainer oto Reddit-Binary dataset.

18

0.3. Ilewpdporo xou Anoteréopora

Prediction Flip Rate and Graph Edit Distance for Reddit-Binary (Comparison)

80

b)

60

40

Prediction Flip Rate (%
1 - Edit Distance

20 Fo0.2

—e— Prediction Flip (Edge_betw)

—@— 1 - Edit Distance (Edge_Betw)
® Prediction Flip (Base Model)

1 - Edit Distance (Base Model)

0.00 0.01 0.02 0.03 0.04 0.05
Lambda_Dist

Figure 0.3.4: Anoteléopata and tnv yerorn tou Edge Betweenness povtéhouv oto Reddit-Binary dataset.

Yuvoilovtac ta anoteréopata yia to Reddit-Binary, Swoxpivouye 8o Baowéc Behtidoeic évavtt tou Base pov-
téhou. Apyixd, To Node Degree yovtého au€dvel onuavtixd to PFR, mpoogépovtag e€nyroeig e avtimopdderyua
yia neptocdTERA Ypophuate. Autd emiTuyydveTal pe TN Blorypopr| TedoVeTwY axuwy Tou to Base povtélo dev
evidmle wg xploweg, mopdTl yenowonolel TNy (Bl UTEPTOEAUETPO Adist. L0 YEYOVOC auTd UTODEVUEL OTL
€vac XATEAANAOC TEPLOPIOUOS O TN GUVEETNOT XOGTOUS UTOREL VO ECTIBCEL GE CUYXEXPUIEVA YOROXTNELO TIXE TOU
YROUPALOTOS X0 VO EVIOYVOEL TNV AMOTEAECUATIXOTNTO TOU Unyoviouol Twv dlaypapny. 2to Reddit-Binary, ot
xhdoeic otnpilovton ot peydro Badud otoug hub xépPoug, xou eldwdtepa oty “Question and Answer” xhdom),
Evoc TETOWG xOPPOC (XpHoTNe) amavTd 08 EPWTNOELS BANDY YENOTMOV Xl ETOL CUVBEETAL UE TNV TAELOVOTNTA TOV
x6uPBwyv. Ltoyeboviag, MooV, T axpéc TOU GUVBEOVTAL UE AUTOV TOV XOUS0, TOPUTNEOVUE WS UTOPOUUE Vol
oMNGEoupe TNV TEoBAenouevY xhdoT oE meploabTeEpoU; Ypdpous. Avtideta, to Edge Betweenness povtélo dev
evioy Vel to PFR, odAd& xatagépvel oe apxetéc nepintioeig va emtiyet younidtepo GED and to Base povtéro.
Autéd unodnhdver 6L 1 oTodyELON axPGY-YeQuEny (bridges), ou onoleg amotehovy cuvilne cuvtopdTEPES Bi-
aBEOUES OTOV YPAPo ot PETAPEROLY Xplowun TAnpogopia, umopel va Teplopioel TG BLoryPapES Xal VoL TTROCPEREL
mo ouvontxée eneényfoeic. To ypagpruota tou Reddit-Binary etvon yeydio xou tuxvd, tepthopfdvovtag mohhéc
TETOLEC OXUEC-YEPUEES, OTOTE €V TETOLO AMOTENEOUA E(VAL AVOUEVOUEVO.

19

Chapter 0. Extetopévn Iepihndn ota EAAnvid

IMDB-BINARY

Prediction Flip Rate and Graph Edit Distance for IMDB-Binary (Base Model)

100 1.0
80 1 0.8
y 60+ 06 Y
& c
o Il
= i
= a
S &
: g
S 401 04
@
&
20 0.2
Learning_rate = 0.5 —e— Prediction Flip (%)
- —&— 1 - Edit Distance
T T - v - v 0.0
0.00 0.01 0.02 0.03 0.04 0.05
Lambda_Dist

Figure 0.3.5: Anoteléopata and tnv yerion tou Base model oto IMDB-Binary dataset.

Prediction Flip and Graph Edit Distance for IMDB-Binary (Comparison)

100 1.0
80 4 L 0.8
£ 60 o6 g
=% 5
= o]
c o
2 &
z &
2 404 o4 &
«
20 4 F0.2
—e— Prediction Flip (Node Degree)
Learning_rate - 1- Editrnlstance (Node Degree)
—&— Prediction Flip (Base Model)
~#— 1- Edit Distance (Base Model)
0.0

0.00 0.01 0.02 0.03 0.04 0.05
Lambda_Dist

Figure 0.3.6: AnoteAéopota and tnv yeron tou Node Degree yovtéhouv oto IMDB-Binary dataset.

To Node Degree povtého mapouctdlel xou méh tTnv (Blot GUUTERLPOEE UE TRONYOUMEVWS, ETITUY XAVEL UYNAGTERO
PFR ané to Base povtého, ducidlovtag ouwe nepiocdtepes axuéc. Xto IMDB-Binary dataset, xdde ypdgpoc
avTiotolyel oto ego-network evog nomolol ou éyel cuuuetdoyel oe touvieg oto IMDB, pe amotéheopa T cuyvi
Omopgn evog xéuBou e peydho Bodud (hub node), nou cuvdéetan pe xdide dhhov xépPo. Kadodnydvrag, hoindy,
tov explainer va Slaypdpel axpéc ToU GUVBEOVTOL PE AUTOV TOV XOUB0, XATAPEEVOLUE VoL TPdEoVUE EENYTOELS
yio meploobtepa ypagpuate. Autde elvon xou o Adyog mou to Edge Betweenness povtélo dev evidydnxe oe
oawtéd 10 oOVORO BedoUEvmV, XxadNS 1) ENAELPN BlaxpLTdY GUVTOUOTERWY BLaBPOPdY *aoTE TOV GUYXEXPLUEVO
TEPLOPLoUd U] amodoTixd.

20

0.3. Iewpdypata xou Antotehéoyota

BA-SHAPES

Prediction Flip Rate and Local Graph Edit Distance for BA-Shapes (Base Model)

100 1.0
80 1 o8
g 601 os g
=z c
< ©
3 g
i o
s z
ko] w
s '
5 404 F0.4 ~
o
&
204 Fo.2
Learning_rate = 0.1 —e— Prediction Flip (%)
- —&— 1 - Edit Distance
0 - - - - - - 0.0
0.00 0.01 0.02 0.03 0.04 0.05
Lambda_Dist

Figure 0.3.7: Anoteléopata and tnyv yerion tou Base povtéhou oto Ba-shapes dataset.

Prediction Flip Rate and Graph Edit Distance for Ba-Shapes (Comparison)

100 1.0

80 1 ros
]
< 1
8 607 Los g
2 £
2 a
= 4]
: 5
2 40 Fo.4 &
o
a

20 4 Loz

—e— Prediction Flip (Edge_betw)
Learning_rate = 0.1 —&— 1 - Edit Distance (Edge_Betw)
Lambda bet ® Prediction Flip (Base Model)
= 1 - Edit Distance (Base Model)
0 T T T T T T 0.0
0.00 0.01 0.02 0.03 0.04 0.05
Lambda_Dist

Figure 0.3.8: Anoteléopata and tnv yerion tou Edge Betweenness povtéhou oto Ba-shapes dataset.

‘Ocov agopd 1o cbvoho dedopévwy Ba-Shapes, napatnpeolue éti to Base povtélo napouotdlel yaunidteco PFR
CUYXEITIXA UE Tar Ghhat BUO clvola. Autd ogelhetan 0T0 YEYOVOC OTL 1) ouyxexpyévn epyaoio Ta&véunong
x6uPov eivow multi-label. IIio cuyxexpwéva, oto Thaiclo g vAomonore wac e€etdlouye TV ohhoy) TNG ETIXE-
Tag €vog xouPou and plo ¥Adon mpoc Ghec T umdlownee Eeywplotd. ‘Etol, o apiudc mdaviv petofdoewv
etxérag ebvan tpimAdotog (apol éyouue 4 xhdoels) and autéy Tou Vo TEOEXUTTE av deydpaoTtay wévo T “eu-
xohétepn” petdPBaon xhdone. Kotd ouvénewa, o PFR peuwdveton cuvokixd, 816tL oplopévec petofdoelc etnétog
elvon duoxoldtepo va emiteLy Yoy X unopel Vo ATOUTOUVTOL TEQIGOOTERES Loy PAUPES OXUWV.

‘Onwe %o 6TLC TEONYOUUEVES TEPITTWOELS, dopaiveton o oupPiBacude (trade-off) petald PFR xoau GED: 6tav
aUEGVOLUE TNV LTEPTaPdUETPO amdoTaone, neTuyaivoupe Aydtepee egnyroeie (younhotepo PFR) odld autéc

21

Chapter 0. Extetapévn Ieplindn oto EXAnvixd

elvan ouvAdwe o mepLoplouéves oe Slaypapéc oaxudy (younidtepo GED xotd yéco épo). Xto BA-Shapes, to
Edge Betweenness povtého axoloudel tnv (Bior hoyuer: emtuyydvetl avtiotoiyo PFR ye 1o Base yovtélo, ahd
HE AYOTERES DLy paPES OV, XOHOC O CUYXEXPULEVOSC TEQLOPIOUOC TWWPEEL TN SLUTHENON XUV TIOU AviXOUV
OTIC oLVTOUOTERES Blodpopéc oto Tuyalo Barabasi ypdgnua xo ota npocaptnuéva pot{Bo.

Téhog, Yo mapovoidloupe Yo avdALoT TN ENidEUONE TOL AGXOVUY Ol UTEPTUPAUETEOL TWV TEPLOPLOUMY GTNV
an6door tou explainer. ' autdv TOV G%0TO, XpUTAYE GTOERY) TNV UTEPTUPAUETEO ANdGTACTE Xou UeTUSHANOUYE
TNV UTEPTOPAUETEO TOU TEPLOPLOPOY, TopaTNedvToS e ennpedletar téoo to Prediction Flip Rate (PFR) 6c0
xot o 1-GED. H mpocboxia elvar 6Tt yiol Tiwég TOAD x0VTd 6TO UNdEY, TO UOVTENO GUUTERLPERETAL OYEDOV Tay
To Base povtélo, eved yia mohd udmiée Tég, ta amoteréoparta urnoBaduilovton, xodode 1 T TS cuVdeTNoNg
x6otoug extoleteton. Ou Bértiotes Twéc (Tou eldoue xou oto mpornyolueva mewpdyata) evronilovion ouvhdwe
070 eVOLAPESO EVPOC, 6mov To mpdoleto penalty dev elvon téco LPNAG Wote va eunodiler Tig e€nyrioelg, olte
1600 YopPNAo WOTE Vo un cuvelo@épel otny Bedtinon.

Prediction Flip Rate and Graph Edit Distance for Reddit-Binary (Node Degree Model)

—e— Prediction Flip (%)
—=— 1-Edit Distance

o 1 2 3 4 5
Lambda_Deg

(a) Reddit-Binary dataset.

Prediction Flip Rate and Graph Edit Distance for IMDB-Binary (Node Degree Model)

80 08

—e— Prediction Flip (%)
=@~ 1 - Edit Distance

o 1 2 3 4 5
Lambda_Deg

(b) IMDB-Binary dataset

Figure 0.3.9: Avanapdotaot tou Adeg 0€ o)éom e tnv anddoor tou Node Degree povtéhou yia to
Reddit-Binary xou to IMDB-Binary datasets.

22

0.4. Xuunepdoyota

Prediiction Flip Rate and Graph Edit Distance for Reddit-Binary (Edge Betweenness Model)

06 Y

Learning_rate = 0.5
Lambda_Dist = 0.005 —— Prediction Flip (%)
= —=— 1-Edit Distance
00 0.2 0.4 06 08 I
Lambda_Bet

(a) Reddit-Binary dataset.

Prediction Flip Rate and Local Graph Edit Distance for BA-Shapes (Edge Betweenness Model)

—e— Prediction Flip (%)
—a— 1 -Edit Distance

0.0 02 0.4 0.6 08 10
Lambda_Bet

(b) BA-Shapes dataset

Figure 0.3.10: Avanapdotacy tou Apey 08 oyéon pe tnv andédoon tou Edge Betweenness povtéhou yuo to
Reddit-Binary xou to BA-Shapes datasets.

Anb v e€étaon TV SLoypaUUETWY oUTOY, AVTIAUBAVOUICTE OTL, OTIC TEPLOCOTEPES TEPLTTWOELS, 1) CUUTEPL-
Qopd Twv unepTapopéTewy emPBeBormvel Tig YewpnTixé pag tpocdoxiec. ‘OTav oL UTEPTUEIUETEOL TOU TERLOPLO-
poU ebvon undevixéc, xdde povtého Aertovpyel ouolaoTixd énwe to Base povtého. Me v adénon autdyv twv
TIUWY, THEATNEOVUE TN CUVELGPORE TOU EXACTOTE MEPLOPLOUOY, OE EVA CUYXEXQPUEVO EVPOC TWWY, TO UOVTEAD
Behtudvel eite To Prediction Flip Rate eite to Graph Edit Distance oe oyéorn ue to Base povtého. Qotdoo,
META amd xdmolol T, Ol UTEPTUPAUETEOL 081 YoUy Aaviaouéva Tov explainer otny apolpeoy TEQLTTOV OXUOY 1)
ATOTUY YAVOLY VOl SNULOURYHOOUY €V EYHURO OVTLTOEABELY AL,

0.4 Xvunepdopata

0.4.1 Xvulvtnonm

H e&nyhown unyavier uddnon (Explainable AI), xou Wadtepa o ydpoc twv Nevpwvindv Awtiwy pe Ied-
gpouc (GNNs), epgoaviler onpaviing tpoortixy yio tepaitépw eVioYUOT TS EUTIOTOCUVNG, TNG OLUPEVELIS Xal
¢ Aoyodooiag ota autopatomomuéva cuoThUaTa AfPNe anogdoewy. Kodog ta poviéha tinou “black box”
yivovton ohoéva o meplmAoxa, 1 xotavdnon Tou Teémouv Aettovpyiag toug xadloTtaton xplown 600 Yo Toug
yerotee 660 xou v exelvoug mou emnpedlovton omd Tg meoPAédelc Touc. Xto eupltepo Tedlo NG Epun-

23

Chapter 0. Extetopévn Ieptindmn ota EAAnvixd

vebowng pnyovixic uddnong, ot e€nyfoeis ve avuinoapadeiypoto (counterfactual explanations) éyouv avoderyVel
oe ntohOTo péoo xadig dev meplopilovton aTo var uodelxviouy mota atolyeio enneedlouvy TNV TEOBAedn, ahhd
TOUTOY POV TTHPEYOUY CUYXEXQHIEVESC TPOTIOTOLACELS TOU UTopoLy Vo Yetofdhouy authy tnv tedPBiedn. Me autdv
ToV Tp6T0, xotioTotan cupéc TS Uixpéc oAhayéc oty elcodo Tou PoVTENOL Unopoly Vo aAAGEOLY TNV TEAXT
aATOPAOT), EVIGYVOVTOC TOCO TNV EPUNVEUCIUOTNTO TWV LOVIEAWY QUTOV GAAG Xl TS SUVATOTNTES TOREUBAUoTS
otV Mn e andgoong.

Ye auto to €pyo, e€etdoope TNV W Twv E&nyrocwy ye Avtinopadeiyuata oe Nevpwvixd Aixtua ye Ipdgpoug,
npoteivovtac o pedodoloyla mou apoupel ETAEXTXE oxUéc amd TO YPAPO DOTE VO TAUPAYEYEL XUTIAANAES
efnyroeic. H Swduaoia Eexivd pe o ouveyh pdoxa (continuous edge masking) xou ot cuvéyeto axoloudel
ot Sroducaoior duadnic avalhtnone xatwehiov (binary threshold search), eZocgahilovtac étt dtnpeeitoan 1
ehaylotonolnon twv diaypapny. Emnpdodeta, mpotelvoupe évay npdoleto 6po o1 cUVAETNOY X6OTOUS, WOTE
vor Angdel unddn n npdTeEN YVWOoN Tou exdotote nediou (domain knowledge). H cuvohut) cuvdptnon xbotoug
ouvdudlet tela xpLthpla: TV enlteudn avaoTEoPhc TNE TEOPBAE(NS, TN dlathenon wxeol aptduo) TEOTOTOoEWY
(dote va uTdpyel oUVdEST LETAED TOU 0pYIX0V YPAPOU Xou TNS EENYNONG) XA THY EVOWUATWOT) TEPLOPLOMY TTOV
TEOXUTTOLY AN YOPAUXTNELOTIXG XoL ATOUTACELC TOU xde MpoPAfuatog. e auth TN UEAETY), EQUEUOCUUE BUO
TETOLOUS TEPLOPLOUOVS: 0 TpdTog adlomotel petpixés Baduol x6uBwv (Node Degree) xau o Sebtepog evilappivel
™V agaipeon oy pe vdniy Edge Betweenness tu.

Iot Ty aglohdynom tne mpoceyYLlong Yag, yenolponotfooue telo givola dedopévev: éva yio Tavounom xoufev
xat 300 Yo talvéunor yeapnudtwy. Xenowonotfooue 800 petpixéc: to Iocootd Alayrc Etuétac (Predic-
tion Flip Rate) xou v Andotoon Enelepyaciac Tpagruatoc (Graph Edit Distance). O npdtog xortorypdgpet
T0 1660 CLYVE YL TeoToTONoT AAAALEL ETUTUYMSC TNV ETIXETA TOU LOVTEAOU, EVE 1) de0TEPN UETPEEL TO XOGTOC
TOV TPOTOTOCEWY CUYXEIVOVTAS TNV apytx| UE TNV TPoToTONuéVY dour|. Avdueoo oe autéc Tic dU0 HETPXES
umdipyet wo trade-off oyéon: n ad&non tou puduold avatponric cuyvd tpolnodétel o exteTauéves ahhayég oTo
YEAPNUAL, EVE 1) SLATAENOY UXEMOVY BLoypapey UTOREl Vol HELOOEL TOV pldud TV EMTUYMV avatpomdy. Katd
oLVETELY, 1) BEATIOTOTOMNOY TWV EENYNTIXWY BUVATOTATWY TEOUTOVETEL TNV XATIAANAY BlEREUVNOT TWV GYETIXWY
UTEPTORAUETEMY Yol TNV avaAuoT authg Tne avtidetne oyéong avdueoa oTic 6U0 AUTEC UETEIXEC.

Ev xoatoxheldt, n ouyforr] tne nopodoas gpyacioc eivar mohuvmapayovir. Ilpdtov, eiodyouue dVo douixoic
TEPLOPLOPOUE, Ol OToloL, OTAY EVIACCOVTIOL GTY CUVIETNOT XO0TOUC Tou explainer, BeAtidvouy Ty avoroylo
TWV TUPASELYUATWY Tou emdéyovTon eERynoT, xodwg xau to péyedog autoy Ty egnyhocwy. Acdtepov, mpay-
patonotolue uior avaAutixy uehétn trade-off, mpoodiopllovtoc ta amoteheoyotind dplal TV UOVTEAWY oG XoL
EMTEETOVTAS OTOV YPNoTr Vo EMAEEEL TNV XU TAAANAGTERY PUTULOY TV TUPUUETEWY VLol TNY EXJCTOTE TERINTWOT).
Tpeltov, npotelvoupe éva euéhixto Thaicto Tou Steuxoliver TNV évtaly TEHoVETWY TEPLOPIOUDY OTN CLVAETNON
6O TOUG, ETUTPETOVTOS TNV TPOCOPUOYT| TwV EENYHOEWY OTIC exdoToTE anouthoels. Me autd Tov tpdmo, evioyde-
Tan 1) epunvevoLoTnTA TV Nevpwvixdy dixtiwy ue T'pdgoug og €va euph pdoua EQUOUOYOY.

0.4.2 Enidpaon

Or eénynoeic e avtinapadelypoato oe dedouéva pe ypdpoug €youv Bathd enidpoom oe éva eupl GACUO TEOXTIXDY
EQUPUOY OV, Ad TNV AVIAUGT) XOLVWOVIXGDY BIXTOWY Yot TNV avoxdhuPT Pupudxmy €6C TOV EVIOTIGUO OLXOVOULXOY
omoTeV. Xe xdle Wiot and AUTES TIC TEPLTTWOELS, 1) IXAVOTNTA VoL ovaty Vep(loUUe TS GTOYEVUEVES UETHBOAES
o€ x6uPouc Y axpéc umopolv vo dAAGEOLY SpaoTXd TO amOTENEGHA EVOC HOVTENOL, anotelel xplowo Briua T6c0
Yo TNV 00d6UNoT EUTOTOCUVNS 0Ta HovTéRa 600 xau yia TN Yerion tng TeyvnthAc Nonuoolvne oto gupltepo
xow6. H pédodoc pog xahbdmter oxplBoe autés TIC AmoLTroels, Teoopépovtoc epunveie mou npoocapudlovtal
OTIC AVAYXES TOU EXGOTOTE TEofBAAuaToS. Evowuatdvovioc TpdTepyn YVOor otov oyedlaoud g, xohotodue
et T dnpovpyia e€nyfoewy tou elvon agevdc xatavontés xou alOTOTES, Xal APETEPOL evappovilovtal e
To WLk TEPa YOoPOXTNELGTIXG TOAOTAOXWY, DLUGUVIEDEUEVLV BOUMY.

0.4.3 MeAroviixéc Kateuddvoeic

Téhog, Yo Véhape vo mpoteivoupe xdmoleg xatevdiveelc Tou UmopolY Vo EMEXTEIVOUY X0 Vo BEATIOGOUY T
ouyxexpévn épeuva. Mia mpdtn npocéyyion Ba tav 1 dlebpuvon Tou medlou epapuoyhc Tou explainer pog
TEQEAL ATO T1) DLAYEOPT] AUV, DOTE Vol TEPLAMBAVEL X0 TNV AAAXYY) YAEUXTNELOTIXWY T6G0 6Toug xduBouc éco
xat 0TS Bleg Tig oxpée. Xto mhalolo authe e epyaciag, emtAéEoue GUVOAA BEBOUEVLV UE EUPooT GTT SOUT| TOL
yedepou, ywele yapoxtnelotind (features). Evtoltolg, oe mohhd Siopopetind oevdipior Tor Sedouévol EUTERLEYOLY

24

0.4. Xvpnepdopota

ONUAVTIXS, YopaxTNEloTd mou Yo unopovooy vo tpotonondoly dnuovpynd (feature masking), npoxewwévou
vo tapory 9ol mo otoyeupéveg eENYRHoELS.

Mo dAA1 onuavTied| Teoon Ty elvol 1) eloaywyYY TEPLOGHTEPLY GNUACLOAOYIXOY (semantic) Teploplopdy ot
ouvdpTnon x6ctous. Me tov TpéTo autd, ol e€nyroelg pe avtinapadelyporto Yo AouBdvouy unddr oyt woévo
dour) Tou YpdPOoL oA Xal ETUTEAOCVETES TAPUUETEOUS, OTWE TEOTERY YVWOT, AoYIX00E XAVOVES 1) GANL VOTUOTIXG
ototyelo. Autéc ol mpooapuoyéc Yo umopoboay vo TpoéAdouy and TallvounTéc eXTUSEUREVOUS EWBXE Yio TG
ATOUTACEL TOU EXACTOTE TEOBAAUOTOC.

25

Chapter 0. Extetopévn Ieptindmn ota EAAnvixd

26

Chapter 1

Introduction

Advances in machine learning (ML) have led to breakthroughs in several areas of science and engineering,
ranging from computer vision and robotics to natural language processing and Large Language Models
(LLMs), with important concerns arising along the development of these models [32, 42, 28]. Another
research area that has received a lot of attention recently is the one focusing on graph data with complex
relationships and structure. Graph Neural Networks (GNNs) have emerged as a promising, novel way of
capturing and learning all these high-dimensional relationships whilst being able to make solid predictions on
various tasks. However, GNNs have several drawbacks, such as lacking interpretability, easily inheriting the
bias of data, and a general black-box behavior that fails to publicize the internal mechanisms of the network
that provide predictions.

Given the severity of the tasks handled by AI models, there is a pressing need for methods that can provide
clear, actionable insights into the behavior of these models. The field of Explainable AT (XAI) [33] has
emerged as a promising area enhancing model interpretability through various forms of explanations, from
rule-based methods [21, 29, 22], prototypes [31], and feature importance approaches, to methods tackling
multimodal explainability [47]. A widely used method is called counterfactual explanations, which acts
opposite to the well-known concept of factual explanations. Factual explanations answer the question: “Given
A already happened, will B happen?” , turning the focus on understanding the conditions that made the
prediction possible. On the other hand, counterfactual reasoning focuses on: “If A did not happen, will B still
happen?”’[49], paving the way for understanding the necessary changes we have to make to alter a prediction
and therefore understand it. There is a wide range of applications of counterfactual explanations, that affect
the desired characteristics of the counterfactuals [27]. Recent works, have studied the evaluation of such
explanations in the area of NLP [12], as well as the use of explainability methods in evaluating semantic
similarity of visual concepts [25].

In this work, we propose a counterfactual explainer designed to explain any prediction made by a GNN model,
by providing thoughtful and actionable examples. These examples act as an answer to the question "Which
aspects of the input should we alter in order to receive a different prediction?’, set by counterfactual reasoning.
The primary objective of our explainer is the ability to alter any GNNs prediction while making the least
amount of modifications possible. The explainer learns a soft edge mask, utilizing domain knowledge which,
when applied to the input data, perturbs it by deleting minimal edges, making the model alter its original
prediction. This mask is learned by minimizing a multi-objective loss function, consisting of terms the tend
for the flipping of the original prediction, the minimality of modifications and any other domain knowledge
constrains the user wants to adopt. Afterwards, we apply a binary threshold to that mask, deciding which
edges should be removed and which should be kept, and finally we perform an exhaustive search to obtain
the optimal threshold. Throughout this process, we balance a delicate trade-off regarding the portion of the
graph edges that will be deleted in order to arrive at a reasonable counterfactual example. This approach is
model-agnostic as it does not require any of the model’s internal representation or weights and can work on
the two primary graph prediction tasks, node classification and graph classification.

We evaluate the impact of our explainer on three benchmark datasets, two for the graph classification task

27

Chapter 1. Introduction

and one for the node classification task. We base our evaluation on the widely used metrics, prediction
flip and graph edit distance that encapsulate both the portion of the dataset that our explainer is able to
provide explanations for and the minimality of the perturbations, respectively. Our experiments demonstrate
that our framework generates counterfactual explanations for the vast majority of the dataset with the least
possible modifications, while ensuring that these perturbations are actionable and reasonable.

The outline of this thesis is as follows:

e First and foremost, we provide all the necessary theoretical background regarding Machine Learning
algorithms, graph theory basics and Graph Neural Networks.

e Then, we will analyze in depth the characteristics of counterfactual theory as well as highlight the
reasons behind its importance for the entirety of Machine Learning.

e Lastly, we will propose our method and analyze all the characteristics that our explainer entails. We
will summarize the results on all four datasets and evaluate these results with benchmark metrics. To
complete our analysis, we will discuss all the trade-off possibilities and the ways the user can incorporate
our explainer into their work.

28

Chapter 2

Preliminaries - Theory

Machine learning (ML) is a subfield of artificial intelligence (AI) concerned with the design of algorithms
that learn patterns from data and make decisions on specific tasks [61]. By analyzing large amount of
data, machine learning models can identify trends, detect correlations, and generate insights that surpass
traditional statistical methods and compare to human-like thinking and problem solving [13]. Modern day
machine learning algorithms have infiltrated social life in the majority of tasks, ranging from everyday socio-
economic activities to vast research domains. The basic concepts of Al have become essential knowledge for
everyday endeavors, equipping users with a valuable problem-solving tool.

Guided by the advances made in machine learning, researchers have increasingly turned their attention
to methods that can handle more complex relational structures and interconnected data. Graph Neural
Networks (GNNs) are an example of this effort, as they extend conventional machine learning techniques
to graph-structured data by leveraging their rich structural and semantic properties. This capability allows
GNNs to exceed the limitations of previous attempts at such data and perform a variety of tasks, such as
node classification, link prediction, and graph classification, that were previously unexplored. Recent work
and experimentation provided exciting results across fields such as social network analysis, drug discovery,
and knowledge graph inference.

As GNNs become more powerful and find applications in crucial decision-making scenarios, there is a pressing
need to ensure that their decisions are transparent, interpretable, and fair. With an increase in the dimen-
sionality of the input data comes a greater risk of hidden biases and spurious correlations between different
parts of the graph. This concern has led the way for the emergence of Explainable AT (XAI), a field devoted
to developing methods that illustrate how predictive models arrive at their conclusions. Among the most
promising techniques in XAT for GNNs are counterfactual explanations, which aim to show how slight mod-
ifications to a graph’s structure or features could alter the model’s outcome. By highlighting these pivotal
changes, counterfactual explanations offer valuable insight into the inner workings of GNNs, increasing trust
and confidence in the models’ predictions.

Contents
2.1 Machine Learning o 0 0 i i i i it e e e e e e e e e e e e e e e 30
2.1.1 Basic Concepts e e e e e e 30
2.1.2 Neural Networks e 31
2.1.3 Deep Learning L e 33
2.2 Graph Neural Networks it i i 35
2.2.1 Graph Theory e 35
2.2.2 GNN Taxonomy i 37
2.2.3 Traininga GNN 000 38
2.2.4 Architectural Variations Lo L 38

29

Chapter 2. Preliminaries - Theory

2.1 Machine Learning

2.1.1 Basic Concepts

Machine learning algorithms can be classified according to the task they are assigned to predict. There exist
three basic categories, supervised, unsupervised, and reinforcement learning, while many other subcategories
emerge when the training data or the task require special handling. These main categories will be summarized
below [61].

Supervised Learning

In supervised learning, models are trained on labeled data, where both the input (features) and the desired
output (labels) are known. The algorithm iteratively adjusts its parameters to minimize the discrepancy
between predicted and actual labels. Suppose we have a feature vector x and a target label y , in supervised
learning the model will try to predict y by learning the properties of the feature matrix x. The most frequent
supervised learning tasks are classification into distinct classes and regression. In this work, we will focus on
explaining models assigned with supervised learning tasks [63].

Unsupervised Learning

In unsupervised learning, models work with unlabeled data, discovering hidden patterns or groupings. Each
time, the model tries to learn the probability distribution of the entire dataset without having access to
labels attached to the feature vectors, and thus group input instances according to their properties. The
most typical tasks in this category are clustering and dimensionality reduction.

Semi-Supervised Learning

This approach combines both labeled and unlabeled data. A small portion of the labeled data can guide the
learning process, while large amounts of unlabeled data reinforce the model’s understanding of the underlying
structures. Semi-supervised learning is particularly useful when obtaining labels is costly, like in the events
of link prediction or fraud detection [55].

Reinforcement Learning

In reinforcement learning, an agent learns by interacting with its environment, receiving rewards or penalties
based on its actions. Over time, the agent refines its policy by learning to maximize the reward while
minimizing penalties. This method is mostly popular in the field of robotics, where mechanical agents learn

to navigate their surroundings or complete a puzzle.

The most frequent architecture that employs such algorithms are Neural Networks whose structure mimics
that of the human brain and nervous system.

machine learning
A

N

unsupervised supervised reinforcement
learning learning learning
N
N *j-#++
N
\ g
o % S
b
oS% '\
N
o

Figure 2.1.1: ML Algorithms [30]

30

2.1. Machine Learning

2.1.2 Neural Networks

Neural networks are computational machine learning models inspired by the structure of the human brain.
They consist of interconnected nodes (or neurons) organized in layers. Firstly, we will explain the basic
concepts of a neural network by presenting the architecture of a single neuron, which is essential in order to
perceive more complex architectures [13].

Given a set of data points D = {(x1,41), ..., (Tn, yn)} with N different samples, a neural network model uses
these samples and their labels to compute a function f : X— > Y that maps the inputs X; to an output Y;
using trainable parameters called weights. A simple feed-forward neural network includes:

e An input layer, which receives the raw data.
e One or more hidden layers, in which neurons progressively learn representations of the data.

e An output layer, whose neurons produce the final prediction of the network.

3
=

Input Layer Hidden Layer Output Layer

Figure 2.1.2: A single neuron [39]

The functionality of each neuron in any layer [can be described as follows:

0 = Dol 410,
J

where:

° zl@ is the weighted sum for the i-th neuron in the I-th layer.

° wz(jl) represents the weight from the j-th neuron in the (I — 1)-th layer to the i-th neuron in the I-th

layer.

. a§l_1) is the output of the j-th neuron in the (I — 1)-th layer.

. bl(-l) is the bias term for the i-th neuron in the [-th layer.

0

i

e Lastly agl) ,the output of this neuron, is obtained by applying an activation function to z

As described above, once the output of a neuron is computed, it is transferred to the next layer with an
activation function [56]. This function serves as a mapping mechanism so that the weighted sum is
transformed into an appropriate input for the next layer. This activation function is selected by the model’s
designer and can differ from one layer to the next according to the models needs and parameters. There are
no specific rules about the formula of the function but most problems require an activation function with
non-constant derivatives to allow for the backpropagation algorithm to work. As shown below, some of the
most widely used activation functions are Sigmoid, Tanh, ReLLU, and its variants. Each activation function
provides unique advantages while also being vulnerable to potential drawbacks, and so they must be chosen
carefully.

31

Chapter 2. Preliminaries - Theory

Sigmoid Tanh ReLU Leaky ReLU
9(2) = 1 +1E P 9(z) = % g(z) = max(0, z) g(z:}w?hxilaz{(iz] z)
1T 1+ 1+ 14
£ J t ' :
2 A 0 I D . — —+

Figure 2.1.3: Frequent Activation Functions

Another critical component of a neural network is the loss function [60]. It represents a mathematical tool
designed to measure the disparity between the predicted values of a model and the actual (target) values.
During the training process, the model’s parameters (such as weights and biases) are iteratively refined to
minimize this loss, effectively driving the predictions closer to the desired outputs. This process is repeated
for a given number of iterations. If not specified otherwise, the total loss of the model in each iteration can
be defined as a normalized average of the output of the loss function for each data point in the training
set. By quantifying prediction errors, the loss function provides critical feedback to the learning algorithm,
guiding corrective adjustments to the model’s parameters until optimally a local minimum is reached and
the model has been successfully trained. The choice of the loss function requires deep understanding of the
task and the other characteristics of the model at hand. Most large-scale problems, like the one in this work,
construct custom loss functions that adhere to the specifics of the problem. The most frequent loss functions
and building blocks for many custom ones are presented below.

e First, we have the Mean Squared Error (MSE), where §; is the prediction for sample 4, y; is the true
label and N is the total number of samples. This loss function characteristically punishes large errors
more severely and is often used in regression tasks.

| X
_)2
MSE = N Zl(yz yz))
e Then we have the L1 Regularization loss [62], which ignores the direction of the error but punishes
extreme errors less severely.

D i lyi — flai)]
N

e Lastly, the loss function utilized in this work is the Cross-Entropy loss [53]. It originates from informa-
tion theory as it quantifies the difference between two probability distributions, in our case the predicted
probabilities §; and the true probabilities y;. The key to its use in classification tasks is that it heavily
penalizes confident wrong predictions. In other words, if the model assigns a high probability (close
to 1) to the incorrect class, the loss grows significantly, driving the parameter update more forcefully
towards the desired class in the next iterations.

Ll =

32

2.1. Machine Learning

N
1 A A
CE =~ [yilog(di + (1 - y:) log(1 — 4],
=1

The most frequent and effective way of minimizing the loss function in every iteration is through gradient-
based algorithms. By iteratively calculating the gradients of the loss with respect to the model’s parameters,
we can determine how to adjust these parameters to reduce errors. The most widely used algorithm is
Gradient Decent, which forces the model’s parameters 6 to be updated opposite to the gradient of the loss:

0 =0—eVyL(0)

where € is a controllable parameter that decides the rate at which the network learns. The gradient-based
optimizer used in this work is the Adam optimizer. This optimizer has the ability to adaptively adjust the
learning rate for each parameter, allowing it to make larger updates for features that occur infrequently and
smaller updates for features that occur frequently. It is selected because of its fast convergence and robustness
across a wide range of neural network architectures.

The aforementioned gradients have to be calculated in a cost-effective manner in order to account for systems
with millions of parameters and multiple layers. The backpropagation algorithm provides a robust way for
the model to calculate all the required gradients needed for parameter updates. In the training stage, the
model first performs a forward pass, performing all the calculations for each layer up to the output layer, as
we described before. Then, once the loss function is calculated at the output layer, the goal is to discover
how each parameter (weights and biases) influenced this loss. This is done by moving backward, layer by

layer, and computing:
oL oL

9L 0L
o0 o0

for each weight wg») and bias bgl) by using the chain rule in reverse, from the output layer to the input layer.
calculating how each parameter affects the loss. After these computations, the model parameters are updated

in a direction that reduces the loss.

To conclude, we will perform a summary of the entire training process for any Neural Network and highlight
its key features.

The process begins with parameter initialization, where weights and biases are set to random values. This
choice of initialization is crucial to ensure stable and efficient training. Once the parameters are initialized,
the forward propagation phase takes place: inputs are passed through each layer of the network, where
each layer applies its parameters (weights and biases) and an activation function. The output of one layer
serves as the input of the next, leading to the final predictions of the model.

Next, these predictions are compared with the true labels by computing the loss function. The loss quantifies
how far off the predictions are from the true labels. With a measure of this error established, backpropaga-
tion is then used to systematically compute the gradients of the loss with respect to each parameter, working
backward from the output layer to the earlier layers [45]. The chain rule of calculus is applied layer by layer,
and these gradients indicate how each weight and bias should be modified to reduce the overall error.

Once the gradients are calculated, the parameters are updated by an optimization algorithm, commonly
Gradient Descent or one of its variants. The parameters are adjusted in the direction opposite to the
gradients in order to decrease the loss. This process repeats over multiple iterations, called epochs, each
epoch representing a complete pass through the training set.

Finally, once training is complete, the neural network is evaluated on a separate test set consisting of unseen
data. This step guarantees the model’s ability to perform in real-world conditions and confirms that the
training process has resulted in an effective output.

2.1.3 Deep Learning

Since we explained the concepts of a simple Neural Network and the process of training, it is time to discuss
more complex models and algorithms, designed to tackle more challenging tasks. The most prominent ones
in today’s research world are Deep Learning algorithms.

33

Chapter 2. Preliminaries - Theory

Deep Learning relies heavily on the concept of a Multi-Layer Perceptron (MLP) [70], a model introduced to
surpass the limitations of linear models, that can only map the output to the same direction as the change
in the input. The basic structure of an MLP network consists of multiple layers of nodes in a directed graph,
each layer fully connected to the next. The training process remains the same as before, with each node
computing the weighted sum of the inputs and producing an output using a non-linear activation function.
At its core, an MLP network employs a series of linear transformations followed by non-linear activation
functions, enabling the network to approximate complex mappings from inputs to outputs. This architecture
equips the user with a variety of options to explore, such as the number of hidden layers, the activation
function after each layer, and the input and output size of each layer [54]. This is the driving factor behind
Deep Learning algorithms experiencing a huge rise in usage and experimentation, as they provide insightful
solutions to many different tasks.

Input Layer

Input Data— > ' : . ‘ =— Output
_- .

Qutput layer

Hidden Layers

Figure 2.1.4: Multi Layer Perceptron [37]

Another very interesting architecture that relates to the work of this thesis is the Convolutional Neural
Network (CNN). This architecture was created to satisfy the need to process high-dimensional data such as
images and graphs. An MLP neural network would have to be enormous in size with millions of parameters
in order to cope with such a large input. The core concept that allows CNNs to capture the essence of grid-
like data is the convolution operation, which involves learnable filters (kernels), sliding across the input to
produce feature maps. These convolutional layers consist of many trainable filters that are able to recognize
diverse patterns within the input. In practice, a filter is a small matrix of learnable weights (e.g., 3x3 or 5x5
in spatial dimensions) that slides across an input. Afterwards, the dot product between filters and the input
across both dimensions is calculated and therefore a 2-dimensional activation map of that filter is produced.
Mathematically, if 2 denotes an input volume (e.g. an image with multiple channels) and w a learnable filter,
the output feature map y at position (4,5) can be expressed in the discrete form as:

v v «C

Yij = Z Z Z Wy,v,c * Titu—1,j4+v—1,c + b)
u=1v=1c=1

where U and V' are the height and width of the filter, C' is the number of channels and B is a bias term. After
a convolution layer, typically follows a pooling layer that reduces the spatial dimensions of the feature maps,
thereby providing translation invariance and lowering computational complexity. Everything else resembles
a normal MLP network with nonlinear activation functions applied at each layer to model complex patterns
and the use of the backpropagation algorithm to adapt filters and biases. This concept will be very useful
later when we present the expansion of CNNs to graph data with the introduction of Graph Convolutional
Networks.

34

2.2. Graph Neural Networks

Vectorised

O

-

Input image Feature maps pogling window feature maps []
I 50K

Pooled Feature maps d Q Q @)

feature maps | R k= O

. - Pooled n O) »()

—SHE QH» E@eature maps - 3 o %

e ‘ -\\'< C —)

1 = Ho—= B ~ X =

| s ‘ A P 0O R

Filter Convolution and Pooling Convolution and Pooling

activation activation Vectorisation Output

Input layer Convolutional layer Convolutional layer Fully connected layer

Figure 2.1.5: CNN Architecture [44]

2.2 Graph Neural Networks

2.2.1 Graph Theory

In this section, we will examine the basic concepts of graph theory and the necessary background tools for
Graph Neural Networks.

Let’s start by denoting a graph object as G. This object is a nonlinear data structure consisting of a set of
nodes or vertices V and a set of edges E where:

G(V,E) ={(u,v) :u,v € V,(u,v) € E}

Nodes represent any entity or instance, such as a person in a social network, a city in a transportation system,
or the atom of a molecule, while edges represent the relationships, connections, or interactions between them.
These relationships can be categorized based on their orientation. In undirected graphs, edges have no
inherent direction, and any pair of connected vertices can be traversed freely in both directions, making the
relationship symmetric, while in directed graphs, edges have a fixed orientation from one vertex to another,
typically representing a one-way relationship. Edges can also hold a numerical value that quantifies the cost,
capacity, or strength of connection between the vertices it links, further categorizing graphs as weighted or
unweighted depending on the existence of these weights.

Another critical aspect of graph data, beyond topological meaning, is that both nodes and edges often carry
additional information, called features or attributes. These features could be of any form, numerical or
categorical, and are represented through a feature matrix X with dimensions N % d where each of the N rows
corresponds to a node and the d columns encode the various attributes or features for that node. A similar
principle applies if you assign features to edges where these features are arranged in an edge feature matrix
of size E * d’ where E is the number of edges and d’ is the dimension of each edge’s feature vector.

One common representation of a graph G is the adjacency matrix [57] A € R"*™ whose entries a;; are defined
as:

{1, if {v;,v;} € E
Qi =

0, otherwise

In an unweighted, undirected graph, a value of 1 indicates the presence of an edge and 0 indicates that
there is no edge, leading to a symmetric adjacency matrix, whereas for weighted graphs, a;; may hold any
nonnegative value representing the weight of the edge. The concept of the adjacency matrix is very important
in this work, as it is the structure that allows for edge modifications.

35

Chapter 2. Preliminaries - Theory

Undirected & Unweighted

o
e o

Directed & Unweighted Directed & Weighted

Figure 2.2.1: Different Graph Types [5]

There are many more graph properties that require noting.
e A path is a sequence of vertices such that consecutive vertices in the sequence are connected by edges.

e A cycle is a path whose first and last vertices coincide (and all edges are distinct). A graph is considered
connected if there is a path between every pair of vertices.

e The neighborhood N(u) of a node w in a graph G is defined as the subgraph of G induced by all vertices
adjacent to u, i.e, the graph composed of the vertices adjacent to u and all edges connecting vertices
adjacent to w.

e A shortest path between two vertices u and v in a graph is a path that minimizes the number of edges
traversed from node u to node v and vice versa (for undirected scenarios).

These properties lead to very important graph traversal metrics that help quantify the importance of nodes,
edges, and their relationship both for the local neighborhood of a node and the entirety of the graph [46,
71]. Some of these metrics will be used by our explainer later in search for more meaningful and actionable
explanations.

Node Degree Centrality

The most straightforward type of centrality for a node u is the degree centrality. In an undirected graph, the
degree of a node u is the number of edges incident to w. This degree can be calculated as:

N
deg(v) =Y avu
u=1

where a,, = 1 if there is an edge between u and v and zero otherwise. Nodes with high-degree centrality
often assume the role of the distributor of critical information along the graph as they connect multiple nodes
together.

Edge Betweenness Centrality

Betweenness centrality for any edge e measures how frequently that edge lies on the shortest paths between
pairs of nodes. It is calculated through:

BetweennessCentrality(e) = Z os(e)
shtev ISt

36

2.2. Graph Neural Networks

where s and ¢ are two distinct nodes, o, is the total number of shortest paths from s to ¢ and o, ((e) is the
number of those paths that pass through e. Edges with high betweenness values often act as a bridge for the
flow of information among the network.

Clustering Coefficient

The local clustering coefficient of a node u can be computed by:

number of edges among neighbors of v
(degé(v))

CCw) =

where (degé(")) is the number of total possible edges among the neighbors if they formed a complete subgraph.
This metric signifies how well the neighbors of node u are interconnected with a higher clustering coefficient
indicating a tightly knit local neighborhood.

Closeness Centrality

Closeness centrality measures how close a node is to all other nodes, on average, by taking the reciprocal of
the sum of the shortest path distances from v to every other node w:

Closeness(v) = _

> d(v,u)

ueV

where d(v,u) is the length of the shortest path from v to u. Nodes with high closeness centrality are typically
positioned to spread or receive information rapidly within the network.

These metrics and many others provide us with valuable tools for analyzing the complex relationships of
graph objects. Graph data differ from traditional data structures because they explicitly encode relationships
between entities rather than simply listing features for each data point. While tabular data is structured in
rows and columns, and images arrange data on a grid of pixels, graphs leverage a non-Euclidean topology
that focuses on connectivity and the pairwise interactions between nodes. This means that the analysis must
account for not only the node-level characteristics but also the structural properties of the graph, leading to
insights that might remain hidden if the data were represented only in a ’flat’ format. It is these challenges
that have led to the creation of Graph Neural Networks, an architecture solely designed to tackle these
demanding problems.

2.2.2 GNN Taxonomy

As mentioned above, Graph Neural Networks (GNNs) were developed to address challenges in applying
conventional neural network architectures to graph-structured data. Although most machine learning models
are designed for structured data, graphs present unique complexities such as unordered structure, variable-
sized neighborhoods, and inter-dependencies among nodes [72, 7].

A key challenge in applying machine learning algorithms to graphs is the assumption of instance independence,
which does not hold in node-level tasks where nodes are interconnected. Unlike traditional models, GNNs
account for these dependencies.

Let’s start our analysis by exploring the taxonomic groups of tasks and learning algorithms that GNNs
employ.

Learning Algorithms

e Supervised learning tasks focus on labeled data. Provided that the true labels of the instances we want
to predict are available, we use supervised learning algorithms to predict the class of previously unseen
data, from a given set of potential classes.

e Semi-supervised learning works like supervised learning but with the exception that we do not possess
the labels for each instance, making the task of extracting an accurate prediction for unseen data more
challenging.

37

Chapter 2. Preliminaries - Theory

e Lastly, just like in any ML domain, there are many Unsupervised learning tasks, where there is a full
lack of labels and the goal of the model is either to capture patterns among the graph data or separate
the data in semantic groups based on their properties.

Task Types

GNN models handle a variety of graph tasks, each of which may focus on different attributes of the graph
structure.

e Node-level tasks require models that predict the properties of each node in a larger graph. In this case,
the instances are the nodes and the model has to either assign each node with a class or calculate a
different value for each node. The most common node-level task is the supervised node classification
task, which is also being treated in this work.

e Edge-level tasks require models to predict some attribute of each edge in the graph. It is directly
analogous to node-level tasks, and the most frequent ones are edge classification and link prediction.

e Finally, we have Graph-level tasks, where the dataset now consists of many graphs instead of a large
one, and the model has to assign either a class or a property to each of these graphs. This is done by
capturing patterns on a graph level and downsizing them into a single instance at a time. This work
also focuses on the most common task, graph classification.

2.2.3 Training a GNN

In this section, we will provide the background for the training process of Graph Neural Networks along with
the key concepts of representation learning and message passing [15].

The way most GNNs are usually trained is through a message-passing mechanism that learns a node repre-
sentation by iteratively aggregating the node’s neighborhood information and embeddings. At each layer, a
node collects information from its immediate neighbors, transforms or pools these neighbor embeddings, and
combines them with its own embedding to produce an updated representation. These learned representations
capture both node attributes and local neighborhood information. Let’s start by denoting the representation
of node u; in the [-th layer of the GNN model as hgl) and the overall representation of all the nodes in the
I-th layer as H®®. The set of neighboring nodes for node w; is N; = {v; € V| (v;,v;) € £}. Each node v; € V
in the [-th layer aggregates information from its neighbors as:

B = UP0Y (B0 AGG ({11, vy € A }))

= UP (B i)

where AGG is an aggregation function and UP is an update function. The choice of these two functions
defines the GNN variant. The most common choices for the aggregation function are the sum, mean, max, or
an attention-based method, and for the update function, often a neural network is employed. This message-
passing framework is used to get node representations, and most of the time GNNs are used as an encoder
to learn these node representations. Training typically proceeds via backpropagation through these layers
of neighbor aggregation, using gradient-based optimization on a chosen loss, as is the case for most ML
algorithms. The ground-breaking ability of GNNs to exploit both node features and graph topology during
learning provides rich, context-aware embeddings that capture local and global structures.

2.2.4 Architectural Variations

Another way to distinguish GNNs is through their architectural differences and variations. In this section,
we will present the most common GNN framework taxonomies and also analyze the most influential models
[65, 73, 66].

¢ Convolutional Graph Neural Networks (ConvGNNs). These networks were inspired by the
classical CNNs models, as presented before, and they naturally extend the notion of convolution to
non-FEuclidean graph domains. In essence, they identify the neighborhood of each node, aggregate

38

2.2. Graph Neural Networks

messages from neighboring nodes, and update each node’s representation. Similar to stacking multiple
convolutional layers in CNNs, ConvGNNs layer multiple rounds of neighborhood aggregation, progres-
sively capturing higher-level features at deeper layers. There exist two subcategories of ConvGNNs,
spatial approaches, which directly implement local aggregations in the node domain, and spectral
approaches, which treat graph data as signals in the frequency domain. Some of the most impactful
GNNs in today’s bibliography fall under these two categories and are the subject of this work.

e Graph Autoencoders (GAEs). GAEs adapt the classic autoencoder paradigm to graph-structured
inputs. They encode node (or graph) features into a lower-dimensional latent space and aim to recon-
struct either the original adjacency relationships, node attributes, or both. This architecture is most
often used in tasks such as network embedding and graph generation, where the model learns how to
reconstruct nodes and edges.

e Recurrent Graph Neural Networks (RecGNNs). These types of networks, assume that each
node repeatedly exchanges messages with its neighbors until the representations converge to a stable
equilibrium. This iterative message-passing framework was among the earliest in GNN research and
has become a stepping stone for many modern variants.

e Spatiotemporal Graph Neural Networks (STGNNs). This architecture is designed to tackle a
very specific problem that differs from others in many ways. STGNNs handle time-evolving graphs
whose topology or node/edge features change over time. They capture both critical dependencies, the
spatial aspect (which parts of the graph are connected or close) and the temporal aspect (how these
connections and features evolve over time). These models are tasked with scenarios such as traffic
forecasting, dynamic social networks, and sensor-based systems, where patterns must be learned both
across nodes and across time steps.

Now let’s discover the inner workings of the most influential GNN models from the aforementioned tax-
onomies. We will primarily examine ConvGNNs networks because they are the subject of this work and are
also used in a plethora of graph tasks.

Spectral-based ConvGNNs

The networks that fall under this category derive from spectral graph theory by formulating convolution in
the graph Fourier domain, utilizing the eigen decomposition of the graph Laplacian. The Laplacian matrix is
responsible for providing crucial information about the graph, while the Fourier transform is used to project
the graph to an orthonormal space. Given a symmetric normalized Laplacian L = UAUT, where U is the
matrix of eigenvectors ordered by eigenvalues resulting from the factorization of the normalized Laplacian
matrix of the input graph and A is a diagonal matrix of eigenvalues, the input is a graph signal z that is
then transformed into the spectral domain by # = U . Then the convolution operation is performed using
a filter gy defined as:
goxx =Ugg(A)U"

This approach is inspired by classical signal processing techniques, where convolution in the spatial domain
corresponds to element-wise multiplication in the frequency domain. However, due to the high computational
cost of eigen-decomposition, new methods were proposed that utilize a more efficient choice of filter and will
be examined below.

The Chebyshev Spectral CNN (ChebNet) [10] is a form of spectral-based Graph Neural Networks that
efficiently approximate spectral filters without the need for costly eigen-decomposition of the graph Laplacian.
This is being done by expanding the spectral filter gy in terms of Chebyshev polynomials, thereby localizing
the convolution operation to a finite neighborhood. This convolution can be expressed as:

K
o * T =~ Z 0xTi(L)x
k=0

where T}, is the Chebyshev polynomial of degree k, 8 are the learnable coefficients and L = %L —1is
the rescaled Laplacian with A .« being the largest eigenvalue of L. The Chebyshev polynomial for the k-th
order can be computed from the above equation as:

Tw(L) = UT(A)UT

39

Chapter 2. Preliminaries - Theory

This formulation reduces computational overhead by avoiding explicit Fourier transforms and also maintains
a localized receptive field, which is crucial for capturing local graph structures. This network has found
success in domains such as sensor networks, social graphs, and molecular chemistry.

Next we have the Graph Convolutional Network (GCN), that simplifies the spectral convolution [19]
operation presented in the Chebyshev network. It essentially embodies a first-order approximation of the
Chebyshev polynomial by enforcing K = 1 and Apax = 2. The convolution operation is then defined as:

R (1,, + D—%AD—%) x

where D=2 AD~% is another representation of the Laplacian matrix using the degree matrix D and the
adjacency matrix A. By normalizing both terms, we can write the GCN layer as:

H+D — 4 (D—1/2AD—1/2H(1)W(1))

where o is an activation function, H®) is the feature matrix at layer [and W) the trainable weight matrix.
This reassignment of the Chebyshev polynomial ensures numerical stability and improved convergence during
training. The GCN has been widely adopted across various applications due to its simplicity, computational
efficiency, and effectiveness in capturing local graph structure, and it is the main model for which we will try
to provide explanations in this work.

GCN Layer/ Pooling GCN Layer / Pooling

Input ~ Lt
. RelU = . RelLU

[']]
R : — . X _._. ™ N - IR ¢
. * L] r] .
.
°

Figure 2.2.2: Convolutional GNN [43]

Spatial-based ConvGNNs

These networks typically operate in a manner similar to that discussed in Section 2.2.3. They define the
graph convolution operation taking into account the spatial locality of nodes mimicking the process of message
passing on graphs. In these models, each node v updates its feature representation by combining the features
of its neighbors N(v) as well as its own features following the formula in Section 2.2.3. Because these
convolution-like operations are executed over a node’s immediate locality, spatial-based GNNs have been
successfully applied in domains such as social network analysis, molecular chemistry, and urban transportation
networks, where local interactions are critical to the underlying phenomena. Lets dive into the most used
spatial GNN models.

GraphSAGE (Graph Sample and Aggregate) [16] is a spatial-based framework designed to efficiently
generate node embeddings for large graphs through neighborhood sampling and a learnable aggregation
function. Instead of processing the entire graph, GraphSAGE samples a fixed-size set of neighbors for each
node and aggregates their features using various strategies such as mean or max pooling aggregation. The
update function for node v can be written as:

P = o (WO [AD || AGGREGATE ({1{) :u e N(v)})])

40

2.2. Graph Neural Networks

where hg) denotes the feature vector of node v at layer [, || denotes concatenation, W® is a learnable weight
matrix, and o is a non-linear activation function similar to what we have discussed. This model acts as an
extension of the GCN to unsupervised learning.

Graph Isomorphism Network (GIN) [67] is a spatial-based model designed to have the ability to distin-
guish between different graph structures based on the embeddings produced. GIN employs an aggregation
scheme that sums up the features of a node and its neighbors before applying a multilayer perceptron (MLP)
to update the representation. This process is expressed as:

D = MLPO | (1) nD 4 S
weEN (v)

where ¢ is a learnable weight parameter for the central node of the convolution and the summation aggre-
gates the features of the neighbors of v. For each layer, node embeddings are summed, and the result is
concatenated. Because this architecture is inspired by the need to distinguish different graph structures and
preserve the expressive power that traditional GNNs sometimes lack, it has achieved great results in areas
where capturing subtle differences in graph topology is crucial.

Lastly, we have to mention the Graph Attention Network (GAT) [50]. This model differs from any other
we have mentioned because it employs an attention mechanism into the graph convolution paradigm, allowing
nodes to weigh the importance of their neighbors’ features dynamically. In GAT, the updated feature of node
v is computed based on attention coefficients that measure the relevance between node v and each of its
neighbors u, thus making the concept of neighborhood dynamic and not predetermined. Node features are
transformed by a shared weight matrix W, followed by the calculation of the attention coefficients:

evu = LeakyReLU (a” [Wh, || Wh,])

where a is a learnable parameter vector and || denotes concatenation as before. These coefficients are then
normalized using a softmax function:
S exp(eypn)
v > exp(eyk)
keN (v)
The final node representation is obtained by aggregating the transformed features of its neighbors weighted
by the attention coefficients:

M=o Y alw®nk-y
wEN (u)Uv

By using this adaptive attention weighting, GAT enables the network to focus on the most informative parts
of a node’s neighborhood.

41

Chapter 2. Preliminaries - Theory

42

Chapter 3

Counterfactual Explanations

A research area that has emerged in recent years is that of Explainable Artificial Intelligence (XAI)
[36, 4]. Its creation was driven by the increasing integration of complex machine learning models into real-
world applications. Traditional "black-box" models, while often achieving impressive predictive performance,
lack transparency in their decision-making processes, which poses significant concerns in domains such as
healthcare, finance, and criminal justice where stakes are high. Consequently, in order for these models to
be frequently used in such tasks, everyone should be able to answer the questions 'How did this model arrive
at the decision’, "What were the driving factors that led to this decision’ and ’'If any initial aspect of the
problem was different would we have arrived at the same outcome?’[49]. XAI aims to bridge this gap and
answer these questions by providing methods and tools that elucidate the underlying rationale of machine
learning systems. This pursuit not only fosters trust and accountability, but also facilitates debugging and
model improvement by understanding which features or data patterns significantly influence outcomes.

One method that has gained considerable attention in the field of explainable artificial intelligence (XAI)
is Counterfactual explanations. A counterfactual explanation for a given instance is a set of minimal mod-
ifications to its features that would alter the model’s prediction in a prescribed way. By identifying how
slightly altering certain inputs leads to a different outcome, counterfactual explanations offer insight into
model decision boundaries and suggest potential real-world actions end-users might take to achieve a desired
prediction. In this thesis, we focus on providing Counterfactual Explanations for Graph Neural Networks.
Specifically, in this chapter we will place Counterfactual Explanations inside the vast XAl framework, we
will provide all important taxonomies and subcategories, and lastly we will enhance the readers’ knowledge
with the mathematical background needed to conceptualize Counterfactual Explanations.

Contents
3.1 Motivation o i e 44
3.2 Factual Reasoning 0 0 i i i i it i i e e e e e e 45
3.3 Counterfactual Reasoning i i e 45
3.3.1 Taxonomieso e e e e e 45
3.3.2 Background 46
3.4 Related Work 0 0 i e e e e e e e e e e e e e 47

43

Chapter 3. Counterfactual Explanations

3.1 Motivation

Deep Learning models have achieved remarkable success in various domains, such as molecular biology,
social networks, and financial systems. However, their success is hindered by their "black-box’ nature [15].
Due to their reliance on nonlinear activations for learning feature representations, and usage of multiple
hidden layers, Deep Neural Networks remain opaque to users, resulting in limited adoption. Graph Neural
Networks (GNNs) specifically have demonstrated remarkable capabilities in processing and deriving insights
from complex graph-structured data, yet they are not immune to inheriting and even amplifying biases present
in the data. Since GNNs learn representations through the aggregation of neighboring node features, the
biases embedded within the graph can directly influence the predictions of the model. This combination of
lack of transparency and the adoption of data biases makes it challenging to discern how specific substructures
or node attributes contribute to the final outcome and whether these contributions are biased.

Counterfactual explanations can provide meaningful answers to these types of problem by providing an
actionable and intuitive mechanism for model interpretability, bridging the gap between 'why’ a decision
was made and ’how’ an individual can change that decision that no other method can do simultaneously. The
main areas where Counterfactual Explanations can become most necessary are actionability, transparency,
and regulatory compliance. Counterfactuals, by design, recommend feasible modifications to input features,
thus acting as a guide towards a desired result and not only as an indicator of where mistakes were made, and
can thus provide tangible justifications that satisfy regulatory needs and user demands for interpretability
[35, 51].

Besides graph data that this work focuses on, there are multiple other aspects of human endeavors that
counterfactual explanations find good use. The most prominent is in the healthcare sector, where counterfac-
tual reasoning provides better-informed clinical decisions by identifying the minimal modifications in patient
characteristics that could alter a diagnosis or treatment recommendation, thus providing doctors with either
an alternate path to explore or another reinforcing opinion. In finance, counterfactuals are instrumental
in explaining credit scoring and risk assessment systems, clarifying what minimal changes to an applicant’s
profile could improve their loan eligibility, and fostering a more transparent lending environment [18]. Legal
and criminal justice domains can also benefit from these insights, as they allow for scrutiny of predictive
algorithms, thereby aiding in the pursuit of fairness and accountability. In all of these sections, data types
may vary from tabular to image and textual to graph, leading to multiple counterfactual explanation methods
and algorithms.

Interpretation

& G

What is the important of each
variable?

What it the risk profile of the clients?

Explication

@

What are the reasons of the rejection
of the demand of credit loan?

Figure 3.1.1: Importance of Explainable and Trustworthy Al predictions

44

3.2. Factual Reasoning

3.2 Factual Reasoning

In this section, we will analyze a critical domain of Explainable AI called factual reasoning [49, 17]. This
method is important in our work because while it works opposite to counterfactual reasoning, together they
provide a comprehensive framework for ML Explainability. It was also the improvements in the field of
factual reasoning that paved the way for researchers to develop the field of counterfactual theory.

Factual reasoning refers to the process of identifying the direct determinants that lead a model to a particular
decision. In other words, it outlines the features of the input instance that most strongly supported the
outcome in its current observed state. By focusing on the factors that drove the model’s result, factual
reasoning provides insights into how the decision was formed and which real-world aspects of the input were
key contributors [6].

In graph-based domains, factual theory highlights the specific substructures that influenced the model’s
output. This may include nodes, edges, and in its most general form entire subgraphs. These subgraph
explanations generally define an importance score for edges or node subsets that quantifies how each feature
(or group of features) in the original instance x contributed to the model’s prediction f(z).

Now that we have established the basic concepts of factual reasoning, it is time to compare it with our
main focus, counterfactual explanations. Whereas factual reasoning focuses on how the existing inputs led
to a given outcome, counterfactual reasoning addresses how the outcome would change under hypothetical
alterations of those inputs. Thus, factual explanations have a more descriptive character, showcasing the
immediate evidence behind a model’s decision. In contrast, counterfactual explanations adopt a prescriptive
stance, suggesting minimal modifications that are both actionable and transparent and would ultimately
change the prediction. Factual explanations answer the question “Given A already happened, will B happen?”
providing a sufficient subgraph to recreate the prediction, while counterfactual explanations answer “If A did
not happen, will B still happen?” thus generating a necessary example that without it we would arrive at a
different outcome.

In this work, we are more interested in counterfactual explanations, as we deem providing reasonable and
actionable alternatives more important than simply highlighting the driving factors of a decision. Coun-

terfactual explanations provide the user with several alternatives that can help familiarize the public with
Al

3.3 Counterfactual Reasoning

3.3.1 Taxonomies

Its is now time to dissect Counterfactual Explanations into multiple taxonomies and analyze the characteris-
tics that each method possesses. The first level of distinction between different Counterfactual Explanation
methods can be made regarding the target to be explained [15, 41, 2].

Model-Level Counterfactual Explanations

These types of explanation aim to provide a counterfactual example that represents the entire model regardless
of the inputs of the target model. Such works produce an explanation of the overall logic of the black-box
model assuming that the provided explanation is complete and valid for any instance. A model-level approach
might produce sets of counterfactual rules or prototypical examples that illustrate how various inputs could
be minimally changed to achieve various target outcomes, thus helping users understand the global structure
of the model’s reasoning [20].

Instance-Level Counterfactual Explanations

Instance-level explainers aim to find counterfactual examples that would change the models prediction for a
single instance. They are particularly useful in practice because they provide personal guidance on how to
achieve a desired outcome. In a graph classification scenario this would imply changing the models’ prediction
of a graph instance into a different label, while in node classification tasks the explainer would try to alter
the prediction of a single node [9].

45

Chapter 3. Counterfactual Explanations

Another distinction between different methods for graph data can be made by looking at the high-level
approach that each explainer uses and the general architecture they employ.

e Search-based methods typically begin with an initial candidate counterfactual example z’ and it-
eratively refine it until its prediction has changed. They rely on a specific criterion to search for a
counterfactual within the dataset for a given input instance. This process is carried out by gradient-
based optimization if the model is differentiable or by methods such as evolutionary algorithms and
sampling-based procedures if it is not. Their advantage is that the user has control over the search
method and properties [11, 23].

e Heuristic-based methods rely on domain-specific policies that modify the input graph until they
reach a valid counterfactual. Instead of performing exhaustive exploration of the input space, these
approaches use heuristics such as greedy methods to iteratively modify a given instance until a target
outcome is reached [3, 1, 52].

e Learning methods typically train a second model that produces counterfactual explanations. These
methods learn the variations of the output with regard to input changes and minimize a counterfactual
loss term so that the learned generator outputs candidate modifications.

Learning-based methods can be further sub-categorized to the following three methods:

e Perturbation methods, where the model uses a soft masking technique in order to iteratively remove
elements from either the adjacency matrix or the feature matrix until a counterfactual example is
reached. These techniques typically treat the original model as a "black box", querying it multiple
times to assess how close a candidate example 2’ is to achieving the desired outcome. This method is
used in this work’s explainer [64, 8].

¢ Reinforcement learning methods use agents that take actions in a predefined action space with
the task of maximizing a reward function. Such functions are created by the user and are used to guide
the agent to reach a counterfactual example [38].

e Generative methods generally use a generative network or a variational autoencoder (VAE) to syn-
thesize counterfactual examples in a learned latent space [48, 26].

Finally, another important aspect of Counterfactual explainers is model access. An explainer that does not
require access to the internal representations of the model, such as weights or gradients, is considered model-
agnostic. These explainers can act on any model regardless of its training process, since they only rely on
input-output pairs. Model-specific explainers on the other hand, rely on the usage of the model’s training
parameters and utilize them in order to understand why the model arrives at certain decisions. Since access
to a black-box model is generally limited, model-agnostic explainers provide good generalization to various
tasks. It is important to note that these taxonomic separations are not strict, and many attempts may
include elements from multiple taxonomic groups.

3.3.2 Background

In this section, we will provide all the necessary background and formulation for Counterfactual Explanations.
We will specifically address graph domains along with the characteristics that a counterfactual example
possesses.

A Counterfactual Example is an instance x’ that resembles the original instance x but provides a different
prediction, when used as an input to a given model [14]. Lets start by denoting a model ® mapping input
data x € R? to a prediction § = ®(x). A counterfactual example 2’ must satisfy the following equation:

O(z) # (')

This translates to counterfactual explanations always being predicted in a different class than the original
input instance. For example, in the case of graph classification where x = G and its counterfactual is also a
graph 2/ = G’. Counterfactual examples must also remain minimal in regard to the original instance. Given
that x’ is a modified version of x and D is a distance function relevant to the task at hand, the distance of
2’ to must remain minimal:

D(x,2') <t

46

3.4. Related Work

where t is an appropriate threshold ensuring minimal changes to the original instance. In graph domains the
process of generating counterfactual examples can be formulated by minimizing a loss function that balances
the distance between = and 2/, and the loss between ®(z) and ®(z)’ :

arg rralci/nﬁ (®(x), ®(x)) + X D(x/, %)

where £ is a differentiable loss function (in classification tasks, most often is the cross entropy loss Section
2.1.2) and A is a hyperparameter controlling the trade-off between correctness of the prediction and proximity
to the original instance x [15, 41]. In this minimization function, more constrain terms can be included to
ensure actionability or guidance towards a certain target. This practice will be used in this work to help us
create actionable and meaningful counterfactual explanations.

In general, the process of evaluating a counterfactual begins with the user specifying a desired outcome for a
specific task. Hence, the first and most critical aspect of counterfactual theory is to produce a usable example
that indeed generates a different model prediction. This proposal should also be created as minimally and
efficiently as possible in order to be meaningful. One could argue that any model will produce a different
prediction if the original input has been altered multiple times. However, this is not useful for the user that
requires a minimal set of actions to incorporate towards the desired outcome. All of the above constitute
a challenging task for Al engineers that want to enhance the public’s trust towards black-box models and
provide actionable alternatives to everyday tasks.

How can | be
accepted?

redit card X:
pplication .

1

1

]

1

'
™
7 X
T
fah]
3
=
(@]
- |

__-"Feature

Structure

Figure 3.3.1: Example of user assistance through counterfactual explanations [15]

3.4 Related Work

After examining the basic concepts of Counterfactual Explanations, we are going to present relevant work
done on graph domains in order to later place our method inside the spectrum of Counterfactual Explanations
for Graph Neural Networks.

The first attempt to explain the predictions of GNNs was made by GNNExplainer [69]. This can be treated
as the foundation for graph explainability methods. It includes identifying important subgraph substructure
and node attributes that can preserve the prediction that a GNN made on the raw input graph. This work
rests on factual theory, but its methodology can be easily implemented in counterfactual theory as well.
The key contribution of GNNExplainer is that it treats the explanation process as an optimization task that
maximizes the mutual information between the GNN’s prediction Y , for a given instance, and an explanation
(G5, Xs) consisting of a subgraph G and the associated features X,. This is done by introducing continuous
mask variables that relax the selection of edges and features and a loss function function for these masks.

47

Chapter 3. Counterfactual Explanations

In practice, GNNExplainer maximizes the predicted probability of the true label g under the masked graph,
while adding regularization terms to enforce sparsity.

Moving on to methods that incorporate Counterfactual reasoning we have CF-GNNExplainer [24]. This
method targets at instance-level post-hoc explanation for node classification tasks. It produces counterfactual
explanations by finding a binary perturbation matrix that sparsifies the adjacency matrix of the graph. The
goal is to remove edges by zeroing out existing edges in the adjacency matrix. This is done by creating
a mask M that perturbs the adjacency matrix A as A = M ® A. Then in uses the general loss function
we described in Section 3.3.2 in order to optimize the mask. The second term is the element-wise distance
between the adjacency matrix and its perturbed counterfactual adjacency matrix, serving as a constraint for
minimal perturbations.

Improving on the work made by the two aforementioned methods, C'F? [49], produces factual explanations
by balancing factual and counterfactual reasoning. By combining these two approaches, this work aims to
obtain necessary and sufficient explanations. In this domain sufficiency accounts for factual reasoning, where
the information induced by an explanation should be enough to produce the same prediction as the original
graph. Necessity means that removing the minimal part will result in different prediction results that form
counterfactual reasoning. The task is again a multi-objective optimization problem using a mask M. The
loss function balances both factual and counterfactual reasoning in the sense that the counterfactual graph
is the input graph without the factual subgraph. The loss function can be formulated as:

Ecxplain == ﬁinput + A (aﬁf + (]— - a)ﬁc))

where the terms L and L. serve to ensure that the sub-graph explanation is both necessary and sufficient
for the model’s prediction and « controls the weight that each of the two has in the final explanation. These
last two methods provided the inspiration for our work where we use the masking approach along with a
multi-factor loss function in order to create counterfactual explanations.

Moving on from masking techniques, there has been a lot of research in the reinforcement learning domain,
especially for molecular and drug prediction tasks. MEG [40] is a reinforcement learning approach that
produces counterfactuals for a given input molecule. In the reinforcement learning framework of MEG, it
defines the action space as:

A=A, UAf UA; U{L},

where A, stands for adding nodes (atoms), Ab_+ or A, stands for adding or removing edges (bonds) and the
null action. The reward function of the procedure incorporates a task-dependent regularization term that
affects the policy of choosing the next action to perturb the input. Its policy is designed to choose only those
actions that lead toward the generation of 'new’ valid molecules using appropriate domain knowledge.

A method that lies in the domain of generative methods is CLEAR [26]. Unlike other methods that use masks
to perturb the graph structure, CLEAR uses a variational auto-encoder (VAE) to generate the counterfactual
graph. The encoder maps each input graph G to a latent representation Z, and the decoder generates the
counterfactual based on Z. The counterfactuals are complete graphs with stochastic weights on the edges
where the node features and graph structure are similar to the original graph G. The advantage of using
VAE is that, by properly injecting auxiliary information, VAE can preserve the latent causal structure of the
graph.

Lastly, in order to fully understand the spectrum of Counterfactual explanations, we will mention a model-
level explanation method where the aforementioned works focus on instance-level explanations. GCFEx-
plainer [20], aims to provide model-level counterfactual explanations for graph classification tasks. Given a
GNN prediction ®(x)the global counterfactual explanation aims to find a global rule r. ,for each class ¢, such
that for each graph G; we get ®(r(G;)) = ¢. This work finds a set of representative counterfactual graphs
for each class, where counterfactual graph means a modified from the original graph but with a different
label with the original graph. This is being done by organizing the search space as a meta-graph where the
vertices are all the graphs that can be obtained by performing no more than % edits on any input G, and
edges connect graphs that are at one edit distance. After building this search space, GCFExplainer relies on
vertex-reinforced random walks to obtain a set of counterfactuals, prioritizing those that most instances can
reach. A greedy algorithm is then implemented to select a set of graphs G’ that maximizes the coverage of

48

3.4. Related Work

the original set’s G; ’s coverage. The loss function incorporates regularization at both the input level and the
output level, where regularization encourages the prediction of the model in the desired class at the output
level as well as ensuring that the manipulation is sparse at the input level.

We have now provided some of the necessary relevant work on Counterfactual Explanations on graph data and
discussed their strengths. Our method is placed among the masking methods for producing counterfactuals.
We utilize a continuous masking approach with additional constraints in the loss function. By adding these
constraints, we aim at creating dataset-specific rules that help guide the explainer to more meaningful and
minimal counterfactual explanations.

49

Chapter 3. Counterfactual Explanations

50

Chapter 4

Methodology

In this section, we propose a model agnostic Counterfactual explainer class that handles both graph and
node classification tasks. This explainer iteratively removes edges from the original graph structure until the
prediction of the targeted instance is changed, making it an instance-level post hoc technique. Our method is
based on the concept of soft masking to remove edges from the original graph, along with the incorporation
of domain knowledge to guide the explainer to more insightful and minimal explanations. This explainer can
be applied to any black-box GNN model while also being adaptable to any user or task specific constrains
that constitute domain knowledge.

The contributions of this work can be summarized as follows:

We generate counterfactual examples for graph and node classification tasks, using a model-agnostic
explainer. This explainer uses the method of soft masking along with a binary thresholding scheme
to iteratively remove edges and perturb the structure of the graph in order to provide counterfactual
examples.

e We expand on the current bibliography by incorporating domain knowledge constrains within the loss
function established in Section 3.3.2 in order to guide the explainer to produce more meaningful and
minimal counterfactuals.

e We perform an iterative threshold search that helps the explainer locate the minimum number of edge
deletions possible to achieve the transition from one label to another.

e We analyze the concept of trade-off relationships between minimality and fidelity as well as discuss how
different hyper-parameters in the loss function can affect our evaluation metrics, prediction flip and
graph edit distance.

e Lastly, we evaluate our explainer on two graph classification and one node classification datasets as well
as visualize trade-off parameters and metrics.

Contents
4.1 Counterfactual Explainer 0 i i i it e e e e e e e e e e e 52
4.1.1 Architecture 52
4.1.2 Continuous Maskingo 53
4.1.3 Loss Function Constraints o 54

o1

Chapter 4. Methodology

4.1 Counterfactual Explainer

In this section, we will analyze all the important background, mathematical formulation and implementations
that constitute our explainer class.

4.1.1 Architecture

First and foremost, it is important to define the high-level architecture capable of creating Counterfactual
explanations. We begin by denoting our graph dataset, a black-box GNN classifier ® and our explainer
class. The process begins by training the black-box GNN model on the input dataset on the appropriate
classification task (graph or node classification). The model provides predictions ®(z) on any input instance.
The internal parameters (weights and biases) of the GNN model are then frozen, in order to remain intact
for every iteration of the explainer and maintain consistency between experiments. Then the explainer class
receives the following inputs: the original input instance z, the GNN’s prediction for this instance ®(z)
and any important domain knowledge appropriate for the task. The explainer then creates a candidate
counterfactual example by iteratively querying the GNN during a process that we will analyze in depth in
the following section. Lastly, this example is being given to the GNN model as a new input instance such
that potentially, the model provides a different predicted label than before:

B(x) # (')

Dataset GNN @

) Explainer <:

Domain
Knowledge

Figure 4.1.1: The architecture of the counterfactual example generation process. The pre trained GNN
model provides predictions for any input instance. The explainer then utilizes this prediction along with
domain knowledge to alter the model’s prediction of that instance.

52

4.1. Counterfactual Explainer

4.1.2 Continuous Masking

The overarching goal of this explainer is to minimally modify a given graph input instance, with the aim
of altering a GNN model’s prediction. This modification takes place in the graph structure and, more
specifically, in the edges. In order to achieve edge perturbations, our explainer implements a soft masking
procedure, where the term soft derives from the fact that this mask contains continuous values. The masking
mechanism is designed to selectively modify graph connectivity, enabling the identification of critical edges
whose removal alters the model’s prediction.

This approach is being used because straight deletion of edges is a discrete and thus not differentiable
procedure. We want to treat this problem as an optimization problem where we allow the explainer class
to ’learn’ which edges to delete and not as an exhaustive search problem, where the computational load is
unbearable for large graphs. Hence, we employ this masking technique that allows for optimization. The key
idea can be summarized as follows. By creating a mask array object M with the same size as the adjacency
matrix and updating it appropriately, we can then use the dot product of the two, M - A in order to zero
out some entries in the adjacency matrix and thus remove edges, resulting in the creation of counterfactual
examples. In this subsection, we will provide the necessary background information needed for this technique.

Lets start by denoting as ¢ the sigmoid activation function:
1
o(x)

Cl4e e
and two mask objects Z and M that have the same shape as the adjacency matrix (or in our case an edge
index PyTorch Geometric object). The adjacency matrix contains the value 1 in places where an edge exists
and the value 0 in places where an edge does not exist. The PyTorch Geometric object called edge index
contains only the value 1 in places where an edge exists, avoiding to enlist all the zeros for memory efficiency
in a process that resembles that of the adjacency matrix. So, our mask Z matches the shape of the edge
index tensor:
Z = [2172,’2,...,2:5;]

where E is the number of edges. We start by initializing the mask as z; = 0. Then we pass the sigmoid
function through every mask value z;, thus providing us with the second mask M where m; = 0.5.

Since the explainer deals with undirected, unweighted graphs, the GNN models that we train in PyTorch
Geometric use a weight of 1 for each existing edge and can receive an argument of an edge weight tensor W
which in the training process consists of all the values being 1. It is in the edge weight matrix of the GNN
model we perform our multiplication with our mask M. By initializing each mask value at 0.5 and then
multiplying it with the edge weight matrix, we essentially assign each existing edge a weight of 0.5 at the
first iteration of the explainer. After the entire process is complete, edges that have weights close to 1 will
be kept and edges that have weights close to 0 will be deleted. This is the reason why we chose to initialize
our mask at zero, so that we assign each edge with an equal chance of being deleted or retained.

In the first forward pass that our explainer makes through the GNN model, it inserts the dot product
W' = M - W as an argument to the model. The model then makes a new prediction (using its frozen
parameters that have not been altered) on the new instance. Then the explainer uses this new prediction
along with the desired counterfactual class to calculate a multi-factor loss function:

£(Z) = ‘Cpred(q)(G; M(Z))a g) +A- ‘Cdist(M(Z))

where ®(G; M (Z)) represents the GNN’s output when using mask M, ¢ is the target label, A is a hyperpa-
rameter controlling how much the second term contributes in the total loss.

The prediction loss Lpeq is the cross-entropy loss as described in Section 2.1.2 that encourages the model to
predict the target class § when the mask is applied:

Lired(®(G; M (Z)),) = —log Ps (3 | G; M(Z2))

The second term Lgist is a penalty term that encourages the mask values to be close to 1 and thus keeping
them.

Edistancc(M) - Z(l - me)

ecE

53

Chapter 4. Methodology

This formulation encourages optimization to find a minimal perturbation, only removing edges that are critical
for changing the prediction. The higher this loss term, the more edges are being removed, so minimizing
this term encourages edge retention. In this problem, we select this type of distance function, but, as we
described in Section 3.4, any appropriate distance function can be implemented. These two terms constitute
our base explainer model. In the following section, we will incorporate more constraints and penalty terms
in the loss function in order to guide the explainer to more insightful deletions using domain knowledge.

After the calculation of the loss function that forces the prediction toward a target class while keeping
deletions minimal, the backpropagation algorithm calculates the gradients and updates the mask Z :

7D — 7 _ oy, L0

where a is the optimer’s learning rate. After the first iteration, the mask Z is again passed through the
sigmoid transformation, creating mask M that is scaled in [0, 1]. This process continues for many iterations,
each time using the newly updated mask to call the GNN again with the new edge weights. After this
process is completed, our mask M is full with continuous values m; € [0, 1] each representing the final weight
possessed by each edge. At this stage, no edge has been deleted, only their weight in the message passing
algorithm has been modified, and it is time for the explainer to decide which edges should be deleted. This is
done by enforcing a binary threshold 7 where every edge with a value above the threshold is kept and every
edge with a weight below the threshold is deleted:

Mpinary = {m?i“ary | msi“ary =W¥m. > 7], e € E}

where J¥[-] is the indicator function. The resulting binary mask identifies edges that should be retained in
the counterfactual explanation. The counterfactual graph G’ is then constructed by keeping only these edges
of the original graph:

G = (V.{e€ E|md =1})

Intuitively, the first threshold that comes to mind is 0.5 but this does not provide the most minimal solution,
as there can be many edges with a value below 0.5 that should not be deleted and the prediction would change
whatsoever. So, at this stage, the explainer performs an iterative threshold search for threshold values that
removed the least amount of edges possible while managing to alter the predicted class. The explainer creates
a new graph G’ for every 7 € {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5} stopping at the first
threshold value that flips the GNNs prediction. This threshold value is guaranteed to delete the fewest edges
possible among the other thresholds. The user can decide whether to include more threshold values above
0.5 but this would emerge the issue of trade-off between flipping the prediction of a particular instance and
the size of the modifications that we will discuss in the following sections.

This masking approach offers several advantages, such as maintaining a fixed computational graph structure
throughout optimization, which is more efficient than rebuilding the graph at each step. Most importantly,
it allows for gradients to flow properly through the network, as the masking operation is differentiable, thus
allowing for optimization at each step.

4.1.3 Loss Function Constraints

It is now time to introduce more constraints in the loss function with the aim of guiding the explainer towards
more minimal and meaningful explanations. These constraints derive from domain knowledge on the task
at hand. The introduction of an extra constraint or penalty term is not guaranteed to push the explainer
towards more minimal or insightful counterfactual. It requires a deep understanding of the task and the
available data, as well as exhaustive hyperparameter tuning to find the optimal hyperparameter windows.
With the addition of an extra term and a hyperparameter controlling its impact, the model complexity
increases, leading to an increase of the trade-off scenarios. In this section, we will provide the theoretical
background for the structural constraints used in this work. It is important to note that these constraints can
have any form or meaning the user wants. If the task demands a more semantic constraint that derives from
the data, or the user seeks counterfactual examples toward any direction, they can be incorporated into the
loss function. For the scope of this work, we focus on structural constraints, deriving from the preprocessing
of graph data, that help guide the explainer to more meaningful explanations.

54

4.1. Counterfactual Explainer

Node Degree Centrality Constraint

The intuition behind this constraint is the existence of nodes with very high degree centrality in comparison
to other nodes. These nodes are often called hub nodes because they represent a bridge, where crucial
information has to cross from these nodes to reach the entire graph. This information is also crucial for a
GNN model making a prediction, and hence we want to utilize this information to make minimal deletions
and alter the model’s predicted class.

We begin the process by computing the degree for each node v in our graph G.
degree(v;) = ZH‘[(U,», vj) € E]

J

And then identify the node with the maximum degree:

Umax deg = aI'g mg§ degree(vi)
_ v;

In different tasks and datasets, there can be many hub nodes or just one hub node per graph. For simplicity,
we assume the existence of one hub node, with the biggest node degree, but this is easily applicable to more
than one hub nodes. Then we create the list of edges connected to the hub node:

Ena, = {('Uia vj) €EE v = Umax _deg \ v; = /Umax_deg}

Finally, for edges e € Eyy, we construct a penalty term that penalizes the mask values m.

£degree = E Me

e€Enub
The total loss function of the explainer can now be formalized as:
»Ctotal = ﬁpred +)\dist . Cdist +)\degree . »Cdegree

When mask values m, of these edges are close to 1 (thus close to be kept), the loss of the total model
increases. The optimizer, in its attempt to lower the total loss, will try to remove these edges, and thus alter
the predicted class. We also add a hyperparameter Agegree to control the influence of this penalty term. So,
to sum up what each term in the loss function contributes:

o L;red encourages changing the classification label to a desired label.
o L4ist encourages keeping as many edges as possible by penalizing removal.
® Lycgree €ncourages removing hub-connected edges.

By incorporating this extra penalty term into the loss function, we punish keeping edges that are connected
to the node with the highest degree. This is crucial as these nodes play an important role in the message
passing procedure and can highly influence the prediction of a GNN model.

Figure 4.1.2: Example of nodes with high degree centrality. The two nodes in blue represent hub nodes.

55

Chapter 4. Methodology

Edge Betweenness Centrality Constraint

This constraint was designed to leverage the fact that, in real-world scenarios, some edges are more pivotal
in the information flow than others within a graph. These edges are often called bridges, similar to the
hub nodes, and connect different parts of the graph that would otherwise be separate. The property that
reveals whether an edge acts as mentioned is the edge betweenness. Edge betweenness centrality represents
the number of shortest paths that run through an edge to the total number of shortest paths. To begin, we
calculate the edge betweenness centrality for each edge e in the graph as:

Crle) = Z o(v,u | e)

v,ueV 0(07 u)

where (v, u) is a pair of nodes, o(v,u | e) is the number of shortest paths between v and u that pass through
edge e and o(v,u) is the total number of shortest paths between nodes v and u. Then we gather the edges
that are above the 90th quartile (depending on the task) in terms of edge betweenness score. This is crucial
as we want to only perturb the edges that have the highest edge betweenness score and not all the edges in
the graph. This group of edges can be denoted as:

Evet ={ec € E|Cp(e) > Qoo(Cp)}

Finally, for edges e € Epe we construct a penalty term that penalizes the mask values m. as before:
Lbet = Z Me
e€Epet

The total loss function of the explainer can now be formalized as:
['total = Epred +)\dist ' Edist + /\bet . Lbet

Similarly to the node degree penalty, when the mask values m. are close to 1, the total loss increases. The
optimizer will attempt to bring the mask values of these edges closer to 0 and thus remove these edges. The
hyperparameter A\pe; controls the weight of the term in the total loss function. The contribution of each term
in the loss function is as follows:

o L;red encourages changing the classification label to a desired label.
o Lgist encourages keeping as many edges as possible by penalizing removal.
e Lot encourages removing edges with high betweenness centrality.

bottleneck
(high betweenness)

hub
(high degree centrality)

|

neighbor
of hub

Figure 4.1.3: Example describing nodes with high degree centrality and high betweenness centrality. Edges
connected to these nodes are crucial for information flow across the graph. [34]

56

4.1. Counterfactual Explainer

To conclude, it is important to note that the two described constraints derive only from the graph structure.
Our method does not utilize node or edge features and focuses only on explaining models that arrive at their
predictions by analyzing the graph structure. It does so by perturbing edges and creating graphs similar to
the original for the model to predict. However, the framework does not prohibit node or edge additions, as
well as utilization of features. Such methods exceed the scope of this thesis and require further exploration.

o7

Chapter 4. Methodology

58

Chapter 5

Experiments and Results

In order to evaluate the proposed base method along with the models with the additional constraints, we
carried a variety of experiments across two GNN tasks. In this chapter, we will provide all the necessary
background and details of our experimental setup, the datasets we used, the GNN models we explained, and
the evaluation metrics that were used.

In addition, we will present quantitative results across these datasets for each evaluation metric. We will
discuss the potential of a trade-off parameter between our two metrics that should be taken into account
when providing an explanation. Lastly, we will provide visual representations of both the data used and the
counterfactual examples that were created, to fully conceptualize the impact of this work.

Contents
5.1 Experimental Setup L s e e e e e e 60
5.1.1 Technologies used 60
5.1.2 Datasets e e 61
5.1.3 Classifier Models e 63
5.1.4 Evaluation Metrics 64
5.1.5 Trade-off e 65
5.2 Results . . . v . 0 i i e 66
5.2.1 Quantitative Results L 66
5.2.2 Trade-off Study 68
5.2.3 Qualitative Examples Lo 75

59

Chapter 5. Experiments and Results

5.1 Experimental Setup

5.1.1 Technologies used

In this segment, we discuss the technical aspects needed to set up our counterfactual explainer, from the
framework and libraries to the systems used.

The programming language used for all the code implemented within our explainer classes, data processing
workflows, and experimental evaluation was Python. It is a robust and widely adopted language that is
particularly indispensable for machine learning and graph tasks.

First, Python offers an extensive suite of machine learning libraries, notably PyTorch and scikit-learn, which
were used in this work, providing powerful tools and frameworks for developing and deploying machine
learning models. These libraries encompass a variety of techniques, from traditional algorithms to deep
learning architectures, thus facilitating the construction of sophisticated machine learning pipelines for any
graph task endeavor. In addition, Python demonstrates an exceptional capability in data manipulation and
preprocessing tasks, which are pivotal for both machine learning and deep learning. The NumPy library, for
instance, provides efficient data structures and functionalities for data cleaning, handling, and analysis, thus
enabling efficient preparation of graph data for modeling.

The deep learning framework that was used is PyTorch. It plays a pivotal role in facilitating graph-based
tasks, offering a user-friendly and flexible platform for model development. Notably, PyTorch supports a
variety of graph neural network (GNN) architectures and includes pre-trained model weights, node/edge
feature utilities, and evaluation tools, thereby streamlining their incorporation into graph data processing
pipelines. Furthermore, its capacity for GPU acceleration enables faster training and evaluation, which is
essential for complex graph-related tasks. It also provides a framework called PyTorch Geometric which
is a widely adopted extension library, dedicated to the design and implementation of graph neural network
(GNN) models. By offering specialized data structures and utility functions, it streamlines the handling
of node, edge, and graph-level information, and thus simplifies the development of advanced graph-based
architectures. Notably, PyTorch Geometric provides a comprehensive suite of GNN layers and sampling
techniques, enabling efficient mini-batching, neighborhood aggregation, and message passing across large-
scale graphs. As we discussed in Section 4.1.2 ,PyTorch Geometric provides the basic adjacency data structure
and the appropriate edge weight handling that our explainer utilizes to create predictions.

For calculating graph specific metrics, visualizations and graph representation models we used Networkx.
It is a widely recognized Python library dedicated to the creation, manipulation, and analysis of graph-
based data. By providing specialized data structures and utility functions, it streamlines the management
of nodes, edges, and associated attributes, simplifying the development of sophisticated network algorithms.
All centrality measures and graph visualizations were computed with its use.

Lastly, all our code implementation was done in the Google Colaboratory environment. Commonly known
as Colab, it is a cloud-based Jupyter notebook environment that also provides free access to GPU resources.
Users in this way can easily have access to GPU-enabled environments, eliminating the need for local hardware
usage and intense runtimes.

60

5.1. Experimental Setup

5.1.2 Datasets

For our experiments, we used two benchmark datasets for graph classification and one for node classification
[68].

REDDIT-BINARY

This dataset is primarily used in graph classification tasks. Each graph represents a Reddit discussion thread,
where the nodes correspond to users, two of which are connected by an edge if one responded to a comment of
the other. The task is to classify the entire graph as either discussion-based thread or question/answer-based
thread.

o

Figure 5.1.1: Example graph from the Reddit-Binary dataset labeled as discussion thread.

IMDB-BINARY

IMDB-BINARY is a movie collaboration dataset that consists of the ego-networks of 1,000 actors/actresses
who played roles in movies in IMDB. In each graph, nodes represent actors/actress, and there is an edge
between them if they appear in the same movie. If the ego network was derived from an Action movie, the
label for that ego network is “Action.” If it came from a Romance movie, the label is “Romance.” Thus, the
classification task is to determine if an unseen ego-network derived from an Action or Romance genre.

61

Chapter 5. Experiments and Results

Figure 5.1.2: Example graph from the IMDB-Binary dataset labeled as 'Romance’.

Reddit-Binary IMDB-Binary

classes 2 2
graphs 2000 1,000
node features 0 0
edge features 0 0
Avg # nodes 429.6 19.8
Avg # edges 497.75 96.5

Table 5.1: Graph Classification Datasets characteristics. We can see that Reddit-Binary contains larger and
more dense graphs, while IMDB-Binary has smaller graphs, as is expected for an actor ego-network. Both
datasets rely on their structure as they contain no features.

BA-SHAPES

For the node classification task, we used the synthetic benchmark dataset, BA-shapes. This dataset is
designed by adding a motif to random nodes from a base Barabasi-Albert (BA) graph [58]. We chose a
random Barabasi graph with 1000 nodes and added 400 motifs to random base nodes. Each node is classified
into 4 different labels. ’Non-House’ refers to nodes that are outside the motif, and then we have "House-Top’,
"House-middle’ and "House-Bottom’ referring to the position of the node inside the motif. This dataset is
extensively used in explainability tasks because of the existence of ground-truth labels, regarding the position
of each node in the motif.

62

5.1. Experimental Setup

House Motif Visualzation

i1

Figure 5.1.3: House motif connected with a node from a Barabasi Graph. Green nodes are labeled
"House-Bottom’, blue nodes are labeled "House-middle’, the red one "House-top’ and the grey one is

"Non-House’.
BA Shapes
classes 4
nodes in motif 5
edges in motif 6
nodes in total 3000
edges in total 7691
Avg node degree 5.13

Table 5.2: Statistics for the BA Shapes dataset.

It is again important to highlight the absence of node and edge features. The datasets are chosen specifically
to lack these attributes, so predictions and graph modifications are made solely on the graph structure.

5.1.3 Classifier Models

In this subsection, we will analyze the black-box GNN models that were used in our experiments. Our goal
was to explain simple GNN models in order to designate the capabilities of the explainer rather than the
complexity of the models themselves. Hence, we chose simple GNNs that delivered acceptable results on both
tasks, rather than the state-of-the-art models for each dataset.

For the Reddit-Binary dataset, we implemented a Graph Convolutional Network (GCN) [19] architecture
specifically designed for graph-level classification tasks. The model is structured as a three-layer neural
network. The architecture begins with a GCNConv layer that transforms the single-dimensional node features
into 64-dimensional latent representations by aggregating information from neighboring nodes according to

63

Chapter 5. Experiments and Results

the graph topology. Following a ReLU nonlinearity, a second GCNConv layer maintains the 64-dimensional
representation while enabling higher-order neighborhood interactions. Both convolutional layers support
edge weighting through the edge-weight parameter, allowing the explainer later to make edge deletions.
After having set all node features to 1 (since they are unavailable), we employ global mean-pooling, which
aggregates node features across each graph by computing the mean of node representations within each graph
in the batch. This pooled representation is then transformed by a linear layer into a 2-dimensional output
space corresponding to the binary classification task.

For the IMDB-Binary, a more sophisticated model was required. The model initializes with an embedding
layer to map the single input feature to a hidden-channels representation space with 128 dimensions. The core
of the architecture consists of four sequential Graph Convolutional Network layers (GCNConv), each main-
taining the dimensionality of the hidden representations while enabling hierarchical message passing across
the graph structure. Each convolutional layer is followed by batch normalization to stabilize training, and a
ReLU activation function to introduce non-linearity. A distinguishing feature of this architecture is the incor-
poration of multiple pooling strategies to generate comprehensive graph-level representations. Specifically,
we employ global mean-pool, global max-pool, and global add-pool in parallel to capture complementary
aspects of the node representations across each graph. The concatenation of these three pooling outputs
results in a 3 % 128 dimensional vector that encapsulates diverse statistical properties of the graph structure.
This graph representation is then processed through a three-layer MLP with batch normalization and ReLU
activations, progressively reducing dimensionality to the final two-dimensional output space corresponding
to the binary classification task.

For the Ba-Shapes dataset and the node classification task, we used a Graph Convolutional Network (GCN)
architecture to learn node representations from the graph structure. The model is constructed as a three-
layer neural network. The architecture begins with an embedding layer that maps each node to a hidden
channels-dimensional vector space since node features are unavailable. The core computational components
consist of two sequential GCNConv layers, each with a hidden layer dimension of 64. The GCNConv opera-
tions aggregate information from neighboring nodes according to the normalized adjacency matrix, effectively
implementing the spectral graph convolution approximation. Between convolutional layers, we apply ReLU
activation functions followed by dropout regularization with a rate of 0.5 to prevent overfitting during train-
ing. The final linear transformation layer maps the node representations to a 4-dimensional output space,
corresponding to the target labels. As described above, the model utilizes edge weights that are paramount
for our explainer. This architecture enables the model to capture both local and higher-order structural
patterns within the graph through message passing, while the dropout mechanisms enhance generalization
capabilities.

Datasets Accuracy (%)t
REDDIT-BINARY 78
IMDB-BINARY 75
BA-SHAPES 90

Table 5.3: Predicted Accuracy for each dataset by the corresponding GCN models.

5.1.4 Evaluation Metrics

To assess the performance of our explainer, we incorporate two widely-used metrics for graph explainability,
Prediction Flip Rate and Graph Edit Distance (GED).

The Prediction Flip Rate measures how many instance’s predictions were successfully altered to the total
number of instances that were attempted to alter. It is defined as:

1 Y ,
PFR = ;H‘ [f(zi) # f(})]

Where:

e N is the total number of instances (graphs or nodes).

64

5.1. Experimental Setup

e f(x;) is the predicted label of the original instance.
o f(x}) is the predicted label of the perturbed instance.
e J¥ is the indicator function.

In this work, we will present PFR as a percentage (%) of the test set instances, whose prediction the explainer
was able to alter to the total instances in the test set.

The Graph Edit Distance (GED) [59] quantifies the dissimilarity between two graphs by counting the mini-
mum number of edit operations needed to transform one graph into another. In this work, since our explainer
only deletes edges, we denote GED as the number of edges deleted to the total number of edges in the graph
in instances where the explainer manages to alter their prediction (true GED): Then we present the average
GED across the entire test set.

Number of edges deleted to transform G into G’
|E|

GED(G,G') =

Where:
e G = (V, E) is the original graph.
e G' = (V,FE’) is the modified graph.
e F is the total number of edges in the original graph.

For the node classification task specifically, we introduce Local GED and Global GED. Since our explainer
deletes edges only in the k-hop neighborhood of the target node, we keep track of the deletions in the local
and in the global scope of the graph.

Local GED(G, G') = Number of edges deleted to transform G into G’

Edges in the node neighborhood

Global GED(G, G) — Number of edges deleted to transform G into G’

Total edges in the graph

5.1.5 Trade-off

After having formulated our loss function and the evaluation metrics, it becomes apparent that a trade-off
occurs between Prediction Flip Rate and Graph Edit Distance. When searching for the optimal Agisy we
observe that a higher value leads to fewer deletions, while a value close to 0 leads to more edge deletions.
On the other hand, this also affects Prediction Flip Rare because an instance may require a specific amount
of modifications for its prediction to change, and thus not deleting enough edges may result in the label of
the said instance not changing. So we arrive at a complex optimization problem where Prediction Flip and
Graph Edit Distance are heavily impacted by the choice of A\qis; and are inversely proportional. As we strive
for more instances in the test set to be explained, we have to accept an increase in the number of edges that
we remove. It is obvious that when Agist = 0 the explainer achieves its highest Prediction Flip Rare but with
the trade-off of a highly altered counterfactual graph.

Consequently, it becomes crucial to formulate this trade-off and provide an effective range of impact that
the explainer has. In cases where a counterfactual explanation is absolutely necessary and the user must be
provided with one, it is important to relax our distance constraints and try to provide an explanation for
every instance. On the other hand, if a counterfactual explanation is easily achieved and we strive for it to be
as minimal as possible, we can increase the weight of the constraints and try to provide minimal explanations
for only the instances that can be explained with few deletions. So we can formulate the trade-off as a
weighted sum of the Prediction Flip Rate and the Graph Edit Distance for a run on the entire test set as:

Trade —of f =kx PFR+t+« GAE

where k +¢ = 1. The user can decide the value of the weight that each metric should have and adjust the
hyperparameters of the explainer accordingly. A balanced approach that accounts for both metrics would

65

Chapter 5. Experiments and Results

be to use k =t = 0.5 and assign an equal weight to both metrics. In the following section, we will provide
analytical visualization of this trade-off that enlists all possible combinations and how the value of each
hyperparameter affects our explanations.

5.2 Results

In this section, we will provide quantitative results regarding the performance of our explainer models for
all three datasets for both classification tasks. We will also provide a complete visualization of the trade-off
relationship between our two metrics, as well as a few qualitative examples of the explanations that our
models provide.

For the following subsections, whenever we refer to the Base Model we refer to the explainer without any
additional constraint other than the L1 regularization distance term. Then we will provide results for the
Node Degree Model as well as the Edge Betweenness Model that incorporate the respective constraints in the
loss function as we discussed in Section 4.1.3. The Base model acts as a benchmark and the other two models
as an improvement upon it. However, the choice of the appropriate constraint is very important and these
particular constraints do not guarantee an improvement for any task. The proposed framework works with
any carefully chosen constraint that derives from domain knowledge, but it is not certain that any constraint
would improve upon the Base model.

5.2.1 Quantitative Results

In this subsection, we will provide the quantitative results for all of our explainer models for all of the
datasets and tasks we discussed. It is important to note that we performed a hyperparameter search for
the explainer learning rate as well as the number of epochs with which the explainer should be trained.
For the graph classification tasks, we used an Adam optimizer with a learning rate of 0.5 and for the node
classification task we used a learning rate of 0.1. The best number of epochs were found to be 600. For
the node classification task, we denote only the local GED as it is the most impactful one, and all the GED
values represent the portion of edges deleted only in successfully explained instances. The best k-hop value
for the node neighborhood was found to be k = 3.

The tables that will be listed below contain some representative results for the best runs of the explainer
for the corresponding model and a given value of Agist and Aconstraint- Lhe values that are considered best
depend on the trade-off. In this subsection, we will provide some representative values, along with the
hyperparameters that cause them, to show the improvement that an additional well-designed constraint in
the loss function could have on each metric.

REDDIT-BINARY IMDB-BINARY BA-SHAPES
Method Flip ratetf GED| Flip ratet GED| Flip ratet L-GED|
BASE MODEL 53.2 0.2 66 0.12 50.4 0.21
NODE DEGREE 64.5 0.25 72 0.2 — -
EDGE BETWEENNESS 50.7 0.2 — — 51.7 0.2

Table 5.4: Comparison of methods on REDDIT-BINARY, IMDB-BINARY, and BA-SHAPES datasets.
The shown results were calculated using Agist = 0.01 across all datasets. For the Reddit-Binary we used
Adeg = 1 and for the IMDB-Binary Ageg = 0.1. For the Betweenness model we found Ape; = 0.01 and
Apet = 0.1 for the Reddit-Binary and Ba-Shapes respectively.

From these results we can observe that the Node Degree model performs better at Flip Rate than the Base
Model while under-performing in GED for the same distance hyperparameter. This shows that it guides
the explainer into deleting more edges, while providing the ability to explain more instances. This is an
expected result, as both graph classification datasets contain graphs with high degree nodes. Hence, in order
to alter the predicted class, the Node Degree model guides deletions towards edges connected to these nodes.
However, this comes with a trade-off because in multiple occasions the explainer may have to delete more
edges to reach the desired flipping of the label, and thus increase GED. This is a pattern we will observe for

66

5.2. Results

the rest of this work, as the Node Degree model was designed to increase Prediction Flip Rate, by guiding
deletions towards the edges connected to hub nodes. As will be shown in the next subsection, this model
systematically outperforms the Base Model in Prediction Flip Rate while deleting more edges. The Node
Degree model was not used in the Ba-shapes dataset, as the node degree is fixed inside the motif, and results
did not show any improvement over the Base Model.

REDDIT-BINARY IMDB-BINARY BA-SHAPES
Method Flip_ratetf GEDJ| Flip ratet GED] Flip ratet L-GED|
BASE MODEL 80 0.32 79.5 0.17 55.6 0.3
NODE DEGREE 87.5 0.38 84 0.28 — —
EDGE BETWEENNESS 7 0.29 — — 04.7 0.28

Table 5.5: Results using Agjst = 0.001. The rest of the hyperparameters remain the same as we examine the
impact of Agjst -

As we can see, the trend for the Node Degree Model continues. The Edge Betweenness Model, on the
other hand, manages to perform at the same level as the Base model in terms of Prediction Flip Rate while
removing fewer edges. In both tasks, it manages to guide the explainer to deleting bridge edges that carry
crucial information for the message passing algorithm. By targeting these edges, we can observe that it
outperforms the base model in terms of GED while maintaining the same levels of PFR. This trend will
also continue throughout all the experiments as both the Reddit-Binary and the Ba-shapes contain large
and dense graphs that have multiple bridge edges. We do not show results for the Edge Betweenness Model
for the IMDB-Binary because it does not improve upon the Base model. This can be explained by the fact
that there are not many shortest paths in the IMDB-Binary dataset, and so this constraint misguides the
explainer.

REDDIT-BINARY IMDB-BINARY BA-SHAPES
Method Flip_ratetf GED| Flip ratet GED]| Flip ratet L-GED|
BASE MODEL 89 0.45 84 0.22 58.9 0.37
NODE DEGREE 95.75 0.47 90 0.45 — -
EDGE BETWEENNESS 86 0.43 — — o7 0.32

Table 5.6: Results using Agist = 0.0001. The rest of the hyperparameters remain the same as we examine
the impact of Agjst -

To conclude this section, we can observe that both aforementioned patterns continue to hold. The Node
Degree model consistently outperforms the Base model in terms of Flip Rate, providing explanations for
more instances, but with a trade-off tendency to delete more edges to achieve so. The Edge Betweenness
model achieves the opposite as it maintains the same level of Flip Rate to the Base model, but does so while
deleting fewer edges and providing more minimal explanations. As Agjst decreases, the explainer prioritizes
flipping the predicted class heavily over the minimality of deletions. The best Flip Rate can be achieved by
setting Agist = 0, thus completely disregarding the distance term in the loss function, but acquiring examples
that differ significantly from the original instance.

The proposed framework allows for the creation of custom constraints that, when implemented carefully in
the loss function, guide the explainer towards a desired set of counterfactual explanations. In this work, we
decided to implement structural constraints that derive from the graph properties of each dataset and task.
In order for these constraints to have an impact, a preprocessing study has to be done on the graph data, so
that the property chosen reflects on the graphs characteristics. Dense graphs may require a different approach
from small graphs, and star-like graphs may need a different constraint than community formations. However,
these constraints do not necessarily have to be structural. They can represent any semantic pattern possible
as long as the designer of the constraint carefully incorporates it into the loss function. Consequently, the
choice of the constraint is very important as it can either provide more meaningful explanations or completely
misguide the explainer if not executed appropriately.

67

Chapter 5. Experiments and Results

5.2.2 Trade-off Study

It becomes apparent that, since our explainer models consist of two hyperparameters, we cannot simulta-
neously monitor the impact of each one of them on the evaluation metics in a single results table. Hence,
in this subsection, we will provide a visualization study of how each hyperparameter impacts the explainer.
We will provide the effective range of each hyperparameter as well as a way to conceptualize the trade-off
between Prediction Flip Rate and Graph Edit Distance.

We will begin our study by denoting all the important characteristics of each figure. First, we will display
each dataset separately. For each dataset, we will provide a figure that displays both Prediction Flip Rate
and Graph Edit Distance in the same figure for all three models. On the left axis we present Prediction Flip
Rate on a scale of (0% — 100%) with the color blue. On the right axis we display 1 —GED on a scale of (0—1)
with the color green, and on the x-axis the value of each hyperparameter. We invert Graph Edit Distance
because we want the desired values to be at the top as is in PFR to point out the symmetrical nature of the
two (as one increases, the other decreases). For each dataset, we will first present the Base Model and then
the other two. For the Node Degree Model and the Edge Betweenness Model we will also include the metrics
for the Base Model with the colors red and orange in order for improvements to be visible.

Reddit-Binary

Prediction Flip Rate and Graph Edit Distance for Reddit-Binary (Base Model)

100 1.0
80 - —a o8
o 60 0.6 @
a s
2 2
T 01 0.4
[+ 7}
a
201 L0.2
[Lea rning_rate = 0‘5J - Predchtlor? Flip (%)
—&— 1 - Edit Distance
0 0.0

0.000 0.002 0.004 0.006 0.008 0.010
Lambda_Dist

Figure 5.2.1: Base model comparison of Flip Rate and Graph Edit Distance for the Reddit-Binary dataset.
The blue line indicates PFR and the green one 1 — GED to indicate the trade-off relationship and that
optimal behavior is found at the top.

From this figure, we can clearly see the trade-off relationship between Prediction Flip Rate and Graph Edit
Distance. The best PFR is acquired at Agist = 0, along with the worst GED. As the hyperparameter increases,
the penalty becomes stronger, and the explainer manages to provide fewer counterfactual explanations with
fewer edges deleted on average. When the value of A\gist becomes too large, the explainer cannot produce any
counterfactual explanations.

68

5.2. Results

100 Prediction Flip and Graph Edit Distance for Reddit-Binary (Comparison) .

80

60 [0.6

Prediction Flip (%)
- Edit Distance

40 toa L
20 A ro.z
—e— Prediction Flip (Node Degree)
—=— 1 - Edit Distance (Node Degree)
—e— Prediction Flip (Base Model)
—#— 1 - Edit Distance (Base Model)
0 T T T T T T 0.0
0.00 0.01 0.02 0.03 0.04 0.05
Lambda_Dist

Figure 5.2.2: Node Degree model comparison with the Base model for the Reddit-Binary dataset. The blue
line indicates PFR, the green one 1 — GED for the Node Degree model and the red and orange ones the
same metrics for the Base model respectively.

Here, we can observe that the Node Degree model outperforms the Base model for any value of the distance
hyperparameter. In order to display these values we have frozen the constraint hyperparameter value Ageg = 1
where the best results occurred. The trade-off relationship is once again visible as the Node Degree model
deletes more edges on average in order to increase PFR.

100 Prediction Flip Rate and Graph Edit Distance for Reddit-Binary (Comparison) o

-

80

60

1 - Edit Distance

40

Prediction Flip Rate (%)

20
—e— Prediction Flip (Edge_betw)
—m— 1 - Edit Distance (Edge_Betw)
@ Prediction Flip (Base Model)
1 - Edit Distance (Base Model)

0.00 0.01 0.02 0.03 0.04 0.05
Lambda_Dist

Figure 5.2.3: Edge Betweenness Model comparison with the Base model for the Reddit-Binary dataset. The
blue line indicates PFR, the green one 1 — GED for the Edge Betweenness model and the red and orange
dots the same metrics for the Base model respectively.

The Edge Betweenness model provides a different result than previously. We can see that it remains on the
same levels of PFR as in the Base model but achieves so by deleting fewer edges (indicated by the green line
being above the orange line in the 1 — GED metric).

69

Chapter 5. Experiments and Results

To sum up the results for the Reddit-Binary dataset, we can clearly see two major improvements to the
Base model. First, the Node Degree model manages to increase PFR significantly, providing explanations for
more graph instances in the test set. It achieves this by removing more edges that the Base model could not
identify as important while using the same hyperparameter \q;st- This indicates that a well-crafted constraint
added in the loss function could target graph characteristics and improve the masking approach. Our dataset
contains classes that heavily rely on hub nodes. Specifically, the ’Question and Answer’ class consists of a hub
user that answers questions from other users and is hence connected to the majority of nodes in the graph.
So, by targeting the edges connected to this node, we can alter the predicted class more easily. The Edge
Betweenness Model on the other hand, doe not improve PFR but in many cases achieves a lower GED than
the Base model. This shows that targeting edges that act as a shortest path and transfer critical information
in the message passing algorithm can limit deletions and provide minimal explanations. The Reddit-Binary
dataset consists of large dense graphs that include many bridge edges, and so a behavior like this is expected.

IMDB-BINARY

Prediction Flip Rate and Graph Edit Distance for IMDB-Binary (Base Model)

100 1.0
|
80 - 0.8
o 601 0.6 Y
E c
o=]
2 @
£ c
£ 40 - 0.4 &
@
&
20 - oo
Learning_rate = 0.5] —e— Prediction Flip (%)
— —&— 1 - Edit Distance
0 : y . r v : 0.0
0.00 0.01 0.02 0.03 0.04 0.05
Lambda_Dist

Figure 5.2.4: Base model comparison of Flip Rate and Graph Edit Distance for the IMDB-Binary dataset.
The blue line indicates PFR and the green one 1 — GED to indicate the trade-off relationship.

Once again, the trade-off relationship between PFR and GED is obvious. As we decrease the hyperparameter
Adist, we achieve better PFR while reducing performance in GED. When the weight of the penalty constraint
in the loss function is increased, by increasing Agist, the explainer is more strict in deleting edges in order
to produce counterfactual explanations. Generally, all models perform better on the IMDB-Binary dataset
than previously. This can be attributed to the smaller and simpler graphs in the dataset and also to the
increased complexity of the GNN used for this dataset.

70

5.2. Results

Prediction Flip and Graph Edit Distance for IMDB-Binary (Comparison)

100 10
80 - ke 08
£ 60 Lo6 ¥
S g
o a
c [=]
S ol
i S
% £
40 0.4 o
«
20 4 Fo.2
—e— Prediction Flip (Node Degree)
Learning rate = 0.5 —#— 1 - Edit Distance (Node Degree)
Lambda _deg =01 —e— Prediction Flip (Base Model)
= 1 - Edit Distance (Base Model)
0 v T T v T T 0.0
0.00 0.01 0.02 0.03 0.04 0.05
Lambda_Dist

Figure 5.2.5: Node Degree model comparison with the Base model for the IMDB-Binary dataset. The blue
line indicates PFR, the green one 1 — GED for the Node Degree model and the red and orange ones the
same metrics for the Base model respectively.

The Node Degree model again provides the same impact as previously. We can observe an increase in the
PFR that the Base model could not achieve while deleting more edges. The IMDB-Binary dateset consists
of graphs representing the ego-network of actors that played in movies listed in the IMDB. This results in
the existence of a hub node in each graph that connects with every other node. Consequently, guiding the
explainer to delete edges connected to this node provides explanations for more graph instances. This is also
the reason why the Edge Betweenness model was not included for this dataset, as the lack of distinct shortest
paths led to this constraint being counterproductive.

BA-SHAPES

Prediction Flip Rate and Local Graph Edit Distance for BA-Shapes (Base Model)

100 1.0
80 1 Fo.8
T 60 06 Y
T 2
-4 ©
= a
T a
5 3
= fit
S \
5 40 F0.4 ~
o
a
20 4 F0.2
Learning_rate = 0.1 —e— Prediction Flip (%)
= —&— 1 - Edit Distance
0 T T T T v T 0.0
0.00 0.01 0.02 0.03 0.04 0.05
Lambda_Dist

Figure 5.2.6: Base model comparison of Flip Rate and Graph Edit Distance for the BA-Shapes dataset.
The blue line indicates PFR and the green one 1 — GED to indicate the trade-off relationship.

71

Chapter 5. Experiments and Results

As far as the Ba-Shapes dataset is concerned, we can see a drop in PFR in the Base model in relation to the
other two datasets. This can be attributed to the fact that this node classification task is a multi-label one.
In our implementation, we examine the task of flipping the label for a given class towards all other classes
separately. Thus, the number of possible labels flips is three times (since we have 4 classes) the number as
it would have been if we had accepted the easiest class transition as the only counterfactual. This leads to a
general decrease in PFR, since some class transitions are much more difficult than others or may cost more
edge deletions. Again, the trade-off between PFR and GED is apparent, as we increase the value of the
hyperparameter, we arrive at less explanations but more minimal ones on average.

Prediction Flip Rate and Graph Edit Distance for Ba-Shapes (Comparison)

100 10
80 A 0.8
© 604 ¢ 0.6 8
E c
< g
2 2
E -
: b
5 40+ Loa .
@
a
20 - Loz
—e— Prediction Flip (Edge_betw)
Learning_rate = 0.1 —&— 1 - Edit Distance (Edge_Betw)
Lambda bet = 0.1 ® Prediction Flip (Base Model)
= 1 - Edit Distance (Base Model)
T T T T T T 0.0
0.00 0.01 0.02 0.03 0.04 0.05
Lambda_Dist

Figure 5.2.7: Edge Betweenness Model comparison with the Base model for the BA-Shapes dataset. The
blue line indicates PFR, the green one 1 — GED for the Edge Betweenness model and the red and orange
dots the same metrics for the Base model respectively.

For the BA-Shapes dataset, the Edge Betweenness model produces the same pattern as before. We can
observe the same PFR as the Base model but with the deletion of fewer edges, since the constraint penalizes
the keeping of edges in shortest paths in the random Barabasi graph with the attached motifs.

Lastly, we will provide an analysis for how the constraint hyperparameters impact the performance of the
explainer. We will do so by setting the value for the distance hyperparameter steady and plotting how changes
in the constraint hyperparameter affect both our metrics. What we expect to see is the effective range of the
hyperparameters. With values near 0 we expect the model to behave close to the Base model, and with very
high values we expect a hindrance of the results, as the loss increases dramatically. The best values that we
showcased before, are found in the middle of the range, where the penalty is not too high or not too low and
practically guides the explainer to deleting the absolutely necessary amount of edges in order to deliver a
counterfactual example. In the following figures, we will present PFR and 1 — GED as before in the y-axis
and the x-axis we will use Ageg and Apet for the Node Degree and the Edge Betweenness models respectively.

72

5.2. Results

Prediction Flip Rate (%)

100

80

Prediction Flip Rate(%)

20

Prediction Flip Rate and Graph Edit Distance for Reddit-Binary (Node Degree Model)

60 1

Learning_rate = 0.5

Lambda_Dist = 0.01

10

0.8

T
=
o

Edit Distance

0.4

1

- 0.2

—a— Prediction Flip (%)
=& 1 - Edit Distance

0 1

(a) Reddit-Binary dataset.

T 0.0
3

Prediction Flip Rate and Graph Edit Distance for IMDB-Binary (Node Degree Model)

100 1.0
80 1 L 0.8
60 - k0.6
40 4 L 0,4
20 - - 0.2

Leamning_rate = 0.5 —
Lambda Dist = 0.01 —a— Prediction Flip (%)
= =@ 1 - Edit Distance
Le] T T T T T ! 0.0

1

Lambda_Deg

(b) IMDB-Binary dataset

4 5

Figure 5.2.8: Representation of how Age, affects the performance of the Node Degree model for the
Reddit-Binary and the IMDB-Binary datasets.

Edit Distance

1

73

Chapter 5. Experiments and Results

Prediction Flip Rate and Graph Edit Distance for Reddit-Binary (Edge Betweenness Model)

100 10
1 l’—'\ N
—=a
£
T 60 06§
g 3
= L}
E 5
5 :
% 401 0.4
E
20 L 0.2
Leamning_rate = 0.5 —
Lambda_Dist = 0.005 —8— Prediction Flip (%)
= —=— 1-Edit Distance
o ; 0.0
0.0 0.2 0.4 0.6 0.8 1.0

(a) Reddit-Binary dataset.

Prediction Flip Rate and Local Graph Edit Distance for BA-Shapes (Edge Betweenness Model}

100
] '—’\- -
g
T 60 06 8
= (=
= o
e £
« [=]
3
2 401 0.4
o
O
20 4 0.2
Learning_rate = 0.1 —
Lambda Dist = 0.01 —&— Prediction Flip (%)
= —=— 1 - Edit Distance
0 T T T T v . 0.0
0.0 02 0.4 0.6 0.8 1.0

(b) BA-Shapes dataset

Figure 5.2.9: Representation of how Ape affects the performance of the Edge Betweenness model for the
Reddit-Binary and the BA-Shapes datasets.

74

5.2. Results

By examining these figures, we can arrive at the conclusion that, in most cases, the hyperparameters follow
our theoretical expectations. When the constraint hyperparameters are equal to zero, each model is reduced
to being the equivalent of the Base model, as excepted. When we increase their values, we can see the
real contribution that each constraint offers. At some point, the hyperparameters reach an effective range
where they improve on the Base model either the Prediction Flip Rate or the Graph Edit Distance, and after
reaching a specific value, they start misguiding the explainer into deleting unnecessary edges or failing to
provide a counterfactual example.

5.2.3 Qualitative Examples

Lastly, in this subsection we will provide some qualitative visualization examples of instances from our dataset
where a counterfactual explanation was created.

—— Kept Edges
-=-- Removed Edges

Total edges: 1662

Removed edges: 4

Remaining edges: 1658
Predicted class: Q&A
Counterfactual class: Discussion

Figure 5.2.10: Counterfactual example from the Reddit-Binary dataset. Nodes are shown in light blue and
represent Reddit users. The original graph was labeled ’Q /A’ and the counterfactual graph was labeled
"Discussion’. The edges marked with red are the ones deleted. We achieve a counterfactual explanation

with 4 edge deletions.

75

Chapter 5. Experiments and Results

—— Kept Edges
——- Removed Edges

Total edges: 4676

Removed edges: 9

Remaining edges: 4667
Predicted class: Discussion
Counterfactual class: Discussion

Figure 5.2.11: Counterfactual example from the Reddit-Binary dataset.The original graph was labeled
'Discussion’ and the counterfactual graph was also labeled 'Discussion’. Here we can see a failed attempt to
create a counterfactual explanation.

Original class = 'Romance’ —— Removed edges
Counterfactual class = 'Action’ —— Kept edges

[N

Figure 5.2.12: Counterfactual example from the IMDB-Binary dataset. Nodes represent actors and are
shown in light blue. The original graph was labeled 'Romance’ and the counterfactual graph was labeled
"Action’. The edges marked with red are the ones deleted. We achieve a counterfactual explanation with 2
edge deletions.

76

5.2. Results

From these two examples, we can clearly see the impact that our explainer has. In the first and third figures
we can see that with very few modifications we can achieve an alteration of the predicted class. However,
in the second figure, the explainer could not produce a counterfactual example. This example indicates that
not all instances can be explained with the same ease. Another important aspect is the confidence of the
model. If a model’s confidence is too high, then it requires a lot more effort to alter its predictions, regardless
of whether they are accurate or not. All of the above indicate that the added constraint in the loss function
must be very carefully designed and must represent the characteristics of each dataset.

7

Chapter 5. Experiments and Results

78

Chapter 6

Conclusion

6.1 Discussion

Explainable machine learning, particularly in the context of graph neural networks (GNNs), holds substantial
promise for improving trust, transparency, and accountability in automated decision-making systems. As
black-box models become more complex, the ability to understand their internal mechanisms is vital not only
for their users, but also for anyone impacted by their predictions, and requires clarity about how predictions
are formed. Within the broader domain of interpretable machine learning, counterfactual explanations have
emerged as a powerful tool. These explanations not only identify the components that are relevant to a
model’s prediction, but they also provide actionable changes that would alter that prediction. By explicitly
showing how minimal modifications to the input can flip the model’s outcome, counterfactuals support both
understanding and actionable interventions.

In this work, we explore the concept of Counterfactual Explanations for Graph Neural Networks. We propose
an explainer method for generating counterfactual explanations that selectively perturbs the graph structure
by removing edges. These deletions are performed using a continuous masking approach that is then followed
by a binary threshold search in order to ensure that the minimality of modifications. We expand on the
current bibliography by incorporating an extra term in the loss function to account for domain knowledge.
This objective function balances three critical components: encouraging class-flipping behavior in the model,
enforcing minimality of the changes introduced (in order to remain faithful to the original graph), and
applying domain-specific constraints to guide edge deletions toward plausible or desirable outcomes. These
constraints derive from graph characteristics and are designed to reflect on each task’s properties and explicit
behavior. For this work, we implemented two different constraints for our explainer, one that utilizes Node
Degree centrality metrics for nodes inside the graph and one punishing edges with high Edge Betweenness.

For the evaluation of our explainer, we used three benchmark datasets, one for a node classification task, and
two for graph classification tasks. To assess performance, we relied on two primary metrics: Prediction Flip
Rate and Graph Edit Distance. Prediction flip Rate measures how effectively counterfactual modifications
lead to a different predicted label by a black-box model. Meanwhile, GED quantifies the structural cost
of these modifications, indicating the difference between the original instance and the counterfactual one.
These two metrics have an inherited trade-off relationship. While increasing the prediction flip rate can
often require larger structural changes, minimizing structural changes may constrain how frequently flips
can be achieved. Therefore, in order to optimize the explainer’s ability to make meaningful and minimal
explanations, a trade-off study must be performed. This study included the definition of a range for each
hyperparameter that the explainer used, and a visualization of the asymmetric relationship among our two
metrics.

In conclusion, the contributions of this work are multifarious. First, we introduce two structural constraints
that, when added in the loss function of the general counterfactual framework, improve either the number
of instances that we can explain or the size of these explanations. To continue, we perform an exhaustive
trade-off study that extracts the effective range of each explainer model and provides the user with options

79

Chapter 6. Conclusion

to explain each instance. Lastly, we created the general framework for the addition of any well-designed
relevant constraint in the loss function that guides explanations towards any desired outcome.

6.2 Impact

Counterfactual explanations on graph-structured data have profound implications for a multitude of real-
world applications, from social network analysis and molecular drug discovery to financial fraud detection.
In each of these domains, the ability to identify how small, targeted interventions at the node or edge level can
radically alter the outcome of a predictive model is valuable for enhancing trust in those models and generally
for the democratization of Artificial Intelligence. Our proposed method directly addresses these needs by
offering tailored, actionable insights. By encapsulating domain knowledge within its design, this approach
lays a foundation for generating interpretable, reliable, and context-aware explanations, ultimately bolstering
user confidence in machine learning systems that operate over complex and interconnected structures.

6.3 Future Work

On a final note, we would like to suggest further avenues and directions that could improve and expand this
work’s research. As a first step one could try expanding the scope of our counterfactual explainer beyond
structural edge deletion to include masking of node and edge features. Our datasets were chosen based on
their rich structure and their lack of node and edge characteristics. However, this is not the case for many
other datasets and tasks that could be explained using a masking approach of perturbing both edges and
features. By moving beyond edge-centric modifications, it becomes possible to capture more intricate and
context-specific manipulations that can better align with domain constraints.

Another key direction is the incorporation of semantic constraints within the loss function, ensuring that
counterfactuals respect not only the underlying graph structure but also any additional domain knowledge,
logical rules, or other semantic patterns. These constraints could be introduced through a wide range of
classifiers, trained to reflect particular domain requirements. Integrating multiple classifiers for different
semantic properties or real-world plausibility checks would enrich the counterfactual generation process,
leading to explanations that are both more nuanced and more robust in practice. Over time, such methods
have the potential to further improve the interpretability, reliability, and trustworthiness of machine learning
systems that operate on graph-structured data.

80

Chapter 7

Bibliography

(1]
2]
3]
4]
¢
7]
18]
19]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]

[19]

Abrate, C. and Bonchi, F. “Counterfactual Graphs for Explainable Classification of Brain Networks”.
In: CoRR abs/2106.08640 (2021). arXiv: 2106.08640. URL:

Agarwal, C. et al. Evaluating Explainability for Graph Neural Networks. 2023. arXiv: 2208 . 09339
[cs.LG]. URL:

Bajaj, M. et al. “Robust Counterfactual Explanations on Graph Neural Networks”. In: CoRR
abs/2107.04086 (2021). arXiv: 2107.04086. URL:

Barredo Arrieta, A. et al. “Explainable Artificial Intelligence (XAI): Concepts, taxonomies, oppor-
tunities and challenges toward responsible AI”. In: Information Fusion 58 (2020), pp. 82-115. DOL:
10.1016/j.inffus.2019.12.012.

Bettilyon, T. E. [Online; accessed 10-March-2025]. 2019. URL:

Billington, D. Factual and Plausible Reasoning. College Publications, Apr. 2019. 1SBN: 978-1-84890-303-
6.

Bronstein, M. M. et al. “Geometric deep learning: going beyond FEuclidean data”. In: CoRR
abs/1611.08097 (2016). arXiv: 1611.08097. URL:

Cai, R. et al. On the Probability of Necessity and Sufficiency of Ezplaining Graph Neural Networks: A
Lower Bound Optimization Approach. 2024. arXiv: 2212.07056 [cs.LG]. URL:

Chhablani, C. et al. Game-theoretic Counterfactual Explanation for Graph Neural Networks. 2024.
arXiv: 2402.06030 [cs.LG]. URL:

Defferrard, M., Bresson, X., and Vandergheynst, P. “Convolutional Neural Networks on Graphs with
Fast Localized Spectral Filtering”. In: CoRR abs/1606.09375 (2016). arXiv: 1606.09375. URL:

Faber, L., Moghaddam, A. K., and Wattenhofer, R. “Contrastive Graph Neural Network Explanation”.
In: CoRR abs/2010.13663 (2020). arXiv: 2010.13663. URL:

Filandrianos, G. et al. “Counterfactuals of Counterfactuals: a back-translation-inspired approach to
analyse counterfactual editors”. In: arXiv preprint arXiv:2305.17055 (2023).

Goodfellow, I., Bengio, Y., and Courville, A. Deep Learning. MIT Press, 2016.

Guidotti, R. “Counterfactual explanations and how to find them: literature review and benchmarking”.
In: Data Mining and Knowledge Discovery 38 (2024), pp. 2770-2824. por: 10. 1007 /s10618 - 022 -
00831-6.

Guo, Z. et al. “Counterfactual Learning on Graphs: A Survey”. In: Machine Intelligence Research 22.1
(2025), pp- 17-59. DOI: 10.1007/s11633-024-1519-z. URL:

Hamilton, W. L., Ying, R., and Leskovec, J. “Inductive Representation Learning on Large Graphs”. In:
CoRR abs/1706.02216 (2017). arXiv: 1706.02216. URL:

Huang, S. et al. Reasoning Factual Knowledge in Structured Data with Large Language Models. 2024.
arXiv: 2408.12188 [cs.CL]. URL:

Jiang, J. et al. Robust Counterfactual Explanations in Machine Learning: A Survey. 2024. arXiv: 2402.
01928 [cs.LG]. URL:

Kipf, T. N. and Welling, M. “Semi-Supervised Classification with Graph Convolutional Networks”. In:
CoRR abs/1609.02907 (2016). arXiv: 1609.02907. URL:

81

https://arxiv.org/abs/2106.08640
https://arxiv.org/abs/2208.09339
https://arxiv.org/abs/2208.09339
https://arxiv.org/abs/2107.04086
https://doi.org/10.1016/j.inffus.2019.12.012
https://arxiv.org/abs/1611.08097
https://arxiv.org/abs/2212.07056
https://arxiv.org/abs/2402.06030
https://arxiv.org/abs/1606.09375
https://arxiv.org/abs/2010.13663
https://doi.org/10.1007/s10618-022-00831-6
https://doi.org/10.1007/s10618-022-00831-6
https://doi.org/10.1007/s11633-024-1519-z
https://arxiv.org/abs/1706.02216
https://arxiv.org/abs/2408.12188
https://arxiv.org/abs/2402.01928
https://arxiv.org/abs/2402.01928
https://arxiv.org/abs/1609.02907

Chapter 7. Bibliography

[20]
[21]
[22]
23]
[24]
[25]

[26]

[27]
28]
[20]
30]
31]
32]
33]

[34]

[35]
[36]
[37]
[38]
[39]
[40]

[41]

[42]
[43]
[44]

[45]

Kosan, M. et al. Global Counterfactual Explainer for Graph Neural Networks. 2022. arXiv: 2210.11695
[cs.LG]. URL:

Liartis, J. et al. “Semantic Queries Explaining Opaque Machine Learning Classifiers.” In: DAO-XAL
2021.

Liartis, J. et al. “Searching for explanations of black-box classifiers in the space of semantic queries”.
In: Semantic Web 15.4 (2024), pp. 1085-1126.

Liu, Y. et al. “Multi-objective Explanations of GNN Predictions”. In: CoRR abs/2111.14651 (2021).
arXiv: 2111.14651. URL:

Lucic, A. et al. “CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks”. In:
CoRR abs/2102.03322 (2021). arXiv: 2102.03322. URL:

Lymperaiou, M. et al. “Towards explainable evaluation of language models on the semantic similarity
of visual concepts”. In: arXiv preprint arXiv:2209.03723 (2022).

Ma, J. et al. “CLEAR: Generative Counterfactual Explanations on Graphs”. In: Advances in Neural
Information Processing Systems (NeurIPS). Ed. by S. Koyejo et al. Vol. 35. Curran Associates, Inc.,
2022, pp. 25895-25907. URL:

Mastromichalakis, O. M., Liartis, J., and Stamou, G. “Beyond One-Size-Fits-All: Adapting Counter-
factual Explanations to User Objectives”. In: arXiv preprint arXiv:2404.08721 (2024).
Mastromichalakis, O. M. et al. “GOSt-MT: A Knowledge Graph for Occupation-related Gender Biases
in Machine Translation”. In: arXiv preprint arXiv:2409.10989 (2024).

Mastromichalakis, O. M. et al. “Rule-Based Explanations of Machine Learning Classifiers Using Knowl-
edge Graphs”. In: Proceedings of the AAAI Symposium Series. Vol. 3. 1. 2024, pp. 193-202.
Mathworks. [Online; accessed 9-March-2025]. 2025. URL:

Menis Mastromichalakis, O. et al. “Semantic Prototypes: Enhancing Transparency Without Black
Boxes”. In: Proceedings of the 33rd ACM International Conference on Information and Knowledge
Management. 2024, pp. 1680—1688.

Menis Mastromichalakis, O. et al. “ Assumed Identities: Quantifying Gender Bias in Machine Translation
of Ambiguous Occupational Terms”. In: arXiv e-prints (2025), arXiv-2503.
MENIS-MASTROMICHALAKIS, O. “Explainable Artificial Intelligence: An STS perspective”. In:
(2024).

Mitchell, H. et al. “A Network Integration Approach to Predict Conserved Regulators Related to
Pathogenicity of Influenza and SARS-CoV Respiratory Viruses”. In: PLOS ONE 8.7 (2013), e69374.
DOI: 10.1371/journal.pone.0069374. URL:

Molnar, C. Interpretable Machine Learning-A Guide for Making Black Box Models Explain-443 able.
2019.

Molnar, C. Interpretable Machine Learning. A Guide for Making Black Box Models Ezxplainable. 3rd ed.
2025. 1SBN: 978-3-911578-03-5. URL:

NG, K. [Online; accessed 10-March-2025]. 2023. URL:

Nguyen, T. et al. “Explaining Black Box Drug Target Prediction Through Model Agnostic Counterfac-
tual Samples”. In: IEEE/ACM Transactions on Computational Biology and Bioinformatics 20.2 (Mar.
2023). Epub 2023 Apr 3. PMID: 35820003, pp. 1020-1029. po1: 10.1109/TCBB.2022.3190266.
Nkwawir, B. [Online; accessed 9-March-2025]. 2020. URL:

Numeroso, D. and Bacciu, D. “MEG: Generating Molecular Counterfactual Explanations for Deep
Graph Networks”. In: CoRR abs/2104.08060 (2021). arXiv: 2104.08060. URL:

Prado-Romero, M. A. et al. “A Survey on Graph Counterfactual Explanations: Definitions, Methods,
Evaluation, and Research Challenges”. In: ACM Computing Surveys 56.7 (Apr. 2024), pp. 1-37. 1sSN:
1557-7341. pOI: 10.1145/3618105. URL:

Premptis, I. et al. “AILS-NTUA at SemEval-2025 Task 4: Parameter-Efficient Unlearning for Large
Language Models using Data Chunking”. In: arXiv preprint arXiv:2508.02443 (2025).

ResearchGate, S. F. on. Using Hybrid Models for Action Correction in Instrument Learning Based on
AL Accessed on 13 March 2025. 2024. URL: (visited on 03/13,/2025).

ResearchGate, S. F. on. COVID-19 detection using machine learning and fusion-based deep learning
models. Accessed on 13 March 2025. 2025. URL: (visited on 03/13/2025).

Rumelhart, D., Hinton, G., and Williams, R. “Learning representations by back-propagating errors”.
In: Nature 323 (1986), pp. 533-536. DOIL: 10.1038/323533a0. URL:

82

https://arxiv.org/abs/2210.11695
https://arxiv.org/abs/2210.11695
https://arxiv.org/abs/2111.14651
https://arxiv.org/abs/2102.03322
https://doi.org/10.1371/journal.pone.0069374
https://doi.org/10.1109/TCBB.2022.3190266
https://arxiv.org/abs/2104.08060
https://doi.org/10.1145/3618105
https://doi.org/10.1038/323533a0

[46]

[47]

48]
[49)
50]
51]
[52]
53]
541
55]
56]
57]
58]
59]
[60]
61]
62]
63]

[64]

[65]

[66]
[67]

[68]

Saxena, A. and Iyengar, S. “Centrality Measures in Complex Networks: A Survey”. In: CoRR
abs/2011.07190 (2020). arXiv: 2011.07190. URL:

Sotirou, T. et al. “Musiclime: Explainable multimodal music understanding”. In: ICASSP 2025-2025
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2025,
pp. 1-5.

Sun, Y. et al. “Preserve, Promote, or Attack? GNN Explanation via Topology Perturbation”. In: CoRR
abs/2103.13944 (2021). arXiv: 2103.13944. URL:

Tan, J. et al. “Learning and Evaluating Graph Neural Network Explanations based on Counterfactual
and Factual Reasoning”. In: Proceedings of the ACM Web Conference 2022. WWW ’22. ACM, Apr.
2022, pp. 1018-1027. DOL: 10.1145/3485447 .3511948. URL:

Velickovi¢, P. et al. Graph Attention Networks. 2018. arXiv: 1710.10903 [stat.ML]. URL:

Wachter, S., Mittelstadt, B., and Russell, C. “Counterfactual Explanations Without Opening the Black
Box: Automated Decisions and the GDPR”. In: Harvard Journal of Law & Technology 31.2 (2018).
Spring issue.

Wellawatte, G. P., Seshadri, A., and White, A. D. “Model agnostic generation of counterfactual expla-
nations for molecules”. In: Chemical Science 13 (2022), pp. 3697-3705. DOI: 10.1039/D1SC05259D.
Wikipedia contributors. Cross-entropy — Wikipedia, The Free Encyclopedia. [Online; accessed 14-
March-2025]. 2024.

Wikipedia contributors. Multilayer perceptron — Wikipedia, The Free Encyclopedia. [Online; accessed
12-March-2025]. 2024.

Wikipedia contributors. Weak supervision — Wikipedia, The Free Encyclopedia. [Online; accessed 14-
March-2025]. 2024. URL:

Wikipedia contributors. Activation function — Wikipedia, The Free Encyclopedia. [Online; accessed
12-March-2025|. 2025. URL:

Wikipedia contributors. Adjacency matric — Wikipedia, The Free Encyclopedia. [Online; accessed 16-
March-2025]. 2025.

Wikipedia contributors. Barabdsi—Albert model — Wikipedia, The Free Encyclopedia. [Online; accessed
10-April-2025]. 2025. URL:

Wikipedia contributors. Graph edit distance — Wikipedia, The Free Encyclopedia. [Online; accessed
20-March-2025]. 2025.

Wikipedia contributors. Loss function — Wikipedia, The Free Encyclopedia. [Online; accessed 14-
March-2025]. 2025.

Wikipedia contributors. Machine learning — Wikipedia, The Free Encyclopedia. [Online; accessed 10-
March-2025]. 2025. URL:

Wikipedia contributors. Regularization (mathematics) — Wikipedia, The Free Encyclopedia. |Online;
accessed 13-March-2025]. 2025.

Wikipedia contributors. Supervised learning — Wikipedia, The Free Encyclopedia. [Online; accessed
10-March-2025]. 2025. URL:

Wu, H. et al. “Counterfactual Supporting Facts Extraction for Explainable Medical Record Based
Diagnosis with Graph Network”. In: Proceedings of the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies. Ed. by K. Toutanova
et al. Online: Association for Computational Linguistics, June 2021, pp. 1942-1955. DOI: 10. 18653/
v1/2021.naacl-main.156. URL:

L. Wu et al., eds. Graph Neural Networks: Foundations, Frontiers, and Applications. 1st ed. Published
04 January 2022. Singapore: Springer Singapore, 2022. 1SBN: 978-981-16-6053-5. DOI: 10.1007/978-
981-16-6054-2.

Wu, Z. et al. “A Comprehensive Survey on Graph Neural Networks”. In: CoRR abs/1901.00596 (2019).
arXiv: 1901.00596. URL:

Xu, K. et al. “How Powerful are Graph Neural Networks?” In: CoRR abs/1810.00826 (2018). arXiv:
1810.00826. URL:

Yanardag, P. and Vishwanathan, S. “Deep Graph Kernels”. In: Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. KDD ’15. Sydney, NSW, Australia:
Association for Computing Machinery, 2015, pp. 1365-1374. 1sBN: 9781450336642. DOI: 10 . 1145/
2783258.2783417. URL:

83

https://arxiv.org/abs/2011.07190
https://arxiv.org/abs/2103.13944
https://doi.org/10.1145/3485447.3511948
https://arxiv.org/abs/1710.10903
https://doi.org/10.1039/D1SC05259D
https://doi.org/10.18653/v1/2021.naacl-main.156
https://doi.org/10.18653/v1/2021.naacl-main.156
https://doi.org/10.1007/978-981-16-6054-2
https://doi.org/10.1007/978-981-16-6054-2
https://arxiv.org/abs/1901.00596
https://arxiv.org/abs/1810.00826
https://doi.org/10.1145/2783258.2783417
https://doi.org/10.1145/2783258.2783417

Chapter 7. Bibliography

[69]
[70]
[71]
[72]

(73]

Ying, R. et al. “GNN Explainer: A Tool for Post-hoc Explanation of Graph Neural Networks”. In: CoRR
abs/1903.03894 (2019). arXiv: 1903.03894. URL:

Zhang, A. et al. “Dive into Deep Learning”. In: CoRR abs/2106.11342 (2021). arXiv: 2106.11342. URL:
Zhang, J. and Luo, Y. “Degree Centrality, Betweenness Centrality, and Closeness Centrality in So-
cial Network”. In: Proceedings of the International Conference on Modeling, Simulation and Applied
Mathematics (MSAM). Jan. 2017. DOIL: 10.2991/msam-17.2017.68.

Zhou, J. et al. “Graph Neural Networks: A Review of Methods and Applications”. In: CoRR
abs/1812.08434 (2018). arXiv: 1812.08434. URL:

Zhou, Y., Zheng, H., and Huang, X. “Graph Neural Networks: Taxonomy, Advances and Trends”. In:
CoRR abs/2012.08752 (2020). arXiv: 2012.08752. URL:

84

https://arxiv.org/abs/1903.03894
https://arxiv.org/abs/2106.11342
https://doi.org/10.2991/msam-17.2017.68
https://arxiv.org/abs/1812.08434
https://arxiv.org/abs/2012.08752

	Contents
	List of Figures
	Εκτεταμένη Περίληψη στα Ελληνικά
	Θεωρητικό Υπόβαθρο
	Εκπαίδευση Νευρωνικών Δικτύων
	Ιδιότητες Γράφων
	Νευρωνικά Δίκτυα Γράφων
	Εξηγήσεις με Αντιπαραδείγματα

	Προτεινόμενη Μεθοδολογία
	Περιγραφή Μεθόδου Διαγραφής Ακμών
	Εισαγόμενοι Περιορισμοί στην Συνάρτηση Κόστους

	Πειράματα και Αποτελέσματα
	Επισκόπηση των Πειραμάτων
	Αποτελέσματα
	Συμβιβασμός (Trade-off)

	Συμπεράσματα
	Συζήτηση
	Επίδραση
	Μελλοντικές Κατευθύνσεις

	Introduction
	Preliminaries - Theory
	Machine Learning
	Basic Concepts
	Neural Networks
	Deep Learning

	Graph Neural Networks
	Graph Theory
	GNN Taxonomy
	Training a GNN
	Architectural Variations

	Counterfactual Explanations
	Motivation
	Factual Reasoning
	Counterfactual Reasoning
	Taxonomies
	Background

	Related Work

	Methodology
	Counterfactual Explainer
	Architecture
	Continuous Masking
	Loss Function Constraints

	Experiments and Results
	Experimental Setup
	Technologies used
	Datasets
	Classifier Models
	Evaluation Metrics
	Trade-off

	Results
	Quantitative Results
	Trade-off Study
	Qualitative Examples

	Conclusion
	Discussion
	Impact
	Future Work

	Bibliography

