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ITepiindm

Toa Movtéha ‘Opaone-I'hdococ (VLMs) mopouctdlouv nohd xahéc emdboelc o8 oOVIETEC OMTUXO-YAWOOIXES
epyooiec. To anoteréopata TOAGDY EPELYNTIXWY EPYACLOY BElYVOUY WG OL TEYVIXES TEOTEOTNC ot oL Uédodol
Aentouepols TpocapUloYNC UTopoly va yenoidorointoly yio va evioyboouv tny andédoon twv VLMs. Ané v
SN TAevpd, Ta oOYypove molutpotuxd LLMs eEoxohoudolv va avtipetonilovy duoxohiec oe epyaciec mou
amoutolv GOVUETN Aoyixn, eEwTepin YVOGON xou amovThoels euduypaloUEVES Ye Tov dvilpwno. Xtny mopovod
dimhwpotiny epyacio, e£etdloupe TOUC TEPLOPLOHOVS TWY UEYEAWY TONUTEOTUXWY UOVTEAWY GTNY OVTLHETMOLOT
TEOBANUATWY TTOU AmATOUY EEWTEPXXTY YVOOT xou xowv oy, Eotidlovtoc ota ohvoha dedopévev Stanford
Image Paragraph Captioning xor OK-VQA, Swmotdvoupe 6Tt av xou tor mtohutpomxd LLMs napouoidlouv
YVOOTIXES, YAWOOWES X0l ANOYIXES IXAVOTNTES, 1) andd0oY| Toue meplopiletar 6tav avTdetonilovy Tohhég oUv-
Yeteg epyaoiec Tautdypova, 1 6Tav npootatolv Vo BOCOUY AMAVTACELS OE CUYXEXPUIEVT] LORPT|, 0XOAOLTMVTIC
Tpoxotopiopévoug xavovee. To amotehéopota xan 1) avdiuct| pog detyvouv éti ta toAutpomxd LLMs tedeutolag
teyvoloylac EeMepvoly TOANES Popéc Ta LTEPYOVTA GUVOAN BEBOPEVLY GTNY TApAY WYY TOEOYEAPWY, EWBLXA OTIC
AETTOUEPELEC TTOL Bivouv, aAAd Buoxoledovion TNV EE0YWYT TOV CNUAVTIXOY CGTOLYEIWY TOU OTTLXOU TEPLEYOUE-
vou. Opoiwe, duoxokebovton pe cUVora BEBOUEVWV TEPLYPUPHOV EXOVWY TIou oTnelloviol o8 €pmTALITA TOU
anowtolv yvaor, 6mne to OK-VQA. T va evioyboouye tyv andédooy| toug oe autiyv Ty Tepintmon, yenot-
ponotolue éva cuvepyaTixd TAdlolo Tou mepthauBdvel telo wovtéha: tov AviyveuTy, éva LVLM nou 8éyeton
plar exxdva wg elcodo xou TNV TEPLYPAPEL GE Uiol TIopdYeopo, Tov AvaAuty, éva LLM mou dnulovpyel pa apyixn
ATAVINCT, TNV EEWTNOY WE Bdom TNV meplypapn tTne exdvoc xat tov Atoprop@wTh, éva LLM nou e&dyet xou
poppotolel TV Tehn andvinon e Bdor éva oUvolo TEoxadOpLOUEVLY XAVOVWLY.

Ag&eic-xAedid — Meydho \woowd Movtéha, Iloiutpomixd I'woowd Movtéha, Movtéha ‘Opaonc-
IMdooog, Luothuata [lodaamhadv Apaoctdv, Andvinon Onuxdy Epwthoewy ye Xpron E€wteprc I'vdong,
Ieprypagy) Exodvoe oe Hapdypago






Abstract

Vision-Language Models (VLMs) have demonstrated remarkable capabilities in complex visio-linguistic tasks.
An extensive body of work has explored how prompting techniques and fine-tuning methods can be used
to enhance their performance. However, modern multimodal LLMs still struggle with tasks that require
complex reasoning, external knowledge, and human-aligned responses. In this work, we investigate the
limitations of large-scale, multimodal models in handling open-ended tasks that demand external knowledge
and commonsense reasoning. Focusing on the Stanford Image Paragraph Captioning and OK-VQA datasets,
we find that although these models demonstrate substantial cognitive, linguistic, and reasoning abilities, their
performance deteriorates when managing complex tasks simultaneously while adhering to specific response
formats. Our analysis reveals that state-of-the-art multimodal models surpass existing datasets in paragraph
generation but continue to face challenges in generating high-quality paragraphs. Similarly, they continue to
struggle with knowledge-based, open-ended benchmarks such as OK-VQA. To boost their performance in the
latter, we employ a collaborative framework comprising three models: the Scout, an LVLM that takes an
image as input and describes it in a paragraph; the Analyser, an LLM that generates an initial answer to
the question based on the image description; and the Resolver, an LLM that extracts and formats the final
answer based on a set of predefined rules. Our framework yields improved performance over the single-agent
baseline, indicating the effectiveness of a collaborative approach.

Keywords — Large Language Models (LLMs), Multimodal Large Language Models (MLLMs), Vision-
Language Models (VLMs), Multi-Agent Systems (MAS), Knowledge-Based Visual Question Answering (K-
VQA), Image Paragraph Captioning (IPC)






Euyaplotieg

Me v napoloa Simhwpatixnt] epyacioa ohoxhnewvetol 1 goltnot] pou otn Xyor ) Hhextpohdywy Mnyavixdy xou
Mnyavixcyv Troroyiotedv touv Edvixol Metodfiou ITohuteyveiou. Oa deha va euyapiotiow Yepud 6houg Toug
avlpdroug Tou ue othpl€ay Oha aUTA Ta YpoVia xou TOTEPAUY O EUEVA XOL OTOL OVELRE UOL.

ISwitepeg evyopiotieg ogeihw otov emPBrénovtd pou, x. Adavdoio Bouhddnuo, yia tnv mohdtun xadodrynon
%o UTOGTARLEN TOu, T6G0 eVToE 600 ot exTéC Tou Thatotou Tne Bimhwuatixic epyaocioc. Eniong, Yo Rieha va
euyaplothon Witepa T Maplo Aupnepatou xar tov Iidpyo Puhavdplavéd yia v xadoplotixr cuuolr toug
1660 GTNV EUNVEUCT] GO XUl GTNY OAOXANPWOT] TG TopoVoaS epyasiac.

O ek axdun Vo EXPEACH TNV ELYVOROCUVY] WOU GTOUE BXoUC UoU ovlp®Toug ol Wiaitepa 0ToUS Yove(g
HOU XalL TOV adep®d KoL, Yiot TNV auéplotn uTtooTheEY| Toug ot xdle eninedo xou yio To OTL pe Exavay e€apy g va
ToTel TS BEV UTdpyEL TinoTa oL Vo uny Prop va Tetiyw. Euyapiotd Wiaitepo tnv Eadéppn, oupuoditpla
%o cLUGOLTATELA pov, 'Eleva, ywpeic tnv onola 1 goltnon otn oyohy Yo ftav ula telelng Swopopetxy| eunelpia.
Téhog, euyoplotd Vepud Toug PihoUE LoU, EVTOC Xl EXTOC OYOMAC, Yot OAES TIC OTLYUES EEYVOLAOLAC XaL W) TTOU
HOLOUOTAXOMUE AUTE TOL YPOVLAL.

ITnverénn Mtduou, Mdptiog, 2025
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Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

1.1 Oewpentixd TroBadpo

1.1.1 Ewaywyn
Kivnteo

H ouveyde avZavduevn mopovaia 1wy Meydhwy I'hwoodv Movtéhwv (LLMs) ennpedlel oyeddy xdde ntuyt
e o0y yeovne Lwng, épvovTag emavdo taor oty avalTnon YVOoNg, aTr cUAROYLo TLXY xou 6T Ble&aywyr| yele-
WVIXTXOVY epYaoloy. 20Tdoo, 1 xatovénom, N tedBredn ot 1 TAUGIWoN AUTOY TWY ABLUPAVOY CUCTNUATEVY
napapévouy Wiaitepa tepimhoxec. Mdhiota, n mohumhoxdtnta evielveton xadwe petofaivoupe amd Lovohdixd
povtéla oe obvieta cuoThAuaTa TEXVNTAS YOoNRoouYNg He ToAomAd eZewdixeuuéva otolyela, xadoTdvTag Ty
aviyveuon Aoy oxdun Suoxoldtepn. Lo mhaloio autd, ta ITohumpaxtopixd Luothuata (MAS) npocpépouv
plo o Bloporvy} EVOANIXTIXT, ETUTEETMOVTAS TNV XOTAVOUN XoU T1) DIEXTERUWOT EPYACLOY GE TOANS Bridota péow
TOAMOTAGY Tpaxtépwy. H mapoloa épeuva emxevipdvetol ot PeAétn tng Suvatdtntog twv LLMs va evioyd-
oouv Ta poviéha Ontixo-T'hwoowhc Katavonone (VLMs) yio tn Sie€oywyr) oOveTwv pyaotdv YvoHong xot
ocuhhoyloTixhc, omwe N Heprypagr Ewdvae o Hoapaypdpo (IPC) xaw v Andvinon Ontxdv Epwthcewv ye
Xption EZwtepic T'vdone (Knowledge-Based VQA). TTapddinha, Siepeuvd i embOcelS TV GUYYPOVGDY To-
hutpomixwv LLMs, cuyxplvovtog atopixée ol TOAUTPOXTOPIXES UPYLTEXTOVIXES, TEOXEWEVOL Vo avadelel tny
ATOTEAECUATIXOTNTA TG CUVERYAOLOS Yiot TNV ETUAUCT], OTTIXO-YAWTOXDY TEOBANUATWY.

Epesuvntixd Epwtipata xow YroV€oeig

Ta cUyypova todutpomixd povtéra, onwe too GPT-4, Claude 3 xow Gemini 1.5, cuvdudouv Yhwoouxt euyépeta
XL OTTIXH xaTavdnom, emTuyyYdvovtag LPniég embddoelg oe epyacieg TOU ATATOUY YVOOY X0l GUANOYLOTIXN
([106], [143], [142]). Me auth ) Bdon, n napoloa perétn e€etdlet ot ntoto Badud o poviéra autd urnopolv vo
neplyedouy emopxde Uia edvo PEcw W Tapayedpou. AZloAoydvTag Tic BuvaToTNTES Toug Xau evtonilovTag
To Baowd onuelar aduvopiog Toug, 1 épeuva GUPBAAAEL TEOTE(VOVTAC XATEVTUVOELS Yol TNV XAAUTERY) XAUTACKELT
OUVOAWY DESOUEVLV Xall UETEODY AELOAOYNONG OTOV YWEO TNE TEPLYPAUPNS EXOVIS GE Tapdypapo, 0UTWE (DOTE
VOU AVTOVOXAWYTOL Ol TROYUOTIXES IXOVOTNTES TWV GUYYPoVWwY Tolutpomixdy LLM.

To Yhwooxd poviéha éxouv amodnxeupéva dlopopetind eldn yvoorne otic napopétpous toug ([117]; [3]), v
omofal Unopolv Vo avaxXTHOOUY Yo TNV AndvInoT epwTHoEwy Tou anatody eEwntepxd yvaon ([106], [143], [142]).
Ye autd to mhaloto, e€epeuvolye TN BuvaTdTNTA TOoug Vo anavtdve oe oUVIETES EpWTACELS Yol EIXOVES TOU
ouvéhou dedopévwv OK-VQA, o onolec Baoilovta oe e€wtepin| yvdon. Kotd autdv tov tpdno, npootododyue
VO XOTAVOTICOUUE TOUG TopdyovTeg ou nepLopllouy TNy emiBooT TwY TOAUTROTUXOY YAWCOIXDY HOVTEAWY GTO
POV 6UVORO Bedouévwy, xodie enlong xau va avadel&ovue otpatnyxés yio Ty alonoinon tou TAfpoug elpoug
TOV BUVATOTATWY TOUG.

Ta ITohunpaxtopnd Luothuata €xouv yenowonoindel yia t Bedtinwon tng enidoone Twv yovtélwy ot gpyaoieg
7oL cLVBUELOLY GPUCT) XL YADCGO xou Aot toUV YVOOT xou cuAhoyLoTxr| ixavdtnta (Tlivaxac 3.1). Trodétoupe
OTL Uit avBAOYT cLveEpYATIXY TROGEY YL, 1) omola PBaciletar otn cuvepyasia mpaxtépwv LLM, da yropoloe
vo Bedtidoel Ty enidoor twv tohutpomixwy LLM oto odvoro OK-VQA. H emBefoiwon authc tng unddeong
Yo TPOOPEPE WA TLO AMOTEAECUOTIXNY TEOCEYYLOT] YLOL TNV ANAVINCTY ONTIXWY EpWTNOEWY, ARG X0l CapéaTepn
XATAVONON TWV TOpAYOVTWY TTou Teptopilouv Tic emddoels Twv Tolutpomuxtv LLM oto alvoho OK-VQA.

ITewpapatind ITAaicro

Io Ty mewpapatiny @don tng epyaciog, doxywdloupe to Claude wq €va ueydhng xAluaxag, ToOAUTEOTXG LOVTENO
o 000 epYUCIEC: TNV TERLYPAPT] EXOVOC GE TORUYPAPO X TNV OTEVINCT ONTIXMY EPWTACENY UE PN E&w-
Tephc Yvoong. I tny npodtn epyacia, TEOTEENOLYE TO LOVTEAD VoL THEAYEL TOROYPAPOUS TOU TEELYRAPOLY TIE
eXOveg evoc utocuvohou tou Stanford Image Paragraph Captioning Dataset. A&woloyolue tnv enidoorn tou
HOVTEAOU UE TN YEHON TWV YAWOOM®OY UETENOEWY Tou €youv xadoplotel amd Toug dNnploueYolS Tou GUVOAOL
dedopévewy Stanford. Iapddinha, Sie&dyouue gl YAWooXH ovdAuaT yiol VoL a€LOAOYICOUPE TOCO UoxpooxeRE(S,
hemtouepeic, onuactohoyxd Tholaoles, TOMAOUOPPES Xou YeouuaTd opléc elvan ol mopdypapol Tou LovTélou,
o€ OYEON UE QUTEC TOU GUVOROU BESOUEVMY.

It Belbtepn epyaoio, allomololpe o cUvolo dedouévewy OK-VQA, to onolo mepilopPdverl epwtrioelc yia
elxOvee Tou amantolyv eEwTepr) YVHon yia va anovtndolv. Xenollonololue TN UETEIXH Tov TpotelveTar and
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1.2. Oewpnuxd TndBadeo

TOUG dMULIOVEYOUS TOLU GUVOAOU dedouévmy xan aflohoyolue Ty enidoon evog ueydhng xhipoxag ToALTEOTXOD
povtéhou. Iapddhnha, mpotelvouye éva GOGTNUN TOANATAGY TEaxTéPWY oL cuvioTaton amd Telo HovTéAd: Tov
Aviyveuty), éva ToAUTPOTUXG YAWOOIXG UOVTENO TOU AoPBAveL pLol exxova we elcoB0 ot TV Teplypdpel o plot
napdypapo, Tov Avohuty), éva YAwooxd UovtéAo mou TPOTELVEL WLl dpyIXT| ATAVINCT GTNY EpMOTNON Ue Bdom
™V TEPLYPaPY) TNS EOVIS Xt TOV ALgop@nTh, €va YAWOoIXG YOVTENO Tou eEdYEL Xl LOPQOTOLEL TNV TEALXN
andvtnon pe Bdomn éva ohvoro TpoxadoploUuévmy XoVOVLY.

Yuvelcpopd

H rnopolou epyoacia cuvelo@épel otov BLdAOYO Ylo T TOAUTEOTUXE XL TA TOAUTRUXTOEXE GUGC THUATO
avadev0oVToag Baoixole TEpLoploRoVg GTNY TAUTOYEOVY BlayElPLOT) EQYACLKY TOU ANALTOVY OTTIXTH GUANOYLOTLIXY
%o EEWTERIXT| YVAOOT), OIS 1] TIEPLYPOPT] EXOVAC OE TOROYEAPO oL 1) ATAVTNGCY, ONTXWOY EPWTHCEWY UE Yerom
e€wtephc Yvwone. Tot Ty avTIHETOTION TWV TEPLOPLOUMY AUTWY, TEOTEVOUNE EVal CUVERYATIXG CUCTNUM TOU
ouvdualet éva TOAUTPOTUXG HOVTENO Xou 300 Ueydha YAwoowd povtéha. H mpocéyyion auth odnyel oe Behti-
wuévn anédoan ato alvoro dedopéverv OK-VQA. Tlapddhnha, n yAwoouxh avdhuot mou Bie€dyoupe yio to
olUvoho dedopévwy Stanford Image Paragraph Captioning pde amoxolintel 6t tar undpyovta clvoha dev el-
VO OPXETE AMALTNTLXA YLol T oUYYEOVA YAWOOLXd YovTéla, unoypouuilovtag Ty avdyxr yio véa cUvola xat
HETPWXES. e auTéd To mAalolo, mpotelvovton xatevuvThples Ypouués yia T dnuiovpyla Toug, Ye oTéY0 TNV
AVTUETAOTLON TWV BUVOULLY TWV GUYYXPOVLY HOVTEAWY.

1.2 Oewentixd TroBadpo

1.2.1 Mevydra I'woowxd Movtéaa (MT'M)
Ewcaywyi

Toa Meydho Mwoowxd Movtéha (LLMs) eivon yAwoowxd goviéha pe peydho aprdud mopopétpwy, To onolo
exmadebovTal ue TeYVIXEC aUTOETBAETOUEVNG Hadnone o TEPdoTIA CHOUATO XEWEVOU YLOL TNV EXUAINOT O TATLO-
TV Yotifowv ot yhdooa. Ta nepiocotepa alyypova Yhwoowd poviéla PBoocilovian oty opyltextovixn
petaoynuatio oy [142], 1 onola povtehonotel tic e€apthioeic petadd tov axohouthdy eloddou xou e£630u péow
eVOC unyaviopol autompocoyfc. H npoexnaldevon etvor to mpodto xplowo By otny avdntuin evéc YAwooixol
povtéhou xai Tepthopfdvel TNV eXTALBEVCT] TOU GE CWOUATA XEWEVOU BAOEL XATOIWY GTOHYWY AUTOETUTARNONS Xo
npoexnofdeuons. O x0plog oTo)0¢ exnaldevons evée YAWooxoU Lovtéhou cuVADLE apopd Ty TeoBiedn tne
mdovétTnTog eppavions evée xewévou z [84]. Qotbdoo, xadde ta LLMs xhpoxdvovton oe péyedoc, ouyvd
eupavilouy avaBUOPEVES XavdTNTES, OTWE 1 VYN culhoyioTixy 1 1 uddnon evtdg mhouclou, ol omoleg dev
UT8pY 0LV OE UixpOTEPR UOVTERA Xat JEV amoTEAOVY duecous otdyous e exmaideucic toue [161]. Autéc ol
VO TNTES Unoeolv Vo oa€lonoldoly UEGL TEXVIXWOY TPOTEOTNC, EMTEENOVTAS TNV EXTEAECT] CUVIETWY EQYAUOLAOY
yoelc tpdovetn phdulon Twv TapoUéTewY.

AuvatotnTeg

To LLMs €youv avadelydel oe 18Laltepa txavd cLoTAHUATA, ETUOEUVIOVTUS EVa EVPOS TRONYUEVWY BUVITOTHTWY
Tou mpocouotdlouy Ty avipnmvy vonuoolvn. H apyitextoviny| yetaoynuatiotdv toug mpocdidel e€alpeTtixn
ELPEABELL XAl YAWOOLXY) ENHEXELY, ETUTEETOVTAC TOUC VO XATOVOOUY Xl VoL OVOTAEdy ouy Tov ovlpnivo SLdAoyo,
vor exBnhévouy evouvaioUnon xou va egpuooldy v eumiotoolvn otov dvipwro ([108]; [94]; [185]; [52]; [14]).
ITépa amd Tic YAWOOIMES TOUC BUVATOTNTES, TA HEYAAN YAWOOWXE LOVTEND BLATEENOUY GE €pYAT(EC TOU AMOULTOUV
A suihoyioteh ([32]; [159]), eved TapdAAAS EVEOUATOVOLY UEYEAO OYXO YVOOTC GTLC TUPAUUETPOUC TOUC,
hertoupydvTog we evéhxtes Bdoels yvoone ([117]; [5]). Emmiéov, dadétouv ioyupéc deidtnteg oyedlaouod
X0l GUVTOVIOUOU: Umopoly va avaAlouv epyaciec oe emuépoug Prigata, vo avadétouv umoxadrixovia oe iAo
HovTERd, Vo yenolponololy eEmtepnd epyoaheio xan vor oynuatilouv ToAUTEAXTOPXE GUC THUATO VLol T CUVEE-
yotixh entivon npoBAnudtev. ‘Etol, 1 yAdooa hertovpyel oyt uévo w¢ péoo €xppacnc, ahhd xon we epyaieio
dopunuévng oxédne xou AMdne anopdoewy.
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Mnyovixn Ilpotponwy

To tehevtaion xpdvia, N expudinon uéow tpotpony (prompting) éyel avodety Vel we wio Loy Ve EVORNOXTIXY oté-
vovTL ot ouufatixd Tpocéyyion tne tpoexmoideuong xou Aentic pbdulone (pretrain and fine-tune), emitpénovtog
ota Yeydha YAwoowd povtého va exteholy ohvieto xodixovta e eAdytotn emonteio [85]. Auth 1 petatdmion
oto nedio avadeviel Gyl LOVO TNV AMOTENESUUTIXOTNTA TS pnyovixic Tpotpondy (prompt engineering) e
TPOGEYYIOT), OAAG o Tig TpaypaTixés Suvatotntes Twv LLMs. H cuvepyaoio yetald noAlamiodv npoxtdpwy,
OmoU BlopopeTind LovTéha ahAnhemidpoly, culloyilovtan xou e€edixebovtar yior vo emhloouy clOvieta xo-
Vxovta, Jewpeltan to véo undderyua otov ywpeo twv LLMs. Toa MAS eowtepelouy eyyevide molkéc and
TG TPOBOCLOXES TEYVIXEC TIPOTPOTY TOL EVIOYVUOUV TN GUAROYICTIXY, TN AN anopdoewy xou Ty TedoBacn
oe YV&oT), Ywelc va aroutody pnty exnaidevor. H eowtepind) Sour) twv MAS, péow e avddeone pdhwy, tng
AVAINUCNC EPYUOLOY, TNG EEWTERIXNAC OVUTEOPOBAHTNONG ol TNS DUVAUIXAC CUVERYAOIAC, TEOGOUOLMVEL TTUYES
e avdponivne vonone ([71]; [49]; [16]). Qotéoo, Inthuata 6mwe 1 actddeio pOAOY Xou 1 TEOTEOTY TKV
TOAUTIPAXTOPLXWY CUC TNUATWY OVIBEXVUOUY VEEC TTPOXAHOELS.

ITpoxAvoelg xouw HOwxd Zntrpata

Iopd Ty 6080 TV PEYIAWY YAWOOXMY LOVTEA®Y, eEax0hoLTOUY Vo LPICTAVTOL ONUAVTIXES TEOXAACELS Xo
neploptopol. e texvind eninedo, ta LLMs emdewviouv woyuph Tuminy YAwoowr| endpxeid, oAAd oTEROUVTAL
oANUVAG XATOVONONG AL AELTOURYLXDY YAWCOIXDY IXAVOTHTOY, EYEIPOVTAS EPWTAUATO YIol TO XUTA TOGO TEAY-
potind cuhhoyilovion ¥ amhéde avanapdyouy potifo and ta dedopéva mpoexnaideuone ([95]; [50]; [184]; [17]).
Iopoucidlouv eniong xevd yvoone xan meploptopévn e€edixevon oe empépouc topelg, dnwe 1 uyelo, To dixono
xa 1) owxovopia ([83]; [149]). Eniong, elvou enppeny| ot napaucIioeic (hallucinations), nopdyoviac neloTind ahhd
eo@aipéva anoteAéopota, Wing 6Tay o Bdiiouy yia xdmolo TAneogopia ¥ divouv TpoTEpadTNTA GTNY OAOX-
Mpwon ulag epyaciac ([120]). O napoucdfioeic amoteholy éva axdyo PavOUEVO TOL €YEL UTOVOUELGEL TOGO
Vv anédoaon 6o xa Ty o&lomotio Twv LLMs, 18ing oty meplntwon 1oy ToATeomuxmy HOVIEAWY, OTOU Ol
nopac¥foelc eivan dyL Lévo evtovdtepes ahhd xou To evxola avtiinmtéc and tov dvdpwno ([93]). H "ayvwoia",
n anotuyia dnAady op¥nc epunvelog cuoUNTNELEXOY ELCEOMY, LWBLOLTEPA 1) OVOLY VOPLOT| OTITLXMY GTOLYELY, TS
avTixelpeva, ypouata xal Yweixée oyéoel, etvan pio axdpa ENewpn tou éxer nopatnendel ([131]). Ilopdhinia,
N xododNy oo TN TV HoVTEN®Y (steerability) mopauéver TEPLOPLGUEVT), UTOVOUEDOVTAS TNV ARy WYXOTNTA
xai Tov €heyyo. Xe nowd eninedo, ta LLMs evioyouy {ntiuato tpoxatdAndme xou topanAneopéenong, HEoe
NS BLLOVIONS OTEPEOTUTIWY Xall PHETABOONE eoahuévne N emPBhafBoic mhnpogopiag. Ilapd tnv npdodo, ta ywov-
TENOL TAPOEVOLY aBLopaVY), GUY VS TTUPEY OVTOS TOPATAUVNTIXES OUTLOAOYAOELS TOU UiolvTaL THY avipdmivn oxédn
ywele va amoxahintouy Ty meaypatixy Swdixactia Mne arogpdoewy. Autéc ol mpoxhfoels ovadetxviouy Ta
TEX VXS o VewpnTixd dplat v oY ypovwy LLMs xou uroypopuilouv tny avdyxn yia mpocextixd oyediaopo,
a&lohdynom xa SlaxuBépynon WoTe va BlacpalloTel 1) ao@airic xar utebduvn yerion Toug.

1.2.2 Movtéla Ontixng-I'Nwoowxrc Katavonong

To Movtéha Ontinhc-Ihwooinic Koatavénone (Vision-Language Models, VLMs) efvan povtédo mou exnoudedov-
TOLL VOL XOLTOVOOUY XAl VOL TIOR8y OUV TANEOQOoE(ol HEGL OTTIXGY XOL XEWEVIXGDY Lop(ov, padaivovtas evduypouulo-
HEVEC avamapao TUOELS PEcw GUVOLLY Bedopévmy exxdvac-xeévou [58]. Ta npmiwa VLMs, énwe too CLIP xou
ALIGN, Basiotnxay oty avtiotolyton emxdvemy xon XelUevmy oe évay xowvé ywpo evonudtoone ([119]; [58]).
ITo npdogata, eppaviotnay to Meydha Movtéda ‘Opaone-T'hédooog (Large Vision-Language Models, LVLMs),
TOL OO0l EVOWUATWVOLY UPYLTEXTOVIXEC BUCLOUEVEC OF PETUOYNUATIOTES, EMTEENOVTAG TNV TEOEXTULBEUCT] O
peydha ToluTpoTXd oopote dedopévev [4]. Teyvixéc mpotponfic (prompting) unopolv vo Eexheldmdoouy olv-
Yetec TohUTPOTUIXES IXavdTNTES SUNOYLoHOU. Movtéha 6mwe To BLIP-2 [73] yegupdvouy o VLMs xou oo LLMs,
ouvdudlovtog "maywuéva" LLMs pe xwdxonomntés ontixwy dedopévmy. Auth 1 e€EMEn 0dYynoe ota HeYdhng
xhipoxoc mohutporixd LLMs 6nwe to GPT-4 [106], ta onolo elvon ixavd v enelepydlovton TouTtdYpove oTTind
TEPLEYOUEVO Xal XEIUEVO.

Koptec npoxirioeic oty €peuva twv VLMs mepilopfdvouy tic mapacdioels, Ty ac@dieta, 0 Sixanocivy,
Y eLHVYEAUULCT] TWV TOAUTEOTUXDY BESOUEVWY, TN GUAROYLOTIXY, TNV ANOBOTIXOTNTA TNS EXTULBELOTS XoL TN
onavidtrnta dedopévenv ([80]; [43]). Apxetéc yehéteg éxouv eepeuvioet TN Yphom Baoewy YVmone xou eldxdtepa
HEYIAWY YAWOOIXGY HOVTERWY Yia THY evioyuon Tewv duvatotitewy tov VLMs ([22]; [149]).
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1.3. Ipooeyyloeic

1.2.3 IToAumpaxTopixd JLCTHUATA

Ye avtideon ye to tohoudtepo povtéha unyavixrc wdinone, to onola Aettoupyoloay avedptnta, Ta oNUERVY
ocuotiuata ou Poaotlovton oe LLMs evowuatvouy ToAATAG EEEIBIXEVUEVO UTOCUC TAHRATI, OTWS AVAXTNTES
yvoone, depunvelc xdixa xar eEntepd epyahein, dote va extelolv mo olvdetec epyaociec [182]. Auty
7 petdBaon odfynoe oty avdntudn Tpaxtépwy Boactopévey oe LLMs (LLM agents), ot omofol eivon weovol
Vo ABdvouy autdvopes anopdoelc xat vor emAoUY TEOBAAUNTA GUVERYOTIXG, Elte aveldpTnTa o8 XUC THUATY
Movob pdxtopa (Single-Agent Systems) eite oe cuvtoviopd pe dhhoue Tpdxtopes ot Buo Tt IIoNamAdY
Mpoxtoépwv (Multi-Agent Systems) [77]. Ta LLMs Bpioxovton oTnyv atyu dUTOY TV XOUVOTOWOY, EVIGYD0VTUS
¢ Suvatétnteg e ovvdeTne teXVNThC vonuoolvne (compound Al) xou twv Tuotnudtwy Iolhanhédv pox-
TopwY, BpOVTAC K¢ TEAXTopeS ot cuviovioTéc. H abvidetn teyynth vonpooivn xou ta Yo truota Ilodanidv
Ipoxtdpwv €xouv onuetwoet afloonuelwtn emituyla oe Sidpopous Touelc. 201600, ToEd TNV TEGOB0, TUPUUEVOLY
TEOXAACE 0TN BEATIOTONONON AUTAOY TWV GUCTARATWY XL GTHY XUTAVONCT TNS Buvauxig TnNg cuvepyaoiog
vl pOTOU-TEAXTOPA.

1.3 Ilpooceyyioelc

1.3.1 IIepuypayy Ewxovag oe Iapdypapo xou ITuxvy Iepiypapr, Ewuxdvag

Xernotponololyue éva tuyola emAeypévo utocivoho 5.000 exdvwy and 1o cOvolo dedopévwy Stanford Image
Paragraph Captioning. I'ia tnv aflohéynon e enidoone tou povtéhov, emhéyoupe to Claude we évo poviého
oauypnic ot xotnyopla twv molutpomxdv LLMs xou Sie&dyouue t0 UeyohdTEpo UEEOC TWV TELUUETWY UoC
yenowonowdsvtag tnv €xdoorn 3.7 Sonnet. To Claude mpdxeitar yior Yot OXOYEVELL UEYSADY TOAUTEOTUXY
HOVTENWY Tou €xel avomtuyVel and v Anthropic xou mepthapBdver tpelc tomoue povtéiwy (Haiku, Sonnet xou
Opus). Ko ta tpla povtéra unootnpilouv elcodo 1600 xeyévou 600 xou emdvas xan mapouotdlouy uPmhéc
emdooelc og BelxTEC OTTINOD GUANOYLOUOD, YEYOVOC o pag odnyel oty unddeon 6Tt elvan xovd var Tapdyouv
hemtoyepelc mepypapéc emdvwy. Ipaypatonolobue newpdpata Ye Ol tar uehn tne oxoyévetag Claude 3.7, aAAd
emAéyoupe to Claude 3.7 Sonnet yior to xOpiat Telpduatd pog 6to chvolo dedopyévev Stanford Image Paragraph
Description, xaddc mpoopépel tnv xoAbtepT LooppoTio petadd ambddoong xou X6GTouE.

Aivouye ¢ eloodo oto Claude Sonnet 3.7 tic exxdvec tou umoouvérou tou Stanford xou to mpotpémoupe
Vo TopdyEL TEplypapéc ot eminedo mopaypdpou pe mpotpomy undevixric Boiic (zero-shot).  AZiohoyolue
TIC ooy OUEVES TEPLYpaéc Yenotpomowdvtog toug deixtec METEOR, BLEU-{1,2,3,4} xou tn cuvnuitovixt
oupodtnta SBERT. Y11 ouvéyeia, avalloude YAwood 1600 Ti¢ audevtnés mopaypd(poug Tou cuvohou Oe-
dopévewy 600 xau Tig Tapaypdpoug Tou napdyovton and to Claude.

It v YAwoou pag avdivo, agloloyolpe to e€Ag:

e Méoo prxoc napaypdpou: Maxpltepes napdypapol UTOSNAGMYOUY TAOUGLOTERY AETTOPERELX 1) TILO
oOVIeTn apnyNUaTXy dour), xadde xou TNV TapEouciol GAADY YAWOGIXWOY PULVOUEVKV.

o Tumixy, andxiiomn pwhAxoug: Metpd T HeTABANTOTNTA OTO PAXOC TWV TEPLYPAPDY YETAED GUVOAOUL
dedopéveyv. H yaunhh tumxy| andxAior UTOSNAGVEL GUVETELN OTLC TAPAYOUEVES TERLYPAPES, EVE 1) VYNAA
amOXALoT), UTOdEVOEL EVEME[D GTNY TEOCUPUOYY OTNY TOCOHTNTO OTTIXDY TANEOPORLMY TOU TEPLEYEL 1)
edvaL.

o Méyedog Aedihoyiou: Avagépetal 6TOV GUVORIXS aptdud HOVABIXDY AEEEWY TIOU YENOLHLOTOLOVYTOL
Yo OAeC TIC TAPAYOUEVES Topaypdipous xan anoTeAel Booixd delutn tng exppactixrc euféAeloc Tou Yov-
éhou. ‘Eva peydho Ae&ihbyio umodnidvel tL To povtélo umopel vo teptypdipet wio eupelar oo evvolmy,
EVERYELDY, YUQUXTNPIOTIXMY X0 OYECEWY, AMOPEVYOVTOSC TNV EXAVOANTTIXOTNTA Xou T Yevixeuon. Avti-
Yeta, éva povtého pe wxpd péyedog Aedihoyiou umopel va xotapedyel oe UTEPBORXS YEVIXES 1 oXOUN Xou
avoxplBelc meplypapéc.

o Ac&ihoyixn mtowxihion (Avaroyia TORwy tpog Acsiypata, TTR): H he&hoyind novahio eivou
éva u€tpo tou 6o nowtho elvan To Ae€hoYlo oe €va xelpevo. ‘Evag udmidtepog deixtng TTR vnodnidvel
peYohUTERO Ae€lhoyixd TAoUTO xou mo TowAdpop®T, avipdmivy YAWooo. Avtideta, évog younidtepog
detxtne TTR pmopel vor umodewxviel o emavodnmTixy xou dxounty yhdooo. o va alohoyricoupe )
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heZoyxr mowahion avd mopdypopo, emAéyYoue we PETpo Tov delxtn avahoyluc TOnwV mpog Selyuora
(TTR), tov onoio opiloupe we e€nc:

— TOrou (Types) = o aptdudc TV Lovadixdy AEewv ot pla Tapdypapo
— Aciypata (Tokens) = 10 cOvoho TV AEEEWV TOU TUEEYOVTOL OTNY TOEAYEAPO
— TTR = Torot / Aelypara

o Puduodg yeappatinoy Aaddv: Afiohoyel tn yeauuotxr opdotnta utohoyilovtag To Uéco T0GoaTo
yooupatxdv hadwyv avd npdtacn. Xenotwonototue to LanguageTool API, évav eheyxty] ypoupotinic mou
UTOEEl VoL aviy VEUGEL éval ELED PACUA CPUAUATOY OE oy YA xelpeva, 6mwe Yeopuatixd Addr, o@dhuata
oti&ne 1 opBoypapued Addn. O telndg pUINOS YEOUUATIXWY AarddV TROoXUTTEL We eENC:

— Pudpéc Tpappoatindyv Aaddv = Tuvolxds Apidude Tpoppotidyy Aaddv / Aprdude Ipo-

Tdoewy

e JUYVOTNTA UTOTAXTIXWDV OCULVIECUWY: XLOVIETEC ToPdYpAPOL YENOWOTOLOUY  UTOTAXTIXOUG
oLVdEoUoue (T.)., ETEWDN, oV xou, EVE, TPOXEWWEVOU VaL) YOl TNV EXPEUCT| OLTLOXADY, YEOVIXMY, LTOYETIXMY
xow avTde Ty oxéoewy, Petalld diwv. H yphon autdv twv cuvBEoumy avtavaxhd mo mpoywenuévn
dopr, weyalitepn Yhwoow| emdedidtnta xou emxowvwvio Baditepwy Wedv. o vo allohoyhoouye )
CUYVOTNTOL QUTWY TRV BEMTAOV, dniovpyhoaue éva Aedd mou tepthauBdvel SLdpopous TOTOUSC CUVBEGHMY,
OTWE oLVBESUOUE outlac xou oxonoy (1., ENEWDY, TEOXEWEVOL var), xat tpolnddeone (T.y., v, EXTOC ov)
(TTivacag 5.16).

o Avalovia oLCLACTTIXOV, EPNUATLY o AVIWVLRLGOY: H avahoyla ovclaoTxdy, pnudTtwy,
OVTWVUILOY Xl GAAGDY PEEWY TOU AGYOU TOREYEL TANPOPORIEC Yidl TN YAWCOIXY) EOTINON TNS TEPLYPUPTC.
Tmhdtepn cuYVOTNTA OUGLACTIXDY UTOONAWVEL TEQLYPUPES EMUXEVIPWUEVES GE avTixelueva, oL omoleg
oLVOEOVTAL UE YaUNnAol xou pecofou eminédou onuactohoyio.  Avtideta, vdmin avoroyio enudtwy um-
0BEVIEL TEPLY PAUPEC TIPOCUVATONOUEVES GTY) DPAOT| X0 LoYLEOTERY APNYNUATLXH POY| (T.)., TREYEL, XpaTd,
plyvel) xou cuvdéetan e onuastoloyia pecaiou emmédov.

1.3.2 3votruata IToAAov ITpaxtépwy yia Andvinorn Ontixoyv Epwtioswy
we Xenon E€wtepinng I'voong

I to deltepd poc melpopa, eepeuvolue to olvolo dedopévwv OK-VQA, to omolo nepthapBdvel epwthoeic yia
EOVES TIOL amauToVY eEWTEPIXY YVWoN Yiot TNV amdvtnoy) toug. Ot epwthoelg mpoépyovtar and 10 xatnyopleg,
oL onoleg mapovotdlovtar oto Lyruo 4.1.6. Awe&dyouvpe oha ta melpdpata oto cbdvoro validation, to onolo
anoteAetton and 5.046 ewxdveg, xou YENOWOTOLOVUE TNV OPLOUEVY] ANt TOUC O1UtovpYolE TOU GUVOROL UETELXY
“ote va dlacpoilcovue dixain obyxpion. H mpotewduevn npocéyylon pog ebvar éva ohotnua TOMATAGOY TRox-
t6pwyv (Multi-Agent System) nou aroteleiton and tplo otddla. Lto mpdTo 6Tédl0, Yenoulorowlue éva MLLM
(n.x. Claude 3.7), o onoio hauPdver edves xan xaheiton vo Ti¢ meplypdipel o wior mopdypago. Kaholue autd
10 povtého Aviyveuth (Scout), xadde eZepeuvd xou CUAREYEL TANEOYORIES Omd TNV EMOVA YWElC CUYXEXEWEN
xododhynon. Lto endpevo o1édlo, npotpénoupe éva LLM (rn.y. Llama 3.3) vo anavticel otny pddTnom oxetixd
HE TNV EXOVAL, YENOWOTOWVTAUC UOVO TNV TEELYRAPT TNG EOVIC amd Tov Aviyveutd| xou TV (Bla TNV ep®dTnom.
OvopdZovpe autd to poviélo Avahuth (Analyser), xaddc Aettovpyel we o xplog Pnyaviopds cUAMOYLGROV.
Téhog, yenowonololue éva axdun LLM yio va Siopoppdoel Ty Telx] andvinoy otny epdtnom, Bdoel evog
TEOX0PLOPEVOU GUVOAOLU xovévwy. Ovopdlouue owtd to poviého Awpoppwtr (Resolver), xadde elvan un-
ebduvo Yoo T AMdn g TEAMAC andQaAcTE KC TEOS TNV andvTnoT otny epwtnoy. To npotewvouevo cuvepyatind
cLoTnua tapouctdletan oto Lyfua 1.3.1.

o xdde pédodo, avahboupe TNV xatavour] Tou Uixous TV AEEEWY ol TOV dpilud TV TEPLTTMOEWY UN-
andvinone (no-attempts), Mote Vo exTAOOUME aTd TOGO Ta LOVTEAA UTopoly Vo xododnyndoly mpog v
TOEOY WYY) ATAVTACEWY GUYXEXPUEVOU Uxoug xat vo tpooTtadoly mdvto v amovtoly oTig epwthoelc. oty
avéiuor tou prixouc Aé€ewy, unoloyilouye To TOGOCTO TwWVY AnaVTACEWY ToL Teptéyouy Wia Aé€n, 800 Aéelc,
Teelg Aéeic xou téooeplc 1) meplocdtepeg Aé€elg. 'l TOv UTOAOYIOUS TOV TMEQITTOOEWY UN-ANAVINoNS, XeNot-
pomnoloVue évo oivoho mpoxadoplouévwy gpdoewy (tapouctdleton otov Iivaxa 4.5) nou napdyouv cuyvd Ta
HoVTEAA TV BEV AMAVTOVY GTNV ELOTNOT).
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1.4. Iewdporo

Question

Input Data

What is the horsepower of the

- truck pulling the load?
Answer: 510

Answer Occurrence: 3/5
Category: Vehicles and Transportation

Prompt an LVLM to describe the image
Image description: The image shows a black Volvo FH16 510 truck hauling
a large flatbed trailer with what appears to be a blue railway car or
locomotive component secured on it. The heavy transport vehicle is parked

on what looks like an industrial site or depot area, possibly near railway
tracks as wooden sleepers (railroad ties) can be seen in the foreground. Two
workers in high-visibility orange safety vests are visible - one standing near
the truck and another walking on the right side of the image. The setting has
a typical industrial appearance with metal fencing visible in the background,
and the sky appears overcast and gray. This seems to be a specialized heavy
transport operation, likely moving railway equipment to or from a
maintenance facility or depot.

Scout

Prompt an LLM to answer the question about the image based on the
image description

Analyser

Initial answer: The horsepower of the truck pulling the load is 510
. horsepower, as indicated by the "510" in the truck's model, Volvo
FH16 510.

Prompt an LLM to choose a final answer based on the initial answer
and format it according to pre-defined rules

Final answer: 510

Resolver

Figure 1.3.1: Yynpoti avanapdotact tou miaciov cuvepyaoiog twv Scout, Analyser xou Resolver.

1.4 Ileipdpota

1.4.1 Amrndvinorn Ontxdv Epwitroswy pe Xprorn E€wtepixnc I'viong

Iopoustdlovye ta anoteréopota aflohéynong vy to Claude 3.7 Sonnet 6to unocivoho tou Stanford Image
Paragraph Captioning, yo tic yetpixéc METEOR xow BLEU-{1,2,3,4}.

Eivow cagéc 6t to Claude 3.7 napdyet mopaypdpoug e ONUICLOAOYIXH GUVAPELR, OIS ATOBEVOETOL ond TNV
vPnin Badporoyio METEOR, 7 omolo unepBaivel exelvn twv teplypapov tou éyouv yeaptel and avipdroug.
Qo1600, Ol ToEAYOUEVES TOEAYEAUPOL TOU UOVTEAOU Blapépouy onuavtxd and Ty axplfr SlatiTwor Ty av-
YpOMVOV ovapopy, pe anotéheoua youniéc Baduoroyiec BLEU, biaitepa yioo peyoltepa n-grams. Autd
unodniwvel 6tL, av xat To Claude anoTtundvel To VONUA TNG EMOVAS, ATOXAIVEL OO TIC TAPAYPAPOUS AVAPOEAS
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Chapter 1. Extetapévn Ieplindn oto EXAnvixd

Model METEOR | BLEU-1 | BLEU-2 | BLEU-3 | BLEU-4
Claude 3.7 - Sonnet 24.35 21.15 9.30 4.01 1.84
Human 19.22 42.88 25.68 15.55 9.66

Table 1.1: X0yxpion anddoong petal tou Claude 3.7 - Sonnet xou TwV avlpOTLVWY oVAPORWY UE YPNOT TWV
petpxdv METEOR xauw BLEU.

¢ Tpo¢ TN datdnwon. Avtideta, emtuyydver uhnh Boduoroyiot SBERT (70,18%), yeyovéde mou unodeinviet bt
Ol TIOROY OUEVEG TOlRdY papot TauT(CovVTaL UE TLC TUPAYEAPOUS AVIPORAS OGOV dPORE TO TPAYUUTIXG TEQLEYOUEVO.

To Eyruarto 1.4.1 xon 1.4.2 anexovilouv Tic SLoPopEs GTOUE ETUXPATEGTEPOUS GPOUS UETAED TWV TAROYOUEVHVY
X0l TRV TAUPAYPAPWY ovapopds, eved o Ilivaxag 1.2 napoucidlel to anotehéopato TS YAWOOWNAS avdhuong.

To anoteréopota urodexviouy 6Tl to Claude netuyaivel avidTepn YAWOOIXYH anddoan o€ cUYXELON UE TIG Topo-
Yedpoug avapopds, dTwe palveton omd TNy cuvTelnTxy Thelodnpio Twv petpixay. Ipdyuott, ol topdypagpol Tou
napdyovtar and to Claude eivar oyeddv SimAdoieg oe URx0OC G OYECT UE TLC TAUPAYEAPOUS VPO, TUPOUGCLS-
Couv yeyoahltepn Ae&lhoyixn mowhior xou onpovTixd younhotepo pudud yeopuatixdy hadwv. Agoonueiwto eivar,
eniong, to uéyedog tou Aedlhoylou Toug, To onolo elvon oyeddv dinhdoto. Télog, ol mopdypapol Tou YovTélou,
YENOWOTOOVY TEPLOGOTEPOUS MO TELTAAGIOUS UTOTAXTIXOUS GUVBECUOUG.
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Figure 1.4.1: Zymuotix avomapdotaoy péow cOve@ou AEEWMY TwV TAPAYEAP®Y TOL GYOMACTNXAY ATd
avitpwnoug 6To unocbvoro 5.000 eixdvwy Tou Stanford Image Paragraph Captioning, avadewcviovtag tdom
TPOC AVTIXELUEVOXEVTELXT| XL XUPLOAEXTIXTY] TIEQLY QOUPT).
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1.4. Tewpdyota
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Figure 1.4.2: Yynpotin avanopdotaoT Yéow cOVVEPOU MEEwY TwV Tapaypdpwy Tou mapryinoay and To

Claude 3.7 Sonnet yio To utocUvolo 5.000 exdvwy tou Stanford Image Paragraph Captioning,

UTODEWVVOVTAC TAOT) TEOC APNENUEVY) Kol EPUNVEUTIXY| anddooT).

Avg. St. Diversity | Nouns | Verbs Pronouns| Vocab Subord. Grammar
Length | Dev. (TTR) (%) (%) (%) Size Conj. Error
Length Rate

Claude 3.7

118.96 11.38 0.6788 29.36 12.17 3.83 11,739 2,831 0.06
Sonnet
Stanford

61.36 23.54 0.6172 27.92 9.81 5.82 7,034 903 0.21
Dataset

X0 TWV Tapayedpnv avagopds tou Stanford Image Paragraph Captioning cuvéhou dedouévwv.

Table 1.2: Thwoown olyxpion petall twv napayedpwy touv Claude 3.7 Sonnet

29




Chapter 1. Extetopévn Iepihndn ota EAAnvid

Image ID: 2356347

Source: Stanford Image Captioning Dataset

Human Annotators: A large building with
bars on the windows in front of it. There is peo-
ple WalKifig in front of the building. There is a
street in front of the building with many cars on
it.

Claude 3.7 Sonnet: This [f8EESHGWS the mod-
ern architecture of what appears to be the Art In-
stitute of Chicago’s Modern Wing. The building

with clean lines, EXfeHY
§i¥@ glass pancls, and o QSHHCHETOveHgg
roof structure that EFeates o SHEITETHg canopy.

The exterior combines light-colored stone or con-
crete with steel and glass elements. The StFeet
Fi&% shows pedestrian crossings marked with yel-
low warning signs, ornate street lamps, and sev-
eral vehicles parked along the curb. The scene is
captured on what looks like a sunny day with blue
skies, and there’s some greenery visible around
the building’s perimeter. The

Table 1.3: Xiyxpion napaypdpwy yio Ty ewdva ID 2356346.




1.4. Iewdporo

1.4.2 Xvotruata IToAkwv Ilpaxtdépwy yia Andvinorn Ontixoy Epwiroewy
pe Xpron E€wtepunng I'voong

Xpnowonototpe to Claude 3.7 Sonnet w¢ t Boowr yeauun avagopds (baseline), napéyovtdc tou eixdves xou
epwtoelc and to cuvoro validation tou OK-VQA, yenowonowdvtag tic tapauétpoue enaynyhc (inference
parameters) nou avagépovtoan otov Ilivaxa 5.3. To yovtélo xodeiton va napdyel anavTHOELS ATOTENOUPEVES
and pia 1 800 Méelg, xadde enione xou va mpoonadel TévTa Vo AmaVTACEL OTNY €pATNON, HECL TEOTPOTV
undevixric Porfic (zero-shot). H axp{Beio petpdron yenowonowdvtos ) petewxt| soft accuracy mou mpoteivetan
and Toug dnuoupyolc tou dataset. H péom axpiBeior avépyeton oe 43,59%, n omola xadopiletar we n Pooixt
Yoo avapopds po.

Ta anoteréouata TOV CUVERYATIXOU CUOTALATOSC AViyVEUTH- AVUAUTH-ALoaop@u Ty, XS XL T ATOTEAECUOT
AV ued6dwy Ue dlapopeTixés TEYVIXES TpoTpong, napovatdlovton otoug Hivaxee 1.8 xou 1.9. IMapatneolye
6Tl Ohec oL pédodol amodldouv xaAltepa anotehéopata oe abyxplon ue T Xprion tou Claude, avadexviovtag
TNY ATMOTEAECUATIXOTNTO TNE TPEOCGEYYLONG OUVERYUSIaS TOMGY TpaxTépwy Yo autd o clvoro. Méow Tng
ouvepyaotiac, 1 anddoon Behtudveton xatd 7% oe oyéon e to baseline, avadexviovtag Ty anoteAeopaTIXOTNTA
e erone LLM yio tv e€aywyy) TN TEMXAS AndvInong xou Ty Lop@onolnoy Tne andvinong.

H éZ080o¢ tou Aviyveuty yio éva mapddetypo edvag gaivetar otov Ilivoxa 1.7, evéd ) Yhwoouxr avdhuon yia
T meptypapéc mapovotdletan otov Iivaxa 1.4. Emiong, 1 ovamopdotaon twv eTXpATECTEROY AEEEWVY TWV
TEPLY PPV o GUYVEQO Aéewv mapovatdleton oto Lyrua 1.4.3. Ilaupadelyuata yio Ty €060 TOU CUGTAYATOC
avé Briue napovctdlovton otoug Hivaxee 1.5 xan 1.6.

Avg. St. Dev. | Diversity | Nouns | Verbs Pronouns | Vocab Subord. Grammar
Length | Length (TTR) (%) (%) (%) Size Conj. Error

Rate
115.65 18.15 0.6774 29.29 12.00 4.26 11,904 2,357 0.06

Table 1.4: I'\woown avdhuor twv tapayedpwy Tou Aviyveuts| yia To ghvoho dedopévery OK-VQA.
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Figure 1.4.3: Emxpatéotepol pol o€ cOVVEQO MEEWVY Ylal TG TEPLYPAPES TapaYpdpwY Tou AviyveuTt| 6To
OK-VQA.
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Chapter 1. Extetapévn Iepiindmn ota EXAnvixd

IMogdderypa 1: YwoTth andvnon

Question: Which part of this animal would be in use if it was playing the game that is played
with the items the man is holding?

Image Description (Scout): The image shows a person playing frisbee in a grassy yard while
a dog is perched on their back. The person is wearing a white t-shirt, dark pants, and a black
cap, and is bent forward holding two white frisbees - one in each hand. The dog appears to be a
black and white spotted breed, possibly an Australian Cattle Dog or similar mix, and has
impressively balanced itself on the person’s back while they’re in motion. In the background,
there’s a wooden fence. This looks like a fun moment of dog training or freestyle disc dog
practice, where the dog has learned to perform tricks while the handler manipulates the frisbees.

Initial Answer (Analyser): If the dog was playing the game that is played with the items the
man is holding (frisbees), the part of the animal that would be in use is its mouth, as dogs
typically catch frisbees in their mouths.

Final Answer (Resolver): Mouth v/

Ground Truth: mouth

Table 1.5: ITopdderyuo ocwotig andvtnong tou cuothuatog Aviyveuty, Avolutr, Alopop@nT.
Notes: most salient sentence
second most salient sentence
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1.4. Iewdporo

IMapdderyua 2: Ec@aApévr andvinon

Question: Which phase is that moon in?

Image Description (Scout): The image shows a clock tower with two visible clock faces on
adjacent sides. The tower appears to be made of dark wooden shingles or similar material and
has a small cupola or bell housing at the top with vented openings. The clock faces have Roman
numerals, with one clock showing approximately 4:35. In the background, there’s a crescent
moon visible in the gray sky, and the silhouette of an evergreen tree can be seen next to the
tower. The photo has a moody, atmospheric quality with its muted colors and twilight setting. X

Initial Answer (Analyser): The moon is in the crescent phase.

Final Answer (Resolver): crescent

Ground Truth: half

Error Type: Inaccurate Information

Table 1.6: ITopddelyua ecoluévne andvinong Tou cuoThuatoc Aviyveutr), Avoluty|, AlopoppwTy)
Notes: most salient sentence
second most salient sentence
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Chapter 1. Extetapévn Ieplindn oto EXAnvixd

Y AETIXEG TPOTACELS CTNV TARAYEAPO TOLU AVAALTY

Question: What sport can you use this for?

Image Description (Scout):

. The motorcycle features a
prominent windshield, comfortable seat, and silver accents on the rear section. It has the
characteristic dual-purpose design with wire-spoke wheels that are suitable for both on and
off-road riding. In the background, there’s a white metal container or storage unit, and what
appears to be an orange flag or banner visible on the left side. The setting looks like an outdoor
area with some dirt/sand terrain and a paved section where the motorcycle is standing on its
kickstand. The scene suggests this might be at a motorcycle event, test riding area, or off-road
riding location.

Table 1.7: Xyetixéc npotdoelc otny napdypoapo Tou AvaAuTy.




1.4. Iewdporo

Method dis t:ivbolftdion* Accuracy (%) # of no attempts

Claude Solo 1 80.04 43.59 60
2 6.44
3 0.67
4+ 12.84

Analyser + Resolver Zero-Shot 96.27 49.65 61
2 3.47
0.10
4+ 0.16

Analyser + Resolver Few-Shot 96.21 50.02 128
3.09
3 0.10
4+  0.59

Analyser CoT + Resolver Zero-Shot 81.81 46.50 130
2 17.90
3 0.26
4+ 0.04

Analyser CoT + Resolver Few-Shot 87.44 46.86 48
2 12.33
0.24
4+ 0.00

Scout + Analyser + Resolver Zero-Shot 92.63 47.05 1
2 7.09
0.22
4+  0.06

Scout + Analyser + Resolver Few-Shot 92.11 48.73 2
2 7.59
0.20
4+ 0.10

Table 1.8: Xuyxpitixd anoteréopata OAOV TV PeVddwY Yo To OK-VQA cbdvolo dedopévev.
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Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

Method

Avg.
(%)

vT

BCP

OMC

SR

CF

GHLC

PEL

PA

ST

WwWC

Other

Claude Solo

43.59

41.43

44.88

45.70

40.63

47.53

44.54

41.12

41.42

44.05

46.67

46.01

Analyser-
Resolver
Zero-Shot

49.65

47.06

47.67

51.68

46.74

52.94

46.81

48.36

50.33

50.71

52.56

50.44

Analyser-
Resolver
Few-Shot

50.02

47.38

48.26

51.92

47.62

53.14

46.10

48.36

50.53

50.71

53.80

51.24

Analyser
CoT-
Resolver
Zero-Shot

46.50

40.54

46.63

46.40

46.07

51.25

44.96

44.53

46.16

43.10

54.11

49.66

Analyser
CoT-
Resolver
Few-Shot

46.86

41.60

46.98

47.20

48.29

49.84

46.67

44.63

45.47

44.29

55.66

50.37

Scout-
Analyser-
Resolver
Zero-Shot

47.05

44.38

52.21

43.13

47.51

47.70

53.76

46.26

47.77

35.00

48.84

49.82

Scout-
Analyser-
Resolver
Few-Shot

48.73

46.03

54.42

43.97

48.78

49.89

52.62

46.82

51.00

35.71

50.39

51.15

Table 1.9: Zuyxpltixd anoteréopata TV HEVOdWY Yo T0 6Ovolo dedopévwy OK-VQA avd xatnyopia.
Notes: VT = Vehicles and Transportation, BCP = Brands, Companies and Products, OMC = Objects,
Material and Clothing, SR = Sports and Recreation, CF = Cooking and Food, GHLC = Geography,

History, Language and Culture, PEL = People and Everyday Life, PA = Plants and Animals, ST = Science
and Technology, WC = Weather and Climate.
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1.5. Zuyunepdoporo xou Mehhovtixéc Ilpoextdoeic

1.5 Xvunepdopata xow MeAhoviixeég Ilpoextdoeig

Ta ToAUTEOTUXE YAWOOIXE LOVTEN OTOTEAODY Tol O TEOTYUEVO CUCTAUATA TEXVATASC VONUOCUVNS TIOU €Y0UV
avantuy Vel uéypl ofuepa. §dc anotélecpa, avantdocovtol LPNAéC mpoodoxies yia enihuon tpolinudtey and ta
TOAUTEOTUXA YAWOOIXE HoVTEAD, oYedOY oe xdie eapuoyy. H 1oyuer anddoon Toug Sixoumdvel TiC TEPLOCOTERES
popec T mpoadoxieg auUTEC o APrVEL LoyUEEG EATIOES Yo TNV avamTuEn EVOC HOVTEAOU YEVIXNAC TEYVNTAC
vonuoouvne ato élhov. Emmiéov, mapatnpolue dti mdavd npofifuatd toug doplddvovton and tny mpocop-
poy” toug (o wxphc xApaxas eXTdeUoTS 0To TEDIO YVMOTG) H HEYLTEXTOVIXESC AvETTUENS Xou cUVEPYUoiug
TOAATAGY TOAUTROTUXWY YAWOOWADY HovTehwy. Me v egpyacio auty, tpootadolue vo BLEPELYACOUUE TIC
duvatdtntee avtée, pe Bdomn éva oUyypovo TOAUTEOTIXG YAWGOGWXG HOVTEND TIOAD LPNIAc eniboone, édnwe Tto
Claude, to omolo YpNoLLOTOOVUE (G €Val TOAUTEOTIXO HOVTEAO PECONIPBNONE oE BUo epyacieg: TN dnuiovpyia
heldvtae mopaypdpemy EXOVIC xal TNy andvinoT ontixdy epwtnudtwy (Visual Question Answering - VQA)
nov Baolletan ot Yvoorn. Emmkéoyv, avanticoouye évo TAGIOI0 TOAATAGY TEAXTOPWY YIA VAL AVTLIETWTICOVUE
ATOTEAECUATIXOTERA TNV ATAVTNOT OTTIXDY EPWTNUATWY, XEVOVTOS HEAOTA oLYXPIoELS HETAED TWY TPOCEYYIoEWY
eVOC LOVOAMT00 HOVTENOL Yot LOVTEAOU TOAAUTALY TEAXTOPWY.

Suyxexpyéva, Yo To TedTo TEOBAnUY, epeuvicaue T dnwovpyia AeldvTtag mopaypdpwy ewdvwy, 1 onold
nepthopfBavel T dnuloupyio TEQLYEAPMY UAXOUS Topaypdpou Yio EXOVES. ZnTHooue amd €val UEYAANS xh{ponag,
TOAUTEOTUXS YAWOOIXS HOVTENO Vo BNULOURYNOEL TIEQLYPAPES TORAYPAPWY YLOL TIG EXOVESG GE €Val UTOGUVOAO EVOC
ONUAVTIXOU GUVOAOU BEBOUEVWY LTOTITAWY TpaYRAP®Y EXOVIC TOU Tou el Tapouctac el and to Havemothuo
Stanford oe wa pOdpion undevixic Mdne (zero-shot). Hopatnpodue 6Tl oL YAWGOIXES TEPLYPUPES TTOL TEHTELVALY
oL dnuiovpyol Tou cuvOAou Bedouévwy dev evduypaupilovton TdvTa Pe T AemTouepelc, mAolUoleg xou pEOUCES
TPALY PAPOUE TTOU EUTELRLXE oA TNENCUUE GTL dNtovpyolvTal omd To WoVTELD. ()¢ eX TOUTOU, TEAYUAUTOTOCUUE
ROl YAWOOWXTH OVIAUGT] YL VoL GUYXEIVOUUE TIC Topoyedpous Tou Yed@Ttnxay and vipwro, we Teplypapr| Twv
EMOVOY TWV OEQOUEVLV, PE TA ATOTENEOHATA TEPLYPAPNS TWV AVTIOTOLYWY EXOVWY Tou eEAYEL TO UOVTERO.
H avdluor pog delyvel 6Tl oL mapdypapol Tou dnuioupyoldvtal omd To HOVTEAD €Youv UeYahlTERO prxog, Ae&-
LhOYXO %o OMUACLOAOYLXS TA0UTO, Touthopopplor xou Yeouuotixy) opddtnTor 0 GUYXELOY UE TIC ToEOYEdPOoUS
mou oyohdlovtan and Tov dvdpwro. AuTd Tol EUPHUNTA LTOBNAWVOUY OTL T GUYYEOVO TONUTEOTUXY YAWCGIXA
povtéha €youy Eemepdoel Tot oOVOAN BEBOUEVLVY Xl TIC HETENOELS ToL Tpolnipy oy, utoypaupllovtoac Ty ovdyxn
yia véo onuelal avopopdc oty TERLOY .

Y10 mhalolo tou BelTEPOL TPOPBARUATOS, ECTIICOUE GTNY ATAVINGCTY O EPWTAUATO TOU YIVOVTOL GE EXOVES XOoL
amoUTOOV YLol TNV OmAVTNGT) TOUS Yvaon mediou. Muyxexplpéva, aoyolndixope ue to cOvolo dedopévewv OK-
VQA, 7o omnolo amotehkel onuelo avagopds otny meployt). AZlohoyHoaue €vo TOANUTEOTUXG YAWOGIXO LOVTEND GE
epwTAUOTA UNdevixAc AQPng xou Slamotwoope OTL, TopdTL Qaiveton dTL €xel TNV amapaltnTy YVOOoY, dev unopel
vo @tdoel ota enineda anddoone e teyvohoyiog ouyphc (state-of-the-art), mou emtuyydvetoan xvplwe and
LG TAUATO IOV €Y0LY TEOGuEROCTEl oTa dedouéva oautd. Autéd ogelleton o peydho Badud oTn HoPPH TWV ovo-
MEVOUEVWY OTAVTACEWY, TNV oTmold TO UOVTIEAO BUGXOAEDETAL Vo TNENOEL UWOVO UECW TNG AmMANS TEOTPOTNAG TOU
yenowonoioaue. Ilpoxeiwévou va a€iomondel TArpwe To Buvouxd Tou TOAUTEOTXOV YAWCGLX0) LOVTENOV, TEO-
Telvoule éva cUOTNUA TOANATAGY TEAXTOPWY oL XatepVeL TN cuvepyaoio ueTagl Tou TOAUTEOTUXO) YAWCOIXOU
HOVTEAOL Xol EVOC ATAOU PEYEAOL YAWOLXOU UOVTENOU. LUYUEXQUIEVA, OVOTTOEOUE O EXTEAECUUE TELPGUATOL
TIOU YENOLLOTOLOVY Tplol HOVTEAN (C TTPAXTORES: TOV A VI VEUTYH, Tou elvol £val TOALTEOTIXS YAWSGIXO LOVTENO
mou mofpvel wa exxdva ¢ elcodo xou Ty teplypdpel ot pla AeldvTa mapaypd@ou, Tov AVaAuTY, ou eivo éva
amho YAWGGOIXG HOVTEND TIOU TOPAYEL Lol 0PY XY OTEVTNGCT OTO EPWTNUA Ue BAoT TNV TEplypapn TNS EXOVAS, ol
TOV ALor0p@ T, ToU elvol €vol amAO YAWGCOIXO UOVTENO TOU ETUAEYEL X0 LOPPOTOLEL TNV TEAXY amdvTNoT
oLUPWVA Ue €va cUVOAO Tpoxotoplopévwy xavovewy. To cbotnua Behtidvel Ty enidoon oe oyéon Ue TN Uov-
Tého avagopdc (baseline), uvodeixviovtag dTi To Thaicto cuvepyasioc Unopel va Yivel anotelecyatind yia 1660
ouvdeteg epyaoieg. Ta amoteréopota delyvouv 6Tl Tot TOAUTEOTUXE YAWCOWXE LOVTEAA UTOPOUY Vo TORdYOUV
TEQPLYPAPES EMOVKV TOL elvol EMUPXE(C YLl VoL AMAVTHOOLY GTNY EQMOTNOT OTNV TAELOVOTNTA TWV TEQITTOCEWY.

Emnmiéov, 1o YAWOOIXE LOVTENN UTOPOVY VoL BOCOLY AMUVTACELS OE EPWTHRATO OXETIXE UE ELXOVES, AELOTOLOVTAS
TNV TEPLYPAPY| TNG Tapayedpou Tne exovac o¢ Bdor, und v mpobnddeon 6Tl oL ontxés TANpogoplec Tou
amOLTOUVTAL YO TNV AndvTnom oTny epwtnoy undpyouv ot Aeldvta. Téhog, emxupdvoupe 6Tl Ta YAWOoIXE
povtéha umopolv vo yenowonomdolv anoteAeouatind we poppomolntés yia va fondicouy otny e€aywy e
TEMXAC amdvTnong xou oTn Yetayevéotepn encéepyaoion TS Yl eVOUYPSUULOY YE TNV AOLTOVUEVT] HOP®T.
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It to péhhov, oyedidlouvpe vo dieEdyouue pehéteg enl uépoug avdhuong, yio va xatavorcouue e Bddog molo
oTolyelo Tou cuo THUTOS oyeTileTon Ye Tig opBég amavtiioel xal Vo agloAOYHOOUPE TOLoL TOTOL GPOAUETWY GYET(-
Covtau pe v mAetodmepio TwV AmoTUYLOY TwV LoOVTEALY. XToyelouue enlong va Ble€dyOUUE TELOGUATA UE ETLTAEOV
MOVTERA YLOL VoL BIEPEUVHCOUNE TS 1) EMEXTACWOTNTA ETNEEALEL TNV 0mOB00Y) TV HOVTEAWY. YTTodétouue OTL Ta
UxEOTERA YAWoOWE povTtéla Yo umopoloay var elvol omoTEAEGUATIXG Yiot aLTAY TNV gpyacio, xadne urnopel vo
nopouctdlouv Aydtepn agoupetint| wepoinio oe alyxpion ye yeyalbtepa poviéia. o v ehaylotonoinon twv
o@aludTwy Tou oyetilovto pe EAATY TepLypopY), SNAADY| Ye TEPLYPUPY| TTOU BEV TEPLEYEL TOL AmoEaiTNTo GTOLYElN
YioL TV OmAVTNOT TOU EPWTAUATOS, OXOTEVOUUE Vo EEETACOVPE TN YpeNon eAeyxOuerns dnpoveylag Aeldvtog
exovag, 6mou to xelyevo Yo mpocapudletar pe Bdon To exdoTtote p®TNUA V) TEoXAopLoUEVOUE TEPLOPIOUONC
mou oyetilovtal UE TO EXACTOTE EPOTNUOL.

Téhoc, oxoneboupe va dladdyouye nelpdyata tou otnpillovia oty alioddynone and avidpmroug (human evalua-
tion), yio vor extyufcoupe T anddoon Tou ouc THUaTOC pos oty epyacia OK-VQA, Bacilépevol otny topadoyn
OTL OL UTHPY OUCES HETEIXES DEV AMOTUTIIVOLY ETUPXME TLC TEAYUATIXES BUVATOTNTES TwV povTéAwY. Tlapdhinia,
ox0TEVOUUE VoL SLEEEUVICOUUE EVAAAUXTIXEC UeY6B0UC auTdPaTng a&loAdYNoNG, 0TS TN XENON YAWCOIXMY UOV-
TENWY ¢ a€LOAOYNTAY, oL ontoleg Bo unopoloay va UTOC TNEIEOLY AMOTEAECUATIXOTERA EpYaoieg avolyTol TOnou.
Emuniéov, plo onpovtind yelhovtixr xatehduver a@opd Ty avantudy VE®V GUVORWY BESOUEVEYV, LXAVODY Vi
avtamoxpldoly oTig aLEAVOUEVES SUVATOTNTES TV TOMUTROTUXMY YAWOOIXMOY HOVTIEAWY X0 CUC TNUATODY TRoX-
Topwy Tou otnellovtar oe ToAuTpOTIXS YAWooWwd povtéla. Ibialtepn éugpacn oxonelouue Vo BOGOLUE GTNY
avéyxn dnutovpylac cuVOwY Bedouévev otov Touéa g dnwoupyiog Aeldviwy exdvwy, to omolo vo Yétouv
OLCLUC TIXES TPOXANOELS VLol ToL CUYYEOVO TOAUTEOTIXE YAWOOIXE WOVTEAN, GTOYEVOVTAS EWBXOTERA OTa Pooixd
{nrAuota AELToupyYiag ToUS Tou €Y0UNE EVTOTIOEL.
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Chapter 2

Introduction

It is becoming increasingly difficult to find an aspect of modern life that remains untouched by the growing
presence of Large Language Models (LLMs). With their close proximity to humans, combined with rapid
articulation, knowledge retrieval, and reasoning capabilities, LLMs’ promise resonates across domains. How-
ever, understanding, predicting, and framing these opaque models is not an easy task, and research aimed at
establishing their true capabilities is more crucial than ever. The shift from monolithic models to compound
AT systems is further complicating this endeavour, as architectures grow more and more complex while re-
maining largely undisclosed. Multimodality adds new layers of complexity by making it difficult to pinpoint
the sources of model errors. Multi-Agent Systems (MAS) offer some transparency in that regard, as they
allow for the decomposition of tasks and reasoning processes across agents, making it easier to inspect system
behaviour.

LLMs are at the centre of MAS, using language as a vehicle for thought and communication [136], similar
to how societies and civilisations evolved alongside the development of human language. LLM-based MAS
have proven highly effective across a diverse range of tasks, outperforming single agents in many downstream
applications (Table 3.1). This research sets out to explore the potential of LLMs in enhancing Vision-
Language Models (VLMs) for reasoning-intensive and knowledge-based multimodal tasks, particularly those
involving images and language. Focusing on two tasks, image paragraph captioning and knowledge-based
VQA, this research seeks to benchmark the performance of current Multimodal Large Language Models
(MLLMs), specifically Anthropic’s Claude, on these tasks and compare solo and multi-agent architectures to
address the latter.

2.1 Motivation

Language is at the core of advancements in LLMs, LVLMs, and MAS alike. Thanks to their transformer
architecture, these models achieve levels of fluency and linguistic competence that surpass those of traditional
statistical machine learning models ([108]; [94]; [185]). However, human language is only one of several ways
in which LLMs mirror human behaviour. LLMSs at scale are capable of storing multiple types of knowledge
similar to traditional knowledge graphs ([117]; [5]). At the same time, they exhibit strong performance on a
wide range of arithmetic, commonsense, logical, symbolic, and multimodal reasoning tasks [32]. They are also
powerful problem-solvers, capable of formalising problems by translating natural language into mathematical
models ([32]; [159]). That means they can plan actions, delegate tasks, and coordinate other models, all
through the use of language ([156]; [168]). Thanks to these capabilities, LLMs can perform reasoning-intensive
tasks, carry out manual operations, and coordinate other models ([162]; [31]; [182]; [22]).

However, it remains unclear whether LLMs’ fluency necessarily reflects conscious reasoning and true knowl-
edge or the reproduction of surface-level patterns learned during pretraining. In fact, they have been found
to lack central aspects of linguistic competence, namely functional linguistic competence, which is associated
with higher-level capacities, such as world knowledge [95]. Another crucial issue is the presence of cognitive
gaps and the lack of domain specificity in the knowledge encoded within LLMs’ parameters ([39]; [83]; [149]).
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The combination of these two issues introduces a new challenge regarding the ability of LLMs to reason
about factual knowledge. When it comes to multimodal models, hallucinations are also a major problem,
involving the generation of content that is not visually grounded [120]. Finally, steerability is a crucial issue
from an application-driven perspective, as we ideally want to be able to guide models toward specific actions
and outputs through prompting ([99]; [17]).

Benchmarks that target these areas prove more challenging for LLMs and expose their shortcomings when
it comes to handling reasoning-intensive and knowledge-based tasks. In Image Paragraph Captioning (IPC),
the goal is to generate a coherent, multi-sentence paragraph that describes an image [65]. Paragraphs are
linguistically complex structures, requiring the model to possess not only visual understanding of low- to mid-
level picture elements but also a wide range of linguistic capabilities [109]. Hallucinations remain common in
model-generated paragraphs, as models tend to follow a narrative flow and prioritise it over factual accuracy.
In another VL task, Visual Question Answering (VQA), the model is provided with an image, a question
about that image, and is tasked with predicting the answer. In Knowledge-Based Visual Question Answering
(K-VQA), to generate the correct answer, the model must also draw on knowledge that is not directly
present in the image. Both of these tasks present challenges for MLLMs because they require understanding,
reasoning, and knowledge across both vision and text modalities.

MAS can improve accuracy in these benchmarks by delegating subtasks across models and modalities and
performing step-by-step reasoning (Table 3.1). MAS have demonstrated superior performance over single-
agent systems across many tasks ([47]; [77]) and offer a more transparent alternative than compound Al
systems. However, establishing an effective collaboration framework can be challenging, especially when
different modalities need to be aligned. Guo et al. [47] identified a notable gap in MAS research concerning
multimodal settings. Addressing this gap could significantly advance the capabilities of multimodal Al
systems and offer more effective and explainable solution across VL tasks.

2.2 Research Hypotheses and Questions

Current large-scale multimodal models, such as GPT-4, Claude 3, and Gemini 1.5, possess formal linguistic
competence and visual understanding and already achieve high performance on VQA tasks and other VL
benchmarks ([106], [143], [142]). We hypothesise that they could also generate detailed, semantically rich,
and coherent paragraphs to describe images, a task for which not all models have been explicitly evaluated.
Therefore, this study seeks to explore how well they perform on the task of image paragraph captioning
and to analyse the linguistic characteristics of the paragraphs they generate. By evaluating these skills and
identifying key challenges, this research contributes by proposing directions for datasets and metrics that
better align with the capabilities of modern multimodal LLMs.

LLMs at scale also store multiple types of knowledge within their parameters ([117]; [3]) and perform well on
many tasks that require external knowledge not directly present in the image (([106], [143], [142]). Therefore,
we assume that multimodal LLMs possess much of the knowledge required for the OK-VQA task and explore
their performance and prompt steerability toward specific formatting requirements, such as word length
distributions, in a zero-shot setting. By doing so, we seek to understand the factors limiting their performance
on the benchmark and explore strategies to unlock their full potential in open-ended tasks.

LLM-based MAS have been employed to improve performance in reasoning-intensive and knowledge-based
VL tasks (Table 3.1). We hypothesise that a collaborative approach, incorporating text-only LLM agents at
key stages, could improve results beyond the zero-shot performance of multimodal LLMs on the OK-VQA
task. To establish an effective collaboration framework, we further hypothesise that: (a) MLLMs can generate
linguistically strong and salient paragraph descriptions for images that contain the necessary information to
answer the question, (b) that text-only LLMs can extract the correct answer by relying solely on the image
description, and that (c) text-only LLMs can effectively format the final answer to meet specific formatting
requirements. Validating these hypotheses would not only provide a more effective approach to the task but
also offer a more transparent framework for understanding why multimodal LLMs fail to achieve state-of-
the-art results on this task in a zero-shot setting. At the same time, establishing LLMs’ effectiveness as
formatters would also provide an easy, task-agnostic post-processing step to support open-ended tasks.
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2.3 Experimental Setup

In the experimental phase of this work, we benchmark Claude as a large-scale, multimodal proxy model on two
tasks: image paragraph captioning and knowledge-based VQA. For our first task, we explore image paragraph
captioning, which involves generating paragraph-length descriptions for images. We prompt the model to
generate paragraph descriptions for the images in a subset of the Stanford Image Paragraph Captioning
Dataset in a zero-shot setting. We use the linguistic metrics established by the creators of the dataset to
compare the human-written paragraphs from the dataset annotations with the model’s outputs and conduct
a linguistic analysis to evaluate how lengthy, detailed, semantically rich, diverse, and grammatically correct
model-generated paragraphs are compared to human-annotated paragraphs.

For our second task, we focus on knowledge-based VQA and specifically, the OK-VQA dataset, an open-ended
benchmark which features questions about images that draw on outside knowledge. We use the soft accuracy
metric proposed by the creators of the dataset to evaluate a large-scale, multimodal model in a zero-shot
setting and propose a multi-agent system that establishes collaboration between an LVLM agent and text-
only LLM agents. Our framework comprises three models: the Scout, an LVLM that takes an image as input
and describes it in a paragraph; the Analyser, an LLM that generates an initial answer to the question based
on the image description; and the Resolver, an LLM that extracts and formats the final answer based on
a set of predefined rules. We experiment with different prompting techniques, including Chain-of-Thought
(CoT) prompting and few-shot prompting, and evaluate various methods to propose design elements.

2.4 Contributions

In this work, we explore the limitations of modern multimodal LLMs in handling open-ended tasks that require
outside knowledge and visual commonsense reasoning. We examine the Stanford Image Paragraph Captioning
and OK-VQA datasets and demonstrate that although these models possess substantial cognitive, reasoning,
and linguistic capabilities, their performance deteriorates when they are managing multiple complex tasks
and trying to conform to specific response formats. To address this, we propose a collaborative framework
that combines a multimodal LLM with a text-only LLM in two key stages, image description and answer
formatting, resulting in improved performance over the baseline. Our analysis highlights the need for new
benchmarks in the areas of image paragraph captioning and knowledge-based VQA that explicitly test a
model’s ability to reason across abstraction levels and generate human-aligned responses.

First, we highlight the scarcity of datasets in the image paragraph captioning domain that truly challenge
modern multimodal LLMs and emphasise the significance of this task as a benchmark. We conducted
experiments on the most popular dataset of this area, the Stanford Image Paragraph Captioning dataset, and
performed a linguistic analysis suggesting that state-of-the-art multimodal LLMs have long surpassed this
benchmark. Our results demonstrate that models like Claude can generate paragraphs that are significantly
more semantically rich, detailed, and diverse than the ground-truth paragraphs in the dataset, underscoring
the need for a new and more challenging benchmark. We identify several areas that remain challenging
for LLMs and present opportunities for further improvement. To this end, we propose directions for future
datasets that could better evaluate their reasoning, knowledge, and multimodal understanding. We argue that
high-quality image paragraph generation is still challenging for multimodal LLMs and relies on many of the
same skills needed for VQA, hence our interest in both tasks. Therefore, with appropriately designed datasets,
the image paragraph captioning task offers a promising framework for evaluating capabilities relevant to VQA.

In addition, we investigate collaborative frameworks for knowledge-based VQA and demonstrate that incor-
porating LLMs can improve the performance of LVLMs alone. We focus on the OK-VQA dataset because, as
an open-ended benchmark, it poses a greater challenge than multiple-choice formats. Models must not only
know the correct answer but also express it in a way that aligns with how humans would naturally respond.
We observe that multimodal LLMs possess the knowledge and reasoning abilities required to perform well
on this task. In fact, the vast majority of the time, the models understand the question and provide valid
answers. The underlying problem is that they struggle to perform reasoning-intensive and cross-modal tasks
simultaneously or to adhere to the required answer format or abstraction level. As a result, their answers can
be overly specific, sound unnatural to humans, or be presented in a format that does not match expectations.
This issue is particularly evident in open-ended tasks and is a key factor that limits the performance of models
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that have not been fine-tuned on the dataset. This is why existing benchmarks and evaluation metrics, such
as OK-VQA and the proposed soft accuracy metric, fall short in capturing the full extent of the reasoning
and cognitive abilities of modern multimodal LLMs that are prompted in a zero-shot manner.

However, understanding the appropriate level of abstraction in a question and formatting the answer as
expected are capabilities we ideally want models to handle well without the need for fine-tuning. We find
that models like Claude struggle to tackle complex multimodal questions, abstraction, and formatting all at
once. Conversely, they are effective at describing images, while LLMs excel at finding answers hidden in text
and are powerful formatters, capable of post-processing other models’ outputs and converting them into the
expected format. This motivates us to explore a collaborative approach to address the OK-VQA task, where
an LVLM is first prompted to generate a paragraph description of the image without access to the question.
Then, an LLM provides an initial answer based on the question and the generated description, followed by a
second LLM that selects and formats the final answer to meet the requirements. Our collaborative framework
improves performance over the baseline and demonstrates the potential of collaboration between models in
tackling open-ended VQA.

We highlight that LLMs tend to default to more specific answers than humans, which significantly compro-
mises their results in open-ended tasks. They also struggle to transition between abstraction levels and often
fail to look for hypernyms when the information required for hyponyms is missing. Notably, if they can’t
find a specific hyponym match, they don’t generalise upward like humans would. For example, when asked
‘Who designed the statues?’, humans might initially expect to identify a particular individual. However,
upon examining the image and realising that this level of detail can’t be inferred, they naturally generalise
upward, providing a broader yet appropriate answer like ‘an artist’. In contrast, we find that LLMs struggle
with this kind of flexibility when it comes to abstraction levels. Instead, they tend to fixate on finding a
precise answer. We notice that if they fail to locate the specific information they are looking for in the image,
they don’t generalise upward but rather choose to not answer the question at all.

Given that multimodal LLMs clearly possess much of the knowledge required for challenging multimodal tasks,
their relatively low accuracy on the OK-VQA dataset cannot be attributed solely to a lack of knowledge or
visual reasoning. We argue that the ability to interpret and transition between abstraction levels is a critical
component of reasoning, and is a primary weakness of modern multimodal LLMs when evaluated on open-
ended datasets. Through a collaborative approach, we improve accuracy over the baseline and highlight that
while LLMs can effectively handle formatting, selecting the appropriate level of abstraction and reasoning at
that level remains a significant challenge. Therefore, we also emphasise the need for datasets that explicitly
assess models on their ability to understand and shift between different levels of abstraction.
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Theoretical Background

3.1 Large Language Models (LLMs)

3.1.1 Foundations

Large Language Models (LLMs) are language models with a large number of parameters, trained using self-
supervised learning techniques on vast corpora of text to learn statistical patterns in language. Most modern
LLMs are based on the transformer architecture [147], which models dependencies between input and output
sequences through a self-attention mechanism. Pretraining is the first critical step in LM development and
involves training the model on text corpora using self-supervision and pretraining objectives. The main
training objective of a pre-trained LM typically consists of an objective predicting the probability of text z
[84]. Common pretraining objectives include Standard Language Modeling (SLM), which trains models to
predict text autoregressively, and denoising objectives, such as Corrupted Text Reconstruction (CTR) and
Full Text Reconstruction (FTR), which train models to recover original text from corrupted inputs. However,
as LLMs scale in size, they often exhibit emergent abilities, such as complex reasoning or in-context learning,
that are not present in smaller models and were not directly targeted by their training objectives [161]. These
abilities can be elicited through prompting, enabling LLMs to perform complex tasks without additional fine-
tuning.

3.1.2 Capabilities

Fluency, Human-Likeness, and Empathy

With their fluency and human-like characteristics ([107]; [94]; [185]), LLMs have astounded the world, emerg-
ing as powerful tools with close proximity to humans. Thanks to their transformer architecture, LLMs can
achieve high levels of fluency and linguistic competence beyond the reach of traditional statistical ML models.
Transformers combine three key features that make them ideal for learning language: (i) a deep stacking of
layers, which allows them to learn both low- and high-level linguistic patterns, (ii) an attention mechanism in
each layer, enabling each token to selectively focus on relevant parts of the input sequence, and (iii) the par-
allel processing of input tokens, which allows for efficient training across vast corpora of data. Together these
characteristics contribute to LLMs’ ability to learn core aspects of human language and convincingly replicate
it. Yet, human language is just one of several ways in which LLMs mirror human behaviour. Human-likeness
is defined by [52] as the ability to understand dialogue context, leverage knowledge appropriately, detect user
emotions and personality, and generate friendly and reasonable responses that are coherent and consistent
with the dialogue context.

Similarly, empathy, defined by [103] as the ability to project another’s feelings and ideas onto one’s
understanding, is expressed in empathetic systems through emotion awareness, personality awareness, and
knowledge accessibility [94]. These qualities enable meaningful user engagement and support decision-making
in applications, particularly through conversational agents, such as ChatGPT ([151]; [159]). Human-likeness
and empathy also play a role in fostering trust in algorithmic recommendations—trust increases when
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machines emulate human characteristics and declines when they lack human-like traits like empathy [14]).
Therefore, LLMs function as intuitive intermediaries that enhance trust and strengthen collaboration
between humans and algorithms [47].

Reasoning and Cognitive Abilities

LLMs are also powerful reasoners and flexible, extendible, and expressive Knowledge Bases (KBs) ([117];
[5]). The ability to reason is central to human intelligence, yet machines still face challenges in drawing
conclusions from given information and prior knowledge ([117]; [32]). Unlike many of their predecessors,
LLMs demonstrate a strong performance on arithmetic, commonsense, logical, symbolic, and multimodal
reasoning tasks [32] and can effectively formalise problems by translating natural language to mathematical
models [159].

Moreover, they have significant amounts of knowledge encoded in their parameters, enabling direct retrieval
through prompting and fine-tuning ([138]; [112]; [5]). These abilities can be leveraged to solve complex tasks
presuming specialised knowledge, such as biomedical knowledge [132]. While traditional KBs are constructed
manually and follow a rigid, predefined structure, LLMs offer a more flexible alternative that is easier to
build, update, and maintain in real time ([138]; [5]). However, knowledge retrieval is not without challenges,
and prompt engineering is of utmost importance to ensure the accuracy and completeness of retrieved facts.
Nevertheless, with advances in factuality assessment, increased domain specialisation, and scaling in size and
human feedback, LLMs are becoming increasingly reliable KBs ([48]; [167]).

Planning and Coordination

LLMs have also demonstrated remarkable abilities in reasoning, decision-making, and planning, which allow
them to accomplish many tasks independently or delegate them to other components ([156]; [168]). Language
lies at the heart of these capabilities; just as it was pivotal in the evolution of biological intelligence, it is now
playing a similarly transformative role in the development of artificial intelligence. In this sense, language
is more than a mere textual modality and functions as a vehicle for both thought and communication [136].
With this foundation, LLLMs are capable of:

(i) utilising external tools such as search engines and code interpreters ([182]; [98],
(ii) decomposing complex tasks into sub-tasks ([113]; [180]; [185]),
(iii) delegating responsibilities to other models ([127]; [185]),
(iv) reasoning on complex tasks ([162]; [31]), and
(v) forming multi-agent systems spontaneously ([111]; [85]).

Thanks to these capabilities, LLMs are able to serve as coordinators in Al systems, improving performance
and effectiveness ([182]; [23]).

3.1.3 Prompt Engineering

In recent years, prompt-based learning has emerged as a powerful alternative to supervised learning by
eliminating the need for large amounts of labelled, task-specific data. As a result, attention has gradually
shifted from the traditional ‘pretrain and fine-tune’ paradigm to a newer approach known as ‘pretrain, prompt,
predict’ [85]. In this framework, a language model is first pre-trained to acquire general-purpose linguistic
knowledge and then guided to perform downstream tasks through carefully crafted prompts, often without
any additional fine-tuning. While compelling, this method introduces the challenge of prompt engineering,
which involves identifying the most effective prompt to elicit the desired behaviour from the model and
achieve the highest accuracy on the task at hand.

Formally, prompt engineering refers to the design of a prompting function fprompt(z) that achieves optimal
performance on a downstream task [86]. The prompting function can be static, applying the same prompt
template to every input, or dynamic, generating a custom template for each input. Based on their shape,
prompts are grouped into two main types: cloze prompts [112], which involve filling in the blanks within a
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textual string (e.g., ‘. is the capital of France.’), and prefiz prompts [76], which require the model to
continue a given text prefix (e.g., ‘Describe the steps involved in solving a quadratic equation.’). Prompts can
be constructed either manually or automatically. While manual prompts are intuitively written by humans,
automated prompts are generated using models or rule-based strategies. These can be further categorised as
discrete (or hard), in which the prompt is usually an actual text string within the discrete space of natural
language, and continuous (or soft), in which the prompt is encoded directly in the continuous embedding
space of the LM. Prompt engineering has grown into a dynamic field of both theoretical and practical
interest, encompassing an expanding set of prompting techniques. However, the field is currently undergoing
another shift. With the focus transitioning from monolithic models to multi-agent systems, collaboration
among multiple models is becoming the new standard for leveraging LLMs in a zero-shot manner, achieving
results that match or even exceed those of previous paradigms. These emergent collaborative behaviours of
LMs suggest a need to move beyond traditional single-agent prompting techniques toward multi-agent and
model-generated prompting.

Single-Agent Prompting

Numerous prompting techniques have proven effective in guiding language models to perform specific tasks,
often matching or exceeding the performance achieved through fine-tuning. Additional prompting methods
can be found in the comprehensive review by [121].

Zero-shot Prompting

Thanks to their large-scale pretraining, LLMs can be prompted directly to perform tasks in a zero-shot
manner, without the need to include additional context, inputs, or examples. Instead, they can be prompted
using only a task description, depending on the complexity of the task, the knowledge it requires, and the
types of tasks the model was exposed to during training. Although zero-shot prompting might now appear
to be the standard approach to prompting, it was a groundbreaking concept at the time of its introduction,
as it demonstrated that LLMs could perform tasks without any explicit supervision [118].

Few-shot Prompting

LLMs are often capable of performing new language tasks after seeing only a few examples, much like
humans [13]|. Few-shot prompting provides the model with a small number of input-output examples to help
it understand the task at hand and enable in-context learning, in contrast to zero-shot prompting, which offers
no context, inputs, or examples. While effective across a variety of tasks, standard few-shot prompting has
limitations, including the need for additional tokens to incorporate examples and the potential introduction
of biases that may influence few-shot results.

Chain-of-Thought (CoT) Prompting

Despite their capabilities, tasks involving complex reasoning often expose the limitations of LLMs. Chain-
of-Thought (CoT) prompting addresses this limitation by guiding the reasoning process of LLMs through
a logical reasoning chain [160]. LLMs prompted with CoT have been shown to adopt a more structured
approach to reasoning by breaking down problems and demonstrating a deeper understanding of the task,
compared to those prompted using traditional methods. However, the authors argue that this is an emergent
ability, observed only in sufficiently large models.

Self-Consistency

The observation that problems requiring thoughtful analysis often involve greater reasoning diversity led
Wang et al. [155] to sample multiple, diverse reasoning paths from the language model’s decoder using
few-shot CoT. This prompting technique, known as self-consistency, boosts the performance of CoT across a
range of challenging benchmarks involving arithmetic and commonsense reasoning.

45



Chapter 3. Theoretical Background

Tree-of-Thoughts

Complex reasoning tasks often require exploration and look-ahead reasoning. To address this challenge,
[178] and [87] expanded on CoT and proposed the Tree-of-Thoughts (ToT) framework, which introduces a
tree structure of coherent language sequences serving as intermediate reasoning steps, known as thoughts.
The LM model can then self-evaluate its progress and systematically explore thoughts by employing search
algorithms, such as breadth-first search and depth-first search.

Graph-of-Thoughts

Despite its success, the ToT prompting technique has a key limitation: it follows a strictly linear reasoning
process, unlike human thinking, which is often non-linear. Therefore, to better model the human thought
process, [178] proposed Graph-of-Thought (GoT) reasoning, which adopts a graph representation where
thought units are treated as nodes and the relationships between them as edges. By simulating non-sequential
human thinking, the GoT reasoning model demonstrates substantial gains over the CoT baseline and sets a
new state of the art in multimodal reasoning.

Retrieval Augmented Generation (RAG)

A common critique of LLMs concerns their ability to access and use knowledge effectively when tackling
knowledge- and reasoning-intensive tasks. To improve capabilities and factual consistency, [70] proposed
Retrieval Augmented Generation (RAG), a framework in which prompts are enriched with relevant external
information, enabling LMs to generate more context-aware and factually accurate responses. RAG operates
by combining the parametric memory of a pre-trained language model with non-parametric memory retrieved
from a dense vector index of external knowledge sources, such as Wikipedia. Given a user query, the model
retrieves relevant resources using a neural retriever and grounds its output on the retrieved context to
produce more informed and accurate responses. Retrieval-augmented models generate more specific, diverse,
and factual language, helping to mitigate hallucinations in LLMs and achieving strong, often state-of-the-art
performance on many knowledge-intensive benchmarks.

Prompt Chaining

Prompt chaining, introduced in [114], involves identifying subtasks and prompting the LLM iteratively, by
using each subtask’s response as input for the next prompt. This approach allows the model to focus on
one specific problem at a time, without being overwhelmed by multiple simultaneous tasks. In addition to
improved performance, prompt chaining enhances the transparency, controllability, and reliability of LLM
applications.

ReAct

Proposed by [177], ReAct is based on the observation that, in humans, reasoning and action are intertwined
processes that drive learning and reasoning. According to the ReAct framework, LLMs are used to generate
both reasoning traces, which help the model induce, track, and update action plans while handling exceptions
and actions, which allow the model to retrieve information from external sources such as knowledge bases or
environments. Experimental results demonstrate that ReAct outperforms several state-of-the-art baselines
across a diverse set of language and decision-making tasks, while also enhancing the interpretability and
trustworthiness of LLM outputs. Combining ReAct with CoT yields the best results, as it allows the model
to leverage both internal knowledge and information retrieved from external sources during reasoning.

Reflexion

Reflexion is a prompting technique introduced by [128] that encourages LMs to learn from prior mistakes
through verbal reinforcement. It operates through an iterative process involving three components: an actor
model that performs tasks, an evaluator model that scores outcomes, and a self-reflection model that generates
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verbal reinforcement cues to guide the actor’s improvement. This cycle helps the model improve over time,
making Reflexion especially effective across various tasks, including sequential decision-making, coding, and
language reasoning.

Multi-Agent Prompting

Multi-agent prompt engineering is a relatively new area of interest, referring to the design of multiple prompt-
ing functions f;mmpt(x) corresponding to multiple language agents that collaborate on a downstream task.
Multi-agent prompting inherently builds upon single-agent prompting techniques, while also introducing
strategies that are unique to multi-agent settings. This section explores how each single-agent prompting
strategy discussed in the previous section relates to, or has been adapted for, multi-agent systems. In ad-
dition, it presents new prompting strategies introduced specifically for multi-agent settings. The prompting
strategies used in various MAS applications for the collaboration of different language agents on reasoning
tasks are presented in Table 3.1.

MAS Zero-shot Prompting

Zero-shot prompting has been used in MAS applications primarily to explore the extent to which agent
collaboration can match or outperform both the ‘pretrain and fine-tune’ and ‘pretrain, prompt, predict’
paradigms. In fact, LLM-based MAS are capable of performing complex tasks in a zero-shot manner, without
the need for additional context, inputs, or examples, and often achieve better results than a single fine-tuned
model or a single prompted model.

MAS Few-shot Prompting

Few-shot prompting has been employed for few-shot learning within MAS pipelines, and has been shown
to contribute to performance improvements. However, to the best of our knowledge, few-shot prompting
has not yet been used explicitly to teach agents how to interact with one another. Given its ability to
convey patterns through demonstration, few-shot prompting could potentially be a valuable tool for guiding
inter-agent communication through examples of meaningful collaboration.

MAS Chain-of-Thought (CoT), Tree-of-Thought (ToT), and Graph-of-Thought (GoT) Prompt-
ing

In single-agent settings, CoT prompting better simulates human reasoning than zero-shot prompting, as it
encourages step-by-step problem solving through a logical reasoning chain. ToT takes this a step further
by encompassing branches of possible reasoning paths, thereby more closely simulating the exploratory and
lookahead reasoning that humans often engage in during complex problem solving. To account for the non-
linear and interconnected nature of human reasoning, GoT adopts a graph-based representation in which
thoughts are modelled as nodes and the relationships between them as edges. The former three are all part
of a growing family of prompting techniques aimed at improving reasoning by framing it as a structured,
multi-step process. Multi-agent systems are inherently linked to CoT, ToT, and GoT, as they explore
different reasoning paths by distributing cognitive processes across multiple agents. We hypothesise that a
system composed of multiple models is also more aligned with human reasoning than a single component,
as different functions in the brain are managed by specialised regions and pathways [11]. Therefore, multi-
agent prompting techniques are inherently connected to, and could potentially expand upon, single-agent
prompting strategies aimed at improving reasoning.

MAS Self-Consistency

In single-agent settings, self-consistency builds upon CoT by generating multiple reasoning paths and selecting
the most frequently occurring answer among them. In MAS, a similar form of self-consistency can be achieved
by distributing reasoning paths across multiple agents and then aggregating them, either through consensus,
voting, or by delegating the final decision to an orchestrator agent. We hypothesise that self-consistency is
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well-suited to MAS, where different modalities, models, and roles come together to integrate diverse reasoning
paths. In fact, a recurring theme in the literature is that the effectiveness of MAS is closely tied to agent
diversity, which is aligned with self-consistency improving results for single-agent setting.

MAS Prompt Chaining

Prompt chaining works by decomposing a task into subtasks and prompting the language model iteratively,
using the output of each subtask as input for the next. Prompt chaining naturally relates to MAS, as
they both involve task decomposition and sequencing. However, in MAS, different agents can be assigned
different subtasks, enabling both parallelisation and specialisation. Therefore, we find that MAS inherently
implement prompt chaining through role assignment and task decomposition, and in some cases, may do so
more effectively than a single agent.

MAS Reflection

The idea behind reflexion is self-critique and iterative improvement through verbal reinforcement. Whereas in
single-agent settings reflexion is typically an internal mechanism, in multi-agent systems it can originate both
from within an agent (self-reflection) and externally through feedback from other agents (external-reflection).
External reflection may be more useful than internal reflection in certain contexts, as self-prompting tends
to be generic and susceptible to bias, whereas external reflection can be more context-aware, targeted, and
capable of challenging the model’s initial errors.

MAS are able to implement prompting techniques used for single-agent settings. In fact, the reason
prompting techniques such as CoT and Reflexion yield better results than zero-shot prompting in single-
agent settings may also explain why MAS outperform single models in zero-shot contexts—because MAS
implicitly internalise specific prompting strategies through their structure. That is to say, MAS labeled as
zero-shot are not truly so, as they inherently implement prompting techniques already known to enhance
performance. This complicates evaluation, making it difficult to draw clear comparisons between ‘zero-shot’
MAS and truly zero-shot single-agent baselines.

Other prompting techniques also exist that are specifically designed for MAS settings. For example, a
common scenario in MAS collaboration is role-playing, according to which agents assume specific roles and
are assigned respective tasks. Inception prompting implements role-playing by assigning roles and tasks to
the language models at the beginning of the session [71]. It comprises task specifier prompts, which define
the task, decompose it into subtasks, and delegate them to individual models, as well as system prompts,
which instruct models to adopt specific roles (e.g., ‘junior’) and adhere to predefined rules (e.g., ‘As a junior,
your role is to assist, and you should not override decisions made by the senior.’). Role-playing requires
minimal human intervention and is an effective way to establish collaboration between agents. However,
models cannot always be steered through prompting to adhere to their assigned roles. Phenomena such as
role flipping may occur, where models break character and deviate from their designated behaviour. Studies
also highlight the importance of role diversity, noting that the use of identical role descriptions can lead to
significant performance degradation ([49], [16], [174]). An alternative to inception prompting proposed by
[25] is employing an agent as a recruiter, similar to a human resource manager, that gathers the most suitable
group of agents and delegates tasks.

3.1.4 Challenges and Ethical Concerns

Technical and Theoretical Challenges

Lack of True Understanding and Reasoning

While LLM foundation models appear to perform well on many reasoning tasks, it remains unclear whether
this reflects true reasoning or simply the reproduction of surface-level patterns learned during pretraining.
The debate between reasoning and memorisation is deeply existential for humans and rooted in cognitive
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biases that influence how we perceive and interact with machines. Before the era of language models, and
particularly LLMs, the use of language was generally assumed to reflect underlying thought. However, the
tendency to associate language with thought has proven to be a logical fallacy that humans project onto
machines [95]. In fact, the post-LLM era has taught us that strong language abilities do not necessarily
indicate strong reasoning capabilities, and conversely, poor reasoning abilities do not necessarily imply poor
language use. To dissociate language from thought, [95] describe two kinds of linguistic competence: formal
linguistic competence refers to the knowledge of linguistic rules and statistical regularities, while functional
linguistic competence refers to the ability to use language effectively in real-world situations, often drawing
on non-linguistic capacities. The two types of competence correspond to distinct processes and paths in the
human brain.

Viewed through this lens, it becomes evident that LLMs exhibit formal linguistic competence but lack func-
tional linguistic competence ([95]; [69]). The fluency and near-human grammatical abilities of modern LLMs
have been empirically and systematically evaluated through benchmarks. These models have achieved re-
markable results not just on general NLP tasks but also on challenging benchmarks of linguistic competence,
including the BLIMP and the SyntaxGym ([158]; [41]). LLMs’ strong performance on these datasets is largely
attributed to their transformer architecture, enabling them to extract complex linguistic patterns from vast
amounts of data.

However, foundational LLMs lack equivalent functional linguistic competence, which, in real-world settings,
typically requires four key capacities to sustain even the simplest of conversations: (i) formal reasoning,
which includes abilities such as logical, mathematical, and relational reasoning, problem solving, as well as
computational thinking (ii) world knowledge, referring to commonsense understanding of the physical,
social, and conceptual world, (iii) situation modelling, the ability to track protagonists, locations, and
events as the conversation unfolds, and (iv) social reasoning, which involves interpreting language within
its social context [95]. LLMs have been widely criticised along these dimensions ([50]; [184]; [170]; [88];
[154]; [166]; [123]; [124]; [140]; [125]; [183]), and although newer versions show a markedly improved capacity
to handle complex language tasks, a bottleneck remains that foundational models have yet to overcome.
However, this is becoming increasingly difficult to assess as multi-component Al systems become the industry
norm.

The central issue, then, is understanding why LLMs sufficiently achieve formal linguistic competence
yet continue to fall short in functional linguistic competence. At a surface level, one might argue that
this is simply because the training objective of transformer-based architectures is the prediction of the
next or masked word in a sequence, not performing calculations, detecting user emotions, or having a
notion of death. LLMs are trained to produce human-like language, not to talk, think, and act like
humans [95]. Nonetheless, they have previously demonstrated the ability to learn patterns not directly
incentivised by their training objectives. This raises the deeper question of which intrinsic properties
make certain linguistic features more learnable by LLMs while others remain elusive. Or perhaps it
is a matter of how certain properties and patterns of the world are represented in the large internet
corpora used to train LLMs, rendering some more easily learnable than others. These questions are
essential for determining what expectations are reasonable to place on foundational language models and for
understanding when we ought to seek out alternatives or complementary components to achieve specific goals.

Knowledge Gaps and Lack of Domain Specificity

Critiques of foundational LLMs often point to their knowledge gaps and lack of domain specificity. LLMs
have been tested on a range of knowledge-intensive benchmarks, including MMLU?, TriviaQA2, Truthful QA3,
CommonsenseQA*, VCR®, OK-VQAS, and A-OKVQA7, and have often been found to perform inadequately,

Lhttps://paperswithcode.com/dataset/mmlu
2https://paperswithcode.com /dataset /triviaqa
Shttps://paperswithcode.com/dataset /truthfulqa
4https://paperswithcode.com/dataset/commonsenseqa
Shttps://visualcommonsense.com/
Shttps://okvqa.allenai.org/

Thttps:/ /paperswithcode.com /dataset/a-okvqa
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particularly when multi-hop or multimodal reasoning and explicit knowledge is required. From a technical
standpoint, this issue stems from limitations in training data coverage, accuracy and currency of information,
as well as the lack of domain-specific fine-tuning ([83]; [149]). The vast majority of LLMs are trained on
large-scale text corpora scraped from publicly available internet sources. Although large, these corpora are
imperfect and often underrepresent certain domains such as medicine, law, and specialised scientific fields. In
essence, LLMs cannot learn what they are not exposed to during training. Similarly, LLMs tend to learn what
they are repeatedly exposed to. Thus, if the training data includes frequent instances of misinformation (e.g.,
climate change denial), common misconceptions (e.g., the belief that humans have only five senses or use
only 10% of their brains), or harmful stereotypes (e.g., that women belong in the kitchen), such content may
be internalised by the model and reproduced in its outputs. The absence of accurate, complete, up-to-date,
and specialised knowledge is problematic not only because it compromises performance, but also because
uncertainty makes LLMs more prone to hallucinate [120].

The challenge of data currency has been substantially mitigated in recent LLMs such as GPT-428, which
incorporate real-time information access through integrated web browser plugins ([182]; [171]). Retrieval-
Augmented Generation (RAG) has also emerged as a promising solution to address knowledge gaps, the need
for up-to-date information, and the lack of domain specialisation by incorporating content from external
knowledge databases [39]. Fine-tuning of pretrained models with human feedback has also been widely used
to align the model with human values and preferences. Task-specific tuning and RAG have become the gold
standard for LLM-based applications, ensuring robustness, improved factual accuracy, and better alignment
with domain-specific requirements ([39]; [56]; [7]; [134]). However, from a more theoretical perspective,
the problem can be traced back to surface-level learning and the broader debate between learning and
memorisation. LLMs often give the impression of thinking and learning, yet in reality, they identify and
reproduce statistical patterns in language rather than acquiring structured or grounded understanding of
the real world. Therefore, the issue might be theoretical in nature, but it can still be effectively addressed
through technical means.

Hallucinations

Rawte et al. in [120] define hallucination in foundational models as the generation of content that is not based
on factual or accurate information. This manifests specifically through outputs containing fictional, mislead-
ing, or entirely fabricated claims, rather than reliable and truthful information. An intrinsic hallucination is
a model output that contradicts its source inputs, representing a failure of faithfulness. Conversely, an ez-
trinsic hallucination is a model output that contradicts world knowledge, representing a failure of factualness
[67]. Hallucinations in large foundational models constitute a cross-modal challenge, affecting text, image,
audio, and video generation alike. As noted by [120], these fabricated outputs pose a significant challenge due
to their plausibility and the confidence with which they are stated, making them difficult to detect despite
being factually incorrect or entirely fabricated.

Blind reliance in LLMs can compromise decision-making and trigger a cascade of misaligned outputs, as
hallucinations tend to propagate across the entire interaction trajectory [187]. Hallucinations can also severely
harm trust in algorithmic predictions. People hold algorithms to a perfect automation schema, expecting them
to perform perfectly and quickly losing trust after seeing them perform and err ([61]; [29]). As a result, when
encountering non-factual LLM outputs that combine assertive delivery with plausibility, suspicion is created
about undetected errors in prior and future interactions, thereby reinforcing algorithm aversion—humans’
inherent reluctance to trust algorithms ([29]; [61]).

Hallucinations in LLMs are attributed to multiple interconnected factors and are tied to persistent limitations
in the field, including outdated knowledge, bias, limited reasoning capabilities, and domain-specific knowledge
gaps ([120]; [149]). Surprisingly, LLMs can demonstrate latent knowledge of correct information yet still
produce confident hallucinations—generating and committing to false answers they later reject when queried
in a different session [187]. In this scenario, the knowledge exists within the system’s parameters, but either
the model struggles to retrieve it and use it appropriately or prompt engineers fail to probe it. For instance,
prompts instructing the model to first answer a question and then provide an explanation may pressure it to

8https://cdn.openai.com/papers/gpt-4.pdf
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commit to a wrong answer and construct justifications around it, rather than the other way around ([187];
[9; 21)-

Therefore, understanding hallucinations and applying prompt engineering and other approaches to handle it
effectively is a key consideration when it comes to LLM research. Current work on hallucinations primarily
spans three directions: detection ([79]; [100]; [46]), factuality ([48]; [149]; [21]), and prevention ([191];
[100]; [46]). Standardised hallucination evaluation benchmarks include Truthful QA (Question Answering),
FactualityPrompt (Text Completion), FActScore (Task Instructions), KoLA-KC (Task Instructions), HaluE-
val (Question Answering & Task Instructions), FACTOR (Text Completion) ([187]; [149]; [79]). Object
hallucination, which involves generating captions or responses that mention objects inconsistent or entirely
absent from the visual content, is also a particularly important area of focus in computer vision and LVLMs
due to its prevalence and persistence, its impact on user trust, and its potential for adverse consequences
in high-stakes applications such as medical image analysis ([79]; [191]; [46];[74]). Hallucination research has
progressed considerably, with advancements such as factuality checking and object hallucination detection
showing promising results in mitigating their impact on tasks, yet it remains unclear whether hallucinations
are a technical or a more fundamental theoretical issue.

Agnosia

Agnosia in Multimodal Large Language Models (MLLMs) is a concept closely related to hallucinations and
was first introduced by Lu et al. in [89] to mirror the neuropsychological phenomenon in which individuals are
unable to correctly process sensory inputs or recognise elements such as objects, colours, or spatial relations
[131]. Agnosia in MLLMs refers to instances where the model misinterprets visual inputs or fails to comply
with textual instructions even in straightforward cases, resulting in irrelevant outputs, errors, or ungrounded
assertions. The authors of the paper reveal the deficiencies of MLLMs in interpreting multimodal inputs and
observe six distinct types of agnosia—Entity, Number, Colour, Material, Action, and Spatial—yet
additional types may be identified as the field develops [89]. Recognising agnosia as a critical challenge
in MLLM research, Lu et al. in [89] formalistically define the phenomenon and propose a comprehensive
framework that evaluates its presence across MLLMs and mitigates its impact by leveraging a multimodal
instruction tuning method. Similar to hallucinations, the presence of agnosia might be a technical as well as
theoretical issue and more research is needed to better understand its underlying causes and develop more
effective mitigation strategies.

Steerability

Steerability is defined as the extent to which a model can be guided along a specific dimension [99]. Similarly,
models are steerable when they can be easily made to adopt various behaviours, such as specific personas,
tones, or content styles [133]. Chang et al. in [17] provide a formal definition of steerability as the product
of two components: sensitivity and directionality. Sensitivity measures how much the model moves in goal-
space in response to a user’s request, while directionality captures how well the model’s output aligns with
the user’s intended direction in goal-space. For a model to be considered steerable, it must exhibit both high
sensitivity and high directionality. Prompt steerability refers specifically to the extent to which a model’s
behaviour can be guided through prompting alone [99].

Measuring steerability can be challenging, as it requires understanding the user’s goals and differentiating
between a model’s inability to generate a given output and its inability to be steered towards it [146]. Although
steerability benchmarking is a relatively new area of research, Vafa et al. [146] proposed a comprehensive
framework and benchmark for evaluating general model steerability, while Miehling et al. [99] introduced a
benchmark specifically designed to assess prompt steerability. Findings from these benchmarks indicate that,
despite their ability to produce high-quality outputs and perform well on other tasks, many current models
exhibit limited steerability ([99]; [146]). In fact, Chang et al. [17] argue that modern LLMs are, in general,
not steerable.

However, despite steerability generally being regarded as a desirable property within the LLM community,
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it is not intrinsically positive or negative, and its effects on human—Al interaction can be either beneficial
or harmful, depending on the application context and the user’s intentions or goal. This, according to [17],
is due to the fact that what is considered safe in one context may not be safe in another. Steerability
is beneficial when it enables personalised responses—such as tailoring fertility advice to a user’s specific
situation—but potentially harmful when it allows users to bypass safety mechanisms or redefine critical
concepts like medical terminology ([17]; [44]). It is also possible that we might want the same model, even
within the same use case, to be steerable in generating personalised outputs—such as adapting advice based
on a user’s specific fertility concerns—while remaining unsteerable in ways that could compromise accuracy,
such as incorporating unverified treatments or misinformation into its responses. Therefore, an ideal LLM
should exhibit context-aware steerability by adjusting how much it can be influenced based on the specific
use case and calibrating its responsiveness in accordance with what is considered ethical and appropriate in
each context.

Ethical Concerns

LLMs amplify existing ethical concerns about AI due to their unprecedented power and widespread
accessibility, while also introducing novel challenges. Key ethical concerns in Al include bias and fairness,
transparency, privacy and data security, and accountability and governance. In addition to these concerns,
the era of generative Al introduces further ethical challenges, including misinformation and disinformation,
censorship, intellectual property and plagiarism, various forms of abuse such as hate speech and cyberbullying,
as well as significant environmental impact, among others ([60]; [129]; [35]; [38]; [188]). This chapter fo-
cuses on the topics most relevant to the experimental section of the thesis, though all issues remain important.

Bias and Fairness

Bias in the context of NLP can generally be defined as the presence of systematic misrepresentations, attri-
bution errors, or factual distortions that result in the favouring of certain groups or ideas, the reinforcement
of stereotypes, or the reproduction of inaccuracies based on patterns learned during training [35]. Common
types of bias in LLMs include demographic, cultural (or social), linguistic, temporal, ideological or political,
and confirmation bias, as outlined by Ferrara in [35]. These forms of bias originate from multiple sources,
including training data, algorithms, labelling and annotation practices, product design, and policy decisions
[35].

In the context of generative AI, discussions of bias primarily refer to social bias. In traditional NLP, social
bias is a subjective term referring to unequal treatment or outcomes among social groups that result from
longstanding and systemic power imbalances. Gallegos et al. [38] expanded the definition of social bias and
fairness in the context of LLMs by identifying two key types of social harms that may arise: representational
harms, which involve denigrating or subordinating attitudes towards social groups, and allocational harms,
which refer to the unequal distribution of resources or opportunities across social groups. Representational
harms encompass misrepresentation, stereotyping, disparate system performance, derogatory language, and
exclusionary norms, while allocational harms include both direct and indirect forms of discrimination. To
encapsulate fairness in the context of LLMs, the authors formalise a set of fairness desiderata consisting of
Fairness Through Unawareness, Invariance, Equal Social Group Associations, Equal Neutral Associations,
and Replicated Distributions.

Completely eliminating bias from generative language models may be impossible, as human language itself is
a reflection of society and inherently contains various biases, stereotypes, and assumptions. Drawing on [35],
it can be argued that removing these elements could risk losing the rich, context-dependent, and culturally
embedded nature of language as we know it. Moreover, the concept of bias is highly subjective, as values
and norms vary significantly across individuals, communities, and historical periods. However, efforts should
be made to mitigate harmful forms of bias, particularly social and ideological or political bias. A wide range
of bias mitigation techniques for LLMs are identified in the literature, and [38]| categorise them according
to the stage at which they intervene in the model pipeline: pre-processing, in-training, intra-processing,
and post-processing. Mitigation strategies for bias in LLMs span several stages of the model pipeline.
Pre-processing techniques focus on modifying training data or prompts, such as through data augmentation
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or filtering to reduce biased patterns. In-training methods adjust the model itself, for instance by modifying
the loss function or updating select parameters. At the intra-processing stage, techniques like decoding
strategy modification alter model behaviour at inference without further training. Finally, post-processing
approaches such as rewriting detect and revise biased outputs after generation.

Transparency

Transparency in an Al model refers to the ability to understand its training process and how it makes deci-
sions. By nature, LLMs are notoriously opaque, due to their deep stacking of layers and transformer-based
architecture, which enables training on vast corpora of data. This complexity, albeit central to the suc-
cess of generative Al models, poses major challenges for explainability—the ability to explain or present
model behaviour in a manner that is understandable to humans [188]. Although what constitutes a human-
understandable explanation remains inconclusive, approaches to explainable AI (XAI) are generally classified
into two categories: interpretable ML models and post-hoc interpretation techniques [45]. Statistical ML
techniques such as linear regression, logistic regression, and decision trees fall under the category of inter-
pretable ML, as they are inherently designed to learn from data in a transparent way. In contrast, deep
learning models, particularly LLMs, are not interpretable by design, as their internal workings are largely
opaque. Therefore, post-hoc interpretation techniques are required to approximate explainability in LLMs.

Modern benchmarks such as VCR? and OK-VQA'? incorporate explainability by requiring models not only to
answer a question but also to provide a rationale justifying their choice, either in multiple-choice or free-text
form. This approach falls under the category of output-based explanations. While this approach represents a
step forward in transparency, these types of output explanations generated by the model can be misleading.
A model may arrive at the correct answer for the wrong reason or pair an incorrect answer with a seemingly
appropriate rationale. Interestingly, even when a model chooses the correct answer and offers an aligned
rationale, this does not necessarily indicate true reasoning. For instance, a model may associate certain
words—Ilike the co-occurrence of ‘teacher’ and ‘school’—and default to the correct answer through learned
statistical patterns rather than reasoning. A similar issue could occur in high-stakes medical applications.
Consider a multimodal LLM reviewing a chest X-ray of the marginal case of a 19-year-old Hispanic woman
with public health insurance. The model reports no findings, citing clear lungs and low clinical risk due to
her age. The explanation appears reasonable, but in reality, the model overlooks a subtle lung lesion because
it has learned to associate this demographic with a lower likelihood of disease. Here, the rationale hides
a statistical bias rooted in underrepresentation in the training data, a phenomenon previously reported in
medical datasets such as MIMIC-CXR!! and the CheXpert'2.

Therefore, there is a danger that LLMs might not disclose their actual reasoning and may instead offer
explanations that align with their own motives or what they believe users want to hear. In fact, they have
been shown to lie deliberately to appear more favourable, particularly when they recognise they are being
evaluated ([10]; [122]). The expectation that LLMs should provide accurate rationales may simply reflect
our assumption that humans would, revealing yet another bias we project onto machines. General trends in
benchmarks with rationales may be useful to observe, but it is important to keep in mind that in high-stakes
applications like medicine, the use of words like ‘because’ or ‘as such’ does not necessarily reflect the model’s
actual reasoning. These phrases can create the appearance of explanation without revealing the true basis
for a decision.

3.2 Vision-Language Models (VLMs)

3.2.1 Foundations

Vision-Language Models (VLMs) are models trained to understand and generate information across visual
and textual modalities, learning aligned representations through image-text datasets [58]. Early VLMs, such

9https://visualcommonsense.com/
10https://okvqa.allenai.org/
Hhttps:/ /physionet.org/content /mimic-cxr/2.1.0/
12https:/ /stanfordmlgroup.github.io/competitions/chexpert/
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as CLIP and ALIGN, used contrastive objectives to map images and text into a shared embedding space
([119]; [58]). More recently, Large Vision-Language Models (LVLMs) have emerged, integrating transformer-
based architectures to allow pretraining on large multimodal corpora [4]. Prompting techniques, such as
few-shot prompting with task-specific examples, can unlock complex multimodal reasoning abilities. Models
like BLIP-2 [73] bridge VLMs and LLMs by combining frozen LLMs with vision encoders. This transition
culminates in multimodal LLMs like GPT-4 [106], capable of processing visual and textual content at the
same time.

3.2.2 Tasks and Challenges

Traditional vision tasks such as object detection, image classification, and semantic segmentation remain
long-standing challenges in the computer vision community. Beyond these tasks, the era of LVLMs and
multimodal LLMs has shifted the emphasis toward more challenging tasks that require joint understanding,
reasoning, and knowledge across both visual and textual modalities. Some of these tasks, which are relevant
to this thesis, are summarised below.

e Visual Question Answering (VQA): In Visual Question Answering (VQA), a model is provided
with an image I and a textual question @) about that image, and is tasked with predicting a textual
answer A, either as free-form text or by selecting from a list of predefined options [92]. While the
former is framed as a classification task, the latter falls under the domain of language generation. VQA
is a challenging multimodal task, requiring both a detailed understanding of the image and advanced
reasoning to produce correct answers [1].

¢ Knowledge-based Visual Question Answering (K-VQA): In addition to visual understanding
and reasoning, certain questions rely on knowledge outside the image. In K-VQA, a model is provided
with an image I, a textual question ) about that image, and is tasked with predicting a textual
answer A. To produce the correct answer, the model must incorporate knowledge K, which is not
directly present in the image itself. There are two main approaches to incorporating knowledge in the
K-VQA task: employing knowledge embedded in the model’s parameters, and retrieving an external
knowledge source such as a database or knowledge base. Famous datasets in this task include K-VQA'?,
OK-VQA', A-OKVQA'®, WebQA 6, and FVQA'".

¢ Visual Commonsense Reasoning (VCR): Visual Commonsense Reasoning (VCR) involves predict-
ing an answer A and a corresponding rationale R, given an image I and a question ) about the image,
which typically requires commonsense knowledge to answer correctly. Commonsense knowledge refers
to the abstract entities, facts, and real-world events that are accepted by the majority of people about
everyday life [92]. The task is structured in two stages: first predicting the correct answer (Q — A),
and then selecting the appropriate rationale that justifies it (QA — R).

e Image Captioning (IC): Image Captioning (IC) is the task of generating a caption ¢ for an image 1.
While IC still presents challenges for traditional computer vision systems, certain VLMs, multimodal
LLMs, and collaborative approaches, such as the CLIP-GPT-2 combination, demonstrate strong per-
formance on IC tasks. VQA and IC are closely related, particularly in the context of LLMs. Because
unimodal LLMs are restricted to textual input, when evaluated on VQA datasets such as VCR!'® or
OK-VQA?'", they rely solely on captions, provided by the dataset or generated by other models. How-
ever, most training and testing IC datasets, such as COCO?° and Flickr?!, consist of image-caption
pairs that do not directly require external knowledge. As a result, captions often omit important visual
information, significantly restricting LLMs’ ability to answer correctly.

e Image Paragraph Captioning (IPC): A single-sentence description often fails to capture the full

L3https:/ /paperswithcode.com/dataset /kvqa
Mhttps://okvqa.allenai.org
15https://github.com/allenai/ackvqa

16https: //webqgna.github.io/
Thttps://github.com /wangpengnorman/FVQA
8https:/ /paperswithcode.com /dataset/ver
9https://okvqa.allenai.org
20https://cocodataset.org/#home
2lhttps://paperswithcode.com/dataset /flickr30k
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picture. As an alternative, Image Paragraph Captioning (IPC) has been proposed, where the goal is
to generate a coherent, multi-sentence paragraph P that describes the image I. Paragraphs convey
significantly more information about images compared to single-sentence captions. Krause et al. [65]
observe that image paragraphs tend to use more verbs and pronouns, slightly fewer nouns, and a sim-
ilar frequency of adjectives compared to captions. This reflects their richer structure, as paragraphs
describe not just objects, but also their properties and relationships. They also note that complex
linguistic features like coreference, which are characteristic of human-like language, cannot not be cap-
tured by single-sentence captions. Given these complexities, paragraph generation is more linguistically
challenging than sentence-level image captioning.

Key challenges in VLM research include hallucination, safety, fairness, multimodal alignment, commonsense
and physical reasoning, training efficiency, and data scarcity [80];[43]. Object hallucination, the mention
of nonexistent objects in images, remains a pervasive issue in VLMs [93], often stemming from misaligned
contextual representations across modalities. As such, hallucination detection and mitigation become critical
considerations when it comes to VLM research. Another key consideration is safeguarding against unethical
use and ensuring fairness toward marginalised groups. LVLMs continue to struggle with commonsense and
physical reasoning and present technical challenges such as training and fine-tuning efficiency, as well as
the scarcity of high-quality training data. VLM research is evolving rapidly, with increasingly sophisticated
applications, such as the collaboration between VLMs and LLMs, poised to address these challenges.

3.2.3 Enhancing VLMs with LLMs

A number of studies have explored the use of knowledge bases, and specifically LLMs to enhance the capa-
bilities of VLMs ([22];[149];[59];[51];[110];[175];[186];[92];[91]; [67];[8];[66];[135]). The complementary nature
of LLMs and VLMs allows for multimodal interaction, where language informs perception and perception
grounds language. In the human mind, language and perception are two central cognitive systems, funda-
mental to understanding the full spectrum of human behaviour [148]. The interplay between linguistic and
perceptual information during processing is complex and bidirectional, with language influencing the inter-
pretation of visual input and perception informing the understanding of language. Similarly, visual reasoning
in machines relies on multimodal perception.

Although VLMs incorporate both language and vision components, their internal architectures and training
objectives can vary. This suggests that not all VLMs are created equal, and that there is a certain level of
complementarity even among different VLMs [22]|. Furthermore, LLMs tend to exhibit superior performance
in NLP tasks than VLMs, owing to their scale, architecture, and pretraining. To achieve complementarity
across models and modalities, we are transitioning away from a single, large-scale generalist model intended
to serve all purposes, and instead focusing on integrating smaller, specialised components. Ensemble methods
have shown strong potential, but are ill-suited for heterogeneous models with divergent inputs and outputs
[22]. In response, research is increasingly turning to multi-agent collaboration, made possible by the coordi-
nation and reasoning capabilities of LLMs.

In visio-linguistic tasks regarding QA, LLMs play a central role in enabling complementarity between
components. In [22], LLMs are used to integrate and reason over VLM outputs, boosting performance
in complex tasks like VQA, knowledge-based VQA, visual entailment, and spatial reasoning. Wang et al.
[149] also presented a multi-agent framework for VQA, where an LLM acts as a Seeker agent—posing
sub-questions to the VLM agent, identifying relevant issues, and constructing a knowledge base to guide
reasoning. Jiang et al. in [59] introduced an adaptive pipeline in which a multimodal LLM, such as
GPT-4, interacts step by step with a standard LLM like GPT-3.5, with the objective of analysing reasoning
shortcomings, filling in missing information, and avoiding overconfidence. Overconfidence is a key factor that
leads models to produce incorrect answers, even when they have the reasoning and cognitive capabilities to
answer correctly. Hu et al. [51] approach the knowledge-based VQA task through a multi-agent framework
composed of three LLM-based agents that simulate hierarchical team roles: Junior, Senior, and Manager.
Each agent independently plans actions using a planner, invokes external tools, and contributes to the final
decision through voting. The cited works surpass VLM architectures alone and achieve state-of-the-art
performance on standardised VQA benchmarks, including OK-VQA.
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These LLM-VLM collaboration frameworks have also demonstrated substantial capabilities in tasks involving
multi-step reasoning and planning. Yang et al. [175] explore a novel agent-enhanced collaborative approach
to image captioning, using an LLM as an orchestrator for a VQA model. To this end, the task is divided
into a series of interconnected question-answer subtasks, demonstrating that a collaborative approach can
effectively break down complex tasks into smaller, more manageable ones. Zhang et al. [185] further show
that LLMs can work together to assist in planning and executing long-horizon tasks, as evidenced by the
ThreeDWorld Multi-Agent Transport (TDW-MAT) benchmark. Additionally, they highlight how LLMs can
enhance cooperative abilities and communication between agents, as seen in the Communicative Watch-
And-Help (C-WAH) environment. These studies demonstrate that LLM-driven collaborative frameworks can
facilitate task planning and execution. Furthermore, task decomposition inherently constitutes a form of
few-shot CoT, which improves reasoning performance through its structured problem-solving approach [160].
Therefore, through planning and decomposing tasks, LLMs can turn complexity into performance gains.

3.3 From Monolithic Models to Multi-Agent Systems

LLMs have demonstrated outstanding performance across a diverse range of tasks. Unlike earlier ML models,
which operated independently, today’s LLM-based systems integrate multiple specialised components, includ-
ing retrievers, code interpreters, and external tools, to perform more complex tasks [182]. This transition has
led to the development of LLM agents, capable of autonomous decision-making and collaborative problem-
solving, either independently in Single-Agent Systems or in coordination with other agents in Multi-Agent
Systems [77]. LLMs are at the forefront of these breakthroughs, driving the capabilities of compound Al
and Multi-Agent Systems, acting as agents, coordinators, and optimisers. Compound Al and Multi-Agent
Systems have achieved remarkable success across various domains. However, despite these advances, several
challenges remain in optimising these systems and understanding the dynamics of human-agent collaboration.
This chapter explores the emerging trends in compound Al and LLM Multi-Agent Systems, focusing on the
opportunities they present and the challenges that must be addressed to unlock their full potential.

3.3.1 Background

Recently, there has been a significant shift in both research and industry from monolithic AI models to
compound AT systems. Compound Al systems are defined by [182] as systems that tackle AI tasks using
multiple interacting components, including multiple calls to models, retrievers, or external tools. In contrast,
AT models are simply defined as statistical models (e.g., transformers that predict the next token in text).
State-of-the-art performance is increasingly driven by compound Al systems, with most well-established
implementations today comprising multiple components. LLMs in particular, through natural language
prompting, have unlocked unprecedented flexibility in these systems’ capabilities. For instance, ChatGPT??
integrates a number of specialised modules, including a web browser plugin, a code interpreter, and the
DALL-E?3 image generator, all orchestrated by an LLM at the core of the system [106].

Compound AT systems in the LLM era are largely synonymous with Al agents, and [62] do not explicitly
differentiate the two terms. Ferber et al. [34] offer a foundational definition of agents as a physical or virtual
entity capable of acting, perceiwing its environment (albeit partially), communicating with others, exhibiting
autonomy, and possessing the skills necessary to achieve its goals and tendencies. A Multi-Agent System
(MAS), according to [34], comprises an environment, objects, and agents (with agents being the sole actors),
along with the relations among these entities, a set of operations they can perform, and the changes in the
universe over time due to these actions. Al agents are still being defined, but they are generally understood
by the community as Al systems capable of autonomously performing tasks on behalf of a user or another
system, as opposed to traditional hard-coded logic.

Kapoor et al. [62] adhere to the general notion that agency is a continuum, rather than a binary, identifying
several factors that influence the system’s level of agency. Al systems are more agentic when the environment
is complex, such as those with a broad range of tasks or multiple stakeholders ([126]; [37]). Furthermore,
systems that independently pursue complex goals without explicit instructions are also regarded as more
agentic ([126]; [15]; [37]). User interface and supervision play a crucial role as well—AI systems that can be

22https://chatgpt.com
23https://openai.com/index/dall-e-2/
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directed using natural language and act autonomously on the user’s behalf display more agency ([126]; [15];
[37]). Lastly, systems incorporating design patterns like tool use or planning, as well as those with a dynamic
control flow driven by an LLM, exhibit more agentic behaviour ([164], [18], [102]).

LLMs have demonstrated remarkable abilities in reasoning, decision-making, and planning, which allow them
to accomplish many tasks independently or delegate them to other components ([151]; [168]). In light of these
capabilities, LLM-based agent systems have become a dynamic field, with LLMs used in both Single-Agent
Systems (LLM-SA), where one LLM handles planning or decision-making, and Multi-Agent Systems (LLM-
MA), where multiple LLMs or other agents collaborate [47]. LLM-SA systems have demonstrated significant
cognitive abilities [137], while LLM-MA systems build on this by combining specialised LLMs and enabling
interactions among them, which allows for more effective simulation of complex real-world environments [47].
Notable applications of LLM-based MAS include improving factuality [31], enhancing medical reasoning [141],
and simulating macroeconomic activities [75].

As members of this multi-agent society, LLMs achieve their effectiveness by mimicking human-like collabora-
tive intelligence [186]. LLMs do not just resemble humans’ fluency: they are empathetic, human-like dialogue
systems capable of emulating societies, individual traits, and thought processes, closely resembling human
behaviour ([186]; [52]; [94]). LLM agents can be easy-going or overconfident, self-reflective or argumentative,
conforming or dissenting. Notably, within close-knit groups, they often prioritise harmony and consensus
over objective evaluation of differing opinions, sliding into phenomena like ‘groupthink’ [55], much as humans
do. These traits form the foundation of the human-like collaborative capabilities of LLMs and highlight the
potential of LLM-based systems in solving problems by emulating human intelligence.

3.3.2 The Potential of Compound AI and LLM-based MAS

Compound Al systems are shaping the industry as popular consumer products, outperforming both humans
and specialised models across many domain-specific tasks. AlphaGeometry competes with silver and gold
medalists in the International Math Olympiad [144], and Gemini Ultra®* outperforms human experts across 57
subjects on the MMLU (Massive Multitask Language Understanding) dataset. Meanwhile, MedPrompt excels
in medical benchmarks [104], surpassing monolithic LLM models like Med-PaLM-2 [130]. These achievements
are largely attributed to their advanced system design, ability to integrate dynamic data, and integration of
multiple, specialised components [182]. Monolithic models have limited performance improvement beyond
their initial level, with substantial gains typically only achieved after exhaustive training. On the other hand,
compound Al’s sophisticated system design can lead to greater improvements with less effort. For example,
DeepMind’s AlphaCode 2 [6], a competitive programming tool, generates up to 1 million potential solutions
for a problem, which are then filtered and ranked, thereby outperforming traditional LLLMs. Thus, compound
AT systems surpass the limitations of monolithic models and offer the best path toward enhancing the quality
and reliability of AI applications.

Similarly, due to their distributed decision-making and problem-solving capabilities, MAS have demonstrated
superior performance over single-agent systems ([47]; [77]). LLM-MAS, in particular, hold great promise for
addressing complex problems and simulating various aspects of the world in fields like finance, healthcare,
and policy-making. In finance, LLM agents serve as implicit computational models of human behaviour and
have been used to simulate economic and trading environments [47]. These simulations encompass a wide
range of scenarios, including macroeconomic activities, information marketplaces, financial trading, and the
dynamics of virtual towns ([75]; [163]; [78]; [189]). LLM agents are also employed in scientific discussions and
debates, where they analyse complex medical data, make decisions, and provide insights based on available
medical knowledge [141]. Another recent study by [165] leveraged these agents to model the propagation of
disease. Furthermore, LLM-MA systems can simulate virtual governments and assess the impact of various
policies on communities, providing valuable insights to policymakers ([33]; [42]; [169]; [165]). What this
progress suggests is that these Al systems are likely to remain a dominant trend in the foreseeable future.

3.3.3 Collaboration Patterns and Prompting Techniques in LLM-based MAS

Table 3.1 summarises notable LLM-based MAS applications on downstream reasoning-intensive tasks, out-
lining their collaboration patterns and prompting techniques.

24https:/ /deepmind.google/technologies/gemini/ultra/
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3.3.4 Challenges and Open Questions

The field of compound Al and LLM-MA is relatively new and the design, optimisation, and operation of these
systems remain challenging. In both compound Al and LLM-MA systems, many shortcomings arise from the
intrinsic limitations of LL.Ms, namely their black-box nature, hallucinations, reasoning abilities, knowledge
gaps, and role-playing capabilities ([151]; [47]; [117]; [187]). However, the intricacies of their design introduce
additional challenges.

In compound AI systems, developers must choose the best system design from a wide range of options and
determine how to efficiently allocate resources across multiple components. Moreover, since compound Al
systems often include non-differentiable elements, optimising components to function efficiently together is
no trivial task and often requires specialised, ad hoc tools. Machine Learning Operations (MLOs), such as
assessing performance or debugging, are also more complex for compound Al, as it is often challenging to
attribute mistakes or successes to a specific component [182].

In LLM-MA systems, developers have to design coordination mechanisms that avoid groupthink and cognitive
biases [75]. Establishing a comprehensive framework for coordination can be challenging, particularly in
human-agentic workflows [3]. A terminological framework for human-agentic collaboration has only recently
been proposed by [3], and there still remains a lack of empirical insight into which human-agentic workflows
are effective and the underlying reasons for their success. Guo et al. [47] also reported a notable gap
in multi-modal settings, with most LLM-MA research focusing on text-based environments. Multimodal
environments pose additional challenges, requiring agents to process and integrate various types of data, such
as text, images, audio, and video, each with different formats and structures. Another cited gap is the lack
of standardised evaluation frameworks for Al agents ([47]; [62]). Al agent benchmarking is still an emerging
field, as agents differ significantly from models, and a comprehensive evaluation framework, particularly one
that accounts for humans-in-the-loop, has yet to be established ([62]; [47]). Kapoor et al. [62] have taken the
first step toward this by proposing measures to enhance the rigour of Al agent benchmarking and shifting
the focus away from narrow accuracy.

The design and prompting of compound AI and LLM-MA systems is still evolving, though a number of
tools and techniques are available. As the focus has shifted from models to Al systems, so too has the
programming approach, transitioning from hard-coded programming to language model programming, where
developers call models and tools from component libraries. DSPy [63] was the first programming paradigm
for end-to-end optimisation of LLM systems with multiple calls and tool definitions. To this end, DSPy
leverages the linguistic abilities of LLMs and user inputs in natural language to generate prompts that
maximise performance. Recent advancements also enable end-to-end optimisation of system parameters by
using an LLM to generate and refine instructions and tool definitions, enhancing the performance of compound
AT systems [82]. MLOs, such as debugging and performance tracking, are now considerably easier thanks
to software advancements. There are also significant efforts to theorise human-agentic workflows. Recent
advancements have extended the Business Process Model and Notation (BPMN) to effectively formalise
and represent human-agentic collaborative workflows [3]. However, there remains significant potential for
experimentation and refinement, especially in real-world settings.
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Chapter 4

Approach

4.1 Tasks, Datasets, and Related Work

4.1.1 Image Paragraph Captioning and Dense Captioning
Tasks

Image Paragraph Captioning (IPC) refers to the task of generating a coherent, multi-sentence paragraph
P that describes the image I. Paragraphs are linguistically complex structures that convey both high-level
semantics and low-level visual details from the image. Depending on the complexity of the image, the model
needs to possess the following abilities in order to produce a high-quality paragraph description:

e Visual understanding: At the most basic level, the model needs to understand low-level semantics
such as edges, regions, and textures, as well as mid-level semantics such as objects, trajectories, and
locations within the image. Beyond basic recognition, it must also be able to grasp spatial relationships,
temporal dynamics, and overall scene context in order to reason effectively about the identified elements
and their properties.

e Linguistic capabilities: Paragraphs are linguistically complex structures. This complexity is reflected
in the higher use of verbs, subordinating conjunctions, and other linguistic features such as coreference,
which appear more frequently than in traditional single-sentence captions. Structure, coherence, and
flow across multiple sentences are also essential, often achieved through the use of discourse markers
that connect ideas and highlight relationships. As a result, producing a high-quality paragraph demands
not only fluency but also a deep understanding of complex linguistic phenomena.

¢ Knowledge: High-quality image paragraph captioning goes beyond low- and mid- level semantics and
requires at least five clusters of knowledge that are associated with the top level of the visual semantic
pyramid, as shown in Figure 4.1.1 and Figure 4.1.2. We adopt the four knowledge clusters identified by
[109] and introduce a fifth—outside knowledge—which we argue is essential for addressing knowledge-
based image paragraph captioning tasks. The first cluster identified by [109] is commonsense knowl-
edge, such as understanding actions, events, object relationships, interactions, and purposes that are
either explicit or implied in the scene. Emotional knowledge is also required for high-level paragraph
captioning, allowing the model to perceive emotions, moods, emotional significance, and affective tones.
At the same time, aesthetic knowledge plays a role in describing the overall atmosphere and visual
appeal of the image as a unified whole. Positioned at the uppermost level of high-level semantics,
inductive interpretative knowledge is needed to capture complex, often subjective or culturally
encoded meanings such as symbolism, ‘aboutness’, or abstract concepts. Finally, outside knowledge
is associated with mid-level semantics and is essential for accurately describing images that depend on
real-world context, such as historical landmarks, public figures, or artworks. This type of knowledge
typically requires either prior domain knowledge or retrieval-based access.
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VISUAL SEMANTICS LEVELS

Figure 4.1.1: Visual semantics levels, (adjusted from [109]).
Notes: The low-level includes raw or elemental features, the mid-level involves individual objects and
regions, and the high-level encompasses purpose, emotion, aesthetics, and interpretation.

e Abstraction-Level Awareness: A high-quality paragraph needs to strike the right level of abstraction
for each element while effectively conveying the meaning of the image. This means that the model must
be able to understand which aspects of the image are important and the level of detail or abstraction at
which they should be presented. Describing every element in detail would result in a text that exceeds
the scope of a paragraph and would likely compromise coherence and flow. Therefore, the model must
be able to decide which elements to describe and to what extent. We define two key types of decisions
regarding abstraction levels that models have to make during image paragraph captioning: concept
selection, determining which aspects of the image to include (e.g., ‘Should I talk about the plane in
the sky?’), and name specificity, deciding how precisely to name them (e.g., ‘Should I call this a
plane, commercial plane, or Boeing 7377’).

Datasets

Historically, image captioning has been one of the most widely studied tasks in computer vision involving lan-
guage. However, in the era of LLMs, image captioning no longer poses a significant challenge for multimodal
LLMs. On the other hand, image paragraph captioning requires diverse abilities and should be seen as a more
demanding benchmark for evaluating models’ capacity for complex visual understanding and commonsense
reasoning.

Stanford’s Image Paragraph Captioning dataset [65] is the most prominent in the area of image paragraph
captioning and comprises 19,561 images from the MS COCO! and Visual Genome dataset?, each annotated
with a paragraph description. Annotations were collected via Amazon Mechanical Turk using experienced
U.S. workers with a high acceptance rate, and were subject to both automatic and manual quality checks.
Suggested language metrics for this task include METEOR, CIDEr, and Bleu-{1,2,3,4}. More recent
datasets for dense image captioning include human-annotated sets like DCI [145], DOCCI [105], and IITW
[40], as well as model-generated datasets such as PixLore [12].

Thttps://paperswithcode.com/dataset/coco
2https://paperswithcode.com/dataset /visual-genome

66



4.1. Tasks, Datasets, and Related Work
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Figure 4.1.2: The three levels of visual semantics (adjusted from [109]).
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We focus on the Stanford Image-Paragraph Captioning dataset, which is the most well-studied in the area
and one that played a defining role in shaping the image paragraph captioning task. We evaluate this dataset
and its successors through the lens of knowledge-based VQA. We argue that the ability to generate detailed,
context-aware, and knowledge-rich paragraph descriptions of images is a crucial step toward improving model
performance in tasks that require deeper reasoning, hence our interest in the intersection of these two tasks.
Therefore, we seek datasets that are human-annotated, VQA-focused, and capture key challenges such as
optical character recognition (OCR), the use of outside knowledge, and varying levels of abstraction. In
Table 4.1, we provide a brief overview of notable datasets and how well they align with these goals.

Stanford IPC | DCI | DOCCI | ITW | PixLore
Human annotated Yes Yes Yes Yes No
VQA focus Low Low Low Low Low
Knowledge-based Low Low Yes Low Low
OCR Low Low Yes Yes Low
Abstraction Level No No No No No

Table 4.1: Overview of notable image-to-text datasets evaluated for their relevance to
knowledge-based VQA.

Related Work

What is particularly striking about the Stanford’s Image Paragraph Captioning dataset is that most of the
frameworks explicitly tested on it, including those reporting the highest results, are based on traditional
architectures such as RNNs, CNNs, LSTMs, and GANs ([176]; [97]; [173]; [150]; [19]. An overview of the
results achieved by more traditional architectures is presented in Table 4.2. State-of-the-art LVLMs and
MLLMs, despite achieving state-of-the-art performance among VLMs in many other tasks, have not been
extensively evaluated on the Stanford Image Paragraph Captioning dataset, although a few exceptions do
exist [64]. We argue that, despite their value, Stanford’s dataset and similar ones that predate LLMs no longer
pose a sufficient challenge for modern multimodal LLMs or reflect their actual capabilities. In this work, we
use Claude-3.7 as a proxy to demonstrate that LLMs are capable of generating image paragraph captions
that surpass the scope and complexity of existing datasets and evaluation metrics. Based on these findings,
we identify key areas that are still challenging for LLMs and propose future directions for benchmarking in
image paragraph captioning.

Rank | Model BLEU-4 | METEOR | CIDEr | Method

1 HSGED (SLL) [176] 11.26 18.33 36.02 | RNN

2 SCST training, w/rep. 10.58 17.86 30.63 CNN, LSTM
penalty [97]

3 IMAP [173] 10.29 17.36 24.07 | RNN

4 CAE-LSTM [150] 9.67 18.82 25.15 | LSTM, CNN

5 Diverse and Coherent 9.43 18.62 20.93 | VAE, GAN,
Paragraph Generation RNN, CNN

from Images [19]

Table 4.2: Notable results across linguistic metrics for the Stanford Image Paragraph Captioning dataset.
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4.1.2 Knowledge-based VQA
Task

Knowledge-based VQA is a challenging subdomain of VQA that draws upon commonsense and outside knowl-
edge to answer questions. Unlike traditional VQA tasks, where answers can be derived directly from visual
cues (e.g., object recognition, counting, attribute detection), knowledge-based VQA tests not only perception
but also inference and retrieval, either from the model’s parameters or from external knowledge bases. In do-
ing so, it exposes critical limitations in multimodal models, such as multi-hop reasoning, knowledge retrieval,
and hallucinations.

D

Q: Which Q: What was the Q: Do all the people Q: List common properties of these two

transportation way name of the first in the image have a images.

in this image is cloned type of this common occupation? A:

cheaper than taxi? animal? A: No Background: snow

A: Bus A: Dolly Scene: ski slope, ski resort, mountain
snowy

Object concepts: racing, winter sports,
outdoor recreation.

Figure 4.1.3: Image-question pairs across datasets that draw on commonsense and outside knowledge. The
images are taken from FVQA, A-OKVQA, KVQA, and KB-VQA respectively.

Besides the visual extraction of the bus, the first image of Figure 4.1.3 requires general world knowledge
that buses are a form of public transportation and are typically more affordable than taxis. Similarly, alongside
visual recognition of the sheep, answering the second question demands factual knowledge that Dolly was
the first cloned sheep. The third image goes a step further, requiring not only the visual extraction of
the two people present, but also named entity knowledge to identify them as Hillary Clinton and Aamir
Khan, followed by factual and comparative knowledge to determine that their occupations differ—Hillary
Clinton being a politician, and Aamir Khan being an actor. Finally, answering what common properties
the pair of images share requires identifying transitive categories, as well as applying comparative and
commonsense knowledge to infer the objects, attributes, and scenes present in both. Answering all of these
questions relies on external knowledge, which must be extracted and applied to infer the correct answer.

Datasets

To benchmark this ability, datasets such as OK-VQA and A-OKVQA have been developed to test reasoning
with open-ended knowledge, while others like KB-VQA and FVQA evaluate reasoning grounded in a given
knowledge base. An overview of notable datasets for knowledge-based VQA is provided in Table 4.3.

We chose to focus on OK-VQA because, despite being a long-standing benchmark for knowledge-based VQA,
no existing framework, to the best of our knowledge, has achieved human-level performance. Despite progress,
the highest reported accuracy on OK-VQA, achieved by the PaLI-X-VPD model, is still just 66.88%, which is
significantly lower than state-of-the-art results on related tasks such as A-OKVQA. Besides testing high-level
reasoning and retrieval, what makes this dataset particularly challenging is its open-ended format, which
requires models to generate answers in a specific format that also align with human-annotated answers. This
dataset also offers an opportunity to evaluate emerging multimodal models, such as Claude, which have not
been extensively studied in this context.

OK-VQA comprises 14,055 questions about images, with 9,009 in the training split and 5,046 in the validation
split. The dataset includes a wide range of questions spanning ten distinct knowledge categories, with category
distributions shown in Figure 4.1.6 and representative examples provided in Figure 4.1.4. Each question is
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Dataset Knowledge Type | Format Rationale Goal

OK-VQA [96] factoid DA No visual reasoning with
open-world knowledge

A-OKVQA [125] | common/world MC/DA Yes visual reasoning with
open-world knowledge

KB-VQA [152] fixed KB DA No visual reasoning with
given knowledge base

FVQA [153] fixed KB DA Yes visual reasoning with
given knowledge base

VCR [183] people actions MC Yes visual = commonsense
reasoning

ScienceQA [90] scientific MC Yes multimodal reasoning
over images, diagrams,
text

MMMU [181] mixed (text, image, | multi-format | Yes multidisciplinary mul-

graph) timodal reasoning

S3VQA [54] factoid DA Yes situated visual ques-
tion answering with
OCR + text

KVQA [68] world knowledge DA No world knowledge about

named entities

Table 4.3: Various datasets in knowledge-based VQA and their characteristics.

associated with a specific knowledge category and paired with an image. For every question, there are ten
answers provided by human-annotators along with their confidence scores. The dataset includes both the
raw answers, the extracted answers, and an associated confidence score. The distribution of answer lengths
is presented in Figure 4.1.5.

The creators of the dataset suggest this accuracy metric to account for inter-human variability in phrasing
the answers:

(4.1.1)

Acc(ans) = min { #humans tgat said s 1}

Before evaluating machine-generated answers, the following pre-processing steps are applied:
e All characters are converted to lowercase.
e All periods are removed, except when they appear as decimal points.
e Number words are converted to digits.
e All articles (a, an, the) are removed.
e An apostrophe is added if a contraction is missing one (e.g., dont — don’t).

e All punctuation, except apostrophes and colons, is replaced with a space character. In the case of
commas, no space is inserted if the comma appears between digits (e.g., 100,978 — 100978).
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Brands, Companies and Objects, Material and Cooking and Food
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 Products
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Clothing

Q: Is the road wet Q: In what disney Q: What is folded Q: What is the Q: What is used to
or dry? film is the everyday underneath the sink?  sports position of eat the food in the
A: wet accessory seen in the  A: towels the man in the bowl?

photo used to help orange shirt? A spoon

her character fly? A: goalie

A: mary poppins

Geography, History and
Culture

Wetaher and Climate

7 People and Everyday life ‘ Plants and Animals

y 1]

5 & %. E prwy 1Y =
Q: What city is this? Q: In this country Q: In what type of Q: What is the Q: What type of
A washington dc what numbers do location is this cause of the color of  death could result
you dial for scene? the vehicle? from carelessness in
emergencies? A: farm A: rust this environment?
A: Answer 911 A: drowning

Figure 4.1.4: Examples drawn from the OK-VQA dataset across categories.

Related Work

An overview of the highest results achieved by various papers on the OK-VQA dataset is presented in Ta-
ble 4.4. Recent work on OK-VQA shows that the most successful approaches combine strong vision-language
models (like PaLl-X or PaLM-E) with either fine-tuning on OK-VQA or external knowledge retrieval, often
using dense passage retrievers or curated databases. Retrieval-augmented generation and fine-grained visual
reasoning (e.g., using object-centric features) have also consistently boosted performance. A common trend
is moving from specialised architectures (e.g., KRISP, MAVEx) toward scaling large pre-trained multimodal
transformers with minimal task-specific design. Critiques of OK-VQA point to its lack of annotated knowl-
edge, free-form answer evaluation challenges, and biases that allow guessing. Newer work like A-OKVQA
addresses some of these by introducing multiple-choice answers and rationales. For evaluating generalist mul-
timodal LLMs like GPT-4V, Gemini, and Claude without fine-tuning, researchers often test them in zero-shot
or few-shot setups on OK-VQA and A-OKVQA, finding that while they perform reasonably well, explicit
retrieval or prompting with external knowledge remains critical to close the gap with fine-tuned models.

4.2 Method

4.2.1 Image Paragraph Captioning with Multimodal LLMs

We work with a randomly selected subset of 5,000 images from the Stanford Image Paragraph Captioning
dataset. To evaluate model performance, we select Claude as a representative state-of-the-art multimodal
LLM and conduct the majority of our experiments using the 3.7 Sonnet version. Claude is a family of large
multimodal models developed by Anthropic that features three types of models: Haiku (prioritising speed
and affordability), Sonnet (balancing capability and cost), and Opus (geared toward complex reasoning
tasks). All three models support both text and image inputs and exhibit strong performance on visual
reasoning benchmarks, leading us to hypothesise that they are capable of generating detailed, context-aware,
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Dataset: Distribution of Answer Lengths (excluding empty)
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Figure 4.1.5: Distribution of answers with 1, 2, 3, 4 or 5+ words in the OK-VQA dataset
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Figure 4.1.6: Distribution of questions across categories in the OK-VQA dataset

and factually grounded image paragraphs. To our knowledge, no formal results on this dataset have been
reported by commercial model evaluations or prior academic work, and Claude 3.7 remains a relatively recent
release. We experiment with all members of the Claude 3.7 family but choose Claude 3.7 Sonnet for our
main experiments on the Stanford Image Paragraph Description dataset, as it offers the best balance between
performance and cost-effectiveness.

We input images from the Stanford subset to Claude Sonnet 3.7 and prompt it to generate paragraph-length
descriptions in a zero-shot fashion. We evaluate the generated descriptions using METEOR, BLEU-{1,2,3,4},
and SBERT-based cosine similarity scores. We then conduct a linguistic analysis of both the ground-truth
paragraphs from the dataset subset and the paragraphs generated by Claude.

For our analysis, we examine the following linguistic metrics to assess the quality and human-likeness of the
generated descriptions and to draw comparisons with the ground-truth annotations in our Stanford subset:

e Average paragraph length: Measures the overall verbosity or conciseness of the descriptions. Longer
paragraphs may indicate richer detail or more complex narrative structure and other linguistic phe-
nomena. However, they may also increase the risk for hallucinations, as models tend to hallucinate
more when talking in excessive details about images. The average length of human-written paragraphs
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Rank | Model Accuracy (%)
1 | PaLLX-VPD [30] 66.80
2 | PaLM-E-562B [97] 66.10
3 PaLI-X (Single-task FT) [26] 66.10
4 | PaLI 17B [27] 64.50
5 | Prophet [179] 62.50

Table 4.4: Overview of results for the OK-VQA dataset

typically ranges from 60 to 120 words, depending on the context and the amount of information con-
veyed in the image. In the Stanford dataset, human annotators produce paragraphs averaging around
60-70 words.

Standard deviation of length: Captures variation in description length across paragraph samples.
A low standard deviation suggests consistency in the generated descriptions, while a high deviation may
indicate flexibility in adapting to the amount of visual information present in the image. Consistency
is a key quality we strive for in LLMs. That said, when a model generates responses of roughly the
same length it might be a symptom of template-based descriptions or a lack of adjustment to image
complexity. Moreover, when LLMs are forced to talk in excessive detail about images with limited
meaningful content, they are also more susceptible to hallucinations.

Vocabulary size: Refers to the total number of unique words used across all generated paragraphs
and is a key indicator of the model’s expressive range. A large vocabulary suggests the model can
describe a wide variety of concepts, actions, attributes, and relationships, avoiding redundancy and
generalisation. On the other hand, a model with a small vocabulary size may resort to dull, overly
generic, unnatural-sounding, or even inaccurate descriptions.

Lexical diversity (Type-Token Ratio, TTR): Lexical diversity is a measure of how varied the
vocabulary is in a piece of text. A higher TTR indicates greater lexical richness and more diverse,
human-like language. Conversely, a lower TTR may indicate more repetitive and rigid language. To
assess lexical diversity per paragraph, we choose the type-token ratio (TTR) metric, which we define
as follows and then average:

Types = the number of unique words in a paragraph
Tokens = the total number of words generated in the paragraph
TTR = Types / Tokens

Grammar error rate: Assesses grammatical correctness. A lower error rate signals higher fluency and
linguistic competence, important for readability and user trust. To calculate the average grammar error
rate per sentence we use the LanguageTool API, a rule-based grammar checker that can detect a wide
range of issues in English text, such as grammatical, punctuation, or spelling mistakes. We then use
SpaCy to parse the paragraph and count the number of sentences. The final measure of grammaticality
is computed as the average number of grammar errors per sentence across the subset:

Grammar Error Rate = Total Grammar Errors / Total Sentences

Frequency of subordinating conjunctions: Complex paragraphs use subordinating conjunctions
(e.g., because, although, while, in order to) to ensure narrative flow and express causal, temporal,
conditional, and contrastive relationships, among others. The use of these conjunctions reflects more
advanced sentence structure, greater linguistic sophistication, and the communication of deeper ideas.
In order to assess the frequency of these markers, we created a lexicon that includes different types of
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conjunctions, such as concession (e.g., although, even though), reason and purpose (e.g., because, in
order to), and condition (e.g., if, unless) (Table 5.16)

e Proportion of nouns, verbs, and pronouns: The proportion of nouns, verbs, pronouns, and other
parts of speech provides insight into the linguistic focus of the description. A higher frequency of
nouns indicates object-centric descriptions, which are associated with low- and mid-level semantics.
Conversely, a high verb ratio points to action-oriented descriptions and a stronger narrative flow (e.g.,
is running, holds, throws), and is associated with mid-level semantics. A moderate use of pronouns is
common in natural, cohesive writing to avoid repetition. In paragraphs, complex linguistic phenomena
occur, such as coreference, where different expressions refer to the same entity. However, too many
pronouns might lead to ambiguity or compromise readability.

4.2.2 Multimodal Collaboration for Knowledge-based VQA

We conduct all experiments and ablations on the validation split, which consists of 5,046 images, and use
the established accuracy metric to ensure a fair comparison. Our proposed approach is a multi-agent system
consisting of three stages. In the first stage, we employ an MLLM (e.g., Claude 3.7), providing it with images
and prompting it to generate a paragraph-length description for each in a zero-shot manner. We refer to
these as greedy descriptions, as they are not guided by the questions. Instead, the model transfers all the
information from the image into the description, regardless of the question. We call this model the Scout, as
it explores and gathers information from the image without specific direction. In the next stage, we prompt
a text-only LLM (e.g., Llama 3.3) to answer the question about the image, using only the image description
provided by the Scout and the question itself. We refer to this model as the Analyser, as it serves as our
main reasoner. Finally, we employ another text-only LLM to resolve and format the final answer to the
question, based on a set of predefined rules. We call this model the Resolver, as it is responsible for making
the final decision on the answer to the question. An illustration of our proposed multi-agent framework is
shown in Figure 4.2.1.

Since the dataset expects answers of a specific word length, and we also want models to consistently attempt
to answer, we also evaluate how well they meet these criteria. For each method, we analyse the word length
distribution and the number of no-attempts to assess how effectively the models can be steered toward
producing responses of a specific length and always attempting to answer the question. For the word length
distribution, we simply calculate the percentage of answers with one word, two words, three words, and
four or more words. To calculate the number of no-attempts, we use a set of predefined phrases, shown in
Table 4.5, that models often produce when not answering the question, and use exact matching to count
their occurrences. We use the following prompts for our models and experiment with zero-shot, few-shot,
and CoT prompting (Table 4.7 to Table 4.10).

No-attempt phrases

unknown, not visible, can’t be inferred, cannot be inferred,
not evident, unclear, indeterminate, not sure, no information,

n/a, insufficient information, not enough info, undetermined, uncertain, unsure

Table 4.5: No-attempt phrases.
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Scout Prompt

Describe the image in a paragraph.

Image: <image>

Table 4.6: Scout prompt.

Analyser CoT Prompt

You are given an image and a question about the image.

Image: <image>

Question: <question>

Think step-by-step about the contents of the image and then an-
swer the question as clearly as possible.

You need to answer the question with only one or two words. You
should attempt to answer the question with one or two words even
if the actual answer is more nuanced.

Table 4.7: Analyser CoT prompt.
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Resolver Zero-Shot Prompt

You are given the following;:
1. A question about an image

2. A response from another model

Question: <question>

Model response: <response>

Your task: Extract a concise answer to the question based only on the response.
When formatting your answer, follow these rules:

1. Use a single word in most cases. Only use two words when they form a natural and
necessary phrase.

2. Use the singular form unless plural is clearly appropriate.
3. Use the base form of verbs, unless the -ing form is a noun.

4. Do not answer with vague responses.

Always choose the most intuitive and the most likely answer and make your best guess based
on the available information.

Table 4.8: Resolver zero-shot prompt.
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Resolver Few-Shot Prompt

You are given the following;:
A question about an image

A response from another model

Question: <question>

Model response: <response>

Your task: Extract a concise answer to the question based only on the response.
When formatting your answer, follow these rules:

1. Use a single word in most cases. Only use two words when they form a natural and
necessary phrase.

2. Use the singular form unless plural is clearly appropriate.
- Prefer: horse

- Acceptable: scissors (when singular form doesn’t apply)

3. Use the base form of verbs, unless the -ing form is a noun.
- Correct: run, jump, dance

- Acceptable: gardening (when functioning as a noun)

- Avoid: jumped, running fast

4. Do not answer with vague responses like unknown, unclear, or not visible

Always choose the most intuitive and the most likely answer and make your best guess based
on the available information.

Table 4.9: Resolver few-shot prompt.

Claude Solo Prompt

You are given an image and a question about the image.

Image: <image>

Question: <question>

Answer the question as clearly as possible.
You need to answer the question with only one or two words.

You should attempt to answer the question with one or two words, even if the
actual answer is more nuanced.

Table 4.10: Claude Solo Prompt.
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Question

Input Data

What is the horsepower of the
truck pulling the load?

Answer: 510
Answer Occurrence: 3/5
Category: Vehicles and Transportation

Prompt an LVLM to describe the image
Image description: The image shows a black Volvo FH16 510 truck hauling
a large flatbed trailer with what appears to be a blue railway car or
locomotive component secured on it. The heavy transport vehicle is parked

on what looks like an industrial site or depot area, possibly near railway
tracks as wooden sleepers (railroad ties) can be seen in the foreground. Two
workers in high-visibility orange safety vests are visible - one standing near
the truck and another walking on the right side of the image. The setting has
a typical industrial appearance with metal fencing visible in the background,
and the sky appears overcast and gray. This seems to be a specialized heavy
transport operation, likely moving railway equipment to or from a
maintenance facility or depot.

Scout

Prompt an LLM to answer the question about the image based on the
image description

Analyser

Initial answer: The horsepower of the truck pulling the load is 510
horsepower, as indicated by the "510" in the truck's model, Volvo
FH16 510.

Prompt an LLM to choose a final answer based on the initial answer
and format it according to pre-defined rules

. Final answer: 510

Resolver

Figure 4.2.1: lustration of our Scout, Analyser, Resolver collaboration framework.
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Experiments

5.1 Preliminaries

In this section, we detail the inference parameters and models used in our experiments (Table 5.1 to Table 5.6).
We employed Claude 3.7 Sonnet as our vision model, while Llama 3.3 served as our text-only LLM. We
conducted experiments using both the standard and the extended thinking variants of the Claude model to
evaluate the impact of extended reasoning on performance.

Model Claude
Version 3.7
Variant Sonnet

Output modalities text
Extended thinking disabled

Model name

anthropic.claude-3-7-
-sonnet-20250219-v1:0

Parameter Value
temperature 0.0
max-tokens 1024

Table 5.1: Model and inference parameters for the Stanford Image Paragraph Description dataset.

Model Claude
Version 3.7
Variant Sonnet

Output modalities text
Extended thinking disabled

Model name

Table 5.2: Model and inference parameters for the OK-VQA image descriptions.

anthropic.claude-3-7-
-sonnet-20250219-v1:0
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Model Claude Parameter Value
Version 3.7 temperature 0.0
Variant Sonnet max-tokens 1024
Output modalities text
disabled

Extended thinking

Model name

anthropic.claude-3-7-
-sonnet-20250219-v1:0

Table 5.3: Model and inference parameters for OK-VQA baseline and multimodal Analyser.

Model Claude
Version 3.7
Variant Sonnet
Output modalities text
enabled

Extended thinking

Model name

Table 5.4: Model and inference parameters for OK-VQA,

anthropic.claude-3-7-

-sonnet-20250219-v1:0

Model Llama
Version 3.3
Parameters 70B
Input modalities text
text

Output modalities

Model name

meta.llama3-3-70b

Parameter Value

temperature 1.0
max-tokens 24,000

budget-tokens 16,000

-instruct-v1:0

multimodal Analyser with CoT.

Table 5.5: Model and inference parameters for OK-VQA LLM Analyser.

Model Llama
Version 3.3
Parameters 70B
Input modalities text
text

Output modalities

Model name

meta.llama3-3-70b

-instruct-v1:0

Parameter Value
temperature 0.0
top-p 0.9
max-gen-len 1024
Parameter Value
temperature 0.0
top-p 0.9
max-gen-len 512

Table 5.6: Model and Inference Parameters for OK-VQA Resolver
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5.2 Results

5.2.1 Image Paragraph Captioning with Multimodal LLMs

Stanford Image Paragraph Description

We present evaluation results for Claude 3.7 Sonnet on our randomly selected 5,000-image subset of the Stan-
ford Image Paragraph Captioning dataset, using METEOR and BLEU-{1,2,3,4} as our evaluation metrics.
While most prior work has relied on the full dataset, we conduct our experiments on a representative subset
to balance computational efficiency with robustness. We also provide a comparison against human-written
paragraph descriptions, using the evaluation conducted by Krause et al. [65] on a 500-image subset of the
Stanford Image Paragraph Captioning dataset.

Clearly, Claude 3.7 generates semantically relevant paragraphs, as evidenced by its high METEOR score,
which exceeds that of human-written descriptions. However, the model’s outputs differ significantly from the
exact wording of human references, resulting in low BLEU scores, especially for longer n-grams. Human-
written paragraphs, on the other hand, match more closely with reference paragraphs in terms of word
choice, reflecting greater consistency in phrasing across humans. This suggests that while Claude is effective
at capturing the meaning of the image, it diverges from the ground-truth paragraphs in terms of surface-level
phrasing.

We hypothesise that Claude generates semantically rich paragraphs, but has a distinct style of delivery than
humans that is not adequately captured by narrow metrics such as BLEU. To validate this, we employ SBERT
cosine similarity, a more profound metric that does not rely on exact word matching. For instance, SBERT
can acknowledge that ‘a man riding a bicycle’ and ’someone cycling down the street’ are semantically similar,
even if phrasing differs. As expected, Claude achieves a high score of 70.18%, indicating that the generated
paragraphs are very similar to the reference paragraphs in terms of actual context.

Model METEOR | BLEU-1 | BLEU-2 | BLEU-3 | BLEU-4
Claude 3.7 - Sonnet 24.35 21.15 9.30 4.01 1.84
Human 19.22 42.88 25.68 15.55 9.66

Table 5.7: Performance comparison between Claude 3.7 - Sonnet and human references using METEOR
and BLEU scores.
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Figure 5.2.2: Word cloud of paragraphs generated by Claude 3.7 Sonnet for the 5,000-image Stanford Image
Paragraph Captioning subset, showing a more abstract and interpretive focus.

To shed more light on why the obtained BLEU scores are so low, we use word clouds to visualise the differences
in commonly used terms between the generated and reference paragraphs (Figure 5.2.1, Figure 5.2.2). Indeed,
it is easily observable that the phrasing differs significantly between the generated and reference paragraphs.
On the one hand, human annotators frequently reference objects, colours, and spatial relationships, suggesting
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a focus that may be more object-centric and literal. On the other hand, Claude uses more abstract and
interpretive language (e.g., shows, suggesting, possibly, characteristic, capture, typical), as well as scene-level
vocabulary (e.g. foreground, background, scene, landscape). Because fewer specific words (e.g., red, tree)
appear prominently in its word cloud, we hypothesise that Claude may employ a broader vocabulary than
human annotators, which we explore further in the linguistic analysis in the following section. However,
due to the lack of specificity, we also suspect that Claude may be sticking to templates when generating
paragraphs, which we also investigate further in the next section.

Linguistic Analysis

To gain deeper insight into Claude’s true capabilities in image paragraph generation, we perform a linguistic
analysis as described in the Methods section 4.2.1. We measure average paragraph length, standard deviation
of length, lexical diversity (TTR), the proportions of nouns, verbs, and pronouns, vocabulary size, subordi-
nating conjunctions frequency, and grammar error rate for both the reference paragraphs and those generated
by Claude. The results clearly indicate that Claude exhibits superior linguistic performance compared to
the ground-truth paragraphs in nearly every measured aspect. Indeed, Claude-generated paragraphs are
nearly twice as long as the reference paragraphs, exhibiting greater lexical diversity and a significantly lower
grammar error rate. Notably, their vocabulary size is nearly double, and they use more than three times as
many subordinating conjunctions.

Avg. St. Diversity | Nouns | Verbs Pronouns| Vocab Subord. Grammar
Length | Dev. (TTR) (%) (%) (%) Size Conj. Error
Length Rate

Claude 3.7

118.96 11.38 0.6788 29.36 12.17 3.83 11,739 2,831 0.06
Sonnet,
Stanford

61.36 23.54 0.6172 27.92 9.81 5.82 7,034 903 0.21
Dataset

Table 5.8: Linguistic and grammatical feature comparison between Claude 3.7 Sonnet
and the Stanford Image Paragraph Captioning dataset.

Notes: Grammar Error Rate is calculated as errors per sentence. Vocabulary Size reflects the number of unique words.
Subord. Conj. refers to subordinating conjunctions.

These findings imply that Claude-generated descriptions are not only more detailed, as seen by their average
length and vocabulary size, but also more contextually rich and structurally complex, as reflected in their
frequent use of subordinating conjunctions. In addition, Claude-generated paragraphs also contain more
nouns and verbs overall and make use of a significantly larger vocabulary. This suggests that they not only
identify objects and actions more frequently but also do so with greater specificity. This interpretation also
aligns with the word cloud, where relatively few nouns and verbs appear prominently in Claude’s outputs,
suggesting greater lexical variety and specificity. We also note that the lower standard deviation in Claude’s
paragraph lengths suggests a preference for consistency, potentially at the expense of adapting to the varying
informational content of each image. As for the lower proportion of pronouns, it remains unclear whether this
reflects a reduced presence of coreference or a deliberate choice by the model in order to prioritise readability
and avoid ambiguity.

To illustrate how these linguistic features manifest in actual paragraphs, we include images from our subset
alongside the references and the generated descriptions. Clearly, Claude 3.7 produces paragraphs that are
more detailed, coherent, and information-rich than those written by humans in the Stanford subset. Indeed,
Claude’s outputs feature low- to high-level semantics, with most falling into the mid- and high-level range. On
the other hand, as expected from our linguistic analysis, the ground truth paragraphs produced by humans
are generally more literal, primarily conveying low- to mid-level semantics. Claude is also more specific in
naming entities, drawing on knowledge encoded in its parameters.
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In the example shown in Table 5.9, while human annotators refer to the structure simply as a ‘building’,
Claude not only recognises it as an art museum but also identifies the specific institution and wing, referring
to it as the ‘Art Institute of Chicago’s Modern Wing’. It then situates the building within an architectural
movement and interprets the meaning of the image through this lens, treating the museum as a symbol.
Symbolism and ‘aboutness’ sit at the top of the high-level semantic hierarchy (Figure 4.1.1), showcasing the
model’s capacity for advanced conceptual interpretation. Even the low- and mid-level semantics the model
chooses to present are relevant to the overall story it conveys. Rather than using generic terms like ‘large’
or ‘cars’, the model selects elements that are more relevant to the architectural movement at hand and the
narrative it is trying to convey, such as ‘glass’, ‘canopy’, and ‘panels’. This kind of abstraction also reflects
the highest level of semantic reasoning. Further examples are depicted in Table 5.10 to Table 5.15.
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Image ID: 2356347

Source: Stanford Image Captioning Dataset

Human Annotators: A large building with
bars on the windows in front of it. There is peo-
ple WalKifig in front of the building. There is a
street in front of the building with many cars on
it.

Claude 3.7 Sonnet: This [f8EESHGWS the mod-
ern architecture of what appears to be the Art In-
stitute of Chicago’s Modern Wing. The building

with clean lines, EXfeHY
§i¥@ glass pancls, and o QSHHCHETOveHgg
roof structure that EFeates o SHEITETHg canopy.

The exterior combines light-colored stone or con-
crete with steel and glass elements. The StFeet
Fi&% shows pedestrian crossings marked with yel-
low warning signs, ornate street lamps, and sev-
eral vehicles parked along the curb. The scene is
captured on what looks like a sunny day with blue
skies, and there’s some greenery visible around
the building’s perimeter. The

Table 5.9: Human annotators and Claude 3.7 Sonnet: Image ID 2356346.

Notes:

mid-level semantics
low-level semantics
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Image ID: 2365091

Source: Stanford Image Captioning Dataset

Human Annotators: A large red and white
train is flANEHAE on tracks in a what looks to be
arural area. There are trees and hills in the back-
ground and the ground looks dry. The train has
many large windows
BHEGE. The train is mostly white with red on the
front upper part of the train and red stripes and
trim on the sides. The roof of the train is grey.

Claude 3.7 Sonnet: This [iEEEISHGHS o Renfe
regional train in SP&ill. The train unit appears
to be o HiESCUNGPIENDN) in
@iSEnEEvE white livery with red and gray stripes
along its sides. The train is [EaVelig on a rural or
semi-rural track section, with rocky terrain and
some trees visible in the background. There’s a
kilometer post marker visible beside the tracks
marked "261."

Table 5.10: Human annotators and Claude 3.7 Sonnet: Image ID 2365091

Notes: | EEIEVGISGHAME

mid-level semantics
low-level semantics
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Image ID: 2388203

Source: Stanford Image Captioning Dataset

Human Annotators: The man is
pliGEs in the round mirror. He is bald. He is
[WeaRifg an orange jacket. His camera is black.
There is a train in the mirror too.

Claude 3.7 Sonnet: The [HEEEISHGWS a curved
security mirror mounted on a wall in what ap-
pears to be a London Underground station. The
mirror reflects a person taking a photograph
while wearing an orange/brown jacket. In the
background, a subway train is visible at the plat-

form with its @iSEifEENE blue and white colors.

BFCHIfECHHre with a curved ceiling and industrial
design elements. There’s some text visible in the
mirror that appears to be a sign or station in-

foration. The overall scene captures the urban

Table 5.11: Human annotators, Claude 3.7 Sonnet, Claude 3.5 Sonnet, and ChatGPT 4 descriptions: Image

Claude 3.5 Sonnet: This [SEESHEGHE  convex
security mirror mounted on a wall in a subway or
underground train station.
, including a train with
blue and white cars that has
f6f. There’s a "TAKE THIRTY" sign visible in
the FSHEEHGH. The station has [§ipieal subway in-
frastructure with industrial ceiling elements visi-
ble. The mirror is mounted on what appears to
be a textured concrete or stone wall,

ChatGPT 4o: In a [Bisfliiil§ London Under-
ground station, a man in a red jacket Faid§

mounted on

a concrete pillar,
with a DSLR camera.
, curving the tiled
floor, fluorescent lights, and adjacent pillars into
a fisheye perspective. Behind him, a white and
bluc train is PAEKGAMMIGNENHOIIAHIONS, it RN

and the [EiiE

A bold black-and-white sticker reading “THE
THIRST” is partially affixed to the mirror’s sur-
face,

ID 2388203
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Image ID: 2331342 Source: Stanford Image Captioning Dataset

Human Annotators: A silver train is on the Claude 3.7 Sonnet: The [FSgEIIEHIEHE an old,

ground. There is graffiti on the bottom of the abandoned train car SifREIGH a stretch of rail-
train. There are rocks and grass next to the train. road tracks.

state of disrepair, with peeling paint and graf-
[itiveoveringNtsiexterion. The surrounding land-

scape is barren, with a clear blue sky overhead.

Table 5.12: Human annotators and Claude 3.7 Sonnet descriptions: Image ID 2331342
Notes: | EEOVEISEHANIG

mid-level semantics
low-level semantics
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Image ID: 2357480 Source: Stanford Image Captioning Dataset

Human Annotators: A street is fl66@8d with Claude 3.7 Sonnet: The [ASEISHOWS
brown water. The water is slightly choppy. There
is a yellow and black traffic post in the water. . There are
There are
ifi€S. The sign is green. Over it is a blue street with the "Southern Hwy" sign partially
sign. Trees surround the area. visible at the top. A yellow and black striped

T
be seen in the background, also standing in wa-
ter, indicating that the flooding has spread across
the surrounding landscape. The brown, muddy

Table 5.13: Human annotators and Claude 3.7 Sonnet descriptions: Image ID 2357480

Notes: | EEIEVGISGHAIG

mid-level semantics
low-level semantics

0]
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Image ID: 2354489

Source: Stanford Image Captioning Dataset

Human Annotators: A bunch of statues are
@iSpIayEd on a shelf. The shelf is a rustic wooden
color. All of the statues are of animals except for
the bell and empty bottle. The collection is {eEy

Claude 3.7 Sonnet: The image appears to be
a wooden cabinet or shelving unit diSplayingIa
On
the shelves, there are several small figurines and
sculptures, including a black toy monkey, a red
toy bird, and a tan toy horse. There are also
some glass bottles, including a clear glass bottle,
as well as what looks like a vintage glass lamp or
other ASEOAVEREH

The shelves also contain some plush or stuffed an-
imal toys, including what appears to be a teddy
bear or other fuzzy creature. There are also some
other , such as a red toy or
figurine that resembles a cartoon character or su-

i)
@
=
=
@
=
o

Table 5.14: Human annotators and Claude 3 Haiku descriptions: Image ID 2354489

Notes:  EEIEVGISEHAE

mid-level semantics
low-level semantics
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Image ID: 2396483 Source: Stanford Image Captioning Dataset

Human Annotators: People are on a play Claude 3.7 Sonnet: The [flageISiows o beach

ground standing in the sand. A boy in a blue

shirt and blue pants are ElifiBHEIHEIPOIE. The

woman in brown is HIdifi§ a brown umbrella.

scene with several people Elljoyingranday atithe

sandy BHGFE. In the foreground, someone is FGIE
[fi§ a black parasol or umbrella [GTISHEAE. In the

There are people shadows on the ground.

background, @ person [l blue shorts [SICHTBINg
on what appears to be

a pole or beach fitness
equipment. There are several other individuals
standing on the beach, and the setting includes
palm trees and multi-story buildings or hotels lin-
ing the shore. The sandy beach stretches across

the foreground, and [ SCETENTASANVAIINACHE
tion-like atmosphere. The urban beachfront set-
ting suggests this is likely a popular coastal desti-
nation with residential or hotel properties facing
the beach

Table 5.15: Human annotators and Claude 3.7 Sonnet descriptions: Image ID 2396483
Notes:

mid-level semantics
low-level semantics

Through evaluation, linguistic analysis, and examples, it becomes clear that modern multimodal LLMs are
capable of generating paragraph descriptions that surpass both our datasets and evaluation metrics. The
image paragraph captioning task is not only challenging but also fundamentally important. Its value extends
beyond applications, as it intersects with tasks like VQA and serves as a meaningful benchmark for evaluating
reasoning and semantic capabilities in LLLMs. Therefore, there is a pressing need for image-paragraph datasets
that sufficiently test the semantic, reasoning, and cognitive capacities of LLMs. In the following section,
we propose key considerations for designing a suitable image-paragraph dataset that meets these goals by
assessing what current multimodal LLMs handle well and what remains challenging for them.
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Discussion

Paragraphs are one of the primary ways we take in and express information. Naturally, this renders image
paragraph description a fundamentally important task with broad practical and theoretical relevance. An
automatic image paragraph description tool supports professionals such as researchers, doctors, creatives,
journalists, and educators, who rely on understanding or expressing visual content in their work. In addition,
it aids in archiving, search, and metadata enrichment by producing information-rich annotations for images.
Another crucial application is providing access to the visually impaired by generating textual descriptions of
visual content, which can be delivered audibly through assistive technologies.

Beyond its practical applications, the task holds theoretical significance and is closely related to another
important and well-studied task: Visual Question Answering (VQA). Models often struggle to answer complex
questions about images in a single step, particularly those requiring reasoning or outside knowledge. As CoT
prompting suggests, starting with a structured description of an image, taking time to understand its content,
and then attempting to answer the question can provide a strong foundation for more effective reasoning.
In fact, the image paragraph captioning task is inherently similar to VQA in that it requires answering not
just one question about an image, but many. For example, in order to produce a detailed description of an
image, the model has to answer questions that range from concrete, such as ‘What colour is this?’, to more
abstract, such as ‘Is that detail important?’.

Moreover, the multiple-choice format commonly used in VQA datasets does not necessarily reflect the way
people realistically phrase questions about images. Indeed, if an LLM chatbot user wanted to know who
painted an artwork, they likely wouldn’t ask ‘a) Berthe Morisot, b) Claude Monet, ¢) Mary Cassatt, or
d) Edgar Degas’. They would simply ask, ‘Who painted this?’ and expect a comprehensive response that
includes not only the artist’s name but also a description of stylistic characteristics, background information,
and notable elements, conveyed in paragraph form. Another important consideration is explainability. Users
would likely not trust a response that simply states ‘Claude Monet’, as it provides no explanation. In contrast,
they are more inclined to trust a paragraph that vividly describes the artwork and highlights distinctive
elements of Monet’s style, such as fluid brushstrokes, glowing light, and natural scenery. Therefore, both the
VQA and image captioning tasks would benefit from mutual exploration, and the possibility of integrating
the two is worth further exploration.

We have demonstrated that datasets like the Stanford Image Description Dataset, which predate multimodal
LLMs, do not reflect the true capabilities of these models or explicitly target the areas where they are most
challenged. Given the significance of the task, there is a clear need for new datasets that truly challenge state-
of-the-art MLLMs. To propose directions for creating datasets in the area of image paragraph captioning that
are tailored to LLMSs, we have identified the following key aspects that remain difficult for current multimodal
models like Claude and GPT:

e Optical Character Recognition (OCR): Recognising text within images is one of the most obvious
ways in which multimodal LLMs fail when generating paragraph descriptions. Inaccurate OCR is
costly not just because text conveys essential information, as in signs, signatures, diagrams, or labels,
but also because humans easily recognise written language and therefore lose trust in the model when
it makes clearly visible errors. A recent study [101] benchmarked Claude 3, Gemini 1.5, and GPT-4o,
and found that they achieve strong OCR performance, surpassing traditional computer vision models
in accuracy on certain tasks. However, we find that Claude often struggles with simple OCR when
tasked with image paragraph description rather than explicit OCR tasks. We believe this may be due
to the model being overwhelmed by the complexity of the task, focusing on broader aspects of the
visual context and paragraph generation, and therefore failing to recognise simple text. For instance,
in the example prsented in Table 5.11, Claude 3.5 Sonnet misreads the text, while Claude 3.7 Sonnet
does not reference it at all. Similarly, in the case of Table 5.13, ambiguity in the signage leads Claude
3.7 Sonnet to hallucinate the content of the sign. We observe that Claude tends to include text in
its descriptions, even when it is uncertain about its accuracy or has entirely fabricated the content.
Because image paragraph captioning does not explicitly ask the model to recognise or reference text, its
decision to include such content, even when uncertain, highlights the persistent issue of hallucinations
in multimodal LLMs.
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e Spatial Reasoning: Images with complex spatial relationships are generally more challenging for
models because they require longer chains of reasoning to infer mid-level semantics within the scene.
While spatial reasoning may be associated with lower-level semantics, it also requires a degree of
abstraction, as the model must interpret spatial cues in an in-context manner. For example, the phrase
‘on the left of the car’ can be ambiguous. Depending on context, it might refer to a person standing to
the left of the car from the viewer’s perspective, or it could describe something physically on the left
side of the car, such as a sticker, or a dent. Understanding which interpretation is correct, depending
on the context, requires a higher level of linguistic capability that not all MLLMs can navigate. That
said, paragraphs can be more forgiving, as what matters most is that the content presented is accurate,
leaving the interpretation to the viewer. The true challenge arises when images contain both complex
spatial relationships and require intensive reasoning at the same time. This is what causes state-of-
the-art models, which otherwise perform well on spatial reasoning datasets, to struggle during image
paragraph captioning.

e Hallucinations: Perhaps the most straightforward type of hallucination in LVLMs and MLLMs occurs
when the visual encoder misinterprets what it sees or generates features that aren’t actually present in
the image. The language model then assumes the visual encoder’s output is correct, constructing its
descriptions based on inaccurate representations. In most architectures, the visual encoder produces
the same image representation regardless of the task or prompt. This means that whether the model
is generating a short caption or a detailed paragraph, it relies on the same fixed set of visual features.
As a result, when the required output is longer, the model often has to fill in the gaps, which increases
the risk of hallucination. In the example of Table 5.14, the hallucination of the ‘vintage glass lamp’
appears when the model is prompted to generate a longer paragraph.

Another type of hallucination originates from the language model itself. In paragraph captioning,
models tend to prioritise narrative flow over faithful visual description. Generating a paragraph caption
of an image is not only linguistically demanding, but also requires a sense of storytelling. After all,
the core strength of language models, even multimodal LLMs, still lies in their fluency. We observe
that although multimodal LLMs possess a strong visual understanding of the image, the paragraph
content often follows the flow of language, rather than the image itself. As a result, the model struggles
not only with choosing which concepts to present, but also with hallucinating content. The man in
the image, for example, has high visual weight due to his central placement, strong colour contrast,
and the focal emphasis created by the skewed mirror. He also has semantic salience, as he is the one
taking the photo. Yet, Claude 3.5 Sonnet still does not include him in the description of the image.
The omission is likely not due to a lack of recognition, but rather an instance of the model’s narrative
drifting away from him. This tendency to prioritise language in paragraph captioning can cause the
model not only to overlook salient elements, but also to introduce objects that aren’t actually present.
When a key figure like the man is excluded, the model still needs to maintain paragraph coherence,
so it may compensate by inventing other elements to fill narrative gaps. Uncertainty is another factor
that leads to hallucinated content. In the example presented in Table 5.13, the model misreads the sign
entirely. Since the sign is not clearly visible, a human would likely avoid referencing it at all, but the
model instead chooses to fabricate its content. This suggests that the language component might treat
visual features as context, not constraint.

e Outside Knowledge: Images like the train presented in Table 5.10, which require factual knowledge
about the world to be fully understood and described pose a greater challenge to multimodal models
than those that can be interpreted through visual cues alone. The task becomes more difficult when
models must not only access knowledge, but also reason around it, particularly to infer high-level mean-
ing. Knowledge-based image paragraph captioning is visually, linguistically, and cognitively complex,
so, as with OCR, the challenge lies in having to perform challenging functions simultaneously. Activat-
ing the correct background knowledge from the model’s parameters is also more difficult when the input
is strictly visual. Unlike text prompts that can probe relevant knowledge more directly, images are often
ambiguous or contain cues that don’t map explicitly to specific concepts in the model’s training data.
As a result, the model may fail to activate the correct background knowledge.

e Commonsense Knowledge: Among all the knowledge clusters required for generating image para-
graphs, commonsense knowledge is where LLMs are most capable. State-of-the-art multimodal LLMs
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generally understand actions, events, object relationships, interactions, and purposes, and can use
them to move up levels of abstraction. Areas where LLMs still struggle include implied actions, object
purposes, causal reasoning, physical reasoning, and temporal understanding.

¢ Emotional Knowledge: We find that this is the level of abstraction at which models begin to struggle.
LLMs can often identify and express the emotions of people that are either explicitly or implicitly
conveyed with relative ease. However, while they can mimic emotion-laden language and, in fact,
frequently discuss emotions in image paragraphs, they often don’t interpret the mood and affect of
images accurately. Although they accurately identify core emotions, determining the intensity with
which an image evokes that emotion proves more challenging, as illustrated in the examples of the train
(Table 5.12) and the collection (Table 5.14). The image of a toys’ collection wouldn’t typically provoke
thought in a real person, nor would the viewer genuinely ‘ponder the stories and histories that the lone
train had witnessed over the years’. Of course, Claude is known for its prose, but the issue is not with
the prose itself. Rather, it lies in its difficulty in accurately gauging the intensity of emotions evoked
by images and using prose to express them effectively.

e Aesthetic Knowledge: When it comes to deeply understanding and articulating the aesthetic appeal
of an image, LLMs often fall short. Aesthetic perception is highly subjective and can vary widely
between individuals, cultures, and contexts. While LLMs do point out certain aspects of the image as
‘distinctive’, ‘striking’, or ‘beautiful’, it is still difficult for them to integrate subtle visual elements, such
as lighting, to unified descriptions that reflect the overall aesthetic appeal of the image. As a result,
they may fail to capture the essence of the image or phrase it in a way that feels unnatural to humans.

e Inductive Interpretative Knowledge: Inductive image interpretation is an integral component of
high-quality paragraph captioning and sits at the top of high-level semantics. Surprisingly, a significant
portion of LLM-generated paragraphs employs this type of knowledge, incorporating symbolism (e.g.,
Table 5.12), ‘aboutness’ (e.g., Table 5.15), and abstract concepts (e.g., Table 5.12). Most state-of-the-
art MLLMSs, including Claude 3, GPT-40, and Gemini 2.0, typically include at least one sentence that
refers to the meaning—or ‘aboutness’—of the image when asked to describe it. It is likely that these
models have learned to follow a structured template, such as ‘the image shows’, followed by a discussion
of the image’s ‘aboutness’. This behaviour could have been reinforced through fine-tuning on specific
datasets or human feedback during training, or the patterns could have been learned during pretraining.
The meaning LLMs extract about the image is often accurate and represents the most high-level and
commendable aspect of their generated paragraphs. What they struggle with at this level is concept
selection and name specificity. First of all, generating an image paragraph requires a certain level
of abstraction in selecting the elements to discuss. For instance, in the Table 5.11 example, Claude 3.5
Sonnet discusses the sticker in the skewed mirror but completely overlooks the man taking the picture.
This is clearly a poor decision regarding what to include in the description. LLMs also struggle with
specificity. In fact, we notice that LLMs tend to be more specific than humans in their descriptions,
which can make them sound unnatural and lead to hallucinations. For example, it is impressive that
Claude 3.7 mentions the rolling stock type of the train (Series 596) (Table 5.10), yet it is highly unlikely
that a human would include such a detail in their description. Given that the LLM must perform many
diverse tasks to generate a paragraph, focusing too much on overly specific descriptions may hinder its
ability to effectively carry out other functions, such as high-level reasoning.

Subordinating Conjunctions:

Time

after, as, as long as, as soon as, before, once, since, still, until, when, whenever, while
Cause and effect

as, because, even though, since, so that, though, although, now that
Condition

if, even if, only if, unless, provided that, in case, in the event that
Contrast / Concession

although, even though, though, whereas, while, rather than
Purpose

in order that, so that

Comparison / Manner

as if, as though, the way, than

Table 5.16: List of Subordinating Conjunctions categorized by function
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5.2.2 Multimodal Collaboration for Knowledge-based VQA
Baseline

We use Claude 3.7 Sonnet as our baseline, providing it with images and questions from the OK-VQA validation
split, using the inference parameters detailed in Table 5.3. The model is prompted to produce one- or two-
word answers and to always attempt to answer the question, in a zero-shot fashion. We measure accuracy
using the soft accuracy metric described in Section 4.1.2. The average accuracy is 43.59%, which is established
as our baseline. The results across categories are shown in Table 5.17. The highest result is obtained in the
Cooking and Food category, while the lowest is observed in the Sports and Recreation category.

Avg. | VT |BCP|OMC|SR |CF |GHLC|PEL |PA |[ST | WC | Other
(%)

43.59 41.43 | 44.88 | 45.70 | 40.63 | 47.53 | 44.54 41.12 | 41.42 | 44.05 | 46.67 | 46.01

Table 5.17: Claude 3.7 Sonnet baseline accuracies for the OK-VQA dataset
Notes: VT = Vehicles and Transportation, BCP = Brands, Companies and Products, OMC = Objects,
Material and Clothing, SR = Sports and Recreation, CF = Cooking and Food, GHLC = Geography,
History, Language and Culture, PEL = People and Everyday Life, PA = Plants and Animals, ST = Science
and Technology, WC = Weather and Climate.

We observe that, despite our prompt, we are unable to steer the model toward producing predominantly one-
or two-word answers. In fact, since the dataset contains no answers longer than three words and includes only
specific answers, the model loses at least 12.84% of potential accuracy by generating responses containing
four or more words, and at least 1.19% by not answering the question at all (Figure 5.2.3). This suggests
that LLMs cannot be effectively steered through prompting to adhere to a specific format while performing
reasoning- and knowledge-intensive tasks.

Claude solo - Distribution of Answer Lengths (excluding empty)
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0 6,44 0,67 12,84
Answers with 1 word Answers with 2 words Answers with 3 words Answers with 4+ words

Answer Length (# words)

Number of no-attempts = 60 (1.19%)

Figure 5.2.3: Word length distribution and number of no-attempts for the Claude 3.7 Sonnet baseline.

The Scout, Analyser, and Resolver Framework

For our Scout model, which generates greedy descriptions for each image, we use the inference parameters
detailed in Table 5.2. We conduct a linguistic analysis, as described in Section 4.2.1, to ensure the quality of
our descriptions Table 5.18. We also present a word cloud of the descriptions to gain insight into the most
frequently occurring terms in the obtained paragraphs (Figure 5.2.4).
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Avg. St. Dev. | Diversity | Nouns | Verbs Pronouns | Vocab Subord. Grammar

Length | Length (TTR) (%) (%) (%) Size Conj. Error
Rate

115.65 18.15 0.6774 29.29 12.00 4.26 11,904 2,357 0.06

Table 5.18: Linguistic analysis for Scout-generated image paragraphs for the OK-VQA dataset.

Notes: Grammar Error Rate is calculated as errors per sentence. Vocabulary Size reflects the number of unique words.
Subord. Conj. refers to subordinating conjunctions.
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Figure 5.2.4: Word cloud for Scout-generated image paragraphs for the OK-VQA dataset.

To find salient sentences in the generated paragraphs, we split the model’s answer into individual sentences
and evaluate each one separately. We use a Sentence-BERT model to create embeddings that capture the
meaning of each sentence. We compare each sentence to the question at hand using cosine similarity. Finally,
we rank the sentences by similarity and select the top ones to extract the most relevant part of the description.
Clearly, our Scout model produces semantically rich and relevant descriptions. For example, the Table 5.19
shows the salient sentences generated by our Scout model for the motorcycle image.
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Salient sentences in Scout-generated image descriptions

Question: What sport can you use this for?

Image Description (Scout):

. The motorcycle features a
prominent windshield, comfortable seat, and silver accents on the rear section. It has the
characteristic dual-purpose design with wire-spoke wheels that are suitable for both on and
off-road riding. In the background, there’s a white metal container or storage unit, and what
appears to be an orange flag or banner visible on the left side. The setting looks like an outdoor
area with some dirt/sand terrain and a paved section where the motorcycle is standing on its
kickstand. The scene suggests this might be at a motorcycle event, test riding area, or off-road
riding location.

Table 5.19: Salient sentences in Scout-generated image descriptions.
Notes: most salient sentence
second most salient sentence

For our Analyser model, which generates the initial answer based on the image description, we use the Llama
3.3 model with the inference parameters detailed in Table 5.5. For our Resolver model, which extracts the
final answer and formats it to meet the requirements, we use the Llama 3.3 model with the inference parame-
ters described in Table 5.6. We explore both zero-shot and few-shot approaches for the Resolver’s predefined
formatting rules and observe a slight improvement in accuracy with the few-shot approach (Table 5.20).

Our collaborative Scout-Analyser-Resolver with the few-shot resolver approach achieves an accuracy of
48.73%, which is 5.14% higher than the baseline, suggesting the effectiveness of a collaborative approach for
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the OK-VQA task. The complete results for each category are shown in Table 5.20.

Method

Avg.
(%)

vT

BCP | OMC

SR

CF

GHLC | PEL

PA

ST

WwWC

Other

Scout-
Analyser-
Resolver
Zero-
Shot

47.05

44.38

52.21 | 43.13

47.51

47.70

53.76 46.26

47.77

35.00

48.84

49.82

Scout-
Analyser-
Resolver
Few-Shot

48.73

46.03

04.42 | 43.97

48.78

49.89

52.62 46.82

51.00

35.71

50.39

51.15

Notes: VT = Vehicles and Transportation, BCP = Brands, Companies and Products, OMC = Objects,
Material and Clothing, SR = Sports and Recreation, CF = Cooking and Food, GHLC = Geography,

Table 5.20: Scout, Analyser, and Resolver accuracies for the OK-VQA dataset.

History, Language and Culture, PEL = People and Everyday Life, PA = Plants and Animals, ST = Science

and Technology, WC = Weather and Climate.

We validate the effectiveness of our Resolver as a formatter by analysing the word length distribution and
the number of no-attempts, which were two of our main objectives for formatting the answers (Figure 5.2.5).
Indeed, the proportion of answers with four or more words was reduced from 12.84% to almost zero, compared
to the baseline. Additionally, the number of no-attempts dropped from 60 to 2. However, the increase in
accuracy (5.14%) is not as significant as we would expect given the dramatic improvements in formatting.
We attribute this to the fact that when the model diverges from the format or chooses not to answer the
question, it often indicates a deeper lack of knowledge about the answer.
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Figure 5.2.5: Word length distribution and number of no-attempts for the Scout, Analyser, Resolver
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We identify six underlying reasons for the shortcomings of our system.

1. Inaccurate Information: This error occurs when the necessary visual information to answer the
question is conveyed in the image description but inaccurately. Occasionally, the Scout may hallucinate
objects, attributes, or relationships and deliver them to the Analyser with fluency. This causes the
subsequent models to propagate the error and produce incorrect answers with confidence.

2. Missing Information: Here, the necessary visual information to answer the question is not conveyed
at all in the image description. This may occur because the Scout fails to reference important aspects of
the image, and because the descriptions are generated in a greedy manner. As a result, the descriptions
do not necessarily prioritise transferring the information needed to answer the question.

3. Reasoning Error: Despite the information being present in the description, the Analyser might still
produce an incorrect answer. This highlights a reasoning error or a failure to correctly extract and infer
the answer from the external knowledge that these questions typically require.

4. Selection Error: The Resolver selects the wrong final answer, either by failing to comply with the
formatting instructions or by phrasing the answer in a way that does not sound natural to humans.

5. Evaluation Error: The framework produces a valid answer but does not receive credit because it is
not formatted identically to the ground truth answers, even after post-processing. This is a common
issue in open-ended datasets and represents a key reason why multimodal LLMs underperform relative
to their true capabilities on the OK-VQA dataset. It also explains why fine-tuning on this dataset
yields significantly better results.

6. Abstraction Bias: The framework produces a valid answer that differs from the ground truth in terms
of specificity. Questions about images can generally be categorised into three levels of abstraction:
specific, intermediate, and abstract. The abstraction level of a question is specific when it expects
entity recognition or terminal hyponym like a brand, date, or species (e.g., ‘What brand is this? —
Coca-cola’ or ¢ What singer is associated with this hairstyle? — Robert Smith’). In contrast, questions
that ask for classification into a general type or category have an intermediate level of abstraction (e.g.,
‘What animal is this? — monkey’ or ‘What drink is this? — Wine’). Finally, abstract questions might
ask for purpose, use, or general real-world reasoning and expect more general concepts (e.g., ‘What is
the purpose of this device? — Entertainment’ or ‘Where is the boy standing? — Ground’). LLMs
have a specificity bias: they tend to respond to questions with a more specific level of abstraction
than humans typically would. At the same time, they struggle to transition between abstraction levels
while reasoning. Some questions can be answered correctly at three different levels of abstraction. For
example, the answer to the question ‘Who designed the statues?’ could be Jackie McKenna (specific),
an artist (intermediate), or a human (abstract). All answers are technically valid but differ in their level
of abstraction. When seeing the question, humans might look for the name of the person who designed
the statues. However, when it becomes clear that this cannot be determined from looking at the image,
they naturally generalise upward, providing a more general answer like ‘an artist’. Conversely, LLMs
struggle with this kind of flexibility when it comes to abstraction levels. Upon seeing the question, they
look for a precise answer and when they don’t find it they don’t generalise upward but rather choose
to not answer the question at all. The abstraction bias presents a challenge in the OK-VQA dataset
and other open-ended datasets and is a key reason why LLMs lose credit despite knowing the answer
or why they might fail to answer the question altogether.

99



Chapter 5. Experiments

Example 1: Correct Answer

Question: Which part of this animal would be in use if it was playing the game that is played
with the items the man is holding?

Image Description (Scout): The image shows a person playing frisbee in a grassy yard while
a dog is perched on their back. The person is wearing a white t-shirt, dark pants, and a black
cap, and is bent forward holding two white frisbees - one in each hand. The dog appears to be a
black and white spotted breed, possibly an Australian Cattle Dog or similar mix, and has
impressively balanced itself on the person’s back while they’re in motion. In the background,
there’s a wooden fence. This looks like a fun moment of dog training or freestyle disc dog
practice, where the dog has learned to perform tricks while the handler manipulates the frisbees.

Initial Answer (Analyser): If the dog was playing the game that is played with the items the
man is holding (frisbees), the part of the animal that would be in use is its mouth, as dogs
typically catch frisbees in their mouths.

Final Answer (Resolver): Mouth v/

Ground Truth: mouth

Table 5.21: Example 1: Correct Answer.
Notes: most salient sentence
second most salient sentence
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Example 2: Inaccurate Information

Question: Which phase is that moon in?

Image Description (Scout): The image shows a clock tower with two visible clock faces on
adjacent sides. The tower appears to be made of dark wooden shingles or similar material and
has a small cupola or bell housing at the top with vented openings. The clock faces have Roman
numerals, with one clock showing approximately 4:35. In the background, there’s a crescent
moon visible in the gray sky, and the silhouette of an evergreen tree can be seen next to the
tower. The photo has a moody, atmospheric quality with its muted colors and twilight setting. X

Initial Answer (Analyser): The moon is in the crescent phase.

Final Answer (Resolver): crescent

Ground Truth: half

Error Type: Inaccurate Information

Table 5.22: Example 2: Inaccurate Information
Notes: most salient sentence
second most salient sentence
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Example 3: Missing Information

Question: Name the type of plant this is.

Image Description (Scout): This image shows a modern bathroom with a striking biophilic
design element. The bathroom features dark gray tile walls and a glass shower enclosure on the
right side. What makes this space unique is a dramatic vertical garden or living wall that runs
from floor to ceiling, bringing lush greenery into the bathroom environment. The plants create a
vibrant contrast against the dark walls. The bathroom has a white vanity with a sink on the left
side, some open shelving with towels, and recessed lighting in a wooden ceiling panel. Through
an opening in the background, you can glimpse part of another room that appears to be a living
area. The overall design combines contemporary bathroom fixtures with natural elements,
creating a spa-like atmosphere where nature is integrated directly into the interior architecture. X

Initial Answer (Analyser): Based on the description of the "dramatic vertical garden or
living wall" with "lush greenery", it’s likely that the type of plant is a species commonly used in
indoor vertical gardens or living walls, such as a Fern or an English Ivy, but given the general
description, a more encompassing answer would be that the plants are likely some type of
Tropical Plant or Greenery, possibly including species like Pothos or Peace Lily, which are
popular for indoor use due to their ability to thrive in a variety of lighting conditions and their
aesthetic appeal. However, without more specific details, the most accurate general category
would be Tropical Plants or Greenery.

Final Answer (Resolver): fern

Ground Truth: vine

Error Type: Missing Information

Table 5.23: Example 3: Missing Information
Notes: most salient sentence

seconfbglost salient sentence



5.2. Results

Example 4: Reasoning Error

Question: How fast is the vehicle pictured capable of reaching?

Image Description (Scout): The image shows a scenic railway journey through a
mountainous landscape. There’s an open-air train car or carriage traveling along tracks that
wind through rolling hills and valleys. The railway appears to be a heritage or tourist line, with
passengers seated on what looks like an observation platform or open wagon. The surrounding
landscape is quite picturesque, featuring a mix of forested hills with evergreen trees covering the
higher elevations, while the lower areas show a patchwork of fields and meadows. In the
background, mountains rise up with their tops partially obscured by clouds, suggesting this
might be in a highland region. The scene has a somewhat overcast sky, giving the landscape a
moody, atmospheric quality. The railway track is built along a stone embankment that curves
through the countryside, allowing travelers to enjoy panoramic views of the beautiful rural
scenery as they journey through this mountainous terrain.

Initial Answer (Analyser): The vehicle, being a train on a heritage or tourist line, is likely
capable of reaching moderate speeds, but not extremely high speeds due to the winding nature of
the track and the scenic, tourist-oriented purpose of the railway. A reasonable guess would be
that it can reach speeds of around 30-50 km/h (18-31 mph), allowing passengers to enjoy the
views without rushing through the landscape.

Final Answer (Resolver): 30 km/h X

Ground Truth: 80 mph

Error Type: Reasoning Error

Table 5.24: Example 4: Reasoning Error
Notes: most salient sentence
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Example 5: Selection Error

Question: What type of plane is that?

Image Description (Scout): The image shows an airport tarmac with multiple aircraft. In
the foreground is a Qantas aircraft with the distinctive red kangaroo logo on its tail, labeled
"Spirit of Australia." The plane is connected to a jetway or boarding bridge. In the background,
another Qantas aircraft with the same red and white livery can be seen on the runway, and
there’s also a plane taking off in the distance against a clear blue sky. The scene appears to be
taken during daytime at what is likely an Australian airport, showing the typical airport
operations with planes parked at gates and others in motion on the taxiways or runways.

Initial Answer (Analyser): The plane is a Qantas aircraft, likely a commercial airliner such
as a Boeing 737 or Airbus A330, given the context of the airport setting and the presence of a
jetway.

Final Answer (Resolver): Airliner X

Ground Truth: commercial

Error Type: Selection Error

Table 5.25: Example 5: Selection Error
Notes: most salient sentence
second most salient sentence
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Example 6: Evaluation Error

Question: What toy is this?

Image Description (Scout): The image shows a person in a red sweater sitting in what
appears to be a church or chapel pew. They have a small teddy bear or stuffed animal tucked
into the back of their backpack or bag The setting has wooden pews with white panels, and there
are a few other people visible in the background, seated in the rows ahead. The atmosphere has
a warm, soft focus quality to it, creating an intimate feeling within what seems to be a place of
worship or gathering. The stuffed animal peeking out from the backpack adds a touching,
personal element to the scene.

Initial Answer (Analyser): The toy is a teddy bear or a stuffed animal.

Final Answer (Resolver): teddy

Ground Truth: stuffed animal, teddy bear X

Error Type: Evaluation Error

Table 5.26: Example 5: Evaluation Error
Notes: most salient sentence
second most salient sentence
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Example 7: Abstraction Bias

Question: What does this grow from?

Image Description (Scout): This image shows a beautiful orange lily flower in full bloom,
displayed in a small metallic container or vase. The lily has vibrant orange-salmon colored petals
that are fully opened, revealing its distinctive protruding stamens with dark reddish-brown
anthers. The flower’s elegant form creates a striking contrast against the dark blue or black
fabric background. The metallic container has a simple, sleek design with a silver finish that
complements the warm tones of the flower. The lighting in the image highlights the delicate
texture and translucent quality of the lily’s petals, creating a dramatic and elegant presentation.

Initial Answer (Analyser): This lily flower grows from a bulb. X

Final Answer (Resolver): Bulb

Ground Truth: ground

Error Type: Abstraction Bias

Table 5.27: Example 7: Abstraction Bias
Notes: most salient sentence
second most salient sentence
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Collaboration Analysis and Discussion

To examine our models’ sensitivity to the design of the collaboration framework and to gain deeper insights
into the system’s errors, we conduct multiple experiments and report the following results (Figure 5.2.6).

Claude Solo 43,59

Analyser + Resolver Zero-Shot #2 49,65

Analyser + Resolver Few-Shot #3 50,02

Analyser CoT + Resolver Zero-Shot #4 46,5

Analyser CoT + Resolver Few-Shot #5 46,86

Scout + Analyser + Resolver Zero-Shot #6 47,05

Scout + Analyser + Resolver Few-Shot #7 48,73

43 45 47 49 51

Figure 5.2.6: Word cloud for Scout-generated image paragraphs for the OK-VQA dataset.

Our baseline, shown as #1, has the lowest accuracy among the methods tested, indicating that multimodal
LLMs cannot be effectively steered through prompting to perform reasoning-intensive tasks while adhering
to formatting rules. The Resolver appears to be the most effective component of our framework, significantly
improving results across all other methods. We experiment with using only the Analyser and the Resolver,
ablating the prompting techniques used for both components. We use the inference parameters shown in
Table 5.3 and the prompt detailed in Table 4.10 for our Analyser in method #2, and Table 5.6 and Table 4.8
for our Resolver. Then, for our Analyser in method #3, we apply the inference parameters shown in Table 5.3
and the prompt in Table 4.10, while for the Resolver, we use the settings and prompt detailed in Table 5.6
and Table 4.9. The third method yields the best overall average accuracy, highlighting the effectiveness of
our Resolver, particularly when used in a few-shot manner. For our #4 and #5 method using CoT, we use
the extended thinking version of our Analyser, as shown in Table 5.4. We then prompt our Resolver using
zero-shot (Table 4.8) and few-shot prompting (Table 4.9), with the inference parameters shown in Table 5.6.
Finally, for our #6 and #7 method we use all the components of our system and experiment with either
zero-shot (#6) and few-shot (#7) prompting. The results of all methods accross caregories are presented in
Table 5.29.

We observe that all of our methods yield better results than using Claude alone, highlighting the effectiveness
of a collaborative framework for this task. We believe that Claude significantly underperforms on this dataset
relative to its true capabilities due to two main reasons: (a) its inability to be steered to adhere to specific
formatting rules (such as providing single-word answers or using singular form), and (b) the limitations of the
evaluation metric used in the dataset. Indeed, a simple post-processing step of resolving and formatting the
final answer (#3) boosts results by almost 7%, indicating that much of the knowledge being tested is already
present but cannot be probed in a single-step through prompting. The Scout-Analyser-Resolver pipeline
(#7) proves effective in handling the OK-VQA task and achieves the best results across three categories. It
is also transparent, allowing us to observe the reasoning behind the LLMs’ answers across the different stages

107



Chapter 5. Experiments

of the system. The average performance of methods #6 and #7 is significantly impacted by lower accuracies
in the Science and Technology, as well as the Objects, Material, and Clothing categories. We attribute this
to questions in these categories requiring finer-grained details that are typically not captured in the greedy
image-paragraph descriptions generated by the Scout model. To address this, controlled paragraph captioning
could be explored in future work to better account for the missing information error type that compromises
performance.

We believe that the vast majority of errors in our system arise from answer selection, formatting, and
evaluation issues and do not necessarily indicate a lack of knowledge on the model’s part. Because none
of our methods are fine-tuned on the dataset, the model does not learn dataset-specific patterns, such as
preferring ‘horn’ over ‘horns’ or ‘swim’ over ‘swimming’. To compensate for this disadvantage, we introduced
a Resolver model responsible for choosing the final answer and applying formatting rules, which significantly
improved results. We find that LLMs are powerful formatters and can be effectively used in automated tasks
involving the extraction and post-processing of other models’ outputs. However, as statistical models, LLMs
can only be guided toward a specific format to a certain extent. It goes against their learned patterns to
answer the question ‘Is he catching or throwing?’ with ‘throw’ instead of ‘throwing’. Yet the ground truth
answer is in fact ‘throw’, and because the proposed evaluation metric does not normalise variations like the
-ing form, the model receives zero accuracy for this answer.

We also believe that the established accuracy metric for the OK-VQA dataset is too rigid, excluding many
answers that are actually correct while rewarding others that are not. For example, in response to the question
‘What South American country usually has this climate?’ several answers could be correct, including ‘Brazil’,
‘Argentina’, and ‘Ecuador’. However, the model’s answer ‘Argentina’ receives zero points because it is not
among the ten ground-truth answers, while an incorrect answer like ‘Africa’—which is neither a country nor
located in South America—would receive 60% accuracy because 2 out of 10 annotators gave that answer.
In the lily example (Table 5.27), although the model’s answer ‘bulb’ is perfectly valid, it also receives zero
accuracy because ‘ground’ was the most common human response. The problem here is not incorrectness,
but rather providing an answer at a different level of abstraction compared to human responses. Finally,
‘Giorgio Armani’ and ‘Armani’ are both commonly used to refer to the same brand, with ‘Armani’ being
the official legal name of the brand and ‘Giorgio Armani’ referring to the designer. However, the model’s
answer ‘Armani’ gets zero points when answering the question ‘What brand of suit is the man in the image
wearing?’.

While the OK-VQA dataset sets out to test models’ ability to leverage external knowledge to answer chal-
lenging questions about images, this goal is undermined by shortcomings in the evaluation metric and biases
present in the dataset. The A-OKVQA dataset addresses these limitations by adopting a multiple-choice
format, which accounts for the significantly improved performance of multimodal LLMs when tested on it.
Nevertheless, an open-ended dataset presents a much greater challenge for current LLMs, testing not only
their reasoning and cognitive abilities but also their capacity to respond at the same level of abstraction as
humans, while also reducing the possibility of guessing. This is why we propose a human survey to more
accurately assess the true performance of multimodal LLMs on open-ended OK-VQA, along with new eval-
uation metrics that could potentially leverage LLMs as automatic evaluators. Evaluating LLMs’ ability to
respond at the same level of abstraction as humans represents another important direction for future work,
which could be explored through datasets with multiple correct answers across varying abstraction levels.
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Method dis tf;]bolftdion* Accuracy (%) # of no attempts

Claude Solo 1 80.04 43.59 60
2 6.44
3 0.67
44+ 12.84

Analyser + Resolver Zero-Shot 1 96.27 49.65 61
2 3.47
0.10
4+ 0.16

Analyser + Resolver Few-Shot 96.21 50.02 128
3.09
3 0.10
4+  0.59

Analyser CoT + Resolver Zero-Shot 1 81.81 46.50 130
17.90
3 0.26
4+ 0.04

Analyser CoT + Resolver Few-Shot 1 87.44 46.86 48
2 12.33
0.24
4+ 0.00

Scout + Analyser + Resolver Zero-Shot 1 92.63 47.05 1
2 7.09
0.22
4+  0.06

Scout + Analyser + Resolver Few-Shot 92.11 48.73 2
2 7.59
3 0.20
4+ 0.10

*Word distribution refers to the percentages of answers with 1 word, 2 words, 3 words, and 4+ words respectively.

Table 5.28: Comparative results of all methods on the OK-VQA dataset.
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Method Avg. | VT |[|BCP|OMC|SR |CF |GHLC|PEL |PA |ST | WC | Other
(%)

Claude Solo | 43.59 41.43 | 44.88 | 45.70 | 40.63 | 47.53 | 44.54 41.12 | 41.42 | 44.05 | 46.67 | 46.01

Analyser- 49.65 47.06 | 47.67 | 51.68 | 46.74 | 52.94 | 46.81 48.36| 50.33 | 50.71| 52.56 | 50.44
Resolver
Zero-Shot

Analyser- 50.02 | 47.38| 48.26 | 51.92 | 47.62 | 53.14| 46.10 48.36| 50.53 | 50.71| 53.80 | 51.24
Resolver
Few-Shot

Analyser 46.50 40.54 | 46.63 | 46.40 | 46.07 | 51.25 | 44.96 44.53 | 46.16 | 43.10 | 54.11 | 49.66
CoT-

Resolver
Zero-Shot

Analyser 46.86 41.60 | 46.98 | 47.20 | 48.29 | 49.84 | 46.67 44.63 | 45.47 | 44.29 | 55.66| 50.37
CoT-

Resolver
Few-Shot

Scout- 47.05 44.38 | 52.21 | 43.13 | 47.51 | 47.70 | 53.76 46.26 | 47.77 | 35.00 | 48.84 | 49.82
Analyser-
Resolver
Zero-Shot

Scout- 48.73 46.03 | 54.42| 43.97 | 48.78| 49.89 | 52.62 46.82 | 51.00| 35.71 | 50.39 | 51.15
Analyser-
Resolver
Few-Shot

Table 5.29: Comparative results of all methods on the OK-VQA dataset across all categories.

Notes: VT = Vehicles and Transportation, BCP = Brands, Companies and Products, OMC = Objects,
Material and Clothing, SR = Sports and Recreation, CF = Cooking and Food, GHLC = Geography,
History, Language and Culture, PEL = People and Everyday Life, PA = Plants and Animals, ST = Science
and Technology, WC = Weather and Climate.

110



Chapter 6

Conclusion and Future Work

Multimodal LLMs represent some of the most technologically advanced systems developed to date. As a
result, there are high expectations for them to excel across every modality, field, or application. While their
strong performance across diverse tasks leaves open the possibility of a true generalist model in the future,
their shortcomings suggest that fine-tuning or model collaboration may still offer more promising alternatives
for downstream applications. We engage in this dialogue by benchmarking Claude as a multimodal proxy
model on two tasks: image paragraph captioning and knowledge-based VQA. In addition, we develop a
multi-agent framework to address the latter, drawing comparisons between single-agent and multi-agent
approaches.

For our first task, we explored image paragraph captioning, which involves generating paragraph-length
descriptions for images. We prompted a large-scale, multimodal LLM to generate paragraph descriptions
for the images in a subset of the prominent Stanford Image Paragraph Captioning Dataset in a zero-shot
setting. The linguistic metrics proposed by the creators of the dataset did not align with the detailed,
rich, and flowing paragraphs that we empirically observed being generated by the model. Therefore, we
conducted a linguistic analysis to compare the human-written paragraphs from the dataset annotations with
the model’s outputs. Our analysis indicates that the model-generated paragraphs are greater in length, lexical
and semantic richness, diversity, and grammatical correctness compared to the human-annotated paragraphs.
These findings suggest that modern multimodal language models have surpassed datasets and metrics that
predate them, underscoring the need for new benchmarks in the area.

For our second task, we focused on knowledge-based visual question answering and specifically, the OK-VQA
dataset, an open-ended benchmark which features questions about images that rely on external knowledge.
We evaluated a current MLLM in a zero-shot setting and found that, despite its apparent knowledge of many
of the tested facts, it falls short of reaching state-of-the-art performance levels. This is largely due to the
format of the expected answers, which the model struggles to adhere to through prompting alone. To unlock
the full potential of the MLLM, we propose a multi-agent system that establishes collaboration between the
MLLM and a text-only LLM. Our framework comprises three agents: the Scout, an MLLM that takes an
image as input and describes it in a paragraph caption; the Analyser, an LLM that produces an initial
answer to the question based on the image description; and the Resolver, an LLM that selects and formats
the final answer according to a set of predefined rules. The system improves performance over the baseline,
indicating that a collaboration framework is effective for this task. Our findings indicate that multimodal
LLMs can produce salient image descriptions that are sufficient to answer the question in the majority of
cases.

Furthermore, LLMs can find answers to questions about images by leveraging the image paragraph description
as context, provided that the visual information required to answer the question is present in the caption.
Finally, we validate that LLMs can be effectively used as formatters to assist in extracting the final answer
and post-processing it to align with the required format.

This thesis lays the groundwork for future exploration at the intersection of image paragraph captioning
and knowledge-based visual question answering, as we believe the two tasks are not only closely related, but
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that advancing the former will significantly contribute to the latter. Moving forward, we plan to conduct
ablation studies to better understand which component of our system is the most lacking and to assess which
error types constitute the majority of our failures. We also aim to conduct experiments with other models to
investigate how scalability affects performance. We hypothesise that smaller LLMs could be more efficient for
this task, as they may exhibit less abstraction bias compared to larger models. To minimise errors occurring
because of missing information in the description, we will explore the task of controlled image paragraph
captioning, where the paragraph caption is grounded on the question or specific constraints. Finally, we
plan to conduct a human evaluation to assess our system’s performance on the OK-VQA task, based on the
belief that the existing metric does not fully capture the models’ true capabilities. We also intend to explore
alternative automatic evaluation metrics, such as using LLMs as evaluators, which could better support
open-ended tasks. Another important proposed direction involves the construction of new datasets that are
on par with the growing capabilities of multimodal systems. Specifically, we emphasise the need for datasets
in the image paragraph captioning domain that present meaningful challenges to state-of-the-art MLLMSs by
specifically targeting the key issues we have identified.
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