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Περίληψη	

Αντικείμενο της διδακτορικής διατριβής είναι η αξιοποίηση της αναλυτικής 

δεδομένων και της τεχνητής νοημοσύνης στην αυτόματη ανίχνευση περιστατικών 

στον τομέα των ευφυών συστημάτων μεταφοράς. Η διατριβή προτείνει μια μέθοδο 

προβλεπτικής αναλυτικής (predictive analytics) η οποία μπορεί να υποστηρίξει την 

ολοκληρωμένη αυτόματη ανίχνευση περιστατικών, καλύπτοντας όλο τον κύκλο ζωής 

από τη συλλογή των δεδομένων μέχρι την ανίχνευση σε πραγματικό χρόνο και την 

επικύρωση από ειδικούς. 

Η μέθοδος αυτή συνδυάζει αλγόριθμους τεχνητής νοημοσύνης, προβλεπτικές 

μεθόδους καθώς και αυτοματοποιημένη μηχανική μάθηση (AutoML) για την 

πρόβλεψη προγραμματισμένων και μη προγραμματισμένων περιστατικών, ενώ 

παράλληλα χρησιμοποιεί εργαλεία επεξηγησιμότητας, όπως το LIME και το SHAP, για 

να εξηγήσει τις αποφάσεις των μοντέλων στους ανθρώπινους χειριστές. Αυτή η 

επεξηγησιμότητα ενισχύει την εμπιστοσύνη στα συστήματα πρόβλεψης, τα οποία 

συνήθως αποτελούν “black boxes” και διευκολύνει την κατανόηση των προβλέψεων 

από μη ειδικούς. Επιπλέον, η έννοια της ανθρώπινης παρέμβασης (human-in-the-

loop - HITL) ενσωματώνεται στη διαδικασία ανίχνευσης, επιτρέποντας στους ειδικούς 

να επιβλέπουν και να διορθώνουν τις αυτόματες προβλέψεις σε πραγματικό χρόνο. 

Αυτό όχι μόνο βελτιώνει την ακρίβεια των προβλέψεων, αλλά και ενισχύει τη 

συνεργασία μεταξύ του ανθρώπινου παράγοντα και των αυτόματων συστημάτων. 

Μάλιστα, αποδεικνύεται μέσω αντίστοιχων πειραμάτων η καθοριστική συμβολή των 

ειδικών (experts) για τη βελτίωση της απόδοσης του συστήματος με την πάροδο του 

χρόνου με δυναμικό τρόπο. 

Στο πλαίσιο της διατριβής πραγματοποιείται εκτενής βιβλιογραφική μελέτη 

στα γνωστικά πεδία της προβλεπτικής αναλυτικής δεδομένων, των συστημάτων 

αυτόματης ανίχνευσης περιστατικών και των τεχνολογιών AutoML, 

επεξηγησιμότητας και HITL. Αναλύονται οι μεθοδολογίες και τα συστήματα που 

έχουν αναπτυχθεί μέχρι σήμερα, ενώ στη συνέχεια αναπτύσσεται η προτεινόμενη 
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μέθοδος. Ακολούθως, αναπτύσσεται πληροφοριακό σύστημα το οποίο δίνει τη 

δυνατότητα εφαρμογής της προτεινόμενης μεθόδου σε αστικά περιβάλλοντα. 

Συγκεκριμένα, η μέθοδος εφαρμόζεται σε δύο διαφορετικές πόλεις, την Αθήνα και 

την Αμβέρσα, για να αξιολογηθεί και να συγκριθεί σε διαφορετικά πλαίσια. 

Keywords: Τεχνητή Νοημοσύνη, Μηχανική Μάθηση, Αυτόματη Ανίχνευση 
Περιστατικών,  Επεξηγησιμότητα, Έξυπνα Συστήματα Συγκοινωνιών. 
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Abstract	

The present PhD dissertation explores the need for advanced real-time traffic 

incident detection systems in urban environments, where the complexity and volume 

of data often overwhelm traditional methods. The research focuses on integrating 

advanced data analytics including Machine Learning and Deep Learning, in addition to 

Automated Machine Learning (AutoML), Human-in-the-Loop (HITL) approaches, and 

explainability techniques to develop a robust and scalable framework for incident 

detection. This framework has been tested and validated in real-world scenarios in 

Athens and Antwerp, where the results demonstrated its effectiveness and 

superiority compared to traditional methods. 

Regarding the structure of the present thesis, in the introduction, the motivation 

is derived from the growing challenges faced by transportation systems today. 

Traditional incident detection methods, which rely on predefined rules and manual 

human monitoring, are increasingly inadequate due to the complex, dynamic nature 

of modern urban traffic networks. Traffic incidents, whether planned (such as large-

scale events or recurring congestion) or unplanned (such as road accidents), require 

timely detection to prevent traffic and ensure road safety. In order to address this 

challenge, the research presents a novel framework which combines AI-based 

techniques that not only automate part of the detection process but also integrate 

human in the loop to ensure that the system remains adaptable and transparent. The 

present dissertation explores a detailed literature review which provides a 

comprehensive overview of the current state of traffic incident detection methods. 

Moreover, the chapter focuses on the limitations of existing Automatic Incident 

Detection (AID) systems for identifying both planned and unplanned incidents. These 

systems, which often employ comparative algorithms or time-series models, tend to 

be limited in their ability to handle large datasets or complex traffic patterns. 

This dissertation aims to overcome the identified challenges by integrating 

explainability techniques and providing human operators with insight into the 
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system’s operations. In addressing the research challenges, the dissertation sets out 

several key questions, beginning with how AI-based systems can be designed for real-

time monitoring and prediction of traffic incidents. The methodology combines 

traditional AI approaches with more advanced techniques, such as AutoML, which 

automates the model selection and optimization process, and human-in-the-loop 

(HITL), which ensures that human expertise is taken into consideration in the decision-

making process. The combination of these approaches ensures that the system 

remains flexible and capable of adapting to different urban environments and 

evolving traffic conditions. 

The proposed framework for real-time traffic monitoring and incident detection is 

thus built upon four key pillars: Data Analytics, Automated Machine Learning, Human-

in-the-Loop and Explainability. The first pillar, Data Analytics, focuses on leveraging 

artificial intelligence to anticipate and detect traffic incidents promptly and efficiently. 

This involves the use of ML algorithms and data analytics techniques to analyze large 

amounts of historical and real-time traffic data. Automated Machine Learning, the 

second pillar, is used to optimize the model-building process, reducing the need for 

manual intervention and giving the possibility to the system to continuously improve 

its performance. The third pillar, Explainability, aims to make the AI models used in 

traffic management understandable and transparent to users. Techniques like SHAP 

(SHapley Additive exPlanations) and LIME (Local Interpretable Model-agnostic 

Explanations) are employed to clarify how models produce their predictions. Finally, 

the fourth pillar, Human-in-the-Loop, ensures that human operators are involved in 

the decision-making process by reviewing the model’s predictions and by providing 

continuous feedback, enhancing the system’s reliability and ensuring trust in its 

outputs. Human input helps correct any errors in the models, ensuring that the 

system's outputs are realistic. This creates a feedback loop that enhances model 

performance over time, as operators provide valuable insights and corrections. Lastly, 

combining HITL and explainability ensures that the incident detection system is not 

only highly effective but also trusted and accepted by its users. 
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The dissertation also focuses on the use of AI-driven methodologies for detecting 

both planned and unplanned traffic incidents. Techniques such as time-series analysis 

help predict traffic patterns, while machine learning models classify incidents based 

on historical data. The inclusion of deep learning models, particularly Long Short-Term 

Memory (LSTM) and Graph Neural Networks (GNNs), improves the system's ability to 

detect non-recurring incidents by achieving high performance in all established 

metrics.  

These AI models are further enhanced by AutoML, which automates much of the 

model development process. By using tools like TPOT (Tree-based Pipeline 

Optimization Tool), the system can automatically select and tune models, reducing 

the need for manual human intervention in calibrating the employed models and 

ensuring that the most effective models are deployed for incident detection. 

Incorporating AutoML into the traffic incident detection framework represents a 

significant advancement, as it automates the traditionally labor-intensive process of 

model selection and tuning. This dissertation describes how AutoML was used to 

optimize machine learning pipelines, improving both the accuracy and efficiency of 

the system. The AutoML approach was especially valuable in adapting to different 

urban environments, as demonstrated in the case studies from Athens and Antwerp.  

Human oversight plays a crucial role in ensuring the system’s transparency and 

trustworthiness. By incorporating a Human-in-the-Loop approach, the system allows 

operators to review and adjust the AI’s predictions in real-time, ensuring that critical 

decisions are not dependent only to automated processes. Explainability techniques, 

such as SHAP (SHapley Additive ExPlanations) and LIME (Local Interpretable Model-

Agnostic Explanations), are utilized to make the AI-driven system’s predictions more 

transparent and understandable. These tools help operators understand why certain 

incidents are flagged, making the system more reliable in high-stakes scenarios such 

as traffic management during an occurred accident. 

The dissertation also presents the technical details of the information system 

developed for real-time traffic incident detection, named AutoEventX. This system 
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integrates the AI models, AutoML pipelines, and HITL and explainability components 

into a cohesive architecture capable of processing large volumes of traffic data from 

multiple sources. The system is designed for scalability, allowing it to handle complex 

datasets in real-time, and it can be integrated with interactive dashboards that allow 

traffic managers to monitor conditions, receive incident alerts, understand the 

reasoning behind the system’s predictions and give their input. 

To validate the effectiveness of the proposed system, two real-world case studies 

were conducted in Athens and Antwerp. These case studies provided an opportunity 

to test the system under different traffic conditions and evaluate its performance in 

detecting both recurring and non-recurring incidents. For instance, in Athens, the 

system was used to detect non-recurring incidents, such as accidents or breakdowns, 

which are common in the city’s congested urban environment. The system was able 

to significantly reduce the number of false positives compared to more traditional 

methods, providing accurate incident detection in real-time. Moreover, it has been 

demonstrated that the system is able to detect also recurring congestion problems, 

in both Athens and Antwerp. The system was able to identify patterns in traffic flow 

and predict planned incidents, i.e. congestion, before they occurred, allowing traffic 

managers to potentially take proactive measures to reduce congestion. The results of 

these case studies demonstrate the system’s versatility and effectiveness in managing 

different types of traffic incidents. The deployment also highlighted the value of the 

HITL approach, as operators were able to provide real-time feedback that improved 

the system’s accuracy and reliability. 

In the conclusion, the dissertation reflects on the significant contributions made 

to the field of AI-driven traffic incident detection. By combining AutoML, HITL, and 

explainability techniques, the system presents a major advancement over traditional 

frameworks and incident detection methods. However, the research also 

acknowledges several limitations, particularly in terms of data quality and the 

challenges of handling incomplete or noisy datasets. These limitations point to areas 

for future research. Future research, in particular, should focus on improved multi-

source data integration, incorporating real-time sensor data, social media feeds, 
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weather data and crowdsourced information. Advancements in machine learning, 

deep learning, and reinforcement learning could optimize model adaptability across 

different urban environments. Human-AI collaboration could be refined through 

interactive interfaces, AR/VR tools, and real-time operator feedback to ensure a 

seamless integration between automated predictions and human decision-making. 

Enhancing explainability techniques with more advanced tools would also make AI 

models more transparent, while the expansion of prescriptive analytics would suggest 

actionable interventions to mitigate congestion. Additionally, incident detection 

systems should be integrated into broader smart city infrastructures, connecting 

traffic management with emergency response, and real-time incident management 

strategies.  

 To sum up, the contributions of this research include: 

1. A novel AI-HITL-AutoML traffic incident detection framework that 

integrates human oversight with automated ML model optimization. 

2. The development of an AutoEventX system, an end-to-end AI-driven 

platform capable of detecting and predicting both planned and unplanned 

traffic incidents. 

3. The integration of explainability techniques (SHAP, LIME) to enhance 

model transparency, fostering trust and reliability. 

4. The inclusion of human feedback through a dedicated loop, which enables 

the system to take into account operators’ expertise and adapt the outputs 

accordinly.  

5. Real-world validation through case studies in Athens and Antwerp, 

demonstrating high levels of performance. 

 

The findings of this dissertation contribute to the evolution of intelligent traffic 

management systems by integrating advanced machine learning techniques with 

human expertise and explainability approaches. This research not only achieves high 

performance and levels of transparency in incident detection but also lays the 

foundation for more adaptive and autonomous data-driven systems in urban mobility. 
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By putting in place an effective synergy between AI and human operators, this work 

helps in creating future transportation systems that are more efficient, transparent 

and safer. 

Keywords: Artificial Intelligence, Machine Learning, Automatic Incident Detection, 
Explainability, Smart Transportation Systems. 
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Εκτεταμένη	Περίληψη	

Η παρούσα διδακτορική διατριβή διερευνά την ανάγκη για προηγμένα 

συστήματα ανίχνευσης κυκλοφοριακών περιστατικών σε πραγματικό χρόνο σε 

αστικά περιβάλλοντα, όπου η πολυπλοκότητα και ο όγκος των δεδομένων συχνά 

δυσχεραίνουν την απόδοση των παραδοσιακών μεθόδων. Η έρευνα επικεντρώνεται 

στην ενσωμάτωση της αυτοματοποιημένης μηχανικής μάθησης (AutoML), των 

προσεγγίσεων Human-in-the-Loop (HITL) και των τεχνικών επεξηγηματικότητας 

(Explainability) για την ανάπτυξη ενός καινοτόμου πλαισίου για την ανίχνευση 

περιστατικών. Αυτό το πλαίσιο (framework) δοκιμάστηκε και επικυρώθηκε σε 

σενάρια πραγματικού κόσμου στην Αθήνα και την Αμβέρσα, όπου τα αποτελέσματα 

επιβεβαίωσαν την πρακτικότητα και την αποτελεσματικότητά του. 

Στην εισαγωγή, το κίνητρο για τη μελέτη προκύπτει από τις αυξανόμενες 

προκλήσεις που αντιμετωπίζουν σήμερα τα συστήματα μεταφορών. Οι 

παραδοσιακές μέθοδοι ανίχνευσης περιστατικών, οι οποίες βασίζονται σε 

προκαθορισμένους κανόνες και σε μη αυτοματοποιημένη ανθρώπινη 

παρακολούθηση, είναι όλο και πιο ανεπαρκείς λόγω της πολύπλοκης και δυναμικής 

φύσης των σύγχρονων αστικών δικτύων κυκλοφορίας. Τα κυκλοφοριακά 

περιστατικά, είτε είναι προγραμματισμένα (όπως τα έργα οδοποιίας ή η 

επαναλαμβανόμενη κυκλοφοριακή συμφόρηση) είτε μη προγραμματισμένα (όπως 

τα ατυχήματα), απαιτούν έγκαιρη ανίχνευση για την πρόληψη της συμφόρησης και 

τη διασφάλιση της οδικής ασφάλειας. Αντιμετωπίζοντας αυτή την πρόκληση, η 

παρούσα διδακτορική διατριβή προτείνει και παρουσιάζει έναν καινοτόμο 

συνδυασμό τεχνικών βασισμένων στην Τεχνητή Νοημοσύνη (ΤΝ) που όχι μόνο 

αυτοματοποιούν τμήματα της διαδικασίας ανίχνευσης, αλλά και ενσωματώνουν την 

ανθρώπινη επίβλεψη και την επεξηγηματικότητα για να διασφαλίσουν ότι το 

σύστημα παραμένει προσαρμόσιμο και διαφανές. 

Η βιβλιογραφική ανασκόπηση που πραγματοποιήθηκε κατά τη διάρκεια 

συγγραφής της παρούσας διατριβής παρέχει μια ολοκληρωμένη επισκόπηση της 



29 
 

τρέχουσας κατάστασης των μεθόδων ανίχνευσης κυκλοφοριακών περιστατικών. Τα 

περιστατικά ή συμβάντα αναφέρονται σε «κάθε μη επαναλαμβανόμενο γεγονός που 

προκαλεί μείωση της χωρητικότητας των οδών ή μη φυσιολογική αύξηση της 

ζήτησης» . Tα συμβάντα μπορούν να ταξινομηθούν ως προγραμματισμένα ή μη 

προγραμματισμένα γεγονότα, όπως φαίνεται στο Σχήμα 0-1. (Nikolaev, Sapego, 

Ivakhnenko, Mel'nikova, & Stroganov, 2017) 

 

Figure 0-1: Ταξινόμηση περιστατικών. (Nikolaev, Sapego, Ivakhnenko, Mel'nikova, & Stroganov, 2017) 

Στο πλαίσιο της διεξαχθείσας βιβλιογραφικής ανασκόπησης, οι αλγόριθμοι για 

την αυτόματη ανίχνευση περιστατικών ομαδοποιούνται σε τρεις ευρείες κατηγορίες, 

ως συγκριτικοί, χρονοσειρές και αλγορίθμους τεχνητής νοημοσύνης (στατιστικοί, 

μηχανικής μάθησης και βαθιάς μάθησης), όπως φαίνεται στο Σχήμα 0-2. 
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Figure 0-2: Ταξινόμηση αλγορίθμων αυτόματης ανίχνευσης περιστατικών. 

Επιπλέον, το κεφάλαιο που αφορά τη βιβλιογραφική επισκόπηση αναφέρεται και 

στους περιορισμούς των υφιστάμενων συστημάτων αυτόματης ανίχνευσης για τον 

εντοπισμό προγραμματισμένων και μη προγραμματισμένων περιστατικών. Αυτά τα 

συστήματα, τα οποία συχνά χρησιμοποιούν συγκριτικούς αλγορίθμους ή μοντέλα 

χρονοσειρών, τείνουν να είναι περιορισμένα ως προς την ικανότητά τους να 

χειρίζονται μεγάλα σύνολα δεδομένων ή πολύπλοκα πρότυπα κυκλοφορίας. Οι 

εξελίξεις στη μηχανική μάθηση (ML) και, πιο πρόσφατα, στην αυτόματη μηχανική 

μάθηση (AutoML) έχουν επιτρέψει μεγαλύτερη ακρίβεια και αυτοματοποίηση στον 

εντοπισμό περιστατικών. Στο Σχήμα 0-3, παρουσιάζεται λεπτομερώς η ταξινόμηση 

των τεχνικών ML που χρησιμοποιούνται στην αυτοματοποιημένη ανίχνευση 

περιστατικών κυκλοφορίας. 

Categories 
of AIDA

Time-series
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Figure 0-3: Ταξινόμηση των τεχνικών μηχανικής μάθησης που χρησιμοποιούνται στην αυτόματη 

ανίχνευση περιστατικών κυκλοφορίας. (Hireche & Dennai, 2020) 

Ωστόσο, αυτά τα συστήματα ML και AutoML λειτουργούν συχνά ως «μαύρα 

κουτιά», καθιστώντας τις προβλέψεις τους δύσκολες στην ερμηνεία και 

περιορίζοντας την εμπιστοσύνη των χρηστών. Ένα άλλο κρίσιμο ζήτημα είναι οι 

υπάρχουσες χρησιμοποιούμενες τεχνικές για τον καθαρισμό των δεδομένων, όπου 

οι ανακρίβειες στα δεδομένα κίνησης, όπως τα σφάλματα ή οι χαμηλοί ρυθμοί 

δειγματοληψίας, μπορούν να εισάγουν κενά στην ανίχνευση της κίνησης των 

οχημάτων και τα κενά αυτά δημιουργούν αβεβαιότητα στην ακριβή παρακολούθηση 

των περιστατικών. Επιπλέον, ο χειρισμός της χωροχρονικής πολυπλοκότητας των 

δεδομένων κινητικότητας, όπου τόσο η θέση όσο και ο χρόνος αποτελούν βασικούς 

παράγοντες, αποτελεί ένα ακόμη τεχνικό εμπόδιο, καθώς τα παραδοσιακά μοντέλα 

δυσκολεύονται να ενσωματώσουν αυτά τα δεδομένα σε πραγματικό χρόνο. Τέλος, 

ενώ τα αυτοματοποιημένα συστήματα είναι επιθυμητά, η ενσωμάτωση της 

ανθρώπινης εμπειρογνωμοσύνης στις διαδικασίες λήψης αποφάσεων σε 

πραγματικό χρόνο παραμένει μια ανοιχτή πρόκληση, με τα τρέχοντα συστήματα να 

μη λαμβάνουν συχνά υπόψιν τον ρόλο της ανθρώπινης παρέμβασης σε κατάστασης 

διαχείρισης κρίσεων, όπως κατά τη διάρκεια ενός ατυχήματος. 

Για την αντιμετώπιση αυτών των προκλήσεων, με βάση πολλές σχετικές εργασίες 

και ερευνητικές δημοσιεύσεις που έχουν αξιολογηθεί, προτείνεται ότι η μελλοντική 

έρευνα θα πρέπει να επικεντρωθεί σε διάφορους τομείς όπως η ποιότητα των 
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δεδομένων, η διαδικασία συλλογής τους και η επεξηγησιμότητα των συστημάτων και 

των προβλέψεών τους. Πιο συγκεκριμένα, βελτιωμένες τεχνικές καθαρισμού 

δεδομένων είναι απαραίτητες για τη διαχείριση του αυξανόμενου όγκου δεδομένων 

κινητικότητας και τη διασφάλιση υψηλής ποιότητας δεδομένων. Η μεροληψία κατά 

τη συλλογή δεδομένων μπορεί να μετριαστεί με την ανάπτυξη πιο περιεκτικών 

μεθόδων που λαμβάνουν υπόψη όλους τους τρόπους μεταφοράς και τις 

κοινωνικοοικονομικές ομάδες. Η βελτίωση της επεξηγηματικότητας των μοντέλων 

ML θα αυξήσει την αξιοπιστία τους, ιδίως σε πλαίσια που αφορούν πολλούς 

ενδιαφερόμενους, όπως οι city planners ή οι transport operators. Θα πρέπει να δοθεί 

προτεραιότητα σε εξειδικευμένα χωροχρονικά μοντέλα που χειρίζονται εγγενώς 

τόσο δεδομένα με βάση τον χρόνο όσο και δεδομένα με βάση τη θέση για τη 

βελτίωση της ακρίβειας ανίχνευσης. Τέλος, η ανάπτυξη υβριδικών συστημάτων 

Human-in-the-Loop που συνδυάζουν αυτοματοποιημένες διαδικασίες ML με την 

ανθρώπινη εμπειρία θα συμβάλει στη διασφάλιση πιο αξιόπιστης ανίχνευσης 

περιστατικών. 

Η παρούσα διατριβή στοχεύει να ξεπεράσει τις προκλήσεις που εντοπίστηκαν 

ενσωματώνοντας τεχνικές επεξηγηματικότητας και παρέχοντας στους ανθρώπινους 

χειριστές περισσότερο έλεγχο και εικόνα των λειτουργιών του συστήματος. Για την 

αντιμετώπιση των ερευνητικών προκλήσεων, η διατριβή θέτει διάφορα ερωτήματα, 

ξεκινώντας από τον τρόπο με τον οποίο μπορούν να σχεδιαστούν συστήματα 

βασισμένα στην τεχνητή νοημοσύνη για παρακολούθηση και πρόβλεψη 

κυκλοφοριακών περιστατικών σε πραγματικό χρόνο. Η μεθοδολογία συνδυάζει 

παραδοσιακές προσεγγίσεις ML με πιο προηγμένες τεχνικές, όπως  AutoML, η οποία 

αυτοματοποιεί τη διαδικασία επιλογής και βελτιστοποίησης μοντέλων, και τεχνικές 

HITL, με στόχο τη διασφάλιση πως η ανθρώπινη εμπειρογνωμοσύνη συμμετέχει σε 

βασικά σημεία λήψης αποφάσεων. Ο συνδυασμός αυτών των προσεγγίσεων 

διασφαλίζει ότι το σύστημα παραμένει ευέλικτο και ικανό να προσαρμόζεται σε 

διαφορετικά αστικά περιβάλλοντα και εξελισσόμενες συνθήκες κυκλοφορίας. 
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Στον συνοπτικό Πίνακα 0-1 αναφέρονται οι ερευνητικές προκλήσεις στις οποίες 

προσπαθεί να απαντήσει η διδακτορική διατριβή, καθώς και οι αντίστοιχες 

παράμετροι από τις οποίες αποτελούνται. 

  Table 0-1: Ερευνητικά ερωτήματα και οι αντίστοιχες παράμετροι. 

Ερευνητικά ερωτήματα 
 

Παράμετροι 

Ποια είναι τα βασικά 

στοιχεία και οι 

μεθοδολογίες για την 

παρακολούθηση και την 

πρόβλεψη σε πραγματικό 

χρόνο για την έγκαιρη 

ανίχνευση 

κυκλοφοριακών 

περιστατικών με βάση την 

τεχνητή νοημοσύνη; 

 

• Ποια είναι τα χαρακτηριστικά της 
κυκλοφορίας σε περίπτωση κυκλοφοριακών 
περιστατικών; 

• Ποιες είναι οι βασικές πηγές δεδομένων για 
την παρακολούθηση της κυκλοφορίας σε 
πραγματικό χρόνο και την ανίχνευση 
περιστατικών; 

• Ποιες είναι οι κύριες κατηγορίες αλγορίθμων 
για την ανίχνευση περιστατικών; Ποια είναι τα 
δυνατά και αδύναμα σημεία κάθε κατηγορίας; 

• Ποιοι αλγόριθμοι τεχνητής νοημοσύνης είναι 
πιο αποτελεσματικοί και έχουν προταθεί 
διεξοδικά από τη βιβλιογραφία για την 
ανίχνευση κυκλοφοριακών περιστατικών; 
Ποια είναι τα πλεονεκτήματα και οι 
περιορισμοί του καθενός; 

• Ποιες μετρικές απόδοσης επιλέγονται για την 
αξιολόγηση της αποτελεσματικότητας των 
συστημάτων ανίχνευσης κυκλοφοριακών 
περιστατικών; 

 

Πώς μπορούν να 

αξιοποιηθούν οι 

ανθρωποκεντρικές 

παραδοσιακές και 

αυτοματοποιημένες 

τεχνολογίες ML για την 

• Ποια είναι τα βήματα για τη δημιουργία ενός 
ολοκληρωμένου πλαισίου/μεθοδολογίας με 
χρήση ΤΝ για την ανίχνευση 
προγραμματισμένων και μη 
προγραμματισμένων περιστατικών σε 
πραγματικό χρόνο; 

• Πώς μπορεί να ενσωματωθεί η ανθρώπινη 
εμπειρογνωμοσύνη και παρέμβαση σε 
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ανάπτυξη ενός 

ολοκληρωμένου πλαισίου 

για την ανίχνευση 

κυκλοφοριακών 

περιστατικών σε 

πραγματικό χρόνο και την 

παρακολούθηση αστικών 

δικτύων μεταφορών; 

συστήματα παρακολούθησης της 
κυκλοφορίας και ανίχνευσης περιστατικών με 
βάση την ΤΝ; 

 

Πώς οι μεθοδολογίες και 

οι αλγόριθμοι που 

βασίζονται στην ΤΝ 

ενισχύουν την ανίχνευση 

προγραμματισμένων και 

μη προγραμματισμένων 

περιστατικών 

κυκλοφορίας; 

 

• Ποια είναι τα κύρια πλεονεκτήματα της χρήσης 

ΤΝ για την ανίχνευση κυκλοφοριακών 

περιστατικών σε σύγκριση με τις 

παραδοσιακές μεθόδους; 

• Ποιοι περιορισμοί ή προκλήσεις παραμένουν 

στις τρέχουσες προσεγγίσεις που βασίζονται 

στην ΤΝ; 

• Πώς αποδίδουν τα διάφορα μοντέλα 

μηχανικής μάθησης και βαθιάς μάθησης στο 

πλαίσιο της ανίχνευσης κυκλοφοριακών 

περιστατικών; Υπάρχουν διαφορές μεταξύ της 

ανίχνευσης προγραμματισμένων και μη 

προγραμματισμένων περιστατικών; 

• Ποια είναι τα βασικά χαρακτηριστικά και οι 

παράμετροι που επηρεάζουν την 

αποτελεσματικότητα των μοντέλων τεχνητής 

νοημοσύνης; 

Πώς μπορούν οι τεχνικές 

AutoML να ενισχύσουν 

την ανάπτυξη μοντέλων 

ΤΝ για την ανίχνευση 

• Τι είναι η αυτοματοποιημένη μηχανική 

μάθηση και ποιος ο ρόλος της στο πλαίσιο των 

ευφυών συστημάτων μεταφορών; 
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κυκλοφοριακών 

περιστατικών; 

 

•  Ποιες τεχνικές ή εργαλεία AutoML είναι 

καταλληλότερα για την ανίχνευση 

κυκλοφοριακών περιστατικών;  

• Πώς μπορεί να αυτοματοποιηθεί 

αποτελεσματικά η επιλογή και η 

βελτιστοποίηση μοντέλων;  

• Πώς συγκρίνονται οι τεχνικές AutoML με τις 

παραδοσιακές μεθόδους όσον αφορά την 

απόδοση; 

 
Πώς διασφαλίζεται ότι οι 

προβλέψεις των 

συστημάτων ανίχνευσης 

κυκλοφοριακών 

περιστατικών που 

βασίζονται στην ΤΝ είναι 

επεξηγήσιμες και 

αξιόπιστες, και πώς 

μπορεί να  ενσωματωθεί 

η ανατροφοδότηση από 

εμπειρογνώμονες; 

 

• Ποιος είναι ο ρόλος της ανθρώπινης 

ανατροφοδότησης και πώς μπορεί να 

αξιοποιηθεί σε συστήματα βασισμένα στην 

ΤΝ; 

• Ποιες τεχνικές επεξηγηματικότητας μπορούν 

να χρησιμοποιηθούν για να καταστούν οι 

προβλέψεις της ΤΝ κατανοητές και ποια 

εργαλεία μπορούν να ενσωματωθούν σε 

τέτοια συστήματα;  

• Ποιοι μηχανισμοί μπορούν να 

χρησιμοποιηθούν για την ενσωμάτωση της 

ανατροφοδότησης εμπειρογνωμόνων με τη 

χρήση μιας προσέγγισης «Human in the Loop» 

σε ευφυή συστήματα μεταφορών που 

βασίζονται στην ΤΝ, ώστε να βελτιωθεί η 

ποιότητα των προβλέψεων; 

• Ποια είναι τα αποτελέσματα της ενσωμάτωσης 

της ανθρώπινης παρέμβασης όσον αφορά την 

απόδοση κατά την επανεκπαίδευση των 

μοντέλων ML; Οι τεχνικές επεξηγηματικότητας 
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έχουν αντίκτυπο στην αξιοπιστία του 

συστήματος; 

 

 

Το προτεινόμενο πλαίσιο για την παρακολούθηση της κυκλοφορίας σε 

πραγματικό χρόνο και την ανίχνευση περιστατικών βασίζεται σε τέσσερις βασικούς 

πυλώνες: αναλυτική δεδομένων, αυτοματοποιημένη μηχανική μάθηση, ανθρώπινη 

παρέμβαση (Human-in-the-Loop) και επεξηγηματικότητα, όπως απεικονίζεται στο 

Σχήμα 0-4. Ο πρώτος πυλώνας, η ανάλυση δεδομένων, επικεντρώνεται στην 

αξιοποίηση της τεχνητής νοημοσύνης για την πρόβλεψη και τον άμεσο εντοπισμό 

περιστατικών κυκλοφορίας. Αυτό περιλαμβάνει τη χρήση εξελιγμένων αλγορίθμων 

για την ανάλυση μεγάλου όγκου ιστορικών δεδομένων καθώς και δεδομένων 

κυκλοφορίας σε πραγματικό χρόνο. Εντοπίζοντας μοτίβα και τάσεις, το σύστημα 

μπορεί να προβλέπει πιθανά συμβάντα και να παρέχει έγκαιρες προειδοποιήσεις. Η 

αυτοματοποιημένη μηχανική μάθηση, ο δεύτερος πυλώνας, χρησιμοποιείται για τη 

βελτιστοποίηση της διαδικασίας δημιουργίας και προσαρμογής μοντέλων, 

μειώνοντας την ανάγκη για χειροκίνητη παρέμβαση και επιτρέποντας στο σύστημα 

να βελτιώνει συνεχώς τις επιδόσεις του. Ο τρίτος πυλώνας, η Επεξηγησιμότητα, 

ασχολείται με το να καταστούν οι προβλέψεις των μοντέλων τεχνητής νοημοσύνης 

που χρησιμοποιούνται στη διαχείριση της κυκλοφορίας κατανοητές και διαφανείς 

στους χρήστες. Τεχνικές όπως οι SHAP (SHapley Additive exPlanations) και LIME (Local 

Interpretable Model-agnostic Explanations) χρησιμοποιούνται για να 

αποσαφηνίσουν τον τρόπο με τον οποίο τα μοντέλα καταλήγουν στις προβλέψεις 

τους. Τέλος, ο τέταρτος πυλώνας, Human-in-the-Loop, διασφαλίζει ότι οι ανθρώπινοι 

χειριστές συμμετέχουν στη διαδικασία λήψης αποφάσεων, επανεξετάζοντας τις 

προβλέψεις του μοντέλου και παρέχοντας συνεχή ανατροφοδότηση, ενισχύοντας 

την αξιοπιστία του συστήματος και εξασφαλίζοντας εμπιστοσύνη στα αποτελέσματά 

του. Η ανθρώπινη συμβολή συμβάλλει στη διόρθωση τυχόν σφαλμάτων στο μοντέλο, 

διασφαλίζοντας ότι οι εκροές (outputs) του συστήματος είναι ρεαλιστικές και 

ανταποκρίνονται στις πραγματικές συνθήκες. Αυτό δημιουργεί έναν βρόχο 
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ανατροφοδότησης που βελτιώνει την απόδοση του επιλεγμένου μοντέλου με την 

πάροδο του χρόνου, καθώς οι χειριστές παρέχουν πολύτιμες πληροφορίες και 

διορθώσεις. Τέλος, ο συνδυασμός του HITL και της επεξηγηματικότητας εξασφαλίζει 

ότι το σύστημα ανίχνευσης περιστατικών δεν είναι μόνο αποτελεσματικό αλλά και 

αξιόπιστο και αποδεκτό από τους χρήστες του. 

 

Figure 0-4: Οι τέσσερις πυλώνες του προτεινόμενου πλαισίου. 

Ο στόχος της προτεινόμενης προσέγγισής μας είναι να βελτιώσουμε τα 

συστήματα διαχείρισης της κυκλοφορίας αξιοποιώντας προηγμένες τεχνικές 

ανάλυσης και τεχνητής νοημοσύνης μαζί με την αντιμετώπιση των ερευνητικών 

προκλήσεων που αναφέρθηκαν παραπάνω, ενσωματώνοντας την 

επεξηγηματικότητα και τις προσεγγίσεις human-in-the-loop. Η προτεινόμενη 

μεθοδολογία και τα επιμέρους βήματα απεικονίζονται στο Σχήμα 0-5. Η διαδικασία 

είναι πολύπλοκη και περιλαμβάνει διάφορες φάσεις, καθεμία από τις οποίες είναι 

κρίσιμη για τη συνολική αποτελεσματικότητα του συστήματος όπως φαίνεται και στο 

ακόλουθο σχήμα (Σχήμα 0-5).  
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Explainability and 
Interpretable models to 
promote operators’ 
trust.

Integrating human 
expertise to enhance 
future system 
performance.

Leveraging data to 
identify unplanned  

incidents using 
Artificial Intelligence 

and recurring 
congestion.

Utilizing automated 
machine learning 

techniques to 
streamline and enhance 
model development and 

deployment.

Four pillars of our proposed framework
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Figure 0-5: Η προτεινόμενη μεθοδολογία μας. 

Η παρούσα διατριβή αποσκοπεί στην παροχή μιας ολοκληρωμένης επισκόπησης 

της εφαρμογής μεθοδολογιών που βασίζονται στην ΤΝ στον τομέα της ανίχνευσης 

κυκλοφοριακών περιστατικών, με ιδιαίτερη έμφαση τόσο σε προγραμματισμένα όσο 

και σε μη προγραμματισμένα περιστατικά. Παρουσιάζεται η προτεινόμενη 

προσέγγιση βασισμένη στην ΤΝ για την ανίχνευση κυκλοφοριακών περιστατικών με 

λεπτομερή περιγραφή των θεμελιωδών τεχνικών που χρησιμοποιούνται. Αυτό 

περιλαμβάνει μια σε βάθος ανάλυση του τρόπου με τον οποίο εφαρμόζονται 

μοντέλα ΤΝ, ιδίως αλγόριθμοι μηχανικής μάθησης και βαθιάς μάθησης, για την 

ανίχνευση περιστατικών. Ιδιαίτερη προσοχή δίνεται στη διάκριση μεταξύ των 

διαδικασιών ανίχνευσης προγραμματισμένων περιστατικών, όπως η 

επαναλαμβανόμενη κυκλοφοριακή συμφόρηση, και μη προγραμματισμένων 

περιστατικών, όπως τα ατυχήματα ή το ξαφνικό κλείσιμο δρόμων. 

Ένα από τα κύρια κίνητρα για την εφαρμογή της ΤΝ στην ανίχνευση 

κυκλοφοριακών περιστατικών είναι η αποτελεσματικότητα της διαχείρισης μεγάλου 
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όγκου δεδομένων και άρα η βελτίωση των δυνατοτήτων ανίχνευσης. Σε αντίθεση με 

τις παραδοσιακές μεθόδους, οι μεθοδολογίες ΤΝ μπορούν να αναλύουν μεγάλα 

σύνολα δεδομένων συνεχώς και σε πραγματικό χρόνο. Αυτό επιτρέπει τον εντοπισμό 

μοτίβων κυκλοφορίας και ανωμαλιών που υποδεικνύουν περιστατικά πολύ πιο 

γρήγορα και με μεγαλύτερη ακρίβεια από ό,τι οι ανθρώπινοι χειριστές. Ένα άλλο 

βασικό κίνητρο είναι η ικανότητα των συστημάτων ΤΝ να διευκολύνουν την 

παρακολούθηση και την ανταπόκριση σε πραγματικό χρόνο. Η γρήγορη επεξεργασία 

των δεδομένων και η δυνατότητα λήψης αποφάσεων βάσει δεδομένων σε 

πραγματικό χρόνο μπορούν να μειώσουν σημαντικά τον χρόνο απόκρισης σε 

περιστατικά κυκλοφορίας. 

Με βάση τη φύση του περιστατικού, δηλαδή αν είναι προγραμματισμένο ή μη, 

διερευνώνται διαφορετικές τεχνικές. Για μη προγραμματισμένα περιστατικά 

επιλέγονται ορισμένοι από τους πιο ευρέως χρησιμοποιούμενους αλγόριθμους και 

μεθόδους τελευταίας τεχνολογίας. Για το λόγο αυτό, επιλέχθηκε να μην δοθεί 

έμφαση σε συγκριτικούς αλγορίθμους ή αλγορίθμους χρονοσειρών, δεδομένου ότι, 

αν και αυτές χρησιμοποιήθηκαν εκτενώς στο παρελθόν, έχει πλέον σημειωθεί 

εκτεταμένη χρήση προσεγγίσεων Μηχανικής Μάθησης και Βαθιάς Μάθησης. 

Συνεπώς, έχουμε εστιάσει την προσοχή μας σε αλγορίθμους Μηχανικής Μάθησης 

και Βαθιάς Μάθησης, συμπεριλαμβανομένων επιβλεπόμενων αλγορίθμων 

(Supervised) (το ευρέως χρησιμοποιούμενο SVM και μια σειρά νευρωνικών δικτύων) 

και προσεγγίσεων μη επιβλεπόμενων (Unsupervised) για την ανίχνευση ανωμαλιών, 

όπως για παράδειγμα ο αλγόριθμος Isolation Forest. 

 Από την άλλη πλευρά, όσον αφορά την επαναλαμβανόμενη συμφόρηση ή 

συμφόρηση κατ’ εξακολούθηση (recurring congestion), είναι γνωστό ότι αποτελεί 

κοινό πρόβλημα στον τομέα των μεταφορών, ιδίως σε αστικές περιοχές με μεγάλο 

κυκλοφοριακό όγκο. Αυτός ο τύπος συμφόρησης συνήθως προκύπτει λόγω 

συνηθισμένων προτύπων ζήτησης κυκλοφορίας, όπως οι πρωινές και βραδινές ώρες 

αιχμής. Σε αντίθεση με τη μη επαναλαμβανόμενη συμφόρηση, η οποία προκαλείται 

από απρόβλεπτα γεγονότα όπως ατυχήματα ή καιρικές διαταραχές, η 

επαναλαμβανόμενη συμφόρηση εμφανίζεται τακτικά και προβλέψιμα. Η παρουσία 
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επαναλαμβανόμενης συμφόρησης όχι μόνο επηρεάζει την αποδοτικότητα του 

δικτύου μεταφορών, αλλά οδηγεί επίσης σε αυξημένη κατανάλωση καυσίμων, 

υψηλότερες εκπομπές ρύπων και μεγαλύτερους χρόνους ταξιδιού για τους 

μετακινούμενους. Οι τεχνικές περιγραφικής ανάλυσης, όπως η ανάλυση 

χρονοσειρών, ανάλυση μέσω οπτικοποίησεων και η συσταδοποίηση (clustering), 

παρέχουν μια θεμελιώδη κατανόηση των προτύπων συμφόρησης. Οι μέθοδοι 

προβλεπτικής αναλυτικής, συμπεριλαμβανομένης της ανάλυσης παλινδρόμησης, 

των αλγορίθμων μηχανικής μάθησης και της πρόβλεψης χρονοσειρών, επιτρέπουν 

την ακριβή πρόβλεψη των μελλοντικών συνθηκών κυκλοφορίας. Μαζί, αυτές οι 

τεχνικές προσφέρουν ένα ισχυρό πλαίσιο για την κατανόηση και τη διαχείριση της 

επαναλαμβανόμενης συμφόρησης, ανοίγοντας το δρόμο για πιο αποδοτικά 

συστήματα μεταφορών. 

Η παρούσα διατριβή, εν συνεχεία, παρουσιάζει τη μεθοδολογία που προτείνει 

για την ανίχνευση περιστατικών η οποία στηρίζεται στη χρήση της Αυτόματης 

Μηχανικής Μάθησης (ΑutoML). O πρωταρχικός στόχος του AutoML είναι να μειώσει 

τις χειροκίνητες διαδικασίες που συνεπάγεται η χρήση τεχνολογιών μηχανικής 

μάθησης, επιταχύνοντας έτσι την ανάπτυξή τους. Κατά συνέπεια, διάφορα 

συστήματα έχουν προσπαθήσει να ελαχιστοποιήσουν την εργασία που απαιτείται 

για την εκτέλεση ορισμένων βημάτων της ροής εργασίας ανάπτυξης συστημάτων 

μηχανικής μάθησης.  Η παρούσα εργασία περιλαμβάνει την ανάπτυξη μιας 

μεθοδολογίας για την αυτόματη ανίχνευση περιστατικών με στόχο τον έγκαιρο 

εντοπισμό μη προγραμματισμένων μη επαναλαμβανόμενων περιστατικών και, 

συνεπώς, τη δημιουργία ενός ασφαλέστερου και πιο αξιόπιστου συστήματος 

διαχείρισης ευφυών μεταφορών. Το διάγραμμα ροής της μεθοδολογίας, που 

απεικονίζεται στο Σχήμα 0-6, απεικονίζει τη γενική ροή εργασίας της εν λόγω 

προσέγγισης. Αρχικά, η διαδικασία ξεκινά με την εισαγωγή δεδομένων, 

ακολουθούμενη από ένα στάδιο προεπεξεργασίας των δεδομένων, ώστε το σύνολο 

δεδομένων να καταστεί κατάλληλο για την ανάπτυξη του μοντέλου. Στη συνέχεια, 

ένα εργαλείο/ framework AutoML, το TPOT, χρησιμοποιείται ως βάση της 

προσέγγισής μας για την ανάπτυ, προσαρμογή και τελικά την επιλογή των πλέον 

κατάλληλων μοντέλων. 
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Η χρήση του AutoML παρέχει ένα λειτουργικό πλεονέκτημα όσον αφορά τη 

λεπτομερή ρύθμιση των παραμέτρων. Το TPOT, με τη βελτιστοποίηση που βασίζεται 

στον γενετικό προγραμματισμό, μπορεί να εξερευνήσει επαναληπτικά τον χώρο των 

παραμέτρων για τη λεπτομερή ρύθμιση του μοντέλου καθώς εισέρχονται νέα 

δεδομένα ή καθώς αλλάζουν οι συνθήκες κυκλοφορίας, μια διαδικασία που είναι πιο 

αποδοτική ως προς τους πόρους και ενδεχομένως πιο αποτελεσματική από τις 

προσπάθειες χειροκίνητης ρύθμισης. Επομένως, ενώ το μοντέλο που επιλέγεται 

μέσω του TPOT μπορεί να είναι σταθερό κατά τη διάρκεια μιας συγκεκριμένης 

περιόδου, η μεθοδολογία μας έχει σχεδιαστεί για να διευκολύνει την εξέλιξη του 

μοντέλου, επιτρέποντας συνεχείς βελτιώσεις και την ενσωμάτωση νέων δεδομένων, 

γεγονός που αποτελεί σημαντικό πλεονέκτημα σε σχέση με μια στατική αλγοριθμική 

προσέγγιση. 

 

Figure 0-6: Γενικό διάγραμμα ροής της προτεινόμενης μεθοδολογίας με AutoML. 

Είναι σημαντικό να τονιστεί ότι το στάδιο της προεπεξεργασίας των δεδομένων -

το οποίο περιλαμβάνει την εξαγωγή χαρακτηριστικών, τη δειγματοληψία δεδομένων 

και το normalization- πραγματοποιείται πριν από την εκπαίδευση των μοντέλων. 

Αυτή η προεπεξεργασία είναι αναπόσπαστο μέρος  της διαδικασίας σχεδιασμού και 

των δύο μοντέλων (classification και regression) - ωστόσο, έχει ληφθεί η απόφαση η 

προεπεξεργασία να εκτελείται ανεξάρτητα για να διασφαλιστεί η ομοιομορφία 

μεταξύ των μοντέλων και, τελικά, να ενισχυθεί η αποτελεσματικότητά τους. Ένα 

λεπτομερές διάγραμμα, όπως φαίνεται στο Σχήμα 0-7, παρέχει μια εις βάθος άποψη 

της φάσης μοντελοποίησης, απεικονίζοντας τα περίπλοκα βήματα που εμπλέκονται 
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στην εκπαίδευση τόσο του μοντέλου ταξινόμησης όσο και του μοντέλου 

παλινδρόμησης, αναδεικνύοντας έτσι τη διπλή προσέγγιση της αντιμετώπισης της 

αυτόματης ανίχνευσης περιστατικών. 

 

Figure 0-7: Λεπτομερής επισκόπηση της φάσης μοντελοποίησης. 

Κατά την παρούσα διατριβή, επίσης, διερευνάται η ενσωμάτωση μηχανισμών 

human-in-the-loop σε συστήματα ανίχνευσης τροχαίων περιστατικών με βάση την 

τεχνητή νοημοσύνη. Η ανθρώπινη παρέμβαση είναι απαραίτητη όχι μόνο για τη 

διασφάλιση της ακριβούς απόδοσης των μοντέλων τεχνητής νοημοσύνης, αλλά και 

για την προώθηση της διαφάνειας, της εμπιστοσύνης και της σιγουριάς μεταξύ των 

ανθρώπινων χειριστών. Η επεξηγηματικότητα διαδραματίζει κρίσιμο ρόλο σε αυτή 

τη διαδικασία, βοηθώντας τους χειριστές να κατανοήσουν γιατί τα μοντέλα ΤΝ και τα 

μοντέλα που βασίζονται σε δεδομένα παράγουν συγκεκριμένες προβλέψεις για τα 

κυκλοφοριακά περιστατικά. Μέσω σαφών επεξηγήσεων των χαρακτηριστικών, των 

παραγόντων και της λογικής πίσω από αυτές τις προβλέψεις, οι χειριστές του 

συστήματος είναι καλύτερα εξοπλισμένοι για να παρέχουν τεκμηριωμένη 

ανατροφοδότηση. Αυτή η ανατροφοδότηση τους επιτρέπει να αποδέχονται, να 

απορρίπτουν ή να επεξεργάζονται τις λεπτομέρειες των περιστατικών που 
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επισημαίνονται από το σύστημα, γεγονός που βελτιώνει έτσι τη διαδικασία 

πρόβλεψης. Ως αποτέλεσμα, αυτή η δυναμική αλληλεπίδραση μεταξύ της 

ανθρώπινης επίβλεψης και των συστημάτων ΤΝ ενισχύει τόσο την ακρίβεια όσο και 

την προσαρμοστικότητα της ανίχνευσης κυκλοφοριακών περιστατικών, 

διασφαλίζοντας ότι το σύστημα βελτιώνεται με βάση την πραγματική ανθρώπινη 

εμπειρογνωμοσύνη. 

Η ανάπτυξη της ΤΝ σε κρίσιμες εφαρμογές όπως η ανίχνευση κυκλοφοριακών 

περιστατικών απαιτεί προσεκτική ισορροπία μεταξύ αυτοματοποίησης και 

ανθρώπινης εποπτείας. Ενώ τα μοντέλα τεχνητής νοημοσύνης προσφέρουν 

πρωτοφανείς δυνατότητες επεξεργασίας και ανάλυσης μεγάλων συνόλων 

δεδομένων για τον εντοπισμό περιστατικών, η πολυπλοκότητα και η αδιαφάνεια 

αυτών των μοντέλων συχνά δημιουργούν προκλήσεις όσον αφορά την εμπιστοσύνη 

και την αξιοπιστία. Οι μεθοδολογίες Human-in-the-loop (HITL) παρέχουν μια 

πρακτική λύση σε αυτές τις προκλήσεις, ενσωματώνοντας την ανθρώπινη 

ανατροφοδότηση και διασφαλίζοντας την ακρίβεια των προβλέψεων της ΤΝ. 

Επιπλέον, η ενσωμάτωση χαρακτηριστικών επεξηγηματικότητας στο σύστημα 

συμβάλλει στην ενίσχυση της εμπιστοσύνης στη διαδικασία ανίχνευσης των 

συστημάτων ΤΝ. 

Όταν ένα περιστατικό εντοπίζεται από το σύστημα, ο χειριστής καλείται να 

αναγνωρίσει το περιστατικό, επιβεβαιώνοντας την εμφάνισή του. Αυτός ο βρόχος 

ανατροφοδότησης (feedback loop) διασφαλίζει ότι ελαχιστοποιούνται τα ψευδώς 

θετικά (false positive) αποτελέσματα και ότι οι προβλέψεις του συστήματος 

συμφωνούν με τα πραγματικά δεδομένα. Επιπλέον, εάν συμβεί ένα περιστατικό και 

το σύστημα δεν το αναφέρει, οι χειριστές μπορούν να εισάγουν χειροκίνητα αυτές 

τις πληροφορίες, διασφαλίζοντας ότι δεν παραβλέπονται κρίσιμα περιστατικά. Αυτή 

η αμφίδρομη αλληλεπίδραση όχι μόνο βελτιώνει την ακρίβεια του συστήματος, αλλά 

παρέχει επίσης πολύτιμα δεδομένα για την επανεκπαίδευση και τη βελτίωση των 

μοντέλων τεχνητής νοημοσύνης με την πάροδο του χρόνου. 
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Ένα άλλο κίνητρο είναι η ανάγκη για επεξηγηματικότητα και αξιοπιστία στα 

συστήματα τεχνητής νοημοσύνης, ειδικά σε περιπτώσεις όπου οι αποφάσεις που 

λαμβάνονται από τα μοντέλα ΤΝ μπορεί να έχουν σημαντικές επιπτώσεις στη 

δημόσια ασφάλεια και τη διαχείριση των πόλεων. Η ενσωμάτωση τεχνικών όπως 

LIME (Local Interpretable Model-agnostic Explanations) και SHAP (SHapley Additive 

exPlanations) μας επιτρέπει να παρέχουμε διαφανείς και κατανοητές προβλέψεις σε 

συστήματα που χρησιμοποιούν ΤΝ. Αυτές οι τεχνικές βοηθούν στην αποκάλυψη της 

λογικής πίσω από τις αποφάσεις της ΤΝ, καθιστώντας ευκολότερο για τους 

ανθρώπινους χειριστές να εμπιστεύονται και να βασίζονται στο σύστημα. 

Εξασφαλίζοντας ότι οι προβλέψεις της ΤΝ δεν είναι μόνο ακριβείς αλλά και 

επεξηγήσιμες, μπορούμε να προωθήσουμε μεγαλύτερη εμπιστοσύνη και υιοθέτηση 

αυτών των τεχνολογιών σε πραγματικές συνθήκες. 

Το προτεινόμενο πλαίσιο για τη βελτίωση των συστημάτων ανίχνευσης 

περιστατικών ενσωματώνει τόσο τις μεθοδολογίες Human-in-the-Loop (HITL) όσο και 

χαρακτηριστικά επεξηγηματικότητας, συνδυάζοντας τα πλεονεκτήματα της τεχνητής 

νοημοσύνης με την ανθρώπινη εμπειρογνωμοσύνη, ώστε να διασφαλίζεται ακριβής 

και αξιόπιστη απόδοση. Αξιοποιώντας το HITL, το σύστημα επιτρέπει τη συνεχή 

ανθρώπινη παρέμβαση και εποπτεία, επιτρέποντας στους εμπειρογνώμονες να 

επικυρώνουν και να βελτιώνουν τα αποτελέσματα που παράγονται από την ΤΝ. Αυτή 

η υβριδική προσέγγιση διασφαλίζει ότι το σύστημα μπορεί να μαθαίνει δυναμικά 

από την ανθρώπινη ανατροφοδότηση, παρέχοντας παράλληλα ερμηνεία των 

προβλέψεων μέσω χαρακτηριστικών επεξηγηματικότητας. Αυτοί οι μηχανισμοί 

επεξηγηματικότητας είναι κρίσιμοι για την ενίσχυση της εμπιστοσύνης στα 

συστήματα που βασίζονται στην ΤΝ, καθώς επιτρέπουν στους ανθρώπινους χειριστές 

να κατανοήσουν το σκεπτικό πίσω από τις αποφάσεις, να διαγνώσουν πιθανά 

σφάλματα και να κάνουν προσαρμογές για τη βελτίωση της ακρίβειας του 

συστήματος. Τελικά, αυτό το πλαίσιο αποσκοπεί στην ενίσχυση της αποδοτικότητας 

ανίχνευσης μη επαναλαμβανόμενων περιστατικών, όπως οι διακοπές κυκλοφορίας 

ή τα ατυχήματα, διατηρώντας παράλληλα υψηλά επίπεδα διαφάνειας, 

εμπιστοσύνης και απόδοσης σε συστήματα μεταφορών του πραγματικού κόσμου. 
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Figure 0-8: Το προτεινόμενο πλαίσιο με τεχνικές Επεξηγησιμότητας και Human-in-the-Loop.  

Υπάρχουν πολλά οφέλη του προτεινόμενου πλαισίου (Figure 0-8), όπως για 

παράδειγμα ενισχυμένη ακρίβεια και αξιοπιστία, αυξημένη διαφάνεια και 

εμπιστοσύνη, συνεχής μάθηση και προσαρμογή κατά τη διάρκεια προληπτικής ή 

real-time διαχείρισης της κυκλοφορίας. Συνοπτικά, το προτεινόμενο πλαίσιο για την 

ενσωμάτωση προσεγγίσεων Human-in-the-Loop και χαρακτηριστικών 

επεξηγηματικότητας σε συστήματα ανίχνευσης περιστατικών προσφέρει μια καλή 

λύση για την αποτελεσματική διαχείριση της κυκλοφορίας. Συνδυάζοντας τα 

πλεονεκτήματα της τεχνητής νοημοσύνης με την ανθρώπινη εμπειρογνωμοσύνη και 

τη διαφανή λήψη αποφάσεων, το σύστημα εξασφαλίζει ακριβή και αξιόπιστη 

ανίχνευση περιστατικών, συμβάλλοντας τελικά σε ασφαλέστερη διαχείριση της 

κυκλοφορίας. 
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Figure 0-9: Το προτεινόμενο πλαίσιο εστιάζοντας στο Human -in-the-Loop approach 

To Σχήμα 0-9 απεικονίζει το πλαίσιο Human-in-the-Loop (HITL), μια μεθοδολογία 

που χρησιμοποιείται στην έρευνά μας για τη βελτίωση των μοντέλων μηχανικής 

μάθησης (ML) για την πρόβλεψη περιστατικών σε ευφυή συστήματα μεταφορών που 

χρησιμοποιούν δεδομένα αισθητήρων βρόχου (inductive loop detectors - ILD) . Η 

διαδικασία ξεκινά με τη συλλογή δεδομένων από αισθητήρες βρόχου 

ενσωματωμένους σε οδούς, τα οποία στη συνέχεια χρησιμοποιούνται για την 

εκπαίδευση μοντέλων ML με στόχο την πρόβλεψη περιστατικών. Αντί να βασίζεται 

αποκλειστικά σε αυτοματοποιημένες προβλέψεις, η προσέγγιση HITL εισάγει ένα 

ενδιάμεσο βήμα όπου ανθρώπινοι εμπειρογνώμονες εξετάζουν και επικυρώνουν 

αυτές τις προβλέψεις. Η ανατροφοδότηση από αυτούς τους εμπειρογνώμονες στη 

συνέχεια τροφοδοτείται εκ νέου στο μοντέλο, βελτιώνοντας περαιτέρω την ακρίβειά 

του και επιτρέποντάς του να προσαρμόζεται στις πολυπλοκότητες των σεναρίων του 

πραγματικού κόσμου. Αυτή η επαναληπτική διαδικασία διασφαλίζει ότι τα μοντέλα 

ML όχι μόνο βελτιώνονται προοδευτικά, αλλά και συγκλίνουν όλο και περισσότερο 

με τον τρόπο που οι επαγγελματίες των μεταφορών ορίζουν την έννοια του 
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«περιστατικού», οδηγώντας τελικά σε ακριβέστερες και πιο αξιόπιστες προβλέψεις 

περιστατικών. 

Επιπροσθέτως, το σύστημά μας έχει δυνατότητα για επανεκπαίδευση των 

μοντέλων μηχανικής μάθησης σε τακτά χρονικά διαστήματα, προκειμένου να 

διατηρείται η αποτελεσματικότητά του σε σχέση με τις μετρικές που έχουν τεθεί, και 

καθώς νέα δεδομένα γίνονται διαθέσιμα. Μετά την ολοκλήρωση των διαδικασιών 

επανεκπαίδευσης, διαπιστώθηκε πως οι μετρικές απόδοσης του μοντέλου 

παρουσιάζουν αξιοσημείωτη βελτίωση μετά από κάθε κύκλο επανεκπαίδευσης. Η 

βελτίωση αυτή σημειώθηκε ιδιαίτερα στη μετρική recall, η οποία μετρά την 

ικανότητα του μοντέλου να αναγνωρίζει σωστά τα πραγματικά περιστατικά, 

συμπεριλαμβανομένων εκείνων που είχαν προηγουμένως ταξινομηθεί εσφαλμένα. 

Επιπλέον, συγκρίνοντας συστηματικά τα αποτελέσματα της εβδομαδιαίας και της 

δεκαπενθήμερης επανεκπαίδευσης, εντοπίσαμε την πιο αποτελεσματική στρατηγική 

επανεκπαίδευσης. Δεν επιλέξαμε την καθημερινή επανεκπαίδευση, καθώς ενώ  

μπορεί να οδηγήσει σε ταχεία αύξηση των επιδόσεων, θα μπορούσε επίσης να ενέχει 

τον κίνδυνο υπερπροσαρμογής και ταυτόχρονα απαιτεί σημαντικούς υπολογιστικούς 

πόρους. Η εβδομαδιαία επανεκπαίδευση παρέχει μια ισορροπημένη προσέγγιση, 

προσφέροντας συνεχείς βελτιώσεις χωρίς υπερβολικές υπολογιστικές απαιτήσεις. Η 

δεκαπενθήμερη επανεκπαίδευση, αν και δυνητικά πιο αποδοτική ως προς τους 

πόρους, έχει αποδειχθεί ότι καθυστερεί την ικανότητα του μοντέλου να 

ενσωματώνει άμεσα νέα πρότυπα. Η συγκριτική ανάλυση των συχνοτήτων 

επανεκπαίδευσης αποκάλυψε ότι η εβδομαδιαία επανεκπαίδευση παρείχε τη 

βέλτιστη ισορροπία μεταξύ ανταπόκρισης και σταθερότητας. Το μοντέλο ήταν σε 

θέση να προσαρμοστεί αποτελεσματικά σε νέα πρότυπα χωρίς τον κίνδυνο 

υπερβολικής προσαρμογής ή υπερβολικών υπολογιστικών απαιτήσεων. 

Ακολούθως, αναπτύσσεται πληροφοριακό σύστημα, το AutoEventX, το οποίο 

δίνει τη δυνατότητα εφαρμογής της προτεινόμενης μεθόδου σε διαφορετικά αστικά 

περιβάλλοντα. Συγκεκριμένα, η μέθοδος εφαρμόζεται σε δύο διαφορετικές πόλεις, 

την Αθήνα και την Αμβέρσα, για να αξιολογηθεί και να συγκριθεί σε διαφορετικά 
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αστικά περιβάλλοντα και πλαίσια. Η εννοιολογική αρχιτεκτονική (conceptual 

architecture) απεικονίζεται στο Σχήμα 0-10.  

 

Figure 0-10: Εννοιολογική αρχιτεκτονική του προτεινόμενου συστήματος. 

Το πληροφοριακό σύστημα αναπτύχθηκε μέσω της ενσωμάτωσης και ενοποίησης 

διαφόρων εργαλείων που αφορούν τις διάφορες φάσεις του προτεινόμενου 

πλαισίου. Το σύστημα είναι σε θέση να ενσωματώνει δεδομένα που παρέχονται από 

διαφορετικές πηγές, να αξιολογεί την ποιότητα των εισερχόμενων δεδομένων, μέσω 

ειδικών τεχνικών, ιδίως όσον αφορά τις μετρήσεις που λαμβάνονται από ανιχνευτές 

βρόχων, να υποστηρίζει την αποτελεσματική επεξεργασία δεδομένων σε πραγματικό 

χρόνο, να παρέχει στους ενδιαφερόμενους φορείς προβλέψεις όσον αφορά 

προγραμματισμένα και μη προγραμματισμένα περιστατικά και να αποκαλύπτει τη 

λογική πίσω από αυτά τα αποτελέσματα, λαμβάνοντας υπόψη την ανατροφοδότηση 

των εμπειρογνωμόνων χειριστών. Προκειμένου να αναπτυχθεί το σύστημα αυτό, 

χρησιμοποιήθηκε κατά βάση η γλώσσα Python καθώς και σχετικές βιβλιοθήκες, οι 

οποίες παρουσιάζονται πιο αναλυτικά στην παρούσα διδακτορική διατριβή. 

Η τεχνική αρχιτεκτονική του συστήματος μαζί με τα επιμέρους επίπεδα 

(Αποθήκευσης, Λογικής και Ανθρώπινης Παρέμβασης) και τις μεταξύ τους 

συσχετίσεις παρουσιάζονται στο Σχήμα 0-11.  
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Figure 0-11: Τεχνική αρχιτεκτονική του αναπτυχθέντος συστήματος AutoEventX. 

To Επίπεδο Αποθήκευσης (Storage Layer) παρέχει τη δυνατότητα αποθήκευσης 

τόσο για στατικά δεδομένα όσο και για δεδομένα σχεδόν πραγματικού χρόνου με 

διαφορετικές μορφές και τύπους πρόσβασης, κι αποτελείται από αποθήκευση σε 

σύστημα αρχείων που διατηρεί τα δεδομένα σε μορφές JSON, JSON-LD και Parquet. 

Το τελευταίο έχει επιλεγεί για τη διατήρηση των αρχικών δεδομένων για περαιτέρω 

τροφοδοσία του συστήματος και αποκατάσταση της βάσης δεδομένων, εάν 

απαιτείται. 

Το Επίπεδο Λογικής (Logic Layer) αποτελεί το κεντρικό υπολογιστικό επίπεδο για 

ανάλυση δεδομένων, εκπαίδευση μοντέλων και πρόβλεψη. Ενσωματώνει 

παραδοσιακούς και αυτόματους αλγόριθμους μηχανικής μάθησης για εκτέλεση 

προηγμένων αναλύσεων για προγραμματισμένα και μη προγραμματισμένα 

περιστατικά. 

• Προηγμένη Ανάλυση Δεδομένων: Χρησιμοποιεί χρονοσειρές, χωροχρονική 

ανάλυση και ανάλυση συσχετίσεων, με εργαλεία όπως ARIMA και τη 

βιβλιοθήκη GeoPandas. 
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• Ανάπτυξη Μοντέλων Μηχανικής Μάθησης: Περιλαμβάνει προεπεξεργασία, 

καθαρισμό, εξαγωγή χαρακτηριστικών, επιλογή αλγορίθμου, εκπαίδευση και 

προσαρμογή παραμέτρων μοντέλων μηχανικής μάθησης. 

• Επικύρωση Μοντέλου: Χρησιμοποιεί ευρέως χρησιμοποιούμενες μετρικές 

(π.χ. precision, recall, F1-score) και τεχνικές διασταυρούμενης επικύρωσης 

για εξασφάλιση αξιοπιστίας. 

• Αυτοματοποιημένη Μηχανική Μάθηση (AutoML): Χρησιμοποιεί 

βιβλιοθήκες AutoML για την αυτοματοποίηση της διαδικασίας, ενισχύοντας 

την αποδοτικότητα και την επεκτασιμότητα (scalability) των μοντέλων. 

• Προβλέψεις σε Πραγματικό Χρόνο: Παρέχει προβλέψεις σε πραγματικό 

χρόνο για τυχόν περιστατικά, προγραμματισμένα ή μη. 

Το Επίπεδο Human-in-the-Loop ενσωματώνει την ανθρώπινη εμπειρογνωμοσύνη 

στο σύστημα για επιβεβαίωση της προβλέψεων των μοντέλων και απόκτησης 

εμπιστοσύνης από τους χρήστες στην ΤΝ και τις αποφάσεις που λαμβάνει το 

σύστημα. 

• Επεξηγηματικότητα: Προσφέρει πληροφορίες σχετικά με τη διαδικασία 

λήψης αποφάσεων του μοντέλου, επιτρέποντας στους ενδιαφερόμενους να 

κατανοούν τις προβλέψεις του συστήματος. 

• Επικύρωση, Διόρθωση και Ανατροφοδότηση από Ανθρώπους: Οι χειριστές 

του συστήματος διαχείρισης κυκλοφορίας αναθεωρούν και διορθώνουν τις 

προβλέψεις του μοντέλου, δημιουργώντας έναν κύκλο ανατροφοδότησης για 

συνεχή βελτίωση της απόδοσης του μοντέλου. 

• Ενσωμάτωση με Συστήματα Διαχείρισης Κυκλοφορίας: Τα επικυρωμένα 

αποτελέσματα μπορούν να ενσωματωθούν σε πραγματικά συστήματα 

διαχείρισης κυκλοφορίας, παρέχοντας ειδοποιήσεις σε πραγματικό χρόνο και 

διασφαλίζοντας αποτελεσματική αντίδραση σε περίπτωση ατυχημάτων. 
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Η προγραμματιστική γλώσσα Python, λόγω της ευελιξίας της, επιλέχθηκε για την 

υλοποίηση του πληροφοριακού συστήματος. Βιβλιοθήκες όπως Pandas 

διευκολύνουν τη διαχείριση δεδομένων, η βιβλιοθήκη Scikit-learn υποστηρίζει την 

ανάπτυξη μοντέλων, οι Keras και TensorFlow χρησιμοποιούνται για την ανάπτυξη 

μοντέλων βαθιάς μάθησης, ενώ οι Seaborn και Matplotlib για την οπτικοποίηση 

δεδομένων, προβλέψεων, αναλύσεων και αποτελεσμάτων. Επιπλέον, τεχνολογίες 

που χρησιμοποιήθηκαν περιλαμβάνουν τις βιβλιοθήκες SHAP και LΙME για 

επεξήγηση των μοντέλων, καθώς και Flask και Docker για τη δημιουργία ενός 

φορητού και επεκτάσιμου συστήματος. Το Flask, ένα Python framework, επιτρέπει 

την ανάπτυξη API και τη διαχείριση αιτημάτων. Το Docker δημιουργώντας containers 

για το deployment της εφαρμογής, εξασφαλίζει συνέπεια μεταξύ περιβαλλόντων, 

απομόνωση για ασφάλεια και φορητότητα μεταξύ πλατφορμών. 

Το σύστημά μας έχει αναπτυχθεί έχοντας 2 διαφορετικούς τρόπους λειτουργίας: 

την offline και την online. Στο Σχήμα 0-12 παρουσιάζεται η τεχνική αρχιτεκτονική της 

λειτουργίας εκτός σύνδεσης του συστήματος που αναπτύξαμε. 

 
Figure 0-12: Τεχνική αρχιτεκτονική του offline τρόπου λειτουργίας του συστήματος. 
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Το επίπεδο δεδομένων περιέχει τις μετρήσεις του ανιχνευτή βρόχων (ιστορικού 

και πραγματικού χρόνου) για την ταχύτητα, την πληρότητα και τη ροή, εκτός από τα 

αντίστοιχα σύνολα δεδομένων περιστατικών και τις αντίστοιχες πληροφορίες για το 

συγκοινωνιακό δίκτυο κάθε περίπτωσης. Στο επίπεδο ML/DL, έχουμε υλοποιήσει μια 

σειρά αλγορίθμων μηχανικής μάθησης, βαθιάς μάθησης και αλγορίθμων ΑutoML για 

την αυτόματη ανίχνευση περιστατικών. Αυτές περιλαμβάνουν τόσο εποπτευόμενες 

όσο και μη εποπτευόμενες προσεγγίσεις. 

Αφού εκτελέσουμε την εκπαίδευση του μοντέλου τεχνητής νοημοσύνης κατά τη 

λειτουργία offline, το σύστημά μας είναι σε θέση να λειτουργήσει σε πραγματικό 

χρόνο για την εμφάνιση πιθανών περιστατικών (alerts). Στο Σχήμα 0-13 

παρουσιάζεται η ροή της διαδικασίας της λειτουργίας πραγματικού χρόνου του 

συστήματός μας.  Μόλις γίνουν διαθέσιμα νέα δεδομένα, το σύστημα τα 

καταγράφει. Επομένως, οι αντίστοιχες πληροφορίες συλλέγονται, αποθηκεύονται 

τοπικά και στη συνέχεια ομαδοποιούνται σε κατάλληλα χρονικά διαστήματα για να 

τροφοδοτηθούν στο στάδιο προεπεξεργασίας και καθαρισμού των δεδομένων. Οι 

συγκεκριμένες διαδικασίες προεπεξεργασίας παραμένουν συνεπείς με εκείνες που 

περιγράφονται στον offline τρόπο λειτουργίας, διατηρώντας την ομοιομορφία στην 

προσέγγιση της προετοιμασίας και του καθαρισμού των δεδομένων. Στη συνέχεια, 

τα δεδομένα μετατρέπονται στην απαιτούμενη μορφή για να τροφοδοτηθούν στο 

στάδιο της πρόβλεψης του μοντέλου. Εάν η καταχώρηση περιέχει ανωμαλίες 

(αντιπροσωπεύεται ως «1»), τότε ζητείται ανατροφοδότηση από τους χειριστές για 

να επιβεβαιωθεί το εντοπισμένο περιστατικό. Αυτή η έννοια της ανατροφοδότησης 

από ανθρώπινο χειριστή είναι ζωτικής σημασίας, δεδομένου ότι βοηθά στη 

δημιουργία ενός βελτιωμένου συνόλου δεδομένων περιστατικών και έτσι 

εξασφαλίζει ότι η απόδοση του συστήματος μπορεί να βελτιωθεί με την πάροδο του 

χρόνου, δεδομένου ότι επανεκπαιδεύεται σε αυτό το διαρκώς εξελισσόμενο σύνολο 

δεδομένων. Αξίζει να αναφερθεί ότι οι ενδιαφερόμενοι φορείς μπορούν να 

βελτιώσουν την ποιότητα και την ακρίβεια των αναφερόμενων περιστατικών, 

δημιουργώντας χειροκίνητες καταχωρίσεις περιστατικών που εντοπίζουν οι ίδιοι. 

Τέλος, στην περίπτωση που το σύστημα έχει διαπιστώσει μια ανωμαλία στα 

δεδομένα και την χαρακτηρίζει ως περιστατικό, τότε παράγει ως εκροή (output) και 



53 
 

αποθηκεύει στο Data Layer μια οντότητα τύπου «Περιστατικό» με τα χαρακτηριστικά 

της τοποθεσίας και του χρόνου του περιστατικού. 

Προκειμένου να βελτιωθούν οι δυνατότητες ανίχνευσης του συστήματος με την 

πάροδο του χρόνου, ο βρόχος ανατροφοδότησης που έχουμε εφαρμόσει για τη 

σύγκριση των προβλέψεων του μοντέλου με τα πραγματικά αποτελέσματα είναι το 

κλειδί για συνεχή βελτίωση. Η ανίχνευση τυχόν αποκλίσεων αξιοποιείται για τη 

βελτιστοποίηση του μοντέλου.  

 

Figure 0-13: Online τρόπος λειτουργίας του συστήματός μας. 

Έπειτα, αξιολογείται το προτεινόμενο σύστημα ανίχνευσης περιστατικών σε δύο 

πραγματικά σενάρια χρήσης. Η αξιολόγηση περιλαμβάνει πειράματα για τη συλλογή 

μετρήσεων επιδόσεων και τη διεξαγωγή συγκριτικών αναλύσεων μεταξύ των 

αλγορίθμων μηχανικής και βαθιάς μάθησης, τεχνικών ΑutoML και βασικών μοντέλων 

σε δύο μεγάλες πόλεις, την Αθήνα στην Ελλάδα, και την Αμβέρσα στο Βέλγιο. 
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Στην Αθήνα, ο  αυτοκινητόδρομος  της Αττικής οδού που συνδέει το αεροδρόμιο 

με το κέντρο της πόλης παρέχει ιδιαίτερες κυκλοφοριακές προκλήσεις, ενώ στην 

Αμβέρσα, μια σημαντική διαδρομή που συνδέεται με το λιμάνι και τους 

αυτοκινητόδρομους αντιπροσωπεύει ένα διαφορετικό αστικό περιβάλλον. Η 

ανάπτυξη των μοντέλων και η εφαρμογή του προτεινόμενου πλαισίου, 

μεθοδολογίας και αναπτυχθέντος συστήματος μας και στις δύο πόλεις μας επέτρεψε 

να δοκιμάσουμε την προσαρμοστικότητα σε διαφορετικά αστικά τοπία, δείχνοντας 

τις  δυνατότητες του προτεινόμενου συστήματός μας για χρήση και σε ευρύτερες 

εφαρμογές διαχείρισης της κυκλοφορίας. 

Ακολουθεί screenshot στο Σχήμα 0-14 που απεικονίζει ένα μη προγραμματισμένο 

περιστατικό κυκλοφορίας που εντοπίστηκε από το σύστημα AutoEventX όπως αυτό 

φαίνεται από dashboard που αναπτύχθηκε στο πλαίσιο του ερευνητικού έργου 

FRONTIER. 

 

Figure 0-14: Στιγμιότυπο από μη προγραμματισμένο περιστατικό στο case study στην Αθήνα. 

Κατά την αξιολόγηση λήφθηκαν υπόψη οι περιορισμοί των διαθέσιμων 

δεδομένων, ιδίως η έλλειψη επισημασμένων περιστατικών, η οποία περιόριζε την 

ορατότητα και επηρέαζε το ποσοστό ψευδώς θετικών αποτελεσμάτων. Η ανίχνευση 

στηρίχθηκε σε ακριβή διαστήματα 5 λεπτών, γεγονός που επηρέασε τις μετρικές 
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απόδοσης, καθώς το σύστημα έπρεπε να ανιχνεύσει περιστατικά με ακριβή 

timestamps. 

Τα αποτελέσματα έδειξαν διακυμάνσεις μεταξύ των αλγορίθμων, με το Support 

Vector Machine (SVM) να επιτυγχάνει την υψηλότερη ακρίβεια και ανάκληση και στα 

δύο σύνολα δεδομένων, γεγονός που συνάδει με τη βιβλιογραφία που υποστηρίζει 

την υψηλή αποτελεσματικότητα απόδοσης του SVM με επισημειωμένα δεδομένα. 

Ωστόσο, οι περιορισμοί περιλαμβάνουν πιθανή υπερπροσαρμογή και προκλήσεις 

στο χειρισμό δειγμάτων που δεν υπήρχαν στο training dataset. Τα BCNN και Wavelet 

Neural Networks επέδειξαν υψηλή ανάκληση αλλά χαμηλότερη ακρίβεια, 

επηρεάζοντας το F1-score. Οι μετασχηματισμοί wavelet είχαν ελαφρώς καλύτερες 

επιδόσεις από το BCNN, σύμφωνα με τα βιβλιογραφικά ευρήματα για δεδομένα 

χρονοσειρών. Ο Autoencoder έχει περιθώρια βελτίωσης, όμως η απλή αρχιτεκτονική 

που επιλέχθηκε πιθανώς περιόρισε την απόδοση. Ο αλγόριθμος Isolation Forest 

πέτυχε καλή ανάκληση αλλά χαμηλή ακρίβεια, αποδίδοντας πολυάριθμα ψευδώς 

θετικά αποτελέσματα, τα οποία ήταν δύσκολο να αξιολογηθούν λόγω πιθανών 

τυφλών σημείων του δικτύου για τα οποία δεν υπήρχαν καθόλου δεδομένα ή σε 

περίπτωση που υπήρχαν, αυτά ήταν ελλιπή. Ο αλγόριθμος Bidirectional LSTM 

παρουσίασε υψηλή ακρίβεια και ικανοποιητική ανάκληση. Η βέλτιστη απόδοση 

επιτεύχθηκε μέσω μιας βαθιάς bidirectional αρχιτεκτονικής, αναλύοντας 

αποτελεσματικά τις εξαρτήσεις προς τα εμπρός και προς τα πίσω για την πρόβλεψη 

της ροής κυκλοφορίας. Το Random Forest είναι σε θέση να αποδώσει εξαιρετικά 

καλά τόσο στις μετρήσεις ακρίβειας όσο και στις μετρήσεις ανάκλησης, 

αναδεικνύοντας την ικανότητά του να ταξινομεί με ακρίβεια τα πραγματικά 

περιστατικά, ελαχιστοποιώντας παράλληλα τα ψευδώς θετικά και αρνητικά. Το 

Νευρωνικό Δίκτυο Γραφημάτων (Graph Neural Network – GNN) είναι σε θέση να 

καταγράψει πολύ ικανοποιητικές τιμές ακρίβειας και αρκετά καλές τιμές ανάκλησης. 

Από πρακτική άποψη, αυτό σημαίνει ότι υπάρχουν λίγα false alarms όπου το 

σύστημα προβλέπει ένα περιστατικό που δεν έχει συμβεί στην πραγματικότητα, ενώ 

είναι ικανό να αναγνωρίσει ένα μεγάλο ποσοστό των πραγματικών περιστατικών. 

Αυτό σημαίνει ότι το σύστημα είναι αξιόπιστο με την έννοια ότι δεν χάνει πολλά 

περιστατικά. Τέλος, το baseline μοντέλο της Aimsun, αν και αδύναμο σε ακριβείς 
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μετρήσεις ανά πέντε  λεπτά, πέτυχε 73% ανάκληση σε ένα περιθώριο 15 λεπτών 

γύρω από τα γεγονότα στην Αθήνα, το οποίο ήταν αποδεκτό για μη 

επαναλαμβανόμενα περιστατικά. Επιπλέον, αναφερόμενοι σύντομα στα 

αποτελέσματα της ανάλυσης χρησιμοποιώντας AutoML, στην Αθήνα, η προσέγγιση 

υπερείχε των βασικών μεθόδων όσον αφορά όλες τις καθιερωμένες μετρήσεις. 

Αντίθετα, στην Αμβέρσα, ο αλγόριθμος SVM ήταν ανώτερος όσον αφορά το F1-score 

και την ανάκληση, αλλά ταυτόχρονα η προσέγγιση χρησιμοποιώντας AutoML τον 

ξεπέρασε όσον αφορά τη μετρική της ακρίβειας. Αυτές οι διαφοροποιήσεις 

υπογραμμίζουν την ανάγκη για προσαρμοσμένες αλγοριθμικές στρατηγικές και την 

εξέταση των ιδιαιτεροτήτων των δεδομένων κατά την ανίχνευση περιστατικών σε 

διαφορετικά αστικά περιβάλλοντα. 

Τέλος, είναι σημαντικό να αναγνωριστεί ότι, ενώ το AutoML στοχεύει στην 

απλοποίηση και τη βελτιστοποίηση της διαδικασίας επιλογής και εκπαίδευσης 

μοντέλων, δεν αναιρεί την αξία της κατανόησης της απόδοσης συγκεκριμένων 

τεχνικών ML. Η σύγκρισή μας επιδιώκει να αναδείξει τον τρόπο με τον οποίο η 

προσέγγισή μας που βασίζεται σε τεχνικές AutoML αποδίδει έναντι των χειροκίνητα 

ρυθμισμένων και επιλεγμένων μοντέλων στον τομέα της ανίχνευσης περιστατικών 

χρησιμοποιώντας δεδομένα ανιχνευτών βρόχων, δίνοντας έμφαση στην 

αποτελεσματικότητα, την προσαρμοστικότητα και την απόδοση σε σενάρια 

πραγματικού κόσμου. Συνεπώς, καταλήγουμε πως το AutoML βοηθά στην επιλογή 

μοντέλων, ειδικά κατά τα πρώτα στάδια της μοντελοποίησης, και γενικώς μπορεί να 

δώσει πολύ καλές και συγκρίσιμες επιδόσεις, από την άλλη μεριά απαιτεί πολύ χρόνο 

και υπολογιστικούς πόρους. 

Από τα παραπάνω είναι σαφές πως η ανάλυσή μας αναδεικνύει τις προκλήσεις 

στην ελαχιστοποίηση των ψευδώς θετικών αποτελεσμάτων που οφείλονται σε 

τυφλά σημεία των συγκοινωνιακών δικτύων. Κάθε πόλη και σενάριο χρήσης έχει 

ξεχωριστές προκλήσεις, υπογραμμίζοντας την ανάγκη για προσαρμοσμένες 

αλγοριθμικές στρατηγικές. Να σημειωθεί επίσης πως οι επιλεγμένες μετρικές, όπως 

η ακρίβεια, η ανάκληση και το F1-score, παρείχαν πολύτιμες πληροφορίες, ωστόσο 

πρόσθετες μετρικές -όπως ο μέσος χρόνος ανίχνευσης περιστατικών, και η ταχύτητα 
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απόκρισης- θα ήταν καλό να αναπτυχθούν στο μέλλον για ένα ολοκληρωμένο 

operational context, που εκτείνεται πέρα από την παρούσα διατριβή. 

Στο τελευταίο κεφάλαιο, η διατριβή αποτυπώνει τις σημαντικές συνεισφορές 

στον τομέα της ανίχνευσης περιστατικών κυκλοφορίας με βάση την τεχνητή 

νοημοσύνη. Συνδυάζοντας τις τεχνικές AutoML, HITL και την επεξηγηματικότητα, το 

σύστημα αναδεικνύει τη σημαντική πρόοδο που προτείνει σε σχέση με τις 

παραδοσιακές μεθόδους ανίχνευσης περιστατικών. Ωστόσο, οφείλουμε να  

αναγνωρίσουμε κάποιους περιορισμούς, ιδίως όσον αφορά την ποιότητα των 

δεδομένων και τις προκλήσεις του χειρισμού ελλιπών ή θορυβωδών συνόλων 

δεδομένων.  

Αυτοί οι περιορισμοί υποδεικνύουν τομείς για μελλοντική έρευνα. Η μελλοντική 

έρευνα θα μπορούσε να επικεντρωθεί στη βελτίωση της ανίχνευσης κυκλοφοριακών 

περιστατικών με τεχνητή νοημοσύνη μέσω ενσωμάτωσης δεδομένων από 

πολλαπλές πηγές, συνδυάζοντας δεδομένα από κάμερες κλειστού κυκλώματος 

(CCTV), δεδομένα δημόσιων συγκοινωνιών, δεδομένα καιρού και πληροφορίες από 

δίκτυα κοινωνικής δικτύωσης για ένα πιο ολοκληρωμένο σύστημα. Επιπλέον, οι 

εξελίξεις στη μηχανική μάθηση, βαθιά μάθηση και ενισχυτική μάθηση μπορούν 

πιθανώς να βελτιστοποιήσουν την προσαρμοστικότητα των μοντέλων σε διάφορα 

αστικά περιβάλλοντα. Η συνεργασία ανθρώπου-τεχνητής νοημοσύνης θα μπορούσε 

να βελτιωθεί μέσω διαδραστικών διεπαφών, εργαλείων επαυξημένης/εικονικής 

πραγματικότητας (AR/VR) και ανατροφοδότησης σε πραγματικό χρόνο, 

διασφαλίζοντας την ομαλή ενσωμάτωση μεταξύ αυτοματοποιημένων προβλέψεων 

και λήψης αποφάσεων από τους ανθρώπους. Παράλληλα, η χρήση πιο προηγμένων 

τεχνικών επεξηγησιμότητας είναι πιθανό να προσφέρει μεγαλύτερη διαφάνεια στα 

μοντέλα AI, διευκολύνοντας τους διαχειριστές κυκλοφορίας στην κατανόηση των 

προβλέψεων και στη λήψη τεκμηριωμένων αποφάσεων. Επιπρόσθετα, η 

ενσωμάτωση προγνωστικών αναλύσεων θα βοηθήσει στη βελτιστοποίηση της 

κυκλοφορίας, προτείνοντας μέτρα για τη μείωση της συμφόρησης σε πραγματικό 

χρόνο. Επιπλέον, τα συστήματα ανίχνευσης περιστατικών θα μπορούσαν να 

συνδεθούν με ευρύτερες υποδομές έξυπνων πόλεων, ενισχύοντας τη συνδεσιμότητα 
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της τεχνητής νοημοσύνης με τις υπηρεσίες έκτακτης ανάγκης και τη λήψη μέτρων για 

την βελτίωση της κυκλοφοριακής συμφόρησης.  

Συνοψίζοντας, η έρευνα που παρουσιάζεται στην παρούσα διατριβή θέτει τις 

βάσεις για μια νέα γενιά συστημάτων διαχείρισης οδικής κυκλοφορίας, που είναι πιο 

αποτελεσματικά, διαφανή και αξιόπιστα. Συνδυάζοντας τα πλεονεκτήματα της 

τεχνητής νοημοσύνης και της αναλυτικής δεδομένων με την ανθρώπινη εμπειρία και 

παρέμβαση, το προτεινόμενο σύστημα στοχεύει να βελτιώσει σημαντικά την 

ασφάλεια και την αποτελεσματικότητα της κυκλοφορίας σε αστικά περιβάλλοντα. 
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1 Introduction		

1.1 Motivation	

In an era characterized by rapid technological advancements and the increasing 

interconnectivity of systems, the ability to detect and respond to emerging 

situations—whether planned or unplanned—has become crucial across various 

sectors. From disaster management to cybersecurity, and from public health to urban 

planning, the need for timely and accurate incident detection is more pressing than 

ever. Especially in transportation systems, the need for efficient and timely incident 

identification and mitigation is critical for the safety, resilience and effective 

management of the transport system. Traditional methods of incident detection, 

which often rely on predefined rules and manual monitoring struggle with scalability, 

adaptability, and accuracy, often failing in dynamic urban environments.  

To address these challenges, the integration of Machine Learning (ML) and 

automated Machine Learning (ΑutoML) techniques offers a transformative approach. 

These technologies enable the automatic identification of patterns and anomalies 

within large, even vast, datasets, facilitating the detection of emerging situations with 

greater speed and accuracy than manual methods. However, the deployment of 

purely automated systems presents significant challenges, particularly concerning 

transparency, trust, and the alignment of machine-generated insights with human 

intuition and expertise. Throughout this Thesis, a few such challenges have been 

explored and suggested answers have been provided. 

The concept of Human-in-the-Loop (HITL) in machine learning systems 

addresses these issues by incorporating human oversight and interaction into the 

automated processes. This approach not only enhances the explainability of the 

system but also ensures that the insights generated are interpretable and actionable 

by human users. The integration of HITL frameworks is particularly important in 
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domains where the stakes are high, and decisions based on system outputs can have 

important consequences. 

The motivation for developing an AI-driven HITL-enabled incident detection 

framework and information system stems from the pressing need for innovative 

solutions that can effectively detect and respond to emerging situations across 

various domains. By integrating explainability features, this approach addresses the 

critical issue of trust in automated systems, providing users with clear and 

understandable insights into the system's decision-making processes. This 

transparency is essential for fostering confidence in the system and ensuring that it 

can be reliably used in high-stakes environments, including but not limited to the 

intelligent transportation sector. 

Moreover, the incorporation of ΑutoML techniques facilitates the continuous 

improvement and adaptability of the system. AutoML allows for the automatic 

optimization of ML models, ensuring that the system remains effective even as data 

patterns evolve over time. This capability is particularly important in dynamic 

environments, like those of transportation systems, where the nature of emerging 

situations can change rapidly. 

The flexibility of a HITL-enabled, autoML-driven event detection system makes it 

applicable to a wide range of fields, not only in transportation systems, offering 

significant potential to improve outcomes in areas such as emergency response and 

infrastructure monitoring. The system's ability to adapt to different scenarios and 

provide actionable insights in real-time positions it as a valuable tool for organizations 

looking to enhance their situational awareness and decision-making capabilities. 

In summary, the development of an incident detection system that integrates ML, 

autoML, explainability and HITL is driven by the need to create a robust, reliable, and 

user-centric tool capable of detecting and responding to emerging situations in the 

field of transportation. By addressing the limitations of existing incident detection 

systems and incorporating advanced ML techniques within a HITL framework, this 

approach aims to set a new standard in intelligent event detection and response. The 
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questions addressed in this study have brought Machine Learning (ML), automated 

Machine Learning (autoML), and Human-in-the-Loop (HITL) approaches into play. This 

doctoral dissertation attempts to propose a comprehensive framework and provide 

answers and suggestions that pave the way for the effective detection and response 

to emerging situations and ultimately contributing to a more resilient and responsive 

future of transportation in urban environments. 

1.2 Contribution	

The present Thesis is positioned within the context of automatic incident 

detection, intersecting with the research pathways of Artificial Intelligence (AI), 

automated Machine Learning (autoML), and Human-in-the-Loop (HITL) 

methodologies. These approaches aim to enhance decision-making processes for 

system operators and provide explainable insights to improve traffic management. 

The contributions of this present Thesis can be detailed as follows: 

• Model Integration and Optimization: The present Thesis integrates diverse 

data sources (traffic measurements from loop detectors, incidents datasets 

and network topology information) into ML and DL models. This methodology 

enhances the accuracy and reliability of automatic incident detection on urban 

highways, ensuring that operators can make informed decisions. 

• AutoML Methodologies Integration: The Thesis leverages autoML techniques 

to automatically optimize ML models. AutoML automates the process of 

selecting, configuring, and tuning machine learning algorithms. This includes 

hyperparameter tuning, model selection, and feature engineering, which 

ensures that the most effective models are used for incident detection without 

extensive manual intervention. This continuous optimization allows the 

system to adapt to changing traffic patterns and emerging trends, maintaining 

high performance and accuracy over time. 

• End-to-end System Development and Real-World Case Study Deployment: A 

novel information system has been developed and deployed in real-world case 
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studies to demonstrate the practical application of the proposed models and 

methodologies. Two detailed use-case scenarios are provided to demonstrate 

the effectiveness of the proposed approach in aiding operators for effective 

decision-making and incident management on urban highways. 

• Explainability Features Inclusion: The proposed system includes explainability 

features, ensuring that operators can understand the reasoning and rationale 

behind the system’s outcomes and predictions. This transparency is crucial for 

building trust and facilitating informed decision-making. 

• Human-in-the-Loop (HITL) Integration: By embedding HITL components, the 

system ensures continuous human oversight and interaction. This allows for 

real-time adjustments and improvements based on operator input, enhancing 

the overall effectiveness and adaptability of the system in urban 

environments. 

 
In summary, this Thesis makes significant contributions by developing a robust 

framework for detecting events on urban highways using advanced AI and autoML 

techniques, combined with HITL methodologies. It provides practical tools and 

methodologies for system operators to enhance their decision-making processes and 

delivers explainable, actionable insights, thus contributing to more efficient and 

trustworthy urban transportation systems. 

1.3 Relation	to	scientific	publications	

During the research evolved within this present Ph.D. Thesis, several scientific 

papers have been published in scientific conferences and international journals 

leading to the progress of the herein demonstrated study. In the below paragraphs, a 

summary of each publication that assisted to the documenting of the herein Chapters 

follows, while a thorough catalog of the publications is available in the “List of 

Publications” Section. Moreover, further details about how the scientific publications 

respond to the respective Research Questions this Thesis poses are presented in 

Section 3.2. 
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The journal paper [j2] in addition to the conference papers [c2] and [c3] provide 

foundational ideas on how advanced data-driven techniques can be utilized to 

enhance incident detection in intelligent transportation systems. These papers are 

integral to Chapter 2, which provides a Literature Review of the investigated issues. 

The publication [c2], [c3] and [j2] set the groundwork for the proposed system 

developed in this Thesis. They demonstrate early work on AI-based methods for 

automatic incident detection, leveraging heterogeneous multimodal big data. The 

paper [j2] presents a stable version of the system, built and tested in experimental 

and real-life pilot conditions, showcasing the practical application of the AutoML-

based approach for traffic incident detection. The aforementioned papers are 

positioned in Chapters 6, 8 and 9 where the proposed methodology, capabilities and 

information system is presented. 

Moreover, the publications [c1], [c4] and [j3] illustrates the technical 

achievements in terms of the whole system and is positioned in Chapters 5, 7, 8 and 

9, where the framework, machine learning and deep learning models are presented 

in addition to the actual developed system with the respective use cases where it has 

been deployed and assessed. Lastly, results and conclusions are briefly discussed in 

these publications but further explored and expanded in the current dissertation.  

1.4 Relation	to	Research	Project	

The current Ph.D. thesis has been partially funded by the European Commission 

Research Project with the title FRONTIER (Next generation traffic management for 

empowering CAVs integration, cross-stakeholders collaboration, and proactive multi-

modal network optimization). This project is part of the Horizon 2020 Research and 

Innovation Framework Program under Grant Agreement 101006633. 

ü The objective of the project was to develop future integrated traffic 

management strategies that consider new transport modes, including 

automated vehicles, to minimize pollution, reduce capacity bottlenecks, 
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lower accident rates, and decrease mobility costs for all users. The project 

promoted resilient multimodal autonomous mobility through stakeholder 

collaboration and viable business models. It implemented and tested 

autonomous management systems that evolve with real-time data, 

operator knowledge, and simulation models. FRONTIER has been validated 

at pilot sites in Oxfordshire (UK), Athens (GR), and Antwerp (BE), focusing 

on smart infrastructure, multimodal mobility, and network performance. 

ü A great part of the herein presented Thesis has been developed within the 

FRONTIER project, contributing to its goals by enhancing functionality of 

traffic management systems. The Thesis supplements the project by 

providing advanced tools and methodologies, particularly aimed at system 

operators and traffic managers, to improve real-time incident detection 

and management on urban highways. This effort aims to facilitate the 

practical application and success of the FRONTIER project’s objectives. 

1.5 Research	Design	and	Structure	of	the	Dissertation	

The research design and methodology of the present Thesis are illustrated in 

Figure 1-1, while an overview of each Chapter and its included components is 

provided in Table 1-1 below. 

The dissertation corpus begins with the Literature Review Chapter providing 

comprehensive information about the domain of automated traffic incident 

detection. It presents the current research landscape, key technologies, 

methodologies, and their applications in urban settings. Next, the Research 

Challenges which the Thesis studies are presented. Next, the chapter Framework for 

Real-Time Monitoring and Prediction of Traffic Incidents introduces the conceptual 

framework, detailed methodology, and conceptual software architecture developed 

within the Thesis to tackle the challenges identified. Moreover, the chapter AI-Driven 

Traffic Incident Detection for Planned and Unplanned Events is dedicated to the 

examined and employed data-driven and ML/DL methods for predicting both planned 

and unplanned events. Subsequent chapters delve into AutoML techniques, 
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discussing their application in optimizing ML models for incident detection, and 

Human-in-the-Loop (HITL) / Explainable AI (XAI), which explain how these 

subcomponents enhance system transparency and reliability. The Information 

System AutoEventX chapter details the system architecture and implementation, 

providing an overview and detailed explanation of different layers and their functions. 

The Deployment and Evaluation in Real-world Case Studies chapter includes 

practical case studies from Athens, Greece, and Antwerp, Belgium, showcasing the 

system’s real-world application and results. The dissertation concludes with 

Conclusions and Future Work, summarizing findings, discussing limitations and 

potential extensions, and proposing future research directions. 

 

Figure 1-1:The Research Design and Methodology 

Table 1-1: The Components of each Research Methodology Step 

Research Methodology Step Components 

Literature Review 
(Chapter 2) 

• Detailed presentation of the research area 
and state-of-the-art material regarding: 
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o Background of Automatic Incident 
Detection 

o Review of methodologies and tools 
including machine learning 
algorithms, statistical models, and 
hybrid approaches used for incident 
detection. 

o Overview of key research studies 
and projects contributing to 
advancements in the field. 

o Challenges and research gaps 
identified. 

Research Challenges 
(Chapter 3) 

• Research Questions 
o RQ1: What are the key components 

and methodologies for real-time 
monitoring and prediction in AI-
based traffic incident detection? 

o RQ2: How can human-centered 
traditional and automated AI 
technologies be leveraged to 
develop a comprehensive 
framework for real-time detection of 
traffic incidents, monitoring, and 
situational awareness of urban 
networks? 

o RQ3: How do AI-driven 
methodologies and algorithms 
enhance the detection of planned 
and unplanned traffic incidents? 

o RQ4: How can AutoML techniques 
enhance the development of AI 
models for traffic incident 
detection? 

o RQ5: How to ensure human in the 
loop and prediction is explainable 
and transparent in AI-based traffic 
incident detection systems? 

• The Thesis 
Framework for Real-Time 

Monitoring and Prediction of Traffic 
Incidents 

(Chapter 4) 

• Pillars of our framework 
o Data Analytics 
o Automated Machine Learning 
o Explainability 
o Human-in-the-Loop 

• Proposed methodology 
AI-Driven Traffic Incident Detection 
for Planned and Unplanned Events 

• Introduction and Motivation 
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(Chapter 5) • Data-driven Algorithms for unplanned 
non-recurring incident detection 

• Advanced Analytics Methods for 
Recurring Congestion Identification 

AutoML-Driven Incident Detection 
 (Chapter 6) 

• Introduction and Motivation 
• State-of-the-art analysis 
• Proposed Methodology 
• The Implementation – Technical Details 

Human-in-the-Loop and 
Explainability in incident detection 

(Chapter 7) 

• Introduction and Motivation 
• Human-in-the-Loop State-of-the-art 
• Explainability State-of-the-art  
• Proposed methodology 

Information System AutoEventX 
(Chapter 8) 

• System architecture and 
implementation 

• Technical Architecture 
• Modes of operation 
• Examples of system use 

Deployment and Evaluation in Real-
world Case Studies  

(Chapter 9) 

• Real-World Case Studies description 
• Evaluation of proposed method 

o Evaluation of ML and DL models 
o Evaluation of AutoML models 
o  Integration of Explainability 

features 
o Simulating the Retraining 

Process with Human Feedback 
• Discussion and analysis of results  

Conclusions and Future Work 
(Chapter 10) 

• Conclusions of the conducted work 
• Limitations 
• Future work and research directions 
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2 Literature	Review	

In this Chapter, a thorough literature review on traffic analysis is presented, 

focusing on the development and evolution of automated traffic incident detection 

systems. The synthesis of this emerging field and its key technologies are presented, 

alongside the objectives it aims to achieve and the most widely used methods and 

techniques. The Chapter highlights significant topics investigated in this Thesis. 

Additionally, a summary of related EU projects is briefly mentioned. Lastly, the 

Chapter discusses research gaps, limitations and future directions of automated 

incident detection systems in the context of advancing transportation technologies. 

2.1 Background	

2.1.1 Related	works	on	Traffic	Analysis	Applications	

Traffic congestion is a global issue that has been acknowledged by transportation 

science for over a decade. In the United States alone, drivers spend 6.9 billion hours 

stuck in traffic annually, wasting over 11 billion liters of fuel, as reported by INRIX 

(INRIX. n.d., 2024). On a per capita basis, individuals in Russia and Thailand experience 

even greater delays, with Brazil, South Africa, the United Kingdom, and Germany not 

far behind the U.S. Utlizing mobility data science and understanding the behavior of 

human participants across different transportation modes offers promising avenues 

for addressing these challenges. Two primary research areas have emerged: (1) traffic 

monitoring at an aggregate level to support city administration, and (2) delivering 

services directly to road users. (Mokbel, et al., 2024) 

Research on traffic monitoring encompasses several domains, including 

congestion monitoring (Li, Han, Lee, & Gonzalez, 2007), road and intersection safety 

assessments (Maeda, Sekimoto, & Seto, 2016), traffic prediction evacuation (Li, Yu, 

Shahabii, & Liu, 2018), routing (Zhang, Zhang, & Guo),and public transportation 

schedule optimization (Richly, Teusner, Immer, Windheuser, & Wolf, 2015). 
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Meanwhile, services for road users focus on solutions such as traffic-aware routing to 

distribute load across roads (Souza, Yokoyama, Maia, Loureiro, & Villas, 2016), 

assisting drivers in locating nearby facilities (Kolahdouzan & Shahabi, 2004), 

personalized routing (Li, Gunopulos, Lu, & Guibas, 2019), eco-routing to reduce 

greenhouse gas emissions (Lin, Choy, Ho, Sai Ho Chung, & Lam, 2014), and multi-

modal trip planning (Tomaras, Kalogeraki, Liebig, & Gunopulos, 2018). More 

specifically, an automated method is presented to generate and evaluate traffic 

incident response plans using a template library and Aimsun Next simulation. The 

approach optimizes responses in real-time, enhancing network performance and 

aiding traffic management decisions. (Almohammad & Georgakis, Automated 

Approach for Generating and Evaluating Traffic Incident Response Plans, 2023). 

Despite these advances, numerous opportunities and challenges remain in leveraging 

mobility data to improve traffic management. For instance, developing precise 

models for the dynamic scheduling of public transportation or optimizing traffic 

signals in context-aware ways—such as accounting for pedestrian flows near bus or 

train stations to reduce stop-and-go vehicle impacts—are critical areas for further 

exploration. A significant challenge in this domain is monitoring and reducing 

transportation-related emissions. Accurately quantifying emissions through data 

collected from in-situ sensors and remote sensing technologies, such as satellite-

based earth observation, is vital for accountability and emission reduction efforts. This 

data can help assess the impact of e-mobility adoption, improvements in collective 

transportation systems, and infrastructure enhancements, ultimately supporting 

more sustainable and efficient traffic solutions. 

Mobility data science also plays a critical role in supporting cities by enabling data-

driven map construction (Ahmed, Karagiorgou, Pfoser, & Wenk, 2015) and updating 

existing maps to reflect blocked or newly added road segments (Chen, et al., 2016). 

This capability is especially vital for applications in autonomous driving (Macfarlane & 

Stroila, 2016). Real-time monitoring of urban mobility contributes to situational 

awareness—a concept originally developed in defense applications. Situational 

awareness involves three key components: perceiving environmental states through 

surrounding data, comprehending this data to understand emerging situations, and 
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projecting future states or events through predictive analytics. Mobility data serves 

as a cornerstone for situational awareness in urban environments. When effectively 

utilized, it not only supports the development of resilient critical infrastructures but 

also safeguards them against threats such as forest fires, earthquakes, or terrorist 

attacks. Researchers have increasingly leveraged mobility data to enhance situational 

awareness in urban areas and specialized environments like airports (Shao, et al., 

2019).  

The field of mobility data analytics has grown significantly, covering diverse 

applications across urban mobility, maritime, aviation, and personal movement 

domains [ (Zhao, Tarkoma, Liu, & Vo, 2016), (Claramunt, et al., 2017), (Chung, Ma, 

Mark Hansen, & Choi, 2020), (Ossi, Hachem, Cagnacci, Demšar, & Damiani., 2022), 

(Jensen, Lu, & Yang, 2010)]. Urban mobility, as the largest area of research, addresses 

key challenges such as traffic anomaly detection (Pan, Zheng, Wilkie, & Shahabi., 

2013), hotspot analysis (Nikitopoulos, Paraskevopoulos, Doulkeridis, Pelekis, & 

Theodoridis., 2018), road traffic prediction (Nag & Simon, 2018) and travel time 

estimation (Wang, Tang, Kuo, Kifer, & Li, 2019). Efforts in developing generic methods 

for mobility data analysis encompass various approaches, including trajectory 

clustering (Wang, Bao, Culpeppe, & Cong., 2021), trajectory similarity measures , 

(Toohey & Duckham., 2015) outlier detection (Han, Cheng, Ma, & Grubenmann, 

2022), transportation mode classification (Biljecki, Ledoux, & Oosterom, 2013), 

spatiotemporal pattern detection (Sakr & Güting, 2014), and trajectory completion 

(Krumm., 2022. ). Despite these extensive research efforts, a unified set of tools and 

systems for mobility data analysis remains lacking. The landscape of scientific 

software for this field is notably fragmented. For instance, a review by (Joo, et al., 

2020) identifies 58 R packages dedicated to movement analysis, while (Graser., 2023) 

examines Python libraries designed for movement data analysis and visualization. 

Recent advancements in deep learning (DL) have introduced transformative 

approaches, such as leveraging Generative Adversarial Networks (GANs) for trajectory 

representation and synthetic data generation (Gao, et al., 2022) and Transformer-

based models for advanced trajectory prediction (Xue & Salim, 2021). However, 
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challenges persist due to the lack of unified tools and frameworks tailored for mobility 

data. For example, existing ML tools like TensorFlow and PyTorch lack native support 

for location-based data, complicating tasks such as clustering, classification, and 

similarity analysis. Developing foundational elements like mobility data embeddings 

could enhance model adaptability and lead to cohesive frameworks for mobility 

analytics (Vaswani, et al., 2017). Another challenge is the robustness of data-driven 

models in adapting to rapidly changing mobility patterns caused by events like the 

COVID-19 pandemic or societal shifts. Event-aware spatiotemporal networks have 

demonstrated potential in handling such scenarios (Wang, et al., 2022). Despite this, 

ensuring models remain resilient to evolving behaviors remains an open research 

area. 

Behavioral understanding extends beyond traditional location prediction. Efforts 

aim to transition from predictive to prescriptive analytics, enabling actionable insights 

and policy-making. However, limitations such as a lack of labeled data and model 

explainability hinder progress. Techniques like disentangled representation learning 

(Zhao, Shao, Chan, & Salim, 2022) offer promise in improving explainability and 

addressing these challenges. Visualization and exploratory analysis are pivotal in 

mobility analytics (Andrienko, Andrienko, Bak, Keim, & Wrobel, 2013). Research 

combining modeling and simulation with visualization supports decision-making (Lee, 

et al., 2020). Yet, generalizing these approaches across domains and incorporating 

real-time human intelligence remains challenging. Integrating computational 

methods with human expertise could enhance understanding and modeling of traffic 

patterns, leading to better predictive and prescriptive analytics. 

In this subsection, a detailed literature review of the vast field of traffic 

management and mobility science is presented. Moving on to the next subchapter, 

we focus on the background required for the task at hand which the present 

dissertation aims to address, namely automatic incident detection in intelligent 

transportation systems. 

2.1.2 Classification	of	incidents	
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Incidents are referring to “any […] event that causes a reduction of roadway 

capacity or an abnormal increase in demand” (Farradyne, 2000) . According to the 

authors in (Nikolaev, Sapego, Ivakhnenko, Mel'nikova, & Stroganov, 2017), incidents 

can be classified as planned or unplanned events. Figure 2-1 describes these events 

as mentioned in (Nikolaev, Sapego, Ivakhnenko, Mel'nikova, & Stroganov, 2017).  

 

Figure 2-1: Classification of incidents. (Nikolaev, Sapego, Ivakhnenko, Mel'nikova, & Stroganov, 2017) 

In reality, the classification of these events was done by considering the context 

of temporal, spatial, probability of occurrence and the cause of event (Amini, 

Papapanagiotou, & Busch, 2016). Incidents usually cause traffic disturbances such as 

a temporary reduction in capacity, “abnormal increase in traffic demand” (Beibei Ji, 

Jiang, Qu, & Chung, 2014), and fuel consumption. These negative impacts decrease 

the level of efficiency and safety of the road network. Therefore, early detection of 

incidents can be regarded as a required solution to facing them. 

2.1.3 Traffic	dynamics	at	the	time	of	an	incident	

It is important to understand the background and the basics of what happens in 

the traffic dynamics when an incident occurs. In this section, we first look at traffic 

fundamentals and how an accident impacts the dynamics of traffic observations and 

measurements. The fundamentals of traffic theory help us to better understand and 

interpret the input features and structure of data-driven models.  
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Traffic accidents are one of the important sources of traffic jams, and accidents 

cause a temporal local reduction of capacity. To explain the change in the traffic 

parameters, we need to look at the triangular fundamental diagram (Figure 2-2). The 

fundamental diagram of traffic flow represents the relation between the traffic 

features (i.e., flow(q), speed(u), and density(k)).  

 

Figure 2-2: The fundamental traffic diagrams according to Greenshield. (May., 1990) 

On the above diagram, u refers to the speed, q refers to the traffic flow whereas 

k refers to the density of the traffic. 

As presented in Figure 2-3, when an accident occurs the traffic moves from 

uncongested state (point A) to congested state (point B). This change in the states 

affects the speed and flow of the vehicles. In other words, it is going to create a 

shockwave that will form a queue after the bottleneck (i.e., accident location). This 

phenomenon is often shown in the space-time diagram and will create a draw-up 

draw-down cycle in the speed-time graph.  
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Figure 2-3: Position of traffic states at the fundamental diagram when an accident occurs. 

Figure 2-4 illustrates the concept of shockwave and how the speed of the vehicles 

is going to change when the shockwave happens. In normal cases (i.e., non-accident), 

the traffic conditions do not vary significantly in sequences of time series between the 

upstream and downstream. On the other hand, traffic conditions between the 

upstream and downstream fluctuate rapidly when an accident occurs. This fluctuation 

is a result of the shockwaves caused by the accident. Mathematically, the speed of a 

shockwave (i.e., the speed at which congestion travels backward from the temporal 

bottleneck formed because of the accident) can be derived from the traffic 

characteristics (i.e., flow rate and density) of the upstream and downstream. Hence, 

the change in the speed dynamics when an accident occurs could be observed more 

significantly at the road sections after the accident location (Richards, 1956). To detect 

or predict an accident, one should look for the anomalies where the queue is formed 

(backward from the accident location). However, some anomalies may be observed 

in the upward direction as well. This information about the general dynamics of traffic 

at the time of an accident enhance our understanding of the anomaly points and how 

they should be interpreted. 
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Figure 2-4: An example of time–space diagram for typical temporary capacity reduction. (Francois Dion, 

2004). 

2.2 Classification	 of	 Automatic	 Incident	 Detection	

Algorithms	

Traffic incident detection is a popular field in literature, since it is widely known 

that congestion in urban areas is often caused by traffic incidents. If such incidents 

could be detected in a timely manner, preventive measures could be rapidly taken. 

That is why in recent years, research efforts have been proposed to deploy Automatic 

Incident Detection (AID) Systems onto urban roads. In the following subsections, we 

present a classification of Incident Detection Algorithms (IDA) and go into some details 

regarding the significant differences between each group of algorithms. 

Figure 2-5 presents the categories of Automatic Incident Detection Algorithms 

(AIDA), based on proposed approaches of various review papers, including (Hireche & 

Dennai, 2020; Li, Lin, Du, Yang, & Ran, 2022) (Evans, 2020) (Hireche & Dennai, 2020). 
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The AIDAs are grouped as comparative, time-series, and Artificial Intelligence 

(Statistical, Machine Learning and Deep Learning). 

 

Figure 2-5: Classification of Automatic Incident Detection Algorithms. 

In Table 2-1, some indicative studies are portrayed and grouped based on the 

proposed aforementioned classification.  

Categories 
of AIDA

Time-series
Artificial 

Intelligence

Machine 
Learning

Deep 
Learning

Statistical

Comparative
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Table 2-1: Algorithms grouped by category and indicative works 

Category Algorithm Data attributes  Output (based on indicative works) Indicative works 

Comparative 

 

California  Occupancy  

from two adjacent 

detector stations 

 

2 states (0 incident-free; 1 incident)  

 

(Payne & Tignor, 1978) 

California #7 Occupancy  

from two adjacent 

detector stations 

 

4 states 

 

(Balke, 1993) 

California #8 Occupancy  

from two adjacent 

detector stations 

 

8 states 

 

(Khoury, Haas, Mahmassani, & 

Logman, 2003) 

Timeseries ARIMA Occupancy Incident – No-incident: (Ahmed & Cook, 1982) 



87 
 

An incident is detected if the observed occupancy 

value lies outside the confidence limits constructed two 

standard deviations away from the corresponding point 

forecasts.  

 

Standard Normal 

Deviant (SND) 

Occupancy Incident – No-incident: 

Compares 1-minute average occupancy 

measurements to archived occupancy values of the 

mean and SND defining the thresholds for detecting the 

incidents.  

(Dudek, Messer, & Nuckles, 

1974) 

AI  

(Statistical and ML) 

Bayesian CNN Occupancy, volume for 

incident and incident-free 

conditions, archived data on the 

type, location, and severity of 

incidents 

Likelihood that an alarm is caused by incident. (Liu, Jin, Li, Hu, & Lia, 2022) 

(Zhu, Guo, Krishnan, & Polak., 

2018) 

SVM Speed, flow, occupancy 

and derived features 

Incident – No-incident (Li, Hu, X., & Zhou, 2017) 

(Dardor, Chlyah, & Boumhidi, 2018) 

Neural Networks Volume, speed, occupancy 

and derived features 

Incident – No-incident (Shang, Feng, & Gao, 2020) 

(Zhu, Guo, Krishnan, & Polak., 
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2018) (Zhu, Wang, Yan, Guo, & 

Tian, 2022) 

Wavelet 

Transformation with 

Logistic Regression 

Volume, speed, occupancy 

and derived features 

Probability of incident  

 

(Agarwal, Kachroo, & 

Regentova, 2016) 

Isolation Forest Volume, speed, occupancy 

and derived features 

Incident – No-incident (Zhu, Wang, Yan, Guo, & Tian, 

2022) 

GANs Volume, speed, occupancy 

and derived features 

Incident – No-incident (Li, et al., 2019) (Lin, Liu, Li, & 

Qu, 2023) 

LSTM Volume, speed, occupancy 

and derived features 

Incident – No-incident (Cui, Ke, & Wang, 2018) (Zhu, 

Wang, Yan, Guo, & Tian, 2022) 

Graph Neural 

Networks 

Volume, speed, occupancy, 

graph traffic network and 

derived features 

Incident – No-incident (Zhou, Wang, Xie, Chen, & Liu, 

2020) (Yu, et al., 2021) (Wang, Lin, 

Guo, & Wan, 2021) 
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In the following subsections, some of the representative works for each category 

type are presented and discussed. 

2.2.1 Comparative	Algorithms	

The popular California and McMaster algorithms are representative of this type of 

model and have been widely applied (Hall, Shi, & Atala, 1993).The California 

algorithms are amongst the most commonly used and replicated IDAs. Many 

variations of the original have been presented and compared (Payne & Tignor, 1978), 

but all of them use pre-set decision trees based on traffic variables, to classify real-

time traffic conditions into incident and non-incident states. Because of their 

simplicity, many studies have used the California algorithms as a benchmark for 

comparison, and many others have iterated on the first version presented to improve 

its performance and limit its drawbacks. 

However, these simple models cannot provide sufficient accuracy to meet the 

requirements of an Intelligent Transportation and AID System (Samant & Adeli, 2000). 

2.2.2 Time	series	Algorithms		

One of the earliest and simplest AIDAs was the standard normal deviate (SND)  

algorithm (Dudek, Messer, & Nuckles, 1974) .The algorithm was developed for 

motorways, and used occupancy data to detect the “shock wave” (i.e. sudden change 

to lower speeds) in traffic caused by incidents. (Dudek, Messer, & Nuckles, 1974) 

tested a number of different values of parameters, but occupancy was found to 

produce the best results. This method detected abnormally high values of occupancy, 

which would indicate queuing traffic, which would indicate the occurrence of an 

incident. However, as stated in (Dudek, Messer, & Nuckles, 1974), although the 1.3% 

false alert rate appears low, “the number of false alarms can become very significant 

in an operational system”. This high rate may be because the IDA only uses occupancy 

values, and so can only detect congestion, rather than differentiating incidents. It 
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would also not be able to detect incidents upstream of detectors (where low flows 

may occur), and did not consider spatial patterns to detect incidents (e.g., nearby 

detectors raising alerts which raise likelihood of an incident occurring). 

Auto-Regressive Integrated Moving-Average time series (ARIMA) models use 

recent observations of a selected traffic variable to create a prediction of its 

“expected” value (i.e., conditions that would occur if no incident occurred) in the near-

term future (Ahmed & Cook, 1982). If real-time values significantly deviate from this 

prediction, an incident alert is raised. For instance, ARIMA was used to detect 

incidents using occupancy data on freeways in Detroit, U.S.A. ARIMA models are 

commonly found to be effective in forecasting traffic variables in the short-term 

future. However, the forecast would not be of “expected” traffic conditions if the 

recent observations are influenced by incidents. When used in an AIDA, this could lead 

to incidents going undetected. The model is also known to be less effective during 

sudden changes in traffic parameters, for instance during rush hour. 

(Thancanamootoo & Bell, 1988) presented one of the first AIDAs designed 

specifically for urban networks. It used volume and occupancy data to detect incidents 

between pairs of upstream/downstream detectors. (Sheu & Ritchie, 1998) presented 

a modified sequential probability ratio tests algorithm for use in urban networks. It 

included three procedures, a knowledge-based rule set for identifying the symptoms 

of an incident, signal processing for real-time prediction of incident-related traffic 

conditions and pattern recognition for incident detection. (Lee & Taylor, 1999) also 

detected incidents on urban streets, but by applying a Kalman filtering algorithm to 

find sudden changes in traffic variables on a two-lane arterial’s detectors. This 

approach was designed to be simple and require little calibration, while being dynamic 

enough to account for traffic signals. 

The most crucial factor which makes time-series differ from comparative 

algorithms is the fact that the threshold used to raise incidents varies based on recent 

local conditions. This gives an advantage because it means temporal variations (such 
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as peak periods) can be more readily accounted for automatically, and less manual 

calibration is required. (Evans, 2020) 

2.2.3 Artificial	Intelligence	Algorithms	

New challenges to the research community have been introduced regarding the 

enhancement of the performance of AID systems. To overcome these challenges, and 

to improve the efficiency and safety of road traffic, attention has been drawn to the 

use of Artificial Intelligence (AI) techniques. This section covers a review of the key 

machine learning techniques used in literature, including Statistical-Based and 

Machine Learning based techniques. The ML techniques include Support Vector 

Machines (SVMs), Neural Networks (NNs), Generative Adversarial NNs, Graph NNs, 

Decision Trees (DT), Naïve Bayes (NB), Autoencoders, Long Short-Term Memory 

(LSTM) networks and Ensemble Learning (EL).  

2.2.3.1 Statistical-based Algorithms 

These types of models test differences in traffic flows based on statistical 

techniques, where a significant difference indicates a possible incident. To capture the 

temporal and spatial correlations among traffic flows, some studies implemented 

advanced statistical techniques. For example, an autoregressive integrated moving 

average model was built to detect traffic incidents on the Lodge Highway in Detroit; 

(Ahmed & Cook, 1979) the proposed detection logic performed smoothing using a 

moving average filter and obtained better results (Chassiakos & Stephanedes, 1993). 

Later, a multiple model particle smoother was introduced to convert the incident 

detection problem into a traffic state prediction problem and solve it effectively 

(Wang, Fan, & Work., 2016). Although statistics-based models have been widely 

applied, they have some shortcomings. First, the algorithm assumptions may not be 

consistent with the actual traffic flow data. Second, these models are highly 

dependent on user experience. When implementing a statistics-based model, the 

thresholds are often set manually by the users. Moreover, these models sometimes 
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cannot simultaneously consider the temporal and spatial correlations among traffic 

flow data (Li, et al., 2019) 

2.2.3.2 Machine Learning and Deep Learning algorithms 

Figure 2-6 shows the taxonomy of all ML techniques used in the AID systems of 

examined studies. For a more detailed description of the reviewed papers, we 

encourage the readers to consult the respective review paper (Hireche & Dennai, 

2020). 

 

Figure 2-6: Taxonomy of machine learning techniques used in traffic automatic incident detection 

(Hireche & Dennai, 2020) 

To make the incident detection model more flexible and robust, various machine 

learning models have been applied. The traffic incident detection problem is first 

converted into a binary classification task in which an incident is defined as a “1” and 

a non-incident is defined as a “0”. Then, a machine learning model such as a Support 

Vector Machine (SVM) (Yuan & Cheu., 2003) (Xiao & Liu., 2012), Classification Tree 

(CT) (Chen & Wang, 2009), Random Forest (RF) (Liu, Jian Lu, & Chen., 2013) or neural 

network (NN) (Samant & Adeli, 2000) can be used to solve the task. Li et al. compared 

some famous machine learning models and found that ensemble approaches improve 

the performance. Adding a bagging strategy for instance to an SVM increases the 

accuracy (Li, He, Zhang, & Yang.., 2016).  
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Some advanced NN models have been widely applied in previous traffic incident 

detection studies and have obtained very good results. Ma et al. used a deep neural 

network to recognize traffic congestion on a highway network using both temporal 

and spatial traffic flow characteristics (Ma, Yu, Wang, & Wang., 2015). Zhu et al. 

developed an incident detection model at the network level based on a Convolutional 

Neural Network (CNN) (Zhu, Guo, Krishnan, & Polak., 2018). Moreover, in their study, 

Almohammad & Georgakis focused on how predicted incidents can be simulated in 

order to predict their impacts on the transport network performance. A method has 

been suggested to convert real traffic events into simulation incidents, consisting of 

two main components; machine learning based model for event classification and 

event-to-incident mapping. Various algorithms were evaluated, modeling diverse 

real-world events (Almohammad & Georgakis, Machine Learning Based Method for 

Modeling Traffic Events, 2022). It has been proven that Deep Learning (DL) models 

outperform traditional machine learning models because they can fully mine the 

traffic information from the data. However, achieving a sufficient number of samples 

is difficult when applying a deep learning model. Consequently, simulated data have 

been widely used, but sometimes such data does not represent the true highway 

traffic flow. (Lv, Duan, Kang, Li, & Wang, 2015) (Ma, et al., 2017) (Zhu, Guo, Krishnan, 

& Polak., 2018). Another method applied to solve the small sample size problem is to 

only collect samples during each incident as incident samples, in order to increase the 

sample size. However, this approach could affect the real-time capacity of the model. 

(Li, Lin, Du, Yang, & Ran, 2022) 

An important study presented by Li et al. compared four classification methods to 

detect traffic incidents. These methods included SVM, NB, Cart, and AdaBoost-Cart 

(ACT). (Li, Hu, X., & Zhou, 2017)After evaluating these classification methods, the 

results indicated that AdaBoost-Cart and NB models performed quite well. In 2018, 

Dardor et al.  tried to resolve the problem of incident detection on signalized 

intersection urban areas based on SVM coupled with Genetic Algorithm (GA-SVM) 

model (Dardor, Chlyah, & Boumhidi, 2018)In this proposition, the Radial Basis 

Function (RBF) was selected as the kernel function of SVM to classify the signal and 

determine the event type, while GA is selected as the optimization algorithm to 
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maximize classification accuracy of SVM. SVM models can provide faster results and 

a lot of customization options. In   addition, SVM   require   less computational cost, 

which is vital for real-time incident detection.  

It is worth mentioning that recent studies have used big data collected from social 

media platform streams. Specifically, in two distinct studies, authors use twitter data 

to identify anomalies in the network and signal those potential disruptions to affected 

stakeholders. In the first paper, the authors present a methodology for real-time 

traffic event detection using geolocated tweets. Tweets are processed with natural 

language techniques and classified to identify traffic-related content. Applied in the 

West Midlands, UK, the approach achieved a considerable accuracy (92.86%) (Jones, 

Georgakis, Petalas, & Suresh, 2018). The second paper examines the use of geolocated 

Twitter data to predict transport network conditions, such as disruptions or 

congestion, in Greater Manchester. By analyzing the relationship between actual 

network status and synthesized data from tweets, it addresses whether tweet 

sentiments near incident areas differ from those in normal traffic zones, using 

sentiment analysis techniques. (Almohammad & Georgakis, Public Twitter Data and 

Transport Network Status, 2020) 

Generative Adversarial Networks have also recently been used for anomaly 

detection for spatiotemporal events. (Li, et al., 2019) proposed MADGAN, an 

unsupervised anomaly detection method for multivariate time series based on GAN. 

They trained a GAN generator and discriminator with LSTM. Then, the GAN-trained 

generator and discriminator are employed to detect anomalies in the testing data 

with a combined Discrimination and Reconstruction Anomaly Score (DR-Score). 

Furthermore, Recurrent Neural Networks (RNNs) show promise to work well with 

sequential data like time-series. They have also been leveraged for traffic accident 

prediction thanks to their generally high performance and the availability of time-

series data (Wang & Abdel-Aty, 2006.). For example, (Ren, Song, Liu, Hu, & Lei., 2017) 

proposed a deep learning approach (RNN) to predict traffic accident risk, where risk 

is defined as the number of accidents in a region at a certain time. (Chen, Song, 
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Yamada, & Shibasaki, 2016) used a similar concept of traffic accident risk and 

developed an Autoencoder deep architecture to understand the impact of human 

mobility on traffic accident risk. 

Last but not least, Graph Neural Networks (GNNs) ( (Li, Yu, Shahabi, & Liu, 2017), 

(Lin, Zhengbing, Srinivas, & Peeta, 2018), (Cui, Henrickson, Ke, & Wang, 2019), (Cui Z. 

, Ke, Pu, Ma, & Wang, 2020)) have gained interest to address the complexities of traffic 

prediction and incident detection, leveraging the inherent graph structure of traffic 

networks. Notably, Zhou et al. (2020) introduced a model known as the Differential 

Time-varying Graph neural network (DTGN), designed to detect real-time traffic shifts 

and the dynamic connections between different areas within a traffic graph. (Zhou, 

Wang, Xie, Chen, & Liu, 2020). This approach notably refines predictions to a minute-

by-minute basis and isolates the urban areas most prone to accidents. In 2021, Yu et 

al. developed a Graph Convolutional Network (GCN) tailored for predicting road 

incidents by assimilating both spatial-temporal and external data within a graph-

based representation of traffic flows. (Yu, et al., 2021) Following this, Wang et al. 

introduced the GSNet model in the same year, aiming to understand the spatio-

temporal patterns and relationships across different regions by analyzing geographic 

and semantic data integrated from undirected graphs, which embody various road 

network characteristics. (Wang, Lin, Guo, & Wan, 2021) 
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Figure 2-7: The evolution of methods in Automatic Incident Detection over time. (Ahsan & Siddique, 

2021) 

Based on the aforementioned works, it becomes evident that the evolution of 

techniques in automatic incident detection mirrors the broader advancements in 

machine learning and artificial intelligence over time as shown in Figure 2-7. In the 

early days (1805-1963), foundational methods such as linear regression and logistic 

regression laid the groundwork. Moving into 1964-1984, statistical and simpler 

machine learning techniques like decision trees and early neural networks emerged, 

improving the ability to analyze and predict incidents. The period from 1985 to 2000 

saw the introduction of more complex models like recurrent and convolutional neural 

networks, along with support vector machines, enhancing the capacity to handle 

larger datasets and more intricate patterns. Between 2001 and 2010, advancements 

such as ensemble methods, random forests, and the introduction of long-short-term 

memory (LSTM) networks allowed for deeper analysis and better temporal 

understanding in incident prediction. In the most recent decade (2011 - today), 

innovative techniques such as generative adversarial networks (GANs), XGBoost and 

more complex neural networks have further refined detection capabilities, enabling 

more sophisticated, real-time, and accurate incident prediction systems. This 
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progressive development of algorithms reflects the field's growing ability to anticipate 

and manage incidents in complex urban environments. 

2.3 Related	 EU	 Projects	 and	 Schemes	 around	 the	

globe	

In this section, some related EU-funded initiatives and projects focused on 

automatic incident detection and the improvement of urban environments, utilizing 

AI and other advanced technologies are presented: 

1. TANGENT1: The TANGENT project, funded under the European Commission's 

Research and Innovation Programme, aims to develop tools for optimizing 

traffic operations in a coordinated and dynamic way. It focuses on multimodal 

transport management, integrating both automated and non-automated 

vehicles, passengers, and freight transport. The project includes enhanced 

traffic information services, real-time traffic management services, and 

transport network optimization across various cities such as Rennes, Lisbon, 

Greater Manchester, and Athens. 

2. ORCHESTRA2: The ORCHESTRA project aims to connect services to make 

mobility and logistics run smoothly to cope with diverse demands and 

situations across transport modes. The ORCHESTRA project managed to 

establish a common understanding of multimodal traffic management 

concepts and solutions, with and across modes, for various stakeholders and 

multiple contexts. It defined a Multimodal Traffic Management Ecosystem 

(MTME) where traffic managements in different modes and areas (rural and 

urban) are coordinated to contribute to a more balanced and resilient 

transport system, bridging current barriers and silos. 

 
1 https://tangent-h2020.eu/ 
2 https://orchestra2020.eu/ 
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3. CIVITAS Initiative3: CIVITAS is one of the key European Union initiatives aiming 

to support cities in implementing sustainable urban mobility measures. Since 

its inception in 2002, CIVITAS has funded over 80 cities in developing smart 

transport systems, including traffic management and automatic incident 

detection solutions. Through various demonstration projects, the initiative has 

piloted the use of AI and IoT technologies for real-time traffic monitoring and 

congestion management, thus contributing to the overall safety and efficiency 

of urban transport networks. 

4. CONDUCTOR4: The CONDUCTOR project aims to design and demonstrate 

advanced traffic and fleet management systems that prioritize seamless 

multimodality, efficient transportation of passengers and goods, and 

interoperability between automated and conventional vehicles. Key objectives 

include dynamic load balancing, integrating ride-parcel pooling, and 

optimizing multi-modal systems to enhance traffic management. The project 

is part of the EU’s efforts to develop connected, cooperative, and automated 

mobility (CCAM), focusing on resilience and sustainable transport solutions for 

future cities. 

5. DELPHI5: The DELPHI project aims to integrate passenger and freight transport 

into a unified, federated system for efficient, multimodal mobility. It leverages 

AI, machine learning, and advanced monitoring technologies, such as 

unmanned aerial systems, to optimize transport flows and data sharing across 

urban, suburban, and rural networks. The project will conduct pilot 

demonstrations in Spain, Greece, and Romania to test these innovative 

systems.  

6. ACUMEN6:  The ACUMEN project aims to facilitate seamless, sustainable, and 

safe door-to-door journeys for both people and goods by creating a dynamic, 

 
3 https://civitas.eu/ 
4 https://conductor-project.eu/ 
5 https://delphi-project.eu/ 
6 https://acumen-project.eu/ 
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AI-driven framework for multimodal traffic management. It focuses on 

improving network efficiency and shared mobility options, which reduces 

travel costs and increases the uptake of sustainable transport solutions. The 

project integrates advanced data sharing and decision-making tools to 

enhance overall system performance and manage traffic more effectively 

across multiple cities. 

2.4 Conclusions	and	Research	gaps	

From the algorithms that have been used in literature, it is demonstrated that 

Machine Learning AIDAs state some of the best results in terms of the domain 

established evaluation metrics, such as false alert rates. Such algorithms aim to learn 

the conditions of an incident and so may be able to differentiate incidents from 

context. Moreover, transport simulators provide simplified versions of real-world 

networks, which often do not account for real-world disruptions such as emergency 

vehicles passing at high speed, erratic driving, or major sporting events. Hence, 

transport simulators typically output more predictable traffic data values, meaning 

AIDAs can perform better. As such, it is unclear whether results on simulated data are 

replicable on field data, and if so, how much calibration would be required. From 

studies of those implemented in the field, traffic variable based AIDAs appear well 

suited to motorways and arterials but find difficulty in accounting for traffic signal 

noise and contexts within urban streets and junctions. 

Based on the aforementioned research works and reviews on the matter, it is shown 

that incident detection is still far from being a resolved problem. Despite progress 

being made throughout the years, state of the art IDAs are found to still have 

outstanding limitations and challenges, some of which are detailed below: 

• Quality of Collected Data: A critical challenge in automatic incident detection 

lies in the inherent inaccuracies of mobility data. GPS coordinates are often 

prone to errors, and low sampling rates can introduce temporal gaps in data 

collection, resulting in uncertainty about the exact movement of vehicles or 
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pedestrians between data points. Although methods like map matching and 

interpolation have been employed to mitigate these issues, they often rely 

heavily on existing infrastructure (e.g., road networks), which may itself 

contain inaccuracies. Developing scalable, fine-grained models capable of 

handling city-scale datasets without relying on such infrastructure remains a 

challenge. 

• Explainability of Machine Learning Models: One of the major challenges in 

deploying ML for incident detection is the lack of interpretability in models, 

particularly with deep learning systems. These models often operate as "black 

boxes," making it difficult to understand how and why certain predictions are 

made. For safety-critical applications like traffic incident detection, this 

opacity can be problematic. Explainability is essential for gaining stakeholder 

trust, and explainable approaches offer a pathway to making models more 

interpretable by isolating and explaining underlying factors that influence 

decisions. 

• Handling Spatiotemporal Complexity: Mobility data introduces the 

complexity of both spatial and temporal dimensions, making it difficult to 

apply traditional ML techniques that are not designed for such multi-

dimensional data. Proximity in space and time plays a crucial role in incident 

detection, but many ML models struggle to integrate these factors effectively. 

Handling spatiotemporal data streams in real-time while accounting for the 

constantly evolving nature of traffic patterns and incidents is a significant 

technical difficulty. 

• Privacy Concerns: Given that mobility data is considered sensitive information, 

there are significant privacy challenges when using this data for automatic 

incident detection. Existing anonymization techniques for traditional data are 

often inadequate for mobility data, where location trajectories can 

inadvertently reveal personal details such as home addresses, workplaces, or 

even behaviors. Ensuring privacy while maintaining the utility of the data for 

ML-based incident detection is an ongoing challenge. 
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• Human-in-the-Loop Systems: While fully automated systems for incident 

detection are desirable, there is a recognized need for human oversight in real-

time, high-stakes scenarios. However, integrating human expertise into ML 

workflows presents its own set of challenges, including how to involve human 

decision-makers without slowing down the system’s response time. Current 

systems often rely heavily on automated processes, in general, limiting the 

ability to incorporate human intelligence in real-time analysis. Striking the 

right balance between automated systems and human intervention is a key 

challenge. 

 

From the identified challenges, several future directions emerge: 

• Advancements in Data Pre-processing Techniques: As mobility data 

continues to grow in volume and complexity, there is an urgent need for 

improved data cleaning techniques. Future research should focus on 

developing more robust and scalable methods for handling data 

inaccuracies, such as trajectory interpolation, that can operate in real-time 

and across various types of environments (urban, highway etc.). 

Additionally, research should explore ways to address gaps in temporal 

data without relying heavily on existing infrastructure, as this will improve 

the reliability of incident detection systems. 

• Improving Explainability in ML Models: To increase the adoption and 

reliability of ML systems for automatic incident detection, future research 

should prioritize improving the explainability of these models. One 

promising direction is the development of techniques which can isolate the 

key spatiotemporal factors driving model decisions. Furthermore, 

integrating interpretable models into workflows that involve multiple 

stakeholders (such as city planners and emergency responders) can 

enhance trust and ensure that the systems are understood and validated 

by human experts. 
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• Spatiotemporal ML Models: The development of specialized machine 

learning models that can effectively process spatiotemporal data is 

another promising research avenue. Existing models, originally designed 

for tasks like image recognition or language processing, are not well-suited 

to handling the complexities of traffic data, where both location and time 

are critical. Researchers should focus on developing models that natively 

understand the importance of spatiotemporal relationships, enabling 

more accurate incident detection. Incorporating real-time data streams 

and continuously evolving traffic patterns into these models will be 

essential. 

• Enhanced Privacy-Preserving Techniques: As mobility data becomes more 

ubiquitous, ensuring privacy will remain a key concern. Future research 

should focus on developing advanced privacy-preserving mechanisms that 

allow for the collection and analysis of sensitive mobility data without 

compromising individual privacy. Approaches such as geo-

indistinguishability, which protect user identities while maintaining data 

utility, are likely to become more widely adopted.  

• Human-in-the-Loop Systems for Enhanced Decision Making: Future 

incident detection systems should aim for more effective integration of 

human expertise into real-time analysis workflows. This could be achieved 

through the development of hybrid systems that combine ML algorithms 

with human reasoning, particularly in complex scenarios where automated 

systems may struggle. By leveraging human expertise in real-time, such 

systems can provide more reliable and context-aware responses to 

incidents. Research into optimizing these interactions without sacrificing 

system efficiency will be crucial. 
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3 Research	Challenges	

In the current Chapter, the research questions along with the Thesis outline, are 

presented in detail. More precisely, the research questions are reviewed and divided 

into their parameters on which the Thesis is positioned. Besides, a synopsis of the 

propositions of the Thesis is also provided. 

3.1 Research	Questions	

In this Section, the research questions of the current Thesis are displayed. The 

summarized Table 3-1 states the research challenges the Thesis aims to provide 

answers to, along with the corresponding parameters which they consist of. 

  Table 3-1: Research Questions and the corresponding Parameters 

Research questions Parameters 

What are the key 

components and 

methodologies for real-

time monitoring and 

prediction in AI-based 

traffic incident detection? 

• What are the characteristics of traffic in case of 
an incident? 

• What are the essential data sources for real-
time traffic monitoring and incident detection? 

• What are the main categories of algorithms for 
the incident detection task? What are the 
strong and weak points of each category? 

• Which AI algorithms are most effective and 
have been thoroughly proposed by the 
literature for traffic incident detection? What 
are the advantages and limitations of each? 

• What performance metrics are critical for 
evaluating the effectiveness of traffic incident 
detection systems? 

How can human-centered 

traditional and automated 

AI technologies be 

• What are the steps for building a 
comprehensive framework/methodology 
using AI for real-time detection of planned and 
unplanned incidents? 
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leveraged to develop a 

comprehensive 

framework for real-time 

detection of traffic 

incidents and monitoring 

of urban networks? 

• How can human expertise be integrated into 
AI-based traffic monitoring and incident 
detection systems to build a more reliable and 
trustworthy incident detection system?  

 

How do AI-driven 

methodologies and 

algorithms enhance the 

detection of planned and 

unplanned traffic 

incidents? 

• What are the primary advantages of using AI 
for traffic incident detection compared to 
traditional methods? 

• What limitations or challenges remain in the 
current AI-driven approaches? 

• How do different data-driven, machine 
learning and deep learning models perform in 
the context of traffic incident detection? Are 
there differences in the techniques employed 
in detecting, on the one hand, planned and, on 
the other hand, unplanned incidents? 

• What are the key features and parameters that 
influence the effectiveness of the AI models?  

How can AutoML 

techniques enhance the 

development of AI models 

for traffic incident 

detection? 

 

• What is Automated Machine Learning, and 
could it have a role in the context of Intelligent 
Transportation Systems? 

• Which AutoML frameworks, methods and tools 
are the most suitable for urban incident 
detection?  

• How can specific stages of model building such 
as model selection and optimization be 
automated effectively?  

• How do AutoML techniques compare to 
traditional methods regarding their 
performance? 

How to ensure predictions 

of AI-based traffic incident 

detection systems are 

explainable and 

trustworthy while 

• What is the role of human feedback and how it 
can be leveraged in AI-based systems? 

• What explainability techniques can be used to 
make AI predictions understandable and what 
tools can be integrated in such systems?  

• What mechanisms can be used to incorporate 
expert feedback using a human-in-the-loop 
approach into AI-based intelligent 
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integrating expert 

feedback? 

 

transportation systems to enhance the quality 
of the predictions? 

• What are the results of integrating human in 
the loop in terms of performance when 
retraining the ML models? Do explainability 
techniques have an impact on the 
trustworthiness of the system? 

3.1.1 	Research	Question	1:	What	are	the	key	components	and	methodologies	

for	 real-time	 monitoring	 and	 prediction	 in	 AI-based	 traffic	 incident	

detection?	

In the context of developing AI-based traffic incident detection systems, it is crucial to 

identify and understand the key components and methodologies for real-time 

monitoring and prediction. This question aims to present the basic elements and 

methods used in literature and state-of-the-art works  in the mobility field, initially, 

and particularly focus on the incident detection task, thus providing a comprehensive 

understanding of used technologies and techniques. 

The aforementioned question shapes Research Question 1 (RQ1) of the Thesis and is 

further divided into smaller sub-questions. Concretely, RQ1 can be split upon the 

following points: 

• What are the characteristics of traffic in case of an incident? 
• What are the essential data sources for real-time traffic monitoring and 

incident detection? 
• What are the main categories of algorithms for the incident detection task? 

What are the strong and weak points of each category? 
• Which AI algorithms are most effective and have been thoroughly proposed 

by the literature for traffic incident detection? What are the advantages and 
limitations of each? 

• What performance metrics are critical for evaluating the effectiveness of 
traffic incident detection systems? 

These points are discussed and answered in Chapter 2. The current Ph.D. thesis 

analyses the main objectives of data-driven and AI-based traffic incident detection. 

Section 2.2, focusing on the state-of-the-art works in the domain of automatic 
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incident detection and real-time monitoring and prediction systems. The Thesis also 

aspires to provide insights by synthesizing the current practices, identify challenges 

and gaps and propose future directions. 

3.1.2 	Research	 Question	 2:	 How	 can	 human-centered	 traditional	 and	
automated	AI	 technologies	be	 leveraged	 to	develop	a	comprehensive	

framework	for	real-time	detection	of	traffic	incidents,	monitoring,	and	

situational	awareness	of	urban	networks?	

Integrating human-centered traditional and automated AI technologies is 

essential in order to create a comprehensive framework that facilitates real-time 

detection, monitoring, and situational awareness of traffic incidents in urban 

networks.  

The Research Question 2 (RQ2) of the current Thesis, as stated above, is further 

divided into smaller sub-questions, which are the following: 

• What are the steps for building a comprehensive framework/methodology 
using AI for real-time detection of planned and unplanned incidents? 

• How can human expertise be integrated into AI-based traffic monitoring and 
incident detection systems to build a more reliable and trustworthy incident 
detection system?  
 

This Ph.D. thesis aims to investigate the integration of human-centered traditional 

and automated AI technologies as part of a comprehensive framework and the 

analysis conducted and suggested propositions are presented in Chapter 4. The 

primary focus of this Chapter is to describe a robust and innovative framework for 

enhancing real-time traffic incident detection and management in addition to the 

steps required as part of a comprehensive methodology, with the aim of improving 

urban traffic conditions and situational awareness.  

3.1.3 Research	Question	3:	How	do	AI-driven	methodologies	and	algorithms	

enhance	the	detection	of	planned	and	unplanned	traffic	incidents?	
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Based on the extensive literature review conducted as part of Chapter 2, it 

becomes apparent that AI-driven methodologies have significantly contributed to the 

field of traffic incident detection by offering advanced capabilities to identify incidents 

promptly and in some cases, more efficiently than traditional methods. This research 

question aims to present the methods, tools and algorithms used in this context for 

both planned and unplanned incidents. 

The primary research question (RQ3) is divided into the following sub-questions 

to comprehensively address the topic: 

• What are the primary advantages of using AI for traffic incident detection 
compared to traditional methods? 

• What limitations or challenges remain in the current AI-driven approaches? 
• How do different data-driven, machine learning and deep learning models 

perform in the context of traffic incident detection? Are there differences in 
the techniques employed in detecting, on the one hand, planned and, on the 
other hand, unplanned incidents? 

• What are the key features and parameters that influence the effectiveness of 
the AI models?  

These points are thoroughly explored and discussed in Chapter 5. The current 
Ph.D. thesis aims to analyze the use of AI-driven and advanced analytics techniques in 
traffic incident detection. Thus, the advantages and challenges of these methods are 
described. By answering the aforementioned sub-questions, this research offers 
insights into the capabilities and limitations of AI and the use of advanced analytics in 
detecting planned and unplanned traffic incidents. 

3.1.4 Research	 Question	 4:	 How	 can	 AutoML	 techniques	 enhance	 the	
development	of	AI	models	for	traffic	incident	detection?	

AutoML techniques offer significant potential for enhancing the development of 

AI models by automating various aspects of the model-building process. This research 

question investigates how these techniques could be applied to traffic incident 

detection to improve model performance and streamline the development process. 

RQ4 includes the following points: 
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• What is Automated Machine Learning, and could it have a role in the context 
of Intelligent Transportation Systems? 

• Which AutoML frameworks, methods and tools are the most suitable for urban 
incident detection?  

• How can specific stages of model building such as model selection and 
optimization be automated effectively?  
How do AutoML techniques compare to traditional methods regarding their 
performance? 
 

These points are thoroughly explored and discussed in Chapter 6. The current 

Ph.D. dissertation analyzes the use of AutoML techniques in the development of AI 

models for traffic incident detection and focuses on evaluating the effectiveness of 

AutoML in automating model development and improving performance. Therefore, 

the thesis provides valuable insights into the capabilities of AutoML and its application 

in traffic management systems. 

3.1.5 Research	Question	5:	How	to	ensure	human	in	the	loop	and	prediction	
is	 explainable	 and	 transparent	 in	AI-based	 traffic	 incident	 detection	

systems?	

Ensuring that AI-based traffic incident detection systems are explainable, 

transparent, and involve human oversight is crucial for gaining user trust and 

maintaining high performance while adhering to ethical standards. This question 

explores methods and practices to make AI predictions understandable and 

transparent while incorporating human judgment and expertise in urban traffic 

systems. 

RQ5 is divided in the following sub-questions, more specifically: 

• What is the role of human feedback and how it can be leveraged in AI-based 
systems? 

• What explainability techniques can be used to make AI predictions 
understandable and what tools can be integrated in such systems?  

• What mechanisms can be used to incorporate expert feedback using a human-
in-the-loop approach into AI-based intelligent transportation systems to 
enhance the quality of the predictions? 

• What are the results of integrating human in the loop in terms of performance 
when retraining the ML models? Do explainability techniques have an impact 
on the trustworthiness of the system? 
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These points are discussed in Chapter 7, where the integration of human 

feedback (human-in-the-loop approaches) and explainability techniques in AI-based 

traffic incident detection systems are discussed in detail.  

3.2 The	Propositions	of	the	Thesis	

The solutions this Thesis suggests intend to cover the research gaps that are 

identified and hence respond to the Research Questions stated above. Table 3-2 

below displays how the various articulated research questions have been associated 

with relative scientific publications produced during this study, as well as the Chapters 

in which the insights of the research are described (Chapters 4, 5, 6, 7). Chapter 8 

discusses the system development and Chapter 9 presents the evaluation of 

approaches presented in Chapters 4, 5, 6 and 7 in two real-world case studies. 

Table 3-2: Positioning of the Thesis Proposition following the Research Questions.  

Research Questions Thesis Proposition Related 
Publications 

Chapter 

What are the key components 
and methodologies for real-time 
monitoring and prediction in AI-
based traffic incident detection? 

• Analysis of 
methodologies as 
proposed by literature 

• Synthesis of literature 
review and research 
gaps identification 

[j2] [c2] [c3]  2 

How can human-centered 
traditional and automated AI 
technologies be leveraged to 
develop a comprehensive 
framework for real-time 
detection of traffic incidents 
and monitoring of urban 
networks? 

• Overall framework for 
comprehensive incident 
(planned and 
unplanned) detection 

[j3]  [c1]  4 
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How do AI-driven 
methodologies and algorithms 
enhance the detection of 
planned and unplanned traffic 
incidents? 

• Comprehensive 
discussion about ML and 
DL algorithms and their 
advantages and 
challenges 

• AI-based and Advanced 
Analytics Methodology 
to identify planned and 
unplanned traffic 
incidents   

• Comparison of state-of-
the-art algorithms 

[j2] [j3] [c2] 
[c3] 

5 

How can AutoML techniques 
enhance the development of AI 
models for traffic incident 
detection? 

• Novel AutoML-based 
methodology in 
detecting unplanned 
traffic incidents with 
data pre-processing 
pipeline 

• Contrast of AutoML-
based approach with 
General Approach 
Algorithms 

• Guidelines and best 
practices in integrating 
autoML in overall 
framework 

[j2] 6 

How to ensure predictions of 

AI-based traffic incident 

detection systems are 

explainable and trustworthy 

while integrating expert 

feedback? 

 

• Interactive Feedback 
from operators to 
validate prediction 

• Enhanced dataset 
quality through 
functionality of manual 
incident insertion 

• Explainability features in 
AI-Based Traffic Incident 
Detection Systems 

 

[c1] [c4] 7 

 



111 
 

4 Framework	for	Real-Time	Monitoring	and	
Prediction	of	Traffic	Incidents	

This Chapter presents the comprehensive framework proposed in the area of real-

time monitoring and prediction in automatic traffic incident detection. The focus is 

placed on integrating both traditional and automated AI technologies to enhance 

urban traffic management systems. Research has been conducted to identify and 

evaluate key components, methodologies, and techniques essential for effective 

traffic incident detection and traffic monitoring. This includes investigating the 

integration of human-centered approaches with traditional and automated 

approaches utilizing advanced data analytics to improve the overall effectiveness, 

reliability and trustworthiness of the system.  

4.1 Pillars	of	our	framework	

The proposed framework for an advanced incident detection system is based upon 

four pillars: AI and Data Analytics, Automated Machine Learning, Explainability and 

Human-in-the-Loop. Each pillar represents a critical component of the system, 

contributing to its robustness. These pillars are illustrated and briefly discussed in 

Figure 4-1. 
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Figure 4-1: The four pillars of our proposed framework. 

In the following sections, we provide a detailed presentation for each one of these 

pillars individually and their significance. 

4.1.1 AI	and	Data	Analytics	

AI and Data Analytics constitute the first pillar of the framework. Those are 

essential for the detection of traffic incidents, even before they occur. It involves the 

use of advanced data analytics and AI algorithms, which take as input large, even vast, 

quantities of historical and real-time traffic data. By finding patterns and trends, the 

system is capable of predicting potential incidents and providing real-time alerts to 

involved operators and affected users. Data Analytics focus on extracting meaningful 

insights from complex traffic data that include:  

• Analysis of traffic data over time to identify patterns, trends, and abnormal 
behavior. In this context, time-series analysis is important to understand 
the daily and seasonal variation of traffic flows and to forecast peak 
congestion periods.  

• Integrating spatial and temporal data is essential for comprehending the 
evolution and propagation of traffic incidents. This investigation aids for 
instance in identifying areas with a high frequency of incidents and 
presents the influence of spatial variables on traffic dynamics.  

• Analyzing interrelations between factors related to traffic to identify 
factors which impact incidents. Such an understanding helps in building 
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more accurate predictive models and thus in implementing the measures 
for preventing and managing incidents in the context of strategic decision-
making.  

 

The analytics which aim to identify traffic incidents thus minimize the effects of 

traffic disruptions and increase the overall security of roads. The ability to foresee any 

accidents assists in controlling traffic, during the time of the incident taking place or 

even ahead of time, hence enabling authorities to apply preventive actions. 

4.1.2 Automated	Machine	Learning	

The second pillar, Automated Machine Learning (AutoML), simplifies the process 

of developing and deploying machine learning models. AutoML automates the end-

to-end process of applying machine learning to real-world problems, from data pre-

processing and feature selection to model training and hyperparameter tuning. This 

automation reduces the time and expertise required to build effective prediction 

models, making ML accessible to a broader range of users. AutoML ensures that the 

best models from the pool that have been tried are used for incident detection, 

continuously improving their performance with minimal human intervention. This 

pillar is crucial for the efficiency and scalability of the incident detection system. 

4.1.3 	Explainability	

The third pillar focuses on making the AI models used in traffic management 

understandable to users. Techniques like SHAP (SHapley Additive exPlanations) and 

LIME (Local Interpretable Model-agnostic Explanations) are utilized to clarify how 

models make their predictions. SHAP provides information about the contribution of 

each feature, such as traffic volume, to the model’s output. LIME, on the other hand, 

simplifies complex models to explain individual predictions, making it easier for any 

user to understand how specific factors influence the resulting prediction. 

This transparency is essential for building trust and ensuring that the system’s 

predictions are reliable. By understanding the rationale behind AI decisions, users can 
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better validate the model’s recommendations and identify potential areas for 

improvement. Explainability also facilitates model evaluation and continuous 

refinement, leading to more accurate and reliable predictions in the context of any 

traffic management system. 

4.1.4 Human-in-the-Loop		

The fourth pillar integrates Human-in-the-Loop (HITL) methodologies into the 

system. This pillar ensures that human expertise and feedback are incorporated into 

the prediction process, enhancing the system's accuracy and reliability. Key aspects 

include involving traffic management operators in reviewing and validating or 

adjusting, if needed, the model's predictions. Human input helps correct any errors in 

the model. This creates a feedback loop that enhances model performance over time, 

as operators provide validations and corrections. Lastly, combining HITL and 

explainability ensures that the incident detection system is not only highly effective 

but also trusted and accepted by its users. 

The proposed framework, built on these four pillars, represents a comprehensive 

approach to automatic traffic incident detection. By integrating the key points 

mentioned as part of the four pillars, the framework addresses some of the major 

challenges and research gaps in traffic management, as stated in Section 2.4. It 

ensures that the system is proactive, efficient, accurate, and trustworthy, ultimately 

leading to improved road safety and better traffic management.  

4.2 Proposed	methodology	

The goal of our proposed approach is to enhance traffic management systems by 

leveraging advanced analytics and AI techniques, while ensuring the inclusion of 

explainability and human expertise in such automated systems. The proposed 

methodology in addition to the individual steps are illustrated in Figure 4-2. The 

process is complex and involves several phases, each critical to the system's overall 

effectiveness. In the following sections, we detail each phase. 
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Figure 4-2: Our proposed methodology. 

4.2.1 Data	Collection	

Data collection is one of the paramount steps of any application which entails 

data-driven methodologies and Machine Learning. For the incident detection task, 

diverse and high-quality data sources need to be collected. The proposed approach is 

built upon the availability of the following datasets: 

• Inductive Loop Detector Measurements: Loop detectors are devices 

embedded in road surfaces, and collect continuous data on vehicle count, 

speed, and occupancy. Loop detectors provide granular traffic data crucial for 

understanding real-time traffic dynamics and detecting anomalies indicative 

of incidents. 

• Segment Level Measurements: Segment level data offers insights into specific 

road sections, allowing for more localized incident detection. These 
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measurements might include average speed, vehicle density, and flow rates, 

which help identify sudden changes often associated with incidents. 

• Incident Dataset: Historical incident data are essential for training data-driven 

AI-based models. This dataset includes detailed records of past incidents, such 

as accidents, road blockages, and breakdowns, including their locations, times, 

causes, impact and potentially resolutions. These data help the deployed 

models learn to recognize patterns and triggers of incidents. 

• Network Topology: Information about the road network's structure, including 

the locations of the loop detectors, the layout of lanes, intersections, and 

connectivity, provides context for interpreting traffic data. Network topology 

helps in understanding how incidents in one part of the network can affect 

other parts. 

4.2.2 Data	Pre-processing	

After the data have been collected, the data pre-processing phase aims to 

transform raw data into a usable format for analysis and modeling. It includes several 

crucial steps: 

• Cleaning: This step involves removing noise and correcting errors in the data. 

Techniques include handling missing values, removing duplicates, and 

correcting erroneous entries. As it is widely agreed, clean data are essential 

for ensuring accurate and reliable model training. 

• Normalization: Standardizing data across different sources to a common scale 

ensures consistency.  

• Feature Extraction: This process involves identifying and deriving relevant 

features from the raw data that will be used in model training. Features might 

include average speed, traffic density in adjacent detectors, weather 

conditions, and time of day, amongst many others. Effective feature extraction 

is crucial for enhancing model performance. 
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4.2.3 Advanced	Analytics	

Before proceeding with the development of AI models, it is crucial to understand 

the available data through advanced analytics, which include: 

• Exploratory Data Analysis (EDA): EDA is a standard step in every data-driven 

analysis and involves visualizing and performing basic descriptive analytics the 

data to uncover patterns, trends, and anomalies. Techniques include plotting 

histograms, scatter plots, and heatmaps. EDA helps in understanding the 

underlying distributions and relationships in the data. 

• Time-Series Analysis: Given that traffic data is inherently temporal, time-

series analysis is crucial. It involves analyzing data points collected or recorded 

at specific time intervals to identify trends, seasonal patterns, and cyclical 

behavior. Techniques such as ARIMA (AutoRegressive Integrated Moving 

Average) models are commonly used for this purpose. 

• Statistical Analysis: Applying statistical methods to analyze data helps in 

understanding correlations and dependencies between variables. For 

example, correlation analysis can reveal how the time of day might influence 

traffic speed and incident rates. 

• Spatiotemporal Analysis: Integrating both spatial and temporal dimensions to 

understand how traffic patterns evolve over time and across different 

locations. This analysis is crucial for identifying how incidents in one area might 

affect traffic flow in adjacent areas. Techniques involve the use of geospatial 

data and time-series data to create models that can predict traffic conditions 

based on both location and time. This is particularly useful for managing traffic 

during large events or in areas with frequent recurring congestion. 

• Correlation Analysis: Examining the relationships between different variables 

to determine how changes in one variable may affect others. For instance, 

analyzing the correlation between traffic characteristics and incident 

occurrence can help identify potential predictors of traffic incidents. 
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Correlation analysis helps in understanding the interdependency between 

various factors influencing traffic and can be used to enhance the accuracy of 

incident prediction models. 

 

4.2.4 AI	Model	Development	

Developing robust AI models for the timely and accurate detection of traffic 

incidents is positioned at the core of our proposed approach. This phase involves: 

• Algorithm Selection: Choosing the right machine learning algorithms based on 

the problem and data characteristics is of utmost importance. Common 

algorithms for incident detection include decision trees, support vector 

machines, neural networks, and ensemble methods, as seen in the extensive 

literature review (Chapter 2). 

• Model Training: Training involves feeding the pre-processed data into the 

selected algorithms to learn patterns and make predictions. Training requires 

splitting data into training, testing and validation sets to ensure the model can 

generalize to unseen data. 

• Parameter Tuning: Adjusting the hyperparameters of each model to optimize 

its performance. Techniques such as grid search and random search are used 

to find the best combination of parameters. 

• Model Evaluation: Assessing the model’s performance using metrics like 

precision, recall, F1-score, and accuracy. This constitutes a critical step since it  

ensures the model is accurate and reliable in detecting incidents. 

4.2.5 Real-time	System	Deployment	

Deploying the developed and trained models in a real-time environment involves 

several steps: 
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• Real-time Monitoring: Implementing systems to continuously monitor traffic 

conditions. Real-time data streams are processed to detect incidents as they 

occur. Moreover,  establishing processes for regular updates and maintenance 

of the system is important to make sure that the system remains reliable. This 

includes updating models with new data, retraining as necessary, thus 

ensuring the system is operating smoothly and still produces reliable outputs. 

• Incident Prediction: Automatically detecting and identifying incidents in real-

time. The system should provide timely alerts and insights to traffic 

management operators for quick response and mitigation. 

• Recurring Congestion Identification: Automatically detecting recurring 

congestion in real-time in any part of the transportation network. It involves 

analyzing traffic data to detect patterns and trends of congestion that occur 

regularly at specific times or locations. The proposed system can predict 

recurring congestion events, such as daily rush hours. Identifying these 

patterns allows for proactive measures to be implemented, such as adjusting 

traffic signals, providing real-time traffic alerts to drivers, and optimizing 

alternative routes.  

4.2.6 Human-in-the-Loop	

Incorporating human expertise enhances the system's performance and 

reliability, in the following ways: 

• Feedback Integration: Collecting and integrating feedback from traffic 

management professionals and other stakeholders to continuously improve 

the model. Human feedback helps in refining model predictions and reducing 

false positives/negatives.  

• Model Refinement: Continuously updating and refining the model based on 

new data and feedback. This iterative process ensures that the model adapts 

to changing conditions and improves over time. 
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4.2.7 Explainability	

Ensuring the AI model's decisions are understandable and transparent is crucial 

for trust and accountability, in the following respect: 

• Decision Visualization: Visualizing the model's decision-making process helps 

in making its predictions interpretable. Techniques include feature importance 

plots, and dependence plots. 

• Integration of Explainable AI Tools: Using tools and techniques like SHAP 

(SHapley Additive exPlanations) and LIME (Local Interpretable Model-agnostic 

Explanations) to explain the model's predictions. These tools provide insights 

into which features are driving model decisions, helping stakeholders 

understand and trust the AI system. 

4.2.8 Validation	&	Testing	

Finally, the proposed system should undergo rigorous validation and testing to 

ensure its effectiveness and robustness. This phase includes: 

• Application in Real-world Case Studies: Testing the model in real-world 

scenarios to validate its performance. Case studies provide practical insights 

into how the model performs under various conditions and help identify areas 

for improvement. 

• Performance Analysis: Analyzing the system's performance over time and 

across different conditions. This involves monitoring key performance 

indicators (KPIs) like detection accuracy, f1-score, and system reliability 

stemming from user feedback. Continuous performance monitoring helps in 

maintaining and, potentially, enhancing the system's effectiveness. 
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5 AI-Driven	Traffic	Incident	Detection	for	
Planned	and	Unplanned	Events	

In this Chapter, the proposed work of the Thesis concerning the application of 

Artificial Intelligence (Machine Learning and Deep Learning) techniques for the 

prompt identification of traffic incidents is presented. This chapter discusses the need 

of using AI to uncover patterns in traffic dynamics in addition to the advantages 

compared to traditional methods and presents the foundation of the proposed 

approach. An overview of the entire approach is provided, along with a detailed 

analysis of the detection of both planned and unplanned incidents. The developed 

approach has been tested and verified in real-life case studies in two urban 

environments, and the findings are discussed and displayed in Chapter 9, while the 

technical implementation details of the information system developed are presented 

in Chapter 8. 

5.1 Introduction	and	Motivation	

The rapid urbanization and expansion of cities have led to increased traffic 

congestion and a higher occurrence of traffic-related incidents. Traditional traffic 

management systems often struggle to cope with the dynamic nature of urban traffic, 

especially when it comes to detecting and responding to traffic incidents in real time. 

This has created a pressing need for more advanced, efficient, and reliable methods 

of traffic incident detection. 

The use of Artificial Intelligence (AI), particularly Machine Learning (ML) and 

Deep Learning (DL), has paved new ways for addressing these challenges. AI-driven 

methodologies can analyze vast amounts of traffic data, uncover hidden patterns, and 

provide timely and accurate detection of traffic incidents. This is crucial for mitigating 

the effects of traffic incidents, such as delays, economic losses, and safety hazards. 
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The motivation for this research stems from the recognition that Artificial 

Intelligence (AI), particularly Machine Learning (ML) and Deep Learning (DL), offers 

unprecedented capabilities for addressing the challenges faced by traditional traffic 

management systems, as illustrated in Section 2.4. More specifically, AI-driven 

methodologies excel at processing big amounts of data and uncovering hidden 

patterns that are not easily detectable through conventional means. These 

capabilities are crucial for the timely and accurate detection of traffic incidents. 

One of the primary motivations for employing AI in traffic incident detection is 

the enhancement of detection capabilities. Unlike traditional methods that rely on 

static sensors and manual inputs, AI methodologies can analyze large datasets 

continuously and in real time. This allows for the identification of traffic patterns and 

anomalies that indicate incidents much faster and more accurately than human 

operators or conventional means. Another key motivation is the ability of AI systems 

to facilitate real-time monitoring and response. The quick processing of data and the 

ability to make data-driven decisions in real time can significantly reduce the response 

time to traffic incidents. This is essential for minimizing the impact of incidents on 

traffic flow and enhancing overall traffic management efficiency. AI systems can 

promptly and automatically alert traffic management centers about incidents, 

allowing for quicker deployment of emergency services and traffic rerouting 

measures. Moreover, these models are able to capture both spatial and time 

complexities which are inherent to the task of AID in traffic management. 

The scalability and adaptability of AI-driven systems also provide a compelling 

motivation for their use. These systems can be scaled to handle varying volumes of 

data and can be adapted to different urban environments, making them suitable for 

deployment in cities of different sizes and with diverse traffic conditions. As more data 

is collected and analyzed, AI systems can continuously improve their accuracy and 

efficiency, further enhancing their utility in dynamic urban settings. Additionally, the 

integration of AI-driven traffic incident detection systems with broader smart city 

initiatives represents a significant motivation. By linking traffic management systems 

with other smart city technologies, cities can achieve a more cohesive and efficient 
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urban management infrastructure. This integration can enhance not only traffic 

management but also public safety, environmental sustainability, and the overall 

quality of urban living. 

This chapter aims to provide a comprehensive overview of the application of AI-

driven methodologies in traffic incident detection, for both planned and unplanned 

events. The chapter will present an in-depth analysis of how specific AI models, widely 

employed in relevant studies and research papers, are applied to detect incidents. 

Special attention is given to distinguishing between the detection processes for 

planned incidents, such as recurring congestion and unplanned incidents, such as 

accidents or sudden road closures. The insights derived from this study aim to 

contribute significantly to the development of more effective, responsive, and 

intelligent traffic management systems which make use of trained AI models in the 

detection of incidents.  

5.2 Data-driven	Algorithms	for	unplanned	non-recurring	

incident	detection	

Based on the extensive literature review we have conducted which is documented 

in Chapter 2, we have selected some of the most widely used state-of-the-art 

algorithms and methods to analyze and include in our proposed framework. For this 

reason, we have chosen not to focus on comparative or time-series algorithms, since 

although these have been used extensively in the past, there has been a shift in 

Machine Learning and Deep Learning approaches. Another reason we have taken the 

decision to not include the widely used California algorithms is the fact that these 

need as input only occupancy observations and do not take into account other traffic 

characteristics, which, in many scenarios are not reliable enough to base our analysis 

on. Instead, we have placed our focus on the following Machine Learning and Deep 

Learning algorithms, including Supervised (the widely employed SVM and a suite of 

Neural Networks) and Unsupervised approaches for anomaly detection, for instance 

Isolation Forest. 
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In this section, we present a high-level overview of the selected algorithms in 

addition to the rational on which we have based the selection. 

5.2.1.1 SVM 

Support vector machine (SVM) is a supervised approach which is constructed from 

a unique learning algorithm that extracts training vectors that lie closest to the class 

boundary and makes use of them to construct a decision boundary that optimally 

separates the different classes of data.  

Concerning how the SVM operates, consider the problem of incident detection 

where X is an input vector with n dimensions. The SVM performs the following 

operation involving a vector W={w1,…,wn} and scalar b: 

 

Positive sign of f(X) may be taken as incident state while negative value of f(X) may 

be regarded as incident-free. 

We have chosen this algorithm, since, as illustrated from the literature review, 

results from various studies have shown that SVM offers a lower misclassification rate, 

higher correct detection rate, lower false alarm rate and slightly faster detection time 

than other models in traffic incident detection (Yuan & Cheu, 2003). 

5.2.1.2 Isolation Forest 

In comparison to other anomaly detection methods such as Support Vector 

Machines and Decision Trees which require a labelled data set to form a classifier, 

Isolation Forests are generally used in an unsupervised manner. Isolation forests only 

require a few conditions to separate anomalies from normal observations when 

compared to other methods which use basic distance and density measures. 

There are several works in the field of AID which use Isolation Forests. Their low 

linear time complexity and small memory requirements aid in eliminating major 
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computational cost of distance calculation in all distance and density-based methods. 

Lastly, isolation forests are able to perform well in a multi-dimensional feature space. 

5.2.1.3 Neural Networks with Wavelet transformation 

With capabilities of learning, self-adaptation, and fault tolerance, the Artificial 

Neural Networks (ANNs) approach has demonstrated good performance in many 

pattern classification applications, including several works in the field of traffic 

incident detection. In the study by (Ki, Jeong, Kwo, & Kim, 2019), a three-layered ANN 

model for incident detection was developed, as shown in Figure 5-1. 

 

 

Figure 5-1: Artificial Neural Network for Freeway Incident Detection (Ki, Jeong, Kwo, & Kim, 2019). 

Wavelet Neural Networks (WNN) are a class of networks that combine the classic 

sigmoid artificial neural networks (ANNs) and the Wavelet Analysis (WA). Wavelet 

analysis reveals the frequency components of signals just like the Fourier transform, 

but it also identifies where a certain frequency exists in the temporal or spatial 

domain. WNNs have been used with great success in a wide range of applications, 

since Wavelet Analysis has proved to be a valuable tool for analyzing a wide range of 

time-series and has already been used with success in image processing, signal 

denoising, density estimation, signal and image compression and time-scale 

decomposition.  There is a correspondence between wavelet scales and frequency, 
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such that a smaller scale corresponds to a compressed wavelet, which is high in 

frequency, while larger scales correspond to a stretched wavelet, representing lower 

frequency. Scales are often converted to spatial frequencies for better 

interpretability. By means of wavelet transformation, time series can be decomposed 

into a time dependent sum of frequency components. As a result, we are able to 

capture seasonalities with time-varying period and intensity.  

In our case, we have used the Python library PyWavelets, which is open- source 

wavelet transform software for Python. 

5.2.1.4 BCNN 

Another model which is frequently used in literature are the Convolutional Neural 

Networks (CNNs). According to Oquab et al. (2014), a CNN is an algorithm that excels 

in image processing, computer vision, and image recognition. Because CNN structures 

are sensitive to distance, they have primarily been applied to spatial problems. 

Convolution, pooling, and fully connected layers make up each CNN structure. 

Different features are extracted by different filters (also known as kernels) in the 

convolution layers. These filters are collections of learnable weights that are modified 

during training to generate output features. Prior to calculating the product between 

the numbers at the same location in the input matrix and the filter, the convolution 

filter is first positioned in the upper left corner of the input matrix. These products are 

then added together to produce a single number, which is the outcome of this 

operation's convolution. Then, the filter is moved to the right by one element,  and 

the convolution result is obtained. A pooling layer is then used to extract dominant 

features and reduce the number of parameters. Then, the results are sent to the fully 

connected layer, which makes a prediction. Based on the type of pooling layer 

(average pooling or max pooling), the average or the maximum of the numbers at the 

same location in the output of the convolution layer matrix and the pooling kernel are 

calculated. The output dimensions of the pooling layer depend on the stride setting. 

Finally, the matrix is flattened and is passed on to the fully connected layer (Ansari 

Esfe, 2021). An example is illustrated in Figure 5-2. 
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Figure 5-2: Structure of a Convolutional Neural Network. (Ansari Esfe, 2021) 

In our case, we have chosen to include a Bayesian Convolutional Neural Network 

(BCNN)., which integrates probabilistic models and deep learning to consider 

uncertainties from both model and data. (Liu, Jin, Li, Hu, & Lia, 2022) Bayesian deep 

learning models exploit probabilistic layers that are trained using Bayesian inference 

to capture uncertainty over weights and activations. Because these probabilistic 

layers are designed as alternatives to their deterministic layers, Bayesian deep 

learning models create a straight-forward way to extend traditional deep learning 

models to endorse probabilistic deep learning. 

 

Figure 5-3: Bayesian convolutional neural network model. (Liu, Jin, Li, Hu, & Lia, 2022) 

5.2.1.5 Autoencoder 
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An Autoencoder is a generative deep learning algorithm used for reconstructing 

high-dimensional input data using a neural network with a narrow bottleneck layer in 

the middle which contains the latent representation of the input data. 

It consists of an Encoder and a Decoder. The encoder network accepts high-

dimensional input data and translates it to latent low-dimensional data. The input size 

to an Encoder network is larger than its output size. On the other hand, the Decoder 

network receives the input from the Encoder’s output, which the Decoder’s objective 

is to reconstruct the input data.  

The Autoencoder accepts high-dimensional input data, compress it down to the 

latent-space representation in the bottleneck hidden layer; the Decoder takes the 

latent representation of the data as an input to reconstruct the original input data. 

Therefore, Autoencoders have been used for Anomaly Detection tasks, by 

comparing the output from the Decoder and the input to the Network and using a 

threshold, either manually set or learnt from the data itself. If the loss value exceeds 

the threshold, then the instance is categorized or classified as an anomaly. In that 

sense, we can say that the Autoencoder works on an unsupervised manner, taking 

into account that it uses future values of the observations dataset, and the 

classification is based on a manually set threshold.  

5.2.1.6 Bidirectional LSTM 

Fully connected neural networks (FCN) are a combination of many neurons in 

consecutive layers. The neurons are connected in a way that enables the model to 

solve complex, non-linear problems.  However, the FCN model structure cannot 

consider the hidden relationships among time steps in a time series of data. On the 

other hand, for such cases, it is important to take into account those relationships. A 

Recurring Neural Network (RNN) considers that the data in the sequence are related 

to each other. While RNN structures are appropriate for time series prediction, RNN 

can be defined as a very deep FCN with more time lags (hidden layers). Thus, RNN 

results in a vanishing or exploding gradient of the network, which means that the 
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accuracy of a simple RNN may decrease as the sequence length increases because the 

earlier cells in the RNN get a small gradient update and stop learning in the 

backpropagation process. Thus, gated recurring neural network models, such as 

LSTM, have been proposed to overcome this issue. (Ansari Esfe, 2021) The internal 

structure of a LSTM network is shown in Figure 5-4. 

 

Figure 5-4: Internal Structure of LSTM. (Yuan, Li, & Wang, 2019) 

Bidirectional LSTMs are based on the traditional LSTMs that were introduced to 

improve model performance on sequence classification problems (Huang, Xu, & Yu., 

2015). The arrangement of the LSTM memory block enables the network to store and 

retrieve information over long periods (Figure 5-5). One drawback of the standard 

LSTM networks is that they only have access to the previous context but not to future 

context. On the other hand, Bidirectional LSTMs can capture both forward and 

backward dependencies in time series data (Cui, Ke, & Wang, 2018). In problems 

where all time steps of the input sequence are available, Bidirectional LSTMs train two 

instead of one LSTMs on the input sequence (i.e., the input sequence as-is and a 

reversed copy of the input sequence).  
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Figure 5-5: The architecture of a Bidirectional LSTM model. 

The bidirectional LSTM is a good fit for traffic state prediction as it can potentially 

capture temporal autocorrelation in the data. Once the model is trained based on the 

historical data, the future values are estimated. Thereafter, the anomalous behavior 

can be classified by setting a threshold for loss values and examining the actual traffic 

data with the corresponding pattern. 

5.2.1.7 Graph Neural Networks 

Graph Neural Networks (GNNs) have emerged as a powerful tool in enhancing 

incident detection in traffic systems.  GNNs are particularly adept at handling data 

that is structured as graphs, which is a natural representation for traffic networks 

where nodes can represent detectors and edges can denote the roads connecting 

them. This structure allows GNNs to learn complex patterns of traffic flow and 

interactions between different parts of the network. By leveraging the spatial 

dependencies and the temporal dynamics of traffic data, GNNs can more accurately 

predict incidents, such as traffic jams or accidents, in real-time. This capability not only 

improves the efficiency of traffic management systems but also enhances road safety. 

In graph-based modeling for traffic systems, each traffic sensor is represented as 

a node within the network graph, with the connections between roads depicted as 

edges linking these nodes. In Figure 5-6, a general pipeline of SpatioTemporal GNN 

models for traffic predictions are illustrated. A significant benefit of employing traffic 
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sensor data in this context is the straightforward use of the collected traffic data as 

attributes for the nodes, avoiding the need for extensive preprocessing. However, 

there are caveats to consider, such as the fact that the placement of traffic sensors is 

restricted by various factors, including the cost of installation. (Jiang & Luo, 2022) 

 

Figure 5-6: A general pipeline of GNN models for traffic prediction. (Bui, Cho, & Yi, 2021) 

5.2.1.8 AIMSUN algorithm 

Aimsun is a leading company in the field of traffic management providing  micro, 

meso and macro-simulations and respective analytics. Aimsun has developed 

advanced solutions for real-time traffic incident detection and management, notably 

through its Aimsun Live and Aimsun Predict platforms.  

Aimsun Live is a real-time predictive traffic management solution that utilizes live 

and historical data to simulate and monitor traffic networks. It provides immediate 

forecasts of upcoming traffic conditions, enabling traffic management centers to 

proactively address potential issues before congestion arises. On the other hand, 
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Aimsun Predict processes real-time data to forecast future traffic states, offering 

situational awareness and supporting proactive decision-making. It employs data 

cleaning, clustering, prediction, and incident detection techniques to interpret real-

time data, providing alerts for unusual network performance and potential incidents. 

Aimsun Predict's online incident detection capabilities involve identifying sudden 

changes in traffic data—such as sharp drops in traffic flow outside peak hours—that 

may indicate incidents like crashes or collisions. 

Existing incident detection methods within the Aimsun framework deployed state-

of-the-art techniques based of the California #7 algorithm as well as probabilistic 

methodologies. Such techniques are well-known to have limitations both with 

unreliable data and in real-time scenarios. Within the scope of the FRONTIER project, 

Aimsun has been experimenting with a methodology that is able to cope with current 

state-of-the-art limitations in the area by being trained in an unsupervised way (i.e., 

independently of having labelled datasets), working independently on different 

timeseries (e.g., traffic flow, or speed, or occupancy) and working without the need 

of close sensor-pairs. Results of such experimentation are used to provide a baseline 

for further development and integration of incident detection algorithms in a real-

time scenario.  

Aimsun’s baseline has been built upon the assumption that incident detection can 

be regarded as a transformation of individual timeseries to a space where the distance 

between structural outliers is magnified independently on each input variables. 

According to (Herrmann et al. 2022), two types of anomalies or outliers can be 

distinguished: distributional outliers and structural outliers. Distributional outliers 

look like normal data (i.e., inliers), but are in a low-density region in the data (or 

embedding) space. Since distributional outliers are structurally like inliers, their 

detection requires a lot of normal data for an accurate estimation of the probability 

density function and the setting of the probability threshold that defines the frontier 

of inliers.  
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On the other hand, structural outliers are those that belong to a manifold7 

different from the one formed by inliers.  Road traffic incidents belong to the latter 

category, whose detection is not equally easy for all traffic variables. For example, 

road traffic occupancy usually offers easier incident detection than traffic flow. 

Similarly, occupancy difference between sensor-pairs offers an easier detection than 

single-sensor occupancy. Moreover, different embedding spaces can offer distinct 

levels of detection power. (Torrent-Fontbona F. , Dominguez, Fernandez, & Casas, 

2022) 

5.3 Advanced	Analytics	Methods	for	Recurring	Congestion	

Identification	

Recurring congestion is a common issue in the transportation sector, particularly 

in urban areas with high traffic volumes. This type of congestion typically arises due 

to routine traffic demand patterns, such as morning and evening rush hours. Unlike 

non-recurrent congestion, which is caused by unpredictable events like accidents or 

weather disturbances, recurrent congestion occurs regularly and predictably. The 

presence of recurrent congestion not only affects the efficiency of the transportation 

network but also leads to increased fuel consumption, higher emissions, and longer 

travel times for commuters. 

Several systems have been developed to identify and monitor recurrent 

congestion, some of which employ Machine Learning and Deep Learning techniques. 

These studies primarily concentrated on identifying the dominant trend in congestion 

spread. For example, (Liu, Zheng, Chawla, Yuan, & Xie, 2011) created an algorithm to 

identify a causal pattern for traffic situations. They segmented the city of Beijing into 

multiple areas and charted these areas. In the diagram, nodes symbolized the areas, 

and edges illustrated the movement of traffic among the areas. They suggested 

utilizing the spatiotemporal outlier tree (STOTree) along with a frequent subtree 

 
7 A manifold is a topological space that is modelled closely on Euclidean space locally but may vary 
widely in global properties. 
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algorithm to uncover the causal anomaly pattern in road systems. Additionally,  

(Nguyen, Liu, & Chen, 2016) presented a method to identify congested roads over 

time and the causal links between them. They created the spatiotemporal congestion 

(STC) algorithm, which produced the most common sub-structures (subtrees) from all 

detectable tree structures in a network to uncover the repeating propagation pattern. 

Moreover, they employed a dynamic Bayesian network (DBN) to assess the likelihood 

of each propagation happening. By merging these two methods (STC_DBN), they were 

able to effectively identify the congestion propagation pattern (Liang, Jiang, & Zheng, 

2017) introduced a data-driven method that identified the cascading patterns of 

traffic flow by optimizing the likelihood function based on the available data. They 

asserted that this model surpassed the STC_DBN algorithm regarding accuracy and 

computation time. Subsequently, (He, Wang, Fang, & Li, 2018)enhanced the STC_DBN 

algorithms. They suggested a spatiotemporal congestion co-location pattern (STCCP) 

to identify the congestion propagation pattern. They created three-dimensional 

models incorporating the factors of time, place, and traffic. By utilizing the congestion 

characteristics found in neighboring areas and later periods, they analyzed the 

congestion pattern. Although the aforementioned studies primarily concentrated on 

identifying the common congestion patterns at the network level with a tree-based 

algorithm, they failed to anticipate congestion propagation.  

Moreover, (Wang & Zhou, 2017) and (Ji, Wang, Zhou, & Chen, 2019) applied a 

mining algorithm to identify the spatiotemporal congestion. Additionally, they 

established speed characteristics using taxi trajectory data to identify the 

spatiotemporal congested regions for constructing the frequent patterns. By 

integrating the common congestion patterns with the rules of congestion 

propagation, researchers can foresee congestion spread during repeated events. 

Although recent research has concentrated on creating frequent trees or identifying 

the most likely congestion propagation patterns to forecast congestion issues, (Xiong, 

Vahedian, Zhou, Li, & Luo, 2018) suggested an effective algorithm to anticipate where 

congestion will spread in the near term. They introduced the idea of a propagation 

graph (Pro-Graph) to represent the direction of congestion propagation in networks. 

At each time period, they forecasted every Pro-Graph that could be identified in the 
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network through empirical probabilities of dissemination computed from past data. 

The latter is among the groundbreaking studies in predicting congestion propagation. 

Nonetheless, like earlier studies, they did not assess this model for non-recurring 

events. Recently, (Majumdar, Subhani, Roullier, Anjum, & Zhu, 2021) employed LSTM 

networks with univariate data (speed) and multivariate data (speed and flow) to 

forecast congestion spread across road networks. Initially, they forecasted vehicle 

speed for two sensor locations. Next, they examined the speed patterns to show the 

similarity in the speed profiles of the two locations. The time intervals between 

comparable anomalies, like a decrease or rise in velocity, were determined. Time 

delays were subsequently utilized to evaluate the congestion spread duration. 

Although this study forecasts the spreading of congestion, this model is not applicable 

to arterial roads due to the presence of signalized intersections. Furthermore, while 

this research simulates congestion spread at the network scale, it does not pertain to 

nonrecurring incidents.  

Nonetheless, a significant amount of research focuses on simpler and more basic 

data-driven techniques, some of which are employed in our analysis and are outlined 

below. Descriptive analytics methods are essential for understanding the current 

state and historical trends of traffic congestion. It involves summarizing and 

visualizing data to identify patterns and insights, forming the basis for more advanced 

analytical methods. One of the simplest yet effective approaches constitute of 

Exploratory Data Analytics and more specifically the visualization of traffic over a 

specific period of time. By plotting traffic occupancy, speed or flow over time, one can 

visually identify patterns of congestion. This could be a time-series plot showing traffic 

volumes every day at different times. Regular spikes at specific times might indicate 

recurrent congestion due to rush hours. Another effective way to visually analyse 

recurring congestion is using histograms and distribution plots; histograms can 

provide insights into the distribution of traffic volumes or speeds. Furthermore, 

heatmaps can be especially useful for visualizing traffic patterns across days and 

times, providing a clear and intuitive way to identify congestion hotspots. For 

example, a heatmap with days of the week on one axis and times of the day on the 

other can quickly show when congestion is most likely to occur.  By plotting box plots 
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for traffic volumes or speeds for different times of the day or days of the week, one 

can identify variability and potential outliers. Periods with lower median speeds and 

high variability might be indicative of congestion. Investigating correlations between 

different variables might provide insights into factors influencing congestion. For 

instance, there might be a strong negative correlation between vehicle speed and 

vehicle count, suggesting that as the number of vehicles increases, the average speed 

decreases, leading to congestion. More fine-grained analysis can be made to deduce 

daily or weekly patterns and identify congestion. By plotting two variables against 

each other, like traffic volume and speed, one can visually identify patterns or 

relationships as part of the depicted scatter plot. A downward trend in such a plot 

might indicate that as traffic volume increases, speeds decrease, signalling 

congestion. 

In the context of transportation, Time-Series analysis is particularly useful for 

understanding traffic flow variations over days, weeks, or even longer periods, being 

a statistical technique that deals with time-ordered data points. Thus, it can be used 

to reveal seasonal variations in traffic congestion, such as increased traffic during 

holiday seasons or reduced congestion during summer vacations, in addition to 

capturing daily peak hours. The advantage of time-series analysis is its simplicity and 

direct applicability to loop detector data, which is, by its nature, sequential. By 

employing moving averages, seasonal decomposition, or autocorrelation functions, 

one can identify periodic congestion patterns, trends, and seasonality. For example, a 

recurrent spike in traffic every weekday morning might indicate a congestion pattern 

due to work-related commutes. The STL decomposition breaks down a time series 

into three main components: trend, seasonal, and residual. The trend component 

shows the underlying trend in the data, abstracting away from the day-to-day or hour-

to-hour fluctuations. If there's an increasing or decreasing trend over time, it will be 

observed as a steadily rising or falling line. The seasonal component captures the 

repeating patterns in the data and analyzing daily patterns could manifest as 

consistent peaks (e.g., during rush hours) and troughs (e.g., during the night) each 

day. What remains after the trend and seasonal components have been subtracted 

from the original data is the residual component.  
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A more advanced technique from the field of descriptive analytics to understand 

traffic patterns, is clustering. Clustering is a ML method which aims to group similar 

traffic patterns together, based on similarity measures, making it easier to identify 

common causes of congestion. For example, clusters might reveal that certain 

intersections consistently experience high traffic volumes during specific times of the 

day. Specifically, for our loop detector data we have employed k-means clustering. 

This algorithm partitions data into 'k' number of clusters. By segmenting traffic data 

into clusters, one might identify groups representing peak traffic times or nighttime 

inactivity. The elbow method is used to identify the optimal number of clusters. Each 

cluster can offer insights into specific traffic patterns, helping in congestion detection 

and management.  

On the other hand, predictive analytics uses historical data to forecast future 

traffic conditions, allowing for proactive congestion management. It involves various 

statistical and machine learning methods to predict traffic flow, travel times, and 

potential congestion points. For instance, regression analysis models the relationship 

between traffic variables, such as volume, speed, and travel time. Linear regression is 

useful for direct relationships, while non-linear models can capture more complex 

interactions. In addition to regression analysis, Machine Learning algorithms are 

effective for predicting congestion by considering multiple variables and their 

interactions, capable of handling large datasets and provide insights into which factors 

are most influential in causing or propagating congestion. They can capture long-term 

dependencies and trends, making them highly effective for congestion forecasting. 

Those include among others SVMs, Decision Trees, Convolutional Neural Networks 

(CNNs) and Recurrent Neural Networks (RNNs).   

Moreover, as part of the analysis, to verify that we have managed to capture the 

time patterns correctly one can predict the traffic flow using conventional models, 

such as AutoRegressive Integrated Moving Average (ARIMA) models, widely used for 

time-series forecasting. They account for past values and trends to predict future 

traffic conditions.  In order to perform the ARIMA forecasts, we plot the ACF 

(Autocorrelation Function), which shows how the values of the time series relate to 
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their past values, and the PACF (Partial Autocorrelation Function), that illustrates the 

correlation between the series and its lags after accounting for the contributions from 

the intermediate lags. Moreover, the Augmented Dickey-Fuller (ADF) test needs to be 

performed.  

While descriptive and predictive analytics techniques, which have been 

mentioned above, provide a comprehensive understanding of traffic patterns and 

future conditions, prescriptive analytics goes a step further by suggesting actionable 

interventions to mitigate congestion. Techniques in prescriptive analytics include 

optimization models for traffic signal timings, route optimization algorithms, and 

dynamic congestion pricing strategies. These methods are crucial for implementing 

effective congestion management solutions based on insights gained from descriptive 

and predictive analyses, however they are out of scope of our analysis and could be 

employed as future research. 

To conclude, identifying and addressing recurring congestion is vital for improving 

urban mobility and reducing traffic-related issues. Descriptive analytics techniques, 

such as time-series analysis, heat maps, and clustering, provide a foundational 

understanding of congestion patterns. Predictive analytics methods, including 

regression analysis, machine learning algorithms, and time-series forecasting, enable 

accurate forecasting of future traffic conditions, thus enabling the identification of 

recurrent situations such as congestion during peak hours. Together, these 

techniques offer a robust framework for understanding and identifying recurring 

congestion. 
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6 AutoML-Driven	Incident	Detection	

In the current Chapter, the proposed work of the Thesis concerning the application 

of AutoML techniques for incident detection is presented. This chapter addresses the 

rationale behind using AutoML, reviews relevant work, and discusses the theoretical 

foundation of the proposed approach. An overview of the entire methodology is 

provided, along with a detailed analysis of each component involved. The 

implementation process of the AutoML-driven incident detection system is 

thoroughly discussed. The developed approach has been tested and verified in real-

life case studies in two urban environments, and the findings are discussed and 

displayed in Chapter 9. 

6.1 Introduction	and	Motivation	

Efficient traffic incident detection in an automatic and prompt manner is 

paramount in urban traffic management, directly impacting congestion control and 

road safety. A traffic incident typically refers to any unexpected event that decreases 

road capacity and leads to congestion. Such incidents disrupt the flow of traffic, 

impede operations, and are responsible for not only delays but also increased 

pollution. Consequently, Intelligent Transport Systems (ITS) are increasingly focusing 

on reducing the impact of such traffic events. Thanks to the surge in available traffic 

data, Machine Learning has emerged as a powerful tool to improve upon the 

traditional algorithmic approaches, such as the California #7 Series (Balke, 1993), for 

detecting these incidents. However, the variable nature of traffic flow makes 

immediate and precise incident detection challenging. The widespread deployment 

of traffic sensors on highways has yielded extensive traffic flow data. Common data 

sources for identifying traffic incidents include stationary detectors like inductive loop 

detectors, GPS devices, and automatic identification systems such as Radio-Frequency 

Identification (RFID). Recent advances in machine learning have led to its accelerated 

adoption in the field of transportation engineering, with popular techniques 
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encompassing Artificial Neural Networks (ANNs), Support Vector Machines (SVMs), 

Isolation Forests (IFs), and their various adaptations. While the traditional machine 

learning techniques have demonstrated utility in interpreting traffic flow data, they 

often require extensive domain knowledge for feature selection and model tuning, 

which can be a significant limitation given the variable nature of traffic patterns. 

Automated Machine Learning (AutoML) is an emerging area in ML that seeks to 

automate the ML workflow from data preprocessing to model validation (Hutter, 

Kotthoff, & Vanschoren, 2019), thus enhancing performance and reducing the 

necessity for constant redesign. AutoML not only automates the meticulous process 

of discovering and fine-tuning the best-suited machine learning framework for the 

task at hand but also adapts as the characteristics of data evolve over time. Although 

setting up AutoML systems may initially demand more computational resources, the 

trade-off includes a substantial decrease in manual labor and the level of expertise 

traditionally required to develop high-performing models. Therefore, such 

automation provides robust AutoML methods that enable people, with either little or 

no specialized ML knowledge, to integrate ML solutions into data-driven processes. 

The latter is known as the democratization of ML (Hutter, Kotthoff, & Vanschoren, 

2019) and it is aligned with the actual purpose of Artificial Intelligence: to learn and 

act automatically without human intervention (Song, Triguero, & Ozcan, 2019). 

Despite the growing interest in AutoML in many fields, including transportation, a 

notable research gap exists in its application to traffic incident detection. To our 

knowledge, there are no comprehensive studies that have specifically tackled the use 

of AutoML for this purpose. While previous research has demonstrated the potential 

of AutoML in various domains such as healthcare, finance, and manufacturing ( 

(Hutter, Kotthoff, & Vanschoren, 2019), (He, Zhao, & Chu, 2021), (Karmaker Santu, et 

al., 2022)) , its application in the field of traffic management, particularly for incident 

detection, remains underexplored. This lack of research in applying AutoML to traffic 

incident detection presents a unique opportunity. The challenge lies in not only 

adapting AutoML to effectively analyze traffic data but also in validating its 

applicability across different urban settings. The conducted work aims to fill this gap 
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by proposing a novel AutoML-based methodology in detecting traffic incidents. 

Moreover, the effectiveness of our proposed approach has been validated in two 

major European cities, in  Athens, Greece, and Antwerp, Belgium, and the results are 

presented in Chapter 9; however, the methodology proposed is generic and could 

potentially be replicated or adapted for other urban environments. In doing so, this 

research contributes to the broader understanding of how AutoML can be utilized in 

urban traffic systems, potentially leading to more responsive and efficient traffic 

management solutions. 

As far as I am aware, at the point of writing, this research represents a novel study 

aiming to address the automatic incident detection task by employing AutoML 

methodologies. Specifically, the main contributions of the work conducted can be 

summarized in the following: 

1. Integration of Data Pre-processing Techniques: Recognizing the importance 

of data quality, we propose a data pre-processing algorithm before employing 

the AutoML process using TPOT (Tree-based Pipeline Optimization Tool). This 

integration aims to streamline the model development process, from raw data 

handling to final prediction. 

2. Contrast of our AutoML-based approach with General Approach Algorithms: 

This research also sets to compare and contrast the performance and 

efficiency of AutoML frameworks against general machine learning 

algorithms. This analysis will help to elucidate the benefits and limitations of 

AutoML in the specific context of traffic incident detection. 

3. Assessment and comparison of our AutoML methodology across different 

urban contexts: Last but not least, this work aims to explore the differences 

of the proposed automatic approach across two big European cities, Athens 

and Antwerp, which are presented as part of Chapter 9. 

6.2 State-of-the-art	Analysis	

6.2.1 Theoretical	Background	on	AutoML	
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AutoML has emerged as a transformative approach in the field of machine 

learning, aiming to automate the process of model selection and hyperparameter 

tuning. This section will delve into the general principles and methodologies of 

AutoML, highlighting its impact on accelerating and simplifying the deployment of 

machine learning models. AutoML is designed to make the machine learning (ML) 

process more accessible and automated, enabling experts in specific domains to 

leverage ML technologies without requiring extensive knowledge or a data analyst's 

assistance (Hutter, Kotthoff, & Vanschoren, 2019). At the heart of AutoML lies the 

challenge of Hyper Parameter Optimization (HPO), which involves the automatic 

tuning of hyperparameters to enhance the performance of ML systems across tasks 

like classification, regression, and time series forecasting (Hutter, Kotthoff, & 

Vanschoren, 2019). Recent advancements in AutoML have expanded its scope to 

include additional functionalities such as Data Preparation, Feature Engineering, 

Model Generation and Model Evaluation. (Hutter, Kotthoff, & Vanschoren, 2019) (He, 

Zhao, & Chu, 2021) 

The primary goal of AutoML is to reduce the manual effort involved with machine 

learning technologies, thus accelerating their deployment. Consequently, various 

systems have attempted to minimize the work required to perform certain steps of 

the machine learning development workflow. For example, DeepDive/Snorkel 

(Ratner, et al., 2020) is a general, high-level workflow support system that helps users 

label and manage training data and provides high-level support for model selection. 

As previously mentioned, however, developing ML solutions still involves a lot of 

manual work. To design a truly automated system, it is important to address the 

bottlenecks in the current process. To better visualize these bottlenecks, we present, 

in Figure 6-1,a flowchart showing the end-to-end machine learning process. For each 

step in the flow, we outline the role of domain experts, the amount of manual work 

performed by the data scientist, and the communication required between the two. 

(Karmaker Santu, et al., 2022) 
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Figure 6-1: Flowchart depicting the Machine Learning process, while highlighting points of interaction 

between domain experts and data scientists, along with bottlenecks. (Karmaker Santu, et al., 2022) 

The Data Preparation and Feature Engineering steps are associated with the 

available data used for the ML algorithms. The former includes actions for collecting, 

cleaning and augmenting the data, with the latter includes actions for extracting, 

selecting and constructing features. In the Model Generation step, a search is 

executed with the goal of finding the best performing model for the predictions, such 

as k-nearest neighbors (KNN) (Altman, 1992), Support Vector Machines (SVM) (Cortes 

& Vapnik, 1995), Neural Networks (NN), etc. The Model Evaluation step is responsible 

for evaluating the generated models based on predefined metrics and runs in parallel 

to the Model Generation step. The evaluation of the generated models is used for 

optimization of existing models and the construction of new models. The search 

procedure of AutoML terminates based on predefined restrictions, such as the 

performance of the models or the time passed. 
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As described above, AutoML deals with Model Selection Problem (MSP) as an 

optimization problem whose objective consists of finding the ML algorithm, from a 

pre-defined base of algorithms, and its hyper-parameter configuration that maximizes 

an accuracy measure on a given ML problem. In this sense, AutoML aims to improve 

the current way of building ML applications by automating the application of ML 

algorithms to datasets, in such a way that enables human users avoiding tedious tasks 

(e.g., hyper-parameter optimization). Although current AutoML methods have 

already produced impressive results, the field is still far from being mature.  Regarding 

AutoML tools, the first AutoML method in tackling simultaneously the selection of 

algorithm and hyper-parameters was Auto-WEKA (Thornton, Hutter, Hoos, & Leyton-

Brown, 2013).It uses Bayesian optimization to search for the best pair (algorithm, 

hyper-parameter setting), considering a base of 39 algorithms implemented in WEKA 

(a well-known open-source ML software that contains algorithms for data analysis and 

predictive modelling). Subsequently, Komer et al. (Komer, Bergstra, & Eliasmith, 2014) 

and Feurer et al. (Feurer, et al., 2015) developed Hyperopt-sklearn and Auto-sklearn, 

respectively. These two frameworks automatically select ML algorithms and hyper-

parameter values from scikit-learn. In the case of (Komer, Bergstra, & Eliasmith, 

2014), the AutoML method uses Hyperopt Python library for the optimization process, 

concretely a Bayesian optimization method as Auto-WEKA. Meanwhile, Auto-sklearn 

stores the best combination of ML algorithm and hyper-parameters that have been 

found for each previous ML problem, and using meta-learning it chooses a starting 

point for a sequential optimization process. 

More recently, Sparks et al. (Sparks, et al., 2015) proposed a method that supports 

distributed computing for AutoML, and Sabharwal et al. (Sabharwal, Samulowitz, & 

Tesauro, 2016) developed a cost-sensitive training data allocation method that 

assesses a pair (algorithm, hyper-parameters setting) on a small random sample of 

the data-set, and gradually expands it over time to re-evaluate it when one 

combination is promising. Then, Olson and Moore (Olson, Bartley, Urbanowicz, & 

Moore, 2016) designed a framework for building and tuning classification and 

regression ML pipelines. It uses genetic programming to construct flexible pipelines 

and to select an algorithm in each pipeline stage. However, TPOT does not 
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exhaustively test all different combinations of hyper-parameters which in turn causes 

that some promising configuration may be ignored. 

Lately, Swearingen et al. (Swearingen, et al., 2017) built ATM, which is a 

collaborative service to build optimized ML pipelines. This framework has a strong 

emphasis on parallelization enabling the distribution of a single combination 

(algorithm, hyper-parameter setting) in a cluster to process it in a more efficient way. 

Currently, ATM uses the same base of algorithms from scikit-learn, and it finishes the 

optimization process after either a fixed number of iterations or after expending a 

time budget defined by the human user. One year later, Mohr et al. (Mohr, Wever, & 

Hüllermeier, 2018) developed ML-Plan, a framework for building ML pipelines based 

on hierarchical task networks. ML-Plan is initialized with a fixed set of pre-processing 

algorithms, classification algorithms, and their respective potential hyper-

parameters. Nevertheless, ML-Plan only considers a supervised classification 

approach, ignoring the supervised regression perspective that, as it was stated before, 

is the most common approach in TF. From a technical perspective, AutoML attracted 

a lot of research interest resulting in several AutoML frameworks, such as: Autokeras 

(Jin, Song, & Hu, 2019), FEDOT (Nikitin, 2022)  and TPOT (Olson, Bartley, Urbanowicz, 

& Moore, 2016). Additionally, research focusing on benchmarking several AutoML 

frameworks (Gijsbers, et al., 2019) (Zöller & Huber, 2021) concludes that they do not 

outperform humans yet but give promising results. (Fikardos, et al., 2022)  

6.2.2 AutoML	in	Transportation	and	Traffic	prediction	studies	

In the transportation sector, AutoML's application is still on the rise. This section 

reviews the current state of research on the use of AutoML for traffic prediction and 

its role within the transportation domain. It will highlight studies where AutoML has 

been employed to optimize traffic flow, predict congestion, and improve overall 

transportation efficiency.  

In the transportation area, to the best of my knowledge, only four papers have 

used AutoML methods for traffic forecasting (TF) ( (Angarita-Zapata, Masegosa, & 

Triguero, Evaluating automated machine learning on supervised regression traffic 
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forecasting problems., 2020), (Angarita-Zapata, Triguero, & Masegosa, 2018), 

(Vlahogianni, 2015), (Angarita-Zapata, Masegosa, & Triguero, 2020)) .The first 

research carried out by Vlahogianni et al. (Vlahogianni, 2015) proposed a meta-

modelling technique that, based on surrogate modelling and a genetic algorithm with 

an island model, optimizes both the algorithm selection and the hyper-parameter 

setting. The AutoML task is performed from an algorithms base of three ML methods 

(Neural Network, Support Vector Machine and Radial Base Function) that forecast 

average speed in a time horizon of 5 min, using a regression approach. After that, 

Angarita et al. in (Angarita-Zapata, Masegosa, & Triguero, 2020) and (Angarita-Zapata, 

Triguero, & Masegosa, 2018)  used Auto-WEKA, an AutoML method that applies 

sequential model-based Bayesian optimization (Hutter, Hoos, & Leyton-Brown, 2011) 

to find optimal ML pipelines. Both papers compared the performance of Auto-WEKA 

w.r.t. the general approach, which consists of selecting by trial and error the best of a 

set of algorithms to predict traffic. In the case of (Angarita-Zapata, Triguero, & 

Masegosa, 2018) , the paper was centered in forecasting traffic level of service (LoS) 

at a fixed freeway location through multiple time horizons. On the other hand, in 

(Angarita-Zapata, Masegosa, & Triguero, 2020), the authors were focused on 

predicting traffic speed on a subset of families of TF regression problems focused on 

making predictions at the point and the road segment levels within the freeway and 

urban environments. Lastly, in (Angarita-Zapata, Masegosa, & Triguero, 2020),  the 

authors focus on assessing Auto-sklearn's capability to recommend effective machine 

learning pipelines for traffic forecasting. This task is framed as a time series (TF) multi-

class imbalanced classification problem, examined over various time horizons, spatial 

scales (both point and road segment), and in different environments (freeway and 

urban). The study tests three scenarios and findings indicate that Auto-sklearn's meta-

learning component underperforms in handling TF problems, and optimization does 

not significantly enhance prediction accuracy. 

All in all, it is certain that ML algorithms have played a crucial role in developing 

accurate models for automatic incident detection. However, some challenges persist, 

such as high computational costs and redundant model information, while minimizing 

human intervention. In response to these issues, adopting AutoML algorithms, which 



147 
 

embody a pipeline model that automatically fine-tunes hyperparameters, presents a 

promising solution. Under this light, the conducted aims to contribute to the fast-

growing field of AutoML by: 

I. Developing AutoML-based prediction algorithms for the incident detection 

task, both from a regression and a classification standpoint; 

II. Conducting of a comparison study between the proposed prediction 

methodology for each use case with other baseline methods; and finally, 

III. Analyzing and assessing the models proposed in this research between 

different urban contexts, as presented in Chapter 9. 

Last but not least, to the best of our knowledge, this study is the first one aiming 

to tackle the challenging problem of automatic incident detection using AutoML 

techniques. 

6.3 Proposed	Methodology	

This work involves developing a methodology for automatic incident detection 

with the goal of identifying unplanned non-recurring events promptly and thus 

enabling a safer and more reliable Intelligent Transport Management system. The 

methodology flowchart, depicted in Figure 6-2, illustrates the general workflow of the 

present study. Initially, the process commences with data ingestion, followed by a 

thorough data-preprocessing stage to make the dataset suitable for model 

deployment. Subsequently, an AutoML framework, TPOT, is used as the foundation 

of our approach for model development and selection.  

During the prediction phase, the data is divided into two sets: one for testing and 

the other for validation with unseen data. TPOT is deployed for crafting an effective 

machine learning model leveraging the training data, focusing on the problem from a 

regression and a classification perspective. After training and evaluating both the 

TPOT Classifier and TPOT Regressor, we compare their performance metrics to 

determine the most effective model for deployment. However, the benefits of 

utilizing TPOT extend beyond this initial selection phase. 
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AutoML systems like TPOT offer dynamic model updating, which can be crucial as 

traffic data evolves over time. This allows for continuous retraining and model 

refinement without the need to start the process anew, ensuring that the incident 

detection system can adapt to new patterns or changes in traffic flow. Furthermore, 

the ongoing use of AutoML provides an operational advantage in terms of parameter 

fine-tuning. TPOT, with its genetic programming-based optimization, can iteratively 

explore the parameter space to fine-tune the model as more data becomes available 

or as traffic conditions change, a process that is more resource-efficient and 

potentially more effective than manual tuning efforts. Lastly, the implementation of 

AutoML for ongoing model management allows for the incorporation of online 

learning techniques, where the model can be updated in real time with new data. This 

is particularly relevant for incident detection, where the timeliness of model updates 

can significantly impact the system's performance and reliability.  Therefore, while the 

model selected via TPOT may be fixed during a specific period, our methodology is 

designed to facilitate model evolution, allowing for ongoing improvements and the 

incorporation of new data, which is a significant benefit over a static algorithmic 

approach. 

It is important to highlight that in this work, the data-preprocessing step —which 

includes feature extraction, data sampling, and balancing—is carried out before 

training the models. This pre-processing is integral to both models' capability; 

however, a decision has been taken for pre-processing to be executed independently 

to guarantee compatibility, ensure uniformity across models, and ultimately, amplify 

their efficiency. A detailed diagram, as shown in Figure 6-3, provides an in-depth view 

of the modeling phase, illustrating the intricate steps involved in the training of both 

the classification and regression models, thus highlighting the dual approach of 

tackling automatic incident detection task. 
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Figure 6-2: General proposed methodology flowchart. 

 

 

Figure 6-3: Detailed overview of the modeling phase. 

6.3.1 	Data	Preprocessing	

The proposed methodology involves conducting data preprocessing to prepare 

the loop detector dataset, which contains traffic variables such as speed, occupancy 

and flow as a time series, for modeling. This process aims to ensure the accuracy and 
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reliability of ML models in predicting unplanned incidents. The preprocessing 

primarily involves feature extraction, normalization, and balancing, whenever 

needed. Normalization is applied to numerical features to scale them to a common 

range, which is essential for ML models that rely on distance measures. Data balancing 

is performed to avoid bias towards the majority class, which could result in poor 

performance when detecting the minority class. Numerous studies have 

demonstrated that normalization and data balancing significantly improve the 

performance in various applications, e.g. (Qian & Liu, 2022), (Gain & Hotti, 2021). 

Algorithms 1 and 2 outline the process of preparing the dataset for modeling by 

performing data preprocessing for classification and regression task accordingly. This 

results in a preprocessed dataset that is ready to be used as input for either the 

classification or regression models. 

Algorithm 1 Data Preprocessing for classification task. 

Input: dataset (d), output target incidents (t)\ 

Output: Preprocessed dataset (pd) 

1. CleanData: Data cleaning (d) 
2. cd ß CleanData(d) 
3. ExtractFeatures: Extract feature columns (more details are described in 

section 6.1)  
4. f ß ExtractFeatures(cd) 
5. Normalize: Feature normalization (d) 
6. X ß  f 
7. Y ß t 
8. Xn ß normalize(X) 
9. Balance: Dataset balancing (Xbal,Ybal) 
10. Xbal,Ybal ß balance(Xn, Y) 
11. Split: Splitting dataset into training, validation, and test sets (sd) 
12. X_train_val, X_test, y_train_val, y_test  ß (Xbal, Ybal, test_size = 0.05) 
13. X_train, X_val, y_train, y_val  ß (X_train_val, y_train_val, test_size = 0.2) 
14. Return pd ß  (X_train, y_train, X_val, y_val, X_test, y_test) 

 

Algorithm 2 Data Preprocessing for regression task. 

Input: dataset (d) Output: Preprocessed dataset (pd) 
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1. CleanData: Data cleaning (d) 
2. cd ß CleanData(d) 
3. ExtractFeatures: Extract feature columns (more details are described in 

section 6.1)  
4. f ← ExtractFeatures(cd) 
5. Determine output target: Extract the traffic variable(s) to be predicted (e.g., 

flow) directly from the input dataset. 
6. t ← ExtractTarget(d) 
7. Normalize: Feature normalization (d) 
8. X ←f 
9. Y ←t (where Y is the continuous value derived from the dataset) 
10. Xn ← normalize(X) 
11. Split: Splitting dataset into training, validation, and test sets (sd) 
12. X_train_val, X_test, y_train_val, y_test  ß (Xn, Y, test_size = 0.05) 
13. X_train, X_val, y_train, y_val  ß (X_train_val, y_train_val, test_size = 0.2) 
14. Return pd ß  (X_train, y_train, X_val, y_val, X_test, y_test) 

6.3.2 TPOT	Models	

Our methodology, using TPOT, employ a range of ML techniques and optimization 

algorithms to understand and adapt to the system’s behavior, ultimately enhancing 

the accuracy and efficiency of the incident detection process. By incorporating the 

capacity to learn and adapt from past experiences, the models seek to minimize the 

time and resources required for prediction tasks, leading to cost savings and improved 

productivity. Central to our approach is the Tree-based Pipeline Optimization Tool 

(TPOT), an intuitive machine learning library that simplifies the development process, 

using genetic programming. TPOT's automation extends through various stages of the 

machine learning workflow, including data pre-processing, model selection, 

hyperparameter tuning, and ultimately, deployment, all with minimal coding 

requirements. TPOT is an open-source project on GitHub8 and an example pipeline is 

illustrated in Figure 6-4. 

 
8 https://github.com/rhiever/tpot  

https://github.com/rhiever/tpot
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Figure 6-4: Example pipeline automated by TPOT. (Le, Fu, & Moore, 2020) 

In this research, the power of the TPOT library for constructing and evaluating ML 

models to predict incidents is demonstrated. For both the classification and regression 

models, a wide range of advanced ML algorithms have been evaluated automatically. 

To assess the model’s generalization ability, the dataset was divided into three 

subsets. A portion of 5% was reserved for validation to simulate the model’s 

performance on unseen data. The remaining 95% was then divided into the 80% 

training set and 15% testing set to ensure the model was trained on a diverse and 

sufficient dataset. An automated process was employed for selecting the best 

algorithm and it is provided in the form of pseudocode below as Algorithm 3, which 

outlines the essential steps for selecting the best model overall, which is based on a 

comparison of precision (prec), recall (rec), and F1 score (f1). 

Algorithm 3: Best Overall Model Selection in our Methodology 

Input: Preprocessed dataset (pd), TPOT Classifier and TPOT Regressor models 

Output: Best Auto Predictive Detection Model (bAutoD) 

1. Train and evaluate TPOT Classifier: 
2. TPOTClassifier = train_TPOTClassifier(X_train, y_ train) 
3. TPOTClassifier_metrics = evaluate_model(TPOTClassifier, X_val, y_val) 
4. Train and evaluate TPOT Regressor: 
5. TPOTRegressor = train_TPOTRegressor(X_train, y_time_train) 
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6. Predictions = TPOTRegressor.predict(X_val) 
7. Apply threshold to Predictions to categorize as 0 or 1: 
8. Threshold = learn_threshold(y_time_train) 
9. Predictions_binary = apply_threshold(Predictions, Threshold) 
10. TPOTRegressor_metrics = evaluate_model(Predictions_binary, y_class_val) 
11. Model selection based on evaluation metrics (em): 
12. begin 
13. em = (prec, rec, f1)  
14. Best_evaluation_metrics (best_em) = [0, 0, 0, 0, None] 
15. bAutoD= None 
16. for i in range(len(em)): 
17.        if TPOTClassifier_metrics[i] > TPOTRegressor_metrics[i] and 

TPOTClassifier_metrics[i] > best_em[i]: 
18.             bAutoD = TPOTClassifier 
19.             best_em[i] = TPOTClassifier_metrics[i] 
20.       elif TPOTRegressor_metrics[i] > best_em[i]: 
21.             bAutoD = TPOTRegressor 
22.             best_em[i] = TPOTRegressor_metrics[i] 
23. end for 
24. Return bAutoD 
25. end 
 

6.4 The	Implementation	-	Technical	Details	

This Section describes the required technical specifications for the development 

of the proposed subsystem. The components used to build the technical solution are 

analytically described to offer the reader an overview of the various technical parts. 

Data Ingestion and Preprocessing 

The initial stage involves ingesting traffic data from various sources, including loop 

detectors, and historical incident reports. The data is ingested in real-time and stored 

in a scalable data storage solution, specifically in our case Orion Context Broker, to 

handle the high volume and velocity of incoming traffic data. 

Data preprocessing is performed using Python and libraries such as Pandas and 

NumPy. This step includes cleaning the data to remove noise and inconsistencies, 

normalizing numerical features to ensure they are on a comparable scale, and 



154 
 

balancing the dataset to address class imbalances. Feature extraction techniques are 

applied to derive meaningful features from the raw data, such as average speed, 

traffic measurements from upstream and downstream detectors and past 

timestamps. 

AutoML Framework 

For model development and selection, the TPOT (Tree-based Pipeline 

Optimization Tool) tool is utilized. TPOT automates the process of model selection, 

hyperparameter tuning, and feature engineering using genetic programming. It 

iteratively explores various machine learning pipelines to identify the most effective 

model for the given dataset. 

The implementation utilizes TPOT's integration with Scikit-learn, allowing the use 

of a wide range of algorithms and preprocessing techniques. The TPOTClassifier and 

TPOTRegressor are employed to address the incident detection task from both 

classification and regression perspective. The training data is split into training and 

validation sets using Scikit-learn's train_test_split function to evaluate model 

performance effectively. 

Model Training and Evaluation 

The training process involves running TPOT to generate multiple candidate models 

and evaluating them based on predefined performance metrics which have been 

thoroughly described above. TPOT uses cross-validation to ensure the robustness of 

the models and prevent overfitting. Once the optimal model is identified, it is further 

fine-tuned using grid search or random search techniques to optimize 

hyperparameters. The final model is validated using a separate test dataset to assess 

its generalization performance. 
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7 Human-in-the-Loop	and	Explainability	in	
Incident	Detection	

In this chapter, the integration of human-in-the-loop mechanisms in AI-driven 

traffic incident detection systems is explored. Human-in-the-loop approaches are 

essential not only for ensuring that AI models perform accurately but also for ensuring 

transparency, trust, and confidence among human operators. Explainability plays a 

crucial role in this process by helping operators understand why AI and data-driven 

models generate specific predictions about traffic incidents. Through clear 

explanations of the underlying factors and reasoning behind these predictions, 

operators are better equipped to provide informed feedback. This feedback allows 

them to either accept, reject or edit the details of the system-flagged incidents, which 

thus refines the prediction process. As a result, this dynamic interaction between 

human oversight and AI systems enhances both the precision and adaptability of 

traffic incident detection, ensuring the system evolves based on real-world human 

expertise. 

7.1 Introduction	and	Motivation	

The deployment of AI in critical applications such as traffic incident detection 

necessitates a careful balance between automation and human oversight. While AI 

models offer unprecedented capabilities in processing and analyzing large datasets to 

detect incidents, the complexity and opacity of these models often pose challenges in 

terms of trust and reliability. Human-in-the-loop (HITL) methodologies provide a 

practical solution to these challenges by incorporating human feedback and ensuring 

the accuracy of AI predictions. Moreover, the incorporation of explainability features 

in the system helps enhance the trust in the detection process of AI systems. 

The primary motivation for integrating human-in-the-loop mechanisms in AI-

driven traffic incident detection systems stems from the need to enhance the 



156 
 

accuracy, reliability, and trustworthiness of these systems. By involving human 

operators in the decision-making process, we can utilize effectively their expertise and 

contextual understanding to complement the strengths of AI models. 

Alongside that, another significant aspect of human-in-the-loop is the ability to 

provide immediate feedback on AI predictions. When an incident is identified by the 

system, the operator is prompted to acknowledge the incident, confirming its 

occurrence. This feedback loop ensures that false positives are minimized and that 

the system's predictions align with real-world scenarios. Additionally, if an incident 

occurs and the system fails to report it, operators can manually insert this 

information, ensuring that critical events are not overlooked. This two-way 

interaction not only improves the system's accuracy but also provides valuable data 

for retraining and refining the AI models over time. 

Another critical motivation is the need for explainability and trustworthiness in AI 

systems. Traffic incident detection is a high-stakes application where the decisions 

made by AI models can have significant implications for public safety and urban 

management. Integrating techniques such as LIME (Local Interpretable Model-

agnostic Explanations) and SHAP (SHapley Additive exPlanations) allows us to provide 

transparent and understandable predictions. These techniques help uncover the 

reasoning behind AI decisions, making it easier for human operators to trust and rely 

on the system. By ensuring that AI predictions are not only accurate but also 

explainable, we can instill greater confidence in the adoption of these technologies in 

real-world settings. 

This chapter aims to provide an exploration of human-in-the-loop methodologies 

in the context of AI-driven traffic incident detection. It begins with a detailed 

discussion on the mechanisms for incorporating human feedback into AI predictions, 

in various domains and more specifically, in the transportation sector. Furthermore, 

the chapter delves into the importance of explainability and trustworthiness in AI 

systems, focusing specifically on the incident detection task. An overview of 

techniques such as LIME and SHAP are provided, along with a detailed explanation of 
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how these methods are integrated into the deployed AI models, and the impact of 

explainable AI on operator trust and decision-making processes is thoroughly 

presented. Finally, the chapter explores potential advancements in human-in-the-

loop methodologies and discuss the integration of advanced AI techniques with 

human feedback for enhanced traffic incident detection. 

Regarding the evaluation of the impact of human feedback and explainability on 

system performance, which includes assessing system performance metrics before 

and after the integration of human-in-the-loop mechanisms and conducting a 

comparative study of AI models performance metrics, this is presented as part of the 

real-world case studies in Chapter 9.  

By addressing these areas, this chapter aims to provide a thorough understanding 

of the critical role that human-in-the-loop methodologies play in enhancing the 

effectiveness and trustworthiness of AI-driven traffic incident detection systems.  

7.2 Human-in-the-Loop	State-of-the-art	

7.2.1 Human-in-the-loop	in	ML		

Human-in-the-loop (HITL) approaches in machine learning combine human 

intelligence with automated systems to overcome challenges related to model 

performance, data limitations, and interpretability. The integration of human 

feedback allows for models to improve incrementally through interventions during 

the training process, ensuring higher accuracy and trustworthiness in decision-

making. HITL is increasingly significant in fields such as natural language processing, 

computer vision, and intelligent transportation systems (Wu, et al., 2022). 

A typical ML framework with Human-in-the-loop (HITL) learning is shown in Figure 

7-1, which consists of three components: data pre-processing, data modeling, and 

modifying the process to improve performance (Kumar, et al., 2024) 



158 
 

 

Figure 7-1: Human-in-the-loop learning framework. (Kumar, et al., 2024) 

The HITL offers several advantages (Kumar, et al., 2024), such as: 

• Improved performance: As people validate or reject, thus interact with, 

the model's answers to various events, the algorithm improves accuracy 

and consistency.  

• Improved data acquisition: HITLs can create and assure accurate data for 

ML models in data-scarce scenarios.  

• Bias handling: Human-designed AI algorithms can perpetuate inequality, 

while HITL can detect and fix bias early on. 

• Increased efficiency: While not all components of the process may be 

automated, a large number of them can, resulting in saving time and 

financial resources. 

7.2.2 Human-in-the-loop	in	ML	Literature	Review	

Researchers are defining new types of interactions between humans and machine 

learning algorithms, which we can group under the umbrella term of Human-in-the-

loop machine learning (HITL-ML) (Munro, 2020).The idea is not only to make machine 

learning more accurate or to obtain the desired accuracy faster, but also to make 

humans more effective and more efficient. Depending on who is in control of the 
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learning process, we can identify different approaches to HITL-ML (Holmberg, 

Davidsson, & Linde, 2020) 

• Active learning (AL) (Settles, 2009), in which the system remains in control 

of the learning process and treats humans as oracles to annotate unlabeled 

data.  

• Interactive machine learning (IML) (Amershi, Cakmak, & Knox, 2014),  in 

which there is a closer interaction between users and learning systems, 

with people interactively supplying information in a more focused, 

frequent, and incremental way compared to traditional machine learning.  

• Machine teaching (MT) (Simard, Amershi, & Chickering, 2017), where 

human domain experts have control over the learning process by 

delimiting the knowledge that they intend to transfer to the machine 

learning model. 

 
One of the most prominent uses of HITL systems is in data processing, where the 

need for large, annotated datasets presents challenges due to the high cost of 

labeling. HITL frameworks optimize this process through iterative labeling and active 

learning, where human annotators focus on the most challenging samples. This has 

proven effective in improving the overall quality of the data fed into machine learning 

models (Yu et al., 2015) .Researchers such as (Liu, Feng, & Wang, 2021)have 

demonstrated the effectiveness of HITL in improving object detection tasks through 

human-assisted annotation processes. These iterative approaches minimize errors by 

having humans intervene when the model cannot confidently label data. Similar 

approaches have been applied to natural language processing (NLP), where HITL aids 

in tasks like sentiment analysis and question-answering by providing critical feedback 

on model predictions (Liu, Feng, & Wang, 2021) 

In model training, HITL frameworks are employed to incorporate human 

judgment, especially in tasks where the model is prone to make errors. This dynamic 

interaction allows human operators to correct predictions or guide the model toward 

better generalization. HITL frameworks have been highly effective in text classification 
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and semantic parsing tasks, where the ambiguity of language data often requires 

human oversight to resolve. Explainability is one of the key features of HITL systems. 

By involving human experts, these systems can offer insights into why models make 

certain decisions. For instance, (Arous, et al., 2021) proposed a human-AI hybrid 

model that improves both the performance and explainability of text classification 

models. This approach helps build trust in AI systems by allowing humans to correct 

models when necessary and understand their decision-making processes (Arous, et 

al., 2021). In computer vision, HITL systems enhance performance in tasks such as 

image segmentation, video object tracking, and object detection. The inclusion of 

human feedback ensures that models refine their predictions in cases of occluded or 

blurred objects. Studies by Madono et al. (2020) have shown significant 

improvements in the recall rate of object detection tasks by integrating human-in-the-

loop strategies (Madono, Nakano, Kobayashi, & Ogawa, 2020). 

The adoption of HITL frameworks is happening in various domains, each getting 

substantial benefits from the combination of human judgment and machine learning 

algorithms. In security systems, for instance, HITL plays a critical role in ensuring 

accurate decision-making in safety-critical environments, such as nuclear power 

plants and commercial aviation. Singh and Mahmoud (2020) highlighted how HITL 

systems help avoid catastrophic errors by allowing human operators to intervene 

when necessary. Their work focused on using human feedback to improve system 

safety in complex industrial settings (Sing & Mahmoud, 2020). Similarly, in software 

engineering, HITL systems have been applied to code debugging and program repair. 

MacHiry et al. (2013) developed Dynodroid, a HITL-based system that improves 

Android app testing by allowing humans to provide feedback during event-driven 

program analysis. This system allows for greater accuracy in identifying bugs and 

potential vulnerabilities (Machiry, Tahiliani, & Naik, 2013). In simulation systems, HITL 

frameworks are employed in process optimization and decision-making, with 

applications in logistics, medical diagnostics, and traffic management. Demirel et al. 

(2020) highlighted the advantages of incorporating human expertise into simulation 

models for more accurate forecasts and strategic planning. (Demirel, 2020) 
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While HITL systems offer numerous benefits, several challenges remain. One of 

the primary concerns is scalability. As machine learning models grow more complex, 

the need for human intervention may become overwhelming. Researchers are 

exploring ways to optimize feedback loops, using techniques like active learning to 

prioritize the most critical human interactions (Liu, Feng, & Wang, 2021).Moreover, 

there is a need to develop more user-friendly interfaces that allow non-expert users 

to interact with HITL systems effectively. Current frameworks often rely on domain 

experts to provide meaningful feedback, limiting the accessibility of these systems in 

broader applications. Future research should focus on creating intuitive, easily 

navigable interfaces to democratize the use of HITL systems (Zhang, He, Dragut, & 

Vucetic, 2019). 

All in all, human-in-the-loop systems offer a promising approach to overcoming 

the limitations of fully automated machine learning models. By integrating human 

expertise into various stages of data processing, model training, and system 

applications, HITL frameworks ensure more accurate, explainable, and trustworthy AI 

systems.  

7.2.3 Human-in-the-loop	in	Transportation		

In transportation systems, machine learning methods with the concept of 

inclusion of humans, such as online, stochastic, and offline learning, are critical for 

real-time data processing and decision-making in order to adapt to fast changing data. 

• Online learning continuously updates models with new data, allowing traffic 

management systems to respond instantly to changing conditions. HITL 

ensures that human feedback is incorporated, correcting model errors and 

refining outputs for better decision-making in dynamic environments. 

• Stochastic learning, including methods like Stochastic Gradient Descent (SGD), 

allows incremental model updates using small data batches. This method 

optimizes computational efficiency, while human interaction helps guide 



162 
 

updates, making transportation systems adaptable to evolving traffic 

conditions. 

• Offline retraining periodically updates models with new data, triggered either 

by set time intervals or performance drops. Human involvement is vital in this 

case, as it fine-tunes the retraining process, ensuring that models adapt 

effectively without too many resources. 

The integration of human feedback through HITL across these learning methods 

ensures that transportation systems remain flexible, efficient, and responsive, 

optimizing traffic incident detection and management in real-time environments. 

Online learning enables ML models to update incrementally with new data, 

making it highly effective in dynamic environments like traffic incident detection. By 

continuously adapting to new information, online learning ensures real-time 

responsiveness and scalability without retraining from scratch. In the HITL context, 

humans provide critical feedback to fine-tune these models, ensuring that the 

updates align with real-world complexities and improving decision-making accuracy 

over time. The iterative interaction between humans and the model is essential in 

online learning tasks, such as streaming data analytics or time-series predictions. By 

combining HITL with stochastic learning methods like Stochastic Gradient Descent 

(SGD), online learning processes data sequentially, enabling fast and scalable model 

updates with human oversight. This hybrid approach ensures optimal performance in 

dynamic environments while maintaining efficiency. For long-term accuracy, offline 

model retraining can be periodically triggered or set based on performance 

thresholds, keeping the models up to date without overburdening computational 

resources. 

There exist few works which include HITL techniques and approaches in the 

transportation sector. Specifically, one study by Chiang et al. 2010 presents a 

hierarchical longitudinal automation system designed to ensure safe and comfortable 

vehicle operations through HITL integration. This system employs an adaptive 

detection area that processes sensor data for vehicle detection, particularly on curves. 
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Supervisory control utilizes this data to calculate desired velocities for smooth and 

safe operation across different modes, while regulation control leverages soft-

computing techniques to execute velocity commands effectively. (Chiang, Wu, Perng, 

Wu, & Lee, 2010) Similarly, HITL principles have been explored in civil infrastructure 

inspection, where automation-assisted technologies, such as drones and underwater 

vehicles, leverage human expertise to improve efficiency and safety. A review by 

Agnisarman et al. 2019 regarding automated visual inspection methods highlights 

how HITL systems reduce inspector bias, augment qualitative assessments, and 

minimize exposure to hazardous environments. However, studies emphasize the need 

for further research on human factors, including cognitive demands, trust, and 

communication, to optimize these systems for seamless collaboration. (Agnisarman, 

Lopes, Madathil, Piratla, & Gramopadhye, 2019) 

Further innovations in HITL methodologies have emerged in frameworks designed 

for autonomous vehicles (AVs) operating in mixed traffic environments. The Human 

as AI Mentor-based Deep Reinforcement Learning (HAIM-DRL) framework exemplifies 

this approach, integrating human expertise into reinforcement learning to improve 

safety and traffic flow efficiency. In this framework, human mentors guide AI agents 

by intervening in high-risk situations and demonstrating appropriate actions to 

prevent accidents. Comparative analyses reveal superior performance in safety, 

traffic flow optimization, and adaptability to novel scenarios, underscoring the 

transformative potential of HITL approaches. (Huang, Sheng, Ma, & Sikai Chen, 2024) 

Together, these studies highlight how HITL frameworks are redefining automation in 

transportation and infrastructure, ensuring human-centric solutions that balance 

technological advancement with practical implementation. 

7.3 Explainability	State-of-the-art	

Artificial Intelligence has seen exponential growth over the last decade, however, 

along with the rapid advancements comes a growing need for transparency, 

accountability, and trust in AI systems. This necessity has given rise to the field of 

Explainable AI (XAI), which seeks to make AI systems more interpretable and their 
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decision-making processes understandable to humans. Unlike traditional AI models 

that function as "black boxes," XAI aims to provide insights into how an AI system 

reaches a particular conclusion, facilitating better human-AI interaction and fostering 

trust among users and stakeholders. 

 

Figure 7-2: Google trends of the term explainable ai over the last 10 years. 

The significance of XAI can be reflected in its growing popularity and increasing 

demand within both academia and industry. As shown in the Google Trends analysis 

of the term "Explainable AI" over the last 10 years (Figure 7-2) , there has been a 

notable rise in interest starting around 2017, with steep growth observed since then. 

This is likely due to the increasing deployment of AI systems in sensitive domains such 

as autonomous driving, where understanding the reasoning behind AI-generated 

predictions is crucial for decision-makers. The graph highlights how awareness and 

discussion of explainability in AI have significantly intensified, reflecting a broader 

societal and technical shift towards responsible AI development. As AI technologies 

became more complex and widely adopted, concerns around fairness, ethics, and bias 

also have emerged. Public trust in AI systems became directly tied to how well those 

systems could explain their actions. As a result, explainable AI has gained attention, 

not only as a research priority but also as a regulatory concern, with many institutions 

now requiring AI systems to be transparent and interpretable. 

7.3.1 Explainability	Advantages	

Explainable AI (XAI) represents a breakthrough in the way we interact with and 

understand decisions made by artificial intelligence systems. Whereas traditional AI 
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often functions as a "black box," providing results without explaining the process that 

generated them, Explainable AI aims to make these processes transparent and 

understandable to humans. This approach not only increases trust and acceptance of 

AI systems but also provides human operators with the tools needed for effective 

supervision and intervention. Some of the various aspects in which Explainable AI 

adds value to human-machine integration are listed below (Minh, Wang, & Li, 2022): 

1. Transparency and Understanding: Explainable AI provides insights into the 

"how" and "why" behind decisions made by AI. This helps human operators 

understand the underlying patterns behind the decision-making processes, 

making it easier to identify and correct any errors or biases in the system. 

2. Trust and Accountability: When users and supervisors understand AI 

processes, they are more likely to trust its decisions. This is especially 

important in critical areas such as medicine, security, and law, where trust is a 

key factor. 

3. Improved Human – AI Interaction: Explainability facilitates more effective 

collaboration between humans and machines. Operators can use the 

information provided by Explainable AI to make informed decisions, taking full 

advantage of AI's data analysis capabilities and human intuition. 

4. Legal and Ethical Compliance: In many industries, transparency and 

accountability are not only ethical expectations but also legal requirements. 

Explainable AI can help meet these requirements by providing clear and 

documentable explanations of decisions. 

5. Feedback and Continuous Learning: The ability to understand AI decisions 

enables operators to provide more accurate feedback, which can be used to 

improve and refine AI models. This feedback loop contributes to continuous 

improvement of systems. 

7.3.2 Explainability	in	ML	
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Explainability provides insight into the AI models’ decision to the end-user in order 

to build trust that the system is making correct and non-biased decisions based on 

facts. Figure 7-3 depicts the distinction between white-box, gray-box, and black-box 

decision-making processes, as well as shows how explainable AI (XAI) is applied to 

achieve a trustworthy model with a good interpretability-accuracy tradeoff (Ali, et al., 

2023). 

 

Figure 7-3: Distinction between white-box, gray-box, and black-box decision-making processes (Ali, et al., 

2023). 

The primary objective of research in Explainable AI (XAI) is to enhance the 

comprehensibility and transparency of AI systems for humans without compromising 

their performance. The ability to detect hidden patterns in complex data is both an 

advantage and a limitation: while AI models can automatically uncover intricate 

structures in data, these learned patterns often remain obscured, with no explicit 

rules or logical processes involved, especially in Deep Learning algorithms. Although 

AI algorithms can identify correlations across diverse and complicated datasets, there 

is no guarantee that these correlations are meaningful or reflect actual causal 

relationships. (Rieg, Frick, Baumgartl, & Buettner, 2020). Additionally, the complexity 
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of models, especially advanced deep neural networks (DNNs), frequently prevents 

human operators from easily inspecting or controlling them. As such, AI presents both 

opportunities for innovation and challenges related to security, safety, privacy, and 

transparency. 

XAI aims to produce human-interpretable models, especially for high-stakes 

sectors like the military, banking, and healthcare, where domain experts require not 

only effective problem-solving tools but also meaningful explanations to trust and 

understand the results. These interpretable outputs are valuable not only for experts 

to validate decisions but also for developers to investigate potential errors in the 

system. AI methods facilitate (i) assessing current knowledge, (ii) advancing it, and (iii) 

developing new assumptions or theories. The goals of XAI include enhancing 

justification, control, improvement, and discovery in AI models. Key benefits of 

making these "black-box" systems more transparent include (Guidotti, et al., 2018): 

• Empowering users to mitigate negative consequences of automated decision-

making. 

• Assisting individuals in making more informed choices. 

• Uncovering and addressing security vulnerabilities. 

• Aligning algorithms with human values. 

• Improving industry standards for AI development, boosting consumer and 

business confidence. 

• Supporting the enforcement of the Right of Explanation policy. 

For an AI model to gain acceptance from end-users and industries, it must be 

trustworthy (Véliz, Prunkl, Phillips-Brown, & Lechterman, 2021). Achieving this trust, 

however, is challenging. Factors contributing to trustworthiness include fairness 

(Mehrabi, Morstatter, Saxena, Lerman, & Galstyan, 2021), robustness (Oberman, 

2021), interpretability (Li, et al., 2022), and explainability (Das & Rad, 2020). 

Explainability, in particular, is a crucial element. Current research largely focuses on 
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improving explanations in addition to providing insights for future work, with 

researchers proposing different methods for explaining AI models using natural 

language, mathematical descriptions (Ribeiro, Singh, & Guestrin, 2016), or 

visualizations (Doshi-Velez & Kim, 2017).  

7.3.3 Explainability	in	Intelligent	Transportation	Systems	

Transportation systems, such as intelligent transport systems (ITS) and 

autonomous vehicles, rely on advanced machine learning models to make critical 

decisions. Explainability is crucial in such systems, particularly due to the high-stakes 

nature of decisions in the field of transportation, where public safety is involved. 

Sahoo and Mohan's work highlights the need for explainability in ITS, noting that as 

these systems grow in complexity, it becomes essential to provide transparency to 

operators and users to build trust and accountability (Sahoo & Mohan, 2022) The 

authors emphasize that explainability allows for error diagnostics, system resilience, 

and the mitigation of biases, which are key for the smooth functioning of 

transportation infrastructures. (Adadi & Bouhoute, 2023). 

Various explainability methods have been developed to address the opaque 

nature of AI models in transportation. According to the literature, explainability can 

be achieved through several approaches: 

• Model-agnostic techniques such as Local Interpretable Model-agnostic 

Explanations (LIME) are widely used to provide post-hoc explanations for 

model predictions. (Adadi & Bouhoute, 2023) (Olugbade, Ojo, Imoize, Isabona, 

& Alaba, 2022). These methods do not require knowledge of the internal 

workings of the model and instead provide local explanations for individual 

predictions. 

• Surrogate models that mimic the behavior of more complex systems are 

another popular technique. These interpretable models offer a simplified 

representation of the AI system, making it easier for human operators to 

understand the decision-making process. (Adadi & Bouhoute, 2023) 
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Explainable AI has been applied in various transportation sectors, including 

incident detection, traffic management, and autonomous driving. For instance, 

(Olugbade, Ojo, Imoize, Isabona, & Alaba, 2022)discuss how AI-based incident 

detection systems rely on explainability to monitor traffic and manage road incidents 

more effectively. These systems often use sensors, video feeds, and other data 

sources to predict and detect traffic anomalies. However, without adequate 

explanations, operators may struggle to trust or act upon the AI-generated insights, 

making post-hoc explainability a critical component for deployment in real-world 

scenarios. 

Similarly, Sahoo  and Mohan explore how explainable AI can be applied to improve 

the safety and predictability of autonomous vehicle systems. (Sahoo & Mohan, 2022) 

By providing human interpretable feedback, XAI enables more precise control over 

vehicle behaviors, such as lane departure warnings and adaptive cruise control 

systems. 

Despite the advancements in XAI techniques, challenges remain. One major 

concern is balancing transparency and performance. Complex AI models, particularly 

deep learning algorithms, often provide higher predictive accuracy but are more 

difficult to explain. Simplifying such models could lead to a loss in performance, thus 

affecting the reliability of the system. (Sahoo & Mohan, 2022) Future research in XAI 

for transportation will likely focus on improving the interpretability of increasingly 

complex AI models without compromising their performance. There is also a growing 

emphasis on developing domain-specific explanation techniques tailored to the needs 

of transportation operators, regulators, and end-users. 

7.4 Proposed	methodology	

The proposed framework for enhancing incident detection systems integrates 

both Human-in-the-Loop (HITL) methodologies and explainability features, combining 

the strengths of artificial intelligence (AI) with human expertise to ensure robust, 

accurate, and reliable performance. By leveraging HITL, the system allows for 
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continuous human intervention and oversight, enabling experts to validate and refine 

AI-generated outputs. This hybrid approach ensures that the system can dynamically 

learn from human feedback while providing interpretable insights through 

explainability features. These explainability mechanisms are critical for fostering trust 

in AI-driven systems, as they allow human operators to understand the rationale 

behind AI decisions, diagnose potential errors, and make adjustments to improve 

system accuracy. Ultimately, this framework aims to enhance the detection of non-

recurring incidents, such as traffic disruptions or accidents, while maintaining high 

levels of transparency, trust, and operational efficiency in real-world transport 

systems.  

 

Figure 7-4: Our proposed framework for integrating Explainability and Human-in-the-Loop approaches. 

 

The key components of the proposed framework are depicted in Figure 7-4 and 

described as follows: 
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1. Dataset 

The foundation of the incident detection system is a comprehensive dataset 

comprising traffic data collected from various sources, such as loop detectors, 

segment-level measurements, and historical incident records. This dataset is pre-

processed to remove noise and normalized to ensure consistency, making it suitable 

for training AI models. 

2. AI Model 

The core of the framework is the most appropriate AI model, which is built and 

selected using advanced machine learning algorithms. This model is trained initially 

on the dataset and later on the optimized dataset to learn patterns and make 

predictions about potential incidents. The choice of algorithm is based on the specific 

requirements and characteristics of the traffic data, ensuring the model is well-suited 

for real-time incident detection. 

3. Explainable Predictions 

To ensure transparency and trust in the AI model’s decisions, the framework 

incorporates explainability features. Techniques such as SHAP (SHapley Additive 

exPlanations) and LIME (Local Interpretable Model-agnostic Explanations) are used to 

provide insights into the model’s predictions. These tools help stakeholders 

understand which features influenced the predicted values, making the system's 

outputs more interpretable and reliable. 

4. Human-in-the-Loop (HITL) 

Human-in-the-Loop (HITL) methodologies are integrated to leverage human 

expertise in refining the model’s predictions. Traffic management professionals 

review the explainable predictions generated by the model and provide corrections 

or adjustments as necessary. This iterative feedback loop ensures that the model 

continuously learns from human input, improving its accuracy over time. 
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5. Validation of Output by Human 

Following human correction, the system's output is validated by human 

experts to ensure its reliability and accuracy. This validation step is crucial for 

identifying and rectifying any potential errors or biases in the AI model's predictions. 

By involving human oversight, the system maintains high standards of performance 

and trustworthiness. 

6. System Output 

The final validated output is then generated by the system, providing actionable 

insights and alerts to traffic management personnel. This output includes real-time 

incident detection notifications and prompts for mitigating traffic issues, ensuring a 

timely and effective response to incidents. 

7. Continuous Improvement Cycle 

The validated system output, along with the human corrections and validations, is 

fed back into the system, creating a continuous improvement cycle. This cycle allows 

the AI model to learn from new data and human feedback, continuously enhancing its 

performance and adaptability to evolving traffic conditions. 

There are several benefits of the proposed framework, some of which are listed 

below: 

• Enhanced Accuracy and Reliability: By integrating human expertise through 

HITL methodologies, the system minimizes errors and improves the reliability 

of incident detection.  

• Increased Transparency and Trust: Explainability features provide clear 

insights into the AI model’s decision-making process, making it easier for 

stakeholders to understand and trust the system’s outputs.  

• Continuous Learning and Adaptation: The continuous improvement cycle 

ensures that the AI model evolves with changing traffic patterns and 

incorporates the latest data and human insights. This adaptability is essential 
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for maintaining high performance in dynamic and complex traffic 

environments. 

• Proactive Traffic Management: The system’s ability to provide real-time, 

validated incident detection enables traffic management personnel to 

respond proactively to incidents. This proactive approach helps in mitigating 

traffic congestion and improving overall road safety. 

 

In summary, the proposed framework for integrating Human-in-the-Loop 

approaches and explainability features in incident detection systems offers a robust 

solution for enhancing traffic management. By integrating human expertise into the 

machine learning workflow, our research seeks to address challenges such as sensor 

noise, data sparsity, and the inherent unpredictability of traffic incidents. This 

approach not only enhances the performance of the models but also ensures that the 

system remains adaptable and resilient in real-world applications. The combination of 

the strengths of AI with human expertise and transparent decision-making ensures 

that the system detects accurately and reliably emerging situations, ultimately 

contributing to safer and more efficient traffic management. 

7.4.1 Integration	of	Explainability	features	

In the context of our research, the transparency and interpretability of machine 

learning models are paramount. While many models can achieve high accuracy, their 

"black-box" nature often makes it difficult to understand how they arrive at specific 

predictions. This lack of transparency can be a significant barrier in fields where trust 

and accountability are crucial, including the task of automatic detection of incidents. 

In this section, we present the integration of explainability tools and approaches used 

in the context of the aforementioned general methodology. 

One of the methods used is SHAP (SHapley Additive exPlanations), being a unified 

approach to interpreting the output of machine learning models. It is based on 

cooperative game theory, where each feature in a dataset is treated as a "player" in a 

game, and the model's prediction is the "payout" that needs to be fairly distributed 
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among the features. The SHAP values quantify the contribution of each feature to the 

final prediction, making it possible to decompose the prediction into the sum of the 

contributions from individual features. 

We have selected SHAP because it provides a theoretically sound and consistent 

method to explain individual predictions of complex models. SHAP offers the 

following advantages: 

• Model-agnostic: SHAP can be applied to any machine learning model, making 

it versatile across different types of models. 

• Local and global explanations: SHAP values can explain individual predictions 

(local explanations) and provide insights into the overall behavior of the model 

(global explanations). 

• Fairness and consistency: SHAP is grounded in Shapley values from 

cooperative game theory, ensuring that the contributions of features are fairly 

distributed based on their actual impact on the prediction. 

On the other hand, LIME (Local Interpretable Model-agnostic Explanations) is a 

technique designed to explain the predictions of any machine learning model by 

approximating it locally with an interpretable model. The core idea behind LIME is to 

understand the model's predictions by perturbing the input data and observing the 

resulting changes in predictions. This allows us to build a local, interpretable model 

(like a linear model or decision tree) that can explain the predictions in the vicinity of 

the instance being analyzed. 

The motivation for choosing LIME in our analysis stems from the need for 

interpretability in machine learning models, particularly in understanding how specific 

predictions are made. Specifically, we selected LIME because it offers: 

• Model-agnostic explanations: LIME can be applied to any machine learning 

model, regardless of its complexity or architecture. 
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• Local interpretability: LIME focuses on explaining individual predictions, 

making it possible to understand the model's behaviour in specific instances, 

which is especially useful for case-by-case analysis. 

• Simplicity and Flexibility: By fitting an interpretable model locally around the 

prediction, LIME provides straightforward explanations that can be easily 

understood and communicated. 

Figure 7-5 provides a detailed overview of the comprehensive XAI workflow 

developed as part of our research. The workflow is divided into three primary stages: 

Data Preparation, Model Development, and Comprehensive Analysis. 

 

Figure 7-5: Comprehensive workflow for proposed XAI framework, including 3 primary stages. 

In the Data Preparation stage, the dataset is curated by collecting data from loop 

sensors, which is then categorized into normal observations and incident 

observations. These categories are further divided into non-incident and incident 

samples, respectively. Following this categorization, data cleaning and normalization 

procedures are applied to ensure the dataset is prepared for model development. 

The Model Development stage follows, where the preprocessed dataset is split 

into training, testing, and validation sets. Various machine learning methodologies are 

applied to these datasets, focusing on model interpretability and explainability, 

particularly using SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable 
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Model-agnostic Explanations). The models are then evaluated based on their 

precision, recall, and F1-score to ensure their effectiveness in predicting incidents. 

The final stage, Comprehensive Analysis, involves a deeper examination of the 

model’s performance. This includes understanding model feature importance, 

conducting analyses for explaining local and global predictions, and detecting events 

within the transport system. The insights gained from this stage are crucial for refining 

the models and ensuring their applicability in real-world scenarios, ultimately 

contributing to the development of a more reliable and efficient intelligent transport 

system. 

This structured approach allows our research to systematically address the 

challenges of incident prediction in intelligent transport systems, ensuring that the 

models developed are both accurate and interpretable, with a strong emphasis on 

real-world applicability. 

7.4.2 Integration	of	Human	Feedback	

Figure 7-6 illustrates the Human-in-the-Loop (HITL) framework, a fundamental 

methodology utilized in our research for enhancing machine learning (ML) models 

designed to predict incidents within intelligent transport systems using loop sensor 

data. The process initiates with the collection of data from loop sensors embedded 

within roadways, which is then employed to train ML models aimed at incident 

prediction. Rather than depending solely on automated predictions, the HITL 

approach introduces a critical intermediate step wherein human experts review and 

validate these predictions.  
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Figure 7-6: Overview of methodology specifically for Human-in-the-Loop approach. 

The feedback provided by these experts is then reintegrated into the model, 

further refining its accuracy and allowing the model to adapt to the complexities 

encountered in real-world scenarios. This iterative process ensures that the ML 

models not only improve progressively but also align more closely with the nuanced 

understanding provided by transport professionals, ultimately leading to more precise 

and reliable predictions of incidents within intelligent transport systems. 

Integrating human feedback into ML models provides a powerful mechanism for 

continuous improvement in AI-driven traffic incident detection systems. This 

integration can be broken down into several key processes: 

1. Incident Acknowledgment and Correction: When the AI system detects a 

traffic incident, it prompts the human operator to acknowledge the detection. 

This confirmation serves as a validation step, ensuring that false positives are 

minimized. Conversely, if an incident occurs that the AI system fails to detect, 
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operators can manually report it, providing critical data for retraining the 

model to recognize similar incidents in the future. 

2. Incorporating Feedback into Model Updates: The feedback from human 

operators is incorporated into the online learning algorithm. For instance, 

when an operator confirms or corrects an incident detection, this feedback is 

used to adjust the model parameters, enhancing its accuracy and 

responsiveness. This continuous feedback loop ensures that the AI system 

evolves and improves over time. 

3. Improving Model Trust: By incorporating human feedback, the AI system can 

learn from real-world scenarios that may not be well-represented in the initial 

training data. This iterative learning process helps capture a broader range of 

traffic incident types and conditions, enhancing the model's robustness.  
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8 Information	System	AutoEventX	

In this Chapter, the developed AI-driven information system is explained. The 

developed information system is called AutoEventX and incorporates the functionalities 

presented in Chapter 4, Chapter 5, Chapter 6 and Chapter 7. The implemented 

information system is evaluated and deployed in real-world case studies as described in 

Chapter 9. 

8.1 System	architecture	and	implementation	

The conceptual architecture of the proposed system is illustrated in Figure 8-1. 

 

Figure 8-1: Conceptual Architecture of the Proposed System. 

The overall information system is addressed through the integration of different tools 

and services addressing the various phases of the proposed framework. The system is 

able to collect and fuse data provided by different sources, to evaluate the quality of the 

dataset, through dedicated techniques especially regarding the measurements captured 

by loop detectors, to support efficient real-time data processing, to provide stakeholders 

with predictions regarding planned and unplanned events and the rationale behind these 

predicted results while taking into account the expert operators’ feedback, This is in 
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combination with a large amount of historical data and taking into account background 

domain knowledge. 

8.1.1 Data	Processing	Pipeline	for	Incident	Detection	

Before applying the Machine Learning and Deep Learning algorithms explained in 

detail in Chapters 5 and 6, the data stemming from the data sources need to be 

collected and prepared accordingly (data processing and cleaning, outliers removal, 

feature extraction and engineering, feature scaling and selection) and after the 

application of the respective algorithm, the model needs to be evaluated and fine-

tuned before deployment. The different steps of the pipeline are illustrated in Figure 

8-2, based on the pipeline proposed in  (ENISA - European Union Agency for 

Cybersecurity, 2020)) and are briefly described below. 

 
Figure 8-2: Data processing pipeline for data-driven Incident Detection (based on the pipeline proposed in  

(ENISA - European Union Agency for Cybersecurity, 2020)). 
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Firstly, the data needs to be obtained from multiple sources in order to compose 

multi-dimensional data points, called vectors, for immediate use or for storage in 

order to be accessed and used later. Data Ingestion lies at the basis of any AI 

application. Data can be ingested directly from its sources in a real-time fashion, a 

continuous way also known as streaming, or by importing data batches, where data 

is imported periodically in large macro-batches or in small micro-batches. 

8.1.1.2 Data exploration 

At this stage, Data Exploration, insights start to be taken from the ingested data. 

While it may be skipped in some applications where data is well understood, it is 

usually a very time-consuming phase of the methodology’s life cycle. At this stage, it 

is important to understand the type of data and basic characteristics of the data that 

were collected.  

In our case, most of the data which are collected are numerical, for instance the 

measurements of loop detectors, or categorical, such as the types of incidents from 

the incident reports. 

8.1.1.3 Data pre-processing 

The first step of the Machine Learning pipeline is the data pre-processing stage. In 

this stage, we employ techniques to cleanse, integrate and transform the data. This 

process aims at improving the data quality, which in a later stage will improve 

performance and efficiency of the overall AI system. Specifically, the term data 

cleaning designates techniques to correct inconsistencies, remove noise and 

eliminate faulty measurements. Moreover, in our case, in this stage, the reliability of 

the loop detector measurements of the traffic characteristics are calculated. 

8.1.1.4 Feature Selection  

Feature Selection (in general feature engineering) is the stage where the number 

of components or features (also called dimensions) composing each data vector is 

reduced, by identifying the components that are believed to be the most meaningful 
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for the AI model. The result is a reduced dataset, as each data vector has fewer 

components than before. Besides the computational cost reduction, feature selection 

can bring more accurate models. Additionally, models built on top of lower 

dimensional data are more understandable and explainable.  

8.1.1.5 Model building 

This stage performs the building of the best AI model or algorithm for analyzing 

the data. The three commonly identified major categories are supervised learning, 

unsupervised learning and reinforcement learning models.  

Supervised techniques deal with labelled data: the AI model is used to learn the 

mapping between input examples and the target outputs.  Some commonly selected 

algorithms are Support Vector Machines, and Neural Networks. Unsupervised 

techniques use unlabeled training data to describe and extract relations from it, either 

with the aim of organizing it into clusters, highlight association between data input 

space, summarize the distribution of data, and reduce data dimensionality.  

Reinforcement learning maps situations with actions, by learning behaviors that will 

maximize a desired reward function.  

For the incident detection task, as already presented, both Supervised and 

Unsupervised approaches are suitable and thus could fit into our framework, since we 

do have at our disposal labels for the respective dataset, however these may be 

subject to errors, in addition to considering the imbalance in the classes (the normal 

conditions are many more in comparison to incident occurrences). 

It is important to remark that model selection (namely choosing the model 

adapted to the data) may trigger further transformation of the input data, as different 

AI models require different numerical encodings of the input data vectors. Generally 

speaking, selecting a model also includes choosing its training strategy. In the context 

of supervised learning for example, training involves computing (a learning function 

of) the difference between the model’s output when it receives each training set data 

item as input, and its label. This result is used to modify the model to decrease the 
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difference. Many training algorithms for error minimization are available, most of 

them based on gradient descent. Training algorithms have their own 

hyperparameters, including the function to be used to compute the model error (e.g. 

mean squared error), and the batch size, i.e. the number of labelled samples to be fed 

to the model to accumulate a value of the error to be used for adapting the model 

itself. 

8.1.1.6 Model Training  

Having selected an AI model, the training phase of the AI system commences. In 

the context of supervised learning, the selected ML model must go through a training 

phase, where internal model parameters like weights and bias are learned from the 

data. This allows the model to gain understanding over the data being used and thus 

become more capable in analyzing them. Again, training involves computing (a 

function of) the difference between the model’s output when it receives each training 

set data item D as input, and D’s label. This result is used to modify the model in order 

to decrease the difference between inferred result and the desired result and thus 

progressively leads to more accurate, expected results.  

The training phase will feed the ML model with batches of input vectors and will 

use the selected learning function to adapt the model’s internal parameters (weights 

and bias) based on a measure (e.g. linear, quadratic, log loss) of the difference 

between the model’s output and the labels. Often, the available data set is partitioned 

at this stage into a training set, used for setting the model’s parameters, and a test 

set, where evaluation criteria (e.g. error rate, accuracy, recall, precision) are only 

recorded in order to assess the model’s performance outside the training set. Cross-

Validation schemes randomly partition multiple times a data set into a training and a 

test portion of fixed sizes (e.g. 80% and 20% of the available data) and then repeat 

training and validation phases on each partition. For our case, we deem that the most 

suitable approach is the Time Series Split cross-validation which sequentially splits the 

data into training and testing sets, ensuring that the validation set always comes after 

the training set in time. This is essential since it helps better evaluate time-dependent 
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models by respecting the temporal order of observations, which is crucial for 

maintaining the integrity of time series analysis. 

For the application of AutoML, the model training process has been streamlined 

by automating the selection of optimal algorithms and tuning hyperparameters, 

thereby expediting the development of highly accurate predictive models with 

minimal manual intervention. This approach allows for the efficient handling of 

complex datasets and accelerates the deployment of tailored models that can adapt 

to the dynamic nature of traffic patterns and incident occurrences.  

8.1.1.7 Model Validation and Evaluation 

After having trained the model, this needs to be validated and evaluated. The 

process of maximizing a model's performance without overfitting or creating too high 

of a variance is referred to as model tuning. In machine learning, this is accomplished 

by selecting appropriate “hyper-parameters”. 

Certain parameters define high level concepts about the model, such as their 

learning function or modality, and cannot be learned from input data. These special 

parameters, called hyper-parameters, need to be setup manually, although they can 

under certain circumstances be tuned automatically by searching the model 

parameters’ space. This search, called hyper-parameter optimization, is often 

performed using classic optimization techniques like Grid Search, but Random Search 

and Bayesian optimization can also be used. It is important to remark that this stage 

uses a special data set (often called validation set), distinct from the training and test 

sets used in the previous stages. In our case, we have selected the Grid Search 

optimization for selecting the hyperparameters of our models and based the 

performance evaluation on the measures presented in the following section.  

8.1.1.7.1 Performance evaluation measures 

To evaluate automatic incident detection algorithms, quantitative measures are 

typically used. Many different measures have been used in the literature, including 

precision, recall or detection rate, f1-score and false alert rate among others. Many 
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different definitions of these measures exist, but below we present the most 

commonly stated. Some of these definitions are also used later in this dissertation to 

evaluate the developed models. 

These metrics can be defined and calculated as follows (Simeone, 2018):  

The precision of an automatic incident detection algorithm is the ratio of correctly 

predicted positive observations (incidents) to the total predicted positive 

observations (incidents). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = !"#$%&	()	*(&&%*+,-	.%+%*+%.	/0*/.%0+1
2(+3,	0"#$%&	()	13#4,%1	4&%./*+%.	31	/0*/.%0+1

   

The recall is the ratio of correctly predicted positive observations to all 

observations in the actual class. Recall is also commonly referred to as the detection 

rate. The Recall metric measures the model’s ability to accurately identify all positive 

cases.  A model will be judged as correctly detecting an incident if an alert was raised 

at any point during an incident. 

𝑅𝑒𝑐𝑎𝑙𝑙 = !"#$%&	()	*(&&%*+,-	.%+%*+%.	/0*/.%0+1
2(+3,	0"#$%&	()	3*+"3,		/0*/.%0+1	/0	+5%	.3+31%+

  

F1 Score is the weighted average of precision and recall. Therefore, this score 

takes both false positives and false negatives into account. Intuitively it is not as easy 

to understand as accuracy for instance, but F1 is usually more useful than accuracy, 

especially if there is an uneven class distribution.  

𝐹1	𝑆𝑐𝑜𝑟𝑒 = 	"	×(%&'()*)+,	×&'(-..	)
(%&'()*)+,0&'(-..	)

    

These metrics have been widely adopted in the field due to their effectiveness in 

assessing algorithm performance (Zhou, Gandomi, Chen, & Holzinger, 2021).  

Two other widely used metrics are the false alert rate and the mean time to 

detect. 

The false alert rate is the percentage of the number of messages for which an alert 

was raised but no incident was occurring, to the total number of messages for which 
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no incident was occurring (i.e. false positive rate). It should be noted that here, a 

message is used as a term to represent a collection of traffic metrics that cover a 

particular time period at a detector (or detection location). 

 

The Mean time to detect is the mean time taken (in minutes) to raise the alert 

for a correctly detected incident, over a given time period and area.  

 

where n is the number of verified incidents, Ai is the start time of an IDA’s alert 

being raised, and Oi is the start time of the corresponding incident. 

For regression analysis and traffic forecasting, the following measures are widely 

used in literature (Plevris, Solorzano, Bakas, & Ben Seghier, 2022): 

The Mean Squared Error (MSE) is a popular regression-related metric having to do 

with the average squared error between the predicted and actual values. It takes 

positive or zero values and is given by 

𝑀𝑆𝐸 =
1
𝑁- (𝑝) − 𝑟))"

1

2
 

One major disadvantage of MSE is that it is not robust to outliers. In case a sample 

has an associated error way larger than the one of other samples, the square of the 

error will be even larger. This, paired to the fact that MSE calculates the average of 

errors, makes MSE prone to outliers.  

The Root Mean Squared Error (RMSE) is also a frequently used measure of the 

differences between values (sample or population values) predicted by a model, or an 

estimator and the values observed. It is the square root of MSE. Unlike MSE, RMSE 

provides an error measure in the same unit as the target variable. It takes values in 

the range [0, +∞) and it is given by 
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It should be noted that these metrics are closely linked, and an improvement in 

one may be transferable to degradation in others (Ghosh and Smith, 2014). For 

example, an IDA may be able to lower its sensitivity of raising alerts in order to reduce 

its false alert rate, but it would come at the cost of reducing its detection rate and 

increasing its mean time to detect. 

In the literature, other stated measures of performance include: 

- The feedback of traffic management centers (TMCs), including thoughts on 

IDAs’ operational performance, usability, ease of implementation. Although 

this measure will be subjective, it is an important factor affecting the 

usefulness of IDAs in TMCs. 

- The time needed to calibrate to a new location or urban setting. That is, to go 

from the raw data required, to detecting incidents in real-time. 

- Once implemented, the frequency and time taken to re-calibrate the IDA to 

maintain performance. 

- If trained on field data, the time span of the training data required. 

 
Lastly, explainability can serve as a measure for performance by enabling traffic 

system operators and stakeholders to validate the reliability and soundness of the 

predictions made by the model. It ensures that the automated decisions made during 

critical incidents are transparent, allowing for accountability and enabling rapid, 

informed responses.  

8.1.1.8 Model Deployment  

A Machine Learning model will bring knowledge to an organization only when its 

predictions become available to final users. Deployment is the process of taking a 

trained model and making it available to the users. 
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Currently, we have deployed the online mode of operation of the developed 

system. The insights garnered from the deployed system come through Orion Context 

Broker, which will be explained in next subsection (Chapter 8.2), facilitating a seamless 

flow of information and enhanced decision-making capabilities across the system. 

8.1.1.9 Model Maintenance 

After deployment, AI models need to be continuously monitored and maintained 

to handle concept changes and potential concept drifts that may arise during their 

operation. A change of concept happens when the meaning of an input to the model 

(or of an output label) changes, e.g., due to modified regulations. A concept drift 

occurs when the change is not drastic but emerges slowly.  

A popular strategy to handle model maintenance is window-based relearning, 

which relies on recent data points to build a ML model. Another useful technique for 

AI model maintenance is back testing. In most cases, the user organization knows 

what happened in the aftermath of the AI model adoption and can compare model 

prediction to reality.  

For our case, the way we have chosen to handle this step in the process is for the 

selected model will be monitored and maintained periodically, in order to sustain the 

defined goals using techniques described in Chapter 7 whereas the evaluation results 

are available in Chapter 9.6.2. 

8.2 Technical	Architecture	

The technical architecture of the developed Information System AutoEventX is 

illustrated and presented below in Figure 8-3 and further explored and explained in 

detail in the following sections. 
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Figure 8-3: Technical Architecture of developed Information System AutoEventX. 

8.2.1 Storage	Layer	

The Storage Layer is responsible for collecting, storing, and managing the data, 

models, and analysis results required for incident detection. It ensures that the system 

has access to high-quality, relevant data and that all outputs are securely stored for 

future reference and analysis. 

• Data Sources: The primary data sources include loop detectors, segment-level 

measurements, historical incident records, and network topology. These 

sources provide continuous, real-time data as well as historical data for 

training and validation purposes. 

• Data Ingestion: This component involves the extraction, transformation, and 

loading (ETL) of data from various sources into a centralized data repository. 

It is crucial to ensure that data is consistently and accurately collected. 

• Data Storage: The collected data is stored in scalable and secure databases. It 

consists of one non-relational NoSQL database, specifically document-
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oriented database, the Knowledge Base, in addition to an extended file 

system, which includes raw and processed parquet and json files, with the 

addition of the enhanced dataset after the inclusion of the human in the 

process. Moreover, the models are stored in this system, a fact which ensures 

that the most current and effective models are always available for use. The 

results of data analyses, including predictive models, feature importance 

scores, and other relevant outputs, are stored for future reference and further 

analysis. This helps in maintaining a comprehensive record of all analytical 

activities and outcomes. 

In Figure 8-4, the schema of the data processing is represented. The data 

stemming from the aforementioned sources end up in a data lake to go through a 

process of fusion and harmonization (when required), prior to be stored in the 

corresponding database in the Data Storage layer.  

 

Figure 8-4: Data management schema. 
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8.2.1.1 Data Sources 

8.2.1.1.1 Inductive Loop Detectors (ILD) Dataset 

Inductive Loop Detectors (ILDs) are a core technology as traffic data sources, 

known for their robustness, reliability, and cost-effectiveness. These fixed sensors are 

embedded within the roadway surface and operate on the principle of 

electromagnetic induction. When a vehicle passes over or stops on the loop, the 

inductance in the circuit changes, triggering a signal that is recorded and processed. 

One of the primary advantages of ILDs is their high level of accuracy in detecting 

vehicle presence and counting. This accuracy stems from their direct interaction with 

the vehicle's metal mass, resulting in precise data with minimal error rates. Over 

decades of deployment, ILDs have proven to be exceptionally durable, requiring 

relatively low maintenance while providing continuous, real-time data. Their 

widespread adoption across the globe is a testament to their reliability and cost-

efficiency. 

Furthermore, ILDs are not just limited to basic vehicle detection; they can 

gather a comprehensive range of traffic parameters. These include vehicle speed, 

volume (the number of vehicles passing over a loop), occupancy (the percentage of 

time a loop is occupied by a vehicle), density (vehicles per unit length of the road), 

and queue length. Additionally, ILDs can be and have already been utilized to infer 

more complex traffic conditions, such as identifying congestion patterns, incident 

detection, and traffic flow dynamics. 

The data collected by ILDs is crucial for traffic management systems, providing 

the foundation for real-time traffic monitoring, control strategies, and long-term 

transportation planning. Despite the emergence of newer technologies like video-

based detection systems and radar, ILDs remain the most widely deployed and trusted 

traffic monitoring tool due to their long-established performance and cost 

advantages. 

8.2.1.1.2 Incident Dataset 
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The Incident Dataset is a critical component in the study of traffic management 

and safety, especially in the context of developing and validating incident detection 

algorithms. This dataset typically consists of records of traffic incidents, such as 

accidents, breakdowns, road blockages, and other non-recurring, or recurring (e.g. 

recurring congestion) events that disrupt normal traffic flow. 

The dataset is usually compiled from various sources, including traffic 

management centers, police reports, social media, and crowd-sourced platforms. It 

may contain detailed information on the type of incident, its location, time of 

occurrence, duration, severity, and the resulting impact on traffic conditions. 

Additionally, the dataset may include metadata such as weather conditions, road 

surface conditions, and visibility, all of which can influence the occurrence and 

detection of incidents. For our case studies, this dataset stems from the traffic 

operators and contains not only reports about time, location and duration of 

incidents, but also information about its severity, type and subtype, and more fields 

which are going to be described in each case study individually in Chapter 9. 

The Incident Dataset is synchronized with data from traffic monitoring systems 

like ILDs, allowing for a comprehensive analysis of how traffic parameters change 

before, during, and after an incident. This synchronization is vital for the development 

of machine learning models and algorithms aimed at early incident detection, 

prediction, and mitigation strategies.  

8.2.1.1.3 Network Topology 

The Network Topology dataset provides a detailed representation of the 

physical and logical arrangement of the transportation network. It includes the layout 

of roads, intersections, interchanges, traffic control devices (e.g., signals and signs), 

and the location of traffic monitoring sensors, such as ILDs. The dataset typically 

features information on road hierarchy (e.g., highways, arterial roads, local streets), 

lane configurations, speed limits, and other critical infrastructure details. 

A comprehensive Network Topology dataset is essential for accurate traffic 

modeling and simulation. It allows for the replication of real-world traffic conditions 



193 
 

in a virtual environment, enabling researchers and traffic engineers to study the 

effects of various traffic management strategies, the impact of road modifications, 

and the behavior of traffic under different scenarios, including incidents. In the 

context of incident detection, Network Topology data is crucial for understanding how 

traffic flows through a given area and how it is likely to be affected by an incident. By 

integrating Network Topology with ILD and Incident datasets, it is possible to create 

advanced data-driven models that predict traffic disruptions. 

8.2.1.2 Data Ingestion 

The data ingestion process is a critical phase, as it involves the collection and 

integration of various data sources necessary for effective incident detection. The 

data used in the work conducted is sourced both in real-time (online) and from 

historical archives (offline), from a combination of automated Python scripts and the 

collaboration with traffic management operators. 

8.2.1.2.1 Online Data Ingestion 

For real-time data ingestion, Python scripts have been developed to automate the 

process of collecting live traffic data from various sensors and external data sources. 

These scripts are designed to interface with Application Programming Interfaces 

(APIs) provided by traffic monitoring systems, enabling the continuous retrieval of 

data from the respective sensors. 

The scripts are configured to handle data in a streaming fashion, ensuring that the 

system remains responsive to new data as it becomes available. They are equipped 

with error-handling mechanisms to manage potential issues, while the collected data 

includes a range of traffic parameters (vehicle speed, volume, occupancy), which are 

crucial for real-time incident detection and traffic analysis. 

8.2.1.2.2 Offline Data Ingestion 

Historical traffic data has been made available by traffic management operators. 

This dataset includes archived records from ILDs, incident reports, and other relevant 

traffic information collected over several years. The offline data is essential for 
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training and validating the incident detection algorithms, as it provides a rich source 

of labeled examples of traffic incidents and their associated traffic patterns. To ingest 

this offline data, Python scripts have been developed to automate the extraction 

process. These scripts are tailored to handle various data formats provided by the 

operators, including CSV and parquet files in addition to JSON records. 

Both online and offline data streams are integrated into a unified data 

management framework that allows for seamless access and analysis. This framework 

is designed to support continuous updates from online sources while maintaining the 

integrity of the historical dataset. The entire data ingestion pipeline is managed to 

ensure data quality and consistency, which are critical for the performance of the 

incident detection models. The integration process includes the synchronization of 

timestamps, alignment of data formats, and the resolution of any discrepancies 

between the online and offline data sources.  

8.2.1.3 Data Storage databases 

Relational databases are structured according to a model consisting of different 

data tables interconnected by foreign key relationships. Consequently, to answer a 

query or insert a new entry in a relational database, many tables are traversed and 

combined to gather or generate the requested information. In contrast, document-

oriented databases, which are a subclass of key-value databases, do not follow a strict 

data schema but use document formats like XML, JSON, YAML, etc., to store all 

necessary information about an object in a single document, which can have a 

different structure from other documents in the database. 

Since relational databases require a predefined schema before the construction 

of the database, any schema changes after data insertion can lead to problems. 

Conversely, document-oriented databases overcome this limitation and support a 

dynamic schema. This capability is useful for large and diverse data applications where 

adding documents with different structures is required without modifying existing 

data or the application itself. 
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In summary, NoSQL databases offer the following advantages (Gupta, Gupta, & 

Mohania, 2012): 

• Support for large-scale data 

• High write performance 

• Fast key-value access 

• Flexible schema, flexible databases, and easy schema conversion 

• Ease of use for developers 

• Support for distributed systems 

According to (Han, Haihong, Le, & Du, 2011), NoSQL systems are categorized into 

three types: 

• Key-value databases: Each value corresponds to a key. These databases, with 

a very simple structure, provide much higher speed than relational databases 

and support massive storage with high concurrency. A representative example 

is Redis. 

• Column-oriented databases: These databases organize data in tables without 

supporting table relationships. Data is stored by column, where each column 

serves as an index for the database. This reduces system I/O as only the 

necessary columns are traversed for each query. Additionally, these databases 

support simultaneous queries. An example is Cassandra. 

• Document-oriented databases: These databases resemble key-value 

databases but with the difference that the value is a semantic object stored in 

XML or JSON format. These databases support secondary indexes on values, 

which are not supported by key-value databases. An example is MongoDB. 

As described by (Han, Haihong, Le, & Du, 2011), modern large-scale data 

management applications require: 
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• High support for parallel data entries and retrievals with low latency 

• Efficient large-scale data storage and support 

• High availability and scalability 

• Low operational and management costs 

Under these conditions, relational databases exhibit low data write and retrieval 

speeds, limited capacity, and scalability difficulties. For these reasons, NoSQL 

databases facilitate large-scale data analytics, particularly for machine learning and 

reinforcement learning applications, providing increased scalability and high 

performance (Konstantinou, Angelou, Boumpouka, Tsoumakos, & Koziris, 2011). 

For our case, the Knowledge Base is structured in a way that ensures that the data 

can be efficiently stored and retrieved by the other structural components of our 

system. Specifically, it contains information related to the task at hand, the 

identification of incidents. Even though it could be a relational database, to ensure 

consistency in the way data are accessed and retrieved using Orion Context Broker, 

we have selected to use a NoSQL Database, namely MongoDB. Below, we describe 

the primary entities and their relationships as depicted in the Entity-Relationship (ER) 

diagram shown in Figure 8-5: 

1. Site: Represents a specific location with an intelligent transport system. Each 

site is uniquely identified by a siteId and includes attributes such as name, 

mapCenter, dateLocale, and displayName. This entity is crucial for categorizing 

and managing data related to various geographical areas. 

2. Organization: This entity represents the different organizations that manage 

or interact with the transport system. It is identified by an organizationId and 

includes fields such as name, siteId, and authId. The siteId indicates the 

association of the organization with a particular site. 

3. Event: Central to the incident prediction framework, the Event entity captures 

detailed information about specific incidents or occurrences. It is identified by 
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an eventId and includes attributes like name, description, siteId, location, 

eventType, expectedImpact, and probabilityOfOccurrence, among others. This 

entity records both the planned and unplanned events within the system, 

which are crucial for model training and prediction. 

4. EventStatusChange: This entity tracks the status changes of an event over 

time. Identified by changeId, it logs each status update with attributes such as 

changeSequence, eventId, organizationId, status, changeTime, and reason. 

This allows for a detailed timeline of how an event evolves and is able to 

capture and track changes introduced by operators. 

5. EventAck: The EventAck entity captures acknowledgments of events by 

various organizations. It includes an ackId, eventId, organizationId, ackTime, 

and any associated comments. This entity is essential for confirming that 

incidents have been acknowledged. 

6. User: Represents the users interacting with the system. Each user is uniquely 

identified by a userId and includes details such as organizationId, siteId, and 

displayName. This entity is vital for managing access and actions within the 

system. 



198 
 

 

Figure 8-5: Entity-Relationship (ER) diagram. 

These entities and their relationships form the foundation of the Knowledge Base, 

enabling the efficient storage, retrieval, and management of data necessary for 

incident prediction within intelligent transport systems. 

8.2.1.3.1 Data storage infrastructure 

The approach is to build a data storage system consisting of a data lake where the 

raw data coming from various use cases in its original data format are stored prior to 

be converted to the data format and stored in a centralized data storage repository, 

as described above in detail. 

8.2.1.3.2 Data base technologies 

The type of data to be handled in the different case studies is very diverse. 

Consequently, to handle them efficiently has to deal with a combination of data 

storage technologies, adapted to the characteristics and usage of this information. 
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The technologies chosen to cover the identified needs in terms of data storage 

are: 

• MongoDB 

• Apache Parquet 

Prior to storing the data in one of the aforementioned data bases, a process for 

fusion and harmonization takes place in the data lake to convert the data formats 

generated by origin data sources into an appropriate data model, as well as other 

processes that will enable consistent and high-quality data sets to serve as input to 

advanced applications. The structured and non-structured data will be stored in 

Apache Parquet and MongoDB respectively. The characteristics of the different data 

sources and the rationale for the selection of the type of information to be stored are 

described below. 

Apache Parquet is an open-source column-oriented data storage system, suitable 

to store structured data. The algorithms that use Apache Parquet allow to 

accommodate complex data structures by using and efficient column-wise 

compression that saves storage space while offers efficient queries and the availability 

of different encoding techniques for different columns. In our case, the structured 

data coming from time series, especially those requiring extensive analytic 

operations, together with some sets of shapefiles are stored in Apache Parquet. 

MongoDB is an open-source non-relational database (NoSQL) data storage system 

oriented to documents. Documents are semi-structured data that can contain any 

type of information or shape. Internally, it stores the data in a Binary-JSON (BSON) 

structure and allows to index the information with primary and secondary indexes to 

perform searches. The maximum BSON document size is 16 MB (MongoDB v5.0) 

which must be kept in mind while defining the document content. MongoDB provides 

high availability and replication and is very suitable to be used in a distributed way, if 

needed. In the context of this research, we have identified as suitable to store mobility 

data coming from XML, JSON and GTFS formats. This selected database is configured 
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to be used to store definition of networks and areas, shapefiles, stations, schedules, 

traffic and other sensors characteristics and traffic events (accidents, roadblocks, road 

works, etc.), both real-time and historical. 

Table 8-1 is a summary of the distribution of data types in the different storage 

technologies: 

Table 8-1: Relation of data and databases in the developed Information System. 

8.2.1.4 General data management structure 

Among its objectives, our framework aims to facilitate data integration from different 

heterogeneous sources in an automated and standardized way, while ensuring data 

quality, and at the same time, being able to manage large data streams efficiently. 

The management infrastructure provides storage for both static data and near real- 

time data with different formats and access types. The first one, provided by the 

context broker and a REST service storage, and the second one consisting of a file 

system storage keeping the data in JSON, JSON-LD, and Parquet formats to maintain 

the original data for further system feeding and database restoration if required. The 

data provided comes from an ETL (Extract-Transform-Load) process, as shown in 

Figure 8-6, a timed Data Collector process is executed for each data source, each 

process is in charge of access to the corresponding data source to Extract the data and 

perform the required Transformation to the required data format to Load the data in 

Data Type Original format Database 

• Static/near static object 
characteristics/properties/sta
tes (sensor, vehicles, network) 

• Small/medium dynamic 
datasets (measurements) 

• Events 

XML 

JSON 

GTFS 

MongoDB 

• Time series 

• Shapefiles 

XLS 

CSV 

Shapefile 

Apache Parquet 
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its corresponding file system storage location as well as to format the data in the 

required format so it can be sent via POST request to Orion-LD. 

 

Figure 8-6: ETL schema. 

8.2.1.5 Orion Context Broker for efficient data exchange 

Data play an integral part in our methodology, that is why an analysis of the data 

available, its format and its suitable representation and storage to build applications 

has been performed. Nonetheless, this data must be exchanged between the 

subcomponents of our developed system, which in turn will generate new 

information based on basic data inputs. To make all of them interoperable, it is 

important to set up a common framework (information representation) and 

communication channels to enable the data generated by producers to reach data 

consumers. The component that will fulfill this function is the context broker, while 

the common framework is given by using NGSI-LD. 

A Context Broker acquires contextual information from heterogeneous sources 

and merges it into a coherent model that is then shared with entities in a distributed 

ecosystem. The contextual information refers to the information that is produced, 

harvested or observed and that could be relevant for processing, analysis, and 

extraction of new knowledge. Each piece of information or context element has 
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associated one or more triples that refer to the attributes of the context element and 

a defined value. 

 

Figure 8-7: Context Broker functioning schema. (Celesti, et al., 2019) 

The context broker selected to deal with the information sharing part is the Orion 

Context Broker (OCB). The OCB is a component developed by FIWARE that allows to 

manage, query and update context information. This allows to publish context 

information by some entities, called context producers, like sensors and make it 

available to other entities, called context consumers, which are interested in 

processing such information, as illustrated in Figure 8-7. This publication-subscription 

system allows decoupling data sources from other parts of the architecture. The 

communication is bidirectional, and a specific entity can be producer and consumer. 

The OCB acts as a server that includes an API based in the NGSI-LD (Next Generation 

Service Interface) model information, which allows to store actualized context 

information from the different sources, and solves queries based on this information. 

Eventually, a context consumer can take care of recording historical information in a 

separate database.  

For our case, Orion, the chosen context broker, is responsible for managing the 

lifecycle of context information. To ensure this responsibility, the context broker 
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provides an API which is useful for easing the data insertion. Once this data is received, 

the context broker stores it in a No-SQL database, ensuring the access to latest data 

received, so that it can be accessed through the same API as inserted, providing fast 

access to the newest data. The context broker offers a JSON-LD API with the necessary 

endpoints for creating, retrieving, updating, and deleting entities.  

An important functionality offered by Orion is the capacity of creating 

subscriptions for receiving updates of the information in real time. Using this 

mechanism, a client can request the context broker to notify them on certain updates 

in the data. This is achieved using the “subscribe” operation. This operation allows the 

client to specify the notification channel. Moreover, the client can focus on specific 

data of interest by providing filters over the entity id, entity type, attribute, etc. Once 

subscribed, whenever a data provider updates an entity that matches the filters 

provided by the client in the subscription operation, the context broker will 

automatically notify the client of this event.  

8.2.1.6 Data format 

Once the mechanism is set, we need to establish a common language to enable 

interoperability among components. The main elements that will enable that are 

described in the following subsections.  

The Next Generation Service Interface Linked Data (NGSI-LD) is an information 

model and API used for an open and structured data exchange between the different 

stakeholders though a process of edit, query and subscription. NGSLI-LD has been 

standardized by the European Telecommunications Standardizations Institute (ETSI). 

The information model represented by NGSI-LD represents the context information 

as entities and their relations with other entities. The structure is acquired from the 

knowledge graph and the semantics described in the ontology of the system to study 

and defined formally with the Resource Description Framework (RDF). 

To standardize and make available the data saved in the  respective storage to 

third parties when required, an ITS standard-based data model has been adopted, 
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allowing the subsequent management of the heterogenous data sources for further 

processing. Here, the DATEX-II standard is considered for traffic related data. DATEX-

II is the European standard for the exchange of traffic related data. It is a unified XML-

based format modelled with UML (Unified Modelling Language) to allow data 

exchange between traffic management/control centres, traffic service providers, and 

road and traffic operators. It covers traffic and travel information such as: 

• Traffic flow 

• Traffic measures 

• Roadworks 

• Accidents 

• Parking 

 

The Orion Context Broker is a core component of the FIWARE platform, designed 

to manage context information at a large scale in IoT environments. It acts as a 

middleware that enables the integration and interoperability of various systems by 

providing a means to collect, manage, and disseminate context information. As an 

implementation of the NGSI-LD (Next Generation Service Interfaces for Linked Data) 

standard, Orion allows for the storage, retrieval, and subscription of context 

information in real-time, making it an essential tool for developing smart applications 

in various domains such as smart cities, industrial IoT, and more. (FIWARE) 

One of the key features of Orion Context Broker is its ability to manage context 

data through a centralized system, which ensures data consistency and availability. It 

supports various data models and can integrate with multiple data sources, providing 

a unified view of the contextual data. This capability is particularly beneficial in 

scenarios where real-time data processing and decision-making are critical. For 

example, in a smart city environment, Orion can collect data from various sensors and 

systems (e.g., traffic lights, weather stations, public transportation) and provide real-

time updates and notifications to city management systems, enhancing operational 

efficiency and improving citizen services (Gutiérrez, Martínez, & Sánchez, 2019). 



205 
 

Moreover, Orion's subscription and notification mechanism allows applications to 

subscribe to specific context changes and receive notifications when these changes 

occur. This feature supports proactive and reactive decision-making processes, which 

are crucial for dynamic and real-time applications. The scalability of Orion ensures 

that it can handle a large number of context updates per second, making it suitable 

for extensive IoT deployments (Wang & Chen, 2018). Additionally, its open-source 

nature and compliance with open standards facilitate customization and integration 

with other platforms and systems, promoting a collaborative and innovative 

development environment (Gyrard, Serrano, & Atemezing, 2017). In the data layer of 

many systems, including advanced IoT frameworks, Orion is used to ensure efficient 

data management, providing a backbone for handling contextual information (Smart 

Data Models). 

8.2.2 Logic	Layer	

The Logic Layer is the core computational layer where data analysis, model 

training, tuning, evaluation and validation, in addition to system’s predictions occur. 

It encompasses the implementation of traditional and automated machine learning 

algorithms and the execution of advanced analytics for planned and unplanned 

incident prediction. 

• Advanced Data Analytics: This includes time-series analysis, spatiotemporal 

analysis, and correlation analysis to uncover deeper insights and improve 

model accuracy. Tools like ARIMA for time-series forecasting and geospatial 

libraries like GeoPandas for spatiotemporal analysis are utilized. 

• Machine Learning Model Development: This component involves the pre-

processing, cleaning, selection, training, and validation of machine learning 

models. The key activities include: 

o Data Pre-processing: This process consists of preparing raw data for 

model development by cleaning the data (identifying and correcting 

errors or inconsistencies in the dataset), normalizing and scaling 
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(transforming the data to a common scale without distorting 

differences in the ranges of values) and extracting features from the 

raw data. 

o Algorithm Selection: Choosing appropriate algorithms based on data 

characteristics. 

o Model Training: Training the models on the pre-processed data to 

learn patterns and make predictions. First, this process entails splitting 

the dataset into training and validation sets. The model is trained on 

the training set by iteratively adjusting parameters to minimize the 

prediction error. Then,  adjusting the algorithm’s hyperparameters to 

optimize model performance is critical. This process is called 

hyperparameter tuning. Techniques like grid search and random 

search are used to find the best combination of hyperparameters. 

• Model Validation: The validation of models’ performance using appropriate 

metrics such as precision, recall, F1-score, to ensure robustness and reliability, 

is of outmost importance in our framework and implementation. Using cross-

validation techniques to evaluate the model’s performance is essential as part 

of this step. Finally, performing error analysis needs to be included in this step. 

This involves analyzing the types of errors the model makes to understand its 

weaknesses., e.g. examining false positives and false negatives to identify 

patterns or conditions under which the model fails. 

• Automated Machine Learning (AutoML): The integration of AutoML libraries 

and tools aim to automate the end-to-end process of applying machine 

learning, from data pre-processing to model tuning and evaluation, making the 

system more efficient and scalable. 

• Real-time Predictions: The system is able to provide predictions in real-time 

regarding identified incidents both unplanned and planned anywhere in the 

network which covers the sensors having been included in the analysis. 
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Python has been selected as a programming language to develop the proposed 

system, since it is a versatile and powerful programming language widely used in data 

science, machine learning, and artificial intelligence due to its simplicity, readability, 

and extensive library support. In the components we developed, Python was used as 

the primary language to handle various aspects of data processing, model 

development, and visualization. 

Pandas, a powerful library for data manipulation and analysis, played a crucial role 

in handling and analyzing structured data. It provides data structures like DataFrames 

and Series, which are ideal for data manipulation tasks. Pandas library was extensively 

used for data cleaning, transformation, and exploration, enabling efficient 

manipulation of datasets through operations like filtering, grouping, and merging. This 

functionality was essential for preparing the data for subsequent machine learning 

tasks. 

Scikit-learn is another key Python library used in our system for developing and 

training machine learning algorithms. It offers simple and efficient tools for data 

mining and analysis, built on top of NumPy, SciPy, and Matplotlib. Scikit-learn was 

utilized for implementing various machine learning algorithms, model evaluation 

metrics, and tools for model selection and validation. Its utilities for preprocessing 

data and feature engineering were essential in building robust models. 

Keras, a high-level neural networks API written in Python, was integral to the 

design and implementation of deep learning models within the system. Keras 

operates on top of TensorFlow and is particularly valued for its user-friendly, modular, 

and extensible nature, allowing for quick prototyping of models and experimentation 

with different architectures. It provides a high-level abstraction that simplifies the 

process of building and training neural networks, making it unnecessary to deal with 

low-level details. TensorFlow, an open-source machine learning framework 

developed by Google, served as the backend engine for Keras and was used to 

perform the computationally intensive tasks required for training and deploying 

machine learning models. TensorFlow is known for its ability to handle large-scale 
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models and offers a flexible architecture that can be deployed across various 

platforms.  

Finally, Seaborn and Matplotlib, two essential libraries for data visualization in 

Python, were used to create a variety of plots. These visualizations were crucial for 

understanding data distribution, relationships between variables, and patterns that 

could inform feature selection and model tuning. Matplotlib, the foundation library 

for creating visualizations, provided a wide range of customizable plots. Seaborn, built 

on top of Matplotlib, offered a high-level interface for drawing attractive and 

informative statistical graphics, simplifying the creation of complex visualizations and 

making it easier to plot data directly from Pandas DataFrames. Lastly, for the autoML 

implementation, regarding the technologies used, we have used extensively the 

python libraries TPOT, which has already been thoroughly explained in Section 6.  

8.2.3 Human-in-the-Loop	Layer	

The Human-in-the-Loop Layer integrates human expertise into the system to 

enhance decision-making, ensure model accuracy, and build trust in the AI system. 

• Explainable AI: Explainability tools provide insights into the model’s decision-

making process. This transparency helps stakeholders understand how 

predictions are made and ensures that the AI system’s decisions are 

interpretable and justifiable. 

• Human Validation, Correction and Feedback: Traffic management 

professionals review and correct the model’s predictions. This feedback loop 

is essential for refining and improving the model over time. Human corrections 

help identify and rectify any errors in the AI predictions. 

• Integration with Traffic Management Systems: The validated outputs could 

be integrated into existing traffic management systems, providing real-time 

incident alerts to traffic management personnel. This integration ensures 

timely and effective responses to detected incidents. 
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Regarding the technologies used for the implementation, we have used 

extensively the python libraries SHAP and LIME, which have already been thoroughly 

explained in Chapter 7.  

For the overall system implementation, we utilized Flask and Docker to create a 

robust, scalable, and easily deployable environment for our system. These 

technologies played crucial roles in ensuring that the system is efficient, maintainable, 

and capable of handling various deployment scenarios. 

Flask is a lightweight web framework for Python that was used to develop the APIs 

needed for our system. Flask is known for its simplicity and flexibility, making it an 

ideal choice for building web applications and RESTful APIs. By using Flask, we were 

able to create a server-side application that can handle HTTP requests, manage 

routes, and interact with the machine learning models and data processing 

components. Flask provides the necessary tools to build a web interface through 

which users can interact with the system, send data, and receive results.  

Docker was employed to containerize the entire application, including all the 

dependencies of the utilized libraries. Docker simplifies the process of creating, 

deploying, and running applications by packaging them into containers. Each 

container includes everything needed to run the application, such as the code, 

runtime, libraries, and system tools. This ensures that the application behaves 

consistently across different environments. 

The use of Docker aims to achieve the following benefits: 

• Consistency: By containerizing the application, we ensured that it runs the 

same way in all environments, eliminating issues related to differences in 

software versions or system configurations. 

• Scalability: Docker containers can be easily scaled up or down based on the 

system's needs. This flexibility is essential for handling varying loads and 

ensuring that the system remains responsive and performant. 
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• Isolation: Each container operates in its own isolated environment, reducing 

conflicts between different components or services and improving security. 

• Portability: Docker containers can be deployed on any platform that supports 

Docker, making it straightforward to move the application across different 

servers or cloud services. 

8.3 Modes	of	operation	

8.3.1 Offline	Mode	of	Operation	

In Figure 8-8, the technical architecture of the offline operation of our developed 

system is presented. 

 
Figure 8-8: Technical architecture of offline mode of operation. 

The Data Layer currently contains the loop detector (historical and real-time) 

measurements for speed, occupancy and flow in addition to the respective incident 

datasets and corresponding information about the network of each case. In the ML/DL 

Data Layer

Loop detectors
(speed, flow, occupoancy) Incident dataset 

ML/DL module

Trainng Fine-tuning Evaluation

Feature extraction

Unbalanced dataset 
handling (supervised) Feature engineering Data normalization

Data Pre-processing

Data cleaning Data transformation Data aggregation

Incidents detected
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module, we have implemented a suite of Machine Learning, Deep Learning algorithms 

and autoML algorithms for automatic incident detection. These include both 

Supervised and Unsupervised approaches.  

8.3.2 Online	Mode	of	Operation	

After having performed the training of the AI data-driven model in the offline 

mode as explained in the previous sections for non-recurring unplanned events and 

for recurrent congestion cases, our system is able to operate in real-time to raise 

alerts. Figure 8-9 displays the process flow of the online module of our system.  As 

soon as new data becomes available, the online module of our system captures it. The 

data refresh rate can vary thus, the respective information needs to be collected, 

stored locally and then aggregated in specifically timed intervals to be fed in the pre-

processing and data cleaning stage of the pipeline. The specific procedures for pre-

processing remain consistent with those outlined in the offline mode of operation, 

maintaining uniformity in the approach to data preparation and cleaning. Then, the 

data are transformed in the required format to be fed in the step of model prediction. 

Should the entry contain anomalies (represented as “1”), then feedback is requested 

from operators, to confirm the identified incident. This human-in-the-loop concept is 

crucial, since it assists in creating a refined incident dataset and ensures that the 

system’s performance could increase over time, given that it is retrained on this 

evolving dataset.  It is worth mentioning that stakeholders can enhance the quality 

and accuracy of the reported incidents, by creating manual entries of identified 

incidents. Finally, in the case that the system has identified an anomaly in the data 

and labels it as incident, it then produces as output an entity of type “Incident” with 

the location and time attributes of the incident. 

In order to enhance the system’s detection capabilities over time, the feedback 

loop which we have implemented to compare model predictions with actual 

outcomes is key to our continued improvement. Detecting any discrepancies can be 

leveraged to optimize the model. Furthermore, implementing robust validation ny  
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establishing a feedback loop for comparing model predictions with actual outcomes 

is crucial.  

 

Figure 8-9: Online mode of operation. 

8.4 Examples	of	system	use	

This subchapter presents several examples from the use of the HITL (Human-In-

The-Loop) traffic incident detection system developed as part of this dissertation. The 

following sections illustrate how the system identifies, explains, and refines traffic 

incidents, supported by screenshots from an external dashboard developed as part of 

the FRONTIER project. 

8.4.1 Identification	of	Incident	
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The system is designed to detect both planned and unplanned traffic incidents by 

analyzing real-time traffic data.  

8.4.1.1 Planned incident 

Below figures ( Figure 8-10 and Figure 8-11) illustrate a planned incident (recurring 

congestion) on the dashboard. 

 

Figure 8-10: Screenshot from dashboard depicting the identification of recurring congestion. 

 

Figure 8-11: Screenshot from dashboard depicting the details of detected incident (recurring congestion). 
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8.4.1.2 Unplanned incident 

Figure 8-12, Figure 8-13 and Figure 8-14 show an unplanned traffic incident 

detected from the developed system AutoEventX on the dashboard. 

 

Figure 8-12: Screenshot from dashboard depicting the identification of accident in a real-world case study. 

 

Figure 8-13: Screenshot from dashboard depicting the panel and possibilities when an incident is detected. 
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Figure 8-14: Screenshot from dashboard depicting the details of detected incident (accident in real-world 

case study). 

8.4.2 Human	Feedback		

Feedback from traffic management operators is essential for continuous 

improvement. The dashboard includes features for collecting and integrating user 

feedback. Operators can provide feedback directly through the dashboard, ensuring 

that their insights contribute to ongoing system enhancements (Gkioka, et al., 2024). 

This section details the feedback mechanisms available to operators. 

8.4.2.1 Incident Validation  

Incident validation process as part of our system consists of the procedure by 

which operators provide important feedback regarding an automatically identified 

incident, towards refining the system performance and reliability. The objective of 

incident validation is dual: to confirm whether the incidents are correctly detected or 

to establish false detection that will need further refinement. 

When the system detects an incident, operators verify its validity based on real-

time data, contextual knowledge, and external information sources, such as phone 

calls from the impacted drivers. The operator will then validate the incident- which 
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confirms that the incident indeed happened, and the impact is true- or reject it, where 

the incident would be classified as a false positive or wrong classification. In both 

cases, the operator gives the reason of rejection that is logged by the system for future 

analysis and improvement. Thus, incident validation reinforces the collaboration 

within human-in-the-loop systems, in the sense that the systematic integration of 

operators' feedback ensures better accuracy and higher operational efficiency of the 

deployed system.  

In the context of our system, as soon as an event is identified automatically by the 

system, the operator is prompted to click on the right-hand side and select 

“Acknowledge Event”, as shown in Figure 8-15. 

 

Figure 8-15: The operator is prompted to validate the identified event through the dashboard. 

8.4.2.1.1 Verification 

Verification involves operators reviewing detected incidents and confirming their 

occurrence. When an incident is detected by the system, it is flagged for operator 

review. An example is described below: 

• Incident: Traffic accident. 

• Action: Operator reviews and confirms the incident. 

• Outcome: The system records the incident as acknowledged. 
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This feedback loop helps the system learn from confirmed incidents, improving its 

detection performance over time. 

An example of incident verification by an operator is illustrated in Figure 8-16. 

 

Figure 8-16: The operator validates the identified incident through the dashboard. 

8.4.2.1.2 Rejection 

The system allows operators to reject detected incidents that are false positives 

or incorrectly identified. When an operator rejects an incident, they provide a reason 

for the rejection, which is recorded by the system for further analysis (automatically 

for instance using NLP or manually). An example follows for illustration purposes: 

• Incident: System detects an unplanned incident, but the operator identifies it 

as a temporary slowdown and the traffic then gets back to normal conditions. 

• Action: Operator rejects the flagged incident as false positive and notes the 

reason for rejection, if possible. 

• Outcome: The system logs the rejection and the reason, with the aim of 

reducing similar false positives in the future. 



218 
 

 

Figure 8-17: The operator rejects the identified incident through the dashboard. 

This process is vital for refining the system’s accuracy and reducing the occurrence 

of false alarms. However, the reason is logged only for informational purposes and is 

not used for retraining the models used as part of the system for incident detection. 

An indicative example of an operator rejecting an incident is shown in Figure 8-17. 

8.4.2.2 Incident Insertion 

In addition to validating detected incidents, operators can manually insert 

incidents that the system may have missed. This feature ensures that all relevant 

traffic events are accounted for, enhancing the comprehensiveness of the system's 

monitoring capabilities. An example follows for illustration purposes: 

• Incident: Planned event in OAKA stadium. 

• Action: Operator manually inserts the incident, including details such as 

location, duration, and expected impact. 

• Outcome: The system updates its records and alerts drivers about the planned 

event and its potential impact. This allows for strategic traffic management. 
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By allowing manual incident insertion, the system benefits from human expertise 

and situational awareness, which can be critical in dynamic and complex traffic 

environments. 

For this manual insertion, our system allows the operator to click on the map and 

click on the right-hand side to “Create Planned Event” or “Create Unplanned Event” 

according to the type of event identified by the operators, and then complete the 

fields as shown in Figure 8-18. 

 

Figure 8-18: The operator creates a planned or unplanned event with its details through the dashboard. 
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9 Deployment	and	Evaluation	 in	Real-world	
Case	Studies	

Chapter 9 discusses the results of the evaluation of the developed and deployed 

system in real-world case studies. In Athens, the system was evaluated in a dense 

urban corridor, addressing the unique challenges of traffic management in a historic 

metropolis. In Antwerp, the focus was on a critical route encompassing the city's port 

and major motorways. The deployment in these cities offered valuable insights into 

the adaptability and effectiveness of our AI-driven incident detection system across 

diverse urban contexts, demonstrating its potential for broader application in traffic 

management. 

9.1 Case	Study	

In the following section, we present real-life use cases from two distinct urban 

contexts, Athens, the capital of Greece, and Antwerp, a major city in Belgium, which 

validate the efficacy of our methodology within distinct urban environments. Athens 

provides a complex case with its dense urban network and the inherent challenges of 

a historic metropolis, while Antwerp offers a contrasting scenario with its strategic 

significance as a port city and its different network complexities.  In Athens, we 

explore the application in a critical urban corridor, whereas in Antwerp, the focus 

shifts to a route connecting the city's port and major motorways. As part of this 

section, we detail the study area, in addition the datasets utilized in both cases.  

9.1.1 Case	Study	I:	Athens	

A corridor extending along 70 km and constituting the ring road of a metropolitan 

area connecting the airport to a populated suburb has been used as study area in our 

experiments. The road network model developed in the Aimsun Simulation Software 
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(Aimsun, 2023) is approximately 30 km long and involves 569 sections and 181 nodes 

and is depicted in Figure 9-1.  

 

Figure 9-1: The network of Athens study area. 

Loop detector data from 591 units were gathered from October 2020 to end of 

September 2021. Out of the total 591 detectors provided, 196 are regarded as reliable 

enough to be used as part of the experiments conducted. From the total amount of 

26,331,086 readings provided (one every minute from the selected period), several 

filters were applied to remove detectors which were not in the station aggregation 

file, flow reliability outliers, flow-occupancy-speed mismatches, detectors with more 

than 50% not a number entries (NaNs), stuck values (constant readings across time), 

isolated values, and atypical profiles. Several types of imputation of 

missing/unreliable data were carried out on approximately 35% of the readings, 

namely: polynomial, time k-nearest neighbor (KNN), free-flow speed imputation, 

spatial KNN, PPCA-based imputation, and weekday-based imputation. Due to the low 

reliability scores of the loop detectors in occupancy and speed, the variable which was 

selected from the loop detector data to be used for the experiments was only the 

flow. 

In addition to the Inductive Loop Detectors dataset, which comprises of the 

measurements of network-related attributes (i.e., speed, occupancy and flow), the 

labelled incidents dataset provided to us by the highway operator of our study area, 
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plays a pivotal role in the experiments we conducted to validate our methodology. 

This dataset, comprising 34,652 incident occurrences in total and 34 feature columns, 

serves as a critical resource for evaluating the performance of our models, as it 

represents the ground truth against which our models will be assessed. By leveraging 

this dataset, we can measure the accuracy and effectiveness of our detection 

techniques, enabling us to make informed decisions and ensure the quality of the 

obtained predictions. The feature columns of this dataset include information 

regarding 'timestamp', 'source', 'start_time', 'end_time', 'direction', 'intersection', 

'toll_station', 'branch', 'position_(pk)', 'type', 'subcategory', 'outcome', 'deaths', 

'injured', 'queue_start_time', 'queue_end_time', 'queue_length_cars', 

'queue_length_time', 'weather' among others.  

However, it is worth noting that certain inconsistencies were identified within the 

dataset, based on the conducted Exploratory Data Analysis. Specifically, incidents that 

had no discernible impact on traffic were still labeled as incidents. To ensure fairness 

in our experiments, a filtering process has been implemented to remove such 

instances, thus maintaining consistency in the type of loop detector input data used 

for analysis, based on the following: 

- Notably, it was observed that two specific branches of the highway recorded 

the highest number of incidents, with 13,829 and 13,757 incidents 

respectively. Since the majority of the incidents occurred on the main 

branches of the highway, a decision was made to exclusively focus on those. 

- Moreover, a filtering process was applied to include only specific incident 

types for the scope of our experiments. Specifically, the labelled incidents 

dataset exclusively encompasses incidents categorized as Traffic Congestion 

and Traffic Accident, as they are the primary focus of our investigation. 

- Finally, the incidents were further filtered based on the observed queue length 

of cars. In collaboration with stakeholders, we obtained valuable feedback 

recommending a reduction in the threshold for queue length to 50 meters, as 

opposed to our initial proposal of 200 meters. This adjustment was made 

based on their expertise and supported by the understanding that queues of 
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200 meters are exceptionally uncommon in the specific highway, even in the 

event of an unplanned incident. 

9.1.1.1.1 Locations of the sensors 

For the city of Athens, a corridor of Attiki Odos (a modern motorway extending 

along 70 km and constituting the ring road of the greater metropolitan area of Athens) 

extending from the Athens airport to the suburb of Metamorfosi has been identified 

as the network which suit the identified needs for the evaluation of our framework. 

The road network model is approximately 30 km in size (it includes a section of the 

motorway) and involves 569 sections and 181 nodes as shown in Figure 9-1. 

9.1.1.1.2 Data collection 

For the data collection phase, we make a distinction between historical data and 

real-time data. Regarding the historical data, the end-user and data provider, Attikes 

Diadromes, has provided us with a folder containing raw data obtained from ILD from 

October 2020 until April 2021. For the real-time data collection, Attikes Diadromes, 

has provided access to an SFTP server which contains the raw data files of the last 24 

hours. For this purpose, we have created and deployed a script which grabs the most 

recent files and stores them into a respective folder. The structure of the directory on 

the server where the raw data are stored follows the format: /year/month. 

Moreover, it gathers the content of the file (the raw data) and stores it directly in 

Orion Context Broker and the respective MongoDB in addition to parquet files, as 

described in detail in Chapter 8.2.1. 

9.1.1.1.3 Raw data characteristics 

The data is captured every minute from the ILDs in Attiki Odos, and each file 

contains the observations of speed, flow and occupancy stemming from each sensor. 

The format of the files containing the raw data is xml, and an example is shown below 

in Figure 9-2: 
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Figure 9-2: Raw data in xml format. 

This real-time information about the tollway of Attiki Odos Motorway (Attica 

Tollway) in Athens, Greece provided by the Attica Tollway Operations Authority is 

illustrated and described in Table 9-1: 

Table 9-1: Data information for the 1Minute ILD Data. 

XML Tag DATEX II tag Description 

status statusDescription Sensor status 

occupancy occupancy Road Occupancy 

speed averageVehicleSpeed Speed 

trafficFlow vehicleFlowRate Traffic flow 

timestamp timeValue  Datetime of the captured data 

unitID stationID Id of the sensor 

 

A total of 591 detectors are registering flow, occupancy and speed in the original 

raw dataset. Preliminary analysis of this data shows that unitID  3944 is not providing 

consistent data at 60 seconds intervals, so it is flagged as a candidate to be discarded. 

However, as we will explain in more detail below, sensors show many inconsistencies 

in measurements which led us to contact the data supplier to provide us with a list of 

the most reliable sensors or a list of the unreliable ones. 

A more detailed analysis of flow, occupancy and speed readings yield very low 

reliability scores for occupancy and speed. Reliability is estimated based on statistical 

analysis of the time-series, unknown values (NANs), zeros, negative values and 

outliers. Figure 9-3, Figure 9-4 and Figure 9-5 show heatmaps of flow, occupancy and 

speed variables, respectively, from 1-10-2020 to 30-09-2021. In these heatmaps, 
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values in the color scale to the right of the figure depict the high (in green) to low (in 

red) quality of measurements from detectors as well as null readings (in black). 

 

 

Figure 9-3: Heatmap of flow raw data from 1-10-2020 to 30-09-2021. 

 

Figure 9-4: Heatmap of occupancy raw data from 1-10-2020 to 30-09-2021. 

 

Figure 9-5: Heatmap of speed raw data from 1-10-2020 to 30-09-2021. 

Results of this preliminary raw data analysis show an immediate need for data 

cleaning, which is detailed in the following subsection. 
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9.1.1.1.4 Data cleaning and filtering 

To generate a high-quality dataset for learning, first the loop sensor data are pre-

processed to be able to be fed in the Machine Learning and Deep Learning algorithms 

developed. Out of the total 591 detectors provided, only 196 are regarded as reliable 

enough. From the total amount of 26,331,086 readings provided (one every minute 

from Oct 2020 to April 2022), several filters were applied to remove:  

• Detectors which were not in the station aggregation file 

• Flow reliability outliers 

• Flow-occupancy-speed mismatches 

• Detectors with more than 50% NaN data 

• Stuck values (constant readings across time) 

• Isolated values 

• Atypical profiles 

Several types of imputation of missing/unreliable data were carried out on 

approximately 35% of the readings, namely: 

• Polynomial 

• Time k-nearest neighbor (KNN) 

• Free-flow speed imputation 

• Spatial KNN 

• PPCA-based imputation 

• Weekday-based imputation 

Our methodology automatically discards low reliable sensors and data imputation 

involves lowering the reliability. Consequently, sensors with imputed data are not 

used for incident detection and it is recommended that any party utilizing the 

subsequent dataset either do likewise and discard low reliable data or experiment 

taking into consideration the implications this may have on their results. 

9.1.1.1.5 Cleaned data characteristics 
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Figure 9-6 shows the final reliability of flow data (a sample visualization between 

1-10-2020 and 30-09-2021 is depicted) after the cleaning, imputation and aggregation 

process has been done, resulting in 564 detectors (out of which 196 have got better 

reliability scores). Low reliability is depicted in black and high reliability in green.   

 

Figure 9-6: Heatmap of flow cleaned data from 1-10-2020 to 30-09-2021. 

9.1.1.1.6 Data transformation 

Finally, the data are transformed and stored on the server. Each parquet file 

contains the monthly observations of one of the traffic characteristics (speed, 

occupancy, flow). Reading this file as a dataframe, this contains as an index the 

timestamp, in 5-minute intervals, and as columns the respective ILD ids, as identified 

by the raw data. The corresponding measurements are the values which fill the 

dataframe and characterize the ILD and timestamp. Moreover, there is a 

corresponding file which contains the reliability of each sensor for each observation 

in each timestamp where the later was captured. Finally, the data are also stored in 

Orion Context Broker and the respective MongoDB as described in the Chapter 

detailing the developed system. 

Below you can find the representation of flow as illustrated in indicative 

dataframes (the speed and occupancy dataframes are similar regarding their 

representation): 
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Figure 9-7: Dataframe including sensors' flow. 

 

 

Figure 9-8: Dataframe including sensors' reliability of flow. 

To summarize, after this filtering process, the dataset used primarily originates 

from a closed-circuit television (CCTV) system, encompassing a total of 1,786 incident 

occurrences for the two main branches and more specifically 763 reported incidents 

for the same time period as the traffic measurements. Following data cleaning and 

filtering, it was necessary to transform the dataset into a format suitable for utilization 

by our algorithms, namely in 5-minute intervals where rows refer to timestamps and 

columns were the id of the loop sensors, and the values of the matrix were 1 if this 

location and time corresponds to an incident occurrence, or 0 otherwise. 

9.1.2 Case	Study	II:	Antwerp	

For the city of Antwerp, there is a multitude of inductive loop detectors available 

which provide one-minute readings regarding the network conditions, however, the 

area which has been deemed suitable to be used as a test bed of our incident 
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detection task represents the corridor between the port of Antwerp and Eindhout 

including E313 motorway in both directions. This area includes 103 nodes in Direction 

1 and 164 nodes in Direction 2 and in Figure 9-9 the locations of the sensors are 

depicted on a map. 

 
Figure 9-9: Locations of loop detectors in Antwerp study area. 

The traffic data for E313 highway collected by loop detectors include the number 

of vehicles and the average speed, occupancy and flow, in addition to other traffic 

measurements, such as statusDescription, faultDescription and regularity, for 5 

different vehicle classes/categories, aggregated per minute and the location of the 

measurement points. Loop detector data from 267 units was gathered from end of 

October 2022 to end of August 2023. The analysis of raw data yielded acceptable 

results in terms of quality of detectors’ measurements, where one can observe some 

data gaps around May-June 2023 and a couple of missing days in Oct-Nov 2022. There 

are seven detectors that do not provide consistent readings over the whole period 

and those have been excluded from the analysis. In the pre-processing phase of our 

analysis, we employed a meticulous filtering and cleaning process to ensure the 

integrity and quality of the data. Initially, we identified and rectified any anomalies in 

the data, such as outliers or incomplete records. Subsequently, to streamline the 

dataset for more coherent analysis, we aggregated the different vehicle categories 

into a single, consolidated attribute. This means that we only kept the sum of 
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vehicleFlowRate and the average of the speed, in addition to the supplementary 

attributes mentioned. This aggregation enables a more generalized assessment of 

traffic patterns while maintaining the robustness of the data. Moreover, several other 

cleaning processes have been employed, as described in the Athens’ case study 

above. After cleaning, aggregation and filtering the resulting data show acceptable 

reliability scores (overall above 0.4 in a scale from 0 to 1, where 1 is the highest 

reliability), and then it was necessary to transform the loop detector data and split in 

three distinct datasets, for speed, flow and occupancy respectively. Moreover, 

resampling of the dataset every 5 minutes has been performed. 

9.1.2.1.1 Locations of the sensors 

For the city of Antwerp, there is a multitude of loop detectors available which 

provide one-minute readings regarding the network conditions, as shown in Figure 

9-10, - a total of 4478 to be precise. However, the area which has been deemed 

suitable to be implemented and tested for the use case of incident detection 

represents the corridor between the port of Antwerp and Eindhout including E313 

motorway in both directions. This area includes 103 nodes in Direction 1 and 164 

nodes in Direction 2 and in Figure 9-9 the locations of the sensors of the model are 

depicted on a map.  
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Figure 9-10: Available loop detectors around the Antwerp area. 

9.1.2.1.2 Data collection 

Traffic data measured from loop detectors from highways in the region of Flanders 

are updated each minute, this data is available online9 and is presented in XML 

format. The data is collected from our part every minute, the data labels are adapted 

accordingly to Datex II and finally we publish the data in Orion and store it in the Data 

Storage. 

9.1.2.1.3 Raw data characteristics 

 

The traffic data for E313 highway collected by loop detectors include the number 

of vehicles and the average speed, occupancy and flow, in addition to other traffic 

measurements for 5 different vehicle classes/categories, aggregated per minute and 

the location of the measurement points. 

Traffic data updated each minute from highways in the region of Flanders is 

available at http://miv.opendata.belfla.be/miv/verkeersdata.The description of the 

 
9 thttp://miv.opendata.belfla.be/miv/verkeersdata  

http://miv.opendata.belfla.be/miv/verkeersdata
http://miv.opendata.belfla.be/miv/verkeersdata
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data, including the original tag and the data description from the data source is 

summarized in Table 9-2. 

Table 9-2: Data information for the MIV loop-based traffic data elements. 

Tag Description 

meetpunt Data per measurement point under the element 
"meetpunt". 

• unieke_id: Unique identification number of the 
measurement point. More data (location, etc.) about 
the measurement point are found in the 
configuration: 
http://miv.opendata.belfla.be/miv/configuratie/xml 

beschrijvende_id: Descriptive id. (Internally used id. May 
be omitted in the future.) 

lve_nr Number of the LVE (Local Processing Unit). The LVE 
processes the data of a group of measurement points This 
number is used internally. This data can be omitted in the 
future.) 

tijd_waarneming "Obervation time". Starting date and time of the minute 
to which the data correspond, UTC+1. the date is several years 
in the past, this can point to a restarted measurement device 
which hasn't synchronised its time yet. that case, if the data 
still changes every  minute, it can be assumed that the data is 
live and current. pe. 13:00:00 contains the minute between 
13:00:00 and 13:00:59 

tijd_laatst_gewijzigd Date and time of the last update of data for this 
measurement point. 

actueel_publicatie • 0 = Data of this point has a tijd_waarneming older 
than about 3 minutes ago 

1 = Data of this point has a tijd_waarneming more recent 
than about 3 minutes ago. This might signify connection 
problems. The measurement point may be offline. 

beschikbaar Availability of the measurement point: 

• 0 = The measurement point is currently unavailable 

• 1 = The measurement point is currently available 

defect Failure-status of the measurement point 

• 0 = no failure 
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• 1 = 1 of both detection loops is probably failing 

2 = more than 20 percent bad counts: severe failure 

geldig Regularity of the data: 

• 0 = Regular data 

• 1 = Indication for irregular data 

• 2 = Indication for extremely irregular data 

3 = Indication for extremely irregular data caused by a 
failure 

meetdata Data measurement for each type of vehicle class 

verkeersintensiteit Vehicle count within vehicle class. 

voertuigsnelheid_rekenkundig Sum (vi) / n = arithmetic average speed of the vehicles in 
this vehicle class (with vi = individual speed of a vehicle in this 
vehicle class) 

• Value domaing 0 to 254 km/h. 

• Value range 0..200 km/h 

• Resolution 1. 

Special values: 

• 251: Initial value 

• 254: Calculation not possible 

252: no vehicles were counted in this vehicle class. 

voertuigsnelheid_harmonisch n / Sum (1/vi) = harmonic average speed of the vehicles in 
this vehicle class with vi = individual speed of a vehicle in this 
vehicle class) 

Special values: 

• 251: Initial value 

• 254: Calculation not possible 

252: no vehicles were counted in this vehicle class. 

klasse_id Vehicle class. More information about each class can be 

found in Table 9-3. 

rekendata • Calculated data 
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bezettingsgraad Occupancy = Pointcoverage (in 10ms) / 60s (in sec) 

• Pointcoverage: Time during which a fictional point of 
the detector was covered by a vehicle. The 
pointcoverage is expressed in units of 10 milliseconds 

beschikbaarheidsgraad Degree of availability = ((60s - unavailability) / 60s) * 100 
Unavailability = Time during which a detector was unable to 
reliably detect passing vehicles. 

onrustigheid Sum (vi²) / N - ( sum (vi) / N )²  (including all vehicles from 
all classes)  

• (vi) = speed of vehicle i  

N = total vehicle count 

 

Table 9-3: Vehicle classes/categories for Antwerp traffic dataset. 

Vehicle Class 
number 

Description 

Vehicle class 1 This vehicle class was used for vehicles with estimated length between 

0m and 1,00m. Pe. motorbikes. The occasional measurements in this vehicle 

class are unreliable. This data is unused by AWV and the Traffic Center.    

Vehicle class 2 Cars = vehicles with an estimated length between 1,00m and 4,90m 

Vehicle class 3 Vans = vehicles with an estimated length between 4,90m and 6,90m  

Vehicle class 4 Rigid lorries = vehicles with an estimated length between 6,90m and 

12,00mbv.: Lorry, or tractor  

Vehicle class 5 (Semi-)Trailers or busses= vehicles with an estimated length longer than 

12,00m by.: lorry with trailer, tractor with semi-trailer, or bus. 

 

To ensure the minimum changes over time, we have avoided to use the tags 

labelled as “internal use only” or “Can be omitted in the future”, such as lve_nr and 

beschrijvende_id. Furthermore, the original tags have been translated to DATEX II. 
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Table 9-4: Mapping between XML and DATEX II tags. DATEX II tag’s descriptions are also included. 

XML Tag DATEX II tag 

tijd_waarneming timeValue 

tijd_laatst_gewijzigd lastUpdateOfDeviceInformation 

actueel_publicatie lastDeviceCheck 

beschikbaar statusDescription 

defect faultDescription 

geldig regularity   

meetdata MeasuredData  

verkeersintensiteit vehicleFlowRate  

voertuigsnelheid_rekenkundig averageVehicleSpeed  

voertuigsnelheid_harmonisch harmonicSpeed 

klasse_id stationType / vehicleType 

rekendata ElaboratedData  

bezettingsgraad occupancy  

beschikbaarheidsgraad availabilityRate  

onrustigheid restlessness  

 

For real time updates about incidents, traffic flow, roads status and events 

affecting traffic on the highways in Flanders, we have collected and used data from  

https://www.verkeerscentrum.be/uitwisseling/datex2v3, presented in xml. This data 

is already published using DATEX II tags and the description of the data is described in 

Table 9-5. In this case, thus, there is no need to modify any tag. 

 

 

https://www.verkeerscentrum.be/uitwisseling/datex2v3
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Table 9-5: Data information for the MIV real time traffic information. 

DATEX-II Tag Description 

situation An identifiable instance of a traffic/travel situation comprising 
one or more traffic/travel circumstances which are linked by one or 
more causal relationships. Each traffic/travel circumstance is 
represented by a Situation Record. 

Id: Situation Id 

situationVersionTime The status of the related information (real, test, exercise ....). 

headerInformation Management information relating to the data contained within 
a publication. 

confidentiality The extent to which the related information may be circulated, 
according to the recipient type. 

informationStatus The status of the related information (real, test, exercise ....). 

situationRecord An identifiable versioned instance of a single record/element 
within a situation. 

• Type: Type of the situation record. 

• Id: Id of the situation record. 

Version: Version of the situation record 

situationRecordCreatio
nTime 

The date/time that the SituationRecord object (the first version 
of the record) was created by the original supplier. 

situationRecordVersion
Time 

The date/time that this current version of the SituationRecord 
within the situation was written into the database of the supplier 
which is involved in the data exchange. Identity and version of record 
are defined by the class stereotype implementation. 

probabilityOfOccurrenc
e 

An assessment of the degree of likelihood that the reported 
event will occur. 

safetyRelatedMessage Indicates, whether this SituationRecord specifies a safety 
related message according to Commission Delegated Regulation 
(EU) No 886/2013. 

validity Specification of validity, either explicitly or by a validity time 
period specification which may be discontinuous. 

validityStatus Specification of validity, either explicitly overriding the validity 
time specification or confirming it. 

validityTimeSpecificatio
n 

A specification of periods of validity defined by overall bounding 
start and end times and the possible intersection of valid periods 
with exception periods (exception periods overriding valid periods). 
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overallStartTime Start of bounding period of validity defined by date and time. 

overallEndTime End of bounding period of validity defined by date and time. 

locationReference The location (e.g. the stretch of road or area) to which the data 
value(s) is or are pertinent/relevant. This may be different from the 
location of the measurement equipment (i.e. the measurement site 
location). 

Type: Type of the location reference 

complianceOption Defines whether the network management instruction or the 
control resulting from a network management action is advisory or 
mandatory. 

roadOrCarriagewayOrLa
neManagementType 

Type of road, carriageway or lane management action 
instigated by operator. 

pointByCoordinates A single point defined only by a coordinate set with an optional 
bearing direction. 

pointCoordinates A pair of planar coordinates defining the geodetic position of a 
single point using the European Terrestrial Reference System 1989 
(ETRS89). 

latitude Latitude in decimal degrees using the European Terrestrial 
Reference System 1989 (ETRS89). 

longitude Longitude in decimal degrees using the European Terrestrial 
Reference System 1989 (ETRS89). 

alertCPoint A collection of information describing locations using the Alert-
C location referencing approach. 

Type: Type of alertCPoint 

alertCLocationCountryC
ode 

Country code from the alert location 

alertCLocationTableNu
mber 

Number allocated to an ALERT-C table in a country. Ref. EN ISO 
14819-3 for the allocation of a location table number. 

alertCLocationTableVer
sion 

Version number associated with an ALERT-C table reference. 

alertCDirection The direction of traffic flow along the road to which the 
information relates. 

alertCDirectionCoded Direction of navigation with respect to secondary to primary 
location (RDS direction) 

alertCMethod4Primary
PointLocation 

The point (called Primary point) which is either a single point or 
at the downstream end of a linear road section. The point is specified 
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by a reference to a point in a pre-defined ALERT-C location table plus 
a non-negative offset distance. 

alertCMethod4Seconda
ryPointLocation 

The point (called Primary point) which is either a single point or 
at the downstream end of a linear road section. The point is specified 
by a reference to a point in a pre-defined ALERT-C location table plus 
a non-negative offset distance. 

alertCLocation Identification of a specific point, linear or area location in an 
ALERT-C location table. 

specificLocation Unique code within the ALERT-C location table which identifies 
the specific point, linear or area location. 

offsetDistance The non-negative offset distance from the ALERT-C referenced 
point to the actual point. The ALERT-C locations in the primary and 
secondary locations must always encompass the linear section being 
specified, thus offset distance is towards the other point. 

gmlLineString Line string based on GML (EN ISO 19136) definition: a curve 
defined by a series of two or more coordinate tuples. Unlike GML 
may be self-intersecting.  

SrsName: Source name if this is not present, posList is assumed 
to use "ETRS89-LatLonh" reference system 

posList List of coordinate Tuples define the geometry of this 
GmlLineString. There must be at least 2 Tuples of coordinates. 

alertCLinear A linear section along a road defined between two points on the 
road by reference to a pre-defined ALERT-C location table. 

Type: Type of alertCLinear 
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Figure 9-11: Exploration of the raw traffic data for Antwerp. 

For the context of our case, we have transformed the data using DATEX II attribute 

tags and the dataframe created from reading the transformed XML is illustrated in 

Figure 9-11. As part of the dataset for each sample, here are also two attributes which 

contain nested data: the measured and elaborated constructs. An instantiation of 

measured attribute as part of a sample is shown below:  

[{“vehicleClass”: 1, “vehicleFlowRate”: 0, “averageVehicleSpeed”: 0, 

“harmonicSpeed”: 252}, {“vehicleClass”: 2, “vehicleFlowRate”: 0, “averageVehicleSpeed”: 
0, “harmonicSpeed”: 252}, {“vehicleClass”: 3, “vehicleFlowRate”: 0, 
“averageVehicleSpeed”: 0, “harmonicSpeed”: 252}, {“vehicleClass”: 4, “vehicleFlowRate”: 
0, “averageVehicleSpeed”: 0, “harmonicSpeed”: 252}, {“vehicleClass”: 5, 
“vehicleFlowRate”: 0, “averageVehicleSpeed”: 0, “harmonicSpeed”: 252}] 

whereas for the elaborated, an example is shown below: 

{"occupancy": 0, "availabilityRate": 100, "restlessness": 0} 

9.1.2.1.4 Data cleaning and filtering 

In the pre-processing phase of our analysis, we employed a meticulous filtering 

and cleaning process to ensure the integrity and applicability of the loop detector 

data. Initially, we identified and rectified any anomalies in the data, such as outliers 

or incomplete records. Subsequently, to streamline the dataset for more coherent 

analysis, we aggregated the different vehicle categories into a single, consolidated 

attribute. This means that we only kept the sum of vehicleFlowRate and the average 

of the speed, in addition to the supplementary attributes mentioned above. This 
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aggregation enables a more generalized assessment of traffic patterns while 

maintaining the robustness of the data. Moreover, the dataset has been harmonized 

to correspond with the corresponding data model. 

9.1.2.1.5 Cleaned data characteristics 

The cleaning and filtering process, as described in the previous section, has 

resulted in a dataframe which contains the id of each sensor included the dataset, the 

timeValue of the measurements, the averageVehicleSpeed (representing the speed 

of the measured timestamp in that particular loop detector), the vehicleFlowRate and 

occupancy(representing the flow of vehicles and occupancy respectively, measured 

by the loop detector in that specific timestamp). Moreover, the attributes of 

availabilityRate, regularity, faultDescription and statusDescription are included in the 

dataframe. Figure 9-12 shows the final dataset after the cleaning, imputation and 

aggregation process has been done. 

 

 

Figure 9-12: Cleaned data characteristics for Antwerp dataset. 

9.1.2.1.6 Data transformation 

After the cleaning and filtering process, it was necessary to transform the loop 

detector data and split the dataset in three distinct datasets, for speed, flow and 

occupancy respectively. Moreover, resampling of the dataset every 5 minutes has 

been performed. The datasets are shown in Figure 9-13, Figure 9-14 and Figure 9-15. 
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Figure 9-13: Transformation of traffic dataset of Antwerp - speed. 

 

Figure 9-14: Transformation of traffic dataset of Antwerp - flow. 

 

Figure 9-15: Transformation of traffic dataset of Antwerp - occupancy. 

Moreover, in order to align the loop detector dataset with the structure of the 

respective incidents dataset, which involves segments and not point locations, we 

utilized the Geopandas library to spatially join the point-based detector data with the 

segment-based incident records. This geospatial analysis required precise mapping of 

loop detector coordinates, as provided by stakeholder operators in corresponding 

CSV files, to the predefined road segments where incidents were catalogued. The 

alignment process ensured that each loop detector's data was accurately associated 

with the corresponding road segment, facilitating a direct comparison between traffic 

conditions and incident occurrences. For visualization purposes, and to validate the 

accuracy of our transformation, we employed the Folium library to map the loop 

detectors onto an interactive map, overlaying this with the incident segments to 

confirm the correctness of the alignment. This meticulous approach enabled a robust 

spatial analysis, ensuring that traffic patterns could be analyzed within the exact 
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context of incident locations. The point-based dataset has thus been transformed to 

82 respective segments. (41 per direction), as illustrated in Figure 9-16. 

 

Figure 9-16: Mapping of loop detectors to segments for Antwerp. 

The final format of the three created distinct datasets for speed, flow and 

occupancy is illustrated in respectively. 

 

Figure 9-17: Final traffic dataset for Antwerp using segments - speed. 

 

Figure 9-18 Final traffic dataset for Antwerp using segments - flow. 
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Figure 9-19 Final traffic dataset for Antwerp using segments - occupancy. 

9.1.3 Labelled	Incidents	Dataset	

The labelled incidents dataset is extremely important for the incident detection 

task’s evaluation, since it constitutes the ground truth on which the performance 

metrics of our models will be based.  

9.1.3.1 Athens Case Study 

9.1.3.1.1 Data collection 

The end-user partner, Attikes Diadromes, has provided us with an Excel file 

containing information about the incidents which had been registered in Attiki Odos 

from October 2020 until April 2022. This dataset is used in conjunction with the 

corresponding historical data from IDL sensors obtained from Attiki Odos, in order to 

build the initial data-driven models for incident detection in this use case. 

Regarding real-time collection of incidents, the users/operators are able to insert 

incidents happening in real-time in the system through the dashboard developed, 

thus this constitutes another way of integrating new incidents and fusing those within 

this dataset. 

9.1.3.1.2 Raw data characteristics 

As explained in Chapter 9.1.1.1.16, the historical labelled incidents dataset 

provided for the task of incident detection consists in an excel file with 34652 

observations and 34 feature columns. Columns were translated to English from Greek 

to grasp the meaning of each tagged feature. The file was converted to a Python 

pandas data frame for exploratory analysis, and a unique values’ analysis was carried 

out. The main source of labelled incidents came from a closed-circuit television (CCTV) 
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set (a total of 6489), branches A and E had the highest amount of recorded incidents 

(13829 and 13757 respectively), pk-points were annotated in the dataset (but there 

is a lack of loop detectors specifications), start and end time of the incident was 

annotated together with the queue length in number of cars. However, some 

inconsistencies were also noted, for instance, incidents that had no impact to traffic 

also appeared as labelled incident.  

In the following figures, some of the outcomes of the Exploratory Data Analysis 

regarding the timespan of the data can be found: 

 

Figure 9-20: Traffic incident distribution per year and per month. 
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Figure 9-21: Yearly distribution of traffic incidents. 

Below in Figure 9-22, the histogram is showing the distribution of incidents in May 

2021, where each bar represents the number of incidents on a particular day. 

 

Figure 9-22: Distribution of number of reported incidents in Attiki Odos - May 2021. 

9.1.3.1.3 Data cleaning and filtering 

As soon as we have managed to collect the data and derived some first 

impressions on them through Exploratory Data Analysis, the next step was to perform 

data cleaning.  

One of the columns of this dataset referred to the timestamp of the recorded 

incident. We have observed that two observations between January and October 

2020 were included, which was probably due to an error in the dataset collection, 

therefore, these two observations were ultimately discarded. 
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Then, in order to proceed with the filtering of the incidents which actually had an 

impact on the traffic state of the network, we examined correlations between 

different features/columns. We have tried various combinations, though in the next 

paragraphs we are going to briefly explain the most significant ones, which were 

included in the filtering process. 

From Figure 9-23, we have observed that he vast majority of the observed 

incidents stemmed from the CCTV cameras. (For completeness reasons, we state that 

the sources as illustrated on the Y-axis also include 1024 telephone number, 

Emergency Roadside Telephones (ERT), traffic police, Interamerican and others).  

 
Figure 9-23: Queue length time in relation to the information source of incidents. 

From Figure 9-24 and Figure 9-25, we observe that most of the observed incidents 

belong to the type 1 - Traffic Congestion and 4D - Traffic accident ,and that the 

columns containing information about the queue length time and queue length of the 

cars demonstrate a correlation between them. All types of incidents present in the 

labelled incidents dataset of the Athens use case are shown in Table 9-6. 
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Figure 9-24: Queue length time in relation to the incident type. 

 

 
Figure 9-25: Queue length of cars (in meters) in relation to the incident type. 

Table 9-6: Types of incidents in the Athens labelled incident dataset. 

TYPE SUBTYPE 

1 - TRAFFIC CONGESTION 1.A - DUE TO AN INCIDENT 

1.B - DUE TO TRAFFIC LOAD 

2 - EXTREME WEATHER 
EVENTS 

 

2.A - HEAVY RAIN 

2.B - SNOW 

4A - OBSTRUCTION-
OUTFLOW 

 

4A.A - OUTFLOW 

4A.B - DEAD OR INJURED ANIMAL 

4A.C - LARGE OBJECT 

4B - ABANDONED VEHICLE 4B. ABANDONED VEHICLE 

4C - VEHICLE FAILURE 

 

4C.A - MECHANICAL FAILURE 

4C.B - FUEL 



249 
 

4C.C - TIRES 

4D - TRAFFIC ACCIDENT 

 

4D.X - LEFT DEFLECTION 

4D.D - NTOMETOPIC COLLISION 

4D.Ω1 - IMPACT ON TOLL EQUIPMENT 

4D.O - OVERTURN ON THE ROAD 

4D.B - SIDE-FRONTAL COLLISION 

4D.Ω2 - OBSTACLE IMPACT 

4D.C - SIDE COLLISION 

4D.N - RIGHT COLLISION 

4D.Ω3 - DROPPING OF ITEMS FROM THE FRONT  

4D.P - FIRE 

4D.T - COLLISION OF 3 VEHICLES (KARAMBOLA) 

4D.X - IMPACT ON PERMANENT MARKING 

4D.Y - IMPACT ON A TEMPORARY MARKING 

4D.L - DRIFTING OF ANIMAL  

4D.F - ON A PARKED VEHICLE 

4D.Y - COLLISION OF 4 VEHICLES (KARAMBOLA) 

4D.Ω4 - OUTFLOW FROM A VEHICLE IN FRONT 

4D.Z - ON A VEHICLE THAT MAKES A FORCED STOP 

4D.S -OTHER 

4D.TH - IN PILLAR OR TREE 

4D.Y1 - COLLISION OF MORE THAN FOUR VEHICLES 
(KARABOLA) 

4E - UNAUTHORIZED USER 

 

4E.A - PEDESTRIAN 

4E.C - EXCESS HEIGHT 

4E.D - LOW SPEED 

4E.E - OTHER 

4E.B - CYCLIST 
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4E.F - OTHER 

4F - DANGEROUS RISK 

 

4F.C - MOVING ANIMAL 

4F.B - POOR LOADING 

4F.A – DIFFERENT TRAFFIC DIRECTION 

4F.D - OTHER 

4G - OTHER EVENTS (POLICE) 

 

4G.A - BOMBING THREAT 

4G.C - OTHER CAUSE 

4L - FIRE AT KEP 4L.A - TECHNICAL DEFECT 

5A - ILLEGAL ENTRY 5A.A - AT A TOLL STATION 

 
We have also examined the distribution of the queue length of cars across 

different ranges of values. We can see that the vast majority are concentrated 

between 0 and 1500, but there are several outliers which expand until 12000 meters, 

as shown in the Figure 9-26 below: 

 

Figure 9-26: Distribution of queue length of cars in intervals. 

Based on the above constatations, we have decided to filter the incidents for the 

initial preliminary experiments according to the following rules: 

- We have filtered the incidents based on their type, namely 1 - Traffic 

Congestion and 4D - Traffic accident and the rest of the values were not 

included in the labelled incidents dataset due to the fact that they do not affect 

the road and therefore will not be captured in our preliminary experiments. 
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- Finally, the incidents have been filtered on the queue length of the cars 

observed. 

o As shown in the above Exploratory Data Analysis regarding the 

percentile distribution of the queue length, we identified 200 meters 

as a threshold for the filtering.  

o After communication with stakeholders, we received feedback to 

reduce the threshold for queue length size to 50 (instead of 200 m. 

which was our initial proposal). This proposal was based on their 

expertise and justified by the fact that it is extremely rare to have 

queues of 200 meters in Attiki Odos, even when an unplanned incident 

would occur. 

9.1.3.1.4 Data transformation 

After the data cleaning and the filtering, the dataset needed to be transformed in 

a way that it could be fed in the Machine Learning algorithms, as the labels in case of 

Supervised training, or for evaluation in the case of Unsupervised methods.  

Based on the start and end location of the incidents which was specified in the 

relative columns of the dataset, we have created a transformer script which maps 

these locations to the closest sensor Unit IDs. This permits us to have a mapping 

between the incident dataset and the flow, speed and occupancy observations 

gathered by the loop sensors, based on the id of each of those. There were difficulties 

involved in the sense that for the case of junctions, it has been quite complex to 

identify the IDs of the sensors in the affected areas, since there was no direct link 

between the exact location and several calculations were required to get an 

approximation. Finally, we were able to transform the filtered incidents dataset for 

branches A and E for the month of May in 5-minute intervals where rows refer to 

timestamps and columns were the ids of the loop sensors, and the values of the matrix 

were 1 if this location and time corresponds to an incident occurrence, or 0 otherwise. 

9.1.3.1.5 Limitations 
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We would like to specify the fact that there are limitations to the presented steps, 

specifically regarding data filtering, along with inherent limitations stemming from the 

collected data itself, some of which are briefly discussed below:  

- It is possible that some of the accidents are not registered. From the analysis, 

all of the incidents have been recorded manually and most of them have been 

identified through CCTV cameras.  

- Another possibility is that perhaps the recorded timings are not accurate. It is 

possible that an event which had happened on a timestamp t, is recorded on 

a later timestamp. However, this has a severe impact on the evaluation of our 

algorithms.  

- Last but not least, the process which we have employed for filtering could be 

prone to errors. The selection criteria were based on stakeholders’ expertise 

and the dataset characteristics, albeit there is a possibility that some incidents 

which had a severe impact to the traffic state are neglected and not taken into 

account. 

9.1.3.2 Antwerp Use Case 

Together with the loop detector dataset which contain information of the traffic 

characteristics, we have managed to acquire an Excel file with details for the incidents 

which had been registered in E313 Antwerp highway. The labelled incidents dataset 

includes 5774 incident occurrences in total, spanning from 2011-04-26 11:29:19.647 

until 2023-08-29 13:29:52.907 and more specifically for our case and the dates 

selected (2022-10-27 to 2023-08-29), it contains 526 incidents for 2023 and 136 

incidents for 2022. This dataset contains the following fields: segment_id, incident_id, 

registration_time, duration, direction and location of the incident (kmpt1 and kmpt2). 

Based on the start timestamp and duration of the incidents specified in the relative 

columns of the dataset, we have mapped these timestamps to the corresponding start 

and end time. However, it is impossible to perform further filtering of this dataset 

based on its impact in traffic or severity from the information available. Thus, all the 

incidents reported in the dataset are kept in the evaluation dataset. Finally, the 
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filtered incidents dataset has been transformed in 5-minute intervals where rows 

refer to timestamps and columns were the ids of the segments and the values of the 

matrix were 1 if this location and time corresponds to an incident occurrence, or 0 

otherwise. 

9.1.3.2.1 Data collection 

The respective data provider from Verkeercentrum provided us with an Excel file 

containing information about the incidents which had been registered in E313 

Antwerp highway. This dataset is used in conjunction with the corresponding 

historical data from ILD sensors obtained. 

9.1.3.2.2 Data characteristics 

The labelled incidents dataset includes 5774 incident occurrences in total, 

spanning from 2011-04-26 11:29:19.647 until 2023-08-29 13:29:52.907 and more 

specifically for our case, it contains 110 incidents for 2023 and 530 incidents for 2022. 

 

Figure 9-27: Sample of incident dataset for Antwerp. 
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Figure 9-28: Transformed incident dataset for Antwerp as a dataframe. 

9.1.3.2.3 Data cleaning and filtering 

After having created supplementary fields based on the information available in 

our initial raw dataset, we performed filtering in order to limit our incident 

occurrences to the same time period when the loop detector dataset is available, 

specifically from 2022-10-27 until 2023-08-29. For this time period, in the following 

Figures you can see some insights drawn from the incident dataset. 
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Figure 9-29: Histogram depicting number of accidents per segment in Antwerp. 

 

 

Figure 9-30: Top 5 days and top 5 sensors with 

most recorded incidents respectively. 

9.1.3.2.4 Data transformation 

As specified in the previous section regarding the use case of Athens, similarly, 

after the data cleaning and the filtering, the dataset needed to be transformed in a 

way that it could be fed in the Machine Learning algorithms. 

Based on the start timestamp and duration of the incidents specified in the 

relative columns of the dataset, we have created a transformer script which maps 
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these timestamps to the corresponding start and end time. Finally, we were able to 

transform the filtered incidents dataset for directions 1 and 2 in 5-minute intervals 

where rows refer to timestamps and columns were the ids of the segments and the 

values of the matrix were 1 if this location and time corresponds to an incident 

occurrence, or 0 otherwise. 

 

Figure 9-31: Final incident dataset for Antwerp after necessary transformations. 

9.1.3.2.5 Limitations 

We would like to specify the fact that there are limitations to the presented steps, 

specifically regarding data filtering, along with inherent limitations stemming from the 

collected data itself, some of which are briefly discussed below:  

- It is possible that some of the accidents are not registered, since from the input 

received from the stakeholder operators, the incidents have been recorded 

manually. 

- Another possibility is that perhaps the recorded timings are not accurate. It is 

possible that an event which had happened on a timestamp t, is recorded on 

a later timestamp. However, this has a severe impact on the evaluation of our 

algorithms.  
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9.2 Data	Preparation	Process	

The loop detector datasets need to be prepared in order to be fed to our 

methodology. First of all, data cleaning is performed, and the respective features are 

extracted. Moreover, the loop detector datasets for both case studies suffer from 

imbalance issues, as the majority of samples belong to the Normal class. The challenge 

of working with imbalanced datasets is that most machine learning techniques will 

ignore, and in turn have poor performance on, the minority class, although it is the 

performance on the minority class that is mostly important. To address this issue, the 

Synthetic Minority Oversampling Technique (SMOTE) (Chawla, Bowyer, Hall, & 

Kegelmeyer, 2002) and Tomek link (Tomek, 1976) is frequently employed. In our 

cases, we have chosen to combine SMOTE with Tomek links technique, as it has been 

shown that this method is much superior compared with that of using only one of the 

two (Zeng, Zou, Wei, Liu, & Wang, 2016) (Swana, Doorsamy, & Bokoro, 2022). 

Afterward, the data were normalized by the Robust Scaler, which scales the features 

using statistics that are robust to outliers. Table 9-7 summarizes the steps involved in 

the data-preprocessing process used in this research. 

Table 9-7: Preprocessing operations applied in the loop detector datasets. 

Preprocessing 
Operation 

Details 

Data cleaning Several filters were applied to: 
• remove detectors which were not in the station aggregation 

file,  
• flow reliability outliers,  
• flow-occupancy-speed mismatches, 
• detectors with more than 50% not a number entries (NaNs),  
• stuck values (constant readings across time), 
• isolated values,  
• and atypical profiles.  

Several types of imputation of missing/unreliable data were carried out 
on a portion of the readings, namely: polynomial, time k-nearest 
neighbor (KNN), free-flow speed imputation, spatial KNN, PPCA-based 
imputation, and weekday-based imputation. 

Resampling Resampling to 5-minute intervals. 

Features 
extraction 

The following features have been extracted for the classification task: 
Traffic_Variables*1, Upstream and downstream Traffic_Variables for 
adjacent detectors, Mean upstream and downstream Traffic_Variables 
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of detector {5, 10, 15} minutes before, Mean upstream and 
downstream Traffic_Variables of detector {5, 10, 15} minutes after, 
Mean upstream and downstream Traffic_Variables of adjacent 
detectors {5, 10, 15} minutes before, Mean upstream and downstream 
Traffic_Variables of adjacent detectors {5, 10, 15} minutes after, 
time_of_day, day_of_week, is_weekend, is_holiday. 
For the regression task, the same set of features have been extracted, 
with the exception of: Mean upstream and downstream 
Traffic_Variables of detector {5, 10, 15} minutes after and Mean 
upstream and downstream Traffic_Variables of adjacent detectors {5, 
10, 15} minutes after. 
*1{Flow} for Athens case study; {Flow, Occupancy, Speed} for Antwerp 
case study. 

Data Balancing 
*2 

SMOTE with Tomek Link. 
*2 Only used for the classification task 

Normalization  Robust Scaler. 

 
Regarding the processing of the target dataset, the labelled incidents’ dataset, as 

it has thoroughly been described per case study, we would like to acknowledge the 

existence of certain limitations in the steps outlined, particularly concerning data 

filtering, as well as inherent limitations associated with the collected data itself. 

Several factors contribute to these limitations, which are discussed herein. Firstly, 

some incidents may not have been captured and registered within the dataset. 

Although our analysis indicates that all incidents were recorded manually, with most 

being identified through CCTV cameras, the potential for incomplete incident 

registration remains. Secondly, there is a possibility of inaccurate timing in the 

recorded incidents. It is feasible that an event occurring at a specific timestamp could 

be recorded or logged at a later timestamp. Such inaccuracies have notable 

repercussions on the evaluation of our algorithms. Lastly, the filtering process we 

employed is not immune to errors. While the selection criteria were based on the 

expertise of stakeholders and dataset characteristics, there is a chance that some 

incidents with significant traffic implications may have been inadvertently overlooked 

and not accounted for in our analysis. 

9.2.1 Further	processing	
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Apart from the steps of the Machine Learning pipeline, which has been presented 

in Chapter 8.1.1, we are presenting in detail some steps we have performed based on 

the nature of the data and the problem we are addressing. 

Over sampling 

Due to the scarcity of traffic data under incident conditions, the dataset of incident 

and non-incident conditions is imbalanced. To resolve the imbalanced dataset, an 

over-sampling strategy is performed to the incident dataset for the Supervised 

learning task. The over-sampling strategy balances the dataset by increasing the 

number of minority class samples. The synthetic minority oversampling technique 

(SMOTE) is a typical over sampling algorithm. For each instance in the minority class, 

the algorithm calculates the Euclidean distance between this instance and other 

instances and obtains its k-nearest neighbors. Then, the sampling ratio is chosen 

according to the imbalance ratio of the dataset. For each minority instance, several 

instances are selected from its k-nearest neighbors randomly. For this reason, we 

have utilized the Python imbalanced-learn package to run the SMOTE algorithm on 

the dataset, for the supervised learning task, for instance for the SVM classification of 

incident versus non-incident class. 

Data normalization 

In Neural Networks, the input vectors should be normalized before using them 

when the input vectors are large values, otherwise they cannot be categorized 

properly because of the properties of activation function. For SVM models, the 

normalization of input vectors is also required.  

In the transport sector, Z-normalization and Minmax normalization are used. To 

reduce the influence of some extreme values, Z-score is used to transform traffic data. 

The Z-score normalizes traffic data by subtracting the mean and scaling to unit 

variance. In our case, we have used the scikit-learn python package, and specifically 

the MinMaxScaler(), to transform the values accordingly.  
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Feature Engineering 

In literature, it has been shown that finding the temporal correlations of traffic 

flow is essential when building a traffic incident detection model. Therefore, 

extracting the difference between normal traffic conditions and risky traffic 

conditions is critical. Moreover, knowing the spatial correlations of traffic flow is also 

important to the incident detection model. Based on shock wave theory, it can be 

inferred that some time must elapse for the influence of an incident to spread. Thus, 

traffic flow parameters obtained from adjacent upstream and downstream detectors 

should also be considered because traffic flow near an incident is more sensitive than 

is more distant traffic flow. The traffic flow parameters of upstream or downstream 

detectors change earlier; therefore, considering these variables can help the model 

detect incidents with less delay. (Li, Lin, Du, Yang, & Ran, 2022) 

 

Figure 9-32: List of selected features, as described by (Li, Sheng, Du, Wang, & Ran., 2020). 
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In the case of Athens, due to the limitations which have been discussed, we have 

selected the following features to be used as inputs in the Machine Learning 

algorithms: 

- Flow 
- Upstream and downstream flow for the adjacent detectors 
- Mean upstream and downstream flow of the detector 5 minutes before 
- Mean upstream and downstream flow of the detector 5 minutes after 
- Mean upstream and downstream flow of the adjacent detectors 5 minutes 

before 
- Mean upstream and downstream flow of the adjacent detectors 5 minutes 

after; 

whereas for Antwerp we have also included data for speed and occupancy 

accordingly. 

For the deep learning algorithms, we chose 5-time steps to make the sequences. 

Hence, it is going to look at the 25 minutes before each point to train the model. In 

the experiments, we select the traffic flow of the past 25 minutes, which is a time 

sequence of 5 data points. 

9.3 Evaluation	 of	 traditional	 ML	 models	 for	 unplanned	

incidents	

A thorough discussion of the results obtained in addition to a comparison of the 

performance of the employed algorithms is presented in Chapter 9.7.1.1.  

9.3.1 Athens	Case	Study	

In Table 9-8, the evaluation for the methods used for detecting unplanned events 

in Attiki Odos is illustrated. 

Table 9-8: Evaluation of methods for detecting unplanned events in Athens (Attiki Odos) dataset. 
Algorithm Precision Recall F1-Score 

SVM (per timestamp) 0.58 0.97 0.64 
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Isolation Forest (per timestamp) 0.012 0.44 0.023 

BCNN (per timestamp) 0.012 0.94 0.025 

WNN (per timestamp) 0.05 0.96 0.09 

Autoencoder (per timestamp) 0.03 0.49 0.05 

Bidirectional LSTM (per timestamp) 0.19 0.43 0.26 

Random Forest (per timestamp) 0.95 0.64 0.71 

Graph Neural Network (per timestamp) 0.66 0.48 0.555 

AIMSUN (per timestamp) 0.08 0.50 0.14 

 

9.3.2 Antwerp	Case	Study	

In Table 9-9, the evaluation for the methods used for detecting unplanned events 

in Antwerp E313 highway is illustrated. Aimsun’s methodology could not be tested in 

this use case, as the model developed for the Antwerp use case was only suitable for 

running offline simulations (as specifically requested by user partners of this use case). 

Table 9-9: Evaluation of methods for detecting unplanned events in Antwerp (Highway E313) dataset. 

Algorithm Precision Recall F1-Score 

SVM (per timestamp) 0.62 0.96 0.753 

Isolation Forest (per timestamp) 0.019 0.48 0.037 

BCNN (per timestamp) 0.02 0.92 0.039 

WNN (per timestamp) 0.07 0.94 0.130 

Autoencoder (per timestamp) 0.03 0.48 0.056 

Bidirectional LSTM (per timestamp) 0.23 0.47 0.301 

Random Forest (per timestamp) 0.98 0.79 0.86 

Graph Neural Network (per timestamp) 0.63 0.47 0.538 
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9.4 Evaluation	of	AutoML	Models	for	Unplanned	Incident	

Detection	

The measures used to monitor the performance are those as discussed in Chapter 

8.1.8. More precisely, for the unplanned incident detection using our developed 

AutoML framework, the scoring function used to evaluate multiple machine-learning 

algorithms uses the following metrics: precision, recall, and F1 score. 

A thorough discussion of the results obtained in addition to a comparison of the 

performance of the employed algorithms is presented in Chapter 9.7.1.2. 

9.4.1 Athens	Use	Case	

For the use case of Athens, the results are depicted in Table 9-10. We have made 

the decision to compare the outcome of our methodology with an Unsupervised 

method (Isolation Forest) and a data-driven AIMSUN algorithm (Torrent-Fontbona F. 

, Dominguez, Fernandez, & Casas, 2023), already presented in the section 9.3. 

Table 9-10: Comparison of our approach with sampled baseline methods - Athens. 

Algorithm Precision Recall  F1-score 

AutoML (per timestamp) 0.83 0.62 0.71 

Isolation Forest (per timestamp) 0.012 0.44 0.023 

AIMSUN (per timestamp) 0.08 0.50 0.14 

 

The algorithm which has been selected as the optimal from our methodology is 

the following:  

LinearSVR(GradientBoostingRegressor(input_matrix, alpha=0.95, learning_rate=1.0, 

loss=huber, max_depth=1, max_features=0.6000000000000001, min_samples_leaf=15, 

min_samples_split=11, n_estimators=100, subsample=1.0), C=20.0, dual=False, 

epsilon=0.001, loss=squared_epsilon_insensitive, tol=0.0001) 
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Regarding the two baseline approaches, Isolation Forests are generally used in an 

unsupervised manner and only require a few conditions to separate anomalies from 

normal observations when compared to other methods which use basic distance and 

density measures. There are several works in the field of AID which use Isolation 

Forests, including (Zhu, Wang, Yan, Guo, & Tian, 2022). Their low linear time 

complexity and small memory requirements aid in eliminating major computational 

cost of distance calculation in all distance and density-based methods and can 

perform well in a multi-dimensional feature space. For Aimsun’s baseline and the 

incident detection approach, we invite the reader to consult Chapter 5.2.1.8. 

9.4.2 Antwerp	Use	Case	

For the use case of Antwerp, the results are depicted in Table 9-11. A decision to 

compare the outcome of our methodology with a Supervised method (Support Vector 

Machine) and a Generative Neural Network (AutoEncoder), already presented as part 

of section 9.3 

Table 9-11: Comparison of our approach with sampled baseline ML methods - Antwerp. 

Algorithm Precision Recall  F1-score 

AutoML (per timestamp) 0.77 0.52 0.54 

SVM (per timestamp) 0.62 0.96 0.753 

Autoencoder (per timestamp) 0.03 0.48 0.056 

 

The pipeline which has been selected as the optimal from our methodology is the 

following:  

Pipeline(steps=[(‘stackingestimator’, 
                 StackingEstimator(estimator=GaussianNB())), 
                (‘decisiontreeclassifier’, 
                 DecisionTreeClassifier(criterion=’entropy’, max_depth=9, 
                                        min_samples_leaf=3, min_samples_split=7, 
                                        random_state=42))]) 
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Regarding the two baseline approaches, support vector machine (SVM) is a 

supervised approach which is constructed from a unique learning algorithm that 

extracts training vectors that lie closest to the class boundary and makes use of them 

to construct a decision boundary that optimally separates the different classes of data 

) (Cortes & Vapnik, 1995).  Results from various studies have shown that SVM offers a 

lower misclassification rate, higher correct detection rate, lower false alarm rate and 

slightly faster detection time than other models in traffic incident detection (Yuan & 

Cheu, 2003). An Autoencoder is a generative unsupervised deep learning algorithm 

used for reconstructing high-dimensional input data using a neural network with a 

narrow bottleneck layer in the middle which contains the latent representation of the 

input data and have been used for Anomaly Detection tasks(for instance (Kopčan, 

Škvarek, & Klimo, 2021), (Ashraf, et al., 2020)), by comparing the output from a 

Decoder and the input to the Network and using a threshold, either manually set or 

learnt from the data itself. If the loss value exceeds the threshold, then the instance 

is categorized or classified as an anomaly.  

9.5 Evaluation	of	advanced	analytics-driven	methodology	

for	planned	incidents	

A thorough discussion of the results obtained in addition to a comparison of the 

performance of the employed algorithms is presented in Chapter 9.7.2. 

In Figure 9-33, flow data for few selected detectors over the period of four days 

for the use case of Athens and the speed, occupancy and flow for two days are 

depicted in respectively, for the use case of Antwerp are illustrated in Figure 9-34. 

From the plots, we can observe the following: 

• There are apparent daily patterns in the measurement data, with peaks 

corresponding to what might be morning and evening rush hours. 

• Traffic values tend to be lower during the nighttime hours and higher during 

the day, as it is expected. 

• The highest variability in patterns is depicted in the occupancy dataset. 
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• Different detectors show varying patterns, suggesting differences in traffic 

behavior at these locations. 

 

 

Figure 9-33: Traffic flow for Athens’ data for a specific loop detector over a period of four days. 
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As mentioned previously in Chapter 5, using histograms can provide insights into 

the distribution of traffic volumes or speeds. Figure 9-35 depict the average traffic 

flow by day of the week and by hour for a specific sensor in Athens dataset, whereas 

Figure 9-36 illustrates the average vehicle flow rate for all the sensors by hour for the 

Antwerp dataset. The conclusion we can draw is that there are spikes in the morning 

(between 8 and 10am) and in the afternoon (5-7pm) for the Athens use case, whereas 

for the Antwerp case there is significant drop across all traffic observations between 

18:00 and 07:00. 

 

Figure 9-34: Speed, flow and occupancy over selected segments over two days for Antwerp. 



268 
 

Figure 9-35: Average traffic flow by day and by hour for Athens dataset. 

 

Figure 9-36: Average traffic flow by hour for Antwerp dataset. 

In the following figures, we see two different types of visualisations of heatmaps. 

For the Athens use case, we analyse the traffic flow and depict the values in a matrix 

where x is the day of week and y the time of day, whereas for Antwerp for a selected 

segment, we use the dates as y and the daytimes as x values. We can deduce that 

weekdays have different traffic patterns compared to weekends and rush hours are 

identified morning and evening rush hours on weekdays and late afternoon on 

Sundays. Moreover, for Antwerp data, we identify the rush hour in the early afternoon 

between 15:00 and 18:00 for the specific segment.  
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Figure 9-38: Heatmap of flow based on time and date - Antwerp. 

Figure 9-37: Average Speed and Occupancy by hour of day - Antwerp. 



270 
 

 

Figure 9-39: Heatmap of flow based on time and day of week - Athens. 

In Figure 9-40 and Figure 9-41, we see two different types of visualisations of box 

plots. For the Athens use case, we analyse the traffic flow and depict the values of a 

specific sensor, whereas for Antwerp for all segments. By plotting box plots for traffic 

volumes or speeds for different times of the day or days of the week, one can identify 

variability and potential outliers. Periods with lower median speeds and high 

variability might be indicative of congestion. The insights drawn are in line with our 

previous analysis for rush hours, in addition to the fact that we notice quite a lot of 

outliers, especially for the Athens case. This may be due to non-recurrent unplanned 

incidents on specific dates during the analysed period.  
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Figure 9-40: Box plot depicting hourly variability for flow data for specific sensor - Athens. 

 

Figure 9-41: Box plot depicting hourly variability for all segments - Antwerp. 

 

 

For Antwerp, we include a very rough analysis of those correlations indicating 

positive correlations between all three traffic measurements as shown in Figure 9-42. 

More fine-grained analysis can be made to deduce daily or weekly patterns and 

identify congestion. 
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Figure 9-42: Correlation heatmap between all traffic observations for Antwerp use case. 

By plotting two variables against each other, like traffic volume and speed, one 

can visually identify patterns or relationships as part of the depicted scatter plot. A 

downward trend in such a plot might indicate that as traffic volume increases, speeds 

decrease, signalling congestion. For Athens, as explained above, this analysis is not 

applicable. For Antwerp, such a coarse analysis is illustrated in Figure 9-43, where 

each colour represents a different traffic segment, and in certain cases we can deduce 

that in general high occupancy and low speed as shown in the left upper corner 

indicate congestion. The rest of the scatter plots for Antwerp (occupancy vs flow and 

speed vs flow) can be found in the below figures ( Figure 9-43 and Figure 9-44 ). 



273 
 

 

Figure 9-43: Scatter plot for occupancy and speed - Antwerp. 

  

Figure 9-44: Scatter plot flow vs speed and occupancy - Antwerp. 
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The STL decomposition and rolling mean and standard deviation analysis have 

been performed for the Athens and Antwerp datasets and are illustrated in Figure 

9-45 & Figure 9-46 and Figure 9-47 & Figure 9-48 respectively. 

 

Figure 9-45: STL decomposition - Athens. 

 

Figure 9-46: Rolling mean and standard deviation - Athens. 
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Figure 9-47: STL decomposition - Antwerp. 

 

Figure 9-48: Rolling mean and standard deviation - Antwerp. 
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Moreover, as part of the analysis, to verify that we have managed to capture 

the time patterns correctly we predict the traffic flow using ARIMA models. These 

forecasts for both Athens and Antwerp case are shown in Figure 9-50 and Figure 

9-53 respectively.  

For Athens and Antwerp, the ACF and PACF are shown in the images below, in 

addition to the predictions using ARIMA models. 

 

Figure 9-49: ACF and PACF for Athens. 
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Figure 9-50: Forecast using ARIMA for Athens use case. 

 

Figure 9-51: ACF for Antwerp dataset. 

 

Figure 9-52: PACF for Antwerp dataset. 
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Figure 9-53: Forecast using ARIMA for Antwerp use case. 

 

Regarding more advanced data-driven methods, we have selected to use and fine-

tune a LSTM on the Athens and Antwerp datasets, for a longer and shorter period as 

test sets, to get an idea of how well the model has learnt the time patterns for a 

specific loop detector or segment. The predictions are illustrated in Figure 9-54 and 

Figure 9-55 respectively. As it is evident, the model has managed to capture the data 

in a very good manner, since it also includes as features the time of day, workday, day 

of week except for the traffic measurements. 
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Figure 9-54: Actual vs Predicted values for Athens using LSTM. 

 

 

Figure 9-55: Actual vs Predicted values for Antwerp using LSTM. 

Specifically, for our loop detector data we have employed k-means clustering. This 

algorithm partitions data into 'k' number of clusters. The elbow method is used to 

identify the optimal number of clusters and the k-means clustering is shown for 

Athens and Antwerp in the figures below (Figure 9-56 and Figure 9-57). 
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Figure 9-56: K-means cluster number selection and clustering - Athens. 

Figure 9-57: K-means cluster number selection and clustering - Antwerp. 
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9.6 Evaluation	of	Explainability	and	HITL	Integration	

9.6.1 Integration	of	Explainability	features	

When incidents like accidents, road blockages, or congestion occur, it's vital for 

operators and stakeholders to detect them quickly. However, merely identifying an 

incident isn't enough; understanding the "why" behind incident detection is crucial. 

This is where explainability comes in. An explainable system offers insights into the 

decision-making process, ensuring that human operators can trust the technology. 

Explainability ensures accountability, reduces false positives, and allows for better-

informed interventions, all of which are pivotal in critical applications like 

transportation. 

The concepts of LIME (Locally Interpretable Model-agnostic Explanations) and 

SHAP (SHapley Additive exPlanations) are central to the domain of explainable 

artificial intelligence (XAI), providing mechanisms to interpret the predictions made 

by machine learning models, as explained in the previous section. Thus, we have 

incorporated both LIME and SHAP libraries and performed various experiments, the 

results of which are detailed as part of this section. 

The SHAP diagrams included in our analysis serve different purposes, each offering 

a unique perspective on model interpretability: 

• SHAP Waterfall Plot: This plot shows how the features contribute to a single 

prediction for an individual instance. Starting from the base value (the mean 

prediction over the dataset), the waterfall plot sequentially adds or subtracts 

the SHAP values for each feature, illustrating how the model arrives at the final 

prediction. This plot is particularly useful for understanding the precise factors 

driving a specific prediction. 

• SHAP Dependence Plot: This plot demonstrates the relationship between a 

specific feature’s value and its SHAP value across all instances in the dataset. 

It helps in understanding the effect of that feature on the model’s predictions 



282 
 

and also shows interactions with other features, which are highlighted by 

colouring the points according to the value of another feature. 

• SHAP Force Plot: The force plot provides a compact visualization of how 

different features push the prediction higher or lower relative to the base 

value. The plot visually represents the combined effects of the features as 

forces that either increase or decrease the final prediction. 

• SHAP Summary Plot: This plot summarizes the impact of all features on the 

model's predictions across the entire dataset. It combines feature importance 

(how much each feature contributes overall) with feature effects (how the 

feature values affect the predictions), providing a holistic view of the model's 

behaviour. 

 

Figure 9-58: SHAP Waterfall Plot for Athens’ case study. 
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Figure 9-59: SHAP Dependence Plot for Athens’ case study. 

 

Figure 9-60: SHAP Force Plot for Athens’ case study. 

 

Figure 9-61: SHAP Summary Plot for Athens’ case study. 
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The LIME diagrams included in our analysis help to break down and interpret the 

predictions made by the machine learning model on a granular level: 

• LIME Explanation Plot: This plot visually represents the impact of individual 

features on a specific prediction. It shows which features contributed the most 

to the prediction, and whether they pushed the prediction higher or lower. 

The LIME explanation plot helps to identify the most influential features in a 

particular instance and provides a clear and interpretable summary of how the 

model made its decision. 

• LIME Explanation Heatmap: This heatmap compares LIME explanations across 

multiple instances, allowing us to visualize how different features contribute 

to the model's predictions across various cases. Each row represents an 

instance, and each column represents a feature, with colour intensity 

indicating the magnitude of each feature's contribution. The heatmap helps in 

identifying patterns and consistencies in feature influences across multiple 

predictions, offering a broader view of the model's behaviour. 

• LIME Feature Importance Bar Plot: This plot displays the impact of individual 

features on a specific prediction in the form of a horizontal bar chart. It clearly 

shows which features had the most significant influence on the prediction, 

indicating whether they pushed the prediction higher or lower. The bar plot 

helps identify the most critical features for a particular instance, providing a 

clear and interpretable summary of how the model arrived at its decision. 

• LIME Scatter Plot of Feature Influence: This scatter plot illustrates the 

relationship between a specific feature's value and its influence on the model’s 

prediction across all analysed instances. By plotting feature values against 

their corresponding LIME explanations, this chart helps in understanding the 

sensitivity of the model to changes in specific feature values and highlights any 

non-linear relationships. 
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Figure 9-62: LIME Explanation Plot for Athens’ case study. 

 

Figure 9-63: LIME Explanation Heatmap Plot for Athens’ case study. 

 



286 
 

 

Figure 9-64: LIME Feature Importance Bar Plot for Athens’ case study. 

 

Figure 9-65: LIME Scatter Plot for specific variable for Athens’ case study. 

The results presented in the diagrams presented above reveal key insights into the 

behaviour of our model and the dataset it was trained on. For instance, the SHAP 

Waterfall Plot for a particular instance in the dataset clearly indicates how specific 

features like flow_prev and hour significantly influenced the model's decision, leading 
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to the final prediction. This detailed breakdown allows us to verify that the model's 

reasoning aligns with domain knowledge and expectations. In the SHAP Summary Plot 

(Figure 9-61), we observe that certain features consistently exert a strong influence 

on the model's predictions across the entire dataset. For example, the feature hour 

emerges as one of the most important predictors, with a wide range of SHAP values 

indicating its varying impact across different instances. The SHAP Dependence Plot 

(Figure 9-59) further clarifies how flow_prev interacts with other features, such as 

dayofweek, influencing the model's predictions in a non-linear manner. This 

interaction might suggest that the effect of traffic flow on the model’s prediction 

varies depending on the day of the week, highlighting the importance of capturing 

such interactions in the model. The SHAP Force Plot (Figure 9-60) concisely 

summarizes the combined effect of the most influential features for a single 

prediction, showing how certain features work together to either raise or lower the 

prediction compared to the base value. This provides a clear and intuitive 

understanding of the model's decision-making process. 

The LIME explanation plot offers a focused view on how the model arrived at a 

particular prediction by highlighting the top contributing features. For instance, in the 

analyzed instance, features like hour, flow_prev, and flow_next might emerge as 

significant contributors to the model’s decision. The LIME plot distinctly shows 

whether each feature has a positive or negative impact on the prediction and 

quantifies the magnitude of that impact. This localized explanation allows for a deeper 

understanding of the model’s behavior in specific cases, which is particularly valuable 

when decisions need to be explained to non-technical stakeholders or when validating 

the model against domain knowledge. The LIME diagrams offer various perspectives 

on how the machine learning model arrived at its predictions, providing both localized 

and aggregated views of feature importance. The LIME Feature Importance Bar Plot 

(Figure 9-64) offers a focused view on how the model arrived at a particular prediction 

by highlighting the top contributing features. For example, in the analyzed instance, 

features such as hour, flow_prev, and flow_next emerged as significant contributors 

to the model’s decision. The bar plot distinctly shows whether each feature had a 

positive or negative impact on the prediction and quantifies the magnitude of that 
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impact. The LIME Explanation Heatmap (Figure 9-63) allows us to compare how 

features influence predictions across multiple instances. For instance, it may reveal 

that certain features consistently drive predictions in a particular direction, suggesting 

a broader pattern in the model's behavior. This comparative analysis is particularly 

useful for identifying whether the model's decision-making process is consistent and 

reliable across different cases. The LIME Scatter Plot of Feature Influence (Figure 9-65) 

provides an insightful view of how changes in a feature’s value affect the model's 

prediction. For instance, the scatter plot may show that as the flow_prev feature 

increases, its influence on the prediction strengthens in a non-linear manner, 

indicating a complex relationship between this feature and the model's output. 

9.6.2 Integration	of	Human	Feedback		

Traditional predictive models often struggle in dynamic environments, particularly 

when dealing with non-recurring incidents—events that are rare or do not follow 

established patterns. These incidents, by their nature, are challenging to predict 

because they do not appear frequently enough in historical data for the model to learn 

from. This is where the integration of human expertise into the machine learning loop, 

known as Human-in-the-Loop (HITL), becomes invaluable. 

Human-in-the-Loop (HITL) is a hybrid approach that combines the strengths of 

machine learning with human intuition and expertise. In the context of incident 

management, HITL involves human analysts reviewing and correcting model 

predictions, especially for cases where the model fails to recognize non-recurring 

incidents. These human interventions are then fed back into the model during 

retraining sessions, allowing the model to learn from these corrections and improve 

its accuracy over time. The HITL approach is particularly beneficial in environments 

where the data is dynamic, and the nature of incidents can evolve rapidly. By 

incorporating human feedback into the model’s learning process, HITL ensures that 

the model remains adaptable and continues to improve as new types of incidents 

emerge. 



289 
 

In the following section, we describe in detail the process of integrating human 

expertise and feedback in the system, through a series of distinct steps. 

1. System Deployment and Initial Operation 
Our information system is deployed and operational, continuously processing 

incoming data from various sources and generating real-time incident predictions. 

The system, initially trained on historical data (from October 2020 to June 2021), 

monitors and predicts potential incidents as they occur. 

2. Current Operation 
The system is ingesting real-time data from multiple sensors and data sources, 

using this information to predict non-recurring and recurring incidents. Based on the 

incoming data, the system generates predictions in real-time, providing crucial 

insights that inform operational decisions. During this ongoing operational phase, the 

system occasionally encounters challenges, such as generating false positives 

(incorrectly predicting incidents) and false negatives (failing to predict actual 

incidents). These inaccuracies are an expected part of the system's operation and are 

addressed through a Human-in-the-Loop (HITL) approach. 

3. Human-in-the-Loop (HITL) approach 
To ensure that the system maintains high accuracy, human operators are 

continuously involved in the prediction process. These experts monitor the system's 

outputs and intervene whenever discrepancies or inconsistencies are detected. 

4. Real-Time Monitoring 
As predictions are made, human operators review them in real-time. When the 

system predicts an incident, the operator needs to verify the accuracy of the 

prediction. If an incident occurs but is not predicted, the operator should flag this as 

a missed prediction (false negative). 

5. Human Feedback 
Upon identifying false positives or false negatives, operators immediately correct 

the system’s outputs. For instance, if the system incorrectly predicts an incident that 

does not occur, the operator updates the system with the correct outcome. 
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Conversely, if the system misses an actual incident, the operator ensures this is logged 

and corrected in the system’s records. 

6. Model Update and Retraining 
The system is designed to adapt continuously by incorporating  and storing the 

corrections and input provided by human operators. This real-time feedback loop 

enhances the system’s predictive capabilities. Moreover, the system undergoes 

comprehensive retraining periodically using python cron jobs. This process uses the 

accumulated corrections to refine the model further, ensuring that it adapts to any 

new patterns or anomalies in the data.  

7. Continuous Evaluation and Improvement 
To maintain the system’s effectiveness, the model’s performance is continuously 

evaluated against a stable evaluation dataset (such as data from June 2020). This 

consistent evaluation ensures that the system not only learns from recent data but 

also maintains its ability to perform well against established benchmarks. 

8. Real-Time Performance Monitoring 
The system’s performance using widely employed metrics, such as precision, 

recall, and F1-score are monitored, providing feedback on the impact of HITL 

corrections and retraining. Moreover, the continuous loop of prediction, human 

correction, and retraining allows the system to adapt to changing conditions quickly, 

ensuring that its predictions remain reliable and accurate over time. 

The detailed methodology for simulating the retraining process within the 

developed AI-driven traffic incident detection system incorporating human feedback 

is presented. The objective is to demonstrate how continuous learning, and expert 

input can enhance the system's accuracy and responsiveness. We utilize existing 

historical data, deliberately introducing errors from the system’s operation, to 

simulate the real-time update process, for demonstration purposes. 

To effectively simulate the learning process, we start by modifying a portion of the 

historical traffic data to introduce deliberate errors. This simulates an initial state of 

deployment where any AI system displays certain inaccuracies. As the simulation 
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progresses, we apply updates and human feedback to correct these errors, 

showcasing the system's capability to learn and improve continuously. 

The foundation of any predictive model is the quality and relevance of the data 

used for training. The first step in the data preparation process involves parsing and 

aligning the input datasets (operational measurements from loop detectors, network 

locations and incident records) based on two critical dimensions: time (timestamps) 

and location (sensor IDs). By aligning the data on these dimensions, we ensure that 

each record in the dataset represented a unique combination of time and location, 

capturing the state of the system at each sensor location over time. This alignment is 

crucial for capturing the spatio-temporal dynamics that are often indicative of 

incident occurrences.  

The baseline incident dataset serves as the ground truth, representing the correct 

record of incidents. This dataset plays a crucial role in the subsequent phases of model 

retraining, as it will be used to simulate human intervention, thereby correcting the 

errors introduced during the operational phases of the predictive system. To 

effectively evaluate the impact of Human-in-the-Loop (HITL) interventions and 

retraining, it is essential first to simulate a scenario where the system is prone to 

errors. This simulation is achieved by artificially introducing systematic errors into a 

portion of the dataset, specifically targeting the final segment, which reflects the 

initial deployment phase of the system. 

The period selected for the introduction of errors corresponds to the latter part 

of the dataset, which is indicative of the system's early operational phase. This choice 

is deliberate, as it allows for a realistic simulation of a newly deployed system that is 

likely to encounter various predictive inaccuracies. 

Those errors are introduced in three primary forms: 

• False Positives: Incidents incorrectly marked in non-incident data. 

• False Negatives: Actual incidents that are not marked in the data. 
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• Incorrect Incident Details: Incorrect times and locations of incidents are 

altered to simulate data inaccuracies. 

 

Using the modified dataset, we train the baseline Machine Learning (ML) and 

Deep Learning (DL) models which have been thoroughly described as part of Chapter 

5. This stage involves: 

• Feature Engineering: Extracting and engineering key features indicative of 

traffic incidents, such as traffic flow rates, vehicle speeds etc. To enhance the 

model’s predictive power, additional features are engineered from the raw 

data. Temporal features are extracted from the timestamp to help the model 

learn time-based patterns. For instance, certain types of incidents may be 

more likely to occur during specific hours or on certain days. Additionally, 

features that captured interactions between different sensors are created, 

such as differences or correlations between readings from neighboring 

sensors, providing the model with insights into spatial relationships. More 

information about the data preprocessing can be found in Chapters 8.1 and 

9.2. 

• Model Selection: Training various machine learning models (e.g. random 

forests, support vector machines) and DL models (e.g., convolutional neural 

networks (CNNs) and recurrent neural networks (RNNs)) in addition to the 

automated ML pipeline as described in Chapter 6, to establish the baseline 

performance. The baseline performance metrics, such as precision, recall and 

f1-score, are recorded. 

The next phase involves the application of Human-in-the-Loop (HITL) processes to 

correct the errors introduced into the system. Here, the baseline incident dataset, 

representing the correct incident records, is utilized to simulate human intervention. 

For each time segment—specifically on a weekly basis—discrepancies between the 

error-prone dataset and the baseline dataset are identified. These discrepancies 
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represent the system's misclassifications, which are then systematically corrected by 

replacing the erroneous labels with the accurate ones from the baseline dataset. 

The framework continuously updates the models based on new data and 

simulated human feedback. Key components of this process include: 

1. Batch Updates: Periodically, the system performs batch updates where a 

larger set of accumulated feedback data is used to retrain the model. This 

helps to consolidate learning and reinforce correct patterns. This retraining 

simulates the system's iterative learning process, where human feedback is 

continuously integrated to refine and improve its predictive capabilities. This 

process is repeated for each subsequent defined time period, allowing for a 

progressive enhancement of the model's accuracy. 

2. Model Validation: After each update, the models are validated using a 

validation set to ensure that the updates have improved performance. 

Moreover, the established key performance metrics are monitored 

continuously. 

To determine the optimal retraining strategy, the impact of different retraining 

frequencies is assessed: 

1. Weekly Retraining: The weekly retraining strategy serves as the primary 

approach, balancing the need for regular updates with computational 

efficiency. This strategy allows for the accumulation of sufficient data 

corrections over a week, potentially leading to more stable improvements in 

model performance. 

2. Biweekly Retraining: By contrast, biweekly retraining tests the model's ability 

to adapt when corrections are less frequent. This approach may offer 

advantages in terms of computational resource management, but it may also 

slow the model's adaptation to new patterns. 
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Continuous monitoring of performance metrics is essential throughout the 

simulation. By evaluating these metrics at regular intervals, we can assess 

improvements and compare them against the initial baseline performance. This step 

highlights the effectiveness of retraining and human feedback in enhancing the 

system. 

9.6.2.1 Example scenario 

To illustrate the methodological process, we present an example scenario. 

Initial Baseline Training 

The initial model was trained using data stemming from case study I (Athens) from 

October 2020 to June 2021. This period provided a substantial amount of historical 

data, allowing the model to learn typical incident patterns in a controlled 

environment, free from the errors associated with early-stage deployment. 

Specifically, the algorithm selected for these experiments is the RandomForest, since 

it has been shown in other experiments (ref to Chapter 9.4.1) to perform extremely 

well against the benchmarks established. 

To establish a robust baseline, the model was evaluated using data from 

September 2021. This dataset serves as a consistent reference point for all 

subsequent evaluations. The September 2021 dataset is used to establish the model's 

baseline performance. It is then used repeatedly to evaluate the model’s performance 

after errors are introduced and after each retraining session. Key performance 

metrics, including precision, recall, and F1-score, were recorded. For more 

information regarding these metrics, the reader is invited to refer to Chapter 

8.1.1.7.1. These metrics form the foundation against which all future comparisons will 

be made, ensuring that any improvements or deteriorations in model performance 

can be traced back to the effects of HITL corrections and retraining. 

Introduction of System Errors 
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The system was simulated to go live in July 2021, at which point it began making 

errors typical of an early-stage predictive model. To replicate this scenario, the 

predictions produced by the system (with the respective errors) were introduced into 

the July-August 2021 dataset. Specifically, these errors correspond to the system’s 

potential to either overestimate or underestimate the likelihood of incidents during 

its phase of operation, in the initial stages. The resulting metrics highlighted the extent 

to which the model’s predictions and the errors produced were compromised by the 

inaccuracies. 

Human Feedback Integration 

Following the system’s errors in the July-August 2021 dataset, a HITL approach 

was employed. Errors were corrected in a simulated manner using the baseline 

incident data as the ground truth. Thus, the operator feedback was simulated with 

100% accuracy for approving/rejecting incidents, while missed incidents are also 

included. This correction process simulated the real-world scenario where human 

operators would intervene to rectify the system’s mispredictions. 

Retraining and Model Updates 

Models are retrained weekly (also biweekly) using accumulated feedback. After 

correcting the errors for each week in the July-August 2021 dataset, the model was 

retrained periodically. This retraining process aimed to incorporate the newly 

corrected data, allowing the model to adapt and improve its predictive accuracy. 

Importantly, each retraining cycle was followed by an evaluation and comparison 

against the consistent September 2021 dataset. 

These human-corrected labels were then used in the model’s weekly retraining 

process. By incorporating this feedback, the model could learn from its mistakes and 

improve its ability to predict non-recurring incidents in future iterations. The 

retraining process involved updating the model with new correct data each week, 

simulating the human corrections, ensuring that the model continuously adapted to 

new patterns in the data. 
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Performance Monitoring 

By maintaining September 2021 as the evaluation set throughout the retraining 

process, we ensured that performance improvements could be tracked reliably. 

After each retraining iteration, performance metrics were recorded and compared 

against the baseline established earlier. This method allowed for a clear assessment 

of how the model’s ability to predict incidents evolved as it learned from the HITL 

corrections. 

Assessing Final Model Performance 

Upon completing the retraining sessions, the final model was once again 

evaluated on the June 2021 dataset. This final evaluation provided a direct 

comparison between the model’s initial baseline performance, and its improved state 

after HITL correction and retraining. 

This approach demonstrates the cumulative effect of weekly retraining on 

restoring the model's performance to its original state, as measured by a consistent 

evaluation set. 

Evaluation and Comparison of Retraining Frequencies 

Weekly Retraining 

The standard retraining approach involved updating the model on a weekly basis. 

This frequency was chosen to balance the need for model adaptation with the stability 

required for accurate predictions. Weekly retraining allowed the model to incorporate 

sufficient new data and human corrections, leading to noticeable improvements in 

performance, particularly in the recall score for non-recurring incidents. In Table 9-12, 

the results from the experiments are illustrated. Moreover, in Figure 9-66 the process 

of the retraining, in addition to the datasets used for training and test are shown. 
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Table 9-12: Results of performance metrics during retraining for 8 weeks. 

Evaluation Stage Precision Recall F1-Score 

Initial Predictions  0.65 0.55 0.60 

HITL Retraining After Week 1 0.67 0.58 0.62 

HTIL Retraining After Week 2 0.71 0.61 0.66 

HITL Retraining After Week 3 0.72 0.61 0.66 

HITL Retraining After Week 4 0.74 0.64 0.69 

HITL Retraining After Week 5 0.74 0.68 0.71 

HTIL Retraining After Week 6 0.76 0.68 0.72 

HITL Retraining After Week 7 0.76 0.70 0.73 

HITL Retraining After Week 8 0.78 0.72 0.75 

 

 

Figure 9-66: Illustration of datasets in the retraining process. 

Biweekly Retraining 

To further explore the impact of retraining frequency on model performance, 

additional experiments were conducted with biweekly retraining schedules. Daily 

retraining would have provided the model with the most up-to-date data and 

corrections, potentially improving responsiveness to new incident patterns. However, 

this approach also risked overfitting to short-term trends and required significant 

computational resources. 
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Biweekly retraining offers a more conservative approach, focusing on broader 

trends rather than daily fluctuations, as shown in Table 9-13. While this approach 

reduces computational overhead, it shows to have limited the model’s ability to 

quickly adapt to new patterns, particularly in environments where incident 

characteristics could change rapidly. 

Table 9-13: Results of performance metrics for biweekly retraining in the period of 8 weeks. 

Evaluation Stage Precision Recall F1-Score 

Initial Predictions  0.65 0.55 0.60 

HITL Retraining After Biweekly Period 1 0.71 0.61 0.66 

HTIL Retraining After Biweekly Period 2 0.74 0.64 0.69 

HITL Retraining After Biweekly Period 3 0.76 0.68 0.72 

HITL Retraining After Biweekly Period 4 0.78 0.72 0.75 

 

Comparative Analysis 

The use of the validation dataset as a stable reference point allowed for precise 

comparisons across different stages of the model’s development. The findings 

underscore the value of incorporating human expertise into the machine learning 

loop, particularly in scenarios where early-stage systems are prone to errors. This 

approach not only facilitated the identification and correction of predictive 

inaccuracies but also provided a framework for continuous improvement through 

systematic retraining. 

The comparative analysis of these retraining frequencies revealed that weekly 

retraining provided the optimal balance between responsiveness and stability. The 

model was able to adapt to new patterns effectively without the risk of overfitting or 

excessive computational demands.  

Moreover, several constatations have been made. The model's precision, recall, 

and F1-score exhibit a marked improvement following each retraining cycle. This 
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improvement is particularly anticipated in the recall metric, which measures the 

model's ability to correctly identify actual incidents, including those previously 

misclassified. Moreover, by systematically comparing the results of weekly, and 

biweekly retraining, we have identified the most effective retraining strategy. We 

have not chosen daily retraining, since it is believed that it may lead to rapid 

performance gains but could also risk overfitting or require significant computational 

resources. Weekly retraining provides a balanced approach, offering consistent 

improvements without excessive computational demands. Biweekly retraining, while 

potentially more resource-efficient, has been shown to delay the model's ability to 

incorporate new patterns promptly. 

9.7 Discussion	of	results	and	Comparison	between	urban	

environments	

In general, evaluation results need to be understood from the perspective of the 

nature of the data and methodologies used. We must remember that labelled 

incidents were limited to visible areas of the network, therefore the false positive rate 

is seriously affected. There is no certainty that false positives might be due to an 

invisible event to the data supplier (therefore, there was an event, but it was not 

labelled) or truly a faulty prediction by the algorithm. 

9.7.1 Discussion	of	Results	for	Unplanned	Incident	Detection	

For the detection of unplanned incidents, the evaluation dataset has been 

formatted in 5 minutes intervals to feed the classification algorithms, therefore when 

computing precision there is a true positive when the event is detected at exactly the 

annotated timestamp. However, in real scenarios an ideal incident detection 

algorithm should be able to spot an event ideally before it happens or at least within 

a reasonable time margin to allow for proactive intervention. 

9.7.1.1 Performance of Traditional ML and DL Models  
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Regarding the results obtained from the experiments in both case studies, we 

deduce that there is some fluctuation on the results, and that some of the algorithms 

show low performance on the evaluation metrics. The best performing algorithm is 

the Support Vector Machine both for the Athens and the Antwerp datasets, having 

achieved both high precision and recall. This is in line with the literature which 

supports that SVM generally perform very well when the labelled incidents dataset is 

available, since they work in a supervised manner. On the other hand, this approach 

depends on the existence and reliability of an incident dataset, and it is possible that 

the model would overfit the dataset and have trouble when encountering new unseen 

samples. 

Moreover, BCNN and WNN manage to reach a very high recall but are unable to 

perform well in terms of precision (and thus the F1-score is also impacted). However, 

we are able to discern that the wavelet transformation performs slightly better than 

the BCNN, also confirming the findings in literature which make use of the wavelet 

transformations for time series datasets. Concerning the Autoencoder, the results as 

shown above could definitely be improved. The results obtained could probably be 

due to the fact that the architecture of the autoencoder we have employed is quite 

simple. One of the further improvements could include the addition of new layers in 

the architecture and the additional fine-tuning of these layers in order to achieve 

better results. 

The Isolation Forest algorithm is able to capture a satisfactory recall, but the 

precision achieved is very low (thus impacting the F1-score obtained). The 

Bidirectional LSTM manages to deliver one of the best results in terms of precision 

and quite good results in terms of recall. We have experimented with various 

architectures for the LSTM, and finally the best performance was obtained by 

employing a deep stacked bidirectional and unidirectional LSTM neural network 

architecture. This considers both forward and backward dependencies in time series 

data and predicts traffic flow. Finally, the model is able to capture the points where 

the predicted and actual values were significantly different, and a threshold for loss 
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value was set based on the history of loss values in training and testing to capture the 

incidents. 

Aimsun’s algorithm shows low performance on the established metrics, however 

when analyzing results on an event-based rationale for the Athens use case (within a 

time margin of 15 minutes around the labelled event), Aimsun’s system was able to 

detect 11 events out of a total of 15 in the analyzed period (May 2021) yielding a recall 

of 73% which is an acceptable level of performance for non-recurrent events. 

However, one of Aimsun baseline’s limitation is the fact that it is bound to produce a 

high number of false positives as shown by precision results of 8% (17% in an event-

based evaluation). 

9.7.1.2 AutoML Performance and Comparison with Traditional Models 

The application of AutoML across Athens and Antwerp demonstrated its 

adaptability but also highlighted its limitations. In Athens, where congestion patterns 

were relatively stable, AutoML-tuned models achieved high precision and recall, 

demonstrating strong generalization to traffic conditions. However, in Antwerp, 

AutoML models required additional fine-tuning to maintain their predictive 

performance. These findings suggest that while AutoML provides a robust framework 

for incident detection, localized calibration is necessary to account for environmental 

variability. 

Despite its advantages, AutoML presented computational trade-offs that should 

be considered for real-time applications. The increased computational cost and 

training time were particularly evident when optimizing deep learning models such as 

LSTM, where AutoML required longer processing times compared to traditional ML 

models. While the added complexity led to improved forecasting performance, real-

world deployment may require a balance between accuracy and computational 

feasibility, especially when models need frequent retraining. 

In this light, among the algorithms tested, for the Athens dataset, we observe 

significant performance superiority of the AutoML approach employed compared to 
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the baseline methods. For the Antwerp dataset, among the algorithms tested, the 

Support Vector Machine (SVM) emerged as the top-performing method, 

demonstrating high precision and recall, while the Autoencoder demonstrated high 

recall rates but struggled to achieve satisfactory precision, indicating a tendency to 

flag non-incident anomalies as potential traffic disruptions.  

Lastly, it is important to recognize that while AutoML aims to streamline and 

optimize the model selection and training process, it does not negate the value of 

understanding specific ML techniques' performance in targeted applications. Our 

comparison seeks to highlight how our AutoML-powered approach stand against 

manually tuned and selected models in the specific domain of incident detection using 

loop detector data, emphasizing the efficacy, adaptability, and performance in real-

world scenarios. Among the tested models, AutoML consistently selected ensembles 

and tree-based algorithms such as Random Forest and Gradient Boosting, while it also 

prioritized LSTM architectures for handling sequential traffic data, demonstrating 

AutoML’s capability to identify well-suited architectures for different types of incident 

detection tasks. To summarize, The Athens dataset showed clear advantages of 

AutoML over baseline models, while in Antwerp, SVM achieved the highest F1-score 

and recall, but AutoML outperformed SVM in precision. These variations highlight the 

necessity for algorithmic adaptation based on local traffic conditions and data 

availability across different urban environments. 

9.7.1.3 Final considerations and limitations 

All in all, one of the limitations of our analysis in both cases is the fact that these 

techniques are bound to produce a high number of false positives as shown by the 

precision results, thus the concept of false positives is hard to really assess in the 

incident detection task due to possible blind spots in the network. It is evident that 

each city presented unique challenges and outcomes in incident detection for 

unplanned incidents. 

However, we acknowledge that our evaluation primarily focuses on conventional 

metrics such as precision, recall, and F1-score. While these metrics provide valuable 
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insights into the models' performance in detecting incidents accurately, they do not 

fully encapsulate the operational context within which these detection models are 

deployed. Factors such as the mean time to detect an incident, the speed of 

propagation of detected incidents, and the practical implications of false positives and 

false negatives on traffic management and response strategies are not directly 

addressed as part of this PhD dissertation. 

9.7.2 Discussion	 of	 Results	 for	 Planned	 Incident	 Detection	 (Recurring	

Congestion	case)	

The identification and forecasting of planned incidents, particularly in the 

context of recurring congestion, were explored through a combination of time-series 

forecasting models, deep learning techniques, clustering analyses, and visual 

analytics. The findings across different case studies confirmed that congestion follows 

predictable temporal and spatial patterns, making it possible to anticipate its 

occurrence with high accuracy. By analyzing historical traffic flow, occupancy, and 

speed data, the study demonstrated that congestion patterns could be effectively 

modeled, allowing for early detection and intervention. 

A major part of the analysis focused on time-series forecasting models, where 

Autoregressive Integrated Moving Average (ARIMA) and Long Short-Term Memory 

(LSTM) networks were employed. ARIMA provided a strong baseline in cases where 

traffic exhibited stable seasonal variations, effectively capturing long-term congestion 

cycles. However, its reliance on linear assumptions made it less effective in scenarios 

with highly dynamic congestion patterns. In contrast, LSTM networks, with their 

ability to capture long-term dependencies in traffic data, outperformed ARIMA in 

most cases, particularly in urban environments characterized by high variability in 

traffic flow. The results demonstrated that LSTM-based predictions aligned closely 

with actual congestion trends, making them a robust approach for modeling planned 

traffic conditions. 

To enhance spatial insights into congestion dynamics, clustering methods 

were employed to categorize congestion patterns across different road segments. 



304 
 

Heatmap visualizations and box plots revealed consistent congestion-prone areas, 

reinforcing the hypothesis that specific locations experience recurring congestion 

cycles. These findings were further supported by correlation analyses, which 

confirmed strong relationships between traffic indicators such as speed, flow, and 

occupancy. The ability to visually interpret these relationships strengthened the 

validity of the forecasting models, as they provided clear evidence of how congestion 

evolved in different urban settings. 

The evaluation of these methodologies in real-world case studies further 

validated their effectiveness in predicting planned incidents. The results showed that 

applying advanced analytics-driven models enabled accurate anticipation of 

congestion before it became disruptive, demonstrating the potential for proactive 

traffic management strategies. The deep learning-based approaches, particularly 

LSTM networks, consistently performed better than traditional statistical methods, 

offering improved predictive accuracy in cases where traffic conditions changed 

dynamically. However, the dependency on high-quality input data was evident, as 

data sparsity and sensor inconsistencies presented challenges in some instances. 

Missing values affected the generalization capability of forecasting models, 

highlighting the need for careful data preprocessing and sensor coverage 

optimization. 

The comparative analysis between the two case studies in Athens and 

Antwerp revealed that while congestion trends followed distinct characteristics in 

each city, their recurring nature allowed for effective modeling. In Athens, congestion 

was largely influenced by urban mobility patterns, with peak-hour traffic following 

well-defined cycles. In Antwerp, where major roadways and port activity contributed 

to congestion, the predictive models adapted to different traffic flow behaviors.  

Overall, our work confirmed that a multi-method approach, combining time-

series forecasting, clustering, and visual analytics, provides a comprehensive 

understanding of recurring congestion patterns and planned incident detection. The 

extracted results emphasized the importance of model adaptability, high-resolution 
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traffic data, and spatial-temporal consistency in ensuring accurate and scalable 

congestion forecasting. While deep learning models proved to be highly effective, 

their success depended on the availability of reliable input data and the ability to fine-

tune models to specific urban environments.  

9.7.3 Discussion	of	Results	for	the	Integration	of	HITL	and	Explainability		

The inclusion of explainability features as part of the system helps ensure the trust 

of the system by its users. Moreover, the integration of a Human-in-the-Loop 

methodology and regular retraining significantly enhanced the model’s ability to 

predict non-recurring incidents. The HITL approach, in particular, played a crucial role 

in improving the model’s f1 score, enabling it to better identify rare events that 

traditional models might overlook.  

The comparison of different retraining frequencies provided valuable insights into 

the optimal approach for maintaining high prediction accuracy while balancing the 

need for computational efficiency. The findings suggest that weekly retraining strikes 

the best balance, allowing the model to stay up to date with new patterns without 

overfitting or resource exhaustion. Our approach demonstrates the effectiveness of 

combining machine learning with human expertise in dynamic environments, 

particularly when dealing with non-recurring incidents. By continuously incorporating 

human feedback and adjusting the retraining frequency to suit the specific needs of 

the environment, predictive models can remain accurate and reliable, even in the face 

of evolving data patterns. 

While our approach demonstrates the effectiveness of combining machine 

learning with human expertise in dynamic environments, several avenues for future 

research can be explored. First, the integration of more advanced explainability 

techniques (saliency maps, counterfactual explanations etc.) could provide deeper 

insights into how models make predictions, further enhancing trust and usability for 

human operators. These explainability features can help identify biases or gaps in 

model performance, facilitating targeted improvements over time. 
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Another promising direction is the exploration of adaptive retraining schedules. 

Rather than adhering to a fixed retraining frequency (e.g., weekly), models could 

benefit from adaptive retraining that triggers updates based on the detection of 

significant data shifts or anomalies. This would allow the system to stay responsive to 

changes without unnecessary resource expenditure. 

Moreover, an approach which could be used is the incorporation of online learning 

methodologies, techniques where machine learning models continuously update 

their parameters as new data becomes available, rather than relying on traditional 

batch learning where models are retrained from scratch periodically. This is 

particularly useful in dynamic environments, such as transport systems, where 

conditions change frequently due to new traffic patterns, incidents, or weather 

conditions. Online learning enables models to adapt to changes in real-time, 

improving their responsiveness and accuracy. In the context of incident detection 

systems, online learning allows the model to adjust its predictions as it receives new 

traffic data, making the system more resilient to evolving patterns. Furthermore, 

online learning methodologies reduce computational costs because only new data is 

used for updating the model, rather than requiring full retraining, which can be 

resource-intensive. 

Unlearning methodologies, on the other hand, are techniques that allow models 

to "forget" specific parts of learned data when they are no longer relevant or if they 

are incorrect. This is particularly important for privacy concerns, where models might 

need to forget sensitive data (for instance during crises, such as COVID-19), or in 

situations where new information renders old patterns invalid, such as changes in 

road infrastructure. In the context of transportation systems, unlearning could be 

used to ensure that models no longer rely on outdated traffic patterns that no longer 

apply, ensuring the predictions remain relevant and accurate. 

Finally, future research could explore automated feedback loops that gradually 

reduce the need for human intervention by learning from historical feedback. Over 

time, these systems could become increasingly autonomous while maintaining a high 
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level of accuracy and explainability, thus improving the overall efficiency and 

reliability of incident detection in real-world applications. 
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10 Conclusions	and	Future	Work	

10.1 Conclusions	

The work presented in this PhD dissertation marks significant progress in the 

conceptual engineering, development and deployment of a comprehensive AI-driven 

incident detection system for urban traffic management. Through the integration of 

advanced AI techniques, traditional traffic management methods, automated 

Machine Learning, Explainability and Human-In-The-Loop (HITL) concepts, the 

research has demonstrated the potential for creating a robust and adaptable solution 

for real-time traffic incident detection. The key conclusions which emerge from our 

work done can be summarized in the following: 

• Introduction and Motivation (Chapter 1): This chapter sets the foundation for 

the research by discussing the current challenges and issues in traffic 

management systems, addressing their limitations, especially in urban 

environments where complex and dynamic traffic patterns challenge 

traditional systems. The motivation of the work conducted is rooted in the 

need for automated yet adaptable solutions that can integrate human insights, 

leading to a new AI-based, human-centric approach for real-time traffic 

incident detection. 

• Literature Review (Chapter 2): An extensive review of existing traffic incident 

detection methods and technologies is provided here. Key algorithms, from 

comparative methods to advanced machine learning models, are examined, 

highlighting their strengths and weaknesses. The literature review also points 

out the existing research gaps, which this dissertation has aimed to address 

through novel methodologies. 

• Research Challenges (Chapter 3): This chapter outlines the specific research 

questions driving the study. These questions are focused on developing a 

comprehensive framework that combines automated and human-centered 
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approaches for real-time traffic monitoring. The goal is to enhance incident 

detection for both planned and unplanned events, by using state-of-the-art 

methods and algorithms, improve transparency through explainability 

techniques, involve human operator expertise and achieve high performance 

across different urban environments. 

• Framework for Real-Time Monitoring and Prediction of Traffic Incidents 

(Chapter 4): Introducing a multi-component framework, this chapter presents 

the four key pillars where our work is based upon: Data Analytics, Automated 

Machine Learning (AutoML), Human-in-the-Loop (HITL), and Explainability. 

Each pillar plays a crucial role in building a robust and adaptive system, with 

AutoML ensuring automation in model development, HITL enhancing 

adaptability and performance, and explainability fostering trust and 

transparency. 

• AI-Driven Traffic Incident Detection for Planned and Unplanned Events 

(Chapter 5): Focusing on data-driven methods, this chapter delves into 

advanced analytics techniques for detecting unplanned incidents and 

identifying recurring congestion patterns. It showcases the effectiveness of 

machine learning and deep learning models in handling diverse types of 

incidents, enhancing the adaptability and accuracy of traffic incident 

detection. 

• AutoML-Driven Incident Detection (Chapter 6): This chapter presents the use 

of TPOT within AutoML for automating model development and optimization. 

By automating feature selection, model tuning, and pipeline creation, TPOT 

reduces the need for manual adjustments, thereby streamlining the model 

development process.  

• Human-in-the-Loop and Explainability in Incident Detection (Chapter 7): 

Highlighting the importance of HITL, this chapter emphasizes the integration 

of human feedback in refining AI models. Explainability techniques, such as 

SHAP and LIME, are implemented to ensure that model predictions are 

understandable to operators. This approach not only enhances transparency 

but also empowers operators to make informed decisions during critical times. 
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• Information System AutoEventX (Chapter 8): Detailing the technical 

architecture of AutoEventX, this chapter outlines how the system combines 

data pre-processing, model development and training, model evaluation and 

real-time analytics in a scalable, operator-friendly platform. AutoEventX's 

functionalities are demonstrated through real-world cases, which illustrate its 

effectiveness in incident detection and its flexibility in urban traffic 

management scenarios. 

• Deployment and Evaluation in Real-world Case Studies (Chapter 9): This 

chapter presents an in-depth evaluation of AutoEventX, tested in the cities 

of Athens and Antwerp. The results confirm the system’s adaptability to 

different traffic conditions, its robust performance across varied 

environments, and the value of including automated and HITL approaches in 

improving detection accuracy. 

• Conclusions and Future Work (Chapter 10): Summarizing the dissertation’s 

contributions, this chapter discusses also the limitations of the current study 

and proposes future directions. Future research should focus on integrating 

multi-source data, advancing human-AI collaboration, enhancing 

explainability, and incorporating prescriptive analytics to optimize automatic 

traffic incident detection in smart mobility systems. 

10.2 Limitations	

Generally, data-driven methods used in the context of automatic incident 

detection algorithms (AIDA) have their limitations. Perhaps the most commonly cited 

limitation is that many IDAs are unable to differentiate incidents from contexts, 

resulting in a high false alert rate. Noise from signals on junctions can cause 

congestion similar to that of an incident, leading to false alerts in traffic variable based 

AIDAs. Finally, many AIDAs are only capable of indicating when an incident has taken 

place in the vicinity of a detector. Traffic operators could respond more effectively if 

the exact incident location and expected congestion propagation could be estimated. 
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These features are closely related to incident detection and could be accounted for 

within the design of IDAs to aid operators further. 

Apart from these well-known limitations, it is noteworthy to mention some 

limitations specific to our work. Limitations arise from the manual registration of 

incidents by operators, potentially leading to omissions or timing inaccuracies in the 

dataset. Consequently, such discrepancies can significantly skew the performance 

evaluation of our algorithms. The filtering process specifically for the Athens labelled 

incidents’ dataset is susceptible to errors, and despite being informed by stakeholder 

operator expertise, the risk of overlooking significant incidents cannot be ignored. 

Additionally, the decision to format the evaluation dataset in 5-minute intervals may 

seriously have affected the precision metric, as it requires the detection of events at 

their exact recorded timestamps. 

Moreover, our analysis is contingent upon the data quality and reliability, and 

more specifically on the measurements of the detectors, and the accuracy and 

completeness  of incident reporting, the basis of our evaluation. False positives within 

our model outcomes may not solely represent algorithmic inaccuracies but could also 

reflect events unlabeled due to visibility issues within the network's coverage. The 

reliance on a single data source, CCTV footage, limits our ability to comprehensively 

capture all incidents, suggesting that incorporating diverse data types could enhance 

detection and reduce false positives. The challenge of accurately determining false 

positives due to potential network blind spots is recognized and underscores the need 

for a multifaceted approach in future research to mitigate such issues. One way to 

decrease the false alerts generated is to incorporate various types of data, such as 

CCTV cameras which is also the vision of our work for the future, to train the 

algorithms. Despite the abundance of available data and the advanced capabilities of 

machine learning algorithms, only a limited number of studies have effectively utilized 

the combination of multiple data sources, as stated by the review conducted by 

Kashinath et al. (Kashinath, et al., 2021).  
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Lastly, we recognize that our work’s scope is limited by its focus on immediate 

detection metrics (precision, recall and f1-score), which, while crucial, do not 

encompass the broader operational implications of deploying such technologies in 

complex traffic management systems. As such, we propose that future work should 

extend beyond traditional performance metrics to evaluate AutoML and other ML 

techniques within the context of their downstream applications. Specifically, research 

should explore the operational impact of these detection technologies, including their 

effect on mean time to detect incidents, the propagation speed of detected incidents 

through traffic networks, and their integration into comprehensive traffic 

management strategies. Such an approach will provide a more holistic understanding 

of the value and limitations of AutoML and other ML techniques in traffic incident 

detection, guiding both technological development and strategic implementation in 

this critical domain. 

10.3 Future	work	

While significant progress has been made in integrating machine learning, data 

explainability, and human feedback into incident detection processes, several areas 

remain open for further exploration and refinement. Future research directions in this 

domain can further enhance the accuracy, reliability, and trustworthiness of our own 

system but also traffic incident detection systems in general. Below we present some 

key areas where future research can make substantial contributions: 

1. Multi-source data integration: Incident detection can be significantly 

improved by incorporating diverse data sources such as CCTV feeds, 

crowdsourced reports, weather data, social media feeds and real-time sensor 

data. Future studies should focus on developing improved data fusion 

methodologies and algorithms to enhance accuracy and robustness.  

2. Inclusion of more advanced algorithms and tools: Future work should explore 

reinforcement learning techniques and domain adaptation methods that can 
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enhance the efficiency and adaptability of AI models specifically for the task at 

hand. 

3. Operational impact of automatic incident detection technologies: Future 

work should explore how the different technologies used in the context of our 

framework influence the mean time to detect incidents, the propagation 

speed of detected incidents through traffic networks, and their integration 

into comprehensive traffic management strategies. Understanding these 

aspects will help in assessing the real-world effectiveness of AI-driven 

detection systems. 

4. Advanced Human-AI Collaboration and HITL features: Future research can 

explore more sophisticated methods of human-AI collaboration, where the 

interaction between human operators and AI systems is more seamless and 

intuitive. This includes developing user potentially integrating augmented 

reality (AR) or virtual reality (VR) to provide operators with more interactive 

tools for incident management. (Olugbade, Ojo, Imoize, Isabona, & Alaba, 

2022) (ElSahly & Abdelfatah, 2022) Also, developing real-time feedback 

mechanisms would allow operators to iteratively improve model accuracy.  

Implementing adaptive learning algorithms that can continuously learn from 

human feedback and real-world data is a crucial area for future exploration. 

This involves developing models that can dynamically update their parameters 

and improve their performance over time, based on the feedback received 

from operators and the outcomes of previous predictions. (ElSahly & 

Abdelfatah, 2022) (Olugbade, Ojo, Imoize, Isabona, & Alaba, 2022). Extending 

the AutoEventX pipeline to include techniques such as unlearning, adaptive 

retraining schedules, and semi-supervised feedback mechanisms will enable 

models to evolve dynamically while minimizing the annotation burden on 

human operators. 

5. Enhanced Explainability Techniques: While LIME and SHAP are currently used 

for providing explanations, there is room for improvement in making these 

explanations more comprehensive and accessible to non-expert users. Future 
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research can focus on developing new explainability techniques that offer 

deeper insights into model decisions, are easier for operators to understand, 

and can be customized to different user needs (ElSahly & Abdelfatah, 2022) 

(Olugbade, Ojo, Imoize, Isabona, & Alaba, 2022).  

6. Introduction of prescriptive analytics: Moving beyond predictive analytics, 

prescriptive analytics can play a crucial role in incident management by 

suggesting actionable interventions to mitigate congestion and reduce the 

overall impact of incidents. Future research should investigate how AI can 

recommend and implement optimal traffic control measures in real time. 

7. Integration with Other Smart City Systems: Expanding the integration of AI-

driven traffic incident detection systems with other smart city infrastructures 

can enhance the overall efficiency of urban management. This includes 

connecting traffic management systems with public transportation, 

emergency response, and environmental monitoring systems to create a more 

holistic approach to urban incident management. (Liang, et al., 2022)  

8. Ethical and Privacy Considerations: As AI systems become more integrated 

into traffic management, it is essential to address ethical and privacy concerns. 

Future research should focus on developing frameworks that ensure data 

privacy and address potential biases in AI models. This includes creating 

transparent policies for data usage and developing algorithms that are fair and 

equitable. (Olugbade, Ojo, Imoize, Isabona, & Alaba, 2022) 

In summary, this research has introduced a comprehensive framework for 

leveraging AI-driven methodologies in traffic incident detection, incorporating 

explainability, human-in-the-loop processes, and prescriptive analytics. While the 

proposed solutions offer significant improvements, ongoing advancements in data 

integration, model adaptability, and explainability will be necessary to fully realize the 

potential of AI in smart transportation systems. By addressing these challenges, future 

research can further refine and enhance the effectiveness of incident detection 
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systems, ensuring their integration into sustainable and intelligent urban mobility 

solutions. 
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