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ITeptAndn

O Awywetopds Awxtiou amotehel pio onuavtin Teyvoloyio oTic GUYYEOVES TNAETIXOLY-
wvieg, Wiaitepa 0T0 TAXGLO TV dWTLKY SG o TEEA, xadMC EMTEENEL TNV ATOCUVUEST) TOU
Awtou HpboBaone Padiocuyvotritwy (RAN) oe nohhamhéc eixovixonoinuéves UToUoVAdES,
xodeuion e OLapopETIXEG o ETEPOYEVEIC amautroels. AuTY| 1 TEOGEYYIOT, WX UTO TNV
opyrtextovixr) Tou xotoveunuévou O-RAN (Open Radio Access Network), e€aogarilet tnv
anodoTixt| Aettoupyia SLdpopwy uneectwy TapdAinia. H ewovixonoinor tou dixtiou emtpénel
TNV EVOWUATWOT) TRONYHEVWY UNYoVIoU®Y Behtiotorolnong yio Tn dyelplon Twy topwy,
MEYLOTOTOINOT) TN AmOBOONG XAk TOV EAEYYO TNG XATAVIAWONG EVEQYELNS.

Y10 mhaiclo autd, 1 mopoloo BMAWUATIXY cpyacia TeoTelvel war Abor PBoactopévr o
Teyvés Evioyutinic Mdnong. O mpdxtopac mou avamtiydnxe etvan umediuvog yia tov
dLVAUIXG EAEYYO amOdOY NS Xal TOTOVETNONG AUTNUATKOY OixTOoL Xou yior TN BEATIOTH Oudo-
noon v Exovixomomuévey Aettoupyudy Awtdou (Virtual Network Functions - VNFs)
xde antAuatog petadd otig povddeg tou O-RAN. To mpotewvduevo poviého exmandeletan
vor Aopfdvel amo@doelg HE GTOYO TNV EAXYLICTOTOMNOT TNG EVERYELUXNC XUTAVIAWONG XL TN
Behtiotonolnon e yerione mopwy, tpocopuoloyevo oe petaBaihoueva potifo dnuiovpyiog
atnudtwy. To TelpauaTid amOTEAESUATA XATAUBEXVIOUY TN BUVATOTNTO TOU TEEXTOPA VO
hopPdver Aoyixég xan BEATIOTEC AmOPAGCELS, TEOCUPUOOUEVEG OTIC DEDOUEVES GUVITXES TOU
nepBdrrovtog.  Ilopdhinia, n onuacio g duvauxig TEOCEYYIONG ETBERUMVETHUL UECH
oUYXPIONG UE OTATIXG TEAXTOPA, O OTOl0¢ VO TEREL OTIC AEIOAOYOVUEVES UETPMESC AMOBOOTC.

A€Zeig Khewdid - Aywpiopoc Awxtiou, Alixtuo ORAN, Evioyutin Mdinor, Ewovixoroun-
uévn Luvdptnon Awxtiou, Adonoon Acrtoupyidy



Abstract

Network Splitting is a critical concept in modern telecommunications, particularly
within the context of 5G and beyond, where it enables the decomposition of the Radio
Access Network (RAN) into multiple virtualized subunits, each with distinct and hetero-
geneous requirements. This approach, especially under the disaggregated O-RAN (Open
Radio Access Network) architecture, ensures the efficient operation of diverse services in
parallel. The virtualization of the network allows for dynamic splitting of the functions
of a slice between the network nodes, enabling the integration of advanced optimization
mechanisms to manage resources effectively, maximize performance, and control power
consumption.

In this context, the present thesis proposes a solution based on Reinforcement Learning
techniques. The developed agent is responsible for the dynamic admission control and
placement of network slices, as well as the optimal splitting of Virtual Network Functions
(VNFs) of each slice across the nodes of the O-RAN architecture. The proposed model is
trained to make decisions with the aim of minimizing energy consumption and optimizing
resource utilization, adapting to varying patterns of slice request generation. Experimental
results demonstrate the agent’s ability to make rational and optimal decisions, tailored to
the given environmental conditions. Additionally, the importance of the dynamic approach
is confirmed through comparison with a static agent, which underperforms in the evaluated
performance metrics.

Keywords— Network Splitting, O-RAN, Reinforcement Learning, Virtual Network Func-
tion, Function Splitting



Euyapiotieg

Oa flela va evyoploThow Tov emBAEROVTA XNy Nt wou, x. Xuuenv IamaBaciielov,
Yior TNV EuxoLEid TOU O EDWOE VoL EXTIOVHOW TNV OITAWUNTIXT OV €QYUCIA OTO EQYUC THQLO
NETMODE (Network Management & Optimal Design Laboratory) xadcc xou yior tnyv ep-
TG TOOUVY) TOL oL EBELE Yo Vo aoyohni® Pe auTd To Wiaitepa evilapépoy Véua. Axoun,
euyoptoTe Vepud TNy xo. EAEvn Ytdn, mou ye xadodrynoe xad’ 6An Tr Sdexeio TG SLTAK-
HOTIXHC OU XoU OTOTEAECE YLoL MEVAL UXUDNUIXO XAl TPOCWTIXG TedTUTO. O flela EMTAEOY
voL euyoelo THow Tov Nixdho Pouyavicrytn xan tov I'edpyio I'votlid yio v otevr cuvepyaoio
pog %o Ty okt Borided Toug.

Téhog, éva ueYdho ELYUPLOT® OTNY OXOYEVELL WOV, Tou PE oTHEIEE xad’ OAN TN SudpxeLa
TWV OTOUDWY UoU xaL Ywelg exelvn dev Yo elya xatagéper vor @Tdon g e6w. Euyaploto
eniong Toug gplhoug ou, pe Toug onoloug e€elyfixaue pall, otneiloue o €vac Tov dhhov xou
Tepdoaue TOMES oTYpES Tou, TEpa amd TNV Topéa xou TNV huyaywyia, énuday onuovTind
EOLO 0T BLOPORPMOT TNG TEOCWTIXOTNTAS UOU.

I'ewpylo Mrovounouxéa, Todviog 2025
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Chapter |1

Extetapévn EAAnvixr Tlepiindn

1.1 Ewcaywyn

H eZéhin twv xvntov dixtioy and 1o 5G oto 6G, oe cuvBLIoUS UE TIC AUEAVOUEVES
amouTAoELS Yiol UPNAGTEPOUS PUOHOUE BEGOUEVWLYV, QUENUEVY YWENTIXOTNTA X0l UTOCTARIEN
TOAUUECKY X0 UTNEECLOY ETAVENUEVNG TEUYUATIXOTNTOG, ATAUTEL TNV avETTUEY TEONYUEVGY
UMY OVIOU®Y Yol AmOTEAEOUOTLIXY Blaryelplon Tng xlvnomg Tou dxTiou xaL EAayloTOTOMNOT TG
xatavdhwong evépyetag. H teyvoroyia tou Tepoyiopod Awxtiou (Network Slicing) arotehel
Baoixd epyaieio, Tou yweilel TO BIXTUO GE TOMATAG EXOVIXY UTOBXTUA, YVOO T WS «slicesy,
70 %x¥EVa TEOCUPUOCUEVO WOTE VoL XUAUTITEL TLC OLUPORETINESG UVEYHES CUYXEXQUEVLY EQUR-
HOY®Y, TApOY KV UTNRECLOY Xat Yenoty. Kdie slice Aertoupyel w¢ Eeywploto, anmouovemuévo
EXOVIXO BIXTUO, PE TOUC BXOUC TOU UPIEPWHUEVOUS TOPOUC, TOMTIXES XOU YOQUXTNELC TIXY
am6doonc. Auty 1) Slalpeocn) Tou BTOOL Efval OUCLAGTXT Yial TNV 0PVOAOYLXT XAUTUVOUT TV
TOPWY XAl TNV ATOTEAEOUATIXY) AELTOLEYIX DLUPORETIXMY UTNEECLWY TapdhAnAa. XTny Topoloo
oimhwuatixd, to slices yovielomolovton pe tnv npocéyyion Alucidac Aettoupyidyv (Service
Function Chain- SFC), avonoplotdvtog o o¢ Wo Swatetayuévn oxoloudior Eovixdv Aet-
Toupylwv Awtdou (Virtual Network Functions- VNFs). Toa VNFEs efvon Suxtuaxée hettoupyieg
Boaotopévee o AoYIoUIXO TOU EXTENOVVTAL OF ELXOVIXOTIONUEVO UAXO ovTl Yio ATOXAELT TIXES
puowég ouoxevés. To povtého Ahucidag Actoupylmv xoopilel T cUYXEXEIIEVT CELRA UE
Vv omola autd T VNES extehovvton evtog evog slice, MOTE Vo EXTANROVOVTUL OL ATOUTHOELS
¢ unneeotog.

Mio onuoavtixf) teyvix) ot dayeipton tov slices etvon 1 Awdonoon Aettovpyidv (Funce-
tion Splitting), 1 omolo mepuhaBdvel T xatavour Twv VNFEs evog slice oe mohholg xéuoug
Tou OixtOou. H Aidomaorn Aertoupyldv emitpénel va extehovvtan wéen e Aluoidag Act-
TOUPYUWY XOVTd 0ToV YeNotn Y TN Yelwon tng xaductépnong, v Al Uepn UTopoly vo
xevipixomoinoly yio T BEATIOTOTOINCT XATAVIANMCTS UTOAOYLO TIXWY TOPWY XAl EVEQYELOG.

H Simhewpotiny| auth) eoTidlel otov Touéa tou RAN, cuyxexpiéva oto mAaloto Tng apyttex-
Tovixric O-RAN, pe otéy0 Vv evioyuon g avorytoTnTag xon Blaheltoupyxotntog. ‘Oneg
ewodyeton and v O-RAN Alliance, to RAN GSwryweileton oe Aoyixolc xouBoug, aviroya
ue ™ Véan toug oo xuehoetdéc dixtuo, ouyxexptuévo Radio Unit (RU), Distributed Unit
(DU) xou Centralized Unit (CU) [1]. Ot DUs ouvidwe Beloxovtar oto dxpo tou dixtiou
(Edge), oc xovtvy| anéotaon and to RUs, yio ) pelwon tng xoduotépnone twv yenotoy.

14



1.2.1 Boaoweéc Apyéc RAN xan ORAN Apyitextovinmy

Avrtiveta, ou CUs Bploxovton oTtov muprva Tou dixtiou xon yopoxtnellovton amd ueyaliTepn
umohoyto Tt oy L oe oyéon ue toug DUs. T'a v ixavorolnon tov slices evtog tng apyttex-
Tovuric O-RAN xan tnv extéheon e Awdonaong Acitovpyiay, n Ahuolda Acttoupyidyv mou
avTioTotyel oe xde slice mpémel ouctac Td var dlonpeel avdueca oToug TeElS auTolg x6ufouc,
e TpoTOo Tou va BedtioTonotel TV avTohhory ) HETAE) XATAVIAKOTE Loy VoG ot xoduo Tépnong,
AopPdvovtag uTodn xon To TocooTO amodoyrg slices.

Yty mapovoa dimAwuatixr, To TeéfAnua tou Teyayiopuot Awtiou xou Awdoracne Act-
ToupYLWYV TpooeYYIeTon péow Evioyutinic Mddnong, mpoopépovtag uio SuvoLxT xoL Teocoe-
noo x| Abom yia v anodoyn slices xou v tonovetnon VNEs. O mpdxtopog exmoudedeto
ue tov alyoprduo Ilpooeyyiotindc Behtiotonoinone Hohtixrc (Proximal Policy Optimiza-
tion - PPO), pe otéyo tn dioyeipion g tooppotiog petold twy 060wy ond TNy anodoyh
slices xa1 Tou x6cTOUC NAUTAVEIAWONC oY Yo Tou oyetileton ye Ta edge clouds xou Toug dix-
Tuaxo0g cuvoéouous. Méow wag oelpdc mElpuUdTwY, aflohoYeiTon 1 amodooT TOou TEdX-
Topa e Bidpopeg peTpinés. Eetdlovton dielodixd 1 enlyvemon xatdo Taong TOU TEEXTOEA, OL
BLYVATOTNTES YEVIXEUON|G TOL, Xodm xan 1 onpacio Tng Suvouxic AMdng amopdoewy, Tpooc-
(PEQOVTOG YENOWES YVWOELS YL TNV ATOTEAEOUAUTIXOTNTA TwV ADoewy Evioyutinic Mddnorng
oe olvieteg epyaoieg dayeiptong SixTOmV.

1.2 Boaowég Apyec RAN xaw ORAN Apyttextovixwy

To Aixtuo HpbdoBaonc Padioouyvothitwy (Radio Access Network - RAN) anotehel fooixd
oTolyelo evog aolpuatou Bixtiou, xadde emtelel T oUvdeon YeTol Tou e£omAlGUO) TOU
XeNoTn HE TO €UPLTEPO BIxTUO Péow padloolvoeong. Kol 6an tnv e&éMlr Tou and dixtua
et (1G) wéyper xan méuntne (5G) yewide, auty| 1 oOVOEOY TaPUEVEL O XVPLOC GHOTOG
tou RAN, ue tnv apyttextovin) Tou vor Teocapuoletal OTIC AUEAVOUEVES ATAUTHOELS UPNATC
YWENTXOTNTAC, MAlIXAC CUVOECWOTNTOG, YUUNAOU xOGTOUC Xou ECOLXOVOUNOTS Loy 00, (OTE
VoL ToREYEL UTNEESTES YounAfg xoduotépnong xan LPnArc allomo Tiag.

Hoapd v mpdodo otny TUTOTOMNGY TWV BLXTUNXMY TEOTOXOAAGY XUl GTY) OLUGPIALOT
otohertovpywotntag, To RAN mopopével To tedeutalo OXTNTO TUAU TOU OXTUOoU. Xuy-
xexpEvol TeoUnleuTéS, BNAUDT|, XUPLHEYOUY EVOVTL OVOIXTOY TEOTUTWY. AUuTH 1 WLOXTNTN
@Uon Tou RAN amacyohel tn Brounyavia, wialtepa xadog véeg apyitextovixés, 6w 1o Open
RAN (O-RAN) otoyelouv va xatao THOOUY oUTO TO TUAUY TLO TPOGCLTO ol SLUAELTOURY XD,
(PEPVOVTAC EMAVAGTACT) OTOV TEOTO GYEDLUOUOY, AVATTUENS X0l OLOYEIOIONG TOV XIVNTWY Olx-
oy [2].

1.2.1 Yvotatixd tov RAN

Ye oha to otdd e€éhiine Tou RAN, Ta @uoixd cucTaTIXG TOU XOTNYOPLOTOLOUVTOL
AVEAOYOL UE TOV PORO TOUG OTIC axOAOUIES XAUTNYORIEC:

o Elomhopde Xprjotn: Xuoxeuvéc Ye uovted eupulovixnc meocfuong, txave vor UETASBouY
xou vor AaBdvouy aolpuata orjpoto (8edopéva, Quvi, ofuato EAEY)0L).

e Kepafec: otouyeio Tou guoxol emmédou tou RAN, cuvidwe Totodetnuéveg otov 1 xovtd
oTov otaduo Bdone. Aettoupyoly we 1 TedTr Slenagn ueToll Tou e€oTAoUOY TEAXO0D Yo
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xou Tou RAN, petadidovtag xouw Aopfdvovtog NAEXTEOUIY VITIXG CHUATA OTOV aEpa.

o Ytaduol Bdone: Ov otaduol Bdone eneéepydlovton Tor axatépyasTo. CHUNTA TOU GUAAE-
YovTon omd TIC XEPALEC XOU T UETUTPETOUV GE Uop@Y| Tou umopel va uetadodel peow Tou
Ot TVOoV.

o Aixtuo Metagopds: To Aixtuo Metagopdc elvon umeduvo yia Tn PETOPORd BEBOUEVLV
XL ONUATOV EAEYYOU UETAEY TwV Blapopwv oTolyelny Tou dixtdou. Muvdéer o RAN, 1o
Boowéd Aixtuo (Core Network) xon ddhor xploya otoryeion Tou dixtou, eacgahilovtag
ATOTEAEGUOTIXT XU AELOTILOTY HETADOCT) OEBOUEVLV.

1.2.2 E&éMEn tou RAN

H ocuveyrc eZéMln twv TEYVOAOYIOY XVNTAC ETXOVGLVING ovTixaTonTeileTon Xol GTO
RAN. Kdle dradoyucs| yewid, and 1G uéypt xon to 5G, €Lodyel XouvoTOUd U ITEXTOVIXY TEO-
TUTTO, ONUOVTIXES BEATIOOELS GTO UAMXO Xl BEATIOUEVO AOYIOUXO, BEATIOVOVTAS TNV GUVO-
Aty am6dooT, 1) omola utohoyileTon amd UETEIXES OTWS 1) ALENUEVT ToyUTNTA PETAB0OTNC OE-
OOEVWY, 1) EVIOYUEVT a&loTio Tl 1) BEATIWUEVT) ETEXTACWUOTNTO XOU 1) UEYOADTEQRT EVEQYELNXY)
amodotxotnTa. Ot porydadeg autéc ardayéc otic teyvoroyiec Tou RAN xododnyolvton and
TIC AUEAVOUEVES ATOUTAHCELS OE YWENTXOTNTA, Ol OTOIEC TEOXVTTOLY and TNV EXVETIXT alENoT
oTnV xlvnor 0EBoUEVKY TIg TeEAUTaleg DexaEeTiES.

Yuyxexpwéva, and Tic avaroyxée teyvoloyiee tou 1G, ta dixtua 2G ornuatodoToly
™V UeTdPBaon oTic Prgranée aoclpuoteg emxowvwvies. H apyitextoviny Tou RAN ot 6ix-
o 2G uvotdétoe v mpooéyyion tou Kataveunuévou RAN (DRAN), 6nou ov Mtaduol
Béone (BSs) xatavépovtan oe 6An v neploy) xdhudng, ue xdlde otodud va eEunnpetel éva
OLYXEXELEVO XML TOU XUPEADTOU BixTOOL xan var dloryetptleTtan Tic Sxég Tou Aettoupyieg emed-
epyaoioc xar eréyyou. Autdc o otaduog Bdong dupeiton otoug Mtoduoiec- Ioumol Bdorng
(Base Transceiver Station- BTS), tou OLoryelplCovToy To AoUPUTA XOVAALAL ETLXOVWVIAG Xl
T0 oUOTNUO Xepattdy, xat otov Edeyxt Ytaduod Bdone (Base Station Controller- BSC),
Tou €leyye mohhamholg BTSs xou cuvdedtay ye to core network. Kodwg ta dixtua 2G Aoy
%xVplwC PLVOXEVTEXE, TO BiXTUO UETAUPORAS ATay circuit switching, amoutdvTog Wio amoxielo-
T UO oOVBEGT Yior OAN) TN Bidipxeta Wiog ouVedplag emxovewviag [3].

H petdfacn otnv teyvoroyla 3G elofyorye ONUAVTIXES APYITEXTOVIXES OANXYES, UE YV®-
Hova TNV aLEaVOUEVT avdyxn Yl UToo THEETN utneectov tolupécny. O NodeB, o onotog
avtixatéstnoe tov BTS, ¥tav uneduvog yia Ty mopoyy| Tng podloBIETAPHE TOU ETETPENE
070 eConhioud yenotn va cuvdelel ue To dixtuo. 2oTéc0, ot avtideon Ue TNV dpEYLTEXTOVIXY
2G, évac ewtepinde xevtpixdc Ereyxtic Poadodixtiouv (RNC) avéhafe tic neptoobtepes Aet-
Tovpyieg eAéyyou xau dlayeipiong ulmAdTEpOoL EMTEDOL, OTWS 1) BloyElploT PABLO-TIOPWY XAl
TV YeTafBiBdoenmy PeTall xepalwy. Autdg 0 EAEYUTAC AELTOURYOUGE (G EVOIIUETOS, UVAUETH
otoug mohhamholc NodeBs xau to core network, eZeliccovtac tny Aoy} Tou RAN and
TNV XOTAVEUNUEVT] TNG HORYT. LY YEOVWLS, 1) xuplayio TV BEBOPEVLY EVavTL TNG QOVAS,
00 yNnoe oc Wi LBELLXNY dpYITEXTOVIXY| OIXTUOU UETAPOPAS, Tou cuVOUdLEL circuit-switched
teyvoroyia yioo TN @ovA xo packet-switched teyvohoylo yio To dedoyeva, ETTEETOVTAS THO
amodotixy yehon Twy Tthpwy Tou dixtlou [4].

H petdBoon oto 4G/LTE (Long-Term Evolution) onuatoddtnoe wior anuovtixy| medodo
OTNV OPYLTEXTOVIXY) TWV XWVNTOV dXTU0Y, OoTe vo avtamoxptiel oty exdetinr adinon tng
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xlvnong Bedopévewy, Tou Oev unopovoe va xahlpel To mapadootoxd Kataveunuévo RAN pe
NV ToTXT), XUTTaEY Tpocéyylon Tou. M elehrypévn exdoyr) Tou Ltaduol Bdong, o eN-
odeB, evowudtwoe tic Aettovpyleg Tou mapadoctoxol NodeB xow tou RNC o wia eviado,
ONOXANEWUEVY OVTOTNTA, XoCTOVTAS TNV apyLTexTovxh To amodotr). O eNodeB ywpile-
Ton 6€ 500 Pactrd YoEaX TNELC TLXA: (o) Amopaxpuouéveg Kscpcx)\ég/Movd(Ssg Padroemixotvmviae
(RRHs/RRUs), mou avolouBdvouv kertoupyieg 6w 1 evioyuon, 1o QUATEAELoU, 1) LETEB00T
xou 1 Mgn onudtev tpog/and Tic xepateg xau () Movddec Baoiic Zadvne (BBUSs), unebiuveg
Yo Aettoupyles 6Twe Slaubdpnmor/ anodLlodepemarn xo xwdixorolnor/anoxwdixonoinoy, xo-
VS oxdun Aettoupyoly we diemagn uetald core network xou twv RRUs [4]. Emunpéoieta,
ota dixtua 4G/LTE, to dixtuo HeTopopdc UeTUBANINKE TAHoWS OE WOVTELO UETAB0OTG UECH
TOUXETWY, EVIUYPUUULOUEVO PE TN DEDOUEVOXEVTELXT PUCT TOU BIXTOOU.

H ou&avouevn xuxhogopio Twv Bedouévwy, 00\YNoE Ot Lol EEEALYUEVT] APYITEXTOVIXY), TO
Kevtpuonomuévo RAN (Centralised RAN- CRAN), to onolo cuyxévtpwoe ta BBUs o€ pua
eviafor totodeoia (n.y. data center), tou ovoudletar BBU Hotel, yia NV CUTNEETNOT| TTOA-
AV XEQULDY LG CUYXEXPWEVNS TIEQLOY TG, OTOYEVOVTOG TN PElWOT TOLU xOGTOUG EYXATIO-
Taong xou ouvtrienons. Ta BBU Hotel emixowvwvoiv ye to RRHs péow cuvoéoewy fronthaul
%o Umopoly Vo SLopoleac ToLY UETAC) TOMAGY ToToVesI®Y. AuTtd TO UOVTEAO ETUTEETEL TNV
enedepyacio PEYOAITEPOU OYXOU xUXhOPORlAS, EVIOYUOVTAS TNV ACGPIAEL TOU OLXTUOU Xal
SteuxohvovTag TNy enéxtoon 6mote To amoutel ) {tnon [4].

Yuvohud, eve 1 apyttextoviny) CRAN xou ol teyvoloyiec 4G evioyuoav Ty amodotxdtTnTa
TOU OIXTUOU, TO UTOXEUEVO UMXO X AOYIOUIXO TOREUELVAY OF PEYEAO Bordud WidxTnTa ovd
mpopnveuty. IloAlol mpounideutéc yenoyomooloay WIOXTNTES Olemapéc UeTalld Twv BBUs
xot Twv RRHS, cuvbuoouéve Ue TpoCapUOGUEVES VAOTIOLACELS TWV TEmTOXOA LY front-haul.
Q¢ anoTtéheoya, TO LVAXO CUY VA EMPETE VoL TUREYETOL amd Evary xal UOVO TpoundeuTr yio va
OloQoMo el 1) CUUBUTOTNTA XOL 1) ATPOOKOTTY EVOWUITWOT, TepLopilovTag €Tot TNy eueh&io
X0l TN OLAELTOURYIXOTNT TNG UTOOOUAC TOU OtxTOO0U.

H petayevéotepn eldmhwon tou 5G €pepe onuavtiny Tedodo GTNY APYLTEXTOVIXT| TOU
RAN, mpoxewévou vo avtamoxpwel oTic amantoelg yio UTEPUPNAES TayUTNTES DECOUEVWLY,
Yoy xoduotéenon xou palixy CUVBECIUOTNTA CUOXELMY, UE TeyVoloyieg omwe Massive
MIMO xar Beamforming. O otadudc Bdong, yvwotoc we gNodeB, Surywpiler tor cuotatind
TOU AOYIXE X0 (PUOLXE OE L0l TLO ATOCUYXEVTPWUEVT apyLTEXTOVIXT. EddTepa, amoteAeiton
amod TiC €€NC EMPEPOUC LOVADEC:

e Podio-Movéda (Radio Unit- RU): Anotekel 1o tuiua tou dixtiou mou Sayetpiletar Tig
AeLToLEYleC PUOOD ETITEDOU, EMXEVIPWUEVO OTN PETABOOT Xou A padloonudtwy. Eivo
XOUMATL UALXOU, EYXUTECTNUEVO XOVTA OTNY XEEULA 1) EVOWUATTWHUEVO OF QUTHY.

o Kataveunuévn Movéda (Distributed Unit- DU): Anotelel 6uvBuacud Aoyiouxod xat (Guotxy
TEYVOAOYLOY xal glvor uTED YUV VLot AELTOURY{EC TEAYUATIXOU YEOVOU UE TOND YUUNAES amanTy-

"z,

oeig xouotépnong. Tormodetodvton oty "dxen" Tou duxtlou (edge data centers), xovtd oTiC
Padio-Movédec.

o Kevtpionomnuévn Movdda (Centralised Unit- CU): Efvar povédo Aoylopixod mou @uiog-
eveltol og xdmoLo TAUTQOPUA GTO VEQPOS %ot oVOAUPBAVEL AEITOVEYIEC U TEAYHATIXOU YEOVOU.

Avuth) ) xevtpixomoinom emTeénel TN BuVAUIXY| XxaTavour Toewy YeTall TohhamAwy DUs.
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Autoc o Boyweioude amontel QUOLXS €val BLPORETIXG UOVTELD BIXTUOU UETAPORUC: TO
Fronthaul (FH) cuvbéer tmv RU pe ) DU, 1o Midhaul tn DU pe tn CU xou to Backhaul
1 CU pe to Core Network.

H cuvohuxr davour Twv Aettouvpytoy avdueoa oTig Teelg povddeg e RAN-—CU, DU
xow RU—ocupfdiher o1 pelwon twv amutioswy ot e0pog {odvng xou xaductépnorn yio xdie
uovdda. Emmiéov, emtuyydveton xahOTepn allomoinoy TwyV TOpWY Xl TLO ATOTEAECHUATIXY
otayelplon o€ 6RO TO BixTUO, EVIOYVOVTAS TNV ATOBOTIXOTNTA X0 TNV ENEXTACLUOTNTA TNG Op-
YLTEXTOVIXAG. Luyxexpwéva, ot Aettovpyieg Tng BBU oo 4G popdotnray petald tne DU xau
¢ CU, 800 EexwpioTég xat YEWYpapxd dloyweltouéves uovades. 'Etot, Aettovpyieg dlagope-
TIXWV ETUTEOWY TEOTOXOAAWY, XA, GO0, UE OLUPORETIXEC YPOVIXES UTOUTHCELS, EXTEAOUYTOL OE
OLUPOPETINES HOVABES. Xuyypovwe, otic DUs yetagépovton mepimhoxes Acttoupyieg emelep-
yoolag, UELOVOVTAS TO X00T0¢ Twv RUS ot EMTRENOVTUC TOV XEVTIPIXO GUVIOVIOUO TOAAGDY
RUs am6 pla DU. Autéd emtpénet tnv xohOTepn eXeTdMEeVTT TNG YweWwhS dloadeotudtnTog,
TOV TEPLOPLOUO TWV TUREULOAMY UETAE) CUOTNUATWY X0 TN BUVAULXT) ETLAOYT) TNG XUTOAAN-
NOTEPNC XEPALAC Yol TNV XAAUTEEY EEUTNEETNOT TOL YENOTY, EVIOYVOVTAC TNV xAAuPn xon TNV
ATOBOTIXOTNTAL,

Y7o 5G, 1 apyitextovint| petofaivel oto Cloud RAN, émou 1 enelepyacia tne Baocurg
Cwvne yiveTon Ue XEVTPIXOTIONUEVO TEOTO amd AOYLOUIXO GE XEVTPA DEDOUEVLY GTO VEQOC.
Autry 1 TROCEY Yo BIEUXOADVEL TNV ETEXTACOTNTA XL TNV OUVOULXT XOTAVOUYH TOPWY,
ETUTEETOVTOC 0TO BiXTUO Vo TpocapuoleTtal oTiC HeTaBaAAOUEVES amontrioelS xivnong. 2oT6oo0,
av xou 1 Stemapt| petal b Twv RUs xou twv DUs 1 CUs ota undpyovta RAN cuotruata Pocile-
TOL OF PEPXAE TUTOTIOLNUEVES TRODLOYRUPES, 1) TTROXTIXT| EPUPUOYT) QUTMY TGV BIETUPMY GLY VAL
Tephopfdvel 1BOXTNTES TapahhayES, UE amoTEAEOUA Vo TEQLOPICETOL 1) BLOUAEITOLEYIXOTN T
peToCh BlagopeTinwy mpoundeutey. Emmhéov, To hoylouixd mou €yel oyYedLoTEL Yiol TOV
oLYXEXELWEVO eC0TAONO elvor GLVHIKS Ao OUBATO UE UALXO amtd GAAOUS XUTAOKEVACTES. AUTH
1 €€4pTNOT And WOIOXTNTES, EWOXE OLUUOPPWUEVES VAOTIOLACELS TOV DLETAPOY ONUtovpYEL €val
ONUUVTIXG EUTOBLO OTT) BLUAELTOURYIXOTNTA X0 EVIOYVEL TO Qarvouevo Tou vendor lock-in.

1.2.3 Boaowég Teyvoloylieg

1.2.3.1 Ewovixornoinon Acittovpyidrv Awxtdou

H Ewovixonoinon Aettoupyudv Awtiou (Network Function Virtualization- NFV) ov-
Mo Td T ToPUdOCIaXES BIXTUAXES AElToupYieg Tou exTelOUVTAL GE EEEWBIXEUUEVO UALXO,
onwc firewalls, load balancers xou routers, ue hoylouixd mou pnogel vo exteieiton oe COTS
servers oe cloud mhatopueg. Auty| 1 HETABAOT) ETLTEENEL TNV EUEACTY) Xou BUVAULXY| Bty elp-
LOT) TV UTOAOYLO TIXGY, ATOUNUEUTIXWY YO BIXTUAXOY TORMY, Y0elc TNV avdyxr avo3diuiong
Tou Quowol efomhiopol. O eovinég BixTuaxéc Aertoupyieg (VNFs) MTOPOUV VO UETOXLV-
nYoly A va avamtuyYoly duvouxd o€ dLdpopa oNUEid TOU BLXTOO, AVIAOYU UE TLC OVEYXES
TWYV UTNRECLWY, GUUBIAAOVTAC OTNY XaAUTERT) 0ELoToNOT TV TOPKY Xt TN PeATioTOoNOMOT
¢ anodoone. To oyetnd VNFEs cuvdéovtar, oynuatiloviog ahuoideg AELTOURYUOY UTNEE-
o)y (Service Function Chains - SFC), ot ontolec emiTpénouy Ty EQUOUOYT CUYXEXQUEVELY
TONTIX®Y DLy ElPIONG OF OLUPOPETIXEC POEC DEDOUEVEV.
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1.2.3.2 Acttoupyixdg Aloywelopog

H otoffo mpwtoxdihwy tou RAN oto 5G nepthapfBdver moArd enineda mou droryetpllovto
N PETAd0oOoN xou TNV enelepyacio dedouévwy amd To QUOIXS ETinedo €wg TN onuaTodostia
ehéyyou. To guod eninedo (PHY) avolopBdver t padloemxotvwvia, eve to MAC xo
10 RLC GSuwryeipilovton Tov xatoueploud mopwy xou Tn UETapopd 6edouévmy avtiotorya. To
PDCP npooc@épet hettoupyieg 6mwe ouumieon emxepahidmwy xo xpuntoypdgno, eve 1o RRC
ehéyyel T Slayeipton ouvdéoewy. To SDAP eZacgahilet tnyv mowdtnta unnpestag (QoS). Autd
TOL ETUTEDN OPYAVWVOVTAL OE TEELS YEVIXES XATNYOPLES: TO Quoixd eninedo (L1), to eninedo
Letine dedopévwv (L2) %o o eninedo dutdou (L3).

Kadoe n xivnon ota 5G RAN auldvetor, ol napadoctonés dienagéc fronthaul avtiyete-
milouv onuavTtixég Teoxhroelg ywenTixétnTag. M Aior ebvar 1 UETAPORd TEQIOCOTERWY
Aertovpywwy enelepyaociog otic RUs, odAd mopauévouy pwTAUAT OYETIXG UE TO TOIEG AEL-
ToupYleC xou xutd méoo TEENEL va exteAouvTon Toxd. O 3GPP éyel xadopicel didpopoug
Aettovpyixole dtaywetopole (functional splits) yeta&d RU, DU xou CU, ot onoiot xadopi-
Couv moon enelepyaoio mpayuatonoteiton Tomixd ot RU xou méon petagépetan otn DU,
ennpedlovtog dueoa Tig anuthoelg Tou fronthaul. Ou xlpieg emhoyée nepihopfdvouy o Op-
tion 8, 6mou n DU extehel dheg tig hertoupyieg PBaoinric Cwvng xou 1 RU Satneet pévo RE
Aertoupyieg, xou tor Options 7.1 - 7.3, 6mou Ao xaL TEPLOCGOTERES AELTOURYIEC UETAUPEPOVTAL
ot RU yia peiowon twv anatioewy ebpoug {wvne oto fronthaul. H ad&nom tev hertoupyuoy
enelepyaoiac ot RU pewwvel to @opto tou fronthaul xou tn ypovixr) xaduotépnon, oAld
auédvel TNV moAumhoxdtnTa xou To x6ctoc e RU. H emhoyy| Tou BérTiotou Acttoupyixol
oLy wetopol eCoptdton and Tig anathoelg QoS, TNV UTOBOUY| UETAUPORAS BEBOUEVGLY XAl TNV
TUXVOTNTO YENOTWY otV Teptoy ) eEunneétnong [5].

Yric obyypovee RAN apyitextovixée, yenoyomnoteiton SuVoxoS dLoywpelonos, OTou 1
XOTAVOUY| TWV AELTOURYUOY TROCUPUOLETOL O TRUYHATIXG YPOVO, BEATIC TOTOLOVTAS TNV Amo-
0001 Tou dXTLOL UE Bdon To POETO, TNV Xauc TERNOT XaL Toug dladéatuoug Tépouc.

To Pooixd mheovexthpata tou NEV mepiioufdvouy tn duvouixh xatovour mtopwy, Ty
eLEAXTY) Blayelplom, TNV Tary OTERT XAYUEXWOT) UTNEECLAY, TN Uelwor xdoToug Xan TN pelwon
NG EVERYELXAC XATAVEAWONS Yior Toug XEPLoTES BIXTOWY XvNnThc Tnhepoviag [6]. Qotéoo,
1) ELXOVIXOTIOINOT TWV AELTOURYLOV ELCAYEL VEEC TPOXANOELS OTY) Blaryelpton xaL TNV ao@dleL,
xadodg amoutel mponyuéveg Aoelg yia Ty mpootacio Twv VNES and mbovd xevd acporeiog
xou yoo TNV e€aopdiion tng armodotnhic Aettovpyiag tou dixtdou. Ilapdha autd, To NFV
amoTeAEL plar XouvoTOUO Xolu ATOBOTIXY TEOCEYYLOT 0T Sy ElploT) GOYYEOVWY TNAETLXOVWVL-
XDV BIXTVOV, TEOGPEROVTAS EUENEN, ENEXTACIOTNTA XAt OLXOVOUIXY) anodoTxotnTa [7].

1.2.3.3 Awxtvaxodg Tepayiopnoc

O Awrtvoxde Tepoyiopoe (Network Slicing) agopd ) Snuiovpyior TOMATAGY EXOVIXGY
UTOOXTUMY, OVUPEQOUEVLY W TEUSYLA, TOVE OE WAL XOLVY PUOLXY] UTOBOWUY|, ETITEETOVTOG
TNV cCATOUXEVUEVT] XOTUVOUT] DIXTUOXWY TOpWY GE BLopopeTnés eqopuoyéc. Kdle tepdyto
Aertoupyel wg ave€dpTnTo EOVIXG BiXTUO, UE BIX0UE TOU TOPOUC, TOMTIXEG XAl YUQUXTNELO-
TG amodoong, Omewe Younhr xaduotéenon, udniho evpog Lodvng 1 palixy) cLVBECYOTNTA,
TEOCUPUOOUEVO GTIC AMOUTACEIS TNG EXACTOTE uTneesiag Tou. Auth 1 exovixomoinon ei-
vt Buvortr Héow TS evowudtwong texvixmy and to Software Defined Networking (SDN)
xow to NFV. Avdhoya pe tic anantioeic Tng xde eQopuoync, SNULoUpYoUVToL GUYXEXQUIEVL
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TEUG Lo, ECUTNEETWVTOC VOl QACUA TEPLTTOOEWY YENONG, OTWS EPUPUOYES LPNAOU EVPOUG
Cwvne (eMBB slice), emxowwvieg pe e€aupetixd younhh xodvotéenon (URLLC slice), o-
ayeipon IoT ocvoxeudyv (mMTC slice).

O Awtuondg Tepaylopog Teoo@épel UEYEAT TROGUPUOC TIXOTNTA, EMITRETOVTAS TNV OUVIULXN
OVAXOTOVOUT] TGV TOPWY GE TEAYUATIXG YEOVO, QUEAVOVTAS TNV ATOOOTIXOTINTO X0k TNV XAULAX-
o1 Tou dxtUou. Awcaiilel, £Tol, OTL Ol TNAETIXOVLVINXOL TdEOYOL UTOPOVY Vol UTOG TNRI-
Couv éva eupl pdoua eQapuoY®Y, and streaming Bivieo péyel autdvopa oyfuata xou IoT,
ue BEATIOTN amddoCT) X0t AMOTEAEOUATIXT| Blayelplon TeV diXTuaX®Y Tépwy. ()¢ anoTéheoud,
éyer eZehyVel oe Veyehddn teyvohoyio twv olyypovwy 5G dixtiwy [8].

1.2.4 Ewovixonownuévo RAN

To Ewovixonomuévo RAN (Virtualized RAN- vRAN) equpuélel tic apyéc tou NFV
o710 RAN, eixovixonoldvtag xat cuyxevipmvovTtag cuotatixd enelepyaciog, onwe n Movddo
Boowhc Zovne (BBU), o gNB/eNodeB, n DU xau n CU, anodecyetovidc ta and e&et-
OLXEUUEVO UAXO. AUTH 1 XEVTPIXOTOUNUEVT] AEYITEXTOVIXY| ETITRETEL GTOUC TOPOYOUS Vo o~
torooly tov Awtuoxd Tepoyloud yior SUVOIXY XATOUVOUT] TOPMY XL EVENXTY) TROCUQUOYT
TOU OIXTUOU OTIC ATAUTACEL TWV eqopuoy®y. H avdyxn yio yetpoxivntn doyelpion tou dix-
TOou elahelpeton, xodidg o éheyyoc Twv VNESs yivetow pe xevtpind tpomo uéow epyoheiwy
evopyhotewone. Emouévee, to VRAN Bivel ) duvatdTntor 6TOUC Tapdy0US Vo TROCURUs-
Couv Tov Aettoupyind Alaywpeloud Tou dixtiou Ue Bdomn ) ywentwotnta Tou fronthaul xou Tig
avayxeg QoS TwV EXACTOTE EQPUPUOYWY, ETTEETOVTOS TN BEATIOTN UTOO TARIEY BLUPOPETINWY
unneeowwv(s, 9].

Hopd to ogérn tng evehi&iog xan Tng xhpdnwong, To VRAN e€oxohoudel vo ovtygetwnile
TEOXANOELS, xUplg AOYw TNE e€8pTNOTC TOL amd WOXTNTES dlemapéc peTaly Twv radio xau
core BIXTUOXWY GTOLYEIWY, YEYOVOC Tou TepLopilel TN BlahettoupYdTNTA xou Y XAnPBIlEL Toug
ToPOY0US G GLYXEXEIUEVOUC Tpoundeutéc RAN.

Table 1.1: Different Radio Access Network Generations.

Radio
. Baseband Baseband BBU/RRU .re
Architecture Hardware Software Hardware Intorface Interability
CRAN . . . . Radio + BBU
e Proprietary Proprietary Proprietary Proprietary (HW-+SW single
. Technology Software Hardware Interface
ized) vendor)
. . . Radio + BBU
V-RAN COTS Proprietary Proprietary Proprietary S gl
Software Hardware Interface
vendor)
Software Open Radio + BBU
O-RAN COTS . COTS Open Interface (HW+SW
Interface .
various vendors)
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1.2.5 ORAN

To Open Radio Access Network (O-RAN) efvan pa tpwtofoulio tne Brounyoviog TnAemxoty-
OVIIXOY THPOY WY, TOU GTOYEVEL OTNY avadlouoepnor Twy mapadoctoxdy RAN apyitex-
TOVIXWY, TEOMIOVTIC TNV avVOXTOTNTA, TN OWAEITOLEYXOTNTA Xou TNV euehi&io.  Booile-
TOL OTIC 0PYEC TNG ELXOVIXOTOINGNG, TNG TUTOTOINONG X TNG YPHONG AVOLXTOY TEOTUTWY,
EMTEETOVTOC GTOUC ToEOY0US Vo aEloTIoloLY EEOTAGUO Xal AOYLOUIXO amd TOAATAOUS TpOouUN-
Yeutéc. Xe avtideon ye Tic mapadootaxéc povolrdinée apyttextovixéc RAN, 6mou 1o vAixd
X0l TO AOYLOUIXO EVOL OTEVE GUVOEDEUEVA X0 TIOPEYOVTUL AT EVAV UOVO XUTACKEVACTY|, TO
O-RAN Guryweiler ta oTtoryela Tou Sixtiou xou Tol GUVOEEL HETEL) AVOXTOY BlETaQ®Y. Autd
UEWOVEL TNV €E8pTNON TwV Tapdywy ond cuyxexptuévous tpoundeutés (vendor lock-in) xou
EVIOYUEL TOV AVTUYWVIOUO Xou TNV xawvotopla otr Blopnyoviot TwV TNAETLXOVWVIGY.  Luy-
Yeovee, dlvetan Eugaot otny evowpdtoon Al xaw ML ot RAN opyitextoviny|, xadde To
dixtuo yiveton mo TUxVO xou omoutel LTOCTAREY EQUpUOY®Y LPNAYG €VTaong BEBOUEVLY,
ol mopadoctaxés yewoxivnteg pédodol diayeipiong dev emapxoly. To O-RAN mpowiel au-
TodLyELRLLOUEVY, OUTOVEQUTEVOUEVAL XAl OUTOBLILOPPOVUEVA BIXTUN, UELOVOVTIS TO XOCTOS
unodourc (to RAN avuotowyel oe 65%-70% tou cuvohxol CapEx) xa Peltidvoviag tny
eunelpla TWY YPNoTOV.

Hopd tig tpoomdieieg TwV Topdywy xvNThC TNAEPLVING Vo TEOIAcOLY T1) BLUAELTOURYIXOTNTY
oto RAN, Exavivtog and to 2000, 1 oyopd TapEUeLve oTa Y€ MY WY UEYIAWY XATACKEVICTOY,
evioyovtag to vendor lock-in xou teplopilovtag Tov avtaywvioud. H xuplopyia tou LTE emi-
OEVOOE aUTH| TN CUYXEVTREWOT), avaryxdLoVTaS TOUG Tapoyous var oavalNTHOOLY VEEC TPOCEY-
yioeig mou Yo Toug mpooépepay peyoliTepn ercudepion xan evediioa. O Yuvaomiouog O-RAN
(O-RAN Alliance), mou 1©0p0inxe to 2018 and mMéVie x0pUPAOUC TAUPGYOUC TOYXOCHIWG,
OTOTEANECE TNV TEWTY EMTUYNUEVT TEWTOBOVALN Yl TNY avamTUEN EVOC avoLy TOU ol BLohEL-
Toupywol RAN, Baoctopévou oe tunononuéveg Slenopéc xou white-box vixé [2]. H O-RAN
Alliance €yel mAéov xadoploel TeyVinéc Tpodlorypapéc Tou 0pllouy aVOXTEC BIETUPES Yiol TN
oOvdeon Twv otolyelwv tou O-RAN, mpowiddvtoc tn Siettoupyxotnra.  Anhadt. €vog
Near-RT RIC ané évav xataoxeuaotr umopel va cuvepydleton ye otaduols Bdong and o
apopeTind xataoxeuaoth, eve ol CUs, DUs xou RUs unopolv va Aettoupyolv YeTalld Toug
ave&dptnTa and Tov TEoUNUEUTY TOUC.

Me younAdtepo x06T0¢, AiyOTERA EUTOBLN ELGOBOL OTNY Oy 0Ed Xalk AUENUEVT ATOBOTIXOTNTA,
1 emtuy e viodétnon tou O-RAN Bev petaoynuotiCer poévo 1o RAN, adhd xon ohdxnen T
Bloumyavior TNAETUIXOVWVIGY, ETTOYOVOVTIS TIC TEYVOROYWES eEENEEIC Xou BEATIOVOVTOC TIC
UTNEEGCIES VLol TOUC THEOYOUS XAl TOUS TEMXOUC YPHOTES.

1.2.5.1 Apyrtextovixy, tou ORAN

e O-Cloud

To O-Cloud eivon 1 Pooixry unodour; végoug tou O-RAN, mapéyovtac to unoloyloTnd
Tepi3dhhov Yy T @uhoevia exovixomoiNuévey xou containerized SXTUOXMOY AEITOLEYLOV.
Bootleton o COTS servers, unootneilel avolytég xou SLUAEITOURYIXES DIETUPES, XAl ETLTEETEL
oToug Topodyoug va vhotololy VRAN Aettoupyiec ye peyohitepn enextactuotnTo ot eVeAla

[2].

e Service Management and Orchestration
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SMO Framework

Figure 1.1: Apyttextovixf tou O-RAN [1].

To Service Management and Orchestration (SMO) mAaicto amotehel To xevtpixd coTnuo Ot
ayelplong xo opyhotewone oto O-RAN, emBAémovtac tn Aettovpyia, aopdielor xat anddoon
Tou OwtLou. Xprowonowwmviag TNy O2 dlenagy|, emTEENEL TN duvauixy| dayelpion twv O-
Cloud mépwv xa, peow tng O1 diemagric, emPBAenet xou napaxoroudel TNy andd00T OAWY TV
CUCTATIXOY TNG AEYITEXTOVXNAS, exTO¢ antd Ty O-RU. Me auty| 0 dopr, to SMO Lektimvel
NV amodoToTNTA, TNV eueAia xou Tov éAeyyo Tou O-RAN, eCacpariCovtog cuveyn tpocoe-
HOYT OTLC amauThOELS Tou Bixtou [2].

e Non-RT RAN Intelligent Controller (Non-RT RIC)

To Non-RT RIC eivor evowpottwuévo oto SMO. O xdptog 6t6)0¢ Tou elvar vor utoo TnpelEet
™ Behtiotonoinon Tou RAN péow é€unyne xododynong xat ToATixey dlyeiotone. SuAAéyel
0edOEVA Ao TO BIXTUO, OTIWG UETEIXES AMODOCTC XAl TEOTUTO XUXAOPOPLUG, X To AVOAVEL
YENOYLOTOLOYTIC TEONYUEVOUS dhyopiluoug, CUUTERLAUPBAVOUEVLY LOVTEAWY UMy ovixg udinong.
21N ouveEyela, Onuovpyel oTpatnyXéS o TANPogopieg BeATioTomoinong, Ti¢ onoleg amoo-
éMel otov Near-RT RIC yia extéheon o npaypatind ypdvo. Ot mdpoyot xvnthAc TnAepomviog
€Y 0LV TN BLYVATOTNTA VoL VA TOGGOUY o Vo dLaryetpllovtan oadyopituoug yia to Non-RT RIC,
mpocopuolovtag TN Aertovpyia Tou RAN clugpwva e Tic TOMTIXES XU TOUC GTOYOUS TOUC.
Ou draduasteg dayeiptong GEBOUEVKDY BloyETEDVTAL OTLC 01/02 OLETOUPES YOl EXTENEDT), EVWD 1)
%00y NOT UECK TOMTIXAC XL Ol TANEOYPORIEC EUTAOUTIONOL amocTéAAovTon oTov Near-RT
RIC péow e Al Siemagrc. H Al dienagn ouyyedvewe emitpénet xat faotxr) avateopodotno
an6 to Near-RT RIC oto Non-RT RIC, péow avagpopny yetpioewy Aettovpylog xou amote-
AECUATWV EQUPUOCUEVKDY TIOMTIXGY. [2, 10].

e Near-RT RAN Intelligent Controller (Near-RT RIC)

To Near-RT RAN Intelligent Controller (Near-RT RIC) efvor yior hoyixr} hertoupylo mou
emteénel TN Pehniotonoinoy, tov éheyyo xou Ty mopaxohotinon twv O-CU xa O-DU
o€ OYedOV mpoyuaTXd ypedvo. Aecttouvpyel Bdosl TOMTIXWY Xot XavOVwY LPNAoD emTédou
mou mopdyovto ané to Non-RT RIC xau petagpedloviar o dueca e@apUOCHIES EVIOAES Yia
Toug E2 xépPouc péow tng E2 dienagr|c [11]. To Near-RT RIC eivar uneuvo Aettoupyiec,
OTWS LooppoTia QopTiou Ve YeNoTY), dlayElplor PABLOBLXTUUXMY TIORMY, AViyVEUCT) xot Ueiwon
TopepBorwy, dayelpion QoS, dlayeipton cLVBECLUOTNTAC Xou EAEY YO OUOAAC YeTamopunhc. [
™ Mn anogdoewy, yenowwonotel pa Bdon dedopévev (R-NIB), n omola xotorypdper tnv
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XUTYO TAOT) TOU OLXTUOU GE GYEDOY TpaypaTixd Yeovo. To dedopéva auTd YeMNoULOTOLUVTOL
v exnaldevon AI/ML povtéhowv oto Non-RT RIC [10].

e O-RU

H O-RU elvar to otoyelo tou O-RAN mou cuvbéeton pe Tic xepofeg xan Sayeipiletan T
HeTdB0oT xan A1 padlooNUdTeY, EXTEAOVTAS PLATEdEIoUd, evioyuoT xar beamforming mptv
otelhet ta 6edopéva otnv O-DU péow tou fronthaul [10].

e O-DU

H O-DU avahaufdver tnv enelepyaoia TeVv BEBOUEVHDY XU TN ONUATOBOTNONG OTO ENTEDO
TavVw amd To QUOLXG, xou ouvepYydletar otevd e Ty O-CU yia Ty vAomoinon ehéyyou xau
epyoowdy yenotn [10, 12]. Emxowovel pe v O-RU péow tne Open Fronthaul Siemogpic.
H O-RAN Alliance €yet emaé€er 0 Saudppuwon “7-2x” w¢ 1o BEATIoTo oruelo LooppoTiog,
uetaly amiomoinone tne O-RU xou pelwon tng cuugoenone oto fronthaul dixtuo .

e O-CU

H O-CU ywpileton oe O-CU-CP (Control Plane) xar O-CU-UP (User Plane), Storywpfl-
Covtog Tic Aettoupyieg onuatodoaciog and Ty enelepyacio dedouévwy yenotov. H O-CU-CP
oloryetplleTan T CUVOECYOTNTA, T Bl ElPLOT XVNTIXOTNTOC Xou T1) pUUULCT TWV pUBLOTORMY,
eVe 0oy ORETOL XoU UE T GUUTEEST) ETUXEPUAIDWY X0 TNV XEUTTOYQRAPNOT TWV ONUATODOTIXDY
unvupdtwy. Ao tny daAn, n O-CU-UP avahaudver T 0popohdynom Twv Sed0pévewy Yetall
tou UE xo tou Core Network, eCac@ahilovtac Tn owo T HETED00T TWV TAXETWY XAl THY
egopuoyn Tov QoS moltixwy. O Swryweioude tng O-CU npoopépet peyahitepn euehiéio xan
EMEXTACUOTNTA, xS TO user plane yivetow O TUTOTONUEVO oL OLXOVOUXO GTT) Bloyele-
o7, eV To control plane mopéyel xahOTEPO EAEY YO Ko LAY EIOIOT] TV PUBLOBDXTUUXGY TOPWY.
Meéow teyvoroyimv unyavixic udinong, n O-CU Leitiotonolel 1 Aettoupyla Tou dutou.

O1 O-CU xon O-DU avfxouy otoug E2 xéufoug, ot onolot cuvdéovtar ye o Near-RT RIC
uéow tng E2 diemapric, emtpénovrag duvouxr| dlayelplon xaL TROCUQUOYT) TV PUBLOTOPMY
tou RAN oe nparypatxéd ypdvo [11].

Table 1.2: Avtiotolylon Xuoctatixay pe Aemapéc.

‘ Components Interface ‘
SMO and E2 nodes O1 Interface
Non-RT RIC and near-RT RIC A1 Interface
Near-RT RIC and E2 nodes E2 Interface
Non-RT RIC and rApps R1 Interface
O-CU-CP and O-CU-UP E1 Interface
O-CU and O-DU F1 Interface
O-DU and O-RU Open FrontHaul
SMO and Cloud Platform (O-Cloud) O2 Interface
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1.2.5.2 TYrnpeoieg Teyvntrc Nonpnoolvrng xow Mnyavixnie Mdadnong

H evowudtwon AI/ML povtéhwy oto O-RAN elvon Yepehddec otoryeio tne apyrtex-
TOVIXTC TOU, ETUTPETOVTAS OUTOUUTOTOUNUEVO EAEYYO TOPWY, OVIYVEUGT) OVWUNALDY %ot To-
wounon xivnone. To ML training host eivat to dixtuo mou dnuiovpyel xou exmoudeder AI/ML
HOVTEAX EXTOG oUVOEDTG, eved To ML inference host exteAel tar povtéha xon pmopel var moory-
potomotel online exnaideuor. To exmoudeLUEVO LOVTENX YENOHLOTOLOUYTOL YLOL ATOPICELS OLx-
TOou, enneedovtag TN dlayelplon Slodppnong uéow tne O1 diemagpric, Tn Sy lpton TOMTIXGY
péow e Al xou tov éheyyo O-CU/O-DU/O-RU péow tne E2 dienagric [13, 10].

Trdpyouv teel Bacés otpatnyinég avdmTuéng AI/ML oto O-RAN:

e To Non-RT RIC avohoufBdver xan Toug 600 pdroug training xou inference host. e
aUTH TN OLooEPMOY), OROXANET 1 Btadacta Unyavixhc Udinong, mou mepthoufdvel
T Onuoupyio wovtédwy, otayelpion xixhou (wNg xou Ty Tapoyr dedouévwy, Teay-
uotomotelton evtog tou SMO. O evépyeleg mou exteholvTon GE AUTH TN BLUOEPWON
TepL opfdvouy:

— ITohtuer v to Near-RT RIC, 1 onola petogpépeton yéow g Al diemagrc.

— Awpodppwon topapétewy Y ta O-CU/O-DU/O-RU, n onoio epopuédleton uéow
¢ O1 diemagpric.

e To Non-RT RIC hertouvpyel wg ML training host, eve) to Near-RT RIC avohoudver
To inference host. Auth n mpocéyyion yenowomnotel Tic Siemagéc O1 xou O2 yu )
onuoveyla xar cuvtrenorn woviédwv ML. O evépyeleg mepihopfdvouv:

— ITinpogoptec IpdAedne yia Tic eowtepixéc dradwacieg Tou Near-RT RIC, pe tnyv
A1 Biemopt| vo SleuxoAlver Ty avtohhoy | 0edouévey yetalh Non-RT xouw Near-RT
RICs.

— Awopdppnon tapopétewy O-CU/O-DU/O-RU, yenowonowdvtog tny E2 Sienagr
Yot GUAAOYT) BEBOPEVWY XAl ETUBOAT] TOAMTIXOV.

» To Non-RT RIC hettovpyel wg training host, evé to inference host petogpépetan aneu-
Velog oto O-CU 7 1o O-DU. Aut n pédodoc emextelvel tn xotoveunuévn eugpuio
(distributed intelligence) ota otoryeio tou RAN, expetodlevduevn Ty eyylnta oTic
TNYéc Sedouévey yio dueon M ano@doewy xat €eyyo oe mporypatid yedvo [10].

1.2.5.3 Open-v-RAN

To Open RAN cuvemdryeton Tov Sloymelodd Tou VAU amd To AOYIOUIXO, ETLTRETOVTOG
T BLAELTOLEYIXOTNTA PETOEY TpounUeuTdY, oAAd 6ev onualvel amopoitnte 6Tt To hardware
1 T0 hoytopwd efvor avorytol xowa. Ot Slemapég PETAEY TWV DUPOPETIXWY OTOLYEWY TOU
OtxT00U elvor avoLy TEC, aAAS TO LA PTopEL Var TopoELVEL LOLOXTNTO, dEXEl VO CUUULOPPHVETOL
ue Tic Open RAN mpodiaypagéc. Iapdhinia, undoyet evehi&ia otny avdntuin twv RU, DU
xow CU, oo opiopéveg umopel vor TeptAAUBEvoUY EVOWUATWOUEVES BIXTUAXEC AELTOURY(ES
0TO LAXO, EV® GAAES UTOPEL VoL EYOUY BLALY WELOUEVO AOYLOUIXG oL UALXO.
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1.3.1  Ewioyutua Mdidnon

To Open VRAN cuvdudlet ti¢ évvoleg tng etxovixoroinong xon Tou Open RAN. Avogépe-
Tou 6TN) Yenhon texvoroyiwy NFV yio v avdmtugn exovixonomuévey Open RAN apyitex-
Tovixv, 6mou ot O-DU xar O-CU vhornotolvton we hoytouxd (software-based network func-
tions) [9, 14].

1.3 Evioyvtixr MdUnon

H Evioyvtin) Mddnon elvon évag toucag tne Mnyoavixrc Mddnong nou emxevipmveton
ot Ydinon Ye otoyo, PECW AAANAETLOPAOEWY UE Eva TepBdhhov. Baoixd ctoiyelo anotelel
Evog TEdxTopaS, 0 0Tolog TUlPVEL ATOPACELS ot HOJULVEL VoL ETULTUYYAVEL VOV GUYXEXPWEVO
0TOYO0 AAANAETUOPWOVTOC UE TO TERBAAAOY, AaBEvoVToC ovaTEOQOdOTNCT UE TN LORPT| AvTa-
HOBAOVY o BEATUOVOVTOS T CUUTERLPORE TOU UE GTOYO TNV UEYLGTOTOMNOT TWV a)polo TIXDY
avTopo3WY UE TNV TdEoBo Tou yedvou. Amoxtdel, dnhadh, YVOOES ot BeCLOTNTES UECW
dueong euneplog, avtideto and dAleg mpooeyyioelg unyavixrg pdinong, 6mou undpyel da-
V€U0 %dmolo GOVOLO BEDOUEVMY.

1.3.1 Xvotatixd Evioyutixrc Mdadnong

Extéc and tov mpdxtopa, éva clotnua evioyutixhc pdinong €yel tela unootolyela: éva
TEPYBEANOV XL, EVOEYOUEVKC, LOVTERD Yior UTO, plar TOALTIXY xou piot ouvdpTnor adfoc.

o IlepiBdANov

To nepiBdhhov hertovpyel w¢ T0 e€wtepd cLOTNUA, UE TO OO0 O TEAXTOPUC OAAY-
AETLOPA, TOREYOVTAG UVATEOPODOTNON OTIC EVERYELEC TOU TRAXTOPA. AUTH 1) avaTeopodOTNOT
ETUTEETEL OTOV TEAXTOPA VoL BEATIOCEL GTUDLX T1) CUUTEQLPOEE. TOU TPOXEWEVOL VO ETULTOYEL
évay xadopiopévo otoyo. IlephopBdver tov Xwpo Evepyewdv (Action Space- A), mou av-
TITPOCWTEVEL TO GUVORO OAWV TV TWAVMY EVEQYEWDY TOU UTOPEL VoL EXTEAECEL O TEAXTOPAC,
tov Xdpo Kataotdoewv (State Space- S), mou mepthopfdver dhec tic mbavéc Slauoppe-
oeig Tou mEpBdAiovtog Tou umopel vo avtikngUel o mpdxTopag xou évar LAus Avtopoldric
(Reward Signal), to onoio xadopilel Tov 0THY0 TOCOTHOTOUDYTAS THY XATOANAOTNTOL ULOG
CUYXEXQUIEVNG XaTdoTAoNG 1) evépyetag. e xdide ypovixr otiyur, To mepBdAhov Topeyel
Hlat ovTootB oTov medxTopd Ye Bdor TNV o Teoc@uTh EVERYELS TOL Xou THV avTioTolym
xatdotaor mou mpoéxule. O oTdY0¢ ToL TEdXTOPA Elvol Vo UEYIGTOTOLAGEL TNV odpolo TixY
avTopoLBr, YVWo T w¢ anddoct), Ue TNV Téeodo Tou yeovou. H adpoiotiny avtouolBn oplleto
0¢ xdmota cLVEETNON NG axoAoudiag Twv avTopolBay. XNy To oarhf nepintwor, ebvo To
Gpoloua TV ETUEPOUS AVTAUULOLBMY:

Gy = Ry + Ry + - -+ + Ry, (1.1)

omou o T elvon To Tehnd Briua ot enelc00laxd TEOBAAUATY, TOU AVTLGTOLYEl OF ULo TEQUATIXY)
xatdotaor. H exmtotud adpoiotud avropolfn opileton og:

Gy = Riy1 + YRpsa + - +7" 'Ry, (1.2)

omou 0 < v < 1 Aéyetan moapdryovtag éxntwong xou xoopilel xatd méco Yo Eyouv allo ol
MEAAOVTIXES atvTOUOUBEC YLl auTO TO Briua.
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Evohhooxtixd, yia cuunepiAndmn twv cuvey®v TeolAnudTwy, o tirtog yivetow:

T—t—1

Gy = Z YRy kit ouunepthauPBovouévne e mbavotnrag T'=o0 or vy =1.  (1.3)

k=0

e ol mpofAfjuata evioyutixic pdinone elvon diadéoulo 1 umopel Vo xoTaoxeVaoTEl
€vol povtého tou mepBdihovtoc. ‘Eva tétolo Yovtélo eMTEETEL OTOV TEAXTOEO VO XAVEL
uTo¥ETELS Yior TN SuVoLXT) TOL TEPUSHAAOVTOG, TEOPBAETOVTAS TS TO TEPYBEALOY Vo avTidpdoe
oe éva 6edouévo (ebyog xatdotaonc-evépyetag. To povtého optleton enionua pe tn ypnon e
ouvlptnong uetdfoong xatdotoaong p(s'|s, a), tou xodopiler TNy mdavoTnTo peTdBaong oe
Lol ETOUEVT XATAOTOOT 8’ BEBOUEVNC TNC TEEYOUCUC XATACTAGTC S YO TNG EVEQPYELNS @, KoL TNG
ouvdptnone avtauolBhc R(s, a, s"), mou npoodiopilel Ty avtopoldr| xatd authv T uetdBaon.
Auth n mpooéyyion, mou elvon YvwoTh wg uédodog Bactopévn oto Hovtého, e€apTdTon amd TNV
ENTH AVATUEIOTACT] TNG CUUTERLPORAS TOL TERYSEALOVTOC Yl TNV xadodrynom Tng dtadactiog
Mme amogdoenmy. Avtideta, ol uédodol ywelc LOVTEND TapoXdUTTOUY TNV avdyxr Yo Eva
Té€Tol0 povTERo ot Boactlovion amoxAEloTIXd GTNY exUdinoT U€ow Soxhic xon Adoug xou
OUY VA UTEEEYOLY GE GEVHELOL OTIOU 1) XATUOXELY| EVOC OEXETA oxpl300¢ HoVTEROL Elvon un
TEOXTIXY| 1} UTOAOYLOTIXG axELBT).

Yuvohxd, o pohog Tou TEPBAAOVTOS Elvar xotopto Tdg, xadwg dev TapEYEL WOVO TO
TAalolo VIOC Tou omolou Gpa 0 TEdnTopaS, dAAG xodopilel emlong TNV TOAUTAOXOTNTA EX-
udinone. Iopdyovteg 6K 1 0TOYACTIXOTNTU TWV UETABAUCEWY XATACTAGEWY X0l 1) 018G TOo
TWV YOPWY XATICTACTC Xl EVERYELIG ETNEEACOUY GNUAVTIXG TNV ETIAOYT ahyopliuwy xou T
YEVIXT) AmOBOCY] TOU TEAXTOQA.

o ITohTixy

H nohitues) xadopilel 0 otpatrnyix Tou TedxTopa YLol TNV ETAOYT| EVEQYEIDY O Xdle
0ed0oEVO Ypovo. Tumxd, medxelToL YioL ULl AVTIO TOLYIOT oo TIG AVTIANTITEG XAUTUC TUOELS TOU
TEPBAANOVTOC OTIC EVERYELEC TOU Vol TEETEL Vor EXTEAOVUVTAL O AUTEC TIC XUTAGTAOELS. Av-
TITPOCWTEVEL TOV UNYAUVIONS AAUNG AMOPACEWY TOU TEAXTOQ, EVOWUATMVOVTIC TIC YVOOELS
mou amoxTHUNXaY %aTd TN Bidpxeia Tne exmaideuonc. Avdhioya pe Tov alyopriuo evicyvong
udinone mou €yl emAeyel, 0 TEAXTOPUC UTOREL VoL GAAGEEL TNV TOMTIXY TOU WC ATOTEAEGUO
¢ eumelplag Tou. Enopévee, 1 mohitu ebvar cuvitong duvop).

H mohitixr unopet var mdipet B1dpopeg Lop@éc, Ye amhouoTeRT €vay Tivaxag oavalnTHoEWY 1
Hlat amAY) ouVEETNOT). e To TEPIMAOXES XATAGTACELS, UTOPEL VoL TEQLAUUPBAVEL EXTETAUUEVOUG
UTIOAOYLOUOUG, OTIG VAL VELPWWIXO dixTuo. Mrogel v elvan oToyaoTIxY, EMTEENOVINC TN
YeNon TuYaoTNTAC OTNY ETAOYY| EVERYEWWY. Mia oToyaoTin ToATXr cLY VA avamaploToTo
o¢ my, 6mou m(als) eivon N movdTNTA EMAOYHG TNG EVERYELNC @ TN oTLyun £, OEDOPEVNS TNG
TEEYOVCUS XATACTAUONS S.

e Juvdptnon Aglag
Eve 1o ofjuo avtopol3hc TapEyel JUEST) avaTeo@odoTNoT Yol TNV XATUAANAGTNTA CUY-
HEXQUIEVWY EVEQYELMY 1] XATUCTACEWY, ot cuvopThoel ollag emextelvouy autrh TV €vvola

EXTWOVTOC TO UAXPOTROVECHO OPEAOC XATAGTACEWY 1) (ELY®OY xatdoTaonc-evépyeoc. Ot
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1.3.3  Ewvioyvutua Mdidnon

ouvapTthoelg a&lag xododnyolv Tt Swdwacio AiPne amogdoewy Tou medxtopa.  Avtl va
EMAEYEL EVEQYELEC TIOU AMOPEEOLY TNV UPNAGTERT GUECT) avTAUOLBY), O TEAXTOPUS GTOYEVEL
OTNV ETAOYY EVEPYELDY TOU OBNYOUY GE XATACTACELS UE TNV LmAdTERN exTOUevn adia,
UEYLO TOTOLWVTS ETOL TNV AVUUEVOUEVT) AmOBOCT UaxpoTedieoud.

Ov ouvopthoeic adiog opilovton o oyéon ue cuyxexpéves TohTixéc. Avenionua, 1 olla
HLOC XUTACTUAONG S CUUPWVOL UE UL TOMTIXA T, v(8), elvau 1 AVOUEVOUEVT] ATTOB0CT) EEXLVOVTAS
amd TNV xATAGTAUOT 8 ok axohoLIOVTAS TNV TOMTXXY T 61N cuvEyeta. Ouolwg, 1 cuvdptnon
o&foc-evépyeLog yior TY TOATIXY T avomoploTaTton we ¢x (s, a).

Ov cuvaptroelc oliog vy %Al ¢r EXTOVVTOL GUVEYMS oo T oxohovdiec mopatnenoewy
TOU TEAXTOPA XaTd TN Oldpxela TN aAnAenidpactic Tou ue To mEpBdAloY, ot avtileon Ue
TI¢ avtapolBés, ol omoleg mopéyovTon dueca and To TEPYBdALOY. AuTH 1 Sadixacto exTiunomg
TEPLAAUBAVEL TN CUYXEVTEWOT) Xol TNV EEAYWYT| TANPOPORLOY TOU GUAAEYOVTAL UE TNV T8E000
Tou ypeovou. o mapdderyyo, edv évag mpdxtopag axohoLlel TNy TohTxr T xan Sotneel Yo
%&ie ®oTdG TOOT TOU GUVYTE EVay HEGO GP0 TWV TEOYUITIXMY ATOBOCEWY TOL axoloincoy
EXELVN) TNV XUTACTUCT), TOTE O UEGOC 6p0¢ Vo GUYXAIVEL GTNY o&la TS XATAG TUONG, Vg, XODOS
0 0PIUOC TWV POPWY TOU GUVAVTATAL 1) XUTAC o TElvEL 0To dmelpo. Av datnernidoly Ee-
ywetoTol péool bpot Yo xdde evépyeta Tou exteheiton o€ ULol XUTAG TUOT), TOTE AUTOL OL UEGOL
bpot Yo cLYHAivouy avtioTotya oTIC TWES ¢ (s, a) (uédodoc extiunonc Monte Carlo).

1.3.2 Marcov Decision Process (MDP)

e éva mpoPBhnua evioyuTixhc udinong to TeEyov orua xutdoTaong AEyeTon Uapxoflavo
otav mepthaufdvel 6An TNy TAnpogopia Tou yeewdleTton yiow TNV AN amdgacng, ywelc vo
amouToLYTOL LoToPXE dEdOoEVEL. ANAady|, oV yia Lo aAAnAouyio dloxpltedy Brudtwy , t = 0,
1,2, 3, ..., og xde Brua t o mpdxtopag hapfdvel Ty xatdotaon Tou tepi3dihovtog Sp € S
xou emhéyel evépyewa Ay € A(Sy), hopPdvovtag avtopoldn R € R xou petafaivovtag oty
XATAOTAOT) Syq1, LOYVEL

p(s',r|s,a) = P{Ry 1 =1, Si11 = 8|Sy, Ay}, Vr, s, Sy, Ay (1.4)

‘Eva npdfAnua mou ixavornotel tnv uapxoflav wwdtnta xoieiton Markov Decision Pro-
cess(MDP).

1.3.3 E&iocwoesic Bellman
' éva MDP 1 cuvdptnon a&lag optleton wg:
Ux(s) = Ex[Gi|Si = 5]

= FE, [Z 7k3t+k+1 Sy = S]
k=0
= Er [Rt+1 +7 Z V' Riyposa|Se = S] 1
= (1.5)
= ZW(G|3> ZP(Sla rls, a) [T +vEx [Z YV Rishia|Sip1 = SIH
a s'r k=0

= w(als) > p(s,r|s,a) [r +yve(s)], Vs,s' € S,a€ A(s),r € R[15].

s'r
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Chapter 1. Extetopévn EAAnvind Hepiindn

H tehevtala popgr| tne e€lowong xaheitan E&lowon Bellman xon exqpdler tn oyéon uetald tng
a&iog pLag XaTdoTaong xan TG adlug TwV ENOUEVKY, UTohoYI{ovTaS OAEC TIC SUVITES ETAOYEC
xou Quytlovtag xadepio ye v mdavotnta epgdviorc tne. Ouolwe yio T cuvdptnor alioc-
EVERYELNG!

qr(s,a) = E:[Gy|S; = s, Ay = a] = Eﬂ[z YRy 11| S = s, Ay = a][15]. (1.6)
k=0

Ytoyoc otny evioyutiny| udidnon etvor vo Bpedel pla toAtixd mou peyiotonolel Ty adpolo-
T avtopolB) paxporpdieoua. Ye nenepacuévo MDP, 1 Béltiotn moltiny| uropel va npoo-
oloploTel, uéow Ty ocuvapthoewy oliag. M mohth) m Jewpeiton xohOtepn ¥ lon ye wo
G ' av toyler 6Tt v (S) > var(s), Vs € S. AnoBewvieTton 6Tl LTdpEYEL TEVTA TOUAAYIOTOY
o TOMTIXY TOU UTEREYEL Ao TLC UTOAOLTES, 1) omoio GUPBOAILEToL (¢ T xou Eyel Tn BEATIOTN
ouvdptnon a&lag, v*:

v4(s) = maxv.(s),Vs € S. (1.7)
s
Enouévwg, oplletan n E&lowon BeAtiotonoinone Bellman wc:
v,.(8) = max s,a
(5) = max g (s.0)

= max E[Ri1 + y0i(Si+1)|S = s, Ay = a] (1.8)

= max > (s, rls,a)[r +yv.(s)] [15].

s'r

Yie menepaouéva MDP, 1 e€icwon auth €xel povadixr Aoom aveldptnto amd TNy TOALTIXY, Xal
av elvon YVeoTh 1 duvouixr Tou TepBdAlovTog, p, VewenTnd umopel vor utohoyloTel, dpmvTag
ue dmhnoto (greedy) TeoTO WE TEOC TNV .

1.3.4 E&epelvnomn vs ExpetdAAeuon

To dinuuo e€epedivnonc-exueTdhheuong tvon pio YeEUEMMONG TEOXANCT TNV EVIOYUTIXY
udinom, xadog anontel EMAOYT| AVIUECH GTNY EXUETIAAEUCT) Y VWO TOVY TATPOPORLMY VLo HUECES
avTopol3Eg xan Ty e€epelivnom VEWY emAOYGY Yo JeAovTxt| Bertiwon. H owoti icoppotia
elvor xployn: 1 uTEPBOAXT) EXUETIAAEUCT| UTOREL VoL aprioEL VoL EEQUYOLY XUNDTEREC ETIAOYEC,
e xtvduvo maryidevong ot Tomd eNAYLoTO, EVE 1) UTEPBOAXY| e€epelvon omatald Topous. O
TedxTopaC TEETEL VoL €€lo0EEOTEL, TEOCUPUOLOVTAS TN GTRUTNYLXT) TOU GTO SUVOLLXO TERL3GA-
Aov, woTe va TeETUYabvel paxponpdieoun emituyia.

1.3.5 Avuvopixog Ipoypappatiopnog

O 6poc "duvouinde Tpoypaupatiopos” oty Evioyutind Mddnon neprypdpet pior opddo oh-
yopiuwy mou, emhbovtag Tic E¢ionoeic Behtiotonoinong Bellman, unoloyiCouv tn BérTiot
moltix o€ éva MDP pe yvooto povtého nepBdiiovtoc. And autolc, 1 Enavéindn Iok-
Tixrc xou 1 Emavédndn A&loac etvar 800 Baocwés mpooeyyloeg mou uodetody dlapopeTinég
OTRUTNYXES VI TNV EVPEST, TNG PEATIOTNG TOALTIXYG.

Ou yenowonotolvton xepoaior Vi (), @ () yior Tic eXTIUACELS TV cuvapTHoewy adlug xou
evépyelac- allag, eved ta Ux(), go() Vo cupBohilouv T TEOYHUTIXES GUVOPTACELS UTO TNV
oMt 7, vi(), g () ov elvon BEATIOTES yior GREC TG TOALTIXEC.
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1.3.6  Ewvioyutu Mdidnon

1.3.5.1 Enavoinntixy AZiohdynor ITohtixrg

H Eroavoinntuc AZohdynon Hohtuc etvon pa uédodog mou extud 0 ouvdptnon adlug
V() yror piar 5eBoUEvn TOAMTIXNY T, HEGE ETOVURNTTIXOY EVIUEPOOEWY Bdoet Tne eZlonwone Bell-
man. Zexwvovtog omd avdaipete TipéS a&lag yio xde xATAGTUOY), TIC EVIUEQMVEL BladOY XA,
e Bdon g miavoTNTEG EVEQYELDY, UETABACC XoL TIG AVOUEVOUEVES OVTOHOYBEC:

Vi1(s) = D _m(als) d_p(s',rls, a)[r + 7 Vi(s')] (1.9)

a s/

Auté enovohouBdveton péypt T obyxAion oe otadepéc (ue Bdomn xdmoto xattheAL) T,
%8t mou elvor eyyunuévo yia tenepacpévo MDP [4]. Auth n Siodixooia BeATudver Tic opyinéc
extiunoelg ye Bdon dhheg exturoeis (bootstrapping).

1.3.5.2 Enavdindn ITohitixng

H Enavéindn Hohtxrc utohoyilel t Bértiotn noitixr oe éva MDP péow evahhaocod-
UeVwY Brudtwy. Apyixd, yio pa 8edouévn mohtixr, unohoyileton 1 ouvdptnon ofiog v (s)
uéow Enovainmunic AZiohdynone Hohtinic, uéyper vor cuyxAivel. XTn GUVEYELD, 1) TOATIXT
BehtidveTon emAéyovTag, yiol xde XUt TUOY), TNV EVEQYELN TOU UEYLIOTOTOLEL TNV OVOUEVO-
HEVY amod00T BACEL TV TPEYOUCMY EXTIINOEWY:

7'(s) = arg max Z:p(s’|s, a)(r 4 yug(s)). (1.10)

H Sradiraotio auth enovaroufdvetar Ewg 6Ttou 1 Tohtixt| o todepomotniel xou Yewpndel BEATION.
Ye nencpaouéva MDP, n olyxhion elvon eyyunuévn [4].

1.3.5.3 Ernavdindn Agiloag

H Enavéindm A&lag amotehel evolhoxtiny Abon otnv Enavéindn IMohtuAc yr v
elpeon g BéATIOTNG ToMTxg. Xe auth TN pédodo, 1 cuvdptnon adiug xdie xaTdoTaog
EVIUEQOVETAL ETavahnmTixd Ye Bdomn tny Elowon Bedtiotonoinone Bellman, ywpic avauovr
yiow TAEN o&loAGYNOT TNS TOATIXAG:

Vita(s mapr s, a)(r +Vi(s)). (1.11)

. 'Otav emtevyvel 1 ohyxhion, 1 BEATIOT TOATIXY TEOXUTTEL ETAEYOVTOG, YL XGUE XUTAO-
TAOT), TNV EVEQPYELX TTOU UEYLOTOTOLEL TNV AVUUEVOUEVT] AmdBOCT:

m(s) = argmax Zp(s’|s, a)(r+~V(s)). (1.12)

Avuth) n Tpocéyyion elvon o amodoTIXY UTOAOYIOTIXG, XD EVNUERMVEL TAUTOY POV TOGO
TN oLVAETNOT o&lag 60O XL TNV TOALTIXY.
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Chapter 1. Extetopévn EAAnvind Hepiindn

1.3.5.4 Ilepropiopol

‘Eva yeydho petovéxtnua towv uedédwy Auvouixol Ipoypauuotiogol eivon 6Tt anattoly
Tépaopa and 0AOXANEo TOo cUvoho xotactdoewy tou MDP xa Pocilovton o éva téheto
HoVTERO, 4Tl Tou omdvia loyVel. Emmiéov, n ouvdptnon alioc-evépyelag unohoyiletan Ee-
YwetoTd yia xdde axoroudio yweic duvatotnTa yevixeuons. Enopévae, otny mpdén cuviiong
oL cLVPTHOELS aUTEC TpoaeYY(lovTon ite Ue ypauuxd elte ue un-ypouuxd tpémo (t.y. veup-
wVIXd dixtua).

1.3.6 ModOnorn Xpovixwyv Ailapopwy
1.3.6.1 T'evixd

H Médnon Xeovixwv Awgopny (Temporal Difference- TD) onotehel pa pédodo npdp-
Aedme (extipnon cuvdptnoneg ofioc) xou eéyyou (Bedtiwon mohtixic) mou Sev amontel TArien
YV&OOT ToL TEPBdAROVTOC, 6Twe ol pédodol Buvauixol Teoypeouuatiopol. Baciletou o Bely-
MOLTOL EUTIELQLOY TOU TEAXTOPN antd oANAETBpoom P TO TERBAAAOV Tou.

Yuyxexpyéva, n mo ankf exdoyt elvar 1 pédodoc TD(0), mou evnuepdver otadioxd tnv
extiunomn tne ouvdptnone allauc xde xatdotaong Ue Bdon Tov xovovaL:

V(S:) = V(Si) + a[Riy1 + YV (Se1) — V(Sy)], (1.13)

6mou a etvan 0 putude pdinone xou N wuh 6p = Ryp1 +7V (Sig1) — V(Sy) elvon to TD ogddua,
TOL AVTITPOCWTEVEL TN OLoPopd HETAEY TN TEEYOUCUS EXTIUNONG X TNG EVNUEPWUEVNG WE
Béon v napatneoluevn petdBoon. H TD(0) amodeixvieton 6Tt ouyxhivel TNy mporyuortix
ouvdpTnon a&iog yio xdde dedouévn mtohtir| [4].

1.3.6.2 Evtoég ITohtixng vs. Extog IToAtinyg

e mpoPAfuata ehéyyou, o otdyog elvon 1 Behtiotonolnon g TOMTIXAC UECK TNG EX-
uddnone tng ouvdptnone ofioc- evépyetog (Q-function). O uédodor TD, xar byt udvo, ywel-
Lovton o€ evtoc xan exto¢ okt (on-policy xou off-policy), avéhoya pe To modg evruepve-
tou ) Q-function. Ytnv nepintwon on-policy (n.y., Sarsa), n (6o Tohttixr Tou ypnotponoteito
yior TNV ohANAETOpooT U TO TERBAANOY EVNuEp®VEL xou TN Q-function.

Avtideta, oto off-policy (n.y., Q-learning) n Q-function evnuep®veton wote vo mpoo-
eyyller v Bértiotn Q aveddptnta and TV moltixy) mou axohovdeiton. Aniadr, o Sarsa
evnuepwvel T Q pe Bdorn Ty emduevn eVERYELX TN TEEYOUCUS TOMTIXNS, eve To Q-learning
Yenoulomolel To UEYIGTO TV Q TWOV TNS ETOUEVNE XATACTAGNC YL TNV EVIUERWOT).
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1.3.7  Ewvioyvutua Mdidnon

Algorithm 1: Alyopriuog Sarsa yia emelcodloxd tpoBhruata

[y

10

11

Input: Xopog xatactdoewy S, Xapog evepyeidv A, Puduoc udinone o,

Hapdryovtag éxmtwong vy, Pududg e€epedvnong €

Apywonoinor Q(s,a), Vs € S, a € A(s) avdaipeta, o
Q(tepuatixi-xotdotaon, -) = 0
Enavéindn (v xdde eneioodio):

Apywornoinon S
Eravdindn

Emhoyr A and 10 S yenowonotdvTag TV TOALTIXY ToU TEoxUTTEL and To ()
(m.y., e-greedy)

Extéheon evépyeoc A, napatienon R, S’

Enoyf A" and 1o S’ yenoyonotdvtog Ty ToATixr mou npoxOnTtel and To ()
(m.y., e-greedy)

Evrpéeeon Q(S, A) — Q(S, A) + alR +1Q(S', A) — Q(S, A)

S« S A« A

Méyet va elvan 1 xatdoTooT S TEQUATIXA

Algorithm 2: Alyéprduoc Q-learning yio emeicodiaxd TpoBArdoTa

=

10

11

Input: Xopoc xatactdoewy S, Xdpog evepyetwv A, Puludc udinone o,

Hopdryovtog éxmtwong v, Puludg e€epebivnong €

Apyworoinon Q(s,a), Vs € S, a € A(s) audaipeta, xou
Q(tepuatixi-xotdotoon, -) = 0
Enavdindn (v xdde eneioddio):

Apywxornoinon to S
Enavdindn

Emhoyr A amd 10 S yenowonot®dvTag TV TOALTIXY| ToU TeoXUTTEL and To ()
(m.y., e-greedy)

Extéheon evépyelog A, napatripnon R, S’

Enoyn A" and 1o S’ yenoyonotdvtog Ty ToALTiXr Tou TeoxOnTeL and To ()
(m.y., e-greedy)

Evnuépwon Q(S, A) + Q(S, A) + o[R + ymax, Q(S’,a) — Q(S, A)]

S8

Meypt va elvan 1 XATACTACT) S TEQUATIXN

1.3.7 BeAtiotonoinon IIoAttixric vs. Q-learning

Ou pédodol mou éyouv avohuldel uéypel twpa (DP, TD) eivar cav oe popey| mivoxa, dnhadh

ot ouvopthoelc o&lag V xou Q €youv pla T yio xdde xatdotaon 1 (edyog xotdoTaoNC-
evépyelac. Auth 1 TeooEyyion AelToupYel uovo o€ TEPIBAANOVTA UE Uixpd aptdud XATACTAGEWY
X0l EVEQYELMY X0 OEV YEVIXEVETAL YOl CUVEYEIC YMPOUS XATACTACEWY 1) EVEQYELWY. LUVETWG,
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Chapter 1. Extetopévn EAAnvind Hepiindn

YLt XOAOTERT YEVIXEUOT OE TEPSAANOVTA Ywplc HOVTEND, YENOWOTOLOUYVTOL TEOCEYYICELS Yo
autée Tic ouvapthoelc (function approximation), émou n mohTh N 1 cuvdetnon oioc-
EVEQYELUC AVUTUR{C TV TAL (WC TUPUUETEOTIOLNUEVES GUVIPTAGCELS UE LA BLVUCUOTLXY) TOUOHUETEO,
1 omolo TpocupUOleTAL YEGK TNG EXTOUBEUOTC Yol TN HEYLOTOTOINOT) TNG OVAUEVOUEVNG ATo-
boone. Auth n npocéyyion arotelel n Bdorn tne Bathdc Evioyutinric Mddnong (Deep Rein-
forcement Learning-DRL), mou evowpotdver vevpemvixd dixtuo ot TeoBAflata EVIoYUTIXNAS
udinone.

1.3.7.1 Mé9odow Khiong ITohtixAg (BeAtiotonoinon IToAitixrc)

Ye auth v mpocéyylon, N molTixh avomopicToton entd we mg(als), omou @ civon To
OLévuopor mapopéteny ()., Ta Bden evog veupwvixol Bixtiov). O otdyog elvar vo evruep-
Y00V ol TopdueTtpol @ £€ToL (OOTE VA XATACTACOUY TNV T PEATIOTN TOATXY, 1 omola Vo
ueylotomnotel TNV avauevouevn adpoto Tt avtauol3y|. Enoyeveg, n aviixeueving cuvdptnon
Yoo Ty BeAtioTonoinom g TohTxg oE enelcodlaxd TEoBAAUTa opllETon wS:

J(m) = E [R(7)) (1.14)

4 4 4 4 7 4 4 2
6mou R(T) avomopltotd v amddoon and v teoytd 7. H moktx Pedtiotonoeitar péow
av6dou xhione (gradient ascent):

Op1 < O + aVygJ (7o) o, (1.15)

omou Oy elvan 1 T TS ToEAUETEOL oTNY eRavaAndn k xou a elvon o pudude exudinonge.
H didodnon mlow and autrh ) dwdixacio elvar 0Tl 1 xAioT TG AVTIXELEVIXHC CUVAETNOTG
ety ver tn xoatevduvon oty onolo meéner va yetonavniel 1 @, wote vo avgndel to 7y, (als)
660 o ypryopa YiveTal.

Arnodewxvieton 6t ([16]):

Vo (mg) = ZVglogm(at|st) ¢, (1.16)
=0
OTOU 0 TEWTOG OPO¢ Belyvel TS ahdlel 1) TiavOTNTA ETAOYAC TNG EVERYELIC ar OTNY S
¢ TEo¢ TN 0 xou o devTEpOC YeNotueEl we Bdpog yia TV evnuépwon. Trodétovtag 6Tl 1
TONTIXY) VOmoRloTOTAL UE TEOTO TOU EMUTEETEL TOV LUTOAOYLOUS TN XAlomMg TNg, 1) UEoT, T
uTOhOYILETOL EXTEAWVTAS TNV TOMTIXY 0TO TEp3dhhov Yl va cuMeydel €var chvoro TpoyLmY
D xou hopPdvovtog Tov yéco 6po:

ng] 71'9 |D’ Z ZV@ZOQ’/TQ at\st) (1.17)

T€D t=0

H ouvdptnon @, unopel vo mdipel tapopeTiég LopQES, OTKS 1) GLUYORXT ATOBOGCT] TOU ETELGOOLOV,
R(7), n amddoor and 1o teéyov Bhua xou Gotepd, Sp_, R(sy,ap, spi1) xou n Suvdpetnon
[Mheovextiuartog, Ar, (St, ar) = Qry (e, ar) — Vi, (s¢). H wuh Ar, (s, ar) Selyver néoo xahltepo
1) XELROTERO elvon VoL ETUAEYEL 1) @ GTNV § CLUYXELTIXG UE TNV ETLAOYY| TOU LTIy OPEVEL 1) TIOAL-
. H &, pmopel axdun vo ebvon 1 S, R(sp,ap, sp11) — b(sy). H baseline function b(s;)
yenowlomote{ton Yo peieyon tng dlaomopds xow cLYHIWS Elvor Uiol TROGEYYIGT] TNG CUVETNOTG
oo, Vi(s). ‘Ohec autéc oL BlapopeTinéc Lop@és BeV Elodyouy emTAéoV Tpoxatdhndn otov
UTIOAOYLOUO TNG xAlomg [15] %o 1 yenHon Toug eCopTdtar amd Tov EMAEYUEVO ahyopLiuo.
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1.3.8  Ewvioyutu Mdidnon

1.3.7.2 Mé0odol Baociopéveg otnyv Aia (Q-learning)

Ou pédodot autnc tne xatnyoplog padaivouy Wi tpocéyyion Qu(s,a) v ™ PélTiot
ouvlptnon odluc-evépyetoe, ¢*(s, a). Enexteivouv v évvola tou Q-learning and tny evétnta
TD, evowuathvovTag TNV TEocEYYIoT oLUVIETACEWY. AUt 1 BeATioToTOolNoY TEAYUUTOTOLE -
tou off-policy, mou onuaivel 6t xde evnuépwon unopel va yenotuomolel SEBOPEVA TOU GUARE-
YOvTaL GE OTOLOBHTOTE ONueio TN exnaideuong, aveldoTnTa amd TO WS 0 TEAXTOEIS ECEQE-
uVd To TERBdAhOY 6Tay cUAAEYOVTOL Tor Bedoueva. H cuvdptnon ogdiuatog eivon 1o Méco
Tetpaywvixd XLpdhuo TD:

L(0) = . a@p()(['r’m + 7y max Qo(St+1,a) — Qo(si, at))Z], (1.18)
6mou 7y elvan 0 TapdyovTag EXTTwong ot p(s, a) elvon 1) TONTINY GUUTERLPORAS (JLar xaTovoun
TWAVOTATOV OTIC XUTACTAGELS X0 EVEQYEIEC UECK TNG OTOLOC CUAAEYOVTAL OL EUTELRIES, ..
e—greedy). Ot napduetpor O evnuepmvovtar péow xatdfaone xhione (gradient descent). O
0T6Y0¢ Tapauével va Beedel 1 BEATIOTN ToMTXY, N omola ETMTUYYAVETL HECW TNG OYEOTS
METOEY ¢* xou T

a(s) = argmax Qy(s, a). (1.19)

1.3.7.3 30yxplom

Ov Médodol Bektiotonoinone Ilohtindc xou Baowouévee otnv A&la €youv Eeymplotd
mheovextiuota. H 8edtepn xoatnyopio mapdyel amoxAElo TN VIETEQUIVIO TIXEC TOMTIXES Yol
duoxolelETAL VoL ETEXTAEL OE GUVEYELS YWEOUSC EVERYELDY, xaMC TO VEUPWVIXG BIXTUO TEETEL
vo utohoy(let aliec yio xdde evépyeo. Avtideta, o Médodol Behtiotonoinone Hohiturg
evnuep®vouy amevieiog TNV TOMTIXY UECK TN XALONEG TNE XA, TORE T BUVATOTNTA EUPAVIOTS
umArc Soncdpavong, amodidouy xahiTepa o€ TEPBAAOVTA LYNADY BIICTACEWY 1| GUVEYOUS
Y(POU EVEQYELMV.

1.3.8 AAyopidpor Badidg Evioyutixng Mddnong
1.3.8.1 MeJodow Apdotn-Keutn

Ou pédodor Apdotn-Kertry (Actor-Critic) etvon pa xotnyopla ohyopiduwy mou cuvoud-
Couv Ta mAovexTruato Twv value-based xau policy-based npoceyyloswy, yenowonowwvTog
000 Vevpwvixd Sixtua: Tov Apdotn, mou xoopilel TNV TOAMTIX xan ETAEYEL EVEPYELEC XAl
TopopeTeoTolE TN amd TIg UETAPBANTES B, xan Tov Kpity), Tou napauetponoleltan amd TG w xou
elvon umedYuvog yioe TNV ACLOAOYNOT TWV EVEQYELDY, EXTWMOVINS TNV AVOUEVOUEVT] ATOO00T
xou TapéyovTag avateoodotnon. Auty 1 cuvepyacia eacgaiilel mo otadepy| xon EUEATN
o0OYXMGT), 0ol PELOVEL TNV LYNAT Slaxduoavorn Tou cuvidng éyouv ol policy-based yédodot.

Ewwétepa, o dpdotne Behtiotonotel v avtxeuevixr ouvdptnon J(f), tou avinpoow-
TEVEL TNV AVUUEVOUEVT] ATOBOOCT UE TNV TONTIXY Ty, UECL avodou xAlong:

et_;,_l — Qt + CLV@J(Q”Ht, (120)

OToL: .
VoJ(0) = TNEM[Z Vologmg(ag|se)(Riv1 — V(sy)]. (1.21)

=0
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Chapter 1. Extetopévn EAAnvind Hepiindn

To Ryy1 oupPohilet Ty adpolotxt| avtopolft amd autod To Briua uéypel To TEAOC TOU ETELC00{0U
xou mpooeyyiletan we:
Rt+1 Tyt ")/V(StJrl). (122)

LUy yedveLe, 0 xLThC AAUBAVEL TIC TWES T4, S¢41 OO TO TEPYBEANOY X0t OTOYEVEL GTNY EAdYLOTOTOLNO
tou TD error:

675 =Tt -+ Vw(5t+1) - Vw(St). (123)
Enouévwe 1 cuvdptnon ogdiuotog elvo:
J(w) = (Tt + ’wa(SH—l) - Vw(st))Q (124)

xou TNy ehaylotonotlel Yecw xadodou xhiong:
Wiy < Wy — avij(w). (125)

Or exTiunoslg Tou xpLTr| TEPVAVE GTOV BRAGTY, OTOTE 1) TEMXT| HOPPT TNG CLVAPTNOTG BEATIOTOTONOTG
TOU 0pdoTY Elvou:

T-1

Vo J(0) = TNEM[Z Vologmo(at|se)(rec1 + YV (st41) — Vin(st)] (1.26)

t=0

Awnointind, otav o xpitiic utoroyiler Yetixd TD error — dnhady n olio Tng Teé€yovoag
XoTdo TG elvol UEYUADTERT o6 UTHY TOU EXTIUNINXE — 0 BEACTNC EVAUERMVEL TLC TURUUETEOUC
Tou WoTE vor auErioel Ty mavoTnTo ETAOYTC TNE evépyetac autrhc. Avtideta, €va apvnTind
TD error amodappivel Ty emAoyn Tng (Blag evEpyeLag GTO UEAOV.

1.3.8.1.1 IIpooceyyioctixy) Behtioctonoinor IloAtixrg

H Tlpoceyyiotxh Behuotonoinon loktixrc (Proximal Policy Optimization- PPO) efvou
€vog on-policy, ywelc povtého ahyoprduoc Apdotn-Keitr. Eyet oyeduotel yio vo fedticdoet
N oTdEPOTNTA X TNV ATOSOTIXOTNTO TWV EVNUEPOOEWY TOMTIXNS, TeplopllovTtag UeYdheg
arharyéc mohTc Tou Yo uropolcay vo amoc Tadeponoticouy Ty extaldeuor. Trdpyouv 600
xOptec mopariayéc: PPO-Clip xou PPO-Penalty, mou ypnouomololv SiapopeTtinols unyovio-
HOUC YLt TOV TEQELOPIOUO TOL UeYEVOUC TWV evnuepwoswy Toltxfc. H mo diadedouévn
viomoinon etvon 1 PPO-Clip. ¥to PPO-Clip, o pdhog tou Apdotn napoapével o (Blog, 6Teg
TEQLYRAPNXE PO YOUUEVLG. §2oTO00, 0 Kplthg 6Toyelel 0T UEYLOTOTOINOT UL TEOTOTOLN-
MEVOU OVTIXEWEVIXTC CUVHETNONG:

LELP(9) =  E  [min(r(0)A™ea (s, a), clip(r(0),1 — €, 1 + €)A™oa (s, a))], (1.27)

T 014
OTOU:

o Ty, Evot 1 oA TOALTIX (0WTH oL Yenotpomoiinxe yia T cUAOYY Twv dedouévnv),
eV Ty €lvo 1 Vo TOALTIXY) Tou BeATioToToLElTaL,

o 7(8) elvon 0 Moyoc mdavothtwy petall Tne VEug ot TNE TaALdS TOMTIXAG, TOL TOCOTIXOTOLEL
1 Olopopd Toug:
mo(als)

") = alals)

(1.28)
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1.4.0 Ewvioyvutua Mdidnon

o € elvan ot pixper utepmopdueTeog Tou xadopilel TOoo unopel Vo amoxhivel 1 vEa TOMTIXT
amd TNV oM,

» H ouvdptnon clip neploptlet Tov Adyo mdavothtwy, dlac@ohilovTag 6Tl TUpauéVEL EVTOC
Tou dtaothuatog [1 — €, 1+ €,

o A0 (s, a) elvon n extiunom tou Theovexthuatoc (advantage estimate). O amhovotepoc
TeoTOC Yior v extyunVel elvan uéow tou TD error:

A™00ta (s,a) = 0 = 11 + YV (s021) — V(sy). (1.29)

Q67T600, aUTH N EVNUEPWOT) WoC MOVO UeTdBoone pmopel Vo odnyHoel o uPnAr Ot
oXOUOVOT| OTIC EVIHEPWOELC ToMTAg. [t va to avtetwniost autd, o medxTopag
yenowomnotet ) Fevixevpévn Extiunon Iieovexthpoatoc (Generalized Advantage Esti-
mation - GAE). H GAE e€opahlvel xou otondepomnotel Ty extiunom ToU TAEOVEXTHO-
TOG EVOWHUATWVOVTAS TOMAUTAEG UEAAOVTIXES AVTAUUOLBES, YETOULOTIOLOVTOG EVOL EXVETIXG
otaduiopévo ddpotoua twv TD errors:

T—
Aot (51, a) = Y (YA) Sy (1.30)

=0

—_

O 6poc T(Q)A”"k () evdoppiver TV TohTixy vor auEAoeL TNV TaVOTNTO TWY EVERYELDY UE
Jetnd mheovexThuata (XohéC EVEQYELES) XL VoL UELDGEL TNY TIOVOTNTO TWV EVERYELDY UE dpV-
NTxd micovexthata. Tavtoypova, 1 cuvdptnon clip dwogpoiiler 6Tt 0 Aoyog mdavothTwy
oev amoxhivel utepBohixd and To 1, amoTEEToVTAC TOAD UEYSAES EVNUEPMOELS OTNV TOATIXY
o€ éva uovo PBrua. Autog ebvor o Baocindg unyovioudg mou xaioté To PPO otodepd.

O miene akydprduoc PPO-Clip nepthouBdver to e€hc Bripota [17]:
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Chapter 1. Extetopévn EAAnvind Hepiindn

Algorithm 3: Alyéprduoc PPO

1 Xuhhoy7 cuvohou BladEOU®Y Dy EXTEADVTAS TNV TOALTIXY| Ty, OTO TEPYSEALOV.

2 TTOAOYLOUOC TWV EXTIUNOEWY TAEOVEXTAUAUTOS A (s, a) yenowornowwvtog GAE (1
G wédodo) pe Bdon ty tpéyouca ouvdptnan o&iog Vi, ().

3 BEvnuéowon tou dixtiou ToMTIXAG UEGK avodoU xAloTG:

4 T'va N enavarrderg:

5 Evnuéowon tng moMtixc:

Opi1 < O + &V@LCLIP(QMQ

k)

OTIOU 0 TEPOPPEVOS OTOYOG Efvou:

LCLIP( Z Z min ( ek (St7 at) Cllp(?“((g), - 6, 1+ E)Aﬂ—gk (Sta at))
|D k|T €Dy, t=0
6 Evnuéenon tou dixtiou xpith péow xadbddou xhiong:

Wiy — wy — ay Vi d (wy),

OTIOU 1) CUVEETNOY ATOAELNC TOU XELTH OlveTol amd:
n eTNoN Lt

J(w > Z (ree1 +WVa(se) = Vi(se)?

TEDk t=0

\Dk|T

1.4 Awapdppwon tou llpoBAuatog

Ye authv TNV evOTNTA ToEOLCLALETOL 1) BLOPPMOT) TOU TEOBAAUATOS, TOU opoed Tig
Tpoxhfoelg ehéyyou anodoyc slices xar Tomodétnong Ewovixonoimnpévey Acttovpyidv Awx-
toou (VNF) oty apyttextovinf tou O-RAN, ofonowdvtag tn Bohd Evioyutix Médnon
(Deep Reinforcement Learning - DRL). Xtéyoc eivar 1 povielomoinon evog peoho Tixol
nepBdrrovtoc O-RAN xan 1 avdmtuln evée npdntopa RL, o onolog Vo houfBdver amodotixd
ATOYAOELC GYETIXG UE TNV AmOd0Y T, TNV TOTOVETNOTN XAl T1) OLECTIOOT TWY ELGEQYOUEVGY ALTY)-
udtov slices.

1.4.1 Movtéro AwxtOoU

Trottdetan pror tumixn apyrtextovixs| Bactouévn oto O-RAN, 6nou ta Edge Clouds (ECs)
ouvdéovta éow ouvdéouwv Fronthaul (FH) pe tnv poadiopovddo (RU), mpoxewévou va
unootneilouv eQupuoYEéc Ue avoTtneés amanthoelg youniie xoduotépnone. Trotideton wia
amhomonuévn wopyt 6tou xdde EC mepthopfdver éva pévo Distributed Unit (DU). ‘Eva
novadix6 Regional Cloud (RC), ouvdedepévo péow ouvdéouwy Midhaul (MH) e ta ECs,
AELTOVRYEL WG XEVTPIXOS LUTOAOYIG TGS TTOpOC, uTebuvog yia eneéepyacia uPniod emmédou
xot ouvtovioud Petald mohhwyv ECs. Ou FH olvoeouor e€acporilovy yaunif xaductéonon
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1.4.2  Awoodppwon tou IpoBrAuatog
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Figure 1.2: Movtého Awxtiou.

emuowvoviag petalh RU o ECs, evey oo MH olvdeopol moapéyouv uhnirc ywentxdtntag
ouvoeon petadd ECs xaw RC. Ta ECs xou 1o RC yapaxtneilovtoan and 10 cuvokxr) utoho-
YO T TOUg xavoTnTa, peTenuévn o mupriveg CPU, evd xdle olvdeouog teptypdgpeton and
™V yoenTxéTnTa dpoug (Mvng ot TV xoaduo téenor Tou eTBIAAEL.

Ov mapdpetpol mou oyetiCovtan pe T SLaTiTKoT ToL TEPBIANOVTOC TaUPOUGLALOVTAL GTOV

TTivoxear 77.

YOpPoro IMepiypap
E Yovoro ECs
F Y0voho Swndéowy VNEs
F, To&vounuévo vrocivoro VNEs mou amotehel tny ahucida Aettoupyiodv yia To slice s
f e F; Acixtne VNF otnv aduoida Aettovpyidyv Tou slice s
Ng IIhidoc VNFEs tou slice s
ts Xpbvog dgpiEng tou slice s
ht, Xpobvog duathipnone Tou slice s
Prs T mpotepandTNTOC TOL Slice s
R(t) YOvoho slices mou €youv agiydel péypt To ypodvo t
Cs.f Anaitnon oe CPU tou VNF f Tou slice s
bs.f Anautroeig ebpoug Lovng petald 8vo dwdoyxodv VNEs f — 1, f tou slice s
Doz, Anaitnon yi end-to-end xaduotépnon tou slice s
C.(t) Xpnon CPU cto cloud e € &€
Brue(t) (Bume(t)) Xpton evpoug Lovne petald RU (RC) xan EC e € €
CE, Yuvolur| utohoytotixy xavétnta tou EC e yia xdde ypovid| otiyun ¢
CR Yuvohut| utoloylotind xavotnta tou RC
CBpe (CBue) Yuvohixd ebpog Lavng twv ouvdéouwy FH (MH) nou oyetiCovton ye e € €
Orer Oe R HMoapdpetpor xaduotépnong
pmax Méyiotn xatavdiwon woyvog evog EC
¥ Avodoyla TG xaTavahloxouevng Loy VoG GE aBpavi| server o¢ Teog Phngs
prar MEy1oTn XATAVIAWOT) LoYVOE TOV BIXTUAXWY GUVOECUGY
P,{éﬁe Yradepn] xatavdiwor woyboc odvdeone dtlou yetald RU xav e € €

Table 1.3: Ieprypagn Twv TapauéTewy Tou TEOBAUNTOC.

37



Chapter 1. Extetopévn EAAnvind Hepiindn

1.4.2 Movteho Awtrpatog Slice

To dixtuvo hapPdver awtAporto yia slices e ) poppr) Ahucidoc Acttoupyudyv (Service Func-
tion Chain- SFC), ta onola xadopilouv ™ oeiptony| oelpd eneéepyaoiog Twv VNESs, ue oeix-
tec vy € F (6mou F eivor 10 oUvolo twv dtadéotuwy VNES) evtoc tou slice. Me dhha
Aoy, €va slice avtioTtotyel oe éva dlatetayuévo utochvoho Tou F', To omolo GUELOVETOL
oc Fy = {v®,v1°, ..., v,1°} C F. Ebvar onuavtixd va onuetwdel 6t ta VNEs pe deixteg 0
xou 1 ebvan otodepd o dhar Tor outruartar yia slices, Ye To TE®MTO UTOYEEWTIXS TOTOVETNUEVO
oto RU xa 7o dedtepo oto DU. Emnhéov, xdie slice s yapoxtneileton amd cuyxexpiuéveg
OMOUTHOELS OE UTOAOYLO TWOUC xat duxtuaxols mopous. Autéc opilovton avd VNE xa, cuy-
xexpuéva, v xdde VNF v € Fy 1o ¢f® avtimpoownelel 1 (tnon oe nupriveg CPU xou o
bs® to anoutoluevo evpoc LWVNS yio T HETOPORd SEoUEVLY UETAED Twy Sladoyixwy VNFEs
V5°, Vp1” PO eVOG BTuaoL ouvdéouou. Emmiéov, xdle aitnua s @Tdvel o€ cuyxexpWévo
YPOVIO BLdo TN T, EVTOC EVOC TEploptouévou ypovixol optlovta H. To altrua mepuiauSdve
eniong ypodvo dwthenong hts, mou delyvel Tn didpxeta xatd TNV omola To slice mopauevel ev-
€pY6 PETA TNV amodoyt| Tou. Emlong, opfleton wio anaitnon yia xoduotéenon and dxpo ot
8%e0 Diyga,s XOU YLOL THT) TEOTEEAULOTNTOC Py Yot Xdde aftnua slice, Tou avTimpoownebouy To
eninedo avoyhc otnv xaduoTépnon xou TN oYETXY onuacio Tou aviicTolya.

Ou Baowée petoPAntéc andgaong elvar ol deixteg amodoyic 1) andpethng evog slice xou 1
tonoétnon twv VNEs oe nepintwon anodoyrc. o autév tov oxond, opiletar 1 duaduxr)
uetaBanty X, (t), n onolo tooltan pe 1 av éva aitnua slice €yel yiver amodextéd oto ypdvo t 1
vopltepa, xou 0 dtapopetxd. o Ty Totovétnon twv VNFEs, optlovton ol duadixéc petofintég
x$ (1), Yss(t),Ve € E, f € Fy, s € R(t), 6moe oxoroding:

1, f € Fs tonoveteitan oto EC e € £/RC oo ypbdvo t,

x5 £ () /ys,f (1) = { (1.31)

0, OxpopeTind.
Emnmiéov, o emnpdodetn petoBanty| sry(t) Selyver av éva evepyod (Snhodr un Anyupévo)
slice s €yel yivelr amodextd o100 YpEdVO t:

sa(t) = {Xs(”’ s < (b + hts),

) (1.32)
0, OLAUPOPETIXG.

H tonodétnon twy slices utdxettal puUod 6e ApPXETOUE TEQLOPLOHOUS, OTIKG OL YWENTIXOTNTES
TV oTolyelwY Tou STlou ot oL anaTAoELS Xohuo Tépnang Tou cuvdéovton pe xdve slice [18].
Ou nepropiopol autol €youv exppactel padnuatind oto Kegpdhowo 5.3.

1.4.3 Koboroc

To cuvohxd €60da Tou GUGGWEEDOVTAL 0T0 GUCTNUA O XddE ypovxd Brua t opiCovto
»e:

ReV(t) = Y sr(t)-prs. (1.33)
sER(t)

To x6070¢ TOU BIXTOOU TEOEPYETAL ATO TNV XATAVIAWGT Loy Vog Tewv ECs xou twv dix-
TUAXWOY CUVOECUWY TIOU yenolonotolvTal yia TNV ovdntuln Twv slices. T to oyediaoud
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1.44  Awuodppwon tou IpoBrAuatog

TOU XOGTOUG XATAVAAWONS 1o 00¢ Twv cuvdéouwy FH xou MH, opiCovtar 600 emmiéov tOnoL
HeTaBANTOY Yo var xadopioouy tn yeron tous. Eotw u.(t) ua duadeh uetaBinty mou ex-
pedlet dv o olvdeouog FH nmou cuvdéel to EC e € € ye 1o RU ypnowonoteitoaw oo t. Auty
1 eToBAnTA ThdeTton o 1 wdvo av Touldyiotov éva slice €yer to VNF vy tonodetnuévo oto
EC e, dnhady,

ue(t) > x5 1(t), Vs € R(t),Ve € E. (1.34)

‘Eotw enlong ve(t) wtar Suoader) HETOBANTH Tou expedlet av o olvdeopoc MH péow tou
EC e € € ypnowornoteiton oto t. Auth 1 uetoBAnty| tideton oe 1 av yio Vo dradoyixd VNFEs
omotoudnAnoTe slice, To éva Tonoveteltan oto EC e xou to dhho oto RC, dmAady,

ve(t) > w5 ¢ (H)ys p+1(t), Vs € R(1),Vf € Fs\ {ns — 1},Ve € €. (1.35)

[t v exgpactel To x60Tog Xatavdiwong toyvog twv ECs, yenowuonoelto 1o povieho
anodotixrc tontodétnone VNF ané to [19], Snhadh:

Ce(t)
P EC _ ( . pmae 1— epmax) ) 1.
CHe(t) % ue(t)y +(1-"eg, (1.36)
Mo Toug cuvdéououg Tou cuvdéouy o RU pe to ECs:
_ » B (t)
P RU—-FE — Pf’bl‘ F'Hi,epmax ) 1.
C (t) e;(: <ue(t) net,e + CBF,e net ( 37)

Téhog, otnv mepinTwon Twv cuVBEounY Tou cuvdéouy Ta ECs ue to RO, exgpdleton wg:

; B t
PCER(t) =3 <ve(t)pg;§e - g]gﬂz()mgm) . (1.38)
ec& €

1.4.4 MDP

X1 ouvéyela, yioo TNV avdntuén tne Abong ue Evioyutinr Mdldnon meéner vo oprotel
enfonua to Markov Decision Process (MDP).

Y10 mpotevéuevo mhalolo, To outhpota yia slices mapouoidlovtar oTov agent, o omotog
ot cuvéyeta amogactlel av Yo anodeytel xdle Eva amd autd pe Bdorn T oepd dplinc Toug.
Kée Brpa andgacne tou RL avtictouyel oe éva aftnua slice. e mepintioeic 6mouv ToAAS
UTAUXTA PTAVOUV GTO (Blo ypovixd Brua, 1 emAoyy g oelpdg emlivong yivetar avdaipeTa.
[oe amoguyt| olyyvong, o Oeixtng b dnAover to Prua andgacng tou RL yia anodoyr| 7
anopewdr evog slice Tou avtioTolyel o Eval AlTNUa, EVE t, ONAWYVEL TO YEOVIXO OLICTNUN TOU
ehéyyou xatd To omolo Aapfdver ywea 1 andpaon k. Tlohhamhd BrAuata arndgacng tou RL,
ue oelxteg k,k + 1,...,m, unopel va avagpépovton 6To 010 Ypovixd didotnua ty = trp1 =
. = by, 0TV @TAVOLY TAUTOYEOVO TOAATAG cuthuota slices. EmmAicov, ta slices mou dev
EYLVOY OOOEX T EMAVELGEYOVTAL GTOV TEEXTORO GTO ENOUEVO YPOVIXO B, EQOGOV 0 YPHVOG
OloTienohc Toug Bev Eyel AACEL. e auTH TNV TERITTOOT), AUTY Ta UTAUXTA avTIUETWTI ovTaL
¢ Véo authpota slices, pe tov ypdvo BlaThAENONG Vo PELVETOL XaTtdAnha. O mpdxtopag
ouveyilel va emelepydleton outhuata slices €wg 6Tou Bev amoueivouy evepyd un amodEXTY
slices 1 éw¢ o Téhog Tou enelcodiou, Tou extelveTon 68 H ypovixd BrucTa.
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Chapter 1. Extetopévn EAAnvind Hepiindn

1.4.4.1 Katdotoon

Ye xdlde Bruo amogaone, o medxTtopas YeeldleTal emapxelc TANpogoplec TOCO Yl TV
TEEYOUON XATACTACT) TOU DXTUOU OGO XAl YLl TO ETEPYOUEVO aftnua slice, Tdvw oTo omolo
Yo Baototel n andgaor. Enopéveg, 1 xatdotacn Tou mpdxtop o xdle Brua k, étav enel-
epydletan o aftnua slice s, avanaploTaton and TNV axdAoLIN TAED:

(ACy, ABy, ATy, S1i, ty),

OToL:

o AC;, = [AC(k), ..., AC|g|(k), ACRrc(K)], Snhadh n Sioedéoun ywentxoTnTo OAmV Twv
ECs xa tou RC,

« AB; = [ABrn, (k), ..., ABruy, (k), ABym, (k) ..., AByrm,, (K)], 9nhodr) 0 Sodeorn
YWENTIXOTNTA €VE0UEC LOVNG OGAWY TV dixTuox®yY cuvdéouny FH xaw MH,

o ATy = [ATgc,(k), .. ATgc 5 (k), ATvm, (K), -, AT (K)], Snhadh o yedvog mou
amopével v xde EC A obvdeopo MH uéypr va anevepyornoiniel olugponva pe v
TEEY OO BLUUOPPWOT) TOU OXTUOU,

o STy = (prs, Dimaz,ss Mts, Cs1s ey Csng—1, 5,15 ey s ng—1), ONAON GAeC oL amopaiTnTES TANEO-
popiec Tou slice Tou mpdxeLTon v emelepyaoTel,

o tp: TO TEEYOV YpOoVIXO BLdoTNA Tou optlovTa EAEYYOUL.

1.4.4.2 Evépyeia

O mpdntopac anogacilel and xowvol av Yo amodey el To slice, tolo EC Yo to eCunnpetroet
o€ meplnTwon anodoyrc, xou Tov apliud Twv VNEs tou slice mou Yo tonotetnioly oe autd To
EC (6nAad| tn Sldomaon AELTOUpYL®Y). LUYXEXPWEVA, 0 TEdxTopdS AaufBdver TNV andgaoT
(e,v), 6mov e € {1, ..., |E|} avanaptotd to delxtn tou emheyuévou EC, xauw v € {1,...,n,—1}
avtuiotoryel otov aptdud VNEs nou Yo tonodetniolv oto edge (pe to vy va ovartidetan médvta
oto RU). T va eubuypapuiotel ye to dixtuo Apdotn, to Lebyoc evepyetdv amewxovileto
o€ POVOdLEoTATO YDEOo WEow tne ouvdptnong f(e,v) = (e — 1)(ns — 1) + v. Enoyévee, yia
x&e aftnua slice s mou enegepydletan oto ty (ue ts < ty), 0 mpdxTopag Aaufdver evépyela
ay, oamd Ty omofo To (e, vy) utoroyiletau Yéow tng avtiotpogng anexovione e f(e,v). H
evépyela ap = 0 avtiotolyel o andppulmn tou slice oto ypdvo t. Xe auth TNV TEpInTOO,
0 YPOVOC BLUTAENOYC TOU UELOVETOL xoTd 1. AV 0 eVnuepmUévog Ypdvog dlatienons @Tdoel
070 Undey, o slice amoppinteTton oploTd and to dixTuo, dlaopeTind To slice emavelcdyeTo
OTOV TEAXTOQRN OTO ETOUEVO YPOVIXS SLdoTnue Tou opilovTa, 6mou AauPdveTon véa aveldptnTn
ATOPACT).

1.4.4.3 Avzopolf3n

OpiCovtar ot axdhovdeg TwES:
o ReVy = pry - hty elvon To GUVOAXE €5000 TTOU TPOXUTTOUY A6 TNV amodoy T Tou slice,

° PCSEC elvat 1) xatovdAwor toybog oto emieyuévo EC:
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1.4.5  Awouodppwon tou poBrAuatog

PCEY =max{ht, — ATgc,e, (k), 0}y P (1.39)
2?11 Cs,f
+ (1 =) == prazpy
( ’Y) CEek S

/ 4 / Ve 7
omov ATgc e, MPPdvetar amd TNy TEEY0Uoa XATUC TACT] Sk,

o PCRU=E glyar 1 xatavéhwon toyloc tou ypnotonotoluevou cuvdéopou FH:

PCRU=F — max{ht, — ATgc,, (k),0} P/EF (1.40)

net,e

bs1

o PCE~H glvan 1) xoravéhwon 1oy loc Tou yerotponotoduevou cuvdéouou MH:

PCER =1, o1y [max{ht, — ATy, (K), 0} PL, (1.41)
b
,€

omou liycn,—1} = 1 av vp < ny — 1 %o 0 SopopeTind (to slice Tomoveteiton oAdxANEO
oto EC, yowplc yehon MH cuvdéapou). O mopamdve eZLoOOELS Yol TO XOGTOG XUTOUVIAWONG
oy vog Bactlovtar oto povtéro amodotixhc tonodétnone VNF and [19].

To x6ot0c adpdvetag toyvoc tou EC avatiietor oto npwto slice mou tonoveteiton oto
EC 1 og autd mou emextelvel tov evepyd Ypovo Aettoupylog Tou, GUVETKS Xt ot Tyég AT,

O mpditopog mpénel var eviappivel evépyeleg Tou Ya 00NYHoOLY Ge LPNAOTERT AV TAUUOL3T,
EVE TOPGAANANL VoL ETUOLOXEL YUUNAOTEQO xO0TOG XaTavdAwaoTg toyvog. 'Etot, 1 cuvdptnon
avTapoBng yia xdie xatdoTaot si, AapfdvovTtag EVERYELX ay YL TO slice s BLUTUTOVETAL WG

e€nc:

ReVy — PC,, av 7o slice s yivel amodextéd oto Briua k,

R(sk,ak) = { (142)

0, av 7o slice s amoppupiel oto Briua k,

6mov PCy = PCPC + PCRU-F  pCE-R,

1.4.4.4 3uvdpeinorn Metdfaong

Mot petdfaon npaypatomoleiton HeTd amd xGe EVEQYELX @y YLOL VO TOOTIOTIOLAOEL TNY XATAO-
TooT) ToU BWTOoU GUUPLVE e TNV eVEpyela. O uetafdoeic opilovton avd Brua andgacne RL
yioe xdde aftnuo slice xan Oyt avd yeovind BLECTNUA. LUVETOC, TOAMATAES EVNUEQWOOELC UTORE!
var GUPBOVY EVIOE EVOG YEOVIXOU Bl THUNTOS Tou 0ptlovTa eAEYy o, avdhoyo U Tov aptiud
TV utnudtwy slices mou @Tdvouv 6To avtioToryo ypovixd didotnue. Metd and xdde omo-
(OO, 1 XATAC TACT) TOU OXTVOU — TOU TEQLAAUPBAIVEL TIC YWENTIXOTNTES TWV XOUPOY ot TV
CUVOEOUWY — EVNUEPMVETAL (OTE VoL avTixatomtpilel TNy amodoyr Tou slice, av auty| €yel
yivel, xou vo tpocapuolel Toug YEOVOUC BLaTHENOTS OAWY TV eveRY®Y slices.
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1.4.5 Avon DRL

H mpotewouevn Abon vy o mpdBAnua tne dadixtuoxnic amodoy e slices xow xotovourg
AELTOLRYIOY, 6Twe oplleton and to moapamdvey MDP, eivar o akydporduoc PPO, onwe avahu-
TXd meptypdpetar oty mopdypago 1.3.8.1.1. O adydpriuog autog tanptdlel ue Tov BlaxpLtd
YWPO EVEQYELWY Tou TpofArjuatog. Xenowonoleltar o tpomononuévn tapaiiayt| tou PPO,
Yvwo ) wc Maskable PPO, énwe vhonoteitoan otn Bifhodrxn Python Stable Baselines3 [20].
Avth) ) mopad Ay} EVOWUATOVEL TNV TEY VXY Tou action masking yio vo e€oupel Tic evépyeteg
mou mapaPLalouy Teploplools oe xdie ypovixd Brua, amhomolwvTag £Tol Tr) dladacto Ang
amo@dcenmy Yl Tov agent. Ot evépyeleg Vempolvtour TapoflacTIXEG oy BEV IXAVOTIOLOUY TOUG
TEPLOPLOUOUE Y WENTIXOTNTAUS X0t XADUC TERTOTC.

1.5 Ileipopatixd AmoteAéopato

Y& auT6 T0 oNueio, oL BUVATOTNTESC TOU AVATTUYHEVOU TEEXTOEN Yol TUPOUCLIGTOUY UECH
HlaC OELRdS TELOUAT®Y, avohDOVTOG T1) CUUTEELPORE TOU HOVIENOU XUTd Tr OLdEXEW TNg
exnaideuomNg xa AELOAOYOVTOC TNV ATOB0CT) TOU OE TOMES UETEIXES.

1.5.1 Mezpwxég ASoA6YMnoNg

Awgopetinéc Metpiég AZLOAOYNONEG EVOWUATMVOVTAL YLOL VO EXTIUACOLY TNV an6d0oT)
Tou Povtéhou, xadeuio amd TIg omoleg TUPEYEL ULl OLUPORETIXY| OTTIXT| OTIG BUVAUTOTNTES TOU.
Avtéc elvan:

o Avtixeipevixy Aglo: Avunpoonnelel 10 cuVOlxd x€pB0¢ Tou AauBdveL 0 TEAXTOPUS
oe xdde Bruo. Opileton and oo GUVOAIXE €6000 TOL TEOXVTTOUY ATd TNV AModoY T Tou slice
(eClowon 1.46), pewwpéva omd Ty XoTavdAmon oy bog Tou Teoxaheitar oty enaxéiovin
xotdotaon tou dxtbou (e€lomoelg 1.49-1.51). Aut n petpw) avtixotontpilel Ty toopponia
METOEY TNS EAAYLOTOTOIMONS TNG XATAVIAWGOTS Lo} VOC X0 TNG UEYLIOTOTOINONS TNE CUVORXTC
avtopolBhic, elte auidvovtag Tov Aoyo amodoyNg eite BiVOVTAC TEOTEQAULOTNTA OF OLTHUOTA
slices ue umnrdtepn npoTepoUOTN T

e Abyog Amodoyng: Metpd tov Adyo twv anodextwy slices, uéypl €vor ouyxeEXELEVO
Briua yedvou, Teog To UTOGUVOLO TwY EVeERY®Y slices, To omolo tepthauBdvel Tor uTHUNTA TOU
elvon o e€€MEN xou Bev €youv Ael. AvtxoatonTpllel TNV AmOTEAECUATIXOTNTA TOU GUC THUA-
TOC OTNV AVTIHETOTION TV ELCEPYOUEVKY ATAUTACENY TwV slices eV UEow TwWV VPG TIUEVKY
OEOUEVCEWY.

e Anodotixotnta Ioyvog: Eivar o Adyoc tou adpoicuatoc twv amodextay slices mpog
GLVOALXY| XUTAVAAWGT| LY VOC TWY UTOBOUMY UTOAOYLOTIXOV %ot BxTuaxo) £0TAoUOU ToU
umoxeluevou dixtvou. Tupeyel wa exdva ToU TOGOGTOL TN CUVORXTG XATAVIAWGCTS oY VOGS
Tou avTloTolyel o xdie anodexTo slice.

[ Ty Topousiacn TV AMOTEAECUAT®Y, YENOWOTOLELTL 1 COEELTIXY HECT) TILY| AUTOV
TV UeTEw®Y. Troloyiletar Yye Ty PECT TWH TV TOV XUTA TN SIEEXEIN TWV ETELTOSIWY
doxueY yia xdie Briua yedvou, axohovoluevn amd T CLEEUTIXY dJpolon XL, OTr CUVEYELY,
YENOWOTOLOUVTOL QUTEG Ol GWEEVTIXEC THIES YL TOV UTOAOYLOUO TV avToTOLY WY AOYWV.
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1.5.2 Exnaidevor - Kavovixr, Asttovpyia

Ytov mivoxa 1.4 moapatidevton ol TWES Yol TG TUEUUETEOUC TNG LTODOUNG TOL BixTO0U
xou TV autnudtwy slices. Eetdlovrtar 600 timol slices ue SlapopeTinés amanthoels, onhadt)

URLLC ot eMBB.

IMapduetpog T
II\doc ECs 3
Xwpenuxdétnra EC, RC 64, 256 Tuprveg
Xwenuxdtnta cuvdéopov Fronthaul, xaduotéenon 2Gbps, 4ms
Xwpnuxdtnta cuvdeopov Midhaul, xoauotépnon 4Gbps, 8ms

gl 0.8

pmar - pmar 200 W

Pl 160 W
IDvdoc Avtnudtewy 20

Mrxo¢ awtfjpoatog SFC 8 VNEFs
Arnoutodueva CPU cores avd VNF € {2,4,8}
Xpbvoc %pdtnong aTAUTOS min(U{3,6},12 — ty)
Arnotoduevo epog Lwvne yioo URLLC xou eMBB 100, 200 Mbps
Arnoutoduevn xaduotépnon yioo URLLC o eMBB 25, 50 ms
Kavovixonounuévn npotepandtntas URLLC xow eMBB 3, 2.4 avd time-slot
OplCovtac Behtiotomoinong H 12 ypovixd Brjuota

Table 1.4: Iapduetpol Ilpocouoiwong.

Apywd, n hertoupyio Tou TEdxTOPN Yo TUPOUCLUGTEL OE GEVEELO OTOU TAL OUTTUATOL Yl
slices mopdyovTtar cOUQWYA UE UL XOVOVIXT] XaTavouy| xatd Tr Oidpxelor Tou optlovta H,
ouyxexpévo N (% -1, 0.9).

O npdixtopag exmondevetan yio 3500 emelodola, xan 1 TEd0d0g TG dtadxactag exnaldevong
umopel va mapaxorouiniel uéow tou TensorBoard. ‘Onwe anewovileton oto Lyrua 1.4, o
o@dhua, To omoio oplleTon WS 0 UECOS 6ROC TOU GHIAUNTOC EXTAUBELOTC KoL TO GPAAUA alug
TV OTOwY Tou Apdotn xou Tou Kptt| avtiotolya, UetdveTol Ue TNV TEEodo TOU YpOVOU ol
otaeponoteiton mepinou oo Briua 90,000. To Brua autd avtiotouyel nepitou 610 EnElG6BL0
3000, uetd To onolo 1 cuumERLPOEd TOL TEdXTOPA QaiveTor Vo oTadeponotelto.

Figure 1.3: Xgdhuo xotd tnv exmaidevon.

[ v mepantépw xatavonon tne dradaciog AMPne ano@doewy Tou TEExXTopd, Ol aTopd-
oelc mou haufdvovton xotd Tr didpxeta wag oetpds 10 emelcodiny doxumy Tapouctdloval:
oty Ewxéva 1.5 (o) anewxovileton évag Vepuixde ydotne ue ) ouyvotnta xdde Ledyoug EC
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id-aprduod VNFs, eved otic Ewdvee 1.5 (B-y) n ouyvémnta yio xdlde empépoug andgaon
amewxovileton P YEYAADTERT AETTOUERELL.

50
o - 10.00 psypel 0.00 6.00 1.00 0.00 6.00

40

h=]
=
3 - 30
8 ~ - 4.00 3.00 5.00 0.00 0.00 2.00
L
o
T
w
-20
~ 26,000 000 2.00 4.00 0.00 0.00 -10
i ' ' ' ' ' i -0
1 2 3 4 5 6 7

Number of VNFs on EC

(a) Oepunde ydptne pe Téc yio xdde Ledyog anogdoewy, EC,
VNEF.

Frequency
&

Frequency
8

10 -
- 0 i g ' = 1 ] i 0 i

-0.5 0.0 0.5 10 15 2.0 2.5 1 2 3 4 5 6 7
Values Values

(b) Anégacm v EC. (c) Amdgoon v tov apripd twv VNFs oto
EC

Figure 1.4: Anogdoeic Tou mpdxTopa.

To anoteréopata unopolv mhéov va avaiudoly. Kotapyde, mapatneeiton plo avicoppomia
otnv emioyr tov ECs, ye mpotiunon otov mpoto EC, xdt mou cuyPodiCer ye tov otoyo
NG ehaytoTomoinong NG xUTavdAwong toyLog, xadng eivon o amodoTIXO Vo TUPUUEVOUY
AVEVERYH 0G0 TO BuVATOV TEploo6TEPa ECs, cuyXevTp®VOVTaS Ta AUTHUNTA OTOV EALYLOTO
amapaitnto apriud. O mpdxtopag eniong galvetar vo meoTd TN Oudomacy Twv slices o
uxpedtepo apiud VNES, yeyovdc mou duxonohoyeiton amd tny tpoondieio ElwonE TS XATOVIA-
wong toyvog, dedouévou 6Tl T VNES mou tormodetodviar 1o RC dev mpocdétouy 1660 oTOV
UTOAOYIOTIXG POPTO, NG u6VO oty xotavdhworn tne ovdeone Midhaul (MH) 6tav n ev-
epYY| meplodde g emexteiveton. EmmAéov, n emhoyt| un didonaorng (Tonoﬁémoq WOl TWV 7
VNFs oe éva povo EC) eivar ouyvi. Avtiotoryel oe meptntwoelc 6mou to slice ywped mhipng
otov emheypévo EC xou eite €yel younhoé @optio xou yedvo dathienong, elte to altnua yiveto
0EXTO x0VTd 6T0 TéAog Tou opllovia eAEYYOU, OTOTE BEV AVUUEVOVTOL ETUTAEOV UTAUATO. D€
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1.5.4 Ilewapatind Aroteréopota

QUTEC TIG TEQITTMOELS, O TEAXTOPOS ATOPEVYEL TN OLACTUCT] YLOL VO UELWOEL TNV XATUVIAWOT)
oyvoc otn olvdeon MH. Téhog, ol amogdoelc un didonaong cuvidoe oyetiCovtoan pe Tov
tpito EC, unodexviovtag npoondieio Slotripnong avol anodnxeutinod yweou oTo dAA
ECs yw ) cuyxévtpmon tTwv engpyouevwy Tpog ddomaot slices, Uewdvovtag ex vEou To
%00TOC XaTavdAwong oyvoc tne obvdeone MH. Yuvohxd, o mpdxtopoc mapouoldlel Ty
OVOUEVOUEVT] GUUTERLPOQT.

1.5.3 AZLoAOYMOT UNO BLUPOPETIAES KATAVOUES APIEEWY

@3 Dataset 1 [ Dataset 2 [ Dataset 3 3 @@ Dataset 1 [ Dataset 2 [ Dataset 3

) v J
= ooom = 16 - L
86 . n
= 0 m
= 5 2 " N
E M | T
° g 1L

4 Y
a ] 10
K] -
£3 o 8
5 2
2 € 6
P E] L
o 2 4
© H 0
; o 2 i
> O ©
<o - LIl 0 o =

0o 1 2 3 4 5 6 7 8 0 11 S 0 1 2 3 4 5 6 7 8 9 10 11
Time Slot < Time Slot
(a) Méoog apidude apiZewy. (b) Méoog apiude evepydv slices.

Figure 1.5: IIAnpogopiec cuVOROL BEDOUEVWLY.

270 TPKOTO GUVOIO TEWAUATWY dNuLtoveY Xy Tela GOVORA BEBOUEVKY UE BLaPORETIXOUG
evduole aplEewy avd ypovixd Brua otov optllovta eAéyyou. To potifa aglEewy mapdyovia
oUUPOVAL UE TEELS OLoxpLtég xatavopés — Koavovinr, Exdeting xoan Beta — onwg amewovi-
Covton otny Euxéva 1.5. T xdde xatavour, yenowwonot|dnxay 1000 cevdpla yio exmaldeuon
xou 10 yia doxiur|. Xxomdg Tou mElpduatoc eivan 1 alloAdYNoT TNG IXAvOTNTAC YEUNoTS TOoU
TEAXTOPA OE BLUPORETIXE. UoT{Bar apilewv.

O npdxtopac exnoudeltnxe ot xde alvolo Eeywerotd (Hpdxtopac 1 oto Dataset 1, Iodx-
Topoc 2 oto Dataset 2, ITpdxtopac 3 oto Dataset 3) xou otn cuvéyeta atohoyhinxe oe dha
Ta Tplo oUVOAY, OTwe Qatveton oty Ewdva 1.6. €l yetpunr allohdynong yenoidomolfinxe 1
Avtuxeyevinr) Acia, 6mwe opiCetan otny evotnta 1.5.1.

‘Onog gaivetar oty Ewdva 1.7, o mpdntopag anodidel xahitepa oto dataset oto omnoio
EXTIOUOEVTNXE, ATOBELXVIOVTAS TNV LXAVOTNTY Tou Vo Jodaibvel xan vo BeATioTonotel Tig amopd-
oelg Tou avdhoya e To potio agifewv. doToc0, oL anoxiioelc PeTaLD TKV ATOBOCEWY GE
otapopeTnd datasets elvon pxpéc, UTOBEXVUOVTOG LOYURT| IXAVOTNTA YEVIXEUOTS.

1.5.4 X0YxpLom E TEAKTOPA CTATIXNG OLACTIAONS

To debtepo clvoho TelpoudTwY €Yl oyedloTEL Yiot vor a€lOAOYACEL TNV IXAVOTNTA TOU
medxTopa Vo hof3dver BéATIoTEC amogdoelc didonaong. o Tov oxond autd, o medxTopaC
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Figure 1.6: Xuyxpiter) allohdynorn unéd petaBaihoueva wotifo dgiing.

OLYXEIVETOL UE Uit oTaTixr) €xdoor, mou avagépeton w¢ "RL-ST'.  Auth n éxdoorn mpay-
HOTOTIOLEL TOV BLoyWELOUO TwV slices pe VIETEPUIVIOTIXG TEOTO: cuyxexpweva, toa eMBB
slices ywptlovton oto debtepo VNFE (v1), eved ta URLLC oty péon (vs). H andgoon tou
mpdxtopa Teplopiletar €tol otny emhoyt| Tou EC. Ko ol 800 mpdxtopeg exmoudebovTon xou
a&tohoyolvton 6 GOVOAA BEBOUEVLY TIOU TROXVUTTOLY amd TNy xotavour| Tou Dataset 1.

H Ewoéva 1.7 napouctdlel tnv anddoon Twv 6U0 uovtéAny, onng alohoyfinxe ye Tig
uetexéc mou opilovton oty Evotnra 1.5.1. H pédodoc "RL-ST", 1 onola otepeiton npocop-
HooTixoTNTAC, 00NYel o LTORBEATIoTN dlyelplon podpTou xan auinuévo aptiud artopplbewy,
TEOXAUADVTAUG CNUUVTXT UTOBdIUIoT TG amddoong o8 OAES TIC UETEXES Tou adlohoylnxay.
To anotéleopa auTtéd avadeviel T LwTin onuaocta Tng duvauxrc AfPng ano@dcewy Tou TEo-
TEVOEVOL povtéhou RL yia Ty amoteheoyatiny Sy elplon Twy Eloepy Ouevey autnudtwy. To
HOVTENO owT6 TapouctdlEL Loyupet enlyvwon Tne xatdotaon (state awareness), enttpénovidg
TOU Vo TPOCUpUOLETaL O UETUBUANOPEVES cLuVITixEC Tou BixTOoU xan vo BedTioTomolel Ty
aATO00T).
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Figure 1.7: Yuyxeitixn allohdynon Suvoixol EvavTl GTaTixol Bloywelopo) AELTOURYLHOV.

1.6 Exiloyoc

H éievon tou 5G xan, telhxd, Tou 6G €yel 0dNyNoEL 6 AUEAVOUEVES ATAULTHCELS TOPWY
OxT0O0U a6 TOANOUG OPYAVIOUOUG 1) TOUA, UE ETEPOYEVELS ATAUTACELS YL TIG UTNPECTES TTOU
(ntovvtar. H etxovixonoinom twv Aettoupylodv tou dixtdou xou 1 e&€MEN Tou Tudatoc RAN
TOU BIXTOOU OTNY amocuUVAPUOAOYTEVT apyttexTovix) O-RAN emtpénouy Ty evowudtnon
EVPUOY UNYUVICHOY YL TN BLaryelplon Tng xuxhoopiag Tou BtxTHou.

H napoloa Simhwuotiny epyaoia topouctdlel uior xoauvotéyo hOor 6To meoBinua Tng Ot
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aycelplong TwV EloERYOUEVWY artnudtwy slice oe éva dixtuo O-RAN yenowonoidvag yia
mpoceyyion Evioyutirie Mddnong. O xdplog otdyog tng gpyasiag NToy vor avTWUETWTLO-
Tel To TEOBANUN TG duvaUixc APNE amogdoewy Yl txavorolnon atnudtey slices xou yo
v tonovétnon Ewovixomomuévev Aettovpyiryv Awtiou (VNF Placement) uné petofSa-
Aopeveg dixtuoxés ouvifixes. AauBdvovtoag unddn T SadixTuaxt| GUoT Tou TEOBARUATOC,
1 avtioTolyn eCaviAnTxr) Aoor mou Yo Tpoéxunte and Swdxacio Behtiotomolnong Va elye
Teploplopév yenowwotnta. H mpotewduevn Aion adonotel tov alyoprduo Ipooeyyiotinrc
Behtiotonoinong Iohtinhc yio vo exnandeloet Evay mpdxtopa eVioyuTixrg Udinong, o omolog
elvon eovoe var hoBdver BUVOIXES amoPdoEl, AaUPBdvovTac Ut TNV TEEYOUCHU XUTAG TUO
Tou OixTUoU avd mdoa otiypr. O mpdxtopug oToyeVel o1 BehTioTononon NS LWoppeoTiug
peTOC) TwV €060WY amd TNV anodoyr Twyv slices xa TOU xOGTOUG XATAVIAWONE Loy YOS GTA
edge clouds xou oToUg emXOWVWVIAXOUE GUVBEGSUOUS, Tou ebvan xplowa yio 0 BeAtivon Tng
EVEQYELUXNE ATOBOTIXOTNTUC 0T GUYYEOVA aGUPUATO d{XTUL.

Méow wag oelpde TelpaaTin®y alloAoY\OEWY, 1 amGO0CT TOU TREOTEWOUEVOU TEEXTOPM
a&tohoyinxe o apxeTéC ONUAVTIXEC UETEXES. AUTA Tar TelpduaTo avESEEay T onuacio Tng
oLV AMdNG amopdoewy yiol TNV ETITELEN ATOTEAEOUATIXAG OLOYEIPIONG TGV TORMY X0 TNV
IXAVOTNTA TOU TEAXTOpa Vol Aof3dvel e00TOYES AMOPICELS, TEOCUPUOLOUEVOS OTIC GUVITIXES
Tou dwthou. O mpdxTopac Tapouciace afLOTIO TN andBOoT GE BLUPOPETIXNG CEVAQLAL ELOERYO-
HEVNS XIVNOTE, AMOBEVOOVTC TNV IXAVOTNTO TOU HOVTENOL Vo xavoTiotel Evary uhnho apLiud
ELOEQY OUEVWY AUTNUATWY, EVK) TAUTOY POV DLATNEEl YoUNAL XOGTN XaTaUvdAwong Loy og.

MeAhovtixy Enéxtaon

Iapbdho mou 1 mopoloa BITAWUATIXT EpYUcia TUPEYEL Ual Loy LeY| BAoT Yia TO TRoUvapER-
VeV TEOBANuUa, UTdEy oLV dExeTEC TAVES EMEXTACELS Yiar uEAAOVTIXY eméxtaot). Tlpwtoy, etvan
xplowo vo alloroyniel o TEdxToPUC UE EVal TEAYUATIXO GUVOAO BEBOPEVLY alTnudToV slices
xou VNFEs. "Eva tétot0 6Ovoho 8edouévny, 1o omolo Yo TeptAaBaveL To amatToUEVOL Y opuX-
TNEWO TG YWENTWOTNTAS, €0poUS LOvng ot xaducteprioewy Yo xde VNE evtog xde slice,
oev Eyel avamtuy Vel axoun.

Acltepoy, 1 doxiuy TOU TEAXTOPN OE TEAYUATXG, UEYSANG xAluaxag mepBdilovTa e
neplocotepa. RUs, ECs xow RCs Va Atav wiaitepa wepéhun. Emmiéov, n agolpeon tne umo-
Yeone Tou evoc DU avd EC, mou éyive otny nopoloa epyacio, Yo mopelye Uia mo peoMo Tix)
a&LOAOYTOT TNG ATOB0CTC TOU TEAXTORA.

Téhog, auty| 1 gpyacia Yo ymopoloe vo Bertiwidel nepatépn pe TNy evowudtemon evog
unyoviopo0 yio Ty emavatorodétnon slices, dmou fon dextd slices Yo peTonavolvTon duvouxd
METOEY TV XOUB®Y TOL BIXTOOL Yol TN UEIWCT TS XATAVIAWOTS Loy YOG,

YuvodiCovtag, xodng ta dixtua cuveyCouy Vo aLEEVOVTOL GE TOAUTAOXOTNTO Xtk XAl
AOoELG OTWE aUTH Tou TEOTElVETL oTNY Tapoloa dimhwuatiny| epyacta Yo dudpauaticouy
xployo poho oty e€aGPIALOT TNS ATOBOTIXNG YPHONS TWV TOPWY, UELOVOVTIS TAUTOYEOVA
Tov TEpBurhovind aviixTuno péow Tng eoixovounong Loy vog.
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Chapter |2

Introduction

The evolution of mobile networks from 5G to 6G, coupled with the growing demands
for higher data rates, enhanced capacity and support for multimedia and augmented reality
(AR) services, necessitates the development of advanced mechanisms to efficiently manage
network traffic and minimize power consumption. Network Slicing is a pivotal technology
that partitions the network into multiple virtual subnetworks, referred to as "slices", each
tailored to meet the diverse needs of specific applications, service providers, and individual
users. Each slice operates as a distinct, isolated virtual network, with its own dedicated
resources, policies, and performance characteristics, such as low latency (Ultra Reliable
Low-Latency Communication - URLLC slices) or enhanced mobile broadband (Enhanced
Mobile Broadband - eMBB). This segmentation of the network is essential to optimize
the allocation of resources and ensure the efficient operation of diverse services in parallel.
In this thesis, the network slices are modeled using the Service Function Chain (SFC)
approach, representing them as an ordered sequence of Virtual Network Functions (VNFs).
VNFs are software-based network functions—such as firewalls, load balancers, or traffic
optimizers—that run on virtualized hardware rather than dedicated physical devices. The
SFC model defines the specific order in which these VNFs are executed within a slice to
fulfill its service requirements.

An important technique in managing slices is function splitting, which involves dis-
tributing the VNFs of a slice across multiple network nodes. Function splitting allows
parts of the service chain to be executed closer to the user to reduce latency, while other
parts can be centralized to optimize computational resources and power consumption.

The focus of this work is on the RAN domain, specifically within the context of an O-
RAN architecture, aiming to enhance openness and interoperability. As introduced by the
O-RAN Alliance, the RAN component is now composed of disaggregated logical nodes, each
defined by its position within the cellular network, namely Radio Unit (RU), Distributed
Unit(DU) and Centralized Unit (CU) [1]. DUs are typically deployed at the network Edge,
in close proximity to the RUs, to minimize user delays. CUs, on the other hand, are located
within the core of the network and are characterized by a greater computational capacity
compared to DUs. To deploy slices within the O-RAN architecture and perform Function
Splitting, the SFC corresponding to each slice should essentially be split between the three
nodes, in a way that optimizes the trade-off between power consumption and user delays
with slice admittance ratio.
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When formulated as an optimization problem, this challenge involves several binary
variables, rendering it a complex, NP-hard problem. In this thesis, a Reinforcement Learn-
ing (RL) approach is employed to address the Network Slicing problem, offering a dynamic,
adaptive solution to slice admission and function splitting. The developed agent learns to
make decisions by interacting with the network environment, adjusting its policies to op-
timize the deployment of network slices. The agent is trained using the Proximal Policy
Optimization (PPO) algorithm, with the objective of balancing the revenues from slice
acceptance against the power consumption costs associated with edge clouds and commu-
nication links. Through a series of experiments, the performance of the agent is evaluated
using various metrics. The agent’s state-awareness, generalization capabilities, and the
significance of dynamic decision-making are thoroughly examined, providing insights into
the effectiveness of RL-based solutions for complex network management tasks.
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Chapter |3

Foundations of RAN and O-RAN
Architectures

3.1 Radio Access Network(RAN) Overview

A Radio Access Network (RAN) is a critical component of a wireless telecommunications
system, serving as the bridge that connects user equipment (UE), such as cellphones,
computers, or remotely operated machines, to the broader network via a radio link. The
RAN facilitates communication between user devices and the mobile carrier’s core network,
which oversees key functions like managing subscriber data, location tracking, and more. It
includes both physical infrastructure, such as base stations (cell towers or small cells) and
logical components, which ensure efficient management and optimization of data, voice,
and control signal transmissions. While RAN technology has evolved significantly, from
1G to 5@, its fundamental purpose remains the same: enabling user devices to access the
network. While mobile networks evolve over the years, RAN architecture is redesigned
to meet the increasing demands of high capacity, massive connectivity, reduced costs,
and energy efficiency, and to realize communication with ultra-low latency and ultra-high
reliability.

Despite advancements in standardization and interoperability, the RAN is often the
last remaining segment of the network that is largely proprietary, meaning it is still domi-
nated by vendor-specific solutions rather than open standards. This proprietary nature is a
key focus of industry discussions, particularly as newer concepts like Open RAN (O-RAN)
aim to make this segment more accessible and interoperable, revolutionizing how mobile
networks are designed, deployed, and managed, with a strong emphasis on flexibility, scal-
ability, cost and efficiency [2].

3.1.1 Cellular Network

The Radio Access Network (RAN) constitutes the radio component of a cellular net-
work. A cellular network is organized into geographical areas known as cells, each served
by one or more fixed-location radio transceivers, commonly referred to as cell sites or
base stations. While a single transceiver can cover a cell, the typical setup involves three
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transceivers per cell site to enhance coverage and efficiency. These base stations are respon-
sible for providing network coverage within each cell, enabling the transmission of voice,
data, internet access, and other types of content via radio waves. When multiple cells
are interconnected, they collectively form a wide-area radio coverage that allows seamless
communication across a large geographical region. To prevent interference and ensure re-
liable service, each cell operates on a unique set of frequencies that differ from those of
neighboring cells. This technique, known as frequency reuse, guarantees sufficient band-
width and avoids signal overlap, even when multiple cells are in proximity. The cellular
network design supports mobility, enabling devices to maintain continuous communication
while transitioning between cells during active transmission. This is achieved through co-
ordination between base stations, ensuring that connections are handed over seamlessly
from one cell to another without interruption. As a result, the network facilitates real-time
communication between mobile devices, fixed transceivers, and other network endpoints,
regardless of device movement [21].

3.1.2 RAN Components

Understanding the components of RAN provides valuable insight into its architecture
and how it manages the wireless connection between User Equipment (UE) and the Core
Network. These components can be broadly categorized based on their specific roles:

e User Equipment: User equipment refers to any device equipped with mobile broadband
modems capable of transmitting and receiving wireless signals. Examples include smart-
phones, tablets, laptops, and IoT (Internet of Things) devices. These devices serve as the
endpoints of the network, interacting with the RAN to send and receive data, voice, or
control signals.

e Antennas: Antennas are the physical layer components of the RAN infrastructure, typ-
ically located at or near the base station. They act as the first interface between user
equipment and the RAN, transmitting and receiving electromagnetic signals over the air.
Antennas started as passive components, meaning they only handled the electromagnetic
interface, while the associated base station performed the active tasks of signal process-
ing, but evolved into active systems, integrating radio frequency (RF) components like
amplifiers and filters (MIMO/Beamforming antennas).

e Base Stations: Base stations play a central role in connecting user equipment to the core
network. They process the raw signals captured by the antennas and convert them into a
format that can be transmitted over the network.

e Transport Network: The Transport Network is responsible for carrying user data, signal-
ing, and control information between different network components. It connects the Radio
Access Network (RAN), the Core Network, and other critical network elements, ensuring
efficient and reliable data transmission.
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3.1.3 RAN Evolution

The evolution of the Radio Access Network (RAN) reflects the continuous advance-
ments in mobile communication technology, spanning from the first generation (1G) to the
fifth generation (5G). Each successive generation has introduced innovative architectural
paradigms, significant hardware improvements, and enhanced software functionalities, all
designed to achieve substantial performance gains. These advancements include increased
data transmission speeds, enhanced reliability, improved scalability, and greater energy
efficiency. These rapid changes of RAN technologies are driven by the escalating capacity
requirements resulting from the exponential growth in global data traffic over the past
decades.

3.1.3.1 1G: Analog RAN

The first generation of cellular networks (1G) utilized analog radio technology.

3.1.3.2 2G: DRAN

With the advent of 2G, mobile networks transitioned to digital wireless technology. The
RAN architecture in 2G adopted a Distributed RAN (DRAN) approach, where Base Sta-
tions (BSs) were distributed across the coverage area, each serving a specific cell. All RAN
components were co-located at each base station site, which handled its own processing
and control functions. The architecture was built around:

e Base Transceiver Stations (BTS): Managed the wireless communication channels for voice
and limited data and the allocation of radio resources. Along with other components, BTS
contained the antenna system and transceivers (TRX), which converted the digital signals
(mainly voice or data) into radio frequency (RF) signals and vice versa.

e Base Station Controllers (BSC): Controlled multiple BTSs, handling tasks such as call
setup, frequency allocation, and mobility management. The BSC was connected to the Mo-
bile Switching Center (MSC) in the Core Network, which managed call routing, handovers,
and other network services.

Since 2G networks were primarily voice-centric, the transport network was circuit-
switched, requiring a dedicated physical connection for the duration of a communication
session [3].

3.1.3.3 3G

The transition to 3G introduced significant architectural changes, driven by the growing
demand for higher data rates, improved capacity and support for multimedia services.
The NodeB, which replaced the BTS as the base station, was responsible for providing
the radio interface that allowed UE to connect to the network. However, unlike the 2G
architecture, most control and higher-level management functions, like radio-resource and
handover management, were offloaded to an external Radio Network Controller (RNC),
which replaced the BSC. The RNC acted as an intermediary between multiple NodeBs
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and the core network, handling resource allocation, mobility management, and handover
coordination. This structure was an extension of the DRAN architecture [4].

With the increasing dominance of data over voice, 3G networks adopted a hybrid trans-
port network architecture that combined circuit-switched technology for voice with packet-
switched technology for data. Packet switching allowed for more efficient use of network
resources, enabling dynamic data transmission and supporting services such as mobile
internet and video streaming [4].

3.1.3.4 4G/ LTE: DRAN to CRAN

The transition to 4G/LTE (Long-Term Evolution) marked a significant advancement
in mobile network architecture to meet the exponential growth of data-driven applications.
The demands for higher data rates, lower latency, and improved reliability revealed the
limitations of the traditional Distributed RAN with its localized, cell-based approach.

A more advanced version of the 3G NodeB, known as the eNodeB (evolved NodeB),
was introduced. It combines the functions of the traditional NodeB and the Radio Net-
work Controller (RNC) into a single, integrated entity. This reduced latency and made the
architecture more efficient. The architecture of the eNodeB is disaggregated into two key
components: (a)the Remote Radio Heads/Units (RRHs/ RRUs), which handle radio fre-
quency (RF) tasks, including amplification, filtering, transmission and reception of signals
to/from the antennas, and (b) Baseband Units (BBUs), responsible for baseband signal
processing, including tasks like modulation/ demodulation, coding/ decoding. They serve
as the interface between the core/backhaul and the radios in the RAN [4]. To deliver an
optimal subscriber experience, eNBs utilize the X2 interface for intercommunication and
coordination, particularly in managing resource allocation. This interface plays a pivotal
role in facilitating seamless handovers, mitigating interference, and optimizing resource
distribution among neighboring eNBs. Despite its critical functionality, the reliance on
the X2 interface has led to challenges related to vendor lock-in. Different RAN vendors
often developed proprietary implementations of the X2 interface, creating interoperability
barriers and making it challenging for Mobile Network Operators to have multiple RAN
vendors in a single location [22].

As traffic demand increased, the amount of radio equipment required to serve a coverage
area increased and evolved into a model where the BBUs are all concentrated in a single
location (e.g. data center), referred to as BBU Hotel, to serve multiple antennas in a certain
region. They are connected to the RRHs at the cell sites via fronthaul links and can be
shared among multiple cell sites. This format is also known as CRAN (Centralised RAN)
and it aims to reduce installation and maintenance costs while operating more effciently,
enabling the processing of a higher volume of traffc, as well as increasing network security
and facilitating system expansion whenever demand requires it [4].

At the same time, to increase spectral efficiency and support higher data rates, MIMO
technology (Multiple Input, Multiple Output) became a core component of 4G. MIMO
enables the simultaneous transmission of multiple data streams using multiple antennas
at both the transmitter and the receiver. This improves capacity and throughput without
requiring additional spectrum.

With 4G/LTE, the transport network fully transitioned to a packet-switched architec-
ture, aligning with the data-centric nature of the network.
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Overall, while CRAN architectures and 4G technologies enhanced network efficiency,
the underlying hardware and software remained largely vendor-specific. Many vendors used
proprietary interfaces between BBUs and RRHs, coupled with custom implementations
of front-haul protocols. Consequently, critical components such as BBUs, radios, and
antennas often had to be procured from a single vendor to guarantee compatibility and
seamless integration, thereby limiting the flexibility and interoperability of the network
infrastructure.

3.1.3.5 5G: C-RAN

The introduction of 5G brought significant advancements to RAN architecture, in order
to meet the demands of ultra-high-speed data, low latency, and massive device connectivity.
In this context, cutting-edge radio technologies are utilized. These include Massive MIMO,
which employs a large number of antennas to enable simultaneous communication with
multiple users, enhancing capacity, and Beamforming, which leverages multiple antennas
to control the direction of the transmitted or received signals, focusing the signal on specific
users instead of broadcasting in all directions.

The 5G Base Station, referred to as gNodeB (Next Generation NodeB), unlike its prede-
cessors, adopts a disaggregated architecture, meaning its components can be be physically
or logically separated. This provides greater flexibility for resource allocation to individual
components and enhances resource utilization and management. Specifically, the gNodeB
is divided into the following components:

e Radio Unit (RU): Manages the RF (Radio Frequency) layer and handles tasks such as
the conversion of signals between analog and digital formats. It is a hardware component
located at cell site, close to the antenna or integrated with it. The RU is considered the
radio portion of the RAN and is managed by the Distributed Units (DUs).

e Distributed Unit (DU): A mixture of software-based or physical technologies that han-
dle real-time tasks, that require low latency like signal processing, scheduling, and radio
resource management. They should be at edge data centers, not be far from the RUs. The
normal distance is between 1 km and 20 km, interconnected by fiber optic. Several RUs
may be connected to the DUs.

e Centralized Unit (CU): Software-based units hosted in a cloud-based platform or regional
data center that handle non-real-time tasks, like mobility management and higher-level
protocols. They can be centralized in a way that allows them to oversee multiple DUs.

Technically, the BBU functions of 4G are disaggregated into the DU and the CU, which
are distinct and geographically separated units. This separation was implemented to ensure
that processing tasks associated with different protocol layers are performed in physically
distinct units. The reason for this design lies in the differing timing requirements of these
functions. The DU is responsible for executing time-critical functions that require real-
time processing, making its proximity to the RUs essential for maintaining low latency.
In contrast, the CU handles non-time-critical functions, allowing it to be centralized and
positioned farther from the RUs. This centralization facilitates resource pooling, enabling
dynamic resource sharing across multiple DUs, thereby improving overall network efficiency
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and scalability [4].

On the other hand, the separation of DUs and RUs in the 5G architecture is driven by
three key factors: (1) cost reduction: Simplifying the RUs by offloading complex processing
to the DUs reduces their intelligence and, consequently, their cost; (2) enhanced Manage-
ment of MIMO /massive MIMO and Beamforming: centralized management of multiple
RUs by a DU enables effective coordination of antennas, optimizing the use of spatial di-
versity and mitigating interference between systems. This coordination improves coverage
and allows the DU to dynamically select the most suitable antenna to serve a user; (3)
resource sharing: a single DU can allocate its computational resources across multiple RUs,
enhancing efficiency and flexibility in resource utilization [4].

Overall, distributing processing functions among the three RAN units—CU, DU, and
RU—not only reduces transport bandwidth and latency demands at each unit but also
optimizes resource utilization and management across the network.

The 5G split architecture requires an additional transport network solution, dividing
it into three distinct segments, reflecting how data flows between different components of
the RAN: Fronthaul (FH): connects the RU to the DU, Midhaul (MH): connects the DU
to the CU, and Backhaul (BH): connects the CU to the Core Network.

In the 5G, the architecture transitions to Cloud RAN, where baseband processing be-
comes software-defined, allowing baseband functions to be centralized in data centers or
cloud-like environments. This cloud-native, software-driven approach facilitates dynamic
resource allocation, enabling the network to adapt to fluctuating traffic demands, while
delivering a highly scalable, flexible, and cost-efficient solution [4]. Despite this shift,
the hardware executing these functions typically remains specialized telecom equipment.
Additionally, even though the interface between RUs and DUs or CUs in existing RAN
systems is based on partially standardized specifications, the practical implementation of
these interfaces often includes proprietary variations, resulting in limited multivendor in-
teroperability. In other words, if an operator employs a radio unit from Vendor A, it
generally must also use the baseband equipment from the same vendor. Additionally, the
software designed for the baseband hardware is typically incompatible with hardware from
other vendors. This reliance on proprietary, vendor-specific implementations of interface
specifications creates a significant barrier to interoperability and reinforces vendor lock-in

[9].

3.2 Key Technologies

3.2.1 Network Function Virtualisation (NFV)

The main objective of Network Function Virtualisation (NFV) is virtualizing network
functions like proxies, load balancers, firewalls, routers or any other network function tra-
ditionally running in proprietary hardware appliances. These hardware-driven functions
have evolved into software-based functions and no longer require special proprietary hard-
ware to perform; they can instead be deployed on top of Commercial Off-The-Shelf servers
(COTS) on a cloud-based platform, without the need for installation of a new entity or
hardware device. All hardware resources of these servers such as computing, storage and
networking devices are monitored as a common resource pool. These Virtual Network
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Functions (VNFs) can be migrated or instantiated in various locations in the network
based on the functionality. Additionally, appropriate VNFs can be efficiently chained such
that service-oriented functions/policies can be enforced on the traffic from a specific ser-
vice/application, giving rise to a service function chain (SFC). For example, traffic from
a video streaming service may pass through VNFs for firewall (to ensure security), traffic
optimizer (to adjust video quality based on network conditions), and load balancer (to
distribute traffic across servers).

Virtualization technologies allowed for dynamic resource allocation, agile and cost-
effective network management (applications can be upgraded easily or swapped altogether),
efficient scaling of network functions, and the introduction of new services without the need
for extensive hardware upgrades [6]. By virtualizing network functions, NFV also reduces
power consumption and lowers the operational and maintenance costs for MNOs. However,
the deployment and management of VNFs introduce new complexities, particularly in terms
of manageability and security. These challenges make the deployment of VNF instances
non-trivial, requiring robust solutions to ensure efficient operation and protection against
potential vulnerabilities [7].

3.2.2 Functional Splits

3.2.2.1 RAN Protocol Stack

The RAN protocol stack refers to the set of protocols that govern the operation and
communication between different components of the RAN. It defines how data is processed,
transmitted, and managed in the RAN from the physical layer all the way up to the
application layer. The RAN Protocol Stack in 5G typically consists of the following layers:

e Physical Layer (PHY)

The lowest layer, responsible for the actual transmission and reception of radio signals over
the air interface. It handles tasks like modulation, demodulation, coding, and decoding of
signals, as well as error correction. In modern architectures it is divided into Low-PHY
(handles tasks that are closely tied to the RF) and High-PHY (performs computationally
intensive baseband processing tasks, including channel coding, modulation).

e Medium Access Control (MAC) Layer

The MAC layer is responsible for controlling access to the radio medium and scheduling the
transmission of data. It handles tasks like resource allocation, scheduling, and multiplexing
of data from different users over the same radio channel.

e Radio Link Control (RLC) Layer

The RLC layer is responsible for the segmentation and reassembly of data packets, as well
as error correction and flow control. It ensures reliable transmission of data over the air
interface by handling retransmissions in case of errors.

e Packet Data Convergence Protocol (PDCP) Layer
The PDCP layer is responsible for header compression (to reduce the size of data packets),
ciphering (encryption of data), and packet sequence number management. It also handles
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user plane data and control plane signaling, including the RRC (Radio Resource Control)
protocol.

e Radio Resource Control (RRC) Layer

The RRC layer is responsible for managing the control plane signaling between the UE
and the RAN. It handles tasks like connection establishment, handover management, and
power control, while it also controls the configuration of the RAN.

e Service Data Adaptation Protocol (SDAP) Layer

The SDAP layer is responsible for managing the quality of service (QoS) for user plane
data. It ensures that data flows are classified and mapped to appropriate QoS parameters,
ensuring the required performance for each service (e.g., voice, video, or data). It resides
between the RLC and PDCP layers within the user plane.

The PHY, MAC, and RLC layers are involved in tasks that are very delay-sensitive (of
the order of a few milliseconds), while the higher layer PDCP and RRC protocols undertake
tasks that are more delay tolerant and can take tens of milliseconds.

These layers can be further condensed to broader categories: the network layer (L3),
which includes RRC layer, the data link layer (L2), which include PDCP, SDAP (for user
plane), RLC and MAC layers, and the physical layer (L1), which includes the PHY layer.

3.2.2.2 Functional Splits

While moving lower in the protocol stack, both processing demands and transport over-
head increase significantly [23]. In the context of 5G RAN, mobile traffic is growing at
such a rapid pace that it is quickly surpassing the capabilities of conventional fronthaul
interfaces. To address this limitation, one potential solution is to offload more process-
ing functions to RUs, enabling them to process observed signals more extensively before
forwarding them to the DU via the fronthaul network. However, critical questions re-
main regarding the optimal number of processing functions that should be localized at the
RUs and to what extent this can alleviate the immense capacity demands placed on the
fronthaul links [5].

To address these challenges, the 3rd Generation Partnership Project (3GPP) has defined
various Functional Splits that determine how RAN functions are distributed across the RU,
DU, and CU. These splits are categorized based on the layer of the protocol stack at which
the functions are divided. The functional split will determine the allocation of processing
functions between the RU and the DU. 3GPP standard consists of eight main Functional
Split options, including suboptions, shown in Fig. 2.1.

Some examples in more detail:
e Option 8 (RF/PHY split): all the baseband (L1/L2/L3) signal processing functions are
centralized at the DU, whereas only the RF functions are left in the RU site. Using this

option, the maximum resource sharing can be obtained, but the required fronthaul data
rate is the highest compared to other functional split options.

e Option 7.1 (low PHY split): only RF functions such as the iFFT/FFT and beamforming
port expansion/reduction are left in the RU.
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Figure 3.1: Signal processing functions in the protocol stack and different Functional Split
options provided by 3GPP [5].

e Option 7.2 (low PHY /high PHY split): the RU additionally includes Low-PHY processing
(resource element demapping, channel estimation, and diversity combiner functions in the
uplink and precoding and the resource element mapping functions in the downlink), while
DU handles High-PHY, MAC, and RLC functions.

e Option 7.3 (High PHY split): further includes in the RU modulation/demodulation,
equalization, and inverse discrete Fourier transform functions in the uplink, and layer
mapping in the downlink [5].

As the split progresses to higher layers, more processing functions are retained locally
within the RU. This means more extensive signal processing performed before transmitting
signals over the fronthaul network to the DU. This approach reduces the data rate and
latency demands on the fronthaul link. However, increasing the processing responsibilities
of the RU also raises its configuration complexity. This added complexity may restrict the
deployment of simpler, low-cost, and energy-efficient RUs.

The decision on how to distribute the baseband processing functions depends on several
key considerations, such as the Quality of Service (QoS) requirements of the supported ser-
vices (e.g., low/high throughput, low/high latency, real-time/non-real-time applications)
and the characteristics of the available transport network infrastructure (e.g., optical fiber,
wireless networks, including microwave, millimeter waves, or free-space optics). Addition-
ally, the Functional Split must accommodate specific load demands and user densities
within a given geographical service area. The choice of Functional Split must be carefully
considered, taking into account some cost-effective and technical trade-offs between the
required fronthaul capacity, latency, and the degree of centralization of signal processing
functions [5].

In modern RAN architectures, the full potential of Functional Splits is realized through
dynamic splitting, where the placement of network functions is adaptively adjusted based
on real-time feedback from the network. This approach enables the system to optimize
performance in response to changing conditions, such as traffic load, latency requirements,
and resource availability.
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3.2.3 Network Slicing

Network slicing is a technology that facilitates the creation of multiple virtual net-
works, referred to as "slices” on top of a shared physical infrastructure. These slices can
be implemented across both the core network and the RAN. In a virtualized network
environment, the physical infrastructure of the 5G network serves as a secondary compo-
nent, while the logical components—abstracted representations of the underlying physical
infrastructure—become the primary focus. These logical components are designed to ad-
dress specific requirements based on diverse use cases. This virtualization is possible by
embedding techniques of Software Defined Networks (SDN) and NFV.

The sub-components of Network Slicing involve slice creation, which enables the de-
velopment of 5G network slices; slice isolation, which isolates the different type of slices
from one other, ensuring that issues in one slice (e.g., congestion or failures) do not affect
others; and slice management, which manages the overall process from slice creation to
slice delivery to the use case.

The concept of Network Slicing allows for the provision of smaller, dedicated network
slices instead of offering the entire network’s capabilities. Each slice operates as an indepen-
dent virtual network with its own resources, policies, and performance characteristics, such
as low latency, ultra-high bandwidth, or enhanced mobile broadband. These attributes en-
able slices to address a diverse range of use cases effectively. For instance, a low-latency
slice is ideal for real-time streaming applications, while an ultra-high bandwidth slice is
better suited for streaming high-definition videos. Each slice is customized with specific
configurations for parameters such as bandwidth, latency, reliability, and security, ensuring
it meets the unique requirements of the corresponding use case. Each use case is served by
the slice that best suits its service requirements. Different use cases are:

« eMBB Slice: Handles high-bandwidth applications like video streaming, AR/VR, or
file downloads.

o URLLC Slice: Supports ultra-low-latency and high-reliability applications like au-
tonomous vehicles or industrial robotics.

« mMTC Slice: Manages IoT applications with massive device connectivity and low
data rates, such as smart meters or environmental sensors.

It is evident that 5G networks, designed to accommodate a broad spectrum of applica-
tions with vastly differing requirements, rely on Network Slicing to deliver tailored services
for each use case over a shared physical infrastructure. A critical advantage of Network
Slicing is its inherent adaptability. Logical networks can dynamically reconfigure them-
selves in response to changing demands, reallocating resources to optimize performance.
This dynamic flexibility enhances resource efficiency and scalability, enabling operators to
support a diverse range of complex use cases effectively. As a result, network slicing has
become a fundamental feature of modern 5G networks, ensuring they can meet the diverse
and evolving needs of users and applications [8].

60



3.4.0 vRAN

3.3 vRAN

Virtualized RAN refers to the application of NF'V principles on the RAN. vRAN de-
couples the software from hardware by virtualizing (implementing as software modules)
baseband processing components: baseband unit, gNB/eNodeB, DU and CU, which in a
traditional RAN architecture were performed by hardware-specific elements (e.g. FPGAs,

ASICs) [24].

With vRAN, processing functions can be centralized in a highly flexible manner, facil-
itating network scalability. This centralization provides operators the ability to leverage
these pooled VNFs and dynamically allocate different resources through network slicing
to create the architecture on-demand and fit the needs of the applications [9]. At the
same time, centralization allows for enhanced visibility and control over network functions,
enabling more efficient management. Advanced orchestration tools further streamline op-
erations by automating the provisioning and configuration of network resources, thereby
minimizing the need for manual intervention and reducing operational complexity.

The flexibility of vRAN also allows mobile operators to leverage different Functional
Splits dynamically, tailoring configurations based on available network resources and spe-
cific operational needs. As each Functional Split has distinct fronthaul capacity and latency
requirements, this adaptability enables operators to support a wide range of QoS config-
urations for various services, such as high data rates for broadband applications or low
latency for real-time use cases. This ability to adjust Functional Splits flexibly empowers
operators to respond effectively to varying traffic demands and user densities across differ-
ent geographical regions. This ensures optimal resource allocation and consistent service
quality [5].

Nonetheless, the primary drawback of vRAN is that it traditionally uses proprietary
interfaces between radios and other network elements, thereby locking the operator into a
single RAN vendor.

Table 3.1: Different Radio Access Network Generations.

Radio

. Baseband | Baseband BBU/RRU e
Architecture Hardware Software Hardware Intorface Interability
CRAN . . . . Radio + BBU
(Clorral- Proprietary | Proprietary | Proprietary | Proprietary (HW-SW single
. Technology Software Hardware Interface
ized) vendor)
. . . Radio + BBU
V-RAN COTS Proprietary | Proprietary | Proprietary (SW single
Software Hardware Interface
vendor)
Software Open 1860 = 1ELETU)
O-RAN COTS W - COTS Open Interface (HW+SW
Interface 2
various vendors)
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3.4 ORAN

Open Radio Access Network (O-RAN) is an industry-driven initiative and framework
designed to revolutionize traditional RAN architectures by promoting openness, interop-
erability, and flexibility. It embraces the principles of virtualization, standardization, and
openness to unlock the full potential of mobile networks. By redefining the conventional
vendor-specific, monolithic RAN equipment, O-RAN disaggregates network components
into interoperable units connected through open interfaces, leveraging open hardware and
software solutions. This approach empowers network operators to mix and match com-
ponents from multiple vendors, fostering competition, driving innovation, and reducing
vendor lock-in [2].

The primary objective of the O-RAN architecture is to transition RAN networks toward
a more open, intelligent, and adaptable design while maintaining compliance with 3GPP
standards and extending their capabilities. This open and modular approach provides the
flexibility needed to meet the diverse and evolving requirements of 5G applications.

3.4.1 Evolution

During the early 2000s, Nokia, Samsung, NEC, and LG collaborated to introduce the
Open Base Station Architecture Initiative (OBSAI), which aimed to standardize commu-
nication between Radio and Baseband units, namely the fronthaul network. This initiative
sought to establish a uniform set of rules and protocols, facilitating seamless interoper-
ability between Remote Radio Units (RRUs) and Baseband Units (BBUs) from different
manufacturers. By reducing reliance on proprietary solutions, OBSAI aimed to promote
vendor-neutral systems and foster a more competitive ecosystem [25]. However, the adop-
tion of OBSAI faced resistance from certain vendors, who formed a competing alliance
to develop an alternative standard, the Common Public Radio Interface (CPRI). The
coexistence of these competing standards fragmented the market, undermining the goal
of universal interoperability. This represents one of the earliest significant attempts at
standardizing Open RAN principles, although it ultimately failed to achieve widespread
industry acceptance.

In the years that followed, Mobile Network Operators (MNOs) continued to advocate
for interoperability within the cellular network infrastructure, promoting initiatives to stan-
dardize components of base stations. Despite these efforts, adoption remained limited, with
proprietary solutions continuing to dominate the industry.

The advent and widespread adoption of LTE further consolidated the market, leading
to a significant reduction in the number of vendors and resulting in market dominance by
a few key players. This limited the choices available to operators, creating a landscape
of vendor lock-in and reduced competition. In response, operators began seeking ways to
disrupt these monopolies by "opening" the RAN. The goal was to break the reliance on
proprietary systems, foster competition, and create opportunities for new vendors to enter
the market. This drive for openness and flexibility laid the foundation for modern Open
RAN initiatives, aiming to redefine the traditional RAN ecosystem and enable a more
democratic, diverse, and competitive vendor landscape.

The first successful initiative to realize the vision of an open and interoperable RAN was
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Figure 3.2: O-RAN Architecture Overview [1].

the O-RAN Alliance, established in 2018 by five leading operators: AT&T, China Mobile,
Deutsche Telekom, NTT DOCOMO, and Orange. Open RAN (O-RAN) advocates for
the adoption of open and standardized interfaces to eliminate vendor lock-in and foster
a more competitive and dynamic market. By enabling seamless interoperability between
cellular network equipment from multiple vendors, O-RAN leverages white-box servers
and standardized hardware, moving away from the proprietary, custom-built equipment
traditionally used in base stations [2].

If implemented successfully, O-RAN has the potential to drive a transformative wave
of innovation in the RAN domain by significantly lowering market entry barriers for new
players. This could lead to a more diverse and competitive vendor landscape, ultimately
benefiting operators and end-users through improved efficiency, reduced costs, and accel-
erated technological advancements.

3.4.2 Architecture

Figure 3.2 illustrates the components and control loops within the O-RAN architecture.
These control loops represent closed-loop autonomous action and feedback mechanisms
designed to ensure normal operation and optimize network performance. The first loop
is the Real-time O-DU Scheduler control loop, responsible for real-time processing tasks
such as radio scheduling, beamforming, and other time-sensitive operations. It operates
with a timing constraint of less than 10 milliseconds, qualifying it as a real-time control
loop. The Near-real-time Control Loop operates on a time scale between 10 milliseconds
and 1 second and is managed by the Near-Real-Time RAN Intelligent Controller (Near-RT
RIC). Finally, the Non-real-time Control Loop is associated with the Non-Real-Time RAN
Intelligent Controller (Non-RT RIC) and operates on a time scale exceeding 1 second. It
focuses on long-term network optimization and policy management, leveraging historical
data and advanced analytics to enhance performance over time.

These control loops operate in parallel and are designed to function independently or
interact, depending on the specific use case [11].
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3.4.2.1 Components

e O-Cloud

The O-Cloud is a cloud computing platform composed of physical infrastructure nodes
that adhere to O-RAN specifications, enabling the hosting of essential O-RAN functions
such as Near-RT RIC, O-CU-CP, O-CU-UP, and O-DU, along with supporting software
components like operating systems, virtual machine monitors, and container runtimes,
as well as management and orchestration tools. This platform provides the foundational
infrastructure for virtualized and containerized network functions required by O-RAN. It is
built on COTS servers augmented with hardware accelerators, such as field-programmable
gate arrays (FPGAs) and GPUs, and includes networking infrastructure that supports
O-RAN software decoupled from hardware across various layers. By adhering to open
and interoperable interfaces, the O-Cloud ensures compatibility with O-RAN components
and uses hardware acceleration for computationally intensive tasks, such as fast Fourier
transforms and forward error correction. Virtualized Network Functions (VNFs), including
eNBs and gNBs, are deployed within the O-Cloud in virtualized RAN (vRAN) scenarios,
enabling enhanced scalability and flexibility.

O-RAN can also be implemented through alternatives to the O-Cloud, such as Physical
Network Functions (PNFs) or server chassis and racks in shared cloud environments. These
alternatives provide varying levels of openness and flexibility, with the choice of deployment
depending on the operator’s specific needs and infrastructure capabilities. Among these
options, the O-Cloud stands out as the most open and flexible solution [2].

e Service Management and Orchestration

The SMO framework serves as a unified platform for the management and orchestration
of various RAN components, addressing both traditional network management tasks and
those specific to O-RAN’s open architecture. Its primary responsibilities include over-
seeing fault, configuration, accounting, performance, and security (FCAPS) functions for
O-RAN network elements. It also handles long-term network planning and optimization
of the RAN. Through the O2 interface, the SMO manages and orchestrates O-Cloud re-
sources, performing tasks such as resource discovery, scaling, FCAPS operations, software
management, and CRUD operations on O-Cloud resources.

e Non-RT RAN Intelligent Controller (Non-RT RIC)

The Non-RT RAN Intelligent Controller, integrated within the Service Management
and Orchestration (SMO) framework, focuses on long-term RAN optimization and man-
agement tasks that operate over extended timescales, typically from seconds to minutes or
longer. These tasks do not require immediate responses and include policy computation,
machine learning model management (e.g. training), and radio resource management,
within this temporal scope. The primary goal of Non-RT RIC is to support intelligent
RAN optimization by providing policy-based guidance, model management, and enrich-
ment information to the near-RT RIC function so that the RAN can be optimized. The
Non-RT RIC collects data from the network, such as performance metrics and traffic pat-
terns, and applies advanced algorithms, including ML models, to analyze this data. It
generates actionable insights and optimization strategies, which are then communicated to
the Near-Real-Time RIC for execution in real-time environments. Additionally, it inter-

64



3.4.2 ORAN

acts with the SMO to ensure cohesive network-wide orchestration, contributing to unified
management across the RAN ecosystem.

Modular third-party software applications, referred to as rApps, operate within the
Non-RT RIC to provide value-added services such as policy enforcement through the O1
and O2 interfaces, drive of Al interface, network slicing, and generation of additional
contextual or operational information that is shared with other rApps or components of
the O-RAN architecture to improve network performance. These rApps can be updated,
added, or replaced without disrupting the system, allowing for flexible enhancements to
RAN operations.

Operators develop and own the core algorithms of the Non-RT RIC, enabling customiza-
tion of RAN behavior through models optimized for specific policies and objectives. Data
management tasks initiated by the Non-RT RIC are converted into the O1/02 interface
for execution, while contextual and enrichment information is shared with the Near-RT
RIC via the Al interface to the near-RT RIC [2, 10].

e Near-RT RAN Intelligent Controller (Near-RT RIC)

The Near-RT RAN Intelligent Controller is a logical function designed to enable near-real-
time optimization, control, and monitoring of O-CU and O-DU nodes within timescales of
10 milliseconds to 1 second. It operates based on policies (high-level objectives or rules)
generated by the Non-RT RIC, which are translated into actionable directives for the RAN.
The Near-RT RIC is responsible for a variety of critical tasks, including per-user equipment
(UE) controlled load balancing, radio resource management, interference detection and
mitigation, quality of service (QoS) management, connectivity management, and seamless
handover control. The Near-RT RIC utilizes a Radio-Network Information Base (R-NIB)
database, which captures the near-real-time state of the network and provides valuable
data to train AI/ML models within the Non-RT RIC. These models are then used by
the Near-RT RIC to optimize radio resource management for subscribers. Additionally,
the Near-RT RIC supports third-party modular micro-service-based applications, called
xApps, which run on the RIC platform and extend its functionality. These xApps can
receive data and telemetry from the RAN and send back control, enabling custom logic
to implement tailored QoS policies for specific applications, thus improving the overall
performance and adaptability of the RAN [10].

e O-RU

The O-RU is directly connected to the antennas and is responsible for transmitting and
receiving radio signals over the air. It interfaces with the O-DU through the fronthaul in-
terface. The primary functions of the O-RU include RF signal processing, such as filtering,
amplification, digital conversion, and beamforming [10].

e O-DU

The O-DU processes data and signaling above the low-level physical layer and interacts with
the O-CU (Central Unit) for control and user plane tasks. It is responsible for functions
such as segmentation, reassembly, and retransmission of data, as well as multiplexing of
data packets and encoding/decoding [10].

e O-CU
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In the O-RAN architecture, the O-CU (O-RAN Central Unit) is split into two logical
nodes: O-CU-CP (Control Plane) and O-CU-UP (User Plane). The O-CU-CP manages
signaling tasks such as connection setup, mobility management, and radio resource con-
figuration, as well as control functions like header compression and ciphering for signaling
messages. These tasks govern how the network interacts with user devices (UEs) and
other network components. The O-CU-UP, on the other hand, handles the data traffic
between the UE and the core network, processing user data packets, ensuring they are
delivered to the appropriate destination, and implementing QoS policies. It also manages
user plane-specific encryption and compression [11].

The decoupling of the O-CU into separate control and user planes offers several benefits.
One key advantage is that it allows the user plane to become more standardized, as most of
the variability lies in the control plane. This enables easier scaling and more cost-effective
solutions for the user plane. Another benefit is the enhanced control functionality, which
leads to increased efficiency and better radio resource management. These control functions
leverage analytics and data-driven approaches, including advanced machine learning (ML)
and artificial intelligence (AI) tools, to optimize network performance [11].

0O-CU and O-DU are collectively referred to as E2 nodes, which are defined as any logical
RAN function or entity that supports the E2 interface and interacts with the Near-RT RIC.
One near-RT RIC may be connected through transport functions to one or multiple E2
nodes, although each E2 node may be connected to a single near-RT RIC.

3.4.2.2 Services and Interfaces

The O-RAN Alliance has introduced technical specifications that define open interfaces
connecting various components of the O-RAN architecture. Standardizing these interfaces
is crucial for breaking vendor lock-in within the RAN. For example, it allows a near-
RT RIC from one vendor to interact with base stations from another vendor, or enables
interoperability between CUs, DUs, and RUs from different manufacturers. These open
interfaces facilitate the deployment of the O-RAN architecture across different network
locations, such as the cloud, edge, or cell sites, and support multiple configurations. This
flexibility allows operators to select the most suitable setup for their specific needs, fostering
a more open and competitive market.

e O1 Interface

The O1 interface is a logical interface used to perform management services within the
O-RAN architecture. It is responsible for managing the life-cycle of O-RAN components,
which includes tasks such as startup, configuration, fault tolerance, and heartbeat services.
Additionally, the O1 interface handles performance assurance, trace collection, and Key
Performance Indicators (KPIs) reporting, as well as software and file management under the
FCAPS framework [2]. All O-RAN network functions, except for the O-RU, are expected
to support the O1 interface when interfacing with the SMO.

e Al Interface

The A1l interface is a logical northbound (higher-level control influencing lower-level op-
erations) interface that connects the non-RT RIC with the near-RT RIC in the O-RAN
architecture. Its primary purpose is to enable the non-RT RIC to provide policy-based
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Table 3.2: Interface Mapping Between Components.

Components Interface

SMO and E2 nodes O1 Interface
Non-RT RIC and near-RT RIC A1 Interface
Near-RT RIC and E2 nodes E2 Interface
Non-RT RIC and rApps R1 Interface
O-CU-CP and O-CU-UP E1 Interface
O-CU and O-DU F1 Interface
O-DU and O-RU Open FrontHaul
SMO and Cloud Platform (O-Cloud) O2 Interface

guidance, AT/ML model management, and enrichment information, such as context data
for machine learning models that may not be directly accessible to the near-RT RIC from
network function data. This information is used to optimize specific RAN functions. Ad-
ditionally, the A1 interface allows for basic feedback from the near-RT RIC to the non-RT
RIC, reporting operational metrics or the outcomes of policies applied [10].

o E2 Interface

The interfaces used by near-RT RIC, namely Al and E2, are also used by the xApps to
provide value-added services and enhance the capabilities of the near-RT RIC. The xApps
hosted by Near-RT RIC use the E2 interface to collect near real-time information (on a
UE basis or a cell basis). The Near-RT RIC control over the E2 nodes is steered via the
policies and the data provided via Al from the Non-RT RIC.

The near-RT RIC utilizes the E2 interface to gather near-real-time information from
E2 nodes, either periodically or in response to predefined trigger events. This data is then
used to support Radio Resource Management (RRM) by feeding it into the near-RT RIC.
Additionally, the E2 interface allows the near-RT RIC to send configuration commands
directly to the CU/DU [11].

e R1 Interface

The non-RT RIC hosts the R1 termination, which enables rApps to interface with the
non-RT RIC. This setup allows rApps to access data management and exposure services,
as well as AI/ML functionalities. Additionally, rApps can interact with the A1, O1, and
O2 interfaces through this connection [10].

e O2 Interface

The O2 interface is a collection of services and associated interfaces between the O-Cloud
and the SMO. These services are organized into two logical groups: Infrastructure Manage-
ment Services, which are responsible for deploying and managing cloud infrastructure, and
Deployment Management Services, which handle the lifecycle management of virtualized
or containerized deployments on cloud infrastructure.[10].
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e Open Fronthaul Interface

O-RAN’s open fronthaul is a logical interface that standardizes communication between
the O-DU and the O-RU, enabling multi-vendor interoperability. To choose the appropriate
functional split one must consider the inherent trade-off between keeping the O-RU as
simple as possible to reduce costs by centralizing functions in CU and distributing functions
toward the RU to alleviate congestion on the fronthaul network. O-RAN Alliance has
selected a “7-2x” functional split.

The Open Fronthaul Interface is structured across multiple logical planes: the lower-
layer split control plane (LLS-CP), which manages signaling and configuration for control-
ling the O-RU; the LLS user plane (LLS-UP), which carries user data traffic between the
O-DU and O-RU; the synchronization plane (S-plane), which ensures precise timing syn-
chronization between the O-DU and O-RU; and the management plane (M-plane), which
oversees O-RU configuration, fault management, and performance monitoring [12, 26].

3.4.2.2.1 Artificial Intelligence and Machine Learning Services The use of Al/
ML models in next-generation RANs is a cornerstone of O-RAN’s architecture. These
models enable advanced functionalities such as zero-touch and automated resource con-
trol, anomaly detection, and traffic classification. Within the O-RAN framework, an ML
training host is a network function responsible for building and training ML models offline,
while an ML inference host is the network function tasked with executing these models
and/or performing online training. ML models are typically integrated into larger decision-
making solutions hosted by the actor network. This network is ultimately responsible for
implementing decisions or actions, which may include configuration management changes
via the O1 interface, policy management through the A1l interface, and control or policy
adjustments for O-eNB (O-CU/O-DU/O-RU) components over the E2 interface. The de-
ployment of ML hosts determines the specific interface and control parameters used [13, 10].
Three deployment scenarios are typically considered:

e The Non-RT RIC assumes both roles of ML training and inference host. Here,
the entire ML process, including model creation, lifecycle management, and data
provisioning, is conducted within the SMO. Actions in this deployment include:

— A policy for the near-RT RIC, which is transferred through the policy service
of the Al interface,

— An O-CU/O-DU/O-RU configuration parameter, which is enforced using the 01
interface.

e The Non-RT RIC works as the ML training host, while the near-RT RIC serves as
the inference host. This setup uses both the O1 and O2 interfaces for model creation
and maintenance. Actions include:

— Forecasting information for near-RT RIC’s internal mechanisms (with A1l’s en-
richment data service facilitating data exchange between Non-RT and near-RT

RICs),

— Configuring O-CU/O-DU/O-RU parameters, leveraging the E2 interface for
data collection and policy enforcement.
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e The Non-RT RIC acts as the ML training host, with ML inference hosted directly
on the O-CU or O-DU. This approach extends the distributed intelligence to the
RAN components, utilizing their proximity to the data sources for real-time decision-
making and control [10].

3.4.2.3 Open Software

Open SW in the context of Open RAN refers to the use of open-source code and
collaborative development efforts to create software that enables the operation of RAN
functions. This software can be contributed by individuals, companies, and organizations
within the Open RAN ecosystem. The goal is to create a more flexible, interoperable, and
cost-effective RAN solution by enabling contributions from a broad set of players. One
example of open software initiative is the O-RAN Software Community (OSC) which is a
partnership between the O-RAN Alliance and the Linux Foundation to support the software
development for an Open RAN solution. OSC supports the development of software for
RAN functions, including Near-RT RIC, Non-RT RIC, O-CU, O-DU, and other critical
components of the Open RAN architecture [9].

3.4.3 Security in ORAN

The adoption of Open RAN introduces significant opportunities for flexibility, efficiency,
and innovation in next-generation cellular networks. However, it also brings unprecedented
security challenges. The disaggregated and distributed nature of O-RAN, combined with
the integration of open interfaces, custom control logic, and AI/ML components, signifi-
cantly expands the attack surface, creating vulnerabilities for malicious exploitation.

Specific risks include threats against open-source code and the potential for adversaries
to compromise AI/ML systems by injecting misleading data into datasets used for offline
training. Furthermore, O-RAN inherits security risks from virtualized and cloud-based
deployments, such as supply chain threats and the complexities of managing a multi-party
ecosystem involving operators, cloud providers, and system integrators. The ORAN system
could also be attacked on the Open Fronthaul 7.2x split interface, which is not encrypted on
the control plane, because of the challenging timing requirements that encryption would
introduce. This introduces man-in-the-middle attacks, in which the attacker imperson-
ates the DU (or RU), and compromises user data or configurations in either of the two
endpoints. Despite these challenges, O-RAN’s openness also offers advantages, such as
increased visibility into RAN operations, enabling operators to maintain greater control
over their networks. The virtualized architecture facilitates rapid deployment of security
patches, automated testing, and comprehensive oversight of vendors and software compo-
nents [2].

To address these challenges, a risk-based approach is essential. The O-RAN Security
Focus Group (SFG) is working to mitigate risks by adhering to 3GPP security standards
and industry best practices. This proactive approach ensures that O-RAN can meet the
high-security expectations of 5G networks while balancing the benefits of openness and
innovation [27].
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Figure 3.3: Open and Virtualized Models [28].

3.4.4 Open-v-RAN

Open RAN automatically implies disaggregation of hardware and software. This en-
ables vendor interoperability but does not imply open hardware nor open software [9]. The
interfaces between different parts of the network are open, but the hardware itself might
not always be open. That means operators can still use proprietary hardware as long as it
complies with the open interfaces defined by Open RAN. At the same time, operators have
options when it comes to the deployment of RU, DU and CU. Some of that equipment
may have network functions built into the hardware, while others may have disaggregated
software/hardware functions [14].

Open vRAN (Virtualized Radio Access Network) is a term that combines the concepts
of virtualization and Open RAN. It refers to the use of virtualization technologies (NFV) in
the deployment of Open RAN architectures, deploying O-DU and O-CU as software-based
network functions.

3.4.5 Conclusion

The O-RAN framework represents a transformative approach to the evolution of the
RAN ecosystem, leveraging open hardware, software, and interfaces to foster interoper-
ability and innovation. By enabling a multivendor ecosystem, O-RAN allows operators
to avoid vendor lock-in, adopt "best of breed" solutions, and accelerate the deployment of
advanced network services. This flexibility is critical for meeting the diverse and rigorous
requirements of 5G and beyond, particularly in vertical industries with varying demands
for performance, capacity, and latency.

The O-RAN Alliance emphasizes integrating artificial intelligence and machine learning
into the RAN architecture to address the complexity of modern networks. As networks
densify and support data-intensive applications such as augmented reality, IoT, and au-
tonomous systems, traditional manual methods of network management are no longer
viable. The manual human interventions required in 2G, 3G, and 4G networks cannot
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keep up with the scale and scope of what needs to be achieved in multiple spectrum bands
with highly sliced and multiservice networks for 5G and beyond. Instead, O-RAN envisions
self-driving, self-healing, and auto-configuring networks that leverage learning-based tech-
nologies to optimize resource allocation, reduce capital expenditures (RAN approximately
65%-70% of total network CapEx [29]), and enhance user experiences. Interoperable open
interfaces are central to the O-RAN architecture, enabling seamless data collection and
configuration changes required for AI/ML-driven automation. This intelligence, embed-
ded at every layer of the RAN, ensures that networks can dynamically adapt to their
environment and application contexts in real-time.

O-RAN promotes a competitive market and creates opportunities for smaller vendors,
traditionally alien to large-scale RAN deployments, achieving nonetheless the economies
of scale needed to compete with major vendors remains a challenge [14].

In conclusion, O-RAN represents a pivotal shift toward intelligent, open, and flexi-
ble RAN architectures that are critical for realizing the full potential of 5G and beyond.
By embracing AI/ML and fostering a competitive ecosystem, O-RAN is poised to drive
innovation, reduce costs, and enable the next generation of wireless networks.
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Reinforcement Learning

Reinforcement Learning (RL) is a subfield of machine learning (ML) that focuses on
goal-oriented learning through interactions with an environment. Unlike supervised and
unsupervised learning, which rely on labeled and unlabeled datasets respectively, RL in-
volves an agent (learner and decision-maker) that interacts with an environment (outside
of the agent’s control) and learns to achieve a specific objective by sequentially performing
actions, receiving feedback in the form of rewards, and refining its behavior to maximize
cumulative rewards over time. This learning paradigm allows RL agents to acquire knowl-
edge and skills through direct experience, distinguishing it from other machine learning
approaches.

The success of RL is evident in its application to a wide range of real-world problems,
particularly those involving complex, sequential decision-making processes. In robotics, for
instance, RL has proven to be a transformative tool, enabling robots to autonomously learn
intricate tasks through interaction with their environment. This approach contrasts with
traditional robotics, which relies on pre-programmed instructions, by empowering robots to
optimize their behavior through trial-and-error learning. Such capabilities are particularly
advantageous in unstructured and dynamic environments where predefined rules may be
inadequate or infeasible. Beyond robotics, RL has been successfully applied in domains
such as gaming, recommendation systems, and autonomous vehicles.

The motivation for employing RL lies in its distinctive learning framework, which is
particularly suited to problems requiring a series of interdependent decisions. Each action
taken by an RL agent directly influences the subsequent state of the system, making it
highly effective for scenarios that involve long-term planning and optimization. Further-
more, RL agents are capable of adapting to dynamic environments by continuously learning
from new experiences, a feature that differentiates them from traditional static models. RL
is also well-suited for tasks where labeled data is scarce, expensive to obtain, or difficult
to define.

4.1 Elements of Reinforcement Learning

Beyond the agent, a reinforcement learning system can have three main subelements:
an environment and optionally its model, a policy, and a value function.
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4.1.1 Elements of Reinforcement Learning

4.1.1 Environment

The environment in an RL task serves as the external system with which the agent
interacts, providing feedback in response to the agent’s actions. This feedback enables the
agent to iteratively refine its behavior in order to achieve a specified goal. The environ-
ment thus defines the context within which the agent operates. This includes three key
components:

e Action Space A: The action space represents the set of all possible actions that the
agent can take in a given environment. Actions are the means by which the agent interacts
with the environment and attempts to influence its state.

e State Space S: The state space encompasses all possible configurations or observations
of the environment that the agent can perceive. A state provides the necessary information
for the agent to make decisions. Thus, the agent’s decision-making process is fundamentally
a function of the state of the environment.

e Reward Signal: The reward signal defines the goal of the RL task by quantifying the
desirability of a particular state or action. At each timestep, the environment provides a
reward to the agent based on its most recent action and the resulting state. The agent’s
objective is to maximize the cumulative reward, also known as the return, over time.

The return/cumulative reward is defined as some specific function of the reward se-
quence. In the simplest case, the return is the sum of the rewards:

Gt :Rt+1+Rt+2+"'+RT, (41)

where T is a final time step in episodic tasks, corresponding to a terminal state. The
discounted return is defined as:

Gy = Ry +YRea + - +7" 'Ry, (4.2)

where 0 < v < 1 is called the discount rate and determines the present value of future
rewards. For continuing tasks, the formula is altered to be:

Gy =Ry +VRiya + YRz + -+ = > V' Riypsr. (4.3)
k=0

Alternatively, these formulas can be unified in:

T—t—1
Gi= ), Y*Ryiri1, including the possibility that 7' = oo or v = 1. (4.4)
k=0

Together, these components form the foundation of any RL problem, which can be
reduced to the exchange of three critical signals between the agent and the environment:
one signal to represent the choices made by the agent (the actions), one signal to represent
the basis on which the choices are made (the states), and one signal to define the agent’s
goal (the rewards).

In many RL tasks, a model of the environment is available or can be constructed. Such
a model allows the agent to make inferences about the environment’s dynamics, predicting
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how the environment will respond to a given state-action pair. Specifically, the model
provides the next state and the reward resulting from a particular action taken in a given
state. The model is formally defined by the use of the state transition function p(s'|s, a),
which defines the probability of transitioning to a next state s’ given the current state s
and action a, and the reward function R(s,a,s’), that specifies the reward received when
transitioning from state s’ to s after taking action a. This approach, known as a model-
based method, relies on the explicit representation of the environment’s behavior to guide
decision-making.

Conversely, model-free methods bypass the need for such a model and rely solely on
trial-and-error learning. These methods do not attempt to predict how the environment
will change in response to a single action, focusing instead on learning directly from interac-
tions. While model-based methods can be advantageous in structured environments where
accurate models can be constructed, model-free methods often excel in scenarios where
constructing a sufficiently accurate model is impractical or computationally expensive.

Overall, the environment’s role in RL is pivotal, as it not only provides the framework
within which the agent operates, but also determines the complexity and feasibility of
learning. Factors such as the stochasticity of state transitions and the dimensionality of
the state and action spaces significantly influence the choice of RL algorithms and the
general performance of the agent.

4.1.2 Policy

In an RL task, the policy defines the agent’s strategy for selecting actions at any given
time. Formally, it is a mapping from the perceived states of the environment to the actions
to be taken when in those states. It represents the agent’s decision-making mechanism,
encapsulating the knowledge gained during training. Depending on the chosen reinforce-
ment learning algorithm, the agent may change its policy as a result of its experience. It
is, thus, usually dynamic.

The policy can take various forms depending on the complexity of the RL task and the
algorithm used. In simple cases, it may be represented as a lookup table or a straightfor-
ward function. In more complex scenarios, it may involve extensive computation, such as
a search process or a neural network. The policy is the core of a reinforcement learning
agent in the sense that it alone is sufficient to determine behavior.

It may be stochastic, meaning that it assigns probabilities to each possible action from a
state, allowing for randomness in action selection. A stochastic policy is often represented
as 7, where m(als) is the probability of selecting action a at time t, given that the current
state is s.

4.1.3 Value Functions

Whereas the reward signal provides immediate feedback on the desirability of specific
actions or states, value functions extend this concept by estimating the long-term benefit
of states or state-action pairs. Value functions are crucial in reinforcement learning as
they guide the agent’s decision-making process. Instead of selecting actions that yield the
highest immediate reward, the agent aims to choose actions that lead to states with the
highest estimated value, thereby maximizing expected return in the long run.
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4.2.0 Markov Decision Process (MDP)

Value functions are defined with respect to particular policies. Informally, the value
of a state s under a policy m, denoted v.(s), is the expected return when starting in s
and following 7 thereafter. The function v, is called the state-value function for policy 7.
Similarly, the action-value function for policy 7 is represented as ¢,(s, a).

The value functions v, and ¢, must be estimated and re-estimated from the sequences
of observations an agent makes over its entire interaction with the environment, unlike
rewards, which are directly provided by the environment. This estimation process involves
aggregating and refining information gathered over time. For example, if an agent follows
policy m and maintains an average for each state encountered of the actual returns that
have followed that state, then the average will converge to the state’s value, v,(s), as the
number of times that state is encountered approaches infinity. If separate averages are kept
for each action taken in a state, then these averages will similarly converge to the action
values, ¢.(s,a) (Monte Carlo estimation method).

Efficiently estimating value functions is a cornerstone of reinforcement learning. The
ability to accurately estimate value functions is fundamental to an agent’s capacity to learn
optimal policies and achieve long-term success in its environment.

4.2 Markov Decision Process (MDP)

In a more formal way, the interaction between agent and environment takes place in a
sequence of discrete time steps, t = 0, 1, 2, 3, ... (using discrete time). At each time step
t, the agent receives some representation of the environment’s state, S; € S, where S is
the set of possible states, and on that basis selects an action, A; € A(S;), where A(S;) is
the set of actions available in state S;. One time step later, as a consequence of its action,
the agent receives a numerical reward, R;.; € R, and transitions to a new state Sy,;.

In order to effectively interact with the environment, the agent must be able to sense
the state of the environment to some extent and must be able to take actions that affect the
state. The agent also must have a goal or goals relating to the state of the environment.
Nonetheless, the state signal should not be expected to inform the agent of everything
about the environment. A state signal that encapsulates all relevant information is said to
be Markov or to have the Markov property. An environment is considered to satisfy the
Markov property if its state signal sufficiently summarizes all necessary past information,
allowing accurate predictions of future states without the need for additional historical
data.

To simplify the mathematical formulation, it is assumed that there is a finite number of
states and reward values. In the most general, causal case, the response of the environment
at time ¢ + 1 to the action taken at t may depend on the entire history of events that have
occurred earlier. In this case the dynamics can be defined only by specifying the complete
probability distribution:

P{Ri;1 =1,Si41 = §'|S0, Ao, Ry, ..., Si, Ay}, Vr, s, and all possible values of S;, R;. (4.5)

If the state signal has the Markov property, on the other hand, then the environment’s
response at ¢t + 1 depends only on the state and action representations at ¢, in which case
the environment’s dynamics can be defined by:

p(s',r|s,a) = P{Ry 1 =1, Si11 = 8|Sy, Ay}, Vr, s, Sy, Ay (4.6)
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When the environment exhibits the Markov property, this one-step dynamic model
enables the prediction of the next state and the expected next reward based only on the
current state and action. The Markov property is important in reinforcement learning
because decisions and values are assumed to be a function only of the current state.

A reinforcement learning task that satisfies the Markov property is called a Markov
decision process, or MDP. If the state and action spaces are finite, then it is called a finite
MDP. A specific finite MDP is defined by its state and action sets and by the one-step
dynamics of the environment. Given any state and action s and a, the probability of each
possible pair of next state and reward, s, r, is denoted:

p(s',r|s,a) = P{Ry,1 = 1,511 = §'|S; = s, Ay = a}. (4.7)

This information allows for the computation of other important quantities, such as the
state-transition probabilities:

p(s']s,a) = P{Sy11 = &'|Sy = 5, Ay =a} = > p(s',7ls,a). (4.8)

reR

4.3 Bellman Equations

For an MDP the value functions can be defined formally as:

U (8) = ER[G| St = $]

= Er [Z ’Yth+k+1

k=0

St:S]

=F. [Rt+1 + Z ’Yth+k+2
k=0

St:S]

— Zw(a|s) Zp(s', r|s,a) [T +vE; lz YRy ivo|Sep1 = S’H
a s'r k=0
=> w(als)d_p(s',r]s,a) [r+yve(s)], Vs,s' €S ,ae A(s),r € R [15].

s'r

For each triple s,a, s’ its probability, m(a|s)p(s’,r|s,a) is computed. The quantity in
brackets is weighted by that probability, then the sum over all possibilities is taken to
get an expected value. This is the Bellman equation for v,. It expresses a relationship
between the value of a state and the values of its successor states, by averaging over all
the possibilities and then weighting each by its probability of occurring.

Similarly for action value function q:

qﬂ—(s, CL) = Eﬂ—[Gt|St =S, At = CL] = EW[Z ’}/th+k+1|St =S, At = a][15] (410)
k=0
4.3.1 Bellman Optimality Equations

The objective of solving a reinforcement learning task is to identify a policy that maxi-
mizes the cumulative reward over the long term. In the context of finite MDPs, the optimal
policy can be formally defined.
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4.4.0 Exploration vs. Exploitation

Value functions provide a mechanism to establish a partial ordering among policies. A
policy 7 is defined to be better than or equal to a policy #’ if its expected return is greater
than or equal to that of 7’ for all states. Mathematically, this relationship is expressed
as m > 7' if and only if v.(s) > v (s),Vs € S. There is always at least one policy that
is better than or equal to all other policies. This is an optimal policy. While there may
be multiple optimal policies, they are collectively denoted as m,. They share the same
state-value function, called the optimal state-value function, denoted v, and defined as:

V4(8) = mﬁtwi(s),‘v’s es. (4.11)
The Bellman optimality equation is subsequently defined as:

V.(s) = Jnax, Gr. (s, a)

= max ElRi1 +7v.(Si41)]5: = 5, Ay = d (4.12)
=max Y _p(s,r|s,a)[r + yv.(s')] [15].

s'r
This equation conveys that the value of a state under an optimal policy must equal the
expected return for the best action available from that state.
Similarly, the optimal action-value function ¢.(s, a) is defined:

q(s,a) = Zp(s’, r|s,a)r + max q.(s', a")][15]. (4.13)

For finite MDPs, the Bellman optimality equation has a unique solution independent
of the policy. If the dynamics of the environment, p, are known, then it is theoretically
possible to compute this solution.

Once the optimal state-value function v,, is obtained, determining an optimal policy
becomes straightforward. For each state s, there will be one or more actions at which
the maximum is obtained in the Bellman optimality equation. Any policy that assigns
non-zero probability only to these actions is an optimal policy. In essence, any policy that
is greedy (picks the best action with one-step look ahead) with respect to the optimal
evaluation function v, qualifies as an optimal policy. The significance of the optimal value
function lies in its ability to transform the optimal expected long-term return into a locally
and immediately available quantity for each state, since it already takes into account the
reward consequences of all possible future behavior.

Many reinforcement learning methods can be understood as approximations to solving
the Bellman optimality equation. These methods typically rely on actual experienced
transitions as substitutes for the expected transitions, p in scenarios where the environment
dynamics are not explicitly known.

4.4 Exploration vs. Exploitation
The exploration-exploitation dilemma represents a fundamental challenge in reinforce-

ment learning and decision-making processes. At its core, this dilemma arises from the
tension between two competing strategies: exploitation, which involves leveraging known
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information to maximize immediate rewards, and exploration, which involves seeking new
information to improve future decision-making. Striking an optimal balance between these
two strategies is critical for an agent to achieve long-term success.

Exploitation focuses on selecting actions that have previously yielded high rewards,
relying on the agent’s current knowledge to make efficient and effective decisions. This
approach is essential for maximizing short-term gains, as it prioritizes actions with proven
outcomes. However, excessive exploitation can lead to suboptimal behavior, as the agent
may overlook potentially superior actions that have not yet been thoroughly evaluated.

On the other hand, exploration emphasizes the discovery of new actions. This is partic-
ularly important in stochastic environments, where the true value of an action can only be
estimated through repeated trials. Exploration allows the agent to refine its understand-
ing of the environment and uncover actions that may yield higher rewards in the long run.
However, excessive exploration can be inefficient, as it may involve sacrificing immediate
rewards for uncertain future benefits.

The agent cannot simultaneously explore and exploit. Every action selection inherently
involves a choice between exploiting known rewards or exploring new possibilities. This
trade-off is further complicated in dynamic or uncertain environments, where the optimal
balance may shift over time as the agent gains more information. Ultimately, the challenge
for a reinforcement learning agent is to navigate this trade-off effectively, ensuring that it
neither becomes overly conservative by exploiting suboptimal actions nor wastes resources
on excessive exploration.

4.5 Dynamic Programming Methods

The term dynamic programming (DP) in RL is used to describe a collection of algo-
rithms that can be used to compute optimal policies, by solving the Bellman Optimality
equations, assuming a perfect model of the environment represented as an MDP. Among
them, Policy Iteration and Value Iteration are two fundamental approaches for determining
the optimal policy, each employing a distinct strategy to achieve this objective.

Capital V(), Q. () are used to denote the estimates of the value, action-value functions
under 7, while v, (), ¢-() symbolize the actual functions under m, v.(),q.() if they are
optimal over all policies.

4.5.1 Iterative Policy Evaluation

Iterative Policy Evaluation is a method used to calculate the value function for a given
policy 7, it is thus a "prediction" problem. Specifically, it estimates the state-value function
V(s), which gives the expected return (or value) of each state s when following policy 7.
The method iteratively refines its estimate of the value function until it converges to the
true value function.

The process of Iterative Policy Evaluation is:
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Algorithm 4: Iterative Policy Evaluation

Input: State space S, Action space A, Policy 7, Discount factor v, Transition
function p, Convergence threshold ¢
Output: Updated value function V(s)
1 Initialization: Start with an arbitrary value function V' (s), often initialized to 0
for all states.
2 Iterative Update: For each state s € S, update V(s) using the Bellman equation
for v, as an update rule:

Via(s) = 2_m(als) 2 p(s', ls, a)lr +1Vi(s)]

a S

This update is done for all states in each iteration k. Here, Vi (s) is the value of
the state at iteration k, and Vi, 1(s) is the updated value after one more iteration.

3 Convergence: Repeat the update step until the values stabilize (i.e., the
difference between consecutive updates is below a small threshold 6).

[terative Policy Evaluation progressively improves the estimates of how good each state
is under a policy by "bootstrapping' from its previous estimates. Initially, the estimates
may be poor, but as the algorithm iterates, the value of each state becomes more accurate
as it incorporates the expected rewards and the values of future states. At convergence,
the value function V;(s) will satisfy the Bellman equation, meaning it represents the true
value of each state under the policy 7. Convergence is guaranteed for a finite MDP [15].

Since Iterative Policy Evaluation updates the value function for each state in each
iteration, the computational complexity depends on the number of states and the number
of iterations required for convergence.

4.5.2 Policy Improvement

The reason for computing the value function for a policy is to facilitate the identification
of better policies. When evaluating a deterministic policy 7, the question arises whether
to modify the policy by selecting a different action a # w(s) for some state s. The key
consideration is whether this change would yield a better or worse outcome. One approach
to addressing this question is to assess the consequences of selecting action a in s and
thereafter follow the existing policy, 7 [15].

Let m and 7’ be any pair of deterministic policies such that, Vs € S,

0r (5,7 (8)) > ve(s). (4.14)

Then the policy 7" must be as good as, or better than, . That is, the expected return
under 7’ is greater than or equal to that under 7 for all s € S:

Var(8) > v (). (4.15)

To refine the policy towards optimality, all possible state transitions and available
actions should be evaluated. At each state, the action that maximizes the expected return,
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Figure 4.1: Policy Iteration [15].

as defined by ¢,(s,a) should be selected. This leads to the formulation of a new greedy
policy, 7', given by
7'(s) = arg max x(s, a) (4.16)

The process of making a new policy «’ that improves on an original policy m, by
making it greedy with respect to the value function of the original policy, is called policy
improvement. These extend to stochastic policies as well.

4.5.3 Policy Iteration

Policy Iteration is a method aiming to compute the optimal policy ., given an MDP
(control problem).

Policy Iteration alternates between two steps: policy evaluation and policy improve-
ment. It progressively improves the policy by using its current estimate of the value
function:

Algorithm 5: Policy Iteration

Input: State space S, Action space A, Discount factor 7, Initial policy m,
Transition function p()
Output: Optimal policy 7*
1 Policy Evaluation: For a given policy 7, compute the state-value function v.(s).
This is typically done using Iterative Policy Evaluation until convergence.
2 Policy Improvement: Once the value function v,(s) is computed, improve the
policy by acting greedily with respect to the current value function using a
one-step look-ahead. The new policy 7’ is updated as:

7'(s) = arg mng:p(s’\s, a)(r +yor(s'))

This means that the new policy chooses actions that maximize the expected
return based on the current value estimates.

3 Repeat: Alternate between policy evaluation and policy improvement until the
policy stabilizes (i.e., the policy does not change anymore). Once this happens,
the policy is optimal.

Convergence is guaranteed for a finite MDP [15].

4.5.4 Value Iteration

Value Iteration is an alternative to Policy Iteration for finding the optimal policy.
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In value iteration, the optimal state value function is computed by iteratively updating
the estimate. Instead of waiting for the policy evaluation to fully converge, Value Iteration
updates the value function in every iteration and simultaneously improves the policy:

Algorithm 6: Value Iteration
Input: State space S, Action space A, Discount factor v, Initial value function
Vo(s), Transition function p()
Output: Optimal policy 7* and optimal value function V-
1 Value Update: Instead of fully evaluating the policy, the value function is
updated directly using the Bellman Optimality Equation:

Vit (s mapr "Is,a)(r +~Vi(s"))

This update simultaneously improves the value function and the policy.

2 Repeat: The value function is updated iteratively for all states until convergence.
Once the value function has converged, the optimal policy can be derived by
acting greedily with respect to the optimal value function:

m.(s) = arg max Zp(s’|s, a)(r+~V(s))

Value Iteration is more computationally efficient than Policy Iteration, since it simul-
taneously updates value and policy and does not involve exhaustive policy evaluation.

4.5.5 Generalized Policy Iteration

The term generalized policy iteration (GPI) is used to refer to the general idea of
letting policy evaluation and policy improvement processes interact, independent of the
granularity and other details of the two processes. Both Policy and Value Iteration are
GPI algorithms, but differ in the mechanics of their updates.

4.5.6 Limitations of DP Methods

A major drawback to the DP methods is that they involve operations over the entire
state set of the MDP, that is, they require sweeps of the state set. They also assume a
perfect model of the MDP, which in reality, is nearly never the case. In practice, this basic
approach is totally impractical, because the action-value function is estimated separately
for each sequence, without any generalization. Instead, it is common to use a function
approximator to estimate the action-value function, which is either a linear function ap-
proximator, or a non-linear function approximator, such as a neural network (DRL).
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4.6 Types of Reinforcement Learning

4.6.1 Temporal Difference Learning

Temporal Difference (TD) Learning includes a class of methods used for both for pre-
diction (estimate value functions) and control (optimize policy). Unlike DP methods, they
do not assume complete knowledge of the environment, that is full distribution of all pos-
sible successors. Instead, TD methods are model-free and require only raw experience—
sample sequences of states, actions, and rewards from actual or simulated interaction with
an environment. Similarly to DP, TD methods update estimates based in part on other
learned estimates, without waiting for a final outcome (they bootstrap).

In prediction problem, TD learning updates value estimates incrementally after each
step. The simplest TD method for prediction, known as TD(0), is defined by the following
update rule:

V(Se) < V(i) + a[Risr + 9V (Ser1) = V(Sy)], (4.17)

where a is the learning rate and the value 6, = Ry + vV (Si1) — V(S;) is the TD
error, that represents the difference between the current value estimate and the updated
estimate based on observed transitions. For any fixed policy 7w, TD(0) has been proved to
converge to the real value function v, [15].

4.6.2 On-Policy vs. Off-Policy Learning

Since in control problems the goal is to optimize the policy, the control methods learn
an action-value function rather than a state-value function. TD control methods are cat-
egorized into on-policy and off-policy methods. This distinction is not exclusive to TD
learning and primarily refers to how the data used for learning is generated and how the
learning process interacts with the policy being optimized. To clarify this distinction, it is
essential to differentiate between the behavior policy and the update policy:

e Behavior Policy: The behavior policy is the policy an agent follows when choosing
which action to take in the environment at each time step, it generates actions and deter-
mines how the agent interacts with the environment. For example in an e-greedy stochastic
policy, the agent selects the action with the highest estimated value with probability 1-¢
and another random action is chosen with probability e.

e Update Policy: The update policy is how the agent updates the Q-function. Specif-
ically, it dictates how the agent derives the state-action pairs which are used to calculate
the difference between the actual g-value and current predicted Q-value, also known as the
TD-error. The TD-error is then used to update the Q-function.

On-policy algorithms attempt to improve upon the current behavior policy that is used
to make decisions and therefore these algorithms learn the value of the policy carried out
by the agent, (). Off-policy algorithms learn the value of the optimal policy, Q*, and can
improve upon a policy that is different from the behavior policy.

For example, Sarsa is an on-policy TD control algorithm that uses the update rule:

Q(Sy, Ay) <= Q(St, Ap) + a[Ryy1 +vQ(Spy1, A1) — Q(S, Ay)l. (4.18)

82



4.6.3 Types of Reinforcement Learning

Sarsa converges to an optimal policy and action-value function as long as all state—action

pairs are visited an infinite number of times and the policy converges in the limit to the
greedy policy [15].

Algorithm 7: Sarsa Algorithm for episodic tasks

© 000 N O ok W N =

10

11

Input: State space S, Action space A, Learning rate «, Discount factor =,
Exploration rate €
Initialize Q(s,a), Vs € S, a € A(s) arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Repeat
Initialize S
Choose A from S using policy derived from @ (e.g., e-greedy)
Repeat
Take action A, observe R, S’
Choose A’ from S’ using policy derived from @ (e.g., e-greedy)
Update Q(S, A) + Q(S, A) + a[R+~vQ(S5", A") — Q(S, A)]
Set S+ 55 A« A

Until S is terminal

In contrast, Q-learning is an off-policy TD control algorithm, with one-step update rule:

Q(Sy, Ay) < Q(Sy, Ay) + a[Ry1 + Y max Q(Sty1,a) — Q(St, Ar)]. (4.19)

In this case, the learned action-value function, ), directly approximates ¢., the optimal
action-value function, independent of the policy being followed. The policy still has an
effect in that it determines which state—action pairs are visited and updated. All that is
required for correct convergence is that all pairs continue to be updated.

Algorithm 8: Q-learning Algorithm for episodic tasks

1
2
3

© 0 N o O s

Input: State space S, Action space A, Learning rate «, Discount factor ~,
Exploration rate €
Initialize Q(s,a), Vs € S, a € A(s) arbitrarily, and Q(terminal-state,-) = 0
Repeat (for each episode):
Repeat
Initialize S
Repeat
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Update Q(S, A) + Q(S, A) + a[R + ymax, Q(S’,a) — Q(S, A)]
Set S« &'

10 Until S is terminal
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4.6.3 Policy Optimization vs. Q-learning

The methods analyzed so far (DP, TD) are tabular, meaning that estimates of value
functions V, Q, are represented as a table with one entry for each state or for each
state—action pair. This is limited to tasks with small numbers of states and actions and
does not generalize well if the action or state spaces are continuous. To achieve better
generalization in model-free environments, function approximation is leveraged. Methods
of this family represent the approximate policy or action-value function not as a table,
but as a parameterized function with a learnable parameter vector, whom goal is to op-
timize in order to achieve maximum expected return. This forms the foundation of Deep
Reinforcement Learning, which integrates neural networks into RL tasks.

4.6.3.1 Policy Gradient Methods (Policy Optimization)

In this case, a policy is explicitly represented as my(a|s), where 8 € R™ are the param-
eters of the policy (e.g., weights of a neural network). The goal is to update 0 to values
that make my the optimal policy, which will maximize the expected cumulative reward.
Therefore, the objective function for policy optimization in episodic tasks is:

J(mo) = E [R(r)] (4.20)

where R(7) denotes the return from trajectory 7. Because @ will change, 8y denotes 6
at iteration k. The policy is optimized by gradient ascent:

0k+1 — Hk + CLV@J(W@)|7T@k. (421)

The intuition behind this is that the gradient of the optimization function points in the
direction in which to move 6 so as to increase the value of 7y, (a|s) the fastest. For example,
if for some state s, action ax is optimal, 8 should be updated so as to increase the probability
me(a * |s), reducing at the same time the probability for other actions in s. Learning rate
a is used to control the magnitude of this update.

It is proven ([16]) that:

VoJ(mg) = Z Vologmg(ag|s;) Pyl (4.22)
=0
where the first term shows how the probability of choosing a; in s; changes with respect to 0
and the second is used as a weight for the update. Assuming that the policy is represented
in a way which allows the calculation of its gradient, the mean value is calculated by
running the policy in the environment to collect a trajectory dataset D and taking the
sample mean:

Vo (my) D Z Z Vologme(as|s,) Py (4.23)
| | T€D t=0
Depending on the specific policy optimization method, the function ®, can take different

forms, that do not invite bias in the gradient ([15]). The most usual ones are:

e Total return of episode, R(7). It has high variance due to the long-term dependencies.
This causes large fluctuations in the gradient estimates. As a result, each policy update
can be very noisy, which can slow down convergence and make training unstable.
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e > R(sy,ay,syy1): In the previous case, R(7) included all rewards obtained in 7, but
in reality, rewards obtained before taking an action have no bearing on how good that
action was: only rewards that come after. This modified function is used to take that into
consideration.

e >l R(sy,ap,sy11) — b(sy), where b(s;) is called baseline function and is used to reduce
the variance. Usually, the value function is used as baseline, b(s;) = v.(s;). In practice,
v (s¢) cannot be computed exactly, so it has to be approximated. This is usually done with
a neural network, Vj(s;), which is updated concurrently with the policy (so that the value
network always approximates the value function of the most recent policy). The goal for
this network is to minimize a loss function, measuring the accuracy of Vy. In the simplest
case, as loss function can be used the MSE:

Lg)=  E [(Vol(s:) — R)%). (4.24)

St ,Rt ~T

For learning Vj;, gradient descent is used to minimize the loss function:

Grr1 < Ok — atVL(9)| 9. (4.25)

e The Advantage Function Ay, (s¢,ar) = Qr,(st;ar) — Vi, (s¢). The Advantage function
describes how much better or worse taking action a in state s is compared to acting
according to the policy.

4.6.3.2 Value Based Methods (Q-learning)

Methods in this family learn an approximator Qy(s,a) for the optimal action-value
function, ¢*(s,a). They extend the concept of Q-learning algorithm of TD section, incor-
porating function approximation. This optimization is performed off-policy, which means
that each update can use data collected at any point during training, regardless of how
the agent was choosing to explore the environment when the data was obtained. The loss
function is the Mean Square TD Error:

LO)= FE ()([Tt+1 + 7 max Qo(5141,a) — Qo(ss, ar))?], (4.26)

S,a~p

where v is the discount factor and p(s, a) is the behavior policy (a probability distribution
over states and actions through which experience is collected), e.g. e—greedy. Parameters
0 are updated through gradient descent.

The goal remains to find the optimal policy, which is obtained via the connection
between ¢* and 7*: the actions taken by the Q-learning agent are given by:

a(s) = arg max Qo(s,a). (4.27)

4.6.3.3 Comparison

Value-based and policy-based RL have both specific advantages and corresponding use
cases.
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One limitation of Q-learning is that it inherently produces a deterministic policy based
on the learned action-value function. This means that it can not learn stochastic policies,
which can be useful in most environments, while at the same time it does not incorporate
an explicit exploration mechanism. Another drawback is that, since the neural network
approximating the Q-function must output a value for each possible action, there is no
straightforward way to extend Q-learning to continuous action spaces. Policy gradient also
prevails in that it follows gradients with respect to the policy itself, which means direct
improvement of the policy. By contrast, in Q-Learning the improvement is performed on
the estimates of the values of actions, which only implicitly improves the policy. This in
practice is less efficient.

Policy gradient methods may suffer from high gradient variance but, overall, tend to
outperform value-based methods, particularly in high-dimensional or continuous action
spaces.

4.7 Algorithms in Deep Reinforcement Learning

To effectively illustrate the differences between policy gradient methods and value-
based methods in reinforcement learning, it is essential to examine specific algorithms that
embody these approaches. While both families of methods aim to optimize an agent’s
decision-making process, they differ fundamentally in their underlying principles, update
mechanisms, and suitability for various types of tasks.

4.7.1 Deep Q-learning Network (DQN)

DQN is a model-free, off-policy algorithm, that belongs in the class of Q-learning meth-
ods. It learns to approximate the optimal action-value function Q.(s,a), using a neural
network with parameters 8. The neural network takes the current state s as input and
outputs a Q-value for each possible action. Similar to other value-based algorithms, DQN
employs several key techniques to enhance learning stability and efficiency:

e Experience Replay: The agent maintains a replay buffer to store experiences (con-
sisting of state, action, reward, and next state tuples). Learning directly from consecutive
samples is inefficient due to strong temporal correlations, which can lead to overfitting and
increased variance in updates. To mitigate these issues, experiences are sampled randomly
from the replay buffer during training. This process helps to break temporal dependencies
and ensures that the network learns from a more diverse distribution of past experiences.

e Target Network: DQN uses a separate target network with the same architecture as
the main Q-network, but with frozen parameters for a fixed number of steps, to stabilize
the learning process. Periodically, the target network is updated by copying the weights
from the main network.

The DQN algorithm, after proper state representation and Neural Network construc-
tion, involves the following steps [30]:
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Algorithm 9: DQN Algorithm

1 Store experience from interaction with the environment in the replay buffer.
2 Repeat until convergence:

3 Sample mini-batches of experiences from the replay buffer to update the
neural network weights by performing (mini-batch) gradient descent on the
loss function:

2
L(6;) = Es ap0) [(Ttﬂ + 7 max Qpi-1 (811, a) — Qoi(sy, at)> ] )

Here the state-action value of the target ((ry.q + vy max, Qp,_, (St41,a)) is
computed based on the target network, which uses the parameters from the
previous iteration @;_;. Using the same network would cause instability in
training, as it would simultaneously modify the parameters used to generate
its own target values. The parameter update at step k is:

4 Balance exploration and exploitation: Select actions either greedily based
on the current policy or stochastically to encourage exploration.

5 Update target network: If needed (every some steps), update the target
network by either copying parameters from the main network:

Ot o'
or by Polyak averaging:

Ot — poit 4+ (1-— p)@i,

where p is a hyperparameter between 0 and 1.

4.7.2 Actor-Critic Methods

Actor-Critic (AC) methods are a class of reinforcement learning algorithms that lever-
ages the advantages of both value-based and policy-based methods. It introduces two
separate components—the Actor and the Critic—to effectively optimize the agent’s behav-
ior:

e Actor: The actor is a neural network parameterized by 6, that embodies the policy func-
tion. It is responsible for selecting actions based on the current state of the environment.

e Critic: The critic is a neural network parameterized by w, that evaluates the chosen by
the actor action by estimating the expected return (e.g., using a Q-value or a state-value
function). It provides feedback to the actor, guiding it toward better policy updates over
time. This feedback reduces the high variance that policy gradient methods typically suffer
from.
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The integration of these two components enables actor-critic methods to combine the
stability of value-based approaches with the flexibility of policy-based methods, particularly
in environments with continuous action spaces. The critic’s role is pivotal, as it provides
a stable and efficient training signal to the actor, leading to more robust convergence
compared to purely policy-based or value-based methods.

Specifically, the actor optimizes the objective function J(6), that represents the ex-
pected return under my. The policy parameters are updated using gradient ascent:

et—‘rl — Qt + QV9J<9) ]9t, (428)

where the policy gradient is given by:

T-1

VoJ(0) = Tgre[z Vologmg(ag|s)(Riv1 — V(sy)]. (4.29)

t=0

Here, R, denotes the total reward from that step until the end of the episode (second
case of baselines functions, as defined in 4.6.3.1 section) (this constitutes the action-value
Q(s¢, a¢), so the second term of the above relationship is in fact the advantage A(s;, a;)).
However, since computing R;,; requires access to the complete trajectory, the agent com-
putes an estimate, which in the simplest form is:

RtJrl Tyt ”yV(StJrl). (430)

Simultaneously, the critic receives the values of ry, s;11 from the environment and aims
to minimize the TD error:

5,5 =1+ Vw<8t+1) — Vw(St), (431)

so the critic’s loss function is defined as:
J(w) = (re + YVar(s141) — Vi (s1))?, (4.32)
and its parameters are updated using gradient descent:
Wie1 — wy — ay Vi, J(w). (4.33)

The critic then gives this TD error to the actor, so the actor’s gradient takes its final form:

T-1

Vo J(0) = TNEM[Z Vologmg(ar|s)(rer1 + 7V (st+1) — Vio(se)]- (4.34)

t=0

Intuitively, if the critic computes a positive TD error, indicating that the value of the
current state has been underestimated, the parameters 6 of the actor are updated in the
direction where the probability of action a; in s; increases. Conversely, a negative TD error
discourages the actor from favoring the same action in the future.
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4.7.2.1 Proximal Policy Optimization (PPO)

Proximal Policy Optimization (PPO) is a model-free, on-policy reinforcement learn-
ing algorithm that falls under the Actor-Critic framework. It is designed to improve the
stability and efficiency of policy updates by constraining large policy changes, which can
otherwise destabilize training. There are two main variants: PPO-Clip and PPO-Penalty,
that use different mechanisms to limit the step size of policy updates. The PPO-Clip
variant is the most widely used implementation of PPO.

In PPO-Clip the role of the critic remains the same, as described before. The actor,
however, aims to maximize a modified objective:

LEYP(9) = E  [min(r(0)A™ea (s, a), clip(r(0),1 — €, 1 + €)A™oa (s, a))], (4.35)

T 0014
where:

 my,,, denotes the old policy (the one used to collect the data) and 7y denotes the new
policy (the one being optimized),

 7(f) is the probability ratio between new and old policy, which measures the difference

between them:
m(als)

LOMCIE)

o ¢ is a (small) hyperparameter which roughly says how far away the new policy is
allowed to go from the old one,

r(6) = (4.36)

 the clip function clips the probability ratio, ensuring that it stays within the interval
[1—¢€1+¢,

o A0 (s,a) is the advantage estimate. The simplest way would be to estimate the
advantage with the TD error:

Aﬂ—gtﬂd(s, CL) ~ 5t = Tt+1 + ’YV(SH_l) — V(St). (437)

However, this one-step transition would lead to high variance in policy updates.
Thus, the agent leverages Generalized Advantage Estimation (GAE). GAE smooths
and stabilizes advantage estimation by incorporating multiple future rewards using
an exponentially weighted sum of TD errors:

T—1
Amo ota (8¢, ar) Z YA) 5t+l (4.38)
=0

The term 7(#)A™ () encourages the policy to increase the probability of actions with
positive advantages (good actions) and decrease the probability of actions with negative
advantages (bad actions). At the same time, the clip function ensures that the probability
ratio does not deviate too far from 1, preventing overly large updates to the policy in a
single step. This is the key mechanism that makes PPO stable.

So the full PPO-Clip algorithm, after proper state representation and Neural Network
construction for actor and critic, includes the following steps [17]:
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Algorithm 10: PPO Algorithm

1 Collect a set of trajectories Dy, by running policy 7y, in the environment.

2 Compute advantage estimates A™ (s, a) using GAE (or some other method) based
on the current value function V,,, (s).

3 Update the policy network via gradient ascent:

4 Repeat for N iterations:

5 Perform policy update:

9k+1 < ek + OéVGLCLIP(9>|9k7

where the clipped objective is:

LCOLIP (g,) 3 me( A (51, a), clip(r(0), 1 — €, 1 + €)A™ (s, a,))
‘D k|T €D}, t=0
6 Update the critic network via gradient descent:

Wi1 <— Wy — O{vaj(wt),

where the critic loss is given by:

J(w) > Z (ree1 +WVa(ser1) — Va(se)?

TeDk t=0

\Dk|T
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Problem Formulation

This chapter introduces the problem formulation, addressing the challenges of slice
admission control and Virtual Network Function (VNF) placement within the physical
architecture of O-RAN, utilizing Deep Reinforcement Learning (DRL). The goal is to
model a realistic O-RAN environment and develop an RL agent, that will efficiently make
decisions regarding the admission, placement, and splitting of incoming slice requests.

5.1 Network Model

A standard O-RAN-based architecture is assumed, wherein Edge Clouds (ECs) are
connected via FH links to the radio unit (RU), to support applications that require low-
latency. A simplified version, where each EC contains a single DU, is assumed. A single
Regional Cloud (RC), connected via MH links to the ECs, functions as a centralized com-
puting resource, responsible for higher-level processing and coordination across multiple
ECs. The FH links facilitate low-latency communication between the RU and the ECs,
while MH links provide high-bandwidth connectivity between ECs and the RC. Both ECs
and the RC are characterized by their total computing capacities, measured in CPU cores,
and every link is characterized by its bandwidth capacity and the delay it imposes.

The parameters associated with the environment formulation are introduced in Table
5.1.

5.2 Slice Request Model

The network receives slice requests in the form of Service Function Chain (SFC), which
specify the sequential order in which VNFs, indexed by vy € F' (where F is a set of available
VNFs), are processed within the network slice. In other words, a network slice corresponds
to an ordered subset of F denoted as F = {vo®, v1%, ..., v,,_1°} C F. It is important to note
that VNFs with indices 0 and 1 are fixed across all slice requests, with the former being
mandatorily deployed at the RU and the latter at a DU. Additionally, each network slice
s is characterized by specific computational and networking resource requirements. These
are defined per VNF and, in particular, for each VNF v;* € Fj let ¢4 stand for its demand
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Figure 5.1: Network Model.

in CPU cores and b;° the required bandwidth for the data transfer between consecutive
VNFs vs®,v41° over a network link. Furthermore, each request s arrives at a specific
time-slot ¢, within a limited time horizon H. The request also includes a holding time
ht,, indicating the duration for which the slice remains active once requested. Moreover,
an end-to-end delay requirement D,,,, s and a priority value pry are defined for each slice
request, reflecting its tolerance level for delay and its relative importance, respectively.

The main decision variables are the indicators of whether or not a slice is accepted and
where the VNFs should be placed if the slice is accepted. To this end, the binary X(t)
is defined, that equals 1 if a slice request has been admitted at time ¢ or earlier, and 0
otherwise. For the VNFs placement, the binary variables x5 ((t), ys (), Ve € £, f € Fy, s €
R(t) are defined as follows:

1, f € Fsisplaced on EC e € £/RC at t,

) (5.1)
0, otherwise.

x5 1 () /ys, s (8) = {

Furthermore, an additional variable sr4(t) indicates if an active (i.e., not expired) slice
s is admitted at time t:

arat) = {Xs(t% ts <t < (s + hts), (5.2)

0, otherwise.

5.3 Constraints

The placement of slices is, of course, subject to several constraints, including the ca-
pacities of the network elements and the delay requirements associated with each slice
[18].

First, there exist aggregated computing capacity limitations for each EC and the RC,
expressed as,
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Notation Description
E Set of ECs
F A set of available VNFs
F An ordered subset of VNFs consisting a service chain for slice s
feF; Index of a VNF in the service chain of slice s
N Number of VNFs of slice s
ts Arrival time of slice s
hitg Holding time of slice s
Prs Priority value of slice s
R(t) Set of slices arrived up to time ¢
Cs.f CPU requirement of VNF f of slice s
bs.f Bandwidth requirements for two successive VNFs f — 1, f of slice s
Doz, s End-to-end delay requirement of slice s
C.(t) CPU utilization on cloud e € &€
Brpe(t) (Bume(t)) Bandwidth utilization between the RU (RC) and the EC e € £
CFE, Total possible computing capacity of EC e for every time ¢
CR Total possible computing capacity of the RC
CBp. (CB) Total bandwidth of FH (MH) link related to e € £
Ores OcR Delay parameters
pmax Maximum power consumption of an EC
¥ Proportion of the consumed power of an idle server with respect to P,z
pras Maximum power consumption of network links
Prféf . Fixed power consumption of a network link between RU and e € £

Table 5.1: Description of problem parameters.

Z Z zg s(t)esy < CEe, Ve €€, (5.3)
SER(t) fEFs

Z Z Ys,f (t>cs,f

SER(t) fEFSs

IN

CR. (5.4)

Second, there exists bandwidth constraints over transmission links expressed as follows.
Note that a slice uses a link between the RU and an EC, if its second VNF (i.e., with index
1) is placed in this EC.

ST 28 (t)bsp < OBy, Ve €€, (5.5)
SER(t)
> Yo 25 (Oys sr1(t)bs s < CBare, Ve € €. (5.6)

SER(t) fEF\{ns—1}

Third, a VNF f of an admitted slice s is deployed at a unique physical resource, i.e.,
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> af ¢(t) + ys s (t) = srs(t), Vs € R(t),Vf € F, \ {0}. (5.7)
ec&

Fourth, the following constraints should be imposed on the order/way of the VNFs
deployment:

As by convention, for every admitted slice s, its first VNF (vg) is placed in the RU,
thus it cannot be placed in an EC or the RC, i.e.,

D alo(t) =0, yso(t) =0, Vs € R(t). (5.8)
Vee&

Moreover, the second VNF v; of an admitted slice should be placed in an EC, which is
guaranteed if it is not placed in the RC:

ys1(t) =0, Vs € R(t). (5.9)

In addition, under the assumptions of service chaining and collocation, if for an admitted
slice s, a VNF f is placed in an EC, the VNFs preceding f in the service chain, i.e., those
with IDs 1,..., f — 1, should be also placed in the same EC. Similarly, if a VNF is placed
in the RC, its successive VNFs in the service chain of the slice should be also placed in the
RC. These constraints are expressed mathematically as follows:

xi’f(t) < xg’f_l(t), Vfe Fs\{0,1},Vs € R(t),Ve € &, (5.10)
Yo () < Yo g1 (), ¥F € B\ {n, — 1},¥s € R(). (5.11)

Fifth, the delay of a slice is determined by the delays introduced by the FH and MH
links and the maximum delay requirement of a slice s, D445 is imposed by:

doaia®de+ Y Y al f(t)ys pr1(t)e R

ec& fEFs\{ns—1} e€f
< Dpax.ss Vs € R(t). (5.12)

Sixth, in this work, reallocation of VNFs for accepted slices is not allowed, which is
imposed by:

x5 () > srs(t) - a5 p(t— 1), Vs € R(t),Vf € Fs,Ve € €, (5.13)
Ys f(t) > Ts(t) : ys,f(t - 1)’ Vs € R(t),Vf € Fs. (5'14)

Finally, if a slice is admitted, then it retains its admission status until its holding time
expires, i.e.,

X,(t) > Xs(t — 1), Vs € R(t). (5.15)
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5.4 Cost

The total revenue accumulated in the system at every timestep t is defined as:

ReV(t) = Y sry(t)-prs. (5.16)
sER(t)

The cost of the network is derived from the power consumption of the ECs and the
network links utilized for the slice deployment. To design the power consumption costs for
the FH and MH links, two additional types of variables should be defined to determine
their utilization. Let u.(¢) be a binary variable expressing whether the FH link connecting
the EC e € £ with the RU is utilized at ¢. This variable is set only if at least one slice has
its VNF v, placed on the EC e, i.e.,

ue(t) > x5 1(t), Vs € R(t),Ve € £. (5.17)

Let v.(t) be a binary variable expressing whether the MH link through the EC e € £ is
utilized at t . This variable is set if for any two successive VNFs of any slice, one is placed
in the EC e and the other on the RC, i.e.,

ve(t) > @ p(t)ys p11(), Vs € R(t),Vf € Fi\ {ny — 1},Ve € €. (5.18)

To express the power consumption cost of the ECs, the model of a power-efficient VNF
placement from [19] is used, i.e.:

Ce(t)
EC _ max _ e mazx
PCEC (1) = ;egj (ue(t)vP + (A=) G P ) | (5.19)
For the links that connect the RU with ECs:
RU—-E _ fix BFH,e(t) max
PC (t) - ;eg: <ue(t)Pnet,e + CBF,e Pnet . (52())

Finally, in case of links that connect ECs with the RC, it can be written as

i B elt) pmas
PCE- ) = X (wrfi + SO e ). (521

5.5 MDP

Next, in order to develop the RL solution, the MDP must be formally defined.

In the proposed framework, slice requests are presented to the agent, which then de-
termines whether to accept each one of them based on the order of their arrival times.
Each RL decision step corresponds to one slice request. In instances where multiple slice
requests arrive within the same time-slot, ties are resolved arbitrarily. To avoid confusion,
the index k£ denotes the RL-based decision step for accepting or not a slice corresponding to
a request, whereas t; denotes the time slot of the control window at which the RL decision
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k occurs. Multiple RL decision steps, indexed as k, k + 1, ..., m may refer to the same time
slot t;, = tg11 = ... = t,,, in the control window when concurrent slice request arrivals take
place. Furthermore, slices that were not accepted are reintroduced to the agent at the
next time slot, provided their holding time has not expired. In this case, these requests are
treated as new slice requests, with their holding times appropriately reduced. The agent
continues to process slice requests until there are no active slices left not-admitted or until
the end of the episode, which spans H time-steps.

5.5.1 State

At each decision step, the agent requires sufficient information regarding both the
current network state and the forthcoming slice request, upon which the decision will be
made. Therefore, the state of the agent at each step k, when slice request s is processed,
is represented by the following tuple:

(ACy, ABy, ATy, STy, tr),
where:

o AC;, = [AC(k), ..., AC|g|(k), ACRc(k)], i.e. the available capacity of all ECs and of
the RC,

. ABk = [ABFHl (]C), cey ABFH‘E‘ (k), 143]\/[11[1 (k), ey ABMH|E| (k)), i.e. the available band-
width capacity of all network links, FH and MH,

o ATy = [ATgc, (k), ... ATEC 5 (k), ATy, (K), ., ATvm g, (K)], ie. the remaining times
that each EC or each MH link will remain active according to the current network
configuration,

o Sl = (prs, Dimaz.s, Pts, Cs1s oy Csna—15bs15 -y bsno—1), 1.6. all the necessary informa-
tion of the slice to be processed,

e {3 the current time slot of the control horizon.

5.5.2 Action

The agent will jointly decide whether to accept the slice, which EC will serve it if
accepted, and the number of VNFs of the slice that will be placed on this EC (i.e. the
function splitting). Specifically, the agent makes the decision (e,v), where e € {1, ..., |E|}
represents the index of the chosen EC, and v € {1,...,ns — 1} corresponds to the number
of VNFs to be placed on the edge (with vy always assigned to the RU). To align with
the actor network, this action pair is mapped to the one-dimensional space through the
function f(e,v) = (e — 1)(ns — 1) + v. Therefore, for every slice request s processed at
(with ¢, < ;) the agent takes action ag, from which (ey,vy) is calculated by the inverse
mapping of f(e,v). The action a; = 0 corresponds to slice rejection at time ¢;. In this
case, its holding time is decreased by 1. If the updated holding time reaches zero, the slice
is permanently rejected from the network, otherwise the slice will be reintroduced to the
agent at the next time slot of the horizon, at which point a new independent decision will
be made.
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5.5.3 Reward

The following values are defined:
o ReV = pry - ht, is the total revenue obtained by the acceptance of slice,

e PCFY is the power consumption on the chosen EC:

PCEC = max{ht, — ATgc,, (k),0}yP™ (5.22)
2P Csf
1 — ) =L 2 pmazyy
+{1=-7)=5 E.

where ATgpc ., is obtained from the current state sy,

e PCIU=E ig the power consumption of the used FH link:

PCRU=E —max{hts — ATpc,, (k), 0} PL, (5.23)
bs.1

e PCE~R is the power consumption of the used MH link:

PO =1y, 1y [max{ht, — ATarp e (k), 0} PLT (5.24)
b
,e

where 1y, <n,—1} = 1 if v, <n, — 1 and 0 otherwise (the slice is entirely placed on EC, no
MH link is used). The above equations for the power consumption cost are based on the
model of a power-efficient VNF placement from [19].

The EC’s idle power cost is assigned to the first slice placed on the EC, or to the one
extending the EC’s active time, thus the use of the AT, values.

The agent needs to encourage actions that will result in higher reward, while simul-
taneously aiming for lower power consumption cost. Thus, the reward function for every
state s, taking action ay for slice s is formulated as:

ReVs — PCy, if slice s is accepted at step k,

R(sk,ak) = { (525)

0, if slice s is rejected at step k,

where PCy; = PCFC + PCRV-E 4 pCE-R,

5.5.4 Transition Function

A transition takes place after every action a, to modify the network state according
to the action. The transitions are defined per RL decision step for each slice request
and not per time slot. Consequently, multiple updates may occur within a single time-
slot of the control horizon, depending on the number of slice requests that arrive during
the corresponding time-slot. Following each decision, the network state—comprising the
capacities of nodes and links—is updated to reflect the admission of the slice, if applicable,
and to adjust the holding times of all active slices.
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5.6 DRL Solution

The proposed solution to the online slice admission and function splitting problem,
as formulated by the above MDP, is the PPO algorithm, as detailed in paragraph 4.7.2.1.
This algorithm is aligned with the discrete action space of the problem. A modified variant
of PPO, referred to as Maskable PPO, is employed, as implemented in the Python library
Stable Baselines3 [20]. This variant incorporates action masking to exclude actions that
violate constraints at each time step, thereby simplifying the decision-making process for
the agent. Actions are considered violating if they fail to satisfy the capacity and delay
requirements constraints, defined in section 5.3.
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Experimental Results

In this chapter, the potential of the developed RL agent will be demonstrated through
a series of experiments, detailing the behavior of the model during training and evaluating
its performance across multiple metrics.

6.1 Evaluation Metrics

Different evaluation metrics are incorporated to assess the performance of the model,
each providing a different perspective on its capabilities. These are:

e Objective Value: It represents the total gain received by the agent at every step. It
is defined by the total revenue obtained by the slice admittance (equation 5.16), reduced
by the power consumption incurred in the resulting network state (equations 5.19-5.21).
This metric reflects the trade-off between minimizing power consumption and maximizing
overall reward, either by increasing the acceptance ratio or by prioritizing slice requests
with higher priority.

e Acceptance Ratio: It measures the ratio of admitted slices, by a certain time step, to
the active slice subset, which includes ongoing requests yet to expire. It reflects the system’s
efficacy in handling incoming slice demands midst existing deployment commitments.

e Power Efficiency: It is the ratio of the sum of accepted slices over the total power
consumption of the compute and network counterparts of the substrate network. It gives
an insight into the fraction of total power consumption corresponding to each accepted
slice.

To demonstrate the results, the cumulative average value of these metrics is used.
This is calculated by averaging the values across test episodes for each time-step, followed
by taking the cumulative sum, and then using these cumulative values to compute the
corresponding ratios.
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6.2 Training- Normal Operation

In the table 6.1 the values for the network infrastructure and slice requests parameters
are presented. Two types of slices with different requirements are considered, namely
URLLC and eMBB.

Parameter Value
Number of ECs 3

EC, RC capacity 64, 256 cores
Fronthaul link capacity, delay 2Gbps, 4ms
Midhaul link capacity, delay 4Gbps, 8ms

v 0.8

pmar - pmar 200 W

Pl 160 W
Number of Requests 20

SFC request length 8 VNEFs

CPU cores demand per VNF € {2,4,8}
Request holding time min(U{3,6},12 — t;)
URLLC and eMBB bandwidth requirement 100, 200 Mbps
URLLC and eMBB delay requirement 25, 50 ms
URLLC and eMBB normalized priority 3, 2.4 per time-slot
Optimization Horizon H 12 time steps

Table 6.1: Simulation Parameters.

Initially, the agent’s operation will be demonstrated under a scenario where slice re-
quests are generated according to a normal distribution over the horizon H, specifically
N (% -1,09).

The agent is trained over 3500 episodes, and the progression of the training process
can be monitored using TensorBoard. As illustrated in Figure 6.1, the loss, defined as the
average of the training loss and the value loss of the actor and critic networks, respec-
tively, decreases over time, stabilizing at around step 90,000. This step corresponds to
approximately episode 3000, after which the agent’s behavior appears to stabilize.

Figure 6.1: Loss during training.
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To further enhance understanding of the agent’s decision-making process, the decisions
made by the agent during a series of 10 test episodes are visualized. Figure 6.2 (a) illustrates
a heatmap with the frequency of every EC id- number of VNFs pair and in the figures 6.2
(b-c) the frequency for every separate decision is more clearly depicted.
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Figure 6.2: Decisions of the agent.

These results can now be analyzed. First of all, a degree of imbalance in the selection
of ECs is evident, with a preference for the first EC. This aligns with the goal of minimum
power consumption (defined by the term of the reward function), as it is advantageous
to keep as many ECs idle as possible, thereby concentrating the requests on the minimal
number of ECs required. Similarly, the agent appears to favor splitting the slice on a
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lower number of VNFs. This is also justified by the attempt to minimize power consump-
tion, given that VNFs deployed on the RC do not contribute to the total computational
consumption (they only increase the MH link consumption, if the slice extends its active
period). Additionally, the choice of no splitting (i.e., assigning all 7 VNFs to a single EC)
seems to be frequent. This corresponds to cases where the slices can be fully accommo-
dated within the selected EC and either have a low total load and holding time or they are
accepted near the end of the control horizon, when no further requests are expected. In
these situations, the agent prefers to avoid splitting, thereby avoiding the power consump-
tion associated with the MH link. Finally, it is worth noting that the no-splitting decisions
are usually associated with the third EC, indicating an effort to reserve sufficient capacity
in the other ECs to concentrate the upcoming split slices, thereby minimizing again the
MH link power consumption cost. Overall, the agent exhibits the expected behavior.

6.3 Evaluation on different arrival distributions
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(a) Average number of arrivals. (b) Average number of active slices.

Figure 6.3: Dataset information.

In the first set of experiments, 3 datasets are created with varying arrival rates per time
slot in the control horizon. Specifically, arrival patterns are generated according to three
distinct distributions, visualized in Figure 6.3: a Normal distribution, N (% -1, 0.9), an

Exponential distribution, Exp (%), and a Beta distribution, Beta (H -2, %) rescaled to
the horizon interval and grouped by time slot. For each distribution, 1,000 scenarios are
used for the training dataset and 10 for the test set. This experiment targets to evaluate
the agent’s learning ability by testing its behavior on diverse slice arrival distributions.

The agent is trained on one of the datasets at a time. In particular, Agent 1 represents
the model trained on Dataset 1, Agent 2 on Dataset 2, and Agent 3 on Dataset 3. These
agents are then evaluated across all three datasets, as illustrated in Figure 6.5(a). The
objective value, as defined in section 6.1, is used as evaluation metric.

In each case, as observed in Figure 6.4, the agent performs best on the dataset it was
trained on, demonstrating its ability to learn the arrival patterns and optimize decision-
making for each scenario. However, the observed divergences are small, indicating strong
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generalization capabilities.
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Figure 6.4: Comparative evaluation under varying arrival patterns.

6.4 Comparison with static splitting agent

The second set of experiments is designed to assess the agent’s ability to take the
optimal splitting decision. To this end, the agent is compared against a static version,
denoted by "RL-ST". This version splits deterministically the slices. In particular, the
emBB slices are split in their second VNF (v;) and the URLLC ones are split in the middle
(v3). The decision of the agent is thus limited to the selection of the EC. The two agents
are trained and tested on sets sampled by the distribution on Dataset 1.
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Figure 6.5: Comparative evaluation dynamic vs static splitting.

Figure 6.5 illustrates the performance of the two models, as evaluated using the metrics
defined in Section 6.1. The "RL-ST" method, which lacks adaptability, results in subop-
timal load management and an increased number of rejections, leading to a noticeable
deterioration in performance across all evaluated metrics. This outcome highlights the
critical importance of dynamic decision-making of the proposed RL model in effectively
managing incoming requests. This model exhibits strong state awareness, enabling it to
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adapt to varying network conditions and optimize performance.
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Epilogue

The advent of 5G and eventually 6G has given rise to growing demands in network
resources from multiple organizations or individuals, with heterogeneous requirements for
the demanded services. The virtualization of the network functions and the evolution of
the RAN part of the network into the disaggregated O-RAN architecture allow for the
incorporation of intelligent mechanisms to manage the network traffic.

This thesis presents an innovative solution to the challenge of managing incoming slice
requests in an O-RAN network using a Reinforcement Learning approach. The primary
focus of the work was on addressing the dynamic decision-making problem in Network Slic-
ing and VNF Placement in varying network conditions. Taking into account the on-line
nature of the problem, the solution from the corresponding exhaustive optimization task
would be of little value. The proposed solution leverages the Proximal Policy Optimiza-
tion (PPO) algorithm to train a reinforcement learning agent capable of making dynamic
decisions given the current network state at any time. The agent aims to optimize the
trade-off between revenue from slice acceptance and the power consumption costs at edge
clouds and communication links, both of which are critical for improving energy efficiency
in modern wireless networks.

Through a series of experimental evaluations, the performance of the proposed RL agent
was assessed across several key metrics. These experiments highlighted the significance of
dynamic decision-making in achieving effective resource management and the ability of the
agent to make insightful decisions, adapting to the network conditions. The agent showed
robust performance across different network scenarios, illustrating the model’s ability to
satisfy a high number of incoming requests, while simultaneously maintaining low power
consumption costs.

Future Work

While this thesis offers a solid foundation for the aforementioned problem, several
potential extensions for future work can be identified. First, it is crucial to evaluate the
agent on a real dataset of slice requests and VNFs. Such a dataset, which includes the
required capacity, bandwidth, and delay specifications for each VNF within every slice, has
yet to be developed.
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Second, testing the agent in real-world, large-scale environments with more RUs, ECs
and RCs, would be highly beneficial. Additionally, relaxing the assumption of one DU per
EC, which was made in the current work, would provide a more realistic evaluation of the
agent’s performance.

Finally, this work could be further improved by incorporating a mechanism for slice
reallocation, where already deployed slices are dynamically moved across the network nodes
in order to minimize power consumption.

In sum, as networks continue to grow in complexity and scale, solutions like the one

proposed in this thesis will play a crucial role in ensuring that resources are used efficiently,
while simultaneously minimizing environmental impact through energy conservation.
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