3¢
=g
pPeobo

3

NATIONAL TECHNICAL UNIVERSITY OF ATHENS
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

SECTOR OF COMPUTER SCIENCE

Dynamic NFT exchanges in a blockchain environment
using graph algorithms

DIPLOMA THESIS

of

Christos Koutras

Supervisor: Vassilios Vescoukis
Professor, NTUA

Athens, April 2025

(this page is left intentionally blank)

NATIONAL TECHNICAL UNIVERSITY
OF ATHENS

SCHOOL OF ELECTRICAL AND COMPUTER
ENGINEERING

SECTOR OF COMPUTER SCIENCE

S

;.%-9 o
3

.
L
50
NPOMHOEV S
N =
v Pgopos

i

Dynamic NFT exchanges in a blockchain environment
using graph algorithms

DIPLOMA THESIS

OF

Christos Koutras

Supervisor: Vassilios Vescoukis
Professor, NTUA

Approved by the examination committee on 4th of March, 2025.

Vassilios Vescoukis Nikolaos Papaspyrou Aris Pagourtzis
Professor, NTUA Professor, NTUA Professor, NTUA

Athens, April 2025.

Christos Koutras
Graduate of the School of Electrical and Computer Engineering,
National Technical University of Athens

Copyright (©) Christos Koutras, 2025 All rights reserved.

You may not copy, reproduce, distribute, publish, display, modify, create
derivative works, transmit, or in any way exploit this thesis or part of it
for commercial purposes. You may reproduce, store or distribute this thesis
for non-profit educational or research purposes, provided that the source is
cited, and the present copyright notice is retained. Inquiries for commercial
use should be addressed to the original author.

The ideas and conclusions presented in this paper are the author’s and do
not necessarily reflect the official views of the National Technical University
of Athens.

Hepirndgn

H noapoloa epyasia tapouctdlel to Barterplace, évo amoxevipwuévo cbotn-
ua avtahhoryfic non-fungible tokens (NFTs), to onolo evowpatdver tn dempla
Yedpwv xou TNy teyvohoyia blockchain yio v utooTAEIEN TOALUEPDY OVTOA-
Aoy v ywele TNy avdyxrn evoldueowy. Me avtiieon ue Ti¢ TapadocLaxES oy 0RES
NFT nou Basilovton oty dueon ayopd xaw twinon, to Barterplace avamopiotd
TI¢ TpovEaElC avToAAoy | WS xATELYUVOUEVO YEAPO xou E@apudlet alyopituoug
Yedpwy yior TNV aviyveuon xOxhwy, Slac@uhiCovTog QUTOUITY Xl ATPOCXOTTN
EXTENEDT) CUVAAAAY V.

To cbotnua viomoeitar méve oto Ethereum blockchain, afomowdvrag ta
€Cunva cupfolonar yior ac@Ahetor xon Slopdvela, eved To InterPlanetary File Sys-
tem (IPFS) nopéyet éva anoxevipwuévo péoo anodfixeuonc yo to metadata
Twv NFTs. Meow twv xuxhixov aviodlayoy, o Barterplace evioylel tn peu-
ototna twv NFTs, auldvovtog Tic miavotntee emTuynuévmy aviaAloy®y,
eCaAelpovTag ToUG UECALOVTES, UELOVOVTAS Tol TEAT Xai SlaopuAilovTag Bixoueg
CUVOANALYEC.

Mo T Bedtioon TN amodoTIXOTNTAC Yo TN EMEXTACYLOTNTIS, TEOTEVOVTL
uehhovtég Bertiotomotfoelc 6mwe o off-chain utoloyioude TV *OIAWY xou 1
oyedlaon oupBoralwy e younho xo6otog gas. lleipopoatinég allohoyroeig emt-
BeBoacdvouv tn oior TG TpooEyyloNng, avadeviovTag Tr duvaixy Tou Barter-
place vo eTovampocdloploeL TIC AVTUAAAYES PNPLOXDY TEPLOUCLAXMY G TOLYEWY
oTo owoclo TN Tou Web3.

A€Celc-xAelold

NFT, blockchain, éZumva cupforona, avtodiayry NETs, dewplo yedpwy,
Decentralized Exchange (DEX), aviyveuon x0xhov, Ethereum, IPFS, nohu-
MEEELS orvTaAAYES

(this page is left intentionally blank)

Abstract

This thesis introduces Barterplace, a decentralized non-fungible token
(NFT) barter system that integrates graph theory and blockchain technol-
ogy to enable trustless, multi-party swaps. Unlike traditional NFT market-
places that focus on direct buying and selling, Barterplace represents trade
intents as a directed graph and employs Depth-First Search (DFS) for cycle
detection, ensuring seamless and automated trade execution.

The system is implemented on the Ethereum blockchain, leveraging smart
contracts for security and transparency, while the InterPlanetary File System
(IPFS) provides decentralized storage for NFT metadata. By facilitating
swap cycles, Barterplace enhances NFT liquidity, increasing the likelihood of
asset exchanges while eliminating intermediaries, reducing fees, and ensuring
fair transactions.

To improve efficiency and scalability, future optimizations such as off-
chain computation and gas-efficient smart contract design are proposed. Ex-
perimental evaluations confirm the feasibility of this approach, demonstrating
Barterplace’s potential to redefine digital asset trading in the Web3 ecosys-
tem.

Keywords

NFT, blockchain, smart contract, barter, swap, graph theory, Decentral-
ized Exchange (DEX), cycle detection, Ethereum, IPFS, multi-party swaps

(this page is left intentionally blank)

Acknowledgments

I would like to express my sincere gratitude to my supervisor, Vassilios
Vescoukis, for his invaluable guidance, patience, and support throughout the
course of this thesis.

['am also deeply thankful to loannis Tzannetos and Christos Chatzichristofi
for their insightful feedback and helpful suggestions, which greatly enhanced
the quality of this research.

To my family and friends, thank you for your unwavering love and belief
in me. Your support has been a constant source of strength and motivation
throughout this journey, even in the face of challenges.

Finally, I wish to thank all those who contributed, directly or indirectly,
to the completion of this thesis.

Contents

1 Introduction

2 Theoretical Background

2.1 Blockchain
2.1.1 Basiccomponents
2.1.1.1 Blockand chain

2.1.1.2 Nodes and Network

2.1.1.3 Transactions

2.1.1.4 Consensus mechanisms

2.1.2 Smart contracts and NFTs
2.1.3 Keyconcepts oL
2.1.3.1 Decentralization

2.1.3.2 Transparency and Immutability

2.1.3.3 Security

2.2 Graph theory
221 Graphs.
2.2.2 Pathsand Cycles
2.2.3 Depth-First Search (DFS)

Barterplace conceptualization

3.1 Thegraph
3.1.1 How a trade intent is added
3.1.2 When a swap occurs
3.1.3 What happens after a trade is matched
3.1.4 What happens if multiple trades are valid

3.2 Functionality and features
3.2.1 Barterplace as an escrow agent
3.2.2 Cycle detection,

3.3 Common USe CASES v e
3.3.1 Color-coding legend
3.3.2 Simple 2-way swap

13

16
16
16
16
17
18
19
20
21
21
21
22
22
23
24
25

3.3.2.1 Cycle formation 34

3.3.2.2 DFS algorithm 34

3.3.3 Simple 3-way swapo 36
3.3.3.1 Cycle formation 36

3.3.3.2 DFS algorithm 38

3.3.4 Complex 3-way swap 39
3.3.4.1 Cycle formation. 40

3.3.4.2 DFS algorithm 41

3.3.5 Simple 3-way swap with multiple cycles 43
3.3.5.1 Cycle formation. 43

3.3.5.2 DFS algorithm 45

4 Project implementation 47
4.1 Ethereum and Solidity 47
4.1.1 Ethereum Virtual Machine (EVM) 47
4.1.1.1 Architecture of the EVM 47

4.1.1.2 Gas and Resource Management 48

4.1.1.3 Smart contract deployment and execution . . 48

4.1.2 Events 50
4.1.3 Libraries 51

4.1.4 Setting up a private Ethereum network 53
4.1.5 Developer experience L. 54
4.1.5.1 RemixIDE 54

4.1.5.2 Hardhat 54

4.1.5.3 Ethersjs. 54

4.1.54 Docker. 5%5)

4.2 IPFS o 56
421 WhatisIPFS 56
4.2.2 Deploymento 56

4.3 Barterplace smart contract 58
431 NFTstates 58
432 Addtrade 59
4.3.3 Removetrade 60
4.3.4 Cycle detection 60
4.3.5 Classdiagram 62
4.3.6 CLI (Command Line Interface) 63

4.4 Off-chain database 65
4.4.1 Motivation o 65
4.4.2 Graph Database. 66
4.43 Schema 66
444 APL 68

4.4.5 NFT discovery service 71

Disussion 74
5.1 Gascostanalysis 74
5.2 Future improvements 75
5.2.1 Smart contract optimization 76
5.2.2 Off-chain computation 76
52.3 Rollups 76

Conclusion 78

Chapter 1

Introduction

Background

Blockchain technology has gained significant popularity as a decentral-
ized platform for securely storing and verifying data. Omne application of
blockchain technology that has gained particular attention is non-fungible
tokens (NFTs). NFTs are unique digital assets recorded on a blockchain
and used to certify ownership and authenticity. They have a wide range of
use cases, including the ability to represent assets such as art, collectibles,
and even virtual real estate. The potential for NFTs to revolutionize how the
Internet works has attracted significant interest from industry and academia.

Consequently, many decentralized applications (dApps) across blockchain
networks allow users to buy, sell, trade, and auction NFTs. Although there
are many classic decentralized NFT marketplaces such as OpenSea and Rari-
ble, as well as some centralized ones like Binance [33], what all these mar-
ketplaces share is that they focus on providing essential buying, selling, and
bidding/auctioning functionalities.

In this chapter, we will explore the motivations behind this thesis by
describing the problem it tries to solve, the proposed solution, and finally,
the usefulness of that solution.

Trading in blockchain

A Decentralized Exchange (DEX) is a cryptocurrency exchange that op-
erates on a blockchain instead of relying on a centralized entity. DEXs al-
low for peer-to-peer trading directly between users without intermediaries.
These exchanges utilize smart contracts deployed on networks like Ethereum
to execute trades based on predefined rules automatically. Some of the most

13

popular DEXs include Uniswap [46] and SushiSwap [44].

The smart contracts powering DEXs implement an Automated Market
Maker (AMM), the underlying protocol connecting users and their crypto
assets. Unlike traditional exchanges that use order books and matching buy-
ers with sellers, AMMSs operate on the principle of liquidity pools. These
pools are filled with users’ funds, enabling instant trades without the need
for counterparties. AMMSs use algorithms to dynamically adjust asset prices
based on supply and demand, ensuring continuous liquidity for traders.

Stable assets and StableSwap

Stable assets and, more specifically, stablecoins, such as USDC and USDT,
are digital currencies with a value strongly tied to fiat currencies like the US
dollar or physical assets like gold [30], which results in maintaining a steady
value against their reference assets. So when users trade same-valued assets
on DEXs, they should have gotten a near-1:1 value of exchanged tokens.

To enhance the efficiency of stablecoin swapping within the Ethereum
ecosystem, Michael Egorov introduced a solution outlined in [21]. His pro-
posal revolves around the concept of liquidity pools designed to maintain
a consistent relative price for these assets. This protocol is now known as
Curve [35], and the liquidity pools using this protocol are called Curve pools.

The proposal

Bartering, or swapping, is a method of trading that has been used since
ancient times, but there is currently a lack of focus on this aspect of trading in
the NFT market. Some of those existing DApps offer swapping features, but
these tend to be limited to trades between two parties and do not consider
the broader ecosystem of potential traders.

In exploring the realm of decentralized trading, it becomes essential to
address the question: why not extend stable trades to NFTs? Traditional
methods of NFT trading, such as atomic swaps and auctions, have laid the
groundwork for facilitating transactions within the NFT space. The most
notable consequence of our proposed framework is creating a ledger-based
community comprising equal value mapping — a byproduct emerging from
constructing our decentralized trading ecosystem.

This proposal presents an on-chain graph data structure designed to track
users’ “trade intents”, enabling a novel approach to decentralized NFT trad-
ing. By organizing trade intents in a graph, valid trades occur when these in-

tents form a cycle, ensuring that each participant receives their desired NFT.
The proposed protocol supports atomic swaps involving multiple parties,
subject to certain operational constraints. Within this graph, the resulting
connected components resemble liquidity pools found in traditional DEXs,
where assets are held to facilitate new trades. This innovative structure
broadens the scope of decentralized trading, providing enhanced flexibility
and efficiency in exchanging NFT assets within a decentralized framework.

Usefulness

The usefulness of the Barterplace can be summarized in the following key
concepts:

1. Autonomy: By eliminating the need for a trusted third party, the on-
chain approach enhances both trustworthiness and fairness within the
system [19].

2. Transparency and Verifiability: Storing trade data on the blockchain
allows all participants access to the same information, which increases
transparency and ensures data can be independently verified.

3. Open-Source Architecture: The open-source nature of smart contracts
enables third-party auditing, promoting reliability and security.

4. Efficiency and Flexibility: A multiparty trade structure allows multiple
trades to be completed simultaneously, improving efficiency. Addition-
ally, as more users participate, the volume of possible trades increases,
allowing for faster matching.

5. Community-Driven Valuation: The value of each individual NFT is
determined solely by the community and its collective trade intents,
reinforcing a decentralized, user-focused model.

Structure

This thesis is composed of four chapters. Chapter 2 gives a theoretical
background of a blockchain and core concepts about graph theory necessary
for our implementation. Chapter 6 provides a high-level overview of the
system’s functionality, along with four detailed use cases. In Chapter 6,
the Barterplace platform is described from a technical perspective, including
specific implementation details. Finally, Chapter 6, benchmarks the proposal
and evaluates potential directions for future work.

Chapter 2

Theoretical Background

2.1 Blockchain

Blockchain technology, first conceptualized by Stuart Haber and W. Scott
Stornetta in 1991 [5], was initially devised to implement a system where doc-
ument timestamps could not be tampered with. However, it wasn’t until 2008
that blockchain gained significant attention when an individual (or group)
under the pseudonym Satoshi Nakamoto introduced Bitcoin [12].

Nakamoto’s whitepaper, “Bitcoin: A Peer-to-Peer Electronic Cash Sys-
tem”, proposed a decentralized digital currency system, utilizing blockchain
as its underlying technology. This innovation marked the first practical and
widespread application of blockchain, creating a ledger system that is both
transparent and secure due to its decentralized nature and cryptographic
hashing.

Since then, blockchain has evolved beyond cryptocurrency, finding poten-
tial applications in various fields such as finance, supply chain management,
healthcare, and voting systems, heralding a new era of secure and transparent
digital transactions.

2.1.1 Basic components
2.1.1.1 Block and chain

At the heart of a blockchain is the concept of a “block”. Each block
contains a collection of data that varies depending on the purpose of the
blockchain. For example, in a cryptocurrency blockchain like Bitcoin, a block
contains transactional data [12].

Blocks also contain a unique identifier called a hash. A hash is a fixed-
size alphanumeric string generated from input data of any size through a

16

cryptographic hash function, uniquely representing the original data and
widely used to ensure data integrity and security.

The “chain” in blockchain comes from how these blocks are linked. When
a new block is created, it includes the hash of the most recent block in the
chain. This creates a chronological chain of blocks, and this technique ensures
the immutability of the blockchain. If any block’s data were altered, its
hash would change, breaking the chain of hashes and making the tampering
evident.

Block Block
— % Prev Hash Nonce » Prev Hash Nonce
Tx Tx Tx Tx

Figure 2.1: Representation of a chain of blocks [12]

2.1.1.2 Nodes and Network

In a blockchain network, “nodes” are the individual computers that col-
lectively maintain and validate the blockchain. Each node has a copy of the
entire blockchain ledger, which includes all the blocks of transactions ever
executed in the network. These nodes are interconnected, forming a decen-
tralized distributed network, meaning no central authority or single point of
failure exists. This architecture guarantees strength and durability, as the
network can keep running even if some nodes malfunction or act maliciously.

Nodes have different functions; some validate and transmit transactions,
others participate in the consensus process to agree on the state of the
blockchain, and specific specialized nodes, usually referred to as miners in
networks like Bitcoin or validators in Ethereum, do the computationally de-
manding job of adding new blocks to the chain.

This decentralized and distributed structure is vital to the security and
integrity of blockchain technology, as it makes the alteration of recorded data
extremely difficult and ensures transparency and trust among all participants
in the network.

1
[LIS

Hlechshair

{1}
LS

| Bleckehain|

Figure 2.2: A peer-to-peer network of nodes [18]

2.1.1.3 Transactions

Transactions represent the fundamental units of operation within the net-
work. Each transaction typically records the transfer of value or data between
parties. For instance, in the context of Bitcoin, a transaction would detail
the transfer of coins between user wallets. The sender digitally signs these
transactions to ensure authenticity and prevent tampering.

Once a transaction is initiated, it is broadcast to the network and awaits
validation. This validation is performed by the nodes of the network. They
verify the transaction’s legitimacy and compliance with the network’s rules,
such as checking if the sender has sufficient balance for the transaction. Upon
successful validation, transactions are grouped into a block, which is then
added to the existing blockchain.

This addition is done through a consensus mechanism, ensuring that all
nodes in the network agree on the state of the ledger. Once recorded on the
blockchain, a transaction becomes immutable, meaning it cannot be altered
or deleted, providing a transparent and tamper-proof record of all network
activities.

Transaction Transaction Transaction
Owner 1's Owner 2's Owner 3's
Public Key Public Key Public Key

\\'/Gr/,j,\
Owner 0's Owner 1's Owner 2's
Signature v Signature Signature
o
-
Owner 1's Owner 2's Owner 3's
Private Key Private Key Private Key

Figure 2.3: Transactions structure [12]

2.1.1.4 Consensus mechanisms

Consensus mechanisms are essential components of blockchain technology,
providing a way for network nodes to agree on the legitimacy of transactions
and the resulting state of the distributed chain of blocks. These protocols
are necessary for network synchronization and for preserving the security
and integrity of the blockchain, making sure that all copies of the distributed
ledger are consistent.

One of the most well-known consensus mechanisms is Proof of Work
(PoW), used by Bitcoin, where miners solve complex cryptographic puzzles
to validate transactions and create new blocks. However, PoW is energy-
intensive, leading to the development of alternative mechanisms such as Proof
of Stake (PoS). In PoS, validators create new blocks based on the amount
of cryptocurrency they stake as collateral, making the process more energy-
efficient.

Other mechanisms include Proof of Authority (PoA), Delegated Proof
of Stake (DPoS), and Byzantine Fault Tolerance (BFT) algorithms, among

many others, each offering different approaches to achieving consensus and
ensuring network security. An extensive analysis of the consensus mecha-
nisms can be found in [25].

2.1.2 Smart contracts and NFTs

Smart contracts are self-executing contracts with the terms of the agree-
ment directly written into lines of code [6]. They run on blockchain networks,
such as Ethereum [14], and automatically enforce and execute the terms of
a contract when predetermined conditions are met. These digital contracts
eliminate the need for intermediaries, reducing time and cost while increasing
transparency and security.

Smart contracts are versatile and can be used for a wide range of appli-
cations, from automating complex financial transactions to managing decen-
tralized applications (dApps). The code and the agreements it contains are
spread over a decentralized blockchain network, making them unalterable
and irreversible once they have been deployed. This immutability ensures
that once a smart contract is executed, the outcome is final, which promotes
trust and reliability in digital transactions. Smart contracts represent a sig-
nificant shift in how agreements are managed and executed in the digital age,
offering a more efficient, transparent, and secure way of handling contractual
obligations.

Non-Fungible Tokens (NFTs) are digital assets that utilize smart con-
tracts on blockchain networks to establish ownership, authenticity, and trans-
action mechanisms. Unlike fungible tokens, NFTs represent unique, indi-
visible assets, such as digital art, virtual real estate, and collectibles, with
ownership information stored on the blockchain. The fundamental block of
an NFT is a smart contract, which encodes details such as the asset’s unique
identifier, metadata, and transfer conditions [32].

The Ethereum blockchain pioneered NFT standards, such as ERC-721
and ERC-1155, which define the structure of NFT smart contracts and govern
how they interact with decentralized applications (dApps). These standards
allow NFTs to be minted, transferred, and traded seamlessly while preserv-
ing their authenticity and ownership history [27]. Smart contracts facilitate
transactions and implement royalty mechanisms, automatically compensat-
ing creators whenever an NFT is resold. This innovation has enabled the
development of NFT marketplaces, gaming platforms, and digital identity
solutions, expanding the use cases beyond simple asset ownership [31].

2.1.3 Key concepts

In this section, four of the most important characteristics of a blockchain
are discussed - decentralization, transparency, immutability, and security -
and their significance.

2.1.3.1 Decentralization

Decentralization is a core characteristic that distinguishes blockchain from
traditional centralized systems. In a decentralized blockchain network, the
ledger is not stored in a single location or controlled by a single entity. In-
stead, it is distributed across a wide network of nodes, each holding a copy of
the entire ledger. This means that no single node or participant has complete
control over the entire network, enhancing security and reducing the risk of
centralized points of failure or manipulation.

Decentralization encourages transparency and trust, as all transactions
are confirmed by consensus among network members and are openly docu-
mented on the blockchain, making them easily verifiable by anyone. This
structure gives power back to the users and eliminates the need for interme-
diaries.

2.1.3.2 Transparency and Immutability

Blockchain technology provides a level of transparency that is unprece-
dented in data management and storage. All transactions are visible and
verifiable by any participant in the network, as the data is stored across a
distributed network of nodes rather than in a single, centralized database.
Each node holds a copy of the entire ledger, making transaction records
publicly accessible and consistent throughout the network. This ensures im-
mutability, meaning that data cannot be altered. In the case of blockchain,
it means that once a transaction is added and confirmed, it is almost impos-
sible to modify or remove it. This is because of the cryptographic connection
of blocks: each block has a unique hash of the preceding block, forming a
secure chain of records that is hard to tamper with.

Together, transparency and immutability build a foundation of trust and
accountability, as all network participants can verify transactions indepen-
dently, and the historical record is preserved intact, free from the risk of
manipulation or revision. These features make blockchain an ideal platform
for applications that require high levels of trust and data integrity, such as
financial services, supply chain management, and legal contracts [20].

2.1.3.3 Security

Security assurances in the context of a blockchain are of great impor-
tance. Most blockchains possess features that make them particularly robust
against fraud, hacking, and unauthorized alterations, distinguishing them
from traditional data management systems [23].

The security of a blockchain at the network level primarily derives from
its distributed architecture and cryptographic principles. Each transaction
recorded on the blockchain is cryptographically signed and linked to previ-
ous transactions, forming an immutable ledger. This linkage is maintained
through cryptographic hash functions, which generate a unique digital fin-
gerprint (hash) for each block. Any alteration of the data within a block
would result in a completely different hash, thereby invalidating all subse-
quent blocks and making tampering immediately detectable.

Moreover, the decentralized architecture of blockchain ensures that there
is no central point of failure. The ledger is replicated across a distributed
network of nodes, each maintaining a copy of the entire blockchain. For an
attacker to successfully alter or compromise the ledger, they would need to
simultaneously modify the majority of these copies or control a substantial
number of nodes. This type of attack, known as a Sybil attack [9], in-
volves creating a large number of fake identities to manipulate the network’s
consensus process. However, in large, well-maintained blockchains, this is
computationally infeasible due to the underlying security mechanisms and
economic incentives that discourage such behavior.

Most importantly, blockchains operate based on consensus mechanisms,
such as Proof of Work (PoW) or Proof of Stake (PoS), which require nodes
to reach agreement on transaction validity before appending them to the
blockchain [25]. This consensus process reinforces security by ensuring that
no single entity can arbitrarily alter the ledger’s state, thereby maintaining
the system’s integrity and trustworthiness.

2.2 Graph theory

Graph theory is a significant area of mathematics and computer science
that focuses on the study of graphs, which are mathematical structures used
to model pairwise relations between objects [8]. The field was first formalized
in the 18th century by the Swiss mathematician Leonhard Euler with his
solution to the Konigsberg bridge problem, which laid the foundation for the
study of networks and connectivity [1].

Since then, graph theory has evolved into a robust tool, essential in var-

ious scientific fields, including biology, computer science, and engineering.
Its applications are diverse, including the analysis of social networks, the
functioning of search engines, and the study of molecular structures in chem-
istry. Graph theory’s ability to simplify and solve intricate problems through
abstract representations makes it a powerful and versatile tool in both theo-
retical and applied subjects.

In the context of Barterplace, graph theory plays a crucial role in structur-
ing and facilitating multi-party trades. The Barterplace system is modeled
as a directed graph where each node represents a unique NFT, and edges
signify trade intentions between owners. This structure enables the identi-
fication of valid trade cycles using Depth-First Search (DFS), ensuring that
swaps occur seamlessly when cycles are detected.

2.2.1 Graphs

A graph is pair of set G = (V| F) that consists of two basic components
[7]:

e I/ represents the set of nodes in the graph. Each node v € V is a
distinct entity within the graph.

e [represents the set of edges in the graph. In an undirected graph,
each edge e € F is an unordered pair (v;,v;), while in a directed graph,
it is an ordered pair (v;,v;) where v;,v; € V

They are broadly categorized into two types: directed and undirected
graphs based on the type of edges in E.

For example, consider a directed graph with three nodes. The graph can
be represented as:

V = {v1, v, 03}
E = {(v1,v2), (va,v3)}

This represents a directed graph where there is a directed edge from v
to vy and from vy to vs.

Figure 2.4: Simple graph with three nodes and two edges

2.2.2 Paths and Cycles

A path in a graph is a sequence of edges that connects a sequence of
distinct nodes. For a graph G = (V, E), a path P from node v; to node v,
is a sequence of vertices vy, v9, . .., v, such that for each i (where 1 <7 < n),
there is an edge (v;,v;11) € E.

For example, consider a path in a graph with vertices vy, vs,v3, and vy.
The path from v; to v4 can be represented as:

P = (Ula V2, U3)

This implies that there are edges (vq,v2) and (ve,v3) in the graph.

Figure 2.5: Graph with path vy, vy, v3 highlighted

A cycle is a path that begins and ends at the same node, forming a closed
loop. In a graph G = (V, E), a cycle is a sequence of vertices vy, vy, ..., vy
with k& > 3 each consecutive pair (v;,v;41) for 1 < i < k is an edge in E.
The cycle is closed by the edge (vg,v1). Note that in a directed graph, the
direction of the edges matters in the definition of a cycle.

For example, a cycle in a graph with vertices vy, vs, and vz might be
represented as:

C - (Ula Vg, V3, Ul)

This implies that there are edges (v, v5), (v, v3), and (vs, v1) in the graph,
forming a closed loop.

U1 >® @

Figure 2.6: Graph with cycle vy, v9, v3, v; highlighted

2.2.3 Depth-First Search (DFS)

The Depth-First Search (DFS) algorithm gained prominence with the
advent of computer science in the 1950s and 1960s, when it became rec-
ognized as an essential method for traversing or searching tree and graph
structures. The algorithm was further developed and refined by researchers
such as Robert Tarjan [3], who explored its applications in various domains
including pathfinding, connectivity checking, and topological sorting. Its im-
portance grew with the rise of algorithmic theory, especially in the study
of complexity and optimization, and it operates with a time complexity of
O(V + E), where V is the number of NFTs (nodes) and E represents the
trade intents (edges) in the graph.

Today, DFS is a fundamental algorithm taught in computer science, pro-
viding a foundational approach to problem-solving in areas ranging from
artificial intelligence to network analysis [10].

Definition 2.2.1 (Adjacency List). For a directed graph G = (V, F)) where
V is the set of nodes and E the set of directed edges, an adjacency list
represents each node u € V' as a list of nodes v such that there exists an edge
e: (u,v) € E.

An adjacency list is a data structure where each node is associated with
a list of its directly connected neighbors. It is one of the common ways to
represent a graph in algorithms and is essential for implementing DFS as
shown below. Here’s a basic overview of how DFS works:

1. Starting Point: DFS begins at a selected node w.

2. Traversal: The algorithm explores as far as possible along each branch.
After visiting a node, it proceeds to an unvisited adjacent node.

3. Backtracking: If a node has no unvisited neighbors, the algorithm back-
tracks to the nearest ancestor node that has unvisited neighbors and
continues the search from there.

4. Marking as Visited: Nodes are marked as wisited once they are explored
to prevent revisiting them.

DFS can be implemented using recursion [15] or iteratively using a stack
data structure [4]. The choice between these two approaches usually depends
on the specific requirements of the application and the size of the graph.
The pseudocode below describes a recursive implementation of Depth-First
Search.

Algorithm 1 Recursive Depth-First Search (DFS) algorithm

procedure RECURSIVEDFS(G, v, visited)
if v is not marked as visited then
Mark v as visited
for each neighbor u of v do
RECURSIVEDFS(G, u, visited)
end for
end if
end procedure

Chapter 3

Barterplace conceptualization

3.1 The graph

At the core of Barterplace lies an graph data structure designed to cap-
ture and represent the dynamic trade intentions of NF'T owners. As a di-
rected graph implemented and maintained by a smart contract, Barterplace
enables secure, multi-party NFT exchanges that transcend traditional one-
to-one trading limitations with enhanced efficiency and cost-effectiveness.

A directed graph is the ideal data structure for multiparty NF'T swaps,
providing flexibility and enabling efficient trade execution through graph
algorithms. One of them used in the concept and implementation of Barter-
place is the Depth-First Search (see Section 2.2.3).

In Barterplace’s interpretation of the graph:

Nodes as NFTs: Each node encapsulates a unique NFT, comprehen-
sively representing its ownership status and intrinsic metadata.

Edges as trade intents: Each edge symbolizes a unidirectional trade
proposal, linking the source NFT (currently owned) to the target NFT (de-
sired by the owner).

Cycles as valid swaps: A complete cycle within the graph represents a
topologically coherent trade sequence that can be simultaneously executed.

For analytical clarity, the terms “node” and “NFT”, as well as “edge”
and “trade”, will be used interchangeably throughout this discussion.

3.1.1 How a trade intent is added

The most fundamental graph operation is adding an edge, which signifies
the owner’s intention to exchange their current NFT for a specific target
NFT.

27

Example 1:
If Alice owns a duck NFT and wishes to trade it for Bob’s dog NFT, the
graph can be seen in Figure 3.1.

duck > dog

Figure 3.1: Graph representation of a trade intent between two NFT's

Each node is intrinsically linked with its owner’s metadata, ensuring com-
plete traceability and potential reversibility of trade intents.

3.1.2 When a swap occurs

As nodes and edges accumulate in the graph, a cycle inevitably forms,
signaling a valid swap for the interconnected NFTs. A modified Depth-First
Search (DFS) algorithm detects cycles by tracing a path from the target
node back to the source of the most recently inserted trade intent.

Example 2: Building upon the previous scenario, Bob wants to trade his
NFT for Alice’s. This trade intent completes a cycle in the graph illustrated

in Figure 3.2.

duck dog
— _

Figure 3.2: Graph demonstrating a complete trade cycle

3.1.3 What happens after a trade is matched

Upon identifying a valid swap, a precise mechanism ensures each partic-
ipant receives their desired asset. The key mechanism involves creating a
chain of ownership transfers where each participant receives the NFT they
desire. Importantly, these ownership transfers occur exclusively between the
NFTs participating in the specific trade cycle, ensuring that no external
NFTs are affected by the exchange.

Consider a more complex scenario: Charlie owns a horse NF'T and seeks
to participate in a trade. Bob, initially interested in trading his dog NFT
with Alice’s duck NFT, now pivots his intention towards Charlie’s NFT,
while Charlie wishes to acquire Alice’s. The resulting graph is illustrated in
Figure 3.3.

Example 3:

horse

duck dog

N A

Figure 3.3: Three-party NFT trade cycle representation

By executing this transfer chain, each participant can ultimately acquire
their desired asset. This mechanism is highly flexible, supporting complex
trade cycles with a theoretically unlimited number of participants.

3.1.4 What happens if multiple trades are valid

When multiple trade cycles emerge upon adding a new edge to the graph,
a deterministic conflict resolution policy governs the expected behavior. This
policy prioritizes trades based on their chronological insertion, granting prece-
dence to older trade intents.

Example 4:

bird

duck & horse

dog

Figure 3.4: Complex graph demonstrating multiple potential trade cycles

In this graph, assume the (horse, duck) edge was the most recently added,
simultaneously creating two distinct cycles:

C1 = (duck, bird, horse, duck)

Cy = (duck, dog, horse, duck)

With each edge addition, the modified Depth-First Search (DFS) algo-
rithm initiates from the edge’s target node (here, duck), systematically it-
erates through chronologically sorted trades, and searches for a path to the
edge’s source node (in this instance, horse).

3.2 Functionality and features

3.2.1 Barterplace as an escrow agent

An escrow agent is a neutral third party responsible for managing the
funds or assets held in an escrow account during the course of a transaction
[34]. The escrow agent’s role is to ensure that all conditions of a contract are
met before the transfer of assets between the buyer and the seller occurs.
This process helps mitigate the risks for both parties involved by ensuring
that neither side can alter the terms of the agreement once the escrow process
has begun.

In traditional transactions like real estate deals, an escrow agent keeps
the buyer’s deposit until certain conditions are met, such as completing a
home inspection or securing financing. The agent only releases the money
or property after both the buyer and seller fulfill the terms of the escrow
agreement. This process builds trust between the parties by making sure the
seller gets paid only after meeting their obligations, and the buyer receives
the property only after making the payment.

In the context of Barterplace, the escrow agent plays a role similar to that
in traditional escrow systems but leverages the power of smart contracts to
enhance security and transparency. By doing so, the system ensures the en-
forcement of the terms of the agreement between traders without the need for
manual intervention. The smart contract acts as an impartial, self-executing
digital agreement, automatically triggering the transfer of the NFT only
when all predefined conditions are met. Once the conditions are verified, the
NFT is securely transferred exclusively to the new owner, ensuring a seamless
and trustworthy exchange.

Ultimately, the escrow agent’s responsibility is to act impartially and
follow the terms outlined in the escrow agreement. Whether in traditional or
digital environments, the primary goal of the escrow agent is to protect the
interests of all parties while ensuring that the transaction proceeds smoothly
and securely.

Barterplace’s escrow design introduces several distinctive operational char-
acteristics:

e When initiating an NFT trade, the asset’s ownership is temporarily
transferred to the Barterplace smart contract, ensuring trade availabil-
ity while preserving the original ownership structure.

e Users can reclaim an NFT “locked” in the smart contract by removing
all outbound trade edges, with the understanding that a locked asset
always maintains active outbound trade intentions.

e Upon trade validation, each NFT is systematically transferred to its
new designated owner.

3.2.2 Cycle detection

Barterplace is designed to identify potential cycles involving a specific
edge. This is achieved by using a Depth-First Search (DFS) algorithm to
trace a directed path that connects the target node to the starting node of
the given edge. The trade intent matching algorithm relies on this process
to form the core mechanism of Barterplace.

A key aspect of the algorithm is the resolution policy, which dictates
which edge will be chosen by the DFS at each step of the traversal. This
policy ensures that the DFS explores edges in a way that aligns with the
participants’ trade intents and resolves any potential conflicts or ambiguities
in the trade process deterministically. For more detailed explanations of the
matching algorithm and the resolution policy, please refer to Section 3.3 and
Chapter 6.

3.3 Common use cases

This section demonstrates four of the most common use cases in a system
like this. Each example contains a detailed description and a visualization of
the state of the graph, along with a step-by-step explanation of the execution
of the DFS algorithm that detects the cycle.

3.3.1 Color-coding legend
Nodes

The node color-coding scheme serves as a critical visual representation,
enabling better comprehension of ownership patterns and token states within
the network.

e All NFTs are represented as diamond-shaped polygons.

e The fill color of each NFT node indicates its ownership status, with
multiple nodes of the same color representing NF'T's owned by a single
user.

e A red outline signifies that the NFT is temporarily transferred to and
locked within a smart contract for trading purposes.

Edges

Edge coloration provides crucial information about the network’s trading
dynamics.

e Black edges are trades that did not form a cycle when added.

e Teal edges indicate trades that have completed at least one full cycle
within the network when added.

During the step-by-step demonstration of the Depth-First Search (DFS) al-
gorithm:

e Black edges represent the edges that have not been visited yet.
e Green edges represent the current traversal path.

¢ Red edges signify those that have been visited but do not contribute
to the formation of a cycle.

3.3.2 Simple 2-way swap

Two owners own one NFT each (Figure 3.5).

® o

Figure 3.5: Initial state of the graph

3.3.2.1 Cycle formation

The owner of NFT 1 wants to trade it for NFT 2, so an edge is added to
the graph (Figure 3.6).

oo

Figure 3.6: Trade added NFT 1 e— NFT 2

The owner of NFT 2 wants to trade it for NFT 1, which, by adding this
edge (colored in teal), a cycle is created (Figure 3.7).

o

Figure 3.7: Trade added NFT 2 e— NFT 1, and a cycle is formed

3.3.2.2 DFS algorithm

The DFS algorithm initiates its traversal from NFT 1 (the target node
of the teal colored edge) and attempts to find a path that connects to NFT
2 (the source node of the teal edge) (Figure 3.8).

&

Figure 3.8: Starting DFS from NFT 1

Considering the outgoing edges of the starting node NFT 1, the algorithm
selects the only edge from NFT 1 to NFT 2. The existence of a path from
NFT 1 to NFT 2 is a necessary and sufficient condition for finding a cycle.
The algorithm stops and returns the path that it took to reach this NFT
(Figure 3.9), in this case:

P = (NFT 1,NFT 2)

& <

Figure 3.9: Path NFT1~» NFT2 found successfully

After the path is found, a transfer of ownership is performed so every
participant receives their requested asset (Figure 3.10).

1. Owner of NFT 1 receives NFT 2
2. Owner of NFT 2 receives NFT 1

® @

Figure 3.10: Graph after the transfers are completed

3.3.3 Simple 3-way swap

Like the previous example, we have three accounts with one NFT each
(Figure 3.11).

Figure 3.11: Initial state of the graph.

3.3.3.1 Cycle formation

The owner of NFT 1 wants to trade it for NFT 2, so an edge is added to
the graph (Figure 3.12a).

The owner of NFT 2 wants to trade it for NFT 3, so an edge is added to
the graph (Figure 3.12b).

(a) Trade added NFT 1 e— NFT 2. (b) Trade added NFT 2 e— NFT 3.

Figure 3.12

The owner of NFT 3 wants to trade it for NF'T 1, so an edge is added to
the graph (Figure 3.13), and a cycle is formed.

Figure 3.13: Trade added NFT 3 e— NFT 1,
and a cycle is formed.

3.3.3.2 DFS algorithm

The DFS algorithm starts at node NF'T 1, trying to find a path to NFT
3 (Figure 3.14a). Considering the outgoing edges of the starting node NFT
1, the algorithm selects the only edge from NFT 1 to NFT 2 (Figure 3.14b).

(a) Starting DFS from NFT 1. (b) Follow edge NFT 1 e— NFT 2.

Figure 3.14

We repeat the same process for node NFT 2. Considering the outgoing
edges of node NFT 2, there’s only an edge from NFT 2 to NFT 3, which also
gets selected. The existence of a path from NFT 1 to NFT 3 is a necessary and
sufficient condition for detecting a cycle. The algorithm stops and returns
the path that it took to reach this NFT (Figure 3.15a), in this case:

P = (NFT 1,NFT 2,NFT 3)

(a) Follow edge NFT 2 e— NFT 3. (b) Graph after the transfers are com-
Path NFT1 ~» NFT3 found pleted.
successfully.

Figure 3.15

After the path is found, a transfer of ownership is performed so every
participant receives their requested asset (Figure 3.15b).

3.3.4 Complex 3-way swap

This case consists of 7 NFTs and 3 owners.

\ 4
¢ \ 4
L A 2R 4

Figure 3.16: Initial state of the graph.

3.3.4.1 Cycle formation

The owner of NFT 1 wants to trade it for NFT 2, so an edge is added to
the graph (Figure 3.17a).

The owner of NFT 1 wants to trade it for NF'T 3, so an edge is added to
the graph (Figure 3.17b).

e &

0000009

) Trade added NFT 1 e— NFT 2.) Trade added NFT 1 e— NFT 3.

Figure 3.17

The owner of NFT 2 wants to trade it for NFT 4, so an edge is added to
the graph (Figure 3.18a).

The owner of NFT 2 wants to trade it for NF'T 5, so an edge is added to
the graph (Figure 3.18b).

fo o

) Trade added NFT 2 e— NFT 4.) Trade added NFT 2 e— NFT 5.

Figure 3.18

The owner of NFT 3 wants to trade it for NFT 6, so an edge is added to
the graph (Figure 3.19a).

The owner of NF'T 3 wants to trade it for NF'T 7, so an edge is added to
the graph (Figure 3.19b).

g

(a) Trade added NFT 3 e— NFT 6. (b) Trade added NFT 3 e— NFT 7.

Figure 3.19

The owner of NFT 5 wants to trade it for NF'T 1, so an edge is added to
the graph (Figure 3.20), and a cycle is formed.

Figure 3.20: Trade added NFT 5 e— NFT 1 and a cycle is formed.

3.3.4.2 DFS algorithm

The DFS algorithm starts from node NFT 1 (Figure 3.21a), considering
the outgoing edges of the starting node NFT 1. Between the edges (NFT 1,
NFT 2) and (NFT 1, NFT 3), the first is selected as it is the first added in
chronological order (Figure 3.21b).

(a) Starting DFS from NFT 1. (b) Follow edge NFT 1 e— NFT 2.

Figure 3.21

We repeat the same process for node NFT 2. Considering the outgoing
edges of node NFT 2, (NFT 2, NFT 4) and (NFT 2, NFT 5), the first one is
selected as it was added before edge (NFT 2, NFT 5).

At this point, by repeating the process for node NFT 4 it is evident that
there are no other edges starting from this node so we continue by following
the next of this nodes parent. This edge is (NFT 2, NFT 5) and it denotes
the existence of a path from NFT 1 to NFT 5, which is a necessary and
sufficient condition for detecting a cycle. The algorithm stops and returns
the path that it took to reach this NFT (Figure 3.22b), in this case:

P = (NFT 1,NFT 2,NFT 5)

(b) Follow edge NFT 2 e— NFT 5. Path
(a) Follow edge NFT 2 & NFT 4. NFT1~» NFTS5 found successfully.

Figure 3.22

4

\ 4

L R 4

Figure 3.23: Graph after the transfers are completed.

After the path is found, a transfer of ownership is performed so every
participant receives their requested asset (Figure 3.23).

3.3.5 Simple 3-way swap with multiple cycles

This case consists of 4 NFTs and 3 owners.

®o o

Figure 3.24: Initial state of the graph.

3.3.5.1 Cycle formation

The owner of NFT 1 wants to trade it for NFT 2, so an edge is added to
the graph 3.25a).

— @é:@

(a) Trade added NFT 1 e— NFT 2.) Trade added NFT 1 e— NFT 3.

Figure 3.25

The owner of NFT 1 wants to trade it for NFT 3, so an edge is added to
the graph 3.25b). The owner of NFT 2 wants to trade it for NFT 4, so an
edge is added to the graph 3.26a).

o vdes

) Trade added NFT 2 e— NFT 4.) Trade added NFT 3 e— NFT 4.

Figure 3.26

The owner of NFT 3 wants to trade it for NFT 4, so an edge is added to
the graph 3.26b). The owner of NFT 1 wants to trade it for NFT 2, so an
edge is added to the graph 3.27), and a cycle is formed.

Figure 3.27: Trade added NFT 4 e— NFT 1 and a cycle is formed.

3.3.5.2 DF'S algorithm

The DFS algorithm starts from node NFT 1 (Figure 3.5¢), considering
the outgoing edges of the starting node NFT 1. Between the edges (NFT 1,
NFT 2) and (NFT 1, NFT 3), the first is selected as it is the first added in
chronological order (Figure 3.58).

(a) Starting DFS from NFT 1. (b) Follow edge NFT 1 e— NFT 2.

Figure 3.28

We repeat the same process for node NFT 2. Considering the outgoing
edges of node NFT 2, there’s only an edge from NFT 2 to NFT 4, which gets
selected. The existence of a path from NFT 1 to NFT 4 is a necessary and
sufficient condition for detecting a cycle. The algorithm stops and returns
the path that it took to reach this NFT (Figure 3.6), in this case:

P = (NFT 1,NFT 2,NFT 4)

(a) Follow edge NFT 2 e— NFT 4. Path (b) Graph after the transfers are com-
NFT1~» NFT4 found successfully. pleted.

Figure 3.29

After the path is found, a transfer of ownership is performed so every
participant receives their requested asset (Figure 3.60").

Chapter 4

Project implementation

4.1 Ethereum and Solidity

Expanding from Section 2.1, where the basic concepts of a blockchain
were introduced, in this section, the scope is narrowed down to the Ethereum
blockchain, its inner workings, and how these are utilized in the project.

4.1.1 Ethereum Virtual Machine (EVM)

The Ethereum Virtual Machine (EVM), as also mentioned in the Ethereum
whitepaper [14], is the core component that powers Ethereum. It is a de-
centralized computation engine that allows developers to build and deploy
smart contracts and decentralized applications (dApps). The EVM acts as
the runtime environment for smart contracts, enabling them to be executed
in a secure and consistent manner across all Ethereum nodes. By providing
a Turing-complete [2] environment, the EVM can execute any computable
logic with some limitations.

4.1.1.1 Architecture of the EVM

The EVM operates as a stack-based architecture, where computations are
performed using a last-in, first-out (LIFO) data structure. Each smart con-
tract is written in a high-level programming language, such as Solidity which
is specifically designed for EVM, and compiled into bytecode before deploy-
ment. This bytecode is a low-level, machine-readable format that the EVM
executes. To maintain deterministic outcomes, every node in the Ethereum
network executes the same bytecode. This ensures consensus across the de-
centralized network, as all nodes validate and agree on the state changes
resulting from contract execution [16].

47

4.1.1.2 Gas and Resource Management

One of the most critical aspects of the EVM is its gas mechanism, which
regulates computational resource usage. Every operation in the EVM has an
associated gas cost, reflecting the computational complexity and resources
required for execution. For instance, simple arithmetic operations consume
less gas compared to more complex storage or cryptographic functions. Users
initiating transactions must specify a gas limit and gas price, which determine
the maximum amount of gas they are willing to spend and the fee they are
prepared to pay per unit of gas, respectively.

The gas system serves multiple purposes: it incentivizes miners to pro-
cess transactions, prevents malicious actors from overloading the network
with resource-intensive operations, and ensures fair resource allocation. Any
remaining gas that was allocated but unused is returned to the sender, but
the portion of gas already consumed is permanently lost to the network as
compensation to the miners or validators for their computational effort [14].

4.1.1.3 Smart contract deployment and execution

Smart contracts deployed on Ethereum are essentially autonomous pro-
grams that interact with the state of the blockchain. These programs de-
fine the rules and functions of the contract, including how they operate and
under what conditions they execute specific actions. Once a contract is de-
ployed, nobody can alter it anymore; its code and terms are permanent on
the Ethereum blockchain, providing transparency and security. This is done
by sending a transaction to the network that contains the contract’s code.
When the transcation is verified, the contract is assigned a unique address
on the Ethereum blockchain [14].

A very accurate representation of the deployment process of an Ethereum
smart contract is defined by [26] which is described below and is shown in
Figure 4.1.

1. Definition of .sol file, which contains the Solidity code of a smart con-
tract.

2. Compilation of smart contract’s code produces the bytecode deployed
on EVM and the Application Binary Interface (ABI).

3. Deployment of the bytecode on the Ethereum blockchain that creates
an instance of the smart contract at a specific address.

4. A provider hosted by a network node exposes multiple APIs like HT'TP
or JSON gRPC that allow calling the blockchain’s methods.

5. Interactions with the smart contract are typically performed through a
library like Web3.js [47] or Ethers.js [36] that connects to the provider
using the ABI.

sol

solidity
compiler{solc)

v . '

bytecode ABI

deplay

Contract

Instance - » Web3

Contract Ethereum Network
address

Figure 4.1: Deployment process as demonstrated in [26]

When a contract is invoked, the EVM creates an isolated environment
known as the “execution context”. This context provides access to essential
resources, such as the blockchain state, input data, and the address of the
contract being executed.

To manage data efficiently during execution, the EVM uses three types
of storage:

1. Storage: Persistent storage tied to a specific contract, which is expen-
sive to read and write.

2. Memory: Temporary storage that exists during the execution of a
contract and is cleared afterward.

3. Stack: The primary area for computation, where intermediate values
are stored during execution.

The EVM’s deterministic behavior ensures that the execution of a smart
contract produces identical results on every node, guaranteeing network-wide
consensus. This automation and decentralization are key features that reduce
the need for trust and the possibility of manipulation.

4.1.2 Events

Ethereum smart contract events are a crucial feature for tracking changes
and interactions within a contract. The process begins with defining the
event within the smart contract’s code written in Solidity. Once the event is
declared, it can be emitted within the contract’s functions. When a function
emits an event is executed, the event data are recorded on the Ethereum
blockchain but not in the primary blockchain state. This makes it a cost-
effective way of storing transaction execution details [16].

These events are not accessible from within the contracts but can be
monitored and read externally. When an event is emitted, it generates a
log that includes the event’s data, the address of the contract that emitted
it, and the transaction’s hash. This log is then indexed by the Ethereum
network, allowing applications to query and retrieve these logs. This feature
is particularly useful for creating user interfaces that react to contract state
changes and for off-chain applications that need to track transactions and
interactions with a smart contract.

Barterplace smart contract defines two events that help off-chain compo-
nents, namely NFT discovery, which is explained in greater detail in Section
4.4.5.

1. Emitted when an edge is added to the graph state stored on-chain.
event TradeAdded (

address indexed owner,
address indexed ownerNftContract ,
uint256 ownerTokenld,
address indexed targetNftContract,
uint256 targetTokenld

);

2. Emitted when an edge is removed from the graph state stored on-chain.

event TradeRemoved (
address indexed owner,
address indexed ownerNftContract ,
uint256 ownerTokenld,
address indexed targetNftContract ,
uint256 targetTokenld

4.1.3 Libraries

On-chain Ethereum libraries are smart contracts that act as reusable
code modules, enhancing smart contract development by promoting code
reusability and optimizing gas usage. Smart contracts can link to these
libraries, referencing commonly used code deployed on the blockchain. This
linkage reduces the contract’s size and deployment costs while ensuring code
consistency and security through shared, auditable library code.

An honorable mention to the OpenZepellin framework, which provides an
open-source collection of secure, standardized, and audited smart contract
components [42]. These contracts are considered standard best practices
designed to address common challenges, such as security vulnerabilities and
implementation errors, significantly reducing the risk of bugs and exploits.
For these reasons, it is widely used by most Ethereum projects, including
Barterplace.

For Barterplace’s implementation needs, three libraries were created, which
are the main contract links, mainly for honoring the Single Responsibility
Principle (SRP) purposes and possibly deploying some reusable code for other
developers in the future. Great inspiration was drawn from Rob Hitchens’
Unordered Key Set [22] for implementing these libraries.

1. DirectedGraph: Implements a directed graph data structure used by
the main contract to store the trades and NF'Ts users add. Supports
all the basic functionality needed from a graph like insert/remove node,
insert /remove edge, etc. which can also be seen in the class diagram
shown in Figure 4.2.

2. LinkedList: Implements a simple linked list data structure. It is re-
quired to store the edges, inbound and outbound, for each graph node.
The linked list is chosen because keeping the order in which the edges
are added to the graph is essential.

3. UnorderedKeySet: Implements an unordered key set data structure
that stores unique key values. They are used mainly for validation
checks that prevent referencing empty memory addresses when access-
ing Solidity mappings.

UML class diagram
Below is the class diagram representing DirectedGraph, LinkedList, and
UnorderedKeySet libraries.

<<Library>>
LinkedList

Public:
exists(l: List, el: bytes32): bool
append(l: List, el: bytes32)
remove(l: List, el: bytes32)
getHead(l: List): bytes32 N
getNext(l: List, el: bytes32): bytes32 | TTTvm—al_
getPrevious(l: List, el: bytes32): bytes32 | T TTm=~_
getLength(l: List): uint256
isEmpty(l: List): bool ~_
3 *

/

y \
Y \ <<Library>> .

<<Struct>> \
Struct: \ UnorderedKeySet \

List

Internal:
insert(self: Set, key: bytes32) Y
remove(self: Set, key: bytes32) ‘\
count(self: Set): uint256

next: mapping(bytes32=>bytes32)
previous: mapping(bytes32=>bytes32)

length: uint256
erik 1 /
?;‘;fll‘)bét:,gz /I exists(self: Set, key: bytes32): bool 1
- Oytes I,’ keyAtIndex(self: Set, index: uint256): bytes32 \
!
4 P 4 A3)
/ 1 5 i
<< ct>> ! !
<<Struct>> 5 ds.‘er;;t . ! <<Struct>> \ /
NodeStruct gestru |" Set ‘; !
. i | /
incomingEdgeList: LinkedList.List Saaceyies2 \ keyPointers: mapping(bytes32=>uint256) ! /
. . . P target: bytes32 \ R / /
outgoingEdgeList: LinkedList.List o \ keyList: bytes32[] / /
weight: uint256 \ ! /
‘\\\ *® \ A I /
ST \ \ / / /
s NN S / /
1 [~ A ! ’
i / /
! <<Struct>> /I //
! Graph / /
f S
! nodeSet: UnorderedKeySet.Set / /
/
| edgeSet: UnorderedKeySet.Set S /.
|', nodeStructs: mapping(bytes32=>NodeStruct) J v
| edgeStructs: mapping(bytes32=>EdgeStruct) S /
i /
| 4 p S
/ . /
! Y a)
I . ,
<<Library>>
DirectedGraph

Internal:
insertNode(g: Graph, nodeld: bytes32)

removeNode(g: Graph, nodeld: bytes32)

isSingleNode(g: Graph, nodeld: bytes32): bool

hasOutgoingEdges(g: Graph, nodeld: bytes32): bool

insertEdge(g: Graph, sourceld: bytes32, targetld: bytes32, weight: uint256): (edgeld: bytes32)

removeEdge(g: Graph, sourceld: bytes32, targetld: bytes32)
insertBetween(g: Graph, newNodeld: bytes32, sourceld: bytes32, targetld: bytes32, sourceWeight: uint256, targetWeight: uint256)

findCycleWithEdge(g: Graph, edgeld: bytes32): (cycle: bytes32[], cycleLength: uint256, hasCycle: bool)
modifiedDFS(g: Graph, sourceNode: bytes32, stackCycle: bytes32[], tail: uint256): (bytes32[], done: bool)
edgeExists(g: Graph, edgeld: bytes32): (exists: bool)

edgeAtIndex(g: Graph, index: uint256): (edgeld: bytes32)

edgeSource(g: Graph, edgeld: bytes32): (sourceld: bytes32, weight: uint256)

edgeTarget(g: Graph, edgeld: bytes32): (targetld: bytes32, weight: uint256)

nodeExists(g: Graph, nodeld: bytes32): (exists: bool)

nodeCount(g: Graph): (count: uint256)

node(g: Graph, nodeld: bytes32): NodeStruct

Figure 4.2: Class diagram of DirectedGraph, LinkedList and UnorderedKey-
Set

4.1.4 Setting up a private Ethereum network

Setting up a private network was performed to familiarize myself with the
client’s instructions and to understand the process of setting up an Ethereum
network from scratch. The following steps describe the above process:

1.

Install geth:

Firstly, geth is installed, the Go implementation of an Ethereum node

137].

Create the genesis file:

The genesis.json file is a JSON configuration file that defines the char-
acteristics of the blockchain. Clique PoA is selected as the protocol,
which allows for faster block times and doesn’t require mining, making
it ideal for testing purposes.

. Initialize the Blockchain:

Geth is used to initialize the node of the local network with the genesis
file. The command is:

geth init /path/to/genesis.json --datadir /path/to/node

Create an account:

At least one account needs to be created that is used as the signer. The
command is:

geth --datadir /path/to/node account new

Start the node:

Start the node with geth. The network ID, the data directory, and
enable the HT'TP need to be specified. The command looks like this:

geth --datadir /path/to/node --networkid 1234 --http --http.port 8545
--http.addr 127.0.0.1 --http.api eth,net,web3,txpool,miner --mine

. Interact with the blockchain:

Now that the local Ethereum network is up and running, smart con-
tracts can be deployed and transactions can be made similar to the
main Ethereum network.

4.1.5 Developer experience

While working on this thesis, I explored various tools developed within
the Ethereum ecosystem that help make the lives of developers easier. More
specifically, these tools help streamline parts of some basic workflows, such
as coding, testing, deployment, and documentation, which otherwise would
be busy work. The most noteworthy are the following.

4.1.5.1 Remix IDE

Remix IDE is a powerful open-source web and desktop application that
offers an accessible, user-friendly interface that significantly eases the process
of writing, testing, and deploying smart contracts [43]. It is an excellent
platform for both novice and experienced developers, which helps speed up
development processes, encourages learning, and enables the production of
reliable smart contracts in the Ethereum environment.

It was mainly used in the early stages of development of the project while
still learning the Solidity language.

4.1.5.2 Hardhat

Hardhat is an advanced development environment, testing framework,
and asset pipeline, all crucial for efficient smart contract development [38].
Hardhat simplifies compiling, deploying, testing, and debugging Ethereum
smart contracts. Its local Ethereum network deployment feature is particu-
larly beneficial, allowing developers to deploy and test their contracts in a
controlled environment before launching them on the live blockchain. This
saves time and resources and significantly reduces the risk of costly errors.

Hardhat was especially helpful during the later stages of the project when
unit testing and deployment were necessary. Furthermore, this tool resolved
one of the significant issues, creating a command-line interface (CLI) as
shown in Chapter 4.3.6, by taking advantage of its tasks feature.

4.1.5.3 Ethers.js

Ethers.js is a prominent library in the Ethereum development environ-
ment, renowned for its lightweight yet powerful features tailored for interact-
ing with the Ethereum blockchain and its smart contracts [36]. The library
provides comprehensive functionality, including wallet creation and manage-
ment, connection to Ethereum nodes, and crafting and signing transactions.

Hardhat extensively integrates Ethers.js at its core, augmenting it with
additional functionalities. Beyond the combined use of Ethers.js and Hard-

hat, the NFT discovery service (see Section 4.4.5) leveraged this library to
subscribe to published blocks, as well as to fetch and parse events emitted
by the Barterplace smart contract.

4.1.5.4 Docker

Docker is a widely used containerization platform that simplifies the de-
velopment, deployment, and execution of applications by packaging them and
their dependencies into isolated containers. In the context of Ethereum devel-
opment, Docker provides a consistent environment across different systems,
ensuring that applications work seamlessly regardless of the host machine’s
configuration.

For the Barterplace project, Docker played a crucial role in deploying
and managing certain services efficiently. It was particularly beneficial for
setting up a reproducible development environment, eliminating dependency
conflicts, and streamlining the deployment of key services such as the NFT
discovery service (see Section 4.4.5), IPFS service (see Section 4.2) and off-
chain database (see Section 4.4).

4.2 IPFS

4.2.1 What is IPFS

IPFS, which stands for InterPlanetary File System, is a revolutionary
protocol and network designed by Juan Benet to create a peer-to-peer method
of storing and sharing hypermedia in a distributed file system [13].

IPFS is especially relevant in the realm of blockchain technology. Un-
like traditional file storage systems that depend on centralized servers, IPFS
stores files across a network of nodes, eliminating any single point of fail-
ure and enhancing censorship resistance. Every file and piece of content on
IPFS is uniquely identified by a cryptographic hash of its content, making it
content addressable, which guarantees integrity. As stated in the paper, “Ob-
jects are permanent”. This decentralized approach increases file redundancy
and availability and reduces the need for centralized cloud storage providers,
potentially decreasing costs.

It has been widely used in various areas, including the blockchain space,
for storing large data objects off-chain, such as images and videos, particu-
larly in NFT projects. Storing large NF'T assets directly on-chain is impracti-
cal due to high gas fees and storage limitations on Ethereum. IPFS provides
a robust way to store NFT metadata and digital assets without overloading
the blockchain.

4.2.2 Deployment

A local IPFS network deployment was essential for this thesis, as most
NFTs use it for metadata storage. Kubo implementation[39] of the IPFS
protocol is chosen because it is the first created and the most popular.

1. Download: Download the latest version of Kubo and install it.

2. Init: Initialize the IPFS server in a directory where all content and
configurations are stored, typically SHOME/ .ipfs/.

ipfs init —profile=server

3. Configure: Set up the server’s configuration. When the daemon runs,
these settings expose the IPFS gateway and the WebUI to the local-
host. LIBP2P_FORCE_PNET environment variable raises an error if
the configuration is not correctly set for private network support.

ipfs config Addresses.API /ip4/127.0.0.1/tcp /5001
ipfs config Addresses.Gateway /ip4/127.0.0.1/tcp /8080
export LIBP2P FORCE_PNET=1

4. Bootstrap nodes: Since this is the first node of the private network,
no bootstrap nodes are needed.

ipfs bootstrap rm —all

5. Swarm key: Generate a swarm key by installing ipfs-swarm-key-gen
and running the following command. This key must be shared if any
other node needs to be added to the network.

ipfs —swarm—key—gen > $HOME/.ipfs /swarm.key

6. Start daemon: Start hosting the server.

ipfs daemon

WebUI or the Kubo command line interface (CLI) can be used to add
files to the network. These files stored on the network can be addressed with
their content identifier (CID) and retrieved from localhost:8080/ipfs/:cid.

WebUI is an administrative graphical interface of the node, hosted on
localhost:5001 /webui. The code of this Ul is distributed by the IPF'S protocol,
similar to all other files stored. Before proceeding with the steps above,
the daemon is started without removing the default bootstrap nodes and
navigating to WebUI’s address so that the code for the interface is fetched
from the public network.

The gateway addresses must be set to 0.0.0.0 to expose the gateway port
to the public.

ipfs config Addresses.Gateway /ip4/0.0.0.0/tcp /8080

4.3 Barterplace smart contract

The Barterplace smart contract enables secure and automated NFT trad-
ing by handling trade requests, adding and removing trades, verifying trade
cycles and facilitating the ownership transfers. It ensures that NFTs are
only exchanged when a valid trade cycle is detected, preventing incomplete
or invalid transactions.

4.3.1 NFT states

All NFTs deployed in the blockchain environment of Barterplace have a
state. A state diagram including the transition from one state to another
and the definitions appears below.

Transfer completed

In wallet w Add trade (Listed } Match found (Matched
*— L_J . .]

Remove trade

Figure 4.3: NFT state diagram

Definition of states:

1. In wallet: An NFT is created (minted), or a transaction is completed
or removed from the Barterplace graph. As the state denotes, these
NFTs are in the owner’s “wallet”.

2. Listed: An NFT with active outbound trades in the Barterplace graph.
This means that it is temporarily locked in the smart contract’s pos-
session.

3. Matched: An NFT is included in a complete trade cycle. This transient
state signifies that the NFT is about to be traded.

4.3.2 Add trade

Users can declare their intent to exchange one of their NFTs for another
non-owned asset through a structured process:

1. Temporarily transfer ownership of the traded NFT to Barterplace.

2. Create an edge originating from the user’s owned NFT and targeting
the desired NFT.

3. Verify if the added edge forms a complete cycle within the graph.

4. If a cycle is detected:

(a) Transfer ownership of each asset to the requesting user.
(b) Remove all outbound edges from cycle nodes.

(c) Eliminate incoming edges to the traded NFTs originating from
their new asset owner.

UML Activity diagram

The activity diagram of the process of adding a trade to the Barterplace
can be found below:

Receive call from sendel | Check owner validity Check NFT state N Check for cycle
Arguments: Owned NFT} C"ec';";’r"re't"f"d"y Listed (e in e Check for cycle create NFTs in cycle transition to
Target NFT & state Valid owner. 4(- by inserted edge Cycle found Matched state

Invalid owner

In wallet

No ¢

Transfer matched
NFTs to new owners
stored in nodes

R Success
e Transfer NFT to
transaction Barterplace

Store NFT owner in grapl
False node
Revert
transaction

NFT state transitions to List]

Remove outbound edg
for all matched NFTs
Failed

Emit event|
NG

Remove inbound edges fo
all matched NFTs that
originate from new owne

Emit TradeRemoved event fi
all removed edges

Matched NFTs transition) Reset NFT owner in graph no
In wallet state

Figure 4.4: Add trade method activity diagram

4.3.3 Remove trade

Users retain the flexibility to cancel their submitted NFT trades at any
point:

1. Remove the specific edge originating from an NFT owned by the user.

2. If the NFT no longer possesses outbound edges, restore ownership to
the user.

UML Activity diagram

The activity diagram of the process of removing a trade from the Barter-
place can be found below:

!

Receive call from sendel | Check owner validity Assert NFT is Listed
Arguments: Owned NFT, Checl;t;‘v;r.:_ertVflldmy Remove edge
Target NFT an state J \(Valid owner /\(True from graph

Invalid owner False
Check if owned NFT has
remaining outbound edges

i

Revert
transaction

False

\L Has outbound

Transfer NFT to owner| ‘
True

Reset NFT owner in graph no
Owned NFT transition § Emit TradeRemoved
In wallet state event

Success

Failed

Figure 4.5: Remove trade method activity diagram

4.3.4 Cycle detection

When the Add trade method is called, an edge e : (s,?) is inserted into
the directed graph. This triggers a check for cycles that include edge e.
The cycle detection is performed using a DFS traversal starting from node
t, searching for an existing path P : t ~» s in the graph.

Definition 4.3.1 (Cycle Detection Condition). Given a directed graph G =
(V, E), when an edge e : (s,t) is added to the graph, a cycle is formed if and
only if there exists a directed path P : ¢ ~» s prior to the insertion of e.

As already demonstrated in Section 3.4, a single addition of a trade (edge)
can create multiple cycles in the Barterplace graph. This case has been
considered, resulting in a conflict resolution policy incorporated into the DFS
path-finding algorithm, which makes the cycle search deterministic.

Definition 4.3.2 (Conflict Resolution Policy). When an edge e : (s,t) is
added to the directed graph G = (V, E), a DFS is initiated from ¢ to check
for the existence of a path P : t ~» s. The DFS explores edges in the order
they were added, ensuring that they are processed chronologically at each
recursive step.

Algorithm 2 Finds path P from v ~ Vtarger using DF'S and returns the
sequence of edges forming P

1: procedure PATHFINDINGDFS(G, Ustart, Viarget, edge_stack)
2: found_path < FALSFE

3: if Ustart = Utarget then

4: found_path < TRUFE

5: return found_path,edge_stack

6: end if

7 for each e¢,,.,; in outbound edges of v+ do
8: edge_stack.push(epest)

9: Uneat < target node of e,eq¢

10: found_path, path_edges <— PATHFINDINGDFS(G, Vpest, Vtarget, €dge_stack)
11: if found_path then

12: return found_path, path_edges

13: end if

14: edge_stack.pop()

15: end for

16: return found_path,edge_stack
17: end procedure

In line 7 of the DF'S path-finding algorithm is the point where the Conflict
Resolution Policy 4.3.2 is being applied. The data structure that stores the
outbound edges of each node maintains them in the chronological order in
which users insert their trades.

4.3.5 Class diagram

A class diagram of the Barterplace smart contract and its libraries can

be seen below:

<<Struct>>
List

next: mapping(bytes32=>bytes32)
previous: mapping(bytes32=>bytes32)

length: uint256

head: bytes32
tail: bytes32
! l
<<Library>>
<<Struct>>
Set
keyPointers: mapping(bytes32=>uin(256)

LinkedList

keyList: bytes32[]

Public:
ist, el: bytes32): bool

exists(l:
append(: List, el: bytes32)

remove(l: List, el: bytes32)

getHead(: List): bytes32
getNext(l: List, el: bytes32): bytes32
getPrevious(l: List, el: bytes32): bytes32
getLength(l: List): uint256
isEmpty(®: List): bool
aF
'
i
/ i <<Library>>
/ | RS UnorderedKeySet
/ | . <<Struct>> —-
/ ! EdgeStruct N Intern:
/ | odeStruct B . . Y
/ [p——— : - insert(self: Set, key: bytes32)
J | ¢ incomingEdgeList: LinkedList.List remove(self: Set, key: bytes32)
/ y target: bytes32 N N N N P
/ b | weight: int256 outgoingEdgeList: LinkedList.List count(self: Set): uin256
/' i 4 » exists(self: Set, key: bytes32): bool
/ \ keyAtIndex(self: Set, index: uint256): bytes32
/
/
,l’ . /
/ <<Struct>>
/ Graph
! nodeSet: UnorderedKeySet.Set
/ edgeSet: UnorderedKeySet.Set
/ nodeStructs: mapping(bytes32=>NodeStruct) ,
/ edgeStructs: mapping(bytes32=>EdgeStruct)
/] '
! : /
/
H <<Library>>
! DirectedGraph
{ | Internal:
! insertNode(g: Graph, nodeld: bytes32)
! removeNode(g: Graph, nodeld: bytes32)
! isSingleNode(g: Graph, nodeld: bytes32): bool
TS | hasOutgoingEdges(g: Graph, nodeld: bytes32): bool
R S i insertEdge(g: Graph, sourceld: bytes32, targetld: bytes32, weight: uint256): (edgeld: bytes32)
! Graph, sourceld: bytes32, targetld: bytes32)
nftAddress: address | | insertBetween(g: Graph, newNodeld: bytes32, sourceld: bytes32, targetld: bytes32, sourceWeight: uint256, targetWeight: uint256)
tokenld: uint256 i findCycleWithEdge(g: Graph, edgeld: bytes32): (cycle: bytes32[], cycleLength: uint256, hasCycle: bool)
owner: address ! modifiedDES(g: Graph, sourceNode: bytes32. stackCycle: bytes32[], tail: uint256): (bytes32[], done: bool)
| edgeExists(g: Graph, edgeld: bytes32): (exists: baol)
i edgeAtIndex(g: Graph, index: uint256): (edgeld: bytes32)
| edgeSource(g: Graph, edgeld: bytes32): (sourceld: bytes32, weight: uint256)
! edgeTarget(g: Graph, edgeld: bytes32): (targetld: bytes32, weight: uint256)
| nodeExists(g: Graph, nodeld: bytes32): (exists: bool)
! nodeCount(g: Graph): (count: uint256)
! node(g: Graph, nodeld: bytes32): NodeStruct
|
Barterplace
Private:
nftGraph: DirectedGraph. Graph
nftStructs: mapping(bytes32=>NftStruct)

Internal:

Public:

newNft(nftAddress: address, tokenld: uint256, owner: address)

bytes32[], cycleLength: uint256)

id: uint256): bytes32
addTrade(sourceNftAddress: address, sourceTokenId: uint256, targetNftAddress: address, targetTokenld: uint256) <<nonReentrant>>

removeTrade(sourceNftAddress: address, sourceTokenId: uint256, targetNftAddress: address, targetTokenld: uint256) <<nonReentrant>>

nftCount(): (count: uint256)
edgeCount(): uint256
<<event>> TradeAdded(owner: address, ownerNftContract: address, ownerTokenld: uint256, targetNftContract: address, targetTokenld: uint256)

onERC721Received(address, address, uint256, bytes): bytes4

<<event>> TradeRemoved(owner: address, ownerNftContract: address, ownerTokenld: uint256, targetNftContract: address, targetTokenld: uint256)

supportsInterface(interfaceld: bytes4): bool

Figure 4.6: Barterplace smart contract class diagram

4.3.6 CLI (Command Line Interface)

A CLI was created that interfaces the methods of the smart contract.
These actions are defined as Hardhat tasks [38].

Methods

1. add-trade:
Calls Barterplace method addTrade

Arguments:

sourceAddress: Contract address of source NF'T collection
sourceld: 1D of the source NFT

targetAddress: Contract address of target NF'T collection
targetld: 1D of the target NF'T

Options:

--account: The account address of the transaction signer
Example:

npx hardhat add-trade 0x123... 21 0x456... 45 --account 0x789...

2. remove-trade:
Calls Barterplace method removeTrade

Arguments:

sourceAddress: Contract address of source NF'T collection

sourceld: 1D of the source NF'T

targetAddress: Contract address of target NF'T collection

targetld: 1D of the target NFT

Options:

--account: The account address of the transaction signer
Example:

npx hardhat remove-trade 0x123... 21 0x456... 45 --account 0x789...

3. deploy-barterplace:
Deploys Barterplace smart contract

Options:

--account: The account address of the transaction signer
Example:

npx hardhat deploy-barterplace --account 0x789...

4. deploy-nft-collection:
Deploys ERC-721 NFT collection smart contract

Arguments:

collectionName: Name of the NF'T' collection

Options:

--account: The account address of the transaction signer

Example:

npx hardhat deploy-nft-collection MyFirstCollection --account 0x789...

5. munt-nft:
Mints an NF'T from the specified ERC-721 contract

Arguments:

collectionAddress: Contract address of NFT collection
Options:

--account: The account address of the transaction signer
Example:

npx hardhat mint-nft 0x123... --account 0x789...

6. set-approval:
Calls ERC-721 contract to set approval for Barterplace as operator

Arguments:

collectionAddress: Contract address of NF'T collection
Options:

--account: The account address of the transaction signer
Example:

npx hardhat set-approval 0x123... -—account 0x789...

7. transfer-nft:
Transfers an NFT to another account(wallet)

Arguments:

collectionAddress: Contract address of NF'T collection

tokenld: 1D of the NFT

targetAccountAddress: Address of the account that the NFT will be
transferred to

Options:

--account: The account address of the transaction signer

Example:

npx hardhat transfer-nft 0x123... 45 0x987... -—account 0x789...

4.4 Off-chain database

4.4.1 Motivation

The motivation behind deploying a database is to overcome two limita-
tions from Ethereum’s side.

The first limitation is the time-consuming calls to the blockchain. By
replicating the exact state of the blockchain smart contract in an off-chain
database, queries are made much faster, more flexible, and more extensible.

For the second issue, in Ethereum, there is no simple way for users to
see all the NFTs in their “wallet”. This is true because the NFTs are not
in their owner’s wallet, but instead the NFTs exist as data stored within
the state of their ERC-721 smart contract, and the ownership is represented
by a pointer to the owner’s address [27]. A graphical representation of this
relationship can be seen in Figure 4.7. This makes it difficult to discover all
the NFTs owned by a specific account because we would have to call all NFT
smart contracts of the network each time.

ERC-721

owns #44 owns #834 owns #721

Account

Figure 4.7: A graphical representation of NFTs in Ethereum

For the reasons outlined, efficient data retrieval and comprehensive visu-
alization of NF'T ownership are critical prerequisites for developing robust
and user-friendly front-end interfaces in blockchain applications.

4.4.2 Graph Database

The technology used in the database is Neo4j graph database implemen-
tation. Neo4j is a JVM-based NoSQL database initially released in 2007 [40].
It was mainly selected because it is the most popular graph database, offering
many useful features and functionality.

What are the advantages of a graph database?

1. Graphs provide a more natural way of representing data. A node can
store all information about an entity, and related information can be

displayed by the edges connected to it, making it easier to visualize
[11].

2. Searching for information is more efficient than relational databases, as
it takes advantage of proximity data from one or more starting points
(main nodes) of the graph database [17].

3. For the Barterplace use case, it is the perfect fit since both are related
to graph manipulation and their algorithms. Moreover, it helps with
the Barterplace graph visualization through the Neo4j administrative
graphical interface, which replaces the need for a visualization tool.

4.4.3 Schema

A graph database’s schema is represented by a graph containing all types
of nodes (labels) and edges (relationships).

OWNS

FOR

Figure 4.8: Graph database schema

Nodes

— Account: Represents user accounts.
— NFT Collection: Represents collections of NFTs.
— Barterplace: Refers to the decentralized marketplace.

— NFT: Represents a single NFT.

Relationships

— TRADES": Indicates trading activity by accounts.
— OWNS': Shows ownership of NFTs by accounts.
— HAS': Shows which NFTs belong to which collections.

— FOR: Represents NFT-for-NFT trade intents.

4.4.4 API

A REST API, implemented in Golang [45], exposes the database to the
outside world. The endpoints that return a list of entries implement a pagina-
tion feature that separates large volumes of data into smaller chunks (pages).
This is achieved with two option query parameters that determine the page
size (limit) and a cursor where the last response stopped (cursor).

The supported endpoints cover the necessary use cases listed below:

Endpoints

1. List all collections:
GET /collections
Returns a list of all NFT collections.

Parameters:
limit - int (optional query parameter): Upper limit of returned entries
cursor - string (optional query parameter): Used for pagination to fetch
the next page

2. List all NFTs per collection:
GET /collections/{contract_address}
Returns a list of NFTs that exist under a given collection address.

Parameters:

contract_address - string: Address of collection contract
include_metadata - boolean (optional query parameter): Include NFT
metadata in the payload. Default value is false

limit - int (optional query parameter): Upper limit of returned entries
cursor - string (optional query parameter): Used for pagination to fetch
the next page

3. List all NFTs owned by an account:
GET /nfts/account/{account_address}
Returns a list of NF'Ts owned by a specific account.

Parameters:

account_address - string: Address of account wallet

include_metadata - boolean (optional query parameter): Include NFT
metadata in the payload. Default value is false

limit - int (optional query parameter): Upper limit of returned entries
cursor - string (optional query parameter): Used for pagination to fetch
the next page

4. List NFT transfer history:
GET /nfts/{contract_address}/{token_id} /history
Returns the transfer history of a specific NF'T.

Parameters:

contract_address - string: Address of collection contract

token_id - string: Token ID of the NFT

limit - int (optional query parameter): Upper limit of returned entries
cursor - string (optional query parameter): Used for pagination to fetch
the next page

5. List NFT active trades in Barterplace:
GET /nfts/{contract_address}/{token_id}/trades
Returns the available outgoing edges that exist in Barterplace’s graph
for a specific NFT.

Parameters:

contract_address - string: Address of collection contract

token_id - string: Token ID of the NFT

include_metadata - boolean (optional query parameter): Include NFT
metadata in the payload. Default value is false

limit - int (optional query parameter): Upper limit of returned entries
cursor - string (optional query parameter): Used for pagination to fetch
the next page

6. Get NFT metadata:
GET /nfts/{contract_address}/{token_id} /metadata
Returns the on-chain metadata of a specific NF'T.

Parameters:
contract_address - string: Address of collection contract
token_id - string: Token ID of the NF'T

7. Get NFT owner:
GET /nfts/{contract_address}/{token_id} /owner
Returns the owner of a specific NF'T.

Parameters:
contract_address - string: Address of collection contract
token_id - string: Token ID of the NFT

4.4.5 NFT discovery service

The NFT Discovery Service, implemented in Node.js [41], is responsible
for tracking and updating the database with all NFTs and their on-chain
states, processing transactions while listening to smart contract events emit-
ted by the Barterplace contract, and maintaining synchronization with the
blockchain by sequentially handling each newly published block.

Process Flow

Step 1: Service startup

The initialization of the NFT discovery service.

Step 2: Configuration loading

The service loads required configurations, including network settings, con-
tract addresses, and API keys.

Step 3: Blockchain connection

The service establishes a connection with the Blockchain to listen for in-
coming blocks.

Step 4: New block detection

The Blockchain publishes a new block that includes NFT-related transac-
tions.

Step 5: Parsing and filtering block data

The NFT discovery extracts relevant transactions and filters smart contract
events.

Step 6: Processing smart contract events

The system listens for contract events such as:

— TradeAdded (an NFT trade was initiated)

— TradeRemoved (a trade was canceled)

Step 7: Database update

The extracted data is used to update the off-chain database, ensuring NFT
records remain up to date.

Step 8: Synchronization check

If the database is outdated, the service triggers a historical data fetch to
reconcile past transactions.

Step 9: Ready state

Once all previous steps are completed, the service enters an active listening
state, continuously processing new blocks.

UML sequence diagrams

sdHandleBlock(

NFT discovery Blockchain
Database

i
|
i

1: Get block number commited to database
i

1.1: Retum block number

T
i
i
2: Get next block o

a setof instructions that
are executed atomically
(notto be confused with
blockchain transactions)

I

|

|

|

| —
2.1: Return block | Database transaction is|

I

I

|

|

I

3: Init database transaction
T

3.1 ACK

[for each block transactio

4: Parse block transaction for
ERC-721 or Barterplace deployment

5. Update database transaction
i

1: ACK

6: Get block transaction receipt

6.1: Return receipt J

7: Parse receipt logs for Transfer,
TradeAdded and TradeRemoved events

8 Update database transaction
T

8.1: ACK

9: Update database transaction with current block number
T
9.1: ACK

10: Commit transaction
1
10.1 ACK

11: Rollback transaction
!
11.1: ACK

12: Close transaction
I
12.1: ACK

Figure 4.9: UML sequence diagram of HandleBlock function

NFT discovery Blockchain

I
|
1: Start |
o

T
|
|
o————» [
|
|
|
|
|
Iooyj :
[until db is synced :
refJ i
|
|
|
HandleBlock() !
|
|
|
|
||
|
|
|
T
|
|
1.1: Subscribe to published blocks ’[‘I_'|
1 I
| |
| |
| |
| |
| |
: I 2: New block published
|
| .
J_< 2.1: Propagate new block
| ref

HandleBlock()

Figure 4.10: UML sequence diagram: initialization of NFT discovery service

Chapter 5

Disussion

The implementation of the NFT barterplace system revealed both promis-
ing potential and notable limitations that require careful examination. While
the platform successfully demonstrates the feasibility of NFT-based barter-
ing, several efficiency constraints emerged during testing, particularly in scal-
ability. These limitations, along with emerging technological developments
in the blockchain space, point to various opportunities for future enhance-
ments and refinements. This chapter critically evaluates these constraints
and explores potential improvements that could elevate the platform’s func-
tionality.

5.1 Gas cost analysis

A thorough analysis of the gas costs associated with the methods of the
smart contract is essential to assess the efficiency of the implementation for
the Barterplace project. Gas costs directly impact the usability and scal-
ability of the platform, so understanding these costs is key to optimizing
performance.

To evaluate the gas costs, a simulation was conducted with 1,000 users,
each owning 5 NFTs. Random trade transactions were executed between
NFTs owned by different users, simulating real-world activity on the plat-
form. The results of the analysis were collected while the Barterplace contract
was running on the Solidity compiler version 0.8.17.

The Ethereum network’s block limit is set at 30 million gas, which is
an important factor to consider, as it defines the maximum computational
resources available for each transaction block. The gas cost measurements
provide insights into the efficiency of the contract’s methods, and help de-
termine whether the Barterplace system can handle a large volume of users

74

and transactions effectively.

Method gas costs

Contract Method Min Max Avg | # Calls
Barterplace addTrade 375199 | 4762760 | 565738 5000
Barterplace removeTrade 127983 | 137983 | 85434 52
SimpleCollection | mintNFT 82451 | 116651 | 86265 5000
SimpleCollection | setApprovalForAll - - | 46648 1000
Table 5.1: Gas Usage analysis
Deployment gas costs

Contract Avg | % of Limit

Barterplace 2931923 9.8%

LinkedList 669509 2.2%

SimpleCollection | 2535147 8.5%

Table 5.2: Deployment Information

The gas cost analysis reveals significant scalability concerns for the Barter-
place smart contract. Notably, the addTrade function, with a maximum gas
cost of 4, 762, 760, consumes nearly one-sixth of the Ethereum block gas limit
(30 million), making large-scale adoption impractical. This high cost arises
from the complexity of cycle detection, which grows with the number of
trades in the system. While other operations such as removeTrade remain
relatively efficient, the trade execution overhead indicate that Barterplace,
in its current form, would struggle to support high transaction volumes on
a public blockchain. Future optimizations, such as reducing on-chain com-
putations through off-chain operations or more gas-efficient data structures,
are necessary to improve scalability.

5.2 Future improvements

In the context of this thesis, while not every objective was fully realized,
the project successfully addressed key aspects of the problem space. Certain
limitations, such as scalability constraints and technical challenges, influ-
enced the scope of implementation, but they also provided valuable learning
opportunities. Despite these challenges, the research yielded meaningful in-
sights and identified promising directions for future enhancements and opti-
mizations.

5.2.1 Smart contract optimization

The gas limit in Ethereum is an upper bound on the amount of computa-
tional effort a transaction or smart contract operation can consume, ensuring
that operations are processed successfully and efficiently. However, for this
scale of usage, the gas limits of Barterplace are manageable.

Smart contract optimization strategies can further enhance performance
and reduce costs. Implementing gas-efficient coding patterns, such as mini-
mizing storage writes and using calldata instead of memory, can significantly
decrease gas fees. Loop unrolling and efficient use of mappings instead of
arrays can further improve efficiency. Additionally, transaction batching al-
lows multiple operations to be executed in a single call, reducing redundant
execution costs [24]. Another promising optimization technique involves us-
ing proxy contracts for contract upgrades, preserving the storage state while
allowing logic changes [28].

By combining these techniques, the Barterplace system can improve trans-
action efficiency, minimize costs, and enhance overall scalability.

5.2.2 Off-chain computation

Off-chain computation can significantly improve the efficiency of the Barter-
place system by reducing the amount of on-chain processing required. By
moving certain computationally expensive operations off-chain, the system
can mitigate gas costs and alleviate the constraints imposed by the Ethereum
Virtual Machine (EVM). One approach is to use an external verification sys-
tem where trade path calculations and validations occur off-chain, with only
the final transaction settlement of transfers recorded on-chain.

A potential implementation involves a separate smart contract that en-
forces correctness using collateral staking. Before execution, contract owners
stake collateral, and trade paths are computed off-chain. If an invalid trade
is submitted, users can provide fraud proof. Upon validation, the contract
self-destructs, and the staked collateral is awarded to the submitter.

This mechanism deters fraud, reduces gas costs by offloading computa-
tion, and incentivizes accurate trade execution, ensuring a secure and efficient
NFET barter system.

5.2.3 Rollups

Rollups are a layer two scaling solution that processes transactions off-
chain while ensuring their validity on the main blockchain [29]. They bundle
multiple transactions together and submit a compressed proof to the main

Ethereum network, reducing congestion and lowering transaction fees. There
are two main types of rollups, Optimistic Rollups, which assume transactions
are valid unless proven otherwise, and ZK-Rollups, which use zero-knowledge
proofs to verify transactions instantly and securely.

By leveraging rollups, the Barterplace system can compute trade paths
off-chain while ensuring security and efficiency. The off-chain system calcu-
lates optimal trade routes and submits a proof to the rollup contract. This
proof is verified on-chain, allowing transactions to be executed in batches,
significantly reducing gas costs. If an invalid trade path is detected, the
rollup rejects it, preventing execution.

This method enhances scalability, minimizes on-chain processing, and
maintains trustless execution through cryptographic proofs.

Chapter 6

Conclusion

This thesis introduced Barterplace, a decentralized NFT bartering sys-
tem that leverages graph theory and blockchain technology to enable secure,
trustless multi-party swaps. Unlike traditional NFT marketplaces, which
focus on direct buying and selling, Barterplace utilizes directed graphs to
represent trade intents and employs Depth-First Search (DFS) for cycle de-
tection, ensuring seamless, automated swaps.

By implementing Ethereum smart contracts, the system guarantees se-
curity and transparency, while IPFS provides decentralized storage for NFT
metadata. Key benefits of this approach include:

1. Trustless Trading — Eliminates intermediaries, reducing fees and en-
hancing security.

2. Improved Liquidity — Multi-party trades increase the possibility of asset
exchange.

3. Automated & Fair Execution — Smart contracts enforce valid swaps
without manual oversight.

While Barterplace demonstrates the feasibility of decentralized NFT bar-
tering, several areas remain open for future improvement. One key focus is
enhancing scalability, as the current gas costs, particularly for trade execu-
tion, limit real-world adoption. Optimizing smart contract logic, leveraging
off-chain computation, or integrating layer-2 scaling solutions could signifi-
cantly reduce transaction fees. Addressing these challenges will help refine
Barterplace into a more scalable and efficient solution for decentralized asset
exchange in the Web3 ecosystem.

78

Bibliography

Leonhard Euler. <Solutio problematis ad geometriam situs pertinen-
tis>. In: Commentarii academiae scientiarum Petropolitanae (1741),
pp. 128-140.

Alan Mathison Turing et al. «<On computable numbers, with an appli-
cation to the Entscheidungsproblems. In: J. of Math 58.345-363 (1936),
p. 5.

Robert Tarjan. <Depth-first search and linear graph algorithmss. In:
SIAM journal on computing 1.2 (1972), pp. 146-160.

John E Hopcroft, Jeffrey D Ullman, and Alfred Vaino Aho. Data struc-
tures and algorithms. Vol. 175. Addison-wesley Boston, MA, USA:
1983.

Stuart Haber and W. Scott Stornetta. <How to Time-Stamp a Digital
Document>. In: Advances in Cryptology-CRYPTO’ 90. Ed. by Alfred
J. Menezes and Scott A. Vanstone. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1991, pp. 437-455. 1SBN: 978-3-540-38424-3.

Nick Szabo. «Smart contracts: building blocks for digital markets>. In:
EXTROPY: The Journal of Transhumanist Thought,(16) 18.2 (1996),
p- 28.

Reinhard Diestel. Graph theory. 2000.

Douglas Brent West et al. Introduction to graph theory. Vol. 2. Prentice
hall Upper Saddle River, 2001.

John R Douceur. <The sybil attacks. In: International workshop on
peer-to-peer systems. Springer. 2002, pp. 251-260.

Mark EJ Newman. <The structure and function of complex networks>.
In: STAM review 45.2 (2003), pp. 167-256.

79

[11]

[17]

18]

[19]

[20]

[21]
[22]

23]

[24]

Renzo Angles and Claudio Gutierrez. <Survey of Graph Database Mod-
els>. Ini ACM Comput. Surv. 40.1 (Feb. 2008). 1sSN: 0360-0300. DOT:
10.1145/1322432 . 1322433. URL: https://doi.org/10.1145/
1322432.1322433.

Satoshi Nakamoto. «Bitcoin: A Peer-to-Peer Electronic Cash System>.
In: (May 2009). URL: http://www.bitcoin.org/bitcoin.pdf.

Juan Benet. <IPFS - Content Addressed, Versioned, P2P File System.
In: CoRR abs/1407.3561 (2014). arXiv: 1407 . 3561. URL: http://
arxiv.org/abs/1407.3561.

Vitalik Buterin et al. <A next-generation smart contract and decen-
tralized application platforms. In: white paper 3.37 (2014), pp. 2-1.

Jeffrey Watumull et al. <On recursions. In: Frontiers in Psychology 4
(2014), p. 1017.

Gavin Wood et al. «<Ethereum: A secure decentralised generalised trans-
action ledgers. In: Ethereum project yellow paper 151.2014 (2014),
pp. 1-32.

José Guia, Valéria Gongalves Soares, and Jorge Bernardino. <«Graph
Databases: Neo4j Analysis>. In: ICEIS. 2017, pp. 351-356.

Bojana Koteska, Elena Karafiloski, and Anastas Mishev. «Blockchain
Implementation Quality Challenges: A Literature Reviews. In: Sept.
2017.

Wei Cai et al. «<Decentralized Applications: The Blockchain-Empowered
Software Systems. In: IEEE Access 6 (2018), pp. 53019-53033. DOI:
10.1109/ACCESS.2018.2870644.

Sotirios Brotsis et al. «Blockchain solutions for forensic evidence preser-
vation in IoT environmentss. In: 2019 IEEE Conference on Network
Softwarization (NetSoft). IEEE. 2019, pp. 110-114.

Michael Egorov. «Stableswap-efficient mechanism for stablecoin liquid-
ity>. In: Retrieved Feb 24 (2019), p. 2021.

Rob Hitchens. Hitchens Unordered Key Set. Github. 2019. URL: https:
//github.com/rob-Hitchens/UnorderedKeySet.

Huashan Chen et al. <A survey on ethereum systems security: Vulner-
abilities, attacks, and defenses>. In: ACM Computing Surveys (CSUR)
53.3 (2020), pp. 1-43.

Lodovica Marchesi et al. «Design patterns for gas optimization in
ethereums. In: 2020 IEEFE International Workshop on Blockchain Ori-
ented Software Engineering (IWBOSE). IEEE. 2020, pp. 9-15.

[27]

28]

[29]

[30]

[31]

[32]

Bahareh Lashkari and Petr Musilek. <A Comprehensive Review of

Blockchain Consensus Mechanismss. In: IEEE Access 9 (2021), pp. 43620—

43652. DOI: 10.1109/ACCESS.2021.3065880.

Sandeep Kumar Panda and Suresh Chandra Satapathy. <An Investi-
gation into Smart Contract Deployment on Ethereum Platform Using
Web3.js and Solidity Using Blockchain>. In: Data Engineering and In-
telligent Computing. Ed. by Vikrant Bhateja et al. Singapore: Springer
Singapore, 2021, pp. 549-561. 1SBN: 978-981-16-0171-2.

Qin Wang et al. Non-Fungible Token (NFT): Overview, Evaluation,
Opportunities and Challenges. 2021. DOI: 10 . 48550 / ARXIV . 2105 .
07447. URL: https://arxiv.org/abs/2105.07447.

Mehdi Salehi, Jeremy Clark, and Mohammad Mannan. <Not so im-
mutable: Upgradeability of smart contracts on ethereums. In: Inter-

national Conference on Financial Cryptography and Data Security.
Springer. 2022, pp. 539-554.

Louis Tremblay Thibault, Tom Sarry, and Abdelhakim Senhaji Hafid.
<Blockchain scaling using rollups: A comprehensive surveys. In: IEFFFE
Access 10 (2022), pp. 93039-93054.

Ingo Fiedler and Lennart Ante. «Stablecoins>. In: The Emerald Hand-
book on Cryptoassets: Investment Opportunities and Challenges. 2023.

Barbara Guidi and Andrea Michienzi. <From NFT 1.0 to NFT 2.0:
A review of the evolution of non-fungible tokenss. In: Future Internet
15.6 (2023), p. 189.

Qaiser Razi et al. <Non-fungible tokens (NFTs)-survey of current ap-
plications, evolution and future directionss. In: IEEE Open Journal of
the Communications Society (2023).

David Rodeck. Top NFT Marketplaces Of 2023. Ed. by Benjamin Curry.
Jan. 2023. URL: https://www. forbes . com/advisor/investing/
cryptocurrency/best-nft-marketplaces/.

James Chen. What is an escrow agreement? how it works, uses, and

types. URL: https://www.investopedia.com/terms/e/escrowagreement.

asp.
Curve. URL: https://curve.fi/.

Ethers.js. URL: https://docs.ethers.org/.
go-ethereum. URL: https://geth.ethereun.org/.
Hardhat. URL: https://hardhat.org/.

e
w

o~
o~

=
ot

=T = =
NS OV

ipfs/kubo: An IPFS implementation in Go. URL: https://github.
com/ipfs/kubo.

Neo4j Graph Database € Analytics. URL: https://neodj.com/.
Node.js. URL: https://nodejs.org/.
OpenZeppelin. URL: https://www.openzeppelin.com/.

Remix - Ethereum IDE & community. URL: https://remix-project.
org/.

SushiSwap. URL: https://www.sushi.com/.

The Go Programming Language. URL: https://go.dev/.
Uniswap Protocol. URL: https://uniswap.org/.
Web3.7s. URL: https://web3js.readthedocs.io/.

Kegpdhiawo 1

Eicoaywyn

Io‘copmo'

H teyvoloyio blockchain éyet e€ehylel oe 1oyupd cpyoaheio yio TNy amoxe-
VTPWUEVT X0l AoQuAT| xortarypopr| 0edouevey. Ta NFTs anoteholdv Eva xouwvo-
TOUO TUPABELYHO YPHONG, ETTEENOVTAS TNV o TNCLo X avTahhary | YneLaxcdv
ayardv. Av xan ot teptocdtepeg ayopée NETS emxevtpdvovton o€ povomieupeg
ayopanwincies, Topauével avallomolnTy 1 SUVATOTNTA Yot TOAUUEQRELS ovTohha-
Yéc ywelc peodlovtee.

EmnAcov, ol undpyouoec AUoelg, eite centralized eite decentralized, emxe-
vTpmvovTol xupleg o Aertovpyieg dnponpacloy 1 otoepmy Tuwy. H évvola
NG QUECNC, TOAUPEPOUS avTolAay G Bdoel TwV ETIUULOY TWV YENO TGV TuEa-
UEVEL aveXePeTIAEUTY. AuTh 1 epyacio oToyelel otny adlonolnon auThS TNg
OLVATOTNTOC.

H npodtaon

Mot vae xahugdet autéd To %evd, Tpotelveton To Barterplace, éva véo povtého
OTOU OL TPOVEGELS AVTUAAAYTIC ATOTUTIMVOVTOL WC OXUES OE EVaY YRAPO Xal Ol
EYXUPES avTOMAaYEC TparyUoTonotovvTal 6tay oynuatiCeton x0xAoc. Autéd To
wovTélo emiTpénel Suvoxés, Tohupepeic aviariayéc NFTs xou allonolel smart
contracts ylo TNV 00QIAELL XU AUTOUATOTOMGT) TV CUVAAAXYDV.

To cOotnua viomoteiton tévew oto Ethereum yenowwonowdvrag Solidity yio
o €Zumvar oupPdiater (opapeT covtpacts) xot ohyoplduouc Yedpmy yio TNV ene-
Eepyaola Twv oyéoewy aviariaync. Emmhéoyv, n yeron anoxevipnuévne omo-
Uxeuong apyelwv péow tou IPFS elacahiler tnv axcpoundtnta Ty petadota
twv NFTs.

83

Kegdhawo 2

OcwpenTixd LTOBadeo

2.1 Blockchain

H teyvohoyla blockchain mpotddnxe apywd to 1991 yia tnv ypovochuavon
Loy eyypdpuwy, odld Ehafe eupela avayvmpLon e TNV xuxAogopia Tou
Bitcoin and tov Satoshi Nakamoto to 2008. To blockchain Aettoupyel we wa
ATOXEVTEWUEVT) AOYLOTXT| 30T DEBOUEVWLYV, AELOTOLOVTAS TNV XPUTTOYpopiol Yot
1) OLCGPIMOT) TNG UXEPAULOTNTAS KOl DLUPAVELIS TWV CUVOAALYWV.

2.1.1 Kopix pgen

2.1.1.1 Block and chain

Kdde block nepiéyet dedouéva (m.y. ouvarhayéc), éva hash to omolo amote-
Ael éval povadind avoryvewets o yia xdde block, xadde enione xou to hash tou
meonyoLuevou block. Auth n oAucida and hashes e€aoqorilel tnv oxepoundTn-
TA TOV OEDOUEVWY, XADOG OTOLOATIOTE AAAOIWCT) XATAC TEEPEL TNV UXEEAULOTNTA
¢ aAvoidog.
2.1.1.2 Nodes and Network

Ou x6pBot tou dixtbou (nodes) anodnxedouv xau dtavépouy to blockchain.
Aeitoupyolv ¢ eEmxUp®TES xou £Qopuolouy To unyoviold cuvalveone. H a-
moucio xevtpol dlaxoplo T xahoTd To clo TN aviexTind oe emdécelc xan
OQANIATOL.
2.1.1.3 Xuvalayég

O ouvahhayéc (transactions) amoteholv Tic Baoixéc povddes dpdong xou
TepL opfBdvouy TNV avTohhory | OEBOUEVKY 1] TOU EXUCTOTE XPUTTOVOUIGUOTOS
Tou xdie duthou. Ymoypdgovion Prplaxd xar emxvp@vovTon eV eloayYoly
oto blockchain, amoxt®vTog poévin xar aUeETIBANTY LoP®Y.

84

2.1.1.4 Mnyaviopoi cuvaiveong

Ou unyaviopol ouvaiveonc (consensus mechanisms) e€acgarilouvv 611 Ghou
ol xoufol GUUPEWVOUY GTNY TEEyouca xatdoTtaor tne alvcidac. To Proof of
Work arautel unohoylotinn epyacta, eve to Proof of Stake Bactleton oto xhe-
Boua xpuntovouloudtwy. Alkeg mpooeyyioelg nepiaudvouy PoA (Proof of
Authority), DPoS (Delegated Proof of Stake) xou BFT (Byzantine Fault Tol-
erance), TEOCUPUOCUEVES GE OLUPOPETIXES OVAYXES.

2.1.2 'E&unva cupforoa xow NFT's

To €€umvar cuuBohona elval CUTOUATA EXTEAOUUEVES CUUPMVIES, YOUUUEVES
OE XWOWXAL, OL OTOIEC UAOTOL0UVTAL 6TV TANEOUVTAL CUYXEXPLUEVOL 6pot. Allo-
noolvton oto Ethereum xou oe ddha dixtua yio tn Soyelpton dApps (decen-
tralized apps) omoXeVTpWUEVES EQUPUOYES VLol TNV OUTOUATOTOMNGT TANEWUWY
%o DL ELPLOT) TVEUUOTIXDY BIXOUWUSTWY.

To NEFTs etvon povadind gngraxd neplouctoxd o totyela, factouéva ot TedTu-
mo. 6nwe ERC-721 xoan ERC-1155. Ilepuiopfdvouy metadata, unyoviopoic -
oloxtnotag xau royalties yio dnuioupyols. Ov ayopéc NETs 6mwe to OpenSea
EMUTEETOLY TNV oY 0pATWANG TOUG.

2.1.3 Boaowd octolyeio
2.1.3.1 Amrnoxévipwon

H onoxévtpwon (decentralization) onuaiver 6Tt xavévag UEUOVOUEVOC @o-
e€ac Oev eAéyyel to blockchain. Auté Slacoiiler aviexTixdTNTO Xl AUEPONT-
(bio oTIC CUVIAAaYES.
2.1.3.2 Auxgpdveia

H Siopdivela(transparency) emtpénet 6Toug GUUPETEYOVTES VoL oA debouy
ouvahhayég dnuoota. To otopxd clvar xowodyenoto, uoviuo xon meoofdoiuo,
YEYOVOS TIOU EVIGYUEL TNV EUTLOTOGUVY.

2.1.3.3 ApetofSAnTotnTa

H opetdfBintn gvon(immutability) tou blockchain anotpénet tnv tponomno-
{nom SedouEveV UETE TNV XaTorypapr) TOUS, YEYOVOS Tou XahoTd allOTOTO TO
LG TOPXO TOU.
2.1.3.4 Aocgdicia

H oogdheta(security) emtuyydveton uéow tne xpuntoypapioc, Tou EAEYYOU
TWY CLVOAAAY OV, 0L THY XATAVOUY| TV BESOUEVKY GE dldpopouc xopufouc. To
dixtuo mpooTateleTon amd emiéoelc TOTOU 51% UECK TNG ATOXEVTPWOTS.

2.2 Ocwpla yedpwy

H dewpla ypdpwv (graph theory) ueletd oyéoeic petal) OVIOTATODV UE
Yenhom xouBwyv xou owquy. O yedgol epapuolovion oe TOAG medla, amd T
YAETOYRAPNOT BIXTOWY EWS TNV AVATURUGTACT| CUVOAAXY®V.

2.2.1 Egoppoyveéc otnv Emotriun twv Yroloyiotoy

Yty Emotiun twv Trohoyiotdv(computer science), ot ypdgol yenoio-
moolvton ond akyopiduoue avalftnone Bread-First Search(avalrtnon xotd
midtoc), DFS (avoalhmon xotd Béddoc) v tnv Bertiotonoinon ot ovédhuon
OLdpopwy dixtiwy. O DFS otny mpoxeiuévn tepintwon, mpoopépel tpémo ava-
CATNomg xOUPmY %aL LOVOTATUIOY UE TOAUTAOXOTNTA OV + E).

2.2.2 T'pdpor xou Blockchain

Ov avtarhhayeg NETs propolv va povrehonomndoiy wg yedegot, pe o NFT's
¢ xopPoug xon Ti¢ emupleg avtoddoywy wg oxpés. H avdiuomn autov twv
YEAUPNUATODVY amoxahOTTEL HoT{Ba, ®OUAOUG Kol GUYXEVTPMOELS DRUC TNRLOTNTAC.
H yefion Motag yertviaong Sieuxolbvel Tny avamopdo taon xou bAoroinon DES
yioe TNV €€EEEUVNOT TOL YRAPOL.

Optowoéc .1 (Alota yerrviaong). Xe évav xatevduvéuevo yedpo G =
(V, E), n Mota yerrviaone (adjacency list) avtiotoryilet xdde xoufo u € V
oe plo Mota x0uBwy v TéTol HoTE Vo UTEEYEL XUTEVIUVOUEVT oxUY| OO TOV U
TeoC Tov v, dnhadt (u,v) € E.

Kegpdiowo 3

Evvolohoyxr) Tpoceyylon Tou
Barterplace

3.1 O ypdyog

Xty xapdid Tou Barterplace Pploxetan o doury xateuduvéuevou yedgpou,
1 omola avamoupiotd T mpodéoelg avtodiayric NETs. O ypdgoc viomoleiton
xou Startnpeitan omd éva é€unvo oupPBoloto(smart contract), TEOGPELOVTAC T
dLYVATOTNTA Yo aoaAeic xan ToAvuepelc avtodhayeg NFTs ywoelc tnv avdyxn
yioo avTohAaryEg amoxhetotixd 1 mpog 1.
o KéuPor wg NFTs: Kdie xouBog avtiotoryel og éva povadixd NEFT
ue OAo o amapadtnTa metadata.

o Axpéc wg mpoVéoelg aviariayng: Kdlde oxur ouvufBoiiler v
emdupio evog xatdyou va avtorhder 1o NET tou pe éva diho.

o KOxhov wg éyxupeg avialhayeég: 'Evoac xixhog atov ypdgo orn-

notodoTel war ahhnhouylo auolBainy avTahhay®y TOU UTopoUY Vo TEoY-
potomomndoly TauTdypovaL.

3.2 Ilpoocdvixn nedVeong aviaAlayng

IMTapdderypo 1: Alice — Bob

H Alice, xdroyoc tou NFT duck, emdupel va 1o avtodrdiel ye to NFT dog
Tou Bob. H mpdieot| Tng amotundveTon o¢ Uiol axyi| and To OUSK Teog TO 00).

87

duck > dog

Yyfua 3.1: Avanapdotaor meddeong avtorhoyric peta€d 60o NFTs.

H xdde oouny cuvodevetan and metadata tou woxTTN, TEdYUL TOL TNV
%(4veL €0X0NA TPOCTEEALGIUN ATtO TNV YEHOTN XAl BIVETOL 1) BUYVATOTNTA X VPO
™e.

3.3 Eviomouog xUXAOUL AVTAIAAXY NS

IMTapdderyuo 2: Bob — Alice

O Bob npociétel e n oetpd Tou mpdieon avtarioyric Tou dog yio o duck.
Anulovpyeitar x0xA0OC, EMITRETOVTAS TNV AUECT) EXTEAECT] TNG AVTOUAROY S,

/ N\

duck dog
N _

Lo 3.2: Ohoxhnpwuévog xOxhog avtorhayfic petald Alice xan Bob.

O x0xhog aviyveleTton Ue €vay Tpomomolnuévo oalyoprduo DES mou Zexvd
oo TOV TEOOREIOWS TN TEAEUTALOC axpnic ToU TPOCTEYNHE xou oxohovel axuég
meog Ta Tow péyper va Beedel povomdtt oty apyY| TG TEAsUTAlG axUS.

3.4 EmAsyuéva nogadelyuata cOVIETWY o-
VTUAANAY OV

ITeocOMxn npoVécewy aviariayrng petald 3 NFTs

Ot xdtoyor twv NFTs 1 (urmhe), 2 xou 3 (npdowoc), 4 (xopé) dnhcrvouv
otadoyinéc TpoVécels avTahhayng:

e NFT 1 — NFT 2
e NF'T'1 — NFT 3
e NFT 2 = NFT 4

NFT 3 — NFT 4

NFT 4 — NFT 1 (xAeiver tov x0xho)

odee

(o) Avtodhoyy NFT 1 — NFT 2 B") Avtodhayf NFT 1 — NFT 3

Yyfuor 3.4 Avtohhoyy NET 4 — NFT 1 xon Snuoupyio xOxdou.

Aviyvevorn xOxiouv ue DFS

O DFS &exavd and to NFT 1 xou axohouvdei tnv mopeio NFT 1 — NFT 2
— NFT 4. H elpeon authc tng dradpounc umodeviel xOxho avTahhayrg.

(o) Exxivnon DFS ané NFT 1 (B") Axuh NFT 1 — NFT 2

() Axphh NFT 2 — NFT 4, ebpeon =

%x0xhou (B") Ohoxhfpwon petoPifaonc NFTs

H mopeio mou evtonileton and tov DFS etvou:
P =(N®T 1,NOT 2,NOT 4)

xou amoTeAel ovaryadar xoun txavr) ouVITXn Yol TNV EXTEAEST) TwV YeTABBAoEWY.

Kegdhawo 4

YTAomolnon Tou Epyou

4.1 Ethereum xou Solidity

To project Bactletar oto Ethereum xau og é€unva cupBoiata ypauuéva oe
Solidity. To Ethereum mopéyer v xatdAAnkn vrodouy| yio Tnv LAoToinom
ATOXEVTPWUEVODY EQUEUOYOY Uéow Tou Ethereum Virtual Machine (EVM).

4.1.1 Ethereum Virtual Machine (EVM)

4.1.1.1 Apyitextovixy

To EVM eivan pioe Turing-complete unohoylotixn unyavy, Bactouévr oe
oToifa, 1 onola extelel bytecode mou mopdyeTon amd xWOWA YeouPEVO GE So-
lidity. H extéleon elvon vietepuvio it o€ 6houg Toug xououg Tou dixtlou,
eCac@aNloVTag TN CUVILVEDT).

4.1.1.2 Awayeipion nopwv xa Gas

To EVM olonotel 1o unyavioud gas ylo 1oV EAEYYO TNG OMOUTOUUEVGYV
TopwY xatd Ty extéreot). Kdle evtolr €yel éva xdotog xan o yerotne opile
T0 gas limit o xdde cuvvahayt. To ayenowonoinTo gas EMOTEEPETU EVK TO
YETOUOTOUNUEVO XATAVUAWVETAUL ATd TOUG ENUANIEUTEG TOL BLxTUOU.

4.1.1.3 Avdntuin xou extéleom

To €€unva cupfolona avamTOCCOVTAL UEGK GUVAARAY DY X0l ATOXTOVY UOVI-
un Sevduvon oto blockchain. Efvow un tpomonoufoua uetd to deployment
TOUC.

91

.sol

compiler(solc)

; '

l solidity

bytecode ABI
deploy
—— *
mlurn.&/"/ Contract ;
¢ Instance [Provider |- = Web3
Contract Ethereum Network
address

Yyfua 4.1: Poyy avdmtuéne smart contract oto Ethereum.

4.1.2 Epyoaheia avdntuing

Y dradwacto avdntugng tou Barterplace yenowonow|nxay:
e Remix IDE yio 8oxipéc Tou xdduxar xar xhion EZunvey oupfolalwy

e Hardhat yix scripts, testing xou SeAnoduevtc

e Ethers.js yio alMnAenidpoaon mpoypoupatioTixd ye tor éEumva cuuBoiata

4.2 IPFS

4.2.1 T eivaw To IPFS

To IPFS (InterPlanetary File System) eivor évo amoxevtpwuévo cbotnuo
amodrixevong opyeiwyv. Kdie apycio €yel povadd hash mou yenoweler wg
oVAUPORd.

4.2.2 Deployment
To metadata twv NFTs anodnxeboviar cuvAdwe extog tou blockchain,

onwe oo IPFS. Qotéo0, n avayvoeion xon emPBeBaiwon tne woxtnotog yiveto
uEow Tou (Bou Tou blockchain.

4.3 'E&unvo cuufBoiowo Baptepniace

To oupyPdrato tou Barterplace unootneilet anodrxevon/duyeipnon NEFTs
xot TPoYECEWY avToANoYiC.

4.3.1 Katactdoesic NFT

Ta NFTs urnopolv va efvar oe xoatdotaon dwdeour), und avtoahhayr| 1) xAet-
OWUEVT).

Transfer completed

In wallet l Add trade f Listed] Match found f Matched
¢ L_))

Remove trade

Yoyuar 4.2: Awdrypopa pe Ti¢ duvatég xataoTdoelg evog NOT (Bro¥éouo, xo-
TOYWELOPEVO, UTO avTIoTolyIo).

4.3.2 Meédoobog IlpooOnxng AviaAiAayng
H mpoodixn npddeong avtahhayrc mpooUétel pua oxuy| 6to yedepo.

°
|

Receive call from sende} ity CPeck owner valdity Check NFT state Y
Arguments: Owned NFT Chech "N"F’;_" validity| Liste
Target NFT EmIArEZD Valid owner /\(

Invalid owner 1n wallet

Check for cycle create
by inserted edge.

Emit TradeAdded

Reset NFT owner in graph nog

Eyfuor 4.3: Awdrypoppo yior Ty Teooxn avioAloyic.

4.3.3 Meédosdog Agalpeong AvTaAAayng

H agaipeon npddeong emavagéper tny xatdotaor tou NFT.

Receive call from sendel ') Check owner validity Assert NFT is Listed
Arguments: Owned NFT, Checl;o'\‘anrertv:hdlty Remove edge
Target NFT &Nl g J \(Valid owner /\(True from graph

Invalid owner False
Check if owned NFT has
remaining outbound edges

Revert
transaction

False

\L Has outbound

Transfer NFT to owner]|

Reset NFT owner in graph no
Owned NFT transition § Emit TradeRemoved
In wallet state event

True
Failed

Success

Yo 4.4: Adrypopor Yo Ty agolpean) avtodloyric.

4.3.4 Aviyvevorn xUxAov

O ahyopriuoc DES yenowonoieiton yior Tov eVIOTIoUO xOXAOY avTaAAAY S,
‘Otav evitomoTtel xOxhog, mpayuatomoleitar TauTtoypovn UeTofBaor wioxtnoiog.

4.3.5 Awdypopror XAACEWY

<<Struc>>

next: mapping(bytes32=>bytes32)
previous: mapping(bytes32=>bytes32)
length: uint256
head: bytes32
tai: bytes32.

1l

<<Library>>
LinkedList
Public
exists(l: List, e bytes32): bool Struc>
appendl: List, el bytes32) Set
removel: List. cl: bytes32)
KeyPointers: mapping(bytes32=>uin256)
ctHead(l: Lish; byies32 y
eten (L KeyList: bytes32[]

getNext(l List, el bytes32): bytes32
getPrevious(l: List, el: bytes32): bytes32
getlength(l: Lis): uint256

isEmpty(: List): bool

[—

weight: uint256

H

| <<Library>>

U [<S> —) s

t | Edgestruet N Tnternal

b [oure: bywesd2 odedtruc insert(self: Set, key: bytes32)

I m{mzz incomingEdgeList: LinkedList.List remove(self: Set, key: bytes32)

4 outgoingEdgeList: LinkedList.List count(self: Set): uint256

i exists(self: Set, key: bytes32): bool

keyAtIndex(self: Set, index: uint256): bytes32
1

<<Struct>>
Graph

‘nodeSet: UnorderedKeySet. Set
edgeSet: UnorderedKeySet Set
‘nodeStructs: mapping(by

edgeStructs: mapping(bytes.

i <<Library>> |
DirectedGraph i

{ [oternat
H insertNode(g: Graph, nodeld: bytes32) |
| removeNode(g: Graph, nodeld: bytes32) '
isSingleNode(g: Graph, nodeld: bytes32): bool !

hasOutgoingEdges(g: Graph, nodeld: bytes32): bool
insertEdge(g: Graph, sourceld: bytes32, targetld: bytes32, weight: uint256): (edgeld: bytes32)

argetld: bytes32)

<<Struce>> i
NftStruct

Graph, sourceld: bytes
insertBetween(g: Graph, newNodeld: bytes32, sourceld: bytes32, targetld: bytes32. sourceWeight: uint236, targetWeight: uini256)
findCycleWithEdge(z: Graph, edgeld: bytes32): (cycle: bytes32(], cycleLength: uint256, hasCycle: bool) /
‘modifiedDFS(g: Graph, sourceNode: bytes32, stackCycle: bytes32(],tail: uint256): (bytes321], done: bool) /
edgeExists(g: Graph, edgeld: bytes32): (exists: bool) /
Index(g: Graph, index: uint256): (edgeld: bytes32)

veight: uin256) /

weight: uint256)

nftAddress: address
tokenld: uint256
owner: address

nodeCount(g: Graph): (count: uint256)
node(g: Graph, nodeld: bytes32): NodeStruct

Barterplace

Private:
nfiGraph: DirectedGraph Graph
nftStructs: mapping(hytes32=>NfiStruct)

mal:
Nft(nftAddress: address, tokenld: uint256, owner: address)

removeNfi(nftAddress: address, tokenld: uint256)
address, tokenld: uint256, owner: address)

ytes321), cyeleLength: uint256)
toKey(addr: address, id: uint256): bytes32

External
address, sourceTokenld: uint236, targ address, targetTokenld: int256) <<nonReentrant>>
address, wini256, address, targetTokenld: uin256) <<nonReentrant>>

nftCount(): (count: wint256)
edgeCount(): uint25
OnERC72IReceived(address, address, uint256, bytes): bytesd
Pubi
>> TradeAdded(owner: address, ownerNftContract: address, ownerTokenld: uint256, targetNfiContract: add

< s, targetTokenld: uint256)
<<event>> TradeRemoved(owner: address, ownerNftContract: address, ownerTokenld: uint256, targetNftContract: address, targetTokenld: uint256)

ev
supportslnterface(interfaceld: bytesd): bool

Yo 4.5: UML 6udrypappo xhdoewy smart contract.

4.4 Off-chain $dor 6e6ouevwy

Ananteiton wo e€wtepinn Bdon 6edouévewy yio indexing xon queries yio TNy
XATYOTUOT] TOU YRdPoU, To omolol OV elvor epixTod Vo exteAoUvTow on-chain.

4.4.1 Graph Bdon Acsdopevwy

Movteromnoinon v NFTs xau tov aviohhayov og yedgpos. Tao Poacixd

TAEOVEXTHUOTA TEQLAUUBEVOUY:
o ToyUtata queries yio unoothplen front-end

e BEuéiixto xan mpocopudoipo oyriua dong

o T{nir andédoon oY AVATAEICTACT, Ko ETEEERYAUOIA OYECLANWY DEDO-
UEVWV

4.4.2 XyAupo

OWNS

FOR

Yyfuor 4.6: T'eapuxd avamopdotaon Bdong dedouévewy NFTs.

4.4.3 API

REST endpoints ywa eyypapr, avéxtnon xou doyelpion dedopévwy NET
HOL OLVTOANALY (OV:

1. AloTa OAwV Twv collections:
GET /collections
Emotpeger Mota pe 6ha ta NFT' collections.

IMapduetpor:

limit - int (npooupetiny mapduetpog): Méyiotog apriudc anotereoudtwy
cursor - string (npoopetixy| mapduetpog): Xenoylonoteiton yioo pagina-
tion

2. Alota OAwv Twv NFTs ava collection:
GET /collections/{contract_address}
Emotpéger Mota pe 6ha oo NEFTs mou avrxouv oe cuyxexpulévn collec-
tion.

IMapdpetpor:

contract_address - string: Aiedduvon Ttou collection contract
include_metadata - boolean (mpoawpetixt| tapdueteos): Emotoopn peta-
oedopévwy. [lpoemioyy): false

limit - int

cursor - string

3. Alota 6Awv twv NFTs mou avixouv oec account:
GET /nfts/account/{account_address}
Emotpégel Mota e NEFTs mou avixouy oe cuyxexpiuévo account.

IMapdpetpor:

account_address - string: AwcOduvorn wallet
include_metadata - boolean (rpooupetixt)
limat - int

cursor - string

4. Iotopuxd petafifBdoswy NFT:
GET /nfts/{contract_address}/{token_id} /history
Emoteéget to 161006 petofiidocny evog ouyxexpyiévou NET.

IMagdpetpor:
contract_address - string
token_id - string

limat - int

cursor - string

5. Evepyég avtariayéc NFT oto Barterplace:
GET /nfts/{contract_address}/{token_id} /trades
Emotpégel Tic dloadéoiueg e€epydueveg axuéc yia To ouyxexpiévo NET.

IMapduetpor:
contract_address - string
token_id - string
include_metadata - boolean
limit - int

cursor - string

6. Avdxtnomn metadata NFT:
GET /nfts/{contract_address}/{token_id} /metadata
Emoteéget to on-chain metadata evog ouyxexpipévou NFT.

IMapdpetpor:
contract_address - string
token_id - string

7. Avdxtnon woxtrtn NFT:
GET /nfts/{contract_address}/{token_id} /owner
Emotpéger Tov wioxtrtn evog cuyxexpiuévou NEFT.

IMapduetpor:
contract_address - string
token_id - string

4.4.4 NFT Discovery Service (AvaxdAiupn NFTs)

Trneeota oe Node.js mou cuyypoviCel tn Bdomn pe o dedopéva oto blockchain.
Po Aewtovpryiag

Brpa 1: Exxivnon tng vnneeociag

Apywrornoinon g unnpestag NFT discovery.

BrApa 2: Podptwor puipicewy

H unnpeoio goptaver tic amapaitnteg puluioeic, 6w mopauétpous dixtiou,
oievuvor Barterplace xon API keys.

BApa 3: 30Ovdeon pe to Blockchain

H urnpeota dnuovpyet oOvdeon e to Blockchain yia vo hapBdver eloepydueva
blocks.

BApa 4: Aviyveuor véou block

To Blockchain dnuootedel véo block mou mepiéyel cuvahiayéc oyeTnésg e
NFTs.

BApa 5: AvdAuorn xou @puhtpdpiopa dedopévmy tou block

H unnpesta NFT' discovery e&dyel Tic oyeTnéc oUVOAAAYEC Xou QUATECREL
yeEYOVOTA TV smart, contracts.

Brpa 6: Enelepyacia yeyovotwy smart contract

To clotnua topaxoroviel yeyovota dmwe:

— TradeAdded (éva NFT trade Eexivnoe)

— TradeRemoved (o orvtodhoryy) oxup@OnXE)

Brua 7: Evnuépwon tng Bdong dcdopévwy

To e€oydpeva dedopéva yenowonooivTol Yo Ty evnuéewon tng off-chain
Bdong dedopévwy, dratnewvtag to apyeta NFTs emxonponomuévar.

Brpa 8: 'EAeyyog ouyyeovicpol

Av n [Bdon dedoyévmv elvar un evnuepmuévn, 1 urneecio evepyomolel avdxtnon
LOTOPXOY DEDOUEVGY YL TNV AVUVEWST] TWV TUPEAVOVTIXODY GUVAAAAY (V.

Bripa 9: Katdotaon etoipdtntog

‘Otav ohoxAnpwdolv dha ta mpornyolueva Bruata, 1 utneecio eloépyetal o
EVERYT| XATACTUOT| axpoaoTC, EneepyalOUevn cuveyme véa blocks.

UML diaypdppata axohouvdiag

sdHandleBlock()]
NFT discovery Blockchain Off-chain
Database

1: Get block number commited to database

1.1: Retum block number

2: Get next block

>
2.1: Return block 'H

Database transaction is
a setof instructions that
are executed atomically
FTTTTTTTTT Iy |”| (notto be confused with

1" |plockehain transactions)

[for each block transactio

4: Parse block transaction for
ERC-721 or Barterplace deployment

5: Update database transaction

1: ACK

6: Get block transaction receipt

6.1: Return receipt J

7: Parse receipt logs for
TradeAdded and TradeRer

8: Update database transaction

8.1: ACK

9: Update database transaction with current block number

9.1: ACK

10: Commit transaction

10.1: ACK

11: Rollback transaction

11.1: ACK

12: Close transact tion

12.1: ACK

Figure 4.7: Axoloudia Aertoupyioc HandleBlock.

NFT discovery Blockchain

I
|
1: Start |
o

T
|
|
o————» [
|
|
|
|
|
Iooyj :
[until db is synced :
refJ i
|
|
|
HandleBlock() !
|
|
|
|
||
|
|
|
T
|
|
1.1: Subscribe to published blocks ’[‘I_'|
1 I
| |
| |
| |
| |
| |
: I 2: New block published
|
| .
J_< 2.1: Propagate new block
re;J

HandleBlock()

Figure 4.8: Axoloudia apyixonoinone unneeoioc NFT Discovery.

Kegdhawo 5
2ulNtnon xou agloAoyYNnom

H uvloroinon tou cucthuatog aviariaywyv NETs péow tou Barterplace
avédEEE TOGO TIC BUVATOTNTEC OGO XOL TOUC TEPLOPLOUOUS TNG TEOGEYYIOTC.
Hapbdtt to clotnua Aettovpyel w¢ amddelln oxomudtnrag, amarteiton Pehti-
0 TOTONOY HOTE VoL ETUTUYEL XAYUOXOVUEVT AOB0CT) GE GUVITXES TEOYUOTIXOU
%O0UOU. XE QUTO TO XEPAANLO AVAADOVTOL TO XOOTOG gas, Ol TEQLOPLOUOL Tou
EVM xou mpotdoeic 6w off-chain uroloyiopoic.

5.1 Avdivorn xdoctoug gas
Aoxuéc pe 1.000 yeroteg mou xatetyov and 5 NFTs xau exteholooy Tu-

yodeg avtoddoyég UETAED TOUg amoxdhudoy oNUOVTIXES TANEOPORiES Yiot TNV
amodooT Tou €Cuntvou copfolatou.

Koéoctog Gas avd pédodo
Mé&9odoc EXdyioto | Méyiwoto | Méoog 6poc | # Khroewg
addTrade 375199 4762760 565738 5000
removeTrade | 127983 137983 85434 52

Hivoxag 5.1: Avdluon xd6cToug gas xatd Tn Yehon

Koéoctog deployment cupfohaiwy
SupBoroo Mécog épog | % tou block limit
Barterplace 2,931,923 9.8%
LinkedList 669,509 2.2%
SimpleCollection 2,535,147 8.5%

Hivoxag 5.2: Katovdiworn gas yio o deployment cuyBoioiwy

102

To Ethereum block limit efvon 30 exoarouudpeta gas. Ot topomdve HETEHOELS
ety vouy 6Tl oL Pacixég evépyeleg TapauEVoLY evTdg 0plwv, AN 1 Aettovpyia
addTrade(npootixn avtodloyrc) etvor WBIUTECH AmaLTNTIXH.

5.2 Xrpatnyweg BeAtioTtonolnong

[t Ty %ok O1epn amddooT), UTOEOLY VoL EQUEUOCTOUY TEYVIXES OTIWC:
e Meiwon writes oe storage xou yerjon calldata avti memory.

e Xpron mappings avti yu arrays.
o Mol extéheon(batching) cuvodhayy.

o Xprion proxy cuufoloiwy yia yehhoviixéc avooduicelc.

O mapamdive mpoxtixég umopolyv va Boninoouy otnn peltworn Tng xatavihe-
OMG Zas Xol VO EVIOYUCOUY TNV ENEXTACLUOTNTOL.

5.2.1 Off-chain uvroAoyicpocg

H petagopd amartntiney utoloytouwy extdg blockchain etvon pio amotehe-
ouatixr} otpatnyxh. O uToAOYIOUOS BLaBEOUGMY avTaAhoy®Y UTtopel vo yiveTo
exTOC oAuoidag, PE TNV TEMXA EXTENEON Vo xotaryedpetar on-chain xau ov a-
VTOAAOYES VO TRy ATOTOL0UVTAL amtd To €EUTVO GUUPBOAO.

‘Eva é€unvo cuyfolato pe unyoviopo staking yernowonoteiton yio tny e€a-
o@dhon opdoTNTUC!

e O yprioteg xoatadétouv eyyinom.

e Edv o xixhog elvon Eyxupog, 1 extéreot) yiveta.

o Av unoPBindel Aavdacuévn ouvorlayr, umopel va amoderydel pe fraud
proof.

e To cupfohoo xuTaoTEEPETOL XAl 1) EYYUNOT| AmOBIBETOL GTOV XATAYYEN-
AovTa.

Auté peldVEL TO XO0TOC gas xo ATOTEENEL XUXOBOUAT] GUUTERLPORA.

Kegpdhowo 6

P VUTEQACUATA

H moapolooa dimhowpotiny epyacio nopouciace to Barterplace, éva amoxe-
vTpwuévo obotnua aviodloyfic NFTs nou Bacileton oe teyvohoyia blockchain
xan Yewplor Ypdpov. Avtl va otnpiletar otny mopadoctaxy| ayopanwhinoia, 1o
Barterplace eiodyet éva poviého moAUUEEOUC avToAAoYHC HECL XaTEUTUVOUE-
VOV YRAPOV.

Kdéle npddeon avtariayrc avamaplototan g oxun o€ Ypdpo, xat 1) aviyveu-
on xOxAwY Yéow tou ahyopliuou DES emtpénel v autdupotn xon dixoun e-
xtéheon ouvahhayov. H viornoinon éywve ye smart contracts otny mhatgpdoua
Ethereum, dwogoiiCovtog dapdveta xon ac@dheia, eved 1o IPFS alionouiinxe
YL TNV AMOXEVTPOUEVT amotxeuoT) UeTadedouEveY Twv NFTs.

Kipia ogéln tng npoceyylong

1. Avtallayég yowplc epniotooclvn (trustless): H ovdyxn yuo ye-
odlovteg eCahelpeTan, UELOVOVTAS T XOG TN X0l AUEAVOVTOS TNV AOPIAELL.

2. BehAtiwpévn pevototnto: Ot mohupepelc aviodhoyés auidvouy Tic
miavotnTeg emtuyolg petoBiBaong.

3. Autéupatn xou dixoun extéleoy: O € pd (smart contracts) eqop-
u6Couv TOUC XAVOVES Yweic avipmmvn Tapéufoon.

Kateudivoelg yio ueAAovTixy| Egeuva

Iapbdho mou 1 vhonolnon emBefolwos T OXOTWOTNTA TOU CUGTHUATOC,
TORUUEVOUY TPOXANOELS, XUPlWE 600V aopd TNV emextacuotnta. To udn-
A6 x607T0¢ gas v cUVIETEC cuVaAAYEC TEplopilel TN ypron TOU OE UEYAANG
xh{poag mepBdihovaL.

104

IIWavég Bedtinoelg tepthopfdvouy:
e Beltiotonoinon tng Aoywric Tou smart contract
o Aliomoinon off-chain urohoyiopol yur trade paths

H viodétnon autov twv TEYVIxmY Unopel va 00Ny AoEL OE Uid O amodoTix),
HAUOXOUPEVT XL PEAMOTIXY] TAATQPOPUA AVTUARAYAC PrpLaxmdy TEPLOVCLAX MDY
otoyelwv oto mhaicto Tou Web3.

