izO

poopos

=

i
¥
S

o
3¢
MPOMHOEV §

ec
&
\l
I
[
L

NATIONAL TECHNICAL UNIVERSITY OF ATHENS
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING
DIVISION OF INFORMATION TRANSMISSION SYSTEMS
AND MATERIAL TECHNOLOGY

Efficient Deep Learning in Mobile and
Embedded Computing Environments

Ph.D. Dissertation

Ioannis Panopoulos

Athens, April 2025

G
K
Z

El

'S

e

5
2

2
peopo

s
e e
s pomHoEY §
X Sal==l
nv

EONIKO METZOBIO ITOAYTEXNEIO
2 XOAH HAEKTPOAOTQON MHXANIKON KAT MHXANIKON YTIOAOTIETON
TOMEAX XYETHMATON METAAOZHE [TAHPO®OPIAX
KAI TEXNOAOTTAE Y AIKQON

Amodootikn) Babid Mdabnon oe Kivntd ko
Evoouatouéva Yrorloyiotikd Iepifdirovia

Adaktopikn Atotpipn

Ioavvng Iavomoviog

AbBMva, Anpiiog 2025

NATIONAL TECHNICAL UNIVERSITY OF ATHENS
SCHOOL OF ELECTRICAL AND

COMPUTER ENGINEERING

DIVISION OF INFORMATION TRANSMISSION SYSTEMS
AND MATERIAL TECHNOLOGY

=
$

" ;\"\: A
” :‘{1‘0 ~
7 OMHOE
Sel==al
nvpeobo

Efficient Deep Learning in Mobile and
Embedded Computing Environments

Ph.D. Dissertation

Ioannis Panopoulos

Advisory Committee: Iakovos S. Venieris
Dimitra Kaklamani
Nectarios Koziris

Approved by the seven-member Examination Committee on April 29, 2025.

Takovos S. Venieris Dimitra Kaklamani Nectarios Koziris
NTUA Professor NTUA Professor NTUA Professor

Emmanouel Varvarigos Theodora Varvarigou Dimitrios Askounis Dimitrios Vergados
NTUA Professor NTUA Professor NTUA Professor UniPi Professor

Athens, April 2025

loannis Panopoulos
Doctor of Electrical and Computer Engineering, National Technical University of Athens

Copyright © Ioannis Panopoulos, 2025.
All rights reserved.

Copying, storing, and distributing this work, in whole or in part, for commercial purposes is
prohibited. Reproduction, storage, and distribution for non-profit, educational, or research
purposes is permitted, provided that the source is cited and this message is retained. Inquiries
regarding the use of this work for commercial purposes should be directed to the author.

The views and conclusions expressed in this document are those of the author and should not
be interpreted as representing the official positions of the National Technical University of
Athens.

Iepiinyn

H Babid pabnon £xer petaoynpatiost prikd to medio TG TEYVNTNAG VONLOGUVNG, TPOCPEPOVTUS
ONUAVTIKEG TPOOOOVE GE TOUEIG OTTMG 1) EMeEepyacio PLOIKNG YADGGAS, 1| OPUGCT VITOAOYICTMY
Kot 1 autoévoun ANyn amo@dcemv. 6TOGO, 1 GUVEXDS CVENVOUEVT TOALTAOKOTNTA TMOV
LOVTEL®V GUVETAYETOL GTUOVTIKEG VITOAOYIOTIKEG OMOITNOELS, KaoT®VTAG avaykaio TNV
a&lomoinomn 1oyvp®v vVIodoudv vépovs. H e&dptnon avt) and KeEVIPIKOTOUEVOLS TOPOLE
dnuovpyel mepLOPIGUOVE € 0,11 agopd TNV kabvotépnomn, TV OWTIKOTNTA KOl TN
otafectd o, OmoTEAMVTAG EUTOSI0 Yo TNV AVATTLEN EQEOPUOYADV TEXVTHE VONUOCUVNG GE
KWVNTA KOl EVOMUATOUEVO GCUGTHLLOTOL.

H mapovoa datpipn diepevvd tn daotavpwon Padidg pddnong Kot amodoTikOTNTOS G
mePPAALovTO e TTEPLOPIGUEVOVE VDTOAOYIOTIKOVG TTOPOVG, UE GTOXO TN SOUOPP®CN €VOG
OMOTIKOD TANGIOV Y100 TNV OMOJOTIKY avATTLEN KOl EKTEAECT] GUOTNUATOV TEYVNTNAG
VONUOGVVTG OTIC TAPLPES TOV dikTtvov. H épevva eotialel og tpelc empuépoug peréteg: (o) myv
avantoén tov CARIN, &vOG MPOGOPUOCTIKOD TAOLIGIOL Yo TNV EKTEAECT] TOAAATADV
VEVPOVIKOV SIKTOMV GE ETEPOYEVEIG KIVITEG GUOKEVEG, LE YPNON TEYVIKOV PEATIOTOMOINGNG
moAlomAdV otoxmv: () v evdedeyn afloAdynom Kol TPOGOPUOYN HOVTEAMV
LETACYNUATICTOV Y10, KVNTE TEPPAAAOVTA, HECH OPYLITEKTOVIKMV BEATICTOTOMGE®V YOUUNAOD
K0oTOLG KOt (Y) TN oyxediaon tov A-THENA, &vOC 0m0d0TIKOD GUOTNUATOG OVIXVELGONG
eiofordv oe IoT diktvo, PoCICUEVOL GE UETACYNUOTICTEG WE YPOVIKA €voicONTEC
Kodomomoel; Béonc.

Méca 0o aVTéG TIC GUVEICPOPECS, 1 SLOTPIPN SLUUOPPAOVEL £V, OAOKANPOUEVO TAOIGTO Y10,
amodotikr] Pabd uddnon oe Kwvntéd Kol EVOOUOTOUEVO VTOAOYIOTIKG mePPAriovTa.
E&epevvmvtag) dwovvdeon petald g Pedtiotonoinons LovIEA®Y, TG TPOGUPHOYNG GTO
VAIKO KOl TOV OTOLTHGEDV TPAYLOTIKOV EPUPLOYADV, 1) EPEVVO, YEPVPAOVEL TO YOO U UETAED TV
teAevToinv eEEAEe®V OTNV TEXYNTI] VOMUOGLVN Kol TNG TPOKTIKNG Tovug ovimtuéne. Ta
VPN LOTA VIOYPOUIlOVY OTL I AOSOTIKOTNTO, 08V OTOTEAEL AMAMG 6TOXO PeATioTOoMmOINGNC,
0AAG OgpeMddn TopdyovTa Yo T HEAAOV TNG TEXVNTNG VOMUOGUVNG, dtac@aiilovtag OTL o1
teyvoloyieg Pabdibg pdbnong umopolv va Agttovpyodv anpdoKOTTa, PLOGIUE KOl EDQVAOS GE
éva guph PACUA VTOALOYIGTIKMY TAOTPOPUAOV.

A&Earc-Kirerona

Babd pabnormn - TOMK CULUTEPAGUOTOAOYIO * KIWWNTOG VTOAOYIGUOG * EVOMOUOTOUEVOG
VTOAOYIGUOG * OTOOOTIKY TEXVNTN VOMUOCGUVYN - €Tepoyéveln - Peltiotomoinon - poviéla
UETACYNUOTIOTOV * AVATTUEN OTIC TAPVPEC * aviyveLOT) EIGROAMY - S1adIKTLO TV TPAYUATOV

Abstract

Deep learning has fundamentally transformed the field of artificial intelligence, enabling
significant advancements in areas such as natural language processing, computer vision, and
autonomous decision-making. However, the ever-increasing complexity of modern models
entails substantial computational demands, rendering the use of powerful cloud infrastructures
essential. This dependence on centralized computing introduces limitations in terms of latency,
privacy, and availability, posing a challenge for the deployment of Al applications on mobile
and embedded systems.

This dissertation investigates the intersection of deep learning and efficiency in resource-
constrained environments, with the aim of establishing a holistic framework for the efficient
development and execution of Al systems at the network edge. The research focuses on three
key studies: (a) the development of CARIN, an adaptive inference framework designed to
execute multiple neural networks on heterogeneous mobile devices using multi-objective
optimization techniques; (b) the thorough evaluation and adaptation of Transformer models for
mobile environments through low-cost architectural and hardware-aware optimizations; and (c)
the design of A-THENA, an efficient intrusion detection system for IoT networks, based on
Transformers with time-aware positional encodings.

Through these contributions, this dissertation formulates a comprehensive approach to
efficient deep learning in mobile and embedded computing environments. By exploring the
interplay between model optimization, hardware adaptation, and real-world application
requirements, this work bridges the gap between cutting-edge Al research and its practical
deployment. The findings emphasize that efficiency is not merely an optimization objective but
a foundational enabler for the future of Al, ensuring that deep learning technologies can operate
seamlessly, sustainably, and intelligently across a wide range of computing platforms.

Keywords

Deep learning; On-device inference; Mobile computing; Embedded computing; Efficient Al
Heterogeneity; Optimization; Transformer models; Edge deployment; Intrusion detection;
Internet of Things

Extetopsévn Hepidnyn

A Ewoayoy

O pocpateg e€erilelg oty tervnTn vonuoovvy (artificial intelligence — Al) xkaBodnyovvtar
amd TV avolnnon 1ooppomiog HeTald LYNANG emid0ooNE KOl OmOd0TIKOTNTOG, He KO
oNUAVTIKY ovokdAvym otn Babid pabnon va eledyetl véeg duvotdtTTeg, ALY TOVTOYPOVO KOl
véeg TpokAnoels. Evo 1 Pabid pdbnon €xel pépet emavdotaon o€ topeic Ommg 1 enelepyacio
euoikng yAoooag (natural language processing — NLP), n 6pacn vrmohoyiot®v (computer
vision) Kot To QVTOVOLO CLGTHUATA, 1 ToYEID TPOOSOC NG £PYETAL LE TO KOGTOG AVENUEVEOV
VTOAOYIOTIKOV omontinoe®mv. Ta cUYyypove LOVTEAD OOLTOVV TEPACTIEG TOGOTNTES LVIUNG,
EMEEEPYOAOTIKNG 1GYVOG KOl EVEPYELNG, UE AMOTEAEGHA Vo eaptdvTtal o€ peydio Pabud amod
vodopég Tov vEEovg (cloud). Qo6t0G60, 01 PAPLOYES AmaTOVY OAO KOl TEPLGGOTEPO AVGELS
TEYVNTNG VOTLOCHVIG TOV AELTOVPYOVV OMOTEAEGHOTIKG GE TPAYUATIKO XPOVO, O KOVIQ GTOV
YPNOTI, YOPig VITEPPOAKT EEAPTNON OTTO KEVIPIKOTOINUEVOLS VITOAOYIGTIKOVS TOPOVC.

AvTo €xel Tovioel TN oNuocio. TOL KWVNTOL KOl TOV EVOOUATMOUEVOD VITOAOYIGHOD, TOV
TOPOLGIALOVY Lo LOVOSTKT TTPOKANOT: TN UETOTOMION TNG E0TIOGNG GO TNV «OTEPIOPITTN
VTOAOYIGTIKT 100 TOL VEQOLG GTIV OTOSOTIKOTNTA KOl TNV TPOCAPUOCTIKOTNTA. AVTH T
nepifdilovta, copmeptlopfovopéveov cuokevdv Onmg smartphones, acOntipov [oT won
€EEOIKEVUEVOL DAIKOD TTOPVO®V, OOLTOOV AVGELS TEXVITAG VOTULOCHVIG OV UTOPOVV V.
Aertovpyovdv vtd coPapodc TEPIOPICUOVG TOPMVY, OTOLTOVIOS TEXVIKEG PEATIGTOMOINGNG TOV
dTNPOVV TNV aKpifelo LeudvovTag TanTtdypova To PEYEDOg, TNV KATAVAA®GCT) EVEPYELNG KoL
Vv voAoyloTikn moAvmAokdtnTa. H avartuén g Badiac uéddnong ce tétoo mepifdirovia
Eexhelddvel PETAOYNUATIOTIKEG SUVOTOTNTES, amd TN ANYN OTOPACEDY G TPAYLATIKO YPOVO
Kot TV BEATIOUEVT] 101OTIKOTNTA £®C MO OVOEKTIKA Kot ave&dpTNTo. GUGTANATE TEXVNTNAG
VOT|LLOGUVTG.

Qo61000, TPOKOTTEL M OVAYKN VO EEMEPAOTOVV ONUOVTIKEG TPOKANGELS, ONMG 1
BedtioTomoinon g eKTELEDT|G OE ETEPOYEVEC VAIKO, 1 OL0EIPIOT NG KATAVAAWDGONG EVEPYELOG
KOl 1 EVEPYOMOINGT TNG TPOCUPUOCTIKNG LAbnong evtog meplopicuévav opiov. H mapovoa
dtoTpiPn Tovilel TOVE TEPLOPIGUOVG TMOV VITUPYOVODV EPEVVITIKAOV TPOcTadEIDV, OT®G ival N
ENLEYN EVOTOMUEVOV TAOLGI®V Y0 CUUTEPAGLOTOAOYI GE KIVNTEC GUGKEVEG, O
neplopiopévog Pabudc Pertiotonoinong HOVIEA®V oyUc—OT®MG Ol HETOCYNLOTIOTEG—Y0L
avAmTLEN OTIG TOPVPEG TOV OIKTOOL KOl Ol ALYOTEPO OLEPEVVIUEVEG EQPUPIOYEG OTA SIKTLO
VTOAOYIOTOV Kol TNV KUPEPVOACPALELD, KOl TOPOVGLALEL VEEG ADGEL TOV YEPUPAVOLV TO
ybopa peta&d pevvog Kol TPOKTIKNG avATTLENG 08 KIVITA KOl EVOOUATMOUEVH VITOAOYIGTIKA
nepPdArovta, Slac@AAilovTag TNV OTPOCKOTTN EVOMUATMGN TG TEXVNTNG VONLOCUVIG TNV
kaOnuepwvn Lon.

B Ozopntiké Yaopabpo

B.1 Ba0wd MaOnon

H Babud uabnon (deep learning — DL) €xet avaderyBel og €vo LETAGYNUOATIOTIKO DTOGHVOLO
™G TeXVNTNS vonuoovvng, Eexwpilovtag amd TV mopadoctlaky unyovikn pabnon (machine
learning — ML) péoo g wavotntdg tng va e&dyst avtovopo 1epapykd potifo amd
OKOTEPYOOTO OEOOUEVA YPNOLUOTOIDOVTAG TEYXVNTA vevpovikd Oiktvo (artificial neural
networks). Xe avtifeon pe tovg oAyopibuove pnmyaviking pabnong mov Pacilovionr ce
YEPOKIVITA GYESLOCUEVO YOPOUKTNPLOTIKA Kot TEYVOYVMGio Topéa, 1 fabid pabnon enttpénet

11

TNV QUTOLOTOTOUNUEVT EEYMYN YOPOKTNPIOTIKMV, TIV ENEKTACIHOTITO, KOl TN YEVIKELOT O
dlapopeg depyaciec.

H amopyn g evromileton ot dekaetio Tov 1950 pe v €loaymyn Tov perceptron, £vOg
OTAOV VELPOVIKOD HOVTELOL oV d1€0eTe Paciég tkovotnteg pabnone. Qotdco, n advvopio
TOL VO EMAVCEL U1 YPOUUIKE Otoympicta TpoPARpaTo 00NyNnoe 6€ ap@oPinon e
KatevBuvong Tov Tediov Kot 6€ GTAdINKT UEIMOT TOL EPELVNTIKOV EVOLAPEPOVTOS Y10, APKETES
dekoetiec. H emomuovikn dpactmpiomra avalomupodnke onuavtikd ™ dekaetio tov 1980,
LE TNV E100Y®YN TOV perceptrons TOAMATA®Y eTmEdV Kot v a&loroinoen tov aAyopiduov
omicOlog d1dooNe, 0 OMOl0G EMETPEYE TNV OMOTEAEGHOTIKY EKTOIOEVOT] TOV VELPOVIKMV
SikTov péom g peboddov Kkabodov KAiong. H mpdodog avth katéotnoe dvvotn ™
LOVTELOTIOINOT| TTLO GUVOETOV UM YPOLUUKDV GYECEMV KOl OT)LLOTOOOTNGE TNV OTOPY UIOG VENG
EPEVVNTIKNG OLVOUIKNG GTOV YMOPO TOV TEYVINTOV VEVPOVIKGOV OKTO®V. Qotd660, AdY®
VITOAOYIGTIK®DV TEPLOPIGUDYV, 1] a&10T0iNoT TV PabidV SIKTOMV TAPEUEIVE TEPLOPIGUEVT] UEYPL
Kot T dekaetio Tov 2010, 6tav ot e&eri&elg oTo VAIKS, 1) S10BECIUOTNTA CLVOAWY SEGOUEVHOV
UEYOANC KATUOKOG KOl Ol 0PYITEKTOVIKEG PEATIOOELS KaTéoTNoUY EQIKTN TNV a&lomoinen Tov
TApovg duvapkod ¢ Pabiac pabnone. Qg amotéleoua, 1 Pabid pabnon edpourmbnie wg
Kuplopyn TEXVOLOYiQ GTO TESIO TOV GVYYPOVMOV EPAPLOYDV TEYVNTHG VONHOGOVG.

Me v whpodo tov xpdvov, ot apyIteKToviKEG PBabidc padnong eeliybnkav onuoavtika,
MOTE VO OvTOTOKPIvOVTOl G O0POPETIKOVS TOTOVG Oedopévav kol o€ avEOVOUEVES
VTTOAOYIOTIKEG OMOLTACEIS. AV KOl TO TPMIUN HOVTEAN, OTMG TO perceptrons TOAAUTAGDV
emmEdwV, anotélecav to Bepedo g Pabidc pébnong, mapovoiacay TEPLOPIGUOVG MG TPOGC
TNV EMEKTOACIHOTNTA KOt TNV wKovotta dayelptong ovuvletomv dopmv minpogopiag. Ot
emokolovbec e€ehilelc odnynoav oty avartuén eEEISIKEVUEVOV OPYITEKTOVIKMDVY, OTMG TO
oLVEMKTIKE vevpwvikd diktva (convolutional neural networks — CNNs) ywo v avéivon
YOPIKOV OESOUEVOV KOl TO, EMOVUANTTIKG vevpwvikd diktvo, (recurrent neural networks —
RNNs) yia v ene€epyacio akoAovdiakdv TANpoeopLdV, EVIGYDOVTAG GTUAVTIKA TIG EMOOCELS
oe eQapuoyéc emefepyooiog €woOvag kol QLOKNG yAdocas. Ilo mpoceato, T povtéda
LETACYNUOTIOTOV £XOVV QPEPEL EMAVACTACT GE MOAAOVG TOUEIS TNG TEYVNTNG VONUOCUVNG,
kabepdvovtog véa mpdTuma eMidoomg Wiwg oty enefepyacia PLOIKNG YAMOGOS Kol GTNV
OpUCT) VTTOALOYIOTOV.

Metaoynpotiotég
O petaoynpatiotég (Transformers) éxovv emeépet Bepehmon aAlayn otov ydpo g Pabidg
udbnong, vrepPaivoviag TOVG TEPLOPICUOVS TOV ETOVUANTTIKOV HOVIEA®V, TO Omoid
dvuoKoAeDOVTAY GTNV amOTOHNTWOOT EQPTNOE®MV LeYAANS euPérelag o€ akolovBlakd dedopéva.
Eoayfeica and tovg Vaswani et al. to 2017, 1 apyITEKTOVIKT TOV UETAGYNUATIOTH KATOpyel
TIG EMOVOANTTIKEG GLVOECELS VTEP €VOC TAOICIOV TANP®G PUCICUEVOL GTOV UNYAVIGLO
TPOCOYNG, EMTPEMOVTAG TOAPAAANAO VITOAOYIGHO Kot PEATIOUEVT] TOSOTIKOTNTAL.

2ToV TUPNVOL TNG, M CPYITEKTOVIKT] 0KOAOVOEL o SOUT KOOIKOTOUTH-0TOK®IIKOTOUTY,
OmoL 0 k®owomomNG petacynuotilel v gicodo oe avorapactdoel mov Paciloviol ota
ovpepalopEve, VO O OmOK®MOKOTOMTHS 0&lomolel OVTEG TIG OVOTAPOCTACELS Yo TNV
mapaywyn g €£000v. Baowég kavotopieg, 0T®mG 0 UNYOVIGHOG QUTOTPOCOYNG TOAAATADY
kepaidv (multi-head self-attention), o1 kwdwonomoelg 0éong (positional encodings), kot ta
diktva eumpdcblog Tpoeodociag, KabioTOOY TOV UETOCKNUOTIOT WO0HTEPO EMEKTAGIO KoL
EVTPOCAPUOCTO o€ TANOOG EPAPUOYDV.

Ot petaoynuatiotés €ovv Béoel véa mpotumo emidoong oty emeepyacio PLGIKNG
YADGOOG, omoteEA®@vTag TN Pdom vaepolhyypovav poviélwv, onwg to Gemini kot GPT-4.
[HopdAinia, €xovv d1€1600GEL duVAIKA GTOV XMPO TNG OPUCNG LTOAOYICTMV, LUEGH TMOV

12

onTik®v petaoynuotiotov (Vision Transformers — ViTs), kaBd¢ kot 6 TOADTPOTIKEG
€QOPUOYEC TEYVNTAG VonpoohvNe. H tkavdtnTd Toug Vo LovTEAOTO100V TOADTAOKES EEAPTNOELS
Kot vo ene&epydlovTal LoKpoypOVIEC OKOAOVOIES LlE ATOTELECUATIKOTNTO £XEL EOPUIDGEL TOVG
LETOCYNUATIOTEG OC TNV Kuplapyn OPYLTEKTOVIKT TNG cUYYpovNg TeXVNTIS vonuocsuvng. Ot
ocvveyloueveg eEEMEEIC oTNV LTOSOUN KOl OTIC TOPUALAYEC TOVG VTOGYOVTOL TEPULTEPM
TPO0d0 o€ {NTLOT EMEKTAGILOTITOS, ATOSOTIKOTNTOG KOl E0POVG EPAPLOYADV.

B.2 Yroloyrotui) llapvoav

H vroloyiotikn mapveav (edge computing) €xel avodelybel oe Bepeddeg mapdderypo g
GVYYPOVNG VTOAOYIGTIKNG, TPOGPEPOVTAS LU0 ATOTEAEGLLOTIKY] OTAVTNGT| GTOVS TEPLOPLIOUOVE
TOV TOPOOOCIOKADV OPYLITEKTOVIK®Y 7oL Paciloviol amoKAEIGTIKA GTO VTOAOYIGTIKO VEQOC,.
Mertatonilovtag Toug VTOAOYIGTIKOVS TOPOVE EYYOTEPH GTNV TNYH TOPAYMDYNG TV OEGOUEVOV,
1N VTOAOYIOTIKT] TOPLO®V EMTPEMEL TNV ENEEEPYOCIN TNG TANPOPOPING GE TOMIKO EMIMEDO,
pHewmvovTog TV €&ptnon omd 1Tr CULVOECOTNTO KOl Tr HETOQOPO OedoUéveV oF
QTOUOKPVOUEV KEVTPA dedoUEVOV. AV Kol 1 VToAoyloTikn vEeoug (cloud computing) €yet
eMOVATpocdlopicel TNV amodnievon Kol v eneéepyacio dedopévav og PeyaAn KAlpoKa, M
guoutn e&dpmon ¢ amd STV VYNANG TAXDTNTOG KOl KEVTPIKOTOINUEVT emeepyacio e10AyeL
GNUAVTIKEC TPOKANGELS, OTMG KOBVGTEPNOELS, TEPLOPICUOVS GTO €VpOc {dVNe, avénuévoug
KIVOUVOLG 0GOAAELOG KOl LELOWIEVT a&loTIoTio 0 KIVNTA 1 OTOUaKpUOUEVA TEPIPAALOVTAL.

H vroioyiotikn mapoeav petptalel autd ta TpofAnuota enttpémovtag Ty enelepyocio
3edoUEVOV GE TPAYUATIKO XPpOVO omeVBelag OTIC GUOKEVES TV YPNOTAOV N 08 KOUPBOVG OV
Bpiokovtol kovtd tovg. Avti 1 mwpooéyylon eivor Wiaitepa ¥pNCIUN GE EQOPUOYES TTOV
amortovy eEUPETIKG yoUnA KabvoTEPNON, OTMG TO GVTOVOUO OYAUOTA, O Plounyovikdg
OVTOUOTICHOG KOl 1] ATOLLOKPUGUEVT] TTOpakoAoVONoT oty vyslovopkn tepiBaiyn. H éhevon
TV KTV 5G €xel evioyvoel mEPAITEP® TNV LIOOETNON TG VTOAOYIGTIKNG TAPLPDV,
TPOCPEPOVTOG GUVIESIUOTNTO e EEQPETIKG YOUNA KabvuoTtépnomn Kot vymAd €bpog {dvng.
Av1o ™V Kaf1oTd 0VOTOGTOGTO GLGTATIKO TOV AVUSVOUEVOV TEXVOAOYIOV OTT®G o1 £ELTTVES
TOAELG, M EMOLENUEVN KoL EIKOVIKT TPAyUOTIKOTNT, KUOMC KOl TO OIKOGLGTNLOTO TOV
S1001KTOOL TV TPAYHAT®V, OGTO OToie 1 OmOJOTIKN Kol €ykoipn emefepyacio dedopévmv
amoTeELEl KPIGIHO TOPAYOVTO EMLTUYIOC.

Kwvntog Yroroyiopog

O xwntdc voroyopds (mobile computing) emTPEREL TNV ATPOCKONTY KOl GE TPOYULATIKO
¥POVo TPOGPROCT, GE VRTOAOYIOTIKOVG TOPOLS UEGH QPOPNTMOV KOl OCVPUOTOV GLUOKEVADV,
wpodyovtag TN ovvdeoudtra oavelaptitog tomobeciag. Amotedel €va TOALSIAOTOTO
texvoroykd medio mov meptlopfavel smartphones, tablets, popetéc cvokevég, Kabmg Kot
VTOAOYIGTIKA GLGTHUOTO EVOOUOTOUEVE GE OYNUOTO, TO omoiot a&lomolo0V OCVPUOTES
teyvoroyieg emkovaviag onmg Wi-Fi, kuyelwtd diktva (4G, 5G, B5G) kot Bluetooth. Ta
Bacwkd dopkd otoryeion Tov KvnToh LRTOAOYICHOL TEPAAUPAvOLV: (0) KIWNTEG GUOKEVEG
GYEONGLEVEG LUE YVAOUOVO TN QOPNTOTNTA KoL TNV EVEPYEWNKN amodoTKOTNTA, (B) achpuata
diktva. mov emrpémovv afldmotn Kol Toyelo petddoon dedopévayv, Kot (y) vmanpecieg
VTOAOYIGTIKOD VEQOVLC 7OV EVIGYLOLV TNV VTOAOYIOTIKN 1KOVOTNTO TMV GLOKELMV KOl
mapozeivouy T ddpketa ong TS pratapiog LEGH AmOUAKPLGUEVTS emelepyaciag.

O mpdopateg e€eMelg, OMMG 1 VIOAOYIGTIKY TOPLPAOV TOALATANG TpOSPaorg (multi-
access edge computing — MEC), evioyvovv mepattépm TNV OmT0dS0TIKOTNTO TOV KIVNTOV
VTOAOYIGLOV, HELDVOVTAG AKOUN TEPIGGHTEPO TNV KALGTEPNON KOl EMTPEMOVTAS TNV TOTIKY
KOTAVOUT TOV VTOAOYIGTIKOV TOPOV GTIG TAPVPEG TOL d1kTHOVL. [TapdiAnia, Texvoroyieg OT®S
ol vnpecieg mov Pacifovral oty Tomo0ecinn Kol T0. GLGTHUATO TANPOUDY HECH KIVITOV

13

GLOKEVMV £YOVV EMEKTEIVEL GTULOVTIKG TIG OLVATOTNTES TOL TEGI0V. O KIVNTOG VTOAOYIGLOG £XEL
UETAUOPPAOCEL KPIGIOVE TOElG, Omm¢ 1 otkovopia, 1 vystovopukn mepifolym Kot 1
YoYoyyio, ETTPETOVIOS TNV TAPOY] EENTOUIKEVUEVAOV VANPECLAOV, TN AYT ATOPACED®V GE
TPAYUOTIKO YPOVO KOl TIV DAOTOINGT 00QOADY Kol TAYEMY GUVIAALAYADV, OVOSEKVOOVTAG TOV
®G KEVTPIKO TAPAYOVTIA TNG SVYYPOVNG WNPLOKNG ETOYNS.

Eveopoatopévog Yaoroyiopog

O evooupatopévog vroloyiopoc (embedded computing) avaeépetor oe efedikevpéva
VTOAOYIGTIKA GUOTHUOTO 7OV £YOVV OYEONOTEL YloL TNV EKTEAECST TPOKOOOPIGUEVEOV
AETOVPYIDV, CLYVA GE TPAYLOTIKO YPOVO, EVIOC OVTOVOU®V 1 MUV TOVOU®Y GUCKEVADV UE
eldyotn M KabBorov avBpomivn mapéupacn. To evoouatOpEVe CLGTALATA dTvouV EUEaoN
GTNV EVEPYELOKT armod0TIKOTNTA, TNV a&l0ToTin Kot TN AEIToVPYIKN oTadepdTnTa, Yeyovoc Tov
10 KOO10TA KPIGILO OE EPUPUOYES OTMG O PLOUNYOVIKOG AVTOUATIOUOS, O EAEYXOC GLUOTIUATOV
G€ OYNUOTA,] VYELOVOLIKT TTePiBodyn Kol T0 NAEKTPOVIKA €101 gvpeiag KATAVAA®OTNG.

Y& avtibeon UE TOVG VITOAOYIGTEG YEVIKNG ¥PNONG, TO. EVOOUUTMOUEVE, GUGTAUATE Eival
GTEVA EVOTIOMNUEVA LIE TO PVGTKO TOVG DAIKO, GUUTEPTAAUPAVOUEVOV 0IGONTAPOV Kot LOVAS®V
EMKOVOVIOG, MOTE VO EKTEAOVV pE oKpiPelo cuykekpiéveg Aettovpyiec. H avotnpn chvdeon
AOYIGHIKOD KOl DAIKOV EMTPEMEL TNV VDAOTOINGT] OTOSOTIKOV KOl OCPUADY VTOAOYICTIKMV
Moewv pe meplopopévoug mopovs. o mopdderyua, otov Plounyovikd Topéd, o
EVOOUATOUEVOS VTTOAOYIGLOG YPNCIUOTOLEITAL EKTEVDS Y10 TPOYVMGTIKN GUVTNHPN G, EAEYYO
TOWTNTOG Kol PEATIOTONMOINGT AETOLPYIKOV — JldIKOCIDY, €V OTOV KAASO 1TNg
avtokivnroflopnyaviog, a&lomoleital yio Kpiciueg AELtovpyieg OTmG 1) oviyvenoTn GUYKPOLGNG,
0 TPOCAPHOCTIKOG EAEYYOG TOPELNG KO 1] cvTHVOUT TAON YN OT).

B.3 Evpuiig Yrohloyrotikn Hapveov

H gveung vroloyiotikn mapvemv (edge intelligence — EI) cuviotd 1o onueio chykiiong tng
TEYVNTAG VONUOGLVNG KOl TNG VITOAOYIOTIKNG TOPLOADV, ETTPEMOVING TV EKTEAEGT ELEVAOV
EPUPHLOYDOV UE SLVOTOTNTO AYNG ATOPACEDMV GE TPAYUATIKO ¥POVO, TOTIKA, Yw0pic e&dptnon
Omd KEVIPIKEG LIOOOUEG VEQOLG. Xe avtifeon HE To TOPASOCIOKE GULOTALOTO TEYVNTAG
vonuoovvng mov Pacifoviar 610 vEPOG Kot evOEYETOL Vo avTIUETOMI{oVYV KOBLOTEPNOELS,
KIVOLVOLG OmoppnToL Kot ou&Enuévr ypnomn e0povg LdVNG, 1 ELPLNC VITOAOYIOTIKT] TOPLPDOV
TPAYLLOTOTOEL TNV eMEEEPYOTio TV OEOOUEVMV TANGIOV TNG TNYNG TOVS. AVTA 1 TPOGEYYIoN
S UMEEL TOYVTEPOVGS YPOVOVG UTOKPIONG, CVENUEVT] AGPAAELD KO KAADTEPT] dLOXEIPLOT TV
SL0OECIUOV TOP®V ETKOWVOVING.

"Eva daitepo yopakmpioTikd onTnG TG TPOGEYYIoNS Eival 1 SuVATOTNTO EVOOUATMONG
GLALOYIKGV oynudtov pddnong, o6nwc m ocvvepyoatikn pabnon (federated learning), mov
EMTPENMOVY TN ovveyn Pertioon TV HoVIEA®V TEYVNTAG VONUOGUVNG YMPIC TNV avAaykn
OTOGTOANG €VOICONT®V JedOUEVOV GE OMOUOKPUCUEVOLS Olakopotés. Etol, M gveung
VTOAOYIGTIKN TAPVPOV KafioToTol I00VIKT Y10 EPAPUOYEG TTOV ATALTOVYV TPOCUPUOGTIKOTNTO
KO S10T PO TOL OTOPPHTOV.

To K0Pl YOPOKTNPISTIKA TNG TEPIAAUPAVOLY TNV KavOTNTA EEQTOUIKELONG EUTEIPLOV
XPNOTN, TNV TPOPAEYT OMOTEAEGUATOV Kol TN AYn amopdcewv pe ovtovopio. EmmAéov,
OlEVKOADVEL O QULOIKEG Kol avOpomokevtpikég aAAniemdpdoels, PeAtidovoviog 1
AETOVPYIKOTNTA POVNTIKOV Ponbdv, OlEma@dv YpNoTn Kol GUOTNUATOV ovVOyVAPLoNG
cuvasOnuitov, Tpoceépovtag pia mo dtaictntikn epmelpio. H Prociudmra amotelel emiong
OepeMddeg migovékTne, KaBMg M Tomikn emefgpyacio kot 1 €VEULNG dloyeipion TOpwV
UELOVOUY GNUOVTIKG TNV Katavdiwon evépyewoc. To yeyovog ovtd kobotd v svgun

14

VTOAOYIGTIKN TOPVPOV 1010iTEPA KATAAANAN Yo TOpElS Omg Ta EEuTva evepyelakd dikToa, M
veopyio axpiPeiog kot ot TeptPariovtikd evaicOnteg epapproyEc.

B.4 Tonwn Xopnepacpatoroyia

H tomixn ocvunepacpatoroyia (on-device inference) avagépetol otnv eKTEAECT] HOVTEAMV
Babuag pdabnong amevbeiog o oLoKELEG TOPLEOV, OT®G smartphones, EVOOUATOUEVA
ocvotnuota Kot cvokevég IoT, ympig v avdykn cOVOECN G e OTOUOKPVGLUEVEG DITOOOUEC. ZE
avtifeon pe) @dorn ekmaidevong, 1 onoio ivol 1010UTEPE OMALTNTIKY] GE VTOAOYIGTIKOVG
TOPOVG Kol GLVNOWE TPAYUATOTOLEITAL GE 1GYLPE KEVTPA JESOUEVAOV, 1| CLUUTEPAGLOTOAOYIOL
BacileTon ot (PNOT TPOEKTAUOEVUEVEOV LOVIEAWMY YLl TN ANYN OMOQPACEMY GE TPOYUUTIKO
YPOVO, KOOIGTOVTOG TNV KATAAANAN Y10, 0vATTUEN € TEPIPAALOVTA LIE TEPIOPICUEVOLG TOPOVG.

H tomikn ektéleon teyvnNg VONUOoSHVNG TPOGPEPEL TOAAATAG TAEOVEKTALATO. APYLIKA,
mapéyel eEapeTIKA yopnAn kabvotépnor, kabmg dev AmOITEITOL ATOUOKPVGUEVT] EMKOIVAOVI
v k6B TPOPAEYT, EVIGYVEL TNV TPOCTAGIN TNG WOIOTIKOTNTAS TOV YPNOTOV dlOTNPOVIOS TO
OedOUEVE, TOTIKG, Kol HEIOVEL TNV KotoviAwmon edpovg (dvng ko tnv gEaptnon oamd
K0GTOPOPOLG VTOAOYIGTIKOVG TOPOVG 6TO VEQOS. EmumAéov, Stacparilel vymin aSlomiotio o€
nepdilovta pe mePopGUEV 1 Sdeimovso cuvdesuOTNTO, KAOIGTOVTAG TNV TEXVITY
VONUOGUVI] TO EMEKTACUN Kol Piooun yio e@apuoyéc peyding xiipoxoac. Iloapd to
TAEOVEKTNIOTA TNG, 1] TOTIKT GUUTEPUCUATOAOYIO. GUVOOEVETAL OO GTUOVTIKEG TPOKAT|CELS.
O1 TTeploPIGHOL GE VTOAOYIGTIKN 1GYD, UV UM KoL EVEPYELNKT amOO0GT] TOV Yopaktnpilovv Tig
OLOKEVEG TTAPLPAOV KOOIGTOOV JVGKOAN TNV EKTEAECT] PEYOA®V LOVIEA®V, TOV OTOiMV Ol
OTOITNOELS 0 OmMOONKEVTIKO YMDPO Kot neEepyacio cuyva vEePPaivovy TIC SVVATOTNTEG TOL
VAoV, H gtepoyévela tov S100E01umvV TAATPOPUOYV—E SLOQOPEC GE EMEEEPYAOTES, LOVAOES
EMTAYLVOTS KO a1 pec—mnpochitel TOALTAOKOTN T GTHV VAOTOINOT| Kot BeATioTOTOIN o).
Emutiéov, n katavdAwon evépyelag amoterel kpioiuo CAtnua, kabdg n ektéleon adyopibumy
TEYVNTIG VOMUOoUVIG pmopel va peidoetl dpactikd t dSwapkewa Cong g urotopiog, v
duvapcoi meptParioviikol mapdyovreg, Omwe n Oeppokpacio, vOEXETAL VO EXNPEAGOVY TNV
aTO000M.

H avtipetdmon avtdv 1oV TpokANcE®V amottel KAVOTOUES TPOCEYYIGEIS OT GUUMIEST
UOVTEL®V, PEATICTOTOMGEI LE EMYVMON TOL VTOKEIUEVOL VAIKOV, KoOMG kot €Evmveg
OTPATNYIKEG KOTOVOUNG TOP®V OV AQUPEVOLY DIOWIV TOVG AEITOLPYIKOVG TEPLOPIGHOVS TG
kd0e ovokevng. Moévo péom TETOWV TEYVIKOV B0 KOTAOTEL €PIKTA 1) OTPOCKONTN Kot
0T0S0TIKN LAOTTOINGT) TG TEXVNTNG VONUOGVVNG OTIG TOPLPES TOV O1KTVOV.

B.5 Anodotikn) Badwa MdaOnon

H amodotikn Pabid padnon (efficient deep learning — EDL) anookonetl 6tn dac@diion 0Tt T
Babid vevpovikd diktve UTOPohV VO AEITOVPYODV OTOTEAECUATIKG OE TEPIPAAAOVTO pE
TEPLOPIGUEVOVG VIOAOYIOTIKOUC TOPOLS, HEYIOTOMOIMVTAG TNV 0mdd0or, o€ eminedo
VTOAOYIGHOV, pviung Kot evépyetog. [lapott n akpifeia Tapapével facikn emdioén katd Tov
GYEOOOUO HOVTEL®MV, 1] VAOTOINGT| OTOJOTIKNG TOTIKNG GUUTEPACUATOAOYIOG TpobmoBETEL TV
Tavtdypovn e&looppOmNoN TOAADV KPIoUOV HETpIKOV amodoone. [lapdyovteg omwg M
kaBvotépnon (latency), n vroloyiotiky] moAvmAokdtTa (computational complexity) kot o
pvOpdg diélevong (throughput) kKabBopilovy TV ToOTNTA KOL TV ATOTEAEGLATIKOTNTO LLE TNV
omoia &va povtélo ene&epydletol dedopEVa, KATL TOV EIVOL 1O10UTEPA CNUOVTIKO GE EQUPHOYES
Tpoyuatikod ypovov. Emmiéov, to péyebog tov poviédov (model size) kot T0 omOTOTMOUO
pvnAung (memory footprint) exnpedlovv TN duvatdTNTA EVOOUATMOONG TOV OE GLOKEVEG LE
TEPLOPICUEVN YOPNTIKOTNTO amobnkevong kout RAM, O6mwg ot cvokevég mopvemv. H
EVEPYEIOKN KaTOVAA®ON omotelel emione koboplotikd mopdyovta, €WOIKG e QOPNTEC M

15

OVTOVOUES CLUCKEVEG TTOL EEAPTMOVTOL OO TEPIOPICUEVEG EVEPYELOKEG TTNYES (TT.)., UTOTAPIES).
[Tépa amd T1g ahyopOuKég BEATIOGELS, 1 GLUPATOTNTA e EEEIOIKEVUEVOVE EMLTAYLVTEG DAMKOD
(accelerators), o6mwg GPUs xot NPUs, xkobictoator oloéva KoL 7O ONUOVTIKA Yo TN
Bedtiotomoinon g ektéleong. H alomoinon TéTOu®V OPYITEKTOVIKOV EMTOYVVEL TN
CUUTEPOAGILATOAOYIOL KO UEIDVEL TNV KATOVOAMOT &VEPYELNS, KADIGTOVTAS TNV avATTLEN
LOVTEL®OV TO OTOSOTIKT).

Qotdéco, 1 emitevén VyYNANg emidoong Kol amodOTIKOTNTOG OmOoLTeEl TNV EmiAvon
avtioTadpice®v HeTold TV TapuTave HeTPIK®V. [a mapddetypa, | peimon tov peyédovg evoc
LOVTELOL UTOPEL VO ETNpedoel TNV akpiPeta, Vo 1 emdloEn Yauning kabvotépnong evoéyetat
va avénoel TV evepyelakn kotovaloon. H dwyeipion avtdv t@v mopaydviov omottel pa
SIEMOTNUOVIKY] TPOCEyylon, 1 omoio. o Tpémel va cLVOVALEL APYITEKTOVIKO GYESLOGHO,
UNYOVIKT] VAIKOD Kol BEATIOTOTOINGT AOYICUIKOD, MGTE VO JUGPUAIOTEL OTL TO UOVTEAQ
TEYVNTNG VOTLOGHVNC TOPAUEVOLY DYNANG EXIO0GNE KL TOWTOYPOVO KUTOAANAL Y1 OvATTVUEN
0€ L0 TOIKIATD VAIK®V TAOTPOPUOV.

Kpavromoinon

H «Pavtomoinon (quantization) amotelel pio, oo Tig TAEOV d100E00UEVEC TEXVIKEG GUUTIESTG
LOVTEA®V VEUPOVIK®V SIKTO®OV, GTOYEVOVTUS OTI| UEIDMON TOV VTOAOYIGTIKOD POPTOL KOl TV
QTOITNOEOV G UVIUN KOTA TV @don g ektéleons. H Baotkn apyn e nebddov cuvietartan
OTN UETOTPOTN TOV TOPUUETP®Y KOl TOV VTOAOYIGHOV EVOC SIKTVOV OO OVOTOPAGTUCELS
KIvNtng LmodloToAng vyming oaxpifewog (32-bit floating point) o€ avomapacTdoelg
younAotepng akpipetoc, 6nwc 16-bit 1 akepaiovg tov 8 bits. H peimon g axpifelag odnyei o
KPOTEPES OMALTIOELS OMOONKEVOTNG, UEWWUEVY YPNON UVAUNG Kol ToyOTEPT] EKTEAEOM,
KoOIGTOVTAG TO. LOVTELD TEXVNTNG VONUOGUVNG MO KATAAANAQ Yo OVATTUET GE GUOKEVES
TOPLPADV UE TEPLOPICUEVOVG TOPOVC.

Yrépyovv ddpopa oynuata Kpavroroinong, o6nmg ta FP16, INTS, DR8, FX8 kot FFXS,
KkaBévo amd To. omoiol TPOGPEPEL JAPOPETIKA emimeda aviicTabpicemv peta&d axpifelag,
VTOAOYIOTIKNG OmOd0TIKOTNTAG Kol cvpPatdtrag pe 1o vrokeipevo vako. H emloynq g
KATAAANANG otpotnyikng e&aptdtar amd Tig dSuvatdTNTEG TNG TAATQOPLOG VAOTOINoNG (7.x.,
vroompién amd CPU, GPU i NPU) ko Tig 0mattoelg e EKAGTOTE EQUPLOYNG, EMOUDKOVTOS
TNV eNTEVEN LOG IGOPPOTHAG HETOED VITOAOYIGTIKNG ATOS0CTG KOl OTMAELNS akpiPetag.

KaBdc ov epapuoyéc teyvntig vonuoohvNg G€ GLOTHUOTO TAPLPOV cvveyilovy va
enekteivovial, 1 KPovtomoinon kot GALEG TEYVIKEG CLUUTIEGNC, OTIMG TO KAAOELN TAPOUETPOV
Kot M ondotaln yvoons, owdpapotilovv Kaiplo pOLo GTNV EVEPYEWNKA OTOOOTIKY Kot
EMEKTACIUN AVATTVE LOVTEL®VY GE TPOYUATIKO ¥pOvo. H amotelecuatikn EVomUAT®OOT dVTOV
TOV TEYVIKOV amoterel avaykaio mpobmoddeon yioo TV VAOTOINGTN EVELOV GLOTNUATOV TOV
UTOPOLV VO OVTOTOKPIOOOV OTIC OTOLTHGELS GUYXPOVOV EQPUPUOYDY GE VTOAOYIOTIKA
nepPdAlovta pe TEPLOPIGHOVG.

I' Tonue Lopnepacpatoroyio og Kivntég Xvookevég

H paydaia eEanimon tov epapuoymdv Padidg pabnong ta teAevtaio £Tn €€l 0ONYNOEL GE Ui
OeeM®ON HETATOTION TPOG TNV TOMIKY| EKTEAECT aAyopiBU®V TEYVNTAG VONLOGVUVIG,
OVTOVOKADVTOG TNV GLEAVOLEVT] OVAYKT] Y10 ETEEEPYAGIO GE TPAYUATIKO YPOVO, TPOCTAGIH TOL
WOTIKOO amoppnTov kot peimon tng kabvotépnong. Ot amortioelg ovtég eivor Wiaitepa
€VTOveG O€ KPIGIHOVG TOuElG, OmmC M vyelovolky TtepiBaiym, To €vELN OYNUOTO Kol Ol
EPUPUOYES ETAVENUEVG TTPOYLOTIKOTNTOG.

To mopdv Ke@dAaio diepeuvd TIG TPokANcelS mov oyetilovtarl e Tn PEATIOT eKTélEOT
Babiov vevpoVIK®V SIKTO®MV GE KIVNTEG GUOKEVEG, OIVOVTOG EUPOCT] OTNV ETEPOYEVELD TOV

16

vAkoV (hardware heterogeneity), Tnv tavtdypovn eKTELEST TOAATA®V povTéA@Y (multi-DNN
execution) Kol TNV OVAYKN Yo SUVOIKY TPOCOPUOYH TOV OToPAceE®mv Katd Tov ¥pdvo
extéleong (runtime adaptation). Xto mlaiclo ovtd, mapovoidleton to CARIN (Constraint-
Aware and Responsive Inference), éva koawvotopo wmloiclo oyedlaopévo yio T
BeAtiotomompévn avantuén HOVTEA®MV TEXVNTNG VONUoouvng o€ Kivntd mepidiiovto. To
CARIN vrootnpilel EQUpPHOYES TOCO EVOG OGO KOl TOAAUTADY LOVTEA®V, AAUBAVOVTOG VTOWLY
TEPLOPLIGILOVE TOPWV KOl GTOYOVG TOIOTNTOG VAN PESTAG oL opilovTtal SuVOULKE amd ToV TEAMKO

xPAOT.
I.1 Emokénnon Xvoetiportog

Ye avtifeon pe T KAaowég Tpooeyyioelg feltictonoinong o eninedo povrédov, 1o CARIN
EMIKEVIPOVETAL OTOKAEIOTIKA OTY| Ol0yElPLoT OE EMIMEDO GLOTAOTOG. AVTL VO TPOTOTOLEL T
dopn N TNV EKTTAdEVOT TOV 1010V TOV HOVTEA®V, 0510TTOLEL Lol amobfKT TPOEKTOOEVUEVDV
VEVPOVIKOV OIKTOMOV LE TOIKIAEG OPYITEKTOVIKEG KO EQPOPUOLEL TEYVIKES KPAVTOTOINGNG LETA
Vv eknaidevon yuo v evioyvon g amodotikdtnras. O Pacikdg 6TOYOC TOL CLGTHUATOG Eival
0 TPOGOIOPIGUOG TOV KOTOAANAGTEPOL (gbyous poviélov-emelepyaotr| yio kabe epintwon,
AOPBAVOVTOS LTOWIV TO, YOPOKTNPLOTIKA TNG CLOKELNG, UE OKOMO TN PEATIOT ekTéAEON
epopuoymv Padiag pabnong ot etepoyevi kivntd wepiBdriovta. To CARIN amoteleiton amnd
Ta akOAovBa dV0 Pacikd GLOTATIKA:

1. "Eva ek@paoTiké mhaiclo Pehtiotomoincng morhami®v otoéHywv (multi-objective
optimization — MOQ), T0 07010 HOVTELOTIOIEL TIG AMALTAOELS TOV EPAPUOYDYV Pabidg
pnénong g Eva TpoPANUe €£100pPOTNGTG TEPLOPIGUMY Kol EMOOGEWDV.

2. Tov aiyopOpo talvopnong kot avalinTnong e exiyvmon Tov ypovov eKTéleong
(runtime-aware sorting and search — RASS), o onoiog emttpénel TV 0mOTEAECUATIKN
TPOCAPLOYN TOV GLOTILOTOC GE SLVOIKA PeTaParAdpeveg cuvOTkeg Asttovpyiag. O
RASS dnovpyetl apyicd €va cOVoAo amd eVOAMOKTIKEG SLOUOPPDCELS EKTEAECTG
(ONAadN S10.POPETIKOVS GUVOVAGHOVG LOVTEAWDYV KOl ETEEEPYACTAOV) KO KOTACKEVALEL
Ui TOATIKY EVOALOYNG LETOED aVTMOV, MOTE VO AVTILETOTILOVTAL QVTOUOTO OAAXYEC
ot 000G IUOTNTO TOV TOPMVY, JTNPDVTOG TAVTOXPOVA TNV embuunt) moldTNnTa,
VN pecioc.

H ovvoiwn ponj epyacidv tov CARIN Swpbpdvetar og dVo draxpités pdoets, n kabepio
UE GoQmG KaBoPIouEvo poro 6T1 S1odkacio PEATIOTOTOINGNG Kol EKTEAEGNC:

o Ektog o0voeong (offline) pdon: To cOom o Katackevalel kot ETADEL Eva TPOPAN LA
BeAtioTomoinong ToAAATADY GTOY®V Y10, Lo, SESOUEVT) GUGKEDT], AAUBAVOVTAS VITOYLV:
(o) ™ depyasio M Tig depyacieg Pabdibg pabnong mov amortel n epappoyn, (B) Tovg
otdyovg emmédov vanpeoiag (service-level objectives — SLOs), kot (y) to teXViKd,
YOPOKTNPOTIKG Tng ovokevnc. H €Eodog avtnig g @dong meprrapfdver €va
BeATioTOTOMUEVO GUVOAD SLOUOPPDOCEMY EKTEAEONG KoL [0 AVTIOTOLYN TOMTIKN
eVaALOyYNG HeTa&d TovG.

e ®aon ypovov gktéreong (online): O Awayeiprotig Extéleong (Runtime Manager —
RM) mapokorovbel cuveydc T GLUTEPLPOPE TNG EQOAPUOYNG KOl TIG CLUVONKEG TOV
ovotnoToc. Otav evtomoetovy aAlayEC 6ToVG O100Ec1one TOPOLE N GTNV EMidooT, N
SlpOpe®on ekTéLEONg TPooapuoleTal duvapukd, PAcEL TG TOMTIKNG 7OV £)El
kaBopiotel otV TPONYOUEV Ao

17

Mécw avtov tov oyedlacpov, 1o CARIN mPOGEEPEL O EVEAMKTY, TPOCUPUOCTIKY KoL
OmOdOTIKN ADGT Yo TNV EKTEAECT] EQUPUOYDY Bobldc pHabnong oe Kvntég Kol eTEPOYEVEIC
TAUTPOPUES, AAUPAVOVTAG VIOYIV PENAGTIKOVE TEPLOPICLOVG KOl GTOYOVG ToL opilovial omd
TOV TEMKO YpNoTN.

I.2 Behktwotomoinon [Morhomdhdv Xtoymv

H zmpocéyyion g Peitiotomoinong moAamAdv otdywv viobeteitor 6to mhaicio tov CARIN
v dVo KVPLovg Adyovg: (o) ot epapuoyéc Pabidg pabnong cuvnbmg cvvodevovtal omd
OVTIKPOVOWEVEG OOITNOEL emidoons, kal (B) TO HOVTEAO OLTO EMTPEMEL TNV TOPAYMYN
TOWKIAOLLOPP®V KOl EVOALAKTIKOV ADGE®V, YEYOVOS OV EVIGYVEL TV TPOCUPLOGTIKOTITO TOV
GLOTNOTOG o€ dUVOKE TEPIPAALOVTA. O1 AVTIKEWEVIKEG GUVAPTIGELS KO Ol TEPLOPICUOL TNG
BeAtioTomoinomg TPoKVTTOVY GUEGH OO TOVG GTOYOVS EMUTEGOL VINPEGiG oL opilovTal amd
TNV EQOPLOYT.

To obvomuo vrootpiler ocevdpla TOGO €VOC 0G0 Kol TOAALOTAGDV HOVIEA®V,
eEaoeoarilovtag sveMéio. Kol EMEKTAGIUOTNTO. XTNV TTPOTN Tepintwon, N Pertictonoinon
Baciletar og £va ohvoro amd Pacikég LETPIKESG, OTWS TO LEYEDOG TOL LOVTEAOL, 1] VTTOAOYIGTIKN
moALTAOKOTNTO, 1) aKpifeia, N kaBvoTéEPNON, 0 PLOUOG SIEAELONC, 1 KUTOVAAMGT EVEPYELOG KOL
TO QTOTUTIOMUO UVAUNG. KOOGS €ivol Vo OlaTnPeiTol DYNAY 0mTOd06T CUUTEPUGUATOAOYIOG
xopic va Blyeton 1 AgrtovpykdtnTa 1| va mopafialovial ol TEPLOPIGHOL TG TAATPOPUOG. ZE
TePPAALoVTO TOALUTAGDY LOVTEL®Y, EVEMUATOVOVTUL TPOGOHETEG UETPIKEC EMIOOOTG, OTMG O
KOVOVIKOTIONUEVOG XpOVoG dekmepaimong (normalized turnaround time), o pvOuds S1Edevong
cvatiuartog (system throughput) ko o Babpog ducatosvvng (fairness) peta&d T@V LOVTELDV.
O1 PETPIKEG AVTEG EMTPETOVY TNV 10OPPOT KATAVOUN TWV TOP®V KOl OTOTPETOVY POIVOLEVQ,
ouupPopnong N dviong e&umnpéong, ta onoio elval KPIGILO GE EPAPUOYES LE TAVTOYPOVT
EKTELECT] TOALOTADYV SIEPYAGIOV TEXVNTNG VONLOGVVNC.

Av ko1 ot xhoowol olyopiBpor PeATioTonoinong TOAMAOTAGY GTOX®V UTOPOLV VO
Tapaydyouv cOHvoAa anodotikmv Abcemv (Pareto-optimal solutions), n petafintoétra otovg
S1oB€01oVg TOPOLG KUTA TOV YPOVO EKTEAECT|G UETAPAAAEL SOVVOUIKG TOV YDPO ADGEDV Kol
ovyvh amoitel TNV EMOVOANTTIKY €niAvon Tov mpoPAnpatos. Avti N omoitnorn kafotd ™
dradtkacio pun PLOCUN Y100 GVCTAUATO TPAYLOTIKOD YPOVOVL. [lo TV OVIIWETOTIOT QVLTOV TV
neplopopdv, 1o CARIN gvowpatdver tov aryopduo RASS, o omolog emiddel to mpdPinpa
BedtioTomoinong o Lovo popd Kotd T (Aot £KTOG GOVOEST|S, TAPAYOVTOS £VOL TETEPUCUEVO
GOVOLO ADGEMY OV KAADTITEL OAEG TIC PEOAGTIKEG TEPUTTMGELS SuVapIKNAG petafintomrag. H
dwdikacio Aeitovpyel g dVO GTAdINL:

1. Ta&wvépnen tov mBavav Avcemv pe Bdon pio HeTpikn PeAtiotdTNTOg 1 OMoin
TOGOTIKOTOLEL TNV omdoTaon kabe Avong amnd To 1Wentd onueio (utopia point) Tov
TPOPANLOTOC TOAATADY GTOYWV.

2. Avalitnon Aee®v yio Tov eVTomIcUO EKEVOV TTOL UITopovV VoL KAADWOLY HEALOVTIKA
oevaplo TapaPiacng TEPLOPIUGV, KAOMS Kol TPOGIOPIGHOG TNG TOATIKNG EVOAAAYNG
peta&d Toug.

Katd tov ypoévo extédeons, o Awyelprotg Extéleong avtipetomnilel éva cbvolo amod
duvapkég aAlayég otovg dnbéciuovg mOpovg, ol omoieg emmpedlovv TN Agrtovpyic. TOV
ovotiuatog. Ta mo ocvvifn {nmipota agopoldv tovg emefepyaotés, Otav ONAadn 1
OTTOLTOVUEVT] VOAOYIGTIKY 1oY0¢ vmepPaivel TiG dLVATOTNTEG TOVL gvePyoy emeEepyaotn,
001 YOVTOG EVOEYOUEVMG G VITEPBEPpIavVEN 1| VITOPAOUIoT arddoons. AvTicToryd, TEPLOPIGUOL
pvAung umopel va avakvyovy otav 1 xprion RAM mincudletl 1o péyioto 6plo, yeyovog mov

18

emiong amortel Tpocapuoyn. H otpatnyikn tov cuotiuatog TpoPAémel evorlayég eviog NG
TPEYOLG UG OAUOPPMOTG, Ol OTOIEC TEPIAALUPAVOLV:

o Alhoyn eme€epyaotn (7)., petagopd and CPU o GPU)
e Alhoyn povtéhov og eAaPPOTEPT EKOOYN LLE YOUUNAOTEPES UMALTNGELS
e YUVOLUGUO TOV TUPUTAVE®

INo mapdderypo, O6tayv TPOKLTTOVY TEPLOPIGHOT GTOV EMEEEPYOOTY], TO GUOTNUO OiVEL
TPOTEPAOTNTO GTNV 0EI0TOINGT EVOC AALOL dtabéatpov emtayvver. Edv avtd dev givar epucto,
EMAEYETOL TO LOVTELO LIE TNV EAAYLOTI VITOAOYIOTIKT] TOADTAOKOTNTO. AVTIGTOLY0, GE GLUVONKES
TEPLOPICUEVNG LVIAUNG, TTPOTEPALATNTO EYEL 1] CVTIKATAGTACT TOV HOVTEAOL WE OLTO TTOV
TOPOVGIALEL TO KPOTEPO OMOTOTMOUN LVIUNG.

[potapyikdés otoxoc v RASS eivar va mpoo@éper €vav akydpiOuo youming
VTOAOYIOTIKNG TOADTAOKOTNTOG, 1KAVO Vo vrootnpiel tayeieg petafdoeig peta&d
OLOHOPODOCEDV EKTEAECTG. AVTO EMTVUYYAVETOL HECH TNG TOPAYMYNS VOGS HKpoD aptBpod
MooV (£0¢ TEVTE), TOL OUMG EIVOL ETOPKEIS Y10 TNV KAALYT TOV TEPIGGOTEPOV PEAAICTIKOV
oevapiov. H avtiotoyn moMrtiky| evadloyng dlatnpeitor emiong pikpn Kot €vEMKTN,
amoTeLOOUEVT] amd €vav TEPLOPIGUEVO apldud omAdv Kavovov uetdfacns. Me ovtov tov
TPOTO, OCPUAILETOL 1 OTOSOTIKOTNTO TOV GLOTHUOTOC YMPIC VO omotteital €k VEOU
BeltioTomoinomn katd Tov ¥povo eKTEAEOTG.

I3 Mewpapatiki MebBodoroyia

To cUyypove oAoKANPOUEVE KUKADUOTO KIVITOV cvbokevdv (mobile SoCs) evompatdvovy
moALomAoVG etepoyevelg enelepyaotéc—onmg CPUs, GPUs ka1 NPUs—ot omoiot umopotv va
XPNOLOTON OOV Vi TNV EKTEAECT] VELPOVIKOV SIKTO®V. Q6TOG0, N TANPNS 0&lomoinot Tovg
amottel GLYVE TPOCAPLOYN TOV HLOVIEA®V LEG® TEXVIKOV KPavTonoinong, Kabm¢ moriol amd
OVTOVG TOVG EMTAYLVTEG VTOCTNPILOVV HOVO avOmapacTACELS HElUEVNS okpifelog (.y.,
INTS). H eopopuoyn Jdweopetikdyv oynudtov kPavionoinong oe éva oOVolo
TPOEKTOOEVUEVOV LOVTEAWV emitpénel 6to CARIN va SopopPaOceL Evay gupOTEPO YDPO
mOOVOV ADCEDV, e JLUPOPETIKA oNUEiR avTIoTAOIoNG HETAED akpiBELNG Kot VTOAOYIGTIKNG
Q000 TIKOTNTOC. AVTO EVIGYVEL TN SUVATOTNTO TOV GLGTHUATOS VO TPOGAPUOLETAL GE TOIKIAEC
OTOTNOEL ATOO0CTG KO TEPLOPIGHOVG DAIKOV.

o v a&ordynon tov CARIN, oyedidotnkoy Kol vAoTomOnKay T€coepa O10KPLTA
GEVAPLO, EPOPLOYNG, £KOOTO LE GUYKEKPLUEVOLS GTOXOVG EMESOV vnpesioc. Ta 600 TpmTa
oevAplo APOPOVY TNV EKTEAECT] €VOC HEUOVOUEVODL HOVTEAOL, €V To €mOpeva 600
mephapupdvoov mepdAlovia pe TOVTOYPOVY EKTEAEGT] TOAAOTAGDV HOVIEA®V,
TPOCOUOIDVOVTOG GV KEG VYNAOV POpToL. [l KABe Geviplo dnpovpyndnKe To avticToryo
VTOGUVOLO HOVTEAMV, OTO TO OTOi0. TO GUOTNUO UTOPEl Vo eMAEEEL KOTA TN StadiKacio
coumepaouatoroyiog. Evoeiktikd, 1o mpdto oeviplo eEETAlEL TNV KATIYOPLOTOINGN EIKOVAG GE
TPAYUOTIKO XpOVO, LE GTOYO TNV LIOGTNPIEN EPAPHLOYDY TOV OTOITOVY avayvdplor 24 kapé
avd devteporento (frames per second). Zvvenmc, Tifetan M ALGTNPOG TEPLOPIGUOG) LEYIGTN
kabvotépnon twv 41.67 ms avd npoPreyn. To avtictoryo mpdPAnpe TOALATAGY GTOX®V
GTOYXEVEL OTNV TOLTOYPOVN peylotomoinon g axpifelag tagvounong kot Tov puduod
diélevonc.

H mepopaticy a&oddynon mpoypotomombnke oe Tpelg dlakpItég KIvTéG GUOKEVEG, Ol
omoieg emAEyOnKay pe KPP0 TNV OVIITPOCHOTEVTIKOTNTO O GYECT| LE TIC KATNYOPIeES NG
TPEYOVGAS oyopds (yaumAod, pecaiov kot vyniod k6etovg). Kabe cuokevm pépet dropopetid
YOPOUKTNPLOTIKH VAIKOD KOl EVOOUATMOVEL ETEPOYEVEIS EMTOYVVTES, EMTPETOVTOG T OOKIUN TOV

19

CGULOTNLOTOG OE PEAAICTIKA, dtapoponompéva mepipdirovta. Méowm avtg g pebodoroyiag,
a&oroyeitan n kavoétTo tov CARIN va mpocappdletal SVVOUIKE, Vo EMAEYEL OTOOOTIKES
SLOUOPPMCELS EKTELECT|G KOl VOL 1ot pel VYNATY 0mdd0oN KAT® OO SOUPOPETIKES OMALTIGELS
EPUPHOYNG Kol TOIKIAEG VAIKEG TAATQOPLEG.

I'4 Amoteréopata

H an6doom tov CARIN a&loloyndnke mEPALATIKA EVaVTL 0VO PACIKOV KATnyopltdv pnedddwmv
ovapopags:

1. Amhoikég kol EPTMEIPIKES OTPUTNYIKES EMAOYIG, OTWOC AVTEG TOV CLUVOVIMVTOL GE
TPOYLOTIKES EUTOPIKES EPAPLLOYEC.

2. To OODIN, éva mPOGYATO Kol GYETIKO cVOTNUO PeATioTOTOINGONG HE OTOYXO TNV
TPOCUPHOCTIKOTITO O SVVOKEG GLUVONKEG,.

O gumepikéc pébodot avapopdg mephapupavay:

o Tnv emhioyn] ToV povtéLov pe TNV VYNAOTEPN 0Kpifela 1 TO YUUNAOTEPO OTOTOTMUA
UVAUNG, aveEapTNTmMG GAADY TOPOUETPOV.

o Tn ypion ¢ dSwpdpemong ektéheong mov Bewpeiton PerticTomompuévn yio GAAN
oLOKELT, YOPig eEEIBTKELON OTN GTOYXEVUEVT] TAUTPOPLLCL.

o Tnv avripeT@OmION TOL TPOPANLATOS TOAALITADY GTOY®V OG TOAATAL ave&dpTnTa
TPOPANLOTO LELOVOUEVOD GTOYOV, OyVOMVTOG TIG LETAED TOVES OAANAETIOPAGELS.

Extéleon Evog Movtéhov

Yta &0 TPMTO, oeEVAPLE, OTov afloloyeitan M EKTEAESN €VOG UEUOVOUEVOD UOVTEAOVL, TO
CARIN emdekVIEL GOPDG AVMTEPT OOS00T G€ GUYKPIoT LE O Ta onpeio avapopas Kabdg
ka1 pe o O0ODIN. Xvykekpyéva, oto 1° oevdpio (Karryoplomoinon €kdvag e TPAYIATIKO
xpOvo), To CARIN emtvyyavel Bertimon 32.7% otov pubuod diéhevong kot péon avénon 0.156
povadwv otnv akpifelo, eved oto 2° oevdplo (Katnyoplomoinon KeWEVOL UE YOUNAO
OTOTOTMOUO LVT|UNG), Topatnpeiton emtdyvvon katd 19.9% otov ypdvo extédeong Ko peimon
katd 2.8 MB 610 anotdnope pviune.

Extéreon Moiromrhdv Movtéhov

Katd v agloddynon ota cevipia 3 kot 4, 6mov aroarteitol Tantdypovn eKTEAEST] TOAAATADY
povtélmv, 61o 3° oevaplo, To CARIN datnpel TV VIEPOYN TOL EVOVTL TOV OVIOYOVICTIKOV
nefodwv, e£ac@oMlOVTAG OMOTEAEGLOTIKY KOTOVOU TOp®V Kot YounAn kabvotépnon. To 4°
GEVAPLO GUVIGTA L0 TTLO OTOLTNTIKN TTEPIMTOON: 01 TEPLGGATEPEG LEBODOL OVOPOPES 0dVVOTOVY
Vo TOPEyOouV 0TOLOdNTOTE AVGT) TOV VO, IKOVOTOLEL TOVG TEPLOPIGLOVS, EVD OTOV 0LTO KOTACTEL
EQPIKTO, 1 ATOJ0CT TOLG TUPAUEVEL GUYKPIGIUN, YEYOVOS TTOV AVASEIKVIEL TNV OVOYKOLATITO
Oapéng mOKIAOG LOVTEAWDV GTO GUGTNUO Y0 OTOTEAECUATIKY] OVTIUETMOTIOT TOADTAOK®OV
MEPUTTAOGEDV.

pocappoyn katd tov Xpovo Extéheong

H mpocappooctikonta tov Alayeiptot| Extéleong tov CARIN afloloyndnke ota cevapia 1
Kol 3, TPOKEWWEVOL VO OTOTIUNOEl 1 KOVOTNTO TOV GUGTAHOTOS VO OVTOTOKPIVETOL GE
SVVAUIKES OAAAYEG GTOVE SLBEGTILOVG TTOPOVG KOl VAL AEL10TTO1EL TIG EVOAAUKTIKES OL0LLOPPDGELS
EKTELEOTNC. AV KOl GE OPIOUEVEG TTEPITTMOELS TO GUGTNLLO EVOEYETAL VO, AEITOVPYEL TPOCWPIVA
UE HEIOUEVT amOO00T—AOY®, Y10 TOPASELY IO, LETAPATIKOV PACEDYV EVOAAAYNG LOVTEAOD N
EMITAYVVIN—TETOLN PALVOUEVO KPIVOVTOL TPOCMPIVA Kot dtaryelpiotpa, Kabng o unyaviouds
TPOCAPUOYNG PPovTILEL Yia TNV Tayela ETavOPOpd 6€ amodoTikn Agttovpyia. To onpavtikdtepo

20

elvar 011 o€ OAEG TIG TEPIMTAOGCELG TNPOVVTIOL CWGTNPA Ol TEPLOPIGHOL Tov Tifevtan amd TNV
eQOpLOYN, dtucPaAilovTag Tn dStaTnPNo™ TS TOOTNTOG EUTELPIOG TOV XPHOTY.

Xvykpion pe To OODIN
To cvoua O0DIN wapovsidlel 000 focikoDg TEPLOPICLOVG:

1. Advvapio mpéPreyng emkeipevov arloyov ot owdsoipotnta téopmv: Otav
ovuPaivouv aAhayéc, T0 GUOTNUO OTTOLTEL TNV €K VEOL EMAVCT TOL TPOPANUATOS
BeAtiotomoinong, owadikacios mov cLVOdELETAL OO ONUAVTIKO YPOVIKO KOGTOG,
Wwitepa 0TV 0 APBOG TOV GTOXWOV KOl TO £DPOG TOV YDPOV AVGEWMV givor peydia.

2. Amaitnon ywo Tomkn tpécsPacn o€ 6ha Ta mOavd povréra: Avtd cuvendysTon TV
avaykn amofnkevong oAOKANPOL TOV GUVOAOL HOVTEA®V OTI) GLUCKELY], YEYOVOG TTOL
aLEAVEL TIG OmOLTHOEIS 6€ amoNKeVTIKG YDPO Kol KafioTd SOGKOAN TNV KAMUAK®OON.

YuvoMkd, To omoteAéopato kKaTadsikvoouy 0Tt 10 CARIN TPOosEEPEL ONUAVTIKA
TAEOVEKTNLOTO 0€ OPOVC EMLOOGNG, EVEMEING KAl ATOSOTIKOTNTOS TPOGUPUOYNS, KOOIGTAOVTOG
TO0 KATOAANAO Yo avamTuén O€ ETEPOYEVI] KOl OMOUTNTIKA Kvntd mepiPdilovio pe
TEPLOPLIGILEVOLG TTOPOVC.

IS5 Xopnépaocpa

H omodotikiy ko gv€MKTN eKTEAEGT VELPOVIKMDV OSIKTOWV GE KIVNTECG GUOKEVEG OMOTEAEL
kpioyo {nTodupevo Yo TNV 1KOVOTOINGT TOV OSl0pK®OG OVENVOUEVOV ORALTHCEDY TOV
eQOPUOYDV TEYVNTNG vonpoovvng. To mAaicio CARIN, to omoio mopovsldoTnNKE GTO TAPOV
KEQPAAL0, EMOIDKEL VO KAADWEL AVTO TO KEVO TPOGPEPOVTOS M0 OLOKANPOUEVT], SUVOLUKE
TPOGoPUOLOLEVT] KOl CLGTNUATIKA BEPEMOUEVT] TPOGEYYION.

[Tapott e€okorovBohv vo LEICTAVTAL GNLOVTIKEG TPOKANGELS, OTMG 1 ETEPOYEVELN TOV
VAIKOV, 1] AVAYKT) Y10 TPOCAPUOYN KATA TOV XPOVO EKTELEGTG, KO 1] SLOYEIPIOT| TNG TAVTOYPOVIG
extéreong mollamAwv poviédmv, to CARIN eswodyel éva véo moapddetyua oyediaong mov
OVTOTOKPIVETOL OMOTELECUOTIKO GE OLTEG TIG OVOKOAIEG. MEC® TNG EVOOUATMONG EVOC
EKQPOCTIKOD TANIGIOL PEATIGTOTOINGTG TOALOTADY OTOY®V, KOl TNG VAOTOINGNG TOL
aiyopifuov RASS, 10 chomua enttuyydvel onUavTikn PEATiOON GTNV TPOCUPILOGTIKOTITO Kol
OTNV OmMOd0TIKOTNTA, SOTNPOVTAG TOPAAANAL TNV IKOVOTOINGT TOV GTOX®V OTOS0CNG TOL
opilet o tekog ypriotns. O RASS daxpivetal yio TV ikavoTTd ToV Vo TpoPAETEL EMIKEINEVES
petaforég oToug 0100€G10VE TOPOVG KAl VO, TPOETOUALEL KATAAANAL GOVOLO SIOUOPPDCEDY
EKTELEOTG, TOL OO0, UTTOPOVV Vol gvepyomoBohv yp1iyopa e EAAYIGTO VTTOAOYIOTIKO KOGTOG,
®¢ andvinon o anpdPrentec cvvOnkec. Me avtov tov tpomo, to CARIN wpocpépel pa
PEOMOTIKT KOl OTOTEAEGOTIKT ADOT] Y10 TNV avAmTLEN £EVTTVAOV, ATOSOTIKMV Kot 0VOEKTIKMV
EQUPLOYDV TEYVINTNG VONUOGHVIG GE KIVNTEC GUOKEVEC,

A Extéleon Movtéhov Metaoynpotiotov og Kivntég Xvokevéc

Ta cUVEMKTIKA VELPMOVIKA OIKTLN OTOTEAECAY €L GEPA ETAOV TNV KLPLOPYT OPYLTEKTOVIKN
GTNV 0POCT] VTOAOYIGTOV, CNUEIDVOVTAG KOPLOUIEG EMOOCELG GE KAOIEPMUEVEG EPYOTIES, OTWS
n ta&wvounon ewdvov (image classification), n aviyvevon avrikeluévov (object detection) ko
N katdTunon ewovev (image segmentation). H emttuyio Toug opeiletat, o€ peydro Pabuod, otnv
KAVOTNTA TOVG VO ATOTLITMOVOLV 1EPUPYIKESG YWPIKEC GLOYETIGES 6TA, ONTIKG dedopuéva. H
€VPELR YPNON TOVG TPOKAAEGE EVIOVO EPELVNTIKO EVOLAPEPOV Y10, TNV OTOOOTIKT VAOTOINGT
TOVG G TEPIPAAAOVTA LE TEPLOPICUEVOLG TOPOLG, 0ONYDVTAG 6€ TANODPL PEATIOTOTOCEDY
KOl TEYVIKOV CLUUTIEST|G TOL KOOIGTOVV duvaTh TNV EKTEAECT] TOVG GE GUOKEVEG TOPLODV.

21

H ecayoyn mg apyrtektovikig Tov petacynuatictov 1o 2017 onuotoddtnoce onpeio
Kaumg oty enefepyacio QUOIKNAG YADOGOC, KoTopydvtog v e&dptnon ond Tig
EMOVAANTTIKEG OOUEG KOl TPOCOEPOVTOG TOPAAANAN emeepyacio Kol KOADTEPT ATOTVTMON
poakpoypoviov efaptoewnv. H emidpaon tov peTaoynuUOTIoT®V 08V TEPLOPICTNKE OTA
YA®GOWKG Ocdopéva, aAAG emekTabnKe SUVAUIKA Kol 6 GAAOLG TOpElc, Omwg 1 Opaon
VTOAOYIGTMV, 1 AVAYVOPIOT] OMALNG, KOl ETIOTNUOVIKA TESIM OtYUNG, CUUTEPIAAUPAVOUEVNS
™G avaxdioyng eopudkev. H tayeio mpoodog kot 6140061 TV HeYOA®Y YA®CGTIK®Y LOVTEAMY
(large language models — LLMs), 6mwg ta. Gemini, GPT, Llama, xon Claude, éxe1 kabiepdoet
TEPUITEP® TOVG PETOTYTNLOTIOTEG (OC TNV KLPIOPYT VITOAOYIOTIKY| OPYLITEKTOVIKN GTO EVPVTEPO
PAcHO TNG TEYVNTNG VOT|LLOGUVTG.

[Mopd To TAEOVEKTAUOTO, Ol UETACKNUOTIOTEG Topovcoldlovv 1dtaitepa ovénuéveg
VTOAOYIOTIKEG OMALTNCES, TOCO Katd Tn @don g ekmaidevong OG0 Kol KOTE TN
ovunepacpatoroyio. ITaporio mov ta CNNs €yovv 101 mepdoel amd TOAVLETH OLAAIKAGIOL
Bedtiotomoinong, ot petacynuotiotég eokolovfovv e peydio Pabud va eéoptodvior omd
VITOOOUEC VYNANG OIOO0GTG TOV TOPEYEL TO VITOAOYIGTIKO VEPOC, YEYOVOG oL teplopilel Tnv
aflonoinon tovg oe mepPdrdovia mopvemv. Koatd ocvvémewn, oavokOmrel €va Kpiollo
epeuvnTIKd gpauo: Kotd moco ot teyvikég amodoTIKNG EKTEAECTG OV ATOdEly Ky
emroyeig yio Tt CNNs pmopodv vo TPOCUPLOGTOVYV GTOVG UETOCYNMATIOTEG, (OOTE VO
KOTAGTOOV PLOCIUOL Yo TOTIKY cupmepacuatoroyio; H avaykn yo anovinoelg 6to epoTtnua
ovtd kobiotaTon EMTOKTIKY, KAOMG Ol EQUPUOYEC TEXYVNTAG VONUOGUVIG TOPLO®OV
emekteivovtol paydaio og medio OT®MG o1 pvNTIKol fonboi, N TOAVTPOTIKY KATAVONOT| KO M
EMOVENUEVT] TPOLYLATIKOTITO.

To mapdv ke@droto €EeTAlel CLOTNUATIKG TNV TPEXOLGO KOTAGTOOT YUP® OO TNV
EKTELECT] LOVTEL®OV LETACYNUATIOCTOV GE KIVNTEG GLOKELEC. MEGm evdedeyovg a&loAdyNnoNg
KO TEPOLOTIKNAG OVIADONC, Tapovotaloviol PEATIGTOTOCELS KO GTPATIYIKEG GYESIAOTG TTOV
OTOXEVOVY GTNV EVIGYLON TNG OMOJOTIKOTNTOG TMV HETOCYNUATIOTOV o€ mePPAAlovTa e
TEPLOPIOUEVOVS TOPOVG, GUUPAAAOVTOG 0T LETAPaoT amd TV e£APTNOT OO TO VEPOG TPOG
TNV OTOKEVTPMUEVT KOl EDOLN eme€epyacio OTIC TAPLPEC.

A1 Ilewpoapatik) Meg@oooroyia

lNo ™mv oa&loddynon g eKTEAEONG HOVIEA®V UETACYNUOTIOT®V GE KWWNTEG CLOKEVEG,
KOTOOKELAGTNKE apykd o BipAobnkn amd mowkile HOVTELD LETOCYNLOTIOTOV, ETIAEYUEVA
€101 OOTE VO KOAOTTOUV £€va €Vpl (QAGHO ATOLTHCEMY GE VITOAOYIOTIKOVS TTOPOLS Kol
Aertovpyikég dvvatotntes. To ev Adyw poviého eite exmodevtnkav efapyng, Eite
TpocapudeTKaY HECH HeBOdWV pueTapopdc uabnong (transfer learning) yio tnv extélecn 600
EVOEIKTIKAV EPYOCIOV: OVAALCT GLVOICONUOTOS KOl TOPOYy®YN] KEWEVOL, Ol ONOIEG
OVTUTPOGOTEVOLY KAUGIKEG TEPUTTOGELS YPNONG OTIV ENEEEPYAGIN PUGIKNG YADGGOC.

Katomy, oe kdbe povtédo epapuootnkay tpio StapopeTikd oynuato Kpoavionoinong, Ue
OTOYO TN LEAETT) TNG EMIOPAONG TOVG TOGO GTNV OKPiPEln 060 KOl 6TIG LETPIKEG ekTéEAEONG (7. 1.,
KaOVGTEPTON, KATAVAAWMGT EVEPYELNG, amoTOTT®MA UvAuNg). H gpappoyn g kpavromroinong
elvar avoykaia, 10img dtav n ektéleon otoyedel vo, 0.E10ToNoeL EEEIBTKEVUEVES LOVADEC DALKOV,
omwg DSPs kot NPUs, o1 omoieg cuyvd Aertovpyovv BEATIOTO Pe aptOUnTIKY YapnAng akpifelog
(m.y., INT8). To ovvoro TtV pHovIEA®V, TEPIAOUPOVOUEVOV TOV TAAPOVE oKpifelog Kot
KBOVTIGUEV@V EKOOYDV TOVGS, EKTEAEGTNKE GE dVO SLAPOPETIKES KIVITEG GUOKEVEG, EMAEYUEVES
MGTE VO EKTPOCOTOVY PEAAIGTIKEG VAOTOGELS TOPLOMY UE SLOPOPETIKT VAIKT dtappvOpion
KOl EMTOYVVTES,

[Ipwv amd v eKTEAECT] TOV HOVIEA®V KOL TNV KOTOYPUPN TMOV GYETIKOV UETPNCEWV,
npoypatorominke avéivon g copPatdtnrog Hetald TV oyNUATOV KBovToroinong Kol Tov

22

dbéoipwv eneepyaoctav kabe cuokevnc. Ta arotelécpata tng ovdivong katédel&ay Otl, and
tovg eEetaldpevoug emroyvviéc, uovo 1 GPU moapovsioce mAnpn copfotdtra e To LOVTEAQ
UETACYNUOTIOTOV, TPOGPEPOVTASG Tr SUVOATOTNTA YOl OTOJOTIKY EKTEAECT] UE EMTAYLVON.
Avtibétmg, povadeg ommg ov DSP xar NPU epgdvicav meplopiopévn 1 Kol OVETOPKT
VTOGTAPIEN, LLE ATOTEAEGLO GE TOAAEG TEPUTTAGELS 1) (P1IOM TOLG VO 00N YEL € VITOPABeN TN
amo6doong Aoy pelmong g akpifetag 1 P vTooTNPILOUEVOV AEITOVPYLDV.

H ev Moyow pebodoloyia emitpénel TV amotTiunon ¢ TPAYUOTIKAG CKOTIUOTNTOC KoL
QTOO0TIKOTNTOG TNG EKTEAECTG LOVTEAWDV LETOCYNIATIOTOV OTIC TOpLQEG Kat B€tel T Pdomn yio
TNV avoyvaplon KOTAAANA®V cuvOvacUdY HOVTEA®Y, KBOVTOTOINoNg Kol EMTUYLVIOV, HE
OKOTO TNV EAOYIGTOMOINGT TOV VIOAOYIOTIKOD KOGTOVG YWPIG ONUOVTIKY OTOAEW TNG
emidoong.

A.2 AoteléopoTa

H mepapatikn a&loldynon enkevip@bnke oe Uio TOADTOPAYOVTIKY AVAALGT) TG EKTEAEONG
HOVTEA®V UETOCYNUATIOTAOV GE KWWNTEG CUOKELES. LUYKEKPIUEVO, €EETACTNKAV T TOMIKN
axpifela, n enidoon TV apyIKOV dALA Kot TV KBavticpévev poviédov ot CPU, kabdg kot
N GUUTEPLPOPE TOV EMTAYVVIMOV VAIKOD, TPOKEEVOL VO OOTVIMOEL GPUpIKd 1 TpEYOLGA
KOTAGTAGT KOl VO EVTIOTIGTOVV Ol BaciKol TEPLoPIGHOL.

Tomuci Axpipeia

H apyin avdlvon eotidlel ot cuvtipnon g akpifelog Kotd TNy EKTEAEST TOV LOVTEA®DV
TOTIK(L GTIC CVGKEVEC, GE GUYKPLOT] LLE TO VITOAOYIOTIKS VEPOG. Tal amoTEAEG AT VITOJEIKVHOLV
0Tl Ol TEPIOCOTEPEG APYLTEKTOVIKES YOVOLV PEPOG TNG OKPIPELAS TOVG KOTA TNV EKTEAEST OTN|
GPU, xvping Loyw acvopfototitov pe Tpagelc aptduntikng akpifetog | un vrostnplopevev
Aertovpyidv kovovikonoinong. E&aipeon amotelel to MobileBERT, éva. povtélo oyedtocuévo
€0IKA YO KWNTEG OUOKEVEG, TO OMOI0 OV YPNOLUOMOIEL TN OLUPOTIKY GLVAPTNOT
gvepyomoinong GELU, obte kavovikomoinon emumédov (layer normalization). H biatepdtnra
avt Qaivetar va ovufdiiel otn otobepotnto g axpifelag, vmodeikvoovtag mbavd
LOVOTIATIOL OPYLTEKTOVIKMOV PEATIGTOTOCE®Y Y10 PLOCIUN GUUTEPUCUATOAOYIO. GE KIVNTEG
GUOKEVEC.

Enidoon otn CPU
H extéheon tov poviéhwv oty CPU amoxdAvye onuovTikéG OmOKAIGELS OVAUESOH OTIG
OepnTiKd PEATIOTEG KOL GTIC TPOYUOATIKO OTOO0TIKEG SIAUOPPDCELG:

o H ypiion ™ fipiodnkne XNNPACK o¢ tpokaBopiopivy emroyr) dev dtoo@orilet
amopoitnta N Yo umAdtepn Kabvotépnon, kabdc GALEC SIUUOPPDCELC UE SLOPOPETIKO
aplOUd VNUATOV UTOPOVY VO TPOGPEPOVY KAADTEPT YPOVIKT 0TdS00T).

e H szrepoyéiveln petald TOV 6VGKELAOV KAOIOTO EMITOKTIKA TNV OVAYKY Yo
TPOCOPLOGTIKN ETLOYT SUOPPOONG OVA GLOKELT, KaOMS M PEATIOT dtopdpwon
ektéleonc dev etvan kafoAkn.

Kpavromoinon ko CPU
To amotelécpota ¢ ektédeong tov Kpavtiouévev poviédov ot CPU deiyvouv ta g€hg:

e To FP16 povtéla emttuyydvouv mopdouolo Kabuotépnon we o, TIANPovS akpifeloag
HOVTELQ, OU®G aEAVOLY TN ¥pIoT WAUNG Kotd tepimov 70%, yeyovog mov umopel va
emnpedoel T Procipdtra o mePPAALOVTO TEPIOPICUEVOVY TOPWV.

o AvtiBétog, to axéporae povréha (DR8 kor FFXS8) moapovcialovv tavtdypovn
EMTAYVVOT TNG EKTELEGTC KOL LEIMGT TOV OMOTUTMUATOS UVIUNG OTIC TEPIGGOTEPEC

23

TepmTOGElS. 01060, GuvodevovTal amd aSloonueimtn peiwon tng akpifelag og
GUYKEKPIUEVEG APYLTEKTOVIKEG, YEYOVOS TTOV VTTOOEIKVOEL TV OVAYKT] Y10 TPOGEKTIKN
EMAOYTN KoL SoKLuN.

Emrayvvtég
H avéivomn g ekTéAeong 0TOVG EMTAYVVTEG AVESEIEE ONUOVTIKA EVPTLLOTOL:

e O DSP amodciydnke axkatdrAAniog yio TNV EKTEAEGT] HETACYNNOTIOTAOV, £EonTiog
NG TOAD YOUNANG CUUPATOTNTAS TOV LLE TIC OMOLTOVEVES AEITOVPYIES, YEYOVOG TTOL O)YL
novo dev TpoceEPEL EmLTdyVVOT|, 0ALG avtiBeTo 0dnyel o€ emPpddvvon.

e H GPU, avriBétmg, mapéyel 0VGLOOTIKI] EMTAYVVEN G6TO PEYOAVTEPE POVTELQ,
€WK oe Oca meptlauPavovy meplocotepa amd 20 eKoTOUpdPLE TAPUUETPOVC.
Qo1660, QLT N EXTAYLVGT GLVOJSEVETAL OTO AVENCN TOL OTOTVTMUNTOC UWVAKNG,
YEYOVOG IOV EVOEXETAL VAL ETNPEACEL APVNTIKA GALEG CLUVIGTOOESG TOV GLGTILLUTOC 1] VO
TEPLOPIGEL TNV TAVTOYPOVT| EKTEAEGT] TOAATADY LOVTEAWDV.

A.3 IIpotewvopeves Berktiotomomosig

Ta evpiuato ™ TEPARATIKNG aEOAGYNONG OVOIEIKVOIOUY TOAMATAEC TPOKANGCELS Yo, TNV
EKTELECT] LOVTEA®V UETACYNUATICTOV GE KIVNTEG GUGKEVEG KOL VTTOYPOUUICOVY TNV avayKT] Yio
otoyevpévec Pertiotonomoets. Ot mpotevopevee mapepuPdoeig owakpivoviar og 000 emineda:
GULGTILOTOG KOl LOVTEAOV, OVTIKATOTTPILOVTOG TV avAYKT TOGO Yio SUVOULKT Slayeipton g
eKTELEOTG, OGO KOl Y10 APYLTEKTOVIKT TPOCUPLOYN TOV {0100V T®V SIKTOMV.

Erinedo Xvotiportog

H mapatnpovpevn élhenym koBoikd omodoTIiKNng SIUHOPP®ONG eKTEAEONG KOOIoTH GOp| TNV
avAayKn Y10 TPOGOPUOCTIKE GUGTAHOTA, TKAVA VO TAPaKoAoVBoOY cuveydg T StbectudTnTe
TOPMV, VoL avaryvmpilovy To YapaKINPIoTIKA TOL XPTCLUOTOIOVUEVOD DVAIKOD KOl VO EMAEYOLV
Suvapkd Tic kataAAnAotepeg dtopopemaoelc. H etepoyévela v cuokendv, 6e GuvOLACUO UE
™ ¥POovIKa petaforropevn ebon v cuvinkov extédeonc (m.y., Oepuroxkpacio, TAVTOXPOVES
diepyacieg), amattel TV avamnTuén UNYOVICUOV ANYNG OMOPAGEDY G TPOUYUATIKO YPOVO, LE
EMYV®ON TOCO TOV EPUPUOYDOV, OCO KOl TMOV GUCTNUIKOV TEPOPICUDV. MeAAOVTIKEG
EPEVVNTIKEG KOTELOVVOELS TPEMEL VO EGTIAGOVV GTN GLAAOYT KOl OVAAVOT HETPIKAOV ¥POVOL
eKTELEOTG, HE 0TOYO TN PeATioTonoinon g ¥pNong Tov VAKoD ywpig cvuPifacuovg oty
axpifeia 1 v eumepio Tov YpHoT.

Eninedo Moviéhov

H avélvon avédel&e 0Tl ot PeTaoyNUOTIOTEG ELPavIOVY TEPLOPIGUEVT] GLUUPATOTNTO UE TIG
TEPLOCOTEPEG LOVEADEG emTdyvvong (0mmg DSPs kot NPUSs), evd axdpn kot oo GPUs, mapd v
EMTAYVVOT TOV TPOGPEPOLY GTO LEYUADTEPO HOVTEAQ, ETMLPEPOVY CTUAVTIKY aOENGCT OTN
YPNON LVNUNG Kot emdeivoon g akpifelag. Me yvopova) oyediaor tov MobileBERT, to
omoio dwokpiveror yio tn ovpuPatdtnTd TOL HE KWWNTEC GLUCKEVLEG, TPoTEIvOvTOL dVO
OPYLTEKTOVIKEG TPOTOTOGEC TOL €VOEXETAL va Pedtidoovy T ovuPoatdémra Kot v
OTOJOTIKOTNTAL:

¢ (R1): Avtikatdotaomn g ocvvdptnong evepyomoinong GELU pe ™ ReLU, n omoia
xopoaktnpiletal amd YounAdTEPO VITOAOYIOTIKO KOGTOG Kot VYNAOTEPT GUUPUTOTNTO [IE
TIG LOVASEC EMLTAYLVONG VAIKOD.

e (R2): Avtikatdotaon tng Kovovikomoinong emumédov (layer normalization) pe
Kkavovikoroinon déoung (batch normalization).

24

To mepapaticd oroteléopata delyvouv otL 1 avtikotdotaon R1 Bedtidvel ™ ypovikn
anddoon ot CPU oe OAeg T1g KPovtiopéveg mopoAdayéc, yopic OU®G v €mAVEL TO
wpofAqpata axpifelag katd v ektédeon ot GPU, yeyovog mov vrodnimvel 6Tt ta OEpata
aplBuntikng otabepotnrag mopapévovv. H avtikatdotaon R2, aviiBétmg, amodeiybnke
waitepa ETOPEANS, KaBOS:

e Awrtnpei v axkpipeia otn GPU.
o Tlpooeéper emrayvvon £mg 2.5X yuo ta TANPOS oKEPato LOVTEAD kot €¢ 1.2X yia
T VTOAOLTTAL.

Hopa tic Bertidoeig ot CPU kot GPU, ot cuykekpuuéveg mapepaoeig dgv emANoY ta,
0épata ovpPatdtrag pe toug DSPs ko tic NPUs, yeyovog mov vmodnAdvel OTL Ol HOVADES
OVTEG OEV EYOVV GYEDINOTEL Y10 APYLTEKTOVIKEG PETOCYTLOTIOTAOV KOl OTL OAESG OPYLTEKTOVIKEG
TPOTOTOGELS OEV EMOPKOVY Y1a. Vo, 0E10momBobv TANPmE o1 SuvaTOTNTEC TOVC. To GUVOAIKE
gupnuote Kaflotodv coeég 0Tl M Prdoyun avamtuén HOVTIEA®V HETACYNUOTIOCT®V GE
nePPdALovTa e TEPLOPLGUEVOVG TTOPOLE TPODTOOETEL APYLTEKTOVIKEG OYEOIAGELS LUE EMIYVOOT
TOV VAIKOV, 01 omoieg ouvdvdlovv emdOcE Kol SLUPATOTNTE, OOTE VO dc@aiileTor N
OTOTELECUOTIKT EMEKTOACT] TOV EPOUPLOYADV TEXVNTIG VOTLLOGVUVNG GE KIVITEG CUOKEVEG.

A4 Topmépaopa

To mapdv kepdrioo avédelEe OTL Ol OTPATNYIKEG TOMIKNG CUUTEPACUATOAOYING OV £YOVV
amodel el amOTEAEGUATIKEG YIOL TO. GUVEMKTIKA VELP®VIKG dSikTva dev givor Aueca
petafipaoipeg otovg petaoynuatiotés, eéontiag OepeMmdmV dlopopdY GTNV APYLITEKTOVIKN
TOVG, OTN HOPPN TOV VTOAOYICTIK®Y TOVG €EQPTHCE®V KOl GTN GUUPATOHTNTA TOVE WE TIC
VOLOTAUEVEG VTTOJOUEG VAIKOD KIVITAOV GUGKEVAV.

Méoo amd o CUGTNUOTIKY KOl EUTEPIKE TEKUNPLOUEVT] LEAETY], TTPOYUOTOTOUWONKE
ovykpltikn a&loAdyNnon TOAAOTAMY HOVIEA®V UETOCKNUOTIOTOV OE OLPOPETIKEG KIVITEG
TAQTPOPUES, LLE GTOYO TN OlEPEDVNOT] TNG GLUTEPLPOPAS TOVG G€ OPOVG AKPIPELNG, YPOVIKNG
kabvoTtépnong, ¥pNoNg UvAUNG, KaOdC Kol NG amodoTIKOTNTAG SPOP®V TEYVIKMOV
kPavtonoinong. Ta amoteléopata KOTEGEIEOV OMUAVTIKEG ATOKAIGELS OTNV amOS0CT] AVAUESH
OTIG OPYLTEKTOVIKEG, TIC TEYXVIKEC PEATIOTOMOINGNG KO TOVG EMTOYVVTESG, OVOOEIKVIOVTOS TIC
HOVOSIKEC TPOKANGELS 7OV €Yeipel M OVATTLEN UETAGYNUATIOT®V € TEPPAIAOVTA UE
OLGTNPOVG TEPLOPLGLOVG TOPWV.

Ot moapoatpnoelg v Tég VITOYPOUUILOVY TV OVAYKN Yio VEEC OTPATNYIKEG PEATIOTOTOINGNC
LE EMYVOOT) TOL LAIKOV, TOGO GE EMIMEDO PLOVTELOV OGO Kol o€ eNinedo cvothpatog. Emmiéov,
Ol TEIPOUATIKEC PEATIOCEIS TTOV TPOTAOMKAY, OTMC M OPYLTEKTOVIKY) TPOTOTOINGT TOV
UNYOVIC UGV EVEPYOTOINGNC Kol KAVOVIKOTOINGNC, TOPEYOVY £VO, TAIGTO Y10, TV TPOKTIKN Kot
TPOCUPUOCIUN OVATTUEN HOVTEAWMV LETACYNUOTICTOV GE KIVNTEC GLUOKEVEG, GUUPAAAOVTOG
OTNV TEPAUTEP® JLAGOGT TNG TEYVNTNG VONLOGVVIG GTIC TAPVLPES TOV SIKTOOV.

E 'Eykarpn Aviyvevon Ewoforav og Aiktva loT

To dwdiktvo tov npayudtov (Internet of Things — 10T) cvvictd €va ToE®MG OVOTTUGGOUEVO
VTOAOYIOTIKO HOVTEAO, TO omoio Paciletor ot OKTvOKY SLOCLVOEST EVOMUATOUEVOV
OLUOKEVMOV LE SVVOTOTNTEG AVIXVEVOTNG, TOTIKNG EMEEEPYOCING KAl OGVPLOTNG EMKOVMVING.
AVTEC 01 SUVOTOTNTEG EMTPEMOVY TNV AVTOALOYT Kot enelepyacio SEdOUEVOV GE TPAUYUOTIKO
YPOVO, SLEVKOAHVOVTOG TPONYUEVEG EQPUPUOYEC GE TOUEIG OTMG 1 PO OVIKY Topaywyn, TO
¢€umva oTitia, 1 LYEWOVOKT TEPIBOAYT KOl TO. GUCTHUATO, LETAPOPDOV.

25

Qo16060, 1 gupeia vwoBETNoN Tov [oT cuvodedeTal amd oNUAVTIKEG TPOKANGELS UOPUAELNG,
KaBmG ol eyyevelg mePOPIGHOL GE VIOAOYIOTIKY oYL, OBECIUN HVAUN KOl EVEPYELNKN
OVTOVOUI KOOIGTOVY TO GLUGTILOTO CVTA 1OITEPH ELAAMTO GE TOIKIAEC LOPQEG EMBECEDV.
Mo v oanoteleopatiky mpootacio TETOIV TEPIPOAALOVTIOV, TO GLGTHLOTO OVIXVELONG
eloPorav (intrusion detection systems — IDS) eEedicoovtar otadiakd mpog v vioBETnon
TeYVikav Padiig pabnong, ol omoieg £xovv amodei&el vepoyn £VAVTL TOV TAPUSOCIOK®DY
uefddmv, 10iC oTNV aviyvevon Un €K TOV TPOTEPOV YVMOGTOV 1 SUVOUIKE eEeEMocOuEVOV
embéoenv. Qotdc0, Mapd TIC TPoOcPateg eEeMEElC, 1 £yKoupn Kol OOdOTIKY aviyvevon
eEakorovbei va amotelel avolkto epevvnTikd (NN O, 1WO0iTEPH OTAV 01 EIGEPYOUEVESG POEG ElvaL
uepikéc, oteleic M ypovikd meplopiopéves. IMapdrinia, ot meplopiouoi tov dSabiéctumy
oLUVOL®V OedOUEVOV, GE GLUVOLOCUO HE TIG EVIOVEG OVICOPPOTiEG HETOED KakOPOVANG Kot
KkaAon0ovg Kivnong, SLeYEPOIVOLY GIUAVTIKG TN S10OIKAGI0 EKTAIOEVOTG KOl YEVIKEVONG TV
cvotnuatov IDS.

Ye ovTd TO TAMIC10, TOPOVGCLALETOL TO TPOTEWVOUEVO GUGTNUO £YKOPTNG OVIXVELONG
elofordv A-THENA, 1o omoio Paociletor otV apyITEKTOVIKY] TOL UETOCKTNLOTIOTY,
EUMAOVTIOUEVT] UE YPOVIKA evaicOnteg Kmowkomomoelg 0éong (time-aware positional
encodings). AVTEG Ol KOOIKOTOMGEL EMLTPETOVV TN LOVIEAOTOINGT] TOGO TG GEIPLUKNG OOUNG
0G0 KO TNG YPOVIKNG SUVOUIKNG TOV TOKETOV EVTOC UG pong kivnong. Emumiéov, to cdothua
g10dyel évav Kovotopo aywyd emavénong dedopévov (data augmentation pipeline) yw
Bedtiowon g yevikevong, kabdg kot o eEEIOIKEVUEVT] GUVAPTNOT OTMOAELNG Yo £YKOLPN
aviyvevon (early detection loss - EDeL), 11 omoia gvioyvetl v KovOTnTo TOV HOVIEAOL VL
aviyvevel embécelg pe Tov eAdyloto duvatd ypovo avtamokpionc. To A-THENA
BeAtiotomoteitan yio TaydTO, aKpifela Kol amodoTIKOTNTA, KAOIGTOVTOS TO KATAAANAO Yio
avantuén oe mEPPAALOVIO LE TEPLOPICUEVOVS VTOAOYIGTIKOVG TOPOVG, OMMG CLTE TOL
yapoktnpilovv T cbyypova loT diktva.

E.1 Ipotewvopevo Tvotnpa

H mapovoa evotnta mapovoidlel o pébodo Eykarpng aviyvevong sioformv Paciopévn oty
OPYLTEKTOVIKT TOV LETAGYNIOTIOTT, OXEOLUGUEVT] EIOIKA Y10l TIV OVOYVOPLOT] OTEIMDV UEGH TNG
OVAAVOTG TTEPLOPIOUEVOD OPBLOV TAKETOV OO Lo TANPN POoN OKTLOKNG Kivnong. M pon
(flow) opileton cuvnBwg pe Pdon v Tevtdda:

(d1e00vvon IP myng, dievbuvon IP mpoopicpod, Bupa GTp®UATOG HETOPOPAS TN YIS, BVpa
OTPAOUOTOG LETAPOPAG TPOOPLIGHOD, TPOTOKOALO)

1 omoia YPNGHLOTOLEITAL Y10l TV OLAOOTOINGT| TV TaKET®V TPog enelepyacia. H mpotevopevn
TPOGEYYIOTN GTOYEVEL OTNV TPOMPN KOl OTOTEAECUATIKY TOEIVOUNOT KAKOBOLA®WY PodV,
EMTPEMOVTIOG TNV £YKOIPN OVTIOpOOT GE €vOeXOUEVEG embEcels, evd mopdAinio dwotnpel
YOUNAEC VITOALOYIOTIKEG ATMOLTHOELS, KADIGTOVTOG TNV KATAAANAN Y10 VAOTOINOT GE GUOKEVEG
neplopiopévev topav. H pebodoloyia divel Eppaocn oe 1€00epic Pacikovg GTOYOVGS:

1. E&rewyn g avdykng yia yeipoxkivnty aymyn YopaKTNPLOTIK®OV, 0E0TOIOVTOG
®¢ €10000 TO, AKATEPYOOTO, TOUKETA.

2. Awoe@aMoY] VAOMOYIGTIKNG OTO00TIKOTNTOS Kol YOpnAs KoBvotépnong,
OTOlEIOV aTAPAiTNTOV Y10 AVATTUEN O TPUAYUATIKO XPOVO.

3. 'Eykaipn aviyvevon omeElA®@V pE Aot TANPOQOPid €16000V, EMITPETOVTOG
€yKupeg TpoPALyeLg Le BAoT LOAG AMyo TaKETA.

4. YmootipiEn podv petafintod pikovs, yopic v anaitnorn otobepmv SlooTacEDY
€16000V.

26

[poctopacio Asdopévov

Xe auTd TO OTAO0, 1 OKOTEPYOOTN OIKTLOKY KIvNon GCLAAEYETOL, OPYAVAOVETOL GE POEC,
QIATPAPETOL Kol PETOOYNUOTICETOL G HOPPN KOTOAANAN Yo €loaymyr] oto povtéro. [lpog
OTOPLYN TOV TEPLOPICUDY TOV GLVOSIEVOLV TIG CLUPATIKEG PeBddOVS YelpoKkiviTng EE0y®YNG
YOPOKTNPICTIKMV, TO TPOTEWVOUEVO GUGTNLLO VIOBETEL Lo EVOOYEVT TPOGEYYIOT), GTNV OO0 1O
€16000¢G 670 VELPMVIKO SIKTLO YPNGILOTOLOVVTOL Ol ateVBEeiag TIHES TV bytes Tov Takétwv. H
OTPATNYIKN OVTN LEWDVEL GNUOVTIKA TO DTOAOYIGTIKO KOGTOG TG Tpoenesepyasiog, eEaleipet
™V avayKr oxedloacUoD EIKMY YOPUKTNPIOTIKMY VAR EQUPUOYT KoL ETITPETEL TN SLATHPNON
NG TANPOPOpPiag oe EMimedO TOKETOV, 1 OOl Elval OVGIOONG YOl TN GOAANYT| AETTOUEPDV
LoTiPoV KakdPovANG GLUTEPLPOPES.

H dwdikacio mpogtoipaciog Tmv 0ed0UEVOV 0pYOVAOVETOL GE TPio ETUEPOLS OTAIIOL:

o Avayvopion Poov (Flow Identification): o v anotehecpotikn dwoyeipion g
ETEPOYEVELNG OTIG O1APOPES EMBETELS, TO GVOTN A EPAPUOLEL 0L EVEAIKTT) GTPOTNYIKN
opadomoinong TaKET@V 6g PoEc. Apyikd, 1 opadoroinon PacileTor oty TopadoGIokn
TEVTAdN, MOTOGO, OTAV 0 aplBUdc TOV evepydv podv vrepPaivel Tpokabopiouéva
Op1a, YEYOVOC oL amoTeAEl GUYVE €vOelln emBeTIKNG OpacTNPIOTNTAG, EMTPETETOL 1)
YOAAP®ON TOV KPITNpiov ouadomoinone, Onm¢ 1M mwapafAEYn GLYKEKPIUEV®V
devBovoewv IP 11 Bupdv, pe 0TdX0 TN GLYKEVIPWOOT TOV TOKETOV GE AEITOVPYIKA
GUVEKTIKEC POEG TTOL SLEVKOAVVOLV TNV OVAALGT).

o durpapwopo Hoxérov (Packet Filtering): Evtoc kdbe porg, Statmpodvron pdvo ta
TOKETOL 7OV OVTIOTOLYOUV G€ VIoyNQ KAKOPovAn dpactnprotnta, Paoet
TPOoKOOOPIGUEVOV KOVOVOV TTOV £6TIALOVY GE TPOTOKOALN LYNAOD KIvODVOV, OTIMS TA,
HTTP, ARP ot ICMP, ta omtoia givar cuyva otdyor 1 gopeic embécewv. H otoyxgupuévn
EMAOYN TOKETOV CLUPBAAAEL 6TV AOENCN TNG ATOTEAEGHATIKOTNTOG KOl OT Helmon
TOV OYKOL T®V ded0UEV@V, 6TIALOVTOG OTNV 7O ELAA®TN Kivnon.

o Ilposnetepyacia [lakéTtov (Packet Preprocessing): Xto tehikd otdd10, apaipodvIat
un kpiowo medio Ko OAOKANPEG EMKEPAAIDEG amd KdOe TaKETO, VA OAQ TOL detypoTo
TPocapUOlovTal 6E Eva EVIOT0 KOG LECH TEXVIKMV TEPIKOTNG 1| TOPAYEUIGHOTOC e
undevikd bytes (zero-padding), @octe vo efoceoiiletar 1 cvuPoatdtnTe pE TIg
OTOUTNOELS TNG OPYLITEKTOVIKNG UETACYNUOTIOT. XTI OUVEKELD, To OEOOUEVA
KOVOVIKOTTolouvTol oty KAlpoaka [0, 1], emitpémoviag v opoAn Asttovpyic, TV
EVEPYOTOUCEMY TOV HOVTEAOL Kot GUUPBAAAOVTOG GTN 0TafEPOTNTA TG EKTTAIdEVONG.
Téhog, e&dyovtar yio kB pon ot ypovikéc cepayideg (timestamps), TANpoPopia TOL
EVIGYDEL TN YPOVIKN €VOIGHNGIOl TOL GLOTHUOTOC Kol OLELKOAVVEL TNV aviyvevon
YPOVIKDOV OVOLOADV.

H avotépm d1adikacio enttpémel TNV KATACKELN LLOG XPOVIKE £0aicONTNG, CLUTAYODS KoL
SoUNUEVIG OVATAPACTACTC TNG Kiviong, 1 ortoia amotelel kKaTdAANAN €i0000 Yio TO GVOTNUA
aviyvevuong, e yvouova T BEATIGTONOINGT TG Amdd0GNG G GLVONKES TEPLOPIGUEVMV TTOPDV.

Exnaidogvon ko ASroroynon

H dwdikacio g ekmaidguone anoGKOTEL 6TV KATAGKELT TOL KATAAANAOL LOVTEAOV Yo TNV
&ykaipn kot a&lomotn aviyvevon eiofordv, a&lomolmvTag TOG0 TO TEPIEYOUEVO TOV TOUKETMV
0G0 KOl TIG YPOVIKEC TANPOPOPIEG TOV OVTA EVOOUATMOVOLV. ApYIKA, TO GOVOAO dedoUEVMDV
yopileTon oTo VTWOGVVOAN eKTOIdELONG Kol EAEYYOV, €V TOPAAANAO OAEC Ol POEG
eEopordvovtol ¢ akolovbieg oTafepod PNKoLg HEGH TUPAYELCUATOS LE UNOEVIKA TOKETOL
Yoo TV gvepyomoinon g ekmaidevong pe 6éopeg. [lapdAinio, onpovpyovvrol UAoKEG

27

TPOGOYNG, Ol OTOIEG EMTPETOVY GTOV LETOCYTLOTIOTT VO, SIOKPIVEL TO OLGLMOT OO TOL TEXVITA
TOKETA, OLOTNPMVTOG TN OMLLOGLOAOYIKT EYKLPOTNTA TG 16000V,

[N v evioyvon tng yevikevong Tov LOVTEAOL Kot Tr PEATIOON TNG IKOVOTNTAG TPMUNG
aviyvevong, epapudletal éva moAlveminedo oynuo emavénorng dedopévev, TO Omoio
TEPAAUPAVEL TEYVIKEC TOGO GE OTATIKO 0G0 Kot 6€ OLVOUKS eminedo. Ot GTATIKEG TEYVIKEG
TePLAUPAavouV Tig akdAovbeg S0 Aettovpyieg:

o Anmovpyia Yroppo®v (Subflow Generation): IIpokeital yio empépovg akolovbdieg
TokETOV amd kdfe por), MOTE TO HOVIEAO VO EKTOLOEVTEL YPNOUYLOTOIOVTOS EAMTN
AN poPopia.

e Nrereppuviotikn Yagpocryparornyio (Deterministic Oversampling): Xt6yog eivon
M avénon tov peyEBovg Tov GLVOAOL dESOUEVOV EKTAIOELOTC.

Ov duvapukég teyvikég emavénong, ov omoieg epoppolovtar katd Tr OdpKeEW NG
EKTTOUOEVOTG aVA ETOYN KO ava poT), TEPLapUPavouy:

1. Toyoio TOPapOPpE®GT TOV YPOVIKAV 6QPOYId®YV (jitter injection), doTe va, evioyvOel
1N avOEKTIKOTNTO TOV LOVTEAOL GE OLGVVETELES YPOVIGLOV.

2. Merapoi g évraong ™G Kivong (traffic scaling), TpocoUo1OVOVTOG SIOPOPETIKES
ouvOnKeg POPTOL Kat Hpovg LMVNC.

3. Amopdxpuvon makétev (packet drop), mpokeyévov va avamapactabodv cevéiplo
OTTMAELOG TOKETMV.

4. Ewayoyn pnoevikov mokétov (packet insertion), dote va tpocopoiwboiv 80pvPog
N TapeuPorég ot pon.

5. Toyaieg petaforic otic TIHEG TOV bytes TV TakéTOV (noise injection), evieyHOVTOC
TNV 0VOYN G COALLATO 1] TOPOTOUCELS TOV OPEALOV POPTIOV.

[dwitepng onuociog oty mapovca mpocyyion eivar 1 VIBETNON NG CLVAPTNONG
ammAelog Eykoupng oviyvevong. H ouvvdaptnon ovt oyxedidotnke ®@ote vo e@apuolet
QVOTNPOTEPEG TOWEG GTIS ECQUAUEVEG TPOPAEYEIS CUVTOH®Y POodV, KoBodNy®dVTAG £TCL TO
LOVTELO VoL EMLTVYYAVEL Tayela kot akpiPn Ta&vopnon pe ehdytoto opfud naxétov. H iddtnta
avt elvar kpiown oe mepiPdilovta Tpoayuatikod ypoévov, O6mov M Kobvotépnon otV
aviyvevuor evogyeTal Vo £XEL OVGLMOELS EMMTMGELS OTNV AGPAAELn Kol T otafepdTNnTO TOL
GUGTNHOTOC,.

2O6TNNO

To mpotewopevo cvotnua Bepehidvetor 6e pio EAQEPLE KOL OTOJOTIKN TOPUAAAY TNG
OPYLTEKTOVIKNG TOV KOOIKOTONTH TOV LUETACYNUATIOTY, EWOIKA GYESAGEVT Y10 TV OVAALGN
POMV OIKTLOKNG Kivnong oe mepIPAALOVTO LE TEPLOPICUEVOLS VITOAOYIGTIKOVG TOpove. H
OPYLTEKTOVIKT TOV HOVTEAOL 0KOAOLOEL ol LIVIHLOAMG TIKT) TPOGEYYLOT) KO OTOTEAEITAL OO €Vl
UOVO UTAOK LETOGYNMOTIOTH, TO 0700 akoAovOsital omd Eva EMITEDO PECT|G CLYKEVIPMOGNG
(average pooling) kot éva TANp®g cvvdedepévo eninedo tagvounonsg. O cuvoAkog aplBpdc
TopopéTpmy ekmaidevong avépyetar oe mepimov 5100, yeyovog mOL KOTOOEKVVEL TNV
VTOAOYIGTIKY| GTOSOTIKOTITO, KOl TPAKTIKT aE10TOINGIUOTNTO TOV HovTéAov o€ cuotiuata [oT
KOl EVOOUATOUEVES TAATPOPLLES.

‘Eva Ogpelddec (mUo OTIC OPYLITEKTOVIKEG UETACYNUOTIOTOV EIVOl 1 ovAyKn Yo
kwdkomoinorn g 0éong Tov otoyeimv €16660V, AOY® TNG OMOLGING EYYEVOVS YPOVIKNG 1
ocelpokng minpoeopiac. H mapovoa epyacia efetdler tpelg xobiepmpéveg Te(VIKES
Kkwdkomoinong 0éong:

28

1. Hprovogdng kwdwomoinom (sinusoidal positional encoding).

2. Kodwonoinon paciopivy otov petasynpoticpnd Fourier (Fourier-based positional
encoding).

3. IeproTpoixiy Kmdkomoine (rotary positional encoding — RoPE).

Kéfe pio omd owtég draxpivetal oG Tpog ToV TPOTO LE TOV 0010 EVOOUATMVEL YWOPIKN
TANPOPOPIN OTIC OVATOPACTAGEIC TOV TAKET®V. ['la Vo KoTtaoTtel 10 poviélo gvaicnto ot
YPOVIKT] OOUN TV OEG0UEV®V, Ol TOPUSOCIUKEG CVTEG TEXVIKEG EMEKTEIVOVTIOL LE TNV QEOT
EVOOUATOON TOV YPOVIKOV COPUYIOOV TOV mToKET®V, e okomd v aflomoinon g
AVOLOOHOPQiaG OTOvg YpoOvovs Leta&d apiewv (inter-arrival times). Ot mpotewvoOpeveg
YPOVIKA gvaicOnTeg TapaALayEG EVIOYDOVV TNV IKOVOTITO TOV LOVTEAOV VO, OV VEVEL EMBECELS
OV EKONADVOVTAL MG XPOVIKE eEQPTOUEVA LOTIPaL.

To tehkd ocvotuo, pe v ovopacioc A-THENA, cuvovdlel v KataAANAOTEPT YPOVIKE
evaicOn kwotkomoinon Béong pe TIG TEYVIKEG emadénong dedoUEVOV IOV TEPLEYPAPNKAY
mponyovéEvms. O vPpdKds avtdg 6Yedlacdc, 0 onoiog cuvictatal oty Xpovikd EvaicOntm
YBpuwwwn Kwdwonoinon (Time-Aware Hybrid Encoding — THE) kot otnv Enavénon yia
Awktvoakd Aedopéva (Network-Specific Augmentation — NA), kabiotd epikty v &yKoupn,
akpiPn Ko €0pOTN aviyvevon EGPOAMYV € PEOMOTIKO TEPPUAAOVIO HE TEPIOPICUEVN
VIOAOYIGTIKY] 1YV, 0TS avTd TV Yopaktnpilovv Ta cvyypova diktva [oT.

E.2 lIewpapatikny MeBodoroyia

H a&orldynon tov A-THENA Boaciletar og o avotnpr melpapoatiky pebodoroyia, n onoio
a&lomolel tpio TPOTLTTAL CHVOAD OEGOUEVMV TTOL OVTOVAKAODY SLOQOPETIKEG OLOUGTAGELS TOV
npoPAquotog aviyvevone ewoformv oe mepipdriovta IoT: CICIoT23-WEB, MQTT-IoT-
IDS2020 kon IoTID20. Ta gv Adym cuvora mepthapdvouy éva gvpl @doua embécemv—and
TNV EKUETOAAEVOT EVTTOOEIDV OE EPUPUOYES 10TOD £MG GEVAPLN KOTOVEUNUEVNG GPVNONG
vanpecioc—rmrapéyoviag €161 pia ToAvddotatn a&loAdynomn g tKavOTnToS TOL LOVTEAOL Vo
YEVIKEVEL KO VO TPOSAPUOLETAL OTTEVOVTL OE ETEPOYEVEIG KOl EEEMOTOUEVEG AMEINES.

O petpikéc a&oAdynong emléybnkay ®ote va mpoceyyllovv peaMoTikd GevapLo
epappoyav oe mepidriovia loT, eotialovioc 1660 otV akpifela 660 Kol 6TV TOOTNTO
aviyvevong. Ot Paocwol deikteg emidoong Pacilovionr oe €va TPOKAOOPIGUEVO KOATDOQAL
nemoidnong, 1o omoio epapudletor ot uéylotn TN meEmoidnong tov poviélov, Kot
nepLapPavouv:

o IIpowotnta (earliness): O apBUOG TOV TOKETOV TOV OTALTOLVTAL EMG TNV TPATN
BéPan ko opON TpdPAeYN.

o Axpipeia (top-1 accuracy): H ocvvolikr axpifeia pe Pdon v emkpatéotepn
TPOPAEYN TaEVOUNOTC.

e PuOpdc yevdmg apvntik®v osrypdtav (false negative rate — FNR): To mocooto
eMBOEcEDMY OV OEV EVIOMIOTNKOV KOl GUVERNMG TOoSvopmbnkav eo@oApéva g
KkaAonOng kivnon.

e PuOpdc yevdodg ovvayepp@v (false alarm rate — FAR): To mocootd kokonBovg
kivnong mov AavBacuéva avayvoplotnke wg KakOBovAn.

o Xopdalpa &ykarpng aviyvevong kiwvovvov (Early Risk Detection Error — ERDE):
SVVOVAGTIKOG OEIKTNG TTOV ATOTIUA TV AtOS0GT) TOL GUGTNUOTOG MG TTPOG TNV aKpifeia,
KoL TV TOYOTNTO AYTG COCTOV OTOQACEDV.

[Ipokeévoyu va texpnpuwbel n TPOKTIKY a&OTOMGIHOTNTO Kol KOTOAANAOTNTO TOV
CLOTNUOTOG Yo avanTuén oe mePPAALOVTA LE OVOTNPOVG TEPLOPIGUOVS, To A-THENA

29

avamTOooeTal Kot a&loAoyeital oty Thotedpua Raspberry Pi Zero 2 W. 1o mhaicto avto,
OlEVEPYOUVTOL HETPNOELS TOV YPOVOL aVAYVAOPIoNG Kol TNG KOTOVAA®ONG MUVAUNG, LTO
TPAYHOTIKEG cuvOnkeg Aettovpyiag. H mepopatik avut) S1dtoén TopEYEL 1oYLPE EUTEIPIKA
TEKUNPLO. VEP TNG OMOOOTIKOTNTAG KOl TG PLOGIUOTNTOS TOV GLOTHUATOG Yo, YPNOT GE
EQOPUOYEG TPAYLLATIKOD YpOVOL og evompatopévo IoT mepiBdAiovta.

E.3 Anoteréopata

To mpotewopevo cvotnuo A-THENA oaloloyeitor ouyKpITIKA pe ENTA OLUPOPETIKES
oTpaTNYIKEG Kdkomoinong Béomng, Kabmg kot pe Téooepa kabepopéva LOVTELD Yo £YKOIPN
aviyvevon ewoPordv, yvootd wg eRNN, eTransformer, eAtt kot eGlo. Ot e€etaldueves TeVIKEC
KOOIKOTOINGNG KOADTTOUV €vo. €LPY QACHO Tpoceyyicemv, mePAauPavoviog TOG0
TOPOOOCIUKES, OGO Kol TOPAUETPIKEG/ HadNolaKéG TeXVIKES, OMMG 1 KOdKomoinon pe Pdon
dtovuopoTikég avamopactdoelg (embedding-based), n cvvelktikn (convolutional) kot m
kaBoiwkd oyetikn| (relative global) kwdikomoinon. Ze avtifeon pe T GUYKPIVOUEVO LOVTEAQ
™m¢ BPMoypapioc, To A-THENA gival 1o povodikd LOVTELD TOV EVOMUATMVEL PTA TN YPOVIKNY
TANpoopia ot dtodtkacio pabnong, EMTPETOVTOG ETCL U0 GUGTILLOTIKY KoL TEKUTPLOUEV
a&loldynon g nLOPOCT|G TV YPOVIKA EVAIGONTOV KMOKOTOMGEDY GTNV amdI0oT).

HMpowotnra kot Akpipeia

H a&ohdynon 1ov GueTHRATOC VIO KOTOPAL EUTIGTOSUVNG 95% avadelKviEL TV VITEPOYT TOV
évavtl OA®V TOV GLUYKPIWVOUEV®OV HOVIEA®V KOl GE OAOL TO YPTOLUOTOLOVHEVE GUVOAQ
dedopévav—CICIoT23-WEB, MQTT-10T-IDS2020 kot [0TID20. Zvykekpiéva, 1 Ypovikd
evaicOn VPPN Kwduonoinon Béong mov viobetei o A-THENA odnyei og Peltioon g
axpifelog £og kot 18.57 povadeg, oe GOYKPLOT UE TIG TAPAOOGLOKES TEXVIKEG KOIIKOTOINOoNG.
H onpavtikny avt amddoon amodideTor 6Tny KOVOTNTO TOV GLGTHOTOC VO, ATOTUTIMVEL TIC
YPOVIKEG GUGYETIGEIS GTOV PpLOUO APIENG TOKETMV, TIG OTOIEG 01 CUUPATIKEG KOIIKOTO|GELS
advVvVaTovY Vo cLAAGPRoLVY. TIépav TV KAAGIKOV oTpatnyikdv, To A-THENA vrepéyel kot
évavtt Tov miéov kadepopévov poviédwv ykoupng aviyvevong etoforav, topovoidlovtag
péon avénon axpifelog peyolutepn t@v 6 Lovadmv avi chHVOLO SES0UEVMV.

[dwitepo evdlapépov mapovotdlel n Oetikny cvoyétion petald vyning axpifelag kot
LEWOUEVOD OplBIOD TOKETMV TOV OTOLTOVVTOL Y10 T ANYT| ard@acns (OeikTng Tp®mIUOTNTAGS),
OTO(EID TTOV KOTOOEIKVVEL TNV IKOVOTITA TOV HOVTIEAOD VO, TOPEYEL TPOUUEG Kol OEIOTICTES
npoPréyeic. [TapdAinia, ot Tipég v deiktmv FAR kot FNR dwotnpovvron eEonpetid yopmAég
N kot pundevikée, Wimg ota cvvora CICIoT23-WEB kor MQTT-1oT-IDS2020, yeyovdg mov
emPePordverl tov vymio Pabud a&lomioTiog TOL GLGTAATOC.

H tehin emhoyn kwdwkomnoinong yio kébe chvoro dedopévav, Bactopévn otn younAdTepn
OTMAELL GTO GLVOAO ETMIKVPMONG, VTOYPOUUILEL TNV OTOTEAEGUATIKOTITO TOV YPOVIKA
evaiocOntov taporiayov. Ediukotepa:

e T 10 CICIoT23-WEB, 1 ypovikd gvaicOntn nurovoedng kwdikomoinorn odnynoce
oe 100% axpifeto pe mpdPreymn omd TO0 TPAOTO TAKETO.

o T to MQTT-IoT-IDS2020, 1 maporroyn tomov Fourier emiong mapeiye 100%
axpifeta pe aviyveoon 1o 0o T0 TPMOTO TOKETO.

e Tw 7o 10TID20, n mapaiiayn RoPE onueimoe axpifeia 93.83%, Swotnpdvrog
TAVTOYPOVA YAUNAOVG OEIKTEC GOUALATOV.

KafBvotépnon ko Arotdimope Mviung
H avémrtoén tov cvomuoatog A-THENA oto Raspberry Pi Zero 2 W avédei&e v dwaitepa
VYNAN amodoTikdtnTd Tov, emPefardvoviog T ovpPfarotnTd ToL pE mEPPAAlovTa

30

TEPLOPICUEVOV TOP®V. TVYKEKPIUEVA, TO HOVTEAO amortel poAG 1.42 ms yia v enelepyacio
pomVv amotelovpevey arnd 30 TokETo, EVM 1) GUVOAKT KOTOVAANDGCT] VUG TOPOUEVEL KATM
a6 ta 4 MB. H xafBvotépnon mapovctdlel un ypopupkn KAMPAK®OOT O TPOg T0 UNKOG TNG
POTNG, YEYOVOS OV EMTPETEL TN YPNON TOV GLUGTILOTOSC OKOUT KOl GE SUVOULKA TEPPAAAOVTO
pe petafoiropevo pvBpd kivnoneg. Aoonueiowto eivar 6Tt M EMAOY] OTPATNYIKNG
Kdkomoinong 0éong €xel aUeEANTED AVTIKTUTO GTOVG OTANTOVUEVOLG TOPOVG, GTOXEID TTOV
emPePfordverl T coUTOYN Kol OTOSOTIKY GYESIOOT] TNG UPYLTEKTOVIKNG UETOCYNLUOTIOTH TOL
YPNOLLOTOLELTAL.

Ye oOyKplon UE TO oLuvaen HOVTEAD £ykoipng aviyvevong ewcfoAicdv, 1o A-THENA
EMTUYYAVEL [1O0VIKT 100ppoTia avipeso otov ypdvo amdkpione, v axpifela kot tov
aplOpd mopapétpov. Moviéha onwg ta eAtt kot eGlo, ta onoio Pacilovtol 6e cuVEMKTIKEG
OPYLITEKTOVIKES, EMTLYYAVOLV avVTIGTOLOVS ¥POVOLS OmOKPIoNG, MOTOCO YPNGLLOTOLOVV
TOALOTTAGG10 aplOUd TOPAUETPOV KOl TOpoLGlalovy VTOdEEaTEPT OKpifelo aviyvevomngc.
AvtiBétmg, mo ovvleto povtéda Ommg ta eRNN xot eTransformer epavifouv vymin
KaOVGTEPTON KoL VYNAEC AOLTNOELS GE PV, TTEPLopilovToc TN SuVATOTNTA VAOTOINGNE TOVG
o€ TpoypaTikég cuokeveg loT.

A&oréynon Baowikav Xvvictowodv tov A-THENA

Ot pehéteg amdAeyng (ablation studies) wov mPAyLLOTOTOONKAY TEKUNPLUOVOVY LE CUPNVELDL
™ ovuPoAn kébe facikhg cuVIeTOGAC ToL cuoTatog A-THENA oty gv yével amddoon Tov.
YUYKEKPEVA, 1) 0QAIPEST) TOV TEXVIKOV emaOENOTG TOV Pacilovtal GE YPOVIKEG GOPAYIOES,
KaBMG KoL 1 AVTIKATAGTACT TG TPOTEWVOUEVNG cuvaptnong anmieiag EDel pe v khaown
dtooTawpoduevn gvipomian (cross-entropy), 0dnNyovvV G ONUAVTIKY Heiwon NG okpifelog
aviyvevong og OA ta a&loAoyodpeva cuvola dedopévav. To evpnuo avtd vroypappilel ™
AELITOLPYIKT OvVOYKALOTNTO TOV 000 OVTMOV UNYOVIGLOVY Y10 TV EMITEVEN TPDIUNG, AEIOMIGTNG
KO YEVIKEDGUNG OViXVELONG EIGPOADV.

H xPavtomoinon tov povtéAov, 1 omoio epapudoTKe UETE TNV eKmaidevon PAcel Tov
oynuatog INTS, a&oroyndnke mg Tpog v kaBuoTépnon Kol TV KOTOVAAMGT] LVAUNG. ZTNV
nepintwon tov A-THENA, n kBavtonoinon npocépepe emtdyvvon katd 1.37X otov ypdvo
EKTELEGNC, OPIC OUMC VO EMLPEPEL CNUAVTIKT UEIDOT] 6TO OTOTHT®UA UVAUNG. AvTiOéTmg, ot
UEeYOADTEPNG KATHOKAG apYITEKTOVIKEG OT®G To eTransformer, 1 kBavtonoinomn anépepe 1.52X
emtdyvvon kot 1.77X peiwon ot xpnorn Wviung, vrodnAmdvovtog 0Tt To 0QEAT TNG TEXVIKNG
OVTNG Vol EVIOVOTEPO GE TLO QAT TIKA PLOVTELQ.

YUVOMKG, TO TEPOUATIKO OTOTEAECUATO OTOdEKVOOLY 0Tl T0 A-THENA cgivol Mon
BeATioTOMOIMUEVO TOCO GE EMIMEDO OPYLTEKTOVIKIG OGO KOl VTOAOYIGTIKA, TOPOLGLALOVTOG
TEPLOPIOUEVO TTEPIODPIO Y10 TEPUITEP® EMTAYVVON HEC® UETAYEVEGTEPMOV TEYVIKMDV
ovumieonc. H cupmayng apyltekTovikn Kot 01 GTOYEVUEVES GYESAOTIKEG EMAOYEG KaO1GTOOY TO
oLOTNUHO W0UTEPA KOTAAANAO Yoo ¥pNomN O€ OCEVAPLE TPOYUATIKOD YpOVOL Kol Yol
TEPPAAAOVTA LE OWGTNPOVE EVEPYELNKOVS TEPLOPIGHOVE, OTMC OVTE TOL GLUVOVIMVINL GTO
ovyypova [oT cuotiuata aceaielog.

E.4 Xvpnépacpo

Mé£Gm NG EVOOUAT®ONG TNG XPOVIKA vaicOnTNG VPPIOIKNG KMSIKOTOINOTG, TNG GTOXEVUEVNS
EMOVENONG OESOUEVOV TTPOCOPHOCUEVIC OE OIKTLOKES pogg, Kot NG €Eeldikevuévng
oLVAPTNOTG ATMAELNG, TO A- THENA KOTAPEPVEL VO ATOTVTTAOVEL UE OKPIPELD T YPOVIKA LOTIPaL
KAKOBOVANG OpacTNPLOTNTAG, EMLTVYYXAVOVTOS VYNAN aKpiPela pe eAayIGTOTOMUEVE TOGOCTA
yevdmv Oetikdv kol yeuddv apvnTikav detypdtov. H mepopatiky a&lohdynorn tov
GLOTNOTOG G€ TOALOTAG GUVOAL dedopévav 10T, kaBmg Kat 1 avATTVLER TOV GE VTOAOYIGTIKA

31

TEPLOPICUEVO EVOOUATOUEVO DAIKO TEKUNPUOVOLV TNV TPOUKTIKY 0EI0TOMGIHOTNTO TOV GE
peaMoTtikd tepidilova. H yaunin kabvuotépnon kot n eEonpetikd Lukpn KatavaAmon Iviung
EVIGYDOVV TEPUITEPM TNV KATOAANAOTNTA TOV Y10 AEITOVPYiO GE TPAYHOTIKO YPOVO. ZUVOAKAL,
10 A-THENA 0¢te1 1ic Bdoelg yio a&lomoTn, amodoTkKn Kol £YKopr aviyvevon amell@v G€
oVVONKeS LYNANG LETOPANTOTNTOC KOl TEPLOPICUEVOV TOP®V, OTWG AVTEG TOL YopakTnpilovy
TOV OVOOVOUEVO YDPO TOV ELPVOV KATAVEUNUEVOV GUGTNUATOV TOPVODV.

XT Enihoyog

H mapovoa datpiffr] mpoyuatedetal Ty EMTAKTIKY avdykn kabiépoonc e Padidg pdbnong
OG PLOGIUNG TEYVOLOYIKNG EMAOYNG GE KIVITA KOl EVOMUATMOUEVO VTTOAOYLIOTIKA TEPIPAALOVTA,
OOV 1] VTOAOYIOTIKY OTOSOTIKOTNTO KOL 1) TPOSUPUOGTIKOTITA GTOVG TEPLOPIGHOVS TOP®V
CUVICTOUV AOLUTPOYUATEVTEC OMOLTOES. AVOOe@pOVTOC TIC VOIOTOUEVEG TPOKTIKES
aVATTUENG KOl EKTEAECTG UOVTEAMV TEPAV TOV TOPASOGIOK®MY VTOSOU®DY VTOAOYIGTIKOD
VEQPOUG, 1 S TPIPT EGAYEL pa GEPE 0d KOVOTOUES TPOGEYYioELS, HeTal&h TV omoimv: (o) To
CARInN, éva mAOICLO Y10 TPOGOPUOCTIKY KOl TOAVKPUTNPLOKE PEATIOTOMOMUEVT EKTELEOT
CLUTEPACHOTOAOYIOG GE KIvNTEG GVOKEVEG, (B) e&epediviion Kot BEATIOTONTOMOEL GE LOVTEAQ
TOTOV UETACYNUOTIOTH HE GTOYO T AELTOVPYIO TOVG OTIC TOPVOEC TOV SIKTVLOL, KAODC Kot (y)
xpovikd evaicOnteg kwdwonomoelg 0€ong yio v evioyvon G ACPAAENG GE OKTLAKA
nepBdirovta loT.

YT.1 Tehkd Xvoprepaopoto

H mapovoa dwatpir] avadeikviel 0Tt 1 amodoTikdTnTa cuVIcTA BepeldOn Tpobmodbeom yio v
TPOOJO TNG TEYVNTNG VONUOGUVNG GE PEAMOTIKA TEPIPAAAOVTA LIE TEPLOPIGUEVOVG TTOPOLG. Tal
Boctkd evpNUOTO KOTAGEIKVOOUVY TNV OVAYKT Y10, OMGTIKEG GTPATNYIKEG PEATIoTONOINONG OF
EMIMEDO GLGTNLLOTOG, TNV EMITUKTIKY QTOITNGT OVOCYEOIACLOD TMV LUETACYNLOTIOTMOV OCTE VO,
cuppadifovv pe TOLG TEPLOPIGUOVE TOV TUPVPDV, KOOMG KOl TN ONUAGio TNG OTOS0TIKNG
Babidg pnabnong yo v evioyvon g ToydTNTAS Kol TG 0EI0TIGTIOG CLGTNUATOV ACPALELOG
o€ EPAPUOYEG TPOYUATIKOD YPOVOL. ZUVOMKAE, TO GUUTEPAGLOTA TNG UEAETNG LITOYPapilovy
otL M Prodoun avartvén g TEXVNTAG VONUOcOVNG amantel évav pilikod EmOVATPOGIIOPIGUO
TOGO TMOV VLTOKEIUEVAOV APYLITEKTOVIKOV 00O Kol TOV TPOMOL EKTEAECNG TOVG, MOTE VO
OVTOTOKPIVOVTOL GTIS AOLTNOELS TV GUYYPOVAVY, SUVOUIKAOV Kol ETEPOYEVAV VTOAOYIOTIKMV
TEPPAALOVTIQOV.

XT.2 Mehhovtikéc Enektdosg

H napovca datpifr] avadetkvdel ToALATALS EpevVTIKEG KATELOVVGELS e 1010iTEPT SVVALLKN
Yo TV TEPAUTEP® TPODONOT TNG 0modoTIKNG Padidg Labnong o KvnTd Kol EVOOUUTOUEVO,
GUOTHLOTAL.

o Melhovrikég mpoondOseieg 0o mpémel vo emKEVTPOOOUY 6TNYV TOTTIKY| EKTAIOEVON
(on-device training), emiSIOKOVTOC EAOPPLY, EENTOMKEVUEVT] KOl TTPOGOPUOGIUN
nuabnon oe mpaypatikd xpoévo. Mia tétoln KatevBuvon evioybel TNV TPOGTAUGIO TNG
WIOTIKOTNTAG Kot TN dvvotdtnTo Asttovpyiog vmd HETAPOAAOUEVEC CULVONKEC,
KADIGTAOVTAG TO GUGTHLOTO TEYVNTNHG VONLLOGVUVIG TTLO GVTOTOKPIGILOL KOl OGQOAT].

o H oaxpipig mpofireyn TS 0T60061NS VEVPOVIKAV SKTVOV ULECH HOONCIOK®V
povtéhov amotedel dAlo éva vrooyopevo medio. Tétoleg mpooeyyioelg pmopovv va
UEWDGOLY OPOOTIKA TO KOGTOG OvAmTLENG, Vo emttaydvouy T Olodikacia
BedtioTomoinong Kot vo VIoGTNPIEOLY TNV OMOTEAEGUATIKY] AYN ATOPACE®Y YOPIG
™V avayKn Yo eE0VTANTIKEG EKTEAEGELC 1| LETPTGELS.

32

o To tayémg e£EMGGOUEVO TESTO TG TUPAYOYIKNG TELVITIG VO HOGVVNG (generative
Al) og KivNnTég KOl EVOOUATOUEVES TAUTQPOPLES TPOCPEPEL VEES dUVATOTNTES Y10l
WIOTIKEG Kol AKPOS TPOCOTOTOMUEVES €QupUoYES. QoTdc0, efakorovbel va
OVTIHETOTILEL ONUAVTIKEG TPOKANCELS TOL OYETILOVIOL LE TOVG TEPLOPICUEVOLG
TOPOLVG, TNV KABLGTEPNOT, TNV TPOGAPUOGTIKOTNTO Kot TN Olayeiplon TOAAUTADV
HOPOOV TANPOQOpiag.

o E&icov kpioipog avadetkvieTar 0 poOrog TG TEYVITIG VOHOGUVIG GTO OIKTVUKA
GUGTILOTA, 1| OTOi0 JUOPPAOVEL TIG PACEIS Yo EVEVELG, TPOGUPUOCTIKEG KoL
aVTOPEATIONUEVES EMKOIVOVIOKEG VTTOdOuEC. [Tapd T duvautkn Tov, T0 Tedio avTd
VTOAEIMETOL KATOAANA®Y CUVOL®V OEOOUEVMV, TUPUCTUTIKMOV OVOTOPACTACEDV KOl
eedkevuévov apyrtektovikav. H avdykn yio exudbnon oe mpoayuatikd xpovo Kot 1
EMeyn edpatopévov peBOdOV CLGTNUOTIKAG GLYKPITIKNG a&loAdYNoNg
(benchmarking) Katadeikvhouv TV avayKkr yio EVIOTIKOTEPT) EPEVVAL

o Ilepmtépo katevOOVesg neptloufdavovy v avimtuén VPPISIKOV VTOAOYIGTIKMV
OYNUATOV TTOV YEPUPMVOLV TIC TAPVPEG UE TO VEPOG, TN PEATIOTOTOINGT LE YVOUOVA
TNV EVEPYELNKN OOS00T, TN SoPAAIoN TNG AvOEKTIKOTNTAS TOV LOVTEA®V €Tl TNG
OLOKEVNG, Kot TNV euPdbuvvon oe mopadeiypota avTOemPAETOUEVIC Kol GUVEXODS

paénong.

YuvolKd, ol mopandve KatevBuvoelg S1evphlvouy TO OPOapO Yo KALLOKODUEVT Kot
OTOJOTIKN TEYVNTH VONUOCHVY] OTIG TOPVOES, GUUPAAAOVTAS OMOPAGIGTIKG GTNV avaTTLEN
TPOYUATIKA EDPLAV KOl EQUPUOCIUOV GLGTNUATOV o€ TEPPAAAOVTA UE PENAIGTIKODG
TEPLOPLOLLOVG.

33

Acknowledgements

The completion of this dissertation marks the end of an academically enriching journey—a
journey not undertaken alone, but made possible by the invaluable contributions and
unwavering support of many individuals and institutions.

First and foremost, I extend my deepest gratitude to my advisor, Professor lakovos S.
Venieris, whose exceptional guidance, profound insights, and constant encouragement were
instrumental in shaping this research. His mentorship went beyond mere supervision, inspiring
me to strive for rigor, originality, and practical relevance in every aspect of my work. His trust
and understanding throughout this journey fostered a supportive environment that enabled me
to grow both personally and professionally, encouraging me to confidently pursue ambitious
goals. | am equally indebted to my co-advisor, Professor Dimitra Kaklamani, for her invaluable
mentorship, intellectual generosity, and continuous encouragement throughout this journey. Her
insightful discussions and constructive feedback significantly enriched my research experience
and played a vital role in the successful completion of this dissertation.

I would also like to extend my sincere appreciation to the members of my dissertation
committee for their meticulous feedback and constructive suggestions, which considerably
improved the quality of my research and writing. Special thanks are due to my collaborators
and colleagues, especially those with whom I co-authored research papers during my PhD. In
particular, I would like to extend my heartfelt thanks to Dr. Stylianos Venieris, Senior Research
Scientist at the Samsung Al Center in Cambridge, UK, for his invaluable guidance and support
throughout the often-chaotic journey of research. His mentorship has played a pivotal role in
shaping me into the researcher I am today.

This research would not have been possible without the support of the Intelligent
Communications and Broadband Networks (ICBNet) Laboratory, which provided the
resources, facilities, and academic environment necessary for pursuing innovative and
impactful research. | am grateful to all the technical and administrative staff who facilitated my
work with efficiency and kindness. Furthermore, I warmly thank my fellow graduate students,
friends, and family for their intellectual companionship, patience, and emotional support
throughout this journey. Their shared experiences, stimulating conversations, and unwavering
encouragement have rendered my academic path genuinely enjoyable and memorable.

Lastly, I wish to recognize the broader research community whose collective efforts
continue to drive forward the fields of deep learning, mobile computing, and embedded
systems. This dissertation represents a modest contribution within a larger, collaborative
endeavor, standing upon the foundation laid by numerous researchers who have pioneered the
way for continuous innovation and discovery. I am deeply grateful for their contributions, as
they provided invaluable inspiration and context for my own work and highlighted the essential
role of collaborative progress in achieving meaningful scientific advancements.

loannis Panopoulos
Athens, April 2025

EAI AEK This research work was supported by the Hellenic Foundation

mmﬁwii—pml:({mimw for Research and Innovation (HFRI) under the 3rd Call for
Helleic Foundation for HFRI PhD Fellowships (Fellowship Number: 5578).

Research & Innovation

35

Table of Contents

Mepiinqyn
Abstract
Exterapévn Mepiinyn 11
YN AT 10 4§ U PRSPPIt 11
B OcmPNTIKO YTIOPOOPO . .vvieneiieeiieeiieeeiiee ettt e ette e tveeseveeebteeseveessseesseseessseeessaeesssasansseanes 11
I' Tomtikn Zopumepa oo toloyio 6€ KIVITEG ZUOKEVEG ...icvieriierierieeeieereeieesieeseeeseresenesene e 16
A Extéheon Moviéhmv MetaoynUaTIoTOV 6€ KIVITEC ZUOKEVEC.....viiervieeeieeeiieeeivee e, 21
E "Eykaipn Aviyvevorn E1oBolmv 6€ ATKTUO TOTocevieiieiieieieeeeeeeeeeesee e 25
D 25111V o Yo OO URTUPRRPRRRPON 32
Acknowledgements 35
Table of Contents 37
List of Figures 41
List of Tables 43
1 Introduction 45
1.1 Limitations of EXiStNG WOTKccccoeoiiiiiiiiiiiiiiieeie ettt 46
1.2 Motivation and GOALS..........cecueruirieriiiieieriee ettt sttt et 47
1.3 CONIIDULIONS ...ttt ettt ettt sttt et e be e b e aeeeateeneeeabeebeesaeesaeesaneens 48
1.4 DiSSEItation OVEIVIEW.eeiuiereieriieeiiieteeiteerteesttesteeteeteesbeesseesatesseesnseeseenseesseesaeesaseens 48
2 Theoretical Background 51
2.1 Deep Learning Fundamentalsccoooieiiiiiiiiiiiiiieeeeeeee e 51
0 B D) 1150 s OSSR 52
2.1.2 COTE ATCHITECIUTIESc.veeueeeeiieieeieeste et e site et e e te ettt et e st e st esateeaeeeteesbeesbeesaeesaneeas 53
BP0 DR T 333 0] 001 1<) OSSR 54
2.2 EA@E COMPULINE.eoutieiieiieeiieeiie ettt et e st e eteeeteste et e bt e sseesbeesaeesateenteenteesbeesseesaeesnsenns 58
2.2.1 EVOIULION ...ttt ettt ettt ettt st e et e e s ae et e nneeneenes 59
2.2.2 MODile COMPULINEZ -.cuveeveeniieieeieesieesieesite et ete ettt et te st e saeesaeesaeeeteesteesbeesseesneeens 60
2.2.3 Embedded COmMPULING.......cccvieriieiierieiieeteeteereesreeseeseeseressreesseeseesssesssesssesssesssens 61
2.3 EA@e INtEIIIZENCE.cueeetieeieeiiieie ettt ettt ettt ettt sttt et este e b e saeesnneeas 63
2.3.1 Defining CharaCteriStiCS......c.uevuierrrerierrirriereesreeseeseesaessreeseeseesseesssesssesssessesssens 63
2.3.2 Types Of APPLICALIONS......eiviiiiiiiieriterie sttt ettt eeeete e teesbeesaeesaeeeas 65
2.3.2 Device HardWare.cceouieieriiiiieieeie ettt ettt enee 66
2.4 On-Device INFETENCEcueruieiiiiiieiee ettt 70
24,1 BENETILS ..ottt et ettt st ettt e bt e sae e et 71
2.4.2 CRALENEESeoveeieeiieeie ettt ettt st et e et te e e e s teestaessaesnseesseensaeseesssesssennseensens 72
2.5 Efficient Deep Learning........c.ccccviieiieeiiiieiiieciee e eriieeeieeeseveesveeevveessveesaeeesvaesnneeenes 74
2.5.1 MEtrics Of INTETESLeeiiiieiieiiiiieeeie ettt st e 74

2.5.2 Compression MethOdsoccviiiiriiiiiieiierieree et ssae 75

3 Optimized On-Device Inference for Mobile Devices 79
3 T RElAted WOTK ...ttt ettt s 79
3.1.1 Limited RESOUICTES ..cuveeuiiiiiiiieieeiieite ettt ettt et 80
3.1.2 Device HEtETOZENEILYeeeviereeiieriierereeiieeieeieesteesteesetesssessseesseeseessnesssesssessseesseens 81
3.1.3 Dynamic ENVIrONMENt..........ccoviiiiiiiiiieiieeciieecieectee e eereeeveeesave e reeeeveeeevee e 81
3.1.4 DINN DIVEISILY ...uiiriieiieiieeiieieestestesteste et eseesseesteesstesssessseesseesseesssesssesssesssesssenns 82
3.1.5 DNN INNOVATIONS ...c..tiiiiieieriieiieie sttt ettt sttt bbbt et et e enee e 82
3.1.6 Diverse Application SLOSc.ccoccviiiiiiieiiieciie ettt eireeeveeesve s reeeeveesvee e 82
3.1.7 Multi-DNN INTETENCEc.veeieeiiieieieiieeteie ettt 83
3.2 SYSIEIM OVEIVIEWietieiieiieeiie et et et et estt e st e ebe e bt e bt e bt e sbeesueeenteeateebeenbeesseesaeeeneeenne 83
3.2.1 WOTKIIOW ottt sttt sttt 84
3.3 Multi-Objective Optimization Frameworkcccoeviiiiiiiiiiiniiieeeree e 86
3.3.1 MOO Problem FOormulation.............ccecerieieiininieneree e 86
3.3.2 Objective Function Evaluationcocceeiiiiiiiiinniinieicec et 88
3.3.3 MOO Problem SOLVETccueiiiieiiieeieieeieeeeee ettt 89
3.4 IMPIEMENLALION ..ottt ettt sbt e sttt e et e b e saeeenee e 92
3.5 Experimental MethodOLOZYc.eevviiriiiriierienieeie ettt sre e ere et seeesene e 93
3.5.1 QUANTIZALION. ...cuviiiiieeeiie et et e et e et e eteeeeeteeetee e tbeesebeeessaeessseeesseesseeassesessseennnes 93
3.5.2 Application Scenarios, Models and Tasks..........cccevverierierciieciieieniesee e 94
3.5.3 MODIIE DEVICESueeeiieiieiieeieee ettt ettt ettt ettt ettt sbtesatesaeeeneeens 97
3.5.4 Profiling DetailS......cccueiiiiiiiiiieieeiee ettt sttt 98
300 RESUILS. ...ttt ettt e e ettt ettt e ae et ettt te s eeen 98
30,1 DIBSIGNS -.ceuviiiiieiieeie ettt ettt b ettt et e e bt e s bt e e at e et e e bt e bt e bt e nbtesateenteereens 99
3.6.2 RUNtIME AdAPLationc.eevvieruieriieiieiieieesieereeeseesreereereesteeseaeseaesssessseesseessaeseas 101
3.7 Limitations and Future DIirectionscceeveeriierienienieeieee ettt 104
3.8 COMCIUSION ...ttt ettt ettt e ettt e et eat et e sbe et e teestenseeneeneenes 105
4 Deploying Transformer-Based Models on Mobile Devices 107
4.1 Related WOTK ..ottt ettt st e e 108
4.2 Experimental MethodOlOZYccouiiiiiiiiiiiieiieeee et 108
4.2.1 Tasks and MOAEIS........cceruirieriieieeieeee ettt 109
4.2.2 MODILE DEVICEScouvieueieiiiiiiieiie ettt ettt ettt sttt et et e bt e seee e 110
4.2.3 Benchmarking Details.........c.ccccverierieriieiieiieeie et see e stee e senesnne e 112
4.3 RESUILS. ..ttt ettt b e sht e st s b e et et e bt e bt e aeeeaeas 113
4.3.1 ON-DEVICE ACCUIACY ...eecuvieerireririeetieesreeeteeesreeeseeessaeesseeessseessseesssseesssessssseessses 113
4.3.2 CPU PerfOImMANCEcc.eruieiiuieieiieiee ettt sttt 113
4.3.3 ACCRLEIALOTS . .eeutietieiieee ettt ettt b ettt et ettt e bt e saee et eeare e 115
4.4 Discussion and Future Workcccooeeiiiiiiiiiieee e 116
4.4.1 System OPtiMIZATIONScccvieeerieeriieeiieeerreeeteeesreeereeeseaeesseeessseesseesssssesssesensees 116

38

4.4.2 Model OPtimMIZAtiONS........ceeveerierriesreeriiereerresresseeseesseesseesseesssessesssesssessseesseessns

4.5 CONCIUSION ..ouviiieiietieieete ettt ettt et et et e e st e st e aeeseesteseeseensesseensenseeneensesseeneans

5 Advancing Early Intrusion Detection for the Internet of Things
5.1 Preliminaries and Related WOrk..........cocoiiiiiiiiiiiii e
5.1.1 DL-Based Intrusion Detectioncccceririerinirnienienienieeiceeesic e

5.1.2 Augmentation Strategies for Cybersecurity Datasets...........ccccceereerieneeneenseennnen.
5.1.3 Transformer Positional ENCOAINGScceecvveriieriienieniieie et
5.2 Proposed APPIOACKcovvieiieiieiieierese ettt sttt nnaes
5.2.1 Data Preparation..........ccueeeuieeiiieerieeeeieeeeteeeieeesiveeeveeesteeesveeesseeessseesssesessessssesanes
5.2.2 TTAININE «.evveenveeteesieesteete et et eieesseesetessseesseessaesseessaessaessseasseasseesseesssesssesssenssennsens
R BN] 1S 1 o SOOI
5.3 IMPIEMENLALIONveevieiieeeiecii ettt ree et et e et e e eesteestaessseasseesseesseesseesssesssessseenses
5.4 Experimental Methodologycceeiiiiiiiiiiiiiieceeeee et
54,1 DALASELS ...ttt ettt sttt e en
5.4.2 Training Configuration............ccceerierienierieeie et eseeette et ettt st seeeeaeeeneeas
5.4.3 Evaluation MELIICSceouiiieieriiiieiesiee ettt ettt st eneen
5.5 RESUIES ..ottt et et e b bbbttt ae s
5.5.1 CompariSON MEthOdSc.eccvieriieriiiiiiiiiie ettt e ereebe e e ssseesseenseas
5.5.2 Earliness and ACCUTACYcecueerueeruierieniieeieeieesieesttesiteeiteete e bt sbeesbeesaeesneeeneeeneeas
5.5.3 Latency and Memory FOOLPIINt..........c.eccvercviirierieeniesie e ere e e sreseveseseennees
5.5.4 Evaluating Core Components of A=THENAcccccooiiiiiiiiiiieeeee e
5.6 CONCIUSION ...ttt ettt ettt et e bt e s bt e sae e e st e e abe e bt e bt e sbeesbeesneesneeennean

6 Discussion and Concluding Thoughts

6.1 KeY FINAINGSeeeiieieeeieeeee ettt ettt ettt sae e e e e s
6.2 LooKing into the FULUIE...........ccveeiiiiiiiiiiecie ettt enne s
6.2.1 ON-DEVICE TTaINING. ... ccouiiriieieeieeieeeiee ettt ettt et e st e eeeete e beesbeesaeesneeeaees
6.2.2 DNN Performance Prediction in Resource-Constrained Devices............c..cc........
6.2.3 Generative Al on Mobile and Embedded Platformscccoceeieinienieninnnnnnne.
6.2.4 AI-Enabled NetWOrKiNgccccoievierierieeiiereereeieeseeseesresreere e sseessaessnesenas
6.2.5 Additional DIr€CtioNSccveieeviiiiiiieiiiecte ettt eeeetee e e e e e etveeeveeeareeeareaens
6.3 FINAl TROUGNLSviiiiiiieiieieciecte ettt ettt ve e et e et e e te e taessbessbeessaessaesseesaens
0.4 PUDIICATIONSeiiiviieiie ettt ettt e et e v e e et e e e beeeatee e aseeeabaeessseesssesesseesaseeans
6.4.1 JOUNAL ATTCIES. ...coueeiiiieierieee ettt st
6.4.2 Peer-Reviewed Conference/Workshop Papers.........ccoeeeveeviieiciiiciieccieccieeeen
6.4.3 Under ReVIEW/ACCEPLEAvvieieiiieiiieciieeee ettt et e e
Glossary

References

39

List of Figures

Figure 2.1 The PerCEPLIONccuvevvviiiieieeiieesieesteeeeeseteeteete e beesseesseesssessseesseenseenseesseesseesssennsenns 52
Figure 2.2 The Transformer architecture [28]........ccceeviiiiiieiieiieciecieeie et s 55
Figure 3.1 High-level Workflow Of CARTIINcccveviiiiieiieiieieree st 84
Figure 3.2 Toolflow for the evaluation of CARINc..ccceevvieriierieriieieeieeeeie e sne e 93
Figure 3.3 UCT @ValUatiOncccviieiiiieiiieeiieecieeciee et esvee e e veestaeeseveesveeesaeesasaeensaeenenas 100
Figure 3.4 UC2 eValUatiONoccvieriiiriienieeieeie et eieeseesete e sstessseeseesseesanessnesssesssesnsessseensns 100
Figure 3.5 UC3 eValUationccccuiieiiiieiiieciieeciee ettt esteeete e e e svaeesaveesveeesaeesasaesssaeensnas 101
Figure 3.6 UC4 eValUationcccueieieiieiiieeiiiecieeeciie et esteeeieeeeveeevaeeseveesaeeesaeesnsaesnsneessnas 101
Figure 3.7 CARIN's runtime behavior targeting the single-DNN UCI scenario on S20........ 102
Figure 3.8 CARIN's runtime behavior targeting the multi-DNN UC3 scenario on A71........ 103
Figure 4.1 CPU throughput for Samsung A7cccvevveriiriiiiiiiieerieeree e ere e ereesee e e 114
Figure 4.2 CPU throughput for Samsung S20 FE...........ccccoooiiiiiiiiiiecece e 114
Figure 5.1 The proposed A=THENA SYStEIM........cccocvuiiiiiiiiirierieieesteesteesireereereeveesreesseeens 126
Figure 5.2 Time-aware positional €ncodingscccvevverviriiriiiiriierienee e e ereereesieeseee e 132
Figure 5.3 A-THENA's confidence-based evaluation............c.ccceevueevienieiiecie e 137

Figure 5.4 Impact of augmentation, EDeL, and quantization on A-THENA's performance..139

41

List of Tables

Table 2.1 Quantization SCHEMEScccviiiiuiiiiiie ettt ettt e evee s 76
Table 3.1 UCT MOMELS ...coeieieieeiieieie ettt ettt ettt et saeeneeseeneeneas 95
Table 3.2 UC2 MOMELScouiuieieriieieie ettt sttt st b e et e e 95
Table 3.3 UC3 MOMELScoouiiiiiiiiieieieeieee ettt sttt st sb e et 96
Table 3.4 UCA MOMELSooeiiieieeiieiee ettt ettt ettt st e bess e et e saeeneeseeneeneas 97
Table 3.5 TArEt DEVICES ...evveruieriiiiieeieeiieeseesteestesetesteete e beesseesseesssessseesseesseesseesseesseesssennsenns 98
Table 3.6 Selected Designs and SP for the Single-DNN UC1 Scenario on S20.................... 102
Table 3.7 Selected Designs and SP for the Multi-DNN UC3 Scenario on A71c........ 103
Table 3.8 00DIN's Solving Time in MilliseCONdScccocverviriiiriiiriienie e 104
Table 3.9 Storage Requirements of CARIN and OODIN in MBccccoevviiiiiiieieecieeinee, 104
Table 4.1 Transformer Architectural Parameters...........ccoocvevviriieniienieneenie e 109
Table 4.2 Transformer MOAELScccueruiiieriiiieiee ettt 109
Table 4.3 Target SMArtPhONESccveiieiieiie ettt e e sre e st srresabeebeeabeeveebeenees 110
Table 4.4 Quantization-Delegate Compatibility..........cccevevereiirciirriierienienre e 112
Table 4.5 Impact of Quantization on CPUcccooieiiiiiiiiiciiciecceeeee e e 115
Table 4.6 Accelerator Latency SPeedup.......c.eecvveciierierierieiiicieeieeriee e ere e eve e es 115
Table 4.7 Accelerator Memory INCIEASEcccvvevvieriieriieieeieeie et see e ere e e 116
Table 4.8 Model OPtimiZAtIONS.......c..cceeirieireerierieeteesteesteereereereesreesseesssessseeseeseesseessseens 118
Table 5.1 System Hyperparameters and their Corresponding Valuescocceeveveeveenennenne 131
Table 5.2 Attack Categories in the Selected Datasetscceeevievieevieenienieciecie e 134
Table 5.3 Summary of Considered Positional Encodings...........ccccevvveviervercienciiecieeseeeeene 136
Table 5.4 Model Complexity and Efficiency CompariSon...........c.ccvevvereervercveeiveesreesieenenennns 138
Table 5.5 Quantization Benefits.........cccceiviiiiiiiiiiiiieieciecte e 140
Table 6.1 Processor-Specific Latency Prediction Models.........c.ccccvevievienieeiinnciieciieeeieene 149

43

Introduction

Technology has always evolved in response to the limitations of its time, pushing against the
boundaries of what was once thought impossible. The history of innovation is a constant
interplay between ambition and constraint, where every leap forward in capability is met with
new barriers to overcome. Nowhere is this dynamic more apparent than in artificial intelligence,
a field that has transformed from theoretical speculation into a defining force of the modern era
[1]. The pursuit of machine intelligence has always been a balance between power and
efficiency, between complexity and usability. Each breakthrough—whether in neural networks,
statistical learning, or modern deep learning—has introduced new opportunities while exposing
new limitations, driving the need for further refinement.

Deep learning, once a niche research domain, has now become the backbone of
contemporary Al, fueling advancements in natural language processing, computer vision, and
autonomous decision-making. It has reshaped industries, powered scientific discoveries, and
even redefined how humans interact with technology. However, the progress of deep learning
has been accompanied by an insatiable hunger for computational resources. Modern deep
learning models are larger than ever [2], demanding massive amounts of memory, processing
power, and energy. As they grow in complexity, they increasingly rely on high-performance
cloud infrastructures, where vast computing resources can accommodate their requirements.
While this has enabled impressive feats of artificial intelligence, it has also raised critical
concerns about accessibility, latency, privacy, and sustainability. Many real-world applications
require Al to function in real time, closer to the user, and without excessive reliance on
centralized computing resources. The need for intelligence at the edge has never been greater.

Mobile and embedded computing present a unique frontier for deep learning [3], one that
demands a shift in focus—from sheer power to efficiency, from abstraction to real-world
adaptability. These devices are ubiquitous, integrated into everyday life through smartphones,
10T sensors, wearable devices, autonomous systems, and specialized edge hardware. They serve
as the interface between digital intelligence and the physical world, enabling Al-powered
applications that range from personal assistants and healthcare monitoring to industrial
automation and intelligent surveillance. The potential is enormous, but so are the challenges.
Deploying deep learning in these environments requires overcoming severe hardware
constraints, including limited computational resources, energy consumption restrictions, and
device heterogeneity [4]. Unlike cloud-based Al, where computational power can be scaled
almost indefinitely, edge Al must function within strict operational limits, balancing
performance with efficiency in ways that traditional deep learning paradigms were never
designed to handle.

Bringing intelligence to these constrained environments—on-device inference—offers
transformative possibilities [5]. It enables real-time processing without reliance on external
servers, reducing latency and ensuring privacy. It creates Al systems that are more resilient and
independent, capable of functioning even in disconnected or bandwidth-limited settings. Yet,
achieving this vision is not a trivial task. The challenges of deploying deep learning in mobile
and embedded computing systems are numerous: how to reduce model size without sacrificing
accuracy, how to optimize execution for diverse and often unpredictable hardware, how to

45

manage power consumption while maintaining responsiveness, and how to enable adaptive Al
systems that can learn and evolve within limited computational budgets. The question is no
longer just how to make Al more intelligent, but how to make it efficient, scalable, and
adaptable to the real-world constraints of mobile and embedded systems. As deep learning
continues to evolve, its future will not be defined solely by ever-larger models trained on
massive datasets in the cloud, but by its ability to operate effectively in diverse, distributed, and
resource-limited environments. Efficiency is not merely an optimization goal—it is the key to
unlocking the full potential of Al, ensuring that intelligence is not confined to powerful servers
but integrated seamlessly into the fabric of everyday technology.

This dissertation explores the intersection of deep learning and efficiency, focusing on how
advanced Al models can be optimized, adapted, and deployed in mobile and embedded
computing environments. It delves into the technical and theoretical challenges that arise when
bringing state-of-the-art Al beyond the data center, proposing novel solutions that bridge the
gap between cutting-edge deep learning research and real-world deployment. By addressing
these challenges, this research aims to contribute to a future where Al is not just powerful, but
practical—where intelligence is embedded into the devices that shape our lives, operating
seamlessly, efficiently, and sustainably.

1.1 Limitations of Existing Work

Although deep learning has seen rapid progress and increasing integration into mobile and
embedded systems, several critical gaps remain unaddressed in the current research landscape.
While numerous studies have focused on optimizing individual models or specific tasks, they
often overlook broader, system-level challenges. These limitations become especially apparent
when considering the practical demands of deploying advanced deep learning architectures on
resource-constrained devices, supporting a wide range of applications, and maintaining
efficient, scalable performance in real-world environments. The following highlights three
major limitations in existing work that motivate the direction of this dissertation:

e Lack of a unified system for real-world mobile inference: Existing research often
targets isolated optimization problems, such as improving the efficiency of single
models or specific tasks. However, the broader need for integrated solutions that can
jointly handle multi-DNN execution, adapt to heterogeneous hardware, and manage
dynamic resource allocation in mobile environments remains largely unaddressed [6],
[7]. Real-world edge computing scenarios frequently require multiple deep learning
models to run simultaneously, each with different computational requirements and
execution priorities. Furthermore, mobile and embedded devices operate under varying
power, memory, and processing constraints, often requiring real-time adaptation to
fluctuating hardware availability and environmental conditions. Current research lacks
integrated frameworks that can dynamically manage these factors, ensuring optimal
model execution without compromising efficiency or performance.

e Limited evaluation of state-of-the-art architectures in resource-constrained
settings: Although Transformer models have become central to many recent advances
in modern Al, efforts to tailor them effectively for mobile and embedded inference are
still emerging. While extensive research has explored their use in cloud-based
applications [8], [9], comparatively less attention has been given to their practical
deployment on resource-constrained devices. Transformers present unique challenges
due to their high memory and computational demands, which can complicate their fit
with current mobile Al accelerators. Although techniques like quantization and

46

hardware acceleration offer promising avenues for improving efficiency, their
application to Transformer-based architectures in mobile settings has yet to be
thoroughly explored. Consequently, the empirical understanding of how state-of-the-
art deep learning models perform under mobile constraints remains limited, potentially
slowing broader adoption in real-world applications.

e Underexplored domains such as networking applications: While deep learning has
seen extensive application in computer vision, speech processing, and natural language
understanding, its use in domains such as networking and cybersecurity has so far
received comparatively less attention [10]. In particular, real-time intrusion detection
in IoT environments—where deep learning could provide adaptive, intelligent security
solutions—has received significantly less attention compared to other Al-driven tasks.
Securing IoT networks calls for low-latency, resource-efficient models capable of
detecting anomalous behavior in real time; however, many existing approaches only
partially address the stringent resource constraints characteristic of [oT hardware.

These persistent gaps in research and implementation hinder the widespread adoption of
deep learning in mobile and embedded systems. Overcoming these limitations requires a shift
from isolated model-level optimizations to a broader, system-level perspective—one that
considers the full execution pipeline, from model design and hardware compatibility to adaptive
resource management and multi-model integration. By addressing these challenges, deep
learning can move beyond the confines of high-performance computing centers and become a
truly ubiquitous, efficient, and adaptable technology in real-world edge applications.

1.2 Motivation and Goals

This research is motivated by the pressing need to address the broader set of challenges
surrounding the deployment of deep learning in edge environments. As outlined in Section 1.1,
these challenges span multiple dimensions—from system-level efficiency and architectural
adaptation to the expansion of deep learning into underexplored application domains. Meeting
these demands calls for a comprehensive approach that goes beyond isolated solutions, aiming
instead to develop strategies that enhance performance, scalability, and applicability across
diverse edge computing scenarios. This work is shaped by three key objectives:

e Designing adaptive inference frameworks for heterogeneous mobile platforms:
This dissertation targets the development of adaptive inference frameworks that go
beyond individual model optimizations to address multi-DNN execution, dynamic
scheduling, and real-time resource management, aiming to enable seamless and
efficient Al deployment across diverse mobile and embedded systems.

e Bridging cutting-edge architectures with real-world constraints: While deep
learning architectures such as Transformers continue to evolve, their practical
deployment on resource-limited devices hinges on the development of targeted
optimization and acceleration strategies—an area this dissertation aims to investigate
in the context of mobile execution.

e Expanding efficient deep learning to underexplored application domains: Real-
time security applications, such as intrusion detection in IoT environments, demand Al
solutions that balance computational efficiency with responsiveness. This research
aims to explore how efficient deep learning techniques can be adapted to enhance
security in networked systems while maintaining low computational overhead.

47

Beyond edge computing, the scope of efficient deep learning has expanded to encompass
cloud-based optimization, hybrid cloud-edge architectures, and energy-efficient Al systems. As
deep learning models continue to grow in complexity and their deployment scenarios diversify,
efficiency remains a central concern. Whether in resource-constrained edge environments,
large-scale cloud infrastructures, or distributed Al frameworks, the ability to balance
computational cost, performance, and adaptability is crucial for ensuring the sustainability and
accessibility of Al-driven technologies. This field will continue to be a vital and transformative
area of research, shaping the future of Al-powered applications across industries. The work
presented in this dissertation is driven by the opportunity to contribute to this ongoing
transformation—by advancing efficient deep learning methodologies, addressing real-world
constraints, and enabling next-generation intelligent systems to operate effectively across a
wide range of computing environments.

1.3 Contributions

This dissertation is built upon three research studies, each addressing a critical aspect of
efficient deep learning in mobile and embedded computing:

1. The first study, CARIn: Constraint-Aware and Responsive Inference on
Heterogeneous Devices for Single- and Multi-DNN Workloads [11], proposes a
unified system for deep learning inference in dynamic, heterogeneous mobile
environments. It introduces an approach that supports multi-DNN execution, adapting
in real time to hardware and resource constraints, ensuring efficient utilization of
available computational power.

2. The second study, Exploring the Performance and Efficiency of Transformer Models
for NLP on Mobile Devices [12], evaluates the real-world feasibility of Transformer
architectures on mobile hardware. It examines their execution efficiency, uncovering
key quantization and hardware compatibility bottlenecks, and highlights areas where
improvements are needed to make these models more practical for mobile deployment.

3. The third study, A-THENA: Early Intrusion Detection for IoT with Time-Aware
Hybrid Encoding and Network-Specific Augmentation, represents a research effort
that, at the time of writing, is under peer review. It introduces novel time-aware
positional encodings that enhance the efficiency and effectiveness of deep learning
models in security-related applications. By optimizing Transformer-based
architectures, this research demonstrates how real-time intrusion detection can be
improved in edge environments without excessive computational overhead.

Together, these contributions establish a comprehensive approach to efficient deep
learning, spanning system-level optimization, architectural evaluation, and application-driven
advancements. By integrating insights from these studies, this dissertation aims to bridge the
gap between cutting-edge Al research and real-world deployment in mobile and embedded
systems, ensuring that deep learning can operate effectively in constrained and dynamic
computing environments.

1.4 Dissertation Overview

The structure of this dissertation is designed to provide a comprehensive exploration of efficient
deep learning for on-device inference, presenting the conducted research, key findings, and
broader implications for future advancements in the field. The chapters are organized to guide
the reader through the theoretical foundations, methodological innovations, and experimental

48

results, ultimately building a cohesive narrative that underscores the importance of optimizing
deep learning for mobile and embedded computing environments. The dissertation is structured
as follows:

e Chapter 1 serves as an introduction, establishing the research problem, motivation,
and contributions. It presents the broader context of the study, emphasizing the
necessity of efficient deep learning techniques and outlining the specific research
questions addressed in the subsequent chapters.

e Chapter 2 provides the foundational background necessary to understand the field of
efficient deep learning. It highlights the significance of deploying deep learning models
in resource-constrained environments, identifies the key challenges associated with on-
device inference, and discusses state-of-the-art techniques used to improve model
efficiency.

e Chapter 3 introduces CARIN, an inference framework designed to address the
multifaceted challenges of deep learning deployment on mobile devices. This chapter
details the design, implementation, and evaluation of CARINn, demonstrating its ability
to manage heterogeneous hardware constraints, dynamic resource availability, and
multi-DNN execution. The framework represents a system-level approach to efficient
deep learning, ensuring that mobile devices can execute deep learning workloads
adaptively and optimally under varying operational conditions.

e Chapter 4 presents early-stage research on optimizing Transformer architectures for
edge deployment. Given their computational complexity and memory-intensive nature,
Transformers present significant challenges when applied to mobile and embedded
devices. This chapter examines these limitations, evaluates their impact on model
deployment, and presents preliminary optimization strategies aimed at making
Transformers more compatible with constrained environments.

e Chapter 5 proposes A-THENA, an early intrusion detection system designed
specifically for resource-constrained IoT devices. The research presented in this
chapter demonstrates how specialized time-aware positional encodings, as well as
network-specific augmentation can improve both the accuracy and efficiency of deep
learning models in security applications, advancing the broader use of Transformers in
IoT-based intrusion detection systems.

e Chapter 6 concludes the dissertation by summarizing the key insights gained from the
research, discussing its broader impact, and proposing future research directions. This
final chapter reflects on the challenges that remain in the field of efficient deep learning
and considers potential advancements in hardware acceleration, algorithmic efficiency,
and application-specific optimizations that could further enhance deep learning's
viability in real-world edge deployments.

Together, these chapters provide a structured and in-depth examination of efficient deep
learning, bridging theoretical foundations with experimental findings and practical
applications. By addressing both fundamental challenges and emerging opportunities, this
dissertation contributes to the advancement of deep learning beyond cloud computing, ensuring
that Al can function efficiently across diverse, resource-limited environments.

49

Theoretical Background

This chapter provides the theoretical foundations for deploying deep learning in resource-
constrained environments. It begins with an overview of deep learning, covering its evolution
and the rise of Transformers in modern Al applications. The discussion then shifts to edge
computing, exploring its role in enabling real-time Al on mobile and embedded devices.
Building on this, edge intelligence is introduced as the convergence of edge computing and Al,
highlighting key applications and specialized hardware. The chapter then examines on-device
inference, outlining its benefits—low latency, privacy, and reduced cloud dependency—
alongside challenges like hardware limitations, energy constraints, and dynamic resource
availability. Finally, the focus turns to efficient deep learning, emphasizing key metrics such as
accuracy, latency, and power efficiency, along with compression techniques, such as
quantization, which are essential for deploying Al in constrained environments.

2.1 Deep Learning Fundamentals

Artificial intelligence (AI) has long been driven by the ambition to create computational
systems capable of learning from data and making intelligent decisions. Among the various Al
methodologies, deep learning (DL) has emerged as the most transformative, revolutionizing
fields such as computer vision [13], natural language processing (NLP) [14], autonomous
systems [15], and healthcare [16]. At its core, DL is a specialized subset of machine learning
(ML) that utilizes artificial neural networks with multiple layers to extract and represent
complex patterns from data. The hierarchical nature of DL models allows them to automatically
discover intricate structures within raw input, distinguishing them from traditional ML
approaches that typically depend on manually engineered features and predefined statistical
assumptions. Unlike conventional ML models, which require extensive human intervention to
define relevant features, DL introduces several key advantages that have contributed to its
dominance in modern Al:

e Automated feature extraction: Deep networks learn to identify relevant patterns
directly from raw data, reducing reliance on domain expertise for feature engineering.

e Scalability: As datasets and computational power grow, DL models continue to
improve in performance, whereas traditional models often reach a plateau.

e End-to-end learning: Many DL architectures can process raw input and generate
predictions without requiring complex, intermediate manual steps.

e Generalization capability: When trained effectively, deep networks can adapt across
diverse tasks, often outperforming conventional methods with minimal human
intervention.

¢ Handling high-dimensional data: DL models can efficiently process very large and
complex inputs that would overwhelm or underperform with traditional models.

These characteristics have positioned DL as the cornerstone of modern Al, enabling models
to achieve or surpass human-level performance in tasks such as image recognition, language
modeling, and strategic decision-making.

51

2.1.1 Evolution

The foundations of deep learning can be traced back to the 1950s, when researchers began
exploring computational models inspired by the functioning of biological neurons. Early
artificial neural networks were designed to mimic the way the human brain processes
information, relying on interconnected units, or "neurons," that perform simple mathematical
operations to recognize patterns in data. Among the earliest models was the Perceptron [17],
introduced by Frank Rosenblatt in 1958, which was capable of learning basic relationships
between inputs and outputs through an adaptive learning process. The perceptron, as illustrated
in Figure 2.1, was a single-layer neural network that used a weighted sum of inputs followed
by an activation function f'to determine class predictions. It demonstrated that computational
systems could learn from experience, a fundamental principle that would later define ML.
Despite its initial promise, the perceptron had fundamental limitations. Most notably, it was
incapable of handling non-linearly separable problems, as famously demonstrated by Minsky
and Papert (1969) [18] in their proof that a perceptron could not solve the XOR problem—a
simple logical function requiring a non-linear decision boundary. This realization led to a
decline in research interest in neural networks, as many viewed them as inadequate for solving
complex learning tasks.

X
xzw\l
%) A
R
b
Wa
Xa

Figure 2.1 The perceptron

The field experienced a resurgence in the 1980s with the development of multilayer
perceptrons (MLPs) and the backpropagation algorithm. MLPs introduced hidden layers
between the input and output layers, allowing the network to learn hierarchical representations
and model more complex functions. However, the key breakthrough that made MLPs practical
was the backpropagation algorithm, which enabled efficient gradient-based learning. This
technique, first formalized by Rumelhart, Hinton, and Williams (1986) [19], allowed deep
networks to adjust their weights through error propagation, significantly improving their ability
to learn from data.

Despite these advancements, training deep neural networks (DNNs) remained
computationally prohibitive due to hardware limitations. The lack of high-performance
computing resources and the inefficiency of early optimization techniques made it difficult to
train deep models on large datasets. Consequently, neural networks were often outperformed
by other ML techniques, such as support vector machines (SVMs) [20] and decision trees [21],
which were computationally more efficient at the time. It was not until the early 2000s and
2010s, with the availability of large-scale datasets, GPU-accelerated training, and significant
architectural advancements, that DL was able to achieve its full potential and become the
dominant paradigm in Al.

52

2.1.2 Core Architectures

Over the decades, DL architectures have evolved to address different types of data and
computational challenges. While early models such as multilayer perceptrons laid the
groundwork for DL, they struggled with scalability and complex data structures. Later
advancements introduced specialized architectures like convolutional neural networks for
spatial data processing and recurrent neural networks for sequential data, significantly
improving the ability of neural networks to handle image and time-dependent tasks. More
recently, the advent of Transformer models has redefined state-of-the-art performance across
multiple domains, particularly in NLP and computer vision.

2.1.2.1 Multilayer Perceptrons

Multilayer perceptrons (MLPs) represent the most basic form of DNNs, consisting of multiple
layers of neurons connected in a fully dense fashion. Each neuron in an MLP applies a weighted
sum of its inputs followed by a non-linear activation function such as ReLU (Rectified Linear
Unit) or sigmoid. MLPs are capable of learning complex functions by stacking multiple layers,
where each layer extracts increasingly abstract representations of the data. Despite their
foundational role in DL, MLPs suffer from several limitations:

e Lack of spatial awareness: MLPs treat all input features equally, making them
inefficient for structured data such as images, where spatial relationships are crucial.

o Computational inefficiency: Fully connected layers require a large number of
parameters, leading to increased memory consumption and training time.

e Poor scalability: As the network depth increases, training deep MLPs becomes
difficult due to issues like vanishing and exploding gradients, making optimization
challenging.

Due to these constraints, MLPs are rarely used in isolation for modern DL tasks. Instead,
specialized architectures have been developed to handle specific types of structured data more
efficiently.

2.1.2.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) were designed to overcome the limitations of MLPs in
processing spatial data, particularly images and videos. Instead of treating each pixel
independently, CNNs leverage local connectivity and weight sharing through convolutional
layers, allowing them to capture spatial hierarchies in data more efficiently. Key components
of CNNs include:

o Convolutional layers: Perform localized feature extraction by applying filters
(kernels) that detect edges, textures, and higher-level patterns.

e Pooling layers: Downsample feature maps to reduce computational cost and increase
spatial invariance.

e Fully connected layers: Process high-level extracted features for classification or
decision-making.

CNNs have been instrumental in computer vision, enabling breakthroughs in image
recognition, object detection, medical imaging, and facial recognition. Architectures such as
LeNet [22], AlexNet [23], VGG [24], ResNet [25], and EfficientNet [26] have set new
benchmarks for performance and efficiency. However, CNNs still face challenges in handling
sequential and long-range dependencies, necessitating architectures better suited for temporal
and linguistic data.

53

2.1.2.3 Recurrent Neural Networks

While CNNs excel in spatial feature extraction, they struggle with sequential dependencies,
making them unsuitable for tasks such as speech recognition, language modeling, and time-
series prediction. Recurrent neural networks (RNNs) were introduced to address this issue by
incorporating memory mechanisms, allowing them to retain information from previous time
steps when processing sequential data. However, standard RNNs suffer from the vanishing
gradient problem, which makes it difficult for them to capture long-term dependencies in
sequences. To mitigate this issue, long short-term memory (LSTM) networks were introduced
[27]. LSTMs utilize gated mechanisms—such as the forget, input, and output gates—to regulate
information flow, enabling them to learn longer-term dependencies more effectively than
traditional RNNs. Despite their success, RNNs and LSTMs are inherently sequential in nature,
making them computationally inefficient for large-scale training and inference. The inability to
parallelize computations effectively led to the search for more scalable architectures,
culminating in the development of Transformers.

2.1.3 Transformers

Deep learning has undergone a series of architectural shifts, each designed to overcome
limitations in previous models. While RNNs and LSTM networks were initially dominant in
sequence modeling tasks, they suffered from fundamental inefficiencies that limited their
scalability. The Transformer architecture, introduced by Vaswani et al. (2017) in the paper
"Attention is All you Need" [28], revolutionized the field by eliminating recurrence altogether,
enabling parallel computation and significantly improving the ability to model long-range
dependencies. Since their introduction, Transformers have become the backbone of modern
DL, powering state-of-the-art models in NLP, computer vision, and multimodal Al.

2.1.3.1 Motivation

Prior to Transformers, RNNs and LSTMs were the standard architectures for processing
sequential data. These models operated recursively, processing input sequences one step at a
time while maintaining an internal memory of past elements. However, they faced significant
drawbacks:

e Sequential computation bottleneck: Since RNNs process input tokens sequentially,
they cannot be parallelized effectively, leading to computationally intensive and slow
training and inference.

o Difficulty in capturing long-range dependencies: Despite LSTMs improving
memory retention, they still struggle with learning dependencies in very long
sequences, especially when context is separated by hundreds of tokens.

e Gradient vanishing and explosion: As the number of time steps increases, gradients
may diminish or explode, making training unstable and less effective.

Transformers overcame these challenges by introducing self-attention, which allows the
model to process all input tokens simultaneously, rather than sequentially. This design
eliminates the need for recurrence, making training significantly faster and enabling better
modeling of long-range relationships within data.

2.1.3.2 Key Components

The Transformer architecture departs from the traditional recurrent design and instead relies on
a fully attention-based mechanism. Its core innovations—self-attention, positional encoding,
multi-head attention, and feedforward networks—work together to provide highly efficient and

54

scalable sequence modeling. As illustrated in Figure 2.2, the Transformer consists of two
primary components: the encoder and the decoder. The encoder processes the input sequence,
transforming it into a fixed-length vector representation, often referred to as the context or
memory, which encapsulates the essential information of the input. The decoder, on the other
hand, generates the output sequence one token at a time. It does so by leveraging the encoder's
representation as context to make informed predictions for each subsequent token in the output
sequence.

Renowned for its sequence-to-sequence capabilities, the Transformer effectively maps
input sequences to output sequences, making it particularly well-suited for tasks such as
machine translation. In such applications, the model translates entire sequences (e.g., sentences)
from one language to another. Typically, a Transformer undergoes pre-training on large-scale
tasks like language modeling or next-sentence prediction, where it learns to generate or infer
missing information based on the surrounding context. Following pre-training, the encoder can
be fine-tuned for various downstream tasks, including text classification, sentiment analysis,
and even computer vision applications when adapted appropriately. This ability to first pre-train
on general tasks and later fine-tune for specific applications is a defining strength of the
Transformer, contributing to its versatility across a wide range of domains.

Output
Probabilities

Add & Norm
Feed
Forward
I Add & Norm I::
£dd & Horm Multi-Head
Feed Attention
Forward 7 7 Nx
| S |
Nix Add & Norm
f—" Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
1t 1
— J _ _J)
Positional & @ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Figure 2.2 The Transformer architecture [28]

Encoder. This work focuses on representation learning, specifically within the context of
classification tasks, making the encoder of the Transformer architecture the primary area of
interest. The encoder is designed to process input sequences and transform them into
meaningful, context-aware representations that can be leveraged for various downstream tasks.
Unlike recurrent architectures, which process sequences step by step, the Transformer encoder
utilizes a fully parallelizable attention mechanism, enabling more efficient and scalable
learning.

55

The first component of the encoder is the Input Embedding layer, which maps discrete input
tokens into dense vector representations of dimension d,, within a continuous space. This
transformation allows the model to capture semantic similarities between tokens, as words with
similar meanings will have embeddings that are closer in this learned space. Since Transformers
inherently lack a sequential structure, they require an explicit way to encode positional
information. This is achieved through Positional Encodings, which are typically added to the
input embeddings. These encodings enable the model to differentiate the order of tokens while
preserving their contextual relationships. Unlike recurrent models that process inputs
sequentially, positional encodings allow the Transformer to generalize better to variable-length
sequences, making it suitable for a wide range of applications. A more detailed discussion of
positional encodings is provided in Subsection 5.1.3.

After positional encoding, the input sequence is passed through L Transformer encoder
layers, each of which consists of the following key components:

e Multi-Head Self-Attention Mechanism
e Position-Wise Feedforward Network (FFN)
e Residual Connections, Dropout, and Layer Normalization

At the core of the Transformer encoder is the Multi-Head Self-Attention mechanism, which
allows the model to compute dependencies between tokens in parallel. Self-attention enables
direct interactions between all tokens, improving efficiency and long-range dependency
modeling. Mathematically, self-attention is computed using three learnable matrices:

e Query (Q): Represents the current token's request for attention.
o Key (K): Encodes information about all tokens in the sequence.
e Value (V): Contains the actual token information that will be weighted and aggregated.

The attention scores are computed using the Scaled Dot-Product Attention formula:

OK”
Attention(Q, K, V) = softmax <ﬁ> vV 2.1
k
where d} is the dimensionality of the key vectors, and the softmax function ensures that the
attention weights sum to 1. This mechanism allows the model to dynamically focus on the most
relevant tokens, irrespective of their position in the sequence.

To further enhance its learning capacity, the Transformer employs multi-head attention,
where / self-attention mechanisms, each with a dimensionality of d},, operate in parallel. Each
attention head learns a different aspect of the input relationships, enabling a more
comprehensive understanding of the sequence. The outputs from all heads are then
concatenated and projected to a final representation:

MultiHead(Q, K, V) = Concat(head,, ..., head,) W ° (2.2)

where W © is a learned projection matrix. This mechanism improves the robustness of learned
representations, allowing the model to capture both local and global dependencies
simultaneously.

Following the self-attention mechanism, each encoder layer includes a position-wise Feed
Forward Network (FFN). This network consists of two fully connected layers with hidden
dimension dg, separated by a non-linear activation function, typically GELU (Gaussian Error
Linear Unit). The purpose of this component is to enhance the model's representational power

56

by introducing element-wise transformations. Unlike self-attention, which captures
relationships between tokens, the feedforward network applies transformations independently
to each token in the sequence, increasing the model's expressiveness.

To facilitate stable training and efficient gradient propagation, Transformers utilize
Residual Connections around both the multi-head attention and feedforward network layers.
The outputs of these sublayers are added to their respective inputs before being passed forward:

Output = LayerNorm(X + SubLayer(X)) (2.3)

where LayerNorm refers to Layer Normalization, which ensures stabilized activations and helps
prevent vanishing or exploding gradients. Additionally, dropout is applied after each residual
connection to mitigate overfitting.

After passing through L Transformer encoder layers, the model produces a final set of token
representations. The way these outputs are utilized depends on the specific task at hand:

e For sequence classification, the token-level representations need to be aggregated into
a single fixed-length vector. This can be done via:
o Global average pooling, where the embeddings of all tokens are averaged.
o Aspecial [CLS] token, which is introduced at the start (or end) of the sequence
and learns a global representation for classification.
e For token-level tasks (e.g., named entity recognition, part-of-speech tagging), the final
output representations are used directly, with each token mapped to its respective label.
o For other downstream tasks, the encoder outputs can be fed into additional layers
(e.g., fully connected layers, attention mechanisms) to suit specific applications.

For classification, the final representation is passed through a fully connected layer with ¢
output neurons, followed by a softmax activation function, which generates confidence scores
for each class:

¥y = softmax (W ,x + b) 2.4
where W, and b are learnable parameters.

2.1.3.3 Impact

Since their introduction, Transformers have revolutionized Al, setting new benchmarks across
multiple domains. Their impact extends far beyond NLP, influencing fields such as computer
vision, multimodal Al, and even scientific research.

Natural Language Processing. Transformers have become the backbone of state-of-the-art
NLP models, revolutionizing language understanding and generation at an unprecedented scale.
Key advancements in this domain include BERT (Bidirectional Encoder Representations from
Transformers) [29], which introduced context-aware word embeddings, significantly enhancing
tasks such as sentiment analysis, question answering, and named entity recognition. GPT-4 [30]
and TS [31] further pushed the boundaries of natural language generation, enabling Al to
produce human-like text, summarize information, and engage in coherent, contextually relevant
conversations. Meanwhile, XL Net [32] introduced permutation-based pretraining, improving
language modeling by capturing bidirectional context without relying on masking techniques.
These innovations have had profound implications for chatbots, translation systems, search
engines, and automated content creation, enabling Al-driven applications that closely mimic
human language understanding and interaction.

57

Computer Vision. Traditionally, convolutional neural networks dominated computer vision
tasks, excelling in image classification, object detection, and segmentation. However, the
emergence of Vision Transformers has demonstrated that self-attention mechanisms can
outperform CNNs, particularly in large-scale image recognition and generative tasks. ViT
(Vision Transformer) [33] introduced self-attention to image patches, achieving state-of-the-art
performance in image classification. DETR (DEtection TRansformer) [34] leveraged end-to-
end self-attention for object detection, eliminating the need for traditional region proposal-
based methods. Additionally, models like Stable Diffusion [35] and DALL-E [36] combined
Transformers with diffusion models, enabling the generation of highly realistic images from
textual descriptions. This shift underscores the transformative power of attention mechanisms
in visual understanding, allowing models to capture long-range dependencies and global
context more effectively than CNNs.

Multimodal Al. Beyond text and vision, Transformers have paved the way for multimodal Al,
enabling models to process and generate information across multiple data types simultaneously.
CLIP (Contrastive Language—Image Pretraining) [37] was trained on large-scale image-text
pairs, allowing for zero-shot classification and cross-modal understanding, making it a
breakthrough in aligning visual and linguistic representations. DALL-E [36] expanded on this
capability by integrating text and image generation, producing highly detailed visuals from
natural language descriptions. Meanwhile, Flamingo [38] advanced video-language modeling,
enabling Al to analyze and generate video content based on textual prompts. By integrating
multiple modalities, these Transformer-based systems bridge the gap between human cognition
and machine intelligence, allowing Al to understand, generate, and interact with data in a far
more contextually rich and meaningful way.

2.2 Edge Computing

The evolution of modern computing has been shaped by the need to balance processing power,
data transfer efficiency, and latency. Traditionally, computing paradigms have relied on
centralized architectures, where data are processed in large, remote data centers or cloud
infrastructures. While cloud computing has revolutionized how data are stored, accessed, and
processed, its dependence on high-speed network connectivity and centralized processing
power introduces significant limitations in scenarios requiring real-time responsiveness, low
latency, and high reliability. This has led to the emergence of edge computing, a paradigm that
shifts computational resources closer to the source of data generation, reducing reliance on
cloud servers and enabling faster, more localized processing.

Edge computing [39] represents a distributed computing model in which data processing
and computational tasks occur at or near the data source, such as sensors, mobile devices, or
edge servers. By minimizing the need to transmit large volumes of data to distant cloud
infrastructures, edge computing reduces network congestion, bandwidth usage, and response
times, making it an ideal solution for applications that require low latency and real-time
decision-making. The demand for edge computing has been driven by several key technological
and infrastructural challenges that traditional cloud-based models struggle to address:

o Latency sensitivity: Many applications, such as autonomous vehicles, industrial
automation, and healthcare monitoring, require near-instantaneous responses. The
delays introduced by data transmission to cloud servers can be detrimental in critical
real-time applications.

58

e Bandwidth optimization: The exponential growth of Internet of Things devices has
led to massive amounts of data being generated at the edge of networks. Transmitting
all these data to centralized cloud infrastructures is inefficient and unsustainable.
Processing data locally reduces unnecessary bandwidth consumption.

e Data privacy and security: Certain industries, such as finance, healthcare, and
defense, require localized data processing to ensure privacy compliance and reduce
risks associated with transmitting sensitive information over external networks.

e Intermittent connectivity and reliability: Applications deployed in remote locations,
disaster recovery scenarios, or mobile environments cannot always rely on stable, high-
speed network connections. Edge computing ensures that core processing capabilities
remain operational even in limited-connectivity scenarios.

e Scalability in a hyperconnected world: As the number of connected devices increases
with the expansion of 5G, IoT, and future 6G networks, relying solely on centralized
cloud servers will become infeasible. Edge computing distributes processing power
across the network, making it more scalable and resilient.

By addressing these challenges, edge computing bridges the gap between centralized cloud
processing and real-world application needs, offering a hybrid approach where computation is
dynamically distributed between cloud and edge nodes based on resource availability, network
conditions, and application requirements.

2.2.1 Evolution

In the early days of computing, mainframe architectures dominated the landscape. Large,
centralized computers housed all processing power, with users accessing them through "dumb"
terminals—devices with no independent processing capability. This centralized approach
ensured tight control over computation and data management but suffered from high latency
and limited scalability, as all processing occurred in a single location. As computing technology
advanced, the client-server model emerged, enabling distributed processing where clients (user
devices) could perform some computations while relying on central servers for complex tasks.
This model became the backbone of enterprise computing, allowing for greater scalability and
flexibility. However, as internet connectivity expanded and more applications moved online,
the need for a more scalable, remotely accessible computing model led to the rise of cloud
computing.

Cloud computing revolutionized data storage and processing by centralizing resources in
large-scale data centers, enabling users to access vast computational power on demand. The
cloud model offered numerous benefits, including cost efficiency, flexibility, and high
availability. However, it also introduced several critical limitations, particularly in scenarios
requiring low-latency responses, high bandwidth availability, and continuous operation in
environments with unreliable network access. The limitations of cloud computing led to the
emergence of edge computing; a paradigm shift toward decentralization that enables devices to
process data locally rather than constantly relying on cloud-based processing.

5G Networks. The advent of 5G technology has been a major catalyst for the widespread
adoption of edge computing, providing the high-speed connectivity and low-latency
performance necessary for real-time processing at the network edge. Unlike previous
generations of wireless communication, which primarily focused on increasing data speeds, 5G
is designed to support a vast and diverse ecosystem of connected devices, making it an essential
enabler for smart cities, industrial automation, and next-generation mobile applications. Key

59

advantages of 5G in edge computing include (a) ultra-low latency (~1 millisecond), which is
crucial for applications such as autonomous driving and remote robotics, (b) higher bandwidth,
allowing seamless connectivity for a large number of distributed edge devices, and (c) network
slicing, which enables customized network performance based on application needs, ensuring
reliable real-time computation. The high-speed, low-latency capabilities of 5G networks make
them ideal for edge computing applications that demand instant responsiveness, including smart
factories, augmented reality (AR), and mission-critical healthcare systems, where real-time
decision-making is essential.

IoT Growth. The Internet of Things (IoT) encompasses a vast network of connected sensors,
embedded systems, and smart devices that continuously collect and transmit data. With billions
of IoT devices deployed worldwide across industries such as smart cities, industrial automation,
logistics, agriculture, and consumer electronics, the sheer volume of generated data presents a
computational bottleneck if all processing were to rely solely on centralized cloud servers. By
integrating edge computing with IoT, data processing is distributed across local devices,
significantly reducing the need for excessive cloud communication. This approach optimizes
bandwidth usage by transmitting only relevant data to the cloud, enhances response times for
critical applications such as predictive maintenance and emergency response, and increases
device autonomy, enabling real-time analytics and decision-making without constant
connectivity. As IoT adoption continues to grow, edge computing plays a crucial role in
ensuring the scalability, efficiency, and real-time responsiveness of connected systems.

2.2.2 Mobile Computing

Mobile computing refers to a computational paradigm that enables wireless, portable, and real-
time access to computing resources, regardless of a user's physical location. Unlike traditional
computing systems, which rely on fixed infrastructure, mobile computing provides ubiquitous
access to networks, data, and applications while supporting seamless mobility. The defining
characteristics of mobile computing include:

e Portability: Devices are designed to be lightweight and battery-powered, allowing
users to perform computational tasks while on the move.

o Wireless connectivity: Mobile computing relies on technologies such as Wi-Fi,
cellular networks (3G, 4G, 5G), and Bluetooth to facilitate communication and access
to remote resources.

e Real-time accessibility: Users can interact with applications and services instantly,
enabling real-time collaboration, data exchange, and decision-making.

e Context awareness: Many mobile applications leverage network connectivity,
sensors, GPS, accelerometers, and environmental data to provide location-based and
context-aware services.

The scope of mobile computing extends beyond personal devices such as smartphones and
tablets. It includes wearable technology, vehicle-based computing, and mobile IoT devices, all
of which rely on efficient computing to deliver real-time insights and seamless connectivity.

2.2.2.1 Key Components

Mobile computing encompasses a complex ecosystem consisting of devices, network
infrastructure, and digital services that collectively enable a seamless mobile experience. The
key components are described below.

60

Mobile Devices. Mobile computing revolves around portable electronic devices that provide
computational capabilities while remaining lightweight and battery-powered. These devices
range from consumer electronics to specialized industrial tools, enabling seamless connectivity
and real-time data processing. Smartphones and tablets are the most widely used mobile
computing devices, supporting communication, web browsing, and diverse applications.
Wearable devices, such as smartwatches, fitness trackers, and AR headsets, enhance mobility
by collecting and transmitting real-time health, fitness, and environmental data. Laptops and
ultra-mobile PCs (UMPCs) offer greater computational power and versatility while maintaining
portability, making them essential for mobile professionals and fieldwork applications.
Additionally, vehicle-mounted and handheld industrial devices are extensively used in logistics,
transportation, and remote operations, allowing workers to track inventory, navigate routes, and
manage industrial workflows on the go. As mobile computing continues to evolve,
advancements in battery life, connectivity, and processing power are expanding the potential of
these devices across multiple industries.

Mobile Networks. Mobile computing depends on wireless networks to enable uninterrupted
communication and seamless data transfer, ensuring that users and devices remain connected
regardless of location. Cellular networks (3G, 4G, and 5G) provide wide-area coverage and
support high-speed data transmission, making them essential for mobile communication and
internet access. Wi-Fi and wireless local area networks (WLANS) offer high-speed connectivity
in localized environments such as homes, offices, and public spaces, reducing reliance on
cellular networks for data-intensive applications. Additionally, Bluetooth and Near Field
Communication (NFC) facilitate short-range communication, enabling device pairing,
contactless payments, and efficient data exchange between connected devices. As wireless
technologies continue to advance, the increasing integration of 5G, next-generation Wi-Fi
standards, and low-power wireless protocols is further enhancing the speed, reliability, and
efficiency of mobile computing ecosystems.

Mobile Services and Applications. Mobile computing is powered by a vast ecosystem of
applications, software platforms, and cloud-based services that enable users to access, process,
and store data remotely. One key advancement is mobile cloud computing (MCC), which allows
mobile devices to offload computationally intensive tasks to cloud servers, enhancing
performance and extending battery life. Additionally, edge-assisted mobile applications
leverage edge computing resources to reduce latency and network congestion, making real-time
applications—such as gaming, AR/VR, and autonomous systems—more responsive and
efficient. Mobile payment systems, including contactless payments, digital wallets, and mobile
banking, have revolutionized financial transactions by offering secure, fast, and convenient
payment methods. Furthermore, location-based services (LBS), such as real-time navigation,
geofencing, and personalized content recommendations, enhance user experiences by utilizing
GPS and environmental data to deliver context-aware services. These advancements are
shaping a seamless, intelligent, and highly connected mobile computing landscape, driving
ubiquitous access to digital resources and real-time decision-making.

2.2.3 Embedded Computing

Embedded computing is a critical component of modern digital systems, enabling specialized
computation within dedicated devices that operate with minimal human intervention. Unlike
general-purpose computing, where devices are designed for a wide range of tasks, embedded
systems are tailored for specific applications, often performing real-time functions with high
efficiency, reliability, and low power consumption. Embedded computing powers an array of

61

industrial, automotive, healthcare, and consumer electronics applications, making it one of the
most pervasive and impactful areas of modern technology. Embedded systems are typically
characterized by:

e Specialization: Unlike general-purpose computers, embedded systems are designed
for specific applications, optimizing their performance, energy efficiency, and
reliability for that function.

o Real-time operation: Many embedded systems require deterministic responses,
ensuring computations are performed within a strict time frame (e.g., automotive
control systems, industrial automation).

e Integration with hardware: Embedded computers are tightly coupled with the
physical hardware they control, often including sensors, actuators, and communication
modules.

o Resource constraints: Embedded systems must operate within limited processing
power, memory, and energy budgets, especially in battery-operated or remote
deployments.

e Minimal user interaction: Most embedded systems function autonomously or with
minimal human intervention (e.g., pacemakers, traffic control systems).

Unlike mobile computing, which focuses on portability and wireless connectivity,
embedded computing emphasizes efficiency, reliability, and real-time processing. These
features make embedded systems indispensable in mission-critical applications, where failure
or delays could result in catastrophic consequences.

2.2.3.1 Examples

Embedded computing is integral to industrial automation, where programmable logic
controllers (PLCs) and SCADA systems manage manufacturing processes, power plants, and
industrial machinery with real-time precision. The rise of Industrial IoT (IloT) sensors has
further optimized factory operations by enabling predictive maintenance and energy-efficient
automation, reducing downtime and operational costs. In the automotive sector, embedded
systems power electronic control units (ECUs) for engine management, braking, and emissions
control, while advanced driver assistance systems (ADAS) handle collision detection, lane
assistance, and adaptive cruise control. Modern vehicles also integrate in-vehicle infotainment
(IVI) systems, providing navigation, multimedia, and voice-controlled interfaces. With the push
toward autonomous driving, embedded processors now process real-time sensor fusion from
LiDAR, radar, and cameras to enhance safety and automation.

Embedded computing also drives smart home technology and consumer electronics,
powering smart thermostats, security systems, and wearable devices. These systems use real-
time processing to optimize energy usage, enhance security, and monitor health metrics.
Wearables like smartwatches and fitness trackers continuously track heart rate, sleep patterns,
and fitness levels, transmitting real-time data with minimal power consumption. In healthcare,
embedded systems enable life-critical applications, including pacemakers, medical imaging
systems, and portable diagnostic devices. These systems ensure real-time patient monitoring
and Al-assisted diagnostics, improving the accuracy and accessibility of medical care. As
embedded computing continues to advance, it will play a pivotal role in enabling autonomous
industrial systems, smart infrastructure, and next-generation medical technology.

62

2.3 Edge Intelligence

The integration of deep learning with edge computing is essential for the development of smart
applications that offer advanced features such as personalization, context awareness,
automation, and natural interactions [40]. These applications rely heavily on DL models to
analyze and adapt to user behavior, environmental conditions, and task-specific requirements
in real time. By leveraging edge computing, the computational power required to execute DL
models is brought closer to the user, enabling low-latency processing and responsive
functionality. This is particularly important for applications like autonomous vehicles, wearable
health monitors, and smart home devices, where timely and adaptive decision-making is
crucial. Without the close proximity of computation to the data source, the user experience
could suffer from delays, interruptions, and inefficiencies that undermine the potential of
intelligent applications.

Another critical reason for merging artificial intelligence and edge computing lies in the
relationship between DL and data. To train high-performing models, DL requires vast amounts
of data, which is increasingly generated at the edge through IoT devices, smartphones, and other
connected systems. Traditional cloud-based training faces several drawbacks, including high
bandwidth costs, increased latency in data transmission, and potential privacy risks associated
with transferring sensitive information to centralized servers. Furthermore, the growing volume
of data generated at the edge makes cloud-only approaches less scalable. By processing and
partially training models at the edge, these challenges can be mitigated. Local data handling
reduces dependency on cloud infrastructure, enhances privacy, and allows for more efficient
use of resources, paving the way for smarter, more secure, and adaptive Al-driven applications.

Overall, the convergence of Al and EC is driving a new era of technological innovation,
enabling DL to realize its full potential across a broad spectrum of applications and use cases.
This integration has given rise to a specialized domain known as "edge intelligence." Edge
intelligence [41], [42] refers to the seamless fusion of Al and EC, where intelligent algorithms
and models are deployed directly on edge devices or near data sources, bypassing the reliance
on centralized cloud systems. By combining the computational power of EC with the advanced
analytical and decision-making capabilities of Al, edge intelligence facilitates the creation of
systems that are faster, more adaptive, and highly efficient. This approach goes beyond a mere
technological advancement—it's a paradigm shift that redefines how intelligent systems operate
in decentralized environments. It extends the boundaries of Al by enabling models and
algorithms to function seamlessly on edge devices such as smartphones, loT sensors, drones,
wearables, and embedded systems.

2.3.1 Defining Characteristics

Edge intelligence applications differ fundamentally from traditional computing paradigms due
to their ability to process data locally, respond in real time, and continuously adapt to dynamic
environments. Unlike conventional applications that rely on centralized cloud processing, edge
intelligence applications leverage decentralized Al models to provide low-latency, context-
aware, and autonomous decision-making capabilities at the edge. The defining characteristics
of these applications stem from their ability to personalize user experiences, optimize
efficiency, predict outcomes, and interact naturally with their environments.

Personalization. Edge intelligence applications offer a high degree of personalization, by
tailoring responses to user behavior, preferences, and real-time environmental conditions.
Traditional applications often use generalized models that apply the same logic to all users,
requiring constant cloud connectivity to retrieve personalized data. In contrast, on-device Al

63

models enable edge applications to adapt dynamically to individual users while maintaining
privacy. For example, smartphones and wearable devices use edge intelligence to personalize
voice assistants, fitness tracking recommendations, and smart home automation based on user
habits. Similarly, edge-based recommendation systems in retail environments can offer real-
time, location-aware suggestions without requiring constant server queries.

Context Awareness. Context awareness is another key differentiator, allowing applications to
analyze surrounding conditions and modify behavior accordingly. Edge-powered smart city
infrastructure can dynamically adjust traffic signals based on congestion patterns, while
autonomous vehicles rely on sensor-driven edge Al to make split-second driving decisions. By
understanding spatial, temporal, and user-specific contexts, edge intelligence applications can
enhance efficiency and provide a more seamless user experience.

Predictive Capabilities and Proactive Decision-Making. Traditional applications react to
user inputs and commands, but edge intelligence applications proactively anticipate needs and
predict future events using real-time analytics and DL models. This predictive capability is
particularly useful in industrial automation, healthcare, and logistics, where preventing failures
or delays can be mission-critical. One of the most impactful use cases of predictive Al at the
edge is predictive maintenance. In industrial settings, edge intelligence continuously monitors
machinery using embedded sensors to detect anomalies and forecast potential failures. By
identifying irregular patterns in temperature, vibration, or energy consumption, edge-based
predictive maintenance systems can schedule proactive repairs, reduce downtime, and prevent
catastrophic failures. Similarly, in healthcare, wearable medical devices use edge intelligence
to monitor patient vitals in real time, detecting early warning signs of health conditions such as
heart irregularities or oxygen level fluctuations. Instead of waiting for symptoms to worsen
before secking medical attention, Al-driven predictive diagnostics can alert both users and
healthcare providers to take preventive action.

Automation and Decision Autonomy. A key advantage of edge intelligence applications is
their ability to operate autonomously, without relying on external input or cloud connectivity.
This level of automation is essential in environments where low-latency decision-making is
required or where connectivity is unreliable. For example, autonomous drones and robotic
systems rely on edge Al to navigate, recognize objects, and avoid obstacles in real time. If a
drone had to constantly communicate with a cloud server before making a decision, latency and
network disruptions could compromise safety and efficiency. Instead, on-device inference
allows for immediate, independent decision-making, ensuring seamless operation even in
remote locations. In smart homes, edge intelligence automates energy management systems,
security monitoring, and appliance control, reducing the need for user intervention. For
instance, smart thermostats adjust temperature settings based on occupancy and weather
predictions, optimizing energy usage without requiring manual adjustments.

Natural Interaction and Human-Centric Al. Traditional applications often rely on
predefined, rule-based interactions, requiring explicit user commands or structured inputs. In
contrast, edge intelligence applications enable more natural, human-like interactions by
incorporating speech recognition, gesture detection, and real-time contextual understanding.
Voice assistants such as Google Assistant, Siri, and Alexa have evolved from simple command-
based systems into adaptive, context-aware conversational agents. With on-device Al
processing, these assistants can recognize and respond to voice commands locally, reducing
response latency and enhancing privacy. Similarly, gesture-controlled interfaces in AR/VR

64

environments use edge intelligence to enable intuitive, real-time interactions without requiring
cloud processing. Beyond voice and gesture recognition, emotion detection and sentiment
analysis at the edge allow Al systems to respond empathetically to users, making interactions
more personalized and emotionally aware. For example, Al-driven in-car assistants can monitor
a driver's facial expressions and tone of voice to detect signs of fatigue or stress, adjusting
music, lighting, or suggesting breaks accordingly.

Continuous Learning and Improvement. Traditional Al applications are typically trained in
the cloud and deployed as static models, requiring periodic updates to improve performance. In
contrast, edge intelligence applications can adapt dynamically through on-device learning and
federated learning techniques. Federated learning allows edge devices to collaboratively
improve Al models without transmitting sensitive data to the cloud. Instead of sending raw user
data to a central server, devices train Al models locally and share only encrypted model updates,
preserving privacy while continuously improving model accuracy. For instance, predictive text
and autocorrect algorithms on smartphones utilize federated learning to refine suggestions
based on individual typing patterns without exposing private conversations. Similarly, edge Al-
powered surveillance systems can learn from local environmental conditions, improving
anomaly detection without relying on large-scale cloud datasets. This ability to continuously
learn and improve on the edge ensures that Al remains adaptable, efficient, and privacy-
preserving, even in highly dynamic environments.

Sustainability, Efficiency, and Optimization. Edge intelligence applications are designed to
optimize computing resources, minimize energy consumption, and enhance sustainability,
making them ideal for green computing initiatives. Unlike traditional cloud-based applications
that require constant data transmission and large-scale server farms, edge intelligence processes
data locally, reducing network traffic, bandwidth usage, and overall energy demand. In smart
grid management, edge intelligence is used to balance power distribution, optimize renewable
energy usage, and prevent electrical outages by processing real-time data from IoT sensors
deployed in power networks. Similarly, in agriculture, Al-powered edge devices monitor soil
conditions, weather patterns, and crop health, allowing farmers to reduce water usage, optimize
fertilizer application, and minimize waste. Beyond environmental impact, edge intelligence
enhances computational efficiency by ensuring that only the most critical tasks are processed
on-device, whereas non-urgent computations can be offloaded to edge servers or the cloud as
needed. This hybrid approach improves responsiveness and energy efficiency, making edge
intelligence an ideal solution for scalable, resource-aware Al deployment.

2.3.2 Types of Applications

Edge intelligence is broadly applied in two primary computing environments: mobile and [oT.
While mobile edge intelligence focuses on high-performance Al inference on smartphones and
tablets, loT-based edge intelligence is designed for low-power, real-time analytics on embedded
microcontrollers and sensors. These distinct categories define the landscape of edge intelligence
applications and influence the hardware architectures, software optimizations, and deployment
strategies required for efficient execution.

2.3.2.1 Mobile Edge Intelligence

Mobile devices such as smartphones, tablets, and wearables serve as powerful platforms for
edge intelligence due to their high processing power, GPU acceleration, and robust
connectivity. These devices can execute complex DL models for real-time Al applications,
including:

65

e Computer vision: Al-powered image and video analysis, enabling applications such
as face recognition, AR, and automated content enhancement.

e Speech and natural language processing: On-device execution of speech
recognition, language translation, and voice assistants for privacy-preserving and low-
latency interactions.

o Health monitoring and personalization: Wearable devices use edge intelligence for
real-time health tracking, detecting heart irregularities, sleep patterns, and physical
activity insights without requiring cloud connectivity.

e Autonomous mobile applications: Al-powered gesture recognition, predictive text
input, and intelligent camera optimizations leverage DL for an enhanced user
experience.

Given the computational power available in modern mobile devices, edge intelligence in
this domain benefits from dedicated Al accelerators integrated within mobile System-on-Chips,
such as Apple's Neural Engine, Qualcomm's Hexagon DSP, and Google's Edge TPU. These
specialized components significantly boost Al performance while maintaining energy
efficiency.

2.3.2.2 IoT Edge Intelligence

Unlike mobile devices, loT-based edge intelligence operates in environments with severe
power, memory, and connectivity constraints, making energy-efficient Al execution a primary
concern. IoT edge intelligence is commonly deployed in:

e Industrial automation: Al-powered predictive maintenance, fault detection, and real-
time quality control enhance efficiency in manufacturing, energy, and logistics.

e Smart cities and infrastructure: Edge-enabled traffic monitoring, air quality sensors,
and energy management systems leverage Al for autonomous decision-making.

e Healthcare and remote monitoring: Wearable and implantable [oT devices analyze
patient vitals in real time, enabling continuous health tracking and emergency alerts.

e Security and surveillance: Al-enhanced intrusion detection systems, anomaly
detection in network traffic, and facial authentication reduce reliance on cloud-based
analytics.

IoT-based edge intelligence typically relies on low-power microcontrollers and specialized
Al chips designed for resource-efficient model execution. Unlike mobile SoCs, which offer
higher computational throughput, loT edge hardware is optimized for low-energy, event-driven
Al tasks running on devices powered by batteries or energy-harvesting systems.

2.3.2 Device Hardware

The hardware landscape for edge intelligence is bifurcated between high-performance mobile
System-on-Chips (SoCs) and ultra-low-power microcontrollers. Each category presents distinct
trade-offs in computational power, energy efficiency, and Al acceleration capabilities.

2.3.2.1 Mobile SoCs for Edge Al

Modern mobile SoCs are highly integrated semiconductor solutions that consolidate multiple
processing units, memory controllers, connectivity modules, and specialized accelerators into
a single compact chip. This high level of integration allows mobile devices to efficiently
perform a wide range of computational tasks, including Al-driven inference at the edge. Unlike
traditional computing architectures, where separate components handle different functions,

66

mobile SoCs are designed for power efficiency, real-time responsiveness, and multi-functional
capabilities within the constraints of mobile and embedded devices.

A typical mobile SoC consists of several key components, each optimized for specific
workloads and tasks:

e Processing units: The core computational components include the Central Processing
Unit (CPU) for general-purpose tasks, the Graphics Processing Unit (GPU) for
parallelized computations, the Digital Signal Processor (DSP) for efficient signal
processing, and the Neural Processing Unit (NPU) for dedicated DL acceleration.

e Memory subsystem: Includes LPDDR RAM controllers, cache hierarchies, and high-
bandwidth memory interfaces, ensuring efficient data access and processing speeds.

e Connectivity modules: Integrated support for Wi-Fi, Bluetooth, 5G modems, and
GNSS (Global Navigation Satellite System) to enable seamless wireless
communication and real-time data transfer.

e Power management and thermal control: SoCs incorporate dynamic frequency and
voltage scaling (DFVS), power gating, and advanced cooling mechanisms to balance
performance and energy efficiency.

o Security engines: Hardware-based encryption, secure boot, and Al-accelerated
authentication mechanisms protect sensitive data and prevent unauthorized access.

Processing units are fundamental to edge Al execution, each designed and optimized for
specific tasks while remaining adaptable for Al model processing depending on workload
requirements, power constraints, and optimization strategies. The CPU serves as the primary
processor for general-purpose computing, whereas specialized units—the GPU, DSP, and NPU,
collectively known as accelerators—enhance efficiency by boosting processing speed and
reducing energy consumption during DNN inference. These accelerators can either offload
intensive computations from the CPU or collaborate with it to distribute workloads, improving
overall performance. As DNNs become increasingly central to mobile applications, the role of
Al accelerators will continue to grow, making them indispensable for next-generation mobile
Al and ensuring efficient on-device execution.

Central Processing Unit. The CPU is the most flexible and general-purpose processing unit in
a mobile SoC. It is responsible for executing a wide range of tasks, including operating system
functions, application logic, and lightweight Al inference workloads. CPUs in mobile devices
are typically designed using ARM architectures, such as:

e ARM Cortex-A series: High-performance cores for demanding computations.

e ARM Cortex-M series: Low-power cores optimized for embedded and IoT
applications.

e ARM big.LITTLE architecture: Combines high-performance and energy-efficient
cores to balance speed and power consumption dynamically.

For Al inference, the CPU may not be the most efficient option. However, it is still used for
(a) preprocessing tasks (e.g., image normalization, feature extraction), (b) small-scale ML
models that do not justify the use of dedicated accelerators, and (c) control logic and task
orchestration in heterogeneous Al pipelines. While CPUs provide low-latency execution for
simple Al tasks, they struggle with large-scale DL models, leading to the adoption of more
specialized processors.

67

Graphics Processing Unit. Originally designed for rendering graphics, the GPU has emerged
as a powerful engine for parallel computing, making it well-suited for DL inference. Unlike
CPUs, which handle computations sequentially, GPUs execute thousands of parallel threads
simultaneously, accelerating tasks such as matrix multiplications and convolutions—the core
operations in neural networks. Mobile SoCs integrate GPUs optimized for low-power Al
inference, such as:

e ARM Mali GPUs: Common in Android-based smartphones and tablets, offering
hardware acceleration for Al workloads.

e Qualcomm Adreno GPUs: Found in Snapdragon SoCs, optimized for real-time
graphics and Al acceleration.

e Apple GPU: Integrated into Apple's A-series and M-series chips, designed for high-
performance Al applications.

Despite their computational power, GPUs consume more resources than other Al
accelerators. Therefore, while they are useful for general Al workloads, they are not always the
best choice for ultra-low-power edge applications.

Digital Signal Processor. The DSP is a specialized processor designed for high-speed
mathematical operations, making it an excellent choice for Al applications involving real-time
signal processing. DSPs are particularly useful in audio, speech recognition, and sensor-based
Al tasks, where low-power, efficient computation is required. Mobile SoCs integrate dedicated
DSPs such as:

e Qualcomm Hexagon DSP: Optimized for Al-powered voice recognition, sensor
fusion, and computational photography.

e Apple's A-series DSP: Used for real-time audio enhancements and speech processing.

e ARM Ethos-U DSP: A low-power Al accelerator designed for embedded edge
applications.

DSPs are particularly effective in (a) speech and NLP, with running Al models for voice
assistants, real-time translation, and wake-word detection, (b) sensor fusion, by combining data
from multiple sensors (e.g., accelerometers, gyroscopes, microphones) to enable context-aware
Al applications, and (c) energy-efficient Al inference, requiring minimal power consumption,
making them ideal for always-on Al features. While DSPs offer high efficiency for specific Al
workloads, they are not as versatile as GPUs for DL tasks. They are best suited for fixed-
function Al tasks with predictable workloads.

Neural Processing Unit. The NPU is a dedicated Al accelerator designed specifically for
neural network inference. NPUs are optimized for executing tensor-based computations with
high efficiency and minimal energy consumption, making them the preferred choice for on-
device Al processing in modern mobile SoCs. Key NPUs in mobile SoCs include:

e Apple Neural Engine: Optimized for on-device DL inference in iPhones and iPads.

¢ Huawei Ascend NPU: Found in Kirin SoCs, designed for real-time Al acceleration.

¢ Google Edge TPU: Specializes in low-power Al inference, particularly for TensorFlow
Lite models.

e MediaTek APU (AI Processing Unit): Integrated into Dimensity SoCs, enhancing
camera Al and speech recognition.

68

NPUs offer significant advantages, including (a) high efficiency for Al workloads, as they
are optimized for low-power, high-throughput Al inference, (b) accelerated neural network
execution, designed for various DL architectures, and (c) optimized power consumption,
enabling always-on Al features without significantly impacting battery life. Since NPUs are
purpose-built for Al, they outperform CPUs, GPUs, and DSPs for most DL inference tasks. As
edge Al continues to evolve, NPUs are expected to play an increasingly dominant role in on-
device intelligence.

2.3.2.2 Microcontrollers and Specialized loT AI Hardware

IoT edge intelligence relies on a mix of microcontrollers, Al-enabled edge processors, and low-
power accelerators, which are designed to handle lightweight Al inference tasks with minimal
energy consumption. These devices power applications in industrial automation, smart cities,
healthcare monitoring, and autonomous IoT networks, where continuous operation, ultra-low
latency, and on-device intelligence are crucial.

Since 10T devices often function without direct human intervention and are deployed in
remote or embedded environments, their computational models differ significantly from those
of mobile or cloud-based Al systems. The focus is on executing efficient Al models with
minimal hardware overhead, balancing processing capability and power consumption while
maintaining real-time responsiveness. IoT edge computing devices are designed with specific
constraints that differentiate them from mobile SoCs:

e Ultra-low power consumption: Power efficiency is a key requirement for IoT-based
edge intelligence, as many devices run on batteries or energy-harvesting methods like
solar or kinetic energy. Unlike mobile SoCs, which benefit from rechargeable batteries,
IoT devices must maximize energy efficiency for prolonged operation. To achieve this,
they use duty cycling, where processors enter low-power sleep modes when idle, and
DVEFS, which adjusts power consumption based on real-time workload demands.

o Lightweight Al execution: Due to limited computational resources, [oT devices
cannot support large-scale DL models and instead rely on TinyML techniques to
perform inference on low-power microcontrollers. Optimizations such as quantization,
pruning, and knowledge distillation reduce model size and computational demands
while preserving accuracy. Additionally, hardware-aware optimizations improve
efficiency by tailoring model architectures to specialized edge Al processors.

e Embedded real-time processing: Many loT devices operate in mission-critical
environments where real-time decision-making is essential. Smart surveillance
cameras, industrial sensors, and health monitoring devices must analyze data instantly
without cloud dependency to ensure privacy, safety, and rapid response times. To
support this, [oT Al hardware integrates real-time operating systems for precise task
execution and low-latency Al pipelines for immediate data processing. Sensor fusion
further enhances decision-making by combining inputs from multiple sensors, such as
accelerometers and gyroscopes, for more context-aware predictions.

Platforms. Several specialized processors and microcontrollers have been developed to support
Al inference at the edge, balancing energy efficiency, processing power, and deployment cost.
Among the most widely used architectures is the ARM Cortex-M series, which powers a range
of low-power Al applications, from wearables to industrial sensors. The Cortex-M4 and Cortex-
M7 models feature DSP extensions that enhance AI workloads, whereas the Cortex-MS55
integrates an Ethos-U NPU for more efficient DL inference. These architectures allow IoT
devices to execute lightweight models while maintaining low energy consumption.

69

For more demanding edge applications, Al accelerators such as the NVIDIA Jetson Nano
provide a compact yet powerful platform for real-time Al computing. Designed for robotics,
vision processing, and industrial automation, the Jetson Nano integrates GPU acceleration,
enabling it to handle complex DL tasks such as object recognition and autonomous navigation.
Unlike traditional microcontrollers, which are constrained by limited processing power, the
Jetson Nano allows Al-driven robotics and edge-based computer vision applications to run
efficiently without cloud dependency.

Another prominent example is the Google Coral Edge TPU, a low-power Al accelerator
optimized for TensorFlow Lite models. Specifically designed for edge inference, the Coral
Edge TPU delivers ultra-low latency execution for Al tasks such as facial recognition, security
surveillance, and industrial quality control. Its energy-efficient design makes it suitable for
deployment in smart cameras, edge gateways, and home automation systems, where real-time
Al processing is essential.

Lastly, for cost-effective [oT applications, the ESP32 microcontroller has gained popularity
due to its Al acceleration capabilities and integrated wireless connectivity. The ESP32 is widely
used in smart home devices and automation systems, supporting applications such as voice
recognition, gesture control, and real-time environmental monitoring. By combining edge Al
capabilities with built-in Wi-Fi and Bluetooth connectivity, the ESP32 enables intelligent IoT
solutions that operate autonomously while maintaining seamless communication with other
networked devices.

2.4 On-Device Inference

Many organizations and publications define edge intelligence as the paradigm of executing Al
algorithms locally on end devices using data generated directly on those devices. However, due
to various challenges—most notably resource constraints—a device may not always be capable
of executing a DNN locally. Consequently, edge intelligence should be redefined as a paradigm
that fully leverages the available data and computational resources across the hierarchy of end
devices, edge nodes, and cloud data centers to optimize the overall performance of DNN
execution [43].

It is important to note that "executing a DNN" can refer to either training or inference.
Training and inference are fundamentally different processes in the lifecycle of a DNN, each
with distinct resource requirements and computational complexities.

e Training is significantly more resource-intensive than inference due to the nature of
its operations and objectives. During training, the DNN learns patterns and
relationships in the data by iteratively adjusting its parameters using optimization
algorithms like stochastic gradient descent. This process involves forward propagation,
where the input data pass through the network, and backward propagation, where
gradients are computed and propagated back to update the parameters. These
operations require extensive matrix multiplications, gradient calculations, and weight
updates, all of which demand high computational power, memory bandwidth, and
energy. Additionally, training typically involves large datasets and requires multiple
epochs, further amplifying the computational burden.

e Inference, by contrast, focuses on using a pre-trained model to make predictions or
classifications on new input data. It involves only forward propagation through the
network, which is computationally less demanding than the iterative processes of
training. Inference is often latency-sensitive, particularly for real-time applications, but
its resource requirements are generally more manageable.

70

This distinction is crucial in the context of edge intelligence, as training is rarely performed
on edge devices due to their limited computational resources. Instead, training is typically
conducted on powerful cloud data centers, whereas inference is executed locally on edge
devices to leverage proximity to data and achieve low-latency performance. By balancing these
processes across the edge-cloud hierarchy, edge intelligence can optimize the deployment and
execution of DNNs while addressing the constraints of resource-limited environments.

This dissertation focuses on on-device, or local, inference—the execution of pre-trained
DL models directly on edge devices such as smartphones, IoT devices, or embedded systems.
This approach enables real-time decision-making and processing without relying on continuous
cloud connectivity. By performing inference locally, edge devices can deliver intelligent
functionalities, such as object detection, voice recognition, and predictive maintenance, while
addressing key challenges like latency, privacy, and bandwidth limitations.

2.4.1 Benefits

The ability to run Al models directly on edge resources provides several advantages over
traditional cloud-based inference, particularly in terms of latency, privacy, energy efficiency,
and continuous operation.

Low Latency and Real-Time Decision-Making. One of the most significant advantages of
on-device inference is the ability to process data with ultra-low latency. Since all computations
occur locally, there is no need to transmit data to a remote cloud server, eliminating network
delays. This is particularly important for applications that require real-time decision-making.
For instance, in self-driving cars, object detection and path planning must be executed within
milliseconds to ensure safe navigation, making cloud-based inference impractical due to latency
constraints. Similarly, in AR applications, interactive elements must be rendered
instantaneously to provide a seamless user experience.

Enhanced Privacy and Data Security. By keeping all computations local, on-device inference
significantly reduces the risk of data breaches and unauthorized access. Unlike cloud-based Al,
where sensitive user information is transmitted and stored on external servers, on-device
processing ensures that personal data remain confined to the device itself. This is crucial in
applications such as facial recognition, fingerprint authentication, and health tracking, where
maintaining user privacy is a top priority. Industries such as healthcare and finance benefit from
this approach, as regulations often require data protection and compliance with stringent
security protocols.

Energy Efficiency and Reduced Bandwidth Usage. On-device inference also plays a vital
role in optimizing energy consumption, particularly in battery-powered devices such as
smartphones, wearables, and IoT sensors. Cloud-based inference often involves frequent
communication with remote servers, which not only increases network bandwidth usage but
also drains battery life due to continuous data transmission. By running compact Al models
locally, devices can reduce power consumption, extending their operational lifespan. This is
particularly beneficial for IoT applications deployed in remote environments, where energy
efficiency is essential for long-term autonomous operation.

Offline Functionality and Reliability. Another major advantage of on-device inference is its
ability to function without internet connectivity. Many Al-powered services depend on cloud
access to process requests, making them unreliable in areas with poor network coverage or
intermittent connectivity. On-device Al allows applications to run continuously, even in offline
environments, ensuring robustness and reliability. This is critical in industrial automation,

71

disaster response, and mission-critical healthcare systems, where Al must function
autonomously without depending on external infrastructure.

Scalability and Cost Reduction. From a deployment perspective, on-device inference reduces
the need for centralized cloud computing resources, lowering operational costs. Cloud-based
inference can become computationally expensive as the number of connected devices grows,
requiring large-scale infrastructure to handle the increasing workload. By distributing inference
across edge devices, organizations can reduce dependency on expensive cloud servers, making
Al more scalable for large-scale deployments such as smart cities, enterprise Al, and industrial
IoT applications.

2.4.2 Challenges

While on-device inference offers numerous advantages, it also presents a range of challenges
that must be addressed to ensure efficient, high-performance Al execution on resource-
constrained devices. These challenges extend beyond the limitations of resource constraints and
include factors such as model complexity, scalability, and environmental adaptability [44].
Addressing these challenges is vital to unlocking the full potential of on-device inference,
enabling its seamless integration into a wide array of applications and environments.

Limited Computational Power and Memory Constraints. One of the fundamental
challenges is the limited computational power and memory constraints of edge devices. Unlike
cloud servers, which leverage high-performance GPUs and TPUs, mobile and embedded
systems must execute Al models on low-power processors. Running large-scale DL models,
such as large language models (LLMs), on these resource-constrained devices is particularly
difficult due to high memory requirements, computational intensity, and energy consumption.
Many modern DL models involve billions or even trillions of parameters, requiring
considerable storage and RAM, which are often unavailable on mobile and IoT devices.

Hardware Heterogeneity and Cross-Platform Optimization. Beyond software and hardware
constraints, cross-platform optimization and hardware heterogeneity introduce additional
barriers to widespread on-device Al deployment [45], [46], [47]. Unlike cloud-based inference,
where Al models run on standardized infrastructure, on-device inference must be optimized for
a wide range of mobile SoCs, embedded processors, and Al accelerators. Each device has
different processing architectures, memory hierarchies, and power constraints, requiring
customized implementations to achieve optimal performance. Al models that perform well on
one hardware platform may not generalize effectively across other devices, necessitating
extensive hardware-aware tuning.

Energy Consumption and Dynamic Resource Availability. Another major challenge is
energy consumption, particularly for battery-powered devices. Al inference is computationally
intensive, and continuously running DL models can rapidly deplete battery life. Unlike cloud-
based systems that have access to high-efficiency cooling and power management, mobile and
IoT devices must operate within strict power budgets to avoid excessive heat generation and
battery drain. This challenge is compounded by the dynamic environment of on-device
inference, where resource availability fluctuates due to factors such as processor workload,
temperature conditions, and battery level. For example, when a device's processor is under
heavy load or operates in high-temperature conditions, thermal throttling may reduce
processing speed [48], significantly affecting inference performance. Similarly, power-saving
mechanisms may lower CPU and GPU clock speeds when battery levels are low, further
constraining available computational power.

72

Diversity of Deep Neural Networks and Rapid Evolution. Beyond hardware constraints, the
diversity of DNNs poses a significant challenge. The rapid advancement of Al research has led
to a growing variety of DL models, each with different architectural designs, computational
demands, and optimization trade-offs. Some models are designed for high accuracy, requiring
substantial computational resources, making them unsuitable for resource-limited edge devices.
Others prioritize speed and efficiency but may sacrifice accuracy or generalization capabilities.
Additionally, newer, more complex Al models are continuously being developed, each
introducing new challenges in resource utilization, hardware compatibility, and real-time
performance. Supporting this evolving landscape requires continuous innovation in both
hardware accelerators and software optimization techniques to ensure that on-device inference
remains feasible for future AI models.

Conflicting Service-Level Objectives. Adding to the complexity, on-device inference must
meet strict and diverse application service-level objectives (SLOs), which further complicates
optimization. Different Al applications impose unique performance requirements, such as high
accuracy, low latency, minimal memory usage, or energy efficiency. These requirements often
conflict with each other, making it difficult to develop a single Al model that satisfies all
constraints simultaneously. For instance, autonomous vehicles and medical diagnostics demand
high-precision models, but these models tend to be computationally intensive and may not meet
real-time processing requirements. Conversely, applications such as voice assistants and AR
prioritize low-latency responses, which may necessitate smaller, more efficient models that
compromise accuracy. Balancing these competing objectives while maintaining model
reliability on resource-constrained devices requires sophisticated optimization techniques,
where trade-offs between accuracy, speed, and memory footprint must be carefully managed.

Multi-DNN Execution and Resource Allocation. Another significant challenge is the
requirement for some applications to execute multiple DNNs simultaneously, often referred to
as multi-DNN configurations [49]. Many modern applications involve concurrent Al tasks,
each requiring a distinct DL model [50], [51]. For example, a smart camera system may
simultaneously run models for object detection, facial recognition, and activity recognition,
each requiring real-time execution. Managing multiple DNNs on a single device introduces
various issues, including increased computational load, higher memory demands, and potential
conflicts in resource allocation. To address these challenges, advanced scheduling algorithms
and resource management techniques are required to optimize the execution of multiple DNNs
in parallel. Ensuring that each model receives adequate processing time while maintaining
responsiveness is a critical challenge in real-time Al applications.

Continuous Learning and Model Updating. Finally, the need for continuous learning and
model updates adds another layer of complexity to on-device inference. Unlike cloud-based Al,
where models can be updated centrally, on-device Al requires local mechanisms for adapting
to new data and improving performance over time. Federated learning has emerged as a
promising approach, allowing devices to collaboratively train Al models without transmitting
raw user data to the cloud, preserving privacy while enabling incremental learning. However,
deploying federated learning at scale presents new challenges, such as ensuring secure
aggregation of model updates, managing device synchronization, and optimizing local training
for low-power hardware. Addressing these issues is essential for enabling adaptive, self-
improving Al models that can operate efficiently in edge environments.

73

2.5 Efficient Deep Learning

Efficient deep learning (EDL) is a crucial enabler of on-device inference, laying the foundation
for deploying sophisticated Al systems in resource-constrained environments. EDL
encompasses a wide range of methods, techniques, and optimizations aimed at facilitating or
accelerating the training and inference of DNNs [52]. These methods aim to minimize the
computational, memory, and energy demands of DNNs while preserving key performance
metrics such as accuracy and robustness.

As edge intelligence continues to grow in importance, EDL will remain a driving force
behind its evolution. By enabling high-performance DL in constrained environments, EDL not
only powers the next generation of edge intelligence but also democratizes access to Al
technologies, bringing smart, personalized, and context-aware solutions to the forefront of
modern computing. This synergy between EDL and edge intelligence is driving innovation
across industries, from healthcare and manufacturing to smart cities and autonomous vehicles,
making Al an integral part of everyday life.

2.5.1 Metrics of Interest

The challenge of efficient DNN inference is inherently complex and multifaceted, as it involves
balancing multiple critical metrics alongside accuracy during the development and execution
of the model. While accuracy remains a primary goal, ensuring that a model performs well on
its designated task, other equally important metrics must also be carefully considered,
particularly in resource-constrained environments like edge devices:

e Latency, which measures the time taken for the model to process a single input and
generate an output, is typically expressed in milliseconds (ms) or seconds. It is a crucial
factor, especially for real-time applications such as autonomous systems, augmented
reality, and interactive voice assistants. High latency can degrade user experience or
even compromise system functionality, making low-latency inference a fundamental
requirement for many edge applications.

o Computational complexity is closely tied to latency and refers to the number of
mathematical operations required to execute a DNN, commonly measured in floating-
point operations (FLOPs). Models with high computational complexity require more
processing power and time, which can limit their deployability on resource-limited
devices. Reducing computational complexity without sacrificing accuracy is a major
focus in the development of efficient DNNs.

e Throughput, or the number of inferences a model can perform per unit of time, is
particularly relevant in scenarios where multiple inputs must be processed
simultaneously or in quick succession, such as in video analytics or data streams. It is
typically expressed in inferences per second (IPS) or samples per second (SPS). High
throughput ensures that systems can handle large workloads efficiently, making it a
crucial metric for scalability.

e Model size pertains to the storage space required to save the model parameters and is
usually measured in megabytes (MB) or gigabytes (GB). Edge devices often have
limited storage capacity, so reducing the size of the model without sacrificing accuracy
is critical for enabling deployment on such devices.

e Memory footprint represents the amount of RAM required to load and execute a
model, including both its parameters and intermediate computations. It is measured in
megabytes (MB) or gigabytes (GB). Many edge devices operate with strict memory

74

constraints, and ensuring that the model can fit within the available memory is essential
to prevent bottlenecks or execution failures. Optimizing the memory usage of both the
model's weights and intermediate activations is a core aspect of efficient DNN design.

e Energy consumption, a critical metric for battery-powered devices like smartphones,
drones, and IoT sensors, is often expressed in joules (J) per inference or watts (W) for
continuous operation. Energy-efficient inference not only extends battery life but also
reduces operational costs and environmental impact. Achieving energy-efficient
inference involves innovations in algorithm design and hardware utilization.

e Accelerator compatibility, or accelerator friendliness, is less directly quantifiable but
is typically evaluated based on the model's ability to leverage hardware accelerators
such as GPUs, TPUs, or specialized Al chips effectively. Metrics such as hardware
utilization rate (%) or the number of operations that can be parallelized on an
accelerator help assess compatibility. Models designed with hardware accelerators in
mind can achieve significant performance gains in terms of latency, throughput, and
energy efficiency. This involves tailoring model architectures to align with the
computational patterns favored by these devices, such as leveraging parallelism and
avoiding operations that are inefficient on the target hardware.

The interplay among these metrics often involves trade-offs. For example, reducing model
size might impact accuracy, or designing a model to fully utilize specialized hardware may lead
to lower latency but could increase energy consumption if the hardware is not optimized for
power efficiency. Balancing these competing objectives requires a holistic, multidisciplinary
approach that considers the specific requirements of the application and the constraints of the
target device. Efficient DNN inference, therefore, is not solely about creating high-performing
models but also about ensuring their deployability and scalability across diverse environments
and devices.

2.5.2 Compression Methods

Among all the challenges associated with on-device inference, the constraint of limited
computational resources, memory, and energy efficiency has been the most extensively studied.
The disparity between the computational demands of DL models and the hardware capabilities
of mobile and embedded devices has driven significant research into model compression and
optimization techniques. Since DNNs often contain millions, billions, or even trillions of
parameters, their execution on resource-constrained devices requires specialized methods to
reduce model size, decrease inference latency, and minimize power consumption while
maintaining acceptable levels of accuracy.

To address these limitations, various compression techniques have been developed, aiming
to make DL models more efficient without compromising their predictive performance. These
techniques include quantization, pruning, knowledge distillation, and neural architecture search
(NAS), each targeting a different aspect of model efficiency—from reducing numerical
precision to identifying the most critical network components and restructuring the model for
optimal execution on edge hardware. The widespread adoption of compression techniques has
been instrumental in enabling the deployment of DL on mobile devices, loT sensors, and
embedded systems, bridging the gap between state-of-the-art AI models and the realities of
constrained edge computing environments. The following section provides a detailed
description of quantization, as it is the primary method employed throughout this dissertation.

75

2.5.2.1 Quantization

Quantization [53], [54] is one of the most widely used techniques for compressing DNNS. It
involves representing the weights, activations, and/or mathematical operations of a neural
network using lower-bit precision compared to the standard 32-bit floating-point format
commonly used in training. The primary observation behind quantization is that DNNs,
especially modern architectures, tend to have a large number of parameters, many of which
contribute marginally to the overall performance. This redundancy makes it possible to reduce
the numerical precision of weights and activations without significantly impacting the
network's predictive capabilities. The patterns extracted by neural networks are typically
resilient to small numerical errors introduced by lower-precision representations.

Different quantization approaches offer varying levels of benefits. Basic quantization
schemes, where only the weights are quantized, primarily reduce the model's size. This
reduction leads to decreased storage requirements and lower memory consumption, making the
model more lightweight and efficient for deployment. More advanced quantization techniques
go beyond the weights by also quantizing the activations and performing computations at
reduced precision. These methods can significantly enhance the execution speed of DNNG.
Despite its advantages, quantization often results in a trade-off between efficiency and accuracy.
While the reduction in precision can lead to a decrease in model accuracy, in most cases, this
accuracy loss is negligible compared to the substantial gains in computational efficiency and
resource optimization. As a result, quantization has become a critical tool for enabling the
deployment of DL models in environments where computational power and memory are
limited, paving the way for efficient on-device Al applications.

Table 2.1 provides an overview of four widely used quantization schemes: half-precision
floating-point (FP16), 8-bit dynamic range (DRS), 8-bit fixed-point with floating-point fallback
(FX8), and full 8-bit fixed-point (FFX8). These schemes are compared against the original 32-
bit floating-point (FP32) representation, highlighting differences in model size reduction and
the numerical data types used for inputs, outputs, weights, and activations. The data type
assigned to the weights directly determines the storage requirements of the model, which
accounts for the observed compression ratios.

Table 2.1 Quantization Schemes

Scheme | Compression Inputs & Outputs Weights Activations

FP32 - fp32/int32/int64 p32 fp32

FP16 2x fp32/int32/int64 fpl6 fp16(/fp32 fallback)
DR& 4x fp32/int32/int64 int8 fp32/int8

FX8 4x fp32/int32/int64 int8 int8(/fp32 fallback)
FFX8 4x int8/int32 int8 int8

The operational principles of these quantization schemes are explained in detail below,
providing insight into how each method processes model components and leverages hardware
capabilities to achieve efficiency:

e FP16: This scheme uses 16-bit floating-point computations by default, but it includes
a fallback mechanism to 32-bit floating-point (fp32) arithmetic when the hardware
lacks native support for 16-bit operations. In such cases, weights are dequantized to
fp32 before the first inference, and activations are also stored in fp32 format. FP16 is
widely supported by mobile GPUs, which makes it a suitable choice for scenarios

76

where reduced precision can be leveraged without significantly compromising
accuracy or performance.

e DRS: In this scheme, weights are quantized to 8 bits, whereas activations remain in
fp32. However, some activations may undergo dynamic quantization during inference,
using quantized kernels for faster execution. DR8 leverages fixed-point arithmetic,
when possible, which can reduce computation times compared to floating-point
arithmetic. The performance gains depend on the characteristics of the model and the
hardware's ability to optimize for mixed-precision operations.

o FX8: Similar to FP16, FX8 uses integer kernels as the default execution mode, where
weights and activations are quantized to 8 bits. When integer operations are not
supported on the hardware, the scheme allows for a fallback to 32-bit floating-point
operators. This hybrid approach provides flexibility for deployment across devices with
varying levels of integer computation support, making it suitable for platforms with
limited fixed-point optimization.

e FFX8: This scheme enforces full integer quantization for all model components,
including weights, activations, operations, inputs, and outputs. FFX8 relies exclusively
on integer arithmetic, ensuring compatibility with integer-only devices such as
microcontrollers, DSPs, and NPUs. This makes FFXS8 ideal for resource-constrained
hardware platforms, where efficient execution and minimal memory usage are critical.

It is evident that each quantization scheme is designed with particular hardware capabilities
and performance trade-offs in mind. As such, selecting the appropriate quantization scheme
requires a thorough alignment with the characteristics and constraints of the target hardware
platform. This includes factors such as the supported data formats, the type and efficiency of
arithmetic units and instructions, memory access patterns, and available bandwidth.
Additionally, the specific requirements of the application must be taken into account, such as
the desired trade-off between computational efficiency, model size, and accuracy. These
considerations ensure that the chosen quantization scheme optimizes performance while
meeting the operational needs of both the hardware and the application. Therefore, the decision
is not solely based on reducing model size or speeding up inference, but also on ensuring that
the chosen scheme is compatible with the hardware's architecture and meets the functional
requirements of the deployment environment.

77

Optimized On-Device Inference for
Mobile Devices

In Section 2.4, the importance of on-device inference and its associated challenges were
highlighted, emphasizing that addressing these challenges is crucial to unlocking the full
potential of on-device deep learning. Successfully overcoming these obstacles will enable the
seamless integration of advanced Al capabilities into our interconnected devices, creating a
transformative impact across a range of applications. These challenges are expected to intensify
as emerging DL architectures, such as Transformers, become the dominant models for various
tasks. While current efforts offer targeted solutions to individual challenges, there remains a
critical need for a unified framework capable of addressing these challenges collectively.

In this chapter, CARIn [11] is introduced, a novel framework for optimizing the
deployment of DL applications on mobile devices, designed to meet the demands of modern
and evolving workloads. Building upon the initial work, OODIn [55], which introduced a
highly parameterized software architecture for optimizing single-DNN applications (focusing
primarily on image classification), its capabilities have been significantly extended. By
leveraging OODIn's modular architecture, which facilitates efficient modification of model and
system parameters, two groundbreaking components are proposed to address the complexities
of model multi-tenancy and runtime adaptability:

o First, an expressive multi-objective optimization (MOO) framework is developed,
enabling the precise modeling of performance requirements and constraints for both
single- and multi-DNN workloads. This framework captures the diverse needs of DL
applications, considering metrics such as latency, energy consumption, and memory
usage.

e Second, a runtime-aware sorting and search (RASS) algorithm is introduced—an
innovative MOO solver designed for rapid, low-overhead adaptation to dynamic
resource conditions. Unlike traditional optimizers that produce a static execution plan
for a specific device [56], [57], RASS generates a portfolio of configurations,
accommodating variations in resource availability without the need for continuous
problem re-solving. This approach ensures sustained high performance while
minimizing runtime disruptions.

Furthermore, the scope of CARIn is expanded by targeting a broader set of tasks and model
architectures, including CNNs and Transformers. The comprehensive evaluation spans a
diverse set of realistic scenarios, characterized by varying performance demands,
demonstrating CARIN's adaptability and effectiveness in real-world conditions. This chapter
lays the groundwork for a unified system capable of addressing the multifaceted challenges of
on-device inference while advancing the state of efficient deep learning.

3.1 Related Work

EDL solutions for on-device inference on mobile devices are heavily dependent on the specific
challenges (see Subsection 2.4.2) that need to be addressed in each case. Each challenge,
whether related to resource constraints, device heterogeneity, dynamic environments, or the
diversity of DNN models, requires tailored approaches that optimize performance in a way that

79

aligns with the unique limitations and requirements of the device and application. These
solutions can broadly be categorized into model-level optimizations, system-level
optimizations, and joint model-system optimizations, each addressing different aspects of these
challenges [58].

Model-level optimizations involve modifying or redesigning the neural network to enhance
its efficiency. These methods directly alter the architecture, layers or learned parameters of the
model, enabling it to adapt to resource-constrained environments. Typically device-agnostic,
model-level optimizations focus on making the model intrinsically efficient, independent of the
specific characteristics of the underlying hardware. System-level optimizations, on the other
hand, are focused on improving the interaction between the model and the hardware on which
it operates. These optimizations leverage hardware accelerators, such as GPUs or NPUs, and
exploit compiler and runtime framework enhancements that tailor the model's execution to the
specific characteristics of the target device. Joint model-system optimizations go a step further
by integrating both model and system design to achieve better efficiency and performance than
either could provide independently. These optimizations recognize the interdependence
between the model and the system, allowing for co-adaptation.

3.1.1 Limited Resources

Edge devices, including smartphones, IoT sensors, and embedded systems, typically function
within stringent resource constraints, such as limited computational power, memory, storage,
and energy. These constraints pose considerable challenges for deploying DNNs in such
environments. Various solutions have been proposed in the literature to address this challenge,
with the most commonly employed approaches focusing on model-level optimizations.

3.1.1.1 Model Compression Techniques

One of the most common strategies to address resource constraints is to reduce the size and
complexity of DNNs without significantly sacrificing accuracy. Techniques include:

e Quantization: As discussed in Subsection 2.5.2.1, reducing the precision of model
parameters and operations (e.g., from 32-bit floating-point numbers to 8-bit integers)
can effectively reduce both memory usage and computational requirements.

e Pruning [59]: Removing redundant or less important parameters and connections in
the network, often resulting in sparse models. Magnitude-based pruning and structured
pruning are widely used approaches.

e Knowledge distillation [60]: Transferring knowledge from a large, complex model
(teacher) to a smaller, simpler model (student), which is then deployed on resource-
constrained devices.

3.1.1.2 Efficient Neural Network Architectures

Research has led to the development of lightweight and efficient neural network architectures
specifically designed for the edge. These models are tailored to balance accuracy and
computational efficiency:

e MobileNets [61], [62]: Employ depthwise separable convolutions to reduce the
number of operations and parameters.

o EfficientNets [26], [63]: Uses a compound scaling method to optimize the trade-off
between model depth, width, and resolution.

80

e Transformers for edge devices: Emerging approaches such as TinyBERT [64] and
DistilBERT [65] reduce the number of layers or hidden units in Transformer models to
fit edge constraints.

3.1.2 Device Heterogeneity

The majority of endeavors aimed at addressing device heterogeneity predominantly concentrate
on the model level, i.e., by identifying the most fitting DL architecture tailored to a specific
hardware platform. Among the prominent model-level methodologies, neural architecture
search (NAS) and model scaling have a central role:

e Hardware-aware NAS: HW-NAS approaches seek to optimize DNN architectures
both for high predictive accuracy and for efficient execution on a target deployment
platform. Its most prominent premise is the inclusion of (a) hardware constraints, and
(b) latency, energy and other system metrics, as objectives during the search process
[66], [67], [68], [69]. HW-NAS usually involves performance prediction in order to
guide the search algorithm. Nonetheless, estimating precise latency, memory or energy
figures can be challenging, and the method's effectiveness heavily relies on the
accuracy of these estimates. Such approaches can also be computationally intensive
due to the need to train and evaluate a large number of candidate architectures.

e Supernet-based NAS: Also known as one-shot NAS, it is an approach that leverages
a supernet along with weight sharing to facilitate efficient architecture search [70], [71],
[72], [73]. A supernet is a network containing all possible architectural choices of a
given search space and it enables the exploration of diverse neural architectures while
significantly reducing computational overhead. While this approach reduces the
training-time computational requirements, it may not be as effective at tailoring
architectures to specific hardware constraints and weight sharing may restrict fine-
grained control over architectural decisions.

e Model scaling: It involves adjusting parameters such as the depth, width and input size
of a DNN to strike a balance between accuracy and efficiency [63], [74], [75]. This
technique is often applied along with NAS or knowledge distillation methods to also
accommodate resource constraints. However, model scaling might not fully exploit the
unique hardware characteristics of specific devices, potentially leading to sub-optimal
performance.

3.1.3 Dynamic Environment

The dynamic nature of edge devices necessitates the capability for runtime adaptation, a
challenge that has been explored through research at both the model and system levels. At the
model level, the focus is primarily on developing techniques that enable the dynamic
adjustment of a model's architecture in response to variations in resource availability. These
adaptive models are designed to modify their architecture and parameters in real time during
inference, allowing them to effectively adapt to the changing constraints of the computational
environment. Notable examples of such models include adaptive supernets [76], [77], adaptive
model scaling [78], [79], multi-branch networks [80], early-exit models [67], [81], and various
other innovative approaches. However, designing adaptive mechanisms that function
seamlessly across a wide array of devices presents substantial technical challenges.
Additionally, the adaptability of these networks may introduce computational overhead, which
could potentially affect the performance of real-time applications. At the system level,
complementary methods such as dynamic compression [82], adaptive model selection [83], and

81

efficient scheduling across available hardware resources [84] are employed to further optimize
performance and resource utilization.

3.1.4 DNN Diversity

The challenge posed by the diversity of available models emphasizes the necessity for robust
model selection systems capable of dynamically identifying the most suitable model for a given
scenario. These systems must consider the unique resource constraints of edge devices, as well
as the specific performance goals of the application. Such systems should be able to evaluate
the computational complexity, memory usage, and energy consumption of models, selecting
the one best aligned with real-time conditions. Furthermore, dynamic model selection should
be adaptable to factors such as workload fluctuations and environmental changes, enabling
execution strategies that align with the device's current capabilities.

3.1.5 DNN Innovations

As new, more sophisticated models are introduced, traditional hardware solutions often find it
challenging to keep up with the increasing computational and resource demands. This gap
between hardware capabilities and model complexity underscores the need for innovative
hardware and software solutions that can support the evolving landscape of Al:

o Adaptive hardware solutions: Field Programmable Gate Arrays (FPGAs) have
emerged as a critical enabler in the search for future neural processing unit (NPU)
designs. Due to their reconfigurability, FPGAs allow for the exploration and evaluation
of a wide array of potential hardware designs tailored to specific DNNs. By simulating
these designs on FPGA platforms, it becomes possible to assess crucial performance
metrics such as processing speed, power consumption, and hardware area. The goal of
this process is to identify the Pareto-optimal accelerator design, which strikes a balance
across these factors, for a range of representative DNN models. Once the highest-
performing design is identified, it can be translated into an Application-Specific
Integrated Circuit (ASIC) for mass production. This ASIC can then be integrated into
future consumer devices as a specialized NPU, optimizing the execution of DNNs on
edge devices.

e Dynamic software and system-level optimizations: Alongside hardware innovations,
dynamic software solutions are indispensable in addressing the challenge posed by the
continuous advancement of DNNs. These solutions enable the adaptation of models to
ever-changing conditions by providing software frameworks capable of optimizing
model execution based on real-time resource availability. Advanced system-level
optimizations, such as compiler-based transformations, dynamic model selection, and
real-time model scaling, play a critical role in ensuring that DNN models are efficiently
deployed on edge devices.

3.1.6 Diverse Application SLOs

Most prior research focused on achieving SL.Os has primarily been centered on system-level
developments for edge servers [85], [86], [87], [88], where multiple DNN models can be
executed in parallel. A relatively small number of studies, however, have examined the specific
challenges of on-device execution, particularly in the context of managing multiple inference
requests across heterogeneous processors [89], [90]. These works often focus on optimizing
one or a few performance metrics but overlook the broader spectrum of SLOs that are critical
for real-world mobile applications.

82

3.1.7 Multi-DNN Inference

To enable efficient multi-DNN inference, researchers have investigated solutions across both
model and system levels [49]. From the model perspective, the execution of multiple DNNs
often aligns with the principles of multi-task learning [91], [92], a technique where a single
model is trained to perform multiple related tasks concurrently. By utilizing a multi-task model
for inference, the need for running multiple independent models simultaneously can be
mitigated, offering potential benefits in terms of resource utilization and efficiency. This
approach simplifies the execution process and can reduce the overhead associated with
maintaining separate models for each task.

At the system level, most research efforts focus on optimizing the use of heterogeneous
processors available on edge devices, seeking to identify the most effective mapping strategy
for distributing inference tasks. These strategies typically involve partitioning the model at the
layer level [50], [93], where each segment of the model is executed on the most suitable
hardware unit, or implementing task-level priorities [94] to ensure that critical tasks are given
higher precedence in terms of computational resources. This allows for more efficient resource
management, ensuring that all available hardware is utilized optimally to meet the performance
objectives.

In addition to these approaches, there is a growing body of research dedicated to the
development of multi-tenant inference systems [95], [96]. While much of the existing work has
focused on server-based configurations [97], [98], where multiple inference tasks are handled
simultaneously by shared resources, there is an increasing need to adapt these techniques for
on-device applications [49]. On-device multi-tenant systems face additional challenges, such
as real-time constraints, limited resources, and the need for efficient orchestration of multiple
inference requests across diverse hardware components. Consequently, on-device multi-DNN
solutions require novel techniques for managing the interactions between models and
optimizing hardware utilization while maintaining application-specific performance goals.

3.2 System Overview

CARIn addresses the main challenges of on-device DL inference in two ways. First, a novel
approach to modeling DL applications is introduced, utilizing a multi-objective optimization
(MOO) framework to encapsulate their characteristics. Given the rising number and diversity
of DL applications, CARIn is able to analytically represent their various performance
requirements and constraints, with the required expressivity to support both single- and multi-
DNN scenarios. Second, in order to enable runtime adaptation, RASS is introduced—a runtime-
aware MOO solver that allows for low-overhead and effective dynamic adjustment of the
execution. The key principle behind RASS's design is to explicitly consider during the MOO
solution stage that adaptation may subsequently be required at deployment time. As such, RASS
operates in two steps: (a) it generates a set of alternative execution configurations with diverse
trade-offs prior to deployment, and (b) configures the inference engine with a policy of
switching among them.

Towards alleviating the impact of device heterogeneity and resource fluctuation, CARIN
operates exclusively at the system level, bypassing the need to produce an optimal model for
each target device. Model-level solutions typically include the design, exploration, training, and
adaptation of a DNN's architecture to specific target devices and resource availability changes.
These procedures can be cumbersome, time-consuming, and lead to complex pipelines. Instead,
the proposed framework employs a repository of pre-trained models with varying architectures

83

and complexities. The singular requisite action in relation to the models entails the application
of post-training quantization.

The design of the outlined framework was driven by the fact that satisfying SLOs depends
not only on the target model but also on the specific target device, especially the processor in
use. Consequently, CARIN's primary objective is to determine, at any given time, the most
suitable model-processor pair (or pairs) for a specified device. Here, the term "processor"
extends beyond its general definition to encompass specific configurations, such as the number
of threads utilized on a CPU or the precision settings employed on a GPU. Internally, the MOO
framework expresses this as a DL-based, device-centric problem, to effectively capture both
the application's SLOs and the unique characteristics of the target device. Given the device-
specific nature of the MOO formulation, a distinct optimization problem is formed for each
given device, effectively circumventing the challenge posed by device heterogeneity.
Additionally, in order to facilitate real-time adaptation, CARIN leverages the device's intra-
level heterogeneity, specifically the array of available processors, as well as the range of
solutions offered by the RASS solver, which allow the adoption of a swift and efficient
switching mechanism between execution plans.

3.2.1 Workflow

Figure 3.1 depicts CARIN's operational flow, which is divided into the sequential offline and
online phases. The offline component is responsible for constructing and resolving the device-
specific MOO problem. Then, at runtime, the online component's Runtime Manager (RM)
constantly monitors the application's dynamic behavior, ensuring real-time adaptation to
emergent changes. Algorithm 3.1 presents a comprehensive top-level overview of the proposed
framework, delineating its primary components and illustrating their main operations. These
operations will be thoroughly elucidated in Section 3.3.

The framework's input parameters are: (a) the designated DL task (or tasks) associated with
the application, (b) the target device's characteristics, and (c) the stipulated service-level
objectives, whereas the outputs consist of: (a) the set of solutions (designs D), and (b) the

switching policy SP.
Offline Component Online Component

o (oo m
I ¥ i
| | 1D Runtime !
DL task(s) —— MOO X€EX Objective ¢ MOO i[I SP Manager !
Targetdevice —— Problem fog: Function L_) Problem ' ! dl | !
Application SLOs —— Formulation ©9 . Evaluation ¥ Solver | : $:

|
! i Application i

|

Figure 3.1 High-level workflow of CARIN

The specified DL task(s) dictate the set of models to be considered during the optimization
process. A model in CARIn is represented by the following tuple:

m = (arch, params, s;,, task, ds, pr) (3.1

where arch is the model's architecture (i.e., layers and connections), params are the model's
trained parameters, s;, is the input size, fask is the target DL problem, ds is the name of the
corresponding test dataset, and pr is the numerical precision in order to account for quantized
models.

&4

Algorithm 3.1 CARIn's End-to-End Operation

Input: DL task(s)
Target device
Application SLOs
Output: Designs, D
Switching Policy, SP
/* MOO Problem Formulation */
HW « ObtainHardwareCharacteristics(Target device)
if app type == single-DNN then
| X « ConstructDecisionSpace(DL task, HW)
else
| X « ConstructDecisionSpace(DL tasks, HW)
end

N QNN AW N -

S g < ExtractFunctions(Application SLOs)

/* Objective Function Evaluation */

8 [, gj(x) < EvaluateFunctions(X, £, gf)
/* MOO Problem Solver */

9 X'« {x | gj(x) < 0} // apply constraints

10 opt(x) « CalculateOptimality(X")

11 X! < Sort(X', opt)

12 D, SP « Search(X)
/* Runtime */

13 while true do

14 ¢ < Analyze(s) // ¢ indicates a change in resource availability
15 if c then

16 | dpew < RM(D, SP, ¢)

17 end

18 end

The target device defines the hardware resources at the system's disposal, which are
represented by the tuple:

hw = (ce, op(ce)) (3.2)

where ce € CE is the compute engine (i.e., processor) performing the inference computations
and op(ce) is a set of options tied to the given processor, e.g., the number of CPU threads or the
GPU's numerical precision. The tuple of tunable system parameters can be extended to capture
a more detailed space, e.g., by including the DVFS governor selection which determines the
dynamic voltage and frequency scaling policy of the device.

An individual model m running under the selected system parameters 4w represents a single
execution configuration:

e=(m,hw) € (3.3)

During the MOO Problem Formulation stage, CARIN considers every generated space of
execution configurations, £;, in order to form the problem's decision space, X, depending on
whether the application requires single- or multi-DNN execution. At the same time, the
application's SLOs delineate the MOO problem's objective functions and constraints, denoted
as f; and g respectively. Once the problem is formulated for the target device, the Objective

85

Function Evaluation stage evaluates each function for every x € X'. Following this, CARIN's
MOO Problem Solver is poised to solve the MOO problem. The functions CalculateOptimality,
Sort, and Search shown in Algorithm 3.1, which constitute the three stages of the solver, are
discussed in detail in Subsection 3.3.3.

In order for CARIN to accommodate runtime adaptation, it is important to establish a robust
system for perpetually monitoring the dynamic aspects of the executing application and the
state of the device itself. This ongoing vigilance enables timely recognition of abrupt alterations
in operational conditions, thereby facilitating immediate corrective measures. This subsystem
is called the Runtime Manager (RM). The output of CARIN's solving algorithm consists of a
set D of highest-performing solutions, called designs, which are passed to RM along with the
appropriate switching policy (SP). Leveraging a collection of periodically captured statistics s
from the Application's runtime, the RM module has the ability to discern dynamic changes in
resource allocation (¢ in Algorithm 3.1) and rapidly switch to an alternative design d,,, to
effectively and robustly meet the application-level SLOs.

3.3 Multi-Objective Optimization Framework

Multi-objective optimization (MOO) constitutes a mathematical and computational approach
employed to find the best solutions or trade-offs in scenarios that involve multiple interrelated
and, at times, antagonistic objectives [99], [100]. The appropriateness of a MOO framework
for the problem at hand is underscored by (a) the inherent nature of DL application SLOs, which
typically comprise objectives that exhibit conflicts, and (b) the inherent attribute of MOO to
yield a solution space rich in diversity, which, in turn, can enable dynamic adaptation.

3.3.1 MOO Problem Formulation
For CARInN's DL-based MOO formulation, the following mathematical description is adopted:

min/max f,(x), I<i<N

34
subject to gj(x) =g (hj(x)) <0, 1<;<P (34)

where x denotes the decision variable, N is the number of objective functions, fl is the i-th
objective function, P is the number of inequality constraints, and g is the j-th inequality

constraint, which is always a composite function of a given inner function /;. Note that when
there is only a single objective function (N = 1), then the problem is reduced to single-objective
optimization (SOO). The problem's objective functions and constraints are extracted from the
application's SLOs, which can be split into two categories:

e Broad SLOs: Such objectives define the problem's objective functions and come in the
form of (min/max, p), where p is a DL-related performance metric. For instance,
(max, mloU) means that the mean Intersection-over-Union (mloU) accuracy metric
should be maximized for an image segmentation task. For CARIN, this objective
translates to the maximization of the objective function f(x) = A(x) = mloU(x).

e Narrow SLOs: These objectives define the problem's constraints and come in the form
of (min/max/avg/std/n™, p, v), which means that the minimum, maximum, average,
standard deviation or n™ percentile value of p is bounded by a target value v. For
instance, {(avg, L, 15) means that the average latency needs to be less than 15 ms, which
translates to the constraint g(x) < 0, where g(x) = g(h(x)) = g(L(x)) = L(x) — 15.

86

Given that both types of objectives concern the same set of performance metrics, it follows
that both the objective and inner functions, f; and #;, share a common function space, denoted

by F, which encompasses the entirety of available functions associated with various DL
performance metrics. For this reason, in cases where the application defines constraints without
explicitly specifying objective functions, CARIN can duly regard all specified inner functions
h; as objective functions as well.

3.3.1.1 Single-DNN Setting

When there is only one DL task to optimize, the decision variable x is a single execution
configuration e, as defined in Equation (3.3). Therefore, the execution configuration space £
effectively transforms into the decision space X:

Xsingle = € = <m9 hW) € xsingle =& (35)

For the objective functions, CARIN leverages the following performance metrics tailored
specifically to DNNs:

e Size (5): Size is conventionally represented by either the total count of parameters
within the neural network or the physical file size of the model stored in memory.

e Workload (W): This metric is typically measured in terms of numerical operations,
such as floating-point operations (FLOPSs) or multiply-accumulate operations (MACs).

e Accuracy (4): Accuracy is contingent upon the specific DL task in question, e.g., top-
1 accuracy for classification tasks or exact match for question answering tasks.

e Latency (L): Latency delineates the temporal lag between the transmission of input
data to the DNN model and the reception of the corresponding output. It is quantified
in units of milliseconds or seconds.

e Throughput (7P): Throughput provides an indication of the model's real-time
processing capabilities and is computed as the total number of input samples (batch
size), divided by the total inference latency. This metric is denominated in samples per
second (e.g., images per second when images constitute the inputs).

e Energy Consumption (E): This metric is of paramount importance for the evaluation
of the energy efficiency of DNN applications in resource-constrained environments and
is measured in energy units, such as watt-hours or joules.

e Memory Footprint (MF): Memory footprint encapsulates the extent of random-access
memory (RAM) required for the loading and execution of a DNN. It is traditionally
assessed in terms of memory size units, such as megabytes (MB) or gigabytes (GB).

Overall, the set of potential objective functions in single-DNN cases is denoted as:
Tsingle = {S, W,A4,L, TP, E, MF} (36)

collectively empowering a multifaceted assessment of DNN models and providing a holistic
understanding of their performance across diverse dimensions.

It is important to recognize that the latency and energy consumption metrics are subject to
inherent fluctuations when executing DNNs on mobile devices. These fluctuations can arise
due to various factors, including device load, temperature, input values, and other
environmental variables (see Subsection 3.3.3.2). As a result, relying on a single, instantaneous
value may not provide a robust and representative assessment of system performance. To
account for these fluctuations, CARIN considers statistical measures, such as the average or
maximum energy consumption or the variance of the latency, as objective functions.

87

3.3.1.2 Multi-DNN Setting

When there are M independent DNNSs to optimize jointly, the decision variable x comprises of
M distinct execution configurations ¢;, 1 < i < M. Hence, the decision space X is an M-
dimensional space, where each component of the decision variable can separately take values
in the corresponding execution configuration space &;:

Xoulti = 1€15-- €y} = Um, hw)y, ..., {m, hw)y} € X = €1 X ... X Eyy 3.7

The array of potential objective functions is expansively broadened to encompass an
additional triad of performance metrics pertaining to parallel execution [101], [49]:

e Normalized Turnaround Time (N7T): NTT serves as a quantifier of the perceived
execution slowdown during multi-DNN execution. The NTT for the i-th DNN is
computed as:

M
s (3.8)

i

NTT,; =

where L,S and LM are the average latencies of the i-th DNN under the single- and multi-
DNN modes. NTT; is a value greater than or equal to 1, with lower values indicating
superior performance. For the sake of standardization across models, it is common
practice to calculate the average or maximum N77T.

o System Throughput (§7P): STP quantifies the accumulated single-DNN progress
under multi-DNN execution and is computed as:

STP = ZNP 2 T = LM (3.9)

where NP; is the normalized progress of the i-th DNN. Its maximum magnitude is M,
with higher values signifying enhanced performance.

e Fairness (F): The concept of fairness in a multi-DNN execution environment is
contingent upon the equitable relative progress experienced by co-executing DNNS, in
comparison to their single-DNN execution counterparts. Fairness, as denoted herein, is
quantified as the minimum ratio of relative normalized progress rates observed among
any two DNNs concurrently operating within the system:

. NP,
F= min P, (3.10)
This metric adheres to a higher-is-better paradigm with values within the range [0, 1],
where 0 signifies an absence of fairness and 1 perfect fairness.

As a consequence, CARIN's objective function set is augmented to encompass both single-
DNN metrics, which pertain to individual tasks or DNNs, and multi-DNN metrics, which
characterize the collective performance of the entire system during concurrent execution:

Froati = 885, Wi, A;, Ly, TPy, Eiy ME3 U {STP,NTT, F}, 1 <i <M (3.11)

3.3.2 Objective Function Evaluation

Upon the formulation of the device-specific MOO problem, it becomes necessary to assess each
objective function across the entire set of decision variables x € X. Assessing these functions

88

is straightforward for certain objectives; however, it presents challenges for device-dependent
functions like £ and MF, and those relying on latency, including L, TP, STP, NTT, and F. The
approach adopted by CARIn for this evaluation involves the profiling of functions on
individual target devices. In practical terms, this entails the deployment of all candidate models
on each target device, followed by the measurement of each device-reliant objective function
for all feasible model-processor combinations. While comprehensive, this procedure is
inherently time-consuming and, in many instances, such as in multi-DNN cases, infeasible for
seamless integration into real-world scenarios and practical applications. However, the
optimization of the evaluation process itself does not constitute a primary objective of this work.
Potential enhancements of this aspect are extensively discussed in Section 3.7.

3.3.3 MOO Problem Solver

Following the formulation of the problem and the evaluation of the associated functions, the
conclusive stage involves resolving the optimization problem. The initial step is to apply the
problem's constraints, thereby restricting the decision variables to the constrained decision
space X', defined as:

X' = {x|gj(x) < O,Vj} (3.12)

MOO problems are frequently addressed using evolutionary algorithms, such as NSGA-II,
SMS-EMOA, and MOEAD, or swarm-based algorithms, such as Ant Colony Optimization
(ACO) and Particle Swarm Optimization (PSO) [102]. These algorithms systematically explore
the decision variable space to discover the Pareto frontier, which represents the optimal trade-
offs among conflicting objectives. While these algorithms excel in identifying the optimal
execution configuration, potential runtime issues may either alter the solution space,
consequently affecting the Pareto frontier of a MOO problem, or introduce new constraints that
were not considered during the problem's formulation. Consequently, to address the potential
decline in performance, it becomes imperative to rerun these algorithms whenever a runtime
issue arises. However, such repetitive executions are impractical for real-life applications and
systems.

To address this challenge, a runtime-aware sorting and search algorithm is introduced,
denoted as RASS, whose primary goal is to solve a device-specific MOO problem once, while
concurrently addressing potential future runtime challenges. To achieve this, RASS considers
both non-dominated and dominated solutions in a predictive manner, estimating the impact of
possible runtime issues. In addition to providing the initial solution, dy, RASS also yields a set
of supplementary runtime designs, d;, which serve as a proactive measure for runtime
adaptation, i.e., in instances where the currently employed design encounters performance
issues. This approach alleviates the need for repetitive executions of optimization algorithms.

The operation of RASS involves a sorting stage followed by a search stage. To
accommodate both non-dominated and dominated solutions, the solving algorithm initially
sorts candidate solutions according to their optimality (Subsection 3.3.3.1), a metric quantifying
the distance from the problem's utopia point. Subsequently, based on this sorting, RASS
identifies a set of solutions (Subsection 3.3.3.4) representing the various execution plans of the
application which correspond to possible runtime issues (Subsection 3.3.3.2), along with a
switching policy facilitating prompt transitioning between them (Subsection 3.3.3.3) for the
RM module.

&9

3.3.3.1 Optimality

To quantify optimality for a given candidate solution x € X', the weighted Mahalanobis
distance between the solution's objective vector, defined as f(x) = [f; (x), f>(x),..., fy(x)], and
the utopia point, represented as up = [up,, up,, ..., up,, is first calculated:

N 2
d(x) = Zwlz[fl(@s—;upl] (3.13)

i=1 !

where w; is the user-supplied weight for the i-th objective, s7 is the calculated variance of the
i-th objective, and each component of the utopia point depends on the corresponding objective
function:

max f,, if f, € {4, TP,STP, F
pl={ S 1S €A) (3.14)

min f;, if f, € {S, W, L, E, MF, NTT}

By utilizing the Mahalanobis distance, the disparate scales of the diverse objectives are
effectively accommodated. Consequently, optimality could also be regarded as a metric of
fairness for the problem's objective functions. However, it is important to recognize that these
functions may hold varying significance for the problem. To address this, users are provided
with the ability to define weights, introducing a formal mechanism for enabling tailored
optimization strategies. Notably, the calculated distances range within the interval [0, dp.x],
where the maximum distance is:

N

N2
4. = Z W2 (max/, —zmmfl.) G1s)

N

=1 i

This factor necessitates the use of normalization, which results in the distance being
confined to the [0, 1] range:

d(x)

max

The optimality metric for each x € X' can then formally be defined as the reciprocal of the
scaled weighted Mahalanobis distance, thus, its range extends from [1, +o0):

opt(x) = (3.17)

1
ds(x)
Utilizing these values, the candidate solutions are sorted in descending order, resulting in
the creation of the sorted decision space X.

3.3.3.2 Runtime Challenges

During the runtime of the application, a multitude of complex and often unpredictable dynamic
alterations in the device's resource availability may occur. These fluctuations can significantly
impact the problem formulation in different ways, thus necessitating carefully designed and
targeted approaches for their effective management. CARIN focuses on addressing two main
challenges, regarding the processors and memory of the target device:

90

e Processor overload or overheating: Processor-related concerns manifest when the
processor at use is continuously subjected to sustained processing demands exceeding
its peak processing capacity, primarily due to resource-intensive computational tasks.
The protracted imposition of such an overload condition may subsequently lead to
overheating, which means the escalation of the SoC's temperature to a critical and
potentially harmful level. Overheating may also result from insufficient cooling
mechanisms or other impediments hindering the effective dissipation of heat by the
SoC. As a protective measure against potential harm, mobile SoCs are equipped with
thermal throttling capabilities, which are activated when temperatures exceed
predefined thresholds. Thermal throttling encompasses the deliberate reduction of the
processor's clock speed and performance to mitigate heat generation and maintain a
safe temperature range. The intricate interplay between processor overload and
overheating significantly impacts performance and power consumption, underscoring
the significance of diligent management and effective mitigation strategies.

e Variability in RAM utilization: Owing to the multifaceted nature of mobile devices,
the utilization of random-access memory is also characterized by dynamic fluctuations.
Within the execution scope of an application, numerous ancillary applications,
processes, or services continually initiate and terminate in the background, potentially
culminating in an unforeseen saturation of RAM capacity. Consequently, this
phenomenon may precipitate performance-related challenges, encompassing lag,
application crashes, and an overall deceleration of device functionality. Furthermore,
the perpetual management of excessive RAM consumption may also entail elevated
power consumption, thereby engendering consequential ramifications.

3.3.3.3 Model/Processor Switching

In response to runtime fluctuations, CARIN's RM adopts a strategic approach that involves
alterations to either the model (change model, CM), processor (CP), or both (CB) within the
current execution plan. These three fundamental adjustments serve as effective measures for
mitigating the challenges encountered during runtime. To this end, a prioritization scheme is
introduced. In the case of processor-related phenomena, CARIN prioritizes transferring DNN
execution from the currently used processors to inactive ones (CP or CB). This transition allows
the overloaded or overheated processor to dissipate excess heat and gradually restore its
performance. In cases where migration is not a viable option, such as in devices limited solely
to CPU usage or multi-DNN scenarios where all processors are occupied, CARIN employs an
alternative approach which involves replacing the current model with one of reduced
computational workload (CM). Conversely, addressing the memory-related issue involves
transitioning to a more compact model either on the same (CM) or a different processor (CB).

3.3.3.4 Design Selection & Switching Policy

A primary principle guiding the design of RASS is to ensure low complexity in order to
facilitate rapid switching. This objective manifests in the generation of a relatively small
number of designs, which offers two additional key benefits:

1. It minimizes the storage requirements for the models.
2. It maintains a concise switching policy, comprising only a limited number of
transition rules.

For RM to determine the appropriate timing to transition to a new execution plan, several
system parameters, related to the workload distribution across processors and the aggregate

91

memory utilization, need to be continuously monitored. These parameters are represented by
the boolean variables c,, and ¢,,, indicating the presence of issues pertaining to a processor ce
and the memory, respectively.

The first step in identifying the solutions to the problem involves identifying the sets of
different model-to-processor mappings viable for processor switching, i.e., for reallocating DL
execution to idle processors. Symbolizing the number of these sets as 7, in consideration of
RASS's need for simplicity, if 7 > 3, only the top three sets are retained, corresponding to the
highest attained optimality scores. Next, the sorted decision space X is partitioned into T
distinct subspaces X, each corresponding to specific model-to-processor mappings and
arranged in descending order of observed optimality. Regarding processor-related phenomena,
designs associated with the highest optimality score within each set are selected:

d =X][0],i=0,..,T—1 (3.18)

To address the memory-related challenge, the solution that exhibits the smallest possible
memory footprint is extracted:

d,, = argmin MF(x),x € X;,i=0,..,T—1 (3.19)

Lastly, complementary designs are obtained for two highly improbable scenarios. The first
one arises when all related processors face an overload issue, while the memory does not,
prompting the extraction of the solution with the lightest workload:

dy, = argmin W(x),x € X;,i =0,..,T—1 (3.20)

and the second scenario surfaces when both the processors and memory encounter issues
simultaneously, necessitating the identification of the solution that strikes the optimal balance
between memory usage and workload among d,,, and d,,:

dy, if CIMF(dy), W(dy)] < C[MF(dy,), W(d)]

d,, else (.21)

dum =
where the normalized sum is used to compute the cost function C. Collectively, the set of
designs is denoted as:

D={d,d,d,},i=0,.,T—1 (3.22)

therefore, RASS can generate a maximum of five designs for a MOO problem, since 7' < 3.

After establishing the set of designs, RASS's final step involves crafting the rule-based
switching policy, which serves as a reference for the RM module, guiding its decision-making
process each time the boolean variables ¢, or ¢,, change. With the aim of ensuring simplicity
and conciseness in the rule set, the selection of a new design is contingent solely upon the state
of the environmental variables and independent of the presently employed design. The rationale
behind the construction of the rules is deliberately straightforward, as demonstrated in
Subsection 3.6.2, where two representative use cases are presented and analyzed.

3.4 Implementation

CARIn is implemented in Java for the Android operating system. Its primary integration
leverages the TensorFlow Lite (TFLite) package in its nightly build to facilitate on-device DNN
execution, as well as its delegates to access mobile accelerators. The concurrent execution of
multiple DNNs is achieved through the utilization of the java.util.concurrent package.

92

In order to create the model suite used for the framework's evaluation, i.e., for model
retrieval, training, and preparation, TensorFlow (v2.12.0) was employed in Python. The
proposed framework seamlessly interfaces with the TensorFlow Hub and Hugging Face model
repositories, which allows researchers to easily access and experiment with a wide range of pre-
trained models on publicly available datasets for their specific use cases. Additionally, the
TFLite Converter's optimization module was utilized to apply post-training quantization to the
models in order to enhance inference speed, efficiency and accelerator compatibility.

Regarding the objective function evaluation process, a diverse set of tools and libraries is
employed. For accuracy assessments, custom evaluation scripts were used, as well as TFLite's
image classification evaluation tool for the ImageNet ILSVRC 2012 task. Furthermore, to
comprehensively capture the model's computational complexity and resource requirements, the
tflite Python package was used to count model parameters and FLOPs. Lastly, to assess the
on-device performance of the models, the C++-based TFLite benchmark tool was employed.
This tool offers a comprehensive suite of measurements, encompassing execution time,
memory utilization, and other pertinent metrics, thereby providing a robust evaluation of the
models' real-world performance characteristics.

3.5 Experimental Methodology

This section outlines the experimental methodology that forms the foundation of this research,
providing insight into the comprehensive approach taken to investigate the study's core
objectives. The methodology is structured into several key subsections, each addressing a
critical aspect of the experimental design. Figure 3.2 illustrates the toolflow used to conduct the

experiments.
e
Server [o pgthon
. Hugging Face TensorFlow Hub

D

|

|

|

I

|

;

(pretrained) models :
‘ |
|

|

|

|

|

|

|

TensorFlow

trained models

) On-device Evaluation -
TensorFlow Lite Converter —————1 _ Java
® eTensorFIow Lite

|
|
|
|
|
|
|
|
: latency, memory, energy
|
|
I
|
|
|
|
|
|

I
model suite i
I
i |
Ofﬂln.e : RASS
Evaluation | accuracy, :
size, I designs,

workload : switching policy

|
N o __) N ____ Vv

Figure 3.2 Toolflow for the evaluation of CARIN

3.5.1 Quantization

CARIn embraces post-training quantization as one of the most simple and mobile-friendly
compression methods presently available, with benefits not only in model size, but also in
latency and memory requirements. Apart from this, quantization becomes indispensable for the
execution of DNNs within DSPs or NPUs designed to primarily support integer models, thus
unlocking complete compatibility with mobile accelerators. Details on quantization techniques

93

are presented in Subsection 2.5.2.1. Notably, additional compression methods which also
introduce trade-offs between accuracy and complexity, such as weight pruning or clustering,
are orthogonal to the proposed framework and amenable to integration. The potential synergy
resulting from the combined application of various compression techniques merits further
investigation.

3.5.2 Application Scenarios, Models and Tasks

The following section outlines four distinct application use cases that serve as the foundation
for the experimental evaluation. These scenarios represent diverse real-world settings in which
the research findings are tested and validated, offering valuable insights into the effectiveness
of the proposed formulation and methodology.

Notably, the first two scenarios pertain to the execution of a single DNN, whereas the latter
two involve the parallel execution of multiple DNNs, enabling the assessment of performance
outcomes in cases where dependencies among multiple DNNs are present. This dichotomy is
instrumental in affording a comprehensive evaluation of the methodology's versatility,
applicability, and scalability. Specific SLOs are defined for each use case, accompanied by a
list of pre-trained models considered during evaluation, along with their device-independent
assessment, which includes: (a) the relevant accuracy metric for both the original and quantized
variants, (b) the computational workload in FLOPs, and (c) the model size expressed in the
number of parameters.

3.5.2.1 Use Case #1 (UC1)

The first single-DNN scenario examines the practical application of real-time image
classification. In this setting, the camera of a mobile device continuously captures frames that
require prompt and accurate recognition. The term "real-time" is qualified by a temporal
restriction mandating that the maximum permissible latency is 41.67 ms, underscoring the
necessity to uphold a recognition rate of no less than 24 frames per second (FPS). The principal
objectives of this use case encompass the joint maximization of accuracy and throughput.
Mathematically, this MOO problem comprises two objective functions and one single
constraint:

max A(x), TP(x)

subjectto max L(x) < 41.67 ms (3.23)

For UC1 the ImageNet-1k dataset [103] was used. Table 3.1 lists the eight models under
consideration, which are drawn from four distinct families: MobileNets [62], EfficientNets
[26], RegNets [104], and MobileViTs [105]. The rationale behind this extensive model selection
is to ensure a well-rounded exploration of compact and mobile-friendly architectures that span
a broad spectrum, encompassing both conventional CNNs and emerging Transformer-based
models. Each of these architectural paradigms exhibits unique characteristics and design
principles. It is important to note that the inclusion of higher-accuracy models, such as NASNet
[106] and ConvNeXt [107], was also considered. However, the assessment revealed that these
models did not meet the stipulated latency constraint. As a result, they were excluded from the
study to ensure adherence to the predefined performance criteria.

94

Table 3.1 UC1 Models

Top-1 Accuracy (%
DL Task Architecture Im'age FLOPs #Params P y (%)
Size FP32 FP16 DR8 FX8 FFX8
MobileNet V2 1.0 224x224 | 0.60 G 349M | 7192 71.96 71.65 7128 71.26
RegNetY 008 224x224 1.60 G 6.25M | 7428 7428 74.18 7445 7447
MobileViT XS 256x256 | 2.10G 231 M| 7461 74.61 - - -
Image

EfficientNet Lite0 224x224 | 0.77G 4.63M | 75.19 7523 75.14 75.09 75.11
MobileNet V2 1.4 224x224 | 1.16 G 6.09M | 75.66 75.68 75.47 75.41 75.45
RegNetY 016 224x224 | 323G 11.18 M | 76.76 76.76 76.62 7692 76.84
MobileViT S 256x256 | 406G 557M | 7831 7830 - - -

EfficientNet Lite4 300x300 | 5.11G 1295M|80.81 80.80 80.78 80.69 80.71

Classification
on ImageNet-1k

3.5.2.2 Use Case #2 (UC2)

In the second single-DNN scenario, the task of text classification is studied, with a particular
emphasis on the memory requirements of the models. To this end, a memory constraint is
imposed, stipulating that the executing DNN's maximum memory footprint must not exceed 90
MB. The objectives of this use case revolve around three critical factors: minimizing the
average latency, reducing the model size, and maximizing accuracy. Mathematically, this MOO
problem encompasses three objective functions and a singular constraint:

min L(x), S(x)
max A(x) (3.29)
subjectto MF(x) < 90 MB

For UC2, three pre-trained Transformer models were obtained, trained on various large
datasets, including Reddit comments and 20RC citation pairs, and subsequently fine-tuned on
Emotions [108], a dataset comprising of English Twitter messages which is employed for the
task of classifying input sequences into six distinct emotions. The dataset's split configuration
was adopted, which allocated 16000 samples for training, 2000 for validation, and 2000 for
testing. The reported Top-1 Accuracy corresponds to the dataset's test set. The selected models,
detailed in Table 3.2, encompass the traditional BERT architecture in a lightweight version,
alongside two mobile-grade models: XtremeDistil [109] and MobileBERT [110]. The letter "L"
in each model's name stands for the number of Transformer layers and "H" stands for the hidden
dimension.

Table 3.2 UC2 Models

DL Task Architecture Sequence FLOPs #Params Top-1 Accuracy (%)
Length FP32 FP16 DR8 FX8 FFX8
Text BERT-L2-H128 64 0.05G 431M|92.10 92.10 91.90 91.75 91.75
Classification | XtremeDistil-L6-H256 64 0.63G 12.57M|93.30 93.30 93.20 93.15 93.20
on Emotions | NobileBERT-L24-H512 64 2,66 G 2433 M|93.80 93.80 93.80 93.65 94.10

To further enhance their suitability for mobile deployment, BERT and XtremeDistil were
optimized by replacing the computationally expensive GELU activation function with the more
efficient ReLU and substituting Layer Normalization with Batch Normalization. These
modifications, guided by the experiments on Transformer model optimizations discussed in
Subsection 4.4.2, significantly improve the models' compatibility with resource-constrained
devices without compromising their performance. Such targeted adjustments demonstrate the

95

critical role of algorithmic refinements in bridging the gap between cutting-edge DL
architectures and practical on-device applications.

3.5.2.3 Use Case #3 (UC3)

The first multi-DNN scenario employs two DNNs for the purpose of scene recognition. One
DNN is dedicated to processing and classifying images, whereas the other can process audio
data in order to identify sounds from the device's surroundings. These models operate
concurrently, running in parallel, and their outputs are collectively utilized to determine the
specific scene within which the mobile device is situated.

In this scenario, the objective is to minimize both the average latency and its standard
deviation, while simultaneously maximizing the attained accuracy. Two latency constraints are
imposed for both tasks, mandating that (a) the average latency remains consistently below 100
ms to ensure near-real-time responsiveness, and (b) the standard deviation of latency stays
below 10 ms for minimal fluctuations. The inclusion of the latency's standard deviation aims to
minimize performance variability, which still constitutes a withstanding challenge for on-
device inference. Mathematically, this MOO problem is formulated as:

min L;(x), g (x)
max A;(x) fori=1,2 (3.25)
subjectto L;(x) < 100 ms, o7 (x) < 10 ms

Table 3.3 presents the models for each task. For the vision task, three EfficientNet Lite
models were fine-tuned on the MIT Indoor Scenes dataset [111], which includes 67 classes and
100 images per class (80 for training and 20 for testing). The Top-1 Accuracy on the test set is
reported.

Table 3.3 UC3 Models

Accurac

InPut FLOPs #Params uracy
Size FP32 FP16 DR8 FX8 FFXS8

EffNet Lite0 224x224| 0.59G 3.44M]| 69.78 69.70 68.96 69.18 69.18
EffNet Lite2 260x260| 1.51G 4.87M| 76.72 76.72 77.16 77.69 77.54

EffNet Lite4 300x300| 457G 11.76 M| 79.33 7933 79.18 79.78 79.48

DL Task Architecture

Scene Classification
on MIT Indoor Scenes

Audio Classification

. YAMNet 15600 0.14G 3.75M|0.3756 0.3757 0.3620 - -
on AudioSet

For the audio task, the YAMNet model was considered, which is trained on the AudioSet
dataset [112] for multi-label classification. The dataset consists of 521 sound events (classes)
and 18k samples. The mean Average Precision (mAP) on the validation set is reported.
YAMNet's input waveform can vary in length. In the experiments, the model's minimum
possible length of 975 ms is used, which corresponds to 15600 input samples and a total
workload of 0.14 GFLOPs.

3.5.2.4 Use Case #4 (UC4)

In the second multi-DNN scenario, three distinct models designed for facial attribute prediction
tasks, namely gender, age and ethnicity estimation, are employed. These models are
conceptualized as the second stage of a face detection and attribute prediction pipeline, wherein
they operate concurrently on the same set of input images. As such, it is imperative for these
models to adhere to stringent latency constraints to ensure minimal impact on the overall
pipeline. UC4's objectives revolve around the collective optimization of five key metrics for

96

each model, specifically average latency, standard deviation of latency, size, memory footprint
and accuracy, all while adhering to a maximum latency threshold of 10 ms. Formally:

min Zi(x)a O-Li (X), Si(x)a MFI()C)
max 4;(x) fori=1,2,3 (3.26)
subjectto max L;(x) < 10 ms

In UC4, the training data are sourced from the UTKFace dataset [113]. To ensure relevance
to real-time applications, the dataset is filtered to retain samples corresponding to individuals
within the age range of 18 to 75 years. This preprocessing step refines the dataset to a total of
18.6k facial images, which are subsequently partitioned into training, validation, and testing
sets with a ratio of 72/8/20%, respectively. The employed models leverage MobileNetV2 as the
backbone architecture, extracting 576 features of size 4x4, which are used for predicting the
outcomes across the three distinct facial attribute prediction tasks. A key distinction of UC4
within this study is its incorporation of batching during inference, setting it apart from other
tasks. Specifically, the models are configured with a batch size of 4, a choice driven by the
common scenario in which a preceding face detection component identifies multiple faces
within a single image, necessitating simultaneous processing. Table 3.4 details the attained
accuracy metrics for each task on the filtered dataset's test set: Binary Accuracy for gender
recognition, mean Absolute Error for age recognition, and Top-1 Accuracy for ethnicity
recognition across 5 output classes.

Table 3.4 UC4 Models

Image Accuracy
DL Task Architecture R FLOPs #Params
Size FP32 FP16 DR8 FX8 FFXS8
Facial Attribute | GenderNet-MNV2 62x62 | 0.04G 0.66M|95.12 9495 9490 94.79 94.90
Prediction AgeNet-MNV2 62x62 | 0.04G 0.66M|5.976 5974 5.964 5947 5.923
on UTKFace | EhniNet-MNV2 62x62 | 0.04G 0.66 M |78.17 78.04 78.55 7930 79.14

3.5.3 Mobile Devices

In this study, the following three smartphones were selected for evaluation: Google Pixel 7,
Samsung Galaxy S20 FE, and Samsung Galaxy A71. These devices have been deliberately
chosen to represent distinct categories within the modern mobile phone landscape. A71 serves
as an archetype of a mid-tier device, whereas S20 and P7 exemplify the high-end category,
showcasing state-of-the-art features and cutting-edge technology. A detailed overview of the
specifications and processing capabilities of these smartphones is shown in Table 3.5.

Each of the three devices is equipped with its own NPU. Concretely, P7 incorporates a
custom mobile-oriented Tensor Processing Unit (TPU), S20 features the EDEN API, which
grants access to the Exynos NPU for fixed-point models and specialized GPU kernels for
floating-point models, and lastly, A71 hosts the Hexagon Tensor Accelerator (HTA), a dedicated
compute engine for fixed-point CNNs. Additionally, it is noteworthy that among these three
devices, only A71 offers access to the device's DSP for DNN inference. As a result, the compute
engine sets for each device are defined as follows:

C£P7 = Cgszo = {CPU, GPU, NPU}

CEx7 = {CPU, GPU, NPU, DSP} (3.27)

97

Table 3.5 Target Devices

Samsung A71 Samsung S20 FE Google Pixel 7
Year | 2020, January 2020, October 2022, October
SoC | Snapdragon 730 Exynos 990 Tensor G2
2x%2.73 GHz Exynos M5 2x%2.85 GHz Cortex-X1
cpy | 2X%20 GHzKryod70 Gold 1)) o6 Ghy Cortex AT6 | 2235 GHiz Corter A76
6x1.80 GHz Kryo 470 Silver | > 00 GHz Cortex-A55 | 4x1.80 GHz Cortex-AS5
GPU | Adreno 618 @700 MHz Mali-G77 MP11 @800 MHz | Mali-G710 MP7 @850 MHz
NPU | Qualcomm Hexagon 688 v Tensor Processing Unit
RAM | 6 GB @1866 MHz 6 GB @2750 MHz 8 GB @3200 MHz
TDP | 5W A TW

3.5.4 Profiling Details

This section outlines the available configuration options for each compute engine, op(ce),
within the context of an execution plan's tunable hardware parameters, which are employed by
CARIn during the profiling phase of the device-specific objective functions. For CPUs, the
configuration includes the ability to adjust the number of threads used for multithreading and
the option to leverage the XNNPACK delegate, which functions as a back-end for CPU
execution, leveraging the XNNPACK library to provide highly optimized implementations for
32- and 16-bit floating-point computations, as well as symmetrically quantized DNN
operations. Since all the devices under consideration are equipped with 8 CPU cores, the set of
tunable options can be defined as follows:

op(CPU) = {Nipreads; XNNPACK]} (3.28)

where Nyreads € {1, 2, 4, 8} and XNNPACK € {TRUE, FALSE}, resulting in 8 distinct CPU
execution combinations. On the other hand, for GPUs and NPUs, CARIn exclusively employs
fp16 arithmetic when feasible, as it offers reduced latency without compromising accuracy:

op(GPU) = op(NPU) = {precision = fp16} (3.29)

Lastly, it should be noted that the DSP does not expose any configurable parameters, and
thus its set of options can be defined as an empty set:

op(DSP) = { } (3.30)

Regarding the profiling process, each execution configuration begins with five warm-up
runs to stabilize the target processor's performance and minimize variability. Following this,
100 executions are performed to obtain statistically significant measurements of latency and
energy consumption. To ensure consistent device temperatures and mitigate the risk of
overheating, a 2-minute idle period is introduced before initiating the next set of runs.

3.6 Results

This section presents the outcomes of CARIN's comprehensive evaluation. The findings offer
valuable insights into the framework's effectiveness in addressing challenges related to device
heterogeneity and runtime fluctuations across both single- and multi-DNN scenarios, while
simultaneously ensuring compliance with predetermined SLOs.

98

3.6.1 Designs

The initial assessment evaluates the performance of CARInN's designs including single-
processor execution and processor combinations for single- and multi-DNN applications,
respectively.

3.6.1.1 Comparison Methods

To comprehensively assess CARIN's performance in comparison to existing methodologies,
three simple and experience-based baselines are utilized, along with a comparison to OODIn.
The baseline methods are formulated based on empirical observations to establish a
fundamental performance level, providing a reference point for setting minimum performance
expectations in real-world applications.

o Single-architecture baseline: The effectiveness of CARIn is contrasted with the
traditional approach of considering a single model architecture, even if it is also
accompanied by its quantized versions. This paradigm typically revolves around the
selection of the model with the highest accuracy, optimal memory efficiency, most
compact size, and other relevant criteria.

o Transferred baseline: To assess the extent to which CARIn addresses device
heterogeneity, the transferred baseline is utilized, where the MOO problem is solved
on a specific device, and the resultant designs are then applied to different devices. This
baseline, being device-agnostic, overlooks the inherent characteristics and limitations
of individual devices.

e Multi-DNN-unaware baseline: The third baseline assesses the efficacy of the
proposed framework in handling concurrent model executions, particularly its
capability to generate optimal model-to-processor mappings for multi-DNN
workloads. The multi-DNN-unaware baseline dissects a multi-DNN MOO problem
into M single-DNN uncorrelated problems, solves each one independently and then
combines the solutions.

e 0O0ODIn: In OODIn, the weighted sum method was employed as a technique for
addressing MOO problems. More precisely, OODIn aims to maximize the weighted
sum obtained from the normalized objective functions. This approach fails to account
for the inherent scale discrepancies among the diverse objective functions, particularly
evident in DL metrics. While the utilization of assigned weights may potentially
mitigate this limitation, it necessitates prior knowledge of the statistical characteristics
of the functions involved. When dealing with multi-DNN configurations, OODIn
would operate as the multi-DNN-unaware baseline presented above, differing only in
its utilization of the weighted sum method instead of optimalities.

3.6.1.2 Single-DNN Execution

Figures 3.3 and 3.4 delineate the benefits of CARIN in relation to the optimality metric for the
two single-DNN use cases. The evaluation includes a comparison against two single-
architecture baselines, specifically using the model with the highest accuracy (best accuracy,
B-A) and the model with the smallest size (best size, B-S), the transferred baselines from the
other two devices, collectively designated as T7, Ty and 7p7, and OODIN. The initial designs
d for each device are prominently indicated, affirming the presence of device heterogeneity.
Patterned bars in the figures highlight instances where certain baselines fail to yield a solution
due to non-compliance with the problem's constraints (denoted by !) or inapplicability to
different devices (denoted by N/A).

99

2.75 = B-A
, B-S
2.50 i i . Ts20
>.2.25 . Tpy
% N Ta7n
£2.00 i i mmm 0ODIn
§-1.75 i i CARIn
3 do
1.50 | R
1.25
1.00 : .
CPU GPU NPU DSP CPU GPU NPU CPU GPU NPU
A71 S20 P7
Figure 3.3 UCI evaluation
s BA
10 B-S
. Ty
> 8 . Tpy
% B Ta7n
£ 6 B 0O0DIn
g CARIn
4 = d
NN\ AMF
v NIA
2
CPU GPU CPU GPU CPU GPU NPU
A71 S20 P7

Figure 3.4 UC2 evaluation

Takeaways. The proposed framework achieves a substantial improvement, with an average

gain of 1.19% and 1.57X (up to 1.46X and 1.92X) over the B-A and B-S baselines, respectively.

1t is noteworthy that these baselines, primarily designed for SOO problems, prove inadequate
in capturing the multi-objective nature inherent in DL applications. Regarding the transferred
baselines, CARIN achieves an average improvement of 1.17X in optimality (up to 1.84X).

Importantly, it not only enhances overall optimality, but also exhibits improvements across all
considered objective functions. Specifically, for UCI, there is an observed average increase of
0.156 units in accuracy along with a 32.7% improvement in throughput. Similarly, for UC2, the
results indicate an average reduction of 2.8 MB in model size and a 19.9% reduction in latency,

all while maintaining the same accuracy level. Compared to OODIN, an optimality increase of
1.5X is achieved in average (up to 1.99X).

3.6.1.3 Multi-DNN Execution

Figures 3.5 and 3.6 show the benefits of CARIN concerning the optimality metric in the context
of the two multi-DNN use cases. In these scenarios, the evaluation includes comparisons
against the multi-DNN-unaware baseline, the transferred baselines from other devices, and
00DIn. The horizontal axis illustrates combinations of processors for each device. In the case
of UC3, all possible combinations are presented, whereas for UC4, given the substantial number
of possible combinations, the results are organized and presented based on optimality,
highlighting the top five configurations for each device.

100

N
w

N
o

Optimality
=
w

=
o

CPU CPU CPU CPU CPU CPU CPU CPU CPU CPU
CPU GPU NPU DSP CPU GPU NPU CPU GPU NPU
A71 S20 P7

Figure 3.5 UC3 evaluation

12

S-DNN

. Tsy
. Ter
. Tan
m 00DIn
CARIn
3 do
NN Agy
7 NIA

10

Optimality

o

o]

CPU DSP DSP GPU GPU CPU NPU CPU NPU CPU NPU CPU CPU CPU GPU

CPU CPU CPU CPU CPU CPU CPU CPU CPU GPU NPU NPU NPU CPU NPU

CPU CPU DSP CPU DSP CPU CPU GPU GPU GPU NPU NPU CPU CPU NPU
A71 S20 P7

Figure 3.6 UC4 evaluation

Takeaways. In the context of UC3, CARInN delivers a significant average optimality
improvement of 1.47X across devices (up to 3.24X) over the multi-DNN-unaware baseline and
an even more substantial gain of 1.87X (up to 4.06X) over the transferred baselines. Notably,
these enhancements extend across all specified objectives. Compared to OODIN, there is a
2.83% improvement in optimality (up to 10.69X). Meanwhile, UC4 poses a distinctive
challenge, where the majority of baselines struggle to produce a viable solution, primarily due
to their inability to satisfy the stringent latency constraints inherent in this use case,
underscoring the intricacy of UC4. It is noteworthy that, given the utilization of a singular
model per task, instances where baselines do not fail result in performance parity with CARIN,
emphasizing the importance of accommodating a diverse array of models for each task.

3.6.2 Runtime Adaptation

This section evaluates the responsiveness of the Runtime Manager (RM) and its effective
utilization of designs generated by RASS to dynamically adapt to runtime fluctuations. The
assessment focuses on the UC1 single-DNN scenario on the S20 and the UC3 multi-DNN
scenario on the A71.

3.6.2.1 Single-DNN Execution

Table 3.6 presents the selected designs and switching policy, while Figure 3.7 depicts the
behavior of RM in the single-DNN scenario. The initial design for UC1 on S20, d,, involves
the utilization of EfficientNet Lite0 FFX8 on the CPU with 4 threads and the enabled
XNNPACK library, resulting in 75.11% accuracy and a 16 MB memory footprint. As the CPU
gradually becomes overloaded, the throughput experiences a decline until RM identifies an
alternative design as the current highest-performing solution. The new configuration, d;, entails

101

the use of EfficientNet LiteO FP16 on the GPU. Following further inferences, RM triggers
another switch due to an impending memory issue. In this instance, RASS has identified the
memory-efficient design, d,,,, to involve the device's CPU.

Table 3.6 Selected Designs and SP for the Single-DNN UC1 Scenario on S20

Ccpu €GPU ONPU Cm | dnew
F - - F | do = (EfficientNet Lite0 FFX8, CPU, 1)
T F - F | d, = (EfficientNet Lite0 FP16, GPU)
T T F F | d, = (MobileNet V2 1.4 FP16, NPU)
T T T F | dyy = (MobileNet V2 1.0 FX8, CPU, 1)
T T T T | dym = dy
- - - T | dpy = (EfficientNet Lite0 FX8, CPUg)
Ccru—T Cm—>T
300
— TP
52501 CPU, 7 (112 11 — MF
(] 1
2 ! ! A
0 200 ' :
= i i
E 150/ \ GPU CPUs,
5 A
2100/
(@]
3 :
c 50116 MB !
= ! 5
0l 9 MB [T1 [
Time

Figure 3.7 CARIN's runtime behavior targeting the single-DNN UCI scenario on S20

Takeaways. It is worth highlighting that despite modifications in the execution plan, CARIN
consistently upholds accuracy levels, even when employing the memory-efficient design. This
steadfast commitment to preserving user Quality of Experience (QoE) underscores CARIN's
resilience in the face of dynamic alterations.

3.6.2.2 Multi-DNN Execution

Table 3.7 and Figure 3.8 correspond to the multi-DNN scenario. In the context of UC3, where
two models with distinct workloads are employed, CARIN recognizes the heavier workload
associated with the second task and acknowledges that this specific task is primarily responsible
for triggering the switching mechanisms. The figure illustrates the average latency, standard
deviation of latency, and accuracy for the second task, as well as the combined memory
footprint of both models. UC3 involves the processing of audio data, introducing the potential
use of the device's DSP for data capture and processing. Given the likelihood of DSP overload
during DNN inference, suppose that the highest-performing GPU-based design, d;, is currently
employed with EfficientNet Lite2 FX8. However, due to the impending threat of a memory
issue arising from this design's memory footprint, RM opts to switch to the memory-efficient
design, d,,, resulting in a saving of 92 MB of RAM. Subsequently, as RM observes a reduction
in DSP overload, it triggers a switch to the highest-performing design, d,, characterized by
lower latency and reduced memory requirements. In the event of a potential DSP overload
resurgence, RM strategically avoids reverting to the GPU-based design to mitigate previous
concerns of excessive memory usage. Instead, it selects the next design in line, transferring the
second model to the CPU while maintaining accuracy levels.

102

Table 3.7 Selected Designs and SP for the Multi-DNN UC3 Scenario on A71

Cpsp CGPU CCPU Cm | Anew
F - - F | dy = {{YAMNet FP16, CPU, ;)), (EfficientNet Lite2 FFX8, DSP)}
T F - F | d; = {{YAMNet FP16, CPU, ;), (EfficientNet Lite2 FX8, GPU)}
T T F F | d, = {{YAMNet FP16, CPU,), (EfficientNet Lite2 FFX8, CPU, 1)}
T T T F |d, ={(YAMNet DR8, CPU,), (EfficientNet Lite0 FFX8, CPU,)}
T T T T |dym=dy
- - - T | dy=dy

cosp=T Cm—T cpsp—F cosp—T

T ’-J L

! — MF

Az
g,

IS
o

57 MB

CPUy 1

Average Latency (ms)
N w
o o

=
o

16 MB CPUs

1
1
1
1
:
1
1
DSP ! 47 MB
1
1
;
1
1
1

Time

Figure 3.8 CARIN's runtime behavior targeting the multi-DNN UC3 scenario on A71

Takeaways. It is important to acknowledge that CARIN may not always maintain predefined
metric levels. As demonstrated in this instance, transitioning to the memory-efficient design
resulted in an 8.5% decrease in accuracy and an increase in jitter. However, such occurrences
are considered temporary states of urgency, with a firm expectation that they will be swiftly
rectified, thereby minimizing impact on user QoE. Notably, the rise in average latency or the
standard deviation of latency does not significantly affect user QoE, as these metrics already
meet the specified latency constraints, which precede the optimization of the objectives.

3.6.2.3 Comparison with 0ODIn

In OODINn, the model/processor switching technique was introduced to mitigate runtime
fluctuations. However, OODIn lacks the ability to predict forthcoming changes in resource
availability, so upon detecting such events, the MOO problem necessitates readjustment to the
new conditions and subsequent re-solving to determine the new highest-performing solution.
CARIn offers the advantage of solving the specified MOO problem once, prior to application
initiation, thus switching to a new execution plan during runtime happens instantaneously and
is based on the predetermined designs and switching policy. Table 3.8 presents the average and
maximum observed solution times of OODIn across diverse applications and devices. Given
that this time is inevitable whenever a runtime issue occurs, it has the potential to become a
bottleneck, thus impeding the seamless execution of a DL application. The solution time
primarily hinges on the number of objectives and the dimensionality of the decision space X,
contingent upon the number of DL tasks, utilized models per task, compression techniques, and
adjustable system parameters. Given that the time required for the TFLite interpreter to load a
model on the CPU is typically around 3-4 ms, it becomes evident that revisiting the MOO
problem can potentially become a bottleneck for the application, impacting the user's QoE.

103

Table 3.8 00DIn's Solving Time in Milliseconds

Decision Space AT1 S20 P7
Dimension Average Maximum | Average Maximum | Average Maximum
500 1.45 2.12 0.55 1.55 3.64 7.99
2000 2.80 5.94 1.70 3.04 4.94 9.38
5000 6.56 10.46 4.98 15.97 7.06 1.09
10000 12.14 16.07 11.09 34.25 10.41 13.38

Aside from the time overhead incurred by repeated problem solving, OODIn also requires
constant access to the entire array of considered models, necessitating their storage on the user's
device, which can impose limitations on the assortment of models and compression techniques
initially considered. CARIN obviates the necessity to store all model variants, requiring only
those selected by RASS. Table 3.9 elucidates this contrast in terms of model storage
requirements for every examined use case.

Table 3.9 Storage Requirements of CARIn and OODIn in MB

AT71 S20 P7
CARIn OODIn Reduction | CARIn OODIn Reduction | CARIn OODIn Reduction
UC1 13.18 276.36 19.98X 3437 443.10 12.89X 34.19 443.10 12.96 X
UC2 | 48.64 311.45 6.40X | 40.98 31145 7.60X 52.96 311.45 5.88X
UC3 | 2574 20522 7.97X 58.70 205.22 3.50X 52.81 205.22 3.89X
uc4 2.65 6.56 2.48X 3.95 6.56 1.66X 3.95 6.56 1.66X

3.7 Limitations and Future Directions

Despite the challenges addressed by CARInN, certain limitations persist that hinder its
performance in practical deployment scenarios. First, as mentioned in Subsection 3.3.2, the
computation of device-dependent metrics associated with objective functions or constraints
across all candidate solutions is unsuitable for realistic mobile applications due to its substantial
time requirements and the necessity of deploying entire models onto target devices, particularly
within expansive decision spaces. Within the broader landscape of related studies, numerous
works have harnessed performance prediction methodologies to estimate such metrics when
executing DNNs on specific hardware platforms, without resorting to direct measurements.
These models consider a range of inputs, encompassing (a) architectural characteristics of the
DNN model such as network topology, layer configurations, and overall complexity, (b)
hardware specifications including compute architecture, memory hierarchy, interconnectivity,
and support for parallelism, and (c) environmental parameters like batch size, input data
characteristics, runtime conditions, and temperature/power conditions. Such approaches are
orthogonal to the proposed framework and can be integrated within CARIN to provide a more
expedient alternative to exhaustive profiling. In the future, the exploration of such methods is
envisioned to furnish a comprehensive assessment of the framework's performance and
suitability for real-world scenarios.

An additional limitation arises from the selection of models for evaluation. In the
contemporary landscape of generative Al, the inclusion of generative models, such as
autoregressive language models, becomes paramount. These models, characterized by their
ability to generate outputs sequentially based on previously generated tokens, impose
heightened demands, particularly within the context of mobile environments. Therefore, it is

104

imperative to account for such intricacies when assessing the efficacy of Al frameworks
intended for deployment in resource-constrained settings.

3.8 Conclusion

This research underscores the paramount significance of optimizing the on-device execution of
DNNs to meet the evolving demands of today's Al applications. The presented framework,
CARIN, aims to spearhead progress in this direction. While the challenges of device
heterogeneity, runtime adaptation, and multi-DNN execution persist, CARIN provides a novel
and comprehensive solution towards alleviating them. The integration of an expressive multi-
objective optimization framework and the introduction of RASS as a runtime-aware MOO
solver manage to enable efficient adaptation to dynamic conditions while adhering to user-
specified SLOs. RASS stands out for its ability to foresee upcoming runtime issues and generate
a set of configurations which enable rapid, low-overhead adjustments in response to
environmental fluctuations.

105

Deploying Transformer-Based Models
on Mobile Devices

Over the past several years, convolutional neural networks have been the cornerstone of
computer vision, consistently delivering state-of-the-art accuracy across a wide range of tasks.
Their dominance in the field is attributed to their ability to effectively capture spatial hierarchies
in visual data, making them exceptionally well-suited for applications such as image
classification, object detection, and segmentation. Researchers have extensively studied and
refined CNN architectures to improve their performance and efficiency, particularly for
resource-constrained environments like mobile and embedded systems. These advancements
have paved the way for efficient inference of computer vision applications directly on edge
devices such as smartphones, drones, and IoT cameras.

The introduction of BERT (Bidirectional Encoder Representations from Transformers) in
2018 by researchers at Google [29] marked a significant turning point in the field of NLP. Built
on the original Transformer architecture [28], BERT revolutionized NLP by leveraging
bidirectional context, meaning it could consider both the left and right context of a word in a
sentence during training. This was a major architectural shift compared to earlier approaches
like RNNs or LSTM networks, which processed input sequentially and were limited in their
ability to model long-range dependencies efficiently. BERT's introduction led to a paradigm
shift in NLP tasks [114], [115], such as language modeling, machine translation, and question
answering, where it set new benchmarks for accuracy. Beyond NLP, the Transformer
architecture soon found applications in other domains. In computer vision, models like Vision
Transformers (ViTs) [33] demonstrated that Transformers could outperform traditional CNNs
on image recognition tasks. Similarly, Transformers have been adopted in speech recognition
[116], where they are used to model audio sequences, and in drug discovery, where they excel
at understanding molecular structures and predicting chemical properties. The rise of LLMs
like GPT, Claude, Llama, and Gemini, has further cemented the dominance of Transformers.
These large models, trained on massive datasets and containing billions—sometimes even
trillions—of parameters, have demonstrated unprecedented versatility, enabling applications
ranging from conversational Al to code generation and content creation.

However, despite their flexibility and success, Transformers are computationally intensive,
requiring significant resources for both training and inference. Training large Transformer
models often demands high-performance hardware, such as GPUs or TPUs, and substantial
energy consumption. The inference phase, though less demanding than training, still requires
considerable computational power to handle real-time processing, especially when deploying
models at scale. This resource-intensive nature has so far limited the deployment of large
Transformer-based models to centralized cloud environments, where server farms can provide
the necessary computational infrastructure [117]. While this approach supports many
applications effectively, it creates challenges for scenarios requiring low-latency responses,
privacy-preserving computations, or autonomous operations in edge devices.

The deployment of Transformers in resource-constrained environments is still a relatively
underexplored area. CNNs have been widely adopted in edge computing due to their successful
adaptation to hardware constraints. Through years of development, both model-specific
techniques, such as depthwise separable convolutions [61], and model-agnostic techniques like

107

model pruning, quantization, and knowledge distillation have emerged as key innovations,
reducing the computational complexity and memory footprint of CNNs without significantly
compromising accuracy. In contrast, Transformers are inherently more challenging to deploy
on edge devices. Their significantly larger model sizes, driven by the large number of
parameters required for effective performance, make them more demanding in terms of memory
and computational power. Additionally, the self-attention mechanism that defines Transformer
models, while highly powerful, involves complex matrix operations that are computationally
expensive and difficult to optimize for energy efficiency in hardware with limited capabilities.

This contrast raises an important research question: can the well-established practices and
findings that have made CNNs viable for on-device inference be applied or adapted to
Transformers? While both architectures today serve as foundational building blocks for deep
learning, their fundamental differences necessitate a re-examination of traditional optimization
strategies. To address this question, it is crucial to first explore the current state of on-device
Transformer execution. Understanding the limitations and opportunities in deploying these
models on resource-constrained hardware enables the identification of pathways for innovation,
bridging the gap between research and practical deployment.

4.1 Related Work

The on-device execution and evaluation of traditional Transformer models for NLP has only
recently begun to attract research attention. Existing studies, such as [118] and [119], offer
limited insights, as they typically examine only a small subset of Transformer models, neglect
on-device accuracy evaluation, and overlook the applicability of compression techniques.
Furthermore, these works fail to comprehensively evaluate all possible accelerators and
execution configurations available on modern mobile devices, leaving significant gaps in
understanding how to optimize these models for on-device deployment.

In contrast, there has been extensive research focused on benchmarking Vision
Transformers and comparing their performance with CNNs for vision tasks on mobile devices
[120], [121]. These efforts have provided valuable insights into the suitability and efficiency of
Vision Transformers in mobile contexts. However, given the existing body of work, Vision
Transformers fall beyond the scope of this study. Instead, the focus is exclusively on traditional
NLP Transformer models, addressing critical gaps left by previous research and aiming to
establish a more comprehensive evaluation framework for their on-device deployment.

Additionally, this study does not include comparisons with RNNs, which were the
predominant models for NLP tasks prior to the advent of Transformers. Unlike CNNs, which
can be optimized effectively for mobile applications, RNNs are inherently challenging to
optimize for on-device execution due to their sequential nature of processing, which limits
parallelization. Furthermore, RNNs lack robust support in many modern libraries and
frameworks tailored for mobile environments, further diminishing their practicality for on-
device inference. For these reasons, this work focuses on evaluating Transformer models, which
represent the current state-of-the-art for NLP, while excluding RNNs from direct comparison.

4.2 Experimental Methodology

The evaluation strategy involves constructing a comprehensive benchmark suite of Transformer
models, which will then be executed on two distinct Android mobile devices to investigate their
performance across varying configurations. This approach enables the assessment of key
factors such as latency, accuracy, resource consumption, and the impact of quantization
schemes on model efficiency. For the evaluation infrastructure, TensorFlow (v2.11.0) was

108

selected due to its robust range of quantization techniques and its compatibility with mobile
deployment via TensorFlow Lite (TFLite). Specifically, the nightly builds of TFLite were
utilized for the deployment process.

The benchmark models were sourced from Hugging Face's Hub through the Transformers
library (v4.27.4) as pre-trained versions. Table 4.1 outlines the key architectural parameters of
the Transformer model that are most relevant to the focus of this research. In this context,
particular emphasis is placed on the parameters that influence the execution speed and resource
utilization of the model during the inference stage, as this directly impacts the efficiency and
responsiveness of Transformer models when deployed in real-world, resource-constrained
environments. While other parameters, such as dropout rate, regularization strength, and weight
initialization, are also critical to the model's performance, they do not affect the model's
operational efficiency and are therefore outside the scope of this study.

Table 4.1 Transformer Architectural Parameters

Parameter Description

Batch Size (B) Number of input samples to be processed simultaneously
Sequence Length (S) | Maximum number of tokens in one input sample
Embedding Size (£) | Width of a token's embedding

Hidden Size (H) Dimensionality of the model's internal vector space
Attention Heads (4) | Number of parallel heads for the attention mechanism
Intermediate Size (/) | Width of the FFN Network

Layers (L) Number of layers in the model

4.2.1 Tasks and Models

Table 4.2 provides a detailed overview of the benchmarked Transformer models, including their
key architectural parameters, workload characteristics, model size, and accuracy metrics. The
performance of these models is evaluated on two distinct NLP tasks, which were selected to
provide a comprehensive assessment of the models' capabilities in handling various types of
language-based challenges, thereby gauging their effectiveness in real-world applications.

Table 4.2 Transformer Models

Task Embeddings Encoder Overall Model Accuracy (%)
1 |Vocab E #Params|Name L A H I #ParamsFLOPs #Params|FP32 FP16 DRS FFXS8
50265 24 1.21M|BERT Tiny 6 2 24 16 0.02M]| 3.53M 1.23 M|90.05 90.05 90.05 89.85

30522 128 391 M[ELECTRATiny 6 2 24 16 0.03M|4.19M 3.94 M|(90.25 90.30 90.15 90.50
30522 256 7.81 M|XDistil-L6-H256 6 8 256 1024 4.75M| 049 G 12.57 M|(93.20 93.25 93.00 30.95
Sequence (30522 384 11.72 M|MiniLM-L3 3 123841536 535M| 0.54G 17.07 M|93.25 93.25 93.00 91.95
Classification|30522 128 3.91 M|MobileBERT 24 4 128 512 20.42 M| 2.06 G 24.33 M|[93.30 93.30 93.10 92.95
on Emotions (30522 384 11.72 M|XDistil-L6-H384 6 12384 1536 10.67 M| 1.09 G 22.39 M|93.35 93.35 93.10 82.30
Dataset (30522 384 11.72 M|MiniLM-L12 1212384 1536 21.32M| 2.18 G 33.04 M|[93.45 93.45 92.65 78.40
28996 512 14.85 M|RoBERTa Tiny 4 8 5122048 12.64 M| 1.28 G 27.49 M|93.50 93.50 93.40 92.30
30522 128 3.91 M{ELECTRA S 12 4 2561024 9.55M| 0.98 G 13.46 M|[93.55 93.55 93.40 92.25
30522 768 23.44 M|DistilBERT 6 12768 3072 43.16 M| 430G 66.60 M|94.50 94.50 94.55 77.85
Text 50257 768 38.60 M|DistilGPT2 6 12768 3072 42.69 M|10.47 G 81.29 M|46.85 - - -
Generation [50257 768 38.60 M|GPT2 Small 12 12 768 3072 8528 M|15.99 G 123.88 M|51.41 51.41 - -

For the downstream classification task, the Emotions dataset [108] was employed, which
comprises a collection of English Twitter messages labeled with six distinct emotion categories.
The dataset is split into 16000 samples for training, 2000 for validation, and 2000 for testing.
The reported accuracy is based on the top-1 accuracy metric, evaluated on the test set of the
dataset. After performing statistical analysis on the sample lengths, the input token sequence

109

length was standardized to 50 tokens across all models. Regarding training, the majority of the
models were initially pre-trained on large datasets, such as Reddit comments and 20RC citation
pairs, and were then fine-tuned on the Emotions dataset. Notable exceptions include
DistilBERT [65], for which the fine-tuned version on Emotions was directly obtained from
Hugging Face, and BERT Tiny and ELECTRA Tiny, which were trained from scratch. The
training and fine-tuning configuration consisted of a batch size of 64, using either the Adam or
RMSprop optimizer with weight decay and an initial learning rate of 10, which was subject to
exponential decay over time. The models selected for this evaluation include optimized
architectures such as XtremeDistil [109], MiniLM [122], and MobileBERT [110], as well as
lighter versions of the original ROBERTa [115] and ELECTRA [123] models.

In addition to the ten discriminative models, the analysis also includes GPT2 [124], used
for text generation, in both its small and distilled versions. Both the input sequence and output
prediction lengths are fixed at 64 tokens. To examine the effects of distillation and FP16
quantization, accuracy is reported in the context of the next-token prediction task using the
LAMBADA test set, which consists of 5000 passages. Generative models generally require a
large number of parameters to produce high-quality outputs, making their integration into
mobile devices a challenging task. Although GPT2 Small and DistilGPT2 represent some of
the most compact generative models currently available, their performance remains moderate,
and their model sizes are still prohibitive for truly mobile-friendly applications.

4.2.2 Mobile Devices

To accommodate a range of device capabilities, two smartphones were selected for evaluation:
Samsung Galaxy A71, representing the mid-tier category, and Samsung Galaxy S20 FE,
representing the high-end category of modern mobile devices. These two models offer distinct
processing capabilities, enabling a comprehensive comparison across devices with varying
hardware specifications. A summary of their key characteristics, including information on
processing power, memory, and other relevant hardware features, is provided in Table 4.3.

Table 4.3 Target Smartphones

Samsung A71 Samsung S20 FE
Year | 2020, January 2020, October
SoC | Snapdragon 730 Exynos 990

2x2.73 GHz Exynos M5
2x2.5 GHz Cortex-A76
4x2 GHz Cortex-AS55

GPU | Adreno 618 @700 MHz Mali-G77 MP11 @800 MHz
NPU | Qualcomm Hexagon 688 v
RAM | 6 GB @1866 MHz 6 GB @2750 MHz

TDP | 5 W 9w

2x2.2 GHz Kryo 470 Gold

Ccru 6x1.8 GHz Kryo 470 Silver

These devices were chosen to reflect a broad spectrum of hardware configurations, from
the mid-range Snapdragon 730 and its Qualcomm Hexagon NPU in the A71, to the more
powerful Exynos 990 SoC with integrated NPU in the S20 FE. This range allows for an in-
depth exploration of how Transformer models perform across devices with varying
computational power, memory bandwidth, and thermal dissipation. Evaluating both mid-tier
and high-end models provides insights into how varying hardware configurations impact the
execution of DL models, shedding light on the trade-offs that developers must consider when
targeting a wide range of mobile devices.

110

The Qualcomm Snapdragon 730 SoC in the Samsung Galaxy A71 features the Hexagon
Tensor Accelerator (HTA), a dedicated, scalable, and power-efficient hardware accelerator
specifically designed for fixed-point deep convolutional neural networks. It is part of the
Hexagon DSP and optimized for tasks involving lower precision arithmetic. In contrast, the
Exynos 990 SoC in the Samsung Galaxy S20 FE is equipped with a more versatile NPU that
supports both fixed-point and floating-point operations. This NPU is accessed via the Exynos
Deep Neural Network (EDEN) interface, providing flexibility for executing a broader range of
DL models with varying precision requirements. These distinct NPUs are tailored to different
types of workloads, impacting their compatibility with the quantization schemes of the models
evaluated.

4.2.2.1 Delegates

By default, inference tasks are carried out on the device's CPU. However, to leverage the
specialized capabilities of other processing units, computations can be offloaded to one or more
accelerators. Many DL libraries and frameworks facilitate this offloading process through the
use of delegates. A delegate is a software component that manages the delegation of part or all
of the neural network's computation graph to a designated accelerator. This delegation ensures
that the workload is executed in the most efficient manner possible, optimizing both
performance and energy consumption.

In the context of Android and TFLite, several delegates are available to optimize inference.
As of the time of this research, the available delegates include:

e XNNPACK: This delegate leverages the XNNPACK library, which provides highly
optimized implementations of neural network operators using 32- and 16-bit floating-
point arithmetic, as well as symmetrically quantized operators. It serves as a back-end
for CPU execution, offering significant performance improvements, with latency
speedups of up to 2.3 for floating-point operations and 1.3 for quantized operations.
XNNPACK is particularly effective for models that are deployed on CPUs and is a
widely used option for improving inference speed.

e GPU: The GPU delegate is designed to offload computations to the device's graphics
processing unit, which operates using 16-bit or 32-bit floating-point numbers. While
the delegate supports quantized models, the computations are performed using floating-
point precision, ensuring compatibility with a broader range of models. This delegate
is particularly beneficial for models requiring high parallelism and processing power,
making it an attractive option for many modern mobile devices with powerful GPUs.

e NNAPI: The Neural Networks API is a hardware acceleration API developed by
Google to facilitate the use of specialized accelerators available on Android devices.
NNAPI dynamically selects the most suitable accelerator for a given model based on
factors such as the model's architecture and the types of operations involved. However,
the performance of NNAPI can be variable, as it is influenced by factors such as the
specific hardware available on the device, the current load on the hardware, and the
model's requirements.

e HEX: The Hexagon delegate is an experimental option designed to accelerate models
that comply with TensorFlow's 8-bit symmetric quantization specification. It targets
Android devices equipped with Qualcomm's Hexagon DSP. The HEX delegate enables
the use of quantized models to achieve faster and more efficient inference on
compatible devices, making it an important tool for models deployed on devices with
limited computational resources.

111

By carefully selecting the appropriate delegate based on the target hardware and model
characteristics, developers can significantly improve the performance of DL models on Android
devices, optimizing both speed and energy efficiency. Quantization plays a critical role in this
process. When a model's quantization scheme is not compatible with the target delegate, or if
the delegate does not support all the necessary operations for the model, additional
computational overheads may emerge. These include the need for (de-)quantization between
layers and the potential fallback to the default CPU implementation. Such overheads can result
in suboptimal scheduling, degraded overall performance, and a negative impact on the model's
accuracy. Therefore, understanding the circumstances under which these overheads arise is
essential for optimizing both performance and accuracy in practical applications.

4.2.2.2 Quantization-Delegate Compatibility

Table 4.4 presents the average percentage of nodes in the evaluated models that can be offloaded
to each processor via the available delegates for the two target devices. A value of zero indicates
that the model could not be executed due to unsupported operations, whereas N/S denotes that
execution is not supported by default.

Table 4.4 Quantization-Delegate Compatibility

Samsung A71 Samsung S20 FE
Variant CPU GPU DSP NPU CPU GPU NPU
XNNPACK GPU NNAPI HEX NNAPI NNAPI | XNNPACK GPU NNAPI
FP32 74.1 99.8 72.6 N/S N/S N/S 74.1 99.8 0
FP16 77.6 81.8 0 N/S N/S N/S 77.6 81.8 0
DRS 67.6 99.8 71.3 N/S N/S N/S 67.6 99.8 2.6
FFX8 64.0 99.8 0 24.9 0 1.4 64.0 99.8 1.1

Among the available accelerator delegates, the GPU is the only one likely to provide
acceleration on both devices, as it supports the vast majority of operations commonly used in
Transformer models. In contrast, both the DSP and the NPUs are limited in the number of
operations they can handle, which results in a high number of model partitions. This limitation
is expected, as these NPUs were specifically optimized during their development for CNNss,
RNNs, and simple MLPs, which were the predominant workloads at the time. When comparing
to EfficientNet-Lite0, a mobile-friendly image classification CNN, the corresponding
percentages of operations supported by the delegates exceed 98% for all the supported
combinations listed in Table 4.4.

4.2.3 Benchmarking Details

To benchmark model performance on the target devices, a custom Android application was
developed with a lightweight and straightforward user interface designed to simulate real-world
usage scenarios. For CPU performance measurements, the evaluation included testing the
XNNPACK library or multithreading, by adjusting the number of threads from 1 up to the
device's total number of CPU cores. Since the XNNPACK library already utilizes
multithreading to enhance execution, using additional multithreading with the XNNPACK
delegate is not recommended. For the GPU and NNAPI delegates, 16-bit computation was used
wherever applicable.

Before conducting any measurements, each model was executed 1-5 times to allow the
processor to warm up and reduce measurement variability. Following this, latency and memory
footprint were recorded. To maintain a stable device temperature and prevent overheating, the
number of inference runs was adjusted based on model size, with larger models limited to

112

around 20 runs and smaller models tested up to 100 runs. Additionally, a 2—3-minute idle period
was enforced between measurements to allow the device to cool down, minimizing thermal
effects on performance.

4.3 Results

In this section, the performance of the benchmark models is evaluated on the target devices by
measuring key metrics, which provide a comprehensive overview of each model's efficiency
and effectiveness in real-world scenarios.

4.3.1 On-Device Accuracy

The accuracy reported in Table 4.2 was obtained through evaluation using Python's TFLite
Interpreter running on a system equipped with an Intel® Xeon® CPU. Subsequently, an
investigation was conducted to determine whether similar accuracy outcomes could be
achieved when utilizing the available delegates and processors on the target devices. The
findings reveal that, with the exception of the GPU delegate, all delegate-processor
combinations (as detailed in Table 4.4) yield the accuracy values presented in Table 4.2.
Notably, MobileBERT is the only model that maintains its original accuracy when executed on
the GPU, whereas the accuracy of the other discriminative models experiences a significant
decline, dropping to below 35%. This discrepancy can likely be attributed to the architectural
distinctions between MobileBERT and the other models. While the nine models exhibiting poor
performance on the GPU follow the standard architecture, incorporating the GELU activation
function and Layer Normalization layers, MobileBERT substitutes these components with
ReLU activations and element-wise linear transformations, which contribute to its better
compatibility with the GPU delegate.

4.3.2 CPU Performance

Figures 4.1 and 4.2 illustrate the impact of the XNNPACK delegate and CPU multithreading
on the throughput of all FP32 models across the two target devices. Each model's five bars
correspond to XNNPACK, 1, 2, 4, and 8 CPU threads when viewed from top to bottom. The
optimal number of threads for each model has been highlighted with bolder shading for clarity.
The following observations can be made:

e Although XNNPACK is enabled by default in the TFLite Interpreter to accelerate
inference, it does not necessarily represent the optimal configuration for the majority
of models on both devices.

e There is no universal optimal configuration across models or devices. For example,
on the Samsung S20 FE, the best configuration for ELECTRA Tiny is achieved by
enabling the XNNPACK delegate, whereas for RoBERTa Tiny, setting the CPU to 4
threads results in the best latency. On the Samsung A71, instead of using the
XNNPACK delegate, the optimal configuration for ELECTRA Tiny is achieved with 2
threads. These findings are further substantiated by the analysis of CPU configurations
for the quantized variants of the models, which often yield different optimal
configurations compared to their FP32 counterparts. For instance, the best
configuration for the FFX8 models on both devices is obtained by enabling the
XNNPACK delegate.

113

BERT Tiny

ELECTRA Tiny

XDistil-L6-H256

MiniLM-L3

MobileBERT

XDistil-L6-H384

MiniLM-L12

RoBERTa Tiny

ELECTRA Small

DistilBERT

DistilGPT2
m XNNPACK
GPT2 Small [Multi-threading N
2.8 B Optimal number of threads
0 10 20 30 40 50 60 70 80

Figure 4.1 CPU throughput for Samsung A71

. 2911.8

BERT Tiny 2579.4
I s e e S B

) - 2632.1

ELECTRA Tiny 2408.6

XDistil-L6-H256 = : T

MiniLM-L3
81.5
—

MobileBERT

XDistil-L6-H384
40.2

MiniLM-L12
1.7/
—

RoBERTa Tiny

38.6
ELECTRA Small E
34.3
DistilBERT {-
ILIL L
DistilGPT2 7k
| 0 XNNPACK
GPT2 Small Multi-threading N
4.8 B Optimal number of threads
0 10 20 30 40 50 60 70 80

Figure 4.2 CPU throughput for Samsung S20 FE

4.3.2.1 Quantization
Table 4.5 presents the impact of quantization on latency and memory usage, with the memory
requirements for each FP32 model provided in MB for comparison. The values are averaged
across both devices, as their results were nearly identical. FP16 models exhibit the same latency
as FP32 models but require at least 70% more memory. In contrast, integer models accelerate
execution and simultaneously reduce memory requirements for the majority of architectures.

114

Table 4.5 Impact of Quantization on CPU

Latency Speedup RAM RAM Reduction
FP16 DR8 FFX8 | FP32 | FP16 DR8 FFX8
BERT Tiny 0.97x 0.97x 0.42x 47 1 0.41x 0.89x 1.28x%
ELECTRA Tiny | 0.99x 0.99x 0.39% 51 0.18x 091x 1.13x
XDistil-L6-H256 | 0.99x 1.62x 1.51x | 26.2 | 0.32x 2.54x 3.03X

Model

MiniLM-L3 1.05x 1.86x 1.64x 304 | 0.28x 2.84x 2.54%
MobileBERT 1.03x 1.72x 1.85% 89.4 1 0.59x 2.93x 3.16X
XDistil-L6-H384 | 0.99x 1.82x 1.75% 52.9 |1 0.37x 3.07x 3.27x
MiniLM-L12 1.02x 1.89x 1.77X% 9521 047x 3.41x 3.47x

RoBERTa Tiny 0.99x 1.65x 1.81x 65.0 | 0.37x 3.34x 3.94x
ELECTRA Small | 1.01x 1.53x 1.82X 447 | 0.51x 3.01x 3.01x

DistilBERT 1.06x 2.27x 2.32x | 191.9 | 0.46x 331x 3.51x
DistilGPT2 - - - 585.2 - - -
GPT2 Small 0.98x - - 673.0 | 0.59x - -

4.3.3 Accelerators

Based on the data presented in Table 4.4, execution on NPUs does not yield significant benefits.
Therefore, the analysis focuses on calculating the latency speedup achieved by the GPU and
DSP processors for floating-point and fixed-point models, respectively. These speedups are
calculated in comparison to the best CPU configuration for each model, based on
multithreading and the use of the XNNPACK delegate. Although the GPU delegate generally
results in a drop in accuracy for most models, examining GPU acceleration remains valuable
due to its potential for performance improvements. Table 4.6 outlines the achieved speedups
for each model, with the exception of GPT2, which was found to be incompatible with the
available accelerators.

Table 4.6 Accelerator Latency Speedup

Samsung A71 | Samsung S20 FE
Model

GPU DSP GPU
BERT Tiny 0.08x 0.44x 0.06x
ELECTRA Tiny | 0.09x 0.49% 0.06x
XDistil-L6-H256 | 0.86x 0.83% 0.90x
MiniLM-L3 0.69x 0.72x 1.06x
MobileBERT 0.97x 0.92x 1.06x
XDistil-L6-H384 | 1.24x 0.86X% 1.20x
MiniLM-L12 1.22x 0.92x 1.29%
RoBERTa Tiny 1.19x 0.87x 1.91x
ELECTRA Small | 1.37x 0.85x% 1.56x
DistilBERT 1.22x 0.71x 2.77%

As anticipated, the DSP fails to deliver any meaningful acceleration due to its limited
compatibility with the models. Consequently, the focus shifts to the GPU for performance
evaluation. Note that the use of quantization does not impact the GPU's performance, as all
model variants are executed using fp16 arithmetic. This means that the GPU is able to accelerate
only floating-point models, whereas integer models benefit more from CPU acceleration, as
demonstrated in Table 4.5. Lastly, Table 4.7 provides a summary of the increase in memory

115

usage for each model when executed on the GPU, highlighting the additional memory
requirements incurred by utilizing the GPU for processing.

Table 4.7 Accelerator Memory Increase

Samsung A71 | Samsung S20 FE
Model
GPU GPU

BERT Tiny 7.31% 13.41x
ELECTRA Tiny 6.12% 18.16x
XDistil-L6-H256 3.52x% 5.65%
MiniLM-L3 3.49% 4.57x
MobileBERT 3.52x 4.46x
XDistil-L6-H384 3.34X% 4.09%x
MiniLM-L12 3.33x% 4.12x
RoBERTa Tiny 2.79% 3.43x
ELECTRA Small 3.63% 4.69%x
DistilBERT 2.80x 3.10%

4.4 Discussion and Future Work

In the preceding section, several key observations were made, offering valuable insights into
potential optimization strategies for enhancing execution performance. These optimizations can
be grouped into two primary categories: system-level optimizations and model-level
optimizations. Both levels of optimization are crucial for achieving the best performance
outcomes in real-world applications.

4.4.1 System Optimizations

At the system level, improvements are imperative to address the multifaceted challenges
outlined in Subsection 2.4.2, which this work confirms are equally relevant for Transformer
models. The lack of a universally optimal configuration for Transformers mirrors the broader
challenges posed by the heterogeneity of devices, models, and application requirements. This
reinforces the understanding that Transformers are subject to the same systemic constraints as
other machine and deep learning models, further underscoring the need for targeted
optimizations.

Future advancements in this domain should focus on developing robust system-level
frameworks capable of dynamically identifying and applying optimal configurations tailored to
both model-specific characteristics and application performance objectives [83]. These
frameworks should integrate device-specific profiling, real-time resource monitoring, and Al-
based decision-making algorithms to intelligently select the most appropriate delegate and
configuration. Such an approach would account for the current state of the device, including
available resources, competing processes, and application-specific requirements. Given the
dynamic and resource-constrained environment of mobile devices, it is essential for these
frameworks to support access to a diverse array of processors. This capability would allow for
seamless switching between processors in response to significant fluctuations in resource
availability, such as changes in battery level, temperature, or processor workload. By
dynamically adapting to these conditions, the system could maintain efficient execution without
compromising performance or energy efficiency. A unified system designed to address these
challenges was proposed in Chapter 3, showcasing a comprehensive solution to improve the

116

adaptability and efficiency of on-device inference in real-world, resource-constrained
environments.

Furthermore, enabling processor co-execution—where computational tasks are
intelligently distributed across multiple processors simultaneously—represents a promising
avenue for maximizing resource utilization. This strategy could help balance workloads, reduce
bottlenecks, and ensure that the full computational potential of the device is leveraged. By
combining these innovations, future frameworks could significantly enhance the efficiency,
scalability, and adaptability of DL workloads on mobile devices, particularly for
computationally intensive models like Transformers.

4.4.2 Model Optimizations

The analysis presented in this chapter revealed that Transformers exhibit limited compatibility
with hardware accelerators. While GPUs can offer marginal speedups, they significantly
degrade the accuracy of most models. Furthermore, DSPs and NPUs were found to have
minimal compatibility with Transformers, rendering them Ilargely ineffective for these
architectures. This section investigates the underlying causes of the observed accuracy loss
when executing Transformer models on GPUs, as well as the accuracy degradation noted in
half of the FFX8 models in Table 4.2. To address these issues, inspiration is drawn from the
MobileBERT architecture, which was designed with efficiency and compatibility in mind.
Specifically, two model-level architectural substitutions are considered to mitigate these
problems:

1. Replacement of the GELU activation function with ReLU (R1): The GELU
activation function, commonly used in standard Transformer architectures, despite its
smooth approximation properties, introduces computational overhead and is less
compatible with hardware accelerators due to its reliance on non-linear
approximations. The traditional ReLU, in contrast, is simpler, widely tested and
supported across processors, and has been shown to maintain competitive accuracy in
many neural network architectures.

2. Replacement of Layer Normalization with Batch Normalization (R2): Layer
Normalization calculates statistics (mean and variance) independently for each
individual data sample in a batch, normalizing across the feature dimension. This
requires recalculating the statistics for every input during both training and inference
and involves operations such as the reciprocal of the square root, which can be
computationally intensive and less efficient on hardware accelerators. In contrast,
Batch Normalization relies on moving averages of the mean and variance computed
during training, allowing these precomputed statistics to be applied directly during
inference. As a result, it is more computationally efficient at runtime, avoiding per-
sample recalculations and enabling faster execution on many devices.

These substitutions are not arbitrary but are grounded in addressing the specific
inefficiencies and incompatibilities identified in the evaluation. By systematically testing these
modifications, the goal is to determine whether they provide a more generalizable solution to
optimize Transformers for mobile devices, going beyond the scope of MobileBERT and
offering broader insights into model optimization in resource-constrained settings. Table 4.8
illustrates the impact of the proposed substitutions on accuracy and latency for two
representative Transformer models: XDistil-L6-H256, which is incompatible with integer
quantization, and ELECTRA Small. The reported speedup values are averaged across both
target devices, as the results exhibited minimal variation between them.

117

Table 4.8 Model Optimizations

On-Device Accuracy Average Speedup
Model Original R1 R2 R1+R2 R1 R2 R1+R2
CPU GPU|CPU GPU|CPU GPU|CPU GPU|CPU GPU|CPU GPU|CPU GPU
FP32 [93.20 93.45 93.05 93.05{93.35 93.35|1.47x 1.18x 1.49%
XDistil-L6- FP16 |93.25 93.45 93.05 93.05|93.35 93.35|1.52x 1.20x 1.54%
1.03x 1.07x 1.08%
H256 DR8 [92.95 93.25 92.90 92.90(93.15 93.15|1.87x 1.29%x 1.97x
FFX8 92.95 93.05{93.20 93.30{1.01x 2.47x 2.50%
FP32 |93.55 93.50 92.55 92.50(92.15 92.20[1.67x 1.20x 1.75%
ELECTRA FP16 (93.55 93.50 92.55 92.55|92.15 92.10{1.70x 1.20x 1.75%
1.03x 1.09%x 1.12x
S DRS8 [93.10 93.50 92.15 92.20(92.10 92.05[2.30%x 1.26x 2.44x
FFXS8 |92.45 93.40 92.55 92.35(91.95 92.05[1.01x 2.58x% 2.64%

e Substitution R1 (GELU — ReL.U): Improves execution speed for all model variants
on the CPU except FFX8. However, R1 does not address the accuracy issues previously
observed, particularly on the GPU. This suggests that the computational efficiency
gained through R1 does not translate into improvements in numerical stability or
compatibility with hardware accelerators.

e Substitution R2 (Layer Normalization — Batch Normalization): Resolves the
accuracy issues, while also reducing latency on the CPU. For FFX8 variants, R2
achieves an average speedup of 2.5X, whereas for the remaining variants, it delivers a
1.2x speedup. These results highlight the dual benefits of R2 in enhancing execution
efficiency and maintaining model fidelity. This improvement is likely due to the
hardware-friendly nature of Batch Normalization, which avoids the computationally
intensive operations required by Layer Normalization.

e Combined application of R1 and R2: Achieves the best accuracy for XDistil-L6-
H256, demonstrating the potential for these substitutions to address model-specific
hardware compatibility challenges. However, it slightly reduces the accuracy of
ELECTRA Small by 1.4%. These findings indicate that the effectiveness of each
optimization is model-dependent and highlights the importance of tailoring
substitutions to the specific requirements and constraints of a given model and
hardware configuration. This nuanced understanding can guide future efforts to
optimize Transformer models for resource-constrained environments.

The optimizations discussed above primarily enable GPU utilization (through R2) while
also improving CPU latency. However, they offer no measurable benefits in terms of memory
efficiency or performance on other accelerators. Focusing specifically on GPU execution, the
observed speedups are minimal, averaging only 1.1X. This limited improvement stems from
the inherent characteristics of TFLite Transformer models, where approximately half of the
operations are reshape operations. These operations, which adjust the shape or arrangement of
a tensor without modifying its underlying data, are computationally lightweight on CPUs but
become relatively costly on GPUs. This disparity arises because GPUs are optimized for highly
parallelizable mathematical computations, such as matrix multiplications, rather than the less
computationally intensive reshape operations. Consequently, the unchanged proportion of
reshape operations in the optimized models constrains the achievable performance gains on the
GPU. These findings underscore a fundamental limitation in the structure of TFLite
Transformer models: their operational mix is not fully aligned with the strengths of GPU
architecture. Addressing this imbalance may require further architectural modifications or a
more granular approach to delegate selection, for instance by focusing on offloading only the
most GPU-efficient operations while keeping reshape operations on the CPU.

118

Future work could explore several avenues to further improve the performance of
Transformer models on mobile devices, building upon the proposed model-level optimizations
and enhancing their generalizability. Some potential directions include:

1. Alternative activation functions and dynamic normalization: While replacing
GELU with ReLU improved execution time, future research could investigate other
activation functions (e.g., Swish, Leaky ReLU, or mobile-optimized GELU variants)
that balance speed and accuracy. In parallel, dynamic or hybrid normalization
techniques, such as Instance Normalization or Group Normalization, could be explored
as alternatives to Batch Normalization, potentially offering better adaptation to mobile
constraints and diverse input patterns.

2. Pruning, sparsity, and quantization: Further investigation into pruning redundant or
low-importance parameters could reduce memory usage and speed up inference,
especially if combined with adaptive, Transformer-specific pruning strategies.
Additionally, advancing quantization techniques—such as hybrid precision approaches
where select layers operate at reduced precision—could yield further efficiency gains
without significant accuracy loss.

3. Hardware-specific optimizations: Optimizing Transformer architectures for specific
mobile accelerators (e.g., NPUs, DSPs, or Apple’s Neural Engine) could involve
redesigning model components or leveraging hardware-aware layer implementations
to better align with the computational characteristics of target devices.

4. Expanded evaluation across model types and tasks: Future work should extend the
evaluation of these optimizations beyond the current focus, incorporating a broader
range of Transformer architectures—including autoregressive models—and testing
them across diverse datasets and real-world applications to assess generalizability and
robustness.

By advancing these areas, future research could lead to significant improvements in the
deployment of Transformer models on mobile devices, enhancing both performance and
efficiency while maintaining high accuracy.

4.5 Conclusion

This study proves that the well-established practices and insights related to the on-device
execution of CNNs, including the application of various quantization schemes, are not directly
transferable to Transformer models. To support this assertion, a comprehensive investigation
was conducted into the current state of on-device Transformer inference. This investigation
encompassed benchmarking a diverse range of Transformer models, assessing their
compatibility with various mobile processors, validating their on-device accuracy across
different execution configurations, and evaluating the efficacy of multiple quantization
techniques. By uncovering the unique challenges associated with deploying Transformers on
resource-constrained mobile devices, this work provides actionable insights and outlines
potential avenues for optimization, paving the way for improved performance and broader
applicability of Transformers in real-world mobile environments. The key contributions of this
work are as follows:

1. A comprehensive benchmark suite and software infrastructure: A benchmark suite
is introduced, encompassing a diverse set of Transformer models for NLP tasks, along
with the necessary software infrastructure to facilitate their evaluation. This

119

infrastructure is designed to enable systematic, reproducible, and regulated testing of
on-device inference performance across multiple devices and execution configurations.

2. A detailed examination of on-device Transformer inference: Through an extensive
evaluation, this work provides the first comprehensive insights into the state of on-
device Transformer inference. This includes analyzing performance metrics such as
latency, throughput, and memory usage, while also examining the impact of different
processors on model accuracy. The analysis reveals critical limitations, such as the poor
compatibility of Transformers with certain mobile processors (e.g., DSPs and NPUs)
and the lack of robust support for integer quantization in many architectures.

3. Insights into future optimizations: Opportunities for improving the hardware
compatibility and computational efficiency of Transformer models on mobile devices
are identified. For instance, architectural modifications are highlighted, such as
replacing computationally intensive components like GELU and Layer Normalization
with simpler alternatives that can enhance compatibility. Furthermore, quantization
techniques and their trade-offs are explored, demonstrating how to balance reduced
computational requirements with maintained accuracy.

In conclusion, the benchmarking results indicate that despite the growing use of dedicated
hardware in modern devices, general-purpose hardware such as the CPU continues to be heavily
utilized due to its versatility in supporting diverse workloads and adapting to new software
infrastructures. The findings further emphasize the necessity of device- and model-specific
system-level optimizations, as default configurations (e.g., XNNPACK) are rarely the most
efficient. Moreover, the results demonstrate that with minimal model optimizations, only the
GPU can be effectively leveraged for on-device execution, whereas other specialized
accelerators remain largely underutilized. These insights point to the need for (a) continued
research on optimizing Transformer models for mobile environments, and (b) the advancement
of mobile accelerators designed specifically to accommodate Transformer architectures.

120

Advancing Early Intrusion Detection
for the Internet of Things

The Internet of Things has revolutionized digital ecosystems by enabling interconnected
devices to collect, process, and exchange data in real time across domains such as smart homes,
healthcare, and industrial automation. At its core, [oT relies on smart objects—embedded
systems with sensing, processing, and communication capabilities—that seamlessly integrate
the physical and digital worlds [125]. These devices generate diverse types of data, including
sensor readings, control signals, video streams, and network traffic logs, often operating
autonomously with minimal human intervention.

Embedded systems are the core of [oT devices. Every [oT device is essentially an embedded
system with networking capabilities, allowing it to communicate and process data in real time.
However, as discussed in Subsections 2.2.3 and 2.3.2.2, these devices typically operate under
significant constraints, including limited computational power, memory capacity, energy
availability, and storage space. Due to these restricted capabilities, there is a pressing need for
highly optimized hardware architectures, lightweight software stacks, and efficient data-
processing models. Consequently, developers and researchers focus on creating resource-
efficient operating systems, specialized networking protocols, and streamlined Al models
specifically tailored to the demands of embedded [oT environments.

The widespread adoption of [oT devices has introduced significant security vulnerabilities,
largely due to their limited computational resources, weak authentication mechanisms, and
frequent exposure to untrusted networks. These vulnerabilities make [oT ecosystems prime
targets for cyberattacks, ranging from malware infections and distributed denial-of-service
(DDoS) attacks to more sophisticated man-in-the-middle (MitM) exploits and adversarial
manipulation of data streams. Ensuring the security of IoT systems is therefore critical [126],
as security breaches can lead to data leaks, service disruptions, and potential physical harm in
safety-critical applications. More importantly, the long-term success of the loT paradigm hinges
on user trust; without confidence in the security and reliability of the underlying infrastructure,
consumers, industries, and institutions are unlikely to adopt loT technologies at scale.

To mitigate such security risks, intrusion detection systems (IDS) have been widely
employed. IDS solutions monitor network traffic or host activity to detect malicious behavior
and potential intrusions. In recent years, ML and, more prominently, DL, have become integral
to the development of IDS technologies, driven by their ability to detect complex attack patterns
that traditional rule-based systems fail to recognize. Unlike conventional IDS, which rely on
manually crafted signatures or predefined heuristics, DL-based IDS can learn from data,
enabling the detection of previously unseen threats and zero-day attacks. Particularly in the
context of IoT security, where network traffic is highly dynamic and attacks can evolve rapidly,
DL models such as CNNs [127], RNNs [128], Transformers [129], and hybrid architectures
[130] have been increasingly employed to analyze network flows, uncover anomalies, and
improve detection accuracy.

A key challenge in intrusion detection is the need for real-time threat detection to minimize
response times and mitigate the impact of attacks. This has led to the emergence of early
intrusion detection systems (EIDS) [131], which aim to classify and detect intrusions as early
as possible within a network session. Recent DL advancements highlight Transformers'

121

effectiveness in sequential data processing, particularly in NLP [132]. However, unlike text,
network traffic flows are time series, where packet arrival times convey critical contextual
information often overlooked by existing IDS. To address this limitation, a Transformer-based
approach is proposed, incorporating novel positional encodings that integrate packet
timestamps. This enhancement enables the model to capture both sequence structure and
temporal dynamics, leading to improved intrusion detection. The key contributions of this work
include:

o The design and implementation of A-THENA, a Transformer-based early intrusion
detection system with novel time-aware positional encoding mechanisms for rapid and
lightweight attack detection.

o The development of a data augmentation pipeline for network traffic that improves
model robustness and generalization.

e The introduction of a custom training loss function that enhances earliness and
improves performance.

e An empirical evaluation of the system's real-world applicability, demonstrating its
computational efficiency and suitability for deployment on resource-constrained IoT
devices.

5.1 Preliminaries and Related Work

Recent advancements in deep learning have significantly improved the capabilities of IDS,
enabling more accurate and adaptive threat detection. However, challenges remain in achieving
efficient and early detection, particularly in resource-constrained environments such as IoT
networks. This section reviews existing research on DL-based IDS, augmentation techniques
for cybersecurity, and Transformer positional encodings, highlighting their strengths,
limitations, and the gaps the proposed approach aims to address.

5.1.1 DL-Based Intrusion Detection

Al-enabled IDS have gained significant traction in recent years, with most approaches relying
on feature engineering [133], [134], [135], [136], [137]. In these methods, domain-specific
features are extracted from raw network traffic and used as model inputs, typically
encompassing flow-level statistical metrics such as packet count, byte count, flow duration, and
inter-arrival times. While feature engineering has proven effective, the extraction process is
often computationally expensive and time-consuming, posing a constraint for real-time
detection, particularly in environments with limited computational resources. Furthermore,
predefined feature sets may fail to capture complex temporal dependencies and subtle attack
signatures, reducing the system's ability to detect novel and evolving threats.

To overcome these challenges, recent studies have investigated DL-based IDS that process
raw network traffic directly, eliminating the need for handcrafted features. These approaches
leverage architectures such as convolutional neural networks [138], [139], [140], recurrent
neural networks [141], Transformers [142], and hybrid models [143], [144], [145], among
others. By learning hierarchical and sequential representations from packet streams, these
models enhance detection accuracy and improve adaptability to new attack patterns.

Despite recent advancements, achieving early and efficient threat identification in resource-
constrained environments remains a considerable challenge. Although some studies have
explored training models on variable-length network flows [146], [147], [148], [149], a critical
aspect of early threat detection, these approaches often overlook the temporal dynamics of
packet flows, which are key to accurately characterizing attacker behavior. To bridge this gap,

122

the proposed method incorporates packet timestamps into the detection process leveraging
novel dynamic temporal positional encodings within Transformer-based architectures.

5.1.2 Augmentation Strategies for Cybersecurity Datasets

The availability of real-world cybersecurity datasets is limited, with most existing datasets
containing a restricted number of attack sessions, resulting in an insufficient sample size for
effective model training. Furthermore, these datasets often include a diverse range of attack
types, whose variability and heterogeneity contribute to substantial class imbalances, as certain
attack categories may be significantly underrepresented compared to those that generate higher
volumes of traffic. To address these challenges, augmentation techniques are essential for
enhancing dataset diversity and mitigating class imbalance. By synthetically increasing the
number of samples, data augmentation improves model generalization, enabling IDS to
effectively identify both prevalent and rare attack patterns.

Several recent studies have investigated augmentation methods to enhance dataset
variability and address class imbalance. However, the proposed models in these studies
primarily operate on extracted features rather than raw network traffic, leading to the adoption
of augmentation techniques designed for tabular data. These approaches include the Synthetic
Minority Oversampling Technique (SMOTE) [150], [151], [152], Conditional Tabular
Generative Adversarial Networks (CTGANSs) [151], [153], Variational Autoencoders (VAEs)
[152], [154], and Transformer-based generative models [155], all of which have demonstrated
effectiveness in tabular data augmentation. More recently, diffusion models have been explored
for raw network traffic generation [156], [157]; however, their application in attack scenario
generation remains unexplored.

5.1.3 Transformer Positional Encodings

Unlike recurrent models, which inherently capture sequential order through their structure,
Transformer models rely on a fully parallelized self-attention mechanism, which does not
incorporate any intrinsic notion of token order. As a result, Transformers require an explicit
method to encode the positions of tokens in a sequence, so that the model can learn meaningful
representations that depend on the order of these tokens. To address this limitation, positional
encodings are introduced to provide information about the relative or absolute positions of
tokens within the sequence. By incorporating positional information, the model can capture
sequential dependencies while maintaining the parallelization advantages of the Transformer
architecture, unlike recurrent models that process data sequentially.

In this work, two categories of positional encodings are considered: (a) input positional
encodings, which are directly added to the input embeddings, and (b) attention positional
encodings, which are applied to the query and key matrices before the self-attention
computation. Each category serves a distinct purpose in encoding positional information,
influencing how the model attends to different parts of the input sequence. Below, three widely
used positional encodings are described: sinusoidal and Fourier-based encodings, which belong
to the first category, and the rotary positional encoding, which falls into the second.

5.1.3.1 Sinusoidal Positional Encoding

The sinusoidal positional encoding was introduced in the original Transformer architecture [28]
as a method to inject position-dependent information into the model without relying on learned
embeddings. These encodings are computed using sine and cosine functions of varying
frequencies, ensuring that each position has a unique representation while also allowing the
model to generalize to unseen sequence lengths. Given a sequence of length n, the sinusoidal

123

positional encoding assigns each position p € {0, 1, ..., n-1} a vector of dimension d,,,, where
dy, denotes the hidden dimension of the Transformer model. The encoding is computed using
the following formulas:

. p
PE(p, 2i) = sin (—)
100002/ @m
» (5.1
PE(p,2i+ 1) = cos (—)
10000%/%m
where i = 0, 1, ..., d,/2-1 indexes the sine and cosine components within the encoding

dimension. The choice of the base 10000 ensures a smooth distribution of frequencies across
the encoding space, allowing the model to capture both fine-grained and long-range positional
dependencies while maintaining numerical stability during training.

5.1.3.2 Fourier-Based Positional Encoding

Since the introduction of the sinusoidal encoding, several alternative methods have been
proposed to enhance the effectiveness of positional information in Transformers. The Fourier-
based positional encoding [158] extends the idea of the sinusoidal encoding by leveraging a
more general Fourier feature mapping. Instead of using a fixed base, this encoding is derived
from a learnable frequency basis that enables richer and more flexible positional
representations. This approach has been shown to improve the generalization of positional
information in various applications. The Fourier positional encoding at position p is given by:

PE(p, 2i) = sin(27tfi p)

PE(p,2i+ 1) = cos(2nf, p) (52)

where f; is the learnable frequency parameter associated with the i-th sine-cosine pair in the

encoding.

5.1.3.3 Rotary Positional Encoding

Another widely adopted method for infusing positional information in Transformer
architectures is the rotary positional encoding (RoPE) [159]. By rotating representations within
a high-dimensional space, RoPE directly incorporates positional cues into the self-attention
mechanism. This rotation-based formulation inherently supports relative position modeling,
making it well-suited for tasks requiring long-range dependency capture. In its standard form,
RoPE applies a rotation matrix to both the query and key vectors in the self-attention
mechanism. Let x = (xg, X1, ..., X4 .1) be a packet embedding. For each position p and index ,
the corresponding subvector, consisting of two consecutive embedding elements (x,;, X5;41), 1S
transformed as follows:

x4 Lsin(d) cos(po) | Xait1 .
where 6, is the rotational angle defined as:
6, = 10000~ 2/m (5.4)

5.1.3.4 Time-Aware Positional Encodings

Some recent studies have explored the utilization of timestamps from sequential data to
generate time-aware positional encodings, enhancing the ability of models to capture temporal
dependencies. However, many of these approaches introduce considerable computational

124

complexity [160], [161], [162], making them unsuitable for scenarios requiring lightweight and
efficient models. Additionally, existing works primarily focus on extending the sinusoidal
positional encoding [163], [164], [165], limiting their applicability to alternative encoding
strategies. This study is the first to apply time-aware positional encodings to network traffic
data and systematically evaluate their impact across three distinct encoding mechanisms.

5.2 Proposed Approach

Network traffic can be conceptualized as a collection of flows traversing network elements.
The term "flow" has multiple definitions within the internet community. According to RFC
7011 [166], a traffic flow is a set of packets or frames passing through an observation point
over a specified time interval. For instance, in a host-based IDS, the observation point is the
potential victim, such as an IoT device vulnerable to attacks. All packets within a flow share
common attributes, with one of the most widely accepted flow definitions being the 5-tuple
representation: source and destination [P addresses, source and destination transport layer ports,
and the protocol in use.

Early intrusion detection in the context of a flow-level IDS refers to the capability of
accurately classifying a network flow as benign or malicious as early as possible, using only a
partial sequence of packets within the flow. The goal is to minimize the time and data required
for threat identification, enabling rapid response and mitigation before an attack fully unfolds.
An effective early detection system balances classification accuracy with earliness, ensuring
that malicious activities are identified promptly while minimizing false positives and
computational overhead. In order to facilitate early and accurate detection, the proposed
approach prioritizes four key objectives:

e Feature-free learning: Unlike traditional methods that rely on handcrafted feature
engineering, the system processes raw packet data without requiring manual feature
extraction, reducing preprocessing overhead.

o Computational efficiency: The model is designed to be lightweight, ensuring low
latency and minimal memory footprint, making it suitable for deployment on resource-
constrained environments such as loT and edge devices.

e Rapid threat detection: By classifying network flows using only a small fraction of
their packets, the system enables early response and mitigation, preventing attacks from
fully unfolding.

e Adaptability to variable-length flows: The detection mechanism is designed to
handle flows of varying durations without requiring fixed-length representations,
ensuring flexibility in real-world traffic analysis.

Figure 5.1 illustrates the proposed system for early intrusion detection, comprising three
main stages:

1. The Data Preparation stage (Subsection 5.2.1), which is common to both training and
inference, involves processing labelled PCAP files or raw network traffic through a
dedicated pipeline consisting of the Flow Identification, Packet Filtering, and Packet
Preprocessing modules. This stage ensures that data are structured appropriately for
subsequent analysis.

2. In the Training & Evaluation stage (Subsection 5.2.2), the processed data are first
split into training and test sets. The training data undergo basic offline augmentation to
enhance diversity and boost early detection, followed by on-the-fly augmentation,

125

which includes a series of techniques targeted to network data, during each training
step. The final selected model is then evaluated on the test set.

3. The Inference stage employs the trained model for real-time monitoring of network
traffic. The evaluation results from the training phase inform the performance of the
system during deployment.

Data Preparation Inference
: <« —
penwork yranic Flow Packet Packet MIBRitGRAg
sl e s ;3 Identification Filtering Preprocessing
Data Testset Training & Evaluation |
. E ti
splitting valuation
| Treinin set Final Model |
SUbﬂo‘,N _— On-the-Fly Augmentation & Train ()
Generation Validation Set
| Jitter Traffic Packet Packet Noise Training
Deterministic Injection Scaling Drop Insertion Injection Step

Oversampling Training Set
Figure 5.1 The proposed A-THENA system

5.2.1 Data Preparation

The goal in converting raw network traffic into a format suitable for DNN training is to
maximize computational efficiency and enable rapid processing. As previously noted, to
achieve this, the proposed system departs from traditional methods that rely on extracting
predefined features and instead utilizes raw packet bytes as direct input to the model. This
approach offers several advantages. First and most importantly, it reduces preprocessing
overhead, as it eliminates the computational cost and additional latency associated with feature
extraction, making it more efficient, fast and scalable. Moreover, this methodology eliminates
the need for manual feature engineering, which is often constrained by domain expertise and
may introduce biases or overlook critical patterns. Lastly, this method preserves fine-grained
information that might otherwise be lost in the aggregation or summarization process inherent
to traditional feature extraction techniques.

5.2.1.1 Flow Identification

The initial step in the proposed system involves maintaining a record of all active flows within
the network, regardless of whether they originate from network captures (PCAP files) or real-
time network traffic. Upon the arrival or departure of a new packet, the system determines
whether the packet corresponds to an existing flow or necessitates the creation of a new flow
instance. Formally, a flow F can be represented as an ordered sequence of packets:

F={P,P,,...,P},P;e R? (5.5)

where P; is the i-th packet, n is the length of the flow and d is the length of a packet in number
of bytes. Each flow can have a maximum length N, therefore, the number of packets in any
given flow satisfies the condition:

1<n<N (5.6)

To construct network flows from raw traffic, a well-defined methodology must be
established. Network attacks exhibit diverse characteristics, behaviors, and patterns. For the

126

conventional 5-tuple definition—which consists of the source IP, destination IP, source port,
destination port, and protocol—to be effective in attack detection, these parameters must remain
consistent throughout the entire attack session. For instance, brute force attacks (e.g., SSH, FTP,
or RDP brute forcing) involve repeated login attempts to a specific service, maintaining a stable
S-tuple across multiple authentication requests. However, many sophisticated cyber threats do
not adhere to a consistent 5-tuple structure, rendering detection based solely on this definition
inadequate. Examples include distributed attacks, where IP addresses frequently change, and
scanning attacks or port-hopping techniques, which result in a high number of ephemeral, often
two-packet flows, if classified using the 5-tuple. These limitations prevent an effective
representation of the ongoing attack.

To overcome this challenge, the proposed system initially employs the 5-tuple definition,
which is appropriate for most single-session attacks, while concurrently monitoring the number
of active flows. If this number surpasses a predefined threshold—determined as a multiple of
the normal traffic baseline—the system dynamically adjusts its flow aggregation strategy.
Specifically, flows are first grouped by ignoring transport layer ports, and if the volume remains
excessive, flows are further aggregated by disregarding source [P addresses. Once traffic levels
return to normal, the system reverts to standard 5-tuple tracking. This adaptive approach ensures
efficient flow management, maintaining lightweight tracking under normal conditions while
dynamically expanding flow definitions only when necessary, thereby enhancing attack
detection capabilities.

5.2.1.2 Packet Filtering

The second essential step in data preparation involves isolating network packets relevant to the
threats targeted by the IDS. By filtering out irrelevant packets before further analysis, the
system reduces computational complexity and directs its focus toward potentially malicious
traffic. Certain network protocols, such as HTTP, ARP, and ICMP, are commonly exploited for
attacks, making their targeted analysis beneficial for intrusion detection. For example, HTTP
traffic is frequently associated with web-based threats, including cross-site scripting (XSS),
SQL injection, and denial-of-service (DoS) attacks. By selectively filtering HTTP packets, the
system can analyze the requests and responses exchanged between clients and web servers,
facilitating the detection of suspicious activity.

5.2.1.3 Packet Preprocessing
The final step is essential for converting raw network packet data into a structured format
suitable for DL models. Packet preprocessing removes extraneous information and standardizes
packets into a fixed-sized array to ensure consistency. This process begins by discarding
irrelevant data: the entire Ethernet header is removed, as it contains metadata unrelated to the
packet payload, and the IP source and destination addresses are excluded from the IP header to
prevent potential model overfitting to specific address patterns. These elements are typically
not essential for detecting network intrusions, as the focus is on the payload and the behavior
of the protocols in question. Next, each packet is either truncated or padded to a fixed length,
denoted as d, ensuring uniform input dimensions for the DL model. To further enhance model
training stability, normalization is applied by scaling byte values to the range [0, 1] through
division by 255. This step mitigates large value disparities in the input data, improving the
model's convergence.

Additionally, packet timestamps are extracted to capture inter-arrival times (IAT), which
provide critical temporal context. These timestamps are stored as a separate vector, 7, serving
as a secondary input for the time-aware positional encodings used by the proposed models. The

127

timestamp of the first packet in a flow is set to 0, and subsequent timestamps represent the
absolute time elapsed since the first packet's arrival. This temporal information is vital for
recognizing sequential patterns in network traffic and detecting anomalies based on timing
deviations.

5.2.2 Training

The training phase of the proposed system is designed to develop DL models capable of early
attack detection using raw network packet data. This phase follows the data preparation stage,
utilizing the preprocessed packet representations and corresponding timestamp vectors as input.

5.2.2.1 Data Splitting

First, the dataset is divided into training and test sets. This split ensures that the model is trained
on a portion of the data and evaluated on unseen samples, providing a reliable measure of its
performance and generalization ability. Since Transformers operate on batches of fixed-length
sequences, all network flows must be padded to a consistent length before training. To achieve
this, each flow in the training and validation sets is padded with zero packets to match the
maximum flow length N. This padding process also generates attention masks, which indicate
which parts of the input sequence should be attended to and which should be ignored.
Specifically, padded positions are assigned a mask value of 0, ensuring they are excluded from
the model's attention mechanism, whereas valid positions receive a mask value of 1.

5.2.2.2 Augmentation

The data augmentation process consists of two stages: offline and online augmentation. In the
offline stage, subflows are initially generated to enhance early detection capabilities, followed
by the application of deterministic oversampling, if necessary, to increase the dataset size. In
the online stage, a set of augmentation techniques is applied to each packet prior to each training
step, aiming to enhance data variability and improve model generalization.

Subflow Generation. Subflows are created by retaining only the first & packets of each flow in
the training dataset, with & ranging from 1 to the total flow length. This approach trains the
model to classify flows based on partial information rather than requiring the entire flow. This
is crucial for early detection, where identifying threats from initial packets reduces response
time. By learning to detect anomalies with incomplete data, the model better simulates real-
world scenarios, enhancing its ability to recognize attacks as early as possible. Following
subflow generation, 5% of the training samples are reserved for validation.

Deterministic Oversampling. As discussed in Subsection 5.1.2, real-world large-scale
network datasets are often limited. To mitigate this, deterministic oversampling is applied after
subflow generation as an additional augmentation step. Each sample is duplicated exactly z
times within the training dataset, ensuring a balanced class representation. Unlike random
oversampling which selects and repeats samples stochastically, this method guarantees a
uniform distribution by maintaining a fixed replication count for each sample.

On-the-fly Augmentation. The fixed duplication strategy is justified by the incorporation of
random perturbations at each training epoch, ensuring variability and mitigating the risk of
overfitting. Although the base samples are duplicated, each instance undergoes a unique
transformation during every epoch. Consequently, the model never encounters an identical
sample twice, preventing memorization and reinforcing its ability to generalize effectively by
learning robust patterns rather than memorizing specific instances.

128

As such, on-the-fly or epoch-wise augmentation techniques are applied independently on
each training sample, ensuring that the model is exposed to a broad range of slightly modified
yet realistic network flows. By leveraging packet timestamps as input, timestamp-based

augmentation techniques further enhance the variability of the dataset. Five augmentation
techniques are performed in the sequence depicted in Figure 5.1, each targeting specific
characteristics of the flow.

1.

Jitter Injection. The first augmentation technique focuses on the timestamps of the
packets within a flow. It introduces small, random variations in packet arrival times to
simulate the real-world jitter commonly observed in network communications. For
each timestamp in the flow, the minimum temporal distance between the previous and
next timestamp, denoted as #;,, is first calculated. A random perturbation is then added
to the timestamp, drawn from the continuous uniform distribution:

U(=0.7tyin, 0.7 Emin) (5.7

This perturbation helps simulate network conditions such as congestion or packet
delays, making the model more robust to variations in packet timing.

Traffic Scaling: The second technique applied to the timestamps is traffic scaling. This
method simulates different network speeds by randomly choosing a scaling factor from
the set {0.5, 0.75, 1.0, 1.25, 1.5}. This scaling factor is then applied to the inter-packet
times, either increasing them to simulate slower networks or reducing them to mimic
high-speed links. This variation exposes the model to different network conditions and
improves its ability to generalize across a wide range of traffic speeds.

Packet Drop: This is the first augmentation technique to operate at the packet level. It
randomly drops a number of packets from each flow. The maximum number of packets
that can be dropped depends on the length of the flow and is calculated as:

max_packets to_drop = [0.25n — 0.5] (5.8)

where 7 is the length of the flow. The actual number of packets to drop is drawn from
the discrete uniform distribution:

U{0, max_packets_to_drop} (5.9

Packet Insertion: The packet insertion technique is the second packet-level method.
It randomly adds a number of zero-byte packets into a flow. The maximum number of
zero packets to be inserted is based on the flow length and is calculated as:

max_packets _to_insert = |0.15n — 0.5] (5.10)
The actual number is again drawn from a discrete uniform distribution:
U{0, max_packets to_insert} (5.11)

Noise Injection: The final augmentation technique involves adding noise to the packet
bytes. For each flow, at most |n/3] packets are modified, and for each modified packet,
at most |d/100] bytes are altered. The values for the byte modification are randomly
selected from a discrete uniform distribution. The noise itself is drawn from a
continuous normal distribution with zero mean and a standard deviation of 0.1. Since
all byte values have already been normalized to the range [0, 1], the added noise is
small but effective in simulating random variations or errors in the packet data.

129

It is important to note that not all augmentation techniques are applied to every sample. For
example, if a scaling factor of 1 is selected, no transformation occurs. Likewise, if no packets
are chosen for dropping, insertion, or noise injection, the corresponding techniques remain
inactive. Additionally, the first two augmentation techniques, which modify timestamps, are
specifically designed for models that incorporate timestamp vectors as input. For models that
do not utilize temporal information, these techniques are not applicable, further highlighting
the advantage of time-aware models in network traffic analysis.

5.2.2.3 Early Detection Loss Function
Aiming to improve early classification performance, Early Detection Loss (EDeL) is introduced
as a custom training loss function that increases both the model's accuracy and confidence when
processing short flows. This is achieved by applying higher penalties to misclassifications in
shorter flows than in longer ones. Such an approach encourages the model to become more
accurate even when it has access to fewer packets, which is crucial for timely anomaly detection
in real-time network traffic analysis.

During training, for each batch of b samples, the cross-entropy loss is first computed
individually for each sample. The overall batch loss is then obtained as a weighted average of
these individual losses:

b—1
i=0

where w; represents the weight associated with the i-th sample, and CE; is the corresponding
cross-entropy loss. The weight w; is defined as:

w; = e_()'l”i (513)

where n; denotes the length of the i-th flow in the batch. This weighting mechanism ensures
that the model prioritizes minimizing errors in shorter flows, thereby improving its
effectiveness in early classification scenarios. By integrating this custom loss function into the
training process, the model is encouraged to make more accurate predictions with fewer
packets, which is essential for applications requiring quick, real-time decisions.

5.2.3 System

In this work, the Transformer architecture is utilized as the core model, leveraging its self-
attention mechanism to capture long-range dependencies in network flows, where each flow
consists of a sequence of packets. Unlike traditional models, Transformers can effectively learn
packet relationships independent of their positions, making them well-suited for attack
detection and traffic classification. Additionally, the temporal aspect of packet arrival times can
be crucial for identifying malicious activity, as many attacks exhibit distinct timing patterns.
The Transformer architecture offers a significant advantage in this regard, as it can leverage the
temporal information through time-aware positional encodings, allowing it to model temporal
dependencies within a flow. This capability improves the accuracy and robustness of attack
detection by leveraging both sequential and temporal information.

5.2.3.1 Base Model

The architecture of the base model—defined as the core Transformer architecture excluding
positional encoding—is built upon the standard Transformer framework introduced in [2§],
with specific modifications tailored for network flow analysis. As the task focuses on
classification, only the encoder component of the Transformer is utilized.

130

Since the preprocessed raw bytes from each packet directly serve as token embeddings, an
explicit input embedding layer is not required. However, to align the input data with the model's
feature space, a fully connected layer that maps the input dimension d to the hidden dimension
d,, is applied. The transformed input is subsequently processed through a sequence of L
Transformer encoder blocks, in which the standard GELU activation function is replaced with
ReLU to enhance computational efficiency and promote training stability (see Subsection
4.4.2). Following the final Transformer encoder block, global average pooling aggregates the
sequence of packet-level embeddings into a single fixed-length vector. This aggregated
representation is then passed through a final fully connected layer comprising ¢ output neurons,
followed by a softmax activation function to produce class confidence scores.

Table 5.1 summarizes the hyperparameters employed in the proposed system. These values
were selected to achieve rapid inference and a lightweight model architecture, essential for
efficient operation in practical network environments. Notably, the constraint &}, = d,,/h is not
imposed, providing additional flexibility in configuring attention heads. The choice of values
for input data representation was guided by empirical analysis and practical considerations:

e A maximum sequence length of N =30 packets allows the model to capture sufficient
contextual information while maintaining low computational complexity, considering
that most malicious activities manifest within shorter packet sequences.

e A packet feature size of d = 448 provides comprehensive representation, capturing
essential packet information such as critical headers and payload content, necessary for
accurate attack detection.

Table 5.1 System Hyperparameters and their Corresponding Values

Hyperparameter | Symbol Value
Packet length d 448
Maximum flow length N 30
Hidden dimension dy 8
Number of Transformer blocks L
Number of attention heads h
Attention head dimension dy 8
FFN intermediate dimension dg 16
Dropoutrate | Pgqp 0.1
Number of output classes c dataset-specific

The total number of trainable parameters in the base model is calculated as:

P= dm[2L(2hdh + dff + 3) +d+c+ 1] + L(3hdh + dff) +c (514)

which indicates that increasing either the model width (d,,) or depth (L) significantly increases
the model's parameter count, with direct implications for computational overhead and memory
usage. With the selected hyperparameters, the base model consists of approximately 5100 total
trainable parameters, excluding any positional encoding mechanisms. This lightweight
architecture facilitates rapid decision-making while maintaining the necessary representational
power to distinguish between normal and attack traffic.

5.2.3.2 Proposed Time-Aware Positional Encodings
Traditional positional encodings assume uniformly spaced sequence positions. However, in
network traffic, packet flows exhibit varying inter-arrival times, making this assumption

131

inaccurate and potentially reducing the effectiveness of standard positional encodings. To
address this, the predefined position indices, P = {0, 1, ..., n-1}, are replaced with the actual
timestamps of the packets in the flow, denoted as 7= {t,, t,, ..., t,.;}. This modification can be
applied to sinusoidal, Fourier-based, and rotary positional encodings, resulting in three time-
aware positional encoding variants specifically designed for sequential network traffic data.

Sinusoidal Positional Encoding Fourier-based Positional Encoding RoPE Rotation Matrix (Position=10)
0 01 0 000]000/0.00/000]0.00]0.00
41 51 0.00{0.00{0.00
81 2 2 H0.00}0.00 0.00{0.00}0.00{0.00
& 5121 £ 3
i 216 . oio.
a a =
- o 4
1.00 20 1.00 8 5 40.00{0.00{0.00{0.00{0.10 000000 1.00
24 4 uC_I 6 40.00{0.00:0.00:0.00{0.00:0.00 0.01]
28 4 7 40.00:0.00:0.00:0.00:0.00 coo;om
0.00 0.75 0.00 4 0.75 . 0.75
1.12 1.12 A £,
a Y112 ?
1.12 12 1 i
E 0.50 E 0.50 g 2000 F0.50
2122 2 1.22 A _
E E 5 3 0.00:0.00:0.12 0.00:0.00:0.00:0.00
8132 £ 1.32 © 4 Jo00{0.00{000i0.00 Jlo.1i0.00{000
g N Bl b bl it
£ 1.32 0.25 £ 1.32 0.25 g 5o0i00oio0oioooioo [ocoioon| | Lo 25
E S Q7 et
1.32 3 1.32 g & 6{000}0.00}000/0.00}0.00}0.00 0 00 E
1.32 g 1.32 4 g 7 {0.00{0.00{0.00{0.00{0.00}0.00{0.00 8
tooo 2 Fo.oo 2 Fo.oo 2
0.00 5 0.00 A B]
g g e S
. 1.00 S _ 1.00 4 S E 1 S
%
g201 L —0.25 £ 2.011 L —0.25 g2+ L —0.25
e 3.03 g 3.03 A fg 3 40.0010.00!0.20 J 0.00:0.00}0.00 | 0.00
£ 4.03 8 4.03 © 4 40.00{0.00}0.000.00 0.02$0.00}0.00
@ 9 I it et N I et
£ 5.04 F-0.50 £ 5.04 1 I -0.50 3 5 Jooo}o00}000}00o ooz Joco 000 | —0.50
6.05 = 6.05 ug.l 6 -0.00:0.00:0.00:0.00;0.00:0.00 0.0
7.06 7.06 4 7 {0.00{0.00{0.00{0.00{0.00{0.00{0.00
+-0.75 F—-0.75 L A R -0.75
0.00 0.00 A 0
449 4491 51
g 14.22 L -1.00 £ 14.22 4 - -1.00 g2 -1.00
S 40.95 S 40.95 Esls
g 5 521
£ 43.01 2 43.01 2 4 +{000}000{000; 000 JRg 01¢{000{000|
£ 50.57 £ 50.57 B 51
E £ [Jgl o i it i it
54.24 54.24 5 61
87.56 87.56 7
012 34567 01234567 012 3 4567
Encoding Dimension Encoding Dimension Encoding Dimension

Figure 5.2 Time-aware positional encodings

Figure 5.2 demonstrates the capability of the proposed time-aware positional encodings to
effectively represent temporal patterns within network traffic, compared to conventional
positional encodings. The first row of the figure depicts traditional positional encodings, which
rely exclusively on discrete packet indices and thus omit temporal context. The subsequent
rows introduce the proposed time-aware positional encodings, computed using the absolute
timestamps of packets within individual network flows. Specifically, the second row
corresponds to a representative SSH brute-force attack scenario, characterized by packets
transmitted in rapid succession, thus yielding subtle encoding variations. The third row
illustrates benign network traffic with moderately spaced packet transmissions, resulting in
clearer encoding distinctions. Finally, the fourth row corresponds to a web-based backdoor
malware attack scenario with significantly delayed packet transmissions, exhibiting the most
pronounced encoding variations. Across all positional encoding methods considered, the
proposed time-aware variants distinctly and systematically reflect temporal differences, thereby
highlighting their suitability for accurately capturing critical timing information essential for
enhanced network flow classification.

Beyond network traffic analysis, the proposed encodings can be extended to encompass
other types of time-series data where samples are generated at irregular intervals. Examples of
such data include sensor readings recorded only during significant changes, user activity logs

132

(e.g., clicks, searches, and logins), as well as social media and communication logs, among
others. By integrating time-aware encodings, these domains can benefit from more precise
temporal representations, improving downstream predictive tasks.

5.2.3.3 A-THENA

The proposed system identifies the optimal time-aware positional encoding by evaluating each
encoding's effectiveness with respect to the specific characteristics of the attack types analyzed.
The model achieving the lowest loss on the validation set among the proposed time-aware
sinusoidal, Fourier-based, and rotary positional encodings is selected, ensuring superior
generalization performance on unseen data. This integration of multiple time-aware encoding
strategies forms the foundation of the system's Time-Aware Hybrid Encoding (THE), designed
to precisely capture the temporal dynamics of network flows. Concurrently, the Network-
Specific Augmentation (NA) techniques, detailed in Subsection 5.2.2.2, enhance data diversity
and further support robust generalization. The synergistic combination of time-aware
representation learning and augmentation-driven robustness constitutes the core of the proposed
early intrusion detection system, A-THENA.

5.3 Implementation

The implementation of A-THENA is structured into three main components: network data
processing, model development, and deployment on edge devices. Scapy, a Python library for
packet manipulation and network traffic analysis, is employed to extract relevant packet flows
and features from raw PCAP files, enabling efficient flow reconstruction and preprocessing.
The Transformer-based detection models are developed using TensorFlow, incorporating time-
aware positional encodings to capture fine-grained temporal dependencies within network
flows. To facilitate real-time inference on resource-constrained IoT devices, the trained models
are deployed on the Raspberry Pi Zero 2 W using LiteRT, a lightweight runtime optimized for
efficient deep learning execution, formerly known as TFLite. This deployment strategy ensures
low-latency processing, high detection accuracy, and minimal resource overhead, making the
system well-suited for practical loT security applications where computational efficiency and
rapid response times are critical.

5.4 Experimental Methodology

This section provides a detailed overview of the methodology employed for conducting
experiments and systematically evaluating the performance of the proposed system. It details
the experimental setup, dataset characteristics, and evaluation framework, ensuring a rigorous
analysis of the proposed approach.

5.4.1 Datasets

For the experiments, three publicly available benchmark datasets for intrusion detection in loT
environments were employed: CICIoT2023 [167], MQTT-1oT-IDS2020 [168], and IoTID20
[169]. As outlined in Table 5.2, each dataset encompasses distinct attack categories. In the case
of CICIoT2023, the focus was specifically placed on web-based attacks, resulting in a subset
of the dataset referred to as CICIoT23-WEB. Consequently, incorporating the benign traffic
class, the final classification tasks consist of 6, 5, and 9 classes for CICIoT23-WEB, MQTT-
[0T-IDS2020, and IoTID20, respectively.

133

Table 5.2 Attack Categories in the Selected Datasets

CICIoT23-WEB MQTT-10T-IDS2020
SQL Injection
Command Injection
Backdoor Malware

Aggressive Scan
UDP Scan
Sparta SSH Brute-Force

Uploading Attack
Cross-Site Scripting (XSS) MQTT Brute-Force
IoTID20
DoS SYN Flooding Mirai ACK Flooding
Mirai Host Brute-Force Mirai HTTP Flooding
Mirai UDP Flooding MiTM ARP Spoofing
Host & Port Scan OS Scan

The selected datasets provide a diverse and representative set of loT intrusion scenarios,
enabling a comprehensive evaluation of the system's generalization capabilities. CICIoT23-
WEB focuses on web-based application-layer attacks (e.g., SQL Injection, Command Injection,
XSS) that target [oT web services. MQTT-IoT-IDS2020 covers protocol-specific and
reconnaissance attacks (e.g., MQTT Brute-Force, SSH Brute-Force, UDP Scans) affecting IoT
communication protocols. IoTID20 includes Mirai botnet-driven DDoS attacks (e.g., SYN
Flooding, HTTP Flooding, MiTM ARP Spoofing) representing large-scale IoT security threats.
By testing across these datasets, A-THENA is validated against application-layer, protocol-
specific, and DDoS-based intrusions, demonstrating its robustness and real-world applicability
in IoT security.

5.4.2 Training Configuration

For model optimization, the Adam optimizer is employed with a fixed learning rate of 0.0002.
Moreover, the Early Detection Loss function described in Subsection 5.2.2.3 is used, along with
a batch size of 4 samples. To prevent overfitting, early stopping is applied, which monitors the
validation loss and halts training once performance stagnates.

5.4.3 Evaluation Metrics

To assess the effectiveness of A-THENA, an evaluation process was designed to closely
replicate real-world deployment conditions. This approach ensures that performance metrics
accurately reflect the system's practicality and reliability in real-world applications. In practice,
when deployed on a host machine, the system continuously monitors network flows to promptly
determine whether an attack is occurring (/nference stage in Figure 5.1). Given the critical need
for early threat detection in cybersecurity, the evaluation focuses on both the accuracy and
responsiveness of the system.

5.4.3.1 Confidence-Based Performance Metrics
To assess classification performance, a set of confidence-based metrics is employed. Given a
confidence threshold 7 applied to the top-1 softmax score, the evaluation focuses on how
quickly the system arrives at a confident decision. The process begins with the first packet of
each test flow, gradually adding packets until the model's confidence exceeds 7. If the threshold
is not met after processing all N packets, the final classification is based on the full sequence.
A key metric is Earliness, measuring the number of packets needed before the model
reaches the confidence threshold and a correct prediction is made. Lower values indicate faster,
more efficient classification, which is crucial for real-time intrusion detection. At the threshold
point, Top-1 Accuracy, i.e., the percentage of correctly classified flows, False Negative Rate

134

(FNR), i.e., the proportion of attack flows that are incorrectly classified as benign, and False
Alarm Rate (FAR), i.e., the proportion of benign flows mistakenly classified as attacks, are also
computed. A high FNR is particularly concerning, as undetected attacks pose a severe security
risk. Respectively, minimizing FAR is essential to prevent unnecessary security alerts, which
can lead to operational inefficiencies and desensitization to genuine threats.

Lastly, the Early Risk Detection Error (ERDE) [170] is utilized, a metric that evaluates both
the correctness of the model's predictions and the delay in reaching a decision. ERDE is a
parametric metric; flows requiring more than o packets for accurate classification incur a higher
penalty. Given a flow F € F, it is computed as follows:

P I .
— if F'is a False Positive
|T| . . .
ERDE, (F) = 1, if F'is a False Negative (5.15)
1 ———, if Fis a True Positive
1 + edo
0, if F'is a True Negative

where TP denotes the number of True Positives, and d represents the number of packets required
to correctly classify a malicious flow, i.e., the flow's earliness.

5.4.3.2 Resource-Constrained Deployment Evaluation

Beyond classification performance, the feasibility of deploying the proposed system on
resource-limited edge devices is also assessed. To simulate real-world loT applications, the
system is deployed on the Raspberry Pi Zero 2 W, a compact, low-power embedded device
featuring a 1GHz quad-core 64-bit ARM Cortex AS53 processor and 512 MB of RAM,
commonly used in IoT environments. This evaluation measures two key factors:

e Latency: The time required for the model to process and classify each packet. Low
latency is essential for real-time intrusion detection.

e Memory requirements: The system's RAM and storage footprint, which determines
whether it can be deployed on constrained IoT devices without excessive resource
consumption.

The Raspberry Pi Zero 2 W serves as an ideal test platform, as its limited processing power
and memory reflect the constraints of real-world [oT deployments. By validating the system's
efficiency in such an environment, its suitability for lightweight cybersecurity applications is
demonstrated.

5.5 Results

This section provides a detailed analysis of the evaluation results, highlighting the effectiveness
of the proposed approach in comparison to existing methods.

5.5.1 Comparison Methods

The proposed system is evaluated against several well-established baselines and relevant prior
works. Specifically, the comparison includes various traditional positional encodings, including
sinusoidal, Fourier-based, and rotary encodings, along with embedding-based, convolutional,
global relative encodings, and a model variant without any positional encoding.

Embedding Layer. The embedding layer provides a straightforward and effective approach for
incorporating positional information into Transformer models. It maps integer indices to dense

135

vectors, which are learned during training to represent the position of tokens—or, in this case,
packets—within a sequence. A key advantage of this approach is its flexibility, as the model
learns data-driven positional encodings rather than relying on predefined functions. However,
embedding-based encodings introduce additional parameters and can lead to overfitting,
particularly in small models or when training data are limited.

Convolutional Encoding. The convolutional positional encoding employs a one-dimensional
(1D) convolutional layer to dynamically learn positional information from the input sequence.
Unlike fixed or explicitly learned positional embeddings, this approach allows the model to
extract local positional dependencies directly from the data. The convolutional layer applies d,
learnable filters, each of size K = 3, across the sequence, effectively capturing short-range
positional relationships between elements. By leveraging convolutional operations, this method
provides a lightweight and adaptive alternative to traditional positional encodings, making it
particularly useful for capturing spatial locality in network traffic sequences.

Global Relative Encoding. The concept of the relative positional encoding was first introduced
by Shaw et al. [171] to enhance the self-attention mechanism by incorporating relative rather
than absolute positional information. This approach was later refined by Huang et al. [172],
improving efficiency and applicability in various sequence modeling tasks. The adopted
implementation employs a global relative encoding scheme, where relative position
information is incorporated directly into the attention computation. Specifically, the standard
attention mechanism is modified by introducing a learnable relative position embedding matrix
E, € RV resulting in the following attention score formulation:

QK’ + QE/)
J

Table 5.3 Summary of Considered Positional Encodings

A= softmax((5.16)

Encoding | Learnable Number of Parameters
Time-Aware Sinusoidal X 0
Sinusoidal X dy'N =240
Time-Aware Fourier v dn/2=4
Fourier v dn/2=4
Time-Aware RoPE X 0
RoPE X 0
Embedding v dn'N =240
Convolutional v dy(Kd+1)=10760
Global Relative v N-dy, =240

Table 5.3 presents a detailed summary of the characteristics and parameter counts of the
nine considered encoding mechanisms, offering a comprehensive comparison of their impact
on model performance. Additionally, based on the related work outlined in Subsection 5.1.3,
the system is evaluated against four neural network architectures proposed for EIDS in [146],
[147], [148], [149], referred to as eRNN, eTransformer, eAtt, and eGlo. Notably, these models
do not utilize packet timestamps when classifying network flows.

136

5.5.2 Earliness and Accuracy

Figure 5.3 presents the evaluation of the system at a confidence threshold of 95% on the test
set, assessing its performance across all metrics for the three datasets. Cases where FNR or
FAR values are missing indicate that they remained zero for all evaluated models, signifying
perfect detection with no false positives or false negatives. The results reveal distinct dataset-
specific trends. Specifically, CICIoT23-WEB shows the highest variability, suggesting that
encoding effectiveness depends on the attack types present. In contrast, MQTT-IoT-IDS2020
demonstrates stable performance, indicating reduced sensitivity to encoding variations.
Meanwhile, IoTID20 highlights the importance of effectively handling longer network flows,
as the complexity of its attack patterns necessitates the use of extended packet sequences for
accurate detection.

A-THENA's time-aware hybrid encoding consistently yields the highest accuracy across all
evaluated datasets, underscoring its effectiveness in modeling the temporal dynamics of
network traffic. In contrast, traditional encodings perform notably worse, with A-THENA
achieving average accuracy gains of 18.57, 7.58, and 9.21 percentage points on CICIoT23-
WEB, MQTT-10T-IDS2020, and IoTID20, respectively. This performance gap can be attributed
to the inability of conventional positional encodings to account for irregular packet inter-arrival
times, which are critical for detecting anomalies in [oT traffic. While some related work models
(indicated by striped bars) demonstrate competitive performance, none surpass A-THENA. On
average, A-THENA outperforms these existing models by 10.89, 6.26, and 6.69 points on the
respective datasets, further validating the advantages of incorporating time-aware positional
information.

CICloT23-WEB
100 30 100 1.0
Zn | =3 ATHENA
801 EEER 251 ; 80 08 == Proposed Encodings
;;;; 7 Traditional Encodings
2 E “/. Related Work
£ 60 1] $20 || = 60 s elated Worl
z wrez | o o/ & of
g vz | £ z7 < 2
3 a0 gEEE | © 7 & a0 Y04
£ AN 10+ |
1]] 1] v
201 VA N A 20 A
ees 20, ¢4 .
0- o0 0 0_0____._-—/.£L.L_
MQTT-I0T-IDS2020
30 100 10
mmn
I
5555 80 0.8 1
ol A mzo- = 60 0.6 4
z vass | @ 8 w
8 vavs| £15 « 2
3 AN A £ a0 ¥ 041
< 1] 10 s,
peee 2 AR
HEEE 51 B 7 7/ g
Y7 ol
AN NI | . i P . Bl
30 IoTID2(1)00 1.0
| A |
ol | = | -
vacrs BEE
9 1] 20 HEA
g 1] o 1] = 60 0.6 1
z BEEE | ¢ gEE | < o
g AN A vrr | = 8
g very | B vy |2 p .
< EEEE 101 gaa
HEEE “4
AN 5 o 20 02
HEEE geE g B
1] gide , 1 T
[0 R o s e s o e e s e [+ s o e o s e e e 0.0
S &0 33 SN OF L IS EZO 33 SN OF LIS L0 PSSO LIS SZ0
FICEY 9L & IILCR P& & SITLLEY gF& 5
A K & SSx K & ST NS &
GG ‘g‘g@ & GG 455\6? & S5 HR Q/S{\AO'F &
g G @ N &8 & g X &

Figure 5.3 A-THENA's confidence-based evaluation

137

The results further indicate that lower earliness values generally align with higher accuracy,
suggesting that earlier detection correlates with stronger classification performance. However,
latency measurements on the Raspberry Pi Zero (detailed in the next section) reveal that the
length 7 of an input flow has minimal impact on inference latency, allowing the system to
classify longer sequences efficiently. Regarding false detection rates, CICIoT23-WEB and
MQTT-IoT-IDS2020 exhibit higher FAR values for traditional encodings, which could lead to
unnecessary security responses. [oTID20 achieves consistently low FNR values across all
encodings, demonstrating the dataset's robustness in minimizing undetected intrusions. Models
from related work generally show higher FAR/FNR values, reinforcing the advantages of the
proposed hybrid encoding scheme in ensuring reliable detection. Lastly, while the best-
performing time-aware encoding does not always correspond to the lowest ERDEs score, this
discrepancy is mainly due to variations in earliness, which, as previously established, has
minimal impact on latency.

The final models selected for each dataset, determined by the lowest validation loss, are as
follows: for CICIoT23-WEB, the time-aware sinusoidal encoding proves to be the most
effective, achieving 100% accuracy, 1-packet earliness, 0% FAR/FNR, and an ERDE:; score of
0.015 on the test set. For MQTT-IoT-IDS2020, the time-aware Fourier encoding provides the
best trade-off, yielding 100% accuracy, 1-packet earliness, 0% FAR/FNR, and an ERDE;s score
of 0.014. Lastly, for IoTID20, the time-aware RoPE encoding achieves the highest
performance, with 93.83% accuracy, 30-packet earliness, 0% FAR, 1.39% FNR, and an ERDE;s
score of 0.422.

5.5.3 Latency and Memory Footprint

Table 5.4 presents the trade-offs between size (number of parameters), latency (ms) and
memory footprint (MB) when deploying A-THENA on the Raspberry Pi Zero 2 W for
CICloT23-WEB, with flow lengths set to n = 30. The results demonstrate that A-THENA
maintains a latency below 1.5 ms and a memory footprint under 4 MB, making it well-suited
for deployment on resource-constrained edge devices. Experimental analysis indicates that both
sequence length (#) and the choice of positional encoding have a negligible impact on these
metrics, introducing only minor variations. Specifically, the system processes a single-packet
flow in 0.17 ms, whereas a 30-packet flow requires just 1.42 ms, confirming that latency scales
sub-linearly with sequence length. This property enables A-THENA to handle longer sequences
efficiently without introducing excessive computational delays. Consequently, latency is
primarily dictated by model size, reinforcing the necessity of designing a highly compact
Transformer architecture optimized for real-time IoT intrusion detection.

Table 5.4 Model Complexity and Efficiency Comparison

System | Parameters | Latency | Memory Footprint
A-THENA 5086 | 1.42ms 3.25 MB
eRNN 47559 | 20.12 ms 9.13 MB
eTransformer 1224838 | 35.79 ms 7.96 MB
eAtt 15655 | 1.39ms 3.38 MB

eGlo 16934 | 0.57 ms 3.25 MB

When compared to related work, A-THENA achieves an optimal balance between
computational efficiency and resource consumption, significantly outperforming alternative
architectures in parameter efficiency. While eAtt and eGlo, the two CNN architectures, achieve
comparable latency due to their convolutional structure, they require approximately three times

138

the number of parameters used by A-THENA, making them less efficient. Furthermore, despite
their speed, these CNN models fail to match A-THENA's accuracy (see Figure 5.3), further
emphasizing the advantage of time-aware hybrid encodings in intrusion detection. In contrast,
eRNN and eTransformer exhibit significantly higher latency (20.12 ms and 35.79 ms,
respectively), rendering them impractical for real-time IoT security applications. Additionally,
their high memory footprint makes them unsuitable for low-power loT deployments. These
findings highlight that A-THENA effectively balances speed, memory efficiency, and detection
performance, making it a highly efficient solution for early intrusion detection in IoT
environments.

5.5.4 Evaluating Core Components of A-THENA

This section examines the core design components of A-THENA, including the augmentation
pipeline, the proposed Early Detection Loss function, and the impact of quantization. Figure
5.4 presents the evaluation results of A-THENA and its ablated variants across the three
considered datasets, highlighting the contributions of each component to overall system

performance.
CICloT23-WEB
30 100 10
B ATHENA
7 80 081 ATHENA Ablations
. 5" | g ©o 0.6
i s 1 0.6
g £ 151 < g
¢ 5 £ a0 w044
< 101
5 1 20 0.2
o | o oo —
MQTT-10T-IDS2020
30 100 10
> 80 0.8
2 201
§ § g 5961
g £1s g g
g & £ a0 Y04
< 101
54 20 0.2
o == 0 0.0 s s B
10TID20
30 100 10
] 801 0.8
: - < 60 0.64
3 g g L
8 215 g g
g e £ w0 * 0.4
< 104
5 1 201 0.2
0 . . - . 0= o0
L ‘e \! > s> > e N ro< — < NS ~ <
w«\’@ [0\»\‘ w‘\,\a\ [A 00»\\ w«\a\ W O a G 2 IS LARELERC e 0 G

Figure 5.4 Impact of augmentation, EDeL, and quantization on A-THENA's performance

To analyze the role of augmentation, NoTA (No Timestamp Augmentation) applies only
packet augmentation, omitting the two time-aware techniques—lJitter Injection and Traffic
Scaling. In contrast, NoA (No Augmentation) removes all augmentation methods, providing a
baseline for assessing the impact of data augmentation on early intrusion detection. The CE
(Cross-Entropy) variant replaces A-THENA's EDeL loss function with a traditional cross-
entropy loss, allowing an evaluation of the effectiveness of loss-based optimization for early
detection. Lastly, QUANT applies post-training INT8 quantization, measuring the trade-off
between model compression and detection performance.

139

The results strongly validate the design choices behind A-THENA, demonstrating that each
component significantly contributes to achieving high-performance IoT intrusion detection
across all datasets. Notably, the inclusion of time-aware augmentation techniques leads to
superior detection accuracy and robustness, outperforming conventional packet-only
augmentation. The findings reinforce the necessity of incorporating timestamp-aware
transformations and specialized early detection optimization techniques to enhance real-time
intrusion detection for IoT environments.

Table 5.5 presents the effects of post-training INTS8 quantization on both latency speedup
and memory reduction for A-THENA and related work models. The results show that
quantization mainly enhances latency performance for A-THENA, achieving a 1.37X
improvement. However, no reduction in memory footprint is observed. This lack of memory
reduction is likely due to the inherent memory overhead associated with the LiteRT runtime.
Specifically, LiteRT's memory arena, which manages intermediate tensors during model
inference, imposes a fixed memory overhead. This overhead can be substantial, sometimes even
exceeding the model's own size. Consequently, irrespective of how compact the model is, this
baseline memory requirement remains relatively constant, limiting potential memory savings
through quantization. Among the evaluated architectures, the eTransformer model experiences
the most significant benefits, achieving a latency speedup of 1.52X and a substantial memory
reduction of 1.77X. Other architectures demonstrate comparatively marginal improvements in
these metrics.

Table 5.5 Quantization Benefits

System | Latency Speedup | Memory Reduction
A-THENA 1.37%x 1.00x
eRNN 0.86% 1.04x
eTransformer 1.52% 1.77%x
eAtt 1.43% 1.08x

eGlo 1.25% 1.13%x

The limited effectiveness of quantization for A-THENA can further be explained by its
already compact Transformer architecture, which offers minimal scope for additional
compression. Conversely, larger models like eTransformer, containing over one million
parameters, substantially benefit from reducing high-precision weights to INTS, resulting in
considerable memory and latency improvements. Additionally, the slight performance
degradation observed in the eRNN model (0.86X latency speedup) implies that out-of-the-box
post-training quantization may introduce inefficiencies in recurrent computations.

5.6 Conclusion

This work presented A-THENA, an innovative early intrusion detection system tailored for IoT
networks, addressing critical limitations in existing models through its Transformer-based
architecture enriched with Time-Aware Hybrid Encoding (THE). By incorporating packet-level
temporal information directly into positional encodings, A-THENA effectively captures
intricate timing patterns indicative of malicious behavior, significantly enhancing detection
performance. Additionally, the proposed augmentation pipeline for network-specific data,
combined with the custom Early Detection Loss function, substantially improves both accuracy
and early detection capabilities. Experimental evaluations across diverse loT-specific datasets
underline A-THENA's superior performance, achieving near-perfect accuracy, minimal false

140

detection rates, and efficient operation on resource-constrained devices. Deployments on edge
hardware further affirm its practical applicability, demonstrating sub-millisecond inference
latency and a minimal memory footprint. Future work may explore extending the approach to
other sequential data domains and further optimizing the system for a broader array of IoT
environments.

141

Discussion and Concluding Thoughts

The field of deep learning has seen extraordinary progress, enabling Al systems to achieve
human-like capabilities in a range of domains, from natural language understanding to real-
time perception and decision-making. However, this progress has largely been fueled by an
ever-increasing demand for computational resources, making DL models reliant on powerful
hardware and large-scale cloud infrastructures. This trend presents a fundamental challenge:
while Al becomes more capable, its accessibility and usability in resource-constrained
environments remain limited. The ability to bring intelligence to mobile and embedded devices
is not just a technical goal but a necessity for Al to be truly pervasive.

This dissertation has explored ways to narrow the gap between state-of-the-art deep
learning research and its practical application in mobile and embedded computing
environments. Unlike conventional cloud-based Al, where computational resources are
virtually unlimited, edge computing introduces a new paradigm—one that demands efficiency,
adaptability, and optimization at every level, from model architecture to execution strategies.
The research presented here has approached this challenge from multiple perspectives,
contributing new methodologies to enhance DL efficiency while maintaining practical usability.

At its core, this work demonstrates that efficient Al is not just about minimizing resource
usage but about rethinking how intelligence is deployed and executed in real-world conditions.
The introduction of CARIN showcases how DL inference can be dynamically optimized for
heterogeneous mobile hardware, ensuring that multiple models can operate efficiently despite
fluctuating constraints. The study of Transformers in mobile environments provides critical
insights into the architectural bottlenecks that hinder their deployment, offering optimizations
to improve their feasibility for edge computing. Finally, the exploration of time-aware
positional encodings for network security applications through A-THENA highlights how
efficiency-driven Al solutions can extend beyond mainstream domains, addressing critical
challenges in cybersecurity and [oT security.

6.1 Key Findings

The findings of this dissertation reinforce the idea that efficiency is not merely an optimization
goal, but a fundamental requirement for the next generation of Al systems. The ability to
execute DL models effectively in dynamic, resource-constrained environments is essential for
ensuring their applicability beyond high-performance computing centers. The key insights
gained from this research include:

o Holistic optimization is necessary for mobile deep learning: Isolated optimizations
are insufficient for achieving practical efficiency. Instead, system-wide solutions that
account for hardware heterogeneity, real-time adaptation, and multi-model execution
are required.

e Transformers must be redesigned for edge deployment: While Transformer models
have redefined Al, their current architectures remain incompatible with mobile
constraints. Hardware-aware optimizations and model-specific adaptations are
essential for bridging this gap.

143

o Efficient Al can enhance real-time security applications: The application of efficient
deep learning techniques to intrusion detection and network security highlights their
potential to improve the responsiveness and accuracy of cybersecurity solutions while
maintaining computational feasibility.

6.2 Looking into the Future

While this dissertation addresses several pressing challenges in efficient deep learning, the field
continues to evolve, presenting new research opportunities. Future work can expand upon these
contributions in the following ways.

6.2.1 On-Device Training

This dissertation has primarily focused on systems for on-device inference, as the training phase
remains significantly more demanding in terms of resource requirements. As outlined in Section
2.4, training involves repeated updates to model parameters through iterative computation,
which imposes high demands on processing power, memory bandwidth, and energy
consumption. Conventional training approaches—often referred to as batch training—
necessitate access to large-scale datasets, prolonged training durations across multiple epochs,
and extensive hyperparameter tuning.

With the emergence of powerful computational infrastructure and the availability of
massive datasets, such training procedures have been successfully employed to develop
foundation models, which are large, general-purpose models pre-trained on diverse data
sources. These models can subsequently be fine-tuned for specialized downstream tasks using
relatively smaller datasets, thereby leveraging the broad representational knowledge embedded
in the foundation model. Executing full-scale batch training directly on mobile or embedded
devices, however, remains impractical due to several key limitations:

e Limited computational and memory resources, which constrain the ability to handle
large models or datasets.

e The sequential and often sparse nature of data generation on these platforms,
making it difficult to accumulate sufficiently large and diverse training batches.

e The low volume of data produced per device, which reduces the effectiveness of
standalone training efforts.

e Stringent energy constraints, especially for battery-powered devices, where
prolonged or intensive computation can quickly deplete available power.

To overcome these challenges, the paradigm of online training has gained increasing
attention. Online training builds upon the foundation of transfer learning, enabling lightweight,
incremental updates to a pre-trained model using locally acquired data on the device itself. This
approach significantly reduces the volume of data and the computational load required for each
training step, making it better suited for constrained environments. A particularly promising
research direction lies in the development of on-device online training techniques for
personalization, allowing models to adapt to individual users' behaviors, preferences, or local
conditions while preserving privacy and minimizing communication overhead.

One illustrative example involves extending a pre-trained classifier—originally trained
offline to distinguish among n predefined categories—so that it can incrementally learn to
recognize m new classes directly on the device, where m is smaller than 7. This scenario reflects
realistic usage conditions, as mobile and embedded systems continuously encounter novel data
patterns that were not represented during initial training. Incremental, on-device adaptation

144

enables these models to remain up-to-date and context-aware without the need for full
retraining. Beyond improving accuracy and generalization, this approach also enhances
personalization, preserves user privacy by retaining data locally, and increases responsiveness
by minimizing the need for cloud-based computation. These characteristics are well aligned
with the emerging vision of edge intelligence and decentralized learning architectures.

The following sections examine this direction in greater detail, outlining the adopted
methodology, the challenges inherent in enabling on-device online training, the experimental
framework employed, and a summary of preliminary findings.

6.2.1.1 Server-Side Training

To support the experimental evaluation, the MobileNet V2 architecture, pre-trained on the
ImageNet dataset containing 1000 object classes, was adopted. This pre-trained model served
as the foundational backbone for the transfer learning approach targeting the CIFAR-10 dataset.
To adapt the model to this new classification task, the original classification head was replaced
with a new output layer compatible with the ten CIFAR-10 classes. In the context of this study,
the model was trained on a subset of the CIFAR-10 dataset comprising n =9 classes, with the
final output neuron corresponding to the remaining m = 1 class intentionally left untrained for
subsequent on-device learning.

Data preprocessing involved upsampling the CIFAR-10 images from their original
resolution of 32x32 pixels to 160x160 pixels using bilinear interpolation, thereby aligning
more closely with the input resolution expected by MobileNet V2. Following this, pixel
intensities were normalized to the range [0, 1] to facilitate numerical stability and accelerate
convergence. A suite of basic image data augmentation techniques was employed during
training to enhance the model's generalization capacity. These included random horizontal flips,
rotations, contrast adjustments, translations, and zoom transformations.

The training process utilized the Adam optimizer with a conservative learning rate of 10,
paired with the standard cross-entropy loss function. A batch size of 128 images was used. To
mitigate overfitting and improve training efficiency, early stopping was implemented based on
the validation performance. Initially, the convolutional feature extractor of the pre-trained
MobileNet V2 was kept frozen to retain its general-purpose representations. After a few training
epochs, it was selectively unfrozen to allow fine-tuning, thereby enabling the model to better
adapt to the specific characteristics of the CIFAR-10 dataset.

Upon completion of the server-side training phase, the model achieved a classification
accuracy of 95.6% on the held-out test set comprising the n = 9 classes. For comparison, a
baseline model was also trained using the full set of » + m = 10 classes, resulting in a slightly
lower accuracy of 95.3%. This slight difference underscores the potential of the proposed
hybrid server-device training strategy to maintain performance while deferring parts of the
learning process to the device itself.

6.2.1.2 Sample Efficiency Experiments

Training a model to recognize new classes presents multiple challenges, irrespective of whether
training occurs on a server or directly on-device. One of the foundational concerns is
understanding how the number of available training samples impacts model convergence,
overall training duration, and classification performance. To explore this, a series of controlled
experiments was conducted to investigate the relationship between the quantity of training data
and the model's ability to integrate new knowledge while retaining previously acquired
representations. These experiments were executed on a server environment but were carefully
designed to simulate the conditions and constraints of on-device training.

145

A key objective was to determine the point of training stability—that is, the stage at which
the model exhibits balanced classification accuracy across all classes, including both the n =9
previously learned categories and the newly introduced m = 1 class. Among the various
configurations tested, the most effective strategy involved training the model using mini-
batches that included a mixture of samples from both the new class and the already-learned
classes. This mixed-sample training strategy was found to mitigate the well-documented
phenomenon of catastrophic forgetting, where a model's performance on previously learned
classes deteriorates as it incorporates new knowledge. The presence of familiar samples in the
training batches reinforces the model's prior representations, effectively counterbalancing the
influence of the new class and maintaining overall classification integrity.

However, this approach introduces a practical limitation concerning data availability.
Specifically, supporting on-device training using samples from the previously learned classes
requires transferring a portion of that data to the device—a non-trivial task given the storage
and memory constraints of mobile and embedded platforms. For context, each class in the
CIFAR-10 dataset contains 5000 training images. Although modest in size by modern ML
standards, transferring all 45000 images for the 9 known classes to a device is both inefficient
and impractical. This necessitates the development of sample selection strategies that can
identify and retain only the most informative examples from each class.

The underlying motivation behind sample selection is to maximize training efficacy while
minimizing data volume. In other words, not all samples are considered equally valuable for
the learning process, and identifying those with higher utility can significantly improve training
efficiency. To this end, two distinct sampling methodologies were evaluated, assuming a fixed
budget of z = 5 samples per class:

e Random sampling: Used as a baseline for comparison, this strategy involves selecting
z samples at random from the training data for each class. While computationally
simple, this approach does not incorporate any information about sample
informativeness or model confidence, thus serving as a lower-bound reference point.

e Confidence-based sampling: This method leverages the Best-versus-Second-Best
(BvSB) metric, a commonly used indicator of prediction confidence. The BvSB score
quantifies the difference between the most likely and the second most likely class
predictions. Higher BvSB values signify greater model certainty. For each class, the
correctly predicted instances were retained, and the top z samples exhibiting the highest
BvSB values were selected. This subset, referred to as the "best" set, is hypothesized
to consist of clean, unambiguous examples that reinforce the model's internal
representations during incremental learning.

In both cases, the resulting training dataset comprised 5X9 = 45 samples representing the
previously learned classes. A similar issue emerges when selecting samples for evaluation. The
CIFAR-10 test set contains 1000 images per class, amounting to a total of 10000 images.
Transferring this full set to a user device is similarly infeasible. To address this, the effectiveness
of stratified random sampling was examined on the test set, and the results indicated that it
yields performance metrics statistically indistinguishable from those obtained using the full test
set, thereby validating its suitability as a compact yet representative evaluation strategy.

In the final phase of the experiment—aimed at incorporating the 10" class—the model was
trained using a mini-batch size of 5. Each batch included four samples drawn randomly from
either the "best" or "random" sets described above, along with one new sample from the target
class to be learned. Each new sample was stored and reintroduced periodically after k epochs,

146

where 5 <k < 10, to ensure sufficient exposure and memory consolidation. An optimal learning
rate of 5% 10" was identified through empirical tuning. Using this setup, the model was trained
on a total of 45 unique samples for the new class across 160 training epochs. The training
concluded upon reaching the previously defined accuracy stability point, where the model
attained a final accuracy of 91.2% across all ten classes. This result demonstrates the feasibility
of extending classification capabilities via selective, resource-aware training on constrained
platforms.

6.2.1.3 Planned Extensions

While the results presented in this study are encouraging, the research remains at an early stage,
with substantial potential for further exploration and refinement. Several promising directions
have been identified for future work:

e Generalization to additional datasets: Future experiments should examine the
model's ability to generalize by incorporating new classes drawn from other publicly
available datasets or even real-world user-captured data. This will help evaluate how
variations in data distribution affect model performance under the same learning
framework.

o Generalization across different configuration parameters: Additional evaluations
are needed for varying the number of known and new classes (i.e., different n-m splits),
as well as experimenting with different subset sizes for sample selection. This will
allow for broader applicability and a deeper understanding of the trade-offs involved.

e Hyperparameter tuning: Systematic optimization of training parameters—such as
learning rate and batch size—may lead to further improvements in training efficiency
and accuracy, especially under constrained conditions.

o Use of alternative base models: While MobileNet V2 was selected for its balance
between efficiency and performance, testing other lightweight architectures (e.g.,
EfficientNet, MobileViT) may yield better adaptation or improved deployment
characteristics for specific tasks.

¢ Deployment on actual devices: A critical next step involves moving from server-based
simulations to real-world deployment on mobile and embedded hardware. This will
allow for empirical validation of computational and memory demands, training time,
and energy consumption in actual operating environments, and enable direct
comparisons between server-side and on-device training.

e Integration of few-shot or zero-shot learning techniques: To further reduce the data
requirements for on-device personalization, future work could explore methods that
allow the model to generalize from minimal or even no labeled samples, expanding its
adaptability to unseen categories.

e Comparison with related works: Finally, a thorough benchmarking against existing
approaches for on-device learning and personalization will be essential to contextualize
the proposed method's performance, efficiency, and practicality within the broader
research landscape.

These directions aim to reinforce the feasibility of efficient on-device training while
broadening the applicability of the proposed methodology across use cases, model
architectures, and hardware platforms.

147

6.2.2 DNN Performance Prediction in Resource-Constrained Devices

Another promising future research direction arises from a core limitation of the CARIn
framework, as discussed in Section 3.7. Specifically, the inability to conduct a fully end-to-end
implementation and evaluation is primarily due to the computational and time-related burden
associated with evaluating the objective functions of the underlying multi-objective
optimization problem. These evaluations often involve deploying and benchmarking DNNs on
target hardware platforms, a process that is both time-consuming and resource-intensive.

A potential solution lies in integrating performance prediction methodologies that can
estimate key performance indicators of DNN execution on resource-constrained devices
without requiring full deployment. Such metrics typically include latency, energy consumption,
and memory footprint. Incorporating predictive models would not only enable CARInN to be
evaluated more holistically—without exhaustive benchmarking for each candidate solution—
but also has broader utility in the domain of DL system design. In particular, predictive
performance models are commonly used to support NAS, automate hardware-aware model
selection, and guide trade-off decisions between performance and resource efficiency.

This line of work can be framed as a series of regression tasks, where the objective is to
train models capable of estimating the performance metrics of a DNN given its architectural
description and hardware-specific parameters. According to the literature, such predictors can
take various forms, including:

e Analytical models, which rely on mathematical expressions derived from low-level
hardware and computational principles.

e Rule-based models, which use expert-defined heuristics to approximate performance.

e Learning-based models, which learn mappings from DNN configurations to
performance metrics using empirical data.

This work focuses on learning-based approaches due to their adaptability, scalability, and
ability to capture complex relationships that may not be easily modeled analytically. Such
models can be particularly effective when trained on carefully constructed datasets containing
diverse neural architectures and their measured performance on specific hardware platforms.
The goal is to create these datasets and subsequently train compact neural networks—designed
for both efficiency and deployment feasibility—that can predict latency and related metrics
directly from architectural features.

The remainder of this section outlines the initial experimental methodology and reports
early results obtained from a small-scale prototype, laying the groundwork for future large-
scale predictive modeling within the CARIN framework and beyond.

6.2.2.1 Dataset Creation and Preprocessing

To enable learning-based latency prediction, a dataset was constructed by generating a large
and diverse set of MLP models designed for classification tasks. The architectural space was
defined by varying a set of hyperparameters, including the input size, number of hidden layers,
number of neurons per layer, output size, activation function, and the inclusion or exclusion of
components such as batch normalization and INTS8 quantization. This process resulted in a total
of 432 distinct MLP architectures.

Given the focus on mobile environments and the prediction of inference latency, each of
these models was executed on physical smartphone devices. Latency was measured under
different execution configurations, defined by parameters such as batch size, the selected
processor (CPU or GPU), and processor-specific settings, including the number of CPU threads

148

or the precision level used in GPU inference (e.g., FP32/FP16). By combining each model with
various execution configurations, a comprehensive set of model-configuration pairs was
obtained. In total, this procedure produced 21600 latency measurements per device, forming a
structured dataset where each sample corresponds to a unique pairing of a neural network
architecture and an execution configuration. Each sample is represented by 13 input features,
comprising a mix of architectural and execution-level descriptors. These features include:

e Numerical variables (e.g., number of hidden layers, total number of neurons, batch
size).

e Categorical variables (e.g., activation function, processor type).

e Binary variables (e.g., presence of batch normalization, quantization flag).

The preprocessing pipeline followed standard ML practices. Categorical and binary
features were encoded using a combination of one-hot encoding (for nominal categories) and
ordinal encoding (where appropriate). All numerical features were normalized to the [0, 1]
range using min-max scaling to ensure feature value comparability and to promote model
convergence during training. To assess generalization and device-specific variation, the
experimental setup was replicated across two smartphones with differing hardware
characteristics (e.g., processors, available memory). This produced two distinct datasets,
referred to as Dataset A and Dataset B, each with shape (21600, 13), providing a basis for
evaluating model performance across heterogeneous mobile platforms.

6.2.2.2 Preliminary Results from Training

During the initial stage of experimentation, the focus was placed on training models tailored to
individual devices to assess whether a compact MLP architecture could reliably predict
inference latency based on device-specific characteristics. To enhance the granularity of the
analysis, each dataset was further divided according to the type of processor used—CPU or
GPU—thereby enabling the development of processor-specific models. This approach enabled
the investigation of how effectively latency prediction could be specialized for distinct
hardware components within a device.

Each dataset, along with its corresponding partitions, was randomly divided into training,
validation, and test subsets using an 80/10/10 split ratio. Following a random search for
hyperparameter optimization, the MLP regression models were trained and evaluated, with the
results presented in Table 6.1. These results indicate the mean absolute error (MAE) on the
respective test sets.

Table 6.1 Processor-Specific Latency Prediction Models

Processor | Test MAE
A 1.3116
A-CPU 0.5456
A-GPU 0.5847
B 4.6927
B-CPU 2.6073
B-GPU 2.0410

The results demonstrate that all models achieved relatively low MAE values, confirming
that simple neural networks can effectively learn latency prediction functions tailored to
specific devices and processors. The performance discrepancy between Device A and Device
B is attributed to the differing latency scales: Device B exhibited significantly higher average

149

latencies (approximately 12 ms), compared to Device A (around 5 ms), making precise
prediction more challenging. Notably, all models contained fewer than 10000 trainable
parameters, underscoring their suitability for deployment in resource-constrained
environments.

In a second line of investigation, the generalization capabilities of these models to unseen
hyperparameter values were explored. For instance, all samples corresponding to an input size
of 50 features were excluded from the training set and reserved exclusively for testing. The
results indicated that the models could generalize reasonably well to previously unseen values,
particularly when the missing values lay within the internal range of the training data
distribution. For example, when intermediate batch size values (e.g., 2, 4, 8) were excluded
from training, the model produced better predictions than when the boundary values (e.g., 1
and 16) were omitted. This suggests that the learned representations are more robust when
interpolating rather than extrapolating.

Finally, the investigation was extended to a multi-device setting to assess whether a single
model could generalize across devices. For this purpose, the input space was augmented with
additional features characterizing the device's hardware, including CPU frequency, GPU
frequency, and RAM capacity. After conducting hyperparameter tuning via random search, the
best-performing model achieved a test MAE of 0.9395 with a total of 20449 trainable
parameters, highlighting its capacity to effectively integrate cross-device information and
maintain predictive accuracy. This result opens the possibility of creating unified latency
predictors applicable to a broad range of mobile and embedded platforms.

6.2.2.3 Planned Extensions

Building upon the promising preliminary results, several directions are envisioned to extend
and enhance this line of research on latency prediction in resource-constrained environments.
These planned extensions aim to improve model robustness, generalization capability, and
practical applicability across a broader range of hardware platforms and neural architectures.

1. The dataset will be expanded to include a more diverse set of neural network
models beyond MLPs, such as convolutional neural networks and attention-based
architectures. These architectures are more commonly deployed in mobile applications
and pose additional challenges due to their more complex computational patterns and
hardware dependencies. Including them will significantly increase the
representativeness of the dataset and the applicability of the resulting prediction
models.

2. The data collection process will be expanded to incorporate a larger variety of
hardware devices, including additional smartphones, tablets, and embedded systems
with different processor architectures (e.g., ARM Cortex-A series, NPUs, and DSPs).
This will facilitate the development of more generalized predictors capable of handling
cross-platform latency estimation. The augmented device-specific features may also be
enriched with other hardware descriptors, such as cache size, number of cores, and
available hardware accelerators.

3. Another planned extension is the use of more advanced learning techniques, such
as ensemble models or Transformer-based regressors, to further reduce prediction error
and improve the model's capacity to generalize to unseen configurations. Additionally,
the use of model-agnostic feature attribution techniques will be investigated (e.g.,
SHAP or permutation importance) to better understand the contribution of each feature
to the final latency prediction.

150

4. The trained latency predictors are intended to be deployed as practical tools for
real-time performance estimation within neural architecture search pipelines or
adaptive model selection systems. This integration would enable dynamic decision-
making in environments where execution latency must be continuously optimized in
response to changing hardware conditions or application requirements.

Overall, these extensions will reinforce the foundation laid by the initial work and support
the broader objective of enabling efficient and predictive performance modeling for deep
learning in mobile and embedded computing contexts.

6.2.3 Generative AI on Mobile and Embedded Platforms

The field of artificial intelligence has experienced significant advancements with the emergence
of generative Al models, including large language models, large vision models, and diffusion
models. These models have exhibited exceptional performance in areas like NLP, computer
vision, and creative content generation. However, their capabilities come at the cost of
heightened computational complexity, substantial memory demands, and considerable energy
consumption. As a result, such models typically cannot operate outside high-performance
computing and memory infrastructures.

In this context, the principal objective of efficient Al is the optimization of cloud-based
deployment in order to enhance sustainability and reduce operational costs. This involves
techniques such as model pruning, quantization, and hardware-aware neural architecture
search, all of which are designed to reduce computational overhead without significantly
compromising model performance. Additionally, it encompasses workload scheduling and
resource management strategies tailored for energy-efficient inference and training in large-
scale data centers. Conversely, deploying large-scale generative models on resource-
constrained edge devices is generally regarded as a secondary concern due to the significant
technical obstacles involved—challenges that, in many cases, render such deployment
impractical. Addressing these obstacles would require transformative advances not only in
model compression and optimization methods but also in the computational, memory, and
energy efficiency of edge hardware itself.

6.2.3.1 Current State

Generative Al has made significant inroads into mobile and embedded systems, though the
deployment landscape remains constrained by hardware limitations and model size. The current
state is defined by a pragmatic shift toward smaller, highly optimized models that can run
efficiently on modern mobile processors and edge devices:

e Language models such as LLaMA 2, Mistral, and Phi have been successfully
compressed using quantization and pruning techniques, enabling them to run locally
on smartphones and single-board computers. Libraries like //lama.cpp and formats such
as GGUF have made it possible to load and execute these models with acceptable
performance on devices with as little as 4-8 GB of RAM, especially when paired with
neural accelerators like the Apple Neural Engine or Qualcomm's Hexagon DSP. These
models are already used in offline personal assistants, local text summarization tools,
and chat applications that preserve user privacy by avoiding cloud inference.

o In the realm of image generation, applications like Draw Things on iOS have
demonstrated that it is entirely feasible to run variants of Stable Diffusion on-device,
particularly with hardware support from Apple's Core ML or Metal Performance
Shaders. Although such implementations are typically slower and limited in resolution

151

compared to cloud-based services, they offer a viable path for privacy-conscious and
latency-sensitive use cases like mobile art creation or content personalization.

e Speech-related generative models have also been adapted for mobile use. Projects
like whisper.cpp bring real-time transcription to phones and edge devices, whereas
compact text-to-speech models like Bark can synthesize human-like voices without
needing to connect to external servers. These capabilities are increasingly being
embedded into smart home assistants, accessibility tools, and voice-enabled mobile
applications.

Despite these advances, the deployment of full-scale generative models—like GPT-4 or
large diffusion models used in video generation—remains impractical for purely mobile or
embedded systems. These models still require significant computational and memory resources,
necessitating hybrid architectures where part of the inference is performed locally and part in
the cloud. Nonetheless, a growing number of applications now adopt a local-first philosophy,
using on-device generation for fast, lightweight tasks while falling back on cloud services only
when necessary.

Overall, the state of generative Al on mobile and embedded systems is one of constrained
but growing capability. What was once exclusively the domain of high-performance GPUs in
data centers can now, in its lighter forms, operate effectively in users' pockets and at the network
edge. This has opened the door to a new class of private, interactive, and personalized
applications powered by generative Al—without always relying on a persistent internet
connection.

6.2.3.2 Future Research Directions and Open Challenges
Despite the progress in deploying generative Al models on mobile and embedded platforms,
several open challenges remain, shaping a vibrant landscape for future research.

o Trade-off betweenm model expressiveness and resource efficiency: While
compression techniques have enabled lightweight deployments, they often come at the
cost of reduced generation quality, slower inference, or limited generalization.
Developing new architectures specifically designed for low-power generative
inference—rather than merely adapting existing large models—remains a key area of
exploration.

e Optimization of memory usage and latency under hardware constraints:
Generative models, particularly Transformers and diffusion models, are inherently
resource-hungry, often requiring large context windows, multiple layers of attention,
or iterative denoising steps. Efficient memory scheduling, smarter attention
mechanisms, and reduced-precision computation will be critical to sustaining smooth
user experiences in real-time applications.

o Energy efficiency: Continuous generation on battery-powered devices raises concerns
about heat, battery life, and sustainability, particularly for models running in the
background or interacting with real-world sensors. Hardware—software co-design—
where model development is tightly coupled with the characteristics of target
platforms—offers a promising avenue, especially when leveraging custom accelerators
like NPUs and edge TPUs.

e Privacy and security implications: While local inference avoids sharing raw data
with cloud services, it also raises questions of local model integrity and potential
misuse. Research into secure model execution, tamper-proof inference pipelines, and

152

watermarking of locally generated content is essential, particularly in regulated
domains like healthcare or finance.

e Model personalization: Current approaches to on-device fine-tuning are limited by
available memory and compute, making continuous learning and user adaptation
difficult. Finding methods to personalize generative models incrementally and
efficiently—possibly through federated learning or sparse updates—remains a
compelling direction for future work.

e Cross-modal generation: Tasks like text-to-video or speech-to-image remain largely
undeveloped in the mobile context due to high resource demands and model
complexity. Creating new paradigms for multi-modal generation that can operate
across distributed compute nodes—some on the device, some in the edge cloud—could
unlock richer interactive applications without overwhelming a single system.

In summary, while current solutions mark a promising beginning, the future of generative
Al in mobile and embedded systems depends on interdisciplinary innovation across model
design, hardware acceleration, and secure deployment strategies. Bridging the gap between
performance and efficiency will define the next phase of intelligent computing at the edge.

6.2.4 AI-Enabled Networking

The convergence of Al and networking is rapidly emerging as a foundational pillar for the next
generation of communication systems. As networks become more dynamic, heterogeneous, and
large-scale—especially in the context of mobile computing, IoT, and edge-cloud
architectures—the need for adaptive, data-driven decision-making is more critical than ever.
Al, and in particular DL, offers the means to shift from rule-based, static configurations to
systems that learn, predict, and optimize in real time.

Despite this promise, Al-enabled networking remains significantly less explored than other
Al application areas such as image recognition or language understanding. This discrepancy
can be attributed to several key factors. First, network data are often highly structured, temporal,
and dynamic, involving packet flows, protocol stacks, topologies, and multivariate statistics
that are difficult to encode effectively into formats suitable for standard Al pipelines. Second,
unlike the abundance of publicly available image and text datasets, network data are scarce,
heterogeneous, and often privacy-sensitive, limiting the pace of benchmarking and
reproducibility. Moreover, ground-truth labels are costly to obtain and are frequently context-
specific, further complicating model generalization.

Yet the potential for synergy is immense. Al can unlock unprecedented capabilities in areas
such as traffic prediction, routing optimization, intrusion detection, and quality-of-service
adaptation. Conversely, networking provides the infrastructure that Al systems depend on for
distributed training, real-time inference, and federated learning across edge devices. The mutual
dependency suggests that networking and Al are not merely complementary, but co-evolving
disciplines, each enabling new levels of performance and scalability for the other.

Future research must address several open challenges. Developing domain-specific
representations and architectures tailored to network data—such as graph neural networks,
temporal attention mechanisms, and protocol-aware embeddings—is essential to improve the
expressiveness and interpretability of Al models in this domain. Furthermore, online learning
and adaptive systems capable of operating under distributional drift, data scarcity, and limited
computational resources will be key to practical deployments. There is also a pressing need for
benchmark datasets, simulation environments, and standardized evaluation frameworks to
accelerate progress and collaboration in this space.

153

In conclusion, the synergy between Al and networking has the potential to fundamentally

reshape the architecture and operation of future networks. Realizing this vision will require

sustained interdisciplinary effort, bridging communication theory, systems design, and modern

Al. As the demands on networks continue to grow—driven by ubiquitous connectivity,

autonomous systems, and real-time applications—Al-enabled networking stands as a critical
frontier for both innovation and impact.

6.2.5 Additional Directions

Beyond the targeted future work discussed in the previous sections, several broader directions
hold significant potential for advancing the field of efficient deep learning in mobile and
embedded computing environments:

154

Next-generation edge Al systems: A promising avenue involves the dynamic
partitioning of Al models across hybrid cloud-edge infrastructures. By enabling
inference or training to be offloaded selectively to local or cloud resources depending
on context (e.g., latency constraints, energy availability, connectivity), such systems
can achieve a balance between responsiveness and scalability. Further research is
needed to develop adaptive model-splitting strategies, optimize runtime migration, and
design coordination mechanisms that minimize overhead.

Energy-aware model optimization: As energy efficiency remains a central constraint
in mobile and embedded Al, future work could explore optimization frameworks that
explicitly target energy consumption as a primary objective. This includes training
models with energy profiles in mind, developing energy-aware loss functions, and
integrating energy prediction models into deployment pipelines. Such efforts would
align with the growing demand for sustainable and autonomous Al deployments.
Robustness and security of on-device models: With Al models increasingly deployed
at the edge, they become exposed to new classes of threats, including adversarial
attacks and data poisoning. Future work should consider the development of
lightweight adversarial defense mechanisms suitable for constrained environments.
Moreover, incorporating trustworthiness and certification mechanisms for Al behavior
under uncertainty is essential for safety-critical applications.

Self-supervised and continual learning in the wild: Leveraging unlabeled data
generated on-device through self-supervised learning can further reduce dependence
on labeled datasets. Similarly, online learning approaches capable of long-term
adaptation without catastrophic forgetting are essential for real-world, evolving
deployments. This calls for efficient algorithms that can learn incrementally while
being aware of concept drift and data distribution shifts.

Cross-disciplinary system co-design: Achieving true efficiency in mobile and
embedded Al will increasingly require holistic, co-designed solutions that span the
algorithm-hardware-software stack. Future research could explore tighter integration
of neural architecture design with compiler-level optimizations and hardware
characteristics, leading to systems where models are not only functionally effective but
natively optimized for their target execution environments.

Al for systems and systems for Al: Lastly, the reciprocal relationship between Al and
systems design continues to offer fertile ground for innovation. Future work can
explore how Al techniques can be used to design better networks, operating systems,
or resource allocation schemes, and conversely, how novel system architectures can
empower new forms of adaptive and distributed intelligence at the edge.

Together, these directions complement the dissertation's contributions by expanding the
scope from efficient on-device inference and training to a broader vision of intelligent, adaptive,
and sustainable Al deployment across the entire spectrum of edge computing environments.

6.3 Final Thoughts

Conducting this research has been a journey through the fundamental trade-offs that define
modern Al: power versus efficiency, accuracy versus latency, and complexity versus
adaptability. While much of DL research focuses on maximizing accuracy, working within the
constraints of mobile and embedded environments has revealed a deeper truth—true
intelligence is not just about raw computational power but about how well a system can adapt,
optimize, and function under real-world limitations. What has stood out throughout this process
is that efficiency is not merely an afterthought or a secondary goal—it is a defining factor in
whether Al can scale beyond academic research and high-performance computing clusters. The
future of Al does not lie solely in creating larger and more complex models, but in ensuring that
these models can function where they are needed most—in personal devices, autonomous
systems, and real-time environments that shape everyday life.

This dissertation is not just the culmination of years of research, but a step toward a broader
vision of Al that is ubiquitous, sustainable, and seamlessly integrated into the fabric of modern
technology. The work presented here lays a foundation, but many questions remain unanswered.
How can deep learning continue to evolve without unsustainable computational costs? How
can Al be optimized for new and emerging hardware architectures? How can intelligence be
made more adaptable, learning to function within constraints rather than being limited by them?
These are questions that extend far beyond the scope of this dissertation, but they are the
questions that will define the next era of Al. While this research provides some answers, it also
serves as an invitation for further exploration—because the challenge of making Al both
powerful and efficient is not just a research problem, but one of the most important
technological challenges of our time.

6.4 Publications

The research conducted throughout this dissertation has led to several significant publications,
contributing to the broader scientific discourse on efficient deep learning for mobile and
embedded computing. These publications reflect the key findings, methodologies, and
innovations developed in this work, showcasing the impact of this research within the academic
and technological communities.

6.4.1 Journal Articles

e L Panopoulos, S. I. Venieris, and 1. S. Venieris, "CARIn: Constraint-Aware and
Responsive Inference on Heterogeneous Devices for Single- and Multi-DNN
Workloads," ACM Transactions on Embedded Computing Systems, vol. 23, no. 4, pp.
1-32, Jul. 2024, doi: 10.1145/3665868.

6.4.2 Peer-Reviewed Conference/Workshop Papers

e 1. Panopoulos, S. Nikolaidis, S. I. Venieris, and I. S. Venieris, "Exploring the
Performance and Efficiency of Transformer Models for NLP on Mobile Devices," in
2023 IEEE Symposium on Computers and Communications (ISCC), Gammarth,
Tunisia: [EEE, Jul. 2023, pp. 1-4, doi: 10.1109/ISCC58397.2023.10217850.

155

S. I. Venieris, I. Panopoulos, and 1. S. Venieris, "OODIn: An Optimised On-Device
Inference Framework for Heterogeneous Mobile Devices," in 2021 IEEE
International Conference on Smart Computing (SMARTCOMP), Irvine, CA, USA:
IEEE, Aug. 2021, pp. 1-8, doi: 10.1109/SMARTCOMP52413.2021.00021.

S. I. Venieris, 1. Panopoulos, 1. Leontiadis, and 1. S. Venieris, "How to Reach Real-
Time Al on Consumer Devices? Solutions for Programmable and Custom
Architectures," in 2021 IEEE 32nd International Conference on Application-specific
Systems, Architectures and Processors (ASAP), NJ, USA: IEEE, Jul. 2021, pp. 93—
100, doi: 10.1109/ASAP52443.2021.00022.

6.4.3 Under Review/Accepted

156

I. Panopoulos, M.-L. Bartsioka, S. Nikolaidis, S. I. Venieris, D. I. Kaklamani, and I.
S. Venieris, "Dynamic Temporal Positional Encodings for Early Intrusion Detection
in 10T," 10th International Conference on Smart and Sustainable Technologies
(SpliTech 2025), (accepted), 2025.

I. Panopoulos, M.-L. Bartsioka, S. Nikolaidis, S. I. Venieris, D. I. Kaklamani, and I.
S. Venieris, "A-THENA: Early Intrusion Detection for IoT with Time-Aware Hybrid
Encoding and Network-Specific Augmentation," IEEE Transactions on Machine
Learning in Communications and Networking (TMLCN), (under review), 2025.

Glossary

Term

accelerator

accessibility

accuracy

activation function

adaptive

application

Artificial Intelligence (Al)
artificial neural network
attack

attention mechanism
augmentation

baseline

batch

benchmarking

Central Processing Unit (CPU)
classification

cloud

computational complexity
computational resources
Computer Vision
computing environment
confidence

convolutional neural network (CNN)
cross-entropy

cybersecurity

dataset

decision-making

decoder

Deep Learning (DL)

deep neural network (DNN)
delegate

deployment

deterministic

device

Digital Signal Processor (DSP)
distance

earliness

early intrusion detection
Early Risk Detection Error (ERDE)
edge

edge computing

edge intelligence

edge server

efficiency

efficient deep learning
embedded computing
embedding

encoder

Translation

EMTOYLVING

TPOCPaCIUOTNTO

axpifeia

GLVAPTNOT EVEPYOTOINGNG
TPOGUPUOGTIKOG

epappoyn ,

TEYVITI VONLOGUVY

TEXVNTO VEVPWOVIKS dIKTVO
enibeon

HNYOVIGHOG TPOGOY TG
enavénon

YPOLHT 0vapopag

déoun

oLYKPLTIKY aEl0AOYNoN
KEVIPIKY Lovado eneEepyasiog
Katnyoplonoinon

VEPOG

VTOAOYLIGTIKT] TTOATAOKOTITOL
VTOAOYIGTIKOT TOPOL

OpUCT) VTTOALOYIGTOV
VTOAOYIGTIKO TTEPIPAALOV
menoidnon

GUVEMKTIKO VEVP®VIKO diKTLO
dtaotavpovEVT EVTpOTiol
KvPepvoacedieia

GUVOAO OESOUEVOV

AyM amopdcemv
OTTOK®OIKOTOMTNG

Babid pédnon

Babv vevpwvikd diktvo
EKTPOGMOTOC

ovamTuEn

VTETEPUIVIOTIKOG

GUOKELT|

enelepyaoTnNG YNELoKoD GNIATOG
ondoTaom

TPOOTNTO

£ykoupn aviyvevon eioformv

SQAALO EYKAPNG aViXVELOTG KIVOUVOU

TOPVOES

VITOAOYIGTIKT] TOPLPDV
EVPLNG VTOAOYIGTIKT TOPVLPDV
SLOKOLGTNG TOPLODOV
OTOdOTIKOTNTA

omodotikn Padid pddnon
EVOOUATOUEVOS VTTOAOYIGHOG
SLOVUGLLOTIKT OVOTTOPAGTOCT)
KOOKOTOUTNG

energy consumption

ensemble model

execution

false alarm rate (FAR)

false negative rate (FNR)
feedforward network

filtering

flow

Fourier-based positional encoding
framework

fully connected layer
generalization

generative

Graphics Processing Unit (GPU)
hardware

heterogeneity

hyperparameter

input

intelligence

Internet of Things (IoT)
Intrusion Detection System (IDS)
large language model (LLM)
latency

loss function

Machine Learning (ML)
memory

memory footprint

metric

microcontroller

mobile computing

model

multi-head attention
multi-objective optimization (MOO)
Natural Language Processing (NLP)
network

Neural Processing Unit (NPU)
noise

normalization

objective

on-device inference
optimality

optimization

output

oversampling

packet

parameter

pipeline

pooling

positional encoding
preprocessing

privacy

processing power

processor

quantization

raw data

158

KOTOVAAWDGOT EVEPYELOG
HOVTELO GLUVOLOL

EKTELEDT

TOGOGTO YELODYV GLVAYEPUDV

TOGOGTO YELOMG APVNTIKDY OEYLLATWV

diktvo eumpdcblog Tpopodociog
OIATPAPIC O

por

kodikomoinomn Béong Fourier
TAAic10

TANPWOG GLVOEDEUEVO EMITEOO
yevikevon

TOPOLYOYIKOG

povada emeEepyaciog YpoPtKov
VAKO

€TEPOYEVELL

VREPTAPBAUETPOG

€lo0o0g

gupuia

S10dikTVO TV TPOYUATOV
oVOTNUO aviyveLong EWGPoOADY
UEYEAO YAWGGIKO LOVTELO
KkaBvoTtépnon / xpOVOC OmOKPIoNG
GUVAPTIOT OTTOAELNG

HNYovikn padnon

wvipm ,

QTOTOTTOLLO LVIING

UETPIKN

UIKPOEAEYKTNG

KVNTOG VTOAOYIoUOG

HovtéLo

TPOGOYN TOAAIUTADY KEQUADY
BektioTomoinon ToALATA®Y GTOY®OV
enefepyacio PLGIKNG YADOTOG
diktvo

LOVAd0 VEVP®VIKNG emesepyaciog
0opvPoc

KOVOVIKOTIO{Nom

6TOY0G

TOTIKT] CUUTEPAGLLOTOAOYIO
BeAtiotoOTTO

PeAtiotomoinon

£€0d0g

VIEPIELYLOTOAN oL

TOKETO

TOPAUETPOG

oy@yog

GLYKEVTPMOT)

Kwotkomoinon 8€omng
npoemetepyacio

W01OTIKOTNTO

VTOAOYIGTIKT 10Y0C
eneEEPYAOTNG

KkPavtomoinomn

OKOTEPYUOTO OEOOLEVOL

real-time

recurrent neural network (RNN)
rotary positional encoding
runtime

Runtime Manager (RM)
scaling

security

sensor

sequence

sequential data
service-level objective (SLO)
sinusoidal positional encoding
size

smartphones

subflow

sustainability

switching policy (SP)
system

System-on-Chip (SoC)
task

testing

thread

throughput

time-aware

timestamp

token

trade-off

traffic data

training

Transformer

use-case

validation

wearable device
workload

zero-padding

TPOYLLOTIKOV YPOVOD
EMOVOANTITIKO VELPOVIKO S1KTVO

TEPIOTPOPIKT K®OUKomoinom BEong

YPOVOG EKTELEONC
Awoyepiotig Extédleong
KAMpakoon

aoQaAELOL

atenTpog

axoAovbia

aKoAoVOLOKA dEdOUEVA
6TOY0G EMITEOV VN PEGLOG

NUITOVOEIING Kmdtkomoinon B€omng

péyebog

EVPLEG TNAEQPOVO
vToppon
Plroocipudmra
TOMTIKN EVOALOYNG
oUOTN O
GUOTNUO-CE-IUKPOTOIT
depyaoia

€leyyog

VIO

pLOUOG d1EhevoNg
YPOVIKA gvaicOnTOog
YPOVIKN cepayida
oupuporo
avTioTatpon
dedopéva Kivnong
eKmaidevon
LLETAGYTLOTIOTG
GEVAPLO YPNoNG
EMKVPOOT)

(POPETT GLOKELN
VTOAOYIGTIKO POPTio
TOPAYELUGLOL LE UNOEVIKAL

159

References

[1]

[2]

[5]

[6]

[7]

[8]

[12]

H. Sheikh, C. Prins, and E. Schrijvers, Mission AIl: The New System Technology. in
Research for Policy, 2023. doi: 10.1007/978-3-031-21448-6.

M. U. Hadi et al., “Large Language Models: A Comprehensive Survey of its
Applications, Challenges, Limitations, and Future Prospects,” TechRxiv, 2023. doi:
10.36227/techrxiv.23589741.v8.

T. S. Ajani, A. L. Imoize, and A. A. Atayero, “An Overview of Machine Learning
within Embedded and Mobile Devices—Optimizations and Applications,” Sensors, vol.
21, no. 13, p. 4412, 2021, doi: 10.3390/s21134412.

Y. Chen, B. Zheng, Z. Zhang, Q. Wang, C. Shen, and Q. Zhang, “Deep Learning on
Mobile and Embedded Devices: State-of-the-art, Challenges, and Future Directions,”
ACM Comput. Surv., vol. 53, no. 4, pp. 1-37, 2021, doi: 10.1145/3398209.

T. Guo, “Cloud-Based or On-Device: An Empirical Study of Mobile Deep Inference,”
in 2018 IEEE International Conference on Cloud Engineering (IC2E), Orlando, FL:
IEEE, 2018, pp. 184-190. doi: 10.1109/IC2E.2018.00042.

X. Jiang et al., “MNN: A Universal and Efficient Inference Engine,” in Proceedings of
Machine Learning and Systems, 2020, pp. 1-13.

J. Yuan et al., “Mobile Foundation Model as Firmware,” in Proceedings of the 30th
Annual International Conference on Mobile Computing and Networking, Washington
D.C. DC USA: ACM, 2024, pp. 279-295. doi: 10.1145/3636534.3649361.

C. Ni, J. Wu, H. Wang, W. Lu, and C. Zhang, “Enhancing cloud-based large language
model processing with Elasticsearch and transformer models,” in International
Conference on Image, Signal Processing, and Pattern Recognition (ISPP 2024),
Guangzhou, China: SPIE, 2024, p. 66. doi: 10.1117/12.3033606.

V. K. Singh, B. Moharana, T. Sarkar, A. Maan, A. Bhattacherjee, and M. Rakhra,
“Practical Assessment of Large Language Models in Cloud Computing Using Real-
World Data Applications,” in 2024 International Conference on Cybernation and
Computation (CYBERCOM), Dehradun, India: IEEE, 2024, pp. 356-362. doi:
10.1109/CYBERCOM®63683.2024.10803266.

M. Abbasi, A. Shahraki, and A. Taherkordi, “Deep Learning for Network Traffic
Monitoring and Analysis (NTMA): A Survey,” Comput. Commun., vol. 170, pp. 19—
41, 2021, doi: 10.1016/j.comcom.2021.01.021.

1. Panopoulos, S. Venieris, and I. Venieris, “CARIn: Constraint-Aware and Responsive
Inference on Heterogeneous Devices for Single- and Multi-DNN Workloads,” ACM
Trans. Embed. Comput. Syst., vol. 23, no. 4, pp. 1-32, 2024, doi: 10.1145/3665868.

I. Panopoulos, S. Nikolaidis, S. I. Venieris, and I. S. Venieris, “Exploring the
Performance and Efficiency of Transformer Models for NLP on Mobile Devices,” in
2023 IEEE Symposium on Computers and Communications (ISCC), Gammarth,
Tunisia: IEEE, 2023, pp. 1-4. doi: 10.1109/ISCC58397.2023.10217850.

161

[13]

[14]

[16]

[26]

162

S. Khan, M. Naseer, M. Hayat, S. W. Zamir, F. S. Khan, and M. Shah, “Transformers
in Vision: A Survey,” ACM Comput. Surv., vol. 54, no. 10s, pp. 1-41, 2022, doi:
10.1145/3505244.

I. Lauriola, A. Lavelli, and F. Aiolli, “An introduction to Deep Learning in Natural
Language Processing: Models, techniques, and tools,” Neurocomputing, vol. 470, pp.
443-456, 2022, doi: 10.1016/j.neucom.2021.05.103.

S. Zhai et al., “Fine-Tuning Large Vision-Language Models as Decision-Making
Agents via Reinforcement Learning,” in Advances in Neural Information Processing
Systems, Curran Associates, Inc., 2024, pp. 110935-110971.

D. Kaul, H. Raju, and B. K. Tripathy, “Deep Learning in Healthcare,” in Deep
Learning in Data Analytics, vol. 91, in Studies in Big Data, Cham: Springer
International Publishing, 2022, pp. 97-115. doi: 10.1007/978-3-030-75855-4 6.

F. Rosenblatt, “The perceptron: A probabilistic model for information storage and
organization in the brain,” Psychol. Rev., vol. 65, no. 6, pp. 386—408, 1958, doi:
10.1037/h0042519.

M. Minsky and S. Papert, Perceptrons: an introduction to computational geometry,
Expanded ed. Cambridge, Mass: MIT Press, 1988.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-
propagating errors,” Nature, vol. 323, no. 6088, pp. 533-536, 1986, doi:
10.1038/323533a0.

C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn., vol. 20, no. 3, pp.
273-297, 1995, doi: 10.1007/BF00994018.

J. R. Quinlan, “Induction of decision trees,” Mach. Learn., vol. 1, no. 1, pp. 81-106,
1986, doi: 10.1023/A:1022643204877.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, 1998, doi:
10.1109/5.726791.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep
Convolutional Neural Networks,” in Advances in Neural Information Processing
Systems, Curran Associates, Inc., 2012.

K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale
Image Recognition,” in 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Y.
Bengio and Y. LeCun, Eds., 2015.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Las Vegas, NV, USA: IEEE, 2016, pp. 770-778. doi:
10.1109/CVPR.2016.90.

M. Tan and Q. V. Le, “EfficientNet: Rethinking Model Scaling for Convolutional
Neural Networks,” in Proceedings of Machine Learning Research, vol. 97. PMLR,
2019, pp. 6105-6114.

[27]

[28]

[35]

[36]

[38]

S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput., vol.
9, no. 8, pp. 1735-1780, 1997, doi: 10.1162/nec0.1997.9.8.1735.

A. Vaswani et al., “Attention is All you Need,” in Advances in Neural Information
Processing Systems, 2017.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding,” in Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN,
USA, June 2-7, 2019, Volume 1 (Long and Short Papers), Association for
Computational Linguistics, 2019, pp. 4171-4186. doi: 10.18653/V1/N19-1423.

OpenAl et al., “GPT-4 Technical Report,” 2023, arXiv. doi:
10.48550/ARXIV.2303.08774.

C. Raffel et al., “Exploring the Limits of Transfer Learning with a Unified Text-to-
Text Transformer,” J. Mach. Learn. Res., vol. 21, no. 140, pp. 1-67, 2020.

Z.Yang, Z. Dai, Y. Yang, J. G. Carbonell, R. Salakhutdinov, and Q. V. Le, “XLNet:
Generalized Autoregressive Pretraining for Language Understanding,” in Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, 2019, pp. 5754-5764.

A. Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale,” in 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021, OpenReview.net, 2021.

N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko, “End-to-
End Object Detection with Transformers,” in Computer Vision - ECCV 2020 - 16th
European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part I, in
Lecture Notes in Computer Science, vol. 12346. Springer, 2020, pp. 213-229. doi:
10.1007/978-3-030-58452-8 13.

R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-Resolution
Image Synthesis with Latent Diffusion Models,” in IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June
18-24, 2022, 1IEEE, 2022, pp. 10674—10685. doi: 10.1109/CVPR52688.2022.01042.

A. Ramesh et al., “Zero-Shot Text-to-Image Generation,” in Proceedings of the 38th
International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual
Event, in Proceedings of Machine Learning Research, vol. 139. PMLR, 2021, pp.
8821-8831.

A. Radford et al., “Learning Transferable Visual Models From Natural Language
Supervision,” in Proceedings of the 38th International Conference on Machine
Learning, ICML 2021, 18-24 July 2021, Virtual Event, in Proceedings of Machine
Learning Research, vol. 139. PMLR, 2021, pp. 8748—-8763.

J.-B. Alayrac et al., “Flamingo: a Visual Language Model for Few-Shot Learning,” in
Advances in Neural Information Processing Systems 35: Annual Conference on Neural
Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA,
November 28 - December 9, 2022, 2022.

163

[39]

[40]

[41]

[42]

[46]

[47]

[49]

[50]

164

K. Cao, Y. Liu, G. Meng, and Q. Sun, “An Overview on Edge Computing Research,”
IEEE Access, vol. 8, pp. 85714-85728, 2020, doi: 10.1109/ACCESS.2020.2991734.

M. Xu, J. Liu, Y. Liu, F. X. Lin, Y. Liu, and X. Liu, “A First Look at Deep Learning
Apps on Smartphones,” in The World Wide Web Conference, San Francisco CA USA:
ACM, 2019, pp. 2125-2136. doi: 10.1145/3308558.3313591.

S. Deng, H. Zhao, W. Fang, J. Yin, S. Dustdar, and A. Y. Zomaya, “Edge Intelligence:
The Confluence of Edge Computing and Artificial Intelligence,” IEEE Internet Things
J., vol. 7, no. 8, pp. 7457-7469, 2020, doi: 10.1109/J10T.2020.2984887.

Z.Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge Intelligence: Paving
the Last Mile of Artificial Intelligence With Edge Computing,” Proc. IEEE, vol. 107,
no. 8, pp. 1738-1762, 2019, doi: 10.1109/JPROC.2019.2918951.

J. Chen and X. Ran, “Deep Learning With Edge Computing: A Review,” Proc. IEEE,
vol. 107, no. 8, pp. 1655-1674, 2019, doi: 10.1109/JPROC.2019.2921977.

M. Almeida, S. Laskaridis, A. Mehrotra, L. Dudziak, I. Leontiadis, and N. D. Lane,
“Smart at what cost?: characterising mobile deep neural networks in the wild,” in
Proceedings of the 21st ACM Internet Measurement Conference, Virtual Event: ACM,
2021, pp. 658—672. doi: 10.1145/3487552.3487863.

C.-J. Wu et al., “Machine Learning at Facebook: Understanding Inference at the
Edge,” in 2019 IEEE International Symposium on High Performance Computer
Architecture (HPCA), Washington, DC, USA: IEEE, 2019, pp. 331-344. doi:
10.1109/HPCA.2019.00048.

M. Almeida, S. Laskaridis, 1. Leontiadis, S. I. Venieris, and N. D. Lane, “EmBench:
Quantifying Performance Variations of Deep Neural Networks across Modern
Commodity Devices,” in The 3rd International Workshop on Deep Learning for
Mobile Systems and Applications, Seoul Republic of Korea: ACM, 2019, pp. 1-6. doi:
10.1145/3325413.3329793.

A. Ignatov et al., “Al Benchmark: All About Deep Learning on Smartphones in 2019,”
in 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW),
Seoul, Korea (South): IEEE, 2019, pp. 3617-3635. doi: 10.1109/ICCVW.2019.00447.

A. K. Singh, S. Dey, K. McDonald-Maier, K. R. Basireddy, G. V. Merrett, and B. M.
Al-Hashimi, “Dynamic Energy and Thermal Management of Multi-core Mobile
Platforms: A Survey,” IEEE Des. Test, vol. 37, no. 5, pp. 25-33, Oct. 2020, doi:
10.1109/MDAT.2020.2982629.

S. I. Venieris, C.-S. Bouganis, and N. D. Lane, “Multiple-Deep Neural Network
Accelerators for Next-Generation Artificial Intelligence Systems,” Computer, vol. 56,
no. 3, pp. 70-79, Mar. 2023, doi: 10.1109/MC.2022.3176845.

J. S. Jeong et al., “Band: coordinated multi-DNN inference on heterogeneous mobile
processors,” in Proceedings of the 20th Annual International Conference on Mobile
Systems, Applications and Services, Portland Oregon: ACM, Jun. 2022, pp. 235-247.
doi: 10.1145/3498361.3538948.

B. Cox, J. Galjaard, A. Ghiassi, R. Birke, and L. Y. Chen, “Masa: Responsive Multi-
DNN Inference on the Edge,” in 2021 IEEE International Conference on Pervasive

[52]

[53]

[54]

[56]

[58]

[59]

[61]

[62]

Computing and Communications (PerCom), Kassel, Germany: IEEE, Mar. 2021, pp.
1-10. doi: 10.1109/PERCOMS50583.2021.9439111.

G. Menghani, “Efficient Deep Learning: A Survey on Making Deep Learning Models
Smaller, Faster, and Better,” ACM Comput. Surv., vol. 55, no. 12, pp. 1-37, Dec. 2023,
doi: 10.1145/3578938.

L. Wei, Z. Ma, C. Yang, and Q. Yao, “Advances in the Neural Network Quantization:
A Comprehensive Review,” Appl. Sci., vol. 14, no. 17, p. 7445, Aug. 2024, doi:
10.3390/app14177445.

M. Nagel, M. Fournarakis, R. A. Amjad, Y. Bondarenko, M. van Baalen, and T.
Blankevoort, “A White Paper on Neural Network Quantization,” 2021, arXiv. doi:
10.48550/ARXIV.2106.08295.

S. I. Venieris, 1. Panopoulos, and 1. S. Venieris, “OODIn: An Optimised On-Device
Inference Framework for Heterogeneous Mobile Devices,” in 2021 IEEE International
Conference on Smart Computing (SMARTCOMP), Irvine, CA, USA: IEEE, Aug.
2021, pp. 1-8. doi: 10.1109/SMARTCOMP52413.2021.00021.

Y. Kim, J. Kim, D. Chae, D. Kim, and J. Kim, “puLayer: Low Latency On-Device
Inference Using Cooperative Single-Layer Acceleration and Processor-Friendly
Quantization,” in Proceedings of the Fourteenth EuroSys Conference 2019, Dresden
Germany: ACM, Mar. 2019, pp. 1-15. doi: 10.1145/3302424.3303950.

S. Wang, G. Ananthanarayanan, Y. Zeng, N. Goel, A. Pathania, and T. Mitra, “High-
Throughput CNN Inference on Embedded ARM Big. LITTLE Multicore Processors,”
IEEFE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 39, no. 10, pp. 2254-2267,
Oct. 2020, doi: 10.1109/TCAD.2019.2944584.

S. I. Venieris, 1. Panopoulos, 1. Leontiadis, and I. S. Venieris, “How to Reach Real-
Time Al on Consumer Devices? Solutions for Programmable and Custom
Architectures,” in 2021 IEEE 32nd International Conference on Application-specific
Systems, Architectures and Processors (ASAP), NJ, USA: IEEE, Jul. 2021, pp. 93-100.
doi: 10.1109/ASAP52443.2021.00022.

H. Cheng, M. Zhang, and J. Q. Shi, “A Survey on Deep Neural Network Pruning:
Taxonomy, Comparison, Analysis, and Recommendations,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 46, no. 12, pp. 10558—10578, Dec. 2024, doi:
10.1109/TPAMI.2024.3447085.

J. Gou, B. Yu, S. J. Maybank, and D. Tao, “Knowledge Distillation: A Survey,” Int. J.
Comput. Vis., vol. 129, no. 6, pp. 1789-1819, Jun. 2021, doi: 10.1007/s11263-021-
01453-z.

A. G. Howard et al., “MobileNets: Efficient Convolutional Neural Networks for
Mobile Vision Applications,” Apr. 17, 2017, arXiv: arXiv:1704.04861. doi:
10.48550/arXiv.1704.04861.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “MobileNetV2:
Inverted Residuals and Linear Bottlenecks,” in 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Salt Lake City, UT: IEEE, Jun. 2018, pp.
4510-4520. doi: 10.1109/CVPR.2018.00474.

165

[63]

[65]

[66]

[67]

[68]

[71]

[72]

166

M. Tan and Q. Le, “EfficientNetV2: Smaller Models and Faster Training,” in
Proceedings of the 38th International Conference on Machine Learning, in
Proceedings of Machine Learning Research, vol. 139. PMLR, Jul. 2021, pp. 10096—
10106.

X. Jiao et al., “TinyBERT: Distilling BERT for Natural Language Understanding,” in
Findings of the Association for Computational Linguistics: EMNLP 2020, Association
for Computational Linguistics, Nov. 2020, pp. 4163—4174. doi:
10.18653/v1/2020.findings-emnlp.372.

V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “DistilBERT, a distilled version of
BERT: smaller, faster, cheaper and lighter,” Mar. 01, 2020, arXiv: arXiv:1910.01108.
doi: 10.48550/arXiv.1910.01108.

M. Berman, L. Pishchulin, N. Xu, M. B. Blaschko, and G. Medioni, “AOWS:
Adaptive and Optimal Network Width Search With Latency Constraints,” in 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle,
WA, USA: IEEE, Jun. 2020, pp. 11214-11223. doi: 10.1109/CVPR42600.2020.01123.

H. Bouzidi, M. Odema, H. Ouarnoughi, M. A. Al Faruque, and S. Niar, “HADAS:
Hardware-Aware Dynamic Neural Architecture Search for Edge Performance
Scaling,” in 2023 Design, Automation & Test in Europe Conference & Exhibition
(DATE), Antwerp, Belgium: IEEE, Apr. 2023, pp. 1-6. doi:
10.23919/DATES6975.2023.10137095.

B. Wu et al., “FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable
Neural Architecture Search,” in 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), Long Beach, CA, USA: IEEE, Jun. 2019, pp. 10726—
10734. doi: 10.1109/CVPR.2019.01099.

L. L. Zhang, Y. Yang, Y. Jiang, W. Zhu, and Y. Liu, “Fast Hardware-Aware Neural
Architecture Search,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR Workshops 2020, Seattle, WA, USA, June 14-19, 2020, Computer
Vision Foundation / IEEE, 2020, pp. 2959-2967. doi:
10.1109/CVPRW50498.2020.00354.

H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once-for-All: Train One Network
and Specialize it for Efficient Deployment,” in 8tk International Conference on
Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020,
OpenReview.net, 2020.

A. Kundu, L. Wynter, R. D. Lee, and L. Angel Bathen, “Transfer-Once-For-All: Al
Model Optimization for Edge,” in 2023 IEEE International Conference on Edge
Computing and Communications (EDGE), Chicago, IL, USA: IEEE, Jul. 2023, pp.
26-35. doi: 10.1109/EDGE60047.2023.00017.

J. Lee, J. Rhim, D. Kang, and S. Ha, “SNAS: Fast Hardware-Aware Neural
Architecture Search Methodology,” IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., vol. 41, no. 11, pp. 48264836, Nov. 2022, doi: 10.1109/TCAD.2021.3134843.

H. Wen et al., “AdaptiveNet: Post-deployment Neural Architecture Adaptation for
Diverse Edge Environments,” in Proceedings of the 29th Annual International

[74]

[76]

[79]

[80]

[81]

[82]

[83]

Conference on Mobile Computing and Networking, Madrid Spain: ACM, Oct. 2023,
pp. 1-17. doi: 10.1145/3570361.3592529.

P. Dollar, M. Singh, and R. Girshick, “Fast and Accurate Model Scaling,” in 2021
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
Nashville, TN, USA: IEEE, Jun. 2021, pp. 924-932. doi:
10.1109/CVPR46437.2021.00098.

J. Xie, X. Su, S. You, Z. Ma, F. Wang, and C. Qian, “ScaleNet: Searching for the
Model to Scale,” in Computer Vision — ECCV 2022, vol. 13681, in Lecture Notes in
Computer Science, vol. 13681, Cham: Springer Nature Switzerland, 2022, pp. 104—
120. doi: 10.1007/978-3-031-19803-8 7.

J. Guo, S. Xia, and C. Peng, “OPA: One-Predict-All For Efficient Deployment,” in
IEEE INFOCOM 2023 - IEEE Conference on Computer Communications, New York
City, NY, USA: IEEE, May 2023, pp. 1-10. doi:
10.1109/INFOCOMS53939.2023.10228928.

B. Chen, M. Lin, R. Ji, and L. Cao, “Prioritized Subnet Sampling for Resource-
Adaptive Supernet Training,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 9,
pp. 11108-11119, Sep. 2023, doi: 10.1109/TPAMI.2023.3265198.

R. Han, Q. Zhang, C. H. Liu, G. Wang, J. Tang, and L. Y. Chen, “LegoDNN: block-
grained scaling of deep neural networks for mobile vision,” in Proceedings of the 27th

Annual International Conference on Mobile Computing and Networking, New Orleans
Louisiana: ACM, Oct. 2021, pp. 406—419. doi: 10.1145/3447993.3483249.

T. Yang, S. Zhu, C. Chen, S. Yan, M. Zhang, and A. Willis, “MutualNet: Adaptive
ConvNet via Mutual Learning from Network Width and Resolution,” in Computer
Vision — ECCV 2020, vol. 12346, in Lecture Notes in Computer Science, vol. 12346,
Cham: Springer International Publishing, 2020, pp. 299-315. doi: 10.1007/978-3-030-
58452-8 18.

P. Guo, B. Hu, and W. Hu, “Mistify: Automating DNN Model Porting for On-Device
Inference at the Edge,” in 18th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 21), USENIX Association, Apr. 2021, pp. 705-719.

S. Laskaridis, S. I. Venieris, H. Kim, and N. D. Lane, “HAPI: hardware-aware
progressive inference,” in Proceedings of the 39th International Conference on
Computer-Aided Design, Virtual Event USA: ACM, Nov. 2020, pp. 1-9. doi:
10.1145/3400302.3415698.

S. Liu, B. Guo, K. Ma, Z. Yu, and J. Du, “AdaSpring: Context-adaptive and Runtime-
evolutionary Deep Model Compression for Mobile Applications,” Proc. ACM Interact.
Mob. Wearable Ubiquitous Technol., vol. 5, no. 1, pp. 1-22, Mar. 2021, doi:
10.1145/3448125.

B. Kutukcu, S. Baidya, A. Raghunathan, and S. Dey, “Contention Grading and
Adaptive Model Selection for Machine Vision in Embedded Systems,” ACM Trans.
Embed. Comput. Syst., vol. 21, no. 5, pp. 1-29, Sep. 2022, doi: 10.1145/3520134.

Z. Xu, D. Yang, C. Yin, J. Tang, Y. Wang, and G. Xue, “A Co-Scheduling Framework
for DNN Models on Mobile and Edge Devices with Heterogeneous Hardware,” IEEE
Trans. Mob. Comput., pp. 1-1, 2021, doi: 10.1109/TMC.2021.3107424.

167

[85]

[88]

[91]

[93]

[94]

[95]

[96]

168

H. Fan, S. I. Venieris, A. Kouris, and N. Lane, “Sparse-DySta: Sparsity-Aware
Dynamic and Static Scheduling for Sparse Multi-DNN Workloads,” in 56th Annual
IEEE/ACM International Symposium on Microarchitecture, Toronto ON Canada:
ACM, Oct. 2023, pp. 353-366. doi: 10.1145/3613424.3614263.

A. Kouris, S. I. Venieris, S. Laskaridis, and N. D. Lane, “Fluid Batching: Exit-Aware
Preemptive Serving of Early-Exit Neural Networks on Edge NPUs,” 2022, arXiv. doi:
10.48550/ARXIV.2209.13443.

Z. Zhang, H. Li, Y. Zhao, C. Lin, and J. Liu, “BCEdge: SLO-Aware DNN Inference
Services with Adaptive Batching on Edge Platforms,” 2023, arXiv. doi:
10.48550/ARXIV.2305.01519.

Z. Zhang, Y. Zhao, and J. Liu, “Octopus: SLO-Aware Progressive Inference Serving
via Deep Reinforcement Learning in Multi-tenant Edge Cluster,” in Service-Oriented
Computing, vol. 14420, in Lecture Notes in Computer Science, vol. 14420, Cham:
Springer Nature Switzerland, 2023, pp. 242-258. doi: 10.1007/978-3-031-48424-7 18.

W. Seo, S. Cha, Y. Kim, J. Huh, and J. Park, “SLO-Aware Inference Scheduler for
Heterogeneous Processors in Edge Platforms,” ACM Trans. Archit. Code Optim., vol.
18, no. 4, pp. 1-26, Dec. 2021, doi: 10.1145/3460352.

J. Yiand Y. Lee, “Heimdall: mobile GPU coordination platform for augmented reality
applications,” in Proceedings of the 26th Annual International Conference on Mobile
Computing and Networking, London United Kingdom: ACM, Sep. 2020, pp. 1-14.
doi: 10.1145/3372224.3419192.

X. He, X. Wang, Z. Zhou, J. Wu, Z. Yang, and L. Thiele, “On-Device Deep Multi-Task
Inference via Multi-Task Zipping,” IEEE Trans. Mob. Comput., vol. 22, no. 5, pp.
2878-2891, May 2023, doi: 10.1109/TMC.2021.3124306.

M. Yuan, L. Zhang, Z. Zheng, Y.-N. Zhang, and X.-Y. Li, “MLink: Linking Black-Box
Models From Multiple Domains for Collaborative Inference,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 45, no. 10, pp. 12085-12097, Oct. 2023, doi:
10.1109/TPAMI.2023.3283780.

A. Karatzas and 1. Anagnostopoulos, “OmniBoost: Boosting Throughput of
Heterogeneous Embedded Devices under Multi-DNN Workload,” in 2023 60th
ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, USA: IEEE,
Jul. 2023, pp. 1-6. doi: 10.1109/DAC56929.2023.10247989.

N. Ling, K. Wang, Y. He, G. Xing, and D. Xie, “RT-mDL: Supporting Real-Time
Mixed Deep Learning Tasks on Edge Platforms,” in Proceedings of the 19th ACM
Conference on Embedded Networked Sensor Systems, Coimbra Portugal: ACM, Nov.
2021, pp. 1-14. doi: 10.1145/3485730.3485938.

S. Eyerman and L. Eeckhout, “System-Level Performance Metrics for Multiprogram
Workloads,” IEEE Micro, vol. 28, no. 3, pp. 42-53, May 2008, doi:
10.1109/MM.2008.44.

F. Yu, D. Wang, L. Shangguan, M. Zhang, C. Liu, and X. Chen, “A Survey of Multi-
Tenant Deep Learning Inference on GPU,” 2022, arXiv. doi:
10.48550/ARXIV.2203.09040.

[97]

[98]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

Q. Yang et al., “GMorph: Accelerating Multi-DNN Inference via Model Fusion,” in
Proceedings of the Nineteenth European Conference on Computer Systems, Athens
Greece: ACM, Apr. 2024, pp. 505-523. doi: 10.1145/3627703.3650074.

F. Yu et al., “Automated Runtime-Aware Scheduling for Multi-Tenant DNN Inference
on GPU,” in 2021 IEEE/ACM International Conference On Computer Aided Design
(ICCAD), Munich, Germany: IEEE, Nov. 2021, pp. 1-9. doi:
10.1109/ICCAD51958.2021.9643501.

N. Gunantara, “A review of multi-objective optimization: Methods and its
applications,” Cogent Eng., vol. 5, no. 1, p. 1502242, Jan. 2018, doi:
10.1080/23311916.2018.1502242.

J. L. J. Pereira, G. A. Oliver, M. B. Francisco, S. S. Cunha, and G. F. Gomes, “A
Review of Multi-objective Optimization: Methods and Algorithms in Mechanical
Engineering Problems,” Arch. Comput. Methods Eng., vol. 29, no. 4, pp. 2285-2308,
Jun. 2022, doi: 10.1007/s11831-021-09663-x.

S. Eyerman and L. Eeckhout, “System-Level Performance Metrics for Multiprogram
Workloads,” IEEE Micro, vol. 28, no. 3, pp. 42-53, May 2008, doi:
10.1109/MM.2008.44.

S. Sharma and V. Kumar, “A Comprehensive Review on Multi-objective Optimization
Techniques: Past, Present and Future,” Arch. Comput. Methods Eng., vol. 29, no. 7, pp.
5605-5633, Nov. 2022, doi: 10.1007/s11831-022-09778-9.

O. Russakovsky et al., “ImageNet Large Scale Visual Recognition Challenge,” Int. J.
Comput. Vis., vol. 115, no. 3, pp. 211-252, 2015, doi: 10.1007/s11263-015-0816-y.

I. Radosavovic, R. P. Kosaraju, R. Girshick, K. He, and P. Dollar, “Designing Network
Design Spaces,” in 2020 I[EEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Seattle, WA, USA: IEEE, Jun. 2020, pp. 10425-10433. doi:
10.1109/CVPR42600.2020.01044.

S. Mehta and M. Rastegari, “MobileViT: Light-weight, General-purpose, and Mobile-
friendly Vision Transformer,” in The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-29, 2022, OpenReview.net, 2022.

B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning Transferable Architectures
for Scalable Image Recognition,” in 2018 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018,
Computer Vision Foundation / IEEE Computer Society, 2018, pp. 8697-8710. doi:
10.1109/CVPR.2018.00907.

Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie, “A ConvNet for the
2020s,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR
2022, New Orleans, LA, USA, June 18-24, 2022, IEEE, 2022, pp. 11966-11976. doi:
10.1109/CVPR52688.2022.01167.

E. Saravia, H.-C. T. Liu, Y.-H. Huang, J. Wu, and Y.-S. Chen, “CARER:
Contextualized Affect Representations for Emotion Recognition,” in Proceedings of
the 2018 Conference on Empirical Methods in Natural Language Processing,
Brussels, Belgium: Association for Computational Linguistics, 2018, pp. 3687-3697.
doi: 10.18653/v1/D18-1404.

169

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

170

S. Mukherjee, A. H. Awadallah, and J. Gao, “XtremeDistil Transformers: Task Transfer
for Task-agnostic Distillation,” Jun. 12, 2021, arXiv: arXiv:2106.04563. doi:
10.48550/arXiv.2106.04563.

Z. Sun, H. Yu, X. Song, R. Liu, Y. Yang, and D. Zhou, “MobileBERT: a Compact
Task-Agnostic BERT for Resource-Limited Devices,” in Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, Online: Association
for Computational Linguistics, 2020, pp. 2158-2170. doi: 10.18653/v1/2020.acl-
main.195.

A. Quattoni and A. Torralba, “Recognizing indoor scenes,” in 2009 I[EEE Conference
on Computer Vision and Pattern Recognition, Miami, FL: IEEE, Jun. 2009, pp. 413—
420. doi: 10.1109/CVPR.2009.5206537.

J. F. Gemmeke et al., “Audio Set: An ontology and human-labeled dataset for audio
events,” in 2017 IEEFE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), New Orleans, LA: IEEE, Mar. 2017, pp. 776-780. doi:
10.1109/ICASSP.2017.7952261.

Z. Zhang, Y. Song, and H. Qi, “Age Progression/Regression by Conditional
Adversarial Autoencoder,” in 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Honolulu, HI: IEEE, Jul. 2017, pp. 4352—4360. doi:
10.1109/CVPR.2017.463.

C. Raffel et al., “Exploring the Limits of Transfer Learning with a Unified Text-to-
Text Transformer,” J. Mach. Learn. Res., vol. 21, no. 140, pp. 1-67, 2020.

Y. Liu et al., “RoBERTa: A Robustly Optimized BERT Pretraining Approach,” 2019,
arXiv. doi: 10.48550/ARXIV.1907.11692.

L. Ly, C. Liu, J. Li, and Y. Gong, “Exploring Transformers for Large-Scale Speech
Recognition,” in Interspeech 2020, ISCA, Oct. 2020, pp. 5041-5045. doi:
10.21437/Interspeech.2020-2638.

Y. Feng, M. Xie, Z. Tian, S. Wang, Y. Lu, and J. Shu, “Mobius: Fine Tuning Large-
Scale Models on Commodity GPU Servers,” in Proceedings of the 28th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2, Vancouver BC Canada: ACM, Jan. 2023, pp. 489-501.
doi: 10.1145/3575693.3575703.

V. J. Reddi et al., “MLPerf Inference Benchmark,” in 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA), Valencia, Spain: IEEE,
May 2020, pp. 446—459. doi: 10.1109/ISCA45697.2020.00045.

Q. Cao, A. E. Irimiea, M. Abdelfattah, A. Balasubramanian, and N. D. Lane, “Are
Mobile DNN Accelerators Accelerating DNNs?,” in Proceedings of the 5th
International Workshop on Embedded and Mobile Deep Learning, Virtual WI USA:
ACM, Jun. 2021, pp. 7-12. doi: 10.1145/3469116.3470011.

S. S. A. Zaidi, M. S. Ansari, A. Aslam, N. Kanwal, M. Asghar, and B. Lee, “A survey
of modern deep learning based object detection models,” Digit. Signal Process., vol.
126, p. 103514, Jun. 2022, doi: 10.1016/j.dsp.2022.103514.

X. Wang, L. L. Zhang, Y. Wang, and M. Yang, “Towards efficient vision transformer
inference: a first study of transformers on mobile devices,” in Proceedings of the 23rd

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

Annual International Workshop on Mobile Computing Systems and Applications,
Tempe Arizona: ACM, Mar. 2022, pp. 1-7. doi: 10.1145/3508396.3512869.

W. Wang, F. Wei, L. Dong, H. Bao, N. Yang, and M. Zhou, “MiniLM: Deep Self-
Attention Distillation for Task-Agnostic Compression of Pre-Trained Transformers,”
in Advances in Neural Information Processing Systems, Curran Associates, Inc., 2020,
pp. 5776-5788.

K. Clark, M.-T. Luong, Q. V. Le, and C. D. Manning, “ELECTRA: Pre-training Text
Encoders as Discriminators Rather Than Generators,” in 8th International Conference
on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020,
OpenReview.net, 2020.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and 1. Sutskever, “Language
Models are Unsupervised Multitask Learners,” OpenAl, 2019.

H. Kopetz and W. Steiner, “Internet of Things,” in Real-Time Systems, Cham: Springer
International Publishing, 2022, pp. 325-341. doi: 10.1007/978-3-031-11992-7 _13.

A. E. Omolara et al., “The internet of things security: A survey encompassing
unexplored areas and new insights,” Comput. Secur., vol. 112, p. 102494, 2022, doi:
https://doi.org/10.1016/j.cose.2021.102494.

L. Mohammadpour, T. C. Ling, C. S. Liew, and A. Aryanfar, “A Survey of CNN-Based
Network Intrusion Detection,” Appl. Sci., vol. 12, no. 16, p. 8162, Aug. 2022, doi:
10.3390/app12168162.

I. Ullah and Q. H. Mahmoud, “Design and Development of RNN Anomaly Detection
Model for IoT Networks,” IEEE Access, vol. 10, pp. 62722—-62750, 2022, doi:
10.1109/ACCESS.2022.3176317.

L. D. Manocchio, S. Layeghy, W. W. Lo, G. K. Kulatilleke, M. Sarhan, and M.
Portmann, “FlowTransformer: A transformer framework for flow-based network
intrusion detection systems,” Expert Syst. Appl., vol. 241, p. 122564, May 2024, doi:
10.1016/j.eswa.2023.122564.

M. F. Saiyedand and 1. Al-Anbagi, “Deep Ensemble Learning With Pruning for DDoS
Attack Detection in IoT Networks,” IEEE Trans. Mach. Learn. Commun. Netw., vol. 2,
pp- 596-616, 2024, doi: 10.1109/TMLCN.2024.3395419.

M. Lopez-Vizcaino, F. J. Novoa, D. Fernandez, V. Carneiro, and F. Cacheda, “Early
Intrusion Detection for OS Scan Attacks,” in 2019 IEEE 18th International Symposium
on Network Computing and Applications (NCA), Cambridge, MA, USA: IEEE, Sep.
2019, pp. 1-5. doi: 10.1109/NCA.2019.8935067.

N. Patwardhan, S. Marrone, and C. Sansone, “Transformers in the Real World: A
Survey on NLP Applications,” Information, vol. 14, no. 4, p. 242, Apr. 2023, doi:
10.3390/info14040242.

M. Shafiq, Z. Tian, A. K. Bashir, X. Du, and M. Guizani, “CorrAUC: A Malicious Bot-
IoT Traffic Detection Method in IoT Network Using Machine-Learning Techniques,”
IEEFE Internet Things J., vol. 8, no. 5, pp. 3242-3254, Mar. 2021, doi:
10.1109/JI0T.2020.3002255.

171

[134] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: An Ensemble of
Autoencoders for Online Network Intrusion Detection,” in Proceedings 2018 Network
and Distributed System Security Symposium, San Diego, CA: Internet Society, 2018.
doi: 10.14722/ndss.2018.23204.

[135] K. Farhana, M. Rahman, and Md. T. Ahmed, “An intrusion detection system for packet
and flow based networks using deep neural network approach,” Int. J. Electr. Comput.
Eng. IJECE, vol. 10, no. 5, p. 5514, Oct. 2020, doi: 10.11591/ijece.v10i5.pp5514-
5525.

[136] P. Toupas, D. Chamou, K. M. Giannoutakis, A. Drosou, and D. Tzovaras, “An
Intrusion Detection System for Multi-class Classification Based on Deep Neural
Networks,” in 2019 18th IEEE International Conference On Machine Learning And
Applications (ICMLA), Boca Raton, FL, USA: IEEE, Dec. 2019, pp. 1253—1258. doi:
10.1109/ICMLA.2019.00206.

[137] M. A. Khan ef al., “A Deep Learning-Based Intrusion Detection System for MQTT
Enabled IoT,” Sensors, vol. 21, no. 21, p. 7016, Oct. 2021, doi: 10.3390/s21217016.

[138] Y. Zhang, X. Chen, D. Guo, M. Song, Y. Teng, and X. Wang, “PCCN: Parallel Cross
Convolutional Neural Network for Abnormal Network Traffic Flows Detection in
Multi-Class Imbalanced Network Traffic Flows,” IEEE Access, vol. 7, pp. 119904—
119916, 2019, doi: 10.1109/ACCESS.2019.2933165.

[139] A. Tekerek, “A novel architecture for web-based attack detection using convolutional
neural network,” Comput. Secur., vol. 100, p. 102096, Jan. 2021, doi:
10.1016/j.cose.2020.102096.

[140] G.T. Fox and R. V. Boppana, “On Early Detection of Anomalous Network Flows,”
IEEE Access, vol. 11, pp. 68588—68603, 2023, doi: 10.1109/ACCESS.2023.3291686.

[141] M. Shahhosseini, H. Mashayekhi, and M. Rezvani, “A Deep Learning Approach for
Botnet Detection Using Raw Network Traffic Data,” J. Netw. Syst. Manag., vol. 30,
no. 3, p. 44, Jul. 2022, doi: 10.1007/s10922-022-09655-7.

[142] X. Han, S. Cui, S. Liu, C. Zhang, B. Jiang, and Z. Lu, “Network intrusion detection
based on n-gram frequency and time-aware transformer,” Comput. Secur., vol. 128, p.
103171, May 2023, doi: 10.1016/j.cose.2023.103171.

[143] W. Wang et al., “HAST-IDS: Learning Hierarchical Spatial-Temporal Features Using
Deep Neural Networks to Improve Intrusion Detection,” IEEE Access, vol. 6, pp.
1792-1806, 2018, doi: 10.1109/ACCESS.2017.2780250.

[144] X. Zhang, J. Chen, Y. Zhou, L. Han, and J. Lin, “A Multiple-Layer Representation
Learning Model for Network-Based Attack Detection,” IEEE Access, vol. 7, pp.
91992-92008, 2019, doi: 10.1109/ACCESS.2019.2927465.

[145] Y. Zhu, D. Han, and X. Yin, “A hierarchical network intrusion detection model based
on unsupervised clustering,” in Proceedings of the 13th International Conference on
Management of Digital EcoSystems, Virtual Event Tunisia: ACM, Nov. 2021, pp. 22—
29. doi: 10.1145/3444757.3485098.

[146] T. Ahmad and D. Truscan, “Early Detection with Explainability of Network Attacks
Using Deep Learning,” in 2024 IEEE International Conference on Software Testing,

172

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

Verification and Validation Workshops (ICSTW), Toronto, ON, Canada: IEEE, May
2024, pp. 161-167. doi: 10.1109/ICSTW60967.2024.00040.

M. M. Islam, T. Ahmad, and D. Truscan, “An Evaluation of Transformer Models for
Early Intrusion Detection in Cloud Continuum,” in 2023 [EEE International
Conference on Cloud Computing Technology and Science (CloudCom), Naples, Italy:
IEEE, Dec. 2023, pp. 279-284. doi: 10.1109/CloudCom59040.2023.00052.

T. Ahmad, D. Truscan, and J. Vain, “Preliminary Results in Using Attention for
Increasing Attack Identification Efficiency,” in 2023 IEEE International Conference
on Software Testing, Verification and Validation Workshops (ICSTW), Dublin, Ireland:
IEEE, Apr. 2023, pp. 159—164. doi: 10.1109/ICSTW58534.2023.00038.

T. Ahmad, D. Truscan, J. Vain, and I. Porres, “Early Detection of Network Attacks
Using Deep Learning,” in 2022 IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW), Valencia, Spain: IEEE, Apr. 2022, pp.
30-39. doi: 10.1109/ICSTW55395.2022.00020.

R. Mohammad, F. Saeed, A. A. Almazroi, F. S. Alsubaei, and A. A. Almazroi,
“Enhancing Intrusion Detection Systems Using a Deep Learning and Data
Augmentation Approach,” Systems, vol. 12, no. 3, p. 79, Mar. 2024, doi:
10.3390/systems12030079.

S. Menssouri and E. M. Amhoud, “A Conditional Tabular GAN-Enhanced Intrusion
Detection System for Rare Attacks in IoT Networks,” Feb. 09, 2025, arXiv:
arXiv:2502.06031. doi: 10.48550/arXiv.2502.06031.

Y. Zhang and Q. Liu, “On [oT intrusion detection based on data augmentation for
enhancing learning on unbalanced samples,” Future Gener. Comput. Syst., vol. 133,
pp. 213-227, Aug. 2022, doi: 10.1016/j.future.2022.03.007.

S. Alabdulwahab, Y.-T. Kim, and Y. Son, “Privacy-Preserving Synthetic Data
Generation Method for IoT-Sensor Network IDS Using CTGAN,” Sensors, vol. 24,
no. 22, p. 7389, Nov. 2024, doi: 10.3390/s24227389.

C. Liu, R. Antypenko, I. Sushko, and O. Zakharchenko, “Intrusion Detection System
After Data Augmentation Schemes Based on the VAE and CVAE,” IEEE Trans.
Reliab., vol. 71, no. 2, pp. 1000-1010, Jun. 2022, doi: 10.1109/TR.2022.3164877.

F. S. Melicias, T. F. R. Ribeiro, C. Rabadao, L. Santos, and R. L. D. C. Costa, “GPT
and Interpolation-Based Data Augmentation for Multiclass Intrusion Detection in
1IoT,” IEEE Access, vol. 12, pp. 17945-17965, 2024, doi:
10.1109/ACCESS.2024.3360879.

X. Jiang et al., “NetDiffusion: Network Data Augmentation Through Protocol-
Constrained Traffic Generation,” Proc. ACM Meas. Anal. Comput. Syst., vol. 8, no. 1,
pp. 1-32, Feb. 2024, doi: 10.1145/3639037.

N. Sivaroopan, D. Bandara, C. Madarasingha, G. Jourjon, A. P. Jayasumana, and K.
Thilakarathna, “NetDiffus: Network traffic generation by diffusion models through
time-series imaging,” Comput. Netw., vol. 251, p. 110616, Sep. 2024, doi:
10.1016/j.comnet.2024.110616.

Y. Li, S. Si, G. Li, C.-]. Hsieh, and S. Bengio, “Learnable Fourier Features for Multi-
dimensional Spatial Positional Encoding,” in Advances in Neural Information

173

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

174

Processing Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang, and J. W.
Vaughan, Eds., Curran Associates, Inc., 2021, pp. 15816—-15829.

J. Su, M. Ahmed, Y. Lu, S. Pan, W. Bo, and Y. Liu, “RoFormer: Enhanced transformer
with Rotary Position Embedding,” Neurocomputing, vol. 568, p. 127063, Feb. 2024,
doi: 10.1016/j.neucom.2023.127063.

A. Rashed, S. Elsayed, and L. Schmidt-Thieme, “Context and Attribute-Aware
Sequential Recommendation via Cross-Attention,” in Proceedings of the 16th ACM
Conference on Recommender Systems, Seattle WA USA: ACM, Sep. 2022, pp. 71-80.
doi: 10.1145/3523227.3546777.

Y. Ma et al., “Non-stationary Time-aware Kernelized Attention for Temporal Event
Prediction,” in Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, Washington DC USA: ACM, Aug. 2022, pp. 1224-1232.
doi: 10.1145/3534678.3539470.

J.J1,Y. Cao, Y. Ma, and J. Yan, “TITD: enhancing optimized temporal position
encoding with time intervals and temporal decay in irregular time series forecasting,”
Appl. Intell., vol. 55, no. 6, p. 415, Apr. 2025, doi: 10.1007/s10489-025-06293-9.

J. Zhou, G. Jiang, W. Du, and C. Han, “Profiling temporal learning interests with time-
aware transformers and knowledge graph for online course recommendation,”
Electron. Commer. Res., vol. 23, no. 4, pp. 2357-2377, Dec. 2023, doi:
10.1007/s10660-022-09541-z.

H. Ryu, S. Yu, and K. Y. Lee, “TI-former: A Time-Interval Prediction Transformer for
Timestamped Sequences,” in 2023 IEEE/ACIS 21st International Conference on
Software Engineering Research, Management and Applications (SERA), Orlando, FL,
USA: IEEE, May 2023, pp. 319-325. doi: 10.1109/SERA57763.2023.10197830.

A. Sharma, T. Samon, A. Vellandurai, and V. Kumar, “TA-SAITS: Time Aware-Self
Attention based Imputation of Time Series algorithm for Partially Observable Multi -
Variate Time Series,” in 2023 International Conference on Machine Learning and
Applications (ICMLA), Jacksonville, FL, USA: IEEE, Dec. 2023, pp. 2228-2233. doi:
10.1109/ICMLA58977.2023.00336.

P. Aitken, B. Claise, and B. Trammell, “Specification of the IP Flow Information
Export (IPFIX) Protocol for the Exchange of Flow Information,” Internet Engineering
Task Force, Request for Comments RFC 7011, Sep. 2013. doi: 10.17487/RFC7011.

E. C. P. Neto, S. Dadkhah, R. Ferreira, A. Zohourian, R. Lu, and A. A. Ghorbani,
“CICIoT2023: A Real-Time Dataset and Benchmark for Large-Scale Attacks in loT
Environment,” Sensors, vol. 23, no. 13, 2023, doi: 10.3390/s23135941.

H. Hindy, E. Bayne, M. Bures, R. Atkinson, C. Tachtatzis, and X. Bellekens, “Machine
Learning Based IoT Intrusion Detection System: An MQTT Case Study (MQTT-IoT-
IDS2020 Dataset),” in Selected Papers from the 12th International Networking
Conference, vol. 180, in Lecture Notes in Networks and Systems, vol. 180, Cham:
Springer International Publishing, 2021, pp. 73-84. doi: 10.1007/978-3-030-64758-

2 6.

I. Ullah and Q. H. Mahmoud, “A Scheme for Generating a Dataset for Anomalous
Activity Detection in IoT Networks,” in Advances in Artificial Intelligence, vol.

[170]

[171]

[172]

12109, in Lecture Notes in Computer Science, vol. 12109, Cham: Springer
International Publishing, 2020, pp. 508-520. doi: 10.1007/978-3-030-47358-7 52.

D. Fernandez, L. Vigoya, F. Cacheda, F. J. Novoa, M. F. Lopez-Vizcaino, and V.
Carneiro, “A Practical Application of a Dataset Analysis in an Intrusion Detection
System,” in 2018 IEEE 17th International Symposium on Network Computing and
Applications (NCA), Cambridge, MA: IEEE, Nov. 2018, pp. 1-5. doi:
10.1109/NCA.2018.8548316.

P. Shaw, J. Uszkoreit, and A. Vaswani, “Self-Attention with Relative Position
Representations,” in Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 2 (Short Papers), New Orleans, Louisiana: Association for
Computational Linguistics, 2018, pp. 464-468. doi: 10.18653/v1/N18-2074.

C.-Z. A. Huang et al., “Music Transformer: Generating Music with Long-Term

Structure,” presented at the International Conference on Learning Representations,
Sep. 2018. Accessed: Mar. 31, 2025.

175

	Περίληψη
	Abstract
	Εκτεταμένη Περίληψη
	Α Εισαγωγή
	Β Θεωρητικό Υπόβαθρο
	Γ Τοπική Συμπερασματολογία σε Κινητές Συσκευές
	Δ Εκτέλεση Μοντέλων Μετασχηματιστών σε Κινητές Συσκευές
	Ε Έγκαιρη Ανίχνευση Εισβολών σε Δίκτυα IoT
	ΣΤ Επίλογος

	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	1
	1.1 Limitations of Existing Work
	1.2 Motivation and Goals
	1.3 Contributions
	1.4 Dissertation Overview

	2
	2.1 Deep Learning Fundamentals
	2.1.1 Evolution
	2.1.2 Core Architectures
	2.1.2.1 Multilayer Perceptrons
	2.1.2.2 Convolutional Neural Networks
	2.1.2.3 Recurrent Neural Networks

	2.1.3 Transformers
	2.1.3.1 Motivation
	2.1.3.2 Key Components
	2.1.3.3 Impact

	2.2 Edge Computing
	2.2.1 Evolution
	2.2.2 Mobile Computing
	2.2.2.1 Key Components

	2.2.3 Embedded Computing
	2.2.3.1 Examples

	2.3 Edge Intelligence
	2.3.1 Defining Characteristics
	2.3.2 Types of Applications
	2.3.2.1 Mobile Edge Intelligence
	2.3.2.2 IoT Edge Intelligence

	2.3.2 Device Hardware
	2.3.2.1 Mobile SoCs for Edge AI
	2.3.2.2 Microcontrollers and Specialized IoT AI Hardware

	2.4 On-Device Inference
	2.4.1 Benefits
	2.4.2 Challenges

	2.5 Efficient Deep Learning
	2.5.1 Metrics of Interest
	2.5.2 Compression Methods
	2.5.2.1 Quantization

	3
	3.1 Related Work
	3.1.1 Limited Resources
	3.1.1.1 Model Compression Techniques
	3.1.1.2 Efficient Neural Network Architectures

	3.1.2 Device Heterogeneity
	3.1.3 Dynamic Environment
	3.1.4 DNN Diversity
	3.1.5 DNN Innovations
	3.1.6 Diverse Application SLOs
	3.1.7 Multi-DNN Inference

	3.2 System Overview
	3.2.1 Workflow

	3.3 Multi-Objective Optimization Framework
	3.3.1 MOO Problem Formulation
	3.3.1.1 Single-DNN Setting
	3.3.1.2 Multi-DNN Setting

	3.3.2 Objective Function Evaluation
	3.3.3 MOO Problem Solver
	3.3.3.1 Optimality
	3.3.3.2 Runtime Challenges
	3.3.3.3 Model/Processor Switching
	3.3.3.4 Design Selection & Switching Policy

	3.4 Implementation
	3.5 Experimental Methodology
	3.5.1 Quantization
	3.5.2 Application Scenarios, Models and Tasks
	3.5.2.1 Use Case #1 (UC1)
	3.5.2.2 Use Case #2 (UC2)
	3.5.2.3 Use Case #3 (UC3)
	3.5.2.4 Use Case #4 (UC4)

	3.5.3 Mobile Devices
	3.5.4 Profiling Details

	3.6 Results
	3.6.1 Designs
	3.6.1.1 Comparison Methods
	3.6.1.2 Single-DNN Execution
	3.6.1.3 Multi-DNN Execution

	3.6.2 Runtime Adaptation
	3.6.2.1 Single-DNN Execution
	3.6.2.2 Multi-DNN Execution
	3.6.2.3 Comparison with OODIn

	3.7 Limitations and Future Directions
	3.8 Conclusion

	4
	4.1 Related Work
	4.2 Experimental Methodology
	4.2.1 Tasks and Models
	4.2.2 Mobile Devices
	4.2.2.1 Delegates
	4.2.2.2 Quantization-Delegate Compatibility

	4.2.3 Benchmarking Details

	4.3 Results
	4.3.1 On-Device Accuracy
	4.3.2 CPU Performance
	4.3.2.1 Quantization

	4.3.3 Accelerators

	4.4 Discussion and Future Work
	4.4.1 System Optimizations
	4.4.2 Model Optimizations

	4.5 Conclusion

	5
	5.1 Preliminaries and Related Work
	5.1.1 DL-Based Intrusion Detection
	5.1.2 Augmentation Strategies for Cybersecurity Datasets
	5.1.3 Transformer Positional Encodings
	5.1.3.1 Sinusoidal Positional Encoding
	5.1.3.2 Fourier-Based Positional Encoding
	5.1.3.3 Rotary Positional Encoding
	5.1.3.4 Time-Aware Positional Encodings

	5.2 Proposed Approach
	5.2.1 Data Preparation
	5.2.1.1 Flow Identification
	5.2.1.2 Packet Filtering
	5.2.1.3 Packet Preprocessing

	5.2.2 Training
	5.2.2.1 Data Splitting
	5.2.2.2 Augmentation
	5.2.2.3 Early Detection Loss Function

	5.2.3 System
	5.2.3.1 Base Model
	5.2.3.2 Proposed Time-Aware Positional Encodings
	5.2.3.3 A-THENA

	5.3 Implementation
	5.4 Experimental Methodology
	5.4.1 Datasets
	5.4.2 Training Configuration
	5.4.3 Evaluation Metrics
	5.4.3.1 Confidence-Based Performance Metrics
	5.4.3.2 Resource-Constrained Deployment Evaluation

	5.5 Results
	5.5.1 Comparison Methods
	5.5.2 Earliness and Accuracy
	5.5.3 Latency and Memory Footprint
	5.5.4 Evaluating Core Components of A-THENA

	5.6 Conclusion

	6
	6.1 Key Findings
	6.2 Looking into the Future
	6.2.1 On-Device Training
	6.2.1.1 Server-Side Training
	6.2.1.2 Sample Efficiency Experiments
	6.2.1.3 Planned Extensions

	6.2.2 DNN Performance Prediction in Resource-Constrained Devices
	6.2.2.1 Dataset Creation and Preprocessing
	6.2.2.2 Preliminary Results from Training
	6.2.2.3 Planned Extensions

	6.2.3 Generative AI on Mobile and Embedded Platforms
	6.2.3.1 Current State
	6.2.3.2 Future Research Directions and Open Challenges

	6.2.4 AI-Enabled Networking
	6.2.5 Additional Directions

	6.3 Final Thoughts
	6.4 Publications
	6.4.1 Journal Articles
	6.4.2 Peer-Reviewed Conference/Workshop Papers
	6.4.3 Under Review/Accepted

	Glossary
	References

