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Mepiinym

Avtikeipevo tng dudaktoplkng dtatpfng eival n aflomoinon tng avaAuTikig
6ebopévwy Kal TNG TEXVNTAG VONUOOUVNG OTNV QUTOUOTN OVIXVEUON TEPLOTATIKWVY
OTOV TOMEN TWV EVGUWV cUOTNUATWV PeTadopds. H dtatpfr npoteivel pa pebodo
nipoBAentikig avaAuTikig (predictive analytics) n omoia pmopetl va umootnpiéel tnv
OAOKANPWUEVN QLUTOUOTN AVIXVEUCN TIEPLOTATIKWY, KAAUTITOVTAG OAO TOV KUKAO LWNG
arnd tn cuAoyn Twv SeSOUEVWV LEXPL TNV AVIXVEUCN OE TIPAYUATIKO XPOVO KOl TNV

eMkUpwon ano Ldkoug.

H péBodog autn ouvdualel alyoplBoug TeEXVNTAG voNoouUvNG, TIPOBAETITIKEG
HEBOSOUG KABWE KoL QUTOHATOTOLNUEVN MNXaviky pabnon (AutoML) ywa tnv
TPOBAEYN TPOYPAUUATIOUEVWY KOL N TIPOYPAUUATIOUEVWY TIEPLOTATIKWY, EVW
napAaAAnAa xpnotomnolel epyaldeia emeEnynotlpotntag, 6nwg to LIME kat to SHAP, yla
va g€nynoel TG anodAoeL TWV HOVIEAWV OTOUG avOpwIvoug XELPLOTEG. AuTh N
enegnynoLludTNTA EVIOXVEL TNV EUTILOTOOUVN OTA cuothpata PoBAsdng, ta omnolia
ouvnBwg amoteAolv “black boxes” kat SteukoAuvel TNV kKatavonon Twv MPoPAEPEwWY
and pn edkoug. EmutAéov, n évvola tng avBpwrivng mapéupaong (human-in-the-
loop - HITL) evowpatwvetatl otn Stadikaoia avixveuong, EMLTPENOVIAG OTOUG ELOLKOUG
va emiBAEnouv kat va SlopBwvouv TG autopateg mPoPAEPELG O TPAYUATIKO XPOVO.
Auto OxL povo BeAtwwvel tnv akpifela twv mpoPAEPewy, aAAd Kol eVIOXUEL TN
ouvepyoaoia PeETagU Tou avOpwTLvoU TapdyovTa Kol TwV AUTOUATWY CUCTNUATWV.
MdALota, armodelkVUETAL LECW AVTLOTOLXWV TIELPAUATWY N KABoPLoTIKA CUBOAR TwV
elbkwv (experts) yia tn BeAtiwon tng anddoong Tou cUCTAUATOS LE TNV TtAPodo Tou

XPOVOU HE SUVALKO TpoTO.

210 mAaiolo g StatpPng mpaypatonoleital ektevig BLBALoypadikr LeAETn
ota yvwotikd media tng mMpoPAENTIKAG avoAUTIKAG Se60UEVWY, TWV CUOTNUATWY
QUTOMOTNG  aviyveuong TEPLOTATIKWY KAl  Twv  TeEXVoAoywwv  AutoML,
eneénynowotntag kot HITL. AvaAvovtal ol peBodoloyieg kol ta cUCTAMOTA TIOU
€XOUV avamtuxOel HEXpL OAUEPA, EVW OTN CUVEXELO OVATITUCOETOL N TIPOTELVOUEVN
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Abstract

The present PhD dissertation explores the need for advanced real-time traffic
incident detection systems in urban environments, where the complexity and volume
of data often overwhelm traditional methods. The research focuses on integrating
advanced data analytics including Machine Learning and Deep Learning, in addition to
Automated Machine Learning (AutoML), Human-in-the-Loop (HITL) approaches, and
explainability techniques to develop a robust and scalable framework for incident
detection. This framework has been tested and validated in real-world scenarios in
Athens and Antwerp, where the results demonstrated its effectiveness and

superiority compared to traditional methods.

Regarding the structure of the present thesis, in the introduction, the motivation
is derived from the growing challenges faced by transportation systems today.
Traditional incident detection methods, which rely on predefined rules and manual
human monitoring, are increasingly inadequate due to the complex, dynamic nature
of modern urban traffic networks. Traffic incidents, whether planned (such as large-
scale events or recurring congestion) or unplanned (such as road accidents), require
timely detection to prevent traffic and ensure road safety. In order to address this
challenge, the research presents a novel framework which combines Al-based
techniques that not only automate part of the detection process but also integrate
human in the loop to ensure that the system remains adaptable and transparent. The
present dissertation explores a detailed literature review which provides a
comprehensive overview of the current state of traffic incident detection methods.
Moreover, the chapter focuses on the limitations of existing Automatic Incident
Detection (AID) systems for identifying both planned and unplanned incidents. These
systems, which often employ comparative algorithms or time-series models, tend to

be limited in their ability to handle large datasets or complex traffic patterns.

This dissertation aims to overcome the identified challenges by integrating
explainability techniques and providing human operators with insight into the
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system’s operations. In addressing the research challenges, the dissertation sets out
several key questions, beginning with how Al-based systems can be designed for real-
time monitoring and prediction of traffic incidents. The methodology combines
traditional Al approaches with more advanced techniques, such as AutoML, which
automates the model selection and optimization process, and human-in-the-loop
(HITL), which ensures that human expertise is taken into consideration in the decision-
making process. The combination of these approaches ensures that the system
remains flexible and capable of adapting to different urban environments and

evolving traffic conditions.

The proposed framework for real-time traffic monitoring and incident detection is
thus built upon four key pillars: Data Analytics, Automated Machine Learning, Human-
in-the-Loop and Explainability. The first pillar, Data Analytics, focuses on leveraging
artificial intelligence to anticipate and detect traffic incidents promptly and efficiently.
This involves the use of ML algorithms and data analytics techniques to analyze large
amounts of historical and real-time traffic data. Automated Machine Learning, the
second pillar, is used to optimize the model-building process, reducing the need for
manual intervention and giving the possibility to the system to continuously improve
its performance. The third pillar, Explainability, aims to make the Al models used in
traffic management understandable and transparent to users. Techniques like SHAP
(SHapley Additive exPlanations) and LIME (Local Interpretable Model-agnostic
Explanations) are employed to clarify how models produce their predictions. Finally,
the fourth pillar, Human-in-the-Loop, ensures that human operators are involved in
the decision-making process by reviewing the model’s predictions and by providing
continuous feedback, enhancing the system’s reliability and ensuring trust in its
outputs. Human input helps correct any errors in the models, ensuring that the
system's outputs are realistic. This creates a feedback loop that enhances model
performance over time, as operators provide valuable insights and corrections. Lastly,
combining HITL and explainability ensures that the incident detection system is not

only highly effective but also trusted and accepted by its users.



The dissertation also focuses on the use of Al-driven methodologies for detecting
both planned and unplanned traffic incidents. Techniques such as time-series analysis
help predict traffic patterns, while machine learning models classify incidents based
on historical data. The inclusion of deep learning models, particularly Long Short-Term
Memory (LSTM) and Graph Neural Networks (GNNs), improves the system's ability to
detect non-recurring incidents by achieving high performance in all established

metrics.

These Al models are further enhanced by AutoML, which automates much of the
model development process. By using tools like TPOT (Tree-based Pipeline
Optimization Tool), the system can automatically select and tune models, reducing
the need for manual human intervention in calibrating the employed models and
ensuring that the most effective models are deployed for incident detection.
Incorporating AutoML into the traffic incident detection framework represents a
significant advancement, as it automates the traditionally labor-intensive process of
model selection and tuning. This dissertation describes how AutoML was used to
optimize machine learning pipelines, improving both the accuracy and efficiency of
the system. The AutoML approach was especially valuable in adapting to different

urban environments, as demonstrated in the case studies from Athens and Antwerp.

Human oversight plays a crucial role in ensuring the system’s transparency and
trustworthiness. By incorporating a Human-in-the-Loop approach, the system allows
operators to review and adjust the Al’s predictions in real-time, ensuring that critical
decisions are not dependent only to automated processes. Explainability techniques,
such as SHAP (SHapley Additive ExPlanations) and LIME (Local Interpretable Model-
Agnostic Explanations), are utilized to make the Al-driven system’s predictions more
transparent and understandable. These tools help operators understand why certain
incidents are flagged, making the system more reliable in high-stakes scenarios such

as traffic management during an occurred accident.

The dissertation also presents the technical details of the information system

developed for real-time traffic incident detection, named AutoEventX. This system



integrates the Al models, AutoML pipelines, and HITL and explainability components
into a cohesive architecture capable of processing large volumes of traffic data from
multiple sources. The system is designed for scalability, allowing it to handle complex
datasets in real-time, and it can be integrated with interactive dashboards that allow
traffic managers to monitor conditions, receive incident alerts, understand the

reasoning behind the system’s predictions and give their input.

To validate the effectiveness of the proposed system, two real-world case studies
were conducted in Athens and Antwerp. These case studies provided an opportunity
to test the system under different traffic conditions and evaluate its performance in
detecting both recurring and non-recurring incidents. For instance, in Athens, the
system was used to detect non-recurring incidents, such as accidents or breakdowns,
which are common in the city’s congested urban environment. The system was able
to significantly reduce the number of false positives compared to more traditional
methods, providing accurate incident detection in real-time. Moreover, it has been
demonstrated that the system is able to detect also recurring congestion problems,
in both Athens and Antwerp. The system was able to identify patterns in traffic flow
and predict planned incidents, i.e. congestion, before they occurred, allowing traffic
managers to potentially take proactive measures to reduce congestion. The results of
these case studies demonstrate the system’s versatility and effectiveness in managing
different types of traffic incidents. The deployment also highlighted the value of the
HITL approach, as operators were able to provide real-time feedback that improved

the system’s accuracy and reliability.

In the conclusion, the dissertation reflects on the significant contributions made
to the field of Al-driven traffic incident detection. By combining AutoML, HITL, and
explainability techniques, the system presents a major advancement over traditional
frameworks and incident detection methods. However, the research also
acknowledges several limitations, particularly in terms of data quality and the
challenges of handling incomplete or noisy datasets. These limitations point to areas
for future research. Future research, in particular, should focus on improved multi-

source data integration, incorporating real-time sensor data, social media feeds,
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weather data and crowdsourced information. Advancements in machine learning,
deep learning, and reinforcement learning could optimize model adaptability across
different urban environments. Human-Al collaboration could be refined through
interactive interfaces, AR/VR tools, and real-time operator feedback to ensure a
seamless integration between automated predictions and human decision-making.
Enhancing explainability techniques with more advanced tools would also make Al
models more transparent, while the expansion of prescriptive analytics would suggest
actionable interventions to mitigate congestion. Additionally, incident detection
systems should be integrated into broader smart city infrastructures, connecting
traffic management with emergency response, and real-time incident management

strategies.

To sum up, the contributions of this research include:

1. A novel AI-HITL-AutoML traffic incident detection framework that
integrates human oversight with automated ML model optimization.

2. The development of an AutoEventX system, an end-to-end Al-driven
platform capable of detecting and predicting both planned and unplanned
traffic incidents.

3. The integration of explainability techniques (SHAP, LIME) to enhance
model transparency, fostering trust and reliability.

4. The inclusion of human feedback through a dedicated loop, which enables
the system to take into account operators’ expertise and adapt the outputs
accordinly.

5. Real-world validation through case studies in Athens and Antwerp,

demonstrating high levels of performance.

The findings of this dissertation contribute to the evolution of intelligent traffic
management systems by integrating advanced machine learning techniques with
human expertise and explainability approaches. This research not only achieves high
performance and levels of transparency in incident detection but also lays the

foundation for more adaptive and autonomous data-driven systems in urban mobility.
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By putting in place an effective synergy between Al and human operators, this work
helps in creating future transportation systems that are more efficient, transparent

and safer.

Keywords: Artificial Intelligence, Machine Learning, Automatic Incident Detection,
Explainability, Smart Transportation Systems.
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Extetapévn Mepidnym

H mapovoa &ldaktopikry StatplBri Olepeuvd TNV avaykn ylo Tiponyuéva
OUOTAMATA QVIXVEUONG KUKAODOPLOKWY TEPLOTATIKWY OE TIPAYHOTIKO XPOVO OF
a0TKA TEPLBAAAOVTA, OOV N TIOAUTIAOKOTNTA KoL O OyKoG Twv dedopévwv cuxva
Sduoxepaivouv Tnv anodoon twv napadootakwyv PeBOSdwv. H Epeuva eMLKEVTPWVETAL
OTNV EVOWUATWON TNG OQUTOUATOTIONHEVNG MNXAVLKAG Hdadnong (AutoML), twv
npooeyyiocewv Human-in-the-Loop (HITL) kal Twv TEXVIKWV €EMEENYNHATIKOTNTAG
(Explainability) ywa tnv avamtuén €vog Kalvotopou TMAALCIOU yla TNV avixveuon
MEPLOTATIKWY. Auto To mAaiolo (framework) Sokipudotnke kol emikupwOnKe o€
OEVAPLA TIPAYLOTIKOU KOOUOU oTnv ABrva kot tnv AUBEpoa, OTIoU Ta amoTeAEoUATA

ermuBefaiwoav TNV MPAKTIKOTNTO KOL TNV ATTOTEAECUATIKOTNTA TOU.

ZTNV €loaywyr, TO KIvNTPO yla TN UEAETN TPOKUMTEL QMO TIG QUEAVOUEVES
TIPOKAACEL TIOU  QVTIMETWT{ouv onuepa Ta ouothuata  petadopwv. Ot
napadoolokég pEBOSOL avixveuong TmepPLOTOTIKWY, oL omoieg Paocilovtal o€
TipoKaBopLOPEVOUG  KOVOVEG KAl OE [N OQUTOMATOTIOWNMEVN  avBpwrtvn
napakoAouOnon, eival OAo Kal TLO AVEMOPKELG AOYw TNG TIOAUTTAOKNG KAl SUVOLLLKAG
dvong Twv ouyxpovwv ooTikwv OSlktuwv KukAodopiag. Ta kukAodoplakd
TIEPLOTATIKA, €lte €lval TpoypappaTiopeEva (Omwg to €pya odomouag 1N n
enavolappoavopevn kukAodoplaki cupdopnon) eite Un MPOYPOAUUATIOMEVA (OTIWG
TAL OTUXALOTAL), QTTALTOUV €yKaLlpn QVIXVEUON yLa TNV iPOAnYn tng ocupddpnong Ko
™ Slaodpaiion NG 0dikng aoddalelag. Avtipetwmniloviag autr TNV MPOKANCN, N
napovoa Sibaktopky Statplfr)y TPOTEIVEL KOl TAPOUCLATEL €vavV  KALVOTOMO
ouvluaopO TEXVIKWY PBactopévwy otnv Texvnti Nonuoouvn (TN) mou oOxt pévo
QuTopaTOMOLOUV TUAMaTa TG Stadikaciag avixveuong, oAAA KOL EVOWLATWVOUV TNV
avOpwrivn enifAedn kat TV emefnynuatikotnTta ya va Stacpaiicouv OTL TO

oUOTNHA TIOPAUEVEL TIPOCOAPUOCLUO Kol Sladaveg.

H BBAoypadikry avaokomnon mou Tmpaypatono|fnke Kkatd tn Oldpkela
ouyypadng tng mapovoag SLaTpPAg MapEXEL Ul OAOKANPWHEVN ETLOKOTNON TNG
28



TPEXOUOAC KOTAOTAONG TwV HEBSSWV avixveuong KUKAOGOPLAKWY TTEPLOTATIKWVY. Tal
TIEPLOTATIKA 1) cupBavta avadépovtal oe «KABEe pn emavalapBavopevo yeyovog mou
TIPOKOAEL pelwon NG XwpNnTkOTNTAG Twv 0dwv [ pn ¢ducloAoykn avénon tng
{Ntnong» . Ta cupfdvta pmopouv va Tta§lvoprnbouv wg TPOYPOUMATIOMEVA i N
TIPOYPOUHATIOMEVA YEYovOTa, Omwe daivetal oto ZxAua 0-1. (Nikolaev, Sapego,

Ivakhnenko, Mel'nikova, & Stroganov, 2017)

Incidents
Unplanned events Planned events
Accidents = Y

Temporary maintenance Ad""se_'_"e‘“h"
Disabled or repair work conditions

T vehicles P -
| . - Spilled loads  gpecial events (Manifestation ~ Recurring |
or sportive events...) congestion

Figure 0-1: Ta§vounon nepotatikwv. (Nikolaev, Sapego, Ivakhnenko, Mel'nikova, & Stroganov, 2017)

2to mAaiolo tng Sie€axBeioag BLPAloypadikn¢ avaokomnong, ol alyoplbuol yla
TNV QUTOUATN AVIXVEUON TIEPLOTATIKWY OLASOTIOLOUVTAL OE TPELG EUPELEC KATNYOPLEG,
WG OUYKPLTLKOL, XPOVOOELPEG Kol aAyopiBuoug texvntng vonuoouvng (OTOTLOTIKOL,

HUNXAVIKAG HaBnong kat Babdg pabnong), omwg daivetat oto ZxAua 0-2.
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Categories
of AIDA

Comparative ARGl
Time-series Intelligence
l [
n’l ach!ne Statistical
earning
Deep
Learning

Figure 0-2: Ta§lvopunon aAyopiOpuwv autopaTnG AViXVEUONG TIEPLOTATIKWV.

ErutAéov, to kedpalato mou adopd tn BLPAloypadikr emokomnon avadEpeTaL Kat
OTOUG TEPLOPLOMOUG TWV UPLOTAUEVWY CUCTNHATWY QUTOUOTNG OVIXVEUONG YLa TOV
EVTOTILOUO TIPOYPOUHATIOMEVWVY KAL N TIPOYPOUUATIOUEVWY TIEPLOTATIKWY. AUTA T
OUOTAMOTA, TA OTOL0L CUXVA XPNOLLOTIOLOUV CUYKPLTIKOUG aAyopiBuoug  povtéAa
XPOVOOELPWY, TEWVOUV va €ival TEPLOPLOPEVO WG TIPOG TNV LKAVOTNTA TOUG va
Xelpilovtal peydAa oclvola Sebopévwy 1 oAUTAoKa TpdTUTIaL KUKAOodopiag. Ot
e€elifelg otn pnxavikn pabnon (ML) kai, 1o mpoocdata, TNV AUTOMATN KNXAVLKA
nabnon (AutoML) €xouv emutpedel peyaltepn akpifela kal autopatonoinon otov
EVIOTILOMO TEPLOTATIKWY. XTO ZXAUa 0-3, mapouctldleTal AEMTOUEPWS N TalvOnon
TWV TEXVIKWV ML TOU XPNOLUOTIOLOUVTOL OTNV OUTOUOTOTIOLNHEVN OViXVEUON

TIEPLOTATIKWYV KUKAOodoplag.
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[ Machine Learning Techniques in Traffic Automatic Incidents Detection Systems ]

Binary Logit Model
(BL)

Figure 0-3: Ta§lvOpNON TWV TEXVIKWY UNXOVLKIG HAONGNG TTOU XPNOGLUOTIOLOUVTOL OTNV QUTOMATH

avixveuon neplotatikwv KukAodopiag. (Hireche & Dennai, 2020)

Qotooo, autd ta cuotiuata ML kat AutoML AsttoupyoUv cuxvd wg «pavpa
Koutld», KaBotwvtag Tig TpoPAEPelg toug OUOKOAEG oOTnV €punveia  Kal
nieplopilovtag tnv eumiotoouvn Twv xpnotwv. Eva aAAo kpiolpo IAtnua eivat ot
UTIAPXOUCEG XPNOLUOTIOLOUUEVEG TEXVLKEG YyLa ToV KaBoaplopo twv dedouévwy, Omou
oL avakpiBeleg ota dedopéva kivnong, omwe ta odbdaipata f ot xapnAoi pubuol
SdelypatoAnyiag, pmopolv va €L0AyOoUV KEVA OTNV OVIXVEUON TNG Kivnong Ttwv
OXNUATWV KoL TA KEVA auTa Snutoupyouv afefatdtnta otnv akplfn napakoAoubnon
TWV TIEPLOTATIKWY. ETITAEOV, O XELPLOKOG TNG XWPOXPOVIKNAG TIOAUTTAOKOTNTOG TWV
6e60UEVWV KLVNTIKOTNTOG, OTIOU TOGO N B€0n 000 Kal 0 XpOvog amoteAoUV Bacikoug
TLOPAYOVTEG, ATOTEAEL Eval AKOUN TEXVLKO €UMOSL0, KABwG Ta TMapadooLaKd LOVTEAQ
SuokoAglovTal VoL EVOWHATWOOUV autd ta Sedopéva o TPAYHATIKO XpOvo. TEAOG,
EVW TO OUTOMATOTIOLNHEVO CUOTAMOTA €Elval emBupntd, n EVOWMATWON TNG
avOpwriivng  eumelpoyvwpoouvng ot Stadlkacieg AQYPng amoddoswv o€
TIPAYUATIKO XPOVO TIAPOHEVEL Lol OVOLXTH TIPOKANGCH, E TO TPEXOVTA CUOTAUOTA Va
un Aappavouv cuxva urtdPy tov poAo TG avBpwrvng mapERBaong 0 KATAOTOONG

Slaxeiplong kpiogwv, OTwG Katd tn SLAPKELD EVOG ATUXALATOG.

o TNV AVTLUETWTTILON AUTWV TWV TIPOKANCEWV, Ue BAoN TTOANEG OXETIKEG EpYACLES
KOl EPEVVNTLKEG SNUOCLEVOELG TTou €xouv afloAoynBel, mpoteivetal OTL N LEANOVTLKA

€peuva Ba mpenel va emikevipwOel oe Slddopoug TopelG OMwWG N moLOTNTA TWV
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bebopevwy, n Stadikacia cUAOYAG TOUG KaL N EMEENYNOLLOTNTA TWV CUOTNUATWY KO
Twv TPoPAEPewWV TOUG. MO OUYKEKPLUEVA, BEATIWUEVEG TEXVIKEG KaBaplopol
bebopevwy eivat amapaitnteg yia t Staxeiplon tou avfavopevou oykou Sedopevwy
KLvnTIkOTNTAG KAt tn Staodaiion vPnAnig motdtntag dedopevwy. H pepoAnia katd
™ ouMoyn Sedopévwv UMOpEeL val PETPLOOTEL KE TNV QVATITUEN TILO TIEPLEKTIKWV
HEBOSwV mou Aapfdvouv umoyn OAOUG TOUG TPOTOUG METADOPAG KOl TLG
KOLVWVLKOOLKOVOULKEG opddeg. H BeAtiwon tng eMe§nyNUOTIKOTNTAG TWV LOVTIEAWV
ML Ba auénoel tnv aglomotia toug, Wiwg oe mAaiola mou adopolv MoANoUG
evbladepopevouc, Omwe oL city planners ] ol transport operators. Oa npénet va 600stl
TIPOTEPALOTNTA OE €EELSIKEVUEVA XWPOXPOVIKA HLOVTEAQ TIOU XELPL{oVTOL EYYEVWG
1000 dedopéva pe Baon tov xpdvo 6co kat Sedopeva pe Paon tn O€on ywa T
BeAtiwon tng akpifelag aviyveuong. TéAog, n avamtuén uBPLOKWY CUCTNUATWY
Human-in-the-Loop mou cuvdudlouv autopatomnolnuéveg dtadikaoieg ML pe tnv
avOpwriivn eumepia Oa cupPdalel otn SaocddAion mo aflomotng aviyveuong

TIEPLOTATIKWV.

H mapovoa Siatpipri otoxelel va EEMEPATEL TIG TIPOKANCELG TIOU EVIOTIOTNKAV
EVOWUATWVOVTAG TEXVLKEG ETEENYNUATIKOTNTOG KAL TILPEXOVTOG OTOUG avOpWTLVOUG
XELPLOTEG TIEPLOCOTEPO EAEYXO KL ELKOVOL TWV AELTOUPYLWYV TOU CUCTAUATOG. lNa tnv
QVTLUETWTILON TWV EPEVVNTIKWYV TIPOKANCEWY, N StatpLpn BEtel Siddopa epwtipata,
EEKLVWVTOG QIO TOV TPOTO HE TOV OMOio Umopouv va oxedlaoctouv cuoThuata
Baclopéva otnv TEXVNTH vonpoouvn ylo TapakoAouBbnon kat TpoPAsdn
KUKAOGDOPLOKWY TIEPLOTATIKWY OE TPAYMOTIKO Xpovo. H peBodoloyia cuvbudlel
Tapadoolakég mpooeyyioelg ML pe TLo TponyUEVES TEXVIKEG, OTwG AutoML, n omola
avtopatomolel tn Stadikacio emloyng kot BeATiotonoinong LOVTEAWY, KoL TEXVIKEG
HITL, pue otoxo tn dtaodaAilon mwe n avbpwrivn EUMELPOYVWHUOOUVN CUUUETEXEL OF
Baolkd onupeia AQPng amopdocswv. O cuvdUAOHOC QAUTWV TWV TPOCEYYICEWV
Slaodalilel OTL TO CUOTNUA TIUPAPEVEL EUEALKTO KOL LKAVO VA TIPOCAPHOLETAL OF

Sladopetikd aotikd eptBarovta kot e§eAlooOEVEG cuVOnKeg KukAodopiag.
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21ov ouvormTko MNivaka 0-1 avadépovtal oL EPEVVNTIKEG TIPOKAROELG OTLG OTOLES
npoomnaBel va amavtioel n Sdaktopikr StatplPfr), KaBwG KAl Ol AVIIOTOLXES

TIAPAUETPOL ATTO TLG OTIOLEG amoTeEAOUVTAL.

Table 0-1: EpguvnTIKA EPWTHAHOTA KOLL OL OLVTLOTOLXEG TLAPALETPOL.

EpeuvnTIKA EpwTApATA

Napdapetpol

Mowa elvat ta Paoka
otolela Ko ol
uebodoloyieg ywa TNV
napakoAoubnon kat tnv
TipOPAedn o€ MPAYUATLKO
XPOVO yla TNV £ykalpn
avixveuon
KukAodopLakwv
TIEPLOTATIKWYV UE BAon TV

TEXVNTA voNnUoouvn;

Mo  elval T  XAPAKINPLOTIKA  TNG
kukAodoplag oe mepintwon KukAopopLaKkwy
TIEPLOTATIKWV;

Moteg eivat oL Baolkeg mnyEg Sebopevwy yla
Vv mnapakoAolBnon tng kukAodoplag oe
TIPOYMOTIKO  XPOVO  KOL TNV OWViXveuon
TIEPLOTOTLKWY;

Moteg elval oL kUPLEG Katnyopieg alyopiBuwy
yla TNV avixveuon meplotatikwy; MNota ivat ta
Suvatad kat aduvapa onueia kaBe katnyopiag;
Motot aAyoplBuol texvnTAg vonuoouvng ival
TO amoteAecpatikol Kat €xouv Tmpotabel
6le€obka amo 1t BBAoypadia ywa TNV
avixveuon KUKAOGOPLOKWY  TIEPLOTATIKWY;
Mowa elval Ta TIAEOVEKTAMOTO KOL Ol
TIEPLOPLOUOL TOU KABEVOG;

Moleg METPLKEG amddoong emAEyovTal yLa ThV
afloAdynon NG QMOTEAECUATIKOTNTAG TWV
OUOTNUATWY  avixveuong  KukAodoplakwv

TIEPLOTOTLKWY;

Nwg propouv va
aélomoilnBouv ol
QVOPWTTOKEVTPLKES
TIAPASOCLOKEG Ko
OUTOMOTOTIOLN LEVEG

teEXvoloyieg ML ywa tnv

Mota eival ta PrApata ya t dnuoupyia evog
oAokAnpwpuévou mAatciou/pebodoloyiag e

xpnon TN yla ™mv aviyveuon
TIPOYPOULUOTIOMEVWV Kl pn
TIPOYPOULUOTLOMEVWV TLEPLOTATLKWV o€

TIPOLYHLOTLKO XPOVO;
Nwg pmopel va evowpatwBel n avBpwrivn
EUMELPOYVWHOOUVN KAl  TopepPacn o€
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avantuén EVOG

OAOKANpwWUEVOU TTAQLGIOU

yla ™mv avixveuon
KukAodopLakwv
TIEPLOTATIKWV o€

TIPOLYHLOTLKO XPOVO KalL TNV
TmapakoAouOnon aoTIKWY

Skt WV petadopwy;

cuotApoTa napakoAouOnong ™me
KukAodoplag Kal avixveuong MEPLOTATIKWY ME

Baon tnv TN;

Nwg ot peBodoloyieg kat
ol aAyopLOuot TIou
Bacilovtat otnv TN
gvioxUouV TNV aviyveuon
TIPOYPOUUOTIOPEVWY KOl
N TIPOYPOUUOTIOUEVWY
TIEPLOTATIKWV

kukAodoplag;

Mola elval Ta KUPLA TTAEOVEKTI LATA TNG XPONG
TN vy v aviyveuon KukAodopLakwv
TIEPLOTOTIKWY ~ OE  OUYKpLONn ME  TLG
napadoolakég pebodoug;

Molot mePLOPLOPOL 1) TIPOKANCELG TIOPAPEVOUV
OTLG TPEXOUOEG Mpooeyyioels mou PBacilovrtal
otnv TN;

Nwg amobdibouv ta OSuddopa poviEAa
MUNXAVIKAG nadnong kot Babldg pabnong oto
mhaiolo ™G avixveuong kKukAodoplakwv
TEPLOTATIKWY; YTtdpxouv Sladopeg petafl tng
aviyveuong TPOYPOUHUATIOUEVWY KAl [N
TIPOYPOULHOTIOMEVWVY TIEPLOTATIKWY;

Mowa eival ta BOOIKA XAPOKTNPLOTIKA Kal Ol
TIAPAUETPOL TIov ennpedlouv ™mv
QTOTEAECHUATIKOTNTA TWV HOVTEAWV TEXVNTAG

vonuoouvngc;

Mwg HmoPoUV OL TEXVIKEG
AutoML va evioxUoouv
VvV avamtuén HovtEAwv

TN vy tnv avixveuon

Tt elvat n autopaToTOLNPEVN  UNXAVLKA
HABnon Kot moLog 0 pOAOG TG OTO MAALOLO TWV

€VPUWV CUCTNUATWYV PETADOPWY;
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KukAodopLakwv

TIEPLOTOTLKWY;

Moleg TteXVIKEG R epyaleia AutoML eival

KataAAnAotepa yla ™mv aviyveuon
KUKAODOPLAKWVY TIEPLOTATIKWY;
Nwg propel va autopatomnotnBet

QTOTEAECUATIKA N emloyn Kat  n
BeAtiotomoinon LoviEAwy;

Mwg ouykpivovtal oL Texvikég AutoML pe Tig
napadoolakég pebodoug ocov adopd TNV

anoédoon;

Nwg dtaodaliletal otL oL
TipoBAEYELS Twv
OUOTNUATWY aVixveuong
KukAodopLakwv

TIEPLOTATIKWV Tiou
Baoilovtal otnv TN eival
EMEENYNOLUEG Kol
aflOTIOTEG, KAl  TWG
Umopel va  evowpatwOel
n avatpododotnon amnod

EUTTELPOYVWLOVEG;

Molog eivat o polog 1tng avOpwrvng

avatpododotnong Kol TwG  Umopel  va
alonownBel oe ocuotiuata Paclopéva otnv
TN;

MOLEG TEXVIKEG EMEENYNMATLKOTNTOG UTTOPOUV
va xpnowdomotnBouv ylwa va Kotootouv ol
npoPAEPelg tng TN KOTOVONTEG KOL TOLO
epyodeia pmopolv va evowpatwbBolv o€
TETOLO CUOTAHATA,

Motot HUnxaviopot pmopouv va
xpnowonotnBolv yla TNV €VOWHATWON TNG
avatpododOTnoNG EUNMELPOYVWHOVWY UE TN
XpPNon oG mpoogyyong «Human in the Loop»
oe eudun ovotApata petadopwv  TOU
Baoilovtal otnv TN, wote va PBeAtiwdel n
moLotTNTA TWV POoPAEPEWY;

Mola elval T AMOTEAECUATA TNG EVOWUATWONG
™¢ avBpwrvng mapéupaocng 6cov adopd tnv

andédoon Katd TNV enaveknaibevon Twv

HOVTEAWV ML; OL TEXVLKEG EMEENYNULATIKOTNTAG
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g€xouv avtiktumo otnv  aflomotia  Tou

OUOTAUATOC;

To mpotewopevo mAaiclo ywa tnv TapakoAouBbnon tng kukAodoplag o€
TIPOLYHOTLKO XPOVO KOL TNV QVIXVELUON TiepLOTATIKWY Baoiletal o Téooeplg Baokolg
TIUAWVEG: aVAAUTIKY) 6€60UEVWY, AUTOMATOTOLNUEVN UNXOVIKN LdBnon, avBpwrtvn
napéppaon (Human-in-the-Loop) kal eme§nynpaTKOTNTA, OMWG ATEIKOVIIETAL OTO
Ixnua 0-4. O mpwtog MuAwvag, n avaluon O6eSOUEVWY, ETUKEVIPWVETAL OTNV
aflomoinon NG TEXVNTNC vonuoouvng yla tnv mpoPAePn Kal Tov AUECO EVIOTILOUO
TIEPLOTATIKWY KUKAOdOopiag. Autd meplhapBavel Tn xprion eSeAlypuevwy alyopibuwv
yla tnv avaAluon HEYAAOU OyKou LoToplkwy Oebopévwy kabwg kat dedopévwv
kukAodoplag oe mpayuatikd xpovo. Evromifovtag potifa kat taoelg, to cloTnua
umnopel va mpoPAEmnet mbava cupfavta kal va opeXEL EYKalpeg poeldomnotnoelg. H
OUTOMOTOTIOLNLEVN NXAVLKH HABnon, o §eUTEPOG MUAWVAG, XPNOLOTIOLELTAL YLa TN
BeAtlotonoinon tng OSwadikaoiag Snupoupylag Kol TPOCOPUOYAG HOVIEAWVY,
HELWVOVTAG TNV AVAYKN YLO XELPOKIvNTN TtapEéUPaon Kol EMITPEMOVTAG 0TO CUOTNHA
va BeATlwvel cuvexwg Tig emdooelg tou. O tpitog muAwvag, n Emeénynowdtnra,
OOXOAELTOL PE TO VO KATAOTOUV OL TIPOBAEYPELG TWV HOVTEAWV TEXVNTAG VOnOooUVNG
TIou Xpnotuomolovuvtal otn dlaxeiplon tng KukAodopiag katavonteg Kot dtadaveig
OTOUG XpNOTEG. TexVIKEC OTwe ol SHAP (SHapley Additive exPlanations) kat LIME (Local
Interpretable  Model-agnostic  Explanations)  ypnowiomowuUvtat  yw  va
anocadnvicouv Tov TPOTIO LE TOV OTOL0 TA HOVTEAQ KATAARYOUV OTLG TPOBAEYELS
TouG. TEAOG, 0 TETapTog MUAWvVAG, Human-in-the-Loop, Staodalilel 6tL oL avBpwrtvol
XEPLOTEG CUMpETEXOUV otn Sadikacio ARPng amoddoewv, enaveéetdloviag TLg
TIPOBAEYPELG TOU HOVTEAOU KoL TtapExXovTag ocuvexn avatpodpodotnon, evioxloviag
TNV alomiotia Tou cuotpatog Kot e§acdaAiloviag EUMOTOoUVN OTO ATOTEAECATA
Tou. H avBpwrivn cupfoAr cuuBaAAeL otn S10pOwon TuXOV 0PAAUATWY OTO LOVTEAO,
Slaodalilovtog OTL oL €KpoEG (outputs) TOU CUOTAMATOG €lval PEAALOTIKEG KO

avtarmokpivovtal OTL TPAYUOTIKEG ouvOnkes. Auto dnuoupyel €vav PBpodxo
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avatpododdtnong mou BeATIWVEL TNV amodoon Tou eMIAEYUEVOU HLOVIEAOU HE TNV
mapodo Tou XpOvou, KOOWG OL XELPLOTEG TAPEXOUV TIOAUTLUEG TIAnpodopleg Kal
SlopBwoelg. TéAog, o cuvduaopog tou HITL kat Tng emegnynuatikotntag e€aodalilet
OTL TO cUOTNUA aViXVeEUONG TEPLOTATIKWY OV €lval LOVO AMOTEAECUATIKO aAAQ KoL

a€LOTILOTO KL ArtodEeKTO Ao TOUG XPrOTEC TOU.

Four pillars of our proposed framework

Proposed framework

Providing
Explainability and

Leveraging data to
identify unplanned
incidents using
Artificial Intelligence
and recurring
congestion.
———e
Utilizing automated
machine learning
techniques to

| 1 I I I
streamline and enhance
ot development iy “ “
deployment.

promote operators’
trust.

L

Integrating human
expertise to enhance
future system
performance.

Al and Data
Analytics
Automated
Machine
Learning
Explainability
Human-in-the-

Figure 0-4: OL T€00£pLG TUAWVEG TOU TIPOTELVOLLEVOU TIAQULOIOU.

O 0TOX0C TNG TPOTEWVOUEVNG TPOOEYYLONG HaC €lval va PBeATlwooupe ta
ocvotnuata Slaxeiplong t™nG KukAodopiloag ofLOTMOLWVTIAC TIPONYUEVEG TEXVLKEG
avAaAuong Kol TeEXVNTAG vonuoouvng pall e TNV QVTLUETWIILON TWV EPEUVNTIKWV
T(POKANCEWV TIou avadépbnkav TAPATAVW, EVOWHOTWVOVTAG ™mv
EMEENYNUATIKOTNTA KAl TG Tpooeyyioelg human-in-the-loop. H mpotewvouevn
pnebodoloyia kat ta empépoug Bripata amneilkovilovrat oto Ixnua 0-5. H Stadwkaoia
elval moAumAokn kat meplhapBavel diadopeg daoelg, kabeuia amod tig onoieg ival
KPLOLUN YLOL TN GUVOALKI] OMTOTEAECUATIKOTNTA TOU CUCTAUATOC OTIWE GalVETAL KL OTO

akoAoubBo oxiua (Zxnua 0-5).
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Data Collection

Loop Detectors
Segment-level measurements
Incident Dataset

Network Topology

Validation & Testing

Application in real-world case
stiudies
Performance Analysis

Explainability

Decision Visualisation
Integration of Explainable Al Tools|

Human-in-the-Loop

Feedback Integration
Model Refinement

Proposed
Methodology

Data Pre-processing

Cleaning
Normalization
Feature Selection

Advanced Analytics

Exploratory Data Analysis
Statistical Analysis
Time-series Analysis
Spatiotemporal Analysis
Correlation Analysis

Al Model
Development

Model Training

o Traditional ML
« Deep Learning
+ Generative Al
« Graph NNs

* AutoML
Model Evaluation

Real-time System
Deployment

Real-time Monitoring
Incident Prediction

Recurring Congestion
Identification

Figure 0-5: H tpotewvopevn pebodoloyia pog.

H mapovoa Siatplpr anookonel otnv mapoxn Ko OAOKANPWHEVNG EMLOKOTINONG
™™g edappoyng pebodoroyiwv mou Bacifovtat otnv TN oToV TOPEQ TNG AVIXVEUONG
KUKAODOPLAKWVY TIEPLOTATLKWY, HE L&laitepn €udacn TOCO OE MPOYPAUUATIOUEVA OO0
KOL OE HN TPOYPOUUATIOMEVA TEPLOTATIKA. [Mapouctdletal n TPOTEWVOUEVN
npooéyylon Baotopévn otnv TN yla TNV avixveuon KUKAOGOPLOKWY TIEPLOTATIKWY E
Aemttopepn mepypadr Twv OepeAlwdwY TEXVIKWVY TIOU XpnoLdomolouvtal. Auto
nepAappavel pa oe Babog avaluon tou TPOMOU HE Tov omoio sdpappolovral
povtéda TN, 6ilwg aAyoplBuotl punxavikig pabnong kat Babldg pddnong, yia tnv
avixveuon meplotatikwy. ISlaitepn mpoooxn 6ivetal otn Swdkplon MeTaly Twv
Sladlkaolwv TEPLOTATIKWY,  OMWG N

avixveuong  TPOYPAUUATIOUEVWV

enavoAappavopevn kukAodoplakn ocupdodpnon, Kal KN TPOYPOUUNTIOUEVWY

TIEPLOTATIKWY, OTIWE TO ATUXAHOTA 1) TO {adVIKO KAELIOLLO SpOUwWV.

Eva amdé ta Kkupla kivntpa ywa tnv edappoyn tng TN otnv avixveuon

KUKAOGDOPLAKWVY TIEPLOTATIKWY ELVOL N AMOTEAECUATIKOTNTA TNG SLaxeipLong peyaiou
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oykou dedopevwy kat apa n BeAtiwon Twv SuvatotAtwy avixveuong. Ze avtiBeon pe
TG mapadoolakeég peBddoug, ol pebBodoroyie¢ TN umopouv va avaluouv peydla
oUVOAa SE6OUEVWY CUVEXWG KAL O€ TIPAYLATIKO XPOVO. AUTO ETILTPETIEL TOV EVTIOTILOUO
potifwv kukAodopiag kot avwHAALWY TIOU UTIOSELKVUOUV TIEPLOTATIKA TIOAU TILO
ypnyopa Kat Pe peyalutepn akpifela amd o,TL oL avOpwrivol XelpLloTteég. Eva dAlo
Baowkd kivnipo eival n wavoétnta twv cuotnuatwv TN va SlteukoAuvouv tnv
TiapakoAouOnaon KoL TNV avIanokpLon o€ TPAYHATIKO Xpovo. H ypriyopn eneéepyacia
Twv 6edopévwv kat n Suvatotnta ARYNng amoddoswv Pdacel dedopévwv o€
TIPOYHOTIKO XPOVO MIOPOUV VO UELWOOUV ONUOVTIKA Tov XPOVOo amokplong o€

TIEPLOTATIKA KUKAOdOpLag.

Me Bdon tn ¢$uon tou neplotatikoy, SnAadn av eival TPOyPAUHATIOMEVO KN,
Slepeuvwvtal SLadopeTIKEG TEXVIKEG. Mot UN TIPOYPOUMATIOMEVO TIEPLOTOTIKA
ETUAEYOVTAL OPLOUEVOL ATIO TOUG TILO EUPEWG XPNOLLOTIOLOUMEVOUG OAYOPLOOUG KOt
neBodoug teAeutaiag texvoloyiag. MNa to Adyo auto, emléxBnke va pnv 600el
€udaon og CUYKPLTIKOUG adyopiBuoucg i aAlyopiBuoug xpovooelpwy, Sedopévou otL,
OV KOl QUTEC xpnoLdomolnBnkav ektevwe oto TapeABov, €xel AoV onpelwBel
EKTETOMEVN XpNon mpooegyyioewv Mnxavikng Mdabnong kot Babidg Mdabnong.
ZUVETWG, €XOUME EOTLACEL TNV TTPOCOXN MOG o€ alyopiBuoug Mnxavikig Mabnong
kat BaBudg Mdbnong, ouumnephappavopévwy emiBAenopevwy  aAyopiBuwv
(Supervised) (To eup€wg xpnolpomoLloUpeVo SVM Kal ULa CELPA VEUPWVLKWY SIKTUWV)
Kall tpooeyyioswv un emiPAenopevwy (Unsupervised) yla tnv avixveuon avwuaAlwy,

Omw¢ yla mapadelypa o adyoplBuog Isolation Forest.

Ano tnv aAAn mAeupd, 6cov adopd TNV emavalaupavouevn cupdopnon n
ouudopnon kat’ e€akoAouBnon (recurring congestion), elval yvwoto oOtL anotelel
KOLVO TPOBANUA oToV TOpEA TWV HeTaPopwY, LELWG OE OOTLKEG TIEPLOXEG UE LEYAAO
KukAodoplakd oOyko. AUTOG O TUTOG oupdopnong ocuvABwg TPOKUTITEL Adyw
ouvnOLlopévwy potuIwy {Atnong KUkAodopilag, OTwE oL TTPWLVEG Kal BPadLvéG WPEG
QLXUAG. Z€ avtiBeon We TN un emavoAapfavopevn cupdopnon, n onoia mpokaAeitat
arnd amnpoPAenmta  yeyovota OMWG ATUXAMATA 1 KOLPLKEG Slatapaxég, n
enavoAappavopevn cupdopnon epdavifetal Taktika kat poPAePpa. H mapouoia
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enavolappovopevng ocupdopnong Oxt HoOvo emnpedlel TNV amodoTikoTnTa TOU
Siktuou petadopwv, aAld odnyel emiong oe avénuévn KATAVAAWON KOUGIHWVY,
VPNAOTEPEG EKTOUTEG PUTIWV KoL HEYOAUTEPOUG XPOvoug Tafldlou yla Toug
HETOKLVOUUEVOUG. OL TeEXVIKEG Teplypadlki¢ avaAuong, OmMwg n  avaAuon
XPOVOOELPWY, QVAAUCN UEOW OTTIKOTOLNoEwWV Katl n cuotadomoinon (clustering),
mapéxouv pla BepeAlwdn katavonon twv TpoTUnwv cupdopnong. Ot peBodot
TPOBAENTIKAG aVOAUTIKAG, cupmeplAappavopévng tng avaAuong maAvépounong,
TWV oAyopiBuwv punxavikng pabnong kat tng mpoPAePng XPOVOOELPWY, ETILTPETOUV
Vv okpBi mpoPAedn Twv peANOVTIKWY ouvOnkwv kukAodopiag. Mall, autég ol
TEXVLKEG TPOodEPOUV Eva LoXUPO TAALCLO yLa TNV Katavonon Kot tn dtaxeiplon tng
enavalappavopevng oupdodpnong, oavoiyovtag to Spopo yla 1o  amodoTikd

cuotApata pPeTadopwv.

H napovoa Siatplpn, ev ouvexeia, mapouotalel Tn pebodohoyia mou mpoteivel
yla TNV aviyveuon TEPLOTATIKWY N omoia otnpiletal otn xpron tng Autopatng
Mnxavikng Mabnong (AutoML). O mpwTtapxlkdg otoxog Tou AutoML eival va pelwoel
TG Xelpokivnteg SLadlkaoleg mMOU CUVETAYETAL N XPAON TEXVOAOYLWV MUNXOQVLKAG
Habnong, emtaxvvovtag €tol tnv avamtuél toug. Katd ouvémela, Siddopa
cuoTAATA €XOUV TIPOOTIOONCEL va. EAAXLOTOTIOLOOUV TNV €pyacia mou amatteitot
ylol TNV EKTEAEON OPLOUEVWV BNUATWY TNG PONG £pyaciog avamtuéng cuoTNUATWY
UNXaVIKAG pabnong. H mopouca epyoocia meplhapfdavel tnv avamtuén MLoG
neBodoloylag yla TNV aUTOMATN AVIXVEUON TEPLOTATIKWY HE OTOXO TOV €YKALPO
EVTOTILOUO N TIPOYPOUUOTIOUEVWY U EMOVOAAUPBAVOUEVWY TIEPLOTATIKWY KaL,
OUVETWG, TN Onuwoupyla evog aopoaAEoTEpoOU Kal TLO afLOTLOTOU OCUOCTHUOTOC
Slaxeipong evduvwv petadopwv. To Sudypappa pong tng pebBodoloyiag, mou
amnewkoviletal oto ZxNua 0-6, amelkovilel tn YEVIKA por gpyaciog tng ev Adyw
TmpooeyyonG. Apxikd, n Swadkacio fexkwvd pe tnv  ewoaywyry Sedopévwy,
akoAouBoupevn amno éva otadlo mpoemneéepyaciag Twv Sedopévwy, wote To cUVOAO
b6ebopevwy va KataoTtel KATAAANAO yLa TNV aVATTTUEN TOU LOVTEAOU. TN CUVEXELQ,
éva epyaleio/ framework AutoML, to TPOT, xpnolpomoleitat w¢ Pdaon ng
TIPOCEYYLONG KOG YLOL TNV QVATITU, TTPOCOPUOYA Kal TEAKA TNV €mloyn Twv TAEoV

KATAAANAWY LOVTEAWV.
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H xpnon tou AutoML mapéxel €va AELTOUPYLKO TAEOVEKTNUA OcoV adopd TN
Aemtopepn pLOULON TWV Mopapétpwy. To TPOT, pe tn BeAtiotomnoinon nmou Baoiletal
OTOV YEVETLKO TIPOYPAUUATIONO, UTTOPEL va EEPEVVATEL EMAVOANTITIKA TOV XWPO TWV
TIAPAUETPWY Yl TN AEMTOPEPH PUBULON TOu MOVIEAOU KOBWG ELOEPYOVIAL VEQ
b6ebopéva n kabwg aAAalouv ol cuvbnkeg kukAodopiag, pia Stadikaoia ou eivat o
amobOoTIKI) WG TPOE TOUG TOPOUG KOl EVOEXOUEVWG TILO QTIOTEAECUATIKN OO TLG
TPOOTIABELEG XELPOKIvNTNG pUOULIONG. EMOUEVWG, VW TO HOVTEAO TIOU ETUAEYETOL
Hé€ow tou TPOT pmopel va elvatl otaBepd Katd tn OSLAPKELA ULAG CUYKEKPLUEVNG
neplodou, n pebodoloyia pag €xel oxedlaotel yla va SleukoAUveL TN €EEALEN TOU
HOVTEAOU, ETILTPEMOVTAG CUVEXELG BEATLWOELG KOLL TNV EVOWHATWON VEWV SESOUEVWY,
YEYOVOG TTOU ATOTEAEL ONULAVTLKO TTAEOVEKTNLOL OE OXECN JE L0 OTOTLKA AAYOPLOULKN

T(POCEYYLON.

AutoML
—1— Classification [—] Best Algorithm R
1 Model 1

I

Data Preprocessing - )
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Figure 0-6: MevikO SLAypappa PORG TG MPOTEWVOUEVNG HeBodoAoyiag e AutoML.

Elvat onpavtikd va toviotel 0tL to otddLo Tng mpoemefepyaciog twv dedopévwy -
TO omolo mepAapBaveL tnv e€aywyn xapaktnplotikwy, tn detypatoAndia Sedopévwy
Kal to normalization- mpayuatomnoleital mpwv and tnv ekmaidevon Twv HOVIEAWV.
Autn n npoenefepyacia eival avamnoonaoto PEpog tng dtadikaoiag oxedlaouou Kal
Twv Vo povtéAlwy (classification kal regression) - wotoco, €xel AndOet n anoddaon n
nipoemnefepyaoia va ekteAeital avefdptnta ywa va StaopaAiotel n opolopopdia
METOEL TWV HOVTEAWV Ko, TEALKA, va eVIoXUBel n amoteAeopatikotnTd toug. Eva
AemtopepEg Slaypappa, onwe paivetal oto xnua 0-7, mapéxel pLa €1 Babog amoyn

™G ddaong poviehomnoinong, amnelkovilovtag Ta mepMAoKa Brilata mou UMAEKOVTOL
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otnv eknaidevon TOCO TOU MOVTEAOU TaflVvOUNONG OCO KAl TOU MOVTEAOU
naAwvépopunong, avadewkvuovtag £€tol Tn SUTAN MPOCEYYyLoN TNG OVTLUETWIILONG TNG

QUTOMOTNG OVIXVEUONG TIEPLOTOTLKWV.

Proposed Methodology
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Figure 0-7: Aenttopep§ EMLOKOMNON TG HACNG LovTEAOTIOINONG.

Katda tnv mapouoa SiatpiPn, emiong, Slepeuvatal N EVOWUATWON UNXAVIOUWV
human-in-the-loop og cuotuata avixveLONG TPOXALWVY TMEPLOTATIKWY UE BAon TtV
TEXVNTA vonuoouvn. H avBpwrivn nmapepfacn eivatl amapaitntn oxt Hovo yla tn
StaoddaAion tng akplBouc anddoong Twv LOVIEAWV TEXVNTAG vonUoouvng, oA Kat
yla tTnv mpowBnon tng StadAavelag, TG EUNMLOTOCUVNG KOL TNG OLYOUPLAG HETALY TWV
avOpwrivwy xelplotwyv. H emeénynuatikdétnta Stadpapatilel kpiowo polo oe autn
™ Stadikaoia, fonbwvtag Toug XEWPLOTES va Katavoroouy ylati ta povtéAa TN kal ta
povtéAa mou Bacilovtal oe dedopéva MaPAyouV CUYKEKPLUEVEG TIPOPBAEPELG yLa Ta
KukAodoplakd mepLoTatikd. Méow cadwv eMeENYNOEWV TWV XOPOAKTNPLOTIKWY, TWV
TIAPAYOVIWY KoL TNG AOYLKAG Tiow amo autég TG POPAEPELS, OL XELPLOTEG TOU
OUOTAMATOG €lval KaAUTepa €EOTALOMEVOL YyLOL VO TIOPEXOUV  TEKUNPLWUEVN
avatpododdtnon. Auti n avatpododOTnon Toug EMTPENEL va amodéxovtal, va

amoppintouv [ va emefepydlovial TIG AETITOMEPELEG TWV TIEPLOTATIKWY TIOU
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ermonpaivovtal amd 1o oloTtnua, yeyovog mou PeAtwwvel €tol tn Sadikacia
npoPAedng. Q¢ amotédeopa, auty n Suvaulkiy oAAnAenidpacn petafl NG
avBpwrivng entiBAePng kot Twv cuotnudtwyv TN evioxUeL TOGO TNV akpifela 600 Kat
TNV TPOCAPHOOCTIKOTNTA  TNG  OVIXVEUONG  KUKAOGDOPLOKWY  TIEPLOTOTLKWY,
Slaodalilovrag OTL To cuotnua BeATiwveTal Pe BAon TNV MPAYUATIKA avOpwrvn

EUMELPOYVWHOCUVN.

H avamntuén tng TN oe kplolueg epappoyEg OmwG n avixveuon KUKAodoplakwv
TIEPLOTATIKWY  OTALTEL TIPOOCEKTIKY LooppoTiia  MeTafU QUTOMOTOMOLNONG KO
avOpwriivng emormteiag. Evw ta poOvtEAa TeEXVNTAG vonuoouvng mpoodEPouV
npwtodaveic duvatotnteg emnefepyaciag kot avaluong HeEYGAWV OUVOAWV
6eboUEVWVY yLA TOV EVTOTILOMO TEPLOTATIKWY, N TIOAUTAOKOTNTA Kol n adladdvela
OQUTWV TWV HOVTEAWV CUXVA SnLoupyolV IPOKANCELG ooV adopd TNV EUMLOTOOUVN
kat tnv oaflomiotia. Ou pebBodoloyieg Human-in-the-loop (HITL) moapéxouv
TIPOKTIKA AUCN O QUTEG TIG TIPOKANCELS, EVOWHATWVOVTOG TNV ovOpwrvn
avatpododotnon kat StaodpaAilovtag tnv akpifela twv mpoPAéPewv tng TN.
EmutAéov, n &eVOWUATWON XAPOKTNPLOTIKWY EMEENYNUATIKOTNTAG OTO oUOTHUA
OUUBAAAeL otnv evioxuon tng epmotoouvng otn Swadwkaoia avixveuong Twv

ocvotnuatwy TN.

Otav €va TEeEPLOTATIKO €VTOTIIETAL amO TO oUOTNHA, O XELPLOTAG KAAsital va
QVayVWPILoEL TO TIEPLOTATIKO, emiBeBatwvovtag TNV eudavion tou. Autog o Bpoxog
avatpopodotnong (feedback loop) Staopalilel 6tL edayiotomolovvtal ta Peudwg
Betka (false positive) amoteAéopata kat OTL oL TPOPAEPEL TOU CUCTHMOTOG
oUUdwWVOUV PE Ta MpaypaTika dedopéva. EmumAéov, edv cUUPEL Eva TEPLOTATLKO KOl
TO cVoTNMA SeV TO AVADEPEL, OL XELPLOTEG UIMTOPOUV VAL ELOAYOUV XELPOKIVNTA QUTEG
TG MAnpodopieg, Staodalilovtag ot Sev mapafAEnovial KPLOoLLO TTEPLOTATIKA. AUTH
N apudidpoun aAAnAemnidpacn oxt povo BeATLWVEL TNV akpiBeLa Tou cuoTANATOC, AAAQ
napéxeL eniong moAutipa dedopéva yla tnv enaveknaidbevon kot tn BeAtiwon twv

HOVTEAWV TEXVNTNAG VONUOOoUVNG E TNV Ttdpodo Tou Xpovou.
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Eva &AAo kivntpo €ival n avaykn yla €MeEnynUOTIKOTNTA Kal a§lomioTia ota
OUOTAMATA TEXVNTAG VONUOOUVNG, ELBLKA OE TIEPUTTWOELG OTIOU OL amodACELS TTOU
AapBavovtal amd ta povtéda TN pmopel va €XOuv ONUOVTLKEG ETUTTWOEL OTN
dnuoola acdalela kat tn Staxeiplon Twv MOAEWV. H EVOWUATWON TEXVIKWY OTWG
LIME (Local Interpretable Model-agnostic Explanations) kat SHAP (SHapley Additive
exPlanations) pog emitpénet va mapExoupe dtadaveic kal katavonteg mpoPAEPELS o
cuotApata mou xpnotpomnotouv TN. AUTEG oL TEXVLKEG BonBoUv otnv amokaAun g
Aoylkng miow amo TG amodpdoelg ™G TN, KaBLoTWVIAG €UKOAOTEPO yLA TOUG
avOpwWTLVOUG XELPLOTEG VoL EumLoTEVOVTOL Kal va PBaoifovtal oto cuotnua.
E€aodaiilovtag otL oL mpoPAEPelg tng TN Sev elval poévo akpieic ald kat
eNEeENYNOLUEG, LTTOPOULE VO TIPOWONCOULE LEYAAUTEPN EUMLOTOCUVN KAl ULOBETNON

OQUTWV TWV TEXVOAOYLWV OE TIPAYUOTIKEG CUVONKEG.

To mpotewodpevo mAaiclo ywa tn PeAtiwon Twv OUCTNUATWY avixveuong
TIEPLOTATIKWY EVOWUATWVEL TOOO TLG LeBodoloyieg Human-in-the-Loop (HITL) 600 kat
XOPAKTNPLOTIKA EMEENYNUATIKOTNTAG, cUVOUATLOVTAG T TTAEOVEKTHMOTA TNG TEXVNTAG
VONUOOUVNG UE TNV avOpWTILVN EUMELPOYVWHOCUVH, woTe va dtaodaAiletal akplBig
kat aflomiotn amnodoon. Aflonowwvtag To HITL, To cUOTNUO EMLTPETEL TN OUVEXN
avOpwriivn TapéUPaocn Kal EMOTMTELN, EMULTPEMOVIAG OTOUG EUTELPOYVWLOVEG VA
ETULKUPWVOUV KalL va BEATLWVOUV TA AMOTEAECLOTA TTOU Ttapdyovtal aro tnv TN. Auth
n uBpLOIKA pooéyylon Sdlaodalilel 6tL To cloTnUa pmopel va pabaivel Suvauika
and tnv avBpwrivn avatpododotnon, mapexovrag TapAAAnAa eppnveia Twv
TIPOPBAEPEWY HECW XAPOKTNPLOTIKWY EMEENYNUATIKOTNTOG. AuTol OL pnxaviopot
enefnynuatikotntag eival Kplowol ywa tnv evioxuon tng eumiotoolvng ota
cuotipata rovu Bacilovtat otnv TN, KaBwWE EMITPEMOUV OTOUG AVOPWTILVOUG XELPLOTEG
VOl KOTOVONOOUV TO OKEMTIKO Tilow amd Tig anoddoelg, va Slayvwoouv mbava
oddApaTo KoL va KAVOUV TIPOCAPMOYEG Yyl tn PBeAtiwon tng akpifelag tou
OUOTAMATOG. TEAKA, QUTO TO MAQLCLO ATTOCKOTIEL OTNV EVIOXUON TNG AMOSOTIKOTNTAG
avixveuong pn emavoAapufavouEVWY TIEPLOTATIKWY, OTtwE oL SlakoTeg KukAodopiag
N Ta otuxnuata, OSwtnpwvtag mapdAnAa udnAd enineda  Stadavelag,

EUMLOTOOUVNG Kal arddoonG 0€ CUCTAUATO LETAPOPWY TOU TIPAYHUATIKOU KOGHOU.
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Figure 0-8: To mpotelvOpEeVO TAAiGLO ME TEXVIKEG EMe§nynowuotntag ko Human-in-the-Loop.

Ynapyxouv moAAA odEAN Tou Tpotelvopevou TAaloiou (Figure 0-8), omwg yia
mapadelypua  evioxupévn okpifela kat oaflomiotia, auvénuévn Sadadavela Kot
EUMLOTOOUVN, CUVEXNC HLABNON Kal TPOcOpUoyn KOTA TN SLAPKELA TTPOANTITIKAG
real-time Staxeiplong TnGg KUKAOPOPLAG. ZUVOTITIKA, TO TIPOTELWVOUEVO TTAQLCLO YL TV
EVOWUATWON npooeyyiloswv Human-in-the-Loop KoL XOPAKTNPLOTIKWV
EMEENYNUATIKOTNTOG OE CUOTHMOTO QVIXVEUONG TIEPLOTATIKWY TIPOOPEPEL ULt KAAR
AUon yw tnv amoteleopatiky Saxeiplion tng kukAodopiag. Zuvdualovtag ta
TIAEOVEKTAMATA TNG TEXVNTAG VONOOUVNG KE TNV avOpWTILVN EUMELPOYVWHOCUVN KO
™ Swadaviy AnPn anoddocewv, 10 cvotnua efaodaiilel akplp kat aflomioTn
avixveuon meplotatikwy, cupuPaArloviag teAlkd oe aodaAéotepn Slaxeiplon g

kukAodopiag.

45



OVERVIEW OF HUMAN-IN-THE-
LOOP FRAMEWORK
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Figure 0-9: To mpotewvopevo mAaiolo otidovrag oto Human -in-the-Loop approach

To Zxnua 0-9 amelkovilel To mAaiolo Human-in-the-Loop (HITL), o pebodoAoyia
TIOU XPNOLUOTIOLELTOL OTNV €pEUVA pag yla TN BeATiwon TwV HOVIEAWV UNXAVLKAG
nabnong (ML) yia tnv mpoBAedn mepLOTATIKWY O€ VDU CUCTAUATA LETADOPWYV TTOU
xpnotuornololv dedopéva atocbntripwyv Bpodxou (inductive loop detectors - ILD) . H
Swadkaoio  &ekwvad pe Tt ouMloyny Sebopévwv  amd  awoBntipeg  Bpoxou
EVOWUATWHEVOUG o€ 080UG, TA oMol OTn CUVEXELA XPNOLUMOTIOLOUVTAL yla TNV
eknaidbevon povtéeAwv ML pe otdxo tnv npoPAedn meplotatikwy. Avti va Baoiletat
QTTOKAELOTIKA OE OQUTOMOTOTOLNUEVEG TIPOPAEYELS, N Ttpoogyylon HITL elodyel éva
evlLdpeco Brpa OmoU avOpwWTILVOL EUNELPOYVWHOVEG €EETALOUV KAl ETILKUPWVOUV
aUTEG TG TtpoPAEYELS. H avatpododdtnon amd autolg TOUG EUTIELPOYVWLOVEG OTN
ouvexela tpododoteital ek VEOU 0TO HOVTEAD, BEATLWVOVTOG TEPALTEPW TNV aKPiBELA
TOU KOl ETULTPETIOVTAG TOU VA TIPOCAPUOTETAL OTLG TTOAUTIAOKOTNTEG TWV OEVAPLWY TOU
TIPOYHOTIKOU KOOMOU. AuTh n emavoAnmukn dtadikacio StaodaAilel OTL T povtEAa
ML oxL noévo BeAtiwvovtal mpoodeuTtikd, aAAd Kal cUYKALVOUV OAO KOl TEPLOCOTEPO

HME TOV TPOTIO TOU Ol emayyeApatie¢ Twv peTadopwv opilouv tnv €vvola Tou
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KTIEPLOTATLKOU», 08NYywWVTaG TEAKA 0€ aKpLBECTEPEG Kal TILO a&LOTLoTEG TIPOPAEYELS

TIEPLOTATIKWV.

EmunpooBétwg, to cUotnUd pag €xel Suvatotnta ylo €MOVEKTALOEUON TWV
MOVTEAWV HNXOVLKAG MABNONG O€ TAKTA XPOVIKA OSLaoTAUATA, TIPOKELEVOU va
Slatnpeltal n amoTEAECUATIKOTNTA TOU OE OXECN ME TLG LETPLKEG TTOU €X0UV TEDEL, Kl
kaBwg véa dedopéva yivovtal dtabéoipa. Metd tnv oAokAnpwon Twv Stadlkaclwv
enavekmnaidbevong, OSlamotwOnke TwWG Ol METPLKEG amOdoong TOU HOVTIEAOU
napouotalovv afloonpeiwtn PeAtiwon petd amod kabe kUKAo emaveknaidbevong. H
BeAtiwon aut) onpewbnke WSlaitepa otn petpkn recall, n omoia petpd tnv
LKAVOTNTO TOU HOVTIEAOU VO Oavayvwpilel CwoTd Ta TPAYUOTIKA TEPLOTATIKA,
cupnepAapuBavouevwy ekelVvwY TIou eiyav ponyoupevwg ta§lvounBel eopaipéva.
ErutAéov, ouykpivovtag cuoTnpatika ta amoteAéopata tng eBdopadlaiog kat Tng
SekamevOnuepPNG eMaveKTaibeuong, EVIOMICOLE TNV TILO ATOTEAECLATIKY OTPATNYLKA
enaveknaidbevong. Aev emAé€ape tnv kabnuepwvy enaveknaibevon, kKabBwg evw
umopel va odnynoeL o€ taxeio avgnon twv emdooewy, Oa Unopouce emiong va evéxeL
TOV KivOUVO UTtEPTIPOCAPROYNG KOL TAUTOXPOVA ATIALTEL ONUAVTLKOUG UTIOAOYLOTLKOUG
nopouc. H eBdopadiaia emaveknaidsuon MAPEXEL UL LOOPPOTINUEVN TIPOCEYYLON,
npoodépovtag ouvexeig PeATwoelg xwplg uTtEPPBOALKEG UTIOAOYLOTLKEG amaltioels. H
bekamevOnuepn enavekmnaidguon, av kKat SuVNTIKA To AmoSOTIK WG TPOG TOUG
mopoug, €xeL amodexBel OTL kabBuotepel TNV KAVOTNTO TOU MOVIEAOU va
EVOWUATWVEL AUECA VEQ TPOTUTA. H OUYKPLTIKR avAaAuon TwV OCUXVOTATWV
enavekmnaidbevong amokdAlupe ot n efdopadlaia emavekmaidevon mapeixe Tn
BEATIOTN LooppoTia PETAlL avtamokplong kot otabepotntag. To povtédo Atav o€
Béon va TPOCOPUOOTEL QATMOTEAECUATIKA O Vvéa TPOTUTIAL Xwpig Tov Kivéuvo

uTtepBOALKAG IPOCAPOYNG | UTIEPBOALKWY UTTOAOYLOTIKWY QTTOLTCEWV.

AkoAouBwg, avamtuooetal MAnpodoplakd cvotnua, to AutoEventX, to omoio
Sivel ™ duvatotnta edpappoyng TnG MPOTEVOUEVNG LeBGSoU oe SladopeTIKA QOTIKA
niepBarlovra. ZuykekpLueva, n neBodog epapudletal oe V0 SLAPOPETIKEG TIOAELG,

Vv ABrva kat tnv ApBépoa, yla va aflohoynBel kat va cuykplBel oe StadopeTikd
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ootikd meplBallovia kot mAaiola. H evvoloAoylkry apxitektovikr (conceptual

architecture) anewkoviletal oto Zxnuoa 0-10.
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Figure 0-10: EVVOLOAOYLKI) OLPXLTEKTOVIKI TOU TIPOTELVOLEVOU CUCTHHOTOG.

To mAnpodoplakd cloTNUA avantuXOnKe LEOCW TNG EVOWHATWONG KAl Evomoinong
Sladopwv epyodeiwv mou adopouv T Sladopec GACELG TOU TPOTELVOUEVOU
mAatoiou. To obotnua eival oe B€on va evowpatwvel Sedopéva mou mapExovtal amno
SLapopETIKEG TTNYEG, VO A§LOAOYEL TNV TTOLOTNTA TWV ELCEPXOUEVWV SESOUEVWY, LECW
ELOIKWV TEXVIKWV, Olwg 6oov adopd TIG LETPNOELS TTou AapBAvovTal and aviXVEUTEG
Bpoxwv, va umootnpilel tnv anoteAeopatikn eneepyacia SeSoOUEVWY OE TPAYUATIKO
XPOVO, va TapEXEL OTOUCG evdladepouevoug dopeic mpoPAéPelg 6cov adopa
TIPOYPOAUUATIOUEVO KAL N TIPOYPAUUATIOUEVA TIEPLOTATIKA KOL VO OTTOKAAUTITEL TN
AoylkA Tiow amo autd ta anoteAéopata, Aappavovtag unoyn tnv avatpododotnon
TWV EUNELPOYVWHOVWV XELPLOTWV. MpoKeELEVOU va avarmtuxBel to cuotnua auTo,
xpnotuomnowBnke katd Baon n yh\wooa Python kaBwg kot oxeTikég BLBALOONAKEG, oL

omoleg mapouotdlovtal o avaAuTika otnv apovoa dtdaktoptkn Statpfn.

H TeXVlKA OpPXLTEKTOVIKA TOU OUOTAMATOG Mall He Ta empépoug emimeda
(AmoBnkeuong, Aoyiwkig kat AvBpwrivng Moapépfaocng) kot TG METAEU TOUG

ouoxetioelg mapouvaotalovrtat oto Zxnua 0-11.
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Figure 0-11: TEXVLKI QPXLITEKTOVIKN TOU avamntux0évtog cuothpatog AutoEventX.

To Eninebo AnoBnikeuong (Storage Layer) mapéxel tn Suvatotnta amobrkevong
TOOO yla otatika dedopéva 600 Kal yia dedopéva oxedov mpayUatikol XpOvou LE
SLadopeTIKEG HOPDdEC Kal TUTIOUG POoPaong, KL amoTeAeital and anobnkeuon og
cvuotnua apxeiwv mou diatnpel ta dedopéva oe popdeg JSON, JSON-LD kat Parquet.
To teheutaio €xel emAeyel yla Tn SLATAPNON TWV APXLKWY SESOUEVWV YL TIEPALTEPW
tpododocia TOUu CUCTAMOTOC Kal oamokatdaotacn tng Baong &edopévwv, edav

QtalLTELTOL.

To Enimedo NAoyikng (Logic Layer) amoteAel To KEVTPLKO UTIOAOYLOTLKO eTtimedo yla
avaiuon Oebopévwy, ekmaidbevon povtéAwv kot TPOPAsdn. Evowpatwvel
mapadoolokoUC Kol OUTOMATOUC aAyOplOPOUC PNXOVLKAG MABNoNG ylol EKTEAECN
TPONYUEVWY aVOAUCEWVY Yl TIPOYPOUUATIOMEVA KOl U TIPOYPAUUATIOUEVA

TIEPLOTATIKA.

e MNponypévn Avaluon AsSopéEVwV: XpnOLUOTIOLEL XPOVOOELPEG, XWPOXPOVLKNA
avaAuon Kal ovAaAucon OUoxeTioewv, Ue epyaleia omw¢ ARIMA kal t™n

BBALoOnKNn GeoPandas.
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e Avantuén MovtéAwv Mnxaviking Mabnong: Meplhappadvel mpoemneéepyaoia,
KaBaplopo, e€aywyr XopakTnpLoTkwy, ettAoyn alyopiBuou, exnaidevon kat

TIPOCOPUOYH TIAPAUETPWY LOVTEAWV NXOVIKAG LABNnong.

e EmkOpwon Movtélou: XpnoLUOTOoLEL EUPEWC XPNOLUOTIOLOUUEVESG LETPLKEC
(r.x. precision, recall, F1-score) kot TEXVIKEG SLACTAUPOUKEVNG ETUKUPWONG

yla e§aoddalion aglomiotiag.

e Avutopatomotnpévn Mnxavikq Mabnon  (AutoML):  Xpnowlomolel
BLBAL0ONKeg AutoML yla TV autopatomnoinon tg dtadlkaciag, evioxvovtog

TNV amodoTkOTNTA Kal TNV ENMeKkTaolpotnTa (scalability) Twv povtéAwv.

o NpoBAéYelg oe MNpayuatikd Xpovo: Moapéxel MPoPAEYEL; 0 TPAYUATIKO

XPOVO YLO TUXOV TIEPLOTATLKA, TIPOYPOULMOTIOMEVA R UN.

To Eminebo Human-in-the-Loop evowpatwvel tnv avOpwrivn €UNELPOYVWIOCUVN
oto cvotnua yia emPefaiwon NG MPOPAEPEWV TWV UOVIEAWV KOL QTIOKTNONG
gEUmotoouvng amd toug xpnoteg otnv TN kot Tg amoddoelg mou AapPdavel to

cloTNUA.

o Emneénynuatikotnta: Mpoodépel mAnpodopieg oxetikd pe tn Sladikacia
AQUPNG amodAoewV ToU POVIEAOU, ETILTPEMOVTIAG OTOUG eVOLADEPOUEVOUG VA

KatavooUV TLg TIPOoPAEPELG TOU CUOTLATOG.

e EmOpwon, AlopOwon kat Avatpododotnon and AvBpwrnoug: Ot XELPLOTEC
Tou ouothpatog Staxeiplong kukAodpopiag avabewpouv kot StopBwvouv Tig
TiPpoBAEYPELG TOU HovTEAOU, SnULoupywvTag Evav KUKAO avatpodpodotnong yla

ouvexn BeAtiwon Tng anddoong Tou PovieAou.

e Evowpatwon pe Zuotnpata Awaxeipiong KukAodopiag: Ta emikupwpéva
QMOTEAEOMATA UMOPOUV VA EVOWHATWOOUV OE TMPAYUATIKA cuoTAUOTA
Slaxeiplong kukAodopiag, mapéxovtag LOOTOLOELG OE TIPOYHOTLKO XPOVO KOt

Slaodalilovrag anoteAeopatiki avtidpaon o MePMTWON ATUXNUATWV.
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H mpoypappatiotiki yY\wooa Python, Adyw tng eveAi€iag tng, emAEXONKe yla tnv
vlomoinon Tou TAnpodoplakol cuotHuatoG. BiBAoBnkec oOnmwg Pandas
SleukoAUvouv tn Slaxeiplon dedopévwy, n BLBALoOnkn Scikit-learn umootnpiletl v
avamntuén povtéAwv, ol Keras kat TensorFlow xpnotpomnololvtal yla TV avamtuén
HovTéAwv Bablag puabnong, evw ot Seaborn kat Matplotlib yia tnv omtikonoinon
6ebopévwy, mpoPAéPewy, avalloswv Kol amoteAecpdatwy. EmumAéov, texvoloyieg
mou xpnotgorowtBnkav meplhapPfavouv TG PBiBAoBnkeg SHAP kat LIME yua
ene€nynon twv povtéAwv, kabwg kot Flask kat Docker yiwa tn dnuloupyia €vog
dopnTou KL EMEKTACLUOU cuotnuatog. To Flask, éva Python framework, enitpémnet
v avamntuén APl kat tn dlaxeiplon atrtnuatwv. To Docker dnuloupywvtag containers
yla to deployment tng edappoyng, e€aodalilel ouveénela petafl meplBarloviwy,

amopévwon ywa aopaAela kat popntotnTa PeETAlL MAATPOPUWV.

To oboTnuA pag €xel avamntuxBel xovtag 2 SltadopeTikol TPOMOUG AeLToupyiag:
tnv offline kat tnv online. Zto ZxNua 0-12 apouoLAleTalL N TEXVLKN APXLTEKTOVLKNA TNG

AelToupylag EKTOC oUVOEDNG TOU CUCTALOTOC TTOU AVATTTUEAE.

TensorFlow
Data Pre-processing @

%,
[ Data cleaning ][ Data transformation ] [ Data aggregation ] /'//// seaborn

Alncidents detected
I dul I
| ML/DL module 3o |
d
I . . . . N" |:;| pandas |
| Trainng Fine-tuning Evaluation NumPy |
I I
| T Keras |
| C |
| Unbalanced dataset ) . D lizati |
| handling (supervised) Feature engineering ata normalization 1F . l’ewm |
I I
I I
I I
| I
I |

| Data Layer

Loop detectors

“ (speed, flow, occupoancy)

Figure 0-12: Texviki apxttektovikr tou offline tpomou Asttoupyiag Tou cuotApaTog.
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To eninedo dedopévwy TIEPLEXEL TIG LETPAOELG TOU VIXVEUTH BpOXwV (LoTopLlkoU
KalL T(PAYLATIKOU XpOVOU) YL TNV TaXUTNTA, TNV MTANPOTNTA KOL TN POR, EKTOG amod Ta
avtiotolya cUVOAQ SESOUEVWY TIEPLOTATIKWY KaL TLG AVTLOTOLXEG TAnpodOpleC yLa TO
OUYKOLVWVLAKO SiKTUO KAOE mepinmtwong. Zto eninedo ML/DL, £xouie UAOTIOLNOEL plLa
OELPA aAyopiOuwY unxavikng nabnong, Badlag nabnong kat aAyopiBuwv AutoML ya
TNV QUTOUOTN OVIXVEUON TIEPLOTATIKWY. AUTEG TEPIAAUBAVOUV TOGO EMOTTEUONEVES

000 KOl |LN ETIOTITEVOEVEG TIPOCEYYLOELG,.

Adou ekteAECOUUE TNV EKTTAiSEUON TOU LOVTEAOU TEXVNTAG VONUOOUVNG KATA TN
Aettoupyia offline, to clotnUA pag eival oe B€on va AELTOUPYAOEL OE TIPAYULATIKO
Xpovo yla tnv epdavion mubavwv meplotatikwy (alerts). to IxAua 0-13
napouotaletal n pon tng Stadwkaociag tng Asltoupyiag mpayUaTtikou XpOvou Tou
OUOTAMOTOG MaG.  MOALG yivouv SwoBéopa veéa Sedopéva, 10 oloTNUA T
kataypddel. Emopévwg, oL avtiotolxeg mAnpodopieg cuAéyovtal, anoBnkevovtatl
TOTILKA KOl 0T CUVEXELX opadomolouvtal o€ KATAAANAA Xpovika SlaoTtApaTa yLo va
tpododotnBouv oto otaddlo mpoenetepyaciag kot kabaplopol twv dedopévwy. OL
OUYKEKPLUEVEG Sladlkaoieg poenegepyaoiag MAPAUEVOUV CUVETIELG E EKELVEG TTIOU
nieplypaddovrtal otov offline tpdmo Aettoupyiag, dtatnpwvtag tnv opolopopdia otnv
T(POCEYYLON TNG TIPOETOLLACLAG KAl TOu KoBapLopou twv 6eSouévwy. TN CUVEXELQ,
Ta 6ebopeva peTatpEnovtal otnv anattolevn popdn yla va tpododotnbolv oto
otddlo tng MPOPAePng tou Movtélou. EAv n katoxwpnon TEPLEXEL OVWHAALEG
(avtumpoowmeveTal WG «1»), TOTE {nTEital avatpododdtnon amod TouG XELPLOTEG yLa
va eniBefalwbdel To evtomiopévo neplotatiko. Auth n évvola Tng avatpododotnong
and avOpwrmivo xelplotr elval IwtlkAg onuaciog, Sebopévou oOtL Ponbd otn
Snuoupyia evog PBeATlwpévou OUVOAOU SeSOUEVWV  TEPLOTOTIKWY Kal £T0L
e€aodalilel 6tLn anodoon Tou cuoTHUATOG Urtopel va BeATLWOEL pe TV tdpodo Ttou
xpovou, dedopévou OtL emavekmaldeVETAL 0 QUTO TO SLAPKWG EEEALOCOEVO CUVOAO
bebopevwy. Atilel va avadepbel otL oL evdladepopevol dopeig pmopolv va
BeATlwoouv TNV moloTNTA KOl TNV OKpiBela Twv avadePOUEVWY TIEPLOTATLKWY,
SnULoUpywvTag XELPOKIVNTEG KOTOXWPLOELG TIEPLOTATLKWY TIou gvtomilouv ol idlot.
Télog, otnv mepimtwon Tou TO oUOTNUA €XEL OSLOMIOTWOEL MO avwUaAio ota

bebopéva kal TNV Xapaktnpilel wg MEPLOTATIKO, TOTE APAYEL WG EKPoN (output) Kot
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arnoBnkeVeL oto Data Layer pa oviotnTa TUNou «I1EPLOTATIKO» |LE TO XOPAKTNPLOTLKA

NG TonoBeoiag Kal Tou XpOVoU TOU TIEPLOTATLKOU.

Mpokelpévou va BeAtiwBoUuv ol SuvaToTNTEG avViXVELUONE TOU CUCTHUATOC UE TNV
napodo tou xpoévou, o Bpoxo¢ avatpododotnong mou £xoupe ePpapUOOEL yla TN
oUYKPLoN TwV TPOPAEPEWY TOU POVTEAOU LE TO TIPAYHATLKA AMOTEAECUATA ELvaL TO

KAELWOL yla ouvexn BeAtiwon. H avixveuon tuxov amokAicewv aflomoleital yia tn

BeAtlotomoinon tou povigAou.
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Figure 0-13: Online tTpomog Aettoupyiag TOU CUCTHUATOC LLOGC.

Emetta, aflohoyeital To MPOTELVOUEVO CUOTNUA AVIXVELONG TTEPLOTATIKWY O SU0
TPAYUATIKA oevapLa xpriong. H afloAdynon nep\apfavel mepapata yla tn cuAAoyn
HUETPAOEWV €MIOO0EWV Kal TN Ole€aywyrn OCUYKPLTIKWY avOAUCEWV MPETAEL Twv
oAyopiBuwv pnxavikng kat Badlag pabnong, texvikwyv AutoML kot BaoKwy HOVTEAWV

o€ 6U0 peydAeg MOAELG, TNV ABriva otnv EAAGSa, kal tnv AuBépoa oto BEAyLo.
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Itnv ABrva, o autokvntoédpopog tnG ATTLKRG 060U Tou cuvbEeL To agpodpouLo
HE TO KEVIPO TNG TOANG TOpEXEL LOLaitepeG KUKAODOPLAKEG TIPOKANCELG, EVW OTNV
AuBépoa, pa onpoavtik Sladpopr) Tou OCUVOEETAL ME TO ALMAVL KOl TOUG
OUTOKLVNTOSPOUOUG QVTIIPOOWNEVEL €va OladopeTikd 0oTikO TeptBailov. H
ovamtuén Twv HOVIEAWV Kol n  epopuoyr TOU TPOTEWVOUEVOU TIAALOLOU,
neBodoloyiag kal avamtuxBEVTOg CUOTALATOG LOG Kal oTLG U0 TIOAELG pag eTETPEPE
Vol SOKLLACOUE TNV TIPOCAPHUOCTIKOTNTA 0 SLadopETIKA aoTIKA Tomia, Seixvovtag
TI¢ SuVATOTNTEG TOU MPOTELVOUEVOU CUOTAHOTOC HOG Yla XPHoN Kol O EUPUTEPEG

edappoyeg Slaxeiplong tng kukAodopiag.

AkoAouBei screenshot oto Zxrjpa 0-14 ou amelkovileL Eva pin TPOYPAUULATIOHEVO
TIEPLOTATIKO KUKAOdOpLag mou evtoniotnke and to clotnua AutoEventX omwg auto
daivetal and dashboard mou avamtuxBnke oto MAAICLO TOU EPEUVNTIKOU €Pyou

FRONTIER.
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Figure 0-14: ITIYLOTUTIO QIO [N TTPOYPOALLHOTIOMEVO TIEPLOTATIKO 0TO case study otnv ABRva.

Katad tnv aglohoynon AndOnkav umoPn ot mepoplopol twv Slabéoipwv
bebopevwy, BLlwg N ENeWPN EMONUACUEVWY TIEPLOTATIKWY, N omoia TepLopLle tnv
opatdTnTa Kal EMnpeale To Mooooto Peudwg Betikwy anoteAecpdtwy. H avixveuon

otnpixBnke o akpPn Staothpata 5 Aemtwy, yeyovog MOU EMNPEACE TLG UETPLKEG
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anodoong, KabBwg To cUOTNUA ETIPETE VA OQVLXVEUOEL TEPLOTOTIKA HE OKPLPBA

timestamps.

Ta anoteAéopata €detav SLaKUUAVOELG LETAEL TwV aAyopiBuwy, pe To Support
Vector Machine (SVM) va erituyxavet tnv upnAotepn akpifela kat avakAnon Kot ot
600 cuvola dedopévwy, yeyovog mou cuvadel e tn BLBAloypadia mou umootnpilet
Vv uPnAn anotedeopatikotnta andédoong tou SVM pe enonuelwpéva Sedopéva.
Qotooo, oL meploplopol meplappavouy mibavry UTIEPTIPOCOPUOYI KOl TIPOKANCELG
OTO XELPLOpO Selypdtwy ou Sev unrpxav oto training dataset. Ta BCNN kat Wavelet
Neural Networks emnédel€av uvdnAi avakAnon oAA& xounAotepn okpifela,
ennpedlovtag to Fl-score. OL petaoxnuatiopol wavelet eixav eAadpws KAAUTEPES
emudooelg and to BCNN, cupdwva pe ta BipAloypadikd gupnuata yia dedopéva
xpovooelpwv. O Autoencoder £xeL eplBwpla BeATiwong, OUWG N ATTAN APXLTEKTOVLKN
mou emAexOnke TBavwg meploploe v anddoon. O alyoplBuog Isolation Forest
TIETUXE KON avakAnon aAAd xaunAn akpifela, amodidoviag moAuvdplOua Peudwg
Betikd amoteAéopata, ta omoia Atav dUokoAo va aflohoynBolv Adyw mibavwv
TudpAwv onueilwv tou Siktuou yla ta omoia dev umipxav kaBolou dedouéva | oe
nepintwon mou unnpxav, avtd Atav eAAut). O aAyoplBuog Bidirectional LSTM
napouciace vPnAn akpifela kal tkavomolnTk avdkAnon. H BéAtiotn amodoon
erutelxOnke peéow pog Pabudg bidirectional apyltektovikng, avaAvovtag
QTOTEAECHUATIKA TLG EEAPTNOELG TIPOG TA EUTIPOG KAL TIPOG TA ToW yLa TNV POBAeYn
™¢ pong kKukAodopiag. To Random Forest eival oe Béon va anodwoel e€aLPETIKA
KaAQd TOOO OTI( METPAOELS aKkpifelag 00O KoL OTIG METPHOELS QvAKAnoNG,
avadelkvuovTag TNV LKAVOTNTA TOU va TaVOpEl ME akpifela Tt TPOAYMOTIKA
TIEPLOTATIKA, gAayloTomolwvtag MopdAAnAa ta Peudwg BeTkd Kal apvntikd. To
Neupwviko Aiktuo Mpadnuatwv (Graph Neural Network — GNN) eival oe B¢on va
KaTtaypAPeL TTOAU LKAVOTIOLNTLKEG TLLEG OKPIBELAG KOl APKETA KAAEG TLUEG AVAKANONG.
Ao mpaktikn Anoyn, autd onpaivel otL umapyxouv Alya false alarms omou to
olOoTNUA TIPOPBAETIEL EVOL TIEPLOTATIKO TIOU SEV €XEL CUUPBEL OTNV TIPAYHATIKOTNTA, EVW
elval kavo va avayvwpioel Eva HEYOAO TTOCOOTO TWV TIPAYHOTIKWY TEPLOTATIKWV.
Auto onuaivel OTL To cuoTnua gival aflomoto Pe TNV €vvola OTL Sev XAVEL TTOANG

TiepLloTaTkA. TEAOG, to baseline povtélo tng Aimsun, av kat aduvapo oe akpLBeig
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HETPNOELG avA TIEVTE AEMTA, TMETUXE 73% avakAnon oe éva meplBwplo 15 Aemtwv
YUpw amd Tta yeyovota otnv ABRva, To omoio Atav oamodektd ylo  un
enavolappoavopeva  meplotatikd.  EmutAéov, avadepopevol  ocuviopa ot
anoteAéopata TG avaluong xpnolponowwvtag AutoML, otnv ABriva, n mpoceyylon
unepeixe twv Poaolkwv peEBOSwY 0cov adopd OAEG TG KOOLEPWUEVESG WETPHOELG.
AvtiBeta, otnv AuBépoa, o adyoplBuog SVM ntav avwtepog 6oov adopad to Fl-score
Kal TNV avakAnon, aAAd Tautoxpova n TPOCEYyLon Xpnotpomolwwviag AutoML tov
Eemépaoce Ooov adopd T MUETPWKN TNG akpifelag. Autég ol SladopomolioELg
UTTOYPOULILZOUV TNV VAYKN YLl TIPOCAPLOCUEVEG AAYOPLOULKEG OTPATNYLIKESG KOL TNV
e€etaon twv WlattepotNTwy Twv SeSoPEVWY KATA TNV aViXVELON TIEPLOTATIKWY OE

Sladopetikd aotikd eptBaiiovra.

TéNog, elval onuaviiko va oavayvwplotel OtL, evw to AutoML otoxeleL otnv
amAomoinon kat tn BeAtotomoinon tng Siadikaoiag emloyng Kot ekmaideuong
HovtéAwv, Oev avalpel tnv afla tng katavonong tng amodoonG CUYKEKPLUEVWV
texVikwv ML. H ouykplon pag emdlwkel va avadeifel Tov TpOMO WE TOV Omoio n
npooéyylon pog nmou Baciletat oe texVikEG AutoML amodidel Evavtl Twv XElpoKivnTa
PUOULOUEVWY KO ETUAEYUEVWY LOVTEAWV OTOV TOUEQ TNG AVIXVEUONG TIEPLOTATLKWVY
xpnowwomowwvtag Sebopéva  avixveutwv  Bpoxwv, OSivovtag Eudacn otnv
QTOTEAECHUATIKOTNTA, TNV TPOCOPUOCTIKOTNTA Kol tTnv anddoon o€ oevdapla
TIPOYHOTIKOU KOOMOU. ZUVETIWG, KATOARYOUE Twg To AutoML BonBad otnv emhoyn
MOVTEAWV, ELOLIKA KATA TA TPWTO O0TASLA TNG LOVIEAOTIOINONG, KAL YEVIKWE UITOPEL val
SWOoELTIOAU KAAEG KOl CUYKPLOLUEG ETILOOTELG, aTtd TNV AAAN LEPLA amattel TTOAU xpovo

KalL UTTOAOYLOTLKOUG TTOPOUG.

Ao ta mapandvw eival cadEg mwe N avaluon pog avadelkvUEL TIG TTPOKANCELG
otnv ehaylotonoinon twv YPeudbwg Oetikwv amoteAeopdtwy mou odellovtal oe
TUOAA onuela TwV cuyKoWwVLIaKwY SIKTUWV. KaBe moOAn kal oevaplo xprong €xeL
EEXWPLOTEG TPOKANCELG, UToypappiloviag TNV ovaykn ylo TPOCOPUOCUEVES
OAYOPLOUKEG OoTPATNYIKEG. Na onUELWOEL EMioNng WG oL ETUAEYUEVEG ETPLKEG, OTIWG
n akpifela, n avakAnon kat to Fl-score, mapeixav moAUTIHEG TANpodOpileg, WoTOCO
TIPOCOETEG LETPLKEG -OTIWG O LECOG XPOVOG aVIXVEUONG TIEPLOTATIKWY, KOL N ToXUTNTA
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anokpong- Oa Atav KaAo va avartuxBolv oto PEAAOV yla €va OAOKANPWUEVO

operational context, mou ektelvetal mépa amnod tnv napovoa Slatplpn.

210 teAevtaio kedpdAalo, n SlatplBry AMOTUTIWVEL TIG ONHOVTIKEG CUVELODOPEG
OTOV TOMEQ TNG avixveuong meplotatikwyv kukAodopiag pe Pdaon tnv tEXVNTA
vonuoouvn. Zuvdualovtag tig Texvikég AutoML, HITL kat tnv emeénynuatikotnta, T0
clvotnua avadelkVUEL TN ONUAVTLKA TPOOSO TOU TPOTEIVEL OE OXEOn ME TIG
napadoolakég peBOdoug avixveuong meplotatikwy. Qotoco, odeilouvpe va
QVAYyVWPILOOUUE KATIOLOUG TEPLOPLOMOUG, Wlwg o0oov adopd tnv moldtnTa Twv
6ebopevwy Kal TG TMPOKANCELG Tou Xelplopol eAAmwv 1 BopuBwdwv cuvolwv

bdebopevwv.

Autol oL teploplopotl urtodekviouv TopElS yla peAAOVTIKA Epeuva. H LeAAOVTLKN
€peuva Ba pmopouoe va emikevipwOel otn BeAtiwon tng avixveuong KUKAODOPLOKWY
TIEPLOTATIKWY ME TEXVNTA VONUOoUVn HEOWw evowpdtwong O&edouévwv amod
TOAAQTAEG TinyEG, ouvdualovtag Sebopéva amd KAUEPEG KAELOTOU KUKAWUOTOG
(CCTV), 6ebopéva dnuoéolwv cuykowvwviwy, dedopéva Kalpou Kal Anpodopieg anod
Siktua KOWWVIKAG SIKTUWONG yla €va Lo OAOKANPWUEVO cuoTtnpa. EmutAéov, ol
e€elilelg otn punxaviki pabnon, Babld pabnon Kal evioxuTik pdabnon pmopolv
TOavwg va BEATIOTOMOLCOUV TNV MPOCAPUOCTIKOTNTA TWV HOVIEAWV o€ dadopa
oaotikd neptBaliovra. H cuvepyaoia avBpwrou-texvntng vonuoouvng Ba pnopouoe
va BedtlwBel péow Sladpaotikwv Slemadwy, gpyadelwv eMAUENUEVNG/ELKOVIKNG
npaypatikotntag  (AR/VR) kot avatpododOtnong Oe  MPAYHATIKO  XpOvo,
Slaodalilovtog TNV OHaA EVOWHATWON UETAEU QUTOMATOTIOLNUEVWY TIPOBAEYEWY
kat AnPng anoddacewv and toug avBpwrous. NapdAAnAa, n XPron Lo TTPONYHEVWV
TEXVIKWV emeEnynolpuotnTag eivat mbavo va npoodépel peyalutepn dtadavela ota
povtéAa Al, SteukoAUvovtag toug SLaxelpLoteg kukAodoplag otnv Katavonon twv
npoBAePewv kot otn AAPNn  TEKUNPLWHEVWY amoddoswv. EmumpooBeta, n
EVOWUATWON TPOYVWOTIKWYV avaAloswv Ba BonBrnoel otn BeAtiotomoinon tng
kukAodoplag, mpoteivovtag HETPA yLa TN HELWON TNG cUUPOPNONG OE TIPAYHATLKO
Xpovo. EmutAéov, ta cuoTAMOTA QviXveuong TEPLOTOTIKWY BOa pmopovucav va
ouvbeBoUV e eupUTEPEG UTIOSOUEG EEUTIVWV TTOAEWV, EVIOXUOVTOG TN CUVSECLLOTNTA
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NG TEXVNTAG VONHOOUVNG ME TLG UTINPECLEG EKTAKTNG AVAYKNG KAl TN AN LETPWV yLa

Vv BeAtiwon tng kukAodoplakng cupudopnong.

Zuvoyilovtag, n €pguva mou mapoucLaletal otnv napovoa StatpLPr BETEL TG
BAoeLg yLa pLa vEa yevid cuotnudatwy Staxeiplong odikng kukAodopiag, ou givat o
anotedeopatikd, Stadavr kat afomota. Zuvdudloviag Ta TAEOVEKTAMATA TNG
TEXVNTAG VONUooUVNG Kot TNG avaAuTikig Sedopuévwy e TNV avBpwrivn eumeLpia Kat
napéppoon, To TMPOTEWVOUEVO OUOCTNUA OTOXEVEL v PBEATIWOEL ONUAVIKA TNV

aodAAELA KAL TNV OTMOTEAECHATIKOTNTA TNG KUKAODOpPLaG o€ aoTikA epLBAAAovTa.
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List of Acronyms

ACF
ACT
ADF

Al

AID
AIDA
AL
ANN
API

AR
ARIMA
AutoML
AV
BCNN
BiLSTM
BJSON
CB
CCAM
CCctv
CNN
csv
DBN
DL
DNN
DR-Score
DS

DT
DTGN
EDA

EL
ENISA
ERD
ERT
ETL
ETSI
FRONTIER

GA
GAN
GCN
GNN
GTFS

Autocorrelation Function

Adaboost-Cart

Augmented Dickey-Fuller

Artificial Intelligence

Automatic Incident Detection

Automatic Incident Detection Algorithms

Active Learning

Artificial Neural Network

Application Programming Interface

Augmented Reality

Autoregressive Integrated Moving Average
Automated Machine Learning

Autonomous Vehicles

Bayesian Convolutional Neural Network
Bidirectional Long Short Term Memory
Binary-JSON

Context Broker

Connected, Cooperative, And Automated Mobility
Closed-Circuit Television

Convolutional Neural Network
Comma-Separated Values

Dynamic Bayesian Network

Deep Learning

Deep Neural Networks

Discrimination And Reconstruction Anomaly Score
Data Storage

Decision Tree

Differential Time-Varying Graph Neural Network
Exploratory Data Analysis

Ensemble Learning

European Union Agency For Cybersecurity
Entity-Relationship Diagram

Emergency Roadside Telephones

Extract Transform Load

European Telecommunications Standardizations Institute§
Next-Generation Traffic Management For Cavs Integration And
Multimodal Optimization

Genetic Algorithm

Generative Adversarial Network

Graph Convolutional Network

Graph Neural Network

General Transit Feed Specification
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HAIM-DRL
HITL
HITLML
HPO
ICT

IDA

IF

ILD

IML

ITS
JSON
kNN

LD
LIME
LoS
LPU
LSTM
ML
MSP
MT
MTME
MTTD
NaN
NB
NGSI
NGSI-LD
NN
OoCB
PACF
PPCA
Pro-Graph
RBF
RDF
RFID
RNN
RQ
SGD
SHAP
SMOTE
SND
STC
STCCP
STL
STOTree
SVM

TF

Human As Al Mentor-Based Deep Reinforcement Learning

Human-In-The-Loop

Human-In-The-Loop Machine Learning
Hyper Parameter Optimization

Information And Communication Technology
Incident Detection Algorithm

Isolation Forest

Inductive Loop Detector

Interactive Machine Learning

Intelligent Transport System

Javascript Object Notation

K-Nearest Neighbors

Linked Data

Local Interpretable Model-Agnostic Explanations
Level Of Service

Local Processing Unit

Long Short Term Memory

Machine Learning

Model Selection Problem

Machine Teaching

Multimodal Traffic Management Ecosystem
Mean Time to Detect

Not A Number

Naive Bayes

Next Generation Service Interface

Next Generation Service Interface - Linked Data
Neural Network

Orion Context Broker

Partial Autocorrelation Function
Probabilistic Principal Component Analysis
Propagation Graph

Radial Basis Function

Resource Description Framework
Radio-Frequency ldentification

Recurrent Neural Network

Research Question

Stochastic Gradient Descent

Shapley Additive Explanations

Synthetic Minority Oversampling Technique
Standard Normal Deviate

Spatiotemporal Congestion

Spatiotemporal Congestion Co-Location Pattern
Seasonal-Trend Decomposition Using Loess
Spatiotemporal Outlier Tree

Support Vector Machine

Traffic Forecasting
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T™MC
TPOT
UML
VR
WA
WNN
XAl
XML

Traffic Management Center
Tree-Based Pipeline Optimization Tool
Unified Modelling Language

Virtual Reality

Wavelet Analysis

Wavelet Neural Network

Explainable Artificial Intelligence
Extensible Markup Language
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Glossary

Artificial Intelligence
Autoencoder

Autoencoder

Automated Machine Learning
Bayesian Neural Network
Bias

Bidirectional LSTM
Bottleneck

Classification

Conceptual Architecture
Congestion

Cross-validation

Data Analytics

Data Preprocessing
Data-driven Approach
Decision Tree

Deep Learning

Ensemble Learning
Explainability

Fl-score

False Positive

Feature Engineering
Feature Extraction
Feedback Loop

Flow Rate

Gradient Boosting

Graph Neural Network (GNN)
Human-in-the-Loop
Hyperparameter
Hyperparameter Tuning
Incident Classification
Incident Management
Inductive Loop Detector (ILD)
Information System
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1 Introduction

1.1 Motivation

In an era characterized by rapid technological advancements and the increasing
interconnectivity of systems, the ability to detect and respond to emerging
situations—whether planned or unplanned—has become crucial across various
sectors. From disaster management to cybersecurity, and from public health to urban
planning, the need for timely and accurate incident detection is more pressing than
ever. Especially in transportation systems, the need for efficient and timely incident
identification and mitigation is critical for the safety, resilience and effective
management of the transport system. Traditional methods of incident detection,
which often rely on predefined rules and manual monitoring struggle with scalability,

adaptability, and accuracy, often failing in dynamic urban environments.

To address these challenges, the integration of Machine Learning (ML) and
automated Machine Learning (AutoML) techniques offers a transformative approach.
These technologies enable the automatic identification of patterns and anomalies
within large, even vast, datasets, facilitating the detection of emerging situations with
greater speed and accuracy than manual methods. However, the deployment of
purely automated systems presents significant challenges, particularly concerning
transparency, trust, and the alignment of machine-generated insights with human
intuition and expertise. Throughout this Thesis, a few such challenges have been

explored and suggested answers have been provided.

The concept of Human-in-the-Loop (HITL) in machine learning systems
addresses these issues by incorporating human oversight and interaction into the
automated processes. This approach not only enhances the explainability of the
system but also ensures that the insights generated are interpretable and actionable

by human users. The integration of HITL frameworks is particularly important in
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domains where the stakes are high, and decisions based on system outputs can have

important consequences.

The motivation for developing an Al-driven HITL-enabled incident detection
framework and information system stems from the pressing need for innovative
solutions that can effectively detect and respond to emerging situations across
various domains. By integrating explainability features, this approach addresses the
critical issue of trust in automated systems, providing users with clear and
understandable insights into the system's decision-making processes. This
transparency is essential for fostering confidence in the system and ensuring that it
can be reliably used in high-stakes environments, including but not limited to the

intelligent transportation sector.

Moreover, the incorporation of AutoML techniques facilitates the continuous
improvement and adaptability of the system. AutoML allows for the automatic
optimization of ML models, ensuring that the system remains effective even as data
patterns evolve over time. This capability is particularly important in dynamic
environments, like those of transportation systems, where the nature of emerging

situations can change rapidly.

The flexibility of a HITL-enabled, autoML-driven event detection system makes it
applicable to a wide range of fields, not only in transportation systems, offering
significant potential to improve outcomes in areas such as emergency response and
infrastructure monitoring. The system's ability to adapt to different scenarios and
provide actionable insights in real-time positions it as a valuable tool for organizations

looking to enhance their situational awareness and decision-making capabilities.

In summary, the development of an incident detection system that integrates ML,
autoML, explainability and HITL is driven by the need to create a robust, reliable, and
user-centric tool capable of detecting and responding to emerging situations in the
field of transportation. By addressing the limitations of existing incident detection
systems and incorporating advanced ML techniques within a HITL framework, this
approach aims to set a new standard in intelligent event detection and response. The
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guestions addressed in this study have brought Machine Learning (ML), automated
Machine Learning (autoML), and Human-in-the-Loop (HITL) approaches into play. This
doctoral dissertation attempts to propose a comprehensive framework and provide
answers and suggestions that pave the way for the effective detection and response
to emerging situations and ultimately contributing to a more resilient and responsive

future of transportation in urban environments.

1.2 Contribution

The present Thesis is positioned within the context of automatic incident
detection, intersecting with the research pathways of Artificial Intelligence (Al),
automated Machine Learning (autoML), and Human-in-the-Loop (HITL)
methodologies. These approaches aim to enhance decision-making processes for

system operators and provide explainable insights to improve traffic management.
The contributions of this present Thesis can be detailed as follows:

e Model Integration and Optimization: The present Thesis integrates diverse
data sources (traffic measurements from loop detectors, incidents datasets
and network topology information) into ML and DL models. This methodology
enhances the accuracy and reliability of automatic incident detection on urban
highways, ensuring that operators can make informed decisions.

e AutoML Methodologies Integration: The Thesis leverages autoML techniques
to automatically optimize ML models. AutoML automates the process of
selecting, configuring, and tuning machine learning algorithms. This includes
hyperparameter tuning, model selection, and feature engineering, which
ensures that the most effective models are used for incident detection without
extensive manual intervention. This continuous optimization allows the
system to adapt to changing traffic patterns and emerging trends, maintaining
high performance and accuracy over time.

e End-to-end System Development and Real-World Case Study Deployment: A

novel information system has been developed and deployed in real-world case
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studies to demonstrate the practical application of the proposed models and
methodologies. Two detailed use-case scenarios are provided to demonstrate
the effectiveness of the proposed approach in aiding operators for effective
decision-making and incident management on urban highways.

e Explainability Features Inclusion: The proposed system includes explainability
features, ensuring that operators can understand the reasoning and rationale
behind the system’s outcomes and predictions. This transparency is crucial for
building trust and facilitating informed decision-making.

e Human-in-the-Loop (HITL) Integration: By embedding HITL components, the
system ensures continuous human oversight and interaction. This allows for
real-time adjustments and improvements based on operator input, enhancing
the overall effectiveness and adaptability of the system in wurban

environments.

In summary, this Thesis makes significant contributions by developing a robust
framework for detecting events on urban highways using advanced Al and autoML
techniques, combined with HITL methodologies. It provides practical tools and
methodologies for system operators to enhance their decision-making processes and
delivers explainable, actionable insights, thus contributing to more efficient and

trustworthy urban transportation systems.
1.3 Relation to scientific publications

During the research evolved within this present Ph.D. Thesis, several scientific
papers have been published in scientific conferences and international journals
leading to the progress of the herein demonstrated study. In the below paragraphs, a
summary of each publication that assisted to the documenting of the herein Chapters
follows, while a thorough catalog of the publications is available in the “List of
Publications” Section. Moreover, further details about how the scientific publications
respond to the respective Research Questions this Thesis poses are presented in

Section 3.2.
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The journal paper [j2] in addition to the conference papers [c2] and [c3] provide
foundational ideas on how advanced data-driven techniques can be utilized to
enhance incident detection in intelligent transportation systems. These papers are

integral to Chapter 2, which provides a Literature Review of the investigated issues.

The publication [c2], [c3] and [j2] set the groundwork for the proposed system
developed in this Thesis. They demonstrate early work on Al-based methods for
automatic incident detection, leveraging heterogeneous multimodal big data. The
paper [j2] presents a stable version of the system, built and tested in experimental
and real-life pilot conditions, showcasing the practical application of the AutoML-
based approach for traffic incident detection. The aforementioned papers are
positioned in Chapters 6, 8 and 9 where the proposed methodology, capabilities and

information system is presented.

Moreover, the publications [c1], [c4] and [j3] illustrates the technical
achievements in terms of the whole system and is positioned in Chapters 5, 7, 8 and
9, where the framework, machine learning and deep learning models are presented
in addition to the actual developed system with the respective use cases where it has
been deployed and assessed. Lastly, results and conclusions are briefly discussed in

these publications but further explored and expanded in the current dissertation.
1.4 Relation to Research Project

The current Ph.D. thesis has been partially funded by the European Commission
Research Project with the title FRONTIER (Next generation traffic management for
empowering CAVs integration, cross-stakeholders collaboration, and proactive multi-
modal network optimization). This project is part of the Horizon 2020 Research and

Innovation Framework Program under Grant Agreement 101006633.

v' The objective of the project was to develop future integrated traffic
management strategies that consider new transport modes, including

automated vehicles, to minimize pollution, reduce capacity bottlenecks,
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lower accident rates, and decrease mobility costs for all users. The project
promoted resilient multimodal autonomous mobility through stakeholder
collaboration and viable business models. It implemented and tested
autonomous management systems that evolve with real-time data,
operator knowledge, and simulation models. FRONTIER has been validated
at pilot sites in Oxfordshire (UK), Athens (GR), and Antwerp (BE), focusing
on smart infrastructure, multimodal mobility, and network performance.
v' Agreat part of the herein presented Thesis has been developed within the
FRONTIER project, contributing to its goals by enhancing functionality of
traffic management systems. The Thesis supplements the project by
providing advanced tools and methodologies, particularly aimed at system
operators and traffic managers, to improve real-time incident detection
and management on urban highways. This effort aims to facilitate the

practical application and success of the FRONTIER project’s objectives.

1.5 Research Design and Structure of the Dissertation

The research design and methodology of the present Thesis are illustrated in
Figure 1-1, while an overview of each Chapter and its included components is

provided in Table 1-1 below.

The dissertation corpus begins with the Literature Review Chapter providing
comprehensive information about the domain of automated traffic incident
detection. It presents the current research landscape, key technologies,
methodologies, and their applications in urban settings. Next, the Research
Challenges which the Thesis studies are presented. Next, the chapter Framework for
Real-Time Monitoring and Prediction of Traffic Incidents introduces the conceptual
framework, detailed methodology, and conceptual software architecture developed
within the Thesis to tackle the challenges identified. Moreover, the chapter Al-Driven
Traffic Incident Detection for Planned and Unplanned Events is dedicated to the
examined and employed data-driven and ML/DL methods for predicting both planned

and unplanned events. Subsequent chapters delve into AutoML techniques,
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discussing their application in optimizing ML models for incident detection, and

Human-in-the-Loop (HITL) / Explainable Al (XAl), which explain how these

subcomponents enhance system transparency and reliability. The Information

System AutoEventX chapter details the system architecture and implementation,

providing an overview and detailed explanation of different layers and their functions.

The Deployment and Evaluation in Real-world Case Studies chapter includes

practical case studies from Athens, Greece, and Antwerp, Belgium, showcasing the

system’s real-world application and results. The dissertation concludes with

Conclusions and Future Work, summarizing findings, discussing limitations and

potential extensions, and proposing future research directions.

Research Design

Literature Review

Research

Challenges

J

Framework for Real-Time
Monitoring and Prediction
of Traffic Incidents

l l

Al-Driven Traffic Incident
Detection for Planned and
Unplanned Events

AutoML-Driven Incident
Detection

|

Human-in-the-Loop and
Explainability in incident
detection

|

Information System
AutoEventX

l

Deployment and Evaluation in
Real-world Case Studies

Figure 1-1:The Research Design and Methodology

Table 1-1: The Components of each Research Methodology Step

Research Methodology Step

Components

Literature Review
(Chapter 2)

e Detailed presentation of the research area
and state-of-the-art material regarding:
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o Background of Automatic Incident

Detection
o Review of methodologies and tools
including machine learning

algorithms, statistical models, and
hybrid approaches used for incident
detection.

o Overview of key research studies

and projects contributing to
advancements in the field.
o Challenges and research gaps

identified.

Research Challenges
(Chapter 3)

e Research Questions
o RQ1: What are the key components
and methodologies for real-time
monitoring and prediction in Al-
based traffic incident detection?

o RQ2: How can human-centered
traditional and automated Al
technologies be leveraged to
develop a comprehensive

framework for real-time detection of
traffic incidents, monitoring, and
situational awareness of urban
networks?

o RQ3: How do Al-driven
methodologies and  algorithms
enhance the detection of planned
and unplanned traffic incidents?

o RQ4: How can AutoML techniques
enhance the development of Al
models  for  traffic incident
detection?

o RQ5: How to ensure human in the
loop and prediction is explainable
and transparent in Al-based traffic
incident detection systems?

e The Thesis

Framework for Real-Time
Monitoring and Prediction of Traffic
Incidents
(Chapter 4)

e Pillars of our framework
o Data Analytics
o Automated Machine Learning
o Explainability
o Human-in-the-Loop
e Proposed methodology

Al-Driven Traffic Incident Detection
for Planned and Unplanned Events

e Introduction and Motivation
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(Chapter 5)

Data-driven Algorithms for unplanned
non-recurring incident detection
Advanced Analytics Methods
Recurring Congestion Identification

for

AutoML-Driven Incident Detection
(Chapter 6)

e Introduction and Motivation

e State-of-the-art analysis

e Proposed Methodology

e The Implementation — Technical Details

Human-in-the-Loop and
Explainability in incident detection

(Chapter 7)

Introduction and Motivation
Human-in-the-Loop State-of-the-art
Explainability State-of-the-art
Proposed methodology

Information System AutoEventX
(Chapter 8)

System architecture and
implementation

Technical Architecture

Modes of operation

Examples of system use

Deployment and Evaluation in Real-
world Case Studies
(Chapter 9)

Real-World Case Studies description
Evaluation of proposed method
o Evaluation of ML and DL models
o Evaluation of AutoML models

o Integration of Explainability
features
o Simulating the Retraining

Process with Human Feedback
Discussion and analysis of results

Conclusions and Future Work
(Chapter 10)

Conclusions of the conducted work
Limitations
Future work and research directions
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2 Literature Review

In this Chapter, a thorough literature review on traffic analysis is presented,
focusing on the development and evolution of automated traffic incident detection
systems. The synthesis of this emerging field and its key technologies are presented,
alongside the objectives it aims to achieve and the most widely used methods and
techniques. The Chapter highlights significant topics investigated in this Thesis.
Additionally, a summary of related EU projects is briefly mentioned. Lastly, the
Chapter discusses research gaps, limitations and future directions of automated

incident detection systems in the context of advancing transportation technologies.
2.1 Background

2.1.1 Related works on Traffic Analysis Applications

Traffic congestion is a global issue that has been acknowledged by transportation
science for over a decade. In the United States alone, drivers spend 6.9 billion hours
stuck in traffic annually, wasting over 11 billion liters of fuel, as reported by INRIX
(INRIX. n.d., 2024). On a per capita basis, individuals in Russia and Thailand experience
even greater delays, with Brazil, South Africa, the United Kingdom, and Germany not
far behind the U.S. Utlizing mobility data science and understanding the behavior of
human participants across different transportation modes offers promising avenues
for addressing these challenges. Two primary research areas have emerged: (1) traffic
monitoring at an aggregate level to support city administration, and (2) delivering

services directly to road users. (Mokbel, et al., 2024)

Research on traffic monitoring encompasses several domains, including
congestion monitoring (Li, Han, Lee, & Gonzalez, 2007), road and intersection safety
assessments (Maeda, Sekimoto, & Seto, 2016), traffic prediction evacuation (Li, Yu,
Shahabii, & Liu, 2018), routing (Zhang, Zhang, & Guo),and public transportation
schedule optimization (Richly, Teusner, Immer, Windheuser, & Wolf, 2015).
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Meanwhile, services for road users focus on solutions such as traffic-aware routing to
distribute load across roads (Souza, Yokoyama, Maia, Loureiro, & Villas, 2016),
assisting drivers in locating nearby facilities (Kolahdouzan & Shahabi, 2004),
personalized routing (Li, Gunopulos, Lu, & Guibas, 2019), eco-routing to reduce
greenhouse gas emissions (Lin, Choy, Ho, Sai Ho Chung, & Lam, 2014), and multi-
modal trip planning (Tomaras, Kalogeraki, Liebig, & Gunopulos, 2018). More
specifically, an automated method is presented to generate and evaluate traffic
incident response plans using a template library and Aimsun Next simulation. The
approach optimizes responses in real-time, enhancing network performance and
aiding traffic management decisions. (Almohammad & Georgakis, Automated
Approach for Generating and Evaluating Traffic Incident Response Plans, 2023).
Despite these advances, numerous opportunities and challenges remain in leveraging
mobility data to improve traffic management. For instance, developing precise
models for the dynamic scheduling of public transportation or optimizing traffic
signals in context-aware ways—such as accounting for pedestrian flows near bus or
train stations to reduce stop-and-go vehicle impacts—are critical areas for further
exploration. A significant challenge in this domain is monitoring and reducing
transportation-related emissions. Accurately quantifying emissions through data
collected from in-situ sensors and remote sensing technologies, such as satellite-
based earth observation, is vital for accountability and emission reduction efforts. This
data can help assess the impact of e-mobility adoption, improvements in collective
transportation systems, and infrastructure enhancements, ultimately supporting

more sustainable and efficient traffic solutions.

Mobility data science also plays a critical role in supporting cities by enabling data-
driven map construction (Ahmed, Karagiorgou, Pfoser, & Wenk, 2015) and updating
existing maps to reflect blocked or newly added road segments (Chen, et al., 2016).
This capability is especially vital for applications in autonomous driving (Macfarlane &
Stroila, 2016). Real-time monitoring of urban mobility contributes to situational
awareness—a concept originally developed in defense applications. Situational
awareness involves three key components: perceiving environmental states through

surrounding data, comprehending this data to understand emerging situations, and
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projecting future states or events through predictive analytics. Mobility data serves
as a cornerstone for situational awareness in urban environments. When effectively
utilized, it not only supports the development of resilient critical infrastructures but
also safeguards them against threats such as forest fires, earthquakes, or terrorist
attacks. Researchers have increasingly leveraged mobility data to enhance situational
awareness in urban areas and specialized environments like airports (Shao, et al.,

2019).

The field of mobility data analytics has grown significantly, covering diverse
applications across urban mobility, maritime, aviation, and personal movement
domains [ (Zhao, Tarkoma, Liu, & Vo, 2016), (Claramunt, et al., 2017), (Chung, Ma,
Mark Hansen, & Choi, 2020), (Ossi, Hachem, Cagnacci, Demsar, & Damiani., 2022),
(Jensen, Lu, & Yang, 2010)]. Urban mobility, as the largest area of research, addresses
key challenges such as traffic anomaly detection (Pan, Zheng, Wilkie, & Shahabi.,
2013), hotspot analysis (Nikitopoulos, Paraskevopoulos, Doulkeridis, Pelekis, &
Theodoridis., 2018), road traffic prediction (Nag & Simon, 2018) and travel time
estimation (Wang, Tang, Kuo, Kifer, & Li, 2019). Efforts in developing generic methods
for mobility data analysis encompass various approaches, including trajectory
clustering (Wang, Bao, Culpeppe, & Cong., 2021), trajectory similarity measures ,
(Toohey & Duckham., 2015) outlier detection (Han, Cheng, Ma, & Grubenmann,
2022), transportation mode classification (Biljecki, Ledoux, & Oosterom, 2013),
spatiotemporal pattern detection (Sakr & Giting, 2014), and trajectory completion
(Krumm., 2022. ). Despite these extensive research efforts, a unified set of tools and
systems for mobility data analysis remains lacking. The landscape of scientific
software for this field is notably fragmented. For instance, a review by (Joo, et al.,
2020) identifies 58 R packages dedicated to movement analysis, while (Graser., 2023)

examines Python libraries designed for movement data analysis and visualization.

Recent advancements in deep learning (DL) have introduced transformative
approaches, such as leveraging Generative Adversarial Networks (GANs) for trajectory
representation and synthetic data generation (Gao, et al., 2022) and Transformer-

based models for advanced trajectory prediction (Xue & Salim, 2021). However,

79



challenges persist due to the lack of unified tools and frameworks tailored for mobility
data. For example, existing ML tools like TensorFlow and PyTorch lack native support
for location-based data, complicating tasks such as clustering, classification, and
similarity analysis. Developing foundational elements like mobility data embeddings
could enhance model adaptability and lead to cohesive frameworks for mobility
analytics (Vaswani, et al., 2017). Another challenge is the robustness of data-driven
models in adapting to rapidly changing mobility patterns caused by events like the
COVID-19 pandemic or societal shifts. Event-aware spatiotemporal networks have
demonstrated potential in handling such scenarios (Wang, et al., 2022). Despite this,
ensuring models remain resilient to evolving behaviors remains an open research

area.

Behavioral understanding extends beyond traditional location prediction. Efforts
aim to transition from predictive to prescriptive analytics, enabling actionable insights
and policy-making. However, limitations such as a lack of labeled data and model
explainability hinder progress. Techniques like disentangled representation learning
(Zhao, Shao, Chan, & Salim, 2022) offer promise in improving explainability and
addressing these challenges. Visualization and exploratory analysis are pivotal in
mobility analytics (Andrienko, Andrienko, Bak, Keim, & Wrobel, 2013). Research
combining modeling and simulation with visualization supports decision-making (Lee,
et al., 2020). Yet, generalizing these approaches across domains and incorporating
real-time human intelligence remains challenging. Integrating computational
methods with human expertise could enhance understanding and modeling of traffic

patterns, leading to better predictive and prescriptive analytics.

In this subsection, a detailed literature review of the vast field of traffic
management and mobility science is presented. Moving on to the next subchapter,
we focus on the background required for the task at hand which the present
dissertation aims to address, namely automatic incident detection in intelligent

transportation systems.

2.1.2 (Classification of incidents
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Incidents are referring to “any [...] event that causes a reduction of roadway
capacity or an abnormal increase in demand” (Farradyne, 2000) . According to the
authors in (Nikolaev, Sapego, lvakhnenko, Mel'nikova, & Stroganov, 2017), incidents
can be classified as planned or unplanned events. Figure 2-1 describes these events

as mentioned in (Nikolaev, Sapego, lvakhnenko, Mel'nikova, & Stroganov, 2017).

Incidents
Unplanned events Planned events

Accidents

Temporary maintenance Adverse weather
Disabled or repair work conditions

vehicles P

A : O e S .”52
] J%. X - # :l "“","
Spilled loads  gpecial events (Manifestation ~ Recurring

or sportive events...) congestion

2

Figure 2-1: Classification of incidents. (Nikolaev, Sapego, lvakhnenko, Mel'nikova, & Stroganov, 2017)

In reality, the classification of these events was done by considering the context
of temporal, spatial, probability of occurrence and the cause of event (Amini,
Papapanagiotou, & Busch, 2016). Incidents usually cause traffic disturbances such as
a temporary reduction in capacity, “abnormal increase in traffic demand” (Beibei Ji,
Jiang, Qu, & Chung, 2014), and fuel consumption. These negative impacts decrease
the level of efficiency and safety of the road network. Therefore, early detection of

incidents can be regarded as a required solution to facing them.

2.1.3 Traffic dynamics at the time of an incident

It is important to understand the background and the basics of what happens in
the traffic dynamics when an incident occurs. In this section, we first look at traffic
fundamentals and how an accident impacts the dynamics of traffic observations and
measurements. The fundamentals of traffic theory help us to better understand and

interpret the input features and structure of data-driven models.
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Traffic accidents are one of the important sources of traffic jams, and accidents
cause a temporal local reduction of capacity. To explain the change in the traffic
parameters, we need to look at the triangular fundamental diagram (Figure 2-2). The
fundamental diagram of traffic flow represents the relation between the traffic

features (i.e., flow(q), speed(u), and density(k)).
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Figure 2-2: The fundamental traffic diagrams according to Greenshield. (May., 1990)

On the above diagram, u refers to the speed, g refers to the traffic flow whereas

k refers to the density of the traffic.

As presented in Figure 2-3, when an accident occurs the traffic moves from
uncongested state (point A) to congested state (point B). This change in the states
affects the speed and flow of the vehicles. In other words, it is going to create a
shockwave that will form a queue after the bottleneck (i.e., accident location). This
phenomenon is often shown in the space-time diagram and will create a draw-up

draw-down cycle in the speed-time graph.
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Figure 2-3: Position of traffic states at the fundamental diagram when an accident occurs.

Figure 2-4 illustrates the concept of shockwave and how the speed of the vehicles
is going to change when the shockwave happens. In normal cases (i.e., non-accident),
the traffic conditions do not vary significantly in sequences of time series between the
upstream and downstream. On the other hand, traffic conditions between the
upstream and downstream fluctuate rapidly when an accident occurs. This fluctuation
is a result of the shockwaves caused by the accident. Mathematically, the speed of a
shockwave (i.e., the speed at which congestion travels backward from the temporal
bottleneck formed because of the accident) can be derived from the traffic
characteristics (i.e., flow rate and density) of the upstream and downstream. Hence,
the change in the speed dynamics when an accident occurs could be observed more
significantly at the road sections after the accident location (Richards, 1956). To detect
or predict an accident, one should look for the anomalies where the queue is formed
(backward from the accident location). However, some anomalies may be observed
in the upward direction as well. This information about the general dynamics of traffic
at the time of an accident enhance our understanding of the anomaly points and how

they should be interpreted.
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Figure 2-4: An example of time-space diagram for typical temporary capacity reduction. (Francois Dion,

2004).

2.2 (Classification of Automatic Incident Detection

Algorithms

Traffic incident detection is a popular field in literature, since it is widely known
that congestion in urban areas is often caused by traffic incidents. If such incidents
could be detected in a timely manner, preventive measures could be rapidly taken.
That is why in recent years, research efforts have been proposed to deploy Automatic
Incident Detection (AID) Systems onto urban roads. In the following subsections, we
present a classification of Incident Detection Algorithms (IDA) and go into some details

regarding the significant differences between each group of algorithms.

Figure 2-5 presents the categories of Automatic Incident Detection Algorithms
(AIDA), based on proposed approaches of various review papers, including (Hireche &

Dennai, 2020; Li, Lin, Du, Yang, & Ran, 2022) (Evans, 2020) (Hireche & Dennai, 2020).
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The AIDAs are grouped as comparative, time-series, and Artificial Intelligence

(Statistical, Machine Learning and Deep Learning).

Categories

of AIDA
Time-series Intelligence

| [
LWaCh!“e Statistical
earning
Deep
Learning

Figure 2-5: Classification of Automatic Incident Detection Algorithms.

In Table 2-1, some indicative studies are portrayed and grouped based on the

proposed aforementioned classification.
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Table 2-1: Algorithms grouped by category and indicative works

Category Algorithm Data attributes Output (based on indicative works) Indicative works
Comparative California Occupancy 2 states (0 incident-free; 1 incident) (Payne & Tignor, 1978)
from two adjacent
detector stations
California #7 Occupancy 4 states (Balke, 1993)
from two adjacent
detector stations
California #8 Occupancy 8 states (Khoury, Haas, Mahmassani, &
Logman, 2003)
from two adjacent
detector stations
Timeseries ARIMA Occupancy Incident — No-incident: (Ahmed & Cook, 1982)
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Al

(Statistical and ML)

An incident is detected if the observed occupancy
value lies outside the confidence limits constructed two
standard deviations away from the corresponding point

forecasts.

Standard Normal Occupancy Incident — No-incident: (Dudek, Messer, & Nuckles,

Deviant (SND) 1974)
Compares 1-minute average occupancy

measurements to archived occupancy values of the

mean and SND defining the thresholds for detecting the

incidents.
Bayesian CNN Occupancy, volume for Likelihood that an alarm is caused by incident. (Liu, Jin, Li, Hu, & Lia, 2022)
incident and incident-free (Zhu, Guo, Krishnan, & Polak.,
conditions, archived data on the 2018)
type, location, and severity of
incidents
SVM Speed, flow, occupancy Incident — No-incident (Li, Hu, X., & Zhou, 2017)
and derived features (Dardor, Chlyah, & Boumhidi, 2018)
Neural Networks Volume, speed, occupancy Incident — No-incident (Shang, Feng, & Gao, 2020)
and derived features (Zhu, Guo, Krishnan, & Polak.,
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Wavelet
Transformation with

Logistic Regression

Isolation Forest

GANs

LSTM

Graph Neural

Networks

Volume, speed, occupancy

and derived features

Volume, speed, occupancy

and derived features

Volume, speed, occupancy

and derived features

Volume, speed, occupancy

and derived features

Volume, speed, occupancy,
graph traffic network and

derived features

Probability of incident

Incident — No-incident

Incident — No-incident

Incident — No-incident

Incident — No-incident

2018) (Zhu, Wang, Yan, Guo, &
Tian, 2022)

(Agarwal, Kachroo, &
Regentova, 2016)

(Zhu, Wang, Yan, Guo, & Tian,
2022)

(Li, et al., 2019) (Lin, Liu, Li, &
Qu, 2023)

(Cui, Ke, & Wang, 2018) (Zhu,
Wang, Yan, Guo, & Tian, 2022)

(Zzhou, Wang, Xie, Chen, & Liu,
2020) (Yu, et al., 2021) (Wang, Lin,
Guo, & Wan, 2021)
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In the following subsections, some of the representative works for each category

type are presented and discussed.

2.2.1 Comparative Algorithms

The popular California and McMaster algorithms are representative of this type of
model and have been widely applied (Hall, Shi, & Atala, 1993).The California
algorithms are amongst the most commonly used and replicated IDAs. Many
variations of the original have been presented and compared (Payne & Tignor, 1978),
but all of them use pre-set decision trees based on traffic variables, to classify real-
time traffic conditions into incident and non-incident states. Because of their
simplicity, many studies have used the California algorithms as a benchmark for
comparison, and many others have iterated on the first version presented to improve

its performance and limit its drawbacks.

However, these simple models cannot provide sufficient accuracy to meet the

requirements of an Intelligent Transportation and AID System (Samant & Adeli, 2000).

2.2.2 Time series Algorithms

One of the earliest and simplest AIDAs was the standard normal deviate (SND)
algorithm (Dudek, Messer, & Nuckles, 1974) .The algorithm was developed for
motorways, and used occupancy data to detect the “shock wave” (i.e. sudden change
to lower speeds) in traffic caused by incidents. (Dudek, Messer, & Nuckles, 1974)
tested a number of different values of parameters, but occupancy was found to
produce the best results. This method detected abnormally high values of occupancy,
which would indicate queuing traffic, which would indicate the occurrence of an
incident. However, as stated in (Dudek, Messer, & Nuckles, 1974), although the 1.3%
false alert rate appears low, “the number of false alarms can become very significant
in an operational system”. This high rate may be because the IDA only uses occupancy

values, and so can only detect congestion, rather than differentiating incidents. It
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would also not be able to detect incidents upstream of detectors (where low flows
may occur), and did not consider spatial patterns to detect incidents (e.g., nearby

detectors raising alerts which raise likelihood of an incident occurring).

Auto-Regressive Integrated Moving-Average time series (ARIMA) models use
recent observations of a selected traffic variable to create a prediction of its
“expected” value (i.e., conditions that would occur if no incident occurred) in the near-
term future (Ahmed & Cook, 1982). If real-time values significantly deviate from this
prediction, an incident alert is raised. For instance, ARIMA was used to detect
incidents using occupancy data on freeways in Detroit, U.S.A. ARIMA models are
commonly found to be effective in forecasting traffic variables in the short-term
future. However, the forecast would not be of “expected” traffic conditions if the
recent observations are influenced by incidents. When used in an AIDA, this could lead
to incidents going undetected. The model is also known to be less effective during

sudden changes in traffic parameters, for instance during rush hour.

(Thancanamootoo & Bell, 1988) presented one of the first AIDAs designed
specifically for urban networks. It used volume and occupancy data to detect incidents
between pairs of upstream/downstream detectors. (Sheu & Ritchie, 1998) presented
a modified sequential probability ratio tests algorithm for use in urban networks. It
included three procedures, a knowledge-based rule set for identifying the symptoms
of an incident, signal processing for real-time prediction of incident-related traffic
conditions and pattern recognition for incident detection. (Lee & Taylor, 1999) also
detected incidents on urban streets, but by applying a Kalman filtering algorithm to
find sudden changes in traffic variables on a two-lane arterial’s detectors. This
approach was designed to be simple and require little calibration, while being dynamic

enough to account for traffic signals.

The most crucial factor which makes time-series differ from comparative
algorithms is the fact that the threshold used to raise incidents varies based on recent

local conditions. This gives an advantage because it means temporal variations (such
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as peak periods) can be more readily accounted for automatically, and less manual

calibration is required. (Evans, 2020)

2.2.3 Artificial Intelligence Algorithms

New challenges to the research community have been introduced regarding the
enhancement of the performance of AID systems. To overcome these challenges, and
to improve the efficiency and safety of road traffic, attention has been drawn to the
use of Artificial Intelligence (Al) techniques. This section covers a review of the key
machine learning techniques used in literature, including Statistical-Based and
Machine Learning based techniques. The ML techniques include Support Vector
Machines (SVMs), Neural Networks (NNs), Generative Adversarial NNs, Graph NNs,
Decision Trees (DT), Naive Bayes (NB), Autoencoders, Long Short-Term Memory

(LSTM) networks and Ensemble Learning (EL).

2.2.3.1 Statistical-based Algorithms

These types of models test differences in traffic flows based on statistical
techniques, where a significant difference indicates a possible incident. To capture the
temporal and spatial correlations among traffic flows, some studies implemented
advanced statistical techniques. For example, an autoregressive integrated moving
average model was built to detect traffic incidents on the Lodge Highway in Detroit;
(Ahmed & Cook, 1979) the proposed detection logic performed smoothing using a
moving average filter and obtained better results (Chassiakos & Stephanedes, 1993).
Later, a multiple model particle smoother was introduced to convert the incident
detection problem into a traffic state prediction problem and solve it effectively
(Wang, Fan, & Work., 2016). Although statistics-based models have been widely
applied, they have some shortcomings. First, the algorithm assumptions may not be
consistent with the actual traffic flow data. Second, these models are highly
dependent on user experience. When implementing a statistics-based model, the

thresholds are often set manually by the users. Moreover, these models sometimes
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cannot simultaneously consider the temporal and spatial correlations among traffic

flow data (Li, et al., 2019)

2.2.3.2 Machine Learning and Deep Learning algorithms

Figure 2-6 shows the taxonomy of all ML techniques used in the AID systems of
examined studies. For a more detailed description of the reviewed papers, we
encourage the readers to consult the respective review paper (Hireche & Dennai,

2020).

[ Machine Learning Techniques in Traffic Automatic Incidents Detection Systems }

pE——

[:] Applied on Arterial Roads
() AppliedonFreeway Roads 'ﬂﬂhyerl’ce‘-FMNc-ﬂ]

Network (MLFNN)

Figure 2-6: Taxonomy of machine learning techniques used in traffic automatic incident detection

(Hireche & Dennai, 2020)

To make the incident detection model more flexible and robust, various machine
learning models have been applied. The traffic incident detection problem is first
converted into a binary classification task in which an incident is defined as a “1” and
a non-incident is defined as a “0”. Then, a machine learning model such as a Support
Vector Machine (SVM) (Yuan & Cheu., 2003) (Xiao & Liu., 2012), Classification Tree
(CT) (Chen & Wang, 2009), Random Forest (RF) (Liu, Jian Lu, & Chen., 2013) or neural
network (NN) (Samant & Adeli, 2000) can be used to solve the task. Li et al. compared
some famous machine learning models and found that ensemble approaches improve
the performance. Adding a bagging strategy for instance to an SVM increases the

accuracy (Li, He, Zhang, & Yang.., 2016).
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Some advanced NN models have been widely applied in previous traffic incident
detection studies and have obtained very good results. Ma et al. used a deep neural
network to recognize traffic congestion on a highway network using both temporal
and spatial traffic flow characteristics (Ma, Yu, Wang, & Wang., 2015). Zhu et al.
developed an incident detection model at the network level based on a Convolutional
Neural Network (CNN) (Zhu, Guo, Krishnan, & Polak., 2018). Moreover, in their study,
Almohammad & Georgakis focused on how predicted incidents can be simulated in
order to predict their impacts on the transport network performance. A method has
been suggested to convert real traffic events into simulation incidents, consisting of
two main components; machine learning based model for event classification and
event-to-incident mapping. Various algorithms were evaluated, modeling diverse
real-world events (Almohammad & Georgakis, Machine Learning Based Method for
Modeling Traffic Events, 2022). It has been proven that Deep Learning (DL) models
outperform traditional machine learning models because they can fully mine the
traffic information from the data. However, achieving a sufficient number of samples
is difficult when applying a deep learning model. Consequently, simulated data have
been widely used, but sometimes such data does not represent the true highway
traffic flow. (Lv, Duan, Kang, Li, & Wang, 2015) (Ma, et al., 2017) (Zhu, Guo, Krishnan,
& Polak., 2018). Another method applied to solve the small sample size problem is to
only collect samples during each incident as incident samples, in order to increase the
sample size. However, this approach could affect the real-time capacity of the model.

(Li, Lin, Du, Yang, & Ran, 2022)

An important study presented by Li et al. compared four classification methods to
detect traffic incidents. These methods included SVM, NB, Cart, and AdaBoost-Cart
(ACT). (Li, Hu, X., & Zhou, 2017)After evaluating these classification methods, the
results indicated that AdaBoost-Cart and NB models performed quite well. In 2018,
Dardor et al. tried to resolve the problem of incident detection on signalized
intersection urban areas based on SVM coupled with Genetic Algorithm (GA-SVM)
model (Dardor, Chlyah, & Boumhidi, 2018)In this proposition, the Radial Basis
Function (RBF) was selected as the kernel function of SVM to classify the signal and

determine the event type, while GA is selected as the optimization algorithm to
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maximize classification accuracy of SVM. SVM models can provide faster results and
a lot of customization options. In addition, SVM require less computational cost,

which is vital for real-time incident detection.

It is worth mentioning that recent studies have used big data collected from social
media platform streams. Specifically, in two distinct studies, authors use twitter data
to identify anomalies in the network and signal those potential disruptions to affected
stakeholders. In the first paper, the authors present a methodology for real-time
traffic event detection using geolocated tweets. Tweets are processed with natural
language techniques and classified to identify traffic-related content. Applied in the
West Midlands, UK, the approach achieved a considerable accuracy (92.86%) (Jones,
Georgakis, Petalas, & Suresh, 2018). The second paper examines the use of geolocated
Twitter data to predict transport network conditions, such as disruptions or
congestion, in Greater Manchester. By analyzing the relationship between actual
network status and synthesized data from tweets, it addresses whether tweet
sentiments near incident areas differ from those in normal traffic zones, using
sentiment analysis techniques. (Almohammad & Georgakis, Public Twitter Data and

Transport Network Status, 2020)

Generative Adversarial Networks have also recently been used for anomaly
detection for spatiotemporal events. (Li, et al., 2019) proposed MADGAN, an
unsupervised anomaly detection method for multivariate time series based on GAN.
They trained a GAN generator and discriminator with LSTM. Then, the GAN-trained
generator and discriminator are employed to detect anomalies in the testing data

with a combined Discrimination and Reconstruction Anomaly Score (DR-Score).

Furthermore, Recurrent Neural Networks (RNNs) show promise to work well with
sequential data like time-series. They have also been leveraged for traffic accident
prediction thanks to their generally high performance and the availability of time-
series data (Wang & Abdel-Aty, 2006.). For example, (Ren, Song, Liu, Hu, & Lei., 2017)
proposed a deep learning approach (RNN) to predict traffic accident risk, where risk

is defined as the number of accidents in a region at a certain time. (Chen, Song,
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Yamada, & Shibasaki, 2016) used a similar concept of traffic accident risk and
developed an Autoencoder deep architecture to understand the impact of human

mobility on traffic accident risk.

Last but not least, Graph Neural Networks (GNNs) ( (Li, Yu, Shahabi, & Liu, 2017),
(Lin, Zhengbing, Srinivas, & Peeta, 2018), (Cui, Henrickson, Ke, & Wang, 2019), (Cui Z.
, Ke, Pu, Ma, & Wang, 2020)) have gained interest to address the complexities of traffic
prediction and incident detection, leveraging the inherent graph structure of traffic
networks. Notably, Zhou et al. (2020) introduced a model known as the Differential
Time-varying Graph neural network (DTGN), designed to detect real-time traffic shifts
and the dynamic connections between different areas within a traffic graph. (Zhou,
Wang, Xie, Chen, & Liu, 2020). This approach notably refines predictions to a minute-
by-minute basis and isolates the urban areas most prone to accidents. In 2021, Yu et
al. developed a Graph Convolutional Network (GCN) tailored for predicting road
incidents by assimilating both spatial-temporal and external data within a graph-
based representation of traffic flows. (Yu, et al., 2021) Following this, Wang et al.
introduced the GSNet model in the same year, aiming to understand the spatio-
temporal patterns and relationships across different regions by analyzing geographic
and semantic data integrated from undirected graphs, which embody various road

network characteristics. (Wang, Lin, Guo, & Wan, 2021)
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Figure 2-7: The evolution of methods in Automatic Incident Detection over time. (Ahsan & Siddique,

2021)

Based on the aforementioned works, it becomes evident that the evolution of
techniques in automatic incident detection mirrors the broader advancements in
machine learning and artificial intelligence over time as shown in Figure 2-7. In the
early days (1805-1963), foundational methods such as linear regression and logistic
regression laid the groundwork. Moving into 1964-1984, statistical and simpler
machine learning techniques like decision trees and early neural networks emerged,
improving the ability to analyze and predict incidents. The period from 1985 to 2000
saw the introduction of more complex models like recurrent and convolutional neural
networks, along with support vector machines, enhancing the capacity to handle
larger datasets and more intricate patterns. Between 2001 and 2010, advancements
such as ensemble methods, random forests, and the introduction of long-short-term
memory (LSTM) networks allowed for deeper analysis and better temporal
understanding in incident prediction. In the most recent decade (2011 - today),
innovative techniques such as generative adversarial networks (GANs), XGBoost and
more complex neural networks have further refined detection capabilities, enabling

more sophisticated, real-time, and accurate incident prediction systems. This
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progressive development of algorithms reflects the field's growing ability to anticipate

and manage incidents in complex urban environments.

2.3 Related EU Projects and Schemes around the
globe

In this section, some related EU-funded initiatives and projects focused on
automatic incident detection and the improvement of urban environments, utilizing

Al and other advanced technologies are presented:

1. TANGENT!: The TANGENT project, funded under the European Commission's
Research and Innovation Programme, aims to develop tools for optimizing
traffic operations in a coordinated and dynamic way. It focuses on multimodal
transport management, integrating both automated and non-automated
vehicles, passengers, and freight transport. The project includes enhanced
traffic information services, real-time traffic management services, and
transport network optimization across various cities such as Rennes, Lisbon,

Greater Manchester, and Athens.

2. ORCHESTRAZ: The ORCHESTRA project aims to connect services to make
mobility and logistics run smoothly to cope with diverse demands and
situations across transport modes. The ORCHESTRA project managed to
establish a common understanding of multimodal traffic management
concepts and solutions, with and across modes, for various stakeholders and
multiple contexts. It defined a Multimodal Traffic Management Ecosystem
(MTME) where traffic managements in different modes and areas (rural and
urban) are coordinated to contribute to a more balanced and resilient

transport system, bridging current barriers and silos.

! https://tangent-h2020.eu/
2 https://orchestra2020.eu/
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3. CIVITAS Initiative3: CIVITAS is one of the key European Union initiatives aiming
to support cities in implementing sustainable urban mobility measures. Since
its inception in 2002, CIVITAS has funded over 80 cities in developing smart
transport systems, including traffic management and automatic incident
detection solutions. Through various demonstration projects, the initiative has
piloted the use of Al and loT technologies for real-time traffic monitoring and
congestion management, thus contributing to the overall safety and efficiency

of urban transport networks.

4. CONDUCTOR*: The CONDUCTOR project aims to design and demonstrate
advanced traffic and fleet management systems that prioritize seamless
multimodality, efficient transportation of passengers and goods, and
interoperability between automated and conventional vehicles. Key objectives
include dynamic load balancing, integrating ride-parcel pooling, and
optimizing multi-modal systems to enhance traffic management. The project
is part of the EU’s efforts to develop connected, cooperative, and automated
mobility (CCAM), focusing on resilience and sustainable transport solutions for

future cities.

5. DELPHI®: The DELPHI project aims to integrate passenger and freight transport
into a unified, federated system for efficient, multimodal mobility. It leverages
Al, machine learning, and advanced monitoring technologies, such as
unmanned aerial systems, to optimize transport flows and data sharing across
urban, suburban, and rural networks. The project will conduct pilot
demonstrations in Spain, Greece, and Romania to test these innovative

systems.

6. ACUMENS®: The ACUMEN project aims to facilitate seamless, sustainable, and

safe door-to-door journeys for both people and goods by creating a dynamic,

3 https://civitas.eu/

4 https://conductor-project.eu/
5 https://delphi-project.eu/

5 https://acumen-project.eu/
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Al-driven framework for multimodal traffic management. It focuses on
improving network efficiency and shared mobility options, which reduces
travel costs and increases the uptake of sustainable transport solutions. The
project integrates advanced data sharing and decision-making tools to
enhance overall system performance and manage traffic more effectively

across multiple cities.
2.4 Conclusions and Research gaps

From the algorithms that have been used in literature, it is demonstrated that
Machine Learning AIDAs state some of the best results in terms of the domain
established evaluation metrics, such as false alert rates. Such algorithms aim to learn
the conditions of an incident and so may be able to differentiate incidents from
context. Moreover, transport simulators provide simplified versions of real-world
networks, which often do not account for real-world disruptions such as emergency
vehicles passing at high speed, erratic driving, or major sporting events. Hence,
transport simulators typically output more predictable traffic data values, meaning
AIDAs can perform better. As such, it is unclear whether results on simulated data are
replicable on field data, and if so, how much calibration would be required. From
studies of those implemented in the field, traffic variable based AIDAs appear well
suited to motorways and arterials but find difficulty in accounting for traffic signal

noise and contexts within urban streets and junctions.

Based on the aforementioned research works and reviews on the matter, it is shown
that incident detection is still far from being a resolved problem. Despite progress
being made throughout the years, state of the art IDAs are found to still have

outstanding limitations and challenges, some of which are detailed below:

e Quality of Collected Data: A critical challenge in automatic incident detection
lies in the inherent inaccuracies of mobility data. GPS coordinates are often
prone to errors, and low sampling rates can introduce temporal gaps in data

collection, resulting in uncertainty about the exact movement of vehicles or
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pedestrians between data points. Although methods like map matching and
interpolation have been employed to mitigate these issues, they often rely
heavily on existing infrastructure (e.g., road networks), which may itself
contain inaccuracies. Developing scalable, fine-grained models capable of
handling city-scale datasets without relying on such infrastructure remains a
challenge.

Explainability of Machine Learning Models: One of the major challenges in
deploying ML for incident detection is the lack of interpretability in models,
particularly with deep learning systems. These models often operate as "black
boxes," making it difficult to understand how and why certain predictions are
made. For safety-critical applications like traffic incident detection, this
opacity can be problematic. Explainability is essential for gaining stakeholder
trust, and explainable approaches offer a pathway to making models more
interpretable by isolating and explaining underlying factors that influence
decisions.

Handling Spatiotemporal Complexity: Mobility data introduces the
complexity of both spatial and temporal dimensions, making it difficult to
apply traditional ML techniques that are not designed for such multi-
dimensional data. Proximity in space and time plays a crucial role in incident
detection, but many ML models struggle to integrate these factors effectively.
Handling spatiotemporal data streams in real-time while accounting for the
constantly evolving nature of traffic patterns and incidents is a significant
technical difficulty.

Privacy Concerns: Given that mobility data is considered sensitive information,
there are significant privacy challenges when using this data for automatic
incident detection. Existing anonymization techniques for traditional data are
often inadequate for mobility data, where location trajectories can
inadvertently reveal personal details such as home addresses, workplaces, or
even behaviors. Ensuring privacy while maintaining the utility of the data for

ML-based incident detection is an ongoing challenge.
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e Human-in-the-Loop Systems: While fully automated systems for incident

detection are desirable, there is a recognized need for human oversight in real-

time, high-stakes scenarios. However, integrating human expertise into ML

workflows presents its own set of challenges, including how to involve human

decision-makers without slowing down the system’s response time. Current

systems often rely heavily on automated processes, in general, limiting the

ability to incorporate human intelligence in real-time analysis. Striking the

right balance between automated systems and human intervention is a key

challenge.

From the identified challenges, several future directions emerge:

Advancements in Data Pre-processing Techniques: As mobility data
continues to grow in volume and complexity, there is an urgent need for
improved data cleaning techniques. Future research should focus on
developing more robust and scalable methods for handling data
inaccuracies, such as trajectory interpolation, that can operate in real-time
and across various types of environments (urban, highway etc.).
Additionally, research should explore ways to address gaps in temporal
data without relying heavily on existing infrastructure, as this will improve
the reliability of incident detection systems.

Improving Explainability in ML Models: To increase the adoption and
reliability of ML systems for automatic incident detection, future research
should prioritize improving the explainability of these models. One
promising direction is the development of techniques which can isolate the
key spatiotemporal factors driving model decisions. Furthermore,
integrating interpretable models into workflows that involve multiple
stakeholders (such as city planners and emergency responders) can
enhance trust and ensure that the systems are understood and validated

by human experts.

101



Spatiotemporal ML Models: The development of specialized machine
learning models that can effectively process spatiotemporal data is
another promising research avenue. Existing models, originally designed
for tasks like image recognition or language processing, are not well-suited
to handling the complexities of traffic data, where both location and time
are critical. Researchers should focus on developing models that natively
understand the importance of spatiotemporal relationships, enabling
more accurate incident detection. Incorporating real-time data streams
and continuously evolving traffic patterns into these models will be
essential.

Enhanced Privacy-Preserving Techniques: As mobility data becomes more
ubiquitous, ensuring privacy will remain a key concern. Future research
should focus on developing advanced privacy-preserving mechanisms that
allow for the collection and analysis of sensitive mobility data without
compromising individual privacy. Approaches such as geo-
indistinguishability, which protect user identities while maintaining data
utility, are likely to become more widely adopted.

Human-in-the-Loop Systems for Enhanced Decision Making: Future
incident detection systems should aim for more effective integration of
human expertise into real-time analysis workflows. This could be achieved
through the development of hybrid systems that combine ML algorithms
with human reasoning, particularly in complex scenarios where automated
systems may struggle. By leveraging human expertise in real-time, such
systems can provide more reliable and context-aware responses to
incidents. Research into optimizing these interactions without sacrificing

system efficiency will be crucial.
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3 Research Challenges

In the current Chapter, the research questions along with the Thesis outline, are

presented in detail. More precisely, the research questions are reviewed and divided

into their parameters on which the Thesis is positioned. Besides, a synopsis of the

propositions of the Thesis is also provided.

3.1 Research Questions

In this Section, the research questions of the current Thesis are displayed. The

summarized Table 3-1 states the research challenges the Thesis aims to provide

answers to, along with the corresponding parameters which they consist of.

Table 3-1: Research Questions and the corresponding Parameters

Research questions

Parameters

What are the key
components and
methodologies for real-
time  monitoring and
prediction in Al-based

traffic incident detection?

What are the characteristics of traffic in case of
an incident?

What are the essential data sources for real-
time traffic monitoring and incident detection?
What are the main categories of algorithms for
the incident detection task? What are the
strong and weak points of each category?
Which Al algorithms are most effective and
have been thoroughly proposed by the
literature for traffic incident detection? What
are the advantages and limitations of each?
What performance metrics are critical for
evaluating the effectiveness of traffic incident
detection systems?

How can human-centered
traditional and automated

Al technologies be

What are the steps for building a
comprehensive framework/methodology
using Al for real-time detection of planned and

unplanned incidents?
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leveraged to develop a
comprehensive

framework for real-time
detection of traffic
incidents and monitoring

of urban networks?

How can human expertise be integrated into
Al-based traffic monitoring and incident
detection systems to build a more reliable and
trustworthy incident detection system?

How do Al-driven
methodologies and
algorithms enhance the
detection of planned and
unplanned traffic

incidents?

What are the primary advantages of using Al
for traffic incident detection compared to
traditional methods?

What limitations or challenges remain in the

current Al-driven approaches?

How do different data-driven, machine
learning and deep learning models perform in
the context of traffic incident detection? Are
there differences in the techniques employed
in detecting, on the one hand, planned and, on
the other hand, unplanned incidents?

What are the key features and parameters that
influence the effectiveness of the Al models?

How can AutoML
techniques enhance the
development of Al models
for traffic incident

detection?

What is Automated Machine Learning, and
could it have a role in the context of Intelligent
Transportation Systems?

Which AutoML frameworks, methods and tools
are the most suitable for urban incident
detection?

How can specific stages of model building such
as model selection and optimization be
automated effectively?

How do AutoML techniques compare to
traditional methods regarding their
performance?

How to ensure predictions
of Al-based traffic incident
detection systems are
explainable and

trustworthy while

What is the role of human feedback and how it
can be leveraged in Al-based systems?

What explainability techniques can be used to
make Al predictions understandable and what
tools can be integrated in such systems?

What mechanisms can be used to incorporate
expert feedback using a human-in-the-loop
approach into Al-based intelligent
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integrating expert transportation systems to enhance the quality

feedback? of the predictions? . _ _

e What are the results of integrating human in
the loop in terms of performance when
retraining the ML models? Do explainability
techniques have an impact on the
trustworthiness of the system?

3.1.1 Research Question 1: What are the key components and methodologies
for real-time monitoring and prediction in Al-based traffic incident

detection?

In the context of developing Al-based traffic incident detection system:s, it is crucial to
identify and understand the key components and methodologies for real-time
monitoring and prediction. This question aims to present the basic elements and
methods used in literature and state-of-the-art works in the mobility field, initially,
and particularly focus on the incident detection task, thus providing a comprehensive

understanding of used technologies and techniques.

The aforementioned question shapes Research Question 1 (RQ1) of the Thesis and is
further divided into smaller sub-questions. Concretely, RQ1 can be split upon the

following points:

e What are the characteristics of traffic in case of an incident?

e What are the essential data sources for real-time traffic monitoring and
incident detection?

e What are the main categories of algorithms for the incident detection task?
What are the strong and weak points of each category?

e Which Al algorithms are most effective and have been thoroughly proposed
by the literature for traffic incident detection? What are the advantages and
limitations of each?

e What performance metrics are critical for evaluating the effectiveness of
traffic incident detection systems?

These points are discussed and answered in Chapter 2. The current Ph.D. thesis
analyses the main objectives of data-driven and Al-based traffic incident detection.

Section 2.2, focusing on the state-of-the-art works in the domain of automatic
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incident detection and real-time monitoring and prediction systems. The Thesis also
aspires to provide insights by synthesizing the current practices, identify challenges

and gaps and propose future directions.

3.1.2 Research Question 2: How can human-centered traditional and
automated Al technologies be leveraged to develop a comprehensive
framework for real-time detection of traffic incidents, monitoring, and

situational awareness of urban networks?

Integrating human-centered traditional and automated Al technologies is
essential in order to create a comprehensive framework that facilitates real-time
detection, monitoring, and situational awareness of traffic incidents in urban

networks.

The Research Question 2 (RQ2) of the current Thesis, as stated above, is further

divided into smaller sub-questions, which are the following:

e What are the steps for building a comprehensive framework/methodology
using Al for real-time detection of planned and unplanned incidents?

e How can human expertise be integrated into Al-based traffic monitoring and
incident detection systems to build a more reliable and trustworthy incident
detection system?

This Ph.D. thesis aims to investigate the integration of human-centered traditional
and automated Al technologies as part of a comprehensive framework and the
analysis conducted and suggested propositions are presented in Chapter 4. The
primary focus of this Chapter is to describe a robust and innovative framework for
enhancing real-time traffic incident detection and management in addition to the
steps required as part of a comprehensive methodology, with the aim of improving

urban traffic conditions and situational awareness.

3.1.3 Research Question 3: How do Al-driven methodologies and algorithms

enhance the detection of planned and unplanned traffic incidents?
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Based on the extensive literature review conducted as part of Chapter 2, it
becomes apparent that Al-driven methodologies have significantly contributed to the
field of traffic incident detection by offering advanced capabilities to identify incidents
promptly and in some cases, more efficiently than traditional methods. This research
guestion aims to present the methods, tools and algorithms used in this context for

both planned and unplanned incidents.

The primary research question (RQ3) is divided into the following sub-questions

to comprehensively address the topic:

e What are the primary advantages of using Al for traffic incident detection
compared to traditional methods?
e What limitations or challenges remain in the current Al-driven approaches?

e How do different data-driven, machine learning and deep learning models
perform in the context of traffic incident detection? Are there differences in
the techniques employed in detecting, on the one hand, planned and, on the
other hand, unplanned incidents?

e What are the key features and parameters that influence the effectiveness of
the Al models?

These points are thoroughly explored and discussed in Chapter 5. The current
Ph.D. thesis aims to analyze the use of Al-driven and advanced analytics techniques in
traffic incident detection. Thus, the advantages and challenges of these methods are
described. By answering the aforementioned sub-questions, this research offers
insights into the capabilities and limitations of Al and the use of advanced analytics in
detecting planned and unplanned traffic incidents.

3.1.4 Research Question 4: How can AutoML techniques enhance the

development of AI models for traffic incident detection?

AutoML techniques offer significant potential for enhancing the development of
Al models by automating various aspects of the model-building process. This research
guestion investigates how these techniques could be applied to traffic incident
detection to improve model performance and streamline the development process.

RQ4 includes the following points:
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e What is Automated Machine Learning, and could it have a role in the context
of Intelligent Transportation Systems?

e  Which AutoML frameworks, methods and tools are the most suitable for urban
incident detection?

e How can specific stages of model building such as model selection and
optimization be automated effectively?
How do AutoML techniques compare to traditional methods regarding their
performance?

These points are thoroughly explored and discussed in Chapter 6. The current
Ph.D. dissertation analyzes the use of AutoML techniques in the development of Al
models for traffic incident detection and focuses on evaluating the effectiveness of
AutoML in automating model development and improving performance. Therefore,

the thesis provides valuable insights into the capabilities of AutoML and its application

in traffic management systems.

3.1.5 Research Question 5: How to ensure human in the loop and prediction
is explainable and transparent in Al-based traffic incident detection

systems?

Ensuring that Al-based traffic incident detection systems are explainable,
transparent, and involve human oversight is crucial for gaining user trust and
maintaining high performance while adhering to ethical standards. This question
explores methods and practices to make Al predictions understandable and
transparent while incorporating human judgment and expertise in urban traffic

systems.

RQ5 is divided in the following sub-questions, more specifically:

e What is the role of human feedback and how it can be leveraged in Al-based
systems?

e What explainability techniques can be used to make Al predictions
understandable and what tools can be integrated in such systems?

e What mechanisms can be used to incorporate expert feedback using a human-
in-the-loop approach into Al-based intelligent transportation systems to
enhance the quality of the predictions?

e What are the results of integrating human in the loop in terms of performance
when retraining the ML models? Do explainability techniques have an impact
on the trustworthiness of the system?
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These points are discussed in Chapter 7, where the integration of human
feedback (human-in-the-loop approaches) and explainability techniques in Al-based

traffic incident detection systems are discussed in detail.
3.2 The Propositions of the Thesis

The solutions this Thesis suggests intend to cover the research gaps that are
identified and hence respond to the Research Questions stated above. Table 3-2
below displays how the various articulated research questions have been associated
with relative scientific publications produced during this study, as well as the Chapters
in which the insights of the research are described (Chapters 4, 5, 6, 7). Chapter 8
discusses the system development and Chapter 9 presents the evaluation of

approaches presented in Chapters 4, 5, 6 and 7 in two real-world case studies.

Table 3-2: Positioning of the Thesis Proposition following the Research Questions.

Research Questions Thesis Proposition Related Chapter
Publications
What are the key components e Analysis of | [12] [c2] [c3] 2

and methodologies for real-time .
methodologies as

itori d prediction in Al-
monitoring and prediction in proposed by literature

based traffic incident detection? . .
e Synthesis of literature
review and research

gaps identification

How can human-centered e Overall framework for | i3] [cl]

traditional and automated Al comprehensive incident
technologies be leveraged to (planned and
develop a comprehensive unplanned) detection

framework  for real-time
detection of traffic incidents
and monitoring of urban

networks?
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How do Al-driven
methodologies and algorithms
enhance the detection of
planned and unplanned traffic

incidents?

Comprehensive
discussion about ML and
DL algorithms and their
advantages and
challenges

Al-based and Advanced
Analytics Methodology
to identify planned and
unplanned traffic
incidents

Comparison of state-of-
the-art algorithms

li2] [j31 [c2]
[c3]

How can AutoML techniques
enhance the development of Al
models for traffic incident

detection?

Novel AutoML-based
methodology in
detecting unplanned
traffic incidents with
data pre-processing
pipeline

Contrast of AutoML-
based approach with
General Approach
Algorithms

Guidelines and best
practices in integrating
autoML in overall
framework

(52]

How to ensure predictions of

Al-based traffic incident

detection systems are
explainable and trustworthy
while  integrating

feedback?

expert

Interactive Feedback
from  operators to
validate prediction
Enhanced dataset
quality through
functionality of manual
incident insertion
Explainability features in
Al-Based Traffic Incident
Detection Systems

[c1] [c4]
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4 FrameworKk for Real-Time Monitoring and

Prediction of Traffic Incidents

This Chapter presents the comprehensive framework proposed in the area of real-
time monitoring and prediction in automatic traffic incident detection. The focus is
placed on integrating both traditional and automated Al technologies to enhance
urban traffic management systems. Research has been conducted to identify and
evaluate key components, methodologies, and techniques essential for effective
traffic incident detection and traffic monitoring. This includes investigating the
integration of human-centered approaches with traditional and automated
approaches utilizing advanced data analytics to improve the overall effectiveness,

reliability and trustworthiness of the system.
4.1 Pillars of our framework

The proposed framework for an advanced incident detection system is based upon
four pillars: Al and Data Analytics, Automated Machine Learning, Explainability and
Human-in-the-Loop. Each pillar represents a critical component of the system,
contributing to its robustness. These pillars are illustrated and briefly discussed in

Figure 4-1.
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Figure 4-1: The four pillars of our proposed framework.

pillars individually and their significance.

4.1.1 Al and Data Analytics

insights from complex traffic data that include:

Providing
Explainability and
Interpretable models to
promote operators’
trust.

L 3

Integrating human
expertise to enhance
future system
performance.

In the following sections, we provide a detailed presentation for each one of these

Al and Data Analytics constitute the first pillar of the framework. Those are
essential for the detection of traffic incidents, even before they occur. It involves the
use of advanced data analytics and Al algorithms, which take as input large, even vast,
qguantities of historical and real-time traffic data. By finding patterns and trends, the
system is capable of predicting potential incidents and providing real-time alerts to

involved operators and affected users. Data Analytics focus on extracting meaningful

e Analysis of traffic data over time to identify patterns, trends, and abnormal
behavior. In this context, time-series analysis is important to understand
the daily and seasonal variation of traffic flows and to forecast peak
congestion periods.

e Integrating spatial and temporal data is essential for comprehending the
evolution and propagation of traffic incidents. This investigation aids for
instance in identifying areas with a high frequency of incidents and

presents the influence of spatial variables on traffic dynamics.

e Analyzing interrelations between factors related to traffic to identify
factors which impact incidents. Such an understanding helps in building
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more accurate predictive models and thus in implementing the measures
for preventing and managing incidents in the context of strategic decision-
making.

The analytics which aim to identify traffic incidents thus minimize the effects of
traffic disruptions and increase the overall security of roads. The ability to foresee any
accidents assists in controlling traffic, during the time of the incident taking place or

even ahead of time, hence enabling authorities to apply preventive actions.

4.1.2 Automated Machine Learning

The second pillar, Automated Machine Learning (AutoML), simplifies the process
of developing and deploying machine learning models. AutoML automates the end-
to-end process of applying machine learning to real-world problems, from data pre-
processing and feature selection to model training and hyperparameter tuning. This
automation reduces the time and expertise required to build effective prediction
models, making ML accessible to a broader range of users. AutoML ensures that the
best models from the pool that have been tried are used for incident detection,
continuously improving their performance with minimal human intervention. This

pillar is crucial for the efficiency and scalability of the incident detection system.

4.1.3 Explainability

The third pillar focuses on making the Al models used in traffic management
understandable to users. Techniques like SHAP (SHapley Additive exPlanations) and
LIME (Local Interpretable Model-agnostic Explanations) are utilized to clarify how
models make their predictions. SHAP provides information about the contribution of
each feature, such as traffic volume, to the model’s output. LIME, on the other hand,
simplifies complex models to explain individual predictions, making it easier for any

user to understand how specific factors influence the resulting prediction.

This transparency is essential for building trust and ensuring that the system’s

predictions are reliable. By understanding the rationale behind Al decisions, users can
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better validate the model’s recommendations and identify potential areas for
improvement. Explainability also facilitates model evaluation and continuous
refinement, leading to more accurate and reliable predictions in the context of any

traffic management system.
4.1.4 Human-in-the-Loop

The fourth pillar integrates Human-in-the-Loop (HITL) methodologies into the
system. This pillar ensures that human expertise and feedback are incorporated into
the prediction process, enhancing the system's accuracy and reliability. Key aspects
include involving traffic management operators in reviewing and validating or
adjusting, if needed, the model's predictions. Human input helps correct any errors in
the model. This creates a feedback loop that enhances model performance over time,
as operators provide validations and corrections. Lastly, combining HITL and
explainability ensures that the incident detection system is not only highly effective

but also trusted and accepted by its users.

The proposed framework, built on these four pillars, represents a comprehensive
approach to automatic traffic incident detection. By integrating the key points
mentioned as part of the four pillars, the framework addresses some of the major
challenges and research gaps in traffic management, as stated in Section 2.4. It
ensures that the system is proactive, efficient, accurate, and trustworthy, ultimately

leading to improved road safety and better traffic management.
4.2 Proposed methodology

The goal of our proposed approach is to enhance traffic management systems by
leveraging advanced analytics and Al techniques, while ensuring the inclusion of
explainability and human expertise in such automated systems. The proposed
methodology in addition to the individual steps are illustrated in Figure 4-2. The
process is complex and involves several phases, each critical to the system's overall

effectiveness. In the following sections, we detail each phase.
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Figure 4-2: Our proposed methodology.

4.2.1 Data Collection

Data collection is one of the paramount steps of any application which entails
data-driven methodologies and Machine Learning. For the incident detection task,
diverse and high-quality data sources need to be collected. The proposed approach is

built upon the availability of the following datasets:

e Inductive Loop Detector Measurements: Loop detectors are devices
embedded in road surfaces, and collect continuous data on vehicle count,
speed, and occupancy. Loop detectors provide granular traffic data crucial for
understanding real-time traffic dynamics and detecting anomalies indicative

of incidents.

e Segment Level Measurements: Segment level data offers insights into specific

road sections, allowing for more localized incident detection. These
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measurements might include average speed, vehicle density, and flow rates,

which help identify sudden changes often associated with incidents.

¢ Incident Dataset: Historical incident data are essential for training data-driven
Al-based models. This dataset includes detailed records of past incidents, such
as accidents, road blockages, and breakdowns, including their locations, times,
causes, impact and potentially resolutions. These data help the deployed

models learn to recognize patterns and triggers of incidents.

¢ Network Topology: Information about the road network's structure, including
the locations of the loop detectors, the layout of lanes, intersections, and
connectivity, provides context for interpreting traffic data. Network topology
helps in understanding how incidents in one part of the network can affect

other parts.

4.2.2 Data Pre-processing

After the data have been collected, the data pre-processing phase aims to
transform raw data into a usable format for analysis and modeling. It includes several

crucial steps:

e Cleaning: This step involves removing noise and correcting errors in the data.
Techniques include handling missing values, removing duplicates, and
correcting erroneous entries. As it is widely agreed, clean data are essential

for ensuring accurate and reliable model training.

e Normalization: Standardizing data across different sources to a common scale

ensures consistency.

e Feature Extraction: This process involves identifying and deriving relevant
features from the raw data that will be used in model training. Features might
include average speed, traffic density in adjacent detectors, weather
conditions, and time of day, amongst many others. Effective feature extraction

is crucial for enhancing model performance.
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4.2.3 Advanced Analytics

Before proceeding with the development of Al models, it is crucial to understand

the available data through advanced analytics, which include:

Exploratory Data Analysis (EDA): EDA is a standard step in every data-driven
analysis and involves visualizing and performing basic descriptive analytics the
data to uncover patterns, trends, and anomalies. Techniques include plotting
histograms, scatter plots, and heatmaps. EDA helps in understanding the

underlying distributions and relationships in the data.

Time-Series Analysis: Given that traffic data is inherently temporal, time-
series analysis is crucial. It involves analyzing data points collected or recorded
at specific time intervals to identify trends, seasonal patterns, and cyclical
behavior. Techniques such as ARIMA (AutoRegressive Integrated Moving

Average) models are commonly used for this purpose.

Statistical Analysis: Applying statistical methods to analyze data helps in
understanding correlations and dependencies between variables. For
example, correlation analysis can reveal how the time of day might influence

traffic speed and incident rates.

Spatiotemporal Analysis: Integrating both spatial and temporal dimensions to
understand how traffic patterns evolve over time and across different
locations. This analysis is crucial for identifying how incidents in one area might
affect traffic flow in adjacent areas. Techniques involve the use of geospatial
data and time-series data to create models that can predict traffic conditions
based on both location and time. This is particularly useful for managing traffic

during large events or in areas with frequent recurring congestion.

Correlation Analysis: Examining the relationships between different variables
to determine how changes in one variable may affect others. For instance,
analyzing the correlation between traffic characteristics and incident

occurrence can help identify potential predictors of traffic incidents.
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Correlation analysis helps in understanding the interdependency between
various factors influencing traffic and can be used to enhance the accuracy of

incident prediction models.

4.2.4 Al Model Development

Developing robust Al models for the timely and accurate detection of traffic

incidents is positioned at the core of our proposed approach. This phase involves:

Algorithm Selection: Choosing the right machine learning algorithms based on
the problem and data characteristics is of utmost importance. Common
algorithms for incident detection include decision trees, support vector
machines, neural networks, and ensemble methods, as seen in the extensive

literature review (Chapter 2).

Model Training: Training involves feeding the pre-processed data into the
selected algorithms to learn patterns and make predictions. Training requires
splitting data into training, testing and validation sets to ensure the model can

generalize to unseen data.

Parameter Tuning: Adjusting the hyperparameters of each model to optimize
its performance. Techniques such as grid search and random search are used

to find the best combination of parameters.

Model Evaluation: Assessing the model’s performance using metrics like
precision, recall, F1-score, and accuracy. This constitutes a critical step since it

ensures the model is accurate and reliable in detecting incidents.

4.2.5 Real-time System Deployment

Deploying the developed and trained models in a real-time environment involves

several steps:
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e Real-time Monitoring: Implementing systems to continuously monitor traffic
conditions. Real-time data streams are processed to detect incidents as they
occur. Moreover, establishing processes for regular updates and maintenance
of the system is important to make sure that the system remains reliable. This
includes updating models with new data, retraining as necessary, thus

ensuring the system is operating smoothly and still produces reliable outputs.

e Incident Prediction: Automatically detecting and identifying incidents in real-
time. The system should provide timely alerts and insights to traffic

management operators for quick response and mitigation.

e Recurring Congestion Identification: Automatically detecting recurring
congestion in real-time in any part of the transportation network. It involves
analyzing traffic data to detect patterns and trends of congestion that occur
regularly at specific times or locations. The proposed system can predict
recurring congestion events, such as daily rush hours. ldentifying these
patterns allows for proactive measures to be implemented, such as adjusting
traffic signals, providing real-time traffic alerts to drivers, and optimizing

alternative routes.

4.2.6 Human-in-the-Loop

Incorporating human expertise enhances the system's performance and

reliability, in the following ways:

o Feedback Integration: Collecting and integrating feedback from traffic
management professionals and other stakeholders to continuously improve
the model. Human feedback helps in refining model predictions and reducing

false positives/negatives.

¢ Model Refinement: Continuously updating and refining the model based on
new data and feedback. This iterative process ensures that the model adapts

to changing conditions and improves over time.
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4.2.7 Explainability

Ensuring the Al model's decisions are understandable and transparent is crucial

for trust and accountability, in the following respect:

o Decision Visualization: Visualizing the model's decision-making process helps
in making its predictions interpretable. Techniques include feature importance

plots, and dependence plots.

e Integration of Explainable Al Tools: Using tools and techniques like SHAP
(SHapley Additive exPlanations) and LIME (Local Interpretable Model-agnostic
Explanations) to explain the model's predictions. These tools provide insights
into which features are driving model decisions, helping stakeholders

understand and trust the Al system.

4.2.8 Validation & Testing

Finally, the proposed system should undergo rigorous validation and testing to

ensure its effectiveness and robustness. This phase includes:

o Application in Real-world Case Studies: Testing the model in real-world
scenarios to validate its performance. Case studies provide practical insights
into how the model performs under various conditions and help identify areas

for improvement.

e Performance Analysis: Analyzing the system's performance over time and
across different conditions. This involves monitoring key performance
indicators (KPlIs) like detection accuracy, fl-score, and system reliability
stemming from user feedback. Continuous performance monitoring helps in

maintaining and, potentially, enhancing the system's effectiveness.
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5 Al-Driven Traffic Incident Detection for

Planned and Unplanned Events

In this Chapter, the proposed work of the Thesis concerning the application of
Artificial Intelligence (Machine Learning and Deep Learning) techniques for the
prompt identification of traffic incidents is presented. This chapter discusses the need
of using Al to uncover patterns in traffic dynamics in addition to the advantages
compared to traditional methods and presents the foundation of the proposed
approach. An overview of the entire approach is provided, along with a detailed
analysis of the detection of both planned and unplanned incidents. The developed
approach has been tested and verified in real-life case studies in two urban
environments, and the findings are discussed and displayed in Chapter 9, while the
technical implementation details of the information system developed are presented

in Chapter 8.

5.1 Introduction and Motivation

The rapid urbanization and expansion of cities have led to increased traffic
congestion and a higher occurrence of traffic-related incidents. Traditional traffic
management systems often struggle to cope with the dynamic nature of urban traffic,
especially when it comes to detecting and responding to traffic incidents in real time.
This has created a pressing need for more advanced, efficient, and reliable methods

of traffic incident detection.

The use of Artificial Intelligence (Al), particularly Machine Learning (ML) and
Deep Learning (DL), has paved new ways for addressing these challenges. Al-driven
methodologies can analyze vast amounts of traffic data, uncover hidden patterns, and
provide timely and accurate detection of traffic incidents. This is crucial for mitigating

the effects of traffic incidents, such as delays, economic losses, and safety hazards.
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The motivation for this research stems from the recognition that Artificial
Intelligence (Al), particularly Machine Learning (ML) and Deep Learning (DL), offers
unprecedented capabilities for addressing the challenges faced by traditional traffic
management systems, as illustrated in Section 2.4. More specifically, Al-driven
methodologies excel at processing big amounts of data and uncovering hidden
patterns that are not easily detectable through conventional means. These

capabilities are crucial for the timely and accurate detection of traffic incidents.

One of the primary motivations for employing Al in traffic incident detection is
the enhancement of detection capabilities. Unlike traditional methods that rely on
static sensors and manual inputs, Al methodologies can analyze large datasets
continuously and in real time. This allows for the identification of traffic patterns and
anomalies that indicate incidents much faster and more accurately than human
operators or conventional means. Another key motivation is the ability of Al systems
to facilitate real-time monitoring and response. The quick processing of data and the
ability to make data-driven decisions in real time can significantly reduce the response
time to traffic incidents. This is essential for minimizing the impact of incidents on
traffic flow and enhancing overall traffic management efficiency. Al systems can
promptly and automatically alert traffic management centers about incidents,
allowing for quicker deployment of emergency services and traffic rerouting
measures. Moreover, these models are able to capture both spatial and time

complexities which are inherent to the task of AID in traffic management.

The scalability and adaptability of Al-driven systems also provide a compelling
motivation for their use. These systems can be scaled to handle varying volumes of
data and can be adapted to different urban environments, making them suitable for
deployment in cities of different sizes and with diverse traffic conditions. As more data
is collected and analyzed, Al systems can continuously improve their accuracy and
efficiency, further enhancing their utility in dynamic urban settings. Additionally, the
integration of Al-driven traffic incident detection systems with broader smart city
initiatives represents a significant motivation. By linking traffic management systems

with other smart city technologies, cities can achieve a more cohesive and efficient
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urban management infrastructure. This integration can enhance not only traffic
management but also public safety, environmental sustainability, and the overall

quality of urban living.

This chapter aims to provide a comprehensive overview of the application of Al-
driven methodologies in traffic incident detection, for both planned and unplanned
events. The chapter will present an in-depth analysis of how specific Al models, widely
employed in relevant studies and research papers, are applied to detect incidents.
Special attention is given to distinguishing between the detection processes for
planned incidents, such as recurring congestion and unplanned incidents, such as
accidents or sudden road closures. The insights derived from this study aim to
contribute significantly to the development of more effective, responsive, and
intelligent traffic management systems which make use of trained Al models in the

detection of incidents.

5.2 Data-driven Algorithms for unplanned non-recurring

incident detection

Based on the extensive literature review we have conducted which is documented
in Chapter 2, we have selected some of the most widely used state-of-the-art
algorithms and methods to analyze and include in our proposed framework. For this
reason, we have chosen not to focus on comparative or time-series algorithms, since
although these have been used extensively in the past, there has been a shift in
Machine Learning and Deep Learning approaches. Another reason we have taken the
decision to not include the widely used California algorithms is the fact that these
need as input only occupancy observations and do not take into account other traffic
characteristics, which, in many scenarios are not reliable enough to base our analysis
on. Instead, we have placed our focus on the following Machine Learning and Deep
Learning algorithms, including Supervised (the widely employed SVM and a suite of
Neural Networks) and Unsupervised approaches for anomaly detection, for instance

Isolation Forest.
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In this section, we present a high-level overview of the selected algorithms in

addition to the rational on which we have based the selection.
52.1.1 SVM

Support vector machine (SVM) is a supervised approach which is constructed from
a unique learning algorithm that extracts training vectors that lie closest to the class
boundary and makes use of them to construct a decision boundary that optimally

separates the different classes of data.

Concerning how the SVM operates, consider the problem of incident detection
where X is an input vector with n dimensions. The SVM performs the following

operation involving a vector W={ws,...,wn} and scalar b:

f(X)=sgn(W-X+b)

Positive sign of f(X) may be taken as incident state while negative value of f(X) may

be regarded as incident-free.

We have chosen this algorithm, since, as illustrated from the literature review,
results from various studies have shown that SVM offers a lower misclassification rate,
higher correct detection rate, lower false alarm rate and slightly faster detection time

than other models in traffic incident detection (Yuan & Cheu, 2003).

5.2.1.2 Isolation Forest

In comparison to other anomaly detection methods such as Support Vector
Machines and Decision Trees which require a labelled data set to form a classifier,
Isolation Forests are generally used in an unsupervised manner. Isolation forests only
require a few conditions to separate anomalies from normal observations when

compared to other methods which use basic distance and density measures.

There are several works in the field of AID which use Isolation Forests. Their low

linear time complexity and small memory requirements aid in eliminating major
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computational cost of distance calculation in all distance and density-based methods.

Lastly, isolation forests are able to perform well in a multi-dimensional feature space.

5.2.1.3 Neural Networks with Wavelet transformation

With capabilities of learning, self-adaptation, and fault tolerance, the Artificial
Neural Networks (ANNs) approach has demonstrated good performance in many
pattern classification applications, including several works in the field of traffic
incident detection. In the study by (Ki, Jeong, Kwo, & Kim, 2019), a three-layered ANN

model for incident detection was developed, as shown in Figure 5-1.
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Figure 5-1: Artificial Neural Network for Freeway Incident Detection (Ki, Jeong, Kwo, & Kim, 2019).

Wavelet Neural Networks (WNN) are a class of networks that combine the classic
sigmoid artificial neural networks (ANNs) and the Wavelet Analysis (WA). Wavelet
analysis reveals the frequency components of signals just like the Fourier transform,
but it also identifies where a certain frequency exists in the temporal or spatial
domain. WNNs have been used with great success in a wide range of applications,
since Wavelet Analysis has proved to be a valuable tool for analyzing a wide range of
time-series and has already been used with success in image processing, signal
denoising, density estimation, signal and image compression and time-scale

decomposition. There is a correspondence between wavelet scales and frequency,
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such that a smaller scale corresponds to a compressed wavelet, which is high in
frequency, while larger scales correspond to a stretched wavelet, representing lower
frequency. Scales are often converted to spatial frequencies for better
interpretability. By means of wavelet transformation, time series can be decomposed
into a time dependent sum of frequency components. As a result, we are able to

capture seasonalities with time-varying period and intensity.

In our case, we have used the Python library PyWavelets, which is open- source

wavelet transform software for Python.

5.2.1.4 BCNN

Another model which is frequently used in literature are the Convolutional Neural
Networks (CNNs). According to Oquab et al. (2014), a CNN is an algorithm that excels
in image processing, computer vision, and image recognition. Because CNN structures
are sensitive to distance, they have primarily been applied to spatial problems.
Convolution, pooling, and fully connected layers make up each CNN structure.
Different features are extracted by different filters (also known as kernels) in the
convolution layers. These filters are collections of learnable weights that are modified
during training to generate output features. Prior to calculating the product between
the numbers at the same location in the input matrix and the filter, the convolution
filter is first positioned in the upper left corner of the input matrix. These products are
then added together to produce a single number, which is the outcome of this
operation's convolution. Then, the filter is moved to the right by one element, and
the convolution result is obtained. A pooling layer is then used to extract dominant
features and reduce the number of parameters. Then, the results are sent to the fully
connected layer, which makes a prediction. Based on the type of pooling layer
(average pooling or max pooling), the average or the maximum of the numbers at the
same location in the output of the convolution layer matrix and the pooling kernel are
calculated. The output dimensions of the pooling layer depend on the stride setting.
Finally, the matrix is flattened and is passed on to the fully connected layer (Ansari

Esfe, 2021). An example is illustrated in Figure 5-2.
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Figure 5-2: Structure of a Convolutional Neural Network. (Ansari Esfe, 2021)

In our case, we have chosen to include a Bayesian Convolutional Neural Network
(BCNN)., which integrates probabilistic models and deep learning to consider
uncertainties from both model and data. (Liu, Jin, Li, Hu, & Lia, 2022) Bayesian deep
learning models exploit probabilistic layers that are trained using Bayesian inference
to capture uncertainty over weights and activations. Because these probabilistic
layers are designed as alternatives to their deterministic layers, Bayesian deep
learning models create a straight-forward way to extend traditional deep learning

models to endorse probabilistic deep learning.
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Figure 5-3: Bayesian convolutional neural network model. (Liu, Jin, Li, Hu, & Lia, 2022)

5.2.1.5 Autoencoder
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An Autoencoder is a generative deep learning algorithm used for reconstructing
high-dimensional input data using a neural network with a narrow bottleneck layer in

the middle which contains the latent representation of the input data.

It consists of an Encoder and a Decoder. The encoder network accepts high-
dimensional input data and translates it to latent low-dimensional data. The input size
to an Encoder network is larger than its output size. On the other hand, the Decoder
network receives the input from the Encoder’s output, which the Decoder’s objective

is to reconstruct the input data.

The Autoencoder accepts high-dimensional input data, compress it down to the
latent-space representation in the bottleneck hidden layer; the Decoder takes the

latent representation of the data as an input to reconstruct the original input data.

Therefore, Autoencoders have been used for Anomaly Detection tasks, by
comparing the output from the Decoder and the input to the Network and using a
threshold, either manually set or learnt from the data itself. If the loss value exceeds
the threshold, then the instance is categorized or classified as an anomaly. In that
sense, we can say that the Autoencoder works on an unsupervised manner, taking
into account that it uses future values of the observations dataset, and the

classification is based on a manually set threshold.

5.2.1.6 Bidirectional LSTM

Fully connected neural networks (FCN) are a combination of many neurons in
consecutive layers. The neurons are connected in a way that enables the model to
solve complex, non-linear problems. However, the FCN model structure cannot
consider the hidden relationships among time steps in a time series of data. On the
other hand, for such cases, it is important to take into account those relationships. A
Recurring Neural Network (RNN) considers that the data in the sequence are related
to each other. While RNN structures are appropriate for time series prediction, RNN
can be defined as a very deep FCN with more time lags (hidden layers). Thus, RNN

results in a vanishing or exploding gradient of the network, which means that the
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accuracy of a simple RNN may decrease as the sequence length increases because the
earlier cells in the RNN get a small gradient update and stop learning in the
backpropagation process. Thus, gated recurring neural network models, such as

LSTM, have been proposed to overcome this issue. (Ansari Esfe, 2021) The internal
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Figure 5-4: Internal Structure of LSTM. (Yuan, Li, & Wang, 2019)

structure of a LSTM network is shown in Figure 5-4.

c(t-1) —L—@

forget gate:| input gate:

h Iy

> (1)

Bidirectional LSTMs are based on the traditional LSTMs that were introduced to
improve model performance on sequence classification problems (Huang, Xu, & Yu.,
2015). The arrangement of the LSTM memory block enables the network to store and
retrieve information over long periods (Figure 5-5). One drawback of the standard
LSTM networks is that they only have access to the previous context but not to future
context. On the other hand, Bidirectional LSTMs can capture both forward and
backward dependencies in time series data (Cui, Ke, & Wang, 2018). In problems
where all time steps of the input sequence are available, Bidirectional LSTMs train two
instead of one LSTMs on the input sequence (i.e., the input sequence as-is and a

reversed copy of the input sequence).
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Figure 5-5: The architecture of a Bidirectional LSTM model.

The bidirectional LSTM is a good fit for traffic state prediction as it can potentially
capture temporal autocorrelation in the data. Once the model is trained based on the
historical data, the future values are estimated. Thereafter, the anomalous behavior
can be classified by setting a threshold for loss values and examining the actual traffic

data with the corresponding pattern.

5.2.1.7 Graph Neural Networks

Graph Neural Networks (GNNs) have emerged as a powerful tool in enhancing
incident detection in traffic systems. GNNs are particularly adept at handling data
that is structured as graphs, which is a natural representation for traffic networks
where nodes can represent detectors and edges can denote the roads connecting
them. This structure allows GNNs to learn complex patterns of traffic flow and
interactions between different parts of the network. By leveraging the spatial
dependencies and the temporal dynamics of traffic data, GNNs can more accurately
predict incidents, such as traffic jams or accidents, in real-time. This capability not only

improves the efficiency of traffic management systems but also enhances road safety.

In graph-based modeling for traffic systems, each traffic sensor is represented as
a node within the network graph, with the connections between roads depicted as
edges linking these nodes. In Figure 5-6, a general pipeline of SpatioTemporal GNN
models for traffic predictions are illustrated. A significant benefit of employing traffic
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sensor data in this context is the straightforward use of the collected traffic data as
attributes for the nodes, avoiding the need for extensive preprocessing. However,
there are caveats to consider, such as the fact that the placement of traffic sensors is

restricted by various factors, including the cost of installation. (Jiang & Luo, 2022)
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5.2.1.8 AIMSUN algorithm

Aimsun is a leading company in the field of traffic management providing micro,
meso and macro-simulations and respective analytics. Aimsun has developed

advanced solutions for real-time traffic incident detection and management, notably

through its Aimsun Live and Aimsun Predict platforms.

Aimsun Live is a real-time predictive traffic management solution that utilizes live
and historical data to simulate and monitor traffic networks. It provides immediate
forecasts of upcoming traffic conditions, enabling traffic management centers to

proactively address potential issues before congestion arises. On the other hand,
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Aimsun Predict processes real-time data to forecast future traffic states, offering
situational awareness and supporting proactive decision-making. It employs data
cleaning, clustering, prediction, and incident detection techniques to interpret real-
time data, providing alerts for unusual network performance and potential incidents.
Aimsun Predict's online incident detection capabilities involve identifying sudden
changes in traffic data—such as sharp drops in traffic flow outside peak hours—that

may indicate incidents like crashes or collisions.

Existing incident detection methods within the Aimsun framework deployed state-
of-the-art techniques based of the California #7 algorithm as well as probabilistic
methodologies. Such techniques are well-known to have limitations both with
unreliable data and in real-time scenarios. Within the scope of the FRONTIER project,
Aimsun has been experimenting with a methodology that is able to cope with current
state-of-the-art limitations in the area by being trained in an unsupervised way (i.e.,
independently of having labelled datasets), working independently on different
timeseries (e.g., traffic flow, or speed, or occupancy) and working without the need
of close sensor-pairs. Results of such experimentation are used to provide a baseline
for further development and integration of incident detection algorithms in a real-

time scenario.

Aimsun’s baseline has been built upon the assumption that incident detection can
be regarded as a transformation of individual timeseries to a space where the distance
between structural outliers is magnified independently on each input variables.
According to (Herrmann et al. 2022), two types of anomalies or outliers can be
distinguished: distributional outliers and structural outliers. Distributional outliers
look like normal data (i.e., inliers), but are in a low-density region in the data (or
embedding) space. Since distributional outliers are structurally like inliers, their
detection requires a lot of normal data for an accurate estimation of the probability
density function and the setting of the probability threshold that defines the frontier

of inliers.
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On the other hand, structural outliers are those that belong to a manifold’
different from the one formed by inliers. Road traffic incidents belong to the latter
category, whose detection is not equally easy for all traffic variables. For example,
road traffic occupancy usually offers easier incident detection than traffic flow.
Similarly, occupancy difference between sensor-pairs offers an easier detection than
single-sensor occupancy. Moreover, different embedding spaces can offer distinct
levels of detection power. (Torrent-Fontbona F. , Dominguez, Fernandez, & Casas,

2022)

5.3 Advanced Analytics Methods for Recurring Congestion

Identification

Recurring congestion is a common issue in the transportation sector, particularly
in urban areas with high traffic volumes. This type of congestion typically arises due
to routine traffic demand patterns, such as morning and evening rush hours. Unlike
non-recurrent congestion, which is caused by unpredictable events like accidents or
weather disturbances, recurrent congestion occurs regularly and predictably. The
presence of recurrent congestion not only affects the efficiency of the transportation
network but also leads to increased fuel consumption, higher emissions, and longer

travel times for commuters.

Several systems have been developed to identify and monitor recurrent
congestion, some of which employ Machine Learning and Deep Learning techniques.
These studies primarily concentrated on identifying the dominant trend in congestion
spread. For example, (Liu, Zheng, Chawla, Yuan, & Xie, 2011) created an algorithm to
identify a causal pattern for traffic situations. They segmented the city of Beijing into
multiple areas and charted these areas. In the diagram, nodes symbolized the areas,
and edges illustrated the movement of traffic among the areas. They suggested

utilizing the spatiotemporal outlier tree (STOTree) along with a frequent subtree

7 A manifold is a topological space that is modelled closely on Euclidean space locally but may vary
widely in global properties.
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algorithm to uncover the causal anomaly pattern in road systems. Additionally,
(Nguyen, Liu, & Chen, 2016) presented a method to identify congested roads over
time and the causal links between them. They created the spatiotemporal congestion
(STC) algorithm, which produced the most common sub-structures (subtrees) from all
detectable tree structuresin a network to uncover the repeating propagation pattern.
Moreover, they employed a dynamic Bayesian network (DBN) to assess the likelihood
of each propagation happening. By merging these two methods (STC_DBN), they were
able to effectively identify the congestion propagation pattern (Liang, Jiang, & Zheng,
2017) introduced a data-driven method that identified the cascading patterns of
traffic flow by optimizing the likelihood function based on the available data. They
asserted that this model surpassed the STC_DBN algorithm regarding accuracy and
computation time. Subsequently, (He, Wang, Fang, & Li, 2018)enhanced the STC_DBN
algorithms. They suggested a spatiotemporal congestion co-location pattern (STCCP)
to identify the congestion propagation pattern. They created three-dimensional
models incorporating the factors of time, place, and traffic. By utilizing the congestion
characteristics found in neighboring areas and later periods, they analyzed the
congestion pattern. Although the aforementioned studies primarily concentrated on
identifying the common congestion patterns at the network level with a tree-based

algorithm, they failed to anticipate congestion propagation.

Moreover, (Wang & Zhou, 2017) and (Ji, Wang, Zhou, & Chen, 2019) applied a
mining algorithm to identify the spatiotemporal congestion. Additionally, they
established speed characteristics using taxi trajectory data to identify the
spatiotemporal congested regions for constructing the frequent patterns. By
integrating the common congestion patterns with the rules of congestion
propagation, researchers can foresee congestion spread during repeated events.
Although recent research has concentrated on creating frequent trees or identifying
the most likely congestion propagation patterns to forecast congestion issues, (Xiong,
Vahedian, Zhou, Li, & Luo, 2018) suggested an effective algorithm to anticipate where
congestion will spread in the near term. They introduced the idea of a propagation
graph (Pro-Graph) to represent the direction of congestion propagation in networks.

At each time period, they forecasted every Pro-Graph that could be identified in the
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network through empirical probabilities of dissemination computed from past data.
The latter is among the groundbreaking studies in predicting congestion propagation.
Nonetheless, like earlier studies, they did not assess this model for non-recurring
events. Recently, (Majumdar, Subhani, Roullier, Anjum, & Zhu, 2021) employed LSTM
networks with univariate data (speed) and multivariate data (speed and flow) to
forecast congestion spread across road networks. Initially, they forecasted vehicle
speed for two sensor locations. Next, they examined the speed patterns to show the
similarity in the speed profiles of the two locations. The time intervals between
comparable anomalies, like a decrease or rise in velocity, were determined. Time
delays were subsequently utilized to evaluate the congestion spread duration.
Although this study forecasts the spreading of congestion, this model is not applicable
to arterial roads due to the presence of signalized intersections. Furthermore, while
this research simulates congestion spread at the network scale, it does not pertain to

nonrecurring incidents.

Nonetheless, a significant amount of research focuses on simpler and more basic
data-driven techniques, some of which are employed in our analysis and are outlined
below. Descriptive analytics methods are essential for understanding the current
state and historical trends of traffic congestion. It involves summarizing and
visualizing data to identify patterns and insights, forming the basis for more advanced
analytical methods. One of the simplest yet effective approaches constitute of
Exploratory Data Analytics and more specifically the visualization of traffic over a
specific period of time. By plotting traffic occupancy, speed or flow over time, one can
visually identify patterns of congestion. This could be a time-series plot showing traffic
volumes every day at different times. Regular spikes at specific times might indicate
recurrent congestion due to rush hours. Another effective way to visually analyse
recurring congestion is using histograms and distribution plots; histograms can
provide insights into the distribution of traffic volumes or speeds. Furthermore,
heatmaps can be especially useful for visualizing traffic patterns across days and
times, providing a clear and intuitive way to identify congestion hotspots. For
example, a heatmap with days of the week on one axis and times of the day on the

other can quickly show when congestion is most likely to occur. By plotting box plots
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for traffic volumes or speeds for different times of the day or days of the week, one
can identify variability and potential outliers. Periods with lower median speeds and
high variability might be indicative of congestion. Investigating correlations between
different variables might provide insights into factors influencing congestion. For
instance, there might be a strong negative correlation between vehicle speed and
vehicle count, suggesting that as the number of vehicles increases, the average speed
decreases, leading to congestion. More fine-grained analysis can be made to deduce
daily or weekly patterns and identify congestion. By plotting two variables against
each other, like traffic volume and speed, one can visually identify patterns or
relationships as part of the depicted scatter plot. A downward trend in such a plot
might indicate that as traffic volume increases, speeds decrease, signalling

congestion.

In the context of transportation, Time-Series analysis is particularly useful for
understanding traffic flow variations over days, weeks, or even longer periods, being
a statistical technique that deals with time-ordered data points. Thus, it can be used
to reveal seasonal variations in traffic congestion, such as increased traffic during
holiday seasons or reduced congestion during summer vacations, in addition to
capturing daily peak hours. The advantage of time-series analysis is its simplicity and
direct applicability to loop detector data, which is, by its nature, sequential. By
employing moving averages, seasonal decomposition, or autocorrelation functions,
one can identify periodic congestion patterns, trends, and seasonality. For example, a
recurrent spike in traffic every weekday morning might indicate a congestion pattern
due to work-related commutes. The STL decomposition breaks down a time series
into three main components: trend, seasonal, and residual. The trend component
shows the underlying trend in the data, abstracting away from the day-to-day or hour-
to-hour fluctuations. If there's an increasing or decreasing trend over time, it will be
observed as a steadily rising or falling line. The seasonal component captures the
repeating patterns in the data and analyzing daily patterns could manifest as
consistent peaks (e.g., during rush hours) and troughs (e.g., during the night) each
day. What remains after the trend and seasonal components have been subtracted

from the original data is the residual component.
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A more advanced technique from the field of descriptive analytics to understand
traffic patterns, is clustering. Clustering is a ML method which aims to group similar
traffic patterns together, based on similarity measures, making it easier to identify
common causes of congestion. For example, clusters might reveal that certain
intersections consistently experience high traffic volumes during specific times of the
day. Specifically, for our loop detector data we have employed k-means clustering.
This algorithm partitions data into 'k' number of clusters. By segmenting traffic data
into clusters, one might identify groups representing peak traffic times or nighttime
inactivity. The elbow method is used to identify the optimal number of clusters. Each
cluster can offer insights into specific traffic patterns, helping in congestion detection

and management.

On the other hand, predictive analytics uses historical data to forecast future
traffic conditions, allowing for proactive congestion management. It involves various
statistical and machine learning methods to predict traffic flow, travel times, and
potential congestion points. For instance, regression analysis models the relationship
between traffic variables, such as volume, speed, and travel time. Linear regression is
useful for direct relationships, while non-linear models can capture more complex
interactions. In addition to regression analysis, Machine Learning algorithms are
effective for predicting congestion by considering multiple variables and their
interactions, capable of handling large datasets and provide insights into which factors
are most influential in causing or propagating congestion. They can capture long-term
dependencies and trends, making them highly effective for congestion forecasting.
Those include among others SVMs, Decision Trees, Convolutional Neural Networks

(CNNs) and Recurrent Neural Networks (RNNs).

Moreover, as part of the analysis, to verify that we have managed to capture the
time patterns correctly one can predict the traffic flow using conventional models,
such as AutoRegressive Integrated Moving Average (ARIMA) models, widely used for
time-series forecasting. They account for past values and trends to predict future
traffic conditions. In order to perform the ARIMA forecasts, we plot the ACF

(Autocorrelation Function), which shows how the values of the time series relate to
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their past values, and the PACF (Partial Autocorrelation Function), that illustrates the
correlation between the series and its lags after accounting for the contributions from
the intermediate lags. Moreover, the Augmented Dickey-Fuller (ADF) test needs to be

performed.

While descriptive and predictive analytics techniques, which have been
mentioned above, provide a comprehensive understanding of traffic patterns and
future conditions, prescriptive analytics goes a step further by suggesting actionable
interventions to mitigate congestion. Techniques in prescriptive analytics include
optimization models for traffic signal timings, route optimization algorithms, and
dynamic congestion pricing strategies. These methods are crucial for implementing
effective congestion management solutions based on insights gained from descriptive
and predictive analyses, however they are out of scope of our analysis and could be

employed as future research.

To conclude, identifying and addressing recurring congestion is vital for improving
urban mobility and reducing traffic-related issues. Descriptive analytics techniques,
such as time-series analysis, heat maps, and clustering, provide a foundational
understanding of congestion patterns. Predictive analytics methods, including
regression analysis, machine learning algorithms, and time-series forecasting, enable
accurate forecasting of future traffic conditions, thus enabling the identification of
recurrent situations such as congestion during peak hours. Together, these
techniques offer a robust framework for understanding and identifying recurring

congestion.
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6 AutoML-Driven Incident Detection

In the current Chapter, the proposed work of the Thesis concerning the application
of AutoML techniques for incident detection is presented. This chapter addresses the
rationale behind using AutoML, reviews relevant work, and discusses the theoretical
foundation of the proposed approach. An overview of the entire methodology is
provided, along with a detailed analysis of each component involved. The
implementation process of the AutoML-driven incident detection system s
thoroughly discussed. The developed approach has been tested and verified in real-
life case studies in two urban environments, and the findings are discussed and

displayed in Chapter 9.

6.1 Introduction and Motivation

Efficient traffic incident detection in an automatic and prompt manner is
paramount in urban traffic management, directly impacting congestion control and
road safety. A traffic incident typically refers to any unexpected event that decreases
road capacity and leads to congestion. Such incidents disrupt the flow of traffic,
impede operations, and are responsible for not only delays but also increased
pollution. Consequently, Intelligent Transport Systems (ITS) are increasingly focusing
on reducing the impact of such traffic events. Thanks to the surge in available traffic
data, Machine Learning has emerged as a powerful tool to improve upon the
traditional algorithmic approaches, such as the California #7 Series (Balke, 1993), for
detecting these incidents. However, the variable nature of traffic flow makes
immediate and precise incident detection challenging. The widespread deployment
of traffic sensors on highways has yielded extensive traffic flow data. Common data
sources for identifying traffic incidents include stationary detectors like inductive loop
detectors, GPS devices, and automatic identification systems such as Radio-Frequency
Identification (RFID). Recent advances in machine learning have led to its accelerated

adoption in the field of transportation engineering, with popular techniques
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encompassing Artificial Neural Networks (ANNs), Support Vector Machines (SVMs),
Isolation Forests (IFs), and their various adaptations. While the traditional machine
learning techniques have demonstrated utility in interpreting traffic flow data, they
often require extensive domain knowledge for feature selection and model tuning,

which can be a significant limitation given the variable nature of traffic patterns.

Automated Machine Learning (AutoML) is an emerging area in ML that seeks to
automate the ML workflow from data preprocessing to model validation (Hutter,
Kotthoff, & Vanschoren, 2019), thus enhancing performance and reducing the
necessity for constant redesign. AutoML not only automates the meticulous process
of discovering and fine-tuning the best-suited machine learning framework for the
task at hand but also adapts as the characteristics of data evolve over time. Although
setting up AutoML systems may initially demand more computational resources, the
trade-off includes a substantial decrease in manual labor and the level of expertise
traditionally required to develop high-performing models. Therefore, such
automation provides robust AutoML methods that enable people, with either little or
no specialized ML knowledge, to integrate ML solutions into data-driven processes.
The latter is known as the democratization of ML (Hutter, Kotthoff, & Vanschoren,
2019) and it is aligned with the actual purpose of Artificial Intelligence: to learn and

act automatically without human intervention (Song, Triguero, & Ozcan, 2019).

Despite the growing interest in AutoML in many fields, including transportation, a
notable research gap exists in its application to traffic incident detection. To our
knowledge, there are no comprehensive studies that have specifically tackled the use
of AutoML for this purpose. While previous research has demonstrated the potential
of AutoML in various domains such as healthcare, finance, and manufacturing (
(Hutter, Kotthoff, & Vanschoren, 2019), (He, Zhao, & Chu, 2021), (Karmaker Santu, et
al., 2022)) , its application in the field of traffic management, particularly for incident
detection, remains underexplored. This lack of research in applying AutoML to traffic
incident detection presents a unique opportunity. The challenge lies in not only
adapting AutoML to effectively analyze traffic data but also in validating its

applicability across different urban settings. The conducted work aims to fill this gap
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by proposing a novel AutoML-based methodology in detecting traffic incidents.
Moreover, the effectiveness of our proposed approach has been validated in two
major European cities, in Athens, Greece, and Antwerp, Belgium, and the results are
presented in Chapter 9; however, the methodology proposed is generic and could
potentially be replicated or adapted for other urban environments. In doing so, this
research contributes to the broader understanding of how AutoML can be utilized in
urban traffic systems, potentially leading to more responsive and efficient traffic

management solutions.

As far as | am aware, at the point of writing, this research represents a novel study
aiming to address the automatic incident detection task by employing AutoML
methodologies. Specifically, the main contributions of the work conducted can be

summarized in the following:

1. Integration of Data Pre-processing Techniques: Recognizing the importance
of data quality, we propose a data pre-processing algorithm before employing
the AutoML process using TPOT (Tree-based Pipeline Optimization Tool). This
integration aims to streamline the model development process, from raw data
handling to final prediction.

2. Contrast of our AutoML-based approach with General Approach Algorithms:
This research also sets to compare and contrast the performance and
efficiency of AutoML frameworks against general machine learning
algorithms. This analysis will help to elucidate the benefits and limitations of
AutoML in the specific context of traffic incident detection.

3. Assessment and comparison of our AutoML methodology across different
urban contexts: Last but not least, this work aims to explore the differences
of the proposed automatic approach across two big European cities, Athens

and Antwerp, which are presented as part of Chapter 9.

6.2 State-of-the-art Analysis

6.2.1 Theoretical Background on AutoML
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AutoML has emerged as a transformative approach in the field of machine
learning, aiming to automate the process of model selection and hyperparameter
tuning. This section will delve into the general principles and methodologies of
AutoML, highlighting its impact on accelerating and simplifying the deployment of
machine learning models. AutoML is designed to make the machine learning (ML)
process more accessible and automated, enabling experts in specific domains to
leverage ML technologies without requiring extensive knowledge or a data analyst's
assistance (Hutter, Kotthoff, & Vanschoren, 2019). At the heart of AutoML lies the
challenge of Hyper Parameter Optimization (HPO), which involves the automatic
tuning of hyperparameters to enhance the performance of ML systems across tasks
like classification, regression, and time series forecasting (Hutter, Kotthoff, &
Vanschoren, 2019). Recent advancements in AutoML have expanded its scope to
include additional functionalities such as Data Preparation, Feature Engineering,
Model Generation and Model Evaluation. (Hutter, Kotthoff, & Vanschoren, 2019) (He,

Zhao, & Chu, 2021)

The primary goal of AutoML is to reduce the manual effort involved with machine
learning technologies, thus accelerating their deployment. Consequently, various
systems have attempted to minimize the work required to perform certain steps of
the machine learning development workflow. For example, DeepDive/Snorkel
(Ratner, et al., 2020) is a general, high-level workflow support system that helps users
label and manage training data and provides high-level support for model selection.
As previously mentioned, however, developing ML solutions still involves a lot of
manual work. To design a truly automated system, it is important to address the
bottlenecks in the current process. To better visualize these bottlenecks, we present,
in Figure 6-1,a flowchart showing the end-to-end machine learning process. For each
step in the flow, we outline the role of domain experts, the amount of manual work
performed by the data scientist, and the communication required between the two.

(Karmaker Santu, et al., 2022)
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Figure 6-1: Flowchart depicting the Machine Learning process, while highlighting points of interaction

between domain experts and data scientists, along with bottlenecks. (Karmaker Santu, et al., 2022)

The Data Preparation and Feature Engineering steps are associated with the
available data used for the ML algorithms. The former includes actions for collecting,
cleaning and augmenting the data, with the latter includes actions for extracting,
selecting and constructing features. In the Model Generation step, a search is
executed with the goal of finding the best performing model for the predictions, such
as k-nearest neighbors (KNN) (Altman, 1992), Support Vector Machines (SVM) (Cortes
& Vapnik, 1995), Neural Networks (NN), etc. The Model Evaluation step is responsible
for evaluating the generated models based on predefined metrics and runs in parallel
to the Model Generation step. The evaluation of the generated models is used for
optimization of existing models and the construction of new models. The search
procedure of AutoML terminates based on predefined restrictions, such as the

performance of the models or the time passed.
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As described above, AutoML deals with Model Selection Problem (MSP) as an
optimization problem whose objective consists of finding the ML algorithm, from a
pre-defined base of algorithms, and its hyper-parameter configuration that maximizes
an accuracy measure on a given ML problem. In this sense, AutoML aims to improve
the current way of building ML applications by automating the application of ML
algorithms to datasets, in such a way that enables human users avoiding tedious tasks
(e.g., hyper-parameter optimization). Although current AutoML methods have
already produced impressive results, the field is still far from being mature. Regarding
AutoML tools, the first AutoML method in tackling simultaneously the selection of
algorithm and hyper-parameters was Auto-WEKA (Thornton, Hutter, Hoos, & Leyton-
Brown, 2013).It uses Bayesian optimization to search for the best pair (algorithm,
hyper-parameter setting), considering a base of 39 algorithms implemented in WEKA
(a well-known open-source ML software that contains algorithms for data analysis and
predictive modelling). Subsequently, Komer et al. (Komer, Bergstra, & Eliasmith, 2014)
and Feurer et al. (Feurer, et al., 2015) developed Hyperopt-sklearn and Auto-sklearn,
respectively. These two frameworks automatically select ML algorithms and hyper-
parameter values from scikit-learn. In the case of (Komer, Bergstra, & Eliasmith,
2014), the AutoML method uses Hyperopt Python library for the optimization process,
concretely a Bayesian optimization method as Auto-WEKA. Meanwhile, Auto-sklearn
stores the best combination of ML algorithm and hyper-parameters that have been
found for each previous ML problem, and using meta-learning it chooses a starting

point for a sequential optimization process.

More recently, Sparks et al. (Sparks, et al., 2015) proposed a method that supports
distributed computing for AutoML, and Sabharwal et al. (Sabharwal, Samulowitz, &
Tesauro, 2016) developed a cost-sensitive training data allocation method that
assesses a pair (algorithm, hyper-parameters setting) on a small random sample of
the data-set, and gradually expands it over time to re-evaluate it when one
combination is promising. Then, Olson and Moore (Olson, Bartley, Urbanowicz, &
Moore, 2016) designed a framework for building and tuning classification and
regression ML pipelines. It uses genetic programming to construct flexible pipelines

and to select an algorithm in each pipeline stage. However, TPOT does not
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exhaustively test all different combinations of hyper-parameters which in turn causes

that some promising configuration may be ignored.

Lately, Swearingen et al. (Swearingen, et al., 2017) built ATM, which is a
collaborative service to build optimized ML pipelines. This framework has a strong
emphasis on parallelization enabling the distribution of a single combination
(algorithm, hyper-parameter setting) in a cluster to process it in a more efficient way.
Currently, ATM uses the same base of algorithms from scikit-learn, and it finishes the
optimization process after either a fixed number of iterations or after expending a
time budget defined by the human user. One year later, Mohr et al. (Mohr, Wever, &
Hillermeier, 2018) developed ML-Plan, a framework for building ML pipelines based
on hierarchical task networks. ML-Plan is initialized with a fixed set of pre-processing
algorithms, classification algorithms, and their respective potential hyper-
parameters. Nevertheless, ML-Plan only considers a supervised classification
approach, ignoring the supervised regression perspective that, as it was stated before,
is the most common approach in TF. From a technical perspective, AutoML attracted
a lot of research interest resulting in several AutoML frameworks, such as: Autokeras
(Jin, Song, & Hu, 2019), FEDOT (Nikitin, 2022) and TPOT (Olson, Bartley, Urbanowicz,
& Moore, 2016). Additionally, research focusing on benchmarking several AutoML
frameworks (Gijsbers, et al., 2019) (Zéller & Huber, 2021) concludes that they do not

outperform humans yet but give promising results. (Fikardos, et al., 2022)

6.2.2 AutoML in Transportation and Traffic prediction studies

In the transportation sector, AutoML's application is still on the rise. This section
reviews the current state of research on the use of AutoML for traffic prediction and
its role within the transportation domain. It will highlight studies where AutoML has
been employed to optimize traffic flow, predict congestion, and improve overall

transportation efficiency.

In the transportation area, to the best of my knowledge, only four papers have
used AutoML methods for traffic forecasting (TF) ( (Angarita-Zapata, Masegosa, &

Triguero, Evaluating automated machine learning on supervised regression traffic
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forecasting problems., 2020), (Angarita-Zapata, Triguero, & Masegosa, 2018),
(Vlahogianni, 2015), (Angarita-Zapata, Masegosa, & Triguero, 2020)) .The first
research carried out by Vlahogianni et al. (Vlahogianni, 2015) proposed a meta-
modelling technique that, based on surrogate modelling and a genetic algorithm with
an island model, optimizes both the algorithm selection and the hyper-parameter
setting. The AutoML task is performed from an algorithms base of three ML methods
(Neural Network, Support Vector Machine and Radial Base Function) that forecast
average speed in a time horizon of 5 min, using a regression approach. After that,
Angarita et al. in (Angarita-Zapata, Masegosa, & Triguero, 2020) and (Angarita-Zapata,
Triguero, & Masegosa, 2018) used Auto-WEKA, an AutoML method that applies
sequential model-based Bayesian optimization (Hutter, Hoos, & Leyton-Brown, 2011)
to find optimal ML pipelines. Both papers compared the performance of Auto-WEKA
w.r.t. the general approach, which consists of selecting by trial and error the best of a
set of algorithms to predict traffic. In the case of (Angarita-Zapata, Triguero, &
Masegosa, 2018) , the paper was centered in forecasting traffic level of service (LoS)
at a fixed freeway location through multiple time horizons. On the other hand, in
(Angarita-Zapata, Masegosa, & Triguero, 2020), the authors were focused on
predicting traffic speed on a subset of families of TF regression problems focused on
making predictions at the point and the road segment levels within the freeway and
urban environments. Lastly, in (Angarita-Zapata, Masegosa, & Triguero, 2020), the
authors focus on assessing Auto-sklearn's capability to recommend effective machine
learning pipelines for traffic forecasting. This task is framed as a time series (TF) multi-
class imbalanced classification problem, examined over various time horizons, spatial
scales (both point and road segment), and in different environments (freeway and
urban). The study tests three scenarios and findings indicate that Auto-sklearn's meta-
learning component underperforms in handling TF problems, and optimization does

not significantly enhance prediction accuracy.

All'in all, it is certain that ML algorithms have played a crucial role in developing
accurate models for automatic incident detection. However, some challenges persist,
such as high computational costs and redundant model information, while minimizing

human intervention. In response to these issues, adopting AutoML algorithms, which
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embody a pipeline model that automatically fine-tunes hyperparameters, presents a
promising solution. Under this light, the conducted aims to contribute to the fast-

growing field of AutoML by:

I.  Developing AutoML-based prediction algorithms for the incident detection
task, both from a regression and a classification standpoint;
II.  Conducting of a comparison study between the proposed prediction
methodology for each use case with other baseline methods; and finally,
[ll.  Analyzing and assessing the models proposed in this research between
different urban contexts, as presented in Chapter 9.
Last but not least, to the best of our knowledge, this study is the first one aiming
to tackle the challenging problem of automatic incident detection using AutoML

techniques.
6.3 Proposed Methodology

This work involves developing a methodology for automatic incident detection
with the goal of identifying unplanned non-recurring events promptly and thus
enabling a safer and more reliable Intelligent Transport Management system. The
methodology flowchart, depicted in Figure 6-2, illustrates the general workflow of the
present study. Initially, the process commences with data ingestion, followed by a
thorough data-preprocessing stage to make the dataset suitable for model
deployment. Subsequently, an AutoML framework, TPOT, is used as the foundation

of our approach for model development and selection.

During the prediction phase, the data is divided into two sets: one for testing and
the other for validation with unseen data. TPOT is deployed for crafting an effective
machine learning model leveraging the training data, focusing on the problem from a
regression and a classification perspective. After training and evaluating both the
TPOT Classifier and TPOT Regressor, we compare their performance metrics to
determine the most effective model for deployment. However, the benefits of

utilizing TPOT extend beyond this initial selection phase.
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AutoML systems like TPOT offer dynamic model updating, which can be crucial as
traffic data evolves over time. This allows for continuous retraining and model
refinement without the need to start the process anew, ensuring that the incident
detection system can adapt to new patterns or changes in traffic flow. Furthermore,
the ongoing use of AutoML provides an operational advantage in terms of parameter
fine-tuning. TPOT, with its genetic programming-based optimization, can iteratively
explore the parameter space to fine-tune the model as more data becomes available
or as traffic conditions change, a process that is more resource-efficient and
potentially more effective than manual tuning efforts. Lastly, the implementation of
AutoML for ongoing model management allows for the incorporation of online
learning techniques, where the model can be updated in real time with new data. This
is particularly relevant for incident detection, where the timeliness of model updates
can significantly impact the system's performance and reliability. Therefore, while the
model selected via TPOT may be fixed during a specific period, our methodology is
designed to facilitate model evolution, allowing for ongoing improvements and the
incorporation of new data, which is a significant benefit over a static algorithmic

approach.

It is important to highlight that in this work, the data-preprocessing step —which
includes feature extraction, data sampling, and balancing—is carried out before
training the models. This pre-processing is integral to both models' capability;
however, a decision has been taken for pre-processing to be executed independently
to guarantee compatibility, ensure uniformity across models, and ultimately, amplify
their efficiency. A detailed diagram, as shown in Figure 6-3, provides an in-depth view
of the modeling phase, illustrating the intricate steps involved in the training of both
the classification and regression models, thus highlighting the dual approach of

tackling automatic incident detection task.
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Figure 6-3: Detailed overview of the modeling phase.

6.3.1 Data Preprocessing

The proposed methodology involves conducting data preprocessing to prepare

the loop detector dataset, which contains traffic variables such as speed, occupancy

and flow as a time series, for modeling. This process aims to ensure the accuracy and
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reliability of ML models in predicting unplanned incidents. The preprocessing
primarily involves feature extraction, normalization, and balancing, whenever
needed. Normalization is applied to numerical features to scale them to a common
range, which is essential for ML models that rely on distance measures. Data balancing
is performed to avoid bias towards the majority class, which could result in poor
performance when detecting the minority class. Numerous studies have
demonstrated that normalization and data balancing significantly improve the
performance in various applications, e.g. (Qian & Liu, 2022), (Gain & Hotti, 2021).
Algorithms 1 and 2 outline the process of preparing the dataset for modeling by
performing data preprocessing for classification and regression task accordingly. This
results in a preprocessed dataset that is ready to be used as input for either the

classification or regression models.
Algorithm 1 Data Preprocessing for classification task.
Input: dataset (d), output target incidents (t)\
Output: Preprocessed dataset (pd)

1. CleanData: Data cleaning (d)

2. cd € CleanData(d)

3. ExtractFeatures: Extract feature columns (more details are described in
section 6.1)

4. f € ExtractFeatures(cd)

5. Normalize: Feature normalization (d)

6. X& f

7. Y&t

8. Xn € normalize(X)

9. Balance: Dataset balancing (Xbal,Ybal)

10. Xbal,Ybal €< balance(Xn, Y)

11. Split: Splitting dataset into training, validation, and test sets (sd)

12. X_train_val, X_test, y_train_val, y_test < (Xbal, Ybal, test_size = 0.05)

13. X_train, X_val, y_train, y_val € (X_train_val, y_train_val, test_size = 0.2)

14. Return pd € (X_train, y_train, X_val, y_val, X_test, y_test)

Algorithm 2 Data Preprocessing for regression task.

Input: dataset (d) Output: Preprocessed dataset (pd)
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1. CleanData: Data cleaning (d)

2. cd € CleanData(d)

3. ExtractFeatures: Extract feature columns (more details are described in
section 6.1)

4. f & ExtractFeatures(cd)

5. Determine output target: Extract the traffic variable(s) to be predicted (e.g.,
flow) directly from the input dataset.

6. t & ExtractTarget(d)

7. Normalize: Feature normalization (d)

8. X&f

9. Y &t (where Yis the continuous value derived from the dataset)

10. Xn €& normalize(X)

11. Split: Splitting dataset into training, validation, and test sets (sd)

12. X_train_val, X_test, y_train_val, y_test < (Xn, Y, test_size = 0.05)

13. X_train, X_val, y_train, y_val € (X_train_val, y_train_val, test_size = 0.2)

14. Return pd € (X_train, y_train, X_val, y_val, X_test, y_test)

6.3.2 TPOT Models

Our methodology, using TPOT, employ a range of ML techniques and optimization
algorithms to understand and adapt to the system’s behavior, ultimately enhancing
the accuracy and efficiency of the incident detection process. By incorporating the
capacity to learn and adapt from past experiences, the models seek to minimize the
time and resources required for prediction tasks, leading to cost savings and improved
productivity. Central to our approach is the Tree-based Pipeline Optimization Tool
(TPQT), an intuitive machine learning library that simplifies the development process,
using genetic programming. TPOT's automation extends through various stages of the
machine learning workflow, including data pre-processing, model selection,
hyperparameter tuning, and ultimately, deployment, all with minimal coding
requirements. TPOT is an open-source project on GitHub® and an example pipeline is

illustrated in Figure 6-4.

8 https://github.com/rhiever/tpot
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Figure 6-4: Example pipeline automated by TPOT. (Le, Fu, & Moore, 2020)

In this research, the power of the TPOT library for constructing and evaluating ML
models to predict incidents is demonstrated. For both the classification and regression
models, a wide range of advanced ML algorithms have been evaluated automatically.
To assess the model’s generalization ability, the dataset was divided into three
subsets. A portion of 5% was reserved for validation to simulate the model’s
performance on unseen data. The remaining 95% was then divided into the 80%
training set and 15% testing set to ensure the model was trained on a diverse and
sufficient dataset. An automated process was employed for selecting the best
algorithm and it is provided in the form of pseudocode below as Algorithm 3, which
outlines the essential steps for selecting the best model overall, which is based on a

comparison of precision (prec), recall (rec), and F1 score (f1).

Algorithm 3: Best Overall Model Selection in our Methodology

Input: Preprocessed dataset (pd), TPOT Classifier and TPOT Regressor models

Output: Best Auto Predictive Detection Model (bAutoD)

Train and evaluate TPOT Classifier:

TPOTClassifier = train_TPOTClassifier(X_train, y_ train)
TPOTClassifier_metrics = evaluate_model(TPOTClassifier, X_val, y_val)
Train and evaluate TPOT Regressor:

TPOTRegressor = train_TPOTRegressor(X_train, y_time_train)

uewWwNR
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6. Predictions = TPOTRegressor.predict(X_val)

7. Apply threshold to Predictions to categorize as O or 1:

8. Threshold = learn_threshold(y_time_train)

9. Predictions_binary = apply_threshold(Predictions, Threshold)

10. TPOTRegressor_metrics = evaluate_model(Predictions_binary, y_class_val)

11. Model selection based on evaluation metrics (em):

12. begin

13. em = (preg, rec, f1)

14. Best_evaluation_metrics (best_em) = [0, 0, 0, 0, None]

15. bAutoD= None

16. for i in range(len(em)):

17. if TPOTClassifier_metrics[i] > TPOTRegressor_metrics[i] and
TPOTClassifier_metrics[i] > best_emli]:

18. bAutoD = TPOTClassifier

19. best_eml[i] = TPOTClassifier_metrics]i]
20. elif TPOTRegressor_metrics[i] > best_em[i]:
21. bAutoD = TPOTRegressor

22. best_em[i] = TPOTRegressor_metrics[i]
23. end for

24. Return bAutoD

25. end

6.4 The Implementation - Technical Details

This Section describes the required technical specifications for the development
of the proposed subsystem. The components used to build the technical solution are

analytically described to offer the reader an overview of the various technical parts.
Data Ingestion and Preprocessing

The initial stage involves ingesting traffic data from various sources, including loop
detectors, and historical incident reports. The data is ingested in real-time and stored
in a scalable data storage solution, specifically in our case Orion Context Broker, to

handle the high volume and velocity of incoming traffic data.

Data preprocessing is performed using Python and libraries such as Pandas and
NumPy. This step includes cleaning the data to remove noise and inconsistencies,

normalizing numerical features to ensure they are on a comparable scale, and
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balancing the dataset to address class imbalances. Feature extraction techniques are
applied to derive meaningful features from the raw data, such as average speed,
traffic measurements from upstream and downstream detectors and past

timestamps.

AutoML Framework

For model development and selection, the TPOT (Tree-based Pipeline
Optimization Tool) tool is utilized. TPOT automates the process of model selection,
hyperparameter tuning, and feature engineering using genetic programming. It
iteratively explores various machine learning pipelines to identify the most effective

model for the given dataset.

The implementation utilizes TPOT's integration with Scikit-learn, allowing the use
of a wide range of algorithms and preprocessing techniques. The TPOTClassifier and
TPOTRegressor are employed to address the incident detection task from both
classification and regression perspective. The training data is split into training and
validation sets using Scikit-learn's train_test_split function to evaluate model

performance effectively.

Model Training and Evaluation

The training process involves running TPOT to generate multiple candidate models
and evaluating them based on predefined performance metrics which have been
thoroughly described above. TPOT uses cross-validation to ensure the robustness of
the models and prevent overfitting. Once the optimal model is identified, it is further
fine-tuned using grid search or random search techniques to optimize
hyperparameters. The final model is validated using a separate test dataset to assess

its generalization performance.
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7 Human-in-the-Loop and Explainability in

Incident Detection

In this chapter, the integration of human-in-the-loop mechanisms in Al-driven
traffic incident detection systems is explored. Human-in-the-loop approaches are
essential not only for ensuring that Al models perform accurately but also for ensuring
transparency, trust, and confidence among human operators. Explainability plays a
crucial role in this process by helping operators understand why Al and data-driven
models generate specific predictions about traffic incidents. Through clear
explanations of the underlying factors and reasoning behind these predictions,
operators are better equipped to provide informed feedback. This feedback allows
them to either accept, reject or edit the details of the system-flagged incidents, which
thus refines the prediction process. As a result, this dynamic interaction between
human oversight and Al systems enhances both the precision and adaptability of
traffic incident detection, ensuring the system evolves based on real-world human

expertise.

7.1 Introduction and Motivation

The deployment of Al in critical applications such as traffic incident detection
necessitates a careful balance between automation and human oversight. While Al
models offer unprecedented capabilities in processing and analyzing large datasets to
detect incidents, the complexity and opacity of these models often pose challenges in
terms of trust and reliability. Human-in-the-loop (HITL) methodologies provide a
practical solution to these challenges by incorporating human feedback and ensuring
the accuracy of Al predictions. Moreover, the incorporation of explainability features

in the system helps enhance the trust in the detection process of Al systems.

The primary motivation for integrating human-in-the-loop mechanisms in Al-
driven traffic incident detection systems stems from the need to enhance the
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accuracy, reliability, and trustworthiness of these systems. By involving human
operators in the decision-making process, we can utilize effectively their expertise and

contextual understanding to complement the strengths of Al models.

Alongside that, another significant aspect of human-in-the-loop is the ability to
provide immediate feedback on Al predictions. When an incident is identified by the
system, the operator is prompted to acknowledge the incident, confirming its
occurrence. This feedback loop ensures that false positives are minimized and that
the system's predictions align with real-world scenarios. Additionally, if an incident
occurs and the system fails to report it, operators can manually insert this
information, ensuring that critical events are not overlooked. This two-way
interaction not only improves the system's accuracy but also provides valuable data

for retraining and refining the Al models over time.

Another critical motivation is the need for explainability and trustworthiness in Al
systems. Traffic incident detection is a high-stakes application where the decisions
made by Al models can have significant implications for public safety and urban
management. Integrating techniques such as LIME (Local Interpretable Model-
agnostic Explanations) and SHAP (SHapley Additive exPlanations) allows us to provide
transparent and understandable predictions. These techniques help uncover the
reasoning behind Al decisions, making it easier for human operators to trust and rely
on the system. By ensuring that Al predictions are not only accurate but also
explainable, we can instill greater confidence in the adoption of these technologies in

real-world settings.

This chapter aims to provide an exploration of human-in-the-loop methodologies
in the context of Al-driven traffic incident detection. It begins with a detailed
discussion on the mechanisms for incorporating human feedback into Al predictions,
in various domains and more specifically, in the transportation sector. Furthermore,
the chapter delves into the importance of explainability and trustworthiness in Al
systems, focusing specifically on the incident detection task. An overview of

techniques such as LIME and SHAP are provided, along with a detailed explanation of

156



how these methods are integrated into the deployed Al models, and the impact of
explainable Al on operator trust and decision-making processes is thoroughly
presented. Finally, the chapter explores potential advancements in human-in-the-
loop methodologies and discuss the integration of advanced Al techniques with

human feedback for enhanced traffic incident detection.

Regarding the evaluation of the impact of human feedback and explainability on
system performance, which includes assessing system performance metrics before
and after the integration of human-in-the-loop mechanisms and conducting a
comparative study of Al models performance metrics, this is presented as part of the

real-world case studies in Chapter 9.

By addressing these areas, this chapter aims to provide a thorough understanding
of the critical role that human-in-the-loop methodologies play in enhancing the

effectiveness and trustworthiness of Al-driven traffic incident detection systems.

7.2 Human-in-the-Loop State-of-the-art

7.2.1 Human-in-the-loop in ML

Human-in-the-loop (HITL) approaches in machine learning combine human
intelligence with automated systems to overcome challenges related to model
performance, data limitations, and interpretability. The integration of human
feedback allows for models to improve incrementally through interventions during
the training process, ensuring higher accuracy and trustworthiness in decision-
making. HITL is increasingly significant in fields such as natural language processing,

computer vision, and intelligent transportation systems (Wu, et al., 2022).

A typical ML framework with Human-in-the-loop (HITL) learning is shown in Figure
7-1, which consists of three components: data pre-processing, data modeling, and

modifying the process to improve performance (Kumar, et al., 2024)
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Figure 7-1: Human-in-the-loop learning framework. (Kumar, et al., 2024)

The HITL offers several advantages (Kumar, et al., 2024), such as:

e Improved performance: As people validate or reject, thus interact with,
the model's answers to various events, the algorithm improves accuracy
and consistency.

e Improved data acquisition: HITLs can create and assure accurate data for
ML models in data-scarce scenarios.

e Bias handling: Human-designed Al algorithms can perpetuate inequality,
while HITL can detect and fix bias early on.

e Increased efficiency: While not all components of the process may be
automated, a large number of them can, resulting in saving time and

financial resources.

7.2.2 Human-in-the-loop in ML Literature Review

Researchers are defining new types of interactions between humans and machine
learning algorithms, which we can group under the umbrella term of Human-in-the-
loop machine learning (HITL-ML) (Munro, 2020).The idea is not only to make machine
learning more accurate or to obtain the desired accuracy faster, but also to make
humans more effective and more efficient. Depending on who is in control of the
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learning process, we can identify different approaches to HITL-ML (Holmberg,

Davidsson, & Linde, 2020)

e Active learning (AL) (Settles, 2009), in which the system remains in control
of the learning process and treats humans as oracles to annotate unlabeled
data.

¢ Interactive machine learning (IML) (Amershi, Cakmak, & Knox, 2014), in
which there is a closer interaction between users and learning systems,
with people interactively supplying information in a more focused,
frequent, and incremental way compared to traditional machine learning.

e Machine teaching (MT) (Simard, Amershi, & Chickering, 2017), where
human domain experts have control over the learning process by
delimiting the knowledge that they intend to transfer to the machine

learning model.

One of the most prominent uses of HITL systems is in data processing, where the
need for large, annotated datasets presents challenges due to the high cost of
labeling. HITL frameworks optimize this process through iterative labeling and active
learning, where human annotators focus on the most challenging samples. This has
proven effective in improving the overall quality of the data fed into machine learning
models (Yu et al., 2015) .Researchers such as (Liu, Feng, & Wang, 2021)have
demonstrated the effectiveness of HITL in improving object detection tasks through
human-assisted annotation processes. These iterative approaches minimize errors by
having humans intervene when the model cannot confidently label data. Similar
approaches have been applied to natural language processing (NLP), where HITL aids
in tasks like sentiment analysis and question-answering by providing critical feedback

on model predictions (Liu, Feng, & Wang, 2021)

In model training, HITL frameworks are employed to incorporate human
judgment, especially in tasks where the model is prone to make errors. This dynamic
interaction allows human operators to correct predictions or guide the model toward

better generalization. HITL frameworks have been highly effective in text classification
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and semantic parsing tasks, where the ambiguity of language data often requires
human oversight to resolve. Explainability is one of the key features of HITL systems.
By involving human experts, these systems can offer insights into why models make
certain decisions. For instance, (Arous, et al., 2021) proposed a human-Al hybrid
model that improves both the performance and explainability of text classification
models. This approach helps build trust in Al systems by allowing humans to correct
models when necessary and understand their decision-making processes (Arous, et
al., 2021). In computer vision, HITL systems enhance performance in tasks such as
image segmentation, video object tracking, and object detection. The inclusion of
human feedback ensures that models refine their predictions in cases of occluded or
blurred objects. Studies by Madono et al. (2020) have shown significant
improvements in the recall rate of object detection tasks by integrating human-in-the-

loop strategies (Madono, Nakano, Kobayashi, & Ogawa, 2020).

The adoption of HITL frameworks is happening in various domains, each getting
substantial benefits from the combination of human judgment and machine learning
algorithms. In security systems, for instance, HITL plays a critical role in ensuring
accurate decision-making in safety-critical environments, such as nuclear power
plants and commercial aviation. Singh and Mahmoud (2020) highlighted how HITL
systems help avoid catastrophic errors by allowing human operators to intervene
when necessary. Their work focused on using human feedback to improve system
safety in complex industrial settings (Sing & Mahmoud, 2020). Similarly, in software
engineering, HITL systems have been applied to code debugging and program repair.
MacHiry et al. (2013) developed Dynodroid, a HITL-based system that improves
Android app testing by allowing humans to provide feedback during event-driven
program analysis. This system allows for greater accuracy in identifying bugs and
potential vulnerabilities (Machiry, Tahiliani, & Naik, 2013). In simulation systems, HITL
frameworks are employed in process optimization and decision-making, with
applications in logistics, medical diagnostics, and traffic management. Demirel et al.
(2020) highlighted the advantages of incorporating human expertise into simulation

models for more accurate forecasts and strategic planning. (Demirel, 2020)
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While HITL systems offer numerous benefits, several challenges remain. One of
the primary concerns is scalability. As machine learning models grow more complex,
the need for human intervention may become overwhelming. Researchers are
exploring ways to optimize feedback loops, using techniques like active learning to
prioritize the most critical human interactions (Liu, Feng, & Wang, 2021).Moreover,
there is a need to develop more user-friendly interfaces that allow non-expert users
to interact with HITL systems effectively. Current frameworks often rely on domain
experts to provide meaningful feedback, limiting the accessibility of these systems in
broader applications. Future research should focus on creating intuitive, easily
navigable interfaces to democratize the use of HITL systems (Zhang, He, Dragut, &

Vucetic, 2019).

All'in all, human-in-the-loop systems offer a promising approach to overcoming
the limitations of fully automated machine learning models. By integrating human
expertise into various stages of data processing, model training, and system
applications, HITL frameworks ensure more accurate, explainable, and trustworthy Al

systems.

7.2.3 Human-in-the-loop in Transportation

In transportation systems, machine learning methods with the concept of
inclusion of humans, such as online, stochastic, and offline learning, are critical for

real-time data processing and decision-making in order to adapt to fast changing data.

e Online learning continuously updates models with new data, allowing traffic
management systems to respond instantly to changing conditions. HITL
ensures that human feedback is incorporated, correcting model errors and

refining outputs for better decision-making in dynamic environments.

e Stochastic learning, including methods like Stochastic Gradient Descent (SGD),
allows incremental model updates using small data batches. This method

optimizes computational efficiency, while human interaction helps guide
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updates, making transportation systems adaptable to evolving traffic

conditions.

e Offline retraining periodically updates models with new data, triggered either
by set time intervals or performance drops. Human involvement is vital in this
case, as it fine-tunes the retraining process, ensuring that models adapt

effectively without too many resources.

The integration of human feedback through HITL across these learning methods
ensures that transportation systems remain flexible, efficient, and responsive,

optimizing traffic incident detection and management in real-time environments.

Online learning enables ML models to update incrementally with new data,
making it highly effective in dynamic environments like traffic incident detection. By
continuously adapting to new information, online learning ensures real-time
responsiveness and scalability without retraining from scratch. In the HITL context,
humans provide critical feedback to fine-tune these models, ensuring that the
updates align with real-world complexities and improving decision-making accuracy
over time. The iterative interaction between humans and the model is essential in
online learning tasks, such as streaming data analytics or time-series predictions. By
combining HITL with stochastic learning methods like Stochastic Gradient Descent
(SGD), online learning processes data sequentially, enabling fast and scalable model
updates with human oversight. This hybrid approach ensures optimal performance in
dynamic environments while maintaining efficiency. For long-term accuracy, offline
model retraining can be periodically triggered or set based on performance
thresholds, keeping the models up to date without overburdening computational

resources.

There exist few works which include HITL techniques and approaches in the
transportation sector. Specifically, one study by Chiang et al. 2010 presents a
hierarchical longitudinal automation system designed to ensure safe and comfortable
vehicle operations through HITL integration. This system employs an adaptive
detection area that processes sensor data for vehicle detection, particularly on curves.
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Supervisory control utilizes this data to calculate desired velocities for smooth and
safe operation across different modes, while regulation control leverages soft-
computing techniques to execute velocity commands effectively. (Chiang, Wu, Perng,
Wu, & Lee, 2010) Similarly, HITL principles have been explored in civil infrastructure
inspection, where automation-assisted technologies, such as drones and underwater
vehicles, leverage human expertise to improve efficiency and safety. A review by
Agnisarman et al. 2019 regarding automated visual inspection methods highlights
how HITL systems reduce inspector bias, augment qualitative assessments, and
minimize exposure to hazardous environments. However, studies emphasize the need
for further research on human factors, including cognitive demands, trust, and
communication, to optimize these systems for seamless collaboration. (Agnisarman,

Lopes, Madathil, Piratla, & Gramopadhye, 2019)

Further innovations in HITL methodologies have emerged in frameworks designed
for autonomous vehicles (AVs) operating in mixed traffic environments. The Human
as Al Mentor-based Deep Reinforcement Learning (HAIM-DRL) framework exemplifies
this approach, integrating human expertise into reinforcement learning to improve
safety and traffic flow efficiency. In this framework, human mentors guide Al agents
by intervening in high-risk situations and demonstrating appropriate actions to
prevent accidents. Comparative analyses reveal superior performance in safety,
traffic flow optimization, and adaptability to novel scenarios, underscoring the
transformative potential of HITL approaches. (Huang, Sheng, Ma, & Sikai Chen, 2024)
Together, these studies highlight how HITL frameworks are redefining automation in
transportation and infrastructure, ensuring human-centric solutions that balance

technological advancement with practical implementation.
7.3 Explainability State-of-the-art

Artificial Intelligence has seen exponential growth over the last decade, however,
along with the rapid advancements comes a growing need for transparency,
accountability, and trust in Al systems. This necessity has given rise to the field of

Explainable Al (XAl), which seeks to make Al systems more interpretable and their
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decision-making processes understandable to humans. Unlike traditional Al models
that function as "black boxes," XAl aims to provide insights into how an Al system
reaches a particular conclusion, facilitating better human-Al interaction and fostering

trust among users and stakeholders.

e

Figure 7-2: Google trends of the term explainable ai over the last 10 years.

The significance of XAl can be reflected in its growing popularity and increasing
demand within both academia and industry. As shown in the Google Trends analysis
of the term "Explainable Al" over the last 10 years (Figure 7-2) , there has been a
notable rise in interest starting around 2017, with steep growth observed since then.
This is likely due to the increasing deployment of Al systems in sensitive domains such
as autonomous driving, where understanding the reasoning behind Al-generated
predictions is crucial for decision-makers. The graph highlights how awareness and
discussion of explainability in Al have significantly intensified, reflecting a broader
societal and technical shift towards responsible Al development. As Al technologies
became more complex and widely adopted, concerns around fairness, ethics, and bias
also have emerged. Public trust in Al systems became directly tied to how well those
systems could explain their actions. As a result, explainable Al has gained attention,
not only as a research priority but also as a regulatory concern, with many institutions

now requiring Al systems to be transparent and interpretable.

7.3.1 Explainability Advantages

Explainable Al (XAl) represents a breakthrough in the way we interact with and

understand decisions made by artificial intelligence systems. Whereas traditional Al
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often functions as a "black box," providing results without explaining the process that

generated them, Explainable Al aims to make these processes transparent and

understandable to humans. This approach not only increases trust and acceptance of

Al systems but also provides human operators with the tools needed for effective

supervision and intervention. Some of the various aspects in which Explainable Al

adds value to human-machine integration are listed below (Minh, Wang, & Li, 2022):

7.3.2

Transparency and Understanding: Explainable Al provides insights into the
"how" and "why" behind decisions made by Al. This helps human operators
understand the underlying patterns behind the decision-making processes,

making it easier to identify and correct any errors or biases in the system.

Trust and Accountability: When users and supervisors understand Al
processes, they are more likely to trust its decisions. This is especially
important in critical areas such as medicine, security, and law, where trust is a

key factor.

Improved Human — Al Interaction: Explainability facilitates more effective
collaboration between humans and machines. Operators can use the
information provided by Explainable Al to make informed decisions, taking full

advantage of Al's data analysis capabilities and human intuition.

Legal and Ethical Compliance: In many industries, transparency and
accountability are not only ethical expectations but also legal requirements.
Explainable Al can help meet these requirements by providing clear and

documentable explanations of decisions.

Feedback and Continuous Learning: The ability to understand Al decisions
enables operators to provide more accurate feedback, which can be used to
improve and refine Al models. This feedback loop contributes to continuous

improvement of systems.

Explainability in ML
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Explainability provides insight into the Al models’ decision to the end-user in order
to build trust that the system is making correct and non-biased decisions based on
facts. Figure 7-3 depicts the distinction between white-box, gray-box, and black-box
decision-making processes, as well as shows how explainable Al (XAl) is applied to

achieve a trustworthy model with a good interpretability-accuracy tradeoff (Ali, et al.,

D Sl " oot el o o o et b e ot e ol et b et Self-interpretable

1 </ > :

L A

_g | / > Inspect the inner logic of a Higher Explainability and Due to less accuracy, it is !

20 Q /é —» ML model and understand —> interpretability, yet lower —F> not used in daily-life :

§ : S j its decision accuracy applications "
—I% ”) ]

s s s e s e, o o e e e = e = mm e e e = e e e e e = = = -
P N e e e e e e e e e e e e e -~

— | \I

L

< Partially analyzed the Can interpret at some Can be used in critical :

? 1 — internal working of amodel —J®»>  degree with significant ~—F>  applications if designed |

ol and understand its decision accuracy. carefully |
bl |

‘o !

- = @ @ . . RN

% I

ol )

< Could not inspect the inner Higher accuracy, but Du? FO a pqn-explalnable !

x| 4 ; Seatd decision, it is not practical 1

I ¥ —» logic of the model and —»  lower explainabilityand —> - "

mh @ understand its decision interpretability o — |
—, ‘ "

\

R Bl R e R e e R e R R Rt R Rl Neither interpretable
0 i . ; nor explainable
Reveal the decision- > Built the user trust being fair and ethical
making mechanism (verify the prediction)

Explainability/ Interpretation Towards the

trustworthiness
D Understand the intrinsic properties of of the model
! 3
working of the model ’ the mOdeltrtha;;armelir(l;(;e model’s

Interpretability

Figure 7-3: Distinction between white-box, gray-box, and black-box decision-making processes (Ali, et al.,

2023).

The primary objective of research in Explainable Al (XAl) is to enhance the
comprehensibility and transparency of Al systems for humans without compromising
their performance. The ability to detect hidden patterns in complex data is both an
advantage and a limitation: while Al models can automatically uncover intricate
structures in data, these learned patterns often remain obscured, with no explicit
rules or logical processes involved, especially in Deep Learning algorithms. Although
Al algorithms can identify correlations across diverse and complicated datasets, there
is no guarantee that these correlations are meaningful or reflect actual causal
relationships. (Rieg, Frick, Baumgartl, & Buettner, 2020). Additionally, the complexity
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of models, especially advanced deep neural networks (DNNs), frequently prevents
human operators from easily inspecting or controlling them. As such, Al presents both
opportunities for innovation and challenges related to security, safety, privacy, and

transparency.

XAl aims to produce human-interpretable models, especially for high-stakes
sectors like the military, banking, and healthcare, where domain experts require not
only effective problem-solving tools but also meaningful explanations to trust and
understand the results. These interpretable outputs are valuable not only for experts
to validate decisions but also for developers to investigate potential errors in the
system. Al methods facilitate (i) assessing current knowledge, (ii) advancing it, and (iii)
developing new assumptions or theories. The goals of XAl include enhancing
justification, control, improvement, and discovery in Al models. Key benefits of

making these "black-box" systems more transparent include (Guidotti, et al., 2018):

e Empowering users to mitigate negative consequences of automated decision-

making.

e Assisting individuals in making more informed choices.

e Uncovering and addressing security vulnerabilities.

e Aligning algorithms with human values.

e Improving industry standards for Al development, boosting consumer and

business confidence.

Supporting the enforcement of the Right of Explanation policy.

For an Al model to gain acceptance from end-users and industries, it must be
trustworthy (Véliz, Prunkl, Phillips-Brown, & Lechterman, 2021). Achieving this trust,
however, is challenging. Factors contributing to trustworthiness include fairness
(Mehrabi, Morstatter, Saxena, Lerman, & Galstyan, 2021), robustness (Oberman,
2021), interpretability (Li, et al., 2022), and explainability (Das & Rad, 2020).

Explainability, in particular, is a crucial element. Current research largely focuses on
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improving explanations in addition to providing insights for future work, with
researchers proposing different methods for explaining Al models using natural
language, mathematical descriptions (Ribeiro, Singh, & Guestrin, 2016), or

visualizations (Doshi-Velez & Kim, 2017).

7.3.3 Explainability in Intelligent Transportation Systems

Transportation systems, such as intelligent transport systems (ITS) and
autonomous vehicles, rely on advanced machine learning models to make critical
decisions. Explainability is crucial in such systems, particularly due to the high-stakes
nature of decisions in the field of transportation, where public safety is involved.
Sahoo and Mohan's work highlights the need for explainability in ITS, noting that as
these systems grow in complexity, it becomes essential to provide transparency to
operators and users to build trust and accountability (Sahoo & Mohan, 2022) The
authors emphasize that explainability allows for error diagnostics, system resilience,
and the mitigation of biases, which are key for the smooth functioning of

transportation infrastructures. (Adadi & Bouhoute, 2023).

Various explainability methods have been developed to address the opaque
nature of Al models in transportation. According to the literature, explainability can

be achieved through several approaches:

e Model-agnostic techniques such as Local Interpretable Model-agnostic
Explanations (LIME) are widely used to provide post-hoc explanations for
model predictions. (Adadi & Bouhoute, 2023) (Olugbade, Ojo, Imoize, Isabona,
& Alaba, 2022). These methods do not require knowledge of the internal
workings of the model and instead provide local explanations for individual

predictions.

e Surrogate models that mimic the behavior of more complex systems are
another popular technique. These interpretable models offer a simplified
representation of the Al system, making it easier for human operators to

understand the decision-making process. (Adadi & Bouhoute, 2023)
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Explainable Al has been applied in various transportation sectors, including
incident detection, traffic management, and autonomous driving. For instance,
(Olugbade, Ojo, Imoize, Isabona, & Alaba, 2022)discuss how Al-based incident
detection systems rely on explainability to monitor traffic and manage road incidents
more effectively. These systems often use sensors, video feeds, and other data
sources to predict and detect traffic anomalies. However, without adequate
explanations, operators may struggle to trust or act upon the Al-generated insights,
making post-hoc explainability a critical component for deployment in real-world

scenarios.

Similarly, Sahoo and Mohan explore how explainable Al can be applied to improve
the safety and predictability of autonomous vehicle systems. (Sahoo & Mohan, 2022)
By providing human interpretable feedback, XAl enables more precise control over
vehicle behaviors, such as lane departure warnings and adaptive cruise control

systems.

Despite the advancements in XAl techniques, challenges remain. One major
concern is balancing transparency and performance. Complex Al models, particularly
deep learning algorithms, often provide higher predictive accuracy but are more
difficult to explain. Simplifying such models could lead to a loss in performance, thus
affecting the reliability of the system. (Sahoo & Mohan, 2022) Future research in XAl
for transportation will likely focus on improving the interpretability of increasingly
complex Al models without compromising their performance. There is also a growing
emphasis on developing domain-specific explanation techniques tailored to the needs

of transportation operators, regulators, and end-users.
7.4 Proposed methodology

The proposed framework for enhancing incident detection systems integrates
both Human-in-the-Loop (HITL) methodologies and explainability features, combining
the strengths of artificial intelligence (Al) with human expertise to ensure robust,

accurate, and reliable performance. By leveraging HITL, the system allows for
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continuous human intervention and oversight, enabling experts to validate and refine
Al-generated outputs. This hybrid approach ensures that the system can dynamically
learn from human feedback while providing interpretable insights through
explainability features. These explainability mechanisms are critical for fostering trust
in Al-driven systems, as they allow human operators to understand the rationale
behind Al decisions, diagnose potential errors, and make adjustments to improve
system accuracy. Ultimately, this framework aims to enhance the detection of non-
recurring incidents, such as traffic disruptions or accidents, while maintaining high
levels of transparency, trust, and operational efficiency in real-world transport

systems.

PROPOSED FRAMEWORK
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Figure 7-4: Our proposed framework for integrating Explainability and Human-in-the-Loop approaches.

The key components of the proposed framework are depicted in Figure 7-4 and

described as follows:
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1. Dataset

The foundation of the incident detection system is a comprehensive dataset
comprising traffic data collected from various sources, such as loop detectors,
segment-level measurements, and historical incident records. This dataset is pre-
processed to remove noise and normalized to ensure consistency, making it suitable

for training Al models.

2. Al Model

The core of the framework is the most appropriate Al model, which is built and
selected using advanced machine learning algorithms. This model is trained initially
on the dataset and later on the optimized dataset to learn patterns and make
predictions about potential incidents. The choice of algorithm is based on the specific
requirements and characteristics of the traffic data, ensuring the model is well-suited

for real-time incident detection.

3. Explainable Predictions

To ensure transparency and trust in the Al model’s decisions, the framework
incorporates explainability features. Techniques such as SHAP (SHapley Additive
exPlanations) and LIME (Local Interpretable Model-agnostic Explanations) are used to
provide insights into the model’s predictions. These tools help stakeholders
understand which features influenced the predicted values, making the system's

outputs more interpretable and reliable.

4. Human-in-the-Loop (HITL)

Human-in-the-Loop (HITL) methodologies are integrated to leverage human
expertise in refining the model’s predictions. Traffic management professionals
review the explainable predictions generated by the model and provide corrections
or adjustments as necessary. This iterative feedback loop ensures that the model

continuously learns from human input, improving its accuracy over time.

171



5. Validation of Output by Human

Following human correction, the system's output is validated by human
experts to ensure its reliability and accuracy. This validation step is crucial for
identifying and rectifying any potential errors or biases in the Al model's predictions.
By involving human oversight, the system maintains high standards of performance

and trustworthiness.

6. System Output

The final validated output is then generated by the system, providing actionable
insights and alerts to traffic management personnel. This output includes real-time
incident detection notifications and prompts for mitigating traffic issues, ensuring a

timely and effective response to incidents.

7. Continuous Improvement Cycle

The validated system output, along with the human corrections and validations, is
fed back into the system, creating a continuous improvement cycle. This cycle allows
the Al model to learn from new data and human feedback, continuously enhancing its

performance and adaptability to evolving traffic conditions.

There are several benefits of the proposed framework, some of which are listed

below:

e Enhanced Accuracy and Reliability: By integrating human expertise through
HITL methodologies, the system minimizes errors and improves the reliability
of incident detection.

e Increased Transparency and Trust: Explainability features provide clear
insights into the Al model’s decision-making process, making it easier for
stakeholders to understand and trust the system’s outputs.

e Continuous Learning and Adaptation: The continuous improvement cycle
ensures that the Al model evolves with changing traffic patterns and

incorporates the latest data and human insights. This adaptability is essential
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for maintaining high performance in dynamic and complex traffic
environments.

e Proactive Traffic Management: The system’s ability to provide real-time,
validated incident detection enables traffic management personnel to
respond proactively to incidents. This proactive approach helps in mitigating

traffic congestion and improving overall road safety.

In summary, the proposed framework for integrating Human-in-the-Loop
approaches and explainability features in incident detection systems offers a robust
solution for enhancing traffic management. By integrating human expertise into the
machine learning workflow, our research seeks to address challenges such as sensor
noise, data sparsity, and the inherent unpredictability of traffic incidents. This
approach not only enhances the performance of the models but also ensures that the
system remains adaptable and resilient in real-world applications. The combination of
the strengths of Al with human expertise and transparent decision-making ensures
that the system detects accurately and reliably emerging situations, ultimately

contributing to safer and more efficient traffic management.

7.4.1 Integration of Explainability features

In the context of our research, the transparency and interpretability of machine
learning models are paramount. While many models can achieve high accuracy, their
"black-box" nature often makes it difficult to understand how they arrive at specific
predictions. This lack of transparency can be a significant barrier in fields where trust
and accountability are crucial, including the task of automatic detection of incidents.
In this section, we present the integration of explainability tools and approaches used

in the context of the aforementioned general methodology.

One of the methods used is SHAP (SHapley Additive exPlanations), being a unified
approach to interpreting the output of machine learning models. It is based on
cooperative game theory, where each feature in a dataset is treated as a "player" in a

game, and the model's prediction is the "payout" that needs to be fairly distributed
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among the features. The SHAP values quantify the contribution of each feature to the
final prediction, making it possible to decompose the prediction into the sum of the

contributions from individual features.

We have selected SHAP because it provides a theoretically sound and consistent
method to explain individual predictions of complex models. SHAP offers the

following advantages:

* Model-agnostic: SHAP can be applied to any machine learning model, making

it versatile across different types of models.

e Local and global explanations: SHAP values can explain individual predictions
(local explanations) and provide insights into the overall behavior of the model

(global explanations).

e Fairness and consistency: SHAP is grounded in Shapley values from
cooperative game theory, ensuring that the contributions of features are fairly

distributed based on their actual impact on the prediction.

On the other hand, LIME (Local Interpretable Model-agnostic Explanations) is a
technique designed to explain the predictions of any machine learning model by
approximating it locally with an interpretable model. The core idea behind LIME is to
understand the model's predictions by perturbing the input data and observing the
resulting changes in predictions. This allows us to build a local, interpretable model
(like a linear model or decision tree) that can explain the predictions in the vicinity of

the instance being analyzed.

The motivation for choosing LIME in our analysis stems from the need for
interpretability in machine learning models, particularly in understanding how specific

predictions are made. Specifically, we selected LIME because it offers:

* Model-agnostic explanations: LIME can be applied to any machine learning

model, regardless of its complexity or architecture.
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e Local interpretability: LIME focuses on explaining individual predictions,
making it possible to understand the model's behaviour in specific instances,

which is especially useful for case-by-case analysis.

e Simplicity and Flexibility: By fitting an interpretable model locally around the
prediction, LIME provides straightforward explanations that can be easily

understood and communicated.

Figure 7-5 provides a detailed overview of the comprehensive XAl workflow
developed as part of our research. The workflow is divided into three primary stages:

Data Preparation, Model Development, and Comprehensive Analysis.

& = =
_4

‘ ‘ L/ #as
Wy ~—> 1 ' } L | ;
| = | —
1 Training Testing Validation : S—y
Normal Incident
r= | [ 1
l Model feature
importance
understanding

Incident samples

3
-
(M
o
o
[
g
°
®
=
o
'z
@

ML Models.

/A N v ~N
( Model Interpretation ) ( Model evaluation
\_and Explainability / \_ P,

Planned event detection

Unplanned event g
detection
N

Comprehensive analysis

~ J 2%

Model development
Data preparation

Figure 7-5: Comprehensive workflow for proposed XAl framework, including 3 primary stages.

In the Data Preparation stage, the dataset is curated by collecting data from loop
sensors, which is then categorized into normal observations and incident
observations. These categories are further divided into non-incident and incident
samples, respectively. Following this categorization, data cleaning and normalization

procedures are applied to ensure the dataset is prepared for model development.

The Model Development stage follows, where the preprocessed dataset is split
into training, testing, and validation sets. Various machine learning methodologies are
applied to these datasets, focusing on model interpretability and explainability,

particularly using SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable
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Model-agnostic Explanations). The models are then evaluated based on their

precision, recall, and F1-score to ensure their effectiveness in predicting incidents.

The final stage, Comprehensive Analysis, involves a deeper examination of the
model’s performance. This includes understanding model feature importance,
conducting analyses for explaining local and global predictions, and detecting events
within the transport system. The insights gained from this stage are crucial for refining
the models and ensuring their applicability in real-world scenarios, ultimately
contributing to the development of a more reliable and efficient intelligent transport

system.

This structured approach allows our research to systematically address the
challenges of incident prediction in intelligent transport systems, ensuring that the
models developed are both accurate and interpretable, with a strong emphasis on

real-world applicability.

7.4.2 Integration of Human Feedback

Figure 7-6 illustrates the Human-in-the-Loop (HITL) framework, a fundamental
methodology utilized in our research for enhancing machine learning (ML) models
designed to predict incidents within intelligent transport systems using loop sensor
data. The process initiates with the collection of data from loop sensors embedded
within roadways, which is then employed to train ML models aimed at incident
prediction. Rather than depending solely on automated predictions, the HITL
approach introduces a critical intermediate step wherein human experts review and

validate these predictions.
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Figure 7-6: Overview of methodology specifically for Human-in-the-Loop approach.

The feedback provided by these experts is then reintegrated into the model,
further refining its accuracy and allowing the model to adapt to the complexities
encountered in real-world scenarios. This iterative process ensures that the ML
models not only improve progressively but also alignh more closely with the nuanced
understanding provided by transport professionals, ultimately leading to more precise

and reliable predictions of incidents within intelligent transport systems.

Integrating human feedback into ML models provides a powerful mechanism for
continuous improvement in Al-driven traffic incident detection systems. This

integration can be broken down into several key processes:

1. Incident Acknowledgment and Correction: When the Al system detects a
traffic incident, it prompts the human operator to acknowledge the detection.
This confirmation serves as a validation step, ensuring that false positives are

minimized. Conversely, if an incident occurs that the Al system fails to detect,
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operators can manually report it, providing critical data for retraining the

model to recognize similar incidents in the future.

Incorporating Feedback into Model Updates: The feedback from human
operators is incorporated into the online learning algorithm. For instance,
when an operator confirms or corrects an incident detection, this feedback is
used to adjust the model parameters, enhancing its accuracy and
responsiveness. This continuous feedback loop ensures that the Al system

evolves and improves over time.

Improving Model Trust: By incorporating human feedback, the Al system can
learn from real-world scenarios that may not be well-represented in the initial
training data. This iterative learning process helps capture a broader range of

traffic incident types and conditions, enhancing the model's robustness.
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8 Information System AutoEventX

In this Chapter, the developed Al-driven information system is explained. The
developed information system is called AutoEventX and incorporates the functionalities
presented in Chapter 4, Chapter 5, Chapter 6 and Chapter 7. The implemented
information system is evaluated and deployed in real-world case studies as described in

Chapter 9.
8.1 System architecture and implementation

The conceptual architecture of the proposed system is illustrated in Figure 8-1.
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Figure 8-1: Conceptual Architecture of the Proposed System.

The overall information system is addressed through the integration of different tools
and services addressing the various phases of the proposed framework. The system is
able to collect and fuse data provided by different sources, to evaluate the quality of the
dataset, through dedicated techniques especially regarding the measurements captured
by loop detectors, to support efficient real-time data processing, to provide stakeholders
with predictions regarding planned and unplanned events and the rationale behind these

predicted results while taking into account the expert operators’ feedback, This is in
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combination with a large amount of historical data and taking into account background

domain knowledge.

8.1.1 Data Processing Pipeline for Incident Detection

Before applying the Machine Learning and Deep Learning algorithms explained in
detail in Chapters 5 and 6, the data stemming from the data sources need to be
collected and prepared accordingly (data processing and cleaning, outliers removal,
feature extraction and engineering, feature scaling and selection) and after the
application of the respective algorithm, the model needs to be evaluated and fine-
tuned before deployment. The different steps of the pipeline are illustrated in Figure
8-2, based on the pipeline proposed in (ENISA - European Union Agency for
Cybersecurity, 2020)) and are briefly described below.
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Figure 8-2: Data processing pipeline for data-driven Incident Detection (based on the pipeline proposed in

(ENISA - European Union Agency for Cybersecurity, 2020)).

8.1.1.1 Data ingestion
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Firstly, the data needs to be obtained from multiple sources in order to compose
multi-dimensional data points, called vectors, for immediate use or for storage in
order to be accessed and used later. Data Ingestion lies at the basis of any Al
application. Data can be ingested directly from its sources in a real-time fashion, a
continuous way also known as streaming, or by importing data batches, where data

is imported periodically in large macro-batches or in small micro-batches.

8.1.1.2 Data exploration

At this stage, Data Exploration, insights start to be taken from the ingested data.
While it may be skipped in some applications where data is well understood, it is
usually a very time-consuming phase of the methodology’s life cycle. At this stage, it
is important to understand the type of data and basic characteristics of the data that

were collected.

In our case, most of the data which are collected are numerical, for instance the
measurements of loop detectors, or categorical, such as the types of incidents from

the incident reports.

8.1.1.3 Data pre-processing

The first step of the Machine Learning pipeline is the data pre-processing stage. In
this stage, we employ techniques to cleanse, integrate and transform the data. This
process aims at improving the data quality, which in a later stage will improve
performance and efficiency of the overall Al system. Specifically, the term data
cleaning designates techniques to correct inconsistencies, remove noise and
eliminate faulty measurements. Moreover, in our case, in this stage, the reliability of

the loop detector measurements of the traffic characteristics are calculated.

8.1.1.4 Feature Selection

Feature Selection (in general feature engineering) is the stage where the number
of components or features (also called dimensions) composing each data vector is

reduced, by identifying the components that are believed to be the most meaningful
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for the Al model. The result is a reduced dataset, as each data vector has fewer
components than before. Besides the computational cost reduction, feature selection
can bring more accurate models. Additionally, models built on top of lower

dimensional data are more understandable and explainable.

8.1.1.5 Model building

This stage performs the building of the best Al model or algorithm for analyzing
the data. The three commonly identified major categories are supervised learning,

unsupervised learning and reinforcement learning models.

Supervised techniques deal with labelled data: the Al model is used to learn the
mapping between input examples and the target outputs. Some commonly selected
algorithms are Support Vector Machines, and Neural Networks. Unsupervised
techniques use unlabeled training data to describe and extract relations fromit, either
with the aim of organizing it into clusters, highlight association between data input
space, summarize the distribution of data, and reduce data dimensionality.
Reinforcement learning maps situations with actions, by learning behaviors that will

maximize a desired reward function.

For the incident detection task, as already presented, both Supervised and
Unsupervised approaches are suitable and thus could fit into our framework, since we
do have at our disposal labels for the respective dataset, however these may be
subject to errors, in addition to considering the imbalance in the classes (the normal

conditions are many more in comparison to incident occurrences).

It is important to remark that model selection (namely choosing the model
adapted to the data) may trigger further transformation of the input data, as different
Al models require different numerical encodings of the input data vectors. Generally
speaking, selecting a model also includes choosing its training strategy. In the context
of supervised learning for example, training involves computing (a learning function
of) the difference between the model’s output when it receives each training set data

item as input, and its label. This result is used to modify the model to decrease the
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difference. Many training algorithms for error minimization are available, most of
them based on gradient descent. Training algorithms have their own
hyperparameters, including the function to be used to compute the model error (e.g.
mean squared error), and the batch size, i.e. the number of labelled samples to be fed
to the model to accumulate a value of the error to be used for adapting the model

itself.

8.1.1.6 Model Training

Having selected an Al model, the training phase of the Al system commences. In
the context of supervised learning, the selected ML model must go through a training
phase, where internal model parameters like weights and bias are learned from the
data. This allows the model to gain understanding over the data being used and thus
become more capable in analyzing them. Again, training involves computing (a
function of) the difference between the model’s output when it receives each training
set data item D as input, and D’s label. This result is used to modify the model in order
to decrease the difference between inferred result and the desired result and thus

progressively leads to more accurate, expected results.

The training phase will feed the ML model with batches of input vectors and will
use the selected learning function to adapt the model’s internal parameters (weights
and bias) based on a measure (e.g. linear, quadratic, log loss) of the difference
between the model’s output and the labels. Often, the available data set is partitioned
at this stage into a training set, used for setting the model’s parameters, and a test
set, where evaluation criteria (e.g. error rate, accuracy, recall, precision) are only
recorded in order to assess the model’s performance outside the training set. Cross-
Validation schemes randomly partition multiple times a data set into a training and a
test portion of fixed sizes (e.g. 80% and 20% of the available data) and then repeat
training and validation phases on each partition. For our case, we deem that the most
suitable approach is the Time Series Split cross-validation which sequentially splits the
data into training and testing sets, ensuring that the validation set always comes after

the training set in time. This is essential since it helps better evaluate time-dependent
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models by respecting the temporal order of observations, which is crucial for

maintaining the integrity of time series analysis.

For the application of AutoML, the model training process has been streamlined
by automating the selection of optimal algorithms and tuning hyperparameters,
thereby expediting the development of highly accurate predictive models with
minimal manual intervention. This approach allows for the efficient handling of
complex datasets and accelerates the deployment of tailored models that can adapt

to the dynamic nature of traffic patterns and incident occurrences.

8.1.1.7 Model Validation and Evaluation

After having trained the model, this needs to be validated and evaluated. The
process of maximizing a model's performance without overfitting or creating too high
of a variance is referred to as model tuning. In machine learning, this is accomplished

by selecting appropriate “hyper-parameters”.

Certain parameters define high level concepts about the model, such as their
learning function or modality, and cannot be learned from input data. These special
parameters, called hyper-parameters, need to be setup manually, although they can
under certain circumstances be tuned automatically by searching the model
parameters’ space. This search, called hyper-parameter optimization, is often
performed using classic optimization techniques like Grid Search, but Random Search
and Bayesian optimization can also be used. It is important to remark that this stage
uses a special data set (often called validation set), distinct from the training and test
sets used in the previous stages. In our case, we have selected the Grid Search
optimization for selecting the hyperparameters of our models and based the

performance evaluation on the measures presented in the following section.

8.1.1.7.1 Performance evaluation measures
To evaluate automatic incident detection algorithms, quantitative measures are
typically used. Many different measures have been used in the literature, including

precision, recall or detection rate, f1-score and false alert rate among others. Many
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different definitions of these measures exist, but below we present the most
commonly stated. Some of these definitions are also used later in this dissertation to

evaluate the developed models.

These metrics can be defined and calculated as follows (Simeone, 2018):

The precision of an automatic incident detection algorithm is the ratio of correctly
predicted positive observations (incidents) to the total predicted positive

observations (incidents).

Number of correctly detected incidents

Precision = - —
Total number of samples predicted as incidents

The recall is the ratio of correctly predicted positive observations to all
observations in the actual class. Recall is also commonly referred to as the detection
rate. The Recall metric measures the model’s ability to accurately identify all positive
cases. A model will be judged as correctly detecting an incident if an alert was raised

at any point during an incident.

Number of correctly detected incidents

Recall = — -
Total number of actual incidents in the dataset

F1 Score is the weighted average of precision and recall. Therefore, this score
takes both false positives and false negatives into account. Intuitively it is not as easy
to understand as accuracy for instance, but F1 is usually more useful than accuracy,

especially if there is an uneven class distribution.

2 X(precision Xrecall)

F1 Score =

(precision+recall)

These metrics have been widely adopted in the field due to their effectiveness in

assessing algorithm performance (Zhou, Gandomi, Chen, & Holzinger, 2021).

Two other widely used metrics are the false alert rate and the mean time to

detect.

The false alert rate is the percentage of the number of messages for which an alert

was raised but no incident was occurring, to the total number of messages for which
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no incident was occurring (i.e. false positive rate). It should be noted that here, a
message is used as a term to represent a collection of traffic metrics that cover a

particular time period at a detector (or detection location).

Number of messages where an alert was raised falsely

Falsealertrate(FAR) = 1
alsealertrate(FAR) 00 Total number of messages where an incident did not occur

The Mean time to detect is the mean time taken (in minutes) to raise the alert
for a correctly detected incident, over a given time period and area.

n

- _1 0.
Mean timeto detect(MTTD) = . ; (A; — 0y)
where n is the number of verified incidents, A is the start time of an IDA’s alert

being raised, and O;is the start time of the corresponding incident.

For regression analysis and traffic forecasting, the following measures are widely

used in literature (Plevris, Solorzano, Bakas, & Ben Seghier, 2022):

The Mean Squared Error (MSE) is a popular regression-related metric having to do
with the average squared error between the predicted and actual values. It takes

positive or zero values and is given by

1V )
MSE = N21 i —m)

One major disadvantage of MSE is that it is not robust to outliers. In case a sample
has an associated error way larger than the one of other samples, the square of the
error will be even larger. This, paired to the fact that MSE calculates the average of

errors, makes MSE prone to outliers.

The Root Mean Squared Error (RMSE) is also a frequently used measure of the
differences between values (sample or population values) predicted by a model, or an
estimator and the values observed. It is the square root of MSE. Unlike MSE, RMSE
provides an error measure in the same unit as the target variable. It takes values in
the range [0, +°°) and it is given by
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1 N
RMSE = VMSE = Nz (pl _Tl‘)z
1

It should be noted that these metrics are closely linked, and an improvement in
one may be transferable to degradation in others (Ghosh and Smith, 2014). For
example, an IDA may be able to lower its sensitivity of raising alerts in order to reduce
its false alert rate, but it would come at the cost of reducing its detection rate and

increasing its mean time to detect.
In the literature, other stated measures of performance include:

- The feedback of traffic management centers (TMCs), including thoughts on
IDAs’ operational performance, usability, ease of implementation. Although
this measure will be subjective, it is an important factor affecting the
usefulness of IDAs in TMCs.

- The time needed to calibrate to a new location or urban setting. That is, to go
from the raw data required, to detecting incidents in real-time.

- Once implemented, the frequency and time taken to re-calibrate the IDA to
maintain performance.

- If trained on field data, the time span of the training data required.

Lastly, explainability can serve as a measure for performance by enabling traffic
system operators and stakeholders to validate the reliability and soundness of the
predictions made by the model. It ensures that the automated decisions made during
critical incidents are transparent, allowing for accountability and enabling rapid,

informed responses.

8.1.1.8 Model Deployment

A Machine Learning model will bring knowledge to an organization only when its
predictions become available to final users. Deployment is the process of taking a

trained model and making it available to the users.
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Currently, we have deployed the online mode of operation of the developed
system. The insights garnered from the deployed system come through Orion Context
Broker, which will be explained in next subsection (Chapter 8.2), facilitating a seamless

flow of information and enhanced decision-making capabilities across the system.

8.1.1.9 Model Maintenance

After deployment, Al models need to be continuously monitored and maintained
to handle concept changes and potential concept drifts that may arise during their
operation. A change of concept happens when the meaning of an input to the model
(or of an output label) changes, e.g., due to modified regulations. A concept drift

occurs when the change is not drastic but emerges slowly.

A popular strategy to handle model maintenance is window-based relearning,
which relies on recent data points to build a ML model. Another useful technique for
Al model maintenance is back testing. In most cases, the user organization knows
what happened in the aftermath of the Al model adoption and can compare model

prediction to reality.

For our case, the way we have chosen to handle this step in the process is for the
selected model will be monitored and maintained periodically, in order to sustain the
defined goals using techniques described in Chapter 7 whereas the evaluation results

are available in Chapter 9.6.2.

8.2 Technical Architecture

The technical architecture of the developed Information System AutoEventX is

illustrated and presented below in Figure 8-3 and further explored and explained in

detail in the following sections.
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Figure 8-3: Technical Architecture of developed Information System AutoEventX.

8.2.1 Storage Layer

The Storage Layer is responsible for collecting, storing, and managing the data,
models, and analysis results required for incident detection. It ensures that the system
has access to high-quality, relevant data and that all outputs are securely stored for

future reference and analysis.

o Data Sources: The primary data sources include loop detectors, segment-level
measurements, historical incident records, and network topology. These
sources provide continuous, real-time data as well as historical data for

training and validation purposes.

o Data Ingestion: This component involves the extraction, transformation, and
loading (ETL) of data from various sources into a centralized data repository.

It is crucial to ensure that data is consistently and accurately collected.

o Data Storage: The collected data is stored in scalable and secure databases. It

consists of one non-relational NoSQL database, specifically document-
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oriented database, the Knowledge Base, in addition to an extended file
system, which includes raw and processed parquet and json files, with the
addition of the enhanced dataset after the inclusion of the human in the
process. Moreover, the models are stored in this system, a fact which ensures
that the most current and effective models are always available for use. The
results of data analyses, including predictive models, feature importance
scores, and other relevant outputs, are stored for future reference and further
analysis. This helps in maintaining a comprehensive record of all analytical

activities and outcomes.

In Figure 8-4, the schema of the data processing is represented. The data
stemming from the aforementioned sources end up in a data lake to go through a
process of fusion and harmonization (when required), prior to be stored in the

corresponding database in the Data Storage layer.

Data Sources M

Apache
— [MongoDB} { Parquet ]

Data Adaptors

Our system
Context Broker Y

Data lake «

Figure 8-4: Data management schema.
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8.2.1.1 Data Sources

8.2.1.1.1 Inductive Loop Detectors (ILD) Dataset

Inductive Loop Detectors (ILDs) are a core technology as traffic data sources,
known for their robustness, reliability, and cost-effectiveness. These fixed sensors are
embedded within the roadway surface and operate on the principle of
electromagnetic induction. When a vehicle passes over or stops on the loop, the

inductance in the circuit changes, triggering a signal that is recorded and processed.

One of the primary advantages of ILDs is their high level of accuracy in detecting
vehicle presence and counting. This accuracy stems from their direct interaction with
the vehicle's metal mass, resulting in precise data with minimal error rates. Over
decades of deployment, ILDs have proven to be exceptionally durable, requiring
relatively low maintenance while providing continuous, real-time data. Their
widespread adoption across the globe is a testament to their reliability and cost-

efficiency.

Furthermore, ILDs are not just limited to basic vehicle detection; they can
gather a comprehensive range of traffic parameters. These include vehicle speed,
volume (the number of vehicles passing over a loop), occupancy (the percentage of
time a loop is occupied by a vehicle), density (vehicles per unit length of the road),
and queue length. Additionally, ILDs can be and have already been utilized to infer
more complex traffic conditions, such as identifying congestion patterns, incident

detection, and traffic flow dynamics.

The data collected by ILDs is crucial for traffic management systems, providing
the foundation for real-time traffic monitoring, control strategies, and long-term
transportation planning. Despite the emergence of newer technologies like video-
based detection systems and radar, ILDs remain the most widely deployed and trusted
traffic monitoring tool due to their long-established performance and cost

advantages.

8.2.1.1.2 Incident Dataset
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The Incident Dataset is a critical component in the study of traffic management
and safety, especially in the context of developing and validating incident detection
algorithms. This dataset typically consists of records of traffic incidents, such as
accidents, breakdowns, road blockages, and other non-recurring, or recurring (e.g.

recurring congestion) events that disrupt normal traffic flow.

The dataset is usually compiled from various sources, including traffic
management centers, police reports, social media, and crowd-sourced platforms. It
may contain detailed information on the type of incident, its location, time of
occurrence, duration, severity, and the resulting impact on traffic conditions.
Additionally, the dataset may include metadata such as weather conditions, road
surface conditions, and visibility, all of which can influence the occurrence and
detection of incidents. For our case studies, this dataset stems from the traffic
operators and contains not only reports about time, location and duration of
incidents, but also information about its severity, type and subtype, and more fields

which are going to be described in each case study individually in Chapter 9.

The Incident Dataset is synchronized with data from traffic monitoring systems
like ILDs, allowing for a comprehensive analysis of how traffic parameters change
before, during, and after an incident. This synchronization is vital for the development
of machine learning models and algorithms aimed at early incident detection,

prediction, and mitigation strategies.

8.2.1.1.3 Network Topology

The Network Topology dataset provides a detailed representation of the
physical and logical arrangement of the transportation network. It includes the layout
of roads, intersections, interchanges, traffic control devices (e.g., signals and signs),
and the location of traffic monitoring sensors, such as ILDs. The dataset typically
features information on road hierarchy (e.g., highways, arterial roads, local streets),

lane configurations, speed limits, and other critical infrastructure details.

A comprehensive Network Topology dataset is essential for accurate traffic

modeling and simulation. It allows for the replication of real-world traffic conditions
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in a virtual environment, enabling researchers and traffic engineers to study the
effects of various traffic management strategies, the impact of road modifications,
and the behavior of traffic under different scenarios, including incidents. In the
context of incident detection, Network Topology data is crucial for understanding how
traffic flows through a given area and how it is likely to be affected by an incident. By
integrating Network Topology with ILD and Incident datasets, it is possible to create

advanced data-driven models that predict traffic disruptions.

8.2.1.2 Data Ingestion

The data ingestion process is a critical phase, as it involves the collection and
integration of various data sources necessary for effective incident detection. The
data used in the work conducted is sourced both in real-time (online) and from
historical archives (offline), from a combination of automated Python scripts and the

collaboration with traffic management operators.

8.2.1.2.1 Online Data Ingestion

For real-time data ingestion, Python scripts have been developed to automate the
process of collecting live traffic data from various sensors and external data sources.
These scripts are designed to interface with Application Programming Interfaces
(APIs) provided by traffic monitoring systems, enabling the continuous retrieval of

data from the respective sensors.

The scripts are configured to handle data in a streaming fashion, ensuring that the
system remains responsive to new data as it becomes available. They are equipped
with error-handling mechanisms to manage potential issues, while the collected data
includes a range of traffic parameters (vehicle speed, volume, occupancy), which are

crucial for real-time incident detection and traffic analysis.

8.2.1.2.2 Offline Data Ingestion
Historical traffic data has been made available by traffic management operators.
This dataset includes archived records from ILDs, incident reports, and other relevant

traffic information collected over several years. The offline data is essential for
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training and validating the incident detection algorithms, as it provides a rich source
of labeled examples of traffic incidents and their associated traffic patterns. To ingest
this offline data, Python scripts have been developed to automate the extraction
process. These scripts are tailored to handle various data formats provided by the

operators, including CSV and parquet files in addition to JSON records.

Both online and offline data streams are integrated into a unified data
management framework that allows for seamless access and analysis. This framework
is designed to support continuous updates from online sources while maintaining the
integrity of the historical dataset. The entire data ingestion pipeline is managed to
ensure data quality and consistency, which are critical for the performance of the
incident detection models. The integration process includes the synchronization of
timestamps, alignment of data formats, and the resolution of any discrepancies

between the online and offline data sources.

8.2.1.3 Data Storage databases

Relational databases are structured according to a model consisting of different
data tables interconnected by foreign key relationships. Consequently, to answer a
guery or insert a new entry in a relational database, many tables are traversed and
combined to gather or generate the requested information. In contrast, document-
oriented databases, which are a subclass of key-value databases, do not follow a strict
data schema but use document formats like XML, JSON, YAML, etc., to store all
necessary information about an object in a single document, which can have a

different structure from other documents in the database.

Since relational databases require a predefined schema before the construction
of the database, any schema changes after data insertion can lead to problems.
Conversely, document-oriented databases overcome this limitation and support a
dynamic schema. This capability is useful for large and diverse data applications where
adding documents with different structures is required without modifying existing

data or the application itself.
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In summary, NoSQL databases offer the following advantages (Gupta, Gupta, &

Mohania, 2012):

Support for large-scale data

High write performance

Fast key-value access

Flexible schema, flexible databases, and easy schema conversion

Ease of use for developers

Support for distributed systems

According to (Han, Haihong, Le, & Du, 2011), NoSQL systems are categorized into

three types:

Key-value databases: Each value corresponds to a key. These databases, with
a very simple structure, provide much higher speed than relational databases
and support massive storage with high concurrency. A representative example

is Redis.

Column-oriented databases: These databases organize data in tables without
supporting table relationships. Data is stored by column, where each column
serves as an index for the database. This reduces system 1/O as only the
necessary columns are traversed for each query. Additionally, these databases

support simultaneous queries. An example is Cassandra.

Document-oriented databases: These databases resemble key-value
databases but with the difference that the value is a semantic object stored in
XML or JSON format. These databases support secondary indexes on values,

which are not supported by key-value databases. An example is MongoDB.

As described by (Han, Haihong, Le, & Du, 2011), modern large-scale data

management applications require:
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High support for parallel data entries and retrievals with low latency

Efficient large-scale data storage and support

High availability and scalability

Low operational and management costs

Under these conditions, relational databases exhibit low data write and retrieval
speeds, limited capacity, and scalability difficulties. For these reasons, NoSQL
databases facilitate large-scale data analytics, particularly for machine learning and
reinforcement learning applications, providing increased scalability and high

performance (Konstantinou, Angelou, Boumpouka, Tsoumakos, & Koziris, 2011).

For our case, the Knowledge Base is structured in a way that ensures that the data
can be efficiently stored and retrieved by the other structural components of our
system. Specifically, it contains information related to the task at hand, the
identification of incidents. Even though it could be a relational database, to ensure
consistency in the way data are accessed and retrieved using Orion Context Broker,
we have selected to use a NoSQL Database, namely MongoDB. Below, we describe
the primary entities and their relationships as depicted in the Entity-Relationship (ER)

diagram shown in Figure 8-5:

1. Site: Represents a specific location with an intelligent transport system. Each
site is uniquely identified by a siteld and includes attributes such as name,
mapCenter, dateLocale, and displayName. This entity is crucial for categorizing

and managing data related to various geographical areas.

2. Organization: This entity represents the different organizations that manage
or interact with the transport system. It is identified by an organizationld and
includes fields such as name, siteld, and authld. The siteld indicates the

association of the organization with a particular site.

3. Event: Central to the incident prediction framework, the Event entity captures

detailed information about specific incidents or occurrences. It is identified by
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an eventld and includes attributes like name, description, siteld, location,
eventType, expectedimpact, and probabilityOfOccurrence, among others. This
entity records both the planned and unplanned events within the system,

which are crucial for model training and prediction.

EventStatusChange: This entity tracks the status changes of an event over
time. Identified by changeld, it logs each status update with attributes such as
changeSequence, eventld, organizationld, status, changeTime, and reason.
This allows for a detailed timeline of how an event evolves and is able to

capture and track changes introduced by operators.

EventAck: The EventAck entity captures acknowledgments of events by
various organizations. It includes an ackld, eventld, organizationld, ackTime,
and any associated comments. This entity is essential for confirming that

incidents have been acknowledged.

User: Represents the users interacting with the system. Each user is uniquely
identified by a userld and includes details such as organizationld, siteld, and
displayName. This entity is vital for managing access and actions within the

system.
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Figure 8-5: Entity-Relationship (ER) diagram.
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These entities and their relationships form the foundation of the Knowledge Base,

enabling the efficient storage, retrieval, and management of data necessary for

incident prediction within intelligent transport systems.

8.2.1.3.1 Data storage infrastructure

The approach is to build a data storage system consisting of a data lake where the

raw data coming from various use cases in its original data format are stored prior to

be converted to the data format and stored in a centralized data storage repository,

as described above in detail.

8.2.1.3.2 Data base technologies

The type of data to be handled in the different case studies is very diverse.

Consequently, to handle them efficiently has to deal with a combination of data

storage technologies, adapted to the characteristics and usage of this information.
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The technologies chosen to cover the identified needs in terms of data storage

are:

e MongoDB

e Apache Parquet

Prior to storing the data in one of the aforementioned data bases, a process for
fusion and harmonization takes place in the data lake to convert the data formats
generated by origin data sources into an appropriate data model, as well as other
processes that will enable consistent and high-quality data sets to serve as input to
advanced applications. The structured and non-structured data will be stored in
Apache Parquet and MongoDB respectively. The characteristics of the different data
sources and the rationale for the selection of the type of information to be stored are

described below.

Apache Parquet is an open-source column-oriented data storage system, suitable
to store structured data. The algorithms that use Apache Parquet allow to
accommodate complex data structures by using and efficient column-wise
compression that saves storage space while offers efficient queries and the availability
of different encoding techniques for different columns. In our case, the structured
data coming from time series, especially those requiring extensive analytic

operations, together with some sets of shapefiles are stored in Apache Parquet.

MongoDB is an open-source non-relational database (NoSQL) data storage system
oriented to documents. Documents are semi-structured data that can contain any
type of information or shape. Internally, it stores the data in a Binary-JSON (BSON)
structure and allows to index the information with primary and secondary indexes to
perform searches. The maximum BSON document size is 16 MB (MongoDB v5.0)
which must be kept in mind while defining the document content. MongoDB provides
high availability and replication and is very suitable to be used in a distributed way, if
needed. In the context of this research, we have identified as suitable to store mobility

data coming from XML, JSON and GTFS formats. This selected database is configured
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to be used to store definition of networks and areas, shapefiles, stations, schedules,
traffic and other sensors characteristics and traffic events (accidents, roadblocks, road

works, etc.), both real-time and historical.

Table 8-1 is a summary of the distribution of data types in the different storage

technologies:

Table 8-1: Relation of data and databases in the developed Information System.

Data Type Original format Database
e Static/near  static  object XML MongoDB
characteristics/properties/sta
tes (sensor, vehicles, network) JSON
e Small/medium dynamic GTFS

datasets (measurements)

e Events
e Time series XLS Apache Parquet
e Shapefiles csv

Shapefile

8.2.1.4 General data management structure

Among its objectives, our framework aims to facilitate data integration from different
heterogeneous sources in an automated and standardized way, while ensuring data
quality, and at the same time, being able to manage large data streams efficiently.
The management infrastructure provides storage for both static data and near real-
time data with different formats and access types. The first one, provided by the
context broker and a REST service storage, and the second one consisting of a file
system storage keeping the data in JSON, JSON-LD, and Parquet formats to maintain
the original data for further system feeding and database restoration if required. The
data provided comes from an ETL (Extract-Transform-Load) process, as shown in
Figure 8-6, a timed Data Collector process is executed for each data source, each
process is in charge of access to the corresponding data source to Extract the data and

perform the required Transformation to the required data format to Load the data in
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its corresponding file system storage location as well as to format the data in the

required format so it can be sent via POST request to Orion-LD.

File System Storage

UJUJ

Context Broker

Data Collector

AIOLOS Data Parser

Minute Values Traffic
Measurements
(Opendata) Data
Parser

Data Sources

SFTP

HTTP
Request

Minute Values Traffic
Measurements
(Opendata)

orion-LD

1 Minute Time Executer

Figure 8-6: ETL schema.

8.2.1.5 Orion Context Broker for efficient data exchange

Data play an integral part in our methodology, that is why an analysis of the data
available, its format and its suitable representation and storage to build applications
has been performed. Nonetheless, this data must be exchanged between the
subcomponents of our developed system, which in turn will generate new
information based on basic data inputs. To make all of them interoperable, it is
important to set up a common framework (information representation) and
communication channels to enable the data generated by producers to reach data
consumers. The component that will fulfill this function is the context broker, while

the common framework is given by using NGSI-LD.

A Context Broker acquires contextual information from heterogeneous sources
and merges it into a coherent model that is then shared with entities in a distributed
ecosystem. The contextual information refers to the information that is produced,
harvested or observed and that could be relevant for processing, analysis, and

extraction of new knowledge. Each piece of information or context element has
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associated one or more triples that refer to the attributes of the context element and

a defined value.

Orion Context Broker

Context
Consumers
Context subscriptions _
Producers [N ‘. T
update ccilly
\
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,___--—"""- -
notify )
~ @
— —

Figure 8-7: Context Broker functioning schema. (Celesti, et al., 2019)

The context broker selected to deal with the information sharing part is the Orion
Context Broker (OCB). The OCB is a component developed by FIWARE that allows to
manage, query and update context information. This allows to publish context
information by some entities, called context producers, like sensors and make it
available to other entities, called context consumers, which are interested in
processing such information, as illustrated in Figure 8-7. This publication-subscription
system allows decoupling data sources from other parts of the architecture. The
communication is bidirectional, and a specific entity can be producer and consumer.
The OCB acts as a server that includes an APl based in the NGSI-LD (Next Generation
Service Interface) model information, which allows to store actualized context
information from the different sources, and solves queries based on this information.
Eventually, a context consumer can take care of recording historical information in a

separate database.

For our case, Orion, the chosen context broker, is responsible for managing the

lifecycle of context information. To ensure this responsibility, the context broker
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provides an APl which is useful for easing the data insertion. Once this data is received,
the context broker stores it in a No-SQL database, ensuring the access to latest data
received, so that it can be accessed through the same API as inserted, providing fast
access to the newest data. The context broker offers a JSON-LD API with the necessary

endpoints for creating, retrieving, updating, and deleting entities.

An important functionality offered by Orion is the capacity of creating
subscriptions for receiving updates of the information in real time. Using this
mechanism, a client can request the context broker to notify them on certain updates
in the data. This is achieved using the “subscribe” operation. This operation allows the
client to specify the notification channel. Moreover, the client can focus on specific
data of interest by providing filters over the entity id, entity type, attribute, etc. Once
subscribed, whenever a data provider updates an entity that matches the filters
provided by the client in the subscription operation, the context broker will

automatically notify the client of this event.

8.2.1.6 Data format

Once the mechanism is set, we need to establish a common language to enable
interoperability among components. The main elements that will enable that are

described in the following subsections.

The Next Generation Service Interface Linked Data (NGSI-LD) is an information
model and API used for an open and structured data exchange between the different
stakeholders though a process of edit, query and subscription. NGSLI-LD has been
standardized by the European Telecommunications Standardizations Institute (ETSI).
The information model represented by NGSI-LD represents the context information
as entities and their relations with other entities. The structure is acquired from the
knowledge graph and the semantics described in the ontology of the system to study

and defined formally with the Resource Description Framework (RDF).

To standardize and make available the data saved in the respective storage to

third parties when required, an ITS standard-based data model has been adopted,
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allowing the subsequent management of the heterogenous data sources for further
processing. Here, the DATEX-Il standard is considered for traffic related data. DATEX-
Il'is the European standard for the exchange of traffic related data. It is a unified XML-
based format modelled with UML (Unified Modelling Language) to allow data
exchange between traffic management/control centres, traffic service providers, and

road and traffic operators. It covers traffic and travel information such as:

e Traffic flow

e Traffic measures
e Roadworks

e Accidents

e Parking

The Orion Context Broker is a core component of the FIWARE platform, designed
to manage context information at a large scale in 10T environments. It acts as a
middleware that enables the integration and interoperability of various systems by
providing a means to collect, manage, and disseminate context information. As an
implementation of the NGSI-LD (Next Generation Service Interfaces for Linked Data)
standard, Orion allows for the storage, retrieval, and subscription of context
information in real-time, making it an essential tool for developing smart applications

in various domains such as smart cities, industrial loT, and more. (FIWARE)

One of the key features of Orion Context Broker is its ability to manage context
data through a centralized system, which ensures data consistency and availability. It
supports various data models and can integrate with multiple data sources, providing
a unified view of the contextual data. This capability is particularly beneficial in
scenarios where real-time data processing and decision-making are critical. For
example, in a smart city environment, Orion can collect data from various sensors and
systems (e.g., traffic lights, weather stations, public transportation) and provide real-
time updates and notifications to city management systems, enhancing operational

efficiency and improving citizen services (Gutiérrez, Martinez, & Sanchez, 2019).
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Moreover, Orion's subscription and notification mechanism allows applications to
subscribe to specific context changes and receive notifications when these changes
occur. This feature supports proactive and reactive decision-making processes, which
are crucial for dynamic and real-time applications. The scalability of Orion ensures
that it can handle a large number of context updates per second, making it suitable
for extensive loT deployments (Wang & Chen, 2018). Additionally, its open-source
nature and compliance with open standards facilitate customization and integration
with other platforms and systems, promoting a collaborative and innovative
development environment (Gyrard, Serrano, & Atemezing, 2017). In the data layer of
many systems, including advanced loT frameworks, Orion is used to ensure efficient
data management, providing a backbone for handling contextual information (Smart

Data Models).

8.2.2 Logic Layer

The Logic Layer is the core computational layer where data analysis, model
training, tuning, evaluation and validation, in addition to system’s predictions occur.
It encompasses the implementation of traditional and automated machine learning
algorithms and the execution of advanced analytics for planned and unplanned

incident prediction.

e Advanced Data Analytics: This includes time-series analysis, spatiotemporal
analysis, and correlation analysis to uncover deeper insights and improve
model accuracy. Tools like ARIMA for time-series forecasting and geospatial

libraries like GeoPandas for spatiotemporal analysis are utilized.

e Machine Learning Model Development: This component involves the pre-
processing, cleaning, selection, training, and validation of machine learning

models. The key activities include:

o Data Pre-processing: This process consists of preparing raw data for
model development by cleaning the data (identifying and correcting

errors or inconsistencies in the dataset), normalizing and scaling
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(transforming the data to a common scale without distorting
differences in the ranges of values) and extracting features from the
raw data.

o Algorithm Selection: Choosing appropriate algorithms based on data

characteristics.

o Model Training: Training the models on the pre-processed data to
learn patterns and make predictions. First, this process entails splitting
the dataset into training and validation sets. The model is trained on
the training set by iteratively adjusting parameters to minimize the
prediction error. Then, adjusting the algorithm’s hyperparameters to
optimize model performance is critical. This process is called
hyperparameter tuning. Techniques like grid search and random

search are used to find the best combination of hyperparameters.

Model Validation: The validation of models’ performance using appropriate
metrics such as precision, recall, F1-score, to ensure robustness and reliability,
is of outmost importance in our framework and implementation. Using cross-
validation techniques to evaluate the model’s performance is essential as part
of this step. Finally, performing error analysis needs to be included in this step.
This involves analyzing the types of errors the model makes to understand its
weaknesses., e.g. examining false positives and false negatives to identify

patterns or conditions under which the model fails.

Automated Machine Learning (AutoML): The integration of AutoML libraries
and tools aim to automate the end-to-end process of applying machine
learning, from data pre-processing to model tuning and evaluation, making the

system more efficient and scalable.

Real-time Predictions: The system is able to provide predictions in real-time
regarding identified incidents both unplanned and planned anywhere in the

network which covers the sensors having been included in the analysis.
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Python has been selected as a programming language to develop the proposed
system, since it is a versatile and powerful programming language widely used in data
science, machine learning, and artificial intelligence due to its simplicity, readability,
and extensive library support. In the components we developed, Python was used as
the primary language to handle various aspects of data processing, model

development, and visualization.

Pandas, a powerful library for data manipulation and analysis, played a crucial role
in handling and analyzing structured data. It provides data structures like DataFrames
and Series, which are ideal for data manipulation tasks. Pandas library was extensively
used for data cleaning, transformation, and exploration, enabling efficient
manipulation of datasets through operations like filtering, grouping, and merging. This
functionality was essential for preparing the data for subsequent machine learning

tasks.

Scikit-learn is another key Python library used in our system for developing and
training machine learning algorithms. It offers simple and efficient tools for data
mining and analysis, built on top of NumPy, SciPy, and Matplotlib. Scikit-learn was
utilized for implementing various machine learning algorithms, model evaluation
metrics, and tools for model selection and validation. Its utilities for preprocessing

data and feature engineering were essential in building robust models.

Keras, a high-level neural networks API written in Python, was integral to the
design and implementation of deep learning models within the system. Keras
operates on top of TensorFlow and is particularly valued for its user-friendly, modular,
and extensible nature, allowing for quick prototyping of models and experimentation
with different architectures. It provides a high-level abstraction that simplifies the
process of building and training neural networks, making it unnecessary to deal with
low-level details. TensorFlow, an open-source machine learning framework
developed by Google, served as the backend engine for Keras and was used to
perform the computationally intensive tasks required for training and deploying

machine learning models. TensorFlow is known for its ability to handle large-scale
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models and offers a flexible architecture that can be deployed across various

platforms.

Finally, Seaborn and Matplotlib, two essential libraries for data visualization in
Python, were used to create a variety of plots. These visualizations were crucial for
understanding data distribution, relationships between variables, and patterns that
could inform feature selection and model tuning. Matplotlib, the foundation library
for creating visualizations, provided a wide range of customizable plots. Seaborn, built
on top of Matplotlib, offered a high-level interface for drawing attractive and
informative statistical graphics, simplifying the creation of complex visualizations and
making it easier to plot data directly from Pandas DataFrames. Lastly, for the autoML
implementation, regarding the technologies used, we have used extensively the

python libraries TPOT, which has already been thoroughly explained in Section 6.

8.2.3 Human-in-the-Loop Layer

The Human-in-the-Loop Layer integrates human expertise into the system to

enhance decision-making, ensure model accuracy, and build trust in the Al system.

o Explainable Al: Explainability tools provide insights into the model’s decision-
making process. This transparency helps stakeholders understand how
predictions are made and ensures that the Al system’s decisions are

interpretable and justifiable.

e Human Validation, Correction and Feedback: Traffic management
professionals review and correct the model’s predictions. This feedback loop
is essential for refining and improving the model over time. Human corrections

help identify and rectify any errors in the Al predictions.

e Integration with Traffic Management Systems: The validated outputs could
be integrated into existing traffic management systems, providing real-time
incident alerts to traffic management personnel. This integration ensures

timely and effective responses to detected incidents.
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Regarding the technologies used for the implementation, we have used
extensively the python libraries SHAP and LIME, which have already been thoroughly

explained in Chapter 7.

For the overall system implementation, we utilized Flask and Docker to create a
robust, scalable, and easily deployable environment for our system. These
technologies played crucial roles in ensuring that the system is efficient, maintainable,

and capable of handling various deployment scenarios.

Flask is a lightweight web framework for Python that was used to develop the APIs
needed for our system. Flask is known for its simplicity and flexibility, making it an
ideal choice for building web applications and RESTful APIs. By using Flask, we were
able to create a server-side application that can handle HTTP requests, manage
routes, and interact with the machine learning models and data processing
components. Flask provides the necessary tools to build a web interface through

which users can interact with the system, send data, and receive results.

Docker was employed to containerize the entire application, including all the
dependencies of the utilized libraries. Docker simplifies the process of creating,
deploying, and running applications by packaging them into containers. Each
container includes everything needed to run the application, such as the code,
runtime, libraries, and system tools. This ensures that the application behaves

consistently across different environments.

The use of Docker aims to achieve the following benefits:

e Consistency: By containerizing the application, we ensured that it runs the
same way in all environments, eliminating issues related to differences in

software versions or system configurations.

e Scalability: Docker containers can be easily scaled up or down based on the
system's needs. This flexibility is essential for handling varying loads and

ensuring that the system remains responsive and performant.
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e Isolation: Each container operates in its own isolated environment, reducing

conflicts between different components or services and improving security.

o Portability: Docker containers can be deployed on any platform that supports
Docker, making it straightforward to move the application across different

servers or cloud services.
8.3 Modes of operation

8.3.1 Offline Mode of Operation

In Figure 8-8, the technical architecture of the offline operation of our developed

system is presented.
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Figure 8-8: Technical architecture of offline mode of operation.

The Data Layer currently contains the loop detector (historical and real-time)
measurements for speed, occupancy and flow in addition to the respective incident

datasets and corresponding information about the network of each case. In the ML/DL
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module, we have implemented a suite of Machine Learning, Deep Learning algorithms
and autoML algorithms for automatic incident detection. These include both

Supervised and Unsupervised approaches.

8.3.2 Online Mode of Operation

After having performed the training of the Al data-driven model in the offline
mode as explained in the previous sections for non-recurring unplanned events and
for recurrent congestion cases, our system is able to operate in real-time to raise
alerts. Figure 8-9 displays the process flow of the online module of our system. As
soon as new data becomes available, the online module of our system captures it. The
data refresh rate can vary thus, the respective information needs to be collected,
stored locally and then aggregated in specifically timed intervals to be fed in the pre-
processing and data cleaning stage of the pipeline. The specific procedures for pre-
processing remain consistent with those outlined in the offline mode of operation,
maintaining uniformity in the approach to data preparation and cleaning. Then, the
data are transformed in the required format to be fed in the step of model prediction.
Should the entry contain anomalies (represented as “1”), then feedback is requested
from operators, to confirm the identified incident. This human-in-the-loop concept is
crucial, since it assists in creating a refined incident dataset and ensures that the
system’s performance could increase over time, given that it is retrained on this
evolving dataset. It is worth mentioning that stakeholders can enhance the quality
and accuracy of the reported incidents, by creating manual entries of identified
incidents. Finally, in the case that the system has identified an anomaly in the data
and labels it as incident, it then produces as output an entity of type “Incident” with

the location and time attributes of the incident.

In order to enhance the system’s detection capabilities over time, the feedback
loop which we have implemented to compare model predictions with actual
outcomes is key to our continued improvement. Detecting any discrepancies can be

leveraged to optimize the model. Furthermore, implementing robust validation ny

211



establishing a feedback loop for comparing model predictions with actual outcomes

is crucial.

Real-time
Traffic

Data
Pre-processing

| '

Data
Transformation

v

Model
Prediction

uonenyis |eWIoN —

Event
detection

Refined
Incident
Dataset

Operators'

(VELTE]] Operators'
Incident Feedback
Creation

Event Details
Output

J

Figure 8-9: Online mode of operation.

8.4 Examples of system use

This subchapter presents several examples from the use of the HITL (Human-In-
The-Loop) traffic incident detection system developed as part of this dissertation. The
following sections illustrate how the system identifies, explains, and refines traffic

incidents, supported by screenshots from an external dashboard developed as part of

the FRONTIER project.

8.4.1 Identification of Incident
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The system is designed to detect both planned and unplanned traffic incidents by

analyzing real-time traffic data.

8.4.1.1 Planned incident

Below figures ( Figure 8-10 and Figure 8-11) illustrate a planned incident (recurring

congestion) on the dashboard.

— Traff aodos-operator@frontier.com
@ FlowRate (O Velocity Attiki Odos

Login | Dashboard | About

Figure 8-10: Screenshot from dashboard depicting the identification of recurring congestion.

aodos-operator@frontier.com

Attiki Odos

Login | Dashboard | About

Figure 8-11: Screenshot from dashboard depicting the details of detected incident (recurring congestion).
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8.4.1.2 Unplanned incident

Figure 8-12, Figure 8-13 and Figure 8-14 show an unplanned traffic incident
detected from the developed system AutoEventX on the dashboard.
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Figure 8-12: Screenshot from dashboard depicting the identification of accident in a real-world case study.
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Figure 8-13: Screenshot from dashboard depicting the panel and possibilities when an incident is detected.
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aodos-operator@frontier.com

Attiki Odos

Login | Dashboard | About

Figure 8-14: Screenshot from dashboard depicting the details of detected incident (accident in real-world

case study).

8.4.2 Human Feedback

Feedback from traffic management operators is essential for continuous
improvement. The dashboard includes features for collecting and integrating user
feedback. Operators can provide feedback directly through the dashboard, ensuring
that their insights contribute to ongoing system enhancements (Gkioka, et al., 2024).

This section details the feedback mechanisms available to operators.

8.4.2.1 Incident Validation

Incident validation process as part of our system consists of the procedure by
which operators provide important feedback regarding an automatically identified
incident, towards refining the system performance and reliability. The objective of
incident validation is dual: to confirm whether the incidents are correctly detected or

to establish false detection that will need further refinement.

When the system detects an incident, operators verify its validity based on real-
time data, contextual knowledge, and external information sources, such as phone

calls from the impacted drivers. The operator will then validate the incident- which
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confirms that the incident indeed happened, and the impact is true- or reject it, where
the incident would be classified as a false positive or wrong classification. In both
cases, the operator gives the reason of rejection that is logged by the system for future
analysis and improvement. Thus, incident validation reinforces the collaboration
within human-in-the-loop systems, in the sense that the systematic integration of
operators' feedback ensures better accuracy and higher operational efficiency of the

deployed system.

In the context of our system, as soon as an event is identified automatically by the
system, the operator is prompted to click on the right-hand side and select

“Acknowledge Event”, as shown in Figure 8-15.

aodos-operator@frontier.com
@ FlowRate O Velocity Attiki Odos

Show Details
Report an Incident
Assign to Incident

Archive

plans  Acknowledge Event

Figure 8-15: The operator is prompted to validate the identified event through the dashboard.

8.4.2.1.1 Verification
Verification involves operators reviewing detected incidents and confirming their
occurrence. When an incident is detected by the system, it is flagged for operator

review. An example is described below:

¢ Incident: Traffic accident.

e Action: Operator reviews and confirms the incident.

e Outcome: The system records the incident as acknowledged.
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This feedback loop helps the system learn from confirmed incidents, improving its

detection performance over time.

An example of incident verification by an operator is illustrated in Figure 8-16.

Acknowledge Event

I confirm that this

i
happened at the specific
location and time.

Figure 8-16: The operator validates the identified incident through the dashboard.

8.4.2.1.2 Rejection

The system allows operators to reject detected incidents that are false positives
or incorrectly identified. When an operator rejects an incident, they provide a reason
for the rejection, which is recorded by the system for further analysis (automatically

for instance using NLP or manually). An example follows for illustration purposes:

e Incident: System detects an unplanned incident, but the operator identifies it
as a temporary slowdown and the traffic then gets back to normal conditions.

e Action: Operator rejects the flagged incident as false positive and notes the
reason for rejection, if possible.

e Outcome: The system logs the rejection and the reason, with the aim of

reducing similar false positives in the future.
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Acknowledge Event

This is a false alarm{

Figure 8-17: The operator rejects the identified incident through the dashboard.

This process is vital for refining the system’s accuracy and reducing the occurrence
of false alarms. However, the reason is logged only for informational purposes and is

not used for retraining the models used as part of the system for incident detection.

An indicative example of an operator rejecting an incident is shown in Figure 8-17.

8.4.2.2 Incident Insertion

In addition to validating detected incidents, operators can manually insert
incidents that the system may have missed. This feature ensures that all relevant
traffic events are accounted for, enhancing the comprehensiveness of the system's

monitoring capabilities. An example follows for illustration purposes:

¢ Incident: Planned event in OAKA stadium.

e Action: Operator manually inserts the incident, including details such as
location, duration, and expected impact.

e Outcome: The system updates its records and alerts drivers about the planned

event and its potential impact. This allows for strategic traffic management.
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By allowing manual incident insertion, the system benefits from human expertise

and situational awareness, which can be critical in dynamic and complex traffic

environments.

For this manual insertion, our system allows the operator to click on the map and

click on the right-hand side to “Create Planned Event” or “Create Unplanned Event”

according to the type of event identified by the operators, and then complete the

fields as shown in Figure 8-18.

D unplanned @ Planned Velocity

38.05027086940836 23.783040042046412

CulturalEvent 02082024

02/08/240830py. (3 03/08/241230mp,

aodos-operator@frontier.com

Attiki 0dos

Figure 8-18: The operator creates a planned or unplanned event with its details through the dashboard.
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9 Deployment and Evaluation in Real-world

Case Studies

Chapter 9 discusses the results of the evaluation of the developed and deployed
system in real-world case studies. In Athens, the system was evaluated in a dense
urban corridor, addressing the unique challenges of traffic management in a historic
metropolis. In Antwerp, the focus was on a critical route encompassing the city's port
and major motorways. The deployment in these cities offered valuable insights into
the adaptability and effectiveness of our Al-driven incident detection system across
diverse urban contexts, demonstrating its potential for broader application in traffic

management.
9.1 Case Study

In the following section, we present real-life use cases from two distinct urban
contexts, Athens, the capital of Greece, and Antwerp, a major city in Belgium, which
validate the efficacy of our methodology within distinct urban environments. Athens
provides a complex case with its dense urban network and the inherent challenges of
a historic metropolis, while Antwerp offers a contrasting scenario with its strategic
significance as a port city and its different network complexities. In Athens, we
explore the application in a critical urban corridor, whereas in Antwerp, the focus
shifts to a route connecting the city's port and major motorways. As part of this

section, we detail the study area, in addition the datasets utilized in both cases.
9.1.1 Case Study I: Athens

A corridor extending along 70 km and constituting the ring road of a metropolitan
area connecting the airport to a populated suburb has been used as study area in our

experiments. The road network model developed in the Aimsun Simulation Software
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(Aimsun, 2023) is approximately 30 km long and involves 569 sections and 181 nodes

and is depicted in Figure 9-1.

Figure 9-1: The network of Athens study area.

Loop detector data from 591 units were gathered from October 2020 to end of
September 2021. Out of the total 591 detectors provided, 196 are regarded as reliable
enough to be used as part of the experiments conducted. From the total amount of
26,331,086 readings provided (one every minute from the selected period), several
filters were applied to remove detectors which were not in the station aggregation
file, flow reliability outliers, flow-occupancy-speed mismatches, detectors with more
than 50% not a number entries (NaNs), stuck values (constant readings across time),
isolated values, and atypical profiles. Several types of imputation of
missing/unreliable data were carried out on approximately 35% of the readings,
namely: polynomial, time k-nearest neighbor (KNN), free-flow speed imputation,
spatial KNN, PPCA-based imputation, and weekday-based imputation. Due to the low
reliability scores of the loop detectors in occupancy and speed, the variable which was
selected from the loop detector data to be used for the experiments was only the

flow.

In addition to the Inductive Loop Detectors dataset, which comprises of the
measurements of network-related attributes (i.e., speed, occupancy and flow), the

labelled incidents dataset provided to us by the highway operator of our study area,
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plays a pivotal role in the experiments we conducted to validate our methodology.
This dataset, comprising 34,652 incident occurrences in total and 34 feature columns,
serves as a critical resource for evaluating the performance of our models, as it
represents the ground truth against which our models will be assessed. By leveraging
this dataset, we can measure the accuracy and effectiveness of our detection
techniques, enabling us to make informed decisions and ensure the quality of the
obtained predictions. The feature columns of this dataset include information
regarding 'timestamp’, 'source’, 'start_time', 'end_time’, 'direction’, 'intersection’,
‘toll_station', 'branch', 'position_(pk)', 'type', 'subcategory', 'outcome’, 'deaths’,
'injured’, 'queue_start_time', 'queue_end_time', 'queue_length_cars’,

'queue_length_time', 'weather' among others.

However, it is worth noting that certain inconsistencies were identified within the
dataset, based on the conducted Exploratory Data Analysis. Specifically, incidents that
had no discernible impact on traffic were still labeled as incidents. To ensure fairness
in our experiments, a filtering process has been implemented to remove such
instances, thus maintaining consistency in the type of loop detector input data used

for analysis, based on the following:

- Notably, it was observed that two specific branches of the highway recorded
the highest number of incidents, with 13,829 and 13,757 incidents
respectively. Since the majority of the incidents occurred on the main
branches of the highway, a decision was made to exclusively focus on those.

- Moreover, a filtering process was applied to include only specific incident
types for the scope of our experiments. Specifically, the labelled incidents
dataset exclusively encompasses incidents categorized as Traffic Congestion
and Traffic Accident, as they are the primary focus of our investigation.

- Finally, the incidents were further filtered based on the observed queue length
of cars. In collaboration with stakeholders, we obtained valuable feedback
recommending a reduction in the threshold for queue length to 50 meters, as
opposed to our initial proposal of 200 meters. This adjustment was made

based on their expertise and supported by the understanding that queues of
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200 meters are exceptionally uncommon in the specific highway, even in the

event of an unplanned incident.

9.1.1.1.1 Locations of the sensors

For the city of Athens, a corridor of Attiki Odos (a modern motorway extending
along 70 km and constituting the ring road of the greater metropolitan area of Athens)
extending from the Athens airport to the suburb of Metamorfosi has been identified
as the network which suit the identified needs for the evaluation of our framework.
The road network model is approximately 30 km in size (it includes a section of the

motorway) and involves 569 sections and 181 nodes as shown in Figure 9-1.

9.1.1.1.2 Data collection

For the data collection phase, we make a distinction between historical data and
real-time data. Regarding the historical data, the end-user and data provider, Attikes
Diadromes, has provided us with a folder containing raw data obtained from ILD from
October 2020 until April 2021. For the real-time data collection, Attikes Diadromes,
has provided access to an SFTP server which contains the raw data files of the last 24
hours. For this purpose, we have created and deployed a script which grabs the most
recent files and stores them into a respective folder. The structure of the directory on
the server where the raw data are stored follows the format: /year/month.
Moreover, it gathers the content of the file (the raw data) and stores it directly in
Orion Context Broker and the respective MongoDB in addition to parquet files, as

described in detail in Chapter 8.2.1.

9.1.1.1.3 Raw data characteristics

The data is captured every minute from the ILDs in Attiki Odos, and each file
contains the observations of speed, flow and occupancy stemming from each sensor.
The format of the files containing the raw data is xm/, and an example is shown below

in Figure 9-2:
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<oneMinuteData>
<vdsData unitID timestamp speed trafficFlow occupancy status />
<vdsData unitID timestamp speed trafficFlow occupancy status />

<vdsData unitID timestamp speed trafficFlow occupancy status />
<vdsData unitID timestamp speed trafficFlow occupancy status />
</oneMinuteData>

Figure 9-2: Raw data in xml format.

This real-time information about the tollway of Attiki Odos Motorway (Attica
Tollway) in Athens, Greece provided by the Attica Tollway Operations Authority is

illustrated and described in Table 9-1:

Table 9-1: Data information for the 1Minute ILD Data.

XML Tag DATEX Il tag Description

status statusDescription Sensor status

occupancy occupancy Road Occupancy

speed averageVehicleSpeed Speed

trafficFlow vehicleFlowRate Traffic flow

timestamp timeValue Datetime of the captured data
unitiD stationID Id of the sensor

A total of 591 detectors are registering flow, occupancy and speed in the original
raw dataset. Preliminary analysis of this data shows that unitID 3944 is not providing
consistent data at 60 seconds intervals, so it is flagged as a candidate to be discarded.
However, as we will explain in more detail below, sensors show many inconsistencies
in measurements which led us to contact the data supplier to provide us with a list of

the most reliable sensors or a list of the unreliable ones.

A more detailed analysis of flow, occupancy and speed readings yield very low
reliability scores for occupancy and speed. Reliability is estimated based on statistical
analysis of the time-series, unknown values (NANs), zeros, negative values and
outliers. Figure 9-3, Figure 9-4 and Figure 9-5 show heatmaps of flow, occupancy and

speed variables, respectively, from 1-10-2020 to 30-09-2021. In these heatmaps,
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values in the color scale to the right of the figure depict the high (in green) to low (in

red) quality of measurements from detectors as well as null readings (in black).

Detectors

Heatmap 1.0

Detectors

Dates

Figure 9-4: Heatmap of occupancy raw data from 1-10-2020 to 30-09-2021.

Heatma

Detectors

Figure 9-5: Heatmap of speed raw data from 1-10-2020 to 30-09-2021.

Results of this preliminary raw data analysis show an immediate need for data

cleaning, which is detailed in the following subsection.
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9.1.1.1.4 Data cleaning and filtering

To generate a high-quality dataset for learning, first the loop sensor data are pre-
processed to be able to be fed in the Machine Learning and Deep Learning algorithms
developed. Out of the total 591 detectors provided, only 196 are regarded as reliable
enough. From the total amount of 26,331,086 readings provided (one every minute

from Oct 2020 to April 2022), several filters were applied to remove:

Detectors which were not in the station aggregation file
e Flow reliability outliers

e Flow-occupancy-speed mismatches

e Detectors with more than 50% NaN data

e Stuck values (constant readings across time)

e Isolated values

e Atypical profiles

Several types of imputation of missing/unreliable data were carried out on

approximately 35% of the readings, namely:

e Polynomial

e Time k-nearest neighbor (KNN)
e Free-flow speed imputation

e Spatial KNN

e PPCA-based imputation

e Weekday-based imputation

Our methodology automatically discards low reliable sensors and data imputation
involves lowering the reliability. Consequently, sensors with imputed data are not
used for incident detection and it is recommended that any party utilizing the
subsequent dataset either do likewise and discard low reliable data or experiment

taking into consideration the implications this may have on their results.

9.1.1.1.5 Cleaned data characteristics
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Figure 9-6 shows the final reliability of flow data (a sample visualization between
1-10-2020 and 30-09-2021 is depicted) after the cleaning, imputation and aggregation
process has been done, resulting in 564 detectors (out of which 196 have got better

reliability scores). Low reliability is depicted in black and high reliability in green.

Figure 9-6: Heatmap of flow cleaned data from 1-10-2020 to 30-09-2021.

9.1.1.1.6 Data transformation

Finally, the data are transformed and stored on the server. Each parquet file
contains the monthly observations of one of the traffic characteristics (speed,
occupancy, flow). Reading this file as a dataframe, this contains as an index the
timestamp, in 5-minute intervals, and as columns the respective ILD ids, as identified
by the raw data. The corresponding measurements are the values which fill the
dataframe and characterize the ILD and timestamp. Moreover, there is a
corresponding file which contains the reliability of each sensor for each observation
in each timestamp where the later was captured. Finally, the data are also stored in
Orion Context Broker and the respective MongoDB as described in the Chapter

detailing the developed system.

Below you can find the representation of flow as illustrated in indicative
dataframes (the speed and occupancy dataframes are similar regarding their

representation):
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columns' 3001 3002 3003 3004 ... 3990 3991 3992 3993
index .

2020-10-01 00:05:00 0.00 282.0 216.0 0.0 144.0 24.0 108.0 168.0
2020-10-01 00:10:00 21.00  324.0 342.0 24.0 228.0 48.0 180.0 288.0
2020-10-01 00:15:00 30.00 270.0 276.0 48.0 162.0 12.0 126.0 204.0
2020-10-01 00:20:00 5.25 408.0 432.0 12.0 156.0 12.0 180.0 156.0
2020-10-01 00:25:00 11.25 336.0 318.0 36.0 84.0 12.0 84.0 84.0
2022-06-06 23:40:00 24.00 1020.0 984.0 60.0 72.0 24.6  72.86 96.0
2022-06-06 23:45:00 72.00 942.0 960.0 36.0 108.0 24.0 108.0 120.0
2022-06-06 23:50:00 24.00 864.0 828.0 24.0 168.0 12.0 132.0 156.0
2022-06-06 23:55:00 24.00 1032.0 1176.0 24.0 156.0 12.0 144.0 156.0
2022-06-07 00:00:00 24.00 1098.0 1044.0 60.0 132.0 12.0 132.0 132.0
[176832 rows x 564 columns]
Figure 9-7: Dataframe including sensors' flow.
columns 3001 3002 3003 3004 ... 3990 3991 3992 3993
index .
2020-10-01 00:05:00 1.000000 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2020-10-01 00:10:00 0.024222 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2020-10-01 00:15:00 0.024222 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2020-10-01 00:20:00 0.024222 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2020-10-01 00:25:00 0.024222 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2022-06-06 23:40:00 1.000000 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2022-06-06 23:45:00 1.000000 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2022-06-06 23:50:00 1.000000 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2022-06-06 23:55:00 1.000000 1.0 1.0 1.0 1.0 1.0 1.0 1.0
2022-06-07 00:00:00 1.000000 1.0 1.0 1.0 1.0 1.0 1.0 1.0

[176832 rows x 564 columns]

Figure 9-8: Dataframe including sensors' reliability of flow.

To summarize, after this filtering process, the dataset used primarily originates
from a closed-circuit television (CCTV) system, encompassing a total of 1,786 incident
occurrences for the two main branches and more specifically 763 reported incidents
for the same time period as the traffic measurements. Following data cleaning and
filtering, it was necessary to transform the dataset into a format suitable for utilization
by our algorithms, namely in 5-minute intervals where rows refer to timestamps and
columns were the id of the loop sensors, and the values of the matrix were 1 if this

location and time corresponds to an incident occurrence, or 0 otherwise.

9.1.2 Case Study II: Antwerp

For the city of Antwerp, there is a multitude of inductive loop detectors available
which provide one-minute readings regarding the network conditions, however, the

area which has been deemed suitable to be used as a test bed of our incident
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detection task represents the corridor between the port of Antwerp and Eindhout
including E313 motorway in both directions. This area includes 103 nodes in Direction
1 and 164 nodes in Direction 2 and in Figure 9-9 the locations of the sensors are

depicted on a map.
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Figure 9-9: Locations of loop detectors in Antwerp study area.

The traffic data for E313 highway collected by loop detectors include the number
of vehicles and the average speed, occupancy and flow, in addition to other traffic
measurements, such as statusDescription, faultDescription and regularity, for 5
different vehicle classes/categories, aggregated per minute and the location of the
measurement points. Loop detector data from 267 units was gathered from end of
October 2022 to end of August 2023. The analysis of raw data yielded acceptable
results in terms of quality of detectors’ measurements, where one can observe some
data gaps around May-June 2023 and a couple of missing days in Oct-Nov 2022. There
are seven detectors that do not provide consistent readings over the whole period
and those have been excluded from the analysis. In the pre-processing phase of our
analysis, we employed a meticulous filtering and cleaning process to ensure the
integrity and quality of the data. Initially, we identified and rectified any anomalies in
the data, such as outliers or incomplete records. Subsequently, to streamline the
dataset for more coherent analysis, we aggregated the different vehicle categories

into a single, consolidated attribute. This means that we only kept the sum of
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vehicleFlowRate and the average of the speed, in addition to the supplementary
attributes mentioned. This aggregation enables a more generalized assessment of
traffic patterns while maintaining the robustness of the data. Moreover, several other
cleaning processes have been employed, as described in the Athens’ case study
above. After cleaning, aggregation and filtering the resulting data show acceptable
reliability scores (overall above 0.4 in a scale from 0 to 1, where 1 is the highest
reliability), and then it was necessary to transform the loop detector data and split in
three distinct datasets, for speed, flow and occupancy respectively. Moreover,

resampling of the dataset every 5 minutes has been performed.

9.1.2.1.1 Locations of the sensors

For the city of Antwerp, there is a multitude of loop detectors available which
provide one-minute readings regarding the network conditions, as shown in Figure
9-10, - a total of 4478 to be precise. However, the area which has been deemed
suitable to be implemented and tested for the use case of incident detection
represents the corridor between the port of Antwerp and Eindhout including E313
motorway in both directions. This area includes 103 nodes in Direction 1 and 164
nodes in Direction 2 and in Figure 9-9 the locations of the sensors of the model are

depicted on a map.

231



= % V7
~. 3 S

- N \

1 \ ‘ Malle

A ;
~ — 1 intJobin
-
NG > Goor
" ~ P \
s o
N /

Sint-Antonius.

Zoersel

N115

) / Schoten m
/
i
— ‘ rksem £ Halle R \ X4
B { \< . Schilde
\ N120 ’

\

y N\
Antwerpen
’ 1=

Pulle

4 /r'/
Kruibeke = | | y
i s
: |
1

N177

\ Emblem Lt

< Nijlen—=—
\ & _ o & o

P8 T Sa
hons N14 [ -z W = Leaflet | Data by © Oj under ODbLJ

Figure 9-10: Available loop detectors around the Antwerp area.

9.1.2.1.2 Data collection

Traffic data measured from loop detectors from highways in the region of Flanders

are updated each minute, this data is available online® and is presented in XML

format. The data is collected from our part every minute, the data labels are adapted

accordingly to Datex Il and finally we publish the data in Orion and store it in the Data

Storage.

9.1.2.1.3 Raw data characteristics

The traffic data for E313 highway collected by loop detectors include the number

of vehicles and the average speed, occupancy and flow, in addition to other traffic

measurements for 5 different vehicle classes/categories, aggregated per minute and

the location of the measurement points.

Traffic data updated each minute from highways in the region of Flanders is

available at http://miv.opendata.belfla.be/miv/verkeersdata.The description of the

° thttp://miv.opendata.belfla.be/miv/verkeersdata
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data, including the original tag and the data description from the data source is

summarized in Table 9-2.

Table 9-2: Data information for the MIV loop-based traffic data elements.

Tag Description
meetpunt Data per measurement point under the element
"meetpunt".

e unieke_id: Unique identification number of the
measurement point. More data (location, etc.) about
the measurement point are found in the
configuration:
http://miv.opendata.belfla.be/miv/configuratie/xml

beschrijvende_id: Descriptive id. (Internally used id. May
be omitted in the future.)

Ive_nr Number of the LVE (Local Processing Unit). The LVE
processes the data of a group of measurement points This
number is used internally. This data can be omitted in the
future.)

tijd_waarneming "Obervation time". Starting date and time of the minute
to which the data correspond, UTC+1. the date is several years
in the past, this can point to a restarted measurement device
which hasn't synchronised its time yet. that case, if the data
still changes every minute, it can be assumed that the data is
live and current. pe. 13:00:00 contains the minute between
13:00:00 and 13:00:59

tijd_laatst_gewijzigd Date and time of the last update of data for this
measurement point.

actueel_publicatie e 0 = Data of this point has a tijd_waarneming older
than about 3 minutes ago

1 = Data of this point has a tijd_waarneming more recent
than about 3 minutes ago. This might signify connection
problems. The measurement point may be offline.

beschikbaar Availability of the measurement point:

e 0 =The measurement point is currently unavailable

e 1 =The measurement point is currently available

defect Failure-status of the measurement point

e (0=nofailure
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e 1=1 of both detection loops is probably failing

2 = more than 20 percent bad counts: severe failure
geldig Regularity of the data:

e 0=Regular data

e 1 =Indication for irregular data

e 2 =Indication for extremely irregular data

3 = Indication for extremely irregular data caused by a

failure
meetdata Data measurement for each type of vehicle class
verkeersintensiteit Vehicle count within vehicle class.
voertuigsnelheid_rekenkundig Sum (vi) / n = arithmetic average speed of the vehicles in

this vehicle class (with vi = individual speed of a vehicle in this
vehicle class)

e Value domaing 0 to 254 km/h.
e Value range 0..200 km/h
e  Resolution 1.
Special values:
e  251:Initial value
e  254: Calculation not possible
252: no vehicles were counted in this vehicle class.
voertuigsnelheid_harmonisch n / Sum (1/vi) = harmonic average speed of the vehicles in
this vehicle class with vi = individual speed of a vehicle in this
vehicle class)
Special values:
e  251:Initial value
e  254: Calculation not possible
252: no vehicles were counted in this vehicle class.
klasse_id Vehicle class. More information about each class can be

found in Table 9-3.

rekendata e (Calculated data
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bezettingsgraad Occupancy = Pointcoverage (in 10ms) / 60s (in sec)

e Pointcoverage: Time during which a fictional point of
the detector was covered by a vehicle. The
pointcoverage is expressed in units of 10 milliseconds

beschikbaarheidsgraad Degree of availability = ((60s - unavailability) / 60s) * 100
Unavailability = Time during which a detector was unable to

reliably detect passing vehicles.

onrustigheid Sum (vi?) / N - ( sum (vi) / N )? (including all vehicles from
all classes)

e (vi) = speed of vehicle i

N = total vehicle count

Table 9-3: Vehicle classes/categories for Antwerp traffic dataset.

Vehicle Class Description
number
Vehicle class 1 This vehicle class was used for vehicles with estimated length between

Om and 1,00m. Pe. motorbikes. The occasional measurements in this vehicle

class are unreliable. This data is unused by AWV and the Traffic Center.

Vehicle class 2 Cars = vehicles with an estimated length between 1,00m and 4,90m
Vehicle class 3 Vans = vehicles with an estimated length between 4,90m and 6,90m
Vehicle class 4 Rigid lorries = vehicles with an estimated length between 6,90m and

12,00mbv.: Lorry, or tractor

Vehicle class 5 (Semi-)Trailers or busses= vehicles with an estimated length longer than

12,00m by.: lorry with trailer, tractor with semi-trailer, or bus.

To ensure the minimum changes over time, we have avoided to use the tags
labelled as “internal use only” or “Can be omitted in the future”, such as lve_nr and

beschrijvende_id. Furthermore, the original tags have been translated to DATEX II.

235



Table 9-4: Mapping between XML and DATEX Il tags. DATEX Il tag’s descriptions are also included.

XML Tag DATEX Il tag
tijd_waarneming timeValue
tijd_laatst_gewijzigd lastUpdateOfDevicelnformation
actueel_publicatie lastDeviceCheck
beschikbaar statusDescription

defect faultDescription

geldig regularity

meetdata MeasuredData
verkeersintensiteit vehicleFlowRate
voertuigsnelheid_rekenkundig averageVehicleSpeed
voertuigsnelheid_harmonisch harmonicSpeed

klasse_id stationType / vehicleType
rekendata ElaboratedData
bezettingsgraad occupancy
beschikbaarheidsgraad availabilityRate
onrustigheid restlessness

For real time updates about incidents, traffic flow, roads status and events
affecting traffic on the highways in Flanders, we have collected and used data from

https://www.verkeerscentrum.be/uitwisseling/datex2v3, presented in xml. This data

is already published using DATEX Il tags and the description of the data is described in

Table 9-5. In this case, thus, there is no need to modify any tag.
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Table 9-5: Data information for the MIV real time traffic information.

DATEX-Il Tag

situation

situationVersionTime

headerInformation

confidentiality

informationStatus

situationRecord

situationRecordCreatio

nTime

situationRecordVersion

Time

probabilityOfOccurrenc

safetyRelatedMessage

validity

validityStatus

validityTimeSpecificatio

Description

An identifiable instance of a traffic/travel situation comprising
one or more traffic/travel circumstances which are linked by one or
more causal relationships. Each traffic/travel circumstance is
represented by a Situation Record.

Id: Situation Id

The status of the related information (real, test, exercise ....).

Management information relating to the data contained within
a publication.

The extent to which the related information may be circulated,
according to the recipient type.

The status of the related information (real, test, exercise ....).

An identifiable versioned instance of a single record/element
within a situation.

e Type: Type of the situation record.
e |d: Id of the situation record.
Version: Version of the situation record

The date/time that the SituationRecord object (the first version
of the record) was created by the original supplier.

The date/time that this current version of the SituationRecord
within the situation was written into the database of the supplier
which is involved in the data exchange. Identity and version of record
are defined by the class stereotype implementation.

An assessment of the degree of likelihood that the reported
event will occur.

Indicates, whether this SituationRecord specifies a safety
related message according to Commission Delegated Regulation
(EU) No 886/2013.

Specification of validity, either explicitly or by a validity time
period specification which may be discontinuous.

Specification of validity, either explicitly overriding the validity
time specification or confirming it.

A specification of periods of validity defined by overall bounding

start and end times and the possible intersection of valid periods
with exception periods (exception periods overriding valid periods).
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overallStartTime
overallEndTime

locationReference

complianceOption

roadOrCarriagewayOrlLa
neManagementType

pointByCoordinates

pointCoordinates

latitude

longitude

alertCPoint

alertCLocationCountryC
ode

alertCLocationTableNu
mber

alertCLocationTableVer
sion

alertCDirection

alertCDirectionCoded

alertCMethod4Primary
PointLocation

Start of bounding period of validity defined by date and time.

End of bounding period of validity defined by date and time.

The location (e.g. the stretch of road or area) to which the data
value(s) is or are pertinent/relevant. This may be different from the
location of the measurement equipment (i.e. the measurement site
location).

Type: Type of the location reference

Defines whether the network management instruction or the
control resulting from a network management action is advisory or

mandatory.

Type of road, carriageway or lane management action
instigated by operator.

A single point defined only by a coordinate set with an optional
bearing direction.

A pair of planar coordinates defining the geodetic position of a
single point using the European Terrestrial Reference System 1989

(ETRS89).

Latitude in decimal degrees using the European Terrestrial
Reference System 1989 (ETRS89).

Longitude in decimal degrees using the European Terrestrial
Reference System 1989 (ETRS89).

A collection of information describing locations using the Alert-
C location referencing approach.

Type: Type of alertCPoint

Country code from the alert location

Number allocated to an ALERT-C table in a country. Ref. EN ISO
14819-3 for the allocation of a location table number.

Version number associated with an ALERT-C table reference.

The direction of traffic flow along the road to which the
information relates.

Direction of navigation with respect to secondary to primary
location (RDS direction)

The point (called Primary point) which is either a single point or
at the downstream end of a linear road section. The point is specified
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alertCMethod4Seconda
ryPointLocation

alertCLocation

specificLocation

offsetDistance

gmlLineString

posList

alertCLinear

by a reference to a point in a pre-defined ALERT-C location table plus
a non-negative offset distance.

The point (called Primary point) which is either a single point or
at the downstream end of a linear road section. The point is specified
by a reference to a point in a pre-defined ALERT-C location table plus
a non-negative offset distance.

Identification of a specific point, linear or area location in an
ALERT-C location table.

Unique code within the ALERT-C location table which identifies
the specific point, linear or area location.

The non-negative offset distance from the ALERT-C referenced
point to the actual point. The ALERT-C locations in the primary and
secondary locations must always encompass the linear section being
specified, thus offset distance is towards the other point.

Line string based on GML (EN I1SO 19136) definition: a curve
defined by a series of two or more coordinate tuples. Unlike GML

may be self-intersecting.

SrsName: Source name if this is not present, posList is assumed
to use "ETRS89-LatLonh" reference system

List of coordinate Tuples define the geometry of this
GmlLineString. There must be at least 2 Tuples of coordinates.

Alinear section along a road defined between two points on the
road by reference to a pre-defined ALERT-C location table.

Type: Type of alertCLinear
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id entityVersion \
url:schema:Frontier:Flanders:MeasurementPoint:29
url:schema:Frontier:Flanders:MeasurementPoint:30
url:schema:Frontier:Flanders:MeasurementPoint:31
url:schema:Frontier:Flanders:MeasurementPoint:32
url:schema:Frontier:Flanders:MeasurementPoint:33

APWNROO
NNNNN

lastDeviceCheck timeValue lastUpdateOfDeviceInformation \
2022-10-26T13:35:00+01:00 2022-10-26T14:36:14+02:00
2022-10-26T13:35:00+01:00 2022-10-26T14:36:14+02:00
2022-10-26T13:35:00+01:00 2022-10-26T14:36:14+02:00
2022-10-26T13:35:00+01:00 2022-10-26T14:36:14+02:00
2022-10-26T13:35:00+01:00 2022-10-26T14:36:14+02:00

BWNRS
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statusDescription faultDescription regularity \
0
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Figure 9-11: Exploration of the raw traffic data for Antwerp.

For the context of our case, we have transformed the data using DATEX Il attribute
tags and the dataframe created from reading the transformed XML is illustrated in
Figure 9-11. As part of the dataset for each sample, here are also two attributes which
contain nested data: the measured and elaborated constructs. An instantiation of
measured attribute as part of a sample is shown below:

[{“vehicleClass”: 1, “vehicleFlowRate”: 0, “averageVehicleSpeed”: 0,
“harmonicSpeed”: 252}, {“vehicleClass”: 2, “vehicleFlowRate”: @, “averageVehicleSpeed”:
0, “harmonicSpeed”: 252}, {“vehicleClass”: 3, “vehicleFlowRate”: 0,
“averageVehicleSpeed”: 0, “harmonicSpeed”: 252}, {“vehicleClass”: 4, “vehicleFlowRate”:

Q, “averageVehicleSpeed”: Q, “harmonicSpeed”: 252}, {“vehicleClass”: 5,
“vehicleFlowRate”: @, “averageVehicleSpeed”: @, “harmonicSpeed”: 252}]

whereas for the elaborated, an example is shown below:

{"occupancy": @, "availabilityRate": 100, "restlessness": 0}

9.1.2.1.4 Data cleaning and filtering

In the pre-processing phase of our analysis, we employed a meticulous filtering
and cleaning process to ensure the integrity and applicability of the loop detector
data. Initially, we identified and rectified any anomalies in the data, such as outliers
or incomplete records. Subsequently, to streamline the dataset for more coherent
analysis, we aggregated the different vehicle categories into a single, consolidated
attribute. This means that we only kept the sum of vehicleFlowRate and the average

of the speed, in addition to the supplementary attributes mentioned above. This
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aggregation enables a more generalized assessment of traffic patterns while
maintaining the robustness of the data. Moreover, the dataset has been harmonized

to correspond with the corresponding data model.

9.1.2.1.5 Cleaned data characteristics

The cleaning and filtering process, as described in the previous section, has
resulted in a dataframe which contains the id of each sensor included the dataset, the
timeValue of the measurements, the averageVehicleSpeed (representing the speed
of the measured timestamp in that particular loop detector), the vehicleFlowRate and
occupancy(representing the flow of vehicles and occupancy respectively, measured
by the loop detector in that specific timestamp). Moreover, the attributes of
availabilityRate, regularity, faultDescription and statusDescription are included in the
dataframe. Figure 9-12 shows the final dataset after the cleaning, imputation and

aggregation process has been done.

id timeValue averageVehicleSpeed vehicleFlowRate occupancy availabilityRate regularity faultDescription statusDescription

0 139 2022-10-26T13:35:00+01:00 0.0 0.0 0 100 0 0 1

1 140 2022-10-26T13:35:00+01:00 35.2 1080.0 14 100 0 0 1

2 141 2022-10-26T13:35:00+01:00 50.8 1260.0 14 100 0 0 1

3 142 2022-10-26T13:35:00+01:00 25.2 1680.0 1 100 0 0 1

4 143 2022-10-26T13:35:00+01:00 20.2 360.0 10 100 0 0 1
2080918 4203 2022-10-31T23:57:00+01:00 37.4 360.0 2 100 0 0 1
2080919 4204 2022-10-31T23:57:00+01:00 0.0 0.0 0 100 0 0 1

Figure 9-12: Cleaned data characteristics for Antwerp dataset.

9.1.2.1.6 Data transformation

After the cleaning and filtering process, it was necessary to transform the loop
detector data and split the dataset in three distinct datasets, for speed, flow and
occupancy respectively. Moreover, resampling of the dataset every 5 minutes has

been performed. The datasets are shown in Figure 9-13, Figure 9-14 and Figure 9-15.
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id 1104 1105 1106 1107 1112 1113 '\
timeValue

2022-10-27 00:00:00+01:00 19.200000 0.00 42.88 0.00 16.280000 4,68
2022-10-27 00:05:00+01:00 33.560000 5.16 22.56 0.00 34.320000 9.96
2022-10-27 00:10:00+01:00 31.040000 9.24 23.08 4.80 41.240000 4,24
2022-10-27 00:15:00+01:00 15.120000 4.72 34.20 9.88 19.840000 3.84
2022-10-27 00:20:00+01:00 19.320000 5.16 10.32 0.00 22.760000 0.00

Figure 9-13: Transformation of traffic dataset of Antwerp - speed.

id 1104 1105 1106 1107 1112 1113 1114 \

timeValue

2022-10-27 00:00:00+01:00 75.0 0.0 192.0 0.0 60.0 12.0 75.0

2022-10-27 00:05:00+01:00 156.0 12.0 72.0 0.0 144.0 24.0 132.0

2022-10-27 00:10:00+01:00 120.0 36.0 108.0 12.0 156.0 12.0 180.0

2022-10-27 00:15:00+01:00 48.0 12.0 144.0 24.0 60.0 12.0 36.0
0.0 84.0 0.0 84.0

2022-10-27 00:20:00+01:00 84.0 12.0 24.0

Figure 9-14: Transformation of traffic dataset of Antwerp - flow.

id 1104 1105 1106 1107 1112 1113 \

timeValue

2022-10-27 00:00:00+01:00 1.0 0.0 1.600000 0.0 0.8 0.000000

2022-10-27 00:05:00+01:00 1.0 0.0 0.400000 0.0 1.0 0.000000

2022-10-27 00:10:00+01:00 1.2 0.0 0.400000 0.0 1.2 0.000000

2022-10-27 00:15:00+01:00 0.6 0.0 1.000000 0.0 0.6 0.000000
0.8 0.0 0.0 1.0

2022-10-27 00:20:00+01:00 0.200000 0.000000

Figure 9-15: Transformation of traffic dataset of Antwerp - occupancy.

Moreover, in order to align the loop detector dataset with the structure of the
respective incidents dataset, which involves segments and not point locations, we
utilized the Geopandas library to spatially join the point-based detector data with the
segment-based incident records. This geospatial analysis required precise mapping of
loop detector coordinates, as provided by stakeholder operators in corresponding
CSV files, to the predefined road segments where incidents were catalogued. The
alignment process ensured that each loop detector's data was accurately associated
with the corresponding road segment, facilitating a direct comparison between traffic
conditions and incident occurrences. For visualization purposes, and to validate the
accuracy of our transformation, we employed the Folium library to map the loop
detectors onto an interactive map, overlaying this with the incident segments to
confirm the correctness of the alignment. This meticulous approach enabled a robust

spatial analysis, ensuring that traffic patterns could be analyzed within the exact
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context of incident locations. The point-based dataset has thus been transformed to

82 respective segments. (41 per direction), as illustrated in Figure 9-16.
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Figure 9-16: Mapping of loop detectors to segments for Antwerp.

The final format of the three created distinct datasets for speed, flow and

occupancy is illustrated in respectively.

timeValue

2022-10-27
2022-10-27
2022-10-27
2022-10-27
2022-10-27

timeValue

2022-10-27
2022-10-27
2022-10-27
2022-10-27
2022-10-27

88004568 2347002507 2453002822 2507002627 \
00:00:00+01:00 17.89 8.24 28.38 9.33
00:05:00+01:00 21.63 13.38 21.36 10.27
00:10:00+01:00 18.02 12.14 11.28 6.95
00:15:00+01:00 20.10 17.22 13.50 12.32
00:20:00+01:00 15.53 16.66 12.72 12.11
Figure 9-17: Final traffic dataset for Antwerp using segments - speed.

88004568 2347002507 2453002822 2507002627 \
00:00:00+01:00 122.67 24.0 102.0 33.00
00:05:00+01:00 150.67 48.0 114.0 36.00
00:10:00+01:00 112.00 36.0 37.5 21.00
00:15:00+01:00 129.33 72.0 66.0 54.00
00:20:00+01:00 113.33 60.0 36.0 45.75

Figure 9-18 Final traffic dataset for Antwerp using segments - flow.
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88004568 2347002507 2453002822 2507002627 \

timeValue

2022-10-27 00:00:00+01:00 0.80 0.10 0.40 0.10

2022-10-27 00:05:00+01:00 1.18 0.60 0.80 0.45

2022-10-27 00:10:00+01:00 0.87 0.40 0.12 0.25

2022-10-27 00:15:00+01:00 0.89 0.70 0.40 0.35
0

2022-10-27 00:20:00+01:00 .69 0.40 0.20 0.35

Figure 9-19 Final traffic dataset for Antwerp using segments - occupancy.

9.1.3 Labelled Incidents Dataset

The labelled incidents dataset is extremely important for the incident detection
task’s evaluation, since it constitutes the ground truth on which the performance

metrics of our models will be based.

9.1.3.1 Athens Case Study

9.1.3.1.1 Data collection

The end-user partner, Attikes Diadromes, has provided us with an Excel file
containing information about the incidents which had been registered in Attiki Odos
from October 2020 until April 2022. This dataset is used in conjunction with the
corresponding historical data from IDL sensors obtained from Attiki Odos, in order to

build the initial data-driven models for incident detection in this use case.

Regarding real-time collection of incidents, the users/operators are able to insert
incidents happening in real-time in the system through the dashboard developed,
thus this constitutes another way of integrating new incidents and fusing those within

this dataset.

9.1.3.1.2 Raw data characteristics

As explained in Chapter 9.1.1.1.16, the historical labelled incidents dataset
provided for the task of incident detection consists in an excel file with 34652
observations and 34 feature columns. Columns were translated to English from Greek
to grasp the meaning of each tagged feature. The file was converted to a Python
pandas data frame for exploratory analysis, and a unique values’ analysis was carried

out. The main source of labelled incidents came from a closed-circuit television (CCTV)
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set (a total of 6489), branches A and E had the highest amount of recorded incidents
(13829 and 13757 respectively), pk-points were annotated in the dataset (but there
is a lack of loop detectors specifications), start and end time of the incident was
annotated together with the queue length in number of cars. However, some
inconsistencies were also noted, for instance, incidents that had no impact to traffic

also appeared as labelled incident.

In the following figures, some of the outcomes of the Exploratory Data Analysis

regarding the timespan of the data can be found:

count

year month
2020 10 1839
11 1138
12 1148
2021 1 1372
1244
1314

d ON

1524
5 2065

6 2534

7 2687

8 2100

9 2141

10 2106

1 2107

12 2132

2022 1 1598
1814

1767

£ )

2020

Figure 9-20: Traffic incident distribution per year and per month.
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Figure 9-21: Yearly distribution of traffic incidents.

Below in Figure 9-22, the histogram is showing the distribution of incidents in May

2021, where each bar represents the number of incidents on a particular day.

Number of Incidents in May 2021

Number of Incidents

Figure 9-22: Distribution of number of reported incidents in Attiki Odos - May 2021.

9.1.3.1.3 Data cleaning and filtering
As soon as we have managed to collect the data and derived some first
impressions on them through Exploratory Data Analysis, the next step was to perform

data cleaning.

One of the columns of this dataset referred to the timestamp of the recorded
incident. We have observed that two observations between January and October
2020 were included, which was probably due to an error in the dataset collection,

therefore, these two observations were ultimately discarded.
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Then, in order to proceed with the filtering of the incidents which actually had an
impact on the traffic state of the network, we examined correlations between
different features/columns. We have tried various combinations, though in the next
paragraphs we are going to briefly explain the most significant ones, which were

included in the filtering process.

From Figure 9-23, we have observed that he vast majority of the observed
incidents stemmed from the CCTV cameras. (For completeness reasons, we state that
the sources as illustrated on the Y-axis also include 1024 telephone number,

Emergency Roadside Telephones (ERT), traffic police, Interamerican and others).

YINIOE

1024

ERT

TPOXAIA

ccrv [ weverimmne s 0 0w ‘

HNOAIA

I
I
G4S I
|
I

source

NTERAMERICAN

I

I
AKYKA I
| |
0

50 100 150 200 250 300
cue_length_time

Figure 9-23: Queue length time in relation to the information source of incidents.

From Figure 9-24 and Figure 9-25, we observe that most of the observed incidents
belong to the type 1 - Traffic Congestion and 4D - Traffic accident ,and that the
columns containing information about the queue length time and queue length of the
cars demonstrate a correlation between them. All types of incidents present in the

labelled incidents dataset of the Athens use case are shown in Table 9-6.
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4A - EMMNOAIO-EKPOH
4F - KINOYMENOZ KINAYNOZ
4C - BAABH OXHMATOZ

4E - MH EZOYZIOAOTHMENOZ XPHITHEZ
o

4G - AOINA ZYMBANTA (AZTYNOMIA)

1 - KYKAODOPIAKH IYM®OPHIH I—_—l +

4D - TPOXAIO ATYXHMA | ‘

5A - MAPANOMH EIZOAOZ |

0 50 100 150 200 250 300
cue_length_time

Figure 9-24: Queue length time in relation to the incident type.

4A - EMMOAIO-EKPOH

4F - KINOYMENOZ KINAYNOZ

4E - MH EZOYZIOAOTHMENOZ XPHITHZ
@

4G - AOINA ZYMBANTA (AZTYNOMIA)

1 - KYKAODOPIAKH ZYM®POPHIH -—I 1] " L ¢+ +

4D - TPOXAIO ATYXHMA | +

4C - BAABH OXHMATOZX |

5A - MAPANOMH EIZOAOZ |

0 2000 4000 6000 8000
cue_length_cars

Figure 9-25: Queue length of cars (in meters) in relation to the incident type.

Table 9-6: Types of incidents in the Athens labelled incident dataset.

TYPE SUBTYPE
1 - TRAFFIC CONGESTION 1.A-DUETO AN INCIDENT

1.B - DUE TO TRAFFIC LOAD

2 - EXTREME WEATHER 2.A - HEAVY RAIN
EVENTS

2.B-SNOW
4A - OBSTRUCTION- 4A.A - OUTFLOW
OUTFLOW

4A.B - DEAD OR INJURED ANIMAL

4A.C - LARGE OBJECT

4B - ABANDONED VEHICLE 4B. ABANDONED VEHICLE
4C - VEHICLE FAILURE 4C.A - MECHANICAL FAILURE
4C.B - FUEL
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4D - TRAFFIC ACCIDENT

4E - UNAUTHORIZED USER

4C.C-TIRES

4D.X - LEFT DEFLECTION

4D.D - NTOMETOPIC COLLISION

4D.Q1 - IMPACT ON TOLL EQUIPMENT

4D.0 - OVERTURN ON THE ROAD

4D.B - SIDE-FRONTAL COLLISION

4D.Q2 - OBSTACLE IMPACT

4D.C - SIDE COLLISION

4D.N - RIGHT COLLISION

4D.Q3 - DROPPING OF ITEMS FROM THE FRONT
4D.P - FIRE

4D.T - COLLISION OF 3 VEHICLES (KARAMBOLA)
4D.X - IMPACT ON PERMANENT MARKING
4D.Y - IMPACT ON A TEMPORARY MARKING
4D.L - DRIFTING OF ANIMAL

4D.F - ON A PARKED VEHICLE

4D.Y - COLLISION OF 4 VEHICLES (KARAMBOLA)
4D.0Q4 - OUTFLOW FROM A VEHICLE IN FRONT
4D.Z - ON A VEHICLE THAT MAKES A FORCED STOP
4D.S -OTHER

4D.TH - IN PILLAR OR TREE

4D.Y1 - COLLISION OF MORE THAN FOUR VEHICLES
(KARABOLA)

4E.A - PEDESTRIAN
4E.C - EXCESS HEIGHT
4E.D - LOW SPEED
4E.E - OTHER

4E.B - CYCLIST
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4E.F - OTHER
4F - DANGEROUS RISK 4F.C - MOVING ANIMAL
4F.B - POOR LOADING
4F.A — DIFFERENT TRAFFIC DIRECTION
4F.D - OTHER
4G - OTHER EVENTS (POLICE) 4G.A - BOMBING THREAT
4G.C - OTHER CAUSE
4L - FIRE AT KEP 4L.A - TECHNICAL DEFECT

5A - ILLEGAL ENTRY 5A.A - AT ATOLL STATION

We have also examined the distribution of the queue length of cars across
different ranges of values. We can see that the vast majority are concentrated
between 0 and 1500, but there are several outliers which expand until 12000 meters,

as shown in the Figure 9-26 below:

(-0.001, 100.0] 614
(100.0, 200.0] 113
(200.0, 300.0] 73
(300.0, 400.0] 67
(400.0, 500.0] 82
(500.0, 1000.0] 228
(1000.0, 1500.0] 63
(1500.0, 2000.0] 82
(2000.0, 3000.0] 132
(3000.0, 4000.0] 100
(4000.0, 5000.0] 63
(5000.0, 10000.0] 126
(10000.0, 12000.0] 14

Name: cue_length cars, dtype: int64

Figure 9-26: Distribution of queue length of cars in intervals.

Based on the above constatations, we have decided to filter the incidents for the

initial preliminary experiments according to the following rules:

- We have filtered the incidents based on their type, namely 1 - Traffic
Congestion and 4D - Traffic accident and the rest of the values were not
included in the labelled incidents dataset due to the fact that they do not affect

the road and therefore will not be captured in our preliminary experiments.
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- Finally, the incidents have been filtered on the queue length of the cars
observed.

o As shown in the above Exploratory Data Analysis regarding the
percentile distribution of the queue length, we identified 200 meters
as a threshold for the filtering.

o After communication with stakeholders, we received feedback to
reduce the threshold for queue length size to 50 (instead of 200 m.
which was our initial proposal). This proposal was based on their
expertise and justified by the fact that it is extremely rare to have
queues of 200 meters in Attiki Odos, even when an unplanned incident

would occur.

9.1.3.1.4 Data transformation
After the data cleaning and the filtering, the dataset needed to be transformed in
a way that it could be fed in the Machine Learning algorithms, as the labels in case of

Supervised training, or for evaluation in the case of Unsupervised methods.

Based on the start and end location of the incidents which was specified in the
relative columns of the dataset, we have created a transformer script which maps
these locations to the closest sensor Unit IDs. This permits us to have a mapping
between the incident dataset and the flow, speed and occupancy observations
gathered by the loop sensors, based on the id of each of those. There were difficulties
involved in the sense that for the case of junctions, it has been quite complex to
identify the IDs of the sensors in the affected areas, since there was no direct link
between the exact location and several calculations were required to get an
approximation. Finally, we were able to transform the filtered incidents dataset for
branches A and E for the month of May in 5-minute intervals where rows refer to
timestamps and columns were the ids of the loop sensors, and the values of the matrix

were 1 if this location and time corresponds to an incident occurrence, or 0 otherwise.

9.1.3.1.5 Limitations
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We would like to specify the fact that there are limitations to the presented steps,
specifically regarding data filtering, along with inherent limitations stemming from the

collected data itself, some of which are briefly discussed below:

- lItis possible that some of the accidents are not registered. From the analysis,
all of the incidents have been recorded manually and most of them have been
identified through CCTV cameras.

- Another possibility is that perhaps the recorded timings are not accurate. It is
possible that an event which had happened on a timestamp t, is recorded on
a later timestamp. However, this has a severe impact on the evaluation of our
algorithms.

- Last but not least, the process which we have employed for filtering could be
prone to errors. The selection criteria were based on stakeholders’ expertise
and the dataset characteristics, albeit there is a possibility that some incidents
which had a severe impact to the traffic state are neglected and not taken into

account.

9.1.3.2 Antwerp Use Case

Together with the loop detector dataset which contain information of the traffic
characteristics, we have managed to acquire an Excel file with details for the incidents
which had been registered in E313 Antwerp highway. The labelled incidents dataset
includes 5774 incident occurrences in total, spanning from 2011-04-26 11:29:19.647
until 2023-08-29 13:29:52.907 and more specifically for our case and the dates
selected (2022-10-27 to 2023-08-29), it contains 526 incidents for 2023 and 136
incidents for 2022. This dataset contains the following fields: segment _id, incident_id,
registration_time, duration, direction and location of the incident (kmpt1 and kmpt2).
Based on the start timestamp and duration of the incidents specified in the relative
columns of the dataset, we have mapped these timestamps to the corresponding start
and end time. However, it is impossible to perform further filtering of this dataset
based on its impact in traffic or severity from the information available. Thus, all the

incidents reported in the dataset are kept in the evaluation dataset. Finally, the
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filtered incidents dataset has been transformed in 5-minute intervals where rows

refer to timestamps and columns were the ids of the segments and the values of the

matrix were 1 if this location and time corresponds to an incident occurrence, or 0

otherwise.

9.1.3.2.1 Data collection

The respective data provider from Verkeercentrum provided us with an Excel file

containing information about the incidents which had been registered in E313

Antwerp highway. This dataset is used in conjunction with the corresponding

historical data from ILD sensors obtained.

9.1.3.2.2 Data characteristics

The labelled incidents dataset includes 5774 incident occurrences in total,

spanning from 2011-04-26 11:29:19.647 until 2023-08-29 13:29:52.907 and more

specifically for our case, it contains 110 incidents for 2023 and 530 incidents for 2022.

sg_id incident_number registration_time duration segment_id ident8 kmpt1 kmpt2 shape sl

2019-05-21 LIN

8004568 6158490 89.17 88004568 A0130001 0.0 0.491 0x8A7A00000104170000000083C04A2AFA024100234A7B... (155461.286
15:39:24.907

211752.6¢

2022-02-23 LIh

8004568 7869905 75.05 88004568 A0130001 0.0 0.491 0x8A7A00000104170000000083C04A2AFA024100234A7B... (155461.286
12:28:34.740

211752.6¢

2015-11-23 Iy

8004568 2148535 ey 88.58 88004568 A0130001 0.0 0.491 0x8A7A00000104170000000083C04A2AFA024100234A7B... (155461.286
05:27:52.947

211752.6¢

2017-12-17 LIn

8004568 4577054 . 25.22 88004568 A0130001 0.0 0.491 0x8A7A00000104170000000083C04A2AFA024100234A7B... (155461.286
10:35:32.080

211752.6¢

2018-01-28 e

8004568 4671928 06:54:17.827 34.89 88004568 A0130001 0.0 0.491 0x8A7A00000104170000000083C04A2AFA024100234A7B... (155461.286

T 211752.6¢

Figure 9-27: Sample of incident dataset for Antwerp.
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sg_id

0 88004568 6158490 2019-05-21

1 88004568 7869905 2022-02-23
2 88004568 2148535 2015-11-23
3 88004568 4577054 2017-12-17
4 88004568 4671928 2018-01-28
5877 3848003084 9259959 2023-07-23
5878 3848003084 9321753 2023-08-23
5879 2410002412 9268637 2023-07-28
5880 2410002412 9310290 2023-08-18
5881 2776005063 9337991 2023-08-29

kmptl kmpt2 year month day
0 0.000 0.491 2019 5 21 15:39:
1 0.000 0.491 2022 2 23 12:28:
2 0.000 0.491 2015 11 23 05:27:
3 0.000 0.491 2017 12 17 10:35:
4 0.000 0.491 2018 1 28 06:54:
5877 9.471 14.109 2023 7 23 20:34:
5878 9.471 14.109 2023 8 23 09:48:
5879 3.249 3.832 2023 7 28 12:03:
5880 3.249 3.832 2023 8 18 15:02:
5881 57.161 61.651 2023 8 29 08:00:
day_of_week weekday_or_weekend \

0 1 Weekday

1 2 Weekday

2 0 Weekday

3 6 Weekend

4 6 Weekend

5877 6 Weekend

incident_number

registration_time duration ident8 \
39:
28:
27:
35:
54:

15:
12:
05:
10:
06:

20:
09:
12:
15:
08:

24.
34.
52.
32.
17.

50.
27.
43.
05.
30.

34:
48:
03:
02:
00:
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34.
52.
32.
17.
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30.

907
740
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080
827
847
913
043
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150

time

907000
740000
947000
080000
827000
847000
913000
043000
467000
150000

89.
75.
88.
25.
34.

10.
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21.
7.
38.

17
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01
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95
02
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Figure 9-28: Transformed incident dataset for Antwerp as a dataframe.

9.1.3.2.3 Data cleaning and filtering

1

[

\

After having created supplementary fields based on the information available in

our initial raw dataset, we performed filtering in order to limit our incident

occurrences to the same time period when the loop detector dataset is available,

specifically from 2022-10-27 until 2023-08-29. For this time period, in the following

Figures you can see some insights drawn from the incident dataset.
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Figure 9-29: Histogram depicting number of accidents per segment in Antwerp.
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Figure 9-30: Top 5 days and top 5 sensors with

most recorded incidents respectively.

9.1.3.2.4 Data transformation

Sensor & Segment 1D

As specified in the previous section regarding the use case of Athens, similarly,

after the data cleaning and the filtering, the dataset needed to be transformed in a

way that it could be fed in the Machine Learning algorithms.

Based on the start timestamp and duration of the incidents specified in the

relative columns of the dataset, we have created a transformer script which maps
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these timestamps to the corresponding start and end time. Finally, we were able to
transform the filtered incidents dataset for directions 1 and 2 in 5-minute intervals
where rows refer to timestamps and columns were the ids of the segments and the
values of the matrix were 1 if this location and time corresponds to an incident

occurrence, or 0 otherwise.

497003192 2277002279 2279003079 2344006155 2410002412 2412004567 24 77 26 44 2622002624 2624002614 26640037

2022-

10-27 0 0 0 0 0 0 0 0 0 0 0
00:00:00

2022-

10-27 0 0 0 0 0 0 0 0 0 0 0
00:05:00

2022-

10-27 0 0 0 0 0 0 0 0 0 0 0
00:10:00

2022-

10-27 0 0 0 0 0 0 0 0 0 0 0
00:15:00

2022-

10-27 0 0 0 0 0 0 0 0 0 0 0
00:20:00

2023-

08-29 0 0 0 0 0 0 0 0 0 0 0
23:35:00

2023-

08-29 0 0 0 0 0 0 0 0 0 0 0

23:40:00

Figure 9-31: Final incident dataset for Antwerp after necessary transformations.

9.1.3.2.5 Limitations
We would like to specify the fact that there are limitations to the presented steps,
specifically regarding data filtering, along with inherent limitations stemming from the

collected data itself, some of which are briefly discussed below:

- ltis possible that some of the accidents are not registered, since from the input
received from the stakeholder operators, the incidents have been recorded
manually.

- Another possibility is that perhaps the recorded timings are not accurate. It is
possible that an event which had happened on a timestamp t, is recorded on
a later timestamp. However, this has a severe impact on the evaluation of our

algorithms.

256



9.2 Data Preparation Process

The loop detector datasets need to be prepared in order to be fed to our
methodology. First of all, data cleaning is performed, and the respective features are
extracted. Moreover, the loop detector datasets for both case studies suffer from
imbalance issues, as the majority of samples belong to the Normal class. The challenge
of working with imbalanced datasets is that most machine learning techniques will
ignore, and in turn have poor performance on, the minority class, although it is the
performance on the minority class that is mostly important. To address this issue, the
Synthetic Minority Oversampling Technique (SMOTE) (Chawla, Bowyer, Hall, &
Kegelmeyer, 2002) and Tomek link (Tomek, 1976) is frequently employed. In our
cases, we have chosen to combine SMOTE with Tomek links technique, as it has been
shown that this method is much superior compared with that of using only one of the
two (Zeng, Zou, Wei, Liu, & Wang, 2016) (Swana, Doorsamy, & Bokoro, 2022).
Afterward, the data were normalized by the Robust Scaler, which scales the features
using statistics that are robust to outliers. Table 9-7 summarizes the steps involved in

the data-preprocessing process used in this research.

Table 9-7: Preprocessing operations applied in the loop detector datasets.

Preprocessing Details
Operation

Data cleaning | Several filters were applied to:

e remove detectors which were not in the station aggregation

file,

e flow reliability outliers,

e flow-occupancy-speed mismatches,

e detectors with more than 50% not a number entries (NaNs),

e stuck values (constant readings across time),

e jisolated values,

e and atypical profiles.
Several types of imputation of missing/unreliable data were carried out
on a portion of the readings, namely: polynomial, time k-nearest
neighbor (KNN), free-flow speed imputation, spatial KNN, PPCA-based
imputation, and weekday-based imputation.
Resampling Resampling to 5-minute intervals.

Features The following features have been extracted for the classification task:
extraction Traffic_Variables*1, Upstream and downstream Traffic_Variables for
adjacent detectors, Mean upstream and downstream Traffic_Variables
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of detector {5, 10, 15} minutes before, Mean upstream and
downstream Traffic_Variables of detector {5, 10, 15} minutes after,
Mean upstream and downstream Traffic_Variables of adjacent
detectors {5, 10, 15} minutes before, Mean upstream and downstream
Traffic_Variables of adjacent detectors {5, 10, 15} minutes after,
time_of day, day_of week, is_weekend, is_holiday.

For the regression task, the same set of features have been extracted,
with the exception of: Mean upstream and downstream
Traffic_Variables of detector {5, 10, 15} minutes after and Mean
upstream and downstream Traffic_Variables of adjacent detectors {5,
10, 15} minutes after.

*1{Flow} for Athens case study; {Flow, Occupancy, Speed} for Antwerp

case study.
Data Balancing | SMOTE with Tomek Link.
*2 *2 Only used for the classification task

Normalization | Robust Scaler.

Regarding the processing of the target dataset, the labelled incidents’ dataset, as
it has thoroughly been described per case study, we would like to acknowledge the
existence of certain limitations in the steps outlined, particularly concerning data
filtering, as well as inherent limitations associated with the collected data itself.
Several factors contribute to these limitations, which are discussed herein. Firstly,
some incidents may not have been captured and registered within the dataset.
Although our analysis indicates that all incidents were recorded manually, with most
being identified through CCTV cameras, the potential for incomplete incident
registration remains. Secondly, there is a possibility of inaccurate timing in the
recorded incidents. It is feasible that an event occurring at a specific timestamp could
be recorded or logged at a later timestamp. Such inaccuracies have notable
repercussions on the evaluation of our algorithms. Lastly, the filtering process we
employed is not immune to errors. While the selection criteria were based on the
expertise of stakeholders and dataset characteristics, there is a chance that some
incidents with significant traffic implications may have been inadvertently overlooked

and not accounted for in our analysis.

9.2.1 Further processing
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Apart from the steps of the Machine Learning pipeline, which has been presented
in Chapter 8.1.1, we are presenting in detail some steps we have performed based on

the nature of the data and the problem we are addressing.

Over sampling

Due to the scarcity of traffic data under incident conditions, the dataset of incident
and non-incident conditions is imbalanced. To resolve the imbalanced dataset, an
over-sampling strategy is performed to the incident dataset for the Supervised
learning task. The over-sampling strategy balances the dataset by increasing the
number of minority class samples. The synthetic minority oversampling technique
(SMOTE) is a typical over sampling algorithm. For each instance in the minority class,
the algorithm calculates the Euclidean distance between this instance and other
instances and obtains its k-nearest neighbors. Then, the sampling ratio is chosen
according to the imbalance ratio of the dataset. For each minority instance, several
instances are selected from its k-nearest neighbors randomly. For this reason, we
have utilized the Python imbalanced-learn package to run the SMOTE algorithm on
the dataset, for the supervised learning task, for instance for the SVM classification of

incident versus non-incident class.

Data normalization

In Neural Networks, the input vectors should be normalized before using them
when the input vectors are large values, otherwise they cannot be categorized
properly because of the properties of activation function. For SVM models, the

normalization of input vectors is also required.

In the transport sector, Z-normalization and Minmax normalization are used. To
reduce the influence of some extreme values, Z-score is used to transform traffic data.
The Z-score normalizes traffic data by subtracting the mean and scaling to unit
variance. In our case, we have used the scikit-learn python package, and specifically

the MinMaxScaler(), to transform the values accordingly.
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Feature Engineering

In literature, it has been shown that finding the temporal correlations of traffic

flow is essential when building a traffic incident detection model. Therefore,

extracting the difference between normal traffic conditions and risky traffic

conditions is critical. Moreover, knowing the spatial correlations of traffic flow is also

important to the incident detection model. Based on shock wave theory, it can be

inferred that some time must elapse for the influence of an incident to spread. Thus,

traffic flow parameters obtained from adjacent upstream and downstream detectors

should also be considered because traffic flow near an incident is more sensitive than

is more distant traffic flow. The traffic flow parameters of upstream or downstream

detectors change earlier; therefore, considering these variables can help the model

detect incidents with less delay. (Li, Lin, Du, Yang, & Ran, 2022)

Table 1. Variables selected using the proposed temporal and spatial rules (Li et al. 2020).

Variable Name

Speed at the upstream detector just after the incident s_up_0
Volume at the upstream detector just after the incident v_up_0
Occupancy at the upstream detector just after the incident o_up_0
Speed at the downstream detector just after the incident s_dn_0
Volume at the downstream detector just after the incident v_dn_0
Occupancy at the downstream detector just after the incident o.dn 0
Speed difference between the upstream and downstream detectors just after the incident s_up_dn
Volume difference between the upstream and downstream detectors just after the incident v_up_dn
Difference in occupancy between the upstream and downstream detectors just after the incident o_up_dn
Speed at the upstream detector t before the incident s_up_t

Volume at the upstream detector t before the incident v_up_t

Occupancy at the upstream detector t before the incident o_up_t
Speed at the downstream detector t before the incident s dn_t

Volume at the downstream detector t before the incident v_dn_t
Occupancy at the downstream detector t before the incident o_dn_t
Mean upstream traffic speed during the 5 min before the incident m_s_up
Mean downstream traffic speed during the 5 min before the incident m_s_dn
Mean upstream traffic volume during the 5 min before the incident m_v_up
Mean downstream traffic volume during the 5 min before the incident m_v_dn
Mean upstream occupancy during the 5 min before the incident m_o_up
Mean downstream occupancy during the 5 min before the incident m_o_dn
Standard deviation of the upstream traffic speed during the 5 min before the incident s_s_up

Standard deviation of the downstream traffic speed during the 5 min before the incident s_s_dn
Standard deviation of the upstream traffic volume during the 5 min before the incident s_v_up
Standard deviation of the downstream traffic volume during the 5 min before the incident s_v_dn
Standard deviation of the upstream occupancy during the 5 min before the incident s_o_up
Standard deviation of the downstream occupancy during the 5 min before the incident s_o_dn

Note: In the table, t equals: 305,605,905, 1205, 1505, 18055, 2105, 24055, 2705, 300 s.

Figure 9-32: List of selected features, as described by (Li, Sheng, Du, Wang, & Ran., 2020).
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In the case of Athens, due to the limitations which have been discussed, we have
selected the following features to be used as inputs in the Machine Learning

algorithms:

- Flow

- Upstream and downstream flow for the adjacent detectors

- Mean upstream and downstream flow of the detector 5 minutes before

- Mean upstream and downstream flow of the detector 5 minutes after

- Mean upstream and downstream flow of the adjacent detectors 5 minutes
before

- Mean upstream and downstream flow of the adjacent detectors 5 minutes
after;

whereas for Antwerp we have also included data for speed and occupancy

accordingly.

For the deep learning algorithms, we chose 5-time steps to make the sequences.
Hence, it is going to look at the 25 minutes before each point to train the model. In
the experiments, we select the traffic flow of the past 25 minutes, which is a time

sequence of 5 data points.

9.3 Evaluation of traditional ML models for unplanned

incidents

A thorough discussion of the results obtained in addition to a comparison of the

performance of the employed algorithms is presented in Chapter 9.7.1.1.
9.3.1 Athens Case Study

In Table 9-8, the evaluation for the methods used for detecting unplanned events

in Attiki Odos is illustrated.

Table 9-8: Evaluation of methods for detecting unplanned events in Athens (Attiki Odos) dataset.
Algorithm Precision Recall F1-Score

SVM (per timestamp) 0.58 0.97 0.64
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Isolation Forest (per timestamp) 0.012 0.44 0.023

BCNN (per timestamp) 0.012 0.94 0.025
WNN (per timestamp) 0.05 0.96 0.09
Autoencoder (per timestamp) 0.03 0.49 0.05
Bidirectional LSTM (per timestamp) 0.19 0.43 0.26
Random Forest (per timestamp) 0.95 0.64 0.71
Graph Neural Network (per timestamp) 0.66 0.48 0.555
AIMSUN (per timestamp) 0.08 0.50 0.14

9.3.2 Antwerp Case Study

In Table 9-9, the evaluation for the methods used for detecting unplanned events
in Antwerp E313 highway is illustrated. Aimsun’s methodology could not be tested in
this use case, as the model developed for the Antwerp use case was only suitable for

running offline simulations (as specifically requested by user partners of this use case).

Table 9-9: Evaluation of methods for detecting unplanned events in Antwerp (Highway E313) dataset.

Algorithm Precision Recall F1-Score
SVM (per timestamp) 0.62 0.96 0.753
Isolation Forest (per timestamp) 0.019 0.48 0.037
BCNN (per timestamp) 0.02 0.92 0.039
WNN (per timestamp) 0.07 0.94 0.130
Autoencoder (per timestamp) 0.03 0.48 0.056
Bidirectional LSTM (per timestamp) 0.23 0.47 0.301
Random Forest (per timestamp) 0.98 0.79 0.86
Graph Neural Network (per timestamp) 0.63 0.47 0.538
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9.4 Evaluation of AutoML Models for Unplanned Incident

Detection

The measures used to monitor the performance are those as discussed in Chapter
8.1.8. More precisely, for the unplanned incident detection using our developed
AutoML framework, the scoring function used to evaluate multiple machine-learning

algorithms uses the following metrics: precision, recall, and F1 score.

A thorough discussion of the results obtained in addition to a comparison of the

performance of the employed algorithms is presented in Chapter 9.7.1.2.

9.4.1 Athens Use Case

For the use case of Athens, the results are depicted in Table 9-10. We have made
the decision to compare the outcome of our methodology with an Unsupervised
method (Isolation Forest) and a data-driven AIMSUN algorithm (Torrent-Fontbona F.

, Dominguez, Fernandez, & Casas, 2023), already presented in the section 9.3.

Table 9-10: Comparison of our approach with sampled baseline methods - Athens.

Algorithm Precision Recall Fl-score
AutoML (per timestamp) 0.83 0.62 0.71
Isolation Forest (per timestamp) 0.012 0.44 0.023
AIMSUN (per timestamp) 0.08 0.50 0.14

The algorithm which has been selected as the optimal from our methodology is

the following:

LinearSVR(GradientBoostingRegressor(input_matrix, alpha=0.95, learning rate=1.0,
loss=huber, max_depth=1, max_features=0.6000000000000001, min_samples leaf=15,
min_samples_split=11, n_estimators=100, subsample=1.0), C=20.0, dual=False,

epsilon=0.001, loss=squared_epsilon_insensitive, tol=0.0001)
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Regarding the two baseline approaches, Isolation Forests are generally used in an
unsupervised manner and only require a few conditions to separate anomalies from
normal observations when compared to other methods which use basic distance and
density measures. There are several works in the field of AID which use Isolation
Forests, including (Zhu, Wang, Yan, Guo, & Tian, 2022). Their low linear time
complexity and small memory requirements aid in eliminating major computational
cost of distance calculation in all distance and density-based methods and can
perform well in a multi-dimensional feature space. For Aimsun’s baseline and the

incident detection approach, we invite the reader to consult Chapter 5.2.1.8.

9.4.2 Antwerp Use Case

For the use case of Antwerp, the results are depicted in Table 9-11. A decision to
compare the outcome of our methodology with a Supervised method (Support Vector
Machine) and a Generative Neural Network (AutoEncoder), already presented as part

of section 9.3

Table 9-11: Comparison of our approach with sampled baseline ML methods - Antwerp.

Algorithm Precision Recall F1-score
AutoML (per timestamp) 0.77 0.52 0.54
SVM (per timestamp) 0.62 0.96 0.753
Autoencoder (per timestamp) 0.03 0.48 0.056

The pipeline which has been selected as the optimal from our methodology is the

following:

Pipeline(steps=[(‘stackingestimator’,
StackingEstimator(estimator=GaussianNB())),
(‘decisiontreeclassifier’,
DecisionTreeClassifier(criterion="entropy’, max_depth=9,
min_samples_leaf=3, min_samples_split=7,
random_state=42))])
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Regarding the two baseline approaches, support vector machine (SVM) is a
supervised approach which is constructed from a unique learning algorithm that
extracts training vectors that lie closest to the class boundary and makes use of them
to construct a decision boundary that optimally separates the different classes of data
) (Cortes & Vapnik, 1995). Results from various studies have shown that SVM offers a
lower misclassification rate, higher correct detection rate, lower false alarm rate and
slightly faster detection time than other models in traffic incident detection (Yuan &
Cheu, 2003). An Autoencoder is a generative unsupervised deep learning algorithm
used for reconstructing high-dimensional input data using a neural network with a
narrow bottleneck layer in the middle which contains the latent representation of the
input data and have been used for Anomaly Detection tasks(for instance (Kopcan,
Skvarek, & Klimo, 2021), (Ashraf, et al., 2020)), by comparing the output from a
Decoder and the input to the Network and using a threshold, either manually set or
learnt from the data itself. If the loss value exceeds the threshold, then the instance

is categorized or classified as an anomaly.

9.5 Evaluation of advanced analytics-driven methodology

for planned incidents

A thorough discussion of the results obtained in addition to a comparison of the

performance of the employed algorithms is presented in Chapter 9.7.2.

In Figure 9-33, flow data for few selected detectors over the period of four days
for the use case of Athens and the speed, occupancy and flow for two days are
depicted in respectively, for the use case of Antwerp are illustrated in Figure 9-34.

From the plots, we can observe the following:

e There are apparent daily patterns in the measurement data, with peaks
corresponding to what might be morning and evening rush hours.

e Traffic values tend to be lower during the nighttime hours and higher during
the day, as it is expected.

e The highest variability in patterns is depicted in the occupancy dataset.
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o Different detectors show varying patterns, suggesting differences in traffic

behavior at these locations.

Data for Selected Detectors from 2020-10-01 08:00:00 to 2020-10-04 12:00:00
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Figure 9-33: Traffic flow for Athens’ data for a specific loop detector over a period of four days.
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Figure 9-34: Speed, flow and occupancy over selected segments over two days for Antwerp.

As mentioned previously in Chapter 5, using histograms can provide insights into
the distribution of traffic volumes or speeds. Figure 9-35 depict the average traffic
flow by day of the week and by hour for a specific sensor in Athens dataset, whereas
Figure 9-36 illustrates the average vehicle flow rate for all the sensors by hour for the
Antwerp dataset. The conclusion we can draw is that there are spikes in the morning
(between 8 and 10am) and in the afternoon (5-7pm) for the Athens use case, whereas
for the Antwerp case there is significant drop across all traffic observations between

18:00 and 07:00.
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Figure 9-35: Average traffic flow by day and by hour for Athens dataset.
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Figure 9-36: Average traffic flow by hour for Antwerp dataset.

In the following figures, we see two different types of visualisations of heatmaps.
For the Athens use case, we analyse the traffic flow and depict the values in a matrix
where x is the day of week and y the time of day, whereas for Antwerp for a selected
segment, we use the dates as y and the daytimes as x values. We can deduce that
weekdays have different traffic patterns compared to weekends and rush hours are
identified morning and evening rush hours on weekdays and late afternoon on
Sundays. Moreover, for Antwerp data, we identify the rush hour in the early afternoon

between 15:00 and 18:00 for the specific segment.

268



Speed

Average Speed by Hour of Day Average Occupancy by Hour of Day

10

Occupancy

0
CONMTMEreN NN ERRARARA CHNMTMOrRAgNNINEREARRAR

2022-10-27
2022-11-01
2022-11-06
2022-11-18
2022-11-23
20221128
2022-12-03
2022-12-13
2022-12-18
2022-12-23
2022-12-28
2023-01-02
2023-01-07
2023-01-12
2023-01-17
2023-01-22
2023-01-27
2023-02-01
2023-02-06
2023-02-11
2023-02-16
2023-02-21
2023-02-26
2023-03-03
2023-03-08

5, 2023-03-13

8 2023-03-18
2023-03-23
2023-03-28
2023-04-02
2023-04-07
2023-04-12
2023-04-17
2023-04-22
2023-04-27
2023-05-02
2023-05-07
2023-05-12
2023-05-31
2023-06-12
2023-06-21
2023-07-09
2023-07-14
2023-07-19
2023-07-24
2023-07-29
2023-08-03
2023-08-08
2023-08-13
2023-08-18
2023-08-23
2023-08-28

Hour of Day Hour of Day

Figure 9-37: Average Speed and Occupancy by hour of day - Antwerp.
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Figure 9-38: Heatmap of flow based on time and date - Antwerp.
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Traffic Flow Heatmap
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Figure 9-39: Heatmap of flow based on time and day of week - Athens.

In Figure 9-40 and Figure 9-41, we see two different types of visualisations of box
plots. For the Athens use case, we analyse the traffic flow and depict the values of a
specific sensor, whereas for Antwerp for all segments. By plotting box plots for traffic
volumes or speeds for different times of the day or days of the week, one can identify
variability and potential outliers. Periods with lower median speeds and high
variability might be indicative of congestion. The insights drawn are in line with our
previous analysis for rush hours, in addition to the fact that we notice quite a lot of
outliers, especially for the Athens case. This may be due to non-recurrent unplanned

incidents on specific dates during the analysed period.
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Hourly Variability for Flow Data - 3129
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Figure 9-40: Box plot depicting hourly variability for flow data for specific sensor - Athens.
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Figure 9-41: Box plot depicting hourly variability for all segments - Antwerp.

For Antwerp, we include a very rough analysis of those correlations indicating
positive correlations between all three traffic measurements as shown in Figure 9-42.
More fine-grained analysis can be made to deduce daily or weekly patterns and

identify congestion.
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Correlation Heatmap
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Figure 9-42: Correlation heatmap between all traffic observations for Antwerp use case.

By plotting two variables against each other, like traffic volume and speed, one
can visually identify patterns or relationships as part of the depicted scatter plot. A
downward trend in such a plot might indicate that as traffic volume increases, speeds
decrease, signalling congestion. For Athens, as explained above, this analysis is not
applicable. For Antwerp, such a coarse analysis is illustrated in Figure 9-43, where
each colour represents a different traffic segment, and in certain cases we can deduce
that in general high occupancy and low speed as shown in the left upper corner
indicate congestion. The rest of the scatter plots for Antwerp (occupancy vs flow and

speed vs flow) can be found in the below figures ( Figure 9-43 and Figure 9-44 ).
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Figure 9-43: Scatter plot for occupancy and speed - Antwerp.
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Figure 9-44: Scatter plot flow vs speed and occupancy - Antwerp.
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The STL decomposition and rolling mean and standard deviation analysis have
been performed for the Athens and Antwerp datasets and are illustrated in Figure

9-45 & Figure 9-46 and Figure 9-47 & Figure 9-48 respectively.
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Figure 9-45: STL decomposition - Athens.
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Figure 9-46: Rolling mean and standard deviation - Athens.
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Figure 9-47: STL decomposition - Antwerp.
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Figure 9-48: Rolling mean and standard deviation - Antwerp.
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Moreover, as part of the analysis, to verify that we have managed to capture
the time patterns correctly we predict the traffic flow using ARIMA models. These
forecasts for both Athens and Antwerp case are shown in Figure 9-50 and Figure

9-53 respectively.

For Athens and Antwerp, the ACF and PACF are shown in the images below, in

addition to the predictions using ARIMA models.
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Figure 9-49: ACF and PACF for Athens.
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ARIMA Forecast vs Actuals with Confidence Intervals
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Figure 9-50: Forecast using ARIMA for Athens use case.
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Figure 9-51: ACF for Antwerp dataset.
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Figure 9-52: PACF for Antwerp dataset.
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ARIMA Forecast vs Actuals with Confidence Intervals
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Figure 9-53: Forecast using ARIMA for Antwerp use case.

Regarding more advanced data-driven methods, we have selected to use and fine-
tune a LSTM on the Athens and Antwerp datasets, for a longer and shorter period as
test sets, to get an idea of how well the model has learnt the time patterns for a
specific loop detector or segment. The predictions are illustrated in Figure 9-54 and
Figure 9-55 respectively. As it is evident, the model has managed to capture the data
in a very good manner, since it also includes as features the time of day, workday, day

of week except for the traffic measurements.
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Figure 9-54: Actual vs Predicted values for Athens using LSTM.
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Figure 9-55: Actual vs Predicted values for Antwerp using LSTM.
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Specifically, for our loop detector data we have employed k-means clustering. This

algorithm partitions data into 'k' number of clusters. The elbow method is used to

identify the optimal number of clusters and the k-means clustering is shown for

Athens and Antwerp in the figures below (Figure 9-56 and Figure 9-57).
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9.6 Evaluation of Explainability and HITL Integration

9.6.1 Integration of Explainability features

When incidents like accidents, road blockages, or congestion occur, it's vital for
operators and stakeholders to detect them quickly. However, merely identifying an
incident isn't enough; understanding the "why" behind incident detection is crucial.
This is where explainability comes in. An explainable system offers insights into the
decision-making process, ensuring that human operators can trust the technology.
Explainability ensures accountability, reduces false positives, and allows for better-
informed interventions, all of which are pivotal in critical applications like

transportation.

The concepts of LIME (Locally Interpretable Model-agnostic Explanations) and
SHAP (SHapley Additive exPlanations) are central to the domain of explainable
artificial intelligence (XAl), providing mechanisms to interpret the predictions made
by machine learning models, as explained in the previous section. Thus, we have
incorporated both LIME and SHAP libraries and performed various experiments, the

results of which are detailed as part of this section.

The SHAP diagrams included in our analysis serve different purposes, each offering

a unique perspective on model interpretability:

e SHAP Waterfall Plot: This plot shows how the features contribute to a single
prediction for an individual instance. Starting from the base value (the mean
prediction over the dataset), the waterfall plot sequentially adds or subtracts
the SHAP values for each feature, illustrating how the model arrives at the final
prediction. This plot is particularly useful for understanding the precise factors

driving a specific prediction.

e SHAP Dependence Plot: This plot demonstrates the relationship between a
specific feature’s value and its SHAP value across all instances in the dataset.

It helps in understanding the effect of that feature on the model’s predictions
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and also shows interactions with other features, which are highlighted by

colouring the points according to the value of another feature.

SHAP Force Plot: The force plot provides a compact visualization of how
different features push the prediction higher or lower relative to the base
value. The plot visually represents the combined effects of the features as

forces that either increase or decrease the final prediction.

SHAP Summary Plot: This plot summarizes the impact of all features on the
model's predictions across the entire dataset. It combines feature importance
(how much each feature contributes overall) with feature effects (how the
feature values affect the predictions), providing a holistic view of the model's

behaviour.
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Figure 9-58: SHAP Waterfall Plot for Athens’ case study.
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Figure 9-61: SHAP Summary Plot for Athens’ case study.
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The LIME diagrams included in our analysis help to break down and interpret the

predictions made by the machine learning model on a granular level:

e LIME Explanation Plot: This plot visually represents the impact of individual
features on a specific prediction. It shows which features contributed the most
to the prediction, and whether they pushed the prediction higher or lower.
The LIME explanation plot helps to identify the most influential features in a
particular instance and provides a clear and interpretable summary of how the

model made its decision.

e LIME Explanation Heatmap: This heatmap compares LIME explanations across
multiple instances, allowing us to visualize how different features contribute
to the model's predictions across various cases. Each row represents an
instance, and each column represents a feature, with colour intensity
indicating the magnitude of each feature's contribution. The heatmap helps in
identifying patterns and consistencies in feature influences across multiple

predictions, offering a broader view of the model's behaviour.

e LIME Feature Importance Bar Plot: This plot displays the impact of individual
features on a specific prediction in the form of a horizontal bar chart. It clearly
shows which features had the most significant influence on the prediction,
indicating whether they pushed the prediction higher or lower. The bar plot
helps identify the most critical features for a particular instance, providing a

clear and interpretable summary of how the model arrived at its decision.

e LIME Scatter Plot of Feature Influence: This scatter plot illustrates the
relationship between a specific feature's value and its influence on the model’s
prediction across all analysed instances. By plotting feature values against
their corresponding LIME explanations, this chart helps in understanding the
sensitivity of the model to changes in specific feature values and highlights any

non-linear relationships.
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Figure 9-62: LIME Explanation Plot for Athens’ case study.
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Figure 9-63: LIME Explanation Heatmap Plot for Athens’ case study.
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Figure 9-64: LIME Feature Importance Bar Plot for Athens’ case study.
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Figure 9-65: LIME Scatter Plot for specific variable for Athens’ case study.

The results presented in the diagrams presented above reveal key insights into the

behaviour of our model and the dataset it was trained on. For instance, the SHAP

Waterfall Plot for a particular instance in the dataset clearly indicates how specific

features like flow_prev and hour significantly influenced the model's decision, leading
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to the final prediction. This detailed breakdown allows us to verify that the model's
reasoning aligns with domain knowledge and expectations. In the SHAP Summary Plot
(Figure 9-61), we observe that certain features consistently exert a strong influence
on the model's predictions across the entire dataset. For example, the feature hour
emerges as one of the most important predictors, with a wide range of SHAP values
indicating its varying impact across different instances. The SHAP Dependence Plot
(Figure 9-59) further clarifies how flow_prev interacts with other features, such as
dayofweek, influencing the model's predictions in a non-linear manner. This
interaction might suggest that the effect of traffic flow on the model’s prediction
varies depending on the day of the week, highlighting the importance of capturing
such interactions in the model. The SHAP Force Plot (Figure 9-60) concisely
summarizes the combined effect of the most influential features for a single
prediction, showing how certain features work together to either raise or lower the
prediction compared to the base value. This provides a clear and intuitive

understanding of the model's decision-making process.

The LIME explanation plot offers a focused view on how the model arrived at a
particular prediction by highlighting the top contributing features. For instance, in the
analyzed instance, features like hour, flow_prev, and flow_next might emerge as
significant contributors to the model’s decision. The LIME plot distinctly shows
whether each feature has a positive or negative impact on the prediction and
guantifies the magnitude of that impact. This localized explanation allows for a deeper
understanding of the model’s behavior in specific cases, which is particularly valuable
when decisions need to be explained to non-technical stakeholders or when validating
the model against domain knowledge. The LIME diagrams offer various perspectives
on how the machine learning model arrived at its predictions, providing both localized
and aggregated views of feature importance. The LIME Feature Importance Bar Plot
(Figure 9-64) offers a focused view on how the model arrived at a particular prediction
by highlighting the top contributing features. For example, in the analyzed instance,
features such as hour, flow_prev, and flow_next emerged as significant contributors
to the model’s decision. The bar plot distinctly shows whether each feature had a

positive or negative impact on the prediction and quantifies the magnitude of that
287



impact. The LIME Explanation Heatmap (Figure 9-63) allows us to compare how
features influence predictions across multiple instances. For instance, it may reveal
that certain features consistently drive predictions in a particular direction, suggesting
a broader pattern in the model's behavior. This comparative analysis is particularly
useful for identifying whether the model's decision-making process is consistent and
reliable across different cases. The LIME Scatter Plot of Feature Influence (Figure 9-65)
provides an insightful view of how changes in a feature’s value affect the model's
prediction. For instance, the scatter plot may show that as the flow_prev feature
increases, its influence on the prediction strengthens in a non-linear manner,

indicating a complex relationship between this feature and the model's output.

9.6.2 Integration of Human Feedback

Traditional predictive models often struggle in dynamic environments, particularly
when dealing with non-recurring incidents—events that are rare or do not follow
established patterns. These incidents, by their nature, are challenging to predict
because they do not appear frequently enough in historical data for the model to learn
from. This is where the integration of human expertise into the machine learning loop,

known as Human-in-the-Loop (HITL), becomes invaluable.

Human-in-the-Loop (HITL) is a hybrid approach that combines the strengths of
machine learning with human intuition and expertise. In the context of incident
management, HITL involves human analysts reviewing and correcting model
predictions, especially for cases where the model fails to recognize non-recurring
incidents. These human interventions are then fed back into the model during
retraining sessions, allowing the model to learn from these corrections and improve
its accuracy over time. The HITL approach is particularly beneficial in environments
where the data is dynamic, and the nature of incidents can evolve rapidly. By
incorporating human feedback into the model’s learning process, HITL ensures that
the model remains adaptable and continues to improve as new types of incidents

emerge.
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In the following section, we describe in detail the process of integrating human

expertise and feedback in the system, through a series of distinct steps.

1. System Deployment and Initial Operation
Our information system is deployed and operational, continuously processing

incoming data from various sources and generating real-time incident predictions.
The system, initially trained on historical data (from October 2020 to June 2021),

monitors and predicts potential incidents as they occur.

2. Current Operation
The system is ingesting real-time data from multiple sensors and data sources,

using this information to predict non-recurring and recurring incidents. Based on the
incoming data, the system generates predictions in real-time, providing crucial
insights that inform operational decisions. During this ongoing operational phase, the
system occasionally encounters challenges, such as generating false positives
(incorrectly predicting incidents) and false negatives (failing to predict actual
incidents). These inaccuracies are an expected part of the system's operation and are

addressed through a Human-in-the-Loop (HITL) approach.

3. Human-in-the-Loop (HITL) approach
To ensure that the system maintains high accuracy, human operators are

continuously involved in the prediction process. These experts monitor the system's

outputs and intervene whenever discrepancies or inconsistencies are detected.

4. Real-Time Monitoring
As predictions are made, human operators review them in real-time. When the

system predicts an incident, the operator needs to verify the accuracy of the
prediction. If an incident occurs but is not predicted, the operator should flag this as

a missed prediction (false negative).

5. Human Feedback
Upon identifying false positives or false negatives, operators immediately correct

the system’s outputs. For instance, if the system incorrectly predicts an incident that

does not occur, the operator updates the system with the correct outcome.
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Conversely, if the system misses an actual incident, the operator ensures this is logged

and corrected in the system’s records.

6. Model Update and Retraining
The system is designed to adapt continuously by incorporating and storing the

corrections and input provided by human operators. This real-time feedback loop
enhances the system’s predictive capabilities. Moreover, the system undergoes
comprehensive retraining periodically using python cron jobs. This process uses the
accumulated corrections to refine the model further, ensuring that it adapts to any

new patterns or anomalies in the data.

7. Continuous Evaluation and Improvement
To maintain the system’s effectiveness, the model’s performance is continuously

evaluated against a stable evaluation dataset (such as data from June 2020). This
consistent evaluation ensures that the system not only learns from recent data but

also maintains its ability to perform well against established benchmarks.

8. Real-Time Performance Monitoring
The system’s performance using widely employed metrics, such as precision,

recall, and Fl-score are monitored, providing feedback on the impact of HITL
corrections and retraining. Moreover, the continuous loop of prediction, human
correction, and retraining allows the system to adapt to changing conditions quickly,

ensuring that its predictions remain reliable and accurate over time.

The detailed methodology for simulating the retraining process within the
developed Al-driven traffic incident detection system incorporating human feedback
is presented. The objective is to demonstrate how continuous learning, and expert
input can enhance the system's accuracy and responsiveness. We utilize existing
historical data, deliberately introducing errors from the system’s operation, to

simulate the real-time update process, for demonstration purposes.

To effectively simulate the learning process, we start by modifying a portion of the
historical traffic data to introduce deliberate errors. This simulates an initial state of

deployment where any Al system displays certain inaccuracies. As the simulation
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progresses, we apply updates and human feedback to correct these errors,

showcasing the system's capability to learn and improve continuously.

The foundation of any predictive model is the quality and relevance of the data
used for training. The first step in the data preparation process involves parsing and
aligning the input datasets (operational measurements from loop detectors, network
locations and incident records) based on two critical dimensions: time (timestamps)
and location (sensor IDs). By aligning the data on these dimensions, we ensure that
each record in the dataset represented a unique combination of time and location,
capturing the state of the system at each sensor location over time. This alignment is
crucial for capturing the spatio-temporal dynamics that are often indicative of

incident occurrences.

The baseline incident dataset serves as the ground truth, representing the correct
record of incidents. This dataset plays a crucial role in the subsequent phases of model
retraining, as it will be used to simulate human intervention, thereby correcting the
errors introduced during the operational phases of the predictive system. To
effectively evaluate the impact of Human-in-the-Loop (HITL) interventions and
retraining, it is essential first to simulate a scenario where the system is prone to
errors. This simulation is achieved by artificially introducing systematic errors into a
portion of the dataset, specifically targeting the final segment, which reflects the

initial deployment phase of the system.

The period selected for the introduction of errors corresponds to the latter part
of the dataset, which is indicative of the system's early operational phase. This choice
is deliberate, as it allows for a realistic simulation of a newly deployed system that is

likely to encounter various predictive inaccuracies.

Those errors are introduced in three primary forms:

e False Positives: Incidents incorrectly marked in non-incident data.

e False Negatives: Actual incidents that are not marked in the data.
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¢ Incorrect Incident Details: Incorrect times and locations of incidents are

altered to simulate data inaccuracies.

Using the modified dataset, we train the baseline Machine Learning (ML) and
Deep Learning (DL) models which have been thoroughly described as part of Chapter

5. This stage involves:

o Feature Engineering: Extracting and engineering key features indicative of
traffic incidents, such as traffic flow rates, vehicle speeds etc. To enhance the
model’s predictive power, additional features are engineered from the raw
data. Temporal features are extracted from the timestamp to help the model
learn time-based patterns. For instance, certain types of incidents may be
more likely to occur during specific hours or on certain days. Additionally,
features that captured interactions between different sensors are created,
such as differences or correlations between readings from neighboring
sensors, providing the model with insights into spatial relationships. More
information about the data preprocessing can be found in Chapters 8.1 and

9.2.

e Model Selection: Training various machine learning models (e.g. random
forests, support vector machines) and DL models (e.g., convolutional neural
networks (CNNs) and recurrent neural networks (RNNs)) in addition to the
automated ML pipeline as described in Chapter 6, to establish the baseline
performance. The baseline performance metrics, such as precision, recall and

fl-score, are recorded.

The next phase involves the application of Human-in-the-Loop (HITL) processes to
correct the errors introduced into the system. Here, the baseline incident dataset,
representing the correct incident records, is utilized to simulate human intervention.
For each time segment—specifically on a weekly basis—discrepancies between the

error-prone dataset and the baseline dataset are identified. These discrepancies

292



represent the system's misclassifications, which are then systematically corrected by

replacing the erroneous labels with the accurate ones from the baseline dataset.

The framework continuously updates the models based on new data and

simulated human feedback. Key components of this process include:

1. Batch Updates: Periodically, the system performs batch updates where a
larger set of accumulated feedback data is used to retrain the model. This
helps to consolidate learning and reinforce correct patterns. This retraining
simulates the system's iterative learning process, where human feedback is
continuously integrated to refine and improve its predictive capabilities. This
process is repeated for each subsequent defined time period, allowing for a

progressive enhancement of the model's accuracy.

2. Model Validation: After each update, the models are validated using a
validation set to ensure that the updates have improved performance.
Moreover, the established key performance metrics are monitored

continuously.

To determine the optimal retraining strategy, the impact of different retraining

frequencies is assessed:

1. Weekly Retraining: The weekly retraining strategy serves as the primary
approach, balancing the need for regular updates with computational
efficiency. This strategy allows for the accumulation of sufficient data
corrections over a week, potentially leading to more stable improvements in

model performance.

2. Biweekly Retraining: By contrast, biweekly retraining tests the model's ability
to adapt when corrections are less frequent. This approach may offer
advantages in terms of computational resource management, but it may also

slow the model's adaptation to new patterns.
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Continuous monitoring of performance metrics is essential throughout the
simulation. By evaluating these metrics at regular intervals, we can assess
improvements and compare them against the initial baseline performance. This step
highlights the effectiveness of retraining and human feedback in enhancing the

system.

9.6.2.1 Example scenario

To illustrate the methodological process, we present an example scenario.

Initial Baseline Training

The initial model was trained using data stemming from case study | (Athens) from
October 2020 to June 2021. This period provided a substantial amount of historical
data, allowing the model to learn typical incident patterns in a controlled
environment, free from the errors associated with early-stage deployment.
Specifically, the algorithm selected for these experiments is the RandomForest, since
it has been shown in other experiments (ref to Chapter 9.4.1) to perform extremely

well against the benchmarks established.

To establish a robust baseline, the model was evaluated using data from
September 2021. This dataset serves as a consistent reference point for all
subsequent evaluations. The September 2021 dataset is used to establish the model's
baseline performance. It is then used repeatedly to evaluate the model’s performance
after errors are introduced and after each retraining session. Key performance
metrics, including precision, recall, and F1-score, were recorded. For more
information regarding these metrics, the reader is invited to refer to Chapter
8.1.1.7.1. These metrics form the foundation against which all future comparisons will
be made, ensuring that any improvements or deteriorations in model performance

can be traced back to the effects of HITL corrections and retraining.

Introduction of System Errors
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The system was simulated to go live in July 2021, at which point it began making
errors typical of an early-stage predictive model. To replicate this scenario, the
predictions produced by the system (with the respective errors) were introduced into
the July-August 2021 dataset. Specifically, these errors correspond to the system’s
potential to either overestimate or underestimate the likelihood of incidents during
its phase of operation, in the initial stages. The resulting metrics highlighted the extent
to which the model’s predictions and the errors produced were compromised by the

inaccuracies.

Human Feedback Integration

Following the system’s errors in the July-August 2021 dataset, a HITL approach
was employed. Errors were corrected in a simulated manner using the baseline
incident data as the ground truth. Thus, the operator feedback was simulated with
100% accuracy for approving/rejecting incidents, while missed incidents are also
included. This correction process simulated the real-world scenario where human

operators would intervene to rectify the system’s mispredictions.

Retraining and Model Updates

Models are retrained weekly (also biweekly) using accumulated feedback. After
correcting the errors for each week in the July-August 2021 dataset, the model was
retrained periodically. This retraining process aimed to incorporate the newly
corrected data, allowing the model to adapt and improve its predictive accuracy.
Importantly, each retraining cycle was followed by an evaluation and comparison

against the consistent September 2021 dataset.

These human-corrected labels were then used in the model’s weekly retraining
process. By incorporating this feedback, the model could learn from its mistakes and
improve its ability to predict non-recurring incidents in future iterations. The
retraining process involved updating the model with new correct data each week,
simulating the human corrections, ensuring that the model continuously adapted to

new patterns in the data.
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Performance Monitoring

By maintaining September 2021 as the evaluation set throughout the retraining
process, we ensured that performance improvements could be tracked reliably.
After each retraining iteration, performance metrics were recorded and compared
against the baseline established earlier. This method allowed for a clear assessment
of how the model’s ability to predict incidents evolved as it learned from the HITL

corrections.

Assessing Final Model Performance

Upon completing the retraining sessions, the final model was once again
evaluated on the June 2021 dataset. This final evaluation provided a direct
comparison between the model’s initial baseline performance, and its improved state

after HITL correction and retraining.

This approach demonstrates the cumulative effect of weekly retraining on
restoring the model's performance to its original state, as measured by a consistent

evaluation set.

Evaluation and Comparison of Retraining Frequencies

Weekly Retraining

The standard retraining approach involved updating the model on a weekly basis.
This frequency was chosen to balance the need for model adaptation with the stability
required for accurate predictions. Weekly retraining allowed the model to incorporate
sufficient new data and human corrections, leading to noticeable improvements in
performance, particularly in the recall score for non-recurring incidents. In Table 9-12,
the results from the experiments are illustrated. Moreover, in Figure 9-66 the process

of the retraining, in addition to the datasets used for training and test are shown.
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Table 9-12: Results of performance metrics during retraining for 8 weeks.

Evaluation Stage Precision Recall F1-Score
Initial Predictions 0.65 0.55 0.60
HITL Retraining After Week 1 0.67 0.58 0.62
HTIL Retraining After Week 2 0.71 0.61 0.66
HITL Retraining After Week 3 0.72 0.61 0.66
HITL Retraining After Week 4 0.74 0.64 0.69
HITL Retraining After Week 5 0.74 0.68 0.71
HTIL Retraining After Week 6 0.76 0.68 0.72
HITL Retraining After Week 7 0.76 0.70 0.73
HITL Retraining After Week 8 0.78 0.72 0.75
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Figure 9-66: lllustration of datasets in the retraining process.

Biweekly Retraining

To further explore the impact of retraining frequency on model performance,
additional experiments were conducted with biweekly retraining schedules. Daily
retraining would have provided the model with the most up-to-date data and
corrections, potentially improving responsiveness to new incident patterns. However,
this approach also risked overfitting to short-term trends and required significant

computational resources.
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Biweekly retraining offers a more conservative approach, focusing on broader
trends rather than daily fluctuations, as shown in Table 9-13. While this approach
reduces computational overhead, it shows to have limited the model’s ability to
quickly adapt to new patterns, particularly in environments where incident

characteristics could change rapidly.

Table 9-13: Results of performance metrics for biweekly retraining in the period of 8 weeks.

Evaluation Stage Precision Recall F1-Score

Initial Predictions 0.65 0.55 0.60

HITL Retraining After Biweekly Period 1 0.71 0.61 0.66

HTIL Retraining After Biweekly Period 2 0.74 0.64 0.69

HITL Retraining After Biweekly Period 3 0.76 0.68 0.72

HITL Retraining After Biweekly Period 4 0.78 0.72 0.75
Comparative Analysis

The use of the validation dataset as a stable reference point allowed for precise
comparisons across different stages of the model’s development. The findings
underscore the value of incorporating human expertise into the machine learning
loop, particularly in scenarios where early-stage systems are prone to errors. This
approach not only facilitated the identification and correction of predictive
inaccuracies but also provided a framework for continuous improvement through

systematic retraining.

The comparative analysis of these retraining frequencies revealed that weekly
retraining provided the optimal balance between responsiveness and stability. The
model was able to adapt to new patterns effectively without the risk of overfitting or

excessive computational demands.

Moreover, several constatations have been made. The model's precision, recall,

and Fl-score exhibit a marked improvement following each retraining cycle. This
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improvement is particularly anticipated in the recall metric, which measures the
model's ability to correctly identify actual incidents, including those previously
misclassified. Moreover, by systematically comparing the results of weekly, and
biweekly retraining, we have identified the most effective retraining strategy. We
have not chosen daily retraining, since it is believed that it may lead to rapid
performance gains but could also risk overfitting or require significant computational
resources. Weekly retraining provides a balanced approach, offering consistent
improvements without excessive computational demands. Biweekly retraining, while
potentially more resource-efficient, has been shown to delay the model's ability to

incorporate new patterns promptly.

9.7 Discussion of results and Comparison between urban

environments

In general, evaluation results need to be understood from the perspective of the
nature of the data and methodologies used. We must remember that labelled
incidents were limited to visible areas of the network, therefore the false positive rate
is seriously affected. There is no certainty that false positives might be due to an
invisible event to the data supplier (therefore, there was an event, but it was not

labelled) or truly a faulty prediction by the algorithm.
9.7.1 Discussion of Results for Unplanned Incident Detection

For the detection of unplanned incidents, the evaluation dataset has been
formatted in 5 minutes intervals to feed the classification algorithms, therefore when
computing precision there is a true positive when the event is detected at exactly the
annotated timestamp. However, in real scenarios an ideal incident detection
algorithm should be able to spot an event ideally before it happens or at least within

a reasonable time margin to allow for proactive intervention.

9.7.1.1 Performance of Traditional ML and DL Models
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Regarding the results obtained from the experiments in both case studies, we
deduce that there is some fluctuation on the results, and that some of the algorithms
show low performance on the evaluation metrics. The best performing algorithm is
the Support Vector Machine both for the Athens and the Antwerp datasets, having
achieved both high precision and recall. This is in line with the literature which
supports that SVM generally perform very well when the labelled incidents dataset is
available, since they work in a supervised manner. On the other hand, this approach
depends on the existence and reliability of an incident dataset, and it is possible that
the model would overfit the dataset and have trouble when encountering new unseen

samples.

Moreover, BCNN and WNN manage to reach a very high recall but are unable to
perform well in terms of precision (and thus the F1-score is also impacted). However,
we are able to discern that the wavelet transformation performs slightly better than
the BCNN, also confirming the findings in literature which make use of the wavelet
transformations for time series datasets. Concerning the Autoencoder, the results as
shown above could definitely be improved. The results obtained could probably be
due to the fact that the architecture of the autoencoder we have employed is quite
simple. One of the further improvements could include the addition of new layers in
the architecture and the additional fine-tuning of these layers in order to achieve

better results.

The lsolation Forest algorithm is able to capture a satisfactory recall, but the
precision achieved is very low (thus impacting the Fl-score obtained). The
Bidirectional LSTM manages to deliver one of the best results in terms of precision
and quite good results in terms of recall. We have experimented with various
architectures for the LSTM, and finally the best performance was obtained by
employing a deep stacked bidirectional and unidirectional LSTM neural network
architecture. This considers both forward and backward dependencies in time series
data and predicts traffic flow. Finally, the model is able to capture the points where

the predicted and actual values were significantly different, and a threshold for loss
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value was set based on the history of loss values in training and testing to capture the

incidents.

Aimsun’s algorithm shows low performance on the established metrics, however
when analyzing results on an event-based rationale for the Athens use case (within a
time margin of 15 minutes around the labelled event), Aimsun’s system was able to
detect 11 events out of a total of 15 in the analyzed period (May 2021) yielding a recall
of 73% which is an acceptable level of performance for non-recurrent events.
However, one of Aimsun baseline’s limitation is the fact that it is bound to produce a
high number of false positives as shown by precision results of 8% (17% in an event-

based evaluation).

9.7.1.2 AutoML Performance and Comparison with Traditional Models

The application of AutoML across Athens and Antwerp demonstrated its
adaptability but also highlighted its limitations. In Athens, where congestion patterns
were relatively stable, AutoML-tuned models achieved high precision and recall,
demonstrating strong generalization to traffic conditions. However, in Antwerp,
AutoML models required additional fine-tuning to maintain their predictive
performance. These findings suggest that while AutoML provides a robust framework
for incident detection, localized calibration is necessary to account for environmental

variability.

Despite its advantages, AutoML presented computational trade-offs that should
be considered for real-time applications. The increased computational cost and
training time were particularly evident when optimizing deep learning models such as
LSTM, where AutoML required longer processing times compared to traditional ML
models. While the added complexity led to improved forecasting performance, real-
world deployment may require a balance between accuracy and computational

feasibility, especially when models need frequent retraining.

In this light, among the algorithms tested, for the Athens dataset, we observe

significant performance superiority of the AutoML approach employed compared to
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the baseline methods. For the Antwerp dataset, among the algorithms tested, the
Support Vector Machine (SVM) emerged as the top-performing method,
demonstrating high precision and recall, while the Autoencoder demonstrated high
recall rates but struggled to achieve satisfactory precision, indicating a tendency to

flag non-incident anomalies as potential traffic disruptions.

Lastly, it is important to recognize that while AutoML aims to streamline and
optimize the model selection and training process, it does not negate the value of
understanding specific ML techniques' performance in targeted applications. Our
comparison seeks to highlight how our AutoML-powered approach stand against
manually tuned and selected models in the specific domain of incident detection using
loop detector data, emphasizing the efficacy, adaptability, and performance in real-
world scenarios. Among the tested models, AutoML consistently selected ensembles
and tree-based algorithms such as Random Forest and Gradient Boosting, while it also
prioritized LSTM architectures for handling sequential traffic data, demonstrating
AutoML’s capability to identify well-suited architectures for different types of incident
detection tasks. To summarize, The Athens dataset showed clear advantages of
AutoML over baseline models, while in Antwerp, SVM achieved the highest F1-score
and recall, but AutoML outperformed SVM in precision. These variations highlight the
necessity for algorithmic adaptation based on local traffic conditions and data

availability across different urban environments.

9.7.1.3 Final considerations and limitations

All'in all, one of the limitations of our analysis in both cases is the fact that these
techniques are bound to produce a high number of false positives as shown by the
precision results, thus the concept of false positives is hard to really assess in the
incident detection task due to possible blind spots in the network. It is evident that
each city presented unique challenges and outcomes in incident detection for

unplanned incidents.

However, we acknowledge that our evaluation primarily focuses on conventional

metrics such as precision, recall, and F1-score. While these metrics provide valuable

302



insights into the models' performance in detecting incidents accurately, they do not
fully encapsulate the operational context within which these detection models are
deployed. Factors such as the mean time to detect an incident, the speed of
propagation of detected incidents, and the practical implications of false positives and
false negatives on traffic management and response strategies are not directly

addressed as part of this PhD dissertation.

9.7.2 Discussion of Results for Planned Incident Detection (Recurring

Congestion case)

The identification and forecasting of planned incidents, particularly in the
context of recurring congestion, were explored through a combination of time-series
forecasting models, deep learning techniques, clustering analyses, and visual
analytics. The findings across different case studies confirmed that congestion follows
predictable temporal and spatial patterns, making it possible to anticipate its
occurrence with high accuracy. By analyzing historical traffic flow, occupancy, and
speed data, the study demonstrated that congestion patterns could be effectively

modeled, allowing for early detection and intervention.

A major part of the analysis focused on time-series forecasting models, where
Autoregressive Integrated Moving Average (ARIMA) and Long Short-Term Memory
(LSTM) networks were employed. ARIMA provided a strong baseline in cases where
traffic exhibited stable seasonal variations, effectively capturing long-term congestion
cycles. However, its reliance on linear assumptions made it less effective in scenarios
with highly dynamic congestion patterns. In contrast, LSTM networks, with their
ability to capture long-term dependencies in traffic data, outperformed ARIMA in
most cases, particularly in urban environments characterized by high variability in
traffic flow. The results demonstrated that LSTM-based predictions aligned closely
with actual congestion trends, making them a robust approach for modeling planned

traffic conditions.

To enhance spatial insights into congestion dynamics, clustering methods

were employed to categorize congestion patterns across different road segments.
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Heatmap visualizations and box plots revealed consistent congestion-prone areas,
reinforcing the hypothesis that specific locations experience recurring congestion
cycles. These findings were further supported by correlation analyses, which
confirmed strong relationships between traffic indicators such as speed, flow, and
occupancy. The ability to visually interpret these relationships strengthened the
validity of the forecasting models, as they provided clear evidence of how congestion

evolved in different urban settings.

The evaluation of these methodologies in real-world case studies further
validated their effectiveness in predicting planned incidents. The results showed that
applying advanced analytics-driven models enabled accurate anticipation of
congestion before it became disruptive, demonstrating the potential for proactive
traffic management strategies. The deep learning-based approaches, particularly
LSTM networks, consistently performed better than traditional statistical methods,
offering improved predictive accuracy in cases where traffic conditions changed
dynamically. However, the dependency on high-quality input data was evident, as
data sparsity and sensor inconsistencies presented challenges in some instances.
Missing values affected the generalization capability of forecasting models,
highlighting the need for careful data preprocessing and sensor coverage

optimization.

The comparative analysis between the two case studies in Athens and
Antwerp revealed that while congestion trends followed distinct characteristics in
each city, their recurring nature allowed for effective modeling. In Athens, congestion
was largely influenced by urban mobility patterns, with peak-hour traffic following
well-defined cycles. In Antwerp, where major roadways and port activity contributed

to congestion, the predictive models adapted to different traffic flow behaviors.

Overall, our work confirmed that a multi-method approach, combining time-
series forecasting, clustering, and visual analytics, provides a comprehensive
understanding of recurring congestion patterns and planned incident detection. The

extracted results emphasized the importance of model adaptability, high-resolution
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traffic data, and spatial-temporal consistency in ensuring accurate and scalable
congestion forecasting. While deep learning models proved to be highly effective,
their success depended on the availability of reliable input data and the ability to fine-

tune models to specific urban environments.

9.7.3 Discussion of Results for the Integration of HITL and Explainability

The inclusion of explainability features as part of the system helps ensure the trust
of the system by its users. Moreover, the integration of a Human-in-the-Loop
methodology and regular retraining significantly enhanced the model’s ability to
predict non-recurring incidents. The HITL approach, in particular, played a crucial role
in improving the model’s f1 score, enabling it to better identify rare events that

traditional models might overlook.

The comparison of different retraining frequencies provided valuable insights into
the optimal approach for maintaining high prediction accuracy while balancing the
need for computational efficiency. The findings suggest that weekly retraining strikes
the best balance, allowing the model to stay up to date with new patterns without
overfitting or resource exhaustion. Our approach demonstrates the effectiveness of
combining machine learning with human expertise in dynamic environments,
particularly when dealing with non-recurring incidents. By continuously incorporating
human feedback and adjusting the retraining frequency to suit the specific needs of
the environment, predictive models can remain accurate and reliable, even in the face

of evolving data patterns.

While our approach demonstrates the effectiveness of combining machine
learning with human expertise in dynamic environments, several avenues for future
research can be explored. First, the integration of more advanced explainability
techniques (saliency maps, counterfactual explanations etc.) could provide deeper
insights into how models make predictions, further enhancing trust and usability for
human operators. These explainability features can help identify biases or gaps in

model performance, facilitating targeted improvements over time.
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Another promising direction is the exploration of adaptive retraining schedules.
Rather than adhering to a fixed retraining frequency (e.g., weekly), models could
benefit from adaptive retraining that triggers updates based on the detection of
significant data shifts or anomalies. This would allow the system to stay responsive to

changes without unnecessary resource expenditure.

Moreover, an approach which could be used is the incorporation of online learning
methodologies, techniques where machine learning models continuously update
their parameters as new data becomes available, rather than relying on traditional
batch learning where models are retrained from scratch periodically. This is
particularly useful in dynamic environments, such as transport systems, where
conditions change frequently due to new traffic patterns, incidents, or weather
conditions. Online learning enables models to adapt to changes in real-time,
improving their responsiveness and accuracy. In the context of incident detection
systems, online learning allows the model to adjust its predictions as it receives new
traffic data, making the system more resilient to evolving patterns. Furthermore,
online learning methodologies reduce computational costs because only new data is
used for updating the model, rather than requiring full retraining, which can be

resource-intensive.

Unlearning methodologies, on the other hand, are techniques that allow models
to "forget" specific parts of learned data when they are no longer relevant or if they
are incorrect. This is particularly important for privacy concerns, where models might
need to forget sensitive data (for instance during crises, such as COVID-19), or in
situations where new information renders old patterns invalid, such as changes in
road infrastructure. In the context of transportation systems, unlearning could be
used to ensure that models no longer rely on outdated traffic patterns that no longer

apply, ensuring the predictions remain relevant and accurate.

Finally, future research could explore automated feedback loops that gradually
reduce the need for human intervention by learning from historical feedback. Over

time, these systems could become increasingly autonomous while maintaining a high
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level of accuracy and explainability, thus improving the overall efficiency and

reliability of incident detection in real-world applications.
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10 Conclusions and Future Work

10.1 Conclusions

The work presented in this PhD dissertation marks significant progress in the

conceptual engineering, development and deployment of a comprehensive Al-driven

incident detection system for urban traffic management. Through the integration of

advanced Al techniques, traditional traffic management methods, automated

Machine Learning, Explainability and Human-In-The-Loop (HITL) concepts, the

research has demonstrated the potential for creating a robust and adaptable solution

for real-time traffic incident detection. The key conclusions which emerge from our

work done can be summarized in the following:

Introduction and Motivation (Chapter 1): This chapter sets the foundation for
the research by discussing the current challenges and issues in traffic
management systems, addressing their limitations, especially in urban
environments where complex and dynamic traffic patterns challenge
traditional systems. The motivation of the work conducted is rooted in the
need for automated yet adaptable solutions that can integrate human insights,
leading to a new Al-based, human-centric approach for real-time traffic
incident detection.

Literature Review (Chapter 2): An extensive review of existing traffic incident
detection methods and technologies is provided here. Key algorithms, from
comparative methods to advanced machine learning models, are examined,
highlighting their strengths and weaknesses. The literature review also points
out the existing research gaps, which this dissertation has aimed to address
through novel methodologies.

Research Challenges (Chapter 3): This chapter outlines the specific research
questions driving the study. These questions are focused on developing a

comprehensive framework that combines automated and human-centered
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approaches for real-time traffic monitoring. The goal is to enhance incident
detection for both planned and unplanned events, by using state-of-the-art
methods and algorithms, improve transparency through explainability
techniques, involve human operator expertise and achieve high performance
across different urban environments.

Framework for Real-Time Monitoring and Prediction of Traffic Incidents
(Chapter 4): Introducing a multi-component framework, this chapter presents
the four key pillars where our work is based upon: Data Analytics, Automated
Machine Learning (AutoML), Human-in-the-Loop (HITL), and Explainability.
Each pillar plays a crucial role in building a robust and adaptive system, with
AutoML ensuring automation in model development, HITL enhancing
adaptability and performance, and explainability fostering trust and
transparency.

Al-Driven Traffic Incident Detection for Planned and Unplanned Events
(Chapter 5): Focusing on data-driven methods, this chapter delves into
advanced analytics techniques for detecting unplanned incidents and
identifying recurring congestion patterns. It showcases the effectiveness of
machine learning and deep learning models in handling diverse types of
incidents, enhancing the adaptability and accuracy of traffic incident
detection.

AutoML-Driven Incident Detection (Chapter 6): This chapter presents the use
of TPOT within AutoML for automating model development and optimization.
By automating feature selection, model tuning, and pipeline creation, TPOT
reduces the need for manual adjustments, thereby streamlining the model
development process.

Human-in-the-Loop and Explainability in Incident Detection (Chapter 7):
Highlighting the importance of HITL, this chapter emphasizes the integration
of human feedback in refining Al models. Explainability techniques, such as
SHAP and LIME, are implemented to ensure that model predictions are
understandable to operators. This approach not only enhances transparency

but also empowers operators to make informed decisions during critical times.

310



e Information System AutoEventX (Chapter 8): Detailing the technical
architecture of AutoEventX, this chapter outlines how the system combines
data pre-processing, model development and training, model evaluation and
real-time analytics in a scalable, operator-friendly platform. AutoEventX's
functionalities are demonstrated through real-world cases, which illustrate its
effectiveness in incident detection and its flexibility in urban traffic
management scenarios.

e Deployment and Evaluation in Real-world Case Studies (Chapter 9): This
chapter presents an in-depth evaluation of AutoEventX, tested in the cities
of Athens and Antwerp. The results confirm the system’s adaptability to
different traffic conditions, its robust performance across varied
environments, and the value of including automated and HITL approaches in
improving detection accuracy.

e Conclusions and Future Work (Chapter 10): Summarizing the dissertation’s
contributions, this chapter discusses also the limitations of the current study
and proposes future directions. Future research should focus on integrating
multi-source data, advancing human-Al collaboration, enhancing
explainability, and incorporating prescriptive analytics to optimize automatic

traffic incident detection in smart mobility systems.

10.2 Limitations

Generally, data-driven methods used in the context of automatic incident
detection algorithms (AIDA) have their limitations. Perhaps the most commonly cited
limitation is that many IDAs are unable to differentiate incidents from contexts,
resulting in a high false alert rate. Noise from signals on junctions can cause
congestion similar to that of an incident, leading to false alerts in traffic variable based
AIDAs. Finally, many AIDAs are only capable of indicating when an incident has taken
place in the vicinity of a detector. Traffic operators could respond more effectively if

the exact incident location and expected congestion propagation could be estimated.
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These features are closely related to incident detection and could be accounted for

within the design of IDAs to aid operators further.

Apart from these well-known limitations, it is noteworthy to mention some
limitations specific to our work. Limitations arise from the manual registration of
incidents by operators, potentially leading to omissions or timing inaccuracies in the
dataset. Consequently, such discrepancies can significantly skew the performance
evaluation of our algorithms. The filtering process specifically for the Athens labelled
incidents’ dataset is susceptible to errors, and despite being informed by stakeholder
operator expertise, the risk of overlooking significant incidents cannot be ignored.
Additionally, the decision to format the evaluation dataset in 5-minute intervals may
seriously have affected the precision metric, as it requires the detection of events at

their exact recorded timestamps.

Moreover, our analysis is contingent upon the data quality and reliability, and
more specifically on the measurements of the detectors, and the accuracy and
completeness of incident reporting, the basis of our evaluation. False positives within
our model outcomes may not solely represent algorithmic inaccuracies but could also
reflect events unlabeled due to visibility issues within the network's coverage. The
reliance on a single data source, CCTV footage, limits our ability to comprehensively
capture all incidents, suggesting that incorporating diverse data types could enhance
detection and reduce false positives. The challenge of accurately determining false
positives due to potential network blind spots is recognized and underscores the need
for a multifaceted approach in future research to mitigate such issues. One way to
decrease the false alerts generated is to incorporate various types of data, such as
CCTV cameras which is also the vision of our work for the future, to train the
algorithms. Despite the abundance of available data and the advanced capabilities of
machine learning algorithms, only a limited number of studies have effectively utilized
the combination of multiple data sources, as stated by the review conducted by

Kashinath et al. (Kashinath, et al., 2021).
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Lastly, we recognize that our work’s scope is limited by its focus on immediate
detection metrics (precision, recall and fl-score), which, while crucial, do not
encompass the broader operational implications of deploying such technologies in
complex traffic management systems. As such, we propose that future work should
extend beyond traditional performance metrics to evaluate AutoML and other ML
techniques within the context of their downstream applications. Specifically, research
should explore the operational impact of these detection technologies, including their
effect on mean time to detect incidents, the propagation speed of detected incidents
through traffic networks, and their integration into comprehensive traffic
management strategies. Such an approach will provide a more holistic understanding
of the value and limitations of AutoML and other ML techniques in traffic incident
detection, guiding both technological development and strategic implementation in

this critical domain.

10.3 Future work

While significant progress has been made in integrating machine learning, data
explainability, and human feedback into incident detection processes, several areas
remain open for further exploration and refinement. Future research directions in this
domain can further enhance the accuracy, reliability, and trustworthiness of our own
system but also traffic incident detection systems in general. Below we present some

key areas where future research can make substantial contributions:

1. Multi-source data integration: Incident detection can be significantly
improved by incorporating diverse data sources such as CCTV feeds,
crowdsourced reports, weather data, social media feeds and real-time sensor
data. Future studies should focus on developing improved data fusion

methodologies and algorithms to enhance accuracy and robustness.

2. Inclusion of more advanced algorithms and tools: Future work should explore

reinforcement learning techniques and domain adaptation methods that can
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enhance the efficiency and adaptability of Al models specifically for the task at
hand.

Operational impact of automatic incident detection technologies: Future
work should explore how the different technologies used in the context of our
framework influence the mean time to detect incidents, the propagation
speed of detected incidents through traffic networks, and their integration
into comprehensive traffic management strategies. Understanding these
aspects will help in assessing the real-world effectiveness of Al-driven

detection systems.

Advanced Human-Al Collaboration and HITL features: Future research can
explore more sophisticated methods of human-Al collaboration, where the
interaction between human operators and Al systems is more seamless and
intuitive. This includes developing user potentially integrating augmented
reality (AR) or virtual reality (VR) to provide operators with more interactive
tools for incident management. (Olugbade, Ojo, Imoize, Isabona, & Alaba,
2022) (EISahly & Abdelfatah, 2022) Also, developing real-time feedback
mechanisms would allow operators to iteratively improve model accuracy.
Implementing adaptive learning algorithms that can continuously learn from
human feedback and real-world data is a crucial area for future exploration.
This involves developing models that can dynamically update their parameters
and improve their performance over time, based on the feedback received
from operators and the outcomes of previous predictions. (ElSahly &
Abdelfatah, 2022) (Olugbade, Ojo, Imoize, Isabona, & Alaba, 2022). Extending
the AutoEventX pipeline to include techniques such as unlearning, adaptive
retraining schedules, and semi-supervised feedback mechanisms will enable
models to evolve dynamically while minimizing the annotation burden on

human operators.

Enhanced Explainability Techniques: While LIME and SHAP are currently used
for providing explanations, there is room for improvement in making these

explanations more comprehensive and accessible to non-expert users. Future
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research can focus on developing new explainability techniques that offer
deeper insights into model decisions, are easier for operators to understand,
and can be customized to different user needs (EISahly & Abdelfatah, 2022)

(Olugbade, Ojo, Imoize, Isabona, & Alaba, 2022).

Introduction of prescriptive analytics: Moving beyond predictive analytics,
prescriptive analytics can play a crucial role in incident management by
suggesting actionable interventions to mitigate congestion and reduce the
overall impact of incidents. Future research should investigate how Al can

recommend and implement optimal traffic control measures in real time.

Integration with Other Smart City Systems: Expanding the integration of Al-
driven traffic incident detection systems with other smart city infrastructures
can enhance the overall efficiency of urban management. This includes
connecting traffic management systems with public transportation,
emergency response, and environmental monitoring systems to create a more

holistic approach to urban incident management. (Liang, et al., 2022)

Ethical and Privacy Considerations: As Al systems become more integrated
into traffic management, it is essential to address ethical and privacy concerns.
Future research should focus on developing frameworks that ensure data
privacy and address potential biases in Al models. This includes creating
transparent policies for data usage and developing algorithms that are fair and

equitable. (Olugbade, Ojo, Imoize, Isabona, & Alaba, 2022)

In summary, this research has introduced a comprehensive framework for

leveraging Al-driven methodologies in traffic incident detection, incorporating

explainability, human-in-the-loop processes, and prescriptive analytics. While the

proposed solutions offer significant improvements, ongoing advancements in data

integration, model adaptability, and explainability will be necessary to fully realize the

potential of Al in smart transportation systems. By addressing these challenges, future

research can further refine and enhance the effectiveness of incident detection
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systems, ensuring their integration into sustainable and intelligent urban mobility

solutions.
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